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Abstract
Since the advent of computers, perceiving the world visually has been a major focus of
research. Today, raster graphics are the most popular format for storing arbitrary visual
data. This choice of representation carries major advantages, primarily high flexibility and
suitability for hardware acceleration. However, increasing the size of images leads to well-
known blurring or pixelization artifacts. The field of super resolution (SR) investigates
methods to improve the quality of enlarged visual data.

This work is structured into two sections: making strides towards more realistic and
efficient SR, and improving the architecture and evaluation of deep generative models that
form the foundation on which today’s best SR methods are built. While prior art has pri-
marily focused on improving network architechtures of deep neural networks, we propose
a shift in focus to the loss functions used to train the models. We present EnhanceNet,
a novel method that achieves state-of-the-art quantitative and qualitative image quality
in SR through a novel set of training objectives. A combination of perceptual, style, and
adversarial networks applied to the task of SR leads to previously unattainable visual
fidelity at large scaling factors. Extending image SR methods to video data is regularly
achieved through feeding a number of neighbouring frames into a neural network that is
applied in a sliding window across time. The major shortcoming of this common approach
lies in its low computational efficiency as each frame is processed independently several
times, and the resulting temporal instabilities in the outputs. We propose Frame-Recurrent
Video Super Resolution, a method that recurrently uses the output of the last frame to
upsample the next one. The method achieves state-of-the-art video SR quality while vastly
improving computational requirements and temporal consistency.

GANs are a method as powerful, as difficult to train, regularly suffering from failures
due to bad gradients. We propose Tempered Adversarial Networks, a novel way to
auto-stabilize GAN training through the introduction of a lens module that modifies
real data samples to look more similar to generated ones throughout training. A range
of experiments shows the promise of such techniques in improving gradients for the
generator and therefore improving success rates of training. Measuring the success of
these methods is known to be a challenging task, as it implies matching distributions rather
than pairs of samples. We define Precision and Recall for Distributions which disentangles
a measure of quality of samples from coverage of the original data distribution. We close
with Regularized AutoEncoders, a study into differences and similarities between Auto
Encoders, VAEs and several forms inbetween. The major finding is that stochastic VAEs
are not always required for the task they are set out to solve, and simpler RAEs often
outperform their stochastic counterparts.
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Kurzfassung
Seit dem Beginn von Computern ist die visuelle Wahrnehmung der Welt einer der wich-
tigsten Forschungsschwerpunkte. Während Rastergrafiken das üblichste Format zur Verar-
beitung beliebiger visueller Daten sind, führt die Vergrößerung von Bildern zur bekannten
Verpixelung dieser. Das Gebiet der Super Resolution (SR) untersucht Methoden zur
Verbesserung der Qualität von vergrößerten Bildern und Videos.

Diese Arbeit ist in zwei Abschnitte gegliedert: Fortschritte zu realistischer und effizien-
ter SR, sowie die Verbesserung der Architektur und Evaluation generativer Modelle, auf
denen die aktuell besten SR-Methoden basieren.

Während sich die meiste Forschung hauptsächlich auf die Verbesserung von Netz-
werkarchitekturen tiefer neuronaler Netzwerke konzentriert haben, schlagen wir einen
Schwerpunktwechsel hin zu Losses vor, die zum Optimieren der Modelle verwendet
werden. Wir präsentieren EnhanceNet, eine Methode, die durch eine neuartige Kombina-
tion aus perzeptueller, stilistischer und sog. adversarial Losses eine bisher unerreichte
Bildqualität in der SR erreicht.

Die Anwendung von SR-Methoden auf Videodaten wird oft durch das Einspeisen
einer bestimmten Anzahl benachbarter Videobildern in ein neuronales Netzwerk erreicht,
was nicht nur ineffizient ist, sondern oftmals zum Flickern in der Ausgabe führt. Wir
präsentieren Frame-Recurrent Video Super Resolution, eine Methode, die die Ausgabe für
das vorherige Videobild rekurrent weiterverwendet, um das nächste zu vergrößern. Die
Methode übertrifft damit sämtliche bisherige Video SR Methoden nicht nur in Bildqualität,
sondern verbessert auch die Rechenanforderungen und temporale Konsistenz.

GANs sind eine ebenso mächtige, wie schwer zu optimierende Methode, die häufig
aufgrund schlechter Gradienten zum Totalversagen führt. Wir präsentieren Tempered
Adversarial Networks, eine neuartige Methode zur automatischen Stabilisierung des
Trainings durch die Einführung eines dritten Moduls, welches reale Datenpunkte so
modifiziert, dass sie den generierten ähnlicher aussehen. Eine Reihe von Experimenten
belegt das Potenzial dieser Technik zur Stabilisierung des Trainings.

Die Evaluation solcher Methoden gilt als eine extrem herausfordernde Aufgabe. Wir
präsentieren Precision and Recall for Distributions, eine neue Evaluationsmetrik, die die
Qualität von Daten von ihrer Abdeckung der Originalverteilung entkoppelt, und damit
eine genauere Evaluation von generativen Modellen erlaubt.

Zum Abschluss präsentieren wir Regularized Autoencoders (RAE), eine Untersuchung
von Autoencodern, VAEs, und mehrerer Zwischenformen. Die Haupterkenntnis ist, dass
VAEs in der Praxis nicht immer erforderlich sind, sondern dass simple RAE oft ihre
stochastischen Gegenstücke übertreffen.
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Chapter 1

Introduction

Image reconstruction has a long history in computer vision due to its numerous applica-
tions. In its purest form, the task of image reconstruction is to simply improve image
quality. There are a number of different subfields such as denoising, deblurring, demo-
saicing, defencing and dehazing. This thesis contains advances in deep neural networks
for image and video reconstruction on the one hand, and deep generative models for data
modeling and synthesis on the other hand. For image reconstruction, we focus on the task
of super-resolution, though all proposed methods can be easily extended to further tasks.

A flexible and one of the most commonly used representations of images in computer
systems are raster graphics. Raster graphics allow full flexibility over the contents of
the image, however they have a severe limitation when it comes to enlarging images:
they will look pixelated when zoomed in, and commonly used methods such as Bicubic
interpolation lead to blurry results that lack details and are unpleasing to the eye. This
need has sparked a great interest in the research of super-resolution which studies methods
of increasing the resolution of images and videos. While classical methods based on signal
processing lead to mediocre results, recent advances in machine learning and especially
in deep learning have significantly improved popular benchmarks over the years.

Chapter 2 cites Sajjadi et al. (2017) which has been published and orally presented
at ICCV 2017. We investigate the question of the correct loss function to use for the
task of single image super-resolution. Almost all prior work in the field of single image
super-resolution has focused on finding techniques to more efficiently handle the data and
on the design of deeper network architectures while neglecting the importance of the loss
function needed to achieve a higher perceived image quality. While the common choice
for a training objective is the mean squared error (MSE), it is known to lead to blurry
images and washed out textures. Similarly, the most commonly used evaluation metrics
PSNR and SSIM in fact encourage blurrier results since they are more accomodating
of missing alignment between the generated and ground truth imagery. We investigate
the shortcomings of the MSE loss for the task of super-resolution and propose to use
a combination of the perceptual loss, texture synthesis loss, and an adversarial loss to
achieve sharper, more detailed images with realistic textures. The findings are evaluated
in an extensive qualitative and quantitative study, and we show that the results of the
proposed method greatly outperforms prior works even when our method is put at a strong
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Chapter 1 Introduction

disadvantage to the competition.
A video is defined as an ordered tuple of frames which are generally temporally

coherent, i.e., neighboring frames are assumed to be similar in content. While the task of
video super-resolution may seem like a similar problem to single image super-resolution, it
opens up some new opportunities and pitfalls. The key to accurate video super-resolution
lies in exploiting its temporal smoothness across nearby video frames, making use of
the fact that further views of the same content are often available. Consequently, video
super-resolution methods have to combine the information between subsequent frames to
achieve the best results. Meanwhile, video super-resolution introduces the new challenge
of temporal consistency. Natural videos exhibit smooth temporal statistics, i.e., the value
of a pixel does not change by a large value from one frame to the next. Super-resolving
videos in a way that leads to temporally consistent results is crucial for methods in this
field since violations thereof lead to flickering artifacts, rendering the video unpleasing to
the human eye.

Chapter 3 focuses on the task of efficient, high-quality, and temporally consistent
video super-resolution, citing from Sajjadi et al. (2018b) published at CVPR 2018. To
combine information from neighboring frames for the generation of the current frame,
previous works have posed the problem as a multi-frame super-resolution task. To super-
resolve the current frame It , a select number of neighboring frames is aligned with the
current frame and all images are finally stacked and passed through a super-resolution
network. This procedure is applied to all frames over the video independently in a
sliding window fashion. We identify two main problems with this approach that lead to
shortcomings in terms of quality, runtime efficiency and temporal consistency. The first
shortcoming is that each input frame is processed several times as the sliding window
passes over the video with no information sharing, leading to subpar efficiency as each
frame should ideally be processed only once. The second issue is that each output frame
is generated independently, making it challenging for the super-resolution network to
produce temporally consistent results as it cannot reuse previous computation.

We propose to solve both shortcomings with a frame-recurrent approach. Instead of
passing a sliding window over the video, we process each input frame only once, and
we instead align the previously generated high-resolution output frame with the current
input. This has the advantage that the network only needs to add the new information
from the current input frame to the previously generated high-resolution image, i.e. there
is a lower computational burden on the network. At the same time, the network directly
sees the previously generated frame, so it has no constraints when it comes to generating
temporally consistent videos. A comprehensive evaluation study and comparison of the
proposed frame-recurrent framework with previous works shows a substantial boost in
video quality, temporal consistency, and runtime efficiency.

The remaining chapters cover advances in deep generative modeling with a particular
focus on high-dimensional complex datasets such as images. The overall goal of generative
modeling is to capture the full probability distribution that has generated the dataset given
through a commonly finite set of samples. In recent years, deep neural networks have
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made great strides towards higher-quality unsupervised image generation. Two of the most
popular models for this task are generative adversarial networks (GANs) and variational
autoencoders (VAEs). GANs are very powerful models that have led to state-of-the-art
results on unsupervised image generation on the scale of varied natural images. A GAN
consists of a generator that produces fake samples and a discriminator which is trained
to distinguish fake, i.e. generated, samples from real samples from the original dataset.
Training GANs thus involves a min-max optimization problem which has been found to
be very unstable, i.e., the training process frequently breaks down and a large amount of
hyperparameter tuning is necessary for good results. A further shortcoming of GANs is
mode drop: the original data distribution often consists of several modes (e.g., images
of different classes of objects), and while GANs regularly create realistically looking
samples, they tend to drop some of the modes available in the original dataset.

Chapter 4 cites from Sajjadi et al. (2018c), where we investigate the training instability
problems of GANs. The intuition behind the proposed approach stems from the idea
that it is intuitively harder to generate realistic samples than to tell them apart from real
samples. This imbalance leads to the discriminator overpowering the generator during
training, i.e., it achieves perfect accuracy in telling real samples from fakes ones. This in
turn leads to uninformative and exploding training gradients for the generator, resulting
in the ubiquitous training failures of GANs. We propose to tackle the problems above
by inverting the training process. A so-called lens module is added between the real data
and the discriminator which is trained to make the real data look like the generated data
throughout training. As the generator produces samples of increasing quality, the lens
reduces its pertubations on the real data, such that together, the lens and the generator
produce samples of better quality while fully avoiding the situation where the discriminator
has a too easy job of telling real samples apart from fake ones. In an extensive evaluation
section, we show that this simple addition to the GAN framework makes training more
stable and ultimately leads to higher-quality samples of more variety.

To be able to fairly and accurately compare generative models, there is a need for
quantitative methods of model evaluation. For this purpose, several approaches have been
proposed with a varying degree of success. The Fréchet Inception Distance (FID) is one
of the most popular choices since it has been found to correlate well with the perceived
quality and variety of the generated samples. In Chapter 5, citing from Sajjadi et al.
(2018a) which has been published at NeurIPS 2018, we show that not just the FID, but in
fact any one-dimensional evaluation metric (i.e., the result of the evaluation is a scalar
score or distance) has the severe limitation that it cannot separate sample quality from
sample variety, or coverage of the true data distribution. To this end, we propose a novel
evaluation method which disentangles the quality of samples (precision) from recall,
which measures how much of the target distribution is captured by the generative model.
We formally propose a definition of precision and recall for distributions (PRD) and prove
that the definition is sound and has good properties. Since the definition is very general,
finding a way to compute the set of solutions is nontrivial. However, we show that a
surprisingly simple and efficient algorithm can compute PRD in the theoretical setting

3
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where the densities are known. For the application in the real world (i.e., to evaluate deep
generative models), we propose a pipeline that leads to estimates of the PRD for a given
set of samples without a need for having the probability density of the real or generated
distributions. Finally, we evaluate the PRD of 800 generative models including GANs
and VAEs on four datasets. The results convincingly show that our method successfully
dintinguishes models that produce higher-quality samples from models that generate a
large variety of samples.

Finally, Chapter 6 addresses the Variational Autoencoder (VAE) and some of its
shortcomings, citing from Ghosh* et al. (2019). VAEs are a popular alternative to GANS
for deep generative models due to their more stable training behavior and theoretically
backed framework. However, VAEs tend to produce blurry images, an effect that is linked
to their training objective and in part to the aggregated posterior mismatch. We invesigate
the effects of the stochasticity in the VAE and formally show that the sampling process in
the latent space is equivalent to simple regularization techniques based on the injection
of Gaussian noise. With this in mind, we propose an alternative deterministic model,
the Regularized Autoencoder (RAE), which replaces the implicit regularization with
explicit smoothing techniques such as the gradient penalty and spectral normalization.
In conjunction to this change, we further propose an efficient ex-post density estimation
that yields a generative model that outperforms the VAE and even more sophisticated
alternatives such as the Wasserstein Autoencoder. We finally show on several datasets
that the simpler RAE framework achieves state-of-the-art results among autoencoding
frameworks on standard datasets such as CelebA.
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Chapter 2

EnhanceNet: Super-Resolution
Through Automated Texture Synthesis

Single image super-resolution is the task of inferring a high-resolution image from a
single low-resolution input. Traditionally, the performance of algorithms for this task is
measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio
(PSNR) which have been shown to correlate poorly with the human perception of image
quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed
images that lack high-frequency textures and do not look natural despite yielding high
PSNR values.

We propose a novel application of automated texture synthesis in combination with a
perceptual loss focusing on creating realistic textures rather than optimizing for a pixel-
accurate reproduction of ground truth images during training. By using feed-forward fully
convolutional neural networks in an adversarial training setting, we achieve a significant
boost in image quality at high magnification ratios. Extensive experiments on a number
of datasets show the effectiveness of our approach, yielding state-of-the-art results in both
quantitative and qualitative benchmarks.

2.1 Introduction

Enhancing and recovering a high-resolution (HR) image from a low-resolution (LR)
counterpart is a theme both of science fiction movies and of the scientific literature. In
the latter, it is known as single image super-resolution (SISR), a topic that has enjoyed
much attention and progress in recent years. The problem is inherently ill-posed as no
unique solution exists: when downsampled, a large number of different HR images can
give rise to the same LR image. For high magnification ratios, this one-to-many mapping
problem becomes worse, rendering SISR a highly intricate problem. Despite considerable
progress in both reconstruction accuracy and speed of SISR, current state-of-the-art
methods are still far from image enhancers like the one operated by Harrison Ford alias
Rick Deckard in the iconic Blade Runner movie from 1982. A crucial problem is the
loss of high-frequency information for large downsampling factors rendering textured
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ENet-E: State of the art by PSNR ENet-PAT: Our best result

Figure 2.1: Comparing the new state of the art by PSNR, ENet-E, with the sharper and
perceptually more plausible result produced by ENet-PAT at 4x super-resolution. While
the PSNR of the image on the right is lower, it is richer in texture, missing the typical
dreamy look of super-resolved images such as the one on the left.

regions in super-resolved images blurry, overly smooth, and unnatural in appearance (c.f .
Figure 2.1, left).

The reason for this behavior is rooted in the choice of the objective function that current
state-of-the-art methods employ: most systems minimize the pixel-wise mean squared
error (MSE) between the HR ground truth image and its reconstruction from the LR
observation, which has however been shown to correlate poorly with human perception
of image quality (Wang et al., 2004; Laparra et al., 2016). While easy to minimize, the
optimal MSE estimator returns the mean of many possible solutions which makes SISR
results look unnatural and implausible (c.f . Figure 2.2). This regression-to-the-mean
problem in the context of super-resolution is a well-known fact, however, modeling
the high-dimensional multi-modal distribution of natural images remains a challenging
problem.

In this work we pursue a different strategy to improve the perceptual quality of SISR
results. Using a fully convolutional neural network architecture, we propose a novel
modification of recent texture synthesis networks in combination with adversarial training
and perceptual losses to produce realistic textures at large magnification ratios. The
method works on all RGB channels simultaneously and produces sharp results for natural
images at a competitive speed. Trained with suitable combinations of losses, we reach
state-of-the-art results both in terms of PSNR and using perceptual metrics.
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2.2 Related Work

The task of SISR has been studied for decades (Irani and Peleg, 1991). Early interpolation
methods such as bicubic and Lanczos (Duchon, 1979) are based on sampling theory but
often produce blurry results with aliasing artifacts in natural images. A large number
of high-performing algorithms have since been proposed (Milanfar, 2010), see also the
recent surveys Nasrollahi and Moeslund (2014) and Yang et al. (2014).

In recent years, popular approaches include exemplar-based models that either exploit
recurrent patches of different scales within a single image (Glasner et al., 2009; Yang
et al., 2010a; Freedman and Fattal, 2011; Huang et al., 2015a) or learn mappings between
low and high resolution pairs of image patches in external databases (Freeman et al., 2002;
Chang et al., 2004; Kim and Kwon, 2010; Bevilacqua et al., 2012; Yang et al., 2013;
Yue et al., 2013; Timofte et al., 2014). They further include dictionary-based methods
(Yang et al., 2010b; Lu et al., 2012; Zhang et al., 2012; Yang et al., 2012; Perez-Pellitero
et al., 2016; Timofte et al., 2016) that learn a sparse representation of image patches as a
combination of dictionary atoms, as well as neural network-based approaches (Dong et al.,
2014; Kim et al., 2016b,a; Shi et al., 2016a; Bruna et al., 2016; Johnson et al., 2016; Shi
et al., 2016b; Yu and Porikli, 2016; Dong et al., 2016) which apply convolutional neural
networks (CNNs) to the task of SISR. Some approaches are specifically designed for fast
inference times (Perez-Pellitero et al., 2016; Romano et al., 2016; Shi et al., 2016a). Thus
far, realistic textures in the context of high-magnification SISR have only been achieved
by user-guided methods (Tai et al., 2010; HaCohen et al., 2010).

More specifically, Dong et al. (2014) apply shallow networks to the task of SISR by
training a CNN via backpropagration to learn a mapping from the bicubic interpolation of
the LR input to a high-resolution image. Later works successfully apply deeper networks
and the current state of the art in SISR measured by PSNR is based on deep CNNs (Kim
et al., 2016b,a).

As these models are trained through MSE minimization, the results tend to be blurry
and lack high-frequency textures due to the afore-mentioned regression-to-the-mean
problem. Alternative perceptual losses have been proposed for CNNs (Dosovitskiy and
Brox, 2016; Johnson et al., 2016) where the idea is to shift the loss from the image-space
to a higher-level feature space of an object recognition system like VGG (Simonyan and
Zisserman, 2015), resulting in sharper results despite lower PSNR values.

CNNs have also been found useful for the task of texture synthesis (Gatys et al., 2015)
and style transfer (Johnson et al., 2016; Gatys et al., 2016; Ulyanov et al., 2016), however
these methods are constrained to the setting of a single network learning to produce only a
single texture and have so far not been applied to SISR. Adversarial networks (Goodfellow
et al., 2014) have recently been shown to produce sharp results in a number of image
generation tasks (Denton et al., 2015; Radford et al., 2016a; Pathak et al., 2016; Zhu
et al., 2016) but have so far only been applied in the context of super-resolution in a highly
constrained setting for the task of face hallucination (Yu and Porikli, 2016).
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(I) (II) (III) (IV)
HR image IHR LR image ILR Iest optimal MSE Iest adversarial loss

Figure 2.2: Toy example to illustrate the effect of the Euclidean loss and how maximizing
the PSNR does not lead to realistic results. (I) The HR images consist of randomly placed
vertical and horizontal bars of 1×2 pixels. (II) In ILR, the original orientations cannot be
distinguished anymore since both types of bars turn into a single pixel. (III) A model
trained to minimize the Euclidean loss produces the mean of all possible solutions since
this yields the lowest MSE but the result looks clearly different from the original images
IHR. (IV) Training a model with an adversarial loss ideally results in a sharp image that is
impossible to distinguish from the original HR images, although it does not match IHR
exactly since the model cannot know the orientation of each bar. Intriguingly, this result
has a lower PSNR than the blurry MSE sample.

2.3 Single Image Super-Resolution
A high resolution image IHR ∈ [0,1]αH×αW×3 is downsampled to a low resolution image

ILR = dα(IHR) ∈ [0,1]H×W×3 (2.1)

using some downsampling operator

dα : [0,1]αH×αW×3→ [0,1]H×W×3 (2.2)

for a fixed scaling factor α > 1, image height H, width W and 3 color channels. The task
of SISR is to provide an approximate inverse f≈ d−1 estimating IHR from ILR:

f(ILR) = Iest ≈ IHR. (2.3)

This problem is highly ill-posed as the downsampling operation d is non-injective and
there exists a very large number of possible images Iest for which d(Iest) = ILR holds.

Recent learning approaches aim to approximate f via multi-layered neural networks
by minimizing the Euclidean loss ||Iest− IHR||22 between the current estimate and the
ground truth image. While these models reach excellent results as measured by PSNR, the
resulting images tend to look blurry and lack high frequency textures present in the original
images. This is a direct effect of the high ambiguity in SISR: since downsampling removes
high frequency information from the input image, no method can hope to reproduce all fine
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details with pixel-wise accuracy. Therefore, even state-of-the-art models learn to produce
the mean of all possible textures in those regions in order to minimize the Euclidean loss
for the output image.

To illustrate this effect, we designed a simple toy example in Figure 2.2, where all high
frequency information is lost by downsampling. The optimal solution with respect to the
Euclidean loss is simply the average of all possible images while more advanced loss
functions lead to more realistic, albeit not pixel-perfect reproductions.

2.4 Method

2.4.1 Architecture
Our network architecture in Table 2.1 (left) is inspired by Long et al. (2015) and Johnson
et al. (2016) since feed-forward fully convolutional neural networks exhibit a number of
useful properties for the task of SISR. The exclusive use of convolutional layers enables
training of a single model for an input image of arbitrary size at a given scaling factor α

while the feed-forward architecture results in an efficient model at inference time since
the LR image only needs to be passed through the network once to get the result. The
exclusive use of 3×3 filters is inspired by the VGG architecture (Simonyan and Zisserman,
2015) and allows for deeper models at a low number of parameters in the network.

As the LR input is smaller than the output image, it needs to be upsampled at some
point to produce a high-resolution image estimate. It may seem natural to simply feed
the bicubic interpolation of the LR image into the network (Dong et al., 2014). However,
this introduces redundancies to the input image and leads to a higher computational cost.
For convolutional neural networks, Long et al. (2015) use convolution transpose layers1

which upsample the feature activations inside the network. This circumvents the nuisance
of having to feed a large image with added redundancies into the CNN and allows most
computation to be done in the LR image space, resulting in a smaller network and larger
receptive fields of the filters relative to the output image.

