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support by the state of Baden-Württemberg through bwHPC and the German Re-

search Foundation (DFG) through grants INST 35/1597-1 FUGG, GR 2288/7-1, and

SCHL 558/7-1.

iii



Remarks

This doctoral thesis is part of a joint research project of the Chair of Finance (Prof.

Christian Schlag) at Goethe University Frankfurt and the Chair of Statistics and

Econometrics (Prof. Joachim Grammig) at Eberhard Karls University Tübingen. The
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Chapter 1

Introduction

The conditional stock risk premium is a quantity of central interest in financial eco-

nomics. It is the expected return that investors demand in excess of the risk-free rate

for holding equity in the issuing company. As such, it contains valuable information

about the risks traded in financial markets. However, because stock risk premia are

not directly observable, one has to rely on approximations to harness the information

they contain. One possibility is to interpret this as a statistical exercise in which

approximations are obtained from predictive regressions of excess returns onto firm

characteristics that are observed prior to the investment period. While early propo-

nents of this approach mainly considered linear specifications of these regressions (e.g.,

Moskowitz and Grinblatt, 1999; Amihud, 2002), recent years have seen a surge in ap-

plications of machine learning methods that promise greater flexibility in describing

the risk-return relationship (e.g., Gu et al., 2021; Chen et al., 2023). The added flexi-

bility, however, raises concerns about the generalization abilities of these models, their

interpretability, and their compatibility with classical methods of statistical inference.

Another approach to measuring stock risk premia avoids any statistical estimation

and attempts to derive the investors’ risk perception from theoretical considerations

alone (e.g., Martin and Wagner, 2019; Chabi-Yo et al., 2023). This is achieved by

establishing a relationship between unobserved stock risk premia and risk-neutral mo-

ments of returns, which can be inferred from European option prices. A key advantage

of this approach is that sudden changes in investor sentiment are immediately reflected

in changing conditional expectations. Statistical models are much more rigid in this

respect, as their parameterization is chosen on the basis of past investor behavior.

One drawback of the theory-based approach, however, is that structural assumptions

are needed to explain the change of measure associated with establishing the afore-

mentioned relationship. The purpose of this dissertation is to compare these two

contrasting philosophies and explore ways in which they can be combined to improve

our understanding of conditional risk premia.

The first chapter, titled “Theory-based versus machine learning-implied stock risk

premia”, starts with a comparison of two prominent representatives of these two com-

peting strands of the literature. For the machine learning approach, we adopt the

methodology by Gu et al. (2020), who employ various statistical models to account

for nonlinearities and interaction effects in the approximation of conditional stock risk

premia. While most of these models require large amounts of historical data to un-

fold their potential, the theory-based approach by Martin and Wagner (2019) offers

a parsimonious alternative. They propose a formula for the expected excess return
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that is free of unknown parameters and can be implemented using a panel of option

prices. The goal of this chapter is to evaluate which of the two approaches provides

a better approximation of conditional stock risk premia, as measured by their ability

to predict future realized excess returns. Beyond this comparison, we present an al-

ternative hybrid approach that employs machine learning to approximate what is left

unexplained by the option-based formula. In this way, we seek to identify the strengths

and weaknesses of the two competing approaches.

Our conclusions are as follows: At a monthly investment horizon, the theory-based

approach provides better out-of-sample forecasts than any of the machine learning

models, both in terms of the predictive R-squared and the Sharpe ratio of an invest-

ment strategy that exploits the differences between the highest and lowest deciles of

expected excess returns. At an annual investment horizon, however, the ranking is

reversed in favor of the machine learning models, which may be due to the fact that

options with maturies of one year are much less frequently traded than their monthly

counterparts. This suggests that the performance of the theory-based approach is

highly dependent on the quality of the options data that is used for its implementa-

tion. One lesson we draw from the hybrid approach is that the formula by Martin and

Wagner (2019) can be further improved, as its approximation errors are absorbed by

other stock characteristics.

The second chapter of this thesis, titled “The uncertainty principle in asset pric-

ing”, builds on the findings of the previous chapter and introduces an alternative set

of assumptions to link physical and risk-neutral return distributions. We employ these

assumptions to derive a fully-implied representation of the conditional capital asset

pricing model (CAPM) in which both the betas and the equity premium are jointly

characterized by the information embedded in option prices. The novelty of this ap-

proach is that the implied beta and the equity premium represent valid measurements

of their physical counterparts without the need for further risk adjustment. Moreover,

because we do not need to estimate any of the model’s time-varying parameters, we

are able to test its unconditional implications directly.

Leveraging these advantages, we study a phenomenon that is synonymous with the

failure of the CAPM – the flat relationship between average predicted and realized

excess returns of beta-sorted portfolios. To provide a coherent explanation for the

persistence of this phenomenon across investment horizons, we decompose the model’s

testable restrictions in a way that allows us to distinguish between asset-specific and

aggregate components of market risk. Our results indicate that, at shorter investment

horizons, the CAPM’s failure is due to the inherently unpredictable component of the

market excess return, while at longer horizons, it is due to the limited cross-sectional

explanatory power of the betas. In analogy to the uncertainty principle in quantum

mechanics, we refer to this observation as the uncertainty principle in asset pricing.

The third chapter, titled “Multi-task learning in cross-sectional regressions”, con-

tinues where the second chapter left off and evaluates the short-term explanatory power

of the implied betas. To this end, we derive testable restrictions from period-by-period
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cross-sectional regressions that include the implied beta and other stock characteristics

as regressors. According to these restrictions, the beta should be the only character-

istic relevant for explaining the cross-section of returns, i.e., it should drive out any of

the other characteristics.

One of the challenges associated with this test lies in determining which of the

myriad candidate characteristics should be used as competitors. In contrast to previous

literature, we address this issue systematically using a combination of ℓ1- and ℓ2-

regularization, known as the multi-task Lasso. The appeal of our procedure is that

it leverages the entire panel of returns and characteristics to select a common set

of covariates, while taking into account that each of the regressions is subject to its

own parameterization. Moreover, by combining the multi-task Lasso with standard

ℓ1-regularization, we are able to distinguish between stable and anomalous return

predictive signals, which allows us to examine the robustness of prior research on

stock return predictability.

One problem that inevitably arises when we systematically select characteristics

based on in-sample information is that classical methods of statistical inference are

no longer valid. We address this problem by performing the selection and estimation

steps separately on multiple random subsamples of the data, thus accounting for both

the bias that is induced by selection and the uncertainty that is due to splitting the

data.

In the empirical part of this chapter, we implement this testing strategy using

different sets of test assets and an extensive set of stock characteristics. We find that

while the implied beta is by far the most important predictor of return variation,

there are still some characteristics that provide incremental information for the cross-

section of returns. Depending on the chosen set of test assets, the few remaining

characteristics are either too important to be ignored, as in the case of individual

stocks, or not important enough for the conditional CAPM to be rejected, as in the

case of characteristic-sorted portfolios. Regarding the stability of the return predictive

signals, we find that most of the characteristics proposed in the previous literature are

stable rather than anomalous predictors. This finding casts a positive light on empirical

finance research, which is often criticized for its lack of replicability.

3



Chapter 2

Theory-based versus machine

learning-implied stock risk premia✯

2.1 Motivation

When it comes to measuring stock risk premia, two roads diverge in the finance world

– or at least, so it may seem to an observer of recent literature on empirical asset

pricing. Two prominent studies exemplify this impression: Martin and Wagner (2019)

quantify the conditional expected return of a stock by exploiting the information con-

tained in option prices, as implied by financial economic theory.1 Gu et al. (2020)

pursue the same end but along a completely different path, leveraging the surge of

machine learning applications in economics and finance, together with advances in

computer technology.2 Approaches similar to the one adopted by Martin and Wag-

ner (2019) derive results from asset pricing paradigms and have no need of historical

data to quantify stock risk premia; Gu et al. (2020) and related papers instead do not

refer substantially to financial economic theory and prefer to “let the data speak for

themselves.”

These radically different ways to address the same issue motivate us to conduct

a fair, comprehensive performance comparison of theory-based and machine learning

approaches to measuring stock risk premia and to explore the potential of hybrid

strategies. The comparison is based on the fact that the risk premium is the conditional

expected value of an excess return and that, in the present context, the machine

✯This chapter is based on Grammig et al. (2022), available on SSRN: https://papers.ssrn.com/sol3/

papers.cfm?abstract id=3536835. Earlier versions of this paper were presented at the 48th Annual

Meeting of the European Finance Association, the 12th Econometric Society World Congress, the

13th Annual Conference of the Society for Financial Econometrics, and several other conferences

and seminars. We thank the participants, and in particular, Michael Bauer, Svetlana Bryzgalova,

Emanuele Guidotti, Christoph Hank, Jens Jackwerth, Alexander Kempf, Michael Kirchler, Christian

Koziol, Michael Lechner, Marcel Müller, Elisabeth Nevins, Yarema Okhrin, Olaf Posch, Éric Renault,

Olivier Scaillet, Julie Schnaitmann, and Grigory Vilkov for helpful comments.
1Their strategy to quantify the risk premia of financial assets draws on Martin’s (2017) derivation

of a lower bound for the conditional expected return of the market, which in turn is based on concepts
outlined by Martin (2011). Kadan and Tang (2020) take up Martin’s (2017) idea and argue that it
can be applied to quantify risk premia for a certain type of stocks. Bakshi et al. (2020) propose an
exact formula for the expected return of the market that relies on all risk-neutral moments of returns.
In a similar vein, Chabi-Yo et al. (2023) consider bounds for expected excess stock returns that take
into account higher risk-neutral moments using calibrated preference parameters.

2Recent studies in a similar vein include those by Light et al. (2017), Martin and Nagel (2022),
and Freyberger et al. (2020).
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learning objective is to minimize the mean squared forecast error (MSE). Because

the conditional expectation is the best predictor in terms of MSE, it seems natural

to compare the opposing philosophies by gauging the quality of their excess return

forecasts: A superior forecast indicates a better approximation of the risk premium.

Such a comparative analysis can reveal whether the use of the information theoretically

embedded in current option prices is preferable to sophisticated statistical analyses of

historical data, or vice versa.

Beyond this direct comparison, we also investigate the potential of hybrid strategies

that combine the theory-based and machine learning paradigms. In particular, we

rely on machine learning to address the approximation errors of the theory-based

approach. These residuals are functions of moments conditional on time t information,

and machine learning is employed to approximate the conditional moments using time t

stock- and macro-level variables. We refer to this strategy as theory assisted by machine

learning. We also consider a machine learning approach that includes theory-implied

risk premium measures computed from current option data, along with historical stock-

and macro-level feature data. To ensure a fair comparison we deliberately adhere to

the model specifications used in the base papers, for example regarding the features

considered and the training and validation strategy adopted for machine learning.

To level the playing field, we need data for which both theory-based and machine

learning approaches are applicable. For our large-scale empirical study, we use data on

the S&P 500 constituents from 1964 to 2018, including firm- and macro-level variables,

as well as return and option data. The analysis centers on theory-based and machine-

learning-implied estimates of stock risk premia, computed at one-month and one-year

investment horizons. We focus on the machine learning methods that Gu et al. (2020)

identify as most promising, namely, an ensemble of artificial neural networks (ANN),

gradient boosted regression trees (GBRT), and random forests (RF). We also include

the elastic net (ENet), as a computationally less demanding benchmark. We consider

two training and validation strategies, starting in 1974 (long training) and 1996 (short

training), respectively. Using the short training scheme is necessary for all hybrid

approaches, because the option data are not available earlier.

The main results are as follows: Of the two theory-based approaches that we con-

sider, the one proposed by Martin and Wagner (2019) (henceforth, MW) is preferable

to Kadan and Tang’s (2020) approach (henceforth, KT). At the one-month horizon,

MW is also superior to three of the four machine learning methods. Only MW and the

ANN deliver a positive predictive R2 of comparable size, according to the analyses that

use forecasts issued at the end of each month. When using risk premium estimates at

a daily frequency, the predictive R2 by MW increases from 0.2% to 0.9%. Adapting

the machine learning models to deliver daily risk premium estimates improves their

performance, but it does not match that of MW; the best machine learning result

is achieved by the ANN, with a predictive R2 of 0.5%. We note that among all the

machine learning approaches and stock universes considered by Gu et al. (2020), the

highest reported predictive R2 is 0.7%; the one-month horizon is a low signal-to-noise
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environment. Constructing prediction-sorted portfolios, we find that the alignment of

predicted and realized mean excess returns works better and the cross-sectional varia-

tion of mean realized returns across prediction-sorted portfolios is highest when using

MW.3

The signal-to-noise ratio increases at the one-year horizon. ANN and GBRT achieve

predictive R2 around 9%, very similar to MW. While ENet and KT are less successful,

the RF delivers the highest annual predictive R2 of about 19%. The analysis of the

alignment and cross-sectional variation of prediction-sorted portfolios also provides

corroborative evidence. To achieve this performance, the RF relies on the long training

scheme. Generally, the performance of machine learning approaches is attenuated

when using a short training scheme, but hybrid strategies can compensate for this

drawback. A theory assisted by machine learning strategy that takes MW as a basis

and trains an RF or an ANN to deal with the approximation errors implied by the

theory-based formula is particularly successful. The assistance by the RF increases

the predictive R2 delivered by MW from 9% to 16%. The analysis of prediction-sorted

portfolios further establishes the expediency of this hybrid approach: It produces

the best alignment and highest variation of the mean realized excess returns across

the prediction-sorted portfolios. The MW+RF and MW+ANN combinations answer

critiques of machine learning as measurement without theory, because they reflect

financial economic paradigms and employ statistical assistance only for the components

that remain unaccounted for by theory.

When risk premia need to be estimated at a daily frequency, the theory-based

methods offer a natural advantage. The required option data are available at a daily

frequency, whereas many stock- and all macro-level features are updated monthly

at best. However, we find that a modified hybrid strategy that uses daily updated

theory-based features for an RF, trained using end-of-month data, does a good job

providing daily risk premium estimates. The annual predictive R2 of the RF without

theory-based features and evaluated at a daily frequency is 9%. Including theory-based

features doubles this value.

Further analysis reveals that the importance of firm- and macro-level features does

not differ markedly across the two applications of the RF, that is, its pure usage

or when assisting the theory-based approach. At the one-year horizon, the familiar

firm-level return predictive signals are most important in both applications: the book-

to-market ratio, liquidity-related indicators, and momentum variables (in that order).

The dominance of the short-run price reversal at the one-month horizon vanishes at the

one-year horizon. The importance of the Treasury bill rate (a macro-level predictor)

in both applications supports the use of short-term interest rates as state variables

in variants of the intertemporal capital asset pricing model. The benefits of theory

assistance by machine learning are also corroborated by disaggregated analyses, for

which we create portfolios by sorting stocks according to valuation ratios, liquidity

3The advantage of the theory-based paradigm at the one-month horizon is confirmed by a com-
plementary analysis in which we apply Chabi-Yo et al.’s (2023) option-based method to approximate
stock risk premia.
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variables, momentum indicators, and industry affiliation.

Overall, these results indicate the usefulness of hybrid strategies that combine

theory-based and machine learning methods for quantifying stock risk premia. In this

respect, the present study complements recent literature that links machine learning

with theory-based empirical asset pricing and for which Giglio et al. (2022) provide

a comprehensive survey and guide. For example, Gu et al. (2021) note that a focus

of machine learning on prediction aspects does not constitute a genuine asset pric-

ing framework, so they propose using a machine learning method (autoencoder) that

takes account of the risk-return trade-off directly. Chen et al. (2023) use the results

reported by Gu et al. (2020) as a benchmark and find that the inclusion of no-arbitrage

considerations improves the empirical performance. In another combination of theory

and data science methods, Wang (2018) employs partial least squares to account for

higher risk-neutral cumulants when modeling stock risk premia. Kelly et al. (2019)

use an instrumented principle components analysis to construct a five-factor model

that spans the cross-section of average returns, and Kozak et al. (2020) use penalized

regressions to shrink the coefficients on risk factors in the pricing kernel. Bryzgalova

et al. (2021) generalize this idea and use decision trees to construct a set of base assets

that span the efficient frontier. In their attempt to address the plethora of factors

described in recent asset pricing literature, Feng et al. (2020) combine two-pass regres-

sion with regularization methods. In what might be considered a broad reality check,

Avramov et al. (2023) take a practitioner’s perspective and assess the advantages and

limitations of the aforementioned approaches.4

The remainder of this chapter is structured as follows: Section 2.2 contrasts theory-

based and machine learning methodologies for measuring stock risk premia, then out-

lines ideas to combine them. Section 2.3 explains the construction of the database and

the implementation of the respective strategies. Section 2.4 contains a performance

comparison between theory-based and machine learning methods at varying horizons

and the assessment of the potential of hybrid strategies. Section 2.5 concludes. Ap-

pendix A provides details on methodologies, data, and implementation.

2.2 Methodological considerations

2.2.1 Two diverging roads

This section outlines the concepts and key equations associated with the theory-based

and machine learning approaches that are the focus of our study. We explain how, from

a common starting point, the methodologies to measure stock risk premia diverge. For

4Although our study is related to this strand of literature in the general sense of combining finan-
cial economic theory with machine learning, our focus is on using this framework for approximating
conditional stock risk premia. We do not aim at providing hybrid approaches for the explicit recov-
ery of the stochastic discount factor. Rather, our strategy of using machine learning to deal with
the approximation errors inherent to the theory-based approach could be viewed as an exercise in
predicting risk-adjusted returns or being related to the notion of boosting.
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conciseness, the details of the respective approaches are presented in Appendix A.

The theory-based approach (explicitly) and the machine learning approach (im-

plicitly) take as a point of reference the basic asset pricing equation applied to a gross

return of asset i from time t to T (Ri
t,T ) in excess of the gross risk-free rate (Rf

t,T ),

Et(R
ei
t,T ) = Et(R

i
t,T )−R

f
t,T = −Rf

t,T ·covt(mt,T ,R
i
t,T ), (2.1)

where expected values are conditional on time t information. In preference-based

asset pricing, the stochastic discount factor (SDF) mt,T represents the marginal rate

of substitution between consumption in t and T . In the absence of arbitrage, a positive

SDF exists, such that Rf
t,T = Et(mt,T )

−1 > 0. The sign and size of the risk premium,

reflected in the conditional expected excess return on asset i, are determined by the

conditional covariance on the right-hand side of Equation (2.1).

Theory-/option-based approach

We first take a look down the theory-based route. Using Equation (2.1) as a starting

point, we delineate in Section A.1 of the appendix how Martin and Wagner (2019)

derive the following reformulation:

Et(R
ei
t,T ) = Rf

t,T ·

{
var∗t

(
Rm

t,T

Rf
t,T

)
+
1

2
·

[
var∗t

(
Ri

t,T

Rf
t,T

)
−
∑

j

wj
t ·var

∗
t

(
Rj

t,T

Rf
t,T

)]}
+ait,T , (2.2)

where Rm
t,T denotes the return of a market index proxy, wj

t is the time-varying value

weight of index constituent j, var∗t denotes a conditional variance under the risk-neutral

measure, and ait,T is a time-varying, asset-specific component that, as shown in Section

A.1 of the appendix, is a function of conditional moments either under the risk-neutral

or the physical measure. In a similar vein, Kadan and Tang (2020) advocate an even

more succinct formula:

Et(R
ei
t,T ) =

1

Rf
t,T

·var∗t (R
i
t,T )−ξ

i
t,T , (2.3)

where ξit,T = covt(mt,T ·R
i
t,T ,R

i
t,T ). In Section A.1 of the appendix, we show how Kadan

and Tang (2020) draw on Martin’s (2017) derivation of a lower bound for the market

equity premium. They argue that, depending on the acceptable level of risk aversion,

ξit,T < 0 holds for a large fraction of stocks, such that 1/Rf
t,T ·var

∗
t (R

i
t,T ) represents a

lower bound for the risk premium.

According to Martin (2017), the risk-neutral variances in Equations (2.2) and (2.3)

can be obtained as follows (suppressing the asset index i for notational brevity):

var∗t

(
Rt,T

Rf
t,T

)
=

∫ Ft,T

0
putt,T (K)dK+

∫∞

Ft,T
callt,T (K)dK

0.5·S2
t ·R

f
t,T

, (2.4)

where callt,T (K) and putt,T (K) denote the time t prices of European call and put
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options, respectively, with strike price K and time to maturity T . Furthermore, St is

the spot price, and Ft,T is the forward price of the underlying asset. The components

of the right-hand sides of Equations (2.2) and (2.3), except for the residuals ait,T and

ξit,T , can thus be approximated using a range of option prices at different strikes.5

For Equation (2.3), these data are only required for asset i. Equation (2.2) is more

demanding, in that the option data must be provided for both the market index proxy

and its constituents, along with the time-varying index weights. Martin and Wagner

(2019) argue that the consequences of setting ait,T = 0 should be benign, such that stock

risk premia can be quantified without the need to estimate any unknown parameters,

by using:

Et(R
ei
t,T ) ≈ Rf

t,T

{
var∗t

(
Rm

t,T

Rf
t,T

)
+
1

2
·

[
var∗t

(
Ri

t,T

Rf
t,T

)
−
∑

j

wj
t ·var

∗
t

(
Rj

t,T

Rf
t,T

)]}
. (2.5)

Similarly, assuming that the negative correlation condition holds and that the lower

bound in Equation (2.3) is binding, Kadan and Tang’s (2020) approximative formula

for the risk premium on stock i is given by:

Et(R
ei
t,T ) ≈

1

Rf
t,T

·var∗t (R
i
t,T ). (2.6)

Machine learning approach

Recalling that the conditional expectation is the best predictor in terms of

the MSE, Equation (2.1) states that the optimal forecast of Rei
t,T is given by

−Rf
t,T ·covt(mt,T ,R

i
t,T ). Because the functional form of the conditional covariance is

not known, one can treat −Rf
t,T ·covt(mt,T ,R

i
t,T ) as a function that depends on state

variables zit ∈ Ft, such that

Et(R
ei
t,T ) = g0T (z

i
t), (2.7)

where the subindex T indicates dependence on the horizon of interest. The machine

learning approach then proceeds to approximate g0T (z
i
t) by gT (z

i
t, θT ), a parametric

function implied by some statistical model with a parameter vector θT to be estimated.

The estimation of θT using machine learning procedures (MLPs) instead of standard

econometric methods may be advocated for the following reasons.

First, there are a lot of candidates for the state variables zit. A myriad of stock-

and macro-level return predictive signals (features in machine learning terms) appear

in empirical finance literature, and dimension reduction and feature selection are the

very domain of MLPs. Second, the suite of statistical models employed for MLPs

trade analytical tractability and rigorous statistical inference for flexible functional

forms and predictive performance. The prediction implications of the basic asset pric-

ing equation (2.1) naturally establish a learning objective, that is, minimization of

the forecast MSE. However, the combination of these two issues – many features and

5Details on the approximation can be found in Section A.3 of the appendix.
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a desire for flexibility – creates a vast risk of overfitting. To deal with this concern,

MLPs divide the data into a training, a validation, and a test sample and introduce

regularization in the estimation process. Regularization is controlled by the tuning

of hyperparameters, which might take the form of a penalty applied to the learning

objective, early stopping rules applied to its optimization, or, more generally, coeffi-

cients that determine the complexity of the statistical model (e.g., number of layers in

an ANN). Using a given combination of hyperparameters, the parameter vector θT is

estimated on the training sample, and the model performance gets evaluated, in terms

of the MSE, on the validation sample. A search across hyperparameter combinations

ultimately points to the specification that delivers the best performance. Using the

hyperparameter combination thus selected, θT is re-estimated on the merged train-

ing/validation sample. The result is the final estimated model, gT (z
i
t, θ̂T ), which is

used as a machine learning-implied approximative risk premium,

Et(R
ei
t,T ) ≈ gT (z

i
t, θ̂T ). (2.8)

Machine learning encompasses a variety of statistical models that offer flexible approx-

imations of g0T (z
i
t). In this study, we consider an ENet, GBRT, RF, and ANN. We

discuss the associated hyperparameter configurations in Section 2.3.2.

2.2.2 Pros and cons

As far as the empirical implementation is concerned, the theory-based and data science

approaches have their own unique pros and cons.

Parameter estimation and approximation errors

Using the theory-based formulas in Equation (2.5) or (2.6) and working under the risk-

neutral measure, one can dispense with the estimation of unknown model parameters

altogether. However, this parsimony of the theory-based approach comes at the cost

of approximation errors, the practical consequences of which are not quite clear. In

contrast, the machine learning approach deals with a huge number of parameters,

which must be estimated without the risk of overfitting.

Time-varying parameters

A conspicuous feature of the theory-based approach is that it can deal naturally with

changing conditional distributions and even non-stationary data. The machine learn-

ing approach, like any statistical/econometric method, struggles more with ensuing

problems like an incidental parameter problem that would occur if the parameters in

θT were time-varying. This caveat can be accounted for by employing a dynamic pro-

cedure, in which the training sample is gradually extended and the validation and test

sample are shifted forward in time. (Hyper-)parameter estimation is performed for

each of these “sample splits.” Compared with Equation (2.8), it is thus notationally
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more precise, albeit more cluttered, to write

Et(R
ei
t,T ) ≈ gs,T (z

i
t, θ̂s,T ), (2.9)

indicating the dependence of the functional form and estimates on the sample split s

and investment horizon T .

Data quality and computational resource demands

The demands for data quality and quantity in both the theory-based and machine

learning strategies are considerable, distinct, and complementary. The machine learn-

ing approach needs historical data on stock-level predictors for every asset of interest.

A critical aspect is that these data suffer from a missing value problem that is most

severe in the more distant past. As pointed out by Freyberger et al. (2022), the im-

putation of those observations is not innocuous and may hamper the application of

data-intensive machine learning methods. This issue is mitigated using theory-based

approaches. However, both MW and KT require high quality option data. In particu-

lar, for the option prices, the times-to-maturity must match (at least approximately)

the horizons of interest, and only a sufficiently large number of strike prices K can

provide a good approximation of the integrals in Equation (2.4). Moreover, Equation

(2.5) reveals that these data are required for not only the stocks of interest but also

every member of the market index, as well as the index itself.

An advantage of the option-based approaches is that the computational resources

needed to provide quantifications of stock risk premia are moderate. Machine learning

approaches instead mandate ready access to considerable computing power. Training

and hyperparameter tuning are required for each statistical model, for each horizon of

interest, and for every new test sample.

2.2.3 Hybrid approaches

Because of the diversity of their respective pros and cons, it is intriguing to combine

the theory-based and machine learning philosophies. Our primary hybrid approach

is based on MW; it starts from Equation (2.2) and the approximative formula in

Equation (2.5) and then employs machine learning to account for the approximation

residuals ait,T .
6 Let us use Ẽt(R

ei
t,T ) to denote the right-hand side of Equation (2.5).

Then R̃ei
t,T = Rei

t,T−Ẽt(R
ei
t,T ) gives the component of the excess return left unexplained

by MW. Provided that the aforementioned data requirements are met, R̃ei
t,T can be

computed for every i, t, and T . Emphasizing the prediction aspect of the basic asset

pricing equation, we consider the following decomposition:

R̃ei
t,T = ait,T+ε

i
t,T , (2.10)

6Alternatively, we could also use KT as a starting point, but MW is arguably more appropriate
for a larger number of stocks.
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where εit,T = Rei
t,T−Et(R

ei
t,T ) can be conceived of as the irreducible idiosyncratic forecast

error. We can now apply the MLPs not to Rei
t,T and Et(R

ei
t,T ) but rather to R̃

ei
t,T and

ait,T . This is a sensible approach because the approximation residual ait,T is a function

of time t conditional moments, as is shown in Section A.1 of the appendix. Similar

to the treatment of g0T (z
i
t) in Equation (2.7), we can represent ait,T as a function of

the time t state variables zit, such that ait,T = h0T (z
i
t), and use a statistical model with

parameters ϑT to approximate h0T (z
i
t) ≈ hT (z

i
t,ϑT ).

The machine learning-style estimation of the parameters ϑT entails minimizing the

MSE associated with the forecast error R̃ei
t,T−hT (z

i
t,ϑT ) instead of Rei

t,T−gT (z
i
t, θT ).

The hybrid risk premium quantification is then given by:

Et(R
ei
t,T ) ≈ Ẽt(R

ei
t,T )+hT (z

i
t, ϑ̂T ), (2.11)

which yields the familiar decomposition:

Rei
t,T−(Ẽt(R

ei
t,T )+hT (z

i
t, ϑ̂T ))︸ ︷︷ ︸

hybrid forecast

= (ait,T−hT (z
i
t,ϑT ))︸ ︷︷ ︸

approximation error

+(hT (z
i
t,ϑT )−hT (z

i
t, ϑ̂T ))︸ ︷︷ ︸

estimation error

+εit,T .

(2.12)

To account for time-varying model parameters, the dynamic hyperparameter tuning

described in Section 2.2.3 can be applied in the same way, which yields the following

hybrid approximative formula for the stock risk premium:

Et(R
ei
t,T ) ≈ Ẽt(R

ei
t,T )+hs,T (z

i
t, ϑ̂s,T ). (2.13)

Neither the theory-based (“Econ”) nor the machine learning (“Metrics”) approach

would be described as econometrics, the discipline founded to connect economic theory

and statistics. Yet, the formula in Equation (2.13) may be seen as a novel way to

combine Econ and Metrics in the modern age of data science. We refer to this hybrid

strategy as theory assisted by machine learning.

An obvious alternative hybrid strategy is motivated by the observation that though

GKX include a plethora of stock-level and macro features, they do not use the infor-

mation provided by the theory-based risk premium measures, or any other conditional

time t moment computed under the risk-neutral measure. By augmenting the set of

features accordingly, we can assess whether the theory-based measurements enhance

the explanatory power of the data science approach. We refer to this hybrid approach

as machine learning with theory features.

A central tenet of financial economics, derived from Equation (2.1), states that

marginal utility-weighted prices follow martingales. This tenet implies that return

predictability should be a longer-horizon phenomenon. High frequency price processes

are expected to behave like martingales, such that the MSE-optimal return prediction

at very short horizons should be close to the zero forecast (cf. Cochrane (2005), Section

2.4). The signal-to-noise ratio – Et(R
ei
t,T ) to εit,T – is expected to increase at longer

forecast horizons. So, the empirical question that we seek to address refers to which
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of the approaches – theory-based, machine learning or hybrid – delivers a better ap-

proximation of Et(R
ei
t,T ), i.e. a superior out-of-sample performance, at given horizons.

To answer this question we need a comprehensive database.

2.3 Data, implementation, and performance as-

sessments

2.3.1 Assembling the database

Selection of stocks and linking databases

The universe of stocks for which we compare the alternative risk premium measures

is defined by a firm’s membership in the S&P 500 index.7 One reason to choose this

criterion is that if we want to compute theory/option-based risk premia according to

Equation (2.5), we have to provide information about the constituents of the market

index proxy. Because the S&P 500 is used for that purpose, index membership is

the obvious criterion to select the cross-section of stocks considered for our analysis.

For the identification of historical S&P 500 constituents (HSPC) across databases,

we start by extracting information about a firm’s S&P 500 membership status from

Compustat. We thereby obtain, for every month from March 1964 to December 2018,

a list of HSPC. In total, we find 1,675 firms that have been in the S&P 500 for at

least one month. For the HSPC identified in Compustat, we retrieve price and return

data from CRSP. Compustat and CRSP also supply the data used for the machine

learning approaches. The option data, which are required to compute the theory-based

measures, come from OptionMetrics. Section A.2 in the appendix explains in detail

how we link the three databases and documents the quality of the matching procedure.

Stock-level and macro features

Following GKX, we retrieve from Compustat and CRSP 93 firm-level variables that

have been identified as predictors for stock returns in previous literature. We also

construct 72 binary variables that identify a firm’s industry (see Table A.1 in the

appendix).8 A cross-sectional median-based imputation is applied to deal with missing

observations.9

7Each company in the S&P 500 may be associated with multiple securities. An S&P 500 con-
stituent is a specific company-security combination, but we refer to them, as is common in the
literature, interchangeably as “securities,” “stocks” or “firms.”

8For that purpose, we adapt the SAS program from Jeremiah Green’s website, https://sites.google.
com/site/jeremiahrgreenacctg/home, accessed January 20, 2020. The industry indicators are based
on the first two digits of the standard industrial classification (SIC) code.

9Median-based imputation is frequently applied in related literature. However, Bryzgalova et al.
(2022) point out that firm characteristics are typically not missing at random, rendering median-
based imputation problematic. They propose an alternative approach that exploits cross-sectional
and time series dependencies between characteristics to impute missing values. For their empirical
analysis Bryzgalova et al. (2022) use a sample that comprises more than 22,000 stocks (including
penny stocks) and starts in 1967. Missing data occur particularly often at the beginning of the
sample and for small firms. Being aware of the missing value issue, we do not follow GKX, who use
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We consider two types of transformation for firm-level fetures: standard mean-

variance and median-interquartile range scaling, the latter being more robust in the

presence of outliers. The choice of the scaling procedure (standard or robust) is treated

as a hyperparameter.10 In either case, we make sure that no information from the fu-

ture enters the validation or tests sets in order to prevent a look-ahead bias. The stock-

level features are augmented by macro-level variables, obtained from Amit Goyal’s

website.11 These variables are the market-wide dividend-price ratio, earnings-price ra-

tio, book-to-market ratio, net equity expansion, stock variance, the Treasury bill rate,

term spread, and default spread. Their detailed definitions can be found in Welch and

Goyal (2008).

The variables retrieved have a mixed frequency: monthly (20 stock-level + 8 macro-

level variables), quarterly (13 stock-level variables), or annual (60 stock-level variables).

Using the date of the last trading day of each month as a point of reference, they are

aligned according to Green et al.’s (2017) assumptions about delayed availability to

avoid any forward-looking bias. Features at the monthly frequency are delayed at most

one month, quarterly variables by at least a four-month lag, and annual variables by at

least a six-month lag. Moreover, we match CRSP returns at horizons of one month (30

calendar days) and one year (365 calendar days), such that they are forward-looking

from the vantage point of the end-of-month alignment day.

A considerable number of missing values for stock-level features arise, if we go

further back in time than the mid-1970s. To mitigate the aforementioned negative

consequences associated with massively imputing missing values, we start using the

data in October 1974, when the problem is alleviated. Moreover, two of the origi-

nally 93 stock-level features retrieved are excluded, because they contain an excessive

amount of missing values. Figure 2.1 shows a heatmap that illustrates how the share

of missing values of stock-level features changes over time.

The out-of-sample analysis is performed for the period from January 1996, the

starting date of OptionMetrics, until December 2018. Proceeding as described, we

obtain an unbalanced panel data set at a monthly frequency that ranges from October

1974 until December 2018. The number of HSPC during that period is 1,145, with

a varying number of observations per stock. In total, there are 362,306 stock/month

observations.

Option data

The data to implement the option-based risk premium formulas in Equations (2.5) and

(2.6) are retrieved from OptionMetrics. Two issues must be resolved in the process.

data from the late 1950s, but instead commence the training process in 1974. Focusing on HSPC,
which are large firms by constructions, further mitigates the problem of missing values.

10Here we deviate from GKX, who achieve outlier robustness by applying a cross-sectional rank
transformation and re-scaling the stock-level features to the interval -1 to 1. Various studies (e.g.,
Da et al., 2022 and Kelly et al., 2019) report that their results do not critically depend on the
choice of scaling. To assess whether this conclusion also holds true in our setting, Section A.7 of the
appendix reports the results of a robustness check, in which the empirical analysis is conducted with
rank-transformed features.

11See http://www.hec.unil.ch/agoyal, accessed January 20, 2020.
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Figure 2.1: Proportion of non-missing observations for each stock-level feature and year.
This figure illustrates, for each of the stock-level features used in the machine learning approaches,
the proportion of non-missing firm-date observations per year. The sample period ranges from 1964
to 2018, and the features are sorted from top to bottom in ascending order, according to their average
proportion of non-missing observations. The darker the color, the more observations are available.
The lighter the color, the less observations are available. All white indicates 100% missing values,
the darkest blue means no missing values. The red vertical line indicates the year 1974, which is the
first year that we use in the long training scheme described in Figure 2.2. Because of the excessive
amount of missing values, we exclude the variables real estate holdings and secured debt from the
empirical analysis.
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First, options on S&P 500 stocks are American options, yet the computation of risk-

neutral variances according to Equation (2.4) relies on European options. Second, a

continuum of strike prices is not available, so the integrals in Equation (2.4) must be

approximated using a grid of discrete strikes. As pointed out by Martin (2017), a lack

of a sufficient number of strikes may severely downward bias the computation of risk-

neutral variances. Martin andWagner (2019) advocate for the use of the OptionMetrics

volatility surface to address these issues and compute risk-neutral variances according

to Equation (2.4). Although European options are traded on the S&P 500 index, and

their prices are available in OptionMetrics, we also rely on the volatility surface to

compute risk-neutral index variances. Using the OptionMetrics volatility surface, we

compute the theory-based risk premium measures for the selected stocks and the two

horizons of interest. These data are matched, by their security identifier and end-of-

month date, with the aforementioned unbalanced panel. A detailed explanation of our

use of the volatility surface is provided in Section A.3 of the appendix.

Risk-free rate proxies

To compute excess returns and all of the option-based measures, we need a risk-free rate

proxy that matches the investment horizon. It can be computed for different horizons

at a daily frequency using the zero curve provided by OptionMetrics. However, like

any data supplied by OptionMetrics, the zero curve is not available before January

1996. We therefore employ the Treasury bill rate as a risk-free rate proxy for earlier

periods.

2.3.2 Empirical implementation

In the following we provide information about the hyperparameter configurations of

the statistical models, the construction of the vector of state variables zit, and the long

and short training schemes.

As mentioned previously, our machine learning approaches employ four popular

statistical models: the ANN, RF, GBRT, and ENet. The first three were identified by

GKX as the most appropriate for the task at hand. The ENet is included as an instance

of penalized regression because of the less demanding hyperparameter tuning.12 The

hyperparameter configurations for these models are listed in Table 2.1.

The selection of features collected in the vector zit follows GKX, such that we use

the 91 stock-level variables (included in the vector cit) and their interactions with the

eight macro predictors (included in the vector xt). Formally, zit is comprised of the

vector (1,x′t)
′⊗cit, augmented with industry dummies, such that altogether we have

91×9+72 = 891 features.13

The implementation of the sequential validation procedure mentioned in Section

12We assume that the reader has some familiarity with these approaches, which are covered by
Hastie et al. (2017).

13In principle, it would also be possible to explicitly consider the time series of macroeconomic
variables, as proposed by Chen et al. (2023). In line with GKX, we choose to focus on the last
observation of these series instead.
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Table 2.1: Hyperparameter search space. This table shows the hyperparameter search space
and the Python packages used for both long and short training. Parameter configurations not listed
here correspond to the respective default settings.

Panel A: ENet Panel B: RF

Package: Package:
Scikit-learn (SGDRegressor) Scikit-learn (RandomForestRegressor)

Feature transformation: Feature transformation:
Standard & robust scaling Standard & robust scaling
Selection by variance threshold Selection by variance threshold

Model parameters: Model parameters:
ℓ1-ℓ2-penalty: {x ∈ R : 10−5 ≤ x ≤ 10−1} Number of trees: 300
ℓ1-ratio: {x ∈ R : 0 ≤ x ≤ 1} Max. depth: {x ∈ N : 2 ≤ x ≤ 30}

Max. features: {x ∈ N : 2 ≤ x ≤ 150}

Optimization:
Stochastic gradient descent
Tolerance: 10−4

Max. epochs: 1,000
Learning rate: 10−4/t0.1

Random search: Random search:
Number of combinations: 1,000 Number of combinations: 500

Panel C: GBRT Panel D: ANN

Package: Package:
Scikit-learn (GradientBoostingRegressor) Tensorflow/Keras (Sequential)

Feature transformation: Feature transformation:
Standard & robust scaling Standard & robust scaling
Selection by variance threshold Selection by variance threshold

Model parameters: Model parameters:
Number of trees: {x ∈ N : 2 ≤ x ≤ 100} Activation: TanH (Glorot), ReLU (He)
Max. depth: {x ∈ N : 1 ≤ x ≤ 3} Hidden layers: {1,2,3,4,5}
Max. features: {20,50,All} First hidden layer nodes: {32,64,128}
Learning rate: {x ∈ R : 5×10−3 ≤ x ≤ 1.2×10−1} Network architecture: Pyramid

Max. weight norm: 4
Dropout rate: {x ∈ R : 0 ≤ x ≤ 0.5}
ℓ1-penalty: {x ∈ R : 10−7 ≤ x ≤ 10−2}

Optimization:
Adaptive moment estimation
Batch size: {100,200,500,1,000}
Learning rate: {x ∈ R : 10−4 ≤ x ≤ 10−2}
Early stopping patience: 6
Max. epochs: 50
Batch normalization before activ.
Number of networks in ensemble: 10

Random search: Random search:
Number of combinations: 300 Number of combinations: 1,000
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2.2.1 is illustrated in Figure 2.2 (long training scheme). It shows that the length of

the training period increases from 10 years initially to 31 years; the 12-year validation

period shifts forward by one year with every new test sample. There are S=22 out-of-

sample years with the final one-year predictions made in December 2017 for December

2018. For every sample and statistical model, hyperparameter tuning is performed

at the one-month and one-year forecast horizon. When considering the one-month

horizon, the number of test samples increases to S=23, because monthly forecasts are

possible during the year 2018. Details on the hyperparameter tuning are provided in

Section A.5 of the appendix.14

The basic setup remains the same when considering the hybrid approaches. How-

ever, the training and validation procedure changes because of the delayed availability

of the OptionMetrics data beginning January 1996. We therefore consider the alter-

native, short training scheme illustrated in Figure 2.3; it is used for the theory assisted

by ML and ML with theory features strategies. The short training scheme reduces the

initial training period to one year and the validation period comprises 1 year instead of

12. With this configuration, we can retain a sufficiently large number of out-of-sample

years, comparable to the long training scheme.

