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Abstract
Electric drives are often used to power electrified vehicles such as electric cars or ped-
elecs. As any other mechanical system, electric drives wear out with time, which, con-
sequently, increases the possibility of sudden failures that might compromise the safety
of people in the surroundings of the vehicle powered by the damaged drive. A method to
effectively increase the reliability of electric drives is the on-board condition monitoring
of the device. By applying condition monitoring, failures can be detected and classified
in advance, which allows to take preventive measures before a failure occurs.

This thesis introduces a comprehensive methodology which comprises all relevant
stages for the development of intelligent algorithms for condition monitoring: from the
data acquisition and pre-processing to the systematic generation of accurate and com-
pact machine learning models for timely preventive measures. The main objective of
the introduced approach is to predict the remaining useful life of an electric drive. Fur-
thermore, the presented approach also enables the on-board fault diagnosis if required.
The proposed methodology is validated with a proprietary database consisting of data
collected with electric drives for pedelecs. The findings of this case study show that
the introduced methodology enables a reliable identification of the end of useful life of
electric drives, which is required for data labeling. Moreover, the generated models are
able to accurately predict the end of useful life of an electric drive with sufficient time
in advance, and to correctly identify the damaged element as well. Finally, this study
shows how the resulting models are suitable for an embedded implementation for on-
board condition monitoring due to their reduced size and computational complexity. In
a second case study, the failure prognosis algorithms are compared with other related
techniques using a benchmark database. This study demonstrates the high efficiency of
the proposed method to estimate the time to failure with very compact models, when
compared to other related approaches.
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Kurzfassung
Elektroantriebe werden häufig für den Antrieb elektrisch betriebener Fahrzeuge wie Elek-
troautos oder Pedelecs verwendet. Wie jedes andere mechanische System nutzen sich
elektrische Antriebe mit der Zeit ab. Dies erhöht folglich die Wahrscheinlichkeit plötzli-
cher Ausfälle, die die Sicherheit von Personen in der Umgebung des von dem beschädig-
ten Antrieb angetriebenen Fahrzeugs gefährden könnten. Eine Methode, um die Zu-
verlässigkeit von Elektroantrieben effektiv zu erhöhen, ist die Zustandsüberwachung des
Geräts an Bord. Auf diese Weise können Ausfälle im Voraus erkannt und klassifiziert
werden, was es ermöglicht, vorbeugende Maßnahmen zu ergreifen, bevor es zu einem
Ausfall kommt.

Diese Arbeit stellt eine umfassende Methodik vor, die alle relevanten Phasen für die
Entwicklung intelligenter Algorithmen für die Zustandsüberwachung umfasst: von der
Datenerfassung und Vorverarbeitung bis zur systematischen Generierung genauer und
kompakter maschineller Lernmodelle für rechtzeitige Präventivmaßnahmen. Das Haupt-
ziel des vorgestellten Ansatzes ist die Vorhersage der Restnutzungsdauer eines Elek-
troantriebs. Darüber hinaus ermöglicht die Methodik bei Bedarf auch die On-Board-
Fehlerdiagnose. Eine proprietäre Datenbank, bestehend aus Daten, die aus einem elektri-
schen Antrieb für Pedelecs erfasst wurden, ermöglichte die Validierung der vorgeschla-
genen Methodik. Unsere Ergebnisse zeigen, dass die Methodik eine zuverlässige Bestim-
mung des Endes der Nutzungsdauer von Elektroantrieben ermöglicht, was für die Daten-
kennzeichnung erforderlich ist. Darüber hinaus sind die generierten Modelle in der Lage,
das Ende der Nutzungsdauer eines elektrischen Antriebs mit viel Zeit im Voraus genau
vorherzusagen und auch das beschädigte Element korrekt zu identifizieren. Schließlich
eignen sich die resultierenden Modelle aufgrund ihrer reduzierten Größe und Berech-
nungskomplexität für eine eingebettete Implementierung zur Zustandsüberwachung an
Bord. In einer zweiten Fallstudie wurde dieser Ansatz mit verbunden Techniken unter
Verwendung einer Benchmark-Daten-bank verglichen. Diese Studie zeigt die hohe Effi-
zienz der vorgeschlagenen Methode zur Abschätzung der Zeit bis zum Versagen mit sehr
kompakten Modellen im Vergleich zu anderen Ansätzen.
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Chapter 1

Introduction

The electrification of means of transport like cars and bicycles has found in recent years
a tremendous growth. Electrified vehicles have two main components, the battery, which
is the energy source, and the electric drive, which powers the vehicle. As any other
mechanical system, electric drives wear out with the use. This raises the probability of
a malfunction with time. A sudden failure of a drive’s mechanical element represents a
high risk for the driver and the people in the surroundings of the vehicle or system, which
is powered by the damaged electric drive. Usually, to reduce this risk, a preventive
maintenance policy is implemented. This strategy defines specific service intervals at
which the maintenance of the equipment needs to take place, even if the device does not
show any anomaly that affects its operation. However, this approach generates additional
costs by performing unnecessary repairs in components that could still operate safely.
Moreover, these constant intervals might be too long in certain circumstances. In that
case, the system could break down before the next service takes place, jeopardizing
the safety of the users. One method to improve the reliability of the maintenance time
selection is achieved through the constant monitoring of the system’s condition. In this
way, the service takes place when an abnormal condition has been monitored. Thereby,
unnecessary repairs and unexpected failures are minimized.

Initially, condition monitoring of mechanical systems was performed by placing de-
termined sensors, mainly accelerometers, in strategical positions inside of machinery.
The collected raw signals were transformed into frequency spectra and thresholds were
determined for relevant frequencies. A malfunction was detected once a threshold was
exceeded. Furthermore, a diagnosis of the component responsible for the fault could be
done by performing an order analysis. This method for monitoring the system’s con-
dition required a deep knowledge about the system dynamics. Moreover, many false
alarms were caused by sudden external disturbances, which influenced the sensors mea-
surements. Towards the beginning of the 2000s, traditional signal processing techniques
for condition monitoring were complemented with intelligent algorithms, which were
able to automatically build the correlation between a given input and output, without the
need to build a complex mathematical model. Moreover, these algorithms improved the
efficiency of sole signal processing techniques by facilitating the fusion of multiple sen-
sors to find new patterns from the extracted features. A second generation of approaches
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Chapter 1 Introduction

focused on the implementation of a predictive maintenance policy, which core element
is the estimation of the time to failure of a system. In this strategy, the information
generated by the sensors that monitor the system is used to identify undesired trends at
an early stage. Thereby, the optimal service time can be defined in advance and the re-
sources required to perform the maintenance can be properly prepared. The estimation of
the remaining useful life is a more complex task than the fault isolation. It can hardly be
solved with traditional machine learning models, especially if multiple faults may arise
or the system operates under changing conditions. On the other hand, the availability of
computers with high performance enabled the use of deep learning algorithms to accu-
rately diagnose faults and forecast the time of failure of a system. One disadvantage of
deep learning architectures is the need of large databases to be efficiently trained. The
acquisition of big databases for the development of failure prognosis models is a highly
complex task. This requires to collect data from several devices from their healthy state
until they break down. Typically, mechanical systems can operate hundreds of hours
before any sign of degradation can be perceived by the sensors. Thus, the collection of
a reliable database for health prognosis can easily take several months and even years.
To cope with these challenges, benchmark databases have been created with data gener-
ated during simulations or experimental setups. The data of these benchmark databases
has served to develop and validate multiple approaches for failure prognosis. Since the
state-of-the-art techniques for failure prognosis are developed only with experimental
data and without a specific application in mind, they focus only on increasing the accu-
racy of the models. However, the increased efficiency comes with the cost of very high
computational complexity. This hinders the model deployment in embedded systems for
certain applications such as the on-board monitoring of mobile systems powered by an
electric drive. Moreover, no method considered an efficient strategy to collect the data
required for the training of deep learning models. The data collection has to be joined by
a method to efficiently label the gathered data as well.

The aim of this work is to develop an efficient comprehensive methodology, which
covers the strategy of data collection, processing and labeling, together with the training
of monitoring algorithms and their optimization for embedded implementation. More-
over, a strategy to face the challenges that arise with the application of the algorithms
in real driving circumstances, such as varying conditions, has to be enclosed within this
comprehensive methodology. The focus of this approach is to enable the on-board con-
dition monitoring of electric drives, especially drive units of pedelecs. The research
question and the requirements of the methodology are introduced in the following sec-
tion.

1.1 Research question and requirements
The following research questions are derived in pursuit of the development of a compre-
hensive methodology that enables a reliable on-board condition monitoring of electric
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drives: How can the learning models be optimized to suit into an embedded system with-
out a considerable accuracy degradation? How can the key elements of the condition
monitoring tasks be shared to simultaneously forecast and identify a failure with the
lowest computation complexity? How can the flexibility of the approach be guaranteed,
independently of the configuration of the electric drive? Which is an optimal strategy to
obtain enough data that enables the generation of intelligent algorithms for failure prog-
nosis? How can the data be easily labeled for the failure forecasting task? Based on these
questions, the criteria that the comprehensive methodology has to fulfill are clustered in
three groups: the model performance, the embedded implementation and the flexibilitiy
of the methodology. Furthermore, a fourth category of requirements that are related to
the application is given.
Requirement 1 - Model performance

Requirement 1.1 - Prognosis and diagnosis: Although the methodology focuses
on the estimation of the remaining useful life of electric drives, it should provide the
guidelines that enable the creation and deployment of learning models for both failure
prognosis and diagnosis.

Requirement 1.2 - High reliability for prognosis: It is essential to minimize late
predictions of failures. Moreover, false alarms should also be kept to a low level.
Requirement 2 - Suitable for an embedded implementation

Requirement 2.1 - Compact models: To enable the deployment of the trained learn-
ing algorithms into an embedded system, it is essential to build compact models with a
reduced amount of parameters that fit into the system’s memory.

Requirement 2.2 - Low computational complexity: The computation of the con-
dition monitoring algorithms can be performed with a time separation which can vary
from a few minutes to several hours. Therefore, a very low performance is not crucial.
Nonetheless, the higher the amount of multiply-accumulate operations, the greater the
memory space required to store the partial computations. To reduce the memory load,
a model with low computational complexity is required, i.e. models with less than 1
million multiply-accumulate operations.

The target embedded system throughout this work is a ST Nucleo-F411RE with a
Cortex-M4 processor, which is suitable for models with low memory and low computa-
tional complexity [59].
Requirement 3 - Flexibility

Requirement 3.1 - High flexibility: The flexibility refers to the capability of an ap-
proach to be implemented for the condition monitoring of different electric drives with a
low effort.

Requirement 3.2 - Suitable for unlabeled data: A technique to easily and effectively
label the data for prognosis tasks has to be considered within the developed approach.

Requirement 4 - Application oriented
Requirement 4.1 - Use of internal sensors only: The methodology is thought for

electric drives that are used in mass produced systems such as electric cars or pedelecs.
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Therefore, only the information provided by the sensors that already exist inside the drive
should be used. By considering this, additional costs due to the extra sensors and their
corresponding measuring devices can be avoided.

1.2 Thesis outline
In this section, a short overview of each chapter that constitutes this work is given. More-
over, it is indicated which part of the research or results are covered by the published
papers.

First, chapter two provides the theoretical background required for the development
and understanding of the methodology for on-board condition monitoring. Furthermore,
a short description of electric drives is given at the beginning of this chapter.

The third chapter introduces related approaches for fault diagnosis and failure progno-
sis. Both machine learning and deep learning methods are introduced. The research of
the state-of-the-art regarding condition monitoring lets us derivate the research questions,
which are analyzed within this work. The last part of this chapter presents a summary of
the requirements that are covered by existing approaches.

The comprehensive methodology for on-board condition monitoring is presented in
chapter four. First, a strategy to collect the data required for the development of the in-
telligent algorithms is given. Then, the manual feature engineering method and signal
processing techniques are described. Afterwards, two novel approaches to reduce the
dimensionality for classification and regression tasks are detailed. Next, the approach
for data labeling, which was presented in the second publication, is detailed. Moreover,
slight modifications of this labeling method are presented in this thesis to improve the ef-
ficiency of this approach. Afterwards, two intelligent algorithms for failure prognosis are
introduced: a Gaussian Process for Regression, and a novel deep learning architecture,
presented in the third publication, which is named Multipath Temporal Convolutional
Network. Additionally, the method to automatically select the optimized hyperparam-
eters of the MTCN with a genetic algorithm is described. This method was presented
in the third publication as well. Then, the fault diagnosis approach performed with a
multiclass Support Vector Machine is introduced. This diagnosis approach follows the
research of the first publication. At the end of this chapter, optimization strategies that
can be implemented to deploy the trained models in an embedded system are given.

In chapter five, two case studies with the data collected from pedelec drive units is
presented. These studies enabled the validation of each component of the proposed com-
prehensive methodology for the on-board monitoring of electric drives. The results of
the first and second case studies were published in the second and first publications re-
spectively. Chapter six introduces a numerical comparison between related approaches
for failure prognosis and the algorithms introduced in this work, using a benchmark
database. These results were published in the third publication.

Finally, chapter seven summarizes this thesis and provides an outlook about the future
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research necessary to improve the proposed algorithms for on-board condition monitor-
ing.

1.3 Publications
Within the development of this research, the following works have been published in
conference proceedings:

• I. M. Vazquez, R. Doelling and O. Bringmann, ”Fault Diagnosis Approach for
Pedelec Drive Units Based on Support Vector Machines,” 2019 International Con-
ference on Control, Automation and Diagnosis (ICCAD), Grenoble, France, 2019,
pp. 1-6.

• I. Melendez, R. Doelling and O. Bringmann, ”Self-supervised Multi-stage Estima-
tion of Remaining Useful Life for Electric Drive Units,” 2019 IEEE International
Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 4402-4411.

• I. Melendez-Vazquez, R. Doelling and O. Bringmann, ”Multipath Temporal Con-
volutional Network for Remaining Useful Life Estimation,” 2020 IEEE Interna-
tional Conference on Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 4137-
4146.

Moreover, the following patent has been published at the German patent office:

• I. Melendez-Vazquez and R. Doelling, “Verfahren zum Ermitteln eines Zustands
eines elektrischen Antriebs eines Fahrrads, Computerprogramm, Speichermedium
und Fahrrad,” German Patent DE102019203816
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Chapter 2

Foundations
First, this chapter provides the description of fault-diagnosis terminology. Then, a de-
scription of the electric drives, their main elements and type of failures is given. This
chapter also introduces signal processing techniques and machine learning algorithms.
The mathematical foundations given in this chapter are useful to describe and understand
the proposed condition monitoring methodology for electric drives, which is introduced
in Chapter 4.

2.1 Fault diagnosis terminology
These terms are defined within the Reliability, Availability and Maintainability dictio-
nary and in German norms such as DIN standards. A summary of the definitions is
introduced in [35]. A fault is an unpermitted deviation of at least one characteristic
property of the system from the aceptable/ standard condition. A failure is a permanent
interruption of a system’s ability to perform a required function under specified oper-
ating conditions. Moreover, fault detection is the task to determine whether there is
a fault present in a mechanism; fault isolation focuses on the identification of the fault
root cause; fault identification quantifies the magnitude of the fault; and fault diagnosis
comprises the detection, isolation and identification of a fault.

2.2 Electric drives
An electric drive is a mechatronic system, which task is the conversion of electrical
energy into mechanical energy [41]. Electric drives consist of an electric motor, a transfer
mechanism, a power electronic converter, a measurement system, and a control system
[49]. In Figure 2.1, a generalized structure of an electric drive is depicted.

Almost every electric motor configuration, either linear or rotational, can be used in an
electric drive. The mechanical transmission consists of shafts, gears, clutches and bear-
ings. Its task is to increase the mechanical power at the output shaft. Furthermore, the
power electronic converter refers to a network of semiconductor power switches. They
supply the motor with power, which is regulated by the controller. The measurement
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Figure 2.1: Generalized structure of an electric drive [49].

system is composed of sensors that measure the currents, voltages, torque, temperature,
etc. In the control system or drive controller, the signal processing, the analogue-digital
conversion and the motor control take place. The controller can be a microcontroller, an
FPGA or a computer. Finally, the electrical power can be supplied from the alternative
current grid, or from a direct current source such as a battery.

The diagnosis and forecasting is performed mostly for the mechanical elements of the
drive, i.e. the mechanical transmission and the electric motor components. As seen in
Figure 2.2, the mechanical elements have three strages in their life cycle, which have
different failure probabilities. Within the first operations cycles, many elements tend
to fail due to manufacturing or assembly errors. Afterwards, the systems operate for
long periods under normal conditions, in which random failures ocasionally arise due
to excesive load, corrosion or other factors [103]. In the last stage of their life, the
mechanical elements have a progressive condition worsening, which increases the failure
probability.

Time

Fa
ilu

re
 p

ro
ba

bi
lit

y Infant
mortality

Random failures
Wearout
failures

Figure 2.2: Probability of a failure over time (Bathtub curve).

This thesis focusses only on the mechanical wear failures, which can be forecasted. On
the other hand, the electronic elements such as resistors, capacitors, inductors, etc., suffer
sudden failures that cannot be monitored with much time of anticipation. Moreover, due
to the complexity of most electronic systems, it is almost impossible to trace the faulty
spot once the failure has occurred [102].
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2.3 Signal processing techniques

2.3 Signal processing techniques

2.3.1 Descriptive statistics

Descriptive statistics are a helpful method to reduce the available data to a manageable
amount that can be easier analyzed and explained to a variety of stakeholders [20].

Central measures

The sample mean x is one of the most useful mathematical descriptions of a dataset. This
metric can be interpreted as the central value of a discrete time series x and it is given by
(2.1), where N is the vector size of the time series x.

x =
1
N

N

∑
i=1

xi. (2.1)

Another useful central metric is the root-mean-square (RMS) value, given by:

RMS =

√︄
1
N

N

∑
i=1

x2
i . (2.2)

Moments about the mean

The statistical moments about the mean are used to describe the shape of distribution
curves [60]. The second moment is known as the sample variance var(x), which is a
metric of the dispersion around the mean, and is given by:

var(x) =
1
N

N

∑
i=1

(xi− x)2, (2.3)

this metric changes the magnitude of the measurement due to the squared difference.
The standard deviation (σ) restores the amplitude of the variance to the original data
distribution and is defined for a sample of a population as:

σ =

√︄
1

N−1

N

∑
i=1

(xi− x)2. (2.4)

The skewness (η), the third moment about the mean, contains the information about
the symmetry of a distribution [100]. If there is a greater concetration of data points
to the right of the mean, the skewness is negative and the distribution is skewed to the
left. On the other hand, if the mode of the data set is less than its mean value, then the
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skewness is positive and the data distribution is skewed to the right. If the distribution is
symmetrical, the skewness is zero. This coefficient is given as follows:

η =
1
N

∑
N
i=1(xi− x)3

σ3 . (2.5)

The kurtosis (κ) is the fourth moment about the mean. It measures how closely the
data are distributed around the mode and is given by:

κ =
1
N

∑
N
i=1(xi− x)4

σ4 . (2.6)

Measures of correlation

Given two time series xi and x j, the sample covariance matrix is given by:

q jk =
1
N

N

∑
i=1

(xi j− x j)(xik− xk), (2.7)

which is a measure of the correlation between both time series. The sample covariance
is:

Q =
1
N

N

∑
i=1

(xi− x)(xi− x). (2.8)

Another correlation metric is the Pearson’s coefficient ρXY , which is given by:

ρXY =
qxy

σxσy
. (2.9)

Furthermore, the Mahalanobis distance indicates the similarity of a vector y regarding
a base distribution X and is given by [11]:

d =

√︂
(y−X)T Q−1(y−X), (2.10)

where X is the distribution’s mean and Q is the sample covariance. Contrary to the
Euclidean distance (2.27), which only measures the distance between two points, the
Mahalanobis distance considers the correlation among the variables in the computation
through the inverse convariance matrix. If the features are highly correlated, the values
of the covariance matrix are high and the resulting Mahalanobis distance is decreased.
In Fig. 2.3, an example of two sample points that have a similar Euclidean distance r
to the distribution center but different Mahalanobis distance MD is displayed. Through
this example, it can be visualized the effectiveness of this metric as an outlier detection
method.

10
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Figure 2.3: Mahalanobis distance.