However, convolution transpose layers have been reported to produce checkerboard
artifacts in the output, necessitating an additional regularization term in the output such as
total variation (Rudin et al., 1992). Odena et al. (2016) replace the convolution transpose
layers with nearest-neighbor upsampling of the feature activations in the network followed
by a single convolution layer. In our network architecture, this approach still produces
checkerboard-artifacts for some specific loss functions, however we found that it obviates
the need for an additional regularization term in our more complex models. To further
reduce artifacts, we add a convolution layer after all upsampling blocks in the HR image
space as this helps to avoid regular patterns in the output.

1Long et al. (2015) introduce them as deconvolution layers which may be misleading since no actual
deconvolution is performed. Other names for convolution transpose layers include upconvolution,
fractionally strided convolution or simply backwards convolution.
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Output size Layer
H×W ×3 Input ILR

H×W ×64

Conv, ReLU
Res: Conv, ReLU, Conv...
Res: Conv, ReLU, Conv

2H×2W ×64
2x NN upsampling

Conv, ReLU

4H×4W ×64
2x NN upsampling

Conv, ReLU
Conv, ReLU

4H×4W ×3
Conv

Residual image Ires

4H×4W ×3 Output Iest = Ibicubic + Ires

Output size Layer
128×128×3 Input Iest or IHR

128×128×32 Conv, lReLU
64×64×32 Conv stride 2, lReLU
64×64×64 Conv, lReLU
32×32×64 Conv stride 2, lReLU

32×32×128 Conv, lReLU
16×16×128 Conv stride 2, lReLU
16×16×256 Conv, lReLU
8×8×256 Conv stride 2, lReLU
8×8×512 Conv, lReLU
4×4×512 Conv stride 2, lReLU

8192 Flatten
1024 Fc, lReLU

1 Fc, sigmoid
1 Estimated label

Table 2.1: Our generative fully convolutional network architecture for 4x super-resolution
(left) and the discriminative network used for the adversarial loss (right). The generative
network only learns the residual image between the bicubic interpolation of the input and
the ground truth. We use 3×3 convolution kernels, 10 residual blocks in the generative
network and we train on RGB images. The design of the discriminative network draws
inspiration from VGG but uses leaky ReLU activations and strided convolutions instead
of pooling layers.

Training deep networks, we found residual blocks (He et al., 2016) to be beneficial
for faster convergence compared to stacked convolution layers. A similarly motivated
idea proposed by (Kim et al., 2016a) is to learn only the residual image by adding the
bicubic interpolation of the input to the model’s output, so that it does not need to learn
the identity function for ILR. While the residual blocks that make up a main part of our
network already only add residual information, we found that applying this idea helps
stabilize training and reduce color shifts in the output during training.

2.4.2 Training and Loss Functions

In this section, we introduce the loss terms used to train our network. Various combinations
of these losses and their effects on the results are discussed in Section 2.5.1. After
introducing the classical pixel-wise Euclidean loss for training super-resolution networks,
we continue to describe the perceptual loss and texture synthesis loss. Finally, we introduce
the adversarial loss which leads to overall sharper images.
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Bicubic ENet-E ENet-PAT Ground Truth

Figure 2.3: Our results on an image from ImageNet for 4x super-resolution. Despite
reaching state-of-the-art results by PSNR, ENet-E produces an unnatural and blurry
image while ENet-PAT reproduces faithful high-frequency information, resulting in a
photorealistic image, at first glance almost indistinguishable from the ground truth image.

Pixel-wise loss in the image-space

As a baseline, we train our model with the pixel-wise MSE

LE = ||Iest− IHR||22, where ||I||22 =
1

HW ∑
H,W

(IH,W )2. (2.4)

This simple loss is classically used to train super-resolution networks, penalizing variations
in intensity for each color channel in RGB images.

Perceptual loss in feature space

Dosovitskiy and Brox (Dosovitskiy and Brox, 2016) as well as Johnson et al. (2016)
propose a perceptual similarity measure. Rather than computing distances in image space,
both Iest and IHR are first mapped into a feature space by a differentiable function φ before
computing their distance.

LP = ||φ(Iest)−φ(IHR)||22 (2.5)

This allows the model to generate outputs that may not match the ground truth image
with pixel-wise accuracy but instead encourages the network to produce images that have
similar feature representations.

For the feature map φ , we use a pre-trained implementation of the popular VGG-
19 network (Simonyan and Zisserman, 2015; Machrisaa, 2016). It consists of stacked
convolutions coupled with pooling layers to gradually decrease the spatial dimension of
the image and to extract higher-level features in higher layers. To capture both low-level
and high-level features, we use a combination of the second and fifth pooling layers and
compute the MSE on their feature activations.
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Bicubic ENet-PAT-4 ENet-PAT-16 ENet-PAT-128 IHR

Figure 2.4: Comparing different patch sizes for the texture matching loss during training
for ENet-PAT on images from ImageNet at 4x super-resolution. Computing the texture
matching loss on small patches fails to capture textures properly (ENet-PAT-4) while
matching textures on the whole image leads to unpleasant results since different tex-
ture statistics are averaged (ENet-PAT-128). We therefore use a patch size of 16 in all
experiments (ENet-PAT-16, simplified to ENet-PAT in the following).

Texture matching loss

Gatys et al. (2015, 2016) demonstrate how convolutional neural networks can be used to
create high quality textures. Given a target texture image, the output image is generated
iteratively by matching statistics extracted from a pre-trained network to the target texture.
As statistics, correlations between the feature activations φ(I) ∈ Rn×m at a given VGG
layer with n features of length m are used:

LT = ||G(φ(Iest))−G(φ(IHR))||22, (2.6)

with Gram matrix G(F) = FFT ∈ Rn×n. As it is based on iterative optimization, this
method is slow and only works if a target texture is provided at test time. Subsequent
works train a feed-forward network that is able to synthesize a global texture (e.g., a given
painting style) onto other images (Johnson et al., 2016; Ulyanov et al., 2016), however a
single network again only produces a single texture, and textures in all input images are
replaced by the single style that the network has been trained for.

We propose using the style transfer loss for SISR: Instead of supplying our network
with matching high-resolution textures during inference, we compute the texture loss
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LT patch-wise during training to enforce locally similar textures between Iest and IHR.
The network therefore learns to produce images that have the same local textures as the
high-resolution images during training. While the task of generating arbitrary textures is
more demanding than single-texture synthesis, the LR image and high-level contextual
cues give our network more information to work with, enabling it to generate varying
high resolution textures.

Empirically, we found a patch size of 16×16 pixels to result in the best balance between
faithful texture generation and the overall perceptual quality of the images. Figure 2.4
shows ENet-PAT when trained using patches of size 4×4 pixels for the texture matching
loss (ENet-PAT-4) and when it is calculated on larger patches of 128×128 pixels (ENet-
PAT-128). Using smaller patches leads to artifacts in textured regions while calculating
the texture matching loss on too large patches during training leads to artifacts throughout
the entire image since the network is trained with texture statistics that are averaged over
regions of varying textures, leading to unpleasant results.

Adversarial training

Adversarial training (Goodfellow et al., 2014) is a recent technique that has proven to
be a useful mechanism to produce realistically looking images. In the original setting,
a generative network G is trained to learn a mapping from random vectors z to a data
space of images x that is determined by the selected training dataset. Simultaneously,
a discriminative network D is trained to distinguish between real images x from the
dataset and generated samples G(z). This approach leads to a minimax game in which the
generator is trained to minimize

LA =− log(D(G(z))) (2.7)

while the discriminator minimizes

LD =− log(D(x))− log(1−D(G(z))). (2.8)

In the SISR setting, G is our generative network as shown in Figure 2.1 (left), i.e., the
input to G is now an LR image ILR instead of a noise vector z and its desired output is a
suitable realistic high-resolution image Iest.

Following common practice (Radford et al., 2016a), we apply leaky ReLU activations
(Maas et al., 2013) and use strided convolutions to gradually decrease the spatial dimen-
sions of the image in the discriminative network as we found deeper architectures to result
in images of higher quality. Figure 2.1 (right) shows the architecture of our discriminative
adversarial network used for the loss term LA. We follow common design patterns and
exclusively use convolutional layers with filters of size 3×3 pixels with varying stride
lengths to reduce the spatial dimension of the input down to a size of 4×4 pixels where
we append two fully connected layers along with a sigmoid activation at the output to
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Network Loss Description

ENet-E LE Baseline with MSE
ENet-P LP Perceptual loss
ENet-EA LE +LA ENet-E + adversarial
ENet-PA LP +LA ENet-P + adversarial
ENet-EAT LE +LA +LT ENet-EA + texture loss
ENet-PAT LP +LA +LT ENet-PA + texture loss

Loss Weights

LP 2 ·10−1 pool2
2 ·10−2 pool5

LA 1
LT 3 ·10−7 conv1.1

1 ·10−6 conv2.1

1 ·10−6 conv3.1

Table 2.2: Overview of different combinations of loss functions for EnhanceNet (left) and
weights for the different objectives (right). The weight for the adversarial loss is fixed to 1
in all models with the exception of ENet-PAT where it is set to 2.

produce a classification label between 0 and 1. Perhaps surprisingly, we found dropout not
to be effective at preventing the discriminator from overpowering the generator. Instead,
the following learning strategy yields better results and a more stable training: we keep
track of the average performance of the discriminator on true and generated images within
the previous training batch and only train the discriminator in the subsequent step if its
performance on either of those two samples is below a threshold.

2.5 Evaluation
We first investigate the performance of our architecture trained with different combinations
of the previously introduced loss functions in Section 2.5.1. After identifying the best
performing models, we analyze the residual image that the network yields in Section 2.5.2
before presenting a comprehensive qualitative and quantitative evaluation of our approach
in comparison to previous works in Sections 2.5.3–2.5.6. We finish the experimental
section with a study of specialized training datasets in Section 2.5.7 and some notes on
training details and model efficiency in Section 2.5.8.

2.5.1 Effect of Different Losses
We compare the performance of our network trained with the combinations of loss
functions listed in Table 2.2. The results are shown in Figure 2.5 and Table 2.3.

ENet-E significantly sharpens details in the image compared to the bicubic interpolation.
The perceptual loss in ENet-P yields slightly sharper results than ENet-E but it produces
artifacts without adding new details in textured areas. Even though the perceptual loss is
invariant under perceptually similar transformations, the network is given no incentive to
produce realistic textures when trained with the perceptual loss alone.
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Bicubic ENet-E ENet-P ENet-EA

IHR ENet-PA ENet-EAT ENet-PAT

Figure 2.5: Comparing the results of our model trained with different losses at 4x super-
resolution on images from ImageNet. ENet-P’s result looks slightly sharper than ENet-E’s,
but it also produces unpleasing checkerboard artifacts. ENet-PA produces images that
are significantly sharper but contain unnatural textures while we found that ENet-PAT
generates more realistic textures, resulting in photorealistic images close to the original HR
images. Replacing the perceptual loss in ENet-PA and ENet-PAT with the Euclidean loss
results in images with sharp but jagged edges and overly smooth textures. Furthermore,
these models are significantly harder to train since the Euclidean loss conflicts with the
other loss terms.
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Dataset Bicubic E P EA PA EAT PAT

Set5 28.42 31.74 28.28 28.15 27.20 29.26 28.56
Set14 26.00 28.42 25.64 25.94 24.93 26.53 25.77
BSD100 25.96 27.50 24.73 25.71 24.19 25.97 24.93
Urban100 23.14 25.66 23.75 23.56 22.51 24.16 23.54

Table 2.3: PSNR for our architecture trained with different combinations of losses at
4x super resolution. ENet-E yields the highest PSNR values since it is trained towards
minimizing the per-pixel distance to the ground truth. The models trained with the
perceptual loss all yield lower PSNRs as it allows for deviations in pixel intensities from
the ground truth. It is those outliers that significantly lower the PSNR scores. The texture
loss increases the PSNR values by reducing the artifacts from the adversarial loss term.
Best results shown in bold.

ENet-PA produces greatly sharper images by adding high frequency details to the
output. However, the network sometimes produces unpleasing high-frequency noise to
smooth regions and it seems to add high frequencies at random edges resulting in halos
and sharpening artifacts in some cases. The texture loss helps ENet-PAT create locally
meaningful textures and greatly reduces the artifacts. For some images, the results are
almost indistinguishable from the ground truth even at a high magnification ratio of 4.

In general, we found training models with the adversarial and texture matching loss in
conjunction with the Euclidean loss (in place of the perceptual loss) to be significantly
less stable and the perceptual quality of the results oscillated heavily during training, i.e.,
ENet-EA and ENet-EAT are harder to train than ENet-PA and ENet-PAT. This is because
the adversarial and texture losses encourage the synthesis of high frequency information
in the results, increasing the Euclidean distance to the ground truth images during training
which leads to loss functions that counteract each other. The perceptual loss on the other
hand is more tolerant to small-scale deviations due to pooling. We note that the texture
matching loss in ENet-EAT leads to a more stable training than ENet-EA and slightly
better results, though worse than ENet-PAT. This means that the texture matching loss not
only helps create more realistic textures, but it also stabilizes the adversarial training.

Unsurprisingly, ENet-E yields the highest PSNR as it is optimized specifically for that
measure. Although ENet-PAT produces perceptually more realistic images, the PSNR is
much lower as the reconstructions are not pixel-accurate. SSIM, which has been found
to correlate better with human perception (Yang et al., 2014) also does not capture the
perceptual quality of the results, so we provide alternative quantitative evaluations that
agree better with human perception in Section 2.5.5 and Section 2.5.6.
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Bicubic Glasner et al. Kim et al. SCSR SelfEx SRCNN

PSyCo VDSR DRCN ENet-E ENet-PAT IHR

Figure 2.6: A comparison of previous methods with our results at 4x super-resolution on
an image from Set14. Previous methods have continuously improved upon the restoration
of sharper edges yielding higher PSNR’s, a trend that ENet-E continues with slightly
sharper edges and finer details (e.g., area below the eye). With our texture-synthesizing
approach, ENet-PAT is the only method that yields sharp lines and reproduces textures,
resulting in the most realistic looking image. Furthermore, ENet-PAT not only sharpens
but also produces high-frequency patterns missing completely in the LR image, e.g., lines
on the zebra’s forehead or the grass texture, showing that the model is capable of detecting
and generating patterns that lead to a realistic image.

2.5.2 Residual Learning

Our models only learn the residual image between the bicubic upsampled input image
and the high resolution output which renders training more stable. Figure 2.12 on page
27 displays examples for residual images that our models estimate. ENet-E has learned
to significantly increase the sharpness of the image and to remove aliasing effects in the
bicubic interpolation (as seen in the aliasing effects in the residual image that cancel
out with the aliasing in the bicubic interpolation). ENet-PAT additionally generates fine
high-frequency textures in regions that should be textured while leaving smooth areas
such as the sky and the red front areas of the house untouched.
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2x downsampled 2x downsampled 4x downsampled IHR

2x VDSR 2x DRCN 4x ENet-PAT IHR

Figure 2.7: Comparing the previous state of the art by PSNR value at 2x super-resolution
(75% of all pixels missing) with our model at 4x super-resolution (93.75% of all pixels
missing). The top row shows the input to the models and the bottom row the results.
Although our model has significantly less information to work with, it produces a sharper
image with realistic textures.

2.5.3 Comparison with other Approaches

Figure 2.6 gives an overview of different approaches including the current state of the
art by PSNR (Kim et al., 2016a,b) on the zebra image from Set14 which is particularly
well-suited for a visual comparison since it contains both smooth and sharp edges, textured
regions as well as repeating patterns. Previous methods have gradually improved on edge
reconstruction, but even the state-of-the-art model DRCN suffers from blur in regions
where the LR image doesn’t provide any high frequency information. While ENet-E
reproduces slightly sharper edges, the results exhibit the same characteristics as previous
approaches. ENet-PAT is the only model that produces significantly sharper images with
realistic textures. It is interesting to see that ENet-PAT has learned to hallucinate detailed
high-frequency patters as seen in the zebra’s forehead.
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Comparisons with Johnson et al. (2016), Bruna et al. (2016) and RAISR (Romano
et al., 2016) are shown in Figure 2.8.

Johnson et al. (2016) were the first to introduce the perceptual loss for use in super-
resolution. Due to the fact that the perceptual loss is invariant to minor pixel-level
differences and as a result of the pooling layers in the applied VGG architecture, the
perceptual loss on its own produces heavy artifacts (c.f . ENet-P in Figure 2.5). They
therefore apply an additional total variation regularizer to reduce the artifacts. As can be
seen in Figure 2.8 (top), their result still produces checkerboard artifacts and the addition
of the total variation regularization leads to blurry textures. In direct comparison, the
result of ENet-PAT is significantly sharper with finer details and without artifacts.

Bruna et al. (2016) propose several models (scatter, fine-tuned, VGG) intended to
replace MSE-optimized super-resolution in favor of more perceptually pleasing results.
The comparison with ENet-PAT shows that we achieve sharper images with clear lines
while the results of Bruna et al. (2016) contain more artifacts and jagged edges.

Since RAISR has been designed for speed rather than state-of-the-art image quality, it
reaches a lower performance than previous methods (Perez-Pellitero et al., 2016; Kim
et al., 2016a) so ENet-E yields visually sharper images even at this low scaling factor of
2x super-resolution. ENet-E already produces much sharper images than RAISR, though
ENet-PAT is the only model to reconstruct sharp details and it is visually almost indis-
tinguishable from the ground truth. Despite not being optimized for speed, EnhanceNet
is even faster than RAISR at test-time: 9/18ms (EnhanceNet) vs. 17/30ms (RAISR) on
average per image at 4x super-resolution on Set5/Set14, though EnhanceNet runs on a
GPU while RAISR has been benchmarked on a 6-core CPU.

To demonstrate the significance of the jump in quality achieved by our method, we
further compare the result of ENet-PAT at 4x super-resolution with the current state of
the art models at 2x super-resolution in Figure 2.7. Although 4x super-resolution is a
greatly more demanding task than 2x super-resolution, the results are comparable in
quality. Small details that are lost completely in the 4x downsampled image are more
accurate in VDSR and DRCN’s outputs, but our model produces a plausible image with
sharper textures at 4x super-resolution that even outperforms the current state of the art at
2x super-resolution in sharpness, e.g., the area below the eyes is sharper in ENet-PAT’s
result and looks very similar to the ground truth.

2.5.4 Quantitative results by PSNR and SSIM
Table 2.4 summarizes the PSNR and SSIM values of our model in comparison to other
approaches including the previous state of the art on various popular SISR benchmarks.
ENet-E beats all prior works by a wide margin on 4x super-resolution across all datasets
and on almost all datasets at 2x super-resolution.
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Johnson et al. ENet-PAT IHR

Scatter Fine-tuned VGG ENet-PAT IHR

RAISR ENet-E ENet-PAT IHR

Figure 2.8: (Top) Comparing our model with the perceptual method by Johnson et al.
(2016) on an image from BSD100 4x super-resolution. ENet-PAT’s result looks more
natural and does not contain checkerboard artifacts despite the lack of an additional
regularization term. (Middle) Comparison with the 3 models Scatter, Fine-tuned, and
VGG from Bruna et al. (2016) at 4x super-resolution, and a comparison with the efficient
method RAISR (Romano et al., 2016) at 2x super-resolution. ENet-PAT produces images
with more contrast and sharper edges that are more faithful to the ground truth (see e.g.
the edge at the bottom). (Bottom) Comparing our model with Romano et al. (2016) at
2x super-resolution on the butterfly image of Set5. Despite the low scaling factor, image
quality gradually increases between RAISR, ENet-E and ENet-PAT, the last of which is
not only sharper but also recreates small details better, e.g., the vertical white line in the
middle of the picture is fully reconstructed only in ENet-PAT’s result.
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2x PSNR Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E

Set5 33.66 36.54 30.14 36.49 36.66 36.88 37.63 37.53 37.32
Set14 30.24 32.26 27.24 32.22 32.42 32.55 33.04 33.03 33.25
BSD100 29.56 31.16 26.75 31.18 31.36 31.39 31.85 31.90 31.95
Urban100 26.88 29.11 24.19 29.54 29.50 29.64 30.75 30.76 31.21

2x SSIM Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E

Set5 0.930 0.954 0.954 0.954 0.954 0.956 0.959 0.959 0.958
Set14 0.869 0.904 0.906 0.903 0.906 0.898 0.912 0.912 0.915
BSD100 0.843 0.884 0.886 0.886 0.888 0.890 0.894 0.896 0.898
Urban100 0.840 0.871 0.894 0.895 0.895 0.900 0.913 0.914 0.919

4x PSNR Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E

Set5 28.42 30.14 30.28 30.31 30.48 30.62 31.53 31.35 31.74
Set14 26.00 27.24 27.32 27.40 27.49 27.57 28.02 28.01 28.42
BSD100 25.96 26.75 26.82 26.84 26.90 26.98 27.23 27.29 27.50
Urban100 23.14 24.19 24.32 24.79 24.52 24.62 25.14 25.18 25.66

4x SSIM Bicubic RFL A+ SelfEx SRCNN PSyCo DRCN VDSR ENet-E

Set5 0.810 0.855 0.860 0.862 0.863 0.868 0.885 0.884 0.887
Set14 0.703 0.745 0.749 0.752 0.750 0.753 0.867 0.767 0.777
BSD100 0.668 0.705 0.709 0.711 0.710 0.716 0.723 0.725 0.733
Urban100 0.658 0.710 0.718 0.737 0.722 0.732 0.751 0.752 0.770

Table 2.4: PSNR and SSIM for different methods at 2x and 4x super-resolution. We
compare against RFL (Schulter et al., 2015), A+ (Timofte et al., 2014), SelfEx (Huang
et al., 2015a), SRCNN (Dong et al., 2014), PSyCo (Perez-Pellitero et al., 2016), DRCN
(Kim et al., 2016b), and VDSR (Kim et al., 2016a). The progress over the years can
be clearly seen here as more recent methods achieve progressively higher PSNR and
SSIM scores. ENet-E follows this trend as it achieves state-of-the-art results on almost all
datasets across both scales. As shown in Table 2.3, ENet-E is the best performing model
among all other combinations of loss functions since it is the only model that exclusively
optimizes for the Euclidean loss (other models not shown in this table). Best performance
shown in bold.
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2.5.5 Object recognition performance

It is known that super-resolution algorithms can be used as a preprocessing step to improve
the performance of other image-related tasks such as face recognition (Fookes et al., 2012).
We propose to use the performance of state-of-the-art object recognition models as a metric
to evaluate image reconstruction algorithms, especially for models whose performance is
not captured well by PSNR and SSIM. For evaluation, any pre-trained object recognition
model M and labeled set of images may be used. The image restoration models to be
evaluated are applied on a degraded version of the dataset and the reconstructed images
are fed into M. The hypothesis is that the performance of powerful object recognition
models shows a meaningful correlation with the human perception of image quality that
may complement pixel-based benchmarks.

Similar indirect metrics have been applied in previous works, e.g., optical character
recognition performance has been utilized to compare the quality of text deblurring
algorithms (Hradiš et al., 2015; Xiao et al., 2016) and face-detection performance has
been used for the evaluation of super-resolution algorithms (Lin et al., 2007). The
performance of object recognition models has been used for the indirect evaluation of
image colorization (Zhang et al., 2016), where black and white images were colorized to
improve object detection rates. Namboodiri et al. (2011) apply a metric similar to ours
to evaluate SISR algorithms and found it to be a better metric than PSNR or SSIM for
evaluating the perceptual quality of super-resolved images.

