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Abstract
The ability to perceive tactile stimuli is of substantial importance for human beings in es-
tablishing a connection with the surrounding world. Humans rely on the sense of touch to
navigate their environment and to engage in interactions with both themselves and other
people. The field of computer vision has made great progress in estimating a person’s
body pose and shape from an image, however, the investigation of self- and interpersonal
contact has received little attention despite its considerable significance. Estimating con-
tact from images is a challenging endeavor because it necessitates methodologies capa-
ble of predicting the full 3D human body surface, i.e. an individual’s pose and shape.
The limitations of current methods become evident when considering the two primary
datasets and labels employed within the community to supervise the task of human pose
and shape estimation. First, the widely used 2D joint locations lack crucial information
for representing the entire 3D body surface. Second, in datasets of 3D human bodies,
e.g. collected from motion capture systems or body scanners, contact is usually avoided,
since it naturally leads to occlusion which complicates data cleaning and can break the
data processing pipelines.

In this thesis, we first address the problem of estimating contact that humans make
with themselves from RGB images. To do this, we introduce two novel methods that
we use to create new datasets tailored for the task of human mesh estimation for poses
with self-contact. We create (1) 3DCP, a dataset of 3D body scan and motion capture
data of humans in poses with self-contact and (2) MTP, a dataset of images taken in
the wild with accurate 3D reference data using pose mimicking. Next, we observe that
2D joint locations can be readily labeled at scale given an image, however, an equivalent
label for self-contact does not exist. Consequently, we introduce (3) distrecte self-contact
(DSC) annotations indicating the pairwise contact of discrete regions on the human body.
We annotate three existing image datasets with discrete self-contact and use these labels
during mesh optimization to bring body parts supposed to touch into contact. Then we
train TUCH, a human mesh regressor, on our new datasets. When evaluated on the task
of human body pose and shape estimation on public benchmarks, our results show that
knowing about self-contact not only improves mesh estimates for poses with self-contact,
but also for poses without self-contact.

Next, we study contact humans make with other individuals during close social in-
teraction. Reconstructing these interactions in 3D is a significant challenge due to the
mutual occlusion. Furthermore, the existing datasets of images taken in the wild with
ground-truth contact labels are of insufficient size to facilitate the training of a robust
human mesh regressor. In this work, we employ a generative model, BUDDI, to learn
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the joint distribution of 3D pose and shape of two individuals during their interaction
and use this model as prior during an optimization routine. To construct training data we
leverage pre-existing datasets, i.e. motion capture data and Flickr images with discrete
contact annotations. Similar to discrete self-contact labels, we utilize discrete human-
human contact to jointly fit two meshes to detected 2D joint locations. The majority of
methods for generating 3D humans focus on the motion of a single person and operate
on 3D joint locations. While these methods can effectively generate motion, their rep-
resentation of 3D humans is not sufficient for physical contact since they do not model
the body surface. Our approach, in contrast, acts on the pose and shape parameters of a
human body model, which enables us to sample 3D meshes of two people. We further
demonstrate how the knowledge of human proxemics, incorporated in our model, can be
used to guide an optimization routine. For this, in each optimization iteration, BUDDI
takes the current mesh and proposes a refinement that we subsequently consider in the
objective function. This procedure enables us to go beyond state of the art by forgoing
ground-truth discrete human-human contact labels during optimization.

Self- and interpersonal contact happen on the surface of the human body, however,
the majority of existing art tends to predict bodies with similar, “average” body shape.
This is due to a lack of training data of paired images taken in the wild and ground-
truth 3D body shape and because 2D joint locations are not sufficient to explain body
shape. The most apparent solution would be to collect body scans of people together
with their photos. This is, however, a time-consuming and cost-intensive process that
lacks scalability. Instead, we leverage the vocabulary humans use to describe body shape.
First, we ask annotators to label how much a word like “tall” or “long legs” applies to
a human body. We gather these ratings for rendered meshes of various body shapes,
for which we have ground-truth body model shape parameters, and for images collected
from model agency websites. Using this data, we learn a shape-to-attribute (A2S) model
that predicts body shape ratings from body shape parameters. Then we train a human
mesh regressor, SHAPY, on the model agency images wherein we supervise body shape
via attribute annotations using A2S. Since no suitable test set of diverse 3D ground-truth
body shape with images taken in natural settings exists, we introduce Human Bodies
in the Wild (HBW). This novel dataset contains photographs of individuals together
with their body scan. Our model predicts more realistic body shapes from an image and
quantitatively improves body shape estimation on this new benchmark.

In summary, we present novel datasets, optimization methods, a generative model, and
regressors to advance the field of 3D human pose and shape estimation. Taken together,
these methods open up ways to obtain more accurate and realistic 3D mesh estimates
from images with multiple people in self- and mutual contact poses and with diverse
body shapes. This line of research also enables generative approaches to create more
natural, human-like avatars. We believe that knowing about self- and human-human
contact through computer vision has wide-ranging implications in other fields as for
example robotics, fitness, or behavioral science.
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Zusammenfassung
Die Wahrnehmung taktiler Reize ist für den Menschen von großer Bedeutung um eine
Verbindung mit unserer Umgebung herzustellen. Dabei verwenden wir unseren Tastsinn
um uns in der Umwelt zurechtzufinden und Beziehungen zu uns selbst und zu anderen
Menschen aufzubauen. Das maschinelle Sehen hat zwar erhebliche Forschritte bei der
Bestimmung der Pose und Figur einer Person von Bildern gemacht, die Erforschung von
körpereigenem- und zwischenmenschlichem Kontakt wurde dabei, trotz seiner Relevanz,
jedoch vernachlässigt. Eine Herausforderung beim Schätzen von 3D Kontakt ist, dass
die gesamte menschliche Körperoberfläche, also Pose und Figur, berücksichtigt werden
muss. Weiterhin werden Grenzen aktueller Methoden erkenntlich, wenn man die vor-
nehmlich für diese Aufgabe verwendeten Datensätze und Annotationen betrachtet. Den
häufig verwendeten 2D Gelenkpositionen fehlen wesentliche Informationen über die ge-
samte 3D Körperoberfläche. Und bei der Aufnahme 3D Körperdaten, z.B. durch Motion-
Capture Systeme oder Körperscanner, wird Kontakt oft vermieden, weil er Okklusionen
verursacht welche die Datensäuberung und -verarbeitung erschweren.

In unserer Arbeit befassen wir uns zunächst mit der Schätzung von körpereigenem
Kontakt (“Eigenkontakt”) aus Farbbildern. Dafür entwickeln wir zwei neue Methoden,
zugeschnitten auf die Schätzung menschlicher 3D Meshes mit Eigenkontakt, und erstel-
len damit neue Datensätzen. Wir erstellen 1) 3DCP, einen Datensatz bestehend aus 3D
Meshes von Personen in Posen mit Eigenkontakt und 2) MTP, einen Datensatz bestehen
aus unter realen Bedingungen aufgenommenen Bildern mit 3D Referenzdaten, zu des-
sen Erstellung Personen verschiedene Posen nachstellen. Außerdem beobachten wir, dass
2D Gelenkpositionen in einem Foto leicht annotiert werden können, es für Eigenkontakt
jedoch kein äquivalentes Label gibt. Daher führen wir ein neues Label, “diskreten Ei-
genkontakt”, ein um den Kontakt zwischen jeweils zwei verschiedenen Körperregionen
anzuzeigen. Wir annotieren drei existierende Datensätze und verwenden diskreten Ei-
genkontakt während einer Optimierungsroutine um Körperteile die sich berühren soll-
ten in Kontakt zu bringen. Anschließend trainieren TUCH, wir ein neuronales Netz zur
Schätzung der 3D Körperoberfläche. Unsere Ergebnisse zeigen dass das Wissen über
körpereigenen Kontakt die Schätzungen von Posen sowohl mit als auch ohne Eigenkon-
takt verbessert.

Als nächstes betrachten wir Kontakt im Kontext enger sozialer Interaktionen. Die Mo-
dellierung solchen Kontakts ist schwierig weil sich die beteiligten Personen gegenseitig
verdecken. Zudem sind existierende Datensätze nicht groß genug um robuste neurona-
le Netze zur 3D Rekonstruktion solcher Interaktionen zu trainineren. In dieser Arbeit
nutzen wir deshalb ein generatives Modell, BUDDI, um die gemeinsame Verteilung von
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sich in sozialer Interaktion befindendenden Personen zu erlernen und verwenden dieses
Modell während einer Optimizernugsroutine. Als Trainingsdaten verwenden wir exis-
tierende Motion Capture Daten sowie Flickr Bilder mit diskreten Kontakt annotationen.
Angelehnt an diskreten Eigenkontakt, nutzen wir diskreten Mensch-zu-Mensch Kontakt
um zwei menschliche Meshes an detektierte 2D Gelenkpositionen zu fitten. Die meis-
ten Methoden zur Generierung von 3D Meshes von Menschen, sind auf die Bewegung
einer einzelnen Person ausgerichtet und agieren auf 3D Gelenkpositionen. Diese Me-
thoden reichen jedoch nicht aus um physischen Kontakt zu modellieren, weil sie nicht
die gesamte Körperoberfläche modellieren. Unser Ansatz agiert auf den Pose und Fi-
gur Parametern eines Körpermodells, wodurch 3D Meshes zweier Personen zu generiert
werden können. Außerdem zeigen wir wie das Wissen über menschliche Proxemik un-
seres Modells während einer Optimierungsroutine verwendet werden kann. Dafür wird
in jedem Optimierungsschritt die aktuelle Schätzung durch BUDDI verfeinert. Die ver-
feinerte Schätzung dient dann als Supervision in einer Zielfunktion. Im Gegensatz zu
existierenden Methoden kann unsere Optimierungsroutine auch dann verwendet werden
wenn kein annotierter Mensch-zu-Mensch Kontakt verfügbar ist.

Kontakt findet an der Köperoberfläche statt, jedoch schätzen die meisten starte-of-the-
art Methoden Körper mit Durchschnittsfigur mangels Trainingsdaten bestehend aus unter
natürlichen Bedingungen aufgenommenen Bildern mit entsprechender 3D Grundwahr-
heit der Figur. Hinzu kommt, dass 2D Gelenkpositionen nicht ausreichen um die Figur
einer Person zu erklären. Eine naheliegende Lösung wäre ein neuer Datensatz bestehend
aus Körperscans und Bildern; ein zeitintensives und teuers Vorhaben, dass nicht skalier-
bar ist. Stattdessen nutzen wir Vokabular das Meschen zur Beschreibung von Figur ver-
wenden. Zuerst lassen wir Annotatoren beurteilen wie gut Worte wie “groß” oder “lange
Beine” auf einen Körper zutreffen. Wir verschiedenste Körperformen, deren 3D Grund-
wahrheit uns vorliegt, sowie Fotos von Modelagenturwebseiten. Wir verwenden diese
Daten um ein Figur-zu-Attribut (A2S) Modell zu fitten das die 3D Figur von Bewer-
tungsvektoren vorhersagt. Anschließend trainieren wir einen Mesh Regressor, SHAPY,
auf den Modelagenturbildern, wobei wir Figur durch Bewertungsvektoren überwachen.
Um unser Modell zu evaluieren erstellen wir einen neuen Testdatensatz names “Human
Bodies in the Wild” (HBW), bestehend aus Fotos und Körperscans. Unser Modell ver-
bessert die Figurschätzung auf HBW quantitativ und sagt realistischere Figur vorher.

Zusammenfassend stellen wir in dieser Arbeit neue Datensätze, Optimierungsmetho-
den, ein generatives Modell, sowie neuronale Netze vor, um das Feld der 3D mensch-
liche Posen- und Figurschätzung voranzubringen. Im gesamten eröffnen die in dieser
Arbeit vorgestellen Methoden neue Wege um genauere und realistischere 3D Meshes
von Bildern zu schätzen und zwar für Szenarien mit mehreren Personen mit Eigen- und
Mensch-zu-Mensch Kontakt. Zudem ermöglicht die Forschung dieser Arbeit die Ent-
wicklung generativer Modelle um naürlicherer Avatare zu kreieren. Wir glauben, dass
das Wissen über Kontakt mit Hilfe des maschinellen Sehens weitreichende Auswirkun-
gen in anderen Gebieten haben wird, zum Beispiel in der Robotik, im Fitnessbereich,
oder in den Verhaltenwissenschaften.
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Chapter 1 Introduction

1.1 Motivation
The human skin is designed to experience touch – the ability to perceive a stimulus
that comes into contact with the body surface. The sense of touch is crucial because it
allows us to experience physical sensations, create and deepen social relationships, and
establish a connection with the world around us. The field of computer vision should
be able to model and reconstruct the full human body surface and capture its complex
interactions with ourselves, other humans, and the environment. Understanding contact
through computer vision will enable advancements in virtual and augmented reality and
impact other fields like robotics and behavioral science. Interestingly, many works in
our field investigate interaction between humans and scenes, while research on self- and
human-human contact remains relatively scarce in comparison.

Human beings engage in self-touch or self-contact multiple times a day, indicating
its behavioral significance and prompting extensive research in behavioral- and neuro-
science. For instance, studies have shown that facial self-touch is a recognized indicator
of stress in adults [34]. Infants frequently and spontaneously touch their own body, which
serves as a way of exploration, facilitating the development of body awareness [90] and
even fetuses show increased self-contact when maternal stress is present [160], highlight-
ing its relevance across different life stages. The patterns of self-touch are manifold as
they vary in speed, trajectory, or movement duration [13, 108] and their exact function
is still unknown. Some work argues that self-touch mainly serves for self-stabilization
and self-calming [108, 172] or as a mechanism for down-regulation in high arousal states
[172]. Self-touch is also associated with emotional processes that interfere with working
memory performance [49]. In particular, suppressing self-touch among individuals who
frequently touch their own body leads to significantly worse memory performance in
haptic working memory tasks [186]. Other research indicates a connection between dif-
ferent patterns of self-touch and neuropsychological state [13, 197] and mental arousal
[105, 109, 204]. In dialogues, self-touching colloquists are rated significantly more hon-
est, outgoing, likable, and positively with respect to the working relationship compared to
their non self-touching equivalent [55], indicating a relevance not only for self-regulation
but also as an outwardly effective mechanism.

The relevance of interpersonal touch or human-human contact has also extensively
been investigated in behavioral science, in particular the role of social touch [167]. In
fact, the body of research on social touch is extensive, and this paragraph can only offer
a brief glimpse to highlight the relevance of interpersonal touch. Beginning from early
childhood, physical contact between parent and child establishes bonds and is associated
with immediate stress reduction [187, 38], enhanced object exploration [193], and long-
term effects on behaviour [9, 150, 24]. Early vocabulary items may consist of words
often linked with caregiver touches [173]. The avoidance of interpersonal touch can be a
predictor of autism spectrum disorder in older children [12, 131]. Social touch also has
many effects in adulthood. Crusco and Wetzel [30] show that a slight touch increased
tips in restaurants, i.e. touch causes a more friendly behaviour towards the touch-giver,
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1.2 Summary of Content

also known as the Midas touch. Later studies find similar effects, e.g. that exposure to
social touch increases a bus driver’s willingness to transport customers without having
enough money for the ticket [51]. In virtual reality, agents with touch are perceived as
more human-like [70].

Despite the great relevance of self- and human-human contact to learn about human
behavior and conditions, most research on this topic is constrained by small group sizes
because contact usually requires manual annotation as only a few rudimentary detec-
tion and reconstruction methods exist. This prevents understanding the importance and
functionality of touch on human behavior at scale. The field of computer vision could
advance the understanding of human social interactions by providing methods for 3D
mesh reconstruction with accurate self- and mutual contact from images and video.

Unfortunately, self- and human-human contact has rarely been studied. One reason
is that contact is rare in most human scan and motion capture (MoCap) datasets, be-
cause contact naturally leads to occlusion, which hampers data capturing. In body scan
datasets, most poses avoid self-contact and in MoCap systems usually only a single per-
son is captured. The implications for our field are evident: recent 3D motion generation
methods can perfectly synthesize a single static person [58, 235, 60, 238] or human mo-
tion [57, 210, 237, 61, 135, 73], but can not generate two people shaking hands. Another
problem is that most methods for estimating 3D pose and shape predominantly rely on
2D joint locations for supervision. However, 2D joints are not sufficient to accurately
estimate the body surface, because one set of 2D joints can be explained by multiple
body shapes and also by multiple poses when no ground-truth camera information is
available. Priors, i.e. mathematical functions or models that incorporate prior knowl-
edge about human pose and shape, are usually learned from scan and MoCap datasets
that hardly contain contact poses. This leads to 3D mesh estimates that, when projected
onto the image, satisfy reprojection constraints and may perfectly overlay with the image
evidence. A rotation to the side, however, reveals that the estimated poses are not correct.

Being able to reconstruct and generate meshes with self- and mutual contact will fa-
cilitate the creation of avatars aligned with human behaviour, which will let them appear
more human-like, natural, and realistic.

1.2 Summary of Content
Self- and human-human contact plays an important role in our everyday lives, but exist-
ing art in 3D computer vision fails to accurately estimate meshes with contact. Our goal
is to develop methods to accurately predict human pose and shape from an RGB image
when poses involve self- and interpersonal contact. This is a challenging task, because
(1) existing datasets and labels, commonly used in human pose and shape estimation like
2D joint locations, are not sufficient to reason about contact, (2) annotating contact on
an image in 2D is difficult since contact happens on the 3D body surface, and (3) col-
lecting 3D data such as body scans or via MoCap of contact scenarios is expensive and
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Figure 1.1: Estimate of a state-of-the-art human mesh regressor [47]. The estimate pro-
jected onto the images perfectly overlays with 2D joint locations. A rotation to the side,
however, shows that the predicted pose is not correct.

time-consuming since this requires manual data cleaning. During motion capture, for ex-
ample, self-contact can obscure markers or cause them to detach from the motion capture
suit, which disrupts the automated data cleaning process. Addressing these challenges
necessitates the development of novel approaches for constructing datasets tailored for
the task of estimating poses with contact and, in addition, methodology that is robust to
occlusions and limited training data. Following previous work, our goal is to estimate
the parameters of a 3D human body model. In particular, we use the SMPL [123] and
SMPL-X [144] body models which we describe in Section 1.3 in detail. In a nutshell,
body models are functions, learned from e.g. body scans, that take human pose and shape
parameters as input and output a 3D mesh. Such models are frequently used to estimate
3D human meshes from images or video, usually achieved through either parameter re-
gression or optimization techniques. Despite the impressive achievements of previous
methods that address this task, these method can not accurately estimate 3D contact. A
more comprehensive introduction to mesh estimation approaches is given in Section 1.3.

On Self Contact and Human Pose. In Chapter 2, we study the problem of 3D hu-
man pose estimation for poses with self-contact. The first insight in this chapter is that
humans can easily detect and label self-contact in images, which provides information
beyond keypoints that can serve as additional supervision in regressor training and opti-
mization. To this extend, we introduce discrete self-contact (DSC) labels and demontrate
their use in an optimization routine when fitting 3D meshes to 2D joint locations. To col-
lect such labels, we divide the body into 24 regions and ask humans to annotate the
pairwise region-to-region contact given an RGB image. Previous art has demonstrated
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how 3D meshes can be fit to images by minimizing the error between 3D joints pro-
jected into the image and detected 2D joint locations [19]. Our method, SMPLify-DC,
is inspired by previous art, but additionally takes discrete contact labels into account
to encourages contact between regions annotated to touch. Discrete self-contact is a
valuable signal, but it lacks detail and is susceptible to depth ambiguity in single im-
ages. For example, imagine a photo of someone holding their hand close to their eyes.
Given a frontal photo of this pose, it can be difficult to tell whether the hand is actually
touching the eyes or not. Therefore, we introduce Mimic-The-Pose (MTP), a novel data
collection setup, reversing the usual annotation processes. Instead of asking humans to
annotate images, we start with a 3D mesh in a pose containing self-contact and then
gather photos matching the pose. Since self-contact poses are rare in 3D mesh datasets,
we first construct 3DCP, a novel dataset of body scans in poses with self-contact as well
as meshes in near-contact poses from a MoCap database [130] that we refine to remove
self-intersection and encourage contact. Then we present these meshes to trial partic-
ipants and ask them to mimic the pose. While the participant is pausing in this pose
somebody takes a picture. The presented pose and the pose of the person on the photo
are usually already very similar, but they do not match perfectly. To address this, we
refine the presented mesh with respect to detected keypoints via optimization. Our fit-
ting approach is inspired by previous work that estimates expressive 3D humans given a
single image, i.e. meshes with finger articulation and facial expression besides body pose
and shape [144]. However, our method considers the ground-truth height and weight of
the person on the photo, uses the presented pose and self-contact as guidance, and in-
corporates novel losses to encourage contact while resolving intersections. We call this
optimization SMPLify-XMC and the dataset of images in the wild and refined meshes
MTP. Finally, we use the DSC and MTP datasets to train TUCH, a 3D human pose and
shape regressor. TUCH has the same design as SPIN [101], where a regressor outputs
a pose and shape estimate, which is refined by optimization. The optimized meshes are
used as supervision for the regressor. We use MTP data as if it was ground-truth and
DSC during optimization via SMPLify-DC. The results show, that using self-contact in
regressor training improves 3D pose estimation not only for poses with self-contact, but
also for poses without self-contact.

Generative Proxemics: A Prior for 3D Social Interaction from Images. In Chap-
ter 3, we exploit the observations from the first chapter to improve 3D mesh estimation
of multiple people in close interaction. Existing regressors like BEV [190] can predict
the rough pose and spacial positioning of multiple people from images, but fail to capture
the subtle detail of human-human contact. To address this problem, we use an existing
dataset of Flickr images with discrete human-human contact annotations [41] and design
an optimization routine similar to SMPLify-DC but for two people. Our routine refines
an initial regressor estimate with respect to detected keypoints, takes discrete human-
human contact labels into account, and resolves intersections between people. We use
these fits and motion capture data to train BUDDI, a generative model that learns the
joint distribution of humans in close interaction. BUDDI is a diffusion model [185, 68]
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that takes SMPL-X parameters of two people disturbed with noise as input to transformer
network. The networks task is to “denoise”, i.e. remove the noise, from the noisy input
parameters. At test time, we can start from random noise to sample novel pairs of people
in close proximity from BUDDI. The majority of generative methods for 3D humans
operate on 3D joint locations of a single person, i.e. these methods do not model the
human body surface, and are therefore not sufficient for generating two meshes with
interpersonal contact. Our approach, in contrast, acts on SMPL-X pose and shape pa-
rameters which enables us to sample meshes of two people. We further demonstrate how
the knowledge of human proxemics, incorporated in our model, can be used to guide an
optimization routine. Previous work introduces an approach that uses 2D text-to-image
diffusion models during text-to-3D synthesis [153]. We draw inspiration from this work
and demonstrate how diffusion models can be used as prior during optimization for multi-
person pose estimation. We find that BUDDI knows enough about how people interact
to forgo ground-truth discrete human-human contact labels at test time. This is the first
demonstration of human mesh optimization for two humans in close proxemity that does
not rely on ground-truth labels.

Accurate 3D Body Shape Regression using Metric and Semantic Attributes.
While discrete self- and human-human contact labels and pose mimicking are useful
to advance 3D human pose estimation, they are not sufficient, because human pose with
contact can only be estimated accurately in 3D if we also know a person’s body shape.
This task is challenging due to the lack of ground-truth training data of images in the
wild with paired ground-truth 3D data and because 2D keypoints can not explain the full
variety of human shape. Imagine a person gaining weight; their body shape changes,
while the skeleton remains the same. Yet, most optimization methods and regressors for
human pose and shape estimation focus on body pose and supervise shape only through
keypoints and simple body shape priors. For methods that do estimate body shape, the
most commonly used signal to estimate body shape is therefore a person’s silhouette
which can easily be detected in images using standard computer vision methods. With-
out ground-truth camera information, however, the estimated shape is only correct up
to a scaling factor and usually a person’s true silhouette is covered by clothing. If key-
points and silhouettes are not sufficient, what information can humans provide to label
body shape? Previous work has observed that humans have many words to describe body
shape, e.g. “tall” or “pear-shaped”, and shown that the relation between SMPL shape pa-
rameters and rating vectors indicating how much each word applies to a 3D body shape
can be modeled via linear regression [188]. In Chapter 4, we demonstrate that linguistic
body shape attributes can be used as supervision signal in end-to-end learning. To do this,
we first collect images with a few body measurements from fashion model agency web-
sites. Then we ask workers on Amazon Mechanical Turk to rate how much a word applies
to (i) images of the fashion models and (ii) rendered images of CAESAR [162] bodies.
We use (ii) to map SMPL-X parameters and body shape attribute ratings (S2A) and em-
ploy this mapping in regressor training using the model images and labels from (i). Our
regressor, SHAPY, predicts SMPL-X pose and shape parameters from a single image,
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obtain predicted attribute ratings from shape parameters via S2A, and use the distance
between the predicted and ground-truth attribute rating vector to supervise body shape.
We are the first to demonstrate the use of linguistic body shape attributes in network
training to supervise body shape.

In summary, this thesis address the problem of reconstructing humans in contact poses
in several ways. TUCH investigates 3D human pose estimation for poses involving self-
contact, BUDDI studies contact between people in close interaction, and SHAPY ad-
dresses the problem of human shape estimation. We introduce multiple novel datasets
for this task and present regressors, optimization methods and a generative model tai-
lored to each specific problem. Taken together, this line of research may enable more
realistic reconstruction of pose, shape and, contact of multiple people from images, and
open up new research directions.

