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Irene Girelli, Luigi Girelli, Maria Grazia Tosi, Nicola Girelli e soprattutto Carla Girelli,
ed inoltre tutti gli zii e i cugini che sono troppo numerosi per essere nominati qui indi-
vidualmente, ma che sono inclusi calorosamente.

viii



Acknowledgments

• I also would like to thank my older brother Maximilian Weiß and his wife (and my
friend) Tatiana Weiß. Thank you for your incessant support, love, encouragement, and
advise. I am grateful that you were there throughout the years to cheer me up and
provide me with a new perspective. I always knew you have my back and I could not
ask for more caring and loving siblings.

• Last (but certainly not least), I want to thank my parents, Heidemarie Weiß and Carsten
Thielmann. Ohne eure bedingungslose Unterstützung und Liebe wäre ich nicht der
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geglaubt hättet, aber mit Sicherheit hätte ich weder meine Leidenschaft für Computer-
linguistik gefunden noch einen Doktortitel erworben. Diese Arbeit ist euch gewidmet,
denn ihr habt den Grundstein gelegt, ohne den all dies nicht möglich gewesen wäre.
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Abstract

This thesis develops an integrative approach to automatic linguistic complexity analyses for
German and applies it to predict the proficiency of learner writing and the readability of texts
for native and non-native speakers of German. Complexity is a central concept in applied lin-
guistics and has been used in Second Language Acquisition (SLA) research to characterize and
benchmark language proficiency and to track developmental trajectories of learners (Ortega,
2012). However, the focus of SLA complexity research has been on the analysis of syntax and
lexicon and the English language (Housen et al., 2019; Wolfe-Quintero et al., 1998). More
research on other linguistic domains—such as morphology or discourse—is needed to model
complexity as a multidimensional construct. Furthermore, more languages should be studied
to promote complexity research. Measures of linguistic complexity have also been found to
be important features in computational linguistic research on Automatic Proficiency Assess-
ment (APA) and Automatic Readability Assessment (ARA). This thesis combines insights
from SLA complexity research and computational linguistic approaches to APA and ARA to
address important research gaps in SLA complexity research and work on APA and ARA for
education contexts.

We propose a linguistically broad approach to complexity that combines measures of syn-
tactic, lexical, and morphological complexity, as well as measures of discourse, human pro-
cessing, and language use. In doing so, we integrate theories and concepts form different
research disciplines including SLA complexity research, computational linguistics, and psy-
chology. We implemented a system to automatically calculate these measures relying on Nat-
ural Language Processing (NLP) techniques. With 543 measures, it calculates to the best of
our knowledge the largest and most diverse collection of measures of absolute and relative
complexity for German. To make this resource accessible to other researchers and thereby
promote the comparability and reproducibility of complexity research for German, we inte-
grated this system into the Common Text Analysis Platform (CTAP) by Chen and Meurers
(2016). We generalized the originally monolingual web platform for English to support multi-
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lingual analyses, leading to its extension to several additional languages. In an empirical study
on the impact of non-standard language on the NLP annotations and subsequent calculation of
measures, we confirmed that even on language from beginning learners, our analysis remains
overall robust and errors hardly impact our complexity estimates or models trained with them.

We then demonstrate the value of our integrative broad linguistic modeling approach to lin-
guistic complexity for APA and ARA. First, we provide an overview of the current research
landscape for both domains by conducting two systematic surveys focusing on automatic ap-
proaches for German published in the past twenty years. Both surveys showcase the need for
more research on approaches targeting second or foreign language (L2) learners and young
native speakers, more cross-corpus testing, and more accessible models. For ARA, we ob-
served that traditional readability formulas remain the de facto standard in research that is not
specifically dedicated to the development of new ARA approaches, even though they have
been criticized as overly simplistic by ARA researchers and generally perform below the cur-
rent state-of-the-art (SOTA). Second, we report on several machine learning experiments that
build on these insights and take into consideration the research needs we identified. We train
models for predicting language proficiency for L2 learners on long texts at the full Common
European Framework of Reference for Languages (CEFR) scale (A1 to C1/C2) and short an-
swers to reading comprehension questions in the form of course levels (ranging from A1.1
to A2.2). We also train a model for capturing early native language (L1) academic language
proficiency of students using grade levels (1st to 8th grade). For text readability, we train
models for L2 learners for longer texts (distinguishing texts for learners at the CEFR levels
A2, B1/B2, C1) and sentences (using a 7-point Likert scale) as well as a model for German
media language aimed at children or adults (making a binary distinction). We test these mod-
els across corpora and on hold-out data sets. With this, we illustrate the generalizability of our
models across different task contexts, elicitation contexts, languages, and publishers. We also
perform linguistic analyses on all data sets studied, which yields important insights into the
characterization of developmental trajectories in German. This thesis makes a special method-
ological contribution to ARA, as we compile a total of three new readability corpora which
for the first time facilitate cross-corpus testing and cross-language testing for German ARA.

In sum, this thesis provides novel insights into the developmental variation of linguistic
complexity in German and its role for text readability. It also contributes important new re-
sources for research on complexity, ARA, and APA by making available the multilingual
CTAP system, new readability corpora, and new models for German.

xii



Kurzfassung

Diese Dissertation entwickelt einen integrativen Ansatz zur automatischen Analyse linguis-
tischer Komplexität für das Deutsche und wendet ihn an, um die Schreibkompetenz von
Lernenden und die Lesbarkeit von Texten für deutsche Muttersprachler:innen und Nicht-
Muttersprachler:innen vorherzusagen. Komplexität ist ein zentrales Konzept in der angewand-
ten Linguistik und wurde in der Forschung zum Zweitspracherwerb (SLA) verwendet, um
die Sprachkompetenz von Lernenden zu charakterisieren und zu messen (Ortega, 2012). Der
Schwerpunkt der SLA-Komplexitätsforschung lag hierbei auf der Analyse von Syntax und Le-
xikon im Englischen (Housen et al., 2019; Wolfe-Quintero et al., 1998). Um Komplexität als
multidimensionales Konstrukt zu modellieren, sind weitere Forschungen zu anderen sprachli-
chen Bereichen erforderlich (beispielsweise Morphologie oder Diskurs). Zudem müssen mehr
unterschiedliche Sprachen untersucht werden, um die Komplexitätsforschung voranzubringen.
Maße für sprachliche Komplexität haben sich auch in der computerlinguistischen Forschung
zur automatischen Sprachkompetenzbewertung (APA) und zur automatischen Lesbarkeitser-
fassung (ARA) als wichtige Merkmale erwiesen. In dieser Arbeit werden Erkenntnisse aus der
SLA-Komplexitätsforschung und computergestützte linguistische Ansätze für APA und ARA
kombiniert, um wichtige Forschungslücken in den jeweiligen Disziplinen zu schließen.

Wir schlagen einen linguistisch breit angelegten Ansatz für Komplexität vor, der Maße für
syntaktische, lexikalische und morphologische Komplexität sowie Maße für Diskurs, mensch-
liche Sprachverarbeitung und Sprachgebrauch kombiniert. Dabei integrieren wir Theorien und
Konzepte aus verschiedenen Forschungsdisziplinen wie der SLA-Komplexitätsforschung, der
Computerlinguistik und der Psychologie. Wir haben ein System zur automatischen Berech-
nung dieser Maße implementiert, das auf Techniken der natürlichen Sprachverarbeitung (NLP)
beruht. Mit 543 Maßen berechnet es nach unserem derzeitigen Kenntnisstand die größte und
vielfältigste Sammlung von Maßen der absoluten und relativen Komplexität für das Deutsche.
Um diese Ressource anderen Forschern zugänglich zu machen und damit die Vergleichbar-
keit und Reproduzierbarkeit der Komplexitätsforschung für das Deutsche zu fördern, haben
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wir dieses System in CTAP (Chen und Meurers, 2016) integriert. Wir haben die ursprünglich
nur für Englisch entwickelte Webplattform generalisiert, um mehrsprachige Analysen zu un-
terstützen. Dies führte bereits zu ihrer Erweiterung auf mehrere andere Sprachen. In einer
empirischen Studie zu den Auswirkungen von nicht-standardisierter Sprache auf die NLP-
Annotationen und die anschließende Berechnung der Maße haben wir bestätigen können, dass
unsere Analyse selbst bei Sprache von Deutsch-Anfängern insgesamt robust bleibt und et-
waige Fehler nur geringe Auswirkungen auf unsere Komplexitätsmessungen oder die damit
trainierten Modelle haben.

Im Weiteren demonstrieren wir den Wert unseres integrativen, breit angelegten linguisti-
schen Modellierungsansatzes für linguistische Komplexität für APA und ARA. Zunächst ge-
ben wir einen Überblick über die aktuelle Forschungslandschaft für beide Bereiche, indem wir
zwei systematische Literaturrecherchen zu automatischen Ansätzen für das Deutsche in den
vergangenen zwanzig Jahren durchführen. Beide Erhebungen zeigen den Bedarf an mehr For-
schung zu Ansätzen, die sich an Zweit- oder Fremdsprachenlerner und junge Muttersprachler
richten, an mehr korpusübergreifenden Tests und an besser zugänglichen Modellen. In Be-
zug auf ARA stellen wir fest, dass traditionelle Lesbarkeitsformeln weiterhin den Standard
in der Forschung darstellen, die sich nicht speziell mit der Entwicklung neuer ARA-Ansätze
befasst. Dies ist der Fall, obwohl diese Formeln von ARA-Forschern als zu vereinfachend
kritisiert wurden und im Allgemeinen schlechtere Ergebnisse als zeitgenössische Verfahren
liefern. Zweitens berichten wir über mehrere Experimente zum maschinellen Lernen, die die
von uns so ermittelten Forschungslücken adressieren. Wir trainieren Modelle zur Vorhersa-
ge der Sprachkompetenz von L2-Lernern für lange Texte auf der gesamten Skala des Ge-
meinsamen Europäischen Referenzrahmens für Sprachen (GER; A1 bis C1/C2) und kurze
Antworten auf Fragen zum Leseverständnis in Form von Kursstufen (von A1.1 bis A2.2).
Außerdem trainieren wir ein Modell zur Erfassung der frühen muttersprachlichen akademi-
schen Sprachkenntnisse von Schülern anhand von Klassenstufen (1. bis 8. Klasse). Für die
Lesbarkeit von Texten trainieren wir Modelle für L2-Lerner für längere Texte (mit Unter-
scheidung von Texten für Lerner auf den GER-Niveaustufen A2, B1/B2, C1) und Sätze (unter
Verwendung einer 7-Punkte-Likert-Skala) sowie ein Modell für deutsche Mediensprache, das
sich an Kinder oder Erwachsene richtet (mit einer binären Unterscheidung). Wir testen diese
Modelle über Korpora hinweg und an Hold-out-Datensätzen. Damit illustrieren wir die Ge-
neralisierbarkeit unserer Modelle über verschiedene Aufgabenkontexte, Erhebungskontexte,
Sprachen und Verlage hinweg. Darüber hinaus führen wir für alle untersuchten Datensätze
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linguistische Analysen durch, die wichtige Erkenntnisse über die Charakterisierung von Ent-
wicklungsverläufen im Deutschen liefern. Wir leisten dabei einen besonderen methodischen
Beitrag zu ARA, indem wir drei neue Lesbarkeitskorpora erstellen, die erstmals die korpus-
und sprachenübergreifende Evaluation von ARA-Modellen für das Deutsche ermöglichen.

Insgesamt liefert die vorliegende Arbeit neue Einsichten in die entwicklungsbedingte Va-
riation sprachlicher Komplexität im Deutschen und ihre Rolle für die Lesbarkeit von Texten.
Durch die Bereitstellung des mehrsprachigen CTAP-Systems, neuer Lesbarkeitskorpora und
neuer Modelle für das Deutsche stellt sie außerdem wichtige neue Ressourcen für die For-
schung zu Komplexität, APA und ARA bereit.
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Chapter 1

Introduction

1.1 Aims and contributions

This dissertation develops a comprehensive and integrative approach to automatic linguistic
complexity modeling for German and illustrates the highlights of this approach by predicting
the proficiency of L1 and L2 learners based on free writing samples as well as the readability
of long and short texts for L1 and L2 speakers of German. Linguistic complexity is a pro-
lific construct in linguistics: It has been used to compare and describe languages and to study
language use in theoretical linguistics (e.g., Biberauer et al., 2014; Chomsky, 1956; Trotzke
and Zwart, 2014) as well as dialectology, typology, and historical linguistics (e.g., Miestamo
et al., 2008, and articles therein)—here with a focus on diachronic and synchronic varia-
tion. Complexity is also a relevant research subject in psycho-linguistics (e.g., Dussias, 2001;
Menn and Duffield, 2014; Shain et al., 2016; Wendt et al., 2014) and computational linguis-
tics (e.g., Brunato et al., 2016, and articles therein). One of the most advanced theoretical
approaches to complexity research comes from SLA research. In SLA research, linguistic
complexity has been used to estimate (L2) proficiency, characterize language performance,
and to benchmark the development of learners (Ortega, 2012, p. 128). Coming from research
on task-based language learning and teaching, also task variation has been recognized as a
relevant factor. Task variation plays an important role in addition to and interacting with de-
velopmental variation in SLA complexity research (e.g., Alexopoulou et al., 2017; Pallotti,
2019; Staples et al., 2016; Tavakoli and Foster, 2011). However, linguistic complexity in SLA
research has so far primarily been studied in the domains of syntax and lexicon. This has been
criticized as reductionist (Housen et al., 2019), because it ignores other linguistic domains that
are important for language development such as morphology which has only recently entered
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the focus of SLA complexity research. This holds especially for languages other than English,
which are under-represented in SLA complexity research.

The measures studied in SLA complexity research have independently (but in parallel)
proven to be highly informative in computational linguistic research on Automatic Text Scor-
ing (ATS) (Crossley, 2020; Uto, 2021) and Automatic Readability Assessment (ARA) (Collins-
Thompson, 2014; Vajjala, 2022). These feature-based machine learning approaches continue
to be relevant despite the increasing relevance of deep learning approaches: Feature-based
machine learning using theoretically motivated features supports interpretable predictions. In-
terpretability is especially important in educational contexts (Attali and Burstein, 2006, p. 6;
Powers et al., 2002, p. 2; Zhang, 2013, p. 13). Consideration of linguistically broad evidence
has been found to be particularly robust and informative in machine learning approaches (e.g.,
Vajjala, 2018). The computation of a large number of features is supported by the use of NLP
tools, which enable the fully automatic identification of linguistic constructions. Automating
the calculation of features not only makes the consideration of a broad range of constructs
feasible. It also has the potential to foster the comparability and reproducibility of findings
(Crossley and McNamara, 2014; Lu, 2010; Ströbel et al., 2020, p. 738). Accordingly, many
systems have been developed for the study of the English language (e.g., Chen and Meurers,
2016; Crossley et al., 2016c; McNamara et al., 2010a). However, comparatively little research
has been dedicated to the automatic analysis of linguistic complexity in German or generally
languages other than English.

The aim of this dissertation is to address these research gaps in SLA complexity research
and computational linguistic work on APA and ARA. To do so, I present a linguistically
uniquely broad approach to automatic complexity analysis that can be flexibly extended for
other languages. Furthermore, I demonstrate the applicability of this linguistically broad ap-
proach to APA and ARA, filling important research gaps for German in these computational
linguistic research areas. I empirically identify these research gaps through two systematic
literature surveys which are respectively the first systematic surveys for APA and ARA for
German. The core contributions of this dissertation fall into three categories:

1. The generation of research resources including: three readability corpora for German,
two systems for the automatic broad linguistic complexity analysis of German, and sev-
eral models for the prediction of readability and proficiency for L1 and L2 learners.

2. Methodological contribution to SLA complexity research and computational linguistic
research on APA and ARA including promoting the assessment of cross-corpus, cross-
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task, and cross-language generalizability of complexity modeling approaches as well as
the assessment of how robust NLP and automatic complexity assessment are on non-
standard data.

3. Linguistic insights into the developmental variation of complexity in L2 German writing
across the full CEFR range and the first years of L1 academic language development as
well as into the adaptation of reading materials for L1 and L2 readers across different
publishers.

1.2 Overview

The remainder of this thesis is divided into five content chapters (Chapter 2 to Chapter 6), fol-
lowed by the bibliographies (Chapter 7), publications (Chapter 8) and the appendices (Chap-
ters A and B). In the following, I briefly outline the contents of the five content chapters.

Background (Chapter 2) The background chapter introduces the central concepts, meth-
ods, and research domains that are relevant for the work presented in this thesis. Section 2.1
focuses on the construct ‘linguistic complexity’ and on applied linguistic research on linguistic
complexity. In Section 2.1.1, I provide a definition of complexity that distinguishes between
absolute and relative complexity, an important distinction throughout this thesis. I then elab-
orate on the different dimensions of absolute and relative complexity that have been studied
in applied linguistic research (Section 2.1.2). There, I highlight the necessity for taking a
broad linguistic perspective on complexity to account for interactions and variational differ-
ences between complexity (sub-)domains. Finally, I discuss the role of variation for linguistic
complexity research (Section 2.1.3). I focus on developmental variation, task and register
variation, and cross-lingual variation, because these are central for the empirical studies that
are part of this thesis. I argue for taking into account the variation in complexity caused by
different sources (especially developmental and task variation), rather than considering them
in isolation. This is reflected in the empirical studies in this dissertation, in which I systemati-
cally focus on task generalization of models of language proficiency.

Section 2.2 is dedicated to computational linguistic work on the automatic assessment of
language proficiency. First, I define ‘language proficiency’ (Section 2.2.1), focusing on per-
spectives from language testing research. Second, I discuss common application domains of
automatic proficiency assessment (Section 2.2.2) to highlight the relevance of this task within
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and beyond education. Third, I elaborate on the current methods and trends in computational
linguistic research on automatic proficiency assessment (Section 2.2.3). This section focuses
on supervised machine learning approaches to automatic proficiency assessment and discusses
central concepts and ongoing methodological challenges. The considerations presented in this
section play an important role in the design of the systematic literature survey on proficiency
assessment (Section 4.2) as well as the empirical studies on automatic proficiency assessment
from this dissertation (Section 5.2).

Section 2.3 provides a comprehensive background on computational linguistic research on
ARA. Its structure is similar to Section 2.2. It starts with a definition of readability (Sec-
tion 2.3.1) that considers computational linguistic and psychological or psycho-linguistic re-
search on discourse comprehension. I then discuss different application domains for ARA
(Section 2.3.2) to illustrate its interdisciplinary relevance. Afterwards, I discuss the current
methods and trends in computational linguistic research on automatic readability assessment
(Section 2.3.3), again with a focus on supervised machine learning. The considerations pre-
sented in this section play an important role in the design of the systematic literature survey
(Section 4.3) as well as the empirical studies on ARA from this dissertation (Section 5.3). To
avoid redundancies between Section 2.2.3 and Section 2.3.3, Section 2.3.3 partially references
back to concepts and methodological considerations that have already been discussed in detail
in Section 2.2.3. Section 2.3 concludes with a brief remark on readability formulas. Here I
focus on contrasting the role of readability formulas in research on and applications of ARA.

Automating German complexity modeling (Chapter 3) This chapter describes the techni-
cal details of the two complexity analysis systems that I developed and used in this dissertation.
Section 3.1 starts with a general overview that motivates the relevance of automatic complex-
ity modeling for applied linguistics in general as well as the need for a (multi-lingual) system
for the analysis of the German language. This section also outlines the conceptual analysis
workflow that both systems share. I then describe the technical details of the monolingual
German legacy system (Section 3.2) which I used throughout this thesis in all but two studies
(i.e., Weiss and Meurers, 2022; Weiss et al., 2021). Section 3.3 provides the technical details
of the mutlilingual CTAP system which is a web-based analysis platform that currently sup-
ports the analysis of German, English, French, Dutch, Spanish, and Portuguese. The section
focuses on the German component and the general architecture of the multilingual analysis
pipeline which I introduced to the originally monolingual English platform in the context of
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this thesis. Other languages are discussed where it serves the illustration of the multilingual
design. This chapter presents the latest developmental status of the two systems at the time
of writing. Since the development of both systems was part of the dissertation project, most
studies use older versions of the systems. The specific resources used for individual studies
can be found in the system descriptions of the respective papers.

Systematic literature surveys (Chapter 4) To complement the general research overview
on APA and ARA, I conducted two systematic surveys that characterize research in both appli-
cation domains for German in the past twenty years. Both surveys were based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to ensure
transparency and completeness. Their shared design principles are introduced in Section 4.1.
The specific research questions that I aimed to address with the surveys focus on i) the spread
of APA and ARA approaches and methods across research disciplines, ii) for who APA and
ARA is being used, and iii) which machine learning methods and which linguistic features
are used. I further characterize the current SOTA performance for German and evaluate the
availability and accessibility of SOTA methods.

Section 4.2 presents the survey for APA.1 It shows that despite a steady increase in publica-
tions over the observed time period, there is still little research matching the previously defined
study criteria. The survey further demonstrates that machine learning-based approaches dom-
inate the field but that more cross-corpus validation is needed to ensure the generalizability of
approaches. Most research has focused on the holistic assessment of adults and essay writing,
demonstrating the need for more work on young writers and different text types.

Section 4.3 presents the survey for ARA. It shows that ARA has been applied across a broad
range of research disciplines. It also highlights that outdated readability formulas remain
the de facto standard in research with the sole exception of computational linguistic work
specifically dedicated to developing new ARA approaches. The survey further demonstrates
that more cross-corpus validation is needed to ensure the generalizability of approaches. Most
research has focused on readability for adult L1 readers and long text passages, demonstrating
the need for more work on L2 and young readers as well as shorter texts.

Foundational complexity research (Chapter 5) Chapter 5 starts with a section discussing
and linking the core contributions of all subsequent papers (Section 5.1). Afterwards, the core

1Throughout the survey, I use the broader term Automatic Language Performance Scoring. I motivate this
terminological shift in more detail in Section 1.3 (p. 8) and Section 4.1 (p. 103).
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Figure 1.1: Structured overview of empirical studies presented in this thesis

methods and findings of each paper are summarized. Section 5.2 summarizes all papers on
APA. Section 5.3 summarizes all papers on ARA. In both sections, I first introduce the corpora
that I used before elaborating on the individual papers. The papers themselves can be grouped
along the two dimensions of target language (L1 versus L2) and sample length (long versus
short) as illustrated in Figure 1.1. Note that each of the six papers contributing to this thesis is
presented at three levels of granularity: a three-sentence summary in the frame (to obtain an
overview that is situated within the broader scope of this thesis), an extended abstract in the
subsection dedicated to the paper (as a summary of the methods and main findings), and the
full paper in Chapter 8 (for a complete and fully self-contained discussion).

Conclusion (Chapter 6) The conclusion of this thesis is divided into three sections: Sec-
tion 6.1 summarizes the limitations as well as the major contributions and achievements of
this thesis. I focus on the questions of resources, methodological advancements, and linguistic
findings. Section 6.2 discusses the implications of this work for interdisciplinary research and
teaching practice. I here outline how my integrative approach to broad linguistic modeling
can be used to analyze data from authentic education contexts and to foster collaborations
with other disciplines such as education science and history didactics. I end with an outlook
on future research directions that can build on the presented work in Section 6.3.
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1.3 Notational and terminological conventions

I use the following terminological and notational conventions throughout this dissertation.

• I use special notations to denote ‘concepts’, names of complexity measures or

features, and emphasis.

• I use the terms ‘complexity measure’ and ‘complexity feature’ in this thesis. The notion
of measures is more prevalent in SLA complexity research. The notion of features is
used in machine learning. I use the terms in this thesis correspondingly, using ‘mea-
sures’ unless I refer to a machine learning context.

• Even though I predominantly use the first person singular (‘I’) throughout this thesis,
I also occasionally use ‘we’, either to include the reader or to highlight that I make
reference to collaborative efforts.

• The notions ‘corpus’ and ‘data set’ are often used interchangeably when working with
language data (e.g., McCarthy and Jarvis, 2013, p. 48). Corpora are systematic collec-
tions of language data that represent some form of authentic language use for a specific
language variety (Lüdeling and Kytö, 2008, p. iv; McCarthy and Jarvis, 2013, p. 48).
The notion ‘data set’ can also apply to non-language data and is also used outside of
linguistics. In this thesis, I use both notions interchangeably, treating ‘corpus’ as a hy-
ponym of ‘data set’.

• I use the distinction between L1 speakers and L2 speakers throughout this thesis. This
distinction has a long tradition in linguistic research. However, the notion of L1 speak-
ers should be used with care because it has often been used to imply an ideal type of
language use. This is a misconception that is attracting increasing criticism (e.g., Bird-
song and Gertken, 2013; Bonfiglio, 2010; Doerr, 2009). First, researchers have warned
against tapping into the ‘comparative fallacy’ (Bley-Vroman, 1983) of measuring L2
performance in terms of its proximity to L1 performance. Second, the distinction ig-
nores the considerable inter-individual heterogeneity of native speakers’ language use
(Shadrova et al., 2021). Third, turning to school contexts, Pallotti (2017, p. 400) pointed
out that the distinction fails to account for the fact that pupils are often L1 speakers of
a dialect rather than the standard variety of a target language and that the acquisition of
the standard variety parallels L2 acquisition (see also Siegel, 2010). In this thesis, I use
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the term L1 as a broad categorization of a target group of advanced language learners
for APA and ARA, without subscribing to its use as a homogeneous reference norm for
ideal language use. Where appropriate, I deconstruct L1 and L2 proficiency further into
competencies for different language codes (following Pallotti, 2017, p. 401).

• I use the term ‘language learner’ throughout this thesis. Unless specified differently, this
jointly refers to L2 learners as well as L1 learners.

• As you read this dissertation, you will notice that I use several terms to refer to the
automatic prediction of language proficiency. Mainly I use the term Automatic Profi-
ciency Assessment (APA). This connects to the SLA tradition for studying linguistic
proficiency (Ortega, 2012, p. 128) and the term is also used in other computational lin-
guistics work on this topic (e.g., Bannò and Matassoni, 2022; Metallinou and Cheng,
2014; Vajjala and Lõo, 2013). However, I deviate from this terminology in two places
for content reasons. First, in the background section on computational linguistics re-
search (Section 2.2), I use the term Automatic Text Scoring (ATS) because APA is a
sub-type of this line of research and I discuss work on ATS in general in Section 2.2 for
the sake of completeness. Second, also in the systematic survey on automatic assess-
ment of linguistic proficiency (Section 4.2), the term APA proved to be too narrow, as
my survey criteria also consider related approaches to automatic evaluation of linguis-
tic performance. At the same time, ATS is too general because it lacks the focus on
language performance. I propose the term Automatic Language Performance Scoring
(ALPS) as a generic term for the survey chapter, which I motivate in more detail in
Section 4.1 (p. 103).
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Chapter 2

Background

2.1 Linguistic complexity research

Linguistic complexity is a highly productive construct that has been used to characterize and
compare languages and language use. It has been utilized across a broad variety of linguistics
subdisciplines. For example, in SLA research, linguistic complexity has been used to charac-
terize developmental trajectories and proficiency differences between learners (e.g., Housen
et al., 2012, 2019; Kuiken et al., 2019; Norris and Ortega, 2009; Wolfe-Quintero et al., 1998).
Formal theoretical linguistics has used the notion of complexity to compare linguistic struc-
tures under the perspective of specific (often generative) linguistic theories (e.g., Biberauer
et al., 2014; Chomsky, 1956; Trotzke and Zwart, 2014). Also functional and contact-based
linguistic research has utilized the notions ‘complexity’ and ‘simplicity’ to explain diachronic
and synchronic language change in dialectology, typology, and historical linguistics (e.g., Mi-
estamo et al., 2008, and articles therein). Linguistic complexity has also been studied in
psycho-linguistics (e.g., Dussias, 2001; Menn and Duffield, 2014; Shain et al., 2016; Wendt
et al., 2014) and computational linguistics (see Brunato et al., 2016, and articles therein as
well as Sections 2.2 and 2.3).

The emphasis of this section is on the SLA perspective on linguistic complexity. This
thesis focuses on complexity analyses for education contexts, which makes SLA complexity
research a particularly suited conceptual foundation. Furthermore, SLA complexity research
provides a theoretically, methodologically, and empirically rich research background for the
present work. However, in the interest of an integrative and linguistically broad approach to
complexity, approaches from other (sub-)disciplines are referenced as well throughout this
section. The remainder of this section is organized as follows: Section 2.1.1 provides an
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overview of the efforts to define and operationalize linguistic complexity as a construct. Sec-
tion 2.1.2 elaborates on several dimensions of linguistic complexity that played an important
role in complexity research. Section 2.1.3.1 introduces prior research on variation in linguistic
complexity. It focuses on variation due to language development and proficiency, task and
register variation, as well as cross-linguistic variation.

2.1.1 What is linguistic complexity?

2.1.1.1 Complexity, Accuracy, and Fluency

In SLA research, complexity has been used for decades as one of three dimensions that charac-
terize language (or specifically L2) performance, the other two dimension being accuracy and
fluency. This is commonly referred to as the Complexity, Accuracy, and Fluency (CAF) triad
(Housen and Kuiken, 2009; Housen et al., 2012; Skehan, 1998; Wolfe-Quintero et al., 1998).
Before turning to the definition of complexity, let us briefly review the concepts of accuracy
and fluency. According to Housen and Kuiken (2009, p. 461), accuracy and fluency have been
used to analyze (spoken) L2 productions in instructed settings since the 1980s. Accuracy is
commonly defined as conformity to target norms (Pallotti, 2009; Wolfe-Quintero et al., 1998)
or error-free language production (Lennon, 1990). It is typically measured in terms of various
error rates (Housen and Kuiken, 2009; Pallotti, 2009; Wolfe-Quintero et al., 1998). Studies of
accuracy risk falling into the ‘comparative fallacy’ (Bley-Vroman, 1983) due to their inher-
ent need to view language learners’ inter-language system (Selinker, 1972, pp. 214–215) in
terms of its (dis)similarity to a native language norm. This makes accuracy measures prone
to obscure inherent systematicities in the interlanguage system that SLA researchers seek to
describe. For this reason, the validity of accuracy measures to track L2 development has been
called into question (e.g., Pallotti, 2009, 2017; Wolfe-Quintero et al., 1998). However, they
have shown to be useful predictors of (advanced) L2 and L1 development (Norris and Ortega,
2003, p. 737). As a construct, accuracy has been praised to be well defined and “perhaps the
simplest and most internally coherent construct” (Pallotti, 2009, p. 592) in the CAF triad, see
also Housen and Kuiken (2009, p. 463).

Fluency refers to the capacity to produce uninterrupted speech at a native-like speed (El-
lis, 2003, p. 342; Skehan, 2009, p. 510) and native-like processing speed (Lennon, 1990,
p. 390). Commonly measured sub-dimensions of fluency include breakdown fluency (mea-
sured through pause-based metrics), repair fluency (measured through correction metrics),
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and speed fluency (measured through time-based metrics), for an overview, see Tavakoli and
Skehan (2005, pp. 254–255). Fluency research has focused on spoken language (cf. Housen
and Kuiken, 2009, p. 463) and is less commonly applied to written language productions. As
with accuracy, the definition of fluency assumes a normative ideal degree of fluency which
should be reached but not exceeded.

Since its addition to the triad in the 1990s (cf. Housen and Kuiken, 2009), complexity has
attracted substantial research interest (for overviews, see Housen et al., 2012, 2019; Wolfe-
Quintero et al., 1998). Yet, its definition continues to lack clarity. Pallotti (2009, p. 592)
calls complexity “the most problematic construct of the CAF triad”. He reasons that this is
due to the polysemy of the word ‘complexity’, see also Hennig (2017), Housen and Kuiken
(2009), and Weiss (2017) for a similar argument. Housen et al. (2019) found that there is no
universally accepted definition of complexity and that the research landscape continues to be
characterized by an ever-growing diversity of operationalizations and complexity measures,
see also Mitchell (2009) for a similar assessment a decade earlier. This might partially be due
to the different underlying research questions and theoretical frameworks used in complexity
research across linguistic fields that were mentioned at the beginning of this section. That
being said, complexity research uses certain definitions and distinctions that re-occur across
linguistic fields. In his philosophical overview on complexity, Rescher (1998) defines com-
plexity as follows (emphasis added by me): “Complexity is first and foremost a matter of the
number and variety of an item’s constituent elements and of the elaborateness of their inter-
relational structure [. . . ] Any sort of system or process—anything that is a structured while
consisting of interrelated parts—will be to some extent complex” (Rescher, 1998, p. 1). This
general quantitative notion of complexity has been widely received in complexity research, for
example in SLA (Bulté, 2013; Housen et al., 2019) and linguistic typology (Karlsson et al.,
2008). Similarly, Ellis defines linguistic complexity as “[t]he extent to which [. . . ] language
[. . . ] is elaborate and varied” (Ellis, 2003, p. 340). In this context, elaborateness refers to the
number of elements and variation to the number of different types of elements. This notion
of complexity directly focuses on language and is one of the dominating definitions in (SLA)
complexity research.

2.1.1.2 Types of complexity

Following these general definitions, a broad range of complexity measures has been proposed
to quantify the elaboration and variation of language. The definition was applied both glob-
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ally to the entire language system and locally to different linguistic (sub-)domains within the
theoretical linguistic system, such as syntax, lexicon, and morphology (e.g., Housen et al.,
2012; Miestamo, 2008). The operationalization of global complexity measures is notoriously
challenging and has even been characterized as “a probably hopeless endeavor” (Kortmann
and Szmrecsanyi, 2012, p. 8). As Miestamo (2004, 2008) points out, individual measures
of global complexity struggle to be representative for the entire language system because in
practice they necessarily miss certain aspects. At the same time, a single global complexity
metric would have to compare and weigh local aspects of the language system against each
other to obtain a meaningful aggregate measure. Some researchers have used information
theoretic approaches based on computational compression rates to measure global complexity
(e.g., Ehret, 2018; Ehret and Szmrecsanyi, 2016, 2019; Juola, 2008), see also Section 2.1.2.7.
Operationalizations for measures of local complexity have been more common across research
fields. For example, clausal elaboration has been commonly associated with measures estimat-
ing the degree of clausal subordination and coordination (Ortega, 2003; Wolfe-Quintero et al.,
1998), see also Section 2.1.2.1. Lexical variation has been measured predominantly in terms
of lexical diversity (Jarvis, 2013; Lu, 2012), see also Section 2.1.2.2.

Also word frequency measures have been commonly associated with lexical complex-
ity, more specifically lexical sophistication (Lu, 2012; Wolfe-Quintero et al., 1998). They
have proven to be highly informative for the evaluation of language performance (see Sec-
tion 2.1.2.2). However, they do not operationalize the same notion of complexity as the pre-
vious examples. Instead of quantifying the local elaborateness and variation of the theoretical
linguistic system, frequency measures are motivated by psycho-linguistic insights into human
language use and processing. Rare vocabulary requires higher processing times and is often
acquired later by native speakers. To distinguish between these two notions of complexity,
the distinction between ‘absolute complexity’ and ‘relative complexity’ has been proposed.

Using the same terminology as Housen et al. (2012) and Miestamo (2004), absolute com-
plexity refers to measures of the inherent properties of a language system or language sample
following the definition by Rescher (1998) and Ellis (2003). Relative complexity refers to
measures that quantify linguistic constructions that are cognitively demanding or acquired at
later developmental stages—typically for specific groups such as young L1 learners or adult
L2 learners, but potentially also for individuals. These measures are not tied to inherent prop-
erties of the language but to aspects of human language use and processing. The contrast
between these two types of complexity has been adopted across linguistic sub-disciplines in-
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cluding SLA (e.g., Bulté and Housen, 2014; Housen et al., 2012, 2019) and typology (Kusters,
2008; Miestamo, 2008). However, other or additional terminology is used for this distinction
in some cases. Kusters (2008) proposed the notion of ‘outsider complexity’ to discuss the
relative complexity of a linguistic domain (e.g., morphology) for different types of ‘universal
outsiders’. Pallotti (2015a) suggested to use the notion of ‘difficulty’ instead of ‘relative com-
plexity’ to emphasize the difference between these two concepts. A similar argument is made
by Dahl (2004, pp. 39–40), who proposed to distinguish complexity (meaning absolute com-
plexity) from subjective concepts such as ‘cost’, ‘difficulty’, and ‘demandingness’ for sake of
terminological clarity. These are only a few examples of the different terminologies used. Fol-
lowing Housen et al. (2012), I use the terms ‘absolute complexity’ and ‘relative complexity’
throughout this thesis in the interest of an integrative notion of linguistic complexity.

These terminological distinctions have direct practical implications for complexity research.
Several researchers have pointed out how maintaining a conceptually well-motivated basis of
measures in complexity research promotes the validity and interpretability of findings. Pal-
lotti (2009) cautions against exclusively considering measures that maximize the variance
explained between target populations because this risks tapping into the ‘necessary variation
fallacy’ (Pallotti, 2009, p. 590). He uses this term to refer to the fact that a lack of variation
can be as meaningful as the observation of systematic variation, at least when measuring a
conceptually relevant aspect of the construct under investigation (see also Norris and Ortega,
2009). In language testing and assessment research, this phenomenon has been discussed
under the notion of ‘under-representation’ and was identified as detrimental to the construct
validity of an assessment (Messick, 1996, p. 244). Closely related to this concept—and an-
other potential risk of the purely data driven selection of measures without sound concep-
tual underpinnings—is the notion of ‘construct irrelevance’ (Messick, 1996, p. 244). A mea-
sure can be highly successful in distinguishing between different groups of interest—such
as language learners at different proficiency levels—while being irrelevant to the underlying
construct—here language proficiency. A well established example for construct irrelevance in
writing quality assessment is text length. I discuss the notions of construct validity, con-
struct under-representation, and construct irrelevance again in more detail in Section 2.2.3.1
(pp. 53–54), where I focus their relevance for computational linguistic research on ATS.

Beyond these concerns relating to the validity of studies, insufficiently motivated measures
can also hinder the interpretation of findings (Bulté and Housen, 2014; Norris and Ortega,
2009). This becomes particularly evident in the literature analysis by Bulté and Housen
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(2014). They reported that SLA complexity research has often used the notion of complex-
ity interchangeably with later L1 acquisition, advanced L2 development, higher proficiency,
lower frequency, higher difficulty or ‘better’ language use (Bulté and Housen, 2014, p. 46).
This loose equation of concepts is problematic and promotes circular reasoning. The link
between complexity and language development is one of the central topics of investigation
in complexity research (see Section 2.1.3.1). An a priori equation of complexity and devel-
opment is therefore misleading. It is also inappropriate seeing that there are communicative
situations in which L2 learners produce more complex utterances than L1 speakers (Pallotti
and Ferrari, 2008). This example illustrates that the equation of ‘more complex’ and ‘bet-
ter’ not necessarily holds across communicative contexts and registers (see also Ferrari, 2012;
Kusters, 2008; Ortega, 2003; Pallotti, 2009). Any approach to measure linguistic complex-
ity should therefore carefully consider which measures to include as well as their underlying
motivation to promote an informed interpretation findings.

2.1.2 Dimensions of linguistic complexity

Linguistic complexity is a multi-faceted construct that has been conceptualized and opera-
tionalized from a broad range of research perspectives. A variety of global and local com-
plexity measures has been proposed ranging from the domains of syntax, lexicon, semantics,
morphology, and phonology to measures of discourse and information processing. These com-
plexity domains (e.g., syntax and lexicon) as well as sub-domains (e.g., clausal and phrasal
complexity) have been shown to interact and vary independently from each other based on fac-
tors such as tasks and proficiency, see for example Norris and Ortega (2009, pp. 562–564) and
Section 2.1.3 for details. This makes it important to track complexity through a wide range
of measures to obtain stable and generalizable estimates (see also Biber et al., 2016; Bulté
and Housen, 2014; Lu, 2011). Despite the abundance of complexity measures that has been
proposed, only a selected few of them have been used repeatedly and systematically across
studies, as demonstrated by the surveys by Ortega (2003) for syntactic complexity and by
Bulté and Housen (2012) for complexity measures across linguistic dimensions. This makes
it difficult to understand which results from studies can be generalized and which are idiosyn-
cratic (Lu, 2011, pp. 37–38; Ortega, 2003, pp. 494–495). Also, most complexity measures
have focused on the domains of syntax and lexicon. This narrow perspective on complexity
has been criticized as reductionist (Bulté and Housen, 2012; Housen et al., 2019). More work
on other domains of complexity has started to emerge (e.g., Brezina and Pallotti, 2019; Ehret
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and Szmrecsanyi, 2019; Paquot, 2019), but the research gap between syntax and lexicon on
the one hand and other complexity domains on the other is far from closed. In the following, I
introduce the complexity domains that play a relevant role in complexity research taking into
consideration both, measures of absolute complexity and measures of relative complexity.

2.1.2.1 Syntactic complexity

Syntactic complexity has arguably been the most intensively studied domain of absolute com-
plexity (Bulté and Housen, 2012, p. 34; Kuiken et al., 2019, p. 162). Absolute syntactic
complexity measures have a long history in SLA complexity research (Ortega, 2003; Wolfe-
Quintero et al., 1998). They focus on the syntactic elaboration and variation that a language
sample exhibits. Measures of syntactic complexity have also been extensively used in work on
ATS (for an overview, see Crossley, 2020) and ARA (for an overview, see Collins-Thompson,
2014). Three types of absolute syntactic complexity measures are commonly employed:
a) global syntactic complexity measures, b) clausal complexity measures, and c) phrasal (or
sub-clausal) complexity measures (Norris and Ortega, 2009, pp. 558–560).

Predominantly length-oriented measures such as number of words per sentence are
typically considered global measures of syntactic complexity because they can be influenced
by any number of clausal or phrasal processes (Norris and Ortega, 2009, p. 561). Other
global syntactic complexity measures are based on constituency tree structures and include
metrics such as the terminal to non-terminal node ratio. Also, number of words

per t-unit has been a popular measure of global syntactic complexity (Ortega, 2003). A
t-unit is the “minimal terminable unit” (Hunt, 1965, p. 305–306) on a sentential level. It con-
sists of a main clause and all of its dependent clauses and embedded clausal structures (Hunt,
1970). The t-unit thus differs from a sentence in two main points: First, sentences can contain
multiple main clauses, but t-units cannot (see also Hunt, 1970, p. 199). Second, sentences
are commonly defined in terms of graphematic markers and become notoriously ill-defined in
their absence (see discussion in Schmidt, 2016). In contrast, t-units are defined syntactically
and do not rely on graphematic markers. This promoted t-units as a standard unit of measure-
ment for syntactic complexity measures of speech and writing (Crossley, 2020; Foster et al.,
2000; Lu, 2011; Ortega, 2003), despite ample criticism of the unit and its partially inconsistent
use across studies (e.g., Bardovi-Harlig, 1992; Foster et al., 2000).

Clausal complexity measures focus on clausal coordination and subordination. Again, t-
units have played an important role for these measures because by its very definition, a t-
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unit cannot contain more than one main clause. Thus, subordination can be measured in
terms of the number of clauses per t-unit and coordination in terms of the number of

t-units per sentence. (e.g., Kyle and Crossley, 2018; Lu, 2011). However, many other
measures of clausal complexity have been proposed over the last decades that do not rely on
t-units, both fine-grained (e.g., number of relative clauses per clause) and coarse-
grained (e.g., number of clauses per sentence), see for example Graesser et al. (2004);
Kyle and Crossley (2018); Vajjala and Meurers (2012). Global syntactic and clausal complex-
ity measures have the longest tradition in absolute syntactic complexity assessment, whereas
phrasal or sub-clausal complexity measures have been a more recent addition (Kuiken et al.,
2019; Kyle and Crossley, 2018; Norris and Ortega, 2009; Staples et al., 2016). They focus on
the modification and coordination of phrases with a special focus on noun phrases (NPs). Ex-
amples for phrasal complexity measures are for example prenominal modifiers per NP

or dependents per object. Also measures outside of the nominal domain have been pro-
posed, such as the number of words preceding the main verb (Graesser et al., 2004).
These types of measures have been shown to vary independently of clausal complexity across
proficiency levels (e.g., Kyle and Crossley, 2018) and registers or tasks (e.g., Biber et al.,
2016; Staples et al., 2016), see Section 2.1.3 for details.

All of the previously discussed measures have focused on syntactic elaboration. Con-
siderably less work has been dedicated to syntactic variation (or ‘syntactic diversity’, see
De Clercq and Housen, 2017). Some researchers have aggregated measures of clausal and
phrasal structures not only using averages, but also with standard deviations to account for
the variability of their occurrence (e.g., De Clercq and Housen, 2017; Kyle and Crossley,
2017). Other approaches to characterize the variability of syntactic structures have focused
on counting the percentage of certain types of syntactic structures. For example, De Clercq
and Housen (2017) propose to consider measures such as number of matrix clauses per

clause, number of subordinate clauses per clause, and number of coordinated

clauses per clause as estimates of clausal variation. However, it is debatable whether
these are actually operationalizations of clausal variation. The same measures have been used
in previous research as estimates of clausal elaboration (e.g., Hancke et al., 2012; Vajjala
and Meurers, 2012). Vercellotti (2019) tracks syntactic variety using the number of different
clause types occurring in a language sample. Similarly, in Weiss (2015), I proposed to quan-
tify phrasal variation in terms of the number of nominal modification types or deagentivation
structures used. De Clercq and Housen (2017) proposed the Syntactic Diversity Index
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to measure the diversity of clause types based on the logic of the MCI by Brezina and Pallotti
(2019), see Section 2.1.2.4 for details.

Beyond this abundant work on absolute syntactic complexity, research has increasingly
started to incorporate measures of relative syntactic complexity, for example in form of phrase-
ological complexity (or ‘syntactic sophistication’, Kyle and Crossley, 2017) estimates. These
target the use of collocations and frequent grammatical patterns. Researchers have focused
on statistical collocations for specific grammatical relations (e.g., adjective-noun or verb-
argument constructions) for a more targeted approach to phraseology (Kyle and Crossley,
2017; Paquot, 2019). This avoids, for example, considering frequent combinations of function
words such as ‘of the’ (Paquot, 2018, p. 34). There has been ample research on these types
of phraseological complexity measures for L2 writing and speech across different languages
(e.g., Esfandiari and Ahmadi, 2022; Garner et al., 2019; Hu et al., 2022; Kyle et al., 2021b;
Paquot, 2018; Rubin, 2021; Vandeweerd et al., 2021).

2.1.2.2 Lexical complexity

Lexical complexity, too, has a long tradition in complexity research (Bulté and Housen, 2012;
Wolfe-Quintero et al., 1998) and is the second most commonly studied domain of linguistic
complexity (Kuiken et al., 2019, p. 163). In contrast to the focus on elaboration in syntactic
complexity, lexical complexity has predominantly been studied in terms of variation (Kuiken
et al., 2019, p. 163; Wolfe-Quintero et al., 1998, p. 101). Also, the focus has been more
evenly divided between measures of absolute and relative complexity in this domain. Mea-
sures of lexical complexity can broadly be categorized in two groups: text-internal measures
and text-external measures (terminology from Skehan, 2009, p. 108). Examples for text-
internal measures of absolute lexical complexity are lexical density (typically measured as the
number of lexical words per word, Lu, 2012) and word length measures (e.g., number
of characters per word or number of syllables per word) which have been partic-
ularly prevalent as global measures of lexical complexity in work on ARA (see Section 2.3).
Most commonly, however, absolute lexical complexity is measured in terms of lexical di-
versity, sometimes also known as lexical variation (for an overview, see also Jarvis, 2013).
Probably the most prominent measure of lexical diversity is the type token ratio (TTR) and
its variants (e.g., Daller et al., 2003, p. 199; Skehan, 2009, p. 108). The TTR compares the
number of unique word form (types) to the total number of words (tokens), thus estimating
how variable the vocabulary is that is used in a language sample. The measure has been used
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in a wide range of research contexts such as language acquisition, SLA, forensic linguistics,
stylometry, and clinical linguistics (for an overview, see Malvern et al., 2004, p. 6–14). Some
researchers have also proposed to measure part-of-speech (POS)-specific TTRs (e.g., Lu,
2012; Vajjala, 2018; Vajjala and Meurers, 2012).

The TTR has been shown to be strongly dependent on the number of words in a language
sample because the repetition of word types becomes increasingly likely the longer a sam-
ple becomes (McCarthy and Jarvis, 2007, p. 460). To disentangle estimates of lexical di-
versity from sample length, several mathematical variations of the TTR have been proposed.
Early suggestions include simple mathematical transformations such as the root TTR, the
bilogarithmic TTR, or the Uber index, see Lu (2012) for details. However, these attempts
had only limited success (see Malvern et al., 2004; McCarthy and Jarvis, 2007). Alterna-
tively, different sampling strategies have been proposed, such as the D measure in form of
vocd-D (Malvern et al., 2004) or the Hypergeometric Distribution Diversity (HD-D)

by McCarthy and Jarvis (2007) as well as the Measure of Textual Lexical Diversity

(MTLD) measure (McCarthy and Jarvis, 2010). Several studies have been proposed to test
the validity of these different lexical diversity measures. Among the most influential was a
series of studies conducted by McCarthy and Jarvis (2013, 2007, 2010). They compared a
broad range of lexical diversity measures and found that MTLD was the most stable esti-
mate (McCarthy and Jarvis, 2013, 2010), but that combining it with vocd-D or HD-D may
help capturing additional dimensions of lexical diversity (McCarthy and Jarvis, 2010). Re-
cently, some studies have attempted to link measures of lexical diversity to human judgments
of lexical diversity in narrative writing (Jarvis, 2017) and argumentative writing (Kyle et al.,
2021a), finding medium to strong correlations between traditional holistic measures of lexical
diversity (e.g., MTLD, HD-D). Jarvis (2017) and Kyle et al. (2021a) also suggest to mea-
sure lexical diversity as a multi-dimensional construct. They propose seven sub-dimensions
including lexical volume (number of word tokens) and ‘lexical abundance’ (number of

lemma types), while considering traditional holistic lexical diversity measures as measures
of ‘lexical variety’. However, also Kyle et al. (2021a) agree that traditional holistic lexical
diversity measures are more suited for studies that take multiple complexity dimensions into
consideration as they depend less on sample length.

Text-external measures rely on independent baseline values to estimate variation in the lex-
ical domain. Most text-external measures assess relative lexical complexity. The most promi-
nent example for this are word frequency estimates. More frequent words are acquired earlier
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in L2 acquisition (Ellis, 2002) and are processed and retrieved faster (for an overview, see
Brysbaert et al., 2011, 2018), although there is evidence suggesting that the effect weak-
ens with increased exposure to a language (Brysbaert et al., 2017; Diependaele et al., 2013).
They have been commonly used in work on language reception, including ARA, see Collins-
Thompson (2014) for an overview. They have also been shown to be valuable estimates of
language performance in L1 and L2 contexts (Crossley, 2020; Crossley et al., 2012; De Jong,
2016; Ellis, 2002; Kim et al., 2018; Vermeer, 2001). More proficient speakers are generally
assumed to have access to a larger vocabulary, which allows them to utilize infrequent vocab-
ulary (Bulté and Housen, 2014, p. 50; Crossley, 2020, p. 418), at least when it is functionally
adequate, e.g., in academic language use (see discussion of adequacy in Section 2.1.3.2, p. 37).

Frequency measures rely on external data bases of word frequencies that were obtained from
large language samples (about 20 million words, cf. Brysbaert et al., 2011, 2018). These data
bases not only need to be sufficiently large, but also representative for the language experience
of the target group. Recent studies suggest that it is beneficial to tailor the frequency norm
to match the specific language experience of the target group rather than using traditional
frequency data bases that were compiled from newspapers and books several decades ago
(Brysbaert et al., 2018, p. 45). Several studies have shown that frequencies from television or
social media data are better suited for students (e.g., Brysbaert and New, 2009; Dimitropoulou
et al., 2010; Gimenes and New, 2016) than traditional frequency data bases based on written
language. In contrast, there is some evidence suggesting that these traditional sources are
better suited to model the language experience of older target groups (Cuetos et al., 2012a).
Frequency measures are commonly measured as average (log) frequencies.1 Alternatively,
frequencies have been expressed in terms of log frequency bands (e.g., Hancke, 2013). More
recently, Chen and Meurers (2018) have proposed to use standard deviations of word frequen-
cies as additional frequency measures to capture more information of the distribution of word
frequencies in a language sample.

Other commonly used text-external measures of relative lexical complexity are based on
word lists, age of acquisition (AoA), and contextual diversity. Word lists of both, basic vo-
cabulary (e.g., Ács et al., 2013; Chiari and De Mauro, 2014; Thorndike, 1921) and academic
vocabulary (e.g., Coxhead, 2000; Gardner and Davies, 2014) have a long tradition in research
on ARA (see overviews by Collins-Thompson, 2014; DuBay, 2004, 2006) and studies on writ-

1For example: sum of frequencies of words from the language sample that were found in
data base X divided by the number of words in the language sample that were found
in data base X.
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ing quality and development (e.g., Bestgen, 2017; Laufer and Nation, 1995; Olinghouse and
Leaird, 2009; Yoon, 2018). They are often frequency-based and used as more coarse-grained
estimates of how much simple or sophisticated vocabulary a language sample contains. To ac-
count for discipline specific variation of academic language use (e.g., Durrant, 2016), several
specialized academic word lists have been proposed, for example for medicine (Wang et al.,
2008), environmental science (Liu and Han, 2015), or finance (Li and Qian, 2010). Also AoA
estimates have been shown to cover a relevant dimension of lexical processing. Rather than
focusing on frequency, they quantify the age at which L1 speakers acquire words. AoA es-
timates have traditionally been obtained through subjective ratings by adult native speakers,
but there has also been some work on obtaining more objective AoA estimates through pic-
ture naming experiments with children (for an overview, see Bonin et al., 2004, pp. 457–458).
Despite correlations with frequency measures, AoA has shown to have a relevant effect on
lexical processing in its own right in several empirical studies (e.g., Brysbaert and Cortese,
2011; Brysbaert and Ghyselinck, 2006; Cuetos et al., 2006). Finally, rather than only counting
the frequency of words, researchers have proposed to also consider the number of contexts in
which words appear. This has been referred to as contextual diversity. Several studies have
shown the relevance of this factor for vocabulary learning and word recognition (e.g., Adel-
man et al., 2006; Hills et al., 2010; Johns et al., 2016).

2.1.2.3 Semantic complexity

Relatively little work has focused on semantic complexity, but some computational linguistic
approaches to text assessment have included measures of semantic elaboration, variation and
relatedness (e.g., Brück and Hartrumpf, 2007a; Crossley et al., 2010a; Hancke, 2013; Kim
et al., 2018; Venant and d’Aquin, 2019; vor der Brück et al., 2008). Work exploring semantic
elaboration, variation and relatedness has focused on quantifying hierarchical (hyponymy, hy-
pernymy) and lateral (synonymy, antonymy, polysemy) semantic relations and semantic fields
using word nets and knowledge graphs as external resources. Also measures of negations and
word concreteness and imagability have been proposed to assess relative semantic complexity
(e.g., Brück and Hartrumpf, 2007b; Crossley et al., 2011b). Some work on word processing,
too, has focused on the semantic diversity (e.g., Hoffman et al., 2013) and distinctiveness
(e.g., Johns and Jones, 2022; Johns et al., 2012) of words based on their distributional prop-
erties. Generally, Latent Semantic Analysis (LSA) and word embeddings have been used
systematically in computational linguistics to tap into the semantic dimension of language
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productions and evaluate their quality (e.g., Briscoe et al., 2010; Crossley and McNamara,
2011; Crossley et al., 2011b) or accessibility (e.g., Hancke et al., 2012; Hsiao and Nation,
2018). However, these measures are often used independent of the notion of ‘complexity’.

It should be noted that semantic complexity is usually not identified as an independent
dimension of complexity. It is, for example, absent in the taxonomies proposed by Bulté
and Housen (2012) and Housen et al. (2019). Instead, measures of semantic complexity are
commonly subsumed under the notion of lexical (or lexico-semantic) complexity—as ‘lexical
relatedness’—(e.g., Crossley, 2020; Hancke, 2013; Pallotti, 2015a). However, in view of the
multitude of sub-dimensions of lexical complexity, it might be useful to discuss lexical and
semantic complexity separately, especially as measures of semantic complexity seem to be
less predictive of human judgments of lexical proficiency than, for example, lexical diversity
measures (Crossley et al., 2011b). Also, some measures have been referred to as estimates
of semantic complexity but are at the same time commonly associated with discourse com-
plexity, e.g., the the use of relational chains (causal, concessive, temporal), the number of

propositions, or the use of anaphors (e.g. Brück and Hartrumpf, 2007a; Brück et al., 2008).
A clearer conceptual distinction between the notions of lexical, semantic, and discourse com-
plexity is needed. Considering semantic complexity as a dimension in its own right might
encourage more conceptual clarity while also fostering methodological innovations regarding
the assessment of semantic complexity (see for example Venant and d’Aquin, 2019).

2.1.2.4 Morphological complexity

Morphological complexity has been studied considerably less intensively in SLA complexity
research than syntactic or lexical complexity (see also Housen et al., 2019, p. 12; Kuiken
et al., 2019, p. 163). There has been relatively little work on morphological complexity in
research on early First Language Acquisition (FLA) (Xanthos and Gillis, 2010, p. 176). Bulté
(2013, p. 88) suggests that this lack of work on morphological complexity was facilitated
by the strong focus of complexity research on English. This parallels ARA research, which
has successfully used morphological measures for non-English languages (e.g. Dell’Orletta
et al., 2011; François and Fairon, 2012; Hancke et al., 2012; Reynolds, 2016), but rarely for
English. Yet, morphological complexity lends itself to cross-linguistic comparisons and the
study of complexity trade-offs across linguistic domains. Therefore, typological research has
paid great attention to morphological complexity, see for example Baerman et al. (2015) and
contributions therein as well as several contributions in Miestamo et al. (2008).
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More work on morphological complexity has started to appear in studies on L1 development
(e.g., Malvern et al., 2004; Xanthos and Gillis, 2010) and L2 development (e.g., Brezina and
Pallotti, 2019; Bulté, 2013; De Clercq and Housen, 2019; van der Slik et al., 2019). Ab-
solute morphological complexity has predominantly been researched in terms of inflectional
diversity, for example in form of the Inflectional Diversity measure by Malvern et al.
(2004), the Normalized Mean Size of Paradigm by Xanthos and Gillis (2010), and, more
recently, the Morphological Complexity Index (MCI) by Pallotti (2015b), see Brezina
and Pallotti (2019) for detailed discussion in English. The first two measures calculate mor-
phological diversity independent of POS and rely on the full inflected word forms. In con-
trast, Pallotti’s MCI compares the variability of morphological exponents for specific POS
(e.g., verbs, nouns, adjectives). Despite this difference, all three measures are closely related
to measures of lexical diversity (see Section 2.1.2.2) and are prone to the same length de-
pendency issue. To mitigate their dependency on length, all three measures utilize different
randomized re-sampling strategies (for details, see Brezina and Pallotti, 2019; Malvern et al.,
2004; Xanthos and Gillis, 2010). As far as I am aware, there has been no systematic evalua-
tion of the empirical validity of these measures comparable to McCarthy and Jarvis’s (2010)
work on lexical diversity. However, De Clercq and Housen (2019) compare three measures
of morphological diversity for the assessment of L2 proficiency in French and English speech
produced by adolescents: Inflectional Diversity, MCI, and a simple word type to

word family ratio that has been used by Horst and Collins (2006) to measure morphologi-
cal diversity in adolescents’ English L2 writing. Concluding their comparison, De Clercq and
Housen (2019) recommend using the MCI to assess morphological diversity because it com-
putes morphological diversity based on morphological exponents rather than inflected word
forms (De Clercq and Housen, 2019, p. 92). This makes it less sensitive to effects from differ-
ences in lexical diversity and more suited for shorter language samples (see also discussion in
Brezina and Pallotti, 2019, p. 101–103).

Little research has focused on local measures of morphological elaboration. However,
there has been some work on German focusing on the elaboration of compound nouns, for
example calculating the number of compounds per compound noun or percentage of

compound nouns (Brück et al., 2008; Hancke et al., 2012). Some measures have been pro-
posed to track the presence of specific derivational processes (such as percentage of derived

nouns) or inflectional processes linked to tense, mood, aspect, and case (such as percentage
of verbs in simple past or percentage of nouns with genitive case marking).
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These measures have been particularly prevalent in work on ARA for languages other than En-
glish (e.g., François and Fairon, 2012; Hancke et al., 2012; Reynolds, 2016) but also in SLA
work on L2 proficiency (e.g., Guo et al., 2013; Verspoor et al., 2012). These measures are
typically not motivated from a language system perspective. For example, simple past is not
argued to be a more elaborate tense than simple present. However, they have been identified as
challenging or acquired at later stages in L2 or L1 development. In that sense, such measures
can be considered estimates of relative morphological complexity (see also Bulté, 2013, p. 89;
De Clercq and Housen, 2019, p. 75).

2.1.2.5 Phonological complexity

Phonological complexity has been studied extensively for cross-linguistic comparisons in lin-
guistic typology (e.g., Pellegrino et al., 2009, and contributions therein). In this context,
phonological complexity has been predominantly studied in terms of a language’s inventory
of consonants, vowel contrasts and qualities, and tonal systems or in terms of the complexity
of their syllables (Maddieson, 2009). Some work has also attempted to combine these di-
mensions of phonological complexity into holistic scores, e.g., Atkinson’s (2011) measure of
phoneme diversity, which calculates the language-wise average score of three normalized
sub-dimensions of phonological complexity: size of the consonant inventory, size of inven-
tory of basic vowel qualities, and complexity of the tone system. Maddieson et al. (2011)
confirm the empirical validity of this measure even though they argue that conceptually it fails
to globally quantify the diversity of a language’s phonological inventory (for a more detailed
discussion, see Maddieson et al., 2011, p. 268). Using the terminology from Section 2.1.1,
these types of measures assess the phonological elaborateness and variation of a language in
contrast to another language. Maddieson (2009) also discusses work on relative phonological
complexity in terms of frequency measures for phonological units (e.g., segments).

Also psycho-linguistic research has considered aspects of phonological complexity (e.g.,
in terms of word length in syllables) and phonological (dis)similarity, (e.g., using the
phonological similarity metric analysis by Mueller et al., 2003). Research has mostly
focused on understanding the effects of phonological complexity on aspects such as verbal
working memory and speech planning times (for an overview, see Mueller et al., 2003). How-
ever, there has also been some work on linking phonological complexity to language learn-
ability, see Gierut (2007) for a review. In SLA complexity research, however, phonological
complexity has so far played virtually no role (Housen et al., 2019, p. 11; Kuiken et al., 2019,
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p. 163).

2.1.2.6 Discourse complexity

SLA complexity research has put little emphasis on the dimension of relative discourse com-
plexity in terms of cohesion. Discourse cohesion (sometimes also called ‘text cohesion’)
refers to the use of linguistic devices to connect meaning units in language productions (e.g.,
Crossley, 2020; Todirascu et al., 2016). These linguistic devices can make discourse relations
explicit (e.g., in form of connectives) or create implicit links (e.g., anaphors and repetitions).
Cohesive devices can be used to connect ideas between adjacent clauses (local cohesion) or
across larger organizational units such as paragraphs (global cohesion). Text cohesion is a
dimension of relative discourse complexity. FLA and writing research has demonstrated that
global and local cohesive devices are adopted relatively late into L1 speakers’ language pro-
duction (see overview in Crossley, 2020, p. 427). Also, research on FLA has demonstrated
processing difficulties related to the resolution of anaphors and other implicit cohesion devices
in young L1 speakers (e.g., Englert and Hiebert, 1984; Gülzow and Gagarina, 2007; Joseph
et al., 2015; Yuill and Oakhill, 1988).

The use of cohesive devices helps listeners or readers to create and maintain a mental
representation of the discourse and correctly connect all meaning units in it—it promotes
‘coherence’ (Graesser et al., 2003; Louwerse et al., 2004). This has made cohesion an im-
portant dimension in ARA (e.g., Collins-Thompson, 2014; McNamara and Graesser, 2012;
McNamara et al., 2010a; Todirascu et al., 2016). From a language production perspective,
the appropriate use of cohesive devices to organize ideas and communicate them clearly has
been viewed as an indicator of language proficiency and writing quality (e.g., Crossley, 2020;
Crossley and McNamara, 2016a; Crossley et al., 2016c). In both application domains, mea-
sures of text cohesion have mostly focused on four types of cohesive devices: connectives,
co-reference, the repetition of lexical items, and discourse entities (Collins-Thompson, 2014;
Crossley, 2020). Explicit cohesion has been measured predominantly in terms of the use of
specific connectives, e.g., causal connectives per clause or temporal connectives

per 1.000 words (Berendes et al., 2018; Crossley et al., 2016c; McNamara and Graesser,
2012). While the use of adverbial clauses that are introduced with specific connectives itself
results in greater clausal elaboration, the focus of these measures has been on the types of
discourse relations that they introduce into the language sample (e.g., Crossley, 2020; McNa-
mara and Graesser, 2012; Myhill, 2008). However, there is an undeniable correlation between
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syntactic elaboration and these measures of text cohesion that makes the clear separation of
measures for these two dimensions at times challenging (Crossley, 2020, p. 417).

Implicit cohesion has been assessed through a broad variety of measures. To assess co-
reference, researchers have proposed simple POS-based measures of ‘givenness’ that track
the use of pronouns, determiners, and proper nouns (e.g., Crossley et al., 2016c; Pitler and
Nenkova, 2008; Todirascu et al., 2013). Examples for such measures are pronoun to noun

ratio or definite articles per sentence. Also co-reference chains have been used
to quantify implicit cohesion (e.g., Todirascu et al., 2013; Xia et al., 2016). Furthermore,
implicit cohesion has been measured through the density of discourse entities, for example
in form of number of discourse entities (per sample or sentence) or the number of

named entities (Feng et al., 2009, 2010; Todirascu et al., 2013). Brown et al. (2008) pro-
posed the propositional idea density (PID) measure to track global implicit cohesion. The mea-
sure quantifies the number of propositions in a language sample using the notion of proposi-
tions developed by Kintsch (1974) and Turner and Greene (1977). Propositions have shown to
play a relevant role for retention and memory (Kintsch and Keenan, 1973; Perrig and Kintsch,
1985) and PID has been successfully used to predict cognitive impairments (Bryant et al.,
2013; Jarrold et al., 2010; Sirts et al., 2017). A third way to quantify implicit cohesion is
through measures of lexical repetition across sentences and paragraphs (e.g., Crossley et al.,
2016c; McNamara et al., 2010a; Vajjala, 2018). For example, Coh-Metrix calculates overlaps
of nouns, arguments, content words, and stems locally (between adjacent sentences) or glob-
ally (between all sentences), see for example McNamara et al. (2010a). Crossley et al. (2016c)
additionally propose to calculate the semantic overlap across synonyms, hyponyms, and hy-
pernyms. Barzilay and Lapata (2008) proposed to track the occurrence of discourse entities
in different grammatical roles (subject, object, other, absence). To do so, they build a two-
dimensional entity grid (entities ⇥ sentences) across all sentences in a language sample. This
can be used to identify common transition patterns or calculate transition probabilities between
grammatical roles, both locally (i.e.,between adjacent sentences) and globally (across all sen-
tences). For example, the local transition probability from subject to object

role provides the probability of a discourse entity to occur as a subject at sentence i and as
object in sentence i+ 1. Several studies have used these entity-grid-based measures to quan-
tify cohesion (e.g, Pitler and Nenkova, 2008; Todirascu et al., 2013; Vajjala, 2018; Weiss and
Meurers, 2018; Xia et al., 2016).

Some research promotes the use of LSA to measure the semantic similarity between para-

25



Chapter 2 Background

graphs as a measure of global implicit cohesion (e.g., Crossley, 2020; Foltz, 2007; McNamara
et al., 2007). The underlying idea is that greater semantic similarity indicates a more cohe-
sive discourse. However, these measures interact with aspects of semantic complexity because
greater semantic similarity also indicates lower semantic variation. While it is intuitive that
high semantic complexity can impede cohesion, this interaction requires further investigation.
This emphasizes the need for a stronger methodological and conceptual reappraisal of the
concepts of semantic complexity, cohesion, and their interaction.

2.1.2.7 Processing complexity

Processing complexity is a dimension that I propose to group established complexity mea-
sures that focus on quantifying costs of information processing and do not pertain to any of
the previous dimensions. These information processing costs may occur in computational
or cognitive processing. The most prominent types of measures from this dimension are
information-theoretic measures of global absolute complexity. In information theory, ‘in-
formation’ is commonly understood in terms of its unexpectedness or ‘entropy’, following
Shannon (1948). The so called ‘Shannon entropy’ has been used to quantify the information
in a variable or message in bits. For the present discussion, it suffices to know that following
this notion, a high entropy (i.e., surprising) variable or message carries more information than
a low entropy (i.e., unsurprising) variable or message. Thus, higher entropy equals higher
complexity (for a more detailed discussion, see Juola, 2008, pp. 90–91). Another information
theoretic approach to complexity is the Kolmogorov complexity (Li and Vitányi, 2008). It
measures the complexity of a string in terms of the length of its shortest possible description.
A string that can be described concisely is less complex than a string requiring a longer ex-
planation. Compression-algorithm-based measures have been proposed as operatiolanizations
to approximate the Kolmogorov complexity (Juola, 2008, pp. 91–93). The intuition behind
this is that compression algorithms shrink the bits required to represent a string by eliminat-
ing its redundancies. In a way, they attempt to find the most efficient characterization of that
string. Low entropy strings containing many redundancies can be compressed more than high
entropy strings containing few to no redundancies. Compression-based complexity measures
have been particularly popular as operationalizations of global, absolute complexity for cross-
linguistic studies (e.g., Ehret, 2018; Ehret and Szmrecsanyi, 2016; Juola, 2008). Recently,
they have been used in SLA complexity research as well to assess the link between complex-
ity and L2 essay quality (Ehret and Szmrecsanyi, 2019).
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Human information processing costs have been studied in psycho-linguistic and computa-
tional linguistic research from different perspectives (for an overview, see Levy, 2013). Mea-
sures derived from this research can be understood as estimates of relative processing com-
plexity, because most research has focused on explaining empirically observed processing dif-
ficulties of humans, for example through eye-tracking or processing time estimates. There are
two main strands of research on incremental human sentence processing and processing diffi-
culties, which Futrell et al. (2021) refer to as ‘expectation-based theories’ and ‘memory-based
theories’. In expectation-based theories, information theoretic notions of entropy or surprisal
have played a central role. Measures derived from these theories operationalize complexity in
terms of word probabilities given their context. These word probabilities have been obtained
through probabalistic context-free grammars (PCFGs; e.g., Demberg and Keller, 2008; van
Schijndel et al., 2013) or various types of probabilistic language models (e.g., Goodkind and
Bicknell, 2018; Hao et al., 2020; Monsalve et al., 2012). These types of surprisal measures
have been used successfully to model processing times and eye-tracking data as well as local-
ity effects in human sentence processing (e.g., Futrell and Levy, 2017; Monsalve et al., 2012;
Oh et al., 2021).

Memory-based theories of human sentence processing hypothesize that the integration of
new information into the mental representation of a listener or reader requires the retrieval of
previously processed words from working memory. This retrieval can be more or less cogni-
tively taxing and may cause processing difficulties in certain linguistic contexts. A prominent
example of such a memory-based theory is the Dependency Locality Theory (DLT) by Gibson
(2000). The theory assumes that incremental sentence processing requires working memory
for two components: storing incomplete discourse structures and integrating new discourse
referents into incomplete discourse structures which have to be retrieved from memory. Ad-
ditionally, the DLT supposes that the costs of integrating a discourse referent into an incom-
plete discourse structure increases with the number of intervening discourse referents. This
accounts for the so called ‘locality effect’, which has shown to play a role for sentence process-
ing in several studies (e.g., Bartek et al., 2011; Fedorenko et al., 2013; Grodner and Gibson,
2005; Nicenboim et al., 2015). Shain et al. (2016) proposed different configurations of Gib-
son’s original cost calculation algorithm to account for higher verb weights and reducing the
processing costs for coordinated phrases and modifiers. These are procedural measures of
relative processing complexity. In Weiss (2017), I proposed a method to aggregate the pro-
cessing costs of sentences at the point of their maximum cost across all sentences in a language
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sample to derive a single measure. To do so, I proposed measures of maximum and average
processing costs (for details, see Weiss, 2017, pp. 73–75). Other computational linguistic
measures of memory-based processing costs are based, for example, on left-corner parsers
(e.g., Shain et al., 2016; van Schijndel et al., 2013), which have been used for decades to
quantify human processing costs (Resnik, 1992). There have been some attempts to combine
the expectation-based and the memory-based perspective on incremental human sentence pro-
cessing. However, these unified models require more work to account for interaction effects
between high surprisal and memory demands, see Futrell et al. (2021, pp. 8–9) for a detailed
discussion.

2.1.3 Variation in linguistic complexity

Variation is a central construct in applied linguistics. It has been studied in functional and
usage-based approaches across linguistic subdisciplines, especially in sociolinguistics (e.g.,
Eckert, 2012; Tagliamonte, 2006) and linguistic typology (e.g., Cacoullos and Travis, 2019;
Sinnemäki, 2020). Speaker preferences between alternative surface forms have also been stud-
ied in generative and system-based approaches, see Adli et al. (2015) for a general comparison
between these approaches. In SLA research, linguistic variation factors into the characteriza-
tion of L2 performance (Kuiken et al., 2019). Learners produce language by choosing from
a pool of more or less adequate options and may exhibit intra-individual variation in their
choices or inter-individual variation across groups of learners. These choices can be influ-
enced by a broad range of factors including but not limited to the linguistic forms available
in the (inter-)language system, the production context and modality, individual differences,
stylistic choices, and differences between languages. In the following, I zoom in on three im-
portant dimensions of variation in linguistic complexity that are immediately relevant for this
thesis: language development and proficiency, task and register, and cross-lingual variation.

2.1.3.1 Developmental variation

Language development and proficiency differences are probably the best studied sources of
variation in the expression of CAF (sub-)dimensions. In SLA complexity research, com-
plexity has been predominantly used “(a) to gauge proficiency, (b) to describe performance,
and (c) to benchmark development” (Ortega, 2012, p. 128). Even though ‘development’ and
‘proficiency’ are independent constructs (for details, see Section 2.2.1 or Bulté and Housen,
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2014), proficiency is often used to approximate development on cross-sectional data (Ortega
and Iberri-Shea, 2005, p. 27). This is motivated by the fact that L2 development is assumed
to lead to an extension of learners’ inter-language system and a stronger approximation to the
target norm (i.e., higher proficiency, Bulté and Housen, 2014, p. 46)—at least in instructed set-
tings. For the remainder of this section, I will discuss aspects of development and proficiency
jointly.

Previous research successfully demonstrated that the linguistic complexity of learner pro-
ductions systematically varies with proficiency across linguistic domains (Housen et al., 2012,
2019; Kuiken et al., 2019; Norris and Ortega, 2009; Skehan, 2009; Wolfe-Quintero et al.,
1998). This research has largely focused on the domains of syntax and lexicon followed by
morphology and text cohesion. In the following, I focus my discussion on these domains.

Syntax For the analysis of syntax, most research has focused on written academic language
development. In this context, studies on L1 writing in school and university have repeat-
edly found evidence that phrasal complexity increases in more advanced writing while clausal
complexity decreases (e.g., Crossley et al., 2011a; McNamara et al., 2010b; Staples et al.,
2016). The role of register on this observation is discussed in Section 2.1.3.2 (p. 36). A
similar development has been reported for L2 writing, which typically focused on learners at
the college level or university level but partially also included studies in schools (e.g., Bulté
and Housen, 2018, 2019; De Clercq and Housen, 2017). Several studies have linked higher
phrasal complexity—especially in the nominal domain—to writing of more advanced or pro-
ficient learners (e.g., Bulté and Housen, 2018, 2019; Lu, 2011; Yoon, 2017; Yoon and Polio,
2017) and to higher ratings of writing quality (e.g., Guo et al., 2013; Kyle and Crossley, 2017,
2018; Taguchi et al., 2013). In contrast, developmental variation within clausal domain has
been described with mixed findings. Several studies have reported that in instructed settings,
English L2 learners develop increasingly elaborate clausal structures through subordination
(e.g., Alexopoulou et al., 2017; Bulté and Housen, 2018, 2019; Lu, 2011; Norris and Ortega,
2009; Verspoor et al., 2012) and that for advanced learners clausal elaboration stagnates or
even reduces in a trade-off with phrasal elaboration (Bulté, 2013; Kyle and Crossley, 2018;
Lu, 2011; Norris and Ortega, 2009; Taguchi et al., 2013; Yoon, 2017; Yoon and Polio, 2017).
Others found that even though subordination was positively correlated with writing quality
ratings, the clausal domain of writings by intermediate to advanced adult English as a Sec-
ond Language (ESL) learners did not develop in terms of subordination (Bulté and Housen,
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2014; Crossley and McNamara, 2014), but in terms of coordination (Bulté and Housen, 2014).
Bulté and Housen (2014) conclude from this that advanced academic L2 writing is somewhat
flexible in the development of the syntactic domain. It also highlights the need to distinguish
between writing quality ratings and development (Crossley and McNamara, 2014; Crossley
et al., 2014a).

Studies on developmental variation in spoken language are less common. De Clercq and
Housen (2017) found that advanced adolescent French and English L2 learners’ oral narra-
tives were globally more elaborate and varied than less advanced learners’ narratives, but did
not form more elaborate or varied NPs. This is in line with Biber et al.’s (2011) claim that
phrasal complexity is a characteristic of academic written language, whereas spoken language
is characterize by higher clausal complexity. Similarly, Lambert and Nakamura (2019) ana-
lyzed the syntactic complexity of intermediate English L2 speakers’ descriptive speech. They
found that clausal elaboration increased with proficiency. For phrasal elaboration, they found
a considerable interaction with learners’ knowledge of task-relevant vocabulary. In contrast,
Vercellotti (2019) found a simultaneous increase of clausal and phrasal complexity in spoken
monologues of low-intermediate to high-intermediate English L2 learners in the course of one
semester of instruction. While these findings seem to confirm the generally assumed tendency
of spoken language to develop in terms of clausal elaboration, more research is needed to
understand the developmental variation of phrasal complexity in L2 speech.

Lexicon Findings regarding the developmental variation of sub-dimensions of lexical and
semantic complexity have been more straightforward. Several studies showed that higher
lexical diversity in L2 writing is linked to longitudinal development in instructed settings
and higher writing quality ratings (e.g., Alexopoulou et al., 2017; Bulté and Housen, 2019;
Crossley and McNamara, 2012; Crossley et al., 2010b; Guo et al., 2013; Yoon, 2017; Zheng,
2016). This finding has also been confirmed for French and Italian L2 writing (Kuiken and
Vedder, 2012). Studies also showed that more advanced L2 writing used more sophisticated
vocabulary in terms of word frequencies (Crossley and McNamara, 2012; Guo et al., 2013;
Jung et al., 2019; McNamara et al., 2010b; Yoon, 2017; Zheng, 2016) and—albeit studied less
often—word familiarity, concreteness, associations, precision or specificity, and AoA (e.g.,
Crossley and McNamara, 2012; Crossley et al., 2010b; Guo et al., 2013; Jung et al., 2019; Kim
et al., 2018; Kyle and Crossley, 2016). Crossley et al. (2011a) found that lexical sophistication
(measured through word frequency and concreteness) also increased for adolescents’ English
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L1 writing across grade levels. Crossley et al. (2010b) evaluated the link between lexical
complexity and essay quality ratings for both, English L1 and L2 writings. In line with the
previous findings reported for L2 writing and L1 development, they found that higher rated
essays were lexically more diverse and polysemous, contained less concrete, familiar and
imaginable vocabulary, and used longer words.

For L2 speech, studies found that lexical variation increases with proficiency (Crossley
et al., 2009, 2011b; Horst and Collins, 2006) and is positively correlated with human judg-
ments (Lu, 2012). However, vocabulary in English L2 speech also seems to become more
polysemous (Crossley et al., 2010a, 2011b), more frequent (Crossley et al., 2010a), and more
variable in its frequency (Horst and Collins, 2006). It is also unclear whether L2 speech
becomes more specific (Crossley et al., 2009) or less specific (Crossley et al., 2011b). Fur-
thermore, Lu (2012) reported that lexical sophistication and density do not play a relevant role
in human quality estimates of English L2 oral narratives.

Morphology As discussed in Section 2.1.2.4, SLA complexity research on the morphologi-
cal domain has been considerably more limited than work on syntactic and lexical complexity.
However, in recent years, several studies have investigated developmental variation in the mor-
phological domain of L2 learners. Research has nearly exclusively focused on the inflectional
diversity, predominantly in the verbal domain (Brezina and Pallotti, 2019; Bulté and Housen,
2019; De Clercq and Housen, 2019; Xanthos et al., 2011), but partially also for other POS
(Xanthos and Gillis, 2010; Xanthos et al., 2011) or POS-independent (De Clercq and Housen,
2019; Malvern et al., 2004). For L2 writing, the studies systematically showed that for be-
ginning to high-intermediate learners of English, French, and Italian, morphological variation
in the verbal domain increases with higher proficiency (Brezina and Pallotti, 2019; Bulté and
Housen, 2019; De Clercq and Housen, 2019; Yoon, 2017). However, Brezina and Pallotti
(2019) report that for both, L2 Italian and L2 English, the developmental variation of mor-
phological complexity seems to level off at a high-intermediate to advanced proficiency level
(Brezina and Pallotti, 2019)—albeit earlier for English than for Italian. De Clercq and Housen
(2019) made similar observations for oral narratives of adolescent L2 speakers of French and
English at beginning to advanced proficiency levels. They report that for both languages,
learners’ speech became morphologically more diverse but that this development leveled off
at higher proficiency levels.

For early FLA until the age of three, the inflectional variation of children’s speech has been
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shown to increase for English and Spanish (Malvern et al., 2004), Dutch (Xanthos and Gillis,
2010), as well as for French, Dutch, German, Russian, Croatian, Greek, Turkish, Finnish
and Yucatec Maya (Xanthos et al., 2011). Xanthos et al. (2011) report that the speed of the
development was modulated by the morphological variation in the language that caregivers
directed at children. Furthermore, Xanthos and Gillis (2010) and Xanthos et al. (2011) found
that across languages, verb inflection showed stronger developmental variation than noun in-
flection with Xanthos and Gillis (2010) being unable to confirm any development for Dutch
L1 learners between age two and three.

Text cohesion Developmental variation in text cohesion has been studied in the context of
research on essay quality of high school, college, or university students with English as their
L2 (e.g., Crossley and McNamara, 2012; Guo et al., 2013; Jin, 2001; Jung et al., 2019) or
L1 (e.g., Crossley and McNamara, 2016b; Crossley et al., 2014b, 2016c; McNamara et al.,
2010b). Work on elementary school students has focused on L1 expository and narrative writ-
ing (e.g., Cain, 2003; Cameron et al., 1995; Cox et al., 1990; Struthers et al., 2013). For
intermediate to advanced L1 and L2 writing, global cohesion has been shown to increase with
proficiency (Crossley and McNamara, 2009, 2016b; Crossley et al., 2016c; Jung et al., 2019).
For local cohesion, mixed empirical results have been reported. Crossley and McNamara
(2009) found adults’ L1 writing uses systematically more explicit and implicit local cohesion
devices than advanced L2 writing. Other studies found that L2 essays with higher local cohe-
sion received higher proficiency ratings (Crossley and McNamara, 2016b; Guo et al., 2013)
and that elementary school children’s L1 writing was rated higher when it used more local
cohesive devices (Cain, 2003; Cameron et al., 1995; Cox et al., 1990; Jin, 2001). However,
even more studies reported no effect—or even a negative effect—of local cohesion on expert
proficiency ratings. This was shown for children (Fitzgerald and Spiegel, 1986; Spiegel and
Fitzgerald, 1990) as well as for adults’ L1 essays (Crossley and McNamara, 2012; Crossley
et al., 2016c; McNamara et al., 2010b) and L2 essays (Guo et al., 2013; Jung et al., 2019).
Crossley et al. (2011a) reported a reduction of local cohesion in adolescents’ essays across
grade levels. This is at odds with the assumption that higher textual cohesion fosters coher-
ence seeing that coherence is a strong predictor of text quality (e.g., Crossley and McNamara,
2010, p. 988). It also contrasts research on text readability which has found that higher local
cohesion fosters readability (e.g., Best et al., 2006; Collins-Thompson, 2014).

Several explanations have been proposed to reconcile these contradictory findings. First, it
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has been argued that the ‘reverse cohesion effect’ might cause the negative correlation between
expert ratings and local cohesion (Crossley and McNamara, 2012; Crossley et al., 2011a; Guo
et al., 2013; McNamara et al., 2011). The reverse cohesion effect describes the phenomenon
that readers with high prior knowledge on the text topic can benefit from a text because the
need to infer connections based on their prior knowledge promotes their cognitive activation
(Crossley and McNamara, 2010; McNamara, 2001, for details on prior knowledge and reading
comprehension, see Section 2.3.1.1). In contrast, readers with less prior knowledge struggle to
make these inferences on their own and require a text with more cohesive devices (Best et al.,
2008; Crossley and McNamara, 2010; McNamara, 2001). This aligns with Crossley and Mc-
Namara’s (2010) finding that less locally cohesive L1 essays are rated as more coherent by
human experts. However, other studies found that the reverse cohesion effect impacts high-
knowledge readers with low reading comprehension skills and is irrelevant for readers with
high reading skills (O’Reilly and McNamara, 2007; Ozuru et al., 2009). This speaks against
the reverse cohesion effect as an explanation for the negative impact of local cohesion on essay
ratings, because expert raters can be assumed to be highly skilled readers. Second, Guo et al.’s
(2013) study showed that task context seems to interact with human ratings and text cohesion.
While they reported a negative effect of local cohesion on essay quality for independent writ-
ing, they found that higher local cohesion was positively correlated with writing quality in
integrated writing, even though lexical sophistication remained a stronger predictor. Finally,
differences in writing strategies may explain some of the mixed results. Crossley et al. (2014b)
studied profiles of highly rated L1 essays written by high school and college students. Their
cluster analysis identified four different writing styles that differ considerably in the linguistic
means that they employ: a) action and depiction, b) academic style, c) accessible style, and d)
lexical style. All styles but the accessible style are characterized by higher lexical complexity
and are either agnostic to cohesion or exhibit lower textual cohesion. In contrast, high local
cohesion and less sophisticated vocabulary were characteristic for the accessible writing style.

These explanations shed some light on the mixed findings regarding the developmental vari-
ation of local cohesion. Three other important factors that need to be investigated further are
genre and language. As noted earlier, much research on the developmental variation of textual
cohesion has focused on English high-intermediate to advanced academic essay writing. It
is unclear which role cohesion plays for other text genres and especially non-academic lan-
guage use. The findings might also not transfer to other languages in which the academic
language register is characterized by different linguistic structures (see Section 2.1.3.2 and
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Section 2.1.3.3 for a more detailed discussion). In short, despite its prominence in writing
quality research and readability research, more studies are needed to understand the develop-
mental variation of cohesion in FLA and SLA.

The overview provided in this section demonstrates that linguistic domains vary indepen-
dently with development and proficiency. The discussion of differences between develop-
mental variation in beginning and advanced learners has also highlighted a commonly stated
fact about complexity development. Complexity is not necessarily increasing linearly with
proficiency (see e.g., Larsen-Freeman, 2009; Pallotti, 2009). The development of a certain
linguistic domain may level off, temporarily stagnate or—in the case of u-shaped developmen-
tal patterns (Ellis and Larsen-Freeman, 2006, p. 595; VanPatten and Benati, 2010, p. 141)—
regress. Researchers have also reported trade-off effects between linguistic domains and sub-
dimensions of complexity, for example between phrasal and clausal elaboration (e.g., Bulté
and Housen, 2018; Lambert and Nakamura, 2019; Lu, 2011; Ortega, 2003). Finally, devel-
opmental variation can become non-linear through interactions with task or register variation
and may differ across languages. These two factors will be discussed in Section 2.1.3.2 and
Section 2.1.3.3.

2.1.3.2 Task and register variation

Task factors and register have been shown to influence the expression of linguistic complexity
in language productions of non-native speakers (e.g., Alexopoulou et al., 2017; Skehan, 2009;
Tavakoli and Foster, 2011; Tavakoli and Skehan, 2005) as well as native speakers (e.g., Foster
and Tavakoli, 2009; Pallotti, 2019; Staples et al., 2016). Various definitions have been pro-
posed for tasks and registers in research on (L2) writing, task-based language teaching and
assessment, and SLA. In this thesis, I follow the broad notion of register proposed by Biber
and Conrad (2001, p. 175, emphasis theirs): “Varieties defined in terms of general situational
parameters are known as registers. We use the label register as a cover term for any variety as-
sociated with a particular configuration of situational characteristics and purposes”. Further, I
use Samuda and Bygate’s (2008) task definition which encompasses all holistic activities that
foster language learning by requiring learners to use linguistic means to reach a functional
goal. Under this terminology, tasks are the controlled elicitation contexts that define the situ-
ational parameters which determine the (set of) appropriate register(s). Using this or similar
definitions, the influence of several functional and cognitive task factors on language pro-
duction has been investigated asking which task factors influence language performance and
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how they interact with CAF and proficiency. Commonly investigated factors include genre
and topic, cognitive demands (e.g., planning and reasoning, prior knowledge and familiar-
ity, structure), social context and conditions (e.g., interactivity, formality, production mode,
stakes, control), as well as linguistic demands (also known as ‘code complexity’, Skehan,
1998).

Several cognitive task-based frameworks have been proposed to jointly explain the influence
of cognitive, functional, and situational task factors on L2 (and L1) performance and trade-offs
within the CAF triad. Two of the most influential frameworks are Skehan’s Limited Attention
Capacity hypothesis (Skehan, 1998) and the Cognition Hypothesis by Robinson (1995, 2001).
Both hypotheses assume that task demands and CAF tap into learners’ cognitive resources
and that these resources are limited. The competition between the CAF (sub-)dimensions is
assumed to cause trade-off effects. The hypotheses make different predictions regarding these
trade-offs primarily because Robinson’s Cognition Hypothesis assumes that task demands
may not only deplete cognitive resources but also re-direct them to amplify the resources
allocated to specific CAF (sub-)dimensions. Robinson (2015) and Skehan (2015) provide
a more detailed comparison of both hypotheses in a point-counterpoint discussion. Studies
seeking to identify which of the two frameworks more accurately describes the effect of tasks
on CAF yielded mixed results (Jackson and Suethanapornkul, 2013; Johnson, 2017).

Task effects have also been discussed from a functional perspective. There has been some
work highlighting the influence of source material (Guo et al., 2013; Kyle and Crossley, 2016;
Miller et al., 2016; Plakans and Gebril, 2013), discipline (Crossley et al., 2017; Gardner et al.,
2019), and topic (Yang et al., 2015; Yoon, 2017). However, genre effects have received spe-
cial attention. Work on effects of genre (or ‘task type’, e.g. Alexopoulou et al., 2017) has
focused on the comparison of narratives, argumentative (or persuasive) texts (commonly es-
says), and expository (or informative) texts, but see Staples et al. (2016) for the comparison
of more genre types in the advanced academic writing of native speakers at university. Few
studies distinguish further between ‘genre families’ (e.g., letters, essays, reports; terminology
from Staples et al., 2016) and ‘discourse mode’ (e.g., narrative, expository, argumentative;
terminology from Yang et al., 2015). As Skehan (2009) points out, task factors have been
mostly analyzed in terms of their influence on syntax. Work on genre effects for other linguis-
tic domains is rather rare. Skehan (2009) summarizes six studies by Skehan and Foster that
analyzed the effect of several cognitive task factors and genre (personal information exchange,
narratives, decision making) on lexical complexity and sophistication. Also Yoon and Polio
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(2017) and Alexopoulou et al. (2017) investigated genre effects on syntactic complexity, lex-
ical complexity and accuracy (also fluency in the case of Yoon and Polio, 2017). Yoon and
Polio (2017) found strong genre effects for lexical complexity in the sense that argumentative
essays contained more sophisticated but less diverse vocabulary than narratives in both L2 and
L1 writing. Olinghouse and Wilson (2013) studied the link between writing quality, genre,
and lexical complexity in fifth graders English L1 writing, finding that the different genres
fostered higher complexity in different sub-dimensions of lexical complexity. Tracy-Ventura
and Myles (2015) found clear genre effects on morphology (specifically the use of past tense)
in spoken L1 and L2 Spanish, contrasting the genres interview, narration, and description.