For our comparison, we use ResNet-50 (Dahl, 2016; He et al., 2016) as this class of
models has achieved state-of-the-art performance by winning the 2015 Large Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky et al., 2015). For the evaluation, we
use the first 1000 images in the ILSVRC 2016 CLS-LOC validation dataset2 where each
image has exactly one out of 1000 labels. The original images are scaled to 224×224 for
the baseline and downsampled to 56×56 for a scaling factor of 4. We report the mean
top-1 and top-5 errors as well as the mean confidence that ResNet reports on correct
classifications. The results are shown in Table 2.5. In our comparison, some of the results
roughly coincide with the PSNR scores, with bicubic interpolation resulting in the worst
performance followed by DRCN (Kim et al., 2016b) and PSyCo (Perez-Pellitero et al.,
2016) which yield visually comparable images and hence similar scores as our ENet-E
network. However, our models ENet-EA, ENet-PA and ENet-PAT produce images of
higher perceptual quality which is reflected in higher classification scores despite their
low PSNR scores. This indicates that the object recognition benchmark matches human
perception better than PSNR does. The high scores of ENet-PAT are not a result of
overfitting due to being trained with VGG, since even ENet-EA (which is not trained with
VGG) gains higher scores than e.g. ENet-E, which has the highest PSNR but lower scores
under this metric.

2We use the validation dataset since the annotations for the test dataset are not released. However, even a
potential bias of the ResNet-model would not invalidate the results, since higher scores only imply that
the upscaled images are closer to the originals under the proposed metric.

22



2.5 Evaluation

Evaluation Bicubic DRCN PSyCo ENet-E ENet-EA ENet-PA ENet-PAT Baseline

Top-1 error 0.506 0.477 0.454 0.449 0.407 0.429 0.399 0.260
Top-5 error 0.266 0.242 0.224 0.214 0.185 0.199 0.171 0.072
Confidence 0.754 0.727 0.728 0.754 0.760 0.783 0.797 0.882

Table 2.5: ResNet object recognition performance and reported confidence on pictures
from the ImageNet dataset downsampled to 56×56 before being upscaled by a factor of
4 using different algorithms. The baseline shows ResNet’s performance on the original
224×224 sized images. Compared to PSNR, the scores correlate better with the human
perception of image quality: ENet-E achieves only slightly higher scores than DRCN or
PSyCo since all these models minimize pixel-wise MSE. On the other hand, ENet-PAT
achieves higher scores as it produces sharper images and more realistic textures. The
good results of ENet-EA which is trained without VGG indicate that the high scores of
ENet-PAT are not solely due to being trained with VGG, but likely a result of sharper
images. Best results shown in bold.

While we observe that the object recognition performance roughly coincides with the
human perception of image quality in this benchmark for super-resolution, we leave a
more detailed analysis of this evaluation metric on other image restoration problems to
future work.

2.5.6 Evaluation of perceptual quality
To further validate the perceptual quality of our results, we conducted a user study on
the ImageNet dataset from the previous section. As a representative for models that
minimize the Euclidean loss, we compare ENet-E as the new state of the art in PSNR
performance with the images generated by ENet-PAT which have a PSNR comparable
to images upsampled with bicubic interpolation. The subjects were shown the ground
truth image along with the super-resolution results of both ENet-E and ENet-PAT at 4x
super-resolution side-by-side, and were asked to select the image that looks more similar
to the ground truth. Figure 2.13 on page 28 shows a screenshot of the applied survey.
In 49 survey responses for a total of 843 votes, subjects selected the image produced by
ENet-PAT 91.0% of the time, underlining the perceptual quality of our results.

2.5.7 Specialized Training Datasets
Figure 2.9 shows an example for an image where the majority of subjects in our survey
preferred ENet-E’s result over the image produced by ENet-PAT. In general, ENet-PAT
trained on MSCOCO struggles to reproduce realistically looking faces at high scaling
factors and while the overall image is significantly sharper than the result of ENet-E,
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Bicubic ENet-E ENet-PAT IHR

Figure 2.9: Failure case for ENet-PAT on an image from ImageNet at 4x super-resolution.
While producing an overall sharper image than ENet-E, ENet-PAT fails to reproduce a
realistically looking face, leading to a perceptually implausible result. An approach to
mitigate this weakness is shown in Section 2.5.7 and Figure 2.11.

the human perception is highly sensitive to small changes in the appearance of human
faces which is why many subjects preferred the blurry result of ENet-E in those cases. To
demonstrate that this is not a limitation of our model, we train ENet-PAT with identical
hyperparameters on the CelebA dataset (Liu et al., 2015a) (ENet-PAT-F) and compare
the results with ENet-PAT trained on MSCOCO as before. The results are shown in
Figure 2.11 on page 26. Trained on CelebA, ENet-PAT-F shows significantly better
performance than ENet-PAT trained on MSCOCO which does not contain many faces.

2.5.8 Training Details and Inference Speed
For training, we use all color images in MSCOCO (Lin et al., 2014) that have at least 384
pixels on the short side resulting in roughly 200k images. All images are cropped centrally
to a square and then downsampled to 256×256 to reduce noise and JPEG artifacts. During
training, we fix the size of the input ILR to 32×32. As the scale of objects in the MSCOCO
dataset is too small when downsampled to such a small size, we downsample the 256×256
images by α and then crop these to patches of size 32×32. After training the model for
any given scaling factor α , the input to the fully convolutional network at test time can be
an image of arbitrary dimensions H×W which is then upscaled to (αH)×(αW ).

The model has been implemented in TensorFlow r0.10 (Abadi et. al., 2015). For all
weights, we apply Xavier initialization (Glorot and Bengio, 2010) and we train using
the Adam optimizer (Kingma and Ba, 2015) with a fixed learning rate of 10−4. We
found common convolutional layers stacked with ReLU’s to yield comparable results,
but training converges faster with the residual architecture. All models were trained only
once and used for all results throughout the manuscript, no fine-tuning was done for any
specific dataset or image. Nonetheless, we believe that a choice of specialized training
datasets for specific types of images can greatly increase the perceptual quality of the
produced textures (c.f . Section 2.5.7).
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Bicubic ENet-PAT IHR

Figure 2.10: Failure case on an image from BSD100. ENet-PAT has learned to continue
high-frequency patterns. While that works out extremely well in most cases (c.f . zebra’s
forehead in Figure 2.6), the model fails in this notable case as IHR is smooth in that region.

We trained all models for a maximum of 24 hours on an Nvidia K40 GPU, though
convergence rates depend on the applied combination of loss functions. Although not
optimized for efficiency, our network is compact and quite fast at test time. The final
trained model is only 3.1MB in size and processes images in 9ms (Set5), 18ms (Set14),
12ms (BSD100) and 59ms (Urban100) on average per image at 4x super-resolution.

2.6 Summary
We have proposed an architecture that is capable of producing state-of-the-art results
by both quantitative and qualitative measures by training with a Euclidean loss or a
novel combination of adversarial training, perceptual losses and a newly proposed texture
transfer loss for super-resolution. Once trained, the model interpolates full color images
in a single forward-pass at competitive speeds.

As SISR is a heavily ill-posed problem, some limitations remain. While images
produced by ENet-PAT look realistic, they do not match the ground truth images on a
pixel-wise basis. Furthermore, the adversarial training sometimes produces artifacts in the
output which are greatly reduced but not fully eliminated with the addition of the texture
loss. We noted an interesting failure on an image in the BSD100 dataset that is shown in
Figure 2.10, where the model continues a pattern visible in the LR image onto smooth
areas. This is a result of the model learning to hallucinate textures that occur frequently
between pairs of LR and HR images such as repeating stripes that fade in the LR image
as they increasingly shrink in size.

While the model is already competitive in terms of its runtime, future work may de-
crease the depth of the network and apply shrinking methods to speed up the model to real-
time performance on high-resolution data: adding a term for temporal consistency could
then enable the model to be used for video super-resolution. An implementation along with
a trained model of ENet-PAT is available at github.com/msmsajjadi/EnhanceNet-Code.
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Bicubic ENet-E ENet-PAT ENet-PAT-F IHR

Figure 2.11: Comparing our models on images of faces at 4x super resolution. ENet-PAT
trained on the MSCOCO dataset produces artifacts since its training dataset did not
contain many high-resolution images of faces. When trained specifically on a dataset of
faces (ENet-PAT-F), the same network produces realistic very realistic images, though
the results look different from the actual ground truth images (similar to the results in Yu
and Porikli (2016)). Note that we did not fine-tune the parameters of the losses for this
specific task so even better results are likely achievable.

26



2.6 Summary

ENet-E residual ENet-E result

ENet-PAT residual ENet-PAT result

Figure 2.12: A visualization of the residual image that the network produces at 4x super-
resolution. While ENet-E significantly sharpens edges and is able to remove aliasing
from the bicubic interpolation, ENet-PAT produces additional textures yielding a sharp,
realistic result. Image taken from the SunHays80 dataset (Sun and Hays, 2012).
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Image Quality Assessment
30 images to go!

 
Target Image

Click the image that looks more similar to the target image above.

Figure 2.13: Example screenshot of our survey for perceptual image quality. Subjects
were shown a target image above and were asked to select the image on the bottom that
looks more similar to the target image. Each subject was shown up to 30 images. In
49 survey responses for a total of 843 votes, subjects selected the image produced by
ENet-PAT 91.0%, underlining its higher perceptual quality compared to the state of the
art by PSNR, ENet-E.
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Chapter 3

Frame-Recurrent
Video Super-Resolution

Recent advances in video super-resolution have shown that convolutional neural networks
combined with motion compensation are able to merge information from multiple low-
resolution (LR) frames to generate high-quality images. Current state-of-the-art methods
process a batch of LR frames to generate a single high-resolution (HR) frame and run this
scheme in a sliding window fashion over the entire video, effectively treating the problem
as a large number of separate multi-frame super-resolution tasks. This approach has two
main weaknesses: 1) Each input frame is processed and warped multiple times, increasing
the computational cost, and 2) each output frame is estimated independently conditioned
on the input frames, limiting the system’s ability to produce temporally consistent results.

In this work, we propose an end-to-end trainable frame-recurrent video super-resolution
framework that uses the previously inferred HR estimate to super-resolve the subsequent
frame. This naturally encourages temporally consistent results and reduces the compu-
tational cost by warping only one image in each step. Furthermore, due to its recurrent
nature, the proposed method has the ability to assimilate a large number of previous
frames without increased computational demands. Extensive evaluations and comparisons
with previous methods validate the strengths of our approach and demonstrate that the
proposed framework is able to significantly outperform the current state of the art.

3.1 Introduction

Super-resolution is a classic problem in image processing that addresses the question of
how to reconstruct a high-resolution (HR) image from its downscaled low-resolution (LR)
version. With the rise of deep learning, super-resolution has received significant attention
from the research community over the past few years (Dong et al., 2014; Kim et al.,
2016a; Shi et al., 2016a; Kappeler et al., 2016; Tao et al., 2017; Liu et al., 2017; Caballero
et al., 2017; Sajjadi et al., 2017; Ledig et al., 2017). While high-frequency details need
to be reconstructed exclusively from spatial statistics in the case of single image super-
resolution, temporal relationships in the input can be exploited to improve reconstruction
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LR input frame Our result HR frame

Figure 3.1: Side-by-side comparison of LR input frame, our FRVSR result, and HR
ground truth for 4x upsampling. Thanks to its frame-recurrent architecture, our model
reconstructs fine details that are missing from single input frames.

for video super-resolution. It is therefore imperative to combine the information from as
many LR frames as possible to reach the best video super-resolution results.

The latest state-of-the-art video super-resolution methods approach the problem by
combining a batch of LR frames to estimate a single HR frame, effectively dividing the
task of video super-resolution into a large number of separate multi-frame super-resolution
subtasks (Caballero et al., 2017; Tao et al., 2017; Liu et al., 2017; Makansi et al., 2017).
However, this approach is computationally expensive since each input frame needs to be
processed several times. Furthermore, generating each output frame separately reduces
the system’s ability to produce temporally consistent frames, resulting in unpleasing
flickering artifacts.

In this work, we propose an end-to-end trainable frame-recurrent video super-resolution
(FRVSR) framework to address the above issues. Instead of estimating each video frame
separately, we use a recurrent approach that passes the previously estimated HR frame as
an input for the following iteration. Using this recurrent architecture has several benefits.
Each input frame needs to be processed only once which reduces the computational cost.
Furthermore, information from past frames can be propagated to several later frames via
the HR estimate that is recurrently passed through time. Passing the previous HR estimate
directly to the next step helps the model to recreate fine details and produce temporally
consistent videos in a more efficient way.
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To analyze the performance of the proposed framework, we compare it with strong sin-
gle image and video super-resolution baselines using identical neural networks as building
blocks. Our extensive set of experiments provides insights into how the performance of
FRVSR varies with the number of recurrent steps used during training, the size of the
network, and the amount of noise, aliasing or compression artifacts present in the LR
input. The proposed approach clearly outperforms the baselines under various settings
both in terms of quality and efficiency. Finally, we also compare FRVSR with several
existing video super-resolution approaches and show that it significantly outperforms the
current state of the art on a standard benchmark dataset.

Our contributions

• We propose a recurrent framework that uses the HR estimate of the previous frame for
generating the subsequent frame, leading to an efficient model that produces temporally
consistent results.

• Unlike existing approaches, the proposed framework can propagate information over a
large temporal range without increasing computations.

• Our system is end-to-end trainable and does not require any pre-training stages.

• We perform an extensive set of experiments to analyze the proposed framework and
relevant baselines under various different settings.

• We show that the proposed framework significantly outperforms the current state of the
art in video super-resolution both qualitatively and quantitatively.

3.2 Video Super-Resolution
Let ILR

t ∈ [0,1]H×W×3 denote the t-th LR video frame obtained by downsampling the
original HR video frame IHR

t ∈ [0,1]sH×sW×3 by scale factor s. Given a set of consecutive
LR video frames, the goal of video super-resolution is to generate HR estimates Iest

t that
approximate the original HR frames IHR

t under some metric.

3.2.1 Related Work
Super-resolution is a classic ill-posed inverse problem with approaches ranging from
simple interpolation methods such as Bilinear, Bicubic and Lanczos (Duchon, 1979) to
example-based super-resolution (Freeman et al., 2002; Freedman and Fattal, 2011; Yang
et al., 2013; Timofte et al., 2016), dictionary learning (Yang et al., 2012; Perez-Pellitero
et al., 2016), and self-similarity approaches (Huang et al., 2015a; Yang et al., 2010a). We
refer the reader to Milanfar (2010) and Nasrollahi and Moeslund (2014) for extensive
overviews of prior art up to recent years.
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The recent progress in deep learning, especially in convolutional neural networks, has
shaken up the field of super-resolution. After Dong et al. (2014) reached state-of-the-art
results with shallow convolutional neural networks, many others followed up with deeper
network architectures, advancing the field tremendously (Shi et al., 2016a; Kim et al.,
2016b,a; Dong et al., 2016; Tai et al., 2017; Lai et al., 2017). Parallel efforts have studied
alternative loss functions for more visually pleasing reconstructions (Ledig et al., 2017;
Sajjadi et al., 2017). Agustsson and Timofte (2017) provide a recent survey on the current
state of the art in single image super-resolution.

Video and multi-frame super-resolution approaches combine information from multiple
LR frames to reconstruct details that are missing in individual frames which can lead
to higher quality results. Classical video and multi-frame super-resolution methods are
generally formulated as optimization problems that are computationally very expensive to
solve (Farsiu et al., 2004; Takeda et al., 2009; Belekos et al., 2010; Liu and Sun, 2011).

Most of the existing deep learning-based video super-resolution methods divide the
task of video super-resolution into multiple separate sub-tasks, each of which generates
a single HR output frame from multiple LR input frames. Kappeler et al. (2016) warp
video frames ILR

t−1 and ILR
t+1 onto the frame ILR

t using the optical flow method of Drulea and
Nedevschi (2011), concatenate the three frames and pass them through a convolutional
neural network that produces the output frame Iest

t . Caballero et al. (2017) follow the
same approach but replace the optical flow model with a trainable motion compensation
network. Makansi et al. (2017) follow an approach similar to Caballero et al. (2017) but
combine warping and mapping to HR space into a single step. Tao et al. (2017) rely on
a batch of up to 7 input LR frames to estimate a single HR frame. After computing the
motion from neighboring input frames to ILR

t , they map the frames onto high-resolution
grids. In a final step, they run an encoder-decoder style network with a Conv-LSTM
in the core yielding Iest

t . Liu et al. (2017) process up to 5 LR frames using different
numbers of input frames (ILR

t ), (ILR
t−1, I

LR
t , ILR

t+1), and (ILR
t−2, . . . , I

LR
t+2) simultaneously to

produce separate HR estimates that are aggregated in a final step with dynamic weights to
produce a single output Iest

t .
While a number of the above mentioned methods are end-to-end trainable, the authors

often note that they first pre-train each component before fine-tuning the system as a
whole in a final step (Caballero et al., 2017; Liu et al., 2017; Tao et al., 2017).

Huang et al. (2015b) use a bidirectional recurrent architecture for video super-resolution
with shallow networks but do not use any explicit motion compensation in their model.
Recurrent architectures have also been used for other tasks such as video deblurring (Kim
et al., 2017) and stylization (Chen et al., 2017a; Gupta et al., 2017). While Kim et al.
(2017) and Chen et al. (2017a) pass on a feature representation to the next step, Gupta et al.
(2017) pass the previous output frame to the next step to produce temporally consistent
stylized videos in concurrent work. A recurrent approach for video super-resolution was
proposed by Farsiu et al. (2006) more than a decade ago with motivations similar to ours.
However, this approach uses an approximation of the Kalman filter for frame estimation
and is constrained to translational motion.
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Figure 3.2: Overview of the proposed FRVSR framework (left) and the loss functions used
for training (right). After computing the flow FLR in LR space using FNet, we upsample
it to FHR. We then use FHR to warp the HR-estimate of the previous frame Iest

t−1 onto the
current frame. Finally, we map the warped previous output Ĩest

t−1 to LR-space using the
space-to-depth transformation and feed it to the super-resolution network SRNet along
with the current input frame ILR

t . For training the networks (shown in red), we apply a
loss on Iest

t as well as an additional loss on the warped previous LR frame to aid FNet.

3.3 Method

After presenting an overview of the FRVSR framework in Section 3.3.1 and defining the
loss functions used for training in Section 3.3.2, we justify our design choices in Sec-
tion 3.3.3 and give details on the implementation and training procedure in Sections 3.3.4
and 3.3.5, respectively.

3.3.1 FRVSR Framework

The proposed framework is illustrated in Figure 3.2. Trainable components (shown in
red) include the optical flow estimation network FNet and the super-resolution network
SRNet. To produce the HR estimate Iest

t , our model makes use of the current LR input
frame ILR

t , the previous LR input frame ILR
t−1, and the previous HR estimate Iest

t−1.

1. Flow estimation

As a first step, FNet estimates the flow between the low-resolution inputs ILR
t−1 and ILR

t
yielding the normalized low-resolution flow map

FLR = FNet(ILR
t−1, I

LR
t ) ∈ [−1,1]H×W×2 (3.1)

that assigns a position in ILR
t−1 to each pixel location in ILR

t .
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2. Upscaling flow

Treating the flow map FLR as an image, we upscale it using bilinear interpolation with
scaling factor s which results in an HR flow-map

FHR = UP(FLR) ∈ [−1,1]sH×sW×2. (3.2)

3. Warping previous output

We use the high-resolution flow map FHR to warp the previously estimated image Iest
t−1

according to the optical flow from the previous frame onto the current frame.

Ĩest
t−1 = WP(Iest

t−1,F
HR) (3.3)

We implemented warping as a differentiable function using bilinear interpolation similar
to Jaderberg et al. (2015).

4. Mapping to LR space

We map the warped previous output Ĩest
t−1 to LR space using the space-to-depth transforma-

tion
Ss : [0,1]sH×sW×3→ [0,1]H×W×s2C (3.4)

which extracts shifted low-resolution grids from the image and places them into the
channel dimension, see Figure 3.3 for an illustration. The operator can be formally
described as

Ss(I)i, j,k = Isi+k%s, s j+(k/s)%s, k/s2 (3.5)

with zero-based indexing, modulus % and integer division /.

5. Super-Resolution

In the final step, we concatenate the LR mapping of the warped previous output Ĩest
t−1 with

the current low-resolution input frame ILR
t in the channel dimension, and feed the result

ILR
t ⊕Ss(Ĩest

t−1) to the super-resolution network SRNet.

Summary

The final estimate Iest
t of the framework is the output of the super-resolution network

SRNet:
Iest
t = SRNet(ILR

t ⊕Ss(WP(Iest
t−1,UP(FNet(ILR

t−1, I
LR
t ))))) (3.6)
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Figure 3.3: Illustration of the space-to-depth transformation S2. Regular LR grids with
varying offsets are extracted from an HR image and placed into the channel dimension,
see Equation 3.5 for a formal definition.

3.3.2 Loss Functions

We use two loss terms to train our model, see Figure 3.2, right. The loss Lsr is applied on
the output of SRNet and is backpropagated through both SRNet and FNet:

Lsr = ||Iest
t − IHR

t ||22 (3.7)

Since we do not have a ground truth optical flow for our video dataset, we calculate the
spatial mean squared error on the warped LR input frames leading to the auxiliary loss
term Lflow to aid FNet during training.

Lflow = ||WP(ILR
t−1,F

LR)− ILR
t ||22 (3.8)

The total loss used for training is L= Lsr +Lflow.

3.3.3 Justifications

The proposed FRVSR framework is motivated by the following ideas:

• Processing the input video frames more than once leads to high computational cost.
Hence, we avoid the sliding window approach and process each input frame only once.

• Having direct access to the previous output can help the network to produce a temporally
consistent estimate for the following frame. Furthermore, through a recurrent architecture,
the network can effectively use a large number of previous LR frames to estimate the HR
frame (see Section 3.4.6) without tradeoffs in computational efficiency. For this reason,
we warp the previous HR estimate and feed it to the super-resolution network.

35



Chapter 3 Frame-Recurrent Video Super-Resolution

• All computationally intensive operations should be performed in LR space. To this end,
we map the previous HR estimate to LR space using the space-to-depth transformation, the
inverse of which has been previously used by Shi et al. (2016a) for upsampling. Running
SRNet in LR space has the additional advantages of reducing the memory footprint and
increasing the receptive field when compared to a super-resolution network that would
operate in HR space.

3.3.4 Implementation

The proposed model in Figure 3.2 is a flexible framework that leaves the choice for a
specific network architecture open. For our experiments, we use fully convolutional
architectures for both FNet and SRNet, see Figure 3.4 for details. The design of our
optical flow network FNet follows a simple encoder-decoder style architecture to increase
the receptive field of the convolutions. For SRNet, we follow the residual architecture used
by Sajjadi et al. (2017), but replace the upsampling layers with transposed convolutions.
Our choice of network architectures strikes a balance between quality and complexity.
More recent methods for each subtask, especially more complex optical flow estimation
methods (Dosovitskiy et al., 2015; Ilg et al., 2017; Ranjan and Black, 2017) can be easily
incorporated and will lead to even better results.

3.3.5 Training and Inference

Our training dataset consists of 40 high-resolution videos (720p, 1080p and 4k) down-
loaded from vimeo.com. We downsample the original videos by a factor of 2 to have
a clean high-resolution ground truth and extract patches of size 256×256 to generate
the HR videos. To produce the input LR videos, we apply Gaussian blur to the HR
frames and downscale them by sampling every 4-th pixel in each dimension for s = 4.
Unless specified otherwise, we use a Gaussian blur with standard deviation σ = 1.5 (see
Section 3.4.2).

