




Abstract

This thesis focuses on different aspects of the interface between light and gravity. The
contents can be divided into three thematic areas, corresponding with the connected
publications and manuscripts. In the first chapter, measuring the gravitational near-
field of a laser beam is discussed. The second and third chapters deal with the effects
of gravity on the propagation of laser light. In particular, we focus first on the effects
of cosmological expansion on local experiments and then on the effect of gravity on a
soliton in a nonlinear medium.
In the first chapter, we calculate the gravitational field of laser pulses traveling back

and forth in a cavity. We investigate their potential as sources of gravitational perturba-
tions together with ultra-relativistic particle beams and modulated CW-cavities. These
sources are then combined with three optomechanical detectors, and we calculate the
expected responses of the detectors resulting from the source signals and the noise of
the systems. We optimize over the parameters of one of the more promising detectors,
a pendulum, for a one-week experiment. This allows us to show that measuring the
gravitational signal of the planned high luminosity LHC is not too far-fetched. Thus,
while we find that current detectors are unable to detect these gravitational signals, we
also show that optimized and specialized detectors combined with future upgrades could
open a pathway to the measurability of these signals. This would, in turn, be a stepping
stone for accessing gravitational effects of non-classical states.
In the second chapter, we consider laser signals traveling in an expanding spacetime,

such as Schwarzschild-de Sitter or McVittie spacetimes. We investigate the effects of
the cosmological expansion on both the frequency measurements in a resonator and the
frequency shift in double Doppler tracking are calculated for multiple observer fields. We
then also estimate the potential bounds on the cosmological constant and the Hubble pa-
rameter that would result from these types of experiments, using state of the art optical
clocks, are estimated. We find that frequency corrections linear in the Hubble constant
are an artifact of unphysical observer choices but that, nevertheless, advancements in
optical clocks may allow in the future useful bounds to the cosmological constant or the
Hubble parameter.
Lastly, we consider the effect of a background spacetime on light traveling in nonlinear

Kerr-media. We show that the medium and spacetime can be treated as a combined
effective medium and use this in a simplified scenario to obtain a partial differential
equation for the propagation of a soliton in a fiber. The propagation of solitons in
these media is then simulated and the effects of the background spacetime studied. We
also include the effect of mechanical deformations, i.e., photoelasticity, induced by the
gravitational forces, which turns out to be the dominant effect.
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Zusammenfassung

Der Schwerpunkt dieser Arbeit liegt auf verschiedenen Aspekten im Zusammenspiel von
Licht und Schwerkraft. Der Inhalt dieser Arbeit kann in drei Themenbereiche unterteilt
werden, die mit den zugehörigen Publikationen und Manuskripten korrespondieren. Die
Messung des gravitativen Nahfeldes eines Laserstrahls wird im ersten Abschnitt behan-
delt. Der zweite und dritte Abschnitt befasst sich mit den Auswirkungen der Schw-
erkraft auf die Ausbreitung des Laserlichts. Dabei konzentrieren wir uns zunächst auf
die Auswirkungen der kosmologischen Expansion auf lokale Experimente und dann auf
die Wirkung der Gravitation auf ein Soliton in einem nichtlinearen Medium.
Im ersten Abschnitt berechnen wir das Gravitationsfeld von Laserpulsen, die sich in

einem Hohlraum hin und her bewegen. Wir schätzen ihre Möglichkeiten als Quellen von
Gravitationsstörungen zusammen mit ultra-relativistischen Teilchenstrahlen und mod-
ulierten CW-Resonatoren ab. Diese Quellen werden dann mit drei optomechanischen
Detektoren kombiniert und wir berechnen die erwarteten Detektoramplituden, die sich
aus den Quellensignalen und dem Rauschen der Systeme ergeben. Wir optimieren einen
der vielversprechendsten Detektoren, ein Pendel, für ein einwöchiges Experiment und
kommen in den Bereich der Messbarkeit des Gravitationssignals des geplanten LHC mit
hoher Luminosität. Während wir feststellen, dass die derzeitigen Detektoren nicht in der
Lage sind, diese Signale zu detektieren, können optimierte und spezialisierte Detektoren
in Kombination mit zukünftigen Upgrades den Weg zur Messbarkeit dieser Art von Ef-
fekten eröffnen und somit ein möglicher Schritt zum Zugang zu Gravitationseffekten von
nicht-klassischen Zuständen sein.
Im zweiten Abschnitt betrachten wir Lasersignale, die in einer expandierenden Raumzeit

wie Schwarzschild-de Sitter oder McVittie propagieren. Die Auswirkungen der kosmol-
ogischen Expansion sowohl auf die Frequenzmessungen in einem Resonator als auch
auf die Frequenzverschiebung bei der doppelten Dopplerverfolgung werden für mehrere
Beobachterfelder berechnet. Außerdem werden die möglichen Grenzen für die kosmol-
ogische Konstante und den Hubble-Parameter abgeschätzt, die sich aus diesen Arten
von Experimenten unter Verwendung modernster optischer Uhren ergeben würden. Wir
stellen fest, dass Frequenzkorrekturen, die linear zur Hubble-Konstante sind, ein Artefakt
der Wahl unphysikalischer Beobachter sind, dass aber dennoch Fortschritte bei optis-
chen Uhren bald nützliche Grenzen für die kosmologische Konstante oder den Hubble-
Parameter ermöglichen könnten.
Schließlich betrachten wir die Auswirkungen einer Hintergrundraumzeit auf Licht,

das sich in nichtlinearen Kerr-Medien bewegt. Wir zeigen, dass das Medium und die
Raumzeit als ein kombiniertes effektives Medium behandelt werden können und verwen-
den dies in einem vereinfachten Szenario, um eine partielle Differentialgleichung für die
Ausbreitung eines Solitons in einer Faser für die Maxwell-Gleichungen zu erhalten. Die
Ausbreitung von Solitonen in diesen Medien wird dann simuliert und die Auswirkun-
gen der Hintergrundraumzeit untersucht. Insbesondere in Kombination mit der Pho-
toelastizität eines deformierbaren Mediums können stark verstärkte Gravitationseffekte
auftreten.
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1. Introduction

The theory of general relativity describes gravitational effects from milligram masses
to universe scale structures and from motionless to ultrarelativistic systems. Light has,
historically, been a central tool in exploring general relativity and testing its predictions.
The theoretical descriptions of light and gravity interface at many levels, from the de-
flection of light in gravitational fields in the form of gravitational lensing, lense thirring,
or frame dragging to the rarely considered gravitational field of light itself [1, 2, 3, 4].
In this thesis, we look at light both as a tool for exploring the geometry of spacetimes

and as a source of the gravitational field. On the one hand, we study the gravitational
field of light itself and analyze whether the gravitational signals can be shifted into the
range of the measurable by using a cavity or ring resonator to create a periodic signal. On
the other hand, the propagation of light in curved spacetimes is the subject of the other
works contained in this thesis. We look at both the influence of an expanding universe on
local experiments involving frequency measurements, and the effects of gravity on optical
pulses propagating in a non-linear medium stationary in Schwarzschild spacetime.
In chapter 2 we extend on studies on the gravitational field of light [1, 2, 5] to calculate

the periodic field generated by a light pulse in a cavity and that of a bunched particle
beam. In the ultrarelativistic limit, the restmass of particles becomes negligible with
respect to their total energy. Therefore in lowest order the gravitational field of the two
beams can be calculated in the same manner starting from the principle of mass-energy
equivalence. We work within the theory of linearized gravity, which is the weak field limit
of general relativity, and calculate both the small perturbation of the metric caused by
a Petawatt power laser pulses traveling back and forth in a high finesse cavity and that
of the LHC. To study wether the gravitational signal of these sources is measurable, we
combine the sources with several optomechanical sensors suitable for narrow bandwidth,
small amplitude signals. First we look at the signal to noise ratio of a generic resonant
mass detector and extend that calculation to a highly refined version of a resonant mass
detector, using superfluid Helium, of which a prototype exists [6]. Then, we consider a
high Q-factor pendulum [7] and propose an optimized version thereof, which, by going
to a different regime of parameters and utilizing an altered detector geometry, shows a
possible pathway to promising future experiments.
The focus is then changed in chapter 3 to the propagation of light in a curved space-

time and the effects of the expansion of the universe on local frequency measurements.
Current observations [8] confirm that our universe is in a state of accelerated expansion
at large scales. Both the ΛCDM cosmological model and the more simplified Friedmann-
Lemâıtre-Robertson-Walker (FLRW) spacetime metric capture this effect. However, in
local gravitating systems the effects of expansion have been the subject of a lively debate
[9]. Handling solutions of general relativity that account both for a local gravitating ef-
fects and the expansion happening at large scale is difficult without resorting to strong
simplification and heavy idealization. The simplified model we resort to in chapter 3 is
the use of the McVittie metric, describing a spherical symmetric massive object embed-
ded in an expanding FLRW spacetime. We will focus on the effect of the cosmological
expansion on the frequency of propagating light. In particular, the frequency shift of a
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resonator moving along different trajectories as well as a light signal exchanged between
an observer, again moving along different trajectories, and a spacecraft.
The last topic, discussed in chapter 4, deals with the combined effects of a nonlinear

medium and a curved background spacetime on the propagation of light. In recent
years, the propagation of light in inhomogeneous optical media has increasingly been
used as an analogue model of gravity, studying otherwise inaccessible quantum effects at
horizons. This is inspired by the fact that light rays in a nondispersive medium propagate
along geodesics of an effective optical metric [10]. Even at the level of the Maxwell
equations, an effective medium can be constructed, with its properties only determined
by the curved spacetime, for which the vacuum, curved spacetime Maxwell equations
are equivalent to the ones in the effective medium, but in flat spacetime. We extend
on this equivalency and show that the Maxwell equations for light in a medium and
an additional background spacetime are equivalent to equations in flat spacetime with
an effective spacetime medium constructed from both the metric and the background
spacetime. In the limit of geometric optics, this can be reduced to a new refractive
index obtained by multiplication of the mediums refractive index with the refractive
index of the effective medium corresponding to the spacetime. We use this formalism,
with some simplifications, to simulate the one dimensional propagation of a light pulse
in a nonlinear fiber, which itself is placed in the gravitational field of the earth. As an
additional complexity, we consider the fiber to be itself subject to gravity, deforming it
and, through the effect of photoelasticity, altering its optical properties.

2. Perspectives of measuring the gravitational effects of

laser and particle beams

Ever since the theoretically long predicted gravitational waves were first experimentally
documented, all types of sources of gravitational signals have been the subject of in-
creased scientific interest. High-energy, relativistic sources, which usually will be of low
rest mass, pose an interesting frontier in this regard. They not only could offer a dif-
ferent class of tests of general relativity, constraints on extensions of general relativity,
especially for quantum gravity effects [11, 12, 13, 14, 15]. For signals of cosmic sources
the experimental setups are limited to just detection, hence proposals for man-made
relativistic sources were already discussed early on [16, 17, 18].
Gravitational effects of light were studied early on in the twentieth century [1, 2, 5]

with its many interesting properties. Both beams of light and pulses will attract test
particles with a force proportional to distance21, similar to an infinitely extended massive
cylinder, while the attraction of a more compact mass will scale with distance22. Higher
order effects include frame dragging, polarization rotation, and other gravitomagnetic
effects [19, 20, 21, 22, 3, 23, 4]. For a beam or pulse of relativistically moving massive
particles, the gravitational influence is in lowest order equivalent to that of their photon
equivalent [5, 24, 25, 26, 3, 23].
In this chapter we sketch the description of the attractive effects of state-of-the-art
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high-energy relativistic sources and their interaction with resonant mass/pendulum type
detectors and give results on the measurability of these effects.

2.1. Sources

Modern femtosecond laser pulses can reach up to a Petawatt in pulse power. We consider
a series of high energy laser pulses oscillating to and fro in a cavity as a source of the
gravitational field. In [A] the effective Newtonian potential close to the cavity axis
resulting from this source is calculated within the theory of linearized gravity to be
given as

Φ(t) =
4GP (t)

c3
ln Ä, (1)

where G is the gravitational constant, c is the speed of light in vacuum, Ä the distance
from the beamline, and P (t) the power passing through the cross-section of the cavity
at the observers position. We assume a high average power pulsed laser [27] coupled
into a large, high-finesse cavity using switchable mirrors and estimate that an average
power of 20GW could be achieved.
To achieve even higher average powers, we propose the use of a CW-laser, such as

the one from [28], coupled into a high-finesse cavity resulting in an average power of
up to 100GW, and to then periodically modulate the energy periodically. While the
standing wave will not be relativistic in its nature, it will still produce the same effective
Newtonian potential given in eq. (1).
From a gravitational point of view, ultra relativistic particle beams are, given the

negligible contribution of the rest mass, very similar to a laser beam [25, 24, 26]. Thanks
to the high average power of 3.8TW, the LHC is an obvious choice as the last source
we’ll consider. While there is already an internal frequency in the megahertz range to its
signal due to the bunching of electrons in the ring, a periodic modulation of the beam’s
focal point position could be used to create a gravitational signal of lower frequency.

2.2. Sensors

We consider two types of detectors, first resonant mass detectors, where we look at an
aluminum rod similar to a Weber bar [29] and a cylinder filled with superfluid helium-4
coupled parametrically to a superconducting microwave cavity [6]. Secondly, we con-
sider mechanical harmonic oscillators. Motivated by the high gravitational sensitivities
recently reported for a monolithic pendulum in [7, 30] and for a torsion balance in [31],
we calculate the response of the first to our sources and use this as a base of a more
optimal detector close to the parameter regime of the second.
Limiting ourselves to the one dimensional case, we can describe the deformable cylin-

der with a wave equation for the displacement field u(x, t) given by [29]

"2
t u(x, t)2 c2s"

2
xu(x, t) = 2"xΦ(x, t), (2)

where x is the direction orthogonal to the sources axis of symmetry, and cs is the speed
of sound in aluminum. For the rod depicted in figure 2, the maximum amplitude on
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Figure 1: a) Laser pulse oscillating to and fro in a cavity. b) CW-laser focused to a
narrow waist inside a cavity. Its intensity is modulated to create a periodic
gravitational field. c) Ultrarelativistic particle bunches in an accelerator ring
such as the LHC create a gravitational field very similar to that of laser pulses.
In the vicinity of the waist of the laser beam or close to the beamline, a detector
picks up resonant mechanical deformations due to the oscillating gravitational
forces.

Figure 2: Schematic drawing of the deformable rod envisioned as a detector.
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resonance with the ground mode is

Arod(É0) =
16GP avg

cav Q

É3
0c

3Äp
sin
�É0Äp

2

�

� L+∆

∆

dx
2

L
cos
� Ã

2L
(x2∆)

� 1

x
(3)

where É0 is the frequency of the ground mode, P avg
cav is the power in the source cavity

averaged over one oscillation period, Q is the material quality factor of the rod, and Äp
is the length of the rectangular pulse of the sources gravitational signal. As a gauge for
the measurability of the signal, we consider the amplitude resulting from thermal noise

Ath =

�

4kBTQ

ω3
0
Meff

Äint
, where kB is the Boltzmann constant, T is the temperature of the rod,

Meff is the effective mass of the ground mode of the rod, and Äint is the integration time,

as well as quantum noise given by the standard quantum limit (SQL) ASQL =

�

4/Q

Meffω2
0

Äint
,

with the reduced Planck constant /. Results for both the expected signal amplitude and
dominant noise are given in table 1 for all different types of sources.
In [6] Singh et al. study the acoustic motion of superfluid helium-4 coupled paramet-

rically to a superconducting microwave cavity as a detection scheme for continuous-wave
gravitational signals. Instead of gravitational waves, we want to employ this prototype
detector for the near-field sources we consider here. With the one-dimensional formal-
ism we use to describe the deformable rod, we can also describe the ground mode of the
helium in the cylindrical container, however, with two fixed ends instead of one. The
maximum amplitude for resonant diving of the ground mode is given by

AHe(É0) =
16GP avg

cav QHe

É3
0c

3Äp
sin
�É0Äp

2

�

� L+∆

∆

dx
2

L
sin
�Ã

L
(x2∆)

� 1

x
, (4)

with a values for the prototype of QHe = 6 ·1010, L = 4 cm, É0 = 2Ã ·2.8 kHz, Meff = 3g.
The main sources of noise considered are once again thermal and quantum noise, for the
prototype a temperature of T = 5mK is given. Values for both the expected amplitude
and noise are given in table 1.
Next, we want to consider the sensitivity of a pendulum to the gravitational signal

of the source. In [7] the properties of a monolithic pendulum were presented. From an
already high quality factor Qpend = 105 at É = 2Ã · 4.4Hz, an optical spring is used
to increase the stiffness of the system, upshifting its resonance frequency, while also
increasing the new effective quality factor quadratically with the frequency. However,
the optical spring also pumps energy into the system, which has to be removed using
additional feedback cooling, strongly decreasing the quality factor to Qfb, while leaving
the resonance frequency untouched. At a frequency of É0 = 2Ã · 280Hz, a sensitivity of
3 ·10214 m/

:
Hz was demonstrated with a quality factor of Qfb = 250, where the limiting

factor was given by thermal noise. The displacement amplitude resulting from driving
on resonance can be calculated just using the acceleration of the center of mass to be

Apend(É0) =
16GP avg

cav sin
"

É0Äp
2

�

Qfb

c3É3
0Äp

1

xcom

, (5)
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Figure 3: From “Detecting continuous gravitational waves with superfluid 4He” by S.
Singh et al. in the New Journal of Physics, vol. 19 p. 073023 in July 2017 [6].
Schematic drawing of the superfluid helium-4 detector.

where xcom is the distance between the axis of symmetry of the source and the center of
mass of the pendulum. The expected amplitude as well as the sensitivity are given in
table 1.
Lastly, we want to demonstrate that a detector with an optimized geometry can be

envisioned, close to able to bridge the large gap left between the signal and sensitivity of
the detectors discussed prior for a realistic total experiment time of 1 week. Given the
elongated geometry of our sources, a pendulum with a long cylindrical body would be
beneficial. Intuitively, and also manifestly in the equations derived below, it is evident
that the mass m should be as large as possible. At the same time, m cannot be made
arbitrarily large, as otherwise the distance from the beam axis would have to be increased
as well, which would lead to a decay of the signal ? 1/xcom. We therefore assume for
the LHC as source a cylindrical detector mass that allows one to maintain Ä = 200µm.
If we allow that cylinder to become as long as Lcyl = 0.5m and determine the maximum
mass as m = 0.9ÃóSi(Ä 2 Ämin)

2 Lcyl (where 0.9 is a “fudge factor” that avoids that the
detector mass touches the shielding), we find m = 33mg for Ämin = 100µm.
The total equilibrium noise reads

S̄xx,eq(T, É,Ω, Q,m) = / coth

!

/É

2kBT

�

ImÇxx(É,Ω, Q,m) (6)

ImÇxx(É,Ω, Q,m) =
QÉΩ

m(É2Ω2 +Q2(É2 2 Ω2)2)
, (7)

with the quality factor Q c Ω/(µ0 + µ). A transducer and amplifier add a back-
action noise S̄xx,add that can be referred back to the input [32]. It is lower bounded
by S̄xx,addMin = /|ImÇxx|. With this lowest possible value and the replacements Ω³ É0,
Q ³ Qfb, T ³ Tfb, one obtains for the total noise power to lowest order in µ/µ0, that
S̄xx,tot(Tfb, É, É0, Qfb,m) = S̄xx,eq + S̄xx,addMin.
The maximum amplitude Apend(É0) of the harmonic oscillator is reached only asymp-

totically as a function of time, namely as xgrav(t) = xgrav(1 2 exp(2É0t/(2Qfb))). We
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rod liquid helium pendulum
É0 2Ã · 103 Hz 2Ã · 109 Hz 2Ã · 2.8 · 103 Hz 2Ã · 280 Hz

sensitivity 1 · 10217 m:
Hz

4 · 10217 m:
Hz

1 · 10212 m:
Hz

2 · 10214 m:
Hz

limiting factor thermal noise SQL thermal noise thermal noise

expected amplitude

laser pulses 2 · 10225 m 2 · 10234 m 1 · 10220 m 3 · 10226 m
CW-cavity 4 · 10225 m 4 · 10234 m 2 · 10220 m 5 · 10226 m
LHC beam 8 · 10224 m 9 · 10232 m 4 · 10219 m 1 · 10224 m

Table 1: Comparison of the estimated sensitivity of the listed detectors with the expected
amplitude of the sources considered on resonance and after the full build-up-
time of the detector’s oscillation. For the cases in which the main limiting factor
is thermal noise, a temperature of 5mK was assumed. Other parameters, see
text.

assume that the total time Ätot = 1 week for the experiment is split as Ätot = Är+ Äm into
a time Är needed for the amplitude of the harmonic oscillator to rise to a certain level,
and a measurement time Äm used for reducing the noise. The total signal-to-noise ratio
on resonance is then given by

S/N = xgrav

�

12 e
2(Ätot2Äm)

ω0
2Qfb

�

�

Äm
S̄xx,tot

c 0.01
(12 e

(Äm2Ätot)
ω0

2Qfb )
:
QfbmÄm

É0

"

1 + coth 4·10−12É0

Tfb

, (8)

with all quantities are in SI units.
We insert the m = 33mg in eq.(8), and optimize S/N with respect to the parameters

Äm, É0, Qfb and Tfb. With Ätot kept equal to 1 week, in the range 1/s f É0 f 104/s,
1 f Qfb f 108, 1 nK f Tfb a maximum value S/N c 0.6 is found for Äm = 3 · 105 s,
É0 = 2Ã · 0.16 Hz, Qfb = 1.2 · 105, and minimal Tfb. The optimal value for É0 is at the
lower end of the parameter range, but reasonably close to the one for the existing torsion
balance in [31] (É0 = 2Ã×3.59mHz), where, however, the mechanical quality factor was
Q = 4.9 and a mass of 92.1mg was used. It remains to be seen if the parameters
that result from the optimization can be reached. Problematic appears mostly whether
the temperature of the cooled mode of about 1 nK can be reached, especially at low
frequencies.
The planned upgrade of the LHC to the high-luminosity LHC [33] should increase S/N

by a factor 10. Another factor 2.9 is expected to be gained by switching to tungsten
(with mass density óW = 19, 250 kg/m3) as detector-mass material, all other optimized
parameters remaining equal. Both factors combined would lead to a S/N c 16.
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3. Effects of cosmological expansion in frequency

measurements of light

The ΛCDM standard cosmological model, in accordance with current observations [8],
describes an accelerated expansion of the universe at large scales. This description is
effective above the supercluster scales, where the evolution is dominated by the so-
called Hubble flow. However, whether the cosmic expansion of spacetime can affect
local gravitating systems has been the subject of a lively debate dating back to Einstein
and Straus [9, 34]. Since then, a growing body of literature has tackled the issue of the
existence of local effects of the cosmological expansion [35].
In this chapter, motivated by the rapid development of optical clocks and frequency

standards [36] which are now reaching an uncertainty below the current value of the
Hubble parameter H0 j 2.2 · 10218 1/s when averaging over a minute, we investigate the
effect of the global cosmological expansion on the frequency of propagating light signals,
focusing on the frequency shift of a resonator moving along different trajectories and on
the exchange of light signals between different observers.

3.1. Metrics, observer fields, and the proper detector frame

First derived in the early ’30s [37], the McVittie metric is a spherically symmetric solu-
tion to Einstein’s equations and describes a non-charged, non-rotating compact object
in an expanding cosmological FLRW spacetime. As such, the McVittie metric reduces,
by construction, to the exterior Schwarzschild solution at small radii and to FLRW
asymptotically. We restrict ourselves to the case in which the FLRW asymptotic metric
describes a spatially flat spacetime, in accordance with current cosmological observa-
tions.
In the following, we use mainly two coordinate representations for the McVittie met-

ric, always assuming to be at distances from the central object much larger than its
Schwarzschild radius. We also set c = G = 1 unless otherwise stated. In isotropic
spherical coordinates, the McVittie metric reads

ds2 = 2

�

12 m(t)
2r

�2

�

1 + m(t)
2r

�2dt
2 +

!

1 +
m(t)

2r

�4

a(t)2(dr2 + r2d¹2 + r2 sin2 ¹d×2) (9)

where we are using the (2,+,+,+) signature. Here, a(t) indicates the scale factor of
the asymptotic FLRW metric. As discussed in [35], the matter content of the McVittie
spacetime is assumed to consist of a perfect fluid moving along the integral curves of
the (normalized) vector field "t, and from the Einstein’s equations one obtains m(t) =
m0/a(t) with m0 = rS/2 the mass of the central object and rS its Schwarzschild radius.
A second set of coordinates that will turn out to be useful are the areal radius coor-

dinates. The areal radius is defined as

R(t, r) =

!

1 +
m(t)

2r

�2

a(t)r. (10)
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We can then adopt the change of coordinates t³ t, r ³ R and write the metric in areal
radius coordinates as

ds2 = 2(12 2µ(R)2 h(R, t)2)dt2 2 2h(R, t)dt dR
�

12 2µ(R)
+

dR2

12 2µ(R)
+R2d¹2 +R2 sin2 ¹d×2,

(11)
where µ(R) = m0/R, h(R, t) = H(t)R, and H(t) = a2(t)/a(t) is the Hubble parameter
as usual, with the prime indicating a derivative with respect to the coordinate time.
It should be noted that, considering the current estimates for the value of the Hubble

parameter at the current time H0 > 70 km/s/Mpc > 2 × 10218 s21 in the ΛCDM
paradigm, H 2

0 is of the same order of magnitude as H2
0 , hence, we will consider terms in

H 2 as quadratic corrections in the Hubble parameter.
From the form of the metric in eq. (11) it is also immediate to see that, imposing

the Hubble parameter to be equal to Hubble’s constant H(t) = H0, or choosing a(t) =
eH0t, we recover the line element of Schwarzschild-de Sitter spacetime with cosmological
constant Λ = 3H2

0 in areal radius coordinates.
The Schwarzschild-de Sitter (SdS) case will be of relevance in the following. The SdS

metric has been used in the existing literature to investigate the effect of the cosmological
constant on the local dynamics in a variety of situations [38, 39, 40, 41]. While the
SdS metric encodes only the effect of the cosmological constant, it allows for analytical
solutions where only numerics can be used with the general McVittie line element. We
will thus resort to the SdS line element for some of the results involving geodesics in the
following.
Before moving on, let us notice that SdS spacetime is static, and can be written in

the time-independent, diagonal form1 [42]

ds2 = 2³(R)dt2 + ³(R)21dR2 +R2(d¹2 + sin2 ¹d×2), (12)

where ³(R) = 12rS/R2H2
0R

2. We will refer to this in the following as using “manifestly
static” coordinates.
To discuss results of measurements, we have to specify which timelike trajectories,

i.e., observer fields, we are going to consider in the following.
In order to determine the frequency shift of the resonator, we will employ the metric

and the Riemann tensor expressed in the proper detector frame [43]. The proper detector
frame is defined, up to spatial rotations and with respect to a time-like trajectory µ, as
the Fermi-Walker transported orthonormal tetrad {e³} , ³ * {0, 1, 2, 3} with e0 = µ̇ the
normalized four-velocity along the trajectory (i.e., the specific observer field), that is

�

e0 = µ̇

0 = DF ea

ds
c Dea

ds
2
"

ea,
De0

ds

�

e0 + (ea, e0)
De0

ds
, "a * {1, 2, 3}

(13)

1This form of the metric can be obtained from eq. (11), with the condition H(t) = H0 constant,

by performing the change of coordinates t ³ t + u(R) with u2(R) = H0R/
�

�

12 2µ(R)³(R)
�

as

described e.g. in [42].
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where DX/ds = e
µ
0'µX is the covariant derivative of the Levi-Civita connection along

the direction of e0 and De0/ds = a its 4-acceleration. Due to the Fermi-Walker trans-
port, the proper detector frame is said to be non-rotating and can be physically realized
by an observer carrying along a clock defining time and a system of three gyroscopes
with spin vectors orthogonal to each other defining the spatial reference frame [44]. Note
that Fermi-Walker transport along a geodesic corresponds to parallel transport.
We are now in the position to discuss several observer fields which will be used in the

following.

Cosmological observer

The first observer field that we consider is obtained by normalizing the "t vector field in
isotropic spherical coordinates (9). It is then given by

u = '"t'21"t. (14)

As we commented above, the perfect fluid matter content of McVittie spacetime moves
along the integral lines of such an observer field. While in FLRW such a field is geodesic,
this is not the case in McVittie (or SdS) spacetime. The cosmological observer corre-
sponds to an observer at a constant coordinate radius r and, in the asymptotic region
approximating FLRW, defines the so-called Hubble flow.

Kodama observer

The Kodama vector field (vK) is the unique spherically symmetric vector field orthogonal
to the gradient of the areal radius, corresponding to an observer at a constant areal
radius.
As discussed in detail in [35, 45], the Kodama observer field is the natural substitute for

a timelike Killing field in a time dependent spherically symmetric spacetime, coinciding
with it in the static limit, i.e., where in our case McVittie reduces to the SdS spacetime.
The Kodama observer field assumes the simple form

uK =
1

�

12 2µ(R)2 h(R, t)2
{1, 0, 0, 0} (15)

in areal radius coordinates, and is, in general, not geodesic similar to the cosmological
observer field in McVittie spacetime.

Geodesic observers

The previous two observer fields require a proper acceleration for a spacecraft to keep
moving along their integral curves, in contrast to geodesic ones, which describe the
realistic case of inertial observers in free-fall. We limit ourselves to the SdS limit of
McVittie spacetime and work in manifestly static coordinates (12), where analytical
expressions for timelike geodesics exist [46]. The symmetries of SdS spacetime allow us
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to define the two conserved quantities energy E and angular momentum L that uniquely
characterize the 4-velocity of the timelike trajectory as

µ̇ =

�

E

³(R)
,

�

E2 2 ³(R)

!

1 +
L2

R2

�

, 0,
L

R2

�

(16)

where we are working in static coordinates, and consider motion in the equatorial plane
(¹ = Ã/2). We limit ourselves to the two extreme cases of circular (µ̇R = 0) and radial
(L = 0) geodesics.

3.2. Observer dependent frequency of a deformable resonator

In [47] a resonator, consisting of two mirrors connected by an elastic rod which itself is
fixed to a support, affected by a curved background metric is studied. Based on this,
we analyze here the effects of cosmological expansion on the frequency of a resonator on
different trajectories.
Attached by a support to an observer, characterized by a timelike trajectory and its

local proper detector frame, the resonator is subject to gravitational effects (cf. Fig. 4).
We assume that the resonator is aligned along the, arbitrarily chosen, eJ -direction, with
J * {1, 2, 3} in the proper detector frame, and that the rod’s elasticity is characterized
by the material’s speed of sound cs.
The slowly varying acceleration and tidal forces induce internal stress within the rod,

which accumulates along it, leading to a compression or elongation. The proper accel-
eration of the mirrors can be ignored if the mirrors are considered lightweight compared
to the rod. Following the detailed derivation in [47], the change in length translates to a
shift in the resonance frequency which, for a slowly moving observer, is given in eq.(29)
of [47] as approximately

∆É

É
j aJ

2c2

!

c2

c2s
´ 2 Ã

�

Lp +
R0J0J

24

!

2
c2

c2s
(3´2 + 1)2 3Ã2 2 6Ã´ + 1

�

L2
p, (17)

where É is the resonance frequency of the oscillator in the absence of curvature and
acceleration, aJ c eJ

µa
µ and R0J0J = e³

0e
´
Je

µ
0e

¶
JR³´µ¶ are the proper acceleration and

the Riemann curvature tensor components in the detector frame, ´ Lp/2 is the distance
of the rod’s support from the center of mass and Ã Lp/2 is the distance of the point
of measurement from the center-of-mass (cf. Fig. 4). By the choice of alignment, the
acceleration and curvature parallel to the axis of the resonator are the only components
to contribute in leading order to the frequency shift of the resonator.
The spatial component of the 4-acceleration, and the 0J0J-components of the Rie-

mann tensor, in the proper detector frame of the cosmological observer depend on the
scale factor and therefore, after expanding a(t) j a(t0)(1 + H0∆t), contain corrections
at first order in the Hubble parameter H0. Meanwhile, the same quantities in the
proper detector frame of the Kodama observer and geodesic observer (albeit that the
acceleration vanishes for the geodesic one) contain no corrections at linear order in H,
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and H0 respectively, only corrections O(H2, H 2), and O(H2
0 ) respectively. These con-

tributions of the expansion to the frequency shift of the resonator are far too small to
measure. For the most realistic case of a geodesic observer in SdS, assuming the value
of H0 > 2.2 × 10218 s21, and a speed of sound cs = 5000m/s (comparable to that of
aluminium) the relative frequency shift of a resonator of length 10m is only > 10242.

Figure 4: Pictorial representation of the resonator rod carried along a trajectory µ by
an observer (the spacecraft) in a curved background. The observer trajectory
µ is the one followed by the support point at which the resonator is fixed
to the observer. The proper length of the resonator is denoted by Lp, the
support point is at a distance ´Lp/2 from the center of mass and the frequency
measurement is performed in an arbitrary point of the resonator at a distance
ÃLp/2 from the center of mass.

3.3. Redshift and satellite tracking

Having considered the impact of the global cosmological expansion on a local exper-
iment, we conclude with a brief overview of the effect of the same expansion on the
frequency redshift of signals exchanged between observers and the related concept of
double Doppler tracking (DDT) depicted in figure 5. These kinematic effects have been
treated in detail in the existing literature [40, 41, 48, 35]. Here, we focus on clarifying
some of the results in the literature by following the derivation in [35].
In the case of FLRW spacetime, the redshift formula for exchanges of light signals

between two observers following the Hubble flow is easily obtained. Consider two cos-
mological observers at r0 and r1 in isotopic spherical coordinates2, then the ratio between
the frequency emitted by the first observer and the one received by the second observer
is given by É1/É0 = a(t0)/a(t1) > 1 2 H0(t1 2 t0), where we have assumed the leading
order of the Hubble parameter to be H0 = const., and where the frequency measured

2In these coordinates the FLRW line element has the usual form ds2 = 2dt2+a2(t)(dr2+r2 sin ¹2d×2+
d¹2).
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Figure 5: Adapted from “Influence of global cosmological expansion on local dynamics
and kinematics” by M. Carrera and D. Giulini in Reviews of Modern Physics
vol. 82 pp. 169 208, in January 2010 [35]. Illustration of the process of double
Doppler tracking.

by an observer u is given by the scalar product between the observer field and the null
tangent to the light signal k, i.e. É = |g(u,k)|. We notice that the redshift encodes a
correction linear in the Hubble constant. As shown in [35], this persists also in the case
in which a spherical inhomogeneity is included.
In order to address the effects of the background spacetime within DDT, we need

to consider the ratio between the frequency emitted by an observer and the frequency
received back by the same observer after the light signal has been reflected by an arbi-
trarily moving “spacecraft” (see fig. 5). In FLRW, considering the cosmological observer
field and a spacecraft reflecting the light signal upon reception, this ratio can be broken
into three terms É2(t2)/É0(t0) = (É2/É

2
1)(É

2
1/É1)(É1/É0). Here, the observer receiving

(at t = t2) and sending (at t = t0) the signal is at a fixed value of the coordinate ra-
dius r. Also notice that, for the cosmological observer in FLRW, proper time coincides
with the coordinate time t. The ratio É2

1/É1 represents the ratio between the frequency
immediately after and before the reflection as measured by the cosmological observer at
the point of reflection. This ratio accounts for the relativistic Doppler shift due to the
motion of the spacecraft relative to the observer field. The other two ratios are easily
obtained from the previous expression of the single-way redshift. Altogether, one arrives
at eq. (140) of [35]

É2(t2)

É0(t0)
=

a0
a2

f

2
12 ´k̂

u
(v)

12 ´u(v)2
2 1

�

. (18)
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Here, we have considered a spacecraft with four velocity v whose relative velocity with re-
spect to the observer field u at the reflection point is βu(v) = (v2|g(v,u)|u)/|g(v,u)| [35].
Furthermore, we have considered a null signal propagating radially between the emitter
and the reflection point with tangent k whose normalized projection in the rest frame
of the observer is k̂. Finally, with ´k̂

u
we indicate the projection of the relative velocity

along the unit vector k̂ in the rest frame of u. Eq. (18) relates the frequency shift to
the spacecraft spatial velocity and can be approximated to linear order in ´ and H0∆t20
with ∆t20 = t2 2 t0 giving É2(t2)/É0(t0) j 1 2 2´k̂

u
(v) 2 H0∆t20 showing once more a

linear correction in H0. It is clear from our previous discussion that the linear term in
H0 originates from the analogous term in the one-way redshift.
We now want to show that such linear corrections in H0 are a peculiarity of the

cosmological observer already in FLRW. This result then extends to the case of McVittie
spacetime. A first hint of this fact is given by considering the simple case of de Sitter
spacetime, and the Kodama observer field which, in the region of interest, is a timelike
Killing vector field. The one way redshift is thus given by [49]

É1

É0

=

�

³(R0)
�

³(R1)
= 1 + (R2

1 2R2
0)
H2

0

2
+O

"

H4
0R

4
1, H

4
0R

4
2

�

. (19)

Note that the same expression holds in the case of SdS spacetime, where only the func-
tional form of ³(R) changes.
The previous expression shows that no contribution linear in H0 appears while the

leading corrections are proportional to H2
0 . The DDT ratio can be obtained in complete

analogy to the previous case of the cosmological observer as

É2

É0

=

�

2
12 ´k̂

uK
(v)

12 ´uK
(v)2

2 1

�

, (20)

where we have used the fact that 'uK't=t0/'uK't=t2 = 1. This same argument extends
straightforwardly to the case of SdS spacetime. Moreover, since SdS spacetime is a
special case of the McVittie one, with H 2 = 0 (cf. eq. (22)), the argument should apply
for the general case showing that the DDT ratio contains corrections at most quadratic
in the Hubble parameter, which strongly limits the possibility to observe such effects.
With little effort, the argument can be extended also to the rate of change of the DDT
frequency, as is done in [B].