Other measures

The peak value xpeak indicates the maximum value reached in a set of points. Moreover,
the peak to peak value is a useful metric to indicate the range of distribution. It is defined
as:

xpeak2peak = max(x)−min(x). (2.11)

Finally, a useful feature for fault detection is the crest factor, which is the ratio of the
peak level of a time series to its RMS value. This metric is used to detect changes in the
signal pattern due to impulsive vibrations sources [79]. The crest factor is computed as :

Crest Factor =
max(x)
RMS

. (2.12)

2.3.2 Signal preprocessing techniques

The preprocessing stage is a fundamental step before any classification or regression
model is trained. Within this section, relevant feature preprocessing techniques for con-
dition monitoring are introduced.

Feature transformation

The feature transformation includes manipulations that are applied to the original fea-
tures. Through feature transformation it is possible to reduce the estimation errors or
accelerate an algorithm prior to the transformation of the features [88]. The transforma-
tions considered within the frameworks that are proposed in this work are: centering,
scale and standardization. To explain these transformations we first define f as a the
vector containing the values of a feature for m samples with a mean over all samples f
and a standard deviation σ f .

Centering: centers the feature around zero, by setting fi = fi− f

11
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Scale: maps the values of the feature to the range [a,b]. It is computed as:

fi = (b−a)
fi− fmin

fmax− fmin
+a, (2.13)

where fmin is the minimum value of the feature vector and fmax the maximum value.
Standardization: transforms f to a vector with zero mean and standard deviation of

one. This metric is also known as Z-score normalization. It is given by:

fi =
fi− f
σ f

. (2.14)

Noise reduction

Noise can be defined as “any unwanted disturbance that interferes with a desired signal”
[16]. Most disturbances that affect sensor signals are caused by radiation from electrical
equipment. The effect of these disturbances can be reduced with the implementation of
a digital filter. For instance, a mean moving average. In sequential tasks, there should
not be any leak of information from the future. Thus, the one sided moving average is
applied. This is given by (2.15), where k is the number of observations used to compute
the mean.

st =
1

k+1

k

∑
j=0

yt− j, f or t = k+1,k+2, ...,n. (2.15)

2.4 Dimensionality reduction
After the feature generation stage, the size of the data array is compressed, but the feature
space can increase considerably. With the presence of a high dimensional space and a
proportionately small number of samples, the learning algorithm tends to overfit, result-
ing on a performance decrease. Dimensionality reduction techniques for classification
and regression problems are introduced in the following sub-sections.

2.4.1 Dimensionality reduction for classification
There are two main dimensionality reduction approaches for classification: feature ex-
traction and feature selection. In feature extraction, the existing feature space is trans-
formed into a new variable set, which can give better insight about the raw data. Then,
only the most relevant features are selected to proceed with the training of the learn-
ing algorithm. One of the most known examples of feature extraction is the Principal
Component Analysis (PCA). Even though the dimensionality is reduced with feature ex-
traction methods, the complete original variable set has to be used to create these type of
features. This means that all the raw variables have to be stored in a memory unit to then
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perform a prediction. However, in an embedded system this might result in an unfeasible
task due to the lack of sufficient storage availability.

In feature selection, a subset of relevant features are chosen following determined
evaluation criteria. This approach normally leads to a better performance, a lower com-
putational cost and a better model interpretability [95]. Within the feature selection ap-
proach, there are three methods: filter feature selection, wrapper feature selection and
embedded feature selection. The filter models do not require the utilization of a clasi-
fication algorithm. Instead, the features are ranked according to certain criteria and a
threshold is defined to choose only those variables that exceed it. Most algorithms in this
family are supervised, since they measure the relevance of a feature by its correlation
with the class label [50]. An example of ranking methods are information gain, mutual
information, mimimum redundancy maximum relevance and joint mutual information.
These methods requiere low computational effort and most of them consider both the
feature relevance and feature redundancy. A drawback of these models is the difficulty
to find a suitable learning algorithm for the selected features, because the classification
model is ignored during the selection procedure. Moreover, there is no ideal method for
choosing the dimension of the feature space [14].

In the wrapper methods, the prediction performance of a given learning algorithm is
used to evaluate a feature subset [25]. If the number of variables is not too large, an
extensive search can be performed. However, the evaluation of all possible subsets re-
quires 2N operations, where N is the amount of features. The search can be accelerated
by using heuristic search algorithms such as evolutionary algorithms. A main drawback
of wrapper methods is the fact that classifiers are prone to overfitting, and thus the se-
lected feature subset might achieve a great accuracy but with a low generalization power.
This can be avoided by using a holdout test set to validate the generalization capability
of the classifier with the selected feature subset. Finally, in the embedded approach, the
features are ranked by importance with methods such as filter models. Afterwards, the
lowest ranked features are sequentially eliminated and each feature subset is evaluated
with a classification algoritm. This reduces the computation time compared to the nor-
mal wrapper method. Another method to perform the feature ranking is by using the
weights of a classifier. In the following section the Support Vector Machine Recursive
Feature Elimination (SVM-RFE) approach, which was proposed by Guyon et al. [26], is
introduced.

Support Vector Machine Recursive Feature Elimination

The SVM-RFE approach performs a recursive elimination of the less relevant features
until the desired performance has been achieved. The feature ranking is computed
through the weight vector of the SVM as in (2.22), where a linear kernel function is
used, such that the weight vector w is equivalent to w = ∑n αn · yn · xn, where α ≰ 0
for samples xn that are support vectors, and yn is the sample class. The resulting weight
vector has a dimension of 1,N, where N is the number of features. The ranking criteria c
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for each feature n is given by cn = w2
n. Afterwards, the variable with the lowest ranking

can be removed and a new feature subset is generated. The process is repeated until a
target accuracy is achieved or after a defined number of iterations have elapsed.

2.4.2 Dimensionality reduction for regression
In the case of regression tasks, it is possible to evaluate the suitability of a variable
as prognostic parameter by using the metrics introduced in [36]. These metrics are:
monotonicity, trendability and prognosability; and are computed as follows:

• Monotonicity outlines the positive or negative trend of the feature. This metric is
useful for systems which do not undergo self-healing during their lifecycle, such
as bearings and gears. The monotonicity is given by:

Monotonicity =
1
M

M

∑
j=1

⃓⃓⃓⃓
⃓
N j−1

∑
k=1

sgn(x j(k+1)− x j(k))
N j−1

⃓⃓⃓⃓
⃓ . (2.16)

where M is the number of systems observed, N is the number of observations per
system.

• Trendability describes the similarity of a feature’s trend among several measured
systems. A feature with higher trendability has trajectories with the same underly-
ing shape. It is obtained as:

Trendability = min
⃓⃓
corr

(︁
x j,xk

)︁⃓⃓
, j,k = 1, ...,M. (2.17)

• Prognosability quantifies the variance on the last values of each system within a
population. It is given by:

Prognosability = exp
(︃
−

σ(x j(N j))

µ|x j(N j)− x j(1)|

)︃
, (2.18)

where x j(N j) is the last value of the measurement. A more prognosable feature
has a lower variability in its end values, which makes the extrapolation of a feature
to a failure more accurate.

The fitness function (2.19) of each prognostic parameter is calculated by the weighted
average of the three metrics. The fitness enables the ranking of the variables. The weight-
ing parameters wm,wt and wp can be selected to give a metric more relevance in the
fitness computation.

f itness =
wm monotonicity+wt trendability+wp prognosability

3
. (2.19)
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Figure 2.4: Example of a feature that is suitable as pronosis parameter and one variable
that is not.

Figure 2.4 displays the examples of a good feature for prognosis and a variable that is
not suitable as a prognostic parameter. The first one has a clear negative trend. Its mono-
tonicity is equal to 0.81, the trendability to 0.99 and the prognosability to 0.96, which
gives a total fitness of 0.92 with all the weighting parameters equal to one. This type
of sensor signals are highly useful in the prediction of failures of a mechanical system.
The second variable is a wave signal, whose behavior does not enable the forecasting of
faults in mechanical elements. Its fitness is equivalent to 0.11, and due to its low ranking
it would be immediately removed in the feature selection procedure.

2.5 Machine learning models for classification and
regression

The traditional machine learning algorithms. which are described in the following sub-
sections, use the information of the relevant preprocessed features to identify a fault type
or to estimate the remaining useful life of a system.

2.5.1 Support Vector Machines

Support Vector Machine (SVM) is a supervised learning algorithm based on computa-
tional learning theory [12]. The key objective of SVMs is to construct a hyperplane H
that separates two classes, so that the margin M is maximum between the hyperplane
and the closest data points of the training set, which are called support vectors. A repre-
sentation of this learning algorithm is depicted in Figure 2.5. The training set consists of
N input vectors x ∈ ℜN with corresponding target values y ∈ {−1,1}. The hyperplane
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that separates the two classes is given as:

H= wT ·φ(x)+b = 0, (2.20)

where φ(x) denotes a fixed feature-space transformation, w ∈ ℜN is a weight vector
and b is the bias. The margin M has a width 2d = 2/||w||. The optimal solution re-
quires to minimize ||w||, which is equivalent to minimizing ||w2||. Therefore the prob-
lem can be transformed into a quadratic programming problem, which can be written
as argminw,b(1/2||w2||) subject to the constraints yi(wT · xi + b) ≥ 1. This optimization
problem is solved using the method of Lagrangian multipliers, hence:

L(w,b,α) =
1
2
||w||2−

N

∑
n=1

αn · yn(wT ·φ(xn)+b)−1, (2.21)

𝐻

𝑑 =
1

𝑤

Support 
Vectors

𝑀 = 2𝑑

Figure 2.5: Representation of SVM.

where α ∈ ℜN are the Lagrange multi-
pliers. By setting the partial derivate of
L(w,b,α) with respect to w equal to zero
the solution for w is obtained as follows:

∂L
∂w

= 0→ w =
N

∑
n=1

αn ·yn ·φ(xn). (2.22)

The weigth vector w depends only on
the observations that are support vectors,
which have nonzero coefficients α . By
substituting (2.22) into (2.20), and φ(x) as
the covariance function k(x) we obtain:

y(x) =
N

∑
n=1

αn · yn · k(x,xn)+b, (2.23)

which gives a prediction for a new set of inputs. Common covariance functions k(x) are
displayed in Table 2.1

2.5.2 Gaussian Process Regression

A Gaussian Process (GP) is a group of random variables, for which any finite subset
has a joint Gaussian distribution. The Gausian Process model has been widely used
in classification and in regression tasks. A Gaussian Process Regression (GPR) model
can make predictions incorporating prior knowledge and provides the uncertainty over
predictions [9, 73]. A GP is defined by the mean function m(x) and the covariance
function k(xn,xm) of a process f (xn), which are equivalent to:
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m(xn) = E [ f (xn)] , (2.24)

k(xn,xm) = E [( f (xn)−m(xn))( f (xm)−m(xm))] , (2.25)

where xn and xm are two random observations. The GP is given by:

f (xn)∼ GP(m(xn),k(xn,xm)). (2.26)

Figure 2.6 depictes an example of a Gaussian Process with its confidence interval

Figure 2.6: Representation of GPR.

Frequently used covariance functions
k(xn,xm) are summarized in Table 2.1,
where σ f is the signal standard deviation,
σl is the length scale, α is a positive-
valued scale-mixture parameter and r is
the Euclidean distance given by:

r =
√︂
(xn− xm)T (xn− xm). (2.27)

The coefficients σ f , σl and α are
known as the hyperparameters of the co-
variance function and can be together de-
noted by θ .

The hyperparameters σ f , σl can be ini-
tialized by:

σl = mean(std(xtrain)),

σ f = std(ytrain)/
√

2.
(2.28)

Table 2.1: Common covariance functions [72].

Covariance function Expression
k(xn,xm)

Polynomial (xn · xm + c)p

Exponential σ2
f · exp

(︂
−r
σl

)︂
Squared exponential or RBF σ2

f · exp
(︂
−r2

2σl

)︂
Matérn 3/2 σ2

f

(︂
1+

√
3r

σl

)︂
exp
(︂√

3r
σl

)︂
Rational quadratic

(︂
1+ r2

2ασ2
l

)︂−α
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The Bayesian linear regression model f (xn) = φ(xn)
T w is a common example of a

Gaussian Process. Opposite to a linear regression model, the Bayesian model does not
assume a linearity of the system and instead determines the posterior distribution for the
model parameters. A Gaussian prior over the weights p(w) ∼ N (0,Σp) is selected, so
that the mean and covariance are:

E [ f (xn)] = φ(xn)
TE [w] = 0, (2.29)

E [ f (xn) f (xm)] = φ(xn)
TE
[︁
wwT ]︁

φ(xm)

= φ(xn)
T

Σpφ(xm).
(2.30)

The joint distribution of the previous observations f and the function values f∗, ac-
cording to the prior is: [︃

f
f∗

]︃
∼N

(︃
0,
[︃

K(X ,X) K(X ,X∗)
K(X∗,X) K(X∗,X∗)

]︃)︃
, (2.31)

where K(X ,X∗) denotes the matrix of the covariances of the previous and new obser-
vations. However, it is usually the case that we do not collect observations of the process
itself but of a noisy version of it, therefore y = f (x)+ ε , where ε is an additive Gaussian
noise N (o,σ2

n ), so that cov(y) = K(X ,X)+σ2
n · I. By introducing the noise term into

(2.31) we get to the joint distribution of the previous observations y and the function
values f∗ at the test location under the prior:[︃

y
f∗

]︃
∼N

(︃
0,
[︃

K(X ,X)+σ2
n · I K(X ,X∗)

K(X∗,X) K(X∗,X∗)

]︃)︃
. (2.32)

The conditional distribution p( f∗|X∗,X , f ) is a multivariate normal distribution with
mean and covariance given by:

m(X∗) = K(X∗,X)[K(X ,X)+σ
2
n · I]−1y, (2.33)

cov(X∗) = K(X∗,X∗)−K(X∗,X)

[K(X ,X)+σ
2
n · I]−1K(X ,X∗).

(2.34)

Equations (2.33) and (2.34) can be rewritten in the following compact notation for a
single new observation x∗:

m(x∗) = kT
∗ (K +σ

2
n · I)−1y, (2.35)

cov(x∗) = k(x∗,x∗)− kT
∗ (K +σ

2
n · I)−1k∗, (2.36)

where K = K(X ,X) and k∗ = k(x∗). The mean function (2.35) can be rewriten as:
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m(x∗) =
n

∑
i=1

αi · k(xi,x∗), (2.37)

where α = (K+σ2
n · I)−1y and xi is a previous observation. A new prediction is given by

weighting every output with the similarity of its associated input to a new observation.
Equation (2.37) depends only on the collected data and the covariance function, whose
parameters are optimized by maximizing the log marginal likelihood given by [73]:

L = log p(y|X ,θ) =
1
2

yT (K +σ
2
n · I)−1y− 1

2
log |K +σ

2
n · I|−

n
2

log2 ·π. (2.38)

The computation complexity in (2.38) is dominated by inverting the K matrix, which
requires O(n3) operations for symmetric matrices, where n is the number of data points.
For large datasets there are approximation methods, which reduce the computation com-
plexity. Some of these approaches are: Subset of Datapoints (SD), Subset of Regres-
sors (SR), Projected Process Approximation (PP) and the Bayesian Committee Machine
(BCM). The computation complexity of each method is reported in Table 2.2. Here, m is
a subset of datapoints from the original database, thus m < n. The selection of the opti-
mal sample subset m can be achieved by greedy approximation. This algorithm together
with the approximation methods introduced in Table 2.2 are explained in detail in [71].
Another approximation method that have demonstrated good efficiency are the Fully
Independent Training Conditional (FITC) approximation and the Partially Independent
Training Conditional (PITC) approximation, which were introduced in [69].

Table 2.2: Approximation methods for GPR with
large datasets [71].

Method Storage Initialization Mean Variance
SD O(m2) O(m3) O(m) O(m2)
SR O(mn) O(m2n) O(m) O(m2)
PP O(mn) O(m2n) O(m) O(m2)

BCM O(mn) O(mn) O(mn)

2.5.3 Artificial Neural Networks

The term “Artificial Neural Network” (ANN) origined from the attempt to find mathe-
matical representations of information processing in biological systems [10]. The most
basic structure of an ANNs is the perceptron, which is composed of only one neuron.
The schema of the perceptron is depicted in Figure 2.7.

Within the neuron, the vector of weighted inputs is summed with an offset value called
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Figure 2.7: Schema of a perceptron.

bias. Mathematically, this process can be described as follows:

s =
N

∑
i=1

wi ·ui +b, (2.39)

where wi refers to the weight i, ui is the i-th input, b is the bias and s is the intermediate
output. Then, the activation function T (s) maps the intermediate output of the neuron s
to the scalar output ŷ as follows:

ŷ = T (s) = T

(︄
N

∑
i=1

wi ·ui +b

)︄
. (2.40)

Commonly used activation functions and their derivatives are listed in Table 2.3.

Table 2.3: Activation functions T (s) [87].

Function T (s) T ′(s)
Hyperbolic 1−e−2s

1e2s 1−T 2(s)tangent

Sigmoid 1
1+e−s T (s)(1−T (s))

Linear c · s c

ReLU

{︄
0, if s≤ 0
s, if s > 0

{︄
0, if s < 0
1, if s > 0

Equation 2.40 can be represented in matrix form as:

ŷ = T
(︁
wT u+b

)︁
, (2.41)

where w = [w1,w2, ...,wN ]
T and u = [u1,u2, ...,uN ].

An extension of the perceptron is the feed-forward neural network. This is constructed
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by stacking more than one neuron into a layer, in which each neuron is connected to
each weighted input. Moreover, if the network has several layers, then the architecture is
known as the multilayer perceptron (MLP), which is a very succesful architecture in the
context of pattern recognition [10]. The output ŷ(l) of the l-th layer is given by:

ŷ(l) = T (l)
(︂

w(l) · y(l−1)+b(l)
)︂

f or l = 1,2, ...,L (2.42)

where b(l) is the bias vector with size m(lx1), ŷ(l−1) is the output of the previous layer
with size n(l). The input of the first layer is the external input vector u, thus y0 = u.
The network’s output is given by the outcome of the last layer ŷ = y(L). Finally, w(l) is
the weight matrix of the l-th layer and has a size m(l)xn(l), where m(l) is the number of
neurons of the l-th layer and n(l) is the number of outputs of the previous layer l−1. The
amount of parameters of each fully connected (FC) layer is given by:

parFC = m ·n+m. (2.43)

The number of multiply-accumulate (MAC) operations of a FC layer are equivalent to:

.MACFC = m ·n (2.44)

Equations (2.41-2.42) are used to describe the forward propagation of the neural net-
work. The discrepancy between the network output and the desired output y, also known
as loss function, is given by e(w) = (y− ŷ(w)). This loss function can take the following
quadratic form:

E(w) =
1
M

M

∑
i=1

(yM− ŷM(w))2 , (2.45)

where M is the number of outputs. This function is known as the mean squared error loss
function, which is used for regression problems.

The training of the network can take place by gradient descent algorithms, which use
the gradient ∇E(w) of the quadratic error E(w) to perform the learning [86]. The back-
propagation algorithm, proposed by [76], is the most known approach to compute this
gradient.

2.6 Deep Learning Models for Regression

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of Neural Networks (NN) that use
convolutions in place of general matrix multiplication in at least one of their layers [22].
CNNs are specialized to process data that has a known grid-like topology, for example
time series and image data [22]. In a traditional NN, all the inputs are connected to all
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the neurons in the input layer, which generates an exponential increase of the number
of parameters when inputs such as 2D images are given. On the other hand, the use
of convolutions reduces drastically the number of total parameters of the network. The
convolution operation is given as:

s(t) = (x∗w)(t) =
a=∞

∑
a=−∞

x(a)w(t−a) (2.46)

where w is the kernel and ∗ represents the convolution operation. In one dimensional
(1D) CNNs, equation (2.42) of a MLP is substituted by:

ŷ(l) = T (l)
(︂

y(l)−1 ∗K(l)+b(l)
)︂

f or l = 1,2, ...,L, (2.47)

where ŷ(l−1) is the output of the previous layer with size {H,W,C}. Here H is the
height, W the width and C the number of channels. In 1D CNNs, the feature map has a
height of 1. Thus, the size of the input map is given by {W,C}. The width refers to the

time steps and C to the number of sensor signals. Moreover, K(l) =
[︂
K(l)

1 ,K(l)
2 , ...,K(l)

k

]︂T
,

where k is the number of filters and each K(l)
i is the i−th 1D kernel for the layer l with

size ks. The bias b is added to the convolution operation of each filter to obtain the prior
output sl . The output of the layer l is given by the activation function T . CNNs usually
use a Rectified Linear Unit (ReLU) [64] activation function, which is given by:

T =

{︄
0, if s≤ 0
s, if s > 0

(2.48)

The size of the resulting feature map is given by:

Wout =
Win− ks +2 ·P

S
+1,

Cout = k,
(2.49)

where S is the stride, which controls how the filter convolves around the input image,
and P is the padding. Figure 2.8 depicts the 1D convolution operation between a feature
map and the filters of a 1D CNN layer.

