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1 Summary

1.1 Summary in English

The spacetime mean curvature H2 of a codimension-2 surface Σ in an ambient n + 1-
dimensional spacetime (M, g) is defined as the Lorentzian length of the mean curvature
vector ~H. More precisely,

H2 = g( ~H, ~H).

If Σ is contained within a spacelike hypersurface (M, g) with second fundamental form K
with respect to a timelike unit normal ~n, then

H2 = H2 − P 2,

where H denotes the mean curvature of Σ as a hypersurface in (M, g) and P := trΣ K.
Thus, the notion of spacetime mean curvature can be formally extended to initial data sets
(M, g, K). In a recent paper Cederbaum–Sakovich [24] constructed an asymptotic foliation
of surfaces of constant spacetime mean curvature in asymptotically flat initial data sets
which yields a new notion of center of mass. In time symmetry, this foliation agrees with
the asymptotic foliation by constant mean curvature surfaces first proposed by Huisken–Yau
[54] to define a notion of center of mass. Explicit examples [23, 24] suggest that this new
definition of center of mass remedies some of the deficiencies of the Huisken–Yau center
of mass in general initial data sets. Although H2 is indeed positive for each leaf in the
construction of Cederbaum–Sakovich [24], by definition H2 is allowed to be at least locally
negative in general, and trappend surfaces, where H2 < 0 globally, arise naturally in the
context of General Relativity. This, together with the above observation and the Lorentz
invariance of the spacetime mean curvature suggest it as an appealing geometric quantity to
study for hypersurfaces in an initial data set.

Of course, we can also study the spacetime mean curvature of codimension-2 surfaces
directly in the ambient spacetime, in particular for surfaces restriced to a null hypersurface.
Appealing to this viewpoint, we will always consider the extrinsic curvature of a spacelike
cross section of a null hypersurface as a codimension-2 surface in the ambient spacetime.
Hence, a basis of the normal space will be given by a frame of two null vector fields {L, L}.
As the two null second fundamental forms depend on the choice of null frame along the null
hypersurface, the spacetime mean curvature indeed arises naturally as a frame-independent
geometric quantity for spacelike cross sections of a null hypersurface.

In this thesis, we will consider the spacetime mean curvature in three different contexts: In
asymptotically flat initial data sets we study the evolution of hypersurfaces along a geometric
flow related to their spacetime mean curvature. In hyperboloidal, totally umbilic warped
product graphs in a class of static spacetimes, we give a characterization of surfaces of
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constant spacetime mean curvature under the null energy condition. Furthermore, we study
the geometry of spacelike cross sections of the standard Minkowski lightcone related to their
spacetime mean curvature.

In the case of an asymptotically flat initial data set (M, g, K), we study the evolution
of hypersurfaces along their inverse spacetime mean curvature. We briefly consider smooth
solutions F : [0, T ) × Σ → M of inverse space-time mean curvature flow (STIMCF) given by
the parabolic equation

d

dt
F =

1√
H2

=
1√

H2 − P 2
,

before developing a notion of weak solutions that satisfy a comparison principle. This com-
parison principle allows for solutions to form jumps such that the flow exists for all times
without developing a singularity. This is based on joint work with Gerhard Huisken [53].

Such a notion of weak solutions was first considered by Huisken–Ilmanen [50, 51] for
inverse mean curvature flow. They further showed that the monotonicity of the Hawking
mass under smooth solutions to inverse mean curvature flow first observed by Geroch [43]
and Jang–Wald [82] extends also to weak solutions in 3 dimensions. This allowed Huisken–
Ilmanen [50] to give a proof of the Riemannian Penrose Inequality for connected apparent
horizons in asymptotically flat Riemannian manifolds, as apparent horizons are given by
minimal surfaces in time symmetry. In the general case, apparent horizons are given by
marginally trapped surfaces, so the proof does not directly extend to non-time symmetric
initial data sets (M, g, K), but motivates to generalize the flow in the case of non-trivial
extrinsic curvature K. This was first proposed by Moore in [63] where she studied weak
solutions of inverse null mean curvature flow. Here, we propose inverse space-time mean
curvature flow as another such generalization motivated by the work of Cederbaum–Sakovich
[24].

Similar to inverse null mean curvature flow, a weak solution of inverse space-time mean
curvature flow is a pair (u, ν) of a locally Lipschitz function u and measurable unit vector
field ν. The main result of this section is the existence of weak solutions in maximal,
asymptotically flat initial data sets. The construction closely follows the strategy of Huisken–
Ilmanen [50] and Moore [63]. In particular, the locally Lipschitz function u is obtained
as the sublimit of solutions uε to an elliptic regularisation. The solutions of the elliptic
regularisation to inverse space-time mean curvature flow have first been constructed in the
master thesis of the author [87]. Here, the restriction to maximal initial data sets is necessary
to construct a lower barrier in the interior region. As in [63], the concept of unit normal has
to be extended along jump regions where u remains constant, and is obtained by studying
the limiting behavior of the level-sets of the smooth functions Uε(x, z) := uε(x) − εz in
M × R, where uε are the solutions of the elliptic regularisation. To extract a notion of
unit normal even across jump regions, we heavily exploit that the level sets form a smooth,
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translating solution of inverse space-time mean curvature flow and use a regularity theorem
from geometric measure theory. As we apply the regularity theory in the cylinder M × R,
this restricts our construction to initial data sets of dimensions n ≤ 6.

In the case of hyperboloidal, totally umbilic warped product graphs in a class of static
spacetimes, we give a characterization of constant spacetime mean curvature surfaces under
the null energy condition using an Alexandrov Theorem by Brendle [12]. The characteriza-
tion is independent of the asymptotic behaviour, but heavily relies on the rigid structure of
the ambient spacetime and the fact that the warped product graphs under consideration are
totally umbilic with constant umbilicity factor.

The class of spacetimes under consideration has been extensively studied in spherical
symmetry, see e.g. [21, 83, 85], but also contains the family of Birmingham–Kottler metrics
[9, 56]. In the context of spacetime extensions similar to the Kruskal–Szekeres extension
this class of spacetimes has further been considered in a joint work of Cederbaum and the
author [25], and independently by Brill–Hayward [16] and Schindler–Aguirre [71]. In fact,
we employ the results in [25] to extend the warped product graphs past the Killing horizon
up to the minimal inner boundary to apply Brendle’s Alexandrov Theorem. We note that
under the assumptions made by Brendle in [12] that allow for a characterization of constant
mean curvature surfaces for time symmetric slices, the spacetime satisfies the null energy
condition and admits a spacetime extension as constructed in [25]. Assuming that the
null energy condition is satisfied on the whole of the spacetime extension, we show that
Brendle’s Alexandrov Theorem is applicable also for totally umbilic warped product graphs
and that the characterization of constant mean curvature surfaces leads to a characterization
of constant spacetime mean curvature surfaces. As constant spacetime mean curvature
surfaces agree with constant mean curvature surfaces in time symmetry, this can be seen as
a generalization of Brendle’s Alexandrov Theorem to general totally umbilic warped product
graphs.

In the null case, we give two results for the standard lightcone in the 3 + 1-dimensional
Minkowski spacetime. In this case, all surfaces under consideration are spacelike cross sec-
tions of the lightcone which are conformal to the round 2-sphere. Moreover, the Gauss
equation gives that the spacetime mean curvature H2 is proportional to the scalar curvature
of the spacelike cross section. Due to this relation all surfaces of constant spacetime mean
curvature on the lightcone have constant scalar curvature and are thus round spheres up to
a conformal diffeomorphism in the Möbius group. By the isomorphism between the Möbius
group and the restricted Lorentz group, all surfaces of constant spacetime mean curvature
are hence given by round spheres up to a Lorentz transformation of the ambient Minkowski
spacetime that leave the lightcone invariant. As the spacetime mean curvature fully deter-
mines the intrinsic curvature of the spacelike cross section, all results that we present here
can be also be stated from an intrinsic viewpoint for conformally round 2-surfaces. How-
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ever, by adopting the extrinsic viewpoint we gain additional geometric information on the
spacelike cross sections. In particular, we will define a frame-independent, symmetric (0, 2)-
tensor A which we call the scalar second fundamental form as a tensor-representative for the
full vector-valued second fundamental form ~II carrying the same geometric information for
spacelike cross sections of the lightcone.

As a first result, we show that the Gauss equation further yields an equivalence between
2d-Ricci flow for surfaces of genus 0 and an extrinsic curvature flow, which we will call null
mean curvature flow here, for spacelike cross sections along the Minkowski lightcone. Null
mean curvature flow was first studied by Roesch–Scheuer [67] along general null hypersurfaces
to detect marginally outer trapped surfaces. As no such surfaces exist in the Minkowski
lightcone, the flow develops singularities in finite time. Using the above equivalence to 2d-
Ricci flow, and a classical result first proven by Hamilton [47] we give a full characterization
of all singularities as the flow rescaled by volume will converge to a surface of constant
spacetime mean curvature. In the conformally round case, this result for 2d-Ricci flow was
initially proven by Hamilton [47] under the assumption of strictly positive scalar curvature.
This assumption was eventually removed by Chow [30]. Their strategy relies on a Harnack
inequality and an entropy bound, and yields a proof for the uniformization theorem, cf.
Chen–Lu–Tian [28]. Later, independent proofs in the conformally round case were given by
directly utilizing the uniformization theorem, cf. Bartz–Struwe–Ye, Struwe, and Andrews–
Bryan [1, 7, 77]. Using the equivalence to null mean curvature flow we obtain yet a new proof
of Hamilton’s classical result. Although we only prove it under Hamilton’s initial assumption,
which equivalently states that we assume the mean curvature vector of the initial spacelike
cross section to be spacelike, the proof does not rely on a choice of coordinates and only uses
the maximum principle by studying the evolution of the scalar second fundamental form A.
This is based on recently published single author work [89].

For the second result, we give a quantitative estimate of the fact that the tracefree part
of the scalar second fundamental form

◦

A vanishes if and only if the spacelike cross section
of the lightcone is a surface of constant spacetime mean curvature. More precisely, we show
that if H2 ≥ 0 and the L2 norm of

◦

A is sufficiently small with respect to some a-priori bound
on the spacelike cross section, then the conformal factor is W 2,2-close to the conformal factor
of a surface of constant spacetime mean curvature. This statement can be understood as the
analogue result to the work of De Lellis–Müller [36] in R

3. Similar to the work of De Lellis–
Müller, the proof of the statement consists of two parts:

In the first part, we prove a geometric estimate to show that the difference between
H2 and its mean value in L2 is uniformly controlled by the L2 norm of

◦

A if H2 ≥ 0. We
prove such an estimate in two ways: The first proof follows as an application of null mean
curvature flow and the previously established full characterization of its singularities. The
second proof is modelled on the proof of an almost Schur-lemma by De Lellis–Topping [37]
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using the Bochner formula. Using the estimate obtained by either of those methods, the
second part of the prove then uses elliptic theory to obtain the desired W 2,2-estimates from
the L2 norm of the difference between H2 and its mean value under a suitable balancing
condition. Here, the balancing condition is related to an associated timelike, future-pointing
4-vector of the spacelike cross section in the ambient Minkowski spacetime. This associated
4-vector is closely related to a notion of center in asymptotically hyperbolic manifolds defined
by Cederbaum–Cortier–Sakovich [20]. It moreover transforms equivariantly under Lorentz
transformations of the ambient Minkowski spacetime, which is precisely what allows us to
state the W 2,2-estimate with respect to the uniquely determined surface of constant spacetime
mean curvature that has the same associated 4-vector as the spacelike cross section under
consideration.

As we have seen in all the above cases considered in this thesis, the concept of (constant)
spacetime mean curvature naturally extends considerations for (constant) mean curvature in
the context of General Relativity, and we have done so by explicitly extending several results
to the setting of spacetime mean curvature. The observations and results here moreover
suggest that the concept of (constant) spacetime mean curvature presents itself in the null
case as the direct analogue to the concept of (constant) mean curvature in the Riemannian
setting.
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1.2 Zusammenfassung auf Deutsch (Summary in German)

Die Raumzeit-mittlere Krümmung H2 einer Fläche mit Kodimension 2 in einer umgebenden
n + 1-dimensionalen Raumzeit (M, g) ist definiert als die Lorentzsche Länge des mittleren
Krümmungsvektors ~H. Dass heißt, es gilt

H2 = g( ~H, ~H).

In dem Fall, dass Σ innerhalb einer raumartigen Hyperfläche (M, g) mit zweiter Fundamen-
talform K bezüglich einer zeitarigen Einheitsnormalen ~n liegt, gilt

H2 = H2 − P 2,

wobei H die mittlere Krümmung von Σ in (M, g) bezeichnet und es gilt P := trΣ K.
Insbesondere kann der Begriff der Raumzeit-mittleren Krümmung auch formal auf rela-
tivistische Anfangsdaten (M, g, K) ausgeweitet werden. In einer kürzlich erschienenen Ar-
beit haben Cederbaum–Sakovich [24] eine asymptotische Blätterung von Flächen konstanter
Raumzeit-mittlerer Krümmung in asymptotisch flachen relativistische Anfangsdatenn kon-
struiert und nutzen diese um eine neue Definition von Massenschwerpunkt zu geben. Im zeit-
symmetrischen Fall stimmt diese Blätterung exakt mit der Blätterung von Flächen konstanter
mittlerer Krümmung überein. Eine solche Blätterung wurde erstmals von Huisken–Yau [54]
konstruiert um eine Definition von Massenschwerpunkt zu geben. Explizite Beispiele [23, 24]
suggerieren, dass diese neue Defintion des Masseschwerpunkts einige Mängel des Huisken–
Yau-Massenschwerpunkts in allgemeinen relativistischen Anfangsdaten korrigiert. Obwohl
H2 tatsächlich positiv entlang den von Cederbaum–Sakovich [24] konstruierten Blättern ist,
kann H2 per Definition im Allgemeinen zumindest lokal negativ sein. Gefangene Flächen,
auf denen H2 überall negativ ist, treten auf natürliche Weise im Kontext der Allgemeinen
Relativitätstheorie auf. Diese Tatsache, zusammen mit der obigen Beobachtung, sowie der
Lorentzinvarianz der Raumzeit-mittleren Krümmung motivieren es diese ansprechend er-
scheinende geometrische Größe genauer in relativistischen Anfangsdaten zu studieren.

Unter Anderem kann man jedoch auch direkt Flächen der Kodimension 2 und deren
Raumzeit-mittlere Krümmung in einer umgebenden Raumzeit betrachten, insbesondere solche,
die in einer lichtartigen Hyperfläche enthalten sind. Von diesem Standpunkt aus betrachtet
werden wir für einen raumartigen Querschnitt einer lichtartigen Hyperfläche stets die äußere
Krümmung bezüglich der umgebenden Raumzeit betrachten, die den raumartigen Quer-
schnitt als Fläche der Kodimension 2 enthält. Dabei betrachten wir stets einen Rahmen des
Normalenraums, der aus zwei lichtartigen Vektorfeldern {L, L} besteht. Da die daraus resul-
tierenden zwei lichtartigen, zweiten Fundamentalformen von der Wahl dieses Rahmens ab-
hängen, präsentiert sich die Raumzeit-mittlere Krümmung auch für raumartige Querschnitte
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einer lichtartigen Hyperfläche auf natürliche Weise als eine rahmenunabhängige geometrische
Größe.

In dieser Arbeit betrachten wir die Raumzeit-mittlere Krümmung in drei unterschiedlichen
Fällen: In asymptotisch flachen relativistischen Anfangsdaten untersuchen wir die Evolu-
tion von Hyperflächen entlang eines geometrischen Flusses der in direktem Zusammenhang
mit deren Raumzeit-mittlerer Krümmung steht. Im Fall von hyperboloidalen Graphen, die
sich als verzerrtes Produkt in einer Klasse von statischen Raumzeiten ergeben, geben wir
eine Charakterisierung von Flächen mit konstanter Raumzeit-mittlerer Krümmung, falls die
umgebende Raumzeit die Null-Energiebedingung erfüllt. Des Weiteren betrachten wie die
Geometrie raumartiger Querschnitte des Standardlichtkegels in der Minkowski-Raumzeit in
Bezug auf deren Raumzeit-mittlere Krümmung.

Im Fall von asymptotisch flachen relativistischen Anfangsdaten (M, g, K) untersuchen
wir die Evolution einer Hyperfläche entlang deren inversen Raumzeit-mittleren Krümmung.
Dabei beschäftigen wir uns knapp mit glatten Lösungen F : [0, T ) × Σ → M von „inverse
space-time mean curvature flow“ (STIMCF), welcher durch die parabolische Gleichung

d

dt
F =

1√
H2

=
1√

H2 − P 2
,

beschrieben wird. Danach wenden wir uns der Entwicklung eines schwachen Lösungskonzepts
zu, welches über ein Vergleichsprinzip definiert ist. Dieses Vergleichsprinzip erlaubt es Lö-
sungen zu springen, so dass der Fluss für alle Zeiten existiert ohne eine Singularität zu bilden.
Dies basiert auf gemeinsamer Arbeit mit Gerhard Huisken [53].

Ein solcher schwacher Lösungsbegriff wurde zuerst von Huisken–Ilmanen [50, 51] im Fall
vom inversen mittleren Krümmungsfluss formuliert. Dabei zeigten sie weiterhin, dass die
Monotonie der Hawkingmasse in 3 Dimensionen, die für den glatten Fluss zuerst von Geroch
[43] und Jang–Wald [82] nachgewiesen wurde, auch für schwache Lösungen erfüllt ist. Dies
führte zu einem Beweis der Riemannschen Penrose Ungleichung durch Huisken–Ilmanen [50]
für zusammenhängende scheinbare Horizonte in asymptotisch flachen Riemannschen Mannig-
faltigkeiten, da diese im zeitsymmetrischen Fall durch Minimalflächen gegegeben sind. Im all-
gemeinen Fall sind scheinbare Horizonte durch marginal gefangene Flächen gegeben, so dass
der Beweis nicht direkt auf nicht-zeitsymmetrische relativistische Anfangsdaten (M, g, K)
übertragen werden kann. Stattdessen motiviert dies den Fluss an den Fall nicht trivialer
äußerer Krümmung K anzupassen. Eine solche Verallgemeinerung wurde zuerst von Moore
[63] betrachtet, die ein schwaches Lösungskonzept für „inverse null mean curvature flow“
entwickelte. In dieser Arbeit betrachten wir, motiviert von der Arbeit von Cederbaum–
Sakovich [24], „inverse space-time mean curvature flow“ als eine solche Verallgemeinerung.

Ähnlich zu dem schwachen Lösungskonzept für „inverse null mean curvature flow“, besteht
eine schwache Lösung von „inverse space-time mean curvature flow“ aus einem Paar (u, ν)
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einer lokal-Lipschitz Funktion und einem messbaren Einheitsvektorfeld ν. Das Haupt-
ergebnis dieses Abschnitts ist die Existentz schwacher Lösungen in maximalen, asympto-
tisch flachen relativistischen Anfangsdaten. Dabei folgt die Konstruktion der schwachen
Lösungen den Strategien von Huisken–Ilmanen [50] und Moore [63]. Insbesondere wird die
lokal-Lipschitz Funktion u als Häufungspunkt glatter Lösungen uε einer elliptischen Regu-
larisierung erhalten. Die Lösungen dieser ellitpischen Regularisierung von „inverse space-
time mean curvature flow“ wurden zuerst in der Masterarbeit des Autors [87] konstruiert.
Die Einschränkung auf maximale relativistische Anfangsdaten ist an dieser Stelle notwendig
um die Existenz einer unteren Barriere in der inneren Region zu garantieren. Genau wie
in [63] muss das Konzept einer äußeren Einheitsnormalen auch über Sprünge hinweg aus-
geweitet werden, bei denen u auf einer offenen Umgebung konstant bleibt. Wir erhalten eine
solche Normale, indem wir das Grenzwertverhalten der Niveauflächen der glatten Funktionen
Uε(x, z) := uε(x) − εz im Zylinder M × R untersuchen, wobei uε die Lösungen der glatten
Regularisierung bezeichne. Um zu zeigen, dass diese Konstruktion auch über Sprünge hinweg
gelingt, nutzen wir die Tatsache, dass die Niveauflächen eine translatierende, glatte Lösung
des „inverse space-time mean curvature flows“ bilden und nutzen ein Regularitätsresultat
aus der geometrischen Maßtheorie. Da wir dieses Regularitätsresultat im Zylinder M × R

anwenden, schränkt dies unsere Konstruktion auf Dimensionen n ≤ 6 ein.
Im Fall von hyperboloidalen, umbilischen Graphen, die sich als verzerrtes Produkt in

einer Klasse von statischen Raumzeiten ergeben, charakterisieren wir Flächen von konstan-
ter Raumzeit-mittlerer Krümmung unter der Null-Energiebedingung, indem wir ein Alexan-
drov Theorem nach Brendle [12] anwenden. Die Charakterisierung ist unabhängig von der
asymptotischen Struktur, beruht jedoch auf der besonderen Form der umgebenden Raumzeit
und der Tatsache, dass die umbilischen Graphen, die als solche verzerrten Produkte gegeben
sind, konstanten Umbilizitätsfaktor besitzen.

Die hier betrachtete Klasse von Raumzeiten wurde bereits vielfach in sphärischer Sym-
metrie untersucht, siehe zum Beispiel [21, 85, 83], beinhaltet jedoch auch die Familie der
Birmingham–Kottler Metriken [9, 56]. Zudem wurden in dieser Klasse Raumzeiterweiterun-
gen, die in ihrer Struktur der Kruskal–Szekeres Erweiterung ähneln, von Cederbaum und
dem Autor in gemeinsamer Arbeit [25] konstruiert, sowie in unabhängiger Arbeit von Brill–
Hayward [16] und Schindler–Aguirre [71]. In der Tat benutzen wir die Ergebnisse aus [25],
um die oben betrachteten Graphen über den Horizont hinaus bis zu einem minimalen in-
neren Rand fortzusetzen, so dass wir Brendle’s Alexandrov Theorem anweden können. Wir
wollen an dieser Stelle darauf hinweisen, dass die Voraussetzungen von Brendle in [12], unter
denen eine Charakterisierung von Flächen konstanter mittlerer Krümmung in einem zeit-
symmetrischen Schnitt möglich ist, implizieren, dass die umgebende Raumzeit, die in der
obigen Klasse enthalten ist, die Null-Energiebedingung erfüllt und eine Raumzeiterweiterung,
wie in [25] beschrieben, besitzt. Unter der Annahme, dass die Null-Energiebedingung auf
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der gesamten Raumzeiterweiterung erfüllt ist, zeigen wir, dass Brendle’s Alexandrov The-
orem auf den umbilischen Graphen, die sich als verzerrtes Produkt ergeben, anwendbar
ist und dass eine Charakterisierung der Flächen konstanter mittlerer Krümmung gleichsam
alle Flächen konstanter Raumzeit-mittlerer Krümmung charakterisiert. Da Flächen kon-
stanterm Raumzeit-mittlerer Krümmung im zeitsymmetrischen Fall mit Flächen konstanter
mittlerer Krümmung übereinstimmen, kann man dieses Ergebnis als eine Verallgemeinerung
von Brendle’s Alexandrov Theorem auf allgemeine umbilische Graphen interpretieren, die
sich als verzerrtes Produkt ergeben.

Im lichtartigen Fall beweisen wir zwei Ergebnisse auf dem Standardlichtkegel in der 3+1-
dimensionalen Minkowski-Raumzeit. In diesem Fall sind alle Flächen, die wir betrachten, als
raumartige Querschnitte des Lichtkegels gegeben und jeder dieser raumartigen Querschnitte
ist zudem konform zur runden 2-Sphäre. Des Weiteren ergibt die Gauss-Gleichung, dass die
Raumzeit-mittlere Krümmung der raumartigen Querschnitte direkt proportional zu deren
Skalarkrümmung ist. Aufgrund dieser Beziehung besitzen alle Flächen konstanter Raumzeit-
mittlerer Krümmung auf dem Lichtkegel konstante Skalarkrümmung und sind daher bis auf
einen konformen Diffeomorphismus in der Möbius-Gruppe als runde Sphären gegeben. In
Bezug auf den Gruppenisomorphismus zwischen der Möbius-Gruppe und der eigentlichen
orthochronen Lorentz-Gruppe ergeben sich also alle Flächen konstanter Raumzeit-mittlerer
Krümmung bis auf eine Lorentz-Transformation in der umgebenden Minkowski-Raumzeit,
die den Lichtkegel invariant lassen, als eine runde Sphäre. Da die Raumzeit-mittlere Krüm-
mung nach der obigen Beobachtung bereits die gesamte intrinsische Krümmung der raumar-
tigen Querschnitte bestimmt, können die hier präsentierten Ergebnisse ebenso von einem in-
trinsichen Blickwinkel für konform runde 2-Flächen formuliert werden. Indem wir jedoch den
extrinsischen Blickwinkel beibehalten, erhalten wir zusätzliche geometrische Informationen
über den raumartigen Querschnitt. Insbesondere definieren wir einen rahmenunabhängigen,
symmetrischen (0, 2)-Tensor A, den wir die skalare zweite Fundamentalform nennen und
der repräsentativ für die vektorwertige zweite Fundamentalform ~II die gleiche geometrische
Information über den raumartigen Querschnitt des Lichtkegels enthält.

Als ein erstes Ergebnis zeigen wir, dass die Gauss-Gleichung ebenfalls eine Äquivalenz
zwischen dem 2d-Ricci Fluss auf Flächen vom Geschlecht 0 und einem extrinsischem Krüm-
mungsfluss, den wir hier „null mean curvature flow“ nennen, für raumartige Querschnitte
des Minkowski-Lichtkegels impliziert. „Null mean curvature flow“ wurde zuerst von Roesch–
Scheuer [67] entlang allgemeiner lichtartiger Hyperflächen untersucht um marginal nach
außen gefangene Flächen zu detektieren. Da solche Flächen in der Minkowski-Raumzeit
nicht existieren, entwickelt der Fluss eine Singularität in endlicher Zeit. Indem wir die obige
Äquivalenz zum 2d-Ricci Fluss mit einem klassichen Resultat, welches zuerst von Hamilton
[46] bewiesen wurde, kombinieren, erhalten wir eine komplette Charakterisierungen aller Sin-
gularitäten, da der reskalierte, volumenerhaltende Fluss demnach zu einer Fläche konstanter
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Raumzeit-mittlerer Krümmung konvergiert. Im konform runden Fall wurde dieses Resultat
für den 2d-Ricci Fluss von Hamilton zunächt nur unter der Voraussetzung strikt positiver
Skalarkrümmung bewiesen. Das Resultat wurde später von Chow [30] auch auf den allge-
meinen Fall erweitert. In beiden Fällen beruht der Beweis auf einer Harnack-Ungleichung
und einer Entropieabschätzung und führt desweiteren zu einem neuen Beweis des Uni-
formisierungssatzes, siehe Chen–Lu–Tian [28]. Direkte Anwendung des Uniformisierungs-
satzes führte zu weiteren Beweisen dieses Resultats im konform runden Fall, siehe Bartz–
Struwe–Ye, Struwe und Andrews–Bryan [1, 7, 77]. Indem wir die Äquivalenz zu „null mean
curvature flow“ ausnutzen, erhalten wir einen weiteren Beweis dieses klassichen Resultats.
Obwohl wir das Resultat hier nur unter den ursprünglichen Voraussetzungen von Hamilton
beweisen, was bedeutet, dass wir annehmen, dass der initiale raumartige Querschnitt raum-
artigen mittleren Krümmungsvektor besitzt, ist der Beweis unabhängig von der Wahl der
Koordinaten und beruht ausschließlich auf dem Maximumsprinzip, indem wir zusätzlich die
Evolution der skalaren zweiten Fundamentalform A betrachten. Dies basiert auf eigener,
bereits veröffentlicher Arbeit, siehe [89].

Als zweites Ergebnis formulieren wir die Tatsache, dass der spurfreie Anteil
◦

A der skalaren
zweiten Fundamentalform eines raumartigen Querschnitts des Lichtkegels genau dann ver-
schwindet, wenn der raumartigen Querschnitt eine Fläche konstanter Raumzeit-mittlerer
Krümmung ist, in eine quantitative Abschätzung um. Genauer gesagt zeigen wir, dass der
konforme Faktor eines raumartigen Querschnitts bereits W 2,2-nahe am konformen Faktor
einer Fläche konstanter Raumzeit-mittlerer Krümmung sein muss, falls H2 ≥ 0 und die L2-
Norm des spurfreien Anteils

◦

A hinreichend klein ist. Dieses Ergebnis kann als das analoge
Resultat zur Arbeit von De Lellis–Müller [36] in R

3 betrachtet werden. Ähnlich zur Strategie
von De Lellis–Müller besteht der Beweis aus zwei Schritten:

Im ersten Schritt beweisen wir eine geometrische Ungleichung, die zeigt, dass die Differenz
zwischen H2 und seinem Mittelwert in L2 uniform durch die L2-Norm von

◦

A kontrolliert ist,
falls H2 ≥ 0. Wir beweisen eine solche Ungleichung auf zwei unterschiedliche Weisen: Der
erste Beweis folgt als eine Anwendung von „null mean curvature flow“und der obigen Charak-
terisierung aller Singularitäten. Der zweite Beweis ist von einem nahezu-Schur-Lemma
von De Lellis–Topping [37] inspiriert und nutzt die Bochner-Formel. Der zweite Schritt
besteht daraus elliptische Abschätzungen zu nutzen, um die gewünschte W 2,2-Abschätzung
unter einer geeigneten Ausgleichsbedingung aus der L2-Norm der Differenz zwischen H2 und
seinem Mittelwert zu folgern, so dass das gewünschte Resultat durch Anwendung einer der
obigen Ungleichungen folgt. Die hier formulierte Ausgleichsbedingung steht in Bezug zu
einem zeitartigen, zukunftsgerichteten 4-Vektor in der umgebenden Minkowski-Raumzeit,
der einem raumartigen Querschnitt zugeorndet ist. Dieser zugeordnete 4-Vektor steht zudem
in direktem Bezug zu einem von Cederbaum–Cortier–Sakovich [20] definiertem Zentrums-
begriff in asymptotisch hyperbolischen Mannigfaltigkeiten. Er transformiert sich des Weit-
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eren äquivariant unter Lorentztransformationen der umgebenden Minkowski-Raumzeit. Dies
erlaubt es uns schließlich die W 2,2-Abschätzung bezüglich der Fläche konstanter Raumzeit-
mittlerer Krümmung zu formulieren, die den gleichen zugeordneten 4-Vektor wie der ur-
sprüngliche raumartige Querschnitt besitzt.

Die unterschiedlichen, in dieser Arbeit betrachteten Fälle weisen alle darauf hin, dass das
Konzept der (konstanten) Raumzeit-mittleren Krümmung eine natürliche Verallgemeinerung
der (konstanten) mittleren Krümmung im Hinblick auf die Allgemeine Relativitätstheorie
darstellt. Die hier gemachten Beobachtungen und Ergebnisse suggerieren sogar, dass die
(konstante) Raumzeit-mittlere Krümmung im lichtartigen Fall direkt analog zur (konstanten)
mittleren Krümmung im Riemannschen Fall ist.

18



2 Overview and Contributions

Section 3 contains a brief listing of notation and conventions.
Section 4 contains a brief overview of the relevant background. In particular, we discuss

General Relativity, the geometry of submanifolds, and evolution equations. All the material
herein is well-known and we refer to the specific subsections for a list of references.

In Section 5, we introduce a notion of weak solutions of inverse space-time mean curvature
flow and prove an existence result for maximal, asymptotically flat initial data sets. This is
based on joint work with Gerhard Huisken [53]. As it is usual in mathematics, the authors of
the manuscript [53] are listed alphabetically. The contents of Subsections 5.1 and 5.2 apart
from a maximal existence result for smooth solutions (Theorem 5.2) contributed by Gerhard
Huisken are contained in the master thesis of the author [87] supervised by Gerhard Huisken
at the University of Tübingen, submitted in August, 2019. Besides the aforementioned
maximal existence result for smooth solutions, Gerhard Huisken and I jointly discussed all
of the statements and proof methods. Literature research and the technical calculations for
the jointly discussed parts were done by me; the paper-writing is estimated to be 90% by
me and 10% by Gerhard Huisken. The figures in [53] and Section 5 were generated by Axel
Fehrenbach and Olivia Vičánek Martínez.

In Section 6 we prove a characterization of constant spacetime mean curvature surfaces
on hyperboloidal, totally umbilic warped product graphs in a class of static spacetimes if
the spacetime satisfies the null energy condition. This is based on single author work with
a preprint available on arXiv [88]. All parts of the work are my own, but I am indebted to
Carla Cederbaum for her suggestions to this problem and for helpful discussions.

In Section 7, we establish the equivalence between 2d-Ricci flow for surfaces of genus 0
and null mean curvature flow in the standard lightcone of the Minkowski spacetime. This
yields a full characterization of the singularity models for null mean curvature flow in the
Minkowski lightcone, as well as a new proof of a classical result first proven by Hamilton
under the assumption that the mean curvature vector of the initial spacelike cross section is
spacelike. This is based on published single author work accepted in Calculus of Variations
and Partial Differential Equations in January, 2023 [89].

In Section 8, we establish a De Lellis–Müller type estimate for spacelike cross sections
of the standard Minkowski lightcone with H2 ≥ 0 and subject to a-priori bounds. The de-
sired W 2,2-estimate between the spacelike cross section under consideration and the constant
spacetime mean curvature surface of reference relies on a notion of associated 4-vector. This
is based on unpublished work by myself. Regarding the contents of Sections 7 and 8, all
parts of the work are my own, but I am indebted to Carla Cederbaum for proposing to study
the spacetime mean curvature of cross sections of the lightcone, and I am further indebted
to both Carla Cederbaum and Gerhard Huisken for helpful suggestions and discussions.
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3 Basic notation

Unless otherwise stated, we will follow these general conventions throughout the thesis:

Pairs (M, g), (M, g), and (Σ, γ) will always denote semi-Riemannian manifolds. In most
cases (M, g) will denote a Lorentzian manifold, while (Σ, γ) will always denote a Rieman-
nian manifold.

Let T k
l M denote the (k, l)-tensorbundle on M with sections Γ(T k

l M). As usual, we de-
note the vector bundle as TM := T 1

0 M .

For a semi-Riemannian manifold (M, g), we denote the Levi-Civita connection by g∇, and
the Christoffel symbolds in local coordinates {xα} by gΓµαβ. We define the Riemann curvature
tensor Rmg, the Ricci curvature Ricg, and the scalar curvature Rg as

Rmg(X, Y, Z, W ) = g(g∇X
g∇Y W − g∇Y

g∇XW − g∇[X,Y ]W, Z),

Ricg(X, Y ) = trg Rmg(X, ·, Y, ·),
Rg = trg Ricg,

for vectorfields X, Y, Z, W ∈ Γ(TM), where trg denotes the metric trace with respect to g.
If clear from the context, we will usually omit the subscript g.

For a tensor T , we will denote the k-th tensor derivative by ∇kT . By a slight abuse of
notation, we will further denote the gradient of a function f ∈ C∞(M) by ∇f , and we
denote their Hessian either by Hessf = Hessgf or ∇2f .

For a (symmetric) (0, 2)-tensor T , we define its trace-free part
◦

T as

◦

T := T − 1

n
trg Tg,

where n denotes the dimension of (M, g). We say T is pure trace, if
◦

T ≡ 0.

We denote all possible inner products between tensors or tensor norms (induced by a semi-
Riemannian metrik g) by 〈·, ·〉 = 〈·, ·〉g and | · | = | · |g, respectively.

Einstein summation convention is used whenever it is convenient and partial derivatives
are denoted by f,i := ∂if .

20



4 Preliminaries

4.1 An introduction to General Relativity

In 1915, Albert Einstein introduced General Relativity as a theory of gravitation that de-
scribes the universe in both space and time. We refer to [81] for a detailed introduction to the
subject and introduce only some of the most relevant features of General Relativity. Mathe-
matically, the models of this theory are described as spacetimes (M, g), given as Lorentzian
manifolds, that satisfy the famous Einstein Equations

Ric − 1

2
Rg = 8πT, (1)

where T is the so-called stress-energy-(momentum) tensor describing the matter model at
hand, and Ric, and R denote the Ricci-and scalar curvature of (M, g), respectively. Note
that we chose geometric units such that the Gravitational constant G and the speed of light
c equal 1. As we perceive the universe to posses 3 spatial dimensions and 1 dimension in
time, 3 + 1-dimensional spacetimes are often considered as the most relevant models, but
the general n + 1-dimensional case for n ≥ 3 is also frequently studied, and we will do so in
Sections 5 and 6.

As the underlying models are given by spacetimes, we may now differentiate between
spacelike and timelike directions. More precisely, for any point p ∈ M we call a vector
v ∈ TpM \ {0}

spacelike if gp(v, v) > 0,

timelike if gp(v, v) < 0,

lightlike or null if gp(v, v) = 0.

Following the most commonly used notation, we define the 0-vector in any tangent space to
be spacelike. This notion is readily extended to vector fields on M and along curves γ in
M. For example, a curve γ in M is called timelike if γ̇ is timelike everywhere along γ. Such
timelike curves, also referred to as observers, model the path of particles trough the universe
that move with a speed strictly below the speed of light. Such particles are considered free-
falling, if the curve is a geodesic. Similarly, lightlike curves model the path of lightrays. If
(M, g) admits a global, timelike vector field X, then X induces a time-orientation on (M, g)
and we call (M, g) time-oriented. Hence, there exists a notion of future- and past-pointing
for any causal (timelike or null) vector(-field) in the following way: We call a causal vector
v ∈ TpM future-pointing if gp(Xp, v) < 0, and past-pointing if gp(Xp, v) > 0.
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As the Einstein Equations (1) are hyperbolic in nature, they are in general hard to solve
and there is an abundance of solutions even in Vacuum, i.e., T = 0. Note that an n + 1-
dimensional spacetime (M, g) with n ≥ 3 satisfies the Einstein Equations (1) in Vacuum if
and only if

Ric = 0.

Prominent examples of solutions to the Einstein Equations in Vacuum are the Minkowski
and Schwarzschild spacetime, discussed below in Subsections 4.2 and 4.3, as well as the Kerr
spacetime, see [81, Chapter 12.3]. Further, all of the above are examples of isolated systems,
which are models of a universe that is empty outside of a spatially compact region that may
contain any number of e.g. stars, black holes and galaxies. Heuristically, one expects that
the gravitational effects of these celestial objects weaken as an observer moves farther and
farther away from the spacially compact region, and the spacetime should approach the flat
Minkowski spacetime, see Subsection 4.2. This is made rigorous in Subsection 4.5. On the
other hand, one can also consider cosmological models to study the large scale structure of
the universe. In this case, one looks at a modified version of the Einstein Equations

Ric − 1

2
Rg + Λg = 8πT, (2)

where Λ is the cosmological constant. In particular, Λ = 0 recovers (1).
However, instead of looking at models for a specific stress-energy tensor T, models (M, g)

are often considered more broadly under some additional physically motivated energy as-
sumptions on T, where one usually considers T now to be defined by the left-hand side of
(2). Here, we mention two prominent such energy conditions, that will be of relevance to
Sections 5 and 6: We say that a (time-oriented) spacetime (M, g) satisfies the dominant en-
ergy condition (DEC), if −TαβXβ is causal, future-pointing for every timelike, future-pointing
vectorfield X. We say that (M, g) satisfies the null energy condition (NEC), also referred to
as the null convergence condition, if

T(X, X) = Ric(X, X) ≥ 0 (3)

for all null vector fields X. Note that the (DEC) implies the (NEC).

4.2 Special Relativity and the Minkowski spacetime

The theory of Special Relativity leads to the study of the properties of the Minkowski
spacetime, in particular its isometry group. It was first considered by Einstein in 1905,
before he later introduced the phenomenon of gravitation in the models via the Einstein
Equations (1). We briefly recall some well-known facts of the Minkowski spacetime and its
isometry group. See e.g. [62].
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For any n ≥ 1, the (n + 1)-dimensional Minkowski spacetime (Rn,1, η) is given by
R
n,1 = R

n+1 equipped with the Minkowski metric η given by

η = − dt ⊗ dt +
n∑

i=1

dxi ⊗ dxi,

where (t, x1, . . . , xn) denote standard Cartesian coordinates on R
n+1. For our purposes, we

will only consider n = 3, but most observations in 3 + 1-dimensions extend directly to the
higher dimensional case. In Cartesian coordinates, it is easy to see that the Minkowski
spacetime is flat, i.e., Rm ≡ 0, and in particular a solution of the Einstein Equations in
Vacuum (with Λ = 0). Note that ∂t is a global timelike vectorfield, so (R3,1, η) is time-
oriented. Although it is a rather simple model of General Relativity, relativistic effects such
as the twin paradox can already be observed in the Minkowski spacetime.

As η is independent of the base point of any tangent space, and any tangent space can
be canonically identified with R

3,1, we may evaluate η for any two points p, q ∈ R
3,1 without

ambiguity. In particular, we define the standard lightcone (centered at the origin) in the
3 + 1-Minkowski spacetime as

C := {p ∈ R
3,1 : η(p, p) = 0},

with
C = C+ ∪̇ {0} ∪̇ C−,

where C+ := C ∩{t > 0}, C− := C ∩{t < 0} contain all points p that are null and future- and
past-pointing, respectively. We will call C+ the future-pointing lightcone and C− the past-
pointing lightcone, respectively. Note further that C+, C− are smooth null hypersurfaces, see
Subsection 4.7 below.