3.4. Differential acceleration & Expansion’s effects estimate

An intuitive understanding of the differences between the observers considered can be
gained through their proper acceleration in a weak field limit and the comparison to
the Newtonian limit. The cosmological observer freely follows the Hubble flow, but
accelerates against the gravitational pull of the central object. The spatial component
of the 4-acceleration in the proper detector frame of the Kodama observer consists of the
Newtonian gravitational acceleration due to a central mass m0 at distance R, as well as
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an inward acceleration that depends on the cosmological expansion. These terms result
from the property of the Kodama observer to be located at a constant areal radius,
which implies that it is accelerating against the gravitational effect of the cosmological
expansion such that it will never join the Hubble flow.
To lowest non-trivial order, the radial proper acceleration of the Kodama observer in

the corresponding proper detector frame becomes

aK,R =
m0

R2
2R(H2(t) +H 2(t)) . (21)

If the Kodama observer is realized and test matter is released by it, aK,R is their differen-
tial acceleration. There exists an extended literature about the gravitational acceleration
being proportional to H2 due to the cosmological expansion and its local measurabil-
ity [50, 51, 52, 53, 39, 54, 55, 56, 35].
By expanding all expressions to second order inHR, we can approximately diagonalize

the McVittie metric in (11) by a redefinition of the time variable to obtain the line
element

ds2 j 2
!

12 2m0

R
2 (H(t)2 +H 2(t))R2

�

dt2+

!

1 +
2m0

R
+H(t)2R2

�

dR2+R2d¹2+R2 sin2 ¹d×2

(22)
in the weak field limit wherem0/Rj 1, where we have also neglected terms proportional
to m0H(t)2R and m0H

2(t)R. Identifying the zero-component of the perturbation of
the metric, with respect to the flat Minkowski metric, with a Newtonian potential,
i.e. g00 = 21 2 2Φ = 21 + 2m0G/(c2R) + R2(H2 + H 2)/c2, leads to a gravitational
redshift/time dilation proportional to ΦR=R1

2 ΦR=R0
for two observers located at R1

and R0.
The current value of the Hubble constant is H0 > 2.2 × 10218 s21 and that of the

cosmological constant is Λ = 3H2
0ΩΛ/c

2 > 10252 m22. Considering the ΛCDM model
and neglecting the small contribution of radiation at present day, we obtain H2 +H 2 =
(Λc22H2

0 )/2, where we have taken into account that ΩΛ+Ωm = 1 in the ΛCDM model.
If we consider the Sun as a central object, a relative clock accuracy of 10219, a spacecraft
at a distance from the Sun comparable to the one of the Voyager 1, i.e., R1 > 23×1012 m,
a satellite at an earth like distance from the sun as the other observer, i.e., R2 j R1,
and assuming precise knowledge of H2

0 , m0 and R2 from other measurements, we can
push the bound to |Λ| r 10245m22 or alternatively to H2

0 r 3× 10229 s22, “only” seven
orders of magnitude away from the currently accepted values. Considering a scaling
of the clock uncertainty with the inverse of the square root of the averaging time [36]
and the fact that currently an averaging time of the order of 102 s is needed to reach
an uncertainty of the order of 10219, we see that to fill the six orders of magnitude gap
would require around 106 years of integration time. It is thus clear that further advances
in clock accuracy are needed to be able to assess cosmological quantities in this kind of
local experiments.
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4. Optical solitons in curved spacetimes

The properties of light propagating in optical media is a subject as old as optics itself.
In recent years, the possibility to engineer novel metamaterials has opened the door to
the so-called transformation optics [57], a field promising to enhance existing devices
and create novel ones. At the basis of this revolution is the fact that, in the geometric
optics limit – and neglecting dispersion –, light rays propagate in media following the
geodesics of an effective Lorentzian metric, the so-called optical metric [10]. This has
also led to the investigation of light in optical media as an analogue gravity model, i.e.,
a model in which field perturbations propagate as if in a curved spacetime background,
particularly useful in the investigation of kinematic effects of quantum field theory in
curved spacetime, like the Hawking radiation and cosmological particle production [58,
59, 60]. When also the effect of dispersion is considered, the metric description can
be cast aside for a more powerful Hamiltonian formalism, giving rise to the so-called
ray-optical structures [61, 62].
This analogy between optical media and curved spacetimes can be pushed even further

by showing that Maxwell equations in vacuum, curved spacetime are equivalent to flat-
spacetime Maxwell equations in the presence of a bi-anisotropic moving medium whose
dielectric permittivity and magnetic permeability are determined entirely by the space-
time metric [63]. Spacetime itself can then be described as an optical medium at the
level of full electromagnetism. It is then natural to wonder what would happen if light
were to propagate in an optical medium placed in a curved spacetime. Far from being
a far-fetched situation, this is exactly the case for light propagating in media on Earth
due to the non-vanishing, albeit weak, gravitational field of our planet. In this work,
we are interested in exactly this situation. In particular, while at the geometric optics
level the formalism of ray-optical structures can be used, we aim here at a description,
analogous to the one in [63], at the level of full Maxwell equations. Indeed, such a
description allows for the modelling of the propagation of intense pulses in situations of
physical interest, like soliton propagation in optical fibers, taking into account the effect
of a weak gravitational field.
We show that light propagation in a medium in curved spacetime is equivalent to

propagation in an effective medium in flat spacetime. We then use this formalism to
investigate the propagation of intense light pulses in non-linear media, giving rise to
optical solitons. Solitons, and more in general propagating pulses, in optical fibers are
at the basis of several communication protocols. Given that fibers on Earth are de facto
in a curved spacetime due to our planet’s gravitational field, it is relevant to analyze how
gravity influences light-pulses propagation. Our result allows us to set up a framework
for the analysis of the effect of acceleration and curvature on the propagation of pulses
in optical fibers in curved spacetimes. We numerically investigate some of these effects
for the simple case of 1D propagation in the weak-field limit.
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4.1. An effective “spacetime medium”

While light in media can propagate as in a curved spacetime, curved spacetime can also
be seen as an effective medium with non-trivial permeability and permittivity [63, 64].
It is not difficult to generalize the derivations in [63, 64] to the case in which light
propagates in an optical medium placed in curved spacetime. Also in this case it can be
shown that Maxwell’s equations are equivalent to Maxwell’s equations in flat spacetime
for an effective medium whose properties encode both the ones of the physical medium
and of curved spacetime.
Indeed, consider a dielectric and permeable medium in curved spacetime characterized

by a Lorentzian metric gµ¿ with mostly plus signature. We follow here the notation
of [62], also reported in the Supplemental Material of our manuscript [C]. Maxwell’s
equations in the absence of free charges and currents are given by

'kF
7 ik = 0 (23)

'kG
ik = 0, (24)

where F 7 is the Hodge dual of the electromagnetic tensor F , and G and F are related
by the constitutive equations of the material. Choosing an observer field ui, the electric
and magnetic field strengths can be defined with respect to it as

Ba = 2
1

2
¸abcdu

bF cd; Ei = Fiju
j (25)

Ha = 2
1

2
¸abcdu

bGcd; Di = Giju
j (26)

Fab = 2¸cdabudBc + 2u[aEb] (27)

Gab = 2¸cdabudHc + 2u[aDb], (28)

in the reference frame of the observer in which the medium is assumed to be at rest. Here
¸ijkl =

:2g¶ijkl is the Levi-Civita tensor and T[abc... ] denotes the antisymmetrization of
the tensor with respect to the indices in square brackets.
As discussed in [C], choosing ui = ¶i0/

:2g00, the projection of Maxwell’s equations
in 3-dimensional form leads to

¶³´µ"´Hµ 2 "0D³ = 0; "lDl = 0 (29)

¶³´µ"´Eµ + "0B³ = 0; "lBl = 0, (30)

where E³ =
:2g00E³, H³ =

:2g00H³, and

D³ = 2:2gg
³´

g00
D´ 2 ¶³´µ

g0µ
g00
H´ (31)

B³ = 2:2gg
³´

g00
B´ + ¶³´µ

g0µ
g00
E´, (32)

with B³ =
:2g00B³, and D³ =

:2g00D³. These expressions are equivalent to
Maxwell’s equations in flat spacetime in the presence of an optical medium. In par-
ticular, for a non-dispersive medium characterized by constitutive relations Da = ·baEb,
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and Ba = µb
aHb, the effective medium will be characterized by a dielectric and magnetic

permeability given by the product of the material ones and the ones characterizing the
curved spacetime [63, 64]. Indeed, expressing D³ = ·̃³´E´ + µ̃´

³H´ and correspondingly
B³ = µ̃³´H´ 2 µ̃´

³E´, where µ̃´
³ encode magnetoelectric effects, we see that

µ̃³´ = 2:2gg
³µ

g00
µ ´
µ (33)

·̃³´ = 2:2gg
³µ

g00
· ´
µ , (34)

and µ̃³´ = 2¶³´µg0µ/g003. As a direct consequence, whenever the refractive index of the
effective medium can be defined, it will also be the product of the material refractive
index times the vacuum spacetime effective one. The same result can be easily obtained
at the level of geometric optics.
Finally, we make two observations relevant for the study of the propagation of light

pulses. Firstly, a non-magnetic material in curved spacetime corresponds to a mag-
netic effective medium in Minkowski due to the “magnetic permeability” of the back-
ground spacetime. Secondly, when considering a non-linear material, we see that the
non-linearity will also be affected by the curvature of spacetime as well as the linear
polarizability.

4.2. Pulse propagation: Non-linear Schrödinger equation

We next consider the propagation of light pulses in a Kerr non-linear, non-magnetic
material in curved spacetime. In particular, we focus on the case in which the material
is in a stationary orbit of Schwarzschild spacetime and use isotropic coordinates. This
situation well-captures the cases of interest for optical communication and laboratory
experiments like, e.g., optical fibers hanging still above Earth’s surface.
In flat spacetime, the non-linear Schrödinger equation (NLSE) is often used when

considering the propagation of light pulses whose amplitude is well-described by a scalar
envelope slowly varying with respect to the light period and wavelength [65, 66]. In the
case of a medium stationary in Schwarzschild’ spacetime, by employing the correspon-
dence with an effective medium in flat spacetime as described in the previous section,
the usual derivation of the NLSE can be carried out. However, the effective medium will
be inhomogeneous due to the curved spacetime contribution to the polarizability and
permeability of the material medium. This gives rise to extra terms in the NLSE which
are of purely gravitational origin. Furthermore, another source of inhomogeneity in the
medium can be included when considering the effect of tidal forces on the material that,
through photoelasticity, render the refractive index position-dependent.
Neglecting for the moment photoelasticity, i.e., considering a rigid dielectric, we can

write Maxwell’s equation in flat spacetime for the effective medium in the familiar nota-
tion, using the fields and field strengths that we indicate with plain capital letters from

3Note that, in the case the material itself possesses magnetoelectric terms in the constitutive equations,

i.e., Da = ·baEb + µb
aHb, and Ba = µb

aHb 2 µb
aEb then µ̃αβ = 2¶αβγ g0γ

g00
2:2g gαδ

g00
µβ
δ
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now on,

' · B = 0, ' ·D = 0 (35)

'× E = 2"tB, '×H = "tD, (36)

where D = ·̃E and H = B/µ̃. Here µ̃ = µ̃(r) and ·̃ = ·̃(E, r, É) in frequency space,
allowing us to account for the effect of material dispersion, are the permeability and
permittivity of the effective medium. Expressing the Schwarzschild’ spacetime metric in
isotropic coordinates as ds2 = 2 (B(t, r)/A(t, r))2 dt2 + A4(t, r)¶³´dx

³dx´, with A(r) =
1 + rS/4r and B(r) = 12 rS/4r, with rS the Schwarzschild radius, we have

·̃(E, r, É) = ·0·sp· = ·0
A(r)3

B(r)

!

1 + Ç(1)(É) + 3Ç(3) |E|2
Ω

�

, (37)

µ̃ = µ̃(r) = µ0µsp = µ0A(r)
3B(r)21, (38)

with Ω = A(r)24 the conformal factor relating the spacial part of the metric with the
flat, Euclidean one4. The explicit radial dependence in the linear part of these effective
quantities comes from the curved spacetime optical properties encoded in the diagonal
terms

:2gg³³/g00 (cf. eq.(33)) that we define as ·sp = µsp = A(r)3B(r)21. The field
dependency of ·̃ takes into account the non-linearity of the physical medium. Note
also that dispersion implies that the dielectric permeability is a function of the physical
frequency É defined with respect to our stationary observer uµ.
From eq. (35), and writing D = ·̃3E +PNL, where ·̃3 = ·0·sp(1 + Ç(1)(É)) is the linear

part of the dielectric permeability in eq. (37) and PNL is the non-linear polarization, we
can then obtain the wave equation, in frequency space,

'2E 2'(' · E) + µ̃·̃3¿
2E = 2µ̃¿2PNL 2 (' log(µsp))× ('× E) . (39)

Here we indicate with ¿ the conjugate variable to the coordinate time t in the flat
spacetime of the effective medium. Note that the homogeneous Maxwell equations imply
that

' · E = 2(' log ·̃3) · E 2
1

·̃3
' · PNL, (40)

and thus

2'(' · E) = (E · ')' log ·̃3 + ((' log ·̃3) · ')E (41)

+ (' log ·̃3)× ('× E) +'
!

1

·̃3
(' · PNL)

�

.

Eq. (40) makes evident that ' · E is of the same order as the non-linearities and inho-
mogeneities in the electric permittivity, which is also why it is usually safely neglected
in derivations of the NLSE.

4This conformal factor arises due to the fact that EaEa in curved spacetime corresponds to |E|2/Ω
with |E|2 = EaEb¶ab the flat spacetime norm squared of the electric strength field.
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The wave equation in eq. (39) is equivalent to Maxwell equations and, as such, presents
the same level of complexity if analytical or numerical solutions are attempted. The
NLSE is a scalar propagation equation for the electric field’s slowly varying amplitude
that allows one to numerically simulate the pulse propagation. We thus want to write
the electric field as the product of a slowly varying amplitude times a phase propagat-
ing along the propagation direction, that we will identify with the z direction in the
following. In this context, notice that the dispersion relation of the physical medium,
in its rest frame, is given simply by n(É) = c»/É, with » the modulus of the spatial
projection of the wave 4-vector. For the effective medium, this relation reads ñ = c»̃/¿,
where ñ =

:
·spµspn is the product of the material refractive index and the “spacetime

refractive index” nsp =
:
·spµsp. Moreover, since ¿ is the frequency defined with respect

to Minkowski coordinate time, i.e., the conjugate Fourier variable to t, it is related to the
physical frequency, i.e., the one measured by a physical observer in curved spacetime, by
the gravitational redshift ¿ = É

:2g00. From the equivalence of the dispersion relations,
we see that »̃(r) = »nsp(r)

�

2g00(r). We will thus write E(r, t) ? E(r)ei(»̃0z2¿0t) + cc.,
with »̃0 = »̃(r, ¿0) evaluated at a central frequency ¿0.
In order to proceed with the derivation of the NLSE, and to further simplify our

equations, we consider two separate situations of physical interest: (i) pulse propagation
at approximately constant radius; (ii) pulse propagating radially.

4.2.1. Horizontal motion at (almost) constant radius

We assume the propagation direction of the light pulse to be the z axis taken to be
perpendicular to the radial direction for horizontal motion (as is portrayed in case (i)
of figure 6), and consider linearly polarized light propagating in a medium stationary
on Earth for concreteness. Then, for propagation distances much smaller than Earth’s
radius (r·), i.e., z j r·, the horizontal motion can be considered as happening at a
constant radius. With these approximations, the spacetime permeability and permit-
tivity are constant functions of r·, µsp = ·sp = A(r·)

3B(r·)
21 and also the physical

frequency is not changing with z. Thus, we see that in eq. (39) the last term on the
right-hand side vanishes. We follow the derivation in [59] where the pulse propagation
in a single-mode optical fiber was considered. Indeed, for µsp ·sp constant, eq. (39) is
formally equivalent to eq. (S1) of [59] in frequency space. We thus end up with an
effective one dimensional problem for the slowly varying envelope, and the derivation of
the NLSE is the textbook one [66]. In particular, recall that the slowly varying envelope
approximation(s) (SVEA) consists in neglecting terms "2

zE j »̃0"zE and (»̃1/»̃0)"t j 1
on the basis that the envelope will contain many wavelengths and optical cycles. If we
apply now the SVEA we end up with, in the time domain,

i("z + »̃1"t)E 2
»̃2

2
"2
t E = 2n2¿0nsp(r·)·0

|E|2
Ω
E , (42)

where »̃i(¿0) are the coefficients of the power series expansion »̃(¿) =
�

n »̃n(¿0)/n! (¿2
¿0)

n in ¿ 2 ¿0 and we are considering Kerr non-linear media for which the nonlinear
index is n2 = 3Ç(3)/(2n(É0)c·0).
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Figure 6: Geometry of the problem. The two cases considered are labelled by (i) and
(ii). In (i), the light pulse propagates in a horizontal fiber positioned at r· =
r > constant. In (ii), the light pulse propagates in a vertically positioned fiber.

Considering an anomalous dispersive material, i.e., »2(¿0) < 0, an analytical solution
of the NLSE can be found (see, e.g., [59]) and reads

E(t, z) =
�

Ω|»̃2|
¿0n2nsp·0T 2

0

cosh

!

t2 »̃1z

T0

�21

exp

!

iz|»̃2|
2T 2

0

�

, (43)

where T0 is the pulse length, and 1/»̃1 is its speed of propagation. This reduces to the
result from Philbin et al.[59] – eq.(S74) of the supplementary material in [59] – in the limit
of rS ³ 0. From this expression, combined with the fact that »̃1(¿0) = nsp»1(É0), we can
conclude that the velocity of the horizontally propagating soliton in curved spacetime
with respect to an observer comoving with the segment of the dielectric material5

is given simply by »1(É0)
21.

4.2.2. Radial motion

Let us now consider the case in which the light pulse propagates radially along the z
direction, as is portrayed in case (ii) of figure 6. Care is in order here, since now all the
quantities appearing in the wave equation will change along the propagation direction,
including the physical frequency that will be subject to gravitational redshift. Moti-
vated by the symmetry of the problem, and in order to obtain a scalar, one-dimensional
equation whose solution can be simulated, we assume that all the quantities entering the
wave equation depend solely on z. This is tantamount to identifying the radial direction
with the z-axis and work close to x = y = 0 so that r = r· + z, which is a reasonable
assumption since we are considering the vertical propagation of a well localized pulse.
With this approximation, the wave equations (39) reduce to a system of three decoupled

5Indeed note that proper length and proper time for an observer comoving with the segment of the
dielectric material and in connection with coordinate quantities are given by 3 = A2 z and Ä = tB/A
so that v c 3/Ä = A3B21z/t = nspṽ.

21



� ���

�� ��· � ��2�

�� ��· � ��2�

0.00 0.02 0.04 0.06 0.08 0.10

1.9487×10
8

1.9488×10
8

1.9489×10
8

1.9490×10
8

1.9491×10
8

1.9492×10
8

1.9493×10
8

0.00 0.02 0.04 0.06 0.08 0.10

1.950×10
8

1.952×10
8

1.954×10
8

1.956×10
8

1.958×10
8��

��
�

Figure 7: Velocity of the soliton along the fiber, with respect to an observer comoving
with the segment of the dielectric material where the (peak of the) soliton is
located, for L = 0.1m, rs = 1023r·, and including photoelasticity. The red,
dashed and blue, solid curves represent the analytical expression in eq. (47)
including or in the absence, respectively, of photoelasticity. The red points
and blue squares are obtained by numerical simulations and agrees perfectly
with the analytical formula of eq. (47). The inset shows the case with pho-
toelasticity in which rs = 1022r·. This shows a deviation from a purely linear
relation between the velocity and the propagation distance.

equations [67]

"2
zEx(y) + µ̃·̃3¿

2Ex(y) =2 µ̃¿2PNL,x(y) + ("z(ln µ̃)) "zEx(y) (44)

"2
zEz + µ̃·̃3¿

2Ez =2 µ̃¿2PNL,z 2 "z

!

1

·̃3
"zPNL,z

�

2 2("z ln ·̃3)"zEz 2 Ez"
2
z ln ·̃3 (45)

It is immediate to realize that Ez = 0 is a solution of the corresponding equation so that
we can consider the propagation of linearly polarized light (in a direction orthogonal to
z) and we end up with a single equation of the form of eq. (44).
Proceeding as before with substituting the ansatz E(z, t) ? E(z, t)ei(»̃0(z)z2¿0t) + cc.,

expanding »̃(z, ¿) around ¿0, and using the SVEA approximation(s) we obtain the NLSE
given by
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i("z + »̃1"t)E 2
»̃2

2
"2
t E + 2i

"z»̃0

2»̃0

E + 2iz
"z»̃0

2»̃0

"zE + iz
"2
z »̃0

2»̃0

E 2 z"z»̃0E 2 z2
("z»̃0)

2

2»̃0

E

= 2n2¿0nsp(r)·0|E|2E/Ω +
"z lnnsp

2»̃0

(i»̃0E + "zE + iz("z»̃0)E) . (46)

Eq. (46) contains several additional terms with respect to the equation for the hori-
zontal propagation due to the fact that now the wavevector »̃0 depends explicitly on the
coordinate along the propagation direction and so does the refractive index, i.e., we are
propagating in a gradient-index medium (GRIN)6. All geometrical quantities appear-
ing in the equation are evaluated at r· + z. Finally, consistently with the horizontal
propagation case, upon setting »̃0 constant, we return to eq. (42).

4.3. Including photoelasticity

Up until now, we have considered rigid dielectrics, i.e., dielectric media in which the
speed of sound is infinite. For realistic materials, this is of course never the case and the
dielectric gets deformed by the action of forces, including the tidal ones in our set-up.
Let us consider an optical fiber as a paradigmatic example. In this case, the deformation
due to the action of gravity will be relevant only for the case of vertical propagation.
Deformations of a dielectric lead to a change in the relative permeability of the ma-

terial, and thus of the refractive index, a phenomenon known as photoelasticity [71].
The contributions to this effect coming from the curvature of spacetime and the inertial
acceleration of the fiber can be separately accounted for following the discussion in [47].
Consider a fiber of length L hanging from at support located at r· + L. As far as the
strain is within the elastic limit of the material, we can relate it with the stresses through
a linear relation, i.e., Hooke’s law. Thus, we write the strain tensor as Skl = 1

Y
Ãkl, where

Y is the Young’s modulus of the material and Ãkl =
Fk

Al
is the stress tensor given by

the ratio between the force Fk in direction êk and the cross-sectional area Al normal
to êl upon which the force acts. The photoelastic (or acousto-optic) effect consists in
the change of the relative electric permeability by ∆(εr)

21
kl = PklmnSmn, where P is the

photoelastic tensor. In the following, we limit ourselves to the case of isotropic materials
and a diagonal stress tensor (see [C] for the details of the computation). It should be
noted that photoelasticity is far from negligible in the case under investigation and be-
comes the dominant effect in the vertical propagation scenario, overwhelming the effect
related to the optical properties of the background spacetime.
While photoelasticity introduces a further radial dependence in the optical prop-

erties of the effective medium, this does not affect the form of eq. (46), which re-
mains valid. The only difference is in the expressions for the quantities »̃i and their
derivatives, due to the fact that now the refractive index of the medium is given by
n(É) =

�

1 + Ç1(É) + ∆·r(É).

6See also [68, 69, 70] for early studies of soliton propagation in inhomogeneous media.
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Figure 8: Time of arrival of the soliton for the case of propagation in the gravitational
field of Earth for which we assume rS = 9 × 1023m. The main figure shows
the difference in time of arrival, with respect to an observer comoving with the
segment of the dielectric material where the soliton is located, between ver-
tically and horizontally propagating solitons over the propagation coordinate
length z. The inset shows the same in the case photoelasticity is neglected.

4.4. Numerical results

While the wave equation in eq. (39) gives us the full Maxwell equations, including
possibly interesting effects related to the vectorial nature of the electric field, and thus
to the interplay between gravity and the light polarization, its numerical investigation
is beyond the scope of the current work, and it is left for future investigations. Here, we
focus on the propagation of light pulses as described by the simplified eq.(46), motivated
by light propagation in optical fibers [59]. Note that in the case of eq. (42) an analytical
solution was presented in eq. (43).
Equation (46) for the vertical propagation is solved numerically – being a non-linear

PDE with coordinate dependent coefficients – using the split-step Fourier (SSF) method [65]
and taking into account also the effect of the fiber deformation. For this purpose, we
utilize the same fiber parameters as in [59] and initialize the temporal profile at z = 0
as the one of the input pulse in the same reference.
The intuition based on the SSF method– where the propagation equation (46) is

rewritten in the form "zE =
�

D̂ + N̂
�

E with the diffusive dynamics enclosed in the

operator D̂ = D̂(z, "t) – allows us to formulate the educated guess that the propagation

24



speed of the soliton, in the effective flat spacetime, is given by

ṽ =
1 + z »̃2

0(z)/»̃0(z)

»̃1(z)
. (47)

Indeed, this appears as (the real part of) the inverse of the coefficient of the time
derivative in D̂(z, "t). Then, in order to translate this result into the speed measured by
an observer comoving with the segment of the dielectric material where the soliton peak
is located, we need to just multiply eq. (47) by the spacetime refractive index. That this
intuition is indeed correct is verified by the numerical simulations reported in Fig. 7.
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Figure 9: Change in average velocity (vav) of the soliton in the fiber – with respect to
the observer comoving with the dielectric – compared to the case with rS = 0.
Orange, square points correspond to the case of a L = 1m propagation with
photoelasticity. Blue, round points correspond to the case of a L = 0.1m
propagation with photoelasticity. Green, diamonds correspond to the case of
a L = 0.1m propagation without photoelasticity. The lines correspond to the
analytical result that fits perfectly the different sets of data.

We see that the z-dependence of the propagation velocity is strongly enhanced by
the effects of mechanical deformation of the fiber with respect to the case in which
photoelasticity is ignored. The z-dependence of the vertical propagation velocity without
photoelasticity is weak, and the velocity is close to the one of the horizontal case. To
quantify the latter statement, in Fig. 8 we show the difference in the (proper) time
of arrival of the soliton for the case of propagation in the gravitational field of Earth,
corresponding to a Schwarzschild radius that we take as rS = 9 × 1023 m. The main
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figure shows
¶Ä = |z(

�

2g00(r· + z)ṽ21
± )2

�

2g00(r·)ṽ21
³ )|, (48)

with ṽ± and ṽ³ the propagation velocities, in the effective flat spacetime, for vertical
and horizontal propagation. The inset shows instead the case in which for the vertical
propagation the photoelasticity is neglected, showing a much weaker dependence.
Finally, in Fig. 9 we show the deviation of the average velocity along the vertical

direction vav(rS) with respect to the constant velocity at rS = 0 as a function of the
dimensionless ratio rS/r·. The average velocity is obtained numerically from the sim-
ulations as the ratio of the total length L and the propagation time of the soliton and
transformed into the frame of the observer comoving with the fiber at its upper end-point
– i.e., multiplied by nsp(r· + L). Analytically, we use vav = (

! L

0
v dz)/L with v = nspṽ

and ṽ given in eq. (47). Fig. 9 shows once again the agreement between the simulated
data and our analytical ansatz and it also shows that the photoelasticity is the main
effect that allows one to have a sizable difference between the flat and curved spacetime
propagation.
Another quantity characterizing the propagating pulse is its temporal width. In the

horizontal propagation case, the duration of the pulse is constant. The same is not, in
general, true when considering the vertical propagation. In the Supplemental Material
of [C], we report the evolution of the temporal width along the fiber. In particular, our
simulations show a focusing of the pulse which is however sizable only in the presence
of photoelasticity.

5. Conclusion and Outlook

In this thesis, we have investigated the deep interplay between light and gravity by
looking at the former as both a rarely appreciated source and a tool for the investigation
of gravity. Due to the mass-energy equivalence, light is bound to possess a gravitational
field. In chapter 2, we studied the measurability of the gravitational field sourced by
laser and particle beams. For different potential sources – going from high power lasers
to ultrarelativistic particles – we theoretically investigated the fundamental limitations
of measuring their gravitational near-field with resonant mass detectors. A simplified
theoretical version of a Weber-bar, i.e., a deformable aluminium rod, turned out to be
the least suitable detector for the man-made periodic signals we envisioned. Meanwhile,
both the prototype of a liquid helium container acting as a Weber-bar [6] and the high Q-
factor pendulum [7] are only a few orders of magnitude away from being able to measure
the gravitational signal of the highest average power source, a hypothetical frequency-
modulated adaptation of the LHC particle beam, within the somewhat reasonable time
span of one week (considering a detector already at full resonant amplitude). Indeed,
by optimizing a high-Q mechanical oscillator, compatible with the discussed pendulum
[7], with respect to the signal-to-noise ratio, we showed that an S/N ratio close to one
is possible to achieve within only one week of total experiment time. Moreover, planned
future upgrades to the LHC and further degrees of freedom in the optimization have the
potential to increase S/N ratio by more than one order of magnitude. The realization
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that gravitational effects of ultrarelativistic particle beams could become measurable
at some point in the future opens a possible new experimental window to quantum
gravitational effects. Non-classical states can be envisioned both for laser and particle
beam sources, for which theoretical predictions are not yet existent. In this regard, our
results offer a starting point for these future explorations. They also furnish the basis
for further investigations aiming at a more detailed design of suitable detectors as well
as the analysis of potential sources of noise, e.g., seismic noise, and even considering
off-resonant detection regimes [31].
While measuring the gravitational field of light and ultrarelativistic sources was the

focus of the first part of the thesis. In the projects summarized in Chapter 3 and 4, we
focus instead on novel ways to use light as a tool to probe the structure of spacetime.
In the project summarized in chapter 3, we dealt with the effects of the cosmological
expansion on frequency measurements of laser signals in local experiments. We showed
that, within the models of McVittie and Schwarzschild - de Sitter spacetimes, both the
frequency of a deformable cavity and double Doppler tracking experiments are influ-
enced by the expansion. However, the influence of the cosmological expansion is only
quadratic in the Hubble parameter. We have shown that this conclusion is valid for
physically justified observers, like freely falling or nearly stationary ones. Linear effects
are also found, in line with the existing literature, but they apply to the cosmological
observer already following the Hubble flow. Despite the high degree of idealization in the
modeling of the local gravitational environment we had to resort to, our considerations
show that the expansion of the universe can affect local experiments. The detection of
such an influence is shown to be to an extent still beyond today’s experimental capa-
bilities. Nevertheless, our results for the effects of the cosmological expansion in double
Doppler tracking experiments show that they may provide a possible future independent
test of cosmological expansion, thanks to the rapidly improving precision of frequency
measurements. In this context, it would be interesting to further investigate the best
configuration of physical observers and experiments able to elicit the strongest signal of
cosmic expansion on local scales
In the last project, a summary of which can be found in chapter 4, we have con-

sidered the propagation of light pulses in non-linear, non-magnetic media stationary in
curved spacetime. Taking some intuition from the seminal work of Plebanski [63], we
showed that light propagation in such media and spacetimes can be equivalently de-
scribed as the propagation in an effective medium in flat spacetime whose electric and
magnetic properties acquire a multiplicative factor encoding the spacetime structure.
By virtue of approximations, we can derive a scalar NLSE describing the propagation
of a light pulse. It is important to notice that, when solving the NLSE employing the
SSF method, we are implicitly considering a unidirectional equation and ignoring any
possible back-propagating field in the boundary conditions imposed, for all times, at
z = 0. This means that backscattered light from the pulse is assumed negligible rela-
tive to the pulse itself, a condition common to all unidirectional envelope propagation
equations [72]. While this is not a problem for the horizontal propagation, in which
case only the weak non-linearity could give rise to back-reflection, in the case of the
vertical propagation light is effectively propagating in a gradient-index medium with
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the refracting index slowly varying in the propagation direction. This by itself can give
rise to back-propagating fields , and effectively limits the validity of our treatment to
regimes in which the photoelasticity allows to employ a unidirectional equation. Luckily,
the regime of validity of the equation – which depends on the parameter chosen for the
physical medium – can be readily estimated by following the discussion in [73] as we
detail in the supplementary material of [C]. Given these caveats, the NLSE that we have
derived shows that an optical pulse propagating radially in a Kerr non-liner medium
stationary in Schwarzschild spacetime experiences a change in its propagation velocity
captured by eq. (47). This effect is mostly due to photoelasticity which overwhelms the
purely spatiotemporal effects encoded in the multiplicative, effective, refractive index
nsp. The difference in propagation velocity between the vertically and horizontally prop-
agating pulses results, in turn, in a difference of the time of arrival of two pulses of the
order of hundreds of femtoseconds in Earth’s gravitational field, a fact that puts this
difference in the reach of current technologies (see [74, 75, 76] and references therein).
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Abstract

We study possibilities of creation and detection of oscillating gravitational fields from lab-scale
high energy, relativistic sources. The sources considered are high energy laser beams in an optical
cavity and the ultra-relativistic proton bunches circulating in the beam of the large hadron collider
(LHC) at CERN. These sources allow for signal frequencies much higher and far narrower in
bandwidth than what most celestial sources produce. In addition, by modulating the beams, one
can adjust the source frequency over a very broad range, from Hz to GHz. The gravitational field
of these sources and responses of a variety of detectors are analyzed. We optimize a mechanical
oscillator such as a pendulum or torsion balance as detector and find parameter regimes such
that—combined with the planned high-luminosity upgrade of the LHC as a source—a
signal-to-noise ratio substantially larger than 1 should be achievable at least in principle,
neglecting all sources of technical noise. This opens new perspectives of studying general
relativistic effects and possibly quantum-gravitational effects with ultra-relativistic, well-controlled
terrestrial sources.

1. Introduction

With the successful measurement of gravitational waves through LIGO, the measurement of gravitational

signals from relativistic sources has gained a lot of interest as it is believed to lead to new insights about

gravity, in particular, constraints on modifications of general relativity (GR) and potential effects of

quantum gravity [1–5]. However, such experiments are limited to detection since the experimenter has no

access to the cosmic sources of the signal.