The number of parameters of a convolutional layer is given by:

parCN = k(ks ·Cin +1). (2.50)

Moreover, the number of MAC operations of a convolutional layer with Win =Wout is
equivalent to:

MACCN = ks ·Cin ·Cout ·W. (2.51)
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Figure 2.8: 1D convolutional layer. © 2020 IEEE [62].

In deep neural networks, the dimensionality reduction of feature maps is performed by
adding a pooling layer. This layer reduces the dimension of the feature map by a factor
given by the pooling stride ps. For example, a pooling layer with ps = 2 reduces each
{2,2} segment of the feature map to only one element. There are two usual methods
to define how the reduced element is obtained. The first one is known as max pooling,
where the maximum value among the segement is chosen. The second one, the average
pooling, outputs the mean value of the elements.

A method to reduce the computational complexity of CNNs is by using depthwise
separable convolutions (DSC) instead of standard convolutions. The DSCs factorize a
standard convolution into a depthwise convolution and a pointwise convolution [32].
The DSC applies a single filter for each channel of the input ferature map. The pointwise
convolution is used to combine the output of the depthwise convolution with a 1x1 con-
volution to generate a new feature map. The MAC operations of a layer with depthwise
separable convolutions is given by [19]:

MACDSCN =W ·C(ks+Cout). (2.52)

2.6.2 Temporal Convolutional Networks

To improve the efficiency of CNNs for sequence modeling, Bai et al. [6] introduced an
architecture belonging to the Temporal Convolutional Network family, and for simplicity
they labeled it with the same name. Their architecture has three main features: the ability
to map an input of any length into an output of the same length, which is performed with
a zero padding, the use of causal covolutions to avoid the leakage of information from
future to past, and the possibility of the network to look very far into the past to perform
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a prediction by using dilated convolutions.

Causal and dilated convolutions

During the deployment of an algorithm for sequential modeling, the outcome should
depend only on the information from the current and previous steps, such that the pre-
diction p(xt+1|x0, ...,xt) has no dependencies on future timesteps xt+1,xt+2, ...,xT , which
is achieved by using causal convolutions. Models with causal convolutions are faster to
train than RNNs, due to the lack of recurrent connections. However, they require a higher
number of layers or a larger kernel size to increase the receptive field [1]. This compli-
cates the use of causal convolutions for sequence tasks that require a long history. On
the other hand, the TCN uses dilated convolutions to exponentially increase the receptive
field with a minor increase in the network size. The dilated convolution F at the step s
of a sequence is defined as:

F(s) = (x∗d f )(s) =
ks−1

∑
i=0

f (i)xs−di, (2.53)

where d is the dilation rate, x is the 1D sequence input, f is a filter with size ks and s−di
accounts for the direction of the past.

The number of elements r that a single filter can visualize at each level of the network
is given by r j = 1+(ks−1)2d j , where d j is the dilation rate at the level j. The dilation
rate is exponentially increased with the depth of the network, such that d = O(2 j) at level
j of the network. Moreover, the total receptive field RF that can be covered by a TCN
with a constant kernel size in all its layers is given by:

RF = 1+(ks−1)
dN

∑
j=0

2 j, (2.54)

where dN is the dilation rate at the top level.

Input

Hidden layer
d = 1

Hidden layer
d = 2

Output
d = 4

Causal convolutions Dilated causal convolutions

Figure 2.9: Visualization of causal and dilated causal convolutions. © 2020 IEEE [62].
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Fig. 2.9 shows the visualization of two networks, one with causal convolutions and
the other with dilated causal convolutions. In both architectures, the filter size is equal
to two. The model with causal convolutions has a receptive field of four. Meanwhile,
when dilated convolutions are introduced, the receptive field is increased to eight without
increasing the number of layers or kernel size.
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Dilated causal
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Dilated causal
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1D
Convolution

+

Figure 2.10: Residual block. © 2020 IEEE
[62].

With an increased number of hidden lay-
ers, a network can face a degradation
problem, where both the training and vali-
dation accuracy get saturated and then de-
grade rapidly [27], contrary to overfitting,
where only the validation accuracy wors-
ens. To cope with this problem, authors in
[28] introduced the residual blocks, where
the output of a series of transformations
F are added to the input x of the block.
The residual block proposed by [6] con-
sists of two layers of dilated causal con-
volutions, whose weights are normalized
with a weight normalization [81] and acti-
vated by a ReLU [64]. Moreover, a spatial
dropout [99] is used after each activation
function for regularization. Finally, the
output of the second convolutional layer is
added with the input of the block, which is
connected to a 1D convolution to ensure
an uniform tensor shape in the addition.
The architecture of the residual block is
depicted in Fig. 2.10.

2.7 Regularization methods
A common problem that is faced when training both machine learming and deep learn-
ing models is overfitting. “A model overfits the training data when it describes features
that arise from noise or variance in the data, rather than the underlying distribution from
which the data were drawn” [108]. Overfitting is directly related to the loss of perfor-
mance for validation and test data, since the model is not able to generalize. Regulariza-
tion methods have the objective to reduce overfitting and thus, increase the generaliza-
tion capability of the model. One common regularization technique is the dropout [94],
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in which the activation of neurons are zeroed with a probability pdrop. This prevents that
the activations become strongly correlated. Furthermore, authors in [99] proposed the
Spatial Dropout, which “drops out” full feature maps instead of single neurons. Batch
normalization [34] is another regularization method, which normalizes by means of the
z-score standardization the set of activations in a layer.

Other regularization methods such as data augmentation improve the models perfor-
mance with unseen samples but also are useful to train learning algorithms with reduced
available data. The objective of data augmentation is to generate new inputs from the
existing training database. Thus, deep learning models can be optimized even with a low
amount of available data. The idea behind data augmentation is that more information
can be extracted from the original database by augmentations [91]. Basic time domain
methods for data agumentation are: window cropping, window warping, flipping, noise
injection [109]. The window cropping or window slicing method randomly extracts con-
tinuous slices from the original time series [17]. Each generated slice mantains its origi-
nal label. In window warping, a segment of the time series is randomly selected and then
compressed or extended [109]. This technique changes the size of the window. Thus, the
windows that are compressed should be generated from feature maps larger than the size
of the inputs to the learning models. On the other hand, if the windows are extended, the
original size should be lower to that of the feature map. In this way, a constant feature
map size can be assured. Flipping is a technique where a new time series is generated by
flipping the sign of the original time series. Finally, noise injection consists on injecting
a vector of random values, usually drawn from a Gaussian distribution [91].

2.8 Optimization methods

In machine learning and deep learning, an optimal model can be obtained by trial and
error. However, this task is very time consuming and could be unfeasible for a high di-
mensional hyperparameter space. To automate this process, optimization methods are
integrated into the search of optimized hyperparameters. Within this section, the opti-
mization methods of Simulated Annealing and Genetic Algorithm are introduced.

2.8.1 Simulated Annealing

Simulated Annealing (SA) is an optimization method, which is based on the metallurgi-
cal process of annealing [98]. Annealing is a heat treatment of material with the objective
of altering its properties such as hardness. The goal of SA is to minimize the value of
the energy (E), which quantifies the performance of a determined system. The first step
of SA is to compute the energy of the system without any modification. Afterwards,
the properties of the system are changed and the new energy (Ei+q) is obtained. Then,
the change in energy (∆E) is calculated by (2.55) and the probability P(∆E) that the

26



2.8 Optimization methods

modified system is accepted is given by (2.56), where T is the temperature.

∆ E = Ei+1−Ei (2.55)

P(∆ E) =

{︄
e−∆E/T for ∆E > 0
1 otherwise

(2.56)

If the modified system has a lower energy, the transition is accepted. Otherwise, a
distributed random number r ε[0,1) is drawn and the step will be accepted only if
r < P(∆E). With high temprature values, the probability P(∆E) is close to 1, leading
to the aceptance of many uphill steps. On the other hand, low temperatures hinder that
the system escapes local regions and generally, only transitions with lower energy values
than the current lowest energy value are accepted. Therefore, at the beginning of the
search, high temperature values are selected to explore diverse solutions. Towards the
end of the search, the temperature drops to values close to zero. The new temperature
value for each accepted transition is given by Ti+1 = Ti ·∆T .

2.8.2 Genetic Algorithm
A genetic algorithm (GA) is an optimization method, which is based on the biological
concept of evolution. The GA has five main steps: initialization, evaluation, selection,
crossover and mutation [44]. Figure 2.11 depictes the representation of how these steps
iterate to achieve an optimal solution.

Parents 
selection

CrossoverMutation

Fitness 
evaluationInitial population 

creation

Figure 2.11: Representation of a GA [44].

First, an initial population is created. This population has a size of {m,n}, where m
is the amount of individuals, which build the initial population, and n is the number of
genes of each individual. The genes are the parameters to be optimized. The initialization
should randomly cover the whole solution space, or be based on expert knowledge [44].
Afterwards, each individual is evaluated by a fitness function. This function should be
established such that lower values represent a better solution. In this way, we assure that
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the search is a minimization problem. Once the fitness of each individual is obtained,
a selection of the so-called parents takes place. There are several methods to select
the parents, such as: truncation, fitness proportionate, tournament, linear ranking and
random selection. These approaches are described in detail in [96].

The crossover is the stage at which the genetic material of two or more solutions is
combined to generate offsprings [44]. This includes two steps, which are the mating of
the parents and the crossover of their genes. Since the number of selected parents is
normally greater than two, it is neccesary to define which individuals mate with each
other. One option is to mate the best parent with the worst one, the second best with
the second worst and repeat this successively until all individuals are mated. Another
method is to perform a random mating of the parents. Afterwards, the genes that are
exchanged between the pairs are defined. One common approach is the single-point
crossover, where both parent genes are split at a randomly determined crossover point
[97]. Then, the first offspring is created with the first part of the genes of the first parent
and the second part of the genes of the second parent. Subsequently, a second offspring
can be generated with the second part of the genes of the first parent and the first part
of the genes of the second parent. Other typical methods to perform crossover are the
two-point and multi-point crossover, as well as the uniform crossover [97]. It is as well
possible to perform a random selection of the crossover genes.

The selected parents and the generated offspring constitute the new population. In
order to analyze more possible solutions, a percentage of the genes is mutated with a
fixed or variable rate known as the mutation rate. The search concludes when a termina-
tion condition has been fulfilled. Possible termination conditions are when a predefined
amount of iterations or a desired fitness value has been reached.
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State-of-the-Art
In the first part of this chapter, well-established intelligent algorithms that enable the
diagnosis of the fault type and the prediction of the system’s remaining useful life are
introduced. In the second part of this chapter, a summary of the criteria that are fulfilled
by the approaches previously described within the chapter is given. This enables the
identification of the gap in the literature, which is filled with the development of the
present work.

3.1 Fault diagnosis approaches
The intelligent fault diagnosis (FD) methods can be separated in traditional machine
learning (ML) and deep learning (DL) techniques.

3.1.1 Traditional machine learning methods for FD
The machine learning methods for fault diagnosis follow a very similar sequence of steps.
This includes the extraction of time-, frequency- or time-frequency-based features; the
selection of the most relevant features and the training of the classification algorithm.
Some approaches focus on diagnose if there is a fault present on the system, while others
focus in the fault isolation.

The SVM has been implemented in several works to diagnose the fault type. In [78],
authors collected data from an experimental setup that tested different bearing condi-
tions. After the feature extraction, the dimensionality reduction was performed with a
decision tree. The selected features were used to train an SVM. Four different covariance
functions were tested and the radial basis function (RBF) delivered the highest accuracy.
In [43], the feature extraction was performed with the wavelet transform (WT). Then, a
SVM was trained with the extracted wavelets, which enabled an accurate fault identifica-
tion. The generalization capability of the SVM can be increased by using a transductive
support vector machine (TSVM). The TSVM uses labeled and unlabeled data during
the training. In [90], authors implemented an TSVM to accurately diagnose gear faults.
SVMs have also demonstrated a good performance in the diagnosis of faults caused by
mechanical elements of electric motor, besides gears and bearings, as described in [51].
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The ANNs have been widely used in fault diagnosis as well. The MLP was imple-
mented in [70] to identify damaged gears and bearings of a gearbox. In [47], a RBF
network served as the classification algorithm, which diagnosed gear faults. Besides ac-
celerometer signals, motor phase currents provided relevant information for the isolation
of a malfunction. In [5], authors used the motor currents to train an ANN to diagnose
faults in an induction motor. Another useful ML model for fault diagnosis is the k-nearest
neighbors (k-NN). Authors in [105], developed an approach based on k-NNs to identify
different gear crack levels under varying operation settings.

Two common aspects of fault diagnosis approaches based on traditional machine
learning models were identified. First, a test bench was built in each work to gener-
ate the data. Most authors used accelerometers and sampled them with high rates, which
enabled the extraction of frequency- and time-frequency-based features. This brings us
to the second common aspect, which indicates that authors of the introduced approaches
trained their models with the extracted wavelets, which demonstrated to be very useful
to identify the fault types. Another works that present methods for fault diagnosis of
rotating machinery with machine learning models are summarized in [55].

3.1.2 Approaches based on deep learning architectures for fault
diagnois

DL architectures have shown a considerable increase on performance compared to tra-
ditional ML models. CNNs are the most commonly used DL model for grouping tasks
such as image classification. They can be easily adapted to classify faults in mechani-
cal elements of rotating machinery. The convolutional layers are able to extract features
directly from raw data. Thus, a previous manual feature engineering is not mandatory.
However, a feature extraction is very helpful when dealing with signals that were col-
lected with very high sampling rates, which is the case of accelerometers signals.

In [24], the continuous wavelet transform (CWT) was computed from accelerometer
and displacement signals. The CWT was used to build feature maps, which were used
to train an architecture with 1D convolutional layers and a FC layer to diagnose among
several fault types in a rotating machine. Authors in [114], computed the Hilbert-Huang
transform from vibration signals. The Hilbert spectrums were used to construct 2D im-
ages that were given as input to an CNN that could diagnose three fault types of ball
bearings. Moreover, Zhang et al. [115] proposed a method named CNN with train-
ing interference (TICNN). This architecture could process raw vibration signals directly
without the need to perform a feature extraction. The framework introduced in [115] is
depicted in Figure 3.1. The multiscale CNN [39], is another approach that can directly
extract features from raw vibration signals. This novel approached enabled the diagnosis
of different fault types that arose in a wind turbine gearbox.

The use of continuous vibration signals make the fault diagnosis a sequential task,
which can be solved by using long short-term memory (LSTM) networks. Proposed by
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Figure 3.1: Framework of TICNN[115].

Hochreiter et al. [31], this type of network is able to cope with the problematic of ex-
ploding and vanishing gradient problems faced by traditional Recurrent Neural Networks
(RNN). In [117], a DL architecture with LSTM layers extracted features from raw sig-
nals to isolate a malfunction within 21 fault types that were generated with a simulation
framework, which reproduced industrial processes. Moreover, authors in [112] proposed
a network with three LSTM layers, which was able to correctly diagnose bearing faults.
In [66], a novel architecture that consists of CNN and LSTM layers was presented. This
model demonstrated a higher performance to diagnose bearing faults than models that
only used CNN or LSTM layers.

DL architectures require a great amount of data to converge. Many authors of the
presented approaches built experimental setups to collect the data or used open source
databases. Moreover, other authors used deep networks previously trained for image
classification and retrained their last layers to perform the FD. This technique is known
as transfer learning. In [13], authors used the pre-trained deep CNN network presented
by Krizhevsky et al. [45], which was used to classify images from the big dataset Im-
ageNet [18]. The network consisted of five convolutional layers and three dense layers
and it was originally created to sort an image out of 1000 different classes. Within the
approach in [13], only the last layer was retrained using the experimental data, which
consists of vibration signals collected from a benchmark gearbox. The raw signals were
resized to grayscale images by using the bicubic interpolation. Similarly, Shao et al. [89]
retrained the deep network VGG-16 [93], which was trained with the ImageNet dataset
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as well, to identify the condition of an electric rotating machine. They used the CWT
to transform accelerometer signals into the time-frequency domain. Then, a channel
augmentation was performed to obtain 2D images with three channels, which served as
input to the CNN network. Transfer learning based approaches demonstrated a very high
performance to diagnose faults of mechanical elements even with a low amount of data
available.

3.2 Remaining useful life estimation techniques
The remaining useful life (RUL) can be defined as the period between the current time
step and the end of the product’s useful life [92]. In the literature, there are two main
methods for health prognosis: the physics model-based approach and data driven tech-
niques. The first method requires a deep knowledge on the component’s physical pro-
cesses. Thus, an analytical model, which describes the behavior of the elements within
the system and their interactions, can be built. This can be a highly complex task for
certain products, such as machinery, aircraft engines or automotive components. There-
fore, around 90% of current works focus their research on the development of data-based
approaches for RUL prediction [48]. These techniques make use of statistical methods
or artificial intelligence approaches. Within this section, we focus on two types of algo-
rithms for RUL estimation: the traditional machine learning approaches and deep learn-
ing architectures. The generation of enough data that enables the creation of reliable
prognosis models is a highly complex task. Thus, algorithms for RUL estimation are
validated mainly with publicly available datasets like C-MAPSS [83] and PRONOSTIA
[65].

3.2.1 Traditional machine learning algorithms for RUL prediction
The approaches that implemented traditional machine learning models had a common
sequence of steps, which included the feature generation, feature selection, preprocess-
ing, health index creation and training of a regression algorithm. First, time-based or
frequency-based variables were extracted from raw signals, depending on the sample
rate, with which the data was collected. Then, dimensionality reduction approaches
were used to select the variables that were more suitable as prognosis parameters. After
the signal preprocessing, some approaches required the computation of a health index
(HI), which assessed the condition of the system within its lifetime. Finally, either the
computed HIs or the selected features were given as the input vector or matrix to the
regression algorithm. It is at the last step, where the proposed approaches mainly differ-
entiated from each other by using different machine learning models.

Feed forward ANNs have been implemented to efficiently forecast the RUL of rotating
systems. In [7], authors proposed an approach to predict the RUL of turbofan engines
by training an ANN with the raw sensor signals and an HI. Moreover, ANNs have also
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been implemented to accurately predict the failure time of ball bearings, which were
monitored with accelerometers with high sampling rates (> 20kHz). Authors in [57]
generated time-based features from raw vibration signals. With these signals a Weibull
hazard rate function was fitted to generate an HI. The time and HIs were used as inputs
to train an ANN, which delivered the percentage of the bearing’s life. Similarly, a hazard
rate function was computed from time based features of accelerometer signals in [107].
The extracted HI served as input to an ANN, which delivered the survival probability of
the test bearing. Furthermore, RNNs are an extension of ANNs that are commonly used
for sequential modeling tasks. In these networks, the predictions of n− steps in the past
are given as input to predict the value of the step k+1. Authors in [29] implemented this
architecture to forecast the RUL of turbofan engines.

SVMs for regression, also known as support vector regression (SVR), have shown a
great accuracy in failure prognosis of mechanical elements of different systems. In [42],
the failure forecasting of aircraft engines was performed with a SVR that was trained
directly with sensor signals, thus avoiding the need to compute an HI. Moreover, au-
thors in [8] proposed an approach to estimate the RUL of rolling bearings with SVR.
This model was trained with HIs that were computed by means of the isometric feature
mapping reduction technique. Finally, Saidi et al. [77] developed a methodology to
predict the time to failure (TTF) of rolling bearings of wind turbines. The novelty of
the approach is that the generated time-based features were not directly used as input to
the model, but the spectral kurtosis of each feature were used to train the SVR, which
demonstrated an increase on performance of the model. Another kernel method that has
been implemented for failure forecasting is the Gaussian process for regression (GPR)
model. In [13], authors developed a method to predict the TTF of wind turbine bearings.
First, they computed the WT from raw sensor signals. Then, the interval whitenization
method was implemented to reduce the noise in the wavelets, which was caused by the
non-stationary operation conditions of the evaluated system. Finally, the GPR model
constructed the relation between the wavelets and the RUL.