1.3 Background

1.3.1 Human Body Models
A human body model in the context of computer graphics is a digital representation of
the human body. The first attempts of creating human body models reach back into
the 1970s. These models take bone length and joint angles as input and output a stick
figure [212]. Stick figures are extreme simplifications of the body and lack necessary
detail hampering the perception of 3D pose and body shape. Surface figures surround
the skeleton of a stick figure with planar or curved patches, where removed hidden lines
improve pose perception [40]. Volume-based models define a body surface, i.e. “skin”
surrounding the skeleton by decomposing the body into volumes, i.e. cylinders [154],
ellipsoids [63, 64], or spheres [7]. Badler and Smohar [8] and Magnenat-Thalmann and
Thalmann [129] provide a more comprehensive description of these early versions of
human body models. Such models are still not very realistic since they do not model local
soft-tissue deformation, i.e. the pose-dependent compression of soft tissue e.g. in the
knee pit. In 1988, Komatsu [103] defines a human skin model where the skin deformation
is driven by an underlying skeleton. Around the same time, Magnenat-Thalmann et al.
[128] model local joint-dependent deformations of hands. Such models can generate
more realistic human bodies, but they can not portray the complexity of real human
anatomy.

Instead of manually defining local soft-tissue deformation, more recent art proposes
to learn how the human body deforms with pose from real-world data. To do this,
SCAPE [5] represents the human skin through triangles which they fit via least-squares
to body scans. Applications of SCAPE are shape completion by fitting the model to
noisy body scans to obtain 3D mesh and 3D animation of a moving person by fitting
the model to motion capture markers. SCAPE produces realistic shape and pose defor-
mations learned form data, but it is time-consuming since every pose and shape change
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requires solving a least-squares problem. Another limitation of SCAPE is its absence of
an underlying skeleton, which is a framework typically employed by animators during
the animation process. A recent body model that addresses this problem is SMPL [123].
SMPL is a vertex-based model with an artist-designed topology of triangular faces. In
contrast to SCAPE, SMPL has an underlying 3D joint structure that emulates the human
skeleton. The linear blend skinning is learned from large real datasets of human pose and
shape, i.e. 3D body scans of people in different poses and CAESAR [162] with different
body shapes. We introduce SMPL and its expressive version, SMPL-X [144], in detail
in Section 1.3.1.

Since 2015, the research on human bodies in computer vision has rapidly developed.
In 2017, Romero and Tzionas et al. published MANO, a hand model, and SMPL+H,
which extends SMPL with regard to finger articulation [165]. Also in 2017, Li and
Bolkart et al. introduced FLAME [114], a model of facial shape and expression. This
is followed by Hesse et al.’s SMIL [65] in 2018, a body model for children in SMPL
topology. The latest human body models, SMPL-X [144], GHUM [220], SUPR [141],
and STAR [140], incorporate finger articulation and facial expression besides body pose
and shape.

Body models are used for many tasks beyond the classical applications in graphics and
animation, e.g. to predict a person’s pose [87, 189, 190, 102, 18, 39, 115, 85, 201, 198]
shape [174, 176] from an image or from video [96, 225], to generate human body motion
[149, 196, 191, 241], to learn priors for human pose and motion [199, 161], to learn about
contact between human and the world [58, 147, 117, 180], to virtually dress people [126,
28], to reason about camera parameters [99, 225, 228], for action recognition [157, 47]
and tracking [158, 159], for reconstructing sign language [104, 44], or to investigate bias
between language and body shape [14, 156].

Within this thesis, we employ the SMPL body model [123] and its more expressive
variant, SMPL-X [144], to estimate a person’s pose and shape from an images. The sub-
sequent sections of this chapter introduce these two body models and introduce three fun-
damental publications to the task of human pose and shape estimation, i.e. SMPLify-X
[144] and SPIN [101] with HMR [87].

SMPL

In 2015, Loper et al. [124] presented SMPL, a statistical model of the human body
learned from data. SMPL is a differentiable function

M(✓,�;F) : R|✓|⇥|�| ! R3N

that maps body pose ✓ and body shape � via learned parameters F to a 3D mesh M. The
mesh topology is artist-defined and consists of N = 6,890 vertices V , connected through
triangular faces F , and K = 23 joints connected through a skeletal rig. We can modify
the pose of a 3D human mesh by manipulating q and body shape by manipulating b .
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A pose q is defined by 3⇥K + 3 = 72 parameters, i.e. 3 rotation angles per joint plus
three parameters for rotating the entire body, the global body orientation. The authors
use principal component analysis (PCA) to model body shape variations in humans and
therefore each scalar in b affects one PCA component. The first component captures for
example the variations in body height, the second component in weight etc.

The learnable parameters

F = {TR,S ,P,W ,J }

are determined during SMPL training by minimizing the vertex reconstruction error of
the training data, i.e. the Euclidean distance between scan points and the mesh surface.

To place vertices through F, SMPL uses linear blend skinning (LBS), a method known
from animation in which the surface of a mesh is attached to an underlying skeletal
structure. During the skinning process, pose- and shape-dependent blend shapes, i.e. an
offset per vertex due to body pose and identity, are additively combined with the template
mesh. The pose blend shapes P , the blend weights W , and J , a matrix that transforms
the rest vertices (template mesh with shape blend shapes applied) into rest joints, are
learned from a dataset of scans of people in different poses. The rest pose template mesh
TR and shape blend shapes S are learned 3D scans of people with diverse body shape.

The SMPL function is

M(✓,�;F) =
K

Â
k=1

wkG0
k(✓,J)(TR +DS +DP).

DS = BS(�;S ) and DP = BP(✓;P) denote the shape and pose dependent ver-
tex displacements, respectively, obtained from the blend shape functions BS and BP.
wk 2 RN a vector defining how much each vertex is effected by the rotation of part k,
J =J (TR+DS) denotes the 3D joints in rest pose, and G0

k(✓,J) a function returning the
world transformation of joint k after removing transformation due to the rest pose.

The disentanglement of pose and shape-dependent deformation in SMPL is a useful
property for the task of human shape estimation; a problem this thesis addresses in Chap-
ter 4. To label and evaluate body shape, we use the rest pose template mesh with only
shape blend shapes applied, i.e. TS = TR +DS. The authors train a male, female and
gender-neutral version of SMPL on corresponding splits of the training data, with the
neutral model being trained on data of male and female subjects.

SMPL-X

SMPL knows about the effects of major body joints, but misses expressiveness since
finger articulation or facial expressions are not modeled. To address this, Pavlakos and
Choutas et al. [144] introduce SMPL-X, a body model that extends SMPL with fully
articulated finger and an expressive face. The hand pose and facial expression are added
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by leveraging blendshapes from existing hand and body models, i.e. MANO [165] and
FLAME [114], respectively. In particular, SMPL-X maps pose, ✓ 2 R55⇥3, shape, � 2
RB(B  300), and expression,  2 R10, parameters to a 3D mesh:

M(✓,�, ;F) : R|✓|⇥|�|⇥| | ! R3N .

The mesh topology consists of N = 10,475 vertices, V , connected through triangular
faces, F . The SMPL-X template mesh TR combines artist designed templates of SMPL
for the main body and hands and FLAME for the head. The SMPL-X skeleton consists
of 55 joints: i.e. 1 joint for body global orientation, 21 for the main body, 3 for yaw and
left/right eye, and 15 for each hand. The full SMPL-X function is describes as:

M(✓,�;F) =
K

Â
k=1

wkG0
k(✓,J)(TR +DS +DP +DE).

All terms correspond to those from SMPL except the blend shapes for facial expres-
sion, DE = BE( ;E ) = Â|y|

n=1 ynE with E being the FLAME blend shapes. To model
finger articulation, SMPL-X uses a lower dimensional PCA space of MANO instead of
the full 30 finger joint. As for SMPL, the authors train a male, female and gender-neutral
version of SMPL-X.

1.3.2 Human Pose and Shape Estimation
A common approach to estimate a person’s body pose and shape in 3D from images is to
either optimize [144] over or regress [87, 97] the parameters of a human body model like
SMPL. During optimization, the primary objective is to reduce the Euclidean distance
between the estimated 3D joints projected onto the image and the ground-truth 2D joints,
while pose and shape priors prevent unrealistic estimates. Networks are usually trained
on images taken in the wild where 2D joints also serve as supervision signal for pose
as well as on datasets of images with paired 3D ground-truth, e.g. from motion capture.
In the following paragraphs, we will introduce SMPLify-X [144], an optimization-based
approach for fitting SMPL-X to image keypoints, and SPIN [101], a network trained
end-to-end for predicting 3D meshes from single images.

SMPLify-X

SMPLify-X [144] is an optimization routine to automatically estimate 3D pose and shape
of a person from a single image by fitting SMPL-X meshes to detected 2D joint locations.

To do this, SMPL-X pose q , shape b , and expression e parameters are optimized un-
der the objective to minimize the error between detected 2D joints, J2D, and estimated
projected 3D body model joints Ĵ3D. This error is also called “re-projection error/loss”
or “2D keypoint error/loss”. To compute this error, we first obtain the 3D body model
joints, Ĵ3D, from the current pose q̂ , shape b̂ , and expression ê estimates via SMPL-X.

10



1.3 Background

Next, a camera model, P, is employed to depict how objects in the 3D world are trans-
formed into their corresponding 2D representations as they appear on the camera’s sensor
or image plane. This camera model encompasses various parameters, K, i.e. the camera’s
intrinsic (focal length and optical center) and extrinsic (position/translation and orienta-
tion/rotation in the 3D world) properties. The joint error is computed via

LJ = Â
joint i

giwir(PKĴ3D
i � J2D

i )

with r being a robust differentiable Geman-McClure penalty function, wi the confi-
dence of the estimate of joint i provided by the detection algorithm, and gi a per-joint
weight. Additional terms in the optimization objective prevent unrealistic mesh esti-
mates, e.g. extrem bending of knees and elbows and unnatural body shapes or facial
expressions. Such terms are called “priors”. SMPLify-X uses multiple priors:

• La =Âi exp(qi), where i sums over SMPL pose parameters corresponding to elbow
and knee prevents extrem bending of these joints.

• Lmh , Lq f , Lb , Le are squared L2 priors for hand and face pose, body shape and
facial expression. For example, for the shape parameter b , the squared L2 prior is
defined as Lb = ||b ||2.

• Lqb is a body pose prior applied to the latent vectors of VPoser, a variational au-
toencoder.

To further prevent self-interpenetration, SMPLify-X uses a collision term, LT , that
pulls vertices that are inside the 3D mesh to the surface. First, a list, T , of colliding
triangles, (ta, tb), is detected, and a local conic 3D distance field, Y, computed, defined
by the triangles in T and their normals na, nb. For two colliding triangles, ta and tb, the
vertices of ta intrude tb’s distance field Ytb and vice versa. The collision term is defined
as:

LT = Â
(ta,tb)2T

⇢
Â

va2ta
||�Ytb(va)na||2 + Â

vb2tb
||�Yta(vb)nb||2

�

Fitting a 3D mesh to keypoints is a challenging task, especially when no good initial
estimate, e.g. from a regressor, is available because of which the optimization routine
starts from “mean” or T-pose. Therefore, the authors use various tricks that help improve
the overall result. First, the SMPLify-X optimization runs in multiple stages to prevent
small body parts like fingers to dominate the optimization in the beginning. Second,
instead of directly optimizing 3D rotations, the authors train a variational autoencoder,
VPoser, that learns a 32-dimensional latent space of human poses. Instead of optimizing
axis angle representations of joint rotations, SMPLify-X optimizes qVAE, i.e. the body
pose represented as latent vector of VPoser.
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The final method optimizes over qVAE, b , and e by minimizing an objective function
with a loss weight l specific to each term:

LSMPLify-X =LJ +laLa +lmhLmh +lq f Lq f +

lb Lb +leLe +lqbLqb +lT LT

(1.1)

SPIN

An important early piece of research addressing the problem of human pose and shape
estimating in end-to-end learning is the work of Kolotouros and Pavlakos et al. [101].
Neural networks are usually trained for multiple days on large datasets to directly predict
body model parameters from an input image. The network architecture proposed in
SPIN consists of two key components: a neural network that directly predicts SMPL
pose and shape parameters from an input image and an optimization module, similar to
SMPLify-X, that refines the predicted parameters with respect to 2D joint locations. The
refined parameters serve as new training data for the regressor.

Regression module. The design of the SPIN regressor was first proposed by
Kanazawa et al. [87] in 2018. This regressor was part of the first end-to-end method
capable of estimating SMPL pose and shape from images, also known as “Human Mesh
Recovery” (HMR). It consists of a ResNet-50 and a 3D regression module. First, the
ResNet encodes an input image I into a latent vector f . Then latent is passed to a 3D re-
gression module that predicts SMPL parameters (pose and shape) and camera parameters
(rotation, translation, and scale). A key component of HMR is the iterative application
of the 3D regression module.

One forward pass of a new image through HMR yields:

HMR(I) = {qreg,breg,Kreg}.

In SPIN the authors suggest a small modification to HMR: instead of predicting joint
rotations in axis angle format, they use 6D rotation representations as they observe faster
convergence during training.

Optimization module. The optimization routine is a simplified version of
SMPLify-X. The optimization objective to be minimized is:

LSPIN-Optimization = LJ +lq Lq +laLa +lb Lb , where

LJ is the re-projection error between the ground-truth and predicted joints, Lq a mixture
of Gaussians pose prior trained with meshes fit to MoCap data, La a prior preventing
extreme joint bending of knees and elbow joints, Lb a quadratic L2 shape prior. The
optimization routine is initialized from the regressor’s prediction. Since this estimate is
usually already close to the ideal pose, a few optimization iterations are usually enough
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to converge to a good fit. From the optimization routine we obtain:

OPTI(q ,b ,K) = {qopt,bopt,Kopt}.

SPIN. We now describe how the regression and optimization are combined in SPIN
training. First, an image is forwarded through the regression module providing the
regressed body model and camera parameters {qreg,breg,Kreg}. A common approach
would be to apply human pose and shape losses right. In SPIN, however, the parameters
are first passed to the optimization module which creates a refinement:

OPTI(HMR(I)) = {qopt,bopt,Kopt}.

These new refined parameters serve as training data for the regressor. Note that the
refined parameters need to be detached from the gradient. Then the regressed pose and
shape can be supervised with the refined pose and shape as follows:

LSPIN-Regressor = ||qreg �qopt||22 + ||breg �bopt||22 + ||Jreg � Jopt||22.

SPIN is trained four in-the-wild datasets of images with 2D keypoint annotations, i.e.
LSP [79], LSP-extended [81], MPII [4], and MS COCO [120]. Additionally, they use
images from datasets captured in the lab with ground truth 3D joint annotations, i.e.
Human3.6M and MPI- INF-3DHP.
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Figure 2.1: The first column shows images containing self-contact. In blue (left), results
of our new network, compared to SPIN [101] in violet (right). When rendered from the
camera view, the estimated pose may look fine (column two vs. four). However, when
rotated, it is clear that training TUCH with self-contact information improves 3D pose
estimation (column three vs. five).

In this chapter, we will investigate the problem of estimating human pose from images
when a pose involves self-contact. A major challenge in order to solve this problem is the
lack of suitable training data of images and self-contact labels and methods to process
such information. To address this, we will introduce three new datasets and show how to
use them in regressor training.

2.1 Introduction
Self-contact takes many forms. We touch our bodies both consciously and uncon-
sciously [106]. For the major limbs, contact can provide physical support, whereas we
touch our faces in ways that convey our emotional state. We perform self-grooming, we
have nervous gestures, and we communicate with each other through combined face and
hand motions (e.g. “shh”). We may wring our hands when worried, cross our arms when
defensive, or put our hands behind our head when confident. A Google search for “sit-
ting person” or “thinking pose” for example, will return images, the majority of which,
contain self-contact.

Although self-contact is ubiquitous in human behavior, it is rarely explicitly studied in
computer vision. For our purposes, self-contact comprises “self touch” (where the hands
touch the body) and contact between other body parts (e.g. crossed legs). We ignore body
parts that are frequently in contact (e.g. at the crotch or armpits) and focus on contact that
is communicative or functional. Our goal is to estimate 3D human pose and shape (HPS)
accurately for any pose. When self-contact is present, the estimated pose should reflect
the true 3D contact.
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Unfortunately, existing methods that compute 3D bodies from images perform poorly
on images with self-contact; see Fig. 2.1. Body parts that should be touching gener-
ally are not. Recovering human meshes from images typically involves either learning
a regressor from pixels to 3D pose and shape [87, 101], or fitting a 3D model to image
features using an optimization method [19, 144, 215, 216]. The learning approaches rely
on labeled training data. Unfortunately, current 2D datasets typically contain labeled
keypoints or segmentation masks but do not provide any information about 3D contact.
Similarly, existing 3D datasets typically avoid capturing scenarios with self-contact be-
cause it complicates mesh processing. What is missing is a dataset with in-the-wild
images and reliable data about 3D self-contact.

To address this limitation, we introduce three new datasets that focus on self-contact at
different levels of detail. Additionally, we introduce two new optimization-based meth-
ods that fit 3D bodies to images with contact information. We leverage these to estimate
pseudo ground-truth 3D poses with self-contact. To make reasoning about contact be-
tween body parts, the hands, and the face possible, we represent pose and shape with
the SMPL-X [144] body model, which realistically captures the body surface details, in-
cluding the hands and face. Our new datasets then let us train neural networks to regress
3D HPS from images of people with self-contact more accurately than state-of-the-art
methods.

To begin, we first construct a 3D Contact Pose (3DCP) dataset of 3D meshes where
body parts are in contact. We do so using two methods. First, we use high-quality 3D
scans of subjects performing self-contact poses. We extend previous mesh registration
methods to cope with self-contact and register the SMPL-X mesh to the scans. To gain
more variety of poses, we search the AMASS dataset [130] for poses with self-contact or
“near” self-contact. We then optimize these poses to bring nearby parts into full contact
while resolving interpenetration. This provides a dataset of valid, realistic, self-contact
poses in SMPL-X format.

Second, we use these poses to collect a novel dataset of images with near ground-truth
3D pose. To do so, we show rendered 3DCP meshes to workers on Amazon Mechanical
Turk (AMT). Their task is to Mimic The Pose (MTP) as accurately as possible, including
the contacts, and submit a photograph. We then use the “true” pose as a strong prior and
optimize the pose in the image by extending SMPLify-X [144] to enforce contact. A
key observation is that, if we know about self-contact (even approximately), this greatly
reduces pose ambiguity by removing degrees of freedom. Thus, knowing contact makes
the estimation of 3D human pose from 2D images more accurate. The resulting method,
SMPLify-XMC (for SMPLify-X with Mimicked Contact), produces high-quality 3D ref-
erence poses and body shapes in correspondence with the images.

Third, to gain even more image variety, we take images from three public datasets
[80, 82, 122] and have them labeled with discrete body-part contacts. This results in the
Discrete Self-Contact (DSC) dataset. To enable this, we define a partitioning of the body
into regions that can be in contact. Given labeled discrete contacts, we extend SMPLify
to optimize body shape using image features and the discrete contact labels. We call this
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method SMPLify-DC, for SMPLify with Discrete Self-Contact.
Given the MTP and DSC datasets, we finetune a recent HPS regression network, SPIN

[101]. When we have 3D reference poses, i.e. for MTP images, we use these as though
they were ground truth and do not optimize them in SPIN. When discrete contact anno-
tations are available, i.e. for DSC images, we use SMPLify-DC to optimize the fit in the
SPIN training loop. Fine-tuning SPIN on MTP and DSC significantly improves accuracy
of the regressed poses when there is contact (evaluated on 3DPW [207]). Surprisingly,
the results on non-self-contact poses also improve, suggesting that (1) gathering accu-
rate 3D poses for in-the-wild images is beneficial, and (2) that self-contact can provide
valuable constraints that simplify pose estimation.

We call our regression method TUCH (Towards Understanding Contact in Humans).
Figure 2.1 illustrates the effect of exploiting self-contact in 3D HPS estimation. By
training with self-contact, TUCH significantly improves the physical plausibility.

In summary, the key contributions in Chapter 2 are:

(1) We introduce TUCH, the first HPS regressor for self-contact poses, trained
end-to-end.

(2) We create a novel dataset of 3D human meshes with realistic contact (3DCP).

(3) We define a “Mimic The Pose” MTP task and a new optimization method to
create a novel dataset of in-the-wild images with accurate 3D reference data.

(4) We create a large dataset of images with reference poses that use discrete con-
tact labels.

(5) We show in experiments that taking self-contact information into account im-
proves pose estimation in two ways (data and losses), and in turn achieves state-
of-the-art results on 3D pose estimation benchmarks.

(6) The data and code are available for research purposes at https://tuch.
is.tue.mpg.de.

2.2 Related Work
3D pose estimation with contact. Despite rapid progress in 3D human pose estima-
tion [86, 87, 101, 134, 144, 171, 215], and despite the role that self-contact plays in our
daily lives, only a handful of previous works discuss self-contact. Information about
contact can benefit 3D HPS estimation in many ways, usually by providing additional
physical constraints to prevent undesirable solutions such as interpenetration between
limbs.

Body contact. Lee and Chen [110] approximate the human body as a set of line
segments and avoid collisions between the limbs and torso. Similar ideas are adopted
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in [15, 45] where line segments are replaced with cylinders. Yin et al. [226] build a pose
prior to penalize deep interpenetration detected by the Open Dynamics Engine [184].
While efficient, these stickman-like representations are far from realistic. Using a full
3D body mesh representation, Pavlakos et al. [144] take advantage of physical limits and
resolve interpenetration of body parts by adding an interpenetration loss. When estimat-
ing multiple people from an image, Zanfir et al. [232] use a volume occupancy exclusion
loss to prevent penetration. Still, other work has exploited textual and ordinal descrip-
tions of body pose [145, 151]. This includes constraints like “Right hand above the hips”.
These methods, however, do not consider self-contact.

Most similar to our is the work of Fieraru et al. [41], which utilizes discrete contact
annotations between people. They introduce contact signatures between people based
on coarse body parts. This is similar to how we collect the DSC dataset. Contem-
poraneous with our work, Fieraru et al. [42] extend this to self-contact with a 2-stage
approach. They train a network to predict “self-contact signatures”, which are used
for optimization-based 3D pose estimation. In contrast, TUCH is trained end-to-end
to regress body pose with contact information. Recently, Shimada et al. [181] collect
hand-face motion and interaction dataset with involves self-contact and a reconstruction
method.

World contact. Multiple methods use the 3D scene to help estimate the human pose.
Physical constraints can come from the ground plane [208, 232], an object [59, 91,
95, 192, 191, 26, 16, 217, 218], or contextual scene information [54, 223, 200, 72].
Li et al. [116] use a DNN to detect 2D contact points between objects and selected body
joints. Narasimhaswamy et al. [137] categorize hand contacts into self, person-person,
and object contacts and aim to detect them from in-the-wild images. Their dataset does
not provide reference 3D poses or shape. Only recently, after our work on self-contact,
Shimada et al. address the problem of 3D face and hand reconstruction for poses with
self-contact [181] and Zin et al. contact between two persons [227].

All the above works make a similar observation: human pose estimation is not a stand-
alone task; considering additional physical contact constraints improves the results. We
go beyond prior work by addressing self-contact and showing how training with self-
contact data improves pose estimation overall.

3D body datasets. While there are many datasets of 3D human scans, most of these
have people standing in an “A” or “T” pose to explicitly minimize self-contact [163].
Even when the body is scanned in varied poses, these poses are designed to avoid self-
contact [5, 21, 22, 152]. For example, the FAUST dataset has a few examples of self-
contact and the authors identify these as the major cause of error for scan processing
methods [20]. Recently, the AMASS [130] dataset unifies 15 different optical marker-
based motion capture (MoCap) datasets within a common 3D body parameterization,
offering around 170k meshes with SMPL-H [165] topology. Since MoCap markers are
sparse and often do not cover the hands, such datasets typically do not explicitly capture
self-contact. As illustrated in Table 2.1, none of these datasets explicitly addresses self-
contact.
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Name Meshes Meshes with self-contact
3DCP Scan (ours) 190 188
3D BodyTex [2] 400 3
SCAPE [5] 70 0
Hasler et al. [56] 520 0
FAUST [20] 100/ 400 20/ 140

Table 2.1: Existing 3D human mesh datasets with the number of poses and the number of
contact poses identified by visual inspection. 3DCP Scan is the scan subset of 3DCP (see
Section 2.4). FAUST (train/test) includes scans with self-contact, i.e. 20 in the training
and 140 in the test set. However, in FAUST the variety is low as each subject is scanned
in the same 10/20 poses, whereas in 3DCP Scan each subject does different poses.

Pose mimicking. Our Mimic-The-Pose dataset uses the idea that people can replicate
a pose that they are shown. Several previous works have explored this idea in differ-
ent contexts. Taylor et al. [194] crowd-source images of people in the same pose by
imitation. While they do not know the true 3D pose, they are able to train a network
to match images of people in similar poses. Marinoiu et al. [132] motion capture sub-
jects reenacting a 3D pose from a 2D image. They found that subjects replicated 3D
poses with a mean joint error of around 100mm. This is on par with existing 3D pose
regression methods, pointing to people’s ability to approximately recreate viewed poses.
Fieraru et al. [42] ask subjects to reproduce contact from an image in a lab setting. They
manually annotate the contact, whereas our MTP task is done in people’s homes and
SMPLify-XMC is used to automatically optimize the pose and contact.