Starting already in the 1970s, proposals were formulated for constructing terrestrial relativistic sources

and detectors of their gravitational signals. E.g. in [6–8] a cylindrical microwave resonator was proposed as

source of a standing gravitational wave and a second concentric cylinder as detector based on photon

creation in one of its modes. But it was clear that with the existing technology at the time it was not realistic

to create a sufficiently strong source whose radiation could be detected. In recent years there has been

renewed interest in the creation and detection of gravitational waves in the lab [9–17].

The gravitational field of electromagnetic radiation has been studied early on [18–20]. It gives rise to a

range of interesting effects, from an attraction that decays with the inverse of the distance instead of the

inverse square [18–21] to frame dragging [22, 23] and other gravitomagnetic effects [24–30]. Their

detection has been found to be extremely challenging, see e.g. [21, 23, 25–31]. The phenomenology of the

gravitational field of relativistically moving matter is similar to that of light. It can be calculated by Lorentz

boosting spacetimes of sources at rest. The result approaches the gravitational field of massless particles in

the ultra-relativistic limit [20, 28, 29, 32–34].

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft



New J. Phys. 24 (2022) 053021 F Spengler et al

Figure 1. (a) Laser pulse oscillating to and fro in a cavity. (b) cw laser focused to a narrow waist inside a cavity. Its intensity is
modulated to create a gravitational field oscillating at kHz frequency. (c) Ultrarelativistic particle bunches in an accelerator ring
such as the LHC create a very similar gravitational field. In the vicinity of the waist of the laser beam or close to the beamline, a
detector picks up resonant mechanical deformations due to the oscillating gravitational forces.

As technology has substantially progressed since some of the cited works have been published, both on

the side of sources in the form of high-power lasers [35–37] and particle accelerators [38, 39], and in the

metrology of extremely weak forces [40–45], it is worthwhile to reassess the possibility to detect the

gravitational effects of light and of ultra-relativistic particle beams. Indeed, progress in this direction would

enable the test of GR in a new, ultra-relativistic regime (in the sense of special relativity), with an

energy–momentum tensor as the source term in Einstein’s equations very different from the one that can

be achieved with non-relativistic masses and purely Newtonian gravity, namely with a large off-diagonal

component in Cartesian coordinates.

In this article we focus on the acceleration of non-relativistic sensor systems due to the gravitational

field of light beams and ultra-relativistic particle beams such as the ones produced at the large hadron

collider (LHC). We add several new aspects that improve the outlook for experimental observation. Most

importantly, we consider trapping of laser light in a cavity, through which the circulating power can be

drastically enhanced. Secondly, we consider modulation of the gravitational sources with an adjustable

frequency in order to match them to the optimal sensitivity of existing detectors. Several approaches are

investigated to that end. The simplest one consists in having laser pulses oscillate to and fro in a cavity, such

that the length of the cavity determines the oscillation frequency of the gravitational signal. We also

examine the possibility of slowly (kHz frequency) modulating the power with which the cavity is pumped

using a continuous wave (cw) or pulsed laser. With the pump power, the power circulating in the cavity is

modulated, and thus, also the strength of the gravitational field. Thirdly, we extend the analysis to

ultra-relativistic particle beams such as available at the LHC. And finally, we examine several possible

sensors for their suitability for measuring the created gravitational fields.

Our work is also motivated by current developments toward measuring gravitational effects of sources

in a quantum mechanical superposition as a possible experimental road to understanding quantum

gravitational effects [40, 42, 46, 47]. Creating quantum superpositions of sufficiently large masses is

challenging, and it is therefore worthwhile to think about other sources that can be superposed quantum

mechanically. We discuss perspectives in this direction for the gravitational sources studied in this paper in

section 4.

2. Potential sources and their gravitational field

2.1. Laser pulses oscillating in a cavity

To create a strong, high frequency gravitational field, a source of high power and intensity is required.

Modern femtosecond laser pulses can reach up to a Petawatt in pulse power. One such laser pulse oscillating

in a cavity, as illustrated in figure 1, is a source of short bursts of high energy oscillating to and fro at high

frequency. The perturbation to the metric and the resulting Riemann curvature tensor can be calculated

within the theory of linearized gravity, as is done in appendix A and [28, 29].

For a continuous-wave (cw)-laser with power P and circular polarization, the curvature component

relevant to a non-relativistic sensor based on a mechanical resonator with axis perpendicular to the beam

line of the laser is, for an observer in the x–z-plane (i.e. y = 0) and in the approximation of a vanishing

opening angle, given by

R0x0x � 24GP/(c5Ã2) (1)

with G the gravitational constant, c the speed of light in vacuum, Ã2 = x2 + y2 = x2, and x0 = ct.

Laser pulses were considered earlier in [18, 21] in the approximation of an infinitely thin light pencil of

length L. A further exploration in appendix A for the simplified case of box shaped pulses oscillating to and

2
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fro corroborates the result that close to the beam (Ã � |z|, |z 2 D|, where z = 0 and z = D are the positions

of the two mirrors) equation (1) gives the correct result, limited, however, to a finite duration of the order

of the length of the pulse (see figure 8 in [21]) but on the other hand with the cw-power P replaced by the

power of the effective pulse in the cavity Pcav
p (see equation (A23)). The curvature results in a tidal force

between two infinitesimally separated points next to the beamline. However, there is no gravitational wave

generated as this type of source is not quadrupolar in nature. Rather one can detect the gravitational

near-field. In leading order, the gravitational near field acting on non-relativistic test matter can be

described by a Newtonian gravitational potential Φ = 4GP
c3 ln Ã.

The average power at a given cross-section of the beam inside the cavity is P
avg
cav =

2Çp

Çrt
Pcav

p , where Ç p is

the length of the effective pulse in the cavity, and Çrt =
2Lcav

c
is the round trip time in the cavity. As the

power enters linearly into the gravitational potential, acceleration, and curvature, the considered

gravitational effects will be proportional to the average power in the cavity.

Short pulses a pump laser emitting very short pulses has a broad spectrum in the frequency domain.

Coupling these pulses into a cavity of high finesse F j Ã(R1R2)
1
4

12:
R1R2

[48] leads to an electric field strength inside

the cavity

Ẽcav(Ë) = G̃cav(Ë)Ẽp(Ë), where G̃cav(Ë) =

:
T1

1 2:
R1R2 exp(2iËÇrt)

(2)

is the field transfer function, with the intensity transmissivity T1 of the mirror struck by the pump beam,

and the intensity reflectivities of the two mirrors R1/2, where T1 = 1 2 R1. An explicit calculation for the

case of rectangular pulses can be found in appendix B, which is based on [49]. If the pulses are very short

Ç p � Ç rt and far apart 1/frep � Ç L, where ÇL j 2F
Ã Çrt is the 1/e energy decay time and frep is the repetition

rate of the pump laser, the pulse enters the cavity at an intensity T1Ip, where the circulating power is

enhanced by a factor 2F
Ã

, independent of the cavity length. Without any further modification the factors T1

and 2F
Ã at best cancel up to a factor of 4 (assuming R1, R2 � 1), leaving little to be gained (see appendix B,

equation (B8)). The ways one could imagine improving upon this all involve changes to the mirror that

couples the pump laser pulses to the cavity:

" An input coupler is a mirror which is significantly less reflective than what could be achieved with the

best available mirrors. It increases the power deposited into the cavity when combined with

impedance- and phase-matching techniques, yet also reduces the cavity finesse [50]. For example, in

[51] input couplers are employed to realize enhancement cavities with kilowatt-average-power

femtosecond pulses, increasing the average power circulating in the cavity to 670 kW, 103 times the

420 W average power of the pump laser. Using larger laser spots on the mirrors of the cavity should

allow for even stronger pump lasers to be used. With stronger pump lasers, such as the BAT laser in

[52] with an average pump power of Ppump = 300 kW, an average power within the cavity in the

100 MW range seems plausible.

" A switchable mirror would allow for the full pump beam power to enter the cavity, which means the

average cavity power is expected to be the pump laser power enhanced by a factor 2F
Ã . Depending on

the cavity’s length and the pump laser’s repetition rate, the mirror has to be moved on a timescale of

1029 to 1023 s, the slower end of which seems realistic. A mirror mounted on some mechanics might

reduce the precision of its positioning and hence the cavity’s finesse. Nonetheless, with a high finesse

cavity ( 2F
Ã
> 105) and high-average-power pump lasers (Ppump j 300 kW [52]) an average power

>20 GW in the cavity would be achievable.

One limitation when scaling to higher powers is damage to the mirrors. In [53] the cw intensity

threshold was determined to be at around 100 MW cm22 before thermal damage sets in. For

sub-picosecond pulses the intensity threshold can be exceeded by at least an order of magnitude, as it is

done in [51], as long as the average intensity on the mirrors does not exceed the thermal threshold. For

20 GW (100 MW) cavity power this needs a spot diameter on the mirrors of at least 16 cm (1.1 cm). For the

input coupler the limitations are even stricter than for the end mirror as the power passes through the input

coupler and creates more heating than when reflected at the surface of the reflecting mirror [51]. Large spot

sizes require long cavities, as otherwise the mode in the cavity has a large opening angle and prevents

positioning the sensor very close to the beam. For the cited spot-sizes of order 1–10 cm, a cavity length

Lcav � 1 m suffices. In this work, the increase in power is accounted for by increasing the pulse duration by

defining an effective pulse length

Tcav
p = Tpump

p frepÇrt
2F

Ã
= Tpump

p frepÇL. (3)

For the BAT laser from [52], the repetition rate is frep = 10 kHz and the pulse duration of the pump laser is

T
pump
p = 100 fs. We further assume F = 105 and the signal to be at resonance with the sensor frequency

3
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Table 1. Comparison of relevant numbers of the LHC beam and the laser-based

sources from sections and 2.2: Pcav
p pulse power, P

avg
cav power averaged over time,

wB waist of beam. Ë0 is the desired signal frequency, assumed in section 3 to be

one of the resonance frequencies of the detector.

Pcav
p (W) Tcav

p P
avg
cav (W) wB

Pulses in cavity 3 × 1014 100 fs ·10 kHz 8×105

Ë0

a 2 × 1010 <100¿m

cw laser+cavity 2 × 1011 Ã
Ë0

1 × 1011 <100¿m

LHC 1014 1029 sb 3.8 × 1012 16 ¿m

aA switchable mirror is assumed for the pulses in the cavity. The pulses are

assumed to be effectively stacked together to a larger circulating effective pulse, see

equation (3).
bThe effective pulse length Tcav

p for the LHC corresponds to a single proton

bunch, but a much slower modulation of the beam on resonance with Ë0 can be

envisaged.

Çrt = 2 2Ã
Ë0

, see e.g. table 1. This is consistent with the image of creating a ‘train’ of pulses (one could also

imagine pulse stacking, i.e. increasing the pulse power instead). Laser pulses with far higher pulse powers

exist. The National Ignition Facility achieves 5 × 1012 W peak power [36] but is not as suitable for our

purposes due to its low repetition rates. Peak powers of up to 10 × 1015 W at repetition rates of up to 10 Hz

exist [37] and others with peak powers on the order of 100 × 1015 W are planned [54], but will need to

achieve higher average intensities and repetition rates in order to lead to measurable gravitational effects.

2.2. Modulated cw-pumping

Instead of creating a periodic signal by having laser pulses oscillate in a cavity, one could also consider using

a cw laser. To create a periodic signal, one can pump the cavity for part of the period and allow for the

intensity inside the cavity to decay before switching the pump beam back on for the next period, thus

creating a modulated signal with modulation period Çmod. Depending on Ç L, the energy within the cavity as

a function of time looks more like a periodic sequence of effective pulses that have the form of

rectangles—in the case of ÇL � Çmod—or like a series of shark fins for Ç L > Çmod (see appendix B). We call

Pcav
p the maximum power of the effective pulse in the cavity.

Using a cw pump laser, the coupling to the cavity is no longer detrimental as for

∆ËFWHM > 1/ÇL > ∆Ëpump, where ∆Ëpump is the line width of the pump beam, the pump beam couples

almost fully to the cavity. The Newtonian gravitational potential for a thin light pencil in the form of a

standing wave in the cavity is (see [18] and appendix A) Φ = 4GP(t)
c3 ln Ã, where Ã is the distance from the

beam line and P(t) is the power passing through the cross section with the detector, i.e. P(t) = Pcav(t) in

this case. For the slowly moving detectors envisaged here (speeds v � c), all equations of motion are the

same for the source consisting of the standing light wave or the propagating one.

For long modulation periods Çmod � Ç L, the maximum power of the effective pulse in the cavity is

Pcav
p = 2F

Ã
Ppump, for approximately half the modulation period. Commercially available cw laser systems

reach continuous powers of 500 kW in multi-mode operation and up to 100 kW in single-mode operation

(see1 and e.g. [55]). Combining this with a high finesse cavity F > 106 leads to an average circulating power

in the cavity of

Pavg
cav =

1

2

2F

Ã
Ppump > 100 GW. (4)

The average power in the cavity can at most be a fraction <
�

1 2 e2Çmod/(2ÇL)
�

of the maximum power
2F
Ã

Ppump. For slowly decaying cavities, where Çmod � ÇL, techniques such as Q-switching or switchable

mirrors are necessary to adequately modulate the amplitude2.

1 A single-mode has the advantage that one can focus it down to a spot size comparable to the wave length, i.e. one could get, at least in

principle, much closer to the beam (oder 1 ¿m instead of ca 100 ¿m. Thus, while loosing a factor 25 in power one gains a factor 100 in

distance, i.e. there is an overall improvement by a factor 4 over the multi-mode case, if such small distances from the beam can indeed

be realized.

2 Shorter cavities lead to lower ÇL at the same finesse and without decreasing the average power. The same considerations for the spot

size and length of cavity as mentioned for the laser pulses apply also in the cw case for positioning the detector sufficiently close to

the beam waist and neglecting higher order effects in the opening angle [28]. For a 1 m-long high-finesse cavity (F > 106) the decay

time ÇL is in the low millisecond range, which is too slow for some of the proposed detector setups. This could be circumvented by

implementing techniques such as Q-switching, with which the decay of energy within the cavity can be accelerated, and the aforemen-

tioned switchable mirrors. Also, the energy buildup can be modulated to a certain degree by pumping. For short modulation periods,

Çmod j ÇL, the cavity is never fully pumped.

4
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2.3. The LHC

Instead of laser light, one can also investigate ultra relativistic particle beams consisting of high-energy

bunches, such as the one at LHC, as gravitational sources. A particle beam in the relativistic limit is, from a

gravitational perspective, the same as a laser beam: for example, the rest mass of the protons

m � 938 MeV/c2 makes a negligible contribution to their energy for achievable particle energies of about

6.5 TeV and both charge and spin are irrelevant [32–34]. To very good approximation, the

energy-momentum relationship is then E = cp where p is the momentum of the protons, just as for

photons. In the ring of the LHC there are 2808 bunches of protons at maximum capacity, each bunch with

a total energy of >105 J. One bunch is approximately 30 cm long, contains 1.15 × 1011 protons, and can be

squeezed down to a transverse diameter of >16¿m (see [38]). To excite a resonator at its eigenfrequency

¿0 = Ë0/(2Ã), the bunches have to pass by the detector with rate ¿0, or the beam must be modulated with

frequency ¿0. The 2808 bunches spread over a ring of 26 659 m length moving at speed close to c entail a

rate of 31.2 MHz. A single bunch going around the ring passes with a frequency of 11 kHz. To achieve lower

frequencies one could, for example, periodically modulate the beam position. This would result in a scheme

similar to that of the cw laser cavity, where the LHC beam is active for half the sensor’s oscillation period

Çp = 1
2

2Ã
Ë0

with an effective pulse power Pcav
p = PLHC = 2P

avg
cav , where PLHC is the nominal average power of

the LHC. The pulse power of the LHC beam is orders of magnitude smaller than that of extreme-power

laser pulses, but the proton bunches are much longer (>1 ns) than the laser pulses. This results in a higher

average power of P
avg
cav j 3.8 × 1012 W, which is orders of magnitude larger than the average power of laser

pulses oscillating in a cavity and about 40 times the average power that can be contained in a cavity pumped

by the cw laser considered above (see table 1). Therefore, from the perspective of the strength of the

gravitational source, the LHC beam might be preferable. A potential drawback compared to the laser-based

sources is the lack of flexibility in frequency. This can be compensated, however, by considering detectors

with tunable resonance frequency. Besides protons, it is also possible to use heavy nuclei, or partially ionized

heavy atoms. The latter have the advantage that the corresponding beams can be laser-cooled (see the

discussion in section 4.2). Upgrades of the LHC to use heavy ions are currently considered [56], and also

under development at Brookhaven National Lab [57].

3. Detectors

We consider three types of detectors, a mechanical rod, a detector based on superfluid helium-4 coupled

parametrically to a superconducting microwave cavity, and a mechanical harmonic oscillator, motivated by

the monolithic pendulum from [58, 59] and the torsion balance from [40], with which recently very high

levels of sensitivity for gravitational fields have been reached. The superfluid helium detector and the

monolithic pendulum are optomechanical detectors close to the quantum limit. Quantum optomechanical

detectors and different configurations have been studied in great detail over recent years, both theoretically

and experimentally [60–62]. They have been considered for high precision sensing [63] in particular, force

sensing [64] and theoretical work has been performed to derive general limits for sensing of oscillating

gravitational fields with such systems [65, 66]. We take the mentioned types of detectors as starting points

for examining the question what parameter values would need to be achieved such that they become

suitable for measuring the gravitational forces considered in this paper.

3.1. Mechanical response of a rod

A spatially dependent gravitational acceleration compresses a 1D deformable resonator according to its

Young modulus Y. The wave equation for the displacement field u(x, t), describing the relative position of

an element of the rod from its equilibrium location x, is given in [67, p. 416] as

�m"
2
t u(x, t) 2 Y"2

x u(x, t) = 2�m"xΦ(x, t), (5)

where the resonator is extended in the x direction, orthogonal to the beam, and �m is its mass density. The

length contraction due to modification of space-time is negligible in comparison to the elastic effect

considered here, as it comes with an additional factor c2
s /c2 [68], where cs =

"

Y/�m is the speed of sound

in the rod’s material.

The displacement field can be expanded into the spatial eigenmodes

wn(x) = cos

��

n +
1

2

�

Ã

L
(x 2∆)

�

of the free equation of motion complying with the boundary conditions, i.e. the tip of the resonator distant

from the source was chosen to be fixed in place by the support (hence wn(L +∆) has to vanish and

5



New J. Phys. 24 (2022) 053021 F Spengler et al

"xwn|x=∆ has to vanish at the other tip), where n * N0, ∆ is the distance of the tip of the rod from the

source, and L is the length of the resonator (see figure 1). The spatial eigenmodes are orthonormal with

respect to the inner product �a|b� = (2/L)
�∆+L

∆
a(x)b(x) dx. The total displacement field is then given by

u(x, t) =
�>

n=0¿n(t)wn(x). The differential equation for the temporal amplitude ¿n(t) resulting from the

projection of (5) onto the nth spatial eigenmode is then given by

¿̈n(t) +
Ën

Q
¿̇n(t) + Ë2

n¿n(t) = 2 2

L

� L+∆

∆

dx wn(x)"xΦ(x, t), (6)

where Ën = cs

�

n + 1
2

�

Ã
L

is the frequency of the mode and a linear dissipation term ³n"tu(x, t) with rate

³n = �m
Ën
Q

was added to equation (5) in order to include dissipation from the elastic modes of the

resonator.

In the case of resonant excitation, the amplitude of the steady state solution in the lowest eigenmode

¿0(t) = A(Ë0)sin(Ë0t), reached after a transient time Q
Ë0

is then given by

A(Ë0) =
Q

Ë2
0

� 2Ã/Ë0

0

dt
Ë0

Ã
cos(Ë0t)

� L+∆

∆

dx
2

L
cos

� Ã

2L
(x 2∆)

�

(2"xΦ(x, t)), (7)

where the integration of t over one mechanical period gives the Fourier component of the driving force

corresponding to this mechanical mode. At this point we assumed the pulse to be centered around t = 0

and to be repeating at intervals of 2Ã
Ë0

.

With the periodic Newtonian potential from appendix A

Φ(x, t) =
4GPcav

p

c3
ln(x)ΠΣ(t) (8)

ó 2"xΦ(x, t) = 2
4GPcav

p

c3

1

x
ΠΣ(t), (9)

where Pcav
p is the pulse power in the cavity and ΠΣ(t) =

�

n

!

�
�

t 2 n2Ã
Ë0

2 Çp

2

�

2�
�

t 2 n2Ã
Ë0

+
Çp

2

��

is a

sum of rectangular pulses of duration Ç p. The integral over the oscillation period in equation (7) returns

(10)

With this, a resonant maximum amplitude of

A(Ë0) =
4GPcav

p Q

Ë2
0c3

2

Ã
sin

�Ë0Çp

2

�

� L+∆

∆

dx
2

L
cos

� Ã

2L
(x 2∆)

� 1

x
(11)

j 32GP
avg
cavQ

ÃË0c3

§

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

¬

§

«

«

«

¬

1

Ë0∆
for ÇpË0 � 2

2

ÃË0∆
for Çp =

Ã

Ë0

and L � ∆

§

«

«

«

¬

1

cs

ln
L

∆
for ÇpË0 � 2

2

Ãcs

ln
L

∆
for Çp =

Ã

Ë0

and L � ∆

, (12)

where P
avg
cav c energy in the cavity

oscillation period
=

Pcav
p Çp
2Ã
Ë0

is the power in the cavity averaged over one mechanical period, is

reached in the steady state of prolonged driving. The logarithmic divergence of equation (9) for L � ∆ is

an artifact of idealizations of our model and will not be relevant in practice3.

3 Even though it might seem favorable to increase L because of the logarithmic scaling in equation (11), the inhomogeneous driving

force leads to excitations of multiple mechanical modes which, for a non perfectly rigid support, can couple. Also, the distance between

the detector and the beam has to be much smaller than the length of the source cavity (or radius of the ringresonator) for the contribu-

tions of the recoil of the mirrors (or deflecting magnetic fields) to be negligible. These two effects might lead to the break-down of the

logarithmic scaling before it makes a difference.
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Assuming for orientation numerical values of aluminum, cs = cAl
s = 6420 m s21, Ë0 = 2Ã × 109 Hz,

∆ = wB
4, and Q = 106 for the rod, the laser cavity introduced in section 2.1 (P

avg
cav= 20 GW, wB j 100 ¿m)

would result in an amplitude of A j 10234 m at the freely oscillating tip.

At resonance, the noise spectral density for a resonant-bar type detector is given by

Sth
A =

4kBTQ

Ë3
0Meff

ó Ath =

�

Sth
A

Çint

(13)

according to [67, p. 440], where Meff =
�

�mAR(w0(x))2dx is the effective mass of the mode with the rod

cross-section AR, and Ath is the amplitude resulting from the thermal noise after integration time Ç int. At

Ë0 = 2Ã · 1 GHz the thermal sensitivity limit for temperatures below T = 48 mK is already below the

standard quantum limit (SQL) on noise spectral density for a resonant mass detector [69],

SSQL
A =

4�Q

MeffË2
0

. (14)

At frequencies below the megahertz range, the thermal noise is the limiting factor. For Q = 106,

Meff =
Ã
8
�AlL

3 (assuming a constant aspect ratio) with the mass density of aluminum �Al = 2.7 g cm23 and

a frequency of Ë0 = 2Ã · 1 GHz the sensitivity is

�

SSQL
A j 4 × 10217 m /

:
Hz meaning that for 1 year of

integration time at best an amplitude of 10220 m can be detected.

For the LHC, where the rate of bunches passing by is ¿ = 31.2 MHz, for the purposes of this estimation,

we assume that the same amount of protons is split into 88 925 bunches instead of 2808 such that we reach

the frequency Ë0 = 2Ã · 1 GHz while keeping the same average power. With pulses filling half a period, the

peak power is Pcav
p = 2P

avg
cav . Using the same cs = 6420 m s21 and Q = 106 and the values of the LHC

(P
avg
cav= 3.8 × 1012 W, wB = 16 ¿m) one would expect the resonant amplitude to be A j 9 × 10232 m,

which is at least two orders of magnitude larger than that caused by the oscillating laser pulse from section.

For higher quality factors Q = 108 amplitudes of A j 9 × 10230 m might be possible. At far lower

frequencies, where the limit L � ∆ becomes relevant in equation (9), a lower speed of sound, for example

cs = 100 m s21, is also beneficial. However, one quickly ends up with a meter long rod, outside the ‘close to

the beam’ limit, whilst still not within range of detection.

To probe the limit L � ∆, we assume Ë0 = 2Ã · 1 kHz, Q = 106, cs = 6420 m s21 implying an extreme

L j 4 km. Then, the expected amplitude from the laser pulses in section is A j 2 × 10225 m, for the cavity

pumped with a modulated cw laser A j 4 × 10225 m, while we expect an amplitude of A j 8 × 10224 m for

the LHC beam (which would have to be modulated to reach such low frequencies). Assuming a temperature

of T = 5 mK the sensitivity is
�

Sth
A j 10217 m /

:
Hz, leaving the amplitudes still unmeasurable even for

unreasonably long integration and rise times and an unreasonable rod length.

3.2. Superfluid helium detector

In [70] Singh et al study the acoustic motion of superfluid helium-4 coupled parametrically to a

superconducting microwave cavity as a detection scheme for continuous-wave gravitational signals. With

few theoretical adaptations the system can be adapted to the near-field case considered here. The very high

Q-factors and sensitive microwave transducer means this is essentially a better version of the deformable

rod considered in section 3.1. For the ground mode, the system’s description can be reduced to a one

dimensional problem and treated as in section 3.1, but with two fixed ends instead of one. The spatial

displacement amplitude is then given by w0 = sin
�

Ã
L

(x 2∆)
�

.

The position noise spectral density of the temporal displacement field ¿ is given by equation (11), when

comparing to the result of Singh et al [70] a factor of 2 has to be added to obtain the single sided density

(Ë0 > 0). With the susceptibility on resonance Ç = QHe

iMeffË
2
0

, this results in a thermal force noise spectral

density (on resonance) of

Sth
FF = |Ç|22Sth

¿¿ = 4kBTMeff
Ë0

QHe

. (15)

Which implies a lower bound to the detectable force over an integration time Ç int, with 2Ã uncertainty, of

F̄min j 2

�

Sth
FF

Çint

=

�

16kBTMeffË0

ÇintQHe

. (16)

4 As the rod was chosen to be fixed by the support at its tip at the far side of the beam, the lowest eigenmode has wavelength

» = 2ÃcSË0 = 4L. The minimum distance from the beam is ∆ j wB, where for the purposes of this estimation, we saturate this lower

bound on ∆.
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The Fourier component of the force corresponding to the considered lowest-frequency mode is given by

F̄eff = |Ç|21A(Ë0) =
16GMeffP

cav
p

ÃLc3
sin

�Ë0Çp

2

�

� ∆+L

∆

sin
�

Ã(x2∆)
L

�

x
dx. (17)

Note the similarity of the amplitude A(Ë0) to the case of the mechanical rod detector in equation (9)5.

Here, both signal and noise are given as a force, for better comparability to [70].

To get a feeling for the orders of magnitude, we start off with the numbers from the actual experimental

setup from Singh et al [70]. We set Ç int = 250 d, QHe = 6 × 1010, L = 4 cm, r = 1.8 cm(radius),

cs = 220 m s21, and �He = 145 kg m23. This implies Ë0 = 2Ã · 2.8 kHz, Meff = 3 g, T = 5 mK. This results

in a minimum detectable force F̄min j 4 × 10221 N. Choosing the LHC as a source, we assume ∆ = wB

and set the average power to Pcav
p = PLHC = 3.8 × 1012 W, Çp = 1

2
2Ã
Ë0

, resulting in F̄eff j 6.6 × 10224 N.

Going further from the beamline (by less than L) to account for shielding and the Helium container only

decreases the effective force slightly (for ∆ = 16 ¿m ³∆ = 3 cm, Feff decreases by a factor of 4) as there is

limited contribution from the liquid Helium at the ends of the container to the ground mode.

Hence, at full amplitude and one week of integration time, the 4 cm prototype detector is lacking about

3.5 of magnitude in sensitivity. Under otherwise identical assumptions, the proposed first generation

(0.5 m) detector will be about 2.5 orders of magnitude from being sensitive enough to detect the

gravitational signal from the LHC.

3.3. High-Q milligram-scale monolithic pendulum

In a recent publication, Matsumoto et al [58] described the manufacturing of a pendulum and presented its

properties. They found it to have a very high quality factor for a small scale system and even higher when

combined with an optical spring. Different from the extended oscillators considered in the earlier

subsections, the pendulum does not rely on the projection of the gravitational acceleration on an elastic

mode but rather on the gravitational force on the pendulum mass relative to the support. A mechanical

oscillator has to be of small scale to be close enough to the source for the gravitational acceleration to be

significant, while the gravitational effects on the pivot point need to remain negligible.

For the l = 1 cm, m = 7 mg pendulum a mechanical Q-factor of Qm = 105 was measured in [58] at

Ëm = 2Ã × 4.4 Hz. Introducing an optical spring to shift the frequency, the effective Q-factor is expected to

scale as

Qeff j Qm

�

Ë0

Ëm

�2

(18)

for the damping model considered relevant for the pendulum (the effective frequency of the coupled system

was renamed from Ë0 (Q0) in the original work [58] to Ëm (Qm) for consistency). An additional feedback

cooling is necessary to stabilize and cool the system to a temperature Tfb, compensating the effect of heating

through the optical spring. This reduces the Q-factor to Qfb, which has the benefit of allowing shorter

driving times. At Ë0 = 2Ã × 280 Hz the authors of [58] demonstrated a sensitivity of 3 × 10214 m /
:

Hz

with a Q-factor of Qfb = 250, with thermal motion the main source of noise. According to equation (11)

this corresponds to a temperature of a few Millikelvin.

In an update to this Cataño-Lopez et al [59] described an improved version of this pendulum, with a

measured mechanical Q-factor of Qm = 2 × 106 at a frequency of Ëm = 2Ã × 2.2 Hz, which with the

optical spring is tunable in the frequency range of 400 Hz < Ë0
2Ã

< 1800 Hz.

For a pulsed-beam source, the gravitational acceleration in radial direction for the duration of a pulse is

given by

ap
grav = 2

4GPcav
p

c3

1

Ã
, (19)

where G is the Newton gravitational constant, Pcav
p is the pulse power, and Ã is the distance from the beam.

For this setup Ã is limited by the radius of the pendulum mass (1.5 mm) and the beam width (� .5 mm),

so Ã = 2 mm is a reasonable estimate which might be substantially increased, however, if a cryostat is

needed.

5 In contrast to the spatial integral in equation (11), the one in (17) converges to j 1.85 for L � ∆. This is because of the different

in boundary conditions, in particular, the logarithmic dependence stems from the overlap of the modefunction with the steep end of

the 1/x driving force, whereas the modes of the helium have to vanish at the end of the container. However, the missing logarithmic

dependence is basically irrelevant on realistic length scales. Assuming once again a constant aspect ratio, i.e., Meff > L3, we find a scaling

of F̄min > L and F̄eff > L2, implying that the force should be detectable if L is large enough. However, limitations apply as is discussed in

section 3.1.

8
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The displacement resulting from prolonged (Ç > 2ÃQ fb
Ë0

) driving on resonance is given by

xgrav =
āgrav

Ë2
0

Qfb =
8GPcav

p sin
�Ë0Çp

2

�

Qfb

Ãc3Ë2
0

1

Ã
, (20)

where āgrav is the Fourier component of agrav(t) on resonance, and sin
�Ë0Çp

2

�

results from the overlap of the

rectangular pulses with the sinusoidal oscillation calculated in equation (8). We now consider how the

pendulum would react to the different gravitational sources discussed above.

3.3.1. Cavity pumped with cw laser

For the pendulum from [58] at Ë0 = 2Ã × 280 Hz and the cw laser cavity from section 2.2 with a power in

the cavity of Pcav
p = 200 GW for half the oscillation period the expected amplitude resulting from the

gravitational signal is xgrav j 3.1 × 10226 m. With the on-resonance SQL and thermal sensitivities [69]
"

SSQL = 2xzpf

�

Q fb
Ë0

=
�

4�Q fb

mË2
0
j 7 × 10217 m /

:
Hz and

:
Sth = 2 × 10214 m /

:
Hz (starting from room

temperature, with only feedback cooling) this signal amplitude is not measurable.

The SQL refers to amplitude-and-phase measurements of that position. In principle, due to the precisely

known frequency, quantum non-demolition measurements allow continuous monitoring of the oscillation

[71]. With a ‘single-transducer, back-action evading measurement’, one can estimate a quadrature of the

oscillator with an uncertainty that scales ? (³Ë0Çm)21/2, where Çm is the relevant measurement time or

inverse filter width, and ³ a numerical factor that can reach a value of order one (see equations (3.21a) and

(3.21b) in [71] and equations (32) and (33) in [72]). After upconverting the kHz signal to the GHz regime

one can use modern microwave amplifiers with essentially no added noise [73–76]. Upconversion to the

microwave frequency range was already discussed in the 1980s [72] and can be achieved by having the

sensor modulate the resonance frequency of a microwave cavity. Additional sensitivity can be gained with a

large number N of sensors arranged along the laser beam or particle beam. Classical averaging their signal

leads to a noise reduction of 1/
:

N in the standard deviation. When several sensors all couple to the same

microwave cavity, one might even hope to achieve ‘coherent averaging’, in which case the noise reduction

scales as 1/N [77, 78].

With N = 1 and a signal of 280 Hz, the sensitivity of the pendulum resulting from the standard

quantum noise limit
"

SSQL j 7 × 10217 m /
:

Hz is 3 orders of magnitude lower than that given by the

thermal noise. For 1 week of measurement, the thermal noise still exceeds the signal generated by the

modulated cw laser (respectively train of laser pulses) by 8 (almost 9) orders of magnitude.

3.3.2. LHC beam

The minimum frequency of one bunch of ultra-relativistic protons going around the ring of the LHC is in

the kHz range (see section 2 2). Lower frequencies could be achieved by modulating the beam position with

low frequency. The LHC as a source is expected to create almost 20 times larger amplitude than the

considered cw-pumped cavity, due to the higher pulse power Pcav
p = PLHC where an ‘on-off’ modulation of

the LHC beam, similar to the cw cavity pumping scheme was assumed. After one week of measurement

time one would be about 7 orders of magnitude off from measuring the signal with a single detector, 5

orders of magnitude starting at a temperature of T = 5 mK. Substantially more development will be needed

to bridge this gap. Ideas in this direction are developed in the next section.

3.4. Optimizing the S/N

In this section we ask, what parameter values would be needed to achieve a signal-to-noise ratio comparable

to 1 for a torsion balance or pendulum. We model both simply as damped harmonic oscillators, but keep in

mind that their mechanial parameters and temperature can be substantially modified by using an optical

spring and/or feedback cooling, and then compare to the existing setups described in [40, 58, 59]. We

therefore continue to use Tfb for the final temperature, Qfb for the final quality factor, and Ë0 as final

resonance frequency ×2Ã, regardless of how they might be achieved.

3.4.1. Optimization of a mechanical oscillator as detector and comparison to [40]

According to equation (5.60) in [69] the total position-noise power at frequency Ë of a harmonic oscillator

with (undamped) resonance frequency Ω measured with a transducer and amplifier that add back-action

noise (referred back to the input) can be written as

S̄xx,tot(T,Ë,Ω, Q, m) =
³0

³0 + ³
S̄xx,eq(T,Ë,Ω, Q, m) + S̄xx,add(T,Ë,Ω, Q, m), (21)

where ³0 is the intrinsic oscillator damping without coupling to the transducer and ³ c ³(Ë) the damping

with the coupling. The equilibrium noise (comprising both quantum noise and thermal noise at

9
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temperature T) reads

S̄xx,eq(T,Ë,Ω, Q, m) = � coth

�

�Ë

2kBT

�

ImÇxx(Ë,Ω, Q, m) (22)

ImÇxx(Ë,Ω, Q, m) =
QËΩ

m(Ë2Ω2 + Q2(Ë2 2 Ω2)2)
, (23)

with the quality factor Q c Ω/(³0 + ³). To calculate S̄xx,add, one needs to know the force noise power of the

detector and amplifier, but S̄xx,add is lower bounded by S̄xx,addMin = �|ImÇxx|. With this lowest possible value

and the replacements Ω³ Ë0, Q ³ Qfb, T ³ Tfb, one obtains for the total noise power to lowest order in

³/³0 (which slightly overestimates the contribution from S̄xx,eq(T,Ë,Ë0, Q, m))

S̄xx,tot = �

�

1 + coth

�

�Ë

2kBTfb

��

ImÇxx(Ë,Ë0, Qfb, m). (24)

The maximum amplitude xgrav of the harmonic oscillator is given by equation (18) with sin(Ç pË0/2) = 1,

but is reached only asymptotically as function of time, namely as xgrav(t) = xgrav(1 2 exp(2Ë0t/(2Qfb))).