The Lorentz group O(3, 1) is the group of matrizes L in R
4×4 such that

LTηL = η

for η in the above Cartesian coordinates. It is easy to see that any L ∈ O(3, 1) is an isometry
of (R3,1, η). More precisely, the Lorentz group is the subgroup of isometries of the Poincaré
group that map the origin to itself and leave the lightcone invariant, i.e., L(C) = C, where
the Poincaré group is the full isometry group of R3,1. Note that the Poincaré group is in fact
the semi-direct product of the translations in R

3,1 and the Lorentz group. The full Lorentz
group is a 6-dimensional non-compact non-connected Lie group, but for the purpose of this
thesis we will restrict our attention to the restricted Lorentz group SO+(3, 1), which denotes
the identity component of O(3, 1). Note that SO+(3, 1) consists of all boosts and rotations
that preserve the time-orientation (with respect to ∂t), see Proposition 4.2 below. Thus
Λ(C±) = C± for all Λ ∈ SO+(3, 1).
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Example 4.1. Examples of isometries in SO+(3, 1) are the rotations in the spatial coordi-
nates and special Lorentz boosts.

(a) Here, we identify a rotation D in SO+(3, 1) of the spatial coordinates with the matrix

D =

(
1 0
0 R

)
,

where R ∈ SO(3) is a rotation in R
3.

(b) A special Lorentz boost Λa is given by the matrix

Λa =




b 0 0 a
0 1 0 0
0 0 1 0
a 0 0 b




for a ∈ R and b :=
√

1 + a2.

More generally, for any ~a ∈ R
3 we may consider a Lorentz boost Λ~a such that

Λ~a(∂t) =
(√

1 + |~a|2,~a
)

.

This relation indeed uniquely determines Λ~a upon the convention that we do not further
rotate the spatial directions perpendicular to ~a, and we observe that Λ(0,0,a) = Λa as defined
in Example 4.1 (b). Moreover, under this assumption it is direct to check that Λ~a can be
decomposed as

Λ~a = D~a ◦ Λ|~a| ◦ D−1
~a ,

where D~a is the unique rotation that maps ∂3 to ~a
|~a| without any further rotation of the x1

and x2 axis perpendicular to ~a for ~a 6= 0, and we choose D~a = Id if ~a = 0. Hence, D~a is
already uniquely determined by ~a

|~a| for ~a 6= 0, and we may take the above decomposition also
as a definition of Λ~a.

For a general Lorentz transformation Λ ∈ SO+(3, 1) we prove the following decomposi-
tion.

Proposition 4.2. Let Λ ∈ SO+(3, 1). Then there exists ~a ∈ R
3 and a rotation D defined

as above such that
Λ = Λ~a ◦ D.

24



Remark 4.3. Note that ~a and D are uniquely determined up to a choice of Cartesian
coordinates, i.e., up to a choice of a positively oriented orthonormal basis on R

3. As two
such orthonormal frames are related by a uniquely determined rotation, ~a and D transform
under this rotation upon a change of the orthonormal frame. Hence, for fixed Λ we may
choose the orthonormal frame such that D = Id.

Proof. Let x1, x2, x3 denote Cartesian coordinates on R
3. As Λ ∈ SO+(3, 1), there exists an

~a ∈ R
3 such that

Λ(∂t) =
(√

1 + |~a|2,~a
)

.

Hence, L := Λ−1
~a ◦ Λ is a linear isometry of the Minkowski spacetime with

L(∂t) = ∂t

Further L(∂i) = (bi,~bi) for some bi ∈ R, ~bi ∈ R
3, i = 1, 2, 3. By Linearity,

L(∂i − bi∂t) = (0,~bi),

and as L is an isometry, this implies that

1 − b2
i = |~bi|2 = 1 + b2

i .

Thus bi = 0 for all i = 1, 2, 3 and L is of the form

L =

(
1 0
0 R,

)

for some R ∈ R
3×3. In particular, R is a linear isometry on R

3 and hence L is either a
reflection in the spacial directions or a rotation D as defined above. As the restricted Lorentz
group is the identity component of the Lorentz group, it does not contain reflections. This
concludes the proof.

4.3 A class of static spacetimes

We consider a class of (n + 1)-dimensional static, warped product spacetimes defined in the
following way: Let h : (0, ∞) → R be smooth, unless otherwise stated, with finitely many,
positive zeroes r0 := 0 < r1 < . . . < rN < ∞ =: rN+1 for some N ≥ 0, and let (N , gN ) be a
(n − 1)-dimensional Riemannian manifold, n ≥ 3. We say that a spacetime (M, g) is of class
H with metric coefficient h and fibre N if

M = R × (ri, ri+1) × N ,

g = −h dt2 +
1

h
dr2 + r2gN
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for some 0 ≤ i ≤ N . It is easy to check that ∂t is a global Killing vector field. Thus any
spacetime of class H is static if h > 0 on the corresponding real interval (ri, ri+1).

Despite the strong symmetry assumptions, class H contains an abundance of physically
relevant modes both in the case of isolated systems as well as models considered in cosmology.
In particular, class H contains the spherically symmetric case, i.e., (N , gN ) = (Sn−1, dΩn−1)
where S

n−1 denotes the standard round sphere equipped with the standard round metric
dΩn−1. This case corresponds to the spacetimes of class S as considered by Cederbaum–
Galloway [21], and contains many prominent examples such as the Minkowski spacetime, the
Schwarzschild- and Reisner–Nordström spacetime, and the anti-de Sitter and Schwarzschild
anti-de Sitter spacetime, which solve the Einstein Equations (2) in Vacuum with negative
cosmological constant. If more generally (N , gN ) is a Riemannian manifold with constant
sectional curvature, then spacetimes of class H correspond to the family of Birmingham–
Kottler metrics, cf. [9, 56].

Example 4.4. The 3 + 1-dimensional (exterior) Schwarzschild spacetime of positive mass
m > 0 (in Schwarzschild coordinates) is given by

MSchw = R × (2m, ∞) × S
2,

gSchw = −
(

1 − 2m

r

)
dt2 +

1

1 − 2m
r

dr2 + r2 dΩ2.

Similar, we can also consider the interior 3 + 1-dimensional Schwarzschild spacetime corre-
sponding to the interval (0, 2m).

For a given h, the boundaries {r = ri} corresponding to the positive zeros ri are Killing
horizons, and it appears natural to think of each spacetime of class H corresponding to an
intervall (ri, ri+1) as a different region of the same, larger spacetime. For the Schwarzschild
spacetime, this was made rigorous by the construction of the Kruskal–Szekeres spacetime, see
[57, 78]. In fact, the Kruskal–Szekeres spacetime is the maximal continuous extension of the
Schwarzschild spacetime [70]. The question whether a general spacetime of class H admits a
similar spacetime extension across a Killing horizon {r = ri} was independently addressed
by Brill–Hayward [16], Schindler–Aguirre [71] and Cederbaum and the author [25], showing
that a spacetime of class H can be extended past a Killing horizon if and only if the Killing
horizon is non-degenerate, i.e., has non-vanishing surface gravity κ.

Recall that the surface gravity κ of a Killing horizon is defined via the equation

∇XX = κX

evaluated at the Killing horizon, where X is the Killing vector field corresponding to the
Killing horizon. Hence, κ describes the failure of the integral curves of X to be affine null
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geodesic at the horizon. We call the Killing horizon non-degenerate if κ 6= 0. Circumventing
some subtleties regarding the scaling of X, we will always choose X = ∂t for a spacetime of
class H. Then one can directly compute the following:

Lemma 4.5. [81, Equation (12.5.16)]

κi = ±h′(ri)

2
,

for the choice X = ∂t.

4.4 Hypersurface geometry and initial data sets

Let us for now consider an (n + 1)-dimensional semi-Riemannian manifold (M, g) and let M
be a hypersurface in M. Let g denote the induced metric on M . Unless otherwise stated,
we will from now on always assume that g in non-degenerate, (M, g) is orientable, and there
exists a smooth unit normal vector field ν on M . Note that in the following, all definitions
depend on our choice of ν. However, we will omit this dependence here, as we will usually
refer directly to a unique choice of unit normal in the following sections. For a detailed
introduction, we refer to [19, Chapter 3]1.

Definition 4.6. Let (M, g) be a semi-Riemannian manifold, (M, g) a hypersurface with unit
normal ν. We then define the second fundamental form h of (M, g) as

h(X, Y ) := −g(g∇XY, ν)

for tangent vector fields X, Y ∈ Γ(TM), where g∇ denotes the Levi-Civita connection of
(M, g). We further define the mean curvature H of (M, g) as

H := trg h = gijhij

Remark 4.7. It is a well known fact that h is a symmetric (0, 2)-tensor field. In particular, at
each point p ∈ M there exists an ON-frame of eigenvectors {vip}ni=1 of hp with real eigenvalues
λ1(p) ≤ . . . ≤ λn(p), and

H(p) =
n∑

i=1

λi(p).

We call a hypersurface totally umbilic, if h = λg for some smooth function λ ∈ C∞(M). In

this case, λ is called the umbilicity factor of M . Then,
◦

h = 0 and H = nλ.

1Note the different sign conventions of the Riemann tensor Rm.
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Recall that h satisfies the Gauss formula

g∇XY = g∇XY − σh(X, Y )ν

for all tangent vector fields X, Y ∈ Γ(TM), where σ := g(ν, ν) and g∇ denotes the Levi-
Civita connection of (M, g).

Using the Gauss formula, one can derive the well-known Gauss- and Codazzi equations.

Proposition 4.8 (Gauss Equations I).

Rm(X, Y, Z, W ) = Rmg(X, Y, Z, W ) − σh(X, Z)h(Y, W ) + σh(X, W )h(Y, Z),

Ric(X, Y ) = Ricg(X, Y ) + σRm(X, ν, Y, ν) − σHh(X, Y ) + σh2(X, Y ),

R − 2σRic(ν, ν) = Rg − σH2 + g|K|2g
for all tangent vector fields X, Y, Z, W ∈ Γ(TM), where Rm, Ric and R denote the Riemann
curvature tensor, Ricci tensor and scalar curvature of (M, g), respectively, and σ := g(ν, ν).

Proposition 4.9 (Codazzi Equation I).

Rm(X, Y, Z, ν) = (g∇h)(X, Y, Z) − (g∇h)(Y, X, Z)

for all tangent vector fields X, Y, Z ∈ Γ(TM), where Rm is the Riemann curvature tensor
of (M, g).

Now let (M, g) be a spacetime. We call (M, g) spacelike if g is a Riemannian metric,
and (M, g) timelike if g is a Lorentzian metric. Note that (M, g) is spacelike if and only
if ν is timelike, and (M, g) is timelike if and only if ν is spacelike. If (M, g) is a spacelike
hypersurface in an ambient spacetime, we denote its second fundamental form by K and its
mean curvature by trg K. If (M, g) is time-orientable, we will always choose ν such that ν
is future-pointing. In this context, one can derive the constraint equations from the Gauss
and Codazzi equations.

Corollary 4.10 (Constraint Equations). Let (M, g) be a time-orientable spacetime satis-
fying the Einstein Equations (2) (with cosmological constant Λ) with stress-energy tensor
T. Let (M, g) be a spacelike hypersurface with future-pointing unit normal ν. Then (M, g)
satisfies the constraint equations

Rg + (trg K)2 − |K|2g − 2Λ = 16πµ, (4)

divg(K − (trg K)g) = 8πJ, (5)

where µ := T(ν, ν) is called the energy density and J := T(ν, ·|TM) is called the momentum
density.
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This motivates the following formal definition.

Definition 4.11. Let (M, g) be a Riemannian manifold, K a symmetric (0, 2)-tensor on M .
We call the triple (M, g, K) an initial data set, if the constraint equations

Rg + (trg K)2 − |K|2g − 2Λ = 16πµ, (6)

divg(K − (trg K)g) = 8πJ, (7)

are satisfied for some smooth function µ and one-form J. We call µ the energy density and J
the momentum density, respectively, and refer to Equations (6) and (7) as the Hamiltonian
and momentum constraint, respectively.

Remark 4.12. By Corollary 4.10 it is easy to see that any spacelike hypersurface M gives
rise to an initial data set (M, g, K). Conversely, it is natural to ask whether any initial
data set (M, g, K) can be realized as a spacelike hypersurface with induced metric g and
second fundamental form K with respect to a timelike unit normal ν within an ambient
spacetime (M, g), such that µ := T(ν, ν) and J := T(ν, ·|TM). In this case, we regard the
Einstein Equations (2) as an evolutionary system for g with initial data (M, g, K), where we
understand g as the initial value restricted to tangent vectors of M , and we can interpret K
as the initial velocity prescribed on M . Under suitable conditions, this evolutionary system
indeed admits a solution. This was first proven in the nominal work of Choquet-Bruhat–
Geroch [29].

If (M, g, K) indeed embeds into an ambient spacetime (M, g), and the respective energy-
stress tensor T satisfies the (DEC), then

µ ≥ |J|g , (8)

and we say that an initial data set (M, g, K) satisfies the dominant energy condition (DEC),
if µ and J satisfy (8).

Definition 4.13. Let (M, g, K) be an initial data set. We say (M, g, K) is

- time-symmetric if K ≡ 0,

- maximal if trg K ≡ 0.

Similar to minimal surfaces in Riemannian geometry, maximal initial data sets can be
interpreted as critical points of the area functional. However, due to the fact that the
unit normal is timelike in this setting and that one can usually decrease the area by the
approximation of null directions, one generally seeks to maximise area. Note further that for
any maximal initial data set (M, g, K) satisfying the (DEC), (M, g) has non-negative scalar
curvature Rg ≥ 0.
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4.5 Asymptotically flat initial data sets

We briefly mentioned in Subsection 4.1 that isolated systems should be heuristically modelled
by spacetimes that approach the Minkowski spacetime outside of a spatially compact set.
Hence, any appropriately chosen spacelike hypersurface of such a model should approach
Euclidean space outside of a compact set. This is made precise with the following definition,
cf. [24] for n = 3.

Definition 4.14. Let (M, g, K) be an n-dimensional initial data set. We say (M, g, K) is
asymptotically flat if Λ = 0, µ, |J|g ∈ L1(M), and there exists a compact set Ω ⊆⊆ M and

a diffeomorphism Φ: M \ Ω → R
n \ B1(0) such that

|gij − δij| + r |∂lgij| + r2 |∂l∂mgij| ≤ C |x|−τ ,

|Kij| + r |∂lKij| ≤ C|x|−τ−1,

in Cartesian coordinates xi on R
n for some constant C > 0 and τ > n−2

2
, where |x| denotes

the Euclidean norm of x, and g and K are identified with their respective push-forwards on
R
n \ B1(0).

For isolated systems in the above sense, there is a notion of total energy, momentum
and mass going back to Arnowitt, Deser and Misner, cf. [3]. More precisely, we define the
ADM energy EADM and ADM momentum P ADM of an asymptotically flat initial data set
(M, g, K) as

EADM :=
1

2(n − 1)ωn−1

lim
ρ→∞

ˆ

Sρ

(gij,i − gii,j)ν
j dVSρ , (9)

(P ADM)i := − 1

(n − 1)ωn−1

lim
ρ→∞

ˆ

Sρ

(Kij − (trg K)gij)ν
j dVSρ , (10)

for i = 1, ..., n, where the integrals are taken over the round spheres Sρ in R
n centered at

the origin and ν is the standard unit normal to Sρ, cf. [24]. If EADM ≥ |P ADM | (where | · |
denotes the Euclidean norm), we further define the ADM mass mADM as

mADM =
√

E2
ADM − |P ADM |2. (11)

Note that under the assumptions of Definition 4.14, the ADM energy, momentum and mass
are finite and independent of the choice of asymptotic chart, cf. [5, 33]. Further, it was first
proven by Schoen–Yau in n = 3 that EADM ≥ |P ADM |, if (M, g, K) is geodesically complete
and satisfies the (DEC). This is known as the celebrated positive mass theorem, cf. [72, 73].
See also [66, 86].
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Example 4.15. Recall the Schwarzschild spacetime of positive mass m > 0 as in Example
4.4, and consider the constant time-slice {t = 0}, which is a time-symmetric spacelike hyper-
surface. Performing a change of coordinates, we see that the subset {t = 0} is isometric to
the Schwarzschild manifold (MSchw, gSchw) in isotropic coordinates given as

MSchw = R
3 \ Bm

2
(0), gSchw =

(
1 +

m

2 |x|

)4

δ.

It is easy to check that the Schwarzschild manifold is asymptotically flat and a direct com-
putation yields

mADM = EADM = m.

Note that (MSchw, gSchw) is not geodesically complete, but can be smoothly extended to all
of R3 \ {0} with the same metric gSchw, and the extension is geodesically complete. In fact,
the extension corresponds to two copies of (MSchw, gSchw) smoothly glued at the minimal
surface {|x| = m

2
}.

4.6 Asymptotically hyperbolic initial data sets

The anti-de Sitter spacetime is an important model in cosmology that solves the Einstein
Equation (2) with negative cosmological constant Λ. More precisely, if we choose Λ = n(n−1)

2
,

then the anti-de Sitter spacetime is given by the spherically symmetric spacetime of class H

with metric coefficient h(r) := 1 + r2. In particular, the constant time-slice {t = 0} is
a spacelike, time-symmetric hypersurface that is isometric to the n-dimensional hyperbolic
space (H, gH).

Similar to the definition of asymptotically flat initial data sets (M, g, K), one can define
a notion of asymptotically hyperbolic initial data sets for negative cosmological constant
Λ < 0. In this context, we say that a Riemannian manifold (M, g) is asymptotically hyperbolic
if g → gH at an appropriate rate at infinity. See e.g. [84]. Notice that one can also
isometrically embed the hyperbolic space (H, gH) into the (n + 1)-dimensional Minkowski
spacetime as either of the connected components of the set {p ∈ Rn,1 | η(p, p) = −1}. More
generally, we can consider the (two sheeted) hyperboloids {p ∈ Rn,1 | η(p, p) = −r} for some
r > 0. Then the two connected components are spacelike, totally umbilic hypersurfaces
with umbilicity factor λ = ±1

r
with respect to the future pointing normal, where the sign

of λ depends on the choice of connected component. Further, each connected component
asymptotes to a connected component C+, C− of the lightcone C, see Subsection 4.2. Now,
we call a general initial data set (M, g, K) asymptotically hyperboloidal if (M, g, K) formally
asymptotes to a connected component of the hyperboloid {p ∈ Rn,1 | η(p, p) = −1}, i.e.,
(M, g) is a asymptotically hyperbolic manifold and K → gH at an appropriate rate. See e.g.
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[68]. In this setting, there are also notions of total energy, mass and momentum, but the
definitions are more subtle compared to the asymptotically flat case and we have no need of
them here.

Here, we will not give a precise definition of asymptotically hyperbolic or asymptotically
hyperboloidal initial data sets, as we will only encounter them in the following way in Section
6. We say a Riemannian manifold (M, g) of the form

M = (r0, ∞) × S
2, (12)

g =
1

f(r) + λ2r2
(13)

is asymptotically hyperbolic, if f → 1 as r → ∞. As we will realize the above manifolds
in Section 6 precisely as spacelike, totally umbilic graphs with K = λg, we will similarly
call them asymptotically hyperboloidal, if f → 1 as r → ∞. Note that these notions of
asymptotically hyperbolic and asymptotically hyperboloidal indeed agree with the classical
definitions (up to scaling) if suitable decay conditions are imposed on f and its deriva-
tives. One prominent example is the Schwarzschild anti-de Sitter family corresponding to
f = 1 − 2m

r
which we will discuss in more detail in Section 6.

4.7 Null hypersurfaces

We give a brief introduction into the definition and properties of null hypersurfaces. For
details we refer the interested reader to [59, 67, 69]. Let (M, g) be an (ambient) spacetime.
We say an orientable hypersurface N in M is null or a null hypersurface if its induced metric
g is degenerate. In particular, there exists a null vector field L ∈ Γ(TN ) such that

L⊥
p = TpN

for all p ∈ N , where L⊥
p = {vp ∈ TpM | gp(vp, Lp) = 0}. Observe that L is both tangent and

normal to the null hypersurface N . Note that for any p ∈ N all tangent vectors in TpN are
either spacelike or a multiple of L, as gp(Xp, Lp) 6= 0 for any causal vector Xp ∈ TpM such
that Xp 6= cLp.

Let p ∈ N , as N is a hypersurface there exists an open neighbourhood U ⊆ M of p and
a function v ∈ C∞(U) such that

U ∩ N = {v = 0}
and Dv := g∇v 6= 0 on U , with (Dv)⊥

q = TqN for all q ∈ U ∩ N . Hence, as g is non-
degenerate, we find that

Dvq = aqLq
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for all q ∈ U ∩ N with aq 6= 0. In particular, Dv is null and tangent along U ∩ N . Using
that

g (g∇DvDv, ·) =
1

2
d (g(Dv, Dv)) ,

which can be directly verified for any semi-Riemannian manifold and (locally defined) smooth
function by a computation in normal coordinates, we conclude that

gq
(
(g∇DvDv)q , Xq

)
= 0 for all Xq ∈ TqN

for all q ∈ U ∩ N . Hence
(g∇DvDv)q = bqDvq

for some constant bq ∈ R for all q ∈ U ∩ N . As all objects in the above considerations are
smooth tensors, we can conclude that there exists a smooth function κ ∈ C∞(N ) such that

g∇LL = κL (14)

along N . In particular, the integral curves of L can be reparametrized as null geodesics,
and N is in fact ruled by null geodesics. We call L a null generator of N and if (M, g) is
time-oriented we will assume from now on that L is past-pointing, unless otherwise stated.

Assume further that there exists an embedded, connected, spacelike surface S0 ⊂ N ,
such that any integral curve of L intersects Σ0 exactly once, i.e., there exists a well-defined
projection

π : N → S0,

p 7→ γLp ( λ̃ ) ∈ S0,

where γLp denotes the integral curve of L starting at a point p ∈ N and where λ̃ is the
unique time such that γLp intersects S0. Given L, S0 and s0 ∈ R, we can define a unique
scalar function s ∈ C∞(N ), such that L(s) = 1, and s(p) = s0 if and only if p ∈ S0. For
a point p ∈ S0, we define (s−(p), s+(p)) as the maximal existence interval of the integral
curves γLp of L passing through p at parameter time λ = s0, and we assume that

(R− := sup
S0

s−(p), R+ := inf
S0

s−(p)) 6= ∅.

Since ∇s 6= 0, the mapping

ΦS0 : (R−, R+) × S0 → N , (λ, p) 7→ γLp (λ)

is a smooth embedding that maps into an open subset of N . For convenience, we will from
now on always assume that ΦS0 is a diffeomorphism onto N , and define the map π : N → S0
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to be the projection of Φ−1
S0

onto S0. As a consequence, the level sets Σr := {s = r} form a
smooth foliation of N , where Σs0 = S0, and for any point on Σr there exist local coordinates
xi on Σr such that [L, ∂i] = 0, which we can identify locally with coordinates on S0 pushed
forward by ΦS0 . We call the family (Σr)r∈(R−,R+) a background foliation of N with respect to
L, and additionally consider the null vector field L (with respect to our choice of background
foliation) along N such that

g(L, L) = 2

and {Lp, Lp} forms a null frame of the normal bundle T ⊥
p Σr for all p ∈ Σr and for all

r ∈ (R−, R+). Note that L is uniquely determined and future-pointing by our above choice.
Notice that for any non-vanishing function a ∈ C∞(N ), aL is a null generator of N ,

and we can consider the background foliation (Σa
r)r (with respect to the same choice of S0).

Recall from (14) that we can choose a such that the integral curves of aL are geodesic. In
this case, we call the resulting foliation a geodesic background foliation. Here, we will only
consider a > 0 to preserve the time-orientation of L.

We define the null second fundamental form χ of N with respect to L as

χ(X, Y ) = g (g∇XL, Y )

for tangent vector fields X, Y ∈ Γ(TN ). Note that the induced metric g and null second
fundamental form χ are symmetric (0, 2)-tensors on N with

g(X + L, Y + L) = g(X, Y ),

χ(X + L, Y + L) = χ(X, Y )

for all tangent vector fields X, Y ∈ Γ(TN ). In particular, g and χ are fully determined
by their restriction to a given background foliation and we write (γr)p := gp (·|Σr , ·|Σr) for
p ∈ Σr.

Before discussing codimension-2 surfaces and their extrinsic curvature in a more general
and detailed setting in the next subsection, consider now an embedded, spacelike, smooth
cross section Σ of N , with embedding ι : Σ → N . We will from now on always assume that
any integral curve of L intersects Σ exactly once. Then there exists a unique diffeomorphism
Ψ: Σ → Ψ(Σ) ⊆ S0 that satisfies Ψ(p) = (π ◦ ι)(p) for all p ∈ Σ, and moreover consider
the function F : Σ → R, p 7→ s(ι(p)). For convenience, we will always assume that Ψ is a
diffeomorphism onto S0. Conversely, for any such Ψ and F , we can define the embedding

ι : Σ → N , p 7→ γ
L

Ψ(p)(F (p)).

In particular, we can regard any such surface Σ as a graph over S0 with respect to the
function ω := F ◦ Ψ−1. Below, we will usually omit the explicit reference to the embedding ι
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and identify the functions F ∈ C∞(Σ) and ω ∈ C∞(S0) for convenience without ambiguity,
as F satisfies F = ω ◦ π. Hence, we can identify any such surface under consideration simply
via the function ω that uniquely determines Σ with respect to a fixed choice of background
foliation. We will thus write Σ = Σω. For technical purposes, we will extend F constantly
along the integral curves of L to a neighbourhood of Σ in N , such that L(F ) = 0.

Proposition 4.16. Let p ∈ Σ = Σω, then the map

TF,p : TpΣr=F (p) → TpΣ, X 7→ X ′ := X + X(F )L,

is a well-defined isomorphism. Denoting the induced metric on Σ by γΣ, we find that

(γΣ)p(X
′, Y ′) =(γF (p))p(X, Y ),

χ
p
(X ′, Y ′) =χ

p
(X, Y )

for all tangent vectors X ′, Y ′ ∈ TpΣ. Moreover, the null vector field Lω with g(Lω, L) = 2
and gp((Lω)p, X ′) = 0 for all p ∈ Σ and X ′ ∈ TpΣ is given by

(Lω)p = Lp − |γF (p)∇F |2 Lp − 2 γF (p)∇Fp,

where γF (p)∇F denotes the gradient of F on Σr=F (p).

From now on and throughout this work a spacelike cross section will always refer to a
surface Σ ⊆ N with the above properties, i.e., any integral curve of L intersects Σ exactly
once and that Φ: Σ → S0 is a diffeomorphism for a given background foliation.

Remark 4.17.

(i) We can restrict χ to a symmetric (0, 2)-tensor χ
Σ

on any spacelike cross section Σ.
Note that Proposition 4.16 shows that (χ

Σ
)p = (χ

Σ′
)p for any two cross sections Σ, Σ′

with p ∈ Σ ∩ Σ′ up to the above isomorphism of tangent spaces. Hence, we will simply
denote the restriction also with χ without ambiguity. In particular, the function

θ : p 7→ θ(p) := trΣ χ(p)

on Σ can be extended to a well-defined smooth function θ on all of N independent of
the choice of Σ. More precisely, it is straightforward to see that the extension to all
of N is given by θ(p) := trγs(p)

χ(p). Note however, that χ, θ depend on the choice of
background foliation, see Remark 4.19 (ii), (iii).
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(ii) As stated above, for each Σ = Σω the function ω on S0 is identified with F by F = ω◦π.
As π induces a smooth family of isomorphisms between the tangent spaces of the
spacelike cross sections Σr and S0, by Proposition 4.16 there exists an isomorphism

Tω,p : Tπ(p)S0 → TpΣ, X 7→ X̃ := X + X(ω)L

for each p ∈ Σ. We may further use π restricted to the spacelike cross sections Σr to
identify the metrics γr and null second fundamental forms χ

Σr
with smooth families

(π∗γr)r∈(R−,R+), (π∗χΣr
)r∈(R−,R+) of symmetric (0, 2)-tensors on S0. In particular, these

smooth families allow us to identify the induced metric γΣ and null second fundamental
form χ

Σ
with a metric γω and a symmetric (0, 2)-tensor χ

ω
on S0.

Proof. The statement of Proposition 4.16 follows directly from Proposition 1 and Equation
(9) in [59]. Note the different sign convention k = −L.

4.8 The Geometry of codimension-2 surfaces

Let us now consider embedded, spacelike codimension-2 surfaces (Σ, γ) in an ambient (time-
oriented) spacetime (M, g). Unless otherwise stated, we will always assume that (Σ, γ) is
orientable and that there exists a smooth orthonormal frame of the normal bundle T ⊥Σ. For
additional information, we refer to [58, 64, 67].

Definition 4.18. We define the vector-valued second fundamental form of (Σ, γ) in (M, g)
as

~II : Γ(TΣ) × Γ(TΣ) → Γ(T ⊥Σ), (X, Y ) 7→ (g∇XY )⊥,

where for all p ∈ Σ and X ∈ TpM, X⊥ denotes the projection onto T ⊥
p Σ. We further define

the (codimension-2) mean curvature vector ~H of Σ as

~H := trΣ
~II ∈ Γ(T ⊥Σ),

and the spacetime mean curvature H2 of Σ as the Lorentzian length of ~H in (M, g), i.e.,

H2 := g( ~H, ~H).

We say (Σ, γ) is a surface of constant spacetime mean curvature or an STCMC surface if H2

is constant along Σ.

Similar to the second fundamental form of a hypersurface as defined in Subsection 4.4 ~II
is symmetric and satisfies a Gauss formula by definition, i.e.,

g∇XY = γ∇XY + ~II(X, Y )
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for any tangent vector fields X, Y ∈ Γ(TΣ). If {e0, e1} denotes an orthonormal frame of
T ⊥Σ with e0 timelike and e1 spacelike, we define the second fundamental form hi of Σ with
respect to ei as

hi(X, Y ) := g(g∇Xei, Y ) = −g(ei, ~II(X, Y ))

for tangent vector fields X, Y ∈ Γ(TΣ). Similar to the properties of the second fundamental
form h of a hypersurface as stated in Remark 4.7, each hi is a symmetric (0, 2)-tensor
on (Σ, γ). In particular, if we consider the case when (Σ, γ) is contained in a spacelike
hypersurface (M, g) with second fundamental form K with respect to a future timelike unit
normal ~n, then (Σ, γ) is a hypersurface in (M, g). In this case, h will always denote the
second fundamental form of (Σ, γ) in (M, g) with respect to some unit normal vectorfield ν
tangent to M , and we find that h1 = h, h0 = K(·|TΣ, ·|TΣ) with respect to the orthonormal
frame {~n, ν} of T ⊥Σ. In particular,

~II = −hν + K(·|TΣ, ·|TΣ)~n, (15)

~H = −Hν + P~n, (16)

and

H2 = H2 − P 2, (17)

where H denotes the mean curvature of (Σ, γ) in (M, g) and P := trΣ K = trM K − K(ν, ν).
In particular, we can formally extend the definition of the spacetime mean curvature H2

to any hypersurface (Σ, γ) of an initial data set (M, g, K). In this context, Cederbaum–
Sakovich [24] considered an asymptotic foliation of STCMC surfaces for asymptotically flat
initial data sets as a notion of center-of-mass.

Equivalently, we may also consider a null frame {L, L} of T ⊥Σ such that g(L, L) = 2
and L is pastpointing. We then define the null second fundamental forms χ and χ of (Σ, γ)
(with respect to L and L) as

χ(X, Y ) := g(g∇XL, Y ) = −g(L, ~II(X, Y )),

χ(X, Y ) := g(g∇XL, Y ) = −g(L, ~II(X, Y )),

and the null expansion θ and θ of (Σ, γ) (with respect to L and L) as

θ := trΣ χ = −g(L, ~H),

θ := trΣ χ = −g(L, ~H).
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Again, we similarly note that

~II = −1

2
χL − 1

2
χL (18)

~H = −1

2
θL − 1

2
θL, (19)

and

H2 = θθ. (20)

Remark 4.19.

(i) If (Σ, γ) is contained in a null hypersurface N such that L is the null generator of N
then we also defined a notion of null second fundamental form χ of N and a smooth
function θ on N . However, by Remark 4.17 those two definitions coincide and we may
use both without ambiguity.

(ii) For any smooth, positive function a ∈ C∞(Σ) we observe that
{
La := aL, La := 1

a
L
}

is a null frame of T ⊥Σ that retains the time orientation of L and L. Considering the
function ϕ such that a = eϕ, and the orthonormal frames e0 := 1

2
(L−L), e1 := 1

2
(L+L),

ea0 := 1
2
(La − La), ea1 := 1

2
(La + La), we find

ea0 = cosh(ϕ)e0 − sinh(ϕ)e1,

ea1 = cosh(ϕ)e1 − sinh(ϕ)e0.

In this way, we can identify a at each point p ∈ Σ with a unqiue Lorentz boost in R
1,1.

Thus, we will call a a boost of the null frame and {La, La} a boosted null frame. If
again (Σ, γ) is contained in a null hypersurface N such that L is the null generator of
N , and we now consider a non-vanishing function a ∈ C∞(N ) as in Subsection 4.7,
then for any cross section Σ = Σω we similarly find that

{
La := aL, La := 1

a
Lω

}
is a

null frame of T ⊥Σ, where Lω is defined as in Proposition 4.16. Note however, that the
function ω is defined with respect to the original background foliation with respect L.

(iii) It is easy to check that the null second fundamental forms χ, χ and null expansions θ,
θ for a given null frame {L, L} transform under a boost a as

χ
a

= aχ χa =
1

a
χ,

θa = aθ θa =
1

a
θ,

where χ
a
, χa, and θa, θa denote the null second fundamental forms and null expansions

with respect to the boosted null frame {La, La}, respectively.
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On the other hand, for any given orthonormal frame {e0, e1} the null vector fields
L := e1 + e0, L := e1 − e0 form a null frame with the above properties. Note that if (Σ, γ)
is contained in a spacelike hypersurface (M, g) as above, then

θ = H + P, (21)

θ = H − P, (22)

and we can thus formally define the expansions of a hypersurface (Σ, γ) in an initial data
set (M, g, K) via the above relations. Similar to the recent work of Cederbaum–Sakovich
[24], asymptotic foliations of constant expansion have been constructed by Metzger [61] in
asymptotically flat initial data sets. Both foliations will generically only agree in time-
symmetry, where they both agree with an asymptotic foliation of constant mean curvature
surfaces first constructed by Huisken–Yau [54].

However, note that if we consider a surface Σ that is the smooth intersection of two
spacelike hypersurfaces in an ambient spacetime, then by Remark 4.19 (ii) the expansions θ,
θ defined on the spacelike hypersurfaces will in general not agree with each other. However,
as the Lorentzian length of the mean curvature vector H2 of Σ is a Lorentz invariance, it
will not depend on the choice of hypersurface and will in fact not depend on the causal
character of any hypersurface containing Σ, compare also Equation (20). Due to this frame
independence, H2 is an appealing property to study both from a mathematical and physical
perspective. In particular, one is interested in the properties of surfaces of constant spacetime
mean curvature.

Remark 4.20. We would like to emphasize again that despite the suggestive power of
2 as an exponent, H2 denotes the Lorentzian length of the mean curvature vector and
may thus be (locally) negative. In General Relativity, surfaces with H2 < 0 are called
trapped as the area of the surfaces decreases along all future causal directions if ~H is future
pointing. Heuristically, one thus expects such surfaces to shrink along the movement of
future directions and remain contained within a spatially compact region. However, if we
consider surfaces sufficiently close to a coordinate sphere in an asymptotically flat initial
data set (M, g, K), then H2 > 0 sufficiently far out in the asymptotic region. Examples of
such surfaces are the leaves of the foliations of Cederbaum–Sakovich [24] and Metzger [61].

In the special case that H ± P = 0, we call a surface a marginally outer trapped or
marginally inner trapped surface, or MOTS or MITS for short, respectively. Such surfaces are
exactly the critical points of the area functional in the null directions L and L, respectively,
cf. Proposition 4.27 (i), and they are the models of apparent horizons for both initial data
sets and null hypersurfaces and thus studied exhaustively in particular in the context of
the Penrose conjecture, see for example [10, 58, 63] and [11, 60, 67, 69]. Further, we call a
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surface in an initial data set a generalized apparent horizon if H2 = 0 along the surface. By
Equation (20), we note that any MOTS or MITS is a generalized apparent horizon, but the
converse is not true and a Penrose inequality formulated for generalized apparent horizons
seems to be false in general, see Carrasco–Mars [18].

Note that for a codimension-2 surface, ~II does not fully encode all extrinsic geometric
information, as one has to consider how any choice of frame of the normal space changes
along the surface in tangential directions. To this end, we define the connection 1-form or
torsion ζ for a given null frame {L, L} defined as

ζ(V ) :=
1

2
g(g∇V L, L). (23)

Remark 4.21. Note that up to possibly a sign, ζ agrees with the usual notion of torsion
defined via a timelike unit normal e0 and a spacelike unit normal e1, where the relation
between the two basis of the normal space is exactly as in Remark 4.19 (ii).

Returning our considerations to the case that Σ is contained in a given null hypersurface,
we know that Σ can be written as a graph with respect to a given background foliation,
cf. Subsection 4.7. Similar to Proposition 4.16 indeed all extrinsic curvature quantities
can be computed with respect to this background foliation. Here, we will state everything
with respect to the function ω and the respective tensors pushed forward onto S0 via the
projection π as in Remark 4.17 (ii).

Proposition 4.22. Let (Σ, γ) be a spacelike cross section of a given null hypersurface N
with null generator L as in Subsection 4.7. Let {Σr} be a given background foliation with
respect to L, and let χr and ζr denote the push forwards onto S0 via π of the null second
fundamental form and connection 1-form of Σr with respect to the uniquely determined null
normal vector field Lr of Σr such that g(L, Lr) = 2 along Σr, respectively. Then Σ can be
written as a graph Σω with respect to a smooth function ω on S0, and for all p ∈ Σ

χp(X̃, Ỹ ) =(χω(q))q(X, Y ) − 2 (Hessγωω)
q
(X, Y ) + |γω∇ω|2 (q)(χ

ω
)q(X, Y )

− 2κ(p)X(ω)Y (ω) − 2X(ω)(ζω(q))q(Y ) − 2Y (ω)(ζω(q))q(X),

ζp(X̃) =(ζω(q))q(X) − (χ
ω
)q(X, γω∇ω(q)) + κ(p)X(ω),

for tangent vectors X̃, Ỹ ∈ TpΣ, where q = π(p) ∈ S0, and X, Y ∈ TqS0 are defined via the
isomorphism in Remark 4.17 (ii), κ is given by Equation (14), and γω∇, Hessγω denote the
gradient and Hessian with respect to the metric γω on S0, respectively. Similar to Remark
4.17 (ii), we will identify χ, ζ with tensors χω, ζω on S0 via the above relations.
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The Proposition follows directly from Proposition 1 in [59]. Note the different sign
conventions k = −L, sl = −ζ. Note that together with Proposition 4.16, Proposition 4.22
shows that all geometric information of a spacelike cross section can be directly computed
from a given background foliation.

We close this section by proving the Gauss- and Codazzi Equations for a codimension-2
surface (Σ, γ) in an ambient spacetime (M, g). Here, we will express the equations with
respect to a null frame of the given surface. A straightforward computation now yields the
following Lemma:

Lemma 4.23. Let (xi) denote local coordinates of (Σ, γ). Then

g∇∂i
∂j = γ∇∂i

∂j − 1

2
χ
ij

L − 1

2
χijL,

g∇∂i
L = χj

i
∂j + ζ(∂i)L,

g∇∂i
L = χji∂j − ζ(∂i)L.

With this, we obtain the following Gauss- and Codazzi Equations:

Proposition 4.24 (Gauss Equations II). Let (xi) denote local coordinates of (Σ, γ). Then

Rmijkl = Rmijkl − 1

2
χjlχik − 1

2
χ
jl

χik +
1

2
χjkχil +

1

2
χ
jk

χil,

Ricik − 1

2
RmiLkL − 1

2
RmiLkL = Ricik − 1

2
θχ

ik
− 1

2
θχik +

1

2
(χ · χ)ik +

1

2
(χ · χ)ik,

R − 2Ric(L, L) +
1

2
Rm(L, L, L, L) = R −H2 + |~II|2.

Proof. Note that once the first equality is established, the others follow by taking a trace
over the j, l and i, k entries, respectively. Using the identities in Lemma 4.23, we get

Rmijkl = g
(
g∇∂i

g∇∂j
∂l − g∇∂j

g∇∂i
∂l, ∂k

)

= g

(
g∇∂i

(
∇∂j

∂l − 1

2
χ
jl

L − 1

2
χjlL

)
− g∇∂j

(
∇∂i

∂l − 1

2
χ
il
L − 1

2
χilL

)
, ∂k

)

= Rmijkl + g

(
g∇∂j

(
1

2
χ
il
L +

1

2
χilL

)
− g∇∂i

(
1

2
χ
jl

L +
1

2
χjlL

)
, ∂k

)

= Rmijkl − 1

2
χjlχik − 1

2
χ
jl

χik +
1

2
χjkχil +

1

2
χ
jk

χil.

Proposition 4.25 (Codazzi Equations II). Let (xi) denote local coordinates of (Σ, γ). Then

∇iχjk − ∇jχik = RmijkL − ζjχik + ζiχjk,

∇iχjk − ∇jχik = RmijkL + ζjχik − ζiχjk.
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Proof. Using Lemma 4.23, we see that

RmijkL = g
(
g∇∂i

g∇∂j
L − g∇∂i

g∇∂j
L, ∂k

)

= g
(
g∇∂i

(
χl
j
∂l + ζjL

)
− g∇∂j

(
χl
i
∂l + ζiL

)
, ∂k

)

= ∇iχjk − ∇jχik + ζjχik − ζiχjk.

A rearrangement yields the first identity. The second follows by an analogue computation.

4.9 Evolution Equations

We will now state the evolution equations for a Riemannian manifold (Σ, γ) along a normal
direction both as a hypersurface in an ambient Riemannian manifold, and as a codimension-2
surface along a null hypersurface in an ambient spacetime.