Despite these notable contributions, by far most work has been dedicated to the analysis of
genre effects on syntactic complexity. One general and relatively stable finding across studies
is that narrative writing elicits syntactically less complex writing than non-narrative writing
(see also Lu, 2011; Yoon, 2017, p. 133). More specifically, non-narrative writing seems to
promote phrasal complexity over clausal complexity: Beers and Nagy (2009) compared the
link between essay quality ratings and clausal complexity for stories and argumentative essays
written by English middle school pupils in seventh and eighth grade. The most notable dif-
ference that they found is that narratives elicited overall less elaborate clausal structures than
argumentative essays. At the same time, clausal elaboration was positively correlated with
quality ratings for narratives but negatively for quality ratings of argumentative essays. This
ties into their second finding that phrasal rather than clausal elaboration is linked to higher
quality in argumentative essays. Similarly, in their study on cross-disciplinary academic lan-
guage development of English native speakers at university, Staples et al. (2016) found an
increase of phrasal complexity and a decrease of clausal complexity from first-year under-
graduate to graduate students (despite some discipline-specific differences). The same pattern
seems to hold for L2 writing. Yoon and Polio (2017) found that English L2 learners’ writ-
ing developed more complex phrasal structures in the course of four months in an instructed
university setting but not more complex clausal structures. This effect was not present in L1
writing. Alexopoulou et al. (2017) analyzed English L2 texts elicited at different proficiency
levels, observing that narrative texts by more proficient learners included more subordina-
tion and were overall more cohesive, whereas professional texts by more proficient learners
contained longer clauses and more complex phrases.

The differences between narrative and non-narrative writing has some parallels to the ob-
servation that academic writing produces higher phrasal complexity (Bulté and Housen, 2014;
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Lu, 2011; Yoon, 2017), whereas speech elicits more complex clausal structures (e.g., Biber
et al., 2011, 2016; Kormos and Trebits, 2012; Kuiken and Vedder, 2012). In fact, production
mode has been shown to heavily influence language performance (Biber et al., 2016; Kormos
and Trebits, 2012; Kuiken and Vedder, 2012) and some evidence suggests that even the ef-
fect of task factors on complexity may vary across production modes (Kuiken and Vedder,
2012; Vasylets et al., 2017). Biber et al. (2011) reason that this might suggest a develop-
mental sequence from more complex clausal structures to more complex phrasal structures
in native speakers’ acquisition of academic writing skills because they acquire conversational
skills prior to developing an advanced academic register. This idea is similar to the distinc-
tion of Basic Interpersonal Communication Skills (BICS) and Cognitive Academic Language
Proficiency (CALP) that was proposed by Cummins (1997) to distinguish two separate di-
mensions of L2 proficiency: conversational fluency and academic language use (for details,
see Section 2.2.1, p. 44).

The findings from the studies discussed in the previous paragraph are in line with this hy-
pothesis. The non-narrative writings were predominantly elicited by tasks defining situational
parameters that elicit an academic language register. In contrast, the genre of narrative writing
often utilizes characteristics associated with spoken language for stylistic reasons, especially
in folk poetry (e.g., Dehrmann, 2014; Gerndt, 1988; Gobrecht, 1997; Seidenspinner, 1997),
but also in other forms of prose (Mecklenburg, 2018; Tannen, 1982). Hence, it seems plausible
that increasingly proficient narrative writing would employ more linguistic means associated
with spoken language. Against this background, the frequently studied comparison of narra-
tive and non-narrative genres seems to coincide with register differences (BICS/CALP). Un-
fortunately, the existing research on genre contrasts within non-narrative writing is insufficient
to disentangle this confound.

Related to these functional approaches to task effects and concerns of register variation,
the notion of functional adequacy (also sometimes referred to as communicative adequacy,
e.g., Kuiken et al., 2010; Pallotti, 2009) has received increasing interest in task-based lan-
guage teaching and learning research (e.g., De Jong et al., 2012; Hulstijn et al., 2012; Kuiken
et al., 2010; Ortega, 2003; Pallotti, 2009). ‘Adequacy’ entails pragmatic and socio-linguistic
concerns of appropriateness, effectiveness, and efficiency and task-based notions of commu-
nicative success and task completion. Pallotti (2009) argues that introducing adequacy into the
notion of language performance allows to better interpret CAF measures. Specifically, it helps
to account for the fact that “more complex” is not preferable in all communicative contexts as
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discussed in Section 2.1.1.2 (p. 14). Highly proficient speakers of a language do not choose
to maximize CAF (sub-)dimensions in all communicative contexts but to align their language
with their communicative goals. Pallotti (2009) criticizes that SLA complexity research often
attributes a lack of growth in one of the three dimensions (or their sub-dimensions, e.g., lexical
versus syntactic complexity or clausal versus phrasal complexity) to trade-off effects. Instead,
a lack of growth or even reduction along one (sub-)dimension might simply be functionally
more adequate.2

Different approaches have been proposed to determine the functional adequacy of language
productions. Pallotti (2009) proposed to use native speakers’ language performance as bench-
mark. Similar proposals have been made to better differentiate between proficiency and task
effects (Foster and Tavakoli, 2009; Skehan, 2009) and to quantify the linguistic demands of
tasks (Pallotti, 2019). However, focusing on adequacy in terms of native speaker performance
faces two challenges. First, native speakers can exhibit substantial inter-individual variation
making it difficult to derive a stable baseline (Shadrova et al., 2021). Second, even when a
stable baseline can be obtained, it fails to identify potentially successful alternative strategies
that learners might invent to compensate for a lack of linguistic means that native speakers do
not need to face (see discussion in Pallotti, 2019). Human ratings have been proposed as an
alternative to empirical benchmarks (Kuiken and Vedder, 2022; Pallotti, 2009; Révész et al.,
2014). Recently, Kuiken and Vedder (2017, 2018) introduced a multi-faceted holistic rating
scale to measure adequacy based on task requirements, content, comprehensibility, as well as
coherence and cohesion. It has been successfully applied (with some modifications) in several
empirical studies and across languages (e.g., De Meo et al., 2019; Pallotti, 2017; Révész et al.,
2014), see Kuiken and Vedder (2022) for an overview. Yet, there are so far no large-scale cor-
pora containing functional adequacy ratings that could be used for computational linguistic
research.

2.1.3.3 Cross-lingual variation

Linguistic typology has studied synchronic and diachronic variation in language systems along
the dimension of complexity for decades (for an overview, see Dahl, 2004; Karlsson et al.,
2008). Beyond comparing different languages to each other in terms of their absolute or rela-
tive complexity, language change and the role of language contact is a dominant theme in this
line of research (see Miestamo et al., 2008, and contributions therein). There have been some

2Similar arguments can be made for accuracy and fluency, see Pallotti (2009, p. 597).
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attempts to directly compare the global complexity of languages, for example with measures
from information theory (Dahl, 2004; Ehret, 2018; Ehret and Szmrecsanyi, 2016). However,
quantifying the global complexity of a language in a way that lends itself to a linguistically
meaningful interpretation remains an open challenge (see Section 2.1.1.2). Thus, most cross-
linguistic analyses have focused on local complexity and the comparison of specific functional
domains of grammar that are comparable across languages (Miestamo, 2008, p. 23).

For decades, languages were hypothesized to be equally complex on a global level. The so
called ‘equi-complexity hypothesis’ postulates that reduced complexity in a specific linguistic
domain (e.g., morphology) is compensated through higher complexity in another linguistic
domain (e.g., lexicon), rendering all languages equally complex. All languages were argued
to have the same functional and communicative needs. These needs should determine an
appropriate degree of complexity that no language should fall below or exceed. The equi-
complexity hypothesis has been heavily challenged on methodological and empirical grounds
since the early 2000s (e.g., Karlsson et al., 2008; Kusters, 2008; McWhorter, 2001; Miestamo,
2008). Today, researchers predominantly agree that languages vary considerably in terms of
their complexity, not only in their different linguistic domains but also globally (e.g., Karlsson
et al., 2008; Kusters, 2008; Miestamo, 2008). Beyond language community size (Lupyan
and Dale, 2010; Reali et al., 2014), the degree of language contact and L2 acquisition that a
language is being exposed to have been identified as two important sources of language change
and complexity differences between languages. Specifically, several studies identified high
degrees of language contact and the influence of L2 learners as simplifying influences (Bentz
and Berdicevskis, 2016; Karlsson et al., 2008; Lupyan and Dale, 2010; McWhorter, 2008),
but see De Groot (2008) for an opposing view. Languages that are isolated from simplifying
influences have been argued to become more complex over time (Dahl, 2004; McWhorter,
2001). This is in line with Rescher’s (1998) assumption that the complexity of systems grows
over time.

Cross-linguistic variation is also a relevant concern for complexity research focused on
quantifying learners’ language development and proficiency. Most research on CAF has fo-
cused on English assuming that findings would transfer to other languages (De Clercq and
Housen, 2017, p. 319). However, there has been some evidence of cross-linguistic differences
in the development of learner language (e.g., Brezina and Pallotti, 2019; Kuiken and Vedder,
2012; Martin et al., 2010). To address the question how first and second language develop-
ment in other languages may differ from previous findings for English, two main approaches
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have been explored. There have been several studies focusing on the development of linguis-
tic complexity for languages other than English (e.g., Kuiken and Vedder, 2012; Martin et al.,
2010; van der Slik et al., 2019; Vyatkina et al., 2015). However, the comparison of studies
focusing on different languages is often challenging. In addition to the common obstacles to
study comparisons—such as the use of different measures and differences in task setting or
study populations—comparisons across languages face the additional question of the extent to
which features have been operationalized in a comparable manner or are conceptually compa-
rable. This concern has been addressed through partial replication studies of findings reported
for English (e.g., Rubin, 2021; Vandeweerd et al., 2021) or through multi-lingual research
designs. For example, a series of the cross-lingual developmental variation of morphological
complexity found that the inflectional diversity of English L1 and L2 samples was systemati-
cally lower than the inflectional diversity of Italian (Brezina and Pallotti, 2019) or French (De
Clercq and Housen, 2019) L1 and L2 samples. There is also evidence that the developmental
variation of the morphological diversity in L2 samples is less pronounced and levels off at
earlier developmental stages for English than for morphologically richer languages (Brezina
and Pallotti, 2019; De Clercq and Housen, 2019)

Cross-lingual variation is also an important factor to consider in the context of task ef-
fects, register variation, and functional adequacy (see Section 2.1.3.2, p. 37). Kuiken and
Vedder (2012) found that cognitive task effects on lexical sophistication differed in French
and Italian L2 speech. Functional task factors, too, can be subject to cross-linguistic differ-
ences. As De Clercq and Housen (2017, p. 319) argued, language communities may differ in
their stylistic preferences and rhetorical strategies (see also Fausey and Boroditsky, 2011). A
well-studied example for such differences are different preferences across academic commu-
nities (see e.g., Pallotti, 2009, p. 598). For example, the previously discussed shift towards
high phrasal complexity and a reduction of clausal complexity for English academic language
(Biber et al., 2011, see also Section 2.1.3.2, p. 36) does not generalize to German academic
language. German Bildungssprache (engl. “academic language”) has been characterized on
the syntactic level as highly elaborate in terms of its clausal structures as well as its phrasal
complexity (Hawlik and Sorger, 2017; Stahns, 2016). These cross-lingual differences not
only play a role for SLA complexity research because they question to what degree findings
for English transfer to other languages. They also matter in terms of L1 transfer effects on
L2 productions (De Clercq and Housen, 2017). Against this background, it becomes clear
that more research on cross-lingual variation and its role for language learning is needed. It
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is important to promote complexity research on languages other than English. Research also
needs to facilitate the broad linguistic comparison of languages in terms of local complexity
measures that have been operationalized in a comparable way. This is needed to foster gen-
eralizable insights into the link between complexity and proficiency and to inform language
teaching and learning practice.

2.2 Automatic proficiency assessment

Automatic proficiency assessment seeks to approximate a learners’ proficiency by analyzing
a freely produced language sample (Vajjala, 2018; Yannakoudakis and Cummins, 2015). The
assessment can be holistic or focus on specific dimensions of proficiency (such as vocabu-
lary knowledge, grammatical control, or functionally adequate language use). To quantify the
proficiency estimate, automatic proficiency assessment utilizes a predefined rating scale. This
scale may quantify a large range of proficiency (e.g., beginning to advanced L2 proficiency)
or focus on performance nuances in a more narrowly defined proficiency range (e.g., grades,
fail/pass). This section provides a focused background on automatic approaches to profi-
ciency assessment in computational linguistics. It thus complements Section 2.1.3.1, which
discusses SLA research on developmental variation of complexity. Computational linguistic
work on automatic proficiency assessment typically assesses prompt-based writing (Hussein
et al., 2019; Vajjala, 2018), even though there has been some limited work on the assessment
of speech data (Bhat and Yoon, 2015; Xie et al., 2012; Zechner et al., 2009). In view of this
strong focus on written language, the terms Automatic Text Scoring (ATS) or—even more
narrowly—Automatic Essay Scoring (AES) are frequently used in computational linguistics.
In the following, I will use the term ATS instead of automatic proficiency assessment to follow
these terminological conventions. The remainder of this section is structured as follows. I will
briefly elaborate on the term ‘proficiency’ as it is used in the context of language learning,
teaching, and assessment (Section 2.2.1). I will then describe the central application domains
for ATS (Section 2.2.2) before focusing on the current methods and trends in ATS research
(Section 2.2.3).

2.2.1 What is language proficiency?

In SLA complexity research, the notion of ‘language proficiency’ is typically not—or only
loosely—defined despite its relevance for developmental variation and its use as proxy for
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language development in cross-sectional studies (see Section 2.1.3.1). Generally, it is used
to quantify the current state of someone’s acquisition process in relation to a functional goal
or a reference standard (e.g., Peña et al., 2021, p. 89). It is thus a latent variable that cannot
be directly observed but than can be approximated through language performance. It differs
from the concept of ‘language development’ which views the process of language acquisition
from a longitudinal perspective. In the few cases where proficiency is explicitly defined in
SLA complexity studies, it is viewed from a general perspective without elaborating on its
(sub-)dimensions or referencing existing theoretical frameworks. For example, proficiency
has been referred to as “overall competence and ability to perform in L2” (Thomas, 1994,
p. 330, Footnote 1), see also Bulté and Housen (2014).

In contrast, in language testing research, several theoretical models have been proposed to
define language proficiency and its (sub-)dimensions. One influential contribution is the the-
oretical framework of ‘communicative competence’ proposed by Canale and Swain (1980)
and extended by Canale (1983). It considers not only learners’ command of vocabulary and
grammar but also their sociolinguistic, strategic, and discourse competence. Extending on
this notion of communicative competence, Bachman and Palmer (1996) proposed a model
of language proficiency that focused on test performance. It considers not only learners’
grammatical, pragmatic, and strategic competence but further incorporates the influence of
learners’ individual characteristics (e.g., topic knowledge, age, gender, L1s, L2s). Many more
theoretical frameworks have been proposed in language testing research (for overviews, see,
e.g., Piggin, 2012). The various theoretical models of language performance differ in how
they weigh the role of linguistic knowledge, processing ease, and pragmatic or meta-linguistic
knowledge for language proficiency. Hulstijn (2011) argues that linguistic knowledge and
processing ease should be considered at the core of language proficiency. Meta-linguistic and
strategic competencies are peripheral dimensions of language proficiency because they require
linguistic knowledge but not vice versa (Hulstijn, 2011, pp. 238–239). This is in line with the
focus of SLA research on CAF as dimensions of language performance while accounting for
the dimension of functional adequacy discussed previously (Section 2.1.3.2, p. 2.1.3.2).

Within educational contexts, language proficiency is commonly expressed in terms of lev-
els. This provides a convenient way to quantify proficiency for language teaching and as-
sessment. In language teaching, it allows to group learners of similar proficiency together
and provide them with a matching curriculum. Similarly, in language assessment, the no-
tion of proficiency levels allows to match test takers with tests of appropriate difficulty and
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avoid ceiling or floor effects that would invalidate the assessment. However, proficiency lev-
els are primarily practical categories. They are usually not intended as conceptually grounded
components of a theoretical proficiency framework. “Any attempt to establish ‘levels’ of pro-
ficiency is to some extent arbitrary [...] However, for practical purposes it is useful to set up a
scale of defined levels to segment the learning process for the purposes of curriculum design,
qualifying examinations, etc” (Council of Europe, 2001, p. 17). With the Common European
Framework of Reference for Languages (CEFR), the Council of Europe (2001) has defined
one of the most important frameworks for the definition of language proficiency levels. It
defines a vertical scale of six consecutive proficiency levels which are assumed to align with
the developmental trajectory of learners (Council of Europe, 2001, p. 17). Basic learners are
distinguished into the levels A1 (breakthrough), A2 (waystage), independent users into the
levels B1 (threshold) and B2 (vantage), and proficient users into the levels C1 (effective op-
erational proficiency) and C2 (mastery), see Council of Europe (2001, pp. 33–36). Note that
these levels are intended for L2 learners. The level C2 is “not intended to imply native-speaker
or near native-speaker competence” (Council of Europe, 2001, p. 36).

Each CEFR level is further specified along a horizontal dimension. This dimension con-
siders communicative language competence (divided into linguistic, sociolinguistic, and prag-
matic components as in Canale and Swain, 1980) and language activities (including reception,
production, interaction, and mediation). Language activities are designed to allow users to
perform their communicative competencies across usage contexts (public domain, personal
domain, educational domain, occupational domain) by using different strategic competencies
(Council of Europe, 2001, pp. 13–16). Language development is assumed to occur both in the
vertical and the horizontal dimension of the CEFR scale (Council of Europe, 2001, p. 17). This
implies that learners at the same CEFR level can exhibit different proficiency profiles in terms
of their breadth and width along the vertical and horizontal dimension. Some researchers have
criticized that the CEFR levels should be more clearly separated from the notion of L2 de-
velopment because they do not reflect empirically grounded developmental sequences (e.g.,
Alderson, 2007; Deygers, 2021; Hulstijn, 2007; Wisniewski, 2017). Also Hulstijn (2011) crit-
icizes the confound of proficiency and development in the CEFR scale. He argues that the
CEFR levels do not define developmental trajectories because the B2 to C2 levels are not at-
tainable for all L2 learners: “A close examination of the definitions of the B2, C1, and C2
levels in the activity and the competence scales reveals that performance at these higher levels
requires higher intellectual skills” (emphasis his, Hulstijn, 2011, p. 241) and are associated
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with higher education. Hulstijn further argues that “many adult native speakers will never
attain the highest CEFR levels (C1 and C2)” for the same reasons (Hulstijn, 2011, p. 241, see
also pp. 240–241 for full discussion).

Multiple frameworks advocate for the distinction of two types of language proficiency: one
linked to basic or conversational language use and one (typically written) linked to sophis-
ticated or academic language use (e.g., Gee, 1990; Gibbons, 1991). Because the former is
typically associated with spoken language and the latter with predominantly with written lan-
guage, Cummins (2000) draws also parallels between these frameworks and work on register
differences between spoken and (academic) written language (e.g. by Biber, 1986). One of
the most prominent proposals making this distinction is Cummins’ (1997; 2008) who distin-
guishes between Basic Interpersonal Communication Skills (BICS) and Cognitive Academic
Language Proficiency (CALP). BICS refer to the language skills that are acquired through
social interactions outside of academic contexts. BICS are predominantly oral and native
speakers reach high proficiency in this dimension at an early age. In contrast, CALP refers
to written and spoken academic language proficiency. While L2 or L1 speakers may develop
linguistic knowledge associated with CALP prior to entering school, Cummins assumes that
CALP begins to manifest as a separate dimension of language proficiency in the first years of
schooling and continues to develop through exposure to academic contexts (Cummins, 2000,
2008). The distinction of BICS and CALP was originally made to explain seemingly contra-
dictory observations in early L2 acquisition and bilingual pupils (for overview, see Cummins,
2008) but has also been used in language teaching research to discuss native speakers’ early
academic language acquisition in school (e.g., Weiss et al., 2021).

Hulstijn (2011, 2015) proposed a similar proficiency distinction to provide a unified frame-
work of language proficiency that can be applied to L2 contexts while also accounting for
individual differences in native speakers’ language command (Hulstijn, 2011, p. 229). Hul-
stijn defines language proficiency as “the extent to which an individual possesses the linguistic
cognition necessary to function in a given communicative situation, in a given modality (lis-
tening, speaking, reading, or writing)” (Hulstijn, 2011, p. 242). Before discussing the two
forms of proficiency distinguished in this framework, I briefly contextualize the notion of ‘lin-
guistic cognition’. It is a two-dimensional construct, consisting of a) explicit and implicit
phonological, morphological, lexical, syntactic, semantic, and pragmatic knowledge as well
as b) the ease of processing linguistic information (Hulstijn, 2011, p. 242). Linguistic knowl-
edge is at the heart of this notion of linguistic cognition but it also encompasses strategic and
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meta-cognitive competencies as a peripheral component (Hulstijn, 2011, p. 242). Hulstijn dis-
tinguishes between two types of linguistic cognition: Basic Language Cognition (BLC) and
Higher Language Cognition (HLC). BLC refers to the linguistic knowledge and processing
skills shared between native speakers independent of their education, literacy, or age (except
the first years of life). It focuses on spoken language, everyday communicative needs, and fre-
quent vocabulary and morpho-syntactic constructs. It is similar to Cummins’s notion of BICS
but Hulstijn points our that his notion of BLC is more fine-grained because Cummins’s frame-
work focuses on CALP (Hulstijn, 2011, pp. 232–233). HLC (similar to Cummins’s CALP)
refers to the additional knowledge and processing skills needed to use and comprehend less
frequent vocabulary and morpho-syntactic constructs. HLC is used for academic language in
spoken or written form in private, academic, or professional settings. Hulstijn (2011, 2015) as-
sumes that individual differences in native speakers’ language proficiency are more prevalent
in HLC than in BLC (Hulstijn, 2011, pp. 230–232). Differences in L1 and L2 performance
are assumed to be most pronounced in terms of BLC. In fact, Hulstijn (2011, p. 242) states
that “L2 learners can be as proficient in HLC as L1-ers of the same intellectual, educational,
professional, and cultural profile, despite some deficiencies in their L2 BLC.” Hulstijn’s and
Cummins’s distinctions between basic, communicative language proficiency and academic
language proficiency are particularly useful for this thesis, for example in Weiss and Meurers
(2019a, Section 5.2.3). They facilitate not only the discussion of advanced academic language
development in native speakers and individual differences in their reception of language. They
also account for some of the register and task factors on language performance along the di-
mension of complexity that were discussed in Section 2.1.3.2.

2.2.2 Application domains

ATS is one of the most common applications of computational linguistics in education (Ke
and Ng, 2019). In this section, I distinguish the three main application domains of ATS in ed-
ucation contexts. These are i) summative assessment, ii) formative feedback, and iii) research
on writing quality. For a systematic review focused on ATS for German, see Section 4.2.

2.2.2.1 Summative assessment

The most straightforward and common application domain of ATS is the assessment of lan-
guage proficiency or writing quality. This application focuses on evaluating the writing prod-
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uct instead of the writing process (for a discussion, see Quinlan et al., 2009, pp. 3–5). ATS
seeks to approximate human ratings of task performance or proficiency in open answer for-
mats. These are commonly essays, hence the commonly used, more narrow term Automatic
Essay Scoring (AES). However, also short answers can be assessed using ATS. Here, the focus
typically lies on the assessment of the answer contents rather than the language use (Burrows
et al., 2015). Short answer assessment and AES are therefore using very different methods
despite both being types of ATS. Open answer formats—also known as constructed response
items (Chen et al., 2016)—are a central components in many high-stakes standardized lan-
guage proficiency tests such as the GRE or TOEFL (Crossley et al., 2016b; Vajjala, 2018).
However, human expert ratings are time-consuming and costly. They are also prone to several
biases (e.g., severity/leniency, scale shrinkage, inconsistency, halo effects, stereotyping, per-
ception difference, and rater drift; cf. Zhang, 2013, p. 2), see also, e.g., Kassim (2011); Myford
and Wolfe (2003). To alleviate these issues, several quality standards have been introduced,
including standardized scoring methods and double-scoring (McClellan, 2010; Quinlan et al.,
2009). This in turn has further raised costs associated with human ratings.

This has made ATS a crucial tool in language instruction and large-scale language assess-
ments and several professional ATS systems have been on the market since the 1990s. For a
list of early systems, see Attali and Burstein (2006, p. 3) or Chodorow and Burstein (2004,
p. 1). For a more recent overview of ATS systems, see Hussein et al. (2019). In practice, ATS
systems are not recommended to be used in high-stakes testing without human supervision
(Powers et al., 2002; Zhang, 2013) because of their sensitivity to adversarial input (Powers
et al., 2002) and their insensitivity to important aspects of writing such as originality and style
(Attali, 2007, p. 1). However, they can substitute human raters in large-scale, low-stakes con-
texts (Chodorow and Burstein, 2004, p. 6; Zhang, 2013, p. 6), for example for writing training
or to match learners with competence-adaptive learning materials (Chen and Meurers, 2019).
They have also been used for decades in high-stakes contexts in two ways. First, to reduce the
number of human expert raters needed for double-scoring in language assessments by replac-
ing one human rater (Powers et al., 2002; Quinlan et al., 2009; Vajjala, 2018; Zhang, 2013).
This is known as ‘contributory scoring’ (Chen et al., 2016, p. 3). Second, to control the qual-
ity of human ratings (Monaghan and Bridgeman, 2005; Wang and von Davier, 2014; Zhang,
2013). This can for example be achieved by using ATS systems to flag essays for which hu-
man ratings and automatic ratings deviate above a predefined threshold, so that they can be
inspected by an additional human rater. This is known as ‘confirmatory scoring’ (Chen et al.,
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2016, p. 3).

One of the most prominent and established ATS systems is the e-rater Scoring Engine (short:
e-rater; Attali and Burstein, 2006, https://www.ets.org/erater). e-rater is a proprietary
AES system developed by the Educational Testing Service (ETS). It has been used for large-
scale assessments since 1999 (Chen et al., 2016, p. 2) in the Graduate Management Admission
Test (Attali and Burstein, 2006, p. 4; Chodorow and Burstein, 2004, p. 6). Since then, it has
been used repeatedly for contributory and confirmatory scoring in high-stakes testing (Chen
et al., 2016; Ramineni and Williamson, 2018) and as stand-alone rater in low-stakes contexts
in schools (Chodorow and Burstein, 2004, p. 6). e-rater is a feature-based machine learning
system (Attali and Burstein, 2006; Chen et al., 2016) that focuses on essay scoring. It provides
holistic scores as summative feedback, but has also a formative feedback component (Quinlan
et al., 2009, p. 5). e-rater has been designed to make predictions based on eight to 12 (macro-
)features (Chen et al., 2016, p. 3; Powers et al., 2002, p. 5) that cover meaningful components
of human writing quality estimates while avoiding pure surface-based measures of text length
(Burstein and Chodorow, 1999, p. 69). These features are partially assessed through aggregat-
ing several so called sub-features and micro-features. They focus on measuring essays’ struc-
ture, organization, and content (Powers et al., 2002, p. 5) through a combination of syntactic,
lexical, and discourse complexity features, as well as accuracy measures and prompt-specific
vocabulary and topic features (Attali and Burstein, 2006, p. 11; Chen et al., 2016, p. 3; Powers
et al., 2002, p. 5). The system relies on a small set of aggregate features that can be mean-
ingfully related to important dimensions of writing quality to promote the face validity and
interpretability of scores (Attali and Burstein, 2006; Quinlan et al., 2009) as well as to support
formative feedback along meaningful dimensions (Attali and Burstein, 2006).

Additionally, e-rater utilizes a separate analysis component that seeks to identify adversar-
ial essays (Attali and Burstein, 2006, p. 12; Powers et al., 2002, p. 18) based on measures
of essay-prompt overlap (to find off-topic essays) and intra-text repetition (to find paragraph
duplication). When applied to a new assessment context, e-rater can be used as a generic
cross-prompt system or be adapted to the new application domain (Attali and Burstein, 2006;
Quinlan et al., 2009) either through data-driven or theory-driven methods (Attali and Burstein,
2006; Powers et al., 2002). Data-driven domain adaptation relies on learning feature weights
from domain-specific training data. Theory-driven domain adaptation relies on human ex-
pert judgments regarding the relevance of the individual features for the given rating context.
The system also supports hybrid approaches, for example by constraining data-driven feature
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weights based on theoretical considerations (Attali and Burstein, 2006). In training, e-rater is
designed to prioritize precision over recall (Quinlan et al., 2009, p. 14). e-rater has been shown
to provide robust and reproducible results, with adjacent accuracies ranging between 90�95%
(Chodorow and Burstein, 2004, p. 6; Powers et al., 2002, p. 9). It has also been evaluated in
several validation studies (Attali, 2007; Attali and Burstein, 2006; Chodorow and Burstein,
2004; Powers et al., 2002; Quinlan et al., 2009), testing for example its robustness against
adversarial input (Powers et al., 2002) and its independence from surface text characteristics
such as essay length (Chodorow and Burstein, 2004).

Open answer formats are also recognized in other educational contexts as valuable instru-
ments for assessing higher levels of understanding and advanced competencies that cannot be
readily measured with closed answer formats (e.g., fill-in-the-blank, yes/no questions, mul-
tiple choice questions), see Esses and Maio (2002); Schuwirth and Van Der Vleuten (2004);
Smith et al. (2019), especially in humanities. Also in these application contexts, ATS is being
promoted as a resource-efficient and robust alternative for assessment contexts in which closed
answer formats are unsuited and human expert ratings not feasible (Hussein et al., 2019; Uto,
2021; Vajjala, 2018). However, outside of language assessment and testing contexts, content-
based ATS has been much more prominent, for example in form of short answer assessment
(for an overview, see Burrows et al., 2015; Ziai, 2018). Content-based ATS is less focused
on aspects of language use and performance and often use reference answers as gold standard
(Padó, 2016; Vajjala, 2018). For some tasks or advanced proficiency levels, the functional ade-
quacy of language use has been considered as an additional performance dimension outside of
language learning, too (e.g., Frey, 2020a; Ludwig et al., 2021). Bertram et al. (2021) recently
explored the feasibility of a hybrid system that assesses language productions in terms of their
content and their functionally adequate language use for history education.

To a lesser degree, ATS systems for the assessment of writing quality have also been pro-
posed outside of education. Examples are content quality assessment for collaborative writing
platforms (mostly Wikipedia, see Hasan Dalip et al., 2009; Shen et al., 2017, 2019) or the
automatic review of scientific papers (Deng et al., 2020; Leng et al., 2019; Lin et al., 2021).
These approaches are methodologically very close to summative ATS. However, they can also
include aspects of ARA (Section 2.3) depending on the degree to which readability is a com-
ponent of writing quality for the specific evaluation context. There has been relatively little
work exploring this connection between text quality and readability, but see Chen and Meurers
(2019) for an approach focused on language learning. Others have investigated links between
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readability and scientific or economic success (Ashok et al., 2013; McCannon, 2019; Shelley
and Schuh, 2001).

2.2.2.2 Formative feedback

While the previously discussed use of ATS systems focused on language assessment, ATS
can also be used in language learning and teaching. Unlike human raters, ATS systems can
provide learners with direct formative feedback while writing to support their writing process
(Zhang, 2013), see Hussein et al. (2019) for a survey of available systems. These types of ATS
systems are sometimes referred to as Automatic Writing Evaluation (AWE) systems to better
distinguish them from systems focusing on summative feedback and assessment (Crossley,
2020, p. 416). AWE systems have also been embedded into intelligent tutoring systems, for
example Writing-Pal (Roscoe et al., 2014) which additional to writing practice with feedback
also provides targeted instructions on writing strategies. Formative writing feedback in AWE
systems focuses on writing as a process. It seeks to foster the accuracy, cohesion, and overall
discourse structure of writing, as well as promoting its functional adequacy in form of task-
orientation and register awareness (Crossley, 2020; Hussein et al., 2019). To do so, AWE
systems provide ratings on sub-dimensions of writing quality and proficiency instead of or
additional to holistic ratings (Quinlan et al., 2009, p. 5). Several researchers have pointed out
the relevance of AWE for online learning and teaching—especially for Massive Open Online
Courses (MOOCs)— for learners (Vajjala, 2018, p. 80) and educational data mining (Crossley
et al., 2015, p. 204).

The eRevis system (Zhang et al., 2019) is an example for such an AWE. It focuses on
promoting the use of text evidence on argumentative source-based writing for young learners
(Wang et al., 2020). It assesses evidence use in terms of four features which were designed to
approximate the ‘text evidence’ rating rubric for Response-to-Text Assessment (Wang et al.,
2020, p. 4). The features consists of the total word count as well as three features that
compare students’ vocabulary with the source material. Relevant vocabulary is identified using
skip-grams and topic modeling on the source data (see Rahimi and Litman, 2016; Zhang et al.,
2019). These features aim to quantify how much text-based evidence students used as well
as the vocabulary specificity and evidence density of the text (for details, see Rahimi and
Litman, 2016; Rahimi et al., 2014; Zhang et al., 2019). eRevis has been shown to perform
close to human raters in terms of inter-rater reliability (IRR) on a corpus of source-based
writing essays of 5th and 6th grade students (Correnti et al., 2020). Correnti et al. (2020)

49



Chapter 2 Background

further externally validated the model’s predictions by comparing the consistency between the
automatic rating and other performance scores of students. Based on its assessment, eRevis
provides students with four formative feedback levels, prompting students to provide more
evidence, details, explanations, or connections. These four messages are paired into three
feedback levels. Low scoring essays are prompted to focus their revision on incorporating
more evidence and details. Medium scoring essays are prompted to provide more details
and explanations. High scoring essays are advised to focus their revision on more elaborate
explanations and connecting arguments further. The feedback levels are chosen based on
a feature-driven feedback selection algorithm (for details, see Zhang et al., 2019). Wang
et al. (2020) piloted the effectiveness of the feedback for students in 5th and 6th grade. They
report that students’ argumentative essays mostly improved based on revisions prompted by
the eRevis system even though the total improvement was small.

Stevenson and Phakiti (2014) conducted a survey on AWE systems and the effectiveness
of their formative feedback. They found only modest evidence that AWE systems and their
automatic feedback substantially improve writing products beyond reducing the number of
errors. Stevenson and Phakiti (2014) reported several methodological weaknesses and too
optimistic interpretations of mixed results. They advocate for more research on AWE systems
and their effectiveness, focusing on more controlled experimental settings and the comparison
of the impact of automatic feedback with teacher feedback. More research is also needed on
how to obtain robust and valid quality estimates along specific (sub-)dimensions of proficiency
(Ke and Ng, 2019; Uto, 2021).

2.2.2.3 Writing quality research

Work on ATS has also facilitated research on writing quality and language proficiency. This
holds especially for feature-based approaches to ATS (see Section 2.2.3). Studies on how
to approximate human judgments of writing quality and language proficiency have not only
yielded insights into the link between language development, human proficiency or quality
ratings, and linguistic text characteristics (Crossley, 2020, p. 416), which as been identified
as an important research objective in SLA complexity research (Bulté and Housen, 2014,
p. 43). They have also promoted the design of systems that automatically extract complexity
and accuracy measures such as Coh-Metrix (Graesser et al., 2004; McNamara et al., 2010a),
L2SCA (Lu, 2010), TAACO (Crossley et al., 2016c), or CTAP (see Section 3.3 Chen and
Meurers, 2016; Weiss et al., 2021). More details on such systems can be found in this thesis
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in Section 3.1.1. These—or similar tools—have in turn been used in research on writing
quality (for an overview, see Crossley, 2020) and research on L2 development (e.g., Crossley
et al., 2010a; Crossley and McNamara, 2014; Crossley et al., 2011a; Lu, 2011, 2012; Yoon,
2018; Yoon and Polio, 2017). For a more detailed discussion on this line of research, see
Section 2.1.3.

2.2.3 Current methods and trends

Research on ATS dates back to the 1960s (Page, 1966, 1968; Whalen, 1971) with strong ties
to writing quality and language learning research (Crossley, 2020). Advances in statistical
NLP have in the early 2000s further promoted the development of increasingly sophisticated
ATS systems. Most research on ATS has focused on English (Crossley, 2020; Vajjala, 2018).
Despite research on ATS for other languages (e.g., Berggren et al., 2019; Caines and Buttery,
2020; Hirao et al., 2020; Östling et al., 2013; Weiss and Meurers, 2019b), real life applications
of ATS—especially in language testing—are near-exclusively available for English (Vajjala,
2018, p. 82). In the following, I will discuss the current methods and trends in supervised ATS
in terms of machine learning tasks and evaluation metrics (Section 2.2.3.1) as well as rating
scales and corpora (Section 2.2.3.2) used. I then compare neural and feature-based approaches
and discuss the type of linguistic features used for ATS (Section 2.2.3.3).

2.2.3.1 Machine learning tasks and model evaluation

The majority of machine learning-based ATS approaches uses supervised methods (Ke and
Ng, 2019) and relies on human judgments of proficiency or text quality as gold standard la-
bels for training (Crossley et al., 2016b; Vajjala, 2018). For two notable exceptions, see Chen
et al. (2010) and De and Kopparapu (2011). Supervised ATS is typically framed as a classi-
fication or regression task (Borade and Netak, 2020; Hussein et al., 2019; Ke and Ng, 2019)
but some studies have also used (pair-wise) ranking (Yannakoudakis et al., 2011). The use of
classification algorithms in ATS requires a brief explanation, as they disregard the inherently
ordered nature of rating scales. The choice of machine learning algorithm is closely linked
to the properties of the proficiency scale on which a model is trained. Proficiency ratings are
typically ordinal or discrete numerical data with a limited range (such as 1–6 or A–F). Even
when data is represented in numerical form, they may be ordinal in the sense that adjacent
rating categories are not guaranteed to be equidistant. Consider for example a 4-point Likert
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scale distinguishing between ‘very good’ (1), ‘good’ (2), ‘medium’ (3), and ‘insufficient’ (4).
The difference that human raters make between 1 (‘very good’) and 2 (‘good’) can be smaller
than the difference between 3 (‘medium’) and 4 (‘insufficient’). These properties of profi-
ciency ratings make classification algorithms a popular alternative to regression algorithms.
Similarly, pair-wise ranking approaches avoid the assumption of equidistance, but at the cost
of not being able to assign an absolute performance score.

Depending on the choice of machine learning algorithm, different evaluation metrics are
used. Regression models are typically evaluated in terms of correlation coefficients often
in form of Pearson correlation or Spearman’s rank correlation (Yannakoudakis and Cummins,
2015). However, these measures only indicate if the predicted scores and gold standard ratings
are in a linear relationship; they do not quantify the actual agreement. They are thus ‘mea-
sures of association’ not ‘measures of agreement’ as Yannakoudakis and Cummins (2015) put
it. Commonly used agreement estimates for regression-based systems are root mean squared
error (RMSE) and mean absolute error (MAE). Classification approaches are typically eval-
uated in terms of accuracy (Vajjala, 2018) as well as precision, recall, and f-score (Borade
and Netak, 2020; Vajjala, 2018). Many studies report not only the exact accuracy of their sys-
tem but also its ‘adjacent accuracy’ to account for the fact that classification errors between
adjacent levels are less severe than classification errors between more distant levels (see for
example Crossley et al., 2015, 2016b; Vajjala, 2018). A mathematically more formal way of
accounting for the different weighting of classification errors is the use of weighted Cohen’s
kappa, typically in form of quadratic weighted Cohen’s kappa. Cohen’s kappa (Cohen, 1960)
is a metric of chance-corrected IRR which is typically used to estimate the agreement between
human annotators—or in the case of ATS systems between the automatic and the human rat-
ing. Its weighted version (Cohen, 1968) penalizes certain disagreements (for example between
related or adjacent labels) less severely than others. Using measures of IRR to evaluate ATS
also facilitates the comparison between human raters and ATS systems (as done for example
in Wahlen et al., 2020, p. 2). Human IRR is often used as an important benchmark in the eval-
uation of ATS systems (Attali and Burstein, 2006; Quinlan et al., 2009). This acknowledges
that human ratings of open answer formats—the systems’ gold standard—are more variable
than ratings of closed answer formats (as discussed in Section 2.2.2, see also for a more de-
tailed discussion Quinlan et al., 2009, pp. 14–15). For these reasons, Cohen’s kappa is often
used to evaluate ATS approaches (Borade and Netak, 2020) and has been recommended in
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Figure 2.1: Robustness, annotation validity, and model validity

challenges such as the Automated Student Assessment Prize3. For an in-depth discussion of
its mathematical properties in contrast to accuracy and correlation metrics, see Yannakoudakis
and Cummins (2015).

The evaluation metrics discussed here focus on the ‘robustness’ of predictive models, that
is how well they predict human scores used as training labels. Another important aspect to
consider is ‘construct validity’, that is, how well the latent target construct (in this case profi-
ciency level) is being approximated (Quinlan et al., 2009, p. 2). This is a particularly important
concern for educational and high-stakes contexts. For supervised machine learning, construct
validity is essential for two estimates: the model’s prediction (henceforth ‘model validity’) and
the human annotation (henceforth ‘annotation validity’), see Figure 2.1. Annotation validity
refers to the agreement between the latent proficiency level a and the annotated reference
proficiency level used for training a model a 0. Model validity refers to the agreement between
a and the proficiency level predicted by the ATS model a 00. In supervised machine learning
settings, model validity depends (among other factors) directly on the validity of the gold stan-
dard annotations used for training, making a 00 dependent on a 0. If a 0 provides an insufficient
approximation of the underlying latent variable, the model cannot learn a valid characteriza-
tion of the latent variable from the annotations. This makes it crucial to question the quality
of training labels when assessing the quality of a model that aims to predict a latent variable.
There is abundant work on inter-rater reliability and the construct validity of human ratings
from language testing and writing quality research. This includes, for example, research in-
vestigating the validity of the CEFR scale (Hulstijn, 2014; Wisniewski, 2011, 2017), studies
comparing language development and human proficiency ratings (Crossley and McNamara,
2014; Crossley et al., 2016a), and experiments testing human raters’ sensitivity to linguistic
differences in essays (Vögelin et al., 2019; Weiss et al., 2019).

3https://www.kaggle.com/competitions/asap-aes/overview/description
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There has also been considerable work on testing model validity of proprietary systems
such as e-rater (see e.g., Attali, 2007; Attali and Burstein, 2006; Powers et al., 2002; Quin-
lan et al., 2009), but it is less commonly controlled for in research contributions (Ke and Ng,
2019; Uto, 2021). Quinlan et al. (2009) advocate for basing the ATS system on features that
broadly measure construct relevant aspects of writing quality of proficiency (Quinlan et al.,
2009, p. 23), see also Attali and Burstein (2006) for a similar argument. This addresses two
issues simultaneously: construct under-representation—not accounting for relevant aspects of
writing quality may lead to the system underestimating the true essay quality—and construct
irrelevance—relying on construct-irrelevant characteristics of writing such as text length may
cause the system to overestimate essay quality—(Powers et al., 2002, p. 3). A related val-
idation strategy is to check model predictions for their robustness against adversarial input,
such as off-topic or nonsensical essays as well as text repetitions (for a discussion of adver-
sarial strategies and their impact on ATS systems, see Powers et al., 2002). A model that
suffers neither from construct-irrelevance nor construct under-representation should provide a
valid representation of the underlying construct and therefore also yield robust performance
on attempts to cheat the system (Powers et al., 2002, p. 3). Finally, several researchers have
proposed to focus more on extrinsic evaluation methods to ensure models’ construct validity.
Attali and Burstein (2006) proposed to compare the consistency between model predictions
and other estimates of writers’ proficiency, such as scores for other essays written by the same
person for different prompts (Attali and Burstein, 2006, p. 5), see Correnti et al. (2020) for
a similar argument. Ke and Ng (2019) proposed to conduct more user studies. Uto (2021)
suggested to strengthen ties between research in ATS and testing theory. More research on
these and similar strategies is needed to ensure the validity and robustness of ATS systems
(Ke and Ng, 2019; Powers et al., 2002; Uto, 2021).

2.2.3.2 Data resources and generalizability

Seeing that most approaches to ATS are supervised, work in ATS has been shaped by the avail-
ability constraints of suitable labeled corpora. The number of sufficiently large corpora with
gold standard proficiency estimates is limited (Ke and Ng, 2019; Vajjala, 2018), especially
for languages other than English. Learner corpora have become an increasingly important
resource for ATS that helps to alleviate this limitation (Vajjala, 2018, p. 80). In this context,
researchers have started to train ATS models on meta information regarding learners’ course
levels rather than human expert ratings. Course levels have been argued to be suitable proxies
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for L2 proficiency ratings in SLA complexity research, too (Wolfe-Quintero et al., 1998, p. 9),
even though they result in less homogeneous characterizations of proficiency than expert rat-
ings (Ortega, 2003, p. 502; Verspoor et al., 2012, pp. 243–244). For underage learners, also
age is sometimes used as proxy of proficiency (e.g., De Clercq and Housen, 2017; Xanthos and
Gillis, 2010). The modest number of suitable training data also imposes limitations in terms
of rating scales. Most available corpora provide holistic proficiency scales but not ratings
along relevant sub-dimensions of proficiency (Ke and Ng, 2019), such as grammar control,
accuracy, functional adequacy, coherence, or persuasiveness. This restricts work on ATS for
sub-dimensions of proficiency which is especially relevant for AWE systems and formative
feedback (Uto, 2021, p. 461).

The limited amount of data hinders cross-corpus testing and promotes prompt-specific ATS
models because most corpora and data sets elicit language data through a relatively narrow
range of prompts (Vajjala, 2018, p. 80). Cross-corpus generalizability is an important perfor-
mance marker of machine learning models. Predictive models are designed to be applied to
unseen data from a predefined application domain to solve a specific task—in this case ATS.
To test if a model performs well in one domain, it has to be evaluated on test data that is repre-
sentative for that domain. Although testing a model on a single test set is a common procedure,
it is generally preferred to test it on multiple independent data sets that are representative for
the intended application domain. A prerequisite for this is that multiple independent, labeled
data sets are available that are representative for an application domain. As discussed above,
this is often not the case for ATS, especially for languages other than English.

Cross-prompt and cross-domain generalizability are related constructs and both desirable
qualities of machine learning models. Cross-domain generalizability refers to the robust per-
formance of a model on data from another (but typically related) application domain (Maniyar
et al., 2020). Cross-prompt (or cross-task) generalizability refers to the robust performance of
a model on data from the same application domain but elicited based on another input prompt
or task. In ATS, it is in practice most important to be able to use a model for rating texts
that were elicited using new prompts (Ke and Ng, 2019; Uto, 2021). This is a particular con-
cern seeing that task contexts are relevant components of many proficiency frameworks (see
Section 2.2.1). Furthermore, source materials and tasks have been shown to affect language
performance (in terms of the CAF triad, see Section 2.1.3.2). The most common solution to
this challenge has been to focus on prompt-specific ATS models which may generalize across
corpora based on the same prompt but are not tested—or intended to be used—across prompts
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(Phandi et al., 2015; Uto, 2021). In practice, this is a valid—and in fact the preferred (Ke
and Ng, 2019)—approach when designing a system for a well-defined and stable application
context in which the task prompt remains constant and is used to elicit language samples
from many different learners. To support ATS for less well-defined application domains and
to address the lack of labeled training data (Uto, 2021), some work has been dedicated to
training cross-prompt models (Uto, 2021) and cross-domain testing (Ke and Ng, 2019). For
this, several methods have been explored, such as multi-domain learning—that is training on
data from multiple domains (Maniyar et al., 2020)—for example using the data from the Au-
tomatic Essay Scoring Competition (Kaggle, 2012). Furthermore, researchers have worked
on domain adaptation (e.g., Phandi et al., 2015) and the identification of less task-sensitive
features (e.g., Zesch et al., 2015). The latter also has valuable implications for research on
SLA complexity and writing quality research. Vajjala (2018) explored a multi-corpus study
design to compare feature informativeness and feature weights across corpora using differ-
ent prompts. In contrast to a cross-corpus study, her multi-corpus study compared different
prompt-specific models to understand which insights for writing quality research can general-
ize across prompts and which are domain-specific. However, more research on cross-prompt
as well as on cross-domain models for ATS is needed (see also Crossley, 2020).

2.2.3.3 Neural and feature-based approaches

Feature-based machine learning approaches have a long tradition in ATS. However, over
the last decade neural network-based approaches have become increasingly popular (for an
overview, see Hussein et al., 2019; Uto, 2021). As with other computational linguistic appli-
cations, neural machine learning approaches have shown to achieve SOTA results in ATS with-
out requiring explicit feature engineering. The absence of explicit feature encoding has been
argued to be both an advantage and a disadvantage. While feature engineering is resource-
and time consuming (Hussein et al., 2019; Uto, 2021), it makes the prediction of ATS models
more interpretable. Neural approaches yield little insights for research on writing quality and
SLA complexity and can be less readily used to inform formative feedback in AWE (Crossley,
2020; Uto, 2021). This continues to be true despite recent efforts to link neural ATS predic-
tions with interprerable text characteristics (e.g., Dong and Zhang, 2016). In practice, this lack
of transparency also reduces the applicability of ATS systems in high-stakes assessments. Au-
tomatic scoring must be comprehensible, transparent and communicable (Attali and Burstein,
2006, p. 6; Powers et al., 2002, p. 2; Zhang, 2013, p. 13). This not only ensures that the va-
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lidity of a system can be properly assessed (Attali and Burstein, 2006, p. 6). It also promotes
acceptance of automatic scoring among users, which is important in light of the persistent crit-
icism and skepticism regarding the use of ATS in practice (for details, see Attali and Burstein,
2006; Seifried et al., 2016). Furthermore, neural approaches typically require large amounts
of data which are not available for many languages other than English or specific scoring di-
mensions (Ke and Ng, 2019). Thus, feature-based approaches continue to be relevant for ATS
alongside neural approaches.

Feature-based ATS approaches have utilized a broad range of textual features that can be
connected to the CAF triad and the complexity domains discussed in Section 2.1.2. Generally,
text length features have been found to be successful surface level predictors of proficiency and
writing quality (Ke and Ng, 2019; Vajjala, 2018). This is problematic because ATS systems
should measure text characteristics that go beyond text length (Attali and Burstein, 2006, pp.
1–2). Text length is uninformative because it can be augmented by any number of linguistic
text characteristics, it is construct-irrelevant for writing quality and language proficiency, and it
can be easily manipulated in adversarial input (Attali and Burstein, 2006; Quinlan et al., 2009).
Measures of accuracy and complexity have proven linguistically more meaningful while also
supporting robust and valid ATS. Besides error measures (Borade and Netak, 2020; Ke and Ng,
2019; Vajjala, 2018), measures of syntactic complexity (Borade and Netak, 2020; Crossley,
2020; Crossley et al., 2015, 2016b; Ke and Ng, 2019; Vajjala, 2018), lexical complexity (Bo-
rade and Netak, 2020; Chodorow and Burstein, 2004; Crossley, 2020; Crossley et al., 2015,
2016b; Ke and Ng, 2019; Vajjala, 2018), and text cohesion (Crossley, 2020; Crossley et al.,
2015; Ke and Ng, 2019; Vajjala, 2018) have been particularly prominent in ATS approaches.
Crossley (2020) provides a relatively recent overview of how features of these domains have
been used in AES with a focus on writing quality assessment. Some studies explored the use
of other discourse complexity measures, including argumentation structure and topic mea-
sures (Chodorow and Burstein, 2004; Crossley et al., 2015, 2016b; Ke and Ng, 2019; Vajjala,
2018). Also measures of semantic complexity have been frequently used for ATS, but were
mostly reported as aspects of lexical or cohesion measures (Borade and Netak, 2020; Cross-
ley, 2020; Vajjala, 2018). In this context, the comparison of form-based and meaning-based
similarities between language samples and source materials has played a relevant role for the
assessment of prompt-based language productions. For this, some prompt-based features have
been explored for prompt-specific ATS, especially using LSA (for an overview, see Ke and
Ng, 2019). Morphological complexity features have been used considerably less often. No-
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table exceptions for languages other than English are Vajjala and Lõo (2013, 2014) and the
contributions to ATS in this thesis (Weiss and Meurers, 2019a,b, 2021, Section 5.2). Also
readability formulas have been occasionally explored for ATS (Ke and Ng, 2019). In contrast,
processing complexity measures have played only a minor role in ATS (but see Weiss and
Meurers, 2019a,b, 2021, discussed in Section 5.2).

Beyond these text-based measures, some studies indicated that subject-related measures
such as other performance estimates (e.g., grades, literacy skills, background knowledge, or
cognitive abilities) and demographic information (e.g., age, gender, L1s, L2s) can improve the
accuracy of text feature-based ATS systems (e.g., Chodorow and Burstein, 2004; Crossley
et al., 2015, 2016b; Vajjala, 2018). This is in line with the relevance of individual characteris-
tics in some of the theoretical proficiency models discussed in Section 2.2.1. Similarly, some
task and register-based measures have been proposed to account for task effects (see Sec-
tion 2.1.3.2) and context-specific expectations that can differ, for example, across disciplines
(Crossley, 2020, p. 417). Crossley et al. (2016b) argued that the inclusion of such measures
also allows to account for the fact that in most contexts there are different potentially success-
ful writing strategies (see also Crossley et al., 2014b) and that L2 proficiency levels do not
require a homogeneous profile of competencies (see also Council of Europe, 2001; Hulstijn,
2011). However, these types of measures can only be applied in prompt-specific ATS.

Despite this broad exploration of text features and linguistic domains, there is little consen-
sus on which combination of features best predicts proficiency and text quality in L1 or L2
productions (Attali and Burstein, 2006; Crossley, 2020; Vajjala, 2018, p. 80). This is due to
the lack of feature-based models focusing on cross-prompt scoring (see previous discussion).
Generally, though, accuracy as well as syntactic, lexical, and discourse complexity seem to
be systematically among the most important measures (Attali, 2007; Crossley, 2020; Vajjala,
2018) and a diverse set of features seems to outperform homogeneous feature sets (e.g., Vaj-
jala, 2018).

2.3 Automatic readability assessment

Automatic Readability Assessment (ARA) seeks to align texts with the reading skills of their
prospective readers by predicting the comprehensibility of a text for a pre-defined target group,
such as L2 learners or children reading in their L1 (e.g., Glöckner et al., 2006; Vajjala,
2022). The comprehensibility of a text has been shown to be influenced by the interaction
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between text characteristics, reader characteristics, and reading goal(s) (see Section 2.3.1.1).
This makes readability assessment an inherently interdisciplinary endeavor (Benjamin, 2012;
Collins-Thompson, 2014) which has been pursued for a variety of application domains since
the early 20th century. The following section provides a focused background on automatic
approaches to readability assessment using computational linguistic methods. After a brief
sketch outlining the general concept of text readability (Section 2.3.1), I will describe the main
application domains of ARA (Section 2.3.2) before discussing the central methods, trends and
challenges in computational linguistic research on the topic (Section 2.3.3). For a discussion
of ARA for German, please see the structured literature survey in Section 4.3.

2.3.1 What is text readability?

Text readability is a broad term that Dale and Chall (1949) generally defined as the result
of all components contributing to or impeding text understanding, reading fluency, and inter-
est while reading. Three components have been identified as particularly relevant for read-
ability across research disciplines: ‘text characteristics’ and ‘reader characteristics’ (Collins-
Thompson, 2014; Long et al., 2006; Smith et al., 2021; Vajjala, 2022; Yin, 1985; Zwaan and
Rapp, 2006) as well as ‘reading goal(s)’ (Valencia et al., 2014; Zwaan and Rapp, 2006). A
text can be considered readable for a given reader if it allows them to build a sufficiently ac-
curate mental representation of the text which they can integrate with their prior knowledge
(see Section 2.3.1.1) in a way that fosters new inferences (Long et al., 2006, pp. 824–825).
In psychological and psycho-linguistic research this has been referred to as a ‘coherent dis-
course model’ (Long et al., 2006, p. 825) or ‘situation model’ (Zwaan and Rapp, 2006, p. 727).
The reading goal (e.g., learning or pleasure) impacts how readers build their discourse model
and which reading strategies they employ (Zwaan and Rapp, 2006, p. 729). Readers differ
in their ability to from a coherent discourse model for a specific text and reading goal. The
sophistication and accuracy of an individual readers’ discourse model can vary based on text
characteristics—such as legibility, linguistic properties, and extra-linguistic materials—and
reader characteristics—such as working memory capacity and prior knowledge—(Zwaan and
Rapp, 2006, p. 727). Most texts vary in the degree of their comprehensibility. The extremes
of perfectly comprehensible (i.e., a maximally sophisticated and accurate discourse model can
be formed and can be highly interconnected with a reader’s prior knowledge) or incompre-
hensible texts (i.e., no or only a simple and inaccurate discourse model can be formed without
connections to prior knowledge) are not the norm. Text generally fall on a continuum between
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these two poles. Hence, the question is not whether a text is readable or not, but whether it is
sufficiently readable for the specified reading goal(s).

For ARA, we seek to identify texts for which we can assume that the discourse model is
sufficiently sophisticated and accurate to support the intended reading goal. At the same time,
ARA may seek to optimize different variables beyond reading comprehension depending on
the reading goal. For example, when identifying reading materials for language learners, an
ideal alignment between reader characteristics and text characteristics should provide chal-
lenging input to readers in their Zone of Proximal Development (ZPD) (Vygotsky, 1978),
prioritizing language learning outcomes over a maximally coherent discourse model. Other
relevant variables ARA may seek to optimize are pleasure or reading speed.4 In short, ARA
ultimately is an alignment task between reader and text for a given reading goal (for a simi-
lar view, see also Beinborn et al., 2012). When conceptualized this way, it becomes evident
that unlike many other established computational linguistic tasks—such as topic prediction or
machine translation—ARA is intrinsically “user- or population-specific” (Collins-Thompson,
2014, p. 104).

2.3.1.1 The role of text characteristics, reader characteristics, and reading goals

ARA research has historically focused on text characteristics (Collins-Thompson, 2014; DuBay,
2004; Vajjala, 2022), even though researchers have acknowledged that reader characteristics
such as motivation and prior knowledge play an important role for comprehension (e.g., Bailin
and Grafstein, 2001; Collins-Thompson, 2014). Text characteristics include layout factors
(such as font size and color or contrast) as well as language and content factors (such as co-
herence, syntax, lexicon, semantics). To better separate them, researchers often distinguish
‘legibility’—influenced by layout factors—from ‘readability’—influenced by language and
content—(e.g., Dale and Chall, 1949; DuBay, 2004). ARA focuses near exclusively on read-
ability in this narrow sense, mostly ignoring questions of legibility (Collins-Thompson, 2014;
Vajjala, 2022). Features of linguistic complexity have played a central role for this text-based
view on readability. There has also been a distinct focus on measures of discourse cohesion
in psychological and psycho-linguistic research on discourse comprehension (McCarthy and
McNamara, 2021; McNamara and Kintsch, 1996; McNamara et al., 1996, 2011; Ozuru et al.,
2009; Smith et al., 2021). I discuss this in more detail in Section 2.3.3.3.

4I described scenarios that focus on a single reading goal. However, in practice readers and teachers can have
multiple (primary or secondary) reading goals.
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Reader characteristics have been mostly researched in psycho-linguistics and psychology
(McCarthy and McNamara, 2021; Smith et al., 2021). These include group characteristics
and individual characteristics. In ARA research, reader characteristics have mostly been con-
sidered in terms of group properties (Collins-Thompson, 2014), aiming to provide population-
specific ARA models (for a notable exception, see Chen and Meurers, 2019). Most attention
has been paid to the population differences between young L1 readers, who still need to ma-
ture their literacy skills, and literate adult L2 readers (Collins-Thompson, 2014; Heilman et al.,
2007; Sung et al., 2015; Xia et al., 2016). To illustrate the central differences between these
two groups and their implications for text readability, let us revisit the notions of BICS and
CALP proposed by Cummins (2000) and discussed in Section 2.2.1, p. 44. Young L1 readers
are typically beginning their literacy acquisition in a formal educational setting after having
developed advanced BICS but prior to the acquisition of CALP. Thus, they may struggle with
domain-specific or academic vocabulary and lack advanced reading strategies, but they have
generally mastered the common morpho-syntactic constructs and lexical items of the language
in which they are reading. Adult L2 learners are often already highly literate in their L1(s)
and have an advanced CALP in at least one other language. They should have mastered cen-
tral reading strategies and may have higher CALP in the language they are reading due to
transfer effects from their L1(s) and other L2s. However, they are prone to struggle with com-
mon morpho-syntactic constructs and lexical items of the language in which they are reading.
Hence, these two different target groups will experience different concepts and linguistic con-
structs as challenging (Collins-Thompson, 2014, pp. 114–115) which necessarily impacts the
alignment between text and reader. For an attempt to generalize an L1 ARA model to L2
contexts, see Xia et al. (2016), which I discuss in more detail in Section 2.3.3.1 (p. 73).

The readability of a text for a specific reader is further determined by a reader’s individual
properties. These can be situational or stable. Situational individual properties can vary across
reading contexts and include, for example, learners’ motivation, current level of stress, or in-
terest. Stable individual properties do not vary across contexts although they might change
over time. Examples are language proficiency, working memory, degree of literacy, or prior
knowledge. Individual properties have a strong impact on reading comprehension which goes
beyond language proficiency (Yin, 1985). They can can lead to substantial inter-individual
differences in text comprehension, especially with regard to readers’ ability to interpret and
make higher-level inferences based on a text (Long et al., 2006, pp. 801–802). Long et al.
(2006, p. 802) identified five central stable individual properties that impact reading compre-
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hension in literate, adult L1 readers: word identification skills, working memory capacity, the
ability to inhibit irrelevant information and signals, print exposure, and prior knowledge (for
a similar view, see also Smith et al., 2021).

I will focus on the role of prior knowledge for reading comprehension because it has re-
ceived the most attention in psychological research on reading comprehension (e.g., Best
et al., 2006, 2008; Kamalski et al., 2008; Lipson, 1982; McCarthy and McNamara, 2021;
Ozuru et al., 2009; Smith et al., 2021; Yin, 1985; Zwaan and Rapp, 2006). Prior knowledge
is a general notion that includes different types of knowledge. It encompasses general world
knowledge (Smith et al., 2021, p. 216) but also language- or culture-specific pragmatic com-
municative knowledge (Yin, 1985, p. 376). Both serve as an important frame of reference
for readers to correctly interpret a text. However, most research on readability has focused
on the role of domain-specific knowledge (e.g., Kamalski et al., 2008; McCarthy et al., 2018;
McNamara et al., 1996, 2011; Ozuru et al., 2009; Smith et al., 2021). Prior domain-specific
knowledge has been found to benefit readers’ text comprehension irrespective of their reading
skills (Lipson, 1982; McCarthy and McNamara, 2021; McNamara et al., 2011; Smith et al.,
2021). Smith et al. (2021, pp. 226–227) found in their survey of studies on the role of prior
knowledge for reading comprehension in children, that children can to a certain degree com-
pensate for a lack of prior knowledge with high literacy skills and vice versa. McCarthy and
McNamara (2021, p. 196) reported that prior knowledge can account for 30%–60% of vari-
ance in reading comprehension. However, the role of prior knowledge varies with age and
genre (see discussion in Smith et al., 2021, p. 219). The beneficial effect of prior knowledge
is mediated by its quality, specifically its accessibility—How easily can it be retrieved from
long-term memory?—and its accuracy—Is the knowledge factually correct?—(Smith et al.,
2021, p. 217). For example, Lipson (1982) found that prior knowledge made readers more
resilient towards the integration of new information that contradicted their (incorrect) prior
knowledge in the sense that readers prioritized their prior knowledge over the textual informa-
tion regardless of the factual correctness of the prior knowledge. McCarthy and McNamara
(2021) proposed to account for some of this variance by introducing the ‘Multidimensional
Knowledge in Text Comprehension’ framework. It differentiates declarative content knowl-
edge along the dimensions of amount, accuracy, specificity, and coherence of prior knowledge.

Special attention has been paid to the interaction between prior knowledge, literacy, and
text cohesion. High cohesion benefits discourse comprehension for readers with little domain-
specific knowledge (Smith et al., 2021, pp. 218–219). High textual cohesion makes connec-

62



2.3 Automatic readability assessment

tions more salient and reduces the cognitive load of building a well-connected mental rep-
resentation of a text (McCarthy and McNamara, 2021; Smith et al., 2021). It can thus help
to compensate for unavailable domain knowledge. Also, the effort required to form connec-
tions between prior knowledge and the situation model depends on the accessibility of prior
knowledge. The more accessible prior knowledge is, the less effort readers’ have when con-
necting it with their situation model (for a similar argument, see Smith et al., 2021, p. 218).
High textual cohesion can help to reduce the retrieval costs of less accessible prior knowledge
because it makes the connections between prior knowledge and text contents more salient
(Smith et al., 2021, p. 219). In contrast, readers with high domain-specific knowledge can
benefit from less cohesive texts (McNamara and Kintsch, 1996; McNamara et al., 1996, 2011;
Smith et al., 2021). It has been argued that low cohesion texts result in a better connected and
more sophisticated mental text representation in readers with high domain-specific knowledge
because their higher cognitive demands foster cognitive activation during reading (Kamalski
et al., 2008; McNamara and Kintsch, 1996; McNamara et al., 1996; Smith et al., 2021). This
effect is known as the reverse cohesion effect (see Section 2.1.3.1, p. 33). Smith et al. (2021,
p. 228) refer to it as a specific type of expertise reversal effect based on which heavy scaffold-
ing benefits beginning learners but should be reduced for more advanced learners. However,
the reverse cohesion effect has been argued to be absent in readers with high reading skills
(Ozuru et al., 2009) and could not be reproduced for persuasive texts (Kamalski et al., 2008).

Most research on readability has focused on text characteristics and reader characteristics,
even though reading goals have been acknowledged as a relevant component (Zwaan and
Rapp, 2006). Readers can pursue different reading goals, such as content-matter or language
learning, information retrieval, identifying procedural instructions, or entertainment. Readers
can also pursue different primary and secondary reading goals, for example, entertainment
and information retrieval. The role of reading goals for text comprehension has also been
addressed indirectly through work on genre effects. The most commonly studied genres in
readability research are narrative texts, factual or persuasive expository texts, and procedural
texts—such as manuals or recipes—(Zwaan and Rapp, 2006, p. 728). Although the purpose
of reading and the genre of text are clearly different, in practice they are often directly related.
For example, narrative texts are more often read for pleasure than procedural instructions. Re-
searchers have found that discourse genre plays a central role for reading comprehension (Best
et al., 2008; Kamalski et al., 2008; McNamara et al., 2011; Zwaan and Rapp, 2006). Genre has
shown to influence the role of prior knowledge for discourse comprehension (e.g., Kamalski
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et al., 2008; Smith et al., 2021) and to influence the cognitive processes and mental represen-
tations associated with reading (for details, see Zwaan and Rapp, 2006, p. 729). According to
the survey by Smith et al. (2021), studies systematically found that the effect of prior knowl-
edge on reading comprehension in children was mediated by text genre. Specifically, prior
knowledge played less of a role for narrative than expository texts. Potential explanations for
this are that children are more practiced in the comprehension of narratives (Best et al., 2008;
Smith et al., 2021) and that expository texts require more references to prior knowledge than
narratives (Smith et al., 2021). More work is still needed to disentangle effects of discourse
genre and reading goal on discourse comprehension.

2.3.1.2 Frameworks of discourse comprehension: the construction-integration model

Several frameworks have been suggested to formally account for the interaction between
text characteristics and reader characteristics. One of the most influential frameworks has
been Kintsch’s ‘construction-integration model’ (Kintsch, 1988; Wharton and Kintsch, 1991).
Kintsch (1988) identified it as one of the first models of discourse comprehension that con-
ceptualized comprehension as a bottom-up process (starting with decoding word meanings)
rather than a top-down process (initially guided by readers’ prior knowledge). The model dis-
tinguishes two comprehension stages: the construction stage and the integration stage. The
construction stage describes the bottom-up process of creating a general associative mental
network of concepts and propositions. This network is referred to as the ‘text base’. The text
base is created in a four-step process in which readers are assumed to decode the concepts and
propositions explicitly encoded in the text and to retrieve, activate, and connect all elements
related to these concepts and propositions in their network of prior knowledge (Kintsch, 1988,
p. 166). The construction stage is assumed to rely only on readers’ morpho-syntactic and
lexico-semantic knowledge as well as the general world knowledge needed to form text-based
network of concepts and propositions. At this point, readers have constructed an incoherent
and inconsistent text base. It lacks relevant connections and contains incomplete or inappro-
priate concepts due to two main reasons. First, the construction stage takes place on-line and is
thus based on incomplete information (Kintsch, 1988, p. 166). Second, the construction stage
does not utilize readers’ discourse knowledge to prune or emphasize nodes and connections
based on their relevance (Kintsch, 1988, p. 168). This issue is addressed in the integration
stage. It enriches the text base with additional concepts and connections between nodes but
also inactivates and prunes irrelevant connections and nodes to create a coherent ‘situation
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model’ (Kintsch, 1988, p. 164). To do so, readers use their socio-pragmatic knowledge about
the language they are reading, their prior domain-specific knowledge, their personal experi-
ences and beliefs, and their general world knowledge. It is assumed that the construction stage
and the integration stage alternate repeatedly during discourse processing. After a text base
for a phrase or sentence has been created, it is edited into a situation model in the integra-
tion phase. The two networks (text base and situation model) are gradually expanded during
reading (or listening) based on the new input (Kintsch, 1988, p. 168).

Text base and situation model can vary in their quality (McNamara and Kintsch, 1996,
p. 252). A reader’s text base may be incomplete or inaccurate due to poor text quality or
an insufficient decoding process, for example because of inattentive reading or deficits in
word identification (McNamara and Kintsch, 1996; Smith et al., 2021). A reader’s situation
model may lack connections, activate irrelevant concepts, or include incorrect concepts or
connections because of insufficient or incorrect prior knowledge or a poor application thereof
(McNamara and Kintsch, 1996; Smith et al., 2021). A poorly elaborated situation model is
close to the text base. However, readers can also considerably extend the situation model
beyond the text base and overwrite or disable connections from the text base. This is par-
ticularly likely to happen to readers with high background knowledge and a poor text base
(McNamara and Kintsch, 1996; Smith et al., 2021). Thus, the correspondence between text
base and situation model may vary greatly (McNamara and Kintsch, 1996, pp. 252–253) and
depends considerably on readers’ prior knowledge. Different discourse comprehension test
items have been proposed to estimate the quality of text base and situation model indepen-
dently (see McCarthy and McNamara, 2021, p. 199). When comparing text base and situation
model it is also important to note that both are stored differently. The text base is stored in
readers’ in working memory whereas the situation model is committed to long-term memory
(Smith et al., 2021, p. 215). Thus, working memory capacity also plays a relevant role in the
construction-integration model, albeit less pronounced than prior knowledge. The better the
situation model is inter-connected with readers’ prior knowledge, the more of it is retained
in long-term memory and integrated into readers’ network of background knowledge (McNa-
mara and Kintsch, 1996, p. 253). However, when the working memory capacity is overloaded
in discourse comprehension, this can hinder the integration of the text base into the situation
model as well as the enrichment of the situation model with further connections. The effort
required to form connections between prior knowledge and the situation model depends on the
accessible prior knowledge in the sense that accessible prior knowledge reduces readers’ effort
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Figure 2.2: Assumed inverse, continuous relationship between complexity and comprehensibil-
ity illustrated for German language varieties for different target groups from Hansen-Schirra
and Maaß (2020, Figure 1, p. 18)

(see Section 2.3.1.1). High textual cohesion can help to reduce the cognitive load required to
form these connections if prior knowledge is unavailable or inaccessible (Smith et al., 2021,
p. 219).

Terminological note In computational linguistic work on ARA, the notions ‘text complex-
ity’ and ‘text readability’ are often used interchangeably (e.g., Vajjala, 2022). This is based on
the implicit assumption that texts can be arranged on a continuous scale between two opposite
poles of ‘simple’ to ‘complex’ and that the comprehensibility of a text is indicated by its posi-
tion on this scale. This is illustrated in Figure 2.2 (originally from Hansen-Schirra and Maaß,
2020, p. 18). Hansen-Schirra and Maaß (2020) located simplified and non-simplified language
varieties on a continuous scale of language complexity and comprehensibility. Although this
assumption seems plausible at first (and may empirically hold for some target reader groups
and reading goals), it confounds two separate concepts. As discussed in Section 2.3.1, text
characteristics are one of several factors influencing discourse comprehension. Also, higher
linguistic complexity is not always detrimental to text comprehension. The reverse cohesion
effect is an example of when lower complexity (in the sense of more explicit, cohesive, and
cognitively less demanding) does not benefit reading comprehension for certain target popula-
tions (see Section 2.1.3.1, p. 2.1.3.1). Another example are L2 readers with high CALP, who
are less likely to struggle with high demands on their CALP than high demands on their BICS
(see Section 2.2.1, p. 44). Using the notion of text complexity synonymous to the notion of
readability invites the misconception that less complex texts are always more comprehensible,
thus falling into the same fallacy as referring to more complex L2 writing as more proficient
or advanced (see Section 2.1.1.2, p. 14). I argue against using both terms interchangeably.
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2.3.2 Application domains

ARA has been utilized in various application contexts. This section discusses common uses
for ARA illustrated with exemplary studies (for a systematic review focused on German, see
Section 4.3). I propose to structure uses of ARA into three domains based on the goal they try
to optimize by controlling text readability through ARA: i) education and language learning
(optimizing learning outcomes), ii) accessibility and information retrieval (optimizing text
comprehension), and iii) user experience and quality control (optimizing a task that is being
mediated by text comprehension).

2.3.2.1 Education and language learning

Education, both inside and outside of instructed settings, is one of the most common applica-
tion domains for ARA (Benjamin, 2012; Collins-Thompson, 2014). Readability scores have
been used to support multiple stakeholders in the language learning field alike. This includes
learners and teachers, who need to select appropriate learning materials, as well as education
content providers and publishers, who create learning and teaching materials such as school-
books. In this context, special attention has been paid to provide learners with input in their
ZPD (Vygotsky, 1978) which challenges them at their current level of language competence.
Both overchallenge and underchallenge can negatively impact learning outcomes (Sung et al.,
2015, p. 372). Readability also plays an important role for the assessment of item difficulty
for content-matter (e.g., Höttecke et al., 2018) and reading tests (e.g., Ludewig et al., 2022).
Research on ARA has predominantly focused on the identification of leveled reading mate-
rials for pupils in schools (Collins-Thompson, 2014), even though there have also been early
approaches focusing on ARA for L2 readers (e.g., Crossley et al., 2008; Heilman et al.,
2007; Schwarm and Ostendorf, 2005). Most ARA studies for (language) learning focus on
providing new SOTA models to predict readability (e.g., Feng et al., 2010; François and Fa-
iron, 2012; Imperial and Ong, 2021; Lee and Lee, 2020; Naderi et al., 2019a; Saddiki et al.,
2018; Todirascu et al., 2013; Vajjala and Meurers, 2012). However, less researchers have also
incorporated their models into publicly available systems where users without skills in pro-
gramming or machine learning can access them (Benjamin, 2012). In the following, I focus
on studies that made their ARA models accessible.

Pilán et al. (2016) proposed a feature-based readability classifier for Swedish L2 learners
which predicts readability on the CEFR scale (A1–C1) for entire documents and individual
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sentences. They trained their models on reading passages and example sentences from lev-
eled books for Swedish language learners. Pilán et al. (2016) reported an accuracy of 81.3%
(adjacent accuracy = 97.0%) for document-level and 63.4% (adjacent accuracy = 92.0%)
for sentence-level classification in 10-folds cross-validation (10-CV). In contrast, the Läsbar-
thetsindex (LIX) by Björnsson (1983) did not substantially improve over the majority base-
line for either classification. Pilán et al. (2016) integrated their readability models into the
online language learning platform Lärka (https://spraakbanken.gu.se/larka/). The
Lärka web platform targets researchers, teachers, and language learners alike. It provides
corpus-based exercises for language learning and teaching as well as data and an annotation
editor for researchers. Similarly, Sung et al. (2015) proposed a Chinese L2 readability clas-
sifier that predicts the readability of texts on the CEFR scale (A1–C2) which achieved an
accuracy of 75.0% (adjacent accuracy = 99.6%). They compiled a corpus of reading mate-
rials used in Chinese L2 classrooms which they asked five experienced Chinese L2 teachers
to rate resolving disagreements through discussion. Similar to Vajjala and Meurers (2012),
Sung et al. (2015) focused on features associated with absolute complexity or relative com-
plexity (see Section 2.1.1.2, p. 12) for Chinese L2 learners to inform their classifier. They
incorporated their model into a web platform (www.chinesereadability.net) that allows
users to obtain readability scores for their input texts. Importantly, they utilize the linguistic
insights provided from their feature-based approach to offer a diagnostic function for users.
The system identifies and visualizes the linguistic constructs and their positions in the input
text that users need to alter to obtain a different readability score. Deconstructing readability
into individual linguistic domains is not only desirable for text adaptation. Beinborn et al.
(2012) argued that breaking down text readability along relevant linguistic domains can also
help learners to identify competence-adaptive materials for self-directed learning. They ar-
gued that estimates along individual linguistic dimensions are more informative and better
account for heterogeneous competence profiles than holistic readability scores.

ARA models have not only been incorporated into web platforms for the analysis of in-
dividual texts, but also been used as components in tutoring systems. The connection of
ARA models with tutoring systems that model learners’ individual properties allows to pro-
vide a more individual alignment between users and text properties. However, most tutor-
ing systems utilize simple ARA methods to identify authentic reading materials at learners’
level of proficiency rather than SOTA ARA models. For example, the REAP tutoring system
(Brown and Eskenazi, 2004; Heilman et al., 2010) supports learners’ individualized English
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L2 vocabulary training through reading exercises (for a Portuguese version of the system,
see Marujo et al., 2009). It identifies authentic web materials matching readers’ proficiency
level through a predominantly vocabulary-based model of learners’ reading skills. The Read
& Improve reading tutoring system prototype (Watson and Kochmar, 2021) uses a more so-
phisticated approach to readability assessment. It provides English L2 learners with recent
news at a reading level that matches learners’ current proficiency level. Learners’ profi-
ciency is identified through a learner model that is informed by the Write & Improve platform
(https://writeandimprove.com/) which uses ATS to provide learners with formative writ-
ing feedback while holistically assessing their level of proficiency. Both web platforms are
linked through a shared user account. The readability of texts is identified using a feature-
based machine learning model that ranks texts in terms of their readability. It uses the features
proposed by Xia et al. (2016) and was trained specifically on leveled news data for English
L2 and L1 learners. To foster vocabulary learning, the Read & Improve system links each
word in a reading text to different dictionary definitions and a co-occurrence word cloud. The
system further allows users to submit summaries of the texts that they read to test their writ-
ing proficiency and reading comprehension. Finally, users can view their reading and writing
development through a separate panel as a form of longitudinal feedback.

2.3.2.2 (Web) accessibility and information retrieval

A second common application domain of ARA is concerned with (web) accessibility. This
line of research focuses on the identification of accessible materials often for the purpose of
information retrieval and typically analyzing web materials (Collins-Thompson, 2014). While
there has been some work on ARA in general purpose information retrieval systems (e.g., Kim
et al., 2012; Pera and Ng, 2012; Russell, 2011), most work in this area has focused on readers
with low literacy skills or special communication needs, for example neuro-atypical readers
such as dyslexic readers (Rello et al., 2012, 2013a,b; Sitbon and Bellot, 2008), readers with
an Autism Spectrum Disorder (Eraslan et al., 2017, 2021; Yaneva et al., 2015) or readers with
cognitive disabilities (Abedi et al., 2012; Feng et al., 2009).5 As Collins-Thompson (2014)
observed, this application domain is also closely linked to work on text simplification (e.g.,
Bingel et al., 2018; Rello et al., 2013c; Yaneva et al., 2016), see also Siddharthan (2014);
Štajner (2021).

5Note that ‘neuro-atypical readers’ is a catch-all phrase commonly used in work on ARA for accessibility, but
does not define a homogeneous target group with shared reading needs.
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Readability scores may be used to help readers with special needs to find texts that align
with their degree of reading competence or to inform content providers (such as news outlets
or government information channels) about the accessibility of their materials. This includes
work on the validation of reading materials that need to comply with specific guidelines for
accessible language, such as Yaneva’s (2015) approach for the validation of English Easy-
to-read (Freyhoff et al., 1998; Nomura et al., 2010) materials. An example for a fully im-
plemented system that supports the retrieval of accessible reading materials is the Read-X
system (Miltsakaki and Troutt, 2008). It is an English search engine that retrieves reading
materials for low literate adolescents and adults and classifies them based on their topic and
readability. The system measures readability using three simple readability formulas for En-
glish L1 readers: the Automatic Readability Index (ARI, Amstad, 1978), the LIX (Björns-
son, 1983), and the Coleman-Liau index (Coleman and Liau, 1975). As a second predictor
of readability, the system uses domain-specific frequency lists to account for the fact that
domain-specific prior knowledge greatly influences readability (Miltsakaki, 2009). Vocabu-
lary that the model predicts to be unknown to readers is highlighted and linked to WordNet
as an external information resource. This prediction is based on information that users pro-
vided regarding their educational background and familiarity with the topic at hand. Similar
systems are the LAWSE search engine (Ott and Meurers, 2011) or the FLAIR search en-
gine (https://flair.schule/; Chinkina et al., 2016) for German and English L2 learners.
Many systems such as Read-X, LAWSE, and FLAIR level the retrieved materials with tradi-
tional readability formulas for L1 readers instead of target population-specific ARA methods
(for a notable exception, see Collins-Thompson et al., 2011). The KANSAS search engine
(www.kansas-suche.de; Dittrich et al., 2019; Weiss et al., 2018) provides readability esti-
mates using a customized readability formula for low literate adolescents and adults in Ger-
many. The formula was closely based on the standards used in practice to assess reading skills
in low literate adults in Germany and group them into appropriate course levels in adult edu-
cation centers (for details, see Weiss et al., 2018). As such, it is one of the few text retrieval
systems that is based on the available specific guidelines for accessible language for the in-
tended target group rather than a general purpose readability formula. To ensure that teachers
can always retrieve accessible reading materials even for low levels of literacy, the KANSAS
search engine is a hybrid system that allows to query a pre-compiled corpus of leveled reading
materials or perform a web search (Dittrich et al., 2019).

ARA for (web) accessibility does not exclusively target special-needs readers. There has
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been considerable work on the accessibility of legal or municipal texts for non-experts (Ojha
et al., 2018; vor der Brück et al., 2008), on the readability of privacy policies (Sunyaev et al.,
2015) and user manuals (Andersson and Szewczyk, 2011), and on the accessibility of phys-
ical and mental health care information (King et al., 2003; Misra et al., 2013; Paul et al.,
2021; Skierkowski et al., 2019). For example, Kiwanuka et al. (2017) studied the readabil-
ity of English patient information resources for gender affirmative surgery on the web which
they retrieved using four search terms related to different forms of gender affirmative surg-
eries. They assessed readability using ten readability formulas returning grade level estimates
as reading levels. Across readability formulas and search terms, they obtained an average
grade level of 13.4 (corresponding to early university-level reading skills) after confirming the
comparability of the readability formulas’ estimates. This lies well above the recommended
reading level set at 6th grade reading skills by the National Institute of Health and American
Medical Association. These findings are corroborated by Vargas et al. (2017) who study the
readability and quality of resources for gender affirming surgery found on the web using the
search term “transgender surgery”. Using the same ARA set-up as Kiwanuka et al. (2017),
they obtained an average grade level of 14.7. Their additional manual assessment of resource
quality using two expert raters found a non-linear, predominantly negative correlation between
readability and quality.

2.3.2.3 User experience and quality control

Readability has also been identified as an important measure of user experience and quality
control. One important application domain for ARA is the evaluation of NLP systems linked
to Natural Language Generation (NLG). Most prominently, ARA has been used in work on
automatic text simplification as one of several measures to quantify the degree of simplification
achieved by a text simplification system (Siddharthan, 2014; Štajner, 2021). Beyond this,
ARA has also been used in machine translation to create leveled translations that align to
different target audiences (e.g., Agrawal and Carpuat, 2019; Marchisio et al., 2019; Stymne
et al., 2013). Similarly, readability or comprehensibility have been recommended as a design
factor for conversational agents (CA) because mismatches between users’ skills and the CA’
language use can be detrimental to user experience or even impede the communicative goals
of the interaction (Gnewuch et al., 2018; Langevin et al., 2021; Santhanam et al., 2020). ARA
has also shown to predict attention on online platforms (Guerini et al., 2012; Pancer et al.,
2019) and was linked to user experience and compliance with safety measures (Andersson
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and Szewczyk, 2011). Santos et al. (2020) used readability features to detect fake news in
Brazilian Portuguese. They reached an accuracy of up to 92% based solely on features of text
readability. The most informative features included pronoun diversity, LSA-based measures,
and the readability formula by Brunet (1978). Santos et al. (2020) also outperformed the SOTA
results for fake news detection in Brazilian Portuguese by combining readability features with
a more traditional approach to fake news detection by Monteiro et al. (2018).

2.3.3 Current methods and trends

ARA dates back more than a century to work on traditional readability formulas, see DuBay
(2004, 2006) for an overview. Computational linguistic work on ARA using NLP and ma-
chine learning has started to emerge in the early 2000s (Collins-Thompson and Callan, 2004;
Schwarm and Ostendorf, 2005; Si and Callan, 2001), and became the standard in computa-
tional linguistic research on ARA (Collins-Thompson, 2014; Vajjala, 2022). ARA has pre-
dominantly and most systematically focused on English (Collins-Thompson, 2014; Vajjala,
2022) even though there has been scattered work on a broad range of languages, such as Ara-
bic (Saddiki et al., 2018), Swedish (Pilán et al., 2016), Chinese (Sung et al., 2015), French
(François and Fairon, 2012), Italian (Dell’Orletta et al., 2011), and German (this thesis; Brück
and Leveling, 2007). In the following, I discuss the current methods and trends in supervised
ARA in terms of machine learning tasks and evaluation metrics (Section 2.3.3.1) as well as
rating scales and corpora (Section 2.3.3.2) used. I then compare neural and feature-based
approaches and discuss the type of linguistic features used for ARA (Section 2.3.3.3).

2.3.3.1 Machine learning tasks and model evaluation

Most research on ARA focuses on supervised machine learning (Collins-Thompson, 2014;
Vajjala, 2022), for notable exceptions see Jameel and Qian (2012); Jameel et al. (2012); Mar-
tinc et al. (2021). In this context, ARA has been predominantly approached as one of three
machine learning tasks: (ordinal) classification, regression, and (pair-wise) ranking (Collins-
Thompson, 2014; Vajjala, 2022). It has long been debated which of the three approaches
is more suitable for readability detection (Collins-Thompson, 2014). However, it has been
shown that the choice of linguistic features has a greater impact on model performance than
the choice of machine learning algorithm (Kate et al., 2010).

Unlike ranking, classification and regression both assign absolute readability labels which
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makes them applicable in very similar contexts. In practice, the choice of algorithm type is
closely linked to the properties of the underlying readability scale. The rational behind this
choice is similar to the previously discussed considerations for ATS in Section 2.2.3.1 (p. 51).
Readability scales often use ordinal or discrete numerical data with a limited range (such as
the CEFR scale or a 5-point Likert scale). These data are typically ordinal in the sense that the
equidistance of adjacent categories is not guaranteed. Thus, (ordinal) classification is consid-
ered as a suitable alternative to regression algorithms. The evaluation metrics associated with
ARA naturally depend on the classification algorithm used. Classification is typically evalu-
ated in terms of accuracy or precision, recall, and F1-score on a test set (Collins-Thompson,
2014; Vajjala, 2022). As with ATS, many ARA studies calculate the adjacent accuracy of their
models to account for the ordinal nature of the reading scales (Sung et al., 2015, p. 382). For
regression models, researchers typically use RMSE, MAE, or Pearson correlation if the pre-
dicted labels and the evaluation data use the same reading scale. Spearman rank correlation is
also commonly used if the predicted labels are on a different reading scale than the evaluation
data (Collins-Thompson, 2014), e.g., in cross-corpus testing studies (see Section 2.3.3.2).

In contrast to regression and classification, ranking approaches assign a relative score based
on the available input options. This makes it particularly suitable for tasks where the readabil-
ity of a pre-defined set of text options should be compared to each other (e.g., to evaluate the
success of text simplification by comparing simplified and original versions of texts). As Xia
et al. (2016) pointed out, this is conceptually accounting for the fact that readability might be
better described as a relative than an absolute property of texts in the sense that one text can
be more or less readable than another. The lack of an absolute label can also facilitate the gen-
eralizability of a model to different reading scales and target populations. For example, Xia
et al. (2016) experimented with treating the difference between L1 readers and L2 readers as
a domain-adaptation problem to address the lack of L2 corpora for ARA (see Section 2.3.3.2).
They trained a classification and a ranking model on leveled English L1 data before exploring
several strategies to transfer their L1 models to L2 data, including domain adaptation and self
learning. They found that while ranking did not yield the best within-domain performance, it
could be successfully adapted to L2 data using self learning. However, ranking approaches
are also less specific than classification or regression models and are thus not suitable for all
application contexts. Also, ranking approaches often lack a reference to prospective readers’
language skills because they construct readability primarily as a property between texts, not
between a text and a reader. Ranking approaches are typically evaluated in pair-wise compar-
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isons by calculating the percentage of correctly ranked text pairs.This is known as pairwise
(ranking) accuracy. Pairwise accuracy evaluates only the order of ordinal labels. It is gener-
ally less informative than correlations or metrics such as accuracy or f-score because it ignores
central aspects of prediction quality. Importantly, unlike Spearman rank correlation, pairwise
accuracy ignores the distance between labels (i.e., how much simpler is one text than an-
other?). Also, unlike Pearson correlation or accuracy, it is agnostic to the precise position of
documents on a reading scale. Hence, pairwise accuracy is not an ideal metric for all use cases
and is not directly comparable to accuracy because the criterion for pairwise accuracy is easier
to satisfy than the criterion for accuracy (see also Xia et al., 2016).

Metrics such as accuracy, f-score, or RMSE account for the robustness of a model, that
is, how well the model approximates the labels in the test data used as gold standard (see
Figure 2.1, p. 53). However, little research has been dedicated to the assessment of the con-
struct validity of ARA models (see discussion in Section 2.2.3.1, pp. 53–54). Vajjala (2022)
identified the need for systematic validation of models as a major research desideratum in
her survey on computational linguistic research on ARA (for a similar argument, see Collins-
Thompson, 2014). A suitable but resource intensive method to test the validity of models
are reading experiments that test if predicted readability rankings are in line with empirical
observations of reading performance for the target population—such as reading times, perfor-
mance in reading comprehension tests, or human readability judgments—(Benjamin, 2012;
Miltsakaki and Troutt, 2008; Vajjala, 2022). As a less resource-intensive alternative, Vajjala
(2022) also proposed to focus on the extrinsic evaluation of ARA models by integrating them
into real-world systems (e.g., tutoring systems or search engines, see Section 2.3.2). She rea-
sons that if an ARA model can be successfully used in practice in a system with real-life users,
this demonstrates its ecological validity even though it does not provide insights into the con-
struct validity of the predictions. However, seeing that ARA in practice near-exclusively relies
on traditional readability formulas rather than SOTA machine learning models (see discussion
in Section 2.3.4), we have little insights on the external validity of ARA models.

2.3.3.2 Data resources and generalizability

Research on ARA has been substantially shaped by the availability constraints of labeled cor-
pora that can be used to train supervised machine learning models. Only a limited number of
suitable corpora is available for research (Collins-Thompson, 2014; Vajjala, 2022; Xia et al.,
2016), this holds especially for languages other than English and for L2 readability corpora
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(Xia et al., 2016). Publishers of education materials have been an important resource of lev-
eled data for readability corpora (Vajjala, 2022, pp. 3–5). Textbooks are usually produced for
learners at a specific proficiency level. They may even cover multiple proficiency levels as
they are designed to be used over an extended period of time in which learners advance in
proficiency. Also, textbooks are available for a variety of languages. Thus, many ARA stud-
ies have used textbook data (e.g., Berendes et al., 2018; François and Fairon, 2012; Heilman
et al., 2007; Pilán et al., 2016). Another important type of education materials for ARA are
leveled articles from news and magazines which were professionally adapted by experts to
address learners at different proficiency levels (so called ‘graded readers’ in the terminology
by Vajjala, 2022). The WeeBit corpus (Vajjala and Meurers, 2012) is a prominent example
of a readability corpus that was compiled from graded readers. Also the two new readability
corpora for German that I present in this thesis are based on graded readers (see Section 5.3.1).
A special sub-type of graded readers are ‘paired graded readers’ (Vajjala, 2022). They feature
the same article at different proficiency levels rather than different articles for different pro-
ficiency levels. Prominent examples of paired graded readers turned into readability corpora
are the Newsela corpus (Xu et al., 2015), or the OneStopEnglish corpus (Vajjala and Lučić,
2018).