To train the recurrent system, we extract clips of 10 consecutive frames from the videos
using FFmpeg. We avoid cuts or large scene changes in the clips by making sure that the
clips do not contain keyframes. All losses are backpropagated through both networks
SRNet and FNet as well as through time, i.e., even the optical flow network for the first
frame in a clip receives gradients from the super-resolution loss on the 10th frame. The
model directly estimates the full RGB video frames, so no post-processing is necessary.

To estimate the first frame Iest
1 in each clip, we initialize the previous estimate with

a black image Iest
0 = 0 at both training and testing time. The network will then simply

upsample the input frame ILR
1 independently without additional prior data, similar to a

single image super-resolution network. This has the additional benefit of encouraging the
network to learn how to upsample single images independently early on during training
instead of only relying on copying the previously generated image Ĩest

t−1.
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Figure 3.4: Network architectures for SRNet (top) and FNet (bottom) for 4x upsampling.
Both networks are fully convolutional and work in LR space. For the inputs, ⊕ denotes
the concatenation of images in the channel dimension. All convolutions in both networks
use 3×3 kernels with stride 1, except for the transposed convolutions in SRNet which use
stride 2 for spatial upsampling. The leaky ReLU units in FNet use a leakage factor of 0.2
and the notation 2x indicates that the corresponding block is duplicated.

Our architecture is fully end-to-end trainable and does not require component-wise
pre-training. Initializing the networks with the Xavier method (Glorot and Bengio, 2010),
we train the model on 2 million batches of size 4 using the Adam optimizer (Kingma and
Ba, 2015) with a fixed learning rate of 10−4. Note that each sample in the batch is a set
of 10 consecutive video frames, i.e., 40 video frames are passed through the networks in
each iteration.

As training progresses, the optical flow estimation gradually improves which gives
the super-resolution network higher-quality data to work with, helping it to rely more
and more on the warped previous estimate Ĩest

t−1. At the same time, the super-resolution
network automatically learns to ignore the previous image Ĩest

t−1 when the optical flow
network cannot find a good correspondence between ILR

t−1 and ILR
t , e.g., for the very first

video frame in each batch or for occluded areas. These cases can be detected by the
network through a comparison of the low frequencies in Ĩest

t−1 with those in ILR
t . In areas

where they do not match, the network ignores the details in Ĩest
t−1 and simply upscales the

current input frame independently. Once the model has been trained, it can be run on
videos of arbitrary size and length due to the fully convolutional nature of the networks.
To super-resolve a video, the network is applied frame by frame in a single feed-forward
pass. Benchmarks for runtimes of different model sizes are reported in Section 3.4.7.
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3.4 Evaluation
For a fair evaluation of the proposed framework on equal ground, we compare our model
with two baselines that use the same optical flow and super-resolution networks. After
presenting the baselines in Section 3.4.1, we extensively investigate the performance
of FRVSR along with the baselines in Section 3.4.2–3.4.7. All experiments are done
for the challenging case of 4x upsampling. For evaluation, we use a dataset of ten 3–5s
high-quality 1080p video clips downloaded from youtube.com, which we refer to as YT10.
Finally, we compare our models with current state-of-the-art methods on the standard Vid4
benchmark dataset (Liu and Sun, 2011) in Section 3.4.8. Following Caballero et al. (2017),
we compute video PSNR on the brightness channel (ITU-R BT.601 YCbCr standard)
using the mean squared error over all pixels in the video. For more results and video
samples, we refer the reader to the project website at github.com/msmsajjadi/FRVSR.

3.4.1 Baselines
SISR: For the single image super-resolution baseline, we omit optical flow estimation
from FRVSR and disregard any prior information, feeding only ILR

t into SRNet.

VSR: To compare with the sliding window approach for video super-resolution, we
include this baseline in which a fixed number of input frames are processed to produce
a single output frame. Following Kappeler et al. (2016) and Caballero et al. (2017), we
warp the previous and next input frames onto the current frame, concatenate all three
frames and feed them to SRNet. Note that this model is computationally more expensive
than FRVSR since it runs FNet twice for each frame while the computation for SRNet is
almost identical to that of FRVSR.

As with FRVSR, both baselines are trained starting from a Xavier initialization (Glorot
and Bengio, 2010) using the Adam optimizer (Kingma and Ba, 2015) with a fixed learning
rate of 10−4. We trained the SISR network for 500K steps and VSR for 2 million steps,
both using a batch size of 16. All networks are trained using the same dataset, and their
losses on a validation dataset have converged at the end of the training.

3.4.2 Blur Size
As mentioned in Section 3.3.5, we apply Gaussian blur to the HR frames before down-
sampling them to generate the LR input for the network. While a smaller blur kernel
results in aliasing, excessive blur leads to loss of high-frequency information in the input,
making it harder to reconstruct finer details. To analyze how different approaches perform
for blurry or aliased inputs, we trained SISR, VSR and FRVSR on video frames that
have been downscaled using different values of standard deviation for the Gaussian blur
ranging from σ =0 to σ =5, see Figure 3.5. The proposed framework FRVSR significantly
outperforms SISR and VSR on all blur sizes. It is interesting to note that SISR, which
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Figure 3.5: Performance for different blur sizes on YT10. For all blur sizes, FRVSR gives
the best results. The best PSNR of FRVSR (σ =1.5) is 1.00 dB and 0.39 dB higher than
the best of SISR (σ =2.0) and VSR (σ =1.5), respectively.

relies on a single LR image for upsampling, benefits the most from larger blur kernels
compared to VSR and FRVSR which perform best with σ =1.5. This is due to the fact
that video super-resolution methods are able to blend information from multiple frames
and therefore benefit from sharper inputs. In the remaining experiments, we use σ =1.5.

3.4.3 Training Clip Length

Since FRVSR is a recurrent network, it can be trained on video clips of any length. To test
the effect of the clip length used to train the network, we trained the same model using
video clips of length 2, 5 and 10, yielding average video PSNR values of 31.60, 32.01 and
32.10 on YT10, respectively. This shows that the PSNR has already started to saturate
with a clip length of 5 and going beyond 10 may not yield significant improvements.

3.4.4 Degraded Inputs

To see how different models perform under input degradations, we trained and evaluated
FRVSR and the baselines using noisy and compressed input frames. Table 3.1 shows the
performance of these models on YT10 for varying levels of Gaussian noise and JPEG
compression quality. The proposed framework consistently outperforms both SISR and
VSR by 0.36–0.91 dB and 0.18–0.48 dB, respectively.
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SISR

VSR

FRVSR

HR

Figure 3.6: Temporal profiles for Calendar from Vid4. VSR yields finer details than SISR,
but it’s output still contains temporal inconsistencies (e.g., in the red boxes). Only FRVSR
is able to produce temporally consistent results while reproducing fine details.

model σ =0.025 σ =0.075 JPG 40 JPG 70

SISR 29.93 28.20 27.94 28.88
VSR 30.36 28.42 28.12 29.07

FRVSR 30.84 28.62 28.30 29.29

Table 3.1: Average video PSNR of various models under Gaussian noise (left) and JPEG
artifacts (right) on YT10. In all experiments, FRVSR achieves the highest PSNR.

3.4.5 Temporal Consistency

Analyzing the temporal consistency of the results is best done by visual inspection of the
video results. However, to compare the results on paper, we follow Caballero et al. (2017)
and show temporal profiles, see Figure 3.6. A temporal profile is generated by taking the
same horizontal row of pixels from a number of frames in the video and stacking them
vertically into a new image. Flickering in the video will show up as jitter and jagged lines
in the temporal profile. SISR produces blurry images that are temporally inconsistent.
While VSR produces sharper results than SISR, it still has significant flickering artifacts
since each output frame is estimated separately. In contrast, FRVSR produces the most
consistent results while containing even finer details in each image.
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Figure 3.7: Performance of FRVSR on YT10 as a function of the number of previous
frames processed. In the normal mode (blue), PSNR increases up to 12 frames, after
which it remains stable. When the first HR image is given (red), FRVSR propagates
high-frequency details across a large number of frames and performs better than the
normal mode even after 50 frames.

3.4.6 Range of Information Flow

Existing approaches to video super-resolution often use a fixed number of input frames to
produce a single output frame (usually 3 to 7 frames). Increasing this number increases
the maximum number of frames over which details can be propagated. While this can
result in higher-quality videos, it also substantially increases the computational cost,
leading to a tradeoff between efficiency and quality. In contrast, due to its recurrent
nature, FRVSR can pass information across a large number of frames without increasing
computations. Figure 3.7 shows the performance of FRVSR as a function of the number
of frames processed. In the normal mode (blue curve) in which a black frame is used
as the first frame’s previous HR estimate, the performance steadily improves as more
frames are processed and it plateaus at 12 frames. When we replace the first previous
HR estimate with the corresponding groundtruth HR frame (red curve), FRVSR carries
the high-frequency details across a large number of frames and performs better than the
normal mode even after 50 frames.

To investigate the maximum effective range of information flow, we start the same
model at different input frames in the same video and compare the performance. Figure 3.8
shows such a comparison for the Foliage video from Vid4. As we can see, the gap between
the curves for the models that start at frame 1 and frame 11 only closes towards the end
of the clip, showing that FRVSR is propagating information over more than 30 frames.
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Figure 3.8: Performance of FRVSR started at the 1st and 11th frame of Foliage from Vid4.
The gap between the curves only closes towards the end of the clip, showing FRVSR’s
ability to retain details over a large range of video frames.

To propagate details over such a large range, previous state-of-the-art methods (Kappeler
et al., 2016; Caballero et al., 2017; Tao et al., 2017; Liu et al., 2017; Makansi et al., 2017)
would have to process an inhibiting number of input frames for each output image, which
would be computationally infeasible.

3.4.7 Network Size and Computational Efficiency

To see how the performance of different models varies with the size of the network, we
trained and evaluated FRVSR and the baselines with different numbers of residual blocks
and convolution filters in SRNet, see Figure 3.9. It is interesting to note that the video
super-resolution models FRVSR and VSR clearly benefit from larger models while the
performance of SISR does not change significantly beyond 5 residual blocks. We can
also see that FRVSR achieves better results than VSR despite being faster: The FRVSR
models with 5 residual blocks outperform the VSR models with 10 residual blocks, and
the FRVSR models with 3 residual blocks outperform the VSR models with 5 residual
blocks for the same number of convolution filters. In our TensorFlow implementation
on an Nvidia P100, producing a single full HD frame for 4x upscaling takes 74ms for
FRVSR with 3 residual blocks and 64 filters, and 191ms with 10 blocks and 128 filters.
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Figure 3.9: Performance on YT10 for different numbers of convolution filters (64 / 128)
and residual blocks in SRNet. FRVSR achieves better results than both baselines with
significantly smaller super-resolution networks and less computation time. For example,
FRVSR with 5 residual blocks is both faster and better than VSR with 10 residual blocks.

3.4.8 Comparison with Prior Art

Table 3.2 compares the proposed FRVSR approach with various state-of-the-art video
super-resolution approaches on the standard Vid4 benchmark dataset by PSNR and SSIM.
We report results for two FRVSR networks: FRVSR 10-128, which is our best model
with 10 residual blocks and 128 convolution filters, and FRVSR 3-64, which is our most
efficient model with only 3 residual blocks and 64 convolution filters. For the baselines
SISR and VSR, we report their best results which correspond to 10 residual blocks and
128 convolution filters. We also include RAISR (Romano et al., 2016) as an off-the-shelf
single image super-resolution alternative. For all competing methods except (Huang et al.,
2015b; Romano et al., 2016; Caballero et al., 2017), we used the output images provided
by the corresponding authors to compute PSNR and SSIM. We did not use the first and
last two frames in our evaluation since Liu et al. (2017) do not produce outputs for these
frames. Also, for each video, we removed border regions such that the LR input image
is a multiple of 8. For (Huang et al., 2015b; Caballero et al., 2017), we use the PSNR
and SSIM values reported in the respective publications since we could not confirm them
independently. For (Romano et al., 2016), we used the models provided by the authors to
generate the output images.

As shown in Table 3.2, FRVSR outperforms the current state of the art by more than 0.5
dB. In fact, even our most efficient model FRVSR 3-64 produces state-of-the-art results
by PSNR and beats all previous neural network-based methods by SSIM. It it interesting
that our small model, despite being much more efficient, produces results that are very
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Bicubic Caballero et al. Liu et al. Tao et al. Liu and Sun

SISR VSR FRVSR 3-64 FRVSR 10-128 HR ground truth

Figure 3.10: Visual comparison with previous methods on Foliage from Vid4. Amongst
prior art, Liu and Sun recover the finest details, but their result has blocky artifacts, and
their method uses a slow optimization procedure. Between the remaining methods, even
the result of our smallest model FRVSR 3-64 is sharper and contains more details than
prior art, producing results similar to the much bigger VSR model. Our larger model
FRVSR 10-128 recovers the most accurate image.

close to the much larger model VSR 10-128 on the Vid4 dataset. Figure 3.10 shows a
visual comparison of the different approaches. We can see that our models are able to
recover fine details and produce visually pleasing results. Even our most efficient network
FRVSR 3-64 produces higher-quality results than prior art.

3.5 Future Work

Since our framework relies on the HR estimate Iest for propagating information, it can
reconstruct details and propagate them over a large number of frames (see Section 3.4.6).
At the same time, any detail can only persist in the system as long as it is contained in Iest,
as it is the only way through which SRNet can pass information to future iterations. Due
to the spatial loss on Iest, SRNet has no way to pass on auxiliary information that could
potentially be useful for future frames in the video, e.g., for occluded regions. As a result,
occlusions irreversibly destroy all previously aggregated details in the affected areas and
the best our model can do for the previously occluded areas is to match the performance
of single image super-resolution models. In contrast, models that use a fixed number of
input frames can still combine information from frames that do not have occlusions to
produce better results in these areas. To address this limitation, it is natural to extend
the framework with an additional memory channel. However, preliminary experiments
in this direction with both static and motion-compensated memory did not improve the
performance of the architecture, so we leave these extensions to future work.
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Method Bicubic RAISR BRCN VESPCN B1,2,3+T DRVSR Bayesian

PSNR 23.53 24.24 24.43* 25.35* 25.35 25.87 26.16
SSIM 0.628 0.665 0.662* 0.756* 0.738 0.772 0.815

Method SISR (10-128) VSR (10-128) FRVSR (3-64) FRVSR (10-128)

PSNR 24.96 26.25 26.17 26.69
SSIM 0.721 0.803 0.798 0.822

Table 3.2: Comparison of average PSNR and SSIM on the standard Vid4 dataset for scaling
factor s=4. We compare our models with RAISR (Romano et al., 2016), BRCN (Huang
et al., 2015b), VESPCN (Caballero et al., 2017), B1,2,3+T (Liu et al., 2017), DRVSR (Tao
et al., 2017), and Bayesian (Liu and Sun, 2011). Our smallest model FRVSR 3-64
already produces better results than all prior art including the computationally expensive
optimization-based method by Liu and Sun (2011) by PSNR. Using a bigger super-
resolution network helps FRVSR 10-128 to add an additional 0.5 dB on top and achieve
state-of-the-art results by SSIM as well, showing that the proposed framework can greatly
benefit from more powerful networks. Values marked with a star have been copied from
the respective publications.

Since the model is conceptually flexible, it can be easily extended to other applications.
As an example, one may plug in the original HR frame IHR

t−1 in place of the estimated
frame Iest

t−1 for every K-th frame. This could enable an efficient video compression method
where only one in K HR-frames needs to be stored while the remaining frames would be
reconstructed by the model.

A further extension of our framework would be the inclusion of more advanced loss
terms which have recently been shown to produce more visually pleasing results (Ledig
et al., 2017; Sajjadi et al., 2017). The recurrent architecture in FRVSR naturally encour-
ages the network to produce temporally consistent results, making it an ideal candidate
for further research in this direction.

3.6 Summary
We propose a flexible end-to-end trainable framework for video super-resolution that is
able to generate higher quality results while being more efficient than existing sliding win-
dow approaches. In an extensive set of experiments, we show that our model outperforms
competing baselines in various different settings. The proposed model also significantly
outperforms state-of-the-art video super-resolution approaches both quantitatively and
qualitatively on a standard benchmark dataset.
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Chapter 4

Tempered Adversarial Networks
Generative adversarial networks (GANs) have been shown to produce realistic samples
from high-dimensional distributions, but training them is considered hard. A possible
explanation for training instabilities is the inherent imbalance between the networks:
While the discriminator is trained directly on both real and fake samples, the generator
only has control over the fake samples it produces since the real data distribution is fixed
by the choice of a given dataset. We propose a simple modification that gives the generator
control over the real samples which leads to a tempered learning process for both generator
and discriminator. The real data distribution passes through a lens before being revealed
to the discriminator, balancing the generator and discriminator by gradually revealing
more detailed features necessary to produce high-quality results. The proposed module
automatically adjusts the learning process to the current strength of the networks, yet is
generic and easy to add to any GAN variant. In a number of experiments, we show that
this can improve quality, stability and/or convergence speed across a range of different
GAN architectures (DCGAN, LSGAN, WGAN-GP).

4.1 Introduction
Generative Adversarial Networks (GANs) have been introduced as the state of the art in
generative models (Goodfellow et al., 2014). They have been shown to produce sharp
and realistic images with fine details (Denton et al., 2015; Radford et al., 2016b; Chen
et al., 2016; Zhang et al., 2017b). The basic setup of GANs is to train a parametric
nonlinear function, the generator G, which maps samples from random noise drawn
from a distribution Z into samples of a fake distribution G(Z) which are close in terms
of some measure to a real world empirical data distribution X . To achieve this goal, a
discriminator D is trained to provide feedback in the form of gradients for the generator.
This feedback can be the confidence of a classifier discriminating between real and fake
examples (Goodfellow et al., 2014; Mao et al., 2017; Arjovsky et al., 2017; Gulrajani
et al., 2017) or an energy defined in terms of a reconstruction loss of an autoencoder
(Zhao et al., 2017a; Berthelot et al., 2017).

GANs are infamous for being difficult to train and sensitive to small changes in hyper-
parameters (Goodfellow et al., 2016). A typical source of instability is the discriminator
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Figure 4.1: Schematic of the proposed module. We add a lens L in between the real data
X and the discriminator D. The lens is compatible with any type of GAN and dataset type.
It finds a balance between fooling the discriminator and a reconstruction loss, leading to a
tempered training procedure that self-adjusts to the capabilities of the current generator
w.r.t. the current discriminator.

rapidly overpowering the generator which leads to problems such as vanishing gradients
or mode collapse. In this case, G(X ) and X are too distant from each other and the
discriminator learns to fully distinguish them (Arjovsky and Bottou, 2017). While several
GAN variants have been introduced to address the problems encountered during training
(Berthelot et al., 2017; Zhao et al., 2017a; Arjovsky et al., 2017; Gulrajani et al., 2017),
finding stable and more reliable training procedures for GANs is still an open research
question (Lucic et al., 2018).

Our Contributions

In this work we propose a general and dynamic, yet simple to implement extension to
GANs that encourages a smoother training procedure. We introduce a lens module L
which gives the generator control over the real data distribution X before it enters the
discriminator. By adding the lens between the real data samples and the discriminator,
we allow training to self-stabilize by automatically balancing a reconstruction loss with
the current performance of the generator and discriminator. For instance, a lens could
implement an image blurring operation which gradually gets reduced during training, thus
only requiring the generation of good blurry images at the beginning, which gradually
become sharper during training. While this analogy from optics motivates the term lens,
in practice we learn the lens from data as explained below.

While the generator in a regular GAN chases a fixed distribution X , the proposed lens
moves the target distribution closer to the generated samples G(Z) which leads to a better
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optimization behavior.

4.2 Tempered Adversarial Networks
The original formulation for GANs poses the training process as a minimax game between
the generator G and discriminator D over the value function V:

min
G

max
D
V(D,G) = Ex∼X [log(D(x))] + Ez∼Z [1− log(D(G(z)))] (4.1)

In practice, both generator and discriminator are implemented as neural networks. The
generator maps a random distribution Z to G(Z) which is in the same space as the real
data distribution X . While the discriminator sees both real samples from X and fake
samples from G(Z), the generator only has control over the samples it produces itself, i.e.,
it has no control over the real data distribution X which is fixed throughout training. To
resolve this asymmetry, we add a lens module L which modifies the real data distribution
X before it is passed to the discriminator.

In practice, we use a neural network for L. The only change in the GAN architec-
ture is consequently the input to the discriminator, which changes from {X ,G(X )} to
{L(X ),G(X )}.

We train the lens with two loss terms: an adversarial loss LA
L and a reconstruction loss

LR
L . The adversarial loss is supposed to maximize the loss of the discriminator of the

respective GAN architecture, i.e., LA
L ≈ −LD. For the specific loss functions we used

with the different GAN variants, see Sections 4.2.1–4.2.3.
Additionally, we add a reconstruction loss to prevent the lens from converging to trivial

solutions (e.g., mapping all samples to zero):

LR
L = ||X −L(X )||22 (4.2)

The overall loss for the lens is

LL = λLA
L +LR

L (4.3)

The lens can automatically balance a good reconstruction of the original samples
with the objective of mapping the real data distribution X close to the generated data
distribution G(Z) w.r.t. the probabilities given by the discriminator. As training progresses,
the generated samples get closer to the real samples, i.e., the lens can afford to reconstruct
the real data samples better. Once the discriminator starts to see differences, the loss
term LA

L increases which makes L shift the real data distribution X towards the generated
samples, helping to keep G(Z) and L(X ) closer together which yields better gradients
during training.

To accelerate this procedure, we set λ = 1 at the beginning of the training procedure
and then gradually decrease it to λ = 0, at which point L is only trained with LR

L , forcing
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Figure 4.2: Schedule for the weight λ for the adversarial loss term LA
L of the lens during

training. As training progresses, the value is lowered in a smooth way from 1 to 0 in
K steps, increasing the relative weight of the reconstruction loss for the lens. We set
K=10k in all experiments. While lower values showed faster convergence rates in our
experiments, we opted for a single value in all experiments for simplicity and to avoid
adding yet another hyperparameter that needs to be tuned. We found that the performance
is robust against changes for the specific value for K and that a single value yields good
results across datasets and GAN architectures.

it to converge to the identity mapping L(X ) = X . To have a smooth transition from
adversarial samples L(X ) to the real data distribution X in K steps, we adapt the value
for λ as

λ =

{
1− sin(tπ/2K), t ≤ K
0, t > K

(4.4)

for the t-th time step during training. The value of λ over time can be seen in Figure 4.2.
Once the lens converges to the identity mapping, training reduces to the original GAN
architecture without a lens. In all experiments, we set K = 105 unless specified otherwise.
Lower values for K lead to faster convergence, but to avoid introducing a new hyper-
parameter that needs to be tuned, and for simplicity, we choose the same value for all
experiments. Note that this choice is clearly not optimal for all tasks and tuning the value
can easily lead to even faster convergence and higher quality samples.
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Figure 4.3: Network architecture of the generator G (top) and discriminator D (bottom).
The design follows Radford et al. (2016b). The strides of the convolutions are 1/2 for
upsampling in G and 2 for downsampling in D. The kernel size is 4×4 in both networks.
The number of parameters can be varied by adjusting C.