To establish a benchmark for the performance of the hybrid approaches, we also

train the models using the original feature set and the short training scheme. A

comparison with the long training results is interesting for another reason too: It

allows us to study how important the length of the training period is and to assess the

effect of the length of the validation period.

2.3.3 Performance assessments

We compare the alternative approaches to measure stock risk premia by assessing

their out-of-sample forecast performance. This represents a useful criterion, because

the different methodologies provide approximations of the conditional expected excess

return, which is the MSE-optimal prediction. The smaller the MSE, the better the

approximation of the stock risk premium. We consider forecasts with horizons of one

month (30 calendar days) and one year (365 calendar days), issued at an end-of-month

and daily frequency, respectively.

Following Welch and Goyal (2008), we rely on a performance measure that relates

the MSE of a model’s out-of-sample forecast to that of a benchmark. We use the zero

forecast for that purpose, which has the appeal of providing a parameter-free alterna-

tive and comparability across studies. More specifically, the performance criterion is

the pooled predictive R2 given by:

R2
oos = 1−

∑
t

∑
i

(
Rei

t,T−R̂
ei
t,T )

2

∑
t

∑
i

(
Rei

t,T

)2 , (2.14)

14While our implementation of the machine learning approaches draws on GKX, it deviates in some
respects. Section A.6 in the appendix provides a detailed juxtaposition.
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Figure 2.2: Long training scheme. The figure depicts the annual horizon variant of the long
training scheme. The data range from October 1974 to December 2017. The training period (red/dark
grey) initially spans 10 years and increases by one year after each validation step. Each of the 22
validation steps delivers a new set of parameter estimates. Each validation window (gold/light grey)
covers 12 years and is rolled forward with a fixed width, followed by one year of out-of-sample testing
(checkered blue).
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Figure 2.3: Short training scheme. The figure depicts the annual horizon variant of the short
training scheme. The data range from January 1996 to December 2017. The training period (red/dark
grey) initially spans one year and increases by one year after each validation step. Each of the 20
validation steps delivers a new set of parameter estimates. Each validation window (gold/light grey)
covers one year, followed by one year of out-of-sample testing (checkered blue).
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where R̂ei
t,T denotes the respective forecast/risk premium estimate. The calculation is

based solely on observations included in the S test sample years that were not used

for training or validation.

To study performance over time, we also compute the predictive R2 for each of the

test samples separately:

R2
oos,s = 1−

∑
i

∑
t

(
Rei

t,T−R̂
ei
t,T

)2
·11[t ∈ S(s)]

∑
i

∑
t

(
Rei

t,T

)2
·11[t ∈ S(s)]

s = 1,2, . . . ,S, (2.15)

where S(s) denotes the set of time indices of forecast sample s, such that 11[t ∈ S(s)]

is equal to 1 if the observation in t belongs to the sample year s, and 0 otherwise.

For the assessment of statistical significance, we report the p-values associated with a

test whether a model has no explanatory power over the zero forecast; formally, the

null hypothesis that E(R2
oos,s) ≤ 0. To construct a convenient test statistic, we take

the mean of the R2
oos,s across the test samples, R2

oos =
1
S

∑S
s=1R

2
oos,s, and compute its

standard error σ̂(R2
oos), using a Newey-West correction to account for serial correlation.

Provided that a central limit theorem applies, and assuming that E(R2
oos,s) = 0, the

t-statistic R2
oos/σ̂(R

2
oos) is approximately standard normally distributed, such that a

one-sided p-value can be provided.15

As an alternative to the R2
oos in Equation (2.14), we also consider the time-series

R2 used by Chen et al. (2023), which accounts for the fact that the number of stocks

in period t (Nt) can change over time:

EVoos = 1−

∑
t

1
Nt

∑Nt

i=1

(
Rei

t,T−R̂
ei
t,T )

2

∑
t

1
Nt

∑Nt

i=1

(
Rei

t,T

)2 . (2.16)

As this study is ultimately concerned with approximating stock risk premia, both

the level and cross-sectional properties of the excess return predictions should be taken

into account for performance assessment. However, the R2
oos can be dominated by the

forecast error in levels, potentially masking the cross-sectional explanatory power of

a model. To explicitly account for this dimension of return predictability, we use the

following measures: First, we compute a cross-sectional out-of-sample R2 similar to

those advocated by Maio and Santa-Clara (2012) and Bryzgalova et al. (2021):

XSoos = 1−
VarN(ε̂iT )

VarN(Rei
T )
, (2.17)

where VarN(·) stands for the cross-sectional variance across the N sample stocks; ε̂iT
and Rei

T are the stock-specific time-series averages of Rei
t,T−R̂

ei
t,T and Rei

t,T , respectively.

Second, we assess cross-sectional performance by forming decile portfolios based on

15The Diebold-Mariano test employed by GKX to gauge differences in forecast performances is
constructed in a similar vein. We provide p-values associated with this test in Section A.8 of the
appendix.
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the respective model’s excess return predictions and comparing predicted and realized

mean excess returns across approaches. If an approach delivers sensible risk premium

estimates then a) the mean predicted excess returns and mean realized excess returns of

the prediction-sorted portfolios should align, and b) there should be sizable variation in

the mean realized excess returns across these portfolios. Besides graphical assessments

and rank correlations, we also compare the annualized Sharpe ratios of zero-investment

portfolios long in the decile portfolio of stocks with the highest excess return prediction

and short in that with the lowest. The Sharpe ratio accounts for the desideratum

that the cross-sectional differentiation of the mean realized excess returns should be

achieved by a small variation over the years of the test sample.

The machine learning models are trained on data at a monthly frequency. Ac-

cordingly, the respective excess return forecasts are updated once at the end of each

month. Forecasts at these same dates are also available using the option-based ap-

proaches, which additionally can provide risk premium estimates at higher frequencies,

up to daily. To facilitate comparisons at a daily frequency, we retain the most recent

ML-based risk premium estimate until an update becomes available by the end of

the next month. For example, the estimate of an annual horizon stock risk premium

in mid-April 2015 corresponds to the last available estimate calculated at the end

of March 2015. For the ML with theory features strategy, the hybrid model’s daily

estimate employs the statistical model (trained on monthly data) endowed with the

prevailing end-of-month firm- and macro-level features and daily updated theory-based

measures. Similarly, the adaption of the theory assisted by ML approach combines the

theory-based daily risk premium estimate with the prevailing end-of-month ML-based

residual approximation.

2.4 Empirical results

2.4.1 Comparison at monthly and annual horizons

One-month horizon

Table 2.2 contains the results for the one-month horizon; in Panel A, the forecasts

are issued at a daily frequency, whereas in Panel B, they are issued monthly (end-of-

month). Among the machine learning approaches in Panel B, only the ANN achieves

a positive predictive R2 (0.2%); the same R2
oos is delivered by the theory-based

MW.16 Evaluating the daily MW forecasts, we find that the predictive R2 increases to

0.9%, which represents the only instance in which we can reject the hypothesis that

E(R2
oos,s) ≤ 0 at significance levels below 5%. For a daily forecast frequency, the ANN

16To avoid a cluttered exposition, we focus in the main text on reporting and interpreting the R2
oos

results. Section A.8 in the appendix includes extended tables that also reportXSoos and EVoos. It can
be seen that R2

oos and EVoos take on very similar values, and while the level of XSoos is somewhat
smaller, its pattern across approaches corresponds to that of R2

oos. Accordingly, the conclusions
obtained by using the alternative performance measures remain the same.
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achieves an R2
oos of 0.5%, the highest among the machine learning approaches.17

The comparatively good performance of the theory-based approach is corroborated

by a complementary analysis based on the data that Chabi-Yo et al. (2023) used to

introduce their alternative option-based risk premium estimate, and which contain

their estimates at the one-month and one-year horizons.18 Although the universe of

stocks is different, there is an overlap with our study. When we conduct an analysis at

the intersection of firms and dates, it yields a monthly R2
oos of 1% implied by Chabi-

Yo et al.’s (2023) method (daily forecast frequency). For this merged sample, the

predictive R2 produced by MW remains unchanged (0.9%); the R2
oos of the machine

learning approaches do not improve.

The relative advantages of the theory-based paradigm are also evident in Figure

2.4. Panel A (monthly forecast frequency) and conspicuously Panel B (daily) both

show that MW yields a better alignment of the prediction-sorted portfolios. The rank

correlation between mean predicted and mean realized excess returns is 0.96, whereas

that implied by the ANN is 0.56 (monthly forecast frequency). Figure 2.4 also shows

that the variation of the mean realized excess returns across prediction-sorted portfolios

is favorably wider using MW than the variation implied by the ANN. This result is

reflected in the Sharpe ratios of the zero investment portfolios (cf. Table 2.2), which

are 0.30 (monthly forecast frequency) and 0.37 (daily) for MW, compared with 0.28

(monthly) and 0.26 (daily) for the ANN.19 Overall, these findings indicate that at the

one-month horizon, care is needed when investing in machine learning-based methods;

their superiority over the theory-based paradigm is by no means a given.

An alternative conclusion might refer to the sample period and universe of stocks,

for which the task at hand might be more difficult for machine learning. Compared

with GKX, we consider fewer stocks for training and validation, and the training begins

in a later year, both of which are factors that could prevent the machine learning

approaches from reaching their full potential.

One-year horizon

Most of these concerns can be alleviated by a review of Table 2.3, which shows the

results for the one-year horizon. Contrasting Panels A and B, we observe that it

matters little whether we use daily or monthly forecasts, so we simply focus on the

latter in the following discussion.

Compared with the one-month horizon results, the annual predictive R2 increase

by an order of magnitude; the R2
oos delivered by MW is about 9%. The results in

Table 2.3 mitigate any concerns that the present selection of stocks constitutes a more

17A monthly predictive R2 of about 1% may appear small, but it is actually higher than any
reported by GKX. Their ANNs yield monthly predictive R2 between 0.3% and 0.7%, depending on
the universe of stocks and ANN architecture.

18We are grateful to Grigory Vilkov for providing access to these data.
19Tables 2.2 and 2.3 also show that, in terms of predictive R2, KT is less successful. Yet, regarding

prediction-sorted portfolios, KT and MW are equivalent. Both achieve cross-sectional differentiation
through risk-neutral variances var∗t (R

i
t,T ). Thus, the prediction-sorted portfolios include the same

stocks and yield the same mean realized excess returns and Sharpe ratios.
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Table 2.2: Performance comparison, one-month horizon: long training. The table reports
predictive R2, their standard deviation and statistical significance, and the annualized Sharpe ratios
(SR) implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches
and the four machine learning models. The standard deviation of the R2

oos,s×100 (Std Dev) is
calculated based on the annual test samples. The SR refer to a zero-investment strategy long in the
portfolio of stocks with the highest excess return prediction and short in the portfolio of stocks with
the lowest excess return prediction. The p-values are associated with a test of the null hypothesis that
the respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. For Panel A,
the one-month horizon forecasts are issued at a daily frequency. For Panel B, the one-month horizon
forecasts are issued at the end of each month. The out-of-sample testing period starts in January
1996 and ends in November 2018. The machine learning results are obtained using the long training
scheme depicted in Figure 2.2.

Panel A: daily forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 0.9 2.3 0.008 0.37

KT −0.5 5.3 0.530 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet 0.0 2.9 0.072 0.07

ANN 0.5 3.1 0.038 0.26
GBRT 0.3 2.9 0.036 0.29
RF −0.5 3.8 0.215 0.15

Panel B: monthly forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 0.2 3.2 0.154 0.30

KT −1.8 6.9 0.704 0.30

M
a
ch

in
e

L
ea

rn
in
g ENet −0.3 3.5 0.161 0.00

ANN 0.2 3.5 0.096 0.28
GBRT −0.6 4.2 0.248 0.20
RF −1.6 5.2 0.435 0.13
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Figure 2.4: Prediction-sorted portfolios, one-month horizon: long training. The stocks
are sorted into deciles according to the one-month horizon excess return prediction implied by the
respective approach, and realized excess returns are computed for each portfolio. The prediction-
sorted portfolios are formed either at the end of each month or daily. The four panels plot the
predicted against realized portfolio excess returns (in %), averaged over the sample period. The
numbers indicate the rank of the prediction decile. The rank correlation between predicted and
realized excess returns in each panel is Kendall’s τ . Approaches considered are MW (Panel A),
an ANN (Panel C), and RF (Panel D). Panel B shows the MW results when the prediction-sorted
portfolios are formed at a daily frequency. The out-of-sample period ranges from January 1996 to
November 2018. Machine learning results are based on the long training scheme depicted in Figure
2.2.
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Table 2.3: Performance comparison, one-year horizon: long training. The table reports
predictive R2, their standard deviation and statistical significance, and the annualized SR (SR)
implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches and
the four machine learning models. The standard deviation of the R2

oos,s×100 (Std Dev) is calculated
based on the annual test samples. The SR refer to a zero-investment strategy long in the portfolio of
stocks with the highest excess return prediction and short in the portfolio of stocks with the lowest
excess return prediction. The p-values are associated with a test of the null hypothesis that the
respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. For Panel A, the
one-year horizon forecasts are issued at a daily frequency. For Panel B, the one-year horizon forecasts
are issued at the end of each month. The out-of-sample testing period starts in January 1996 and
ends in December 2017. The machine learning results are obtained using the long training scheme
depicted in Figure 2.2.

Panel A: daily forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 9.1 16.0 0.040 0.38

KT 3.5 47.5 0.675 0.38

M
a
ch

in
e

L
ea

rn
in
g ENet 4.0 19.5 0.201 0.35

ANN 8.2 17.6 0.029 0.49
GBRT 9.9 19.9 0.039 0.36
RF 18.2 22.6 0.003 0.56

Panel B: monthly forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 8.8 16.3 0.051 0.37

KT 3.1 47.6 0.694 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet 5.5 18.5 0.125 0.36

ANN 9.0 19.0 0.028 0.50
GBRT 10.6 20.5 0.035 0.36
RF 19.5 23.6 0.002 0.58
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difficult environment for machine learning approaches or that their training is flawed.

For example, the ANN achieves an annual R2
oos notably higher than those reported by

GKX.20 Furthermore, MW, GBRT, and the ANN perform comparably well, with R2
oos

ranging between 8.8% and 10.6% and p-values for the hypothesis that E(R2
oos,s) ≤ 0

ranging from 3.5% to 5.1%.21 Notably smaller predictive R2 and higher p-values are

implied by the ENet and KT; that is, not all option-based and machine learning

approaches perform equally well.

In terms of predictive R2, the RF stands out, delivering an annual R2
oos of 19.5%

with a p-value of 0.2%. The good RF results are confirmed by the favorable alignment

and cross-sectional variation in realized mean excess returns of the prediction decile

portfolios (cf. Panel D of Figure 2.5), and the highest Sharpe ratio of the long-short

portfolio among the approaches considered. We thus conclude that at the one-year

horizon, there exists a machine learning method that offers a comparative advantage

over the theory-based approach.22

Time-series variation

The time-series variation of the predictive R2 is illustrated in Figure 2.6. In Panel A,

we present a comparison of MW with the random forest, the best-performing machine

learning method; the other approaches are in Panel B. The R2
oos,s values depicted in

Figure 2.6 refer to the year the forecast was issued. For example, the annual predictive

R2 associated with the year 2008 is based on forecasts issued from January to December

2007.

The volatility of the R2
oos,s values indicated by Figure 2.6 is not surprising; the

years 1996-2018 represent a period rife with crises and crashes. These events have a

notable effect on the standard deviations of the predictive R2 in Tables 2.2 and 2.3.

We observe that at the one-year horizon, the impact of the build-up and burst of the

so-called dot-com bubble is more pronounced than that of the 2008 financial crisis.

Both theory-based and machine learning approaches yield large negative annual R2
oos,s

values associated with forecasts issued during 2000 and 2001. Panel A in Figure 2.6

also illustrates how the RF achieves its improvement over MW at the one-year horizon.

2.4.2 Hybrid approaches and short training

Next, we assess the potential of hybrid strategies that combine the theory-based and

machine learning paradigms. Table 2.4 indicates the promise of this idea: Although

theory-based and machine learning forecasts covary positively, the correlations are not

strong, so the two approaches seem to account for different components of the stock

20Depending on the selection of stocks, they report annual predictive R2 for ANNs that range from
3.4% to 5.2%.

21A complementary analysis using data provided by Grigory Vilkov yields very similar annual
predictive R2 values for MW and Chabi-Yo et al.’s (2023) alternative approach.

22As mentioned in Section 2.3.3, the R2
oos can be dominated by the forecast error in levels, whereas

the Sharpe ratio captures purely cross-sectional aspects. Hence, it is not necessary for R2
oos and the

Sharpe ratio to point into the same direction in terms of favored approaches.
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Figure 2.5: Prediction-sorted portfolios, one-year horizon: long training. The stocks are
sorted into deciles according to the one-year horizon excess return prediction implied by the respective
approach, and realized excess returns are computed for each portfolio. The prediction-sorted portfolios
are formed either at the end of each month or daily. The four panels plot predicted against realized
portfolio excess returns (in %), averaged over the sample period. The numbers indicate the rank of the
prediction decile. The rank correlation between predicted and realized excess returns in each panel
is Kendall’s τ . Approaches considered are MW (Panel A), an ANN (Panel C), and RF (Panel D).
Panel B shows the MW results when the prediction-sorted portfolios are formed at a daily frequency.
The out-of-sample period ranges from January 1996 to December 2017. Machine learning results are
based on the long training scheme depicted in Figure 2.2.

0 8 16 24 32 40
0

8

16

24

32

40

A
v
g
.
p
re
d
ic
te
d
ex
ce
ss

re
tu
rn
s

Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96Rank corr. 0.96

Panel A

1
2 3 4

5
6
7

8

9

10

0 8 16 24 32 40
0

8

16

24

32

40
Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00

Panel B

1
2 3

45
6
7

8

9

10

0 8 16 24 32 40
Avg. realized excess returns

0

8

16

24

32

40

A
v
g
.
p
re
d
ic
te
d
ex
ce
ss

re
tu
rn
s

Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00

Panel C

1

2
3
4
5
6

7
8

9

10

0 8 16 24 32 40
Avg. realized excess returns

0

8

16

24

32

40
Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00Rank corr. 1.00

Panel D

1

2
3
4
5
6

7
8

9

10

MW

ANN

MW (daily)

RF

27



Figure 2.6: Time series of predictive R2, one-year horizon: long training. The figure
depicts the R2

oos,s time series based on annual test samples. The forecast horizon is one year; the
prediction frequency is monthly (end-of-month). The out-of-sample period ranges from January 1996
to December 2017. Panel A contrasts the MW results with the RF, which in terms of R2

oos is the
best among the machine learning approaches. Panel B shows the R2

oos,s time series of the remaining
approaches. The machine learning results are obtained using the long training scheme depicted in
Figure 2.2.
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risk premium.

Short-training effects and ML with theory features

Any hybrid methodology must accommodate the late availability of the OptionMetrics

data. As discussed previously, we deal with this issue by applying the short-training

scheme in Figure 2.3. Tables 2.5 (one-month horizon) and 2.6 (one-year horizon)

present two sets of machine learning results obtained by short training. The first uses

the same 891 features as selected for long training. The second, referred to as ML with

theory features, results from adding the two option-based stock risk premium measures

(according to MW and KT) and Martin’s (2017) lower bound of the expected market

return. The following discussion contains an assessment of the incremental effects of

applying the short-training scheme and including the theory-based features.23

We have already seen that at the one-month horizon, most of the machine learn-

ing approaches do not perform well. Table 2.5 shows that the results worsen when

applying the short-training scheme. All MLPs, including the ANN, now yield a neg-

ative predictive R2. Their standard deviations increase, and the Sharpe ratios of the

long-short portfolios decline. The segments labeled ML with theory features in Table

2.5 reveal that this deterioration is not mitigated by the inclusion of theory-based

features. Using MW to obtain risk premium estimates remains the preferred strategy

at the one-month horizon.

Table 2.6 shows that the short-training effects are more ambiguous with regard to

end-of-month issued forecasts with a one-year horizon. While the ENet now performs

poorly, the ANN benefits from short training: ItsR2
oos increases from 9% (long training)

to 14%, with a p-value of 0.4%. In contrast, short training reduces the RF’s predictive

R2 from 19.1% (long training) to 12.4%, accompanied by increases of the standard

deviation and p-value. However, Panel A of Figure 2.7, which depicts the time-series

variation of the predictive R2, shows that the adverse effects of short training on the

RF are mitigated as the training sample grows. At the start of the sequential validation

procedure, there are only a few years of observations available for training. When the

dot-com crisis confronts such an RF, it results in a sharp decline of the R2
oos,s associated

with the one-year forecasts issued in the year 2000. This drop causes the increase of

the time-series standard deviation and p-value compared with the long-trained RF.24

As the training sample grows, the performance of the short-trained RF improves and

reaches, near the end of the sample period, the level of its long-trained counterpart.

Table 2.6 also shows that the machine learning with theory features strategy yields a

positive effect only when using the RF. Though the improvement is moderate for end-

of-month-issued forecasts – the R2
oos increases from 12.4% to 14.6%, and the Sharpe

ratio increases from 0.59 to 0.62 – we note that the augmentation with theory features

helps the short-trained RF improve the 2008 crisis year forecasts (cf. Figure 2.7).

23Comparing Table 2.5 with Table 2.2, we note that the theory-based results only change because
the out-of-sample evaluation period is shorter. The years 1996 and 1997 are excluded to ensure
comparability with the short-trained MLPs.

24Figure 2.7 shows that this drop is much less pronounced for the short-trained ANN, which explains
the smaller standard deviation and p-value in Table 2.6.
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Table 2.4: Forecast correlations. The table reports Pearson correlation coefficients for the out-of-
sample forecasts of the theory-based approaches (Martin and Wagner, 2019; Kadan and Tang, 2020)
and the four machine learning models with the long training scheme depicted in Figure 2.2. Panel A
refers to a forecast horizon of one month with a testing period from January 1996 to November 2018.
Panel B refers to a forecast horizon of one year and a testing period from January 1996 to December
2017. All forecasts are issued at the end of each month.

Panel A: One-month horizon

ANN RF GBRT ENet KT

MW 0.01 0.25 0.32 −0.06 0.98
KT 0.02 0.25 0.31 −0.04
ENet 0.32 0.70 0.45
GBRT 0.11 0.82
RF 0.22

Panel B: One-year horizon

ANN RF GBRT ENet KT

MW 0.19 0.33 0.34 0.00 0.98
KT 0.20 0.32 0.35 0.02
ENet 0.69 0.49 0.57
GBRT 0.70 0.72
RF 0.59

Figure 2.7: Time series of predictive R2, one-year horizon: theory-based vs. machine
learning with and without theory features. The figure depicts the R2

oos,s time series based on
annual test samples. The forecast horizon is one year; the prediction frequency is monthly (end-of-
month). The out-of-sample period ranges from January 1998 to December 2017. The machine learning
results are obtained using the short training scheme depicted in Figure 2.3. For a comparison, we
also display the R2

oos,s for MW and the long-trained RF from Panel A of Figure 2.6.
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Table 2.5: Performance comparison, one-month horizon: theory-based vs. machine
learning approaches vs. hybrid approach. The table reports predictive R2, their standard
deviation and statistical significance, and the annualized Sharpe ratios (SR) implied by Martin and
Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches, the four machine learning
models, and a hybrid approach in which the theory-consistent forecasts serve as additional features
in the machine learning models (ML with theory features). The standard deviation of the R2

oos,s×100
(Std Dev) is calculated based on the annual test samples. The SR refer to a zero-investment strategy
long in the portfolio of stocks with the highest excess return prediction and short in the portfolio of
stocks with the lowest excess return prediction. The p-values are associated with a test of the null
hypothesis that the respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0.
For Panel A, the one-month horizon forecasts are issued at a daily frequency, and for Panel B, the
one-month horizon forecasts are issued at the end of each month. The out-of-sample testing period
starts in January 1998 and ends in November 2018. The machine learning results are obtained using
the short training scheme depicted in Figure 2.3.

Panel A: daily forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 0.8 2.4 0.017 0.37

KT −0.7 5.5 0.590 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet −4.0 8.1 0.844 0.33

ANN −2.7 5.0 0.864 0.22
GBRT −22.6 30.7 0.884 0.12
RF −5.4 7.8 0.924 −0.04

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −3.0 6.4 0.870 0.46

ANN −30.7 68.7 0.853 0.20
GBRT −10.7 21.5 0.844 0.37
RF −3.0 5.8 0.868 0.17

Panel B: monthly forecast frequency

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 0.1 3.4 0.206 0.32

KT −2.0 7.2 0.739 0.32

M
a
ch

in
e

L
ea

rn
in
g ENet −4.0 8.6 0.840 0.21

ANN −3.1 5.0 0.853 0.13
GBRT −29.5 57.7 0.860 0.15
RF −8.4 15.1 0.869 0.00

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −3.2 7.1 0.790 0.29

ANN −36.0 69.5 0.859 0.07
GBRT −25.6 53.1 0.855 0.20
RF −7.6 13.3 0.871 0.01
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Table 2.6: Performance comparison, one-year horizon, monthly forecast frequency:
theory-based vs. machine learning approaches vs. hybrid approaches. The table reports
predictive R2, their standard deviation and statistical significance, and the annualized Sharpe ratios
(SR) implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches
and the four machine learning models. Results of two hybrid approaches, one in which the theory-
consistent forecasts serve as additional features in the machine learning models (ML with theory

features), and another in which the machine learning models are trained to account for the approx-
imation residuals of MW (Theory assisted by ML), are also reported. The standard deviation of
the R2

oos,s×100 (Std Dev) is calculated based on the annual test samples. The SR refer to a zero-
investment strategy long in the portfolio of stocks with the highest excess return prediction and short
in the portfolio of stocks with the lowest excess return prediction. The p-values are associated with
a test of the null hypothesis that the respective forecast has no explanatory power over the zero
forecast, E(R2

oos,s) ≤ 0. All results refer to a one-year forecast horizon and use the out-of-sample
testing period January 1998 to December 2017. All forecasts are issued monthly (end-of-month). The
machine learning results are obtained using the short training scheme depicted in Figure 2.3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 9.1 17.1 0.072 0.37

KT 3.1 49.9 0.706 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet −31.6 153.6 0.873 0.36

ANN 14.1 18.1 0.004 0.47
GBRT 10.3 36.6 0.308 0.45
RF 12.4 45.1 0.329 0.59

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −32.6 160.3 0.868 0.36

ANN 14.1 19.7 0.013 0.57
GBRT 9.7 39.7 0.356 0.42
RF 14.6 42.3 0.244 0.62

T
h
eo

ry
a
ss
is
te
d

b
y
M
L

MW+ENet −38.2 192.9 0.885 0.45
MW+ANN 14.2 25.8 0.073 0.51
MW+GBRT 9.2 45.2 0.440 0.40
MW+RF 16.1 50.6 0.259 0.65
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Table 2.7: Performance comparison, one-year horizon, daily forecast frequency: theory-
based vs. machine learning approaches vs. hybrid approaches. The table reports predictive
R2, their standard deviation and statistical significance, and the annualized Sharpe ratios (SR) implied
by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches and the four
machine learning models. Results of two hybrid approaches, one in which the theory-consistent
forecasts serve as additional features in the machine learning models (ML with theory features), and
another in which machine learning models are trained to account for the approximation residuals of
MW (Theory assisted by ML), are also reported. The standard deviation of the R2

oos,s×100 (Std Dev)
is calculated based on the annual test samples. The SR refer to a zero-investment strategy long in the
portfolio of stocks with the highest excess return prediction and short in the portfolio of stocks with
the lowest excess return prediction. The p-values are associated with a test of the null hypothesis
that the respective forecast has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. All
results refer to a one-year forecast horizon and use the out-of-sample testing period January 1998 to
December 2017. All forecasts are issued daily. The machine learning results are obtained using the
short training scheme depicted in Figure 2.3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 9.5 16.8 0.057 0.37

KT 3.4 49.8 0.689 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet −35.5 140.9 0.898 0.36

ANN 12.0 18.7 0.032 0.45
GBRT 8.8 36.9 0.394 0.44
RF 9.0 46.1 0.462 0.56

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −27.4 138.6 0.861 0.38

ANN 16.1 20.0 0.005 0.58
GBRT 11.6 38.5 0.308 0.44
RF 18.6 39.9 0.126 0.67

T
h
eo

ry
a
ss
is
te
d

b
y
M
L

MW+ENet −41.2 176.6 0.902 0.45
MW+ANN 12.8 26.3 0.154 0.50
MW+GBRT 8.2 47.1 0.522 0.40
MW+RF 14.1 51.9 0.355 0.62
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Table 2.7 suggests that the ML with theory features strategy is more rewarding for

forecasts at a daily frequency, and in particular when using the RF. Augmented with

daily theory-based features, the RF’s predictive R2 increases from 9.0% to 18.6%, while

also reducing the time-series variation across test samples. Considering that the pure

theory-based (MW) R2
oos amounts to 9.5%, this hybrid approach makes particularly

good use of the additional data. The highest Sharpe ratio of the long-short portfolio

in the field of competitors corroborates this conclusion.

Theory assisted by machine learning

For our implementation of the theory assisted by machine learning strategy we rely on

Martin and Wagner’s (2019) approach to measuring stock risk premia (MW for short),

which explicitly starts from the basic asset pricing equation, the keystone of financial

economics. MW is empirically not unsuccessful, and we propose building on it, as a

basis, to model only that which theory cannot account for – the approximation errors

– by applying machine learning techniques.

The segment labeled theory assisted by ML in Table 2.6 contains the results ob-

tained from applying this idea.25 We observe that not all machine learning assistance

improves the performance of the theory-based approach; the ENet even drives the R2
oos

into a negative domain. GBRT yield a moderate improvement, whereas the ANN and

RF are more successful. Their support increases the baseline MW R2
oos by 5.1 per-

centage points (MW+ANN) and 7 percentage points (MW+RF), respectively. The

standard deviations of the predictive R2 grow, but Figure 2.8 shows that this increase

is mainly due to the short-training effect, which in turn is reflected in the harsh drop

of the R2
oos,s associated with the year 2000 forecasts, which we also identified for the

short-trained RF. By zooming in on more recent forecast samples, we observe that with

an increasing training sample size, the performance of the MW+RF hybrid matches

that of the long-trained RF.

The prediction decile plots in Figure 2.9 show that the alignment of mean predicted

and realized excess returns of the prediction-sorted portfolios is particularly good for

the MW+RF approach and that the variation of the mean realized excess returns

across the prediction-sorted portfolios is favorably high. Consistently, RF assistance

increases the Sharpe ratio for the long-short portfolio from 0.37 (pure MW) to 0.65,

as reported in Table 2.6. For daily forecasts rather than forecasts issued at the end of

the month, these conclusions remain the same (cf. Table 2.7).

These results lead to the conclusion that at the one-year horizon, the MW+RF

approach qualifies as a promising alternative for the task of quantifying stock risk

premia. This hybrid strategy also has the appeal of effectively combining theory with

measurement.

25Short-trained MLPs do not perform well at the one-month horizon, and when using them to
account for the approximation errors of MW, we find no improvement. We therefore discuss in detail
only the one-year horizon results.
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2.4.3 Feature importance and disaggregated analyses

We also investigate how the importance of features with respect to stock risk premia

might differ between pure machine learning and theory assisted by machine learning.

We consider both pure RF and the MW+RF hybrid and focus on the one-year horizon

with end-of-month issued forecasts. To gauge a feature’s importance by the reduction

of the predictive R2 induced, we use a disruption of the temporal and cross-sectional

alignment of the feature with the prediction target. This disruption is implemented

by replacing the feature’s observed values by 0 when computing the predictive R2.

We compute the importance measure on the test samples, and report the size of the

induced R2
oos reduction.

26 Figures 2.10 (RF) and 2.11 (MW+RF) illustrate the results.

A comparison of Figures 2.10 and 2.11 reveals that the conclusions regarding the

relative importance of features remain the same, regardless of whether the RF serves

to assist the theory-based approach or is applied for its original use. The pattern

is similar in both applications. With respect to stock-level variables, the established

return predictive signals (RPS) are most important: The book-to-market ratio ranks

first (along with other valuation ratios), followed by variables associated with liquidity

(dollar trading volume, Amihud illiquidity), and then momentum indicators (industry

momentum and 12-month momentum). None of the other more than 80 stock level

features is among the top four. The revival of the classic RPS, and in particular the

conspicuous role of the book-to-market ratio, is noteworthy. In GKX’s study, the

short-term price reversal dominated the feature importance at the one-month hori-

zon, whereas the book-to-market ratio remained nondescript. The consistent feature

importance in both applications – RF and MW+RF – may seem surprising, because

MW already accounts for a considerable part of the excess return variation. We might

have expected that modeling the approximation error of the theory-based approach

would reveal other important features. But it is the familiar triad – valuation ratio,

liquidity, and momentum – that dominates in both applications.

A corresponding conclusion arises from an analysis of the importance of the market-

wide variables (Panels B in Figures 2.10 and 2.11). In both uses of the RF, the Treasury

bill rate is the most important variable. Its conspicuous role highlights the relevance

of asset pricing approaches that adopt Merton’s (1973) suggestion to use short-term

interest rates as state variables in variants of the intertemporal CAPM (e.g., Brennan

et al. (2004), Petkova (2006), Maio and Santa-Clara (2017)), as well as preference-

based asset pricing models that motivate a short-term interest rate-related risk factor,

26Alternatively, it is possible to compute the importance measure on the training samples and
provide a relative measure of feature importance, as done by GKX. Moreover, feature importance
could be assessed by randomly drawing a feature from the empirical distribution instead of replacing
it by 0. We prefer the present approach for its straightforward interpretability. Another approach to
assess the importance of features is based on the absolute gradient of the loss function with respect
to each feature respectively, which is very convenient in the context of neural networks (cf. Chen
et al., 2023), but not suitable for all machine learning techniques. Shapley additive explanations (cf.
Lundberg and Lee, 2017) would be well suited to account for dependencies between features, but are
computationally infeasible given our number of characteristics.
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as in Lioui and Maio (2014).27

The feature importance results provide the foundation for disaggregated analyses,

for which we form portfolios by sorting stocks into quintiles according to key char-

acteristics associated with valuation ratios, liquidity, and momentum. As suggested

by the previous results, we choose book-to-market and earnings-to-price as valuation

ratios; for liquidity, we use dollar trading volume and Amihud’s illiquidity measure.

Momentum portfolios are based on 12-month and industry momentum. The sorting

of stocks into quintile portfolios on the basis of the respective characteristic gets re-

newed each month. We also form 10 industry portfolios based on one-digit SIC codes.

For each quintile and industry portfolio and each approach of interest – MW, pure

machine learning (ANN and RF), and theory assisted by machine learning (MW+RF

and MW+ANN) – we compute the annual R2
oos according to Eq. (2.15).

The results in Table 2.8 generally corroborate the conclusions of the aggregated

analysis and also reveal the following detailed insights: For all portfolios based on

valuation ratios, we observe an improvement of the theory-based method by machine

learning assistance. Moreover, the hybrid approaches are preferred across all quintile

portfolios. MW+RF is particularly successful in quintiles 2 to 5, and MW+ANN

is optimal in quintile 1. For all momentum portfolios, machine learning assistance

improves the performance of the theory-based approach. For momentum quintiles 1

to 4, MW+RF is the preferred strategy. For momentum quintile 1, pure ANN and

MW+ANN perform better. Regarding the liquidity-sorted portfolios, machine learning

assistance again improves the theory-based results, but we note that MW+RF does not

perform well on the high liquidity portfolios. The explanation is that the short training

effect that we discussed previously has the strongest effect on the performance of both

RF and MW+RF in the high liquidity portfolios.28 The pure ANN, less affected

by short training, delivers more consistent performance across liquidity portfolios.

Nevertheless, a hybrid strategy is preferred over pure machine learning for four (dollar

trading volume), respectively three (Amihud illiquidity) quintile portfolios.

Panel B of Table 2.8 shows that for all industry portfolios, RF assistance improves

the performance of MW; the ANN assistance does so in seven out of ten cases. With

the exception of one of the sector portfolios for which the pure ANN is preferred, the

hybrid strategies yield the highest predictive R2. In addition, MW+RF is preferred in

seven of ten sector portfolios, and MW+ANN is preferred in two. The complementary

advantage of the two hybrid approaches is thus a recurring result.

27We also check whether feature importance differs when we measure the effect of an exclusion of a
feature on the cross-sectional performance, measured by the Sharpe ratio of the long-short portfolio.
The conclusions remain qualitatively the same as when we use the predictive R2. Details of this
analysis are available in Section A.8 of the appendix.

28For more details, refer to Section A.8 of the appendix, which contains time series plots of the
predictive R2 corresponding to Figure 2.6. They illustrate the short training effect broken down by
quintile portfolios based on Amihud illiquidity.
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Table 2.8: Disaggregated performance comparison, one-year horizon, monthly forecast
frequency. To obtain the results in Panel A, we sort the sample stocks into quintiles, according to
the size of stock-specific valuation ratios (book-to-market and earnings-to-price), liquidity (Amihud
illiquidity and dollar trading volume), and momentum (industry and 12-month). The sorting is re-
newed each month, taking into account the availability conditions outlined in Section 2.3. The pooled
R2

oos×100 according to Equation (2.15) is reported for each quintile portfolio and the approaches of
interest, namely, MW, pure ML (ANN and RF), and theory assisted by machine learning (MW+RF
and MW+ANN). Panel B shows the pooled R2

oos×100 for each of the 10 industry portfolios based on
the one-digit SIC code. The machine learning results are obtained using the short training scheme
depicted in Figure 2.3.

Panel A: R2
oos×100 for quintile portfolios

Book-to-market Earnings-to-price
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

V
al
u
at
io
n

ra
ti
os

MW 8.1 7.1 8.7 9.1 12.6 8.9 7.3 8.8 10.1 11.6
ANN 14.7 17.1 11.9 14.0 12.1 13.1 14.6 16.8 13.4 14.1
RF 6.7 16.2 9.4 17.8 15.4 8.0 13.0 17.7 16.1 16.7
MW+ANN 14.9 15.7 10.8 13.4 14.9 13.1 13.8 16.7 14.5 15.5
MW+RF 8.9 19.0 13.4 21.8 21.4 10.1 17.0 22.4 20.4 22.5

Dollar trading volume Amihud illiquidity
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

L
iq
u
id
it
y

MW 15.7 10.5 10.2 6.2 -0.9 -1.0 4.1 7.3 10.7 14.9
ANN 17.2 13.1 14.5 15.8 8.0 8.2 12.4 12.8 16.0 16.5
RF 21.8 16.0 16.8 14.0 -11.3 -8.9 4.8 12.4 19.4 20.1
MW+ANN 19.6 13.9 15.7 16.2 2.9 4.1 10.2 12.7 17.3 18.7
MW+RF 27.5 20.0 20.7 17.1 -11.2 -7.5 8.1 15.1 23.3 25.0

12-month momentum Industry momentum
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

M
om

en
tu
m MW 13.9 9.4 7.5 5.9 5.8 7.7 11.1 10.3 10.3 6.4

ANN 13.9 11.1 14.8 13.2 15.9 13.0 17.4 15.3 14.0 10.8
RF 15.2 12.7 13.1 15.3 7.2 13.1 18.9 19.6 11.1 0.5
MW+ANN 17.0 10.8 13.1 12.2 14.3 11.9 17.8 16.1 16.2 9.5
MW+RF 21.4 18.1 16.3 18.4 7.4 15.6 23.4 23.6 17.5 1.8

Panel B: R2
oos×100 for industry portfolios (one digit SIC code)

0 1 2 3 4 5 6 7 8 9

MW 6.6 5.4 11.9 8.0 9.0 8.7 12.0 8.0 16.9 2.1
ANN 23.9 12.7 12.2 15.8 16.6 8.1 12.0 17.3 3.6 12.9
RF 29.3 15.6 10.8 13.2 16.5 7.7 11.9 11.4 9.5 15.2
MW+ANN 22.7 8.3 13.4 14.3 19.2 8.6 15.6 16.5 11.0 18.4
MW+RF 31.6 18.1 14.6 16.0 22.5 12.5 18.1 12.4 21.5 12.6
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Figure 2.8: Time series of predictive R2, one-year horizon: MW+RF vs. pure RF (long-
training) vs. MW. The figure depicts the R2

oos,s time series based on annual test samples for
the MW+RF hybrid (theory assisted by machine learning). The forecast horizon is one year; the
prediction frequency is monthly (end-of-month). The out-of-sample period ranges from January 1998
to December 2017. The MW+RF results are based on the short training scheme depicted in Figure
2.3. For a comparison, we also display the R2

oos,s for MW and the long-trained RF from Panel A of
Figure 2.6.
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Figure 2.9: Prediction-sorted portfolios, one-year horizon: theory assisted by machine
learning approaches. The stocks are sorted into deciles according to the one-year horizon excess
return prediction implied by the respective approach, and realized excess returns are computed for
each portfolio. The prediction-sorted portfolios are formed at the end of each month. The two panels
plot predicted against realized portfolio excess returns (in %), averaged over the sample period. The
numbers indicate the rank of the prediction decile. The rank correlation between predicted and
realized excess returns in each panel is Kendall’s τ . Approaches considered are MW assisted by an
ANN (MW + ANN, Panel A) and MW assisted by RF (MW+RF, Panel B). The out-of-sample
period ranges from January 1998 to December 2017. Results are based on the short training scheme
depicted in Figure 2.3.
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Figure 2.10: Feature importance, one-year horizon: random forest (short training). The
figure depicts feature importance (Panel A: firm-level features, Panel B: macro-level features) for the
RF. The forecast horizon is one year; the prediction frequency is end-of-month. A feature’s importance
is measured by the reduction of the predictive R2 that is induced by setting the feature’s values in
the test samples to 0. In both panels, the features are sorted in descending order of importance.
Panel A focuses on the ten most important firm-level features. The dashed vertical line, included
for reference, represents the R2

oos that is obtained without setting any feature’s values to 0. The
out-of-sample period ranges from January 1998 to December 2017. Results are based on the short
training scheme depicted in Figure 2.3.
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Figure 2.11: Feature importance, one-year horizon: MW+RF. The figure depicts feature
importance (Panel A: firm-level features, Panel B: macro-level features) for the MW assisted by RF
strategy. The forecast horizon is one year; the prediction frequency is end-of-month. A feature’s
importance is measured by the reduction in R2 that is induced by setting the feature’s values in
the test samples to 0. In both panels, the features are sorted in descending order of importance.
Panel A focuses on the ten most important firm-level features. The dashed vertical line, included
for reference, represents the R2

oos that is obtained without setting any feature’s values to 0. The
out-of-sample period ranges from January 1998 to December 2017. Results are based on the short
training scheme depicted in Figure 2.3.
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2.5 Conclusions

In this study, we took two diverging paths to measure stock risk premia in an attempt

to assess and reconcile the opposing philosophies that underlie them. The comparison,

at one-month and one-year investment horizons, reveals that the theory/option-based

method offers an advantage at the shorter horizon, especially if stock risk premium

estimates are to be delivered at higher frequencies. At the one-year horizon, the picture

is more complex. Of the four machine learning methods considered in this study,

one delivers weaker performance than the theory-based strategy (elastic net), two are

comparable (gradient boosted regression trees and artificial neural networks), and one

(random forest) offers the best results. To achieve this performance, a sufficiently long

training period is required though.