Often a single resource does not provide enough leveled reading materials or covers only
a small range of reading levels. To address this limitation, it is common practice researchers
have combined texts from different resources. For example, the WeeBit corpus combines web
materials from the WeeklyReader magazine (web page no longer available) and the BBC-
Bitesize website (http://www.bbc.co.uk/bitesize) to increase the number of articles and
the target populations’ age range it covers. Also the ReadingDemands corpus (Vajjala, 2015)
combines reading passages from four different textbook publishers to augment the available
data. In more extreme cases, leveled corpora can be compiled by combining materials from a
resource focusing on a specific target population with materials from a comparable resource
focusing on another target population to compose an artificial reading scale. For example, the
German Klexikon data set combines articles from an encyclopedia that targets 8–13 years old
children (https://klexikon.zum.de/) with Wikipedia articles to obtain a binary corpus
that can be used for readability assessment, text simplification, and summarization (Aumiller
and Gertz, 2022). When combining materials from several data sources it is crucial to mini-
mize any difference across data sources that is not related to the reading level (such as genre
or mode): The procedure risks introducing idiosyncrasies from the different data sources that
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can partially or fully confound with the differences in reading levels. For ARA models trained
on such data, it is particularly important to confirm the generalizability of models in cross-
corpus studies because this allows to confirm that the model in fact learned to distinguish the
differences between readability levels and not other irrelevant differences between the data
sources. That being said, cross-corpus testing is in general important for predictive models
to test their generalizability within and across their training domain (see discussion in Sec-
tion 2.2.3.2). However, comparable corpora for cross-corpus studies are often not available for
ARA for languages other than English. In these cases, researchers often use cross-validation to
estimate the variability and generalization error on the readability corpus they have (Collins-
Thompson, 2014, p. 113). This allows to some extent to test models for overfitting, but it
cannot confirm the generalizability of models to other samples from the same population.
It also does not identify if models trained on corpora compiled from different data sources
learned the intended readability differences. More cross-corpus and cross-domain testing is
therefore a central desideratum for ARA research (see also Vajjala, 2022).

While professionally leveled reading materials have many advantages for ARA, they are dif-
ficult to procure and share due to legal restrictions and licensing concerns (Collins-Thompson,
2014; Vajjala, 2022). Thus, many researchers have used leveled reading materials that were
not rated by experts. One of the most prominent examples of such a corpus is the Wikipedia-
Simple Wikipedia corpus. The corpus was a popular resource for text simplification (for an
overview, see Siddharthan, 2014) until several studies criticized Simple Wikipedia for insuf-
ficiently adapting its language to low literate target audiences (e.g., Štajner et al., 2012; Xu
et al., 2015; Yaneva et al., 2016). A more recent example is the previously mentioned Klexikon
data set. Vajjala (2022) cautioned against relying on readability levels that were not assigned
by experts, pointing out that because of their unknown quality they might align poorly with
their intended target audience. However, also publishers of education materials have been
shown to insufficiently align the text characteristics of their materials to their intended target
audience. Berendes et al. (2018) found that German textbook publishers did not systemat-
ically develop the linguistic complexity of geography texts across grade levels (5th to 10th
grade) and school types (academic secondary school track and vocational secondary school
track). Another potential issue with leveled reading materials in general is that publishers and
other content providers often themselves use readability formulas or text complexity estimates
to inform their readability ratings. This runs the risk of circularity when using these labels to
train ARA models based on text characteristics (Collins-Thompson, 2014). The annotation
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validity of previously assigned readability labels is therefore always a concern when working
with leveled reading materials.

Also model validity is an important concern in ARA research and it is closely linked to
the annotation validity of readability corpora: The construct validity of any model that was
trained with supervised machine learning methods depends on the construct validity of its
reference annotations (see Section 2.2.3.1, pp. 53–54). Some studies used reading times and
reading comprehension tests (e.g., Crossley et al., 2014c; Vajjala and Lučić, 2019) as well
as eye-tracking (e.g., Gonzalez-Garduno and Søgaard, 2018; Singh et al., 2016; Vajjala et al.,
2016) to obtain empirically grounded readability estimates. However, more frequently corpora
are annotated with human judgments, either provided by trained expert annotators or by non-
expert annotators (see Collins-Thompson, 2014). Non-expert annotations of readability levels
have become increasingly common in recent years. They are mostly based on crowd-sourcing
experiments (Crossley et al., 2019; De Clercq and Hoste, 2016; De Clercq et al., 2014; Mo-
hammadi and Khasteh, 2020), but also based on user studies pooling multiple non-expert
judgments. For example, Naderi et al. (2019b) obtained non-expert readability judgments for
individual sentences from German L2 readers at different proficiency levels which they av-
eraged into a single opinion score per sentence. More research is still needed on confirming
the annotation validity of readability corpora (Vajjala, 2022), especially for languages other
than English. Despite increasing interest in these types of annotations for training ARA mod-
els, most research continues to use the intended target audience or publisher information as
reference labels (Vajjala, 2022; Vajjala et al., 2016). Against this background, Vajjala (2022)
identified more large readability corpora with high quality annotations as a central desidera-
tum for ARA research, not only to support training new models and cross-corpus validation,
but also to develop best practices in ARA research and to benchmark new models.

Two other factors related to data resources play an important role for ARA: the text unit for
which readability is assessed and the reading scale used. ARA has near-exclusively focused
on readability assessment for full texts (Collins-Thompson, 2014), but for notable exceptions,
see Dell’Orletta et al. (2011), Pilán et al. (2016) and Vajjala and Meurers (2014) as well as
Weiss and Meurers (2022) in this thesis (Section 5.3.4). Even though readability at the text
level is important for a variety of applications (see Section 2.3.2), the analysis of smaller units
has been repeatedly identified as a desideratum or ARA research (e.g., Pilán et al., 2016;
Vajjala and Meurers, 2014). Sentence-level readability assessment can help to identify text
passages that require simplification, thus promoting a targeted approach to text simplification.
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Furthermore, sentence-level readability models can be applied to short text types such as ex-
ercises, social media or chat language, dialogue turns, captions, or questionnaire items. The
existing studies showed that the relationship between the overall readability of a text and the
readability of its smaller units (paragraphs, sentences) is complex. Difficult texts often con-
tain simple sentences and easy texts can contain difficult sentences (Pilán et al., 2016; Vajjala
and Meurers, 2014; Weiss and Meurers, 2022). Similarly, the role a single sentence plays for
the overall readability of a text is determined by several factors such as the redundancy of
information being encoded by this sentence and the relevance of the sentence for the current
reading goal(s). More research is needed to better understand this interplay.

Finally, the reading scales used in readability corpora heavily influence supervised ARA
models. There are two central types of reading scales: coarse-grained and fine-grained scales,
see Collins-Thompson (2014, p. 102) for a similar distinction. Coarse-grained scales estimate
the readability of texts based on broad categories (such as grade levels or CEFR levels but also
adult/child). Coarse-grained scales are often intuitively interpretable scales but lack speci-
ficity. They are also often specific for a target population (e.g., literate L1 readers, literate L2
readers, or low literate L1 readers). According to Collins-Thompson (2014), grade levels are
the most commonly used scale to approximate text comprehensibility. They are the “standard
unit of reading difficulty” (Collins-Thompson, 2014, p. 102). This comes from both the use
of leveled reading materials which often refer to grade levels (such as textbooks) and the his-
torical focus on readability for L1 contexts (Collins-Thompson, 2014; Sung et al., 2015; Xia
et al., 2016). However, grade levels are not suited as scales for L2 readers because L1 readers
and L2 readers differ in their abilities (see Section 2.3.1.1). For an adult L2 reader, a text that
is suited for a higher grade level (e.g., university-level expository text) may be more compre-
hensible than a text suited for younger readers (e.g., a novel for children), making a grade
scale difficult to interpret. L2 readability assessment often relies on coarse-grained L2 pro-
ficiency scales or estimates such as ‘beginner’, ‘intermediate’, and ‘advanced’ or the CEFR
scale (e.g., Pilán et al., 2016; Sung et al., 2015; Xia et al., 2016). For low literate readers,
readability is typically estimated using binary labels such as ‘±simplified’ (for an exception
using a more fine-grained scale, see Weiss et al., 2018). Coarse-grained scales are intuitive for
laypeople and relatively straightforward to obtain for researchers and practitioners in need of
labeled training data. However, these scales are limited in their adaptability to the skills of an
individual reader: By estimating the fit for an average representative of a level, coarse-grained
approaches lack the sensitivity to distinguish skill gradients within and between proficiency
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levels (Collins-Thompson, 2014, p. 102). For example, an ordinal estimate on the CEFR scale
fails to account for texts that fall between two adjacent proficiency levels (e.g., B2 and C1)
and does not allow to rank texts falling into one proficiency level (e.g., C1), which is impor-
tant seeing that learners within the same proficiency level are not necessarily homogeneous in
terms of their skills (see Section 2.2.1). In contrast, fine-grained scales are suited to provide a
gradient estimate that can be used to distinguish within categories. They are often continuous
and allow for a more differentiated assessment of reading skills within a coarse-grained level.
For example, a fine-grained scale might estimate on a 5-point Likert scale how readable a text
is for an intermediate L2 learner. Likert scales are often used for these kind of more fine-
grained readability estimates which are often elicited in psychological or psycho-linguistic
studies focusing on experiment-based readability assessment. However, the greater nuance
often comes at the expense of interpretability because the scales cannot directly be mapped to
the labels used in education research and practice to measure proficiency (Sung et al., 2015,
p. 375).

2.3.3.3 Neural and feature-based approaches

Machine learning-based approaches to ARA can be separated into feature-less neural network-
based approaches and feature-based machine learning approaches. Currently, both neural and
feature-based approaches to ARA report to achieve state-of-the-art performances. For exam-
ple, Martinc et al. (2021) reported an accuracy of 78.7% on the OneStopEnglish corpus (Vaj-
jala and Lučić, 2018) when training and testing different supervised and unsupervised neural
models. This is comparable to the performance of the feature-based classification approach
by Vajjala and Lučić (2018) which achieves an accuracy of 78.1% and below the accuracy of
the feature-based models proposed in Bengoetxea et al. (2020, acc.= 90.1%) and Weiss et al.
(2021, acc. = 92.1%, see Section 5.3.3). On the WeeBit corpus, Mohammadi and Khasteh
(2019) reported an accuracy of 91.0% and a RMSE of 0.11 using deep reinforcement learning.
Meng et al. (2020) achieved an accuracy of 91.7% using a hierarchical self-attention model.
This exceeds the accuracy reported for other neural and feature-based approaches (Deutsch
et al., 2020; Martinc et al., 2021; Xia et al., 2016) by 5–10%. The results are comparable to
the SOTA performance by Vajjala and Meurers (2012) who reported an accuracy of 93.3% an
a RMSE of 0.15. However, the neural approaches do not outperform the linguistically broadly
informed approach by Vajjala and Meurers (2012). The comparability of feature-based and
neural methods in terms of their performance has also been reported for other NLP tasks

79



Chapter 2 Background

(Rigutini and Algherini, 2022).

This shows that neural approaches are not always superior to more traditional feature-based
machine learning approaches. It is more accurate to state that neural and feature-based ap-
proaches have different advantages and disadvantages. Neural network-based approaches are
known to yield high performing predictive models (e.g., Martinc et al., 2021; Meng et al.,
2020; Mohammadi and Khasteh, 2019) without requiring the resource intensive process of fea-
ture engineering. This is especially important for languages for which the NLP tools needed
to extract elaborate linguistic feature sets are not available (Imperial, 2021). However, neu-
ral approaches require generally large quantities of data and substantial computational power
for training in contrast to feature-based approaches (Bender et al., 2021; Henderson et al.,
2020; Rigutini and Algherini, 2022). The choice between neural and feature-based machine
learning approaches for ARA needs to consider the available resources. Assuming compa-
rable performance and availability of feature-extraction resources, feature-based models are
more resource efficient in terms of energy consumption and training data needed. Especially
the latter is often a limiting factor for work on languages other than English or ARA for spe-
cific target groups for whom too little data are available, given that there are not enough high
quality training corpora for readability assessment (see Section 2.3.3.2).

Feature-based approaches are also generally more interpretable (see also earlier discussion
in Section 2.2.3.3), whereas neural approaches currently provide little insights into their de-
cision process. Few contributions to ARA that utilized neural approaches have attempted to
linguistically interpret their predictions. A notable exception to this is the work by Madrazo
Azpiazu and Pera (2019). They used the attention mechanism in their deep learning model to
investigate the linguistic properties of the parts of the texts that receive most attention. Their
findings regarding the POS, frequency, and morphological properties of relevant text passages
align with previous work on ARA. More research in this direction is needed to make neural
approaches to ARA more interpretable. It should be noted that for some use cases, this lack
of interpretability is less of an issue (e.g., for user experience and quality control, see Sec-
tion 2.3.2.3). However, it is a severe limitation in education contexts and for publishers or
other content providers who want to use ARA to adapt their materials until they align with
their target audience. In this respect, neural approaches parallel with readability formulas,
which also do not allow linguistically informed insights for which they have been heavily
criticized (Collins-Thompson, 2014, p. 104).

In other ARA contexts, neural approaches have more systematic advantages. For example,
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there has been increasing interest in multi-lingual and cross-lingual readability assessment.
Many ARA studies train and test their models on multiple languages but do not perform
cross-lingual testing (e.g., Imperial, 2021; Martinc et al., 2021; Mohammadi and Khasteh,
2019). Most of these use neural approaches because it is challenging to compute features
that can be extracted across languages. Shen et al. (2013) are a notable exception to this.
They proposed a multi-lingual approach to ARA based on surface length measures and term
frequency-inverse document frequency (TF-IDF) and demonstrated the applicability of their
approach to Arabic, Dari, English, and Pashto. De Clercq and Hoste (2016) used surface
length, lexical, syntactic, and semantic features as well as measures of cohesion for English
and Dutch readability assessment and compared their informativeness. Fewer studies work
on cross-lingual readability assessment. Research on cross-lingual readability assessment at-
tempts to compensate for the lack of leveled data for certain languages by augmenting it with
comparable leveled data from a high-resource language (e.g., Madrazo Azpiazu and Pera,
2020b) or by applying an ARA model trained on one language to another language, treating
language differences as a form of domain-adaptation (e.g., Madrazo Azpiazu and Pera, 2019,
2020a; Weiss et al., 2021). Madrazo Azpiazu and Pera (2019) used a multiattentive recur-
rent neural network trained on English data and demonstrated its applicability across a range
of data sets and languages (English, Spanish, French, Italian, Basque, Catalan, and Dutch).
Madrazo Azpiazu and Pera (2020b) studied the feasibility of feature-based cross-lingual read-
ability assessment for English, Spanish, Basque, Italian, French, and Catalan. They used
surface-based, syntactic, morphological, and semantic complexity features and measures of
cohesion to distinguish between simplified and regular encyclopedic texts using Wikipedia
and Vikidia (https://en.vikidia.org), an online encyclopedia for children (aged 8 to 13
years). Beyond comparing the importance of feature domains across languages, Madrazo
Azpiazu and Pera (2020b) demonstrated that they could improve the performance of models
for low-resource languages by augmenting the training data with comparable data from other
languages. In a follow up study, Madrazo Azpiazu and Pera (2020a) demonstrated that a neu-
ral approach utilizing word and sentence level cross-lingual embeddings achieves even better
results in cross-lingual transfer.

There has been some work on combining feature-based and neural approaches (Deutsch
et al., 2020; Imperial, 2021) but the reported results have been mixed. Imperial (2021) com-
pared use of BERT embeddings, readability features, and a combination of both on several
data sets for Filipino and English ARA. They found a clear improvement when combining
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BERT embeddings and linguistic features across data sets. In contrast, Deutsch et al. (2020)
found that augmenting deep learning models using linguistic features only improved model
performance on smaller training sets but not when sufficient training data was available. A
direct comparison between these hybrid approaches and the SOTA on OneStopEnglish and
WeeBit is not possible because both studies report (weighted) f1 scores but not accuracy and
RMSE as other ARA approaches on these corpora did. It thus remains unclear how competi-
tive these hybrid approaches are. More research is needed on this combination of approaches.
Until then, feature-based and neural approaches to ARA continue to be both relevant for re-
search and practice and methods should be chosen based on the specific application purpose
and the availability of resources.

Feature-based approaches have utilized a broad range of textual features that can be con-
nected to the CAF triad and the complexity domains discussed in Section 2.1.2. The choice
of features has been shown to be a key factor in model performance (Kate et al., 2010) and
studies repeatedly found that the combination of features from multiple linguistic dimensions
yielded more robust and accurate models for ARA (e.g., Pilán et al., 2016; Xia et al., 2016),
especially for sentence-level ARA (Pilán et al., 2016). Traditionally, readability features have
focused on easily observed surface properties of text, such as text, sentence, and word length
(see Collins-Thompson, 2014; Feng et al., 2010; Vajjala, 2022). These features were derived
from early readability formulas (see Section 2.3.4). Due to the proximity to psychology and
psycho-linguistics research on discourse and text comprehension (see Section 2.3.1), vocabu-
lary frequency measures (e.g., Feng et al., 2010; Sung et al., 2015) and cohesion (e.g., Feng
et al., 2010; Glöckner et al., 2006; Pitler and Nenkova, 2008; Sung et al., 2015; Todirascu
et al., 2013) have also been systematically used in feature-based approaches to ARA. Also
features of clausal and phrasal complexity (e.g., Feng et al., 2010; Glöckner et al., 2006; Kate
et al., 2010; Pilán et al., 2016; Sung et al., 2015) and lexical complexity (e.g., Feng et al.,
2010; Glöckner et al., 2006; Pilán et al., 2016; Sung et al., 2015) have a long tradition in
research on ARA. Yet, one of the first explicit references to CAF in computational linguistic
work on ARA was made by Vajjala and Meurers (2012). Linking features to the CAF frame-
work and SLA research is important because it helps linking linguistic insights into readability
with research on proficiency (Sung et al., 2015). There have also been some early approaches
focusing on morphological complexity features in work on languages other than English (e.g.,
Glöckner et al., 2006; Hancke et al., 2012; Madrazo Azpiazu and Pera, 2020b; Pilán et al.,
2016). Most of these studies focused on measures of inflection, derivation, and compound-
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ing. Similar to research on ATS, semantic complexity has also played an important role in
ARA research including measures of language models, as well as vocabulary ambiguity and
abstractness (e.g., Feng et al., 2010; Glöckner et al., 2006; Kate et al., 2010; Pilán et al., 2016;
Sung et al., 2015). Measures of human language processing have played only a minor role
in ARA, despite their close connection to reading speed and eye-tracking research (Gibson,
2000; Shain et al., 2016) and early calls to include such measures (Bailin and Grafstein, 2001,
pp. 294–296). Howcroft and Demberg (2017) used measures of integration costs, surprisal,
and embedding depth for sentence-level readability assessment of English. However, they
did not test these features in combination with other common readability features. All ARA
studies in this thesis used human processing measures for readability assessment (Weiss and
Meurers, 2018, 2022; Weiss et al., 2021, Section 5.3). For a more elaborate detailed historical
overview of the different types of features used in ARA, see Collins-Thompson (2014).

Some approaches to ARA have also experimented with adding topic modeling and senti-
ment analysis to their ARA models and to combine these with readers’ domain knowledge to
bridge the gap between modeling text characteristics and reader characteristics (e.g., Honkela
et al., 2012). Similarly, there has been some limited work on informing ARA models by
reader characteristics such as proficiency (Collins-Thompson et al., 2011; Tan et al., 2012).
As Vajjala (2022) pointed out, though, such features are rare in ARA approaches and more
work would be needed on capturing the interplay between text and reader characteristics (see
also Bailin and Grafstein, 2001, p. 296). Vajjala (2022, pp. 7–8) also recently advocated for
a multi-modal approach to ARA that takes into account not only linguistic text characteristics
but also non-linguistic text characteristics such as tables, graphics or a texts’ layout. Some
studies on ARA for web pages have already utilized non-linguistic information about links,
traffic, topic, and references to inform their readability estimates (e.g., Akamatsu et al., 2011;
Gyllstrom and Moens, 2010), see also Collins-Thompson (2014, pp. 118–121) for a detailed
discussion.

2.3.4 A brief remark on readability formulas

Although the statistical methods discussed in the previous section are the current SOTA in
ARA, in practice traditional readability formulas are still widely distributed (Benjamin, 2012;
Vajjala, 2022). They continue to be used in numerous applications, for example to screen or
filter texts (e.g., Chinkina and Meurers, 2016; Miltsakaki and Troutt, 2008), to evaluate NLG
models (e.g., Agrawal and Carpuat, 2019; Marchisio et al., 2019; Stymne et al., 2013), or
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to assess the accessibility of web materials (e.g., King et al., 2003; Misra et al., 2013; Paul
et al., 2021; Skierkowski et al., 2019). In fact, most studies discussed in Section 2.3.2 used
readability formulas to measure readability. Readability formulas focus on easily identifiable
surface level text characteristics that are highly correlated with lexical and morpho-syntactic
difficulty: word and sentence length (which could be identified without linguistic analysis
through graphematic markers such as white spaces and punctuation marks) and curated word
lists of either difficult or simple words or frequencies. This makes them easy to use and to fit
to new languages. As Collins-Thompson (2014) pointed out, readability formulas were tradi-
tionally first designed for English before being adapted for other languages (for an overview
of non-English formulas, see Zakaluk and Samuels, 1988). There are numerous overviews
documenting the history of readability formulas and cataloging the most influential formu-
las. DuBay (2004, 2006) provided a comprehensive review of the last 100 years of research
on readability formulas. Benjamin (2012) compared readability formulas with early machine
learning approaches to ARA in her overview, focusing on their applicability in practice.

Despite their popularity, readability formulas have been heavily criticized for their simplic-
ity and their lack of linguistic awareness. First, they are indifferent to changes in word order,
semantic and pragmatic differences, or discourse properties of texts. Any random permutation
of a fixed set of sentences will receive the same readability score under a traditional readabil-
ity formula even though changes in sentence order will heavily impact any text’s readability
(Bailin and Grafstein, 2001; Benjamin, 2012; Collins-Thompson, 2014). Hence, readability
formulas are known to have poor construct validity. Second, their lack of linguistic insight
also makes them unsuited as guides for revising and adapting texts: the process of “writing to
the formula” has been heavily criticized as ineffective (Benjamin, 2012; Schriver, 2000). This
limitation makes them unsuited for educational contexts (Collins-Thompson, 2014; Glöckner
et al., 2006). Third, it was suggested that their reliance on surface proxies of text characteris-
tics makes them unsuited for generalizing from traditional texts to non-standard or web data
(Collins-Thompson, 2014; Feng et al., 2009). This is especially concerning seeing that they
continue to be used to study the accessibility of web materials as discussed above. Fourth,
machine learning models typically outperform traditional readability formulas on most data
sets (Collins-Thompson, 2014), especially for short texts (Benjamin, 2012). Due to these lim-
itations, ARA research uses readability formulas as baseline models to test the performance
of new ARA models (e.g. Pilán et al., 2016). However, outside of ARA research, readability
formulas continue to be used in practice because they are well-known, easy to access, and
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easy to interpret. Benjamin (2012) evaluated approaches to ARA in her overview not only
based on their ecological validity, their fit for a specific target population, and their fit for a
specific text type. She also discussed how much training or instruction is needed to use a
model and if it is available for immediate use (as opposed to requiring to contact the author of
a paper, for example). Readability formulas are easy to access and apply. In contrast machine
learning-based approaches are often not accessible to the research community or practitioners
in the sense that code and trained models are rarely shared (Vajjala, 2022) and even if they
are, they require advanced programming or statistical skills (Benjamin, 2012), because they
are rarely integrated in publicly available web platforms. So while readability formulas lack
robustness, accuracy, validity, and interpretability, they outperform most SOTA approaches to
ARA in terms of accessibility. Despite this mismatch, traditional readability formulas remain
the dominant metric of readability outside of ARA research.
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Chapter 3

Automating German complexity modeling

3.1 Overview of complexity analysis systems

This chapter introduces the two automatic complexity analysis systems that I used through-
out this thesis: the legacy system and the multilingual CTAP system (with a primary focus
on its German component). I used the legacy system for linguistic complexity analyses of
German throughout this thesis for all but two publications (i.e., Weiss and Meurers, 2022;
Weiss et al., 2021). The German component of the CTAP system (i.e., Chen and Meurers,
2016; Weiss et al., 2021) is part of the multilingual analysis extension that I created for CTAP
(see Section 3.3) and has a web-based user interface that makes these analyses accessible for
a broader audience. I used CTAP in two publications that are part of this thesis (Weiss and
Meurers, 2022; Weiss et al., 2021). Both systems use an elaborate NLP pipeline to com-
pute a rich collection of more than 400 features. The feature collection combines complexity
measures of absolute and relative complexity (see Section 2.1.1.2, p. 12) in the domains of
syntactic, lexical, semantic, morphological, discourse, and human processing complexity (see
Section 2.1.2). The systems thus integrate complexity measures stemming from a variety of
research areas, including research on SLA complexity, writing quality assessment, text read-
ability, and psycho-linguistic research on human processing (see Chapter 2).

The remainder of this section (3.1) continues with a general non-technical and concep-
tual overview for the automatic approach used in this thesis. I briefly motivate the need for
automatic linguistic modeling and outline the shared conceptual analysis workflow of both
systems. The remaining two sections elaborate on the technical details of both systems: Sec-
tion 3.2 presents the architecture, frameworks, and tools used in the legacy system. Section 3.3
presents the architecture, frameworks, and tools used in the multilingual CTAP system and
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also elaborates on how I ensured the comparability of features across languages.

3.1.1 Automating linguistic modeling

The computational linguistic approach presented in this dissertation addresses the call to view
and study linguistic complexity as a multi-dimensional construct spanning diverse linguistic
domains (Housen et al., 2019; Kuiken et al., 2019; Norris and Ortega, 2009). This allows to
investigate trade-off effects between complexity (sub-)domains and to quantify developmen-
tal and task variation from different linguistic perspectives (see Section 2.1.3). It contributes
directly to overcoming the traditionally reductionist focus of (SLA) complexity research on
the syntactic and lexical domain (see Section 2.1.2). This is made possible by automating fea-
ture extraction through the use of NLP techniques: Calculating hundreds of features covering
several linguistic domains becomes feasible for large quantities of data because an elabo-
rate NLP pipeline and extraction rules fully automate the calculation of complexity measures.
While manual expert annotations allow a high degree of control and customization for tar-
geted linguistic constructs (e.g., Bulté and Housen, 2014, p. 48), automatic analyses allow to
quickly and efficiently annotate data with numerous linguistic constructs and features at low
cost (Crossley and McNamara, 2014; Kyle and Crossley, 2018; Lu, 2010). These annotations
are scalable, reproducable, and comparable across studies (Crossley and McNamara, 2014;
Lu, 2010; Ströbel et al., 2020, p. 738) while showing good performance on L2 data (Lu, 2010;
Ströbel et al., 2020; Weiss and Meurers, 2021). This makes automated approaches a valuable
addition to the methodological palette for linguistic research.

The CTAP system makes the broad linguistic complexity modeling approach proposed in
this thesis accessible to a broad user base. Similar systems that connect an automated analysis
pipeline to a graphical or command-line-based user interface exist primarily for English, such
as Coh-Metrix (McNamara et al., 2010a), the Educational Scoring Toolkit (ESCRITO; Zesch
and Horbach, 2018), the Lexical Complexity Analyzer (LCA; Lu, 2012), the L2 Syntactic
Complexity Analyzer (L2SCA; Lu, 2010), or the Tool for the Automatic Analysis of Text Co-
hesion (TAACO; Crossley et al., 2016c). Less work has been dedicated to other languages, but
see, for example, Coh-Metrix-Esp (Quispesaravia et al., 2016) for Spanish and Coh-Metrix-
Port for Brazilian Portuguese (Scarton and Aluısio, 2010). Recently, there has been increasing
interest in providing multilingual systems, but they are still rare due to the technical and con-
ceptual challenges arising from the support of multiple languages. Noteworthy exceptions
are MultiAtzerTest for English, Spanish and Basque (Bengoetxea and Gonzalez-Dios, 2021)
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and ReaderBench for English, French, Romanian, Dutch, Spanish, Italian, and Latin (Dascalu
et al., 2018). For German, however, no comparable systems other than CTAP are available at
the time of writing. An early system for the analysis of German was the DeLite system (Brück
et al., 2008) but it is not maintained and accessible any more at the time of writing. The
Linguistic Analyzer for Text and Item Characteristics (LATIC; Neri and Klückmann, 2021) is
currently being developed for English, French, German, and Spanish. However, at the time of
writing it calculates fewer and more low level linguistic features than the systems presented
here. The focus lies on traditional readability formulas and counts that can be derived from
POS tags provided by CoreNLP pipeline (Manning et al., 2014). More elaborate features and
a systematic conceptual connection to existing work on ATS, ARA, and (SLA) complexity
research is missing. The systems presented in this chapter fill this research gap for German
and contribute to work on multilingual analysis systems.

3.1.2 General complexity analysis workflow

Despite their differences in architecture, the legacy system and the multilingual CTAP system
conceptually follow the same workflow to extract linguistic complexity measures from raw
text data. This is displayed in Figure 3.1. Before we consider the detailed technical imple-
mentation of each of these modules in the legacy system (Section 3.2.1 to 3.2.4) and CTAP
(Section 3.3.1 to 3.3.4), let us briefly consider the general workflow of both systems for bet-
ter overview. Both systems start with the input processing module which takes an arbitrary
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Figure 3.1: Conceptual analysis workflow of both automatic complexity analysis systems used
in this thesis: from plain text to broad linguistic modeling.

number of plain text input files which the user provides. The module loads these files into
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the system for further processing. In the subsequent NLP module, input texts are enriched
with linguistic annotations (such as sentence boundaries, POS, morphological features, and
dependencies). This module combines a series of different NLP components into an elaborate
pipeline (for details, see Sections 3.2 and 3.3). These annotations are then fed into the con-
struct identification module. There, they are used to identify a pre-defined list of linguistic
structures (such as prenominal modifiers or subordinate clauses). A definition of the most
important linguistic units used throughout both systems can be found in Appendix A. The fi-
nal feature calculation module calculates the complexity based on the identified constructs.
A complete list and short explanation of all complexity features calculated by either system
can be found in Appendix B. The complexity analyses for all input files are returned by both
systems in a single comma-separated value (CSV) file.

3.2 The legacy system for German complexity modeling

The legacy complexity analysis system is a Java program (compatible with version 8+) that can
be accessed via command line. Its most recent version (Weiss and Meurers, 2021) calculates
400 measures of linguistic complexity. This includes measures of absolute complexity and rel-
ative complexity (see Section 2.1.1.2, p. 12). The system calculates measures of absolute the-
oretical linguistic complexity in the domains of syntax, lexicon, semantics, and morphology.
It also includes measures of relative complexity in the domains of discourse, human process-
ing, and lexicon. In the remainder of this thesis, I refer to relative lexical complexity measures
as ‘language use’ measures to better distinguish them from absolute lexical complexity mea-
sures. The system was originally designed by Hancke et al. (2012) but further developed,
updated, and extended considerably throughout several iterations (most notably: Galasso,
2014; Hancke, 2013; Weiss, 2015, 2017). In the context of this thesis, I have maintained and
updated the system and implemented the flexible input/output capabilities described below.

Figure 3.2 shows the general workflow of the legacy system. It extends Figure 3.1 adding
the unique input/output capabilities of the legacy system. The legacy system produces interim
serialized output files (.ser in Figure 3.2) for the artifacts of the NLP module and the construct
identification module (.ser). These are used as input for the subsequent module. This division
allows users to start their analysis at different points when they re-run an analysis. Users can
start their analysis not only with the input processing module (requiring plain text input) but
alternatively also with the construct identification module (requiring the serialized output from
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Figure 3.2: Analysis workflow and input/output capabilities of the legacy system. Additions ot
the conceptual workflow presented in Figure 3.1 are printed in white. Optional components
are connected with dashed arrows.

the NLP module as input) or with the feature calculation module (requiring the serialized out-
put from the construct identification module as input). This makes re-running the analysis after
altering or adding complexity features more efficient because the NLP module can be skipped.
To enhance the interpretability of the linguistic analysis, I added constituency parses—in Penn
Treebank (PTB) format—and dependency parses—in Conference on Computational Natural
Language Learning (CoNLL) format—as output options for the NLP module. These can be
used to inspect the quality of the automatic analysis. I further extended the NLP module to
accept linguistic annotations in these formats as alternative input instead of plain text data.
When this option is chosen, the module loads the linguistic annotations provided by the user
and incorporates them into the output produced for the next module instead of running the
NLP pipeline. The input processing module is also omitted in this case. This enables users to
use their own annotations for the construct identification module, for example to use gold stan-
dard annotations instead of potentially noisy automatic annotations.1 Users can control these
options using command line flags which can be provided as an optional input when starting
the analysis. This way, users can define which modules they want to execute and whether
or not they wish to create the interim output. By default, all modules are executed and no
linguistic annotations are saved except for the serialized files which are always created. Users
can also specify whether they want to calculate features on the document level (default), on

1For an example of this use case, see Weiss and Meurers (2021) described in Section 5.2.4.
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the sentence level, or on the word level (or any combination of those three). This is a second
extension of the legacy system that I implemented in the context of this thesis. However, not
all features can be meaningfully applied to the sentence level (e.g., global discourse measures)
or word level (e.g., TTR).

Optionally, all features can additionally be returned in an attribute-value format (.meta).
The optional parse output files (.ptb/.conll) and the attribute-value format file are compatible
with the www.corpus-tools.org infrastructure for multi-layer linguistic corpora (Druskat
et al., 2016). All formats can be converted into the graph-based meta model Salt by using the
conversion tool Pepper (Zipser and Romary, 2010). This facilitates, for example, the creation
of constituency and dependency annotated complexity corpora in ANNIS (Krause and Zeldes,
2016).

3.2.1 Input processing module

The input processing module iterates over all plain text files (file ending .txt) in the input
directory provided by the user. Each file is loaded into system memory using an input file
stream reader. All texts are read using Universal Transformation Format-8 (UTF-8) character
encoding. The input processing module is designed to be easily interchangeable. Users may
program their own input processing module suited for customized input formats as long as the
output fed into the NLP module is represented in the AnnotatedDocument class that is used
throughout the system.

3.2.2 NLP module

The NLP module combines several independent NLP components. Sentence segmentation and
tokenization are provided by the Apache OpenNLP toolkit (version 1.9.1; https://opennlp.
apache.org/). The system uses OpenNLP’s default model which was trained on the Leipzig
corpus (Goldhahn et al., 2012). For compound splitting, the module uses the jWordSplitter
(version 3.4; http://www.danielnaber.de/jwordsplitter/) which is dictionary-based.
POS tagging as well as lemmatization, morphological analysis, and dependency parsing are all
provided by the Mate tools (version 3.6; Bohnet and Nivre, 2012). The system uses the Mate
tools’ default model which was trained on the Tiger treebank for dependencies (Brants et al.,
2002) without ellipses, see description in Seeker and Kuhn (2012). The legacy system employs
two more parsers: The Stanford CoreNLP pipeline (version 3.9.2; Chen and Manning, 2014)
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produces constituency parses for the system. For this, it uses the default model that was trained
on the Negra corpus (Brants et al., 1999). The Berkley parser (version 1.7; Petrov and Klein,
2007) produces parses of topological field structures. For this, the system uses the model
trained by Ziai (2018) on the TüBa-D/Z treebank (Telljohann et al., 2004). Both parsers use
the POS annotations produced by the Mate tools to foster consistency across NLP tools.

3.2.3 Construct identification module

The construct identification module is based on extraction rules and external linguistic re-
sources. The calculation of syntactic complexity measures relies heavily on Tregex (Levy and
Andrew, 2006), a tool that applies regular expressions to tree structures. Semantic informa-
tion is obtained through the GermaNet word net for German (version 11; Hamp and Feldweg,
1997). The module also retrieves single- and multi-word connectives from precompiled lists
based on Breindl et al. (2014) and Eisenberg et al. (2009). These list connectives by type
(e.g., temporal or causal) which allows a more fine-grained analysis of how cohesive devices
are used. For the calculation of word frequencies, the system utilizes several frequency data
bases for German. To capture language use in newspapers and written academic language, it
uses the dlexDB data base (Heister et al., 2011). For general spoken and written language use,
the system extracts frequencies from Subtlex-DE and Google Books 2000 (Brysbaert et al.,
2011). Finally, the system approximates children’s language use through frequency and age
of active use measures that I extracted from the KCT corpus (Lavalley et al., 2015) in Weiss
(2017).

3.2.4 Feature calculation module

The feature calculation module retrieves the linguistic counts that are required to calculate
features based on the predefined formulas and algorithms. All results are saved domain-wise
in form of hash maps. After feature calculation, the module iterates over these hash maps and
combines them into a wide-format table. Depending on the output file name specified by the
user, the table is tab-separated (.tsv) or comma-separated (.csv).

Most features are ratios that normalize the occurrence of the target construction (e.g., the
count number of complex NPs) by a suitable unit (e.g., sentence, t-unit, clause, NP). Norris
and Ortega (2009, p. 560) pointed out that the choice of denominator should be adequate for
the data that is being analyzed. To leave the choice of the denominator up to the researchers
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using the system and their research questions, the legacy system calculates multiple nor-
malizations of many counts, such as number of complex NPs per sentence, number of

complex NPs per t-unit, number of complex NPs per clause, and number of complex
NPs per NP. The latter is a sub-type of ratio features because it calculates the percentage of
complex NPs. The system calculates several percentage features across linguistic domains.
The system includes several percentage features for complementary linguistic constructs (de-
pendent and independent clauses or different noun cases). Examples of percentage features are
number of independent/dependent clauses per clause. The module also calculates
several length features. They focus on the length of linguistic constructs (e.g., words, phrases,
clauses, t-units, sentences) in terms of different units (characters, syllables, words), again
leading to multiple versions of a specific length feature (e.g., word length in syllables

and word length in characters). Again researchers can choose which length feature(s)
to use based on their research questions and data. These three feature types (ratio, percentage,
length) make up the majority of features. Other features include elaborate formulas or calcu-
lation algorithms—such as for MTLD (McCarthy and Jarvis, 2010), PID (Brown et al., 2008),
and the DLT measures proposed by Weiss (2017)—or measures calculating the coverage of
variants for a specific construct—such as the coverage of noun modifiers. Frequency
features are measured as raw frequencies and frequencies per million words as well as in
terms of frequency bands. Frequency bands are calculated on a Zipf scale (log10) which is
partitioned into integer ranges (1–1.9̄, 2–2.9̄, . . . ). Frequency band features allow to identify
the number of low-frequency and high-frequency words (Brysbaert et al., 2018, p. 46).

3.3 A multilingual common text analysis platform

The multilingual Common Text Analysis Platform (CTAP) is a fully web-based analysis
platform for linguistic complexity analyses. CTAP is freely available for immediate use at
www.ctapweb.com. The currently deployed version of CTAP (Weiss et al., 2021) calculates a
total of 1,049 measures of linguistic complexity from the domains of syntax, lexicon, morphol-
ogy, discourse, human processing, and language use for the languages English (EN; N = 889),
German (DE; N = 543), French (FR; N = 368), Spanish (ES; N = 387), and Dutch (NL;
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N = 212), and Portuguese (PT; N = 1).2, 3, 4

The CTAP system was originally designed by Chen and Meurers (2016) as a monolingual
analysis platform for English. It was fully written in Java (compatible with version 8+) and
uses Google Web Toolkit (GWT) (version 2.7) for the front-end and Unstructured Information
Management Application (UIMA) in the back-end. Front-end and back-end use a shared
PostgreSQL database. As part of this thesis, I have extended CTAP to be a multilingual
analysis platform to be able to integrate the German features from the legacy system into the
existing tool for English. In this context, I have also extended the existing feature sets for
English from Chen (2018) and German (see Section 3.2) with the features from the respective
other system when possible. To test the generalizability of the multilingual system, I have also
started the integration of Dutch. The other languages were added later on by other researchers
whom I consulted and are only listed here for documentary purposes. The technical details of
the general CTAP architecture has been described in detail in Chen and Meurers (2016) and
Chen (2018). In the following, I will only discuss it as far as it is relevant to understand the
general workflow or the changes that I made to the system to support multilingual complexity
analyses.

Figure 3.3 shows the general CTAP workflow. It extends Figure 3.1 adding the unique in-
put/output capabilities of the CTAP system.5 Unlike the legacy system, the CTAP modules
are activated demand-driven and not executed in a fixed sequence. This means that if a user
chooses to only analyze lexical complexity measures, the NLP components required for other
features (such as parsers) are not used. To enable this, the input processing module in CTAP
is divided into three asynchronously operating components: the corpus manager, the feature
selector, and the analysis generator. These are relevant for the input processing module dis-
cussed below.

Before elaborating on the different modules, let us briefly review the central UIMA termi-
nology that is needed for the remainder of this section. UIMA was designed to facilitate the
analysis of unstructured data. It represents individual analysis units (e.g., text documents) as
UIMA Common Analysis Structure (CAS) objects. All processing and retrieval processes that

2Even though the NLP pipeline would support the calculation of more features, currently only one feature is
publicly available for Portuguese, namely number of sentences.

3All features are listed and defined within the CTAP platform at www.ctapweb.com. A complete list and
description of all features for German can also be found in Appendix B.

4A version for Italian exists (Okinina et al., 2020) but it has not yet been integrated into www.ctapweb.com
5The system architecture of CTAP does not explicitly implement these modules. However, the individual

implemented components in CTAP can be linked to the conceptual workflow as outlined below.
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Figure 3.3: Analysis workflow and input/output capabilities of the CTAP system. Additions to
the conceptual workflow presented in Figure 3.1 are printed in white. Dashed boxed indicate
that input/output is not directly accessible to the user.

need to be executed on a text are performed on its CAS representation. CAS objects can be
accessed and enriched with additional information using UIMA Analysis Engines (AEs). AEs
can add span annotations to the CAS. AEs that interact with the CAS after other AEs have been
executed, can build on previous annotations. To enable this step-wise annotation process, AEs
utilize so called UIMA Feature Structures to define the types of annotations that they perform
and the values these annotations can take. Besides the actual Java code used to perform the
task of an AE (e.g., annotating sentence boundaries or named entities), AEs require Extensible
Markup Language (XML)-based descriptor files that specify their input/output capabilities and
dependencies, links them to a specific UIMA Feature Structure, provides pointers to external
resources, and specifies other configuration options.

3.3.1 Input processing module

The corpus manager allows users to upload their plain text data into the CTAP database— 1
in Figure 3.3 and Figure 3.4. Similarly, the feature selector allows users to compile feature

96



3.3 A multilingual common text analysis platform

sets from the existing pool of all available features— 2 in Figure 3.3 and Figure 3.4. Data
sets and feature sets are not shared between users and are only accessible to their owners.
Once they are stored in the database, data sets and feature sets can be used by their owners to
assemble any number of analyses in the analysis generator. There, users can create an analysis
by combining a data set and a feature set that they own with an analysis language— 3 in
Figure 3.3 and Figure 3.4. The user interface prompt for the specification of the analysis
demands is shown in Figure 3.4. This specification is used to identify which components of

Figure 3.4: CTAP analysis generator view: central access point for CTAP’s input/output ca-
pabilities after uploading users’ corpus data and defining user-specific feature sets. Numbers
1 to 4 are aligned with those in Figure 3.3.

the subsequent analysis modules are needed.

3.3.2 NLP module

Overall twelve AEs belong to the NLP module (#0 to #11; henceforth: annotators).6 They
are listed in Table 3.1. I discuss in the following the tools used for all six languages cur-
rently represented in CTAP for documentation purposes and to illustrate the flexibility of

6For the remainder of this chapter, I use the term ‘annotator’ exclusively to refer to AEs not to human annotators.

97



Chapter 3 Automating German complexity modeling

Table 3.1: Overview of annotators in the CTAP NLP module and the NLP tools and models
that they use for English, German, French, Spanish, Dutch, and Portuguese (C = CoreNLP
pipeline, O = OpenNLP pipeline, S = stanza pipeline, M = Mate tools, SB = Snowball stem-
mer, N = do nothing dummy annotator, ? = no NLP resources needed, n.a. = not available).

Annotator # Requires EN DE FR ES NL PT

Full pipeline 0 none N N N N N S
Sentences 1 0 C C C C O N

Tokens 2 0, 1 C O C C O N
Types 3 0–2 ? ? ? ? ? ?

Letters 4 0–2 ? ? ? ? ? ?
Syllables 5 0–2 ? ? ? ? ? ?

POS 6 0–2 C C C C O N
Lemmas 7 0–2 M M M M n.a. N

Stems 8 0–2, 7 SB SB SB SB SB n.a.
Morphological tags 9 0–2, 7 n.a. M M M n.a. N
Constituency trees 10 0–2, 6 C C C C n.a. N

Dependencies 11 0–2, 6, 7 C C C C n.a. N

the multi-lingual architecture that I introduced with the integration of German into CTAP.
Eleven annotators are dedicated to the annotation of individual linguistic units (#1 to #11 in
Table 3.1).7 The availability of these annotators for the different languages are listed in Ta-
ble 3.1. The sentence annotator (#1) uses tools from the Stanford CoreNLP pipeline (version
4.2.0; Chen and Manning, 2014, EN, DE, ES, FR) and Apache’s OpenNLP toolkit (version
1.9.1; https://opennlp.apache.org/; NL). The token annotator (#2) requires the sentence
annotator as a pre-processing step and uses tools from CoreNLP (EN, ES, FR) and OpenNLP
(DE, NL). The annotators for types (#3), letters (#4), and syllables (#5) each require the sen-
tence and token annotator as pre-processing steps and do not require additional external NLP
tools to identify the respective linguistic units. Unique tokens are identified using string com-
parisons. Letters and syllables are identified using regular expressions with only the latter
being language dependent (assuming languages written in a Latin alphabet). The POS an-
notator (#6) requires the sentence and token annotator as pre-processing steps and uses tools
from CoreNLP (EN, DE, ES, FR) and OpenNLP (NL). The lemma annotator (#7) requires the
sentence and token annotator as pre-processing steps and uses the Mate tools (version 3.61;
Bohnet and Nivre, 2012). The stem annotator (#8) requires the sentence and token annota-

7I will discuss the full pipeline annotator (#0) later in this section.
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tor as pre-processing steps as well as the lemma annotator. It uses the OpenNLP Snowball
stemmer (EN, DE, ES, FR, NL) on lemmas instead of tokens to improve stemming accuracy.
The morphological tag annotator (#9) requires the sentence, token, and lemma annotator as
pre-processing steps. It uses the Mate tools. This annotator is currently not available for
English and Dutch. The constituency tree annotator (#10) requires the sentence, token, and
POS annotator as pre-processing steps and uses tools from CoreNLP (EN, DE, ES, FR). This
annotator is currently not available for Dutch. The dependency annotator (#11) requires the
sentence, token, and POS annotator as pre-processing steps. It uses the CoreNLP dependency
parser (EN, DE, ES, FR). This annotator is currently not available for Dutch. All tools use the
respective default models for the different languages.

The division into separate annotators for different linguistic units corresponds to the origi-
nal separation of annotators in the monolingual English CTAP system by Chen and Meurers
(2016) which contained a total of eight annotators. In the context of this thesis, I added the
annotators for stems (#8), morphological tags (#9), and dependency parses (#11). Chen and
Meurers (2016) chose this architecture because it allows to load only those components and
models that are actually required for any given analysis instead of running the full pipeline.
In the new multilingual context that I have established with this thesis, this strict division also
promotes the flexible exchange of individual NLP components for different languages. This
becomes necessary if an NLP pipeline does not support certain annotations for a language.
For example, at version 4.2.0, CoreNLP did not offer German-specific models for tokeniza-
tion and dependency parsing and does not include any morphological analysis component for
any language. Tokenization for German is supported by using the English model as default
which shows an inferior performance compared to other tokenizers trained specifically for
German. To circumvent this issue, the NLP module currently uses the OpenNLP tokenizer
and the Mate tools for morphological analyses. A disadvantage of this architecture is the
increased programming effort and the lower efficiency for cases where the entire pipeline is
needed and a single pipeline can perform all required annotations. For this special case, I have
developed another annotator that allows to use a complete NLP pipeline to perform all anno-
tations, the full pipeline annotator (#0). It is currently only used for Portuguese which uses
the stanza pipeline (Qi et al., 2020) for sentence segmentation, tokenization, POS tagging,
lemmatization, morphological tagging, constituency parsing, and dependency parsing. Also
the CoreNLP pipeline has been implemented for the full pipeline annotator but is currently
not used.
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Adding new languages and the corresponding NLP tools, models, and other linguistic re-
sources to support them to an annotator is prone to introduce code redundancies that hinder
the readability and maintenance of annotators. To avoid this, I designed a generalizable class
structure that extends the given structure of UIMA AEs. UIMA AEs extend the JCas annotator
implementation base (JCasAnnotator ImplBase) from which they inherit several methods.
CTAP overrides three of these methods: initialize() to load and initialize all required re-
sources and instance variables, process() for the actual text-wise annotation, and destroy()
to free memory after completing the analysis.8 Additional to these three methods, each anno-
tator in CTAP contains 2+n private classes with n being the number of NLP tools used for the
annotation: the annotation interface, a dummy annotator that allows to skip the present analy-
sis,9 and the classes implementing the interface. These classes serve as wrappers for NLP tools
and standardize the methods and input/output capabilities across NLP tools to match the inter-
face. The initialize() method selects the wrapper that should be initialized based on the
language parameter that users selected for the analysis 3 . Any language-specific resources
that are required are also loaded at this point. The paths to the language-specific resources are
stored in the UIMA XML descriptor of the AE. They are retrieved using identifiers that match
the provided language codes. This way, no extra code is required to load the correct model
because everything is handled through parameter variables.

Let us consider the token annotator (TokenAnnotator) as a concrete example: I imple-
mented the CTAPTokenizer interface which specifies the abstract method tokenize() that
takes an input sentence String and returns an array of OpenNLP Span objects.10 I then im-
plemented two wrappers implementing this interface: one for the Stanford CoreNLP tokenizer
and one for the OpenNLP tokenizer. The wrappers contain all tool-specific code including the
conversion from the original output of the CoreNLP tokenizer (an array list of CoreLabel ob-
jects) to a Span array. TokenAnnotator has an instance variable of type CTAPTokenizer, i.e.,
the interface. In initialize(), the CTAPTokenizer variable is initialized as the language-
appropriate implementation of this interface through a switch statement again based on the
user input language. The language-specific model is loaded at this step, too. The path to the
languaguage-specific model is specified in the of type CTAPTokenizer XML descriptor. This

8The overridden destroy() methods only add minor logging capabilities to the inherited destroy() method.
9This is necessary for two reasons. First, it allows to skip annotators #1 to #11 if the full pipeline annotator

is used and vice versa. Second, it introduces flexibility if NLP tools for different languages have different
dependencies.

10I chose Span arrays as output for the tokenizer interface because OpenNLP supports tokenization models for
more languages than CoreNLP.
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set-up allows to keep the code within process() fully language independent. The method
only references the methods specified in the interface. It iterates through the sentence an-
notations that were stored in the UIMA CAS representation of the analyzed text. For each
sentence, it calls the tokenize() method that is implemented by all wrapper classes, and
saves the returned tokens within a Span array to the CAS.

3.3.3 Construct identification module

The construct identification module also makes use of UIMA AEs. However, it annotates
the CAS with counts rather than linguistic structures. The AEs in this module are executed
after the annotators, so that they can use the annotations made in the NLP module as pre-
processing steps and access the annotations through the CAS before adding their own annota-
tions in form of construct counts. The initialize() method loads all language-specific re-
sources that are still needed. For example, CTAP uses several frequency databases: Subtlex for
US English (https://www.ugent.be/pp/experimentele-psychologie/en/research/
documents/subtlexus/overview.htm; Brysbaert and New, 2009), German (http://crr.
ugent.be/archives/534; Brysbaert et al., 2011), and Spanish (http://crr.ugent.be/
archives/679; Alonso et al., 2011; Cuetos et al., 2012b), the Lexique film frequency database
(http://www.lexique.org/; New et al., 2004), as well as OpenSubtitles for German, En-
glish, French, Spanish, and Dutch.11 It additionally contains all databases for frequencies,
age of acquisition, age of active use, and concreteness that are discussed for German in Sec-
tion 3.2.3 (p. 93) and for English in Chen (2018). Other language-specific resources used in
this step are Tregex patterns (Levy and Andrew, 2006) for constituency trees or the lists of
connectives used for German in the legacy system (see Section 3.2).

The initialize() method also initializes a language-specific extension of the abstract
classes WordCategories and DependencyLabelCategories, if POS tags or dependency
labels are required to identify a linguistic construct. Following a similar logic as the previously
described wrapper classes for NLP tools, these classes for POS and dependency labels serve as
wrappers for language-specific tag sets. This allows to use the same methods and key words in
the process() and the XML descriptors for commonly needed word categories (e.g., lexical
words, function words, verbs, pronouns, punctuation, etc.) and dependency labels (e.g., root
or argument). Besides language-specific extensions, CTAP contains extra classes for POS and

11https://github.com/hermitdave/FrequencyWords/
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dependency tags from the Universal Dependency framework.12

All extraction rules that are further used to identify the predefined target constructs are
designed to be maximally comparable across languages. This is discussed in more detail in
Weiss et al. (2021).

3.3.4 Feature calculation module

The feature identification module also makes use of UIMA AEs. As the construct identifica-
tion module, it annotates the CAS with numeric values rather than linguistic structures. The
design of AEs in this module is virtually identical to the AEs in the construct identification
module. In fact, within CTAP, no structural difference is made between both modules except
that feature AEs require not only AEs from the NLP module as pre-processing steps but ad-
ditionally build on AEs from the construct identification module. The types of features that
are calculated in CTAP are comparable to those calculated in the legacy system (see Sec-
tion 3.2.4). CTAP calculates ratios, percentages, length features, and coverage features, as
well as features based on more complex formulas and algorithms. An important difference to
the feature calculation module that is used in the legacy system is that the output of this mod-
ule is not directly returned as a data table. Instead, CTAP saves all features and raw counts
that were requested by the user in the PostgreSQL database. After an analysis has been com-
pleted, users can download their results as a CSV file in wide or long format through the web
front-end. They can also use the result visualizer to obtain first visualizations of their data if
they provided relevant meta information when uploading texts using the corpus manager. For
more details on the result visualizer, please see Chen and Meurers (2016) and Chen (2018).

12https://universaldependencies.org/
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Chapter 4

Systematic literature surveys

4.1 Motivation and shared design principles

This chapter reports two systematic, descriptive literature surveys: firstly, one on APA and
ATS for German (Section 4.2) and secondly, one on Automatic Readability Assessment (ARA)
for German (Section 4.3). In the remainder of this chapter, I use the term Automatic Language
Performance Scoring (ALPS) to jointly refer to work on APA and ATS. Assessing the quality
of writing covers a broader range of sub-tasks than ARA and the general notion of ‘language
performance’ allows us to also take into account work on writing quality assessment that is
at the periphery of APA and ATS research. Examples for such work are the evaluation of
the appropriateness of professional communication (e.g., Ludwig et al., 2021) or of age-
appropriate social media communication (e.g., Frey, 2020a).

Both topics attract increasing attention from various research disciplines, especially (but
not exclusively) in education-related research (for details, see Sections 2.2 and 2.3). The ever-
growing pool of interdisciplinary stakeholders in particular is making it increasingly difficult
to maintain an overview of the current research landscape. Our two systematic literature re-
views aim to address this issue. These are the first literature surveys specifically dedicated to
ARA and ALPS for German. To the best of our knowledge, they are also the first systematic
surveys on either topic for any other language. Unlike traditional narrative reviews that rely
on the literature knowledge of their authors, systematic literature reviews follow predefined
criteria for the retrieval and inclusion of literature (Xiao and Watson, 2017). A structured
survey aims to be as comprehensive as possible within its predefined scope, even if it is un-
likely to elicit the full population of relevant publications. This principled way of eliciting
literature results in a more comprehensive empirical basis for the literature review. Structured
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surveys are less influenced by potential biases of investigators towards certain methods, pub-
lication venues, or research groups and result in a more representative sample of the available
literature. This strengthens the conclusions that can be drawn from them.

In this chapter, we provide two systematic literature reviews to analyze the current state
of research on ALPS/ARA and the diffusion of computational linguistic methods in an inter-
disciplinary context. We used the PRISMA statement (consisting of a checklist and a flow
diagram) as an orientation to ensure the transparency and completeness of our surveys (Page
et al., 2021). A direct application of the PRISMA checklist for reporting standards was not
possible because the checklist was designed for surveys of intervention studies (Page et al.,
2021, p. 1) and is only partially applicable to other types of surveys such as the two presented
here. Figures 4.1 and 4.10 in this chapter contain the respective PRISMA flow diagrams for
the documentation of the identification, screening, and inclusion of literature for both surveys.

In the present surveys, we focused on the following research questions:

a) Which research disciplines use automatic methods to assess readability / language per-
formance? Which methods do they use?

b) Which types of language and target groups are the approaches trained on and used for?

c) Which machine learning methods and features are used to predict language perfor-
mance/readability?

d) What is the current SOTA performance for ALPS and ARA models?

e) How available and accessible are SOTA ALPS and ARA approaches?

Benjamin (2012) set out to answer a similar set of questions for her review of ARA for English.
However, our surveys put a stronger emphasis on methodological aspects of current work on
ALPS/ARA.1 We answered our research questions with the goal to better understand where
research on ALPS and ARA stands in terms of methods and data used and the extent to which
it has arrived in (interdisciplinary) practice. This serves primarily to inform researchers about
which directions new work on ALPS/ARA for German still needs to explore and what can be
done to enhance the impact of this work in practice. In the following, we will first present the
shared study set-up for both surveys (see below), before showing and discussing the results for
the ALPS survey (Section 4.2) and the results and discussion of the ARA survey (Section 4.3).

1Sections 2.2 and 2.3 discuss the conceptual and methodological background that has influenced the perspective
of these surveys in more detail.
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Literature identification We chose Google Scholar (www.scholar.google.com) as liter-
ature data base. Unlike other data bases (such as Semantic Scholar), it indexes work across
disciplines from a variety of research contexts and includes pre-prints, gray literature, white
papers, and graduate or under-graduate theses (Xiao and Watson, 2017, p. 103). It also in-
cludes records from a uniquely broad range of research disciplines. This is ideal for the present
surveys, because we wanted to reduce the sampling bias from querying research discipline-
specific data bases (such as the anthology of the Association for Computational Linguistics).
We could not obtain a balanced sample of discipline-specific data bases because uncovering
which research disciplines are involved in ARA/ALPS was part of our research questions. Us-
ing only one literature data base comes with the trade-off that we cannot find work that is not
indexed by Google Scholar. However, we considered this to be an acceptable limitation given
the size of the Google Scholar data base. Also, even though a near complete list of the relevant
literature would be ideal, a representative sample suffices to answer our research questions.

We wrote a python script to crawl Google Scholar automatically for a broad range of search
terms (see details in Sections 4.2 and 4.3).2 The script extracts for each query result the ti-
tle, list of authors, text snippet, and links to the paper from Google Scholar and saves these
information in JSON format. To facilitate manual screening, the results can also be exported
to CSV format. To focus on the development of both fields in the time frame in which com-
putational approaches to performance and readability assessment were available (cf. Sec-
tions 2.3 and 2.2), we queried for literature published in the past 20 years (2002–2022). We
retrieved literature on ARA on February 16th, 2022 and literature on ALPS on March 10th,
2022. Later work has not been considered in the surveys. From these results, we included the
first 10 pages (i.e. the first 200 hits) sorted by relevance in our surveys. We found that the
fit between retrieved manuscripts and query terms considerably decreased at later pages while
piloting the study design.

Inclusion criteria In both surveys, we only included quantitative empirical studies using
ALPS/ARA for German. Qualitative studies and surveys or reviews were excluded. Multilin-
gual approaches were only included, if they were evaluated on German language data. Studies
did not need to focus on ARA to be included, as long as they used automatically calculated
readability scores that were at least partially inferred based on language properties. We ex-
cluded studies that only used manually annotated language properties as features to predict or

2The script is available online at https://github.com/zweiss/crawl-scholar.
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study language performance or readability scores because the focus of both surveys lies on
characterizing research on automatic approaches to both topics. We focused on analyses of
written language in our choice of search terms, but analyses of spoken language were not ex-
cluded if they were retrieved. For the ARA survey, only studies that assessed readability with
a holistic score at or above the sentence level were included. This excludes work on complex
word identification. This restriction did not apply to the ALPS survey because we did not
want to exclude SLA research on characterizing developmental processes and performance
differences if it used automatically calculated measures. For the ALPS survey, we focused
solely on research assessing language performance. Work focusing on the factual correctness
of answers was not included. All types of full text publications were considered as candidates
in both surveys. Beyond peer-reviewed papers, this also included pre-prints, BA theses, MA
thesis, and PhD thesis. We restricted the surveys to papers written in English or German.

Literature screening and included literature Following the automatic identification of
candidate literature, we manually screened the results. We removed duplicates and papers
for which the full text was not accessible or not written in English or German. The remaining
candidates were tested for their adherence to the previously discussed inclusion criteria using
a three-step procedure. First, we removed all manuscripts whose title clearly demonstrated
that they violated one or more inclusion criteria. This was for example the case for studies
where the title explicitly stated a target language other than German.3 Second, for the remain-
ing candidates, we read the abstract to identify if they violated the inclusion criteria. Third,
we read to full text of all remaining papers to determine their suitability for the survey. If a
paper fit all inclusion criteria, it was encoded along several categories using a standardized
annotation scheme. The categories are:

Research disciplines title, publication venue, publication year, research domain, publication
type, primary research goals,4

Data and labels ± cross-lingual approach, language(s), target group, production/reading pur-
pose, text type, corpus name/scale/mode of annotation (separately for train and test
data), assessment level (e.g., sentence, paragraph, document)

Methods and metrics general machine learning approach (end-to-end neural networks vs.

3For example, “Simple or complex? Assessing the readability of Basque texts”.
4For example, to train and test a new readability classifier or to evaluate the readability of certain web materials.
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feature-based), number of features (if available), numeric document representation (e.g.,
name of word embedding or types of complexity features used), type of statistical
method (e.g., regression, classification, clustering), name of statistical method, evalu-
ation metric(s), train-test set-up, performance of best model, validation method(s)

Availability ± shares model or code, ± model available for immediate use, ± no prior user
training needed to use model

The literature screening and encoding of the final candidates was conducted by one trained
annotator who consulted me as the primary investigator in unclear cases. I controlled all an-
notations at the end of the encoding process. For the few cases of disagreement, the final
encoding decision was made by me. The result table for each study additionally contained
columns for the unique study ID, annotator, comments, and open questions. The result tables
can be found in the online supplementary material to this thesis at https://osf.io/5vb2x/
?view_only=6d1bb8ccfe3f458c946ff4fd6ef5206b. All analyses based on these annota-
tions were conducted using the statistical computing programming language R (R Core Team,
2022) and the tidyverse package (Wickham et al., 2019).

4.2 Automatic proficiency assessment for German: a
structured survey of research from 2002 to 2022

The structured ALPS survey followed the general study design outlined in the previous sec-
tion. Table 4.1 shows the search terms we used to identify relevant literature in Google Scholar.
These terms were identified as the central terms for ALPS with a focus on ATS and APA dur-
ing research for the narrative literature review reported in Section 2.2. Figure 4.1 summarizes
the individual steps of the literature screening process. The literature search with these terms
yielded a total of 3.734 candidate records.5 Of these, 285 were removed prior to screening
because they were duplicate records and 95 papers could not be retrieved. We screened the
remaining 3,354 papers initially based on their titles and abstracts. This way we identified 11
papers written in a language other than English or German. A total of 2,434 were clear content
mismatches.6 We also retrieved several surveys which we excluded following our exclusion

5The raw candidate records are available in JSON format in the online supplementary material (https://osf.
io/5vb2x/?view_only=6d1bb8ccfe3f458c946ff4fd6ef5206b).

6An example for a clear content mismatch is Sheldon’s (2020) paper titled ‘We cannot abandon the two worlds,
we have to be in both’: Chilean scholars’ views on publishing in English and Spanish.
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Table 4.1: Search terms and patterns used for the structured ALPS literature survey for Ger-
man (2002-2022, search terms are comma-separated). All search terms are based on the
literature commonly used for ALPS which was identified in the context of preparing the back-
ground chapter on ALPS (Section 2.2).

Language Search pattern Search terms

English “search term”
AND German

writing competency, writing complexity, writing pro-
ficiency, writing quality, writing evaluation, language
competency, language proficiency, essay grading, essay
quality, essay rating, complexity index, text assessment,
text complexity, text difficulty, text quality

German “search term” Schreib-Kompetenz (engl. “writing competency/pro-
ficiency”), Schreib-Komplexität (engl. “writing com-
plexity”), Schreib-Qualität (engl. “writing quality”),
Sprach-Kompetenz (engl. “language competency/profi-
ciency”), Essay-Rating (engl. “essay grading/rating”),
Essay-Qualität (engl. “essay quality”), Text-Komplexität
(engl. “text complexity”), Text-Qualität (engl. “text
quality”)

criteria (n = 29). This left 1,004 papers which entered the full paper screening. Most studies
focused on languages other than German (n = 739). Overall 120 papers on German ALPS
were excluded because they did not report quantitative empirical studies on language perfor-
mance that were measured with automatically calculated text characteristics. Of the remaining
21 papers, two papers each included not one but two independent studies that were relevant for
our survey (Frey, 2020b; Weiss, 2017). We considered studies independent if they addressed
different research questions and used different reference labels and data sets. We treated each
study as separate paper for the purposes of the survey (Frey, 2020b; Weiss, 2017a,b; Frey,
2020a). This resulted in 23 studies which were included in the present survey.

The low number of papers suited for our survey is somewhat surprising. However, we be-
lieve this to indicate a genuine lack of research on ALPS for German within our specified
inclusion criteria for the following reasons: Based on our prior non-structured literature sur-
vey, the list of search terms comprehensively covers the central terminology used in work
on APA and ATS. The terms seem to have been sufficiently precise since 26.4% of records
screened were related to ALPS. The stopping criterion at 200 records does not seem to have
been too early either. A post-hoc inspection revealed that records ranked at positions 150–
200 qualified notably less often for the survey than records with a higher ranking. Also, we

108



4.2 Automatic proficiency assessment for German: a structured survey of research from 2002 to 2022

Identification Screening Included

Records included
English (n = 2,973) 
German (n = 761)

Records removed  
before screening: 

Duplicate records
removed (n = 285)

Records sought  
for retrieval  
(n = 3,449) 

Titles & abstracts
screened 
(n = 3,354) 

Papers not
retrieved  

(n = 95)

Records excluded:

Records not written
in English/German  

(n = 11)

Content mismatches
(n = 2,434)

APA/ATS surveys
(n = 29) 

Full papers assessed  
for eligibility
(n = 1,004)

Papers excluded:

ALPS for languages
other than German  

(n = 739)

Focus on German w/o 
empirical analysis of

automatically extracted
linguistic features  

(n = 120) 

Papers included
in survey
(n = 21) 

Papers split into
two relevant

studies

(n = 2) 

Studies included
in survey
(n = 23) 

Figure 4.1: PRISMA flow diagram of the literature identification, screening, and inclusion
process for the ALPS survey. The initial records are based on the first 200 hits for each query
term. After completing the recommended PRISMA flow, we separated papers that included
multiple methodologically unrelated studies relevant for the survey (dashed).

found a considerable amount of work on ALPS: Additional to 29 surveys on ATS/APA, 81.3%
of papers that were assessed for eligibility had to be excluded because they focused on lan-
guages other than German not because they were content mismatches. In comparison, only
13.2% of papers were excluded due to our relatively strict inclusion criteria regarding the
need for empirical quantitative analyses based on automatically calculated linguistic charac-
teristics. We interpret this combined evidence as an indication that our literature elicitation
procedure worked as intended. This supports the hypothesis that there is indeed little work on
German ALPS. However, it is possible that some relevant work was not indexed by Google
Scholar. We also cannot fully rule out the possibility that a lack of homogeneous terminology
in ALPS research partially contributed to the low number of papers. The fragmentation of
work on writing quality assessment into a broad range of sub-tasks (which also necessitated
the introduction of the term ALPS for this thesis), certainly complicates attempts to gain a
comprehensive overview of approaches to the application domain. That being said, we have
no reason to believe that these limitations introduced a systematic sampling bias. We can as-
sume that our survey resulted in a representative (if not comprehensive) sample of the relevant
literature which is sufficient to address our research questions.
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4.2.1 Results

4.2.1.1 Research landscape

Our first research question concerned the different disciplines using ALPS and their statis-
tical methods. Figure 4.2 provides a first overview of the research landscape by showing
the longitudinal development of German ALPS research over the past two decades from two
perspectives: Figure 4.2a presents a cumulative count to visualize the longitudinal growth of
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Figure 4.2: Development of the German ALPS research landscape from 2002–2022

work on ALPS. It includes all papers selected for this survey exactly once (N = 23).7 We see
that work on ALPS started as early as 2003 but later work on ALPS did not appear until 2012.
From that time on, the number of papers grew annually and increased especially between 2017
and 2021. The seeming lack of growth from 2021 to 2022 can be explained by the literature
retrieval date (March 10th, 2022). Overall, this shows that even though work on ALPS was
rare in the 2000s, it has attracted increasing research interest in the last decade.

Figure 4.2b displays the number of papers that were published in each year split by the
statistical methods they used. We distinguished a) explanatory statistical methods from b) tra-
ditional machine learning models using feature engineering and c) end-to-end neural network

7The same holds for all subsequent figures in this survey unless explicitly specified otherwise.
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approaches. All studies used supervised statistical approaches (i.e. supervised machine learn-
ing and supervised explanatory analyses).8 This is in line with the dominance of supervised
machine learning in APA and ATS that I discussed in Section 2.2. Rama and Vajjala (2021)
were included twice in this figure because they use both feature-based and neural machine
learning (N = 24). We identified overall five papers using automatically extracted language
indices for explanatory statistical analyses (Strobl, 2014; Vyatkina, 2012; Weiss, 2017a; Daller
et al., 2003; Riemenschneider et al., 2021; Ströbel et al., 2020). This includes the two earliest
papers found in our survey. Feature-based machine learning approaches to ALPS only started
to emerge in 2013 (Hancke, 2013), but have dominated the research landscape since 2015
(Arnold and Weihe, 2016; Frey, 2020b; Rama and Vajjala, 2021; Stiegelmayr and Mieskes,
2018; Szügyi et al., 2019; Vajjala and Rama, 2018; Vanhove et al., 2019; Weiss, 2017b;
Bertram et al., 2021; Frey, 2020a; Wahlen et al., 2020; Weiss and Meurers, 2019a,b, 2021;
Zesch et al., 2015). End-to-end neural machine learning approaches instead have only started
to emerge in 2021. Rama and Vajjala (2021) explored the value of pre-trained embeddings for
multilingual (Czech, German, Italian) L2 proficiency assessment, while Ludwig et al. (2021)
used transformers to score the appropriateness of business e-mails written by vocational and
educational training students.

Figure 4.3 shows the research disciplines to which the publication venues of the surveyed
papers belong.9 We distinguished papers based on the statistical methods they used to see
potential methodological differences across disciplines. Rama and Vajjala (2021) again con-
tributed two data points. We see that more than half of the papers were published in compu-
tational linguistics or computer science venues (CL/CS; N = 13). We also found three papers
in SLA journals (Vyatkina, 2012; Ströbel et al., 2020; Weiss and Meurers, 2021), two papers
in education journals (Bertram et al., 2021; Wahlen et al., 2020), two papers in linguistics
journals (Daller et al., 2003; Weiss and Meurers, 2019b), and two papers in interdisciplinary
writing research journals (Vanhove et al., 2019; Riemenschneider et al., 2021). One paper
each was published in CALL (Strobl, 2014) and psychology (Ludwig et al., 2021) journals.
Overall, this confirms that research on or using ALPS for German takes place in a rich inter-
disciplinary context related to education and is not restricted to computational linguistics and
computer science. We also see that exploratory analyses of ALPS hardly take place in CL/CS
venues with Weiss (2017a) being the only exception. Machine learning methods instead have

8See Section 2.2.3.1 for a more detailed discussion of the different types of approaches.
9Theses were attributed to the discipline that is linked to the degree obtained through them.
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Figure 4.3: Research disciplines working on or with ALPS split by statistical methods used

not been limited to publications in computational linguistic or computer science venues, but
were also published in journals affiliated with SLA research (Weiss and Meurers, 2021), ed-
ucation research (Bertram et al., 2021; Wahlen et al., 2020), linguistics (Weiss and Meurers,
2019b), interdisciplinary writing research (Vanhove et al., 2019), and psychology (Ludwig
et al., 2021). All papers using machine learning techniques trained new, supervised ALPS
models. This indicates that models are currently not being re-used after publication.

4.2.1.2 Data sets and labels

Our second research question asked which types of language have been represented in ALPS
research and for whom (that is which target groups) ALPS has been conducted. Figure 4.4
addresses this question from two perspectives. Figure 4.4a specifies the target groups for
which ALPS approaches were trained. Overall, we see a clear trend towards the analysis of
essays written by adults. Most ALPS approaches targeted adults (N = 16) either in their L2
(N = 10) or L1 (N = 5). Work on adults producing L1 German focused nearly exclusively
on writing task-specific text quality (Ludwig et al., 2021; Wahlen et al., 2020) or academic
writing proficiency (Arnold and Weihe, 2016; Zesch et al., 2015). Only Ströbel et al. (2020)
analyzed the influence of adults’ L1 German writing proficiency on their L2 English writing
proficiency. We also found one article concerned with the lexical complexity of spontaneous
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Figure 4.4: Types of language being targeted by ALPS research

speech produced by bilingual speakers of German and Turkish (Daller et al., 2003) which was
the only paper modeling spoken language performance and one of two papers focusing on
bilingual speakers of German.10 The other paper on bilingual language proficiency was Van-
hove et al. (2019). They analyzed the proficiency of Portuguese-German bilingual speakers
in elementary school. The remaining research on ALPS for children or adolescents focused
on L1 writing. Most papers focused on secondary school (Frey, 2020b; Bertram et al., 2021;
Riemenschneider et al., 2021; Weiss and Meurers, 2019a). Weiss and Meurers (2019a) fo-
cused on both elementary and early secondary school. Frey (2020a) predicted author age and
digital familiarity in social media language based on linguistic features. Hers was the only
study that covered a mixed age range from children to older adults (aged 10–70+). Stiegel-
mayr and Mieskes (2018) analyzed web texts with unknown authors. They were marked as
fully unspecified in this figure.

Figure 4.4b investigates the types of language that were used in ALPS research by focus-

10There might be more work on the assessment of spoken language performance for German that was not re-
trieved here. Our survey was designed to focus on ALPS for written language as can be seen from our query
terms. Thus, we did not systematically elicit studies on spoken language even though we did not exclude
them if they fit our inclusion criteria. Future work might extend our survey to also explicitly query for work
on spoken language.
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ing on the studies’ text types and elicitation contexts. Several papers analyzed two to three
different text types (Rama and Vajjala, 2021; Szügyi et al., 2019; Vajjala and Rama, 2018;
Vanhove et al., 2019; Vyatkina, 2012; Weiss, 2017a,b; Hancke, 2013) and thus contributed
multiple data points to the figure (N = 35). The most commonly analyzed text type were es-
says, followed by letters and e-mails. The high number of essays (N = 13) and letters (N = 8)
was partially due to the repeated use of the Merlin corpus (Wisniewski et al., 2013) which in-
cludes both text types (Rama and Vajjala, 2021; Szügyi et al., 2019; Vajjala and Rama, 2018;
Weiss, 2017b; Hancke, 2013; Weiss and Meurers, 2019b). Other re-occurring text types were
expository texts (Arnold and Weihe, 2016; Daller et al., 2003; Ströbel et al., 2020),11 test item
responses (Bertram et al., 2021; Wahlen et al., 2020; Weiss and Meurers, 2021), summaries
(Strobl, 2014; Szügyi et al., 2019), and narrative texts. Narrative texts were elicited both for
children’s writing (Vanhove et al., 2019; Weiss and Meurers, 2019a) and adults (Vyatkina,
2012; Weiss, 2017a). Weiss (2017a) also analyzed drafts for speeches. Frey (2020a) analyzed
Facebook messages and posts. This was one of two studies analyzing language that had been
produced to fulfill an authentic communicative purpose outside of a learning or testing set-
ting. The second study was Arnold and Weihe (2016), who analyzed on quality differences
in Wikipedia articles. Most other language productions were elicited in testing or examina-
tion contexts (N = 17) or specifically for the participation in a study (N = 7). Less research
was based on language produced within instructed settings such as language courses (Frey,
2020b; Vyatkina, 2012; Weiss, 2017a; Ströbel et al., 2020).12 For the web essays elicited
by Stiegelmayr and Mieskes (2018), the elicitation context was unclear. Summarizing the
findings in Figure 4.4, we see that research on ALPS for German has been targeting many
different types of language in terms of target groups and text types. Especially the broad range
of text types that has been targeted is promising given the known influence of task effects on
language performance (see Section 2.1.3.2). Yet, we could not find any work on young speak-
ers’ or writers’ L2 proficiency and except for Arnold and Weihe (2016) and Frey (2020a), all
work exclusively focused on somewhat artificial language elicitation contexts. More work on
language performance elicited in authentic elicitation contexts is needed.

As discussed in Section 4.1, ALPS is an umbrella term coined in this thesis to consider a
variety of assessment tasks relating to language performance. This opens the question which
types of language performance have been addressed in ALPS research on German. Figure 4.5

11This category includes Wikipedia articles, university term papers, and picture descriptions.
12Since Vyatkina (2012) and Weiss (2017a) analyzed different text types, they contributed multiple data points

to this category.
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compares the different types of ALPS tasks that were represented in our survey and the perfor-
mance scales that they used. Since the survey only retrieved supervised approaches to ALPS,
all studies relied on some form of pre-annotated performance scales that could serve as ref-
erence labels. Some papers trained multiple classifiers using different scales (Frey, 2020b;
Rama and Vajjala, 2021; Frey, 2020a; Hancke, 2013; Riemenschneider et al., 2021; Weiss and
Meurers, 2019a), e.g., to compare the performance for different degrees of scoring granular-
ity. This lead to a higher number of data points contributing to this figure (N = 35). Most
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Figure 4.5: Distribution of ALPS tasks split by performance scales used

studies estimated overall language proficiency (N = 11). The most common scale for this was
the CEFR scale from A1 to C1 or C2 (Rama and Vajjala, 2021; Szügyi et al., 2019; Vajjala
and Rama, 2018; Weiss, 2017b; Hancke, 2013; Weiss and Meurers, 2019b). Hancke (2013)
additionally predicted language proficiency using a binary estimate. It indicated if the CEFR
score that learners received was at or above the level of the language test for which they had
produced their texts. Large, rated L2 corpora for German are rare, but they are indispensable
for supervised machine learning approaches which require reference labels to learn from. All
six studies mentioned here used the Merlin corpus (Wisniewski et al., 2013) which provides
expert ratings on the CEFR scale (see Section 4.2.1.4 for details). To circumvent the lack of
rated L2 corpora for German and analyze language from other data sets, other studies used
development in instructed settings as a proxy for proficiency. Vyatkina (2012) tracked L2 de-
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velopment based on elicitation time points during an extended period of L2 instruction in her
longitudinal study. Weiss (2017a) and Weiss and Meurers (2021) instead used course levels
for the approximation of L2 proficiency in their cross-sectional data sets. Similarly, Weiss and
Meurers (2019a) used grade levels for the assessment of L1 academic language proficiency in
cross-sectional data.

The second most common ALPS task was the assessment of text quality (N = 9) using some
form of rating or grading scale (Frey, 2020b; Stiegelmayr and Mieskes, 2018; Riemenschnei-
der et al., 2021; Zesch et al., 2015). Frey (2020b) also used a binary estimate of text quality
to predict whether essays were passed or failed and whether they were good or very good
essays. Arnold and Weihe (2016), too, used a binary distinction to predict whether Wikipedia
articles were featured or not.13 Unlike grade scales, binary labels were also used for a variety
of other assessment tasks including the identification of digital natives (Frey, 2020a), bilingual
speakers with German as their dominant language (Daller et al., 2003), and the distinction of
collaborative from individual writing (Strobl, 2014). Frey (2020b) and Wahlen et al. (2020)
used a three-way distinction for the assessment of text quality, which was also used for the
prediction of author age (Frey, 2020a), school type (Weiss and Meurers, 2019a), and task
complexity (Bertram et al., 2021). Beyond these two main ALPS tasks, our intentionally
broad notion of ALPS allowed us to observe a variety of less often represented applications.
Both Ludwig et al. (2021) and Rama and Vajjala (2021) assessed the communicative adequacy
of writing, Ludwig et al. (2021) in form of a binary distinction for the classification of pro-
fessional e-mails and Rama and Vajjala (2021) using the expert ratings on the CEFR scale for
the L2 writing in the Merlin corpus. Rama and Vajjala (2021) also used the expert ratings for
lexical control, text accuracy, and coherence to locate L2 learners’ performance on these sub-
tasks of language proficiency assessment on the CEFR scale. As an alternative to such expert
ratings on the CEFR scale (which as mentioned before are rare in German data sets), Vanhove
et al. (2019) used a Likert scale to measure lexical control. Similarly, Riemenschneider et al.
(2021) used a Likert scale to measure text complexity. Ströbel et al. (2020) instead measured
text complexity using complexity feature values elicited in different writing conditions. We
saw from this overview that text quality and overall language proficiency assessment until now
were the two dominating tasks in research on German ALPS, but that overall a broad range of
different tasks has been represented.

13On Wikipedia, featured articles are articles that were identified as especially high quality by the Wikipedia
editors, see https://en.wikipedia.org/wiki/Wikipedia:Featured_articles.
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4.2.1.3 Methods and evaluation metrics

Our third research question asked which machine learning methods and evaluation metrics
have been used in ALPS research. We already approached the subject of machine learning
methods in Section 4.2.1.1 by distinguishing publications based on their use of explanatory
statistics, feature-based machine learning, or end-to-end neural machine learning. Figure 4.6
elaborates on this further by focusing on the specific methods and feature types that have
been used. Figure 4.6a shows how ALPS has been approached statistically across papers for
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Figure 4.6: Statistical methods and complexity features used in ALPS for German

different types of data. Frey (2020b,a) and Hancke (2013) contributed two data points each
to this figure because they used binary as well as multi-level classification in both studies
(N = 26). Most research approached ALPS for German as a classification task (N = 20).
Of these, most papers treated multi-level labels as categorical (N = 12). Only three papers
represented multi-level prediction labels as ordinal data (Weiss, 2017a,b; Weiss and Meurers,
2021). Since the underlying performance categories have a natural order, they are intrinsically
ordinal and not nominal data. This makes ordinal models the more accurate representation
(Gutiérrez et al., 2015).14 Five papers classified binary data (Arnold and Weihe, 2016; Frey,
14Methodologically, ordinal models perform a regression and Weiss (2017a,b) in fact use generalized additive

regression models. However, we considered them classification approaches for the purposes of this survey

117



Chapter 4 Systematic literature surveys

2020b,a; Hancke, 2013; Ludwig et al., 2021). Overall three studies used regression to analyze
continuous labels. Of these, one study used regression for machine learning (Vanhove et al.,
2019) and two used regression for explanatory analyses (Riemenschneider et al., 2021; Ströbel
et al., 2020). The remaining explanatory analyses used summary statistics (Strobl, 2014;
Daller et al., 2003) or correlation analyses (Vyatkina, 2012).

Figure 4.6b shows which types of features were used across papers and to which linguistic
domains these belong. We categorized feature types and domains based on the terminol-
ogy proposed in Section 2.1.2 which can deviate from the terminology used in the respective
papers. We included all features that were reported, even if they were not measures of lin-
guistic complexity or not calculated automatically.15 All papers were included for this figure
except Ludwig et al. (2021) who used an end-to-end neural approach that did not use any
feature engineering.16 Most papers (N = 20) used more than one type of feature and there-
fore contributed multiple data points to this figure (N = 123). In line with the traditionally
important role of syntactic and lexical complexity features in research on ATS and language
proficiency assessment (see Section 2.1.2), lexicon (N = 19) and syntax (N = 18) were two
of the three most frequent domains. Also features of morphological (N = 10) and semantic
complexity (N = 8) were used repeatedly across studies. As for psycho-linguistic measures of
complexity, language use features occurred in most studies (N = 18) and were as common as
syntax features. Again this is in line with the traditional focus of work on ATS as word fre-
quency measures assess relative lexical complexity (see terminological note at the beginning
of Section 3.2). We considered n-gram measures to fall into the same category. Also human
processing measures occurred in several studies albeit less often (N = 8). It is interesting to
note that human processing measures were exclusively measured by studies using a version
of the complexity analysis system from this thesis (Frey, 2020b; Weiss, 2017b; Bertram et al.,
2021; Riemenschneider et al., 2021; Weiss and Meurers, 2019a,b, 2021).17 Surface measures
of text characteristics were measured mostly in terms of length features (N = 15), but Zesch
et al. (2015) also used readability formulas for ATS.18 Discourse features were used in nearly

because the final labels that they return are not continuous values but discrete, ordered labels.
15Some papers used complexity and accuracy measures or combined automatic and manual features.
16Rama and Vajjala (2021) were included here because they not only trained an end-to-end neural classifier but

also a feature-based classifier.
17See Section 2.1.2.7 for a discussion of human processing measures and Table B.20 in Section B.7 for a com-

plete list and definition.
18We consider readability formulas as surface level features because they are typically weighted linear combi-

nations of surface level features such as sentence and word length. See Section 2.3.4 for more details.

118



4.2 Automatic proficiency assessment for German: a structured survey of research from 2002 to 2022

half the studies included in this survey (N = 11). It is surprising to see that they were not used
more often, seeing that discourse measures are one of the three central linguistic dimensions
in ATS, together with features of lexical and syntactic complexity (cf. Crossley, 2020). Be-
yond complexity, also measures of accuracy were included in several studies, mostly in form
or error rates (N = 7) but Frey (2020a) also measured intentional violations against the written
standard norm in social media language, e.g., through dialect use or non-standard capitaliza-
tion or character repetition. Beyond measures of these domains often associated with CAF, we
also observed the occasional use of several other types of measures including the presence of
citations and quotes (Zesch et al., 2015), the use of computer mediated communication style
features (Frey, 2020a), measures from information theory (Ströbel et al., 2020), estimates of
input prompt similarity (Zesch et al., 2015), coarse pre-estimates of performance in terms
of failure or success (Weiss, 2017b), and meta information on the text type (Vanhove et al.,
2019) or task type (Weiss, 2017b) being evaluated. Together, this shows that a broad range of
measures have been used for ALPS of German language productions.

Turning to the evaluation of ALPS approaches, Figure 4.7 focuses on estimates of the va-
lidity of ALPS reference labels and the performance of predictive ALPS models.19, 20 Fig-
ure 4.7a summarizes the sources of reference labels used for fitting predictive or explanatory
ALPS models. This is particularly important seeing that our survey only includes supervised
statistical approaches which directly depend on the validity of the reference labels used for
training (see Section 2.2.3.1). The majority of studies relied on human judgments (N = 15)
which were mostly obtained through trained expert raters (N = 14). Vanhove et al. (2019)
instead relied on crowd sourced annotations as reference labels for texts’ lexical richness. To-
gether, these two types of human judgments are the source of two third of all reference labels
used in studies in this survey. The other third was obtained through various situational vari-
ables. Obtaining such situational variables requires much less resources than producing high-
quality human judgments for language performances. However, they are much less precise
and have a higher risk of lacking construct validity. The most common situational variable is
‘temporal progression’ estimated in various forms (N = 4). Vyatkina (2012) used the time of
elicitation in her longitudinal study as reference label. Similarly, Weiss and Meurers (2019a,

19See Section 2.2.3.1 (pp. 53–54) for a more detailed discussion of the relevance of model robustness and
construct validity.

20We are not using the term ‘gold standard’ here, even though it is the common terminology in machine learning
for reference labels that are being used for training or testing models. However, the term implies a certain
quality standard and validity that is not met by all of the labels discussed below.
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Figure 4.7: Construct validity of labels and robustness of models in ALPS

2021) relied on writers’ course and grade level as coarse cross-sectional proxy for proficiency
assuming that progressing through a series of instructed language courses overall increases
learners’ language proficiency. Frey (2020a) used age both as proxy for digital nativeness and
as variable in itself for her sociolinguistic analysis of age-dependent stylistic differences in
language performance in social media. Instead of time as an estimate of development or pro-
ficiency, Ströbel et al. (2020) used the complexity of L2 learners’ L1 writing as an empirical
estimate of their general language proficiency. Daller et al. (2003) inferred proficiency differ-
ences between bilingual German-Turkish speakers based on their place of residence (Turkey
or Germany) which they argued to influence which of the two language was the dominant
language of bilingual speakers. Finally, Strobl (2014) compared writing performance differ-
ences across writing conditions contrasting between collaborative and solitary writing, based
on research arguing that collaborative writing improves learners’ writing performance. Taken
together, this shows that human judgments have been the primary source of reference labels
for ALPS for German but that a broad variety of alternative situational variables has been
used to substitute the resource intensive labeling process which is a mandatory prerequisite
for supervised statistical methods.

Figure 4.7b shows the metrics that were used to evaluate the performance of predictive
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ALPS models.21 Some of the 17 papers used several metrics, increasing the number of data
points (N = 32). As discussed previously, only Ludwig et al. (2021) used regression to train a
predictive ALPS model.22 They evaluated their regression model in terms of RMSE. All other
papers training predictive ALPS models used classification. Accuracy (N = 10) and f-scores
(N = 8) were the most commonly used performance metrics and most studies reported them
together (Frey, 2020b; Stiegelmayr and Mieskes, 2018; Hancke, 2013; Ludwig et al., 2021;
Weiss and Meurers, 2019b). Four of the eight studies reporting f-scores also reported precision
and recall as additional metrics (Frey, 2020b; Stiegelmayr and Mieskes, 2018; Weiss, 2017b;
Hancke, 2013). Several studies used Cohen’s kappa (Cohen, 1960) to evaluate the models’
performance (Frey, 2020b; Ludwig et al., 2021; Wahlen et al., 2020; Zesch et al., 2015). This
metric of chance-corrected IRR is typically used to estimate the agreement between human
annotators. In these papers, the metric was used to compare the automatic predictions and the
human reference annotations on the test data. Even though estimates of IRR are not prototyp-
ical metrics to evaluate the performance of machine learning systems, this is not an atypical
evaluation metric for ALPS. Weighted IRR metrics have been used for different ATS tasks
coming from the tradition of assessing (human) rater agreement, see for example the Auto-
mated Student Assessment Prize challenge.23 Only Ludwig et al. (2021) also included the
AUC-ROC curve, commonly used to evaluate binary models.

Beyond the type of evaluation metric used, the train-test set-up also plays a crucial role
for the evaluation of machine learning models. Figure 4.8 summarizes the different types of
set-ups used in the 17 machine learning-based studies. Also, six papers used multiple types of
test data which increased the total number of data points (N = 25). Stiegelmayr and Mieskes
(2018) did not specify their train-test set-up within their paper and were labeled as unspecified.
Most papers (N = 15) used a form of (stratified) n-fold cross-validation (CV) for training and
testing. Cross-validation is a common way of training and testing on smaller data sets. Its sys-
tematic resampling strategy uses the available data more efficiently. It also reduces the risk of
overfitting which is generally elevated with smaller data sets. However, it is computationally
more costly than standard train-test splits and can be an issue for larger data sets. The stability
of models trained with cross-validation can be tested by comparing the performance variation
across folds. In the present survey, none of the fifteen studies reported standard deviations

21This analysis treats different varieties of the same metric as identical, e.g., weighted and non-weighted kappa
or macro- versus micro-averaged f-scores.

22Ludwig et al. (2021) used both regression and classification.
23https://www.kaggle.com/competitions/asap-aes/overview/description
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Figure 4.8: Types of test splits used in machine learning-based ALPS for German

across folds, though, except Weiss (2017b). A reason for this could be that reporting standard
deviations for cross-validation has not (yet) become a common standard in computational lin-
guistic publication outlets. Most of the fifteen studies used ten folds except Rama and Vajjala
(2021) who used five folds and Vanhove et al. (2019) who used 16 folds. Additionally, Van-
hove et al. (2019) also tested their model on several standard test data sets which had been
split from the full data prior to cross-validation. Ludwig et al. (2021) and Weiss and Meurers
(2021) were the only ones who did not use cross-validation. They used a standard train-
test split instead. Even though the data set used by Ludwig et al. (2021) was medium sized
(N = 2,088), it is possible that computation costs were a concern for their transformer-based
approach. However, it is unclear how well their model generalizes to unseen data because
they did not have any hold-out or cross-corpus data for additional testing. Weiss and Meur-
ers (2021) trained several models on three larger data sets consisting of answers to reading
comprehension questions (between 3,259 and 7,839 data points, see Section 5.2.1.1). They
ensured the generalizability of their models through additional evaluations on two types of
hold-out data sets (questions and texts) and one cross-subcorpus test set elicited at a different
university (see Section 5.2.4). Also some other studies used hold-out and cross-corpus test
data. Weiss and Meurers (2019a) tested their models on hold-out writing topics (see Sec-
tion 5.2.4) and Zesch et al. (2015) used hold-out task prompts. Vajjala and Rama (2018) and
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Rama and Vajjala (2021) evaluated their models across languages using the subcorpora of the
trilingual Merlin corpus (see Section 5.3.4 for a similar approach to cross-language ARA).
Despite these encouraging examples, the proportion of studies that has made use of hold-out
and cross-copus test splits in our survey is still lower than would be ideal. More research is
needed to ensure the generalizability of German ALPS models.