4.2.1 Objectives for Classical GAN Formulation

In the original work, Goodfellow et al. (2014) use the loss

LG =− log(D(G(Z))) (4.5)

for the generator, and

Loriginal
D =− log(D(X ))− log(1−D(G(Z))) (4.6)

for the discriminator. The objectives of generator and discriminator remain unchanged,
though the input of the real data to D is changed from X to L(X ):

LD =− log(D(L(X )))− log(1−D(G(Z))). (4.7)

The lens is trained against the discriminator with the adversarial loss term

LA
L =− log(1−D(L(X ))) (4.8)

which minimizes the output of the discriminator for the lensed data points using the
nonsaturating loss.
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4.2.2 Objectives for LSGAN

In LSGAN (Mao et al., 2017), the log-loss is replaced by the squared distance. This leads
to the adversarial loss

LG = ||D(G(Z))−1||22 (4.9)

for the generator, and

LD = ||D(G(Z))||22 + ||D(L(X ))−1||22 (4.10)

for the discriminator. The lens works against the discriminator with the adversarial loss

LA
L = ||D(L(X ))||22 (4.11)

4.2.3 Objectives for WGAN-GP

The discriminator or critic in the WGAN-GP variant (Gulrajani et al., 2017) outputs
values that are unbounded, i.e., there is no sigmoid activation at the after the last dense
layer in Figure 4.3. The objectives are

LG =−D(G(Z)) (4.12)

for the generator, and
LD = D(G(Z))−D(L(X )) (4.13)

for the critic. Again, the lens works against the critic, so we use the adversarial objective

LA
L = D(L(X )) (4.14)

for the lens for this GAN variant.

4.2.4 Architecture, Training and Evaluation metrics

The lens can be any function which maps from the usually high-dimensional space of the
real data distribution X to itself. Note that the lens does not need to be injective – in fact,
early on during training, mapping several different points to the same data point can be a
simple way to decrease the complexity of the data distribution which will likely decrease
the loss term LA

L . Since it is desirable for the lens to turn into the identity mapping at
some point during training, we have chosen a residual fully convolutional neural network
architecture for the lens, see Figure 4.4.

The network architecture and training procedure for the generator and discriminator
depend on the chosen GAN framework. For the experiments with the original GAN loss,
we use the DCGAN architecture along with its common tweaks (Radford et al., 2016b),
namely, strided convolutions instead of pooling layers, applying batch normalization
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Figure 4.4: Network architecture of the proposed lens that is similar to Sajjadi et al. (2017).
The core of the network is composed of 8 residual blocks. To help convergence to identity,
we add an additional residual connection from the input to the output. All convolutions
have 3×3 kernels and stride 1.

in both networks, using ReLU in the generator and leaky ReLU in the discriminator,
and Adam (Kingma and Ba, 2015) as the optimizer. See Figure 4.3 for an overview of
the networks. LSGAN is trained in the same setting but without batchnorm. For the
WGAN-GP experiments, we used the implementation from Gulrajani (2017) which uses
very similar models but the RMSProp optimizer (Hinton et al., 2012). We train the lens
alongside the generator and discriminator and update it once per iteration regardless of
the GAN variant. Note that the networks for the DCGAN and LSGAN experiments have
intentionally been chosen not to have a very large number of feature channels to avoid
memorization on small datasets which is why the results on an absolute scale are certainly
not state of the art. We train using batch sizes of 32 and 64, a learning rate of 10−4 and
we initialize the networks with the Xavier initialization (Glorot and Bengio, 2010).

For quantitative evaluation, previous works have been reporting the Inception score
(Salimans et al., 2016a), though its accuracy has been questioned (Barratt and Sharma,
2018). Recently, the Fréchet Inception Distance (FID) has been shown to correlate well
with the perceived quality of samples, so we follow Heusel et al. (2017) and report FID
scores. Note that a lower FID is better. For computational reasons, the FID scores are
computed on sets of 4096 samples for the DCGAN and LSGAN experiments. While
this is lower than the recommended 10k and should therefore not be compared directly
with other publications, we found the sample size to be sufficient to capture relative
improvements as long as sample sizes are identical. For the WGAN-GP experiments, we
used sample sizes of 10k data points. The image size in all experiments is 32×32 pixels
with 1 color channel for MNIST and 3 color channels for all other experiments.

53



Chapter 4 Tempered Adversarial Networks

4.3 Related Work
After its introduction (Goodfellow et al., 2014), GANs have received a lot of attention
from the community. There are several lines of work to improve the training procedure
of GANs. Radford et al. (2016b) proposed heuristic guidelines for the design of GAN
architectures, e.g., recommending the use of strided convolutions and batch normalization
(Ioffe and Szegedy, 2015) in both generator and discriminator. Several works follow
this trend, e.g., Salimans et al. (2016a) propose the use of further methods to stabilize
the performance of GANs including feature matching, historical averaging, minibatch
discrimination and one-sided label smoothing (Szegedy et al., 2016). More closely related
to our work, Arjovsky and Bottou (2017) propose adding noise to the samples during
training with the motivation of increasing the support of the generated and real data
distributions which leads to more meaningful gradients. The amount of noise is reduced
manually during training. In our work, the lens is not constrained in the mapping that
it can apply to balance the training procedure. Furthermore, the effect of the lens is
automatically balanced with a reconstruction term that adjusts the intervention of the lens
dynamically during training depending on the current balance between generator and
discriminator.

There are several works which approach the problem by using multiple networks instead
of one. Denton et al. (2015) propose a Laplacian pyramid of generator-discriminator pairs
for generating images. Zhang et al. (2017b) use a similar approach by using one GAN
to produce a low-resolution image and another GAN which produces higher-resolution
images conditioned on the output of the low-resolution GAN. Such methods have the
drawback that several GANs need to be trained which increases the number of parameters
and introduces a computational bottleneck. Most recently, Karras et al. (2018) produced
convincing high-resolution images of faces by first learning the low frequencies in images
and then progressively growing both networks to produce higher-resolution images. While
promising, all of the methods above are constrained to generating images since the concept
of resolution is not easily generalizable to other domains.

Another line of research attacks the problem of training GANs by changing the loss
functions, e.g., Mao et al. (2017) use the least-squares distance loss whereas Arjovsky et al.
(2017) approximate the Wasserstein distance which provides more stable gradients for the
generator. Gulrajani et al. (2017) improve upon the latter by replacing weight clipping
in the discriminator with a gradient penalty which accelerates the training procedure
considerably.

In the context of training neural networks, Gulcehre et al. (2017) smoothen the objective
function by adding noise to activation functions and then gradually decrease the level of
noise as training progresses. Bengio et al. (2009) coin the term curriculum learning where
the idea is to present the samples during training in a specific order that improves the
learning process. Our approach may have a similar effect, but differs in that we present
all samples of the original dataset to the networks, modifying them dynamically in a way
that stabilizes the learning process.
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4.4 Experiments

Showing that modifications or additions to GANs lead to better results in any way is a
delicate topic that has raised much controversy in the community. Most recently, the
findings of Lucic et al. (2018) suggest that with a sufficient computational budget, any
GAN architecture can be shown to perform at least as well or better than another, if a
smaller computational budget is spent on the hyperparameter search for the latter. To
avoid this fallacy and to prevent choices such as the network architecture or chosen
hyperparameters to favor one or another method, we follow common guidelines that are
currently in use for training GANs and we conduct experiments with three different GAN
frameworks: the original GAN formulation by Goodfellow et al. (2014); LSGAN, where
Mao et al. (2017) replace the log-loss with the least-squares loss; and WGAN-GP, where
Gulrajani et al. (2017) minimize the approximated Wasserstein distance between real and
generated data distributions and where the training procedure includes a gradient penalty
for the discriminator. For the network architecture, we follow standard design patterns
(see Section 4.2.4). In our experimental section, we do not strive for state of the art in
the end results, but rather we test how much of an effect the lens can have on training.
We show that the simple addition of a lens can help improve results across various GAN
frameworks. We hope that this insight will help ongoing efforts to understand and improve
the training of GANs and other neural network architectures.

In all experiments, the random weights for the initialization of the networks were
identical for the GANs with and without a lens. All experiments have further been run
with at least 3 different random seeds for the weight initialization to prevent chance from
affecting the results.

4.4.1 DCGAN

MNIST

We begin with the original GAN variant on the classical MNIST dataset. To analyze
the behavior of the lens, we first consider the case of a fixed λ = 1, i.e., the lens has no
direct incentive to become perfect identity. Figure 4.5 (top) shows generated and lensed
samples at different training stages for this architecture. At the beginning of training,
the lens scrambles the MNIST digits to look more similar to the generated images. As
the generator catches up and produces digit-like samples, the lens can afford to improve
reconstruction. Since the lens acts as a balancing factor between the G and D, this leads
to a very stable training procedure. However, even after 10M steps, the reconstruction of
the lens still improves, as does the FID score of the generated samples (see FID plot in
Figure 4.5, bottom left). In comparison, the GAN without a lens converges much faster to
better FID scores (Figure 4.5, bottom right, green curve).

To accelerate the training procedure, we adapt the weight of λ as explained in Sec-
tion 4.2. As this forces the lens to turn into a perfect identity mapping at some point
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Generated samples G(Z) Lensed samples L(X )

Without lens (FID 42)
Dynamic lens (FID 22)

Real samples X

Figure 4.5: MNIST digits produced by DCGAN with a lens with fixed λ = 1 (top). The
columns show generated and lensed samples. The lens L adds pertubations that make
the real data samples look more similar to fake samples. As training progresses, the
quality increases and the reconstruction of L improves steadily. Ideally, the system would
converge to a point where G produces samples that are indistinguishable from X for a
fully trained discriminator – at this point, L would turn into the identity mapping. While
training with the lens is very stable and while the FID was still decreasing when we
stopped training, the reconstructions are not perfect even after 10M training steps and the
FID is still only 60, i.e., it has not yet even reached the performance of DCGAN without a
lens after only 1M steps (bottom right, green curve). When the value for λ is adapted (see
Section 4.2), training is greatly sped up and, the quality of the samples is substantially
higher (FID 22) than for the GAN without a lens (FID 42). The difference is also visible
in the results, where the GAN with a lens produces better looking MNIST digits. Note
that the FID is initially higher for the GAN with a lens in the bottom right. This is because
the FID is always measured against the real samples X , while G is initially trained for the
lensed distribution L(X ) that differs from X in the early training stages.
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Figure 4.6: FID for DCGAN trained on the Color MNIST dataset. For each method, 3
independent runs with different random seeds for the weight initialization are shown.
Since the value of λ is high early on during training, the GAN with a lens initially
performs worse, but the quality soon catches up and surpasses that of the GAN without
a lens as λ is lowered to a value of 0. The GANs with a lens are much more stable and
more robust against different random seeds for the weight initialization.

during training, the process converges much more quickly and easily surpasses the quality
of the GAN without a lens, yielding FID scores of 22 (with lens) vs. 42 (without lens).
Additional experiments with much larger, heavily fine-tuned architectures that already
show stable training for GANs did not show better FID after the addition of the lens,
indicating that the proposed method can stabilize weaker architectures and lead to more
robust GAN training with respect to hyperparameters.

Color MNIST

Since MNIST only has 10 main modes, it is not an adequate test for the mode collapse
problem in GANs. To alleviate this, a color MNIST variant has been proposed (Srivastava
et al., 2017). Each sample is created by stacking three randomly drawn MNIST digits
into the red, green and blue channels of an RGB image which leads to a dataset with 1000
modes (assuming 10 modes for MNIST) while still being easy to analyze visually.

As can be seen in Figure 4.7, the GAN without a lens first produces decent results in
all color channels before it collapses partially. At this point, only the green color channel
looks like MNIST digits while the other two channels are clearly not from the correct
distribution. The FID reflects this, sometimes even increasing as training proceeds, with
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Without lens 50k (FID 47)
Without lens 1M (FID 63)

With lens (FID 8)
Real samples X

Figure 4.7: Results of DCGAN with a lens L on the Color MNIST dataset (top). The
lens gradually improves reconstruction as G produces better samples. Once L is a perfect
identity function, G adds remaining details and finally produces realistic results (bottom,
third row). In comparison, the GAN without a lens only manages to produce good-looking
digits in the green color channel and produces noise in the red and blue channels (bottom,
first row, t=50k). As G improves quality in the green channel, the quality in the other
two channels decreases (bottom, second row, t=1M) which is a commonly encountered
instability during GAN training. Several runs with different random seeds for the weight
initialization yielded similar results for both architectures, see Figure 4.6. Images best
viewed in color.

values throughout training never getting lower than 50. Adding the lens to the GAN
stabilizes training and leads to much higher quality samples with an FID of 9 for the best
samples compared to 53 for the GAN without a lens.

4.4.2 LSGAN

MNIST

We found the LSGAN variant to be sensitive to the random seed for the weight initializa-
tion of the networks. LSGAN without a lens did not train in most cases, with the best run
yielding FID scores of 19. With the lens, the networks always trained well, with the worst
run producing FID scores of 16 and the best run giving FID scores of 14.
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← Final samples at the end of training

Figure 4.8: Generated and lensed samples at various steps during the training process of
LSGAN on the CelebA dataset with a lens. The generator produces a large variety of
faces since it is not forced to reproduce fine details early during training, making it less
prone to the mode collapse problem.

Color MNIST

On the Color MNIST dataset, we found LSGAN to perform similarly. The best run
without a lens yielded FID scores of 90 and training stalled there due to starved gradients.
Adding the lens made the networks produce meaningful results in all runs, producing FID
scores between 14 and 22 from different random initializations.

CelebA

On the CelebA dataset (Liu et al., 2015a), LSGAN was unstable, with a starving generator
early on during training due to a perfect discriminator that did not provide gradients. The
best run without a lens yielded an FID score of 52. Adding the lens helped the system
stabilize and produce meaningful results in all runs, with the best run yielding FID scores
of 32 and the worst run yielding an FID of 37. Note that these numbers are comparably
high due to the small model size of the generator and discriminator. The effects of the
lens during training are shown in Figure 4.8.
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Figure 4.9: FID for WGAN-GP on Cifar-10 with and without a lens. The value for λ

is smoothly lowered from 1 to 0 in the first K=10K steps. The final results have similar
FIDs, but WGAN-GP with a lens converges faster to higher-quality samples. Tuning the
rate at which λ is adapted could further improve convergence speeds.

4.4.3 WGAN-GP

Cifar-10

To test the lens on an entirely different GAN architecture, we also add it to the WGAN-GP
framework (Gulrajani et al., 2017). Wasserstein GANs are generally believed to be more
stable than other GAN variants, making it harder for tweaks to significantly improve
sample quality. Nevertheless, our experiment on the Cifar-10 dataset shows that the
same lens with the same hyperparameters also works well with WGAN-GP, yielding
higher-quality results as measured by the FID score at an earlier training stage. As seen in
Figure 4.9, the model with a lens quickly surpasses the quality of the model without a
lens and it takes some more training time for the GAN without a lens to catch up. When
trained long enough, both models yield an FID of 39.

It is noteworthy that adding the lens can lead to faster training although the generator
and discriminator are initially trained on a data distribution L(X ) that is quite different
from the real data distribution X (see Figure 4.10). This result suggests that a scheduled
learning procedure can indeed accelerate optimization of neural networks. The proposed
lens is a natural way to dynamically adjust the rate at which learning proceeds.
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Generated samples G(Z) Lensed samples L(X )

Figure 4.10: WGAN-GP with a lens L. In early training stages, the images are blurry lack
contrast, but L gradually reconstructs finer details as G catches up. Note that by design,
L could easily converge to the perfect identity mapping very quickly, so the gradual
improvements seen here are a result of the adversarial loss term LA

L rather than slow
convergence.
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4.5 Summary
We propose a generic module that leads to a dynamically self-adjusting progressive
learning procedure of the target data distribution in GANs. A number of experiments
on several GAN variants highlight the potential of this approach. Whilst the method is
conceptually simple, it may have significant potential, not only in the image domain, but
also in other domains such as audio or video generation. We hypothesize that similar
modifications can be applied to improve optimization of other neural network architectures.
For instance, autoencoders can be tempered by initially training to reconstruct lensed
inputs, and recognition networks can be tempered by grouping or smoothing classes.
Finally, it may be possible to incorporate prior knowledge about the task at hand by
suitably biasing or initializing lenses, for instance using blurring lenses to generate images
starting from low-frequency approximations.
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Chapter 5

Assessing Generative Models via
Precision and Recall
Recent advances in generative modeling have led to an increased interest in the study
of statistical divergences as means of model comparison. Commonly used evaluation
methods, such as the Fréchet Inception Distance (FID), correlate well with the perceived
quality of samples and are sensitive to mode dropping. However, these metrics are unable
to distinguish between different failure cases since they only yield one-dimensional scores.
We propose a novel definition of precision and recall for distributions which disentangles
the divergence into two separate dimensions. The proposed notion is intuitive, retains
desirable properties, and naturally leads to an efficient algorithm that can be used to
evaluate generative models. We relate this notion to total variation as well as to recent
evaluation metrics such as Inception Score and FID. To demonstrate the practical utility
of the proposed approach we perform an empirical study on several variants of Generative
Adversarial Networks and Variational Autoencoders. In an extensive set of experiments
we show that the proposed metric is able to disentangle the quality of generated samples
from the coverage of the target distribution.

5.1 Introduction
Deep generative models, such as Variational Autoencoders (VAE) (Kingma and Welling,
2014) and Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), have
received a great deal of attention due to their ability to learn complex, high-dimensional
distributions. One of the biggest impediments to future research is the lack of quantitative
evaluation methods to accurately assess the quality of trained models. Without a proper
evaluation metric researchers often need to visually inspect generated samples or resort to
qualitative techniques which can be subjective. One of the main difficulties for quantitative
assessment lies in the fact that the distribution is only specified implicitly – one can learn
to sample from a predefined distribution, but cannot evaluate the likelihood efficiently. In
fact, even if likelihood computation were computationally tractable, it might be inadequate
and misleading for high-dimensional problems (Theis et al., 2016).
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As a result, surrogate metrics are often used to assess the quality of the trained models.
Some proposed measures, such as Inception Score (IS) (Salimans et al., 2016b) and
Fréchet Inception Distance (FID) (Heusel et al., 2017), have shown promising results in
practice. In particular, FID has been shown to be robust to image corruption, it correlates
well with the visual fidelity of the samples, and it can be computed on unlabeled data.

However, all of the metrics commonly applied to evaluating generative models share a
crucial weakness: Since they yield a one-dimensional score, they are unable to distinguish
between different failure cases. For example, the generative models shown in Figure 5.1
obtain similar FIDs but exhibit different sample characteristics: the model on the left
trained on MNIST (LeCun et al., 1998) produces realistic samples, but only generates a
subset of the digits. On the other hand, the model on the right produces low-quality
samples which appear to cover all digits. A similar effect can be observed on the
CelebA (Liu et al., 2015b) dataset. In this work we argue that a single-value summary is
not adequate to compare generative models.

Motivated by this shortcoming, we present a novel approach which disentangles the
divergence between distributions into two components: precision and recall. Given a
reference distribution P and a learned distribution Q, precision intuitively measures the
quality of samples from Q, while recall measures the proportion of P that is covered by
Q. Furthermore, we propose an elegant algorithm which can compute these quantities
based on samples from P and Q. In particular, using this approach we are able to quantify
the degree of mode dropping and mode inventing based on samples from the true and the
learned distributions.

Our contributions: (1) We introduce a novel definition of precision and recall for
distributions and prove that the notion is theoretically sound and has desirable properties,
(2) we propose an efficient algorithm to compute these quantities, (3) we relate these
notions to total variation, IS and FID, (4) we demonstrate that in practice one can quantify
the degree of mode dropping and mode inventing on real world datasets (image and text
data), and (5) we compare several types of generative models based on the proposed
approach – to our knowledge, this is the first metric that experimentally confirms the
folklore that GANs often produce ”sharper” images, but can suffer from mode collapse
(high precision, low recall), while VAEs produce ”blurry” images, but cover more modes
of the distribution (low precision, high recall).

5.2 Background and Related Work
The task of evaluating generative models is an active research area. Here we focus on
recent work in the context of deep generative models for image and text data. Classic
approaches relying on comparing log-likelihood have received some criticism due the
fact that one can achieve high likelihood, but low image quality, and conversely, high-
quality images but low likelihood (Theis et al., 2016). While the likelihood can be
approximated in some settings, kernel density estimation in high-dimensional spaces is
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Figure 5.1: Comparison of GANs trained on MNIST and CelebA. Although the models
obtain a similar FID on each dataset (32/29 for MNIST and 65/62 for CelebA), their
samples look very different. For example, the model on the left produces reasonably
looking faces on CelebA, but too many dark images. In contrast, the model on the right
produces more artifacts, but more varied images. By the proposed metric (middle), the
models on the left achieve higher precision and lower recall than the models on the right,
which suffices to successfully distinguishing between the failure cases.

extremely challenging (Theis et al., 2016; Wu et al., 2017). Other failure modes related
to density estimation in high-dimensional spaces have been elaborated in Huszár (2015);
Theis et al. (2016). A recent review of popular approaches is presented in Borji (2018).

The Inception Score (IS) (Salimans et al., 2016b) offers a way to quantitatively evaluate
the quality of generated samples. Intuitively, the conditional label distribution p(y|x)
of samples containing meaningful objects should have low entropy, while the label
distribution over the whole dataset p(y) should have high entropy. The IS is formally
defined as

IS(G) = exp(Ex∼G[dKL(p(y|x), p(y)]). (5.1)

The score is computed based on a classifier (Inception network trained on ImageNet). IS
necessitates a labeled dataset and has been found to be weak at providing guidance for
model comparison (Barratt and Sharma, 2018).

The FID (Heusel et al., 2017) provides an alternative approach which requires no
labeled data. The samples are first embedded in some feature space (e.g., a specific layer
of Inception network for images). Then, a continuous multivariate Gaussian is fit to the
data and the distance computed as

FID(x,g) = ||µx−µg||22 + Tr(Σx +Σg−2(ΣxΣg)
1
2 ), (5.2)

where µ and Σ denote the mean and covariance of the corresponding samples. FID
is sensitive to both the addition of spurious modes as well as to mode dropping (see
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Figure 5.2: Intuitive examples of P and Q.
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Figure 5.4: Illustration of the PRD
algorithm.

Figure 5.5 and results in Lucic et al. (2018)). Bikowski et al. (2018) recently introduced
an unbiased alternative to FID, the Kernel Inception Distance. While unbiased, it shares a
very high Spearman rank-order correlation with FID (Kurach et al., 2019).

Another approach is to train a classifier between the real and fake distributions and
to use its accuracy on a test set as a proxy for the quality of the samples (Lopez-Paz
and Oquab, 2016; Im et al., 2018). This approach necessitates training of a classifier for
each model which is seldom practical. Furthermore, the classifier might detect a single
dimension where the true and generated samples differ (e.g., barely visible artifacts in
generated images) and enjoy high accuracy, which runs the risk of assigning lower quality
to a better model.

To the best of our knowledge, all commonly used metrics for evaluating generative
models are one-dimensional in that they only yield a single score or distance. A notion
of precision and recall has previously been introduced by Lucic et al. (2018) where the
authors compute the distance to the manifold of the true data and use it as a proxy for
precision and recall on a synthetic dataset. Unfortunately, it is not possible to compute
this quantity for more complex datasets.

5.3 PRD: Precision and Recall for Distributions
In this section, we derive a novel notion of precision and recall to compare a distribution
Q to a reference distribution P. The key intuition is that precision should measure how
much of Q can be generated by a “part” of P while recall should measure how much of P
can be generated by a “part” of Q. Figure 5.2 (a)–(d) show four toy examples for P and Q
to visualize this idea: (a) If P is bimodal and Q only captures one of the modes, we should
have perfect precision but only limited recall. (b) In the opposite case, we should have
perfect recall but only limited precision. (c) If Q = P, we should have perfect precision
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and recall. (d) If the supports of P and Q are disjoint, we should have zero precision and
recall. The examples (e) and (f) show the need for a tradeoff between precision and recall
which we will discuss in Section 5.3.2.