2.3 Self-Contact

An intuitive definition of contact between two meshes, e.g. a human and an object, is
based on intersecting triangles. Self-contact, however, must be formulated to exclude
common, but not functional, triangle intersections, e.g. at the crotch or armpits. We can
describe self-contact at different levels of granularity: The simplest level is a binary self-
contact class label, encoding whether a person is touching themselves or not. A more
informative description of self-contact can be provided in 3D by indicating which body
parts or regions of the body are touching. We call these labels discrete self-contact. To
consider even more detail, we use Euclidean and geodesic distances on the mesh surface
to specify vertex-based self-contact. Intuitively, vertices are in self-contact if they are
close in Euclidean distance (near zero) but distant in geodesic distance, i.e. far away on
the body surface.
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Figure 2.2: To compute self-contact maps, we group vertices into distinct regions, shown
here with different colors. This is useful for searching our scan datasets for poses with
specific types of contact.

2.3.1 Discrete Self-Contact

To cluster self-contact into distinct types, we define self-contact maps S
D 2 {0,1}R⇥R;

see [42] for a similar definition. To this end, we first segment the faces and vertices of a
mesh into R distinct, non-overlapping regions and indicate if two regions are in contact
or not via a binary label, i.e.

S
D

i j =

⇢
1, if ri is in contact with r j
0, otherwise. (2.1)

We use fine maps to cluster self-contact meshes from AMASS (see Fig. 2.2) and rough
maps (see Fig. 2.10) for human annotation.

2.3.2 Vertex-based Self-Contact

To get a more fine-grained definition of self-contact, we use Euclidean and geodesic
distances between vertices.

Definition 2.3.1. Given a mesh M with vertices V , we define two vertices v, u 2 V
to be in self-contact, if (i) kv�uk < teucl, and (ii) geo(v,u) > tgeo, where teucl and tgeo
are predefined thresholds and geo(v,u) denotes the geodesic distance between v and u.
We use shape-independent geodesic distances precomputed on the neutral, mean-shaped
SMPL and SMPL-X models.
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Following this definition, we denote the set of vertex pairs in self-contact as V 0
C :=

{(v,u)|v,u 2V and v,u satisfy Definition 2.3.1}. We further define VC as a set of unique
vertices in contact. We can obtain VC from V 0

C via an operator U (·) such that U (V 0
C) =

VC = {v1,v2, . . . ,vn}, where for all v 2VC exists a vertex u 2VC such that (v,u) 2V 0
C. We

also define an operator fg(·) that takes vertex v as input and returns the Euclidean distance
to the nearest vertex u that is far enough in the geodesic sense. Formally, fg(v) :=
minu2VG(v) kv�uk, where VG(v) := {u|geo(v,u) > tgeo}. M is a self-contact mesh when
|VC|> 0.

2.3.3 Mesh Surface Points

To detect self-contact, we need to be able to quickly compute the distance between two
points on the body surface. Vertex-to-vertex distance is a poor approximation of this
due to the varying density of vertices across the body. Consequently, we introduce HD
SMPL-X and HD SMPL to efficiently approximate surface-to-surface distance. For this,
we uniformly, and densely, sample mesh surface points P 2 RNP⇥3 with NP = 20,000
on the body. A sparse linear regressor P 2 RNP⇥NV regresses P from the mesh ver-
tices V , P = PV . The geodesic distance between two mesh surface points x,y 2 P is
approximated via geoHD(x,y;V ) = geo(argminv2V kv� xk ,argminu2V ku� yk).

In practice, we use mesh surface points only when contact is present by following a
three-step procedure as illustrated in Fig. 2.3. First, we use Definition 2.3.1 to detect ver-
tices in contact, VC. Then we select all points in P lying on faces that contain vertices in
VC, denoted as PC. Last, for x 2 PC we find the closest mesh surface point miny2PC kx� yk
such that geoHD(x,y)> tgeo. With HD(X) : X ⇢V ! PC ⇢ P we denote the function that
maps from a set of mesh vertices to a set of mesh surface points. As the number of points,
P, increases, the point-to-point distance approximates the surface-to-surface distance.

2.4 Self-Contact Datasets

Our goal is to create datasets of in-the-wild images paired with 3D human meshes as
pseudo-ground truth. Unlike traditional pipelines that collect images first and then an-
notate them with pose and shape parameters [83, 207], we take the opposite approach.
We first curate meshes with self-contact and then pair them with images through a novel
pose mimicking and fitting procedure. We use SMPL-X to create the 3DCP and MTP
dataset to better fit contacts between hands and bodies. However, to fine-tune SPIN
[101], we convert MTP data to SMPL topology, and use SMPLify-DC when optimizing
with discrete contact.
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Figure 2.3: Visualization of the function HD(X), that maps from mesh vertices to mesh
surface points. The first image shows a SMPL-X mesh with vertices in contact high-
lighted. Second, in yellow, all faces containing a vertex in contact are selected. In the
third image, all points lying on a face containing a vertex in contact are selected from
P, denoted as PC. P is a fixed set of mesh surface points that are regressed from mesh
vertices. Note that in the first and second image, the finger vertices are denser than the
arm and chest vertices, in contrast to the more uniform density in the third and fourth
image.

2.4.1 3D Contact Pose (3DCP) Meshes
We create 3D human meshes with self-contact in two ways: with 3D scans and with
motion capture data.

3DCP Scan

We scan 6 subjects (3 males, 3 females) in self-contact poses. Raw scans have varying
topology. To bring a corpus of scans to a common topology is the process of “registra-
tion”. We register the SMPL-X mesh topology to the raw scans. These registrations are
obtained using Co-Registration [67], which iteratively deforms the SMPL-X template
mesh M with vertices V to minimize the point-to-plane distance between the scan points
S 2 RNS⇥3, where NS is the number of scan points. However, registering poses with
self-contact is challenging. When body parts are in close proximity, the standard process
can result in interpenetration. To address this, we add a self-contact-preserving energy
term to the objective function. If two vertices v and u are in contact according to Defi-
nition 2.3.1, we minimize the point-to-plane distance between triangles including v and
the triangular planes including u. This term ensures that body parts that are in contact
remain in contact.

Most traditional registration methods ignore interpenetration and self-contact. Reg-
istering our self-contact scans without modeling self-contact would result in self-
penetration, particularly where the extremities contact the body. We address this by
modifying the registrations objective function to encourage self-contact without penetra-
tion.

Specifically, the fitting objective includes a data term ES evaluating the goodness of fit
of the vertices v on the template V to n randomly sampled points, x on the surface of the
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Figure 2.4: A representative sample from the registrations. A total of 3 male and 3 female
subjects were scanned in a diversity of poses that involve self-contact. The 3D scans are
registered to a common mesh topology by fitting the SMPL-X template mesh to them
using a self-contact preserving energy term that penalizes body part interpenetration.

scan S
ES(S;V ) =

1
n

Z

x2S
r (kx� vk) (2.2)

where r is the Geman-McClure robust penalty function.

Additionally, we introduce a self-contact preserving energy term EC to the objective
function. The term EC helps to minimize and preserve the point-to-plane distance be-
tween body parts that are in contact. EC considers the set of contacting vertex pairs MC
defined by Definition 3.1 in the main corpus of this thesis. For each tuple (vi,v j) in MC,
we minimize the point-to-plane distance between triangles including vi and the triangular
planes including v j. The contact energy term ensures that body parts that are in contact
remain in contact.

The objective function is minimized in two steps: first a model fitting step, where it
is minimized with respect to the SMPL-X model pose parameters q 2 R55⇥3 and body
shape parameters b 2R25. Following model fitting, a model-free optimization step min-
imizes point-to-plane distance between the model vertices v and the scan. A sample of
the registrations is shown in Figure 2.4.
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Figure 2.5: Self-contact optimization. Column 1 and 2: a pose selected from AMASS
with near self-contact (between the fingertips and the foot) and interpenetration (thumb
and foot). Column 3 and 4: after self-contact optimization, all fingers are in contact with
the foot and interpenetration is reduced.

Figure 2.6: Mimic-The-Pose (MTP) dataset. MTP is built via: (1) collecting many 3D
meshes that exhibit self-contact. In grey, new 3D scans in self-contact poses, in brown
self-contact poses optimized from AMASS mocap data. (2) collecting images in the
wild, by asking workers on AMT to mimic poses and contacts. (3) the presented meshes
are refined via SMPLify-XMC to match the image features.

3DCP Mocap

While mocap datasets are usually not explicitly designed to capture self-contact, it does
occur during motion capture. We therefore search the AMASS dataset for poses that
satisfy our self-contact definition. We find that some of the selected meshes from
AMASS contain small amounts of self-penetration or near contact. Thus, we perform
self-contact optimization to fix this while encouraging contact, as shown in Fig. 2.5; see
Appendix A.1.1 for details.

2.4.2 Mimic-The-Pose (MTP) Data
Data Collection via AMT

To collect in-the-wild images with near ground-truth 3D human meshes, we propose
a novel two-step process (see Fig. 2.6). First, using meshes from 3DCP as examples,
workers on AMT are asked to mimic the pose as accurately as possible while someone
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Figure 2.7: Presentation format and examples of mimicked poses from the MTP data set.
On the left side, the presented pose with contact highlighted in blue. Humans mimicking
the poses on the right.

takes their photo showing the full body (the mimicked pose). Mimicking poses may be
challenging for people when only a single image of the pose is presented [132]. Thus, we
render each 3DCP mesh from three different views with the contact regions highlighted
(the presented pose). We allot 3 hours time for ten poses. Participants also provide their
height and weight. All participants gave informed consent for the capture and the use of
their imagery. Figure 2.7 shows an example of the rendered 3DCP meshes with images
of people mimicking the pose. Please see Appendix A.1.2 for details.

SMPLify-XMC

The second step applies a novel optimization method to estimate the pose in the image,
given a strong prior from the presented pose. The presented pose ✓̃, shape �̃, and gender
is not mimicked perfectly. To obtain pseudo-ground truth pose and shape, we adapt
SMPLify-X [144], a multi-stage optimization method, that fits SMPL-X pose ✓, shape
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2.4 Self-Contact Datasets

�, and expression  to image features starting from the mean pose and shape. We make
use of the presented mesh in three ways: first, its used to initialize the optimization and
solve for global orientation and camera parameters; second, the presented pose serves as
a pose prior; and third its contact is used to keep relevant body parts close to each other.
We refer to this new optimization method as SMPLify-XMC.

In the first stage, we optimize body shape � and camera P (focal length, rotation and
translation), and body global orientation �, using the ground-truth height in meters, H,
and weight in kg, W . The objective function of the first stage is given as

LSMPLify-XMC = lJLJ +l�L�+lMLM.

LM = e100|Ĥ�H|+e|Ŵ�W | is the measurements loss, where Ĥ and Ŵ are height and weight
of current estimate of mesh M. We compute height and weight from mesh in a zero pose
(T-pose). For height, we compute the distance between the top of the head and the
mean point between left and right heel. For weight, we compute the mesh volume and
multiply it by 985 kg/m3, which approximates human body density. L� is a loss on
the body global orientation and LJ denotes the joint re-projection error as specified in
SMPLify-X [144].

In the second and third stage, we fix the body global orientation and jointly optimize
q (body and hand pose), b , and P to minimize

LSMPLify-XMC = lJLJ +lmhLmh +lq̃ Lq̃ +lMLM +lC̃LC̃ +lSLS. (2.3)

We use the standard SMPLify-X priors for the left and right hand Lmh , where h 2 {l,r}.
While the pose prior in SMPLify-X penalizes deviation from the mean pose, here, Lq̃ =
||q̃ � q̃est||2 is an L2-Loss that penalizes deviation from the presented pose. The term LC̃
acts on ṼC, the vertices in self-contact on the presented mesh. To ensure the desired self-
contact, one could seek to minimize the distances between vertices in contact, e.g. ||v�
u|| for (v,u)2 Ṽ 0

C. However, with this approach, we observe slight mesh distortions, when
presented and mimicked contact are different. Instead, we use a term that encourages
every vertex in contact in the presented pose, i.e. vertices in ṼC, to be close to a vertex in
the current estimate. This loss can formally be described as

LC̃ =
1

|ṼC| Â
v2ṼC

tanh( fg(v)). (2.4)

The third stage actives a new loss, LS, for fine-grained self-contact optimization, which
resolves interpenetration while encouraging contact:

LS = lCLC +lPLP +lALA.

Vertices in contact are pulled together via a contact term LC, vertices inside the mesh are
pushed to the surface via a pushing term LP, and LA aligns the surface normals of two
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Chapter 2 On Self Contact and Human Pose

Figure 2.8: Functions to regulate the self-contact pushing and pulling term in
SMPLify-XMC. f1 is used in LC with d1 = d2 = 0.005 an f2 is used in LP with d3 = 1.0
and d4 = 0.04. The parameters ensure that inside vertices are pushed out quickly, while
vertices in contact are pulled together as long as they are close enough.

vertices in contact.
To compute these terms, we must first find which vertices are inside, VI ⇢V , or in con-

tact, VC ⇢V . VC is computed following Definition 2.3.1 with tgeo = 30cm and teucl = 2cm.
The set of inside vertices VI is detected by generalized winding numbers [76]. SMPL-X
is not a closed mesh and thus complicating the test for penetration. Consequently, we
close it by adding a vertex at the back of the mouth. In addition, neighboring parts of
SMPL and SMPL-X often intersect, e.g. torso and upper arms. We identify such com-
mon self-intersections and filter them out from VI (see Appendix A.1.2 for details). To
capture fine-grained contact, we map the union of inside and contact vertices onto the
HD SMPL-X surface, i.e. S = HD(VI [VC), which is further segmented into an inside
SI and outside SO subsets by testing for intersections. The self-contact objectives are
defined as

LC = Â
x2SO

d1 tanh(
fg(x)
d2

)2,

LP = Â
x2SI

d3 tanh(
fg(x)
d4

)2,

LA = Â
(x,y)2PC

1+ hN(x),N(y)i.

fg denotes the function that finds the closest point y 2 PC for x, where PC is the subset of
vertices in contact in P. N denotes the normal of x. We use d1 = d2 = 0.005, d3 = 1.0,
and d4 = 0.04. Fig. 2.9 shows examples of our pseudo ground-truth meshes. In Fig. 2.8
we visualize the pushing and pulling terms used in the SMPLify-XMC objective. We use
6 PCA components for the hand pose space [165] and initialize the fitting with a mean
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2.4 Self-Contact Datasets

Figure 2.9: MTP results. Meshes presented to AMT workers (blue) and the images they
submitted with OpenPose keypoints overlaid. In grey, the pseudo ground-truth meshes
computed by SMPLify-XMC.

hand pose. In contrast to SMPLify-X we do not ignore hip joints and double the joint
weights for knees and elbows. Before optimization, we resize images and keypoints to
a maximum height or width of 500 pixel. Similar to SMPLify-X we use the PyTorch
implementation of fast L-BFGS with strong Wolf line search as the optimizer [121]. We
do not use the VPoser pose prior for SMPLify-XMC because we have a strong prior from
the presented pose.

2.4.3 Discrete Self-Contact (DSC) Data
Images in the wild collected for human pose estimation normally come with 2D keypoint
annotations, body segmentation, and/or bounding boxes. Such annotations lack 3D infor-
mation. Discrete self-contact annotation, however, provides useful 3D information about
pose. We use R = 24 regions and label their pairwise contact for three publicly available
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Figure 2.10: DSC dataset. Image with discrete contact annotation on the left. On the
right: DSC signature with R = 24 regions.

datasets, namely Leeds Sports Pose (LSP), Leeds Sports Pose Extended (LSPet), and
DeepFashion (DF). An example annotation is visualized in Fig. 2.10. Of course, such
labels are noisy because it can be difficult to accurately determine contact from an image.
See Appendix A.1.3 for details.

2.4.4 Summary of the Collected Data
Our 3DCP human mesh dataset consists of 190 meshes containing self-contact from 6
subjects, 159 SMPL-X bodies fit to commercial scans from AGORA [143], and 1304
self-contact optimized meshes from mocap data. From these 1653 poses, we collect
3731 mimicked pose images from 148 unique subjects (52 female; 96 male) for MTP
and fit pseudo ground-truth SMPL-X parameters. MTP is diverse in body shapes and
ethnicities. Our DSC dataset provides annotations for 30K images.

2.5 TUCH
Finally, we train a regression network that has the same design as SPIN [101]. At each
training iteration, the current regressor estimates the pose, shape, and camera parameters
of the SMPL model for an input image. Using ground-truth 2D keypoints, an optimizer
refines the estimated pose and shape, which are used, in turn, to supervise the regressor.
We follow this regression-optimization scheme for DSC data, where we have no 3D
ground truth. To this end, we adapt the in-the-loop SMPLify routine to account for
discrete self-contact labels, which we term SMPLify-DC. For MTP images, we use the
pseudo ground truth from SMPLify-XMC as direct supervision with no optimization
involved. We explain the losses of each routine below.

Regressor. Similar to SPIN, the regressor of TUCH predicts pose, shape, and camera,
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2.5 TUCH

Figure 2.11: Initial wrong contact (left) from the regressor is fixed by SMPLify-DC after
5 (middle) and 10 (right) iterations.

with the loss function:

LTUCH = lJLJ +lq Lq +lb Lb +lCLC +lPLP. (2.5)

LJ denotes the joint re-projection loss. LP and LC are self-contact loss terms used in LS
in SMPLify-XMC, where LP penalizes mesh intersections and LC encourages contact.
Further, Lq and Lb are L2-Losses that penalize deviation from the pseudo ground-truth
pose and shape.

Optimizer. We develop SMPLify-DC to fit pose ✓opt , shape bopt , and camera Popt to
DSC data, taking ground-truth keypoints and contact as constraints. Typically, in human
mesh optimization methods the camera is fit first, then the model parameters follow.
However, we find that this can distort body shape when encouraging contact. Therefore,
we optimize shape and camera translation first, using the same camera fitting loss as in
[101]. After that, body pose and global orientation are optimized under the objective

LSMPLify-DC = lJLJ +lq Lq +lCLC +lPLP +lS DLS D . (2.6)

The discrete contact loss, LS D , penalizes the minimum distance between regions in con-
tact. Formally, given a contact signature S

D where S
D

i j = S
D
ji = 1 if two regions ri and

r j are annotated to be in contact, we define

LS D =
R

Â
i=1

R

Â
j=i+1

S
D

i j min
v2ri,u2r j

||v�u||2.

Given the optimized pose ✓opt , shape �opt , and camera Popt , we compute the re-
projection error and the minimum distance between the regions in contact. When the
re-projection error improves, and more regions with contact annotations are closer than
before, we keep the optimized pose as the current best fit. When no ground truth is
available, the current best fits are used to train the regressor.

We make three observations: (1) The optimizer is often able to fix incorrect poses
estimated by the regressor because it considers the ground-truth keypoints and contact
(see Fig. 2.11). (2) Discrete contact labels bring overall improvement by helping resolve
depth ambiguity (see Fig. 2.12). (3) Each batch consists of 50% DSC and 50% MTP data.
The direct supervision of MTP data improves the regressor, which benefits SMPLify-DC
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Figure 2.12: Impact of discrete self-contact labels in human pose estimation. Body parts
labeled in contact are shown in the same color. First row shows an initial SPIN estimate,
second row the SMPLify fit, third row the SMPLify-DC fit after 20 iterations.

by providing better initial estimates.
Implementation details. We initialize our regression network with SPIN weights

[101]. For SMPLify-DC, we run 10 iterations per stage and do not use the HD operator
to speed up the optimization process. For the 2D re-projection loss, we use ground-truth
keypoints when available and, for MTP and Deep Fashion images, OpenPose detections
weighted by confidence. From DSC data we only use images where the full body is
visible and ignore annotated region pairs that are connected in the DSC segmentation
(see Appendix A.2).

2.6 Evaluation
We evaluate TUCH on the following three datasets: 3DPW [207], MPI-INF-
3DHP [133], and 3DCP Scan. This last dataset consists of RGB images taken during
the 3DCP Scan scanning process. While TUCH has never seen these images or subjects,
the contact poses were mimicked in creation of MTP, which is used in training.

We use standard evaluation metrics for 3D pose, namely Mean Per-Joint Position Error
(MPJPE) and the Procrustes-aligned version (PA-MPJPE), and Mean Vertex-to-Vertex
Error (MV2VE) for shape and contact. Tables 2.2 and 2.3 summarize the results of
TUCH on 3DPW and 3DCP Scan. Interestingly, TUCH is more accurate than SPIN on
3DPW. See Fig. 2.14 and Fig. 2.15 for qualitative results of our model.

We further evaluate our results with respect to contact. To this end, we divide the
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MPJPE PA-MPJPE
3DPW MI 3DPW MI

SPIN [101] 96.9 105.2 59.2 67.5
EFT [83] - - 54.2 68.0
TUCH 84.9 101.2 55.5 68.6

Table 2.2: Evaluation on 3DPW and MPI-INF-3DHP (MI). Bold numbers indicate the
best result; units are mm. We report the EFT result denoted in their publication when
3DPW was not part of the training data. Please note that SPIN is trained on MI, but we
do not include MI in the fine-tuning set. MI contains mostly indoor lab sequences (100%
train, 75% test), while DSC and MTP contain only in-the-wild images. This domain gap
likely explains the decreased performance in PA-MPJPE.

MPJPE PA-MPJPE MV2VE
SPIN [101] 79.7 50.6 95.7
EFT [83] 71.4 48.3 83.9
TUCH 69.5 42.5 81.5

Table 2.3: Evaluation on 3DCP Scan. Numbers are in mm. Note that in contrast to
TUCH, this version of SPIN did not see poses in the MTP dataset during training. Please
see Table 2.5 and the corresponding text for an ablation study.

3DPW test set into subsets, namely for tgeo = 50cm: self-contact (teucl < 1cm), no self-
contact (teucl > 5cm), and unclear (1cm < teucl < 5cm). For 3DPW we obtain 8752
self-contact, 16752 no self-contact, and 9491 unclear poses. Table 2.4 shows a clear im-
provement on poses with contact and unclear poses compared to a smaller improvement
on poses without contact.

To further understand the improvement of TUCH over SPIN, we break down the im-
proved MPJPE in 3DPW self-contact into the pairwise body-part contact labels defined
in the DSC dataset. Specifically, for each contact pair, we search all poses in 3DPW
self-contact that have this particular self-contact. We find a clear improvement for a
large number of contacts between two body parts, frequently between arms and torso, or

MPJPE PA-MPJPE
contact no contact unclear total contact no contact unclear total

SPIN 100.2 95.5 96.7 96.9 59.1 61.7 55.7 59.2
TUCH 85.1 86.6 81.9 84.9 54.1 58.6 51.2 55.5

Table 2.4: Evaluation of TUCH for contact classes in 3DPW. Numbers are in mm. See
text.
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Figure 2.13: Average MPJPE difference (SPIN - TUCH), evaluated on the self-contact
subset of 3DPW. The axes show labels for the DSC regions. Green indicates that TUCH
has a lower error than SPIN on average across all poses with the corresponding regions
in contact. The circle size represents the number of images per region. Regions with
small circle sizes are less common.

e.g. left hand and right elbow, which is common in arms-crossed poses (see Fig. 2.13).

TUCH incorporates self-contact in various ways: annotations of training data, in-the-
loop fitting, and in the regression loss. We evaluate the impact of each in Table 2.5.
S+ is SPIN but it sees MTP+DSC images in fine-tuning and runs standard in-the-loop
SMPLify with no contact information. S++ is S+ but uses pseudo ground truth computed
with SMPLify-XMC on MTP images; thus self-contact is used to generate the data but
nowhere else. S+ vs. SPIN suggests that, while poses in 3DCP Scan appear in MTP, just
seeing similar poses for training and testing does not yield improvement. S+ vs. TUCH
is a fair comparison as both see the same images during training. The improved results
of TUCH confirm the benefit of using self-contact.
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Figure 2.14: Qualitative results on the self-contact subset of 3DPW. We find all images
with an improvement on MPJPE and PA-MPJPE � 10 mm. From this subset, we select
interesting poses. Left column, RGB image for reference. In blue, TUCH result and in
violet, the SPIN result.
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Figure 2.15: Qualitative results on the self-contact subset of 3DPW. We find all images
where SPIN is better than TUCH by at least 10 mm for MPJPE and PA-MPJPE. From
this subset, we select interesting poses. Left column, RGB image for reference. In blue,
TUCH result and in violet, the SPIN result.
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SPIN S+ S++ TUCH
3DPW 96.9/ 59.2 96.1/ 61.4 85.0/ 56.3 84.9/ 55.5
3DCP Scan 82.2/ 52.1 86.9/ 52.3 74.8/ 45.7 75.2/ 45.4
MI 105.2/ 67.5 105.8/ 69.4 103.1/ 69.0 101.2/ 68.6

Table 2.5: MPJPE/PA-MPJPE (mm) to examine the impact of data and algorithm on
3DPW, 3DCP Scan, and MPI-INF-3DHP (MI).

2.7 Conclusion
In this chapter, we address the problem of HPS estimation when self-contact is present.
Self-contact is a natural, common occurrence in everyday life, but state of the art meth-
ods fail to estimate it. One reason for this is that no datasets pairing images in the
wild and 3D reference poses exist. To address this problem we introduce a new way of
collecting data: we ask humans to mimic presented 3D poses. Then we use our new
SMPLify-XMC method to fit pseudo ground-truth 3D meshes to the mimicked images,
using the presented pose and self-contact to constrain the optimization. We use the new
MTP data along with discrete self-contact annotations to train TUCH; the first end-to-
end HPS regressor that also handles poses with self-contact. TUCH uses MTP data as
if it was ground truth, while the discrete, DSC, data is exploited during SPIN training
via SMPLify-DC. Overall, incorporating contact improves accuracy on standard bench-
marks like 3DPW, remarkably, not only for poses with self-contact, but also for poses
without self-contact.
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Figure 3.1: Generative Proxemics. We propose a diffusion model that learns a 3D
generative model of two people in close social interaction. We show how the model can
be used to generated samples or as a social prior in the downstream task of reconstructing
two people in close proximity from images without any user annotation at test time.
Shown here are input test images (left) and our predicted 3D bodies (right).