First, let us consider the case, when (Σ, γ) is an n-dimensional Riemannian manifold and
F0 : Σ → M is a smooth embedding into a n + 1-dimensional Riemannian manifold (M, g).
We now assume that there is a smooth 1-parameter family of embeddings F : Σ× [0, T ) → M
such that





F (·, 0) ≡ F0,
d
dt

F (x, t) = −f(x, t)ν(x, t),
(24)

for some smooth function f : Σ × [0, T ) → R, where ν(x, t) denotes the unit normal of
Σt := F (Σ, t) at F (x, t) in M . We then get the following evolution equations:

Proposition 4.26. Let F : Σ × [0, T ) → (M, g) be a smooth solution to (24).

(i) d
dt

γij = −2fhij,
d
dt

γij = 2fhij, d
dt

dµ = −fH dµ,

(ii) d
dt

ν = ∇f ,

(iii) d
dt

hij = Hess fij − fhki hkj + f Riemg(∂j, ν, ∂i, ν)

(iv) d
dt

H = ∆f + f
(
Ricg(ν, ν) + |h|2

)
,

where γ, h, and H denote the induced metric, second fundamental form and mean curvature
of Σt in M , respectively, dµ denotes the volume form of Σt, and ∇, Hess, ∆ denote the
gradient, Hessian and Laplace–Beltrami operator of Σt, respectively.
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For a prove, we refer to the lecture notes of Huisken–Polden [52].
Let us now consider the case when (Σ, γ) is 2-dimensional Riemannian manifold, N a

null hypersurface in an ambient 4-dimensional spacetime (M, g), and there exists a smooth
embedding F0 : Σ → N . We now assume that there exists a smooth 1-parameter family of
embeddings F : Σ × [0, T ) → N such that





F (·, 0) ≡ F0,
d
dt

F (x, t) = ϕ(x, t)L(x, t),
(25)

for some smooth function ϕ : Σ × [0, T ) → R, where L(x, t) is the null generator of N at
F (x, t). We then get the following evolution equations, also known as the Raychaudhuri
optical equations:

Proposition 4.27. Let F : Σ × [0, T ) → (M, g) be a smooth solution to (25).

(i) d
dt

γij = 2ϕχ
ij

, d
dt

γij = −2ϕχij, d
dt

dµ = ϕθ dµ,

(ii) d
dt

χ
ij

= ϕκχ
ij

+ ϕ · (χ)2
ij − ϕRm(L, ∂i, L, ∂j),

(iii) d
dt

L = −2∇ϕ − 2ϕζk∂k − ϕκL,

(iv) d
dt

χij = −2Hessijϕ − 2( dϕi ⊗ ζj + dϕj ⊗ ζi)

−ϕ
(
κχij − (χχ)ij + 2∇iζj + 2ζi ⊗ ζj + Rm(L, ∂i, L, ∂j)

)
,

(v) d
dt

θ = κϕθ − ϕ(|χ|2 + Ric(L, L)),

(vi) d
dt

θ = −2∆ϕ−4γ(∇ϕ, ζ)−ϕκθ−ϕ
(
|~II|2 + Ric(L, L) − 1

2
Rm(L, L, L, L) + 2 div ζ + 2 |ζ|2

)
,

where L is the unique normal null vector field of Σt such that g(L, L) = 2, κ as in Equation
(14), γ, χ, χ, θ, θ and ζ denote the induced metric, null second fundamental forms, null
expansions, and connection 1-form of Σt with respect to {L, L}, respectively, and ∇, Hess
and ∆ denote the Gradient, Hessian, and Laplace–Beltrami operator on Σt, respectively.

Remark 4.28. Note that for arbitrary ϕ, the evolution equations corresponding to (25) will
in general depend on the non-unique choice of null generator L of N . In particular, if we
want to study geometric flows along a null hypersurface, the speed ϕ of the flow should be
defined such that (25) is independent of the choice of null generator. Note that what we will
call null mean curvature flow below in Section 7 is an example of a geometric flow that is
indeed independent of the choice of null generator, cf. [67].
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Proof.

(i) We compute

d

dt
γij = g∇ϕLg(∂i, ∂j)

= g(g∇ϕL∂i, ∂j) + g(∂i,
g∇ϕL∂j)

= g(g∇∂i
ϕL, ∂j) + g(∂i,

g∇∂j
ϕL)

= 2ϕχ
ij

.

The evolution for the inverse of the induced metric follows by the general identity

d

dt
γij = −γikγjl

d

dt
γkl.

Finally, note that ~H = −1
2
θL − 1

2
θL, so by the first variation of area

d

dt
dµ = −g( ~H, ϕL) dµ = ϕθ dµ.

(ii) Direct computation gives

d

dt
χ
ij

= −g∇ϕLg(g∇∂i
∂j, L)

= −ϕg(g∇∂i
∂j,

g∇LL) − g(g∇ϕL
g∇∂i

∂j, L)

= ϕκχ
ij

− g(g∇∂i

g∇∂j
(ϕL), L) − ϕRm(L, ∂i, L, ∂L)

= ϕκχ
ij

+ g(g∇∂j
(ϕL), g∇∂i

L) − ϕRm(L, ∂i, L, ∂L)

= ϕκχ
ij

+ ϕ(χ)2
ij − ϕRm(L, ∂i, L, ∂L),

where we used that [ϕL, ∂i] = 0 in the third line as F induces a (local) background
foliation on N . Taking a trace, (ii) together with (i) yields (v).
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(iii) Since we have

g(
d

dt
L, L) = 0,

g(
d

dt
L, L) = ϕg(g∇LL, L)

= −ϕg(L, g∇LL)

= −2ϕκ,

g(
d

dt
L, ∂i) = g(g∇ϕLL, ∂i)

= −g(L, g∇∂i
ϕL)

= −2∂iϕ − 2ϕζ(∂i),

we can conclude (iii).

(iv) Note that Hessϕij = γ(∇∂i
∇ϕ, ∂j), so from (iii), we can compute that

d

dt
χij =g(g∇ϕL

g∇∂i
L, ∂j) + g(g∇∂i

L, g∇ϕL∂j)

=g(g∇∂i

g∇ϕLL, ∂j) + Rm(ϕL, ∂i, ∂j, L) + g(g∇∂i
L, g∇∂j

ϕL)

=g
(
g∇∂i

(
−2∇ϕ − 2ϕζ l∂l − ϕκL

)
, ∂j

)
− ϕRm(L, ∂i, L, ∂j)

+ g(χk
i
∂k − ζiL, ∂jϕL + ϕχl

j
∂l + ζjL)

= − 2Hessϕij − 2( dϕi ⊗ ζj + dϕj ⊗ ζi) − ϕκχij

− ϕ
(
2∇iζj + 2ζi ⊗ ζj + Rm(L, ∂i, L, ∂j) − (χχ)ij

)
,

where we again used that [ϕL, ∂i] = 0 in the second line. Taking a trace, (i) and (iv)
yield (vi).

Remark 4.29. Note that we only consider the evolution in directions normal to the surface.
However, if we consider an additional tangential component in (24) and (25) this exactly
corresponds to a change of coordinates on Σ in time. Thus, by commuting F with an
appropriate smooth 1-parameter family of diffeomorphisms Φt : Σ → Σ, one can always
assume that (24) and (25) are satisfied as above.
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4.10 Spherical harmonics

We briefly recall the spherical harmonics, which are the eigenfunctions of the Laplace oper-
ator on the standard round sphere (S2, dΩ2). For detailed information and to the interested
reader, we refer to [38]. In particular Chapters 1 and 4 in [38].

Considering a spherical harmonic Y : S2 → R, it will satisfy the equation

∆S2Y + λY = 0

for some λ ∈ R by definition. First note that as rotations R on R
3 act as isometries on S

2

one can check that Y ◦ R|S2 is also a spherical harmonic with respect to the same eigenvalue
λ. Observe further that for λ = 0, the solutions are exactly the harmonic functions on S

2

and hence the spherical harmonics for λ = 0 are the constant functions on S
2. In general,

one can check that this equation is intricately connected to the general Legendre equation
for which the solutions are the Legendre Polynomials. In particular, there exists l ∈ N0

such that λ = λl := −l(l + 1), and the space of eigenfunctions to the eigenvalue λl has
dimension 2l + 1. Let Y k

l for k = −l . . . , l denote an orthonormal basis of the space of
spherical harmonics with eigenvalue λl with respect to the L2-norm on S

2. Moreover, one
can check that

ˆ

S2

Y k
l Y k′

l′ dµ = 0

for l 6= l′. Hence, the functions Y k
l are L2-orthogonal and in fact form an orthonormal basis

of the smooth functions on S
2. Thus, for any function f on S

2 one can write

f =
∞∑

l=0

l∑

k=−l
al,kY

k
l ,

where the constants al,k ∈ R are given by

al,k :=

ˆ

S2

fY k
l dµ.

As Y 0
0 = 1

4π
, f0 := f0,0 is the mean value of f on S

2, i.e.,

f0 =

 

S2

f dµ =
1

4π

ˆ

S2

f dµ.

Moreover, one can further check that all spherical harmonics with respect to the eigenvalue
λl can be obtained by restricting the homogenous polynomials of degree l on R

3 to S
2. In

particular, the Cartesian coordinate functions xi for i = 1, 2, 3 restrict to spherical harmonics
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fi = xi|S2 on S
2 with respect to the eigenvalue −2. Here, we call the functions fi the first

spherical harmonics, which form an L2-orthogonal basis of the spherical harmonics with
respect to the eigenvalue −2, and direct computation gives ||fi||2L2(S2) = 4π

3
. If we consider

spherical coordinates r, θ, ϕ on R
3 with (r, θ, ϕ) ∈ (0, ∞) × (0, π) × (0, 2π) such that

x1 =r sin θ sin ϕ,

x2 =r sin θ cos ϕ,

x3 =r cos θ,

(26)

then we note that

f1 = sin ϕ sin θ,

f2 = cos ϕ sin θ,

f3 = cos θ,

(27)

where θ, ϕ now denote coordinates on S
2. Lastly, we remark that under isometries of S2,

which are exactly the rotations of the ambient space R
3, the first spherical harmonics fi are

transformed into spherical harmonics f̃i, which arise exactly as the first spherical harmonics
with respect to the rotated Cartesian coordinates x̃i.
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5 Inverse space-time mean curvature flow in asymp-

totically flat initial data sets

In this section we study inverse space-time mean curvature flow in asymptotically flat initial
data sets as a generalization to inverse mean curvature flow in the time–symmetric case.
We say a family of hypersurfaces F : Σ × [0, T ) → M in an initial data set (M, g, K) is a
(smooth) solution to inverse space-time mean curvature flow (STIMCF), if

d

dt
F =

1√
H2 − P 2

ν, (28)

where H is the mean curvature of Σt = F (t, Σ) and P = trM K − K(ν, ν) is as in Subsection
4.8. Hence, the inverse of the speed of the flow is exactly given as the squareroot of the
spacetime mean curvature H2, and the flow reduces to inverse mean curvature flow in the
time-symmetric case.

In time-symmetry, Huisken–Ilmanen [50] used a weak notion of inverse mean curvature
flow to give a proof of the Riemannian Penrose Inequality for connected apparent horizons.
A generalization of inverse mean curvature flow has also been pursued by Moore [63], and the
strategy presented here closely follows her analysis of inverse null mean curvature flow, as
well as the techniques developed in [50]. Unlike inverse mean curvature flow, weak solutions
of both inverse null mean curvature flow studied by Moore and inverse space-time mean
curvature flow presented here satisfy an anisotropic comparison principle requiring a notion
of unit normal even across jump regions, where the time-of-arrival function remains constant.
The main result of this section is an existence theorem for weak solutions to inverse space-
time mean curvature flow in maximal, asymptotically flat initial data sets (Theorem 5.33).

This section is based on joint work with Gerhard Huisken [53]. Additionally, Subsections
5.1 and 5.2 are also contained in the master thesis of the author [87], apart from a maximal
existence result for the smooth flow (Theorem 5.2) in Subsection 5.1 due to Huisken. We
refer to Overview and Contributions for a precise listing of the individual contributions.

As a consequence, the properties of smooth solutions discussed in Subsection 5.1 and the
concept of elliptic regularisation introduced in Subsection 5.2 are only listed in brief detail
for the convenience of the reader and the statements in these subsections are given without
proof, where we refer to [53, 87] for detailed proofs.

The rest of the section is structured as follows: In Subsection 5.3 we analyse the limiting
behaviour of the translating graphs defined via the elliptic regularisation and construct a
notion of unit normal across jump regions. We define the concept of weak solutions in
Subsection 5.4 and prove the main result in Subsection 5.5. Finally, we discuss the formation
of jump regions in Subsection 5.6 and discuss the asymptotics of solutions in 5.7.
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5.1 The smooth flow

We first concentrate on the properties of smooth solutions of (28).

Assuming that
√

H2 − P 2

∣∣∣∣
Σ0

> 0, the flow is parabolic and the surfaces Σt expand

smoothly as long as their speed remains bounded, see Theorem 5.2. Additionally, we pro-
vide an upper bound on the inverse speed restricted to a ball with sufficiently small radius
depending on the geometry of (M, g, K), see Theorem 5.3. This will later serve as an interior
gradient estimate in the level-set formulation of the flow.

Lemma 5.1. Smooth solutions of (28) with Φ :=
√

H2 − P 2 > 0 and Ψ := 1
Φ

satisfy the
following evolution equations:

(i) d
dt

γij = 2Ψhij,
d
dt

γij = −2Ψhij, d
dt

dµγ = H√
H2−P 2 dµγ,

(ii) d
dt

ν = −∇Ψ,

(iii) d
dt

hij = − Hess Ψij + Ψhki hkj − Ψ Riemg(∂i, ν, ∂j, ν),

(iv) d
dt

H = −∆Ψ − Ψ
(
Ricg(ν, ν) + |h|2

)
,

(v) d
dt

P = Ψ trγ DνK + 2Kνi∇iΨ,

(vi) d
dt

Φ = Φ−2
(
H
Φ

∆Φ − 2H
Φ2 |∇Φ|2 − H

(
Ricg(ν, ν) + |h|2

)
− P trγ DνK + 2P

Φ
Kνi∇iΦ

)
,

where D denotes the Levi-Civita connection on M , and we otherwise use the same conven-
tions as in Proposition 4.26.

Throughout this section, we will always denote the Levi–Civita connection and gradient,
Hessian and Laplace–Beltrami operator as ∇, Hess, and ∆, respectively, for any hypersurface
under consideration, and will always denote the Levi–Civita connection and gradient of an
ambient manifold as D. For a reader familiar with [53], we would like to emphasize that this
is exactly the opposite convention as in [53], but as we otherwise always adhere to the above
convention for the objects on surfaces Σ, we will also do so here for the sake of consistency.

While the main aim of this paper is the construction of a global weak solution to STIMCF,
we begin by proving that for smooth closed initial hypersurfaces F0 with Φ > 0 a smooth
solution to the flow exists as long as Φ > 0 remains true. A corresponding result for inverse
mean curvature flow in Euclidean space was shown in [51, Corollary 2.3], for general ambient
manifolds the result appears to be new also for inverse mean curvature flow.
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Theorem 5.2. Suppose the initial hypersurface F0 : Σ → M is a smooth immersion satisfy-
ing Φ > δ0 > 0. Then there exists T > 0 depending on δ0 and the regularity of F0, (M, g, K)
with a unique smooth solution F : Σ × [0, T ) → M to (28) on [0, T ). If the space-time mean
curvature Φ remains bounded from below by a constant δ1 > 0 for all t ∈ [0, T ), then the
solution can be extended beyond T . In particular, if [0, Tmax) is the maximal time interval of
existence for a smooth solution of (28) with Tmax < ∞, then the speed Ψ = 1/Φ is unbounded
for t → Tmax.

We further establish an interior upper bound on Φ which will be crucial in our later
construction.

Theorem 5.3. Let x ∈ Mn+1, let dx denote the distance to x, and let R > 0 be such that
BR(x) ⊂⊂ Mn+1, Ricg ≥ − 1

100(n+1)R2 in BR(x), and there exists a function p ∈ C2(BR(x))
such that

p(x) = 0,
3

2
d2
x ≥ p ≥ d2

x on BR(x), |∇p|g ≤ 3dx, and ∇2p ≤ 3g on BR(x).

Assuming furthermore that HΣs > 0 for s ∈ [0, t], there exists a constant C(n) > 0 depending
only on the dimension, such that

sup
F (Σ,[0,t])∩BR/2(x)

Φ ≤ max


 max

Σ0∩BR(x)
Φ, C(n)


 1

R
+ sup

BR(x)

|K|g + sup
BR(x)

|DK| 1
2
g




 , (29)

where Φ =
√

H2 − P 2.

Remark 5.4. We choose p(y) := |x − y|2 in flat space with R = ∞, but in general R > 0
will depend on the injectivity radius and Ricci curvature. However, as argued in the Remark
to [50, Definition 3.3], each x ∈ Mn+1 admits a positive radius R, such that the assumptions
are satisfied.

5.2 Level-set description and elliptic regularisation

To reformulate STIMCF as a level-set flow, we assume that the smooth family of hypersur-
faces {Σt} evolving by STIMCF is given as level-sets

Σt = ∂{x ∈ M |u(x) < t}

of a smooth scalar function u : M → R with Du 6= 0. Note that it is always possible
to construct such a function u as long as the flow remains smooth and parabolic. Then
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u(y) = t if and only if there exists x ∈ Σ, such that F (x, t) = y, and we call u the time-
of-arrival function. Since for fixed x ∈ Σ, u ◦ F (x, ·) is the identity map on the existence
interval of F we conclude that

|Du| =
√

H2 − P 2. (30)

Mn+1

R

∂E0

u(y) = t

Σt

y

Figure 1: Time-of-arrival function u.

In this smooth setting we have

H = divg

(
Du

|Du|g

)
and P =


gαβ − DαuDβu

|Du|2g


Kαβ

such that (30) can be rearranged as

divg

(
Du

|Du|g

)
= +

√√√√√|Du|2g +



(
gαβ − DαuDβu

|Du|2g

)
Kαβ




2

.

The sign on the RHS is chosen such that STIMCF is consistent with inverse mean curvature
flow in the time symmetric case and is further necessary to apply Theorem 5.3 below.
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If we now assume that Σ0 = ∂E0, where E0 is a precompact C2-domain in M , we are led
to the degenerate elliptic boundary value problem





divg

(
Du

|Du|g

)
−
√

|Du|2g +
((

gαβ − DαuDβu

|Du|2g

)
Kαβ

)2

= 0,

u|∂E0 = 0.

(31)

We want to find weak solutions of (31) by elliptic regularisation in a broad class of asymp-
totically flat exterior regions and begin with the construction of subsolutions, motivated by
the smooth spherical solutions u(x) = n ln

( |x|
R0

)
in the flat initial data set (Rn+1, δ, 0).

Lemma 5.5. Let 0 < α < n and let (M, g, K) be an asymptotically flat initial data set with
asymptotic coordinate system x : M \ B → R

n+1 \ B1(0) as in Definition 4.14. Then, using

the notation OR0 = x−1
(
R
n+1 \ BR0(0)

)
, there exists R0 = R0(α, g, K) > 1, such that

v : OR0 → R, v(y) = α ln(|x(y)|) − α ln(R0),

is a smooth strict subsolution of (31) with v|∂OR0
= 0.

Remark 5.6. Note that v will remain a subsolution of the elliptic regularisation (32) defined
below on compact regions for sufficiently small ε > 0 with respect to the same R0.
Further, we would like to point out that here we use a slightly different notion of asymptotic
flatness regarding the decay assumptions at infinity, cf. [53, Definition 2.1]. However, as we
in fact only require the rather mild decay assumptions (64) as below in Subsection 5.7 to
establish our results, we may ignore this subtlety.

Similar to the behaviour of inverse mean curvature flow, we expect solutions to form
jump regions, where Du = 0 and (31) is not well-defined. To address this problem we use
the method of elliptic regularisation and approximate weak solutions to inverse space-time
mean curvature flow by smooth solutions of strictly elliptic equations. Let ε > 0 and consider
the following strictly elliptic quasilinear PDE, writing now |Du| = |Du|g for simplicity,

divg


 Duε√

ε2 + |Duε|2


−

√√√√ε2 + |Duε|2 +

((
gαβ − DαuεDβuε

ε2 + |Duε|2
)
Kαβ

)2

= 0. (32)

Rescaling (32) via ûε := uε

ε
gives

divg


 Dûε√

1 + |Dûε|2


−

√√√√ε2 + ε2 |Dûε|2 +

((
gαβ − DαûεDβûε

1 + |Dûε|2
)
Kαβ

)2

= 0, (33)
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which is equivalent to

√√√√√divg


 Dûε√

1 + |Dûε|2




2

−
((

gαβ − DαûεDβûε

1 + |Dûε|2
)
Kαβ

)2

= ε
√

1 + |Dûε|2. (34)

Note that the left-hand side in (34) corresponds to the square root of the spacetime mean

curvature
√

Ĥ2
ε − P̂ 2 of the hypersurfaces Σ̂ε

t := graph
(
ûε − t

ε

)
in the initial data set

(M × R, g + dz2, K̃), where we extent K onto M × R by K̃ij := Kij, K̃iz = K̃zz := 0.
Hence, the downward translating graphs Σ̂ε

t solve (31) in M ×R with Uε(y, z) = uε(y) − εz,
since Σ̂ε

t = {Uε(y, z) = t}. Equivalently, given smooth solutions uε to (32), the hypersurfaces

Σ̂ε
t are smooth translating solutions of STIMCF in M × R with

√
Ĥε − P̂ 2

∣∣∣∣
Σ̂ε

t

> 0 along the

hypersurfaces.

Mn+1

R

∂E0

u

ûε

uε

Figure 2: The time-of-arrival function u, the elliptic regularisation uε,and the rescaling ûε .

We will dedicate the rest of this subsection to the existence of smooth solutions of the
elliptic regularisation (32). Suppose that the initial hypersurface Σ0 = ∂E0 is given as
boundary of a precompact domain E0 ⊂ M and let F ⊂ (M \ E0) be another precompact
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domain. Then a solution uε of the regularisation (32) can only exist on F if ε > 0 is
sufficiently small, since the rescaled solution ûε will satisfy

ε |F | ≤
ˆ

F

ε
√

1 + |Dûε|2 dy =

ˆ

F

divg


 Dûε√

1 + |Dûε|2


 dy =

ˆ

∂F

g(Dûε, η)√
1 + |Dûε|2

dσ ≤ |∂F | ,

where η is the unit normal to ∂U . Therefore we need to specify boundary data for (32)
on precompact domains ΩL exhausting M \ E0 as L → ∞: We use the subsolution v as
in Lemma 5.5 to define the domains FL = {x ∈ M : x ∈ M \ OR0 or v(x) < L} for all
0 ≤ L < ∞. On ΩL := FL \ E0 we consider the boundary value problem





Eεuε = 0 on ΩL,

uε = 0 on ∂E0,

uε = L − 2 on ∂FL,

(35)

where Eεuε is the ellipitic regularisation on the LHS of (32). As we only consider initial data
sets with one asymptotically flat end and v(x) → ∞ as |x| → ∞, the domain ΩL := FL\E0 is
precompact. If M contains multiple asymptotic ends, we can also proceed as in the following
under the additional assumption, that E0 contains all but one end.

Remark 5.7. We prove existence of smooth solutions uε of the elliptic regularisation (35)
by using the method of continuity. For s ∈ [0, 1], we consider the boundary value problem





Eε,suε,s = 0 on ΩL,

uε,s = 0 on ∂E0,

uε,s = s(L − 2) on ∂FL,

(36)

where the operator Eε,suε,s is defined as

divg


 Duε,s√

ε2 + |Duε,s|2


−

√√√√ε2 + |Duε,s|2 + s

((
gαβ − Dαuε,sDβuε,s

ε2 + |Duε,s|2
)

Kαβ

)2

,

and aim to show that Sε := {s ∈ [0, 1] : (36) admits a unique solution in C2,α(ΩL)} = [0, 1]
for sufficiently small ε > 0.

From now on, we also impose the additional condition that the initial data set (M, g, K)
is maximal, i.e., trM K = 0, to ensure the existence of a subsolution barrier in the compact
region. Therefore the quasilinear operator Eε,s becomes

Eε,s = divg


 Duε,s√

ε2 + |Duε,s|2


−

√√√√ε2 + |Duε,s|2 + s

(
Dαuε,sDβuε,s

ε2 + |Duε,s|2
Kαβ

)2

. (37)
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In view of the work of Cederbaum–Sakovich [24] we can also interpret the method of conti-
nuity as modifying the underlying initial data set (M, g, K) via (Ms, gs, Ks) := (M, g,

√
sK)

instead of modifying the operator Eε.

Theorem 5.8. Let (M, g, K) be an asymptotically flat, maximal initial data set and E0 ⊂ M
a precompact C2,α domain. Then, for every L > 2, satisfying E0 ⊂ FL and d(∂E0, ∂FL) > 2,
there exists an ε(L) > 0, such that for 0 < ε < ε(L) and s ∈ [0, 1] a smooth solution uε,s to
(36) satisfies the following a-priori estimates:

(i) uε,s ≥ −ε in ΩL, uε,s ≥ v + (s − 1)(L − 1) − 2 in FL \ F0,

(ii) uε,s ≤ s(L − 2) in ΩL,

(iii) |Duε,s| ≤ H+ + ε on ∂E0, |Duε,s| ≤ C(L) on ∂FL,

(iv) |Duε,s| (y) ≤ max
Br(x)∩∂E0

|Du| + ε + C(n)
r

+ C(n, ||K|| , ||DK||) for all y ∈ ΩL,

(v) |uε,s|C2,α(ΩL) ≤ C(ε, L, n, g, ||K|| , ||DK|| , ∂E0),

where v is a subsolution of (31) as in Lemma 5.5, H+ is the positive part of the mean
curvature of ∂E0, and r > 0 such that the conditions of Theorem 5.3 are satisfied at y with
r.

Remark 5.9. Note that Eε,s is uniformly elliptic for any smooth function on the compact
domain ΩL and the assumptions on L ensure that the boundary data of (5.7) are realized by
a C2,α-function ϕ, such that ||ϕ||C2,α(ΩL) ≤ C(∂E0, L, g, n, ||K||). For C2-domains, solutions

in C2,α(ΩL) ∩ C1,α(ΩL) still satisfying (i)-(iv) exist by approximation.

Theorem 5.10. Let (M, g, K) be an asympotically flat, maximal initial data set and E0 ⊆ M
a precompact C2,α domain. Then, for every L > 2, satisfying E0 ⊂ FL and d(∂E0, FL) > 2,
there exists an ε0(L) ≤ ε(L), such that a smooth solution uε of (35) exists for all ε < ε0(L).

Since the C1 a-priori estimates in Theorem 5.8 are independent on ε, we can pass via
Arzelà–Ascoli to a subsequence uεk

, such that uεk
→ u locally uniformly, where u is locally

Lipschitz.
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Corollary 5.11. Let (M, g, K) be an asymptotically flat, maximal initial data set and
E0 ⊆ M a precompact C2 domain. Then there exists a locally Lipschitz function
u : M \ E0 → R such that

(i) there exists a sequence Lk → ∞, and a sequence εk < ε0(Lk) with εk → 0, such that
uεk

→ u locally uniformly,

(ii) 0 ≤ u ≤ u(IMCF ), where u(IMCF ) is the unique2 weak solution to inverse mean curvature
flow on M \ E0,

(iii) u → ∞ as |x| → ∞,

(iv) ||u||C0,1(BR(x)) ≤ C(n)
R

+C(n, ||K|| , ||DK||), whenever R < d(∂E0, x) and R satisfies the
assumptions of Theorem 5.3.

5.3 The limiting behavior of the translating graphs

We concluded in Corollary 5.11, that there exists a locally Lipschitz function u on M\E0, and
a subsequence (εi) such that ui := uεi

converges to u locally uniformly. We will show in this
subsection that for n < 6 in addition to the function u we can extract a limiting vectorfield
ν on (M \E0)×R that will be crucial in defining a weak solution to the anisotropic equation
(28).

First note that the functions Ui := ui − εz defined on ΩL × R converge locally uniformly
to the locally Lipschitz function U(y, z) := u(y). In this and the following subsection, we
will concentrate on the objects on the cylinder M × R and study the limiting behaviour of
the hypersurfaces Σ̃ε

t := {Uε = t} in M ×R. In Subsection 5.4, we will define weak solutions
as minimizers to a parametric variation principle and want to argue that the sublimits U
and u are indeed minimizers on (M \ E0) × R and (M \ E0) respectively. As it is the case
for inverse null mean curvature flow first studied by Moore in [63], the introduced bulk term
energy requires a notion of a unit vector field ν across jump regions. Following their strategy,
we first introduce a variational principle JU,ν for Caccioppoli sets on a compact subset A
inside a domain Ω defined as

J A
U,ν(F ) := |∂∗F ∩ A| −

ˆ

F∩A

√
|DU |2 + P 2

ν , (38)

where Pν := (gij − νiνj) Kij which here reduces to Pν = −νiνjKij as we always impose that
trM K ≡ 0.

2with precompact level-sets as constructed in [50]
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We say that E minimizes (38) in a set Ω (form the inside/ outside respectively), if

J A
U,ν(E) ≤ J A

U,ν(F ) (39)

for all F (F ⊆ E, E ⊆ F respectively), with E△F ⊂⊂ A ⊂⊂ Ω, where △ denotes the
symmetric difference. Since this does not depend on the particular choice of the compact set
A such that E△F ⊂⊂ A ⊂⊂ Ω, we will often omit the subscript A in the following. Note
that the well-known inequality

|∂∗(E1 ∪ E2)| + |∂∗(E1 ∩ E2)| ≤ |∂∗E1| + |∂∗E2| , (40)

implies

J A
U,ν(E1 ∪ E2) + J A

U,ν(E1 ∩ E2) ≤ J A
U,ν(E1) + J A

U,ν(E2), (41)

for Caccioppoli sets E1 and E2 satisfying E1△E2 ⊂⊂ A. In particular, E minimizes JU,ν , if
and only if E minimizes Ju,ν from the outside and the inside.

As already discussed, the bulk term
√

|DU |2 + P 2
ν requires a notion of unit normal ν on

all of Ω, since the canonical choice ν = DU
|DU | fails across jump regions. Hence, the main task

of this subsection will be to foliate the interior of jump regions of U in (M \ E0) × R, thus
defining a notion of unit vector field ν. In fact ν will turn out to be translation invariant
and in particular gives rise to a well-defined vector field νM := πTMν on M .

To establish the existence of this foliation, we will draw heavily upon regularity theory
for obstable problems (42) below. In particular, if a Caccioppoli set E minimizes (38) and
|DU | admits an upper bound, E is almost minimizing in the sense that

|∂∗E ∩ BR| ≤ |∂∗F ∩ BR| + C(n, ||DU ||∞ , ||K||C0)Rn+2,

for E△F ⊂⊂ BR ⊂ M × R. In particular, this allows us to apply regularity results of
geometric measure theory to obtain higher regularity for ∂∗E. The following C1,α result can
be obtained by modifying the proof given in [79] for R

n to general Riemannian manifolds.
We refer to the comments preceding [50, Regularity Theorem 1.3] for a broad overview of
references.

Theorem 5.12. (Regularity Theorem)
Let f be a bounded, measurable function on a domain Ω ⊂ M̃m of a smooth Riemannian
manifold (M̃m, g̃) of dimension m < 8. Suppose E ⊂ Ω contains an open set U and minimizes
the functional

|∂∗F | +

ˆ

F

f (42)
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with respect to competitors F , such that U ⊆ F and F△E ⊂⊂ Ω. If ∂U is C1,α, 0 < α < 1
2
,

then ∂E is a C1,α-submanifold of Ω with C1,α estimates only depending on the distance to
∂Ω, ess sup |f |, C1,α-bounds for ∂U and C1-bounds on the metric g̃.

When m ≥ 8, this remains true away from a closed singular set Z of dimension at most
m − 8, that is disjoint from U.

Remark 5.13. From here onwards we will always assume that n < 6 so the previous theorem
applies in M × R with m = n + 2. If n ≥ 6, the limit uε → u will lead to weak solutions of
(28) with similar regularity properties away from the singular set.

Another essential tool that will be used in this section is the following Compactness
Theorem for Caccioppoli sets minimizing (38).

Theorem 5.14. (Compactness Theorem)
Let (M̃, g̃, K̃) be an initial data set, let Ω ⊆ M̃ , and let Ei ⊆ Ω be a sequence of sets with
C1,α
loc boundary such that ∂Ei → ∂E locally in C1,α. Let (νi) be a sequence of unit vector

fields on TΩ satisfying νi|∂Ei
= ν∂Ei

, such that there exists a unit vector field ν ∈ TΩ with
νi → ν a.e. locally uniformly and ν|∂E = ν∂E. Further, let Ui ∈ C0,1

loc (Ω), such that Ui → U
locally uniformly for an U ∈ C0,1

loc (Ω) and

|DUi| → |DU | in L1
loc(Ω).

Then, if Ei minimizes JUi,νi
in Ω, E minimizes JU,ν in Ω.

Proof. As argued above, it suffices to show that E minimizes JU,ν in Ω from the outside and
from the inside. As both directions are similar in spirit, we merely show that E minimizes
JU,ν in Ω from the outside.

So let E ⊆ F such that F \ E ⊂⊂ Ω and let G ⊂⊂ Ω such that F \ E ⊂⊂ G. We further
consider a compact set G̃ ⊂⊂ Ω with smooth boundary, such that G ⊂ int(G̃),

∣∣∣∂∗(F ∪ Ei) ∩ ∂G̃
∣∣∣ =

∣∣∣∂∗(F ∩ Ei) ∩ ∂G̃
∣∣∣ =

∣∣∣∂∗Ei ∩ ∂G̃
∣∣∣ = 0

for i large enough, and
´

∂G̃

∣∣∣χ−
F∪Ei

− χ+
Ei

∣∣∣ dHn → 0 as i → ∞, which is possible as F ∪Ei → E,

F ∩ Ei → E, and Ei → E in L1
loc(Ω \ G). Setting Fi := Ei ∪ (F ∩ G̃), we see that

|∂∗Fi ∩ Ω| =
∣∣∣∂∗Ei ∩ ∂(Ω \ G̃)

∣∣∣+
∣∣∣∂∗(F ∪ Ei) ∩ G̃

∣∣∣+
ˆ

∂G̃

∣∣∣χ−
F∪Ei

− χ+
Ei

∣∣∣ dHn.
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Furthermore Fi△Ei ⊂⊂ Ω, so J G̃
Ui,νi

(Ei) ≤ J G̃
Ui,νi

(Fi). With the above identity, we can
conclude

J G̃
Ui,νi

(Ei) ≤ J G̃
Ui,νi

(F ∪ Ei) +

ˆ

∂G̃

∣∣∣χ−
F∪Ei

− χ+
Ei

∣∣∣ dHn.

Together with inequality (41), this implies that

J G̃
Ui,νi

(F ∩ Ei) −
ˆ

∂G̃

∣∣∣χ−
F∪Ei

− χ+
Ei

∣∣∣ dHn ≤ J G̃
Ui,νi

(F ).

Using that Ei ∩ F → E in G̃, Ui → U and νi → ν a.e. locally uniformly, |∇Ui| → |∇U | in
L1
loc and

´

∂G̃

∣∣∣χ−
F∪Ei

− χ+
Ei

∣∣∣ dHn → 0 as i → ∞, we can conclude that

J G̃
U,ν(E) ≤ J G̃

U,v(F ),

so E minimizes JU,ν to the outside.

We will see in Subsection 5.4, Lemmas 5.23 and 5.24, that the sublevelsets of smooth
solutions of STIMCF satisfy the variational principle (39). Applying this to the smooth
approximating solutions Uε constructed in Subsection 5.2, the Regularity Theorem 5.12 and
the interior gradient estimate Theorem 5.3 yield the following:

Corollary 5.15. The downward translating graphs Σε
t = {Uε = t} are locally uniformly

bounded in C1,α for sufficiently small ε > 0.

Proof. By Lemmas 5.23 and 5.24, we know that the sets Eε
t := {Uε < t} minimize JUε,νε on

Eb \ Ea for all a ≤ t < b, where νε = DUε

|DUε| .

Let (y, z) ∈ (Mn+1 \ E0) × R and define d := dist((y, z), ∂E0 × R) = dist(y, ∂E0). We
now take L large enough, such that BM

2r ⊂⊂ FL, 2r < d, and r satisfies the assumptions of

Theorem 5.3. So for ε < ε(L) we have an upper bound of
√

|DUε|2 + P 2
νε

on BM×R

r ((y, z)).
Then the Regularity Theorem 5.12 implies that the hypersurfaces Σε

t ∩ BM×R

r ((y, z)) are
uniformly bounded in C1,α.

Using the locally uniform bounds on the downward translating graphs we are able to
construct limiting hypersurfaces in a jump region of U in (M \ E0) × R.

Proposition 5.16. Let Kt0 denote the interior of a jump region {U = t0}, at a jump time
t0. Then each point X0 = (y0, z0) ∈ Kt0 lies in a complete hypersurface Σ̃X0 ⊆ Kt0 that is

the limit of a sequence Σ̃
εij

tij
and locally uniformly bounded in C1,α.
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Proof. We take a pointwise approach similar to Heidusch [49] and Moore [63]. We fix a
target point X0 = (y0, z0) ∈ Kt0 . Taking the sequence (εi) → 0, such that the solutions to
the elliptic regularisation uεi

converge to u, we consider the corresponding sequence of times
(ti) defined by ti := Uεi

(X0) ∈ (−∞, ∞), i.e., X0 ∈ Σ̃εi
ti . Note that ti → t0, since Ui → U

locally uniformly. Let ι(X0) denote the injectivity radius of X0 in (M \ E0) × R and set

d = d(X0) := min(ι(X0), r(X0), dist(X0, ∂Kt0)),

where r(X0) is chosen as in the proof of Corollary 5.15. Therefore it exists ε′ > 0, such that
for all i and ε ≤ ε′, the surface pieces Σ̃εi

ti ∩ BM×R

d (X0) are C1,α bounded uniformly in i and
ε. We now consider the exponential map

expX0
= (expy0

, idR) : TX0(M × R) ∩ Bn+2
d (0, z0) → BM×R

d (X0),

and set Σ̂εi
ti

:= exp−1
X0

(
Σ̃εi
ti ∩ BM×R

d (X0)
)

⊆ TX0(M × R) ∼= R
n+2. Then the surfaces Σ̂εi

ti are

C1,α bounded uniformly in i and ε. In particular, we have uniform C0,α bounds on the unit
normal v̂i(X̂0) of Σ̂εi

ti at X̂0 = (0, z0). By sequence compactness, there exists limit v̂(X̂0),
such that v̂i(X̂0) → v̂(X̂0) uniformly (up to taking a subsequence). Then v(X̂0) uniquely
determines a hyperplane T̂ centered at X̂0. By the uniform convergence of v̂i(X̂0) to v(X̂0)
and the uniform C1,α bounds of the hypersurfaces Σ̂εi

ti , there exists R ≤ d, such that for
i >> 1 large enough, we can write each Σ̂εi

ti locally as a graph over T̂ ∩ BR(X̂0). So there
exists a C1,α function ω̂i on T̂ ∩ BR(X̂0), such that Σ̂εi

ti ∩ BR(X̂0) = graph(ω̂i), and the
functions ω̂i are uniformly C1,α bounded. Using Arzelà–Ascoli and denoting the new Hölder
exponent 0 < β < α again by α for convenience, there is a further subsequence ω̂ij and a

C1,α function ω̂ : T̂ ∩ BR(X̂0) → R, such that

ω̂ij → ω̂ in C1,α
(
T̂ ∩ BR(X̂0)

)
,

ω̂ satisfies the same C1,α bounds, and ω̂ is locally the graph of a hypersurface Σ̂X̂0
around X̂0

with T̂ = TX̂0
Σ̂X̂0

. Thus the hypersurface expX0
(Σ̂X̂0

) in Mn+1×R is uniformly C1,α bounded.

By successively taking subsequences, the hypersurfaces Σ̃εi
ti converge in C1,α

loc to a complete
hypersurface that we will henceforth denote by Σ̃X0 satisfying Σ̃X0 ∩ BM×R

R (X0) = expX0
(Σ̂X̂0

).

We want to conclude the proof by showing that Σ̃X0 ⊆ Kt0 . Consider a point Y ∈ Σ̃X̂0
.

Then there exists a sequence (Yi) → Y with Yi ∈ Σ̃εi
ti , and

|Uεi
(Yi) − U(Y )| ≤ |Uεi

(Yi) − U(Yi)| + |U(Yi) − U(Y )| → 0,

by the locally uniform convergence of Ui to U , so U(Y ) = lim
i→∞

Uεi
(Yi) = lim

i→∞
ti = t0. Hence,

Y ∈ {U = t0}.
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Using the C1,α bounds on the limiting surfaces, we will dedicate the rest of this subsection
on improving the above result. In particular, we will show that the hypersurfaces Σ̃X0 indeed
foliate Kt0 and are C2,α

loc generalized apparent horizons that bound Caccioppoli sets that
satisfy the comparison principle (38), see Theorem 5.19 and 5.20 below. To this end, we
want to verify all assumptions to apply the Compactness Theorem 5.14 on Kt0 . First, we
argue that the limiting surfaces are already sufficient to define a notion of unit normal on
Kt0 .

Proposition 5.17. Let Kt0 be the interior of a jump region, the sequence (εi) as in Propo-
sition 5.16 before, and νi the unit normal to the translating graphs Σ̃εi

t . Then there exists
a Hölder continuous unit vector field ν on Kt0, and a subsequence (ij), such that νij → ν
locally uniformly on Kt0. Moreover ν is translation invariant and everywhere normal to the
hypersurfaces Σ̃X as constructed in Proposition 5.16.