5.3.1 Derivation

Let S = supp(P)∩ supp(Q) be the (non-empty) intersection of the supports1 of P and Q.
Then, P may be viewed as a two-component mixture where the first component PS is a
probability distribution on S and the second component PS is defined on the complement
of S. Similarly, Q may be rewritten as a mixture of QS and QS. More formally, for some
ᾱ, β̄ ∈ (0,1], we define

P = β̄PS +(1− β̄ )PS and Q = ᾱQS +(1− ᾱ)QS. (5.3)

This decomposition allows for a natural interpretation: PS is the part of P that cannot be
generated by Q, so its mixture weight 1− β̄ may be viewed as a loss in recall. Similarly,
QS is the part of Q that cannot be generated by P, so 1− ᾱ may be regarded as a loss
in precision. In the case where PS = QS, i.e., the distributions P and Q agree on S up to
scaling, ᾱ and β̄ provide us with a simple two-number precision and recall summary
satisfying the examples in Figure 5.2 (a)–(d).

If PS 6= QS, we are faced with a conundrum: Should the differences in PS and QS
be attributed to losses in precision or recall? Is QS inadequately “covering” PS or is it
generating “unnecessary” noise? Inspired by PR curves for binary classification, we
propose to resolve this predicament by providing a trade-off between precision and recall
instead of a two-number summary for any two distributions P and Q. To parametrize this
trade-off, we consider a distribution µ on S that signifies a “true” common component of
PS and QS and similarly to (5.3), we decompose both PS and QS as

PS = β
′
µ +(1−β

′)Pµ and QS = α
′
µ +(1−α

′)Qµ . (5.4)

The distribution PS is viewed as a two-component mixture where the first component is
µ and the second component Pµ signifies the part of PS that is “missed” by QS and should
thus be considered a recall loss. Similarly, QS is decomposed into µ and the part Qµ that
signifies noise and should thus be considered a precision loss. As µ is varied, this leads to
a trade-off between precision and recall.

It should be noted that unlike PR curves for binary classification where different
thresholds lead to different classifiers, trade-offs between precision and recall here do not
constitute different models or distributions – the proposed PRD curves only serve as a
description of the characteristics of the model with respect to the target distribution.

1For a distribution P defined on a finite state space Ω, we define supp(P) = {ω ∈Ω | P(ω)> 0}.
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5.3.2 Formal Definition
For simplicity, we consider distributions P and Q defined on a finite state space, though
the notion of precision and recall can be extended to arbitrary distributions. By combining
(5.3) and (5.4), we obtain the following formal definition of precision and recall.

Definition 1. For α,β ∈ (0,1], the probability distribution Q has precision α at recall β

w.r.t. P if there exist distributions µ , νP and νQ such that

P = β µ +(1−β )νP and Q = αµ +(1−α)νQ. (5.5)

The component νP denotes the part of P that is “missed” by Q and encompasses both
PS in (5.3) and Pµ in (5.4). Similarly, νQ denotes the noise part of Q and includes both QS
in (5.3) and Qµ in (5.4).

Definition 2. The set of attainable pairs of precision and recall of a distribution Q w.r.t. a
distribution P is denoted by PRD(Q,P) and it consists of all (α,β ) satisfying Definition 1
and the pair (0,0).

The set PRD(Q,P) characterizes the above-mentioned trade-off between precision and
recall and can be visualized similarly to PR curves in binary classification: Figure 5.3
(a)–(d) show the set PRD(Q,P) on a 2D-plot for the examples (a)–(d) in Figure 5.2.
Note how the plot distinguishes between (a) and (b): Any symmetric evaluation method
(such as FID) assigns these cases the same score although they are highly different. The
interpretation of the set PRD(Q,P) is further aided by the following set of basic properties.

Theorem 1. Let P and Q be probability distributions defined on a finite state space Ω.
The set PRD(Q,P) satisfies the following properties:

(i) Q = P ⇐⇒ (1,1) ∈ PRD(Q,P) (equality)

(ii) supp(Q)∩ supp(P) = /0 ⇐⇒ PRD(Q,P) = {(0,0)} (disjoint supports)

(iii) Q(supp(P)) = ᾱ = max(α,β )∈PRD(Q,P)α (max precision)

(iv) P(supp(Q)) = β̄ = max(α,β )∈PRD(Q,P)β (max recall)

(v) α ′ ∈ (0,α], β ′ ∈ (0,β ], (α,β ) ∈ PRD(Q,P) (monotonicity)

=⇒ (α ′,β ′) ∈ PRD(Q,P)

(vi) (α,β ) ∈ PRD(Q,P) ⇐⇒ (β ,α) ∈ PRD(P,Q) (duality)

Property (i) in combination with Property (v) guarantees that Q = P if and only if
the set PRD(Q,P) contains the interior of the unit square, see case (c) in Figures 5.2
and 5.3. Similarly, Property (ii) assures that whenever there is no overlap between P and
Q, PRD(Q,P) only contains the origin, see case (d) of Figures 5.2 and 5.3. Properties (iii)
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and (iv) provide a connection to the decomposition in (5.3) and allow an analysis of the
cases (a) and (b) in Figures 5.2 and 5.3: As expected, Q in (a) achieves a maximum
precision of 1 but only a maximum recall of 0.5 while in (b), maximum recall is 1 but
maximum precision is 0.5. Note that the quantities ᾱ and β̄ here are by construction the
same as in (5.3). Finally, Property (vi) provides a natural interpretation of precision and
recall: The precision of Q w.r.t. P is equal to the recall of P w.r.t. Q and vice versa.

Clearly, not all cases are as simple as the examples (a)–(d) in Figures 5.2 and 5.3, in
particular if P and Q are different on the intersection S of their support. The examples
(e) and (f) in Figure 5.2 and the resulting sets PRD(Q,P) in Figure 5.3 illustrate the
importance of the trade-off between precision and recall as well as the utility of the set
PRD(Q,P). In both cases, P and Q have the same support while Q has high precision
and low recall in case (e) and low precision and high recall in case (f). This is clearly
captured by the sets PRD(Q,P). Intuitively, the examples (e) and (f) may be viewed as
noisy versions of the cases (a) and (b) in Figure 5.2.

We first show the following auxiliary result before proving Theorem 1.

Lemma 1. Let P and Q be probability distributions defined on a finite state space Ω.
Let α ∈ (0,1] and β ∈ (0,1]. Then, (α,β ) ∈ PRD(Q,P) if and only if there exists a
distribution µ such that for all ω ∈Ω

P(ω)≥ β µ(ω) and Q(ω)≥ αµ(ω). (5.6)

Proof. If (α,β ) ∈ PRD(Q,P), then (5.5) and the non-negativity of νP and νQ directly
imply (5.6) for the same choice of µ . Conversely, if (5.6) holds for a distribution µ , we
may define the distributions

νP(ω) =
P(ω)−β µ(ω)

1−β
and νQ(ω) =

Q(ω)−αµ(ω)

1−α
. (5.7)

By definition α , β , µ , νP and νQ satisfy (5.5) in Definition 1, i.e. (α,β )∈ PRD(Q,P).

Proof of Theorem 1. We show each of the properties independently.

(i) If (1,1) ∈ PRD(Q,P), then we have by Definition 1 that P = µ and Q = µ which
implies P = Q as claimed. Conversely, if P = Q, Definition 1 is satisfied for α = β = 1
by choosing µ = νP = νQ = P. Hence, (1,1) ∈ PRD(Q,P) as claimed.

(ii) We show both directions of the claim by contraposition, i.e., we show

supp(P)∩ supp(Q) 6= /0 ⇐⇒ PRD(Q,P)⊃ {(0,0)}. (5.8)

Consider an arbitrary ω ∈ supp(P)∩ supp(Q). Then, by definition we have P(ω) > 0
and Q(ω) > 0. Let µ be defined as the distribution with µ(ω) = 1 and µ(ω ′) = 0 for
all ω ′ ∈ Ω\{ω}. Clearly, it holds that P(ω)≥ P(ω)µ(ω) and Q(ω)≥ Q(ω)µ(ω) for
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all ω ∈Ω. Hence, by Lemma 1, we have (Q(ω),P(ω)) ∈ PRD(Q,P) which implies that
PRD(Q,P)⊃{(0,0)} as claimed. Conversely, PRD(Q,P)⊃{(0,0)} implies by Lemma 1
that there exist α ∈ (0,1] and β ∈ (0,1] as well as a distribution µ satisfying (5.6). Let
ω ∈ supp(µ) which implies µ(ω) > 0 and thus by (5.6) also P(ω) > 0 and Q(ω) > 0.
Hence, ω is in both of the supports of P and Q, i.e. supp(P)∩ supp(Q) 6= /0 as claimed.

(iii) If (α,β ) ∈ PRD(Q,P), then by Lemma 1 there exists a distribution µ such that
for all ω ∈ Ω we have P(ω) ≥ β µ(ω) and Q(ω) ≥ αµ(ω). P(ω) ≥ β µ(ω) implies
supp(µ)⊆ supp(P) and hence ∑ω∈supp(P) µ(ω) = 1. Together with Q(ω)≥ αµ(ω), this
yields

Q(supp(P)) = ∑
ω∈supp(P)

Q(ω) ≥ α ∑
ω∈supp(P)

µ(ω) = α (5.9)

which implies α ≤ Q(supp(P)) for all (α,β ) ∈ PRD(Q,P). To prove the claim, we next
show that there exists (α,β ) ∈ PRD(Q,P) with α = Q(supp(P)).

Let S = supp(P)∩ supp(Q). If S = /0, then α = Q(supp(P)) = 0 and (0,0) ∈ PRD(Q,P)
by Definition 2 as claimed. For the case S 6= /0, let β = minω∈S P(ω)Q(S)/Q(ω). By def-
inition of S, we have β > 0. Furthermore, β ≤ P(S)≤ 1 since P(ω)/P(S)≤ Q(ω)/Q(S)
for at least one ω ∈ S. Consider the distribution µ where µ(ω) = Q(ω)/Q(S) for all
ω ∈ S and µ(ω) = 0 for ω ∈ Ω\S. By construction, µ satisfies (5.6) in Lemma 1 and
hence (α,β ) ∈ PRD(Q,P) as claimed.

(iv) This follows directly from applying Property (vi) to Property (iii).

(v) If (α,β ) ∈ PRD(Q,P), then by Lemma 1 there exists a distribution µ such that for all
ω ∈Ω we have that P(ω)≥ β µ(ω) and Q(ω)≥ αµ(ω). For α ′ ∈ (0,α] and β ′ ∈ (0,β ],
it follows that P(ω) ≥ β ′µ(ω) and Q(ω) ≥ α ′µ(ω) for all ω ∈ Ω. By Lemma 1 this
implies (α ′,β ′) ∈ PRD(Q,P) as claimed.

(vi) This follows directly from swapping α,P,νP with β ,Q,νQ in Definition 1.

5.3.3 Algorithm

Computing the set PRD(Q,P) based on Definitions 1 and 2 is non-trivial as one has to
check whether there exist suitable distributions µ , νP and νQ for all possible values of
α and β . We introduce an equivalent definition of PRD(Q,P) in Theorem 2 that does
not depend on the distributions µ , νP and νQ and that leads to an elegant algorithm to
compute practical PRD curves.
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Theorem 2. Let P and Q be two probability distributions defined on a finite state space
Ω. For λ > 0 define the functions

α(λ ) = ∑
ω∈Ω

min(λP(ω),Q(ω)) and β (λ ) = ∑
ω∈Ω

min
(

P(ω),
Q(ω)

λ

)
. (5.10)

Then, it holds that

PRD(Q,P) = {(θα(λ ),θβ (λ )) | λ ∈ (0,∞),θ ∈ [0,1]} . (5.11)

Proof. We first show that

PRD(Q,P)⊆ {(θα(λ ),θβ (λ )) | λ ∈ (0,∞),θ ∈ [0,1]} (5.12)

by considering any (α ′,β ′) ∈ PRD(Q,P) and showing that (α ′,β ′) = (θα(λ ),θβ (λ ))
for some λ ∈ (0,∞) and θ ∈ [0,1].

For the case (α ′,β ′) = (0,0), the result holds trivially for the choice of λ = 1 and
θ = 0. Otherwise, i.e. for (α ′,β ′) 6= (0,0), we choose λ = α ′/β ′ and θ = β ′/β (λ ).
Since α(λ ) = λβ (λ ) by definition, this implies (α ′,β ′) = (θα(λ ),θβ (λ )) as required.
Furthermore, λ ∈ (0,∞) since by Definitions 1 and 2 α ′ > 0 if and only if β ′ > 0.
Similarly, we show that θ ∈ [0,1]: By Lemma 1 there exists a distribution µ such that
β ′µ(ω)≤ P(ω) and α ′µ(ω)≤Q(ω) for all ω ∈Ω. This implies that β ′µ(ω)≤Q(ω)/λ

and thus β ′µ(ω) ≤ min(P(ω),Q(ω)/λ ) for all ω ∈ Ω. Summing over all ω ∈ Ω, we
obtain

β
′ ≤ ∑

ω∈Ω

min
(

P(ω),
Q(ω)

λ

)
= β (λ ) (5.13)

which implies θ ∈ [0,1]. Finally, we show that

PRD(Q,P)⊇ {(θα(λ ),θβ (λ )) | λ ∈ (0,∞),θ ∈ [0,1]} . (5.14)

Consider arbitrary λ ∈ (0,∞) and θ ∈ [0,1]. If β (λ ) = 0, the claim holds trivially since
we have (0,0) ∈ PRD(Q,P). Otherwise, we can define the distribution µ such that

µ(ω) = min
(

P(ω),
Q(ω)

λ

)
/β (λ ) (5.15)

for all ω ∈Ω. Then, by definition, we have

β (λ )µ(ω)≤min
(

P(ω),
Q(ω)

λ

)
≤ P(ω) for all ω ∈Ω, (5.16)

and equivalently

α(λ )µ(ω)≤min(λP(ω),Q(ω))≤ Q(ω) for all ω ∈Ω (5.17)
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since α(λ ) = λβ (λ ). Because θ ∈ [0,1], this implies both θβ (λ )µ(ω) ≤ P(ω) and
θα(λ )µ(ω)≤ Q(ω) for all ω ∈Ω. Hence, by Lemma 1, (θα(λ ),θβ (λ )) ∈ PRD(Q,P)
for all λ ∈ (0,∞) and θ ∈ [0,1] as claimed.

The key idea of Theorem 2 is illustrated in Figure 5.4: The set PRD(Q,P) may be seen
as a union of segments of lines α = λβ over all λ ∈ (0,∞). Each segment starts at the
origin (0,0) and ends at the maximal achievable value (α(λ ),β (λ )). This provides a
surprisingly simple algorithm to compute PRD(Q,P) in practice: Simply compute pairs
of α(λ ) and β (λ ) as in (5.10) for an equiangular grid of values of λ . For a given angular
resolution m ∈ N, we compute

P̂RD(Q,P) = {(α(λ ),β (λ )) | λ ∈ Λ} where Λ =
{

tan
( i

m+1
π

2

)
| i = 1,2, . . . ,m

}
.

To compare different distributions Qi, one may simply plot their respective PRD curves
P̂RD(Qi,P), while an approximation of the full sets PRD(Qi,P) may be computed by
interpolation between P̂RD(Qi,P) and the origin. An implementation of the algorithm is
available at github.com/msmsajjadi/precision-recall-distributions.

5.3.4 Connection to Total Variation Distance

Theorem 2 provides a natural interpretation of the proposed approach. For λ = 1, we have

α(1) = β (1) = ∑
ω∈Ω

min(P(ω),Q(ω)) = ∑
ω∈Ω

[
P(ω)− (P(ω)−Q(ω))+

]
= 1−δ (P,Q)

where δ (P,Q) denotes the total variation distance between P and Q. As such, our notion
of precision and recall may be viewed as a generalization of total variation distance.

5.4 Application to Deep Generative Models

In this section, we show that the algorithm introduced in Section 5.3.3 can be readily
applied to evaluate precision and recall of deep generative models. In practice, access to
P and Q is given via samples P̂∼ P and Q̂∼ Q. Given that both P and Q are continuous
distributions, the probability of generating a point sampled from Q is 0. Furthermore,
there is strong empirical evidence that comparing samples in image space runs the risk of
assigning higher quality to a worse model (Lopez-Paz and Oquab, 2016; Salimans et al.,
2016b; Theis et al., 2016). A common remedy is to apply a pre-trained classifier trained
on natural images and to compare P̂ and Q̂ at a feature level. Intuitively, in this feature
space the samples should be compared based on statistical regularities in the images rather
than random artifacts resulting from the generative process (Lopez-Paz and Oquab, 2016;
Odena et al., 2016).
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Figure 5.5: Left: IS and FID as we remove and add classes of CIFAR-10. IS generally only
increases, while FID is sensitive to both the addition and removal of classes. However, it
cannot distinguish between the two failure cases of inventing or dropping modes. Middle:
Resulting PRD curves for the same experiment. As expected, adding modes leads to a
loss in precision (Q6–Q10), while dropping modes leads to a loss in recall (Q1–Q4). As an
example consider Q4 and Q6 which have similar FID, but strikingly different PRD curves.
The same behavior can be observed for the task of text generation, as displayed on the
plot on the right. For this experiment, we set P to contain samples from all classes so the
PRD curves demonstrate the increase in recall as we increase the number of classes in Q.

Following this line of work, we first use a pre-trained Inception network to embed
the samples (i.e., using the Pool3 layer (Heusel et al., 2017)). We then cluster the union
of P̂ and Q̂ in this feature space using mini-batch k-means with k = 20 (Sculley, 2010).
Intuitively, we reduce the problem to a one dimensional problem where the histogram
over the cluster assignments can be meaningfully compared. Hence, failing to produce
samples from a cluster with many samples from the true distribution will hurt recall, and
producing samples in clusters without many real samples will hurt precision. As the
clustering algorithm is randomized, we run the procedure several times and average over
the PRD curves. We note that such a clustering is meaningful as shown in Figure 5.9 and
that it can be efficiently scaled to very large sample sizes (Bachem et al., 2016).

We stress that from the point of view of the proposed algorithm, only a meaningful
embedding is required. As such, the algorithm can be applied to various data modalities.
In particular, we show in Section 5.4.1 that besides image data the algorithm can be
applied to a text generation task.

5.4.1 Adding and Dropping Modes from the Target Distribution

Mode collapse or mode dropping is a major challenge in GANs (Goodfellow et al., 2014;
Salimans et al., 2016b). Due to the symmetry of commonly used metrics with respect to
precision and recall, the only way to assess whether the model is producing low-quality
images or dropping modes is by visual inspection. In stark contrast, the proposed metric
can quantitatively disentangle these effects which we empirically demonstrate.
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We consider three datasets commonly used in the GAN literature: MNIST (LeCun et al.,
1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky and Hinton, 2009).
These datasets are labeled and consist of 10 balanced classes. To show the sensitivity of
the proposed measure to mode dropping and mode inventing, we first fix P̂ to contain
samples from the first 5 classes in the respective test set. Then, for a fixed i = 1, . . . ,10,
we generate a set Q̂i, which consists of samples from the first i classes from the training
set. As i increases, Q̂i covers an increasing number of classes from P̂ which should result
in higher recall. As we increase i beyond 5, Q̂i includes samples from an increasing
number of classes that are not present in P̂ which should result in a loss in precision, but
not in recall as the other classes are already covered. Finally, the set Q̂5 covers the same
classes as P̂, so it should have high precision and high recall.

Figure 5.5 (left) shows the IS and FID for the CIFAR-10 dataset while results on
further datasets are shown in Figure 5.12. Since the IS is not computed w.r.t. a reference
distribution, it is invariant to the choice of P̂, so as we add classes to Q̂i, the IS increases.
The FID decreases as we add more classes until Q̂5 before it starts to increase as we add
spurious modes. Critically, FID fails to distinguish the cases of mode dropping and mode
inventing: Q̂4 and Q̂6 share similar FIDs. In contrast, Figure 5.5 (middle) shows our PRD
curves as we vary the number of classes in Q̂i. Adding correct modes leads to an increase
in recall, while adding fake modes leads to a loss of precision.

We also apply the proposed approach on text data as shown in Figure 5.5 (right). In
particular, we use the MultiNLI corpus of crowd-sourced sentence pairs annotated with
topic and textual entailment information (Williams et al., 2018). After discarding the
entailment label, we collect all unique sentences for the same topic. Following Cı́fka et al.
(2018), we embed these sentences using a BiLSTM with 2048 cells in each direction
and max pooling, leading to a 4096-dimensional embedding (Conneau et al., 2017).
We consider 5 classes from this dataset and fix P̂ to contain samples from all classes
to measure the loss in recall for different Qi. The PRD curves in Figure 5.5 (right)
successfully demonstrate the sensitivity of recall to mode dropping.

5.4.2 Assessing Class Imbalances for GANs
In this section we analyze the effect of class imbalance on the PRD curves. Figure 5.6
shows a pair of GANs trained on MNIST which have virtually the same FID, but very
different PRD curves.

The model on the left generates a subset of the digits of high quality, while the model on
the right seems to generate all digits, but each has low quality. We can naturally interpret
this difference via the PRD curves: For a desired recall level of less than ∼0.6, the model
on the left enjoys higher precision – it generates several digits of high quality. If, however,
one desires a recall higher than ∼0.6, the model on the right enjoys higher precision as it
covers all digits.

To confirm this, we train an MNIST classifier on the embedding of P̂ with the ground
truth labels and plot the distribution of the predicted classes for both models. The
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Figure 5.6: Comparing two GANs trained on MNIST which both achieve an FID of 49.
The model on the left seems to produce high-quality samples of only a subset of digits.
On the other hand, the model on the right generates low-quality samples of all digits.
The histograms showing the corresponding class distributions based on a trained MNIST
classifier confirm this observation. At the same time, the classifier is more confident
which indicates different levels of precision (96.7% for the model on the left compared
to 88.6% for the model on the right). Finally, we note that the proposed PRD algorithm
does not require labeled data, as opposed to the IS which further needs a classifier that
was trained on the respective dataset.
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Figure 5.7: Comparing a pair of GANs on MNIST which have both collapsed to producing
1’s. An analysis with a trained classifier as in Section 5.4.2 comes to the same conclusion
for both models, namely, that they have collapsed to producing 1’s only. However, the
PRD curve correctly shows that the model on the right has a slightly higher recall: while
the model on the left is producing straight 1’s only, the model on the right is producing
some more varied shapes such as tilted 1’s. Note the cropped scale on the Recall axis.
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Figure 5.8: Comparing our unsupervised F1/8 and F8 measures with the supervised
measures P(y|x) and P(y) similar to the IS (for a definition of Fβ , see Section 5.4.3). Each
circle represents a trained generative model (GAN or VAE) on the MNIST dataset. The
values show a fairly high correlation with a Spearman rank correlation coefficient of -0.83
on the left and 0.89 on the right.

histograms clearly show that the model on the left failed to generate all classes (loss in
recall), while the model on the right is producing a more balanced distribution over all
classes (high recall). At the same time, the classifier has an average confidence2 of 96.7%
on the model on the left compared to 88.6% on the model on the right, indicating that the
sample quality of the former is higher. This aligns very well with the PRD plots: samples
on the left have high quality but are not diverse in contrast to the samples on the right
which are diverse but have low quality.