We assume that the total time Ç tot = 1 week for the experiment is split as Ç tot = Ç r + Çm into a time Ç r

needed for the amplitude of the harmonic oscillator to rise to a certain level, and a measurement time Çm

used for reducing the noise. The total signal-to-noise ratio on resonance is then given by

S/N = xgrav

�

1 2 exp(2Ë0(Çtot 2 Çm)/(2Qfb))
�

:
Çm

"

S̄xx,tot

� 0.01
(1 2 e

((Çm2Çtot)
Ë0

2Q fb )
:

Qfbm Çm

Ë0

�

1 + coth 4·10212Ë0
T fb

, (25)

where a distance Ã = 200 ¿m of the center of the detector mass from the beam axis was assumed. All

quantities are in SI units. From this equation it is evident that the mass m should be as large as possible. At

the same time, m cannot be made arbitrarily large, as otherwise the distance from the beam axis would have

to be increased as well, which would lead to a decay of the signal ?1/Ã for Ã � Ãmin, where Ãmin is the

minimum distance from the beam axis (which might contain a shielding of the particle beam in the case of

the LHC, and which we assume to be Ãmin = 100 ¿m for the LHC but might have to be substantially

increased when using a cryostat). In principle, for a spherical detector mass, a scaling ?m1/6 would still

result, but it turns out that unrealistically large masses (larger than 1 kg) would be needed before this

scaling gives an advantage over an alternative design with a cylindrical detector mass that allows to maintain

Ã = 200 ¿m. If we allow that cylinder to become as long as Lcyl = 0.5 m and determine the maximum mass

as m = 0.9Ã�Si(Ã2 Ãmin)2 Lcyl (where 0.9 is a ‘fudge factor’ that avoids that the detector mass touches the

shielding), we find m = 33 mg.

With that value inserted in equation (23), one can optimize S/N with respect to the parameters

Çm,Ë0, Qfb and Tfb. With Ç tot kept equal to 1 week, in the range 1 rad/s � Ë0 � 104 rad/s, 1 � Qfb � 108,

1 nK � Tfb a maximum value S/N � 0.6 is found for Çm = 3 × 105 s, Ë0 = 2Ã × 0.16 Hz, Qfb = 1.2 × 105,

and minimal Tfb. The optimal value for Ë0 is at the lower end of the parameter range, but reasonably close

to the one for the existing torsion balance in [40] (Ë0 = 2Ã × 3.59 mHz), where, however, the mechanical

quality factor was Q = 4.9 and a mass of 92.1 mg was used. It remains to be seen if the parameters that

result from the optimization can be reached. Problematic appears mostly, whether the temperature of the

cooled mode of about 1 nK can be reached, especially at low frequencies.

3.4.2. Assumption of Q-scaling and comparison to [58]

The structural damping model used in [58] implies a quadratic scaling of the Q-factor with the resonance

frequency (see equation (16)). Including this scaling behavior and allowing the modification of the

resonance frequency by means of an optical spring, leads to frequencies in the 100 Hz to 1 kHz range being

preferred by the optimization. This ultra-high Q-factor is, however, not reachable in practice as the optical

spring introduces heating, and so the mechanical oscillator has to be cooled to stabilize the system. In

existing systems, feedback cooling [58, 79], or a second optical spring tuned to the infrared [80] have been

employed as cooling mechanisms. We assume an effective final temperature reached by feedback cooling of

Tfb = 4Tbath
Qfb

Qeff

= 4Tbath
Qfb

Qm
Ë2

0

Ë2
m

, (26)
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Table 2. Comparison of the estimated sensitivity of the listed detectors with the expected amplitude of the sources considered

on resonance and after the full build-up-time of the detector’s oscillation. For the cases in which the main limiting factor is

thermal noise, a temperature of 5 mK was assumed. Other parameters see text

Rod Liquid helium Pendulum

Ë0 2Ã × 103 Hz 2Ã × 109 Hz 2Ã × 2.8 × 103 Hz 2Ã × 280 Hz

Sensitivity 1 × 10217m/
:

Hz 4 × 10217m/
:

Hz 2 × 10217N/
:

Hz 1 × 10212m/
:

Hz 3 × 10214m/
:

Hz

Limiting factor Thermal noise SQL Thermal noise Thermal noise

Expected amplitude

Laser pulses 2 × 10225 m 2 × 10234 m 2 × 10225 N 1 × 10220 m 3 × 10226 m

cw cavity 4 × 10225 m 4 × 10234 m 3 × 10225 N 2 × 10220 m 5 × 10226 m

LHC beama 8 × 10224 m 9 × 10232 m 7 × 10224 N 4 × 10219 m 1 × 10224 m

aAssuming the LHC beam can be modulated to produce a signal with appropriate frequency while maintaining the same average

power.

as is expected in [58]. An initial temperature, before feedback cooling, of Tbath = 5 mK is assumed and the

parameter ranges are limited to 1 rad/s <Ëm < 10 000 rad/s, 1 rad/s <Ë0 < 10 000 rad/s, 1 < Qm < 107,

and 1 < Qfb < 1010. We find S/N j 0.077 for the optimal parameters of Ëm = 2Ã × 0.16 Hz, Ë0 =

2Ã × 600 Hz, Qm = 107, and Qfb = 1.6 × 108. Compared to the generic optimization as seen above this

seems underwhelming but if the scaling of Q and temperature can be attained, the final temperature of

Tfb j 23 nK would be more feasible than before.

3.4.3. Further possible improvements

A signal-to-noise ratio of 0.6 is still not good enough, but the planned upgrade of the LHC to the

high-luminosity LHC [56] should increase S/N by a factor 10. Another factor 2.9 is expected to be gained

by switching to tungsten (with mass density �W = 19, 250 kg m23) as detector-mass material, all other

optimized parameters remaining equal. Both factors combined lead to an S/N � 16.

The maximum of S/N found in the optimization is rather flat, especially with respect to the feedback

cooling quality factor, such that there is a wide range of values with similar signal-to-noise ratios that allow

one to take into account other engineering constraints not considered here and without such extreme

effective temperatures. Hence, with the high-luminosity LHC and an optimized detector there is realistic

hope that GR could be tested for the first time in this ultra-relativistic regime with a controlled terrestrial

source and adapted optimized detector. Also without the upgrade of the LHC, further improvements from

using a multitude of detectors (and possibly coherent averaging by coupling them all to the same read-out

cavity [77, 78]) or longer integration times can be envisaged that would bring S/N to order one.

4. Discussion

4.1. Perspectives for measuring the gravitation of light or particle beams

We have theoretically investigated the fundamental limitations to measure the oscillating gravitational fields

of lab-scale ultrarelativistic sources for three concrete examples: for laser beams, we have considered

femtosecond-pulse lasers fed into a high finesse cavity, where they oscillate to and fro, and similarly, cw

lasers used to pump a cavity periodically. For particle beams, we considered the LHC with its beam of

proton bunches flying along the accelerator ring. All sources considered lead to oscillating curvature of

space-time and acceleration of test particles with precisely controlled frequency up to the GHz range. In

addition, we have given details on how modulations of these signals with much lower frequency, down to

the kHz regime, can be achieved for all three example sources. In the latter regime, the LHC is the most

promising ultrarelativistic source of gravity with a gravitational field strength 20 times stronger than the

laser sources considered here.

We investigated three near-field detectors: a deformable rod offers force accumulation along its length

thanks to its Young modulus. However, the spatial decrease of the studied gravitational effects limits the

effects of force accumulation, resulting in immeasurably small amplitudes of the order of 8 × 10224 m even

in the case of the LHC as a source. In the liquid helium chamber from Singh et al [70], very high quality

factors and low noise allow for sound wave buildup within the chamber. With the present experimental

parameters [70], the gravitational force for the LHC is 3.5 orders of magnitude below the detectability limit

of this detector with an averaging time of one week.

A pendulum from [58, 59] or a recently demonstrated torsion balance [40] turned out to be the most

promising detectors. In the present form of the monolithic pendulum [58], the fully built-up signal from

the LHC is 5 orders of magnitude away from the sensitivity achievable within 1 week of averaging time

(assuming a starting temperature of T = 5 mK and a final temperature of Tfb = 12 nK after a shift of the
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resonance frequency via an optical spring and feedback cooling) with the benefit of a relatively small signal

rise time.

Optimization of the signal-to-noise ratio of a mechanical oscillator as detector over its frequency,

measurement time, quality factor and temperature in the parameter range provided in section 3.4.1, leads to

an expectation of an S/N of about 0.6 with the LHC as source within one week of signal rise time and

averaging. By using a denser material such as tungsten for the detector mass and profiting from the planned

high-luminosity upgrade of the LHC an S/N ratio � 16 appears possible with one week of measurement

time for a single detector.

Our considerations concerned fundamental limitations so far, so that an S/N ratio larger than 1 should

be considered a necessary condition, but would still make for a very difficult experiment with additional

noise and engineering issues to be overcome (see e.g. [42]).

Important additional noise sources that have not been considered in our work include, for example,

seismic and thermal noise that may be reduced by moving to a higher frequency regime. Therefore, while

very high source frequencies (GHz) turned out to be detrimental for the considered detectors, it may still be

interesting to investigate an intermediate frequency range above the kHz regime. In their current design, the

superfluid helium detector [70] and the pendulum detector [59] need a source oscillating with a frequency

of the order of kHz and 400 Hz to kHz, respectively. The pendulum’s operation at higher frequencies might

be possible and relatively easy to achieve, given that the relevant noise terms in the kHz range stem from

suspension eigenmodes, which are changeable by design. Also in [81] parametric cooling into the ground

state for pendulum-style gravitational sensors was demonstrated, reducing problems from thermal noise

and seismic noise in an even larger frequency range. However, reaching the required low-temperatures in

the nK regime in combination with the high quality factors will remain a huge challenge, even if the

Q-scaling (16) and feedback cooling assumed in [58] is achieved.

4.2. Perspectives for quantum gravity experiments

The realization that the gravitational effect of light or high-energy particle beams might become measurable

in the near future opens new experimental routes to quantum gravity, in the sense that it might become

possible to study gravity of light or matter in a non-trivial quantum superposition. Concerning light,

non-classical states of light, in particular in the form of squeezed light, have been studied and

experimentally realized for a long time, and are now used for enhanced gravitational-wave-sensing in LIGO

[82]. While the current records of squeezing were obtained for smaller intensities than relevant for the

gravitational sources we consider here [83], squeezing and entanglement shared by many modes was already

achieved for photon numbers on the order 1016 by using a coherent state in one of the modes [84]. This is

substantially smaller than the >1021 photons estimated in the cavity in the example of the cw laser leading

to 100 GW circulating power considered above, but one might hope that technology progresses to achieve at

least a small amount of squeezing also for the high-power sources relevant here.

As for the high-energy particle beams, transverse ‘coherent oscillations’ of two colliding accelerator

beams (including the ones at LHC) have already been studied [85–89] but these are of classical nature.

Non-trivial quantum states of the beam are those that cannot be described by a positive semidefinite

Glauber-Sudarshan P-function, a concept from quantum optics that is well established for harmonic

oscillators and is hence applicable to small-amplitude transverse motion of the particle beam in the

focusing regions where there is a linear restoring force. A stronger requirement would be a

non-positive-semidefinite Wigner function, which can be applied to any system with a phase space. In order

to reach such quantum states, it will be necessary to cool the particle beams. Efforts to do so are on the way

or proposed for other motivations: cooling enhances the phase space density and hence the intensity of the

beam in its center. In addition, new phases of matter in the form of classical crystalline beams attracted

both theoretical and experimental interest at least since the 1980s [90–95]. Recently it was proposed to

extend this work to create an ‘ultracold crystalline beam’ and turning an ion beam into a quantum

computer. For this, the beam should become an ion Coulomb crystal cooled to such low temperatures that

the de Broglie wavelength becomes larger than the particles’ thermal oscillation amplitudes [96]. Ideally, for

our purposes, the center-of-mass motion of the beam should be cooled to the ground state of the

(approximate) harmonic oscillator that restrains locally, at the detector position, the transverse motion,

before interesting quantum superpositions can be achieved.

However, even superpositions in longitudinal direction would create an interesting experimental

situation for which there is currently no theoretical prediction. Experimental progress in this direction

would allow a different kind of search for quantum gravity effects compared to popular current attempts to

detect deviations from canonical commutation relations between conjugate observables as predicted by

various quantum-gravity candidates (see e.g. [97]). Different techniques for cooling particle beams are

available (see e.g. [98, 99] for overviews): Stochastic cooling (measurement of deviation from the ideal
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beam-line and fast electronic counter-measures further down the beamline) was used at CERN for

producing high-intensity anti-proton beams from 1972 till 2017 and is still used there for anti-proton

deceleration, as well as at Forschungszentrum Jülich (COSY experiment) and GSI Helmholtzzentrum für

Schwerionenforschung GmbH (Heavy Ion storage ring ESR); electron cooling (absorption of entropy by a

co-propagating electron beam of much lower energy and entropy), and a modern cousin of it, ‘coherent

electron cooling’ [100], under development at Brookhaven National Lab for ion energies up to 40 GeV/u for

Au+79 ions [57, 101]; and laser cooling, with which longitudinal temperatures on the order of mK have

been reached for moderately relativistic ion beams [102, 103]. Laser cooling is most efficient for

longitudinal cooling, but transverse cooling can be achieved to some extent through sympathetic cooling

[104]. Laser cooling is now proposed for an ultrarelativistic heavy-ion upgrade of the LHC [56]. Despite all

these techniques, ground states of the transverse center-of-mass motion have never been reached in any

ultra-relativistic particle beam as far as we know, nor was it perceived as an important goal. We hope that

the perspective of winning the race to the first quantum gravity experiment will change this. As Grishchuk

put it [11]. ‘The laboratory experiment is bound to be expensive, but one should remember that a part of

the cost is likely to be reimbursed from the Nobel prize money!’ The successful development of ion-trap

quantum computers, where ground-state cooling of collective modes of ion crystals has become standard,

might lend credibility to the feasibility of the endeavor.
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Appendix A. Gravitational field of a laser-pulse in a cavity

Following the calculation of the gravitational field of a box shaped laser pulse of length L emitted at z = 0

and absorbed at z = D from [18, 21], we extend the calculation to an oscillation of a short pulse (L < D)

between 0 and D. For a pulse propagating along the ±z-direction the energy momentum tensor is given by

T00 = Tzz = 3T0z = 3Tz0 = u(z, t)·(x)·(y)A, where u(z, t) is the energy density of the electromagnetic field

in 3D and A is the effective transverse area. This energy momentum tensor violates the continuity equation

as the recoil of the mirrors is neglected. However, ultimately only positions very close to the beam will be

considered where these contributions vanish [18]. The energy density is given by

u(z, t) = upΘ(z)Θ(D 2 z)

>
�

n=0

�

Çn
+(z, t) + Çn

2(z, t)
�

, (A1)

where

Çn
+(z, t) = (Θ (ct 2 2nD 2 z) 2Θ (ct 2 2nD 2 z 2 L)) (A2)

Çn
2(z, t) = (Θ (ct 2 (2n + 1)D + (z 2 D)) 2Θ (ct 2 (2n + 1)D + (z 2 D) 2 L)) (A3)

delimit the profile of the pulse injected at t = 0 and reflected 2n times (2n + 1 times) traveling in positive

(negative) z-direction, and up =
Ep

LA
is the pulse energy density.

From the wave equation in the Lorenz gauge

�h¿¿ = 216ÃG

c4
T¿¿ (A4)

the metric perturbation can be calculated using the Green’s function

h¿¿(�r, t) =
4G

c4

�

d3r�
T¿¿(�r �, t 2 |�r 2�r �|/c)

|�r 2�r �| . (A5)

Given the energy–momentum tensor, the metric perturbation can be decomposed into h¿¿ = h+
¿¿ + h2

¿¿

and the only non-zero elements of h±
¿¿ are h±

00 = h±
zz = 3h±

z0 = 3h±
0z c h±, with

h±(x, y, z, t) =
4GupA

c4

� D

0

dz�

�

nÇ
n
±

�

z�, t 2
"

Ã2 + (z 2 z�)2/c
�

"

Ã2 + (z 2 z�)2
, (A6)
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Figure 2. Spacetime is split into zones by the light cones of the reflection events of a pulse oscillating between two mirrors.

Ã =
"

x2 + y2, and upA = P
c
.

The box function Çn
+ imposes the additional boundaries of an

+ < z� < bn
+, with

an
+ = z +

(ct 2 2nD 2 L 2 z)2 2 Ã2

2(ct 2 2nD 2 L 2 z)
(A7)

bn
+ = z +

(ct 2 2nD 2 z)2 2 Ã2

2(ct 2 2nD 2 z)
. (A8)

Similarly, the box function Çn
2 adds the constraints of an

2 < z� < bn
2, with

bn
2 = z 2 (ct 2 (2n + 1)D 2 L + (z 2 D))2 2 Ã2

2 (ct 2 (2n + 1)D 2 L + (z 2 D))
(A9)

an
2 = z 2 (ct 2 (2n + 1)D + (z 2 D))2 2 Ã2

2 (ct 2 (2n + 1)D + (z 2 D))
. (A10)

Following [21] the substitution ·(z�) = z� 2 z +
"

Ã2 + (z� 2 z)2 is used to further simplify the

integration. The constraints turn into

·(0) = r 2 z (A11)

·(D) = rD 2 (z 2 D) (A12)

·(an
+) = ct 2 2nD 2 L 2 z (A13)

·(bn
+) = ct 2 2nD 2 z (A14)

·(bn
2) =

Ã2

ct 2 (2n + 1)D 2 L + (z 2 D)
(A15)

·(an
2) =

Ã2

ct 2 (2n + 1)D + (z 2 D)
, (A16)

where r =
"

Ã2 + z2, and rD =
"

Ã2 + (z 2 D)2.

For an observer positioned at z * (L, D 2 L) there are 4 different space-time zones (see figure 2)

Pn
0 : 2nD < ct 2 r < 2nD + L causally connected to the reflection at z = 0, ct = 2nD.
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�n: 2nD + r + L < ct < (2n + 1)D + rD not causally connected to any reflection events, but causally

connected to the pulse traveling from z = 0, ct = 2nD to z = D, ct = (2n + 1)D.

Pn
D: (2n + 1)D < ct 2 rD < (2n + 1)D + L causally connected to the reflection at z = D, ct = (2n + 1)D.

�n: (2n + 1)D + rD + L < ct < (2n + 2)D + r not causally connected to any reflection events, but

causally connected to the pulse traveling from z = D, ct = (2n + 1)D to z = 0, ct = (2n + 2)D.

The metric perturbation is then given by

h+ =
4GP

c5

§

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

«

¬

ln
·(bn

+)

·(0)
= ln

ct2n 2 z

r 2 z
for (z, t) * Pn

0 ,

ln
·(bn

+)

·(an
+)

= ln
ct2n 2 z

ct2n 2 L 2 z
for (z, t) * �n,

ln
·(D)

·(an
+)

= ln
rD 2 (z 2 D)

ct2n+1 2 L 2 (z 2 D)
for (z, t) * Pn

D,

0 for (z, t) * �n,

(A17)

caused by the pulses starting from z = 0 and

h2 =
4GP

c5
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2 )
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(ct2n 2 L + z)(r 2 z)
for (z, t) * Pn

0 ,
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ln
·(D)
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= ln
(rD 2 (z 2 D))(ct2n+1 + (z 2 D))

Ã2
for (z, t) * Pn

D,
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·(bn

2)

·(an
2)

= ln
ct2n+1 + (z 2 D)

ct2n+1 2 L + (z 2 D)
for (z, t) * �n,

(A18)

caused by the pulses returning from z = D, where tj := t 2 jD/c.

Following [21], the only independent non-vanishing elements of the Riemann curvature tensor are

given by

R0z0z = 21

2

�

1

c
"t + "z

�2

h+ 2 1

2

�

1

c
"t 2 "z

�2

h2 (A19)

R0z0i = 2R0zzi = 21

2
"i

�

1

c
"t + "z

�

h+ 2 1

2
"i

�

1

c
"t 2 "z

�

h2 (A20)

R0i0j = Rzizj = 21

2
"i"j(h+ + h2) (A21)

R0izj =
1

2
"i"j(h+ 2 h2), (A22)

where i, j * {x, y}.

Given the explicit form of h+ and h2 from equations (A17) and (A18), the curvature is.

Pn
0 : R0z0z =

4GP
c5

z
r3 , R0z0i = 0, R0i0j =

4GP
c5

z
Ã2r

�

·ij 2 rirj

Ã2r2 (2r2 + Ã2)
�

, R0izj = 2 4GP
c5

1
Ã2

�

·ij 2 2rirj

Ã2

�

�n: R¿¿ÃÃ = 0"¿, ¿, Ã,Ã

Pn
D: R0z0z =

4GP
c5

D2z
r3
D

, R0z0i = 0, R0i0j =
4GP
c5

(D2z)
rDÃ2

�

·ij 2 rirj

r2
DÃ2 (2r2

D + Ã2)
�

, R0izj =
4GP
c5

1
Ã2

�

·ij 2 2rirj

Ã2

�

�n: R¿¿ÃÃ = 0"¿, ¿, Ã,Ã.
In the limit Ã � r, rD, the only independent components of the curvature in leading order are

R0i0j = 2R0izj =
4GP

c5

1

Ã2

�

·ij 2 2
rirj

Ã2

�

c R "(z, t) * Pn
0 (A23)

R0i0j = R = R0izj "(z, t) * Pn
D, (A24)

with Ã � z, (z 2 D). A simplified metric perturbation resulting in the same curvature tensor as

equation (A23) is given by

h̃+ =

§

«

¬

28GP

c5
ln Ã for (z, t) * Pn

0

0 else

, h̃2 =

§

«

¬

28GP

c5
ln Ã for (z, t) * Pn

D

0 else

. (A25)
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The geodesic equation for a test particle at position x¿ is given in coordinate time t = 1
c
x0 by

d2x¿

dt2
= 2Γ¿

³³

dx³

dt

dx³

dt
+ Γ0

³³

dx³

dt

dx³

dt

dx¿

dt
. (A26)

For a non-relativistic test particle this reduces to

ẍa = 2c2Γa
00 +O

�

v2

c2

�

, (A27)

with the linearized Christoffel symbol

ΓÃ
¿¿ =

1

2
·»Ã("¿h¿» + "¿h»¿ 2 "»h¿¿) =ó Γa

00 = 21

2
"ah̃00. (A28)

The acceleration a non-relativistic sensor experiences is therefore equivalent to that from a Newtonian

potential

Φ =
4GP

c3
ln Ã (A29)

for the duration of the pulse passing by (P0, PD) with the potential vanishing at all other times.

Appendix B. Intensity in a Fabry–Pérot resonator

The considerations here follow those from [49] closely but are modified to reflect the setups used in this

work.

For a Fabry–Pérot resonator consisting of two mirrors with field reflection coefficients
:

R1,
:

R2 and

field transmission coefficients
:

T1,
:

T2, the field in cavity (at the face of mirror 1) resulting from a pump

beam striking mirror 1 can be written as

Ecav(t) =
:

R1R2Ecav(t 2 Çrt) +
"

T1Epump(t) (B1)

in the time domain, where Ç rt is the time for one round trip in the cavity. In the frequency domain this can

be written as

Ẽcav(Ë) = G̃(Ë)Ẽpump(Ë), with G̃(Ë) =

:
T1

1 2:
R1R2e2iËÇrt

. (B2)

B.1. Single monochromatic rectangular pulse

For a monochromatic pump field of frequency ËE and length Çp entering the cavity at t = 0 the pump field

is given by

Ep
pump(t) = E0eiËEtΠÇp (t), with ΠÇp (t) = Θ (t) 2Θ

�

t 2 Çp

�

(B3)

=ó Ẽp
pump(Ë) = E0Çpe2iËÇp/2 sinc((Ë 2 ËE)Çp). (B4)

The corresponding Fourier transformed field amplitude in the cavity is then given through equation (B2)

by

Ẽp
cav(Ë) = E0

:
T1e2iËÇp/2

1 2:
R1R2e2iËÇrt

Çp sinc((Ë 2 ËE)Çp) (B5)

=ó Ep
cav(t) = E0

"

T1

>
�

n=0

(R1R2)n/2eiËE(t2nÇrt)ΠÇp (t 2 nÇrt). (B6)

For a very short pulse Ç p � Ç rt, none of the addends will overlap and the intensity in the cavity is

Ip
cav(t) = |Ep

cav(t)|2 = E2
0T1

>
�

n=0

(R1R2)nΠÇp (t 2 nÇrt). (B7)

The pulse enters the cavity with an intensity reduced by T1 and is reduced by a further factor R1R2 for each

subsequent round trip. The average power in the cavity relative to that of the pump laser is then given by

Pcav

P0

= T1

>
�

n=0

(R1R2)n =
T1

1 2 R1R2

=
1 2 R1

1 2 R1R2

� 1. (B8)
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Figure 3. Intensity inside the cavity resulting from a long (Çp � Ç rt) rectangular pulse of monochromatic or spectrally narrow
light. The time is given in units of Çrt.

For long pulses (Çp � Ç rt) and a resonant cavity (ËEÇ rt = 2Ãm) only addends from

nmin = max
�

0,
�

t2Çp

Çrt

��

to nmax = max
�

0,
�

t
Çrt

��

contribute for any given time, returning

Ep
cav(t) = E0

"

T1

�

1 2 (R1R2)
nmax+1

2

1 +
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R1R2

2 1 2 (R1R2)
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2

1 +
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(B9)

= E0

"

T1

:
R1R2

(R1R2)nmin/2 2 (R1R2)nmax/2

1 +
:

R1R2

. (B10)

The intensity for this long-pulse resonant cavity case can be described as a ‘jagged shark fin’ and is plotted

in figure 3.

B.2. Series of monochromatic rectangular pulses

A series of periodic pulses separated by time Ç rt can be written as a sum of pulses EΣ
pump(t) =

�

kE
p
pump

(t 2 kÇrep). As all of the operations on the field are linear the pump field equation (B5) can be used to find

EΣ
cav(t) =

�

k

Ep
cav(t 2 kÇrep). (B11)

For repetition times much longer than the lifetime of a pulse in the cavity Çrep � ÇL > Çrt(R1R2)1/4

12:
R1R2

, and the

pulse length Ç rep � Çp, the addends barely overlap such that there is no interference between consecutive

pulses. In this case the intensity in the cavity is just that of the singular pulse repeating periodically.
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Abstract

Whether the cosmological expansion can innuence the local dynamics, below
the galaxy clusters scale, has been the subject of intense investigations in the
past three decades. In this work, we consider McVittie and Kottler spacetimes,
embedding a spherical object in a FLRW spacetime. We calculate the innuence
of the cosmological expansion on the frequency shift of a resonator and estimate
its effect on the exchange of light signals between local observers. In passing,
we also clarify some of the statements made in the literature.

Keywords: cosmological expansion, redshift, spacetime physics, general
relativity

(Some ogures may appear in colour only in the online journal)

1. Introduction

The large scale structure of the Universe is described by way of the ΛCDM cosmological
model which is in accordance with current observations showing an accelerated expansion
of the Universe [1]. The accelerated expansion is well captured by the cosmological Fried-
mann3Lemaître3Robertson3Walker (FLRW) spacetimemetric, once visible matter, dark mat-
ter and dark energy are accounted for in the energy density of the Universe. This description
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Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.
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is effective above the supercluster scales, where space can be considered homogeneous to a
good approximation. At these scales, the evolution is dominated by the so-called Hubble now,
with structures receding from each other with relative velocities linearly proportional to their
relative distance in orst approximation.

However, whether the cosmic expansion of spacetime can affect local gravitating systems
has been the subject of a lively debate dating back to Einstein and Straus in the 1940s [2, 3].
Since then, a growing body of literature has tackled the issue with sometimes connicting pre-
dictions on the existence of local effects of the cosmological expansion [4325] (see the review
[25], and references therein, for a detailed account of the literature up to 2010).

The major problem in addressing unambiguously which structures in the Universe partic-
ipate in the expansion and which do not resides in the difoculty of handling the solutions
of general relativity (GR) outside extremely simplioed and idealized scenarios. Ideally, one
should be able to account for the local environment such as the one in the Solar System and, at
the same time, consider the larger environment in which the former is embedded and which, in
turn, will not be described by a cosmological solution to Einstein9s equations in general [17].
Since such detailed description is not currently available, we are led to consider simplioed
scenarios with varying degrees of approximation. As highlighted in [25], while this is totally
justioed from a methodological point of view, it also demands for a conservative interpretation
of the onal results as indicating more likely an upper-bound on the effects of cosmic expansion
on local systems than an accurate estimate.

With these clariocations at hand, in this work we consider the effect of the global cos-
mological expansion on local scales using the McVittie metric [26], describing a spherical
symmetric object embedded in an expanding FLRW spacetime, and its limit case when space-
time is asymptotically de Sitter. We will focus on the effect of the cosmic expansion on the
frequency of propagating light signals. In particular, we consider the effect of the expansion
on the frequency shift of a resonatormoving along different trajectories.We also brieny review
the effect of the expansion on the exchange of light signals between different observers and
clarify some statements present in the literature in this regard.

This investigation is motivated by the rapid development of optical clocks. The great
advancements in the oeld of optical clocks [27336] in the past 20 years4gaining about ove
orders of magnitude in accuracy4open potential new windows of exploration of fundamental
physics allowing to measure time and frequency with unprecedented precision. Just this year,
a measurement of the frequency ratio between three atomic clocks with a fractional frequency
uncertainty below 8× 10218 was reported in [37] and fractional stability of optical clocks to
one part in 1018 [35] or even in 1019 [38] over average times of hundreds of seconds have
been reached. Moreover, new concepts like nuclear clocks are being explored which promise
even better frequency standards. It should be noted that in SI units the current value of the
Hubble parameter is around 10218 s21 such that relative frequency shifts over 1 s4e.g. in
a space-bound cavity or Doppler measurements4linearly proportional to it (if any) would
be comparable to the current optical clocks9 uncertainty, when averaging for >102 s. It is
then intriguing to investigate if the effect on local systems of the cosmic expansion can be of
this order of magnitude, and whether current or near future experiments employing quantum
technological platforms could have any hope to detect such effects.

The work is organized as follows: in section 2, we discuss the model of spherical symmetric
object embedded in an expanding FLRW spacetime that we use in the rest of the work, as
well as the different observer oelds we consider. Section 3 brieny reviews the derivation of
the frequency shift in a resonator in curved spacetime [39]. Here we show how the cosmic
expansion affects the resonator, depending on its trajectory. In section 4, we use the previous
results to clarify some aspects of the imprint of the global cosmological expansion on the
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kinematic effects related to the exchange of light signals between different observers. Section 5
presents estimates of the magnitude of the effects previously discussed. Finally, in section 6
we conclude with a discussion of our results and outlooks.

2. Expanding Universe with a spherical inhomogeneity

In the existing literature, several techniques and approaches have been used to study the
impact of the cosmological evolution on local systems. Beyond using perturbation theory and
improved Newtonian calculations, exact solutions to the Einstein9s equations have been found
that describe an inhomogeneity embedded in an expanding FLRW spacetime. As discussed
in detail in [25], two alternatives have been investigated. The orst amounts to matching two
known solutions of Einstein9s equations, one representing the cosmological FLRW spacetime
and the other the geometry induced by the isolated inhomogeneity. This has been the basis
for the Einstein3Straus vacuole solution [2, 3, 40]. The second requires onding exact solu-
tions of Einstein9s equations, with the only constraint of approximating each of the two known
solutions of interest in some region.

In this work, we will follow the second strategy and consider it as a viable approach for
describing a local system embedded in an expanding spacetime whose metric is the so called
McVittie metric. Firstly derived in the early 930s [26], the McVittie metric is a spherically
symmetric solution to Einstein9s equations and describes a non-charged, non-rotating compact
object in an expanding cosmological FLRW spacetime. As such, the McVittie metric reduces,
by construction, to the exterior Schwarzschild solution at small radii and to FLRW asymp-
totically. We restrict ourselves to the case in which the FLRW asymptotic metric describes
a spatially nat spacetime, in accordance with current cosmological observations. The analyt-
ical properties of the McVittie solution were carefully analyzed in [41344] where also the
properties of the timelike and lightlike geodesics of the metric are considered4.

In the following, we use mainly two coordinate representations for the McVittie metric,
always assuming to be at distances from the central object much larger than its Schwarzschild
radius. We also set c = G = 1 unless otherwise stated. In isotropic spherical coordinates, the
McVittie metric reads

ds2 = 2
�

12 m(t)
2r

�2

�

1+ m(t)
2r

�2 dt
2
+

�

1+
m(t)

2r

�4

a(t)2(dr2 + r2d»2 + r2 sin2 »dÇ2), (1)

where we are using the (2+++) signature. Here, a(t) indicates the scale factor of the asymp-
totic FLRW metric. As discussed in [25] and references therein, the matter content of the
McVittie spacetime is assumed to consist of a perfect nuid moving along the integral curves
of the (normalized) vector oeld "t. Following [25], from the Einstein9s equations we have
m(t) = m0/a(t) withm0 = rS/2 the mass of the central object5 and rS its Schwarzschild radius.

A second set of coordinates that will turn out to be useful are the areal radius coordinates.
The areal radius is deoned as

R(t, r) =

�

1+
m(t)

2r

�2

a(t)r. (2)

4 In [25, 41, 42, 45], the singularity properties of the McVittie spacetime are considered. In the following, we work
always far away from the Schwarschild radius (r � rS) and thus do not concern ourselves with such issues.
5 In physical units, m0 = GM/c2 = rS/2, where G is the gravitational constant, c is the speed of light, and M is the
mass of the central object.
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We can then adopt the change of coordinates t³ t, r³ R and rewrite the metric, in the region
R > 2m0, in areal radius coordinates as

ds2 = 2
�

12 2¿(R)2 h(R, t)2
�

dt2 2 2h(R, t):
12 2¿(R)

dt dR

+
1

12 2¿(R)
dR2

+ R2d»2 + R2 sin2 »dÇ2, (3)

where ¿(R) = m0/R, h(R, t) = H(t)R, and H(t) = a�(t)/a(t)4where the prime indicates
derivative with respect to the coordinate time4is the Hubble parameter as usual.

Before proceeding it should be noted that, considering the current estimates for the value
of the Hubble parameter at the current time H0 > 70 s21 km Mpc21 > 2× 10218 s21 in the
ΛCDM paradigm (cf appendix A), H�0 is of the same order of magnitude as H2

0 . Thus, in the
following we will consider terms in H� as quadratic corrections in the Hubble parameter.

2.1. Limiting case: Kottler spacetime

From the form of the metric in equation (1), it is immediate to see that, form0³ 0, we recover
the FLRW metric in spherical isotropic coordinates while imposing a(t) = 1, we obtain the
exterior Schwarzschild metric. Furthermore, from the form of the metric in equation (3) it is
also immediate to see that, imposing the Hubble parameter to be constant H(t) = H04where
H0 is the so-called Hubble9s constant4or equivalently, choosing a(t) = eH0t, we recover the
line element of Schwarzschild3de Sitter (or Kottler [46]) spacetimewith cosmological constant
Λ = 3H2

0 in areal radius coordinates.
The Schwarzschild3de Sitter (SdS) case will be of relevance in the following. The SdS

metric has been used in the existing literature to investigate the effect of the cosmological
constant on the local dynamics in a variety of situations [8, 16, 24, 47] and has also been
generalized to include a rotating, axis-symmetric central object, which yields theKerr3de Sitter
metric [18, 48350].While the SdSmetric encodes only the effect of the cosmological constant,
it nonetheless allows for analytical solutions where only numerics can be used with the general
McVittie line element. We will thus resort to the SdS line element for some of the results in
the following.