Figure 3.2: Anomaly detection and fault prognosis approach. © 2016 IEEE [40].
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The aforementioned approaches covered only the failure forecasting. However, none
of them described a method to determine a threshold value that indicated the arise of an
anomaly. Contrary to these approaches, authors in [40], proposed a methodology that
covered both the fault identification as well as the failure prognosis. Their approach is
depicted in Figure 3.2. The fault detection was performed by computing an HI with the
Mahalanobis distance. Then, the Box-Cox transformation was implemented to normalize
the data and be able to obtain the anomaly threshold. The limit values were returned to
the original distribution with the inverse Bos-Cox transformation. Once an anomaly was
detected the RUL estimation took place by means of an extended Kalman filter.

3.2.2 Deep learning architectures for FP
DL architectures are composed of several layers with hundreds, thousands or even mil-
lions of parameters, which enables an automatic identification of degradation patterns
directly from the raw data. Thus, several of the previously described steps neccesary for
the deployment of a ML model for RUL estimation can be dismissed with the use of DL
architectures. Only the data normalization remains as an essential step prior to the train-
ing of the deep learning models. For instance, LSTMs have been widely used for RUL
estimation. In [110, 113, 118], LSTM layers were included into deep architectures to
predict the RUL of turbofan engines achieving a greater accuracy than models that make
use of RNNs [29]. Their architectures are very similar, and the only distintion between
these methods is the number of LSTM cells that are used in each layer of the architec-
ture. The best performance within these models was obtained by authors in [118]. Their
architecture consisted of 4 hidden layers with 32 nodes in the first two layers and 8 nodes
in the last two.

Figure 3.3: BiLSTM architecture for RUL estimation. © 2018 IEEE [106].

In [106], authors built a deep architecture with two BiLSTM layers and two fully
connected layers to predict the RUL of aircraft engines. In Figure 3.3, this BiLSTM ar-
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chitecture is displayed. Huang et al. [33] extended this BiLSTM architecture by adding
a third BiLSTM layer. The input of this additional layer was the output of the second
BiLSTM and the operating conditions. This layer was then connected to a FC layer,
which delivered the estimated RUL of turbofan engines. This architecture improved the
performance of the approach described in [106] by almost 10% in the most complex sub-
set of the C-MAPPS [83] database. Moreover, authors in [116] proposed an architecture
for RUL estimation of turbofan engines based on LSTMs and named it as LSTM-Fusion
Network. This network first passed the sensor signals with variable window size through
a series of LSTM sub-networks, which were independent from each other. Each sub-
network consisted of two LSTM layers. Afterwards, the outputs of the sub-networks
were concatenated in the LSTM-Fusion layers. Finally, the fusion layers were connected
to a dense layer that provided the estimated RUL. This architecture demonstrated a great
performance in the C-MAPPS dataset.

Authors in [4] proposed a semi-supervised architecture based on LSTMs to estimate
the TTF of aircraft engines. First, an unsupervised pre-training stage with a restricted
Bolzmann machine took place. This helped to extract degradation related features from
raw unlabeled data. The extracted features were used as input to a network with two
LSTM layers and a fully connected layer. The hyperparameters of the network were
optimized with a genetic algorithm.

One problematic that arises in the embedded deployment of LSTMs is their high com-
putational complexity, which for a single LSTM layer is given by:

MACLST M = 4(n ·m+n2 +n) ·W, (3.1)

where m is the input size or channel number, n is the size of the output of the LSTM layer,
which is equivalent to the number of hidden units, and W is the width of the feature
map. Moreover, the number of parameters of an LSTM layer is equal to CLST M/W .
From these equations, we can identify that the number of hidden units has the greatest
influence in the size and computational complexity of an LSTM layer. Furthermore, the
computational complexity of a BiLSTM layer is given by: MACBiLST M = 2 ·MACLST M.

CNNs, widely used for image classification, can perform predictions with continuous
data by substituting the 2D and 3D convolutional layers (CL) with 1-D CLs. Authors in
[82, 52] proposed a 1D CNN architecture with two and four CLs respectively to estimate
the RUL of aircraft engines. Due to the low amount of samples for each turbine, a prior
feature extraction was not required. On the other hand, when the condition of a system
was monitored with sensors with high sampling frequencies, a feature extraction stage
was performed by most authors. Zhu et al. [120] computed the WT of accelerometer
signals and used these variables to train a multiscale CNN to estimate the TTF of rolling
bearings. Their proposed approach and the multiscale CNN are depicted in Figure 3.4.
Authors in [74] computed the frequency spectrum of raw accelerometer signals with the
discrete Fourier transformation and constructed from this spectrum the feature maps,
which were used to train a deep CNN for RUL estimation of bearings.
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Figure 3.4: Multiscale Convolutional Neural Network. © 2019 IEEE [120].

In [104], authors proposed the use of DSCs in their deep architecture for RUL estima-
tion instead of standard convolutions. They implemented the DSCs within the residual
blocks that constituted their network. The residual block also had a so-called squeeze
and excitation unit after the DSCs. The functionality of this unit was to highlight infor-
mative feature maps and supress useless ones. The novelty of their deep architecture was
that it could process signals that were sampled with high frequencies without the need
of a manual feature extraction. Moreover, the use of DSCs reduced the computation
complexity. The deep architecture proposed in [104] is depicted in Figure 3.5.

Figure 3.5: Depthwise Separable Convolutional Network for RUL estimation [104].

The receptive field (RF) of a CNN, which is the region that a convolutional feature
covers, can be exponentially increased with only a linear increment of the parameter
number by using dilated convolutions. In machinery health prognosis, the increase of
the RF allows the network to gain more knowledge about the machine condition in the
past with a minor increase in the network’s size. Dilated convolutions can increase the
performance of a prognostics model based on normal CNNs as shown in [111]. In [54],
authors presented a method to forecast the RUL of rolling bearings based on TCNs,
achieving a better perfromance than LSTM models with a lighter network that required
much less training time than such approaches. Moreover, Zhou et al. [119] demonstrated
the functionality of TCNs for the RUL estimation of Lithium-Ion batteries. Finally, an
architecture with TCN and LSTM layers was proposed in [38] to estimate the RUL of
aircraft engines.
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3.3 Fulfilled criteria by existing state-of-the-art
approaches

Table 3.1 presents 16 related approaches for condition monitoring. The first seven meth-
ods are based on traditional machine learning models. The last nine methods use a deep
learning architecture for the classification or regression task. Each column of the table
represents a requirement of the comprehensive methodology. If an approach fulfills a
criterion, the cell is highlighted in green.

Regarding the performance, both ML and DL models have demonstrated high accu-
racy for fault diagnosis. As for the failure prognosis, only the DL architectures were
able to make an accurate forecasting of the system’s RUL. Moreover, to the best of the
author’s knowledge, there is no approach that considers both the fault diagnosis and
prognosis tasks, either with a ML or a DL model. The suitability for an on-board imple-
mentation is the second requirement. All ML approaches consisted of a low amount of
parameters. Moreover, the computations that they required to make a prediction given
a new input was very low. These two characteristics make ML models well suited for
an on-board fault diagnosis. On the other hand, the very high performance that DL ar-
chitectures demonstrated in the solution of both FD and FP tasks came with the cost
of models with hundred of thousands of parameters and a higher computational com-
plexity. Therefore, the deployment of such DL models would not be feasible in most
embedded systems for electric drives, which make current DL approaches unsuitable for
an on-board condition monitoring.

In general, ML models for fault diagnosis showed a low flexibility because they re-
quired the extraction of frequency and/or time-frequency features like wavelets, which
demanded a sound knowledge about the topology of the monitored machine. On the
other hand, DL architectures perform an automated feature extraction, which does not
require specialized knowledge about the physics of the system, and therefore the adap-
tation of such a method for a new device would require less effort. The DL approaches
indicated with a medium flexibility were tested with only one system. Thus, their flexi-
bility was not completely proven. Only in [104], the flexibility of the proposed approach
was validated through two databases. Transfer learning approaches also showed a high
flexibility, because an existing network could be adapted to solve a new task without
requiring a great amount of data. Moreover, only in [40] a method to label data for
the failure prognosis task was proposed. Finally, the introduced approaches for fault
diagnosis required CM dedicated hardware such as accelerometers and data acquisition
systems, whose implementation in mass-produced mobile systems is not feasible.

The last column of Table 3.1 presents the ranking of each approach. This was ob-
tained by adding the number of requirements that they fulfill. Machine learning models
are closer to the objective ranking, since they are giving accurate predictions with com-
pact models. Nevertheless, the approach that has the highest score is a deep learning
architecture that makes use of depthwise separable convolutions [104]. Thereby, the
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computational complexity is reduced while a high performance is kept. Moreover, the
flexibility of this model was proven with two datasets. On the other hand, this approach
does not cover the FD, nor a method to label data for the FP task is given. Moreover,
the resulting model size might not be compact enough to deploy it in an embedded sys-
tem with low computational resources available. A quantitative comparison between the
approaches from the literature and the approach for failure prognosis proposed in this
thesis is given in Chapter 6

The following chapter introduces the comprehensive methodology for on-board CM.
This approach includes a machine learning model to solve the fault diagnosis task, since
ML models have already demonstrated a high accuracy with a low computational com-
plexity for this specific task. On the other hand, the methodology explores two solutions
for failure prognosis. First, the performance of a traditional ML method for failure for-
casting is improved. Second, generate a DL architecture that is more compact than other
existing approaches, while maintaining a high accuracy of the fault prognosis task. Be-
sides the intelligent algorithms for CM, the methodology covers the strategy to collect
the data, the signal preprocessing and dimensionality reduction, the data labeling, and
the optimization of the algorithms to enable their implementation in embedded systems
for electric drives.
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3.3
Fulfilled

criteria
by

existing
state-of-the-artapproaches

Table 3.1: Criteria fulfilled by existing cutting-edge CM algorithms.

Model performance Embedded implementation Flexibility Application

Approach Accuracy
Model Computational

Flexibility
Data CM

Task size Complexity labeling dedicated Ranking
for FP Hardware

M
L

SVM[78] High Diagnosis Compact Very low Low No Yes 3
TSVM[90] High Diagnosis Compact Very low Low No Yes 3
MLP[70] High Diagnosis Compact Low Low No Yes 3

k-NN [105] High Diagnosis Compact Very low Low No Yes 3
SVR[42] Medium Prognosis Compact Very low Low No No 3
MLP[7] Medium Prognosis Compact Low Low No No 3

Kalman filter[40] Medium Prognosis Compact Very low Low Yes Yes 3

D
L

CNN [114] High Diagnosis Big High Medium No Yes 1
LSTM[112] very high Diagnosis Very big Very high Medium No Yes 1

CNN-LSTM[66] Very high Diagnosis Very big Very high Medium No Yes 1
CNN-TL[89] Very high Diagnosis Very big Very high High No Yes 2

Bi-LSTM[106] Very high Prognosis Very big Very high Medium No No 1
Deep LSTM[116] Very high Prognosis Very big Very high Medium No No 2
RBM-LSTM[4] Very high Prognosis Very big Very high Medium No No 2

CNN[120] Very high Prognosis Big High Medium No No 2
DSCN[104] Very high Prognosis Medium Low High No No 4

Requirements High Both Compact Low High Yes No 7
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Chapter 4

Comprehensive Methodology for
On-board Condition Monitoring

The proposed methodology for on-board monitoring of electric drives is depicted in Fig-
ure 4.1. The on-board implementation enables the monitoring of the system condition
directly in a computer unit of the system. The main element of this method is the fore-
casting of the remaining useful life (RUL) of electric drives. This approach focuses on
predicting failures of mechanical elements caused mainly by fatigue. Such failures have
a progressive occurrence, which enables its forecasting. Two different architectures are
proposed for the RUL estimation, the first one is a traditional machine learning model
known as Gaussian Process for Regression. The second architecture is a novel deep
learning model introduced in this work, namely the Multipath Temporal Convolutional
Network. The use case for both models as well as the advantages and disadvantages, are
described at the end of this chapter. The fault diagnosis is an additional feature to the
method and it is not necessary to estimate the RUL, since the regresion models should
be robust enough to forecast the failure independently of the damaged element. A data
labeling step is required in case that the training data is unlabeled, which means that
the end of useful life is unknown. Within this chapter, every element of the proposed
methodology is explained in detail.

4.1 Preparation for the implementation

In the preparation phase, the strategy for data collection is defined. This strategy com-
prises the definition of the development stage where the data is generated, as well as
the possible sources for the dataset construction. This is only a guideline and should be
followed if there are no databases available for a specific task. Moreover, at this step,
the structure of the dataset is defined. If a database is already available, then only a data
cleansing procedure is neccesary to adapt the dataset to the required structure.
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Data preparation

Condition Monitoring

Data collection
strategy (4.1.1)

Data
structure (4.1.2)

Feature
Generation (4.2)

Preprocessing
Techniques (4.3)

Dimensionality
Reduction (4.4)

Data
Labeling (4.5)

- Determination of end of
useful life
- Construction of the target
function

Failure
Prognosis

- Gaussian Process
Regresion (4.6)
- Multipath Temporal
Convolutional Networks (4.7)

Fault
Diagnosis (4.8)

- Support Vector Machine

Towards On-Board
Implementation

(4.9)

Figure 4.1: Components of the methodology for fault diagnosis and failure prognosis of
electric drives.
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4.1 Preparation for the implementation

4.1.1 Data collection strategy
The proposed data collection strategy for each of the main product life cycle stages is the
following:

• Conceptualization: the analytical models can be used to simulate faults that have
a high risk, which means that the combination of the fault severity and frequency
of ocurrence is high.

• Concept validation: the next step in the design phase is the concept validation
through the construction of prototypes. The prototypes go through diverse valida-
tion tests such as endurance tests. An advantage given by collecting the data in
this stage is that the tested samples suffer many changes before the final design is
released for production. Therefore, models trained with this data are more robust
to small changes that the electric drives might suffer during the manufacturing pro-
cesses. The collected data should come directly from the internal sensors of the
electric drive, since this the only information that is available during the normal
operation of the drives. After the concept has been validated, the production start-
up takes place. During the ramp-up phase, validation tests take place to assure the
quality of the production process. The data gathered in such tests can be used to
retrain the learning models.

• Market introduction: the data collected from the systems operated by the end users
can serve to refine the algorithms and improve their performance and generaliza-
tion capability.

Since the creation of accurate analytical models for data generation is a highly com-
plex task, this work focuses only on the data collection within the last two development
stages.

4.1.2 Data structure
In a real case scenario, the data does not have the structure required for the development
of condition monitoring models. Some common issues with databases are the presence of
non numeric values, constant signals, missing values or duplicated variables. Moreover,
if the data is gathered from a simulation or a test bench, it is possible that more signals
are present that those available during the real operation of the electric drive or that some
signals are not present in all tests. Considering these issues, it is required to perform
a data cleansing procedure such that the variables with the above-mentioned issues are
removed. The resulting database should follow the structure of Table 4.1. The description
of each element of the required data structure is given hereunder.

• ID: a string or numeric value that is used to identify the system, to which the signal
values belong.
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Table 4.1: Data structure required for the methodology implementation.

ID Running Time Fault Type Sensor Signals
String / Numeric Numeric Categorical / String Numeric

• Running Time: a numeric value that indicates the hours or cycles that the the system
has been running prior to the execution of the current measurement.

• Fault Type: this is an optional value that should be fulfilled if it is neccesary to
perform the fault isolation stage of the methodology. It is clear that during the test,
the fault type will not be known and only once the test has concluded the drive can
be examined to determine the faulty element. Afterwards, this information can be
filled into the data array.

• Sensor Signals: this is an array with dimension of {M,N}, where M is the num-
ber of samples captured within the measurement and N is the number of sensors
monitoring the system. Only those sensor signals that are available during the on-
board monitoring and present within all tests should be stored, so that the learning
model can extract information that enables the failure forecasting under the normal
operation of the electric drive.

Each sample collected according to the data structure presented in Table 4.1 represents
a measurement performed at the cycle j. The duration of the measurement and the time
span between two measurements can be determined in two ways. In the first option, a
measurement with the maximum possible sample frequency takes place each it minutes.
Around 5 and 15 minutes are adequate for electric drives. Although the system’s condi-
tion does not show major changes within such a short time span when the drive has no
anomaly, once the degradation of an element begins, the condition worsens with an ex-
ponential rate. Thus, there might be a considerable change between the sensor values of
two measurements performed within intervals larger than fifteen minutes. A second op-
tion is to continously monitor the system within the test with a low sampling frequency.
For example, to collect only one sample each second.

4.2 Feature generation
Once the raw data is correctly structured, it is transformed into time- or frequency-based
features. Normally, this step is neccesary when traditional machine learning models are
used, due to their inability to perform an automatic feature extraction. Nevertheless,
this process is not essential for a deep learning model, such as CNNs, which are able to
automatically extract features from raw data. In this case, the feature generation process
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would enable a smaller model size, since the feature engineering would not be completely
performed by the deep learning model. The result is a compact model that can be easily
ported into an embedded system. Moreover, the reduction of the number of parameters
can also help to avoid problems such as overfitting during the training of the model.

The features described in Section 2.3.1 are generated from the raw signals. This re-
quires to select the length wl of the array from which the features are extracted. This
value is chosen depending on how the data is recorded. If the data is collected with high
sampling frequencies each i minutes, the value of wl should be selected equivalent to
the length of the sampled array. On the other hand, if only one sample of each sensor is
captured each j seconds, wl is selected such that the information gathered within several
minutes is considered for the feature computation. Figure 4.2a depicts an example of an
accelerometer signal that belongs to the IMS bearing dataset [46]. Each bearing in the
database is monitored using an accelerometer with a sampling rate of 20kHz. Due to the
high sampling frequency, it is possible to extract both time- and frequency-based fea-
tures. Figure 4.2b depicts two extracted features from the raw signal. It is observed that
raw signals provided almost no insight about the change of condition of the bearing with
the time. On the other hand, the generated features have a noticeable variation in their
amplitudes with the development of the test. Moreover, since the variables are extracted
from each measurement, the data array is greatly reduced from almost 44 million sam-
ples to only 2156. Nevertheless, due to the increase of the feature space, a dimensionality
reduction step is neccesary. This stage is described in detail in Section 4.4.

(a) Raw accelerometer signal.
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(b) Features extracted from the raw accelerome-
ter signal.

Figure 4.2: Feature generation from a raw signal.

4.3 Signal Preprocessing

Signal preprocessing is an important process prior to the construction and training of any
learning model. The preprocessing techniques introduced in this section can be applied
to the raw signals or to the extracted features. Through these techniques it is possible to
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match the ranges of two variables that have very different amplitudes or reduce the noise
affecting a signal, among other improvements.

Lets now consider the two extracted features from one of the accelerometers belonging
to the IMS bearing dataset. These features are depicted in Figure 4.2b. We can identify
that the vaues of the second feature are in a range that is one hundred times smaller than
the range of the first variable. If a learning algorithm is trained with these variables with-
out any further processing, then the performance of the model will be influenced only by
the second feature and the first variable would be considered as a constant value close to
zero. Two techniques to adapt the signals are scaling with the unit range transformation
(2.13) and the z-score normalization (2.14). The advantage of the z-score transformation
is that not only the amplitude of the signals are adjusted to similar ranges, but also to
similar distributions. Figure 4.3a depicts an example of the functionality of the z-score.
On the other hand, the unit range conversion only adjusts the values of the signals to the
range between zero and one, as seen in Figure 4.3b.
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(a) Features standardized with the
z-score normalization.
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(b) Features scaled with the unit
range transformation.

Figure 4.3: Data transformation.

The Z-score normalization considers all data points in the computation of the mean
and standard deviation of each signal. Nevertheless, the samples collected within the first
cycles of a device and mainly within the cycles close to the failure occurrence deviate
greatly from the data points gathered in the healthy state of the electric drive. Moreover,
the sensor values within the healthy state might also have considerable deviations among
different systems in the database. Thus, the normalization is performed independently
for each electric drive and only a reference range of each system is considered for the
computation of the Z-score parameters. For this purpose, equation (2.14) is adapted as
follows:

fi =
fi−Xre f

σXre f

, (4.1)

where Xre f is the mean of the reference range of each electric drive and σXre f is the stan-
dard deviation of the reference range. The reference range comprises a set of data points
at the beginning of the lifecycle of the system. This can be as low as 5% of the total life
of the electric drive. The most important fact is where the reference range should start,
due to adjustment that some elements might suffer during the first cycles of operation.
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For instance, sometimes the grease of the gearbox is not correctly distributed among all
the mechanical elements. Thus, the mechanism might have an inusual behavior during
the first cycles, which could resemble a faulty condition. The healthy state of the drive
would start when all the components are correctly lubricated. Therefore, it is recom-
mended to start the reference range after around 5 to 10% of the expected system life
time. This normalization approach can also be used to normalize the signals for a clas-
sification task. For this purpose, the reference range r comprises the data collected from
the electric drives without anomalies.