This analysis reveals a connection to IS which is based on the premise that the con-
ditional label distribution p(y|x) should have low entropy, while the marginal p(y) =∫

p(y|x = G(z))dz should have high entropy. To further analyze the relationship between
the proposed approach and PRD curves, we plot p(y|x) against precision and p(y) against
recall in Figure 5.8. The results over a large number of GANs and VAEs show a large
Spearman correlation of -0.83 for precision and 0.89 for recall. We however stress two
key differences between the approaches: Firstly, to compute the quantities in IS one needs
a classifier and a labeled dataset in contrast to the proposed PRD metric which can be
applied on unlabeled data. Secondly, IS only captures losses in recall w.r.t. classes, while
our metric measures more fine-grained recall losses, see Figure 5.7.

2We denote the output of the classifier for its highest value at the softmax layer as confidence. The intuition
is that higher values signify higher confidence of the model for the given label.
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Real images Generated images

Figure 5.9: Clustering the real and generated samples from a GAN in feature space
(10 cluster centers for visualization) yields the clusters above for the datasets MNIST,
Fashion-MNIST, CIFAR-10 and CelebA. Although the GAN samples are not perfect, they
are clustered in a meaningful way.
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Figure 5.10: Corresponding plots as in Figure 5.11 for the datasets MNIST (top), CIFAR-
10 (middle) and CelebA (bottom).
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Figure 5.11: F1/8 vs F8 scores for a large number of GANs and VAEs on the Fashion-
MNIST dataset. For each model, we plot the maximum F1/8 and F8 scores to show the
trade-off between precision and recall. VAEs generally achieve lower precision and/or
higher recall than GANs which matches the folklore that VAEs often produce samples
of lower quality while being less prone to mode collapse. On the right we show samples
from four models which correspond to various success/failure modes: (A) high precision,
low recall, (B) high precision, high recall, (C) low precision, low recall, and (D) low
precision, high recall.

5.4.3 Large-Scale Evaluation of 800 GANs and VAEs
We evaluate the precision and recall of 7 GAN types and the VAE with 100 hyperparameter
settings each as provided by Lucic et al. (2018). In order to visualize this vast quantity
of models, one needs to summarize the PRD curves. A natural idea is to compute the
maximum F1 score, which corresponds to the harmonic mean between precision and
recall as a single-number summary. This idea is fundamentally flawed as F1 is symmetric.
However, its generalization, defined as

Fβ = (1+β
2)

p · r
(β 2 p)+ r

(5.18)

provides a way to quantify the relative importance of precision and recall: β > 1 weighs
recall higher than precision, whereas β < 1 weighs precision higher than recall. As a
result, we propose to distill each PRD curve into a pair of values: Fβ and F1/β .

Figure 5.11 compares the maximum F8 with the maximum F1/8 for these models on
the Fashion-MNIST dataset. We choose β = 8 as it offers a good insight into the bias
towards precision versus recall. Since F8 weighs recall higher than precision and F1/8
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Figure 5.12: Corresponding plots as in Figure 5.5 for the datasets MNIST (top) and
Fashion-MNIST (bottom).

does the opposite, models with higher recall than precision will lie below the diagonal
F8 = F1/8 and models with higher precision than recall will lie above. To our knowledge,
this is the first metric which confirms the folklore that VAEs are biased towards higher
recall, but may suffer from precision issues (e.g., due to blurring effects), at least on this
dataset. On the right, we show samples from four models on the extreme ends of the plot
for all combinations of high and low precision and recall. Figure 5.10 on page 78 shows
similar graphics for the MNIST, CIFAR-10 and CelebA datasets.

5.5 Summary

Quantitatively evaluating generative models is a challenging task of paramount importance.
In this work we show that one-dimensional scores are not sufficient to capture different
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failure cases of current state-of-the-art generative models. As an alternative, we propose
a novel notion of precision and recall for distributions and prove that both notions are
theoretically sound and have desirable properties. We then connect these notions to total
variation distance as well as FID and IS and we develop an efficient algorithm that can
be readily applied to evaluate deep generative models based on samples. We investigate
the properties of the proposed algorithm on real-world datasets, including image and
text generation, and show that it captures the precision and recall of generative models.
Finally, we find empirical evidence supporting the folklore that VAEs produce samples of
lower quality, while being less prone to mode collapse than GANs.
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Chapter 6

From Variational to Deterministic
Autoencoders

Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep
generative models. However, they often produce “blurry” images, which is linked to their
training objective. Sampling in the most popular implementation, the Gaussian VAE,
can be interpreted as simply injecting noise to the input of a deterministic decoder. In
practice, this simply enforces a smooth latent space structure. We challenge the adoption
of the full VAE framework on this specific point in favor of a simpler, deterministic one.
Specifically, we investigate how substituting stochasticity with other explicit and implicit
regularization schemes can lead to a meaningful latent space without having to force it to
conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling
new data points, we propose to employ an efficient ex-post density estimation step that
can be readily adopted both for the proposed deterministic autoencoders as well as to
improve sample quality of existing VAEs. We show in a rigorous empirical study that
regularized deterministic autoencoding achieves state-of-the-art sample quality on the
common MNIST, CIFAR-10 and CelebA datasets.

6.1 Introduction

Generative modeling lies at the core of machine learning and computer vision. By
capturing the mechanisms behind the data generation process, one can reason about data
probabilistically, access and traverse the low-dimensional manifold the data is assumed
to live on, and ultimately generate new data. It is therefore not surprising that learning
generative models has gained momentum in applications like chemistry (Jin et al., 2018;
Gómez-Bombarelli et al., 2018), NLP (Severyn et al., 2017; Bowman et al., 2016) and
computer vision (Brock et al., 2019; Sohn et al., 2015).

Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014)
allow for a principled probabilistic way to model high-dimensional distributions. They do
so by casting learning representations as a variational inference problem. Learning a VAE
amounts to the optimization of an objective balancing the quality of autoencoded samples
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through a stochastic encoder–decoder pair while encouraging the latent space to follow a
fixed prior distribution.

Since their introduction, VAEs have become one of the frameworks of choice for
generative modeling, promising theoretically well-founded and more stable training than
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and more efficient
sampling mechanisms than autoregressive models (Larochelle and Murray, 2011). Much
of the recent literature has focused on applying VAEs on image generation tasks (Lucic
et al., 2018; Ham et al., 2018; Huang et al., 2018) and devising new encoder–decoder
architectures (Van den Oord et al., 2017; Jin et al., 2018).

Despite this attention from the community, the VAE framework is still far from deliver-
ing the promised generative mechanism in many real-world scenarios. In fact, VAEs tend
to generate blurry samples, a condition which has been attributed to using overly simplistic
distributions for the prior (Tomczak and Welling, 2018); restrictiveness of the Gaussian
assumption for the stochastic architecture (Dai and Wipf, 2019); or over-regularization
induced by the KL divergence term in the VAE objective (Tolstikhin et al., 2017) (see
Figure 6.1). Moreover, the VAE objective itself poses several challenges as it admits
trivial solutions that decouple the latent space from the input (Chen et al., 2017b; Zhao
et al., 2017b), leading to the posterior collapse phenomenon in conjunction with powerful
decoders (Van den Oord et al., 2017). Training a VAE requires approximating expectations
by sampling at the cost of increased variance in gradients (Tucker et al., 2017; Burda et al.,
2015), making initialization, validation and annealing of hyperparameters fundamental
in practice (Bowman et al., 2016; Bauer and Mnih, 2019; Higgins et al., 2017). Lastly,
even after a satisfactory convergence of the objective, the learned aggregated posterior
distribution rarely matches the assumed latent prior in practice (Kingma et al., 2016;
Bauer and Mnih, 2019; Dai and Wipf, 2019), ultimately hurting the quality of generated
samples.

In this work, we tackle these shortcomings by reformulating the VAE into a generative
modeling scheme that scales better, is simpler to optimize, and most importantly, pro-
duces higher-quality samples. We do so based on the ovservation that under common
distributional assumptions made for VAEs, training a stochastic encoder–decoder pair
does not differ in practice from training a deterministic architecture where noise is added
to the decoder’s input to enforce a smooth latent space. We investigate how to substitute
this noise injection mechanism with other regularization schemes in our deterministic
Regularized Autoencoders (RAEs), and we analyze how we can learn a meaningful latent
space without forcing it to conform to a given prior distribution. We equip RAEs with a
generative mechanism through a simple and efficient ex-post density estimation step on
the learned latent space which leads to improved image quality that surpasses VAEs and
stronger alternatives such as Wasserstein Autoencoders (WAEs) (Tolstikhin et al., 2017).
In summary, our contributions are as follows:

1. we introduce the RAE framework for generative modeling,

2. we propose an ex-post density estimation scheme that greatly improves sample
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quality for the VAE, WAE and RAE without the need for additional training,

3. we conduct a rigorous empirical evaluation on several common image datasets
(MNIST, CIFAR-10, CelebA), assaying reconstruction, random samples and inter-
polation quality for VAE, WAE and RAE,

4. we achieve state-of-the-art FID scores for the above datasets in a non-adversarial
setting.

The chapter is organized as follows. In Section 6.2 we introduce the VAE frame-
work and discuss assumptions, practical implementations and limitations, leading to the
introduction of our simplified deterministic and regularized framework (Section 6.3),
interpreting explicit regularization as constrained optimization under certain parametric
assumptions (Section 6.4). After discussing ex-post density estimation and related works
in Sections 6.5 and 6.6, we present experiments in Section 6.7 before we close with our
final conclusions.

6.2 Variational Autoencoders
For a general discussion, we consider a collection of high-dimensional i.i.d. samples
X = {xi}N

i=1 drawn from the true data distribution pdata(x) over a random variable X
taking values in the input space. The aim of generative modeling is to learn from X a
mechanism to draw new samples xnew ∼ pdata.

Variational Autoencoders provide a powerful latent variable framework to infer such a
mechanism. The generative process of the VAE is defined as

znew ∼ p(Z), xnew ∼ pθ (X |Z = znew) (6.1)

where p(Z) is a fixed prior distribution over a low-dimensional latent variable Z. A
stochastic decoder

Dθ (z) = x∼ pθ (x |z) = p(X |gθ (z)) (6.2)

links the latent space to the input space through the likelihood, where gθ is an expressive
non-linear function parameterized by θ .1 As a result, a VAE estimates pdata(x) as the
infinite mixture model pθ (x) =

∫
pθ (x |z)p(z)dz. At the same time, the input space is

mapped to the latent space via a stochastic encoder

Dθ (x) = z∼ qφ (z |x) = q(Z | fφ (x)) (6.3)

where qφ (z |x) is the posterior distribution given by a second function fφ parameterized
by φ .

1With slight abuse of notation, we use lowercase letters for both random variables and their realizations,
e.g. pθ (x |z) instead of p(X |Z = z), when it is clear to discriminate between the two.
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Computing the marginal log-likelihood log pθ (x) is generally intractable. We therefore
follow a variational approach, maximizing the evidence lower bound (ELBO) for a sample
x:

log pθ (x)≥ ELBO(φ ,θ ,x) =
= Ez∼qφ (z |x) log pθ (x |z)−KL(qφ (z |x)||p(z)) (6.4)

Maximizing Eq. 6.4 over data X w.r.t. model parameters φ , θ corresponds to minimizing
the loss

argmin
φ ,θ

Ex∼pdata LELBO = Ex∼pdata LREC+LKL (6.5)

where LREC and LKL are defined for a sample x as follows:

LREC =−Ez∼qφ (z |x) log pθ (x |z) (6.6)

LKL =KL(qφ (z |x)||p(z)) (6.7)

Intuitively, the reconstruction loss LREC takes into account the quality of autoencoded
samples x through Dθ (Dθ (x)), while the KL-divergence term LKL encourages qφ (z |x) to
match the prior p(z) for each z which acts as a regularizer during training (Hoffman and
Johnson, 2016). For the purpose of generating high-quality samples, a balance between
these two loss terms must be found during training, see Figure 6.1.

6.2.1 Practice and shortcomings of VAEs
To fit a VAE to data through Eq. 6.5 one has specify the parametric forms for p(z),
qφ (z |x), pθ (x |z), and hence the deterministic mappings fφ and gθ . In practice, the
choice for the above distributions is guided by trading off computational complexity with
model expressiveness.

In the most common formulation of the VAE, qφ (z |x) and pθ (x |z) are assumed to be
Gaussian

Dθ (x)∼N (Z|µφ (x),diag(σφ (x))) (6.8)

Dθ (Dθ (x))∼N (X|µθ (z),diag(σθ (z))) (6.9)

with means µφ ,µθ and covariance parameters σφ ,σθ given by fφ and gθ . In practical
implementations, the covariance of the decoder is set to the identity matrix for all z, i.e.
σθ (z) = 1 (Dai and Wipf, 2019). The expectation of LREC in Eq. 6.6 is then approximated
via k Monte Carlo point estimates. We find clear evidence that larger values lead to
improvements in training as shown in Figure 6.2. Nevertheless, only a one-sample
approximation is carried out in practice (Kingma and Welling, 2014) since requirements to
memory and computation scale linearly with k. With this approximation, the computation
of LREC is given by the mean squared error between input samples and their mean
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Figure 6.1: Reconstruction and random sample quality (FID, y-axis, lower is better) of
a VAE on MNIST for different tradeoffs between LREC and LKL (x-axis, see Eq. 6.5).
Higher weights for LKL improve random samples but hurt reconstruction. Enforcing
structure in the VAE latent space leads to a penalty in quality.

reconstructions µθ through the deterministic decoder:

LREC = ||x−µθ (Eφ (x))||22 (6.10)

Gradients w.r.t. the encoder parameters φ are computed through the expectation ofLREC in
Eq. 6.6 via the reparametrization trick (Kingma and Welling, 2014) where the stochasticity
of Dθ is relegated to an auxiliary random variable ε which does not depend on φ :

Dθ (x) = µφ (x)+σφ (x)� ε ε ∼N (0,I) (6.11)

where � denotes the Hadamard product. An additional simplifying assumption involves
fixing the prior p(z) to be a D-dimensional isotropic GaussianN (Z |0,I). For this choice,
the KL-divergence for a sample x is given in closed form:

2LKL = ||µφ (x)||22 +D+
D

∑
i

σφ (x)i− logσφ (x)i (6.12)

While the chosen assumptions make VAEs easy to implement, the stochasticity in the
encoder and decoder has been deemed to be responsible for the “blurriness” in VAE
samples (Makhzani et al., 2016; Tolstikhin et al., 2017; Dai and Wipf, 2019). Furthermore,
the optimization problem as shown in Eq. 6.5 presents some further challenges. Imposing
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Figure 6.2: Test reconstruction quality for a VAE trained on MNIST with different numbers
of samples in the latent space as in Eq. 6.8 measured by FID (lower is better). Larger
numbers of samples clearly improve training, however, the increased accuracy comes
with larger requirements for memory and computation. In practice, the most common
choice is therefore k = 1.

a strong weight on the LKL term during optimization can dominate LELBO, having the
effect of over-regularization which leads to blurred samples, see Figure 6.1. Heuristics to
avoid this include gradually annealing the importance of LKL during training (Bowman
et al., 2016; Bauer and Mnih, 2019) and manually fine-tuning the balance between the
losses.

Even after employing the full array of approximations and “tricks” to reach convergence
of Eq. 6.5 for a satisfactory set of parameters, there is no guarantee that the learned latent
space is distributed according to the assumed prior distribution. In other words, the
aggregated posterior distribution qφ (z) = Ex∼pdataq(z|x) has been shown not to conform
well to p(z) after training (Tolstikhin et al., 2017; Bauer and Mnih, 2019; Dai and
Wipf, 2019). This critical issue severely hinders the generative mechanism of a VAE
(Eq. 6.1) since latent codes sampled from p(z) (instead of q(z)) might lead to regions
of the latent space that are previously unseen to Dθ during training. The result is blurry
out-of-distribution samples. We analyze solutions to this problem in Section 6.5.

6.2.2 Constant-Variance Encoders

Analogously to what is generally done for decoders, we also investigate fixing the variance
of qφ (z |x) to be constant for all x. This simplifies the computation of Dθ from Eq. 6.11
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to
DCV

θ (x) = µφ (x)+ ε, ε ∼N (0,σI) (6.13)

where σ is a fixed scalar. At the same time, the KL loss term in Eq. 6.12 simplifies (up to
constants) to

2LCVKL = ||µφ (x)||22 (6.14)

Constant-Variance VAEs (CV-VAEs) have been previously applied in applications of
adversarial robustness (Ghosh et al., 2019) and variational image compression (Ballé
et al., 2017) but to the best of our knowledge, there is no systematic study of CV-VAEs
in the literature. As noted in (Ghosh et al., 2019), treating σφ as a constant impairs the
assumption of p(z) to be an isotropic Gaussian which demands a more complex prior
structure over Z. We address this mismatch in Section 6.5.

6.3 Deterministic Regularized Autoencoders

As described in Section 6.2, autoencoding in VAEs is defined in a probabilistic fashion:
Dθ and Dθ map data points not to a single point, but rather to parameterized distributions
as shown in Equations 6.8 and 6.9. However, the practical implementation of the VAE
admits a deterministic view for this probabilistic mechanism.

A glance at the autoencoding mechanism of the VAE is revealing. The encoder
maps a data point x to a mean µφ (x) and variance σφ (x) in the latent space via the
reparametrization trick given in Eq. 6.11. The input to the decoder is then simply the
mean µφ (x) augmented with random Gaussian noise scaled by σφ (x). In the CV-VAE,
this relationship is even more obvious, as the magnitude of the noise is fixed for all data
points (Eq. 6.13). In this light, a VAE can be seen as a deterministic autoencoder where
Gaussian noise is added to the decoder’s input.

Using random noise injection to regularize neural networks during training is a well-
known technique that dates back several decades (Sietsma and Dow, 1991; An, 1996).
The addition of noise implicitly smooths the function learned by the network. Since this
procedure also adds noise to the gradients, we propose to substitute noise injection with
an explicit regularization scheme for the decoder network. Note that from a generative
perspective, this is motivated by the goal to learn a smooth latent space where similar
data points x are mapped to similar latent codes z, and small variations in Z lead to
reconstructions by Dθ that vary only slightly.

By removing the noise injection mechanism from the CV-VAE, we are effectively left
with a deterministic Regularized Autoencoder (RAE) that can be coupled with any type of
explicit regularization for the decoder to enforce a smooth latent space. Training a RAE
thus involves minimizing the simplified loss

LRAE = LREC+βLRAEKL +λLREG (6.15)
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where LREG represents the explicit regularizer for Dθ (see Section 6.3.1) and LRAEKL =
1/2||z||22 from Eq. 6.14 is equivalent to constraining the size of the learned space. Note
that for RAEs, no sampling approximation of LREC is required, thus relieving the need
for more samples from qφ (z |x) to achieve better image quality (see Figure 6.2).

6.3.1 Regularization Schemes for RAEs

Among possible choices for a mechanism to use for LREG, a first obvious candidate is
Tikhonov regularization (Tikhonov and Arsenin, 1977) since is known to be related to
the addition of low-magnitude input noise (Bishop, 2006). Training a RAE within this
framework thus amounts to adopting

LREG = LL2 = ||θ ||22 (6.16)

where LL2 effectively applies weight decay on the decoder parameters θ .
Another avenue comes from the recent GAN literature where regularization is a hot

topic (Kurach et al., 2019) and where injecting noise to the input of the adversarial discrim-
inator has led to improved performance in a technique called instance noise (Sønderby
et al., 2017). To enforce Lipschitz continuity on adversarial discriminators, weight clip-
ping has been proposed (Arjovsky et al., 2017), which is however known to significantly
slow down training. More successfully, a gradient penalty on the discriminator can be
used similar to (Gulrajani et al., 2017; Mescheder et al., 2018), yielding the objective

LREG = LGP = ||∇Dθ (Dθ (x))||22 (6.17)

which encourages small L2 norm of the gradient of the decoder w.r.t. its input.
Additionally, spectral normalization (SN) has been proposed as an alternative way to

bound the Lipschitz norm of an adversarial discriminator, showing very promising results
for GAN training (Miyato et al., 2018). SN normalizes the weight matrix θ` for each
layer in the decoder by dividing it by an estimate of its largest singular value:

θ
SN
` = θ`/s(θ`) (6.18)

where s(θ`) is the current estimate obtained through the power method.
Lastly, in light of recent success stories of deep neural networks without explicit

regularization achieving state-of-the-art results (Zhang et al., 2017a; Zagoruyko and
Komodakis, 2016), it is intriguing to question the need to explicitly regularize the decoder
in order to obtain a meaningful latent space. The assumption here is that techniques such
as dropout (Srivastava et al., 2014), batch normalization (Ioffe and Szegedy, 2015), adding
noise during training (An, 1996), or early stopping in conjunction with novel architectural
developments implicitly regularize the networks enough to smoothen the latent space.
Therefore, as a natural baseline to the LRAE objectives introduced above, we also consider
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the RAE framework without LREG and LRAEKL , i.e. a standard deterministic autoencoder
optimizing LREC only.

6.4 A Probabilistic Derivation of Smoothing

In this section, we propose an alternative view on enforcing smoothness on the output of
Dθ by augmenting the ELBO optimization problem for VAEs with an explicit constraint.
While we keep the Gaussianity assumptions over a stochastic Dθ and p(z) for convenience,
we are not fixing a parametric form for qφ (z |x) yet. We will then discuss how some
parametric restrictions over qφ (z |x) indeed lead to a variation of the RAE framework in
Eq. 6.15, specifically as the introduction of LGP as a regularizer of a deterministic version
of the CV-VAE.

To start, we can augment the minimization in Eq. 6.5 as:

argmin
φ ,θ

Ex∼pdata(X) LREC+LKL

s.t. ||Dθ (z1)−Dθ (z2)||p < ε

∀ z1,z2 ∼ qφ (z |x) ∀x∼ pdata(X)

(6.19)

where Dθ (z) = µθ (Eφ (x)) and the constraint on the decoder encodes that the output has
to vary, in the sense of an Lp norm, only by a small amount ε for any two possible draws
from the encoder. Using the mean value theorem, there exists a z̃∼ qφ (z |x) such that the
left term in the constraint can be bounded as:

||Dθ (z1)−Dθ (z2)||p = ∇Dθ (z̃) · ||z1− z2||p
≤ sup{||∇Dθ (z)||p} · sup{||z1− z2||p}

(6.20)

where we take the supremum of possible gradients of Dθ as well as the supremum of
a measure of the support of qφ (z |x). From this form of the smoothness constraint, it
is apparent why the choice of a parametric form for qφ (z |x) can be impactful during
training. For a compactly supported isotropic PDF qφ (z|x), the extension of the support
sup{||z1− z2||p} would be dependent on H(qφ (z |x)), the entropy of qφ (z |x), through
some functional r. For instance, a uniform posterior over a hypersphere in z would
ascertain r(H(qφ (z |x)))∼= eH(qφ (z |x))/n where n is the dimensionality of the latent space.

Intuitively, one would look for parametric distributions that do not favor overfitting, e.g.
degenerating in Dirac-deltas (minimal entropy and support) along any dimensions. To
this end, an isotropic nature of qφ (z|x) would favor such a robustness against decoder
over-fitting. We can now rewrite the constraint as

r(H(qφ (z |x))) · sup{||∇Dθ (z)‖|p}< ε (6.21)

The LKL term can be expressed in terms of H(qφ (z |x)), by decomposing it as LKL =
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LCE−LH, where LH = H(qφ (z |x)) and LCE = H(qφ (z |x), p(z)) represents a cross-
entropy term. Therefore, the constrained problem in Eq. 6.19 can be written in a La-
grangian formulation by including Eq. 6.21:

argmin
φ ,θ

Ex∼pdata LREC+LCE−LH+λLLANG (6.22)

where LLANG = r(H(qφ (z |x))) ∗ ||∇Dθ (z)||p. We argue that a reasonable simplifying
assumption for qφ (z |x) is to fix H(qφ (z |x)) to a single constant for all samples x. Intu-
itively, this can be understood as fixing the variance in qφ (z |x) as we did for the CV-VAE
in Section 6.2.2. With this simplification, Eq. 6.22 further reduces to

argmin
φ ,θ

Ex∼pdata(X) LREC+LCE+λ ||∇Dθ (z)||p (6.23)

We can see that ||∇Dθ (z)||p results to be the gradient penalty LGP and LCE = ||z||22
corresponds to LRAEKL , thus recovering our RAE framework as presented in Eq. 6.15.