The previous chapter introduced the problem of human pose estimation for poses with
self-contact. We introduced novel datasets and losses to solve this task. In particu-
lar, we introduced the concept of discrete self-contact annotations and an optimization
method for fitting SMPL bodies to images by taking 2D keypoints and discrete self-
contact labels into account. In this chapter, we will introduce discrete human-human
contact annotations and use them during optimization in a similar fashion like discrete
self-contact labels. We use the optimization method for two people in contact to create
pseudo-ground truth fits of SMPL-X bodies to Flickr images and use this data to train a
generative model that learns the joint distribution of people in close proximity. We also
show how the learned model can be used as prior during optimization to estimate the
pose and contact of pairs of people in an image.

3.1 Introduction
Humans are social creatures, and physical interaction plays a crucial role in our daily
lives. From a simple handshake to a warm hug, physical touch and other non-verbal
communication such as eye contact and body language convey a range of emotions and
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meanings, shaping our social relationships. However, capturing and modeling the com-
plexity of physical social interaction in three dimensions is a challenging task. It requires
a deep understanding of the intricate interplay between body poses, shape, and proxim-
ity. These interactions are hard to model by hand and best learned from data. While 3D
data of such social interaction is difficult to obtain at scale, images of people in social
interaction are abundant.

In this chapter, we present the first approach that learns a generative model for 3D
social proxemics, i.e. the study of interpersonal space in social interactions, from image
collections. While diffusion models are widely used for image generation and 3D human
motion modeling, here we use them to model the distribution over the 3D body pose and
shape parameters of two people interacting. In order to train such a model, we first
reconstruct people in close social interaction from images using available ground-truth
contact maps [41] via an optimization-based approach. The recovered 3D bodies are
used as training data to train our diffusion model. The resulting model is able to generate
the realistic 3D social interaction of people depicted in photographs, such as people
standing close together, playing sports, hugging, and more, as illustrated in Figure 3.1.
Such models can be particularly useful for applications such as augmented reality, 3D
content creation, and other scenarios where populating 3D scenes with realistic synthetic
people is important.

We further demonstrate the effectiveness of the learned prior by applying it to the
downstream task of reconstructing 3D social interactions from a single image. Unlike
previous methods that rely on ground truth contact maps, our data-driven prior frees us
from the need for explicit 3D training data, making it applicable to real-world scenarios.
Our approach is able to obtain plausible and realistic interactions that capture subtle
nuances from images, resulting in a significant improvement over the state-of-the-art
human pose and shape estimation methods.

Specifically, we propose BUDDI: BUDdies DIffusion Model, a data-driven prior for
3D social proxemics. Unlike prior work on using diffusion to model human motion using
3D joint locations [196], BUDDI is trained to directly operate on the SMPL-X param-
eters, which represent body shape, pose, global orientation, and translation, through a
transformer backbone. After training, BUDDI is able to generate unconditional samples
of plausible bodies in social interaction from pure noise. We evaluate the unconditional
generation through various qualitative experiments and user studies. The model can also
be conditioned on the output of a human pose and shape regressor. In this conditional
case, the model takes the noisy output and generates similar poses but with realistic social
interaction.

We also introduce a novel optimization-based approach, which uses BUDDI as a data-
driven prior while optimizing the 3D poses and shapes of two people in contact from
images. We first take the output of BEV [190], a state-of-the-art model that regresses
the 3D bodies of multiple people. We then optimize the BEV results to match image
evidence with guidance from the diffusion model using a loss inspired by the SDS loss
in the diffusion literature [153].
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We validate our reconstruction of mesh and contact distance on FlickrCI3D Signa-
tures [41] and show the value of training our generative model from 3D bodies recovered
from images. While there has been recent work on generating people in synthetic envi-
ronments with plausible human-to-object [217] or hand-to-object [213] interactions, our
approach is the first that can generate two people with plausible social interaction. This
opens a new avenue of research on digital human synthesis. Our data, code, and model
are available for research.

3.2 Related Work
Generating 3D humans. There has been a lot of work on the subject of generating 3D
humans, in many different contexts. Several methods automatically populate static 3D
scenes with 3D humans [60, 236, 234]. More recent methods generate both body and
hand poses to interact with 3D objects [191, 213, 195]. Other work generates human
motions conditioned on different inputs such as audio [113, 202] or text [148, 149, 196].
Concurrent work proposes text-to-3D diffusion-based approaches to generate motion of
two interacting humans [118, 179]. Both methods not predict the full body surface since
the method focuses on synthesizing motion by generating either 3D joint locations or
SMPL pose parameters, but not SMPL shape.

To model 3D human proxemics probabilistically, we employ diffusion models, which
achieve impressive performance on image generation tasks [36, 68, 164, 168]. They
have recently been adopted in 3D human motion generation scenarios: MDM [196]
generates plausible motions conditioned on text input. PhysDiff [229] incorporates
physical constraints in the diffusion process to generate physically plausible motions.
EDGE [202] uses a transformer-based diffusion model for dance generation. Related
work [25, 31, 125] has investigated different modalities for the conditioning, e.g., audio,
text, action classes. EgoEgo [111] generates plausible full-body motions conditioned on
the head motion. SceneDiffuser [73] focuses on the scene-conditioned setting. We also
rely on techniques from the diffusion literature, but consider the unique setting where
two people are in close interaction.

Multi-person 3D human mesh estimation. An extensive line of work focuses on
reconstructing the 3D human pose and shape of a single person from images using opti-
mization [19, 50, 107, 144, 161, 199, 220] or regression approaches [6, 52, 84, 87, 101,
136, 139, 222, 231, 233]. Capitalizing on these techniques, recent approaches focus ex-
plicitly on reconstructing multiple people jointly from a single image. Zanfir et al. [232]
propose an optimization solution, while Jiang et al. [78] and Sun et al. [189] rely on deep
networks to regress the pose and shape for all people in the image. BEV [190] extends
ROMP [189] to reason about the depth of people in a virtual birds-eye-view while tak-
ing age/height into account. We use BEV [190] as an initialization for our optimization
method, but we demonstrate how we can meaningfully capture the close human-human
interactions with the learned 3D social proxemics prior.
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The above methods do not address contact between people. To do so, Fieraru et al. [41]
introduce the first datasets with ground-truth labels for the body regions in contact
between humans. Labels are collected using MoCap (CHI3D) or human annotators
(FlickrCI3D Signatures). They propose an optimization approach that uses the ground-
truth contact map to reconstruct people in close proximity. They also propose a 2D model
that predicts the contact map from images. More recently, REMIPS [43] is a transformer-
based method that regresses the 3D pose of multiple people. REMIPS is trained using
the above datasets while taking into account contact and interpenetration. In this work,
we take a very different approach by learning and exploiting a 3D generative proxemic
prior. We use the ground-truth contact maps to generate pseudo-ground truth 3D human
fits from which we learn the diffusion model; once this is learned, we show that it can
be used as a prior to recover plausible bodies in close proximity from images without
explicit knowledge of contact maps.

Data-driven priors in optimization. Optimization-based methods for 3D human
pose and shape estimation, like SMPLify [19], are versatile and allow different data-
driven prior terms to be incorporated in the objective function. Different methods have
been used to learn pose priors includding GMMs [19], VAEs [144], neural distance fields
[199], and normalizing flows [230]. ProHMR [102] learns a pose prior conditioned on
image pixels. HuMoR [161] incorporates a data-driven motion prior in the iterative op-
timization. POSA [60] learns a prior for human-scene interaction from PROX data [59]
and uses it in their optimization. In contrast to these methods, we use a diffusion model
to capture the joint distribution over SMPL-X parameters for two people interacting. To
our knowledge, this problem has not previously been studied.

3.3 Human-Human Contact
Contact between two humans and their corresponding meshes Ma/Mb, can be annotated
at different levels of granularity, similar to our considerations for self-contact; see Sec-
tion 2.3. The simplest level is a binary class label, encoding whether two humans are
touching or not touching; with an optional third class, “uncertain”. A more informa-
tive source of contact annotations can be provided directly in 3D. To this extent, Fier-
aru et al. [41] introduce the concept of discrete contact labels for interacting people.

3.3.1 Discrete Human-Human Contact

To annotate images with a 3D discrete human-human contact label, Fieraru et al. [41]
divide the body into R = 75 regions and annotate the pairwise contact between both
people. We refer to these human-human contact labels as the ground-truth “3D contact
map”. Each region, r, roughly covers a similar surface of the body and is associated with
SMPL-X faces Fr and, consequently, vertices Vr.
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Specifically, in accordance with the definition of discrete self-contact in Chapter 2,
discrete 3D human-human contact between Ma and Mb is also represented as a binary
contact map C

D 2 {0,1}R⇥R, where:

C
D
i j =

⇢
1, if ri of Ma is in contact with r j of Mb

0, otherwise. (3.1)

3.4 Method
First, we describe the optimization process that uses the ground-truth discrete human-
human contact maps from the FlickrCI3D Signatures dataset [41]. The output from this
process is used as training data to train the diffusion model that learns the 3D proxemics
prior between two people. Lastly, we describe how such a prior can be used during op-
timization for reconstructing two people in close proximity from images without relying
on ground-truth contact maps.

For all of the following, we use the SMPL-X [144] body model to represent the human
bodies. For the purposes of this chapter, we use the first 10 shape components and keep
the facial expression and finger pose fixed. Note that, although we use SMPL-X, we
do not optimize hand pose due to the lack of robust hand keypoint detectors for people
in interaction. Following [190], we interpolate between the shape space of SMPL-X
and SMIL [65] to support producing meshes for infants and children. In practice, we
concatenate the interpolation parameter and � such that � 2R11. The generated meshes
are placed in world coordinates by translating them by � 2 R3 and rotating the body
global orientation by � 2 R3. Since our goal is to estimate two people a/b, we denote
each person’s parameters as �a, ✓a, �a, �a and �b, ✓b, �b, �b. For simplicity, we refer
to both people when no index is specified and not stated differently, e.g., � refers to �a

and �b.

3.4.1 Reconstructing Bodies with Contact Maps
Optimization-based methods for fitting 3D meshes to RGB images usually rely on sparse
signals, like 2D keypoints (ground-truth or detected), and priors for human pose and
shape [19, 144, 232]. Only a few methods explicitly use self- [136] or human-human [41]
contact in their optimization.

Our optimization method takes as input discrete human-human contact annotations,
and, for each person, detected 2D keypoints [23, 221], and initial estimates for pose,
✓̃, orientation, �̃, shape, �̃, and translation, �̃, which are provided from the output of
BEV [190]. This is similar to SMPLify-DC in Chapter 2, where we use the regressor
output to initialize the optimization. Note that the initial estimates from BEV are in
the SMPL format, while our optimization uses SMPL-X. Fitting SMPL-X to SMPL
meshes is possible, but slow. Instead, we directly solve for body shape using least-
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squares and, knowing that the initial poses are only slightly different, we input the SMPL
pose parameters to SMPL-X; see Appendix B.1.1 for more details.

Given these inputs, we take a two-stage approach: In the first stage, we optimize pose,
✓, shape, �, and translation, �, encouraging contact between discretely annotated body
regions, while allowing the bodies to intersect. In the second stage, we activate a new
loss term to resolve human-human intersection. The output of the first stage is usually
close to the final pose with only slight intersections, because of which we optimize only
pose and translation and fix the body shape in stage two. The objective function is:

Lfitting =lJLJ +lq̄ Lq̄ +lq Lq +l�L�+lC DLC D +lPLP, (3.2)

where LJ denotes the 2D re-projection error, Lq̄ a prior on the initial pose, Lq a German
McClure pose prior [19], and L� an L2-prior that penalizes deviation from the SMPL-X
mean shape. The discrete human-human contact loss, LC D , minimizes the distance be-
tween regions with annotated discrete human-human contact via:

LC D = Â
i, j

C
D
i j min

v2ri,u2r j
kv�uk2. (3.3)

LP denotes an interpenetration loss, active in the second stage only, that pushes inside
vertices to the surface. We use winding numbers to find intersecting vertices between
Ma and Mb and vice versa. This operation is usually slow and memory intensive, which
is why we use low-resolution meshes of SMPL-X with only 1K vertices. With V a

I we
denote vertices of Ma intersecting the low-resolution mesh of Mb; V b

I follows the same
notation. The intersection loss term is defined as:

LP = Â
v2V a

I

min
u2V b

kv�uk2 + Â
v2V b

I

min
u2V a

kv�uk2 . (3.4)

We find functional weights, l , for each term in the objective function. Note that, in
contrast to the definitions in Chapter 2, we do not use mesh surface points to decrease
the runtime duration when testing for intersections for multiple people. The result of this
fitting approach are illustrated in Figure 3.2, along with the BEV initialization. We use
this optimization routine to reconstruct 13K pairs of people in the FlickrCI3D dataset
[41]. Since these bodies are obtained with ground-truth contact maps, we refer to them
as pseudo-ground truth. During training of the diffusion model (see Section 3.4.2), we
use the pseudo-ground truth fits as if they were ground-truth.

3.4.2 Diffusion Model for 3D Proxemics
Next we describe how to train a generative model given the pseudo-ground truth 3D body
parameters of two people in close social interaction. For the purposes of this section, let
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Input Image BEV Pseudo Ground Truth
Source View Left View Back View Top View Source View Left View Back View Top View

Figure 3.2: Pseudo-ground truth data. For each example we show a) the input image,
b) the BEV [190] estimates used to initialize our approach (visualized in source and
novel views) and c) the output of our optimization process that reconstructs two people
in close proximity using ground-truth contact maps (again visualized in source and novel
views). We use this 3D pseudo-ground truth as training data for training our diffusion
model, BUDDI.

Xa = [�a,✓a,�a,�a] and Xb = [�b,✓b,�b,�b] be the concatenation of the body param-
eters corresponding to person a/b in a world coordinate frame. Then, our task is to learn
the unconditional joint distribution of two people in close social interaction:

P(Xa,Xb). (3.5)

This is a complex distribution to model, with 176 parameters (3 orientation, 24 * 3 pose,
10 shape, and 3 translation for each person) affecting the subtle contact relationship
present in a realistic interaction. For this task, we use a denoising diffusion model [68], a
recent generative model that has shown remarkable capability in modeling the complex
joint distribution of image pixels. Note that in this work we do not rely on any textual or
image conditioning.

Background. Diffusion models are latent variable generative models that learn to
transform random noise into the desired data distribution pdata. This is done through
a forward Markov process q(xt+1|xt), which gradually adds noise to samples x0 from the
data distribution over T steps, and a reverse process q(xt�1|xt), which gradually brings
noisy samples back into the data distribution.

The forward process transitions are Gaussian, i.e. in each step t = 1, . . . ,T a small
amount of Gaussian noise is added to the data sample, such that

q(xt+1|xt) = N (xt+1;
q

1�s2
t xt ,s2

t I). (3.6)
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A convenient property of the forward diffusion process is that instead of adding noise
gradually, by T times applying q, we can use the closed form solution:

q(xt |x0) = N (
p

s̄ 0
t x0,(1� s̄ 0

t )I), with s̄ 0
t =

t

’
i=0

(1�st). (3.7)

To derive this distribution, let e0, . . . ,et�1 ⇠ N (0,I), then xt =
p

1�stxt�1 +
pstet�1.

With (1) defining s 0
t = 1�st , (2) recursively inserting xt�i, and (3) using the properties

when summing over Gaussians, we obtain

xt
use(1)
=

p
s 0

t xt�1 +
p

1�s 0
t et�1 (3.8)

use(2)
=

q
s 0

t s 0
t�1xt�2 +

q
s 0

t (1�s 0
t�1)et�2 +

p
1�s 0

t et�1 (3.9)

use(2)
= . . . (3.10)

use(3)
=

p
s̄ 0

t x0 +
p

1� s̄ 0
t e0 (3.11)

The variance s2
1 , . . . ,s2

T 2 (0,1) is defined through a variance schedule a priori, usually
small with respect to the data and increases with T. Consequently, for T ! •,

p
(1� s̄ 0

t )

will converge towards 1 because
p

s̄ 0
t x0 converges to 0. That means the sample x0 is

modified towards Gaussian noise of zero mean and unit variance.

If we knew the probability density function of the reverse transitions q(xt�1|xt) we
could draw new samples from pdata by gradually removing noise from a sample xt . How-
ever, estimating q(xt�1|xt) would require knowing the entire dataset which is usually not
available. With small enough s2

t , the reverse transitions are also Gaussians that can be
approximated via a learned model D:

q(xt�1|xt)⇡ N (xt�1; µD(xt , t),SD(xt , t)). (3.12)

We refer to the process of adding noise as diffusion and the process of removing the noise
via D as denoising.

In contrast to Ho et al. [68], our denoiser directly predicts a sample x̂0 = D(xt ; t)
instead of et . During training, the model is trained to minimize

Ex0⇠pdataEt⇠U {0,T},xt⇠q(·|x0)||D(xt ; t)�x0||. (3.13)

Eventually, the model learns to denoise random samples z ⇠ N (0,I) into samples from
the true data distribution via an iterative sampling process. Diffusion models can also be
trained to take conditioning, c, i.e. side information provided to the model during training
and at test time. In this case, D(xt ; t) becomes D(xt ; t,c).
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Figure 3.3: BUDDI: BUddies DIffusion model. We illustrate the architecture of
BUDDI, our diffusion model for modeling 3D social proxemics between two people
in close interaction. The diffusion process is applied directly on SMPL-X body parame-
ters. To condition BUDDI on estimated body model parameters, cH, we concatenate the
parameters along the token dimension.

Architecture. In our scenario, a data sample X = [Xa,Xb] corresponds to the concate-
nation of two bodies, i.e. [�a,✓a,�a,�a,�b,✓b,�b,�b]. A natural question is in what
domain do we diffuse and denoise these parameters? Prior work in modeling human mo-
tion used 3D joint locations or pose parameters only [196, 229]. However, since contact
requires joint reasoning about the pose as well as the shape of people, in this work we di-
rectly operate on the raw parameter space. We treat each type of parameter class (global
orientation, pose, shape, and translation per person) as a token input to a transformer
encoder.

Specifically, we first diffuse ground-truth x0 = [Xa,Xb], by uniformly sampling
a noise level t with noise et ⇠ N (0,I), to then obtain the noisy input signal
xt =

p
s 0

t x0 +
p

1�s 0
t et . To denoise xt , we pass it through our denoiser model D: first,

each body model parameter i2 {�,✓,�,�} of each person j 2 {a,b} is embedded via lin-
ear layers fi j to which we add learnable embeddings, wi and w j to encode body model pa-
rameters and human identity, respectively. More formally: g(xt ; i, j) = fi j(xi j

t )+wi+w j,
where g(xt ; i, j) 2 R152. Noise level t is also encoded and embedded via linear layers gt
such that gt(t) 2 R152. Then the eight model parameter embeddings and the noise level
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Figure 3.4: Samples from Generative Proxemics. All samples are unconditionally gen-
erated from pure noise using the trained diffusion model. We select a couple of represen-
tative examples and show two views per sample. Note that our model learns to generate
the distribution of people in close contact including embracing each other, shaking hands,
playing sports, sitting side by side, and taking photographs.

embedding are concatenated, resulting in latent vectors x0t 2 R9⇥152, which we pass to
the transformer encoder. Finally, we use linear layers hi j to un-embed the transformer
encoder output and obtain the estimated denoised parameters x̂0. Figure 3.3 illustrates
the denoiser model D along with the visualization of a diffused set of bodies. For the
task of reconstructing humans from images, we condition the denoising network D on
cH, the SMPL-X parameters of two humans predicted by a regressor. We provide more
information about the architecture of the conditional model in Appendix B.1.3

Note that our model directly predicts SMPL-X model parameters, which allows us to
employ standard human pose and shape regularization losses. The training objective is:

LD = Lq +Lb +L�+Lv2v, (3.14)

where Lq , Lb , L� denote squared L2-losses on body model parameters and Lv2v on model
vertices. We use 6D rotation representations [239] for global orientation and pose, and
model the relative translation between a and b by setting �a = 0. The trained diffusion
model can be used to generate unconditional samples as illustrated in Fig. 3.4.

3.4.3 Optimization with the Proxemics Prior
Given our diffusion generative model D, we now describe how to reconstruct two peo-
ple in close social interaction from an image, without relying on any ground-truth con-
tact labels. At test time, we propose to use the diffusion model as a prior in opti-
mization, congruent to score distillation sampling, proposed in recent works such as
DreamFusion [153] and Score Jacobian Chaining [209], which optimize a 3D scene rep-
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Figure 3.5: Optimization with Generative Proxemics. We illustrate the optimization
method with BUDDI as prior. Our optimization takes detected keypoints [221, 23] and
an initial regressor estimate [190] as input. Given the regressor estimate, we sample
from BUDDI to obtain x̃ which we use to initialize the optimization routine. In each
optimization iteration, we take a single diffuse-denoise step on the current estimate using
the learned denoiser model D. Our losses encourage the current estimate to be close to
the refined meshes (Ldiffusion) and to the initial estimate and detected keypoints (Lfitting).

resentation using a 2D generative model. Specifically, we use the same setup as de-
scribed in Section 3.4.1 but without the ground-truth contact labels, where we minimize
LOptimization w. BUDDI = Lfitting +Ldiffusion, with

Ldiffusion = ||D(xt ; t,cH)�x||, (3.15)

where xt =
p

s 0
t xno-grad+

p
1�s 0

t et denotes the diffused body model parameters of
the current estimate x. We follow previous work and detach the gradients of x before
sending them to the denoiser D, denoted as xno-grad. Ldiffusion performs a single diffuse-
denoise step on xno-grad to obtain the refined estimate x̂ = D(xt ; t,cH), and encourages
x to be close to x̂; we illustrate this process in Fig. 3.5 (optimization loop). Intuitively,
this loss uses the learned denoiser D to take a step from the current estimate towards the
true distribution of two people in close proximity.

We also use the current estimate x to calculate Lfitting as described in Section 3.4.1 with
lC D = 0. The terms in Lfitting ensure that the solution stays close to the image evidence,
while Ldiffusion is a data-driven prior, similar to those used for 3D pose in previous works
such as GMM [19] and V-Poser [144], but for 3D proxemics. In practice, we decode x
and x̂ into model parameters to gain control over their individual contribution, thus, we
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can rewrite: Ldiffusion =

l�̂||�̂��||+l✓̂||✓̂�✓||+l�̂||�̂��||+l�̂ ||�̂��||.

Note that we only use terms that incorporate parameters we optimize in both stages, i.e.
the shape and orientation loss weights are set to zero. Our final optimization routine
follows the setup proposed in Section 3.4.1, but does not depend on ground-truth contact
maps. We provide more details in Appendix B.1.3.

3.5 Experiments
Datasets. We use FlickrCI3D Signatures [41], a dataset of images showing interacting
humans collected from Flickr. This dataset contains various scenes of sports, families,
couples, etc. It has discrete 3D contact annotations between pairs of people. The dataset
contains 10,631/1,139 images for train/test. One image can have multiple people and
therefore multiple contact annotations. For evaluation on FlickrCI3D Signatures Test, we
use annotations for which matching BEV, 2D keypoints, and contact labels was possible;
i.e., a total 1427 contact pairs.

During training, we also use a small portion of MoCap data: CHI3D [41], which
contains 3/2 pairs of training/test subjects performing 127 sequences of two-person in-
teractions, where one frame in the sequence has contact annotated with a contact map.
We use sequences from 2 pairs of training subjects to train our diffusion model, which re-
sults in 247 mesh pairs for training and the third pair for evaluation. Hi4D [227] contains
sequences of 20 pairs of people interacting with each other. The interactions include ac-
tions like hugging, dancing, and fighting. We randomly split the data into 14/3/3 pairs for
train/val/test and use every fifth frame of the subsequence involving contact as labeled in
Hi4D, resulting in about 1K mesh pairs for training. The body representation format in
Hi4D is SMPL, which we transfer to SMPL-X using the SMPL-X code repository [144].
Please see the Appendix B for more details about the datasets. Note that while we use
SMPL-X model, BUDDI is not trained on hands because none of these datasets contain
hand poses.
Baselines. We compare our reconstruction method with BEV [190], which is also used
as an input to our conditional model. Since there is no other available work that reasons
about people in close social interaction, we experiment with simple but effective base-
lines. We train the transformer model of BUDDI to directly predict SMPL-X parameters
of people in contact from BEV input, essentially a deterministic, single-step ablation of
BUDDI. We also evaluate the direct conditional denoised output of BEV by BUDDI
without any optimization. As another baseline, we propose an optimization routine that
replaces Ldiffusion with a simple heuristic that takes the minimal distances between two
meshes predicted by BEV and minimizes their distance during optimization along with
the other energy terms. Finally, to compare the generation ability we train a VAE which
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we also use during the optimization routine in a similar manner to VPoser [144] but for
two people by optimizing the VAE latent space instead of SMPL-X parameters. We refer
to these models as Transformer, BUDDI (gen.), Contact Heuristic, and VAE, respec-
tively. All baselines are trained on the same datasets as BUDDI with the same sampling
strategies. Details about our baselines are provided in the Appendix B.3.1.

Metrics. We use standard evaluation metrics from the human pose and shape estimation
literature. Besides MPJPE and PA-MPJPE, we also report the joint PA-MPJPE of both
people together. In addition to per-person metrics, this captures the relative orientation
and translation of the two people. Previous approaches that predict contact maps evaluate
contact metrics based on IoU of the contact map. Please note that previous work [41]
only evaluates the contact maps and does not use the predicted contact map to optimize
for 3D humans. Since our method directly estimates 3D humans instead of contact maps,
we propose a new metric similar to PCK [224] from the 2D pose literature called PCC,
the percentage of correct contact points with respect to a radius r. Specifically, given
two meshes, Ma/Mb and a contact map C

D we compute the pairwise vertex-to-vertex
Euclidean distances deucl(C D) between annotated contact regions and consider the pair
to be correct when min(deucl(C D))< r.