Before moving on, let us notice that SdS spacetime is static, and indeed the metric can be
rewritten in the time-independent, diagonal form6 [44]

ds2 = 2³(R)dt2 + ³(R)21dR2
+ R2(d»2 + sin2 »dÇ2), (4)

where ³(R) = 12 rS/R2 H2
0R

2. We will refer to this in the following as using 8manifestly
static9 coordinates.

2.2. Observer fields and the proper detector frame

In the next section, we are going to consider the frequency shift induced by the cosmological
expansion in a resonator attached to a support moving along a given trajectory in spacetime. It
is thus useful to specify which timelike trajectories we are going to consider in the following.

Independently of the specioc observer oeld, in order to determine the frequency shift of the
resonator, we will employ the metric and the Riemann tensor expressed in the proper detec-
tor frame [51]. The proper detector frame is deoned, up to spatial rotations and with respect

6This form of the metric can be obtained from equation (3), with the condition H(t) = H0 constant, by performing
the change of coordinates t³ t+ u(R) with u�(R) = H0R/

(:
12 2¿(R)³(R)

)

as described e.g. in [44].
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to a time-like trajectory ³, as the Fermi3Walker transported orthonormal tetrad {e³} , ³ *
{0, 1, 2, 3}with e0 = ³̇ the normalized four-velocity along the trajectory, that is

§

«

«

«

¬

e0 = ³̇

0 =
DFea

ds
c Dea

ds
2
�

ea,
De0

ds

�

e0 + (ea, e0)
De0

ds
, " a * {1, 2, 3},

(5)

where DX/ds = e
¿
0'¿X is the covariant derivative of the Levi-Civita connection along the

direction of e0 and De0/ds = a its four-acceleration. Due to the Fermi3Walker transport, the
proper detector frame is said to be non-rotating and can be physically realized by an observer
carrying along a clock deoning time and a system of three gyroscopeswith spin vectors orthog-
onal to each other deoning the spatial reference frame [52]. Note that Fermi3Walker transport
along a geodesic corresponds to parallel transport.

We are now in the position to consider several different observer oelds which will be used
in the following.

2.2.1. Cosmological observer. The orst observer oeld that we consider is obtained normaliz-
ing the "t vector oeld in isotropic spherical coordinates (1). It is then given by

u = �"t�21"t. (6)

As we commented above, the perfect nuid matter content of McVittie spacetime moves along
the integral lines of such an observer oeld. While in FLRW such a oeld is geodesic, this is not
the case inMcVittie (or SdS) spacetime. The cosmological observer corresponds to an observer
at a constant coordinate radius r and, in the asymptotic region approximating FLRW, deones
the so-called Hubble now.

The four-acceleration a = 'uu of this oeld is given by

a =

�

0,
m(t)
r2a2(t)

�

12 m(t)
2r

� �

1+ m(t)
2r

�5 , 0, 0

�

, (7)

i.e., purely radial and outward pointing in these coordinates at the oxed value of r.

2.2.2. Kodamaobserver. TheKodamaobserver oeld is the normalizedversion of theKodama
vector oeld, which is a naturally distinguished oeld in spherically symmetric spacetimes.
Indeed, the Kodama vector oeld (vK) is the unique (up to a sign) spherically symmetric vector
oeld orthogonal to the gradient of the areal radius. Thus, upon normalization, we obtain a nat-
urally distinguished observer oeld uK = �vK�21vK corresponding to an observer at a constant
areal radius.

As discussed in detail in [25, 53], to which we refer the interested reader for further details,
the integral curves of the Kodama observer are worldlines which 8stay9 at constant areal radius
and are orthogonal to the orbits of the SO(3) isometry group. These are the key properties
of the Kodama observer oeld, making it the natural substitute for a timelike Killing oeld in
an arbitrary spherically symmetric spacetime. This holds true in McVittie spacetime where,
in general, no timelike Killing vector oeld is present. Furthermore, the Kodama vector oeld
coincides with the timelike Killing vector oeld in the limit in which McVittie reduces to the
SdS spacetime.

5
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Starting from equation (1), and using the fact that m(t) = m0/a(t), the Kodama vector oeld
is given as

vK = "t 2 H(t)R�"r�21"r. (8)

However, due to the properties of the Kodama vector oeld, it is convenient to work with it in
areal radius coordinates equation (3) in which the Kodama vector oeld assume the simple form
vK = {1, 0, 0, 0}. The Kodama observer oeld is onally obtained as

uK =
1

�

12 2¿(R)2 h(R, t)2
{1, 0, 0, 0}. (9)

It should be noted that, the Kodama observer oeld is, in general, not geodesic similarly to
the cosmological observer oeld in McVittie spacetime. The four-acceleration can be easily
computed by oxing, without loss of generality, » = Ã/2 and is given by

aK =

§

«

¬

RH(t)
�

RH�(t)2 (¿(R)2h2(R,t))(122¿(R)2h2(R,t))
R
:
122¿(R)

�

(12 2¿(R)2 h2(R, t))2 ,
m0

R2

2 R
:
12 2¿(R)H�(t)

12 2¿(R)2 h2(R, t)
2 RH(t)2, 0, 0

«

¬

­

, (10)

for the observer at oxed areal radius R.
In FLRW, the Kodama observer would still be not geodesic, contrary to the cosmological

one and, given the fact that the expression for the areal radius reduces to R = a(t)r, would cor-
respond to an observer at a constant proper distance from the origin of the coordinate system.
In the limit in which a(t) = 1, the Kodama observer is just the stationary one of Schwarzschild
spacetime.

2.2.3. Geodesic observers. Among the better physically justioed observers to consider there
are undoubtedly geodesic observers, i.e., inertial observers in free-fall. Indeed, the previous
two observer oelds require a proper acceleration for a spacecraft to keep on moving along
their integral curves, in contrast to geodesic ones.

Timelike geodesics in McVittie spacetime have been carefully analyzed in [44]. Unfortu-
nately, for a general geodesic there are no analytical expressions and also onding the associated
proper detector frame analytically is a tall order. Thus, in the following, when speaking of
geodesic observers, we will consider the SdS limit of McVittie spacetime and work in mani-
festly static coordinates (4). In the case of SdS, analytical expressions for timelike geodesics
have been derived [54] albeit involving hyper-elliptic integrals. Since we consider the SdS
spacetime metric, our conclusions for what regards geodesic observers will be concerned with
the local effects of a cosmological constant.

As discussed in [54], the symmetries of SdS spacetime allow to deone the two conserved
quantities energy E and angular momentum L that, together with the normalization condi-
tion for the four-velocity ³̇ of a timelike (� = 1) or null (� = 0) geodesic trajectory, uniquely
characterize the four-velocity of the trajectory as

³̇ =

�

E

³(R)
,

�

E2 2 ³(R)

�

� +
L2

R2

�

, 0,
L

R2

�

, (11)
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where we are working in static coordinates, and we have restricted ourselves, without loss of
generality, to motion in the equatorial plane (» = Ã/2).

In the following, we focus on circular and radial geodesics. The former give a crude approx-
imation of the physical motion of planets in the Solar System, while the latter describe the
motion of an infalling or outwards escaping spacecraft. Radial geodesics are easily determined
by oxing L = 0 and are parameterized by the energy E. The corresponding Fermi transported
tetrad that deones the proper detector frame is derived in appendix B. Circular orbits are
instead obtained by demanding that Ṙ = 0 and R̈ = 0, where the dot stands for derivative
with respect to the proper time along the geodesic, and we parameterize the trajectory as
³(Ç ) = (t(Ç ),R(Ç ), 0,Ç(Ç )) with Ç the proper time. Also for this case, the Fermi transported
tetrad is derived in appendix B. Furthermore, the results for the circular geodesics can be easily
generalized to include a central spinning object, i.e., workingwith the Kerr3de Sitter spacetime
metric. We report this case in appendix B5 for the interested reader.

3. Frequency shift for a local resonator

In [39] a resonator, consisting of two mirrors connected by an elastic rod which itself is oxed
to a support, affected by a curved backgroundmetric is studied. Based on this, we analyze here
the effects of cosmological expansion on the frequency of a resonator on different trajectories.

Attached by a support to an observer, which is characterized by a timelike trajectory and
its local proper detector frame, the resonator is subject to gravitational effects of the metric (cf
ogure 1). We indicate the spatial coordinates in the proper detector frame as {x, y, z} along the
directions deoned by the spatial part of the Fermi3Walker transported tetrad {e¿J } introduced in
(5) and whose explicit expressions are given in appendixB for different observers7. We assume
that the resonator is aligned along the, arbitrarily chosen, J-direction, with J * {x, y, z} in the
proper detector frame and that the rod9s elasticity is characterized by the material9s speed of
sound cs.

The slowly varying acceleration and tidal forces induce internal stress within the rod, which
accumulates along it leading to a compression or elongation. Other contributions to the change
in length are the relativistic length contractionwhich is subleading by a factor c2s/c

2, the effects
resulting from transverse proper acceleration, and change in trajectory of the light pulse which
are second order effects in the perturbation of the proper detector frame metric. The proper
acceleration of the mirrors can be ignored if the mirrors are considered lightweight compared
to the rod. Additional effects of tidal acceleration in transverse directions are negligible for a
slim rod. Following the detailed derivation in [39], the change in length translates to a shift in
the resonance frequency which, in quadratic order of the metric perturbation and in the limit
of a slowly moving observer, is given in equation (29) of [39] by

∆Ë

Ë
j a

J

2c2

�

c2

c2s
³ 2 Ã

�

Lp +
R0J0J

24

�

2
c2

c2s
(3³2

+ 1)2 3Ã2 2 6Ã³ + 1

�

L2p,

(12)

7Note that, as detailed in [39], the proper detector frame coordinates used for the derivation of the frequency shift
are valid for distances from the point of expansion much smaller than min

{

c2/|aJ |, 1/|RMNPQ|1/2, |RMNPQ|/|"KRMNPQ|
}

,
where a

J = e
J
¿a

¿ is the non-gravitational acceleration with respect to a local freely-falling frame while RMNPQ =

e
³
Me

³
Ne

³
Pe

·
QR³³³· are the proper detector frame components of the Riemann tensor.
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Figure 1. Pictorial representation of the resonator rod carried along a trajectory ³ by an
observer (the spacecraft) in a curved background. The observer trajectory ³ is the one
followed by the support point at which the resonator is oxed to the observer. The proper
length of the resonator is denoted by Lp, the support point is at a distance ³Lp/2 from
the center of mass and the frequency measurement is performed in an arbitrary point of
the resonator at a distance ÃLp/2 from the center of mass.

where Ë is the resonance frequency of the oscillator in the absence of curvature and accel-
eration, aJ c e

J
¿a

¿ and R0J0J = e
³
0 e

³
J e

³
0e

·
JR³³³· are the proper acceleration and the Riemann

curvature tensor components in the detector frame, ³Lp/2 is the distance of the rod9s support
from the center of mass and ÃLp/2 is the distance of the point of measurement from the center-
of-mass (cf ogure 1). Note that we have re-inserted the speed of light for clarity of exposition.
By design, i.e., by the choice of alignment, the acceleration and curvature parallel to the axis
of the resonator are the only components to contribute in leading order to the frequency shift of
the resonator. Analytic formulae for the relevant proper acceleration and curvature tensor ele-
ments and the impact of cosmological expansion on these are given for some relevant observer
oeld in the following.

3.1. Cosmological observer

For the cosmological observer, the spatial component of the four-acceleration in the proper
detector frame is given by

a =

�

m(t)
a(t)r2

�

12 m(t)
2r

� �

1+ m(t)
2r

�3 , 0, 0

�

. (13)

An expansion to second order in ra�(t)/a(t) and orst order in r2a��(t)/a(t) (here, derivatives are
taken with respect to coordinate time) of the relevant terms of the Riemann curvature tensor in
the proper detector frame results in

8



Class. Quantum Grav. 39 (2022) 055005 F Spengler et al

R0x0x j 2
2m(t)

r3a(t)2
1

�

1+ m(t)
2r

�6 +
m(t)

r

1

12 m(t)
2r

�

a�(t)

a(t)

�2

2
�

1+ m(t)
2r

�

�

12 m(t)
2r

�

a��(t)

a(t)
, (14)

R0y0y = R0z0z j
m(t)

r3a(t)2
1

�

1+ m(t)
2r

�6 +
m(t)

r

1

12 m(t)
2r

�

a�(t)

a(t)

�2

2
�

1+ m(t)
2r

�

�

12 m(t)
2r

�

a��(t)

a(t)
, (15)

where we see that in the radially aligned e
¿
x direction the curvature is different from the

two orthogonal directions. Apart from the
�

a�(t)/a(t)
�2

and a��(t)/a(t) factors, the cosmolog-
ical expansion only enters as ra(t) in both the Riemann tensor and the acceleration in the
Fermi3Walker transported detector frame. Expanding the scale factor a(t) j a(t0)(1+ H0∆t)
gives terms linear in H0 in both the acceleration and the curvature, all suppressed by factors
m0/r. As we show in the following, this is not the case for the other observers that we con-
sider, which do not follow the Hubble now. Note that, in the limit m(t)/r³ 0, i.e., when the
usual FLRW metric is recovered, we remain with corrections quadratic in H0 in agreement
with previous results in the literature [10].

3.2. Kodama observer

Similarly, starting from the McVittie metric in areal radius coordinates, we can calculate the
quantities relevant to the frequency shift of a resonator on the trajectory of a Kodama observer.
The spatial component of four-acceleration in the proper detector frame is given by

aK =

»

¿

m0
R2
2 RH2(t)

#

12 R2H(t)2 2 2m0
R

2

#

12 2m0
R
RH�(t)

�

12 R2H(t)2 2 2m0
R

�3/2 , 0, 0

¿

£ . (16)

The relevant components of the Riemann tensor in the detector frame, i.e., the ones entering
(12), are given by

R0x0x = 2
H�(t)

#

12 2m0
R

2 H(t)2 2 2m0

R3
, (17)

R0y0y = R0z0z =
m0

R3
2 H2(t)2

#

12 2m0
R
H�(t)

12 R2H(t)2 2 2m0
R

. (18)

It should be noted that, both the proper acceleration and any component of the Riemann curva-
ture tensor in the proper detector frame do not contain any linear term in the Hubble parameter
H nor any instance of a(t) from which a linear term in H0 could arise when expanded for
small time differences. The same is true for the Ricci and Einstein tensors and the scalar
curvature and it is in stark contrast to the case of the cosmological observer. Finally, it is
worth mentioning that, performing the same calculations starting from the McVittie metric
in isotropic coordinates calls for some care. Indeed, one needs to impose the constancy of the
areal radius, characteristic of the Kodama observer, in order to correctly account for correction
to the resonator frequency and obtain results that agree with the one discussed here.

9
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3.3. Geodesic observers

As discussed in the previous section, onding the proper detector frame for a general geodesic
observer in McVittie spacetime is a tall order. We thus focus on geodesics in SdS spacetime
working in static coordinates.

Let us orst consider an observer freely-falling along an equatorial circular geodesic. The
Riemann curvature tensor in the proper detector frame is given by

R0x0x =

23 rS
R3
³(R) cos

�

Ç
#

42 6rS
R

�

2 H2
0

�

42 9 rS
R

�

2 rS
R3

2
�

22 3 rS
R

� , (19)

R0y0y =
1

22 3 rS
R

� rS

R3
2 2H2

0

�

(20)

R0z0z =

3 rS
R3
³(R) cos

�

Ç
#

42 6rS
R

�

2 H2
0

�

42 9 rS
R

�

2 rS
R3

2
�

22 3 rS
R

� . (21)

Note that, the trigonometric functions appearing in these expressions originate from requiring
the detector frame to be non-rotating (see also appendix B).

In the case of a radial, equatorial geodesic in SdS, characterized by a vanishing angular
momentumL = 0, we ond for the components of interest of the proper detector frameRiemann
tensor

R0x0x = 2
rS

R3
2 H2

0 , (22)

R0y0y = R0z0z =
rS

2R3
2 H2

0 . (23)

Note that, these expressions coincide, at a oxed value of the areal radius, with the ones of the
Kodama observer (17) in the limit H(t)³ H0.

The previous expressions show that, for both the circular and the radial geodesics, the lead-
ing order correction to the frequency shift of the resonator resulting from the cosmological
expansion is proportional to H2

0 . Let us also notice that the same conclusion can be reached
for the particular case of circular geodesics in Kerr3de Sitter spacetime [55357], in which a
central rotating body is considered (cf appendix B for additional details).

4. Redshift and satellite tracking

Having considered the impact of the global cosmological expansion on a local experiment, we
conclude with a brief overview of the effect of the same expansion on the frequency redshift
of signals exchanged between observers and the related concept of double Doppler tracking
(DDT). These kinematic effects have been treated in detail in the existing literature [8, 9, 24,
25]. Here, we focus on clarifying some of the results in the literature by following the derivation
in [25].

In the case of FLRW spacetime, the redshift formula for exchanges of light signals between
two observers following the Hubble now is easily obtained. Consider two cosmological
observers at r0 and r1, respectively, in isotopic spherical coordinates8, then the ratio between

8 In these coordinates the FLRW line element has the usual form ds2 = 2dt2 + a2(t)(dr2 + r2 sin »2dÇ2 + d»2).

10



Class. Quantum Grav. 39 (2022) 055005 F Spengler et al

the frequency emitted by the orst observer and the one received by the second observer is
given by Ë1/Ë0 = a(t0)/a(t1) > 12 H0(t1 2 t0), where we have assumed the leading order of
the Hubble parameter to be H0 = const., and where the frequency measured by an observer u
is given by the scalar product between the observer oeld and the null tangent to the light signal
k, i.e. |g(u, k)|. We notice that the redshift encodes a correction linear in the Hubble constant.
As shown in [25], this persists also in the case in which a spherical inhomogeneity is included.

The DDT, as the name suggests, is a technique used to track the position of spacecrafts.
In order to address the DDT, we need to consider the ratio between the frequency emitted by
an observer and the frequency received back by the same observer after the light signal has
been renected by an arbitrarily moving 8spacecraft9. In FLRW, considering the cosmological
observer oeld and a spacecraft renecting back the light signal upon reception, this ratio can be
broken into three terms Ë2(t2)/Ë0(t0) = (Ë2/Ë

�
1)(Ë

�
1/Ë1)(Ë1/Ë0). Here, the observer receiving

(at t = t2) and sending (at t = t0) the signal is at a oxed value of the coordinate radius r. Also
notice that, for the cosmological observer in FLRW, proper time coincides with the coordi-
nate time t. The ratio Ë1/Ë

�
1 represents the ratio between the frequency at the renection point

as measured by the cosmological observer at that point and the frequency after renection as
measured by the same observer. This ratio accounts for the relativistic Doppler shift due to the
motion of the spacecraft relative to the cosmological observer oeld at the renection point. The
other two ratios are easily obtained from the previous expression of the single-way redshift.
All together, one arrives at equation (140) of [25]

Ë2(t2)

Ë0(t0)
=
a0

a2

�

2
12 ³k̂

u
(v)

12 ³u(v)2
2 1

�

. (24)

Here, we have considered a spacecraft with four velocity vwhose relative velocity with respect
to the observer oeld u at the renection point is βu(v) = (v2 |g(v, u)|u)/|g(v, u)| [25]. Fur-
thermore, we have considered a null signal propagating radially between the emitter and the
renection point with tangent k whose normalized projection in the rest frame of the observer

is k̂. Finally, with ³k̂u we indicate the projection of the relative velocity along the unit vec-
tor k̂ in the rest frame of u. Equation (24) relates the frequency shift to the spacecraft spatial
velocity and can be approximated to linear order in ³ and H0∆t20 with ∆t20 = t2 2 t0 giv-

ing Ë2(t2)/Ë0(t0) j 12 2³k̂
u
(v)p1 2 H0∆t20 showing once more a linear correction in H0. It is

clear from our previous discussion that the linear term in H0 originates from the analogous
term in the one-way redshift.

The last step in accounting for the DDT is to differentiate the previous expression with
respect to the proper time of the observer at reception of the renected signal. In [25], this
calculation is detailed, and its result is

1

Ë0(t0)

dË2(t2)

dt2
j 22

�

³k̂

u
(12 3³k̂

u
2 3H0∆t20/2)+ H0³

k̂

u

�

, (25)

where now ³k̂
u is the relative spatial acceleration of the spacecraft trajectory with respect to the

observer oeld in the direction of the unit vector k̂. It should be emphasized here that, in the rate
of the DDT ratio above, not all the corrections linear in H0 can be traced back to the one-way
redshift. Indeed, the derivative with respect to t2 is also responsible for the introduction of such
corrections as can be easily seen from equation (143) in [25].

We nowwant to show that such linear corrections inH0 are a peculiarity of the cosmological
observer already in FLRW. This result then extends trivially to the case of McVittie spacetime.
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A orst hint of this fact is given by considering the simple case of de Sitter spacetime9, and the
Kodama observer oeld which, in the region of interest, is a timelike Killing vector oeld. The
one way redshift is thus given by [58]

Ë1

Ë0
=

:
³(R0):
³(R1)

= 1+ (R2
1 2 R2

0)
H2

0

2
+O

�

H4
0R

4
�

, (26)

with R the largest scale among R0 and R1 entering the problem and ³(R) = 12 H2
0R

2. Note
that the same expression holds in the case of SdS spacetime, where only the functional form
of ³(R) changes (see also section 5 for an alternative way to compute the one-way redshift for
the Kodama observer).Moreover, we point out that the expression for the redshift as expressed
in [8] contains an error4in that R0 and R1 are interchanged.

The previous expression shows that no contribution linear in H0 appears while the leading
corrections are proportional to H2

0 . It also tells us immediately that the only possible source of
corrections linear inH0 in the DDT rate could be the time derivative.However, no contributions
of this nature arise from the time derivative. A simple way to see this is to work in static
coordinates for de Sitter spacetime. In these coordinates the Kodama observer oeld is uK =

³21/2"t and the proper time for such an observer coincides with the coordinate time to orst
order in H0R. We can thus ignore the difference between the proper and the coordinate time.
The DDT ratio can be obtained in complete analogy to the previous case of the cosmological
observer as

Ë2

Ë0
=

�

2
12 ³k̂uK(v)

12 ³uK (v)
2
2 1

�

, (27)

where we have used the fact that �uK�t=t0/�uK�t=t2 = 1. Next, by using the null condition for
an inward directed (assuming R1 > R2 = R0) radial lightlike geodesic

� t2

t1(t2)
dt = 2

� R2

R1(t1(t2))

dR

³
, (28)

we obtain

dt1
dt2

=

�

1+ ³k̂uK (v)
�21

, (29)

where it can be shown that the relative spatial velocity of the spacecraft at the renection point

has the form ³k̂
uK
(v) = ³(R1)21dR1/dt1 (cf appendix C). We then see that this derivative does

not contain any correction proportional to H0 so that the rate of the DDT will have leading
corrections quadratic in the Hubble parameter. This same argument extends straightforwardly
to the case of SdS spacetime (cf appendix C). Moreover, since SdS spacetime is a special case
of the McVittie one, with H� = 0 (cf equation (31)), the argument should apply for the general
case showing that the DDT ratio and rate contain corrections at most quadratic in the Hubble
parameter, which strongly limits the possibility to observe such effects.

In order to strengthen our point, let us consider also a generic, freely falling observer oeld in
SdS spacetime. In the equatorial plane, this observer oeld is parameterized as in equation (11)
with � = 1. From the form of the metric in equation (4), and the parameterization of timelike
and null geodesics in equation (11), it is easy to deduce that the leading order corrections of the
redshift ratio have to be at least of second order in the Hubble constant so that also a generic

9 See also appendix C for further details.
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geodesic observer does not have access to corrections linear in H0 in the frequency ratio of the
DDT.

5. Differential acceleration & expansion’s effects estimate

An intuitive understanding of the differences between the observers considered can be gained
through their proper acceleration in a weak oeld limit and the comparison to the Newto-
nian limit. In equations (13) and (16) the proper acceleration is given for the cosmological
observer and the Kodama observer, respectively, while it vanishes for the geodesic observer
by deonition. We immediately see that equation (13) contains only an acceleration due to the
central object that is, to lowest order in m0/a(t)r, the Newtonian gravitational acceleration due
to a massm0 at a distance a(t)r. We can conclude that the cosmological observer freely follows
the Hubble now but accelerates against the gravitational pull of the central object, which agrees
with its standard interpretation. In equation (16), we ond a term of lowest order in m0/R and
HR that coincides with the Newtonian gravitational acceleration due to a central mass m0 at
distance R. The additional terms represent an inward acceleration that depends on the cosmo-
logical expansion. These terms result from the property of the Kodama observer to be located
at constant areal radius, which implies that it is accelerating against the gravitational effect of
the cosmological expansion such that it will never join the Hubble now.

To lowest non-trivial order, the radial proper acceleration of the Kodama observer in the
corresponding proper detector frame becomes

aK,R =
m0

R2
2 R(H2(t)+ H�(t)). (30)

If the Kodama observer is realized and test matter is released by it, aK,R is their differential
acceleration. We recognized that the small quantities H2(t),H�(t) > H2

0 are multiplied by the
potentially large quantity R. This seems like a potential opportunity for a measurement of
Hubble parameter H0 and the cosmological constant Λ. However, in the described setup, the
fundamental challenge would be to realize the Kodama observer without knowledge of the
cosmological acceleration. The only obvious possibility seems to be a measurement of the
distance to the central object, which seems very challenging, in particular, for very large R.

The acceleration in equation (30) is equivalent, up to a sign, to the gravitational acceleration
appearing in the Newtonian limit of a gravitating spherically symmetric central object in an
expanding spacetime (e.g. see equation (87) in [59] and equation (1) of [7]). The sign change
is the result of aK,R being the non-gravitational acceleration necessary to compensate for the
gravitational one. There exists an extended literature about the gravitational acceleration being
proportional to H2 due to the cosmological expansion and its local measurability [7, 13, 14,
16, 19, 22, 23, 25, 59] that we do not review here.

By expanding all expressions to second order in HR, we can approximately diagonalize the
McVittie metric in (3) by a redeonition of the time variable to obtain the line element (see
appendix D for details)

ds2 j 2
�

12 2m0

R
2 (H(t)2 + H�(t))R2

�

dt2

+

�

1+
2m0

R
+ H(t)2R2

�

dR2
+ R2d»2 + R2 sin2 »dÇ2 (31)

in the weak oeld limit where m0/R 1, where we have also neglected terms proportional
to m0H(t)2R and m0H

�(t)R. Identifying the zero-component of the perturbation of the metric,
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with respect to the nat Minkowski metric, with a Newtonian potential, i.e. g00 = 2132Φ =

21+ 2m0G/(c2R)+ R2(H2 + H�)/c2, leads to a gravitational redshift/time dilation propor-
tional to m0(1/R1 2 1/R2)+ (R2

1 2 R2
2)(H

2 + H�)/2 for two observers located at R1 and R0.10

Alternatively, this expression for the redshift can be directly deduced from the effective gravi-
tational acceleration 2aK,R by interpreting it in terms of an effective metric in the Newtonian
limit.

The current value of the Hubble constant isH0 > 2.2× 10218 s21 and that of the cosmolog-
ical constant is Λ = 3H2

0ΩΛ/c
2 > 10252 m22. Considering the ΛCDM model and neglecting

the small contribution of radiation at present day, we obtain H2 + H� = (Λc2 2 H2
0)/2, where

we have taken into account that ΩΛ +Ωm = 1 in the ΛCDM model (see appendix A for fur-
ther details). Following [8], and using equation (31), by assuming Earth as the central object,
a satellite at an altitude of R1 = 15 000 km� R0, and assuming a clock comparison accuracy
of 10215 and no deviation in the frequency redshift with respect to the prediction of Einstein9s
theory without cosmological expansion, we can estimate an upper bound to the cosmological
constant of |Λ| � 2× 10229 m22 (compare with [8]) assuming precise knowledge of H2

0 , m0

and R2 from other measurements. This translates to an upper bound on H2
0 , based on the same

parameters, of H2
0 � 10212 s22 assuming Λ, m0 and R2 to be known precisely. If we consider

instead the Sun as a central object, a relative clock accuracy of 10219, and a spacecraft at a
distance from the Sun comparable to the one of the Voyager 1, i.e. R1 > 23× 1012 m, we can
push the bounds to |Λ| � 10245 m22 and H2

0 � 3× 10229 s22, 8only9 seven orders of magni-
tude away from the currently accepted values. Considering a scaling of the clock uncertainty
with the inverse of the square root of the averaging time [27] and the fact that currently an
averaging time of the order of 102 s is needed to reach an uncertainty of the order of 10219, we
see that to oll the six orders of magnitude gap would require around 106 years of integration
time. It is thus clear that further advances in clock accuracy are needed to be able to assess
cosmological quantities in this kind of local experiments.

In addition to redshift measurements, another option to estimate the non-Newtonian grav-
itational acceleration due to the cosmological expansion would be, for example, its accumu-
lated effect on a spacecraft which could be measured, in principle, by Doppler tracking the
time evolution of the spacecraft9s velocity. However, the basic mechanism would be a fre-
quency comparison which should result in similar fundamental limits as we have found for
gravitational redshift measurements above. The situation becomes even worse if one tries to
measure the Hubble or cosmological constant through the frequency shift of a resonator, as
described in section 3. For a geodesic observer in SdS (see section 3.3), assuming the value
of H0 > 2.2× 10218 s21, and a speed of sound cs = 5000 m s21 (comparable to that of alu-
minium) the relative frequency shift of a resonator of length 10 m is only >10242, which is
many orders of magnitude away from measurability.

6. Discussion

In this work we have investigated the impact of the global cosmological evolution on a very
local experiment, i.e., on the frequency shift in a resonator. In order to model something akin to
a local inhomogeneous environment immersed in an expanding Universe, we have considered
the McVittie metric. This metric describes a spherical object embedded in a FLRW cosmolog-
ical spacetime and, together with its limiting case of Schwarzschild3de Sitter spacetime, has

10Here, we assume that the derivatives of the components of the metric with respect to t are much smaller than their
derivatives with respect to R to recover the stationary weak oeld situation (see e.g. [60]).
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been largely used in the literature exploring local effects of the cosmological expansion (cf
[25] and references therein). A word of caution is in order here to correctly interpret the results
obtained in this work, as well as in the existing literature. As already discussed in the intro-
duction4and highlighted in, e.g., [17, 25]4to fully address the problem of the local effects
of global expansion in GR it would be necessary to model the hierarchy of embedded systems,
from the Solar system to the cosmological solution passing through galaxies and cluster scales,
at the level of at least controlled approximations to exact GR9s solutions.While this is currently
a tall order, resorting to (crude) approximations like McVittie spacetime and the SdS space-
time can guide us in obtaining estimates of the effects of global expansion in local systems.
The caveat is that such estimates, like the ones obtained in this work, have to be interpreted as
upper bounds to the effects of interest since, in realistic systems, the effects of the cosmological
expansion would be further obscured by the growing complexity of local structures.

With these considerations at hand, in this workwe have considered the shift in the frequency
of an optical resonator, moving on various trajectories in McVittie and SdS spacetimes, due
to the cosmic expansion. We have shown that this frequency shift is proportional to H2

0 in the
case of freely-falling observers as well as the Kodama observer oeld. The former are physically
interesting since they do not require the knowledge of the underlying spacetime to be realized.
The latter, i.e. the Kodama observer oeld, an observer at a constant value of the areal radius,
is instead geometrically singled-out in spherically symmetric spacetimes. Linear terms appear
when considering observers following the Hubble now4which howevermakes them unpracti-
cal for local experiments. This is in accordance with the results in the existing literature, where
several other effects4from light bending to perihelion precession4have been investigated
leading to corrections with the same proportionality to the square of the Hubble parameter.
Despite the smallness of the current value of H0 that casts these effects outside current tech-
nological possibilities, similarly to all other effects studied previously, they nonetheless show
the imprint that the cosmic expansion can have on localized systems and their dynamics.

In the last part of our work, we have reviewed the effect of the cosmic expansion on the
redshift ratio and DDT in order to clarify some claims present in the literature. In particular,
we have shown that linear corrections H to the redshift and DDT emerge when considering
the cosmological observer but are not otherwise present in general. We have argued that the
general result consists of corrections that are at least quadratic in H, placing these effects on
the same footing as the others effects discussed in the literature.

In conclusion, despite the high degree of idealization of the local gravitational environment
entailed by the McVittie or SdS metric, the expansion of the Universe is able to affect local
experiments albeit in a way that place its detection beyond current technological capabilities.
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Appendix A. ΛCDM

In the ΛCDM model, the scale factor of the FLRW spacetime is given by

a(t) =

�

12 ΩΛ

ΩΛ

�1/3

sinh2/3
�

t

tΛ

�

, (A1)

where tΛ = 2/
�

3H0

:
ΩΛ

�

is the cosmological timescale, the contribution Ωrad to the total
matter content of the Universe was considered to be negligible, and we used the approximation
Ωm +ΩΛ = 1. For the Hubble parameter we obtain

H(t) =
ȧ(t)

a(t)
= H0

�

ΩΛ coth

�

t

tΛ

�

, (A2)

where H0 = H(t0) is the current value of the Hubble parameter at the present age of the Uni-
verse t0, such that a(t0) = 1. The leading order of the non-Newtonian contribution to the
curvature of McVittie spacetime from equation (17) is then given by

2(H2(t0)+ H�(t0)) =
1

2
(H2

0 2 Λ). (A3)

Appendix B. Proper detector frames: Fermi–Walker transported tetrads for

various observers

As discussed in the main text, the proper detector frame can be deoned along any timelike
worldline as an orthonormal tetrad whose timelike element coincides with the normalized
tangent to the worldline and the remaining orthogonal spacelike elements are Fermi3Walker
transported along the worldline. In other terms, given a worldline ³ whose normalized tangent
we call ³̇, the proper detector frame is deoned via

§

«

«

«

¬

e0 = ³̇

0 =
DFea

ds
c Dea

ds
2
�

ea,
De0

ds

�

e0 + (ea, e0)
De0

ds
, " a * {1, 2, 3}.

(B1)

solving the system of coupled differential equations deoned above for a general timelike curve
in McVittie spacetime is a tall order. Other methods for determining the proper detector frame
have also been developed [61, 62] which however do not alleviate the problem of onding ana-
lytical expressions for McVittie spacetime. Nonetheless, the cases considered in the main text
are such that the Fermi3Walker (FW) transported tetrad can actually be constructed by solv-
ing the above system of differential equations. This holds for the cosmological and Kodama
observer in a generalMcVittie spacetime, and for radial and circular geodesic observers in SdS
spacetime.

In this appendix we report the explicit form of the tetrads for completeness.
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B.1. Cosmological observer in McVittie spacetime

The FW transported tetrad for the cosmological observer in McVittie spacetime in isotopic
coordinates and in matrix form where each line is one of the tetrad vectors eJ reads

e
¿
J =

»

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

�

1+ m(t)
2r

�

�

12 m(t)
2r

� 0 0 0

0
1

a(t)
�

1+ m(t)
2r

�2 0 0

0 0
1

ra(t)
�

1+ m(t)
2r

�2 0

0 0 0
1

ra(t)
�

1+ m(t)
2r

�2

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

£

.

(B2)

This tetrad is trivially obtained. Indeed, the spatial unit vectors er, e», eÇ are just the normalized
versions of the vectors "r, "» and "Ç respectively.

B.2. Kodama observer in McVittie spacetime

The FW transported tetrad for the Kodama observer in McVittie spacetime in areal radius
coordinates and in matrix form where each line is one of the tetrad vectors reads

e
¿
J =

»

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

�

1

12 2¿(R)2 h2(R, t) 0 0 0

2 h(R, t)
#

(12 2¿(R))
�

12 2¿(R)2 h2(R, t)
�

�

12 2¿(R)2 h2(R, t) 0 0

0 0
1

R
0

0 0 0
1

R sin »

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

£

.