Proof. Throughout the proof, let Σ̃X denote a hypersurface through X ∈ Kt0 constructed in
Proposition 5.16 as a sublimit of the level-sets {Uεi

= ti} such that Uεi
(X) = ti. Note that the

hypersurfaces Σ̃X are not a-priori unique, as the construction relies on taking (subsequent)
subsequences. However, comparing a point X0 = (x0, z0) ∈ Kt0 with a vertical translate
Xα = (x0, z0 + α), and assuming that for a subsequence ij

X0 ∈ Σ̃
εij

tij
= graph

(
uij
εij

− tij
εij

)
→ Σ̃X0 ,

we have Xα ∈ Σ̃
εij

tij
−αεij

, and

Σ̃
εij

tij
−αεij

= graph

(
uij
εij

− tij − αεij
εij

)
= graph

(
uij
εij

− tij
εij

)
+ αen+2 → Σ̃X0+αen+2 ,

so we have convergence for all vertical translates with respect to the same subsequence. Thus,
it suffices to construct a unit vector field ν ∈ TKt0 along Kt0 := int{u = t0} = Kt0 ∩(M ×{0})
that is normal to the hypersurfaces Σ̃X for X ∈ Kt0 , which is then trivially extended in the
z-direction and satisfies all the desired properties.

Let ζ := {Xk} be a dense, countable subset of Kt0 . Then, by taking subsequent subse-
quences we can choose the hypersurfaces Σ̃Xk

, such that

Σ̃
εij

tkij

→ Σ̃Xk

locally uniformly in C1,α with respect to the same subsequence (εij ) via a diagonal sequence

argument. In particular, the hypersurfaces Σ̃Xk
are locally uniform limits of the level-sets
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{Uεij
= tkij }, which implies that if two surfaces touch each other, they have to do so tan-

gentially and without intersecting anywhere. This yields a well-defined unit vector field on
ζ, which lies dense in Kt0 . In view of the (locally) uniform C1,α estimates established in
Corollary 5.15 and since the limiting hypersurfaces Σ̃Xk

, Xk ∈ ζ, do not intersect transver-

sally, there is r0 such that for Xk, Xm ∈ ζ with |Xk − Xm| < r0 all Σ̃
εij

tij
∩ B2r0(Xk, 0) for

ε sufficiently small can be written as normal graphs over S̃Xk
with uniformly bounded C1,α

norm and ∣∣∣νεij
(Xk) − νεil

(Xm)
∣∣∣ ≤ C |Xk − Xm|α

for all j, l sufficiently large. Therefore, νεij
→ ν locally uniformly in ζ and ν can be extended

to a locally Hölder continuous unit vector field on Kt0 .
It remains to show that ν(X) is normal to the hypersurfaces Σ̃X for all X ∈ Kt0 \ ζ. To

this end, we construct Σ̃X as in Proposition 5.16 by taking a further subsequence (ijk)k∈N.
In particular νεijk

(X) → ν
Σ̃X

(X), but we also necessarily have νεijk
→ ν, so

ν
Σ̃X

(X) = ν(X).

Besides the existence of a measurable unit vector field ν, the compactness theorems
Theorem 5.14 and Theorem 5.31 below also require that |DUi| → |DU | in L1

loc. The interior
gradient estimate Theorem 5.3 implies that for any L large enough, εi < ε0(L) and domain
Ω ⊆ ΩL, it holds that

sup
A

|DUi| ≤ C(A),

for all A ⊂⊂ Ω, where C(A) is a positive constant only depending on A. Then, the Com-
pactness Theorem for BV functions implies the weak convergence and semilowercontinuity
of the gradient, i.e.,

DUi → DU in (C0
0(Ω))∗, |DU |L1 ≤ lim inf

i→∞
|DUi|L1 .

In the interior of jump regions, the L1
loc convergence is readily established by the weak

convergence, but will demand a more delicate analysis away from jumps (see Lemma 5.37).
Before proving this, we want to point out that this improvement of the convergence is
not required in the respective Compactness Theorems for inverse mean curvature flow [50,
Theorem 2.1] and for inverse null mean curvature flow [63, Compactness Property 9], where
the proofs merely rely on the semilowercontinuity.

Lemma 5.18.
|DUi| → |DU | in L1

loc (Kt0) .
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Proof. Let X0 ∈ Kt0 , and for ε > 0 small enough, we consider the geodesic ball Bε(X0) ⊆⊆ Kt0

such that νi → ν uniformly and |DUi| uniformly bounded in Bε(X0). Let ϕ ∈ C0
0(Bε(X0)),

then
ˆ

Bε(X0)

ϕ |DUi| =

ˆ

Bε(X0)

〈DUi, ϕν〉 + ϕ 〈DUi, νi − ν〉 →
ˆ

Bε(X0)

〈DU, ϕν〉 = 0

by the weak∗ convergence, which is implied by the Compactness Theorem for BV functions.
Since |DUi| is uniformly (pointwise) bounded, the claim follows since ϕ can be choosen
arbitrarily close to 1 in L1

loc and |DU | = 0 on Kt0 .

We are now in the position to use the Compactness Theorem 5.14, to show that the
hypersurfaces Σ̃X0 bound minimizing Caccioppoli sets, which will allow us to improve their
regularity.

Theorem 5.19. Each hypersurface Σ̃X0 constructed in Proposition 5.16 is a C2,α generalized
apparent horizon that bounds a Caccioppoli set that minimizes JU,ν in Kt0.

Proof. Employing the Compactness Theorem 5.14, Proposition 5.16 and Lemma 5.18 imply
that Σ̃X0 bounds a Caccioppoli set ẼX0 such that ∂ẼX0 = Σ̃X0 , ν is the outward unit normal
to ∂ẼX0 , and ẼX0 minimizes JU,ν in Kt0 . To complete the proof it remains to show, that the
hypersurfaces Σ̃X0 are C2,α generalized apparent horizons.

We recall the relationship between a function ω ∈ BVloc(Ω) and its subgraph

W = {(x, t) ∈ Ω × R : t < ω(x)}.

If in particular χW denotes the characteristic function of the subgraph W of ω, by [45,
Theorem 14.6] it holds that

|∂∗W | =

ˆ

Ω×R

|DχW | =

ˆ

Ω

√
1 + |Dω|2. (43)

As argued by the construction in Proposition 5.16, we now choose a ball BR(X0) in M × R

around a point X0 ∈ Σ̃X0 , such that Σ̃X0 ∩ BR(X0) = graph(ω) for a function
ω ∈ C1,α(TX0Σ̃X0 ∩ BR(X0)). Then ẼX0 ∩ BR(X0) = W is the subgraph of ω, where
Ω = TX0Σ̃X0 ∩ BR(X0). Since W minimizes JU,ν in Kt0 , ω minimizes the functional

J ′
ν(ω) :=

ˆ

Ω

√
1 + |Dω|2 dx −

ˆ

Ω

ω(x)
ˆ

0

|Pν | (x, s) ds dx,
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where we used the identity (43) and the fact that |DU | = 0 on Kt0 . The corresponding
Euler-Lagrange equation is

div


 Dω√

1 + |Dω|2


+ |Pν | = 0.

Note that this is exactly the equation characterizing a generalized apparent horizon, since
H = div(ν) and by construction ν = (−Dω,1)√

1+|Dω|2
. Since ω ∈ C1,α(TX0Σ̃X0 ∩ BR(X0)), ω in

particular weakly solves the uniformly elliptic equation

aijDiDjω = f,

where

aij :=
1

√
1 + |Dω|2

3

(
gij − Dωi∇ωj

1 + |Dω|2
)

, f := −
∣∣∣∣∣Kij

DωiDωj

1 + |Dω|2
∣∣∣∣∣ ,

are C0,α functions on TX0Σ̃X0 ∩ BR(X0). Schauder Theory, [44, Theorem 6.13], then implies
that for R(X0) sufficiently small ω is in fact the unqiue solution in C2,α(TX0Σ̃X0 ∩ BR(X0))
which solves the equation in the strong sense. Therefore ΣX0 is a generalized apparent
horizon.

We can now use the apparent horizon equation on the hypersurfaces Σ̃X0 to improve the
result of Proposition 5.16, which is the concluding statement of this subsection.

Theorem 5.20. Let Kt0 denote the interior of a jump region {U = t0} at a jump time t0.
Then each point X0 = (y0, z0) lies in a complete C2,α-hypersurface Σ̃X0, such that the hyper-
surfaces Σ̃X0 are generalized apparent horizons foliating Kt0 with unit normal ν ∈ C1,α

loc (Kt0).
If (M, g, K) further satisfies the dominant energy condition (8), then away from a set of Hn

measure zero, the hypersurfaces are either vertical cylinders or translating graphs.

Remark 5.21. Note that, although a leaf of the foliation Σ̃X0 is always either locally a
vertical cylinder or a translating graph, here we are able to fully characterize the set when Σ̃X0

changes character if the (DEC) holds. This set of Hn measure zero along the hypersurface
is essentially given as the set where |P | fails to be differentiable along the hypersurface
(compare the precise definition of the set SX0 in the proof below). In fact, we expect that
the Hausdorff dimension of the Hn zero measure set is at most n − 1 and is (if non-empty)
a rectifiable varifold with bounded variation.
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Proof. By Proposition 5.17, we already know that the hypersurfaces Σ̃X can only touch
tangentially and locally remain sheeted at the same side with respect to each other. Thus,
since the hypersurfaces are in fact generalized apparent horizons, the possibility of them
touching tangentially is immediately ruled out by the strong maximum principle. To show
that the unit normal ν is indeed in C1,α

loc (Kt0), we fix a point X0 ∈ Kt0 and choose suffi-
ciently small r > 0, such that the geodesic ball Br(X0) ⊆⊆ Kt0 satisfies all the restrictions
assumed in the previous propositions, and additionally such that each leaf of the foliation
Σ̃X intersecting the ball can be written as the graph of a function ωX over the tangent space
of T

(
Σ̃X0 ∩ Br(X0)

)
(this follows from the C1,α

loc a-priori estimates on Br independent of the

hypersurface). Clearly, if X → X0, ωX → ωX0 uniformly on B 3
4
r by virtue of construction.

Then, the Schauder interior estimates [44, Corollary 6.3] yield C2,α convergence on B r
2
(X).

In particular, ν ∈ C1,α
loc (Kt0).

We now assume that (M, g, K) satisfies the dominant energy condition (8). Then,
(M × R, g + dz2, K) also satisfies the dominant energy condition. Since ν ∈ C1,α

loc along
the hypersurfaces, we have Pν ∈ C1,α

loc , and |Pν | extends to C1,α
loc , if P 6= 0, or P = 0 and

DP = 0. For a leaf of the foliation Σ̃X0 we therefore consider the Hn zero measure set

SX0
:= {X ∈ Σ̃X0 : P = 0, DP 6= 0}. Thus |Pν | ∈ C1,α

loc (Σ̃X0 \ SX0), which in particular im-
plies that the hypersurfaces Σ̃X0 are C3,α

loc away from SX0 (and smooth away from {Pν = 0}).
Closely following the proof of [72, Proposition 2], we can establish a Harnack inequality for
the function g (∂z, ν) along the connected components of Σ̃X0 \ SX0 , which yields that Σ̃X0

is either a vertical cylinder or a translating graph along these connected components. This
concludes the proof.

5.4 Variational formulation for weak solutions

By freezing
√

|Du|2 + P 2
ν and treating it as a bulk term energy, we can interpret (31) as the

Euler-Lagrange equation to the functional

J A
u,ν(v) :=

ˆ

A

|Dv| + v
√

|Du|2 + P 2
ν . (44)

If for all A ⊂ Ω compact

J A
u,ν(u) ≤ J A

u,ν(v), (45)

for all v ∈ C0,1
loc (Ω) (v ≤ u, v ≥ u respectively), such that {v 6= u} ⊂⊂ A ⊂ Ω, we call (u, ν)

a weak solution (subsolution, supersolution respectively) of (44) in Ω.
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Remark 5.22. Appealing to the results of Subsection 5.3, we will later define the concept
of weak solutions of STIMCF, cf. Definition 5.27, on the cylinder M × R. We will thus
frequently use the notion of weak solutions for pairs (U, ν) on open subsets Ω ⊆ M × R for
the functional JU,ν as defined by (44). It is easy to check that all the results and observations
regarding weak solutions (u, ν) of (44) on M similarly hold for weak solutions (U, ν) of (44)
on M ×R, and in fact remain true for variational principles with general, bounded bulk term
energy, cf. [80].

The relation between translation invariant weak solutions of (44) on M × R and weak
solutions on M is established in Lemma 5.30 below.

For any v, w ∈ C0,1
loc (Ω) satisfying {v 6= w} ⊂⊂ Ω, we find that

J A
u,ν(min(v, w)) + J A

u,ν(max(v, w)) = J A
u,ν(v) + J A

u,ν(w),

so by choosing w = u, we can conclude that u is a solution, if and only if u is a subsolution
and supersolution. Furthermore, smooth solutions to the corresponing Euler-Lagrange equa-
tion (31) are in fact minimizers of the comparison priniciple Ju,ν as the following Lemma
establishes.

Lemma 5.23 (Smooth flow Lemma). Let u be a smooth solution of (31), Et := {u < t}.
Then the sets Et minimize Ju,ν with ν = Du

|Du| in Eb \ Ea for all a ≤ t < b.

Proof. Follows exactly as in [50, Lemma 2.3], [63, Lemma 15] by replacing the respective

bulk term energies with
√

|Du|2 + P 2
ν .

We also see that the respective comparisons principles (38) for Caccioppoli sets and (44)
for locally Lipschitz functions are indeed closely related.

Lemma 5.24. Let u be a locally Lipschitz function on an open set Ω, ν a measurable (unit)
vector field. Then (u, ν) is a weak solution (subsolution, supersolution respectively) of (44)
in Ω, if and only if for each t > 0, the sets Et := {u < t} minimize Ju,ν in Ω (on the outside,
the inside respectively).

Proof. Is proven in complete analogue to [50, Lemma 1.1] and [63, Lemma 12] replacing the

respective bulk term energies by Bu,ν :=
√

|Du|2 + |Pν |2.

Remark 5.25. As it is the case for inverse mean curvature flow and inverse null mean
curvature flow this equivalence also extends to the initial value problems

u ∈ C0,1
loc (M), ν a measurable vector field on T (M \ E0),

E0 = {u < 0}, and (u, ν) is a weak solution of (44) in M \ E0,
(46)
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and

u ∈ C0,1
loc (M), ν a measurable vector field on T (M \ E0),

and ∀t > 0 Et := {u < t} minimizes (38) in M \ E0.
(47)

This follows directly from Lemma 5.24. Lastly, by approximating s ց t, we see that (46)
and (47) are moreover equivalent to

u ∈ C0,1
loc (M), ν a measurable vector field on T (M \ E0),

and ∀t ≥ 0 E+
t := {u ≤ t} minimizes (38) in M \ E0,

(48)

via the Compactness Theorem 5.14.

Further, we can identify the weak mean curvature of the hypersurfaces Σ̃t = {u < t} for
weak solutions of (44) outside of jump regions, where u remains constant.

Recall that the first variation δ(µ) of a C1 hypersurface Ñ in M × R is defined as

δ(µ)(X) :=

ˆ

Ñ

div
Ñ

X dµ ∀X ∈ C∞
C (T (M × R)),

where µ is the induced volume form on Ñ . For the following, we refer to [76] for a detailed
introduction. If Ñ has bounded variation, the Riesz Representation theorem implies that we
can identify δ(µ) with a vector valued measure. If the measure δ(µ) is furthermore absolutely
continuous with respect to µ, the weak mean curvature vector ~H = −Hν is defined via the
Lebesque differentiation theorem,

~H := −Dµδ(µ).

The weak mean curvature H is thus characterized by the following identity
ˆ

Ñ

div
Ñ

X dµ =

ˆ

Ñ

Hg (ν, X) dµ ∀X ∈ C∞
C (T (M × R)). (49)

Lemma 5.26. Let Σ̃t = {u < t} minimize Ju,ν in Ẽb \ Ẽa, where u ∈ C0,1
loc (Ẽb \ Ẽa), and

let Ω be an open set, such that Ω ∩ Ẽb \ Ẽa contains no jump regions. Then the surfaces
Σ̃t = ∂Ẽt have weak mean curvature H satisfying

H =
√

|DU |2 + P 2
ν

a.e. in Ω ∩ Σ̃t for a.e. t ∈ (a, b).
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Proof. Follows exactly as in [50, Section 1] and [63, Lemma 16].

As suggested by Moore in [63] for inverse null mean curvature flow, we will define weak
solutions of STIMCF on M one dimension higher in M ×R, as pairs (U, ν) of translation in-
variant locally Lipschitz functions U and measurable unit vector fields ν, where U minimizes
JU,ν on (M \ E0) × R. In analogue to [63, Definition 15], we will incorporate the results of
Subsection 5.3 into the general definition of weak solutions.

Definition 5.27. Let E0 ⊂ M be a precompact, open set with C2 boundary Σ0 = ∂E0. We
call the pair (U, ν) a weak solution of inverse space-time mean curvature flow with initial
condition E0, if U ∈ C0,1

loc (M × R) and ν is a measurable unit vector field which satisfy

(i) U is translation invariant in the vertical direction. In particular, there exists a locally
Lipschitz function u : M → R, such that U(y, z) = u(y). Moreover u satisfies

u(x) ≥ 0 ∀x ∈ M \ E0,

u|∂E0 = 0, u(x) < 0 ∀x ∈ E0,

u(x) → +∞ as dist(x, E0) → ∞.

(ii) The set Ẽt = {U < t} minimizes JU,ν in (M \ E0) × R for each t > 0. At jump times
t0, each point X0 = (y0, z0) in the interior Kt0 of the jump region {U = t0} lies in a
C1,α hypersurface Σ̃X0 which is the boundary of a Caccioppoli set ẼX0 that minimizes
JU,ν in Kt0 .

(iii) ν is a translation invariant with

ν(X + αez) = ν(X) ∀X ∈ (M \ E0) × R, α ∈ R;

ν(X) is in C0
loc away from jump times and is the unit normal vector to ∂Ẽt

at each point X ∈ ∂Ẽt;

ν(X) is in C1,α
loc (Kt0) and is the unit normal vector to ∂ẼX0 at each point X ∈ ∂ẼX0

at jump times t0 and points X0 ∈ Kt0 .

Remark 5.28.

(i) As we require the variational principle (38) for JU,ν to be satisfied everywhere, in
particular in the interior of jump regions, we can argue as in Theorem 5.19 to conclude
that the interior of any jump region is foliated by C2,α generalized apparent horizons.
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(ii) By Lemma 5.24, we find that any weak solutions (U, ν) of inverse space-time mean
curvature flow is a weak solution of (44) on (M \ E0) ×R. Additionally, we formulated
further restrictions that arise naturally in our construction that couple our choice of
unit vector field ν to the function U in an intuitively geometric way. Without these
restrictions, there are in general several (translation invariant) weak solutions of (44),
but where the function U and the unit vector field ν are not coupled in any meaningful
way. To see this, note that under the restriction trM K = 0 there exists a unit vector
νp ∈ TpM with Kp(νp, νp) = 0 for all p ∈ M and under fairly generic conditions on K
we can make that choice in a (uniformly) continuous way. In particular, Pν = 0 for
this choice of unit vector field3 and hence (U IMCF , ν) is a translation invariant weak
solution of (44) where U IMCF denotes the translation invariant weak solution of inverse
mean curvature flow as constructed by Huisken–Ilmanen [50]. In particular, we can no
longer expect any statement of uniqueness that solely relies on the comparison principle
(44) and the methods of Huisken–Ilmanen developed for inverse mean curvature flow,
cf. [50, Uniquness Theorem 2.2], can not be extended to the anisotropic case. Instead,
a completely different approach has to be developed that also takes the the geometric
restrictions of the unit vector field ν into account to conclusively answer the question
of uniqueness for the concept of weak solutions to inverse space-time mean curvature
flow. These observations are similarly relevant for the concept of weak solutions to
inverse null mean curvature flow introduced by Moore [63].

Example 5.29. We give an illustrative example for the above observation that also high-
lights that weak solutions of (44) in general lack the geometric properties of weak solutions
of STIMCF. We choose (M, g) = (R3, δ) and E0 = B1(0). In particular, the corresponding
weak solution to inverse mean curvature flow on M is the smooth expanding sphere solution
v = 3 ln(|x|). We further choose K := 6

1+r6 ( dr2 − r2 dθ2) in polar coordinates, so (M, g, K)

is a maximal initial data set with K
(

1
r
∂ϕ, 1

r
∂ϕ
)

= 0.

Hence,
(
V, 1

r
∂ϕ
)

is a weak solution of (44) on (M \ E0) × R where V (x, z) = v(x) and
thus the solution does not exhibit any jumps. However

H|∂E0 = 2 < 3 =
∣∣∣P|∂E0

∣∣∣ ,

so any weak solution (U, ν) constructed as in Theorem 5.33 has to immediately jump to a
generalized apparent horizon ∂E+

0 , see Corollary 5.43 below. In particular, V 6= U and since
R

3 does not allow for any closed minimal surfaces we further have ν 6= 1
r
∂ϕ on E+

0 \ E0.

Hence, we found translation invariant weak solutions
(
V, 1

r
∂ϕ
)

and (U, ν) of (44) such that
neither the choice of function nor the choice of unit vector field agree.

3One could of course always choose ν = ∂z on M × R, but we want to emphasize that this phenomenon
also persists on a large class of initial data sets (M, g, K) with ν tangent to M .
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By projecting the translation invariant solution down to the original initial data set, we
find that (u, νM) is a weak solution of (44) on M \ E0, where νM := ν|TM is the restriction
of the translation invariant vector field ν onto the tangential space of M . As elaborated
above, we lose geometric information of the solution during the process. Nonetheless, as
the level-sets of u are precompact it will be more convenient from a technical perspective to
formulate the formation of jumps of a weak solution (U, ν) in Subsection 5.6 and and the
blow-down procedure in Subsection 5.7 below with respect to (u, νM).

Lemma 5.30. Let (U(y, z) := u(y), ν) be a weak solution of inverse space-time mean cur-
vature flow with initial condition E0. Then the pair (u, νM := ν|TM) is a weak solution of
(44) on M \ E0, and Et = {u < t} minimizes (38) for each t > 0.

Proof. Since we extended the tensor K trivially in the z-direction, we find

P̃ν = (g̃ij − νiνj)K̃ij = (gij − νiMνjM)Kij = PνM
.

In particular, we can conclude that
√

|DU |2 + P 2
ν (y, z) =

√
|Du|2 + P 2

νM
(y) for all (y, z) in

(M \ E0) × R. The rest of the proof then proceeds as in the proof of [50, Theorem 3.1] and
[63, Lemma 14].

We close this subsection with a Compactness Theorem for weak solutions of inverse
space-time mean curvature flow.

Theorem 5.31. Let ((Ui, νi))i be a sequence of weak solutions of (44) on open sets Ω̃i in
M ×R with Ui ∈ C0,1

loc (Ω̃i), νi measurable, a.e. locally uniformly continuous unit vector fields,
such that Ω̃i → Ω, Ui → U in C0,1

loc and νi → ν a.e. locally uniformly for a pair (U, ν), and
|DUi| → |DU | in L1

loc. Then (U, ν) is a weak solution of (44) on Ω.
If in addition, (Ui, νi) is a sequence of weak solutions of inverse space-time mean curvature

flow as in Definition 5.27, then (U, ν) is a weak solution of inverse space-time mean curvature
flow.

Remark 5.32. As in the Remark following [50, Theorem 2.1] the statement of Theorem
5.31 is still valid if we allow (Ui, νi) to be a weak solution of (44) with respect to metrics gi
and symmetric (0, 2)-tensors Ki, such that gi → g and Ki → K in C1

loc.

Proof. By the stronger assumptions on the convergence of |DUi|, we can replace the inductive
structure of the proof of [50, Theorem 2.1] by a more direct argument. Let V be a locally
Lipschitz function, such that {V 6= U} ⊂⊂ Ω. Let Φ ∈ C1

c (Ω) with Φ = 1 on {V 6= U}.
Then Vi := ΦV + (1 − Φ)Ui is a locally Lipschitz comparison function for Ui if i >> 1 is
large enough. For an appropriate open, precompact set W ⊂ Ω, such that supp Φ ⊂⊂ W ,
we have

JW
Ui,νi

(Ui) ≤ JW
Ui,νi

(Vi).
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Therefore, by definition of JUi,νi
, we find that

ˆ

W

|DUi| + UiBUi,νi
≤
ˆ

W

|DVi| + ViBUi,νi

≤
ˆ

W

Φ |DV | + (1 − Φ) |DV | + |DΦ| |Ui − Vi| + (ΦV + (1 − Φ)Ui)BUi,νi
,

for BUi,νi
:=
√

|DUi|2 + P 2
νi

which implies

ˆ

W

Φ (|DUi| + UiBUi,νi
) ≤

ˆ

W

Φ (|DV | + V BUi,νi
) +

ˆ

W

|DΦ| |Ui − Vi| .

By the choice of Φ, we see that |DΦ| |Ui − Vi| → 0 uniformly, and by letting i → ∞ we
obtain

JW
U,ν(U) ≤ JU,ν(V ).

If we assume the pairs (Ui, νi) to be weak solutions of STIMCF the translation invariance of
(Ui, νi) implies the translation invariance of the pair (U, ν). Using Lemma 5.24 and arguing
as in Subsection 5.3, we conclude that the pair (U, ν) satisfies all properties of Definition
5.27, so the pair is a weak solution to inverse space-time mean curvature flow.

5.5 Existence of weak solutions

We will now proof our main result. For this, we use the unit vector field ν constructed in
Subsection 5.3 to extend the unit normal vector DU

|DU | across jump regions and employ the
Compactness Theorem 5.31 to the locally Lipschitz sublimit U .

Theorem 5.33. Let (Mn+1, g, K) be an asymptotically flat maximal initial data set as in
Definition 2.1. . Then for any nonempty, precompact, open set E0 ⊂ Mn+1 with C2 bound-
ary, there exists a weak solution of inverse space-time mean curvature flow with initial con-
dition E0.

Remark 5.34.

(i) In initial data sets with multiple ends or inner boundary components the result holds
analogously for initial data E0 containing all but one end and all inner boundary
components.
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(ii) Note that with the methods presented in this paper we can similarly establish the
existence of weak solutions of

d

dt
F =

H

H2 − P 2

under the same conditions imposed on (M, g, K). The speed of this flow corresponds
precisely to the tangential projection of the codimension-2 formulation of inverse mean
curvature flow in an ambient spacetime first proposed by Frauendiener [41]. The level-
set equation in this case takes the form

divg

(
Du

|Du|g

)
=

1

2
|Du|g +

1

2

√√√√|Du|2g + 4

((
gij − DiuDju

|Du|2
)

Kij

)2

(50)

and leads to the same singularities and asymptotic behavior as STIMCF. In particular,
their jumping behavior is driven by the same outward optimization property. See
Subsection 5.6 below.

The proof proceeds as outlined above, where we essentially follow the strategy as in
Subsection 5.3 outside of jump regions and establish the corresponding results in the following
lemmata.

Lemma 5.35. For a.e. t ≥ 0,

|∇u| > 0 Hn-a.e. on Σt.

Proof. Follows as in [50, Lemma 5.1] directly from the co-area formula.

Lemma 5.36. Let t > 0. If t is not a jump time, then Σ̃t := ∂{U < t} is a com-
plete hypersurface that is locally uniformly bounded in C1,α. If t is a jump time, then Σ̃t,
Σ̃+
t := ∂{U > t} are complete hypersurfaces that are locally uniformly bounded in C1,α.

Proof. Let Uε be the smooth solution of STIMCF on ΩL×R defined via the smooth solutions
of the elliptic regularisation uε, which exist under the above assumptions by Theorem 5.10,
and let U be the sublimit as in Corollary 5.11, where Li → ∞, 0 < εi < ε0(Li) as εi → 0.
We treat the two cases separately.

(i) In the case that t is not a jump time, where Σ̃t = Σ̃+
t = {U = t}, the surface Σ̃t

is approximated by fixing a point X0 = (y0, z0) ∈ Σ̃t and considering the sequence
of times ti, such that X0 ∈ Σ̃εi

ti for each i. It then follows exactly as in the proof of
Proposition 5.16, that Σ̃εi

ti converges locally uniformly to Σ̃t in C1,α for a subsequence,
and Σ̃t satisfies the same locally uniform C1,α bounds, where we denote the new Hölder
exponent 0 < β < α here and in the following again by α for convenience. Since in
this case Σ̃t = {U = t} and Ui → U locally uniformly, the convergence holds for the
whole sequence.

72



(ii) If t is a jump time, we will use a slightly different pointwise approach to approximate
Σ̃t and Σ̃+

t , since Σ̃t 6= Σ̃+
t , and hence argue more carefully in this case. To this end, let

X0 ∈ Σ̃+
t0 at a jump time t0. Since there are only countable many such t0, there exists

a sequence of points Xi ∈ Σ̃ti with ti > t0, such that lim
i→∞

Xi = X0, lim
i→∞

ti = t0, and for

i >> 1 large enough Σ̃ti = Σ̃+
ti . As argued above, each surface piece Σ̃ti ∩ BM×R

R (Xi)
can therefore be written via the exponential map as the graph of a C1,α function ω̂i
over TXi

Σ̂ti , where
Σ̂ti := exp−1

Xi

(
Σ̃ti ∩ BM×R

R (Xi)
)

.

Now consider the sequence νi of normal vectors to Σ̂ti at X̂i. By the uniform C0,α

bounds on ν̂i, there exists a subsequence ν̂ik and a unit vector ν̂ ∈ TX0M , such that
ν̂ij → ν̂ uniformly. Let T̂ denote the affine hyperplane orthogonal to ν̂ centered at X̂0.

For i >> 1 large enough, we can write each surface Σ̂ti locally as the graph of a C1,α

function ω̂i over T̂ ∩ Bn+2
R (X̂0). By Arzelà–Ascoli, there exists a further subsequence

ω̂ij and a C1,α function ω̂ : T̂ ∩ Bn+1
R (X̂0) → R, such that

ω̂ij → ω in C1(T̂ ∩ Bn+1
R (X̂i)),

where X̂0 ∈ graph(ω̂) and T̂ = TX0 graph(ω̂). We then consider ω := ω̂ ◦ exp−1
X0

. In

order to recognize graph(ω) as a piece of Σ̃+
t0 , we consider a point Y ∈ graph(ω). By

construction, there exists a sequence Yj ∈ graph(ωij ) ⊂ Σ̃ti , such that Yj → Y . Hence

U(Yi) = ti, which implies that U(Y ) = t0, so Y ∈ Ẽ+
t0 = {U ≤ t0}. Assume that

Y ∈ int(Ẽ+
t0), then there exists a δ > 0, such that BM×R

δ (Y ) ⊂ int(Ẽ+
t0). In particular

Yj ⊂ int(Ẽ+
t0) for j >> 1 large enough, which is a contradiction, since U(Yj) > t0.

Thus graph(ω) ⊂ Σ̃+
t . We make an analogous argument in the case that X0 ∈ Σ̃t0 for

a sequence of points Xi ∈ Σ̃ti , where ti ր t0. Again the limit is independent of the
choice of subsequence and hence the full sequence converges.

Since Σ̃εi
ti → {U = t} for the whole sequence away from jump regions, we can now

argue as in Proposition 5.17 that νi → ν locally uniformly away from jumps for the whole
sequence, and we can thus construct a locally Hölder continuous unit normal ν away from
jump regions. Since there are at most countable jump times, we consider the normal vector
field ν constructed via Proposition 5.17 in the interior of each jump region and by taking
successive subsequences once more, we obtained a measurable unit vector field ν on all of
(M \ E0) × R, such that Ui → U locally uniformly, and νi → ν a.e. locally uniformly with
respect to a fixed sequence (εi)i∈N. More precisely, case (ii) in particular shows that ν is
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continuous on M \ E0 away from the interior of jump regions. Moreover, we will show in the
next section that the exterior boundary of any jump region Σ̃+

t ∩ Σ̃C
t is itself a generalized

apparent horizon, so arguing with the Schauder interior estimates as in Theorem 5.20, we see
that ν is continuous across the exterior boundary of any jump region. Thus the continuity

of ν only fails at the interior boundary Σ̃t ∩
(
Σ̃+
t

)C
of jump regions. To reconcile, we have

constructed ν such that a.e.

ν(X) :=





DU
|DU |(X) if X ∈ Σ̃t at regular times t,

ν(X) if X ∈ Kt0 at a jump time t0, where ν as in Proposition 5.17,

lim
l→∞

DU
|DU |(Xl) if X ∈ Σ̃t0 , for Xl → X, tl ր t0, t0 jump time,

lim
l→∞

DU
|DU |(Xl) if X ∈ Σ̃+

t0 , for Xl → X, tl ց t0, t0 jump time.

.

(51)

To employ the Compactness Theorem 5.31, it remains to show that the gradients converge
in L1

loc.

Lemma 5.37.
|DUi| → |DU | in L1

loc.

Note that, we will in fact prove convergence of DUi in L2
loc, which will imply the proposi-

tion, since we are claiming convergence on compact regions. More precisely, by the fact that
the sequence |DUi| is locally uniformly bounded, dominated convergence yields convergence
in Lp

loc for all p ≥ 1.

Proof. Since there at most countable many jump regions with boundary given by the union
of two C1,α

loc hypersurfaces and since the claim is already proven inside jump regions, see
Lemma 5.18, it suffices to prove it on precompact open sets strictly away from any jump
region. Hence, it suffices to proof the claim for small geodesic balls. Note further that

ˆ

Ω

|DU − DUi|2 =

ˆ

Ω

|DU |2 − 2

ˆ

Ω

DU · DUi +

ˆ

Ω

|DUi|2 .

Arguing by the uniform convergence of the unit normals and the weak * convergence similar
as in Lemma 5.18, it suffices to prove that

ˆ

Ω

|DUi|2 →
ˆ

Ω

|DU |2 ,

where me may assume that the domain Ω is a small geodesic ball.
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Now, let X0 = (y0, z0) ∈ (Mn+1 \ E0) × R away from any jump region and let
d := min(ι(X0), dist(X0, E0 × R), r(X0)), where ι(X0) again denotes the injectivity radius,
and r(X0) is chosen such that the geodesic ball of radius 2r(X0) centered at X0 satisfies
the assumptions of Theorem 5.3 and is compactly contained in the complement of the jump
regions. Let φ ∈ C∞

c (R) be a compactly supported function with supp φ ⊆ [z0 − 3d, z0 + 3d],
φ ≡ 1 on [z0 − 2, z0 + 2] and |∂zφ| ≤ 2, and consider Φ := φ3. Therefore

BM×R

d (X0) ⊆ Z := (B
M

d (y0) × R) ∩ (Mn+1 × supp Φ).

Since tεi
= Uεi

(X0) → U(X0) = t0 locally uniformly, we can choose L >> 1 large enough
and ε′ < ε(L), such that there exist a δ > 0 such that

Z ⊆
⋃

t∈[t0−δ,t0+δ]

Σ̃εi
t ∩ (Mn+1 × supp Φ),

with Σ̃εi
t ∩ (Mn+1 × supp Φ) staying strictly away from any jump region and

∂Σ̃εi
t ∩ (Mn+1 × supp Φ) = ∅ for all t ∈ [t0 − δ, t0 + δ] and all εi < ε′. Furthermore,

there exists R(t0) > r(t0) > 0, such that for all t ∈ [t0 − δ, t0 + δ] and all εi < ε′

Σ̃εi
t ∩ (Mn+1 × supp Φ) ⊆ S(t0) := (GR(t0)(X0) \ Gr(t0)) × [z0 − 3d, z0 + 3d],

where Gr := {y ∈ M \ E0 : dist(E0, y) < r}. In particular, since the sublevelsets
Ẽεi
t = {Uεi

< t} are minimizing JUεi ,νεi
from the outside, we can conclude for all

t ∈ [t0 − δ, t0 + δ] and all εi < ε′, that

∣∣∣Σ̃εi
t ∩ (Mn+1 × supp Φ)

∣∣∣ ≤ |∂∗S(t0)
′| −

ˆ

S(t0)′\Ẽεi
t

√
|DUεi

|2 +
∣∣∣Pνεi

∣∣∣
2 ≤ |∂∗S(t0)

′| =: C(t0)

for S(t0)′ := GR(t0)×[z0−3d, z0+3d], where we used S(t0)′∪Ẽεi
i as a competitor. Additionally,

since S(t0) is compact, the upper bound on |DUεi
| implies that

√
H2
εi

− P 2
νεi

≤ C(t0, g, n, ||K|| , ||DK||),

for all t ∈ [t0 − δ, t0 + δ] and all εi < ε′. Let p ≥ 1 be fixed. Following the strategy of the
calculation of the monotonicity of the Hawking mass in [50] and the prove of [63, Lemma
23], we use that the functions Ui induces a smooth graphical solution of STIMCF. We then
calculate the evolution of

ˆ

Σ̃
εi
t

Φ(z)
(
H2 − P 2

)p
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using the evolution equations in Lemma 5.1. After a straightforward but rather lengthy
computation, which we will therefore omit, we see that we can make the favorable choice
p = 2 which yields

d

dt

ˆ

Σ̃
εi
t

Φ(z)
(
H2 − P 2

)2
= − 4

ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
(

2H√
H2 − P 2

+

√
H2 − P 2

2H

)

− 4

ˆ

Σ̃
εi
t

Φ
P

H
∇P∇

(√
H2 − P 2

)
+ H∇Φ∇

(√
H2 − P 2

)

− 4

ˆ

Σ̃
εi
t

Φ
√

H2 − P 2
(
H
(
Ricg(νεi

, νεi
) + |h|2

)
+ P tr

Σ̃
εi
t

Dνεi
K
)

+ 8

ˆ

Σ̃
εi
t

Φ(z)Kνεij
P∇

(√
H2 − P 2

)j

+

ˆ

Σ̃
εi
t

(
H2 − P 2

) 3
2

(
∂Φ

∂z
νεi

+ ΦH

)
,

where ∇ denotes the gradient on the graphs Σ̃εi
t by our convention. Since |Ric| ≤ C(t0) on

S(t0) by compactness, the upper bounds on
√

H2 − P 2 and on
∣∣∣Σ̃εi

t ∩ (Mn+1 × supp Φ)
∣∣∣ as

well as a global bound on K following from its asymptotics imply

ˆ

Σ̃
εi
t

(
H2 − P 2

) 3
2

(
∂Φ

∂z
νεi

+ ΦH

)
− 4Φ

√
H2 − P 2

(
HRicg(νεi

, νεi
) + P tr

Σ̃
εi
t

Dνεi
K
)

≤ C(t0, K, DK).

Furthermore, we can use the Peter–Paul inequality to estimate

−4

ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
(

2H√
H2 − P 2

+

√
H2 − P 2

2H

)
≤ −8

ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
,
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and

8

ˆ

Σ̃
εi
t

Φ(z)Kνεij
P∇

(√
H2 − P 2

)j ≤
ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
+ 16

ˆ

Σ̃
εi
t

ΦP 2
∣∣∣Kνεij

∣∣∣
2

,

−2

ˆ

Σ̃
εi
t

Φ
P

H
∇P∇

(√
H2 − P 2

)
≤
ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
+ 2

ˆ

Σ̃
εi
t

Φ
P 2

H2
|∇P |2,

−4

ˆ

Σ̃
εi
t

HDΦ∇
(√

H2 − P 2
)

≤
ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
+ 4

ˆ

Σ̃
εi
t

|DΦ|2
Φ

H2.

Note that P 2

H2 ≤ 1 since
√

H2 − P 2 > 0, and |DΦ|2
Φ

≤ 36φ. It follows that

d

dt

ˆ

Σ̃
εi
t

Φ(z)
(
H2 − P 2

)2 ≤ −5

ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
+ C(t0, K, ∇K), (52)

if |∇P | remains locally uniformly bounded. As computed in [53, Equation (13)],

∇iP = ∇i(trM K) − (DiK)(ν, ν) − 2K(ν, ∂j)h
i
j,

so the desired bound is satisfied if the second fundamental form h remains locally uniformly
bounded. This was proven by Heidusch [49] in the case of inverse mean curvature flow using
only the locally uniform upper bounds on the mean curvature and the C1,α-norm of the
translating graphs. It is possible to derive the desired estimate also in this case. Details will
be provided in an extended version of [53]. Integrating (52) yields

t0+δ
ˆ

t0−δ

ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2 ≤ C(t0, K, ∇K). (53)

Applying Fatou’s Lemma, there exists a subsequence ij (henceforth just denoted as i for
convenience), such that

ˆ

Σ̃
εi
t

Φ
∣∣∣∇
(√

H2 − P 2
)∣∣∣

2
< ∞ (54)

for almost every t ∈ [t0−δ, t0+δ], but since Ui are translating solutions, we can arrange this to
be the case for any sequence of times, in particular (54) indeed holds for any t ∈ [t0−δ, t0+δ].
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Hence, |DUi| =
√

H2 − P 2 is uniformly bounded in W 1,2
loc (Σ̃εi

t ) for any t, so by Rellich–
Kondrachov (writing everything locally as a graph over a fixed tangent plane), there exists
a further subsequence ij and a function ft ∈ L∞(Σ̃t) such that |DUij | → ft in L2

loc (up
to composition with the local graphs over the fixed tangent plane), which also implies a
similarly defined pointwise a.e. convergence.

Additionally, by the locally uniform C1,α convergence and the locally uniform gradient
bound Theorem 5.3, we know that the surfaces Σ̃t = {U = t} have a weak mean curvature

vector ~Ht = −Htν for a locally bounded function Ht, such that ~Hεi
ti → ~Ht weakly in L2.