Implementation Details. BUDDI is trained with meshes from FlickrCI3D Signatures
Fits, CHI3D, and Hi4D. We use 60% Flickr, 20% CHI3D, and 20% Hi4D data distribu-
tion per batch with batch size 512. The transformer backbone has six layers and eight
heads; we use 10% dropout and randomly shuffle the order of people during training.
To train BUDDI, we randomly sample noise levels t up to 1000 using a cosine noise
schedule [138]. We use the Adam optimizer [92] with learning rate 10�4. We train two
separate networks: an unconditional model for generation and the conditional version
for reconstruction. For the conditional model, we use all camera views of the MoCap
datasets, i.e. 4/8 cameras for CHI3D/Hi4D and set cH = /0 with a 20% chance. The
unconditional model is trained on 3D MoCap fits in the world coordinate system. To
sample new poses, we use DDIM sampling starting at noise levels t = 1000 in steps of
10.

During optimization, we experiment with different noise levels, between 10 and 100,
and find that t = 10 does not disturb the inputs too much, but enough for D to generate
new configurations. We use detected 2D keypoints from OpenPose [23] and ViTPose
[221] and BEV [190] estimates as conditioning. Unlike single-person mesh regressors,
BEV is designed to predict multiple people including their relative depth. Similar to
most optimization methods that fix the global orientation [19, 144], we also choose to
not update the estimated global orientation from BEV, which is typically reliable. We
use Adam optimizer with lr = .01 and run each stage for a maximum of 1000 iterations
and with early, gradient-dependent stopping. Please see Table B.1 in Appendix B for
more details.
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Figure 3.6: Amazon Mechanical Turk perceptual study layout and instructions. We
show a 360-degree video of the two interacting people. The person working on this task
must decide weather video A or B is better.

3.5.1 Unconditional Generation
We qualitatively evaluate BUDDI by showing samples from it in Fig. 3.1 and 3.4. Our
approach is able to generate people in close proximity including embraces, handshakes,
having a conversation, sitting side by side, and in general plausibly interacting with each
other. Since it is trained mostly on Internet image collections, it learns to generate people
who are being photographed. It also generates people playing sports.

We further run a perceptual study to evaluate the realism of the generated social in-
teractions against other methods. In a forced choice study, we compare our generated
samples with samples from the real data distribution according to the 60/20/20 per-batch
ratio for Flickr/CHI3D/Hi4D used during training. We also compare BUDDI against
generations from the VAE and a non-parametric random baseline that samples meshes
from the pseudo-ground truth after centering the two people. We do a forced choice
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JOINT #
PA-MPJPE

PCC at radius "
5 10 15 20 25

BEV 106 - - - - -
Transformer 86 14 40 60 73 82
BUDDI (gen.) 92 15 39 58 71 80

Heuristic 68 14 34 49 61 70
VAE 101 11 28 42 55 65
BUDDI 66 19 44 62 73 81

Table 3.1: 3D Pose Evaluation on FlickrCI3D Signatures. We evaluate methods
against the Flickr fits using their joint (two-person) PA-MPJPE expressed in mm. We
also evaluate the percentage of correct contact points (PCC) for radius r mm.

comparison between BUDDI and these there other methods, asking workers on Amazon
Mechanical Turk to choose the sample that shows a more realistic close social interaction.
We use 256 samples per method. We collect ratings for 768 pairwise comparisons. In
this study, BUDDI was chosen over random in 71.23% of the comparisons, over the VAE
in 60.17%, and over the training data in 44.4%. Note that 50% is the upper bound for
such forced choice comparisons, in which participants cannot tell the difference between
real and generated samples. We show our the design of our user study in Figure 3.6.

3.5.2 Fitting with BUDDI
Lastly, we evaluate our approach that reconstructs people in close proximity from an
image.

We show qualitative results in Figure 3.7 comparing against BEV and the Contact
Heuristic. Our approach is able to generate various types of human interactions with
plausible contact and depth placement. It is also able to capture close interaction be-
tween a child and a parent in a plausible manner. Note that all methods take BEV as an
input. Although the Contact Heuristic is able to move two people closer together, which
helps with image alignment, upon close observation it is not able to capture the subtle
interaction between people that happens during intimate interaction. BUDDI’s estimates
are more realistic and better capture the subtle details of interaction. We provide addi-
tional qualitative examples of optimization with BUDDI and compare them to BEV in
Figures 3.8 and 3.9 and the baseline methods in Figure 3.10. Failure cases are provided
in Figure 3.11.

We further report the percentage of correct contact (PCC) with respect to the ground
truth contact map on the FlickrCI3D Signatures test set in Table 3.1.

The table also shows the pose reconstruction accuracy against our Flickr Fits. All met-
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Figure 3.8: Optimization with BUDDI. Additional qualitative examples from optimiza-
tion with BUDDI compared to BEV. We provide the overlay and three additional views
per method. Optimization with BEV (first method / columns 2-5), optimization with
BUDDI (second method / columns 6-9).
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Figure 3.9: Optimization with BUDDI (continuation). Additional qualitative exam-
ples from optimization with BUDDI compared to BEV. We provide the overlay and
three additional views per method. Optimization with BEV (first method / columns 2-5),
optimization with BUDDI (second method / columns 6-9).
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Figure 3.11: Failure cases optimization with BUDDI. Failure cases from optimization
with BUDDI. In the first row the depth ordering of leg arm is wrong. The image in row 2
contains less common contact so that BUDDI suggests for blue to hold red’s shoulders
instead of the rope. The estimated predicted by our method suggests a plausible pose
that is not consistent with the image due to single-view ambiguity. The last row shows a
failure case due to intersection between arm and torso.

rics show improvement over BEV, in particular the joint PA-MPJPE. Non-optimization
methods, i.e. Transformer and BUDDI (gen.), are able to predict plausible contacts, with
similar PCC accuracy to BUDDI, but struggle to reconstruct the data with a worse joint
PA-MPJPE. The Heuristic, in contrast, achieves a lower reconstruction error, but worse
PCC. Our approach which leverages the learned prior during optimization can recover
both the relative positions and contacts between the two people. To provide insights into
the performance of single-person mesh regressors when evaluated on the two-person re-
construction task, we run 4D Humans [47] on Flickr Fits. The joint PA-MPJPE is 344
mm which is high, as expected, since these methods are not trained to reason about
proximity.

We further evaluate our model against ground truth MoCap data in Table 3.2 and Ta-
ble 3.3. Optimization with BUDDI consistently improves the two-person reconstruction
error over BEV and other baselines. When evaluated per action, the strongest improve-
ments over BEV come from complex close social interactions like hugging or kissing, at
58mm and 54mm absolute improvement over BUDDI respectively.

The Heuristic baseline achieves a low PA-MPJPE reconstruction error on all three
datasets. Our hypothesis is that the Heuristic baseline is particularly strong for poses with
only a few physical contact points, such as a handshake, whereas more complex contact,
such as a hug, requires data-driven priors like BUDDI. To quantify this assumption, we
compute the percentage of vertices that are in contact (with distance  10cm to the other
person) for each action in Hi4D. As the amount of contact increases (i.e. becomes more
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PER PERSON # JOINT #
PA-MPJPE PA-MPJPE

BEV 50 52 96
Transformer 54 56 105
BUDDI (gen.) 53 53 80

Heuristic 49 46 105
VAE 54 54 103
BUDDI 48 47 68

Table 3.2: Quantitative Evaluation on CHI3D. We compare the output of our model to
the baselines on CHI3D (pair s03). All errors reported in mm for 3D Joints.

PER PERSON # JOINT # JOINT PA-MPJPE #
PA-MPJPE PA-MPJPE backhug basketball cheers dance fight highfive hug kiss pose sidehug talk

BEV 78 / 84 136 200 126 109 135 121 106 163 139 142 131 118
Heuristic 67 / 71 121 168 83 94 131 94 68 159 159 118 113 109
BUDDI (F, C) 70 / 77 115 200 94 92 128 108 100 133 114 104 107 91

Transformer 79 / 85 120 161 141 103 138 123 128 117 106 120 105 100
BUDDI (gen.) 82 / 90 117 152 139 120 137 130 96 101 97 115 102 101
VAE 80 / 82 138 175 133 114 141 119 87 176 162 135 140 113
BUDDI 70 / 76 98 127 95 92 113 109 72 105 85 88 96 81

Table 3.3: Evaluation of BUDDI on Hi4D. We compare the output of BUDDI to the
proposed baseline methods on the Hi4D challenge. The first block shows methods that
do not use Hi4D data during training or are optimization based without access to priors
trained on Hi4D. BUDDI (F,C) in particular, is our model BUDDI trained on Flickr and
CHI3D data only. All errors are reported in mm for 3D Joints.

complex), BUDDI significantly outperforms the heuristic. Ordering activities by amount
of contact in Hi4D gives: basketball (7%), dance (9%), fight (10%), highfive (12%),
talk (18%), backhug (23%), cheers (24%), pose (29%), kiss (46%), sidehug (47%), hug
(53%). Red means the Heuristic is better than BUDDI and green means BUDDI is better
the Heuristic. The contact percentage is indicated in brackets. On average, BUDDI
outperforms the heuristic by 23 mm, and particularly improves the reconstruction result
for poses with many physical contact points.

Transformer and BUDDI (gen.) have lower joint PA-MPJPE errors than BEV and the
Heuristic, but worse per-person reconstruction errors. The VAE results suggest that di-
rectly operating in the latent space of a generative model is challenging and not sufficient
to accurately recover close social interactions. BUDDI, in contrast, is able to model a
wide variety of poses, as supported by the numerical results.

To gain insight into the contribution of each loss term in the optimization method

60



3.6 Conclusion

with BUDDI used a prior, we ablate them starting from LJ2D, i.e. the 2D keypoint
re-projection loss. The JOINT PA-MPJPE # on Hi4D is 118/118/111/99/99/98 for
LJ2D/+LP/+Lq̃ /+LgBUDDI/+LbBUDDI/+LqBUDDI . This result emphasizes the importance of
LgBUDDI , i.e. the translation prior from BUDDI has the biggest impact on the final result.

3.6 Conclusion
We study 3D human reconstruction in the setting of close human-human interaction.
We first leverage a large-scale dataset of images with ground truth annotations for body
regions that are in contact for pairs of people; we formulate an optimization method
to jointly reconstruct each pair in 3D. We use these human-human reconstructions to
learn a data-driven prior of how humans interact in natural images. This prior is based
on a denoising diffusion model that enables unconditional sampling of people in close
social interaction. More importantly, we demonstrate how this prior can be incorporated
in traditional iterative optimization as a novel regularization term that encourages the
reconstructed pairs of people to have realistic interactions. Exciting future work is to
iteratively apply our method to new images and use the reconstructed examples to further
improve the generative prior. Additionally, conditioning modalities can be explored, e.g.,
conditioning on pixel features, on text, or on action labels. Finally, these insights could
be also extended to 3D motion capture and also interactions that involve more than two
humans.
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Chapter 4

Accurate 3D Body Shape Regression
using Metric and Semantic Attributes
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Figure 4.1: Existing work on 3D human reconstruction from a color image focuses
mainly on pose. We present SHAPY, a model that focuses on body shape and learns
to predict 3D body shape from a color image, using crowd-sourced linguistic shape
attributes. Even with this weak supervision, SHAPY outperforms the state of the art
(SOTA) [175] on in-the-wild images with varied clothing.

In the previous two chapters, we described methods to reconstruct a single person in a
pose with self-contact and two people in close interaction from images. These methods
mainly address body pose estimation while body shapes are usually close the SMPL
mean shape. This is a problem, because self- and interpersonal contact happens on the
body surface. To address this, we introduce SHAPY a network to accurately estimate
body shape from images.

4.1 Introduction
The field of 3D human pose and shape (HPS) estimation is progressing rapidly and meth-
ods now regress accurate 3D pose from a single image [19, 86, 88, 97, 101, 144, 220,
98, 100, 233]. Unfortunately, less attention has been paid to body shape and many meth-
ods produce body shapes that clearly do not represent the person in the image (Fig. 4.1,
top right). There are several reasons behind this. Current evaluation datasets focus on
pose and not shape. Training datasets of images with 3D ground-truth shape are lacking.
Additionally, humans appear in images wearing clothing that obscures the body, making
the problem challenging. Finally, the fundamental scale ambiguity in 2D images, makes
3D shape difficult to estimate. For many applications, however, realistic body shape is
critical. These include AR/VR, apparel design, virtual try-on, fitness, and not to mention
the accurate estimation of self- and human-human contact. To democratize avatars, it is
important to represent and estimate all possible 3D body shapes; we make a step in that
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direction.
Note that commercial solutions to this problem require users to wear tight fitting cloth-

ing and capture multiple images or a video sequence using constrained poses. In contrast,
we tackle the unconstrained problem of 3D body shape estimation in the wild from a sin-
gle RGB image of a person in an arbitrary pose and standard clothing.

Most current approaches to HPS estimation learn to regress a parametric 3D body
model like SMPL [123] from images using 2D joint locations as training data. Such
joint locations are easy for human annotators to label in images. Supervising the training
with joints, however, is not sufficient to learn shape since an infinite number of body
shapes can share the same joints. For example, consider someone who puts on weight.
Their body shape changes but their bones stay the same. Several recent methods employ
additional 2D cues, such as the silhouette, to provide additional shape cues [174, 175].
Silhouettes, however, are influenced by clothing and do not provide explicit 3D supervi-
sion. Synthetic approaches [119], on the other hand, drape SMPL 3D bodies in virtual
clothing and render them in images. While this provides ground-truth 3D shape, realistic
synthesis of clothed humans is challenging, resulting in a domain gap.

To address these issues, we present SHAPY, a new deep neural network that accurately
regresses 3D body shape and pose from a single RGB image. To train SHAPY, we first
need to address the lack of paired training data with real images and ground-truth shape.
Without access to such data, we need alternatives that are easier to acquire, analogous
to 2D joints used in pose estimation. To do so, we introduce two novel datasets and
corresponding training methods.

First, in lieu of full 3D body scans, we use images of people with diverse body shapes
for which we have anthropometric measurements such as height as well as chest, waist,
and hip circumference. While many 3D human shapes can share the same measure-
ments, such measurements do constrain the space of possible shapes. Additionally, these
are important measurements for applications in clothing and health. Accurate anthropo-
metric measurements like these are difficult for individuals to take themselves but they
are often captured for different applications. Specifically, modeling agencies provide
such information about their models; accuracy is a requirement for modeling clothing.
Thus, we collect a diverse set of such model images (with varied ethnicity, clothing, and
body shape) with associated measurements; see Fig. 4.2.

Since sparse anthropometric measurements do not fully constrain body shape, we ex-
ploit a novel approach and also use linguistic shape attributes. Prior work has shown
that people can rate images of others according to shape attributes such as “short/tall”,
“long legs” or “pear shaped” [188]; see Fig. 4.3. Using the average scores from several
raters, Streuber et al. [188] (BodyTalk) regress metrically accurate 3D body shape. This
approach gives us a way to easily label images of people and use these labels to con-
strain 3D shape. To our knowledge, this sort of linguistic shape attribute data has not
previously been exploited to train a neural network to infer 3D body shape from images.

We exploit these new datasets to train SHAPY with three novel losses, which can be
exploited by any 3D human body reconstruction method:
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Figure 4.2: Model-agency websites contain multiple images of models together with
anthropometric measurements. A wide range of body shapes are represented; example
from pexels.com.

Figure 4.3: We crowd-source scores for linguistic body-shape attributes [188] and com-
pute anthropometric measurements for CAESAR [162] body meshes. We also crowd-
source linguistic shape attribute scores for model images, like those in Fig. 4.2
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4.2 Related Work

1. We define functions of the SMPL body mesh that return a sparse set of anthropo-
metric measurements. When measurements are available for an image we use a
loss that penalizes mesh measurements that differ from the ground-truth (GT).

2. We learn a “Shape to Attribute” (S2A) function that maps 3D bodies to linguistic
attribute scores. During training, we map meshes to attribute scores and penalize
differences from the ground-truth scores.

3. We similarly learn a function that maps “Attributes to Shape” (A2S). We then
penalize body shape parameters that deviate from the prediction.

We study each term in detail to arrive at the final method. Evaluation is challenging
because existing benchmarks with ground-truth shape either contain too few subjects
[207] or have limited clothing complexity and only pseudo-ground truth shape [174].
We fill this gap with a new dataset, named “Human Bodies in the Wild” (HBW), that
contains a ground-truth 3D body scan and several in-the-wild photos of 35 subjects, for
a total of 2543 photos. Evaluation on this dataset shows that SHAPY estimates much
more accurate 3D shape than existing methods.

We make models, data and code available for research purposes at shapy.is.tue.mpg.de.

4.2 Related Work
3D human pose and shape (HPS). Methods that reconstruct 3D human bodies from one
or more RGB images can be split into two broad categories: (1) parametric methods
that predict parameters of a statistical 3D body model, such as SCAPE [5], SMPL [123],
SMPL-X [144], Adam [86], GHUM [220], and (2) non-parametric methods that pre-
dict a free-form representation of the human body [205, 170, 77, 219]. Parametric ap-
proaches lack details with respect to non-parametric ones, e.g., clothing or hair. How-
ever, parametric models disentangle the effects of identity and pose on the overall shape.
Therefore, their parameters provide control for re-shaping and re-posing. Moreover, pose
can be factored out to bring meshes into a canonical pose; this is important for evaluat-
ing estimates of an individual’s shape. Finally, since topology is fixed, meshes can be
compared easily. For these reasons, we use a SMPL-X body model.

Parametric methods follow two main paradigms, and are based on optimization or
regression. Optimization-based methods [11, 19, 50, 144] search for model configu-
rations that best explain image evidence, usually 2D landmarks [23], subject to model
priors that usually encourage parameters to be close to the mean of the model space.
Numerous methods penalize the discrepancy between the projected and ground-truth sil-
houettes [74, 107] to estimate shape. However, this needs special care to handle clothing
[10]; without this, erroneous solutions emerge that “inflate” body shape to explain the
“clothed” silhouette. Regression-based methods [27, 46, 78, 87, 101, 119, 97, 136, 230]
are currently based on deep neural networks that directly regress model parameters from
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image pixels. Their training sets are a mixture of data captured in laboratory settings
[75, 183], with model parameters estimated from MoCap markers [130], and in-the-wild
image collections, such as COCO [120], that contain 2D keypoint annotations. Opti-
mization and regression can be combined, for example via in-the-network model fitting
[101, 136].

Estimating 3D body shape. State-of-the-art methods are effective for estimating 3D
pose, but struggle with estimating body shape under clothing. There are several reasons
for this. First, 2D keypoints alone are not sufficient to fully constrain 3D body shape.
Second, shape priors address the lack of constraints, but bias solutions towards “average”
shapes [19, 144, 101, 136]. Third, datasets with in-the-wild images have noisy or biased
3D bodies, recovered by fitting a model to 2D keypoints [19, 144]. Fourth, datasets
captured in laboratory settings have a small number of subjects, who do not represent the
full spectrum of body shapes. Thus, there is a scarcity of images with known, accurate,
3D body shape. Existing methods deal with this in two ways.

First, rendering synthetic images is attractive since it gives automatic and precise
ground-truth annotation. This involves shaping, posing, dressing and texturing a 3D
body model [69, 174, 176, 206, 211], then lighting it and rendering it in a scene. Do-
ing this realistically and with natural clothing is expensive, hence, current datasets suffer
from a domain gap. Alternative methods use artist-curated 3D scans [169, 170, 143],
which are realistic but limited in variety. Recent work addresses this domain gap via
synthetic datasets [143, 18], but methods trained on these datasets are still less accurate
than SHAPY on images in the wild.

Second, 2D shape cues for in-the-wild images, (body-part segmentation masks [139,
166, 37], silhouettes [1, 74, 146]) are attractive, as these can be manually annotated or
automatically detected [48, 62]. However, fitting to such cues often gives unrealistic
body shapes, by inflating the body to “explain” the clothing “baked” into silhouettes and
masks.

Most related to our work is the work of Sengupta et al. [174, 176, 175] who estimate
body shape using a probabilistic learning approach, trained on edge-filtered synthetic im-
ages. They evaluate on the SSP-3D dataset of real images with pseudo-ground truth 3D
bodies, estimated by fitting SMPL to multiple video frames. SSP-3D is biased to peo-
ple with tight-fitting clothing. Their silhouette-based method works well on SSP-3D but
does not generalize to people in normal clothing, tending to over-estimate body shape;
see Fig. 4.1.

In contrast to previous work, SHAPY is trained with in-the-wild images paired with
linguistic shape attributes, which are annotations that can be easily crowd-sourced for
weak shape supervision. We also go beyond SSP-3D to provide HBW, a new dataset
with in-the-wild images, varied clothing, and precise GT from 3D scans.

Shape, measurements and attributes. Body shapes can be generated from anthropo-
metric measurements [3, 177, 178]. Tsoli et al. [203] register a body model to multiple
high-resolution body scans to extract body measurements. The “Virtual Caliper” [155]
allows users to build metrically accurate avatars of themselves using measurements or
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VR game controllers. ViBE [71] collects images, measurements (bust, waist, hip circum-
ference, height) and the dress-size of models from clothing websites to train a clothing
recommendation network. We draw inspiration from these approaches for data collection
and supervision.

Streuber et al. [188] learn BodyTalk, a model that generates 3D body shapes from
linguistic attributes. For this, they select attributes that describe human shape and ask
annotators to rate how much each attribute applies to a body. They fit a linear model that
maps attribute ratings to SMPL shape parameters. Inspired by this, we collect attribute
ratings for CAESAR meshes [162] and in-the-wild data as proxy shape supervision to
train a HPS regressor. Unlike BodyTalk, SHAPY automatically infers shape from im-
ages.

Anthropometry from images. Single-View metrology [29] estimates the height of
a person in an image, using horizontal and vertical vanishing points and the height of a
reference object. Günel et al. [53] introduce the IMDB-23K dataset by gathering publicly
available celebrity images and their height information. Zhu et al. [240] use this dataset
to learn to predict the height of people in images. Dey et al. [35] estimate the height of
users in a photo collection by computing height differences between people in an image,
creating a graph that links people across photos, and solving a maximum likelihood
estimation problem. Bieler et al. [17] use gravity as a prior to convert pixel measurements
extracted from a video to metric height. These methods do not address body shape.

4.3 Representations and Data for Body Shape
We use linguistic shape attributes and anthropometric measurements as a connecting
component between in-the-wild images and ground-truth body shapes; see Fig. 4.4. To
that end, we annotate linguistic shape attributes for 3D meshes and in-the-wild images,
the latter from fashion-model agencies, labeled via Amazon Mechanical Turk.

4.3.1 SMPL-X Body Model
We use SMPL-X [144] as introduced in Section 1.3 with B = 100 shape parameters, i.e.
|b |= B.

4.3.2 Model-Agency Images
Model agencies typically provide multiple color images of each model, in var-
ious poses, outfits, hairstyles, scenes, and with a varying camera framing, to-
gether with anthropometric measurements and clothing size. We collect train-
ing data from multiple model-agency websites, focusing on under-represented
body types, namely: curve-models.com, cocainemodels.com, nemesismodels.com,
jayjay-models.de, kultmodels.com, modelwerk.de, models1.co.uk. showcast.de,
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Figure 4.4: Shape representations and data collection. Our goal is 3D body shape esti-
mation from in-the-wild images. Collecting data for direct supervision is difficult and
does not scale. We explore two alternatives. Linguistic Shape Attributes: We annotate
attributes (“A”) for CAESAR meshes, for which we have accurate shape (“S”) param-
eters, and learn the “A2S” and “S2A” models, to map between these representations.
Attribute annotations for images can be easily crowd-sourced, making these scalable.
Anthropometric Measurements: We collect images with sparse body measurements
from model-agency websites. A virtual measurement module [155] computes the mea-
surements from 3D meshes. Training: We combine these sources to learn a regressor
with weak supervision that infers 3D shape from an image.

the-models.de, and ullamodels.com. In addition to photos, we store gender and four an-
thropometric measurements, i.e. height, chest, waist and hip circumference, when avail-
able. To avoid having the same subject in both the training and test set, we match model
identities across websites to identify models that work for several agencies. For details,
see Appendix C.1.1.

After identity filtering, we have 94,620 images of 4,419 models along with their an-
thropometric measurements. However, the distributions of these measurements, shown in
Fig. 4.5, reveal a bias for “fashion model” body shapes, while other body types are under-
represented in comparison to CAESAR [162]. To enhance diversity in body-shapes and
avoid strong biases and log tails, we compute the quantized 2D-distribution for height
and weight and sample up to 3 models per bin. This results in N = 1,185 models (714
females, 471 males) and 20,635 images.

4.3.3 Linguistic Shape Attributes

Human body shape can be described by linguistic shape attributes [66]. We draw inspi-
ration from Streuber et al. [188] who collect scores for 30 linguistic attributes for 256 3D
body meshes, generated by sampling SMPL’s shape space, to train a linear “attribute to
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Figure 4.5: Histogram of height and chest/waist/hips circumference for data from model-
agency websites (Sec. 4.3.2) and CAESAR. Model-agency data is diverse, yet not as
much as CAESAR data.

shape” regressor. In contrast, we train a model that takes as input an image, instead of
attributes, and outputs an accurate 3D shape (and pose).