Moreover, the sensors not only capture the values that are related to a physical change
of the monitored system but also external disturbances that change the original form of
the signal. In order to reduce the effect of these disturbances on the signals, a noise
reduction step is performed with a one-side moving average filter (2.15). This filter
requires only the selection of a window, which refers to the number of samples that are
used to compute the mean. If the window is too large, relevant information of the signal
could be lost. Moreover, having a signal with a certain amount of noise, improves the
robustness of the models. Therefore, it is suggested to use this smoothing filter with a
narrow window.

4.4 Dimensionality Reduction

After the feature generation stage, the dimensionality is increased, which could cause
complications such as overfitting. Furthermore, it is intended to implement the algo-
rithms in an embedded system with restricted memory and computing power. Therefore,
only the relevant features should be computed online and stored in the memory unit.
However, should there be enough computation resources available and a DL architec-
ture is selected, then the dimensionality reduction can be skipped. Two techniques are
explored for the dimensionality reduction. The first one is used in classification tasks,
where only the identification of the fault type is required. This is the support vector
machine recursive feature elimination (SVM-RFE), which is accelerated by using the
optimization method of simulated annealing. The second reduction approach focuses on
the selection of prognostic parameters that are useful to perform a forecast of the sys-
tem’s time to failure (TTF). The selected features can also be used to train the classifiers
for the fault diagnosis. Moreover, this feature selection method is also useful if the data
is unlabeled. This approach requires that the database contains tests where the drive’s
condition degrades gradually.

4.4.1 SVM-RFE with Simulated Annealing Optimization

The SVM-RFE is a wrapper feature selection method that uses the weights computed
within the training of an SVM classifier. This approach is described in Section 2.4.1.
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Figure 4.4: SVM-RFE optimized with SA.

Wrapper selection approaches have the
advantage that the selected feature subspace
maintains the performance of the learning
model with less variables or, in most cases,
increases the accuracy of the algorithm. Al-
though the ranking of the features spares
plenty of search time, high dimensional
spaces can still require an extensive search
to find the optimal variables. Therefore, the
use of simulated annealing (SA) is proposed
to accelerate the search for high dimen-
sional problems. The SA approach is intro-
duced in Section 2.8.1. Moreover, we intro-
duced the SVM-RFE with SA optimization
method in [101]. In this approach, the en-
ergy (E) is equivalent to the classifier’s cross
validation loss, which is the target metric to
be minimized.. Moreover, the feature space
size can be considered for the computation
of the energy, so that for similar accuracy
values, the sub-set with less features is pre-
ferred. The energy is then given by:

Ei = lossi +β ni/nS (4.2)

where nS is the initial number of variables,
ni is the feature subset size of the step i and
β is a value that determines the importance
of the size of the feature set in the energy

calculation. For example, if it is desired that with the maximum number of features the
accuracy suffers a degradation of 20%, then β = 0.2. The more important it is to have
a final feature subset with less variables, the higher β should be. Besides, it is highly
probable that some of the variables are highly correlated, because they are extracted from
the same raw signals. The correlation among the variables is given by equation (2.9). In
this approach, values with a correlation coefficient larger of ±0.9 indicate a very strong
correlation. It is neccesary to remove the correlated variables once the features have been
ranked, in order to have the knowledge about the relevance of each feature, and the less
relevant parameters can be removed.

The main advantage of optimizing the SVM-RFE approach with SA is that the search
for the optimized parameters can be decreased. This enables time savings when trying
to select the variables of a system with a very high dimensionality or when the selection
process needs to be repeated several times. For example, when the optimal feature sub-
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sets for several classes are searched. Another advantage is that the feature space size can
also be considered in the energy calculation, in order to search for a solution with the
less features even at the expense of some performance degradation. Figure 4.4 depicts
the SVM-RFE approach optimized by SA for feature selection in classification tasks.
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Figure 4.5: Example of SVM-RFE algo-
rithm with SA optimization.

To demonstrate the procedure’s suit-
ability to reduce high dimensional spaces,
we use the Parkison’s Disease (PD) Clas-
sification Data Set [80]. This dataset con-
sists of 756 instances and 754 attributes.
The finalization condition is set to be 50 it-
erations. During the deployment, 37 tran-
sitions are accepted. The last accepted
transition is also the optimal solution. In
Figure 4.5, the score, loss and number of
features of each one of the 37 accepted
transitions are shown. A seen in this chart,
the accuracy is increased by simultane-
ously decreasing the feature space size to
36. Obtaining an optimized feature sub-
set with a normal wrapper method would
have required 3.79e227 iterations. The
SVM-RFE method greatly reduces the number of models that have to be evaluated to
only 756. Moreover, the proposed approach requires the evaluation of only 6.6% of the
models needed by the SVM-RFE approach, to find a feature subset, which satisfies our
requirements of performance and size.

4.4.2 Selection of prognostic parameters

To search an optimized feature subset for the failure forecasting task, the variables are
ranked by computing the fitness function 2.19, which depends on the three metrics that
quantify the suitability of a feature as a prognosis parameter. These metrics are described
in Section 2.4.2. The weighting parameters wm,wt and wp of the fitness function 2.19
are selected such that the metrics are scaled in the range [0,1]. An advantage of this
procedure is that it is not required that the data is labeled, i.e. that the end of useful life
is known. In this instance, the feature selection takes place following the steps described
in Algorithm 1.

The factor Ps indicates that the signals with a fitness within Ps percent of the cumula-
tive sum, are selected. A value of Ps = 0.75 is proposed as an initial value if the data is
not labeled. Otherwise, the value of Ps can be obtained empirically.

49



Chapter 4 Comprehensive Methodology for On-board Condition Monitoring

Algorithm 1: Feature selection for a regression task.
Input: Fs: Initial feature space
Input: N: Number of features of original feature space
Output: Fopt : Optimal feature subset

1 Initialization
2 for i← 0 to N do
3 mi← monotonicity(Fi) (2.16)
4 ti← trendability(Fi) (2.17)
5 pi← prognosability(Fi) (2.18)
6 end
7 f itness← 1/3(wm m+wt t +wp p)
8 c← f itness/∑ f itness

9 cs← sort(c)
10 cS← cumSum(cs)
11 ind← getIndex(cS < Ps)
12 Fopt ← Fs[ind]

4.5 Data labeling
Some databases consist only of time to failure experiments, where the system’s end of
life can be directly inferred as the last measurement before the experiment conclusion.
However, there are other databases, which not only have run to failure experiments, but
also other tests, where the condition of the system degrades but does not reach the failure
occurrence, or where the systems are still healthy. In these situations, the last measure-
ment prior to the conclusion of the experiment cannot be considered as the system’s end
of life. The data labeling stage is required in this instance. This stage consists of the
construction of a health index and the definition of a threshold that indicates the end of
useful life of the system. The useful life can be described as the phase in which the
systems operate without any major anomaly that could affect their performance over tol-
erated limits. After obtaining the end of useful life of a system, it is possible to generate
the target function that is needed to train the supervised regression models. The last part
of this section introduces a method to deal with data inbalance for prognosis tasks.

4.5.1 Health condition determination with the Mahalanobis distance
After the feature selection stage, the resulting multi-dimensional feature space Fopt is
transformed into a one dimensional metric, known as health index (HI), which quantifies
the magnitude of a fault. By computing an HI, only one threshold that indicates the
end of useful life has to be determined, instead of computing limits for every signal that
comprises Fopt . The MD (2.10) is selected as the HI within this methodology.

The reference distribution selected for the Mahalanobis distance computation needs to
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be robust, which means that it should be less sensitive to the presence of outliers [11].
The robustness can be assumed if the database is big enough. Within this approach, it is
inferred that several degradation curves are available and thus, the robustness is given.
Only a subset of the original dataset is considered to be part of the reference distribution.
The selected subset consists of the data collected during kre f cycles after the system has
elapsed kinit cycles. This first kinit steps are not included in the reference distribution
because, at this time, premature failures can occur. The value of kinit is selected as
5− 10% of the expected lifetime of the system. From Section 2.2 we know that after
the infant mortality phase has been overcome, the mechanical systems operate without
any major anomalies during long periods. This can be considered as the healthy state.
Afterwards, an exponential degradation of the mechanical elements take place. It can
be assumed that all the systems operate with a healthy state at least until some hours or
cycles prior to the failure of the device that achieved the shortest duration in the validation
test. Therefore, the value of kre f is given by kre f = min(FailureTime)/2. Consequently,
the reference distribution Tre f is defined as Tre f = Fopt(kinit : kre f ), and the Mahalanobis
distance (MD) is computed with (2.10).

Since the condition degrades with an exponential rate when an element is damaged,
the Mahalanobis distance raises exponentially as well. Therefore, the health index is
given by a log transformation of the MD, as follows:

HI = log(MD). (4.3)

To ilustrate the suitability of the Mahalanobis distance to monitor the condition of a
system, we use the IMS bearing dataset [46]. The features, which were introduced in
Section 2.3.1, were extracted from the raw vibration signals. The original feature subset
size was 31. After calculating the fitness for prognosis (2.19) of each variable, only the
five most relevant variables were selected, because they constituted 77% of the cummu-
lative sum. The chosen features were used for the Mahalanobis distance computation,
in which the base reference was the data collected within the cycles 30-100 of the three
experiments. Figure 4.6 displays the HIs of the three tested bearings. The horizontal axis
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Figure 4.6: HI of exemplary bearings.
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represents the time to failure. The last value of each test has a TTF of zero and the first
measurements have h hours to reach the end of life. As seen in Fig. 4.6a, the HIs of the
bearings have similar amplitudes during the healthy state. They also show similar expo-
nential degradation towards the failure occurrence, as seen in Fig. 4.6b. Through this
analysis, it is proven how the Mahalanobis distance can be succesfully used to quantify
the magnitude of a fault.

4.5.2 Threshold Definition

A common method to determine a fault limit for the detection of malfunctions during
the normal life of a mechanical system is the empirical rule [67], where a threshold T is
given by:

T = m(x)±ξ σ(x), (4.4)

Figure 4.7: Probability plot of tested bearings.

where ξ determines the amount
of standard deviations considered
for the computation of T . Usu-
ally, the empirical rule is used for
Gaussian distributed data. The
distribution of the HIs differs
from a normal shape. Neverthe-
less, due to the logarithmic trans-
formation, the HIs have a lognor-
mal distribution, as seen in Fig-
ure 4.7. This type of distribution
is common in reliability systems
with positive values only. The
log-normal distribution indicates
that the logarithmic of a random variable is normally distributed. Therefore, equation
(4.4) is suitable for the definition of the thresholds that indicate the start of degradation
limdeg and the end of useful life of a system limEOL. Both limits are given by:

limdeg = µ(x)+σ(x),
limEOL = µ(x)+3σ(x).

(4.5)

For the computation of the thresholds 4.5, the complete dataset is used and not only the
reference distribution Tre f . Otherwise, the limits would be set too low, and the end of
useful life would take place even before the system is slightly damaged.

Figure 4.8 depicts the degradation curve of one of the bearings from the evaluated
dataset. The degradation start might have been detected late, because the HI of one of
the bearings considered for the computation of the limits has in average higher values
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Figure 4.8: HI with selected limits for a tested bearing.

than the other two elements. Therefore, the limits are shifted to a higher amplitude.
Nevertheless, the most relevant information is the time at which the end of useful life has
been reached. In this example, the end of useful life is reached around 5 hours prior to
the failure occurrence.

4.5.3 Target function for RUL estimation

The determination of the end of useful life allows to label the degradation curves of
systems that reached the EOL within an experiment. The label corresponding to a set of
features computed at the cycle i gives the information of the system’s RUL at the i− th
cycle. These labels build the target function, which is given by:

RULlin = tend− t (4.6)

where tend is the cycle at which the end of useful life is reached and t is the actual running
time. By defining the RUL target vector by (4.6), it is assumed that the condition of
the machine degrades linearly. However, as seen in Fig. 4.8, the degradation of the
mechanical elements is negligible at the start of the test and during long periods. This
means that it is not possible to represent the degradation as a linear function. Therefore,
a piecewise target function is proposed as the target function, which is given by:

RULpwLin =

{︄
maxRUL, if RULlin >= maxRUL
RULlin if RULlin < maxRUL

, (4.7)

This function has two elements. The first part consists of a constant value equivalent
to the maximum RUL that can be forecasted by the regression algorithm. The second
part comprises a linear decrease of the RUL until a magnitude of zero is reached, which
is equivalent to reaching the end of useful life. It is proposed to compute the maximum
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number of cycles, which the regression model can predict the EOL in advance by:

maxRUL = median(DE) , (4.8)

where DE is the time lapse between the degradation start and the end of useful life of
all systems contained in the database. The consideration of this period guarantees that
when the RUL is lower than maxRUL, the deviations in the sensor signals are large
enough to enable the forecasting of the TTF. Equation (4.8) is a guide to quickly select
a value for maxRUL. However, this quantity can be empirically adapted. By selecting a
larger magnitude, the regression model should be able to predict a malfunction earlier.
Nevertheless, this can be accompanied by an accuracy decrease of the model. On the
other hand, the lower the value of maxRUL the better the accuracy of the algorithm,
but this results in a belated EOL forecast. Figure 4.9 shows examples of a linear and a
piecewise target function.
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Figure 4.9: Piecewise target function.

Another characteristic of the lifecycle
of mechanical elements is the exponential
degradation, once an element is damaged.
This implies that a linear target function
is not the most adequate method to repre-
sent the degradation of a mechanical sys-
tem. As demonstrated in our work [61],
the performance of the regression model
can be boosted with the use of a piece-
wise exponential target function. Never-
theless, there is a drawback of this ap-
proach, which is to obtain the real time that is left before the failure occurrence. In
[61], a lookup table is suggested to transform the exponential quantities to a linear range.
However, slight changes of an exponential magnitude generate great deviations in the lin-
ear signal. Therefore, the linear output of the regression model would not give a rational
insight of the remaining useful life. For this reason, the present methodology considers
only the use of a piecewise linear target function.

4.5.4 Dealing with Data Imbalance

As discussed in the previous sections, the time lapse between any perceptible degration
and the failure occurrence is in occasions really short. This, added to long lifecycles of
common electric drives result in a data imbalance, which can cause algorithms trained
with gradient descent methods to get stuck in a local minima, with a constant output close
to maxRUL. In case of a non parametric approach such as the GPR, which depends only
on the previous observations, the Gaussian Process size and cycle time would increase
considerably and the model losses could increase as well, limiting the online imple-
mentation of the algorithm. Some methods to cope with the problem of data imbalance
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are alternative performance metrics such as precision, recall or F1 Score, or sampling
strategies such as data over and under-sampling [58]. Within this methodology, a data
under-sampling strategy is selected to reduce the negative effect of the data imbalance.
The proposed approach is presented in Fig. 4.10.
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Figure 4.10: Strategy to deal with data imbalance. © 2019 IEEE [61].

This strategy does not only cope with the problematic of data imbalance, but also gives
a guideline on how to proceed with systems, which do not break down within the test.
To this end, the drives are classified in three groups: A, B, and C.

• Class A are systems, which ended the validation test without any anomaly. The
drives belonging to class A are removed from the dataset and are just classified as
healthy systems.

• Class B corresponds to systems with a final health index between the degradation
and failure limits. The samples classified as category B are used to further test the
robustness of the algorithm, once it has been trained and validated.
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• Class C are those drive units, which reached the end of life threshold within the
test. The drives belonging to the category C are selected to train, test and validate
the regression algorithm.
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Figure 4.11: Undersample Strategy for
C-class drives. © 2019 IEEE [61].

A second undersampling method
for the training dataset is applied to
reduce the amount of information
generated when a system is operat-
ing normally. Here, only the mea-
surement’s segment between the
degradation start and the failure oc-
currence are considered. However,
this would not give the regression
algorithm information about the
machine’s behavior with a healthy
condition. Thus, a segment corre-
sponding to the measurement prior
to the degradation start is inte-

grated to the training dataset as well. This segment has a length of kr cycles, which
can be selected equivalent to maxRUL. An example of an undersampled curve is shown
in Figure 4.11.

4.6 Gaussian Process Regression for failure prediction
Once the data has been preprocessed and labeled, the task of the RUL estimation is
solved by a supervised regression model, such as the Gaussian Process Regression (GPR)
model. The GPR algorithm is widely used in time series prediction, where it estimates
future outcomes using the knowledge gained from the present and previous inputs. GPR
models are probabilistic algorithms, whose output is the expected value for the input
vector x based on the knowledge gathered in previous experiments. An advantage of
these type of models is that not only the prediction is given, but also a confidence interval.
This is useful to know the certainty of the output of the algorithm. A narrow interval is
a positive sign, since it indicates a high probability of a correct output. Even if the
prediction is wrong, the predicted value will probably have a small deviation from the
target value.

The proposed process to train and test a GPR model for RUL prediction is depicted
in Figure 4.12. The first step is the preparation of the training dataset, which comprises
the input vectors xtrain and their corresponding labels ytrain. Here, it should be decided
whether the selected relevant features or the HIs are used as input to train the GPR. On the
one hand, the HIs have already identified the degradation of a single system with regard
to a basis distribution. On the other hand, the features retain more information about

56
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the system idependently of the other drives in the database. Moreover, the features are
noisier, which improves the robustness of the model and its capability for generalization.
The input vector xtrain is given by xtrain = x1,x2, ...,xn, where n is the number of data
points in the training dataset and each vector xi has a size {p,m}, where m is the number
of features and p is equivalent to one, since the GPR performs a prediction for a single
time step. The train labels ytrain are given by ytrain = y1,y2, ...,yn, where each label yi is
a scalar.
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Figure 4.12: Process to train a GPR model for RUL estimation

Prior to the training of the GPR model, a covariance function k(xn,xm) has to be se-
lected. There are several standard kernel functions that can be selected, some of which
are depicted in Table 2.1. Alternatively, a new covariance function can be built. Due to
the exponential behavior of the degradation curves, the exponential kernel can be a suit-
able choice as a covariance function. This function has only two hyperparameters: the
length scale σl and the signal standard deviation σ f . These hyperparameters are denoted
by θ and are initialized by (2.28).

The training of the GPR model consists on finding the values of the kernel hyperpa-
rameters θ , and the noise variance σ2

n . The hyperparameter optimization takes place
by maximizing the log marginal likelihood (2.38). Even with the data undersampling
strategy explained in Section 4.5.4, the remaining training dataset might still be too large
and an exact maximization of (2.38) might not be possible due to the high computation
complexity. In that case, an approximation method of Table 2.2 can be implemented for
the hyperparameter optimization. After the hyperparameters θ have been optimized, the
RUL prediction for a new set of data points takes place by (2.37). To test the performance
of the GPR model the test dataset is used. The inputs xtest and the labels ytest have the
same dimensions than xtrain and ytrain respectively.
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The process for a new prediction is the following:

1. A new input vector xtesti is given to the GPR.

2. In the model, xtesti is compared with all the train vectors xtrain and their respective
label ytrain as indicated in (2.37).

3. The GPR outcome is the mean RUL prediction for the given input xi compared
with the train data. The confidence interval can be interpreted as the minimum and
maximum RUL values for vectors in xtrain that are similar to xtesti .

Figure 4.13 depicts an example of how a trained GPR model predicts the RUL of a
electric drive at each time step i. This set of predictions create the estimated function
ypred . The outcome of the GPR can also be visualized as a set of distribution curves that
together build the function ypred with a confidence interval.
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Figure 4.13: Illustration of a GPR model for RUL estimation.