Since νi → ν locally uniformly, this implies that
√

|DUi|2 + K(νi, νi)2 → Ht weakly in L2,

where we used that Ui is a strong solution of (31). Since |DUij | moreover converges strongly

to ft, we see that we in fact have strong convergence for
√

|DUij |2 + K(νij , νij )
2 and by the

uniqueness of weak limits we find ft =
√

H2
t − K(ν, ν)2. In particular, ft is independent of

the choice of subsequence, so |DUi| and ~Hεi
ti converge strongly in L2

loc to ft and ~Ht respectively
for the full sequence.

We now locally define f(X) := ft(X) if X ∈ Σ̃t and notice that

f(X) = lim
i→∞

|DUi| ◦ Πi(X)

pointwise a.e., where Πi denotes the projection of a point X ∈ Σ̃t to the corresponding point
Xi ∈ Σ̃εi

ti such that Xi → X as Σ̃εi
ti → Σ̃t locally in C1,α. Since Ui → U locally uniformly,

Πi is Hölder continuous for i sufficiently large and thus f is a measurable function. It is
immediate that f is locally bounded and non-negative everywhere.

In fact, f > 0 a.e. away from jump regions, where it is constructed: Assume that the set
f−1(0) has positive measure. Then there is a small geodesic ball B strictly away from any
jump region and E0, such that Sf := f−1(0) ∩ B has positive measure. Define

M :=

ˆ

Sf

|DU | ,

where M > 0 due to Lemma 5.35. Using the above convergence to f up to the projection
Πi and the locally uniform bounds on |DUi|, there exist sets Si

f such that
ˆ

Si
f

|DUi| →
ˆ

Sf

f = 0.

Due to the locally uniform convergence of the projections Πi to the identity, we know that
for any (sufficiently small) domain Ω containing Sf we also have Si

f ⊆ Ω for i sufficiently
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large. Using again that |DUi| is locally uniformly bounded, we see that for any ε > 0, there
exists δ > 0, i0 ∈ N and a domain Ω such that Sf ⊆ Ω, Vol(Ω \ Sf ) ≤ δ and

ˆ

Ω

|DUi| < ε

for all i ≥ i0. In particular, for any M > ε > 0, we have
ˆ

Ω

|DU | ≥ M > ε ≥
ˆ

Ω

|DUi| ,

which gives a contradiction as

lim inf
i→∞

ˆ

Ω

|DUi| ≥
ˆ

Ω

|DU |

as implied by the compactness theorem for BV functions, cf. Subsection 5.3. By a slightly
refined argument, we in fact have f ≥ |DU | a.e. .

Note that by the locally uniform C1,α convergence of the translating graphs, we know
that for any geodesic ball B sufficiently small such that it remains strictly away from E0 and
any jump region, there exists c ∈ R, δ > 0 and i0 ∈ N such that for all i ≥ i0, we have that
B ∩ ∂Σ̃εi

t = ∅ for all t ∈ [δ − c, δ + c] and

ˆ c+δ

c−δ

ˆ

B∩Σ̃
εi
t

1

|DUi|
dµi dt =

ˆ

B

1 =

ˆ c+δ

c−δ

ˆ

B∩Σ̃t

1

|DU | dµ dt

by the co-area formula. Applying it again in a similar fashion yields
ˆ

B

|DUi|2 →
ˆ

B

f |DU | .

Using the co-area formula once more together with the above considerations gives
ˆ

B

f |DU | =

ˆ

B\f−1(0)

f |DU |

=

ˆ c+δ

c−δ

ˆ

(B\f−1(0))∩Σ̃
εi
t

f

|DUi|
|DU | dµi dt

→
ˆ c+δ

c−δ

ˆ

(B\f−1(0))∩Σ̃t

|DU | dµ dt

=

ˆ

B\f−1(0)

|DU |2 =

ˆ

B

|DU |2 ,
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and as the sequence is constant in i by the first identity the two integrals agree. Hence,
ˆ

B

|DUi|2 →
ˆ

B

|DU |2 ,

which concludes the proof.

Theorem 5.33 now follows by using the Compactness Theorem 5.31 for weak solutions.

5.6 Outward optimization principle and jump formation

We already know that the interior of jump regions of a weak solution (U, ν) is foliated by
C2,α generalized apparent horizons in (M \ E0) × R, but did not discuss when such jumps
occur. In this section, we will study the selection of jump times of weak solutions of STIMCF
via an outward optimization property.

Let Ω be an open set in Mn+1, ν a measurable vector field on M . We call the set E
outward optimizing in Ω with respect to ν, if E minimizes area minus bulk term energy |Pν |
on the outside in Ω. That is, if

|∂∗E ∩ A| ≤ |∂∗F ∩ A| −
ˆ

F\E

|Pν | , (55)

for any set F containing E, such that F \ E ⊂ A ⊂⊂ Ω, where Pν = (gij − νiνj) Kij

as usual. We further call the set E strictly outward optimizing in Ω, if equality in (55)
implies that F ∩ Ω = E ∩ Ω up to a set of measure zero. Further, we define the strictly
outward optimizing hull (in Ω) E ′ = E ′

Ω of a measurable set E ⊂ Ω to be the intersection of
Lebesque points of all strictly outward optimizing sets in Ω that contain E. Up to a set of
measure zero, E ′ may be realized as a countable intersection, so E ′ is in particular strictly
outward optimizing and open. Due to the asymptotic decay of g and K, the existence of
strictly outward optimizing sets follows from the isoperimetric inequality if we allow Ω to be
sufficiently large. In particular, any set admits a precompact outward optimizing hull if the
domain Ω is sufficiently large.

Note that, unlike the corresponding outward optimization property of inverse null mean
curvature flow introduced by Moore [63, Section 6], the bulk term energy in (55) is non-
positive everywhere. This suggests that in non time-symmetric initial data sets, the ad-
ditional energy induced by the second fundamental form K makes the evolving surfaces
jump sooner than it is the case for inverse mean curvature flow. In fact, it is immediate,
that (strictly) outward optimizing surfaces are (strictly) outward minimizing as defined by
Huisken–Ilmanen [50]. This was to be expected as inverse mean curvature flow acts as an
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upper barrier, cf. Corollary 5.11. However, as we can not expect STIMCF to be a simple
reparameterization of inverse mean curvature flow, this underlines the role of the unit nor-
mal and the anisotropy of the problem, as the level sets are not only outward minimizing
with respect to area, but outward optimizing with respect to the unit normal and second
fundamental form K. Analogue to the respective optimization properties of inverse mean
curvature flow and inverse null mean curvature flow, we establish the following:

Theorem 5.38 (Outward optimization property). Suppose that (U, ν) is a weak solution
of inverse space-time mean curvature flow with initial condition E0, such that the level-sets
Et = {u < t} of the projection (u, νM) onto M are precompact for all t > 0. Suppose further
that M has no compact components.
Then Et := {u < t} is outward optimizing in M with respect to νM for t > 0, and
E+
t := {u ≤ t} is outward optimizing in M with respect to νM for t ≥ 0. Furthermore,

we have that

(i) E+
t is strictly outward optimizing in Ω with respect to νM for all t ≥ 0, where Ω is an

open set containing E+
t such that Ω does not contain any jump regions Kt′ for t′ > t.

(ii) (Et)′
Ω = E+

t ,

(iii)
∣∣∣∂∗E+

t

∣∣∣ = |∂∗Et| +

ˆ

E+
t \Et

|PνM
| ,

for all t > 0. This precisely extends to E0, if E0 is outward optimizing.

Remark 5.39.

(i) Note that (iii) in Theorem 5.38 implies that |Σt|+
´

{u≤t}\E0

|PνM
| is continuous on (0, ∞),

and continuous in 0 precisely when Σ0 is outward optimizing. Moreover, the quantity
is monotone under the smooth flow with

d

dt


|Σt| +

ˆ

{u≤t}\E0

|PνM
|


 =

ˆ

Σt

√√√√H + |P |
H − |P | ≥ |Σt| .

(ii) By the continuity of the solution, there exists an open set Ω with the desired properties
∀t ≥ 0. In particular, if t′ denotes the next time the solution will jump, we can choose
Ω := {u < t′′} for any t < t′′ < t′. If we drop this restriction, then the outward
optimizing hull E ′

t will agree with E+
t up to a ”cost free” union of disjoint, open sets

that are confined to other jump regions. We will make this statement precise in the
following Proposition 5.40.
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(iii) Similarly, the sets {U < t} and {U ≤ t} are outward optimizing in (M \ E0) × R with
respect to ν. Moreover, if there exists a family of smooth solutions (Ui, νi) such that
Ui → U locally uniformly and νi → ν locally uniformly in jump times of U (which in
particular is satisfied by the weak solutions constructed in Theorem 5.33) then {U ≤ t}
is strictly outward optimizing in (M \ E0) × R.

Proof. The fact that Et is outward optimizing immediately follows from the results of Lemma
5.24 and Lemma 5.30, since Et in particular minimizes Ju,ν from the outside for all t > 0,
so for all sets F such that Et ⊂ F and F \ E ⊂ A ⊂⊂ M , it holds that

|∂∗Et ∩ A| ≤ |∂∗F ∩ A| −
ˆ

F\Et

√
|Du|2 + P 2

νM
≤ |∂∗F ∩ A| −

ˆ

F\Et

|PνM
| .

By Remark 5.25, we also have for all t ≥ 0 that

∣∣∣∂∗E+
t ∩ A

∣∣∣−
ˆ

E+
t ∩A

√
|Du|2 + P 2

νM
≤ |∂∗F ∩ A| −

ˆ

F∩A

√
|Du|2 + P 2

νM
, (56)

for F such that E+
t △F ⊂ A ⊂⊂ M \ E0. In particular, for any t ≥ 0, we find that E+

t is
outward optimizing in M , i.e.

∣∣∣∂∗E+
t ∩ A

∣∣∣ ≤ |∂∗F ∩ A| −
ˆ

F\E+
t

|PνM
| , (57)

for any E+
t ⊂ F , F \ E+

t ⊂ A ⊂⊂ M . We now proof (i) − (iii).

(i) Let Ω be as above, suppose there exists F ⊂ A ⊂⊂ Ω containing E+
t , such that

∣∣∣∂∗E+
t ∩ A

∣∣∣ = |∂∗F ∩ A| −
ˆ

F\E+
t

|PνM
|

Assume that F 6= E+
t and is not a set of measure zero. With regards to (56), this

implies that |Du| = 0 a.e. on F \ E+
t and F is also outward optimizing. Since the

Lebesque points of an outward optimizing set form an open outward optimizing set,
we can assume by a modification of measure zero, that F is open. Then u is constant
on every connected component of F \ E+

t . A contradiction, as Ω contains no jump
regions outside of E+

t . Hence, E+
t is outward optimizing in Ω.
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(ii) Since E+
t is strictly outward optimizing in Ω, we have E ′

t := (Et)′
Ω ⊆ E+

t by definition.
If

|∂∗E ′
t ∩ A| =

∣∣∣∂∗E+
t ∩ A

∣∣∣−
ˆ

E+
t \E′

t

|PνM
| ,

the strict optimization property of E ′
t implies that E ′

t = E+
t . Otherwise

|∂∗E ′
t ∩ A| <

∣∣∣∂∗E+
t ∩ A

∣∣∣−
ˆ

E+
t \E′

t

|PνM
| ,

but this contradicts (56), since |Du| = 0 on E+
t \ E ′

t.

(iii) Since Et is outward optimizing, we can use E+
t as a competitor to obtain

|∂∗Et ∩ A| ≤
∣∣∣∂∗E+

t ∩ A
∣∣∣−

ˆ

E+
t \Et

|PνM
| ,

for t > 0, and for t = 0 if E0 happens to be outward optimizing itself. Again, since
|Du| = 0 on E+

t \ Et, strict inequality would contradict (56).

Proposition 5.40. Let (U, ν) be a weak solution of STIMCF, such that (U, ν) and M satisfy
all assumptions of Theorem 5.38. Let Ω be a domain in M \E0 such that E+

t = {u ≤ t} ⊂ Ω,
and assume that Et admits a precompact outward optimizing hull E ′

t = (Et)′
Ω in Ω with respect

to νM . Then E+
t = {u ≤ t} ⊆ (Et)′

Ω up to a set of measure zero.
If we further assume that any jump region intersecting Ω is compactly contained in Ω, then
up to a set of measure zero all connected components of E ′

t\E+
t are contained in jump regions

{u = t′} for times t′ > t and
∣∣∣∂∗(E ′

t \ E+
t )
∣∣∣ =

ˆ

E′
t\E+

t

|PνM
| (58)

Moreover, if any connected component F of E ′
t \ E+

t satisfies (58) by itself and is contained
in the interior of a jump region, then ν∂∗F = νM = ν a.e. along ∂∗F .

Remark 5.41. Note that the additional assumptions of Proposition 5.40 are satisfied for
solutions which jump only a finite number of times. In particular, E ′

t = E+
t for smooth

solutions of STIMCF. In the case of a weak solution exhibiting jumps, the statement of
Proposition 5.40 suggests that the flow does not want to increase the number of connected
components of the level sets, even if the outward optimization principle would prefer to jump
farther. See also the corresponding connectedness lemma, Lemma 5.45, for weak solutions
of STIMCF below.
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Proof. We define PνM
and Bu,νM

=
√

|Du|2 + PνM
as before and we will write E ′

t = (Et)′
Ω for

convenience. By assumption E ′
t is precompact. To establish the above claim, we will largely

exploit the formula (40), which allows us state (41) more generally, as we have

|∂∗(E1 ∪ E2)| −
ˆ

E1∪E2

f + |∂∗(E1 ∩ E2)| −
ˆ

E1∩E2

f ≤ |∂∗E1| −
ˆ

E1

f + |∂∗E2| −
ˆ

E2

f, (59)

for any (locally) integrable function f and precompact Caccioppoli sets E1, E2. Here, we
will always consider f = |PνM

|. As E+
t minimizes Ju,νM

, we have

∣∣∣∂∗E+
t

∣∣∣−
ˆ

E+
t

Bu,νM
≤
∣∣∣∂∗(E+

t ∩ E ′
t)
∣∣∣−

ˆ

E+
t ∩E′

t

Bu,νM
,

and since |Du| = 0 on E+
t \ Et, we can conclude that in fact

∣∣∣∂∗E+
t

∣∣∣−
ˆ

E+
t

|PνM
| ≤

∣∣∣∂∗(E+
t ∩ E ′

t)
∣∣∣−

ˆ

E+
t ∩E′

t

|PνM
| . (60)

Choosing E1 = E+
t , E2 = E ′

t in (59), we can conclude using (60) that

∣∣∣∂∗(E+
t ∪ E ′

t)
∣∣∣−

ˆ

(E+
t ∪E′

t)\E′
t

|PνM
| ≤ |∂∗E ′

t| .

Hence E ′
t = E+

t ∪ E ′
t up to a set of measure zero, as E ′

t is strictly outward optimizing in Ω.
Therefore E+

t ⊂ E ′
t up to a set of measure zero.

We now assume in addition that all jump regions intersecting Ω are compactly contained
in Ω. First consider a Cacciopoli set B such that E+

t ⊆ B ⊆ Ω with B \ E+
t ⊆⊆ Ω.

Considering E1 = E+
t , E2 = B \ E+

t , (59) yields that

|∂∗B| −
ˆ

B

|PνM
| ≤

∣∣∣∂∗E+
t

∣∣∣−
ˆ

E+
t

|PνM
| +

∣∣∣∂∗(B \ E+
t )
∣∣∣−

ˆ

B\E+
t

|PνM
|

≤ |∂∗B| −
ˆ

B

|PνM
| +

∣∣∣∂∗(B \ E+
t )
∣∣∣−

ˆ

B\E+
t

|PνM
| ,

where we used that E+
t is outward optimizing in Ω. In particular,

0 ≤
∣∣∣∂∗(B \ E+

t )
∣∣∣−

ˆ

B\E+
t

|PνM
| (61)
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for all Cacciopoli sets B with E+
t ⊆ B ⊆⊆ Ω. As in the proof of Theorem 5.38 (i), consider

a Cacciopoli set F such that E+
t ⊆ F ⊆⊆ Ω with

∣∣∣∂∗E+
t

∣∣∣−
ˆ

E+
t

|PνM
| = |∂∗F | −

ˆ

F

|PνM
| . (62)

As before, we can conclude that F is outward optimizing in Ω and (56) implies that

∣∣∣∂∗E+
t

∣∣∣ ≤ |∂∗F | −
ˆ

F\E+
t

Bu,νM
≤ |∂∗F | −

ˆ

F\E+
t

|PνM
| =

∣∣∣∂∗E+
t

∣∣∣ .

Hence, equality holds everywhere and |Du| ≡ 0 a.e. on F \ E+
t . We conclude that either

F = E+
t or each connected component of F \ E+

t lies in a jump region {u = t′} for t′ > t. In
particular, F \ E+

t remains strictly away from E+
t with positive distance and thus

∣∣∣∂∗(F \ E+
t )
∣∣∣ =

ˆ

F\E+
t

|PνM
| .

Now consider F1, F2 such that E+
t ⊆ F1, F2 ⊆⊆ Ω satisfying (62). Then (F1 ∩ F2) \ E+

t has a
strict positive distance to E+

t . Using that E+
t is outward optimizing in Ω and (59), we find

∣∣∣∂∗E+
t

∣∣∣−
ˆ

E+
t

|PνM
| ≤ |∂∗(F1 ∪ F2)| −

ˆ

F1∪F2

|PνM
|

≤ |∂∗F1| −
ˆ

F1

|PνM
| + |∂∗F2| −

ˆ

F2

|PνM
| − |∂∗(F1 ∩ F2)| +

ˆ

F1∩F2

|PνM
|

= 2
∣∣∣∂∗E+

t

∣∣∣− 2

ˆ

E+
t

|PνM
| − |∂∗(F1 ∩ F2)| +

ˆ

F1∩F2

|PνM
|

=
∣∣∣∂∗E+

t

∣∣∣−
ˆ

E+
t

|PνM
| −

∣∣∣∂∗((F1 ∩ F2) \ E+
t )
∣∣∣+

ˆ

(F1∩F2)\E+
t

|PνM
| .

This implies ∣∣∣∂∗((F1 ∩ F2) \ E+
t )
∣∣∣ ≤

ˆ

(F1∩F2)\E+
t

|PνM
| .

By (61), we have equality. In particular, F1 ∪ F2 satisfies (62). Now let F denote the union
of all such sets satisfying (62). Then F satisfies (62) and E+

t ⊆ F ⊆⊆ Ω as all jump
regions intersecting Ω are compactly contained in Ω. By construction, F is strictly outward
optimizing in Ω, so E+

t ⊆ E ′
t ⊆ F . In particular, |Du| ≡ 0 a.e. on E ′

t \ E+
t , and as E ′

t is
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outward optimizing in Ω, we have

|∂∗E ′
t| −

ˆ

E′
t\E+

t

Bu,νM
= |∂∗E ′

t| −
ˆ

E′
t\E+

t

|PνM
|

≤ |∂∗F | −
ˆ

F\E′
t

|PνM
| −

ˆ

E′
t\E+

t

|PνM
|

= |∂∗F | −
ˆ

F\E+
t

|PνM
|

=
∣∣∣∂∗E+

t

∣∣∣ .

Note that (56) implies equality, and thus

|∂∗E ′
t| = |∂∗F | −

ˆ

F\E′
t

|PνM
| .

As E ′
t is strictly outward optimizing in Ω, this implies E ′

t = F , and by the properties of F
we find that E ′

t is as claimed.
It remains to show that for any connected component F of E ′

t\E+
t such that F ⊆ int{u = t′}

(t′ > t) and F satisfies (58) by itself, it holds that ν∂∗F = νM = ν a.e. along ∂∗F . By
Theorem 5.20, the interior Kt′ of the jump region {U = t′} is foliated by generalized appar-
ent horizons with ν ∈ C1,α

loc (Kt0). By the translation invariance, we find

|PνM
| = |Pν | = divM×R ν = divM νM ,

and the claim then follows using the divergence theorem.

Proposition 5.42. For t ≥ 0, we find that

(i) H = |PνM
| on ∂E+

t ∩ ∂EC
t ,

(ii) H ≥ |PνM
| in the weak sense on ∂E+

t ∩ ∂Et.

Proof.

(i) Since E+
t is outward optimizing, we know that E+

t minimizes the functional

|∂∗E∗
t ∩ A| −

ˆ

E+
t ∩A

|PνM
| (63)

against any competitor F , such that E+
t ⊆ F , F \ E+

t ⊂ A ⊂⊂ Ω. Now let y ∈ ∂E+
t

such that y 6∈ Et. Then locally around y ∂Et and ∂E+
t are separated by a jump region,
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and since ∂E+
t is C1,α, there exists an R > 0, such that BR(y) ∩ ∂E+

t is given by the
graph over a C1,α function ω and W := BR(y) ∩ int(E+

t ) ⊂ E+
t \ Et is the subgraph of

ω, and |Du| = 0 on W . Using that E+
t minimizes (38), in particular from the inside,

we conclude that E+
t minimizes (63) from the inside and outside for K = BR(y). We

conclude that W minimizes (63) and therefore, as in Theorem 5.19, we see that ω
minimizes the functional

J ′
νM

(ω) :=

ˆ

A

√
1 + |Dω|2 −

ˆ

A

ω(x)
ˆ

0

|PνM
| ds dx.

In particular ω ∈ C2,α
loc , and ∂E+

t ∩ Et
C

satisfies H = |PνM
|.

(ii) If ∂Et and ∂E+
t only agree on a set of measure zero, there is nothing to show. So

we assume there exists an y ∈ ∂Et, such that Et ∩ BR(y) ⊂ E+
t for some R > 0 and

w.l.o.g. that ∂Et ∩ BR(y) is given as the graph over a C1,α function ω. Then similar
to before, we can conclude that ω is a supersolution for J ′

νM
, i.e.,

0 ≤ d

dε
J ′(ω + εη) =

ˆ

K

Dη · Dω√
1 + |Dω|2

− η |Pν | ,

for all η ∈ C∞
c (∂Et ∩ BR(y)), such that η ≥ 0. As ∂Et admits a weak mean curvature

H, we can conclude that

0 ≤
ˆ

K

η (H − |Pν |)

for all η ∈ C∞
c (∂Et ∩ BR(y)), such that η ≥ 0. This establishes the claim.

Choosing appropriate initial data E0, the properties of jump formation allow us to for-
mulate conditions that will force any weak solution to jump. Therefore the existence of weak
solutions Theorem 5.33 yields a method of detecting generalized apparent horizons.

Corollary 5.43.

(i) If E0 is not outward minimizing, then E+
0 6= E0,

(ii) If E0 satisfies H∂E0 < |tr∂E0 K|, then ∂E+
0 is a C2,α generalized apparent horizon

disjoint from ∂E0.
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Remark 5.44. The conclusion in (ii) is generally stronger than in (i), as we can not guar-
antee that ∂E+

0 ∩ E0 = ∅ in the first case. However, the assumption in (i) is more flexible
as it does not depend on the sign of the mean curvature and is completely unrelated to K.
Note that (i) also follows from Corollary 5.11, as E

+,(IMCF )
0 ⊆ E+

0 , so the solution has to
jump immediately if inverse mean curvature flow jumps at t = 0.

Regarding (ii), note that hypersurfaces satisfying H < |tr∂E0 K| are often referred to as
trapped surfaces in the context of General Relativity, and weakly trapped if the inquality
is not assumed to be strict. Assuming the existence of a weakly trapped surface, Eichmair
[39] can similarly provide the existence of a generalized apparent horizon using the Per-
ron method. Moreover, Eichmair can in fact construct an outermost generalized apparent
horizon. Our result suggests that this outermost generalized apparent horizon is outward
minimizing with respect to area (at least if all conditions of Theorem 5.33 are statisfied).

5.7 Asymptotic behavior

Finally, we discuss the asymptotic behavior of weak solutions (U, ν) of STIMCF as con-
structed in Subsection 5.5 via the projection (u, νM) on M as defined in Subsection 5.4. We
use a blowdown argument similar to [50, Section 7] to see that the level-sets of u become
asymptotically round. Moreover, we can use the notion of unit normal νM to show that the
surfaces become in fact uniformly starshaped outside of a compact set if that set contains
all jump regions.

To begin, we establish the connectedness Lemma [50, Lemma 4.2] in the case of STIMCF.

Lemma 5.45.

(i) If (u, νM) is a weak solution of (44), then u has no strict local maxima or minima.

(ii) Suppose M is connected and simply connected 4 with a single, asymptotically flat end,
and (Et)t>0 is a solution of (38) for all t > 0 with initial condition E0. If ∂E0 is
connected, Σt = ∂Et is connected, as long as it remains compact.

Proof. We obtain (i) be arguing in analogue to [63, Lemma 19]. Once (i) is established, (ii)
follows exactly as in the proof of [50, Lemma 4.2].

Let (U, ν) be a weak solution of STIMCF on (M, g, K) with initial condition E0 ⊆ M
and assume that M has exactly one asymptotically flat end. We recall the set OR0 ⊆ M as
defined in Lemma 5.5 and may assume without loss of generality that E0 ⊆ M \ OR0 . Thus
we can regard (U, ν) (up to identification via the asymptotic chart Φ) as a weak solution to

4Note that we may relax this assumption and allow curves that loop around E0.
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STIMCF on (Ω, g, K) where Ω = Φ(OR0) is an open subset of Rn+1. For λ > 0 we define
the blowdown objects

Ωλ := λ · Ω, gλ(y) := g
(

y

λ

)
, Kλ(y) :=

1

λ
K
(

y

λ

)
, uλ(y) := u

(
y

λ

)
, νλΩ(y) := νΩ

(
y

λ

)
,

where λ · A := {x : x
λ

∈ A}, and Eλ
t := λ · Et = {uλ < t}. Then (uλ, νλΩ) is a weak solution

of (44) on (Ωλ, gλ, Kλ).

Proposition 5.46. Let (M, g, K) be a triple, such that (M, g) is a Riemannian manifold,
K a symmetric (0, 2) tensor on M with trM K = 0, s.t. M has exactly one asymptotically
flat end with

|g − δ| = o(1), |∇g| = o

(
1

|y|

)
, K = o

(
1

|y|

)
, |∇K| = o

(
1

|y|2
)

. (64)

Let E0 be a compact C2 domain in M and (U, ν) a weak solution of STIMCF with initial
condition E0 constructed as in Theorem 5.33. Then there exist constants cλ → ∞ such that

uλ − cλ → v := n ln(|y|)

locally uniformly on Rn+1 \ {0} as λ → 0, where v is the standard expanding sphere solution
on of inverse mean curvature flow on (Rn+1 \ {0}, δ, 0).

Proof. Let everything be as above. The asymptotic conditions (64) and Remark 5.4 imply
that there is an R1 ≥ R0, such that

r ≥ c |y| , dist(y, ∂E0) ≥ c |y|

for all y ∈ R
n+1 \ BR1(0), where r satisfies the assumptions of Theorem 5.3 for y. Argu-

ing as in [50, Lemma 7.1], we can use Theorem 5.3 and the fact that there is a suitable
subsolution

(
Bexp(αt)(0)

)
t1≤t<∞

for 0 < α < n in the asymptotic region even under weaker

decay assumptions, cf. Remark 5.6, to establish gradient and eccentricity estimates that are
preserved under the blowdown by scaling invariance. Defining the constants cλ := max

S1(0)

∣∣∣uλ
∣∣∣

for λ sufficiently small we can use Arzelà–Ascoli to conclude that there exists as subsequence
(λkl

), again denoted by (λk), and local Lipschitz function v ∈ C0,1
loc (R

n+1 \ {0}), such that

ũλk := uλk − cλk
→ v locally uniformly in Rn+1 \ {0},

and there exists y0 ∈ S1(0) with v(y0) = 0. Moreover the eccentricity estimates imply that
the level-sets of v are non-empty and compact for all t ∈ R, cf. [50, Lemma 7.1]. We are
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now left to show that v is a weak solution of (44) in (Rn+1 \ {0}, δ, 0)5, i.e., a solution for the
corresponding comparison principle for inverse mean curvature flow in (Rn+1 \ {0}, δ). Then
by [50, Proposition 7.2], v(y) = n ln(|y|) is the standard expanding sphere solution. Since
this is then in particular true for a subsequence of any subsequence, it follows that the full
sequence converges, proving the claim.

However to conclude this, we need to confirm the stronger assumptions for the Com-
pactness Theorem 5.31, in particular the local L1 convergence of the gradients. To this
end, we consider the solutions of the elliptic regularisation uεn on FLn \ E0, where Ln →
∞ s.t. uεn → u locally uniformly on Ω0. Now choose a subsequence (Lnk

), such that
Lnk

≥ α ln(λ−2) − α ln(R0) and a (possibly different) subsequence (εnk
), s.t. εnk

< ε0(Lnk
)

and ∣∣∣
∣∣∣uεnk

− u
∣∣∣
∣∣∣
C0(FLnk

∩OR3
)

≤ λk.

Now we define the subsets Ωk := λk ·
(
FLnk

∩ OR3

)
= Beαλ−1(0) \ BR3λ(0) → R

n+1 \ {0}
and consider the functions ũk(y) := uεnk

(
y
λk

)
− cλk

. Then ũk → v locally uniformly and ũk

solves (32) in (Ωk, gλk , Kλk). In particular Ũk(y, z) := ũk(y) − εz → V (y, z) := v(y) locally
uniformly in (Rn+1\{0})×R and Ũk is a smooth solution to STIMCF on (M̃k, gλk + dz2, K̃k),
where M̃k := Ωk×R and K̃k

ij = Kλk
ij , K̃k

iz = K̃k
zz = 0. Since the local gradient estimate is also

satisfied for Ũk on M̃k, we are in the same situation as in Corollary 5.11. Then arguing as
in Subsection 5.3 and Subsection 5.5, and applying a modified Compactness Theorem as in
Remark 5.32, we conclude that there exists an a.e. locally uniformly continuous unit vector
field η, such that (V, η) is a weak solution of (44) in ((Rn+1 \{0})×R, δ, 0). By Lemma 5.24,
v solves (44) on (Rn+1, δ, 0), concluding the proof. In particular, the convergence holds for
any choice (λk, Lnk

, εnk
) as above.

Corollary 5.47. Away from jump regions, the level-sets Σt = {u = t} become uniformly
starshaped as t → ∞. More precisely, if there exists Rreg > 0 such that u has no jumps on
{|x| ≥ Rreg} in the asymptotic chart, then for any δ < 1, there exists R(δ) ≥ Rreg, such that

〈v(y), y〉 ≥ (1 − δ) |y| for all |y| ≥ R(δ), (65)

in the asymptotic chart.

Proof. Let A := {1 ≤ |x| ≤ 3} and choose λk = 2−k. For 0 < α < n as above, we choose
Lnk

≥ α ln(λ−2) − α ln(R0), such that A ⊂ λkΩk, where Ωk is defined as in the proof of
Proposition 5.46, but we replace the constant R3 by R4 := max{R3, Rreg}. Since g satisfies
the decay assumptions (64), δ and g are equivalent on Ωk with constants independent of k

5As K ≡ 0 we do not need to specify a choice of ν.
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and the locally uniform convergence of νε implies that we can choose a subsequence (εnk
)

such that ∣∣∣
∣∣∣νεnk

− ν
∣∣∣
∣∣∣
(Ωk,δ)

≤ δ

2
for all k ≥ k1, where we now have uniform convergence on all of Ωk, as it contains no jump
regions. Further, Proposition 5.46 implies that there exists a k2 ∈ N such that

∣∣∣∣∣

∣∣∣∣∣ν
λk
εnk

− x

|x|

∣∣∣∣∣

∣∣∣∣∣
A

≤ δ

2

for all k ≥ k2. Let k0 := max(k1, k2), then for all x ∈ A, for all k ≥ k0, we have
〈

νλk ,
x

|x|

〉
=

〈
νλk − νλk

εnk
+ νλk

εnk
− x

|x| +
x

|x| ,
x

|x|

〉

≥ 1 −
∣∣∣νλk − νλk

εnk

∣∣∣−
∣∣∣∣∣ν
λk
εnk

− x

|x|

∣∣∣∣∣

≥ 1 −
∣∣∣
∣∣∣νεnk

−ν
∣∣∣
∣∣∣
(λkΩLnk

,δ)
−
∣∣∣∣∣

∣∣∣∣∣ν
λk
εnk

− x

|x|

∣∣∣∣∣

∣∣∣∣∣
A

≥ 1 − δ

2
− δ

2
= 1 − δ.

Hence 〈
νλk , x

〉
≥ (1 − δ) |x| for all x ∈ A, and all k ≥ k0.

Since νλk (x) = ν
(
x
λk

)
, a rescaling by λk gives

〈ν(x), x〉 ≥ (1 − δ) |x| for λ−1
k ≤ |x| ≤ 3λ−1

k ,

where k ≥ k0. Note that λ−1
k+1 < 3λ−1

k , so we conclude that

〈ν(x), x〉 ≥ (1 − δ) |x| for |x| ≥ R(δ),

with R(δ) := λ−1
k0

.

Remark 5.48.

(i) Similar as in [50], one can see that in the case of n = 2 ||
◦

A||2L2 → 0 as t → ∞, so the
level-sets approach coordinate spheres in W 2,2, cf. [36].

(ii) We expect the solutions to be smooth outside some compact set based on arguments
similar as in [51]. In particular, all jump regions are contained in a compact set such
that the level-sets are uniformly starshaped outside of that set.
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(iii) In fact, we expect the solution to be well adapted to a new concept of center of mass
proposed by Cederbaum–Sakovich [24] as t → ∞, as we expect the level-sets of our
solutions to asymptotically approach the foliation of STCMC surfaces constructed by
them in the asymptotic region. The center of mass proposed by Cederbaum–Sakovich
remedies some of the deficiencies of the center of mass formulation via surfaces of
constant mean curvature first proposed by Huisken–Yau [54]. In particular, we expect
our flow to exhibit better asymptotic behavior in non time-symmetric initial data sets
than inverse mean curvature flow.
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6 Uniqueness of STCMC surfaces on hyperboloids in

class H

In this section, we give a characterization for STCMC surfaces on totally umbilic warped
product graphs in spacetimes of class H provided the spacetime satisfies the null energy
condition. This generalizes a characterization of CMC surfaces in case of a time–symmetric
warped product slice by Brendle [15]. In particular, we show that any STCMC surface on
an hyperboloid in the Schwarzschild spacetime of mass m > 0 is a round sphere of constant
radius. This section is based on single author work with a preprint available on arXiv [88].

The proof relies heavily on the warped product structure of the ambient spacetime and the
spacelike graphs under consideration by showing that the result of Brendle [15] is applicable
even for general warped product graphs if the graph can be extended past any Killing horizon
to a minimal boundary and a second order ordinary differential inequality is satisfied for
some non-negative function uniquely determining the spacelike graph. The main result then
follows from a full characterization of totally umbilic warped product graphs, which we will
refer to as hyperboloids. In particular, we can verify that the above conditions are satisfied
for sufficiently small umbilicity factor and such that the differential inequality is in fact
satisfied as an ODE.

This section is structured as follows: In Subsection 6.1 we briefly introduce the result
of Brendle [15] for the convenience of the reader, before translating them into conditions
on a suitable spacetime of class H in Subsection 6.2. In Subsection 6.3 we study warped
product graphs and give a full characterization of all such graphs that are totally umbilic.
In Subsection 6.4 we study the (NEC) along such graphs, and discuss their extendability
across a non-degenerate Killing horizon in Subsection 6.5. We then establish the main result
of this section in Subsection 6.6.

6.1 Brendle’s Alexandrov Theorem

For n ≥ 3, r > 0, consider a Riemannian manifold (M, g) of the form

M = [0, r) × N ,

g = dr2 + ω(r)2gN ,

where (N , gN ) is an (n − 1)-dimensional compact Riemannian manifold with

RicgN
≥ ρgN

for some constant ρ ∈ R. Moreover, ω : [0, r) → R is a positive function satisfying
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(H1) ω′(0) = 0, ω′′(0) > 0,

(H2) ω′(r) > 0 for all r ∈ (0, r),

(H3)

2
ω′′(r)

ω(r)
− (n − 2)

ρ − ω′(r)2

ω(r)2
is non-decreasing for r ∈ (0, r),

(H4)
ω′′(r)

ω(r)
+

ρ − ω′(r)2

ω(r)2
> 0 for all r ∈ (0, r).

Theorem 6.1 (Brendle, Theorem 1.1 [15]). Suppose that (M, g) is a warped product mani-
fold satisfying conditions (H1)–(H3). Moreover, let Σ be a closed, embedded, orientable
hypersurface in (M, g) with constant mean curvature. Then Σ is umbilic. If, in addition, the
condition (H4) holds, then Σ is a slice N × {r} for some r ∈ (0, r).

Remark 6.2.

(i) We note that it suffices to assume that the left-hand side in (H4) is non-zero, cf.
condition (H4’) in [15], and it in fact suffices to assume that it is non-zero on a dense
subset.

(ii) Note that under condition (H2), there exists a change of coordinates such that

M = [rH , r̃) × N ,

g =
1

h(r)
dr2 + r2gN ,

where h : [rH , r̃) → R is such that

• h(r) > 0 on (rH , r̃),

• h(rH) = 0 and h′(rH) > 0,

• h′(r)

r
− (n − 2)

ρ − h(r)

r2
is non-decreasing on (rH , r̃),

• h′(r)

2r
+

ρ − h(r)

r2
> 0 on (rH , r̃),

where the above are equivalent to (H1), (H3), (H4), and we can again weaken the last
inequality as in (i) if desired. Compare [15, Section 5], where we stated everything in
[15] for h and ω with their roles reversed for notational convenience, and also use r as
a coordinate in both cases by a slight abuse of notation.
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6.2 The null energy condition in class H

Throughout this section, we will always consider n+1-dimensional spacetimes of class H with
metric coefficient h and fibre N as defined in Subsection 4.3. For now, we will only consider
the exterior region and for simplicity will always assume that it corresponds to the interval
(rN , ∞). Let (M0, g0) denote the time-symmetric (K ≡ 0) time slice {t = 0} with induced
metric g0. Note that the warped product manifolds considered by Brendle [15] are precisely
of the form (M0, g0) after a change of coordinates as in Remark 6.2 using (H2), and h and
(N , gN ) fully determine the respective spacetime of class H. By Remark 6.2 and Lemma 4.5,
it is straightforward to see that condition (H1) is equivalent to the fact that {r = rH} is a
non-degenerate Killing horizon in (M, g) with rH = rN . Moreover, Wang–Wang–Zhang [83]
pointed out that condition (H3) of Brendle precisely translates to (M, g) satisfying the null
energy condition. For the convenience of the reader, we collect the respective equivalences
in the following Lemma:

Lemma 6.3. Let (M, g) be a spacetime of class H with metric coefficient h, and let f :=
√

h
on (rN , ∞). Then the following are equivalent:

(i) (M, g) satisfies the (NEC).

(ii) ∆0fg0 − Hess0f + fRic0 ≥ 0 on M0, where ∆0, Hess0, and Ric0 denote the Laplacian,
the Hessian and Ricci curvature with respect to g0, respectively.

(iii) It holds
1

2
h′′ +

(n − 3)

2r
h′ − n − 2

r2
h + r−2RicgN

(X, X) ≥ 0

on M0 for all unit tangent vector fields X ∈ Γ(TN ) on N , where RicN denotes the
Ricci curvature on N .

(iv) The function x = h−α : (rN , ∞) → R is a solution of the ordinary differential inequality

1

2
x′′ +

(n − 3)

2s
x′ − (n − 2)

s2
x ≥ 0,

where (n − 2)α is the minimum of the smallest eigenvalue of RicgN
on N .

For the equivalence of (i) to (iii), we refer to the respective results of Brendle and Wang–
Wang–Zhang, see Proposition 2.1. in [15] and Lemma 3.8 in [83], where α is the same as the
constant ρ considered by Brendle [15] as above. The fourth equivalence is immediate, since
we assume N to be compact. We moreover observe that

L∗
g(f) = −∆0fg0 + Hess0f − fRic0,
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where L∗
g denotes the formal L2 adjoint of the linearization of the scalar curvature operator,

cf. [35] Lemma 2.2 . Thus, the (NEC) implies the existence of a non-trivial supersolution
f > 0 of the formal L2 adjoint of the linearization of the scalar curvature operator. As
equality for the (NEC) implies a non-trivial kernel, we can conclude from [35] Lemma 2.3
that then the scalar curvature R0 of the time-symmetric slices must necessarily be constant
in this case.

Wang [85] further noticed that the (NEC) is in fact also related to an eigenvalue analysis
of the Ricci curvature tensor Ric0 of the time-symmetric time slices. Namely, the (NEC)
implies monotonocity for the difference between the eigenvalue hRic0

rr and any eigenvalue of
Ric0|N×N . Compare Lemma 5.1 in [85]. Analogous to spherical symmetry, we can establish
this monotonicity in the general case:

Lemma 6.4. Let (M, g) be a spacetime of class H satisfying the (NEC), and let X be a unit
tangent vector on N . Then

rn
(

(n − 2)

2r
h′ − (n − 2)

r2
h + r−2RicgN

(X, X)

)
(66)

is monotone non-decreasing in r.

Proof.

d

dr

(
rn
(

(n − 2)

2r
h′ − (n − 2)

r2
h + r−2RicgN

(X, X)

))

=
(n − 2)

2
rn−1h′′ +

(n − 2)(n − 3)

2
rn−2h′ − (n − 2)2rn−3h + (n − 2)rn−3RicgN

(X, X)

= (n − 2)rn−1

(
1

2
h′′ +

(n − 3)

2r
h′ − (n − 2)

r2
h + r−2RicgN

(X, X)

)
≥ 0,

where we used Lemma 6.3 in the last line.