(B3)

This tetrad is easily obtained: the spatial unit vectors e», eÇ are just the normalization of the
vectors (0, 0, 1, 0) and (0, 0, 0, 1), respectively. For what concerns eR, it is easily found by just
imposing g(e0, eR) = 0 and g(eR, eR) = 1 with an ansatz eR = (v0, vR, 0, 0).

B.3. Radial geodesic observer in SdS spacetime

The FW transported tetrad for the radial geodesic observer in SdS spacetime in manifestly
static coordinates and in matrix form where each line is one of the tetrad vectors is given by

e
¿
J =

»

¿

¿

¿

¿

¿

¿

¿

¿

¿

E

³(R)

�

E2 2 ³(R) 0 0
�

E2 2 ³(R)

³(R)
E 0 0

0 0
1

R
0

0 0 0
1

R sin »

¿

¿

¿

¿

¿

¿

¿

¿

¿

£

. (B4)

17



Class. Quantum Grav. 39 (2022) 055005 F Spengler et al

This tetrad is easily obtained: the spatial unit vectors e», eÇ are just the normalization of the
vectors (0, 0, 1, 0) and (0, 0, 0, 1) respectively. For what concerns eR, it is easily found by just
imposing g(e0, eR) = 0 and g(eR, eR) = 1 with an ansatz eR = (v0, vR, 0, 0).

B.4. Circular orbit geodesic observer in SdS spacetime

In the case of a circular geodesic orbits, deriving the FW transported tetrad turns out to be
more demanding than in the previous cases. Following [63], imposing the condition Ṙ = 0 in
equation (11) allows to ox the value of the conserved energy E and subsequently imposing the
four-acceleration to be vanishing oxes the conserved angular momentum as

E2
= R

³(R)2

R2 3rS/2
(B5)

L2 = R2 rS 2 2H2
0R

3

2R2 3rS
. (B6)

It should be noted that in SdS spacetime circular geodesics exist in the region 3rS/2 < R <
(rS/2H0)1/3.

At this point, we should notice that the vector ẽ» = �g»»�21"» is FW transported (i.e.,
parallel transported) along the circular geodesic. With this observation, we can complete the
orthonormal tetrad adding the spatial vector ẽr = �grr�21"r and the spatial vector ẽÇ that can be
obtained by requiring it to be orthonormalwith the previous three. The tetrad thus formed is not
FW transported. However, we can now linearly superpose ẽr and ẽÇ like a(Ç)ẽr + b(Ç)ẽÇ and
impose this vector to be FW transported. This results in two linearly independent differential
equations for the coefocients a(Ç), b(Ç)

:
2
:
Ra(Ç)

�

2R2 3rS + 2Rb�(Ç) = 0

2a�(Ç):
R
2
:
2b(Ç)

:
2R2 3rS
R

= 0,

whose solution is readily obtained as

a(Ç) = c1 cos

�

Ç
:
2R2 3rS:
2
:
R

�

+

#

12 c21 sin

�

Ç
:
2R2 3rS:
2
:
R

�

,

b(Ç) =
#

12 c21 cos

�

Ç
:
2R2 3rS:
2
:
R

�

2 c1 sin

�

Ç
:
2R2 3rS:
2
:
R

�

,

where also the normalization of the linear combination has been used and c1 is an integration
constant that we ox to one in one case and to zero in the other in order to obtain two new
vectors er and eÇ which complete the FW transported tetrad. Finally, the FW transported tetrad
for the circular orbit geodesic observer in SdS spacetime in static coordinates and in matrix
form where each line is one of the tetrad vectors, is given by
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e
¿
J =

»

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

½

�

2R

2R2 3rS
0 0

�

rS/R2 2H2
0R

2

R(2R2 3rS)

2

�

rS 2 2H2
0R

3

(2R2 3rS)³(R)
sin

�

Ç

�

12 3rS
2R

�

�

³(R) cos

�

Ç

�

12 3rS
2R

�

0 2
�

2³(R)

R(2R2 3rS)
sin

�

Ç

�

12 3rS
2R

�

0 0
1

R
0

�

rS 2 2H2
0R

3

(2R2 3rS)³(R)
cos

�

Ç

�

12 3rS
2R

�

�

³(R) sin

�

Ç

�

12 3rS
2R

�

0

�

2³(R)

R(2R2 3rS)
cos

�

Ç

�

12 3rS
2R

�

¿

À

À

À

À

À

À

À

À

À

À

À

À

À

Á

.

(B7)

It is important to note that a circular trajectory in SdS spacetime is characterized by an angu-
lar velocity Ë2 = rS/(2R3)2 H2

0 [63]. This is exactly the quantity entering the trigonometric
functions in the tetrad elements. Indeed Ç̇ = L/R2 from the angular momentum conservation,
which implies Ç = ÇL/R2, where Ç is the proper time of the observer. Then, from the expres-
sion for the angularmomentumof the circular geodesics, we can easily check that the argument
of the trigonometric functions appearing in the tetrad is ËÇ =

�

rS/(2R3)2 H2
0Ç .

B.5. Bonus: circular orbit geodesic observer in Kerr–deSitter spacetime

A straightforward generalization of the SdS spacetime, which account for axially symmetric
rotating central objects, instead of a spherical symmetric one, is the so called Kerr3de Sitter
(KdS) spacetime [55357]. The properties of the geodesic of KdS spacetime have been exten-
sively considered in the existing literature and also the effect of the cosmological constant on
the local dynamics have been considered [18, 48350].

Following [50], we can write the KdS metric in Boyer3Lindquist stationary coordinates as

ds2 = 2 ∆r

Ç2Ã2
(dt 2 a sin2 »dÇ)2 + Ã2

∆r

dr2 +
Ã2

∆»
d»2

+
∆» sin

2 »

Ç2Ã2
�

adt 2 (r2 + a2)dÇ
�2
, (B8)

where

∆r = (12 H2r2)(r2 + a2)2 rSr (B9)

∆» = 1+ a2H2 cos2 » (B10)

Ç = 1+ a2H2 (B11)

Ã2 = r2 + a2 cos2 » (B12)

and a = J/M is the angular momentum per mass of the central spinning object. Also recall that
H2 = Λ/3, where Λ is the cosmological constant. Note that the KdS spacetime is stationary
but not static, and it reduces to SdS spacetime in static coordinates for a³ 0.

As discussed in e.g. [49], the geodesics of theKdSmetric are characterized by four constants
of integration given by energy per unit mass (E), angular momentumper unit mass (L), normal-
ization of the tangent (¿) and themodioed Carter9s constant (Q). Timelike equatorial geodesics
are found by imposing » = Ã/2, ¿ = 21, and Q = 0. Further imposing the equatorial orbit to
be circular oxes also the last two constants of integration.

The FW tetrad for an equatorial circular orbit in KdS spacetime can be obtained by following
the same steps as in the case of SdS spacetime.Due to the lengthy expressions for both the tetrad
and the components of the Riemann tensor in the proper detector frame of a geodesic observer
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following a circular trajectory, we do not report them here. We limit ourselves to note that it is
easy to verify that the Riemann tensor in the proper detector frame does not contain any linear
term in H and thus also the frequency shift for a resonator in KdS spacetime has no linear term
in H.

Appendix C. Doppler tracking and redshift: further details

In the main text, we have considered the redshift and DDT in FLRW spacetime for the cosmo-
logical and the Kodama observer oeld. In this appendix, we offer some further detail on those
expressions and their derivation.

In the following, given an observer oeld u, the frequency of a light signal characterized by
the vector k as measured by the observer is the scalar product between the observer oeld and
k, i.e. Ë = g(u, k), where g is the metric symmetric tensor.

C.1. Redshift ratio in FLRW

Let us consider the FLRW metric in isotropic, spherical coordinates

ds2 = 2dt2 + a2(t)dr2 + a2(t)r2(sin »2dÇ2
+ d»2). (C1)

In these coordinates, the cosmological observer is given by u = "t and it is a geodesic observer
whose proper time coincideswith the coordinate time. The expression for the redshift ratio for a
light signal exchanged between two observers following the integral lines of u can be obtained
in severalways, fromusing the fact that the cosmological observer is a conformalKilling vector
oeld to brute force computations. For example, consider the two observers to be at r0 and r1
respectively. A radial null signal exchanged between these two is characterized by a null vector
k = (1/a(t), 1/a(t)2, 0, 0) coming from the geodesic equation and the normalization of the null
vector g(k, k) = 0. Thus, one immediately onds

Ë1

Ë0
c g(u, k)p1
g(u, k)p0

=
a(t0)

a(t1)
, (C2)

where pi = (ri, ti), i = 0, 1 are the spacetime points (suppressing the angular coordinates) at
which the observers are located when receiving the light signal.

In the case of the Kodama observer, in isotropic coordinates this observer is expressed as

uK =
(1,2Hr, 0, 0):

12 H2R2
, (C3)

where R = a(t)r and ³(R) = 12 H2R2 is the norm of the Kodama vector oeld11. The redshift
formula thus reads

Ë1

Ë0
c g(uK, k)|p1
g(uK, k)|p0

=

�

12 H(t0)2R2
0

�

12 H(t1)2R2
1

�

1+ H(t1)R1

1+ H(t0)R0

�

a0

a1

j (1+O(H2,H�))
�

1+ H(t0)R1 2 H(t0)R0 +O((HR)2,H�R2)
�

× (12 H(t0)∆t10 +O((HR)2,H�R2))

j 1+O((HR)2,H�R2), (C4)

11This is equal to ³(R) = 12 rS/R2 H2
0R

2 in the SdS case.
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where in the second line we have expanded both the scale factor and the Hubble parameter
and onally used the fact that12 ∆t10 = R1 2 R0 +O(HR). This expression shows that, for the
radially propagating light rays, the linear contributions in HR from the second and third term
cancel. This result is in accordance with the simpler analytical derivation shown in the text,
where we considered the special case of de Sitter. Indeed, for de Sitter, or SdS for that matter,
the Kodama vector oeld is a timelike Killing vector oeld so that we can use the fact that the
scalar product between a Killing oeld and k is constant along the null geodesic [58]. Thus, we
have

Ë1

Ë0
=
g(uK, k)|p1
g(uK, k)|p0

=

:
³(R0):
³(R1)

, (C5)

where in the onal result we are left with only the ratio of the norms of the Kodama vector
oeld thanks to the conservation law discussed, and ³(R) = 12 rS/R2 H2

0R
2 with rS = 0 in

the case of de Sitter spacetime.

C.2. Double Doppler tracking

Building on the results of the previous section, it is clear that when considering the Kodama
observer in de Sitter (or SdS) spacetime, equation (27) of the main text can be obtained by
combining the results coming from the relativistic Doppler effect (see reference [25]) with the
fact that

Ë2

Ë�1

Ë1

Ë0
=

:
³(R0):
³(R2)

= 1, (C6)

where we have used the fact that the Kodama observer is at a oxed value of the areal radius so
that R0 = R2. If considering the general case of FLRW spacetime, equation (C4) shows us that
there would be a correction which, however, is at least quadratic in H, so that we can safely
neglect it.

This shows that no correction linear in H should be expected in the DDT redshift ratio for
light signals exchanged between Kodama observers. In order to prove that this is also the case
for the rate of change of the DDT ratio, we need to show that differentiating the redshift ratio
with respect to the proper time of the observer at the reception point does not introduce any
linear correction. Note that this is not a priori obvious since in the case of the cosmological
observer, part of the linear corrections in H are introduced exactly by this derivative.

Let us consider the Kodama observer in de Sitter spacetime (the derivation can be extended
straightforwardly to the case of SdS). The Kodama observer oeld is given, in static coordinates,
by uK = ³21/2"t. Thus, the coordinate time and the proper time of the Kodama observer are
the same at linear order inH0 and we can focus on the derivative with respect to the coordinate
time of the receiver in the DDT scheme.

Note that the expression we are interested in differentiating with respect to t2, i.e.
equation (27), contains only quantities that depend on t1. Thus, we need to obtain dt1/dt2. Fol-
lowing [25], we can use the null condition for an inward directed (assuming R1 > R2 = R0)
radial, lightlike geodesic to get

� t2

t1(t2)
dt = 2

� R2

R1(t1(t2))

dR

³(R)
, (C7)

12 For a radial null geodesic 0 = ds2 = 2dt2 + a2(t)dr2 = 2[dt + dR/(12 RH)][dt 2 dR/(1+ RH)]. In lowest order
(for constant H(t)) this implies ∆t10 = log[(1+ HR1)/(1+ HR0)]/H j ∆R10 +O(HR).
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and then take the derivative with respect to t2, with the understanding that R2 is constant for
the Kodama observer. In this way we arrive at13

dt1
dt2

=

�

1+
dR1/dt1
12 H2R2

1

�21
. (C8)

At this point, note that the spatial, unit vector k̂4i.e., the normalized spatial projection of the
lightlike vector k =

�

E/³,E, 0, 0
�

in the rest frame of the Kodama observer4is k̂ =
:
³"R

and this implies that the projection of the relative spatial velocity of the spacecraft at the renec-
tion point with respect to the observer oeld βuK

(v) = (v2 |g(v, uK)|uK)/|g(v, uK)| along k̂ has
the form

³k̂uK (v) c 2
g(k̂, v)

g(uK, v)
=

1

³(R1)

dR1

dt1
, (C9)

where v is the spacecraft four-velocity. With this last expression we have

dt1
dt2

=

�

1+ ³k̂uK (v)
�21

, (C10)

from which we see that this derivative does not introduce any correction linear in H.
Finally, it should be noted that, in reference [25] in order to arrive at the expression reported

in equation (25) the authors need to differentiate the relative velocity with respect to t1. In
the case of the Kodama observer, we can follow the same derivation as in [25, 53] with the
only caveat that additional corrections will appear when computing the derivatives of ³k̂

uK
and

³2
uK

= �βuK
�2 with respect to t1. In particular, we would have that d/dt1 =

�

dt1/dÇ1
�21

d/dÇ1,
where Ç 1 is the arc-length of the spacecraft trajectory. Contrary to the case of the cosmological
observer, this is not identical to the covariant 8observer9 derivative, 'u

v deoned in equation
(130) of reference [25] (see also [9, 53]), anymore. Indeed, acting on a scalar function f

'uK
v f = |g(uK, v)|

21 d f

dÇ1
=

1

³1/2

d f

dt1
, (C11)

from which,

d

dt1
f = ³1/2'uK

v f . (C12)

Thus, in computing d³k̂
uK
(v)/dt1 and d³2

uK
(v)/dt1, we get:

" d³k̂
uK
(v)/dt1 = ³1/2'uK

v ³k̂
uK
(v) = ³1/2

�

huK (αuK (³), k̂)+ huK (βuK
(v),'uK

v k̂)
�

, where h

is the spatial metric in the rest frame of the observer oeld, and we have introduced the
relative spatial acceleration of the spacecraft trajectory with respect to the observer oeld
αuK (³).

" d³2
uK
(v)/dt1 = ³1/2'uK

v ³2
uK
(v) = 2³1/2huK(βuK

(v),αuK(³)),

where we have used the identities in equations (3.16) and (3.17) in [53] and, as in the main
text, we indicate with αuK (³) = '

uK
v βuK

(v) the relative spatial acceleration of the spacecraft
trajectory ³ with respect to the observer oeld. However, it is clear that the corrections appear-
ing will be at least quadratic in H and cannot give rise to any linear correction in H in the

13 In the case of SdS we would have ³(R1) in the denominator of the right-hand side of (C8).
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DDT expression. Indeed, putting together the results listed above and taking the derivative of
equation (27), i.e.,

Ë2

Ë0
=

�

2
12 ³k̂

uK
(v)

12 ³uK (v)
2
2 1

�

, (C13)

we arrive at

1

Ë0

dË2

dÇ2
= ³(R)21/2(1+ ³k̂

uK
(v))21

�

2 2
�

huK (αuK(³), k̂)

+ huK (βuK
(v),'uK

v k̂)
�

(12 ³2
uK
(v))21

+ 4huK(βuK
(v),αuK(³))

(12 ³k̂
uK
(v))

(12 ³2
uK
(v))2

�

(C14)

to be compared with equations (8.12) and (144) of [25, 53] respectively. In particular, an even
clearer picture can be obtained following [25, 53] and considering a radially escaping space-

craft so that βuK
= ³k̂uK k̂, αuK = ³k̂

uK
k̂ with ³k̂

uK
= huK(αuK , k̂)4where we now suppress the

arguments of the ³k̂
uK

and the ³k̂
uK

for ease of notation. In this case we obtain

1

Ë0

dË2

dÇ2
= 22³(R)21/2³k̂

uK
(1+ ³k̂

uK
)23

= 2

�

1+
H2

0R
2

2

�

³k̂

uK
(1+ ³k̂

uK
)23 +O(H4

0R
4), (C15)

which shows that only corrections quadratic, or higher, in H0R appear in the DDT rate.

Appendix D. Weak field regime of McVittie spacetime

In the following, we will diagonalize the McVittie metric in areal radius coordinates in
equation (3) to second order in HR. First, we ond that the inverse of the McVittie metric is

g¿¿ =

»

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

1

12 2m0
R

2
H(t)R

#

12 2m0
R

0 0

2
H(t)R

#

12 2m0
R

12
2m0

R
2 H(t)2R2 0 0

0 0
1

R2
0

0 0 0
1

R2 sin2 »

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

£

. (D1)

We deone the time coordinate

Ç = t 2

�

dR
g01

g11
j t 2 Σ(R)H(t)R2/2 (D2)
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which we approximated to second order in HR and deoned

Σ(R) = 16
m2

0

R2

�

12
2m0

R

�21/2

2F1

�

2
1

2
, 3,

1

2
, 12

2m0

R

�

, (D3)

where 2F1 is the hypergeometric function, and ond that the inverse McVittie metric becomes

g¿¿ j

»

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

2
12 Σ(R)H�(t)R2

12 2m0
R

2
H(t)2R2

�

12 2m0
R

�2 0 0 0

0 12
2m0

R
2 H(t)2R2 0 0

0 0
1

R2
0

0 0 0
1

R2 sin2 »

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

£

(D4)

also in second order inHR. The corresponding approximate expression for the McVittie metric
is

g¿¿ j

»

¼

¼

¼

¼

¼

¼

¼

½

2

�

12
2m0

R

�

(1+Σ(R)H�(t)R2)+ H(t)2R2 0 0 0

0
1

12 2m0
R

+
H(t)2R2

�

12 2m0
R

�2 0 0

0 0 R2 0
0 0 0 R2 sin2 »

¿

À

À

À

À

À

À

À

Á

.

(D5)

In the weak-oeld regime, where m0/R 1, we can consider this as a linear perturbed
Minkowski metric and identify a Newtonian potential via the relation g00 = 2132Φ. We ond

g j diag

�

21+
2m0

R
+ (H(t)2 + H�(t))R2, 1

+
2m0

R
+ H(t)2R2,

1

R2
,

1

R2 sin2 »

�

. (D6)

where we neglected terms proportional to m0H(t)2 and m0H
�(r). The Newtonian potential

becomes

Φ = 2
m0

R
2

1

2
(H(t)2 + H�(t))R2. (D7)

Note the similarity of (D6) to the SdS metric in manifestly static coordinates in (4). In contrast
to the latter case, in the case of the perturbatively diagonalized McVittie metric, there is also a
time-dependent spatial component.
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Light propagation in curved spacetime is at the basis of some of the most stringent tests of Einstein’s general

relativity. At the same time, light propagation in media is at the basis of several communication systems. Given

the ubiquity of the gravitational field, and the exquisite level of sensitivity of optical measurements, the time is

ripe for investigations combining these two aspects and studying light propagation in media located in curved

spacetime. In this work, we focus on the effect of a weak gravitational field on the propagation of optical

solitons in non-linear optical media. We derive a non-linear Schrödinger equation describing the propagation of

an optical pulse in an effective, gradient-index medium in flat spacetime, encoding both the material properties

and curved spacetime effects. In analyzing the special case of propagation in a 1D optical fiber, we also include

the effect of mechanical deformations and show it to be the dominant effect for a fiber oriented in the radial

direction in Schwarzschild spacetime.

INTRODUCTION

The properties of light propagating in optical media is a

subject as old as optics itself. In recent years, the possibility

to engineer novel metamaterials has opened the door to the

so-called transformation optics [1], a field promising to en-

hance existing devices and create novel ones. At the basis of

this revolution is the fact that, in the geometric optics limit

– and neglecting dispersion –, light rays propagate in media

following the geodesics of an effective Lorentzian metric, the

so-called optical metric [2]. This has also led to the investi-

gation of light in optical media as an analogue gravity model,

i.e., a model in which field perturbations propagate as if in a

curved spacetime background, particularly useful in the inves-

tigation of kinematic effects of quantum field theory in curved

spacetime, like the Hawking radiation and cosmological par-

ticle production [3–5]. When also the effect of dispersion is

considered, the metric description can be cast aside for a more

powerful Hamiltonian formalism, giving rise to the so-called

ray-optical structures [6, 7].

This analogy between optical media and curved space-

times can be pushed even further by showing that Maxwell

equations in vacuum, curved spacetime are equivalent to

flat-spacetime Maxwell equations in the presence of a bi-

anisotropic moving medium whose dielectric permittivity and

magnetic permeability are determined entirely by the space-

time metric [8]. Spacetime itself can then be described as an

optical medium at the level of full electromagnetism. It is then

natural to wonder what would happen if light were to propa-

gate in an optical medium placed in a curved spacetime. Far

from being a far-fetched situation, this is exactly the case for

light propagating in media on Earth due to the non-vanishing,

albeit weak, gravitational field of our planet. In this work, we

are interested in exactly this situation. In particular, while at

the geometric optics level the formalism of ray-optical struc-

tures can be used, we aim here at a description, analogous to

the one in [8], at the level of full Maxwell equations. Indeed,

such a description allows for the modelling of the propagation

of intense pulses in situations of physical interest, like soliton

propagation in optical fibers, taking into account the effect of

a weak gravitational field.

We show that light propagation in a medium in curved

spacetime is equivalent to propagation in an effective medium

in flat spacetime. We then use this formalism to investigate the

propagation of intense light pulses in non-linear media, giving

rise to optical solitons. Solitons, and more in general propa-

gating pulses, in optical fibers are at the basis of several com-

munication protocols. Given that fibers on Earth are de facto

in a curved spacetime due to our planet’s gravitational field,

it is relevant to analyze how gravity influences light-pulses

propagation. Our result allows us to set up a framework for

the analysis of the effect of acceleration and curvature on the

propagation of pulses in optical fibers in curved spacetimes.

We numerically investigate some of these effects for the sim-

ple case of 1D propagation in the weak-field limit.

AN EFFECTIVE “SPACETIME MEDIUM”

While light in media can propagate as in a curved space-

time, curved spacetime can also be seen as an effective

medium with non-trivial permeability and permittivity [8, 9].

It is not difficult to generalize the derivations in [8, 9] to the

case in which light propagates in an optical medium placed

in curved spacetime. Also in this case it can be shown that

Maxwell’s equations are equivalent to Maxwell’s equations

in flat spacetime for an effective medium whose properties

encode both the ones of the physical medium and of curved

spacetime.

Indeed, consider a dielectric and permeable medium in

curved spacetime characterized by a Lorentzian metric gµν
with mostly plus signature. We follow here the notation of [7],
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also reported in the Supplemental Material [10]. Maxwell’s

equations in the absence of free charges and currents are given

by

∇kF∗ ik = 0 (1)

∇kG
ik = 0, (2)

where F∗ is the Hodge dual of the electromagnetic tensor F,

and G and F are related by the constitutive equations of the

material. Choosing an observer field ui, the electric and mag-

netic field strengths can be defined with respect to it as

Ba = −
1

2
ηabcdubFcd; Ei = Fi ju

j (3)

Ha = −
1

2
ηabcdubGcd; Di = Gi ju

j (4)

Fab = −ηcd
abudBc + 2u[aEb] (5)

Gab = −ηcd
abudHc + 2u[aDb], (6)

in the reference frame of the observer in which the medium

is assumed to be at rest. Here ηi jkl =
√−gδi jkl is the Levi-

Civita tensor and T[abc... ] denotes the antisymmetrization of

the tensor with respect to the indices in square brackets.

As discussed in [10], choosing ui = δi
0
/
√−g00, the projec-

tion of Maxwell’s equations in 3-dimensional form leads to

δαβγ∂βHγ − ∂0Dα = 0; ∂lDl = 0 (7)

δαβγ∂βEγ + ∂0Bα = 0; ∂lBl = 0, (8)

where Eα =
√−g00Eα,Hα =

√−g00Hα, and

Dα = −√−g
gαβ

g00

Dβ − δαβγ
g0γ

g00

Hβ (9)

Bα = −√−g
gαβ

g00

Bβ + δ
αβγ

g0γ

g00

Eβ, (10)

with Bα =
√−g00Bα, and Dα =

√−g00Dα. These expres-

sions are equivalent to Maxwell’s equations in flat space-

time in the presence of an optical medium. In particular,

for a non-dispersive medium characterized by constitutive re-

lations Da = ε
b
aEb, and Ba = µ

b
aHb, the effective medium

will be characterized by a dielectric and magnetic permeabil-

ity given by the product of the material ones and the ones

characterizing the curved spacetime [8, 9]. Indeed, expressing

Dα = ε̃αβEβ+ γ̃βαHβ and correspondinglyBα = µ̃αβHβ− γ̃βαEβ,
where γ̃

β
α encode magnetoelectric effects, we see that

µ̃αβ = −√−g
gαγ

g00

µ
β
γ (11)

ε̃αβ = −√−g
gαγ

g00

ε
β
γ , (12)

and γ̃αβ = −δαβγg0γ/g00
1. As a direct consequence, whenever

the refractive index of the effective medium can be defined, it

1 Note that, in the case the material itself possesses magnetoelectric terms in

the constitutive equations, i.e., Da = ε
b
aEb + γ

b
aHb, and Ba = µ

b
aHb − γb

aEb

then γ̃αβ = −δαβγ g0γ

g00
− √−g

gαδ

g00
γ
β

δ

will also be the product of the material refractive index times

the vacuum spacetime effective one. The same result can be

easily obtained at the level of geometric optics.

Finally, we make two observations relevant for the study of

the propagation of light pulses. Firstly, a non-magnetic mate-

rial in curved spacetime corresponds to a magnetic effective

medium in Minkowski due to the “magnetic permeability”

of the background spacetime. Secondly, when considering

a non-linear material, we see that the non-linearity will also

be affected by the curvature of spacetime as well as the linear

polarizability.

PULSE PROPAGATION: NON-LINEAR SCHRÖDINGER

EQUATION

We next consider the propagation of light pulses in a Kerr

non-linear, non-magnetic material in curved spacetime. In

particular, we focus on the case in which the material is in a

stationary orbit of Schwarzschild spacetime and use isotropic

coordinates. This situation well-captures the cases of interest

for optical communication and laboratory experiments like,

e.g., optical fibers hanging still above Earth’s surface.

In flat spacetime, the non-linear Schrödinger equation

(NLSE) is often used when considering the propagation of

light pulses whose amplitude is well-described by a scalar

envelope slowly varying with respect to the light period and

wavelength [11, 12]. In the case of a medium stationary in

Schwarzschild’ spacetime, by employing the correspondence

with an effective medium in flat spacetime as described in the

previous section, the usual derivation of the NLSE can be car-

ried out. However, the effective medium will be inhomoge-

neous due to the curved spacetime contribution to the polar-

izability and permeability of the material medium. This gives

rise to extra terms in the NLSE which are of purely gravita-

tional origin. Furthermore, another source of inhomogeneity

in the medium can be included when considering the effect of

tidal forces on the material that, through photoelasticity, ren-

der the refractive index position-dependent.

Neglecting for the moment photoelasticity, i.e., consider-

ing a rigid dielectric, we can write Maxwell’s equation in flat

spacetime for the effective medium in the familiar notation,

using the fields and field strengths that we indicate with plain

capital letters from now on,

∇ · B = 0, ∇ · D = 0 (13)

∇ × E = −∂tB, ∇ × H = ∂tD, (14)

where D = ε̃E and H = B/µ̃. Here µ̃ = µ̃(r) and

ε̃ = ε̃(E, r, ω) in frequency space, allowing us to account

for the effect of material dispersion, are the permeability

and permittivity of the effective medium. Expressing the

Schwarzschild’ spacetime metric in isotropic coordinates as

ds2 = − (B(t, r)/A(t, r))2 dt2 + A4(t, r)δαβdxαdxβ, with A(r) =

1 + rS /4r and B(r) = 1 − rS /4r, with rS the Schwarzschild



3

radius, we have

ε̃(E, r, ω) = ε0εspε = ε0

A(r)3

B(r)

(

1 + χ(1)(ω) + 3χ(3) |E|2
Ω

)

,

(15)

µ̃ = µ̃(r) = µ0µsp = µ0A(r)3B(r)−1, (16)

with Ω = A(r)−4 the conformal factor relating the spacial part

of the metric with the flat, Euclidean one2. The explicit ra-

dial dependence in the linear part of these effective quantities

comes from the curved spacetime optical properties encoded

in the diagonal terms
√−ggαα/g00 (cf. eq.(11)) that we define

as εsp = µsp = A(r)3B(r)−1. The field dependency of ε̃ takes

into account the non-linearity of the physical medium. Note

also that dispersion implies that the dielectric permeability is

a function of the physical frequency ω defined with respect to

our stationary observer uµ.

From eq. (13), and writing D = ε̃`E + PNL, where ε̃` =

ε0εsp(1+χ(1)(ω)) is the linear part of the dielectric permeabil-

ity in eq. (15) and PNL is the non-linear polarization, we can

then obtain the wave equation, in frequency space,

∇2E −∇(∇ · E)+ µ̃ε̃`ν
2E = −µ̃ν2PNL − (∇ log(µsp))× (∇× E) .

(17)

Here we indicate with ν the conjugate variable to the coordi-

nate time t in the flat spacetime of the effective medium. Note

that the homogeneous Maxwell equations imply that

∇ · E = −(∇ log ε̃`) · E −
1

ε̃`
∇ · PNL, (18)

and thus

−∇(∇ · E) = (E · ∇)∇ log ε̃` +
(

(∇ log ε̃`) · ∇
)

E (19)

+ (∇ log ε̃`) × (∇ × E) + ∇
(

1

ε̃`
(∇ · PNL)

)

.

Eq. (18) makes evident that ∇ · E is of the same order as the

non-linearities and inhomogeneities in the electric permittiv-

ity, which is also why it is usually safely neglected in deriva-

tions of the NLSE.

The wave equation in eq. (17) is equivalent to Maxwell

equations and, as such, presents the same level of complexity

if analytical or numerical solutions are attempted. The NLSE

is a scalar propagation equation for the electric field’s slowly

varying amplitude that allows one to numerically simulate the

pulse propagation. We thus want to write the electric field as

the product of a slowly varying amplitude times a phase prop-

agating along the propagation direction, that we will identify

with the z direction in the following. In this context, notice

that the dispersion relation of the physical medium, in its rest

2 This conformal factor arises due to the fact that EaEa in curved space-

time corresponds to |E|2/Ω with |E|2 = EaEbδab the flat spacetime norm

squared of the electric strength field.

frame, is given simply by n(ω) = cκ/ω, with κ the modulus of

the spatial projection of the wave 4-vector. For the effective

medium, this relation reads ñ = cκ̃/ν, where ñ =
√
εspµspn

is the product of the material refractive index and the “space-

time refractive index” nsp =
√
εspµsp. Moreover, since ν is

the frequency defined with respect to Minkowski coordinate

time, i.e., the conjugate Fourier variable to t, it is related to

the physical frequency, i.e., the one measured by a physical

observer in curved spacetime, by the gravitational redshift

ν = ω
√−g00. From the equivalence of the dispersion rela-

tions, we see that κ̃(r) = κnsp(r)
√

−g00(r). We will thus write

E(r, t) ∝ E(r)ei(κ̃0z−ν0t) + cc., with κ̃0 = κ̃(r, ν0) evaluated at a

central frequency ν0.

In order to proceed with the derivation of the NLSE, and to

further simplify our equations, we consider two separate sit-

uations of physical interest: (i) pulse propagation at approxi-

mately constant radius; (ii) pulse propagating radially.

Horizontal motion at (almost) constant radius

We assume the propagation direction of the light pulse to

be the z axis taken to be perpendicular to the radial direction

for horizontal motion, and consider linearly polarized light

propagating in a medium stationary on Earth for concreteness.

Then, for propagation distances much smaller than Earth’s ra-

dius (r⊕), i.e., z � r⊕, the horizontal motion can be considered

as happening at constant radius. With these approximations,

the spacetime permeability and permittivity are constant func-

tions of r⊕, µsp = εsp = A(r⊕)3B(r⊕)−1 and also the physical

frequency is not changing with z. Thus, we see that in eq. (17)

the last term on the right-hand side vanishes.

We follow the derivation in [4] where the pulse propaga-

tion in a single-mode optical fiber was considered. Indeed,

for µsp εsp constant, eq. (17) is formally equivalent to eq. (S1)

of [4] in frequency space. We thus end up with an effective

one dimensional problem for the slowly varying envelope, and

the derivation of the NLSE is the textbook one [10, 12]. In

particular, recall that the slowly varying envelope approxima-

tion(s) (SVEA) consists in neglecting terms ∂2
zE � κ̃0∂zE and

(κ̃1/κ̃0)∂t � 1 on the basis that the envelope will contain many

wavelengths and optical cycles. If we apply now the SVEA

we end up with, in the time domain,

i(∂z + κ̃1∂t)E −
κ̃2

2
∂2

t E = −n2ν0nsp(r⊕)ε0

|E|2
Ω
E, (20)

where κ̃i(ν0) are the coefficients of the power series expansion

κ̃(ν) =
∑

n κ̃n(ν0)/n! (ν − ν0)n in ν − ν0 and we are considering

Kerr non-linear media for which the nonlinear index is n2 =

3χ(3)/(2n(ω0)cε0).

Considering an anomalous dispersive material, i.e.,

κ2(ν0) < 0, an analytical solution of the NLSE can be found

(see, e.g., [4]) and reads

E(t, z) =

√

Ω|κ̃2|
ν0n2nspε0T 2

0

cosh

(

t − κ̃1z

T0

)−1

exp













iz|κ̃2|
2T 2

0













, (21)
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FIG. 1: Velocity of the soliton along the fiber, with respect to

an observer comoving with the segment of the dielectric

material where the (peak of the) soliton is located, for

L = 0.1 m, rs = 10−3r⊕, and including photoelasticity. The

red, dashed and blue, solid curves represent the analytical

expression in eq. (25) including or in the absence,

respectively, of photoelasticity. The red points and blue

squares are obtained by numerical simulations and agrees

perfectly with the analytical formula of eq. (25). The inset

shows the case with photoelasticity in which rs = 10−2r⊕.

This shows a deviation from a purely linear relation between

the velocity and the propagation distance.

where T0 is the pulse length, and 1/κ̃1 is its speed of prop-

agation. This reduces to the result from Philbin et al.[4] –

eq.(S74) of the supplementary material in [4] – in the limit

of rS → 0. From this expression, combined with the fact

that κ̃1(ν0) = nspκ1(ω0), we can conclude that the velocity of

the horizontally propagating soliton in curved spacetime with

respect to an observer comoving with the segment of the di-

electric material3 is given simply by κ1(ω0)−1.

Radial motion

Let us now consider the case in which the light pulse propa-
gates radially along the z direction. Care is in order here, since
now all the quantities appearing in the wave equation will
change along the propagation direction, including the physical
frequency that will be subject to gravitational redshift. Moti-
vated by the symmetry of the problem, and in order to obtain a
scalar, one-dimensional equation whose solution can be sim-
ulated, we assume that all the quantities entering the wave

equation depend solely on z. This is tantamount to identifying
the radial direction with the z-axis and work close to x = y = 0
so that r = r⊕ + z, which is a reasonable assumption since we
are considering the vertical propagation of a well localized
pulse. With this approximation, the wave equations (17) re-
duce to a system of three decoupled equations [13]

∂2
z Ex(y) + µ̃ε̃`ν

2Ex(y) = − µ̃ν2PNL,x(y) + (∂z(ln µ̃)) ∂zEx(y) (22)

∂2
z Ez + µ̃ε̃`ν

2Ez = − µ̃ν2PNL,z − ∂z

(

1

ε̃`
∂zPNL,z

)

(23)

− 2(∂z ln ε̃`)∂zEz − Ez∂
2
z ln ε̃`

It is immediate to realize that Ez = 0 is a solution of the cor-

responding equation so that we can consider the propagation

of linearly polarized light (in a direction orthogonal to z) and

we end up with a single equation of the form of eq. (22).