Noting the concerns regarding the use of agnostic machine learning procedures

in a theoretically well-developed discipline like finance, we put forth a methodology

that takes Martin and Wagner’s (2019) theory-based approximate formula for the

stock risk premium as its basis and then applies machine learning to account for the

approximation error. Although a pure theory-based method remains the preferred

choice at the one-month horizon, the empirical performance of this theory assisted by

machine learning approach at the one-year horizon is encouraging. Using a random

forest, the theory-based component provides 57% of the hybrid model’s explanatory

power in terms of the predictive R2; 43% is attributable to machine learning assistance.

The conclusion that such a supportive use of machine learning captures fundamental

components of stock risk premia is supported by the conspicuous role of valuation

ratios and liquidity indicators in an analysis of feature importance. Disaggregated

analyses based on stock portfolios sorted according to these characteristics corroborate

the expediency of the proposed hybrid approach. We view it as a promising alternative

for bringing together the diverging paths in finance.
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A Appendix

A.1 Theory-based stock risk premium formulas

This section provides details on the stock risk premium formulas in Equations (2.2)

and (2.3) and the nature of the approximation residuals ait,T and ξit,T . We delineate

the assumptions and rationales behind their omission, which provide the theory-based

approximation formulas in Equations (2.5) and (2.6).

Martin and Wagner’s (2019) derivations originate from the basic asset pricing equa-

tion, with a focus on the gross return of a portfolio with maximal expected log return

(Rg
t,T ). This growth-optimal return has the unique property among gross returns that

its reciprocal is an SDF, such that mt,T = 1/Rg
t,T . Using this SDF to price the payoff

X i
t,T = Ri

t,T ·R
g
t,T gives:

Et

(
mt,T ·X

i
t,T

)
= Et

(
Ri

t,T

)
=

1

Rf
t,T

E∗
t (R

i
t,T ·R

g
t,T ), (A-1)

where the ∗ notation indicates that the expected value is computed with respect to the

risk-neutral measure. Division by Rf
t,T and subtracting E∗

t

(
Ri

t,T/R
f
t,T

)
·E∗

t

(
Rg

t,T/R
f
t,T

)
=

1 (the price of any gross return is 1) yields:

Et

(
Ri

t,T

Rf
t,T

)
= 1+cov∗t

(
Ri

t,T

Rf
t,T

,
Rg

t,T

Rf
t,T

)
. (A-2)

An orthogonal projection under the risk-neutral measure of Ri
t,T/R

f
t,T on Rg

t,T/R
f
t,T

and a constant gives:

Ri
t,T

Rf
t,T

= αi
t,T+β

i
t,T ·

Rg
t,T

Rf
t,T

+uit,T , (A-3)

where the moment conditions E∗
t (u

i
t,T ) = 0 and E∗

t (u
i
t,T ·R

g
t,T ) = 0 define the projection

coefficients

βi
t,T =

cov∗t

(
Ri

t,T

Rf
t,T

,
Rg

t,T

Rf
t,T

)

var∗t

(
Rg

t,T

Rf
t,T

) ,

and αi
t,T = 1−βi

t,T . Inserting these insights into Equation (A-2) produces:

Et

(
Ri

t,T

Rf
t,T

)
= 1+βi

t,T ·var
∗
t

(
Rg

t,T

Rf
t,T

)
. (A-4)
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Moreover, Equation (A-3) implies:

var∗t

(
Ri

t,T

Rf
t,T

)
= (βi

t,T )
2 ·var∗t

(
Rg

t,T

Rf
t,T

)
+var∗t (u

i
t,T ). (A-5)

To make these results practically usable, Martin and Wagner (2019) propose to lin-

earize (βi
t,T )

2 ≈ 2βi
t,T−k, which for k = 1 amounts to a first-order Taylor approxima-

tion at βi
t,T = 1. Using this approximation and inserting it into Equation (A-4) (for

k = 1) removes the dependence on βi
t,T ,

Et

(
Ri

t,T

Rf
t,T

)
≈ 1+

1

2
var∗t

(
Ri

t,T

Rf
t,T

)
+
1

2
var∗t

(
Rg

t,T

Rf
t,T

)
−
1

2
var∗t (u

i
t,T ). (A-6)

The term neglected on the right-hand side of Equation (A-6) due to the linearization

is −var∗t (R
g
t,T/R

f
t,T )(β

i
t,T−1)2. The approximation thus should be reasonable for stocks

whose βi
t,T is close to 1.

Using wj
t , the weight of stock j in a market index with gross return Rm

t,T , Martin

and Wagner (2019) perform a value-weighting of Equation (A-6) to obtain:

Et

(
Rm

t,T

Rf
t,T

)
≈ 1+

1

2

∑

j

wj
tvar

∗
t

(
Rj

t,T

Rf
t,T

)
+
1

2
var∗t

(
Rg

t,T

Rf
t,T

)
−
1

2

∑

j

wj
t ·var

∗
t (u

i
t,T ). (A-7)

Subtracting Equation (A-7) from (A-6) removes the dependence on the unobservable

optimal growth portfolio, such that

Et

(
Ri

t,T

)
≈ Et

(
Rm

t,T

)
+
Rf

t,T

2

[
var∗t

(
Ri

t,T

Rf
t,T

)
−
∑

j

wj
t ·var

∗
t

(
Rj

t,T

Rf
t,T

)]

−
Rf

t,T

2

(
var∗t (u

i
t,T )−

∑

j

wj
t ·var

∗
t (u

j
t,T )

)
. (A-8)

Keeping track of the approximation error due to the linearization, we note that the

term that is omitted on the right-hand side of Equation (A-8) is

κit,T = −
1

2Rf
t,T

var∗t
(
Rg

t,T

)
·

[
(βi

t,T−1)2−
∑

j

wj
t ·(β

i
t,T−1)2

]
.

To account for the first term on the right-hand side of Equation (A-8), Martin and

Wagner (2019) draw on a result by Martin (2017), who derives a lower bound for the

expected return of a market index. His starting point is again the basic asset pricing

Equation (2.1), which can be written in terms of the price of the payoff (Ri
t,T )

2 using

an add-and-subtract strategy:

Et(R
i
t,T )−R

f
t,T =

(
Et[mt,T ·(R

i
t,T )

2]−Rf
t,T

)
−
(
Et[mt,T ·(R

i
t,T )

2]−Et(R
i
t,T )
)
. (A-9)
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The first term on the right-hand side of Equation (A-9) can be related to a risk-neutral

variance, and the second term to a covariance under the physical measure, such that

Et(R
i
t,T )−R

f
t,T =

1

Rf
t,T

var∗t (R
i
t,T )−covt(mt,T ·R

i
t,T ,R

i
t,T ). (A-10)

As noted in the main text, Kadan and Tang (2020) use Equation (A-10) for their

quantification and approximation of stock risk premia.

Martin (2017) argues that for an asset return that qualifies as a market return

proxy (denoted Rm
t,T ), it should be the case that

ξt,T = covt(mt,T ·R
m
t,T ,R

m
t,T ) < 0. (A-11)

Intuitively, an investor’s marginal rate of intertemporal substitution should be nega-

tively correlated with any portfolio that qualifies as a market index. Accordingly,

Et(R
m
t,T )−R

f
t,T ≥

1

Rf
t,T

var∗t (R
m
t,T ). (A-12)

Assuming that the inequality (A-12) is binding, we can use it with Equation (A-8),

which yields:

Et

(
Ri

t,T

)
−Rf

t,T ≈ Rf
t,T ·

[
var∗t

(
Rm

t,T

Rf
t,T

)
+
1

2

{
var∗t

(
Ri

t,T

Rf
t,T

)
−
∑

j

wj
t ·var

∗
t

(
Rj

t,T

Rf
t,T

)}]

−
Rf

t,T

2
·

[
var∗t (u

i
t,T )−

∑

j

wj
t ·var

∗
t (u

j
t,T )

]
, (A-13)

where the approximative formula in Equation (A-13) omits the term κit,T−ξt,T on the

right-hand side. Equation (2.2) thus results from

ait,T = κit,T−ξt,T−ζ
i
t,T , (A-14)

where

ζ it,T =
1

2
Rf

t,T ·
[
var∗t (u

i
t,T )−

∑

j

wj
t ·var

∗
t (u

j
t,T )
]
. (A-15)

Working with the abbreviated formula in Equation (2.5) thus entails three approx-

imations: (1) the linearization of (βi
t,T )

2, (2) the assumption that Martin’s (2017)

lower bound for the expected return of the market is binding, and (3) the assumption

that the residual variances var∗t (u
i
t,T ) are very similar across stocks, such that ζ it,T is

negligibly small in absolute terms.
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A.2 Construction of the database

As outlined in the main text, this study focuses on a universe of firms that appear

at least once as an S&P 500 constituent during October 1974 to December 2018. For

that purpose, we must identify the set of historical S&P 500 constituents (HSPC)

for each date of the sample period.29 Our strategy to identify HSPC is based on a

monthly security query from Compustat’s SECM file, in which the variable SPMIM

(S&P Major Index Code - Historical) identifies S&P 500 members. As recommended

by WRDS, until November 1994, we select SPMIM ∈ {10,40,49,60} to identify S&P

500 constituents.30 After December 1994, WRDS recommends selecting SPMIM=10

instead. The data table resulting from the query contains the variables GVKEY and

IID, which together constitute Compustat’s permanent security identifier, and the

dates when the firm thus identified has been a S&P 500 member.31 The table also

contains the security identifier CUSIP, which, like the ticker symbol, can change over

the lifetime of a firm.32

Establishing a connection between Compustat and CRSP, and merging the respec-

tive data for a given security, is a common problem in empirical finance. To facilitate

such a merge, WRDS provides a linkage table that enables the cross-database identi-

fication of securities using each database’s permanent identifier. For Compustat this

is the aforementioned combination of GVKEY and IID, while CRSP uses the secu-

rity identifier PERMNO. The linkage table provides (via the variables LINKDT and

LINKENDDT ) information about the validity of a connection of the permanent CRSP

and Compustat identifiers at a certain point in time. Applying the linkage table to the

Compustat identified HSPC, the connection of the permanent identifiers in CRSP and

Compustat is one-to-one at all dates of the period considered for the analysis. Using

the list of S&P 500 constituents obtained from Compustat and the matched PERMNO

identifiers, security-level information can be extracted from CRSP. In particular, the

crspa library provides price information and the number of outstanding shares on a

daily frequency for each index constituent. The CRSP index price data are obtained

from the library crsp with the table dsi.

29WRDS suggests several ways to perform this task. Due to license-specific data access constraints,
not all of them may be feasible, though. For example, we cannot access the CRSP table dsp500list,
which contains the starting and ending dates of S&P 500 membership for each security identified by
CRSPs permanent security identifier PERMNO.

30According to WRDS, S&P 500 constituents represent the union of S&P Transportation (SP-
MIM=40), Utilities (SPMIM=49), Financial (SPMIM=60), and Industrial (SPMIM 10). This
information is obtained from https://wrds-www.wharton.upenn.edu/pages/support/applications/
programming-examples-and-other-topics/sp-500-datasets-and-constituents/

31An alternative way to generate the HSPC list is to use the Compustat table IDXCST HIS,
which collects securities identified by the variable GVKEYX, indicating membership of a company
in the S&P 500. We have implemented both methods, and the HSPC lists resulting from these two
approaches differ only slightly. We choose the first approach because it provides a more consistent
coverage of HSPC during the 1970s

32As noted by WRDS,“[a] change in CUSIP [...] could be triggered by any change in the security,
including non-fundamental events such as splits and company name changes.” For a detailed descrip-
tion of the cross-database identification problem see https://wrds-www.wharton.upenn.edu/pages/
support/applications/linking-databases/linking-crsp-and-compustat/
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The OptionMetrics library optionm contains a separate volatility surface table for

each available year, which we connect to the merged Compustat/CRSP data. Putting

aside the aformentioned shortcomings associated with CUSIP identification, we search

OptionMetrics for the HSPC detected in Compustat, using the CUSIP identifier. Al-

though this approach does not yield a 100% coverage of S&P 500 constituents in the

OptionMetrics data, it is still very close to the one reported by Martin and Wagner

(2019).

Panel A in Figure A.1 shows the number of HSPC that we are able to identify

in Compustat, CRSP, and OptionMetrics for the period from March 1964 to Decem-

ber 2018. The coverage rate that we achieve with our procedure is higher than that

reported by Martin and Wagner (2019). Averaged over the respective sample peri-

ods, we manage to recover 483/500 HSPC; Martin and Wagner’s (2019) coverage ratio

is 451/500. Panel B of Figure A.1 shows that the actual S&P 500 market capital-

ization is closely tracked by that of the HSPC identified in Compustat, CRSP, and

OptionMetrics.

A.3 Approximating risk-neutral variances

In the following, we describe how we approximate the risk-neutral variances in Equa-

tion (2.4) using the volatility surface provided by OptionMetrics. The ingredients we

need for this approximation are the price of the underlying, a proxy for the risk-free

rate, the price of the forward contract, and the prices of European call and put options

for various strikes, each expiring in T . However, the prices of European options are

not directly observable because options on constituents of the S&P 500 are exclusively

traded American-style. Therefore, we must first determine the prices of equivalent

European options with identical maturities and strike prices. We follow the approach

by Martin and Wagner (2019) and assume that the implied volatility serves as a con-

version factor between the two exercise styles. That is, we determine the prices of

European options by using standardized grid points of the volatility surface derived

from American options as inputs to the Black-Scholes-Merton formula.

Moreover, we need to approximate the integrals in Equation (B-1), as we do not

observe option contracts for a continuum of strike prices. We employ the conservative

approach by Martin (2017), where the numerator on the right-hand side of Equation

(2.4) is replaced by33

∫ ∞

0

Ω(K)dK ≈
∑

j

Ωj(Kj)·∆Kj, (A-16)

and

Ωj(Kj) =

{
putj(Kj) if Kj < Fj

callj(Kj) if Kj ≥ Fj

(A-17)

33For notational convenience, we drop the security, time, and maturity indices.
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Figure A.1: Identification of S&P 500 constituents. The figure illustrates the reliability of the
procedure with which we identify historical S&P 500 constituents. Panel A presents the coverage of
HSPC achieved at different stages of the data processing. The line in light grey refers to the HSPC
found in Compustat. The blue line shows for how many of these constituents it is possible to find
stock price information in CRSP. The red line starting in 1996 illustrates for how many HSPC it is also
possible to find information in OptionMetrics. Panel B depicts the aggregate market capitalization
for each of these three groups of HSPC.
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denotes the price of an out-of-the-money option with strike price Kj. The spacing of

the grid with terminal value Kn is determined according to

∆Kj =
Kj+1−Kj−1

2
j = 2, . . . ,n−1,

∆K1 = K2−K1,

∆Kn = Kn−Kn−1.

A.4 Theory-based, stock-level, and macro-level variables

Table A.1 gives a description of the variables used in this study. The content displayed

in Panel B1 is obtained from Table A.6 in GKX. The stock-level features are retrieved

using the SAS program provided by Jeremiah Green that we update and modify for

our purposes. The features are originally used in the study by Green et al. (2017).

A.5 Hyperparameter tuning

We adapt the search space for the hyperparameters of each machine learning model to

the requirements of our restricted sample. In particular, GKX set the maximum depth

of each tree in their random forest to 6. We increase this upper boundary to 30, which

improves the validation results, especially at the one-year horizon. We also extend the

search space for the elastic net’s ℓ1-ratio, which in GKX is fixed at 0.5, to allow for a

more flexible combination of ℓ1- and ℓ2-penalization. For the gradient boosted regres-

sion trees, we limit the number of trees to the interval [2,100], increase the maximum

tree depth to 3, and extend the interval for the learning rate to [0.005,0.12]. In the

case of the neural networks, we switch from the seed value-based ensemble approach

advocated by GKX to dropout regularization, in combination with a structural en-

semble approach, such that each neural network in the ensemble can have a different

architecture. Ensemble methods have proven to be the gold standard in many ma-

chine learning applications, because they can subsume the different aspects learned

by each individual model within a single prediction. However, creating ensembles can

become prohibitively expensive if the number of sample observations is large and/or

each individual model is highly complex. Srivastava et al. (2014) address this issue

by proposing dropout regularization, which retains the capability of neural networks

to learn different aspects of the data while also being computationally more efficient

than the standard ensemble approach. We also introduce a maximum weight norm for

each hidden layer. By applying both dropout regularization and a structural ensemble

approach with ten different neural networks per ensemble, we seek to combine the best

of both worlds. Compared to GKX, we also reduce the batch size; a smaller batch

size typically improves the generalization capabilities of a model that is trained with

stochastic gradient descent (cf. Keskar et al., 2016). For a detailed comparison of the

hyperparameter search spaces, please refer to Table 2.1 in the main text and Table

A.5 in GKX.
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A.6 Comparison with Gu et al. (2020)

The part of our study that deals with the machine learning approaches draws on Gu

et al. (2020). Because we have to ensure the comparability with the theory-based part,

we deviate in some aspects, in particular, the selection of stocks, the sample period,

and the training and validation strategy. In the following, we explain these differences

and the reasons for our choices.

First, as outlined in the main text, the theory-consistent approaches and the hybrid

models suggest focusing on S&P 500 constituents. Gu et al. (2020) instead rely on

a broader set of NYSE-, AMEX-, and NASDAQ-traded firms and also include penny

stocks, yielding an average number of stocks per month of about 6,200. For the purpose

of training and testing of non-hybrid models, we could have used such an extended

set of stocks, too. However, for the sake of a neat comparison, we focus on S&P 500

constituents both for training and performance evaluation. As argued by Avramov

et al. (2023), this restriction can represent a reasonable economic constraint that ac-

knowledges that trading microcaps is costly. They find evidence that the predictive

performance of machine learning models deteriorates when excluding microcaps.

Second, the overall sample period used in the present analysis deviates from that

of Gu et al. (2020). We use more recent data that became available, but we have also

decided to start the training process later. Gu et al. (2020) start training in 1957,

the birth year of the S&P 500 index. However, as outlined in the main text, there

is a considerable amount of missing values until 1974. In particular, some features,

for example cash flow volatility, are not available earlier. We follow Gu et al. (2020)

who replace a feature’s missing value with the cross-sectional median at a given point

in time, but in the case of a variable like cash flow volatility, this strategy amounts

to setting all its values to zero before 1974. More sophisticated imputation methods

could be considered, but then results could be biased by overly restrictive assumptions

about the structure of the missing data.

Third, we have to consider an out-of-sample testing period that facilitates the

comparison with the theory-consistent approaches. Gu et al. (2020) report their out-

of-sample results on a testing period that ranges from 1987 to 2016, but this is not

tenable here. The option data used to construct the theory-consistent forecasts are

only available from 1996 onward. Accordingly, our out-of-sample testing period ranges

from 1996 (long training) or 1998 (short training) to 2018.

A.7 Alternative feature transformation

As described in the main text, we apply standard mean-variance or robust median-

interquartile range scaling to the firm characteristics zit, pooling across i and t. To

prevent future information from leaking into the validation and test sets, the trans-

formation of a feature within those sets is based on the mean, variance, median,

and interquartile range in the associated training sets. In contrast, GKX scale firm

characteristics to the interval [−1,1] period-by-period using cross-sectional ranks, as
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advocated by Freyberger et al. (2020). More specifically, they transform their set of

firm characteristics according to

c̃it = 2·
rank(cit)

Nt+1
−1, (A-18)

where Nt is the number of sample firms in period t.34 The macroeconomic features xt
are not scaled, because for the individual time series there is no cross-section on the

basis of which a rank transformation could be performed. As a consequence, the set

of combined firm-level and macro features originates from

z̃it = (1,x′t)
′⊗c̃it. (A-19)

Which feature scaling strategy is more suitable for the present application? The rank

transformation in Equation (A-18) invokes the idea of portfolio sorting, the hallmark

of which is that “[one is] typically not interested in the value of a characteristic in

isolation, but rather in the rank of the characteristic in the cross section” (Freyberger

et al., 2020, pp. 16-17). In the same vein, Kozak et al. (2020) argue that by trans-

forming firm characteristics according to their rank, they can focus on the “purely

cross-sectional aspects of return predictability.” However, the present study does not

exclusively focus on the cross-section, but is also concerned with the level of stock risk

premia. Using rank-transformed features, one cannot account for structural changes

in the level of firm characteristics.35

Kelly et al. (2019) and Gu et al. (2021), point out that the rank transformation

renders models less susceptible to outliers. However, Kelly et al. (2019) also report

that the “results are qualitatively unchanged” compared to those obtained without

rank transformation. Da et al. (2022) arrive at a similar conclusion, reporting that

the rank transformation “barely changes any follow-up results.” As we aim at finding

the model that delivers MSE-optimal excess return predictions, the question of how to

transform and scale firm characteristics is ultimately a matter of out-of-sample forecast

performance (cf. Freyberger et al., 2020). Accordingly, we leave it up to the validation

process whether to apply standard or robust scaling, noting that the latter mitigates

the issue of outlier susceptibility.

To investigate whether our conclusions from the main analysis are affected by the

chosen feature transformation strategy, we perform a supplementary analysis using

rank-transformed firm-level features according to Equations (A-18) and (A-19). We

thereby acknowledge the code of conduct for research in empirical finance formulated

by Arnott et al. (2019).

34GKX give no indications as to their treatment of stocks that are tied in the ranking. We assume
that they rank tied stocks as in Kozak et al. (2020) by assigning the average rank to each of the
stocks.

35An obvious thing to note is that without scaling the macro features, the z̃it are not elements of
[−1,1].
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Results using rank-transformed firm-level features

Table A.2 contains the long training results for both horizons. It is the counterpart of

Panels B of Tables 2.2 and 2.3 from the main analysis.

At the one-month horizon (Panel A of Table A.2), RF and GBRT perform worse

than the zero forecast, while ANN and ENet benefit from using rank transformed

features. Compared to the main analysis, the predictive R2 increase from 0.2% to

0.4% in case of the ANN and, quite conspicuously, from -0.3% to 0.5% in case of the

ENet. Figure A.2 depicts the results for prediction-sorted portfolios. It should be

compared with Figure 2.4, the counterpart from the main analysis. The plots confirm

the conclusion that the theory-based approach is difficult to beat at the one-month

horizon, but also that the ENet is emerging as a new competitor.

Panel B of Table A.2 shows that at the one-year horizon ENet, GBRT, and ANN

by and large maintain their performance levels from the main analysis (cf. Panel B

of Table 2.3). The ENet’s R2
oos increases from 5.5% to 6.9%, the predictive R2 of

ANN (from 9.0% to 8.1%) and GBRT (from 10.6% to 9.7%) decrease. In terms of

R2
oos, the RF is not as conspicuous as in the main analysis. The R2

oos decreases from

19.5% to 9.6%, but with a Sharpe ratio of 0.67 (increasing from 0.58), the RF is the

best approach when prediction-sorted portfolios are used for performance assessment.

The ANN is ranked second with a Sharpe ratio of 0.63 (increasing from 0.50) and a

favorable alignment of the prediction-sorted portfolios (see Figure A.3, the counterpart

of Figure 2.5 from the main analysis).

As can be seen in Table A.3 – which should be compared to Table 2.5 from the main

analysis – the short training effect is somewhat mitigated at the one-month horizon.

Although still negative, the predictive R2 delivered by the machine learning approaches

no longer tend to extremes. As in the main analysis, the inclusion of theory features

does not improve the one-month horizon results.

At the one-year horizon with short training, our assessment of the model perfor-

mances does not differ substantially from that of the main analysis (compare Table

A.4 with Table 2.6). In terms of R2
oos and Sharpe ratio, the RF is the preferred model.

Its R2
oos increases from 12.4% to 15% and the Sharpe ratio of 0.59 remains unchanged.

The ANN ranks second according to both criteria, with an R2
oos of 11.5% (down from

14.1% in the main analysis) and a Sharpe ratio of 0.50 (up from 0.47). As in the main

analysis, GBRT (deteriorating) and ENet (though notably improving) are no strong

competitors.

Table A.4 further shows that the inclusion of theory features does not improve

the performance of the machine learning models, at least when a monthly forecast

frequency is considered.The conclusions regarding the theory assisted by ML strategy

also hold with rank-transformed features, insofar as the predictive R2 of 9.1% and the

Sharpe ratio of 0.37 delivered by MW are notably improved by RF assistance. The

MW+RF hybrid delivers an R2
oos of 13.0%, a Sharpe ratio of 0.58, and a favorable

alignment of the prediction-sorted portfolios (see Figure A.4). Similar to the main

analysis, the ANN assistance proves useful, too (the R2
oos of MW+RF is 11.2%, the
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Sharpe ratio is 0.45), while GBRT or ENet assistance does not.

Overall, we find that the conclusions of the main analysis are also supported when

using rank-transformed firm-level features.

Table A.2: Performance comparison, monthly forecast frequency: long training, rank
transformation. The table reports predictive R2, their standard deviation and statistical signifi-
cance, and the annualized Sharpe ratios (SR) implied by Martin and Wagner’s (2019) and Kadan
and Tang’s (2020) theory-based approaches and the four machine learning models. The standard
deviation of the R2

oos,s×100 (Std Dev) is calculated based on the annual test samples. The SR refer
to a zero-investment strategy long in the portfolio of stocks with the highest excess return prediction
and short in the portfolio of stocks with the lowest excess return prediction. The p-values are asso-
ciated with a test of the null hypothesis that the respective forecast has no explanatory power over
the zero forecast, E(R2

oos,s) ≤ 0. For Panel A, the forecast horizon is one month and for Panel B, it
is one year. In both panels, forecasts are issued at the end of each month. The out-of-sample testing
period starts in January 1996 and ends in November 2018. The features are rank-scaled as described
in Appendix A.7. The machine learning results are obtained using the long training scheme depicted
in Figure 2.2.

Panel A: one-month horizon

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 0.2 3.2 0.154 0.30

KT −1.8 6.9 0.704 0.30

M
a
ch

in
e

L
ea

rn
in
g ENet 0.5 3.5 0.073 0.65

ANN 0.4 3.4 0.053 0.34
GBRT −0.8 4.3 0.300 0.37
RF −0.8 4.8 0.294 0.17

Panel B: one-year horizon

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 8.8 16.3 0.051 0.37

KT 3.1 47.6 0.694 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet 6.9 22.5 0.174 0.49

ANN 8.1 22.1 0.097 0.63
GBRT 9.7 23.1 0.086 0.49
RF 9.6 43.3 0.361 0.67

56



Figure A.2: Prediction-sorted portfolios, one-month horizon: long training, rank trans-
formation. The stocks are sorted into deciles according to the one-month horizon excess return
prediction implied by the respective approach, and realized excess returns are computed for each
portfolio. The prediction-sorted portfolios are formed either at the end of each month or daily. The
four panels plot the predicted against realized portfolio excess returns (in %), averaged over the sam-
ple period. The numbers indicate the rank of the prediction decile. The rank correlation between
predicted and realized excess returns in each panel is Kendall’s τ . Approaches considered are MW
(Panel A), ENet (Panel C), and RF (Panel D). Panel B shows the MW results when the prediction-
sorted portfolios are formed at a daily frequency. The out-of-sample period ranges from January 1996
to November 2018. The features are rank-scaled as described in Appendix A.7. Machine learning
results are based on the long training scheme depicted in Figure 2.2.
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Figure A.3: Prediction-sorted portfolios, one-year horizon: long training, rank transfor-
mation. The stocks are sorted into deciles according to the one-year horizon excess return prediction
implied by the respective approach, and realized excess returns are computed for each portfolio. The
prediction-sorted portfolios are formed either at the end of each month or daily. The four panels
plot predicted against realized portfolio excess returns (in %), averaged over the sample period. The
numbers indicate the rank of the prediction decile. The rank correlation between predicted and real-
ized excess returns in each panel is Kendall’s τ . Approaches considered are MW (Panel A), an ANN
(Panel C), and RF (Panel D). Panel B shows the MW results when the prediction-sorted portfolios
are formed at a daily frequency. The out-of-sample period ranges from January 1996 to December
2017. The features are rank-scaled as described in Appendix A.7. Machine learning results are based
on the long training scheme depicted in Figure 2.2.
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Table A.3: Performance comparison, one-month horizon, monthly forecast frequency:
theory-based vs. machine learning approaches vs. hybrid approach, rank transforma-
tion. The table reports predictive R2, their standard deviation and statistical significance, and the
annualized Sharpe ratios (SR) implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020)
theory-based approaches, the four machine learning models, and a hybrid approach in which the
theory-consistent forecasts serve as additional features in the machine learning models (ML with the-

ory features). The standard deviation of the R2
oos,s×100 (Std Dev) is calculated based on the annual

test samples. The SR refer to a zero-investment strategy long in the portfolio of stocks with the
highest excess return prediction and short in the portfolio of stocks with the lowest excess return
prediction. The p-values are associated with a test of the null hypothesis that the respective forecast
has no explanatory power over the zero forecast, E(R2

oos,s) ≤ 0. The one-month horizon forecasts are
issued at the end of each month. The out-of-sample testing period starts in January 1998 and ends in
November 2018. The features are rank-scaled as described in Appendix A.7. The machine learning
results are obtained using the short training scheme depicted in Figure 2.3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 0.1 3.4 0.206 0.32

KT −2.0 7.2 0.739 0.32

M
a
ch

in
e

L
ea

rn
in
g ENet −0.1 2.8 0.277 0.26

ANN −0.1 2.9 0.163 0.04
GBRT −2.5 5.3 0.914 0.17
RF −4.7 8.3 0.898 −0.06

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −0.1 2.8 0.277 0.26

ANN −0.2 3.0 0.214 0.15
GBRT −8.5 15.9 0.926 0.19
RF −5.7 9.8 0.943 −0.11
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Table A.4: Performance comparison, one-year horizon, monthly forecast frequency:
theory-based vs. machine learning approaches vs. hybrid approaches, rank transfor-
mation. The table reports predictive R2, their standard deviation and statistical significance, and
the annualized Sharpe ratios (SR) implied by Martin and Wagner’s (2019) and Kadan and Tang’s
(2020) theory-based approaches and the four machine learning models. Results of two hybrid ap-
proaches, one in which the theory-consistent forecasts serve as additional features in the machine
learning models (ML with theory features), and another in which the machine learning models are
trained to account for the approximation residuals of MW (Theory assisted by ML), are also reported.
The standard deviation of the R2

oos,s×100 (Std Dev) is calculated based on the annual test samples.
The SR refer to a zero-investment strategy long in the portfolio of stocks with the highest excess
return prediction and short in the portfolio of stocks with the lowest excess return prediction. The p-
values are associated with a test of the null hypothesis that the respective forecast has no explanatory
power over the zero forecast, E(R2

oos,s) ≤ 0. All results refer to a one-year forecast horizon and use
the out-of-sample testing period January 1998 to December 2017. All forecasts are issued monthly
(end-of-month). The features are rank-scaled as described in Appendix A.7. The machine learning
results are obtained using the short training scheme depicted in Figure 2.3.

R2
oos×100 Std Dev p-val. SR

T
h
eo

ry
-

B
a
se
d MW 9.1 17.1 0.072 0.37

KT 3.1 49.9 0.706 0.37

M
a
ch

in
e

L
ea

rn
in
g ENet 4.3 25.3 0.388 0.49

ANN 11.5 22.2 0.048 0.50
GBRT 6.5 30.9 0.521 0.39
RF 15.0 35.4 0.186 0.59

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet 4.3 25.3 0.385 0.49

ANN 11.1 23.5 0.096 0.45
GBRT 6.1 32.8 0.596 0.42
RF 14.0 35.7 0.236 0.57

T
h
eo

ry
a
ss
is
te
d

b
y
M
L

ENet 8.6 31.4 0.331 0.47
ANN 11.2 27.7 0.183 0.45
GBRT 6.2 38.7 0.548 0.40
RF 13.0 42.4 0.320 0.58
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Figure A.4: Prediction-sorted portfolios, one-year horizon: theory assisted by machine
learning approaches (rank transformation). The stocks are sorted into deciles according to
the one-year horizon excess return prediction implied by the respective approach, and realized excess
returns are computed for each portfolio. The prediction-sorted portfolios are formed at the end of
each month. The two panels plot predicted against realized portfolio excess returns (in %), averaged
over the sample period. The numbers indicate the rank of the prediction decile. The rank correlation
between predicted and realized excess returns in each panel is Kendall’s τ . Approaches considered
are MW assisted by an ANN (MW + ANN, Panel A) and MW assisted by RF (MW+RF, Panel B).
The out-of-sample period ranges from January 1998 to December 2017. The features are rank-scaled
as described in Appendix A.7. Results are based on the short training scheme depicted in Figure 2.3.
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A.8 Additional results

In this section, we present additional results regarding alternative rank-transformations,

goodness-of-fit measures, and disaggregated analyses.

Table A.5: Performance comparison, one-month horizon: theory-based vs. machine
learning approaches (long training). The table reports predictive R2, EV and XS, and the
rank correlation (Kendall’s τ) between average expected and realized excess returns of prediction-
sorted decile portfolios, and p-values of a Diebold-Mariano test implied by Martin and Wagner’s
(2019) and Kadan and Tang’s (2020) theory-based approaches and the four machine learning models.
For Panel A, the one-month horizon forecasts are issued at a daily frequency. For Panel B, the one-
month horizon forecasts are issued at the end of each month. The Diebold-Mariano test is based on
the average R2

oos,s across test samples (using the theory-based forecast by Martin and Wagner (2019)
at a daily (Panel A) or end-of-month frequency (Panel B) as a base). The out-of-sample testing
period starts in January 1996 and ends in November 2018. The machine learning results are obtained
using the long training scheme.

Panel A: daily forecast frequency

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 0.9 0.9 0.4 1.00

KT −0.5 −0.6 −0.6 1.00 0.094

M
a
ch

in
e

L
ea

rn
in
g ENet 0.0 0.0 −0.8 0.33 0.295

ANN 0.5 0.5 −0.3 0.38 0.441
GBRT 0.3 0.3 −0.4 0.87 0.443
RF −0.5 −0.6 −1.3 0.73 0.342

Panel B: monthly forecast frequency

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 0.2 0.1 −0.2 0.96

KT −1.8 −1.8 −1.6 0.96 0.089

M
a
ch

in
e

L
ea

rn
in
g ENet −0.3 −0.3 −0.9 0.24 0.479

ANN 0.2 0.2 −0.3 0.56 0.883
GBRT −0.6 −0.6 −1.1 0.56 0.353
RF −1.6 −1.6 −2.2 0.91 0.301
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Table A.6: Performance comparison, annual horizon: theory-based vs. machine learning
approaches (long training). The table reports predictive R2, EV and XS, and the rank corre-
lation (Kendall’s τ) between average expected and realized excess returns of prediction-sorted decile
portfolios, and p-values of a Diebold-Mariano test implied by Martin and Wagner’s (2019) and Kadan
and Tang’s (2020) theory-based approaches and the four machine learning models. For Panel A, the
annual horizon forecasts are issued at a daily frequency. For Panel B, the annual horizon forecasts
are issued at the end of each month. The Diebold-Mariano test is based on the average R2

oos,s across
test samples (using the theory-based forecast by Martin and Wagner (2019) at a daily (Panel A) or
end-of-month frequency (Panel B) as a base). The out-of-sample testing period starts in January
1996 and ends in November 2018. The machine learning results are obtained using the long training
scheme.

Panel A: daily forecast frequency

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 9.1 9.0 4.3 1.00

KT 3.5 3.0 −0.9 1.00 0.299

M
a
ch

in
e

L
ea

rn
in
g ENet 4.0 4.0 −2.2 0.60 0.235

ANN 8.2 8.2 1.6 1.00 0.626
GBRT 9.9 9.9 3.2 0.91 0.527
RF 18.2 18.0 11.8 1.00 0.007

Panel B: monthly forecast frequency

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 8.8 8.7 4.1 0.96

KT 3.1 2.6 −1.3 0.96 0.295

M
a
ch

in
e

L
ea

rn
in
g ENet 5.5 5.5 −0.4 0.64 0.259

ANN 9.0 8.9 2.5 1.00 0.919
GBRT 10.6 10.6 4.2 0.91 0.195
RF 19.5 19.3 13.3 1.00 0.003
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Table A.7: Performance comparison, one-month horizon: theory-based vs. machine
learning approaches vs. a hybrid approach (short training). The table reports predictive
R2, EV and XS, and the rank correlation (Kendall’s τ) between average expected and realized
excess returns of prediction-sorted decile portfolios, and p-values of a Diebold-Mariano test implied
by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches, the four
machine learning models, and a hybrid approach in which the theory-consistent forecasts serve as
additional features in the machine learning models (ML with theory features). For Panel A, the one-
month horizon forecasts are issued at a daily frequency, for Panel B, the one-month horizon forecasts
are issued at the end of each month. The Diebold-Mariano test is based on the average R2

oos,s across
test samples (using the theory-based forecast by Martin and Wagner (2019) at a daily (Panel A) or
end-of-month frequency (Panel B) as a base). The out-of-sample testing period starts in January
1998 and ends in November 2018. The machine learning results are obtained using the short training
scheme.

Panel A: daily forecast frequency

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 0.8 0.8 0.4 1.00

KT −0.7 −0.7 −0.5 1.00 0.084

M
a
ch

in
e

L
ea

rn
in
g ENet −4.0 −4.0 −4.5 0.78 0.087

ANN −2.7 −2.8 −3.3 0.69 0.109
GBRT −22.6 −22.7 −23.2 0.29 0.198
RF −5.4 −5.5 −6.0 −0.24 0.106

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −3.0 −3.0 −3.5 0.87 0.055

ANN −30.7 −32.0 −30.4 0.51 0.262
GBRT −10.7 −10.8 −11.3 0.42 0.222
RF −3.0 −3.0 −3.6 0.69 0.067

Panel B: monthly forecast frequency

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 0.1 0.1 −0.2 0.96

KT −2.0 −2.1 −1.5 0.96 0.086

M
a
ch

in
e

L
ea

rn
in
g ENet −4.0 −4.0 −4.2 0.64 0.130

ANN −3.1 −3.2 −3.6 0.69 0.117
GBRT −29.5 −29.6 −29.8 0.38 0.245
RF −8.4 −8.4 −8.8 −0.33 0.173

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −3.2 −3.2 −3.4 0.69 0.130

ANN −36.0 −37.4 −35.1 0.24 0.264
GBRT −25.6 −25.7 −25.8 0.29 0.253
RF −7.6 −7.6 −8.1 −0.20 0.157
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Table A.8: Performance comparison, one-year horizon, monthly forecast frequency:
Theory-based vs. machine learning approaches vs. hybrid approaches (short training).
The table reports predictive R2, EV and XS, and the rank correlation (Kendall’s τ) between av-
erage expected and realized excess returns of prediction-sorted decile portfolios, and p-values of a
Diebold-Mariano test implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-
based approaches, and the four machine learning models. Results of a hybrid approach, in which
the theory-consistent forecasts serve as additional features in the machine learning models (ML with

theory features) and a second hybrid approach, in which machine learning models are trained account
for the approximation residuals of MW (Theory assisted by ML) are also reported. The Diebold-
Mariano test is based on the average R2

oos,s across test samples using the theory-based forecast by
Martin and Wagner (2019) at a monthly frequency (end-of-month) as a base. All results refer to a
one-year forecast horizon and use the out-of-sample testing period January 1998 to December 2017.
All forecasts are issued monthly (end-of-month). The machine learning results are obtained using the
short training scheme.