4.7 Framework for failure forecasting with Multipath
Temporal Convolutional Networks

The GPR is an effective method to forecast the RUL of mechanical systems and it is
very useful for embedded systems with low computing power and memory available.
However, many preprocessing steps have to take place in order to achieve a good esti-
mation. An alternative to traditional machine learning architectures are deep learning
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models, which have shown a great performance for sequence modeling tasks, such as the
RUL estimation. Deep learning models are a very powerful tool for automatic feature
engineering. This characteristic not only reduces the work during the data preparation
but also enhances the flexibility of the methodology. Moreover, deep learning models
have a better performance than traditional machine learning architectures. One of the
reasons behind this afirmation is that DL models are able to find features in the raw sig-
nals, which cannot be extracted during the manual feature engineering. Even though
the DL architectures might seem an obvious selection over traditional machine learning
models such as the GPR, their implementation in an embedded system is limited due to
the size of the models and the great amount of operations that take place to perform a
prediction. Considering the advantages and limitations of deep learning models, a DL
framework for RUL estimation that is suitable for an on-board implementation is intro-
duced in this section. The proposed framework is depicted in Figure 4.14. The core
element of the framework is a novel deep learning architecture named Multipath Tempo-
ral Convolutional Network (MTCN), which we presented in [61]. The MTCN is based
on the residual blocks of the TCN model developed by authors in [6]. The use of this
framework is dedicated to applications, where the are enough computing resources for
additional functions. A discussion of when to use which type of model for the RUL
estimation is provided in Section 4.9.3.
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Figure 4.14: Framework for RUL estimation based on Multipath Temporal Convolutional
Networks.

This framework has two main stages: the data preparation, and the generation and
training of the regression model. The first part has three steps which have been explained
in detail throughout this chapter. In the following subsections, the importance of each
stage within this framework is described.
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4.7.1 Data Preparation

Feature Extraction for deep learning

This is a process that can be avoided with the use of a DL architecture. Nonetheless, a
feature extraction before the construction of the deep architecture enables the reduction
of the network size and accelerates the training time. Since the objective is that the model
is ported into an embedded system, this step is relevant mainly when dealing with raw
signals with thousands of data points. For example, deep learning architectures might
require hundreds of thousands of parameters to extract relevant features from signals that
were sampled with high frequencies, such as accelerometers, which are commonly used
for condition monitoring. The process of feature generation is introduced in Section 4.2.
On the other hand, a manual feature reduction step is not neccesary anymore, because
the filters within the architecture are in charge of identifying the relevant attributes from
the input feature maps.

Signal preprocessing

The signal preprocessing is a very important step within the data preparation, as already
explained in Section 4.3. The preprocessing stage considers the signal normalization
procedure detailed in Algorithm 4.1 and the scaling of the standardized signals in the
range [0,1] by (2.13). A noise reduction of the signals is not performed within this deep
learning framework. By avoiding this step, the MTCN can generalize better despite the
presence of disturbances in the sensor signals.

Encode signals

The objective of sequential modeling tasks is to predict the outputs y0, ...,yT at each step
for a given sequence input x0, ...,xT . Therefore, the preprocessed signals or extracted
features should be transformed into encoded time series, which have a size of {W,C},
where C are the channels or features and W is the number of time steps contained in
the feature map. One great advantage of working with embedded time series instead of
vectors with single time steps is that the learning algorithm is less sensitive to ouliers.
Only the increase on amplitude in several time steps could be related to an upcoming
malfunction. An example of an embedded time series is depicted in Figure 4.15.

Data labeling for DL framework

In case that the end of useful life is already defined for each measurement in the dataset,
this information is used to build the target function ytarget . Otherwise, it is necessary to
determine the thresholds that indicate the end of useful life, to then be able to generate
the target function. The data labeling procedure was explained in detail in Section 4.5.
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4.7.2 Multipath Temporal Convolutional Network for RUL
estimation

Common architectures for sequential modeling are the recurrent neural networks and the
long-short term memory models. The RNNs normally face problematics such as explod-
ing or vanishing gradients during the training of the model. In LSTMs this problematic
is minimized by using memory gates. Nevertheless, the prediction of a new set of inputs
requires a sequential amount of operations, which cannot be parallelized. On the other
hand, CNNs have demonstrated a great performance in sequential tasks as well. They
are suitable for parallelization, since the operations to compute each output channel are
independent. A CNN architecture that has a great efficiency in sequential modelling is
the TCN model. This has three main features: the use of zero padding to map an input
into an output of the same dimension; the usage of causal convolutions to avoid leakage
of information from future to past; and the employment of dilated convolutions to have
a wider receptive field with less parameters. These characteristics are explained in de-
tail in Section 2.6.2. Figure 4.15 shows how the residual blocks of the TCN are used to
construct an architecture that enables the failure prediction of electric drives.
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Figure 4.15: TCN architecture for RUL prediction.

MTCN architecture

The architecture of the proposed Multipath Temporal Convolutional Network was pub-
lished in our work [62] and it is depicted in Figure 4.16. As its name suggests, the MTCN
is composed of two paths. The first path has the same basis structure as the TCN for RUL
depicted in Figure 4.15. The encoded time series generated in the data preparation stage
is the input to the first path. The dimension W is selected as the equivalent to the re-
ceptive field RF (2.54) of the architecture. The dimension C is equal to the number of
features. The input images are connected to a 1D-convolutional layer, which works as
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the first feature extraction filter. Since a zero padding is used, the width W of the feature
map remains constant. Moreover, the number of channels of the output feature map Cout
is equal to the number of kernels k. This first 1D convolutional layer is activated by a
ReLU function (Table 2.3). The output of the first convolutional layer is connected to
a series of residual blocks, whose structure is depicted in Figure 2.10. The number of
residual blocks depends on the dilation rate, which is determined in the hyperparameter
optimization approach.
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Figure 4.16: Multipath Temporal Convolutional Network. © 2020 IEEE [62].

The output of every residual block has the same dimension as its input. Thus, the
output of the last residual block has a size of {W,k}. Afterwards, a flatten layer is used
to reshape the feature map delivered by the last residual block as a vector with dimension
{n f latten · k,1}, where n f latten indicates the number of elements of the feature map that
are flattened. Then, the vector is connected to a dense layer. The number of neurons of
the dense layer ndense is another hyperparameter that has to be optimized.

The second path runs parallel to the first one and has the same architecture. The input
of this path is the same embedded time series, which is connected to a Gaussian noise
layer prior to the first convolutional layer. After the initial 1D convolution, the resulting
feature map is also added with Gaussian noise. The output is connected to a series of
modified residual blocks. The difference to the blocks proposed in [6] is that the output
is connected to a Gaussian noise layer. Figure 4.17 depicts the modified residual block.
Similarly to the first path, the output of the last residual block is flattened to connect
it to a dense layer. The output of the dense layer is summed with Gaussian noise. Fi-
nally, both paths are concatenated and connected to the output dense layer with a linear
activation function, which delivers the estimated RUL of the mechanical system. This ar-
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chitecture enhances the generalization capability of the model by reducing its sensibility
to noisy feature maps. The added Gaussian noise is centered in zero and has a standard
deviation gN , where 0 < gN < 0.5. Thus, there are only a few outliers with an absolute
magnitude greater than 1. The Gaussian noise layers are active only during the training
of the model. When the trained model is used to predict the RUL with a new feature
map, the architecture acts as a two path network without adding noise to the layers.
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Figure 4.17: Modified residual block.

One can argue that the noise inclusion
can be performed directly in the first path
and thus, avoid two parallel architectures
that merge at the end. Nevertheless, this
has the negative effect that the model re-
quires more epochs to converge and fre-
quently, it can not even converge. The
two paths of the MTCN perform two inde-
pendent feature extraction stages, which
means that different relevant features are
identified at each path. This simplifies
the task of the RUL estimation by the
dense layer, which enables dense layers
with less neurons compared to TCN mod-
els. Besides, the experimental studies pre-
sented in this work show that the MTCN
requires less filters or less residual blocks
to achieve a higher accuracy than TCNs.

In conclusion, this novel architecture
has two main advantages over the tradi-
tional TCN: a robust model that has a better performance with unseen samples; and a
more compact architecture, which is relevant for the embedded implementation.

MTCN training

The process to train, validate and test the MTCN model is depicted in Figure 4.18.
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Figure 4.18: Process to train the MTCN model for RUL prediction

Prior to the construction of the MTCN model, the hyperparameters have to be initial-
ized. These parameters determine the architecture of the model and also include coef-

63



Chapter 4 Comprehensive Methodology for On-board Condition Monitoring

ficients that control the training of the network. We define in total 10 hyperparameters,
which are:

• Kernel size (ks): is the width of a filter and represents the number of time steps
that the kernel covers.

• Dilation rate (dilRL): refers to the dilation that the last residual block should have.
The dilation of each layer is given by: 2d , with d = 0,1,2, ..,dilRL. This hyperpa-
rameter, together with the kernel size, determines the network’s RF (2.54).

• Number of filters (k): amount of filters of each layer. For this architecture, the
number of filters remains constant for all layers.

• Number of neurons of dense layer (ndense): determines the size of the dense layer.

• Number of elements of the flatten layer (n f latten): the number of time steps of
the last feature map that should be connected to the dense layer.

• Dropout rate (dr): as indicated in Section 2.6.2, the dilated causal convolutions
within the residual blocks are regularized by a dropout method, which reduces the
possibility of overfitting. The dropout temporarily removes an amount of parame-
ters together with their connections [94]. The dropout rate indicates the percentage
of parameters that are ”dropped” at each training epoch.

• Learning rate (η): controls how much the weights are adapted regarding the loss
gradient.

• Batch size (bs): is the number of feature maps that are given simultaneously as an
input to the architecture during the training procedure.

• Window displacement (wt): indicates the shift in cycles between the starting
points of two feature maps.

• Standard deviation of the Gaussian noise distribution (gN): the greater gN the
greater the amplitude of the noise that it is injected to the second path.

The hyperparameters can be initialized by defining ranges of each coefficient and then
randomly selecting a value within these limits for each parameter. This initialization is
performed randomly, since the hyperparameters (HP) will be afterwards optimized with
a genetic algorithm. After the selection of the parameters, the MTCN model can be
built and trained. The training procedure is described in Algorithm 2. The inputs to this
algorithm are the training {xtrain,ytrain} and validation {yval,yval} datasets. The feature
maps {xtrain,xval} are 3 dimensional arrays which have a size of {K,W,C}, where K is
the number of feature maps of each dataset and W,C are the time steps and number of
features of each image. W and C are constant for both datasets. At the beginning of the
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Algorithm 2: Train MTCN
Input: MTCNmodel: MTCN model
Input: xtrain,ytrain: Train dataset
Input: xval,yval Validation dataset
Input: epochs: Number of epochs
Input: bs: batch size
Input: η : learning rate
Output: MTCNout : Best trained MTCN model
Output: Ebest : validation loss of MTCNmodel
Output: npar: number of parameters of MTCNmodel

1 Initialization
2 Ebest ← 10000
3 LTr← Ktrain/bs

4 Initialize the f ilter weights by Xavier initialization
5 for i← 0 to epochs do
6 for k← 0 to LTr−bs by bs do
7 MTCNmodel ← Adapt weights(MTCNmodel,xtrain[k : k+bs],ytrain[k :

k+bs],η)
8 end
9 ŷval ← Predict(MTCNmodel,xval)

10 Eval ← RMSE(yval, ŷval)
11 if Eval < Ebest then
12 MTCNout ←Model checkpoint(MTCNmodel)
13 Ebest ← Eval
14 end
15 end
16 npar← get number o f parameters(MTCNout)

algorithm, we need to define the number of epochs, which is the number of iterations
that will be performed with the whole training dataset. The number of iterations LTr for
each epoch is given by dividing the number of images of the training dataset by the batch
size. After the inputs and initial values have been defined, the parameters of the model
are initialized by the Xavier weight initialization [21]. Then, the gradient ∇E(w) of the
quadratic error is computed with the back propagation algorithm and the filter weights are
adjusted on basis of this gradient and the learning rate η . After all the batches have been
used for the weight update, the validation loss Eval is computed by the root mean squared
error loss function, which is given by (4.9). If the new validation loss is lower than the
best loss Ebest until that iteration, a model checkpoint is created and the parameters are
stored. This assures that the model with the lowest validation loss is delivered at the
end of this algorithm. The procedure is repeated until the defined number of epochs is
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reached. The performance of the best obtained model is assessed with the test dataset
{xtest ,ytest} in order to verify the generalization capability of the model with unseen data.

RMSE =

√︄
1
n

n

∑
i=1

(ytargeti− ypredictedi)
2. (4.9)

4.7.3 Automatic hyperparameter tuning with a Genetic Algorithm
The improvement of the model performance can be achieved by modifying the hyperpa-
rameters. Lets assume that we only have two possible values for each one of the ten HPs
that were defined in the previous section. Then, we would require to evaluate 210 mod-
els in order to select the optimal solution. Nevertheless, the defined HP have continuous
values, which means that, theoretically, each hyperparameter has infinite possible values.
Thus, a manual tuning of the parameters is not feasible. A genetic algorithm is proposed
to select an optimized set of hyperparameters, which can improve the accuracy of the
MTCN model. The optimized model is a local optimum, whose performance should
fulfill our requirements of accuracy and size of the network. As explained in Section
2.8.2, the GA has five main steps, which are the creation of the initial population, the
evaluation of the fitness, the selection of the parents, the crossover to generate offspring
and the mutation. This section details how each stage of the algorithm is performed to
optimize the hyperparameters of the MTCN model.

Population creation

First of all, the ranges, from which the HPs can take a possible value, are defined. The
selection of the limits is based on knowledge about each parameter or about possible
values for certain HPs. For example, the dropout rate can be only in the range {0,1}.
Based on the defined ranges, the initial population P with nind individuals is generated as
in Algorithm 3. Each individual of the population is composed of a determined amount
of genes ng, which for this application are the hyperparameters.

Evaluation

The second step is the evaluation of the population’s fitness. First, an MTCN model is
built with the hyperparameters of the i-th individual of the population. The model is
trained following Algorithm 2, which outputs the validation loss Eval and the number of
parameters npar of the model. Afterwards, the fitness of the individual is given by:

f = Eval + kp · npar, (4.10)

where kp is a weighting constant that indicates the importance of the number of param-
eters in the fitness computation. Integrating this parameter enables to obtain a compact
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Algorithm 3: Genetic Algorithm: Create Population
Input: ng: number of genes
Input: nind: amount of individuals per population
Input: lup: vector with the upper limit of each gene
Input: llow: vector with the lower limit of each gene
Output: P: population

1 Initialization
2 P← ()
3 for i← 0 to nind do
4 r← Generate random vector(0,1,ng)
5 individual← r · (lup− llow)+ llow
6 P← append(individual)
7 end

model for the posterior embedded implementation. If only the accuracy of the given
model is important, then kp = 0. Afterwards, the fitness of the individual is appended
to the fitness of the population F . This process is repeated until all the individuals have
been evaluated. The fitness of the population is stored in the variable Ftot .

Selection

In the third step, a selection of the so-called parents S takes place. Here, each individual
of the population has a positive probability of being selected. This probability Pk depends
on the inverse fitness. Thus, the individuals with lower fitness have greater chances to be
chosen. In our approach, the parents are selected following Algorithm 4.

Crossover

The fourth step is the crossover, where the information of the selected parents is mixed
to create new offsprings O. We perform a random distributed pairing, in which each
parent can be paired with another parent with the same probability, independently of
their fitness. Within this approach the amount of genes and which genes are transmitted
from each parent to the offsprings are randomly chosen for each parents pairing, instead
of defining a crossover point. This procedure is chosen to avoid that the offsprings always
share the same adjacent genes, and thus, to evaluate more diverse solutions. The parents
and offsprings constitute the new population Pnew = [S,O].

Mutation

In order to explore new solutions, some genes of Pnew are randomly mutated. Algorithm
5 depicts how the mutated population is created. After the deployment of this algorithm,
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Algorithm 4: Genetic algorithm: Parents selection
Input: F : fitness of all elements within the population
Input: nind: amount of individuals in the population
Output: S: parents

1 Initialization
2 S← ()
3 Finv← 1/F

4 Fx← Finv/∑Finv

5 Pk← cumulative sum(Fx)
6 nS← nind/2

7 while i < nS do
8 r← Generate random value(0,1)
9 idx← f ind nearest(r,Pk)

10 if isin(idx,S) == False then
11 S← append(idx)
12 i← size(S)
13 end
14 end

the process is repeated from the second step, the fitness evaluation. The search of the
optimal hyperparameters ends when n iterations have been performed. Finally, the opti-
mized set oh hyperparameters Indopt is selected by:

Indopt = argmin(Ftot). (4.11)

The genes of the optimized individual are selected as the optimal hyperparameters for
the MTCN model and the procedure concludes. The same steps are followed in case that
the HPs of a TCN architecture should be tuned.

Overview of the complete algorithm

Figure 4.19 depicts all the above described steps of the GA to optimize the TCN and
MTCN hyperparameters. Moreover, each step is exemplified for a better understanding
of the algorithm. In this example, a population of four individuals with 9 hyperparame-
ters is created. Then, four different TCN architectures are built and trained. Their fitness
is then evaluated. Afterwards, the parents are selected following the roulette wheel se-
lection procedure. As seen in Fig. 4.19, the models with a better fitness cover a greater
area of the roulette and have thus, more probabilities of being selected. The individuals
one and four are selected as the parents. Then, their genetic information is combined to
create two offsprings. The two parents and two offsprings compose the new population.
In the last step, a random amount of genes determined by the mutation rate are adapted.
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Algorithm 5: Genetic Algorithm: Mutation
Input: Pnew: new population
Input: gpop: total number of genes of the population
Input: mutrate: mutation rate
Input: ∆mutrate: mutation rate change percentage
Output: P: mutated population
Output: mutrate: adapted mutation rate

1 Initialization
2 Pa← Create Population
3 gmut ← mutrate · gpop
4 gind ← Generate random vector(1,gpop,gmut)
5 Pnew[gind]← Pa[gind]
6 P← Pnew
7 mutrate = mutrate ·∆mutrate

If the termination condition is not fulfilled, in this case the total number of iterations has
not been reached yet, the new population is used to create the new MTCN models and
the process is repeated until all the required populations have been evaluated.

4.7.4 Regularization technique for generalization improvement
In Section 2.7, data augmentation techniques for time series, such as window cropping
and noise injection, have been introduced. Since the inputs to the MTCN architecture
are embedded time series, it is not neccesary to crop certain regions but just to randomly
duplicate feature maps. Moreover, the feature maps are already added with noise at the
second path of the MTCN architecture. Therefore, instead of injecting disturbances to
the duplicated images, a determined amount of time steps are substituted by zeros. This
data augmentation technique is given by Algorithm 6, and it is applied for both the train
and validation sets. By training the MTCN with inputs with zero-valued rows, the model
is better suited to predict the RUL of short measurements with zero padding to match the
size of the receptive field. This approach not only works as a regularization method but
can be also used as data augmentation tehcnique, since it appends new feature maps to
the dataset.

4.8 Fault diagnosis with a multiclass SVM
The previous sections have introduced methods to identify, quantify and forecast a mal-
function of an electric drive. In occasions, it is required not only to forecast a malfunction
but also to locate its root cause while the system is still in operation. Within this section,
a fault diagnosis based on a multiclass SVM is presented.
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Evaluation
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Figure 4.19: Hyperparameter optimization with a genetic algorithm
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Algorithm 6: Data augmentation strategy for encoded time series.
Input: XencIn: encoded sensor signals
Input: YIn: feature maps labels
Input: nX : number of feature maps
Input: nF : number of features
Input: pm: percentage of feature maps that will be duplicated
Input: dL: maximum number of rows that can be substituted by zeros
Output: XencOut : augmented feature map array
Output: YOut : labels of augmented feature map array

1 Initialization
2 XencOut ← XencIn
3 YOut ← YIn
4 Lmin← argmin(Ltest)
5 nMod ← round(nX · pm)
6 indMod ← random choice(XencIn,nMod)
7 for i← 1 to length(indMod) do
8 Xtemp← XencIn[indMod[i], :, :]
9 fk← Generate random value(0,1)

10 fk← fk ·dL
11 Xtemp[1 : fk] = zeros( f k,nF)
12 XencOut ← append(Xtemp)
13 Yout ← append(Yin[indMod[i]])
14 end

The problem of multiclass classification is solved by the one-versus-one approach.
Therefore, K(K−1)/2 models are generated to identify the fault type, with K equivalent
to the number of classes. The amount of models that can be stored in the embedded
system depends on the size of each classifier and the available space in the memory
unit. Moreover, it is important to consider that the evaluation of K(K− 1)/2 models in
real time operation can result in a high burden for the embedded system. Therefore, the
Decision Directed Acyclic Graph (DDAG) architecture [68] is implemented to reduce the
computing load. The basis of the DDAG approach is that after comparing two classes,
all the models that consider the classification of the non-selected class are not evaluated
anymore. Thereby, the number of computations to identify the class in the multiclass
problem is reduced to only K−1.