Proceeding as before with substituting the ansatz E(z, t) ∝
E(z, t)ei(κ̃0(z)z−ν0t) + cc., expanding κ̃(z, ν) around ν0, and using

the SVEA approximation(s) we obtain the NLSE given by

i(∂z + κ̃1∂t)E −
κ̃2

2
∂2

t E + 2i
∂zκ̃0

2κ̃0
E + 2iz

∂zκ̃0

2κ̃0
∂zE + iz

∂2
z κ̃0

2κ̃0
E − z∂zκ̃0E − z2 (∂zκ̃0)2

2κ̃0
E = −n2ν0nsp(r)ε0|E|2E/Ω +

∂z ln nsp

2κ̃0
(iκ̃0E + ∂zE + iz(∂zκ̃0)E) .

(24)

Eq. (24) contains several additional terms with respect to the

equation for the horizontal propagation due to the fact that

now the wavevector κ̃0 depends explicitly on the coordinate

along the propagation direction and so does the refractive

index, i.e., we are propagating in a gradient-index medium

(GRIN)4. All geometrical quantities appearing in the equation

3 Indeed note that proper length and proper time for an observer comoving

with the segment of the dielectric material and in connection with coor-

dinate quantities are given by ` = A2 z and τ = t B/A so that 3 ≡ `/τ =
A3B−1z/t = nsp 3̃.

4 See also [14–16] for early studies of soliton propagation in inhomogeneous

are evaluated at r⊕ + z. Finally, consistently with the horizon-

tal propagation case, upon setting κ̃0 constant, we return to

eq. (20).

INCLUDING PHOTOELASTICITY

Up until now, we have considered rigid dielectrics, i.e., di-

electric media in which the speed of sound is infinite. For

media.
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realistic materials, this is of course never the case and the di-

electric gets deformed by the action of forces, including the

tidal ones in our set-up. Let us consider an optical fiber as a

paradigmatic example. In this case, the deformation due to the

action of gravity will be relevant only for the case of vertical

propagation.

Deformations of a dielectric lead to a change in the relative

permeability of the material, and thus of the refractive index,

a phenomenon known as photoelasticity [17]. The contribu-

tions to this effect coming from the curvature of spacetime

and the inertial acceleration of the fiber can be separately ac-

counted for following the discussion in [18]. Consider a fiber

of length L hanging from at support located at r⊕ + L. As

far as the strain is within the elastic limit of the material, we

can relate it with the stresses through a linear relation, i.e.,

Hooke’s law. Thus, we write the strain tensor as Skl =
1
Y
σkl,

where Y is the Young’s modulus of the material and σkl =
Fk

Al

is the stress tensor given by the ratio between the force Fk in

direction êk and the cross-sectional area Al normal to êl upon

which the force acts. The photoelastic (or acousto-optic) ef-

fect consists in the change of the relative electric permeability

by ∆(εr)
−1
kl
= Pkl mnSmn, where P is the photoelastic tensor.

In the following, we limit ourselves to the case of isotropic

materials and a diagonal stress tensor (see [10] for the de-

tails of the computation). It should be noted that photoelastic-

ity is far from negligible in the case under investigation and

becomes the dominant effect in the vertical propagation sce-

nario, overwhelming the effect related to the optical properties

of the background spacetime.

While photoelasticity introduces a further radial depen-

dence in the optical properties of the effective medium, this

does not affect the form of eq. (24), which remains valid. The

only difference is in the expressions for the quantities κ̃i and

their derivatives, due to the fact that now the refractive index

of the medium is given by n(ω) =
√

1 + χ1(ω) + ∆εr(ω) [10].

NUMERICAL RESULTS

While the wave equation in eq. (17) gives us the full

Maxwell equations, including possibly interesting effects re-

lated to the vectorial nature of the electric field, and thus to the

interplay between gravity and the light polarization, its numer-

ical investigation is beyond the scope of the current work, and

it is left for future investigations. Here, we focus on the prop-

agation of light pulses as described by the simplified eq.(24),

motivated by light propagation in optical fibers [4]. Note that

in the case of eq. (20) an analytical solution was presented in

eq. (21).

Equation (24) for the vertical propagation is solved numeri-

cally – being a non-linear PDE with coordinate dependent co-

efficients – using the split-step Fourier (SSF) method [11] and

taking into account also the effect of the fiber deformation.

For this purpose, we utilize the same fiber parameters as in [4]

(see also table I in [10]) and initialize the temporal profile at
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FIG. 2: Time of arrival of the soliton for the case of

propagation in the gravitational field of Earth for which we

assume rS = 9 × 10−3 m. The main figure shows the

difference in time of arrival, with respect to an observer

comoving with the segment of the dielectric material where

the soliton is located, between vertically and horizontally

propagating solitons over the propagation coordinate length

z. The inset shows the same in the case photoelasticity is

neglected.

z = 0 as the one of the input pulse in the same reference.

The intuition based on the SSF method– where the propa-

gation equation (24) is rewritten in the form ∂zE =
(

D̂ + N̂
)

E
with the diffusive dynamics enclosed in the operator D̂ =

D̂(z, ∂t) [10] – allows us to formulate the educated guess that

the propagation speed of the soliton, in the effective flat space-

time, is given by

3̃ =
1 + z κ̃′

0
(z)/κ̃0(z)

κ̃1(z)
. (25)

Indeed, this appears as (the real part of) the inverse of the

coefficient of the time derivative in D̂(z, ∂t). Then, in order to

translate this result into the speed measured by an observer co-

moving with the segment of the dielectric material where the

soliton peak is located, we need to just multiply eq. (25) by the

spacetime refractive index. That this intuition is indeed cor-

rect is verified by the numerical simulations reported in Fig. 1.

We see that the z-dependence of the propagation velocity is

strongly enhanced by the effects of mechanical deformation

of the fiber with respect to the case in which photoelasticity is

ignored. The z-dependence of the vertical propagation veloc-

ity without photoelasticity is weak, and the velocity is close to

the one of the horizontal case. To quantify the latter statement,

in Fig. 2 we show the difference in the (proper) time of arrival

of the soliton for the case of propagation in the gravitational

field of Earth, corresponding to a Schwarzschild radius that
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we take as rS = 9 × 10−3 m. The main figure shows

δτ = |z(
√

−g00(r⊕ + z)3̃−1
↑ ) −

√

−g00(r⊕)3̃−1
→ )|, (26)

with 3̃↑ and 3̃→ the propagation velocities, in the effective flat

spacetime, for vertical and horizontal propagation. The inset

shows instead the case in which for the vertical propagation

the photoelasticity is neglected, showing a much weaker de-

pendence.

Finally, in Fig. 3 we show the deviation of the average ve-

locity along the vertical direction 3a3(rS ) with respect to the

constant velocity at rS = 0 as a function of the dimension-

less ratio rS /r⊕. The average velocity is obtained numeri-

cally from the simulations as the ratio of the total length L

and the propagation time of the soliton and transformed into

the frame of the observer comoving with the fiber at its upper

end-point – i.e., multiplied by nsp(r⊕ + L). Analytically, we

use 3a3 = (
∫ L

0
3 dz)/L with 3 = nsp3̃ and 3̃ given in eq. (25).

Fig. 3 shows once again the agreement between the simulated

data and our analytical ansatz and it also shows that the pho-

toelasticity is the main effect that allows one to have a sizable

difference between the flat and curved spacetime propagation.

Another quantity characterizing the propagating pulse is its

temporal width. In the horizontal propagation case, the du-

ration of the pulse is constant. The same is not, in general,

true when considering the vertical propagation. In the Supple-

mental Material [10], we report the evolution of the temporal

width along the fiber. In particular, our simulations show a

focusing of the pulse which is however sizable only in the

presence of photoelasticity.

CONCLUSIONS

We have considered the propagation of light pulses in non-

linear, non-magnetic media stationary in curved spacetime.

Taking some intuition from the seminal work of Plebanski [8],

we showed that light propagation in such media can be equiv-

alently described as the propagation in an effective medium

in flat spacetime whose electric and magnetic properties ac-

quire a multiplicative factor encoding the spacetime structure.

Having done that, eq. (17) describes the propagation of light

in the effective medium. It is interesting to note, even though

we did not investigate it in this work, that the vectorial na-

ture of this equation encodes the interplay between the light

polarization and the gravitational field. Such interplay should

be expected on the basis of the fact that the effective medium

is an inhomogeneous, gradient-index medium for which it is

well known that the propagation of light is influenced by its

own polarization [19–21]. Furthermore, the effect of polariza-

tion on the propagation of light in curved, vacuum spacetime

has been extensively considered in the literature and shown to

take place also for static spacetimes [22, 23].

Neglecting the aforementioned effects, which would be un-

doubtedly small, by virtue of approximations we have been

able to derive a scalar NLSE describing the propagation of
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FIG. 3: Change in average velocity (3a3) of the soliton in the

fiber – with respect to the observer comoving with the

dielectric – compared to the case with rS = 0. Orange, square

points corresponds to the case of a L = 1 m propagation with

photoelasticity. Blue, round points correspond to the case of

a L = 0.1 m propagation with photoelasticity. Green,

diamonds correspond to the case of a L = 0.1 m propagation

without photoelasticity. The lines correspond to the

analytical result that fits perfectly the different sets of data.

a light pulse. It is important to notice that, when solving the

NLSE employing the SSF method, we are implicitly consider-

ing a unidirectional equation and ignoring any possible back-

propagating field in the boundary conditions imposed, for all

times, at z = 0. This means that backscattered light from the

pulse is assumed negligible relative to the pulse itself, a condi-

tion common to all unidirectional envelope propagation equa-

tions [24]. While this is not a problem for the horizontal prop-

agation, in which case only the weak non-linearity could give

rise to back-reflection, in the case of the vertical propagation

light is effectively propagating in a gradient-index medium

with the refracting index slowly varying in the propagation

direction. This by itself can give rise to back-propagating

fields, and effectively limits the validity of our treatment to

regimes in which the photoelasticity allows to employ a uni-

directional equation. Luckily, the regime of validity of the

equation – which depends on the parameter chosen for the

physical medium – can be readily estimated by following the

discussion in [25] as we detail in [10].

Given these caveats, the NLSE that we have derived shows

that an optical pulse propagating radially in a Kerr non-liner

medium stationary in Schwarzschild spacetime experiences a

change in its propagation velocity captured by eq. (25). This

effect is mostly due to photoelasticity which overwhelms the

purely spatiotemporal effects encoded in nsp. The difference

in propagation velocity between the vertically and horizon-



7

tally propagating pulses results, in turn, in a difference of the

time of arrival of two pulses of the order of hundreds of fem-

toseconds in Earth gravitational field, a fact that puts this dif-

ference in the reach of current technologies (see [26–28] and

references therein).
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In this supplemental material, we collect the detailed derivations of the results in the main text.

VACUUM SPACETIME AS AN OPTICAL MEDIUM & THE EFFECTIVE MEDIUM DESCRIPTION

Thanks to the seminal work of Plebanski in the ’60s [8], it is well known that electromagnetism in curved spacetime is

equivalent to propagation in an optical medium. Following the derivation presented in [9], Maxwell vacuum equations in curved

spacetime are written as

∇kF∗ ik = 0 (S1)

∇kF ik = 0, (S2)

where F∗ is the Hodge dual of the e.m. tensor, Latin indices run from 0 to 3, and the metric gi j has mostly plus signature. As in

the main text, we consider the case with no currents.

Choosing an observer field ui, the electric and magnetic field strength can be defined with respect to it as

Hi = F∗ i ju j, Ei = Fi ju
j (S3)

Fi j = ηi jklu
lHk + 2u[iE j], (S4)

where here ηi jkl =
√−gδi jkl is the Levi-Civita tensor (with δi jkl the Levi-Civita alternating symbol in four dimensions) and T[abc... ]

denotes the antisymmetrization of the tensor with respect to the indices in square brackets. The Maxwell equations can then be

projected in the ui direction or orthogonal to it using the projection operator into the rest frame of ui, hi j = gi j + uiu j. The end

result is, in the case the observer field is chosen as ui = δi
0
/
√−g00

δαβγ∂βHγ − ∂0Dα = 0; ∂lDl = 0 (S5)

δαβγ∂βEγ + ∂0Bα = 0; ∂lBl = 0, (S6)

where the first two equations come from Maxwell equations (S2) (with δαβγ the Levi-Civita alternating symbol in three dimen-

sions) while the second two from eq. (S1). Here,Hα =
√−g00Hα, Eα =

√−g00Eα, Greeks indices run from 1 to 3, and

Dα = −√−g
gαβ

g00

Eβ − δαβγ
g0γ

g00

Hβ (S7)

Bα = −√−g
gαβ

g00

Hβ + δαβγ
g0γ

g00

Eβ. (S8)

From here one can see that these equations are actually equivalent to Maxwell equations in flat spacetime in the presence of an

optical medium whose constitutive relations are characterized by a dielectric (ε
αβ
sp ) and magnetic permeability (µ

αβ
sp ) given by

µ
αβ
sp = ε

αβ
sp = −

√−g
gαβ

g00

. (S9)

As shown in the main text, when a physical optical medium whose rest frame is characterized by ui is added, we can follow

the same derivation starting from Maxwell’s equations in curved spacetime and with a material medium

∇kF∗ i j = 0 (S10)

∇kGik = 0, (S11)
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where now G and F are related by the material constitutive equations. Then we have

Ba = −
1

2
ηabcdubFcd; Ei = Fi ju

j (S12)

Ha = −
1

2
ηabcdubGcd; Di = Gi ju

j (S13)

Fab = −ηcd
abudBc + 2u[aEb] (S14)

Gab = −ηcd
abudHc + 2u[aDb], (S15)

where we have introduced the electric and magnetic excitation, Da and Ha respectively, on top of the electric and magnetic

strength Ea and Ba.

Note that the definitions of E, B, F are equivalent to the vacuum case, since the homogeneous Maxwell equations are the

same. The inhomogeneous equations have also the same form as in the vacuum case, but with the substitution of E, B, F with

D,H,G, where the definition of G with respect to H,D is the same as F with respect to E, B. From this simple observation we

can immediately deduce that the projection of Maxwell equations in 3-dimensional form will, in the case the observer field is

chosen as ui = δi
0
/
√−g00, lead to

δαβγ∂βHγ − ∂0Dα = 0; ∂lDl = 0 (S16)

δαβγ∂βEγ + ∂0Bα = 0; ∂lBl = 0, (S17)

where Eα =
√−g00Eα,Hα =

√−g00Hα, and

Dα = −√−g
gαβ

g00

Dβ − δαβγ
g0γ

g00

Hβ (S18)

Bα = −√−g
gαβ

g00

Bβ + δ
αβγ

g0γ

g00

Eβ, (S19)

with Bα =
√−g00Bα, and Dα =

√−g00Dα. Once again, these equations are equivalent to Maxwell’s equations in flat spacetime

in the presence of an effective optical medium.

Consider the case of a linear, dispersionless medium. We can then write Gi j = 1
2
χi j klFkl, with the material’s constitutive

tensor χi j kl, containing all material properties, which is symmetric under the exchange of the first and second pair of indices

and antisymmetric with respect to the swap within an index pair. In particular, we can also write Da = ε
b
aEb, and Ba = µ

b
aHb,

which are the constitutive relations in the reference frame of the observer in which the medium is at rest, neglecting magneto-

electric effects. For an isotropic medium, we also have that the dielectric and permeability tensor assume the simplified form

εb
a = ε(δ

b
a +UbUa) and µb

a = µ(δ
b
a +UbUa) for some scalar, positive functions ε and µ. The effective optical medium is such that

its constitutive relations are then characterized by a dielectric and inverse magnetic permeability given by

ε̃αβ = −√−g
gαγ

g00

ε
β
γ , (S20)

µ̃αβ = −√−g
gαγ

g00

µ
β
γ , (S21)

while the antisymmetric parts of the constitutive tensor are completely characterized by the vacuum spacetime properties5.

Non-linear media, with a Kerr-type non-linearity, can be treated analogously by promoting the dielectric and permeability

tensors to explicitly depend on the field strengths. If also dispersion needs to be included in the game, we need to consider,

as usual, the dispersion relation in frequency space in order to write it in a local form. Note that we can always write D =

ε0E + P (and analogously for the magnetic field and excitation), moving all non-linearity and dispersion in the polarization

(magnetization) vector. Thus, from eq. (9) we can conclude that the effective medium will give rise to an effective electric

excitation

De f f = εsp(ε0E + P), (S22)

which can then be written, for the dispersive case of interest, locally in frequency space for the effective medium “living” in flat,

Minkowski spacetime.

5 More in general, one could also include in this description materials for

which the magnetoelectric entries of the constitutive tensor are not negli-

gible. In such a case, Da = ε
b
aEb + γ

b
aHb, and Ba = µ

b
aHb − γb

aEb with

γab the antisymmetric part of the constitutive tensor. In this case, the same

derivation still stands, with the only difference that the antisymmetric parts

of the constitutive tensor for the effective medium are given by

γ̃αβ = −δαβγ
g0γ

g00
− √−g

gαδ

g00
γ
β

δ
.
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DERIVATION OF THE NLSE: TECHNICAL DETAILS

Let us consider now Maxwell’s equations for the effective medium, thus in flat spacetime, written in the usual notation

∇ · B = 0, ∇ · D = 0 (S23)

∇ × E = −∂tB, ∇ × H = ∂tD, (S24)

with D = ε̃E and H = B/µ̃. Here, we consider the case of a spherically symmetric spacetime in isotropic coordinates. The

metric can then be written, in full generality, as

ds2 = −
(

B(t, r)

A(t, r)

)2

dt2 + a2(t)A4(t, r)δαβdxαdxβ, (S25)

with r =
√

δαβxαxβ, A(t, r), B(t, r) real functions, and a(t) a scale factor analogous to the one appearing in FRLW spacetime.

Note that this metric can be rewritten as

ds2 = Ω−1

(

− B2(t, r)

a2(t)A6(t, r)
dt2 + δαβdxαdxβ

)

, (S26)

where the “conformal factor” Ω = a(t)−2A(t, r)−4.

In particular, we specialize to the case for which a(t) = 1, A = A(r), B = B(r) and such that, in frequency space,

ε̃(E, r, ω) = ε0A(r)3B(r)−1
(

1 + χ(1)(ω) + 3χ(3)|E|2/Ω
)

and µ̃ = µ̃(r) = µ0µsp = µ0A(r)3B(r)−1, i.e., we are considering a non-

magnetic material, where all the magnetic properties are induced by the curved background, with a Kerr non-linearity. As we

previously discussed, ω is the physical frequency defined with respect to the stationary observer uµ that we assume to be the rest

frame of the physical medium. The conformal factor Ω appearing in the non-linear term in ε̃ arises due to the fact that EaEa in

curved spacetime corresponds to |E|2/Ω, with |E|2 = EaEbδab the flat spacetime norm squared of the electric strength, in the flat

spacetime of the effective medium, as can be easily seen directly from eq. (S26).

For the sake of notation clarity, let us emphasized that, in the following, tilded quantities refer to quantities pertaining to

the effective medium in flat spacetime while the untilded ones represent the optical properties of the physical medium that is

stationary in (physical) curved spacetime.

In the following, we focus on Schwarzschild’s spacetime, for which

A(r) = 1 +
rS

4r
(S27)

B(r) = 1 − rS

4r
, (S28)

where rS is the Schwarzschild’s radius.

From Maxwell’s equations, taking the curl of the third one, we obtain

∇2E − ∇ (∇ · E) = ∂t

(

µ̃∂tD − B × ∇µ̃
µ̃

)

. (S29)

and thus

∇2E − ∇(∇ · E) − µ̃∂2
t D = −(∇ log(µsp)) × (∇ × E). (S30)

Note that this last expression is valid for ∂tµ̃ = 0, which includes the case of Schwarzschild spacetime. For a generic spherically

symmetric metric, as in eq. (S26), additional terms would be present due to the explicit time dependence of µ̃. Moving now to

frequency space, where we indicate with ν the conjugate variable to the coordinate time t in the flat spacetime of the effective

medium, and writing D = ε̃`E + PNL, where ε̃` is the linear part of the dielectric permeability and PNL contains the nonlinear

components of the polarization, we obtain

∇2E − ∇(∇ · E) + µ̃ε̃`ν
2E = −µ̃ν2PNL − (∇ log(µsp)) × (∇ × E). (S31)

This is our starting point for the derivation of the scalar NLSE. Note that, apart from the last term, the equation resembles the

textbook wave equation modulo the inhomogeneity of the medium encoded in the coordinate dependence of ε̃, µ̃ [12].

Before starting the derivation of the NLSE, an observation is in order. In curved spacetime, the linear dispersion relation of

the medium assumes the simple form, in the rest frame of the medium,

n(ω) = c
√

µ0ε0εr(ω) = c
κ

ω
, (S32)
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with κ the modulus of the spatial projection of the wave 4-vector , εr = 1 + χ(1)(ω), and ω the physical frequency6, i.e., the

frequency measured by an observer in curved spacetime. Thus, we write the dispersion relation for our effective medium as

ñ = c
κ̃

ν
, (S33)

where ñ = nspn with n2
sp = (Ω|g00|)−1. Eq. (S33) is the expression that we will use in deriving the NLSE. Note once again that

here ν = ω
√−g00 where ν is the conjugate Fourier variable to the coordinate time t in flat spacetime. Since for consistency we

want the two dispersion relations to be equivalent, we see that κ̃ = κnsp

√−g00. Once again, in the dispersive case, we will need

to consider ñ = ñ(ω) since otherwise the two dispersion relations would not remain equivalent.

Derivation of the standard NLSE

Before delving into the derivation of the NLSE for our effective, inhomogeneous medium, we summarize here the derivation

of the NLSE in the standard case, following [12].

In the standard case of a homogeneous, non-magnetic material in flat spacetime, writing the displacement electric field D as

the sum of a linear part and the non-linear polarization, we have the wave equation in frequency space

∇2E − ∇(∇ · E) + µ0ε`ν
2E = −µ0ν

2PNL. (S34)

Note that in this section we always work with untilded quantities that refer to the optical properties of the physical medium

that is considered in flat spacetime. Indeed, in this case the effective medium coincides with the physical one since the optical

properties of flat spacetime are trivial. Note however that, as previously specified, from the next section we will go back to

consider the case of curved spacetime. Thus, we will need to distinguish once again between physical and effective medium,

with the latter represented by tilded quantities in flat spacetime.

We recall that µ0 = 1/(ε0c2). We then neglect the vectorial operator −∇(∇ · E) due to the fact that the homogeneous Maxwell

equation for D implies this term to be in general negligible – and get

∇2E(ν) + εr(ν)
ν2

c2
E(ν) = − ν

2

ε0c2
PNL(ν), (S35)

with εr(ν) = ε`/ε0 the linear, relative polarizability.

For a linearly polarized field, this equation becomes a scalar one. We can then write the electric field as a slowly varying,

complex amplitude E(r, t) times a plane wave propagating in the z direction with central frequency ν0

E(r, t) = E(r, t)ei(κ0z−ν0t) + cc., where κ0 =
n(ν0)ν0

c
. (S36)

Using the Fourier transform w.r.t. t for E and the one for the amplitude7 E, eq. (S36) can be rewritten in frequency space as a

sum of terms dependent on ν± ν0. We can then discard the fast rotating, high frequency (ν+ ν0) components. Indeed, the slowly

varying in time envelope E(r, t) in which we are interested does not possess high-frequency Fourier components [12]. We thus

obtain

E(r, ν) ≈ E(r, ν − ν0)eiκ0z. (S37)

The scalar wave equation for the amplitude then becomes

∇2
⊥E + ∂2

zE + 2iκ0∂zE + [κ2(ν) − κ20]E = − ν
2

ε0c2
PNLe−iκ0z, (S38)

6 This is connected to the frequency in flat spacetime via ω = (
√−g00)−1ν.

7 We follow [12] in defining,

E(r, t) =

∫ ∞

−∞

dν

2π
E(r, ν)e−iνt = E(r, t)ei(κ0z−ν0 t) + E∗(r, t)e−i(κ0z−ν0t)

=

∫ ∞

−∞

dν

2π
E(r, ν)e−i(ν+ν0)teiκ0z +

∫ ∞

−∞

dν

2π
E∗(r, ν)e−i(ν−ν0)te−iκ0z

=

∫ ∞

−∞

dν

2π
E(r, ν − ν0)e−iνteiκ0z +

∫ ∞

−∞

dν

2π
E∗(r, ν + ν0)e−iνte−iκ0z.

From these expressions we then obtain

E(r, ν) = E(r, ν − ν0)eiκ0z + E∗(r, ν + ν0)e−iκ0z
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with κ(ν) = n(ν)ν/c. At this point, we approximate κ(ν) as a power series in ν − ν0

κ(ν) = κ0 + κ1(ν − ν0) +D , (S39)

with D = κ2(ν − ν0)2/2 + O
(

(ν − ν0)3
)

, such that

κ(ν)2 = κ20 + 2κ0κ1(ν − ν0) + 2κ0D + 2κ1D(ν − ν0) + κ21(ν − ν0)2 +D
2. (S40)

Here κ1 is the inverse of the group velocity 3g. We will neglect D2 terms and convert back to the time domain8 to obtain

(

∇2
⊥ + ∂

2
z + 2iκ0(∂z + κ1∂t) + 2iκ1D̄∂t + 2κ0D̄ − κ21∂2

t

)

E(r, t) =
1

ε0c2
∂2

t (PNL(r, t)) e−i(κ0z−ν0t). (S41)

Note that now D̄ is a differential operator with D̄ = −(κ2/2)∂2
t + .... Finally, by writing also the polarization PNL(r, t) =

p(r, t)eiκ0z−ν0t + c.c., i.e., as a slowly-varying amplitude p(r, t) times a plane wave eiκ0z−ν0t propagating in the z direction, one can

see that the right-hand side (RHS) becomes9

1

ε0c2
∂2

t PNL(r, t)e−i(κ0z−ν0t) = −
ν2

0

ε0c2

(

1 +
i

ν0
∂t

)2

p(r, t)+c.c.. (S42)

This is the starting point for implementing the slowly varying envelope approximation (SVEA). It usually involves moving

to the frame moving with the pulse group velocity κ−1
1

, and then neglecting terms with second derivatives in the propagation

direction. Let us sketch the procedure here:

• The retarded frame is defined as z′ = z and τ = t − z/3g = t − κ1z.

• Thus, ∂z = ∂z′ − κ1∂τ, and ∂t = ∂τ =⇒ ∂2
z = ∂

2
z′ − 2κ1∂z′∂τ + κ

2
1
∂2
τ.

• The wave equation thus becomes

(

∇2
⊥ + ∂

2
z′E − 2κ1∂z′∂τ + 2iκ0∂z′ + 2iκ1D̄∂τ + 2κ0D̄

)

E = −
ν2

0

ε0c2

(

1 +
i

ν0
∂τ

)2

p. (S43)

• Now the SVEA in space is valid when the pulse is longer than just a few wavelengths so that ∂2
z′E � κ0∂z′E. With this

approximation

(

∇2
⊥ − 2κ1∂z′∂τ + 2iκ0∂z′ + 2iκ1D̄∂τ + 2κ0D̄

)

E = −
ν2

0

ε0c2

(

1 +
i

ν0
∂τ

)2

p. (S44)

• Moreover, one can also implement a SVEA in time since10 κ1/κ0 = (3ph/3g)ν−1
0
≈ ν−1

0
where 3ph and 3g are the phase and

group velocities respectively. When the pulse length Tpulse is long enough to contain more than just a few optical cycles,

with Toptical = 2π/ν0, within the envelope, then (κ1/κ0)∂τ ≈ Toptical/Tpulse � 1 so that

(

∇2
⊥ + 2iκ0∂z′ + 2κ0D̄

)

E(r, t) = −
ν2

0

ε0c2
p(r, t), (S45)

where the time derivative of the slowly varying polarization envelope has been ignored, compared to the constant term, on

the same basis that Toptical/Tpulse � 1. This approximation of the polarization term on the right hand side of eq. (S44) is

equivalent to neglecting the self-steepening effect [11].

8 This is achieved by multiplying the equation by e−i(ν−ν0)t and integrating

over all values of ν − ν0. Recall that PNL(r, t) =
∫

PNL(r, ν)e−iνtdν/2π.

9 Here we can write

∂2
t P(r, t)e−i(κ0z−ν0t) = ∂2

t

(

p(r, t)ei(κ0z−ν0t)
)

e−i(κ0z−ν0 t)

=
(

−ν20 − 2iν0∂t + ∂
2
t

)

p(r, t)

10 This is not true, for example, in slow light materials.
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Setting up some important relations

In the case of the inhomogeneous effective medium, we need to investigate some relation between the effective medium

quantities and the one of the physical material before delving into the derivation of the NLSE. We have seen that the dielectric

permeability and the magnetic one can be written in frequency space as

ε̃(E, r, ω) = ε0εsp(r)
(

1 + χ(1)(ω) + 3χ(3)|E|2/Ω
)

(S46)

µ̃(r, ω) = µsp(r)µ0 (S47)

where χ(1)(ω) is the material linear dielectric permeability, including the effect of dispersion. Note also that εsp(r) = µsp(r) in

isotropic coordinates (that we are working with), so that nsp(r) ≡ √εspµsp = εsp(r). Thus, we have

ñ(ω, r) = nsp(r)n(ω) = cεsp(r)

√

µ0ε0(1 + χ(1)(ω)). (S48)

In the wave equation eq. (S31), we have the term −µ̃ε̃`ν2E with ε̃` = ε0εsp(1+χ1(ω)) . In light of the previous considerations,

this term can be written as

− µ̃ε̃`ν2E = −(ñ2/c2)ν2E. (S49)

When we move to the frequency space for the effective medium, we use the conjugate variable (ν) to Minkowski time. As we

already noticed, this is related to the frequency measured by an observer at rest with respect to the medium in curved spacetime

by ν = ω
√−g00. The effective dispersion relation is thus

ñ2ν2 = c2κ̃2, (S50)

as previously discussed (see eq. (S33)). In expanding in power series κ̃ around ν0 we will then have

κ̃ = κ̃0 + κ̃1(ν − ν0) + D̃ . (S51)

By comparing the dispersion relation in curved spacetime and the one of the effective medium it is easy to see that

κ̃0 =
√−g00nspκ0 (S52)

κ̃1 = nspκ1 (S53)

κ̃2 = (nsp/
√−g00)κ2 D̃ =

1

2
κ̃2(ν − ν0)2 + ... = nsp

√−g00D , (S54)

where the κi(ω0) appearing in these expressions are the analogues of their tilded versions, i.e.,

κ0 = κ|ω0
(S55)

κ1 = ∂ωκ|ω0
(S56)

κ2 = ∂
2
ωκ|ω0

, (S57)

and refer to the tabulated optical properties of the physical medium we are considering.

The expression in eq. (S53) implies that the group velocity in the effective medium is related to the physical one in curved

spacetime by

3̃g = 3g/nsp. (S58)

Note that this is consistent with the way the phase-velocity in the effective medium is related to the one in curved spacetime via

3̃ph ≡ 1/ñ = 1/(nspn) = 3ph/nsp. More in general, this is consistent with the relation between the coordinate velocity 3̃ = dx/dt,

characterizing the propagation in the effective medium in flat spacetime, and the velocity with respect to an observer comoving

with the dielectric 3 = dχ/dτ where τ =
√−g00t is the proper time with respect to the stationary observer and χi = xi/

√
Ω

represents the proper length. Indeed, we see immediately that 3 = dχ/dτ = 3̃nsp.
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Derivation of the NLSE for the effective medium

First let us notice that, in order for the effective medium description to be equivalent to the physical one in curved spacetime,

we need to require that:

1. the dielectric permeability and magnetization are dependent on the radial coordinate with the expressions given in the

previous section

2. dispersion enters via the physical frequency ω = ν/
√−g00 which corresponds to a position dependent correction to the

Fourier variable ν.

Note that the rest of the relations in the previous section are not necessary in the derivation of the NLSE, but they are nonetheless

important for connecting the effective medium properties with the ones of the physical medium in curved spacetime.

In order to derive the NLSE in this case, we go back to the wave equation in eq. (S31) that we report here for convenience

∇2E − ∇(∇ · E) + µ̃ε̃`ν
2E = −µ̃ν2PNL − (∇ log(µsp)) × (∇ × E). (S59)

To proceed further, as discussed in the main text, we can make use of the homogeneous Maxwell equation for D in order to

write

∇ · D = 0 =⇒ ∇ · E = −(∇ log ε̃l) · E −
1

ε̃l

∇ · PNL

−∇(∇ · E) = (E · ∇)∇ log ε̃l +
(

(∇ log ε̃l) · ∇
)

E + (∇ log ε̃l) × (∇ × E) + ∇
(

1

ε̃l

(∇ · PNL)

)

,

where we have used that E × (∇ × ∇ log ε̃l

)

= 0 since the curl of the gradient vanishes. We obtain

∇2E + µ̃ε̃`ν
2E = −µ̃ν2PNL − ∇

(

1

ε̃l

(∇ · PNL)

)

− (E · ∇)∇ log εsp −
(

(∇ log εsp) · ∇
)

E −
(

∇ log µsp + ∇ log εsp

)

× (∇ × E). (S60)

As discussed in the main text, eq. (S60) does not allow, in general, to write down a scalar propagation equation since even by

starting from a linearly polarized electric field we end up having coupled equations between all the components of the electric

field. This is in general also true whenever one does not ignore the vectorial term ∇(∇ · E).

In order to bypass these problems, we resort to considering two cases of interest, which are the ones analyzed in the main text.

See also Fig. S1. Before doing so, let us emphasize that we will be interested in the specific case of a Kerr non-linear medium.

Thus, we write the (slow envelope of the) non-linear polarization of the effective medium as

p(r, t) = 3ε0nsp(r)χ(3)|E|2E/Ω, (S61)

which includes the non-linearity of the material and the contribution coming from the curved spacetime. Using the expression

for κ̃0 in eq. (S52), the term containing the polarization can be written as

−
nsp(r)ν2

0

2κ̃0ε0c2
p(r, t) = −n2ν0nsp(r)ε0|E|2E/Ω, (S62)

where n2 = 3χ(3)/2n(ω0)cε0 is the nonlinear index of the Kerr material. As before, we are also going to neglect the self-

steepening effect [11]. Furthermore, in our simulations we use the parameters of a single-mode, fused silica optical fiber

employed in [4] that we summarize here in Tab. I.

Horizontal propagation

As we have seen in the main text, considering linearly polarized light propagating – in a medium stationary on Earth – for

distances much smaller than Earth’s radius, the horizontal motion can be considered as happening at constant radius r ≥ r⊕. We

can then follow the derivation in [4] where the pulse propagation in a single-mode optical fiber was considered.

In a nutshell, whenever the coefficients in eq.(S59) are constant, so that the very last term vanishes since ∇ log(µsp) = 0, we

find an equation

∇2E − ∇(∇ · E) + µ̃ε̃`ν
2E = −µ̃ν2PNL, (S63)



8

Symbol Name Value

Soliton pulse properties from [4]:

T0 Duration (this corresponds to 70 fs total pulse length) 40 fs

Es Generating pulse energy (not used, only for reference) 5 pJ

λ0 = 2πc/ν0 central soliton wavelength 803 nm

Fiber properties:

κ0(ν0) n(ν0)ν0/c, assuming n(ν0) = 1.5 1.17 · 107 /m

κ1(ν0) 1/3g(ν0), assuming 3g(ν0) = 0.65c 5.13176 · 10−9 s/m

κ2(ν0) Group velocity dispersion from [4] −9.5 · 10−27 s2/m

n2 Kerr non-linearity of silica from [29] 2.19 · 10−20 m2/W

Aeff Effective transverse mode area π (1.6 µm/2)2

Properties of fused silica:

P11 22 Component for transverse stress of the photoelastic tensor from [30, 31] 0.271

cs Speed of sound tabulated in [32] 5720 m/s

Miscellaneous:

r⊕ Earth equatorial radius 6378137 m

rS (Earth) Schwarzschild radius of Earth 9 · 10−3 m

TABLE I: Specifics of all the parameters entering the numerical simulations of the NLSE(s). The material parameters are

extrapolated from Philbin et al. [4], κ0/ν0 = 1.5/c and κ−1
1
≈ 0.65c. Consistently, we use the properties of the Crystal Fibre

NL-PM 750 from NKT photonics [4].

which is equivalent to eq. (S1) of [4] in frequency space.