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 9.1 9.0 4.9 1.00

KT 3.1 2.5 0.3 1.00 0.315

M
a
ch

in
e

L
ea

rn
in
g ENet −31.6 −34.0 −40.0 0.96 0.131

ANN 14.1 13.9 8.1 1.00 0.130
GBRT 10.3 9.8 4.1 1.00 0.849
RF 12.4 11.7 6.0 1.00 0.645

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −32.6 −35.2 −41.0 0.96 0.139

ANN 14.1 13.8 8.2 1.00 0.265
GBRT 9.7 9.1 3.4 0.96 0.973
RF 14.6 14.0 8.4 1.00 0.387

T
h
eo

ry
a
ss
is
te
d

b
y
M
L

MW+ENet −38.2 −41.3 −47.5 0.96 0.168
MW+ANN 14.2 13.9 8.5 1.00 0.108
MW+GBRT 9.2 8.6 3.9 1.00 0.955
MW+RF 16.1 15.3 10.8 1.00 0.367
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Table A.9: Performance comparison, one-year horizon, daily forecast frequency: theory-
based vs. machine learning approaches vs. hybrid approaches (short training). The table
reports predictive R2, EV , and XS, and the rank correlation (Kendall’s τ) between average expected
and realized excess returns of prediction-sorted decile portfolios, and p-values of a Diebold-Mariano
test implied by Martin and Wagner’s (2019) and Kadan and Tang’s (2020) theory-based approaches,
and the four machine learning models. Results of a hybrid approach, in which the theory-consistent
forecasts serve as additional features in the machine learning models (ML with theory features) and a
second hybrid approach, in which machine learning models are trained account for the approximation
residuals of MW (Theory assisted by ML) are also reported. The Diebold-Mariano test is based on the
average R2

oos,s across test samples using the theory-based forecast by Martin and Wagner (2019) at
a daily frequency as a base. All results refer to a one-year forecast horizon and use the out-of-sample
testing period January 1998 to December 2017. All forecasts are issued at a daily frequency. The
machine learning results are obtained using the short training scheme.

R2
oos×100 EVoos×100 XSoos×100 corr DM

T
h
eo

ry
-

B
a
se
d MW 9.5 9.3 5.2 1.00

KT 3.4 2.9 0.7 1.00 0.318

M
a
ch

in
e

L
ea

rn
in
g ENet −35.5 −38.0 −44.5 0.96 0.092

ANN 12.0 11.8 5.7 1.00 0.476
GBRT 8.8 8.2 2.2 1.00 0.816
RF 9.0 8.2 2.0 1.00 0.886

M
L

w
it
h

th
eo

ry
fe
a
tu

re
s ENet −27.4 −29.6 −35.8 0.96 0.123

ANN 16.1 15.7 10.0 1.00 0.210
GBRT 11.6 11.0 5.3 0.96 0.716
RF 18.6 17.9 12.3 1.00 0.155

T
h
eo

ry
a
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d

b
y
M
L

MW+ENet −41.2 −44.4 −51.0 1.00 0.125
MW+ANN 12.8 12.4 6.7 1.00 0.304
MW+GBRT 8.2 7.6 2.7 1.00 0.774
MW+RF 14.1 13.3 8.6 1.00 0.567
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Figure A.5: Feature importance, one-year horizon: random forest (short training). The
figure depicts feature importances (Panel A: firm-level features, Panel B: macro-level features) for
the RF. The forecast horizon is one year, the prediction frequency is end-of-month. A feature’s
importance is measured by the reduction in the Sharpe ratio of a long-short investment strategy into
prediction-sorted portfolios that is induced by setting the feature’s values in the test samples to zero.
In both panels, the features are sorted in descending order of importance. The dashed vertical line is
included for reference and represents the Sharpe ratio that is obtained without setting any feature’s
values to zero. The out-of-sample period ranges from January 1998 to December 2017. Results are
based on the short training scheme.
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Figure A.6: Feature importance, one-year horizon: MW assisted by random forest
(short training). The figure depicts feature importances (Panel A: firm-level features, Panel B:
macro-level features) for the MW assisted by RF strategy. The forecast horizon is one year, the
prediction frequency is end-of-month. A feature’s importance is measured by the reduction in the
Sharpe ratio of a long-short investment strategy into prediction-sorted portfolios that is induced by
setting the feature’s values in the test samples to zero. In both panels, the features are sorted in
descending order of importance. The dashed vertical line is included for reference and represents the
Sharpe ratio that is obtained without setting any feature’s values to zero. The out-of-sample period
ranges from January 1998 to December 2017. Results are based on the short training scheme.
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Figure A.7: Time series of predictive R2, one-year horizon: Quintile portfolios sorted by
Amihud illiquidity. The figure depicts the R2

oos,s time series based on annual test samples broken
down by quintile portfolios, where the sorting is based on Amihud illiquidity. The forecast horizon
is one year, the prediction frequency is monthly (end-of-month). The out-of-sample period ranges
from January 1996 to December 2017. Panel A shows the MW results. Panel B shows the pure RF
results. Panel C shows the MW+RF results. The machine learning results are obtained using the
short training scheme.
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Chapter 3

The uncertainty principle in

asset pricing

3.1 Motivation

The conditional capital asset pricing model (CAPM) is one of the most controversial

models in empirical finance. While some studies conclude that the model performs well

in explaining the cross-section of average returns (e.g., Jagannathan and Wang, 1996),

there are others suggesting that the conditional CAPM is no more successful than its

unconditional counterpart (e.g., Lewellen and Nagel, 2006). A non-negligible source of

uncertainty underlying these results is that economic theory provides little guidance

on how to obtain measurements of the model’s unobserved components – the beta

and the equity premium. For this reason, econometricians often resort to estimates of

conditional betas from rolling time-series regressions, which are supposed to provide

reasonable approximations if the true betas are sufficiently stable over time.1 Estimates

of the conditional equity premium, in turn, are typically obtained from predictive

regressions of market excess returns onto a set of predetermined variables, where any

variable that outperforms the historical average market excess return is deemed an

admissible predictor.2 However, neither of these approaches is entirely convincing: In

the case of the betas, it is unclear over which time period the estimation should be

performed (i.e., what the size of the regression window should be), and in the case of

the equity premium, the correct state variables are unknown.

In response to these shortcomings, we propose a variant of the conditional CAPM in

which the betas and the equity premium are jointly characterized by the information

embedded in option prices. An important implication of this approach is that we

do not need to assume that the betas are sufficiently stable over time, as they can

adjust immediately to changing market conditions through changes in the prices of

the underlying options. Similarly, we avoid the multi-dimensional challenge associated

with specifying the moments’ time variation in terms of firm- and macro characteristics,

as we only implicitly refer to the investors’ information sets. Because there is no need to

estimate any structural parameters, we refer to our model as the fully-implied CAPM,

1Ferson and Harvey (1991), Fama and French (2004), and Frazzini and Pedersen (2014), for
example, use betas obtained from rolling-window regressions as instruments for conditional betas.

2Frequently used predictors are the dividend-price ratio (e.g., Campbell and Shiller, 1988), in-
terest rate spreads (e.g., Stock and Watson, 1989), the consumption-wealth ratio (e.g., Lettau and
Ludvigson, 2001), and the variance-risk premium (e.g., Bollerslev et al., 2009).
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or FI-CAPM.

In deriving our model, we build on the findings by Martin and Wagner (2019), who

demonstrate that, under certain conditions, the conditional risk premium of a stock

can be expressed in terms of risk-neutral variances of returns. Based on this insight,

they derive a concise formula for the risk premium that is free of unknown parameters.

While we share the same goal, the comparative advantage of our approach lies in its

intuitive structure and superior predictive performance. Regarding the latter, we find

that the FI-CAPM outperforms the approach by Martin and Wagner (2019) at 7 out

of 8 investment horizons. In addition, our identification strategy for the implied beta

is inspired by Kempf et al. (2015), whose approach we complement in two respects: 1)

we establish a direct link between physical and risk-neutral return distributions, and

2) we provide measurements of both the betas and the equity premium.

From an econometric perspective, the novelty of our approach is that it allows us

to test the conditional CAPM’s unconditional implications in a setting where the be-

tas and the equity premium are defined jointly and in a mutually consistent manner.

We test these implications by sorting stocks into portfolios according to the model’s

predictions and comparing the resulting average implied and realized excess returns.

Consistent with previous literature, we find that the relationship between these aver-

ages is too flat – a phenomenon that is commonly viewed as evidence that the betas

are unable to explain cross-sectional return variation. While this interpretation seems

plausible at first glance, it ignores the fact that the betas and the equity premium

jointly determine the nature of this relationship. Thus, it may well be that the failure

of the conditional CAPM is not due to the betas, but due to the equity premium. To

investigate this idea, we propose a modification to the model’s testable restrictions

that allows us to study their contributions separately.

Comparing the results of the original and modified versions of the moment con-

ditions, we discover that the failure of the conditional CAPM at short investment

horizons (1 to 12 months) is due to the inherently unpredictable component of the

market excess return, rather than the betas. One might suspect that this finding is

driven by the way we measure the model’s components, and that using a different

approach could alter our results. We address this critique by showing that the above

conclusion holds equally well when estimating conditional betas and the equity pre-

mium using historical returns, and by arguing that the conditional CAPM’s failure in

cross-sectional tests at short horizons can be attributed to a property of the equity

premium that applies to any admissible specification. To be specific, we find that

the positive-sign restriction of the conditional equity premium, which ensures that a

risk-averse investor is willing to invest in the market, limits the potential of the betas

in cross-sectional tests. Although the betas are successful in describing the stocks’ as-

sociation with the market ex ante, the conditional CAPM fails whenever the realized

market excess return is negative, as it is precisely then that high (low) beta portfolios,

which are supposed to earn high (low) excess returns, do exactly the opposite.

At longer horizons (beyond 12 months), it is instead the betas that drive the
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flat relationship between average predicted and realized excess returns. Although the

equity premium accounts for a larger fraction of the variation in market excess returns,

and thus constitutes a better forecast in terms of the mean squared error (MSE), the

cross-sectional explanatory power of the betas gradually declines. Our reading of this

result is that a company’s association with the market can change, for example, due

to a realignment of the business model, making its prediction increasingly difficult as

the investment horizon increases.

In summary, the explanatory power of the betas, when viewed as a function of the

investment horizon, is inversely related to the predictive power of the conditional equity

premium. The opposing nature of this relationship, in turn, explains the failure of the

conditional CAPM across investment horizons. In a way, this finding is reminiscent of

Heisenberg’s (1927) uncertainty principle in quantum mechanics, which states that two

conjugate properties of a particle cannot be measured simultaneously with arbitrary

precision. In capital asset pricing, the particle under study is an asset’s risk premium,

and its properties correspond to the asset-specific and aggregate components of market

risk.

The remainder of this article is organized as follows: Section 3.2 gives an overview

of the relevant literature. Section 3.3 presents the theoretical foundations of our model,

including a comparison with the approach by Martin and Wagner (2019). Section 3.4

provides an evaluation of the model’s empirical performance and a discussion of the

associated findings. Section 3.5 concludes. Appendix B provides a description of the

data and additional analyses.

3.2 Related literature

First, we contribute to a line of research that dates back to the work by French et al.

(1983), who examine the usefulness of including option-implied information in mea-

suring betas. Using such information, in general, poses the problem that, while option

prices describe moments under the risk-neutral measure, stock risk premia are subject

to the physical measure. Any approach that fails to explain the connection between

physical and risk-neutral moments hence potentially suffers from a lack in risk adjust-

ment. To draw attention to this issue, Chang et al. (2012) propose a set of assumptions

that are needed to estimate beta from implied moments of returns. Buss and Vilkov

(2012) define a relationship between objective and risk-neutral correlation that allows

them to estimate beta using both option prices and historical returns. Kempf et al.

(2015) introduce a family of implied betas based on risk-neutral variance, skewness,

and kurtosis, but they make no attempt to risk-adjust implied moments.3

Second, we refer to a recent and growing literature that uses information from

option prices to approximate conditional risk premia. In a seminal work, Martin

(2017) derives an observable lower bound for the conditional expected excess return

3Baule et al. (2016) give an overview of the implied-beta literature and compare different identi-
fication strategies with regards to their empirical performance.

72



of the market. Kadan and Tang (2020) investigate the extent to which this bound

is applicable to individual stocks. Martin and Wagner (2019) propose a formula for

the conditional stock risk premium that is a linear function of risk-neutral stock and

market return variances. Schneider and Trojani (2019) provide an extensive family

of observable bounds for higher moments of index returns. Bakshi et al. (2020) and

Chabi-Yo and Loudis (2020) propose formulas for the expected return of the market

which depend on all higher risk-neutral moments of returns. Similarly, Chabi-Yo et al.

(2023) consider such bounds for individual stocks.

Third, our conclusions regarding the empirical performance of the conditional

CAPM relate to a literature that addresses the question of whether market returns are

predictable. Merton (1980) is one of the first to give suggestions on how to measure

the conditional equity premium. He states that market returns are predictable if a

fair proportion of the variation in realized returns is due to variation in conditional

expectations. Fama and French (1988, 1989) argue that conditional expectations vary

over business cycles and that, accordingly, variables which forecast business cycles

also predict returns. Stambaugh (1999) casts doubt on the statistical significance of

these findings, claiming that standard ordinary least squares coefficients are biased.

Boudoukh et al. (2006) challenge the conventional wisdom that return predictability is

a long-horizon phenomenon, and demonstrate that the results at shorter horizons are

no less important if the predictors are persistent. Welch and Goyal (2008) investigate

whether market return predictions can be used to engage in market timing strategies,

finding that none of the commonly used predictors really outperforms the historical

average market excess return. In response, Campbell and Thompson (2008) suggest

that economic restrictions, such as requiring a positive equity premium, can help im-

prove the performance of the predictor variables. Cochrane (2008) instead puts forth

a theoretical argument, claiming that returns must be predictable because dividend

growth is not.

Finally, we tie in with an extensive body of literature that documents various di-

mensions of CAPM failure. Jensen et al. (1972) test the unconditional CAPM for

multiple time periods using portfolios of stocks, finding that some of the slope coef-

ficients obtained from cross-sectional regressions are close to zero or even negative.

Blume and Friend (1973) argue, in agreement with Black (1972), that one possible

explanation for this is that investors are constrained in the amount of money they can

borrow at the risk-free rate. Fama and French (1992) gather empirical evidence that

market betas do not explain the cross-section of average returns, finding that stock

characteristics such as a firm’s size or its book-to-market ratio play an important role

in the investors’ compensation for risk. Boudoukh et al. (1993) attribute the failure of

the conditional CAPM to the equity premium, finding that in some states of the econ-

omy its positivity constraint is violated. Lewellen and Nagel (2006), in contrast, reject

the conditional model, arguing that the variation in betas and the equity premium

would have to be implausibly large to explain asset-pricing anomalies such as momen-

tum or the value premium. Frazzini and Pedersen (2014) extend the argument by
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Black (1972) that investors are subject to short-selling constraints and discover that a

betting-against-beta strategy can exploit the fact that low-beta portfolios carry higher

Sharpe ratios than high-beta portfolios. Savor and Wilson (2014) and Hendershott

et al. (2020) argue that the positive relationship between betas and average returns is

present only in vicinity of macroeconomic news announcements and during close-to-

open intervals, respectively. Ungeheuer and Weber (2021) link the failure of betas to

results from behavioral experiments which suggest that investors use a counting heuris-

tic, rather than correlation measures, to assess the dependence between stocks. Hasler

and Martineau (2023) examine the contemporaneous relationship between stock and

market excess returns implied by the conditional CAPM, finding that betas obtained

from rolling-window regressions explain the conditional level of returns.

3.3 Theoretical considerations

3.3.1 A fully-implied capital asset pricing model

At the center of our model economy is a multi-period investor with log utility, whose

wealth portfolio W is a claim to all future consumption Ct+h. While the subscript t

denotes a point in time, h represents a period of time, also referred to as the investment

horizon. With log utility, u(Ct) = ln(Ct), and δ representing the subjective discount

factor that accounts for the time preferences of the investor, the price of the wealth

portfolio is given by4

PW
t = Et

(
∞∑

h=1

δh
u′(Ct+h)

u′(Ct)
Ct+h

)
=

δ

1−δ
Ct,

where the expectation is conditional on the information available in t. Hence, its gross

return, RW
t,t+h, is proportional to consumption growth

RW
t,t+h =

1

δ

Ct+h

Ct

,

and the reciprocal of RW
t,t+h is a stochastic discount factor

Mt,t+h =
1

RW
t,t+h

. (3.1)

We use Equation (3.1) to state the price of the payoff Ri
t,t+h×R

W
t,t+h in terms of risk-

neutral expectations, giving

Et

(
Ri

t,t+h

)
=

1

Rf
t,t+h

E∗
t

(
Ri

t,t+hR
W
t,t+h

)
, (3.2)

4Detailed expositions of the log utility framework can be found in Kraus and Litzenberger (1975)
and Rubinstein (1976). The notation used here is based on Cochrane (2005, p. 160).
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where the superscript asterisk indicates that the expected value is subject to the risk-

neutral distribution of returns. Because E∗
t

(
Ri

t,t+h/R
f
t,t+h

)
= 1 is satisfied for any gross

return, we can write

Rf
t,t+h =

1

Rf
t,t+h

E∗
t (R

i
t,t+h)·E

∗
t (R

W
t,t+h),

which we then subtract from either side of Equation (3.2) to obtain

Et

(
Ri

t,t+h−R
f
t,t+h

)
=

1

Rf
t,t+h

cov∗t
(
Ri

t,t+h,R
W
t,t+h

)
. (3.3)

The fact that the reciprocal of RW
t,t+h is an SDF thus allows us to establish a direct

connection between a stock’s conditional expected excess return and its risk-neutral

conditional covariance with the return on the wealth portfolio. Because risk-neutral

covariances of returns are not directly observable, however, some additional steps are

necessary to achieve identification.5

In an attempt to recover the risk-neutral conditional covariance in Equation (3.3),

we follow Martin and Wagner (2019) and project stock returns onto the return of the

wealth portfolio under the risk-neutral measure6

Ri
t,t+h = αi,∗

t,h+β
i,∗
t,h ·R

W
t,t+h+ε

i
t,t+h, (3.4)

such that E∗
t (R

W
t,t+hε

i
t,t+h) and E∗

t (ε
i
t,t+h) are equal to zero. Accordingly, the risk-neutral

beta in Equation (3.4) is a population regression coefficient, i.e.,

βi,∗
t,h =

cov∗t
(
Ri

t,t+h,R
W
t,t+h

)

var∗t
(
RW

t,t+h

) .

This allows us to rewrite the expected excess return in Equation (3.3) as

Et

(
Ri

t,t+h−R
f
t,t+h

)
= βi,∗

t,h ·
1

Rf
t,t+h

var∗t
(
RW

t,t+h

)
. (3.5)

In order to identify βi,∗
t,h in terms of observable quantities, we take risk-neutral variances

5A critical assessment of the unobservability of risk-neutral cross-moments of returns is given in
Section 3.3.2.

6Martin andWagner (2019) explicitly avoid placing their approach in the context of a consumption-
based asset pricing framework. Instead, they start with a portfolio optimization problem in which the
weights of the individual stocks are chosen such that the portfolio is growth-optimal. Because they
express the objective function in terms of logarithmic returns, they arrive at the same implications
for the return on the growth-optimal portfolio as we do for the return on the wealth portfolio – its
reciprocal is a stochastic discount factor. While the derivations presented hereafter are in principle
consistent with their optimization problem, we believe that the consumption-based framework lends
itself more naturally to the derivation of a conditional CAPM.
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on both sides of Equation (3.4), so that7

var∗t
(
Ri

t,t+h

)
=
(
βi,∗
t,h

)2
·var∗t

(
RW

t,t+h

)
+var∗t (ε

i
t,t+h). (3.6)

In addition, we assume that the proportion of systematic risk in Equation (3.6) is con-

stant in the cross-section. That is, we decompose a stock’s total risk-neutral variance

according to

var∗t
(
Ri

t,t+h

)
= (v∗t,h)

2 ·var∗t
(
Ri

t,t+h

)
+
(
1−(v∗t,h)

2
)
·var∗t

(
Ri

t,t+h

)
, (3.7)

where 0 ≤ (v∗t,h)
2 < 1, and define

(v∗t,h)
2 ·var∗t

(
Ri

t,t+h

)
:=
(
βi,∗
t,h

)2
·var∗t

(
RW

t,t+h

)
. (3.8)

This strategy is inspired by Kempf et al. (2015), who work with the physical equiva-

lent of Equation (3.6) to estimate between-stock covariances for portfolio optimization.

Their approach involves identifying physical conditional betas in terms of physical con-

ditional variances, which they approximate with the help of risk-neutral moments. The

change of measure associated with this approximation remains unexplained, however.

They note that “although options provide moments under the risk-neutral measure and

portfolio selection requires moments under the physical measure, we make no attempt

to risk-adjust implied moments in our study.” Accordingly, we add to their approach

in that we provide a disciplined rationale for why risk-neutral moments should be

associated with conditional stock risk premia.8

By replacing the first term in Equation (3.7) with the expression in Equation (3.8)

and solving for beta we obtain

βi,∗
t,h = α·v∗t,h

(
var∗t

(
Ri

t,t+h

)

var∗t
(
RW

t,t+h

)
)1/2

, (3.9)

where α ∈ {−1,1}.9 If, in addition, the market return, RM
t,t+h, is a sufficient proxy for

the return on the wealth portfolio – a standard CAPM assumption – we can solve for

7Martin and Wagner (2019) also rely on the orthogonal decomposition shown in Equation (3.4)
to derive their version of a fully-implied formula. Unlike them, however, we do not aim at getting rid
of beta, which they achieve with a Taylor approximation at βi,∗

t,h = 1 and by imposing constraints on

the variation of εit,t+h. Rather, we seek to identify beta in terms of risk-neutral variances. In Section
3.3.2 we present details on our motivation for choosing a different path, involving a discussion of the
identifying assumptions and associated implications.

8In Appendix B.3 we discuss alternative identification strategies involving higher risk-neutral mo-
ments of returns. We find that the variance-based identification strategy performs best empirically.

9We introduce α because taking the square root of βi,∗
t,h gives a dual solution.
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v∗t,h by value-weighting Equation (3.9) and summing over stocks, such that

βM,∗
t,h =

∑

j

wj
t ·α·v

∗
t,h

(
var∗t

(
Rj

t,t+h

)

var∗t
(
RM

t,t+h

)
)1/2

= 1,

and

v∗t,h =
var∗t

(
RM

t,t+h

)1/2
∑

jw
j
t ·α·var

∗
t

(
Rj

t,t+h

)1/2 .

Hence, the risk-neutral beta in Equation (3.9) depends on risk-neutral variances only

βi,∗
t,h =

var∗t
(
Ri

t,t+h

)1/2
∑

jw
j
t ·var

∗
t

(
Rj

t,t+h

)1/2 , (3.10)

and by combining Equations (3.5) and (3.10), we obtain a formula for the expected

return of a stock in excess of the risk-free rate that is fully-implied by option prices10

Et

(
Ri

t,t+h−R
f
t,t+h

)
=

var∗t
(
Ri

t,t+h

)1/2
∑

jw
j
t ·var

∗
t

(
Rj

t,t+h

)1/2 ·
1

Rf
t,t+h

var∗t
(
RM

t,t+h

)
. (3.11)

We then value-weight Equation (3.11) and sum over all stocks to recover the conditional

equity premium, which is equivalent to Martin’s (2017) lower bound

Et

(
RM

t,t+h−R
f
t,t+h

)
=

1

Rf
t,t+h

var∗t
(
RM

t,t+h

)
. (3.12)

By combining Equations (3.10), (3.11) and (3.12), we obtain a variant of the condi-

tional CAPM in which a stock’s exposure to the market and the equity premium both

are fully-implied by option prices

Et

(
Ri

t,t+h−R
f
t,t+h

)
= βi

t,h︸︷︷︸
Eq. (3.10)

× Et

(
RM

t,t+h−R
f
t,t+h

)
︸ ︷︷ ︸

Eq. (3.12)

, (3.13)

In subsequent sections we refer to Equation (3.13) as the fully-implied capital asset

pricing model (or FI-CAPM).11

10For the case of simple returns, Martin (2017) shows that risk-neutral variances of returns can be
computed using a panel of option prices. We provide a detailed description of the necessary data in
Appendix B.1 and the corresponding formulas in Appendix B.2.

11We are aware of the fact that, with the assumptions we make, we expose ourselves to a long
history of CAPM criticism. For example, one might conclude that the log utility assumption is too
restrictive, or that a broad-based market portfolio is an inadequate proxy for the wealth portfolio –
a concern famously raised by Roll (1977). However, we do not see the contribution of this study in
answering such critique. Rather, we intend to complement existing approaches towards motivating the
conditional CAPM with a perspective, in which option prices play a pivotal role in specifying the time
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To give a first impression, Figure 3.1 presents time series of annualized expected ex-

cess returns for Apple Inc. at investment horizons between 30 and 730 calendar days.

For reference, we add the corresponding stock risk premia by Martin and Wagner

(2019) (henceforth referred to as MW) and those of a conditional CAPM (hence-

forth referred to as β̂i,t×MKTt), where the betas are estimated by one-year rolling

regressions of daily stock onto market excess returns, and the equity premium is the

expanding historical average excess return of CRSP’s value weighted index. For the

sake of conciseness, we defer a detailed comparison of the approaches underlying the

FI-CAPM and MW to Section 3.3.3, and a description of the data used in this study

to Appendix B.1.

Figure 3.1 shows that the conditional stock risk premia implied by the FI-CAPM

and MW are very similar, except for the period starting in the early 2000s when the

dot-com bubble (henceforth DCB) hit the US economy. At first glance, it seems as

if the two initially diverged, but then converged again with the peak of the global

financial crisis (henceforth GFC) in 2009. We discuss this phenomenon in greater

detail in Sections 3.3.3 and 3.4.1. Moreover, compared to β̂i,t×MKTt, the time-series

variation of the option-implied risk premia is considerably higher, which Martin and

Wagner (2019) take as an indication that there is substantial variation in returns that

cannot be accounted for by traditional estimates of beta.

3.3.2 The assumption of constant correlation

A critical implication of the identifying assumption in Equation (3.8) is that the time-

varying risk-neutral conditional correlation of a stock’s return with the market is con-

stant in the cross-section. This can be seen by converting the risk-neutral betas in

Equation (3.10) into risk-neutral correlations

corr∗t (R
i
t,t+h,R

M
t,t+h) =

var∗t
(
RM

t,t+h

)1/2
∑

jw
j
t ·var

∗
t

(
Rj

t,t+h

)1/2 . (3.14)

Because options on the cross-moments of stock returns are neither widely traded nor

liquid, estimating conditional risk-neutral correlations (or covariances as in Equation

(3.3)) from option prices remains a difficult task. Martin (2018) describes this issue

in his survey of Ross (1976) and Breeden and Litzenberger (1978), pointing out the

pitfalls that are associated with inferring the joint risk-neutral distribution of two as-

sets from observable option prices. He further admits that it is precisely because of

the unobservability of the cross-moments that Martin and Wagner (2019) must resort

to a set of harsh approximations in their derivation of a fully-implied formula. As we

variation in conditional moments. Regarding the log utility assumption, we further refer to Rubinstein
(1974), who develops sufficient conditions under which individual investors can have heterogeneous
preferences and beliefs as long as their aggregate tastes comply with additive generalized log utility.
As for the Roll-critique, we concur with Fama and French (2004), who emphasize that such “criticism
can be leveled at tests of any economic model when the tests are less than exhaustive or when they
use proxies for the variables called for by the model.”
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Figure 3.1: Annualized stock risk premia. This figure shows time series of annualized expected
excess returns for the stock of Apple Inc. with investment horizons of 30, 182, 365, and 730 calendar
days between January 1996 and December 2020. In each panel, the solid red line represents the
expected excess return calculated according to the FI-CAPM in Equation (3.13). The dashed blue
line is the expected excess return proposed by Martin and Wagner (2019) (MW), and the dotted
black line is that of a conditional CAPM, where the betas are obtained by rolling-window regression
of stock onto market excess returns, and the equity premium corresponds to the historical average
market excess return (β̂i,t×MKTt). The time series have a daily frequency.
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find the implications of their chosen approximations hard to assess, we propose a more

direct approach in deriving the FI-CAPM. More specifically, we replace their assump-

tion of a negligible approximation error that is due to the linearization of Equation

(3.6) at βi,∗
t,h = 1 and setting var∗t (ε

i
t,t+h)−

∑
jw

j
t ·var

∗
t (ε

j
t,t+h) = 0, by the assumption

of a constant cross-sectional stock-market correlation, which is not necessarily milder,

but more closely related to the problem that the risk-neutral cross-moments of stock

returns are unobservable.

To support this idea, we refer to Kempf et al. (2015), who argue that the constant

correlation assumption, at least if applied to the physical equivalent of Equation (3.6),

allows for a reasonable approximation of the cross-moments of stock returns. Moreover,

Chan et al. (1999) note that “factor models yield mean absolute forecast errors that

are not notably different from a simple model which assumes that all stocks share

the same average pairwise covariance.” In a similar vein, Baule et al. (2016) employ

Ledoit and Wolf’s (2004) shrinkage approach to estimate the covariance matrix of stock

returns and conclude that especially shrinkage towards a constant correlation seems

promising.

To some extent, Martin and Wagner (2019) also discuss the constant correlation

assumption in their Appendix A. Using their SVIX notation, that is,

SVIX2
t = h−1 var∗t

(
RM

t,t+h/R
f
t,t+h

)
,

SVIX2
i,t = h−1 var∗t

(
Ri

t,t+h/R
f
t,t+h

)
,

SVIX2
t = h−1

∑

j

wj
t ·var

∗
t

(
Rj

t,t+h/R
f
t,t+h

)
,

they argue that SVIX2
t/SVIX

2
t can be conceived of as an approximation of the average

risk-neutral correlation between stocks. To illustrate that this claim directly relates to

the expression in Equation (3.14), we follow their approach and rewrite the risk-neutral

variance of the market return as a weighted sum of covariances

var∗t
(
RM

t,t+h

)
=
∑

i

∑

j

wi
tw

j
t ·cov

∗
t

(
Ri

t,t+h,R
j
t,t+h

)
=
∑

i

wi
t ·cov

∗
t

(
Ri

t,t+h,R
M
t,t+h

)
.

With the assumption that the stocks’ risk-neutral correlation with the market is con-

stant in the cross-section, and by rearranging terms, we obtain

corr∗t (R
i
t,t+h,R

M
t,t+h) =

var∗t
(
RM

t,t+h

)1/2
∑

jw
j
t ·var

∗
t

(
Rj

t,t+h

)1/2 =
SVIXt

SVIXt

, (3.15)

which corresponds to Equation (3.14).

The key insight here is that, even though Martin and Wagner (2019) sketch a sim-

ilar idea in their Appendix A, they do not claim a fully-implied CAPM. First, they

associate SVIX2
t/SVIX

2
t with the risk-neutral correlation between stocks, rather than

the correlation between stocks and the market, which is captured by beta. As shown
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above, switching from the one to the other perspective is fairly easy and allows us

to establish a more direct connection to the CAPM. Second, for SVIX2
t/SVIX

2
t to be

a valid approximation of the average risk-neutral stock-stock correlation, they must

neglect a Jensen’s inequality – something that we do not need to arrive at Equation

(3.15), because it is a direct implication of our identification strategy. The MW for-

mula, which we introduce explicitly in Section 3.3.3, instead appears to be unrelated

to their finding that SVIX2
t/SVIX

2
t can be conceived of as an approximation of the

average risk-neutral correlation between stocks.12

3.3.3 Martin and Wagner’s (2019) formula as a special case

To develop a better understanding of the differences between the FI-CAPM and MW,

we find it convenient to resort to their SVIX language, which allows us to rewrite the

two competing formulas for the stock risk premium as follows:

h−1

(
Et

(
Ri

t,t+h

Rf
t,t+h

)
−1

)
=





SVIXi,t

SVIXt

·SVIX2
t (FI-CAPM) (3.16)

SVIX2
t+

1

2

(
SVIX2

i,t−SVIX2
t

)
(MW). (3.17)

Note that in Equation (3.16) the risk premium of a stock is comprised of a multi-

plication of two components: SVIX2
t accounting for the time variation in the equity

premium and βi,∗
t,h representing the associated stock-specific risk exposure. In Equa-

tion (3.17), the components of the stock risk premium are instead additively separable,

meaning that there is no interaction between aggregate and stock-specific sources of

risk.

That being said, the differences between the two formulas remain elusive, so we

introduce a modified version of the FI-CAPM that allows for a more direct comparison.

More specifically, we write Equation (3.16) as a function of SVIX2
i,t

g(SVIX2
i,t) =

(
SVIX2

i,t

)1/2
(
wi

t ·
(
SVIX2

i,t

)1/2
+
∑

j ̸=iw
j
t ·SVIXj,t

)2 ·SVIX2
t , (3.18)

and linearize this function using a first-order Taylor approximation. The first degree

polynomial evaluated at some ψt is given by

G(SVIX2
i,t,ψt) = g(ψt)+g

′(ψt)·(SVIX
2
i,t−ψt),

12Figure B.1 in Appendix B.6 illustrates the differences between Martin and Wagner’s (2019)

measure of the average stock-stock correlation implied by SVIX2
t/SVIX2

t and ours for the stock-
market correlation in Equation (3.14).
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and the associated derivative is

g′(SVIX2
i,t) =

1

2

SVIX2
t ·
(∑

j ̸=iw
j
t ·SVIXj,t

)
(
SVIX2

i,t

)1/2
·
(∑

jw
j
t ·SVIXj,t

)2 . (3.19)

To further simplify matters, we assume that the contribution of asset i to the value-

weighted average risk-neutral volatility is negligible, i.e.,
∑

j ̸=iw
j
t ·SVIXj,t ≈

∑
jw

j
t ·

SVIXj,t. Considering that the average S&P 500 constituent comprises a market capi-

talization weight of approximately 0.2%, this assumption may not be too far-fetched.

Thereby, we obtain an approximate version of the derivative in Equation (3.19), which

is

g′(SVIX2
i,t) ≈

1

2

SVIX2
t(

SVIX2
i,t

)1/2
·
(∑

jw
j
t ·SVIXj,t

) . (3.20)

Evaluating Equation (3.20) at ψt =
(
SVIXt

)2
yields

g′(ψt) ≈
1

2

(
SVIXt

SVIXt

)2

,

where the choice of ψt is motivated by the fact that Martin and Wagner (2019) rely on

a linearization of Equation (3.6) around βi,∗
t,h = 1, which in the case of the FI-CAPM

is achieved by setting ψt =
(
SVIXt

)2
. Accordingly, a linear approximation of the

right-hand side of Equation (3.16) is given by

G(SVIX2
i,t) ≈ SVIX2

t+γt ·
1

2

(
SVIX2

i,t−
(
SVIXt

)2)
,

where γt = corr∗t (R
i
t,t+h,R

M
t,t+h)

2.

Note that this expression is already quite similar to the MW formula in Equation

(3.17), yet γt in their case is equal to 1 and the last term in brackets is SVIX2
t instead

of
(
SVIXt

)2
. To get even closer, we further neglect Jensen’s inequality

(
SVIXt

)2
≤

SVIX2
t , by which we obtain13

FI-CAPM ≈ SVIX2
t+γ̃t ·

1

2

(
SVIX2

i,t−SVIX2
t

)
, (3.21)

where γ̃t =
SVIX2

t

SVIX2
t

.

An interesting result of this is that 0 ≤ γ̃t ≤ 1, because SVIX2
t ≤ SVIX2

t . γ̃t being

smaller than 1 implies that the linear approximation of the FI-CAPM in Equation

13This is the same inequality that Martin and Wagner (2019) neglect when motivating that

SVIX2
t/SVIX

2
t can be given the interpretation of an approximate average risk-neutral correlation

between stocks.
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(3.21) is less sensitive to changes in risk-neutral stock variance and produces less

cross-sectional variation in expected excess returns than MW. Moreover, for stocks

that carry higher than average risk, i.e.,
(
SVIX2

i,t−SVIX2
t

)
> 0, the expected excess

return implied by the FI-CAPM approximation is lower than the one implied by MW.

The reverse is true for stocks that carry lower than average risk. As discussed in

Section 3.3.2, we can give γ̃t the interpretation of an approximate average risk-neutral

correlation between stocks. Accordingly, the linear approximation of the FI-CAPM

would correspond to MW only if the approximate average risk-neutral correlation

between stocks was equal to 1 at all times.14

Figure 3.2 corroborates these findings for the sample of S&P 500 constituents,

showing the original models’ cross-sectional variation in expected stock excess returns

as measured by the differences between the 1st and the 10th decile. It can be seen

that, especially during the DCB, the GFC, and also the more recent COVID-19 crisis

(henceforth COC), the cross-sectional variation generated by MW was significantly

higher than the one generated by the FI-CAPM, whereas outside of these periods the

differences largely disappeared.

3.4 Model evaluation

In the previous sections, we have argued from a theoretical perspective that the FI-

CAPM is to be preferred over MW, not only because the assumptions necessary for

its derivation are more transparent, but also because its beta representation provides

a more intuitive take on the notion of risk compensation as it is reflected in the cross-

section of returns.

A question that inevitably arises therefrom is whether these favorable properties

also translate into better empirical performance. In the following, we therefore exam-

ine the FI-CAPM both in terms of its average forecast error (Section 3.4.1) and its

ability to explain differences in average excess returns across assets (Section 3.4.2). In

either case, we compare its performance to established benchmark models, including

MW and β̂i,t×MKTt as the main competitors. Examining the model’s cross-sectional

implications, we document a flat relationship between average predicted and realized

excess returns of beta-sorted portfolios – a pattern commonly associated with tests

of the unconditional CAPM. In Sections 3.4.3 and 3.4.4 we substantiate the condi-

tional CAPM’s difficulties in explaining the cross-section of average stock returns by

showing that the portfolios’ Sharpe ratios decline with beta, regardless of whether we

use the FI-CAPM or β̂i,t×MKTt. In Sections 3.4.5 to 3.4.7 we synthesize the em-

pirical evidence and provide an intertemporal perspective on the CAPM’s failure in

cross-sectional tests.

14In Appendix B.4, we briefly discuss the positivity restriction on beta that we implicitly impose
in deriving the FI-CAPM. We compare this restriction to the Negative Correlation Condition (NCC)
for individual stocks, as examined by Kadan and Tang (2020).
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Figure 3.2: Differences between deciles of stock risk premia. This figure shows time series
of differences between the 1st and the 10th decile of expected stock excess returns with investment
horizons of 30, 182, 365, and 730 calendar days between January 1996 and December 2020. In each
panel, the solid red line represents the expected excess return calculated according to the FI-CAPM
in Equation (3.13). The dotted blue line instead represents the approach by Martin and Wagner
(2019) (MW). The universe of stocks is confined to securities that are constituents of the S&P 500.
The time series have a daily frequency.
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3.4.1 Average forecast performance

We evaluate the average forecast performance of the FI-CAPM using the mean square

prediction error (MSE), which has the property that it is uniquely minimized by the

conditional mean of excess returns, that is,

Et(R
e,i
t,t+h) = argmin

R̂e,i
t,t+h

∈R

Et

(
(Re,i

t,t+h−R̂
e,i
t,t+h)

2
)
,

where Re,i
t,t+h denotes the return of asset i in excess of the risk-free rate and R̂e,i

t,t+h its

time t-conditional forecast from the set of feasible forecasts R. As the conditional

expectation is the MSE-optimal predictor of excess returns, we will refer to its mea-

surements simply as predictions. Moreover, it is easy to see that by the law of iterated

expectations, the conditional expected excess return minimizes not only the condi-

tional but also the unconditional MSE, making it accessible for empirical estimation.

As we are interested in the models’ performance over a panel of N stocks rather

than a single stock, we estimate their unconditional MSEs by time series averages and

then average across stocks. In terms of population moments we thus have

MSEN =
1

N

∑

i

E
(
(Re,i

t,t+h−R̂
e,i
t,t+h)

2
)
, (3.22)

whereas the corresponding sample equivalent is given by15

M̂SEN =
1

N

∑

i

1

Ti

∑

t

(Re,i
t,t+h−R̂

e,i
t,t+h)

2.

In practice, it is often difficult to judge how small the average forecast error of

a model should be for it to be considered a reasonable approximation to the true

unobserved expectation, so we express the average MSE of the FI-CAPM (ω1) relative

to that of an established competitor (ω2)

R2
N = 1−

1
N

∑
iE
(
(Re,i

t,t+h−R̂
e,i
t,t+h(ω1))

2
)

1
N

∑
iE
(
(Re,i

t,t+h−R̂
e,i
t,t+h(ω2))2

) , (3.23)

such that R2
N indicates by how much the proposed model performs better (or worse)

than the competing model.16 In subsequent sections, we refer to R2
N as the predic-

tive or out-of-sample R-squared. Similarly, we use R2 without the subscript N when

15Our sample of security-date observations is unbalanced, so we refer to N as the total number of
stocks, to T as the total number of timestamps, to Nt as the number of stocks at a given date and
to Ti as the number of timestamps for a given stock.

16Note that any benchmark model is yet just another approximation of the true unobserved expec-
tation, so we should never go as far as to reject a potentially interesting model based on a negative
R2

N alone. Even if the level of its forecasts is somewhat off, it may still hold substantial information
about the cross-section of stock returns. We defer a discussion of cross-sectional explanatory power
to subsequent sections.
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forecasting the excess return of the market.

Because stocks frequently enter and leave the market, the time-series averages we

use to estimate MSEN are typically based on a number of observations that is smaller

than T . We therefore multiply these averages by their rate of convergence Ti, so that

the estimator of R2
N simplifies to its pooled equivalent

R̂2
N = 1−

∑
i,t(R

e,i
t,t+h−R̂

e,i
t,t+h(ω1))

2

∑
i,t(R

e,i
t,t+h−R̂

e,i
t,t+h(ω2))2

.

To add a formal perspective, we test for superior forecast performance of the FI-

CAPM relative to a range of benchmark models using a panel version of the Diebold-

Mariano (DM) test.17 For this purpose, we define Dt,t+h as the cross-sectional average

loss differential between two competing models ω1 and ω2

Dt,t+h =
1

Nt

∑

i

((
Re,i

t,t+h−R̂
e,i
t,t+h(ω1)

)2
−
(
Re,i

t,t+h−R̂
e,i
t,t+h(ω2)

)2)
.