6.5 Ex-Post Density Estimation

By removing stochasticity and ultimately, the KL divergence term LKL from RAEs, we
have simplified the original VAE objective at the cost of detaching the encoder from the
prior p(z) over the latent space. This implies i) we cannot ensure that the latent space Z
is distributed according to a simple distribution anymore (e.g. isotropic Gaussian) and
consequently, ii) we lose the simple mechanism provided by p(z) to sample from Z as in
Eq. 6.1.

As discussed in Section 6.2.1, issue i) is compromising the VAE framework in any case
in practice as reported in several works (Dai and Wipf, 2019; Rosca et al., 2018; Hoffman
and Johnson, 2016). To fix this, some works extend the VAE objective by encouraging the
aggregated posterior to match p(z) (Tolstikhin et al., 2017) or by utilizing more complex
priors (Kingma et al., 2016; Bauer and Mnih, 2019; Tomczak and Welling, 2018).

To overcome both i) and ii), we instead propose to employ ex-post density estimation
over Z. We fit a density estimator denoted as qδ (z) to {z = Dθ (x)|x ∈ X}. This simple
approach not only fits our RAE framework well, but it can also be readily adopted for any
VAE or variants thereof such as the WAE as a practical remedy to the aggregated posterior
mismatch without adding any computational overhead to the costly training phase.

The choice of qδ (z) needs to trade-off expressiveness – to provide a good fit of an
arbitrary space for Z – with simplicity – to improve generalization. Indeed, placing a Dirac
distribution on each latent point z would allow the decoder to output only training sample
reconstructions. Striving for simplicity and in order to show the effectiveness of the
proposed ex-post density estimation scheme, we compare a full covariance multivariate
Gaussian with a 10-component Gaussian mixture model (GMM) in our experiments.
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6.6 Related works

Many works have focused on diagnosing the VAE framework, the terms in its objec-
tive (Alemi et al., 2018; Hoffman and Johnson, 2016; Zhao et al., 2017b), and ultimately
augmenting it to solve optimization issues (Rezende and Viola, 2018; Dai and Wipf,
2019). With RAE, we argue that a simpler deterministic framework can be competitive
for generative modeling.

Deterministic denoising (Vincent et al., 2008) and contractive autoencoders (CAEs) (Ri-
fai et al., 2011) have received attention in the past for their ability to capture a smooth data
manifold. Heuristic attempts to equip them with a generative mechanism include MCMC
schemes (Rifai et al., 2012; Bengio et al., 2013). However, they are hard to diagnose for
convergence, require a considerable effort in tuning (Cowles and Carlin, 1996), and have
not scaled beyond MNIST, leading to them being superseded by VAEs. While in spirit the
proposed RAE is similar, LGP requires much less computational effort than computing
the Jacobian for CAEs (Rifai et al., 2011).

Approaches to cope with the aggregated posterior mismatch involve fixing a more
expressive form for p(z) (Kingma et al., 2016; Bauer and Mnih, 2019) therefore altering
the VAE objective and requiring considerable additional computational efforts. Estimating
the latent space of a VAE with a second VAE (Dai and Wipf, 2019) reintroduces many
of the optimization shortcomings discussed for VAEs and is much more expensive in
practice compared to fitting a simple qδ (z) after training.

GANs (Goodfellow et al., 2014) have received widespread attention for their ability to
produce sharp samples. Despite theoretical and practical advances (Arjovsky et al., 2017),
the training procedure of GANs is still unstable, sensitive to hyperparameters, and prone
to the mode collapse problem (Lucic et al., 2018; Sajjadi et al., 2018a,c).

Adversarial Autoencoders (AAE) (Makhzani et al., 2016) add a discriminator to a
deterministic encoder–decoder pair, leading to sharper samples at the expense of higher
computational overhead and the introduction of instabilities caused by the adversarial
nature of the training process. Wasserstein Autoencoders (WAE) (Tolstikhin et al., 2017)
have been introduced as a generalization of AAEs by casting autoencoding as an optimal
transport (OT) problem. Both stochastic and deterministic models can be trained by
minimizing a relaxed OT cost function employing either an adversarial loss term or the
maximum mean discrepancy score between p(z) and qφ (z) as a regularizer in place of
LKL.

Within the RAE framework, we look at this problem from a different perspective:
instead of explicitly imposing a simple structure on Z that might impair the ability to fit
high-dimensional data during training, we propose to model the latent space by an ex-post
density estimation step.
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MNIST CIFAR-10 CELEBA

Encoder x ∈R32×32

Conv128→ BN→ ReLU
Conv256→ BN→ ReLU
Conv512→ BN→ ReLU
Conv1024→ BN→ ReLU
Flatten→ FC16×M

x ∈R32×32

Conv128→ BN→ ReLU
Conv256→ BN→ ReLU
Conv512→ BN→ ReLU
Conv1024→ BN→ ReLU
Flatten→ FC128×M

x ∈R64×64

Conv128→ BN→ ReLU
Conv256→ BN→ ReLU
Conv512→ BN→ ReLU
Conv1024→ BN→ ReLU
Flatten→ FC64×M

Decoder z ∈R16→ FC8×8×1024
BN→ ReLU
ConvT512→ BN→ ReLU
ConvT256→ BN→ ReLU
ConvT1

z ∈R128→ FC8×8×1024
BN→ ReLU
ConvT512→ BN→ ReLU
ConvT256→ BN→ ReLU
ConvT1

z ∈R64→ FC8×8×1024
BN→ ReLU
ConvT512→ BN→ ReLU
ConvT256→ BN→ ReLU
ConvT128→ BN→ ReLU
ConvT1

Table 6.1: RAE model architecture. Convn represents a convolutional layer with n filters.
All convolutions Convn and transposed convolutions ConvTn have a filter size of 4×4 for
MNIST and CIFAR-10 and 5×5 for CELEBA. They all have a stride of size 2 except for
the last convolutional layer in the decoder. Finally, M = 1 for all models except for the
VAE which has M = 2 as the encoder has to produce both mean and variance for each
input.

6.7 Experiments

In this Section, we investigate the performance of several VAE and RAE variants on
MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky and Hinton, 2009) and CelebA (Liu
et al., 2015a). We measure three qualities for each model: held-out sample reconstruction
quality, random sample quality, and interpolation quality. While reconstructions give us
a lower bound on the best quality achievable by the generative model, random sample
quality indicates how well the model generalizes. Finally, interpolation quality sheds light
on the structure of the learned latent space.

6.7.1 Models

We compare the the proposed RAE model with the gradient penalty (RAE-GP), with
weight decay (RAE-L2), and with spectral normalization (RAE-SN). Additionally, we
consider two models for which we either add only the latent code regularizer LRAEKL to
LREC (RAE), or no explicit regularization at all (AE). As baselines, we further employ
a regular VAE, the constant-variance VAE (CV-VAE) for comparison, and finally, a
Wasserstein Autoencoder (WAE) with the MMD loss as a state-of-the-art alternative.

Aiming for a fair comparison, we employ the same network architecture for all models.
We largely follow the models adopted in (Tolstikhin et al., 2017) with the difference that
we consistently apply batch normalization (Ioffe and Szegedy, 2015) for all models as

94



6.8 Network architecture and Training Details

MNIST CIFAR CelebA

Rec.
Samples

Rec.
Samples

Rec.
Samples

N GM Int. N GM Int. N GM Int.

VAE 18.3 19.2 17.7 18.2 58.0 106.3 103.8 88.6 39.1 48.1 45.5 44.5
CV-VAE 15.2 33.8 17.9 25.1 37.7 94.8 86.6 69.7 40.4 48.9 49.3 45.0

WAE 10.0 20.4 9.4 14.3 36.0 117.4 93.5 76.9 34.8 53.7 42.7 41.0

RAE-GP 14.0 22.2 11.5 15.3 32.2 83.1 76.3 64.1 39.7 116.3 45.6 47.0
RAE-L2 10.5 22.2 8.7 14.5 32.2 80.8 74.2 62.5 43.5 51.1 48.0 46.0
RAE-SN 15.7 19.7 11.7 15.2 27.6 84.3 75.3 63.6 36.0 44.7 41.0 39.5

RAE 11.7 23.9 9.8 14.7 29.1 83.9 76.3 63.3 40.2 48.2 44.7 43.7
AE 13.0 58.7 10.7 17.1 30.5 84.7 76.5 61.6 40.8 127.9 45.1 51.0

Table 6.2: Evaluation of all models by FID (lower numbers are better, best model in
bold). We evaluate each model by Rec.: test sample reconstruction; N : random samples
generated according to the prior distribution p(z) (for VAE / WAE) or by fitting a Gaussian
to qδ (z) (for the remaining models); GM: random samples generated by fitting a mixture
of 10 Gaussians in the latent space; Int.: mid-point interpolation between random pairs of
test reconstructions. Note that our (less constrained) RAE models are competitive with or
outperform the VAE and WAE throughout the evaluation. Surprisingly, interpolations do
not suffer from the lack of explicit prior on the latent space in our models. Furthermore,
the unregularized AE achieves very good FID scores when combined with the proposed
ex-post density estimation technique.

we found it to improve performance across the range. The latent space dimension is 16
for MNIST, 128 for CIFAR-10 and 64 for CelebA. Further details about the network
architecture and training procedure are given in Section 6.8.

6.8 Network architecture and Training Details
For all experiments, we use the Adam optimizer with a starting learning rate of 10−3

which is cut in half every time the validation loss plateaus. All models are trained for
a maximum of 100 epochs on MNIST and CIFAR and 70 epochs on CelebA. We use
mini-batch size of 100 and pad MNIST digits with zeros to make the size 32×32.

We use official train, validation and test splits of CelebA. For MNIST and CIFAR,
we set aside 10k train samples for validation. For random sample evaluation, we draw
samples from N (0, I) for VAE and WAE-MMD and for all remaining models, samples
are drawn from a multivariate Gaussian whose mean and covariance are estimated using
training set embeddings. For the GMM density estimation, we also utilize the training
set embeddings for fitting and validation set embeddings to verify that GMM models are
not over fitting to training embeddings. However, due to the very low number of mixture
components, we did not encounter overfitting at this step. The GMM parameters are
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MNIST CIFAR-10 CELEBA

VAE

CV-VAE

WAE

RAE-GP

RAE-L2

RAE-SN

RAE

AE

Figure 6.3: Nearest neighbors to generated samples (leftmost image, red box) from training
set. It seems that the models have generalized well and fitting only 10 Gaussians to the
latent space prevents overfitting.

estimated by running EM for at most 100 iterations.
The network architechtures are shown in Table 6.1. For Figures 6.2 and 6.1, we used

smaller networks due to computational limitations and since only relative performance is
of interest in these experiments. It should be noted that as a result of this, the absolute
values of the reported FID scores in these figures cannot be directly compared with the
numbers reported in Section 6.7.

6.8.1 Evaluation
The evaluation of generative models is a nontrivial research question (Theis et al., 2016;
Sajjadi et al., 2017; Lucic et al., 2018). Since we are interested in the quality of samples,
the ubiquitous Fréchet Inception Distance (FID) (Heusel et al., 2017) is a reasonable
choice for comparing different models. More recently, a notion of precision and recall for
distributions (PRD) has been proposed (Sajjadi et al., 2018a), separating sample quality
from diversity. We choose to report both scores to be able to compare with other less
recent works but to also quantitatively measure the precision-recall tradeoffs.

We compute the FID of the reconstructions of random validation samples against the
test set to evaluate reconstruction quality. For evaluating generative modeling capabilities,
we compute the FID between the test data and randomly drawn samples from a single
Gaussian that is either the isotropic p(z) available for VAEs and WAEs, or a single
Gaussian fit to qδ (z) for CV-VAEs and RAEs. For all models, we also evaluate random
samples from a 10-component Gaussian Mixture model (GMM) fit to qδ (z). Using only
10 components prevents us from overfitting (which would indeed give good FIDs when
compared with the test set). We note that fitting GMMs with up to 100 components, only
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MNIST CIFAR-10 CelebA

N GMM N GMM N GMM

VAE 0.96 / 0.92 0.95 / 0.96 0.25 / 0.55 0.37 / 0.56 0.54 / 0.66 0.50 / 0.66
CV-VAE 0.84 / 0.73 0.96 / 0.89 0.31 / 0.64 0.42 / 0.68 0.25 / 0.43 0.32 / 0.55

WAE 0.93 / 0.88 0.98 / 0.95 0.38 / 0.68 0.51 / 0.81 0.59 / 0.68 0.69 / 0.77

RAE-GP 0.93 / 0.87 0.97 / 0.98 0.36 / 0.70 0.46 / 0.77 0.38 / 0.55 0.44 / 0.67
RAE-L2 0.92 / 0.87 0.98 / 0.98 0.41 / 0.77 0.57 / 0.81 0.36 / 0.64 0.44 / 0.65
RAE-SN 0.89 / 0.95 0.98 / 0.97 0.36 / 0.73 0.52 / 0.81 0.54 / 0.68 0.55 / 0.74

RAE 0.92 / 0.85 0.98 / 0.98 0.45 / 0.73 0.53 / 0.80 0.46 / 0.59 0.52 / 0.69
AE 0.90 / 0.90 0.98 / 0.97 0.37 / 0.73 0.50 / 0.80 0.45 / 0.66 0.47 / 0.71

Table 6.3: Evaluation of random sample quality by precision / recall (Sajjadi et al.,
2018a) (higher numbers are better, best value for each dataset in bold). It is notable
that the proposed ex-post density estimation improves not only precision, but also recall
throughout the experiment. For example, WAE seems to have a comparably low recall
of only 0.88 on MNIST which is raised considerably to 0.95 by fitting a GMM. In all
cases, GMM gives the best results. Another interesting point is the low precision but high
recall of all models on CIFAR-10 – this is also visible upon inspection of the samples in
Figure 6.6.

improved results marginally. Additionally, we provide nearest-neighbors from the training
set in Figure 6.3 to show that the models are not overfitting. For interpolations, we report
the FID for the furthest interpolation points resulted by applying spherical interpolation
to randomly selected validation reconstruction pairs.

We use 10k samples for all FID and PRD evaluations. Reconstruction scores are
computed from validation set reconstructions against the respective test set. Interpolation
scores are computed by interpolating latent codes of a pair of randomly chosen validation
embeddings vs test set samples. The visualized interpolation samples are interpolations
between two randomly chosen test set images.

6.8.2 Results

Table 6.2 summarizes our main results. All of the proposed RAE variants are competitive
with the VAE and WAE w.r.t. generated image quality in all settings. Sampling RAEs
achieve the best FIDs across all datasets when a modest 10-component GMM is employed
for ex-post density estimation. Furthermore, even when N is considered as qδ (z), RAEs
rank first with the exception of MNIST, though the best FID achieved there by the VAE is
very close to the FID of RAE-SN. Table 6.3 reports PRD scores for the same models. We
can see that the proposed ex-post density estimation improves not only precision, but also
recall throughout the experiment.
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Moreover, our best RAE FIDs are lower than the best results reported for VAEs in the
large scale comparison of (Lucic et al., 2018), challenging even the best scores reported
for GANs. While we are employing a slightly different architecture than theirs, our
models underwent only modest finetuning instead of an extensive hyperparameter search.
By looking at the differently regularized RAEs, there is no clear winner across all settings
as all perform equally well. For practical reasons of implementation simplicity, one may
prefer RAE-L2 over the GP and SN variants.

Surprisingly, the implicitly regularized RAE and AE models are shown to be able to
score impressive FIDs when qδ (z) is fit through GMMs. FIDs for AEs decrease from
58.73 to 10.66 on MNIST and from 127.85 to 45.10 on CelebA – a value close to the state
of the art. This is a remarkable result that follows a long series of recent confirmations
that neural networks are surprisingly smooth by design (Neyshabur et al., 2017). It is also
surprising that the lack of an explicitly fixed structure on the latent space of the RAE does
not impede interpolation quality. This is further confirmed by the qualitative evaluation on
CelebA as reported in Figure 6.4 and for the other datasets in Figures 6.5 and 6.6, where
RAE interpolated samples seem sharper than competitors and transitions smoother.

We would like to note that our extensive study confirms and quantifies the effect of
the aggregated posterior mismatch as well as the effectivity of our proposed solution
to it. Indeed, if we consider the effect of applying ex-post density estimation to each
model in Table 6.2, we see that it consistently improves sample quality across all settings
considerably. A 10-component GMM trained to fit Z seems to be enough to half the FID
scores from ∼20 to ∼10 for WAE and RAE models on MNIST and from 116 to 46 on
CelebA. This is striking since this very cheap additional step to any VAE-like generative
model can be employed to boost the quality of generated samples.

All in all, the results strongly support our conjecture that the simple deterministic RAE
framework can challenge the VAE and WAE.
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Reconstructions Random Samples Interpolations

GT
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Figure 6.4: Qualitative evaluation of sample quality for VAEs, WAEs and RAEs on
CelebA. Left: reconstructed samples (top row is ground truth). Middle: randomly
generated samples. Right: interpolations in the latent space between a pair of test images
(first and last column). RAE models provide overall sharper samples and reconstructions
while interpolating smoothly in the latent space.
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Figure 6.5: Qualitative evaluation for sample quality for VAEs, WAEs and RAEs on
MNIST. Left: reconstructed samples (top row is ground truth). Middle: randomly
generated samples. Right: spherical interpolations between two images (first and last
column).
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Figure 6.6: Qualitative evaluation for sample quality for VAEs, WAEs and RAEs on
CIFAR-10. Left: reconstructed samples (top row is ground truth). Middle: randomly
generated samples. Right: spherical interpolations between two images (first and last
column).
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6.9 Summary
While the theoretical derivation of the VAE has helped popularize the framework for
generative modeling, recent works have started to expose some discrepancies between
theory and practice. In this work, viewing sampling in VAEs as noise injection to enforce
smoothness has enabled us to distill a deterministic autoencoding framework that is
compatible with several regularization techniques to learn a meaningful latent space.
We have demonstrated that such a deterministic autoencoding framework can generate
comparable or better samples than VAEs, while getting around the practical drawbacks
tied to a stochastic framework. Furthermore, we have shown that our solution to fit a
simple density estimator such as a Gaussian Mixture Model on the learned latent space
is able to consistently improve sample quality both for the proposed RAE framework
as well as for the VAE and WAE, acting as a solution for the known mismatch between
the prior and the aggregated posterior. The RAE framework opens interesting future
research venues such as learning the density estimator in an end-to-end fashion with the
autoencoding network and devising more sophisticated autoencoders that can access the
full range of recent structural neural network advancements to scale generative modeling
without being bound to the VAE’s restrictions.
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Conclusions
EnhanceNet (Sajjadi et al., 2017), together with the similar and concurrent approach
by Ledig et al. (2017), achieved previously unattainable state-of-the-art realism at high
upscaling factors up to 4x through the use of novel loss functions that emphasize perceptual
fidelity over pixel-wise accuracy of the reconstruction during training. These advances
sent waves through the field of super resolution and have since changed it sustainably.
The ubiquitous use of the L2 norm as the loss function for image reconstruction tasks
has gotten increasingly replaced by more sophisticated loss functions that capture visual
fidelity rather than distances in pixel space, particularly for larger upsampling ratios
(Wang et al., 2020).

Similarly, low-level similarity metrics for evaluation such as PSNR and structural
similarity (SSIM) (Wang et al., 2004) have lost relevance in many applications, being
gradually supplanted by perceptual metrics such as the Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018) and the Fréchet Inception Distance (FID) (Heusel
et al., 2017). As suggested in Chapter 2 Section 2.5.5, both of these more recent works
use similarity of pre-trained neural networks, however in the latent space rather than
evaluating classification accuracy. Precision and Recall for Distributions (PRD) (Sajjadi
et al., 2018a) has turned out to be a practical tool for evaluating the precision and recall of
generative models separately, and several follow-up works generalizing and extending the
approach have since been published (Kynkäänniemi et al., 2019; Djolonga et al., 2020).

Meanwhile, part of the super resolution field has shifted its focus away from improving
metrics, and instead towards improving the applicability of such methods in the wild.
EnhanceNet, as the overwhelming majority of works on super resolution at the time, uses
HR images and scales them down for training, thereby assuming a Gaussian downscaling
kernel. This has the side effect that the input images are often devoid of noise, compression
artifacts, blur, and other imperfections. In practice however, these methods should work
on imperfect inputs – leading to a more recent spike of interest in learning not only the
mapping from LR to HR images, but also its inverse: how to map HR images to (possibly
imperfect, but realistic) LR images. A particularly powerful technique for this so-called
blind image super resolution is the application of GANs to learn the HR to LR mapping
(Bell-Kligler et al., 2019).
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The fronties of image-generative models have been vastly expanded, with high-resolution
image-generative models based on regularized GANs (Mescheder et al., 2018; Liu et al.,
2019) contributing to the success of scaling these models to more complex settings. While
GANs can still achieve impressive results (Kang et al., 2023), autoregressive methods
(Yu et al., 2022) and denoising diffusion (Ho et al., 2020) have taken over, leading in
particular to state-of-the-art text to image image generative abilities (Rombach et al.,
2022). The most exciting future development lies in extending today’s approaches from
image to video format, which brings not only the obvious challenge of significantly larger
and harder to amass data, but also that of temporal consistency. It remains to be seen how
far approaches similar to FRVSR (Sajjadi et al., 2018b) can be taken in this domain.
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Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context
Encoders: Feature Learning by Inpainting. In Computer Vision and Pattern Recognition
(CVPR).

Perez-Pellitero, E., Salvador, J., Ruiz-Hidalgo, J., and Rosenhahn, B. (2016). PSyCo:
Manifold Span Reduction for Super Resolution. In Computer Vision and Pattern
Recognition (CVPR).

Perez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., and Schölkopf, B. (2018). Photoreal-
istic Video Super Resolution. In European Conference on Computer Vision (ECCV)
Workshop PIRM.

Radford, A., Metz, L., and Chintala, S. (2016a). Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. In International Conference
on Learning Representations (ICLR).

Radford, A., Metz, L., and Chintala, S. (2016b). Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. In International Conference
on Learning Representations (ICLR).

Ranjan, A. and Black, M. J. (2017). Optical Flow Estimation Using a Spatial Pyramid
Network. Computer Vision and Pattern Recognition (CVPR).

Rezende, D. J. and Viola, F. (2018). Taming VAEs. arXiv:1810.00597.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. In International Conference on
Machine Learning (ICML).

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive Auto-
Encoders: Explicit Invariance During Feature Extraction. In International Conference
on Machine Learning (ICML).

Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A Generative Process for Sam-
pling Contractive Auto-Encoders. In International Conference on Machine Learning
(ICML).

120



Bibliography

Romano, Y., Isidoro, J., and Milanfar, P. (2016). RAISR: Rapid and Accurate Image
Super Resolution. IEEE Transactions on Computational Imaging (TCI).

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-
Resolution Image Synthesis with Latent Diffusion Models. Computer Vision and
Pattern Recognition (CVPR).

Rosca, M., Lakshminarayanan, B., and Mohamed, S. (2018). Distribution Matching in
Variational Inference. arXiv:1802.06847.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear Total Variation Based Noise
Removal Algorithms. Physica D: Nonlinear Phenomena.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV).
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