Thus, this holds true for any unit eigenvector X ∈ Γ(TN ) of RicgN
, in particular for the

minimum (n−2)α, and condition (H4) of Brendle [15] is equivalent to the monotone quantity
(66) being strictly positive everywhere. Due to the monotonicity, it suffices to check this at
the inner boundary, so condition (H4) is in particular implied by the boundary condition

h′(rH)rH + 2α > 0,

and hence immediate for α ≥ 0. Compare Remark 5.2 in [85]. However, as stated in Remark
6.2 it is enough to assume that (66) is non-trivial on a dense subset. This more general
assumption is in fact needed in our case, as we will extend the graphical slices past the
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original inner boundary, and condition (H4) will in general fail in the interior of the Killing
horizon even in spherical symmetry, for example in the case of the subextremal Reissner–
Nordström spacetime corresponding to

h(r) = 1 − 2m

r
+

q2

r2

for constants m, q with m > |q|. Thus, we will usually refer to the more general assumption

(n − 2)

2r
h′ − (n − 2)

r2
h + r−2RicN(X, X) 6= 0 (67)

for any unit eigenvector X tangent to N on a dense subset of (0, ∞).

6.3 Graphical spacelike hypersurfaces

We consider spacelike warped product graphs over the canonical {t = 0} time slice M0 in
spacetimes of Class H. More precisely, we look at hypersurfaces MT of the form

MT = {(T (s), s) : s ∈ (r1, r2)} × N

for some smooth function T : (r1, r2) → R with rH < r1 < r2 ≤ ∞. We will refer to T as the
radial height function. We further denote the induced metric and second fundamental form
of MT as gT and KT , respectively.

Note that any spacelike slice in a static spacetime can always be written as a graph, so
the above assumption is only restrictive in the sense that we assume that T is only depending
on r. For general graphical initial data sets (MT , gT , KT ) given as MT = graphM0

T , the
spacelike condition yields a restriction on the gradient of T , i.e. that 1−h |∇0T |2 > 0, where
∇0 denotes the gradient on M0. Using the computations of Cederbaum–Nerz [23] for graphs
in general static spacetimes with coordinates {xi} on M0, we get

∂Ti = ∂i + T,i∂t,

gTij = gij − hT,iT,j,

and the future timelike unit normal ~n is given by ~n = ∂t+h∇0T

f
√

1−h|∇0T |2
with f :=

√
h as above.

Moreover, the second fundamental form KT is given by6

KT (∂Ti , ∂Tj ) =
fHess0T (∂i, ∂j) + T,if,j + f,iT,j − h 〈∇0T, ∇0f〉 T,iT,j√

1 − h |∇0T |2
.

6Note that there is a slight mistake in the formula in [23] which has been corrected in [24]
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If MT = {(T (s), s, xI)} embeds in Class H with coordinates {s, xI}, where xI denote (local)
coordinates of N , this yields

gT =
1

hT
ds2 + s2gN ,

KT = aT ds2 + bT s2gN ,
(68)

where

hT =
h

1 − h |∇0T |2
, (69)

aT =
fT ′′ + f ′T ′(3 − h |∇0T |2)√

1 − h |∇0T |2
, (70)

bT =
f 3T ′

s
√

1 − h |∇0T |2
, (71)

with the tangent vector fields ∂s = ∂r + T ′∂t, ∂I and the future unit normal

~nT =
∂t + h∇0T

f
√

1 − h |∇0T |2
.

In particular, we see from (68) that (MT , gT ) is again a warped product manifold as con-
sidered by Brendle [15] with hT ≥ h, and that K also satisfies a similar block diagonal
form. The main observation in this subsection is to see that both the intrinsic and extrinsic
curvature for such spacelike warped product graphs are fully determined by the difference
hT − h in Class H. This essentially follows from the following Lemma:

Lemma 6.5.

b2
T =

hT − h

s2
,

hTaT bT =
h′
T − h′

2s
.

Proof. By (69) and using that |∇0T |2 = h · (T ′)2, we see that

hT − h =
h

1 − h |∇0T |2
− h =

h3 · (T ′)2

1 − h |∇0T |2
. (72)

Thus, the first identity follows by taking a square of (71). Taking a derivative of (72) the
second identity follows from straightforward computation.
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Remark 6.6. Further, the difference hT − h also uniquely determines the radial height
function T up to a choice of sign of the derivative and a constant of integration, as

|T ′| =
1

h

√
hT − h

hT
.

More precisely (MT , gT , KT ) is fully determined by the choice of function bT with hT = h + r2b2
T

and

T ′ =
rbT

h
√

h + r2b2
T

.

As a consequence, this rigid structure yields a full characterization of totally umbilic
spacelike warped product graphs in Class H:

Corollary 6.7. Let (MT , gT , KT ) be a spacelike warped product graph as above, and we
further assume that KT = λTgT for some smooth function λT . Then λT is constant, and
(MT , gT , KT ) is fully determined by the choice bT = λT .

In particular, hT = h + λ2
T s2, and motivated by this we refer to such spacelike totally

umbilic warped product graphs as hyperboloids in Class H.

Proof. Since KT = λTgT , we have

hTaT = λT = bT ,

in particular
hTaT bT = b2

T .

Using Lemma 6.5, we see that

(hT − h)′ =
2

s
(hT − h),

and solving the ODE gives hT − h = Cs2, where necessarily C ≥ 0 since hT ≥ h. Lastly,
this yields

λ2
T = b2

T = C,

completing the proof.

Remark 6.8. Similarly, we can characterize all rotationally symmetric graphs with
trMT

KT ≡ C via

hT = h +
(

C

n
s +

c1

sn−1

)2
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for some real constant c1 ∈ R. The choice c1 = 0 corresponds to the totally umbilic case
and we recover the hyperboloids. For C = 0, we obtain a 1-parameter family of maximal
hypersurfaces. These CMC graphs have been considered by Bartnik–Simon [6] as barries in
the Minkowski spacetime. See also [4, 42].

Remark 6.9. Although the assumption of being a graph in the above sense is much more re-
strictive in the timelike case, we can establish a similar warped product structure for timelike
graphs with radial height function T = T (s) where we now require that h |∇0T |2 − 1 > 0.
More precisely, we find that

gT = − 1

hT
ds2 + s2gN ,

KT = aT ds2 + bT s2gN ,

with

hT =
h

h |∇0T |2 − 1
,

aT =
fT ′′ + f ′T ′(3 − h |∇0T |2)√

h |∇0T − 1|2
,

bT =
f 3T ′

s
√

h |∇0T |2 − 1
,

and find the relations

b2
T =

hT + h

s2
,

hTaT bT = −(hT + h)′

2s
.

In the totally umbilic case, this leads to the same ODE system characterizing rotation-
ally symmetric photon surfaces in class S derived by Cederbaum–Galloway [21]7. In [22],
Cederbaum–Jahns–Vičánek Martínez fully characterize the behavior of solutions to this
ODE, in particular showing that rotationally symmetric photon surfaces are either photon
spheres or warped product graphs of the above sense away from singular radii.

In particular hT = λ2
T s2 − h with λT 6= 0 constant, so up to dividing hT by s2, the

function determining the induced metric is the effective potential studied by Cederbaum–
Jahns–Vičánek Martínez [22] in order the characterize solutions of the ODE system (away
from singular radii where these coordinates break down).

7This has been extended to Class H by Cederbaum and the author in [25].
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6.4 The (NEC) on spacelike warped product graphs

We first show that we can rewrite the (NEC) along any spacelike warped product graph
(MT , gT , KT ) as a tensor inequality adapted to the slice. Recall that the (NEC) along
(MT , gT , KT ) equivalently implies that for any unit vector VT on (MT , gT , KT )

0 ≤µT − 1

2
R ± 2JT (VT ) + Ric(VT , VT )

=µT − 1

2
R ± 2JT (VT ) + (trT KTKT − (KT )2)(VT , VT )

+ RicT (VT , VT ) − Rm(VT , ~nT , VT , ~nT ),

(73)

where we used the once contracted Gauss equation in the last line. Here µT , JT denote
the energy and momentum density of (MT , gT , KT ), respectively, and trT denotes the trace
with respect to gT . We will similarly denote the respective quantities on the {t = 0} time
slice M0 with a subscript 0. A direct computation yields the following well-known curvature
identities in class H:

Lemma 6.10. For any warped product graph (MT , gT ), we have that

RicTss = −(n − 1)

2s

h′
T

hT
,

RicTIJ = (RicN )IJ −
(

(n − 2)hT +
1

2
sh′

T

)
(gN )IJ ,

RT = s−2RN − (n − 1)

s2
((n − 2)(hT ) + sh′

T ) ,

HessTfT
fT

=
1

2

h′′
T

hT
ds2 +

1

2
rh′

TgN ,

∆TfT
fT

=
1

2
h′′
T +

(n − 1)

2s
h′
T ,

where RicT , RT , HessT , and ∆T denote the Ricci curvature, scalar curvature, Hessian and
Laplacian along (MT , gT ) respectively, and fT is defined as fT :=

√
hT on I.
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Lemma 6.11. Let (M, g) be a spacetime of Class H. Then

Rm(·, ∂t, ·, ∂t) = f0Hess0f0(·, ·)
Rm(·, ∂r, ·, ∂r) = f0Hess0f0(∂r, ∂r) dt2 − f−3Hess0f0(∂I , ∂J) dxI dxJ

Rm(·, ∂r, ·, ∂t) = −1

2
h′′ dt dr

Rm(·, ∂t, ·, ∂r) = −1

2
h′′ dr dt

R = −h′′ − (n − 1)

s2
((n − 2)h + 2sh′) + s−2RN ,

where RN denotes the scalar curvature on N , and f0 :=
√

h.

We now define an isomorphism between the tangent bundles of MT and M0 in the follow-
ing way: Let VT = c1fT (s)∂s+

c2

s
X be a tangent vector field along MT , where X is a unit vec-

tor field tangent to N . We define the vector field V0 tangent to M0 as V0 := c1f(s)∂r + c2

s
X.

Note that this isomorphism is not induced by an isometry between MT and M0 unless
T = const.. Using Lemmas 6.5, 6.10, 6.11, we establish the following:

Lemma 6.12. For f0 := f =
√

h as above, we find

(i) µT = µ0 = 1
2
R0 = 1

2
R + ∆0f0

f0
,

(ii) JT ≡ 0,

(iii) RicT (VT , VT ) + (trT KTKT − (KT )2)(VT , VT ) = Ric0(V0, V0),

(iv) Rm(VT , ~nT , VT , ~nT ) = Rm(V0, ∂t, V0, ∂t) = Hess0f0(V0,V0)
f0

Remark 6.13. As the spacetime is static, it is unsurprising that with these identities (73)
directly reduces to Lemma 6.3 (ii). However, as we aim to employ the result of Brendle [12]
directly on the slice, we will instead write (73) as a tensor inequality involving fT :=

√
hT .

We also want to emphasize the vanishing momentum constraint JT ≡ 0, as the converse
is also true in the following sense: If (M̃, g̃, K̃) is a rotationally symmetric initial data set as
above determined by the functions h̃, ã, b̃, then J̃ ≡ 0 if and only if (M̃, g̃, K̃) embeds as a
warped product graph into a spacetime of Class H with h := h̃ − s2b̃2. In the context of the
construction of such rotationally symmetric initial data sets, this yields the maximal future
development under the additional assumption J ≡ 0, cf. Cabrera Pacheco–Wolff [17].
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Proof of Lemma 6.12. In view of the Remark, we only prove (ii), as the derivation of (i),
(iii), (iv) follows by direct computation from Lemmas 6.10, 6.11. In coordinates JT is given
as

(JT )i = (gT )jk
(
Kki,j − ΓljkKli − ΓlijKkl

)
− trT K,i,

for indices i, j, k, l ∈ {s, I, J, K, L}. Using the block diagonal structure of K and the well-
known identities for the Christoffel symbols in class H, a direct computation shows that

JT =
2

s
(hTaT − bT − sb′

T ) ds.

Thus, it remains to show that hTaT − bT − sb′
T vanishes along MT . As bT is in particular

continuous, there exists a closed set X ⊂ IT := (r1, r2) of measure zero, such that for all
s ∈ IT \ X there exists an open neighborhood Us of s, such that either bT 6= 0 or bT vanishes
identically on Us. In the first case, multiplying the equation by bT yields

bT (hTaT − bT − sb′
T ) = hTaT − b2

T − sb′
T bT = 0,

which vanishes by the identities of Lemma 6.5 and using

2b′
T bT = (b2

T )′ =
h′
T − h′

s2
− 2

hT − h

s3
.

Since we assumed bT 6= 0 , we have hTaT − bT − sb′
T = 0. On the other hand, if bT vanishes

identically on a neighborhood, then T = const. by Remark 6.6, so hT = h and a = 0. In
particular hTaT −bT −sb′

T = 0. Therefore hTaT −bT −sb′
T vanishes on IT \X . By continuity,

it has to vanish on all of IT , which concludes the proof of (2).

We now establish the relevant tensor inequality adapted to the warped product graphs
(MT , gT , KT ).

Proposition 6.14. Let (M, g) be a spacetime of Class H that satisfies the (NEC), and let
(MT , gT , KT ) be a warped product graph in (M, g). Then, for all unit vector fields VT on
(MT , gT , KT ) we have

BT (VT , VT ) ≤ ∆TfT
fT

− HessTfT (VT , VT )

fT
+ RicT (VT , VT ), (74)

where

BT =

(
1

2
(hT − h)′′ +

(n − 3)

2s
(hT − h)′ − (n − 2)

s2
(hT − h)

)
s2gN .
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Proof. Note that

(KT )2 = hTa2
T ds2 + b2

T s2gN ,

trMT
KT = hTaT + (n − 1)bT ,

|KT |2 = h2
Ta2

T + (n − 1)b2
T ,

(75)

and using Lemma 6.5, direct computation shows

trMT
KTKT − (KT )2 =

(n − 1)

2

h′
T − h′

shT
ds2 +

(
h′
T − h′

2s
+

(n − 2)

s2
(hT − h)

)
s2gN . (76)

For a unit vector VT = c1fT∂s + c2

s
X on MT , by Lemma 6.12 the (NEC) gives

0 ≤ ∆0f0

f0

− Hess0f0

f0

(V0, V0) + RicT (VT , VT ) +
(
trT KTKT − (KT )2

)
(VT , VT ).

Note that a direct computation yields
(

∆TfT
fT

− ∆0f0

f0

)
−
(

HessTf(VT , VT )

fT
− Hess0fT (V0, V0)

f0

)
−
(
trMT

KTKT − K2
)

(VT , VT )

= c2
2

(
1

2
(hT − h)′′ +

(n − 3)

2s
(hT − h)′ − (n − 2)

s2
(hT − h)

)

= BT (VT , VT ).

Inserting this into the tensor inequality above yields the claim.

In particular, the (NEC) on (M, g) implies the same tensor inequality

0 ≤ ∆TfT
fT

− HessTfT (V, V )

fT
+ RicT (V, V ) (77)

on general warped product initial data sets (MT , gT , KT ), provided that BT is positive semi-
definite. Moreover, BT ≥ 0 if and only if x = hT − h is a non-negative solution of the linear
ordinary differential inequality

1

2
x′′ +

(n − 3)

2s
x′ − (n − 2)

s2
x ≥ 0. (78)

Note that this is the same differential inequality as in Lemma 6.3 (iv) for the function h−α,
which is equivalent to the (NEC) on (M, g). By linearity, we have that hT − α solves the
above differential inequality (78), which by Lemma 6.3 implies that the spacetime of Class
H with metric coefficient hT satisfies the (NEC).
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Remark 6.15. The exact solutions of (78) as an ODE are given by a 2-parameter family of
solutions of the form

x =
C1

s−n+2
+ C2s

2.

In spherical symmetry, h = 1+x correspond to the Schwarzschild de Sitter and Schwarzschild
anti-de Sitter family depending on the sign of C2, which describe the static, spherically sym-
metric Vacuum solutions of the Einstein Equations (with cosmological constant depending
on C2). These are precisely the spacetimes of class S such that the time-symmetric slices
have constant scalar curvature. Compare [35, Lemma 2.3].

In this sense, if BT ≥ 0, the spacetime of Class H with metric coefficient hT inherits the
(NEC) from the spacetime of Class H with metric coefficient h. This makes apparent that
we can use the (NEC) on (M, g) to classify CMC surfaces on a large class of general warped
product graphs (MT , gT , KT ) provided we can extend the tensor inequality in an appropriate
way until the first zero rT of hT to verify Brendle’s condition (H1) in [15]. As hT ≥ h on I,
a positive minimal, inner boundary of (MT , gT ) will in general be hidden behind a Killing
horizon of (M, g).

6.5 Extending the graph past the Killing horizon to the minimal
boundary

As mentioned in Subsection 4.3, Killing horizons arise in spacetimes of Class H as ze-
ros of h. As in Subsection 4.3 we assume that h finitely many positive, simple zeros
0 < r1 < . . . < rN = rH , such that all arising Killing horizons are non-degenerate. As (H2)
is equivalent to the fact that the outermost Killing horizon {r = rH} is non-degenerate,
this is rather a necessary than a restrictive assumption in lieu of applying the results of
Brendle [15].

However, as r → rN the (t, r)-coordinate system breaks down, and in general MT can no
longer be described as a graph of a radial function T , since by Remark 6.6

|T ′| =
1

h

√
hT − h

hT
.

We want to argue that we can extend the graph of T past any Killing horizon {r = rl} for
all 1 ≤ q ≤ N in different coordinates in the case that hT (rl) > 0 and extend the notion of
the (NEC) as an ordinary differential inequality on a suitable spacetime extension. As we
only need this up to the inner boundary of MT , i.e {s = rT} for the biggest zero rT of hT ,
we always have that hT (rl) > h(rl) = 0 for all 1 ≤ l ≤ N with rl > rT .

Using the above assumptions that each Killing horizon is non-degenerate, Brill–Hayward
[16], Schindler–Aguirre [71], and Cederbaum and the author [25] showed independently that
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a spacetime (M, g) of Class H admits a spacetime extension called the generalized Kruskal–
Szekeres extension, that extends the radial coordinate r to (0, ∞) away from the zeros of h.
Throughout this subsection we will use the conventions of [25]. In each coordinate chart,
the spacetime extension is given by a warped product manifold (Pl × N , g̃l), where

Pl := {(u, v) ∈ R
2 : uv ∈ Im(fl)},

g̃l = (Fl ◦ ρ)( du ⊗ dv + dv ⊗ du) + ρ2gN ,

with ρ = f−1
l (uv), Fl = 2Kl

f ′
l

, where fl is the unique strictly increasing solution of

fl
f ′
l

= Clh, (79)

on (rl−1, rl+1) with f ′(rl) = 1, Cl := 1
h′(rl)

, 1 ≤ l ≤ N , where we recall from Subsection 4.3

that r0 = 0, rN+1 = ∞. Note that the original spacetime (M, g) corresponds to {u, v > 0}
in PN × N . Moreover, we have the explicit coordinate transformations between (u, v) and
(t, r) coordinates

v(t, r) =
√

fl(r) exp
(

1

2Cl

t
)

,

u(t, r) =
√

fl(r) exp
(

− 1

2Cl

t
)

on each coordinate patch R × (rj, rj+1) × N (j ∈ {l − 1, l}), where (t, r) coordinates are
defined. A direct computation in the (u, v) coordinates using Equation (79) gives

Ricuv = −Fl
2

(
h′′ +

(n − 1)

ρ
h′
)

,

RicIJ = (RicgN
)IJ − ((n − 2)h + ρh′) (gN )IJ .

Let L = a∂u + b∂v + c
ρ
X be a null vector field, where X is a unit vector on N . Then

0 = 2Flab + c2.

Using this identity, we see that

0 ≤ Ric(L, L)

= −Flab

(
h′′ +

(n − 1)

ρ
h′
)

+
c2

s2
(RicgN

(X, X) − (n − 2)h + ρh′)

= c2

(
1

2
(h − 1)′′ +

(n − 3)

2ρ
(h − 1)′ − (n − 2)

ρ2
(h) + RicgN

(X, X)

)
,
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which is again equivalent to the linear ordinary differential inequality (78) for x = h − α
by the same arguments as in the proof of Lemma 6.3. Therefore the spacetime extension
satisfies the (NEC), if and only if x = h − α satisfies (78) on (0, ∞).

A crucial observation in [25] is that any solution fl of (79) is of the form

fl = h exp
(

Rl

Kl

)
,

where Rl is a smooth function on (rl−1, rl+1) uniquely determined up to a constant. Although
the construction circumvents the need to do so, this yields a tortoise function R∗, i.e.,
a primitive of 1

h
, a-posteriori on each of the intervals (rl−1, rl) and (rl, rl+1) by defining

R∗ := Kl ln(|fl|).
Now, we notice that by Remark 6.6 T is a primitive of the function 1

ψT
, where

ΨT = ±h
√

hT

hT −h is well-defined and Ψ′
T (rl) = h′(rl) 6= 0 for any rl > rT . In particular,

the construction of Cederbaum and the author [25] yields that T satisfies

T = ±
(

Cl ln(|h|) + Cl

1

2
ln

(
hT

hT − h

)
+ R̃T

)

for some smooth function R̃T on (rl−1, rl+1). Using this explicit behavior of T , we see that
for the +-case

v(s) = h 4

√
hT − h

hT
exp

(
1

2K
(R + R̃T )

)
,

u(s) = 4

√
hT

hT − h
exp

(
1

2K
(R − R̃T )

)
,

so MT extends smoothly across the horizon, and crosses the horizon at v = 0, u = u(rT ), and
similarly at v = v(rT ), u = 0 in the −-case. Therefore we can extend any warped product
graph across any non-degenerate Killing horizon up to its minimal, inner boundary.
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6.6 Uniqueness of STCMC surfaces on hyperboloids

Combining the result of the previous subsections with the results of Brendle [15], and Ceder-
baum and the author [25], we acquire the following:

Theorem 6.16. Let h : (0, ∞) → R be a smooth function with finitely many, positive simple
zeros r1, . . . , rN . Let (M, g) be the corresponding spacetime of Class H with metric coefficient
h, and assume that the generalized Kruskal–Szekeres extension of (M, g) satisfies the (NEC)
condition.
Let x be some non-negative solution of the ordinary differential inequality (78), and consider
the warped product graph MT , where T is such that hT = h + x. Then MT extends into the
generalized Kruskal–Szekeres extension until its minimal inner boundary, corresponding to
the first zero rT of hT .
Additionally, if rT > 0 with h′(rT ) > 0 and hT satisfies (67) on a dense set of (rT , ∞), then
all compact CMC surfaces in MT are leaves {s} × N .

Proof. By [25], (M, g) extends onto all positive radii, and the generalized Kruskal–Szekeres
extension is covered by a countable, smooth Atlas. As observed in the previous subsection
the (NEC) implies that the ordinary differential inequality (78) holds for h − α on all of
(0, ∞), and the graph MT of T with hT = h + x is well defined across any non-degenerate
Killing horizon up until the first zero rT of hT .

Since x is a non-negative solution of (78), we have the tensor inequality (77), and by
Remark 6.6 there exists a graph T such that hT = h + x, where T is uniquely determined by
x up to a choice of sign of T ′ and a constant of integration. Now assume that the first zero
rT of hT satisfies h′

T (rT ) > 0, and hT satisfies (67) on a dense set of (rT , ∞). In particular,
conditions (H1)-(H3) in [12, Theorem 1.1] are satisfied. Thus, any compact CMC surface
in MT is totally umbilic. Moreover, since (67) holds on a dense subset, we can conclude
as in [12, p. 18] that any compact CMC surface is in fact a leaf of the canonical foliation
{s} × N .

Note that this result is independent of the extrinsic curvature K. Therefore it also suffices
to apply Brendle’s result directly to the totally geodesic slices in the spacetime of Class H

with metric coefficient hT , as this spacetime will satisfy the (NEC) by Remark 6.15. Note
that this observation is consistent with the duality of constant, positive mean curvature
slices in spacetimes with zero cosmological constant and maximal slices in spacetimes with
negative cosmological constant, cf. [34].

We now want to incorporate the extrinsic curvature K into our result. Due to the
difficulty in adapting Brendle’s method in the presence of P = trΣ K and its evolution, we
restrict ourselves to the special case of totally umbilic warped product graphs, which we
have fully characterized in Corollary 6.7. Note that on a hyperboloid, P = trΣ K = (n − 1)λ
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is constant and the same for any embedded surface Σ, so the evolution of P along any
deformation is trivial. Hence, any surface Σ in (MT , gT , KT ) has constant spacetime mean
curvature H2, and constant expansion θ±, if and only if it is a CMC surface. Moreover, by
Remark 6.15 Cs2 is an exact solution of (78), so it in fact solves (78) as an ODE. Using
Theorem 6.16, we acquire our main result for totally umbilic warped product graphs in Class
H.

Theorem 6.17. Let h : (0, ∞) → R be a smooth function with finitely many, positive,
simple zeros r1, . . . , rN . Let (M, g) be the corresponding spacetime with metric coefficient
h. Assume that the generalized Kruskal–Szekeres extension satisfies the (NEC) condition.
Assume further, that h satisfies (67) on a dense subset of (0, ∞).
Then there exists a constant C0 = C0(h, h′) ∈ (0, ∞], such that for any hyperboloid (MT , gT , KT )
with umbilicity factor λ2

T < C0, we have: If Σ ⊂ MT is an orientable, closed, embedded hyper-
surface with constant spacetime mean curvature, then Σ is a slice {s} × N .

Proof. For C = λ2
T small enough, hT has at least one positive zero rT with rT → rN as

C → 0. By continuity, we have h′(qT ) > 0 for small enough C. We define C0 as the
supremum over all C, such that these conditions are still satisfied.

Further, we have

(n − 2)

2s
h′
T − (n − 2)

s2
hT + s−2RicgN

(X, X) =
(n − 2)

2r
h′ − (n − 2)

r2
h + r−2RicgN

(X, X) 6= 0

on a dense subset of (rT , ∞) by assumption. Thus, Theorem 6.16 applies to (MT , gT , KT ),
and any CMC surface Σ is a slice {s} × N . Since (MT , gT , KT ) has constant umbilicity
factor, any STCMC surface is a slice {s} × N .

Note that all assumptions are in particular satisfied for any constant C ≥ 0 in the
Kruskal–Szekeres extension of the Schwarzschild spacetime with positive mass.

Corollary 6.18. Let (M, g) be the Schwarzschild spacetime with positive mass. Then any
closed, embedded STCMC surface Σ in an hyperboloid (MT , gT , KT ) is a slice {s} × S

2.

Remark 6.19. Note that a direct computation yields that

H2 =
(n − 1)h(s)

s2

for a spherical slice {s} × S
n−1 for any warped product graph (MT , gT , KT ). As we have to

extend any hyperboloid with λT 6= 0 across the horizon where h(rH) = 0 into a region where
h < 0, both the case of generalized apparent horizons H2 = 0, and STCMC surfaces with
H2 < 0 naturally occur in hyperboloids. In particular, in the latter case they are trapped in
the sense of both Remark 4.20 and Remark 5.44.
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7 2d-Ricci flow on the standard Minkowski lightcone

In this section, we study the evolution of spacelike cross sections of the standard lightcone
in the 3 + 1-Minkowski spacetime under a geometric flow. Here, a spacelike cross section
is always assumed to satisfy the assumptions made in Subsection 4.7. By observing that
any spacelike cross section of the lightcone can be uniquely identified with a metric in the
conformal class of the round 2-sphere, we establish an equivalence between 2d-Ricci flow
in the conformal class of the sphere and an extrinsic curvature flow along the lightcone.
This extrinsic curvature flow, which we will call null mean curvature flow here, was first
studied by Roesch–Scheuer [67] to detect MOTS in null hypersurfaces. As no MOTS exists
on the Minkowski lightcone, the flow develops singularities which we can fully characterize
by drawing on the equivalence to Ricci flow and a classical result first proven by Hamilton
[47]. Moreover, by studying null mean curvature flow along the lightcone we obtain an
independent proof of Hamilton’s classical result for spacelike cross sections with spacelike
mean curvature vector, which corresponds to Hamilton’s initial assumption of strictly positive
scalar curvature for surfaces of genus 0. This proof relies solely on the maximum principle
by exploiting a new notion of scalar second fundamental form. This section is based on
published single author work in [89].

This section is structured as follows: In Subsection 7.1 we briefly review 2d-Ricci flow. In
Subsection 7.2 we collect all relevant properties of spacelike cross sections of the Minkowski
lightcone, and define a notion of scalar second fundamental form in Subsection 7.3. In
Subsection 7.4 we establish the equivalence between null mean curvature flow on the lightcone
and 2d-Ricci flow on surfaces of genus 0, and obtain a full classification of singularities of null
mean curvature flow on the lightcone. In Subsection 7.5 we give a new proof of Hamilton’s
classical result using null mean curvature flow.

7.1 2d-Ricci flow

A family of metrics {g(t)} is said to evolve under Ricci flow, if

d

dt
g(t) = −2Ricg(t), (80)

which is a non-linear parabolic system. As Ricg = 1
2

Rg g in 2-dimensions, the flow agrees
with the Yamabe flow in 2-dimensions, i.e.,

d

dt
g(t) = − Rg(t) g(t). (81)

In particular, it is easy to see that 2d-Ricci flow preserves the conformal class of the metrics
under the flow. However, this also causes some analytical difficulties compared to the 3-
dimensional case, as the evolution of |

◦

Ricg|2 can not be exploited along the flow. Nonetheless,
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a classical result first proven by Hamilton [47] gives a full characterization of all singularity
models:

Theorem 7.1 (H. ’88 [47], C. ’91 [30], B.–S.–Y. ’94 [7], S. 2002 [77], A.–B. 2009 [1]).
If g is any metric on a Riemann surface, then under Hamilton’s Ricci flow, g converges to
a metric of constant curvature.

Remark 7.2.

(i) Here, Hamilton’s Ricci flow denotes Ricci flow renormalized by volume, which can in
fact always be realized as a rescaling of the unnormalized Ricci flow, cf. Equation
(95) below. The following thus gives a full characterization of the singularity models
for Ricci flow in the sense that whenever the unnormalized Ricci flow approaches a
singularity, the flow smoothly converges to a surface of constant scalar curvature upon
rescaling.

(ii) In the case of surfaces of genus 0 this was initially proven by Hamilton [47] for metrics
of strictly positive scalar curvature. This assumption was eventually removed by Chow
[30]. Their techniques rely on establishing a Harnack inequality and an entropy bound.
Their approach also gives an independent proof of the uniformization theorem, c.f. [28].
Due to the difficulty of this approach, the conformally round case was later revisited
and several new proofs were given utilizing the uniformization theorem to study the
evolution of the conformal factor, see [1, 7, 77].

7.2 The standard lightcone in the 3 + 1-dimensional Minkowski
spacetime

For our purpose, it is most convenient to introduce the null coordinates v := r + t, u := r − t
on R

3,1. Then η can be written as

η =
1

2
( du dv + dv du) + r2 dΩ2

with r = r(u, v) = u+v
2

. Now, all past-pointing standard lightcones in the Minkowski space-
time are given by the sets {v = const.} (and similarly all future-pointing lightcones are given
by {u = const.}). From now on, we will work on the null hypersurface N = {v = 0} = C−,
i.e., the past-pointing standard lightcone centered at the origin, cf. Subsection 4.2. However,
all identities derived for N will also analogously hold on all level sets of v and u respectively,
in particular on C+ = {u = 0}. Note that N has the induced degenerate metric

r2 dΩ2,
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and is generated by the geodesic integral curves of L := 2∂u. Note that L is past-pointing
and its integral curves are geodesics. Recall that the null generator L of a null hypersurface
is both tangential and normal to N , and by choice of L we have L(r) = 1. Thus, r restricts
to an affine parameter along N . In particular, we can represent any spacelike cross section
Σ of N (which intersects any integral curve of L exactly once) as a graph over S

2, i.e.,
Σ = Σω = {ω = r} ⊆ N . In particular, Σ has the induced metric

γ = ω2 dΩ2,

so (Σ, γ) is conformally round. Conversely, for any conformally round metric γω = ω2 dΩ2

there exists a unique spacelike cross section Σω such that (Σω, γω) embeds into N , where we
will omit the subscript ω in the following when it is clear from the context. This observation
is similar to an idea developed by Fefferman–Graham [40], and their construction indeed
yields the standard lightcone in the 3 + 1-Minkowski spacetime in the case of the round
2-sphere.

We now want to represent the extrinsic curvature of a spacelike cross section (Σ, γ) of
N as a codimension-2 surface with respect to a particular null frame. Recall that the null
generator L is both tangent and normal to N , in particular L is normal to any spacelike
cross section (Σ, γ). We further consider a normal null vector field L along Σ such that
η(L, L) = 2. This uniquely determines L such that {L, L} form a frame of the normal
bundle T ⊥Σ of Σ. Note that L is future-pointing.

We now remark that the standard round spheres {Σs}s∈(0,∞) form a level-set foliation
with respect to the integral curves of the null generator L. It is easy to verify that for any
leaf Σs, we have LΣs = 2∂v and find

χ
s

= χs = s dΩ2,

θs = θs =
2

s
,

ζs = 0.

From this background foliation, we can explicitly compute all extrinsic curvature quantities
for any spacelike cross section Σ with respect to the null frame {L, L} as defined in Subsection
4.8 by Propositions 4.16 and 4.22.
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Proposition 7.3. For any spacelike cross section (Σ, γ) of N , we find

(i) γ = ω2 dΩ2,

(ii) χ = 1
ω

γ,

(iii) θ = 2
ω

,

(iv) χ = 1
ω

(1 + |∇ω|2)γ − 2 Hess ω

(v) θ = 2
(

1
ω

+ |∇ω|2
ω

− ∆ω
)
,

(vi) ζ = − dω
ω

,

where Hess and ∆ denote the Hessian and Laplace–Beltrami operator on (Σ, γ), respectively.

Remark 7.4. The fact that the null second fundamental form χ depends only pointwise on
ω together with the background foliation of round spheres gives

|~II|2 =
〈
χ, χ

〉
=

1

2
H2,

and thus

R =
1

2
H2 (82)

by the twice contracted Gauss equation, Proposition 4.24, which can also be directly verified
from (iii) and (v) in Proposition 7.3. Since Σ is 2-dimensional, we can therefore express the
Riemann tensor of the surface as

Rmijkl =
1

4
H2 (γikγjl − γjkγil) . (83)

We would like to emphasize here that H2 refers by definition to the signed Lorentzian length
of the mean curvature tensor and can therefore be (locally) negative despite the suggestive
power of 2 as an exponent.

In particular, we always have

◦

~II = −1

2
◦

χL, (84)

so |
◦

~II|2 = 0 although
◦

~II 6= 0, and the property of ~II being pure trace is instead more accurately
captured by | ◦

χ|2 = 0. Along N , this is made precise by the following proposition.
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Proposition 7.5. Let (Σ, γ) be a spacelike cross section of N with
◦

χ = 0. Then H2 is con-
stant and strictly positive along Σ. In particular, γ is a metric of constant scalar curvature.

Remark 7.6. Note that

◦

χ = 2ω2
◦

HessS2

(
1

ω

)
, (85)

where HessS2 denotes the Hessian on (S2, dΩ2). One can also verify by computation in

coordinates that
◦

HessS2

(
1
ω

)
= 0 if and only if ω is of the form

ω(~x) =
ρ√

1 + ||~a||2 − ~a · ~x
, (86)

for a constant ρ > 0 and a fixed vector ~a ∈ R
3, which are exactly the metrics of constant

scalar curvature on S
2. Hence, the converse statement of Proposition 7.5 is also true. It is a

well-known fact that all such metrics can be obtained from the round metric by a suitable
Möbius transformation, cf. [59, Proposition 6], [85, Section 5.2]. Moreover, the metrics
(86) describe exactly the images of round spheres (as cross sections of N ) after a suitable
Lorentz transformation in SO+(3, 1) in the Minkowski spacetime, which leave the lightcone
N invariant. These observations illustrate once again the well-known fact that the Möbius
group is isomorphic to the restricted Lorentz group SO+(3, 1).

Proof of Proposition 7.5. Combining the Codazzi equation Proposition 4.25 for χ with the
explicit form of ζ from Proposition 7.3, we find

∇iχjk − d ωi
ω

χjk = ∇jχik − d ωj
ω

χik. (87)

Multiplying the equation by θ = 2
ω

> 0, we get

∇i (θχ)jk = ∇j (θχ)jk . (88)

Hence ∇ (θχ) is totally symmetric and since trγ θχ = H2, we find

∇iH2 = div (θχ)i =
1

2
∇iH2 + div

◦

(θχ)i =
1

2
∇iH2

by assumption. Therefore H2 is constant, in particular γ is a metric of constant scalar
curvature by the Gauss equation (82). Finally, the Gauss–Bonnet Theorem ensures the
positivity of R and hence H2.
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7.3 A scalar second fundamental form

Motivated by the proof of Proposition 7.5, we regard the symmetric (0, 2)-tensor A := θχ

as a scalar representation of the vector valued second fundamental form ~II, and call A the
scalar second fundamental form. This can also be regarded as a choice of gauge. Rephrasing
Proposition 7.5 in terms of A, we see that we can prove the following identity in complete
analogy to the properties of the second fundamental form h of an embedded, orientable
surface in R

3, cf. [2, Lemma 8.15].

Proposition 7.7. Let (Σ, γ) be a spacelike cross section of N . Then ∇A is totally symmet-
ric, i.e.,

∇iAjk = ∇jAik. (89)

In particular, we find

|∇A|2 ≥ 3

4

∣∣∣∇H2
∣∣∣
2

, (90)

and
◦

A = 0 if and only if H2 is a strictly positive constant.

We further derive the propagation equations for the geometric objects A and H2 from
Proposition 4.27:

Lemma 7.8.

d

d t
Aij = − 2 Hessij(θϕ),

d

d t
H2 = − 2∆(θϕ) − (θϕ)H2.

Proof. From Proposition 4.27 (iv) and (v), and χ = 1
2
θγ, we compute

d

d t
Aij = − 2θ Hessij ϕ − 2θ( d ϕi ⊗ ζj + d ϕj ⊗ ζi)

− ϕθ
(

2∇iζj + 2ζi ⊗ ζj − 1

2
Aij

)
− 1

2
ϕθAij

= − 2θ Hessij ϕ − 2θ( d ϕi ⊗ ζj + d ϕj ⊗ ζi) − ϕθ (2∇iζj + 2ζi ⊗ ζj) .

We now observe that the remaining terms on the right hand side exactly combine into
−2 Hessij (θϕ) due to the explicit formulas for θ and ζ as stated in Proposition 7.3. Taking
a trace, where d

d t
γij = −ϕθγij, completes the proof.
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We close this section by establishing a null version of the Simons’ identity for A in the
3 + 1-Minkowski lightcone N which will be crucial for our later analysis.

Lemma 7.9 (Null Simons’ Identity).

∆Aij = Hessij H2 +
1

2
H2

◦

Aij.

Proof. In the following lines, we will make frequent use of the Codazzi equation for A, Lemma
7.7, and the fact that for any symmetric (0, 2)-tensor T , we have that

∇k∇lTij − ∇l∇kTij = Rmkljm Tm
i + Rmklim Tm

j .

Thus, we compute

∇k∇lAij =∇k (∇iAlj)

=∇i∇kAjl + Rmkilm Am
j + Rmkijm Am

l

=∇i(∇jAkl) + Rmkilm Am
j + Rmkijm Am

l

=∇i∇jAkl +
1

4
H2

(
(γklγim − γilγkm) Am

j + (γkjγim − γijγkm) Am
l

)

=∇i∇jAkl +
1

4
H2 (Aijγkl + Ailγkj − Akjγil − Aklγij) ,

where we have used (83) in the second to last line. Taking a trace with respect to the kl
entries yields the claim.

7.4 Null mean curvature flow on the Minkowski lightcone

We will now investigate null mean curvature flow restricted to the (past-pointing) standard
lightcone N in the 3 + 1-Minkowski spacetime. Recall that along the standard lightcone in
the 3 + 1-Minkowski spacetime null mean curvature flow is defined as

d

d t
x =

1

2
η
(

~H, L
)

L = −1

2
θL,

as first studied by Roesch–Scheuer in a more general case [67]. Note that since L(r) = 1,
the above is equivalent to the following evolution equation for ω

d

d t
ω = −1

2
θ. (91)
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Recalling the considerations on 2d-Ricci flow in Subsection 7.1, we see that for surfaces of
genus 0 the uniformization theorem yields

d

d t
γij = −2 Ricij ⇔ d

d t

(
ω2 dΩ2

)
= −2Kω2 dΩ2

⇔ 2

ω

(
d

d t
ω

)
γij = −2Kγij

⇔ d

d t
ω = −ωK,

where K denotes the Gauss curvature. Note that by the twice contracted Gauss equation
(82) and the explicit form of θ, we have that θ = 2ωK. Therefore, 2-dimensional Ricci
flow in the conformal class of the round sphere is equivalent to null mean curvature flow on
the past-pointing standard lightcone in the 3 + 1-Minkowski spacetime. Thus, Theorem 7.1
immediately yields the following:

Theorem 7.10. Let (Σ0, γ0) be a spacelike cross section of the past-pointing standard light-
cone N in the 3 + 1-Minkowski spacetime. Then the solution of null mean curvature flow
starting from Σ0 extinguishes in the tip of the cone in finite time and the renormalization by
volume converges to a surface of constant spacetime mean curvature, which exactly arise as
the image of a round sphere of a Lorentz transformation in SO+(3, 1) consisting of a Lorentz
boost with boost vector

z =

(√
1 + ||~a||

~a

)

for a vector ~a ∈ R
3 and a rotation determined by the choice of coordinates on S

2.