Finally, we investigated if and how the validity of ALPS models has been studied.24 We
found that validation approaches for German ALPS are rare in practice. Only Daller et al.
(2003) tested the validity of the lexical richness measures that they had used to find perfor-
mance differences between their subjects. For this, they correlated each score with the C-test
results of their subjects as an external measure of language proficiency. They found a sta-
tistically significant correlation only for two of their four measures, namely the TTR of for
advanced vocabulary and the Guiraud index for advanced vocabulary. No other study in our
survey evaluated the validity of their approach.

4.2.1.4 State of the art

Our penultimate research question concerned the current SOTA for predictive ALPS mod-
els. We observed that few models are evaluated across corpora and that none of the models
discussed here were re-used in later studies. Therefore, we can only evaluate the SOTA in
terms of the performance of models on the same corpus. The identification of a SOTA model
based on the best cross-corpus generalization is not meaningfully possible. This restricted our
assessment to the six studies using the Merlin corpus (Wisniewski et al., 2013) to test a L2
proficiency classifier for German. The performance results are reported in terms of accuracy
and weighted F1 score in Table 4.2.25 There are some differences in the set-up of the six
studies, which somewhat limit the comparability of their reported performance metrics. All
studies report their performance for predicting the overall proficiency ratings in a five-way
classification using the Merlin corpus. However, two studies used marginally different data
sets: only Weiss (2017b) and Weiss and Meurers (2019b) included the four C2 texts in the
corpus into a joined C1/2 level. The other studies discarded them.26 Also, most studies used

24See Section 2.2.3.1 (pp. 53–54) for a more detailed discussion of the relevance of model validity.
25The weighted f-score is particularly suited for unbalanced data sets such as the Merlin corpus (see Sec-

tion 5.2.1.1), see also the recommendation for the REPROLANG challenge.
26It is not possible to learn a statistical representation of the C2 level in the German section of the Merlin corpus

because it includes only four C2 texts. Therefore, to use the data for training a model, researchers need to
choose a way to address this under-representation, e.g., by excluding the four essays or incorporating C1 and
C2 rated essays into a single level.
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Table 4.2: Best performances of ALPS models on Merlin corpus measured by accuracy and
weighted f1-score.

Levels Accuracy F1 score

Szügyi et al. (2019) A1–C1 70.0% n.a.
Hancke (2013) A1–C1 72.5% 72.4%
Rama and Vajjala (2021) A1–C1 n.a. 69.0%
Vajjala and Rama (2018) A1–C1 n.a. 68.6%
Weiss (2017b) A1–C1/2 n.a. 72.2% / 85.0%
Weiss and Meurers (2019b) A1–C1/2 70.0% 68.1%

10-CV, except for Rama and Vajjala (2021) who trained and tested using 5-CV, but they used
different folds. This might be an issue because except for Weiss (2017b), no one reported esti-
mates for the stability of their models’ performance across folds. This limits the comparability
of the findings because the scores presented here are the average scores across folds. They do
not allow to draw conclusions about the stability of the models. Weiss (2017b) found that the
standard deviation of some models’ f-scores across folds could be as high as 4%. Assuming
that this is representative for the other studies, we cannot estimate whether or not performance
differences of at most 4% are indeed significant.

Keeping these limitations in mind, we see that the SOTA f-score for a five-way prediction
of overall L2 proficiency on the Merlin corpus lies at 85.0% (Weiss, 2017b). Weiss (2017b)
obtained this score for a model that uses not only linguistic complexity features (for which the
performance lies at 72.4%) as features but also the information whether or not a learner text
was rated at or above the test level (success) or below the test level (failure) at which it was
elicited. Unlike the other models, it requires an initial (albeit maximally coarse) performance
estimate (namely ±passed). This makes it quite limited for practical use cases. Thus, it is
open to debate whether or not we would like to consider this model in our evaluation. The
other models instead do not require such an initial estimate. If the model requiring this initial
performance estimate is excluded, Hancke (2013) reports the highest accuracy and f-score,
closely followed by Weiss (2017b) who also trained a model without the performance esti-
mate as feature. That being said, all models only based on text features are relatively close
together in performance falling around an f-score of 70± 2%. Assuming that the standard
deviations across folds reported by Weiss (2017b) are representative, it is unlikely that these
are indeed significant difference. A more conservative estimate would therefore put the SOTA
performance of predicting holistic L2 proficiency on the Merlin corpus using a five-way clas-
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sification around 70% for both weighted f-score and accuracy.

4.2.1.5 Availability and accessibility of approaches

Finally, we investigated the availability of predictive models for ALPS (N = 17). ALPS is
of interest for a variety of use cases and users with various degrees of computational and
statistical knowledge and skills (see also Section 2.2). Figure 4.9 approaches our final research
question from two perspectives. Figure 4.9a identifies papers that shared their trained model
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Figure 4.9: Accessibility of ALPS models

or (some of) the code or tools needed to directly replicate their study. Most papers (N = 10)
did not make any resources (models, tools, or code) available, but 27.3% shared the tools or
models used in their studies at least partially (N = 7).27 However, hardly any papers shared
their resources in a way that made their models, code, or tools accessible to users without the
technical skills to replicate machine learning studies or run programming scripts. The only
exception to this was Wahlen et al. (2020). They used the publicly available ESCRITO toolkit
(Zesch and Horbach, 2018) for their prediction of teachers’ content knowledge and announced
to make their data available for research. Even theough they did not share their trained model,

27This also counts studies using freely available tools or systems for their analyses.
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this makes their study replicable because users can train the same model on the available data.
Since ESCRITO was designed as an end-to-end scoring tool that is also accessible to teaching
practitioners, no special training is needed to replicate the study of Wahlen et al. (2020).
Most other studies for which resources to replicate the study or directly run their models were
available made their data, scripts, and results publicly available on OSF (Vanhove et al., 2019)
or GitHub (Rama and Vajjala, 2021; Vajjala and Rama, 2018).28 Some studies make their
scripts available, but not their data which makes them not immediately applicable (Ludwig
et al., 2021; Weiss and Meurers, 2019a,b). All of these studies have in common that they
are not accessible without prior knowledge on how to read or run scripts in R or python. This
leaves Wahlen et al. (2020) the only paper with a study that is also accessible for users without
programming or machine learning skills thanks to the accessibility of the ESCRITO toolkit.
This is visualized in Figure 4.9b.

4.2.2 Discussion

Our survey focused on providing a birds-eye snapshot of the last two decades of research on
and with ALPS for German. When looking at the history of the research landscape, we saw
that research on ALPS for German surfaced as early as 2003, but only really started to be
systematically done in 2012. Our survey confirmed that a broad range of research disciplines
related to education works with and on ALPS and that the dominant feature-based machine
learning approaches to ALPS are not restricted to computational linguistic and computer sci-
ence research. However, models seem to be rarely re-used after being published.

We also observed that German ALPS mostly focused on the assessment of text quality and
overall proficiency for adults writing in their L1 or L2, followed by children and adolescents
writing in their L1. Nearly all text data used to fit ALPS models was elicited in (semi-)artificial
elicitation contexts. Hardly any to no work focused on children or adolescents writing L2
German and language produced for an authentic communicative purpose (but see Arnold and
Weihe, 2016; Frey, 2020a).

In terms of the machine learning methods and features used in ALPS, we saw that categor-
ical and binary classifications dominated. These were being evaluated mostly using accuracy
and f-scores. Models were predominantly trained on reference annotations provided through
human judgments, but we also observed a variety of situational variables as less resource in-
tensive proxies for performance labels. Future research might benefit from focusing more
28All links can be found in the respective papers.
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on crowd sourcing ratings, which are less resource intensive than expert ratings but facili-
tate a more controlled and fine-grained performance estimate than situational variables such
as course level or author age, which typically are much more coarse grained and less con-
trolled. Crowd sourcing might also be an interesting way to obtain validations for ALPS
models. Currently, validating models’ predictions played virtually no role in ALPS research
(but see Daller et al., 2003). This is a research gap, that needs to be addressed before ALPS
for German can be used responsibly in practice. Similarly, even though we found some papers
using hold-out and cross-corpus testing to corroborate the generalizability of their models to
new data, most work still relies solely on cross-validation. Future work should make sure
to address this shortage. With this desideratum also comes the call for more sizable learner
corpora for German with annotations that can be used for supervised machine learning-based
ALPS.

Most studies used features of lexical and syntactic complexity, language use, and surface
length, in line with the long standing tradition of these features in work on proficiency assess-
ment and ATS. Discourse features were unexpectedly rare, though, considering their impor-
tance in ATS for English. One possible explanation for this might be that until recently, there
was no tool available for German that facilitated the automatic analysis of discourse features,
whereas for English systems such as Coh-Metrix (Graesser et al., 2004) have been available
for nearly two decades. In this thesis, this issue is being addressed by extending the CTAP
platform to German (see Section 3.3). In fact, seven out of the ten studies measuring discourse
features were measured using the CTAP platform or its predecessor pipeline for German (see
Section 3.2). We made similar observations for measures of human language processing. This
gives reason to believe that future work on ALPS might be able to use a broader range of text
features to automatically characterize language performance in German.

Due to the use of different corpora and data sets and the lack of cross-corpus evaluations,
we could only consider six papers focusing on automatic proficiency assessment for our as-
sessment of the state-of-the-art in German ALPS. Due to the differences in their study set-up
and reporting of results, we were only able to provide a loose characterization of the current
SOTA which places the performance around a weighted f-score and accuracy of 70% for mod-
els using only text characteristics and 85% for a model including a binary estimate of whether
or not learners performed at or above the level that they were tested for or below it. However,
we also saw that approaches were not being made available in the majority of studies training
ALPS models. This might partially explain the lack of studies re-using ALPS models. The
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fact that until now work on German ALPS has focused more on training new models rather
than maintaining them, testing their cross-corpus generalization, and making them accessible
severely limits the applicability of the SOTA to practice. That being said, a notable number
of studies did share their code albeit not in a way that is accessible to users without prior
knowledge in machine learning or programming. This shows that ALPS is on a good way to
making its resources available, but we need to pursue this further and especially start focusing
on enhancing the accessibility outside the computational domain.

Finally, this survey highlighted the immediate contributions of this thesis to German ALPS
research. More than a fifth of studies included in the survey are a part of this thesis (Weiss
and Meurers, 2019a,b, 2021) or directly based on the work presented here (Bertram et al.,
2021; Riemenschneider et al., 2021, see also Section 6.2). Also, 39.1% of the studies in-
cluded in the survey used one of the two complexity analysis systems presented in Section 3.1
to automatically assess language performance (Frey, 2020b; Weiss, 2017a,b; Bertram et al.,
2021; Hancke, 2013; Riemenschneider et al., 2021; Weiss and Meurers, 2019a,b, 2021). This
highlights the importance of making the automatic linguistic complexity analysis of German
proposed in this thesis publicly available through the CTAP web platform.

4.3 Automatic readability assessment for German: a
structured survey of research from 2002 to 2022

The structured ARA survey followed the general study design outlined in Section 4.1. The
search terms and patterns used for the literature retrieval script are displayed in Table 4.3.
These search terms were identified as the central terms for ARA during the literature research
for the narrative literature review reported in Section 2.3. Figure 4.10 shows the individual
steps of the literature screening process. The literature identification resulted in overall 2,291
candidate records.29 Of these, 357 were removed prior to screening because they were du-
plicates and 34 papers could not be retrieved. The remaining 1,900 papers were screened for
their adherence to the inclusion criteria based on their titles, abstracts, or full text. This way,
we first considered title and abstract to determine their suitability for the survey. We removed
five records because they were written in a language other than English or German. We also
removed 1,429 records because they were not concerned with readability assessment and 22

29The raw candidate records are available in JSON format in the online supplementary material (https://osf.
io/5vb2x/?view_only=6d1bb8ccfe3f458c946ff4fd6ef5206b).
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Table 4.3: Google Scholar search terms and patterns used for the structured literature survey
of ARA approaches for German (2002-2022, search terms are separated by comma). All
search terms are based on the literature commonly used for ARA which was identified in the
context of preparing the background chapter on ARA (Section 2.3).

Language Search pattern Search terms

English “search term”
AND German

readability assessment, readability formula, text read-
ability, text assessment, text accessibility, text difficulty,
text complexity, complexity index, Hohenheim compre-
hensibility index

German “search term” Lesbarkeitsformel (engl. “readability formula”), Les-
barkeit (engl. “readability”), lesen Komplexitätsin-
dex (engl. “to read complexity index”), lesen
Verständlichkeit (engl. “to read comprehensibility”),
lesen Textmerkmale (engl. “to read text characteris-
tics”), Hohenheimer Lesbarkeitsindex (engl. “Hohen-
heim comprehensibility index”)

surveys on readability assessment. We controlled the full texts for the remaining 466 papers.
Of these, 262 papers discussed ARA for a language other than German and 72 papers focused
on readability assessment for German but violated one of our remaining inclusion criteria. We
encoded the remaining 103 studies along the dimensions discussed in Section 4.1.

4.3.1 Results

4.3.1.1 Research landscape

Our first research question focused on the research disciplines and statistical methods used
across disciplines for German ARA. To gain an overview of the research landscape and its
development in the past 20 years, we first investigated how research on ARA developed in
this time period. For this, we focused especially on the comparison of machine learning-
based and readability formula-based approaches to ARA. Figure 4.11 tracks the publication
of work on ARA over time. Figure 4.11a shows the cumulative growth of papers from 2002
to 2022. It includes all papers considered in this survey exactly once (N = 103).30 We see that
starting from the mid 2000s, there has been a systematic increase in ARA publications with
increasing jumps in 2017, 2019, and 2021. The seeming lack of growth from 2021 to 2022

30The same holds for all subsequent figures in this survey unless explicitly specified otherwise.
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Identification Screening Included

Records included
English (n = 1,627) 
German (n = 664)

Records removed  
before screening: 

Duplicate records
removed (n = 357)

Records sought  
for retrieval
(n = 1,934)

Titles & abstracts
screened 
(n = 1,900) 

Papers not
retrieved  

(n = 34)

Records excluded:

Papers not written  
in English/German  

(n = 5)

Content mismatches
(n = 1,429)

ARA surveys
(n = 22) 

Full papers assessed  
for eligibility  

(n = 466)

Papers excluded:

Readability assessment
for language other than

German (n = 262)

Readability assessment
for German w/o 

holistic score based on
automatically extracted
text features (n = 72)

Papers included
in survey
(n = 103) 

Figure 4.10: PRISMA flow diagram of literature identification, screening, and inclusion pro-
cess for ARA survey (initial records based on first 200 hits per query term).

can be explained by the literature retrieval date (February 16th, 2022).
Figure 4.11b shows the number of papers published each year and differentiates between

research based on readability formulas,31 feature-based machine learning models, and end-to-
end neural machine learning models. One paper was excluded because it used an approach
that falls in neither of the three categories (Oelke et al., 2010, N = 102).32 Most research
on ARA has relied on traditional readability formulas. Feature-based machine learning ap-
proaches continue to play a lesser role and neural end-to-end approaches were completely
absent in this survey. The earliest automatic, holistic approach to German readability assess-
ment was published in 2006 (Krekeler, 2006) and used the Flesch readability index (Flesch,
1948) for English to control the comprehensibility of German educational materials in a study
on the role of background knowledge for L2 readers. From 2008 on, every year new work on
German ARA using traditional readability formulas surfaced reaching a peak in 2019. The
latest paper using readability formulas for German ARA was a pre-print from the beginning
of 2022 which used the Amstad readability index (Amstad, 1978) to showcase the readability
differences between simplified and regular texts in a newly introduced corpus for text sim-

31Readability formulas are simple estimates of readability based on surface level text characteristics (such as
sentence and word length). They have been used since the early 20th century and are still widely despite
heavy criticism. For more details, see DuBay (2004, 2006) or Section 2.3.4.

32Oelke et al. (2010) proposed a tool for visual readability analyses that aggregates individual text characteristics
into a holistic score by averaging rather than using learned feature weights.
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Figure 4.11: Development of the ARA research landscape from 2002–2022

plification (Aumiller and Gertz, 2022). Work on feature-based ARA for German started to
emerge in 2007. Between 2007 and 2009, the DeLite system (Glöckner et al., 2006) seems
to have been the only source of feature-based ARA for German (Brück et al., 2008b; vor der
Brück, 2009; Brück and Hartrumpf, 2007a,b; Brück and Leveling, 2007; Brück et al., 2008).
This was followed by a research gap until 2012. Hancke et al. (2012) used their complexity
analysis system for German to train a binary classifier on the first GEO/GEOlino corpus.33

From that time on, research on feature-based ARA for German increased but has remained
less common in our survey than work using readability formulas. Our survey did not retrieve
any work using deep learning to predict readability for German, indicating that to date, deep
learning has not not played a relevant role for German ARA.34

Figure 4.12 explores in which disciplines the different methods were applied (Figure 4.12a)
and in which disciplines new ARA approaches have been trained (Figure 4.12b). Even though
most papers in this survey came from the areas of computational linguistics and computer

33For a more detailed discussion of this corpus, see Section 5.3.1.1.
34A possible explanation for this is that the use of end-to-end neural machine learning for ARA in general is a

relatively recent development (Vajjala, 2022). The methodological transfer to languages other than English
within a computational linguistic research topic itself takes time, as we saw for example in our ALPS survey.
Future work should assess how the role of deep learning for German ARA develops within the next years.
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Figure 4.12: Comparison of research disciplines working on or with ARA

science (CL/CS; N = 33), we can see that research on and with ARA for German has been
published across a broad range of disciplines including but not limited to medicine and health
research (N = 23), educational research (N = 11), social studies and political science (N =

7), psychology (N = 4), and language acquisition and assessment (N = 4).35 It is striking
that machine learning methods have hardly been adopted outside of computational linguistics
and computer science, as highlighted in Figure 4.12a. Only two papers published outside of
computational linguistics venues made use of machine learning-based classifiers. Berendes
et al. (2018) trained their own feature-based readability classifier to assess the readability of
school textbooks in an interdisciplinary collaboration between computational linguistics and
psychology published in a psychology journal. Keinki et al. (2018) analyzed the readability
of patient information booklets for cancer patients using a binary classification model that had
been trained by Zowalla et al. (2014) to distinguish medical articles written for experts from
medical articles written for laypeople using lexical complexity features. The other studies
relied on traditional readability formulas. Also a considerable proportion of papers published
in computational linguistics and computer science venues used readability formulas (N =

35Research domains were identified based on the affiliation of the publication outlet. Theses were linked to a
specific research domain based on the department or faculty that they were handed in to. Domains with less
than four papers were grouped into the category “other” (N = 21).
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12). This emphasizes the ongoing practical importance of readability formulas outside of
computational research on ARA.

Similarly, Figure 4.12b shows that new ARA approaches were near-exclusively introduced
in computational linguistic and computer science papers. There were three notable exceptions
to this rule. One was the already mentioned work by Berendes et al. (2018) which trained
a new feature-based ARA classifier. The other two exceptions proposed new readability for-
mulas, one for young readers (Brügelmann and Brinkmann, 2021) and one for the evalua-
tion of political language (Kercher, 2011). Combining the evidence from both sub-figures in
Figure 4.12, we can see that readability formulas are being systematically re-used whereas
machine learning-based models are near exclusively used in the studies that introduce them.

4.3.1.2 Data sets and labels

The second focus of this survey lied on determining for which target audiences readability
research in German was conducted and which scales were used for this purpose. Figure 4.13a

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

ad
ult

s

mixe
d a

ge
 ra

ng
e

yo
un

g r
ea

de
rs

un
sp

ec
ifie

d

Age

N
um

be
r o

f p
ap

er
s

Speaker L2 L1 L1 (low literate) unspecified

(a) Target audience specification

0

10

20

30

40

50

60

70

80

90

100

do
cu

men
t

50
0 w

ord
 sa

mple

pa
rag

rap
h

se
nte

nc
e

Assessment level

N
um

be
r o

f p
ap

er
s

(b) Text analysis unit

Figure 4.13: Types of language being targeted by ARA research

specifies for which target audiences ARA approaches have been used, differentiating between
age groups (adults, young readers, or mixed age range from children to adults) and language
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skills (L1, L2, low literate L1). All papers were categorized based on the target group speci-
fications provided within the papers. If the intended target group was not explicitly stated, an
approach was labeled as “unspecified” unless the affiliation of target readers could be clearly
inferred from the data being analyzed.36 We see that work on ARA for German predominantly
focused on native speakers (N = 85) and on adults (N = 71). Low literate L1 readers (N = 5)
are a subgroup in the intersection of these two. There was also some work on L2 readers
(N = 10) and on L1 readability for young readers (N = 17) or mixed age approaches (N = 6).
However, these domains have been disproportionally under-researched compared to work on
adult L1 readers.

Figure 4.13b focuses on the different text levels for which ARA has been conducted. We
see that work on ARA for German mostly applied to the document level (N = 96). There was
also some work at the sentence level (N = 4).37 However, only one of these studies aimed to
train an ARA classifier for sentence-wise readability assessment (Naderi et al., 2019a).38 The
remaining papers focused on readability visualization (Oelke et al., 2010), the assessment of
reading items (Radner et al., 2016), and reading performance evaluation (Nagler et al., 2014).
Work on other text units has been negligible (Kefer, 2013; Klas, 2011; Locher et al., 2019).

4.3.1.3 Methods and evaluation metrics

Our third research question focused on the different statistical approaches prevalent in work on
ARA for German and how they have been evaluated and validated. Figure 4.14 shows the dif-
ferent types of predictive statistical models and complexity features that were used for German
ARA. Figure 4.14a investigates which newly trained or fitted predictive statistical modeling
approaches (regression, classification, ranking, clustering) were used to represent reference
labels of different data types (binary, categorical, continuous, ordinal). This included overall
27 studies. It can be seen that most papers formulated ARA as a regression problem (N = 14).
The second most common algorithm type were classification algorithms (N = 11). Most of
these used a categorical classification approach that is agnostic to the inherent order in read-
ability labels (N = 8). Even though ordinal classification is the more accurate representation
for this type of data (Gutiérrez et al., 2015), only Weiss et al. (2021) used ordinal classifi-

36For example: municipal, political, or medical texts—which we systematically assumed to clearly target adult
native speakers—or schoolbooks—which we systematically assumed to target young (near-)L1 readers.

37Work below the sentence level was excluded from the survey based on our inclusion criteria.
38The sentence-wise readability assessment study that is part of this thesis (Weiss and Meurers, 2022) was

published after the literature retrieval for ARA papers.
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Figure 4.14: Statistical methods and complexity features used in ARA for German

cation for the distinction of multiple reading categories. Two papers used classification for
binary categories (Hewett and Stede, 2021; Weiss and Meurers, 2018). Ranking (Vlachos and
Lappas, 2011) and clustering (Battisti et al., 2019) were less commonly used.

Figure 4.14b zooms in on the linguistic domains that were represented across ARA ap-
proaches. It includes all papers except Imperial and Ong (2021) who did not make explicit
which features they used (N = 102). Most papers made use of features from multiple domains
leading to them being represented multiple times in this figure (N = 247). We see that the
group of surface measures were by far most common. This includes German readability for-
mulas (N = 59) and surface length measures (N = 35), but also English readability formulas
(N = 23).39 Purely graphematic features also fell into the category of surface measures but
were less common (Battisti, 2019; Battisti et al., 2019). Complexity measures of the linguis-
tic system are the second most distributed feature group. It is dominated by lexical features
(N = 29) and syntactic features (N = 29). Less work employed morphological complexity
features (N = 16) or features of semantic complexity (N = 9). Together, these two groups
accounted for 81.8% of feature domains represented in the surveyed ARA research. Outside

39Even though most features from English readability formulas can be applied to German texts, it remains
unclear how meaningful they are for German. Evidently this does not stop their use in practice.
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of these two groups, only discourse features (N = 17) and language use features (N = 19)
were relatively frequent. Studies using legibility features were quite rare (N = 5)40 and little
work included measures of human processing (Weiss and Meurers, 2018; Weiss et al., 2021)
or measures derived from information theory (Islam, 2014; Budd et al., 2019). This overall
demonstrates that despite the dominance of readability formulas (and the concerning applica-
tion of English formulas for German text data), a broad range of linguistic features has been
used in ARA approaches for German.

Moving from the methods to evaluation of ARA approaches, Figure 4.15a focused on the
empirical validity of reference labels and metrics for model robustness used.41, 42 It is based
on all papers evaluating an ARA approach against a set of reference labels (N = 43). Fricke
(2021) contributed two data points because he used both, teacher (i.e. expert) and student
(i.e. non-experts) judgments. This lead to a total count of 44 data points. The figure distin-
guishes between different empirical basis for the human annotation of reference labels. Most
papers compared their ARA approaches against reference labels that were provided by pub-
lishers (N = 18). This is a form of production-based reference label in the sense that the texts’
producers (e.g., writers or editors) worked towards matching their texts to a predefined pro-
ficiency level. However, also reference labels obtained through annotation experiments were
common, both in form of crowd ratings, i.e. ratings from a large group of untrained annota-
tors (N = 14),43 or in form of expert ratings (N = 9). Both are reception-based labels in the
sense that they were assigned after texts had been produced based on the judgments of texts’
recipients. As discussed in Section 2.3.3.2, labels by experienced publishers of leveled read-
ing materials can be a reliable and resource efficient source of labeled reading materials. Yet,
these labels are typically not independently tested for their ecological validity. Experimen-
tally obtained labels can overcome this limitation but are often not feasible for the annotation
of large quantities of data needed for supervised machine learning approaches. Besides these

40This survey explicitly excluded papers focusing only on legibility. Thus, the low number of studies including
legibility measures is not representative of a lack of studies on these types of features but of a lack of studies
combining legibility and readability features.

41See Section 2.2.3.1 (pp. 53–54) for a more detailed discussion of the relevance of model robustness and
construct validity.

42We are not using the term ‘gold standard’ here, even though it is the common terminology in machine learning
for reference labels that are being used for training or testing models. However, the term implies a certain
quality standard and validity that is not met by all of the labels discussed below.

43Our notion of crowd ratings focuses on their property of compensating annotator training with the majority
intuition of a larger group of untrained annotators. We do not require crowd ratings to have been obtained
through a crowd-sourcing platform.
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Figure 4.15: Construct validity of labels and robustness of models in ARA

three most prevalent sources for reference labels, some papers also compared their ARA ap-
proaches against text types (e.g., simplified versus non-simplified texts) or genres (e.g., chil-
dren’s books vs. election programs vs. scientific papers) that come with an implied gradient
in comprehensibility (Battisti et al., 2019; Oelke et al., 2010). Nagler et al. (2014) used the
predictions of another readability formula as reference label.

Figure 4.15b displays which evaluation metrics papers used to assess the performance of
the ARA models that they used when predicting reference labels. This comparison is based
on the 30 papers that evaluated model robustness through estimates of prediction performance
or goodness of fit. The figure includes overall 44 data points because 12 papers reported more
than one evaluation metric. The figure clearly shows that classification approaches mostly re-
lied on accuracy (N = 11). Only three papers reported f-scores additional to accuracy (Islam,
2014; Galasso, 2014; Imperial and Ong, 2021). No paper reported precision and recall for
their models. Weiss et al. (2018) used Cohen’s kappa. In want of data annotated with ecologi-
cally validated reference labels for low literate readers, they chose to compare the predictions
of their readability model with human annotators.44 For the evaluation of regression-based
ARA models a more varied range of metrics has been utilized. Error metrics were the most

44This reasoning is similar to the motivation of using IRR metrics in the evaluation of ATS models.
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common choice (N = 11), calculated in form of (mean) absolute error (Brück and Hartrumpf,
2007b; Brück and Leveling, 2007), (root mean) squared error (Budd et al., 2019; Naderi et al.,
2019a), or both (Brück et al., 2008b; vor der Brück, 2009; Brück and Leveling, 2007; Brück
et al., 2008). Also correlation metrics were used often, but mostly in combination with other
metrics such as R2 (Grzybek, 2010; Harbach et al., 2013) or error metrics (Brück et al., 2008b;
Brück and Hartrumpf, 2007a,b). Only Brügelmann and Brinkmann (2021) used correlation as
sole evaluation metric to compare the predictions of readability formulas that used different
scales. Several papers utilized R2 to evaluate their models in terms of variance explained (Gilg
et al., 2019; Grzybek, 2010; Harbach et al., 2013; Merges, 2014; Theobald et al., 2021). Bat-
tisti (2019) and Battisti et al. (2019) evaluated the quality of their clustering approaches using
a combination of elbow method and silhouette score. Battisti et al. (2019) additionally calcu-
lated the Calinski-Harabasz index (Caliński and Harabasz, 1974). Two papers evaluated their
methods in terms of the relative ranking of documents (Kercher, 2010; Vlachos and Lappas,
2011). These findings demonstrate that while there is a broad range of evaluation metrics
being used for regression models, classification-based ARA for German could benefit from
reporting a more comprehensive selection of evaluation metrics. It would be desirable to re-
port f-scores more systematically and to also include estimates of precision and recall because
they provide a more informative assessment of model performance.

To judge the robustness of a new model, it is central to not only consider its performance
metrics on their own but also how it was trained and tested. Figure 4.16a shows how common
different train-test splits were in the past two decades of research on ARA for German. It
includes only papers that proposed a new ARA approach (N = 31). Four papers used different
types of train-test splits and contributed several data points (N = 35). Most studies used a
form of cross-validation, typically with ten folds (N = 10), but some papers also used seven
(Naderi et al., 2019a), five (Budd et al., 2019; Imperial and Ong, 2021), or three folds (Brück
and Leveling, 2007). Vlachos and Lappas (2011) and Zowalla et al. (2014) did not report
the number of folds they used. Two papers used a train-test split (Islam, 2014; Brück and
Hartrumpf, 2007a) but they did not control the generalizability of their models through other
means. In fact, only four papers investigated the generalizability of their ARA models on some
form of hold-out or cross-corpus data. Berendes et al. (2018) evaluated the generalizability of
their approach using hold-out publisher data. Weiss and Meurers (2018) confirmed the robust-
ness of their readability models across different corpora of educational media language (see
Section 5.3.2). Our survey also includes two multi-lingual approaches to ARA that included
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Figure 4.16: Comparison of test methods used for ARA models

German and employed cross-language testing (Budd et al., 2019; Weiss et al., 2021). Not all
papers that proposed a new ARA approach required training data. Several papers focused on
fitting explanatory regression or factor models (Brügelmann and Brinkmann, 2021; Gilg et al.,
2019; Grzybek, 2010; Harbach et al., 2013; Merges, 2014; Theobald et al., 2021; Tolochko
and Boomgaarden, 2019; Brück and Hartrumpf, 2007b) without evaluating their predictive
power. Also, three papers did not learn new prediction weights based on training data making
a train-test split superfluous (Hewett and Stede, 2021; Oelke et al., 2010; Weiss et al., 2018).
Similarly, the unsupervised approaches by Battisti (2019); Battisti et al. (2019) did not require
a train-test split. Overall, this comparison showed that despite some promising examples of
cross-corpus and hold-out data testing, most German ARA models are being insufficiently
tested with regard to their generalizability to new data sets.

After investigating concerns of construct validity, model robustness, and model generaliz-
ability, Figure 4.16b focuses on the assessment of model validity across papers. It considers
all papers but includes Fricke (2021) twice because he uses two validation methods (N = 104).
The figure clearly shows that the vast majority of papers using ARA did not ensure the validity
of the predictions (N = 84). This is in line with the observations made by Vajjala (2022) for
ARA for English. Overall 20 studies included some form of validation based on ecologically
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validated observations using mostly human (non-)expert judgments (N = 12), but also read-
ing comprehension tests (Beime and Menges, 2012; Golke and Wittwer, 2017; Harbach et al.,
2013; Kefer, 2013; Soemer et al., 2019; Tolochko and Boomgaarden, 2019), reading time es-
timates (Nagler et al., 2014), or EEG experiments (Andreessen et al., 2021). However, half
of these studies did not aim to validate the ARA models that they used. They relied on ARA
to confirm their assumptions about the reading materials that they used as stimuli in reading
studies (Andreessen et al., 2021; Betschart et al., 2019; Dirga and Wijayati, 2018; Friedrich
and Heise, 2019; Golke and Wittwer, 2017; Lampert et al., 2016; Nagler et al., 2014; Soemer
et al., 2019; Vössing and Stamov-Rossnagel, 2016; Vössing et al., 2016). Of the ten stud-
ies that measured the validity of ARA, all but one used established readability formulas for
ARA such as LIX (Björnsson, 1983), Amstad’s (1978) readability index, or the Wiener Sach-
textformeln (engl. “Vienna text formulas”) by Bamberger and Vanecek (1984). Only Merges
(2014) validated the readability formula that he fitted using non-expert judgments. None of
the predictive machine-learning based approaches validated the predictions of their models.
These findings highlight the need for validating ARA models for German.

4.3.1.4 State of the art

To answer our penultimate research question, we investigated the state-of-the-art performance
for ARA models. This typically entails two assessment dimensions: the identification of the
current best performance on one or more benchmark data sets and the identification of a model
that demonstrated SOTA performances across data sets. However, the number of available
readability corpora has been limited. Most machine learning-based studies in this survey used
their own data sets which made it difficult to compare the performance of ARA approaches
across papers. We also observed that only few studies tested their models across data sets.
Thus, this comparison focuses on two corpora which were used to test ARA models across
multiple studies: the ReadingDemands corpus (Vajjala, 2015) and the GEO/GEOlino corpus
(Hancke et al., 2012; Weiss and Meurers, 2018).45 The ReadingDemands corpus consists of
reading texts from German geography textbooks published for grades five to ten in two types
of German secondary schools: Hauptschule (engl. “vocational track”) and Gymnasium (engl.
“academic track”). Table 4.4 summarizes the performances of the three ARA models trained
on this data. Weiss (2015), Vajjala (2015), and Berendes et al. (2018) used this data to train

45Weiss and Meurers (2018) proposed an extended and updated version of the corpus originally compiled by
Hancke et al. (2012). For more details, see Section 5.3.1.1.
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Table 4.4: Accuracy of ARA models on ReadingDemands corpus

Paper Grade School (all) School (5/6) School (7/8) School (9/10)

Berendes et al. (2018) 53.7% n.a. 76.8% 78.0% 77.9%
Vajjala (2015) 53.3% 74.5% n.a. n.a. n.a.
Weiss (2015) 53.9% 76.9% n.a. n.a. n.a.

Table 4.5: Best performances of ARA models on GEO/GEOlino corpus

Corpus by Corpus by
Hancke et al. (2012) Weiss and Meurers (2018)

Galasso (2014) 89.8% n.a.
Hancke et al. (2012) 89.7% n.a.
Imperial and Ong (2021) n.a. 89.0%
Islam (2014) 88.1% n.a.
Weiss and Meurers (2018) 91.1% 89.4%

ARA models that predicted school track (binary) and grade level (5/6, 7/8, 9/10) using 10-CV.
All three papers reported similar performances for grade level identification using comparable
set-ups. This can be partially explained by the similarity of their set-ups. All used a Se-
quential Minimal Optimization (SMO) classifier informed by linguistic complexity features
(syntax, lexicon, morphology, discourse, language use) that were extracted with the same fea-
ture extraction system (an earlier version of the systems used in this thesis). For school type
identification, Berendes et al. (2018) and Weiss (2015) outperformed Vajjala (2015), leaving
the SOTA for this data around 77.0%. Weiss (2015) introduced several new features of lexical
and syntactic complexity, which were also used in Berendes et al. (2018) but not in Vajjala
(2015). This might explain the higher performance of these papers for school types identifi-
cation. However, Berendes et al. (2018) only reported the grade-wise accuracy of predicting
school track. This only allows an approximate characterization of the SOTA performance for
this data.

Table 4.5 summarizes the best performances on the GEO/GEOlino corpus. It consists of
articles from the two popular science magazines GEO (for adults) and GEOlino (for children)
which were produced by the same publisher. Overall five papers reported the performance
of their ARA classifier on this data.46 However, they partially reported different corpus sizes

46Andreessen et al. (2021) were excluded even though they used the same corpus, because they did not evaluate
an ARA model on it.
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and used either 10-CV (Galasso, 2014; Hancke et al., 2012; Weiss and Meurers, 2018), 5-fold
cross-validation (Imperial and Ong, 2021), or a train-test split (Islam, 2014) for their mod-
els, which limits the conclusiveness of the performance comparison. With this disclaimer in
mind, Weiss and Meurers (2018) reported the highest accuracy on both the original version
of the corpus (91.1%) and the new, extended version (89.4%). The model has also demon-
strated its cross-corpus generalizability on a comparable corpus of German media language,
the Tagesschau/Logo corpus that was compiled by Weiss and Meurers (2018).

4.3.1.5 Availability and accessibility of approaches

Finally, this survey was concerned with the question of model and code availability and ac-
cessibility. Benjamin (2012) pointed out the importance of ensuring that ARA methods are
accessible to a broad audience so that they can be used in practice and interdisciplinary re-
search. In the last evaluation step of this survey, we investigated which of the 26 papers intro-
ducing new ARA methods made their ARA models publicly accessible, which of these were
directly usable, and whether or not a technical background was needed to operate them. We
found that overall six papers shared their ARA approaches by explicitly stating their formulas
including weights or by sharing their data, models, and scripts (Brügelmann and Brinkmann,
2021; Kercher, 2011; Merges, 2014; Weiss et al., 2018, 2021). Three papers made their ARA
approaches accessible for immediate use (i.e. do not require users to re-implement the ap-
proach to be able to use the analysis): The readability formula by Weiss et al. (2018) was
integrated into the interface of the search engine www.kansas-suche.de into which users
may also upload their own texts. Budd et al. (2019) integrated their machine learning model
into the Auto-ILR system. Both of these are immediately accessible to an audience without
the technical skills to re-implement the approach. Weiss et al. (2021) made their data, scripts,
and trained models accessible online. Their feature-based machine learning approach was
informed by features calculated with the freely available CTAP web platform. Thus, their
models can be directly used to analyze new data provided that users have the technical skills
to run the scripts and load the models.

4.3.2 Discussion

This survey focused on providing a snapshot of the research that has been conducted on and
using ARA for German. Over the past two decades, we saw a steady increase of work us-
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ing ARA for German or developing new ARA approaches. Remarkably, we saw that ARA
approaches seem to have become a tool that is used across a broad range of research disci-
plines ranging from computational linguistics and education to health research and political
science. However, we also observed a clear division of methods: the development of new ARA
approaches using state-of-the-art machine learning methods remains the task of research on
ARA in computational linguistics and computer science. In other disciplines, new models are
rarely proposed and if so they are traditional readability formulas. Outside of computational
linguistic work dedicated to developing new ARA approaches, readability formulas remain
the de facto standard of ARA for German, even though a) statistical machine learning meth-
ods have repeatedly been shown to outperform traditional formulas and b) newly introduced
approaches predominantly utilize feature-based machine learning models. We also saw that
deep learning approaches have not (yet) reached ARA for German. This has serious implica-
tions for ARA research. It means that the current SOTA remains disconnected from research
practice let alone everyday practice. As discussed in Section 2.3, the ubiquity of readability
formulas in ARA-based research (which we could also observe in this survey for German)
can be partially explained by the ease of use and accessibility of formulas. Thus, statistical
ARA models must become more accessible. Our survey showed that most papers proposing
new ARA methods do not make their models accessible in a way that allows other ARA re-
searchers or even potential users with limited technical skills to utilize them. As a result, new
ARA are rarely re-used. The impact of SOTA ARA approaches for German could be greatly
strengthened, if the trained models would be made available online and possibly incorporated
in user interfaces that facilitate their immediate use for new unlabeled data.

Addressing our second research question, we saw that most ARA research for German
focuses on adults and native speakers. Readability is mostly being assessed at the level of full
documents. Yet, the research landscape has proven to be quite diversified in terms of the type
of language being targeted. It includes work for children, language learners, and shorter text
segments. More research in these directions is needed to redress the imbalance, but this seems
to be well on its way.

We put a strong emphasis on statistical methods and model evaluation including concerns
of the robustness, generalizability, and validity of ARA approaches. We could confirm that
regression and classification are the primary ways of framing ARA in statistical approaches,
although ranking and clustering have been explored. The robustness of these models is mostly
evaluated based on accuracy for classification approaches and different error rates for regres-
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sion approaches. Work on classification might benefit from using evaluation metrics more
often that penalize classification biases more, e.g., f-scores, precision, and recall. The refer-
ence labels used to train these ARA models are mostly assigned by publishers, but also crowd
and expert judgments are relatively common. Only few studies tested the validity of model
predictions and these were focused on readability formulas. No machine learning-based ap-
proach has been tested for its ecological validity. This confirms the need for more work on
the validity of ARA models pointed out by Vajjala (2022) for English. Thus, the second fore-
most research desideratum that emerges from this survey is to increase empirical validation of
reference labels and model predictions.

Inspecting the types of features used in feature-based machine learning approaches, we saw
that even though a broad range of feature types has been covered, length-based surface features
are the most dominant group following the historical precedent of traditional formulas. They
are often combined with syntactic and lexical features in line with the dominance of these do-
mains in related complexity research. Surprisingly, morphological complexity features are as
common as language use and discourse based features attesting that at least in languages other
than English, this domain might not be not as under-researched as often assumed. Graphe-
matic features, measures derived from information theory, and human processing measures,
instead, are rarely used. It might be worthwhile to investigate these domains further in the
future.

We found two corpora that had been re-used across studies in a way that allowed us to iden-
tify the SOTA performance for these data sets. Both represent readability for native speakers.
On the GEO/GEOlino corpus distinguishing media language targeting adults and children,
the best performing model was presented by Weiss and Meurers (2018) achieving an accu-
racy of 91.1% on the corpus by Hancke et al. (2012) and generalizing well in a cross-corpus
evaluation on a comparable corpus (see Section 5.3.2). However, this model performs only
a relatively coarse-grained binary distinction. We also compared three models trained on the
ReadingDemands corpus (Vajjala, 2015). They all achieved comparable accuracies around
53-54% for the distinction of grade levels (fifth to tenth grade) and around 75% for the dis-
tinction of secondary school types. However, no cross-corpus validation studies were reported
for these models. Also, none of these models was made publicly available which is in line
with our general observation that relatively little machine learning-based work on ARA has
been made accessible to other researchers or non-technical audiences. This only highlights the
before mentioned need for making sure that machine learning-based ARA models are being
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made available to strengthen their impact on ARA practice.
Finally, this survey highlighted several contributions made in this thesis to advance ARA

for German. Not only did we see that the model proposed in Weiss and Meurers (2018) seems
to remain the SOTA in terms of its performance on the GEO/GEOlino corpus and its cross-
corpus generalizability. The survey also highlighted the need for more cross-corpus validation
for ARA models. Two out of the four papers that used a form of cross-corpus or hold-out
data testing in this survey are part of this thesis (Weiss and Meurers, 2018; Weiss et al., 2021).
One of the limiting factors for cross-corpus evaluations is the lack of comparable reading
corpora. Weiss and Meurers (2018) address this issue by compiling two comparable corpora
of German media language for adults and children and making them available for research.
Similarly, we named making models publicly available to foster ARA research as a primary
research desideratum. Accordingly, most readability studies in this thesis make the models
accessible either through a web interface (Weiss et al., 2018) or by publishing the models
and analysis scripts (Weiss and Meurers, 2022; Weiss et al., 2021) which rely on the publicly
available CTAP system which I extended to support analyses of German (see Section 3.3).
These papers were also the only studies integrating human processing measures into ARA
models. Finally, the ARA approaches included in this thesis were designed to address under-
researched target groups including children (Weiss and Meurers, 2018) and L2 readers (Weiss
et al., 2021) as well as less commonly researched text units such as sentence-wise readability
assessment (see Weiss and Meurers, 2022, in Section 5.3.4).
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Foundational complexity research

5.1 Motivation and core contributions

This chapter focuses on the automatic assessment of written language production and written
language reception for inter- and extra-institutional educational contexts. I demonstrate the
productivity of the construct of linguistic complexity and its automated, linguistically broad
operationalization for predicting a) language proficiency and b) text readability. In the fol-
lowing six corpus-based studies, I investigated the applicability of my integrative approach to
broad linguistic complexity modeling for German to APA and ARA for L1 and L2 contexts. I
further explored how transferable the approach is to very short language samples.

The remainder of this section focuses on contextualizing the core research questions and
findings of each article within the larger frame of this thesis. The other two sections of this
chapter present each individual article in more detail, focusing especially on their data, meth-
ods, and core findings. Section 5.2 focuses on APA and Section 5.3 on ARA.

5.1.1 Automatic language proficiency assessment

We conducted three studies exploring the value of broad linguistic complexity modeling for
automatic L1 and L2 proficiency assessment. Assessing the proficiency of learners through the
quality of their written language output has been one of the most prolific application domains
of complexity research (see Section 2.2). Yet, manual analyses can only capture a limited
range of linguistic dimensions (see Section 3.1.1) and only few automated procedures have
been devoted to the systematic study of language competence in German prior to this thesis
(see Section 4.2). To address this, we first demonstrated that broad linguistic complexity mod-
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eling using automatic feature extraction is indeed beneficial to predict learners’ L2 proficiency
on the full CEFR scale (A1 to C1/C2; Weiss and Meurers, 2019b). To gain deeper insights
into the linguistic characterization of individual proficiency levels and trade-offs between lin-
guistic domains, we further studied for each proficiency level the contribution of individual
linguistic domains to the identification of these levels. We found that while lexical and clausal
complexity were relevant for predictions across the full CEFR spectrum, discourse and mor-
phological features were notably more informative for the identification of B2 texts than for
texts at other levels.

In Weiss and Meurers (2019a), we then turned to the characterization of early L1 academic
language development in form of grade level differences from a broad linguistic perspective.
For this study, we extended our analysis to consider measures of not only complexity but
also accuracy. This allowed us to study developmental trade-offs within complexity domains
as well as between complexity and accuracy. We found that in elementary school, pupils
developed more in terms of their accuracy. In contrast, in secondary school, the early devel-
opment of the academic language system shifted towards increasing complexity, especially in
the domains of phrasal complexity, lexical complexity, and discourse cohesion. Furthermore,
we demonstrated that despite the known impact of task effects on CAF (see Section 2.1.3.2),
our linguistically broadly informed models successfully generalized across task prompts with
different topics. This is crucial for the reusability of complexity-based classification models.

After having established the value of our approach for longer L1 and L2 writing, we turned
to shorter language productions (less than 10 words; Weiss and Meurers, 2021). We suc-
cessfully predicted L2 proficiency from learners’ short answers to reading comprehension
questions. We showcased that broad linguistic complexity modeling can be successfully used
to predict beginning L2 learners’ course levels even from short writing samples. However,
we did observe that the cross-task generalizability of models trained on such limited samples
was limited, especially when compared to the successful generalization that we observed in
Weiss and Meurers (2019a) for models trained on longer data. A second focus of this article
was on investigating the robustness of our NLP models and feature extraction algorithms on
non-standard language data, in this case produced by beginning learners of German. We could
successfully demonstrate that the extraction of complexity measures using our analysis system
was hardly impacted by erroneous NLP analyses.

Together, these three studies demonstrate that our integrative approach to linguistic com-
plexity modeling is highly beneficial for the assessment of language proficiency for a broad
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range of proficiency levels and language types. Our models have not only achieved high
prediction performances. They allowed to zoom in on the linguistic differences between profi-
ciency levels to gain deeper insights into developmental differences across proficiency levels.
The studies further showcase that computational linguistic methods can be a valuable instru-
ment to overcome the often reductionist focus of SLA complexity research (see Section 2.1.2).
It makes a linguistically broad perspective on complexity feasible while maintaining the re-
quired level of robustness even on non-standard language data.

5.1.2 Automatic readability assessment

Turning to the reception of language, we conducted three studies on ARA for German. Even
though readability assessment has not been a traditional focus of SLA complexity research,
computational linguistic work on ARA has a long tradition of utilizing linguistic complexity
features (see Section 2.3). Despite the abundant work on ARA for German, there has been only
little work on L2 readers or the assessment of readability below the document level (see Sec-
tion 4.3.1.2). As our systematic survey further showed, readability formulas have remained the
de facto standard for ARA in practice because of the lack of available ARA models leveraging
deeper linguistic insights. This has also led to relatively little work discussing the linguistic
differences between texts at different readability levels. Yet, these insights would be crucial
for deriving recommendations on how to align texts with readers’ language skills. To address
these limitations, we first set out to demonstrate the value of our broad linguistic complexity
modeling approach for ARA. For this, we started with predicting L1 readability in Weiss and
Meurers (2018). We used and extended an established corpus to ensure the comparability of
our approach to previous work at the time. We showcased that our approach allows to suc-
cessfully distinguish language targeting adults from language targeting children in educational
media language. We also elicited a second corpus of German media language for adults and
children to facilitate cross-corpus testing, which we identified as a research desideratum in
our background chapter (Section 2.3.3.2) and survey (Section 4.3.1.3). This allowed us to
demonstrate the generalizability of our model to a different type of German media language.
We further leveraged the insights from our feature-based approach to better understand how
language designed for adults and children differed. We found that especially language use,
nominal style, and discourse features were important for the distinction of target audiences
across media outlets.

After having established the competitiveness of our approach, we focused on providing
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more resources for German L2 readers. In Weiss et al. (2021), we used our linguistically
broad modeling approach to train a highly successful model for multi-level ARA of texts for
L2 learners of both German and English. We elicited this corpus specifically for the purpose of
addressing the lack of available L2 readability corpora for German as well as the lack of multi-
level, multi-lingual readability corpora in general. Moving to a cross-linguistic perspective on
L2 ARA, we compared the linguistic differences between reading levels across languages
and found several parallels. Specifically, we observed that language use and surface length
measures were central for both languages, whereas syntactic complexity was more important
for German.

Building on this work, we transitioned from the assessment of longer reading materials to
the prediction of L2 sentence readability (Weiss and Meurers, 2022). Besides demonstrating
the transferability of our approach to sentence level readability, we specifically focused on
comparing our analyses to surface level estimates of readability lacking deeper linguistic in-
sights. This was motivated by the dominance of readability formulas in research using ARA
for German (see Section 4.3). We found that broad linguistic complexity modeling outper-
forms surface-based approaches when predicting the readability of sentences on a continuous
scale. For the simpler task of identifying simplified from regular sentences in sentence simpli-
fication pairs, however, we saw that also surface feature-based approaches to ARA yielded sat-
isfactory performances. This highlights that for coarse estimations simpler approaches to ARA
can indeed suffice but that for precise readability estimates our linguistically informed model
yields the best results. Finally, we showcased the use of sentence-wise readability assessment
for the analysis of the compositionality of document-level readability, finding evidence that
maximum sentence readability rather than average sentence readability is a determining fac-
tor of document readability. This is an important insight for work on text adaptation because
it showcases that focusing on the most difficult sentences in a text could suffice to decrease
overall text readability.

Through these three studies, we have successfully demonstrated that the proposed inte-
grative approach to broad linguistic complexity modeling is a useful tool for the assessment
of language reception. Again, the approach allowed to not only predict readability but also to
gain deeper insights into the compositionality of text readability, both in terms of the linguistic
characteristics of texts at different reading levels and in terms of the link between sentence-
level and document-level readability.

150



5.2 Predicting language proficiency from learner writing

5.1.3 Core contributions

With the six studies presented here, we have addressed several known challenges in SLA
complexity research. First and foremost, we have demonstrated that the proposed integrative
approach to broad linguistic complexity modeling is highly successful for a variety of appli-
cation contexts linked to language learning. With this, the present work contributes directly to
overcoming the often overly reductionist approach to complexity research (see Section 2.1.2).
We also utilized this linguistically uniquely broad perspective to make linguistic trade-offs
observable in terms of the complexification of different linguistic domains as well as between
complexity and accuracy. Taking into account the known task sensitivity of CAF measures, we
investigated the robustness of our approach across task contexts in several studies. The find-
ings indicated that the combined evidence from the broad range of linguistic domains yields
relatively stable performance estimates provided that enough linguistic material is available to
learn generalizable patterns.

From a computational linguistic perspective, these studies have contributed greatly to the
two application domains of ARA and APA for German. Across study set-ups, we ensured to
address issues of model generalizability to different data sets which not only links back to the
concern of task effects but more generally is of uttermost importance for the practical usability
of the trained models. To do so, we also addressed the lack of comparable training data for
ARA for German. Finally, we have confirmed the robustness of our automatic linguistic anal-
ysis on non-standard data, thus addressing the issue of analysis quality on learner or web data.
Taken together, these six articles made a substantial contribution to foundational complexity
research and computational linguistic work on APA and ARA for German.

5.2 Predicting language proficiency from learner writing

This section summarizes my foundational work on APA for German texts based on broad lin-
guistic complexity modeling. Section 5.2.1 briefly describes all corpora used for the follow-
ing studies. Section 5.2.2 establishes the value of linguistically broad complexity modeling
of German L2 proficiency assessment on longer essays. Section 5.2.3 demonstrates the ap-
plicability of the method to identifying differences between young L1 writers in elementary
and early secondary school, again on longer essays. Building on these studies, Section 5.2.4
discusses the use of short answers to predict German L2 language proficiency. The sections
serve as a concise synthesis of the main results of each study. For a comprehensive descrip-
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Table 5.1: Corpus profile for German Merlin data split by overall proficiency ratings

A1 A2 B1 B2 C1 C2

#documents 57 306 331 293 42 4
#sentences 280 2,377 3,834 4,350 597 52
#words 1,956 18,499 39,076 57,262 9,527 984

tion of all study set-ups and detailed reports on the individual study findings, please consult
the respective articles listed in Chapter 8.

5.2.1 Corpora and data sets

5.2.1.1 German proficiency corpora for L2 writers

Merlin The Merlin corpus (Wisniewski et al., 2013) is a trilingual cross-sectional learner
corpus containing German, Italian, and Czech texts written by L2 learners at beginning to
advanced proficiency levels. Throughout this thesis, I will only refer to the German section
of the corpus. It consists of 1,033 texts that were elicited during standardized language tests
for the five CEFR levels: A1, A2, B1, B2, or C1. Each text was digitized as a diplomatic
transcription seeking to faithfully represent the originally hand-written learner text and as a
form-based target hypothesis seeking to provide an orthographically and grammatically stan-
dardized version with minimal changes. The corpus comes with rich meta information on the
learners’ background (age, gender, L1s), the task context (test taken, task description), and
text quality ratings. All essays were rated on several proficiency scales using the Merlin rating
grid (Wisniewski et al., 2013) which was based on the CEFR levels A1 to C2. Each text was
rated by two trained raters along several performance dimensions which were combined into
a single holistic overall L2 proficiency score. Table 5.1 shows the corpus profile of the Merlin
corpus based on the diplomatic transcription.

The corpus was elicited to be balanced across proficiency test levels (each test level is repre-
sented by about 200 texts) but not across proficiency ratings. The number of documents across
proficiency ratings in Table 5.1 shows how this led to an imbalance of proficiency ratings in
the data. The overall proficiency ratings are broadly distributed across the five different test
levels. In the most extreme case, a B1 rated text can be an exceptionally well-written text
elicited in an A1 test as well as an insufficiently written text elicited in a C1 level test. This
introduces a considerable within-proficiency rating heterogeneity into the data, especially be-
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Table 5.2: Corpus profile for CREG-OSU and CREG-KU split by course level

CREG-KU CREG-OSU

A1.1 A1.2 A2.1 A2.2 A1.1 A1.2 A2.1 A2.2

#answers 1,995 1,901 1,977 1,966 736 905 809 810
#sentences 2,100 1,982 2,263 2,127 773 1,032 980 1080
#words 7,305 8,384 13,625 15,654 4,323 6,560 7,639 8,967

Table 5.3: Corpus profile for CREG-7K split by course level

A1.1 A1.2 A2.1 A2.2

KU OSU KU OSU KU OSU KU OSU

#answers 742 733 901 905 821 815 814 817
#sentences 794 771 938 1,032 929 988 891 1,089
#words 2,697 4,315 4,128 6,560 5,773 7,748 6,688 9,078

cause at each of the five test levels, texts were elicited by three different task prompts, leading
to 15 different task prompts used in the corpus. Ideally, this heterogeneity allows to train clas-
sifiers that successfully generalize across very different application contexts. However, it also
makes training successful classifiers more challenging.

CREG The Corpus of Reading comprehension Exercises in German (CREG) consists of
German L2 short answers to reading comprehension questions elicited in beginning to ad-
vanced German courses at two U.S. universities (Ott et al., 2012; Ziai, 2018): The Ohio State
University (OSU) and University of Kansas (KU). The task-based corpus contains not only
student answers but also the associated reading comprehension questions, reading texts, and
teachers’ target answers. All learner answers were digitized as a diplomatic transcription. In
this thesis, we focused on four subsets of CREG that were elicited in the beginning courses
A1.1, A1.2, A2.1, and A2.2. We designed the first three data sets to be balanced across course
levels: CREG-OSU consists of 3,259 student answers elicited at OSU. CREG-KU consists of
7,839 student answers elicited at KU. The corpus profiles of these two corpora can be found in
Table 5.2. CREG-7K consists of 6,548 student answers elicited in equal parts at OSU and KU.
Its corpus profile is shown in Table 5.3. The fourth subcorpus consists of 104 sentences from
answers elicited at KU for which Ott and Ziai (2010) created manual dependency annotations
using three trained raters. The corpus profile for this data set, which we refer to as CREG-104,
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Table 5.4: Corpus profile for CREG-104 split by course level

A1.1 A1.2 A2.1 A2.2

#answers 25 0 32 47
#sentences 25 0 33 52
#words 165 0 221 394

Table 5.5: Corpus profile for KCT data split by grade levels

1st 2nd 3rd 4th 5th 6th tth 8th

#documents 38 165 276 248 211 251 216 228
#sentences 178 885 2,022 2,616 1,714 2,107 1,513 1,984
#words 1,665 7,725 18,943 26,789 18,825 23,510 18,308 24,366

can be found in Table 5.4. We converted the original dependency annotations to the scheme
used by Brants et al. (2002) to be able to match them with the output of our NLP pipeline
(see Section 3.2). We also manually augmented the data set with reference annotations for
lemmas and morphological inflection (case, number, gender, person, tense, verb mode, degree
of comparison), see Weiss and Meurers (2021, Section 4.3.1) for details.

5.2.1.2 German proficiency corpora for L1 writers

Karlsruhe Children’s Texts The KCT corpus by Lavalley et al. (2015) is a cross-sectional
corpus of German texts written by pupils who attended German elementary or secondary
school at the time of writing. It consists of 1,701 texts elicited in first to eighth grade at ele-
mentary school and two types of secondary school: German Hauptschule which is the basic
vocational secondary school track and German Realschule which is the advanced vocational
secondary school track. All texts were elicited with one of two age-appropriate task prompts
using different topics. At elementary school, pupils were asked to continue one of two nar-
ratives: one about playing in a park or one about a wolf learning how to read. At secondary
school, pupils had to write a fictional text about a day spent with their idol or their life in 20
years. The corpus contains faithful transcriptions of students’ texts as well as a form-based
normalization. The corpus additionally includes rich annotations for error types regarding
word segmentation, word choice, grammar, and legibility. Table 5.5 shows the corpus profile
of the KCT corpus split by grade levels. As can be seen, the number of texts varies greatly
between grade levels. To obtain a more homogeneous distribution, we always grouped two
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adjacent grade levels (1st/2nd, 3rd/4th, 5th/6th, 7th/8th) for our analyses in Weiss and Meurers
(2019a).

5.2.2 Broad linguistic modeling for German L2 proficiency assessment

In our first study on APA for German (Weiss and Meurers, 2019b), we focused on demon-
strating how broad linguistic complexity modeling provides added value to the task of L2 pro-
ficiency classification over approaches informed by linguistically homogeneous feature sets.
As a second research focus, we compared the informativeness of individual feature domains
for the distinction of specific proficiency levels on the full CEFR range from beginning to ad-
vanced learners. This allowed us to better understand at what point in the developmental pro-
cess certain linguistic domains evolve. Traditional SLA complexity research has successfully
shown that throughout the developmental trajectory of learners, linguistic domains evolve at
different speeds and time points (see Section 2.1.3.1). These studies have mostly focused on
comparing relatively few features from the domains of syntax, lexicon, and language use. Our
broad linguistic complexity modeling approach in contrast offered the possibility to compare
a variety of linguistic domains simultaneously on the full developmental scale from beginning
to advanced L2 learners of German.

As data basis for our analysis, we used the diplomatic transcriptions in the Merlin corpus
(see Section 5.2.1.1). The unique size and breadth of the corpus allowed us to train a pro-
ficiency classifier for beginning to advanced L2 learners of German. We used the holistic
overall CEFR ratings as training labels to distinguish five proficiency levels: A1, A2, B1, B2,
and C1/C2.1 We extracted a total of 400 complexity features covering the linguistic domains
of syntax (separated into phrasal and clausal complexity), lexicon, morphology, discourse,
language use, and human language processing. We calculated these features on the Merlin
data using the original monolingual complexity analysis system introduced in Section 3.2. We
then ranked features by their informativeness for the distinction of proficiency levels using
information gain. This allowed us to form a total of twelve different feature sets: one per
linguistic domain (N = 7), one combining all features, and four using the 200, 150, 100, and
50 most informative features from our previous ranking. With each of these feature sets, we
trained one classifier using 10-CV. All classifiers used the SMO algorithm (Platt, 1998) which
is known for its stability when used with highly inter-correlated features. We compared their

1Since the Merlin corpus only contains four essays receiving an overall rating of C2, we did not distinguish
between C1 and C2 ratings.
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Table 5.6: Performance of L2 proficiency models trained in Weiss and Meurers (2019b) in
terms of overall accuracy and level-wise F1 score (highest performance each comparison
marked with bold font)

Metric Level Maj All 150 Lex Cla Phr Mor Use HLP Dis

Accuracy A1–C1/2 32.0 68.1 70.0 67.6 63.8 62.1 59.7 59.3 53.7 64.7
F1 score A1 0.0 40.8 45.7 27.3 12.3 3.3 0.0 3.4 0.0 6.7

A2 0.0 70.2 73.9 73.2 68.9 68.3 63.1 63.6 60.1 69.5
B1 48.5 65.8 67.1 62.1 58.6 56.4 54.0 54.4 49.1 58.2
B2 0.0 74.4 77.4 75.9 73.7 71.7 72.0 69.5 61.1 75.1
C1/2 0.0 31.2 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

performances with each other and with a naive baseline (always predicting the majority class:
B1) in terms of their overall accuracy as well as in terms of their proficiency level-wise pre-
cision, recall, and F1 score. All analyses were carried out using the WEKA machine learning
toolkit (Hall et al., 2009) and the statistical programming language R (R Core Team, 2022)
using the packages ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2022).

Classifier evaluation

Table 5.6 summarizes the classification performance of all models in terms of their overall
accuracy and their proficiency level-wise F1 scores. Instead of all four models using the in-
formation gain ranking feature selection, only the best-performing one using the 150 most
informative features was reported here. We see that all models outperformed the majority
baseline (Maj.) with an accuracy of 32.0%. The classifier using the 150 most informative
features (150) achieved an overall accuracy of 70.0% and outperformed the other classifiers.
When inspecting which linguistic domains were being represented in this data-driven feature
set, we saw that it was informed by features from all linguistic domains. This showcases that
the full range of our broad linguistic modeling approach contributed to the higher performance
of the classifier compared to the ones using homogeneous feature sets. It is noteworthy that the
performance of the most successful homogeneous classifier—which used 38 lexical complex-
ity features (Lex)—was 67.6%, i.e. only 2.4% below the best-performing model despite using
a much smaller and easier to compute feature set. Yet, the proficiency level-wise performance
evaluation revealed that the diverse model was indeed superior in distinguishing proficiency
levels from beginning to advanced when compared to any of the other models including the
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lexical model.2 The lexical model performed much worse for the identification of A1 rated
essays and failed for C1/2 rated essays. This was a general pattern that we observed across all
models informed by homogeneous feature sets. When summarizing this difference in terms of
the weighted average F1 score, the impact of this performance difference between the model
using the 150 most informative features (F1M = 68.1%) and the lexical model (F1M = 64.6%)
also became apparent on the macro level. The evidence clearly showed that a broad linguistic
complexity modeling approach is highly beneficial for L2 proficiency assessment on the full
CEFR scale.

Our second research question concerned performance differences within the homogeneous
proficiency models across proficiency levels to gain a better understanding of which linguistic
domains are suited to characterize learners at the respective proficiency levels. We found
that lexical and clausal complexity systematically performed best among the homogeneous
models across CEFR levels. Also discourse features were more successful than the other
linguistic domains, especially for B2 essays. The other homogeneous feature domains showed
much less discriminatory power across proficiency levels, except for the morphological model
performing remarkably well for B2 rated essays. Interestingly, all homogeneous models failed
to correctly identify advanced learners (C1/2). They also performed poorly for beginners’
essays (A1). These two classes were also the most challenging to distinguish due to their
under-representation in the Merlin corpus, yet, the linguistically diverse models handled these
cases much better than the homogeneous models despite training with the same distribution of
classes.

5.2.3 Analyzing linguistic complexity and accuracy in academic language
development of German across elementary and secondary school

In Weiss and Meurers (2019a), we used our broad linguistic modeling approach to track the
early development of German L1 academic language. Unlike in our previous studies on L2
proficiency, we measured both complexity and accuracy to characterize pupils’ development.
This allowed us to investigate potential developmental trade-offs between complexity and ac-
curacy. We focused on the first eight years of schooling in the German education system.

2Only the model using all features (All) outperformed the model using the 150 most informative levels in
one instance, namely for the identification of learners at the C1/C2 level. Since the performance difference
between both models in terms of their overall accuracy was relatively small, one might in fact prefer the
model using all features over the one using only the 150 most informative features.
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This included writings from elementary school (first to fourth grade) and from the first four
years of two types of secondary school (see below and Section 5.2.1.1 for details). Our studies
focused primarily on grade level differences but also payed special attention to the transi-
tion between elementary and secondary school. This step is known to be a formative turning
point in contrast to the more gradual transition between grade levels within school types (e.g.,
Riebling, 2013). Most research on ALPS for German has focused on adults’ L2 development
or their L1 academic language development at university (see Section 4.2). Less work has
been dedicated to early stages of academic language development that take place in the first
years of schooling. Existing studies on L1 writing development mostly focused on the devel-
opment of students’ accuracy (Göpferich and Neumann, 2016; Laarmann-Quante et al., 2019;
Lavalley et al., 2015). In this article, we addressed the lack of research on early academic lan-
guage development in terms of complexity with three main research contributions. First, we
built successful classification models for the distinction of texts written by pupils at different
grade levels. Second, we used the linguistic insights that we obtained from our feature-based
machine learning approach to describe the developments in pupils’ writing from a broad lin-
guistic perspective. Third, taking into account the influence of task effects on CAF (see Sec-
tion 2.1.3.2), we demonstrated the cross-topic generalization of our models to unseen writing
topics.

We used a subset of the KCT corpus (see Section 5.2.1.2) as empirical basis for our analyses.
The error annotations in the KCT corpus allowed us to consider accuracy as a second dimen-
sion of language performance. We wrote a script that inferred 37 error rate measures from the
existing annotations in the KCT corpus.3 The error rate features covered measures of incor-
rect word choice, spelling mistakes, and punctuation errors. We also extracted 308 features
of linguistic complexity using our original complexity analysis system (see Section 3.2). This
included features from the linguistic domains of syntax, lexicon, and morphology, features of
discourse cohesion, and psycho-linguistic features of language use and human processing. We
extracted complexity measures from the normalized transcription of pupils’ writings to bet-
ter delineate complexity and accuracy effects. We removed all features exhibiting near zero
variance in the data and computed the z-scores of the remaining features. From these, we
formed eleven different feature sets: one for each complexity domain (separating phrasal and
clausal complexity), one for the error rate features, one combining all complexity features,
one combining all complexity and accuracy features, and one adding also meta information

3The script is available at https://github.com/zweiss/KCTErrorExtractor.

158

https://github.%20com/zweiss/KCTErrorExtractor


5.2 Predicting language proficiency from learner writing

on topic and school type (if applicable, see below). Using these feature sets, we trained clas-
sifiers to predict grade levels in three different classification tasks: i) a four-way classification
of elementary and secondary school writing (1st/2nd, 3rd/4th, 5th/6th, 7th/8th), ii) a binary
classification of elementary school writing (1st/2nd, 3rd/4th), and iii) a binary classification of
secondary school writing (5th/6th, 7th/8th). We trained the two binary classifiers to examine
the differences between pupils’ development in elementary and secondary school. All classi-
fiers used the SMO algorithm (Platt, 1998) and were trained and tested with ten iterations of
10-CV. Both binary classifiers were additionally trained on one topic prompt and tested on the
other to test the cross-topic generalization of the models. We compared the performance of all
models in terms of accuracy against two baselines: a majority baseline and a surface feature
classifier using only text length and word length features. Finally, we ranked features based on
their information gain for the distinction of grade levels separately on the elementary school
data and on the secondary school data. We compared the most informative features from each
feature domain for both rankings to gain an understanding of the linguistic differences be-
tween grade levels and school types. All analyses were carried out using the WEKA machine
learning toolkit (Hall et al., 2009) and the statistical programming language R (R Core Team,
2022) using tidyverse (Wickham et al., 2019).

Classifier evaluation

For the four-way classification, all feature-based models clearly outperformed the two base-
lines which achieved an accuracy of 32.1% each. Our best-performing model used all features
plus meta information on school type and writing topic. It obtained an accuracy of 72.7%.
Also the model without meta information achieved an accuracy of 71.0%. The combination
of complexity measures and accuracy measures had a greater impact on model performance:
The complexity model reached only an accuracy of 68.4%. The models using only features
from individual feature domains reached a systematically lower accuracy ranging from 42.2%
(human processing) to 61.3% (phrasal complexity). We found that the phrasal, lexical, and
discourse models and (with some distance) the morphological model all achieved higher ac-
curacies than the error rate model. The models using psycho-linguistic features (human pro-
cessing and language use) performed worst. This suggests that these measures play only a
minor role in early L1 academic language development.

The results for the binary classifier trained on the secondary school writings were similar in
the sense that again all models significantly outperformed the baseline models except for the
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human processing model. Again, the model combining all features with meta information on
task prompt and school type performed best with an accuracy of 65.7% against the baseline
models performing both at around 51%. Adding meta information accounted for a boost in
accuracy of 2.5%. However, combining complexity and error rate features did not improve
performance for this subset of the data. In fact, when comparing the relevance of the individ-
ual linguistic domains for the distinction of grade levels in secondary school, we saw that all
complexity models outperformed the error rate model except the morphological model (per-
forming at the same level) and the human processing model (which was uninformative). This
indicates that accuracy develops less systematically across grade levels in secondary school
than complexity.

This stands in sharp contrast to our observations for elementary school writing. Again, the
combination of all features and meta information on task prompt4 performed best with an
accuracy of 82.8% compared to the baseline models achieving an accuracy of 71.7% each.
Adding the information, however, did not significantly improve performance (82.6%) and the
error rate model alone achieved an accuracy of 81.6%, which was a significant but small per-
formance difference. We also observed that only the phrasal, discourse, and lexical model
significantly outperformed the baseline models whereas the morphological, language use, and
human processing models did not. This shows that elementary school writing develops pre-
dominantly in terms of accuracy, even though there also seems to be some development in the
domains of lexicon, phrasal complexity, and discourse.

Cross-topic evaluation

In a final machine learning experiment, we tested the cross-topic generalization of our models.
Because writing topics in KCT do not overlap between elementary and secondary school, we
used the binary models for our evaluation. We compared the performances of the complex-
ity model, the error rate model, and the model combining all features with and without meta
information. The results showed that models on both data sets generalized well replicating
the performance differences that we observed in the previous evaluation. On the elemen-
tary school data, the accuracy model not only outperformed the other two models but also
performed at the same level as in the previous classification experiment (81.6%). Also the
complexity and the combined model performed well in the cross-topic experiment, despite a
drop in accuracy of up to ten percent compared to the model trained on both topics.

4Within elementary school, there are not different school types making this information superfluous.
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As for secondary school, the model combining all features and the meta information on
school type performed best again, with a drop in performance of only three percent compared
to the model trained on both topics. The model without meta information and the complexity
model, too, remained relatively stable with drops of performance around only four percent.
The error rate model again showed no drop in performance compared to the previous exper-
iment but also performed worst with an accuracy of only 55.2% compared to the majority
baseline of 50.0%. In summary, this shows that all complexity models combining evidence
from a broad range of linguistic domains generalized reasonably well across topics. Accuracy
measures proved to be fully stable but of limited importance for secondary school academic
language development from fifth to eighth grade.

Zooming in on individual features

Finally, we zoomed in on the most informative features of each linguistic domain and com-
pared them across grade levels in both school types to better understand their developmental
trajectory. Even though not all patterns observed through our comparison were clearly in-
terpretable, we saw mostly examples of systematic development in the data. Accuracy sys-
tematically increased from 1st/2nd grade to 7th/8th grade. Similarly, lexical diversity showed
a systematic development in terms of Yule’s k and the coverage of noun phrase modifiers
increased significantly for both school types. In line with our previous observations, other fea-
tures developed exclusively in secondary school. This held specifically for the use of derived
nouns, the number of conjunctional clauses per sentence and verbs per t-unit, and the use of
vocabulary associated with newspaper writing, all of which increased in secondary school.
Interestingly, also human processing measures showed a small but significant increase across
grade levels, even though they contributed little in the classification experiments.

5.2.4 Analyzing the linguistic complexity of German L2 short answers

In Weiss and Meurers (2021), we shifted our analysis of German non-standard L2 writing
for proficiency assessment from longer to very short texts. Previous research had predomi-
nantly focused on longer texts types such as essays, letters, narratives, and descriptions (see
Sections 2.2.3 and 4.2.1.2). Yet, being able to place L2 learners on a proficiency scale with
short writing samples would be very useful in practice because shorter text samples are eas-
ier to obtain. Also, given the known influence of task factors on CAF (see Section 2.1.3.2),
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it is important to study learner language across a range of writing tasks. Thus, we analyzed
L2 learners’ short answers (less than 10 words) to different reading comprehension tasks and
studied the models’ cross-task generalization. The second core objective in this paper was
to quantify the impact of non-standard language on our NLP annotations ranging from POS
tagging to dependency parsing and the subsequent calculation of complexity measures based
on these annotations.

We based our analyses on the CREG corpus (see Section 5.2.1.1). To obtain L2 proficiency
classifiers and test their generalization across task contexts, we extracted 297 complexity fea-
tures from the student answers in CREG-KU, CREG-OSU, and CREG-7K. We calculated all
features using our original complexity analysis system (see Section 3.2). After removing in-
sufficiently variable features, we obtained a final set of 147 features covering all linguistic
domains for which we calculated z-scores. Each data set was split into a training set (70%), a
development set (20%), and a test set (10%).5 To test the generalization of models to held-out
data, we tested the KU model on CREG-OSU and vice versa. We conducted two additional
machine learning experiments in which we used a 70/10/10/10 split of training set, develop-
ment set, regular test set, and held-out test set. The held-out test set either consisted of held-out
reading comprehension questions or of held-out reading texts (including their corresponding
reading comprehension questions). These additional experiments allowed us to evaluate the
generalization of our proficiency models for increasing degrees of held-out data. We trained
an Ordinal Random Forest (ORF) on each of the training data sets to predict the course level.
All models were evaluated on their respective test sets (regular, held-out questions, held-out
reading texts, cross-university). Model performance was always compared to the majority
baseline on the respective test sets and quantified in terms of overall accuracy.

To quantify the effect of non-standard language on the quality of NLP annotations and the
subsequent calculation of our complexity features, we followed a three-step procedure: First,
we applied our NLP pipeline (see Section 3.2) on CREG-104 and evaluated the performance
of automatic POS tagging, lemmatization, morphological analyses, and dependency parsing
using the data set’s manual annotations as reference. This allowed us to understand the gen-
eral performance of the NLP tools on the data. Second, we extracted complexity features
based on these annotation layers using our original analysis system (N = 93) utilizing a) the
manual reference annotations and b) the automatic NLP annotations. Of these, 69 were vari-
able across the 104 sentences. We calculated the z-scores for these features and compared the

5We chose a train-test split over 10-CV because of the substantial size of the three CREG data sets.
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root mean squared difference (RMSD) between features based on these two types of anno-
tations. This allowed us to understand the impact of errors in the automatic annotations on
the calculation of complexity features. Third, we trained a classifier using only the 69 vari-
able features on CREG-KU with a 70/20/10 split and compared its performance on the test
set with the performance on CREG-104 with features based on the automatic or the manual
annotations. This allowed us to quantify the impact of errors in the automatic annotations
on our prediction of course levels. For all analyses, we used the statistical programming
language R (R Core Team, 2022) and RStudio (RStudio Team, 2022). We used the packages
tidyverse (Wickham et al., 2019), caret (Kuhn, 2022), kernlab (Karatzoglou et al., 2022),
e1071 (Meyer et al., 2022), ranger (Wright and Ziegler, 2017), randomForest (Meyer et al.,
2022), PerformanceAnaytics (Peterson and Carl, 2020), caretEnsemble (Deane-Mayer
and Knowles, 2019), and doParallel (Microsoft Corporation and Weston, 2022).

Classifier performance and generalization

All three models from the 70/20/10 split achieved high classification accuracies on their re-
spective test sets that clearly outperformed their respective majority baselines (KU = 84.6%
against a baseline of 25.9%, OSU = 80.6% against a baseline of 27.7%, 7K = 74.9% against
a baseline of 26.4%). However, neither the OSU model nor the KU model generalized to the
respective other corpus. Both showed accuracies identical or close to the respective baseline
models. Yet, the success of the 7K model demonstrated that it is possible to learn common
course level characteristics between both universities. We investigated this discrepancy further
by inspecting the performances of the models on the held-out questions and held-out reading
texts test sets.6 We saw that models generalized to both held-out questions and held-out texts
but that their accuracy systematically declined with increasing dissimilarity to the training
data. On the held-out questions test set, the KU classifier reached an accuracy of 57.3%, the
OSU classifier an accuracy of 61.8%, and the 7K classifier an accuracy of 54.4%. On the
held-out texts test set, the KU classifier reached an accuracy of 40.5%, the OSU classifier an
accuracy of 40.7%, and the 7K classifier an accuracy of 40.1%. Taken together, these findings
show that our classifiers generalized to some extent. Yet, the generalization that can be ob-
tained for such short texts seems to be somewhat limited. To use such classifiers in practice,

6The performance of the models trained with a 70/10/10/10 split on their respective regular test sets and the
cross-university test sets was equivalent to their performance in the 70/20/10 split (as to be expected). They
were not reported here. I focused on their performance on the held-out questions and held-out texts sets.
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it would therefore be ideal to train classifiers on answers responding to the reading tasks that
they are supposed to be used for later on. This stands in contrast to the cross-topic robustness
for the classification of longer texts in Weiss and Meurers (2019a).

Robustness of complexity modeling on non-standard language

Overall, only 20.4% of automatically annotated sentences fully matched the manual reference
annotations. This means that most sentences contained at least partially incorrect analyses.
Yet, the individual NLP components in our pipeline performed reasonably well on CREG-104.
The POS tagging accuracy ranged between 92.7% and 99.0% with non-finite verbs and adjec-
tives receiving the lowest scores. Regarding lemmatization, we mostly observed accuracies
above 90% except for adjectives (84.0%) and finite verbs (85.7%). The accuracy of morpho-
logical analyses ranged from 75.7% to 100%. We found the morphological analyses of nouns,
adjectives, and non-finite verbs to be more accurate than the analyses of non-finite verbs. In
the ensemble NLP system that we used (see Section 3.2), there was a direct link between the
lower performance of the morphological analyzer for non-finite verbs and the previously men-
tioned difficulties that the POS tagger had in correctly labeling non-finite verbs which were
often labeled as finite verbs. For adjectives and nouns, we found the labeling of case and gen-
der to be most challenging. Finally, for the dependency analyses we observed reasonably good
unlabeled attachment scores and fair labeled attachment scores except for separable verb par-
ticles (25.0%) and relative clauses (50.0%). We found that object relations were labeled less
reliably than subject relations, which could only be partially explained by errors in the mor-
phological analysis of case. To summarize, these findings show that the automatic analysis of
non-standard data is possible but challenging for our NLP pipeline.

In the second step, we focused on the impact this had on the calculation of complexity
measures. We compared the RMSD between z-scores of features calculated using the man-
ual reference annotations versus the automatic annotations. This allowed us to quantify the
difference introduced by using the different annotation bases in terms of standard deviations.
Overall 81.2% of features showed no difference (10/69) or a weak difference (RMSD  0.5;
46/69). A total of eleven features showed a medium difference (0.5 < RMSD  1). These
were predominantly based on the assignment of subject or object dependency relation or case
labels. Two features entirely based on the correct assignment of subject and object depen-
dency relation labels showed a substantial deviation (1 < RMSD  2). We did not find any
extreme deviations (RMSD > 2). These findings allowed us to reach two conclusions: First,

164



5.3 Identifying competence-adaptive text input for learners

the previously noted issues with labeling objects and subjects during dependency parsing and
case assignment for nouns and adjectives in fact impacted the calculation of complexity mea-
sures. Second, however, it also demonstrates that the other challenges noted in the previous
assessment hardly influenced the calculation of features. In particular, this put into perspective
our earlier finding that nearly 80% of sentences contained at least one annotation error.

Whether or not the weak to substantial differences in the feature calculation are acceptable,
depends on the purpose for which complexity measures are being calculated. In Weiss and
Meurers (2021) and throughout this thesis, we used complexity measures predominantly as
features for training machine learning classifiers. Thus, we tested the impact of using man-
ual or automatic annotations for feature calculation on the prediction performance of a model
trained on CREG-KU. Our results showed that the performance of the model is comparable
between the held-out KU test set, CREG-104 with automatic annotations, and CREG-104 with
reference annotations. Thus, the observed differences between complexity measures based on
automatic and manual annotations did not seem relevant for the purpose of training linguisti-
cally broadly informed classifiers. That being said, our findings were somewhat limited a) by
the small size of the CREG-104 data set and b) because the relative simplicity of the sentences
made the syntactic analysis easier and limited the range of linguistic forms that we could ob-
serve. Also, we did not have reference annotations for constituency parses which prevented us
from assessing the robustness for all features. It remains to be empirically tested to what extent
our results can be generalized to more complex sentences and features based on constituency
parsing. To our knowledge, currently, there is no suitably annotated corpus available for this.
Despite these limitations, our evaluation covered a broad range of NLP tasks and linguistic
domains which we evaluated on authentic non-standard data. We are therefore confident that
our findings have a certain validity beyond the context of the CREG data.

5.3 Identifying competence-adaptive text input for learners

This section summarizes my foundational work on ARA for German using broad linguistic
complexity modeling. Section 5.3.1 briefly describes all readability corpora used for my re-
search on ARA. Unlike in Section 5.2, most corpora used in this section were elicited by us
specifically to answer our research questions and to address the shortage of German ARA
corpora. Section 5.3.2 focuses on ARA of German media language for L1 readers and Sec-
tion 5.3.3 on ARA for German and English L2 texts. Section 5.3.4 moves the complexity-
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based ARA approach from the document-level to the sentence-level. This entire section fo-
cuses on the main results from each paper and on linking the collected findings into a coherent
picture. For a comprehensive description of all study set-ups and detailed reports on the indi-
vidual study findings, please consult the respective articles in Chapter 8.

5.3.1 Corpora and data sets

5.3.1.1 German readability corpora for L1 readers

GEO/GEOlino The GEO/GEOlino corpus (Weiss and Meurers, 2018) is a binary, lev-
eled corpus of German media language. It consists of articles from the German educa-
tional monthly magazine GEO targeting adults and its adaptation for children (6 to 14 years)
GEOlino. GEOlino articles are not simplifications of corresponding GEO articles. Instead,
GEO and GEOlino are two independent magazines by the same publisher with similar but
neither identical nor coordinated contents targeting two different audiences: adults and chil-
dren. This makes these articles a very valuable source of data for German ARA. Hancke et al.
(2012) compiled a first version of this corpus consisting of 4.603 articles by crawling the sites
www.geo.de and www.geolino.de. We followed their set-up and crawled an updated and
nearly twice as large version of the corpus. It contains overall 8,263 articles on the topics
crafting, humanities, nature, reviews, technology, and travel after clean-up and removal of
texts with less than 15 words. As the original corpus, the full new GEO/GEOlino corpus is
not balanced between GEO (N = 4,999) and GEOlino (N = 3,264) texts. To account for this,
we created the balanced data set GEO/GEOlinoS. It consists of 2,480 texts on topics that were
represented in both, GEO and GEOlino: humanities, nature, and reviews. Table 5.7 contains
the corpus profile of GEO/GEOlinoS, including the total number of documents and the median
number of sentences and words per document for GEOS and GEOlinoS articles.

Tagesschau/Logo corpus The Tagesschau/Logo corpus (Weiss and Meurers, 2018) is a bi-
nary, leveled corpus of German media language for information and education. It consists
of subtitles from two major German daily news broadcasts that aired from December 2015
to January 2017: the Tagesschau by the German public-service television network ARD and
Logo!, a news service for children (age 6 to 14) provided by the German public-service tele-
vision network ZDF. For all broadcasts, the subtitles were cleaned from meta-comments on
non-verbal audio cues for hearing impaired audiences. While multiple editions of Tagesschau
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Table 5.7: Corpus profiles for the L1 readability corpora used in this thesis: GEO/GEOlinoS,
Tagesschau/Logo, GEO/GEOlino4, and Tagesschau/Logo 1

5

GEOS GEOlinoS Tagesschau Logo

#documents (total) 2,480 2,480 421 415
#sentences (median) 23 25 167 125
#words (median) 383 350 1,631 1,322

GEO4 GEOlino4 Tagesschau 1
5

Logo 1
5

#documents (total) 420 420 2,049 2,049
#sentences (median) 112.5 122.5 32 24
#words (median) 1,797 1,741 325 259

air throughout the day, Logo! is broadcasted once per day. To obtain a comparable number
of documents, the Tagesschau/Logo corpus only includes the main edition of Tagesschau that
airs every evening at 8pm. Tabe 5.7 contains the corpus profile of Tagesschau/Logo. The
minor mismatch in the number of documents from Tagesschau and Logo! is due to the fact
that unlike Tagesschau, Logo! does not air on certain holidays.

Aligning GEO/GEOlino and Tagesscha/Logo The GEO/GEOlinoS corpus and the Tagess-
chau/Logo corpus (both Weiss and Meurers, 2018) were published together to facilitate cross-
corpus comparisons of German ARA models. While both corpora target audiences at similar
age ranges and both contain German media language for information dissemination, they dif-
fer considerably in their corpus profiles. This becomes apparent when comparing their profiles
in Table 5.7. The GEO/GEOlinoS corpus contains more than five times as many documents
than the Tagesschau/Logo corpus. Yet, individual texts in GEO/GEOlinoS are about four
times shorter in terms of the median number of sentences and words than texts in the Tagess-
chau/Logo corpus. To compensate for these differences, we created two modified data sets.
GEO/GEOlino4 reduces the number of articles to 840 while simultaneously lengthening indi-
vidual texts by appending up to four GEO/GEOlinoS texts from the same topic domains and
sampling 420 appended GEO texts and 420 appended GEOlino texts. Tagesschau/Logo 1

5
in-

creases the number of subtitles while simultaneously shortening the length of individual texts
by splitting each original Tagesschau and Logo transcript into five equi-sized partitions and
sampling 2,049 partitions from Tagesschau and 2,049 partitions from Logo. Table 5.7 contains
the corpus profile of both corpora. As can be seen, the modification of both corpora made the
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Table 5.8: Corpus profiles for Spotlight-DE and Spotlight-EN

Spotlight-EN Spotlight-DE
Easy Medium Advanced Easy Medium Advanced

#documents (total) 1.030 1.528 1.030 763 509 174
#words per document
Mean 206 588 606 236 665 892
Standard deviation 166 555 509 235 769 537
Median 137 493 489 137 448 524
Minimum 53 23 26 60 72 91
Maximum 877 4.497 2.940 1.469 5.605 4.161

GEO/GEOlino4 and the Tagesschau/Logo corpus comparable in terms of their profiles. The
same holds for Tagesschau/Logo 1

5
and GEO/GEOlinoS.

5.3.1.2 German readability corpora for L2 readers

Spotlight corpora The Spotlight corpus (Weiss et al., 2021) consists of 3.285 English arti-
cles (Spotlight-EN sub corpus) and 1.446 German articles (Spotlight-DE sub corpus) at three
difficulty levels (easy, medium, advanced). All articles come from monthly language learning
magazines published by the Spotlight publisher. Data from the publishers’ Italian, Spanish,
and French L2 magazines is also available and currently being prepared to extend the corpus.
The publisher targets learners at specific CEFR levels. According to Spotlight, easy texts are
designed for learners at the A2 level, medium texts for learners at the B1 and B2 level, and
advanced texts for learners at the C1 level. However, this link has not yet been independently
verified in an empirical study. Table 5.8 summarizes the corpus profile for Spotlight-EN and
Spotlight-DE sub corpora.

TextComplexityDE The TextComplexityDE corpus by Naderi et al. (2019b) consists of
1,119 sentences from 23 Wikipedia and articles and two articles in German Leichte Sprache
(engl. “easy language”). It is the only corpus in this section that was not elicited as part of
this thesis. In a large scale annotation experiment, all sentences were rated by 267 German
L2 learners for three dimensions on a 7-point Likert scale: readability, lexical difficulty, and
understandability. To obtain one readability estimate per sentence, Naderi et al. (2019b) ag-
gregated all human ratings for a sentence into a single mean opinion score through averaging.
The resulting mean average opinion readability score – which is the score used in this thesis
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Table 5.9: Corpus profiles for TextComplexityDE corpus

Mean Std. Min. Max.

Readability score 3.02 1.18 1.00 6.33
Words / sent. 20.08 10.62 4.00 63.00
Syll. / word 2.07 0.35 0.96 4.00

in Section 5.3.4 (Weiss and Meurers, 2022) – ranges from 1 to 6.33. Table 5.9 contains the
corpus profile for the TextComplexityDE corpus.

The corpus also contains a sub corpus of 249 sentence pairs of simplified sentences and their
original in regular German. Simplifications were obtained through human subjects who also
indicated whether or not their changes weakly or strongly simplified the original sentences.
Simplified sentences are not included in the corpus profile in Table 5.9.

5.3.2 Modeling the readability of German targeting adults and children

As an initial approach to broad linguistic complexity modeling for German ARA, we studied
the binary distinction of media language for German L1 speaking adults/adolescents (older
than 14 years) and children (6 to 14 years) in Weiss and Meurers (2018). The goal of this paper
was two-fold: First, it investigated which (if any) features were informative for the distinction
of German media language targeting adults/adolescents from language targeting children on
both data sets. This allowed us to understand if and how publishers adjust the language in
their materials systematically to different target audiences—something schoolbook publishes
have been shown to not always accomplish on a broad linguistic scale (Berendes et al., 2018).
Second, it focused on building a state-of-the-art binary classifier for German media language
that generalizes across corpora. Cross-corpus performance evaluations are central to ensure
that a model is applicable to new data, thus corroborating the practical relevance of the model.

Cross-corpus evaluation studies require the availability of at least two comparable reference
corpora, which were not available for German prior to this work. We compiled two corpora
of German media language to address this shortage (see Section 5.3.1.1): The GEO/GEOlino
corpus reproduces and enlarges the original GEO/GEOlino corpus compiled by Hancke et al.
(2012) and consists of magazine articles written for adults and children. The Tagesschau/Logo
corpus consists of news broadcast subtitles for adults and children and was newly compiled for
this study. Combining these two corpora allowed us for the first time to control for the cross-
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corpus generalizability of a German ARA model. On this data, we extracted 400 features of
linguistic complexity for each article from all linguistic domains introduced in Section 2.1.2.
They were calculated using the original complexity analysis system introduced in Section 3.2
and used throughout the two studies that are part of this paper: One focusing on he identi-
fication of the most informative features on both data sets and the one on the training and
cross-corpus evaluation of two feature-based machine learning classifiers. Both classifiers
used the SMO algorithm (Platt, 1998). The models were trained using the Weka machine
learning toolkit (Hall et al., 2009). We also used Weka to calculate information gain using the
information gain attribute evaluation algorithm with a ranking search. For all further analyses,
we used the statistical programming language R (R Core Team, 2022) and RStudio (RStudio
Team, 2022).