The null hypothesis associated with this test is H0: E(Dt,t+h) ≤ 0, which makes

DM =
1
T

∑
tDt,t+h√

v̂ar
(
1
T

∑
tDt,t+h

)
a
∼ N (0,1) (3.24)

a natural choice of a test statistic.18 We obtain estimates of the variance in the

denominator of DM using the procedure by Newey and West (1987), thus accounting

for serial correlation in the average loss differential.

Table 3.1 provides estimates of R2
N and p-values associated with a one-sided DM

test, both at different forecast horizons and for a range of benchmark models. The

latter can be divided into two groups, one that provides cross-sectionally constant

forecasts and one that achieves cross-sectional differentiation. The members of the first

group are the zero forecast, a constant forecast of 6% p.a., the extending historical

average of CRSP’s value-weighted index MKTt, and Martin’s (2017) lower bound

on the equity premium SVIX2
t . The second group consists of three variants of the

conditional CAPM in which the betas are estimated by one-year rolling regressions

and the equity premium is chosen as 6% p.a., MKTt, or SVIX2
t . The second group

also includes the Fama-French three factor model (FF3), the option-based approach

by Kadan and Tang (2020) (KT), and MW.

What is striking is that, regardless of the choice of the benchmark model, the

out-of-sample R2s all carry positive signs, with the exception of MW at the monthly

17For a detailed discussion of comparing forecasts in a panel data setting, see Timmermann and
Zhu (2019).

18Given that a CLT can be applied and E(Dt,t+h) = 0, the DM test statistic converges in distri-
bution to N (0,1). For this to hold, we need to make high-level assumptions about the statistical
properties of Dt,t+h, i.e., we assume that the cross-sectional average loss differential is covariance
stationary. Moreover, we do not account for the fact that Dt,t+h itself is subject to estimation.
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investment horizon, indicating that the FI-CAPM produces lower average forecast

errors than its competitors. In particular, the FI-CAPM appears to outperform not

only the models providing a constant cross-sectional forecast, an example of which is

given by the comparison with the zero forecast yielding an R2
N of about 6.1% at the

one-year horizon, but also the more traditional estimates of the conditional CAPM

where the betas are obtained from one-year rolling regressions. Compared to MW,

FI-CAPM performs better at 7 out of 8 forecast horizons, extending its lead as the

forecast horizon increases. The R2
N for this comparison ranges from negative 0.02% at

the one-month horizon to 4.4% at the two-year horizon.

As we have seen in Figures 3.1 and 3.2, the differences between the forecasts of the

FI-CAPM and MW are largest during the DCB. Therefore, we investigate the effects

of clustering R2
N by time in Tables 3.2 and 3.3.19 In particular, we present estimates

of R2
N and associated p-values of the DM test for the years 2000 to 2002, including the

GFC from 2007 to 2009 for reference.20 During the DCB, the average forecast error of

the FI-CAPM relative to MW was particularly low, precisely when the cross-sectional

variation in expected excess returns generated by MW was much higher than that of

FI-CAPM, as we discussed previously with reference to Figure 3.2. The estimates of

R2
N in this period range from approximately 1.3% to 32.4% depending on the forecast

horizon, and the DM test statistic shows significant differences in the cross-sectional

average forecast error for all forecast horizons. Hence, it seems as if the more balanced

adjustment of the FI-CAPM to this period of low average risk-neutral stock-market

correlation was beneficial in terms of predictive R-squared. For the GFC, the situation

is somewhat more complicated: For shorter forecast horizons the FI-CAPM produces

lower average forecast errors (the highest R2
N is approximately 2.5%), whereas for

longer forecast horizons MW takes the lead (the lowest R2
N is approximately negative

2.8%).

Table 3.4 presents results for the predictability of market excess returns when

comparing the equity premium of the FI-CAPM from Equation (3.12) with a zero

forecast, a constant prediction of 6% p.a., and the historical average excess return,

MKTt. Again, the R
2’s are positive for each of the benchmark models, except for the

6% p.a. forecast with an investment horizon of 547 calendar days. Compared to the

zero forecast, the FI-CAPM appears to perform particularly well, with R2’s ranging

from 2.0% to 10.8%, although the DM test indicates that this superior performance

is borderline significant. Still, the amount of variation explained increases in the

investment horizon and so the results previously reported by Martin (2017) seem to

be robust to an expansion of the sample period.

19We do not include the more recent COC, as the data coverage for the year 2020 is not the same
for all investment horizons. Since the last date available in CRSP is December 31, 2020, we cannot
calculate forward-looking returns with an investment horizon of, say, 730 calendar days.

20More precisely, we choose March 24, 2000 as the starting date and October 9, 2002 as the ending
date for the DCB, as these dates correspond to the high-low values of the S&P 500 during the 2000-
2002 period. For the GFC we choose October 9, 2007 and March 9, 2009 as starting and ending
dates, respectively.
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Table 3.4: Out-of-sample forecast evaluation (S&P 500 index). This table presents results
from an out-of-sample performance comparison between the equity premium in Equation (3.12) (FI-
CAPM) and a collection of benchmark models from January 1996 to December 2020. For each
investment horizon, ranging from 30 to 730 calendar days, we present estimates of R2 (Equation
(3.23)) in the rows, thus comparing the MSE of the FI-CAPM with that of its competitors in the
columns. A positive sign of R2 indicates that the FI-CAPM is superior to the benchmark model in
terms of MSE. From left to right, we use the following benchmark models for comparison: a constant
zero forecast, a forecast of 6% p.a., and the extending historical average of CRSP’s value-weighted
index MKTt. The number in brackets below R2 represents the p-value that is associated with a one-
sided Diebold-Mariano test for superior predictive accuracy of the FI-CAPM, i.e., we reject the null
for large values of the DM test statistic (Equation (3.24)). Asterisks denote statistical significance at
conventional levels of 10% (✯), 5% (✯✯) and 1% (✯✯✯). The frequency of the forecast errors used in
this analysis is daily.

0% p.a. 6% p.a. MKTt

In
ve
st
m
en
t
h
or
iz
on

30 2.008∗ 0.879 1.425
(0.091) (0.199) (0.123)

60 3.405∗ 1.365 2.776
(0.097) (0.211) (0.110)

91 4.650 1.563 3.866
(0.117) (0.251) (0.120)

182 8.442∗ 3.098 7.645
(0.068) (0.131) (0.108)

273 9.682∗ 2.402 9.132
(0.094) (0.286) (0.177)

365 9.775 1.051 9.808
(0.133) (0.425) (0.228)

547 10.446 −0.062 11.732
(0.180) (0.503) (0.253)

730 10.803 0.577 14.907
(0.217) (0.474) (0.229)
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3.4.2 Average excess returns of prediction-sorted portfolios

Although the results from Section 3.4.1 indicate that the average forecast error as-

sociated with the FI-CAPM is relatively small compared to a number of benchmark

models, this does not necessarily mean that the FI-CAPM is able to explain differences

in returns across assets. The reason is that, while R2
N penalizes the error in predicting

the level of excess returns, it does not explicitly account for the error in predicting

the cross-sectional ranking of stocks. Hence, a model that is completely uninforma-

tive for the cross-section can have a positive R2
N as long as the level component of its

prediction is better than that of the benchmark model.

Therefore, we turn to the model’s unconditional cross-sectional implications, which

we obtain from Equation (3.13) by the law of total expectations

E
(
Re,i

t,t+h−β
i
t,h ·Et(R

e,M
t,t+h)

)
= 0 i = 1,2, . . . ,N. (3.25)

Equation (3.25) states that the realized excess return of an asset i must on average be

equal to the asset’s exposure to market risk, βi
t,h, times the MSE-optimal prediction

of the market excess return, Et(R
e,M
t,t+h).

In Figure 3.3, we examine the moment conditions from Equation (3.25) by con-

trasting the average predicted and realized excess returns of 10 prediction-sorted port-

folios. The portfolios are formed daily on the basis of excess return predictions of the

FI-CAPM and MW, and for investment horizons of 30, 182, 365, and 730 calendar

days. In the case of the FI-CAPM, we use the terms prediction-sorted and beta-sorted

interchangeably because the equity premium, as part of the stock risk premium, has

no effect on the composition of the portfolios. As is common in the literature, we re-

sort to portfolios rather than individual stocks to account for potential measurement

error in the betas. An advantage of using prediction- rather than characteristic-sorted

portfolios is that a model’s cross-sectional performance is then determined not only

by the alignment of the portfolios along the 45 degree reference line, but also by the

variation produced in average realized returns across portfolios.

Regardless of the investment horizon, we observe that the average realized excess

returns of the two models broadly increase across portfolios, but that the corresponding

slopes are far too flat. This is emphasized by the fact that both the FI-CAPM and

MW have trouble generating return differentiation in the higher deciles, as is reflected

in the associated portfolios showing only little variation along the ordinate.

It is worth noting that neither of the two models can claim an advantage in terms of

cross-sectional explanatory power, as both achieve their cross-sectional differentiation

through risk-neutral variances of returns only, and so the portfolios’ compositions are

exactly the same at each point in time. Nevertheless, the FI-CAPM-based portfolios

are closer to the 45-degree reference line, which confirms our finding from Section 3.4.1

that the aggregate level of its stock risk premia is more appropriate than that of MW.
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Figure 3.3: Predicted and realized excess returns of prediction-sorted portfolios. This
figure contrasts average predicted and realized excess returns of 10 prediction-sorted portfolios for
investment horizons of 30, 182, 365, and 730 calendar days between January 1996 and December
2020. The models compared are the FI-CAPM from Equation (3.13) and the expected excess return
by Martin and Wagner (2019) (MW). The portfolios are formed at a daily frequency by sorting stocks
into portfolios according to the respective models’ predictions. The universe of stocks is confined to
securities that are constituents of the S&P 500. The 45-degree line is included for reference.
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3.4.3 Sharpe ratios of prediction-sorted portfolios

To get a better understanding of the flat relationship between average predicted and

realized excess returns, we estimate the portfolios’ unconditional Sharpe ratios (SR).

In this way, we focus on the variation in average realized rather than expected excess

returns, while taking into account the estimation uncertainty associated with calcu-

lating time-series averages of returns. If Re,q
t,t+h denotes the excess return on the q’th

prediction-sorted portfolio, the corresponding Sharpe ratio is given by

SR =
E(Re,q

t,t+h)√
var(Re,q

t,t+h)
q = 1,2, . . .K, (3.26)

where K is the number of portfolios.

Figure 3.4 highlights the differences between the SRs across portfolios and invest-

ment horizons using a heatmap plot in which, for each model, the lowest annualized

SR is associated with a light blue color and the highest SR with a dark blue color.

For reference, we present in Panel A the SRs of an ex post optimal model that as-

signs stocks to portfolios according to their ex post realized returns, thus generating

the maximum achievable SRs for the given sample. In Panel B we display the SRs

of portfolios formed on 12-month momentum, Panel C shows the ones of β̂i,t×MKTt,

and Panel D those of the FI-CAPM and MW, respectively.

In Panel A, the SRs increase steadily across portfolios, indicating that, in the case

of the ex post optimal model, higher mean returns are not offset by higher time-

series variation. The SRs across portfolios range from −5.68 to 6.13 at the 30 days

investment horizon, whereas at the 365 days investment horizon they range from −1.92

to 1.91. For portfolios formed by 12-month momentum, the overall SR pattern closely

resembles that of the ex post optimal model, yet the spread between the portfolios

is less pronounced, ranging from 0.19 (182 days) to 0.61 (30 days), only. Also, the

highest SR is obtained by the 7’th instead of the 10’th portfolio. In Panels C and D,

the two versions of the conditional CAPM, the FI-CAPM and β̂i,t×MKTt, produce

very similar SRs across portfolios and investment horizons. However, compared to the

ex post optimal model, their SR patterns are inverted, meaning that the 10th portfolio

produces a lower SR than the 1st at all investment horizons considered. The highest

SR for both the FI-CAPM and MW (β̂i,t×MKTt) is 0.62 at the 91 days investment

horizon (0.61 at the 30 days investment horizon) and obtained with the 1st (3rd)

portfolio, whereas the lowest SR is 0.25 (0.23) at the 182 days (730 days) investment

horizon obtained with the 10th portfolio. The moderate increase in average realized

returns across portfolios seen in Figure 3.3 must therefore be taken with a grain of salt

– the underlying time-series variation in the higher decile portfolios is considerable.21

21Frazzini and Pedersen (2014) confirm this pattern for various international markets using betas
obtained from rolling-window regressions.
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Figure 3.4: Sharpe ratios of prediction-sorted portfolios. This figure displays Sharpe ratios
of portfolios (Equation (3.26)) formed on the basis of a model’s excess return predictions. In Panel
A, we present the SRs of an ex post optimal model that assigns stocks to portfolios according to
their ex post realized returns, thus generating the maximum achievable SRs for the given sample.
In Panel B, we display the SRs of portfolios formed on 12-month momentum. Panel C presents the
SRs of a conditional CAPM, where the betas are obtained by one-year rolling regressions and the
equity premium corresponds to CRSP’s value-weighted index. Panel D shows the SRs obtained by
the FI-CAPM and MW, respectively, as both achieve their cross-sectional differentiation through
risk-neutral variances of returns. The universe of stocks is confined to securities that are constituents
of the S&P 500. The 45-degree line is included for reference. The investment horizons correspond to
30, 60, 91, 182, 273, 365, 547, and 730 calendar days, and the sample period ranges from January
1996 to December 2020.
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3.4.4 Pairwise tests of relative portfolio performance

We follow up on the observation of an inverted SR pattern for both the FI-CAPM and

MW (but also β̂i,t×MKTt) by proposing a formal test to examine whether the differ-

ences in the mean returns of the portfolios in Figure 3.3 are statistically significant.

This should be the case if the relationship between average predicted and realized ex-

cess returns were indeed strictly monotonically increasing, as implied by the moment

conditions in Equation (3.25). More specifically, we test the null hypothesis

H0 : E(R
e,q
t,t+h) ≥ E(Re,p

t,t+h)

for q < p and p,q ∈ {1,2, . . . ,K}, where K = 10 is the number of prediction-sorted

portfolios. This involves testing multiple hypotheses simultaneously, so we need to

account for multiplicity, that is, the fact that the probability of falsely rejecting at

least one of the hypothesis increases in the number of portfolios being compared. To

this end, we extend the testing framework by Hothorn et al. (2008) to a panel context,

which allows us to examine the above hypotheses both jointly and individually, while

controlling the familywise error rate.22 The results are presented in Table 3.5 for an

investment horizon of 365 calendar days.23

Even though the average realized returns (3rd column) generated by the FI-CAPM

and MW are broadly increasing from the 1st to the 10th portfolio, we have a hard time

rejecting the individual null hypotheses for the higher deciles. Significant differences

compared to the 1st portfolio, for example, are obtained only up to the 8th (with the

exception of the 2nd portfolio), which is in line with the Sharpe ratios (4th column)

steadily decreasing from the 1st to the 10th portfolio. Hence, we find no statistical

evidence that the FI-CAPM or MW produce a strictly monotonic relationship between

average predicted and realized excess returns.

3.4.5 Puzzling evidence of failure in cross-sectional tests

The results presented in Sections 3.4.2 to 3.4.4 are as puzzling as they are devastating:

Neither the FI-CAPM, MW, nor β̂i,t×MKTt seem to be able to provide a sufficient

explanation for why average returns vary across assets. Because previous attempts to

explain this phenomenon offer at best partial relief, however, we do not simply reject

those models, but instead seek to contextualize the evidence.24

22We present details on the methodology in Appendix B.5.
23The results remain essentially unchanged when these tests are performed at different investment

horizons or when β̂i,t×MKTt is used instead of the FI-CAPM.
24An explanation put forth by Black (1972) and Frazzini and Pedersen (2014) is that investors

are constrained in the amount of money they can borrow at the risk-free rate. However, as financial
markets have become more complete, one would expect the relationship to have steepened over time.
To the best of our knowledge, no such change has ever been reported in the literature. Similar
considerations apply to the rationale that additional factors might affect the investor’s compensation
for risk. Few of the factors proposed in the past have been stable enough to accomodate the flat
relationship’s persistence. Harvey and Liu (2021), for example, find that the “market factor is by far
the most important factor in explaining the cross-section of expected returns.”
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To deliver an explanation for the CAPM’s failure in cross-sectional tests, we zoom

in on the changing compositions of the beta-sorted portfolios over time. In order for

Equation (3.25) to hold on average, the allocation of stocks to portfolios should be such

that, at each point in time, the realized deciles correspond to the ones predicted. To

test this assertion, we sort stocks into deciles according to the FI-CAPM’s predictions

and record the relative frequency with which each possible combination of predicted

and realized deciles occurs. Table 3.6 reports the results of this exercise, showing

a very unique pattern across investment horizons: If one imagines a line between

the 5th and the 6th decile, whether vertically or horizontally, the relative frequencies

appear to mirror each other along this line. At an investment horizon of 30 days, this

phenomenon is particularly striking for the 1st and the 10th predicted decile, as the

stocks with the supposed lowest (highest) betas end up in the correct realized decile

in 27% (32%) of the cases, but in the exact opposite highest (lowest) decile in 22%

(34%) of the cases.

In Figure 3.5, we investigate the periodicity of this switching behavior by contrast-

ing the predicted and realized deciles of excess returns over time. The color gradient

that we plot at each date represents the realized order of the deciles relative to the

order predicted by the FI-CAPM. For example, if the darkest blue color appears at

the top of the graph, and the lighest white color at its bottom, this indicates that the

respective 1st and 10th deciles coincide. Conversely, if the darkest blue color appears

at the bottom, and the lightest white color at the top, the predicted order is reversed

compared to the realized order.

As can be seen from Panels A to D of Figure 3.5, the state of the portfolio align-

ment (either correct or inverted) changes quite frequently, but gets more persistent

as the investment horizon increases. At the annual horizon, the alignment appears to

be almost block-shaped across dates, suggesting that this pattern is driven by some

cyclical, macroeconomic component. Adding the annualized realized market excess

return to the graph, reveals that the order of the deciles tends to change whenever the

S&P 500 transitions from a bear to a bull market, and vice versa.

As a matter of fact, this observation is not entirely new. Pettengill et al. (1995),

for example, find “a consistent and highly significant relationship between uncondi-

tional beta and cross-sectional portfolio returns”, when conditioning on the sign of

realized market excess returns. Their reading of this result is that the failure of con-

ventional tests is due to the fact that the positive relationship between returns and

beta asserted by the unconditional CAPM is based on expected rather than realized

returns. Under rational expectations (and rather mild regularity conditions), however,

this should not matter much as time-series averages of returns constitute consistent es-

timators of expected returns. Placing their observation in the context of a conditional

CAPM, instead, yields a different and, in our view, more coherent interpretation of

this phenomenon.
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Table 3.6: Predicted and realized deciles of excess returns. This table shows the relative
frequencies (in %) of all possible combinations of predicted and realized deciles of excess returns. The
predicted deciles (columns) are formed on a daily basis by sorting stocks into portfolios according to
the expected excess returns of the FI-CAPM in Equation (3.13). The realized deciles (rows) instead
represent the order that is achieved by investing in these portfolios. Note that the numbers presented
also apply to MW, because both achieve their cross-sectional differentiation through risk-neutral
variances of returns. Panels A to D show the results for investment horizons of 30, 182, 365, and
730 calendar days. The sample period ranges from January 1996 to December 2020. The universe of
stocks corresponds to the extended sample of all common shares available in CRSP/OptionMetrics.
The frequency of the data used in this analysis is daily.

Panel A: 30 days Panel B: 182 days

Predicted deciles Predicted deciles
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

R
ea
li
ze
d
d
ec
il
es

1 27 7 4 3 3 3 4 6 9 34 29 6 2 3 3 3 3 5 9 38
2 10 19 9 5 5 6 7 10 21 6 11 22 6 4 5 5 5 10 24 7
3 7 10 17 10 8 9 10 16 9 4 7 11 17 8 7 8 11 17 9 3
4 6 8 12 15 13 14 14 9 6 3 5 7 11 17 12 13 13 10 7 3
5 5 8 10 15 18 16 12 9 5 3 6 7 10 13 19 17 11 9 5 3
6 5 8 11 14 18 17 12 8 5 2 5 7 10 15 18 19 12 7 5 3
7 5 9 12 15 13 12 15 10 5 4 5 7 12 16 12 13 14 11 5 4
8 6 10 14 11 10 10 12 16 9 4 5 9 16 12 10 10 14 14 6 5
9 8 16 8 7 8 7 9 11 19 8 7 17 9 8 8 7 9 9 19 6
10 22 5 5 5 4 5 5 6 11 32 21 6 6 5 6 5 7 7 10 29

Panel C: 365 days Panel D: 730 days

Predicted deciles Predicted deciles
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

R
ea
li
ze
d
d
ec
il
es

1 26 7 4 2 4 2 2 5 9 39 25 7 4 1 2 2 4 6 11 38
2 12 20 6 3 5 5 5 9 25 9 10 16 8 2 5 6 9 10 21 12
3 8 10 17 7 8 8 9 19 9 5 7 10 12 6 9 10 12 17 11 7
4 6 8 11 13 12 14 14 11 6 4 5 9 9 13 13 16 13 10 8 4
5 6 7 8 14 17 18 12 9 6 3 4 8 9 13 16 17 13 7 7 3
6 5 7 8 15 18 17 13 9 5 2 5 8 11 15 17 14 13 8 6 3
7 5 8 12 17 14 13 14 9 6 2 6 9 13 15 15 13 12 9 7 3
8 5 9 16 12 10 11 14 13 8 3 7 11 15 12 10 10 11 12 8 3
9 7 16 11 9 8 7 11 10 18 4 10 14 12 11 7 7 8 10 13 7
10 21 7 7 6 5 4 6 7 9 29 20 9 7 11 6 4 5 10 8 20
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Figure 3.5: Predicted and realized excess return deciles over time. This figure contrasts
the predicted and realized excess returns of 10 prediction-sorted portfolios on the primary vertical
axis (blue) with the annualized excess return of the S&P 500 index (red) on the secondary vertical
axis. The portfolios are formed on a daily basis using the expected excess returns of the FI-CAPM
in Equation (3.13). The labels from 1 to 10 along the primary vertical axis indicate the predicted
deciles. The plotted color gradient shows the corresponding realized deciles at each date, with the
lightest white color representing the 1st decile and the darkest blue color representing the 10th decile.
Panels A to D show the results for investment horizons of 30, 182, 365, and 730 calendar days. The
sample period ranges from January 1996 to December 2020. The universe of stocks corresponds to
the extended sample of all common shares available in CRSP/OptionMetrics. The frequency of the
data used in this analysis is daily.
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3.4.6 The uncertainty principle in asset pricing

To provide a formal explanation for the stylized facts presented in Section 3.4.5, we

return to the conditional CAPM’s unconditional implications from Equation (3.25),

and interpret the term βi
t,h×Et(R

e,M
t,t+h) as the MSE-optimal prediction of future stock

excess returns. It is easy to see that, because of its composition, any variation in

the resulting forecasts stems from either the betas or the conditional equity premium.

The failure of the CAPM, however, is commonly associated with a failure of the betas

and/or the absence of additional risk factors.25

We challenge this view arguing that the flat relationship between average predicted

and realized excess returns at short horizons is rather due to the inherent uncertainty

associated with forecasting market excess returns. Moreover, it is the mismatch be-

tween the predicted and realized signs of market excess returns that explains the

cyclical behavior of the portfolios shown in Figure 3.5.

To formalize this claim, we decompose the return of the market portfolio according

to

Re,M
t,t+h = Et

(
Re,M

t,t+h

)
+εMt,t+h,

where Et

(
εMt,t+h

)
= E(εMt,t+h|Ft) = 0, and Ft represents the information set available

to investors when forming expectations. Solving for Et(R
e,M
t,t+h) allows us to express

Equation (3.25) in terms of the realized market excess return and its inherently un-

predictable component εMt,t+h, so that

E
(
Re,i

t,t+h−β
i
t,h ·R

e,M
t,t+h

)
+E
(
βi
t,h ·ε

M
t,t+h

)
= 0.

Note that, as a result of E(εMt,t+h|Ft) = 0, the residual component εMt,t+h is uncorre-

lated with any Ft-measurable random variable. Provided that βi
t,h is a function of

such random variables, and can thus be calculated from option prices, it follows that

E(βi
t,h ·ε

M
t,t+h) = 0.26 As a result, alternative moment conditions to test the conditional

CAPM’s cross-sectional implications are given by

E
(
Re,i

t,t+h−β
i
t,h ·R

e,M
t,t+h

)
= 0 i = 1,2, . . . ,N. (3.27)

The crucial difference between Equations (3.25) and (3.27) is that for the latter, the

conditional market premium has been replaced by the market excess return and its

inherently unpredictable component εMt,t+h. When testing the conditional CAPM with

25Cochrane (2011), for example, illustrates the CAPM’s shortcomings by contrasting the average
returns and betas of 10 book-to-market sorted portfolios. In doing so, he neglects the role of the
conditional CAPM and its unconditional implications, according to which average returns should
actually be set against the model’s average excess return predictions, not just the betas. While this
distinction seems subtle at first, its omission disguises the fact that the failure of the CAPM may be
due to the equity premium rather than to the betas.

26Any procedure that estimates beta based on information available at t relies on βi
t,h being a

function of Ft-measurable random variables.
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respect to Equation (3.27), we therefore abstract from the question of whether market

returns are predictable and instead concentrate on the betas’ cross-sectional explana-

tory power.

The insight that we gain from this is presented in Figure 3.6. Comparing the

quality of the results from matching the moments in Equations (3.25) and (3.27), we

find that the alignment of the sample averages improves significantly when leaving

aside predicting market excess returns – the displayed averages are closer to the 45

degree reference line and their dispersion is much larger. The alignment of the excess

return deciles, however, deteriorates as the investment horizon increases, indicating

that the betas’ cross-sectional explanatory power gradually declines.

Together with the results from Figure 3.5 and Table 3.6, these findings suggest

that at shorter horizons (1 to 12 months), the failure of the conditional CAPM is less

due to the betas than to the existence of the unexpected news component εMt,t+h, which

accounts for most of the variation in Re,M
t,t+h. Moreover, it seems as if the flat relationship

could only be overcome if the conditional market premium were informative about the

sign of future market excess returns. Any equilibrium asset pricing model that assumes

risk-averse investors, however, requires the equity premium to be positive at all times,

and so the conditional CAPM is doomed to fail in cross-sectional tests of Equation

(3.25).27 Although the conditional CAPM is thus rather limited in its ability to predict

future stock returns, its betas still contribute to explaining the variation in returns

across assets. Consequently, there is little to be said against using betas as ex ante

measures of exposure to market risk, as long as the investment horizon is sufficiently

short.

At longer horizons (beyond 12 months), the equity premium implied by the FI-

CAPM accounts for a larger fraction of the variation in realized market excess returns,

meaning that there is less uncertainty associated with their prediction (see Table 3.4).

At the same time, however, the cross-sectional signal contained in the betas deterio-

rates, which is why, again, the FI-CAPM is unable to satisfy the moment conditions

in Equation (3.25). Our reading of this result is that a company’s association with the

market can change, for example, due to a realignment of the business model, making

its prediction increasingly difficult as the investment horizon increases.

Considering the results at shorter and longer horizons together, we find that the

stock return predictions of the FI-CAPM are subject to two different types of un-

certainties – one associated with forecasting realized betas, and the other associated

with forecasting market excess returns. As functions of the investment horizon, these

two types of uncertainties are inversely related, which explains the flat relationship’s

persistence. In analogy to the uncertainty principle in quantum physics, we refer to

27The equity premium is the compensation a risk-averse investor demands ex ante for holding risk.
It is subject to a positivity constraint, which ensures that investing in the market is a sensible strategy
(cf. Merton, 1982). A negative equity premium is thus difficult to reconcile with equilibrium asset
pricing models. We therefore believe that allowing for a negative market premium is not a viable
solution to the situation described above.
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Figure 3.6: Portfolio alignment when using alternative moment conditions. This figure
illustrates the results from matching the moment conditions in Equations (3.25) and (3.27) for 10
prediction-sorted portfolios. The portfolios are formed daily by sorting stocks into portfolios according
to the excess return predictions of the FI-CAPM (red circle), and the product of the implied betas
and realized market excess returns (blue diamond). Panels A to D represent investment horizons of
30, 182, 365, and 730 calendar days, and the sample period ranges from January 1996 to December
2020. The universe of stocks is confined to securities that are constituents of the S&P 500. The
45-degree line is included for reference.
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this observation as the uncertainty principle in asset pricing.28

3.4.7 The cross-sectional explanatory power of the betas

We conclude our discussion of the conditional CAPM’s failure in cross-sectional tests

with a positive note on the betas. By contrasting Figures 3.3 and 3.6, we have seen that,

while measurements of the market premium are not very informative for the variation

in future market excess returns at shorter horizons, betas still provide substantial cross-

sectional explanatory power. We have attributed this power to the observation that

the betas generate substantial variation between portfolios once one abstracts from

the question of market return predictability, as shown in Figure 3.6. To this point,

however, we have refrained from asking how market betas compare, in this respect, to

other stock characteristics.

To investigate this matter, we propose a novel procedure to quantify the de-

gree of cross-sectional differentation that is achieved in the creation of prediction- or

characteristic-sorted portfolios. Taking into account the evidence from Section 3.4.6,

we abstract from the predictability of market excess returns and concentrate on the

period-by-period return variation across portfolios. Using this procedure, we hope to

gain insight into whether established characteristics such as 12-month momentum or a

company’s book-to-market ratio provide additional information for the cross-section of

returns. We consider 12-month momentum, in particular, an interesting competitor,

because Kelly et al. (2021) have recently shown that, when used as an instrument for

conditional factor loadings, it outperforms many other stock characteristics.

To construct our measure of cross-sectional explanatory power, we start by defining

Re,p
t,t+h as the return of an equally-weighted portfolio that comprises the entire cross-

section of stocks in t, such that
∑

iw
i
t = 1 and wi

t = 1/Nt. This portfolio, which we

refer to as the cross-sectional portfolio, can be conceived of as a portfolio of prediction-

sorted portfolios formed by some model ωm

Re,p
t,t+h =

∑

i

wi
tR

e,i
t,t+h =

∑

q

wq
t

∑

i

wi,q
t R

e,i
t,t+h =

∑

q

wq
tR

e,q
t,t+h(ωm), (3.28)

where wq
t represents the weight of portfolio q in the cross-sectional portfolio, and wi,q

t

is the weight of asset i in portfolio q.29 We then use Equation (3.28), together with

28A study that in its conclusions appears to be similar to ours it that by Hasler and Martineau
(2023), who seek to explain the failure of the unconditional CAPM by the success of the conditional
CAPM. However, in testing the conditional model they focus on the contemporaneous relationship
between stock and market excess returns shown in Equation (3.27), thus ignoring the fact that the
conditional CAPM should also be able to predict stock returns, as required by the moment conditions
in Equation (3.25). Accordingly, Hasler and Martineau (2023) find a flat relationship between betas
and average excess returns only for the case of the unconditional model. We, instead, provide evidence
that it also applies to the conditional model. Hence, while their approach reconciles the success of
the conditional CAPM with the failure of the unconditional CAPM, it tells us little about the origins
of the flat relationship shown in Figure 3.3.

29Note that wq
t = Nq

t /Nt and wi,q
t = ✶({i, t} ∈ Ωq)/N

q
t , where Nq

t is the number of assets in
portfolio q, Ωq is the set of security-date indices belonging to the q’th portfolio and ✶(·) is the
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the law of total variance, to decompose the cross-sectional variance of returns in t

according to

cvart(R
e,i
t,t+h) =

∑

i

wi
t

(
Re,i

t,t+h−
∑

i

wi
tR

e,i
t,t+h

)2
= cvart

(
Re,q

t,t+h(ωm)
)
+ηt, (3.29)

where the term

cvart
(
Re,q

t,t+h(ωm)
)
=
∑

q

wq
t

(
Re,q

t,t+h(ωm)−
∑

q

wq
tR

e,q
t,t+h(ωm)

)2
(3.30)

represents the between-portfolio variation produced by some model ωm, and

ηt =
∑

q

wq
t

(∑

i

wi,q
t

(
Re,i

t,t+h−R
e,q
t,t+h(ωm)

)2)

is the residual average within-portfolio variation.

The appeal of this decomposition is that the expression in Equation (3.30) can

be conceived of as the proportion of cross-sectional variation that is explained by the

predictions of ωm. To illustrate this idea, we present in Figure 3.7 an example of

a cross-sectional return distribution that is partitioned by K = 5 prediction-sorted

portfolios, once for the case of a non-informative model where the between-portfolio

variation is low (Panel A), and once for an informative model where the between-

portfolio variation is high (Panel B).

As follows from Equation (3.29) and can be seen in Figure 3.7 when moving from

Panel A to Panel B, an increase in between-portfolio variation must coincide with a

decrease in average within-portfolio variation. The stocks associated with the portfo-

lios in Panel B are thus more similar in terms of their future realized returns than the

stocks in Panel A. As a consequence, the model among competing models that gener-

ates the highest between-portfolio variation is best at discriminating between stocks

and achieves the highest level of cross-sectional explanatory power. Under the null

hypothesis that the FI-CAPM betas provide a sufficient explanation for the variation

in returns across assets, we would expect no other characteristic to be able to generate

greater between-portfolio variation.

Considering that the amount of cross-sectional variation can change over time, it

remains unclear how large the between-portfolio variation of a model should be for it

to be considered economically relevant. With reference to the expression in Equation

(3.29), we emphasize that, if the number of portfolios is such that 1 < K < Nt and

also cvart(R
e,i
t,t+h) > 0, we have ηt > 0, regardless of how well the underlying model

captures differences in stock risk premia. Accordingly, even with an ex post optimal

model ω0 satisfying

cvart
(
Re,q

t,t+h(ωm)
)
≤ cvart

(
Re,q

t,t+h(ω0)
)
, (3.31)

indicator function giving 1 if a certain {i, t}-combination belongs to the q’th portfolio and 0 else.
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there is an irreducible, greater-than-zero expected within-portfolio variation.30

We take advantage of this mathematical fact and express the between-portfolio

variation of any sub-optimal model relative to that of the ex post optimal model,

which results in a normalization of the between-portfolio variation, so that

BPVt =
cvart

(
Re,q

t,t+h(ωm)
)

cvart
(
Re,q

t,t+h(ω0)
) ∈ [0,1]. (3.32)

Accordingly, one may think of BPVt as the ratio of two cross-sectional R2s

BPVt =
cvart

(
Re,q

t,t+h(ωm)
)

cvart(R
e,i
t,t+h)

·
cvart(R

e,i
t,t+h)

cvart
(
Re,q

t,t+h(ω0)
) =

R2
t (ωm)

R2
t (ω0)

where R2
t (ωm) is the sub-optimal model’s R-squared and R2

t (ω0) is that of the ex post

optimal model.31

Figure 3.8 presents time series of BPVt for both the FI-CAPM and 12-month mo-

mentum at investment horizons of 30, 182, 365, and 730 calendar days. In either case,

the amount of cross-sectional variation explained is largest during periods of market

turmoil (almost 70% during the DCB), and it gains persistence as the investment

horizon increases. The highest average BPVt associated with the FI-CAPM is 9.5% at

an investment horizon of 182 calendar days, whereas that of 12-month momentum is

8.8% (30 days). Moreover, the two time series of BPVt are very similar across panels,

meaning that they indicate comparable levels of cross-sectional explanatory power over

time.

Based on these findings, we conclude that 12-month momentum provides little, if

any, additional information to explaining the cross-section of stock returns once one

abstracts from the uncertainty associated with forecasting market excess returns.32

30We think of the ex post optimal model as a stylized model, that assigns stocks to portfolios
according to their ex post realized returns.

31If the number of portfolios is equal to the number of stocks in the cross-section (K = Nt), each of
the Nt portfolios consists of a single stock only, so BPVt = 1. Similarly, if there is only one portfolio
(K = 1), BPVt does not exist. Therefore, BPVt is only meaningful if the number of portfolios is
chosen such that 1 < K < Nt.

32Similar conclusions can be drawn when using the book-to-market ratio in lieu of 12-month mo-
mentum. The associated results are presented in Figure B.2 of Appendix B.6.
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Figure 3.7: Between- and within-portfolio variation of returns (Illustration). This figure
shows an example of a cross-sectional return distribution partitioned by K = 5 prediction-sorted
portfolios, once for the case of a non-informative model with low between-portfolio variation (Panel
A), and once for an informative model with high between-portfolio variation (Panel B). In either
Panel, the solid line represents the distribution of the assets’ excess returns associated with the cross-
sectional portfolio, the dashed lines correspond to those of the 5 prediction-sorted portfolios, and the
crosses along the abscissa represent the portfolios’ excess returns.
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Figure 3.8: Relative between-portfolio return variation (12-month momentum). This fig-
ure shows time series of relative between-portfolio return variation (BPVt from Equation (3.32)) for
10 prediction-sorted portfolios at investment horizons of 30, 182, 365, and 730 calendar days between
January 1996 and December 2020. The underlying portfolios are formed on the excess return predic-
tions of FI-CAPM in Equation (3.13) (solid red line) and the stocks’ 12-month momentum (dotted
blue line). For the sake of clarity, the time series are plotted on two different vertical axes, mirrored by
the horizontal zero line. The numbers associated with BPVt represent time-series averages of relative
between-portfolio variation. The universe of stocks is confined to securities that are constituents of
the S&P 500. The time series have a daily frequency.
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3.5 Conclusions

In this chapter, we develop a conditional CAPM that is fully-implied by option prices,

meaning that neither the betas nor the equity premium need to be estimated econo-

metrically. We refer to this specification as the fully-implied CAPM, or FI-CAPM.

While the approach presented is more favorable in its assumptions and yields lower out-

of-sample forecast errors than a number of competing models, it appears to struggle

with explaining the variation in average returns across assets. Similar to the uncon-

ditional CAPM, this manifests itself in a flat relationship between average predicted

and realized excess returns of beta-sorted portfolios.

Rather than simply rejecting the model, we provide an explanation for this phe-

nomenon, arguing that, at shorter investment horizons, it is the uncertainty associated

with forecasting market excess returns that renders the conditional CAPM unsuccess-

ful in cross-sectional tests. That is, once we abstract from the question of market

return predictability, the betas of the FI-CAPM exhibit substantial cross-sectional ex-

planatory power, to the extent that both momentum and value characteristics fail to

provide additional information.

At longer horizons, the equity premium accounts for a larger fraction of the vari-

ation in realized market excess returns, indicating that there is less uncertainty asso-

ciated with their prediction. Despite this reduction in uncertainty, however, the con-

ditional CAPM remains unsuccessful as the betas’ cross-sectional explanatory power

simultaneously declines. We conclude that, depending on the investment horizons,

one of the two components of the conditional CAPM is always subject to a degree

of uncertainty that prevents the other from showing its potential. In analogy to the

uncertainty principle in quantum mechanics, we refer to this observation as the uncer-

tainty principle in asset pricing.

109



B Appendix

B.1 Database

For the period between January 1996 and December 2020 we obtain daily price and

return data for the US stocks available via CRSP (The Center for Reseach in Security

Prices) and the S&P 500 index. For every stock we add the company’s name, CRSP’s

permanent security identifier, the trading volume, the number of shares outstanding,

the share code, the Standard Industrial Classification (SIC) code and, if available,

delisting information. From Compustat, we retrieve a list of historical S&P 500 con-

stituents which we use to determine whether a particular date-security combination

in CRSP was part of the S&P 500. Since CRSP and Compustat rely on different per-

manent security identifiers, we link securities across databases using the linking suite

provided by WRDS (Wharton Research Data Services).

Using the series of daily returns, we compute multi-period returns for investment

horizons of 30, 182, 365, and 730 calendar days. The investment horizons are chosen

such that they match the standardized maturities in the volatility surface maintained

by OptionMetrics. Because daily returns are recorded at a business day frequency,

we require the multi-period returns to cover at least the amount of calendar days

associated with a given investment horizon. Thus, whenever the liquidation date falls

on a weekend or holiday, the holding period will exceed the number of calendar days

that comprise the investment horizon by the number of days to the next business

day. For stocks being delisted during January 1996 and December 2020, we adjust the

last available daily return by the associated delisting return provided by CRSP. As

the delisting event is unexpected from the perspective of the investor, the number of

calendar days over which the multi-period returns are calculated shrink toward zero

as we approach the delisting date. Returns with a holding period exceeding December

31, 2020 are removed from the sample.33

For calculating realized and expected excess returns, we also require a term struc-

ture of risk-free interest rates, which we obtain from OptionMetrics. As the grid of

the provided term structure does not always match the investment horizons (or ma-

turities) of interest, we employ linear interpolation between neighbouring zero-coupon

rates as well as constant extrapolation. After that, we retrieve an implied volatility

surface from OptionMetrics for the security-dates and investment horizons in our sam-

ple. The volatility surface is derived from American put and call option contracts and

covers deltas ranging from −0.9 to 0.9 in steps of 0.05. We link securities between

CRSP and OptionMetrics using the linking suite provided by WRDS, and remove ob-

servations with missing or invalid values in implied volatilities, strike prices, closing

prices, returns and/or risk-free rates.

With the panel of implied volatilities, we compute prices of equivalent European

33For more information on the bias that is due to missing delisting information from CRSP please
refer to Shumway (1997).
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call and put options at given deltas and investment horizons using the Black-Scholes-

Merton (BSM) formula. These prices form the basis for calculating the risk-neutral

moments of simple stock returns, which we use to construct the different variants

of option-based excess return forecasts. We provide details on the approximation

of risk-neutral moments in Appendix B.2. Following Martin and Wagner (2019), we

remove security-date observations where the risk-neutral variance is not monotonically

increasing in the time-to-maturity of the underlying options.