Remark 7.11. Since the general structure of the standard lightcone derived in Subsec-
tion 7.2 extends directly to higher dimensions (up to some possibly dimension dependent
constants), the geometric intuition developed in Subsection 7.2 also holds for the standard
lightcone in the n + 1 dimensional Minkowski spacetime, n ≥ 3. In particular, the Gauss
equation yields

R =
n − 1

n
H2. (92)

From this, we can similarly establish that null mean curvature flow is proportional to the
Yamabe flow [48] for the conformal class of the round metric on S

n−1 in all dimensions
n − 1 ≥ 2. More precisely, the metrics evolve under renormalized null mean curvature flow
as

d

d t̃
g̃( t̃ ) = − 1

n − 1

(
R̃ −

 

R̃

)
g̃( t̃ ). (93)
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Since not all metrics on S
n−1 are necessarily conformally round in higher dimension n−1 ≥ 3

they can thus not be embedded isometrically into the standard Minkowski lightcone.
Similar to the 2-dimensional case, renormalized Yamabe flow has been subject to thor-

ough investigation using various different methods. The case of the conformal class of the
round sphere was first treated separately by Chow [31] under the additional assumption of
positive Ricci curvature, which is preserved under the flow. A uniform approach for locally
conformally flat metrics was later provided by Ye [90]. Schwetlick–Struwe [74] performed a
precise blow-up analysis and showed that singularities arising in the blow-up procedure can
by ruled out by employing the positive mass theorem (cf. [72]) if the initial energy is less
than some uniform bound depending on the Yamabe invariant of the initial metric and the
Yamabe energy of the round sphere. The general approach by Brendle [12, 14] leads to a
short proof of the conformally round case [13]. We suspect that the techniques developed
in the next subsection could be applied to gain a new proof of this result, possibly under
similar restrictions as Chow [31].

7.5 A new proof of Hamilton’s classical result

With this approach to 2d-Ricci flow, we give a new proof of Hamilton’s classical result:

Theorem 7.12 (cf. [47]). Let (Σ0, γ0) be a surface with conformally round metric γ0 and
strictly positive scalar curvature. Then a solution of renormalized Ricci flow exists for all
time and the metrics γt converge to a smooth metric γ∞ of constant scalar curvature in Ck

for all k ∈ N as t → ∞.

Note that the assumption of strictly positive scalar curvature translates by the Gauss
equation (82) to the assumption that the mean curvature vector ~H is spacelike everywhere.
Throughout this section, we will use the extrinsic objects A, H2 evolving under null mean
curvature flow on the standard lightcone in the 3+1-Minkowski spacetime, but will frequently
exploit its equivalence to 2d-Ricci flow to switch freely between the frameworks of null mean
curvature flow and 2d-Ricci flow. A key tool in the proof will be to first study the evolution
of |

◦

A|2 along the unnormalized flow which will yield a crucial gradient estimate. Translating
these to the renormalized flow will then yield the proof of Theorem 7.12.

Remark 7.13. Note that there does not seem to be a direct connection between
◦

A and the
auxiliary term M =

◦

Hessf in the modified renormalized flow in [7, 47], where f solves

∆f =

(
R −

 

Σ

R

)
.
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To see this, consider any stationary point of the renormalized flow where f is necessar-
ily constant while

◦

A = 0 holds for all functions ω of the form (86) arising from Lorentz
transformations.

We start by computing the relevant evolution equations for the unnormalized flow.

Proposition 7.14. For a smooth solution to null mean curvature flow, we find

d

d t
|A|2 = ∆ |A|2 − 2 |∇A|2 +

1

2

(
H2
)3

,

d

d t
H2 = ∆H2 +

1

2

(
H2
)2

.

Proof. For ϕ = −1
2
θ, the evolution equation for H2 is immediate from Lemma 7.8. Com-

bining the evolution equation for A from Lemma 7.8 with the null Simons’ identity, Lemma
7.9, we have

d

d t
Aij = ∆Aij − 1

2
H2

◦

Aij.

Hence

d

d t
|A|2 =

d

d t

(
γikγjlAijAjk

)

= 2γikγjlAij

d

d t
Akl + 2

d

d t
γikγjlAijAkl

= 2
〈

A, ∆A − 1

2
H2

◦

A
〉

+ H2 |A|2

= ∆ |A|2 − 2 |∇A|2 − H2|
◦

A|2 + H2 |A|2

= ∆ |A|2 − 2 |∇A|2 +
1

2

(
H2
)3

.

Therefore, as we already know from Ricci flow, cf. [32, Corollary 2.11], the positivity of
H2 is preserved under the flow by the parabolic maximum principle [32, Proposition 2.9]. In
particular, the flow exists only for finite time, as H2 → ∞ in finite time.

We would like to point out the similarity to the evolution of the corresponding quantities
for mean curvature flow in Euclidean space, where the second fundamental form h and mean
curvature H are replaced here by A and H2 in the evolution equations. However, compared
to the work of Huisken (cf. [2, Theorem 8.6]) for mean curvature flow the slight differences
will allow for a much more direct approach using only the maximum principle without any
pinching condition and without the need to employ a Stampacchia iteration. In fact, here
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we give a more direct proof of an improved gradient estimate as in the original work by the
author [89], cf. Proposition 5.4 and Theorems 5.6 and 5.7 in [89].

We state the gradient estimate in the language of 2d-Ricci flow.

Theorem 7.15. Let {Σt}t∈[0,Tmax) be a family of closed, topological 2-spheres with strictly
positive scalar curvature R > 0 evolving under Ricci flow. For any p > 1

2
, η > 0, there exists

Cη > 0 only depending on η, p and Σ0, such that

|∇ R| ≤ η2 Rp +Cη.

for all t ∈ [0, Tmax).

Remark 7.16. As H2 = 2 R by the Gauss Equation (82), it suffices to proof
∣∣∣∇H2

∣∣∣ ≤ η2
(
H2
)p

+ Cη.

Choosing p = 3
2
, we get the crucial gradient estimate

|∇ R| ≤ η2 R
3
2
max

for any η > 0 and t sufficiently close to Tmax, as Rmax → ∞. This estimate allowed Hamilton
to conclude that the ratio of Rmin and Rmax converges to 1 in the 3-dimensional case using
the Theorem of Bonnet–Myers, cf. [32, Lemma 3.22]. We now established this estimate for
2-dimensional Ricci flow and can argue analogously. Compare also the corresponding result
by Huisken for mean curvature flow of convex surfaces, cf. [2, Corollary 8.16].

Corollary 7.17. As t → Tmax,

H2
max

H2
min

=
Rmax

Rmin

→ 1,

diam(Σt) → 0.

Proof of Theorem 7.15. A direct computation using Proposition 7.14 yields

d

dt
|

◦

A|2 = ∆|
◦

A|2 − 2
(

|∇A|2 − 1

2

∣∣∣∇H2
∣∣∣
2
)

≤ ∆|
◦

A|2 − 1

2

∣∣∣∇H2
∣∣∣
2

,

where we additionally used Proposition 7.7, Equation (90). As |∇H2|2 = γij∂iH2∂jH2, a
straightforward computation gives

d

dt

∣∣∣∇H2
∣∣∣
2

= 2

〈
∇ d

dt
H2, ∇H2

〉
+

1

2
H2

∣∣∣∇H2
∣∣∣
2

= 2
〈
∇∆H2, ∇H2

〉
+

5

2
H2.
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Using the Bochner formula

∆ |∇f |2 = 2 〈∇∆f, ∇f〉 + 2
∣∣∣∇2f

∣∣∣
2

+ 2Ricγ(∇f, ∇f) (94)

for any smooth function f , where ∇2 denotes the Hessian of f , and the fact that Ricγ = 1
4
H2γ

by the Gauss formula (82), we conclude that

d

dt

∣∣∣∇H2
∣∣∣
2

= ∆
∣∣∣∇H2

∣∣∣
2 − 2

∣∣∣∇2H2
∣∣∣
2

+ 2H2
∣∣∣∇H2

∣∣∣
2

.

We note that this is consistent with the evolution of the gradient of the scalar curvature
under 2d-Ricci flow, as we would expect. Then, direct computation gives

d

dt

|∇H2|2
H2

= ∆
|∇H2|2

H2
+ 2

〈
∇ |∇H2|2 , ∇H2

〉

(H2)2
− 2

|∇H2|4
(H2)3

− 2
|∇2H2|2

H2
+

3

2

∣∣∣∇H2
∣∣∣
2

≤ ∆
|∇H2|2

H2
+

3

2

∣∣∣∇H2
∣∣∣
2

using the Cauchy–Schwarz and Young’s inequality. Hence
(

d

dt
− ∆

)(
|∇H2|2

H2
+ 3|

◦

A|2
)

≤ 0

and therefore any initial bound is preserved for the sum. Thus

|∇H2|2
H2

≤ |∇H2|2
H2

+ 3|
◦

A|2 ≤ C(Σ0).

The above estimate follows from multiplying by H2 and using Young’s inequality.

We briefly recall some properties of n-dimensional Ricci flow renormalized by volume (cf.
[32, Chapter 3.6]), i.e.,

d

d t̃
γ̃( t̃ ) = −2R̃ic( t̃ ) +

2

n
r̃γ̃( t̃ ), (95)

where r̃ =
ffl

R̃, such that along any solution we have that

Vol(γ̃( t̃ )) = Vol(γ̃(0)) = const. .

Given a solution of Ricci flow γ(t), t ∈ [0, T ), the metrics γ̃( t̃ ) := c(t)γ(t), with

c(t) := exp




2

n

t
ˆ

0

r(τ) d τ


 , t̃(t) :=

t
ˆ

0

c(τ) d τ,
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satisfy (95) with initial condition γ̃(0) = γ(0), so we can always renormalize a given solution
of Ricci flow. Moreover, we have the following transformation laws for evolution equations
by Hamilton:

Lemma 7.18 (Hamilton, see [32, Lemma 3.26]). If an expression X = X(γ) formed alge-
braically from the metric and the Riemann curvature tensor has degree k, i.e., X(cγ) = ckX(γ),
and if under the Ricci flow

d

dt
X = ∆X + Y,

then the degree of Y is k − 1 and the evolution under the normalized Ricci flow
d

dt̃
γ̃ij = −2R̃icij + 2

n
r̃γ̃ij of X̃ := X(γ̃) is given by

d

dt̃
X̃ = ∆̃X̃ + Ỹ +

2k

n
X̃.

Recall that by [32, Remark 3.27], this lemma also extends to the corresponding partial
differential inequalities if Y is of degree k − 1, and is further also applicable to arbitrary
tensor derivatives of such expressions as used frequently throughout [32, Chapter 3].

Remark 7.19. In this section, as before, we will only look at the case when n = 2 and γ(t)
is conformal to the round sphere for each t. Thus γ̃( t̃ ) is conformally round, and by the
Gauss–Bonnet Theorem

r̃(t) =
8π

Vol(γ̃( t̃ ))
=

8π

Vol(γ̃(0))

is positive and remains constant along the flow.

From now on, will assume without loss of generality that

1

2
Rmax(t) ≤ R(x, t) (96)

for all t ∈ [0, Tmax), x ∈ Σt (this is ultimately satisfied for t sufficiently close to Tmax due to
Corollary 7.17). Note that due to the relation between H2 and R via the Gauss equation
(82), combining Proposition 7.14 with the fact that Rmax → ∞ as t → T , we find that
Rmax ≥ (T − t)−1. In particular,

R(t, x) ≥ 1

2(T − t)
. (97)

In the following, we will switch freely between the framework of (renormalized) 2-d Ricci flow
and null mean curvature flow along the past-pointing standard lightcone. Recall that most
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importantly, bounds for H2 and its derivatives correspond directly to bounds on the scalar
curvature and its derivatives via the Gauss equation (82). In our analysis of the renormalized
flow we will closely follow the outline of Hamilton’s strategy presented in [32, Chapter 3] for
3-dimensional Ricci flow, and include the proofs for the sake of completeness. We start by
establishing the following lemma:

Lemma 7.20. For the renormalized flow (95), we have that

(i) T̃ = ∞,

(ii) lim
t̃→∞

H̃2
min

H̃2
max

= 1

(iii) There exists C1 > 0 such that 1
C1

≤ H̃2
min( t̃ ) ≤ H̃2

max( t̃ ) ≤ C1 for all t̃,

(iv) diam(γ̃( t̃ )) ≤ C2

(v) |
◦

Ã|2 ≤ C3e
−δt̃,

(vi)
∣∣∣∇̃H̃2

∣∣∣
2 ≤ C4e

−δt̃,

(vii) H̃2
max − H̃2

min ≤ C5e
−δt̃,

for constants C1, C2, C3, C4, C5 independent of t.

Proof. In the following, C, C̃ will always denote positive constants independent of t that may
vary from line to line.

(i) By substitution rule, we find that

t̃(t0)
ˆ

0

r̃(τ̃) d τ̃ =

t0
ˆ

0

r(τ) d τ.

Combining this formula for t → T with (97), we can conclude (i) since r̃ is constant.

(ii) Follows immediately from Corollary 7.17.

(iii) By the Bishop–Gromov volume comparison, we have that

Vol(γ̃(0)) = Vol(γ̃( t̃ )) ≤ C diam(γ̃( t̃ ))2,
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and recall that by the Bonnet–Myers Theorem

diam(γ̃( t̃ )) ≤ C
(
H̃2
max

)− 1
2 . (98)

Thus, H̃2
max is uniformly bounded from above. Now note that Σ̃t̃ is a topological sphere,

in particular simply connected. Hence, Klingenberg’s injectivity radius estimate yields
that

inj(γ̃( t̃ )) ≥ C
(
H̃2
max

)− 1
2 ,

and therefore
Vol(γ̃(0)) = Vol(γ̃( t̃ )) ≥ C

(
H̃2
max

)−1
,

so H̃2
max is also uniformly bounded from below. Since the inequality (96) is preserved

under rescaling, we have that H̃2 is uniformly bounded by the Gauss Equation (82)
and we can therefore pick some constant C > 0 such that (iii) is satisfied.

(iv) Follows directly from (iii) via (98).

We prove (v) and (vi) simultaneously. Consider Ψ :=
|∇H2|2

H2 + 3|
◦

A|2. Then Ψ is of degree
−2 and we saw in the proof of Theorem 7.15 that

(
d

dt
− ∆

)
Ψ ≤ 0

Thus, by Lemma 7.20, we find that
(

d

dt̃
− ∆̃

)
Ψ̃ ≤ −C̃Ψ̃.

By the maximum principle, we can now conclude that

∣∣∣∇̃H̃2
∣∣∣
2

H̃2
+ K|

◦

Ã|2 ≤ Ce−δt̃,

so (v) and (vi) follow since H̃2 is uniformly bounded. Lastly (vii) follows form (iv) and
(vi).

In particular
∣∣∣R̃ − r̃

∣∣∣ ≤ Ce−δt̃, so we know that the evolution speed of the renormalized

flow (95) is integrable. We thus acquire uniform bounds and C0 convergence of the metric
due to a Lemma by Hamilton (cf. [32, Lemma 6.10]):
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Corollary 7.21. Let γ(t) be a solution of 2d-Ricci flow with R > 0. Then the renormalized
flow (95) exists for all time, and there exists a constant C > 0 such that

1

C
γ̃(0) ≤ γ̃( t̃ ) ≤ Cγ̃(0),

and γ̃(t̃) converges uniformly to a limiting metric γ̃(∞) on compact sets as t̃ → ∞.

Remark 7.22. Since the renormalized metrics are also conformally round, i.e.,
γ̃( t̃ ) = ω̃2( t̃ ) d Ω2, Corollary 7.21 in particular yields a uniform bound on the conformal
factors ω̃(t) depending only on ω̃(0).

To complete the proof of Theorem 7.12, it remains to show that γ̃(∞) is in fact smooth
and that the renormalized flow converges in Ck for any k. In particular, due to Lemma
7.20 (ii), γ̃(∞) is then a metric of constant scalar curvature. We thus require bounds for
the derivatives of the renormalized metrics, and by a standard argument it suffices to bound
the derivatives of the Riemann tensor. However, for n = 2, the Riemann tensor and its
derivatives are fully determined by the scalar curvature and its derivatives. By the Gauss
equation (82), it thus suffices to find appropriate bounds for H̃2 and its derivatives.

Lemma 7.23. For all k ∈ N, there exist Ck, δk > 0, such that

∣∣∣∇̃kH̃2
∣∣∣
2 ≤ Cke

−δk t̃

Proof. Since n = 2, there exists a fixed constant C, such that
∣∣∣∇kH2

∣∣∣
2

= C
∣∣∣∇k Rm

∣∣∣
2
, and

thus the evolution of
∣∣∣∇kH2

∣∣∣
2

along the unnormalized flow can be estimated by

d

dt

∣∣∣∇kH2
∣∣∣
2 ≤ ∆

∣∣∣∇kH2
∣∣∣
2 − 2

∣∣∣∇k+1H2
∣∣∣
2

+ C(k)
k∑

l=0

∣∣∣∇lH2
∣∣∣
∣∣∣∇k−lH2

∣∣∣
∣∣∣∇kH2

∣∣∣ ,
(99)

where C(k) denotes a constant only depending on k, cf. [32, Chapter 3].
We will proof the statement by strong induction, where in the following Ck, Ck+1 will be

constants only depending on k which may vary from line to line. The statement is true for
k = 1 as proven in Lemma 7.20 (vi).

We now assume that the statement is true for all 1 ≤ l ≤ k, and proceed from k to k + 1.

We define f :=
∣∣∣∇k+1H2

∣∣∣
2

+ KH2
∣∣∣∇kH2

∣∣∣
2
, where K is a positive constant to be determined
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later. Then f is of degree −k − 3 and according to (99) its evolution under Ricci flow is
given by

d

dt
f ≤ ∆

∣∣∣∇k+1H2
∣∣∣
2 − 2

∣∣∣∇k+2H2
∣∣∣
2

+ Ck+1

k+1∑

l=0

∣∣∣∇lH2
∣∣∣
∣∣∣∇k+1−lH2

∣∣∣
∣∣∣∇k+1H2

∣∣∣

+ K
∣∣∣∇kH2

∣∣∣
2

∆H2 +
K

2

(
H2
)2 ∣∣∣∇kH2

∣∣∣
2

+ KH2∆
∣∣∣∇kH2

∣∣∣
2 − 2KH2

∣∣∣∇k+1H2
∣∣∣
2

+ KH2Ck

k∑

l=0

∣∣∣∇lH2
∣∣∣
∣∣∣∇k−lH2

∣∣∣
∣∣∣∇kH2

∣∣∣

≤ ∆f − 2K
〈

∇H2, ∇
∣∣∣∇kH2

∣∣∣
2
〉

− 2KH2
∣∣∣∇k+1H2

∣∣∣
2

+ Ck+1

k+1∑

l=0

∣∣∣∇lH2
∣∣∣
∣∣∣∇k+1−lH2

∣∣∣
∣∣∣∇k+1H2

∣∣∣+ KH2Ck

k∑

l=0

∣∣∣∇lH2
∣∣∣
∣∣∣∇k−lH2

∣∣∣
∣∣∣∇kH2

∣∣∣

≤ ∆f + Ck(K, H2, ∇1≤l≤kH2) + (Ck+1 − K)H2
∣∣∣∇k+1H2

∣∣∣
2

,

where we have used Young’s inequality in the last line and collected all remaining terms in
Ck(K, H2, ∇1≤l≤kH2). In particular, we used the estimate

−2K
〈

∇H2, ∇
∣∣∣∇kH2

∣∣∣
2
〉

≤ 4K
|∇H2|2

∣∣∣∇kH2
∣∣∣
2

H2
+ KH2

∣∣∣∇k+1H2
∣∣∣
2

.

We now choose K := Ck+1, and thus we find that
(

d

dt
− ∆

)
f ≤ Ck(H2, ∇1≤l≤kH2),

where Ck(H2, ∇1≤l≤kH2) is in fact a sum of products of derivatives with at least order 1 and at
most order k such that the factors only depend on k, and possibly H2, and Ck(H2, ∇1≤l≤kH2)
is of degree −k − 4. Hence, the evolution of f̃ along the renormalized flow is given by

(
d

dt̃
− ∆̃

)
f̃ ≤ Ck(H̃2, ∇̃1≤l≤kH̃2) − (k + 3)f̃ ≤ C̃e−δ̃ t̃ − (k + 3)f̃

for some C̃, δ̃ > 0 by induction, as H̃2 is uniformly bounded by Lemma 7.20. Now choosing
δ < min(δ̃, k + 3), we find that

(∂t̃ − ∆̃)
(
eδt̃f̃ − C̃t̃

)
≤ 0.
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So by the maximum principle, there exists C0 > 0 such that

eδt̃f̃ − C̃t̃ ≤ C0 ⇔ f̃ ≤ e−δt̃(C0 + C̃t̃).

Since exponential decay wins over linear growth, there exists an appropriate constant Ck > 0
for any choice 0 < δk < δ such that

f̃ ≤ Cke
−δk t̃.

This concludes the proof.

From this, we can conclude the uniform convergence in Ck for any k ∈ N and Theorem
7.12 is proven.
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8 A De Lellis–Müller type estimate on the lightcone

A well-known result by De Lellis–Müller [36] states that any closed surface Σ in R
3 with

◦

h sufficiently small in L2 is W 2,2-close to a round sphere Sr(~a), where r and ~a denote the
area radius and the Euclidean center of mass of Σ, respectively. This can be regarded as a
quantitative refinement of the fact that any closed surface Σ in R

3 with
◦

h = 0 is necessarily
a round surface by the Codazzi Equation, cf. Proposition 4.9.

In Section 7, we have proven an analogous statement that any spacelike cross section Σ
of the standard Minkowski lightcone with

◦

A = 0 is a surface of constant spacetime mean
curvature, where A is the scalar second fundamental form as defined in Subsection 7.3,
cf. Proposition 7.7. As before, a spacelike cross section is always assumed to satisfy the
assumptions made in Subsection 4.7. Similar to the result of De Lellis–Müller, we will prove
in this section that any spacelike cross section Σ with H2 ≥ 0 and

◦

A sufficiently small in L2

is W 2,2-close to a surface of constant spacetime mean curvature if some uniform bounds on
the conformal factor are satisfied. The STCMC surface of reference is fully determined by a
timelike, future-pointing 4-vector Z in the ambient Minkowski spacetime associated to the
cross section which transforms equivariantly under Lorentz transformations in SO+(3, 1).

The proof consists of two steps: In the first step, we establish a geometric, scaling
invariant estimate of the form

|Σ|
ˆ

Σ

∣∣∣∣∣A −
ffl

H2

2
γ

∣∣∣∣∣

2

≤ C |Σ|
ˆ

Σ

|
◦

A|2. (100)

for any spacelike cross section Σ of the standard lightcone with H2 ≥ 0, where C > 0 is a
uniform constant. We will in fact prove this estimate using two different methods and obtain
it for two explicit, but different constants C. The first proof is given as an application of
null mean curvature flow studied in Section 7. The second proof is modelled on the proof of
an almost Schur-lemma by De Lellis–Topping [37] using the Bochner formula.

Smallness on the left-hand side of the equation implies that the Gauss curvature of
the rescaled surface is close to 1 in L2, and elliptic theory will yield a W 2,2 estimate for the
conformal factor under a suitable balancing condition. This balancing condition is intricately
connected to the equivariance of Z under Lorentz transformations. This will allow us to
conclude the desired result, see Theorem 8.23.

Alternatively, we can interpret the result intrinsically in the class of conformally round
surfaces, see Corollary 8.22.

Throughout this section, we will always consider the future-pointing lightcone
{t = r} = {u = 0}, cf. Subsections 4.2 and 7.2. Note that all curvature identities for space-
like cross sections established on the past-pointing lightcone, and all properties of null mean
curvature flow along the past-pointing lightcone proven in Section 7 analogously hold on
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the future-pointing standard lightcone. Similarly, all results of this section can be directly
translated to the past-pointing lightcone, where we choose to phrase everything with respect
to the future-pointing lightcone purely for convenience.

This section is structured as follows: In Subsection 8.1 we define an associated 4-vector
for any spacelike cross section of the future-pointing standard lightcone, and show that it
equivariantly transforms under a restricted Lorentz transformation of the ambient spacetime.
We will further recall that the Gauss curvature is invariant under restricted Lorentz trans-
formations up to a change of coordinates on S

2. In Subsection 8.2 we give two proofs of the
geometric estimate (100). In Subsection 8.3 we establish a W 2,2-estimate for surfaces with
uniformly bounded conformal factor and Gauss curvature sufficiently close to 1 in L2 under
a suitable balancing condition. In Subsection 8.4 we combine the results of the previous
subsections to obtain Theorem 8.23.

8.1 An associated 4-vector in the Minkowski spacetime

Let (Σ, γ) be a spacelike cross section of the future-pointing lightcone. Then, the associated
4-vector Z of Σ in the ambient Minkowski spacetime is defined as

Z(Σ)0 :=
1

|Σ|

ˆ

Σ

t dµΣ,

Z(Σ)i :=
1

|Σ|

ˆ

Σ

xi dµΣ,

(101)

where xi denotes the restriction of the standard Euclidean coordinates on R
3 to Σ. In

particular, the spacial coordinates are similarly defined as the Euclidean center of mass for a
surface in R

3, see e.g. [23, 24, 61]. In fact, up to rescaling to unit length and thus projecting
to the hyperboloid {p ∈ R

3,1 : η(p, p) = −1}, this associated 4-vector is directly equivalent
to a notion of hyperbolic center defined by Cederbaum–Cortier–Sakovich for surfaces in
asymptotically hyperbolic initial data sets [20]. While they argue abstractly that this notion
of center transforms equivariantly for surfaces on a hypberboloid in the Minkowski spacetime,
the approach to prove this for spacelike cross sections of the standard lightcone presented
here will be more explicit and computational in nature.

To this end, we recall that any spacelike cross sections (Σ, γ) is conformally round with
conformal factor ω and Σ = graphS2ω. Thus, for any spacelike cross section along the future-
pointing lightcone, we have t|Σ = r|Σ = ω, xi|Σ = ωfi, where fi denote the first spherical
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harmonics as defined in Subsection 4.10. Hence,

Z(Σ)0 :=
1

|Σ|

ˆ

S2

ω3 dµS2 ,

Z(Σ)i :=
1

|Σ|

ˆ

S2

fiω
3 dµS2 .

(102)

In this context, we further note that the spatial coordinates closely resemble a notion of
center of mass in conformal geometry, cf. [55, Definition 2.8], up to replacing ω3 by ω2 in
the integrals. See also [26, 27]. By a topological argument, it is a well-known fact that for
any conformally round surface there exists a conformal transformation in the Möbius group
such that one can achieve

1

|Σ|

ˆ

S2

fiω
2 dµS2 = 0 for all i,

see [26, 27, 65]. As we will show that the associated 4-vector transforms equivariantly under
Lorentz boosts in SO+(3, 1), see Proposition 8.4 below, we can achieve a similar balanc-
ing condition without relying on an implicit argument and uniquely identify the respective
Lorentz transformation with respect to Z up to isometries on S

2.
As the future-pointing lightcone is mapped onto itself under any Lorentz transformation

Λ in SO+(3, 1), the image of any smooth spacelike cross section Σ of the lightcone is itself a
smooth, spacelike cross section Λ(Σ).

Lemma 8.1. Let Σ be a spacelike cross section with conformal factor ω, and consider
Λ ∈ SO+(3, 1). Then the conformal factor ωΛ of Λ(Σ) is given by

ωΛ =
ω ◦ Φ√

1 + |~a|2 − ~aifi
,

where Φ: S2 → S
2 is a diffeomorphism, and Φ and ~a ∈ R

3 are uniquely determined by Λ.

A straightforward computation then yields the following as a corollary:

Corollary 8.2. Let Σ be a spacelike cross section with Gauss curvature K, and consider
Λ ∈ SO+(3, 1). Then the Gauss curvature KΛ of Λ(Σ) satisfies

KΛ = K ◦ Φ.
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Remark 8.3.

(i) In particular, Φ is in fact a Möbius transformation on S
2 uniquely determined for

each Λ ∈ SO+(3, 1) by the isomorphism between the Möbius group and the restricted
Lorentz group, cf. Subsection 4.2. In the context of Möbius transformations and the
conformal geometry of S2, both the invariance of the Gauss curvature and the precise
transformation of the conformal factor under a Möbius transformation as stated in
Lemma 8.1 are well-known facts, see e.g. [55] for a short summary and further refer-
ences. Here, we give a different proof of the statement in Lemma 8.1 as we approach it
from an extrinsic viewpoint with the Lorentz transformations acting as isometries on
the ambient Minkowski spacetime.

(ii) For Σρ, i.e., ω = ρ > 0 for some positive constant, we recover the well-known formula
for STCMC surfaces discussed in Section 7, cf. Remark 7.6 Equation (86). Direct
computation gives

Z(Λ(Σρ)) = ρ(
√

1 + |~a|2,~a).

Hence, Z(Λ(Σρ)) = Λ(Z(Σ)).

Moreover, for any timelike, future-pointing vector z ∈ R
3,1, one can check by direct

computation that the spacelike cross section corresponding to the conformal factor

ωz : =
−η(z, z)

z0 − zifi
(103)

is an STCMC surface with Z(Σωz) = z. In this way, there is a one-to-one correspon-
dence between timelike, future-pointing vectors and STCMC surfaces via Z.

Proof of Lemma 8.1. We first prove the statement for special Lorentz boosts Λa for some
a ∈ R defined as in Subsection 4.2. In particular, the standard coordinates transform as

t′ = bt + az,

x′ = x,

y′ = y,

z′ = at + bz,

where t′, x′, y′, z′ denote different Cartesian coordinates. We now consider spherical coor-
dinates t, r, θ, ϕ, and t′, r′, θ′, ϕ′ given via (26) as considered in Subsection 4.10. As the
lightcone is invariant under Λ, we know that ωΛ = t′ = r′, and by the above identities it is
easy to check that

r = r′(b − a cos θ′).
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Hence,

ωΛ(θ′, ϕ′) =
ω(θ, ϕ)

b − a cos θ′ . (104)

Moreover, we see that

sin θ sin ϕ =
sin θ′

b − a cos θ′ sin ϕ′,

sin θ cos ϕ =
sin θ′

b − a cos θ′ cos ϕ′,

cos θ =
b cos θ′ − a

b − a cos θ′ .

(105)

In particular, we obtain ϕ = ϕ′ and

θ = arccos

(
b cos θ′ − a

b − a cos θ′

)
(106)

A direct computation gives θ(θ′) → 0 as θ′ → 0 and θ(θ′) → π as θ′ → π, and

dθ

dθ′ =
1

b − a cos θ′ > 0. (107)

Thus, as b > |a|, we note that

Φa : (0, π) × (0, 2π) → (0, π) × (0, 2π) : (θ′, ϕ′) 7→
(

arccos

(
b cos θ′ − a

b − a cos θ′

)
, ϕ′
)

extends smoothly to a diffeomorphism Φa : S2 → S
2. This establishes the claim in the case

of a special Lorentz boost.
For a general Λ ∈ SO+(3, 1), we may assume wlog by Proposition 4.2 and Remark 4.3

that
Λ = Λ~a = D~a ◦ Λ|~a| ◦ D−1

~a ,

as rotations act as isometries on S
2 and the standard lightcone, and the spherical harmonics

transform naturally under rotations, cf. Subsection 4.10.
For a rotation D, let ΦD : S2 → S

2, ~x 7→ R(~x) denote the corresponding diffeomorphism
on S

2. In fact, ΦD acts as an isometry on the round sphere. It is easy to check that

ωD(~x) = ω ◦ Φ−1
D (~x).
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In view of the above decomposition, the claim directly follows by observing that for D = D~a

(√
1 + |~a|2 − |~a| cos θ

)
(Φ−1

D )(~x) =
√

1 + |~a|2 − (|~a|∂3) · Φ−1
D (~x)

=
√

1 + |~a|2 − ΦD (|~a|∂3) · ~x

=
√

1 + |~a|2 − ~a · ~x

=
√

1 + |~a|2 − ~aifi,

where we used that ΦD is a linear isometry on the round sphere. Note further that by the
above decomposition

ΦΛ = ΦD ◦ Φ|~a| ◦ Φ−1
D .

From this, the following proposition is easily established:

Proposition 8.4. Let Σ be a spacelike cross section with assiciated 4-vector Z, and consider
Λ ∈ SO+(3, 1). Then |Λ(Σ)| = |Σ|, and Z is a future-timelike vector, such that

Λ(Z(Σ)) = Z(Λ(Σ)).

Remark 8.5. Closely following the proof of the fact that |Λ(Σ)| = |Σ| presented below, it
is easy to check that in fact

ˆ

Λ(Σ)

f ◦ Φ =

ˆ

Σ

f

for any continuous function f on S
2. Hence, by Corollary 8.2, we find

||KΛ − 1||2L2(Λ(Σ) = ||K − 1||2L2(Σ) . (108)

Proof of Proposition 8.4. Similar to the arguments in Lemma 8.1 the claims is readily es-
tablished for rotations in view of (102) as integrals on the round sphere naturally transform
under rotations which act as isometries on the round sphere. Hence, considering a decom-
position of Λ as before, it only remains to prove the claim for a special Lorentz boost Λa.

Now let Λa be a special Lorentz boost for a ∈ R. Recall from the proof of Lemma 8.1
that

ωΛ(θ′, ϕ′) =
ω(θ(θ′), ϕ′)

b − a cos θ′ ,
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with θ given by (106). From this, we can explicitly compute that

sin θ =
sin θ′

b − a cos θ′ ,

b + a cos θ =
1

b − a cos θ′ ,

b cos θ + a =
cos θ′

b − a cos θ′ .

Then, direct computation using (107) gives

|Λ(Σ)| =

2π
ˆ

0

π
ˆ

0

ω(θ(θ′), ϕ(ϕ′))2

(b − a cos θ′)2
sin θ′ dθ′ dϕ′ =

2π
ˆ

0

π
ˆ

0

ω(θ(θ′), ϕ)2 sin θ(θ′)
dθ

dθ′ dθ′ dϕ = |Σ| ,

and

ˆ

S2

ω3
Λ dµ =

2π
ˆ

0

π
ˆ

0

ω(θ(θ′), ϕ(ϕ′))3

(b − a cos θ′)3
sin θ′ dθ′ dϕ′

= b

2π
ˆ

0

π
ˆ

0

ω(θ(θ′), ϕ(ϕ′))3 sin θ
dθ

dθ′ dθ′ dϕ′ + a

2π
ˆ

0

π
ˆ

0

ω(θ(θ′), ϕ(ϕ′))3 cos θ sin θ
dθ

dθ′ dθ′ dϕ′

= b

2π
ˆ

0

π
ˆ

0

ω(θ, ϕ)3 sin θ dθ dϕ + a

2π
ˆ

0

π
ˆ

0

ω(θ, ϕ)3 cos θ sin θ dθ dϕ

= b

ˆ

S2

ω3 dµ + a

ˆ

S2

ω3f3 dµ.

Similarly
ˆ

S2

ω3
Λf1 dµ =

ˆ

S2

ω3f1 dµ,
ˆ

S2

ω3
Λf2 dµ =

ˆ

S2

ω3f2 dµ,
ˆ

S2

ω3
Λf3 dµ = b

ˆ

S2

ω3f3 dµ + a

ˆ

S2

ω3 dµ.

By (102) it follows that
Z(Λa(Σ)) = Λa(Z(Σ)),

134



and it remains to show that Z(Σ) is timelike, future-pointing. By the above, we may assume
without loss of generality that

Z =




Z0

0
0

Z3


 ,

after a suitable rotation of the spatial coordinates in the ambient Minkowski spacetime.
Thus

|Σ|
(
Z0 − |Z3|

)
≥
ˆ

S2

ω3(1 − |f3|) > 0,

which implies that Z is timelike, future-pointing.

Using the one-to-one correspondence between STCMC surfaces and timelike, future-
pointing vectors induced by the definition of Z, we define the following a-priori class.

Definition 8.6. Let κ > 0. We say a spacelike cross section Σ is κ-bounded, if

(1 + κ)−1ωZ ≤ ω ≤ (1 + κ)ωZ,

where Z = Z(Σ).

Remark 8.7. As we only look at smooth spacelike cross sections any spacelike cross section
is of course κ-bounded for some appropriate κ = κ(ω) > 0. As all the estimates derived below
assume κ to be fixed a-priori, we may rephrase them as depending an a suitable sup-bound
on ω with constants explicitly depending on this sup-bound.

We close this subsection with some lemmas to be used later.

Lemma 8.8. κ-boundedness is preserved under rescaling and Lorentz transformations
Λ ∈ SO+(3, 1).

Proof. As Z(ΣωZ
) = Z we can conclude that

Λ(ΣωZ
) = ΣωΛ(Z)

using Proposition 8.4 and the one-to-one correspondence between STCMC surfaces on the
future-pointing standard lightcone and timelike, future-pointing vectors as in Remark 8.3 (ii).
Furthermore, notice that Z(Σρω) = ρZ(Σω) and ωρz = ρωz for any spacelike cross section
Σω, constant ρ > 0 and timelike, future-pointing vector z. Under these considerations, it
readily follows from the above considerations that κ-boundedness is preserved under both
rescaling and Lorentz transformations.
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Lemma 8.9. Let Σ be κ-bounded. Then up to isometries on S
2 there exists a unique Lorentz-

transformation Λ ∈ SO+(3, 1) such that ωΛ satisfies

ˆ

S2

fiω
3
Λ dµ = 0 for all i = 1, 2, 3

and
(1 + κ)−2r ≤ ωΛ ≤ (1 + κ)2r,

where r is the area radius of Σ.

Proof. Integrating the inequality in Definition 8.6 immediately yields that

(1 + κ)−1rZ ≤ r ≤ (1 + κ)rZ, (109)

where rZ :=
√

−η(Z(Σ), Z(Σ)). Let Λ ∈ SO+(3, 1) be the Lorentz boost (unique up to
rotations) such that

Λ(Z(Σ)) = (rZ, 0, 0, 0)

By Proposition 8.4 it follows that
ˆ

S2

fiω
3
Λ dµ = 0.

In particular, ωΛ(Z) = rZ. Hence

(1 + κ)−1rZ ≤ ωΛ ≤ (1 + κ)rZ,

as κ-boundedness is preserved by Lemma 8.8. The claim then follows by Equation (109).

Remark 8.10. In fact, it holds that

(1 + κ)−1r ≤ ωΛ ≤ (1 + κ)2r

as rZ :=
√

−η(Z, Z) ≥ r with equality if and only if ω = ωZ. To see this, we can assume

wlog that Z =
(
rZ,~0

)
using Proposition 8.4 as above. Thus

|ΣωZ
| =

1

|Σ|2
ˆ

S2

(
ˆ

ω3

)2

= 4π

(
´

ω3
)2

(
´

ω2
)2 ≥ |Σ| ,

which follows from applying the Hölder inequality twice.
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8.2 A geometric estimate

We now prove the desired scaling invariant, geometric estimate (100). First, we establish
the estimate using null mean curvature flow.

Theorem 8.11. Let {Σt}t be a family of spacelike cross sections evolving under null mean
curvature flow with H2 ≥ 0. Then

d

dt

(
|Σ|

ˆ

1

2
(H2)2 − 2|

◦

A|2
)

≥ 0.

As a consequence, we have

|Σ|
ˆ

1

2
(H2)2 − 2|

◦

A|2 ≤ 128π2 =
1

2

(
ˆ

H2

)2

,

with equality if and only if {Σt} is a family of shrinking STCMC surfaces.

Remark 8.12.

(i) By the strong maximum principle we have H2 > 0 for any t > 0 if H2 ≥ 0 for Σ0, as we
can rule out H2 ≡ 0 by Gauss–Bonnet. Thus, we may entirely rely on Theorem 7.12,
obtained by studying null mean curvature flow, to prove the above estimate, and do
not need to evoke the equivalence to 2d-Ricci flow and employ the more general result,
cf. Theorem 7.1. See Section 7 for details regarding these results.

(ii) The strategy presented here is motivated by a short, unpublished prove by Huisken of
the inequality ∣∣∣∣∣

∣∣∣∣∣h −
ffl

H

2
γ

∣∣∣∣∣

∣∣∣∣∣
L2(Σ)

≤ 2||
◦

h||L2(Σ)

for strictly starshaped surfaces Σ in R
3 with H > 0 using inverse mean curvature flow,

where 2 is indeed the optimal constant.

(ii) Along a null hypersurface, inverse mean curvature flow is defined as the projection of
codimension-2 inverse mean curvature flow in an ambient spacetime (M, g) to the null
hypersurface, i.e.,

d

dt
x = −1

2

g(~H, L)

H2
L = −1

θ
L,

which is well-defined as long as θ 6= 0 along the null hypersurface. Recall that θ is
indeed a smooth function on the null hypersurface, cf. Subsection 4.7 Remark 4.17.
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Hence, inverse mean curvature flow is given as an ordinary differential equation rather
than a parabolic system along a null hypersurface. More explicitly, for any spacelike
cross section Σω along the standard lightcone in the 3 + 1-Minkowski spacetime, the
solution of inverse mean curvature flow is given by the smooth family {Σω(t)} with

ω(t) = ωe
t
2 .

In particular, any scaling invariant quantity remains unchanged under the flow.

Before proving Theorem 8.11, we establish the following auxiliary lemma following from
the Hölder inequality:

Lemma 8.13. Let (X, µ) be a finite measure space, and f a bounded, non-negative, mea-
surable function with

´

f dµ > 0. Then
ˆ

f

ˆ

f 2 ≤ µ(X)

ˆ

f 3

with equality if and only if f is constant.

Proof. Using the Hölder inequality, we see that

ˆ

f

ˆ

f 2 ≤ µ(X)
´

f

(
ˆ

f 2

)2

.

In particular, it suffices to prove that
(
ˆ

f 2

)2

≤
ˆ

f

ˆ

f 3.

However, this directly follows by applying the Hölder inequality again for f using the finite
measure space (X, fµ).