Feature informativeness

The information gain ranking revealed that 79.0% (316/400) of features were informative for
the distinction of target audiences on the GEO/GEOlinoS data and 88.3% (353/400) on the
Tagesschau/Logo data. When inspecting the 20 most informative, not highly inter-correlated
features for each data set, we observed a notable difference in the range of average feature
merits. On Tagesschau/Logo the merit was considerably higher (ranging from .50� .98) than
on GEO/GEOlinoS (ranging from .11� .33) – so much so that the highest merit in the top
20 selection for GEO/GEOlinoS in fact fell below the lowest merit in the top 20 selection
for Tagesschau/Logo. This is particularly remarkable because the selection also spanned a
much wider range of original rankings for Tagesschau/Logo than for GEO/GEOlinoS. As
for the types of linguistic features being identified as informative, all feature domains were
represented at least once in the top 20 feature selection on both data sets except for human
language processing. This shows that texts for different target audiences differ on both data
sets in terms of a broad range of features. Overall 55% of features in the top 20 feature
selection came from the domains of language use and discourse. Also features tied to noun use
and nominal complexity were ranking high on both data sets. All in all, the broad linguistic
adaptation of texts to their target audience on both data sets showed clear parallels despite
some corpus-specific differences. The findings show that different German media language
publishers differentiate the linguistic design of their materials based on their target audiences
in comparable ways, going well beyond surface text characteristics such as text and word
length.
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5.3.2.1 Classifier and cross-corpus evaluation

The SMO classifier trained and tested on GEO/GEOlinoS with 10-CV using all 400 features
obtained an average accuracy of 89.5% across folds (SD = .09), which was well above the
random baseline (50.0%). The classifier trained and tested with 10-CV on Tagesschau/Logo
obtained an average accuracy of 99.9% across folds (SD = .04), again outperforming the ran-
dom baseline (50.0%). Although the performance of the Tagesschau/Logo classifier was near
perfect in 10-CV and the low standard deviation across folds did not seem to indicate any over-
fitting, the classifier did not generalize to the GEO/GEOlinoS data in the cross-corpus evalua-
tion: It achieved an accuracy of only 52.2%. When contrasting the models’ predictions with
the gold standard labels, we saw that the model predicted 97.5% of all GEO/GEOlinoS texts
to be targeted at children, meaning that the model underestimated the difficulty of GEO texts.
In contrast, the GEO/GEOlinoS classifier achieved an accuracy of 98.9% on Tagesschau/Logo
in the cross-corpus evaluation. This was not only much higher than its performance during
10-CV on GEO/GEOlinoS, it was also close to the performance of the Tagesschau/Logo clas-
sifier during 10-CV. This showed that the GEO/GEOlinoS classifier generalized exceptionally
well to the unseen data set of German media language. The lack of generalizability for the
Tagesschau/Logo classifier, therefore, does not seem to have been caused by a lack of common
learnable linguistic differences between German media language targeting adults and children.

Another potential cause for the performance difference is that GEO/GEOlinoS might be a
better training corpus due to its considerably larger number of training documents. After all,
Tagesschau/Logo has not even a fifth of the size of GEO/GEOlinoS in terms of the number
of documents. At the same time, the median number of words and sentences per text are
approximately four times larger in Tagesschau/Logo than in GEO/GEOlinoS. To ensure that
neither of these two differences in the corpus profiles caused the difference in model per-
formance, we conducted a second classification experiment using the GEO/GEOlino4 corpus
and the Tagesschau/Logo 1

5
corpus. The corpus profile of GEO/GEOlino4 was aligned with

the Tagesschau/Logo corpus. The corpus profile of the Tagesschau/Logo 1
5

corpus was aligned
with the GEO/GEOlinoS corpus, (see Section 5.3.1.1).7 When repeating the classification
experiment using this data, the GEO/GEOlino4 still generalized exceptionally well to Tagess-
chau/Logo (acc.= 99.2%) whereas Tagesschau/Logo 1

5
only slightly improved in performance

7This follow-up experiment was conducted after submitting the camera-ready version of Weiss and Meurers
(2018). It is therefore not reported in the original paper. However, the experiment is part of the associated
poster that was presented at COLING 2018. It can be found in the online supplementary material to this
thesis (https://osf.io/5vb2x/?view_only=6d1bb8ccfe3f458c946ff4fd6ef5206b)
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on GEO/GEOlinoS (acc. = 99.2%). This rules out corpus size as a potential explanation for
the performance difference. In the light of this finding, we propose to link the observed perfor-
mance differences to the difference in the average feature merits that we discussed earlier. The
average merit of features in GEO/GEOlinoS was considerably lower than the average merit of
features in Tagesschau/Logo. This means that the linguistic signal differentiating GEO and
GEOlino texts was much weaker than the linguistic signal differentiating Tagesschau from
Logo texts. In this case, it would make sense that a classifier that successfully learned to
identify the weaker signal from GEO/GEOlinoS will more easily react to the stronger signal
provided by Tagesschau/Logo – assuming that both corpora mostly differ in terms of their sig-
nal strength not in the types of features contributing to the signal. Following this hypothesis,
a classifier trained using the much stronger signal on Tagesschau/Logo instead, would likely
fail to successfully notice the weaker signal on GEO/GEOlinoS.

5.3.3 Multi-level German L2 readability assessment

After establishing that broad linguistic complexity modeling is highly beneficial for ARA
(both in terms of classification performance and explainability of results), we extended the
approach to multi-level ARA for L2 readers. In Weiss et al. (2021), we developed an ARA
model identifying texts for beginning, intermediate, and advanced L2 readers of German and
English. The research aim of this work was three-fold: First, to obtain a successful multi-
level readability classifier for L2 readers of German and for L2 readers of English. Much less
research has been conducted on ARA for L2 readers than for L1 readers, especially for Ger-
man (see Section 4.3). Furthermore, for German most research has been restricted to binary
classifications (see Section 4.3), which is somewhat limited in its applicability in education
contexts where a more fine-grained distinction is often necessary. Second, to investigate the
cross-lingual generalizability of linguistically informed ARA models to better understand the
limits and potentials of feature-based ARA in contrast to neural approaches (see discussion
on multi-lingual ARA in Section 2.3.3). Third, to understand how texts at different reading
levels differ from each other in terms of their linguistic complexity and whether or not there
are similarities in how reading differences are expressed linguistically across languages.

In order to realize these research goals, which aimed to promote both ARA for German
and for multilingual ARA, we compiled a new multi-level multi-lingual L2 readability corpus
consisting of comparable articles written for L2 readers of English and German, the Spotlight
corpus (see Section 5.3.1.2). The German sub section of the corpus, Spotlight-DE is the first
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multi-level document-level readability corpus for German. From this data, we extracted 312
features covering all feature domains discussed in Section 2.1.2 that were applicable for both
English and German. We used the multilingual CTAP system introduced in Section 3.3. 301
features were sufficiently variable across data sets and used to train two ORF classifiers with
10-CV, one for English and one for German.8 Both classifiers were additionally evaluated in
a type of zero-shot learning experiment on the sub corpus for the respective other language.
We then identified and compared the most informative features for the distinction of read-
ing levels on both Spotlight sub corpora to gain a better understanding of how reading level
differences were realized linguistically for both languages. All analyses were conducted us-
ing the statistical programming language R (R Core Team, 2022) and RStudio (RStudio Team,
2022). We used the packages caret (Kuhn, 2022), kernlab (Karatzoglou et al., 2022), e1071
(Meyer et al., 2022), ranger (Wright and Ziegler, 2017), tidyverse (Wickham et al., 2019),
randomForest (Liaw and Wiener, 2002), and ordinalForest (Hornung, 2021).

Classifier and cross-language evaluation

The German classifier achieved an accuracy of 88.0% against a majority baseline of 52.8%.
Further analyses of reading level-wise F1 score, precision, and recall revealed the performance
to be balanced across readability levels. Although a within-language cross-corpus evaluation
as in Weiss and Meurers (2018) was not feasible due to the lack of available reference data for
German, the high accuracy suggests that the model is suitable for use in practice. The German
classifier also generalized to some degree to the English data (acc.= 53.4% against a majority
baseline of 46.5%) but the drop in performance accuracy was considerable. Similarly, the
English classifier achieved an accuracy of 74.5% on the English data which was again balanced
across reading levels. This can also be considered highly successful. However, its performance
dropped to 55.5% on the German data. This was still significantly higher than the majority
baseline (p = .02 as per a one-sided t-test) but not by much. Given the linguistic differences
between English and German, it is remarkable that the classifiers generalized even to this
limited degree, indicating that there is some universal principle underlying the adaptation of
texts to different reading skills even across languages. This link was further explored in the
following study on feature informativeness.

8Weiss et al. (2021) also established the competitiveness of the complexity-feature based approach with other
ARA approaches for English by achieving state-of-the-art performance on the OneStopEnglish corpus (Vaj-
jala and Lučić, 2018) which has been used as reference data set for English ARA. However, since the focus
of this thesis was on German, this was not discussed in more detail here.
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Feature informativeness

We used the correlation-based feature subset selection for machine learning approach by
Hall (1999) to identify the most informative features for the distinction of reading levels on
Spotlight-DE and Spotlight-EN. This method allowed us to also consider the correlation be-
tween features in the ranking. The results showed that up to 32% of features were shared
between the set of informative features for both languages. Especially text length and lan-
guage use features were highly informative on both data sets: Text length systematically in-
creased with higher reading levels for both languages. Language use became more variable
and sophisticated. However, we also observed clear differences, which is in line with the low
generalizability of models observed in the previous study. Lexical complexity played a role
for both languages but not with respect to the same features. Syntactic complexity was much
more informative for German than for English, whereas morphological complexity and dis-
course seemed to play a more central role for English. As in Weiss and Meurers (2018), human
language processing measures were not relevant for the distinction of reading levels, which
was unexpected given that they are motivated by psycho-linguistic theories of human sentence
processing. Overall, the findings in any case confirm that the Spotlight publisher adapted texts
designed for readers at different proficiency levels across a broad range of linguistic features
similar to the publishers for German media language studied in Weiss and Meurers (2018).
This stands in contrast to the lack of systematic adaptation observed for the publishers for
content-matter school textbooks in Berendes et al. (2018).

5.3.4 Assessing sentence readability for German language learners

The two preceding articles in this section have established that broad linguistic complexity
modeling is highly beneficial for ARA for German L1 readers and German L2 readers when
analyzing longer reading texts. In Weiss and Meurers (2022), we moved from the level of
full texts to the assessment of individual sentences. With this, we pursued two main re-
search goals: First, to build a successful sentence readability classifier for German L2 read-
ers. As Weiss et al. (2021), this worked towards addressing the need for more ARA models
for L2 learners. It also addressed the lack of ARA approaches for the sentence level (see,
e.g., Collins-Thompson, 2014, and Section 4.3). Sentence level ARA has many potential ap-
plication domains inside and outside education ranging from the analysis of short social media
data (such as tweets) to the evaluation of questionnaire items or the analysis of exercise de-
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scriptions or captions in text books. Second, to gain a better understanding of when statistical
approaches to ARA are necessary and when easier to compute traditional readability formulas
suffice in practice. Statistical approaches have repeatedly been demonstrated to outperform
traditional formulas (Benjamin, 2012; Collins-Thompson, 2014; Vajjala, 2022). Yet, the ques-
tion remains relevant given that readability formulas have remained the de facto standard in
research using ARA in practice due to their accessibility and ease of computation. We used
the TextComplexityDE corpus (Naderi et al., 2019b) to train a sentence readability regression
model with 10-CV for German L2 learners that predicted readability on a 7-point Likert scale
(see Section 5.3.1.2). For this, we extracted all 543 complexity features for German using
the CTAP system (see Section 3.3), 373 of which were sufficiently variable on the data to in-
form the regression model.9 We evaluated the model’s performance for two tasks (prediction
and ranking) and compared it against a regression model using only surface length features
and four readability formulas: Wiener Sachtextformel (Bamberger and Vanecek, 1984), Am-
stad readability index (Amstad, 1978), LIX index (Björnsson, 1983), and the Miyazaki EFL
readability index (Greenfield, 1999, 2004).

The paper also pursued a third (secondary) research goal: to use the sentence wise read-
ability model to analyze how document level readability is being constructed. This has direct
implications for automatic and manual text adaptation, yet, little previous work has addressed
this issue. Vajjala and Meurers (2014) reported initial evidence that simplified and regular
texts do not systematically differ in terms of their difficulty on the sentence level. However,
their evidence was based on the comparison of Wikipedia and Simple Wikipedia data and see-
ing that the validity of Simple Wikipedia has been called into question (e.g., Štajner et al.,
2012; Xu et al., 2015; Yaneva et al., 2016), more research on other data sets was needed to
verify their findings. To do so, we applied the linguistically informed sentence readability
model on the Spotlight-DE corpus (see Section 5.3.1.2) to compare the differences between
easy, medium, and advanced articles. All analyses were conducted using the statistical pro-
gramming language R (R Core Team, 2022) and RStudio (RStudio Team, 2022). We used the
packages tidyverse (Wickham et al., 2019), caret (Kuhn, 2022), data.table (Dowle and
Srinivasan, 2021), MLmetrics (Yan, 2016), lattice (Sarkar, 2008), leaps (Lumley, 2020),
monomvn (Gramacy et al., 2022), krls (Ferwerda et al., 2017), readxl (Wickham and Bryan,
2022), ggsignif (Constantin and Patil, 2021), and rstatix (Kassambara, 2021).

9Note that the reduction of features by 31.3% is to be expected for short data. This could already be observed
in our analysis of short answers of German L2 learners (Weiss and Meurers, 2021), which I presented in
Section 5.2.4.
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5.3.4.1 Evaluation on TextComplexityDE

For the predictive regression task, the complexity feature-based regression model trained
with 10-CV showed a prediction error of a little more than half a point on the 7-point scale
(RMSE = .685). This was considerably lower than the model informed only by surface length
features (RMSE = .739) and the previous SOTA on the data set (RMSE = .847) by Naderi
et al. (2019a). Since neither of the readability formulas predicted the same scale as human
readability estimates in the TextComplexityDE corpus,we evaluated their performance using
the Spearman rank correlation (rs). Even though the formulas showed a relatively high ab-
solute correlation ranging from .52 to .681, the complexity based model correlated consider-
ably higher with the human estimates (rs = .806). The same held for the length-based model
(rs = .785). For the simpler task of ranking simplified sentence pairs from the TextComplexi-
tyDE sentence pair sub corpus, the linguistically broadly informed regression model achieved
a ranking accuracy of 96.0%. This is comparable to the ranking accuracy of the Amstad read-
ability index (acc. = 95.6%) and the Miyazaki EFL readability index (acc. = 96.8%). It is
worth noting that also the other approaches achieved high accuracy values around 93.0% and
that all approaches successfully distinguished between weak and strong simplifications.

Taken together, the results demonstrated that broad linguistic complexity modeling achieves
SOTA results for the task of predictive readability assessment. It outperforms traditional read-
ability formulas and the solely surface feature based model on this task. However, for the
simpler task of readability ranking for meaning equivalent pairs of regular and simplified sen-
tences, the findings are different. Also some traditional readability formulas performed at
the same level as the computationally more costly linguistically informed model for sentence
ranking. Taken together, this highlights that traditional readability formulas are indeed suited
for precise readability estimates. However, they can be sufficient for the distinction of artifi-
cially simplified sentences from their non-simplified counterparts.

5.3.4.2 Text profiles on Spotlight-DE

After establishing the complexity feature-based regression model as the most successful ARA
model for predicting sentence readability, we applied it to predict the readability of all sen-
tences in the Spotlight-DE corpus (see Section 5.3.1.2) which we already analyzed previously
in Section 5.3.3 (Weiss et al., 2021). Figure 5.1 visualizes the findings from three perspec-
tives. Figure 5.1a shows the notched box plots of the predicted sentence-wise readability
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Figure 5.1: Sentence difficulty profiles on Spotlight-DE across article levels

of all sentences in Spotlight-DE for the three article reading levels easy, medium, and ad-
vanced. While there was a systematic increase in the predicted sentence difficulty score with
increasing article level, the difference was not particularly pronounced. This changed in Fig-
ure 5.1b, which only considered the maximum predicted sentence readability score for each
article. This suggested that maximum sentence readability was more indicative for the dis-
tinction of article readability than the sentence-wise readability score for all sentences in the
article. Figure 5.1c further corroborated this finding by showing the percentage of sentences
falling within a certain readability bin split by article level. The figure shows that for easy,
medium, and advanced articles, more than 20% of sentences were at a medium difficulty level.
However, medium and advanced articles contained much more difficult sentences than easy
texts. These findings indicate that it is the maximum sentence difficulty that determines text
readability rather than the average sentence readability, thus corroborating earlier findings by
Vajjala and Meurers (2014) on Wikipedia and SimpleWikipedia. This has direct implications
for publishers and others seeking to adapt texts to the competence of readers either by enhanc-
ing or decreasing the difficulty of texts. Rather than focusing on changing the readability level
of all sentences, it might suffice to adjust the readability level of few sentences. However,
more research is needed to fully comprehend the complex interplay between sentence-wise
and document readability level.
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Chapter 6

Conclusion

6.1 Summary of findings and limitations

With this dissertation, I have presented a new integrative approach to complexity modeling
of German that can be flexibly extended to other languages and covers a linguistically broad
range of measures. It integrates perspectives from different research disciplines such as SLA,
computational linguistics, and psychology. This thesis, thus, takes an inherently interdisci-
plinary perspective. I combined insights, methods, and research questions from linguistics,
machine learning, and psychology to support an integrative view on the automatic assessment
of linguistic complexity for education contexts. The studies that are part of this thesis were
published in computational linguistic outlets as well as in outlets for SLA research to maxi-
mize the interdisciplinary impact of this work. Furthermore, the resulting resources and meth-
ods have already successfully been used to address research questions from education science
(Riemenschneider et al., 2021; Weiss et al., 2019), history didactics (Bertram et al., 2021;
Kühberger et al., 2019) and German linguistics (Weiss et al., 2022) in work going beyond the
scope of this thesis. This demonstrates that the methodology and resources that I developed
in this thesis have substantial potential to foster interdisciplinary research on language and
content-matter learning and teaching.

I have further addressed important challenges in research on APA and ARA and broadened
the SOTA for German. In the following, I will summarize the core findings and contributions
as well as the limitations of the work presented in this thesis divided into complexity research
(Section 6.1.1), APA (Section 6.1.2), and ARA (Section 6.1.3).
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Chapter 6 Conclusion

6.1.1 Linguistic complexity research

We have proposed a linguistically broad approach to complexity modeling for German that
covers the domains of syntax, lexicon, morphology, language use, human processing, and dis-
course. This approach is not only linguistically broad in the sense that it expands the linguistic
domains studied. It is also integrative in that it combines features, methods, and concepts
from different research areas. In particular, this includes SLA complexity research as well as
computational linguistic, psycho-linguistic, and psychological work on readability, discourse
comprehension, language processing, and proficiency assessment. This allowed us to study
the developmental variation of complexity in learner writing from a linguistically rich per-
spective. It also helps to overcome the reductionist approach to SLA complexity research that
focuses on assessing few measures of syntactic and lexical complexity. This is an important
contribution to SLA complexity research which has articulated the need to view complex-
ity as a multi-dimensional construct and to consider the developmental variation of linguistic
domains beyond syntax and lexicon (Housen et al., 2019; Kuiken et al., 2019; Norris and Or-
tega, 2009). In our effort to do so, we followed an explorative approach that views different
complexity domains simultaneously.

A clear limitation of this approach is that within our studies we cannot discuss the devel-
opmental trajectory of each complexity measure in detail. When considering hundreds of
measures, a detailed discussion of individual measures is simply not feasible. This is not to
say that our studies did not consider the linguistic characteristics in our data. We zoomed in on
a typically data-driven selection of features to better understand their developmental patterns.
We also aggregated measures by their linguistic domain to gain general insights into differ-
ences across linguistic domains, as making these observable is one of the unique strengths of
our linguistically broad approach to complexity. However, most measures that we assessed
could not be discussed in detail due to space limitations and we could not yet investigate the
lack of developmental variation in individual measures which we would have expected to vary.
This is a necessary trade-off for the empirically uniquely broad view of learners’ language de-
velopment. It highlights that the approach advocated here is not intended as a substitute but
rather as a supplement to the more common theory-driven complexity studies tracking the de-
velopmental trajectory of individual measures. It allows to gain insights that can then in turn
inform experimental studies. Our linguistically broad approach was enabled by the automatic
calculation of measures and by the use of feature-based machine learning algorithms. Our
empirical studies demonstrated that such a linguistically broad approach is very successful for
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a characterization of developmental variation that generalizes to new data and beyond task
effect (see Section 6.1.2). This is a valuable methodological and conceptual transfer between
SLA and computational linguistic research.

A second limitation of our approach is that the automatic calculation of complexity mea-
sures comes with a certain loss of control. Unlike with manual analyses, linguists cannot
easily decide during annotation how to annotate certain non-standard language phenomena.
This can be an issue when working with learner language. There is a clear trade-off to be
considered here. While NLP avoids inconsistencies and increases the reproducibility of anal-
yses, it also risks the systematically erroneous interpretation of learner data. To gain better
insight into how prevalent this problem was in our studies, we evaluated the performance of
our system on a gold standard annotated L2 data set. Our analyses showed that linguistic units
could be determined with high accuracy and that erroneous analyses had little impact on most
measures. While these are encouraging findings for the presented studies, the system should
be evaluated further in future work. Our findings are based on a small set of short responses
from beginning learners of German. Other learner corpora with leveled language productions
and gold standard annotations of a wide range of linguistic constructs were not available for
German at the time of writing. When such data becomes available, the evaluation should be
extended to longer productions and and a wider range of proficiency levels to validate the re-
sults. It would also be worthwhile to study the robustness of our approach on different types
of non-standard language use.

Despite these limitations, our approach proved to be a valuable contribution to complexity
research on German. To make this broad range of measures accessible to other researchers,
I integrated the analysis system into CTAP, a web platform that was originally designed for
the analysis of English complexity. The web-based graphical user interface grants access
to a uniquely rich set of complexity measures to users without the technical background or
resources to implement these themselves. At the same time, this supports the comparabil-
ity and reproducibility of complexity research as researchers can use the same analytical re-
sources across studies. While integrating the German analysis system into CTAP, I extended
and aligned the existing collections of measures for English and German. In this context,
I adapted the system architecture to facilitate a shared pipeline for different languages to
avoid redundancies and promote the addition of new languages. The success of this design
has been demonstrated by the ongoing addition of new languages into the system running at
www.ctapweb.com, including French, Spanish, Dutch, and Portuguese. Derivatives of CTAP
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have also been created for Chinese (Cui et al., 2022) and Italian (Okinina et al., 2020).

6.1.2 Automatic proficiency assessment

Our systematic survey on ALPS research for German characterized the research landscape as
scarce in the sense that only a total of 23 papers fully matched our inclusion criteria. This
highlights the need for more research on APA (or ALPS in general) for German. Turning
to the included papers, we found that research on ALPS has been conducted across research
disciplines related to education and that there was a successful methodological transfer of
machine learning techniques from computer science and computational linguistics to other
disciplines such as SLA research and psychology. However, we also observed that cross-
corpus studies play virtually no role in the evaluation of German ALPS models. Furthermore,
most research focused on adults and the evaluation of L1 writing performance on longer texts.
Against this background, all three papers on APA that are part of this thesis make an important
contribution to addressing the lack of work on assessing long and short L2 writing and early
L1 academic language development from elementary to early secondary school. We further
found that measures of discourse complexity play only a minor role in German approaches to
ALPS which is in contrast to the relevance of discourse measures in English research on AWE
and ATS (see Crossley, 2020). I reasoned that this might be caused by the lack of automatic
tools that support the analysis of discourse complexity, which highlights the importance of
making such measures available via CTAP.

In terms of linguistic developmental trajectories, our research showed that linguistic do-
mains developed independently from each other and differed in their importance for the char-
acterization of different proficiency levels. We observed that L2 writing was characterized
across the full CEFR range by changes in the lexical and clausal domain whereas other lin-
guistic domains—such as discourse and morphology—were important for the characterization
of specific proficiency levels. Similarly, our analysis of early L1 academic language acquisi-
tion revealed differences in the development of linguistic domains. Accuracy proved to be
particularly relevant for the distinction of grade levels in elementary school writing whereas
writing in early secondary school developed primarily in terms of phrasal, lexical, and dis-
course complexity. In short, we found that our integrative approach to linguistically broad
complexity modeling is beneficial for L2 and L1 proficiency assessment on longer texts. Our
analysis of L1 data further demonstrated the cross-prompt generalizability of our models by
testing them on unseen task prompts. This not only demonstrated the quality of the result-
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ing machine learning model—an important concern in machine-learning-based approaches to
ALPS. It also addressed the concern of unaccounted task variation biasing the developmental
variation that we were interested in. In contrast, for short L2 writing, we found a limited gen-
eralizability of the models, likely due to the limited linguistic evidence that can be retrieved
from short answers.

Our study of L2 short answers also demonstrated the robustness of our approach on non-
standard data. Seeing that our analyses are fully automated, evaluating the performance of
our feature extraction algorithm on non-standard language data is central to understand the
reliability and interpretability of our linguistic insights. We saw that our NLP pipeline per-
forms well on beginning learners’ short answers and that errors in the analysis have a limited
impact on the calculation of complexity features. It should be noted though that we analyzed
relatively simple sentences. Ideally, the analysis should be extended in future work to syntac-
tically more elaborate language to see if this impacts the calculation of syntactic complexity
measures more heavily. Unfortunately, this was not feasible for the present thesis because
of the lack of learner corpus data that contains linguistic annotations, as well as proficiency
annotations and is sufficiently large to train an APA model.

Generally, the reliance of the presented studies on available corpora that are suited to train
APA models in terms of their annotations and size was one of the main limitations of the
presented work. The corpora we used differed in terms of their proficiency annotations (expert
annotations, grade levels, and course levels) and elicitation contexts. This makes it difficult
to directly compare our findings regarding the developmental variation of complexity in L2
and L1 writing. That being said, we made the following seemingly parallel observations in
the developmental trajectories of L1 and L2 writing: We found that lexical complexity and
language use as well as features of discourse cohesion were consistently among the most
important indicators of developmental variation for both L1 and L2 writing. Also, syntactic
complexity played an important role, even though L2 proficiency developed more in terms
of clausal complexity whereas phrasal complexity was more important for L1 proficiency.
Morphological complexity increased for both L1 and L2 writing, albeit with regard to different
features.

Finally, while approximating proficiency through course levels is common practice in re-
search on APA and SLA complexity research, it is a coarse approximation of language profi-
ciency which coincides with related but conceptually distinct aspects such as age and duration
of exposure to language or instruction. However, large annotated learner corpora for German
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are rare and at the time of writing, these were the best options for our research purposes. Our
research goal was to develop a linguistically broad and interdisciplinary approach to auto-
matic complexity assessment and to present its advantages for the analysis of L1 and L2 data
in educational contexts. This would not have been feasible without relying on existing corpus
resources. We regard the associated limitations as acceptable trade-offs considering the lack
of comparable work for German. This allowed us to train several high-performing models
for APA for German. This includes models for L1 and L2 speakers on long text productions
and—for L2 speakers—on the level of short answers (less than 10 words).

6.1.3 Automatic readability assessment

Reviewing the research landscape of ARA research for German highlighted that ARA is being
used across research disciplines, i.e., also outside of education contexts, for example in work
focusing on web accessibility. In contrast to our observations in the ALPS survey, though,
we saw a clear methodological divide across research disciplines in the sense that machine-
learning-based approaches play virtually no role outside of computational linguistic work on
ARA. Readability formulas remain the de facto standard across research disciplines. This is
an important insight with clear implications for future research on ARA for German. Against
this background, we critically compared the performance of readabilty formulas and linguis-
tically rich machine-learning-based approaches to ARA across a variety of ARA tasks. Our
findings demonstrated that while readability formulas are suited to produce coarse-grained
relative readability estimates in sentence pair ranking, SOTA methods achieve considerably
better performances when it comes to the prediction of readability levels. This showcases that
the use of readability formulas in practice is an issue that should be addressed with models
that are more accessible. This thesis has partially contributed to this by making the models
and analysis tools available online. All three ARA models set a new SOTA for readability
assessment on the respective corpora.

Our survey further showed that ARA has mostly focused on adult L1 readers as a target
population. Yet, we also found individual contributions focusing on a wide array of target
populations including children and L2 readers. In this respect, the ARA studies presented
in this thesis tie in with the less represented target populations for German ARA: L2 readers
and children. Furthermore, little research has focused on the readability of sub-textual units
such as sentences. This makes our work on sentence-level readability assessment a particu-
larly relevant contribution to German ARA research, also because it allows insights into the
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compositionality of document-level readability. We found evidence that maximal sentence
difficulty rather than the average readability of sentences within a document determines its
overall readability. This has important implications for research on text simplification. More
research is needed to elaborate on the link between sentence and document readability, both
to promote work on discourse comprehension and text simplification.

Finally, our systematic review showed the need for more cross-corpus validation of machine-
learning-based ARA models. The lack of such studies is partially due to the limited resources
for German ARA and the lack of available corpora is a central limiting factor for ARA in
general and for German in particular (Collins-Thompson, 2014; Vajjala, 2022). We addressed
this need by compiling three new readability corpora for German in the context of this the-
sis. We compiled the new GEO/GEOlino corpus and the Tagesschau/Logo corpus (Weiss and
Meurers, 2018) that both represent language use in expository German media language tar-
geting adults and children (6 to 14 years). Both corpora represent authentic language use and
support cross-corpus testing of ARA models for the comprehensibility of media language. A
limitation of Tagesschau/Logo and GEO/GEOlino is that they only support the binary distinc-
tion between adults and children. However, combined they allow for cross-corpus evaluation
of models for the readability of German media language and they were at the time of writing
the only available L1 readability corpora for German that can be used to identify materials for
children. Thanks to these two corpora, we were able to confirm the cross-corpus generalizabil-
ity of our models and gain linguistic insights into the use of German media language. We also
compiled the Spotlight corpus (Weiss et al., 2021) which is a multi-lingual corpus of leveled
reading materials for non-native readers of English and German. It is the first large multi-
level readability corpus for German and one of the first multi-lingual multi-leveled readability
corpora. All corpora are available upon request for research purposes.1

Turning to the linguistic insights that we gained through our studies, we found that features
of language use, nominal style, and discourse complexity were particularly informative for
the distinction of media language targeting adults and children. For L2 readability, we found
syntactic complexity, language use, and surface length measures to be particularly important.
Language use and surface length were not only central to the distinction of readability levels
for German but also for English. We were able to make this comparison because we compiled
the multilingual multi-level Spotlight readability corpus for L2 readers that currently supports
German and English and is being extended to Spanish, French, and Italian. Even though we

1Contact dm@sfs.uni-tuebingen.de or zarah-leonie.weiss@uni-tuebingen.de for access.
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observed only a limited generalization of our language-specific models when applying them to
new languages, our comparison provides us with important insights regarding the similarities
and differences between leveled German and English reading materials for L2 learners.

Despite the overall success of our integrative approach to linguistic complexity modeling
for ARA, our work has some important limitations. The annotation validity of the readability
corpora that we compiled has so far not been confirmed experimentally: The corpora Tagess-
chau/Logo and GEO/GEOlino infer the readability level from the target group of the pub-
lished media. The Spotlight corpus contains leveled articles from the Spotlight publisher.
The publisher equates these articles to the CEFR levels A2, B1/B2, and C1. In contrast, the
TextComplexityDE corpus (Naderi et al., 2019a) that we used to study sentence-level read-
ability was based on aggregate scores of experimentally elicited human readability judgments.
For our three leveled readability corpora, it is unclear how publishers adjusted materials to
their intended target groups, for example if they used specific guidelines, expert judgments, or
readability formulas of their own. This is not to say that we have not considered the reliability
of out reference annotations. As Vajjala (2022) pointed out, labels provided by professional
publishers of educational materials have a certain credibility and their use is a standard pro-
cedure in ARA research. We further reasoned that the economic success of the outlets for
children and L2 learners indicates some success in their alignment to the target population.
The generalizability of our models across corpora further confirmed this intuition because the
generalization to data from other publishers demonstrates that our models were not only based
on idiosyncratic differences made by individual publishers. Despite this encouraging evidence
in favor of the validity of the annotations, it remains important to also systematically validate
the readability annotations through reader experiments. Unfortunately, this was not feasible
in the context of this thesis given that we wanted to support cross-corpus and cross-lingual
testing for our ARA models. Thus, experimentally confirming the annotation validity of the
corpora we compiled for this thesis and procuring more would be central to promote German
ARA research.

For the same reasons, we could not address individual reader characteristics in the context
of this thesis. Experimentally collected readability labels that encode reader characteristics as
meta-information do not currently exist for German in corpora that are suitable for training
ARA models. Therefore, we could not consider such factors in the context of this dissertation,
despite their importance for discourse comprehension.
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6.2 Implications for research and teaching practice

In this thesis, I have focused on advancing SLA complexity research and computational lin-
guistic research on APA and ARA by presenting a linguistically broad, integrative approach to
automatic complexity modeling for German. However, the approach presented in this thesis
has also important implications for education research in other disciplines and teaching prac-
tice. Even when language is not the subject matter itself, it is the central medium of human
communication and as such plays a crucial role in content-matter learning and teaching. As
such, the analysis of language performance and comprehension has relevance in education
beyond research on language learning. Important application domains outside of language
learning and teaching can for example be the analysis of how comprehensible language input
is in content-matter teaching. In subject matters that elicit open responses from learners, the
linguistic performance of learners can also play a role, especially when it comes to assessing
the register-awareness of learners for their subject matter. Shifting our perspective away from
learners, we can also use complexity analyses to analyze the performance of language and
content-matter teachers.

These are not purely theoretical considerations on the potential future use cases for the ap-
proach to complexity modeling presented in this thesis. Paralleling the research that has con-
tributed to this dissertation, we have systematically worked on the application of our approach
to authentic data from education contexts and interdisciplinary exchanges with other fields of
education-related research. To include these in the thesis would have went beyond the scope
of this dissertation. However, a list of all articles dedicated to German language modeling in
applied education settings can be found below. In the following, I briefly outline the work
done in these articles that focuses on complexity modeling, both for the sake of completeness
and as examples of the broader application potential of the approach we presented.

1. Bertram, C., Weiss, Z., Zachrich, L., and Ziai, R. (2021). Artificial intelligence in
history education. Linguistic content and complexity analyses of student writings in
the CAHisT project (computational assessment of historical thinking). Computers and
Education: Artificial Intelligence, page 100038.

2. Dittrich, S., Weiss, Z., Schröter, H., and Meurers, D. (2019). Integrating large-scale
web data and curated corpus data in a search engine supporting German literacy educa-
tion. Proceedings of the 8th Workshop on Natural Language Processing for Computer
Assisted Language Learning (NLP4CALL 2019), Turku Finland, pp. 41–56.
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3. Kühberger, C., Bramann, C., Weiss, Z., and Meurers, D. (2019). Task complexity in
history textbooks: A multidisciplinary case study on triangulation in history education
research. History Education Research Journal, 16.

4. Riemenschneider, A., Weiss, Z., Schröter, P., and Meurers, D. (2021). Linguistic com-
plexity in teachers’ assessment of German essays in high stakes testing. Assessing Writ-
ing, 50.

5. Weiss, Z., Dittrich, S., Schröter, H., and Meurers, D. (2019). A Linguistically-Informed
Search Engine to Identifiy Reading Material for Functional Illiteracy Classes. Proceed-
ings of the 7th Workshop on NLP for Computer Assisted Language Learning (NLP4CALL
2018) at SLTC, Stockholm, 7th November 2018, pp. 79–90.

6. Weiss, Z., Lange-Schubert, K., Geist, B., and Meurers, D. (2022). Sprachliche Kom-
plexität im Unterricht. Eine computerlinguistische Analyse der gesprochenen Sprache
von Lehrenden und Lernenden im naturwissenschaftlichen Unterricht in der Primar- und
Sekundarstufe. Zeitschrift für Germanistische Linguistik, 50(1), pp. 159–201.

7. Weiss, Z., Riemenschneider, A., Schröter, P., and Meurers, D. (2019). Computationally
modeling the impact of task-appropriate language complexity and accuracy on human
grading of German essays. Proceedings of the Fourteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pp. 30–45.

6.2.1 Proficiency and readability assessment in history teaching

In this thesis, I have presented systematic approaches to ARA and APA in L2 and L1 writing.
The models trained on L2 data focused on data from language learning contexts whereas the
models trained on L1 data focused on general academic language competencies. However,
writing skills and reading comprehension also play a crucial role in content-matter teaching,
especially in humanities subjects where subject matter appropriate language use and open-
ended answer formats play a particularly important role. Applying the presented approach to
such a context is a natural extension of the presented work. We chose history as an example
subject matter to investigate the transferability of our approaches to new teaching domains.

Paralleling our work on ARA, we analyzed the complexity of history tasks in Austrian text-
books in Kühberger et al. (2019) from an interdisciplinary, triangulative perspective. We op-
erationalized ‘task complexity’ from an interdisciplinary perspective, considering three com-
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ponents: i) general task complexity, ii) general linguistic complexity, and iii) domain-specific
task complexity. The approach presented in this thesis was used to approximate general lin-
guistic complexity. This was also our first attempt to estimate the comprehensibility of very
short language samples. Since there continues to be no multi-level model for capturing read-
ability for L1 readers for German—the model presented in this thesis adopts a binary division
between adults and children—we used the proficiency model from Weiss and Meurers (2019a)
for the study. We thus evaluated the correspondence between the linguistic complexity of the
task prompt and the typical language production competence of pupils at the corresponding
grade level. Despite this limitation, the approach showed promising interactions with the other
components of task complexity. However, replicating the study with a more appropriate model
would be a desirable goal for future research.

In Bertram et al. (2021), we explored the feasibility of automatically assessing the quality
of pupils’ answers to open-ended history tasks in an interdisciplinary collaboration between
computational linguistics and history didactics. We combined computational linguistic anal-
yses of automatic content scoring for short answers (using the approach by Ziai, 2018) with
our approach to linguistic complexity modeling. This allowed us to consider task-appropriate
language use in addition to the factual correctness of answers. The data we analyzed had been
elicited to study pupils’ history competencies through answers to prompts requiring increas-
ingly sophisticated historical reasoning of learners. Our exploration yielded promising first
results and provided evidence that historical thinking requirements impact pupils’ language
performance in terms of its linguistic complexity. We consider this to be an important first
step towards supporting history teaching with computational linguistic tools. However, paral-
lel to current practice in ATS (Attali, 2007; Powers et al., 2002; Zhang, 2013), we recommend
that such a system be used as a complement to, rather than a replacement for, human raters,
especially in high-stakes contexts.

6.2.2 Assessing teachers’ grading objectivity and classroom language

This thesis took a learner-centered perspective on complexity analysis in education contexts.
We analyzed the language production of learners and reading materials for learners. However,
another relevant focus for our analysis are teachers and their reception of learner language as
well as teachers’ own language productions in authentic teaching and learning contexts. We
applied our approach to study these aspects in more detail in three studies.

In Weiss et al. (2019) and Riemenschneider et al. (2021), we adapted our approach to lin-
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guistic complexity modeling to evaluate teachers’ grading objectivity in high-stakes testing,
namely in the evaluation of German Abitur writing for the subject matter German.2 In Weiss
et al. (2019), the goal of our complexity analysis was the identification of 16 texts that are
comparable in their overall performance but maximally differ in their overall language per-
formance. These texts were used for a subsequent study on teachers’ grading objectivity and
the potential influence of linguistic complexity and accuracy on their judgments. To identify
suitable materials from a pool of 344 essays, we used our analysis system to represent each
essay as a complexity vector. Rather than using all complexity measures, we selected relevant
measures through a combination of theory- and data-driven feature selection. I then calcu-
lated the correlation between complexity measures and the grades that they had received in
the Abitur. I used this information to build artificial vectors of ideal language use. We did so
independently for each of the four different task prompts represented in the data to account for
task-appropriate language use.3 We obtained essays that were maximally different in their lan-
guage performance by selecting essays of comparable length whose complexity vectors were
maximally close (or maximally distant) from the ideal complexity vector calculated for their
task prompt. We only considered essays for this step that had received a medium overall grade
to ensure the comparability of essays in terms of their content quality and to avoid flooring
and ceiling effects in the subsequent study. The selected essays were error corrected to be able
to distinguish between the influence of complexity and accuracy and used as corrected and
non-corrected versions for the study.

After this preparation, our collaborators at the Institute for Educational Quality Improve-
ment (IQB, Berlin) conducted a rating experiment with 33 experienced teachers to re-rate the
selected essays. The results revealed that teachers successfully recognized linguistic differ-
ences between essays when asked to grade them on their linguistic performance. We also
found no undue influence of complexity on teachers’ content grades. However, accuracy
showed to impact teachers’ judgments of content quality. We elaborated on these analyses
in Riemenschneider et al. (2021) to gain more insights into the interactions between the lin-
guistic complexity of students’ writing, teachers assessment of the complexity of students’
writing, and teachers grading of students’ writing.

Turning to teachers’ language production in education contexts, we investigated teachers’

2In Germany, the Abitur is the final examination of pupils across different subject matters at the end of the
academic track of secondary school (the German Gymnasium). It is a mandatory entry requirement for
German university.

3A post-hoc analysis confirmed substantial differences regarding the ideal language use across task prompts.
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language use in authentic classroom interactions in Weiss et al. (2022). This study also tests
the possibility of examining transcripts of spoken language using our analysis system pre-
sented in this dissertation. We analyzed transcripts of teachers’ classroom language in late
elementary school (4th grade) and early secondary school (6th grade in Gymnasium—the aca-
demic secondary school track—and Hauptschule—the vocational secondary school track).
The lessons focused on the condensation and vaporization of water, thus keeping the topic con-
stant across teachers and grade levels. Our analysis showed complexity differences across lin-
guistic domains in the language of teachers between elementary school and secondary school,
but with clear differences between Gymnasium and Hauptschule. Teachers’ language in Gym-
nasium is systematically more complex compared to elementary school, whereas teachers’ lan-
guage in Hauptschule is characterized by a lower complexity compared to elementary school.
Whether this difference is appropriately adaptive to pupils’ language proficiency cannot be
determined without further individual annotations. We identified the lack of speech target
annotations—who is being addressed—to be a central limitation for the analysis of adaptiv-
ity in spoken interactions between multiple interlocutors. Still the results provide evidence
that academic language input in classroom interactions does not necessarily systematically
increase across grade levels and school types in German content-matter teaching.

6.3 Outlook and future research directions

Concluding this thesis, I would like to briefly outline future research directions that emerge
from the presented work. Beyond the natural extension of the presented approach through the
addition of more complexity measures (e.g., covering the phonological domain), languages
(e.g., Arabic), and training more models for different target groups (e.g., low literate readers),
I identified four core research desiderata for future work: i) linking proficiency and readability
assessment, ii) developing a procedural approach to complexity analyses, iii) experimentally
validating the corpus annotations, feature extraction, and model predictions, and iv) making
models more accessible for users without a technical background.

Let us first turn to linking proficiency and readability assessment. This thesis has focused
on outlining the use of broad linguistic complexity modeling for APA and ARA in education
contexts. This opens up the possibility of investigating links between the production and
reception of language. For example, we observed an increase in nominal style and noun
complexity in the development of early L1 academic language writing which is paralleled
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by the differences between media language targeting adults and children. Furthermore, we
saw that language use and discourse cohesion were relevant for both APA and ARA for L1
learners. In our studies on longer L2 writing and texts for L2 readers, we showed that the
lexical and syntactic domain as well as language use measures were particularly relevant for
both proficiency assessment and assessing the readability of texts. These parallels that we
can observe due to the shared approach to automatic complexity modeling are a promising
first step to empirically quantifying learners’ ZPD (Vygotsky, 1978) or i+ 1, as the distance
between learners’ proficiency and the ideal input is termed in Krashen’s (1985) influential
‘Input Hypothesis’. For English, similar approaches have already yielded promising results
for individually competence-adaptive text retrieval (Chen and Meurers, 2019) and to inform
tutoring systems (Watson and Kochmar, 2021). However, due to the lack of resources and
models, such work has not been feasible for German until now.

Second, throughout this thesis, we have taken a resultative perspective on proficiency and
readability in the sense that we assigned a single score to a full text, focusing on reading and
writing as a product. Yet, reading and writing (as well as listening and speaking) are incre-
mental processes. This becomes particularly apparent when analyzing interactive speech or
chat data which has a more obvious temporal dimension as discourse evolves and changes
longitudinally. However, it is also relevant for the assessment of writing proficiency and text
readability. Identifying passages of texts that are challenging within their context rather than
assigning a single overall label to texts would be a desirable extension of current work on
ARA. It could also facilitate the procedural assessment of writing quality can promote forma-
tive feedback. The first steps in this direction were taken within the context of this dissertation
by extending our approach to short language samples. These models can be used to identify
the readability or quality of a text at any given position in the text. First work in this direction
has been proposed by Marcus et al. (2016); Ströbel et al. (2020) who used a moving win-
dow technique to estimate writing quality. We believe this to be an important line of research
that would be beneficial to provide formative feedback during writing as well as support the
targeted adaptation of reading materials for different readers. It would also promote the longi-
tudinal analysis of the development of spoken and written discourse and alignment processes
between speakers, thus naturally extending the work presented in this thesis.

Third, more work on validating the validity of annotation labels and model predictions is
needed. In this thesis, I focused on assessing the quality of our predictions using within- and
cross-prompt testing, including cross-corpus, cross-task, cross-language, and cross-university
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testing. The results demonstrated the generalizability of most of our models. Our findings
partially indicated a more limited generalizability for models trained on very short learner pro-
ductions and for cross-language predictions of readability. However, ARA and APA research
rarely independently validates the correspondence between model predictions and humans in
practice. More work is needed that experimentally confirms that the predictions of readability
models in fact provide readable materials for readers (for a similar call, see Vajjala, 2022).
Experimental studies are also needed to study the interaction between predictions by ARA
models and individual reader properties as well as different reading goals. This also holds for
APA: even though ATS models for English are more commonly validated, we found this to be
an ongoing research gap for work on German.

Finally, predictive models for APA and ARA should become more accessible for users
without a technical background to broaden the impact of this work on teaching and learning
practice. We observed for ARA that readability formulas continue to dominate in practice due
to their accessibility and ease of use. This relativizes the significance of SOTA research on
ARA as it has little to no impact on real-life usage. While this issue was less pronounced
in our survey of APA, it is true that to date there is no tool for German that utilizes APA
models and the linguistic insights gained from broad linguistic modeling to provide formative
feedback to learners. At the time of writing, such systems only existed for English, not for
German. With this thesis, we have laid the foundation for such systems, making the analysis
pipeline available through CTAP and the trained models in the online supplementary material
to this thesis. To further support better access to the models trained in this thesis through user
interfaces, CTAP should be made accessible through an application programming interface
(API). This would make it possible to integrate the trained models into learning platforms or
web tools that could extract the features required for the predictions through the API. First
work in this direction has been done for German, for example in the context of the search
engines KANSAS (Weiss et al., 2018) and FLAIR (Chinkina et al., 2016), which, however,
rely on readability formulas.

The contributions made in this dissertation serve as a basis for research in these directions
while making important immediate contributions to SLA complexity research, and computa-
tional linguistic approaches to ARA and APA.
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Ströbel, M., Kerz, E., and Wiechmann, D. (2020). The relationship between first and second
language writing: Investigating the effects of first language complexity on second language
complexity in advanced stages of learning. Language Learning, 70, 732–767.

Strobl, C. (2014). Affordances of web 2.0 technologies for collaborative advanced writing in
a foreign language. CALICO Journal, 31, 1–18.
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Qualitätsberichte deutscher Krankenhäuser: Systematische Auswertung und Handlungsbe-
darf. Gesundheitswesen, 71(1), 3–9.

Friedrich, M. C. G. and Heise, E. (2019). Does the use of gender-fair language influence the
comprehensibility of texts? An experiment using an authentic contract manipulating single
role nouns and pronouns. Swiss Journal of Psychology, 78(1-2), 51.

Galasso, S. (2014). Exploring textual cohesion characteristics for German readability classifi-
cation. Bachelor’s thesis, Eberhard Karls Universität Tübingen.
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Li, M. and Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications,
volume 3 of Texts in Computer Science. Springer, 4th edition.

Li, Y. and Qian, D. D. (2010). Profiling the academic word list (AWL) in a financial corpus.
System, 38(3), 402–411.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R News,
2(3), 18–22.

Lin, J., Song, J., Zhou, Z., and Shi, X. (2021). Automated scholarly paper review: Possibility
and challenges. arXiv preprint arXiv:2111.07533.

Lipson, M. Y. (1982). Learning new information from text: The role of prior knowledge and
reading ability. Journal of reading behavior, 14(3), 243–261.

Liu, J. and Han, L. (2015). A corpus-based environmental academic word list building and its
validity test. English for Specific Purposes, 39, 1–11.

Long, D. L., Johns, C. L., and Morris, P. E. (2006). Comprehension ability in mature readers.
In M. J. Traxler and M. A. Gernsbacher, editors, Handbook of Psycholinguistics, chapter 20,
pages 801–833. Elsevier, 2nd edition edition.

Louwerse, M. M., McCarthy, P. M., McNamara, D. S., and Graesser, A. C. (2004). Variation
in language and cohesion across written and spoken registers. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 26, pages 843–848.

Lu, X. (2010). Automatic analysis of syntactic complexity in second language writing. Inter-
national journal of corpus linguistics, 15(4), 474–496.

Lu, X. (2011). A corpus-based evaluation of syntactic complexity measures as indices of
college-level ESL writers’ language development. TESOL quarterly, 45(1), 36–62.

Lu, X. (2012). The relationship of lexical richness to the quality of ESL learners’ oral narra-
tives. The Modern Language Journal, 96(2), 190–208.
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estamo, K. Sinnemäki, and F. Karlsson, editors, Language complexity: Typology, contact,
change, volume 94, pages 167–190. John Benjamins Publishing, Amsterdam, Philadelphia.

McWhorter, J. H. (2001). The worlds simplest grammars are creole grammars. Linguistic
Typology, 5, 125–156.

Mecklenburg, N. (2018). Vom Sagennachklang zum Gesellschaftsecho. Spuren von
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Vajjala, S. and Lučić, I. (2019). On understanding the relation between expert annotations of
text readability and target reader comprehension. In Proceedings of the Fourteenth Work-
shop on Innovative Use of NLP for Building Educational Applications, pages 349–359.

Vajjala, S. and Meurers, D. (2012). On improving the accuracy of readability classification
using insights from second language acquisition. In Proceedings of the seventh workshop

249



Chapter 7 References

on building educational applications using NLP, pages 163–173. Association for Compu-
tational Linguistics.

Vajjala, S. and Meurers, D. (2014). Readability assessment for text simplification: From ana-
lyzing documents to identifying sentential simplifications. International Journal of Applied
Linguistics, Special Issue on Current Research in Readability and Text Simplification.

Vajjala, S., Meurers, D., Eitel, A., and Scheiter, K. (2016). Towards grounding computa-
tional linguistic approaches to readability: Modeling reader-text interaction for easy and
difficult texts. In Proceedings of the Workshop on Computational Linguistics for Linguistic
Complexity (CL4LC), pages 38–48.

Valencia, S. W., Wixson, K. K., and Pearson, P. D. (2014). Putting text complexity in context:
Refocusing on comprehension of complex text. The Elementary School Journal, 115(2),
270–289.

van der Slik, F., Hout, R. v., and Schepens, J. (2019). The role of morphological complexity in
predicting the learnability of an additional language: The case of La (additional language)
Dutch. Second Language Research, 35(1), 47–70.

van Schijndel, M., Nguyen, L., and Schuler, W. (2013). An analysis of memory-based pro-
cessing costs using incremental deep syntactic dependency parsing. In Proceedings of the
Fourth Annual Workshop on Cognitive Modeling and Computational Linguistics (CMCL),
pages 37–46, Sofia, Bulgaria. Association for Computational Linguistics.

Vandeweerd, N., Housen, A., and Paquot, M. (2021). Applying phraseological complexity
measures to L2 French: A partial replication study. International Journal of Learner Corpus
Research, 7(2), 197–229.

VanPatten, B. and Benati, A. G. (2010). Key terms in second language acquisition. Blooms-
bury Publishing.

Vargas, C. R., Ricci, J. A., Lee, M., Tobias, A. M., Medalie, D. A., and Lee, B. T. (2017).
The accessibility, readability, and quality of online resources for gender affirming surgery.
Journal of Surgical Research, 217, 198–206.

Vasylets, O., Gilabert, R., and Manchón, R. M. (2017). The effects of mode and task com-
plexity on second language production. Language Learning, 67(2), 394–430.

Venant, R. and d’Aquin, M. (2019). Towards the prediction of semantic complexity based
on concept graphs. In 12th International Conference on Educational Data Mining (EDM
2019), pages 188–197.

Vercellotti, M. L. (2019). Finding variation: assessing the development of syntactic complex-

250



7.3 Bibliography

ity in ESL speech. International Journal of Applied Linguistics, 29(2), 233–247.
Vermeer, A. (2001). Breadth and depth of vocabulary in relation to L1/L2 acquisition and

frequency of input. Applied psycholinguistics, 22(2), 217–234.
Verspoor, M., Schmid, M. S., and Xu, X. (2012). A dynamic usage based perspective on L2

writing. Journal of Second Language Writing, 21(3), 239–263.
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Broad linguistic modeling is beneficial for German 
L2 proficiency assessment

Zarah Weiss & Detmar Meurers
University of Tübingen1

Abstract

We investigate the applicability of a broad range of language features to German second 
language proficiency assessment by comparing the performance of classification 
models based on linguistically diverse vs. homogeneous feature groups in terms of 
their overall performance and their success at individual proficiency levels (A1 to C1/
C2). For this, we extract 400 measures of linguistic complexity from the domains of 
syntax, lexicon, morphology, discourse, language use, and human language processing. 
Overall, our results show that a broad feature set integrating aspects of language as 
a system, language use, and human sentence processing costs results in higher 
classification performance on language learner data. At individual proficiency levels, 
lexical complexity in particular, but also clausal and phrasal complexities as well as 
discourse measures successfully distinguish several proficiency levels. Morphological 
complexity is particularly important for more advanced learners. 

1.  Introduction  

This study investigates the applicability of a broad range of language features 
to German second language (L2) proficiency assessment. We focus on aspects 

1 http://icall-research.de
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of Complexity, a core component of the triad Complexity, Accuracy, and 
Fluency (CAF) that is used in Second Language Acquisition (SLA) research to 
characterize language performance (Housen et al. 2012). In recent years, diverse 
features have been proposed to measure language proficiency, readability, and 
writing skills (Bulté & Housen 2014; Ortega 2012). They differ in terms of the 
nature of the language characteristics they measure, their specificity, sensitivity 
to task-effects, and how difficult it is to extract the information. To which 
extent the combination of diverse features is beneficial, as far as we are aware, 
has not been systematically investigated. Furthermore, while it is common 
to introduce the benefits of so far under-researched domains of linguistic 
complexity, such as morphology or SLA based features, a detailed comparison 
of which domains of linguistic complexity discriminate best at certain levels 
of proficiency has less often been attempted. We address this by comparing 
(1) performance differences between German L2 proficiency classifiers based 
on either broad, linguistically diverse or homogeneous feature groups; and (2) 
performance differences of linguistically homogeneous classifiers at individual 
proficiency levels (A1 to C1/C2). We find that linguistically diverse proficiency 
models that combine features from various linguistic domains systematically 
outperform those informed by individual linguistic domains. Regarding the 
informativeness of these linguistic domains, we find that single features from 
all linguistic domains that we measured are highly informative. Regarding the 
contribution of feature groups comprised from one linguistic domain to the 
identification of individual proficiency levels, we find in particular lexical, but 
also clausal and phrasal complexities as well as discourse measures to be highly 
successful across levels. 

The remainder of the article is structured as follows. We briefly review previous 
work on the link between linguistic complexity and different levels of L2 
proficiency, before outlining our automatic complexity analysis approach. We 
then introduce the data from the Merlin corpus which we use for our analyses. 
This is followed by our classification study and an outlook on current and future 
work, before we conclude with some final remarks. 

2.  Related work

Automatic complexity analyses for proficiency assessment often focus on 
longitudinal English L2 data elicited in University contexts for a certain 
group of L2 learners, such as intermediate or advanced learners, rather than 
distinguishing multiple proficiency levels at once. Thus, they focus more 
on developmental patterns that may be observed within a group of learners. 
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Comparisons of proficiency levels are mostly based on the collective evaluation 
of multiple studies targeting different learner groups, which may be potentially 
problematic due to different study set-ups or operationalizations of complexity. 

Overall, such studies have found that learners at low and intermediate 
proficiency levels predominantly develop in terms of sentence length and 
clausal elaborateness (Lu 2010; Norris & Ortega 2009; Ortega 2003), the latter 
of which has been shown to be correlated with human proficiency ratings 
(Crossley & McNamara 2014). For more advanced English L2 learners, research 
indicates a stronger development of the phrasal domain, in particular regarding 
noun phrases (Crossley & McNamara 2014; Taguchi et al. 2013). Other 
complexity measures, such as lexical and clausal complexity, were found to be 
less informative to distinguish between advanced-intermediate and advanced 
learners (Paquot 2017; Ortega 2012; Biber et al. 2011). Some studies indicate 
that advanced learners also develop in terms of lexical abstractness, lexical 
familiarity, and semantic inter-relatedness (Crossley et al. 2014; Crossley & 
McNamara 2012), but that this development is not necessarily considered for 
advanced proficiency ratings (Crossley & McNamara 2014). As for discourse 
measures, studies for more advanced learners have found that more proficient 
learners use more implicit cohesion markers and less explicit markers, such as 
connectives (Crossley et al. 2014; Crossley & McNamara 2012; McNamara 
et al. 2009).

While there is an extensive body of research on English L2 development, there 
is overall less research on German complexity assessment, most of which 
focuses on German readability assessment (Hancke et al. 2012; vor der Brück 
et al. 2008). Hancke & Meurers (2013) investigate how measures of clausal, 
lexical, and morphological complexity as well as language model features relate 
to CEFR ratings. They find lexical and morphological complexities to be most 
informative, and clausal complexity, while less informative on its own, to boost 
classification performance when being combined with the other measures, and 
that a combined model of features overall performs best with accuracy values 
of 62.7%. In this study, we follow up on these results on the same corpus with 
a broader set of features and analytical methods.

3.  Automatic complexity analysis

For our automatic analysis of German linguistic complexity, the elaborateness 
and variation in the different domains of linguistic modeling (Ellis & Barkhuizen 
2005), we extracted 400 features using an elaborate NLP tool chain. 
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3.1. Complexity measures

Our features may broadly be grouped into two categories: those targeting 
dimensions of the theoretical linguistic system (syntax, lexicon, morphology, 
and discourse) and those targeting the cognitive or psycholinguistic dimension 
of language productions (language use and human language processing). 
Additionally, we calculate two descriptive, superficial features of text length in 
words and sentences.

Clausal and phrasal complexities assess syntactic complexity development 
on two levels: clausal complexity is associated with phenomena such as clausal 
subordination and the use of syndetic and asyndetic constructions. Our system 
measures in particular various types of subordination and clausal structure 
(t-units per sentence, dependent clauses per t-unit, etc.). Phrasal complexity 
measures aspects of phrasal modification and coordination. We assess these 
in terms of various modifier ratios and coverage of modifier measures with a 
particular focus on the nominal domain and verb clusters.

Lexico-semantic complexity is typically associated with vocabulary range 
(lexical density and variation) and size (lexical sophistication), but also lexical 
relatedness. We measure lexical diversity using raw type token ratio as well as 
its length normalized variants. Lexical density and variation are assessed for 
various Parts-of-Speech (PoS), including for example verb and noun variations. 
To measure lexical relatedness, we assess the number of semantic relations 
between words (hyponymy, synonymy, etc.) using GermaNet 9.0.1 (Henrich & 
Hinrichs 2010).

Morphological complexity has shown to be particularly interesting for 
languages that exhibit richer morphology than English, such as German 
or French (François & Fairon 2012; Hancke et al. 2012). We measure 
features of inflection (tenses, person, number, etc.), derivation (in particular 
nominalizations), and composition. 

Discourse measures assess textual cohesion, i.e. the linguistic items that link 
propositions or idea units, which has been shown to be highly informative 
in previous work on complexity assessment among others by the CohMetrix 
project. Following them, we measure co-referential cohesion in terms of noun, 
argument, stem, and content-word overlaps, pronoun ratios, and various types 
of connectives. We also adopted transitional features from Barzilay & Lapata 
(2008) that assess changes in grammatical functions (subject, object, other 
complement, not present) that are assigned to repeated linguistic material in 
adjacent sentences.
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Language use measures origin from psycho- and corpus-linguistic research 
and include, for example, word frequencies from representative language 
samples or approximations of age of acquisition. Word frequency measures 
are well established in complexity research, although they are often listed 
among features of lexical complexity. We calculate a series of word frequency 
measures based on frequency data bases Subtlex-DE and Google Books 2000-
2009 (Brysbaert et al. 2011), as well as dlexDB (Heister et al. 2011). These 
features include absolute and log transformed frequencies. We also approximate 
average and first age of active use through the KCT corpus (Lavalley et al. 
2015).

Human language processing measures are based on research in cognitive 
science and information theory. They evaluate complexity in terms of 
processing costs associated with linguistic material, for example in terms of 
surprisal or cognitive load. We measure cognitive load in terms of integration 
costs based on dependency lengths and Gibson’s (2000) Dependency Locality 
Theory (DLT). For the latter, we follow Shain et al.’s (2016) dependency 
parse based operationalization including variants which feature their suggested 
weight modifications for verbs, coordination, and modifiers.

3.2. System description

We extract our complexity features based on a three-step procedure. First, 
each text is linguistically annotated by applying a series of NLP tools and 
consulting external linguistic resources. In particular, texts are tokenized, 
segmented into sentences using OpenNLP 1.6.0 (http://opennlp.apache.org). 
Then, we perform PoS tagging, lemmatization, morphological analysis, and 
dependency parsing using the Mate tools 3.6.0 (Bohnet & Nivre 2012). We 
perform compound analysis using the JWordSplitter 3.4.0. (http://github.com/
danielnaber/jwordsplitter). Finally, we obtain constituency parses using the 
Stanford PCFG parser 3.6.0 (Rafferty & Manning 2008) and topological field 
parses using the Berkeley parser 1.7.0 (Petrov & Klein 2007). While for many 
of these tasks, other NLP tools could also be employed, the mentioned tools, as 
far as we are aware, perform close to the state of the art in terms of quality and 
speed so that an exploration of alternatives is beyond the scope of this paper. In 
general, we use the default models provided by the respective tools for German 
analyses, except for topological field parsing, for which we used the model 
trained by Ziai & Meurers (2018) because the default topological field model is 
not compatible with the latest version of the parser.
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These linguistic annotations are used in the second step to identify all instances 
of linguistic constructions that are relevant for our complexity analysis. This 
step relies on the identification of different linguistic units, some of which have 
different justifiable operationalizations, such as t-units or lexical words. To 
allow for comparability across complexity studies, it is crucial to make the 
underlying definitions of these units explicit (Bulté & Housen 2014; Housen 
et al. 2012). An elaborate documentation of the units underlying our system 
may be found in Weiss (2017: 82f). In the final step of the analysis, ratios and 
features are calculated to approximate the complexity of each document by 
means of a feature vector.2 These are exported into a CSV table including all 
documents, which may then be used for further statistical evaluation.

To the best of our knowledge, this is currently the most extensive feature set 
for German complexity assessment. We are in the final stages of making the 
system publicly accessible via the Common Text Analysis Platform (CTAP) by 
Chen & Meurers (2016), which originally only facilitated English complexity 
analyses.

4.  Merlin data 

We analyze the non-normalized German section of the Merlin corpus (Abel 
et al. 2014) to assess German L2 writing proficiency. It is comprised of 1,033 
texts written by the same number of adult learners of German, which have been 
elicited in official standardized language certification tests for the five CEFR 
test levels A1 to C1. With this, it is not only to our knowledge the largest freely 
available German L2 corpus, it also features text from an extraordinarily broad 
variety of thoroughly and transparently established proficiency levels. The 
corpus consists of approximately 200 texts per test level, which were prompted 
by overall 15 different tasks (three tasks per level). All texts are rated based on 
the CEFR scale from levels A1 to C2 by human experts for various performance 
categories as well as a holistic overall proficiency rating (Abel et al. 2014). 
Since learners achieved not only proficiency scores at the level of the test they 
took, but also scores above or below, the uniform distribution of test levels in 
Merlin does not translate to a uniform distribution of proficiency scores. Due 
to the negligible number of C2 rated texts (4 in total), we combined C1 and C2 
texts to a single C1/C2 level rating for the purposes of our statistical analyses. 

2 All features and formulas available at http://www.sfs.uni-tuebingen.de/~zweiss/rsrc/feat.pdf
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5.  Classification study 

5.1. Set-up

As classification algorithm for our assessment of overall L2 proficiency, we 
chose the Sequential Minimal Optimization (SMO) support vector classifier 
by Platt (1998) with a linear kernel. This state-of-the-art algorithm is known 
to be relatively robust for many, potentially correlated measures and thus 
particularly suited for our large sets of complexity measures. We applied the 
SMO algorithm to varying combinations of complexity features. First, we 
grouped features together that assess the same theoretical or psycholinguistic 
linguistic domain. This resulted in seven linguistically homogeneous, theory-
based feature groups: clausal, phrasal, lexico-semantic, and morphological 
complexity, discourse, human language processing (HLP), and language use 
(LU). Second, we performed information gain ranking to identify data-driven 
the most 50, 100, 150, and 200 informative features across all seven linguistic 
domains. We then discarded all but the most successful classifier, IG 150, 
which uses the 150 most informative complexity measures. Finally, we trained 
a classifier using all features. All classifiers were trained and tested using 
10-fold cross-validation. The information gain ranking, too, was performed 
with this method. For further comparison, we also obtained a majority baseline 
by automatically assigning the most frequent proficiency level (B2) to all texts. 
We used the WEKA machine learning toolkit (Hall et al. 2009) for all analyses.  

5.2. Results and discussion 

5.2.1. Overall classification performance 

Table 1 shows the overall performance of the different proficiency classifiers. All 
of them clearly outperform the majority baseline (32.0%). The best performing 
classifier is IG 150. Compared to the model using all features, removing 
less relevant features seems to slightly increase classification performance. 
More importantly, however, IG 150 clearly outperforms the linguistically 
homogeneous classifiers yielding accuracies between 53.7% (HLP) to 67.6% 
(lexico-semantic). 
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Model Num. features Accuracy
Majority baseline 1 32.0
All features 400 68.1
IG 150 150 70.0
Discourse 84 64.7
Clausal 110 63.8
Phrasal 41 62.1
Lexico-semantic 38 67.6
Morphological 39 59.7
HLP 32  53.7
Language use 54 59.3

Table 1. Classification performance of SMO models 
in 10-fold cross-validation 

Table 2 shows the confusion matrix for IG 150. Columns represent the 
proficiency scores predicted by the model, rows the actual proficiency scores 
assigned to a text in the Merlin corpus. For each observed score the most often 
predicted score was marked with bold font. 

Obs.\Pred. A1 A2 B1 B2 C1/C2 ∑ Obs.
A1 21 35 1 0 0 57
A2 13 231 62 0 0 306
B1 1 50 218 62 0 331
B2 0 3 37 252 1 293

C1/C2 0 0 1 44 1 46
∑ Pred. 35 319 319 358 2 1,033

Table 2. Confusion matrix for IG 150

CEFR levels A2, B1, and B2 show favorable classification results: most 
predictions for texts from these levels are correct. For levels A1 and C1/C2, 
however, miss-classifications with their adjacent level are more common 
than correct classifications. This issue is particularly severe for level C1/C2. 
There are several potential explanations for this issue: partially it might be 
an artifact of the skewed distribution of Merlin overall CEFR scores and the 
resulting under-representation of these two levels: less than 10% of the corpus 
contains data with overall CEFR scores at levels A1 and C1/C2. For level A1, 
the classification might also suffer from the highly non-standard language of 
beginning learners, which impairs the automatic NLP annotations on which the 
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complexity features are based. Tono (2013) observes a risk-taking phase reaching 
into the intermediate level, where the number of errors increases together with 
complexity. While this could also cause problems for the NLP analysis, there 
is no indication for this in our results given the high classification accuracy for 
intermediate learners. For level C1/C2 another plausible explanation would be 
that the differences between B2 and C1 learners relate more to phraseological 
and stylistic writing aspects (Paquot 2017; Biber et al. 2011), which are not 
sufficiently captured in the current set of complexity features.

Rank Avg. merit Feature Group
1 0.889 ± 0.010 Number of tokens Descriptive
2 0.827 ± 0.019 Corrected type token ratio Lexical
7 0.466 ± 0.009 Longest word in syllables Lexical
8 0.432 ± 0.015 Sum of longest dependencies per sentence HLP
13 0.391 ± 0.011 Dep. clauses with conjunction per dep. 

clause
Clausal

14 0.391 ± 0.006 Coverage of NP modifier types Phrasal
16 0.387 ± 0.009 Dependent clauses per sentence Clausal
22 0.372 ± 0.009 P(not-not) per transition Cohesion
25 0.369 ± 0.012 Verbs per sentence Phrasal
27 0.359 ± 0.025 VP modifiers per VP Phrasal
29 0.358 ± 0.015 Words per t-unit Clausal
31 0.355 ± 0.007 Sum non-terminal nodes per word Clausal
35 0.354 ± 0.013 Standard deviation of verb cluster sizes Phrasal
36 0.350 ± 0.007 P(not-object) per transition Cohesion
37 0.350 ± 0.005 To-infinitives per sentence Phrasal
39 0.346 ± 0.009 Total integration cost at finite verb per fi-

nite verb (with additional verb weight)
HLP

43 0.344 ± 0.006 HDD Lexical
44 0.341 ± 0.011 Syllables per word Lexical
50 0.326 ± 0.008 Temporal (Eisenberg) connectives per 

sentence
Cohesion

52 0.324 ± 0.013 Coverage of verb cluster sizes Phrasal

Table 3. Top 20 complexity measures based on 10-fold cross-validated 
information gain with Pearson correlation less extreme than r ± 0.7
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To examine closer the best performing classifier, IG 150, Table 3 shows the 20 
most informative features included in the model. To allow for a broader view 
on the features represented in the model, we excluded measures which showed 
an extremely high Pearson correlation with higher ranking measures, i.e. that 
were more extremely correlated than ±0.7. The table shows the original total 
rank of each feature and their average merit in the 10-fold cross validation to 
allow for a more informed comparison of their overall informativeness. It also 
includes a reference to the feature group each feature is attributed to. 

The results confirm that our data-driven feature selection approach in fact 
yields a highly diverse collection: the features include measures from nearly 
all feature groups and include operationalizations of the elaborateness and 
variation of these domains. The elaborateness of clausal subordination, the 
elaborateness and variation of nominal and verbal modification, lexical diversity 
and sophistication, transitions of grammatical roles and temporal connectives, 
and dependency-length based cognitive integration costs are particularly 
informative. Features of language use and morphological complexity are 
not represented in Table 3. However, they are repeatedly represented among 
the most informative 50 not extremely correlated features. Furthermore, 
morphological complexity features are represented among the higher-ranking 
measures, but highly correlated with word length and corrected type token ratio 
thus not eligible for Table 3. This holds in particular for derivational measures 
indicating nominalizations. The informativeness of language use measures is 
partially impaired by the type of data that is being analyzed: since we do not 
investigate the normalized texts and misspelled words will not be found in any 
of our word frequency data bases.

5.2.2. Classification performance by proficiency level 

In the last step of our analysis, we investigated the relevance of certain 
linguistic domains and feature combinations for the identification of individual 
proficiency level changes with increasing proficiency. For this, we compared 
the performance of all classifiers for each individual proficiency level in terms 
of precision, recall, and f1 score as displayed in Table 4.
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A1 A2 B1 B2 C1/C2

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Maj 0.0 0.0 0.0 0.0 0.0 0.0 32.0 100 48.5 0.0 0.0 0.0 0.0 0.0 0.0
All 45.7 36.8 40.8 68.9 71.6 70.2 66.3 65.3 65.8 72.1 76.8 74.4 38.7 26.1 31.2
150 60.0 36.8 45.7 72.4 75.5 73.9 68.3 65.9 67.1 70.4 86.0 77.4 50.0 2.2 4.2
LU 100 1.8 3.4 63.5 63.7 63.6 52.7 56.2 54.4 62.1 78.8 69.5 0.0 0.0 0.0
HLP 0.0 0.0 0.0 58.5 61.8 60.1 47.2 51.1 49.1 56.0 67.2 61.1 0.0 0.0 0.0
Disc 66.7 3.5 6.7 66.1 73.2 69.5 63.0 54.1 58.2 64.6 89.8 75.1 0.0 0.0 0.0
Cla 50.0 7.0 12.3 63.5 75.2 68.9 59.7 57.4 58.6 68.1 80.2 73.7 0.0 0.0 0.0
Phr 33.3 1.8 3.3 62.7 74.8 68.3 56.9 55.9 56.4 66.8 77.5 71.7 0.0 0.0 0.0
Lex 100 15.8 27.3 68.6 78.4 73.2 65.3 59.2 62.1 67.6 86.3 75.9 0.0 0.0 0.0
Mor 0.0 0.0 0.0 58.7 68.3 63.1 53.6 54.5 54.0 67.1 77.8 72.0 0.0 0.0 0.0

Table 4. Precision, recall, and f1 score for homogeneous SMO models

Since the majority baseline labels all texts as level B2, its performance scores 
are zero for all but this level. More interestingly, none of the linguistically 
homogeneous models correctly identifies a single instance of C1/C2 level 
writings. Only the linguistically diverse models correctly classify some of these 
texts. The classifier using all measures even outperforms IG 150 for this level, 
but worse on all others. This might indicate that there are some relevant features 
for the distinction of B2 and C1/C2 level writing, which were not elicited by 
the data-driven feature selection due to the under-representation of C1/C2 
level texts. Potentially for similar reasons, for level A1 only very few texts are 
correctly classified, which results in extremely high precision scores with very 
low recall. The highest f1 (= 27.3%) score is achieved by the lexical complexity 
model. In contrast, HLP and morphological measures do not classify any text 
as A1.

For levels A2, B1, and B2 classification performance is better, although levels 
A2 and B2 exhibit systematically higher recall than precision values. An 
investigation of the misclassifications confirmed that these are predominantly 
due to the incorrect labeling of A1 and C1/C2 texts. Across these three 
levels, the lexical complexity model again performs best in terms of f1 
score. Furthermore, clausal and phrasal complexities as well as discourse are 
considerably more successful at identifying texts at these levels than the other 
feature groups. For level B2 texts, the discourse model performs comparable 
to the lexical model. In contrast, HLP is the least informative feature group 
across all levels. This might be due to the limited diversity within this feature 
group, which predominantly consists of differently weighted instances of DLT 
integration cost measures. Language use also performs relatively poorly across 
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these levels. Morphological complexity shows little discriminatory power for 
most proficiency levels. Interestingly, however, it is as successful as phrasal 
and clausal complexities for the B2 level. The high relevance of discourse and 
morphological measures for B2 level texts is remarkable. Since the distinction 
between B2 and C1/C2 fails for the homogeneous models, this shows that the 
morphological and discourse models are able to learn a systematic distinction 
between B2 and the lower levels, while the discourse, clausal, phrasal, and 
lexical models identify systematic differences across levels A2 to B2. 

6.  Outlook

Our study clearly demonstrates the benefits of modeling L2 proficiency using 
broad, linguistically diverse feature selections and yields interesting insights 
regarding performance differences of linguistically homogeneous classifiers at 
individual proficiency levels. Yet, it also raised some issues that could only 
briefly addressed in our current study and that need further investigation. In 
particular, correctly identifying level A1 and level C1/C2 texts remains a 
challenge to all presented classifiers. This issue is partially due to the lack of 
data support for these proficiency levels in our data set. In a follow-up study, the 
extent to which our results are influenced by this artifact of the data distribution 
in Merlin needs to be investigated by additional analyses on more balanced data 
subsets. 

Furthermore, there are two additional potential influences on our results that 
might also contribute to this issue and which we are currently addressing in 
ongoing studies. On the one hand, our models do not account for nonlinear 
development of individual measures. This work presented a view on various 
feature groups to illustrate the relevance of broad language modeling for 
proficiency assessment and to identify differences in the overall impact of 
linguistic domains on proficiency assessment. Building on this, we have moved 
on to the analysis of individual, potentially nonlinear measures by training 
Generative Additive Models (GAMs) on the Merlin data. In Weiss (2017), we 
present first results of this approach, where we closely model 13 complexity 
measures from all our feature groups including nonlinear developments. The 
results show an improvement in the classification of levels A1 and C1/C2 
compared to the models presented here. 

On the other hand, the Merlin data entails a particularly broad task background 
with three elicitation tasks per test level. These may cause task effects in the 
linguistic properties of the learner texts, in particular with regard to their 
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complexity, as earlier research on task effects and language performance 
has shown (Alexopoulou et al. 2017; Yoon & Polio 2016; Tracy-Ventura & 
Myles 2015). Thus, we broaden our investigation of the applicability of diverse 
complexity features to their sensitivity to task effects in learner corpora, thus 
shifting the focus of our analysis from learners to tasks. We have analyzed 
Merlin’s elicitation tasks for various functional and cognitive task factors 
and performed first analyses on the effect these factors have on individual 
complexity measures as well as feature groups (Weiss 2017). Our preliminary 
results show that some complexity measures and groups seem to be sensitive 
to task effects to varying degrees: morphological complexity, for example, 
is particularly susceptible to task effects, while human language processing 
features seem to be remarkably robust (see Weiss 2017 for details). Both of 
these analysis strands have already yielded promising results and are currently 
pursued further.

7.  Conclusion

We investigated to which extent broad linguistic modeling is beneficial for 
German L2 proficiency assessment. For this, we automatically extracted 400 
measures of linguistic complexity from various linguistic domains with an 
elaborate NLP pipeline. We focused on comparing feature groups. On the one 
hand, we combined features from various linguistic domains in a data-driven 
approach. On the other, we grouped features together from the same linguistic 
domain. We compared them in terms of their ability to successfully distinguish 
between five holistic CEFR proficiency scores assigned to German L2 writings 
(A1 to C1/C2) when employed in SMO classifiers. Our results show that a broad 
selection of features that integrates aspects of language as a system, language 
use, and human sentence processing costs, results in higher classification 
performance on language learner data. In particular, lexical variation, sentential 
elaboration, phrasal elaboration and variation, and discourse elaboration are 
highly beneficial, as an analysis of the overall most informative measures in 
terms of information gain showed. 

In a second step, we investigated to which extent the relevance of certain 
linguistic domains for the identification of individual proficiency levels changes 
with increasing proficiency. For this, we compared the performance of the 
classifiers assessing certain linguistic domains for identifying each individual 
proficiency level. This showed that lexical, clausal, and phrasal complexity 
are informative for the identification of several proficiency levels. In contrast, 
morphological and discourse measures are mostly relevant for distinguishing 
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B2 from lower proficiency levels. Human language processing and language 
use features are less successful, although we found individual measures from 
both groups to be highly informative and included in the classifier using 
features from various domains. In this analysis, too, the combination of 
features outperformed all linguistically homogeneous models across individual 
proficiency levels. Overall, our results show that broad linguistic modelling 
is beneficial and feasible for German L2 proficiency assessment, even when 
applied to non-normalized data.
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Abstract
We track the development of writing complex-
ity and accuracy in German students’ early
academic language development from first to
eighth grade. Combining an empirically broad
approach to linguistic complexity with the
high-quality error annotation included in the
Karlsruhe Children’s Text corpus (Lavalley
et al., 2015) used, we construct models of Ger-
man academic language development that suc-
cessfully identify the student’s grade level. We
show that classifiers for the early years rely
more on accuracy development, whereas de-
velopment in secondary school is better char-
acterized by increasingly complex language in
all domains: linguistic system, language use,
and human sentence processing characteris-
tics. We demonstrate the generalizability and
robustness of models using such a broad com-
plexity feature set across writing topics.

1 Introduction
We model the development of linguistic com-
plexity and accuracy in German early academic
language and writing acquisition from first to
eighth grade. Complexity and Accuracy are well-
established notions from Second Language Ac-
quisition (SLA) research. Together with Fluency,
they form the CAF triad that has successfully
be used to characterize second language develop-
ment (Housen et al., 2012). Accuracy here is de-
fined as a native-like production error rate (Wolfe-
Quintero et al., 1998) and Complexity as the elab-
orateness and variation of the language which may
be assessed across various linguistic domains (El-
lis and Barkhuizen, 2005).

While there has been substantial research on the
link between linguistic complexity analysis and
second language proficiency and writing devel-
opment for English (cf., e.g., Bulté and Housen,
2014; Kyle, 2016), much less is known about aca-
demic language development for other languages,

such as the morphologically richer German. In
this article, we target this gap with three contri-
butions. We build classification models for early
academic language development in German from
first to eighth grade, based on a uniquely broad
set of linguistically informed measures of com-
plexity and accuracy. Our results indicate that two
phases of academic language development can be
distinguished: Initial academic language and writ-
ing acquisition focusing on the writing process it-
self, best characterized in terms of accuracy devel-
opment, with little development in terms of com-
plexity. A second stage is characterized by the
increasing linguistic complexity, in particular in
the domains of lexis and syntactic complexity at
the phrasal level. We demonstrate the robustness
and generalizability of the models informed by the
broad range of linguistic characteristics – a major
concern not only for obtaining practically relevant
approaches for real-life use, but also for charac-
terizing machine learning going beyond focused
task to approaches capable of capturing general
language characteristics.

The article is structured as follows: We first give
a brief overview of research on writing develop-
ment in terms of complexity and accuracy. We
then present the Karlsruhe Children’s Text corpus
used as empirical basis of our work. In Section 4,
we spell out our approach to assessing writing
in terms of complexity and accuracy, before sec-
tions 5, 6, and 7 report on three studies designed
to address the research issues introduced above.

2 Related Work

The main strand of research analyzing the com-
plexity and accuracy constructs targets the assess-
ment of second language development. Linguis-
tic complexity measures have been successfully
used to model the language acquisition of English
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as a Second Language (ESL) learners (Bulté and
Housen, 2014; Crossley and McNamara, 2014).
Work on first language writing development for
English has also been conducted, but it is less
common (Crossley et al., 2011) The same holds
for the development of accuracy (Larsen-Freeman,
2006; Yoon and Polio, 2016). Most studies focus
on adult ESL learners’ development during peri-
ods of instruction. Vercellotti (2015) finds an in-
crease in syntactic and lexical complexity, overall
accuracy, and fluency in adult ESL speech over the
course of several months. Crossley and McNa-
mara (2014) find that advanced adult ESL learn-
ers phrasal and clausal complexity significantly in-
creases over the course of one semester of writ-
ing instruction in particular with regard to nominal
modification and number of clauses. These find-
ings are corroborated by Bulté and Housen (2014).
For uninstructed settings, however, this does not
hold. Knoch et al. (2014, 2015) study university
students’ ESL development over 12 months and
three years without instruction in an immersion
context and found that only fluency but not gram-
matical and lexical complexity developed.

Research on languages other than English is
starting to appear (Hancke et al., 2012; Velle-
man and van der Geest, 2014; Pilán and Volod-
ina, 2016; Reynolds, 2016). As for English, re-
search on German writing development has pre-
dominantly focused on German as a Second Lan-
guage (GSL) in instructed settings (Byrnes, 2009;
Byrnes et al., 2010; Vyatkina, 2012). Their find-
ings suggest that as for ESL learners’ writing,
clausal complexity progressively increases. For
lexical complexity results have been more mixed
depending on the proficiency of GSL learners’
proficiency level. The development of writing
accuracy has also been assessed in some corpus
studies using automated or manual error annota-
tion (Lavalley et al., 2015; Göpferich and Neu-
mann, 2016). In Weiss et al. (2019) we analyze
the impact of linguistic complexity and accuracy
on teacher grading behavior.

One challenge for the assessment of language
performance in terms of complexity that is start-
ing to receive attention is the influence of the task.
Alexopoulou et al. (2017) demonstrate task ef-
fects, specifically task complexity and task type,
on the complexity of English as a Second Lan-
guage writers in the EF-Cambridge Open Lan-
guage Database (EFCAMDAT) and show mixed

results for accuracy. This is in line with findings
by Yoon and Polio (2016), who investigate the ef-
fect of genre differences on CAF constructs. Yoon
(2017) focuses on the effect of topic on the syn-
tactic, lexical, and morphological complexity of
ESL learners’ writings and shows a significant in-
fluence on the complexity of writings of the same
learners, similar to findings in Yang et al. (2015).
Such task effects have mostly been discussed from
a theoretical perspective, considering their impli-
cations for the development of CAF constructs and
the two main task frameworks (Robinson, 2001;
Skehan, 1996). From a more practical perspec-
tive, task, genre, and topic effects have been rec-
ognized as an important issue for machine learn-
ing for readability assessment or Automatic Es-
say Scoring (AES). For the real-world applica-
bility of such approaches it is crucial for them
to account for differences due to genre or topic.
In their readability assessment system READ-IT
for Italian, Dell’Orletta et al. (2014) use this is-
sue to motivate favoring a ranking-based over a
classification-based approach. A recent AES ap-
proach discussing the issue is the placement sys-
tem for ESL by Yannakoudakis et al. (2018).

3 Data

Our studies are based on the Karlsruhe Children’s
Text (KCT) corpus by Lavalley et al. (2015).1 It
is a cross-sectional collection of 1,701 German
texts produced by students in German elementary
and secondary school students from first to eighth
grade. The secondary school students in the cor-
pus attended one of two German school tracks, ei-
ther a basic school track (Hauptschule) or an inter-
mediate school track (Realschule). The texts were
written on a topic chosen by the students from a
set of age-appropriate options: Elementary school
students were asked to continue one of two sto-
ries, one about children playing in a park, and the
other about a wolf who learns how to read. Sec-
ondary school students wrote about a hypothetical
day spent with their idol or their life in 20 years.
All student texts in the corpus are made available
in the original, including all student errors, and a
normalized version, where errors and misspellings
were corrected. The data is enriched with error an-
notations covering word splitting, incorrect word
choices and repetitions, grammar, and legibility.

For our studies analyzing writing development
1https://catalog.ldc.upenn.edu/LDC2015T22
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in terms of development across the grade levels,
we made use of the normalized texts and the error
annotation. Some grade levels in the corpus in-
clude only few texts, such as the 42 cases of first
grade writings compared to the other grade levels
with 189 to 283 writings. We thus grouped ad-
jacent grade levels, i.e., grades 1 and 2 together,
grades 3 and 4, etc., to obtain a data set with a
substantial number of instances for each class.

4 Assessment of Writing Performance

To assess writing performance in terms of com-
plexity and accuracy, we operationalized these
SLA concepts in terms of several features which
we automatically computed or derived from the er-
ror annotation of the KCT corpus.

4.1 Complexity
The analysis of complexity is based on our im-
plementation of a broad range of complexity fea-
tures for German (Weiss, 2017; Weiss and Meur-
ers, 2018, in press). The features cover clausal
and phrasal syntactic complexity, lexical complex-
ity, discourse complexity, and morphological com-
plexity. Complementing the measures of complex-
ity of the linguistic system, we also compute two
cognitively-motivated features: a characterization
of language use based on word frequencies, and
measures of human language processing (HLP).
Table 1 summarizes the features designed to cap-
ture the elaborateness and variability in the respec-
tive domain, with more details provided in Weiss
(2017) and Weiss and Meurers (in press). Overall,
the studies in the current paper make use of a com-
prehensive set of 308 complexity features for the
assessment of academic language development.2

4.2 Accuracy
The second dimension of language performance
that we are interested in is writing accuracy. In
SLA research accuracy has predominantly been
assessed in terms of types of error rates or error-
free T-units (Wolfe-Quintero et al., 1998; Verspoor
et al., 2012). We exploited the KCT corpus’ elabo-
rate error annotation to extract a broad range of ac-
curacy measures. Annotations on the level of indi-
vidual letters and words mark (ill)legibility, word
splitting errors, repetition errors, foreign words,

2We are making the complexity code available as part of
a multilingual version of CTAP: https://github.com/
zweiss/multilingual-ctap-feature

and grammatical errors. Annotations at the sen-
tence level mark content deletions, insertions, and
incorrect word choices. In addition, we developed
an approach to automatically derive additional er-
ror types by comparing the original student writ-
ings with their normalized sentence-aligned target
hypotheses. This procedure allowed us to extract
counts for punctuation errors, incorrect quotation
marks, spelling mistakes, and word capitalization
errors. The last item is a particular challenge of
German orthography, given that capitalization in
German is governed by a complex set of rules and
conventions relating to syntactic structure.3

Overall, we extracted 20 accuracy counts which
we aggregated and normalized by the total number
or errors or the total number of words in the text
as counted by the complexity analysis described
in the previous subsection. The feature set mea-
suring writing accuracy and an example feature is
included as the last row in Table 1.4

5 Study 1: Predicting Grade-Levels
across School Types

5.1 Set up
We extracted the text data from the KCT corpus,
removing all texts containing less than ten words
and excluding texts written by children younger
than seven years and older than 15 years. This re-
sulted in a corpus of N=1, 633 texts, for which we
computed the features of linguistic complexity and
error rates. Table 2 shows the distribution of texts
across grade levels and school tracks.

From the analyzed data set, we eliminated all
complexity and error rate features that did not ex-
hibit enough variability to be of interest for the
analysis. Specifically, we excluded all features
whose most common value occurred more than
90% of the time. For the remaining 262 features,
we computed their z-score, centered around zero.

On this data, we performed ten iterations of
10-fold cross-validation (CV) generating different
splits each time, i.e., 100 training and testing runs
in total, using an SMO classifier with a linear ker-
nel (Platt, 1998). This outperformed models using
random forests or linear regression. Similarly, in-
troducing non-linearity did not improve the clas-

3The Python script used to identify accuracy features in
the KCT annotation is available at https://github.
com/zweiss/KCTErrorExtractor

4Here and in the following, we will refer to this feature set
as the error rate measures to avoid confusion with the term
accuracy used as a classification performance metric.
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Feature Set Size Description

Lexical complexity 31 measures vocabulary range (lexical density and variation) and
sophistication, measures of lexical relatedness;
e.g., type token ratio

Discourse complexity 64 measures the use of cohesive devices such as connectives;
e.g., connectives per sentence

Phrasal complexity 47 measures of phrase modification;
e.g., NP modifiers per NP

Clausal complexity 27 measures of subordination or clause constituents;
e.g., subordinate clauses per sentence

Morphological complexity 41 measures inflection, derivation, and composition;
e.g., average compound depth per compound noun

Language Use 33 measures word frequencies based on frequency data bases;
e.g., mean word frequency in Subtlex-DE (Brysbaert et al., 2011)

Human Language Processing 24 measures of cognitive load during human sentence processing,
mostly based on Dependency Locality Theory (Gibson, 2000)
e.g., average total integration cost at the finite verb

Error Rate 41 measures ratios of error types per error or word;
e.g., spelling mistakes per word

Table 1: Overview over the feature sets used to capture linguistic complexity and accuracy

1/2 3/4 5/6 7/8 all

Elementary 203 524 0 0 727
Realschule 0 0 297 236 533
Hauptschule 0 0 165 208 373
all 203 524 462 444 1633

Table 2: Text distribution across grades & school tracks

sification. For each feature set introduced in Sec-
tion 4, we trained a separate classifier to support
a comparison of the different complexity and er-
ror feature sets. In addition, we built one classifier
based on the combination of all complexity feature
sets and one combining all feature sets including
error rate. Finally, we built a classifier also includ-
ing the meta information about the school track
and topic chosen, to investigate their influence on
the complexity features and the comparability of
grade-levels across school types.

As reference for evaluating classifier perfor-
mance, we use a majority baseline assigning al-
ways the most common grade level, and a second
baseline inspired by traditional readability formu-
las, for which we trained a classifier using text
length and average word length features.

5.2 Results & Discussion

Table 3 shows the performance of the classifiers
in terms of mean accuracy and standard devia-
tion across iterations and folds, and the feature
set size. The majority baseline and the tradi-

tional readability feature baseline displayed above
the dashed line are both around 32%. All lin-
guistically informed classifiers clearly outperform
these two baselines. The best performing model
with an accuracy of 72.68% combines linguis-
tic complexity features and error rate with infor-
mation on topic and school track.5 Adding this
meta-information, which in most real-life appli-
cation contexts is readily available, accounts for
an 1.72% increase in accuracy. But also without
this meta-information, the combination of linguis-
tic complexity features and error rate is highly suc-
cessful with an accuracy of 70.96%.

Let us take a look at the individual contribu-
tions of the different feature sets. The overall lin-
guistic complexity classifier clearly outperforms
the one informed by the error rate features. This
comparison may be biased towards the linguistic
complexity classifier because it is informed by six
times more features. However, the impression that
complexity features are more indicative for writ-
ing development as a function of grade level is
supported by the classifiers based on individual
domains of linguistic complexity, which are more
comparable in size to the error rate based classi-
fier. The lexical complexity, discourse complexity,
and phrasal complexity classifiers all clearly out-
perform the classifier informed by error rate with
accuracies between 60.10% and 61.29% compared
to 54.47%. The same holds for morphological

5 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 10 in the Appendix.
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Size µ-Acc. SD-Acc.

Majority baseline 1 32.08 0.14
Traditional baseline 2 32.56 0.80
All Features + Meta 264 72.68 1.94
All Features 262 70.96 2.01
Complexity 225 68.35 2.25
Error Rate 37 54.47 2.11
Lexical 31 60.10 1.69
Discourse 48 60.10 1.66
Phrasal 41 61.29 1.73
Clausal 26 52.95 1.56
Morphological 27 56.45 1.47
Language Use 30 45.45 1.28
Human processing 20 42.18 1.55

Table 3: Grade-level classification of elementary &
secondary school texts, ten iterations of 10-fold CV,
distinguishing levels 1st/2nd, 3rd/4th, 5th/6th, 7th/8th

complexity (56.45%), although the difference is
less pronounced. However, not all dimensions of
linguistic complexity outperform error rate. This
holds only for features measuring the linguistic
system. While psycho-linguistic measures of lan-
guage use and human language processing clearly
outperform the baselines, they are performing sig-
nificantly worse than the error rate features. Lan-
guage experience and cognitive measures of the
complexity in processing language does not seem
to be the factor limiting academic writing perfor-
mance, which is intuitively plausible considering
that, especially in the early school years, the lan-
guage experience and language processing will be
mostly shaped by spoken language interaction.