We further obtain stock characteristics that we use as benchmarks in our empirical

analysis. More specifically, we compute 12-month momentum as the rolling return

over the past 12 months preceeding the dates of interest, log-size, which we derive

from a stock’s market capitalization, conditional CAPM betas, which we estimate by

one-year rolling regressions, and the betas of the Fama-French three factor model,

where we obtain the market, SMB, and HML factors directly from CRSP. We also

construct book-to-market ratios following the procedure by Daniel et al. (1997). Each

of the stock characteristics is made available at a daily frequency.

Tables B.1 and B.2 provide descriptive statistics for the samples of S&P 500 con-

stituents and common shares available in CRSP/OptionMetrics for an investment hori-

zon of 365 calendar days.

B.2 Approximating risk-neutral moments of returns

In order to calculate the individual components of the FI-CAPM, i.e, the betas and

the equity premium, we need to express the risk-neutral variances in Equation (3.11)

as functions of option prices. To this end, we refer to Bakshi and Madan (2000),

Martin (2018), and Chabi-Yo et al. (2023), who state the m’th uncentered risk-neutral

moment of a simple return as

Am = E∗
t

(
(Ri

t,t+h)
m
)
=

(F i
t,t+h)

m

(Si
t)

m

︸ ︷︷ ︸
=(Rf

t,t+h
)m

+
m(m−1)Rf

t,t+h

(Si
t)

m

×

(∫ F i
t,t+h

0

K(m−2) putt,t+h(K) dK+

∫ ∞

F i
t,t+h

K(m−2) callt,t+h(K) dK

)
,

where m denotes the order of the moment, Si
t is the price of the underlying asset,

F i
t,t+h is the associated forward contract with maturity in t+h, callt,t+h and putt,t+h

are the prices of European call and put options, respectively, and K is the strike price.

The risk-neutral variance of an asset’s gross return can thus be expressed as

var∗t (R
i
t,t+h) = E∗

t

(
(Ri

t,t+h)
2
)
−E∗
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Table B.1: Sample descriptives (S&P 500 constituents). This table presents sample descrip-
tives for S&P 500 constituents with returns over 365 calendar days. The returns in our sample are
aligned in a forward-looking manner, so that long positions with a timestamp from 2020 are closed
out in 2021. As a consequence, our sample excludes observations from 2020 for which the holding
periods would exceed the last date available in CRSP, which is December 31, 2020. For annual
sub-samples, the table presents the number of security-date observations (Observations), the average
number of securities per day (Securities), the average-per-day market capitalization in millions of US
Dollars (Mcap.), the average-per-day trading volume in units of a thousand shares (Volume), and the
average-per-day return on investments over 365 calendar days in percent (Return).

Year Observations Securities Mcap. Volume Return

1996 115,095 457 10,490 737 27.4
1997 118,636 473 13,684 986 19.7
1998 120,079 478 17,423 1,298 14.3
1999 122,215 485 21,978 1,734 6.2
2000 119,145 473 25,423 2,780 8.1
2001 120,053 484 21,806 3,559 −7.2
2002 121,032 484 18,367 3,945 6.6
2003 122,441 490 17,892 3,609 29.1
2004 121,753 487 21,039 3,509 14.0
2005 120,736 483 22,793 3,845 14.2
2006 120,975 484 24,717 4,462 15.0
2007 119,833 481 27,477 5,519 −16.8
2008 121,579 484 22,179 7,922 −13.7
2009 124,083 494 17,273 9,114 37.7
2010 124,501 494 21,274 7,829 16.2
2011 123,105 489 24,011 6,749 8.5
2012 121,332 485 26,030 5,461 27.0
2013 122,247 485 30,866 4,619 21.7
2014 120,358 478 36,556 4,297 8.4
2015 120,178 477 38,685 4,581 2.3
2016 120,736 479 38,432 4,700 18.4
2017 120,165 479 44,292 4,037 12.2
2018 118,287 471 49,970 4,579 6.2
2019 119,738 475 51,887 4,002 2.5
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Table B.2: Sample descriptives (Common shares). This table presents sample descriptives for
all common shares available in CRSP/OptionMetrics with share codes equal to 10, 11, 12, or 18 and
returns over 365 calendar days. The returns in our sample are aligned in a forward-looking manner, so
that long positions with a timestamp from 2020 are closed out in 2021. As a consequence, our sample
excludes observations from 2020 for which the holding periods would exceed the last date available
in CRSP, which is December 31, 2020. For annual sub-samples, the table presents the number of
security-date observations (Observations), the average number of securities per day (Securities), the
average-per-day market capitalization in millions of US Dollars (Mcap.), the average-per-day trading
volume in units of a thousand shares (Volume), and the average-per-day return on investments over
365 calendar days in percent (Return).

Year Observations Securities Mcap. Volume Return

1996 427,816 1,698 3,601 408 19.3
1997 515,193 2,053 4,007 452 10.9
1998 580,497 2,313 4,519 522 14.7
1999 602,792 2,392 5,498 657 30.2
2000 540,177 2,144 7,167 1,115 −6.6
2001 487,044 1,964 6,506 1,431 −12.7
2002 489,514 1,958 5,554 1,450 10.3
2003 467,893 1,872 5,839 1,470 33.6
2004 498,677 1,995 6,552 1,470 11.9
2005 525,499 2,102 6,831 1,460 15.9
2006 557,092 2,228 7,112 1,635 13.4
2007 589,682 2,368 7,516 1,856 −19.4
2008 591,426 2,356 6,182 2,497 −12.6
2009 589,563 2,349 4,939 2,790 41.5
2010 616,925 2,448 5,898 2,391 15.9
2011 628,953 2,496 6,450 2,153 4.3
2012 621,359 2,485 6,770 1,802 26.0
2013 663,414 2,633 7,607 1,599 18.8
2014 648,499 2,573 8,928 1,615 2.4
2015 645,182 2,560 9,318 1,625 −3.7
2016 663,594 2,633 8,860 1,634 21.8
2017 655,327 2,611 10,335 1,501 14.0
2018 626,042 2,494 11,904 1,666 −0.5
2019 616,539 2,447 12,606 1,609 3.7
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. (B-1)

To approximate the integrals in Equation (B-1), we follow the conservative ap-

proach by Martin (2017). For convenience, we denote the price of an out-of-the-money

option with strike price Kj as
34

Zj(Kj) =

{
putj(Kj) if Kj < Fj

callj(Kj) if Kj ≥ Fj.

The approximation of the sum of the two integrals in Equation (B-1) is then obtained

by

∫ ∞

0

Km−2Z(K) dK ≈
∑

j

Km−2
j Zj(Kj)∆Kj,

where m = 2 for the case of risk-neutral variances, and

∆Kj =
Kj+1−Kj−1

2
j = 2, . . . ,n−1,

∆K1 = K2−K1,

∆Kn = Kn−Kn−1.

B.3 Alternative identification strategies for beta

In addition to the risk-neutral variance-based strategy, Kempf et al. (2015) propose two

alternative ways to identify beta using risk-neutral skewness and kurtosis. In doing so,

they preempt a recent literature that emphasizes the importance of higher risk-neutral

moments in describing the cross-section of stock returns. An example of this literature

is given by Chabi-Yo et al. (2023), who account for all higher risk-neutral moments

when deriving a generalized lower bound on the expected excess return of individual

34For notational convenience, we drop the security, time, and maturity indices.
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stocks. A data-driven approach guided by a similar idea is that by Wang (2018), who

connects higher risk-neutral cumulants with expected stock risk premia through latent

risk-factors obtained by partial least squares.

The two alternative identification strategies proposed by Kempf et al. (2015) rely

on taking the third and fourth centered moments of Equation (3.4), as a result of

which they obtain a skewness-based beta

βi,∗,skew
t,h =

skew∗
t (R

i
t,t+h/R

f
t,t+h)

1/3

∑
jw

j
t ·skew

∗
t (R

j
t,t+h/R

f
t,t+h)

1/3
(B-2)

and a kurtosis-based beta, respectively35

βi,∗,kurt
t,h =

kurt∗t (R
i
t,t+h/R

f
t,t+h)

1/4

∑
jw

j
t ·kurt

∗
t (R

j
t,t+h/R

f
t,t+h)

1/4
.

The two alternative specifications can be viewed as drop-in replacements for the risk-

neutral variance-based beta that we use to calculate the FI-CAPM. Which of the betas

is to be preferred, is ultimately a matter of empirical performance. In accordance

with Baule et al. (2016), we find that betas based on risk-neutral variance perform

best. Skewness-based betas exhibit substantial volatility, making the fully-implied

formula’s predictions take on values that are beyond reasonable.36 Kurtosis-based

betas, instead, provide expected excess returns that are similar to the ones obtained

when using risk-neutral variances. As a result, they contribute only little, if any,

additional information. Similarly, Chabi-Yo et al. (2023) find that the contributions of

skewness and kurtosis to changes in their generalized lower bound on expected stock

excess returns are much weaker than that of risk-neutral variance.37

B.4 The positive-sign restriction

Another implication of Equation (3.10) is that it rules out scenarios in which risk-

neutral betas are negative. While this assumption is arguably harsh, it is still milder

than claiming that the negative correlation condition (NCC) applies to individual

stocks. Kadan and Tang (2020) allow for a comparison by showing that the stock-

level NCC holds up to a linear approximation if both covt(R
i
t,t+h,1/R

M
t,t+h) < 0 and

γ ≥ vart(R
i
t,t+h)/covt(R

i
t,t+h,R

M
t,t+h), where γ is the level of relative risk aversion of the

investor. Hence, for the NCC to hold, not only must the beta be non-negative, but γ

must be high enough to offset the conditional variance of stock returns.

35Information on how to approximate risk-neutral skewness and kurtosis of simple returns using
option prices can be found in Appendix B.2.

36The reason for this volatility is that the term
∑

jw
j
t ·skew

∗

t (R
j
t,t+h/R

f
t,t+h)

1/3 in the denominator
of Equation (B-2) is frequently close to zero, causing the betas to be highly unstable.

37According to Chabi-Yo et al. (2023), a one-standard-deviation shock in implied variance at a
monthly investment horizon moves their bound by 70% of its standard deviation. Skewness and
kurtosis, instead, contribute only with -14.4% and 1.3%, respectively.
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B.5 Pairwise tests of relative portfolio performance: Method-

ology

To test the null hypothesesH0 : E(R
e,q
t,t+h) ≥ E(Re,p

t,t+h) for q < p and p,q ∈ {1,2, . . . ,K},

with K = 10 being the number of prediction-sorted portfolios, we state the excess

return of the q’th prediction-sorted portfolio as follows:

Re,q
t,t+h =

1∑
i✶
(
{i, t} ∈ Ωq

)
∑

i

Re,i
t,t+h ·✶

(
{i, t} ∈ Ωq

)
.

Ωq represents the set of security-date indices belonging to the q’th portfolio and ✶(·)

is the indicator function giving 1 if a certain {i, t}-combination belongs to the q’th

portfolio and 0 else. Note that, by summing over all stocks and portfolios at a given

point in time, we obtain the number of stocks in the cross-section Nt =
∑

i,q ✶({i, t} ∈

Ωq), whereas by iterating over all three dimensions we obtain the total number of

observations
∑

tNt =
∑

i,t,q ✶({i, t} ∈ Ωq).

In a next step, we collect each of the mean portfolio returns E(Re,q
t,t+h) = µq in a

K×1 column vector θ = [µ1 µ2 . . . µK ]
′. As a result, the above hypotheses can be

expressed as a system of linear equations, H0 : Rθ ≤ r, where

R =




−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

...
...

0 · · · −1 0 1
0 · · · 0 −1 1




is a matrix of dimensions (K(K−1)/2)×K, and r is an appropriate vector of zeros.

Accordingly, the first row of R represents the hypothesis that the mean excess return

of the 2nd decile portfolio is lower than or equal to that of the 1st, whereas the last

row represents the hypothesis that the mean excess return of the 10th decile portfolio

is lower than or equal to that of the 9th.

Estimation of θ involves computing time-series averages of the form

µ̂q =
1

T

∑

t

Req
t,t+h,

which in the case of a balanced panel can be achieved by regressing individual stock

excess returns Re,i
t,t+h on a K×1 vector of dummy variables xit = [xit1 xit2 . . . xitK ]

′.

Each element xitq = ✶({i, t} ∈ Ωq) of this vector indicates whether a given security-

date combination belongs to the q’th portfolio, as determined by a model’s forecast.38

Given that our panel of stocks and dates is unbalanced, however, we additionally

need to account for the fact that the size of the portfolios can change over time.

38More formally, the value of xitq follows from an Ft-measurable function Qt that assigns stocks
according to a model’s predictions to the K-dimensional set of prediction-sorted portfolios, that is
Qt : {R̂

1
t,t+h, R̂

2
t,t+h, . . . , R̂

Nt

t,t+h} → {1,2, . . . ,K}.
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Therefore, we stack both the dependent and the independent variables across stocks

and time, yielding a
∑

tNt×1 vector of individual stock excess returns y and a
∑

tNt×

K matrix of dummy variables X. We then define a diagonal matrix V of dimension∑
tNt×

∑
tNt that contains the elements vitq = (

∑
i✶({i, t} ∈ Ωq))

−1 on its diagonal

and 0 else. Decomposing V according to V = C′C such that C = V1/2, we state

the previous regression problem in terms of transformed variables ỹ = Cy, X̃ = CX,

and ε̃ = Cε, such that ỹ = X̃θ+ε̃, where ε̃ represents the transformed regression

residuals. With pre-determined regressors, the vector of mean excess return estimates

is given by39

θ̂ = (X′VX)−1X′Vy =
(∑

i,t

x̃itx̃
′
it

)−1∑

i,t

x̃itỹit.

To derive the test statistic and its limiting distribution, we require a heteroskedas-

ticity and autocorrelation-consistent estimator for the covariance matrix of θ̂ that is

robust to arbitrary forms of spatial dependence in the transformed regression residuals.

The reason is that in financial predictive regressions, macroeconomic shocks typically

generate dependencies between firms at given points in time, but also between dif-

ferent firms at different points in time, the latter due to the overlapping nature of

the multi-period returns being explained. Hence, we resort to an estimator that was

originally proposed by Driscoll and Kraay (1998), discussed by Petersen (2009) in a

general asset pricing context, and by Thompson (2011) in the special case of predic-

tive regressions.40 Following the notation by Thompson (2011), the estimator and its

individual components are given by

v̂ar(θ̂) = v̂ar(θ̂)time,0+
∑

l

bl
(
v̂ar(θ̂)time,l+v̂ar(θ̂)′time,l

)

v̂ar(θ̂)time,l =
(∑

i,t

x̃itx̃
′
it

)−1∑

i,j,t

x̃itx̃
′
jt−l

ˆ̃εit ˆ̃εjt−l

(∑

i,t

x̃itx̃
′
it

)−1

,

where l is the maximum lag length and bl is the distance-decreasing Bartlett kernel.41

Provided that a CLT holds and θ̂
a
∼ N (θ, v̂ar(θ̂)), we obtain the test statistic under

H0 as

J = D̂− 1

2 (Rθ̂−Rθ)
a
∼ N (0,D̂− 1

2 ŜD̂− 1

2 ), (B-3)

where Ŝ = Rv̂ar(θ̂)R′ and D̂ is the diagonal matrix obtained by the diagonal elements

39To economize on notation, we define
∑

i

∑
t :=

∑
i,t.

40Alternatively, we could use the block-bootstrap procedure that is used by Martin and Wagner
(2019) to estimate the variance-covariance matrix of θ. In an unreported simulation study we compare
the two and find that the estimates do not differ much.

41For details concerning the implementation, we refer to Hoechle (2007) and Millo (2017).
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of Ŝ. One can test the above null hypotheses globally using

J′(D̂− 1

2 ŜD̂− 1

2 )+J
d
→ χ2

(
rank(D− 1

2SD− 1

2 )
)
,

where the superscript + indicates the Moore-Penrose inverse, or individually using a

max-t type test. For the latter, we obtain p-values adjusted for multiplicity for the

j’th two-sided hypothesis by pj = 1−P (max(J) ≤ tj), where the tj are the observed

elements of the test statistic and the probability is obtained by multiple integration of

the limiting normal in Equation (B-3) over the interval (−∞, tj]. The results for the

max-t type test are reported in Table 3.5 for the FI-CAPM (and MW) at an investment

horizon of 365 calendar days.42

42Patton and Timmermann (2010) propose a similar procedure to test the monotonicity relationship
implied by Equation (3.25). The two approaches have in common that they both assume under H0

that expected returns are identical or weakly declining. Unlike them, however, we focus on the
differences between individual portfolios, for the reason that a joint test does not give any indication
as to the origin of a (non-)rejection. As pointed out by Romano and Wolf (2005) and Hothorn et al.
(2008), we could increase the power of our test by using a stepwise rather than a single-step procedure.
We refrain from doing so, however, as this goes beyond the scope of this study.
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B.6 Additional figures

Figures B.1 and B.2 present time series of average risk-neutral correlations, and time

series of the BPVt for portfolios formed on the firms’ book-to-market ratios, respec-

tively.

Figure B.1: Average risk-neutral correlations. This figure displays cross-sectionally constant

risk-neutral stock-market (SVIXt/SVIXt) and stock-stock correlations (SVIX2
t/SVIX2

t ) between Jan-
uary 1996 and December 2020. The panels present daily time series with investment horizons of 30,
182, 365, and 730 calendar days. In each panel, the solid red line denotes average stock-market and
the dotted blue line average stock-stock correlations. The universe of stocks is confined to securities
that are constituents of the S&P 500.
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Figure B.2: Relative between-portfolio return variation (Book-to-market). This figure
shows time series of relative between-portfolio return variation (BPVt from Equation (3.32)) for 10
prediction-sorted portfolios at investment horizons of 30, 182, 365, and 730 calendar days between
January 1996 and December 2020. The underlying portfolios are formed on the excess return predic-
tions of the FI-CAPM in Equation (3.13) (solid red line) and the companies’ book-to-market ratios
(dotted blue line). For the sake of clarity, the time series are plotted on two different vertical axes,
mirrored by the horizontal zero line. The numbers associated with BPVt represent time-series aver-
ages of relative between-portfolio variation. The universe of stocks is confined to securities that are
constituents of the S&P 500. The time series have a daily frequency.
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Chapter 4

Multi-task learning in

cross-sectional regressions

“. . . Only if asset returns depend on how you behave, not

who you are – on betas rather than characteristics – can a

market equilibrium survive. . . ” – Cochrane (2005, p. 79)

4.1 Motivation

Cross-sectional regressions have long been a popular tool in empirical finance. Orig-

inally introduced by Fama and MacBeth (1973) as an efficient means to account for

cross-sectional correlation in the residuals when testing the unconditional CAPM, they

are now widely used to construct factor models with time-varying loadings. Fama and

French (2020), for example, show in a recent application that cross-sectional regres-

sions of returns onto a small set of stock characteristics yield cross-sectional factors

that compare favorably to the classical Fama and French (2015) time-series factors.

Similarly, Kelly et al. (2019) perform cross-sectional regressions on linear combinations

of characteristics to reduce the dimensionality of the characteristic space.

Although empirically successful, factor models with (functions of) characteristics

as loadings raise serious theoretical concerns. Cochrane (2005), for instance, argues

that a market equilibrium could hardly survive if differences in stock risk premia were

truly driven by stock characteristics. Using the Size characteristic as an example,

he illustrates that managers could earn arbitrage profits from the difference between

the high average returns of small firms and the low average returns of large firms by

consolidating the former into a large holding company. He concludes that the right

betas (or loadings), although likely correlated with many observable characteristics,

should drive out any such characteristics in cross-sectional regressions.

Inspired by this controversy, we revisit the idea of using cross-sectional regressions

for model evaluation rather than model construction. Following the seminal paper by

Fama and MacBeth (1973), we focus on testing the CAPM, but refer to its conditional

representation. While the unconditional CAPM has been criticized for its empirical

shortcomings since the early 1970s, its conditional version has recently received new

impetus from studies that emphasize the importance of using time-varying specifica-

tions of beta and the market premium.1

1Examples of such studies are those by Hollstein et al. (2020) and Hasler and Martineau (2023),
who arrive at a more positive assessment of the model’s performance by allowing its components to
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From an econometric point of view, however, testing the conditional model poses

significant methodological challenges. One such challenge is to provide time-varying

measurements of the model’s components in a way that is consistent with financial

economic theory. Common approaches, such as the use of time-series regressions to

estimate beta or predictive regressions to estimate the market premium, are only

loosely grounded in theory and ambiguous with respect to certain specifications, such

as setting the size of the regression window or choosing the set of exogenous predictors.

Against this background, we consolidate earlier work by Kempf et al. (2015) and

Martin and Wagner (2019) to derive a representation of the conditional CAPM that

is fully-implied by option prices. The term fully-implied refers to the fact that both

the beta and the market premium are measurable functions of option prices that are

defined jointly and in a consistent manner across investment horizons. As such, they

are directly computable from observable quantities without requiring any econometric

estimation or explicit reference to the investor’s information set. An interesting feature

of our model is that, despite the assumed risk aversion of the representative investor,

there is no need to adjust the risk-neutral moments that define beta and the market

premium. That is, we establish a direct link between physical and risk-neutral return

distributions.2

To test this specification empirically, we derive moment conditions from period-

by-period cross-sectional regressions that include the market beta and other stock

characteristics as regressors. As shown by Fama and French (2020), the coefficients

of such regressions represent returns of zero-investment portfolios, which can be inter-

preted as factors with pre-specified loadings. To derive our null hypothesis, we exploit

the fact that the only relevant factor in the conditional CAPM is the excess return of

the market portfolio. Therefore, including additional factor-generating characteristics

should not improve the market beta’s description of cross-sectional return variation.

As we will demonstrate, this insight allows us to derive testable restrictions on the

unconditional means of the factors, which can be easily tested using a generalized

method of moments approach.

One of the more challenging questions associated with this test is how to identify a

small set of meaningful characteristics (or moment conditions) from a potentially large

set of predictors. Characteristics are considered meaningful if they provide incremen-

tal information for the cross-section of returns over the entire sample period. Using

hundreds of characteristics simultaneously is not feasible because testing the signifi-

cance of the associated factors requires estimating a large covariance matrix. Fama

vary over time.
2Option prices describe moments under the risk-neutral measure, whereas stock risk premia are

subject to the physical measure. Any approach that fails to explain the connection between physical
and risk-neutral distributions thus potentially suffers from a lack in risk adjustment. Chang et al.
(2012) propose a set of assumptions that are needed to estimate beta from implied moments of
returns. Buss and Vilkov (2012) define a relationship between objective and risk-neutral correlation
that allows them to estimate beta using both option prices and historical returns. Kempf et al. (2015)
introduce a family of implied betas based on risk-neutral variance, skewness, and kurtosis, but they
make no attempt to risk-adjust implied moments.
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and French (2020) remain silent on this issue and simply use the five usual suspects for

factor construction: Size, Value, Operating profitability, Investment, and Momentum.

However, given the plethora of candidate predictors, it may be beneficial to approach

this matter more systematically. In this study, we do so by leveraging insights from

high-dimensional statistics for both the selection of characteristics and the ensuing

problem of post-selection inference.

Starting with the selection problem, a natural approach may seem to be to apply

standard ℓ1-regularization to the pooled sample of returns and characteristics, also

known as the pooled Lasso (PL).3 However, as we demonstrate in simulations, this

is not a viable option in a setting in which the regression coefficients, i.e., the factor

realizations, vary over time. As it turns out, the pooled Lasso is unable to recover

the true set of predictors even if the true data-generating process is linear and the

usual irrepresentable condition for the covariates is satisfied.4 The same is true for

ℓ1-regularization at the level of each individual cross-sectional regression (referred to

as the individual Lasso, IL), as this can lead to an unstable selection of characteristics,

which is fundamentally at odds with the goal of identifying stable factors of returns.

Our solution to the selection problem is to employ a combination of ℓ1- and ℓ2-

regularization (or equivalently ℓ12), which dates back to the work by Obozinski et al.

(2010) and is known as the multi-task Lasso (MTL). A useful feature of the MTL is

that it enforces a joint sparsity pattern for the covariates across multiple tasks, while

allowing the coefficients to be task-specific. In our application, each cross-sectional

regression qualifies as a task, and the idea is to leverage information from all tasks to

simultaneously select a meaningful set of factor-generating characteristics. To further

distinguish between stable and anomalous return predictive signals, we combine the

MTL objective function with standard ℓ1-regularization, as proposed by Jalali et al.

(2010), which allows us to shrink the coefficients of the two groups separately. In

this way, we contribute to a literature that examines the robustness of stock return

predictive signals (e.g., McLean and Pontiff, 2016).

As the irrepresentable condition is typically hard to defend in empirical applica-

tions, the MTL may not be able to reliably identify a stable set of characteristics,

despite its advantages over the PL and IL. This manifests itself in the fact that slight

variations in the data can lead to considerable changes in the set of selected character-

istics. Consequently, the importance of a characteristic for describing the cross-section

of returns cannot simply be inferred from the fact that its MTL coefficients are nonzero.

For this reason, we complement our selection strategy with the repeated subsampling

approach that was introduced by Meinshausen and Bühlmann (2010). Their observa-

tion is that individual runs of the Lasso usually do not yield a stable set of predictors

because noise variables tend to overshadow the regularization paths of the truly rele-

vant covariates. As a solution, they propose to run the Lasso repeatedly on random

3Variants of the pooled Lasso are employed, for example, by Gu et al. (2020) and Freyberger et al.
(2020) to approximate conditional stock risk premia.

4We refer to the definition of the irrepresentable condition as it is used in the paper by Zhao and
Yu (2006).
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subsamples of the data to obtain different sets of selected covariates. Based on these

sets, they estimate selection probabilities for each of the candidate predictors, which,

by theoretical arguments, constitute more reliable indicators of variable importance

than standard regularization paths. However, a shortcoming of their approach is that

it can suffer from multicollinearity, as the selection probabilities of correlated predic-

tors are shared among the members of the associated clusters. As a consequence,

entire groups of variables may appear unimportant simply because they reflect similar

information. To address this issue, we randomly draw subsets of characteristics from

correlation clusters prior to the MTL selection, which results in a fair representation

of their relative importance.

As opposed to Kozak et al. (2020), we do not augment our objective function

with an additional ℓ2-penalty term, as would be considered standard in the machine

learning literature for dealing with predictor redundancy. The reason is that we do

not aim to identify the stochastic discount factor (SDF) under reasonably chosen

economic priors, but to select a small set of factor-generating characteristics that act

as competitors to the market beta in cross-sectional regressions. Using the ℓ2-penalty

for the latter purpose can be unfavorable in terms of factor stability because highly

correlated predictors tend to be selected jointly, leading to nearly rank deficient design

matrices in post-selection regressions.

For the present application, the repeated subsampling approach is interesting not

only because it allows us to assess which characteristics have explanatory power be-

yond the market beta, but also because it provides the basis for valid post-selection

inference. The term post-selection inference typically refers to the problem that stan-

dard econometric methods for quantifying estimation uncertainty fail when researchers

pre-select variables using procedures that rely on in-sample information. This is rele-

vant in empirical finance because data are abundant and a pre-screening of variables is

often necessary to separate the signal of interest from noise. Solutions to this problem

have been proposed by Feng et al. (2020) and Harvey and Liu (2021), who examine a

large number of observable factors to explain differences in expected returns. Concep-

tually, the former rely on the double-selection paradigm by Belloni et al. (2014), which

has proven useful for estimating treatment effects in the presence of high-dimensional

confounders. The latter, instead, propose a forward stepwise procedure that accounts

for the multiple-testing problem associated with the selection of factors. While either

of these approaches achieves uniform validity under certain conditions, we argue that

a third approach, which has become popular for its simplicity and general applica-

bility, is more favorable in the present application – the use of sample splitting for

post-selection inference.5

The simple but powerful idea underlying this approach is that one can achieve

uniformly valid inference by dividing the data into two halves, using the first part (the

auxiliary set) for model selection and the second part (the main set) for statistical

5A useful comparison of the different perspectives on post-selection inference is given by Kuchib-
hotla et al. (2022).
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inference. According to Rinaldo et al. (2019), this applies to situations in which the

targets of inference are the parameters of a statistical model that approximates certain

aspects of the true data-generating process. In the present application, these target

parameters correspond to the means of the cross-sectional factors that are optimized

with respect to the selected characteristics. As these parameters exist independently

of the ground truth and are defined conditional on the set of selected covariates, this

approach is valid even in the presence of model misspecification, including variable

selection mistakes.

In contrast, the double-selection framework used by Feng et al. (2020), is designed

for situations where inference is drawn on a small subset of the true parameter space,

which is typically the treatment effect in the causal inference literature (cf. Cher-

nozhukov et al., 2018). The remainder of the true model is considered irrelevant for

answering the research question and therefore treated as a nuisance function that can

be approximated using machine learning techniques. Although in principle this allows

for approximation errors, the estimation may still be sensitive to misspecifications of

the assumed functional form. This can be problematic if the true data-generating

process is globally – rather than partially – non-linear, not all relevant information is

observable, or the components of the true model are entangled by multicollinearity, so

that parameter identification is virtually impossible.6

Which perspective is the right one for the present application? According to Berk

et al. (2013), the approximation perspective is preferable to the true-model perspective

in situations where model uncertainty is high and predictor redundancy is an issue. In

asset pricing, this is typically the case because the exact functional form of the return

generating process (or the SDF) is unknown and the data available for its estimation

are highly correlated. For this reason, many researchers resort to arbitrage pricing

theory (APT), which derives its appeal from the fact that assumptions regarding

functional forms can be replaced by a purely statistically motivated decomposition

of returns. The resulting factor models, however, should not be taken as realistic

depictions of the return-generating process, but rather as useful approximations to the

actual macroeconomic forces driving asset prices – a distinction that Harvey and Liu

(2021) make explicit by referring to the significant factors in their study as useful rather

than true. Given these caveats, we consider the true-model perspective inappropriate

for the construction and evaluation of factor models, even if some of the characteristics

used in this process are grounded in rational pricing theories. This view is shared by

Jagannathan and Wang (1998), who note that if cross-sectional regressions are used for

factor identification, misspecification of the assumed beta-model can have tremendous

effects on statistical inference. At the same time, they advocate adding characteristics

to cross-sectional regressions to detect model misspecification, which we adopt as a

guiding principle for our study.

An interesting alternative to sample splitting is the approach by Harvey and Liu

(2021), which is often referred to as simultaneous inference because it allows multiple

6For a detailed exposition of the above arguments, please refer to the study by Berk et al. (2013).
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model specifications to be examined jointly. Just like the sample-splitting approach,

simultaneous inference achieves uniform validity regardless of the procedure that is

used for model selection, and it also allows for model misspecification. A disadvan-

tage, however, is that the derived inference can be conservative because all possible

model specifications need to be taken into account, which is criticized by Jensen et al.

(2021). Moreover, the set of selections must be specified in advance, which prohibits

the subsequent inclusion of characteristics.

Finally, we reconcile the idea of using multiple subsamples of the data with the

single-split inference approach by Rinaldo et al. (2019) by resorting to what Cher-

nozhukov et al. (2023) refer to as quantile-aggregated inference (QAI). The central

idea of QAI is to split the data not just once, but several times, to obtain multiple

auxiliary and main sets over which inferences can be aggregated. In this way, they aim

to account not only for the usual estimation uncertainty, but also for the uncertainty

induced by sample splitting, which in our case is important because different parti-

tions of the data can lead to different selections of characteristics and thus to different

cross-sectional factors. To arrive at a uniform statement about the null hypothesis of

interest, Chernozhukov et al. (2023) suggest to aggregate the individual p-values across

subsamples by their median and to adjust the nominal significance level accordingly.

For the empirical implementation of our testing procedure, we use a collection of

7,665 stocks traded on major US exchanges during the period from January 1996 to

December 2021. For each of these stocks, we compute market betas from the prices of

European call and put options using the volatility surface by OptionMetrics, extract

a selection of 78 characteristics from Chen and Zimmermann’s (2022) Open Source

Asset Pricing repository, and obtain monthly gross returns from CRSP with a holding

period of 30 calendar days, resulting in a panel of 667,113 security-date observations.

After compiling the data, we proceed as follows: First, we randomly divide the set

of stocks into two halves based on their permanent security identifier and then assign

their entire data histories to either the auxiliary or the main set. In this way, we

ensure that the same stock does not appear in both sets, which would violate the

notion of independent sampling. Second, as many stock characteristics contain missing

values, we apply the imputation procedure by Bryzgalova et al. (2022), but account

for the induced uncertainty by performing it separately for each partition of the data.

Third, we use the auxiliary set to cluster characteristics by their pairwise correlation

coefficients and randomly draw a single constituent from each cluster. Based on this

subset, we then select meaningful characteristics using the MTL in combination with

3-fold cross-validation. Fourth, we resort to the main set to construct factors using

period-by-period cross-sectional regressions of gross returns onto both the selected

characteristics and the implied market beta. Fifth, we test whether the means of the

resulting characteristic-based factors are jointly zero, which would be the case if the

market portfolio were the only driving factor of return variation. Finally, we account

for the uncertainty induced by sample splitting by creating multiple auxiliary and main

partitions of the data, repeating the above procedure, and aggregating the individual
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p-values according to the QAI approach.

We employ this procedure to address the following research questions:

1.) How does the inclusion of implied beta in cross-sectional regressions affect the

other 78 stock characteristics? Do they retain their importance or are they driven

out as the conditional CAPM suggests? To answer this question, we run the

above selection procedure twice, once using the original 78 stock characteristics

without taking market beta into account, and once using the same characteristics

but orthogonalized with respect to beta. If the conditional CAPM holds, the

latter should result in a considerable reduction in the characteristics’ selection

probabilities.

2.) Are the means of the cross-sectional factors jointly significantly different from

zero, so that the conditional CAPM is rejected? Previous results by Lewellen and

Nagel (2006) suggest that the conditional CAPM is unable to explain well-known

asset-pricing anomalies, such as momentum. Hasler and Martineau (2023), how-

ever, challenge this conclusion, arguing that the conditional CAPM successfully

explains the returns of various characteristic-sorted portfolios as well as those of

individual stocks.

3.) What is the effect of using individual stocks as test assets instead of

characteristic-sorted portfolios? Freyberger et al. (2020) illustrate that using

individual stocks is in principle sufficient because regressions of returns onto

rank-transformed characteristics are, up to some approximation error, equivalent

to constructing conditional portfolio sorts. However, as using portfolios remains

popular, we additionally assign stocks at each point in time to 500 beta-sorted

portfolios as well as to 25×78 = 1,950 univariate characteristic-sorted portfolios,

and repeat the above procedure to see if our conclusions change with respect to

the chosen set of test assets.

4.) Harvey and Liu (2021) show in their study that the market factor is by far

the strongest predictor of return variation among a large set of observable fac-

tors. Does this result carry over to the implied market beta if used alongside

other stock characteristics in cross-sectional regressions? And if so, how does

the market beta’s performance compare to that of the other characteristics?

To investigate this, we decompose the amount of variation explained using the

concept of Shapley values (cf. Shapley, 1951). This decomposition allows us to

assess the relative contribution of each characteristic individually, while taking

into account that many of them are highly correlated.

5.) Are the selected characteristics stable predictors of returns or are they subject to

temporal instability? As mentioned above, we generate insights into the preva-

lence of anomalous return predictability by adding a regression-wise ℓ1-penalty

term to the MTL objective function, which allows us to separately shrink the

coefficients of stable and anomalous factor-generating characteristics.
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Our findings are as follows: If we do not account for the market beta, many charac-

teristics are useful to explain the cross-section of returns. This observation is at odds

with the results by Freyberger et al. (2020), who use a variant of ℓ1-regularization

known as the group Lasso to select non-linear expansions of characteristics, finding

that only few of them are informative. This discrepancy can be explained by the fact

that, in addition to imposing approximate sparsity in the selection step, we gener-

ate variation at each iteration of the selection procedure by randomly subsampling

characteristics from disjoint correlation clusters, which accounts for the instability of

ℓ1-regularization in the presence of highly correlated predictors. Empirically, this leads

to both a minimization of the information overlap among candidate predictors and a

much larger set of characteristics with high selection probabilities. Based on these

findings, it appears that returns are not so much sparse in the set of factor-generating

characteristics, but rather in the latent information driving asset prices, as reflected in

the small number of correlation clusters in the data. This conclusion is in line with the

results by Kozak et al. (2020), who compare a characteristics-sparse specification of the

SDF with an ℓ2-penalized alternative, finding that the latter is better at summarizing

the cross-section of returns.

Once we account for the market beta in the MTL-based selection step, we observe

a substantial reduction in the selection probabilities of several characteristics that

were previously identified as important. That is, the conditional CAPM succeeds

in driving out many of the stock characteristics considered. Nevertheless, a small

fraction of the predictors, mainly related to the momentum effect, remain important

even after accounting for beta, which translates into a rejection of the model when

using individual stocks as test assets. The results are less conclusive, however, in the

case of portfolios: While the rejection is borderline in the case of characteristic-sorted

portfolios, we cannot reject the conditional CAPM at any conventional level for beta-

sorted portfolios. We conclude from these results that the returns of individual stocks

pose a greater challenge to our model than the returns of portfolios.

Should we thus cease to consider market risk in cross-sectional regressions and in-

stead focus exclusively on other stock characteristics, as is done by Fama and French

(2020) and Kozak and Nagel (2022)? – The answer is no. In fact, the implied beta

accounts for most of the cross-sectional variation in returns, leaving all other charac-

teristics, including variants of the momentum effect, far behind. This is evident when

comparing the Shapley contributions of each characteristic to the explained variation

with that of the market beta. In light of this evidence, and given the fact that the

proposed implied beta is directly observable at any point in time, we strongly encour-

age its use for testing the incremental contribution of newly proposed predictors in

cross-sectional regressions.

Finally, we find that most of the informative characteristics are stable predictors

of return variation. This is reflected in the fact that the proportion of characteristics

associated with the part of the objective function that imposes a joint sparsity pattern

across tasks is much higher than the proportion of characteristics associated with the
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time-specific ℓ1-penalty term. In agreement with the study by Kelly et al. (2019), we

conclude that there is not much anomalous return predictability left after accounting

for stable factor exposure.

This study is related to a recent and growing literature that uses information from

option prices to approximate conditional risk premia. In a seminal work, Martin

(2017) derives a lower bound for the conditional expected excess return of the market

that is fully-implied by option prices. Kadan and Tang (2020) investigate the extent

to which this bound is applicable to individual stocks. Martin and Wagner (2019)

propose a formula for the conditional stock risk premium that is a linear function of

risk-neutral stock and market return variances. Schneider and Trojani (2019) provide

an extensive family of observable bounds for higher moments of index returns. Bakshi

et al. (2020) and Chabi-Yo and Loudis (2020) propose formulas for the expected return

of the market that depend on all higher risk-neutral moments of returns. Similarly,

Chabi-Yo et al. (2023) consider such bounds for individual stocks.

Moreover, we contribute to a strand of research that uses machine learning and

high-dimensional statistics for the construction and evaluation of asset pricing models.

Gu et al. (2020) examine the performance of a suite of machine learning models for

approximating conditional stock risk premia. Kozak et al. (2020) use penalized regres-

sions and economically motivated priors to identify the SDF. Freyberger et al. (2020)

select groups of nonlinear basis functions of characteristics using a form of block-norm

regularization. Kelly et al. (2019) and Gu et al. (2021) use instrumented principal

components analysis and autoencoder neural networks to determine functions of stock

characteristic that serve as time-varying loadings of latent factors. Giglio and Xiu

(2021) consider estimating risk premia of observable factors in the presence of omit-

ted variables using a three-pass method that exploits principal components of returns.

Bryzgalova et al. (2021) and Chen et al. (2023) use decision trees and adversarial

learning, respectively, to construct optimal sets of test assets. Feng et al. (2020) and

Harvey and Liu (2021) use double machine learning and simultaneous inference to

examine the extent to which pre-specified factors provide independent information for

the cross-section of returns.

The remainder of this chapter is structured as follows: Section 4.2 introduces our

model. Section 4.3 derives testable restrictions from cross-sectional regressions. Sec-

tion 4.4 introduces the multi-task learning paradigm. Section 4.5 discusses methods to

assess the characteristics’ relative importance. Section 4.6 presents the QAI approach

for post-selection inference. Section 4.7 presents the data and our empirical results,

and Section 4.8 concludes. Appendix C provides further analyses.

4.2 A fully-implied representation of the condi-

tional CAPM

The conditional CAPM consists of two components that jointly determine stock risk

premia: 1) the beta, which represents the quantity of risk associated with an individual
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asset, and 2) the market premium, which is commonly referred to as the market price

of risk. Formally, this corresponds to the following relationship

Et(R
i
t+1−R

f
t+1) = βi

t ·Et(R
M
t+1−R

f
t+1), (4.1)

where Ri
t+1 is the gross return of an asset i, βi

t is the asset’s exposure to market risk,

Rf
t+1 is the risk-free rate, and RM

t+1 is the gross return of the market portfolio.

An important property of Equation (4.1) is that each of the terms involved carries

a time index – that is, they are specified in terms of conditional return distributions.

From an econometric point of view, this poses significant problems because standard

econometric methods are not particularly well suited to capture time-varying moments.

For this reason, estimating the conditional CAPM is often simplistically viewed as a

two-step problem: In a first step, one obtains an estimate of the conditional beta using

rolling time-series regressions,7 and in a second step, one approximates the market pre-

mium by predictive regressions of market excess returns onto predetermined variables,

which can be asset-specific characteristics or macroeconomic variables.8 Neither of

these steps, however, draws substantially on financial economic theory, which is why

tests of the conditional CAPM can always be challenged based on the chosen empirical

implementation.