We crowd-source linguistic attribute scores for a variety of body shapes, using im-
ages from the following sources: Rendered CAESAR images. We use bodies from
CAESAR [162] to learn mappings between linguistic shape attributes, anthropometric
measurements, and SMPL-X shape parameters, �. Specifically, we register a “gendered”
SMPL-X model with 100 shape components to 1,700 male and 2,102 female 3D scans,
pose all meshes in an A-pose, and render synthetic images with the same virtual camera.
Model-agency photos. Each annotator is shown 3 body images per subject, sampled
from the image pool of Sec. 4.3.2.

Annotation. To keep annotation tractable, we use A = 15 linguistic shape attributes
per gender (subset of BodyTalk’s [188] attributes); see Tab. 4.1. Each image is anno-
tated by K = 15 annotators on Amazon Mechanical Turk. Their task is to “indicate how
strongly [they] agree or disagree that the [listed] words describe the shape of the [de-
picted] person’s body”. Annotations range on a discrete 5-level Likert scale. The rating
choices are “strongly disagree” (score 1), “rather disagree” (score 2), “average” (score
3), “rather agree” (score 4), “strongly agree” (score 5). The layout of our CAESAR
annotation task is visualized in Fig. 4.6.

We ask multiple persons to rate each body and image, to “average out” the subjectivity
of individual ratings [188]. Additionally, we compute the Pearson correlation between
averaged attribute ratings and ground-truth measurements. Examples of highly corre-
lated pairs are “Big / Weight”, and “Short / Height”. To ensure good rating quality, we
have several qualification requirements per participant: submitting a minimum of 5000
tasks on AMT and an AMT acceptance rate of 95%, as well as having a US residency
and passing a language qualification test to ensure similar language skills and cultures
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Male & Female Male only Female only
short long neck skinny arms pear shaped
big long legs average petite
tall long torso rectangular slim waist

muscular short arms delicate build large breasts
broad shoulders soft body skinny legs

masculine feminine
Table 4.1: Linguistic shape attributes for human bodies. Some attributes apply to both
genders, but others are gender specific.

across raters.
We use the ratings to create a rating matrix A 2 {1,2,3,4,5}N⇥A⇥K , where N is the

number of subjects. In the following, ai jk denotes an element of A.

4.4 Mapping Shape Representations

In Sec. 4.3 we list three body-shape representations: (1) SMPL-X’s PCA shape space
(Sec. 4.3.1), (2) anthropometric measurements (Sec. 4.3.2), and (3) linguistic shape at-
tribute scores (Sec. 4.3.3). Here we learn mappings between these, so that in Sec. 4.5 we
can define new losses for training body shape regressors using multiple data sources.

4.4.1 Virtual Measurements (VM)

We obtain anthropometric measurements from a 3D body mesh in a T-pose, namely
height, H(�), weight, W (�), and chest, waist and hip circumferences, Cc(�), Cw(�),
and Ch(�), respectively, by following Wuhrer et al. [214] and the “Virtual Caliper” [155].
For details on how we compute these measurements, see Appendix C.2.1.

4.4.2 Attributes and 3D Shape

Attributes to Shape (A2S). We predict SMPL-X shape coefficients from linguistic at-
tribute scores with a second-degree polynomial regression model. For each shape �i,
i = 1 . . .N, we create a feature vector, xA2S

i , by averaging for each of the A attributes the
corresponding K scores:

xA2S
i = [āi,1, . . . , āi,A], āi, j =

1
K

K

Â
k=1

ai jk, (4.1)
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Figure 4.6: Layout of the AMT task for a male subject. Left: the 3D body mesh in A-
pose. Right: the attributes and ratings buttons.
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where i is the shape index (list of “fashion” or CAESAR bodies), j is the attribute index,
and k the annotation index. We then define the full feature matrix for all N shapes as:

XA2S = [f(xA2S
1 ), . . . , f(xA2S

N )]>, (4.2)

where f(xA2S
i ) maps xi to 2nd order polynomial features.

The target matrix Y = [�1, . . . ,�N ]> contains the shape parameters �i =
[�i,1, . . . ,�i,B]>. We compute the polynomial model’s coefficients W via least-squares
fitting:

Y = XW+ e . (4.3)

Empirically, the polynomial model performs better than several models that we evalu-
ated; for details, see Appendix C.2.2.

Shape to Attributes (S2A). We predict linguistic attribute scores, A, from SMPL-X
shape parameters, �. Again, we fit a second-degree polynomial regression model. S2A
has “swapped” inputs and outputs with respect to A2S:

xS2A
i = [�i,1, . . . ,�i,B], (4.4)

yi = [āi,1, . . . , āi,A]
>. (4.5)

Attributes & Measurements to Shape (AHWC2S). Given a sparse set of anthro-
pometric measurements, we predict SMPL-X shape parameters, �. The input vector is:

xHWC2S
i = [hi,wi,cci ,cwi ,chi ], (4.6)

where cc,cw,ch are the chest, waist, and hip circumference, respectively, h and w are the
height and weight, and HWC2S means Height + Weight + Circumference to Shape. The
regression target is the SMPL-X shape parameters, yi.

When both Attributes and measurements are available, we combine them for the
AHWC2S model with input:

xAHWC2S
i = [āi,1, . . . , āi,A,hi,wi,cci ,cwi ,chi ]. (4.7)

In practice, depending on which measurements are available, we train and use differ-
ent regressors. Following the naming convention of AHWC2S, these models are: AH2S,
AHW2S, AC2S, and AHC2S, as well as their equivalents without attribute input H2S,
HW2S, C2S, and HC2S. For an evaluation of the contribution of linguistic shape at-
tributes on top of each anthropometric measurement, see Appendix C.2.2

Training Data. To train the A2S and S2A mappings we use CAESAR data, for which
we have SMPL-X shape parameters, anthropometric measurements, and linguistic at-
tribute scores. We train separate gender-specific models.
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Figure 4.7: SHAPY first estimates shape, b̂ , and pose, q̂ . Shape is used by: (1) our virtual
anthropometric measurement (VM) module to compute height, Ĥ, and circumferences,
Ĉ, and (2) our S2A module to infer linguistic attribute scores, Â. There are several
SHAPY variations, e.g., SHAPY-H uses only VM to infer Ĥ, while SHAPY-HA uses
VM to infer Ĥ and S2A to infer Â.

4.5 3D Shape Regression from an Image
We present SHAPY, a network that predicts SMPL-X parameters from an RGB image
with more accurate body shape than existing methods. To improve the realism and ac-
curacy of shape, we explore training losses based on all shape representations discussed
above, i.e., SMPL-X meshes (Sec. 4.3.1), linguistic attribute scores (Sec. 4.3.3) and an-
thropometric measurements (Sec. 4.4.1). In the following, symbols with/-out a hat are
regressed/ground-truth values. We convert shape �̂ to height and circumferences values
{Ĥ,Ĉc,Ĉw,Ĉh} = {H(�̂),Cc(�̂),Cw(�̂),Ch(�̂)}, by applying our virtual measurement
tool (Sec. 4.4.1) to the mesh M(�̂) in the canonical T-pose. We also convert shape �̂ to
linguistic attribute scores, with Â = S2A(�̂).

We train various SHAPY versions with the following “SHAPY losses”, using either
linguistic shape attributes, or anthropometric measurements, or both:

Lattr = ||A� Â||22, (4.8)

Lheight = ||H � Ĥ||22, (4.9)

Lcirc = Âi2{c,w,h} ||Ci �Ĉi||22 (4.10)

These are optionally added to a base loss, Lbase, defined below in “training details”. The
architecture of SHAPY, with all optional components, is shown in Fig. 4.7. A suffix of
color-coded letters describes which of the above losses are used when training a model.
For example, SHAPY-AH denotes a model trained with the attribute and height losses,
i.e.: LSHAPY-AH2S = Lbase +Lattr +Lheight.

Training Details. We initialize SHAPY with the ExPose [27] network weights and
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use curated fits [27], H3.6M [75], the SPIN [101] training data, and our model-agency
dataset (Sec. 4.3.2) for training. In each batch, 50% of the images are sampled from the
model-agency images, for which we ensure a gender balance. The “SHAPY losses” of
Eqs. (4.8) to (4.10) are applied only on the model-agency images. We use these on top
of a standard base loss:

Lbase = Lpose +Lshape, (4.11)

where L2D
J and L3D

J are 2D and 3D joint losses:

Lpose = L2D
J +L3D

J +L✓, (4.12)

Lshape = L�+Lpixie
� , (4.13)

L✓ and L� are losses on pose and shape parameters, and Lpixie
� is PIXIE’s [39] “gendered”

shape prior. All losses are L2, unless otherwise explicitly specified. Losses on SMPL-X
parameters are applied only on the pose data [75, 27, 101]. For more implementation
details, see Appendix C.3.

4.6 Experiments

4.6.1 Evaluation Datasets
3D Poses in the Wild (3DPW) [207]. We use this to evaluate pose accuracy. This is
widely used, but has only 5 test subjects, i.e., limited shape variation. For results, see
Appendix C.4.3.

Sports Shape and Pose 3D (SSP-3D) [174]. We use this to evaluate 3D body shape
accuracy from images. It has 62 tightly-clothed subjects in 311 in-the-wild images from
Sports-1M [89], with pseudo ground-truth SMPL meshes that we convert to SMPL-X
for evaluation.

Model Measurements Test Set (MMTS). We use this to evaluate anthropometric
measurement accuracy, as a proxy for body shape accuracy. To create MMTS, we with-
hold 2699/1514 images of 143/95 female/male identities from our model-agency data,
described in Sec. 4.3.2

CAESAR Meshes Test Set (CMTS). We use CAESAR to measure the accuracy of
SMPL-X body shapes and linguistic shape attributes for the models of Sec. 4.4. Specif-
ically, we compute: (1) errors for SMPL-X meshes estimated from linguistic shape at-
tributes and/or anthropometric measurements by A2S and its variations, and (2) errors
for linguistic shape attributes estimated from SMPL-X meshes by S2A. To create an
unseen mesh test set, we withhold 339 male and 410 female CAESAR meshes from the
crowd-sourced CAESAR linguistic shape attributes, described in Sec. 4.3.3.

Human Bodies in the Wild (HBW). The field is missing a dataset with varied bod-
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Figure 4.8: “Human Bodies in the Wild” (HBW) color images, taken in the lab and in
the wild, and the SMPL-X ground-truth shape.

ies, varied clothing, in-the-wild images, and accurate 3D shape ground truth. We fill
this gap by collecting a novel dataset, called “Human Bodies in the Wild” (HBW), with
three steps: (1) We collect accurate 3D body scans for 35 subjects (20 female, 15 male),
and register a “gendered” SMPL-X model to these to recover 3D SMPL-X ground-truth
bodies [152]. (2) We take photos of each subject in “photo-lab” settings, i.e., in front of a
white background with controlled lighting, and in various everyday outfits and “fashion”
poses. (3) Subjects upload full-body photos of themselves taken in the wild. For each
subject we take up to 111 photos in lab settings, and collect up to 126 in-the-wild photos.
In total, HBW has 2543 photos, 1,318 in the lab setting and 1,225 in the wild. We split
the data into a validation and a test set (val/test) with 10/25 subjects (6/14 female 4/11
male) and 781/1,762 images (432/983 female 349/779 male), respectively. Figure 4.8
shows a few HBW subjects, photos and their SMPL-X ground-truth shapes. All sub-
jects gave prior written informed consent to participate in this study and to release the
data. The study was reviewed by the ethics board of the University of Tübingen, without
objections.

4.6.2 Evaluation Metrics
We use standard accuracy metrics for 3D body pose, but also introduce metrics specific
to 3D body shape.

Anthropometric Measurements. We report the mean absolute error in mm between
ground-truth and estimated measurements, computed as described in Sec. 4.4.1. When
weight is available, we report the mean absolute error in kg.

MPJPE and V2V metrics. We report in Appendix C.4.3 the mean per-joint point
error (MPJPE) and mean vertex-to-vertex error (V2V), when SMPL-X meshes are avail-
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Method P2P20K Height Weight Chest Waist Hips
- (mm) (mm) (kg) (mm) (mm) (mm)

M
al

e
su

bj
ec

ts

A2S 11.1±5.2 29±21 5±4 30±22 32±24 28±21
H2S 12.1±6.1 5±4 11±11 81±66 102±87 40±33
AH2S 6.8±2.3 4±3 3±3 27±21 29±23 24±18
HW2S 8.1±2.7 5±4 1±1 24±17 26±20 21±18
AHW2S 6.3±2.1 4±3 1±1 19±15 19±14 20±16
C2S 19.7±11.1 59±47 9±8 55±41 63±49 37±28
AC2S 9.6±4.4 25±19 3±3 23±19 21±17 18±14
HC2S 7.7±2.6 5±4 2±2 28±23 18±15 13±11
AHC2S 6.0±2.0 4±3 2±2 21±17 17±14 13±10
HWC2S 7.3±2.6 5±4 1±1 20±15 14±12 13±11
AHWC2S 5.8±2.0 4±3 1±1 16±13 13±10 13±10

Table 4.2: Results of A2S variants on CMTS for male subjects, using the male SMPL-X
model.

able. The prefix “PA” denotes metrics after Procrustes alignment.
Mean point-to-point error (P2P20K). SMPL-X has a highly non-uniform vertex dis-

tribution across the body, which negatively biases the mean vertex-to-vertex (V2V) error,
when comparing estimated and ground-truth SMPL-X meshes. To account for this, we
use 20K points on SMPL-X’s mesh surface as described in Section 2.3.3 and report the
mean point-to-point (P2P20K) error. For details, see Appendix C.4.1.

4.6.3 Shape-Representation Mappings
We evaluate the models A2S and S2A, which map between the various body shape rep-
resentations (Sec. 4.4).

A2S and its variations. How well can we infer 3D body shape from just linguistic
shape attributes, anthropometric measurements, or both of these together? In Tab. 4.2
and Tab. 4.3, we report reconstruction and measurement errors using many combinations
of attributes (A), height (H), weight (W), and circumferences (C). Evaluation on CMTS
data shows that attributes improve the overall shape prediction across the board. For
example, height+attributes (AH2S) has a lower point-to-point error than height alone.
The best performing model, AHWC, uses everything, with P2P20K-errors of 5.8± 2.0
mm (males) and 6.2±2.4 mm (females). It should be emphasized that even when many
measurements are used as input features, i.e. height, weight, and chest/waist/hip circum-
ference, adding attributes still improves the shape estimate, e.g. HWC2S vs. AHWC2S.

S2A. How well can we infer linguistic shape attributes from 3D shape? S2A’s ac-
curacy on inferring the attribute Likert score is 75%/69% for males/females; details in
Appendix C.4.2.
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Method P2P20K Height Weight Chest Waist Hips
- (mm) (mm) (kg) (mm) (mm) (mm)

fe
m

al
e

A2S 10.9±5.2 27±21 5±5 30±26 32±31 28±22
H2S 12.8±7.0 5±5 12±11 93±72 101±88 60±52
AH2S 7.2±2.8 4±3 3±4 27±23 29±28 23±19
HW2S 7.9±3.2 5±5 1±1 25±22 22±18 26±25
AHW2S 6.4±2.5 4±3 1±1 14±12 14±12 17±14
C2S 19.5±10.8 58±46 8±6 54±36 57±42 47±36
AC2S 9.6±4.3 24±18 3±2 18±15 19±16 19±14
HC2S 7.3±2.8 5±5 2±2 19±16 16±14 15±13
AHC2S 6.3±2.4 4±3 1±1 15±12 14±12 14±12
HWC2S 7.2±2.9 5±5 1±1 14±12 13±11 14±12
AHWC2S 6.2±2.4 4±3 1±1 11±9 12±10 13±11

m
al

e

A2S 11.1±5.2 29±21 5±4 30±22 32±24 28±21
H2S 12.1±6.1 5±4 11±11 81±66 102±87 40±33
AH2S 6.8±2.3 4±3 3±3 27±21 29±23 24±18
HW2S 8.1±2.7 5±4 1±1 24±17 26±20 21±18
AHW2S 6.3±2.1 4±3 1±1 19±15 19±14 20±16
C2S 19.7±11.1 59±47 9±8 55±41 63±49 37±28
AC2S 9.6±4.4 25±19 3±3 23±19 21±17 18±14
HC2S 7.7±2.6 5±4 2±2 28±23 18±15 13±11
AHC2S 6.0±2.0 4±3 2±2 21±17 17±14 13±10
HWC2S 7.3±2.6 5±4 1±1 20±15 14±12 13±11
AHWC2S 5.8±2.0 4±3 1±1 16±13 13±10 13±10

Table 4.3: Results of A2S and its variations on CMTS test set, in mm or kg. Trained with
gender-specific SMPL-X model.
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Figure 4.9: Qualitative results from HBW. From left to right: RGB, ground-truth shape,
SHAPY and Sengupta et al. [175]. For example, in the upper- and lower- right images,
SHAPY is less affected by pose variation and loose clothing.
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Method Model Height Chest Waist Hips P2P20K

SMPLR [127] SMPL 182 267 309 305 69
STRAPS [174] SMPL 135 167 145 102 47
SPIN [101] SMPL 59 92 78 101 29
TUCH [136] SMPL 58 89 75 57 26
Sengupta et al. [175] SMPL 82 133 107 63 32
ExPose [27] SMPL-X 85 99 92 94 35
SHAPY (ours) SMPL-X 51 65 69 57 21

Table 4.4: Evaluation on the HBW test set in mm. We compute the measurement and
point-to-point (P2P20K) error between predicted and ground-truth SMPL-X meshes.

Mean absolute error (mm) #
Method Model Height Chest Waist Hips

Sengupta et al. [175] SMPL 84 186 263 142
TUCH [136] SMPL 82 92 129 91
SPIN [101] SMPL 72 91 129 101
STRAPS [174] SMPL 207 278 326 145
ExPose [27] SMPL-X 107 107 136 92
SHAPY (ours) SMPL-X 71 64 98 74

Table 4.5: Evaluation on MMTS. We report the mean absolute error between
ground-truth and estimated measurements.

4.6.4 3D Shape from an Image

We evaluate all of our model’s variations (see Sec. 4.5) on the HBW validation set and
find, perhaps surprisingly, that SHAPY-A outperforms other variants. We refer to this
below (and Fig. 4.1) simply as “SHAPY” and report its performance in Tab. 4.4 for
HBW, Tab. 4.5 for MMTS, and Tab. 4.6 for SSP-3D. For images with natural and varied
clothing (HBW, MMTS), SHAPY significantly outperforms all other methods (Tabs. 4.4
and 4.5) using only weak 3D shape supervision (Attributes). On these images, Sengupta
et al.’s method [175] struggles with the natural clothing.

In contrast, their method is more accurate than SHAPY on SSP-3D (Tab. 4.6), which
has tight “sports” clothing, in terms of PVE-T-SC, a scale-normalized metric used on this
dataset. These results show that silhouettes are good for tight/minimal clothing and that
SHAPY struggles with high BMI shapes due to the lack of such shapes in our training
data; see Fig. 4.5. Note that, as HBW has true ground-truth 3D shape, it does not need
SSP-3D’s scaling for evaluation.

We show additional qualitative results in Fig. 4.10 and Fig. 4.11. Failure cases are
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Method Model PVE-T-SC mIOU

HMR [87] SMPL 22.9 0.69
SPIN [101] SMPL 22.2 0.70
STRAPS [174] SMPL 15.9 0.80
Sengupta et al. [175] SMPL 13.6 -
SHAPY (ours) SMPL-X 19.2 -

Table 4.6: Evaluation on the SSP-3D test set [174]. We report the scaled mean vertex-to-
vertex error in T-pose [174], and the mean intersection-over-union (mIOU).

shown in Fig. 4.12. To deal with high-BMI bodies, we need to expand the set of training
images and add additional shape attributes that are descriptive for high-BMI shapes.
Muscle definition on highly muscular bodies is not well represented by SMPL-X, nor do
our attributes capture this. The SHAPY approach, however, could be used to capture this
with a suitable body model and more appropriate attributes.

A key observation is that training with linguistic shape attributes alone is sufficient,
i.e., without anthropometric measurements. Importantly, this opens up the possibility
for significantly larger data collections. For a study of how different measurements or
attributes impact accuracy, see Appendix C.4.2. Figure 4.9 shows SHAPY’s qualitative
results.

4.7 Conclusion
SHAPY is trained to regress more accurate human body shape from images than pre-
vious methods, without explicit 3D shape supervision. To achieve this, we present two
different ways to collect proxy annotations for 3D body shape for in-the-wild images.
First, we collect sparse anthropometric measurements from online model-agency data.
Second, we annotate images with linguistic shape attributes using crowd-sourcing. We
learn mappings between body shape, measurements, and attributes, enabling us to super-
vise a regressor using any combination of these. To evaluate SHAPY, we introduce a new
shape estimation benchmark, the “Human Bodies in the Wild” (HBW) dataset. HBW has
images of people in natural clothing and natural settings together with ground-truth 3D
shape from a body scanner. HBW is more challenging than existing shape benchmarks
like SSP-3D, and SHAPY significantly outperforms existing methods on this benchmark.
We believe this work will open new directions, since the idea of leveraging linguistic an-
notations to improve 3D shape has many applications.

Limitations. Our model-agency training dataset (Sec. 4.3.2) is not representative
of the entire human population and this limits SHAPY’s ability to predict larger body
shapes. To address this, we need to find images of more diverse bodies together with
anthropometric measurements and linguistic shape attributes describing them.
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Figure 4.10: Qualitative results of SHAPY predictions for female bodies.
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Figure 4.11: Qualitative results of SHAPY predictions for male bodies.
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Figure 4.12: Failure cases. In the first example (upper left) the weight is underestimated.
Other failure cases of SHAPY are muscular bodies (upper right) and body shapes with
high BMI (second row).

Social impact Knowing the 3D shape of a person has advantages, for example, in the
clothing industry to avoid unnecessary returns. If used without consent, 3D shape esti-
mation may invade individuals’ privacy. As with all other 3D pose and shape estimation
methods, surveillance and deep-fake creation is another important risk. Consequently,
SHAPY’s license prohibits such uses.
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5.1 Contributions
In this thesis, we address three problem of reconstructing 3D human pose and shape from
images for poses with self- and interpersonal contact.

We start by investigating self-contact in Chapter 2, i.e. meaningful physical contact hu-
mans make with their own bodies. Such contacts are frequent in human poses, however,
prior work has not paid attention to self-contact or even avoided it. To address the lack of
datasets, we invent novel labels and data collection methods. In particular, we conceive
discrete self-contact, a label that indicates pairwise contact between discrete regions on
the human body that can be collected at scale, similar to 2D keypoints. The technique
of contact labels on the 3D human mesh surface have been further developed in DECO
[200] for annotating contact between human and object or scene. We also demonstrate
how these labels can be used during optimization. We also devise “mimic the pose”, a
novel way of data collection to create a dataset of 2D images with accurate 3D reference
data. For this, we ask humans to mimic a presented 3D poses while somebody takes
their photo. Since the presented and mimicked poses do not match exactly, we intro-
duce SMPLify-XMC, a optimization routine that goes beyond existing art since it takes
the presented pose and its self-contact into account. This is the first time, in-the-wild
pose mimicking is used to create a dataset for human pose and shape estimation. One
advantage of this approach is that complex poses or scenes which existing work fails to
reconstruct can be collected at scale. For example, regressors and optimization methods
often fail in the 3D reconstruction task when images have strong perspective effects. In
SPEC [99], the pose mimicking approach is used to create a novel test set of real images
with strong perspective effects and accurate 3D reference meshes. One part of MTP is
3DCP, a collection meshes in poses with self-contact. Previous datasets usually avoid
self-contact since it breaks the registration process. We are the first to collect a large
number of body scans in various poses with self-contact in minimal clothing. Beyond
their use in MTP, future work can use this dataset to learn about soft-tissue deformation
due to self-contact. To get more pose variety we also search in existing datasets for poses
with self-contact and refine them to resolve slight intersections and encourage contact.
In BEDLAM [18], AMASS motion sequences are combined with various body shapes.
To resolve intersections due to this process the authors use self-contact optimization.
The major insight of Section 2.5 is that self-contact is an excellent signal for the task of
human pose estimation. In regressor training, we show that knowing about self-contact
not only improves pose estimation for poses with self-contact but also for poses without
self-contact.

In Chapter 3, we address the problem of generating and estimating two people in
close proximity. To do this, we first fit SMPL-X to a collection of Flickr images with
ground-truth discrete human-human contact labels [41] via optimization. Next, we train
a generative model that learns the joint distribution of people in close social interaction.
Previous art has predominantly focused on generating the motion of a single person.
While these methods show how diffusion models can be trained on 3D joint locations,
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we are the first to demonstrate how diffusion models can be trained on body model pa-
rameters, i.e. pose and shape, of two people; a technique especially relevant for human
interactions involving contact. Finally, we demonstrate how diffusion models can serve
as prior in human mesh fitting using an SDS loss [153]. Our method is the first opti-
mization routine that can reconstruct two people in close social interaction form images
without taking ground-truth contact labels into account.