6 Study 2: Writing Development in
Elementary vs. Secondary School

6.1 Set-Up
Having established that linguistic complexity and
error rate successfully predict writing performance
across academic writing development, let us com-
pare the development in early writing with that in
secondary school. For this, we split the KCT data
into two subsets: one containing only elementary
school writing (N = 727), the other the secondary
school writing from the different school tracks
(N = 906). We applied the same pre-processing
steps described in Section 5.1 including feature re-
duction and scaling of all predictor variables, ob-
taining 256 features for the elementary school and
255 for the secondary school data set (with num-

bers differing slightly since the feature reduction
is performed separately on each data set).

We then followed a two-fold approach: First,
we again tested and trained the same SMO clas-
sifiers as in Study 1 with linear kernels and 10 it-
erations of 10-fold CV (Section 6.2). Although
the classifiers were informed by the same feature
sets, due to the reduction of the sample size some
sets were reduced more in the aforementioned pre-
processing step which may result in slightly devi-
ating feature set sizes across tables. For the ele-
mentary school data set, only topic was added as
meta information, because there are no different
elementary school tracks in Germany.

Then, for both data sets we selected the most
informative features of each feature set in order
to zoom in on how they differ across grade-levels
(Section 6.3). This more fine grained analysis al-
lows us to complement the broader perspective
gained form the classification experiments with a
more concrete sense of which features matter and
how they change. For the selection, we ranked
all features by their information gain for the dis-
tinction of grade-levels in the respective data set
and selected the most informative feature of each
feature set resulting in overall 16 features cho-
sen for closer inspection. We then conducted
two-tailed t-tests to test for significant differences
across grade-levels in both data sets. To avoid re-
dundancy in our comparison, if the most informa-
tive feature for a given feature set in both data sub-
sets assessed the same concept, we chose the next-
most informative feature.6

6.2 Results & Discussion
Table 4 shows the classifiers performance on the
elementary school data subset.

Unlike in the previous study, the majority base-
line for this binary classification task is relatively
high with 71.72% given that there is less data
for the first and second grade. As in the first
study, the second baseline using the traditional
readability formula features text length and aver-
age word length performs only at the level of the
majority baseline. The classifier combining evi-

6 For example, the most informative feature of lexical
complexity is in both subsets a measure of lexical diversity
(Yule’s k and root type-token ratio). Due to its higher rank-
ing (overall most informative for secondary school) and its
reduced sensitivity to text length, we chose to keep Yule’s k
and included the second most informative lexical complexity
feature for elementary school: corrected verb variation (mea-
suring lexical variation).
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Size µ-Acc. SD-Acc.

Majority baseline 1 71.72 0.35
Traditional baseline 2 71.72 0.35
All Features + Meta 256 82.81 2.11
All Features 255 82.60 1.97
Complexity 218 77.93 2.42
Error Rate 37 81.56 1.27
Lexical 31 77.32 1.92
Discourse 46 75.18 1.71
Phrasal 39 76.77 2.18
Clausal 26 72.44 0.49
Morphological 27 71.72 0.35
Language Use 30 71.72 0.35
Human processing 19 71.72 0.35

Table 4: Grade-level classification of elementary
school texts, ten iterations of 10-fold CV, distinguish-
ing levels 1st/2nd and 3rd/4th

dence from linguistic complexity features and er-
ror rate clearly outperforms the baselines with an
accuracy of 82.60%.7 Adding meta-information,
which here means adding the writing topic, does
not make a significant contribution.

Looking at the classifiers for the subsets of fea-
tures, we see that error rate features make a signif-
icant contribution. While the difference in perfor-
mance still is significant,8 the classifier informed
only by error rate features with an accuracy of
81.56% performs close to the combined model
with an accuracy of 82.60%. The classifier us-
ing only complexity features performs worse, with
an accuracy of 77.93%, even though this classi-
fier is informed by considerably more features.
When looking at the individual domains of lin-
guistic complexity, again lexical complexity, dis-
course complexity, and phrasal complexity are the
most informative features, but they perform signif-
icantly lower than the error rate features. The other
domains of linguistic complexity seem to be unin-
formative for the grade level distinction in elemen-
tary school student writings – clausal and morpho-
logical complexity, language use, and human lan-
guage processing all perform at baseline level.

Our findings show that early writing and aca-
demic language development predominantly fo-
cuses on establishing writing correctness rather
than language complexification. However, in cer-

7 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 11 in the Appendix.

8One-sided t-test: t = �4.3978, df = 169.34, p = 9.63e-06

tain domains writing performance also advances
in terms of complexity, namely the lexicon, dis-
course, and phrase complexity. Systematic im-
provements in the domains of clausal and mor-
phological complexity or language use and human
language processing, however, do not take place.

Turning to the secondary school data set, Table
5 shows the classification results for that subset.

Size µ-Acc. SD-Acc.

Majority baseline 1 51.15 0.27
Traditional baseline 2 51.56 1.75
All Features + Meta 258 65.66 2.13
All Features 255 63.71 1.82
Complexity 220 64.16 1.63
Error Rate 35 54.34 2.48
Lexical 30 62.74 1.58
Discourse 45 57.13 1.75
Phrasal 41 57.64 2.10
Clausal 25 58.70 2.37
Morphological 27 54.31 2.39
Language Use 30 55.73 2.34
Human processing 18 52.67 1.90

Table 5: Grade-level classification on secondary school
texts, ten iterations of 10-fold CV, distinguishing lev-
els: 5th/6th and 7th/8th

The data set is more balanced across grouped
grade levels, with a majority baseline of 51.15%.
Traditional readability features again perform at
the same level as the majority baseline. The best
performing classifier again combines the features
encoding linguistic complexity and error rate with
information on topic and school track. It reaches
an accuracy of 65.66%, performing nearly 2% bet-
ter than the model without the meta-information.9

Different from the elementary school data classi-
fier, we here also distinguish the two secondary
school tracks, which apparently differ in the com-
plexity of the texts written in a given grade level.

A comparison of the classifiers based on error
rate features versus the complexity features shows
that for secondary school grade levels linguistic
complexity is more indicative for differentiating
grade levels. The classifiers differ in terms of their
accuracy by nearly 10%. When comparing the
performance of error rate features with the indi-
vidual domains of linguistic complexity, we see
that this difference cannot merely be explained by

9 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 12 in the Appendix.
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the difference in feature set size. Lexical complex-
ity, in particular, but also discourse complexity,
phrasal complexity, and clausal complexity signif-
icantly outperform error rate features. This clear
development of clausal complexity in secondary
school writing is another difference to the devel-
opment of writing of elementary school students.
Language use and morphological complexity also
show more development and significantly outper-
form the baselines. Human language processing
features do not show a significant development.

Summarizing the findings from Table 4 and Ta-
ble 5, we saw that the early writing and academic
language development seemed to predominantly
focus on establishing writing correctness rather
than complexification. However, despite this focus
on correctness, writing performance exhibits also
in early stages of writing acquisition advances in
terms of linguistic complexity in the domains of
lexicon, discourse, and phrasal complexity. Sys-
tematic improvements in the other domains of lin-
guistic complexity only take place at later stages
of writing development. The beginning of this
trend may be seen in the evidence from secondary
school writings, for which clausal complexity and
to some extent also morphological complexity and
language use become increasingly relevant. Lexi-
cal complexity, phrasal complexity, and discourse
complexity develop throughout all stages of writ-
ing acquisition.

6.3 Zooming in on Individual Features
Table 6 shows the most informative features from
each feature set, their group means across grade-
levels in elementary and secondary school, and
the results of the t-tests.10 In the first step (Sec-
tion 6.2), we found that error rate as well as lexi-
cal, phrasal, and discourse complexity develop in
both, elementary and secondary school writing.
Zooming in on these domains, we see that some
features systematically develop throughout grade-
levels. Overall error rate and capitalization errors
are highly informative in both data sets and de-
crease significantly across all grade-levels. Simi-
larly, for lexical complexity, lexical diversity mea-
sured by Yule’s k significantly decreases with pro-
gressing grade-levels (from 217 in grade-level 1/2
to 128 in grade-level 7/8). However, not in all

10 The appendix contains the information gain ranking for
the 16 most informative features for both data sets, see Ta-
bles 15 and 16 as well as boxplots visualizing of all features
across grade-levels, see Figures 2 to 1.

cases the results are as clear. Lexical variation
measured as corrected verb ratio significantly in-
creases from grade-levels 1/2 to 3/4 and 5/6 to 7/8.
Yet, the lexical variation of grade-level 7/9 writing
is closer to that of grade-level 3/4 than 5/6, leaving
unclear to which extent we see systematic devel-
opment in this subdomain of lexical complexity.

For discourse complexity, the transition proba-
bility of dropping the subject in a following sen-
tence, i.e., not repeating it as, e.g., the subject
or object, significantly decreases with increasing
grade-level in elementary school, i.e., the dis-
course becomes more coherent. The probabil-
ity remains stable at a low level in secondary
school. There, discourse complexity seems to de-
velop rather in terms of use of connectives such
as temporal connectives which significantly in-
crease with progressing grade-level, while show-
ing inconclusive results for elementary school.
The two most informative features from the do-
main of phrasal complexity behave similarly: The
coverage of noun phrase modifiers for elementary
school which significantly increases from grades
1/2 to grades 3/4 from 0.31 to 0.42 but stagnates
around 0.52 in secondary school. For secondary
school, it is represented by the ratio of verb modi-
fiers per verb, which significantly increases across
all grade-levels from 0.29 to 0.65.

In contrast to phrasal complexity, clausal com-
plexity represented by conjunction clauses per
sentence and verbs per t-unit does not significantly
change throughout elementary school. However,
it significantly increases in secondary school from
0.13 conjunction clauses per sentence to 0.18 and
from 1.69 verbs per t-unit to 1.8. This is in
line with our previous observation that elementary
school writing rather develops in terms of phrasal
but not clausal complexity, while clausal complex-
ity gains importance in secondary school.

The same holds for morphological complexity
and language use, which we found to only play
a role in the development of secondary school
writing. Accordingly, we do not see a signifi-
cant difference in either across elementary school
grade-levels for the most informative features
of these domains. For secondary school writ-
ing, however, the number of derived nouns per
noun significantly increases, indicating a stronger
nominal style in students writing and we see a
significant increase in vocabulary overlap with
dlexDB, which consists of frequencies from news
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Feature name Set Elementary school Secondary school
1/2 3/4 t p 5/6 7/8 t p

Overall errors / W Error Rate 0.68 0.37 11.53 .000 0.28 0.22 5.60 .000
Corrected verb variation Lexical 1.62 2.13 -11.55 .000 1.88 2.01 -3.03 .003

P(Subject ! Nothing) Discourse 0.15 0.10 3.40 .001 0.05 0.06 -1.35 .177
Avg. NP modifier types Phrasal 0.31 0.42 -8.93 .000 0.52 0.52 -0.21 .831
Conjunction clauses / S Clausal 0.11 0.13 -0.96 .339 0.13 0.18 -3.47 .001

Finite verbs / verb Morph. 0.82 0.81 1.63 .105 0.71 0.70 0.88 .381
Pct. LW in Subtlex Language Use 0.04 0.05 -1.71 .089 .085 .077 1.82 .069

DLT-IC (M) / finite verb Human Processing 1.09 1.11 -1.96 .051 1.22 1.25 -1.65 .099
Capitalization errors / W Error Rate 0.15 0.07 9.87 .000 0.05 0.04 5.61 .000

Yule’s K Lexical 217. 153. 7.21 .000 152. 128. 5.60 .000
Temp. connectives / S Discourse 0.73 0.63 1.85 .066 0.47 0.62 -4.10 .000

Verb modifiers / VP Phrasal 0.29 0.49 -4.85 .000 0.55 0.65 -2.86 .004
Verbs / t-unit Clausal 1.67 1.57 -0.97 .333 1.69 1.81 -3.18 .002

Derived nouns / noun Morph. 0.02 0.02 -0.38 .708 0.04 0.05 -2.66 .008
Pct. LW in dlexDB Language Use 0.62 0.60 1.60 .111 0.60 0.63 -3.27 .001
(
P

max. dep.) / S Human Processing 5.12 5.60 -2.64 .009 6.30 6.97 -4.59 .000

Table 6: Across-grade level group means of the most informative features of each feature set for distinguishing
grade-levels in elementary school (above dashed line) and secondary school (below dashed line).

texts. This might indicate that language use be-
comes more similar to news language in secondary
school, as dlexDB is based on news paper data.

Interestingly, for human language processing,
there seems to be a marginally significant increase
in DLT processing costs at the finite verb (with de-
creased modifier weight as defined in Shain et al.
2016) and a significant increase in the mean max-
imal dependency length per sentence across all
grade-levels in elementary and secondary school.

7 Study 3: Cross-Topic Testing of
Academic Language Development
Across Topics

7.1 Set Up
In our final study, we want to test whether the
results we obtained generalize across topics. El-
ementary school and secondary school students
were both allowed to freely choose from two dif-
ferent topics for their writing as spelled out in Sec-
tion 3. We used the two data subsets from Study
2, but additionally split them by topics, obtaining
four data sets: i) elementary school: Wolf topic,
ii) elementary school Park topic, iii) secondary
school: Future topic, and iv) secondary school
Idol topic. Table 7 shows the distribution of texts
across grade levels and topics.

We used the data sets of Wolf topic writings
and Future topic writings as training data sets and
tested the resulting model on Park topic and Idol

1/2 3/4 5/6 7/8 all

Wolf 133 353 0 0 466
Park 90 171 0 0 261
Future 0 0 332 333 665
Idol 0 0 130 111 241
all 203 524 462 444 1,663

Table 7: Distribution of grade levels across topics

topic texts, respectively. We chose this set-up
since the two test data sets are too small to al-
low for training and testing with reversed data sets.
We do not use cross-validation here, because we
specifically want to study transfer across differ-
ent topics rather than just different folds. In the
new set-up, we cross-topic trained and tested the
SMO classifiers based on the combination of com-
plexity and error rate features and separately for
the error rate and for the complexity features. We
compared the results against the majority baseline
and the traditional readability baseline containing
measures of text and word length. For the sec-
ondary school data, we trained one model with and
one without meta information on school tracks.

7.2 Results & Discussion

Table 8 shows the cross-topic classification perfor-
mance on elementary school students’ writings.
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Feature Set Train Test Acc.

Majority baseline n.a. Park 65.52
Traditional baseline Wolf Park 65.52
All Features Wolf Park 76.63
Complexity Wolf Park 68.58
Error Rate Wolf Park 81.61

Table 8: Cross-topic results for elementary school data

The majority baseline for elementary school
writings’ on the Park topic is more balanced than
the one for the Wolf topic. For both topics, 3rd/4th
grade was the most common grade-level. Train-
ing on Wolf texts and testing on Park texts with
the SMO classifier yields an accuracy of 76.63%.
While this does constitute a drop in accuracy as
compared to Study 2, which may at least partially
be explained by the reduced size of the training
data set, the model clearly generalizes across top-
ics. When taking a closer look at the difference be-
tween the purely error rate-based informed classi-
fier and the complexity feature based classifier, we
see that both generalize across topics. However,
error rate clearly outperforms the complexity fea-
tures and in fact hardly drops in performance when
compared to the results obtained in Study 2.11

The better performance of the classifier informed
by error rate compared to both complexity-based
classifiers indicates that error rate is more robust
across topics than complexity. It also further cor-
roborates the particular importance of writing cor-
rectness for early writing and academic language
development.

Table 9 shows the results of the classifiers for
the secondary school writing.

Feature Set Train Test Acc.

Majority baseline n.a. Idol 50.01
Traditional baseline Future Idol 43.15
All Features + Meta Future Idol 62.66
All Features Future Idol 59.33
Complexity Future Idol 59.34
Error Rate Future Idol 55.19

Table 9: Cross-topic results for secondary school data

Unlike for the elementary school data, grade-
levels are more or less balanced across topics for

11 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 13 in the Appendix.

this data set, leading to a majority baseline around
50%. As before, we see that all SMO classi-
fier generalize across topics when training on the
larger data set (Future) and testing on the smaller
one (Idol). In line with their relative importance
for this school level established in the second
study, the complexity features play more of a role
and interestingly generalize well, while the error
rate measures known to play less of a role at this
level of development are also less robust.12

8 Conclusion and Outlook

We presented the first approach modeling the lin-
guistic complexity and accuracy in German aca-
demic language development across grades one to
eight in elementary and secondary school. Our
models are informed by a conceptually broad fea-
ture set of linguistic complexity measures and ac-
curacy features extracted from error annotations.
The computational linguistic analysis made it pos-
sible to empirically identify a shift in the devel-
opmental focus from accuracy as the primary lo-
cus of development in elementary school to the
increasing complexity of the linguistic system in
secondary school. Our results also show where
both domains advance in parallel, in particular in
the lexical complexity domain, which plays an im-
portant role throughout. Despite the emerging fo-
cus on complexity throughout secondary school,
accuracy also continues to play a role. Investigat-
ing the generalizability of our results and the ap-
proach to complexity and accuracy development,
we demonstrated the cross-topic robustness of our
classifiers. The use of cross-topic testing to es-
tablish the robustness of machine learning models
thus supports the applicability of language devel-
opment modeling in real life.

These first results provide insights into the com-
plexity and accuracy development of academic
writing across the first eight years in German. Yet,
they are based on the quasi-longitudinal opera-
tionalization of writing development as a function
of grade level. Tracking genuine longitudinal de-
velop of individual students across extended pe-
riods of time is a natural next step, which will
make it possible to study individual differences
and learning trajectories rather than overall group
characteristics. We plan to follow up on this in
future work.

12 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 14 in the Appendix.
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A Appendices

#Obs/Pred! 1/2 3/4 5/6 7/8
P

1/2 1217 813 0 0 2030
3/4 430 4810 0 0 5240
5/6 0 0 3029 1591 4620
7/8 0 0 1590 2850 4440P

1647 5623 4619 4441 16330

Table 10: Confusion matrix for the best model in study 1 (all feat. + meta) summed across iterations

#Obs/Pred! 1/2 3/4
P

1/2 1232 798 2030
3/4 449 4791 5240P

1681 5589 7270

Table 11: Confusion matrix for best elementary school model in study 2 (all feat. + meta) summed across iterations

#Obs/Pred! 5/6 7/8
P

5/6 3049 1571 4620
7/8 1497 2943 4440P

4546 4514 9060

Table 12: Confusion matrix for best secondary school model in study 2 (all feat. + meta) summed across iterations

#Obs/Pred! 1/2 3/4
P

1/2 51 39 90
3/4 9 162 171P

60 201 261

Table 13: Confusion matrix for the best model for elementary school in study 3 (Error rate)

#Obs/Pred! 5/6 7/8
P

5/6 91 39 130
7/8 51 60 111P

142 99 241

Table 14: Confusion matrix for the best model for secondary school in study 3 (all feat. + meta)
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Feature name Set Merit

Overall errors / W Error rate .166
Root type-token ratio Lexical .150

Corrected type-token ratio Lexical .150
Number of words Clausal .137

Capitalization errors / W Error rate .128
HDD Lexical .124

Corrected verb variation Lexical .110
Squared verb variation Lexical .110

Word splitting + hyphenation errors / W Error rate .108
P(Subject!Nothing) Discourse .106

P(Nothing!Nothing) Discourse .104
P(Nothing!Subject) Discourse .099
Number of sentences Clausal .094
P(Nothing!Object) Discourse .093

Yule’s K Lexical .091
MTLD Lexical .088

Table 15: Top features in information gain ranking for grade-level distinction in elementary school

Feature name Set Merit

Yule’s K Lexical .030
Capitalization errors / W Error rate .029

(
P

max. dep.) / S Human processing .026
MTLD Lexical .023

Verbs / t-unit Clausal .023
Verbs / S Clausal .023

HDD Lexical .022
Overall errors / W Error rate .022

Nouns / W Lexical .021P
Non-terminal nodes / tree Clausal .021

W / S Clausal .021
to infinitives / S Lexical .020

Uber index Lexical .020
Temporal connectives / S Discourse .019P
Non-terminal nodes / W Clausal .019

Clauses / S Clausal .017

Table 16: Top features in information gain ranking for grade-level distinction in secondary school
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(a) DLT integration cost (m) (b) Max. dependency / S

Figure 1: Most informative human processing features

(a) Capitalization errors (b) Overall errors

Figure 2: Most informative error rate features

(a) Corrected verb variation (b) Yule’s K

Figure 3: Most informative lexical features

(a) Subject transitions (b) Temporal connectives

Figure 4: Most informative discourse features.

(a) NP modifier coverage (b) Verb modifiers / VP

Figure 5: Most informative phrasal features.

(a) Conjunction clauses / S (b) Verbs / t-unit

Figure 6: Most informative clausal features.

(a) Finite verbs / verb (b) Derived nouns / noun

Figure 7: Most informative morphology features.

(a) Words in Subtlex-DE (b) Words in dlexDB

Figure 8: Most informative language use features



Analyzing the linguistic complexity
of German learner language
in a reading comprehension task
Using proficiency classification to investigate
short answer data, cross-data generalizability,
and the impact of linguistic analysis quality

Zarah Weiss and Detmar Meurers
University of Tübingen

While traditionally linguistic complexity analysis of learner language is
mostly based on essays, there is increasing interest in other task types. This
is crucial for obtaining a broader empirical basis for characterizing language
proficiency and highlights the need to advance our understanding of how
task and learner properties interact in shaping the linguistic complexity of
learner productions. It also makes it important to determine which com-
plexity measures generalize well across which tasks.

In this paper, we investigate the linguistic complexity of answers to read-
ing comprehension questions written by foreign language learners of Ger-
man at the college level. Analyzing the corpus with computational linguistic
methods identifying a wide range of complexity features, we explore which
linguistic complexity analyses can successfully be performed for such short
answers, how learner proficiency impacts the results, how generalizable they
are across different contexts, and how the quality of the underlying analysis
impacts the results.

Keywords: complexity analysis, L2 German, proficiency assessment,
reading comprehension, natural language processing

1. Introduction

Complexity research is an established area in Second Language Acquisition (SLA),
where Complexity together with Accuracy and Fluency form the core dimensions
of second language (L2) performance and proficiency known as the CAF triad
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(Housen & Kuiken, 2009). As empirical basis for the research of CAF, the studies
traditionally are based on longer written learner productions, such as essays col-
lected in learner corpora. More recently, there is increasing interest in different task
types, which have been shown to heavily influence CAF constructs (Alexopoulou,
Michel, Murakami, & Meurers, 2017; Biber, Gray, & Staples, 2016; Caines & Buttery,
2017). Since differences in both – language proficiency and tasks – can cause sys-
tematic variation in CAF constructs, research needs to cleanly separate proficiency
effects from task effects. This is crucial for supporting valid analyses of interlan-
guage (Meurers & Dickinson, 2017) and obtaining a characterization of language
proficiency grounded in SLA (Tracy-Ventura & Myles, 2015).

In terms of the complexity measures targeted, research has mostly focused
on measures of lexical and syntactic complexity and primarily analyzed English.
This limited research scope has been criticized as overly reductionist (Housen,
De Clercq, Kuiken, & Vedder, 2019) and other linguistic domains and different
L2s have started to attract more attention. To compute a wider range of linguistic
complexity measures for substantial samples of learner data, research increasingly
makes use of computational linguistic methods to automate the analyses on which
complexity measures are based. Since the underlying Natural Language Process-
ing (NLP) models are generally trained on native language data, the validity of the
analysis cannot be taken for granted for learner language and can involve substan-
tial conceptual challenges (Meurers, 2020; Meurers & Dickinson, 2017). It thus
is important to determine how much the computation of complexity features is
impacted by the effect that learner language characteristics have on the automated
NLP analyses.

In this paper, we bring these strands together by (a) extending the range of
task types used in complexity research to include short answers given in response
to reading comprehension questions, (b) computing a broad range of complexity
measures for German and exploring the generalizability of results across task con-
texts varying to different degrees, and (c) testing the impact of learner language
characteristics on the automated complexity analysis.

2. Related work

A current overview of SLA research on linguistic complexity is available through
the recent special issue on the topic (Housen et al., 2019), so we focus the discussion
here on the research strands introduced above that motivate the current paper.
Starting with the relevance of analyzing language from a range of contexts and of
considering the nature of the task when analyzing the learner language that was pro-
duced for it, task effects on linguistic complexity are receiving increasing attention.
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This includes work grounded in the Task-based Language Learning approach to
SLA (Alexopoulou et al., 2017; Michel, Murakami, Alexopoulou, & Meurers, 2019),
as well as studies on the influence of register (Biber et al., 2016), genre (Yoon & Polio,
2016), and topic (Yoon, 2017). This research shows that task differences can intro-
duce systematic variation of CAF and that such task effects have to be controlled
when using CAF to characterize language proficiency. While learner corpus con-
struction so far has mostly focused on learner essays, some tools have been designed
to support teachers in collecting rich task-based data (e.g., WELCOME for reading
comprehension tasks, Ott, Ziai, & Meurers, 2012) and some studies highlight the
importance of task design for making learner corpora relevant for SLA research
(e,g., Tracy-Ventura & Myles, 2015). Recent computer-based language use contexts
also provide access to task information, such as task-based L2 text chat data (Ziegler,
2018), and data elicited in computer-based learning environments offering a broad
range of activities, such as EFCamDat (Geertzen, Alexopoulou, & Korhonen, 2013),
arguably can play an important role in helping overcome the limitations of tradi-
tional learner corpora.

Turning to the nature of the complexity measures being analyzed, morpho-
logical complexity is increasingly receiving attention, also due to a broadening
of the set of languages being analyzed to include more morphologically rich lan-
guages. Brezina and Pallotti (2019) propose a new measure of morphological com-
plexity that correlates with Italian L2 proficiency and distinguishes between native
and advanced non-native writing in Italian but not in English. De Clercq and
Housen (2019) report similar findings for morphological complexity measures on
spoken L2 French compared to English.

The endeavor of broadening the scope of complexity research can also build
on analytic methods that have been developed for readability assessment for a
broader range of languages, including French (François & Fairon, 2012), German
(Hancke, Vajjala, & Meurers, 2012; Weiss & Meurers, 2018), Swedish (Pilán, Vajjala,
& Volodina, 2015), and Italian (Dell’Orletta, Montemagni, & Venturi, 2014). The
close connection between linguistic complexity analysis in SLA and readability re-
search is emphasized by Vajjala and Meurers (2012), demonstrating the successful
use of SLA complexity measures for predicting text readability. In current read-
ability research, the extraction of a range of complexity measures is generally com-
bined with machine learning techniques to explicitly model and predict text
readability (e.g., Crossley, Skalicky, & Dascalu, 2019; Weiss & Meurers, 2018). In
a similar vein, complexity measures are also used to characterize and predict aca-
demic writing development (e.g., Crossley, Weston, Sullivan, & McNamara, 2011;
Staples, Egbert, Biber, & Gray, 2016; Weiss & Meurers, 2019a). These different ap-
plication domains make use of a range of measures well beyond traditional lexical
and syntactic complexity. In research on academic writing quality, discourse com-
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plexity and text cohesion have played a major role (cf. Crossley, 2020 and refer-
ences therein). Psycholinguistic measures focused on human processing demands
at the sentence level have successfully been adapted to the tasks of readability and
proficiency assessment (Shain, van Schijndel, Futrell, Gibson, & Schuler, 2016;
Weiss & Meurers, 2019b). The integration of measures from diverse subfields to
broaden the scope of complexity research has been shown to substantially increase
accuracy and robustness of the models (Crossley, 2020; Weiss & Meurers, 2019b).

3. This study

In this paper, we want to broaden the empirical base of complexity research and
investigate a number of factors: the feasibility of reliably analyzing linguistic com-
plexity based on short learner responses, the generalizability of the results, and the
quality of the NLP involved in automating the analysis. Our exploration is based on
a corpus of short answers to reading comprehension questions written by college-
age learners of German in the US, the CREG corpus (Ott et al., 2012). Reading com-
prehension activities are very commonly used and well-suited to foster language
learning in the way they require learners to interact with both form and meaning
in input and output. But as far as we are aware, answers to reading comprehension
questions have so far not been studied in linguistic complexity research. Compared
to essays, the relatively short answers pose a challenge in providing less language
material that can be analyzed, which can negatively impact the robustness of com-
plexity measures and the range of complexity measures that can be computed. For
example, computing lexical diversity or averages of morphological, lexical, or syn-
tactic measures becomes more robust for longer texts, and some measures of dis-
course cannot be applied to short answers. The explicit task context provided by
the given reading text and the comprehension question also defines a precise func-
tional setting delineating the range of language forms that can be used to answer the
question – in line with variationist linguistics specifying variables to determine the
possible variants that can be studied and interpreted (Tagliamonte, 2011) and reg-
ister research emphasizing the need to analyze language that is functionally associ-
ated with a situational context (Biber et al., 2016: 643).

Against this background, we pursue the following research questions (RQ):

1. Can we model L2 proficiency using broad linguistic complexity analysis on
the limited evidence provided by short answers to reading comprehension
questions?

2. To what extent is such a model generalizable across task contexts provided by
different questions and reading texts?
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3. How much do the characteristics of learner language impact the NLP-based
extraction of complexity measures and the overall complexity model?

To answer these questions, we first introduce the CREG corpus and the data sets
used in the studies (Section 4) as well as the complexity analysis pipeline we em-
ployed (Section 5). We then spell out the machine learning experiments designed
to address the first two research questions in Section 6, which includes a visualiza-
tion of the experimental set-up and analysis. Building on the concepts and methods
introduced in that section, we then address the third research question in Section 7,
reporting on the performance of the analysis pipeline on learner language when
compared to a manual analysis, before concluding the paper in Section 9.

4. Data

Our analyses are based on the Corpus of Reading Comprehension of German
(CREG; Ott et al., 2012; Ziai, 2018). CREG is a task-based corpus of reading exer-
cises that supports the analysis of learner language in the explicitly given task
context used in eliciting the data. The corpus consists of data elicited over the
course of four years in beginner and intermediate level German courses taught
in two German language programs in the US, at the University of Kansas (KU)
and the Ohio State University (OSU). Together with the learner language in the
answers, the corpus contains explicit meta-information about text, questions, tar-
get answers used to coordinate expectations across classes, and teacher ratings of
the learner answers in terms of whether they answered the question. The students
almost all specified English as their L1 (97.8%), with very few reporting having
German-speaking parents (5.3%) or having been to Germany for more than three
months (13.6%).

As illustrated in Figure 1, a reading exercise in CREG consists of one reading
text, one or more reading comprehension questions, one or more possible target
answers defined by the programs’ language teachers, and transcriptions of student
answers to each question. Student answers were originally hand-written and were
all transcribed by two annotators using the WEb-based Learner COrpus Machine
(WELCOME, Ott et al., 2012). While in most cases the transcriptions are identi-
cal, for some answers there are differences, e.g., due to one transcriber not having
transcribed all of the answer. For the purposes of this article, we always chose the
longest transcription.
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Figure 1. Components of a reading exercise in CREG

4.1 CREG-29K

We focus the analysis in this paper on the four courses at the beginner-level at both
universities, corresponding to CEFR levels A1 to A2. These levels are the target pro-
ficiency levels at the end of the course as specified by the program directors. For
the studies in this article, we use this course level as approximation of student pro-
ficiency. Despite placement testing, students in the same course naturally differ in
ability and individually develop during the course, so the proficiency labeling is rel-
atively noisy.

The raw corpus we used consists of 29,019 student answers. We removed 106 stu-
dent answers for which manual linguistic annotations are available (see Section 4.3)
in order to keep those as a separate evaluation data set for the final study (Section 7).
The remaining 28,913 student answers constitute our CREG-29K corpus. On aver-
age students contributed 16.41 answers (SD = 15.00) at their course level.

4.2 CREG-KU, CREG-OSU, and CREG-7K

The distribution of student answers across course levels is highly imbalanced. To
answer our first two research questions, we therefore extracted three sub-corpora
from CREG-29K that are balanced across course levels using stratified random
sampling: CREG-7K contains 6,548 student answers elicited in equal parts at KU
and OSU (7,432 sentences; 46,987 words). Table 1 spells out the overall number of
student answers, sentences, and words by course level (indicated using the corre-
sponding target CEFR level) and institution (KU and OSU).
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We also created two corpora divided by institution to investigate differences
between KU and OSU: CREG-KU contains 7,839 student answers elicited at
KU (8,472 sentences; 44,968 words). CREG-OSU contains 3,259 student answers
elicited at OSU (3,865 sentences; 27,489 words). Table 2 shows the number of
student answers, sentences, and words by course level for both sub-corpora.

Table 1. Corpus statistics of CREG-7K across course levels and universities

A1.1 A1.2 A2.1 A2.2

KU OSU KU OSU KU OSU KU OSU

#answers  742   733   901   905   821  815  814   817

#sentences  794   771   938 1,032   929  988  891 1,089

#words 2,697 4,315 4,128 6,560 5,773 7,748 6,688 9,078

Table 2. Corpus statistics of CREG-KU and CREG-OSU across course levels

CREG-KU CREG-OSU

A1.1 A1.2 A2.1 A2.2 A1.1 A1.2 A2.1 A2.2

#answers 1,995 1,901  1,977  1,966  736   905   809  810

#sentences 2,100 1,982  2,263  2,127  773 1,032   980 1,080

#words 7,305 8,384 13,625 15,654 4,323 6,560 7,639 8,967

4.3 CREG-104

Ott and Ziai (2010) manually created a dependency annotation for 106 KU stu-
dent answers for course levels A1.1, A2.1, and A2.2 using three trained annotators
and a final arbitration step to resolve conflicts. For our third study, we converted
the dependency annotation to the scheme of S. Brants, Dipper, Hansen, Lezius,
and Smith (2002), used by the NLP tools discussed in Section 5, by mapping
dependency labels and adjusting the sentence segmentation so that every depen-
dency graph has a single root. We also excluded two student answers that were
written entirely in English, leaving 104 student answers with 780 words in 110 sen-
tences. Table 3 provides the details for this CREG-104 corpus.

Table 3. Corpus statistics of CREG-104 across course levels

A1.1 A1.2 A2.1 A2.2

#answers  25 0  32  47
#sentences  25 0  33  52
#words 165 0 221 394
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We augmented the CREG-104 annotation with a morphological analysis. For this,
we manually corrected the output of the morphological analysis of the Mate tools
(for details see Section 5.2). We thereby obtain annotations for lemmas as well
as case (nominative, accusative, genitive, dative), number (singular, plural), gen-
der (male, female, neuter), person (first, second, third), tense (simple past, simple
present), verb mode (indicative, imperative, subjunctive), and degree of compar-
ison (positive, comparative, superlative). We use these manual annotations as a
reference to evaluate the purely automatic NLP analyses in Section 7. An example
for the manual reference annotation of a student answer in CREG-104 is provided
in Figure 2.

Figure 2. Student answer (word-by-word translation in italics) with manual reference
annotation of dependencies, lemmas, parts-of-speech tags, and morphological features
(here: CASE|NUMBER|GENDER for nouns and NUMBER|PERSON|TENSE|MODE
for finite verbs)

4.3.1 Manual annotation of learner language and target hypotheses
Since linguistic categories and annotation schemes were generally developed for
the analysis of well-formed native language, analyzing learner language poses
substantial challenges (Meurers, 2015). For example, when analyzing learner lan-
guage, the distributional, morphological, and lemma evidence for determining
parts-of-speech (PoS) often fails to converge on a single category (Díaz-Negrillo,
Meurers, Valera, & Wunsch, 2010), and the bottom-up form-based characteristics
often do not line up with the top-down meaning-based properties (Meurers &
Dickinson, 2017). In order to obtain a manual linguistic analysis for various levels
of linguistic annotation for learner language, it is thus essential to explicitly define
the target hypothesis that serves as the basis of the respective linguistic annotation
(Lüdeling, 2008). Depending on the analysis purpose, multiple layers of anno-
tation are required, which can be based on distinct target hypotheses (Lüdeling,
Walter, Kroymann, & Adolphs, 2005).
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This can be illustrated with the student answer from CREG-104 shown in
Figure 2. The surface form of each individual expression adheres to the German
norm in the sense that each of those word forms exists in German. This supports
a straightforward local surface form analysis. But at the clausal level, the syntactic
case marking and the subject verb agreement relations of the finite verb hat are
incompatible with the nominal forms realized in the sentence.1 If seine Eltern (his
parents) is the subject, the plural verb form would be required (haben). So the tar-
get hypothesis for that analysis would be Seine Eltern haben BA geholfen, which
means that someone named BA was helped by his parents. Alternatively, BA could
also be the nominative singular subject of the sentence, but then seine Eltern would
need to be realized in accusative case. So the target hypothesis for that analysis
is Seinen Eltern hat BA geholfen and the interpretation of that sentence becomes
that BA helped his parents. Given that these two analyses differ in their interpre-
tation, the explicit task context helps us decide which of the analyses to chose, i.e.,
which morphological evidence not to take at face value. This sentence was written
to answer the question “Who did BA help?” so based on this top-down task infor-
mation, we can determine that the analysis with BA as the subject is the right one in
this context.

Stepping back from the example, in general we can establish two different tar-
get hypotheses, a local form-based target hypothesis (TH1) and a meaning-based
target hypothesis (TH2). We cannot base our manual reference annotations solely
on TH1, because it does not allow us to conduct a dependency analysis of entire
clauses. TH2, on the other hand, does not make full use of the morphological ev-
idence. If one simply glossed over the missing accusative case marking, such a ro-
bustly meaning-focused analysis would miss out on information that is potentially
very relevant for characterizing language acquisition, the incremental acquisition
of morpho-syntax. Due to the diverging requirements that these linguistic refer-
ence annotations need to satisfy, we use both target hypotheses and make them
explicit in the reference annotation. We follow a local form-based target hypoth-
esis for our PoS, lemma, and morphological reference annotations, while using a
meaning-based target hypothesis for the dependency annotation.

1. We here are discussing morpho-syntactic dependencies. At the semantic level, the main lex-
ical predicate helfen (help) would be the head.
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5. Automatic complexity analysis

To analyze linguistic complexity, we calculate 297 features of linguistic complexity
using our complexity code (Weiss & Meurers, 2018), which has been successfully
used to model the complexity of longer text productions for German L2 profi-
ciency assessment (Weiss & Meurers, 2019b), early academic language develop-
ment (Weiss & Meurers, 2019a), and readability assessment (Weiss & Meurers,
2018). In the following, we first describe the complexity features we calculated
(Section 5.1) before elaborating on the NLP pipeline used for this (Section 5.2).

5.1 Feature description

Linguistic complexity is the “degree to which language is elaborate and varied”
(R. Ellis, 2003:340). In terms of the taxonomy of Housen, Kuiken, and Vedder
(2012), we focus on the absolute linguistic complexity in the lexical, morpholog-
ical, phrasal, clausal, and discourse domains. The code also extracts features of
relative complexity that are motivated by usage-based theories of language learn-
ing (e.g., N. C. Ellis, 2002) grouped under language use, as well as insights from
psycholinguistic research included under the label human processing. We briefly
characterize here the types of features we calculate for each domain. A compre-
hensive list of all features, their definitions, and definitions of the linguistic units
used to measure them is included in Appendices A and B.

Lexical complexity
We calculate 34 measures of lexical complexity. These predominantly include long-
established measures of lexical diversity and variation, including different types of
general or PoS-specific type-token ratios as well as the measure of textual lexical
diversity (MTLD; McCarthy, 2005). This category also includes other PoS-based
ratios and some measures of semantic relatedness and specificity.2

Morphological complexity
We include 41 measures of morphological complexity that cover the domains
of inflection, derivation, and compounding. These include features of the elab-
oration of compounds such as average noun compound depth, measures of the
expression of case or tense, or noun derivation measures.

2. While traditionally lexical sophistication is also grouped under lexical complexity, we include
it under “language use” below to maintain a clear distinction between features of absolute and
relative complexity.
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Phrasal complexity
We compute 47 measures of phrasal complexity that assess the elaboration as well
as variation of phrasal modification. Aside from more coarse-grained measures
such as average noun phrase length, this also includes specialized measures for
noun and verb phrase complexity as well as measures of the variation of phrase
modification. We include verb phrase modification here instead of under clausal
complexity since the verb clusters of German offer substantial possibility for
complexification below the clausal level. Likewise, the category also includes sev-
eral measures of elaborate grammatical constructions such as periphrastic tense
patterns.

Clausal complexity
We analyze 25 measures of clausal complexity, focusing predominantly on clausal
subordination and coordination. Aside from more global measures of overall
clausal complexity such as t-units per sentence, this also includes more fine-
grained measures of clausal elaboration such as relative clauses per clause.

Discourse complexity
We identify 64 measures of discourse complexity and cohesion. These include
explicit cohesion measures based on connectives, and implicit cohesion measures
such as grammatical transitional probabilities from one sentence to another, e.g.,
the probability of a subject being repeated in the next sentence as an object, and
global as well as local argument, stem, and content overlap measures. Finally, this
category also includes measures of pronoun use.

Language use
We compute 58 features of language use in terms of lexical sophistication mea-
sures (word frequencies) and age of active use measures. The word frequency
measures are based on several frequency data-bases including news data, captions
of movies, books, and childrens’ writings.

Human processing
We include 25 features of human processing based on dependency lengths and
the Dependency Locality Theory (DLT; Gibson, 2000) for human sentence pro-
cessing. The theory bases human processing costs on the locality of dependents
and the cost of storing incomplete discourse structures. Its predictions are used
to assess the average and maximal integration cost at the finite verb, using several
DLT parametrizations suggested by Shain et al. (2016).
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Surface measures
Additionally, the code calculates three surface text features: number of words,
number of sentences, number of paragraphs.

5.2 System description

The code is written in Java and extracts complexity measures from plain text input
in a three-step process. First, it generates automatic linguistic annotations at vari-
ous levels using an elaborate NLP pipeline, including:

– Sentence segmentation and tokenization with Apache OpenNLP 1.9.1 with
their model trained on the Leipzig corpus (Goldhahn, Eckart, & Quasthoff,
2012).3

– PoS tagging, lemmatization, morphological analysis, and dependency parsing
using the Mate tools 1.3 (Björkelund, Bohnet, Hafdell, & Nugues, 2010; Bohnet
& Nivre, 2012) with their model trained on the dependency conversion of the
Tiger treebank (S. Brants et al., 2002) described in Seeker and Kuhn (2012)
without ellipses.

– Constituency parsing using the Stanford parser from the CoreNLP 3.9.2
pipeline (Chen & Manning, 2014) with their model trained on the Negra cor-
pus (T. Brants, Skut, & Uszkoreit, 1999). To ensure consistency in the linguis-
tic annotation, this step is based on the PoS tags produced by the Mate tools.

– Topological field parsing using the Berkeley parser 1.7 (Petrov & Klein, 2007)
with the model by Ziai (2018) trained on the TüBa-D/Z treebank (Telljohann,
Hinrichs, & Kübler, 2004).

– Compound splitting using the dictionary-based jWordSplitter 3.4.4

These models provide state-of-the-art performance on standard German data (cf.
references cited). For an estimation of their performance on learner data, please
see Section 7.

Following the linguistic annotation step, the code extracts all information re-
quired for the calculation of the complexity features. This predominantly involves
counting linguistic constructions, but also looking up word frequencies in fre-
quency data-bases or semantic relations in GermaNet 11.0 (Hamp & Feldweg, 1997).

Finally, the code calculates the complexity features based on the extracted
counts. Each analysis step produces its own intermediate output, which serves as
input for the following step. As such, the extraction of linguistic constructions and
complexity features can also be partially or fully based on external analyses such
as manual reference annotations.

3. https://opennlp.apache.org/
4. http://www.danielnaber.de/jwordsplitter/
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6. Determining German L2 proficiency using linguistic complexity
analysis

To address the first research question regarding the extent to which it is possible
to determine German L2 proficiency based on the limited evidence provided by
short answers to reading comprehension questions, we build and compare course-
level classifiers. We use data from CREG-KU, CREG-OSU, and CREG-7K to test to
what extent it is possible to predict the four course levels (A1.1, A1.2, A2.1, and A2.2)
based on the linguistic complexity analysis of the student answers (Section 6.1). In
Section 6.2, we then conduct a more elaborate exploration to see how well our clas-
sifiers generalize across task contexts that vary to different degrees.

6.1 Course-level classification

6.1.1 Set-up of study 1
We analyzed the student answers in the CREG corpus to extract 297 complexity
features using the approach described in Section 5. We then removed all features
that showed little variability on this data set, receiving the same value for more
than 80% of the data points. This applied to 150 complexity features leaving 147 fea-
tures for the analysis (marked by superscript a in Appendix B). We calculated the
z-scores for each complexity feature and split the data into the CREG-KU, CREG-
OSU, and CREG-7K sub-corpora introduced in Section 4.2. We then removed
extreme outliers.5 We obtained training, development, and test sets for each sub-
corpus using a 70/20/10 split stratified by course level. After obtaining the splits, we
trained an ordinal random forest (ORF) classifier6 for which we performed hyper-
parameter tuning7 on the development set. Figure 3 provides a visual overview of
the approach.8

5. To not interfere with the highly variable nature of the data, we proceeded very conserva-
tively, using nine standard deviations from the mean as a threshold.
6. An ordinal random forest is a random forest that treats the predicted variable as ordinal
rather than nominal data. We initially also explored using a Support Vector Machine using
polynomial or radial kernels. Since ORF systematically performed best, we only report the ORF
results. Since these machine learning algorithms are relatively robust against collinear features,
the correlation between complexity measures was no particular concern for these experiments.
7. Hyper-parameter tuning is a process that sets the parameters of the machine learning algo-
rithm used.
8. To keep things readable, the figures do not show the separate development set, which is like
a test set but used for model tuning during development, as is usual in machine learning.
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a. Train/test procedure

b. Cross-corpus test procedure

Figure 3. Set-up for RQ1: For each corpus (CREG-7K/OSU/KU), student answers are
automatically analyzed and split into distinct sets to train and test the L2 proficiency
model (3a). The KU and OSU models generated by this procedure are additionally cross-
corpus tested on the respective other corpus (3b)
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6.1.2 Results of study 1
Table 4 shows the results of the machine learning experiments for the first study.
For each classifier, it reports the course-level prediction accuracy on the regular
test set (KU/OSU/7Ktest) and for the models trained on the KU or OSU training
data it also reports the performance for the respective other full corpus (OSU or
KU) for cross-corpus testing. For each accuracy result, we analyzed whether it sig-
nificantly improves on the majority baseline.9

We see that the classifier trained on the KU training set performs well on the
KU test set with an accuracy of 84.21%. The model trained on the OSU training
set achieves an accuracy of 81.45% on the OSU test data. So the rich feature set
successfully identifies differences in linguistic complexity between course levels
for data collected in independent language programs.

Table 4. Classifier performance of course-level prediction across sub-corpora

Trained on Tested on Acc. 95% CI Baseline P-Value

CREG-KUtrain CREG-KUtest 84.21 [82.67; 85.66] 25.45 < 2−16

CREG-OSU 28.35 [26.81; 29.93] 27.77     0.2342

CREG-OSUtrain CREG-OSUtest 81.45 [78.87; 83.85] 27.77   < 2.2−16

CREG-KU 28.83 [27.83; 29.85] 25.45       6.559−12

CREG-7Ktrain CREG-7Ktest 73.58 [72.24; 74.88] 26.95  < 2−16

For the trained models, where the evidence contributed by the different features
is weighted based on the training data, we find that the models do not generalize
across universities. When tested on the CREG-KU corpus, the accuracy of the
classifier trained on CREG-OSUtrain drops to 28.83%, barely outperforming the
majority baseline, and the classifier trained on CREG-KUtrain does not perform
significantly above the majority baseline when tested on the CREG-OSU corpus.

For the classifier trained on CREG-7Ktrain, which contains KU and OSU data in
equal parts, the accuracy of 73.57% shows that student answers elicited at KU and
those elicited at OSU do share some linguistic complexity characteristics allowing
the classifier to generalize from one data set to the other. So the fact that the mod-
els trained on the CREG-KU/CREG-OSU corpora did not generalize to the other
university’s test corpus has to be due to other factors, which we investigate further

9. Accuracy is the number of correctly classified items divided by all items (Tharwat, 2018) and
will be used as a performance measure throughout this article. For significance testing, we used
one-sided t-tests with H 1 =Acc. > Baseline based on the confusion matrices, as implemented by
the R package caret.
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in the second study in Section 6.2. Another interesting research question, which for
space reasons is beyond the scope of this paper, would be to explore which features
work best across universities and for which types of subtasks (e.g., question types).

6.2 Generalizability of complexity modeling

6.2.1 Set-up of study 2
To go beyond basic cross-corpus evaluation and gain insights into what deter-
mines generalizability of the results, we need to systematically investigate under
which conditions the linguistic complexity models generalize. We therefore per-
form machine learning experiments that differ in terms of how many character-
istics of the reading task are shared between the training and the test data. This
is illustrated in Table 5. None of the test sets contain answers that are part of the
training data. But the settings differ in terms of whether data for the same ques-
tions, reading texts, or from the same university are included in the training and
test sets.

Table 5. Overview of the characteristics shared between training and test data

Answer Question Text University

Regular test set ✓ ✓ ✓

Held-out question set ✓ ✓

Held-out text set ✓

Cross-corpus set

In the first study, we had used a regular test set (containing randomly selected
answers to questions for which possibly other answers were part of the training set)
and a cross-corpus test set (containing answers elicited at a different university for
different tasks). We now introduce two additional test sets standing in between the
previous two in terms of how many characteristics they share with the training set.
In machine learning, we speak of held-out data to indicate that certain data was not
used in training a classifier in order to observe how well this classifier generalizes to
the held-out type of data. The held-out question test set (OSU/KU/7KHoQ) includes
answers to questions that are not included in the training set (row 2 in Table 5). The
held-out text test set (OSU/KU/7KHoT) includes answers to questions that relate to
texts that did not occur in the training data (row 3 in Table 5).

To obtain the data subsets for our second study, we proceeded as follows:
We first split each of the overall data sets (OSU, KU or 7K) into a 10% test data
set (HoQ-HoTest and HoT-HoTest) satisfying the held-out criterion (questions or
texts). From the remaining 90% we randomly sampled an ordinary 10% test set
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(HoQ-RTest, HoT-RTest) and a 10% development set (HoQ-Dev, HoT-Dev), and
the remaining 70% served as training set (HoQ-train, HoT-train). So overall, we
obtain two data set splits for each of the OSU, KU, and 7K subcorpora: one 10/
10/10/70 split for the held-out question condition and one such split for the held-
out text condition. Apart from the two new data splits used, the set-up is iden-
tical to that of Study 1 in Section 6.1.1. Figure 4 provides a visual overview of the
approach.10

Figure 4. Set-up for RQ2: Corpus data is analyzed and split into training and test data,
once ensuring held-out questions and once ensuring held-out texts

6.2.2 Results of study 2
Table 6 shows the results of our machine learning experiment using held-out read-
ing comprehension questions and Table 7 the results using held-out reading texts.
They report the classification performance in terms of accuracy on the regular test
set and the held-out question/text test set for each classifier. For models trained on
the KU or OSU subsets, they also report the performance on the respective other
full OSU or KU corpus for cross-corpus testing. As before, for each accuracy we
also report whether it significantly differs from the majority baseline.

For the held-out question analysis in Table 6, the performance of all three
models (KU, OSU, 7K) on the regular test set and on the cross-corpus set is com-
parable to what we found in Study 1 in Section 6.1. This is to be expected because
this part of Study 2 is virtually identical to Study 1 and serves only for comparison
with the held-out question test set. For the held-out question test set, we find that
performance drops to between the regular test set and the held-out question test

10. The figure again does not show the development set, as in Figure 3.
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Table 6. Classifier performance on the held-out question (HoQ) splits of CREG
(RTest =regular test set; HoTest =held-out test set)

Trained on Tested on Acc. 95% CI Baseline P-Value

KUHoQ-train KUHoQ-RTest 84.56 [82.92; 86.09] 25.89 < 2−16

KUHoQ-HoTest 57.32 [53.59; 61.00] 27.18  < 2.2−16

OSU 27.06 [25.54; 28.62] 27.77    0.8209

OSUHoQ-train OSUHoQ-RTest 80.57 [77.80; 83.13] 27.73 < 2−16

OSUHoQ-HoTest 61.76 [56.18; 67.11] 28.21  < 2.2−16

KU 28.69 [27.67; 29.72] 25.89      2.056−08

7KHoQ-train 7KHoQ-RTest 74.90 [73.49; 76.26] 26.39 < 2−16

7KHoQ-HoTest 54.43 [50.53; 58.30] 29.66  < 2.2−16

set: for KU it drops from 84.56% to 57.32%, for OSU from 80.57% to 61.76%, and
for CREG-7K from 74.90% to 54.43%. Throughout, the performance on the held-
out question test set is much higher than the majority baseline, confirming some
generalization of the model to answers of unseen questions.

For the held-out text classifiers, the results are equivalent, though the perfor-
mance drop between the regular and the held-out text test set is steeper. Accu-
racy on KU goes from 86.18% to 40.47%, on OSU from 83.23% to 40.74%, and
on CREG-7K from 77.52% to 40.09%. This means that the classifier generalizes to
some extent to unseen questions on unseen texts, although it clearly performs best
on unseen answers to seen questions and texts.

Table 7. Classifier performance on the held-out text (HoT) splits of CREG
(RTest =regular test set; HoTest =held-out test set)

Trained on Tested on Acc. 95% CI Baseline P-Value

KUHoT-train KUHoT-RTest 86.18 [84.33; 87.89] 25.77 < 2−16

KUHoT-HoTest 40.47 [36.97; 44.04] 27.15      1.155−15

OSU 26.36 [24.85; 27.91] 27.77     0.9660

OSUHoT-train OSUHoT-RTest 83.23 [80.10; 86.05] 26.53 < 2−16

OSUHoT-HoTest 40.74 [35.56; 46.08] 31.62     0.0002

KU 28.09 [27.08; 29.12] 25.89      7.49−06

7KHoT-train 7KHoT-RTest 77.52 [76.09; 78.91] 27.36 < 2−16

7KHoT-HoTest 40.09 [36.33; 43.94] 29.35      2.408−09
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7. Performance of complexity models on learner language

To address our third research question, targeting the robustness of NLP on learner
data and its impact on the linguistic complexity analysis, we contrast results based
on the automatic NLP analysis with those using the CREG-104 reference anno-
tation introduced in Section 4.3.1. To explore the validity of the NLP analysis of
learner data as well as the impact the analysis has on the complexity measures, we
look into differences at three crucial stages of the experiment pipeline illustrated in
Figure 5.

Figure 5. Set-up for RQ3: Comparison of NLP and manual reference annotations
(Section 7.1); comparison of feature values extracted based on them (Section 7.2); and
model performance using features based on them (Section 7.3)

7.1 Accuracy of NLP analysis

7.1.1 Set-up of study 3.1
For the evaluation of the linguistic annotations, we use Mate (cf. Section 5.2) to per-
form automatic PoS tagging, lemmatization, and morphological analyses on the
CREG-104 data using the manual reference tokenization and sentence segmenta-
tion. For the evaluation, we calculate the percentage of student answers for which
the automatic annotations are fully correct, i.e., the automatic annotation was iden-
tical to the manual reference annotation. We also calculate the token-wise accu-
racy of the automatic annotations for the evaluation of PoS tagging, lemmatization,
and morphological analysis. For PoS tagging, we consider the accuracy on the fine-
grained STTS tag set (Thielen, Schiller, Teufel, & Stöckert, 1999) containing 56 PoS
tags, as well as the accuracy on a more coarse-grained tag set. For the latter we col-
lapsed the classes to distinguish only nouns, verbs, adjectives, adverbs, pronouns,
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articles, prepositions, conjunctions, punctuation, particles, foreign material, cardi-
nals, non-words, and separated compound elements. In addition to the overall per-
formance, we also report in more detail the performance for the following lexical
PoS categories that play an important role in the calculation of the complexity fea-
tures: attributive adjectives (adj), adverbs and adjectives with adverbial use (adv),
nouns, finite verbs, and non-finite verbs.

For the evaluation of dependencies, we calculate the token-wise Unlabeled At-
tachment Score (UAS) and Labeled Attachment Score (LAS), i.e., the percentage of
tokens with the correct head and, for LAS, the correct dependency relation label.
We again augment the overall evaluation with a more fine-grained analysis look-
ing into the performance on specific dependency labels of particular relevance for
the calculation of complexity features in the pipeline: subjects including passivized
subjects (SB); clausal, accusative, genitive, and dative objects (OB); relative clauses
(RC); conjuncts (CJ); modifiers (MO); and separable verb particles (SVP).

7.1.2 Results of study 3.1
Table 8 summarizes the performance of the automatic annotations for PoS, lem-
mas, and various morphological indices.

Table 8. Accuracy of automatic PoS, morphology, and lemma annotation on CREG-104.
Italics indicate where the morphological annotation can be inferred from the PoS tag
(DoC =degree of comparison, Verb+F =finite verbs; Verb−F =non-finite verbs)

Adj.
(N=25)

Adv.
(N=51)

Noun
(N=239)

Verb+F
(N=98)

Verb−F
(N= 37)

Other
(N=449)

∑
(N= 899)

Parts-of-Speech

Acc. fine 100     74.51     93.72     94.90 75.68     95.99 93.33

Acc. coarse 100     84.31     98.33     99.00 89.19     96.21 96.22

Lemmas

Acc. lemma     84.00     96.08     91.63     85.71 89.19     98.66 94.44

Morphology

Acc. case     80.00     92.16     88.28 100 89.19     96.88 93.88

Acc.
number

100     92.16     94.56     95.92 75.68     98.22 95.77

Acc. gender     96.00     92.16     85.36 100 89.19     95.10 92.66

Acc. person 100 100 100     95.92 86.49 100 99.00

Acc. tense 100 100 100     94.90 86.49 100 98.89

Acc. mode 100 100 100     95.92 86.49 100 99.00

Acc. DoC 100     86.27     98.74     98.98 94.59     99.55 98.33
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The overall accuracy across all 899 tokens11 in CREG-104 in the final column shows
that the performance of the Mate tools on the learner data is very good, with accu-
racy ranging from 92.66% for the morphological analysis of gender to 99.00% for
the morphological analysis of person and mode. The PoS tagging of adverbs and
non-finite verbs receives the lowest accuracy, whereas the identification of adjec-
tives and finite verbs works particularly well.

For the morphological analysis, unsurprisingly the prediction works best
where morphological categories do not apply to a given PoS tag. These cases are
shown in italics and contribute most of the 100% accuracy values in the table. For
example, German attributive adjectives are inflected according to case, number,
gender, and degree of comparison but not person, tense, or mode. Thus, given an
adjective PoS tag, the only conceptually possible morphological tag for the latter
indices is “not applicable”. The accuracy of the morphological analysis for these
cases is thus entirely dependent on the performance of the PoS tagging. That this
dependence can also have negative effects is illustrated by the non-finite verbs,
showing the lowest morphology accuracies. Overall, nine out of the 37 non-finite
verbs are incorrectly PoS tagged. Two are tagged as adjectives and two as nouns,
receiving corresponding analyses for case, number, and gender. Five are tagged as
finite verbs and receive a morphological analysis for number, person, tense, and
mode. Looking at the cases where the morphological analyzer cannot solely rely
on the PoS tagger, we see that while the identification of number in general and
verb inflection on finite verbs performs relatively well, the identification of case
and gender on adjectives and nouns seems to be the most challenging to analyze.
However, also in these cases the performance of the analysis is reasonably good,
never dropping below 80% accuracy. When looking at these results, it should be
kept in mind, though, that the analysis is based on a very small reference data set
(CREG-104 contains 110 sentences with 780 words). Thus, in terms of morpholog-
ical categories, only very little of the potential analysis space is in fact represented
in CREG-104. This holds specifically for the following morphological indices: (a)
person inflection on verbs, because all verbs but one are in third person; (b)
degree of comparison on adjectives, because there is only one comparative and
one superlative adjective; (c) verb mode, because only three finite verbs are sub-
junctive, the rest being indicative. However, the data contains a relatively balanced
distribution for gender, case, number, and tense features across the appropriate
word categories.

Table 9 displays the performance results of the dependency analysis. Overall,
the UAS is relatively high, with the exception of relative clauses with a UAS of

11. Standard NLP tokenization separates punctuation from words, so for CREG-104 we obtain
780 words plus 119 punctuation tokens.
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75.00%. However, given that there are only four instances of relative clauses in
CREG-104, caution is warranted when interpreting this result, as the difference
between the observed 75% and 100% is the incorrect attachment of a single rela-
tive clause in the data.

Table 9. Performance of automatic dependency annotation on CREG-104 (SB =subject,
OB =object, RC =relative clause, CJ =conjunct, MO =modifier, SVP =separable verb
particle; UAS =unlabeled attachment score, LAS =labeled attachment score)

SB
(N=98)

OB
(N=91)

RC
(N=4)

CJ
(N=46)

MO
(N= 77)

SVP
(N=4)

Rest
(N= 579)

∑
(N= 899)

UAS 94.90 91.21 75.00 82.61 80.52 100 93.44 91.66

LAS 91.84 81.32 50.00 78.26 79.22     25.00 91.54 88.32

Considering the well-established difficulty of labeling dependents, the LAS results
are in an acceptable range. Exceptions to this are separable verb particles and the al-
ready mentioned relative clause relations. While separable verb particles are more
frequently found in the data, it is well-known that their identification is rather un-
reliable even for standard German data (Weiss, 2015).

While the UAS and LAS are relatively high for subject relations, the LAS for
object relations at 81.32% is considerably lower. This should be taken into account
when using complexity features that rely heavily on the correct identification of
objects, such as the grammatical transition counts among the discourse features.

Finally, it is interesting to compute for which percentage of student answers the
entire annotation was correct, i.e., the automatic annotation was identical to the
manual reference annotation. For the labeled dependency analysis, this is the case
for 53.40% of the student answers. If we also require the PoS analysis to be identi-
cal, the percentage drops to 39.84%. Further requiring the lemmas to be identical
results in 27.18%. Finally, also requiring the identical morphological annotation for
the entire student answer results in 20.36% of the student answers showing exact
complete identity of the automatic analysis and the reference annotation across
all annotation layers. So while we saw that automatic analysis supports individual
high-quality annotation decisions, the overall linguistic annotation of most student
answers contains some errors. In the following section, we investigate the impact of
these annotation errors on the extraction of complexity features.
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7.2 Effect on linguistic complexity analysis

7.2.1 Set-up of study 3.2
To investigate the impact of the differences between the automatic and the ref-
erence linguistic analysis on the complexity features computed on that basis, we
first identified all complexity features that are either fully or partially based on the
PoS, lemma, morphology, or dependency annotations (N= 93, see Appendix B).
We extracted these features from CREG-104, once using the manual reference
annotation as the basis for the calculation (henceforth: reference basis) and once
using the automatic NLP annotations (henceforth: NLP basis). We then removed
all invariable features, i.e., those targeting linguistic phenomena that do not vary
on CREG-104. This resulted in a set of 69 complexity features.

For comparing the difference between continuous variables, accuracy is not
meaningful, so we calculated the z-scores of the complexity features and then com-
puted the root mean squared difference (RMSD) between the features calculated
on the reference basis and the features calculated on the NLP basis. The RMSD
measure is inspired by the root mean squared error, the well-established metric
used to evaluate regression models predicting continuous variables. The RMSD
measure provides a compact summary of the difference in standard deviations
between the features calculated based on the two annotation bases (reference vs.
NLP), with large differences impacting the measure more than a number of small
differences.

7.2.2 Results of study 3.2
Table 10 shows the RMSD between the complexity features based on the auto-
matic annotation compared to those based on the CREG-104 reference annota-
tion (see Appendix B for feature definitions).

Since we are comparing the z-scores for each feature, a RMSD of one indicates
a difference of one standard deviation between the value of the feature computed
on the NLP basis compared to its computation on the reference annotation. De-
pending on the purpose of an analysis, researchers may find different RMSDs ac-
ceptable. In Table 10, no feature shows an extreme12 difference and only two features
have an RMSD of more than 1, both of which are grammatical transition probabil-
ities, from subject to nothing and from object to nothing. The eleven features with
a medium RMSD between 0.5 and 1 standard deviations are predominantly based
on the assignment of the subject or object dependency relation or associated case

12. We refer to RMSD differences as “extreme” for RMSD > 2, inspired by characterizations
of outliers as more than two standard deviations from the mean, “substantial” for RMSD > 1,
“medium” > 0.5, “small” ≤ 0.5.
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Table 10. RMSD of features calculated on automatic annotations and reference
annotations (group abbreviations: DISC =discourse complexity, PHR =phrasal complexity,
CLA =clausal complexity, LEX =lexical complexity, MOR =morphological complexity,
USE =language use, HP =human processing)

Feature Group RMSD

Substantial differences

Transition probability of object role to none DISC 1.39

Transition probability of subject role to none DISC 1.00

Medium differences

Adjective and adverb verb modifiers per verb phrase PHR 0.76

Lexical units per synset* LEX 0.74

Non-subject prefields per prefield† PHR 0.74

Accusative case per noun MOR 0.66

Coverage of verb modifier types PHR 0.61

Sum longest dependency per sentence HP 0.58

Nominative case per noun MOR 0.58

Longest dependency HP 0.57

Dative case per noun MOR 0.55

Hypernyms per type found in GermaNet LEX 0.51

Synsets per type found in GermaNet LEX 0.51

Small differences

Frames per verb found in GermaNet LEX 0.50

Relations per sysnset LEX 0.48

Hyponyms per type found in GermaNet LEX 0.48

Average number of noun phrase dependents PHR 0.48

Prepositional verb modifiers per verb PHR 0.47

Clausal noun modifiers per noun phrase PHR 0.47

Average number of verb phrase dependents excluding modal verbs PHR 0.45

Maximal total integration cost per finite verb (original weights) HP 0.45

Total integration cost per finite verb (original weights) HP 0.43

Average number of syllables between first argument and verb PHR 0.42

Maximal total integration cost per finite verb (configuration V) HP 0.38

Simple present tense per finite verb MOR 0.37
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Table 10. (continued)

Feature Group RMSD

Coverage of tenses MOR 0.36

Total integration cost per finite verb (configuration V) HP 0.36

Maximal total integration cost per finite verb (configuration C) HP 0.36

Total integration cost per finite verb (configuration C) HP 0.35

Possessive noun modifiers per noun phrase PHR 0.35

Verbs with third person marking per finite verb MOR 0.34

Maximal total integration cost per finite verb (configuration CV) HP 0.34

Genitive case per noun MOR 0.33

Coverage of noun modifier types PHR 0.31

Average number of verb phrase dependents PHR 0.30

Maximal total integration cost per finite verb (configuration CMV) HP 0.28

Maximal total integration cost per finite verb (configuration MV) HP 0.27

Simple past tense per finite verb MOR 0.27

Maximal total integration cost per finite verb (configuration CM) HP 0.27

Participle verbs per verb MOR 0.27

Maximal total integration cost per finite verb (configuration V) HP 0.26

Log lemma frequency per type found in KCT USE 0.25

Total integration cost per finite verb (configuration CM) HP 0.25

Total integration cost per finite verb (configuration CMV) HP 0.25

Lemma frequency per type found in KCT USE 0.25

Total integration cost per finite verb (configuration M) HP 0.25

Total integration cost per finite verb (configuration MV) HP 0.25

Verbs with indicative marking per finite verb MOR 0.22

Minimal age of active use for lemma types USE 0.19

Average age of active use for lemma types USE 0.19

Lemma frequency per type found in dlexDB USE 0.18

Percentage of lemmas found in dlexDB USE 0.14

Percentage of lemmas found in KCT USE 0.14

sein (to be) instances per verb LEX 0.13

Transition probability of no role to subject role DISC 0.11

Log lemma frequency per type found in dlexDB USE 0.10
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Table 10. (continued)

Feature Group RMSD

Transition probability of no role to object role DISC 0.08

Derived nouns per noun MOR 0.07

Maximal age of active use for lemma types USE 0.02

No difference

Eventive passive per sentence PHR 0.00

Global overlap of arguments per sentence DISC 0.00

Local overlap of arguments per sentence DISC 0.00

Transition probability of no role to no role DISC 0.00

Transition probability of no role to other role DISC 0.00

Transition probability of other role to no role DISC 0.00

Deverbal nouns per noun MOR 0.00

Verbs with first person marking per finite verb MOR 0.00

Verbs with subjunctive marking per finite verb MOR 0.00

haben (to have) instances per verb LEX 0.00

* Synsets are sets of semantically-related lexical units in GermaNet.
† The prefield is the area preceding the finite verb in a German main clause, see Wöllstein (2014).

markings such as accusative and dative – for which we found lower NLP accuracies
in Section 7.1. In addition, we also find features in this medium group that are based
on GermaNet synset measures and rely on lemmatization, verb modification, and
maximal dependency length.

Most of the features (56 out of 69) show only a weak difference (46/56) or no dif-
ference at all (10/56) between the calculation on both feature bases. As expected, this
predominantly includes features based on linguistic annotations that the automatic
analysis can provide with high accuracy (cf. Section 7.1), such as lemma-based fre-
quency and auxiliary verb ratios, DLT features and comparable argument-verb dis-
tance and overlap measures as well as verb and noun phrase dependency features
relying predominantly on correct dependency attachments, and morphological
measures of different types of verb inflections. Interestingly, the set also includes
some measures relying on linguistic annotations that we had found performing rel-
atively poorly, e.g., the clausal noun phrase modifier feature based on the relative
clause label or features based on genitive case markings on nouns.

Whether the quality of complexity features computed on the basis of automatic
NLP analysis is sufficient depends on the purpose for which they are to be used.
In this article, we use complexity features to predict the course levels of student
writings. To identify whether the automatically computed complexity features are
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acceptable for this purpose or not, the next section reports on the third part of
Study 3 comparing classifier performance on test sets using automatic annotation
and manual reference annotation.

7.3 Effect on proficiency classification

7.3.1 Set-up of study 3.3
For the final machine learning experiment, we used the CREG-KU data with the
automatically computed complexity analysis. We reduced the feature set to the 69
features that are based exclusively or partially on PoS, lemma, morphology, and
dependency annotations and were variable on CREG-104. We calculated the z-
scores of the features and split the CREG-KU data into training, development,
and test sets using a 70/20/10 split. On this basis, we again trained an ordinal ran-
dom forest classifier and evaluated it on three test sets: (a) the regular test set with
fully automatically extracted complexity features; (b) the CREG-104 data with fully
automatically extracted complexity features; and (c) the CREG-104 data with com-
plexity features extracted on the reference annotation basis.13

7.3.2 Results of study 3.3
Table 11 shows the overall course-level prediction accuracy of the classifier on the
three test sets and the majority baselines. For CREG-104, the baseline is higher
since it is not balanced for course levels. The classifier trained on CREG-KU sig-
nificantly outperforms the majority baseline on all test sets. For the CREG-104
test set, the performance is slightly higher for the NLP-based features (78.85) than
for the reference-based ones (73.08), possibly because the training set features
are also NLP-based, but the overlapping confidence intervals ([69.74;86.24] and
[63.49;81.31]) show that this is not a reliable difference we can meaningfully inves-
tigate based on this data set.

Table 11. Classification performance of a 69-feature model trained on CREG-KU when
applied to complexity features based on automatic and manual reference annotations

Tested on Feature basis Acc. 95% CI Baseline P-Value

CREG-KUtest NLP 74.50 [72.45; 76.47] 28.19 < 2−16

CREG-104 NLP 78.85 [69.74; 86.24] 45.19 2.291−12

CREG-104 reference 73.08 [63.49; 81.31] 45.19 7:532−09

13. The answers in CREG-104 were also written at KU but are not part of this CREG-KU data
set.
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Table 12 shows the classifier’s performance on the three test sets split by course
level. Since we now turn to a discussion of the classification performance at individ-
ual course levels, we report precision, recall, and F1 score of the course-level predic-
tion instead of accuracy (for definitions, see Tharwat, 2018). On the CREG-KUtest
test data set we observe a comparable precision across course levels, but a higher
recall for the two A1 level courses, leading to an overall better performance in terms
of F1 scores on course levels A1.1 and A1.2. This does not carry over to CREG-104,
though, where the performance is generally higher for course level A2.2 for both
feature bases. This is likely to be an artifact of the data imbalance in CREG-104,
which contains about 45% A2.2 texts.

Since CREG-104 does not contain any A1.2 course-level data, we cannot cal-
culate recall and F1 score there, and the few answers incorrectly labeled as A1.2
naturally result in a precision of 0%. We thus focus the discussion on the other
three course levels. When comparing differences in the course-level-wise perfor-
mance for the NLP-based features on CREG-KUtest, we find that the performance
does not specifically suffer for lower levels, which would have indicated specific
NLP problems with beginning learners and their creative forms. At the same time,
the proficiency range in the data is limited here, so we cannot fully investigate how
the NLP quality develops as the proficiency increases towards fully well-formed
but also more complex language, where the former makes the NLP easier, but the
latter makes it harder.

When comparing the NLP-based with the reference-based features on CREG-
104, we find that for course level A1.1 and A2.2, there is virtually no difference in
precision between the two. However, the recall is much higher with NLP-based
features. For course level A2.1, both precision and recall are higher when using
NLP-based features, too. This indicates that the systematic nature of the automatic
annotation on the training and test data is more important for the classifier than
having access to higher quality linguistic analysis on the test data only. A compar-
ison with the performance when training and testing on manually annotated ref-
erence data unfortunately is not feasible given the cost of producing a sufficiently
large manually annotated corpus.

Overall, the generally comparable performance across proficiency levels for
using manual or automatic annotation methods supports the assumption that
NLP-based complexity analyses can provide valuable evidence for building clas-
sifiers capable of identifying proficiency differences and development.
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Table 12. Precision, recall, and F1 score for course-level prediction using NLP-based and
reference-based features

Tested on Feature basis Measure A1.1 A1.2 A2.1 A2.2

CREG-KUtest NLP Precision 75.44 74.51 74.63 73.07

Recall 78.66 79.92 67.18 70.44

F1 score 77.01 77.12 70.71 71.73

CREG-104 NLP Precision 76.92  0.00 82.76 95.00

Recall 80.00 n.a. 75.00 80.85

F1 score 78.43 n.a. 78.69 87.36

Reference Precision 76.00  0.00 78.57 94.59

Recall 76.00 n.a. 68.75 74.47

F1 score 76.00 n.a. 73.33 83.33

8. Discussion

The classification experiments in the first two studies show that the language evi-
dence contained in the short answers to reading comprehension exercises sup-
ports high-quality L2 proficiency classification using a broad range of linguistic
complexity measures. Our first research question thus can be answered affirma-
tively. About half of the linguistic complexity features (marked by superscript a in
Appendix B) are informative for such short answers, and training machine learn-
ing models on that basis results in classifiers with accuracies of over 81% for each
school, and over 73% for the combined data – a clear success in relation to major-
ity baselines of under 28%. Complexity analysis and classification can therefore be
meaningfully applied to short answer tasks, which extends the reach and empiri-
cal basis of linguistic complexity research.

Regarding the second research question, the extent to which features and mod-
els generalize across task contexts as made explicit by different questions and read-
ing texts, the results are varied. While we obtain high accuracies for answers to
questions and texts for which other answers are included in the training data, we
see a clear drop in accuracy when testing on answers to unseen questions and even
more so for unseen texts. Interestingly, a model can be trained that successfully per-
forms for the data of both universities together, which confirms the generalizabil-
ity of the feature set. But the models trained on the data from one university hardly
generalize at all to that of the other university. The data from the two universities
thus seem to cover different parts of the distribution of linguistic complexity char-
acteristics.
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To better understand the nature of this distribution, in the future we need to
investigate the nature of the relevant task context characteristics and their effect
on the linguistic complexity of the learner answers they elicit. For example, the
KU and OSU data sets may differ in the question types they contain, both in terms
of the question form and in terms of the operators they express – and some of
those tasks may allow or require learners to use more complex language than oth-
ers. So as it stands, our analysis is limited in not differentiating between complex-
ity arising from increasing proficiency and that arising from tasks supporting a
more complex use of language. Future work should try to address to what extent
the discrimination of course levels can be maintained when the same reading
exercises are administered across course levels – though it naturally will be diffi-
cult to compile a corpus using tasks that can meaningfully be administered across
a range of proficiency levels. Similarly, the variability of task contexts researched
here could be extended to consider the effect of different text genres in future
work (e.g., descriptive vs. expository texts).

For the third question asking about the impact of the characteristics of learner
language on linguistic complexity classification, we looked at three stages: the lin-
guistic analysis, the calculation of complexity features on that basis, and the statis-
tical modeling based on these features. We found that for the linguistic properties
of relevance for our linguistic complexity measures, the performance of the NLP
methods in general is quite close to the manual linguistic analysis. Beyond lend-
ing some legitimacy to the use of automated complexity analysis, the results are
substantially more fine-grained. For example, in the typical NLP pipeline archi-
tectures, the dependency between the linguistic analysis levels needs to be kept in
mind.14 The morphological analyzer depends on the PoS tagger, and the depen-
dency parser relies on the morphology and PoS analysis. As a result, even partial
manual reference annotation for the lower levels of the NLP pipeline, such as PoS
tagging, can have a substantial impact on the overall performance on learner data.

In a similar vein, the more NLP steps required, the more error prone the analy-
sis will be. In our analysis, the identification of dependency labels was one of the
most error prone analyses. When considering how to increase the reliability of com-
plexity feature computation, we therefore should avoid reference to dependency
relations and instead express them in terms of more basic, reliable annotation where
possible – which is reminiscent of the process of translating research questions into
the annotations available in a given corpus (Meurers, 2005). For example, instead
of making reference to the relative clause dependency label, which we found to be

14. The CoALLa project (http://purl.org/coalla) explores an alternative architecture for ana-
lyzing learner language that more readily supports integration of bottom-up form-based and
top-down task/meaning-based information.
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assigned in learner language with limited accuracy, the complexity code refers to
subordinate clauses introduced by relative pronouns identified via PoS tagging. For
features that cannot be calculated without elaborate NLP analyses, caution is war-
ranted when interpreting them for learner data, such as the grammatical transition
counts including object roles in our study.

9. Conclusion

We investigated the applicability of complexity measures to short answers to read-
ing comprehension questions produced by L2 learners of German and the robust-
ness of automatic complexity modeling on learner data. We showed that the limited
linguistic evidence provided by this type of short written learner production is suf-
ficient to build successful predictive models of L2 proficiency. Capturing linguistic
complexity with a broad range of features across all domains of the linguistic sys-
tem and language use thus pays off in capturing sufficient evidence even when lim-
ited language data is available. At the same time, the weighting of the evidence in
the trained models is substantially dependent on the characteristics of the task con-
text. We found that the models still generalize somewhat to unseen questions on
seen reading texts, but much less when applied to data from completely new read-
ing tasks that have nothing in common with the tasks that resulted in the training
data. In line with linguistic complexity research on task effects (Alexopoulou et al.,
2017; Biber et al., 2016; Caines & Buttery, 2017; Michel et al., 2019), we view this as
evidence for the need to interpret linguistic complexity in relation to the properties
of the task that elicited the data.

In terms of analysis methodology, automating the linguistic analysis worked
remarkably well for beginner German learner data. The effect of using either the
manual reference or the automatic annotations for the extraction of complexity
features was weak, with only a small impact on the final proficiency classification
model. However, we also found that errors in the early stages of the NLP pipeline
percolate up to later analyses, making it advisable to base linguistic complexity
analysis on lower levels of NLP analysis where this is possible.
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A. Definition of linguistic units used for the calculation of complexity
features

Clauses
All maximal projections of finite verbs and elliptical constructions with sentential status (= all
sub-trees tagged with “S”), and to infinitives with sentential status.

Complex t-units
T-units that include subordinate clauses.

Conjunctional clauses
Dependent clauses introduced by a subordinating conjunction.

Dependent clauses with/without conjunction
Conjunctional, interrogative, and relative clauses. Dependent clauses without conjunction are
mostly dependent main clauses.

(Graphematic) sentences
Strings containing at least one token that are ended by sentence ending punctuation marks (“!”,
“.”, and “?”) or the end of a text.
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Half modals
The verbs haben (to have), sein (to be), scheinen (to seem), drohen (to threaten), and versprechen
(to promise), if they govern an infinitive with zu (§ 101 Duden, 2009: 101), e.g., ist zu machen (is
to be done), droht zu schneien (threatens to snow). For details, see Weiss (2015: 32).

Lexical words
Nouns, adjectives, adverbs, foreign words, numbers, main verbs, and modal verbs. There is an
ongoing discussion on whether modals actually qualify as lexical words (Reis, 2001). Therefore,
features using lexical words are partially calculated twice, with and without modal verbs.

Quasi passives
bekommen (to get), erhalten (to receive), or kriegen (to get) if they govern a past participle
(§ 179 Duden, 2009: 147), e.g., kriegt erklärt (to get sth. explained).

T-units
“[O]ne main clause plus whatever subordinate clauses happen to be attached to or embedded
within it.” (Hunt, 1965:305).

B. List of complexity features used

Table 13. Complexity feature definitions and a reference providing additional
information on their implementation, where in column Ref. 1 =Hancke (2013), 2 =Weiss
(2015), 3 =Galasso (2014), 4 =Weiss (2017). Features available in different configurations
are collapsed into a single item and an example configuration is provided; configuration
options and additional specifications are in italics. Superscript a indicates use of feature
in Studies 1 and 2 in Section 6, b indicates that a feature is dependent on the NLP
pipeline components evaluated in Study 3 in Section 7

Feature name Calculation Ref.

Clausal complexity (25)
Sum of non-terminal (NT) nodes
per sentence a

Sum of NT nodes across all constituency parses / number of
sentences

1

Sum of non-terminal (NT) nodes
per word a

Sum of NT nodes across all constituency parses / number of
words

1

Average parse tree height per
sentence a

Summed height of all constituency parses / number of
sentences

1

Words per sentence a Number of words / number of sentences 1
Coordinated phrases per sentence a Number of coordinated phrases / number of sentences 1
Complex t-units per sentence Number of complex t-units / number of sentences 1
T-units per sentence a Number of t-units / number of sentences 1
Clauses per sentence a Number of clauses / number of sentences 1
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Table 13. (continued)

Feature name Calculation Ref.

Dependent clauses per sentence Number of dependent clauses / number of sentences 1
Conjunctional clauses per sentence Number of clauses with conjunction / number of sentences 1
Dependent clauses with
conjunction per sentence

Number of dependent clauses with conjunction / number of
sentences

1

Dependent clauses without
conjunction per sentence

Number of dependent clauses without conjunction /
number of sentences

1

Interrogative clauses per sentence Number of interrogative clauses / number of sentences 1
Relative clauses per sentence Number of relative clauses / number of sentences 1
Sentential to infinitives per sentence Number of infinitives with the status of a sentence / number

of sentences
1

Longest sentence in words a Maximal observed number of words in a sentence 1
Verbs per sentence a Number of verbs / number of sentences 1
Verbs per t-unit a Number of verbs / number of t-units 1
Verbs per clause a Number of verbs / number of clauses 1
Verbs per finite clause a Number of verbs / number of finite clauses 1
Noun phrases (NPs) per sentence a Number of NPs / number of sentences 1
Prepositional phrases (PPs) per
sentence a

Number of PPs / number of sentences 1

Verb phrases (VPs) per sentence a Number of VPs / number of sentences 1
To infinitives per sentence Number of to infinitives / number of sentences 1
Complex noun phrases (NPs) per
sentence a

Number of complex NPs / number of sentences 1

Phrasal complexity (47)
Average noun phrase length a Sum of words in noun phrases / number of noun phrases 1
Average verb phrase length a Sum of words in verb phrases / number of verb phrases 1
Average prepositional phrase length
a

Sum of words in prepositional phrases / number of verb
phrases

1

Average number of noun phrase
dependents a, b

Sum of noun phrase dependents / number of noun phrases
with dependents

1

Average number of verb phrase
dependents a, b

Sum of verb phrase dependents / number of verb phrases
with dependents

1

Average number of verb phrase
dependents excluding dependents
excluding modal verbs a, b

Sum of verb phrase modal verbs / number of verb phrases
with dependents excluding modal verbs

1

Average number of noun phrase
modifiers a

Sum of noun phrase modifiers / number of noun phrases 2

Average number of verb phrase
modifiers

Sum of verb phrase modifiers / number of verb phrases 2

Adjective and adverb verb modifiers
per verb phrase a, b

Number of adjective and adverb verb modifiers / number of
verb phrases

2
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Table 13. (continued)

Feature name Calculation Ref.

Participle verb modifiers per verb
a, b

Number of participle verbs / number of verbs 2

Prepositional verb modifiers per
verb a, b

Sum of prepositional verb modifiers / number of verbs 2

Average verb cluster size Sum of verbs forming a verb cluster / number of verbs 2
Number of main verb clusters per
verb cluster

Sum main verbs governing another verb / number of verb
cluster

2

Number of auxiliary verb clusters
per verb cluster

Sum auxiliary verbs governing another verb / number of
verb cluster

2

Number of modal verb clusters per
verb cluster

Sum modal verbs governing another verb / number of verb
cluster

2

Coverage of verb modifier types a, b Number of verb modifier types observed at least once /
number of verb modifier types distinguished in the code (=
5; adverbial verb modifiers, adjectival verb modifiers,
prepositional verb modifiers, participle 1 modifiers, participle
2 modifiers)

2

Standard deviation of verb cluster
sizes

Standard deviation of verb cluster sizes (cut at verb cluster
size > 6)

2

Coverage of verb cluster sizes a Number of verb cluster sizes observed at least once /
number of verb cluster sizes distinguished in the code (= 5;
minimal verb cluster with 2 verbs, verb cluster with 3 verbs,
verb cluster with 4 verbs, verb cluster with 5 verbs, verb cluster
with six or more verbs)

2

Coverage of verb cluster types a Number of verb cluster types observed at least once /
number of verb cluster types distinguished in the code (= 3;
auxiliary verb cluster, modal verb cluster, main verb cluster)

2

Number of attributive participles
per noun phrase

Sum attributive participles modifying nouns / number of
noun phrases

2

Clausal noun modifiers per noun
phrase a, b

Number of clausal noun modifiers / number of noun
phrases

2

Comparative noun modifiers per
noun phrase

Number of comparative noun modifiers / number of noun
phrases

2

Determiners per noun phrase a Number of determiners / number of noun phrases 2
Possessive noun modifiers per noun
phrase a, b

Number of possessive noun modifiers / number of noun
phrases

2

Prenominal modifiers per noun
phrase a

Number of prenominal noun modifiers / number of noun
phrases

2

Postnominal modifiers per noun
phrase a

Number of postnominal noun modifiers / number of noun
phrases

2
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Table 13. (continued)

Feature name Calculation Ref.

Coverage of noun modifier types
a, b

Number of noun modifier types observed at least once /
number of noun modifier types distinguished in the code (=
9; determiner, possessive noun modifiers, pronominal noun
modifiers, postnominal noun modifiers, attributive participle
1 modifiers, attributive participle 2 modifiers, appositions or
parentheses, comparative noun modifiers, clausal noun
modifiers)

2

Eventive passive per sentence b Number of eventive passive constructions / number of
sentences

1

Periphrastic tenses per finite verb Number of periphrastic tense constructions / number of
finite verbs

2

Tense X per finite verb a, b for
X∈{s.pres,s.past}

Number of tense X constructions / number of finite verbs;
tense construction options for X: Präsens (simple present),
Präteritum (simple past), Perfekt (present perfect),
Plusquamperfekt (past perfect), Futur 1 ( future 1), Futur 2
( future 2)
Ex.: simple present tense per finite verb

2

Coverage of tenses a, b Number of tenses observed at least once / number of tenses
in German (= 6: simple present, simple past, present perfect,
past perfect, future 1 and future 2)

2

Coverage of periphrastic tenses Number of periphrastic tenses observed at least once /
number of periphrastic tenses in German (= 4: present
perfect, past perfect, future 1 and future 2)

2

Average middle field length in
syllables a

Sum of syllables across all middle fields / number of middle
fields (Höhle, 1986)

2

Average number of syllables
between first argument and verb
a, b

Sum of syllables between the first argument of a verb and
the verb if the first argument does not immediately precede
the verb / number of verbs not immediately preceded by
their first argument

2

Non-subject prefields per prefield b Number of prefields not occupied by the subject of the
clause / number of prefield

2

man (someone) occurrences per
subject

Number of man (someone) occurrences / number of
subjects

2

Infinitival constructions per verb
phrase (VP)

Number of infinitive verbs / number of VPs

lassen occurrences per ver phrase
(VP)

Number of sich- lassen constructions / number of VPs 2

Half modal clusters per verb phrase
(VP)

Number of half modals / number of VPs 2

Passives per sentence Number of passives / number of sentences 2
Quasi-passives per sentence Number of quasi passives / number of sentences 2
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Table 13. (continued)

Feature name Calculation Ref.

Coverage of deagentivation
patterns a

Number of deagentivation patterns observed at least once /
number of deagentivation patterns distinguished in the code
(= 10: man occurrences, sich-lassen occurrences, infinitival
constructions, half modal clusters, passives, quasi passives,
participle-I modifiers, participle-II modifiers, attributive
participle-I modifiers, attributive participle-II modifiers)

2

Lexical complexity (34)
Syllables per word a Number of syllables / number of words
Characters per word a Number of characters / number of words 1
Longest word in syllables a Maximal number of syllables in a word 1
Type-token ratio (TTR) a Number of types / number of tokens 1
Root TTR a 1

Corrected TTR a 1

Bilogarithmic TTR a log(number of types) / log(number of tokens) 1
Uber index a log(number of tokens)2 / log(TTR) 1
Yule’s K a , for N =number of tokens, X=vector of

frequencies for each type, and f X=frequency of each type
frequency in X (see https://cran.r-project.org/web/packages
/koRpus)

1

HD-D see McCarthy and Jarvis (2010) 1
MTLD a see McCarthy and Jarvis (2010) 1
Lexical types per lexical tokens Number of lexical types / number of lexical tokens 1
Lexical types per token a Number of lexical types / number of tokens 1
Lexical verb types per lexical tokens
(including modals) a

Number of main and modal verb types / number of main
and modal tokens

1

Lexical verb types per lexical verb
tokens (including modals) a

Number of main and modal verb types / number of main
and modal verb tokens

1

Squared lexical verb types per
lexical verb tokens (including
modals) a

(Number of main and modal verb types / number of main
and modal verb tokens)2

1

Corrected lexical verb types per
lexical verb tokens (including
modals) a

Number of lexical verb types /

Lexical types per lexical tokens
(including modals) a

Number of lexical types / number of lexical tokens
(including modals)

1

sein (to be) instances per verb a, b Number of sein (to be) instances / number of verbs 1
haben (to have) instances per verb b Number of haben (to have) instances / number of verbs 1
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Table 13. (continued)

Feature name Calculation Ref.

Nouns per lexical tokens a Number of nouns / number of lexical tokens 1
Nouns per token a Number of nouns / number of tokens 1
Verbs per noun a Number of verbs / number of nouns 1
Adjectives per lexical token a Number of adjectives / number of lexical tokens 1
Adverbs per lexical token a Number of adverbs / number of lexical tokens 1
Adjectives and adverbs per lexical
token a

Number of adjectives and adverbs / number of lexical
tokens

1

Modal verbs per verb Number of modal verbs / number of verbs 1
Auxiliary verbs per verb a Number of auxiliary verbs / number of verbs 1
Hypernyms per type found in
GermaNet a, b

Sum of hypernyms of all lemma types in the text in
GermaNet / number of lemma types found in GermaNet

1

Hyponyms per lemma type found in
GermaNet a, b

Sum of hyponyms of all lemma types in the text in
GermaNet / number of lemma types found in GermaNet

1

Synset per type found in GermaNet
a, b

Sum of synsets (= word senses) of all lemma types in the
text in GermaNet / number of lemma types found in
GermaNet

1

Lexical units per synset a, b Sum of number of lexical units per synyset (=word senses) /
number of synsets retrieved for lemma types in text from
GermaNet

1

Relations per synset a, b Sum of number of lexical relations for each retrieved synset
(=word sense) / number of synsets retrieved for lemma
types in text from GermaNet

1

Frames per verb found in
GermaNet a, b

Sum of number of verb frames (= subcategorization
information of a verb) found for all verb lemma types /
number of verb lemma types found in GermaNet

1

Morphological complexity (41)
Nominalizations using suffix X per
word

Number of nouns ending in suffix X / number of word
tokens; suffix options for X: -ei, -ling, -heit, -keit, -nis, -ung,
-werk, -wesen, -schaft, -tum, -ant, -atur, -ator, -arium, -at,
-eur, -ent, -enz, -ast, -ist, -ität, -ismus, -ion, -ur (including all
their inflected forms) Ex.: -keit nominalizations per word

1

Average compound depth a Sum of number of compound elements in nouns with more
than one compound element / number of compound nouns

1

Compound nouns per noun a Number of compound nouns / number of nouns 1
Derived nouns per noun a, b Number of derived nouns / number of nouns 1
Deverbal nouns per noun b Number of nouns derived from verbs / number of nouns 1
X case per noun b for all X , a for
X∈{nom.,acc.,dat}

Number of nouns with case X / number of nouns; case
options for X: nominative, accusative, dative, genitive Ex.:
accusative case per noun

1

Finite verbs per verb a Number of finite verbs / number of verbs 1
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Table 13. (continued)

Feature name Calculation Ref.