Following [4], and considering the propagation of light pulses in an optical fiber, this equation can be solved by separation

of variables between an amplitude that depends on the propagation direction and a vectorial part depending on the transverse

directions, i.e., E(ν, r) = E(ν, z)U(ν, x, y) in frequency space and with U(ν, x, y) a 3-dimensional vector. By solving the eigenvalue

problem for the transverse part, we then remain with a one-dimensional problem given by

∂2
z E(z) +

ñ2

c2
ν2E(z) = −µ̃ν2PNL(z) (S64)

where the refractive index is set by the eigenvalue of the transverse fiber mode and accounts for the property of the fiber’s core

and of the transverse profile. In our case, we can then assume to start directly from this equation, where the property of the

effective medium accounts also for the non-trivial spacetime background via nsp.

At this point, the derivation of the NLSE proceeds as in the standard case discussed above. We introduce the field scalar

amplitude via E(z, ν) ≈ E(z, ν − ν0)eiκ̃0z in our equation to obtain

∂2
zE + 2iκ̃0∂zE + [κ̃2(ν) − κ̃20]E = −ν2µ̃PNLe−iκ̃0z. (S65)

We then proceed as before by expanding

κ̃ = κ̃0 + κ̃1(ν − ν0) + D̃ (S66)

to get, neglecting D̃2 terms and converting back to the time domain,

(

∂2
z + 2iκ̃0(∂z + κ̃1∂t) + 2iκ̃1

¯̃
D∂t + 2κ̃0

¯̃
D − κ̃21∂2

t

)

E(z, t) = µ̃∂2
t (PNL(z, t)) e−i(κ̃0z−ν0t), (S67)

where ¯̃
D = −(κ̃2/2)∂2

t + ... in complete analogy with the standard derivation outlined above.

At this point, by neglecting the second derivatives in z as well as terms (κ̃1/κ̃0)∂t and using eq. (S62) we arrive at eq. (20) of

the main text, i.e.,

i(∂z + κ̃1∂t)E −
κ̃2

2
∂2

t E = −n2ν0nsp(r⊕)ε0

|E|2
Ω
E. (S68)
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FIG. S1: Geometry of the problem. The two cases considered are labelled by (i) and (ii). In (i), the light pulse propagates in a

horizontal fiber positioned at r⊕ = r ∼ constant. In (ii), the light pulse propagates in a vertically positioned fiber.

Radial motion

As we already discussed, in the case of vertical motion, in which we identify the radial direction with the propagation direction

along z with r = r⊕ + z, the effective medium becomes a gradient-index medium with the refractive index changing along the

propagation direction. We assume that all the quantities entering the wave equation depend solely on z. Upon considering

linearly polarized light along a direction orthogonal to z, we end up with the system of three decoupled equations in eq. (22) of

the main text that we report here for completeness

∂2
z Ex(y) + µ̃ε̃`ν

2Ex(y) = −µ̃ν2PNL,x(y) − (∂z ln ε̃`)∂zEx(y) + (∂z(ln ε̃` + ln µ̃)) ∂zEx(y) (S69)

∂2
z Ez + µ̃ε̃`ν

2Ez = −µ̃ν2PNL,z − ∂z

(

1

ε̃`
∂zPNL,z

)

− 2(∂z ln ε̃`)∂zEz − Ez∂
2
z ln ε̃` (S70)

We can then: (1.) use the ansatz Ex(z, t) ∝ E(z, t)ei(κ̃0(z)z−ν0t) + cc.; (2.) proceed as before in expanding the dispersion relation

around the central frequency, i.e., expanding κ̃(z, ν) around ν0; (3.) neglect D̃2 terms, to arrive at

1

2κ̃0
∂2

zE + i(∂z + κ̃1∂t)E −
κ̃2

2
∂2

t E − 2i
κ̃1κ̃2

4κ̃0
∂3

t E −
κ̃2

1

2κ̃0
∂2

t E + 2i
∂zκ̃0

2κ̃0
E + 2iz

∂zκ̃0

2κ̃0
∂zE + iz

∂2
z κ̃0

2κ̃0
E − z∂zκ̃0E − z2 (∂zκ̃0)2

2κ̃0
E (S71)

= −n2ν0nsp(r)ε0|E|2E/Ω +
∂z ln nsp

2κ̃0
(iκ̃0E + ∂zE + iz(∂zκ̃0) E).

Upon using the SVEA approximation(s), that entail that ∂2
zE � κ0∂zE and (κ̃1/κ̃0)∂t � 1, we then obtain the NLSE given by

eq. (24) in the main text. It should also be noted that, in the weak field approximation, the terms −z2
(

(∂zκ̃0)2/(2κ̃0)
)

E and

(∂z ln nsp)/(2κ̃0)iz(∂zκ̃0)E are negligible since at least quadratic in rS /r⊕.

SOLUTION OF THE 1D EQUATIONS

As discussed in the main text, in the case of horizontal propagation and considering a material with anomalous dispersion, we

can solve eq. (20) analytically. Borrowing the solution from eq.(S74) of the supplementary material in [4] the analytical solution

is given by (see also Fig. S2)

E(t, z) =

√

Ω|κ̃2|
ν0n2nspε0T 2

0

cosh

(

t − κ̃1z

T0

)−1

exp













iz|κ̃2|
2T 2

0













, (S72)

where T0 is the pulse length, and 1/κ̃1 is its speed of propagation. This solution reduces exactly to eq.(S4) of [4] in the limit of

rS → 0. Note that the propagation speed of the soliton is 3̃g(ν0) = 3g(ω0)/nsp. This is exactly the proper velocity with respect to

the observer’s proper time and proper length in curved spacetime, as found above in eq. (S58).
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FIG. S2: Propagation of the 1D analytic soliton, eq. (20), for rS = 9 × 10−3 m and r⊕ = 6 × 106 m.

In the case of the vertical propagation, we solve eq. (24) by way of the split-step Fourier method as showcased in [11]. In

particular, we have adapted the Matlab code reported in [11] to our needs. In solving numerically the NLSE, we assign as initial

temporal profile the soliton solution in flat spacetime of Philbin et al. [4], which coincides with the solution in the horizontal 1D

propagation at z = 0 and for rS → 0.

Schematically, the split-step Fourier method consists in rewriting the NLSE as

∂zE =
(

D̂ + N̂
)

E, (S73)

where the non-linear operator N̂ = N̂(z, |E|2) accounts for the non-linearity and the diffusive dynamics is enclosed in the operator

D̂ = D̂(z, ∂t). We then need to separate the action of the non-linear term and the dissipative one by dividing the propagation

distance in small steps such that

E(z + h, t) ≈ eN̂h/2eD̂heN̂h/2E(z, t). (S74)

This can be easily accomplished by alternating the use of the fast-Fourier/inverse Fourier transform algorithm in order to apply

D̂ in frequency space as a multiplicative operator and going back to the time domain at each step. Furthermore, since our

operator D̂ = D̂(z, ∂t) depends on the z coordinate, a more precise implementation of the method would see to apply at each step

exp

(

∫ z+h

z
D̂

)

, which however is well approximated by eD̂h in our simulations.

PHOTOELASTICITY – INCLUDING THE EFFECT OF MATERIAL DEFORMATION ON THE REFRACTIVE INDEX

As we have discussed so far, the optical medium in curved spacetime turns out to be equivalent to an effective one in flat

spacetime, where the optical properties have a contribution coming from the curved spacetime background. However, whenever

our physical medium is stationary in a curved spacetime, i.e., it follows the trajectories of the timelike Killing vector, it will also

be subject to forces that can deform it. As discussed in the main text, deformations due to gravity of our physical medium lead

to a change in the refractive index via the photoelastic effect [17].

Given our previous considerations, we will be interested in the effect of photoelasticity only for the vertical propagation

equation. In order to include this effect and separate the contributions coming from the curvature of spacetime and the inertial

acceleration of the fiber, we follow the discussion in [18] on the description of a deformable resonator. We choose to ignore the

potential effects of photoelasticity on the nonlinear properties of the material, i.e., the nonlinear susceptibility χ(3), as they would

be mediated through different mechanisms compared to the effect on the linear refractive index.

Consider then the situation depicted in Fig. S3. A fiber of length L and constant mass density ρm is hanging from a support

located at r = r0 ≡ r⊕ + L. In Schwarzschild spacetime, for an observer given by the stationary Killing vector ∂t/‖∂t‖, the
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FIG. S3: Geometry of a fiber hanging in a weak gravitational field.

proper acceleration of the observer fixed at the support, i.e., an observer at constant radius in isotropic coordinates, and the local

curvature projected into the proper detector frame of this observer are given by [33]

aJ =





















0, 0,

rS

2r2
0

c2

(

1 − rS

4r0

) (

1 +
rS

4r0

)3





















(S75)

R0J0J =
rS

r3
0

(

1 +
rS

4r0

)6

(

1

2
,

1

2
,−1

)

, (S76)

where we chose for the z direction to be aligned radially. Furthermore, consistently with the notation we have used so far, we

want to consider the origin of our coordinate at r = r⊕. This entails shifting z → z − L to translate the origin from the support

at r0 to r = r⊕. Note that the proper detector frame is determined by an orthonormal tetrad Fermi-Walker transported along the

timelike trajectory of the support of the fiber which, in our set-up, corresponds to a stationary observer [34].

We can now compute the acceleration of test particles in the proper detector frame by following the derivation in [18]. At

linear order in (z − L)/(r⊕ + L), the acceleration is given by az
p = −

(

az + c2R0z0z(z − L)
)

. It should be noted that this expression

is derived by neglecting acceleration squared terms in the proper detector frame metric as well as working at first order in the

perturbations around flat spacetime (see discussion in [18]). This calls for care when wanting to extrapolate these expressions as

generally valid. Each segment of the fiber is then stressed by the force Fz(z) of the parts of the fiber hanging “below” it

Fz(z) =

∫ z

0

dz′ρmA�az
p(z′) = −ρmA�c2 rS

2r2
0





















z
(

1 − rS

4r0

) (

1 +
rS

4r0

)3
− z2 − 2Lz

r0

(

1 +
rS

4r0

)6





















, (S77)

where A� is the cross-section of the fiber.

More generally, the fiber is subject to a stress σkl = Fk/Al, where Fk is the force in direction êk and Al is the differential area

normal to êl upon which the force acts, caused by the inertial and tidal forces within the fiber. As long as we are considering

strains within the elastic limit of the material, which is the case of interest here, we can employ Hooke’s law and find that the

strain in the fiber is Skl = σkl/Y , where Y is the Young modulus of the material. The relation to the electric permeability tensor

εr is then given by ∆(εr)
−1
kl
= Pkl mnSmn, where P is the photoelastic tensor [17]. The fact that the change in the inverse of εr is

linear in the strain holds for small or moderate strain. Limiting ourselves to isotropic materials, and a diagonal stress tensor, the

equations reduce in complexity to

∆(εr)
−1
kk = Pkk llSll =

Pkk ll

Y
σll (S78)

In our set-up, the stress and then the strain on the fiber are given explicitly by

σzz(z) =
F(z)

A�
= ρmc2 rS

2r2
0





















z
(

1 − rS

4r0

) (

1 +
rS

4r0

)3
− z2 − 2Lz

r0

(

1 +
rS

4r0

)6





















(S79)

Szz(z) =
c2

c2
s

rS

2r2
0





















z
(

1 − rS

4r0

) (

1 +
rS

4r0

)3
− z2 − 2Lz

r0

(

1 +
rS

4r0

)6





















, (S80)
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FIG. S4: Comparison between the full expression for ∆εr and the approximate one that are appearing in eq. (S81). Left panel:

Here we have used the parameters tabulated in Tab. I and chosen a quite large rS = 3 km. The solid, blue curve represents the

approximate expression for ∆εr, the dashed red curve the exact value of ∆εr, while the dot-dashed black curve is the value of εr

in the absence of photoelasticity. We see that (i) the full and approximate expressions start to deviate from propagation

distances O(1m) onward and (ii) for relatively small propagation distances ∆εr is not anymore a small correction to the relative

permeability εr but becomes equal or greater than εr. Central panel: Fractional difference between the full and approximated

expressions for the photoelastic correction ∆εr i.e.,
(

|∆εr |approx − |∆εr |full

)

/
(

|∆εr |full + |∆εr |approx

)

. Here rS goes from zero to 104

times the Schwarzschild radius of Earth and the propagation distance reaches 100 m. We see that the difference between the

two expressions remains below 10%. Right panel: |∆εr |full. The value of ∆εr, for rS from zero to 104 times the Schwarzschild

radius of Earth and propagation distance up to 100 m, is always well below the value of the relative permeability εr ≈ 2.25.

where we used that the speed of sound in the fiber is cs =
√

Y/ρm. Note that the strain and stress have a positive sign due to the

force being directed in the negative z direction or, in other words, since we are considering an elongation of the fiber. Due to the

axial symmetry of the problem, and the irrelevance of two directions orthogonal to the z-axis for the 1D case, the photoelastic

tensor is a scalar.

The perturbation to the electric permeability, promoting εr → εr + ∆εr, is then also a scalar, and is given by

∆εr = −
ε2

r∆(ε−1
r )

1 + ε0
r∆(ε−1

r )
≈ −(ε0

r )2∆(ε−1
r ), (S81)

where εr indicates the electric permeability in the absence of photoelasticity and the last expression holds whenever the photoe-

lastic effect is a small correction to the material properties giving11

∆εr ≈ −(ε0
r )2P11 22Szz(z) = −(ε0

r )2P11 22

c2

c2
s

rS

2r2
0





















z
(

1 − rS

4r0

) (

1 +
rS

4r0

)3
− z2 − 2Lz

r0

(

1 +
rS

4r0

)6





















. (S82)

Photoelasticity represents an additional correction to the electric permeability on top of the other effects accounting for the

effective medium as described in the previous sections. For fused silica, the tabulated values in [30, 31] give P11 22 = 0.271 and

cs = 5720 m/s [32]. Then, from eq. (S81), for a 10 cm long fiber in the gravitational field of Earth, the contribution of the inertial

acceleration (first term in eq. (S82)) at the end of the fiber to ∆εr is on the order 10−8 while the tidal acceleration (second term

in eq. (S82)) contributes a term of order 10−16. Note that, while the tidal contribution is clearly negligible, the correction to the

relative permeability induced by the inertial acceleration is between one and two orders of magnitude greater than the correction

due to the vacuum curved spacetime optical properties in our effective picture as quantified by 1 − εnp ∼ 10−9.

It is easy to check that, considering a P11 22 ≈ 0.271, the approximate expression in eq. (S82) will start to fail around a

propagation length of 2 m if we consider to be at one Earth’s radius distance from an object whose mass corresponds to a

11 Note that here we have ∆(ε−1
r ) = P11 22Szz. The indices are determined by

the fact that we are considering an electric field linearly polarized in the

x direction, we identify {x, y, z} ↔ {1, 2, 3}, and we consider an isotropic

material. Thus, (1) the only component of the perturbation tensor of in-

terest is ∆(ε−1
r )11, (2) the only component of the strain is S 33, and (3) we

have P11 33 = P11 22. See Appendix D of [17] where the notation and the

example of isotropic materials are discussed in detailed.
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Schwarzschild radius of 3 km. Indeed, Fig. S4 shows this failure as well as the fact that for such extreme values of rS , ∆εr starts

to be comparable or greater than εr at propagation distances less than 10 m. At the same time, the same figure shows that, for rS

up to 104 times the one of Earth, both the conditions for the validity of the approximate expression for ∆εr and the fact that the

correction to εr is small are well satisfied.

CONDITIONS FOR VALIDITY OF THE UNIDIRECTIONAL APPROACH

As discussed in the main text, when considering the propagation of a light pulse in a gradient-index medium, we should

account for the fact that the position-dependent refractive index will cause some light to be backscattered – this effect has also

technological application in distributed acoustic sensing for seismology, see [35] and references therein. However, when solving

the NLSE using the SSF method, the boundary condition completely ignores this fact – it would require already knowing the

solution to include the backscattered light in the boundary condition. That this is a drawback of using the NLSE – which is a

unidirectional equation for the validity of which, by definition, back-propagating fields must be negligible – in conjunction with

the SSF method is well known [24, 25].

However, back-propagating fields cannot always be simply ignored. A formalism fully accounting for this issue would require

to solve a system of coupled bidirectional equations, or just solve the full Maxwell equations. However, as argued in [25], we

can define conditions that guarantee us that the backward reflected light is negligible. In our case, this sets a restriction on the

parameter space that we can explore, where the description given by our solution to the NLSE can be trusted. Essentially, this

regime corresponds to the one of weak-field and not large propagation distances. Indeed, physically, for vertical propagation,

longer propagation distances and stronger gravitational accelerations would imply greater changes to the refractive index giving

potentially rise to non-negligible back-propagating fields. To make this observation more quantitative, we follow here [25] where

a more detailed discussion can be found.

We start from eq. (22) that we report here for convenience

∂2
z Ex + µ̃ε̃`ν

2Ex = −µ̃ν2PNL,x + (∂z ln µ̃)∂zEx. (S83)

Following [25], we can rewrite this equation as

(∂2
z + β

2)Ex(z) = −Q(z, Ex), (S84)

where β is a reference momentum that can contain the dispersive character of the physical medium but no z dependence and

that forms our underlying dynamics on top of which we have some perturbation encoded in Q, the residual terms. In our case, a

sensible choice for β is

β2 =
n2

0
ν2

c2
, (S85)

where n0 =
√
εr(ω̄0) is the material refractive index without any additional effect from the spacetime (and ignoring the effect of

redshift combined with the dispersion of the material) and not accounting for the photoelasticity. With this choice we have12

− Q(z, Ex) = −µ̃ν2PNL,x(z) + (∂z log µ̃)∂zEx(z) + β2[1 − n2
sp(1 + ∆εr/εr)]Ex(z). (S86)

Now, we can decompose the field in forward and backward directed (in time) fields Ex = E+ + E− and find the equivalent

system of two equations [25]

∂zE± = ±iβE± ±
i

2β
Q. (S87)

The question is then when, starting with E− = 0, E− remains negligible. Indeed, if E− remains negligible then we are left with a

unidirectional equation and, more importantly, we know that the reflected light can be safely neglected even in comparison with

the unperturbed propagation in flat spacetime in a linear medium.

12 In a nutshell, from eq. (S83) we have

∂2
z Ex + µ0ε0(εr + ∆εr)ν2µspεspEx = −µ0µspν

2PNL,x + (∂z ln µ̃)∂zEx

Writing then µ0ε0(εr + ∆εr)ν2µspεsp = µ0ε0ν
2εr(1 − (1 − n2

sp)) +

µ0ε0ν
2n2

sp∆εr we arrive at

∂2
z Ex + β

2Ex = β
2

[

1 − n2
sp

(

1 +
∆εr

εr

)]

Ex − µ0µspν
2PNL,x + (∂z ln µ̃)∂zEx
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FIG. S5: Panel (a) shows the right-hand side of the slow-evolution condition of eq. (S88) in the case in which photoelasticity is

not considered; Panel (b) shows the same when also photoelasticity in included. We see that without photoelasticity the

condition is very well satisfied for a large set of parameters. When including photoelasticity, we see violations of the condition

for values of rS or the propagation length for which, from Fig. S4 and the corresponding discussion, we know that the ∆εr starts

to be not anymore a small correction to the relative permeability.

Photoelasticity is the main culprit for the possible significance of the reflected light since, as we have argued before, it is the

dominant effect giving rise to an effective gradient-index medium. It enters only in the term linear in the electric field. Thus,

we focus solely on this term in the following. As discussed in [25], the first condition for the backward propagating light to be

negligible is that the residual terms contained in the term Q/2β in eq. (S87) are negligible with respect to βEx. This translates to

the condition

1 − n2
sp(1 + ∆εr/εr) � 1. (S88)

The second condition arises from considering the backward-evolving part of E−(cf. the discussion in the appendix of [25])

∂zE−, backwards ≈
∂zχ

(k + β)2
, (S89)

where Q = χEx and k2(z) ≡ β2 +
Q(z)

Ex(z)
. For small Q and ignoring non-linearities, requiring that the change in the medium

parameters does not cause significant back-propagation on the order of a wavelength leads to

∂z

(

n2
sp(1 + ∆εr/εr)

)

(3/2 + n2
sp(1 + ∆εr/εr))2

� β. (S90)

This no-accumulation condition requires that the derivative of the backpropagating fields is negligible and encodes the fact that

there is no-accumulation of the reflected light giving in the end a non-negligible contribution.

From Fig. S5 and Fig. S6 we can see that, in the absence of photoelasticity, i.e., considering a rigid dielectric, these conditions

are very well satisfied for the parameters in our simulations also when considering relatively large values of rS and propagation

lengths. When turning on photoelasticity, the situation changes, and we can arrive to regimes of large rS and large propagation

distances where the conditions are not satisfied anymore. In particular, from Fig. S5 and Fig. S6 we see that the main limiting

factor is the slow-evolution condition. However, it should be noted that the slow-evolution condition starts to be violated in

the same range of parameters in which ∆εr cannot anymore be considered a small correction and when it is arguable if the

treatment of the photoelasticity as linear in the stresses is valid. To corroborate these observations, in the regime in which the

slow-evolution condition is clearly violated we observe a non-negligible energy loss in the numerical solutions of the vertical

propagation equation (see Fig. S7).
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FIG. S6: Panel (a) shows the no-accumulation condition by depicting the ratio between the left and the right-hand sides of

eq. (S90) in the case in which photoelasticity is not considered; Panel (b) shows the same when also photoelasticity in

included. We see that this condition is actually well satisfied in both cases, while it remains that without photoelasticity the

condition is much better satisfied. This analysis shows that the slow-evolution condition is the relevant one for the problem that

we are considering.

COEFFICIENTS FOR THE NUMERICAL SIMULATIONS:

Finally, we report here the explicit expressions for the different coefficients entering the vertical propagation equation that we

use in our simulations.

First, let us recall that, when including photoelasticity, we have

n(ω) =
√

εr(ω) + ∆εr(ω) =
√

1 + χ1(ω) + ∆εr(ω) =
√

n0(ω)2 + ∆εr(ω), (S91)

where n0(ω) is the refractive index in the absence of photoelasticity. We can then proceed to compute all the κi coefficients of

interest

κ0 = κ|ω0
(S92)

κ1 = ∂ωκ|ω0
(S93)

κ2 = ∂
2
ωκ|ω0

, (S94)

where κ = nω/c. We start from κ0, where we have

κ0(ω0) =
n(ω0)ω0

c
. (S95)

We now consider the case in which the pulse propagates from the bottom of the vertically oriented fiber, which is the case we

simulate numerically. We thus refer the various quantities of interest to the initial physical frequency ω̄0, i.e., the frequency

measured by the stationary observer at the bottom of the fiber. We can then write

κ0(ω0) =

n

(

ω̄0

√
−g00(r⊕)√
−g00(r⊕+z)

)

ω̄0

√
−g00(r⊕)√
−g00(r⊕+z)

c
. (S96)

Note that, even for extreme values of rS and z, like rS = 10−2r⊕ and z = 100 m we have that 1 −
√

−g00(r⊕)/
√

−g00(r⊕ + z) is

negligible when considering the dispersive properties of realistic materials at the optical frequencies of interest, i.e., the changes

would be on scales way too fine-grained with respect to the tabulated values of the refractive index at the µm scale [36]. To

account for this fact, calling ζ = 1 −
√

−g00(r⊕)/
√

−g00(r⊕ + z) we perform an expansion of eq. (S96) at the first order in ζ.

In the following we report the expressions for all the coefficients necessary to simulate the vertical propagation of the pulse

at first order in ζ. Note however that, for what concerns the simulations reported in the work, we can always safely neglect
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FIG. S7: Energy loss due to photoelasticity. We show the ratio between the final and initial energy

I(L)/I(0) ∼ εr

∫

dt|E|2
∣

∣

∣

z=L
/ εr

∫

dt|E|2
∣

∣

∣

z=0
, in the proper detector frame. The orange, square points correspond to the case of a

propagation length of 1 m while the blue, round points to a propagation length of 0.1 m. The lines represent the linear fit of the

corresponding data. We obtain slopes of −360.3rs/r⊕ and −43.2rs/r⊕ respectively. The green, rhomboidal points correspond to

the case without photoelasticity and are compatible with energy conservation up to a negligible energy loss accounted for by

purely gravitational redshift.

also the corrections to the zeroth order terms for all the κ̃i. The same holds true also for the terms ∂zκ̃0 and ∂2
z κ̃0 as far as

photoelasticity is considered since the z−dependence is dominated by the photoelasticity. However, when considering the case

with no photoelasticity, neglecting the z−dependence coming from the redshift factors in κ0 amounts to a relative error of one

part in 103. While still small, we have performed the simulations in which photoelasticity is not included considering also the ζ

corrections in full to account for this small discrepancy.

The full expression including all the corrections at order ζ are reported in the following. Starting with κ0 we have

κ0(ω0) ≈ κ0(ω̄0) − ζω̄0κ1(ω̄0) (S97)

= κb0

√

1 +
∆εr

εr

− ζ

























κb0

√

1 +
∆εr

εr

+
ω̄2

0

c

ε′r + ∆ε
′
r

2n0

√

1 + ∆εr

εr

























,

where κ1(ω̄0) = (n(ω̄0) + ω̄0∂ωn|ω̄0
)/c, while n0 and κb

0
are the tabulated refractive index and corresponding κ0 of the material,

without photoelasticity, i.e. n0 =
√
εr(ω̄0) and κb

0
= ω̄0n0/c, and a prime indicates the derivative with respect to the frequency.

Note that ε′r = χ
′
1
. We derive the expression for the latter, in terms of tabulated values, below. Before doing so, however, let

us compute the derivatives of κ̃0 at first order in ζ. Using the fact that κ̃0 =
√

−g00(r⊕ + z)nsp(z)κ0(ω0), we find

∂zκ̃0 ≈κb0
√

−g00(r⊕)

























∂znsp

√

∆εr

εr

+ 1 +
nsp∂z∆εr

2εr

√

∆εr
εr
+ 1

























+
ω̄2

0

4c(∆εr + εr(ω̄0))3/2

[

−2ζ(∂znsp)
√

−g00 (r⊕ + z)(∆εr + εr(ω̄0))
(

∆ε′r + ε
′
r

)

(S98)

−2ζnsp(∂z∆ε
′
r)

√

−g00 (r⊕ + z)(∆εr + εr) + ζnsp(∂z∆εr)
√

−g00 (r⊕ + z)
(

∆ε′r + ε
′
r

)

−2nsp(∂zζ)
√

−g00 (r⊕ + z)(∆εr + εr)
(

∆ε′r + ε
′
r

) − 2ζnsp∂z

√

−g00(r⊕ + z)(∆εr + εr)
(

∆ε′r + ε
′
r

)

]

,
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∂2
z κ̃0 ≈κb0

√

−g00(r⊕)

























∂2
z nsp

√

∆εr

εr

+ 1 +
∂znsp(∂z∆εr)

εr

√

∆εr
εr
+ 1

+ nsp

























∂2
z∆εr

2εr

√

∆εr
εr
+ 1

− (∂z∆εr)
2

4ε2
r

(

∆εr
εr
+ 1

)

3/2

















































(S99)

−
ω̄2

0

√

−g00(r⊕ + z)ζ(∂2
z nsp)

(

∆ε′r + ε
′
r

)

2c
√
∆εr + εr

−
ω̄2

0
(∂znsp)

(

2ζ(∂z

√

−g00(r⊕ + z))(∆εr + εr)
(

∆ε′r + ε
′
r

) −
√

−g00(r⊕ + z)ζ∂z∆εr

(

∆ε′r + ε
′
r

)

)

2c(∆εr + εr)3/2

−
ω̄2

0
(∂znsp)

(

2
√

−g00(r⊕ + z)ζ(∂z∆ε
′
r)(∆εr + εr) + 2

√

−g00(r⊕ + z)(∂zζ)(∆εr + εr)
(

∆ε′r + ε
′
r

)

)

2c(∆εr + εr)3/2

−
ω̄2

0
nsp

(

4(∆εr + εr)
(

2(∂z

√

−g00(r⊕ + z))(∆εr + εr) −
√

−g00(r⊕ + z)∂z∆εr

)

(

ζ(∂z∆ε
′
r) + (∂zζ)

(

∆ε′r + ε
′
r

))

)

8c(∆εr + εr)5/2

−
ω̄2

0
nsp

(

−ζ (∆ε′r + ε′r
)

(

−4(∂2
z

√

−g00(r⊕ + z))(∆εr + εr)
2 + 4(∂z

√

−g00(r⊕ + z))∂z∆εr(∆εr + εr) + 2
√

−g00(r⊕ + z)∂2
z∆εr(∆εr + εr)

))

8c(∆εr + εr)5/2

−
ω̄2

0
nsp

(

−ζ (∆ε′r + ε′r
)

(

−3
√

−g00(r⊕ + z)(∂z∆εr)
2
))

8c(∆εr + εr)5/2
−
ω̄2

0
nsp

(

4
√

−g00(r⊕ + z)(∆εr + εr)
2
(

ζ(∂2
z∆ε

′
r) + 2(∂z∆ε

′
r)(∂zζ) + (∂2

z ζ)
(

∆ε′r + ε
′
r

)

))

8c(∆εr + εr)5/2

Considering that

∆εr = −
ε2

r∆(ε−1
r )

1 + εr∆(ε−1
r )
, (S100)

with

∆(ε−1
r ) =

c2P1122rS

(

z
(

1− rS
4(L+r⊕ )

)(

rS
4(L+r⊕ )

+1
)3 − (z−L)2−L2

(L+r⊕)
(

rS
4(L+r⊕ )

+1
)6

)

2c2
s(L + r⊕)2

(S101)

we also have

∂z∆εr = −
ε2

r∂z∆(ε−1
r )

(εr∆(ε−1
r ) + 1)2

(S102)

∂2
z∆εr =

ε2
r

(

2εr(∂z∆(ε−1
r ))2 − (εr∆(ε−1

r ) + 1)∂2
z∆(ε−1

r )
)

(εr∆(ε−1
r ) + 1)3

. (S103)

Moving on, for κ1 we need

κ1(ω0) = (n(ω0) + ω0∂νn(ν)|ω0
)/c (S104)

We proceed with the same approximation at first order in ζ as done above. We get

κ1(ω0) ≈c−1















√

εr + ∆εr + ω̄0

ε′r + ∆ε
′
r

2
√
εr + ∆εr

√

−g00(r⊕)
√

−g00(r⊕ + z)















(S105)

+ c−1

[

ζ

(

1

2
ω̄0

(−ω̄0∆ε
′′
r − ω̄0ε

′′
r√

∆εr + εr

+

(

ω̄0∆ε
′
r + ω̄0ε

′
r

2(∆εr + εr)3/2
− 1
√
∆εr + εr

)

(

∆ε′r + ε
′
r

)

))]

,

where all quantities on the right-hand side are evaluated at ω̄0.

Following the same notation as before, we indicate with κb
1

the tabulated optical parameter for the material without photoelas-

ticity. This tabulated quantity enters the previous expression through ε′r = χ
′
1
(ω̄0). Indeed, from κb

1
= (n0 + ω̄0∂νn0(ν)|ω̄0

)/c, we

have

κb1 = c−1(n0 + ω̄0∂νn0(ν)|ω̄0
) = c−1

(

n0 + ω̄0

χ′
1

2n0

)

, (S106)

from which we can read χ′
1
= 2c2

(

−(κb
0
)2 + κb

0
κb

1
ω̄0

)

/ω̄3
0
.
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We thus remain with identifying ∆ε′r. Let us consider the full form of ∆εr in eq. (S100) and notice that ∆(ε−1
r ) in there, as

given in eq. (S101), does not depend on the frequency but only on the stresses and strains. Thus we get,

∆ε′r = −
ε′rεr∆(ε−1

r )
(

2 + εr∆(ε−1
r )

)

(1 + εr∆(ε−1
r ))2

, (S107)

with

ε′r = χ
′
1, (S108)

Finally, under the same assumption as before, we have

κ2(ω0) = c−1(2n(ν)′|ω0
+ ω0n(ν)′′|ω0

). (S109)

Thus we end up with

κ2(ω0) ≈c−1















∆ε′r + ε
′
r√

∆εr + εr

+ ω̄0

2 (∆εr + εr)
(

∆ε′′r + ε
′′
r

) − (

∆ε′r + ε
′
r

)

2

4 (∆εr + εr) 3/2

√

−g00(r⊕)
√

−g00(r⊕ + z)















(S110)

+
ζω̄0

(

− (−3ω̄0

(

∆ε′r + ε
′
r

)

+ 4∆εr + 4εr

)

(

2(∆εr + εr)
(

∆ε′′r + ε
′′
r

) − (

∆ε′r + ε
′
r

)2
))

8c(∆εr + εr)5/2

−
ζω̄2

0

(

∆ε′′′r + ε
′′′
r

)

2c(∆εr + εr)1/2
,

where all the quantities on the right-hand side are evaluated at ω̄0.

As before, indicating the tabulated optical property of the material with κb
2

and κb
3

without photoelasticity, it is immediate to

derive an expression for χ′′
1

(ω̄0)

χ′′1 =
2c2

ω̄4
0

(

3(κb0)2 − 4κb0κ
b
1ω̄0 +

(

κb1ω̄0

)2
+ κb0κ

b
2ω̄

2
0

)

, (S111)

and

χ′′′1 =
2c2

(

−12(κb
0
)2 − 6ω̄2

0

(

κb
0
κb

2
+ (κb

1
)2
)

+ ω̄3
0
(κb

0
κb

3
+ 3κb

1
κb

2
) + 18κb

0
κb

1
ω̄0

)

ω̄5
0

(S112)

while

∆ε′′r =
∆(ε−1

r )
(

−εr

(

∆(ε−1
r )εr + 1

) (

∆(ε−1
r )εr + 2

)

ε′′r − 2ε′r
2
)

(

∆(ε−1
r )εr + 1

)

3
, (S113)

and

∆ε′′′r = −
∆(ε−1

r )
(

εrε
′′′
r (∆(ε−1

r )εr + 1)2(∆(ε−1
r )εr + 2) − 6∆(ε−1

r )ε′3r + 6(∆(ε−1
r )εr + 1)ε′rε

′′
r

)

(∆(ε−1
r )εr + 1)4

, (S114)

with

ε′′r = χ
′′
1 and ε′′′r = χ

′′′
1 . (S115)

In Eq.(S112), we also neglect κb
3

since this term is negligible.

WIDTH OF THE PULSE

While until now we have considered only the effect of a gravitational field on the propagation velocity of the optical pulse,

we can also look at the width of the pulse while it propagates. In the horizontal case, the width remains constant, as can be seen

from the analytical solution of eq. (20). In the vertical propagation case, however, this is no longer true. From Fig. S8, we see

that spacetime effects, in conjunction with photoelasticity, reduce the width of the pulse. This is clearly negligible for realistic

values of rS , and it becomes relevant only at extreme values but shows, nonetheless, that gravity has a focusing effect on the

propagating pulse.
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FIG. S8: Left: FWHM (full width at half maximum) of the pulse at z = L normalized by the FWHM of the initial pulse at z = 0

as a function of rS /r⊕ for an initial pulse with T0 = 40 · 10−13 s propagating for 0.1 m. The blue solid line shows the case

including the effect of photoelasticity, the red dotted line represents the case without photoelasticity. Right: pulse FWHM (in

seconds) as a function of the propagation distance z for two different values of rS , again using a pulse with T0 = 40 · 10−13 s,

longer than the one previously considered, for better numerical precision. The green dot-dashed line represents the case without

photoelasticity.