Proof of Theorem 8.11. Recall that we have proven in Section 7 that under null mean cur-
vature flow

d

d t
H2 = ∆H2 +

1

2

(
H2
)2

,

d

dt
|

◦

A|2 = ∆|
◦

A|2 − 2
(

|∇A|2 − 1

2

∣∣∣∇H2
∣∣∣
2
)

≤ ∆|
◦

A|2 − 1

2

∣∣∣∇H2
∣∣∣
2

.

Moreover,
d

dt
dµγ = −1

2
H2 dµγ
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by Proposition 4.27. A direct computation yields

d

dt

(
|Σ|

ˆ

1

2
(H2)2 − 2|

◦

A|2
)

≥
ˆ

H2

ˆ

|
◦

A|2 − 1

4

ˆ

H2

ˆ

(H2)2

+ |Σ|
ˆ

1

2
∆(H2)2 −

∣∣∣∇H2
∣∣∣
2

+
1

2
(H2)3 − 2∆|

◦

A|2 +
∣∣∣∇H2

∣∣∣
2

− |Σ|
ˆ

1

2
H2

(
1

2
(H2)3 − 2|

◦

A|2
)

=

ˆ

H2

ˆ

|
◦

A|2 + |Σ|
ˆ

H2|
◦

A|2

+
1

2

(
|Σ|

ˆ

(H2)3 −
ˆ

H2

ˆ

(H2)2

)

≥0,

where we used Lemma 8.13 in the last line, as all assumptions are satisfied by Gauss–Bonnet.
Thus, we have proven the monotonicity.

Note that |Σ|
´

(
1
2
(H2)2 − 2|

◦

A|2
)

is scaling invariant, thus the monotonicity is also sat-
isfied for any conformally equivalent flow, in particular for volume preserving Ricci flow, cf.
Subsection 7.5. Using Theorem 7.12, the convergence to a round limit with H2 = const. and
|

◦

A|2 = 0, gives

|Σ|
ˆ

1

2
(H2)2 − 2|

◦

A|2 ≤ 128π2 =
1

2

(
ˆ

H2

)2

,

where the second identity holds by Gauss–Bonnet. Lastly, equality is achieved if and only if

d

dt

(
|Σ|

ˆ

1

2
(H2)2 − 2|

◦

A|2
)

= 0,

so by Proposition 7.7 and Lemma 8.13 if {Σt} is a family of shrinking STCMC surfaces.

From this, we obtain the desired estimate:

Theorem 8.14. Let (Σ, γ) be a spacelike cross section of the standard lightcone in the 3+1-
dimensional Minkowski spacetime with H2 ≥ 0. Then, we have that

|Σ|
ˆ

Σ

∣∣∣∣A − 2

r2
γ
∣∣∣∣
2

≤ 3 |Σ|
ˆ

Σ

|
◦

A|2,

where r =
√

|Σ|
4π

denotes the area radius of Σ. Moreover, equality holds if and only if Σ
is a surface of constant spacetime mean curvature.
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Remark 8.15.

(i) Using the Gauss equation (82), we see that in fact

2

r2
=

1

2

 

H2

by Gauss–Bonnet. We have thus proven equivalently that

|Σ|
ˆ

Σ

∣∣∣∣∣A − 1

2

 

H2γ

∣∣∣∣∣

2

≤ 3 |Σ|
ˆ

Σ

|
◦

A|2. (110)

(ii) It turns out that the constant C = 3 is not optimal. See Theorem 8.17 below.

Proof of Theorem 8.14. We first rewrite the left-hand side as

|Σ|
ˆ

Σ

∣∣∣∣A − 2

r2
γ
∣∣∣∣
2

= |Σ|
ˆ

Σ

∣∣∣∣∣A −
ffl

H2

2
γ

∣∣∣∣∣

2

= |Σ|
ˆ

Σ


|A|2 −

(
 

H2

)
H2 +

1

2

(
 

H2

)2



= |Σ|
ˆ

Σ

|A|2 − 1

2

(
ˆ

Σ

H2

)2

= |Σ|
ˆ

Σ

|A|2 − 128π2

As H2 ≥ 0 on Σ, this is preserved under the solution of null mean curvature flow with
initial data Σ0 = Σ by the parabolic maximum principle. In fact, the strong maximum
principle yields that H2 > 0 for all positive times t > 0. Hence, the claim follows from
Theorem 8.11.

Corollary 8.16. If H2 ≥ 0,

|Σ|
∣∣∣∣∣

∣∣∣∣∣H
2 −

 

H2

∣∣∣∣∣

∣∣∣∣∣

2

L2(Σ)

≤ 4 |Σ| ||
◦

A||2L2(Σ).

We note that the estimates in Theorem 8.14 and Corollary 8.16 are equivalent. We now
give a different proof of Corollary 8.16, which will in fact yield an improved estimate.

Theorem 8.17. If H2 ≥ 0,

|Σ|
∣∣∣∣∣

∣∣∣∣∣H
2 −

 

H2

∣∣∣∣∣

∣∣∣∣∣

2

L2(Σ)

≤ 2 |Σ| ||
◦

A||2L2(Σ).
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Remark 8.18.

(i) The proof is motivated by the work of DeLellis–Topping [37] on an almost-Schur lemma.
In fact, one may view the above as a generalization of these inequalities to n = 2 in
the case of surfaces of genus 0.

(ii) Equivalently, it holds that

|Σ|
ˆ

Σ

∣∣∣∣A − 2

r2
γ
∣∣∣∣
2

≤ 2 |Σ|
ˆ

Σ

|
◦

A|2 (111)

for spacelike cross sections with H2 ≥ 0. We expect that one can adapt the arguments
of DeLellis–Topping [37] to show that 2 is indeed the optimal constant and that the
claim is in general false if the assumption H2 ≥ 0 is dropped.

(iii) This approach directly extends to the standard n+1 Minkowski lightcone for arbitrary
dimension n ≥ 3, yielding a similar estimate under the assumption that Ric ≥ 0 for
the spacelike cross section. In fact, the estimate directly follows from the estimate of
DeLellis–Topping as

◦

A =
2(n − 1)

n − 3

◦

Ricγ, H2 =
n − 1

n − 2
R.

(iv) Similar to Theorem 8.11, it is easy to check that equality holds if and only if Σ is an
STCMC surface.

Proof. Recall that by Proposition 7.7, we have

∇kAij = ∇iAkj.

Taking a trace yields

div
◦

A =
1

2
dH2. (112)

Now consider the elliptic equation

∆f = H2 −
 

H2. (113)
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Then (113) has a unique solution f such that
´

f = 0, cf. [69, Chapter 2.3]. Integration by
parts using (112) and (113) gives

ˆ

(
H2 −

 

H2

)2

= −
ˆ 〈

∇H2, ∇f
〉

= −2

ˆ

div
◦

A(∇f)

= 2

ˆ 〈 ◦

A, Hessf
〉

= 2

ˆ 〈 ◦

A,
◦

Hessf
〉

≤ 2 ||
◦

A||L2 · ||
◦

Hessf ||L2

Using the Bochner formula (94) and recalling the fact that Ricγ = 1
4
H2γ, we find that

||
◦

Hessf ||2L2 =

ˆ

|Hessf |2 − 1

2
(∆f)2 =

ˆ

1

2
(∆f)2 − 1

4
H2 |∇f |2 ≤ 1

2

ˆ

(
H2 −

 

H2

)2

.

Combining both inequalities implies the claim.

8.3 Elliptic estimates under a balancing condition

We dedicate most of this subsection to prove the following proposition:

Proposition 8.19. Let (Σ, γ) be a conformally round surface with conformal factor ω such
that |Σ| = 4π and C−1

0 ≤ ω ≤ C0, C0 > 1. We further assume that Σ satisfies the balancing
condition

ˆ

S2

fiω
3 = 0 for all i = 1, 2, 3, (114)

where fi denote the first spherical harmonics. Then there exists an ε > 0 only depending on
C0, such that if ||K − 1||L2(S2) ≤ ε, we have

||ω − 1||W 2,2(S2) ≤ C · ||K − 1||L2(S2) ,

where C is a constant only depending on C0.

Estimates in similar spirit have been proven in [26, 55, 75]. In fact, we will closely follow
the strategy outlined by Shi–Wang–Wu [75], replacing the sup-estimates with the application
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of the Hölder inequality. Compared to [75] we assume additional uniform sup-bounds on ω,
and we note the different balancing condition (114) with respect to the usual balancing
condition found in the literature, see e.g. [26, 27, 55, 65, 75], which here is adapted to the
definition of the associated 4-vector, cf. Subsection 8.1.

We later want to apply Proposition 8.19 for spacelike cross sections in the following way:
Observe that for the rescaled conformal factor ω̃ := ω

r
, where r denotes again the area radius

of Σ, we find
∣∣∣Σ̃
∣∣∣ = 4π and

∣∣∣
∣∣∣K̃ − 1

∣∣∣
∣∣∣
2

L2(S2)
≤ 1

inf ω̃2

1

64π
|Σ|

∣∣∣∣∣

∣∣∣∣∣H
2 −

 

H2

∣∣∣∣∣

∣∣∣∣∣

2

L2(Σ)

, (115)

using the Gauss equation (82). Moreover, the balancing condition (114) can always be
achieved by Lemma 8.9.

We first establish several auxiliary lemmas for the smooth function u := ln(ω) on S
2.

Lemma 8.20. Under the assumptions of Proposition 8.19 and for any η > 0, there exists a
δ > 0 such that if

||K − 1||L2(S2) ≤ δ,

then |u|∞ ≤ η.

Proof. Assume that this is false. Then there exists η0 > 0 and a sequence (uk)k∈N of smooth
functions corresponding to conformally round surfaces Σk with |Σk| = 4π, wk = euk satisfies
(114), and 0 < η0 ≤ |uk|∞ ≤ C1, C1 := ln(C0) for all k with

||Kk − 1||L2(S2) → 0

as k → ∞. Note that with respect to uk the Gauss curvature Kk satisfies

∆S2uk = 1 − e2ukKk,

and in particular, by the above properties on the sequence,

||∆S2uk||L2(S2) ≤ C

for some constant independent of k. By the uniform estimate on |uk|∞, standard elliptic
estimates yield that ||uk||W 2,2(S2) is bounded independent of k, cf. [8, Appendix H]. As
W 2,2 embeds compactly into W 1,2 and C0,α for some α ∈ (0, 1) on S

2, cf. [8, Appendix
C], there exists a subsequence (uk) such that uk → u∞ ∈ W 1,2 ∩ C0 (after possibly taking
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successive subsequences) with convergence both in C0 and W 1,2. In particular, u∞ satisfies
η0 ≤ |u∞|∞ ≤ C1,

ˆ

S2

fie
3u∞ = 0,

and weakly solves the equation
∆S2u∞ = 1 − e2u∞ .

By appealing to standard arguments in regularity theory, we see that u∞ is indeed smooth
and solves the above equation in the strong sense. In particular (S2, e2u∞) is a smooth
conformally round surface with area 4π and constant Gauss curvature everywhere equal to
1. However, this gives an immediate contradiction as u∞ = 0 is the unique solution under
the balancing condition (114).

Lemma 8.21. For any bounded, measurable function u on S
2 with |u| ≤ ln(C0), C0 > 1 and

k ∈ N, we have ∣∣∣
∣∣∣1 + ku − eku

∣∣∣
∣∣∣
L2(S2)

≤ C |u|∞ ||u||L2(S2)

for some constant C only depending on C0 and k.

Proof. By the mean value theorem, we know that for each x ∈ R \ {0}, there exists x′ ∈ R

with |x′| ∈ (0, |x|) such that
ex − 1 = x · ex

′

.

In particular, for any p ∈ S
2 with u(p) 6= 0, we find that

∣∣∣1 + ku(p) − eku(p)
∣∣∣ =

∣∣∣ku(p) − ku(p)ek(u(p))′
∣∣∣

= k |u(p)|
∣∣∣1 − e(ku(p))′

∣∣∣

= k |u(p)| |(ku(p))′| e(ku(p))′′ ≤ C |u(p)|2 ,

and the inequality is trivially satsified whenever u(p) = 0. Hence
∣∣∣
∣∣∣1 + ku − eku

∣∣∣
∣∣∣
L2(S2)

≤ C ||u||2L4(S2) ≤ C |u|∞ ||u||L2(S2)

We now prove Proposition 8.19:

Proof of Proposition 8.19. We decompose u into u = u0 + u1 + u2 with respect to the L2-
orthonormal basis of spherical harmonics on S

2, cf. Subsection 4.10, where

u0 :=
1

4π

ˆ

S2

u,

144



u1 := a1f1 + a2f2 + a3f3 with

ai :=
3

4π

ˆ

S2

u · fi.

Note that u2 := u − u0 − u1 is perpendicular to u0, u1 in L2. We first aim to bound the
L2-norm of u. As

||u||L2(S2) ≤
(

|u0| +
3∑

i=1

|ai| + ||u2||L2(S2)

)
,

it suffices to bound the individual terms. In the following, C will always denote a constant
that may change from line to line only depending on C0, unless otherwise stated. Direct
estimation gives

|u0| =
1

8π

∣∣∣∣∣

ˆ

2u

∣∣∣∣∣ =
1

8π

∣∣∣∣∣

ˆ

2u + 1 − Ke2u

∣∣∣∣∣

=
1

8π

∣∣∣∣∣

ˆ

(2u + 1 − e2u) + (1 − K)e2u

∣∣∣∣∣

≤ C
(∣∣∣
∣∣∣1 + 2u − e2u

∣∣∣
∣∣∣
L2(S2)

+ ||1 − K||L2(S2)

)
,

and

4π|ai| =

∣∣∣∣∣

ˆ

3ufi

∣∣∣∣∣ =

∣∣∣∣∣

ˆ

(3u + 1 − e3u)fi

∣∣∣∣∣ ≤ C
∣∣∣
∣∣∣1 + 3u − e3u

∣∣∣
∣∣∣
L2(S2)

,

where we used the Gauss–Bonnet theorem and the balancing condition (114) in the first and
second computation, respectively, and the Hölder inequality in both cases in the last line. It
remains to bound ||u2||L2(S2).
We note that by our choice of decomposition, we find that for the operator L defined as

L(v) := ∆v + 2v

u2 satisfies

L(u2) = L(u) − 2u0 = (1 + 2u − e2u) + (1 − K)e2u − 2u0,

where we used the explicit formula for the Gauss curvature. Multiplying the equation by u2,
integration by parts yields
ˆ

|∇u2|2 − 2u2
2 = −

ˆ

u2L(u2) ≤ C ||u2||L2(S2)

(∣∣∣
∣∣∣1 + 2u − e2u

∣∣∣
∣∣∣
L2(S2)

+ ||1 − K||L2(S2)

)
,
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where we used the Hölder inequality and the already established bound on u0. Moreover,
we also know that by our choice of decomposition

u2 =
∞∑

l=2

l∑

k=−l
al,kY

k
l ,

where Y k
l denote spherical harmonics with eigenvalues λl = −l(l + 1) ≤ −6. Hence, partial

integration yields

ˆ

|∇u2|2 = −
ˆ ∞∑

l=2

l∑

k=−l
λla

2
l,k(Y

k
l )2 ≥ 6 ||u2||2L2(S2) ,

and we conclude that

4 ||u2||2L2(S2) ≤ C ||u2||L2(S2)

(∣∣∣
∣∣∣1 + 2u − e2u

∣∣∣
∣∣∣
L2(S2)

+ ||1 − K||L2(S2)

)
.

Now, using the Peter–Paul inequality, we may conclude that

||u2||L(S2) ≤ C
(∣∣∣
∣∣∣1 + 2u − e2u

∣∣∣
∣∣∣
L2(S2)

+ ||1 − K||L2(S2)

)

after taking a square root. Combining the above estimates, we find that

||u||L2(S2) ≤ C
(

||1 − K||L2(S2) +
∣∣∣
∣∣∣1 + 2u − e2u

∣∣∣
∣∣∣
L2(S2)

+
∣∣∣
∣∣∣1 + 3u − e3u

∣∣∣
∣∣∣
L2(S2)

)

≤ C
(
||1 − K||L2(S2) + |u|∞ ||u||L2(S2)

)
,

using Lemma 8.21. Let η > 0 such that ηC ≤ 1
2
. Then by Lemma 8.20 there exists δ(η)

(only depending on C0) such that

||u||L(S2) ≤ 2C ||1 − K||L2(S2)

if ||1 − K||L2(S2) ≤ δ(η). As

||∆u||L2(S2) =
∣∣∣
∣∣∣1 − Ke2u

∣∣∣
∣∣∣
L2(S2)

≤ C
(
2 ||u||L2(S2) + ||1 − K||L2(S2)

)
,

it follows by standard elliptic estimates, cf. [8, Appendix H], that

||u||W 2,2(S2) ≤ C ||1 − K||L2(S2)

if ||1 − K||L2(S2) ≤ δ(η). The claim then follows with ε := δ(η) and noting that
||ω − 1||W 2,2(S2) ≤ C ||u||W 2,2(S2).
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Before stating the main result in the next subsection, we give a partial result formulated
as an intrinsic result on conformally round surfaces.

Corollary 8.22. Let (Σ, γ) be a conformally round surface with non-negative scalar curva-
ture R ≥ 0 and area radius r. Assume that C−1

0 r ≤ ω ≤ C0r for some constant C0, and that
the balancing condition (114) holds. Then there exits ε > 0 only depending on C0 such that
if

|Σ| · ||
◦

HessS2v||2L2(S2) ≤ ε

for v := 1
ω

, then

||ω − r||W 2,2(S2) ≤ C |Σ| · ||
◦

HessS2v||L2(S2)

for a constant C only depending on C0.

Proof. By the Gauss equation, Σ has H2 ≥ 0 as a spacelike cross section of the standard
lightcone. Note further that

||
◦

A||L2(Σ) = 4||
◦

HessS2

1

ω
||2L2(S2),

cf. Remark 7.6. Then the result immediately follows from Theorem 8.17 and Proposition
8.19 for the rescaled surface with conformal factor ω

r
. Multiplying the estimate by r then

yields the result.

8.4 A De Lellis–Müller type estimate on the Minkowski lightcone

We now state the main result of this section.

Theorem 8.23. Let (Σ, γ) be a spacelike cross section of the future-pointing standard light-
cone with H2 ≥ 0, area radius r, and associated 4-vector Z = Z(Σ). Assume further that Σ
is κ-bounded for some fixed κ > 0. Then there exists ε > 0 only depending on κ such that if

|Σ| · ||
◦

A||2L2(Σ) ≤ ε

then
||ω − ωZ||W 2,2(S2) ≤ C(κ, Z) · |Σ| ||

◦

A||L2(Σ),

where C(κ, Λ) is a constant only depending on κ and Z.

Proof. By Lemma 8.9 there exists Λ ∈ SO+(3, 1) (uniquely determined up to isometries on
S

2) such that ωΛ−1(Z) = rZ, as this is equivalent to
ˆ

S2

fiω
3 = 0 for all i = 1, 2, 3.
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Note that the components of Λ are uniquely determined by Z (up to a choice of rotation).
By Remark 8.5, Lemma 8.9, Theorem 8.17, and Equation (115), we find for ω̃Λ−1 := r−1ωΛ−1

that

||K̃Λ−1 − 1||2L(S2) ≤ C(κ)
∣∣∣Λ−1(Σ)

∣∣∣
∣∣∣∣∣

∣∣∣∣∣H
2
Λ−1 −

 

H2
Λ−1

∣∣∣∣∣

∣∣∣∣∣

2

L2(Λ−1(Σ))

= C(κ) |Σ|
∣∣∣∣∣

∣∣∣∣∣H
2 −

 

H2

∣∣∣∣∣

∣∣∣∣∣

2

L2(Σ)

≤ 4C(κ) |Σ| ||
◦

A||2L2(Σ).

Hence, for ε sufficiently small, we may use Proposition 8.19 as ω̃Λ−1 has area 4π and satisfies
the balancing condition (114). Multiplying by r, we find

||ωΛ−1 − r||W 2,2(S2) ≤ C(κ) |Σ| ||
◦

A||L2(Σ)

Now notice that by the definition of ωZ, rZ and Lemma 8.1, we find that

ω − r

rZ

ωZ =
ωΛ−1 ◦ ΦΛ − r√
1 + |~a2| − ~aifi

,

where ΦΛ and ~a are uniquely determined by Z up to a rotation by the above consideration.
Hence

||ω − r

rZ

ωZ||W 2,2(S2) ≤ C(Z)||ωΛ−1 − r||W 2,2(S2) ≤ C(κ, Z) |Σ| ||
◦

A||L2(Σ),

where the constant C(Z) does not depend on the choice of rotation as rotations act as
isometries on S

2. On the other hand, note that W 2,2 embedds compactly into C0 on S
2.

Thus, we find that |ωΛ−1 − r|∞ ≤ C(κ) |Σ| ||
◦

A||L2(Σ). Notice further that

rZ = rZ(Λ−1(Σ)) =
1

|Λ−1(Σ)|

ˆ

S2

ω3
Λ−1 ≤ r + |ωΛ−1 − r|∞ .

By Remark 8.10, we conclude that

|rZ − r| ≤ C(κ) |Σ| ||
◦

A||L2(Σ).

Hence,

|| r

rZ

ωZ − ωZ||W 2,2(S2) = |r − rZ| ·
∣∣∣∣
∣∣∣∣
ωZ

rZ

∣∣∣∣
∣∣∣∣
W 2,2(S2)

≤ C(Z) |rZ − r| ≤ C(κ, Z) |Σ| ||
◦

A||L2(Σ),

where the constant C(Z) again does not depend on the choice of rotation. The claim then
follows directly by the triangle inequality.
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Note that as an intermediate step, we have proven that

∣∣∣∣
∣∣∣∣
ω

r
− ωZ

rZ

∣∣∣∣
∣∣∣∣
2

W 2,2(S2)

≤ C(κ, Z) |Σ| ||
◦

A||2L2(Σ), (116)

which allows for a direct comparison of the spacelike cross section Σ and the STCMC surface
of reference both rescaled to have area radius 1. Using this, we establish a further conclusion
from Theorem 8.23 as a last result of this section.

Theorem 8.24. Let (Σk)k∈N be a sequence of spacelike cross sections with H2
k ≥ 0 with

conformal factor ωk, area radius rk and associated 4-vector Zk. Assume further that Σk is
κ-bounded for all k with κ independent of k, and there exists δ > 0 such that

(
Z

0
k

)2 ≥ (1 + δ)
((

Z
1
k

)2
+
(
Z

2
k

)2
+
(
Z

3
k

)2
)

, (117)

and

|Σk| · ||
◦

Ak||2L2(Σk) → 0 (118)

as k → ∞. Then there exists a subsequence (kl)l∈N and a surface of constant spacetime mean
curvature Σ̃ with conformal factor ω̃ and area radius 1 such that

ωkl

rkl

→ ω̃ in W 2,2(S2),

and
Zkl

rZkl

→ Z(Σ̃),

where rZkl
=
√

−η(Zkl
, Zkl

), and η(Z(Σ̃), Z(Σ̃)) = −1.

Remark 8.25. As W 2,2 embeds compactly into C0 on S
2, cf. [8, Appendix C], the conformal

factors converge in C0. Note that for any uniformly converging sequence of spacelike cross
sections, we have convergence of the associated 4-vectors to the associated 4-vector of the
limiting surface, which is easy to verify from the definition of Z, cf. Subsection 8.1. In
particular, the sequence is κ-bounded with κ independent of k and satisfies (117) for k
sufficiently large. Hence, these are necessary conditions for the conclusions of Theorem 8.24
to hold.
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For example, the sequence of STCMC surfaces corresponding to the conformal factors

ωk =
1√

1 + k2 − k cos θ

has area radius 1, is κ-bounded for any κ > 0 independent of k, and
◦

Ak = 0 for all k. However,
the sequence ωk does not converge to a limit, even in C0, due to the non-compactness of
the restricted Lorentz group SO+(3, 1). This issue is precisely avoided by (117), as the
renormalized associated 4-vectors will be restricted to a compact subset of the hyperboloid
{p ∈ R

3,1 : η(p, p) = −1, p0 > 0}.

Proof of Theoem 8.24. We define the sequence

zk :=
Zkl

rZkl

.

In particular η(zk, zk) = −1 and as (117) is preserved under rescaling, we see that

(1 + δ)
(
(z1
k)

2 + (z2
k)

2 + (z3
k)

2
)

≤ (z0
k)

2 = (z1
k)

2 + (z2
k)

2 + (z3
k)

2 + 1.

Hence

zk ∈ Cδ :=
{

p ∈ R
3,1 : (p1, p2, p3) ∈ B 1

δ
(0), p0 =

√
1 + (p1)2 + (p2)2 + (p3)2

}

for all k, where B 1
δ
(0) denotes the closed ball of radius 1

δ
in R

3 centered around the origin.

As the set is compact, there exists a subsequence (kl)l∈N such that

zkl
→ z ∈ Cδ.

In particular, z is timelike, future-pointing with η(z, z) = −1. Let Σ̃ be the STCMC surface
with conformal factor ω̃ := ωz as defined in Remark 8.3 (ii). Then Σ̃ has area radius

r̃ = rz :=
√

−η(z, z) = 1. Moreover, as zkl
→ z, we see by the explicit definition (103) that

ωzkl
→ ω̃ (119)

in C2 (in fact Ck for any fixed k). It only remains to show the W 2,2 convergence.
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To this end, recall that ωzkl
= 1

rZkl

ωZkl
. It follows that

∣∣∣∣∣

∣∣∣∣∣
ωkl

rkl

− ωzkl

∣∣∣∣∣

∣∣∣∣∣

2

W 2,2(S2)

≤ C(κ, Zkl
) |Σkl

| ||
◦

Akl
||2L2(Σ), (120)

from (116), where the constant C(κ, Zkl
) does not depend on rZ. Hence

C(κ, Zkl
) = C(κ, zkl

), and by following the arguments in the proof of Theorem 8.23 we
note that the constant can be chosen such that it continuously depends on zkl

. Evoking once
again that zkl

→ z, there exists a suitable constant C(κ, z) only depending on κ and z such
that

C(κ, zkl
) ≤ C(κ, z)

fo all l. The claim then follows from (119) and (120) using assumption (118) and the triangle
inequality.

151



9 References

[1] Ben Andrews and Paul Bryan. Curvature bounds by isoperimetric comparison for normalized
Ricci flow on the two-sphere. Calculus of Variations and Partial Differential Equations, 39:419–
428, 2009.

[2] Ben Andrews, Bennet Chow, Christine Guenther, and Mat Langford. Extrinsic geometric
flows. American Mathematical Society, Providence, Rhode Island, 2020.

[3] Richard Arnowitt, Stanley Deser, and Charles Misner. The Dynamics of General Relativity.
arXiv:gr-qc/0405109, 2004.

[4] Robert Bartnik. Existence of maximal surfaces in asymptotically flat spacetimes. Comm.
Math. Phys., 94:155–175, 1984.

[5] Robert Bartnik. The Mass of an Asymptotically Flat Manifold. Communications on Pure and
Applied Mathematics, 39:661–693, 1986.

[6] Robert Bartnik and Leon Simon. Spacelike hypersurfaces with prescribed boundary values
and mean curvature. Comm. Math. Phys., 87(1):131–152, 1982–1983.

[7] Janet Bartz, Michael Struwe, and Rugang Ye. A new approach to the Ricci flow on S
2. Annali

Della Scuola Normale Superiore Di Pisa-classe Di Scienze, 21:475–482, 1994.

[8] Arthur Besse. Einstein Manifolds. Springer, Berlin–Heidelberg–New York, 2008.

[9] Danny Birmingham. Topological black holes in anti-de Sitter space. Class. Quantum Grav.,
16(4):1197, 1999.

[10] Hubert Bray and Marcus A. Khuri. PDEs which imply the Penrose Conjecture. Asian J.
Math., 15(4):557–610, 2011.

[11] Hubert Bray and Henri Roesch. Proof of a null geometry Penrose conjecture. Notice of the
AMS, 65(2):156–162, 2018.

[12] Simon Brendle. Convergence of the Yamabe flow for arbitrary initial energy. Journal of
Differential Geometry, 69(2):217–278, 2005.

[13] Simon Brendle. A short proof of the Yamabe flow on Sn. Pure and Applied Mathematics
Quarterly, 3(2):499–512, 2007.

[14] Simon Brendle. Convergence of the Yamabe flow in dimension 6 and higher. Inventiones
mathematicae, 170:541–576, 2007.

[15] Simon Brendle. Constant mean curvature surfaces in warped product manifolds. Publ. math.
IHES, 117:247–269, 2013.

152



[16] Dieter R. Brill and Sean A. Hayward. Global structure of a black hole cosmos and its extremes.
Class. Quantum Grav., 11:359–370, 1993.

[17] Armando Cabrera Pacheco and Markus Wolff. Families of non time-symmetric initial data
sets and Penrose-like energy inequalities. arXiv:2310.13547, 2023.

[18] Alberto Carrasco and Marc Mars. A counterexample to a recent version of the Penrose con-
jecture. Class. Quantum Grav., 27, 2010.

[19] Carla Cederbaum. Mathematical Relativity. lecture notes, current version, Summer Semester
2022 at University of Tübingen, 2022.

[20] Carla Cederbaum, Julien Cortier, and Anna Sakovich. On the Center of Mass of Asymptoti-
cally Hyperbolic Initial Data Sets. Ann. Herni Poincaré, 17:1505–1528, 2016.

[21] Carla Cederbaum and Gregory J. Galloway. Photon surfaces with equipotential time slices. J.
Math. Phys., 62, 2021.

[22] Carla Cederbaum, Sophia Jahns, and Olivia Vičánek Martínez. On equipotential photon
surfaces in electrostatic spacetimes of arbitrary dimension. unpublished, 2021.

[23] Carla Cederbaum and Christopher Nerz. Explicit Riemannian Manifolds with Unexpectedly
Behaving Center of Mass. Ann. Herni Poincaré, 16:1609–1631, 2015.

[24] Carla Cederbaum and Anna Sakovich. On the center of mass and foliations by constant
spacetime mean curvature surfaces for isolated systems in General Relativity. Calculus of
Variations and Partial Differential Equations, 60(214), 2021.

[25] Carla Cederbaum and Markus Wolff. Some new perspectives on the Kruskal–Szekeres exten-
sion. arXiv:2310.06946, 2023.

[26] Sun-yung Alice Chang. The Moser-Trudinger inequality and applications to some problems in
conformal geometry. IAS/ Park City Mathematical series, pages 65–125, 1996.

[27] Sun-yung Alice Chang and Paul C. Yang. Prescribing Gaussian curvature on S2. Acta Math.,
159:215–259, 1987.

[28] Xiuxiong Chen, Peng Lu, and Gang Tian. A note on uniformization of Riemann surfaces by
Ricci flow. Proceedings of the American Mathematical Society, 134(11):3391–3393, 2006.

[29] Yvonne Choquet-Bruhat and Robert Geroch. Global aspects of the Cauchy problem in general
relativity. Communications in Mathematical Physics, 14:329–335, 1969.

[30] Bennet Chow. The Ricci flow on the 2-sphere. Journal of Differential Geometry, 33(2):325–334,
1991.

153



[31] Bennet Chow. The Yamabe flow on locally conformally flat metrics with positive Ricci curva-
ture. Communications on Pure and Applied Mathematics, 45:1003–1014, 1992.

[32] Bennet Chow, Peng Lu, and Lei Ni. Hamilton’s Ricci flow. American Mathematical Society,
Providence, Rhode Island, 2010.

[33] Piotr T. Chruściel. Boundary conditions at spatial infinity from a Hamiltonian point of view.
Topological properties and global structure of space-time (Erice, 1985). volume 138 of Nato
Adv. Sci. Inst. Ser. B Phys., pages 49–59. Plenum, New York, 1986.

[34] Piotr T. Chruściel and Paul Tod. An angular momentum bound at null infinity. Adv. Theor.
Math. Phys., 13:1317–1334, 2009.

[35] Justin Corvino. Scalar Curvature Deformation and a Glueing Construction for the Einstein
Constraint Equations. Comm. Math. Phys., 214:137–189, 2000.

[36] Camillo De Lellis and Stefan Müller. Optimal rigidity estimates for nearly umbilical surfaces.
J. Diff. Geom., pages 75–110, 2005.

[37] Camillo De Lellis and Peter Topping. Almost-Schur lemma. Calculus of Variations and Partial
Differential Equations, 43:347–354, 2012.

[38] Costas Efthimiou and Christopher Frye. Spherical harmonics in p dimensions. World Scientific,
Singapore, 2014.

[39] Michael Eichmair. Existence, regularity, and properties of generalized apparent horizons.
Comm. Math. Phys., 294:745–760, 2010.

[40] Charles Fefferman and Charles Robin Graham. Conformal invariants. In Élie Cartan et les
mathématiques d’aujourd’hui - Lyon, 25-29 juin 1984, number S131 in Astérisque. Société
mathématique de France, 1985.

[41] Jörg Frauendiener. On the Penrose Inequality. Phys. Rev. Lett., 87:101101, 2001.

[42] Claus Gerhardt. H-surfaces in Lorentzian manifolds. Comm. Math. Phys., 89:523–553, 1983.

[43] Robert Geroch. Energy extraction. Ann. New York Acac. Sci., 224:108–117, 1973.

[44] David Gilbarg and Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Springer, Berlin–Heidelberg–New York, 1998.

[45] Enrico Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser Inc., Basel,
Boston, Stuttgart, 1984.

[46] Richard S. Hamilton. Three-Manifolds with positive Ricci-curvature. J. Diff. Geom., 17:255–
306, 1982.

154



[47] Richard S. Hamilton. The Ricci flow on surfaces. Math and General Relativity, Contemporary
Mathematics, 71:237–262, 1988.

[48] Richard S. Hamilton. Lectures on geometric flows. unpublished, 1989.

[49] Mirjam Heidusch. Zur Regularität des inversen mittleren Krümmungsflusses. (Doctoral thesis),
2001.

[50] Gerhard Huisken and Tom Ilmanen. The inverse mean curvature flow and the Riemannian
Penrose inequality. J. Diff. Geom., 59(3):353–437, 2001.

[51] Gerhard Huisken and Tom Ilmanen. Higher regularity for the inverse mean curvature flow. J.
Diff. Geom., 80(3):433–451, 2008.

[52] Gerhard Huisken and Alexander Polden. Geometric evolution equations for hypersurfaces.
Calculus of Variations and Geometric Evolution Problems, CIME Lectures at Cetraro of 1996
(S. Hildebrandt and M. Struwe, eds.), pages 45–84, 1999.

[53] Gerhard Huisken and Markus Wolff. On the evolution of hypersurfaces along their inverse
spacetime mean curvature. arXiv:2208.05709, 2022.

[54] Gerhard Huisken and Shing-Tung Yau. Definition of center of mass for isolated physical
systems and unique foliations by stable spheres with constant man curvature. Invent. Math.,
124:281–311, 1996.

[55] Sergiu Klainerman and Jeremie Szeftel. Effective results on uniformization and intrinsic GCM
spheres in perturbations of Kerr. arXiv:1912.12195, 2019.

[56] Friedrich Kottler. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie.
Annalen der Physik, 56:401–462, 1918.

[57] Martin D. Kruskal. Maximal extension of schwarzschild metric. Phys. Rev., 119:1743–1745,
1960.

[58] Marc Mars. Present status of the Penrose inequality. Class. Quantum Grav., 26, 2009.

[59] Marc Mars and Alberto Soria. The asymptotic behavior of the Hawking energy along null
asymptotically flat hypersurfaces. Classical and Quantum Gravity, 32(18):185020, 2015.

[60] Marc Mars and Alberto Soria. On the Penrose inequality along null hypersurfaces. Class.
Quantum Grav., 33:115019, 2016.

[61] Jan Metzger. Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean
curvature. J. Diff. Geom., 77, 2007.

[62] Charles Misner, Kip Thorne, and John Wheeler. Gravitation. W.H Freeman and Company,
United States of America, 1973.

155



[63] Kristen Moore. On the evolution of hypersurfaces by their inverse null mean curvature. J.
Diff. Geom., 98(3):425–466, 2014.

[64] Barret O’Neill. Semi-Riemannian Geometry with applications to Relativity. Academic Press,
San Diego, California, 1983.

[65] Enrico Onofri. On the positivity of the effective action in a theory of random surfaces. Comm.
Math. Phys., 86(3):321–326, 1982.

[66] Thomas Parker and Clifford H. Taubes. On Witten’s Proof of the Positive Energy Theorem.
Communications in Mathematical Physics, 84:223–238, 1982.

[67] Henri Roesch and Julian Scheuer. Mean Curvature Flow in Null Hypersurfaces and the De-
tection of MOTS. Communications in Mathematical Physics, 390:1–25, 2022.

[68] Anna Sakovich. The Jang equation and the positive mass theorem in the asymptotically
hyperbolic setting. arXiv:2003.07762, 2020.

[69] Johannes Sauter. Foliations of null hypersurfaces and the Penrose inequality. Doctoral thesis,
ETH Zürch, 2008.

[70] Jan Sbierski. The C0-inextendibility of the Schwarzschild spacetime and the spacelike diameter
in Lorentzian geometry. J. Diff. Geom., 108(2):319–378, 2018.

[71] J. C. Schindler and A. Aguirre. Algorithms for the explicit computation of Penrose diagrams.
Class. Quantum Grav., 35, 2018.

[72] Richard Schoen and Shing Tung Yau. On the proof of the positive mass conjecture in general
relativity. Communications in Mathematical Physics, 65(1):45 – 76, 1979.

[73] Richard Schoen and Shing-Tung Yau. Proof of the positive mass theorem ii. Comm. Math.
Phys., 79:231–260, 1981.

[74] Hartmut Schwetlick and Michael Struwe. Convergence of the Yamabe flow for "large" energies.
Journal für die reine und angewandte Mathematik, 562:59–100, 2003.

[75] Yuguang Shi, Guofang Wang, and Jie Wu. On the behavior of quasi-local mass at the infinity
along nearly round surfaces. Annals of Global Analysis and Geometry, 36:419–441, 2009.

[76] Leon Simon. Introduction to geometric measure theory. Tsinghua Lectures, 2014.

[77] Michael Struwe. Curvature flows on surfaces. Annali Della Scuola Normale Superiore di
Pisa-classe Di Scienze, Ser. 5, 1(2):247–274, 2002.

[78] György Szekeres. On the Singularities of a Riemannian Manifold. General Relativity and
Gravitation, 34:2001–2016, 2002. reprinted from Publ. Math. Debrecen 7 (1960), 285–301.

156



[79] Italo Tamanini. Regularity results for almost minimal oriented hypersurfaces in Rn. Quaderni
del Dipartimento Matematica dell’Universita de Lecce, 1984.

[80] Augusto Visintin. Nucleation and mean curvature flow. Comm. Part. Diff. Equ., 23:17–53,
1998.

[81] Robert M. Wald. General Relativity. The University of Chicago Press, Chicago 60637, 1984.

[82] Robert M. Wald and Pong Soo Jang. The positive energy conjecture and the cosmic censor
hypothesis. J. Math. Phys., 18(41), 1977.

[83] M. Wang, Y. Wang, and Y. Zhang. Minkowski formulae and Alexandrov Theorems in space-
time. J. Diff. Geom., 105:249–290, 2017.

[84] Xiaodong Wang. The Mass of Asymptotically Hyperbolic manifolds. J. Differential Geom.,
57(2):273–299, 2001.

[85] Ye-Kai Wang. A spacetime Alexandrov Theorem. Doctoral thesis, Columbia University, 2014.

[86] Edward Witten. A new proof of the positive energy theorem. Communications in Mathematical
Physics, 80:381–402, 1981.

[87] Markus Wolff. On the evolution of hypersurfaces inside maximal initial data sets along their
inverse spacetime mean curvature. Master thesis, University of Tübingen, 2019.

[88] Markus Wolff. On effects of the null energy condition on totally umbilic hypersurfaces in a
class of static spacetimes. arXiv:2310.11229, 2023.

[89] Markus Wolff. Ricci flow on surfaces along the standard lightcone in the 3 + 1-Minkowski
spacetime. Calculus of Variations and Partial Differential Equations, 62(90), 2023.

[90] Rugang Ye. Global existence and convergence of Yamabe flow. Journal of Differential Geom-
etry, 39:35–50, 1994.

157


	Summary
	Summary in English
	Zusammenfassung auf Deutsch (Summary in German)

	Overview and Contributions
	Basic notation
	Preliminaries
	An introduction to General Relativity
	Special Relativity and the Minkowski spacetime
	A class of static spacetimes
	Hypersurface geometry and initial data sets
	Asymptotically flat initial data sets
	Asymptotically hyperbolic initial data sets
	Null hypersurfaces
	The Geometry of codimension-2 surfaces
	Evolution Equations
	Spherical harmonics

	Inverse space-time mean curvature flow in asymptotically flat initial data sets
	The smooth flow
	Level-set description and elliptic regularisation
	The limiting behavior of the translating graphs
	Variational formulation for weak solutions
	Existence of weak solutions
	Outward optimization principle and jump formation
	Asymptotic behavior

	Uniqueness of STCMC surfaces on hyperboloids in class H
	Brendle's Alexandrov Theorem
	The null energy condition in class H
	Graphical spacelike hypersurfaces
	The (NEC) on spacelike warped product graphs
	Extending the graph past the Killing horizon to the minimal boundary
	Uniqueness of STCMC surfaces on hyperboloids

	2d-Ricci flow on the standard Minkowski lightcone
	2d-Ricci flow
	The standard lightcone in the 3+1-dimensional Minkowski spacetime
	A scalar second fundamental form
	Null mean curvature flow on the Minkowski lightcone
	A new proof of Hamilton's classical result

	A DeLellis–Müller type estimate on the lightcone
	An associated 4-vector in the Minkowski spacetime
	A geometric estimate
	Elliptic estimates under a balancing condition
	A DeLellis–Müller type estimate on the Minkowski lightcone

	References