Contact happens on the surface of the human body. The majority of research in human
mesh estimation, however, focuses on body pose and predicts bodies with average or
“zero” shape because the training data for body shape misses quality and diversity. The
lack of comprehensive training data and labels for body shape estimation is a significant
obstacle for accurate mesh regression. In Chapter 4, we address this by leveraging the
rich vocabulary humans use to describe body shape. We draw inspiration from prior work
that predicts a person’s body shape from linguistic body shape attributes ratings [188],
and demonstrate that such information can be used to supervise body shape in end-to-end
learning. We create new datasets of ratings for linguistic shape attributes for (1) 3D body
shapes and (2) images taken in the wild. We use CAESAR [162] bodies and images with
body measurements from model agency websites. Then we learn a model (S2A) that
predicts attribute ratings from SMPL-X shape parameters. Our regressor, SHAPY, takes
an image as input, predicts SMPL-X shape parameters and obtains attribute annotations
using S2A. We formulate new losses for body measurements and attribute ratings to
supervise body shape during training. Another obstacle in 3D shape estimation is that
existing benchmarks rather focus on body pose and usually contain only a few subjects
with little body shape variety or rely on pseudo-ground truth fits. To overcome this, we
collect HBW, a new dataset of images taken in the wild with ground truth body shape,
i.e. 3D body scans. On our new benchmark, SHAPY predicts more accurate body shape
than previous art. More recent methods, published after SHAPY, use synthetic data to
estimate body shape [18], but SHAPY is still more accurate on HBW.

5.2 Considerations for Future Work
The recent advances in human pose estimation are impressive, especially when the 3D
mesh is projected onto the images, i.e. it is seen from the camera perspective. How-
ever, there is still much work to be done to achieve expressive 3D reconstruction of
multiple people in poses with self- and interpersonal contact. In particular, because one
great potential of SMPL lies beyond pose and shape estimation by using mesh recon-
structions for downstream applications in other scientific fields. For example, through
precise estimates of human interaction, computer vision methods have the potential to
significantly enhance our comprehension of human behaviour. To achieve these long-
term goals, the next step is to combine the three topics presented in this theses to enable
multi-person mesh regression with accurate estimates of body shape and self-contact
and human-human contact. This goal requires an approach similar to BEV [190] or
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SLAHMR [225] that also considers the diverse range of body shapes and accounts for
both self-contact and human-human interaction.

Level of detail in self- and human-human contact 3D datasets

Future regressors and datasets should use expressive body models like SMPL-X or later
versions. Even with recent advancements on data collection for self- and human-human
contact, there is still a lack of accurate hand pose estimation and subtle contact, such as
touch between hands or between the hand and face. Even everyday actions like rubbing
one’s eyes or touching our hair are hardly explored until very recently [182]. While not
all human pose estimation tasks may require this level of detail, it is worth considering
that in the ongoing pursuit of creating avatars, it might be the nuanced, playful elements
humans naturally use in their body language, that make avatars appear truly natural and
human-like. To model and reconstruct such subtle contact, we need tools to label contact
in images taken in the wild e.g. on vertex level, and high resolution MoCap with hand
pose and facial expressions reconstruction. Since some self-contact interactions can be
explained by a single term, e.g. “rubbinge eyes”, action labels or language descriptions
can serve as prior or guidance in reconstruction tasks. Yet, the detailed pose and exact
contact type and locations are difficult to describe with text and must be learned from
visual input.

From two to multiple people in contact

One strength of BUDDI is that it is trained on model parameters which are of much lower
dimension than meshes. Therefore, BUDDI could easily be extended to multiple indi-
viduals by increasing the numbers of input tokens to the transformer encoder. However,
achieving this requires creating a suitable dataset for training. Optimization methods that
use discrete contact labels can also be extended to multiple people. This task requires to
resolve self- and pairwise human-human intersections, which necessitates knowing the
signed distance of e.g. vertices. TUCH and BUDDI utilize winding numbers to identify
interpenetrating vertices; a memory-intensive method despite its relative speed. There-
fore, it becomes crucial to develop methods that are not only efficient but also utilize
minimal memory resources in order to effectively address the challenge of encouraging
contact while resolving intersections.

While individuals may make contact with multiple people in 3-4 person settings, the
most common scenarios where multi-person contact can be observed are sports scenes
or events with many participants like concerts. Since people usually occlude each other
in such scenes, collecting discrete contact labels is challenging and keypoint detectors
often fail. Thus, the attempt of expanding the data collection from two to multiple peo-
ple might fail and may require new ideas. One possible solution are iterative approaches:
BUDDI could be conditioned on one person while generating the second person. This
can be applied in an iterative manner until a group of interacting people in generated.
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Novel human pose and shape regressors are trained on synthetic data only [18] and the
generated group of interacting people could be useful for creating more challenging ver-
sions of such data.

Level of detail in self- and human-human contact 2D datasets

Discrete contact labels can be scaled and are easy to collect for images in the wild.
Yet, the level of detail for contact is constrained to a priori defined regions on the body.
To address this, we can collect more detailed self- and human-human contact via novel
labeling tools like the one used by Tripathi et al. [200]. Another approach would be to
use pose mimicking for human interaction. While pose mimicking is more difficult to
scale, it does create additional value because a pair of 2D image and 3D reference pose
is aligned with the true human perception of other people’s poses.

Datasets of 3D humans in contact

MoCap and scan data are valuable since they offer high quality 3D information. Yet,
there is only few publicly available 3D datasets of closely interacting people. The inter-
actions in these datasets are limited to canonical contacts, like a “hug” or “handshake”, or
people dancing and only performed by a few subjects. To go beyond canonical contact,
we need to put people with different relation, e.g. couples vs. colleagues, into authentic
scenarios from which contact arises in a natural way.

Self-contact, body shape, and soft tissue deformation

SHAPY focuses on addressing the challenge of body shape regression from images cap-
tured in various real-world scenarios, while TUCH specializes in estimating people in
poses involving self-contact. A method that predicts body shape and self-contact poses,
will be constrained by the rigidity of SMPL. This limitation is typically negligible for in-
dividuals with slender body types, as their bodies tend to have minimal self-intersections
even in poses involving self-contact. However, for heavier individuals, self-contact poses
often result in strong soft-tissue deformations, leading to self-intersections even in sim-
ple standing poses. Utilizing a rigid body model and uniform losses for interpenetration
for all body shapes would introduce a bias in pose and motion, particularly for individ-
uals with heavier bodies. This issue could be addressed by either incorporating models
that account for soft-tissue deformation or by capturing a broader range of body shapes,
coupled with improved motion and pose priors that also take human body shape into
account.

Larger and more diverse in-the-wild datasets

While scan data and MoCap data are valuable resources, they are often limited to con-
trolled lab environments and acted scenarios. To achieve accurate pose estimation for
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poses with contact, we need large image datasets that encompass a truly diverse range
of internet images, accompanied by discrete labels. Although datasets like DeepFashion
(used in TUCH), Flickr (used in BUDDI), and fashion model images (used in SHAPY)
contain useful information, they suffer from biases toward specific poses and body
shapes. DeepFashion primarily consists of fashion models, with body shapes common in
fashion industry, facing the camera to show and sell clothing items. Although Flickr ap-
pears to be a diverse datasource at first glance, we find many images showing individuals
smiling towards the camera. This lack of diverse actions, interactions, emotional states
etc. hampers the dataset’s ability to capture the full range of touch. The internet model
image collection includes curvy and petite models, but it fails to capture the full spectrum
of body shape. While addressing variations in height and weight might alleviate the most
obvious biases, it is not enough to learn the full variety of shape. For example, changes
of body shape due to age or more subtle difference within the group of people of similar
height/weight measurements.

Facial expressions and gaze

In this work, we focus on the human body and less on other signal humans use to com-
municate like facial expressions or eye contact. In many cases, physical contact is acom-
panied by such signals. Existing methods can effectively predict a persons facial expres-
sion and could be combined it with human pose and shape regressors. Additionally, there
is an interesting connection between gaze and touch. For example, during a handshake,
we look into the other person’s eyes. These are social cues that could be used as con-
ditional or prior knowledge during network training to jointly improve human-human
contact and gaze estimation.

Extension in time

In this work, we demonstrate how to estimate poses with contact and body shape from
images. A natural extension of our ideas is to apply them in the video domain which
already happened for human pose estimation without considering contact. This is not
necessarily easy, since the distributions of pose differs between static images and videos,
e.g. in photos we often find people statically posing for the picture facing the camera,
whereas in video people are moving. This means we find many self-contact poses in
static images that people actively take when knowing they need to ‘pose‘ for a photo.
However, these poses do usually not appear in videos of motion sequences collected in
the wild (except the rare cases when a third person records the process of moving into
a photo pose). For a proper extension in time domain a larger dataset of at least 1 mil-
lion images (static and single frames from video) annotated with self-contact labels is
necessary to train models similar to 2D keypoint detectors but for self-contact. The hu-
man pose and shape estimation community would greatly benefit from such a dataset
and model, because even large synthetic datasets like BEDLAM [18] avoid strong self-
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contact, because the data creation pipeline breaks when clothes need to be fit between
touching surfaces. Discrete labels for images taken in the wild would enable training hu-
man mesh regressors like the recent HMR 2.0 [47] on large video datasets with detected
keypoints and self-contact supervision.

5.3 Closing Thoughts
In this thesis, we address the problem of estimating poses with self-contact or contact be-
tween humans and more accurate body shape, i.e. we reconstruct the full surface of the
human body. In general, the field progresses rapidly and recent research demonstrates
remarkable results in human mesh regression from images [47, 18]. Nevertheless, the
challenge of reconstructing meshes with precise self- and interpersonal contact remains
unsolved, particularly when employing neural networks. However, given the speed of
progress, we should see regressors to 3D mesh reconstruction with hands, faces, gaze,
body shape, and for multiple people within two years. This will open up a whole branch
of downstream applications in industry and academia. For example, VR-based medi-
cal products to e.g. recover motion after a stroke or accident, let patients practise and
train human touch after traumatic experiences, or for medial staff to practise specific
hand grips in extreme situations. We can think of applications in the metaverse or of
social robots that not only verbally but also physically interact with human beings. In
research, we can utilize the scalability of human pose and shape reconstruction to better
understand human social behaviour. The manifold contributions in this thesis, i.e. novel
labels, losses, ways of capturing data, and models, offer a rich and extensive toolbox and
pave the way for accurate human pose and shape reconstruction of multiple people in
interactions with self- and interpersonal contact.
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A.1 Self-Contact Datasets

A.1.1 3D Contact Pose (3DCP) Meshes
3DCP Mocap.

Sampling meshes from AMASS. First, each MoCap sequence is sampled at half of its
original frame rate. For each sampled mesh, we compute the contact maps C

D with
teucl = 3cm, tgeo = 30cm and K = 98. The regions are visualized in Fig. 2.2. We select
only one pose for each unique signature, while ignoring contact when it occurs in more
than 1% of the data. We obtain a subset of 20,114 poses.

Self-Contact Optimization. Here we provide details of the self-contact optimization
for body meshes from the AMASS dataset. In this optimization, vertex pairs in MC are
further pulled together via a contact term LC and vertices inside the mesh are pushed to
the surface via a pushing term LP, while LO ensures that vertices far away from contact
regions stay in place. Note that LP and LC are slightly different from the loss terms in the
main corpus. LH is a prior for contact between hand and body and LA aligns the vertex
normals when contact happens.

Given the set of vertices V of mesh M, VE ⇢V denotes the subset of vertices affiliated
with extremities, VI ⇢V denotes the subset of vertices inside the mesh, and VEI =VE \MI
denotes the vertices of extremities that are inside the mesh itself and V {

EI its complement.
We identify vertices inside the mesh using generalized winding numbers [76]. VVH ⇢ V
is the subset of hand vertices. Note that we make SMPL-X watertight by closing the
back of the mouth. VC is computed following Definition 3.1 in the main chapters with
tgeo = 30cm and teucl = 3cm and VG(v) = {u|geo(v,u) > tgeo}. Given an initial mesh Ĩ,
we aim to minimize the objective function

L(qb,qhl ,qhr) =lCLC +lPLP +lHLH +lOLO +lALA +lqhLqh +lq Lq , (A.1)

where qh denote the hand pose vector of the SMPL-X model. Further,

LC =
1

|V {
EI|

Â
v2M{

EI

aa tanh(
fg(v)

a
),

LP =
1

|VEI| Â
v2VEI

g1 tanh(
fg(v)
g2

), and

LH =
1

|VVH |
Â

v2VVH

d1hvi tanh(
fg(v)
d2

),

where fg denotes a function, that for each vertex v finds the closest vertex in self contact
u, or mathematically fg(v) = minu2VG(v) ||v�u||2. hvi denotes the weight per hand vertex
from the hand-on-body prior LH as explained below, if vi is outside, otherwise hvi = 1.
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Further, a = (minu2U (MC) geo(vi,u)+1)�1 is an attraction weight. This weight is higher,
for vertices close to vertices in contact of Ĩ. Lq is a L2 prior that penalizes deviation from
the initial pose and Lqh defines an L2 prior on the left and right hand pose using the a
low-dimensional hand pose space. a = 0.04, g1 = 0.07, g2 = 0.06 define slope and offset
of the pulling and pushing terms. For the hand-on-body-prior we use d1 = 0.023, and
d2 = 0.02 if vi is inside and d1 = d2 = 0.01 if vi is outside the mesh.

Self-contact optimization aims to correct interpenetration and encourage near-contact
vertices to be in contact by slightly refining the poses around the contact regions. Vertices
that are not affected should stay as close to the original positions as possible. In LO, the
displacement of each vertex from its initial position is weighted by its geodesic distance
to a vertex in contact. Given ṽ denoting the position of vertex i of Ĩ, the outside loss term
is

LO = d2 Â
v2V

min
u2U (MC)

geo(v,u)2||v� ṽ||2,

where minu2U (VC) geo(v,u) = 1 if VC = /0 and d2 = 4. Lastly, we use a term, LA, that
encourages the vertex normals N(v) of vertices in contact to be aligned but in opposite
directions:

LA =
1

|MC| Â
(v,u)2VC

1+ hN(v),N(u)i.

Hand-on-Body Prior. Hands and fingers play an important role as they frequently
make contact with the body. However, they have many degrees of freedom, which makes
their optimization challenging. Therefore, we learn a hand-on-body prior from 1279
self contact registrations. For this, we use only poses where the minimum point-to-mesh
distance between hand and body is < 1mm. These are 718 and 701 poses for the right and
left hand, respectively. Since left and right hand are symmetric in SMPL-X, we unite left
and right hand poses. Across the 1429 poses, the mean distances per hand vertex to the
body surface, dm(vi) ranges per vertex from 1.79 to 5.52 cm, as visualized in Fig. A.1.
To obtain the weights hvi in LH , we normalize dm(vi) to [0,1], denoted as s(dm(vi)), and
obtain the vertex weight by hvi =�s(dm(vi))+1.

A.1.2 Mimic-The-Pose (MTP) Data
AMT task details. It can be challenging to mimic a pose precisely. To simplify the
process for workers on AMT, we give detailed instructions, add thumbnails to compare
the own image with the presented one and, most importantly, highlight the contact ar-
eas. To gain more variety, we also request that participants make small changes in the
environment for each image, e.g. by rotating the camera, changing clothes, or turning
lights on/off. We also ask participants to mimic the global orientation of the center im-
age. For more variety in global orientation, we vary body roll from �90� to 90� in 30�
steps, resulting in seven different presented global orientations. For example, in the first
and third row of Fig. 2.7, the center image shows the presented pose from a frontal view.
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Figure A.1: Hand on body prior. Dark blue indicates small distances to body on average
across all registrations where hands are close to the body. The prior is identical for left
and right hand.

In the second and fourth row, the center body has different orientations. We also ask
participants for their height, weight, and gender (M, F, and Non-Binary).

MTP Dataset Details. We sample meshes from 3DCP Scan, 3DCP Mocap, and
AGORA [143] to comprise the presented meshes in MTP datatset. In total, we present
1653 different meshes, from which 1498 (90%) are contact poses following Definition
3.1 in the main document. Of the 1653 meshes, 110 meshes are from 3DCP Scan, 1304
meshes are from 3DCP Mocap, and 159 are from AGORA. We collect at least one im-
age for each mesh. From the 3731 collected images, 3421 (92%) images show a person
mimicking a contact pose. Figure A.2 shows how many image we collected per subset.

SMPLify-XMC Details. We notice that the presented global orientation is not al-
ways mimicked well. For example, in row 4 of Fig. 2.7 the presented global orientation
has a 60 degree rotation, whereas the mimicked image is taken from a frontal view. To
better initialize the optimization, we select the best body orientation, �, among the seven
presented ones based on their re-projection errors; then we compute the camera transla-
tion by again minimizing the re-projection error. We set the initial focal length, fx and
fy, to 2170, which is the average of available EXIF data. These values, along with mean
shape and presented pose are used to initialize the optimization.

In addition, SMPL and SMPL-X have not been trained to avoid self intersection.
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Figure A.2: Image count in MTP Dataset per 3DCP subset.

Therefore, we identify seven body segments that tend to intersect themselves, e.g. torso
and upper arms (see Fig. A.3). We test each segment for self intersection and thereby
filter irrelevant intersections from VI .

A.1.3 Discrete Self-Contact (DSC) Data.

Image selection. Discrete self-contact annotation may be ambiguous and we find some
annotations that we do not consider to be functional self-contact. For example, in
Fig. A.4, some annotators label the left lower arm and left upper arm to be in contact,
because of the slight skin touching at the elbow; we do not treat these as in self-contact.
Therefore, we leverage the kinematic tree structure provided by SMPL-X and, in order
to train TUCH, ignore the following annotations: left hand - left lower arm, left lower
arm - left elbow, left lower arm - left upper arm, left elbow - left upper arm, left upper
arm - torso, left foot - left lower leg, left lower leg - left knee, left lower leg - left upper
leg, left knee - left upper leg, right hand - right lower arm, right lower arm - right elbow,
right lower arm - right upper arm, right elbow - right upper arm, right upper arm - torso,
right foot - right lower leg, right lower leg - right knee, right lower leg- right upper leg,
right knee - right upper leg.
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Figure A.3: In addition, SMPL and SMPL-X have not been trained to avoid self inter-
section. Therefore, we identify seven body segments that tend to intersect themselves,
e.g. torso and upper arms (see Fig. A.3). We test each segment for self intersection and
thereby filter irrelevant intersections from VI . regions where intersection can happen,
since SMPL and SMPL-X are not trained to avoid self intersection. Per segment, we
create closed meshes that allow for individual intersection tests. For self-contact, inter-
sections that happen within a segment are not relevant. The hands are not included in
any segment, because self intersections within hands or between hands and lower arm
are not plausible and need to be resolved.

Figure A.4: Discrete self-contact can be challenging to annotate. Here we show a few
example images that are annotated as having discrete self-contact between the left upper
and lower arm (yellow circle). In the last two images, however, the upper and lower arm
are barely touching. We do not consider these to be in self-contact. Another ambiguous
case, this time due to occlusion, are the two legs in the first image. An annotator can only
assume that the shin and calf are touching, based on semantic knowledge about human
pose.
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Figure A.5: RGB images from 3DCP Scan Scan test set. A subject performing a pose
with self-contact in a 3D body scanner.

A.2 TUCH
Here we provide details of the SMPLify-XMC and SMPLify-DC methods and how we
apply them on MTP and DSC data respectively.

SMPLify-XMC is applied, before the training, to all MTP images to obtain gender-
specific pseudo ground-truth SMPL-X fits. To use these fits for TUCH training, two pre-
processing steps are necessary. First, they are converted to neutral SMPL fits. Second,
we transform the converted SMPL fits to the camera coordinate frame estimated during
SMPLify-XMC. This is necessary since SPIN assumes an identity camera rotation ma-
trix. After that, the data is treated as ground truth during training, which means we apply
the regressor loss directly on the converted SMPL pose and shape parameters without
in-the-loop fitting. On the contrary, SMPLify-DC is applied during TUCH training to
images with discrete self-contact annotations. We run 10 iterations of SMPLify-DC for
each image in a mini batch.

MTP and the DeepFashion subset of DSC do not have ground-truth 2D keypoints but
we find OpenPose detections good enough in both cases. For the 2D re-projection loss,
we use ground-truth keypoints (if available) and OpenPose detections weighted by the
detection confidence.

Implementation details. We initialize our regression network with SPIN weights
[101]. We use the Adam optimizer [92] and a learning rate of 1e�5.
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MPJPE # PA-MPJPE #
SPIN 96.9 59.2
TUCH (MTP) 88.7 57.4
TUCH (MTP+DSC) 84.9 55.5
Table A.1: Ablation of MTP data and DSC data.

A.3 Evaluation
3DCP Scan test images. During the scanning process when creating 3DCP Scan, we
also take RGB photos of subjects being scanned, as shown in Figure A.5. These images
have high-fidelity ground-truth poses and shapes from the registration process, making
them a good test set for evaluation purposes. It is worth noting again that TUCH has
never seen these images or subjects, but the contact poses were mimicked in creation of
MTP, which is used in training TUCH.

TUCH. In Fig. 2.14 we visualize the improvement of TUCH over SPIN qualitatively.
One can see that TUCH reconstructs bodies with better self-contact and less interpene-
tration (row 1 and row 2). Fig. 2.15, on the other hand, shows examples where SPIN is
better than TUCH. Four of the images in Fig. 2.15 do not show the full body (rows 3, 4,
5, and 8). A possible reason why SPIN is better than TUCH in these cases is that MTP
images always show the full body of a person, thus TUCH could be more sensitive to
occlusion than SPIN.

We also evaluate the contribution of MTP data by finetuning SPIN only with it. The
results are reported in Table A.1, where TUCH (MTP+DSC) is the same as reported in
Chapter 2. This experiment shows that MTP data alone is already sufficient to signifi-
cantly improve state-of-the-art (SOTA) methods on 3DPW benchmarks. This suggests
that the MTP approach is a useful new tool for gathering data to train neural networks.
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B.1 Method
Including children. Since SMPL [123] only models adult body shapes, most human
pose and shape regressors do not consider child body shapes explicitly. However, we
found that FlickrCI3D Signatures does include images of children (roughly 10% of the
images). Following the SMPLA [143] convention, BEV also estimates a scale param-
eter s, which is used to interpolate between SMPL [123] (adult model) and SMIL [65]
(infant model) for the template meshes and shape blend shapes. A scale value of s = 0.0
is equivalent to SMPL only, a scale value of s = 1.0 is equivalent to SMIL only and all
the values in between model intermediate stages. To extend this from SMPL to SMPL-X,
we use the scale parameter estimated by BEV to interpolate between the SMPL-X and
the SMIL template and shape blend shapes in SMPL-X topology. We visually found that
this interpolation works well for s  0.8, so we exclude pairs where the detected scale is
s > 0.8 for one of the interaction partners.

B.1.1 Preprocessing
Matching input detections. As input, we have the estimated 3D bodies from BEV
[190] and we have a dataset of ground-truth human-human contacts. The bodies in these
two data sources are not in correspondence. To generate the pseudo-ground truth, we
must first automatically put them in correspondence so that we can optimize the BEV
bodies by exploiting the contact information.

In particular, we have (1) detected meshes from BEV, (2) 2D keypoint detections
from ViTPose [221], and (3) ground-truth bounding boxes indicating the interacting pair
of humans. We observed that the ground-truth bounding boxes typically match with
the bounding boxes surrounding OpenPose [23] keypoint detections. As a result, we
only need to correspond the OpenPose detections with ViTPose detections and the BEV
bodies. Since we can reproject the 3D joints from BEV bodies to 2D keypoints, both
correspondence problems require us to solve the assignment between sets of 2D key-
points. To do this, we compute a keypoint-cost matrix taking the detection confidence
scores into account. We only consider keypoints with confidence score greater than 0.6
(for BEV all keypoints have by default a score of 1.0 due to the amodal prediction of
the human body). We make assignments in a greedy way, while also setting a threshold
(0.008) to discard matches with large matching distance.

Merging keypoints. Qualitatively, we found that ViTPose performs better than
OpenPose, particularly for people that are heavily occluded. Since ViTPose (unlike
OpenPose) does not detect keypoints on the feet, we can extend the ViTPose body detec-
tions with feet keypoints detected by OpenPose. We perform this extension only if the
L2 distance between ViTPose and OpenPose ankles is less than 5 pixels. Additionally,
since many images in FlickrCI3D Signatures include people that are truncated below the
waist, we often have missing or wrong keypoint detections for the lower body. Because
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of this, we use the projected BEV ankle joints, when the ankle keypoint detection confi-
dence score is less than 0.2. Finally, the original keypoint values korig are normalized by
the keypoint bounding box size via k = korig/(max(bbheight,bblength)⇤512). These steps
give us a set of 2D keypoints that we use to generate the pseudo-ground truth fits using
optimization.

SMPL to SMPL-X body shape conversion. Our method takes BEV estimates as in-
put and optimizes them to fit the image evidence. Since BEV estimates meshes in SMPL
topology and the ground-truth contact maps are provided in SMPL-X format, we transfer
the BEV estimate to SMPL-X. Ideally, one would fit SMPL-X to SMPL via optimiza-
tion. This process is time consuming and we found that it is sufficient to initialize the
optimization routine with SMPL pose parameters. For body shape, we solve for SMPL-X
body shape using a simple least-squares optimization. The shaped vertices, VSMPL and
VSMPL-X, are obtained via

VSMPL = TSMPL +DSMPLbSMPL, and
VSMPL-X = TSMPL-X +DSMPL-XbSMPL-X,

(B.1)

where TSMPL and TSMPL-X are the SMPL and SMPL-X template meshes, DSMPL and
DSMPL-X the shape blend shapes, and bSMPL and bSMPL-X the shape parameters. Only
bSMPL-X is unknown. Since the topology between SMPL and SMPL-X is different,
we use a SMPL-to-SMPL-X vertex mapping M 2 R10475⇥6890, such that DSMPL-X =
MDSMPL. Then we can directly solve for body shape, bSMPL-X, in a least-squares man-
ner:

bSMPL-X = (DT
SMPL-XDSMPL-X)

�1DT
SMPL-XMDSMPLbSMPL

B.1.2 Optimization

In Table B.1 we define the weights of each loss term. Every optimization runs for a
maximum of 1000 iterations per stage. For termination , we use early stopping and we
keep track of the loss value at the latest 10 iterations. We use these values to fit a line
with linear regression f (x) = ax+b and terminate if a <�1e�4. If run for two stages,
the second stage’s reference poses, q0, which are used in Lq̃ , are taken to be the output
/ last pose of the first stage. We provide pseudo code below in Listing 1 showing the
BUDDI optimization routine.