Figure 4.20 depicts the approach based on multiclass SVM with DDAG architecture
for the classification of multiple fault types (FT). First, the electric drive is monitored by
N sensors. All relevant variables for each SVM model J are generated from the sensor
signals and stored. Only the M most relevant features for each J classifier are feeded to
the model, and the classification takes place. The output of this model is the fault class
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that affects the system. Fig. 4.20 depicts a model that is able to classify four different
fault types. To this end, six classifiers are trained and three are evaluated during the
on-board implementation.
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Figure 4.20: Fault isolation based on multiclass SVMs (Example with 6 SVM models
for 4 fault types).

If there is a great amount of common fault types, which the multiclass SVM should
separate, many SVM models would be neccesary. Nevertheless, each SVM model re-
quires only few parameters to perform a prediction. The amount of parameters alto-
gether would normally be lower than that of other type of architectures, such as neural
networks. Moreover, the total number of possible fault types is usually just a low por-
tion of the total amount of mechanical elements that build the electric drive. Thus, cases
where over a dozen of different elements can cause a system malfunction have extremely
low probability.

4.8.1 Fault diagnosis under varying settings

During normal operation, electric drives run with varying loads instead of a constant per-
formance, as is the case in test benches. We assume that faults of certain components
produce greater variance in the sensor signals in determined operation ranges. For ex-
ample, a malfunction in a gear could produce variations on the sensor signals that might
only be perceived when high torques are reached. Thus, if the information of the whole
operation range is used for training the classifier, its performance would decrease.

A technique to find the optimal range for fault isolation is presented in Algorithm
7. First, the number of segments, in which the operational range is divided, is defined.
Then, an array Xrange is created with data that was gathered during the operation under
the selected range. This data array is normalized with the z-score transformation. After-
wards, a predefined amount of time-based or frequency-based features are extracted from
the raw signals. The dimensionality of the feature space is reduced with the SVM-RFE
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algorithm optimized with SA. To calculate the score, the energy obtained in the SVM-
RFE approach and the number of data points, which constitute the data in the analyzed
performance range, are considered. A data point refers to a measurement segment with
length L. By using the factor γ/Npoints, we assure that operating ranges with less than γ

measurements are not chosen as optimal. The loop ends once the score calculation of all
ranges is finished or a target score has been achieved. Finally, the range that achieved the
lowest score is selected.

Algorithm 7 can be adapted to find the optimal range for regression tasks. To this

Algorithm 7: Search of optimal range for classification problems.
Input: X : Data array
Input: R: Set of ranges
Input: n: Amount of ranges
Input: dt: Amount of data points that are used to compute the statistical values
Output: Ropt : Optimal range
Output: Sopt : Optimal feature sub-set

1 Initialization
2 for i← 1 to n do
3 Xrange← X ∈ R[i]
4 Xstats← stats(Xrange,dt)
5 Xnorm← normalize(Xstats)
6 [S[i],E]← SV M−RFE−SA(xnorm)
7 Score[i]← E + γ/Npoints

8 end
9 f ← argmin(Score)

10 Sopt ← S[ f ]
11 Ropt ← R[ f ]

end, the dimensionality reduction has to be performed with Algorithm 1. Afterwards,
the regression model is trained with the reduced feature space. Since the GPR model
requires less training time than the TCN or MTCN architectures, it is chosen to evaluate
the different operation ranges. The energy E is then substituted by the fitness 4.10. Once
an optimal range is found, a TCN or MTCN model can be trained with the data collected
only during the operation of the electric drive in the selected range.

4.9 Towards on-board implementation
Although the developed algorithms focus on the creation of compact models that are
suitable for an embedded implementation, there are still improvements that should take
place prior to the on-board condition monitoring. This section introduces the process

73



Chapter 4 Comprehensive Methodology for On-board Condition Monitoring

required to optimize the algorithms for an on-board implementation as well as an evalua-
tion of when to use a traditional machine learning model for prognosis and when the deep
learning architecture is a more suitable solution. But first, this section introduces how to
estimate the size requirements of each model that should be deployed in an embedded
system.

4.9.1 Models size requirements and computational complexity
Within this section, it is indicated how to estimate the size required in the Flash memory
and in the RAM by each architecture. Furthermore, the estimation of the MAC operations
is also given within this sub-section.

GPR

The execution of a prediction with a GPR model is an iterative process. Thus, only
the kernel parameters, the input and the vector of the i− th sample are required to be
stored simultaneously in the RAM. The highest burden comes from the computation of
the Euclidean distance (2.27) within the covariance function. The Euclidean distance can
also be iteratively calculated as follows: r2

i = x2
n−2xnxmi +x2

mi
, where xn is the input and

xmi is the i− th sample within the dataset. The term x2
n is computed before starting the

comparison with the samples of the GPR model to reduce the number of operations on
the real time environment. The number of parameters that should be stored in the RAM
due to the computation of r is 4 ·M, where M is the amount of features. The value of
4 comes from the number of partial results that have to be stored plus the space for the
final result. The parameters σn and σ f of the covariance function are constant scalars.
Finally, the prediction given by (2.37) requires to multiply the result of the covariance
function with the parameter αi, which is also another scalar. Table 4.2 summarizes the
number of parameters that should be stored in the RAM for the RUL estimation with a
GPR model.

Table 4.2: Number of parameters that have to be stored in the RAM for a prediction with
a GPR model.

Process/ Variables Number of parameters
Input xn 1 ·M

Sample xmi 1 ·M
Euclidean distance r 4 ·M

Constant coefficients σn, σ f , αi 3
Output yi 1

Total 4 + 6 ·M

The samples xm and the kernel parameters are constant values that are stored in the
Flash memory and are loaded to the RAM only when they are required. Moreover,
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the vector α is computed off-line and it is also stored as a constant vector in the Flash
memory. This vector has a size of {1,N}. Thus, the number of parameters of a GPR
model that are stored in the Flash memory is given by (4.12), where N is the number of
samples.

parGPR = N · (M+1)+3. (4.12)

Finally, the amount of MAC operations is given by:

MACGPR = N · (M+1). (4.13)

SVM

Given a new input xn, a prediction is given by (2.23). Considering a polynomial kernel
of second degree, a new estimation is given by: ypredi = αi · yi(x2

n− 2xnxmi + x2
mi
)+ b,

where xm are the samples that are support vectors. Similarly to the GPR, the prediction
performed by an SVM is an iterative process. The amount of parameters stored in the
RAM is very similar to that of the GPR given in Table 4.2, only that instead of storing 4
constant parameters, 2 constant values are saved, since a polynomial kernel, which has
no hyperparameters, is used. Moreover, the number of parameters that are stored in the
Flash memory is equivalent to:

parSV M = N · (M+1)+1, (4.14)

where N is the number of observations, which are support vectors. Finally, the amount
of MAC operations is also given by 4.13, but with the difference that N is the number of
observations that are support vectors and not the total amount of samples.

TCN and MTCN

The amount of parameters that have to be stored in the Flash memory for the deployment
of both the TCN and MTCN models is equivalent to the total number of filter weights
and biases of each network’s layer. The number of parameters of a convolutional layer
is given by (2.50), and of a fully connected (FC) layer is given by (2.43). To compute
the amount of parameters that have to be stored in the RAM, a hardware architecture is
considered, where six arrays with the in-between results of the layers are stored simulta-
neously. The capacity that has to be allocated in the embedded system for these arrays is
given in Table 4.3.

The first array is required to save the input feature map. The slot required for the
filters considers only one kernel, because the feature map is convolved with one filter at
a time. Moreover, three feature maps generated by each convolution within the residual
block plus the input feature map to the residual block are allocated in the memory. The
output of the last residual block is flattened to connect it to a dense layer. The size of
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Table 4.3: Number of parameters that have to be stored in the RAM for a prediction with
the TCN and MTCN models.

Process/ Variables Number of parameters stored in RAM
Input C ·W
Filter C · ks

Residual block 4 · k ·W
Flatten n f latten · k
Dense (n f latten · k+1)ndense

Output yi ndense +1
Total TCN C(W + ks)+ k[4 ·W +n f latten(1+ndense)]+2 ·ndense +1

Total MTCN C(W + ks)+ k[4 ·W +n f latten(1+2 ·ndense)]+3 ·ndense +1

the resulting vector is determined by the number of time steps that are flattened and the
number of filters. This, because the size of the feature map remains constant after the
first 1D convolution, where the number of channels C is substituted by the amount of
filters k. The space neccesary to store the operations of the dense layer depends on the
size of the flattened vector and the number of neurons of the FC layer. As for the MTCN,
only the partial results of the FC layers of both paths have to be stored simultaneously.

The amount of MAC operations of the convolutional layers is given by (2.51). In the
input layer of the TCN and MTCN architectures, ks is equal to one. The output of this
layer has a size of {W,k}, which remains constant through all the residual blocks (RB).
Thus, the convolutional layers within the blocks are multiplied by the factor k2. The
number of MAC operations of a single residual block is multiplied by the amount of
RBs, which is determined by the coefficient dilRL. The number of MAC operations of
each architecture is summarized in Table 4.4.

Table 4.4: MAC operations of TCN and MTCN architectures.

Process/ Variables MAC operations
Input convolution (M0) 1 · k ·Cin ·W

R
B

Dilated causal convolutions (M1a) ks · k2 ·W
1D convolution (M1b) 1 · k2 ·W

Total RBs (M1) dilRL(2 ·M1a +M1b)
Dense Layer (M2) n f latten · k ·ndense

Total TCN M0 +M1 +M2
Total MTCN 2(M0 +M1 +M2 +ndense)
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4.9.2 Model optimization for embedded deployment
Model size compression

We mainly intend to reduce the size of a learning algorithm to enable its deployment
into an embedded system or to release hardware resources for other applications. Within
this chapter, three different learning algorithms have been introduced for fault diagnosis
and failure forecasting. Depending on the chosen algorithms, there is a procedure that
takes place to reduce the size of the model by simultaneously mantaining a bearable
performance. Figure 4.21 depicts an overview of the size optimization methods for each
learning model.

Train the
learning model

Precision scaling
of model param-
eters and inputs

Retrain

Is a smaller
model required? GPR

Train model with a
non exact method

(Table 2.2)

MTCN

- Increase
kp in (4.10)

- Decrease ks and
dilRL in Algorithm 3

SVM Increase β in (4.2)

Compact model

yes

no

Figure 4.21: Model size reduction for the diagnosis and prognosis algorithms covered
within the proposed approach.

First, the chosen learning algorithm is trained without implementing a strategy for size
reduction, in order to prove the suitability of said model to solve the desired task. Once
the model reaches an acceptable performance, the precision of parameters and the input
signals is scaled from 32 to 16-bit floating point. Thus, the model size can be reduced up
to the half. The efficiency of the architecture is evaluated and if the loss on performance
is aceptable, the model can be deployed. Otherwise, the model is retrained with the 16-
bit inputs. If the model has an aceptable performance, but it is intended to reduce its size
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more, then a specific procedure that depends on the selected learning algorithm takes
place. To reduce the size of the SVM classifier, the factor β is increased in (4.2). Thus,
during the dimensionality reduction approach, the feature subspaces with less variables
are preferred over more accurate models with more features. From (2.23) we know that
an estimation depends on the lagrange multipliers α , the values of support vectors xn and
their labels yn. The size of α and yn is given by {p,1}, where p is the number of samples
that are support vectors. It is possible that with less variables, a lower amount of support
vectors is found, reducing thus the classifiers size. Nevertheless, the greatest compresion
is derived from the change on size of xn, which is equivalent to {p, f}, where f is the
amount of features. Moreover, less variables means that less space has to be dedicated to
store the inputs of the SVM classifier.

A new prediction with a GPR model depends on the kernel parameters and the pre-
vious observations (2.37). If the log marginal likelihood (2.38) is maximized using an
exact method, the GPR requires to store the complete training dataset into the embed-
ded system to perform a new estimation. Thus, the method to reduce the models size is
to reduce the training dataset volume. This can be performed by using an approxima-
tion method of Table 2.2. These methods select determined samples to train the GPR,
reducing thus the training time and the model size.

Finally, the MTCN model can be compressed by increasing the factor kp in (4.10)
during the hyperparameter optimization. This constant penalizes networks with a greater
number of parameters. With a higher value for kp, the GA searches a solution that is
not the most accurate but has an acceptable performance with a smaller architecture size.
Moreover, within the automatic HP tuning, the maximum possible values of the kernel
size and dilation rate can be lowered prior to the creation of the initial population (Al-
gorithm 3). In this way, the GA searches a solution that has a lower maximum receptive
field. Therefore, the architecture has less depth and the feature maps are smaller.

Reduction of computational complexity

Not only the size of the models have an influence on their suitability to be ported in
determined embedded systems, but also the number of MAC operations that they require
to make a new prediction plays an important role. On one hand, machine learning models
are very compact and require just a few amount of MAC operations compared to deep
learning architectures. Thus, no technique is suggested to reduce their MAC operations
within this work. On the other hand, the MTCN and TCN can still require hundreds of
thousands of MAC operations to perform a new estimation, even though they consist of
just a couple of thousands of parameters.

A way to reduce the amount of MAC operations of the MTCN is by reducing the
value of the coefficient dilRL. This would generate less residual blocks in each path of the
architecture. Thus, the decrease of the MAC operations would be considerable and might
make the model suitable for a determined embedded application. Moreover, a pooling
layer can be connected after the first convolution to reduce the width of the feature map
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that is given as an input to the residual blocks. This would generate a reduction of the
MAC operations of the total residual blocks (M1) by a factor of p, which is the pool size.
Other methods for model size compression and reduction of computational complexity
of DL models, are described in Section 7.1.

4.9.3 Comparison of learning models for online failure prognosis
Throughout this chapter, three different regression algorithms that solve the task of the
RUL estimation have been detailed. This section highlights the advantages of every
model and provides a short guideline of when each model is the most appropiate solution
for a given application. The characteristics of the regression algorithms that are relevant
for our approach are reported in Table 4.5.

Table 4.5: Comparison of prognosis algorithms.

Model Performance Memory required Computational
Flash RAM Complexity

GPR Medium Low Very low Very low
TCN High Medium-High Medium Low

MTCN Very high Medium Medium Low

First, the GPR is a very compact model with the least amount of parameters. The GPR
is ideal to quickly test the feasibility to perform the RUL estimation in the embedded
system. Nevertheless, its performance is clearly lower than most deep learning architec-
tures. Thus, it could cause late predictions or false alarms. This algorithm is useful to
have an overview of the RUL online, but decisions taken based only on its predictions
are not advised. The TCN improves greatly the accuracy of the GPR, but at a cost of
larger model size and computational complexity. The MTCN increases the generaliza-
tion capability of the TCN with a similar model size and often, the MTCN results in a
more compact architecture. The disadvantage is that the amount of MAC operations of
the MTCN is two times larger than a TCN with the same hyperparameters. The RUL
estimation is a task that doesn’t have to be performed continuously. In the case that the
monitored electric drive is used for a vehicle, the RUL prediction can take place once
during a ride. Moreover, not all computations must take place at once, but partial results
can be generated while other functions with more priority are in standstill, for example
during a red light. Therefore, the slightly higher number of MAC operations required by
the MTCN wouldn’t hinder its deployment for an on-board monitoring. The proposed
MTCN enables accurate predictions online that can be used to take a decision about the
optimal time at which the repairs or component replacement should be performed.

The experimental study that is presented in the following chapter demonstrates the
suitability of the developed methodology to identify, forecast and diagnose failures of
mechanical elements of a pedelec’s electric drive. Moreover, a second study compares
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the RUL estimation approach against other related algorithms using a publicly available
database.
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Chapter 5

Case study: Condition Monitoring of
Pedelec Drive Units

This chapter introduces two case studies. The first one deals with the failure forecasting
of electric drives for pedelecs. To this end a database that consists of measurements
of two types of electric drives in a validation test known as endurance test was used.
In the second case study, a fault diagnosis of drive units (DU) for electric bicycles was
performed. In this case, the data was gathered directly in field measurements. The results
presented in this chapter have been published in [101] and in [61].

The generation and training of the GPR and SVM models was performed with Matlab
R2019b and a 32 GB RAM. On the other hand, the training of the MTCN and TCN
architectures was performed with an NVIDIA Quadro P2000 with 5 GB, CUDA 10.2
and Tensorflow 2.1 [2].

5.1 Description of the pedelec drive units

1

2

3

Figure 5.1: Pedelec system overview.

Electric bicycles or e-bikes can be
definied as ”bicycles that are similar in
geometry to human-powered bicycles but
have a small electric motor that provides
pedal assistance and allows riders to ac-
celerate, climb hills, and overcome wind
resistance more easily than manually pow-
ered bikes” [56]. The term pedelec is fre-
quently used as a synonym of e-bike. Nev-
ertheless, there is a difference between
both concepts. In an e-bike the driver
might only press a button, so the motor is
activated. On the other hand, the pedelecs provide support only when the driver applies
force to the pedal. This is a crucial difference, since the support given by the drive unit
of pedelecs depends directly on the amount of torque that the driver applies.
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Figure 5.1 depicts the overview of a pedelec and its three main components: the human
machine interface (1), the battery (2) and the drive unit (3). There are three main drive
types: front hub, rear hub and mid-drive [3]. For the present case study two drive units
of the mid-drive type are analyzed. The first one has a rotating electric motor and one
gear stage, which together deliver a maximum torque of 40 Nm [75]. An overview of
this system is depicted in Fig 5.2a. The second drive has a similar configuration, but
with three gear stages, which increases the maximum delivered torque up to 85 Nm [75].
Figure 5.2b shows the overview of the second drive unit type. Throughout this case
study, the drive unit with one gear stage is named as Type-A DU and the electric drive
with three gear stages as Type-B DU.

(a) Overview of Type-A DU. (b) Overview of Type-B DU.

Figure 5.2: Overview of two drive unit types [75].

5.2 Failure prognosis of drive units for pedelecs
The first case study has the objective to test the efficiency and flexibility of the proposed
failure forecasting approach with two different types of electric drives.

5.2.1 Database description
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Figure 5.3: Profile of the endurance test
for pedelec drive units.

The dataset consists of the data gathered
within the endurance tests of 74 samples of
the Type-A DU and 64 of the Type-B DU. In
an endurance test, the functionality of the DUs
is assessed under extreme operating conditions
during a very long time period. These operat-
ing settings do not represent the common op-
eration of the systems. Since this test takes
place during the product development phase,
the tested prototypes differ from each other;
for example in the materials, suppliers, man-
ufacturing process, etc. The main objective of
the test is to validate that a certain design constructed with determined materials and
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with a specific manufacturing process fulfills the minimum endurance specified by a
norm, before it is launched to the market.

The profile of the endurance test is depicted in Figure 5.3 and is as follows: First, the
DU runs with a maximum load Tmax for a period lmax. Then, the drive is operated with
a lower torque Tmed for a shorter period lmed . Finally, the electic drive is turned off for a
period lo f f . These three segments are repeated throughout the test, which is concluded
after n−hours have elapsed or when the system breaks down.

Data cleansing

Within each test, over 50 signals were collected with a sampling time between one and
sixty seconds. These values corresponded to test parameters, drive unit sensors, and
external sensors. Prior to the implementation of the approach, a data cleansing stage
took place. Here, only those signals that were generated from the DU internal sensors
were kept. Then, all the variables that were constant or consisted of non numerical data
were removed. In this way, the data was structured as indicated in Section 4.1.2. The
database was reduced to only 8 variables, which are enlisted in Table 5.1.

Table 5.1: Variables of the endurance test database
after data cleansing.

Type Signal Abbrev.
ID Drive unit number DUN

Time Test running cycle Cycle
Operating Motor torque request MTR

settings (Xset) Chamber temperature Temp
Motor torque present MTP

Drive unit Motor angular speed nMotor
signals (Xsig) Driver torque Tin

Torque at the output shaft Tout

The analysis of the motor
torque within all experiments let
us identify two core elements of
the tests: In general, the DUs
operated mostly under the max-
imum load and the value of Tmax
and Tmed varied among the sam-
ples. As seen in Figure 5.4a,
almost all DUs ran at least one
third of the complete test with
maximum load. Furthermore,
35% of the systems were oper-
ated more than the half of the test
with Tmax. The second most fre-

quent state was with the motor switched off, as seen in Figure 5.4b. The data gathered
during the motor standstill was not relevant and the information generated while the DU
operated with Tmed was minimal. Thus, only the data collected when the DU was oper-
ated with maximum load was considered for this analysis.