We take a different route in this study. In Chapter 3, we have shown that under

certain conditions both the market beta and its risk premium arise jointly as functions

of risk-neutral return variances, which, following the logic of Breeden and Litzenberger

(1978), can be replicated using a panel of option prices.9 More precisely, the conditional

beta is given by

βi
t =

var∗t
(
Ri

t+1

)1/2
∑

jw
j
t ·var

∗
t

(
Rj

t+1

)1/2 , (4.2)

where wj
t denotes the market capitalization weight of asset j, and the market premium

is given by
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(
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)
. (4.3)

The asterisks in Equations (4.2) and (4.3) indicate that the variances refer to the risk-

neutral distribution of returns. Note, however, that both the beta and the market

7Ferson and Harvey (1991), Fama and French (2004), and Frazzini and Pedersen (2014), for
example, use betas obtained from rolling-window regressions as instruments for conditional betas.

8Frequently used macroeconomic variables are the dividend-price ratio (e.g., Campbell and Shiller,
1988), interest rate spreads (e.g., Stock and Watson, 1989), the consumption-wealth ratio (e.g., Lettau
and Ludvigson, 2001), and the variance-risk premium (e.g., Bollerslev et al., 2009). Kelly and Pruitt
(2013), instead, use disaggregated valuation ratios.

9We refrain from a detailed exposition of the underlying assumptions and mathematical derivations
at this point, as they have been discussed previously in Chapter 3. For information on how to replicate
risk-neutral moments using a panel of option prices, see Chapter 3, Appendix B.2.
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premium on the left are given in terms of physical distributions, meaning that the cor-

responding implied quantities represent direct measurements of the physical moments

of interest – no further risk adjustment is needed. This is in contrast to the related

study by Kempf et al. (2015), who arrive at numerically equivalent measurements of

beta, but do not explain the associated change of measure.

4.3 Testable restrictions from cross-sectional re-

gressions

The following section describes how cross-sectional regressions can be used to establish

testable restrictions for the conditional CAPM. We begin with providing an overview

of the work by Fama and French (2020), who consider cross-sectional regressions as a

means to construct factor models with time-varying loadings. The factors in their ap-

proach correspond to the projection coefficients obtained when regressing stock returns

onto a set of predetermined characteristics. The characteristics, in turn, represent the

loadings with respect to which the factors are optimized. Building on this interpreta-

tion of cross-sectional regressions, we show that if the conditional CAPM holds and

we include the market beta as an explanatory variable, the factor means associated

with any other characteristics must be zero.

For each cross-sectional regression, we consider Nt left-hand-side test assets that

can be individual stocks or portfolios, and K explanatory characteristics, which, for

the time being, are treated as given. Among the explanatory characteristics, there

is also a constant regressor. The regression equation that applies to each of the T

cross-sections is composed of a vector of gross returns, Rt+1 = [Ri
t+1]Nt×1, a matrix of

stock characteristics, Ct = [cik,t]Nt×K , a vector of coefficients, f t+1 = [fk
t+1]K×1, and a

vector of regression residuals εt+1 = [εit+1]Nt×1

Rt+1 = Ctf t+1+εt+1 t = 1, . . . ,T. (4.4)

To give meaning to this equation, we follow Fama and French (2020) and impose the

usual least squares orthogonality conditions, providing us with a closed-form solution

for the vector of projection coefficients

f t+1 = W ′
tRt+1, (4.5)

where W ′
t = (C ′

tCt)
−1C ′

t.

The notation indicates that each of the coefficients in Equation (4.5) represents the

return of a zero-investment portfolio comprising the left-hand side test assets from

Equation (4.4) whose weights are contained in the columns ofW t. Thus, when stacking

the coefficients over t, they can be viewed as factor time series that are optimized with

respect to the pre-specified loadings Ct.

An interesting property of the factors in Equation (4.5) is that each reflects the
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contribution of the associated characteristic in isolation (cf. Fama, 1976). That is, the

k’th column of the matrix W t, denoted by wk,t, is chosen such that the portfolio’s

value of the characteristic is equal to one for the k’th characteristic and zero for all

other characteristics. Formally, this corresponds to

w′
k,tcl,t =

{
1 if k = l

0 otherwise,
(4.6)

where the cl,t denotes the l’th column of Ct. This property is useful because it has

certain implications for the factors that are not accounted for by our theory, i.e., the

factors that are generated by characteristics other than the market beta. To illustrate

this, we include the market beta as an explanatory variable in Equation (4.4) and

isolate both the constant regressor and the market beta from the other characteristics

Rt+1 = ιf 1
t+1+βtf

2
t+1+Ctf t+1+εt+1 t = 1, . . . ,T. (4.7)

The ι = [1]Nt×1 refers to the vector of ones that was previously included in the charac-

teristics matrix, βt = [βi
t ]Nt×1 denotes the vector of market betas, and Ct is the matrix

of stock characteristics, now with reduced dimensions Nt×(K−2), so that in total we

still have K regressors. Moreover, for the definition of the factors from Equation (4.5)

to remain valid, we need to express the matrix of portfolio weights in terms of the

extended collection of regressors X t = [ι,βt,Ct], so that W ′
t = (X ′

tX t)
−1X ′

t.

Recall that, according to the conditional CAPM in Equation (4.1), an asset’s risk

premium is driven exclusively by its exposure to market risk. Using ReM
t+1 as a short-

hand for the excess return of the market portfolio, we can express this implication

equivalently using vector notation

Et(Rt+1−ιRf
t+1) = βtEt(R

eM
t+1). (4.8)

Because the factors in Equation (4.7) are themselves portfolio returns, the condition

in Equation (4.8) must also apply to their risk premia. Hence, the factors’ conditional

expectations can be written as functions of the associated portfolio betas

Et(f
k
t+1) =

{
w′

k,tιR
f
t+1+w′

k,tβtEt(R
eM
t+1) if k = 1

w′
k,tβtEt(R

eM
t+1) otherwise,

where the distinction between the first and the remaining factors stems from the fact

that the projection coefficient associated with the constant regressor is a return, while

the others are excess returns. Utilizing the property of the coefficients in Equation
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(4.6), we obtain the following sets of restrictions on the factor risk premia

R1





Et(f
1
t+1) = w′

1,tι︸ ︷︷ ︸
=1

Rf
t+1+w′

1,tβt︸ ︷︷ ︸
=0

Et(R
eM
t+1) = Rf

t+1

Et(f
2
t+1) = w′

2,tβt︸ ︷︷ ︸
=1

Et(R
eM
t+1) = Et(R

eM
t+1)

(4.9)

R2





Et(f
3
t+1) = w′

3,tβt︸ ︷︷ ︸
=0

Et(R
eM
t+1) = 0

...
...

Et(f
K
t+1) = w′

K,tβt︸ ︷︷ ︸
=0

Et(R
eM
t+1) = 0.

(4.10)

These restrictions embody the essence of the conditional CAPM: The only risk factor

for which investors demand compensation is the excess return of the market portfolio

(R1 ), hence the risk premia of the other characteristic-based factors must be zero

(R2 ).

Note, however, that we can neither directly observe nor readily estimate the in-

volved factor risk premia, as they are defined in terms of conditional return distribu-

tions. Therefore, we apply the law of total expectations to either side of the constraints

in (4.9) and (4.10), allowing us to express the above restrictions in terms of uncondi-

tional expectations

E(f 1
t+1−R

f
t+1) = E(f 2

t+1−R
eM
t+1)︸ ︷︷ ︸

R1

= E(f 3
t+1) = · · · = E(fK

t+1)︸ ︷︷ ︸
R2

= 0.

Moreover, we focus exclusively on testing the conditions in R2, because those in R1

are only of interest if indeed the restrictions in R2 are satisfied, as pointed out by

Fama (1976, p.329 ff.).

To formally test the conditions in R2, we write the associated null hypothesis in

terms of the target parameters θk = E(fk
t+1)

H0 : θ3 = · · · = θK = 0, (4.11)

and set up an appropriate Wald statistic that is χ2-distributed under the conditions

of the H0, i.e.,

W = θ̂
′
v̂ar(θ̂)−1θ̂ →

d
χ2(K−2). (4.12)

The θ̂ = [θ̂k](K−2)×1 are obtained by time-series regressions of the factors on a constant

and the estimator of the covariance matrix is given by

v̂ar(θ̂) =
1

T 2

∑

t

ût+1û
′
t+1,
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where the ût+1 = [fk
t+1−θ̂k](K−2)×1 denote the corresponding regression residuals.

A few remarks are in order at this point: First, we do not consider the regressions

in Equation (4.7) as a method for estimating population parameters, as is common in

econometrics. Rather, we employ them as a tool to construct factor portfolios with

desirable properties (cf. Fama, 1976, p.326 ff.). This distinction is crucial, because the

targets of inference in our application are not the projection coefficients f t+1 but their

unconditional means θ. The reason we rely on OLS algebra for factor construction,

is that in this way the risk premia of the characteristic-based factors are zero if the

conditional CAPM holds. In other words, the purpose of the above cross-sectional

regressions is to provide a statistical decomposition of returns that encompasses the

hypothesized model, giving us the opportunity to gauge the limitations of our theory.

Second, we do not need to adjust the covariance matrix estimator v̂ar(θ̂) for first-

stage estimation errors, as suggested by Shanken (1992). This is because we refer to

the definition of the market beta from Equation (4.2), which allows us to obtain direct

measurements of beta using a panel of option prices. If the beta were instead estimated

via time-series regressions prior to being employed as an explanatory variable, such

corrections would be necessary to account for the additional estimation uncertainty.

Third, the above representation gives no indication as to whether we should use

individual stocks or portfolios as test assets. Using portfolios is a common way to

mitigate the errors-in-variables problem that arises if the betas are measured with

error. The beta in Equation (4.2) is subject to measurement error because we are con-

strained to a discrete grid of strike prices to approximate the underlying risk-neutral

variances. Consequently, the associated regression coefficients (or factors) are drawn

toward zero, leading to the usual attenuation bias (cf. Kim, 1995). However, one

drawback of working with portfolios is that our conclusions regarding the CAPM’s

performance may heavily depend on the chosen set of portfolios (cf. Lewellen et al.,

2010). In fact, this concern has recently sparked increased efforts to return to testing

beta models with individual stocks, as evidenced by the contributions of Gagliardini

et al. (2016) and Chordia et al. (2019). A persuasive argument that is put forth by

Freyberger et al. (2020), is that running cross-sectional regressions with individual

stocks on rank-transformed characteristics is, in principle, equivalent to examining a

continuum of univariate characteristic-sorted portfolios. The idea is that the factors

represent the marginal effects by which a one percent increase in the quantile of the

characteristic’s cross-sectional distribution affects the expected return. The crucial

difference from classical portfolio sorting is that the regression approach can addition-

ally account for the effects of other characteristics. That is, if both the Size and Value

characteristics are included as explanatory variables, the Size effect is adjusted for

the contribution of Value according to the conditions in Equation (4.6). Double- or

triple-sorted portfolios can only mimic this behavior to a limited extent, as the number

of portfolios drastically increases with the number of characteristics being considered.

Given these pros and cons, we focus on individual stocks as test assets, but also report

the results for a selection of portfolios to assess the robustness of our findings.
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Finally, Fama and French (2020) treat the set of characteristics in their cross-

sectional regressions as given. That is, they consider only a small set of handpicked

characteristics that align with their preconceived notions about investor preferences,

without referring to any principled selection mechanism. Given the abundance of

candidate characteristics, a more efficient strategy is to employ statistical methods

that are specifically designed to deal with the variable selection problem in high-

dimensional settings. To meet the requirements posed by the regressions in Equation

(4.4), however, we need to answer the following two questions: 1) how can we achieve

an optimal selection of characteristics in a setting in which the set of explanatory

variables remains constant over time, but the coefficients are time-dependent? And 2)

how can we account for the fact that the classical approach to quantifying estimation

uncertainty breaks down if we pre-select characteristics systematically? The solutions

we propose in Sections 4.4 and 4.6 are quite universal and can be used not only to test

the conditional CAPM, but also to construct and evaluate characteristic-based factor

portfolios along the lines of Fama and French (2020).

4.4 Selecting characteristics using the multi-task

Lasso

The variable selection problem posed by the regressions in Equation (4.4) and (4.7)

is peculiar and different from the one encountered with individual cross-sections. The

challenge is to identify a set of characteristics that are useful to explain the observed

differences in returns over the entire sample period, while taking into account that the

relationship between the returns and characteristics can change over time, as indicated

by the time-indexed factors f t+1. We tackle this challenge by treating the selection of

characteristics as a multi-task learning problem, where each cross-sectional regression

represents a task and the goal is to leverage information from all tasks to establish a

common representation. Conceptually, we draw on the approach by Obozinski et al.

(2010), who introduce a block-norm penalty on the regression coefficients that enforces

a joint sparsity pattern across tasks, but allows the coefficients to be task-specific. This

approach is commonly known as the multi-task Lasso (or MTL) as it extends the idea

of using an ℓ1-penalty for the selection of covariates to the context of multiple related

regression tasks. Formally, the selection across tasks is achieved by setting a constraint

on the magnitude of the coefficients, which is expressed in the following optimization

problem:

F̂ = argmin
F

T∑

t=1

1

Nt

||Rt+1−Ctf t+1||
2
2+λ||F ||1,2︸ ︷︷ ︸

ℓ12-penalty

(4.13)

||F ||1,2 =
K∑

k=1

||fk||2,
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where the matrix F = [fk
t+1]T×K is obtained by stacking the transposed vector of

coefficients f t+1 over t, the vector fk = [fk
t+1]T×1 denotes the k’th column of F , ||·||p

is the ℓp-vector norm, and λ accounts for tightness of the constraint.10 The ℓ12-penalty

added to the sum of the individual least-squares objective functions can be conceived of

as an ℓ1-penalty on the ℓ2-norms of the covariate-specific coefficient vectors. Intuitively

speaking, this penalty ensures that a characteristic is either selected across all tasks or

disregarded altogether, where in the latter case the entire coefficient time series is set

to zero. For a given value of λ, selecting characteristics by the MTL thus corresponds

to creating a set of indices Ŝ = {k ∈ {1, . . . ,K} : f̂
k
̸= 0}, where the associated

characteristics can be used as explanatory variables in the regressions of Equations

(4.4) or (4.7).11

It is worth noting that Freyberger et al. (2020) use a similar block-norm regular-

ization approach to approximate conditional risk premia within a pooled regression

framework. The focus of their work is on introducing nonlinearities in the approxi-

mation of conditional risk premia by means of nonparametric splines. That is, they

associate each characteristic with a collection of basis functions for which they jointly

shrink the coefficients towards zero via the group Lasso procedure by Yuan and Lin

(2006). The crucial difference between the group Lasso and the multi-task Lasso is

that the former penalizes the collection of coefficients associated with the basis func-

tions, whereas the latter acts on the characteristics’ coefficient time series. For the

present application, the group Lasso is not particularly well suited as it does not

simultaneously account for both time-varying coefficients and a robust selection of

characteristics. Either it is used period-by-period, which introduces time-varying co-

efficients at the expense of an unstable set of selected characteristics, or it is used in

a pooled fashion, so that the resulting conditional mean approximation can only vary

through changes in the characteristics’ values, but not through changes in the coeffi-

cients. The latter is important though, as the coefficients in our framework represent

(excess) returns of factor portfolios that are supposed to capture time-varying risks.

In addition to the above formulation of the MTL, we consider adding a regression-

wise ℓ1-penalty term to the objective function in Equation (4.13), which allows us to

distinguish between stable and anomalous return predictive signals. The motivation

for this originates from the observation by McLean and Pontiff (2016) that some of the

characteristics proposed in the past are only important within certain periods of time,

so that considering them in subsets of the regression tasks would lead to an increase

in predictive accuracy. In empirical finance, such characteristics are typically referred

to as anomalies as they do not generate persistent risk premia and are thus hard to

sell within rational pricing theories. To account for the existence of anomalous return

predictability, we modify the objective function in Equation (4.13) in the spirit of

10To keep the notation simple, we do not include a constant regressor in the MTL objective function,
but assume that the characteristics in Ct are scaled appropriately. Thus, in contrast to previous
sections, both the number of characteristics and the number of regressors are given by K.

11The optimization problem in Equation (4.13) must be solved numerically. For this purpose, we
rely on the proximal gradient descent procedure by Liu et al. (2009).
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Jalali et al. (2010). That is, we decompose the task-specific vector of coefficients into

a component f t+1 that, as before, captures stable but time-varying factors of return

variation, and an anomalous component at+1 that exhibits a task-specific sparsity

pattern

F̂ ,Â = argmin
F ,A

T∑

t=1

1

Nt

||Rt+1−Ct(f t+1+at+1)||
2
2+λ1||F ||1,2+λ2||A||1,1︸ ︷︷ ︸

ℓ11-penalty

(4.14)

||A||1,1 =
T∑

t=1

||at+1||1.

Consistent with this objective function, we refer to characteristics as anomalous pre-

dictive signals if their columns in F are zero, but the columns in A are scattered with

nonzero entries. To distinguish between the two variants of the MTL in Equations

(4.13) and (4.14), we follow Jalali et al. (2010) and denote the latter as the dirty

multi-task Lasso (DMTL).

In the following, we highlight the advantages of the MTL-based selection approach

by conducting a simulation study within which we compare the MTL’s performance

to that of two seemingly compelling alternatives. The first alternative is referred to

as the individual Lasso (or IL) as it employs a standard ℓ1-penalty term that operates

at the level of each individual cross-sectional regression. In this way, it accounts for

the time-varying nature of the coefficients, but entirely disregards the stable-selection

aspect. The optimization problem for the IL is given by

F̂ = argmin
F

T∑

t=1

1

Nt

||Rt+1−Ctf t+1||
2
2+λ||F ||1,1.

The crucial difference compared to Equation (4.13) is that the IL shrinks the coeffi-

cients for each cross-sectional regression separately, meaning that the sparsity pattern

in the rows of F can vary over time. Consequently, the set of selected characteristics,

Ŝt, carries a time index.

The second alternative is referred to as the pooled Lasso (or PL) as it employs

an ℓ1-penalty to the pooled data of returns and characteristics under the simplifying

assumption of a constant coefficient vector f = [fk]K×1, thereby enforcing the same

sparsity pattern across tasks. For a given value of λ, the coefficients for the PL are

determined according to

f̂ = argmin
f

T∑

t=1

1

Nt

||Rt+1−Ctf ||
2
2+ λ||f ||1︸ ︷︷ ︸

ℓ1-penalty

||f ||1 =
K∑

k=1

|fk|.
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Variants of the PL are popular in empirical finance and used, among others, by Frey-

berger et al. (2020) in form of the group Lasso, by Kozak et al. (2020) to characterize

the SDF subject to economically motivated priors, and by Feng et al. (2020) to select

observable factors in a two-step procedure that accounts for model selection mistakes.

To determine the optimal amount of regularization, we perform 5-fold cross-

validation for each of the above selection methods. That is, we repeatedly divide

the data into a training and a validation set, use the training data to create sets of

selected characteristics Ŝt(λ,p) conditional on the partition p, and evaluate these sets

based on the validation data.12 For the latter, we run T cross-sectional regressions for

each Ŝt(λ,p) and estimate the average mean-squared error across partitions by

M̂SE =
1

P

P∑

p=1

1

T

T∑

t=1

1

Nt

||Rt+1(p)−Ct(p)
(
f̂ t+1(p)+ât+1(p)

)
||22.

As the vector ât+1 exists only for the DMTL, we set it to zero for the other approaches.

Finally, we determine the optimal λ̂ that minimizes the validation M̂SE, and solve the

individual optimization problems for the combined training and validation data, thus

obtaining a unified set Ŝt(λ̂) for each of the methods considered.13

For the simulation, we consider T = 500 tasks or individual cross-sections, N =

5,000 test assets per task, and K = 100 candidate characteristics. The characteristics’

values, cik,t, are obtained as independent draws from a standard normal distribution.

To account for the findings by McLean and Pontiff (2016), we further distinguish

between three different types of characteristics: The first 10 belong to the group of

stable predictors that are useful throughout the sample period, another 10 represent

the group of anomalous predictors that are important only within certain periods of

time, and the remaining 80 are completely irrelevant. For the stable predictors, the

coefficients (or factors) evolve according to an autoregressive process

fk
t+1 = ϕkf

k
t +η

k
t+1,

where the innovations are independent normally distributed random variables, ηkt+1 ∼

N (0,0.05), and the parameter ϕk is uniformly distributed, ϕk ∼ U(0,0.9). The coeffi-

cients of the anomalous predictors, akt+1, follow the same distribution as the innovations

ηkt+1, but are allowed to be nonzero for at most 50 consecutive periods, where the ini-

tial periods are chosen at random. Finally, we collect the simulated coefficients in the

vectors f t+1 and at+1 and generate 5,000 return observations according to

Rt+1 = Ct(f t+1+at+1)+εt+1 t = 1, . . . ,500,

where εit+1 ∼ N (0,1). Note that, for the irrelevant predictors, the entries in both f t+1

12The regularization parameter λ is scalar-valued for the IL, PL, and MTL and a vector containing
λ1 and λ2 for the DMTL.

13Note that the set Ŝ(λ̂) is time-constant for the PL, MTL, and DMTL.
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and at+1 are zero, whereas for the stable (anomalous) predictors only the vector f t+1

(at+1) contains nonzero entries.

For the purpose of visualization, we collect the simulated coefficients in a T×K-

dimensional matrix that holds the characteristics’ coefficient time series in the columns

and the coefficients for the individual cross-sections in the rows. The ground truth is

displayed in Panel A of Figure 4.1, where each pixel represents an element of this matrix

and grey (white) pixels indicate that the respective coefficient values are nonzero (zero).

The sparsity patterns obtained by the different selection methods are shown in

Panel B to D. The MTL and DMTL solutions are displayed jointly in Panel D, where

the nonzero entries in f̂ t+1 are shown in blue, and the DMTL’s nonzero entries in ât+1

are shown in red.

When examining the sets of selected characteristics for the IL, it is evident that

the flexibility of treating each cross-section separately comes at the cost of an unstable

selection of characteristics. Although many of the stable predictors are identified as

such, there remain zero entries within the first 10 columns. Moreover, the IL cannot

distinguish between stable and anomalous return predictive signals because both are

subsumed in Ŝt(λ̂). The IL also occasionally selects characteristics that are completely

irrelevant, which is due to the fact that the number of observations used to determine

the sparsity pattern is limited by the number of test assets available for each cross

section, which is N = 5,000. In contrast, the PL employs the full 5,000×500 observa-

tions to simultaneously determine the set Ŝ(λ̂) for all time periods. Although the PL

makes more efficient use of the available information, its selection is still inconsistent

as it disregards the time-varying nature of the data-generating process. That is, the

PL misses some of the stable predictors and is unable to account for anomalous return

predictability. In contrast, both the MTL and the DMTL correctly classify the first

10 covariates as stable predictors, and the DMTL additionally succeeds in highlight-

ing the presence of anomalous return predictability via ât+1, which exemplifies the

effectiveness of our multi-task approach.

4.5 Assessing the importance of characteristics

The following two subsections center on how to evaluate the importance of character-

istics for describing the cross-section of returns. Section 4.5.1 introduces the notion

of conditional selection probabilities that are estimated over subsamples of the data

and serve as a basis for investigating whether the implied market beta from Equation

(4.2) drives out any stock characteristics in cross-sectional regressions. Section 4.5.2

presents a more refined approach that is based on the concept of Shapley values and

allows us to distinguish between characteristics with similar selection probabilities.

We employ these two measures of variable importance to explore whether there are

characteristics that provide incremental information beyond what is captured by the

market beta.
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Figure 4.1: The variable selection problem in cross-sectional regressions (Simulation).
This figure illustrates the results of the simulation study discussed in Section 4.4. Panel A shows
the entries of the coefficient matrix that is used to generate the panel of returns with T = 500
time periods, N = 5,000 test assets, and K = 100 characteristics. Each pixel represents an entry
in the coefficient matrix and grey (white) pixels indicate that the respective coefficient values are
nonzero (zero). Panels B to D show the sparsity patterns obtained by the IL, PL, and MTL/DMTL
in conjunction with 5-fold cross-validation. The MTL and DMTL solutions are displayed jointly in
Panel D: The blue pixels represent the nonzero values in the coefficient matrix F̂ from Equations
(4.13) and (4.14), whereas the red pixels represent the task-specific entries of Â.

0 20 40 60 80 100

Characteristics

0

100

200

300

400

T
as
k
s
(t
im

e
p
er
io
d
s)

Panel A: Ground truth

0 20 40 60 80 100

Characteristics

0

100

200

300

400

Panel B: IL

0 20 40 60 80 100

Characteristics

0

100

200

300

400

T
as
k
s
(t
im

e
p
er
io
d
s)

Panel C: PL

0 20 40 60 80 100

Characteristics

0

100

200

300

400

Panel D: MTL/DMTL

140



4.5.1 Conditional selection probabilities

The MTL-based selection approach described in Section 4.4 aims to identify charac-

teristics that are stable predictors of return variation across all the regressions shown

in Equation (4.7). Unfortunately, real-world data-generating processes are rarely as

stylized as in the simulation study outlined above. In practice, ℓ1-based procedures

often fail to produce a stable selection due to the non-trivial correlation structure gov-

erning the predictors, as pointed out by Zhao and Yu (2006) and Meinshausen and

Bühlmann (2006). This is reflected in the fact that even small variations in the data

can lead to substantial changes in the set of selected characteristics, Ŝ.

To demonstrate the instability of the MTL in the presence of highly correlated

predictors, we conduct another simulation study that is more realistic in terms of the

assumed dependence between characteristics. For simplicity, we generate a single cross

section of N = 5,000 gross returns that is governed by two latent signals, which can

be conceived of as unobserved loadings (or characteristics).14 The return-generating

process is such that the first signal strongly affects the level of gross returns, whereas

the latter generates only little variation. In addition, we create 15 observable charac-

teristics that constitute imperfect proxies for the two latent signals, five of which are

correlated with the strong signal, another five are correlated with the weak signal, and

the remaining five represent pure noise. Based on these observable characteristics, we

compute Lasso coefficient paths for a sequence of ℓ1-penalty parameters and display

them in Figure 4.2.

Strikingly, there is no level of regularization for which the Lasso (or the MTL)

is able to identify all relevant characteristics. This is reflected in the fact that some

of the coefficient paths of the relevant predictors are drawn towards zero even faster

than those of the noise variables. While eliminating as much redundant information

as possible is consistent with our goal of arriving at a parsimonious representation

of returns, caution must be exercised when using standard regularization paths as a

means of assessing variable importance. For any value of λ, the set Ŝ obtained by

the Lasso contains only few of the relevant characteristics, suggesting that the ones

omitted are completely unimportant. However, if we were to repeat the selection

process based on a newly generated sample, the composition of Ŝ would change, as

different combinations of informative characteristics achieve similar levels of predictive

accuracy. For a conclusive assessment of the characteristics’ relative importance, it is

therefore crucial that we account for the instability of the MTL.

Before we continue with a discussion of possible solutions, we demonstrate in Figure

4.3 that the 78 stock characteristics used in this study are indeed highly correlated.

A detailed description of the data and the meaning of the characteristics’ labels can

be found in Section 2.3. To illustrate the underlying dependence structure, we group

the characteristics according to their similarity by forming correlation clusters based

on the K-means algorithm, using d = 1−|ρ| as a measure of dissimilarity between

14When there is only a single cross-section, the MTL collapses to the standard Lasso.
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Figure 4.2: The instability of Lasso regularization paths (Simulation). This figure presents
Lasso regularization paths for simulated data that features strongly correlated predictors. The pre-
diction target is subject to a latent representation that consists of two unobserved signals: one that
strongly affects the outcome variable and one that is only weakly influential. For the ℓ1-regularized
prediction model, we create 15 predictors, of which five load on the strongly predictive signal (Strong),
another five load on the weakly predictive signal (Weak), and the remaining five are completely irrele-
vant (Noise). Using these variables, we run the Lasso optimization algorithm and generate coefficient
paths for a reasonably chosen sequence of ℓ1-regularization parameters. The resulting coefficient paths
are shown below, where the dotted red lines represent the group of strong predictors, the dashed blue
lines represent the group of weak predictors, and the noise variables are associated with solid black
lines.
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characteristics, and ρ = [ρk,l]K×K as the matrix of pairwise correlation coefficients.15

Specifically, the set of clusters G = {G1, . . . ,GZ} is found by minimizing the following

optimization problem:

Ĝ = argmin
G

Z∑

z=1

∑

k∈Gz

||dk−d̄z||
2
2, (4.15)

where dk is the k-th column (or row) of d, and Z denotes the number of clusters,

which we determine via Silhouette scores (Rousseeuw, 1987). An attractive feature of

the K-means algorithm is that it considers all correlation coefficients jointly, so that

two characteristics within the same cluster are not only similar to each other, but also

exhibit similar correlation patterns with all other characteristics.

As can be seen in Figure 4.3, the number of correlation clusters found (Z = 19) is

considerably lower than the total number of characteristics (K = 78), indicating that

they are governed by a lower-dimensional latent structure. Intuitively, one can think

of this as many characteristics representing alternative quantifications of the same

unobserved signal. For example, consider the cluster comprising Past trading volume,

Size, Number of analysts, and Amihud’s illiquidity : All of these characteristics can

be conceived of as alternative quantifications of an asset’s liquidity. However, even

if they were individually informative for the cross-section of returns, the MTL would

not select the entire group, but rather shrink some of the coefficient time series to

zero. The resulting Ŝ would indicate that only a fraction of these liquidity proxies are

important, when in fact they all are to a certain extent.

To overcome the instability of ℓ1-based selection methods, various solutions have

been proposed. One such solution is the adaptive Lasso by Zou (2006), which has been

used by Freyberger et al. (2020) in an asset pricing context. One advantage of the

adaptive Lasso is that it enjoys the oracle property, i.e., it achieves consistent variable

selection if the true underlying model is sparse. Compared to the standard Lasso, the

objective function of the adaptive Lasso includes additional parameters (or weights)

that control the tightness of the ℓ1-penalty individually for each regressor. These

parameters must be determined prior to solving the modified optimization problem,

and are usually defined in terms of the reciprocal of the associated OLS coefficients.

However, as noted by Meinshausen and Bühlmann (2010), the disadvantage of this

two-step procedure is that it involves an additional tuning parameter, for which it is

unclear how it should be chosen in practice. Moreover, the adaptive Lasso assumes

that the data-generating process is linear and sparse in the available characteristics

– an assumption that is difficult to defend, considering the complexity of financial

markets.

Alternatively, one could introduce an additional ℓ2-penalty term that ties together

the coefficient paths of the correlated characteristics, thus increasing the probability

15Note that applying the K-means algorithm to d instead of ρ ensures that highly correlated
characteristics are assigned to the same cluster, irrespective of whether said correlation is positive or
negative.
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Figure 4.3: Correlation clusters of stock characteristics. This figure illustrates the pairwise
correlation coefficients of K = 78 stock characteristics that are cross-sectionally rank-transformed
to the unit interval. Each pixel of the below heatmap corresponds to an entry of the matrix
ρ = [ρk,l]K×K , which collects the characteristics’ pairwise correlation coefficients. To capture the
similarity of the characteristics, we assign them to disjoint correlation clusters that are determined
by the K-means algorithm using d = 1−|ρ| as a measure of dissimilarity. The optimal number of
clusters, Z = 19, is determined via Silhouette scores (Rousseeuw, 1987).
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that they are selected jointly (cf. Hastie et al., 2015, p. 56). In this way, the variables’

common variation is employed more efficiently, which can have a positive impact on

predictive accuracy. In a related study, Kozak et al. (2020) use such a combination of

ℓ1- and ℓ2-regularization to model the SDF subject to economically motivated priors,

finding that adding the ℓ2-penalty improves the SDF’s out-of-sample performance.

However, in the present application, we intend to stick to the definition of cross-

sectional regressions by Fama and French (2020), where the characteristics serve as

pre-specified loadings. When highly correlated characteristics are selected jointly and

used alongside each other as covariates in the regressions of Equation (4.4) and (4.7),

the resulting factors may be unstable because the design matrix is nearly rank-deficient,

calling into question the appropriateness of employing an ℓ2-penalty in this case.

Last but not least, one could resort to classical methods of dimensionality re-

duction, such as principal components regression, to avoid the selection problem al-

together. Kelly et al. (2019) pursue this idea and demonstrate that the loadings

in cross-sectional regressions can be represented as linear combinations of multiple

characteristics using an approach they call instrumented PCA (or IPCA). While this

approach is statistically efficient, interpreting the resulting factors is difficult, as the

associated loadings represent artificial combinations of the original variables that of-

ten lack economic meaning. The financial industry, however, appears to have a strong

interest in attributing importance to individual characteristics, as evidenced by the

fact that many institutional investors form style portfolios based on individual charac-

teristics. In this regard, Fama and French’s (2020)’s OLS factors have the advantage

that they accommodate the financial markets’ desire for interpretability.

In this study, we take a different route and employ the methodology proposed by

Meinshausen and Bühlmann (2010), which allows us to preserve the integrity of the

MTL-based selection procedure. Their approach is based on creating multiple random

subsamples of the data, which we refer to as auxiliary samples. We generate these

subsamples cross-sectionally, that is, we randomly pick stock indices from {1, . . . ,N}

and assign them to the subset A, so that |A| = N/2.16 For each of these auxiliary

samples, we generate different sets of selected characteristics, ŜA, and estimate their

selection probabilities, P(k ∈ ŜA), across subsamples, the latter serving as quantifica-

tions of the characteristics’ relative importance. The appeal of this approach is that,

even though the MTL is not able to produce a stable selection for any given A, it is

still possible to identify the relevant characteristics by aggregating the results across

subsamples.

For the present application, however, the original approach by Meinshausen and

Bühlmann (2010) needs to be modified, as it tends to underestimate the importance

of correlated characteristics. This is because the MTL selects different collections of

correlated predictors across subsamples, resulting in the selection probability of the

entire group being distributed among its constituents. To overcome this problem, we

propose to first cluster the characteristics by their pairwise correlation coefficients us-

16N denotes the total number of stocks across all time periods.
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ing the K-means procedure described in Equation (4.15), and then randomly draw

representatives ω from each cluster Ĝz, so that Ω̂A = {ω ∈R Ĝz : z ∈ {1, . . . ,Z}}

represents the resulting collection of characteristics with cardinality |Ω̂A| = Z.17 In

this way, we provide each group of correlated characteristics with a guarantee of being

represented by one of its constituents, and additionally minimize the information over-

lap between the predictors within each subsample. As opposed to Meinshausen and

Bühlmann (2010), we eventually assess a characteristic’s importance by considering

its conditional selection probability, P(ω ∈ ŜA|ω ∈ Ω̂A), thus accounting for the fact

that characteristics are only available for selection if they are contained in Ω̂A.

With respect to testing the conditional CAPM, this repeated-subsampling approach

is particularly interesting as it allows us to assess whether the implied market beta

drives out any characteristics in cross-sectional regressions. This is achieved by per-

forming the MTL selection procedure twice, once based on the original characteristics

without considering the implied market beta, and once using characteristics that have

been orthogonalized with respect to beta, i.e.,

C̃t = Ct−βtγ̂t, (4.16)

where γ̂t = (β′
tβt)

−1β′
tCt.

In this way, we ensure that a characteristic is selected only if it provides an incremental

improvement over the market beta’s description of cross-sectional return variation. A

sizable reduction in a characteristic’s conditional selection probability would thus be

considered evidence against the hypothesis that this characteristic carries additional

information.

4.5.2 Shapley decompositions of cross-sectional R-squared

The conditional selection probabilities from Section 4.5.1 have their limitations when

its comes to discriminating between characteristics with similar selection probabilities.

For example, it may be the case that two characteristics are selected equally often,

but one of them still contributes more to the explained variation than the other.

Hence, conditional selection probabilities are rather crude measurements of variable

importance that merely give an indication as to whether characteristics are relevant

at all.

To overcome these limitations, we complement our assessment of the importance

of individual characteristics by decomposing the cross-sectional R2
A, which is defined

as follows:

R2
A = 1−

∑T
t=1

1
Nt
||Rt+1−ιf 1

t+1−βtf
2
t+1−C̃tf t+1||

2
2∑T

t=1
1
Nt
||Rt+1−ιR̄t+1||22

,

17Although Ω̂A is not subject to an estimation in the classical sense, the notation aims to highlight
that its composition depends on the clusters found by the K-means algorithm.
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where the R̄t+1 denotes the average return across stocks in t+1. In practice, we

compute the R2
A out-of-sample, i.e., we generate factor realizations using the auxiliary

set A and hold them fixed to compute the R2
A based on the leftover stocks. In what

follows, we will refer to this N/2-dimensional collection of leftover stocks as the main

set, or M.

To quantify the characteristics’ contributions to the cross-sectional R2
A, we utilize

a decomposition approach that is based on the concept of Shapley values.18 In coop-

erative game theory, Shapley values are used to determine a player’s contribution to

the total surplus generated by a coalition of players (cf. Shapley, 1951). In the present

context, each characteristic represents a player, and the value of the coalition is given

by the cross-sectional R2
A. The Shapley value of the k’th characteristic is then defined

as its average contribution to the value of R2
A over all possible regression specifications

that can be generated using subsets of the characteristics in ŜA without k. Formally,

this corresponds to

R2
A,k =

∑

V⊆W\{k}

|V|!(|W|−|V|−1)!

|W|!

(
R2

A(V∩{k})−R2
A(V)

)
, (4.17)

where W denotes the set of players (or characteristics), which in this case is ŜA, and

V represents one possible subset of W excluding the k’th characteristic.

An attractive feature of this approach is that it naturally accounts for the de-

pendence between regressors, as the contribution of a characteristic depends on the

contribution provided by others. To give an intuitive example, suppose that the Size

characteristic is correlated with the market beta. In this case, we would expect its con-

tribution to the cross-sectional R2
A to be high when the market beta is not accounted

for, but to decrease once the beta is included as a regressor. This decrease is accounted

for in the above definition of Shapley values, as we average over the contributions of

Size over all permutations of additional regressors.19

As we perform this decomposition separately for each random partition of the data,

represented by A and M, we need to aggregate the characteristics’ contributions across

subsamples. We do so by reporting the median Shapley value for each characteristic.

4.6 Post-selection inference via repeated sample

splitting

In Section 4.3, we explained how cross-sectional regressions of returns onto a small

set of characteristics can be used to establish testable restrictions for the conditional

18For an in-depth discussion of the theoretical properties of this approach, please refer to Grömping
(2007).

19Note that performing this decomposition using all 78 stock characteristics is computationally
infeasible, as we would have to run T×2K cross-sectional regressions. In this respect, the MTL-
based pre-selection step may be viewed as a means of reducing the complexity of this decomposition
approach.
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CAPM, initially assuming that the set of characteristics is known. We then introduced

an MTL-based selection procedure in Section 4.4 to identify characteristics that are

stable predictors of return variation and thus suitable candidates for the above cross-

sectional regressions.

Unfortunately though, if these two steps are performed on the same data, the Wald

statistic in Equation (4.12) is no longer approximately χ2-distributed, but distorted

in such a way that a correct null hypothesis would be rejected too often. This size

distortion is due to the fact that classical inference procedures do not account for the

underlying selection bias, i.e., they ignore the fact that only those statistical relation-

ships are tested that were found to be sufficiently strong in the given sample. This is

problematic because even in large samples, strong in-sample relationships can arise by

chance.

Moreover, we have seen in Section 4.5 that, even in the very stylized case where

the true DGP is linear and all relevant information is observable, determining the true

set of predictors can be a challenging task. In real-world applications, the situation

may be even worse: For example, if the true DGP is highly nonlinear and subject

to interaction effects, or if some of the relevant predictors are simply unobserved,

consistent model selection is off the table. In these cases, all we can hope for is that

the regressions we employ capture important aspects of the true DPG.

It seems to us that many recent contributions to empirical finance do not give

due consideration to the problem of model misspecification and its implications for

statistical inference. Instead, researchers simply assume that their statistical models

are correctly specified, which allows them to use inferential procedures that target

the parameters of the true DGP. The studies by Feng et al. (2020) and Freyberger

et al. (2020) exemplify this approach: Both operate under the assumption that the

true return-generating process is linear, either in factors or basis functions, and ap-

proximately low-dimensional. However, if these conditions are not met, the reported

standard errors and p-values are simply wrong.

Although the true-model perspective has been dominating econometric philosophy

for years, it is by no means without an alternative. White (1980, 1981), for example,

argues in a series of papers that, in a non-experimental science such as economics, the

functional form of a statistical model is typically chosen not out of certainty about

the true causal (or equilibrium) relationship, but rather on the basis of mathematical

convenience. Thus, rather than focusing on the true DGP, it is often more useful

to aim for a consistent estimation of the parameters of an approximate model. Berk

et al. (2013) complement this view by pointing out that, under certain circumstances,

it is not possible to identify the parameters of the true model, especially when there

are many redundant predictors. In such cases, one solution may be to focus on an

approximate model whose parameters exist independently of the true DGP.

In what follows, we depart from the true-model perspective and present an ap-

proach towards post-selection inference that 1) accounts for the distributional distor-

tions induced by variable selection and 2) accommodates arbitrary forms of model
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misspecification. The basic idea is to obtain valid inference on the parameters of

an approximate model by performing the selection and estimation steps separately on

different parts of the data. The theoretical foundations for this approach have been es-

tablished by Rinaldo et al. (2019), who demonstrate that the resulting standard errors

and p-values are valid regardless of the underlying data-generating distribution or selec-

tion procedure chosen. For the present application, we implement the sample-splitting

approach as follows: Initially, we partition the universe of stocks cross-sectionally into

an auxiliary set A and a main set M, just as described in Sections 4.5.1 and 4.5.2.