Non-finite verbs per verb Number of non-finite verbs / number of verbs 1
Participle verbs per verb b Number of participle verbs / number of verbs 1
Verbs with verb mode X per number
of finite verbs a for X= indicative, b
for all X

Number of verbs with markings for verb mode X / number
of finite verbs; verb mode options for X: imperative,
subjunctive, indicative
Ex.: verbs with subjunctive marking per finite verb

1

Verbs with X person marking per
number of finite verbs a for X= 3rd, b
for all X

Number of verbs with person marking X / number of finite
verbs; person marking options for X: 1st, 2nd, 3rd
Ex.: verbs with first person marking per finite verb

1

Discourse complexity (64)
Local overlap of linguistic material
X per sentence b for
X∈{arg.,content,stem}

Number of instances where linguistic material is repeated in
two adjacent sentences / number of sentences; linguistic
material options for X: nouns, arguments, content words,
content word stems
Ex.: Local overlap of arguments per sentence

3

Global overlap of linguistic material
X per sentence b for
X∈{arg.,content,stem}

Number of instances where linguistic material is repeated
across any sentence in the text / number of sentences;
linguistic material options for X: see above
Ex.: Global overlap of arguments per sentence

3

Transition probability of
grammatical role A to grammatical
role B b for all X

Number of transitions between adjacent sentences of
entities from grammatical role A to grammatical role be in
the entire text / (number of sentences – 1) * number of
entities in the text; grammatical roles considered: subject,
object, other complement, not present in the sentence
Ex.: probability of transition from subject role to object role

3

Pronouns per noun a Number of pronouns / number of nouns 3
Personal pronouns per noun a Number of personal pronouns / number of nouns 3
Possessive pronouns per noun Number of possessive pronouns / number of nouns 3
Personal pronouns with person X
per noun a for X∈{3rd}

Number of personal pronouns with person X / number of
nouns; person options for X: 1st, 2nd, 3rd
Ex.: third person personal pronouns per noun

3

Possessive pronouns with person X
per noun

Number of possessive pronouns with person X / number of
nouns; person options for X: see above
Ex.: third person possessive pronouns per noun

3

Personal or possessive pronouns
with person X per noun a for
X∈{3rd}

Number of personal or possessive pronouns with person X /
number of nouns; person options for X: see above
Ex.: third person personal or possessive pronouns per noun

3

Definite articles per article a Number of definite articles / number of articles 3
Indefinite articles per article Number of indefinite articles / number of articles 3
Proper names per noun a Number of proper names / number of nouns 3
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Table 13. (continued)

Feature name Calculation Ref.

Connectives of type X per sentence
(Breindl) a for X=additive

Number of connectives of type X defined by Breindl /
number of sentences; options for types of connectives for X:
causal, additive, adversative, temporal, concessive,
adversative or concessive, other
Ex.: causal connectives per sentence

3

Connectives of type X per sentence
(Eisenberg) a for X=additive

Number of connectives of type X defined by Eisenberg /
number of sentences; options for types of connectives for X:
see above
Ex.: causal connectives per sentence

Multi-word connectives per
sentence (Breindl)

Number of multi-word connectives defined by Breindl /
number of sentences

3

Multi-word connectives per
sentence (Eisenberg)

Number of multi-word connectives defined by Eisenberg /
number of sentences

3

Single-word connectives per
sentence (Breindl) a

Number of single-word connectives defined by Breindl /
number of sentences

3

Single-word connectives per
sentence (Eisenberg) a

Number of single-word connectives defined by Eisenberg /
number of sentences

3

Connectives per sentence (Breindl)
a

Number of connectives defined by Breindl / number of
sentences

3

Connectives per sentence
(Eisenberg)

Number of connectives defined by Eisenberg / number of
sentences

3

wenn-V1 conditionals per sentence Number of conditional clause constructions using wenn-
V1 / number of sentences

2

V1-dann conditionals per sentence Number of conditional clause constructions using
V1-dann / number of sentences

2

V1-V1 conditionals per sentence Number of conditional clause constructions using V1-V1 /
number of sentences

2

Coverage of conditional types Number of conditional clause types observed at leats once /
number of conditional clause types distinguished in the
code (= 3; wenn-V1, V1-dann, V1-V1)

2

PID a see Brown, Snodgrass, Kemper, Herman, and Covington
(2008)

ibid.

Language use (58)
The individual frequency data-bases used for the following features are: dlexDB (Heister et al., 2011),
SUBTLEX-DE and Google Books 2000 (Brysbaert et al., 2011), and frequencies extracted from the KCT
corpus (Lavalley, Berkling, & Stüker, 2015).
Type frequency per type found in
frequency data-base X a for all X

Sum of the frequencies of all word types in the text that
were found in frequency data-base X / number of word
types in the text found in frequency data-base X; frequency
data-base options for X: dlexDB, Google Books 2000,

1,
4
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Table 13. (continued)

Feature name Calculation Ref.
SUBTLEX-DE, KCT corpus Ex.: Type frequency per type
found in dlexDB

Log type frequency per type found
in frequency data-base X a for all X

Sum of the log frequencies of all word types in the text that
were found in frequency data-base X / number of word
types in the text found in frequency data-base X; frequency
data-base options for X: see above
Ex.: Log type frequency per type found in dlexDB

1,
4

Annotated type frequency per type
found in dlexDB a

Sum of the frequencies of all word types in the text with
their PoS annotation that were found in dlexDB / number
of word types in the text that were found in dlexDB

1

Log annotated type frequency per
type found in dlexDB a

Sum of the log frequencies of all word types in the text with
their PoS annotation that were found in dlexDB / number
of word types in the text that were found in dlexDB

1

Lemma frequency per type found in
frequency data-base X a, b for all X

Sum of the frequencies of all lemmas in the text that were
found in frequency data-base X / number of word types in
the text that were found in frequency data-base X;
frequency data-base options for X: dlexDB, KCT corpus
Ex.: Lemma frequency per type found in dlexDB

1,
4

Log lemma frequency per type
found in frequency data-base X a, b
for all X

Sum of the log frequencies of all lemmas in the text that
were found in frequency data-base X / number of word
types in the text that were found in frequency data-base X;
frequency data-base options for X: see above Ex.: Log
lemma frequency per type found in dlexDB

1,
4

Percentage of types found in
frequency data-base X a for X ∈
{dlexDB, KCT, subtlex}

Number of word types in the text that were found in
frequency data-base X / number of word types in the text;
frequency data-base options for X: dlexDB, SUBTLEX-DE,
KCT corpus
Ex.: Percentage of types found in dlexDB

1,
4

Percentage of types not found in
frequency data-base X a for X ∈
{dlexDB, KCT, SUBT LEX}

Number of word types in the text that were not found in
frequency data-base X / number of word types in the text;
frequency data-base options for X: see above
Ex.: Percentage of types not found in dlexDB

1,
4

Percentage of lemmas found in
frequency data-base X a, b

Number of lemmas in the text that were found in frequency
data-base X / number of word types in the text; frequency
data-base options for X: dlexDB, KCT corpus
Ex.: Lemma frequency per type found in dlexDB

4

Familiarity score per million per
type in frequency data-base X a for
all X

Cumulative frequency per million for all word types starting
with the same three characters in data-base X / number of
word types in the text found in data-base X; frequency data-
base options for X: Google Books 2000, SUBTLEX-DE
Ex.: Familiarity score per million per type in SUBTLEX-DE

4
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Table 13. (continued)

Feature name Calculation Ref.

Log familiarity score per million per
type in frequency data-base X a for
all X

Log of cumulative frequency per million for all word types
starting with the same three characters in data-base X /
number of word types in the text found in data-base X;
frequency data-base options for X: see above Ex.: Log
familiarity score per million per type in SUBTLEX-DE

4

Log annotated type frequency band
X per type found in dlexDB a for X∈
{3, 4, 5}

Number of annotated types in log frequency band X /
number of word types in the text found in dlexDB;
frequency band options for X: integers ranging from 1 to 6
Ex.: Log annotated type frequency band 3 per type found in
dlexDB

1

Log type frequency band X per type
found in KCT corpus a for X∈ {1, 5}

Number of annotated types in log frequency band X /
number of word types in the text found in KCT; frequency
band options for X: integers ranging from 1 to 5
Ex.: Log annotated type frequency band 3 per type found in
KCT

4

Log type frequency band X per type
found in SUBTLEX-DE a for X∈ {2,
3, 4, 5}

Number of annotated types in log frequency band X /
number of word types in the text found in SUBTLEX-DE;
frequency band options for X: integers ranging from 1 to 6
Ex.: Log annotated type frequency band 3 per type found in
SUBTLEX-DE

4

Log type frequency band X per type
found in Google Books 2000 a for
X∈ {4, 5, 6, 7}

Number of annotated types in log frequency band X /
number of word types in the text found in Google Books
2000; frequency band options for X: integers ranging from 1
to 9
Ex.: Log annotated type frequency band 3 per type found in
Google Books 2000

4

Average age of active use for word
types a

Sum of ages of children contributing writings to the KCT
corpus in which word types in text occur / number of word
types in the text that were found in the KCT corpus

4

Minimal age of active use for word
types a

Sum of ages of youngest child contributing writings to the
KCT corpus in which word types in text occur / number of
word types in the text that were found in the KCT corpus

4

Maximal age of active use for word
types

Sum of ages of oldest child contributing writings to the KCT
corpus in which word types in text occur / number of word
types in the text that were found in the KCT corpus

4

Average age of active use for lemma
types a, b

Sum of ages of children contributing writings to the KCT
corpus in which lemma types in text occur / number of
lemma types in the text that were found in the KCT corpus

4

Minimal age of active use for lemma
types a, b

Sum of ages of youngest child contributing writings to the
KCT corpus in which lemma types in text occur / number
of lemma types in the text that were found in the KCT
corpus

3
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Table 13. (continued)

Feature name Calculation Ref.

Maximal age of active use for lemma
types b

Sum of ages of oldest child contributing writings to the KCT
corpus in which lemma types in text occur / number of
lemma types in the text that were found in the KCT corpus

4

Human processing (25)
(Gibson, 2000; Shain et al., 2016)
Sum longest dependency per
sentence a, b

Sum of number of words in the longest dependency in each
sentence / number of sentences

1

Longest dependency a, b Maximal number of words in a dependency in the text 1
Maximal total integration cost per
finite verb using configuration X a,
b for all X

Sum of maximal total integration costs at he finite verb
calculated using the configuration X / number of finite
verbs; configuration options for X: original weights (O),
increased verb weight (V), decreased coordination weight (C),
decreased modifier weight (M) and weight adjustment
combinations: CV, CM, VM, CMV
Ex.: Maximal total integration cost per finite verb using CV
weights (= decreased coordination weights and increased
verb weights)

4

Total integration cost per finite verb
using configuration X a, b for all X

Sum of total integration costs at the finite verb calculated
using configuration X / number of finite verbs;
configuration options for X: see above
Ex.: Total integration cost per finite verb using CV weights
(= decreased coordination weights and increased verb
weights)

4

Adjacent high integration costs per
finite verb using configuration X b
for all X

Sum of adjacent integration costs > 2 after a finite verb
calculated using configuration X / number of finite verbs;
configuration options for X: see above
Ex.: Adjacent high integration cost per finite verb using CV
weights (= decreased coordination weights and increased
verb weights)

4

Surface text measures (3)
Number of sentences Total number of sentences 1
Number of paragraphs Total number of paragraphs 1
Number of words a Total number of words 1
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Abstract

We analyze two novel data sets of German educational media texts targeting adults and children.
The analysis is based on 400 automatically extracted measures of linguistic complexity from a
wide range of linguistic domains. We show that both data sets exhibit broad linguistic adaptation
to the target audience, which generalizes across both data sets. Our most successful binary
classification model for German readability robustly shows high accuracy between 89.4%–98.9%
for both data sets. To our knowledge, this comprehensive German readability model is the first for
which robust cross-corpus performance has been shown. The research also contributes resources
for German readability assessment that are externally validated as successful for different target
audiences: we compiled a new corpus of German news broadcast subtitles, the Tagesschau/Logo
corpus, and crawled a GEO/GEOlino corpus substantially enlarging the data compiled by Hancke
et al. (2012).

Zusammenfassung

Wir untersuchen zwei neue Datensätze deutscher Bildungs- und Mediensprache für Kinder und
Erwachsene. Die Analyse basiert auf 400 automatisch extrahierten Maßen sprachlicher Kom-
plexität, die verschiedene linguistische Domänen abdecken. Unsere Ergebnisse zeigen, dass
in beiden Datensätzen die sprachliche Gestaltung der Texte in ähnlicher Weise breitflächig an
ihr jeweiliges Zielpublikum angepasst wird. Unser erfolgreichstes binäres Klassifikationsmodell
erzielt Genauigkeitswerte von 89,4% und 98,9% über beide Datensätze hinweg. Unseres Wissens
handelt es sich bei diesem umfassend durch verschiedene linguistische Bereiche informtiertem
Modell deutscher Text-Lesbarkeit um das erste, für das robuste Ergebnisse in einer korpus-
übergreifenden Evaluation dokumentiert sind. Darüber hinaus tragen wir mit unserer Arbeit
zwei neue Datensätze zur Erforschung deutscher Text-Lesbarkeit bei, die auf Texten basieren,
deren Eignung für ihre respektiven Zielgruppen extern durch wiederholte Rezeption validiert
wurde: Wir haben aus Untertiteln deutscher Nachrichtenbeiträge das Tagesschau/Logo Korpus
erstellt. Weiterhin haben wir das GEO/GEOlino Korpus beträchtlich erweitert, das ursprünglich
von Hancke et al. (2012) erstellt wurde.

1 Introduction

Readability assessment refers to the task of (automatically) linking a text to the appropriate target audi-
ence based on its complexity. A diverse spectrum of potential application domains has been identified for
this task in the literature, ranging from the design and evaluation of education materials, to information
retrieval, and text simplification. Given the increasing need for learning material adapted to different
audiences and the barrier-free access to information required for political and social participation, auto-
matic readability assessment is of immediate social relevance. Accordingly, it has attracted considerable

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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research interest over the last decades, particularly for the assessment of English (Crossley et al., 2011;
Chen and Meurers, 2017; Feng et al., 2010).

For German readability assessment, however, little progress has been made in recent years, despite a
series of promising results published around the turn of the decade (Vor der Brück et al., 2008; Hancke
et al., 2012). In particular, German readability research has suffered from the lack of a shared reference
corpus and sufficiently comparable corpora for cross-corpus testing of readability models: While for
English research, the Common Core corpus consisting of examples from the English Language Arts
Standards of the Common Core State Standards, and the WeeklyReader corpus of online news articles
have been widely used in studies on English readability and text simplification (Vajjala and Meurers,
2014; Petersen and Ostendorf, 2009; Feng et al., 2010), there are no comparable resources for German.
This is particularly problematic, as over-fitting is a potential issue for classification algorithms, especially
given the limited size of the typical data sets.

To address these issues, we first present two new data sets for German readability assessment in Sec-
tion 3: a set of German news broadcast subtitles based on the primary German TV news outlet Tagess-
chau and the children’s counterpart Logo!, and a GEO/GEOlino corpus crawled from the educational
GEO magazine’s web site, a source first identified by Hancke et al. (2012), but double in size.1 The
longstanding success of these outlets with their target audiences provides some external validity to the
nature of the implicit linguistic adaptation of the language used. As Bryant et al. (2017) showed for
German secondary school textbooks, this is not necessarily the case across all linguistic dimensions
and adjustments may even be limited to only the surface level of text, sentence, and word length. We
conducted a series of analyses on these two data sets to accomplish the following objectives:

1. Investigate how instances of German educational news language differ in terms of language com-
plexity across adult and child target audiences.

2. Build a binary readability model for German educational language targeting adults and children that
shows high, robust classification performance across corpora.

For the purposes of our studies, we operationalize child target audience of German educational news
language as children aged between 8 and 14. This is the typical audience age range of the child-targeting
news media we analyzed.2 Adult target audience then is defined as over 14 years of age.

To address our first research question, after introducing a broad set of complexity measures in Sec-
tion 4, we compare their informativeness for distinguishing adult and child level in the two data sets in
Section 5. In Section 6, we define a series of readability models for German, including one showing high
classification accuracy between 89.4% and 98.9% on both data sets. The paper closes with a discussion
of the implications of our results for the current research discussion and an outlook on future work.

2 Related Work

For over a century, text readability has been assessed using surface measure-based readability formula
such as the Flesch-Kincaid formula (Kincaid et al., 1975) or the Dale-Chall readability formula (Chall
and Dale, 1995), see for an overview DuBay (2004). While these formula are still used in some non-
linguistic studies (Woodmansey, 2010; Grootens-Wiegers et al., 2015; Esfahani et al., 2016), a decade
ago research shifted towards using more elaborate statistical modeling approaches based on larger sets
of linguistically more informed features. Automatic readability assessment has benefited from the use of
Natural Language Processing tools for the assessment of syntactic, lexical, and discourse measures and
from adapting complexity measures employed in Second Language Acquisition research (Vajjala and
Meurers, 2012; Feng et al., 2010). There has also been extensive research on the relevance of cohesion

1We are currently negotiating with the broadcasters of Tagesschau and Logo! and the publishers of GEO/GEOlino to make
the data freely available to other researchers and will make it available from http://www.icall-research.de in that
case.

2The GEOlino magazine is advertised as targeting children between 8 and 14 years (cf. http://www.geo.de/
magazine/geolino-magazin, accessed 11.06.18, 15:49). Logo! does not specify the age of its target audience, but
has been reported to be particularly popular with children from age 8 to 12 (vom Orde, 2015).
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and discourse measures for readability assessment that have successfully been employed for proficiency
assessment in the CohMetrix project (Crossley et al., 2008; Crossley et al., 2011). Another example is
the work by Feng et al. (2010), who evaluate which of the typically proposed measures of text readability
are most promising by studying their relevance on primary school students reading material. They find
language model features and cohesion in terms of entity density to be particularly useful, as well as
measures of nouns. Interestingly, they also observe overall sentence length to be more informative than
more elaborate syntactic features. While Feng et al. (2010) do not elaborate further on other lexical
measures than POS features, Chen and Meurers (2017) conduct an elaborate cross-corpus study on the
use of word frequency features for readability assessment. They show, that the typical aggregation of
word frequencies across documents are less informative than richer representations including frequency
standard deviations.

In contrast to English, research on readability assessment for other languages, such as German, is
more limited. There was a series of articles on this issue from the late 2000s to the early 2010s that
demonstrated the benefits of broad linguistic modeling, in particular the use of morphological complexity
measures for languages with rich morphological systems like German (Vor der Brück et al., 2008; Hancke
et al., 2012), but also Russian (Reynolds, 2016) or French (François and Fairon, 2012). The readability
checker DeLite of Vor der Brück et al. (2008) is one of the first more sophisticated approaches that
went beyond using simple readability formulas for German. The tool employs morphological, lexical,
syntactical, semantic, and discourse measures, which they trained on municipal administration texts rated
for their readability by humans in an online readability study involving 500 texts and 300 participant,
resulting in overall 3,000 ratings. However, due to the specific nature of the data, the robustness of the
approach across genres is unclear. Municipal administration language is so particular that results are
unlikely to generalize to educational or literary materials, which are more attractive in first and second
language acquisition contexts.

Later work by Hancke et al. (2012) also combines traditional readability formula measures, such as
text or word length, with more sophisticated lexical, syntactic, and language model, and morphological
features to assess German readability, but they employ an overall broader and more diverse feature set
than DeLite. They investigate readability of educational magazines on the GEO/GEOlino data set, which
they compiled from online articles freely available at the GEO magazine’s web page. Their work illus-
trates the relevance of rich linguistic modeling for readability assessment and in particular the value of
morphological complexity features for German.

The latest large scale research endeavor for the assessment of German text readability has focused
more on identifying linguistic differences between texts targeting different audiences than on build-
ing readability models: In the Reading Demands project, complexity differences in German secondary
school book texts across grade levels and school types were investigated. Berendes et al. (2017) and
Bryant et al. (2017) analyze to which extent publishers successfully adapt their reading material to their
target audiences. They find a lack of consistent adaptation for passive constructions, concessive and ad-
versative connectives, and relative clauses, and only some limited adaptation in terms of lexical variation,
noun complexity, and dependency length measures.

3 Data Sets

3.1 GEO/GEOlino
The GEO/GEOlino data set consists of online articles from one of the leading German monthly educa-
tional magazines, GEO, and the counterpart for children, GEOlino.3 They are comparable to the National
Geographic magazine and cover a variety of topics ranging from culture and history to technology and
nature. Hancke et al. (2012) first compiled and analyzed a data set from this web resource. We followed
their lead and crawled 8,263 articles from the GEO/GEOlino online archive, almost doubling the size of
the original corpus. We removed all material flagged as non-article contents by GEO as well as all articles
that contained less than 15 words. We further cleaned our data from crawling artifacts and performed
near-duplicate detection with the Simhash algorithm. We then grouped all texts into topic categories

3http://www.geo.de and http://www.geo.de/geolino
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based on the subdomains they were published under, following the web page topic structure.4 Table 1
shows the composition of the corpus in terms of the topic groups. Since the number of documents in
the different topic groups differ between GEO and the smaller GEOlino set, we created a more balanced
subset (GEO/GEOlinoS). For this, we included only topic categories existing in both GEO and GEOlino,
included all GEOlino texts in those categories and sampled from the GEO texts in those categories until
we reached the same overall size of 2480 texts each.

Topic GEO GEOlino
P

GEOS GEOlinoS
P

S

Do It Yourself 0 663 663 0 0 0
Humanity 1,476 1,168 2,644 1,047 1,168 2,215
Nature 1,704 576 2,280 1,218 576 1,794
Reviews 300 736 1,036 215 736 951
Technology 0 121 121 0 0 0
Travel 1,519 0 1,519 0 0 0P

4,999 3,264 8,263 2,480 2,480 4,960

Table 1: Distribution of topics in the full and sampled GEO/GEOlino data set.

3.2 Tagesschau/Logo
The Tagesschau/Logo data set is compiled from subtitles of German daily news broadcasts of Tagesschau
and its children’s counterpart Logo!. Tagesschau is the dominant national television news service of Ger-
many, produced by the German public-service television network ARD. It broadcasts multiple updated
editions of daily news throughout the day. Logo! is a television news service for children produced by the
German public-service television broadcaster ZDF airing once a day. The data set consists of subtitles
for all editions of both news outlets that have been broadcasted from December 2015 to January 2017.
For this paper, we limited the Tagesschau data to the main edition broadcasted at 8pm. This amounts to
overall 421 editions for Tagesschau and 415 editions for Logo!, with the small difference arising from a
lack of Logo! broadcasts on some public holidays or due to special broadcasts. We cleaned the subtitles
by removing non-spoken comments (e.g., * music playing * or * cheering *).

3.3 Characteristics of the two data sets
Table 2 compares the profiles of the GEO/GEOlinoS and the Tagesschau/Logo data sets that we used.

GEOS GEOlinoS Tagesschau Logo

Num. Documents (total) 2,480 2,480 421 415
Num. Words (median) 383 350 1631 1322
Num. Sentences (median) 23 25 167 125

Table 2: Corpus profile for sampled GEO/GEOlino data set and the Tagesschau/Logo data set.

While GEO/GEOlino contains more documents than Tagesschau/Logo, they are considerably shorter
in terms of the number of words and sentences they contain. Another difference arises in terms of
the medium: GEO/GEOlino articles are self-contained reading material and Tagesschau/Logo subtitles

4Subdomains were mapped to topic groups in the following way based on the URL components following http://
www.geo.de and http://www.geo.de/geolino: building (“basteln”), learning (“lernen”), children’s recipes (“kinder-
rezepte”), and competitions (“wettbewerbe”) were categorized as DO IT YOURSELF. Jobs (“berufe”), extras (“extras”), pho-
tography (“fotografie”), creativity (“kreativ”), info (“info”), love (“liebe”), magazines (“magazine”), human (“mensch”), id-
ioms (“redewendungen”), and knowledge (“wissen”) were categorized as HUMANITY. Nature (“natur”), nature and environ-
ment (“natur-und-umwelt”), and animal encyclopedia (“tierlexikon”) were labeled as NATURE. Book reviews (“buechertipps”),
movie reviews (“filmtipps”), game reviews (“spieletest”), and GEO television (“geo-tv”) were labeled as REVIEWS. Research
and technology (“forschung-und-technik”) was labeled as TECHNOLOGY. Travel (“reisen”) was labeled as TRAVEL.
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complement video material. At the same time, they consist of German educational media language
and share the functional goal of conveying information to the reader, so that we consider them to be
sufficiently similar to support a cross-corpus analysis.

4 Complexity Analysis

For the assessment of German language complexity, we extract 400 complexity measures using state of
the art NLP techniques. All features are theoretically grounded in the contemporary research in linguistic
subdisciplines, in particular Second Language Acquisition research, where Complexity is one of three
dimensions of language proficiency, together with Accuracy and Fluency (Housen et al., 2012). SLA
research has a rich tradition of analyzing the complexity development of learner language, see Lu (2010;
2012) for an overview. Vajjala and Meurers (2012) show that these measures can be successfully applied
to readability research. Building on these findings, we follow the SLA definition of complexity as the
elaborateness and variability of language (Ellis and Barkhuizen, 2005). Our measures can be grouped
into seven categories: i) lexical complexity, ii) clausal complexity, iii) phrasal complexity, iv) morpho-
logical complexity, v) discourse complexity, vi) cognitive complexity, and vii) language use. While the
former five groups are rooted in the linguistic system, the latter two categories were derived from psy-
cholinguistic research. The resulting complexity assessment covers a broad variety of measures. To the
best of our knowledge, this is currently the most extensive feature collection for German complexity
assessment.5 Table 3 gives an overview of the feature categories and how much they contribute to our
assessment.6

Category # Description

Descriptive 2 Total number of sentences and words.
Lexical 73 Lexical diversity measures such as general and POS-specific type-token ratios

as well as semantic relatedness measures.
Sentential 119 Ratios measuring sentential elaboration and variation, such as clauses per

sentence.
Phrasal 41 Ratios measuring phrasal elaboration and variation, such as modifiers per

noun phrase.
Morphological 39 Ratios of inflection, derivation, and composition measures.
Cohesion 48 Subsequent (local) or across text (global) use of implicit or explicit cohesion

markers such as connectives, pronouns, or grammatical transitions.
Cognitive 23 Dependency lengths, verb-argument distances, and ratios of cognitive

integration costs assessing cognitive processing load based on Gibson’s (2000)
Dependency Locality Theory.

Language Use 54 Word frequency ratios based on Subtlex-DE (Brysbaert et al., 2011), dlexDB
(Heister et al., 2011), Karlsruhe Children’s Texts (Lavalley et al., 2015)
Approximation of age of active use based on Karlsruhe Children’s Texts.

Table 3: Overview over complexity measures grouped by feature categories.

In order to extract these measures, we employ an elaborate analysis pipeline which relies on a number
of NLP tools and external linguistic resources. We use OpenNLP 1.6.0 for tokenization and sentence
segmentation.7 This serves as input for the Mate tools 3.6.0 (Bohnet and Nivre, 2012), which perform a
morphological analysis, lemmatization, POS tagging, and dependency parsing. We then use the JWord-

5Our feature collection draws from varying perspectives on language complexity including SLA and human language pro-
cessing research. While the confirmation or refutation of specific theories underlying these measures is an interesting research
endeavor, our empirical questions focus on which of these features support the distinction of texts targeting different audiences.

6We are working on integrating our German complexity analysis pipeline into CTAP (Chen and Meurers, 2016) to make it
generally available and will include an online documentation for each feature.

7http://opennlp.apache.org
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Splitter 3.4.0 for compound analysis.8 The Mate POS tags are further used to inform the Stanford PCFG
parser 3.6.0 (Rafferty and Manning, 2008) and the Berkeley parser 1.7.0 (Petrov and Klein, 2007), which
we use for constituency and topological field parsing. For all tools, we use the German default models
that were provided with them, except for the Berkeley parser, for which we use the topological field
model by Ziai and Meurers (2018). With these annotations, we extract all instances of the linguistic
constructs that we need to calculate the final 400 complexity ratios.9

5 Study 1: Which complexity measures are informative?

5.1 Set-Up
We first want to determine the informativeness of each measure for distinguishing between adult and
child target audience. For this, we calculate the information gain of each measure on both data sets
using 10-folds cross-validation for training and testing. We then compare across both data sets i) the
number of features that are informative, and ii) the 20 most informative measures that show a Pearson
correlation smaller than ±0.8 with each other.10 This allows us to gain insights into the range of linguistic
properties of the documents targeting adults and children. We used WEKA (Hall et al., 2009) to calculate
information gain and R for the correlation analysis.

5.2 Results and Discussion
Table 4 shows the percentage of measures that exhibited an average information gain above zero.

Data Set Percentage Informative to Total

GEO/GEOlino 79.00% 316/400
Tagesschau/Logo 88.25% 353/400

Table 4: Percentage of informative measures based on 10-folds cross-validated information gain.

Overall, 79.00% of the measures are informative for the GEO/GEOlino data and 88.25% for the Tagess-
chau/Logo data. This shows, that the documents are adjusted to their different target audiences in terms
of a broad range of dimensions of linguistic complexity.

Table 5 provides a deeper look into the linguistic design of the documents by showing the 20 most
informative measures distinguishing adult from child targeted documents, including only measures with
a correlation less than ±0.8. The table shows the original rank of each measure before removal of
correlated measures, the average merit of each measure for the distinction of the target audience, the
type of complexity measures it belongs to, and the feature name.

The results for both data sets show a diverse collection of features, some of which are similar for
both data sets, but also some interesting differences. In total the measures seem to be more informative
for Tagesschau/Logo, as indicated by the higher average merit, and more correlated, as can be seen
from the wider range of original ranks. Language use as captured by frequency measures is particularly
relevant for both data sets. The table includes seven measures of word frequency for GEO/GEOlino
and five for Tagesschau/Logo. For both data sets, the most informative measure is one of language use:
For GEO/GEOlino it is the average minimal age of active use of lexical types found in the Karlsruhe
Children’s Corpus (KCT) of Lavalley et al. (2015). For Tagesschau/Logo it is the average log lexical
type frequency based on Google Books 2000. The other language-use measures are very similar across
data sets: Lexical types unknown to the Subtlex-DE data base (Brysbaert et al., 2011), for example, rank
4th and 2nd on both data sets and while on Tagesschau/Logo the lemma frequency per lexical type found
in KCT is the 12th most informative measure, its log counterpart ranks 8th on GEO/GEOlino.

8http://www.danielnaber.de/jwordsplitter
9To support transparent comparison with other complexity studies, we include a description of the operationalization of all

linguistic units that allow for varying definitions in Appendix A, as has been suggested by Bulté and Housen (2014).
10We set the Pearson correlation threshold relatively high since we primarily are interested in qualitatively inspecting the

types of measures that are informative, not in removing all correlations.



309

GEO/GEOlino Tagesschau/Logo
Rank Average Merit Group Feature Rank Average Merit Group Feature

1 0.332 (±0.004) USE sumTypesMinAoAPerTypeInKCT 1 0.978 (±0.004) USE logTypeFreqsPerTypeInGoogle00
4 0.327 (±0.005) LEX syllablesPerToken 31 0.899 (±0.006) USE typesNotInSubtlexPerLexicalType

11 0.288 (±0.004) USE logTypeFreqsPerTypeInSubtlex 50 0.825 (±0.009) COH 2PPersPronounsPerNoun
13 0.231 (±0.003) USE typesNotInSubtlexPerLexicalType 71 0.754 (±0.012) COH probNotSubsPerTransition
15 0.205 (±0.003) COH 2PPersAndPossPronounsPerToken 82 0.716 (±0.010) COH causalConnectivePerSentence
21 0.164 (±0.004) USE typesNotInDlexPerLexicalType 85 0.689 (±0.009) COH localArgOverlapsPerSentence
23 0.147 (±0.004) PHR complexNominalsPerTUnit 88 0.667 (±0.008) SEN sumParseTreeHeightsPerFiniteClause
24 0.143 (±0.002) USE logLemmaFreqsPerTypeInKCT 89 0.662 (±0.008) SEN NPsPerTUnit
25 0.143 (±0.003) SEN syllablesInMiddleFieldPerMiddleField 90 0.656 (±0.007) COH 1PPersPronounsPerToken
28 0.133 (±0.003) COH persPronounsPerToken 91 0.657 (±0.010) MOR genitivesPerNoun
31 0.133 (±0.003) SEN PPsPerTUnit 95 0.633 (±0.011) PHR determinersPerNP
33 0.132 (±0.003) MOR secondPersonMarkingsPerFiniteVerb 100 0.622 (±0.011) USE lemmaFreqsPerTypeInKCT
35 0.123 (±0.004) MOR ionTPerToken 101 0.620 (±0.014) COG sumLongestDependenciesPerClause
36 0.122 (±0.003) LEX synsetPerTypeInGnet 102 0.617 (±0.008) MOR compundNounsPerNP
37 0.121 (±0.004) PHR complexNominalsPerFiniteClause 103 0.609 (±0.012) USE typeFreqsPerTypeInDlex
38 0.120 (±0.004) SEN sumNonTerminalNodesPerTUnit 109 0.568 (±0.008) LEX MTLD
40 0.118 (±0.004) USE typeFreqsPerTypeInSubtlex 110 0.560 (±0.010) LEX nonAuxVerbTypesPerNonAuxVerbToken
43 0.114 (±0.002) COH pronounsPerNoun 111 0.550 (±0.013) COH globalStemOverlapsPerSentence
44 0.113 (±0.002) USE logAnnoTypeFreqBand5PerTypeInKCT 117 0.505 (±0.011) SEN conjunctionalClausesPerSentence
49 0.111 (±0.002) COH 3PPersAndPossPronounsPerNoun 119 0.500 (±0.014) USE logAnnoTypeFreqBd4PerTypeInDlex

Table 5: Top 20 most informative measures on balanced GEO/GEOlino and Tagesschau/Logo data based on information gain with r  0.8.
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Cohesion measures are highly informative, too, although more so for Tagesschau/Logo. In particular
the use of certain personal or possessive pronouns is highly informative for GEO/GEOlino. The use of
second person pronouns ranks highly for both data sets, which may easily be explained by it being used
for the informal German address appropriate when speaking to children. This is further corroborated by
the ratio of second person verb inflections being ranked as the 13th most important measure. For Tagess-
chau/Logo, other implicit measures of textual cohesion based on content overlap are also informative as
well as the use of causal connectives. Overall 55% of the most informative 20 measures for both data set
are captured by these two categories.

The other feature groups are less frequently represented, but provide some interpretable insights into
the data. First, both data sets show indications of differences in the degree of nominalization used in
language targeting adults and children: For GEO/GEOlino, complex noun phrases per t-unit and finite
clause are highly informative as well as the use of the nominalization suffix -ion. On Tagesschau/Logo,
genitive case, determiners per noun phrase, and the percentage of compound nouns indicate a similar
relevance of differences regarding the organisation of the nominal domain. Lexical and sentential com-
plexity seems to be less homogeneous for the distinction of adult and child targeted language across data
sets: There are two measures of lexical complexity assessing word length in syllables and the semantic
inter-relatedness of words ranked high for GEO/GEOlino, while on Tagesschau/Logo, lexical diversity
and verb variation are particularly informative. For sentential complexity, constituency tree complexity,
the average length of the middle field, and the use of prepositional phrases per t-unit are particularly in-
formative on GEO/GEOlino. On Tagesschau/Logo, parse tree height and the use of conjunctional clauses
are relevant. Cognitive measures do not seem to play an important role on either data set, except for the
sum of longest dependencies per clause on Tagesschau/Logo.

Overall, these results clearly show that for both data sets the distinction between target audiences is
not just made based on surface modifications such as sentence or word length. In fact, these measures do
not occur among the most informative measures at all. Rather, measures of language use and cohesion
are predominantly informative for the distinction of adult and child targeting texts, but also measures
of phrasal, sentential, lexical, and morphological complexity. The adjustment of the data to their audi-
ence observed here thus seems to be more linguistically refined than that found in the ReadingDemands
textbook data, where Berendes et al. (2017) found only few adjustment across dimensions.

6 Study 2: Can we successfully model readability for German, also across data sets?

6.1 Set-Up
Our second objective is the design of a robust model of educational media language that distinguishes
robustly between language targeting adults and children across corpora and genres. For this, we train two
binary Sequential Minimal Optimization (SMO) support vector classifier (Platt, 1998) with linear kernels
using the WEKA machine learning toolkit (Hall et al., 2009). Each model is tested i) on the same corpus
it is trained on, using 10-folds cross-validation, and afterwards ii) on the other data set for cross-corpus
testing after training on the full data set. For model performance evaluation, we report classification
accuracy and the classification confusion matrices, and random baselines as reference point.

6.2 Results and Discussion
Table 6 shows the accuracy of our SMO models on both data sets and compares them with a random
baseline. Both models clearly outperform the baseline of 50.0%. On GEO/GEOlinoS , the performance
is comparable to the performance observed by Hancke et al. (2012) on the original GEO/GEOlino data.11

As Table 7a shows, erroneous classifications are roughly balanced across both classes, showing that the
model does not prefer one class over the other. When training a model using only the 20 most informative
measures identified in Study 1, we reach an accuracy of 85.1%, i.e., the additional measures only account
only for 3.3%.12 When testing the models on the Tagesschau/Logo corpus, accuracy increases to 98.8%
for both models. The confusion matrix for the model using 400 measures in Table 7b seems to indicate

11After observing these results, we obtained the original GEO/GEOlino data set from Hancke et al. (2012) and trained and
tested a model with 10-folds cross-validation on it. When using the same data, our model outperforms their best performing
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Model Training Testing Features Accuracy SD

Baseline GEO/GEOlinoS 50.0
Tagesschau/Logo 50.0

10-folds CV
GEO/GEOlinoS GEO/GEOlinoS

400 89.4 ±0.09
20 85.1 ±0.09

Tagesschau/Logo Tagesschau/Logo 400 99.9 ±0.04
20 99.8 ±0.03

Cross-Corpus
GEO/GEOlinoS Tagesschau/Logo 400 98.9

20 98.8

Tagesschau/Logo GEO/GEOlinoS
400 52.2
20 56.7

Table 6: Classification performance of model on GEO/GEOlinoS and Tagesschau/Logo data

#Obs./Prd.! ChildGEOlino AdultGEO

ChildGEOlino 2,222 258
AdultGEO 267 2,213

(a) 10-folds CV on GEO/GEOlinoS

#Obs./Prd.! ChildGEOlino AdultGEO

ChildLogo! 408 7
AdultTS 2 419

(b) Cross-corpus testing on Tagesschau/Logo

Table 7: Confusion matrices for testing models with 400 features trained on GEO/GEOlinoS .

a minor tendency towards classifying Logo! texts as Tagesschau texts, but due to the low number of
incorrect classifications this is not conclusive.

Overall, performance of both models trained on GEO/GEOlinoS on the Tagesschau/Logo data is com-
parable to the performance of both models trained and tested on Tagesschau/Logo with 10-folds cross-
validation, although the confusion matrix for the cross-validated Tagesschau/Logo model using 400 mea-
sures does not exhibit any tendency towards predicting one class preferred over the other, as may be seen
in Table 8a.

#Obs./Prd.! ChildLogo! AdultTS

ChildLogo! 415 0
AdultTS 1 420

(a) 10-folds CV on Tagesschau/Logo

#Obs./Prd.! ChildLogo! AdultTS

ChildGEOlino 2,472 8
AdultGEO 2,362 118

(b) Cross-corpus testing on GEO/GEOlinoS

Table 8: Confusion matrices for testing models with 400 features trained on Tagesschau/Logo

The model trained and tested on Tagesschau/Logo reaches an unexpectedly high accuracy of 99.9% for
using 400 measures and 99.8% when using only the 20 most informative measures reported in Study 1.
Since the performance remains high when using only 20 measures and the standard deviation across
folds is very low, the results seem not to be due to over-fitting. The model learns linguistic properties
of the data set that generalize across. It is important to stress here than none of our measures include
n-gram language models or any other lexical content features but only complexity measures aggregated
over each document.13

model with 91.1%, confirming that our approach is in fact competitive with the state of the art.
12We do not show the confusion matrices for the models with 20 features, because they are equivalent to the matrices in

Table 7. The same holds for the models tested on Tagesschau/Logo and their matrices in Table 8.
13Content features are problematic since they can pick up recurring phrases that are characteristic of particular media outlets

rather than generalizable linguistic complexity characteristics. E.g., the Tagesschau always starts with the greeting “Hier ist das
Erste Deutsche Fernsehen mit der Tagesschau.” (Here is the first public German TV channel with the daily news.).
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When testing the models trained on the Tagesschau/Logo data set on the GEO/GEOlinoS data, it be-
comes apparent that the characteristics learned from the Tagesschau/Logo data set do not generalize,
with the model based on 400 measures performing only marginally above chance, and the model us-
ing the 20 measures performing slightly better with 56.2%. When considering the confusion matrix for
this model in Table 8b, we see that most texts are classified as GEOlino texts, irrespective of whether
they belong to GEO or GEOlino. The Tagesschau/Logo trained models do not generalize well to the
other adult/child corpus. Since the model trained on GEO/GEOlinoS is highly successful when tested
on Tagesschau/Logo, this cannot be due to an actual lack of generalizable differences in the linguistic
characteristics of the adult and child targeting texts contained in both data sets. One possible reason for
these results may be that, as Study 1 showed, the measures are considerably more informative on Tagess-
chau/Logo than on GEO/GEOlinoS . It could be, that the differences between the news subtitles designed
for different target audiences are more extreme than those observable for the GEO magazines. This
would explain the surprisingly good performance of the GEO/GEOlinoS model on the Tagesschau/Logo
data, which would then be easier to distinguish, while also accounting for the poor performance in the
opposite case.

7 Summary and Outlook

We presented a study of the difference between German targeting adults and children, as far as we know
the most broadly based linguistic complexity analysis to date. We created and analyzed a novel data set
compiled from German news subtitles that consists of news broadcasts for adults and children from the
same days, ensuring a relatively parallel selection of topics. We compared this with a newly compiled
GEO/GEOlino corpus consisting of online articles of two magazines for adults and children by the same
publisher discussing the similar topics. Based on these two data sets, we presented within-corpus (10-fold
CV) and cross-corpus experiments and built binary classification models of German educational media
text readability that perform with very high accuracy across both data sets. The model is based on a broad
range of features that are highly informative for both data sets. This model is a valuable contribution since
i) it is based on a considerably broader data basis than previous approaches to German readability, and ii)
it successfully generalizes across the data sets, illustrating surprising robustness across rather different
text types. The approach presented thus extends the state-of-the-art in Hancke et al. (2012) in terms of
the breadth of features integrated and the accuracy and generalizability of the model – and provides two
new data sources for this line of research.

The paper also contributes some new insights into the linguistic characteristics of German media lan-
guage targeting adults and children. Since all the language is produced by adults, it is not necessarily
clear how well it is in fact adjusted to the target audience. As demonstrated by Berendes et al. (2017),
German textbook publishers indeed do not seem to be adjusting the complexity of the language used ac-
cording to school type and grade level in any systematic way. Our results for educational media language
indicate, that i) both data sets are successfully and broadly adapted towards their target audiences; and ii)
that they form two distinct, cross-corpus generalizable constructs of German educational media language
for children and adults. In a next step, we plan to test to which extent this linguistically diverse and gen-
eralized construct matches the language competence of the intended children target group by comparing
it with the Karlsruhe Children’s Text corpus (Lavalley et al., 2015). We also plan to further investigate
the linguistic properties of our two data sets. In particular, the Tagesschau/Logo data set requires further
statistical and qualitative analyses to investigate why its linguistic characteristics generalize well across
all folds of the data set itself but not across GEO/GEOlino. We also plan to conduct more analyses of the
informativeness of the different complexity feature groups for the target audience distinction.
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Appendix A. Definitions of Linguistic Units

Clauses are all maximal projections of finite verbs and elliptical constructions with sentential status (i.e.
all sub-trees tagged with S), as well as to infinitives that have a sentential status (satzwertige zu
Infinitive).

Complex t-units are t-units that include subordinate clauses.

Conjunctional clauses are all dependent clauses that are introduced by a subordinating conjunction
such as dass, weil, or wenn.

Dependent clauses with conjunction are all conjunctional clauses, but also interrogative and relative
clauses. Dependent clauses without conjunction are mostly dependent main clauses, such as Ich
weiß, es ist spät.

(Graphematic) sentences are strings of at least one token that are ended by sentence ending punctuation
marks: !, ., ?. There is a broad discussion on alternative sentence definitions, see for example
Schmidt (2016) for a more elaborate theoretical account. However, since sentences are identified
by sentence segmentation tools, which are primarily based on punctuation, sentences are always
defined as graphematic sentences.

Half modals are haben, sein, scheinen, drohen, versprechen, if they govern an infinitive with zu (Duden,
2009, §101), e.g. ist zu machen, droht zu schneien.

Lexical words are all nouns, adjectives, adverbs, foreign words, numbers, main verbs, and modal verbs.
Note that there is an ongoing discussion on whether modals actually qualify as lexical words (Reis,
2001), hence there is also a subset of lexical words excluding modals employed throughout the
system.

Parts-of-Speech are operationalized following the Tiger POS tags (Albert et al., 2003, 121).

Quasi passives are bekommen, erhalten or kriegen if they govern a past participle (Duden, 2009, §179),
e.g. bekommt gemacht, kriegt eröffnet.

T-units are “one main clause plus any subordinate clause or non clausal structure that is attached to or
embedded in it” (Hunt, 1970, 4).
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Appendix B. Example Extracts from Tagesschau and Logo! subtitles

Report on New Years shooting in Istanbul by Tagesschau, extracted from the subtitles for the broadcast
on 01.01.2017, 20:00.

In der Türkei ist der Jahreswechsel von einem Anschlag in Istanbul überschattet: Mind.
ein bewaffneter Angreifer drang in einen Nachtclub ein und schoss um sich. 39 Menschen
wurden getötet und mehr als 60 verletzt. Unter den Todesopfern sind zahlreiche Ausländer.
Ob Deutsche betroffen sind, ist unklar. Die Suche nach dem Täter dauert an, bekannt hat
sich niemand. Das Attentat ereignete sich im europäischen Teil Istanbuls. Dort liegt direkt
am Bosporus der Club ”Reina”, der bei Prominenten beliebt ist. Nur eine Stunde währte in
der Türkei die Hoffnung, 2017 könnte ruhiger werden als 2016, das von Bombenanschlägen
geprägt war. Doch um 1.15 Uhr Ortszeit macht im Istanbuler Nachtclub ”Reina” ein Attentäter
mit einem Gewehr Jagd auf Gäste einer Silvesterparty. Zuvor wurde vorm Club ein Polizist
erschossen. Der Täter konnte fliehen, eine Großfahndung läuft. Bis zu 800 Personen sollen
sich in der Diskothek aufgehalten haben. Gäste berichten, Panik sei ausgebrochen. Einige Be-
sucher sollen in den Bosporus gesprungen sein. Unter den Toten und Verletzten sind Ausländer.
Bekannt hat sich niemand zu der Tat. Türkische Medien vermuten den IS hinter dem Terrorakt.
Die Regierung verhängte eine Nachrichtensperre. Wir lassen uns vom Terror nicht beirren.
Was hier passierte, kann morgen an einem anderem Ort geschehen. Es gibt keine Garantien.
Der Nachtclub ”Reina” liegt am Bosporus, im Stadtteil Ortaköy. Er ist der berühmteste der
Türkei, teuer und bei Touristen beliebt. Die Sicherheitsvorkehrungen waren landesweit erhöht
worden. In Istanbul waren 17.000 Polizisten im Einsatz. Trotz Großaufgebot der Polizei,
hochaktiver Geheimdienste, Ausnahmezustand und markiger Politikerworte: Die Sicherheit-
slage in der Türkei spitzt sich zu. Beängstigende Aussichten für Wirtschaft und Menschen.

Report on New Years shooting in Istanbul by Logo!, extracted from the subtitles for the broadcast on
02.01.2017, 19:50 (no broadcast on 01.01.2017).

In der türkischen Großstadt Istanbul hat es an Silvester einen Anschlag in einer Disco
gegeben. Ein Mann stürmte mit einem Gewehr in den Club und hat 39 Menschen getötet,
darunter auch zwei Männer, die in Deutschland gelebt haben. Die türkische Polizei sucht jetzt
nach dem Täter. Er ist seit dem Anschlag auf der Flucht. Auch am zweiten Tag nach dem An-
schlag kamen viele Menschen an die Polizeiabsperrung, um Blumen für die Opfer niederzule-
gen. Der Terrorist stürmte dort in der Silvesternacht mit einem Gewehr in die Disco. Ich war
völlig geschockt, konnte mich nicht bewegen. Der Täter schoss erst auf einen Polizisten und
dann auf die Gäste. Wir hörten plötzlich Schüsse, da sind wir raus aus dem Ballsaal auf die
Terrasse und haben uns dort versteckt. Im Internet behauptet die Terrorgruppe IS, Islamischer
Staat, dass sie hinter dem Anschlag stecke. Die Kämpfer dieser Terrorgruppe wollen, dass alle
Menschen nach ihren strengen religiösen Regeln leben. Wer sich nicht daran hält, wird sogar
umgebracht. Besonders aktiv ist der IS in Teilen von Syrien und dem Irak. Beide Länder gren-
zen an die Türkei. Dort haben die Kämpfer in letzter Zeit schon öfter Anschläge verübt. In
der ganzen Türkei sucht die Polizei jetzt nach dem Attentäter. Acht Verdächtige wurden schon
festgenommen. Auf logo.de könnt ihr mehr zur Terrorgruppe Islamischer Staat lesen und da
gibt es auch viele Infos zu unserem nächsten Thema.
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Appendix C. Example Articles from GEO and GEOlino

GEO article titled “Was ist ein Planet?” (What is a Planet?).14 It discusses criteria celestial bodies need
to fulfill to be considered a planet.

Lange bezeichneten Menschen alle Lichtpunkte, die über den Nachthimmel wanderten, als
Planeten (griech. planáomai = umherirren) – gleich, ob es sich um Venus, Mars, Mond oder
Asteroiden handelte. In der Neuzeit durften den Titel nur noch die großen Himmelskörper
tragen, die um die Sonne kreisten, aber keine Monde waren – also nicht ihrerseits einen anderen
Planeten umrundeten. Als Astronomen von 1992 an in den Randbezirken des Sonnensystems
immer neue Objekte entdeckten, manche ähnlich groß wie Pluto (bis dahin der neunte Planet),
sah sich die Internationale Astronomische Union genötigt, erstmals zu definieren, was ein
Planet genau ist. Nach heftigen Diskussionen beschlossen die Astronomen 2006 die Resolution
B5. Demnach muss ein Planet drei Kriterien erfüllen: Er muss um die Sonne kreisen. Er
muss ausreichend Masse aufweisen, sodass er unter seiner eigenen Schwerkraft eine nahezu
runde Form angenommen hat. Und er muss die Umgebung seiner Umlaufbahn freigeräumt
haben. Objekte, die ihm auf seiner Bahn nahekommen, “schluckt” er in einer Kollision oder
schleudert sie in einen anderen Orbit. Pluto, Eris und andere große Himmelskörper zählen nun
zu den Zwergplaneten, da sie es nicht schaffen, ihre Bahn zu bereinigen, sondern sie sich mit
anderen Objekten teilen. Damit kreisen nach derzeitigem Stand acht Planeten um die Sonne.
Die Astronomen unterteilen sie in die vier terrestrischen Planeten Merkur, Venus, Erde, Mars
(sie werden wegen ihrer festen Oberfläche häufig steinige Planeten genannt) und in die vier
jovianischen – jupiterähnlichen – Planeten Jupiter, Saturn, Uranus, Neptun (aufgrund ihrer
Zusammensetzung oft als Gasplaneten oder Gasriesen bezeichnet). Wobei Uranus und Neptun
manchmal auch als “Eisriesen” beschrieben werden, da sie weniger Wasserstoff als Jupiter und
Saturn enthalten, dafür mehr gefrorenes Methan, Wasser und Ammoniak.

GEOlino article titled “Sieben erdähnliche Planeten entdeckt” (Seven Earth-Like Planets Discovered).15

It reports on the discovery of seven new planets that orbit Trappist-1.

Dass neue Planeten entdeckt werden, ist erstmal nichts ungewöhnliches. Doch der Fund
dieser sieben sogenannten Exoplaneten (Planeten wie Kepler-452b , die sich um einen Stern
- außerhalb des Einflusses unserer Sonne - bewegen) ist etwas ganz Besonderes: Denn sechs
der neu entdeckten Planeten liegen in einer Temperaturzone, in der Leben möglich ist. Auf
den meisten Planeten ist es entweder kochend heiß oder eiskalt - schwierige Bedingungen
für die Entwicklung von Leben. Die Sonne der Exoplaneten, der Zwergstern Trappist-1 ,
ist viel kleiner als die Sonne unseres Sonnensystems : Trappist-1 besitzt nur acht Prozent
der Masse unserer Sonne und zwölf Prozent ihres Durchmessers. Auf drei der entdeckten
Exoplaneten könnte sogar Wasser existieren, denn ihr Abstand zur Zwergsonne liegt in einem
Temperaturbereich, in dem Wasser weder gefrieren noch verdampfen würde. Hier wäre also
eine Art von Leben möglich, wie wir es auf unserer Erde kennen.

Die sieben Planeten haben in etwa die Größe unserer Erde und sind wahrscheinlich
Gesteinsplaneten. Sie alle umkreisen ihre Sonne, den Stern Trappist-1, der knappe 40 Licht-
jahre (ein Lichtjahr ist die Strecke, die Licht in einem Jahr zurücklegt) von uns entfernt im
Sternenbild Wassermann liegt. Weil die Sonne des Trappist-1-Systems so klein ist, können die
Planeten diese wesentlich schneller umkreisen als wie es in unserem Sonnensystem möglich
ist. Die sechs Planeten, die dem Zwergstern am nächsten sind, umrunden ihn in eineinhalb bis
zwölf Tagen. Sie haben damit einen engeren Orbit als der Merkur um die Sonne .

14http://www.geo.de/wissen/weltall/15396-rtkl-definitionssache-was-ist-ein-planet,
accessed 11.06.18, 16:06.

15http://www.geo.de/geolino/wissen/weltraum/sieben-erdaehnliche-planeten-entdeckt,
last accessed 11.06.18, 16:06.
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Abstract
We investigate the readability classifica-
tion of English and German reading ma-
terials for language learners based on a
broad linguistic complexity feature set
supporting the parallel analysis of both
German and English. After illustrating the
quality of the feature set by showing that it
yields state-of-the-art classification perfor-
mance for the established OneStopEnglish
corpus (Vajjala and Lučić, 2018), we intro-
duce the Spotlight corpus. This new data
set contains graded reading materials pro-
duced by the same publisher for English
and German, which supports an analysis
comparing the linguistic characteristics of
texts at different reading levels across lan-
guages. As far as we are aware, this is both
the first readability corpus for German L2
learners, as well as the first corpus with
comparably classified reading material for
learners across multiple languages.

After discussing the first results for a read-
ability classifier for German L2 learn-
ers, we show that the linguistic complex-
ity analyses for the cross-language exper-
iments identify features successfully char-
acterizing the readability of texts for lan-
guage learners across languages, as well
as some language-specific characteristics
of different reading levels.

1 Introduction
The language input available to language learn-
ers is a driving force for Second Language Acqui-
This work is licensed under a Creative Commons Attri-
bution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0

sition (SLA), and reading is an important source
of language input. Material that is just above the
level of the learner is assumed to be best for fos-
tering learning, which depending on the SLA tra-
dition is characterized as i+1 input of Krashen
(1981), input in the Zone of Proximal Develop-
ment in socio-cultural approaches (Lantolf et al.,
2015), or input reflecting second language devel-
opment in usage-based SLA approaches (Ellis and
Collins, 2009). Note that the focus here is not just
on input that is understandable and of interest to
the learner but also rich in developmentally proxi-
mal language properties.

This dependency of readability on reading pur-
pose and individual language skills makes the
identification of appropriate reading materials a
major challenge for educators, especially for het-
erogeneous learning groups. Automatic read-
ability assessment may facilitate the retrieval of
appropriate reading materials for individual lan-
guage learners. It refers to the task of identi-
fying texts that are suitable for a given group
of target readers with a specific reading purpose
(Collins-Thompson, 2014). Recent approaches to
automatic readability assessment also investigate
the use of neural networks (Martinc et al., 2019).
However, the identification of linguistic charac-
teristics that impact the readability of texts in it-
self can also yield valuable insights for education,
because it may inform content creators of read-
ing materials for language learning. This also is
an interesting research endeavor from a linguis-
tic perspective and speaks against solely focusing
on neural approaches. Similarly, it remains to be
investigated to which extent these linguistic char-
acteristics may generalize across languages given
comparable target groups and reading purposes.

While there has been a considerable amount of
work on automatic readability assessment for En-
glish, there is still insufficient research on other
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languages. The lack of suitable training corpora
for other languages remains as one major limiting
factor (Collins-Thompson, 2014), despite some re-
search efforts to facilitate unsupervised readability
assessments (Benzahra and François, 2019; Mart-
inc et al., 2019). For example, there has been some
recent work on German readability classifiers for
native speakers (Weiss and Meurers, 2018; Weiss
et al., 2018; Dittrich et al., 2019). Yet, a lack of
corpus resources has so far hindered the develop-
ment of a readability classifier for German as a
second or foreign language (L2) learners.

In this article, we introduce a novel cross-
lingual feature collection for broad linguistic mod-
eling of German and English complexity. Al-
though neural classification approaches have been
strongly represented in readability assessment, our
literature review (see Section 2) shows that their
success has been very much limited on the bench-
mark data we use for this study and fallen be-
hind the feature-based readability classification
approaches which are also providing deeper lin-
guistic insights while requiring less computational
power.1 However, while broad feature collections
for language-specific complexity modeling have
been proposed for English (Chen and Meurers,
2019) and German (Weiss and Meurers, 2018),
they are not applicable across languages. This has
so far hindered the cross-lingual study of similari-
ties between characteristics of readability. We first
validate our approach by applying it to an estab-
lished readability corpus for English (Vajjala and
Lučić, 2018), before using it to train two readabil-
ity classifiers for labeling English and German L2
reading materials resulting in the first readability
classifier of this kind for German. For this, we
introduce a novel data set of English and Ger-
man reading materials for beginning, intermedi-
ate, and advanced learners of English and German,
the Spotlight corpus. We address the following re-
search questions:

1. Can we train a successful readability classi-
fier for German and for English using broad
complexity modeling?

2. Can these classifiers generalize beyond their
training language to cross-lingual contexts?

3. Which linguistic features are relevant for the
distinction of reading levels and how do they

1See Strubell et al. (2019) for a discussion of the consid-
erable energy demands of deep learning approaches in NLP.

differ between English and German?

The article is structured as follows. First, we
discuss related work on readability assessment of
English and German (Section 2). Then, we intro-
duce the novel Spotlight data set (Section 3.1) as
well as the OneStopEnglish corpus (Section 3.2)
which we use as benchmark data set. We pro-
ceed to introduce our approach to automatic com-
plexity assessment and the feature set (Section 4)
we use throughout our machine learning experi-
ments (Sections 5 and 6). Finally, we compare the
informativeness of individual complexity features
on Spotlight for the discrimination of reading lev-
els (Section 7) before we come to the conclusion
(Section 8) and outlook (Section 9).

2 Related Work

Automatic readability assessment has a long his-
tory dating back to the first readability formulas
developed in the early 20th century, see DuBay
(2006) for an overview. Traditional readability
formulas employ few surface text characteristics
such as text, sentence, and word length (Flesch,
1948; Dale and Chall, 1948). They are still
widely used especially in non-linguistic studies on
web accessibility (Esfahani et al., 2016; Grootens-
Wiegers et al., 2015), in information retrieval sys-
tems (Miltsakaki and Troutt, 2007; Chinkina et al.,
2016), and for confirming the compliance of read-
ing materials with specific accessibility guidelines
(Weiss et al., 2018; Yaneva et al., 2016), such as
Easy-to-Read materials.2

Over the last two decades, there has been a
shift towards computational readability classifica-
tion approaches based on machine learning tech-
niques employing feature engineering with Nat-
ural Language Processing (NLP) methods, see
Collins-Thompson (2014) and Benjamin (2012)
for an overview. Among others, linguistic com-
plexity features from SLA research (Vajjala and
Meurers, 2012), word frequency measures (Chen
and Meurers, 2017), and features of text cohesion
(Crossley et al., 2017) from Writing Quality As-
sessment research (Crossley, 2020) were shown to
be valuable features for readabilty assessemnt.

While most readability research focuses on En-
glish (Collins-Thompson, 2014), to a lesser degree
these approaches have also been employed for
other languages such as Russian (Reynolds, 2016),

2https://www.inclusion-europe.eu/easy-to-read/
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French (François and Fairon, 2012), Swedish
(Pilán et al., 2015), Italian (Dell’Orletta et al.,
2013), or German (Vor der Brück and Hartrumpf,
2007). For German, the most recent classifica-
tion approach has been proposed by Weiss and
Meurers (2018) who use broad linguistic com-
plexity modeling of German to distinguish be-
tween German media texts targeting adults and
children. However, this approach only provides a
rather coarse binary distinction and identifies read-
ing materials for information retrieval (i.e., with a
focus on accessibility), rather than language learn-
ing (i.e., with a focus on challenging the reader’s
language competence). Given the lack of appro-
priate multi-level reading corpora, so far no clas-
sifiers for German L2 readers have been trained.

Recently, several neural network approaches
have been proposed for readability assessment
(Martinc et al., 2019; Madrazo Azpiazu and Pera,
2019). Martinc et al. (2019) investigate the per-
formance of supervised and unsupervised neu-
ral readability classification approaches for En-
glish and Slovenian. They find that their neu-
ral approaches perform overall at the state-of-the
art level of feature-based classification approaches
in both languages. For the OneStopEnglish cor-
pus, their best classifier reaches an accuracy of
78.71% which performs at the same level as
the feature-based classifier reported by Vajjala
and Lučić (2018) with an accuracy of 78.12%.
With this, the performance of neural approaches
on OneStopEnglish does not exceed the original
benchmark and lies substantially below the cur-
rent state-of-the art on this data set, which is held
by a feature-based classifier with an accuracy of
90.09% (Bengoetxea et al., 2020). In other words,
while neural classification approaches have been
very successful in several NLP tasks, they are cur-
rently not competitive with the breadth and depth
of analyses supported by feature-based approaches
to readability classification.

Only little research has been conducted on mul-
tilingual readability classification. While there are
some neural classification approaches that are de-
veloped to be applicable across languages (Mart-
inc et al., 2019; Madrazo Azpiazu and Pera, 2019),
feature-based approaches are usually language-
specific. An exception is the study by De Clercq
and Hoste (2016), who compare the informative-
ness of lexical, semantic and syntactic features for
English and Dutch readability classification. The

cross-lingual applicability of multilingual models
has so far not been investigated, except for a series
of studies by Madrazo Azpiazu and Pera on the
VikiWiki corpus, which distinguishes simplified
Vikidia.org texts for 8 to 13 year old children from
regular Wikipedia.org texts for Basque, Catalan,
Dutch, English, French, Italian, and Spanish.3 On
this data, Madrazo Azpiazu and Pera (2020a) in-
vestigate the transferablility of the neural readabil-
ity classification approach by Madrazo Azpiazu
and Pera (2019). They demonstrate that training
on multilingual data sets may improve readability
classification results for low-resource languages in
the binary classification task. Madrazo Azpiazu
and Pera (2020b) follow a similar approach using
a feature-based readability classification approach
based on shallow features, morphological features,
syntactic features, and semantic features. They re-
port similar results as Madrazo Azpiazu and Pera
(2020a). While these studies make an important
first contribution to the assessment of cross-lingual
readability assessment, they are clearly limited by
the binary distinction of simplified texts for chil-
dren and regular Wikipedia texts. The success of
transfer learning for more fine-grained and prac-
tically relevant readability level distinctions re-
mains to be empirically determined.

3 Data

3.1 Spotlight corpus
The Spotlight corpus consists of articles from the
two monthly language learning magazines Spot-
light4 for adult German learners of English and
Deutsch perfekt5 for adult language learners of
German. Both magazines are published by Spot-
light Verlag, a leading European publisher for for-
eign language learning materials.6 The maga-
zines contain reading materials for beginning, in-
termediate, and advanced language learners which
the publisher equates with the Common European
Framework of Reference (CEFR) levels A2 (level:
easy), B1/B2 (level: medium) and C1 (level: ad-
vanced).

We extracted all articles from the PDF ver-
sions of the respective issues provided to us for
research purposes by the publisher.The type set-
ting of the magazines made it impossible to di-

3https://github.com/ionmadrazo/VikiWiki
4https://www.spotlight-online.de
5https://www.deutsch-perfekt.com
6https://www.spotlight-verlag.de
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rectly extract the individual articles with a PDF
converter without loosing the information of their
reading level. Instead, we manually identified and
extracted each article using screenshots which we
then converted to plain text using Google’s optical
character recognition (OCR) API.7 This way, we
extracted the English subset (henceforth Spotlight-
EN) from the 110 issues of the Spotlight maga-
zine that were published from January 2012 to De-
cember 2019 and the German subset (henceforth
Spotlight-DE) from the 45 issues of the Deutsch
perfekt magazine published from January 2018 to
December 2019 (see corpus profiles in Table 1).
The imbalance of readability levels in both data

Level N. docs N. sents N. words

Spotlight-EN
Easy 1.030 13.921 212.267
Medium 1.528 60.232 898.695
Advanced 1.030 24.288 440.793P

3.285 98.441 1.551.755

Spotlight-DE
Easy 763 16.135 180.178
Medium 509 27.107 338.553
Advanced 174 11.713 155.160P

1.446 54.955 673.891

Table 1: Corpus profiles for Spotlight data

sets is due to the imbalanced distribution of read-
ing levels in both magazines.

It is noteworthy that in both magazines, arti-
cles may vary considerably in length irrespective
of their reading level. This is shown in Table 2.
The table showcases that number of words – which
has been and continues to be a popular surface fea-
ture for readability classification – is not sufficient
to distinguish reading levels in this data set.

3.2 OneStopEnglish corpus

The OneStopEnglish (OSE) corpus by Vajjala and
Lučić (2018) consists of overall 567 Guardian
news paper articles that were rewritten for adult
English as a Second Language learners by
MacMillan Education.8 Each Guardian article is
available in an elementary (ele), intermediate (int),
and advanced (adv) version resulting in a perfectly

7https://cloud.google.com/vision
8https://www.onestopenglish.com

µ± SD M Min Max

Spotlight-EN
Easy 206±166 137 53 877
Medium 588±555 493 23 4.497
Advanced 606±509 489 26 2.940

Spotlight-DE
Easy 236±235 137 60 1.469
Medium 665±769 448 72 5.605
Advanced 892±537 524 91 4.161

Table 2: Article length in words in Spotlight data
(µ ± SD= mean ± standard deviation; M = me-
dian; Min = minimal; Max = maximal)

balanced corpus.9 The OSE corpus is a by now
established reference data set for studies related
to readability assessment and text simplification
(Bengoetxea et al., 2020; Benzahra and François,
2019). Currently, the best results reported for OSE
achieve an accuracy of 90.09% in a feature-based
machine learning approach by Bengoetxea et al.
(2020). Table 3 shows the corpus profile of the
OSE data set. Table 4 displays the differences of
article length across reading levels in OSE.10

Level N. docs N. sents N. words

Ele. 189 6.033 105.169
Int. 189 6.634 128.335
Adv. 189 7.221 162.449P

567 19.888 395.953

Table 3: Corpus profile for OSE

Level µ(±SD) M Min Max

Ele. 556(±109) 561 267 948
Int. 679(±117) 691 315 1.083
Adv. 860(±171) 857 357 1.465

Table 4: Article length in words in OSE (µ±SD=
mean ± standard deviation; M = median; Min =
minimal; Max = maximal)

9Since the three OneStopEnglish levels (elementary, in-
termediate, advanced) are not explicitly aligned with the
CEFR levels, used to characterize the Spotlight levels
(easy=A2, medium=B, advanced=C1), we keep the labels
separate throughout the article.

10The numbers reported here slightly deviate from those
reported by Vajjala and Lučić (2018), due to minor differ-
ences in the automatic tokenization.
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As also noted by Vajjala and Lučić (2018,
p. 299), there is a general tendency of articles
becoming longer with increasing reading level.
However, note the standard deviation of the article
length within reading levels, which is considerable
despite being much lower than the variability dis-
played in the Spotlight data.

4 Automatic Complexity Analysis

4.1 Complexity Features
We calculate 312 features of linguistic complexity
merging the feature collections proposed by us in
our previous work on German (Weiss and Meur-
ers, 2018) and English (Chen, 2018). These have
been successfully used for the tasks of readabil-
ity assessment (Chen and Meurers, 2018; Weiss
and Meurers, 2018; Kühberger et al., 2019), sec-
ond language proficiency assessment (Weiss and
Meurers, 2019b, 2021), academic language profi-
ciency (Weiss and Meurers, 2019a), and teachers’
grading objectivity (Weiss et al., 2019). While
each of the feature collections contains more
language-specific features than the joined feature
collection proposed in this work, this is as far as
we are aware the broadest collection of complex-
ity features applicable to both, English and Ger-
man, thus facilitating cross-lingual comparisons of
complexity.

Our broad set of cross-lingual complexity fea-
tures covers the theoretical linguistic domains of
syntax, lexicon, and morphology, as well as fea-
tures of discourse cohesion and psycho-linguistic
features of human language use and human lan-
guage processing. It also includes some surface
measures from or inspired by classic readability
formulas.

4.1.1 Surface Length (LEN)
We measure 21 surface text length features in-
spired by traditional readability formulas. They
measure the raw number of sentences, syllables,
letters, (unique) words including and excluding
punctuation marks and numbers, and (unique) to-
kens. It also includes mean and standard devia-
tions of sentence length and word length measured
in letters, syllables, and words as well as the mean
and standard deviation of words with more than
two syllables. These categories can be applied
without language-specific adjustments, except for
the identification of syllables which are based on
language-specific regular expressions.

4.1.2 Syntactic Complexity (SYN)
We assess several features of clausal and phrasal
complexity that have been proposed in the SLA
complexity literature (Wolfe-Quintero et al., 1998;
Kyle, 2016) inspired by the implementations by
Chen (2018) and Weiss and Meurers (2021). We
measure 20 features of clausal elaborateness. This
includes features measuring the length of clauses
and (complex) t-units in various units (such as
words, syllables, letters), as well as features of
clausal coordination and subordination, such as
the number of relative or dependent clauses per
clause.

Furthermore, we measure 28 features of phrasal
elaborateness. This includes several features fo-
cusing on the complexity of noun phrases (NPs)
including the number of pre- and postnominal
modifiers per complex NP, the number of (com-
plex) NPs per clause, t-unit and sentence, and the
length of NPs in words. It also entails features
measuring the complexity of verb phrases (VPs)
including the number of verb clusters and VPs per
clause, t-unit and sentence and the length of verb
clusters in words. We also measure the complexity
of prepositional phrases (PPs) such as the number
of (complex) PPs per clause, t-unit and sentence or
the length of PPs in words. Finally, this includes
measures of coordinate phrases per clause, t-unit
and sentence.

While these syntactic features are identified
based on language-specific TregEx (Levy and An-
drew, 2006) patterns for constituency trees, we
carefully designed all extraction rules to yield
equivalent results across languages.

We also measure syntactic variation based on
12 measures of parse tree edit distances following
Chen (2018).

4.1.3 Lexical Complexity (LEX)
We measure several complexity features assess-
ing lexical richness, variation, and density that
have been proposed in the SLA complexity liter-
ature (Wolfe-Quintero et al., 1998) inspired by the
implementations by Chen (2018) and Weiss and
Meurers (2021). These can be applied straight for-
ward across languages as long as similar word cat-
egories (such as adjectives, nouns, verbs, etc.) can
be identified.

This feature set includes 27 features of lexical
density including POS-based lexical density fea-
tures as well as 9 features of lexical diversity in-
cluding lexical word, verb, noun, adjective, and
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adverb variation. Finally, we assess 53 features
of lexical richness including several mathematical
transformations of type token ratios (TTR), parts-
of-speech specific TTRs, the Uber index and HD-
D (McCarthy and Jarvis, 2007).

4.1.4 Morphological Complexity (MOR)
Morphological complexity has been argued to be
an important feature for readability assessment of
morphological richer languages than English, such
as German (Hancke et al., 2012; Weiss and Meur-
ers, 2018) or Basque (Gonzalez-Dios et al., 2014).
However, few measures have been used in read-
ability assessment that are applicable across lan-
guages with different morphological systems. We
use the Morphological Complexity Index (MCI)
proposed by Brezina and Pallotti (2019) to assess
morphological complexity independent of lan-
guage by measuring the variability of morpholog-
ical exponents of specific parts-of-speech within a
text. These morphological exponents can be iden-
tified by contrasting word forms with their stems
which makes the features applicable across lan-
guages. We assess overall 40 MCI features for
verbs, nouns, and adjectives based on different
number of samples and sampling sizes with and
without repetition.

4.1.5 Discourse Cohesion (DIS)
We assess 26 features measuring the mean over-
lap of word forms and lemmas of lexical words,
nouns, and grammatical arguments between sen-
tences as well as their standard deviation. Each
feature is calculated locally (between neighboring
sentences) and globally (across all sentences in the
text). These implicit cohesion features were orig-
inally proposed in CohMetrix (McNamara et al.,
2014). Unlike explicit cohesion measures, such as
the number of particular connectives, they are di-
rectly applicable across languages.

4.1.6 Language Use (USE)
Word frequency features have a long tradition in
both, readability and complexity research. Yet,
word frequencies obtained from different fre-
quency data bases are not necessarily comparable.
We address this issue by using the SUBTLEX-
US (Brysbaert et al., 2011b) and SUBTLEX-DE
(Brysbaert et al., 2011a) frequency data bases.
We consider both SUBTLEX frequency data bases
equivalent for the purposes of our complexity
analysis because they represent word frequencies

from the same register and were created to be max-
imally comparable. To mitigate effects due to the
different sizes of the underlying corpora, we only
use word frequencies per million words.

Based on this, we calculate 56 word frequency
features including the mean (log) frequency of
all words, lexical words, and function words and
their standard deviations as well as frequencies for
verbs, nouns, adjectives, and adverbs.

4.1.7 Human Language Processing (HLP)
Weiss and Meurers (2018) have proposed to use
features based on theories explaining human sen-
tence processing difficulties for readability assess-
ment. They propose features based on the De-
pendency Locality Theory (Gibson, 2000) using
the different integration cost weight configurations
proposed in Shain et al. (2016). While the psycho-
linguistic theories have been formulated for En-
glish, the complexity features by Weiss and Meur-
ers (2018) have so far not been applied for com-
plexity modeling beyond German.

We implemented 21 features for both, English
and German, based on universal dependencies to
make them applicable across languages. These
features calculate the average, maximal and high-
est adjacent discourse integration costs per finite
verb across different weight configurations.

4.2 NLP Pipeline
We calculate our complexity features following
a three-step procedure. First, we run a pipeline
of Natural Language Processing (NLP) tools to
provide linguistic annotations for the data. The
annotation pipeline primarily relies on Stanford
CoreNLP (Manning et al., 2014) which we use
for sentence segmentation, tokenization, parts-of-
speech (POS) tagging, constituency parsing, and
dependency parsing for English and German. We
additionally employ the Mate tools (Bohnet and
Nivre, 2012) for lemmatization, because CoreNLP
only provides a lemmatizer for English but not
for German. We also use the OpenNLP Snowball
stemmer to extract stems for English and German.
For all annotations, we use the respective default
models provided with the NLP tools.

Second, we count linguistic constructs using a
set of extraction rules as well as word frequencies.
This procedure is fully identical across languages
except for syllable counts, POS-based counts, and
syntactic complexity counts which we designed to
be comparable across languages as described in
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the previous section. For all other features we use
identical extraction rules.

Third, we calculate a variety of complexity fea-
ture ratios based on these counts. This step is fully
language independent.

4.3 Feature Extraction and Selection
We extracted all 312 features on OSE, Spotlight-
EN and Spotlight-DE as described in the previous
subsection. We then identified all features that
were not variable on any of the three data sets.
This way, we could exclude features that are irrele-
vant for the data sets while keeping the feature col-
lections comparable across data sets. For this, we
removed all features for which the most common
feature value across all three data sets occurred in
95% of the data or more.

The feature removal reduced the entire feature
collection to 301 features. Only human language
processing features were removed through this
step, including all features measuring high adja-
cent integration costs.

5 Establishing our Approach on OSE

5.1 Set-up
To validate the performance of our feature-based
readability classification approach against an es-
tablished benchmark data set, we first trained a
classifier to predict reading levels on the OSE data.
For this, we used the 301 complexity features from
Section 4.3. All feature values were z-transformed
and centered around zero. We trained a random
forest (RF), an ordinal RF, a Support Vector Ma-
chine (SVM) with a radial kernel, and a SVM with
a polynomial kernel in R (R Core Team, 2015) us-
ing the caret package (Kuhn, 2020).11 In the
following, we only report the results for the SVM
using a polynomial kernel, which outperformed
the other algorithms.12

To not reduce the relatively small data set
further, we train and test using 10-folds cross-
validation. We compare the performance of the
classifier on OSE with a) the random accuracy
baseline of 33.3% and b) the state-of-the art per-
formance on this data set by Bengoetxea et al.
(2020), reaching 90.09%. We also report the in-
dividual precision, recall and F1 scores for each

11All R scripts, data tables, and trained models that are
being reported in this and the following sections are publicly
available on OSF at https://osf.io/5hbcs/

12SVM parameters: degree = 3, scale = 0.001, and C = 1.

reading level.

5.2 Results

The OSE classifier reaches an accuracy of
92.06% with a 95% confidence interval (CI)
= [89.52%, 94.15%] in 10-folds cross-validation.
This significantly outperforms the random base-
line of 33.33% (p-Value < 2 · 10�16).13 It also
exceeds the results of Bengoetxea et al. (2020).

Table 5 displays the confusion matrix for the
classification summed across all 10-folds.

Pred\Obs. Ele. Int. Adv.

Ele. 179 9 4
Int. 9 173 15

Adv. 1 7 170

Table 5: Confusion matrix: OSE 10-CV

It shows that misclassifications occur predom-
inantly at adjacent reading levels and that there
does not seem to be any systematic bias. Table 6
reports precision, recall, and F1 score per level.
The performance across reading levels is relatively

Ele. Int. Adv.

Precision 93.2 87.8 95.5
Recall 94.7 91.5 90.0

F1 94.0 89.6 92.6

Table 6: Performance for OSE 10-CV

balanced. Elementary texts have a slightly higher
recall, while advanced texts have a higher preci-
sion. As expected when comparing an ordinal
classification level with two adjacent levels with
levels with only one adjacent level, intermediate
texts receive the lowest scores for precision and
recall.

6 Classifying Readability on Spotlight

6.1 Set-up

After establishing the performance of our ap-
proach against the OSE benchmark data set,
we turn to our main research question, which
compares feature-based readability classification
across languages on Spotlight-EN for English and
Spotlight-DE for German. Our classification is

13Here and throughout the article we report p-values ob-
tained with one-sided t-tests with H1 = Acc. > Baseline.
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again based on the 301 complexity features we ex-
tracted and identified following the procedure de-
scribed in Section 4.3. All feature values were z-
transformed and centered around zero separately
for Spotlight-EN and Spotlight-DE. This way, the
classifiers are learning based on the standard devi-
ations from the data sets’ mean values rather than
the raw feature values. This was supposed to mit-
igate language-specific differences, for example,
regarding the average sentence length in German
and English.

The set-up of the classification experiment is
identical to the one described in Section 5.1. In
the following, we only report the results for the or-
dinal RF which outperformed the other algorithms
on both Spotlight data sets.14 Since this is a novel
data set, we use the majority baseline as sole ref-
erence to evaluate the classifier performance in the
within language condition (Section 6.2.1).

For our cross-language classification experi-
ment (Section 6.2.2), we apply the previously
trained classifiers to the respective other subset
of the Spotlight data, i.e., testing on Spotlight-
DE for the classifier trained on Spotlight-EN and
vice versa. Unlike previous cross-linguistic read-
ability classification approaches that used cross-
lingual data to augment limited training resources,
this set-up tests the generalization of our classi-
fiers in a form of zero-shot learning. We again
compare the performance of each classifier across-
languages against the majority baseline on the re-
spective testing data and the within-language clas-
sification performance.

We also report the individual precision, recall
and F1 scores for each reading level throughout
all classification experiments.

6.2 Results

6.2.1 Within-language Performance
Table 7 displays the results of all four classifi-
cation experiments on the Spotlight data. The
Spotlight-EN classifier reaches an accuracy of
74.5% in 10-folds cross-validation. This signifi-
cantly outperforms the majority baseline of 46.5%
(p-Value < 2.2 · 10�16).

Looking at the confusion matrix in Table 8, we
see that the classification is relatively balanced,

14Parameters for the English model: number of sets = 50,
number of trees per div. = 150, number of final trees = 600;
parameters for the German model: number of sets = 150,
number of trees per div. = 150, number of final trees = 200.

even though in proportion to their total count ad-
vanced texts are classified incorrectly more often
than the other reading levels. This can also be seen
in the relatively low F1 score for advanced texts
displayed in the first three rows of Table 10.

The Spotlight-DE classifier reaches an accuracy
of 88.0% in 10-folds cross-validation. This signifi-
cantly outperforms the majority baseline of 52.8%
(p-Value < 2.2 · 10�16). Table 9 shows the con-
fusion matrix for the classification, which shows
good classification results throughout all reading
levels. This is mirrored in the high precision and
recall scores displayed in rows four to six in Ta-
ble 10.

6.2.2 Cross-language Performance
For the classification across languages, the
Spotlight-EN classifier reaches an accuracy of
55.5% on Spotlight-DE. Although this perfor-
mance is considerably worse than for the within-
language classification, this significantly outper-
forms the majority baseline of 52.8% (p-Value
= 0.02118) showing that the classifier somewhat
generalizes beyond English even if the perfor-
mance drops considerably. Looking at the confu-
sion matrix in Table 11, one of the most common
misclassifications is the labeling of easy texts as
medium. The classifier overestimates the reading
difficulty of many easy and medium texts. This
results in a high precision but low recall for easy
texts, as shown in rows seven to nine in Table 10.

The Spotlight-DE classifier reaches an accuracy
of 53.4% on Spotlight-EN. Again, this is much
worse than the results for the within-language
classification, but significantly outperforms the
majority baseline of 46.51% (p-Value = 1.284 ·
10�15). This shows again that the classifier gen-
eralizes to some degree in the zero-shot learning
scenario. Looking at the confusion matrix in Ta-
ble 12, it can be seen that the classifier tends to
underestimate the reading difficulty of advanced
texts (classifying them as medium or even easy)
and of medium texts (classifying them as easy).
This results in a relatively high recall for easy texts
and very low recall for advanced texts, as shown in
the final three rows in Table 10.

6.3 Discussion
The two readability classifiers trained on
Spotlight-EN and Spotlight-DE are highly
successful when applied within their training
language and exceed the majority baseline con-
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Train Test Acc. 95% CI Maj. Acc. < Maj.

Spotlight-EN 10-folds CV 74.5 [73.0, 76.0] 46.5 < 2.2 · 10�16

Spotlight-DE 10-folds CV 88.0 [86.1, 89.6] 52.8 < 2.2 · 10�16

Spotlight-EN Spotlight-DE 55.5 [52.9, 58.1] 52.8 .02118
Spotlight-DE Spotlight-EN 53.4 [51.7, 55.1] 46.5 1.284 · 10�15

Table 7: Overall classifier accuracy (Acc.) on Spotlight data compared against majority baseline (Maj.)

Pred\Obs. Easy Medium Advanced

Easy 816 171 37
Medium 208 1,210 268

Advanced 6 147 422

Table 8: Confusion matrix Spotlight-EN 10-CV

Pred\Obs. Easy Medium Advanced

Easy 727 83 1
Medium 34 399 27

Advanced 2 27 146

Table 9: Confusion matrix Spotlight-DE 10-CV

Easy Medium Advanced

Spotlight-EN 10 CV
Precision 79.7 71.8 73.4

Recall 79.2 79.2 58.1
F1. 79.5 75.3 65.0

Spotlight-DE 10 CV
Precision 89.6 86.7 83.4

Recall 95.3 78.4 83.9
F1. 92.4 82.4 83.7

Spotlight-EN on Spotlight-DE
Precision 82.3 42.5 52.4

Recall 44.6 67.4 67.8
F1. 57.8 52.1 59.2

Spotlight-DE on Spotlight-EN
Precision 49.3 59.0 53.4

Recall 80.3 47.9 27.0
F1. 61.1 52.9 35.8

Table 10: Level-wise performance on Spotlight

siderably. When comparing the performance of
the Spotlight-EN classifier and the OSE classifier,
the different nature of the two English corpora
has to be taken into account. OSE consists of the

Pred\Obs. Easy Medium Advanced

Easy 341 73 0
Medium 408 343 56

Advanced 14 93 118

Table 11: Confusion matrix Spotlight-EN on
Spotlight-DE

Pred\Obs. Easy Medium Advanced

Easy 827 635 216
Medium 193 732 315

Advanced 10 161 196

Table 12: Confusion matrix Spotlight-DE on
Spotlight-EN

same 189 articles simplified for three different
reading levels, which is a somewhat artificial
set-up for training data. The Spotlight-EN corpus,
instead, consists of different texts specifically
written for a given reading level which is closer to
real-life texts for which language learners might
require automatic readability ratings. Thus, we
consider the within-language performance of the
Spotlight-EN classifier satisfactory.

For the Spotlight-DE classifier, we observe a
very high performance throughout reading levels.
Spotlight-DE is the first data set for the readability
assessment of texts for German L2 learners that
allows a distinction for beginning, intermediate,
and advanced learners of German. Thus, we can-
not compare the performance to a reference cor-
pus or cross-corpus test the Spotlight-DE classi-
fier. Overall, the classification results are sufficient
to use the Spotlight-DE classifier in real-life sce-
narios, even though a cross-corpus evaluation on a
comparable data set would be ideal to confirm its
generalizability as soon as such a data set becomes
available.

Turning to our cross-language classification ex-
periments, we find that both classifiers generalize
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to some extent in the zero-shot learning scenarios,
despite considerable drops in performance. This
result is not to be taken for granted due to the lin-
guistic differences between English and German.
These are highly promising initial results. Further
research is needed to investigate to which extent
this generalization also applies across other lan-
guages.

The comparison of the confusion matrices of
both cross-lingual classification experiments re-
veals a symmetrical regularity in the misclassifi-
cations. While the German classifier underesti-
mates the reading levels of the English texts, the
English classifier tends to overestimate the read-
ability of the German texts. Since the classifiers
are trained and tested on feature z-scores centered
around the mean this behavior is not immediately
expected and warrants further investigation in fu-
ture research.

7 Feature Informativeness on Spotlight

7.1 Set-up
To identify which of the 301 complexity features
identified in Section 4.3 are most informative for
the readability classification, we identify the most
informative features using the correlation-based
feature subset selection for machine learning ap-
proach by Hall (1999). This method identifies
the subset of features that exhibits the highest
correlation with the class to be predicted (in our
case reading level) while minimizing the inter-
correlation of features within the subset. We use
the implementation provided in the WEKA toolkit
version 3.9.5 (Hall et al., 2009) for feature identi-
fication. We report the percentage of features se-
lected across each feature group before we discuss
in more detail the intersection of features in both
data sets.

7.2 Results
Table 13 displayed the raw number and per-
centage of features selected on Spotlight-EN and
Spotlight-DE across feature groups and the total
number of features contained in the feature group.
To make the result summary more interpretable,
we split syntactic and lexical complexity features
into the individual subgroups distinguished within
Sections 4.1.2 and 4.1.3. A full list of all features
that are informative on either data set is displayed
in Appendix A. Figure 1 shows the boxplots of
all features that were selected for Spotlight-EN as

Group EN (%) DE (%) All

LEN 7 (33.3) 5 (23.8) 21
USE 17 (30.4) 11 (19.6) 56
LEX Density 7 (15.9) 5 (18.5) 27
LEX Diversity 1 (11.1) 1 (11.1) 9
LEX Richness 4 (7.5) 5 (9.4) 53
SYN Clausal 1 (5.0) 8 (40.0) 20
SYN Phrasal 1 (3.6) 5 (17.9) 28
SYN Variation 2 (16.7) 0 (0.0) 12
MOR 7 (17.5) 3 (7.5) 40
DIS 2 (8.2) 0 (0.0) 24
HLP 0 (0.0) 0 (0.0) 11P

49 (16.3) 43 (14.3) 301

Table 13: Informative features selected on
Spotlight-EN (EN), Spotlight-DE (DE), and the
total number of features in the group (All)

well as Spotlight-DE.

On Spotlight-EN and on Spotlight-DE, up to a
third of all surface length features are selected,
most of which are informative on both data sets.
All of the shared length features increase with
reading level (see Figure 1). Also language use
features seem to be central for the distinction of
reading levels on both data sets. 30.4% of the fea-
tures were selected for Spotlight-EN and 19.6%
for Spotlight-DE. Four of the language use fea-
tures are relevant for both data sets: the average
word frequency and its standard deviation are de-
creasing with increasing reading level. The same
holds for the log frequency of lexical word types.
The standard deviation of the verb token frequency
is increasing with higher reading levels. Lexical
complexity seems to play a medium role in the
distinction of reading levels. 13.5% of the lexical
complexity features were selected for Spotlight-
EN and 12.4% for Spotlight-DE. Especially lex-
ical density and richness play an important role on
both data sets, but there is only very little over-
lap between the features selected for Spotlight-EN
and Spotlight-DE. Only the POS density of modi-
fiers and proper nouns as well as the squared word
TTR were selected on both feature sets. For En-
glish, the proper noun density is decreasing, while
the POS density for modifiers and the squared
word TTR are increasing with reading levels. For
German, the squared word TTR is also increas-
ing with reading levels, but the two POS density
features exhibit a u-shaped and inverse u-shaped
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Figure 1: Boxplots of features that are informative on both, Spotlight-EN and Spotlight-DE
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behavior.
The importance of syntactic and morphological

complexity differs for Spotlight-EN and Spotlight-
DE. Only 6.7% of the syntactic features were
selected for Spotlight-EN, half of them features
of syntactic variation. In contrast, 21.7% were
selected on Spotlight-DE, all either features of
clausal or phrasal complexity. Correspondingly,
there is very little overlap in this domain between
English an German. Only two syntactic features
are informative for both data sets: the mean noun
phrase length and the number of dependent clauses
per t-unit, both of which are increasing with higher
reading levels on both data sets. Morphological
complexity features seem to play an important role
for the distinction of reading levels on Spotlight-
EN, but much less on Spotlight-DE. While 17.5%
of the morphological complexity features were se-
lected for Spotlight-EN, only 7.5% play a role on
Spotight-DE. Both data sets share only one fea-
ture in this domain, namely the MCI for adjec-
tives (measured with repetition with 5 partitions of
size 5), which increases with higher reading levels,
though the effect is more pronounced for English.

Neither implicit discourse cohesion features nor
human language processing features seem to be
important features on Spotlight-DE and also on
Spotlight-EN, only 8.2% of the cohesion features
were identified as informative.

7.3 Discussion

The correlation-based feature subset selection
shows that features from most feature groups con-
tribute meaningful information for the distinction
of reading levels on both data sets. Especially fea-
tures of surface length, language use, and lexi-
cal complexity help to characterize reading level
differences on both data sets. Morphological
and syntactic complexity features seem to capture
more language-specific differences. There is also
a considerable overlap of features selected for both
data sets. Overall 28% of the features selected
for Spotlight-EN and 32% of features selected for
Spotlight-DE are shared between both data sets.

Judging from the features that are shared be-
tween the feature selections for English and Ger-
man, higher reading levels are characterized by the
use of less frequent vocabulary, longer words, sen-
tences, and texts, and shifts in lexical density and
richness. Also the features that were selected from
the domains of morphological, phrasal and syntac-

tic complexity increase with higher reading levels.
This is in line with previous findings by Weiss and
Meurers (2018) regarding the readability of Ger-
man media texts targeting German-native speak-
ing adults and children. However, our results in-
dicate that these domains play a much less pro-
nounced role for the distinction of reading levels.
Interestingly, morphological elaboration seems to
be more important for English than for German.

Human language processing measures do not
seem to play an important role for the distinction
of reading levels in either data sets, even though
these measures are motivated by psycho-linguistic
studies on human sentence processing. This is
again in line with previous findings reported by
Weiss and Meurers (2018).