B.1.3 Diffusion model

Transformer architecture. To embed each body model parameter xi j of person j 2
{1,2} and parameters i 2 {�,q ,b ,�} of size di in the latent space dimension dl = 152,
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lJ2D lq̃ lq lb lCB ldmin lP lqBUDDI l�BUDDI lbBUDDI lVAE

Flickr Fits 0.04/0.1 200/200 4/4 40/0 10/10 0/0 0/1000 0/0 0/0 0/0 0/0
BUDDI 0.02/0.02 200/200 0/0 0/0 0/0 0/0 0/10 100/100 10/10 1e5/1e5 0/0
VAE 0.02/0.1 200/200 2/2 40/0 0/0 0/0 0/0.1 0/0 0/0 0/0 1/1
Heuristics 0.02/0.1 200/200 2/2 40/0 0/0 1e5/1e5 0/0.1 0/0 0/0 0/0 0/0
Heuristics (a) 0.04/0.1 200/200 4/4 40/0 0/0 1e5/1e5 0/1000 0/0 0/0 0/0 0/0
Heuristics (b) 0.02/0.02 200/200 4/4 40/0 0/0 1e5/1e5 0/10 0/0 0/0 0/0 0/0

Table B.1: Weights of the different loss term during the optimization. We consider
the case of using pseudo-ground truth contact maps, the heuristics, and BUDDI. Opti-
mizations with BUDDI and pseudo-ground truth are run for two stages. The optimization
with heuristics converges quickly so a single stage is enough.

we use linear-SiLU-linear sequences:

fi j(xi j) = SiLU(xi jAT
i j +bi j)BT

i j + ci j,

where Ai j 2Rdl⇥di , bi j 2Rdl , Bi j 2Rdl⇥dl , and ci j 2Rdl . After passing these parameters
through the transformer, we again use a linear-SiLU-linear sequence to project them back
into their original dimension di. When BUDDI is trained with BEV [190] conditioning,
we embed the conditioning in a similar fashion as the ground truth parameters, concate-
nate them along the token dimension, and add per-person and per-parameter embedding
layers. In Fig. B.1, we show the design of our conditional model.

B.2 Training and Testing Datasets

B.2.1 Flickr Fits

We split the Flickr [41] training images into training and validation sets and use the pro-
vided test split for testing. Fits can be noisy for example, when the assignment between
contact annotations and keypoints is wrong or when keypoint detectors fail badly. To
provide a reliable test set for 3D pose for images taken in the wild, we manually curate
the Flickr Fits test set and detect 24 out of 1427 noisy fits. The final curated Flickr Test
dataset contains 1403 interactions. We do not curate the training dataset. We further
evaluate the optimization method with ground truth contact maps on CHI3D (53/50mm
PER-PERSON PA-MPJPE and 80mm JOINT PA-MPJPE) and on FlickrCI3D Signatures
(45/87/97/99/100 PCC for radius 5/10/15/20/25).
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Figure B.1: Detailed architecture of BUDDI with conditioning. When BUDDI is con-
ditioned on model parameters, cH, detected from BEV [190], we concatenate the detected
parameters (body global orientation, pose, shape, and translation for person a/b), with the
input parameters along the token dimension and add per-person and per-parameter em-
bedding vectors.
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B.2.2 Hi4D
Hi4D [227] is a MoCap dataset containing interaction between 20 pairs of people. Each
pair performs about five interactions such as dancing, fighting, hugging, doing yoga,
talking, etc. We split this dataset by subject pair into 14/3/3 for train/val/test. We use
subjects [00, 01, 02, 09, 10, 13, 14, 17, 18, 21, 23, 27, 28, 37] for training, [16,19,22]
for validation, and [12, 15, 32] for testing. Since Hi4D was originally provided in SMPL
format, we fit SMPL-X to the estimates via optimization using the code provided in the
SMPL-X repository [144]. The dataset provides a start and end frame from/to which
each sequence involves physical contact between two people. We use every 5th frame
from the contact sequence for training and testing.

B.2.3 CHI3D
CHI3D [41] is a MoCap dataset containing interactions between 3 pairs of people. Each
pair performs eight interactions (grab, handshake, hit, holding hands, hug, kick, posing,
and push) in various ways summing up to a total of about 120 sequences per subject pair.
We use subjects [02, 04] for training and leave [03] for evaluation. Each sequence has a
single frame with contact labels. We use this frame from each sequence for training and
evaluation.

B.3 Evaluation

B.3.1 Baseline Methods
Transformer

We use the network design of BUDDI, i.e. embedding, person, and parameter layers, the
transformer encoder block and layers to bring the latents back into parameter space. The
network takes BEV [190] estimates as input and its task is to predict the correct SMPL-X
parameters. We train this network on the same data as the conditional version of BUDDI.
This baseline is equivalent to a single-shot (non-iterative) version of our diffusion model.

Contact Heuristic

We design an optimization method which is similar to the routine we use to create Flickr
Fits, but replaces the LC D , i.e. the loss that takes ground-truth contact maps into account,
with a contact heuristic loss Ldmin . The contact heuristic loss encourages contact between
the two people by minimizing their minimum distance. Given the vertices of each mesh,
v 2VX1 and u 2VX2, we define the contact heuristic loss as

Ldmin = min
v,u

||v�u||
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and the overall objective function to be minimized becomes

LHeuristic-fitting =lJLJ +lq̄ Lq̄ +lq Lq+

l�L�+lPLP +ldminLdmin .
(B.2)

BUDDI (gen.)

The conditional version of BUDDI can generate human meshes in close social interaction
from noise given a BEV estimate. We use these generations to initialize the optimization
routine and evaluate them against the ground truth.

VAE

We also compare against VAE [94] using the same training data. This model projects the
SMPL-X parameters of two people into latent vectors of size 64, modeling a distribution,
and from the latent space back into parameter space. Similar to the design of BUDDI,
we embed each parameter via an MLP. We use two encoder and two decoder layers. The
VAE training loss is

LVAE-training = Lq +Lb +Lg +Lv2v +LKL.

We use the same body model parameter losses as during BUDDI training. LKL is a
standard KL-divergence loss between two Gaussians:

LKL = log
s2

s1
+

s2
1 +(µ1 �µ2)2

2s2
2

� 1
2

During optimization, instead of optimizing body model parameters, we optimize in
the VAE’s latent space. The optimization objective is:

LVAE-fitting =lJLJ +lq̄ Lq̄ +lq Lq+

l�L�+lPLP +lVAELVAE,
(B.3)

where LVAE denotes a squared L2-loss on the VAE latent vector.

Ablation of baseline methods

We run our baseline methods under different conditions, i.e. we use different weights for
the Heuristic for a better comparison against the weights used in Flickr Fits and when
optimizing with BUDDI used as a prior. The loss weights of Heuristic (a) are similar to
those of Flickr Fits and the weights of Heuristic (b) to those of BUDDI. We report these
numbers in Table B.2, Table B.3, and Table B.4.
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PER PERSON # JOINT # JOINT PA-MPJPE #
PA-MPJPE PA-MPJPE backhug basketball cheers dance fight highfive hug kiss pose sidehug talk

Heuristic 67 / 71 121 168 83 94 131 94 68 159 159 118 113 109
Heuristic (a) 68 / 72 122 166 82 93 126 92 68 161 158 122 122 114
Heuristic (b) 68 / 73 124 164 90 92 130 95 68 161 158 125 124 117

Table B.2: Evaluation of BUDDI on Hi4D. We compare the output of BUDDI to the
proposed baseline methods on the Hi4D challenge. The first block shows methods that
do not use Hi4D data during training or are optimization based without access to priors
trained on Hi4D. BUDDI (F,C) in particular, is our model BUDDI trained on Flickr and
CHI3D data only. All errors are reported in mm for 3D Joints.

PER PERSON # JOINT #
PA-MPJPE PA-MPJPE

Heuristic 49 46 105
Heuristic (a) 49 47 103
Heuristic (b) 47 45 103

Table B.3: Quantitative Evaluation on CHI3D. We compare different versions of the
baseline optimization with contact heuristic on CHI3D (pair s03). All errors reported in
mm for 3D Joints.

JOINT #
PA-MPJPE

PCC at radius "
5 10 15 20 25

Heuristic 68 14 34 49 61 70
Heuristic (a) 69 11 30 45 57 66
Heuristic (b) 72 12 30 45 57 67

Table B.4: 3D Pose Evaluation on FlickrCI3D Signatures. We compare different ver-
sions of the baseline optimization with contact heuristic on the Flickr fits using their joint
(two-person) PA-MPJPE expressed in mm. We also evaluate the percentage of correct
contact points (PCC) for radius r mm.
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B.3.2 User study
We provide several quantitative evaluations of BUDDI but there are aspects of human
interaction that are subtle and best judged by people. In the main part of this thesis
we present the results of the perceptual study that evaluates how realistic the generated
interactions sampled from BUDDI are compared to meshes sampled from a VAE, the
training data, and a random configuration of meshes. For this evaluation, we randomly
sample 256 meshes from one training batch of size 512 created with a 60/20/20 ratio of
meshes from Flickr/Hi4D/CHI3D. The meshes from the training batch are real samples
from MoCap or by fitting SMPL-X to images with ground-truth contact map annotations.
We further sample 256 meshes from BUDDI (unconditional model) and the VAE. To
create the random baseline, we center all meshes in the training batch, shuffle the people
along batch and person dimensions, and sample 256 mesh pairs. This is equivalent to
real samples, except that each person are sampled randomly and not as a pair. Each
participant was asked to rate 68 video comparisons per human intelligence task (HIT)
with each video showing one pair of meshes at 360-degree views. Each HIT starts with
10 training videos (not used in evaluation) and contains 10 catch trials. Catch trials
show implausible interaction, e.g. two people with random poses placed on top of each
other. The training videos are presented at the beginning of the task, and the method
and catch trial videos appear in random order. The remaining 48 comparisons show
one sample from BUDDI against either VAE / random baseline / or training data (12
comparisons per method). We randomly shuffle the video order per HIT and left / right.
Each HIT is conducted by 6 participants. We exclude HITS where participants fail three
or more catch trials. Our final results were computed with the responses from the 83/96
participants who passed.

1 import smplx
2 import buddi
3

4 # optimization params
5 num_stages = 2
6 max_iterations = 100
7 t = 10 # noise level
8

9 # create smpl and buddi
10 smpl = smplx.create(model_folder)
11

12 # load buddi denoiser model (D)
13 buddi = buddi.create(checkpoint_path).eval()
14

15 # load detected keypoints and bev
16 kpts = load_keypoint_detections(img_path)
17 bev = load_bev_estimate(img_path)
18
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19 # sample from buddi conditioned on BEV
20 buddi_sample = sample_from_buddi(cond=bev)
21

22 # initialize the optimization
23 smpl.params = buddi_sample
24

25 # run optimization
26 for ss in range(num_stages):
27 optimizer = setup_optimizer(smpl, ss)
28

29 for ii in range(max_iterations):
30 # fitting losses
31 fitting_loss = get_fitting_loss(
32 smpl, buddi_sample, kpts)
33

34 # detach current smpl, then diffuse & denoise
35 with torch.no_grad():
36 diffused_smpl = smpl + sample_noise(t)
37 denoised_smpl = buddi(diffused_smpl, t)
38

39 # compute diffusion losses
40 diffusion_loss = get_diffusion_loss(
41 smpl, denoised_smpl)
42

43 # final loss of iteration ii of stage ss
44 total_loss = fitting_loss + diffusion_loss
45

46 # backprop
47 optimizer.zero_grad()
48 total_loss.backward()
49 optimizer.step()
50

51 # check stopping criterium
52 if converted:
53 break

Listing B.1: Pseudo code for optimization with BUDDI.
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C.1 Data Collection

C.1.1 Model-Agency Identity Filtering
We collect internet data consisting of images and height/chest/waist/hips measurements,
from model agency websites. A “fashion model” can work for many agencies and their
pictures can appear on multiple websites. To create non-overlapping training, valida-
tion and test sets, we match model identities across websites. To that end, we use
ArcFace [32] for face detection and RetinaNet [33] to compute identity embeddings
Ei 2 R512 for each image. For every pair of models (q, t) with the same gender la-
bel, let Q, T be the number of query and target model images and EQ 2 RQ⇥512 and
ET 2 RT⇥512 the query and target embedding feature matrices. We then compute the
pairwise cosine similarity matrix S 2RQ⇥T between all images in EQ and ET , and the
aggregate and average similarity:

ST (t) =
1
Q Â

q
S (q, t), (C.1)

ST Q =
1

QT Â
q

Â
t

S (q, t). (C.2)

Each pair with S and ST that has no element larger than the similarity threshold t = 0.3
is ignored, as it contains dissimilar models. Finally, we check if ST Q is larger than t ,
and we keep a list of all pairs for which this holds true.

C.2 Mapping Shape Representations

C.2.1 Shape to Anatomical Measurements (S2M)
An important part of our project is the computation of body measurements. Fol-
lowing “Virtual Caliper” [155], we present a method to compute anatomical mea-
surements from a 3D mesh in the canonical T-pose, i.e. after “undoing” the ef-
fect of pose. Specifically, we measure the height, H(�), weight, W (�), and the
chest, waist and hip circumferences, Cc(�), Cw(�), and Ch(�), respectively. Let
vhead(�),vleft heel(�),vchest(�),vwaist(�),vhip(�) be the head, left heel, chest, waist and
hip vertices. H(�) is computed as the difference in the vertical-axis “Y” coordinates
between the top of the head and the left heel: H(�) = |vy

head(�)� vy
left heel(�)|. To ob-

tain W (�) we multiply the mesh volume by 985 kg/m3, which is the average human
body density. We compute circumference measurements using the method of Wuhrer
et al. [214].

Here, T 2RF⇥3⇥3, where F = 20,908 is the number of triangles in the SMPL-X mesh,
denotes “shaped” vertices of all triangles of the mesh M(�,✓); we drop expressions,
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Figure C.1: Automatic anatomical measurements on a 3D mesh. The red points lie on
the intersection of planes at chest/waist/hip height with the mesh, while their convex hull
is shown with black lines.

 , which are not used in this work. Let us explain this using the chest circumference
Cc(�) as an example. We form a plane P with normal n = (0,1,0) that crosses the
point vchest(�). Then, let I = {pi}N

i=1 be the set of points of P that intersect the body
mesh (red points in Fig. C.1). We store their barycentric coordinates (ui,vi,wi) and the
corresponding body-triangle index ti. Let H be the convex hull of I (black lines in
Fig. C.1), and E the set of edge indices of H .

Cc(�) is equal to the length of the convex hull:

Cc(�) = Â
(i, j)2E

�������

0

@
ui
vi
wi

1

A
>

Tti �

0

@
u j
v j
w j

1

A
>

Tt j

�������
2

, (C.3)

where i, j are point indices for line segments of E . The process is the same for
the waist and hips, but the intersection plane is computed using vwaist,vhip. All of
H(�),W (�),Cc(�),Cw(�),Ch(�) are differentiable functions of body shape parameters,
�.

Note that SMPL-X knows the height distribution of humans and acts as a strong prior
in shape estimation. Given the ground-truth height of a person (in meter), H(�) can be
used to directly supervise height and overcome scale ambiguity.
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Model Input V2V mean ± std
Females Males

Mean Shape 18.01 ± 8.73 19.24 ± 10.36
Linear Regression A 10.83 ± 4.77 10.43 ± 4.63
Polynomial (d=2) A 10.58 ± 4.67 10.25 ± 4.48
MLP A 10.73 ± 4.62 10.33 ± 4.57

Linear Regression A+H+W 7.00 ± 2.59 6.56 ± 2.21
Polynomial (d=2) A+H+W 7.31 ± 2.56 6.71 ± 2.21
MLP A+H+W 7.03 ± 2.6 6.68 ± 2.24
Linear Regression A+H+ 3pW 6.97 ± 2.58 6.54 ± 2.22
Polynomial (d=2) A+H+ 3pW 6.88 ± 2.55 6.49 ± 2.20

Table C.1: Comparison of models for A2S and AHW2S regression.

C.2.2 Mapping Attributes to Shape (A2S)

We introduce A2S, a model that maps the input attribute ratings to shape components �
as output. We compare a 2nd degree polynomial model with a linear regression model and
a multi-layer perceptron (MLP), using the Vertex-to-Vertex (V2V) error metric between
predicted and ground-truth SMPL-X meshes, and report results in Tab. C.1. When using
only attributes as input (A2S), the polynomial model of degree d = 2 achieves the best
performance. Adding height and weight to the input vector requires a small modification,
namely using the cubic root of the weight and converting the height from (m) to (cm).
With these additions, the 2nd degree polynomial achieves the best performance.

C.2.3 Images to Attributes (I2A)

We briefly experimented with models that learn to predict attribute scores from images
(I2A). This attribute predictor is implemented using a ResNet50 for feature extraction
from the input images, followed by one MLP per gender for attribute score prediction. To
quantify the model’s performance, we use the attribute classification metric described in
Chapter 4. I2A achieves 60.7 / 69.3% (fe-/male) of correctly predicted attributes, while
our S2A achieves 68.8 / 76% on CAESAR. Our explanation for this result is that it is
hard for the I2A model to learn to correctly predict attributes independent of subject pose.
Our approach works better, because it decomposes 3D human estimation into predicting
pose and shape. Networks are good at estimating pose even without ground-truth shape
[112]. “SHAPY ’s losses” affect only the shape branch. To minimize these losses, the
network has to learn to correctly predict shape irrespective of pose variations.
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Figure C.2: The 20K body mesh surface points (in black) used to evaluated body shape
estimation accuracy.

C.3 SHAPY - 3D Shape Regression from Images
Implementation details. To train SHAPY, each batch of training images contains 50%
images collected from model agency websites and 50% images from ExPose’s [27] train-
ing set. Note that the overall number of images of males and females in our collected
model data differs significantly; images of female models are many more. Therefore, we
randomly sample a subset of female images so that, eventually, we get an equal number
of male and female images. We also use the BMI of each subject, when available, as a
sampling weight for images. In this way, subjects with higher BMI are selected more
often, due to their smaller number, to avoid biasing the model towards the average BMI
of the dataset.

Our pipeline is implemented in PyTorch [142] and we use the Adam [93] optimizer
with a learning rate of 1e� 4. We tune the weights of each loss term with grid search
on the MMTS and HBW validation sets. Using a batch size of 48, SHAPY achieves the
best performance on the HBW validation set after 80k steps.

C.4 Experiments

C.4.1 Metrics
P2P20K. SMPL-X has more than half of its vertices on the head. Consequently, comput-
ing an error based on vertices overemphasizes the importance of the head. To remove this
bias, we also report the mean distance between P= 20k mesh surface points; see Fig. C.2
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Mean absolute error (mm) #
Method Height Chest Waist Hips
SHAPY-H 52 113 172 108
SHAPY-HA 60 64 96 77
SHAPY-C 119 66 70 70
SHAPY-CA 74 60 82 69
SHAPY-HC 54 62 72 69
SHAPY-HCA 57 61 85 73
Table C.2: Leave-one-out evaluation on MMTS.

Mean absolute error (mm) #
Method Height Chest Waist Hips P2P20K
SHAPY-H 54 90 77 54 22
SHAPY-HA 49 62 71 58 20
SHAPY-C 72 65 77 60 26
SHAPY-CA 54 69 78 58 22
SHAPY-HC 53 61 77 55 23
SHAPY-HCA 47 66 75 52 20
Table C.3: Leave-one-out evaluation on the HBW test set.

for a visualization on the ground-truth and estimated meshes. For this, we uniformly
sample the SMPL-X template mesh and compute a sparse matrix HSMPL-X 2 RP⇥N that
regresses the mesh surface points from SMPL-X vertices V , as P = HSMPL-XV .

To use this metric in a mesh with different topology, e.g. SMPL, we simply need to
compute the corresponding HSMPL. For this, we align the SMPL model to the SMPL-X
template mesh. For each point sampled from the SMPL-X mesh surface, we find the
closest point on the aligned SMPL mesh surface. To obtain the SMPL mesh surface
points from SMPL vertices, we again compute a sparse matrix, HSMPL 2 RP⇥6,890. The
distance between the SMPL-X and SMPL mesh surface points on the template meshes
is 0.073 mm, which is negligible.

Given two meshes M1 and M2 of topology T1 and T2 we obtain the mesh surface points
P1 = HT1U1 and P2 = HT2U2, where U1 and U2 denote the vertices of the shaped zero
posed (t-pose) meshes. To compute the P2P20K error we correct for translation t = P̄2�P̄1
and define

P2P20K(U1,U2) = ||HT1U1 + t �HT2U2||22.
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Attribute Male Female
MAE ± SD CCP MAE ± SD CCP

Big 0.25±0.18 71.68% 0.31±0.23 70.00%
Broad Shoulders 0.26±0.20 73.75% 0.33±0.24 63.90%
Long Legs 0.23±0.17 81.12% 0.43±0.33 58.05%
Long Neck 0.27±0.21 73.75% 0.29±0.21 69.51%
Long Torso 0.27±0.20 70.80% 0.36±0.27 62.68%
Muscular 0.31±0.24 69.03% 0.26±0.21 73.17%
Short 0.28±0.22 72.27% 0.27±0.21 67.56%
Short Arms 0.20±0.15 84.07% 0.27±0.22 72.20%
Tall 0.27±0.22 70.80% 0.30±0.23 70.98%
Average 0.27±0.19 78.76% n / a n / a
Delicate Build 0.21±0.16 78.17% n / a n / a
Masculine 0.23±0.18 78.17% n / a n / a
Rectangular 0.27±0.20 80.24% n / a n / a
Skinny Arms 0.25±0.19 76.40% n / a n / a
Soft Body 0.32±0.23 68.14% n / a n / a
Large Breasts n / a n / a 0.31±0.23 72.93%
Pear Shaped n / a n / a 0.32±0.22 64.39%
Petite n / a n / a 0.40±0.30 61.95%
Skinny Legs n / a n / a 0.25±0.18 81.22%
Slim Waist n / a n / a 0.30±0.23 71.71%
Feminine n / a n / a 0.26±0.20 73.41%

Table C.4: S2A evaluation. We report mean, standard deviation and percentage of cor-
rectly predicted classes per attribute on CMTS test set.

C.4.2 Shape Estimation

Attribute/Measurement ablation. To investigate the extent to which attributes can re-
place ground truth measurements in network training, we train SHAPY’s variations in a
leave-one-out manner: SHAPY-H uses only height and SHAPY-C only hip/waist/chest
circumference. We compare these models with SHAPY-AH and SHAPY-AC, which use
attributes in addition to height and circumference measurements, respectively. For com-
pleteness, we also evaluate SHAPY-HC and SHAPY-AHC, which use all measurements;
the latter also uses attributes. The results are reported in Tab. C.2 (MMTS) and Tab. C.3
(HBW). The tables show that attributes are an adequate replacement for measurements.
For example, in Tab. C.2, the height (SHAPY-C vs. SHAPY-CA) and circumference
errors (SHAPY-H vs. SHAPY-AH) are reduced significantly when attributes are taken
into account. On HBW, the P2P20K errors are equal or lower, when attribute informa-
tion is used, see Tab. C.3. Surprisingly, seeing attributes improves the height error in all
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Model MPJPE PA-MPJPE

HMR [87] SMPL 130 81.3
SPIN [101] SMPL 96.9 59.2
TUCH [136] SMPL 84.9 55.5
EFT [83] SMPL - 54.2
HybrIK [112] SMPL 80.0 48.8
STRAPS [174]* SMPL - 66.8
Sengupta et al. [176]* SMPL - 61.0
Sengupta et al. [175]* SMPL 84.9 53.6
ExPose [27] SMPL-X 93.4 60.7
SHAPY (ours) SMPL-X 95.2 62.6

Table C.5: Evaluation on 3DPW [207]. * uses body poses sampled from the 3DPW
training set for training.

three variations. This suggests that training on model images introduces a bias that A2S
antagonizes.

S2A. Table C.4 shows the results of S2A in detail. All attributes are classified correctly
with an accuracy of at least 58.05% (females) and 68.14% (males). The probability of
randomly guessing the correct class is 20%.

AHWC and AHWC2S noise. To evaluate AHWC’s robustness to noise in the input,
we fit AHWC using the per-rater scores instead of the average score. The P2P20K # error
only increases by 1.0 mm to 6.8 when using the per-rater scores.

C.4.3 Pose evaluation
3D Poses in the Wild (3DPW) [207]: This dataset is mainly useful for evaluating body
pose accuracy since it contains few subjects and limited body shape variation. The test
set contains a limited set of 5 subjects in indoor/outdoor videos with everyday clothing.
All subjects were scanned to obtain their ground-truth body shape. The body poses are
pseudo ground-truth SMPL fits, recovered from images and IMUs. We convert pose and
shape to SMPL-X for evaluation.

We evaluate SHAPY on 3DPW to report pose estimation accuracy (Tab. C.5).
SHAPY’s pose accuracy is slightly behind ExPose which also uses SMPL-X. SHAPY’s
performance is better than HMR [87] and STRAPS [174]. However, SHAPY is less accu-
rate than recent pose estimation methods, e.g. HybrIK [112]. We assume that SHAPY’s
pose estimation accuracy on 3DPW can be improved by (1) adding data from the 3DPW
training set (similar to Sengupta et al. [175] who sample poses from 3DPW training set)
and (2) creating pseudo ground-truth fits for the model data.
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