We then employ the MTL to select meaningful characteristics using A, and construct

the corresponding factor time series using M. To emphasize that the means of the

cross-sectional factors are defined conditional on the set of selected characteristics, ŜA,

we will henceforth denote them by θA. Finally, we compute the Wald statistic and the

associated p-value for the joint hypothesis in Equation (4.11) using M.20

The sample-splitting approach is compelling as it allows us to compute the Wald

statistic and the associated p-values using standard formulas, without having to make

restrictive assumptions about the true DGP. However, as we have seen in Section 4.5.1,

different partitions of the data can lead to different sets of selected characteristics, and

thus to different conclusions about the null hypothesis under investigation. To ad-

ditionally account for the uncertainty that is due to randomly splitting the data, we

follow Chernozhukov et al. (2023) and partition the data not just once but multiple

times. Consequently, the target parameters θA are random variables, where the ran-

domness stems from the fact that we draw multiple pairs of auxiliary and main sets.

To obtain a uniform statement about the null hypothesis, Chernozhukov et al. (2023)

propose to perform quantile aggregation. Following their approach, we obtain sample-

splitting adjusted p-values, pmed, by taking the median of the individual p-values that

we obtain for the different partitions of the data, i.e.,

pmed = 2·med(pA), (4.18)

where the multiplication by two can be conceived of as the price of splitting the data.

4.7 Empirical strategy

Before delving into the specifics of how we compile our data, let us briefly review the

research questions that we posed at the beginning and provide an overview of our

testing strategy. The main objective of this study is to use cross-sectional regres-

sions to test the fully-implied specification of the conditional CAPM that we proposed

in Section 4.2. Although the underlying testing principle is not new and has been

studied quite extensively in the past, we believe that the challenges associated with

20To illustrate the logic behind the sample-splitting approach, we present a simulation study in
Appendix C.1, where we plot the approximate distributions of the t- and Wald statistics, once for
the case where both selection and inference are performed on the full sample, and once for the case
where these steps are distributed across subsamples.
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time-varying coefficients and high-dimensional sets of competing stock characteristics

have not been adequately addressed. Table 4.1 provides a concise summary of our test-

ing strategy, which interprets the selection of characteristics as a multi-task learning

problem (Section 4.4) and employs quantile-aggregation to obtain valid post-selection

inference (Section 4.6).

In the following, we will use this procedure to answer the following research ques-

tions: 1.) Does the implied market beta drive out any of the competing stock char-

acteristics in cross-sectional regressions? 2.) Can we reject the null hypothesis that

there are no additional nonzero factor means? 3.) Do the results change if we use

characteristic-sorted portfolios instead of individual stocks as test assets? 4.) Where

does the implied market beta rank in terms of its cross-sectional explanatory power

relative to other characteristics? 5.) What can be said about the nature of the selected

characteristics – are they stable predictors of return variation, or are they informative

only within certain periods of time?

4.7.1 Database

To address these questions, we require an extensive data set that includes monthly

stock returns, prices of European call and put options with matching maturities, and

a comprehensive collection of stock characteristics. For the return data, we draw on

the daily security file provided by CRSP (The Center for Research in Security Prices)

and compute monthly gross returns for all common shares (CRSP codes 10 and 11)

traded on major US exchanges (CRSP codes 1, 2, and 3) during the period from

January 1996 to December 2021. For stocks that are delisted during this period, we

adjust the last available daily return by the associated delisting return that is provided

by CRSP. The delisting event is assumed to be unexpected, so the number of calendar

days over which the monthly returns are calculated converges to zero as we approach

the delisting date. Returns for which the holding period extends beyond December

31, 2021 are excluded from the sample.

The implied market betas from Equation (4.2) are functions of risk-neutral return

variances, which can be approximated using a collection of European call and put

option prices. However, options on US stocks are typically traded American-style, so

we need to convert between the prices of American and European option contracts.

This is accomplished by using the implied volatility surface provided by OptionMetrics

as an input to the Black-Scholes-Merton formula to compute the prices of equivalent

European options with maturities of 30 calendar days and deltas ranging from -0.9 to

0.9 in steps of 0.05. In addition, we obtain monthly gross risk-free rates using the zero-

coupon yield curve provided by OptionMetrics. For more details on the approximation

of risk-neutral moments and the construction of the risk-free rate, please refer to

Chapter 3, Appendix B.1 and B.2.

An extensive collection of stock characteristics that have been used as return pre-

dictive signals in previous literature is available from Chen and Zimmermann’s (2022)

Open Source Asset Pricing repository. From this repository, we download a selection
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Table 4.1: Testing strategy. This table provides an overview of our testing strategy, which
employs multi-task learning for the selection of characteristics and sample splitting for post-selection
inference. The first step of our procedure is to randomly partition the cross-section of stocks into
1,000 pairs of auxiliary and main sets, denoted by A and M. Steps 2 to 9 refer to the auxiliary sets
and describe how the MTL is used to select stable predictors of return variation. Steps 10 to 17
refer to the main sets and cover the construction of the cross-sectional factors and the computation
of quantile-aggregated p-values. Steps 18 to 21 present the various methods that we use to aggregate
our results across partitions.

1. Create 1,000 random partitions (A,M) of {1, . . . ,N}

2. For each auxiliary set A:

3. Find a set of correlation clusters G = {G1, . . . ,GZ} according to

Ĝ = argmin
G

Z∑

z=1

∑

k∈Gz

||dk−d̄z||
2
2

where dk = 1−|ρk| and Z is chosen via Silhouette scores

4. Randomly draw a single characteristic from each Ĝz, such that

Ω̂A = {ω ∈R Ĝz : z ∈ {1, . . . ,Z}}

5. Collect the drawn characteristics in a sub-matrix Ct = [ciω,t]|At|×|Ω̂A|, with At

being the set of stocks in A available in t

6. Orthogonalize each characteristic with respect to the implied market beta using

C̃t = Ct−βtγ̂t, where γ̂t = (β′
tβt)

−1β′
tCt

7. Select characteristics by the CMTL (or DMTL) using 3-fold CV:

8. F̂ = argmin
F

∑T
t=1

1
|At|

||Rt+1−C̃tf t+1||
2
2+λ||F ||1,2

9. ŜA = {ω ∈ Ω̂A : f̂
ω
̸= 0}

10. For each main set M:

11. Construct factor time series via OLS:

12. Define Ct = [cis,t]|Mt|×|ŜA| and Xt = [ι,βt,Ct]

13. Create factors according to f t+1 = (X ′
tXt)

−1X ′
tRt+1

14. Employ quantile-aggregation for inference:

15. Estimate the factor means: θ̂A = 1
T

∑T
t=1f t+1

16. Compute the value of the test statistic: wA = θ̂
′

Av̂ar(θ̂A)
−1θ̂A

17. Get the p-value: pA = P(W ≥ wA), where W
H0∼ χ2(|ŜA|)

18. Across partitions A and M:

19. Estimate conditional selection probabilities: P(ω ∈ ŜA|ω ∈ Ω̂A)

20. Decompose the cross-sectional R2
A using Shapley values

21. Compute sample splitting-adjusted p-values: pmed = 2·med(pA)
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of 78 characteristics, the composition of which is determined by the following two cri-

teria: Popularity and importance in previous studies, and availability and quality of

the data.21 For the latter, we examine the structure of missing values and keep only

those characteristics whose proportion of missing values does not exceed 50%. The

distributions of missing values for the remaining 78 characteristics are shown in Figure

4.4, once for annual subsamples (Panel A) and once for the entire sample period (Panel

B). The characteristics’ names and information about the publications in which they

were introduced as predictive signals can be found in Table 4.2.

To deal with the remaining missing values, we employ the imputation procedure

by Bryzgalova et al. (2022), which captures the characteristics’ cross-sectional depen-

dencies by means of a latent factor representation. Their approach involves estimating

the following cross-sectional factor models, each of which describes the statistical re-

lationship between characteristics at a given point in time t:

Ct = ΓtΛ
′
t+ut t = 1, . . . ,T, (4.19)

where Γt = [γil,t]Nt×L is a matrix comprising L stock-level factors, Λt = [λkl,t]K×L is

the corresponding loadings matrix, and ut = [uik,t]Nt×K is a matrix of residuals.22 The

estimation of the models’ components is performed in two steps: First, one obtains

preliminary loadings Λ̃t as the eigenvectors of the L largest eigenvalues of the charac-

teristics’ covariance matrix. The individual entries of this covariance matrix are calcu-

lated based on the stocks for which the associated pair of characteristics is observed.

The stock-specific factor estimates are then obtained by regressing the characteristics

vector Ci
t = [cik,t]K×1 onto the preliminary loadings

Γ̂
i

t = (Λ̃
′

tW
i
tΛ̃t)

−1(Λ̃
′

tW
i
tC

i
t) i = 1, . . . ,Nt, (4.20)

where Γ̂
i

t = [γ̂il,t]L×1 is the resulting vector of factor estimates, and W i
t is a symmetric

matrix containing ones on its diagonal if the corresponding characteristic is observed

and zeros otherwise. Second, the final loadings are estimated using

Λ̂
k

t = (Γ̂
′

tW
k
t Γ̂t)

−1(Γ̂
′

tW
k
tC

k
t ) k = 1, . . . ,K,

where the transpose of Λ̂
k

t = [λ̂kl,t]L×1 is the k’th row of Λ̂t, and Ck
t = [cik,t]Nt×1 is a

vector comprising the cross-section of the k’th characteristic. The missing values in

Ct are eventually replaced by their corresponding entries in Ĉt = Γ̂tΛ̂
′

t. To prevent

information from the auxiliary set from leaking into the main set, we perform the

imputation procedure separately for each subsample of the data.

Note, however, that computing the inverse in Equation (4.20) can be unstable if

the number of missing characteristics is large. For this reason, we additionally exclude

21The data are part of the March 2022 update and retrieved according to the instructions that are
given on the repository’s website: https://www.openassetpricing.com/.

22We follow Bryzgalova et al. (2022) and set the number of factors to L = 6.
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Figure 4.4: Structure of missing values. This figure illustrates the quality and availability of the
characteristics data that we obtain from Chen and Zimmermann’s (2022) Open Source Asset Pricing

repository. Panel A presents the share of missing values per year and characteristic, and Panel B
gives an overview of the overall share of missing values. The characteristics are sorted in ascending
order according to the percentages displayed in Panel B. Characteristics for which the share of missing
values is greater than 50% are excluded from the sample.
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Table 4.2: Stock characteristics. This tables provides detailed information on the 78 stock
characteristics that we obtain from Chen and Zimmermann’s (2022) Open Source Asset Pricing

repository. The first column indicates the economic category of the characteristic. The second
column contains the characteristic’s name. The third column presents the authors by whom the
characteristic was first introduced, and the fourth and fifth columns the journal and year of the
associated publication. Note that the economic categories have been slightly changed compared to
the original documentation file.

Economic category Characteristic Authors Journal Year

Accruals Accruals Sloan AR 1996
Percent operating accruals Hafzalla, Lundholm, Van Winkle AR 2011

Asset Composition Cash productivity Chandrashekar and Rao WP 2009
Cash-to-assets Palazzo JFE 2012
Depreciation-to-PPE Holthausen and Larcker JAE 1992
Inventory growth Belo and Lin RFS 2012
Net operating assets Hirshleifer et al. JAE 2004

Cash Flow Cash flow-to-debt Ou and Penman JAR 1989
Cash flow-to-market Lakonishok, Shleifer, Vishny JF 1994
Operating cash flows to price Desai, Rajgopal, Venkatachalam AR 2004

Corporate Information Change in taxes Thomas and Zhang JAR 2011
Employment growth Bazdresch, Belo and Lin JPE 2014
Industry concentration (sales) Hou and Robinson JF 2006
Short-interest Dechow et al. JFE 2001

Corporate Liquidity Asset liquidity over book assets Ortiz-Molina and Phillips JFQA 2014
Asset liquidity over market Ortiz-Molina and Phillips JFQA 2014
Change in current ratio Ou and Penman JAR 1989
Change in quick ratio Ou and Penman JAR 1989
Current ratio Ou and Penman JAR 1989
Quick ratio Ou and Penman JAR 1989

Dividends Last year’s dividends over price Naranjo, Nimalendran, Ryngaert JF 1998
Net payout yield Boudoukh et al. JF 2007

Earnings Earnings announcement return Chan, Jegadeesh and Lakonishok JF 1996
Earnings surprise Foster, Olsen and Shevlin AR 1984
Earnings-to-price Basu JF 1977

External Financing Change in current operating liabilities Richardson et al. JAE 2005
Net debt financing Bradshaw, Richardson, Sloan JAE 2006
Net equity financing Bradshaw, Richardson, Sloan JAE 2006
Net external financing Bradshaw, Richardson, Sloan JAE 2006
Secured debt Valta JFQA 2016
Share issuance (1 year) Pontiff and Woodgate JF 2008

Investment Asset growth Cooper, Gulen and Schill JF 2008
Change in capex (two years) Anderson and Garcia-Feijoo JF 2006
Change in current operating assets Richardson et al. JAE 2005
Change in long-term investment Richardson et al. JAE 2005
Change in net operating assets Hirshleifer, Hou, Teoh, Zhang JAE 2004
Change in short-term investment Richardson et al. JAE 2005
Growth in book equity Lockwood and Prombutr JFR 2010
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Table 4.2 continued. . .

Economic category Characteristic Authors Journal Year

Leverage Book leverage (annual) Fama and French JF 1992
Operating leverage Novy-Marx ROF 2010

Momentum 52 week high George and Hwang JF 2004
Industry momentum Grinblatt and Moskowitz JFE 1999
Intermediate momentum Novy-Marx JFE 2012
Long-run reversal De Bondt and Thaler JF 1985
Medium-run reversal De Bondt and Thaler JF 1985
Momentum (12 month) Jegadeesh and Titman JF 1993
Momentum (6 month) Jegadeesh and Titman JF 1993
Short-term reversal Jegadeesh JF 1989

Profitability Cash-based oper. profitability Ball et al. JFE 2016
Change in profit margin Soliman AR 2008
Change in return on assets Balakrishnan, Bartov and Faurel JAE 2010
Change in return on equity Balakrishnan, Bartov and Faurel JAE 2010
Gross margin growth-to-sales growth Abarbanell and Bushee AR 1998
Gross profits-to-total assets Novy-Marx JFE 2013
Net income-to-book equity Haugen and Baker JFE 1996
Profit margin Soliman AR 2008
Return on assets (quart.) Balakrishnan, Bartov and Faurel JAE 2010
Return on invested capital Brown and Rowe WP 2007
Return on net operating assets Soliman AR 2008

Risk Measures Coskewness Harvey and Siddique JF 2000
Idiosyncratic risk Ang et al. JF 2006
Maximum return over month Bali, Cakici, and Whitelaw JF 2010

Sales Annual sales growth Lakonishok, Shleifer, Vishny JF 1994
Change in gross margin-to-sales Abarbanell and Bushee AR 1998
Sales-to-cash Ou and Penman JAR 1989
Sales-to-price Barbee, Mukherji and Raines FAJ 1996
Sales-to-receivables Ou and Penman JAR 1989

Trading Amihud’s illiquidity Amihud JFM 2002
Bid-ask spread Amihud and Mendelsohn JFE 1986
Days with zero trades (6 month avg.) Liu JFE 2006
Number of analysts Elgers, Lo and Pfeiffer AR 2001
Past trading volume Brennan, Chordia, Subra JFE 1998

Turnover Asset turnover Soliman AR 2008
Capital turnover Haugen and Baker JFE 1996

Valuation Book-to-market (December ME) Fama and French JPM 1992
Size Banz JFE 1981
Total assets-to-market Fama and French JF 1992
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security-date observations with a share of missing values greater than 50%. This

threshold is chosen such that the number of missing values is significantly reduced,

but overall only few observations are lost. The associated trade-off is illustrated in

Figure 4.5: By setting the maximum share of missing characteristics to 50%, the

number of security-date observations is reduced by only 4.13%.

Furthermore, Freyberger et al. (2020) have shown that there is an equivalence

between cross-sectional regressions and classical portfolio sorts if the characteristics’

values are scaled to the unit interval. For this reason, and to avoid problems as-

sociated with non-stationarities, it has become common practice in the literature to

rank-transform characteristics cross-sectionally before using them as explanatory vari-

ables.23 The factor models in Equation (4.19), however, do not necessarily map to the

unit interval. Therefore, we introduce an additional step in which we apply the inverse

normal cumulative distribution function to the rank-transformed characteristics. We

then estimate the above factor models based on these normalized characteristics, im-

pute their missing values, and reverse the normal transformation afterwards. In this

way, we ensure that both the observed and imputed values fall into the range between

zero and one.24

Table 4.3 provides detailed information on the final panel of returns and charac-

teristics. Panel A gives an overview of the structure of our data, Panel B lists the

number of securities per month for various time periods, and Panel C presents de-

scriptive statistics for the implied market beta from Equation (4.2).

4.7.2 Results

One of the central implications of the conditional CAPM is that the market beta is the

only stock-level quantity needed to explain the cross-section of returns. We examine

this claim by running the selection procedure (Table 4.1, Step 1 to 9) twice: In the first

run, we determine the set of characteristics, ŜA, without considering the implied beta

(i.e., excluding step 6), while in the second run, we orthogonalize each characteristic

with respect to beta. The latter ensures that a characteristic is selected only if it

provides incremental information for the regression tasks from Equation (4.7). In

both cases, we use 1,000 random partitions of the data to estimate the characteristics’

conditional selection probabilities, P(ω ∈ ŜA|ω ∈ Ω̂A), and use these estimates to

evaluate the effects of orthogonalization. If the conditional CAPM holds, we would

expect the characteristics to be selected much less frequently once we control for the

test assets’ exposure to market risk.

Figure 4.6 presents the characteristics’ conditional selection probabilities for vari-

ous sets of test assets, including individual stocks (Stocks), 25×78 = 1,950 univariate

characteristic-sorted portfolios (CPF), and 500 beta-sorted portfolios (BPF). The lat-

23For example, Freyberger et al. (2020), Kozak et al. (2020), and Gu et al. (2020) employ such rank
transformations.

24Figure C.2 in the appendix illustrates the cross-sections of observed and imputed values for the
normalized characteristic Asset growth in January 31, 1996.
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Figure 4.5: Distribution of missing characteristics. This figure shows the empirical distri-
bution of the share of missing characteristics for the panel of security-date observations. It thus
illustrates the trade-off associated with excluding observations whose share of missing characteristics
exceeds a certain threshold. We set this threshold to 50%, which reduces the number of security-date
observations from 695,884 to 667,113, i.e., by 4.13%.
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Table 4.3: Descriptive statistics. This table presents detailed information on the panel of returns
and characteristics (Panel A), distributional measures for the number of securities per month, broken
down by five time periods (Panel B), and averages, standard deviations, as well as a range of quantiles
for the implied beta from Equation (4.2) (Panel C).

Panel A: General information

Sample period: January 1996 - December 2021
Frequency: Monthly
Investment horizon: 30 calendar days
Number of months: 311
Number of securities: 7,655
Number of security-date observations: 695,884
≤ 50% missing characteristics: 667,113 (-4.13%)

Panel B: Number of securities per month

Period Avg. Min. Max.

1996 - 2000 2,060 1,537 2,316
2001 - 2005 1,889 1,760 2,041
2006 - 2010 2,170 2,000 2,251
2011 - 2015 2,455 2,265 2,655
2016 - 2021 2,555 2,343 2,799

Panel C: Descriptive statistics for the implied beta

Period Avg. Std. 10% 25% 50% 75% 90%

1996 - 2000 1.45 0.62 0.78 0.98 1.33 1.83 2.29
2001 - 2005 1.52 0.66 0.82 1.03 1.38 1.88 2.40
2006 - 2010 1.50 0.67 0.85 1.07 1.36 1.75 2.26
2011 - 2015 1.79 0.96 0.89 1.15 1.56 2.15 2.93
2016 - 2021 1.89 1.03 0.90 1.17 1.64 2.31 3.19

157



Figure 4.6: Conditional selection probabilities. This figure shows estimates of conditional
selection probabilities (in %) for the 78 stock characteristics from Table 4.2, without orthogonalization.
The estimates are obtained by counting the number of times that a characteristic is contained in the set
of selected characteristics, ŜA, divided by the number of times it is drawn from one of the correlation
clusters. The estimation is based on 1,000 random auxiliary sets, and the results are displayed for
three different sets of test assets, including individual stocks (Stocks), 25×78 = 1,950 univariate
characteristic-sorted portfolios (CPF), and 500 beta-sorted portfolios (BPF). The characteristics are
arranged in descending order according to their average selection probabilities across columns.
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ter two are formed on a monthly basis by sorting stocks into portfolios according to

the characteristics’ cross-sectional distributions. The characteristics are displayed in

descending order by their average selection probabilities across columns.

In the case of individual stocks, we observe that 29 characteristics have conditional

selection probabilities greater than 95% – a number that is relatively large compared to

the 13 characteristics identified as important in the study by Freyberger et al. (2020).

This discrepancy can be attributed to the fact that Freyberger et al. (2020) apply

the group Lasso only once to their entire data set, whereas we perform the selection

step repeatedly using different subsamples of our data. As discussed in Section 4.5.1,

the latter serves to account for the instability of ℓ1-regularization in the presence of

highly correlated predictors. This instability is due to the fact that the solution to

the selection problem is inherently ambiguous, in the sense that many different com-

binations of selected characteristics produce very similar levels of predictive accuracy.

Therefore, it is crucial to rely on multiple sets of selected characteristics to obtain a

reliable estimate of the number of informative characteristics.

Considering the results for the CPF and the BPF, we find that broadly the same

characteristics are important as in the case of individual stocks, although the number of

characteristics with conditional selection probabilities greater than 95% decreases from

29 to 26 for the CPF and to 16 for the BPF. This result suggests that certain aspects

of return variation are lost when forming portfolios. Another interesting observation

is that Idiosyncratic risk is always among the important characteristics, no matter

which set of test assets is considered. Given that one of the central tenets of the

CAPM is that idiosyncratic risk is not priced by investors, we would expect to see a

sharp decline in the selection probability for this characteristic in particular.

The changes in conditional selection probabilities resulting from the use of orthog-

onalized characteristics are shown in Figure 4.7. What is striking is that many of the

characteristics that were previously identified as important are now selected with a

much lower frequency. In the case of individual stocks, the number of characteristics

with conditional selection probabilities greater than 95% drops from 29 to 20 once we

introduce orthogonalization. However, there are some characteristics that retain their

high selection probabilities even after adjusting for beta, most of which are associated

with the momentum effect (e.g., Industry Momentum). Interestingly, when comparing

the results for individual stocks and portfolios, it appears that far more predictors are

redundant in the latter case: The number of characteristics with conditional selection

probabilities greater than 95% decreases from 26 to 7 for the CPF, and from 16 to

4 for the BPF. To give an example: Idiosyncratic risk is (almost) completely driven

out in the case of the BPF and the CPF, but affected to a much lesser extent when

using individual stocks. The heterogeneity of these results suggests that explaining

the returns of individual stocks is more challenging for the conditional CAPM than

explaining the returns of characteristic-sorted portfolios.

This conclusion is confirmed in Figure 4.8, which shows the distribution of the

number of selected characteristics across partitions (Panel A), as well as the distribu-
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Figure 4.7: Changes in conditional selection probabilities. This figure shows the changes
in conditional selection probability estimates (in %-points) that are due to orthogonalizing the char-
acteristics with respect to the implied beta from Equation (4.2). The estimation is based on 1,000
random auxiliary sets, and the results are displayed for three different sets of test assets, including
individual stocks (Stocks), 25×78 = 1,950 univariate characteristic-sorted portfolios (CPF), and 500
beta-sorted portfolios (BPF). For ease of comparison, the characteristics are arranged in the same
way as in Figure 4.6.
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Figure 4.8: Numbers of selected characteristics and significant factor means. This figure
shows the distribution of the number of selected characteristics (Panel A), as well as the distribution
of the number of factor means that are significant at a 5% level for different sets of test assets. The
first two columns in either panel present the results for individual stocks, once for the case where the
characteristics are orthogonalized and once without orthogonalization. Columns three to six display
the results for characteristic-sorted portfolios (CPF) and beta-sorted portfolios. The significance of
the factor means is determined for each of the 1,000 main sets individually using a standard t-test.
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tion of the number of factor means that are significant at a 5% level (Panel B), both

with and without orthogonalization.25 As can be seen from the first two columns of

Panel A, introducing beta only slightly shifts the distribution of the number of se-

lected characteristics in the case of individual stocks. In contrast, the shift is much

more pronounced for the CPF (BPF), where the mode of the distribution declines

from 12 characteristics to 4 (from 7 to 3). Similarly, the number of significant factor

means is hardly affected for individual stocks (the mode of the distribution is 3 in

both cases), but drawn towards zero for both the CPF and the BPF. We conclude

that, while the CAPM is quite successful in driving out characteristics in the case of

portfolios, the results for individual stocks suggest that additional stock-level features

may be needed to capture all aspects of return variation.

We continue with a discussion of the results obtained from testing the joint hy-

pothesis in Equation (4.11). Table 4.4 presents quantile-aggregated p-values for the

Wald statistic, once for the case where the regression specifications do not contain the

market beta (Equation 4.4), and once for the case where the market beta is included

(Equation 4.7). In the case of individual stocks, the p-value associated with the hy-

pothesis that the additional factors derived from cross-sectional regressions have zero

means is below any conventional significance level, leading us to reject the conditional

CAPM. This is consistent with the previous observation that the implied beta is un-

able to drive out all the competing stock characteristics in cross-sectional regressions.

The results are less conclusive, however, in the case of portfolios: While the rejection

for the CPF is borderline (pmed = 0.02), we cannot reject the conditional CAPM for

the BPF at any conventional level (pmed = 0.18). Again, these results are in line with

the observation that, especially in the case of the BPF, many predictors do not provide

incremental information.

For comparison, we additionally conduct this test for the model specifications in

Equation (4.4), which do not account for the market beta. As can be seen from the

results in Table 4.4, the level of the p-values strongly depends on whether the market

beta is included: For the BPF, the p-value is 0.01, which is much lower than the

corresponding p-value of 0.18. Similarly, the p-value for the CPF drops from 0.02 to a

value that is below any conventional level. These findings substantiate our impression

that, although the conditional CAPM appears to be quite successful in describing

the returns of portfolios, the returns of individual stocks are better explained by a

multi-factor model.

Next, we address the question of where the implied beta ranks in terms of its

cross-sectional explanatory power relative to the other characteristics. To this end,

we employ the characteristics’ median Shapley contributions to cross-sectional R2
A,

which are displayed in Figures 4.9 to 4.11 for individual stocks, the CPF, and the

BPF. Strikingly, the implied beta is by far the most important predictor of return

variation, regardless of whether we use individual stocks or portfolios as test assets. In

25We test for significant factor means using a standard t-test that is performed for each of the 1,000
main sets.
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Figure 4.9: Shapley contributions to R2
A (Stocks). This figure shows the individual character-

istics’ Shapley contributions to R2
A as defined in Equation (4.17) and obtained when using individual

stocks as test assets. The underlying decomposition is performed for each of the 1,000 random par-
titions of the data. The red circles correspond the median contributions across partitions, while the
blue bars indicate the range between the highest and lowest deciles. The characteristics are sorted in
descending order according to their relative importance.
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Figure 4.10: Shapley contributions to R2
A (CPF). This figure shows the individual char-

acteristics’ Shapley contributions to R2
A as defined in Equation (4.17) and obtained when using

characteristic-sorted portfolios (CPF) as test assets. The underlying decomposition is performed for
each of the 1,000 random partitions of the data. The red circles correspond the median contributions
across partitions, while the blue bars indicate the range between the highest and lowest deciles. The
characteristics are sorted in descending order according to their relative importance.
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Figure 4.11: Shapley contributions to R2
A (BPF). This figure shows the individual characteris-

tics’ Shapley contributions to R2
A as defined in Equation (4.17) and obtained when using beta-sorted

portfolios (BPF) as test assets. The underlying decomposition is performed for each of the 1,000
random partitions of the data. The red circles correspond the median contributions across partitions,
while the blue bars indicate the range between the highest and lowest deciles. The characteristics are
sorted in descending order according to their relative importance.
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the case of individual stocks, its median contribution to the R2
A is about 2.5 percentage

points, which is half a percentage point higher than that of the second most important

characteristic (52 week high). This outperformance is even more pronounced for the

CPF and the BPF, where in both cases the median contribution of the implied beta

is more than twice that of the second most important characteristic. Given these

results, it seems reasonable to assume that the cross-sectional factor models presented

by Fama and French (2020), which do not account for the assets’ exposure to market

risk, could have been further improved by adding a time-varying estimate of beta.

Finally, we investigate whether there are stock characteristics that generate anoma-

lous return predictability. We address this question using the DMTL from Equation

(4.14), which comprises two different regularization terms: One of these terms, the

ℓ12-penalty, enforces a joint sparsity pattern along the time series dimension of the

coefficient matrix F , while the other, the ℓ11-penalty, shrinks the values of the coeffi-

cient matrix A for each cross-section individually. Hence, we consider characteristics

anomalous predictive signals if their coefficient time series in F are zero (i.e., if they do

not qualify as stable predictors), but the corresponding coefficients in A are nonzero

for at least some of the regression tasks (i.e., if they are informative only within certain

periods of time). As before, we account for the instability of the DMTL by solving

the corresponding optimization problem for each of the 1,000 auxiliary sets and then

counting how many of the characteristics are classified as either stable or anomalous

return predictive signals. The resulting distributions are displayed in Figure 4.12.

As evident from the results, the number of characteristics exhibiting anomalous re-

turn predictability is rather small compared to the number of stable factor-generating

characteristics. In more than 40% of the solutions, the DMTL shrinks all the coeffi-

cients in A to zero, indicating that none of the characteristics are classified as anoma-

lous predictive signals. In contrast, in over 60% of the cases, the DMTL identifies

between 8 and 10 characteristics as stable predictors. These findings align closely with

the conclusions drawn by Kelly et al. (2019), who assert that characteristics “contain

little (if any) anomalous return predictability once their explanatory power for factor

exposures has been accounted for.”
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Table 4.4: Results from testing the conditional CAPM. This table presents quantile-
aggregated p-values, pmed, for testing the joint hypothesis in Equation (4.11). The rows contain results
for different sets of test assets, including individual stocks (Stocks), characteristic-sorted portfolios
(CPF), and beta-sorted portfolios (BPF). The columns are used to distinguish between the regression
specifications in Equations (4.4) and (4.7). The two are different in that the former does not include
the market beta (Without beta), while the latter does (With beta). The quantile-aggregation step is
performed as described in Section 4.6 using 1,000 random partitions of the data.

Quantile-aggregated
p-values (pmed)

Without beta With beta

Stocks <0.001 <0.001
CPF <0.001 0.023
BPF 0.013 0.184

Figure 4.12: Stable vs. anomalous return predictability. This figure shows the distributions
of the number of characteristics that are classified as either stable or anomalous return predictive
signals. The distributions are obtained by solving the DMTL optimization problem from Equation
(4.14) for each of the 1,000 auxiliary sets. The objective function that is minimized is subject to
two different types of regularization terms, denoted by ℓ12 and ℓ11, where the former enforces a
joint sparsity pattern across regression tasks, while the latter operates at the level of each individual
cross-section. The distinction between stable and anomalous return predictors is derived from the
coefficient matrices that are associated with the two penalty terms. Accordingly, characteristics are
considered stable predictors if they are assigned nonzero coefficient time series in the columns of F ,
and anomalous return predictors if their column entries in F are zero, but nonzero in A for at least
some of the regression tasks.
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4.8 Conclusions

The conditional CAPM is one of the most widely studied models in empirical finance.

Despite this extensive research, however, there is still untapped potential for improve-

ment, both in terms of economic theory and testing methodology. This study aims to

fill some of the remaining gaps related to the measurement of the model’s time-varying

components and their evaluation in cross-sectional regressions.

In a first step, we propose a novel representation of the conditional CAPM that is

fully-implied by option prices, allowing us to compute both the beta and the market

premium without any econometric estimation. An interesting feature of this represen-

tation is that it directly relates physical and risk-neutral return distributions without

the need for further risk-adjustment.

In a second step, we test our model using cross-sectional regressions that include

the implied beta and other stock characteristics as regressors. Although the underly-

ing testing principle is not new, we contribute to the existing literature in at least two

respects: First, we select competing characteristics using the multi-task Lasso, which

allows us to determine a joint representation of the regressions over the entire sample

period, while taking into account that each of them is subject to a time-specific pa-

rameterization. Second, we obtain misspecification-robust post-selection inference by

performing the selection and estimation steps separately on multiple random partitions

of the data. In addition, we employ conditional selection probabilities and Shapley

decompositions to assess the incremental contribution of characteristics beyond beta,

as well as an extension of the multi-task Lasso that serves to distinguish between stable

and anomalous return predictive signals.

Our findings are as follows: Although many characteristics appear to be useful

for explaining the cross-section of returns, only few provide incremental information

beyond beta. This is reflected in a sizable reduction in the characteristics’ conditional

selection probabilities once we include the beta in cross-sectional regressions. Depend-

ing on the chosen set of test assets, the few remaining characteristics are either too

important to be ignored, as in the case of individual stocks, or not important enough

for the conditional CAPM to be rejected, as in the case of characteristic- and beta-

sorted portfolios. One observation that is robust to the choice of test assets is that no

other characteristic contributes as much to explaining the cross-section of returns as

the implied market beta, as evidenced by the fact that its contribution to the explained

variation exceeds that of all the other characteristics by orders of magnitude. Finally,

we find that most of the characteristics that have been found to be informative in the

previous literature are stable rather than anomalous predictors of returns, which can

be taken as evidence against the often claimed replicability crisis in empirical finance.
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C Appendix

C.1 Post-selection inference via sample splitting: Simulation

study

To provide some intuition for the sample-splitting approach, we briefly consider the fol-

lowing simulation: Suppose there is a single cross-section of returns that is governed by

a linear model. This linear model consists of two correlated characteristics (ρ = 0.8),

the parameter values of which are given by θ0 = [−0.1,0.05]. From this model, we

generate 100,000 samples of returns and characteristics, each of size N = 10,000. For

each of these samples, we employ the Lasso to determine the best linear specification

(including either a constant regressor, one of the two characteristics, or both char-

acteristics) and estimate the associated model parameters. However, we distinguish

between two scenarios: In the first scenario, the selection and estimation are both

performed on the full sample of N observations. In the second scenario, we split the

data in half, use the first half for selection, and the second half for estimation as

well as inference. We then run post-selection regressions for each scenario and collect

the resulting parameter estimates. Note, however, that these estimates do not target

the true model parameters, θ0, but rather the OLS projection coefficients that are

defined conditional on the sets of selected characteristics, θŜ and θŜA
, where the for-

mer refers to the full-sample scenario and the latter to the scenario in which we use

sample-splitting.

Figure C.1 shows the approximate null distributions of the t-statistic for each char-

acteristic, once with and once without sample splitting. In addition, we construct a

Wald statistic for the joint hypothesis that the OLS projection coefficients are equal

to their population values and estimate the probabilities with which the associated

p-values fall below the significance level of α = 5%. If this probability exceeds α, the

test statistic is subject to size distortions, meaning that the probability of rejecting a

correct null hypothesis is too high.

Panels A and B show that, without sample splitting, the null distributions of the t-

statistics are not approximately Gaussian as expected, but distorted in such a way that

we too often commit a type I error. Similar results are obtained for the joint hypothesis

test, where the probability for rejecting a correct H0 is substantially higher (≈ 0.26)

than the targeted significance level of 5%. Note, however, that these deviations are

not small-sample phenomena: The sample comprises N = 10,000 observations.

Panels C and D tell a different story: If we separate the selection and estima-

tion steps across different subsamples, the approximate distributions are no longer

distorted. Likewise, the probability for rejecting a correct joint hypothesis (≈ 0.05)

does not exceed the targeted significance level. These results indicate that the sample-

splitting approach is effective in counteracting the bias that is induced by selection.
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Figure C.1: Post-selection inference with(out) sample splitting (Simulation). This figure
shows approximate null distributions of the t-statistic, once with (Panels A and B) and once without
sample splitting (Panels C and D). The results are obtained by generating a single cross-section of
N = 10,000 returns based on a linear model comprising two positively correlated characteristics with
ρ = 0.8. The true model parameters are given by θ0 = [−0.1,0.05]. We then employ the Lasso to
select characteristics, once using the full sample (Panels A and B) and once using half of the data
(Panels C and D). After that, we use the full sample (the other half of the sample) to estimate the OLS
projection parameters θ

Ŝ
(θ

ŜA
), which are defined conditional on the set of selected characteristics.

Finally, we repeat the sampling, selection, and estimation steps 100,000 times to approximate the
null distributions of the associated t-statistics. Panels A and C (blue color) present the distributions
for the first characteristic, whereas Panels B and D (red color) show the distributions for the second
characteristic. The solid black lines represent the probability density of a standard normal random
variable.
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C.2 Additional figures

Figure C.2 shows observed and imputed values for the characteristic Asset growth

for the cross-section of firms available in January 31, 1996. The imputed values are

obtained using the imputation procedure by Bryzgalova et al. (2022).

Figure C.2: Examples of observed and imputed values. This figure shows the observed and
imputed values of Asset growth for the cross-section of firms available in January 31, 1996. For the
imputation, we employ the procedure by Bryzgalova et al. (2022), which operates on the panel of
rank-transformed characteristics. In addition, we normalize the characteristics’ values to ensure that
the factor model in Equation (4.19) is unconstrained in its mapping. After the imputation, we undo
this normalization so that the characteristics values again lie in the unit interval. The individual
firms are displayed on the horizontal axis and arranged in ascending order according to their fitted
values. The grey dots indicate the observed values, the blue line represents the fitted values, and the
red crosses are the imputed values for which the characteristic’s value is missing.
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Chapter 5

Conclusions

This dissertation examines various aspects of two (currently) separate strands of fi-

nancial economic research that are concerned with the quantification of conditional

stock risk premia. On the one hand, there is the statistical approach pursued by Gu

et al. (2020), which adopts a predictive perspective and attempts to approximate con-

ditional risk premia using flexible, highly parameterized statistical models that are

evaluated on the basis of their ability to predict future realized excess returns. On

the other hand, there is a theory-based approach that aims to recover conditional risk

premia from financial economic paradigms by exploiting the information contained in

option prices, as is done, for example, by Martin and Wagner (2019). The central

theme of this dissertation is to compare these two approaches, to thoroughly assess

their respective strengths and weaknesses, and to identify situations in which combin-

ing the two can be useful. In pursuit of these goals, particular emphasis is placed on

the integration of financial economic paradigms into statistical modeling in order to

return to the principles of econometrics at a time when machine learning methods are

gaining in popularity.

In Chaper 1, we act on this maxim by proposing a hybrid approach that aims to

capture the approximation errors induced by the structural assumptions employed by

Martin and Wagner (2019) through various machine learning methods. In this way,

we explore the limitations of their theory and assess the added value of incorporating

economic considerations into statistical measurements of conditional risk premia. Our

main finding is that the relative performance of the two strategies strongly depends

on the investment horizon: The theory-based approach seems to benefit from the

informational efficiency of options markets at shorter investment horizons, while the

machine-learning approach can take advantage of the signals embedded in a variety of

stock- and macro-level features at longer investment horizons.

In Chapter 2, we draw on the findings by Martin and Wagner (2019) to derive a rep-

resentation of the conditional CAPM in which both the beta and the equity premium

are fully-implied by option prices. The comparative advantage of our approach lies in

its intuitive exposition of the risk-return relationship, as well as its superior predic-

tive performance. We employ this novel representation to shed light on a well-known

phenomenon that has preoccupied economic research for decades: the flat relation-

ship between average returns and betas. Our contribution is a novel interpretation

of this phenomenon, according to which the failure of the conditional CAPM can be

attributed to an inverse relationship between two different types of uncertainties – one

related to the inherently unpredictable component of market excess returns, and the
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other related to forecasting the assets’ exposure to market risk.

In Chapter 3, we aim to improve the way cross-sectional regressions are used to

test the validity of dynamic factor models. Our methodological contribution consists

of two parts: First, we present a systematic approach to the selection of stock charac-

teristics based on a variant of block-norm regularization that takes into account that

the individual regression problems are interrelated. Second, we provide valid post-

selection inference by performing the selection and estimation steps separately on

multiple random subsamples of the data, thus avoiding restrictive assumptions about

the return-generating process. We apply this testing strategy to evaluate the condi-

tional CAPM presented in Chapter 2, and find that while the model is rejected when

using individual stocks as test assets, the implied beta is by far the most important

predictor of cross-sectional return variation.

One lesson we believe is important for future work is that these two strands of

research should no longer be perceived as antithetical. While many studies currently

refer to either the one or the other approach, this barrier needs to be overcome to make

room for a productive convergence of the two. We suspect that the lack of progress

in this regard is partly due to the misnomer machine learning, which fails to recog-

nize that the methods subsumed under this category are nothing more than a logical

evolution of classical statistical approaches that have always played an important role

in empirical finance research. Rather than viewing machine learning as an innovation

that renders theoretical considerations obsolete, we should explore how its principles

can be integrated into financial economic theory, especially when large amounts of

data are involved or considerable flexibility is demanded.

Equally important as incorporating high-dimensional statistical methods into the

econometric repertoire is recognizing how crucial theoretical contributions such as that

by Martin and Wagner (2019) are in shaping our understanding of the world. The sta-

tistical methods currently available are rather limited in this respect, as their strength

lies in exploiting statistical relationships rather than discovering fundamental economic

principles. Thus, for the foreseeable future, the most fruitful application of statistical

methods will continue to be in making theoretical propositions amenable to empiri-

cal analysis. Whether statistical methods will ever be able to discover equilibrium or

causal relationships on their own, without recourse to expert knowledge, is a question

that we must leave to future research.
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