Overall, these findings explain the albeit limited
cross-language generalization of both readability
classifiers in the zero-shot learning experiments.
While there are differences in the types of features
that are informative for the identification of read-
ing levels across languages, there is nevertheless
a substantial overlap and the shared features pre-
dominantly exhibit an increase in complexity with
higher reading levels. This confirms that the pub-
lisher successfully instituted a policy facilitating
the creation of stratified reading materials for dif-
ferent levels in a way that is comparable across the
different languages that we analyzed.

8 Conclusion

We have investigated the use of language-
independent broad linguistic complexity modeling
for the multi-level readability classification of En-
glish and German reading materials for language
learners. Our first study designed to benchmark
the performance of our methods on the established
OneStopEnglish yielded new state-of-the art re-
sults, clearly showcasing the value of broad lin-
guistic modeling for readability assessment. Our
study also shows that for certain tasks, broadly
linguistically informed feature-based approaches
are in fact not only competitive with neural ap-
proaches but exceeding their performance.

We then introduced a novel multi-level read-
ing corpus for English and German on which we
trained two readability classifiers that yield are
highly successful within their respective training
language. With this, we present the first multi-
level readability classifier for German. This is
highly relevant, because the much more com-
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monly proposed binary classification approaches
distinguishing simple and regular language are too
limited to be of practical relevance for the retrieval
of reading materials that are appropriate to foster
foreign language learning.

We then demonstrated the generalizability of
the German classifier for comparable English data
and the English classifier for comparable German
data. This is a novel contribution to cross-lingual
readability research, not only because of the multi-
level classification but also because of we pro-
pose a zero-shot cross-lingual readability classi-
fication approach unlike previous work focusing
on augmenting low-resource training data. This is
a central contribution to readability classification
research, especially for languages other than En-
glish, given the lack of appropriate training mate-
rials for many languages.

In our final study, we compared the linguis-
tic properties characterizing differences in reading
levels in English and German. Our findings show
that for both languages, texts systematically differ
between reading levels in terms of the frequency
and lexical complexity. Language-specific charac-
teristics of reading levels can be found in the syn-
tactic, discourse and morphological domains. The
publisher thus successfully adapts the reading ma-
terials for different proficiency levels across a vari-
ety of linguistic domains in a systematic way. This
is not a trivial insight, since previous work demon-
strated that school book publishers do not always
succeed in the linguistic adaptation of reading ma-
terials for different target groups (Berendes et al.,
2018).

Our findings clearly demonstrate the value of
feature-based classification approaches not only
for the study of linguistic phenomena but also
for readability classification. We demonstrate the
feasibility of broad language-independent feature
collections and their potential for zero-shot cross-
lingual learning.

9 Outlook

As we saw in Table 7, cross-language zero-shot
learning showed a promising result for training
on Spotlight-DE and test on Spotlight-EN and the
other way round. It is arguable that although dif-
ferent languages may complexify in different lin-
guistic aspects, the general rule of more elaborate
linguistic components and more varied expression
usually resulting in higher complexity still applies.

As a result, it is highly likely that zero-shot cross-
language learning would also result in good per-
formance, but detailed approaches need to be fur-
ther designed and tested in future studies including
more languages.

Another direction for future research is to see
how the readability levels decided by the publisher
match L2 learners’ actual perception of the texts’
difficulty. Although our models have yielded high
accuracy, if the standards used to determine the
levels of the texts do not actually match the learn-
ers’ perceived difficulty, the predicted results are
meaningless. Vajjala and Lučić (2019) offer an in-
teresting data set that may potentially be used to
answer this question.
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Appendix A: List of Selected Features

A.1: Features selected for Spotlight-EN
LEN Number Of Letters, SD Token Length in

Letters, Percentage of Word Types with More
Than 2 Syllables Length Measures, Number
of Word Types with More Than 2 Syllables,
SD Sentence Length in Tokens, SD Sentence
Length in Syllables, Mean Sentence Length
in Syllables

SYN Syntactic Complexity Feature: Dependent
clauses per T-unit Clausal, Syntactic Com-
plexity Feature: Mean Length of Noun
Phrase Phrasal, SD Local Edit Distance for
tokens, SD Global Edit Distance for Lemmas

LEX POS Density Feature: Particle, POS Den-
sity Feature: Adjective, POS Density Fea-
ture: Past Participle Verb, POS Density Fea-
ture: Article, POS Density Feature: Co-
ordinating Conjunction, POS Density Fea-
ture: Modifier, POS Proper Noun Density,
Corrected TTR, Corrected TTR Adjectives,
Suqared TTR Words, Uber index (10) Adjec-
tives, Lexical Verb Variation

MOR MCI-5 for Verbs (5 partitions no repe-
tition), MCI-5 for Nouns (5 partitions no
repetition), MCI-10 for Nouns (5 partitions
no repetition), MCI-5 for Adjectives (2 par-
titions with repetition), MCI-5 for Adjec-
tives (2 partitions no repetition), MCI-5 for
Nouns (5 partitions with repetition), MCI-5
for Nouns (10 partitions no repetition)

DIS Global Lemma Overlap, Mean Local Noun
Overlap (word form-based)

USE Logarithmic Word Frequency (Adj Type),
Logarithmic Word Frequency (FW Type),
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Logarithmic Word Frequency (SD Adj To-
ken), Logarithmic Word Frequency (SD FW
Type), Logarithmic Word Frequency (LW
Type), Logarithmic Word Frequency (SD V
Type), Logarithmic Word Frequency (AW
Type), Word Frequency (AW Type), Loga-
rithmic Word Frequency (V Type), Word Fre-
quency (SD AW Token), Logarithmic Word
Frequency (SD LW Token), Word Frequency
(FW Token), Logarithmic Word Frequency
(SD V Token), Logarithmic Word Frequency
(Adv Token), Word Frequency (SD AW
Type), Logarithmic Word Frequency (SD LW
Type), Word Frequency (SD FW Type)

HLP none

A.2: Features selected for Spotlight-DE
LEN Number Of Letters, 2 Number of Word

Types with More Than 2 Syllables, Mean
Sentence Length in Syllables, SD Sentence
Length in Tokens, SD Sentence Length in
Letters

SYN Relative Clauses per Sentence, Relative
Clauses per Clause, Dependent clauses per
Sentence, Dependent clauses per T-unit,
Complex T-unit Ratio, Dependent clause
ratio, Relative Clauses per T-Unit, Mean
Length of T-unit, Verb Cluster per T-Unit,
Mean Length of Noun Phrase, Postnominal
Modifier per Complex Noun Phrase, Verb
Phrases per Clause, Verb Phrases per T-unit

LEX TTR Adverbs per Lexical Types, Squared
TTR Nouns, Uber index (10) Verbs, Uber
index (10) Nouns, Squared TTR Words,
Modals per Verb, POS Modifier Density,
POS To-infinitive Density, POS Possessive
Pronoun Density, POS Proper Noun Density

MOR MCI-5 for Nouns (2 partitions with repe-
tition), MCI-5 for Nouns (5 partitions with
repetition), MCI-10 for Nouns (2 partitions
no repetition)

DIS none

USE Word Frequency (V Type), Word Frequency
(SD V Type), Logarithmic Word Frequency
(Adj Token), Logarithmic Word Frequency
(SD V Token), Word Frequency (AW Type),
Logarithmic Word Frequency (SD Adv To-
ken), Logarithmic Word Frequency (LW

Type), Logarithmic Word Frequency (V To-
ken), Word Frequency (SD FW Token), Log-
arithmic Word Frequency (SD AW Token),
Word Frequency (SD AW Type)

HLP none
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Abstract

The paper presents a new state-of-the-art
sentence-wise readability assessment model
for German L2 readers. We build a linguisti-
cally broadly informed machine learning model
and compare its performance against four com-
monly used readability formulas. To under-
stand when the linguistic insights used to in-
form our model make a difference for read-
ability assessment and when simple readabil-
ity formulas suffice, we compare their perfor-
mance based on two common automatic read-
ability assessment tasks: predictive regression
and sentence pair ranking. We find that leverag-
ing linguistic insights yields top performances
across tasks, but that for the identification of
simplified sentences also readability formulas
– which are easier to compute and more acces-
sible – can be sufficiently precise. Linguisti-
cally informed modeling, however, is the only
viable option for high quality outcomes in fine-
grained prediction tasks.

We then explore the sentence-wise readabil-
ity profile of leveled texts written for language
learners at a beginning, intermediate, and ad-
vanced level of German. Our findings high-
light that a texts’ readability is driven by the
maximum rather than the overall readability of
sentences. This has direct implications for the
adaptation of learning materials and showcases
the importance of studying readability also be-
low the document level.

1 Introduction

Comprehensible input is key to foster language
learning (Swain, 1985), especially when it chal-
lenges learners by falling slightly above their in-
dividual level of language competence (Vygotsky,
1978; Krashen, 1985). Also in content-matter ed-
ucation, input comprehensibility has been linked
to learning success (e.g., O’Reilly and McNamara,
2007). Thus, automatic readability assessment
(ARA) is a crucial tool to support education. ARA

seeks to align language input with readers’ compre-
hension skills (Vajjala, 2021; Collins-Thompson,
2014). It can not only identify suitable reading ma-
terials, but can also ensure learner-input alignment
in applications such as tutoring systems or educa-
tional conversational agents or as a validation tool
for publishers of educational materials. Yet, most
work on ARA focuses on English native speakers,
leaving much potential for other languages and ap-
proaches specifically tailored to the needs of second
or foreign language (L2) learners who experience
language barriers differently than native speakers
(Greenfield, 2004; Collins-Thompson, 2014).

Although most work on ARA has focused on es-
timating the readability of entire documents, there
are many application scenarios in which sentence-
level readability assessment is more suitable. Be-
yond the identification of text simplification targets
(Vajjala and Meurers, 2014), they are also more
suitable for very short text types including social
media language (e.g., tweets and chats), question-
naire or test items used in assessment and empirical
education research, or shorter text units in tradi-
tional learning materials (e.g., captions or tasks in
schoolbooks). Furthermore, there has been little re-
search on the link between sentence and document
readability (but see Vajjala and Meurers, 2014)
which is immediately relevant for the targeted de-
sign and adaptation of educational materials.

There is a startling gap between the methods pro-
posed in ARA research and those used in practice.
While for the last two decades, research on ARA
has favored machine learning approaches over tra-
ditional readability formulas (Vajjala, 2021) due to
their generally better performance (e.g., François
and Miltsakaki, 2012), simple formulas continue
to be used extensively in practice due to their ease
of use and low computation demands (Benjamin,
2012). This discrepancy raises the practical ques-
tion when simple approximations of readability
through formulas suffice, and when the use of more
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elaborate systems is necessary.
This paper addresses these issues with four ma-

jor contributions: First, we present a new state-of-
the-art (SOTA) sentence-level readability model
for L2 German readers which is based on broad
linguistic complexity assessment. Its performance
on a 7-point Likert scale is comparable to human
raters when it comes to estimating the readability
of sentences for German L2 readers. Second, we
make this model accessible online to enhance the
impact of our work outside academic discourse.
Users can extract features from their texts using
the publicly available web platform CTAP (Chen
and Meurers, 2016; Weiss et al., 2021) and use
the results as input for a pre-written R script that
applies the model to users’ input files in the for-
mat that is returned by CTAP.1 Third, we compare
our SOTA machine learning-based approach with
commonly used readability formulas for the two
common ARA tasks predictive regression and rank-
ing to answer the question when using linguistic
insights indeed makes a difference and for which
tasks simple readability formulas suffice. Finally,
we leverage our SOTA model to explore sentence
profiles of leveled L2 articles to provide new in-
sights into the role of sentence readability for doc-
ument difficulty that can help inform input adapta-
tion strategies for educational materials.

The remainder of this paper is structured as fol-
lows: after a brief literature review (Section 2), we
introduce the data (Section 3) and linguistic fea-
tures (Section 4) used for our studies. We then
report on the model training and evaluation for pre-
dictive regression and sentence ranking (Section 5).
Finally, we explore the readability profile of Ger-
man L2 articles on a document level (Section 6)
and discuss our overall findings (Section 7). We
conclude with finals remarks on the impact of our
findings and an outlook on future work (Section 8).

2 Related work

Early approaches to ARA date back to the last
century when traditional readability formulas
(e.g., Flesch, 1948; Dale and Chall, 1948) were
developed, see DuBay (2004, 2006) for a compre-
hensive overview. Readability formulas estimate
text readability solely based on surface level prox-
ies of text characteristics (e.g., sentence and word

1Both, the complexity-based model and the R script can be
accessed at https://osf.io/jg6kc/?view_only=
2d62778d592642a4a210eb4c7cc61f87

length or word frequency). They have been heav-
ily criticized for their lack of linguistic insight and
robustness, and have been shown to yield inferior
results to statistical approaches to ARA on authen-
tic data (François and Miltsakaki, 2012; Collins-
Thompson, 2014; Benjamin, 2012; Vajjala, 2021).
Yet, they are still the most widely distributed form
of ARA in practice due to their low computational
demands, ease of use, and availability for a vari-
ety of languages (Benjamin, 2012). Common use
cases include work on health literacy (Kiwanuka
et al., 2017; Grootens-Wiegers et al., 2015; Es-
fahani et al., 2016) and as evaluation metrics in
computational linguistic work on machine transla-
tion (Agrawal and Carpuat, 2019; Marchisio et al.,
2019; Stymne et al., 2013) or conversational agents
(Langevin et al., 2021; Gnewuch et al., 2018; San-
thanam et al., 2020).

Since the early 2000s (cf. Vajjala, 2021), sta-
tistical approaches became dominant in research
on ARA. This includes feature-based approaches
leveraging rich linguistic information for their pre-
dictions as well as neural approaches without prior
feature engineering. While either method has been
shown to yield SOTA performances (e.g., Vaj-
jala and Lučić, 2018; Weiss et al., 2021; Martinc
et al., 2021; Bengoetxea et al., 2020) on the On-
eStopEnglish corpus by Vajjala and Lučić (2018),
neural approaches have been argued to be more eas-
ily applicable for cross-linguistic readability assess-
ment (Martinc et al., 2021; Madrazo Azpiazu and
Pera, 2019), but see Weiss et al. (2021); De Clercq
and Hoste (2016). Feature-based approaches, in-
stead, are more appropriate when little data is avail-
able or when users need an explanation for the
obtained readability score, as is commonly the case
in education contexts and for publishers of leveled
reading materials who might want to revise their
texts after obtaining a readability score (Collins-
Thompson, 2014). Established features measure
aspects of syntax and lexicon (Collins-Thompson,
2014), morphology (Gonzalez-Dios et al., 2014;
Hancke et al., 2012; Weiss et al., 2021), and dis-
course features. They intersect with common fea-
tures from automatic writing quality assessment
(Crossley, 2020) and Second Language Acquisi-
tion research (Vajjala and Meurers, 2012).

Only limited progress has been made on ARA
for German, after early work on readability formu-
las (e.g., Amstad, 1978; Björnsson, 1983; Bam-
berger and Vanecek, 1984). The now unavailable

142



DeLite system has been used to predict readability
for German municipal texts (Vor der Brück and
Hartrumpf, 2007; Vor der Brück et al., 2008a,b).
Hancke et al. (2012) and Weiss and Meurers (2018)
focused on the binary distinction of texts for adult
versus young native speaking readers. However,
binary ARA is of limited use in practice. Weiss
et al. (2021) present to our knowledge the first and
only multi-level classification approach for Ger-
man documents after introducing the first multi-
level readability corpus for German, which is part
of a larger multi-lingual readability corpus for lan-
guage learners. For sentence-wise readability as-
sessment, Naderi et al. (2019a) compiled a German
corpus of rated sentences and sentence simplifica-
tion pairs. Naderi et al. (2019b) used this corpus to
train a feature-based regression model yielding a
root mean squared error (RMSE) of 0.847 which is
to our knowledge the current SOTA on this data.

Little research has investigated the relationship
between sentence and document readability, even
though there has been some work testing the relia-
bility of readability assessment for very short texts
(Collins-Thompson and Callan, 2004) and sen-
tences (Dell’Orletta et al., 2011; Vajjala and Meur-
ers, 2014; Pilán et al., 2014). Vajjala and Meur-
ers (2014) inspect readability differences between
sentences from Wikipedia and Simple Wikipedia
to investigate the poor performance of document-
level ARA models for the identification of sen-
tences from simple and regular texts. They find
that sentences from Wikipedia are not systemati-
cally more complex than sentences from Simple
Wikipedia. This raises several questions for fur-
ther inquiry. The lack of observable differences
might be caused by an insufficient sensitivity of the
document-level model for sentence-level readabil-
ity differences. Also, Simple Wikipedia has criti-
cized as not systematically simpler than Wikipedia
(e.g., Štajner et al., 2012; Xu et al., 2015; Yaneva
et al., 2016). More research is needed to confirm or
refute their finding that harder texts are not simply
characterized by containing generally less readable
sentences which would have direct implications for
work on targeted document adaptation seeking to
identify language barriers in educational materials.

3 Data

3.1 TextComplexityDE

The TextComplexityDE corpus (Naderi et al.,
2019a) consists of 1,119 sentences. 1,019 sen-

Mean Std. Min. Max.

MOS-R 3.02 1.18 1.00 6.33
Words / sent. 20.08 10.62 4.00 63.00
Syll. / word 2.07 0.35 0.96 4.00

Table 1: Summary statistics for the TextComplexi-
tyDE sentences including number of words per sentence
(sent.), number of syllables (syll.) per word, and the
Mean Opinion Score for readability (MOS-R)

tences were extracted from 23 Wikipedia articles
related to history, society, or science and 100 sen-
tences from two articles in Leichte Sprache (engl.
“simple language”). All were rated by 267 Ger-
man L2 learners along three separate dimensions
defined by Naderi et al. (2019a): readability, un-
derstandability, and lexical difficulty. For each di-
mension, sentences were rated by up to ten learners
on a 7-point Likert scale. These ratings were ag-
gregated into a single Mean Opinion Score (MOS).
For this article, we focus on sentences’ readability
score (MOS-R).

Table 1 contains summary statistics for the num-
ber of words per sentence sentence, the number of
syllables per word, and MOS-R. It shows that MOS-
R not quite uses the full range of the scale and that
sentences are on average quite long (around 20
words) whereas words are relatively short (around
two syllables). Sentence length has a strong Spear-
man rank correlation with MOS-R score (rs =
0.70; p < 0.01). Word length only exhibits a weak
correlation with MOS-R (rs = 0.26; p < 0.01).
The current SOTA performance for a ARA model
lies at RMSE = 0.847 (Naderi et al., 2019b).

Sentence simplification pairs The corpus con-
tains 250 sentence pairs of sentences with MOS-R
> 4 sampled from all 23 Wikipedia articles and
their simplifications. The texts were manually sim-
plified by 75 native speakers and contain additional
meta information on whether the simplification is
only slightly or considerably simpler than the orig-
inal. One sentence could not be successfully sim-
plified and was excluded by us, resulting in 249
sentence pairs with valid simplifications.

3.2 Spotlight-DE

The Spotlight-DE corpus (Weiss et al., 2021) con-
sists of 1.447 leveled articles by the Spotlight pub-
lisher. Articles’ topics are connected to German
politics, culture, and every-day life. The texts tar-
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get L2 learners at a beginning (N = 763), medium
(N = 509), or advanced (N = 175) level. The
publisher aligns these three levels with the lev-
els A2, B1/B2, and C1 of the Common European
Framework of Reference (Council of Europe).

The reading levels in this corpus are assigned at
the document level rather than at the sentence level.
To obtain sentence-wise estimates, we split each
article into individual sentences. Table 2 character-
izes the resulting sentence-wise corpus. Compared

Mean Std. Min. Max.

Easy (n = 16, 694)
Words / sent. 11.00 5.09 1.00 73.00
Syll. / word 1.71 0.35 0.50 5.00

Medium (n = 27, 522)
Words / sent. 12.50 6.26 1.00 60.00
Syll. / word 1.73 0.35 0.33 6.00

Advanced (n = 11, 952)
Words / sent. 13.30 6.99 1.00 63.00
Syll. / word 1.78 0.37 0.50 5.50

Table 2: Summary statistics for the Spotlight-DE sen-
tences across document reading levels (easy, medium,
advanced) including number of number words per sen-
tence (sent.), number of syllables (syll.) per word

to the TextComplexityDE corpus, sentences are
much shorter. Also, there are no systematic differ-
ences in either sentence or work length across read-
ing levels and no meaningful Spearman rank corre-
lation between sentence length and article reading
level (rs = 0.12; p < 0.001) or word length and
article reading level (rs = 0.06; p < 0.001). Thus,
unlike many other learner corpora, the SpotlightDE
corpus does not rely on surface level simplifications
to differentiate between proficiency levels.

4 Feature extraction and selection

We extracted 543 features of linguistic complexity
from the linguistic domains of syntax, lexicon, and
morphology as well as psycho-linguistic features of
text cohesion, language use, and human language
processing and surface level text features inspired
by traditional readability formulas. All features
have a long standing tradition in ARA research
(Collins-Thompson, 2014) or in related work on
automatic text scoring (Crossley, 2020) and Second
Language Acquisition complexity research (Wolfe-
Quintero et al., 1998; Housen et al., 2012).

For feature extraction, we used the CTAP system
(Chen and Meurers, 2016, http://ctapweb.com)
which has been extended to facilitate the analy-
sis of German by Weiss et al. (2021). We chose
this system, because it is to our knowledge the
most extensive available analysis system for Ger-
man. The underlying feature extraction engine for
German has proven highly successful and robust
in a variety of education-related tasks including
readability assessment (Weiss and Meurers, 2018;
Weiss et al., 2021; Kühberger et al., 2019) and
work linked to writing quality assessment (Weiss
and Meurers, 2019a,b; Weiss et al., 2019; Bertram
et al., 2021; Riemenschneider et al., 2021). Also,
using a publicly available web-based system in-
creases the re-usability of any model using these
features in practice.

4.1 Feature description

The German pipeline used in CTAP is described in
detail in Weiss et al. (2021) and Weiss and Meurers
(2021). The latter also contains a comprehensive
definition of all complexity measures. We will limit
ourselves here to summarize the types of features
used to represent the individual linguistic domains.

Syntax The system measures 75 syntactic fea-
tures which can be further distinguished into
measures of clausal elaboration (e.g., dependent
clauses per clause or sentence coordination ratio)
and measures of phrasal elaboration (e.g., prenom-
inal modifiers per noun phrase or mean length of
prepositional phrases), as well as measures of syn-
tactic variance (e.g., edit distances between con-
stituency parses or coverage of nominal modifier
types). This set also includes measures of spe-
cific grammatical patterns that have been associ-
ated with comprehension difficulties for non-native
speakers of German (e.g., the percentage of non-
subject prefields which Ballestracci (2010) iden-
tified as language barriers for Italian learners of
German) and raw counts of syntactic patterns, such
as the number of dependent clauses.

Lexicon There are 146 features of lexical com-
plexity which can be further divided into mea-
sures of lexical richness (e.g., MTLD by McCarthy
(2005) as well as different mathematical transfor-
mations of the type-token ratio), measures of lexi-
cal variation (e.g., verb variation), and lexical den-
sity (e.g., noun type-token ratio and other parts-of-
speech specific type-token ratios). This group also
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contains also features measuring the overall occur-
rence of different parts-of-speech such as nouns,
verbs, or puncuation marks.

Morphology CTAP measures 64 measures of
morphological complexity for German. We ex-
tract features of nominal and verbal inflection (e.g.,
genitive case per noun), derivation (e.g., derived
nouns per noun), and compounding (e.g., aver-
age compound depth). We also measure the vari-
ability of morphological exponents using different
parametrizations of the Morphological Complexity
Index (MCI; Brezina and Pallotti, 2019).

Cohesion We extract 46 measures of text cohe-
sion and discourse for German. The features used
here include explicit measures of cohesion (e.g.,
causal connectives per sentence) as well as implicit
measures of cohesion linked to the use of pronouns
and repetitions of subjects, objects, or nouns.

Language use The system offers 172 lexical lan-
guage use features based on external German data
bases. CTAP calculates average word frequencies
and their standard deviations with and without log
transformations and binned in log frequency bands
for four frequency data bases that represent differ-
ent types of language use: frequencies based on
the Subtlex-DE data base consisting of movie and
TV captions and Google Books 2000 (both Brys-
baert et al., 2011), dlexDB frequencies (Heister
et al., 2011) based on German newspaper articles,
and frequencies and age of active use measures ex-
tracted from the Karlsruhe Children’s Text corpus
(Lavalley et al., 2015) consisting of essays written
by German children in first to eighth grade.

Human sentence processing There are 21 mea-
sures of human processing that can be calculated
for German. Weiss and Meurers (2018) and Weiss
et al. (2021) have used features based on the Depen-
dency Locality Theory (DLT; Gibson, 2000) for
German readability classification using different
weight configurations by Shain et al. (2016).

Surface length We extract 18 surface length fea-
tures for German that solely rely on the identifi-
cation of sentences, words, letters, and syllables.
These features include the raw number of these con-
structs as well as means and standard deviations
for sentence and word length based on these units,
e.g., mean sentence length in syllables.

4.2 Feature selection

After extracting these features from the TextCom-
plexityDE corpus, we removed all features with
near-zero variance, i.e., all features for which at
least 80% of the data exhibit the same value. This
is the case for 31.3% of features (N = 170) due to
near-exclusively zero values (i.e., not occurring in
most data). This leaves 373 features for the anal-
ysis coming from all feature domains which were
used for model training in Study 1 (Section 5).

This considerable reduction in the number of
features is to be expected for data that is as short
as the sentences in the TextComplexityDE corpus
(e.g, Weiss and Meurers (2021) also report a reduc-
tion of 50% of complexity features for short texts).
For example, only 7 of the 46 cohesion measures
are sufficiently variable on this data, because most
cohesion measures are calculated across sentence
boundaries. Similarly, only 19 of 64 measures of
morphological complexity are sufficiently variable,
because there is not enough language material to
produce a variety of inflectional properties. Con-
versely, nearly all language use and lexical features
as well as most features of phrasal elaboration re-
main included in the reduced feature set.

5 Sentence-wise readability assessment

5.1 Set-up

We trained and compared several machine learn-
ing algorithms2 using 10-folds cross-validation (10
CV) and the z-transformations of the 373 features
selected in Section 4.2. We selected these algo-
rithms based on their use in previous research
or their robustness against large feature sets with
multi-colinearity. The Bayesian Ridge Regres-
sion outperformed the other models and will be
discussed in more detail in the following. To
evaluate this complexity-based model’s (hence-
forth: CBM) overall performance, we calculated
its RMSE and Spearman rank correlation (rs) dur-
ing 10 CV (Section 5.2) and compared it against
the current SOTA performance on the data (RMSE
= 0.847, Naderi et al., 2019b). We also used the
model to rank the pairs of regular and simplified
sentences in TextComplexityDE (Section 5.3). We
report the ranking accuracy in terms of the percent-
age of correctly ranked pairs for all i) pairs irrespec-

2Multiple linear regression with backward feature selec-
tion, linear support vector machine regression, random forests,
Bayesian ridge regression (model averaged), Bayesian gener-
alized linear model, quantile regression with LASSO penalty
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tive of their degree of simplification (N = 249),
ii) weakly simplified pairs (N = 114), and iii)
strongly simplified pairs (N = 135).

In both evaluation steps, we compared the
CBM’s performance against five alternative mod-
els. We trained a Bayesian Ridge Regression model
using only surface length measures as predictors
as a baseline (henceforth: length-based model or
LBM). We additionally use the following widely
used readability formulas for both tasks:3

• the Amstad Readability Index (ARI; Amstad,
1978) which adapts the Flesch Reading Ease
(Flesch, 1948) to German native speakers;

• the Erste Wiener Sachtextformel (WSF; Bam-
berger and Vanecek, 1984) designed for ex-
pository texts for German native speakers;

• The LIX readability index (Björnsson, 1983)
which has been designed to align texts with
adult native speakers’ reading skills across a
variety of languages including German; and

• the Miyazaki EFL Readability Index
(MER; Greenfield, 1999, 2004) which was
designed for English L2 readers.4

We calculated all formulas using a publicly avail-
able python-based readability calculator which we
adjusted to use stanza (Qi et al., 2020) instead of
NLTK (Bird and Loper, 2004) for segmentation.5

5.2 Results for regression with 10 CV

Table 3 shows the RMSE and Spearman rank corre-
lation of the estimates with MOS-R in the TextCom-
plexityDE data. Both, LBM and CBM outperform

CBM LBM WSF LIX ARI MER

RMSE .685 .739 n.a. n.a. n.a. n.a.
rs .806 .785 .681 .679 -.532 -.666

Table 3: RMSE and Spearman rank correlation between
MOS-R and the predictions by CBM, LBM, and the
readability formulas.

the current SOTA on the TextComplexityDE data
(RMSE = 0.847; Naderi et al., 2019b). Our
linguistically more informed CBM clearly outper-
forms the LBM in terms of both, RMSE and cor-
relation. Due to the differences in the predicted

3All formula equations are defined in Appendix A.
4We added this formula to include an estimate tailored to

L2 readers despite the lack of German L2 readability formulas.
5https://github.com/zweiss/RC_

Readability_Calculator

CBM LBM WSF LIX ARI MER

Acc. 96.0 93.0 93.6 93.6 95.6 96.8
� 95.6 92.1 91.1 91.1 95.6 96.5
+ 96.5 94.1 96.5 96.5 95.6 97.0

Table 4: Overall ranking accuracy (Acc.), ranking ac-
curacy for weakly simplified pairs (�), and ranking
accuracy for strongly simplified pairs (+)

scales, we cannot compute the RMSE for the four
readability formulas, but the correlation shows that
both, the CBM and LBM outperform the formulas.

The correlation of ARI with MOS-R is much
lower than for the other formulas. This is unex-
pected, because all formulas use only sentence
and word length features. However, ARI assigns a
much larger weight to word length than the other
formulas which in turn correlates only weakly with
MOS-R in TextComplexity-DE (see Section 3.1).

CBM’s prediction error lies at RMSE = 0.685
points on the Likert scale. This is comparable to the
variance between raters in the TextComplexityDE
data. Averaged across all rated sentences the across-
rater standard deviation for MOS-R is at 1.03 ±
0.51; IQR = [0.71; 1.41]. This shows that the
error of our CBM lies even below the acceptable
range of disagreement exhibited by human raters.

5.3 Results for ranking of sentence pairs

Table 4 shows the results of the sentence ranking
experiment. The ranking accuracy for all ARA
models lies above 90%. With an overall accuracy
of 96%, CBM again outperforms LBM and the
readability formulas WSF and LIX. However, ARI
and MER perform comparably to CBM despite
their weak performance on the previous regression
experiment. It seems that word length (which is
weighted higher for these two formulas than for the
rest) is more informative than sentence length for
distinguishing simplified and regular sentences.

To also estimate if the models reflect the degrees
of simplification in the data (weak vs. strong), we
compare the difference in the predicted readabil-
ity score between each sentence and its simplified
counterpart. The difference should be systemat-
ically larger for strongly than for weakly simpli-
fied sentences. We test this assumption using sig-
nificance testing6 (↵ < 0.05) and by estimating

6We used a two-sided t-test or Wilcoxon Rank Sum and
Signed Rank Tests depending on the normality of predictions
determined with a Shapiro-Wilk Normality Test (↵ < .05).
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the effect size with Cohen’s d.7 We see a signifi-
cant, small effect for CBM (p = 0.02; d = 0.31),
LBM (p = 0.04; d = 0.25), MER (p < 0.01; d =
�0.36), ARI (p < 0.01; d = �0.30), LIX (p =
0.02; d = 0.35), and WSF (p = 0.01; d = 0.35),
see Appendix B for a visualization of the findings.

6 Exploring text profiles in leveled articles

6.1 Set-up

We used CBM to explore the text profiles of easy,
medium, and advanced articles in the Spotlight-DE
corpus, because it was the most precise model in
Study 1. With CTAP, we extracted the 373 features
from the sentence-split Spotlight-DE data that are
used by the model and calculated their z-scores. We
inspected the distribution of sentence readability
scores across article levels from several perspec-
tives. We first compared the overall differences in
sentence complexity per article level and the dif-
ferences in maximum sentence complexity using
significance testing, effect size estimation (parallel
to Study 1) and data visualization. We then evalu-
ated the proportions of sentences within a 0.5 point
sentence readability interval across article levels.
Finally, we visualized the sentence readability of
the first ten sentences in a sample of Spotlight-DE
articles in three heatmaps, one for each article lev-
els annotated in the Spotlight-DE corpus. This way,
we obtain a non-aggregated estimate of the text pro-
files. To keep the heatmaps comparable, we used
all 175 advanced articles as well as a random sam-
ple of 175 easy and 175 medium articles containing
at least ten sentences.

6.2 Results

Figure 1 combines different perspectives on the
sentence-wise article profiles split by article level.
We see that the prediction ranges from 1 to 5, a rea-
sonable coverage of the empirically observed MOS-
R scale (1� 6.33) in the TextComplexityDE data
given the corpus characteristics discussed in Sec-
tion 3. Figure 1a summarizes the overall sentence
readability grouped by article levels with notches
indicating the 95% confidence interval. There
are small significant differences between easy and
medium (p < 0.001; d = �0.259) and easy and ad-
vanced (p < 0.001; d = �0.435) articles, but only
negligible albeit significant differences medium

7We tested for unequal variance using an F test (↵ < .05).
In case of unequal variance, we used a Welch approximation
for unequal variances to calculate Cohen’s d.

and advanced (p < 0.001; d = �0.178) articles.
The boxplot shows considerable overlap for the
50% range of the data even between easy and ad-
vanced sentences. In Figure 1b, which considers
only articles’ maximum sentence readability scores,
this overlap is considerably reduced. Here, we ob-
serve large significant differences between easy and
advanced (p < 0.001; d = �2.05) and medium
and advanced (p < 0.001; d = �1.24) articles,
and moderate significant differences medium and
advanced (p < 0.001; d = �0.689) articles. This
indicates that the maximum sentence readability is
more indicative for overall readability level of a text
than considering the readability of all its sentences.

Figure 1c confirms this by comparing the per-
centage of sentences falling within a 0.5 point read-
ability range across article levels. Sentences from
articles at all levels are predominantly medium dif-
ficult (MOS-R= 3) and between 55.6% (advanced)
to 64% (easy) of sentences fall in the range from
2.5  MOS-R  3.5. Article levels differ mostly in
the tails of the distribution. The difference is most
pronounced for higher difficulty levels (MOS-R
� 4): 30% of sentences from advanced articles fall
into this range, but only 23.1% of sentences from
medium and 14.1% of sentences from easy articles.
Even so, it is worth noting that the percentage of
sentences with MOS-R  3 is systematically high-
est for easy articles and higher for medium than
advanced articles. Inversely, the percentage of sen-
tences with MOS-R > 3 is highest for advanced
articles and higher for medium than easy articles.

Figure 1d visualizes the sentence readability
scores of the first ten sentences of 175 articles
per article level. The heatmap depicts the first ten
sentences of each sampled article rather than sum-
marizing across sentences and articles at the same
article level to demonstrate the relative homogene-
ity of sentence reading scores for articles at the
same article level and the systematic increase in
the proportion of more demanding sentences across
individual articles with higher article levels.

7 Discussion

Study 1 investigated the performance of linguis-
tically informed readability models and readabil-
ity formulas for sentence-wise readability assess-
ment for two common ARA tasks: precise predic-
tive regression (Section 5.2) and ranking to iden-
tify simplified sentences in sentence simplification
pairs (Section 5.3). The results showcase the ver-
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(d) Predicted sentence readability for the first ten sentences of 175 randomly sampled easy, medium, and advanced articles. Each
sentence is represented by a cell. Its readability is encoded with the cell color. The cell’s position on the x-axis encodes the article
it belongs to and its position on the y-axis its position in that article, e.g., the third sentence in each article is located at y = 3.

Figure 1: Sentence readability profiles predicted by our complexity-based model on the Spotlight-DE corpus grouped
by article levels (easy, medium, advanced) to showcase differences in sentence readability across documents at
different difficulty levels.

satile performance of linguistically informed read-
ability models: only our complexity-based model
achieved top performance for both tasks. For the
more difficult and authentic task of precise predic-
tive regression, we showed that our linguistically
informed complexity-based model clearly outper-
forms simplistic formulas and set a new SOTA per-
formance (RMSE=0.685) on the data set. The bet-
ter performance cannot be exclusively attributed to
the statistically stronger method, because on both
tasks, the complexity-based model clearly outper-
formed the length-based model. This shows that
broad linguistic modeling adds valuable insights
beyond the powerful statistical training method.

For ranking, all ARA models achieved an accu-
racy well above 90% and two readability formulas
performed at par with our complexity-based model.
This shows that even simple ARA approaches can
successfully distinguish relative differences in read-
ability between content-wise equivalent sentences
that are being introduced by text simplification.

Despite being a rather artificial task, this has some
limited applications, e.g., when evaluating machine
translation and text simplification systems.

In Study 2, we used our complexity-based model
to inspect the sentence-wise readability profiles of
leveled texts for L2 readers. Our findings clearly
show that while there is a tendency for easier
texts to contain more sentence with lower difficulty
scores, also medium and advanced texts contain
mostly accessible sentences. It is really the pres-
ence of difficult sentences within documents that
dictates an articles’ overall readability. This has
clear implications for the design and simplification
of educational materials: to efficiently adjust the
overall readability level of a text, we need to iden-
tify specific sentences that form language barriers
rather than simplifying the entire text.

8 Conclusion

We have presented a new SOTA sentence-wise
ARA model for German L2 readers which is pub-
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licly available and accessible for users with min-
imal background in R. Leveraging broad linguis-
tic insights, it predicts readability with a margin
of error even below the acceptable disagreement
range for humans raters. We showed that to flag
simplified sentences also traditional readability for-
mulas suffice, but that broad linguistic modeling is
needed to obtain the precise predictive readability
estimates that are often required in practice (e.g.,
to adapting learning and teaching materials).

We further explored leveled articles for German
L2 readers to illustrate the practical benefits of
sentence-level ARA and gain insights into text pro-
files of leveled documents. Our findings highlight
that the readability of texts is driven by the max-
imum rather than the overall readability of sen-
tences. This has direct implications for the adap-
tation of teaching materials, which should focus
on identifying specific sentences posing language
barriers rather than the simplification of all or any
sentence in a text. To our knowledge, this is the
first time detailed analysis of sentence profiles of
leveled reading materials for German. Future work
should further explore the implications of this for
text simplification, for example using eye-tracking
studies. Our work lays the foundation for further
research on ARA for German and opens up nu-
merous opportunities for educational applications,
such as ARA for captions and task descriptions in
school books or the analysis of social media and
chat conversations with L2 learners.
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A Definition of readability formulas

Equation 1 shows the general form of all four read-
ability formulas consisting of an intercept (�0), a
weighted sentence length estimate (�1 ⇥ SL), and
a weighted word length estimate (�2 ⇥WL).

y = �0 + �1 ⇥ SL+ �2 ⇥WL (1)

Table 5 shows the respective weights (�0,�1,�2)
and measurement units for sentence length (SL)
and word length (WL). Equation 2 specifies the

y �0 �1 �2 SL WL

LIX 0.0 1.0 1.0 words syll.
ARI 180.0 �1.0 �58.6 words syll.
MER 164.9 �1.9 �18.8 words char.
WSF 0.0 0.2 1.0 words Eq. 2

Table 5: Weights and measurement units across read-
ability formulas (syll. = syllables, char. = characters)

definition of the composite score for word length
used in the Erste Wiener Sachtextformel.

WLWSF = 0.19⇥ 3SW + 0.13⇥ 6CW

�0.03⇥ 1SW � 0.88,
(2)

with 3SW being the percentage of three or more
syllable words, 6CW being the percentage of six
or more character words, and 1SW being the per-
centage of monosyllabic words. All weights in
Table 5 and Equation 1 have been rounded to one
decimal point for simplicity.
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Figure 2: Predicted readability difference between regu-
lar and simplified sentences by degree of simplification
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Appendix A

Definition of linguistic units

This section defines the central linguistic units that are used for the calculation of complexity
measures. A subset of these definitions has also been part of the appendix of Weiss and
Meurers (2021), which is also part of this thesis. They are repeated here for easier reference.

Clauses The maximal phrasal projection of a finite verb as well as elliptical constructions that
have a sentence-equivalent status.

Complex t-units A t-unit that includes at least one subordinate clause.

Conjunctional clauses Dependent clauses that are introduced by a subordinating conjunc-
tion.

Dependent clauses with/without conjunction Conjunctional, interrogative, and relative clauses.
Dependent clauses without conjunction are mostly dependent main clauses.

(Graphematic) sentences Strings containing at least one token that are ended by sentence
ending punctuation marks or the end of a text.

Half modals The combination of certain verbs with a zu (engl. “to”) infinitive that they gov-
ern. These verbs are: haben (engl. “to have”), sein (engl. “to be”), scheinen (engl. “to
seem”), drohen (engl. “to threaten”), and versprechen (engl. “to promise”). For a more
detailed discussion, see Weiss (2015).

Lexical words Nouns, adjectives, adverbs, foreign words, numbers, main verbs, and modal
verbs. For a more detailed discussion, see Weiss (2015).
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Appendix A Definition of linguistic units

Quasi passives Certain verbs can govern a past participle and result in a construction that
serves a similar function as the passive. These words are: bekommen (engl. “to get”),
erhalten (engl. “to receive”), and kriegen (engl. “to get”). For a more detailed discus-
sion, see Weiss (2015).

T-units A main clause and all of its dependent clauses and embedded clausal structures (Hunt,
1970, p. 199).

Tokens vs. words I distinguish between tokens and word tokens. Tokens are any continuous
string within a text that is separated by white space. This is a simplifying assumption
we make for written language. A non-graphematic definition of words and tokens is
beyond the scope of this thesis. Words are continuous strings separated by white space
which may contain non-alphabetic characters but cannot solely consist of punctuation
marks, numbers, formulas, or other symbols.

Types Unique token forms

Non-terminal nodes Non-terminal nodes are all nodes in a tree structure that precede the
final (terminal) tree nodes.

Finite clause A clause containing a finite verb (see sentence-equivalent infinitives for differ-
ent clause types).

zu-infinitive The German to infinitive which may or may not be a sentence-equivalent infini-
tive. For a more detailed discussion, see Weiss (2015).

Complex NP An NP with pre- or post-nominal modifiers.

Complex PP A prepositional phrase (PP) containing an NP with pre- or post-nominal modi-
fiers

Sentence-equivalent infinitives An infinitive construction that approximates a dependent clause.
These are often introduced by connectives such as als, anstatt, außer, ohne, statt, um.
For a more detailed discussion, see Weiss (2015).

Eventive passives The eventive passive in German is formed with werden (engl. “to be-
come”). In contrast, the static passive is formed with sein (engl. “to be”).
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Verb cluster A verb cluster is a group of adjacent verb phrases (VPs) that govern each other.
They can take arbitrary sizes but typically do not include more than three verbs (see
Weiss, 2015). For a more detailed discussion, see Weiss (2015).

Post- and pre-nominal modifiers Prenominal modifiers precede the noun kernel they mod-
ify. Examples are attributive participles, possessive attributes, and adjectives. Post-
nominal modifiers follow the noun kernel they modify. Examples include PPs, relative
clauses, and comparative modifiers. For a more detailed discussion, see Weiss (2015).

Mittelfeld A position in the topoligical field model. Located between the left and right sen-
tence brackets. For a more detailed discussion, see Weiss (2015).

Vorfeld A position in the topoligical field model. It precedes the left sentence bracket. For a
more detailed discussion, see Weiss (2015).

Deagentivation patterns Deagentivation is a strategy to obtain a non-personal writing style
that omits the subject. It is typically used in (German) academic language to suggest
objectivity (Hennig and Niemann, 2013; Polenz, 1981). Common deagentivation de-
vices include passivization, the use of infinitives and participle constructions, and—in
German—the use of man or sich-lassen. For a more detailed discussion, see Weiss
(2015).

GermaNet synset A set of lexical units that are connected through semantic relations. For a
more detailed discussion, see Hancke (2013).

GermaNet relations Semantic relations between lexical units such as part-whole, antonymy,
or hyponymy. For a more detailed discussion, see Hancke (2013).

GermaNet frames Subcategorization information for verbs. For a more detailed discussion,
see Hancke (2013).

GermaNet lexical units Elements in the semantic network representing a word sense of a
lemma. For a more detailed discussion, see Hancke (2013).
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Appendix B

Complexity features

This section contains definitions of all complexity measures that are used in this thesis, be it
in the legacy system, the CTAP system, or both. Tables are sorted by linguistic complexity
domains through subsections. Raw counts are omitted in the tables for bevity. Both systems
can output the raw counts used throughout the feature definitions as features. However, non-
normalized counts were generally not used throughout the studies reported in this thesis unless
specified otherwise in the respective articles. The tables and definitions may refer to additional
information provided in other publications to specify how a feature is calculated. Furthermore,
all tables are based on the definition of linguistic units in Section A. These definitions are not
re-iterated in the tables.

Each table indicates whether or not a feature is included in the legacy system or the German
CTAP code. Features that are included in a system are marked with a check mark in the cor-
responding column (3) or otherwise marked with a cross (7). Feature names used throughout
articles or systems may slightly vary from the names used here (e.g., mean sentence length

in words versus number of words per sentence). Some features sharing the same nom-
inator or denominator are grouped into a single row for brevity. In these cases, the definition
column introduces numbers and letters to reference specific numerators/denominators. The
columns ‘legacy’ and ‘CTAP’ then specify which of the combinations are available in the re-
spective systems by using the respective number/letter combinations without the check mark.

B.1 Syntactic complexity measures

This section contains definitions of all syntactic complexity measures that are used in this
thesis. Features are grouped into tables based on their complexity sub-domains. This section
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contains the following tables:

Table B.1 contains all measures of global syntactic elaboration.

Table B.2 contains all measures of clausal syntactic elaboration.

Table B.3 contains all measures of phrasal syntactic elaboration and variation.

Table B.4 contains all additional measures of syntactic complexity that target sub-clausal
units that do not focus on individual phrases. This entails predominantly grammatical
patterns and periphrastic tenses.

Table B.5 contains all measures of syntactic variation.

Table B.1: Global syntactic complexity features used in this thesis (excluding raw counts).
Check marks indicate if features were present in the legacy system and the CTAP system. # is
used as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Mean sentence length in letters #letters ÷ #sentences 7 3

Mean sentence length in sylla-
bles

#syllables ÷ #sentences 7 3

Mean sentence length in words #words ÷ #sentences 3 3

Longest sentence in words max(#words in one sentence) 3 7

Average number of non-terminal
nodes

Â #non-terminal nodes in a parse tree
÷ X; with X being: #sentences [1],
#t-units [2], #clauses [3], or #finite
clauses [4]

1–4 7

Average parse tree height Âi maximal number of non-terminal
nodes between the root node to a ter-
minal node in the constituency tree of
sentence i ÷ X; with options for X be-
ing defined above

1–4 7

Mean length of clause #words ÷ #clauses 3 3

Mean length of finite clause #words ÷ #finite clauses 3 7

Mean length of complex t-unit #words ÷ #complex t-units 7 3

Mean length of t-unit #words ÷ #t-units 3 3
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B.1 Syntactic complexity measures

Table B.2: Clausal syntactic complexity features used in this thesis (excluding raw counts).
Check marks indicate if features were present in the legacy system and the CTAP system. # is
used as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Complex t-unit ratio #complex t-units ÷ #t-units 3 3

Complex t-unit per sentence #words ÷ #sentences 3 3

Dependent clause ratio #dependent clauses ÷ #clauses 3 3

Dependent clauses per sentence #dependent clauses ÷ #sentences 3 3

Dependent clauses per t-unit #dependent clauses ÷ #t-units 3 3

Dependent clauses per finite
clause

#dependent clauses ÷ #finite clauses 3 7

Relative clauses per clause #relative clauses ÷ #clauses 3 3

Relative clauses per finite clause #relative clauses ÷ #finite clauses 3 7

Relative clauses per dependent
clause with conjunction

#relative clauses ÷ #dependent
clauses with conjunction

3 7

Relative clauses per sentence #relative clauses ÷ #sentences 3 3

Relative clauses per t-unit #relative clauses ÷ #t-units 3 3

Sentence complexity ratio #clauses ÷ #sentences 3 3

Sentence coordination ratio #t-units ÷ #sentences 3 3

T-unit complexity ratio #clauses ÷ #t-units 3 3

Dependent clause with conjunc-
tion ratio

#dependent clauses with conjunction
÷ X; with X being: #sentences
[1], #t-units [2], #clauses [3], #finite
clauses [4], or #dependent clauses
with conjunction [5]

1–5 7

Conjunctional clause ratio #conjunctional clauses ÷ X; with op-
tions for X being defined above

1–5 7

Dependent clause without con-
junction ratio

#clauses without conjunction ÷ X;
with options for X being defined
above

1–5 7

Interrogative clause ratio #interrogative clauses ÷ X; with op-
tions for X being defined above

1–5 7
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Table B.3: Phrasal syntactic complexity features used in this thesis (excluding raw counts).
Check marks indicate if features were present in the legacy system and the CTAP system. # is
used as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Complex NPs per sentence/ t-
unit/ clause/ finite clause

#complex NPs ÷ X; with X being:
#sentences [1], #t-units [2], #clauses
[3], #finite clauses [4]; #dependent
clauses [5]

1–4 1–3

Complex Nominals per NP #complex NPs ÷ #NPs 7 3

NPs per sentence/ t-unit/ clause/
finite clause

#NPs ÷ X; with options for X being
defined above

1–4 1–3

PPs per sentence/ t-unit/ clause/
finite clause

#PPs ÷ X; with options for X being
defined above

1–4 1–3

VPs per sentence/ t-unit/ clause/
finite clause

#VPs ÷ X; with options for X being
defined above

1–4 1–3

zu-infinitives per sentence/ t-
unit/ clause/ finite clause

#zu-infinitives ÷ X; with options for
X being defined above

1–4 7

Sentence-equivalent infinitives
per sentence/ t-unit/ clause/
finite clause/ dependent clause

#sentence equivalent infinitives ÷ X;
with options for X being defined
above

1–5 7

Eventive passives per sentence/
t-unit/ clause/ finite clause

#eventive passives ÷ X; with options
for X being defined above

1–4 7

Complex PPs per sentence/ t-
unit/ clause

#complex NPs ÷ X; with options for
X being defined above

7 1–3

Coordinate Phrases per sentence/
t-unit/ clause/ finite clause

#coordinate phrases ÷ X; with op-
tions for X being defined above

1–4 1–3

Mean Length of NP #words in an NP ÷ #NPs 3 3

Mean Length of PP #words in a PP ÷ #PPs 3 3

Mean Length of VP #words in a VP ÷ #VPs 3 7

Verb cluster per clause #verb cluster ÷ #clauses 7 3

Verb cluster per sentence #verb cluster ÷ #sentences 7 3

Mean length of verb cluster #verbs in a verb cluster ÷ #verb clus-
ters

3 3
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Table B.3: Phrasal syntactic complexity features used in this thesis (continued).

Feature name Definition Legacy CTAP

Postnominal modifier per com-
plex NP

#postnominal modifier ÷ #complex
NPs

3 3

Prenominal modifier per com-
plex NP

#prenominal modifier ÷ #complex
NPs

3 3

Attributive participles per NP #attributive participles ÷ #NPs 3 7

Clausal noun modifiers per NP #clausal noun modifiers ÷ #NPs 3 7

Comparative noun modifiers per
NP

#comparative noun modifiers ÷ #NPs 3 7

Determiners per NP #determiners ÷ #NPs 3 7

Possessive noun modifiers per
NP

#possessive noun modifiers ÷ #NPs 3 7

Average number of noun modi-
fiers

#noun modifier ÷ #nouns 3 7

Average number of verb modi-
fiers

#verb modifier ÷ #verbs 3 7

Average number of noun depen-
dents

#noun dependents ÷ #nouns with de-
pendents

3 7

Average number of verb depen-
dents

#verb dependents ÷ #verbs with de-
pendents

3 7

Average number of verb depen-
dents excluding modal verbs

#verb dependents excluding modal
verbs ÷ #verbs with dependents ex-
cluding modal verbs

3 7

Adjective and adverb verb modi-
fiers per VP

(#adjective modifiers of verbs + #ad-
verb modifiers of verbs) ÷ #VPs

3 7

Particle verb modifiers per VP #particle verb modifers ÷ VPs 3 7

Prepositional verb modifiers per
VP

#prepositional verb modifers ÷ VPs 3 7

Standard deviation of verb clus-
ter sizes

standard deviation corresponding to
Mean length of verb cluster

feature defined above

3 7
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Table B.3: Phrasal syntactic complexity features used in this thesis (continued).

Feature name Definition Legacy CTAP

Percentage of main verb clusters #verb clusters headed by a main verb
÷ verb clusters

3 7

Percentage of modal verb clus-
ters

#verb clusters headed by a modal
verb ÷ verb clusters

3 7

Percentage of auxiliary verb
clusters

#verb clusters headed by an auxiliary
verb ÷ verb clusters

3 7

Table B.4: Other sub-clausal syntactic complexity features used in this thesis (excluding raw
counts). Check marks indicate if features were present in the legacy system and the CTAP
system. # is used as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Percentage of periphrastic tenses
used

#periphrastic tenses used at least once
(present perfect, past perfect, future
1, future 2) ÷ #finite verbs

3 7

Percentage of present perfect
used

#present perfect used ÷ #finite verbs 3 7

Percentage of past perfect used #past perfect used ÷ #finite verbs 3 7

Percentage of Future I used #future I used ÷ #finite verbs 3 7

Percentage of Future II used #future II used ÷ #finite verbs 3 7

Percentage of simple present
used

#simple present used ÷ #finite verbs 3 7

Percentage of simple past used #simple past used ÷ #finite verbs 3 7

Average Mittelfeld (engl. “mid-
dle field”) length in syllables

#syllables in the Mittelfeld (engl.
“middle field”) ÷ #Mittelfelder (engl.
“middle fields”)

3 7
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Table B.4: Other sub-clausal syntactic complexity features used in this thesis (continued).

Feature name Definition Legacy CTAP

Syllables between first verb ar-
gument and main verb (exclud-
ing adjacent arguments)

#syllables between the first verb ar-
gument and the main verb when the
first argument is not immediately pre-
ceding or following the main verb ÷
#main verbs that are not adjacent to
their first argument

Percentage of non-subject Vor-
felder (engl. “prefields”)

#Vorfelder (engl. “prefields”) that do
not contain the subject ÷ #Vorfelder
(engl. “prefields”)

3 7

man occurrences per subject #man is used as an impersonal subject
÷ #subjects

3 7

Percentage of infinitival con-
structions

#infinitives ÷ #VPs 3 7

sich-lassen occurrences per sub-
ject

#sich-lassen is used to drop the sub-
ject ÷ #VPs

3 7

Percentage of half modals #half modals÷ #VPs 3 7

Ratios of passive constructions #passives ÷ X; with options for
X being: #sentences [1], #t-units
[2], #clauses [3], #finite clauses [4],
#VPs [5]

1–5 7

Ratio of quasi passive construc-
tions

#quasi passives ÷ X; with options for
X defined above

1–5 7

Percentage of deverbal nouns #deverbal nouns ÷ #NPs 3 7
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Table B.5: Syntactic variation features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as short-
hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Mean global/local edit distance global/local edit distance for X ÷
#parse trees (see Chen, 2018, for de-
tails); with options for X being:
lemmas [1], POS [2], tokens [3]

7 1–3

Standard deviation of global/lo-
cal edit distance

standard deviation corresponding
to Mean global/local edit

distance feature defined above

7 1–3

Standard deviation of sentence
length in letters

standard deviation corresponding
to Mean sentence length in

letters defined in Table B.1

7 3

Standard deviation of sentence
length in syllables

standard deviation corresponding
to Mean sentence length in

syllables defined in Table B.1

7 3

Coverage noun modifier types #noun modifier types occurring at
least once (determiners, possessive
attributes, prenominal attributes,
postnominal attributes, attributive
participles, comparative modifiers,
clausal modifiers) ÷ #noun modifier
types measured (N = 7)

3 7

Coverage of verb modifier types Â verb modifier types occurring at
least once (i.e., adjective/adverbial
modifiers, PP modifiers, past/present
participle, verb particles) ÷ # verb
modifier types measured (N = 4)

3 7

Coverage of verb cluster sizes Â verb cluster size occurring at least
once (covering sizes 2 to � 6) ÷ #
verb cluster sizes measured (N = 5)

3 7
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Table B.5: Syntactic variation features used in this thesis (continued).

Feature name Definition Legacy CTAP

Coverage of verb cluster types Â verb cluster types occurring at least
once (auxiliary, main, modal) ÷ #
verb cluster sizes measured (N = 3)

3 7

Coverage of tenses #tenses occurring at least once
(present perfect, past perfect, future
1, future 2, simple present, simple
past) ÷ #tenses measured (N = 6)

3 7

Coverage of periphrastic tenses #periphrastic tenses occurring at least
once (present perfect, past perfect,
future 1, future 2) ÷ #periphrastic
tenses measured (N = 4)

3 7

Coverage of deagentivation pat-
terns

Â deagentivation patterns occurring
at least once (man occurrences, infini-
tival constructions, sich-lassen occur-
rences, half modal clusters, passives,
quasi passives, participle modifiers,
attributive participles) ÷ #deagenti-
vation patterns measured (N = 8)

3 7
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B.2 Lexical complexity measures

This section contains definitions of all lexical complexity measures (excluding language use
features) that are used in this thesis. Features are grouped into tables based on their complexity
sub-domains. This section contains the following tables:

Table B.6 contains all measures of global lexical complexity.

Table B.7 contains all measures of lexical diversity.

Table B.8 contains all measures of lexical density.

Table B.6: Global lexical complexity features used in this thesis (excluding raw counts). Check
marks indicate if features were present in the legacy system and the CTAP system. # is used
as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Mean word length in letters #letters ÷ #word tokens 3 3

Mean word length in syllables #syllables ÷ #word tokens 3 3

Percentage of words with more
than 2 syllables

#word tokens with more than two syl-
lables ÷ #word tokens

7 3

Percentage of word types with
more than 2 syllables

#word types with more than two syl-
lables ÷ #word types

7 3

Maximal word length in sylla-
bles

max(#syllables per word) 3 7

Standard deviation of word
length in letters

standard deviation corresponding to
Mean word length in letters

defined above

7 3

Standard deviation of word
length in syllables

standard deviation corresponding to
Mean word length in syllables

defined above

7 3
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Table B.7: Lexical diversity features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as
short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

HD-D (excluding punctuation
and numbers)

see McCarthy and Jarvis (2007) 3 3

MTLD (excluding punctuation
and numbers)

see McCarthy and Jarvis (2010) 3 3

Yule’s k 104 ⇤ (Â f X⇤X)�#tokens
#tokens2 , with X being

the frequency vector of each word
type and fX being the frequency of
each type frequency in X

3 7

Type Token Ratio (10 Segments) TTR averaged across 10 segments 7 3

Type Token Ratio (50 Segments) TTR averaged across 50 segments 7 3

Corrected TTR
q

#types
2⇤#tokens [1] or #typesp

2⇤#tokens
[2] 1 2

Corrected TTR (excluding punc-
tuation and numbers)

#typesp
2⇤#tokens

(excluding punctuation and
numbers)

7 2

Corrected TTR for Adjectives/
Adverbs/ Lexical Words/ Nouns/
Verbs/ Words

as Corrected TTR [2] but using the
respective POS-specific types and to-
kens

7 3

Log TTR log(#types) ÷ log(#tokens) 7 3

Bilogarithmic TTR log2(#types) ÷ log2(#tokens) 3 7

Log10 TTR log10(#types) ÷ log10(#tokens) 7 3

Log10 TTR (excluding punctua-
tion and numbers)

log10(#types) ÷ log10(#tokens); ex-
cluding punctuation and numbers

7 3

Log10 TTR for Adjectives/ Ad-
verbs/ Lexical Words/ Nouns/
Verbs/ Words

as Log10 TTR but using the respec-
tive POS-specific types and tokens

7 3

Root TTR
p

(#types÷#tokens) [1] or #types÷p
#tokens [2]

1 2

Root TTR (excluding punctua-
tion and numbers)

#types÷
p

#tokens (excluding punc-
tuation and numbers)

7 3
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Table B.7: Lexical diversity features used in this thesis (continued).

Feature name Definition Legacy CTAP

Root TTR for Adjectives/ Ad-
verbs/ Lexical Words/ Nouns/
Verbs/ Words

as Root TTR [2] but using the respec-
tive POS-specific types and tokens

7 3

Squared TTR (excluding punctu-
ation and numbers)

#types2÷#tokens (excluding punctu-
ation and numbers)

7 3

Squared TTR #types2 ÷#tokens 7 3

Squared TTR for Adjectives/
Adverbs/ Lexical Words/ Nouns/
Verbs/ Words

as Squared TTR but using the re-
spective POS-specific types and to-
kens

7 3

TTR #types ÷ #tokens 3 3

TTR (excluding punctuation and
numbers)

#types ÷ #tokens (excluding punctu-
ation and numbers)

7 3

TTR for Adjectives/ Adverbs/
Lexical Words/ Nouns/ Verbs/
Words

as TTR but using the respective POS-
specific types and tokens

7 3

Uber index log(#tokens)2 ÷ log( #types
#tokens) 3 3

Uber10 log10(#tokens)2 ÷ log10(
#types
#tokens) 7 3

Uber10 for Adjectives/ Adverbs/
Lexical Words/ Nouns/ Verbs/
Words

as Uber10 but using the respective
POS-specific types and tokens

7 3

Lexical TTR (#lexical types ÷ #lexical tokens) 3 3

Lexical TTR for adjectives and
adverbs/ adjectives/ adverbs/
nouns/ verbs

(#lexical types ÷ #lexical tokens) 3 3

Lexical variation I #lexical types ÷ #lexical tokens 3 3

Lexical variation II #lexical types ÷ #tokens 3 7

Verb variation I #verb types (excl. auxiliary verbs) ÷
#verb tokens (excl. auxiliary verbs)

3 3
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Table B.7: Lexical diversity features used in this thesis (continued).

Feature name Definition Legacy CTAP

Corrected verb variation I #verb types (excl. auxiliary verbs)
÷
p

2⇤#verb tokens (excl. auxiliary
verbs)

3 3

Squared verb variation I #verb types2 (excl. auxiliary verbs) ÷
#verb tokens (excl. auxiliary verbs)

3 3

Verb variation II #verb types (excl. auxiliary verbs) ÷
#lexical tokens (excl. auxiliary verbs)

3 3

Lexical variation for adjectives/
adverbs/ nouns/ modifiers

X ÷ #lexical tokens; with options
for X being: #adjective types [1],
#adverb types [2], #noun types [3],
#modifier types [4], #adjective and
adverb types [5]

1–3, 5 1–4

Verbs per token #verb types (excl. auxiliary verbs) ÷
#tokens

3 7

Nouns per token #noun types ÷ #tokens 3 7

Table B.8: Lexical density features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as
short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Lexical words per word #lexical words ÷ #word tokens 7 3

Modals per verb #modal verbs ÷ #verb tokens 7 3

Modals per word #modal words ÷ #word tokens 7 3

Verb to noun ratio #verb tokens ÷ #noun tokens 3 7

haben instances per verb #haben (engl. “to have”) tokens ÷
#verb tokens

3 7

sein instances per verb #sein (engl. “to be”) tokens ÷ #verb
tokens

3 7

Lexical density of adjectives #adjective tokens ÷ #word tokens 7 3
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Table B.8: Lexical density features used in this thesis (continued).

Feature name Definition Legacy CTAP

Lexical density of adverbs #adverb tokens ÷ #word tokens 7 3

Lexical density of articles #article tokens ÷ #word tokens 7 3

Lexical density of auxiliary
verbs

#auxiliary verb tokens ÷ #word to-
kens

7 3

Auxiliary Verbs per verb #auxiliary verb tokens ÷ #verb to-
kens

3 7

Modal verbs per verb #modal verb tokens ÷ #verb tokens 3 7

Lexical density of cardinal num-
bers

#cardinal number tokens ÷ #word to-
kens

7 3

Lexical density of common
nouns

#common noun tokens ÷ #word to-
kens

7 3

Lexical density of comparative
conjunctions

#comparative conjunction tokens ÷
#word tokens

7 3

Lexical density of conjunctions #conjunction tokens ÷ #word tokens 7 3

Lexical density of coordinating
conjunctions

#coordinating conjunction tokens ÷
#word tokens

7 3

Lexical density of demonstrative
pronouns

#demonstrative pronoun tokens ÷
#word tokens

7 3

Lexical density of determiners #determiner tokens ÷ #word tokens 7 3

Lexical density of finite verbs #finite verb tokens ÷ #word tokens 7 3

Lexical density of foreign words #foreign word tokens ÷ #word tokens 7 3

Lexical density of functional
words

#functional word tokens ÷ #word to-
kens

7 3

Lexical density of indefinite pro-
nouns

#indefinite pronoun tokens ÷ #word
tokens

7 3

Lexical density of infinite verbs #infinite verb tokens ÷ #word tokens 7 3

Lexical density of interjections #interjection tokens ÷ #word tokens 7 3

Lexical density of interrogative
pronouns

#interrogative pronoun tokens ÷
#word tokens

7 3

Lexical density of lexical words #lexical word tokens ÷ #word tokens 7 3
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Table B.8: Lexical density features used in this thesis (continued).

Feature name Definition Legacy CTAP

Lexical density of main verbs #main verb tokens ÷ #word tokens 7 3

Lexical density of modal verbs #modal verb tokens ÷ #word tokens 7 3

Lexical density of modifiers #modifier tokens ÷ #word tokens 7 3

Lexical density of non-finite
verbs

#non-finite verb tokens ÷ #word to-
kens

7 3

Lexical density of nouns #noun tokens ÷ #word tokens 7 3

Lexical density of particles #particle tokens ÷ #word tokens 7 3

Lexical density of past participle
verbs

#past participle verb tokens ÷ #word
tokens

7 3

Lexical density of personal pro-
nouns

#personal pronoun tokens ÷ #word
tokens

7 3

Lexical density of possessive
pronouns

#possessive pronoun tokens ÷ #word
tokens

7 3

Lexical density of prepositions #preposition tokens ÷ #word tokens 7 3

Lexical density of pronouns #pronoun tokens ÷ #word tokens 7 3

Lexical density of proper nouns #proper noun tokens ÷ #word tokens 7 3

Lexical density of punctuation
marks

#punctuation tokens ÷ #word tokens 7 3

Lexical density of relative pro-
nouns

#relative pronoun tokens ÷ #word to-
kens

7 3

Lexical density of singular
proper nouns

#singular proper noun tokens ÷
#word tokens

7 3

Lexical density of subordinating
conjunctions

#subordinating conjunction tokens ÷
#word tokens

7 3

Lexical density of to infinitives #zu-infinitive tokens ÷ #word tokens 7 3

Lexical density of verbs #verb tokens ÷ #word tokens 7 3
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B.3 Language use

This section contains definitions of all language use measures (i.e., relative lexical complexity)
that are used in this thesis. Features are grouped into tables based on their complexity sub-
domains. This section contains the following tables:

Table B.9 contains all measures based on word frequencies.

Table B.10 contains all measures based on word familiarity or informativeness.

Table B.11 contains all measures based on age of active use in written language.

Table B.9: Frequency features used in this thesis (excluding raw counts). Check marks indicate
if features were present in the legacy system and the CTAP system. # is used as short-hand to
indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Average frequency in frequency
data-base X (word tokens of type
Y)

(Â frequencies of all word tokens in
the text that were found in frequency
data-base X) ÷ #word tokens in the
text found in frequency data-base X;
frequency data-base options for X:
dlexDB [1], Google Books 2000 [2],

SUBTLEX-DE [3], KCT corpus [4],

OpenSubtitles [5];
word type options for Y: all words

[a], lexical words [b], function words

[c], adjectives [d], adverbs[e], nouns

[f], verbs [g]

1a, 2a,
3a, 4a

2a–c

Average frequency in frequency
data-base X (all word types of
type Y)

Equivalent to Average frequency

in frequency data-base X

(word tokens of type Y)

1a, 2a,
3a, 4a

2a–c

Average frequency in frequency
data-base X (all lemma types)

Equivalent to Average frequency

in frequency data-base X

(word tokens of type Y)

1a, 4a 7
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Table B.9: Frequency features used in this thesis (continued).

Feature name Definition Legacy CTAP

Annotated frequency of word
types in frequency data-base X

(Â POS-specific frequencies of all
word types in the text that were found
in frequency data-base X) ÷ #word
types in the text found in frequency
data-base X; same frequency data
base options as defined above

1 7

Average frequency per million
words in frequency data-base X
(word tokens of type Y)

(Â frequencies per million words of
all word tokens in the text that were
found in frequency data-base X) ÷
#word tokens in the text found in fre-
quency data-base X;
frequency data-base options for X:
see above;
word type options for Y: see above

7 3a–g,
5a–g

Average frequency per million
words in frequency data-base X
(all word types of type Y)

Equivalent to Average frequency

in frequency data-base X

(word tokens of type Y)

7 3a–g,
5a–g

Standard deviation of the fre-
quency per million words in fre-
quency data-base X (all word to-
kens of type Y)

SD(frequency per million words of
all word tokens in the text that were
found in frequency data-base X);
frequency data-base options for X:
see above;
word type options for Y: see above

7 3a–g,
5a–c

Standard deviation of the fre-
quency per million words in fre-
quency data-base X (all word
types of type Y)

Equivalent to Standard deviation

of the frequency per million

words in frequency data-base

X (all word tokens of type Y)

7 3a–g,
5a–g
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Table B.9: Frequency features used in this thesis (continued).

Feature name Definition Legacy CTAP

Average log frequency in fre-
quency data-base X (all word to-
kens of type Y)

(Â log frequencies of all word tokens
in the text that were found in fre-
quency data-base X) ÷ #word tokens
in the text found in frequency data-
base X;
frequency data-base options for X:
see above;
word type options for Y: see above

7 2a–c,
3a–g,
5a–c

Average log frequency in fre-
quency data-base X (all word
types of type Y)

Equivalent to Average log

frequency in frequency

data-base X (all word tokens

of type Y)

1a, 2a,
3a, 4a

2a–g,
3a–g,
5a–g

Average log lemma frequency in
frequency data-base X

Equivalent to Average log

frequency in frequency

data-base X (all word tokens

of type Y) but using lemma types

1a, 2a,
3a, 4a

7

Average annotated log frequency
in frequency data-base X (all
word types of type Y)

Equivalent to Average log

frequency in frequency

data-base X (all word tokens

of type Y) but for POS-specific
frequencies

1a 7

Standard deviation of the log fre-
quency in frequency data-base X
(all word tokens of type Y)

SD(log frequencies of all word to-
kens in the text that were found in fre-
quency data-base X);
frequency data-base options for X:
see above;
word type options for Y: see above

7 3a–g,
5a–c
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Table B.9: Frequency features used in this thesis (continued).

Feature name Definition Legacy CTAP

Standard deviation of the log fre-
quency in frequency data-base X
(all word types of type Y)

Equivalent to Standard deviation

of the log frequency in

frequency data-base X (all

word tokens of type Y)

7 3a–g,
5a–g

Word types found in frequency
data-base X

#word types found in frequency data-
base X ÷ #word types in the text with
options for X being defined above

1, 3, 4 7

Word types not found in fre-
quency data-base X

#word types not found in frequency
data-base X ÷ #word types in the
text with options for X being defined
above

1, 3, 4 7

Lemma types found in frequency
data-base X

#lemma types found in frequency
data-base X ÷ #lemma types in the
text with options for X being defined
above

4 7

Lexical lemma types found in
frequency data-base X

#lexical lemma types found in
frequency data-base X ÷ #lexical
lemma types in the text with options
for X being defined above

4 7

Average log frequency per mil-
lion words in frequency data-
base X (all word tokens of type
Y)

(Â log frequencies per million words
of all word tokens in the text that were
found in frequency data-base X) ÷
#word tokens in the text found in fre-
quency data-base X;
frequency data-base options for X:
see above;
word type options for Y: see above

7 2a–c,
3a–c
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Table B.9: Frequency features used in this thesis (continued).

Feature name Definition Legacy CTAP

Average log frequency per mil-
lion words in frequency data-
base X (all word types of type Y)

Equivalent to Average log

frequency per million words

in frequency data-base X (all

word tokens of type Y)

7 2a–c,
3a–c

Log annotated type frequency
for frequency band Y based on
frequency data-base X

#POS-specific word types falling into
log frequency range Y.0 to Y.9 ÷
#word types found in frequency data-
base X; with options for X being de-
fined above and options for Y ranging
from 1 to 9

1
(bands
1–6),
2
(bands
1–9),
3
(bands
1–6),
4
(bands
1–5)

7
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Table B.10: Familiarity and informativeness features used in this thesis (excluding raw
counts). Check marks indicate if features were present in the legacy system and the CTAP
system. # is used as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Average Word Familiarity Per
Million Words in frequency
data-base X (all word tokens of
type Y)

Âi frequency per million word of
word tokens in frequency data-base X
that have the same length as word to-
ken i and start with the same three let-
ters ÷ #word tokens in the text found
in frequency data-base X;
frequency data-base options for X:
see above;
word type options for Y: see above

7 2a–c,
3a–c

Average Word Familiarity Per
Million Words in frequency
data-base X (all word types of
type Y)

Equivalent to Average Word

Familiarity Per Million Words

in frequency data-base X (all

word tokens of type Y)

7 2a–c,
3a–c

Average Word Informativeness
Per Million Words in frequency
data-base X (all word tokens of
type Y)

Âi cumulative frequency per million
word of word tokens in frequency
data-base X that have the same length
as word token i and start with the
same three letters ÷ #word tokens in
the text found in frequency data-base
X;
frequency data-base options for X:
see above;
word type options for Y: see above

7 2a–c,
3a–c

Average Word Informativeness
Per Million Words in frequency
data-base X (all word types of
type Y)

Equivalent to Average Word

Informativeness Per Million

Words in frequency data-base

X (all word tokens)

7 2a–c,
3a–c
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Table B.11: Age of active use features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as
short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Mean Age of Active Use in KCT
(for word tokens of type Y)

(Â age of all writers in KCT using
this token of type X ÷ #word tokens
of type X in the text found in KCT);
frequency data-base options for X:
see above;
word type options for Y: see above

4a 4a–c

Mean Age of Active Use in KCT
(for word types of type Y)

Equivalent to Mean Age of Active

Use in KCT (for word tokens

of type X)

4a 4a–c

Mean Age of Active Use in KCT
for lemma types

Equivalent to Mean Age of Active

Use in KCT (for word tokens

of type X) but using only lemma
types

4a 7

Minimal Age of Active Use in
KCT (for word tokens of type Y)

(Â age of youngest writer in KCT us-
ing this token of type X ÷ #word to-
kens of type X in the text found in
KCT);
frequency data-base options for X:
see above;
word type options for Y: see above

7 4a–c

Minimal Age of Active Use in
KCT (for word types of type Y)

Equivalent to Minimal Age of

Active Use in KCT (for word

tokens of type X)

4a 4a–c

Minimal Age of Active Use in
KCT for lemma types

Equivalent to Minimal Age of

Active Use in KCT (for word

tokens of type X) but using only
lemma types

4a 7
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Table B.11: Age of active use features used in this thesis (continued).

Feature name Definition Legacy CTAP

Maximal Age of Active Use in
KCT (for word types)

(Â age of oldest writer in KCT us-
ing this type ÷ #word types found in
KCT)

3 7

Maximal Age of Active Use in
KCT (for lemma types)

(Â age of oldest writer in KCT us-
ing this lemma type ÷ #lemma types
found in KCT)

3 7
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B.4 Semantic complexity measures

This section contains definitions of all Semantic complexity measures (excluding language
use features) that are used in this thesis.

Table B.12: Semantic complexity features used in this thesis (excluding raw counts). Check
marks indicate if features were present in the legacy system and the CTAP system. # is used
as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Hypernyms per word type #hypernyms found for a word type in
GermaNet ÷ #word types found in
GermaNet

3 7

Hyperonyms per word type #hyperonyms found for a word type
in GermaNet ÷ #word types found in
GermaNet

3 7

Synsets per word type #synsets found for a word type in
GermaNet ÷ #word types found in
GermaNet

3 7

Lexical units per synset #lexical units ÷ #synsets 3 7

Relations per synset #semantic relations ÷ #synsets 3 7

Frames per verb type #frames ÷ #verb types found in Ger-
maNet

3 7
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B.5 Morphological complexity

This section contains definitions of all morphological complexity measures that are used in
this thesis. Features are grouped into tables based on their complexity sub-domains. This
section contains the following tables:

Table B.13 contains all measures based on the MCI.

Table B.14 contains all inflection-based morphological complexity measures.

Table B.15 contains all derivation-based morphological complexity measures.

Table B.16 contains all compound-based morphological complexity measures.

Table B.13: MCI features used in this thesis (excluding raw counts). Check marks indicate if
features were present in the legacy system and the CTAP system. # is used as short-hand to
indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

MCI-10 for Nouns (± repetition) MCI for nouns with X partitions à
10 exponents sampled with or with-
out repetition for X 2 { 2, 5, 10, 15
}

7 3

MCI-10 for Verbs (± repetition) MCI for verbs with X partitions à 10
exponents sampled with or without
repetition for X 2 { 2, 5, 10, 15 }

7 3

MCI-5 for Adjectives (± repeti-
tion)

MCI for adjectives with X partitions à
5 exponents sampled with or without
repetition for X 2 { 2, 5, 10, 15 }

7 3

MCI-5 for Nouns (± repetition) MCI for nouns with X partitions à
5 exponents sampled with or without
repetition for X 2 { 2, 5, 10, 15 }

7 3

MCI-5 for Verbs (± repetition) MCI for verbs with X partitions à 5
exponents sampled with or without
repetition for X 2 { 2, 5, 10, 15 }

7 3

411



Appendix B Complexity features

Table B.14: Inflection features used in this thesis (excluding raw counts). Check marks indicate
if features were present in the legacy system and the CTAP system. # is used as short-hand to
indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Accusative Case per X #accusative case markings ÷ X; with
X being: #nouns [1] or #words [2],
finite verbs [3]

1 2

Dative Case per X #dative case markings ÷ X; with X
being defined above

1 2

Genitive Case per X #gentive case markings ÷ X; with X
being defined above

1 2

Nominative Case per X #nominative case markings ÷ X; with
X being defined above

1 2

Any Person per word token #1st, 2nd and 3rd person markings ÷
#words

7 3

First Person per token of type X #1st person markings ÷ X; with X
being defined above

3 2

Second Person per token of type
X

#2nd person markings ÷ X; with X
being defined above

3 2

Third Person per token of type X #3rd person markings ÷ X; with X
being defined above

3 2

Feminine inflection per word to-
ken

#feminine inflection markings ÷
#words

7 3

Masculine inflection per word
token

#masculine inflection markings ÷
#words

7 3

Neuter inflection per word token #neuter inflection markings ÷
#words

7 3

Gender inflection per word token #feminine, masculine, and neuter in-
flection markings ÷ #words

7 3

Finite verbs per verb #finite verbs ÷ #verbs 3 7

Non-finite verbs per verb #non-finite verbs ÷ #verbs 3 7

Past participle verbs per verb #verbs in past participle ÷ #verbs 3 7

Imperatives per Verb #imperative inflections ÷ #verbs 7 3
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Table B.14: Inflection features used in this thesis (continued).

Feature name Definition Legacy CTAP

Imperatives per finite Verb #imperative inflection ÷ #finite verbs 3 3

Imperatives per word token #imperative inflections ÷ #words 7 3

Indicatives per Verb #indicative inflections ÷ #verbs 7 3

Indicatives per finite Verb #indicative inflections ÷ #finite verbs 3 3

Indicatives per word token #indicative inflections ÷ #words 7 3

Subjunctives per finite Verb #subjunctive inflections ÷ #finite
verbs

3 3

Subjunctives per verb token #subjunctive inflections ÷ #verbs 7 3

Subjunctives per word token #subjunctive inflections ÷ #words 7 3

Imperfect tense per verb token #imperfect tense marking ÷ #verbs 7 3

Past tense per verb token #past tense marking ÷ #verbs 7 3

Number per word token #singular and plural markings ÷
#words

7 3

Singular per word token #singular markings ÷ #words 7 3

Table B.15: Derivation features used in this thesis (excluding raw counts). Check marks indi-
cate if features were present in the legacy system and the CTAP system. # is used as short-hand
to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Nominalizations of type X per
token

#noun lemmas ending with nominal-
ization X ÷ #words; for X being: -
ist [1], -eit [2], -ling [3], -keit [4], -at
[5], -werk [6], -schaft [7], -enz [8],
-tum [9], -ast [10], -eur [11], -ität
[12], -ur [13], -heit [14], -keit [15],
-nis [16], -wesen [17], -ator [18], -
ismus [19], -atur [20], -ent [21], -
ant [22], -arium [23], -ung [24],-ion
[25]

1–25 7
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Table B.15: Derivation features used in this thesis (continued).

Feature name Definition Legacy CTAP

Derived nouns per noun #derived nouns ÷ #nouns 3 7

Table B.16: Compound features used in this thesis (excluding raw counts). Check marks indi-
cate if features were present in the legacy system and the CTAP system. # is used as short-hand
to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Compound nouns per noun #compound nouns ÷ #nouns 3 7

Compound depth per noun Â#compounds in compound nouns ÷
#compound nouns

3 7
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B.6 Discourse complexity

This section contains definitions of all discourse complexity measures that are used in this
thesis. Features are grouped into tables based on their complexity sub-domains. This section
contains the following tables:

Table B.17 contains all measures based on the use of connectives.

Table B.18 contains all measures based on the use of explicit co-reference.

Table B.19 contains all measures based on the use of implicit cohesive devices.

Table B.17: Connective features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as
short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Additive connectives per Y
(based on list X)

#additive connectives from list X ÷
Y; with X being: list by Breindl [1]
or list by Eisenberg [2] and Y being
#tokens [a], #connectives on list X
[b], #sentences [c]

1c, 2c 1a

Adversative and concessive con-
nectives per Y (based on list X)

#adversative and concessive connec-
tives from list X ÷ Y; with options
for X and Y being defined above

1c, 2c 1a

Adversative connectives per Y
(based on list X)

#adversative connectives from list X
÷ Y; with options for X and Y being
defined above

1c, 2c 1a

All connectives per Y (based on
list X)

#connectives from list X ÷ Y; with
options for X and Y being defined
above

1c, 2c 1a

Causal connectives per Y (based
on list X)

#causal connectives from list X ÷ Y;
with options for X and Y being de-
fined above

1c, 2c 1a
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Table B.17: Connective features used in this thesis (continued).

Feature name Definition Legacy CTAP

Concessive connectives per Y
(based on list X)

#concessive connectives from list X
÷ Y; with options for X and Y being
defined above

1c, 2c 1a

Temporal connectives per Y
(from list X)

#temporal connectives from list X ÷
Y; with options for X and Y being de-
fined above

1c, 2c 1a

Other connectives per Y (based
on list X)

#other connectives from list X ÷ Y;
with options for X and Y being de-
fined above

1c, 2c 1a

Multi- to single-word connec-
tives (based on list X)

#skip-/n-gram and unigram connec-
tives from list X ÷ Y; with options
for X being defined above

7 1

Multi-word connectives per Y
(based on list X)

#skip-/n-gram connectives from list
X ÷ Y

1c,2c 1b

Single-word connectives per Y
(based on list X)

#unigram connectives from list X ÷
Y; with options for X and Y being de-
fined above

1c, 2c 1b

wenn-V1 conditionals per sen-
tence

#conditionals formed with condition
realized in a wenn (engl. “if”)-clause
and consequence in a verb-first clause
÷ #sentences

3 7

V1-dann conditionals per sen-
tence

#conditionals formed with condition
realized in a verb-first clause and con-
sequence in a dann (engl. “then”)-
clause ÷ #sentences

3 7

wenn-dann conditionals per sen-
tence

#conditionals formed with condition
realized in a wenn (engl. “if”)-clause
and consequence in a dann (engl.
“then”)-clause ÷ #sentences

3 7
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Table B.17: Connective features used in this thesis (continued).

Feature name Definition Legacy CTAP

V1-V1 conditionals per sentence #conditionals formed with condition
realized in a verb-first clause and
consequence in a verb-first clause ÷
#sentences

3 7

Coverage of condition types #condition clause types occurring at
least once (V1-dann, V1-V1, wenn-
V1, wenn-dann) ÷ #condition clause
types measures (N = 4)

3 7

Table B.18: Co-reference features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as
short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Pronouns of type X per token #pronouns of type X ÷ #tokens;
with pronoun types X: all pronouns
[1], personal pronouns (1st person)
[2a], personal pronouns (2nd per-
son) [2b], personal pronouns (3rd
person) [2c], personal pronouns
(any person) [2d], possessive pro-
nouns (1st person) [3a], possessive
pronouns (2nd person) [3b], pos-
sessive pronouns (3rd person) [3c],
possessive pronouns (any person)
[3d], person or possessive pronouns
(1st person) [4a], person or pos-
sessive pronouns (2nd person) [4b],
person or possessive pronouns (3rd
person) [4c]

1, 2a–
d, 3a–
d, 4a–
c

7
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Table B.18: Co-reference features used in this thesis (continued).

Feature name Definition Legacy CTAP

Pronouns of type X per noun #pronouns of type X ÷ #tokens; with
pronoun types for X being defined
above

1, 2a–
d, 3a–
d

7

Pronouns of type X per token in
sentence per sentence

(Âi#pronouns of type X in sentence
i ÷ #tokens in sentence i) ÷ #sen-
tences; with pronoun types for X be-
ing defined above

1, 2a–
d, 3a–
d

7

Articles of type X per article #articels of type X ÷ #tokens; with
article types for X: definite [1] or in-
definite [b]

1a–b 7

Articles of type X per token in
sentence per sentence

(Âi#articles of type X in sentence i ÷
#tokens in sentence i) ÷ #sentences;
with article types for X being defined
above

1a–b 7

Proper nouns per token #proper nouns ÷ #tokens 3 7

Proper nouns per noun #proper nouns ÷ #nouns 3 7

Proper nouns per token in sen-
tence per sentence

(Âi#proper nouns in sentence i ÷ #to-
kens in sentence i) ÷ #sentences

3 7

Table B.19: Implicit cohesion features used in this thesis (excluding raw counts). Check marks
indicate if features were present in the legacy system and the CTAP system. # is used as short-
hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Global Argument Overlap
(lemma-based)

#argument lemmas overlapping be-
tween any two sentences in the text
÷ #sentences

7 3

Local Argument Overlap
(lemma-based)

same as Global Argument

Overlap (lemma-based) but
calculated only between adjacent
sentences

7 3
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Table B.19: Implicit cohesion features used in this thesis (continued).

Feature name Definition Legacy CTAP

Global Lemma Overlap #lemmas overlapping between any
two sentences in the text ÷ #sen-
tences

7 3

Local Lemma Overlap same as Global Lemma Overlap

but calculated only between adjacent
sentences

7 3

Global Lexical Overlap (lemma-
based)

#lexical lemmas overlapping between
any two sentences in the text ÷ #sen-
tences

7 3

Local Lexical Overlap (lemma-
based)

same as Global Lexical Overlap

(lemma-based) but calculated only
between adjacent sentences

7 3

Global Noun Overlap (lemma-
based or type-based)

#nouns overlapping between any two
sentences in the text ÷ #sentences

7 3

Local Noun Overlap (lemma-
based or type-based)

same as Global Noun Overlap

(lemma-based or type-based)

but calculated only between adjacent
sentences

7 3

Mean Global Argument Overlap
(lemma-based)

#argument lemmas overlapping be-
tween any two sentences in the text
÷ #sentence pairs

3 3

Mean Local Argument Overlap
(lemma-based)

same as Mean Global Argument

Overlap (lemma-based) but cal-
culated only between adjacent sen-
tences

3 3

Mean Global Lemma Overlap #lemmas overlapping between any
two sentences in the text ÷ #sentence
pairs

3 7
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Table B.19: Implicit cohesion features used in this thesis (continued).

Feature name Definition Legacy CTAP

Mean Local Lemma Overlap same as Mean Global Lemma

Overlap but calculated only between
adjacent sentences

3 7

Mean Global Lexical Overlap
(lemma-based)

#lexical lemmas overlapping between
any two sentences in the text ÷ #sen-
tence pairs

7 3

Mean Local Lexical Overlap
(lemma-based)

same as Mean Global Lexical

Overlap (lemma-based) but
calculated only between adjacent
sentences

7 3

Mean Global Noun Overlap
(lemma-based or type-based)

#nouns overlapping between any two
sentences in the text ÷ #sentence
pairs; using noun lemmas [1] or noun
tokens [2]

2 1

Mean Local Noun Overlap
(lemma-based or type-based)

same as Mean Global Noun

Overlap (lemma-based or

type-based) but calculated only
between adjacent sentences

2 1

Global Stem Overlap #noun stems overlapping with stems
of other lexical words in any other
sentence ÷ #sentences

7 3

Local Stem Overlap same as Global Stem Overlap but
calculated only between adjacent sen-
tences

3 7

Global Content Word Overlap
(lemma-based)

#content word lemmas overlapping
between any two sentences ÷ #sen-
tences

7 3
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Table B.19: Implicit cohesion features used in this thesis (continued).

Feature name Definition Legacy CTAP

Local Content Word Overlap
(lemma-based)

same as Global Content Word

Overlap(lemma-based) but cal-
culated only between adjacent
sentences

3 7

Mean Global Stem Overlap #noun stems overlapping with stems
of other lexical words in any other
sentence ÷ #sentence pairs

3 7

Mean Local Stem Overlap same as Mean Global Stem

Overlap but calculated only be-
tween adjacent sentences

3 7

Mean Global Content Word
Overlap (lemma-based)

#content word lemmas overlapping
between any two sentences ÷ #sen-
tence pairs

3 7

Mean Local Content Word Over-
lap (lemma-based)

same as Mean Global Content

Word Overlap(lemma-based) but
calculated only between adjacent
sentences

3 7

SD of Global/Local Argument
Overlap (lemma-based)

standard deviation corresponding
to Mean Global/Local Argument

Overlap (lemma-based) feature
defined above

7 3

SD of Global/Local Lexical
Overlap (lemma-based)

standard deviation corresponding
to Mean Global/Local Lexical

Overlap (lemma-based) feature
defined above

7 3

SD of Global/Local Noun Over-
lap (lemma-based)

standard deviation corresponding
to Mean Global/Local Noun

Overlap (lemma-based) feature
defined above

7 3
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Table B.19: Implicit cohesion features used in this thesis (continued).

Feature name Definition Legacy CTAP

Transition probability from
grammatical role A to grammat-
ical role B

#transitions of noun heads (=entities)
with grammatical role A to grammat-
ical role B in a subsequent sentence
÷ (#sentences - 1) * #entities; with
options for grammatical roles of A
being: subject [1], object [2], other
complement [3], nothing [4] and
options for grammatical roles of B
being: subject [a], object [b], other
complement [c], nothing [d]

1a–d,
2a–d,
3a–d,
4a–d

7

Propositional idea density see Brown et al. (2008) 3 7

B.7 Processing complexity

This section contains definitions of all human processing measures that are used in this thesis.

Table B.20: Human processing features used in this thesis (excluding raw counts). Check
marks indicate if features were present in the legacy system and the CTAP system. # is used
as short-hand to indicate counts of linguistic constructs

Feature name Definition Legacy CTAP

Sum longest dependency per
sentence

(Â max(#words in dependency per
sentence)) ÷ #sentences

3 7

Sum longest dependency per t-
unit

(Â max(#words in dependency per
sentence)) ÷ #sentences

3 7

Sum longest dependency per
clause

(Â max(#words in dependency per
sentence)) ÷ #sentences

3 7

Sum longest dependency per fi-
nite clause

(Â max(#words in dependency per
sentence)) ÷ #sentences

3 7

Longest dependency max(# words in a dependency) 3 7
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Table B.20: Human processing features used in this thesis (continued).

Feature name Definition Legacy CTAP

Maximal total integration cost
per finite verb using configura-
tion X

(Â maximal total integration costs at
the finite verb calculated using the
configuration X) ÷ number of fi-
nite verbs; configuration options for
X: original weights (O), increased
verb weight (V), decreased coordina-
tion weight (C), decreased modifier
weight (M) and weight adjustment
combinations: CV, CM, VM, CMV
Ex.: Maximal total integration cost
per finite verb using CV weights (=
decreased coordination weights and
increased verb weights)

3 3

Total integration cost per finite
verb using configuration X

(Â total integration costs at the fi-
nite verb calculated using configura-
tion X) ÷ number of finite verbs; con-
figuration options for X: see above
Ex.: Total integration cost per finite
verb using CV weights (= decreased
coordination weights and increased
verb weights)

3 3

Adjacent high integration costs
per finite verb using configura-
tion X

(Â adjacent integration costs > 2
after a finite verb calculated using
configuration X) ÷ number of finite
verbs; configuration options for X:
see above
Ex.: Adjacent high integration cost
per finite verb using CV weights (=
decreased coordination weights and
increased verb weights)

3 3
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