Figure 5.5a depicts the angular speed of a drive unit, which was collected while the
system was required to output its maximum load. In this chart, it is seen how the signal
had a great amount of peaks, which difficulted the identification of a trend with the time.
These fluctuations in angular speed caused also peaks in other signals. Therefore, a
saturation filter was applied to minimize the effect of these speed variations. The filtered
signal is also shown in Figure 5.5a. Moreover, the maximum torque varies among the
tests. This can be seen in Figure 5.4b, where three peaks that correspond to the load Tmax
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Figure 5.4: Statistics of Motor Torque Request of all Type-A DU tests.

within all tests are depicted. In order to have similar amplitudes, the signals in Xsig were
centered around zero by computing the difference of the adjacent elements. Figure 5.5b
shows the angular speed centered around zero. These pre-filtered and centered around
zero signals constructed the dataset, which worked as input to the methodology for failure
prognosis introduced in Chapter 4 .

The time vector is given in cycles. A cycle is considered as the segment, in which the
drive unit runs with a load Tmax and has a duration of lmax (see Fig. 5.3).
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Figure 5.5: Angular speed collected only during the operation with Tmax.

5.2.2 Generation and preprocessing of relevant features
There were in average 1.5 million data points for each test. This included the data of
the 8 variables from Table 5.1. Traditional machine learning algorithms require a feature
extraction process, in order to process this amount of data, since they are not able to ex-
tract the features from long time series by themselves. On the other hand, deep learning
models enable an automated feature engineering even with this vast dataset. Neverthe-
less, this might require a much bigger DL model and a feature map with a greater width.
These two factors can difficult the implementation of the model in an embedded sys-
tem. Therefore, it was decided that for this large dataset, a manual feature extraction
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takes place prior to the training of both learning algorithms. Moreover, to train the GPR
model, a feature selection step was performed to identify the most important prognostics
parameters. As for the case of the MTCN, the input feature maps were built with all the
generated features and the operating settings.

Feature extraction from the raw signals

Though the database consists of long time series, the data was collected with sampling
times over one second. Therefore, only the following time-based features were extracted
from each DU signal: mean (2.1), standard deviation (2.4), peak to peak (2.11), kurtosis
(2.6) and skewness (2.5). For the computation of these functions, a set of 20 samples of
each time series were considered. In Figure 5.6, four of these statistical values extracted
from the angular speed signal of the 10th DU sample are depicted. As seen in this chart,
the standard deviation and peak to peak provide the clearest overview about how the
condition of the DU worsens with the time until the failure of an element arises. By
doing this data transformation, the amount of samples was reduced by a factor of 20.
The resulting data array Xstats was composed of 20 statistical functions instead of 4 raw
signals like Xsig.
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Figure 5.6: Time based features of the angular speed (DU Sample 10).

Preprocessing of the extracted features

The data array Xstats was standardized by means of equation 4.1. In chapter 4, it was
defined that the reference range should be selected in a scope within 5-10% of the ex-
pected life of the systems. Since the expected lifetime of the DUs in this special test is
3000 cycles, the reference range was chosen as 150 to 250 cycles. Fig. 5.7a displays
the MTP standard deviation of three different drive units. It is seen that this variable
was not centered to a similar value, and there was a shift within its amplitude among
different samples. In Fig. 5.7b, the normalized standard deviation of MTP is shown. Af-
ter the normalization with equation 4.1, this extracted feature was centered around zero
during the operation of the DUs without any anomaly and its amplitude raised with an
increasing damage of an element. The normalized array was stored in the variabe Xnorm.
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Figure 5.7: Signal preprocessing stage.

Moreover, as seen in Figures 5.6 and 5.7, the statistical functions of the raw signals were
affected by random noise. In order to improve the performance of the GPR model, the
features were smoothed with a one sided mean moving average filter (2.15) with a win-
dow equivalent to five. Thereby, the array Xsmooth was created. On the other hand, the
proposed MTCN model has a better performance when trained with noisy inputs. Thus,
the signal smoothing was restricted only for the application with the GPR model.

Figure 5.8a depicts all the extracted features of a single DU without normalization and
Fig. 5.8b shows these variables after the preprocessing stage has been performed. In this
chart, it is also clear how the features have amplitudes close to zero during the initial
cycles. Some of them have a progressing increase of the amplitude until the system fail-
ure artises. Other features remain almost constant throughout the test. In the following
subsection, the selection of the relevant prognostics parameters, which were used to label
the data and train the GPR model, takes place.
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Figure 5.8: Preprocessed signals of the drive unit sample 10.

Selection of the relevant prognostic parameters

The selection of the relevant features for the RUL estimation task was performed ac-
cording to Algorithm 1. The fitness quantities of each variable of Xsmooth are depicted
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in Figure 5.9. The standard deviation and peak to peak variables achieved the hightest
fitness, because they show a clearer trend of the degradation of a system with the time.
A value of Ps = 0.5 was chosen within Algorithm 1, i.e. the variables that made 50%
of the cumulative sum were selected to form the new data array Xred . The reduced array
consisted of the six variables with the highest fitness, which were: std-MTP, std-nMotor,
std-Tin, peak-MTP, peak-nMotor and K-Tout.
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Figure 5.9: Fitness that indicated the suitability of each variable as prognostic parameter.

5.2.3 Data labeling
The endurance tests have mostly a fixed duration and there are only a few run-to-failure
experiments. Moreover, some tests concluded before the desired duration is reached.
Since the drive units had a great variance on their final condition at the end of the en-
durance test, the last measurement could be considered as the end of useful life as with
the C-MAPPS database [83]. The procedure introduced in Section 4.5 was performed to
determine the end of useful life of each system. Thereby, the data could be labeled.

Health index computation and threshold determination

The first step in the data labeling procedure was the transformation of the multidimen-
sional feature space Xred into a one dimensional metric known as health index (HI), which
assesses the condition of the system. To this end, the Mahalanobis distance (2.10) was
implemented. The reference distribution Xre f was selected as the data of all drive units
that was collected within the cycles 150− 300. Then, the limit values were computed
with equation (4.5). The degradation limit (limdeg) was equivalent to 1.82 and the failure
threshold (limEOL) to 2.75. The cycle at which the degradation of each DU began, was
stored in inddeg. Furthermore, the time of the failure occurrence was saved in indEOl .
When the HI of a certain DU has reached limEOL, the probability that it suffers a sudden
malfunction is too high. Within this case study, it was intended to predict how many
cycles the systems can still operate before they arrive to this state. After the degradation
and failure limits were estimated, the systems were classified in three groups, as indi-
cated in Section 4.5.4. There were in total 8 class A DUs, 32 class B DUs and 34 electric
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drives that reached the end of useful life within the test, i.e. they were categorized into
the C class.

Validation of the selected limits

After the conclusion of each endurance test, the DUs go through a mechanical analysis.
There, each element of the electric drive is examined to determine its degradation level.
Through this inspection it is possible to determine the failure cause of the DUs that
are not able to reach the desired test duration. The information collected wihtin these
inspections was used to validate the thresholds and how the systems were categorized.
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(a) HI of Class B DU (sample 33). (b) Mechanical analysis of DU sample 33.
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(c) HI of Class C DU (sample 49). (d) Mechanical analysis of DU sample 49.
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Figure 5.10: Validation of selected thresholds by means of mechanical analysis.

Figure 5.10 depicts the HIs of three different DUs and their respective mechanical
analysis. First, Figure 5.10a shows the curve of the DU sample 33, which is categorized
into the B group. This system could complete the desired test duration. Actually, the
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HI exceeded the first threshold only at the end of the endurance test. The mechanical
analysis indicated that only the gear had some traces of wear, which could only be per-
ceived through a microscope, as seen in Figure 5.10b. This damage did not affect the
operation of the drive. Figure 5.10c displays the HI of a class C DU. This system could
not complete the entire test due to extensive wear traces present on the gear and on the
rotor shaft, as seen in Figure 5.10d. Finally, the HI of sample 47 is shown in Figure
5.10e. Just around 100 cycles after the EOL limit was exceeded, a gear tooth broke, as
depicted in Figure 5.10f.

Through the mechanical inspections it was possible to validate the following points:

• The constructed health index enables a correct monitoring of the system.

• The selected thresholds can correctly indicate when a DU has reached its end of
useful life.

• After the EOL limit is reached, the probability of a sudden failure is very high.

• The proposed approach is a fast and efficient method to label the data for the RUL
estimation task.

Finally, as seen in Figure 5.10, the test did not stop once the system had a considerable
damage but only when the DU was not able to continue its operation. This proposed
data labeling approach is also suitable to be applied as a condition monitoring system.
Therefore, the tests could be stopped once an element is already damaged and thus, spare
test-time, which can be used to start with the following experiment.

Generation of the dataset to train and validate the regression algorithms

The last step prior to the training of the learning algorithms is the definition of the data
that constitutes the training, validation and test datasets with their corresponding labels.
The label of each data array collected at a sample i is given by a piecewise linear target
function (4.7), where the limit maxRUL is determined by (4.8). The labels were stored
in the target vector Y . Furthermore, as indicated in Section 4.5, mechanical systems
have long periods operating without any anomaly and then have an exponential condi-
tion worsening that causes a malfunction. Due to this fact, there was a data imbalance,
where most of the data was labeled with maxRUL and there was a smaller percentage
of data with a different label. Thus, the data was undersampled following the strategy
introduced in Section 4.5.4. First, only the DUs categorized into the C class were con-
sidered for the final data set. Then, only the data collected within inddeg−kr and indEOL
was considered to construct the final dataset, where kr was selected as 500. The final
dataset was separated in training, validation and test subsets as indicated in table 5.2.
This table indicates the rate, with which the data was separated into train, validation and
test subsets. The GPR models require only a train and test subsets, since there are not
intermediate evaluations of the model, which could enable the selection of a model with

89



Chapter 5 Case study: Condition Monitoring of Pedelec Drive Units

the lowest validation loss. Within this table, XredU refers to the undersampled Xred array;
XnormU to the undersampled Xnorm array; and YU to the undersampled target vector. The
feature space size of XnormU is 22 because this array contains the 20 statistical quantities
and the 2 operational settings.

Table 5.2: Properties of the Type-A DU dataset used to train the learning algorithms.

Parameter GPR MTCN
Dataset XredU ,YU XnormU ,YU

Dataset size {36050,5},{36050,1} {36177,22},{36177,1}
Size train set 85[%], 29 DUs 75[%], 27 DUs

Size validation set - 15[%], 5 DUs
Size test test 15[%], 5 DUs 5[%], 2 DUs

maxRUL 300

5.2.4 Failure forecasting

RUL estimation with a GPR model

First, the train data XredU was scaled in the range [0,1]. The scaled data was the input to
the GPR training approach depicted in Figure 4.12. An exponential kernel (Table 2.1)
was selected as covariance function. Then, two models were created. The first one was
trained with the complete training dataset and the second model was trained with the
FITC [69] approximation method to reduce its size. The output of the GPR models was
smoothed with a one-sided mean moving average with a window equal to ten.

Figure 5.11 displays the RUL predictions of two different samples performed by both
GPR models. In the first chart, a sample that belongs to the training dataset is shown.
The second graph depicts a sample of the test dataset. As seen in Figure 5.11, the GPR
models perform an efficient RUL estimation for the sample belonging to the training
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Figure 5.11: RUL predictions with a GPR model for two different DU samples.
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dataset. However, they have difficulties to accurately estimate the RUL of the electric
drives of the test dataset, mainly when the EOL is close (< 50 cycles). As seen in both
charts, the estimations performed by both the exact and approximated models are very
similar. Nonetheless, the approximated model has a compression rate of over 13 times,
as indicated in Table 5.4. In Section 5.2.5, a comparison between the GPR models and
the TCN and MTCN architectures in terms of generalization capability, model size and
computational complexity is given.

RUL estimation with a TCN and MTCN architectures

First, a vanilla TCN architecture was built and then, its optimal hyperparameters were
selected with the approach introduced in Section 4.7.3. Prior to the HP optimization, the
array XnormU was scaled in the range [0,1]. The limits llow and lup, which are required
to generate the random populations (Algorithm 3), are reported in Table 6.3. Each pop-
ulation P consisted of 16 individuals. Each indivual had 9 genes and was trained for 30
epochs. The fitness of every individual is given by equation (4.10). After the complete
population was evaluated, the parents were selected by means of Algorithm 4 and the
crossover was performed as indicated in Section 4.7.3. A restricted amount of genes
of the resulting population Pnew were mutated with the process described in Algorithm
5. The inputs for this algorithm were the following: mutrate = 0.3, ∆mutrate = 0.95 and
gpop = 144. The termination condition was given after all the desired populations have
been evaluated. In this case, 50 populations were assessed for the TCN model. The
optimized HP search took in total 27.3 hours to evaluate the 800 models. In Fig. 5.12,
the distribution of the fitness values as well as the median of each evaluated population
are displayed. For clarity of the figure, the outliers are not displayed. Within this chart,
it is possible to identify the downtrend of the fitness values. The optimal individual
within this search is found in the population 47. The genes of this optimized solution are
displayed in Table 5.3.
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Figure 5.12: Box plot of the fitness at each epoch of the hyperparameter tuning approach
with a GA.
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The search of the optimized HPs for the MTCN model was started with a population
that consisted of 8 random generated individuals and the 8 individuals with the best
results of the HP search corresponding to the TCN. In this case, each individual had 10
genes, because the standard deviation of the Gaussian noise gN is also considered as a
HP. Only 15 populations were evaluated for this search. The optimized hyperparameters
for the MTCN model are also displayed in Table 5.3.

Table 5.3: Optimized hyperparameters obtained with a GA for the Type-A DUs.

ks dilRL nb f ilt wt dr η bs ndense n f latten gN
TCN 5 24 8 3 0.2 1.7e-3 30 85 10 -

MTCN 5 24 8 3 0.2 1.7e-3 30 10 10 0.1

Finally, the data augmentation strategy described in Algorithm 6 was implemented,
and both optimized models were retrained for 200 epochs to further improve their ac-
curacy and generalization capability. Figure 5.13 depicts the RUL estimation of three
different drive units. Each DU belongs to a subset, namely training, validation and test
datasets. Contrary to the GPR models, it was not neccesary to smooth the output of
the TCN and MTCN architectures to achieve understandable results. Futhermore, these
models have a better efficiency when the systems are close to the EOL than the GPR. In
these charts, it can be seen how the MTCN delivers an output that is closer to the target
function than the prediction generated by the TCN model. This can mainly be noticed
in the curves of the DUs that belong to the validation and test datasets. The following
subsection gives a numerical comparison among the TCN and MTCN models.
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Figure 5.13: RUL predictions with TCN and MTCN models for 3 different Type-A DU
samples.

5.2.5 Results and models comparison
The RMSE (4.9) and the cumulative relative accuracy (CRA) metrics are used in the
evaluation of the models. The CRA is defined as a normalized weighted sum of relative
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accuracies at specific time instances [85] and it is given by:

CRA =
100
|p| ∑

i∈p
w(i)RA, (5.1)

where p is the set of all the indexes where a prediction is performed, |p| is the cardi-
nality of the set and w(i) is a weighting function depending on the RUL. This weight-
ing function is normally selected so that predictions closer to the EOL have a greater
importance in the metric computation. In this approach, we select the indexes p =
[300,250,200,150,100,50,1], which are n cycles before the EOL and a linear weighting
function w(r(i)) = a1 p+a2, where a1 =−1/300 and a2 = 1, so that for predictions close
to the EOL w(i) = 1 and for the indexes close to maxRUL w(i) = 0.8. RA is the relative
accuracy, which is defined as follows:

RA = 1−
|ypredictedi− ytargeti|

ytarget
. (5.2)

Reproducibility of the models

To determine the reproducibility of the models, each architecture was trained 20 times.
In every iteration, the training, validation and test datasets were changed. The TCN and
MTCN were trained for 50 epochs. Figure 5.14 depicts the RMSE and CRA values of
the four evaluated models. We can directly observe that the variance in the results of
the deep learning architectures is much greater than of the GPR models. This implies
that this traditional machine learning approach is more precise than the evaluated DL
architectures.

Train Validation Test

25
50
75
100
125
150

R
M
S
E

GPR

GPRa

TCN

MTCN

Train Validation Test

25

50

75

C
R
A

Figure 5.14: Models reproducibility evaluation

In general, the GPR trained with the exact method achieved a better performance for
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the train set. However, the generalization capability of the approximated method matched
the performance of the exact GPR and even some GPR approximated models achieved
a slightly better result in the test set. Moreover, the deep learning architectures outper-
formed the GPR models. Particularly, the proposed MTCN had the best performance for
the validation and test subsets among the four evaluated models.

Performance evaluation

Table 5.4 summarizes the performance of the four evaluated models. The displayed
RMSE, CRA and training time results are the median values obtained during the eval-
uation of the models reproducibility. The MTCN outperformed the other three models
in both metrics and for each data subset. The exact GPR and the TCN had a similar
efficiency than the MTCN with the training data, but they were not able to generalize
as well as the MTCN with unseen samples. On the other hand, the approximated GPR
had a poor performance with the training data, but its efficiency with unssen data was
very close to that of the exact GPR. As seen in Table 5.4, the disadvantage of the MTCN
model is its ”long” training time. The MTCN required 3 times longer to be trained than
the TCN and 23 times more than the approximated GPR. However, since the training
process takes place offline, a long training time does not represent a drawback in the
final implementation.

Table 5.4: Results of the GPR, TCN and MTCN architectures for the drive units Type-A.

GPR TCN MTCNExact Approximated

R
M

SE Train 48 64 50 48
. Validation - - 64 59

Test 76 75 71 67

C
R

A Train 52 47 53 54
Validation - - 46 49

Test 44 44 43 46
Training time [s] 100 16 124 377

Comparison in terms of model size and computational complexity

Within this approach, not only the performance is an important factor in the selection of
the regression algorithm, but also the models size and the number of MAC operations
play an important role. The information about the number of parameters, the size and
the amount of MAC computations of each architecture is given in Table 5.5.

As already mentioned in Section 2.5.2, the GPR is a non-parametric approach, which
depends only on past observations to make a new prediction. The number of parameters
refers to the number of observations that are stored in the model and the parameters of
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the covariance function. As for the TCN and MTCN models, the number of parameters
refer to the weights of the convolutional and dense layers and the biases of the architec-
tures. The model size indicates the size of the quantizied binaries of each model. The
architectures were quantizied as a 16 bit floating point, which generated a negligible loss
of accuracy in all models. The exact GPR model was over 10 times bigger than any
other model, which made it unsuitable for many embedded systems. The MTCN was
the most compact architecture by itself with a size of only 43 kBytes. Nevertheless, the
deployment of deep learning models, which were trained and compiled with Tensorflow
[2], requires not only the storage of the parameters in the memory unit, but also of Ten-
sorFlow Lite for microcontrollers. This framework enables the deployment of machine
learning models in microcontrollers and has a size of around 16 kB [23]. The model
parameters and the framework are constant values that are stored in the Flash memory.
Even with the addition of the TensorFlow Lite framework, the size of the MTCN was
very close to the approximated GPR, which required the least space in the flash memory.

The RAM neccesary to allocate the partial results depends on how the model performs
a prediction given an input. As for the GPR, an input is multiplied by each sample within
the dataset of the GPR. Nevertheless, each multiplication is added to the total result, and
thus, the RAM required for the GPR models is only around 1 kB. Furthermore, the GPR
models required the least amount of MAC operations to perform a new prediction, which
demonstrates a lower computational complexity of these models. On the other hand, the
TCN and MTCN architectures require several hundred of thousands of MAC operations
to make a new prediction. However, an advantage of CNNs is their ability for paralleliza-
tion. Therefore, not all the intermediate results must be saved simultaneously. Following
the method to estimate the space in RAM for the TCN models, which is explained in
Section 4.9.1, the MTCN requires less space in the RAM memory to perform a new
prediction than the TCN.

Table 5.5: Models size, MAC operations and target platform settings [59].

GPR TCN MTCN ST Nucleo
Exact Approx. F411RE

Number of parameters 194553 14003 10323 8345
Model size [kB] 761 55 51 42

Space in Flash memory [kB] 761 55 67 58 512
Space in RAM [kB] 1 1 54 31 128

MAC operations 134772 12000 380885 749620 <6MOps

In conclusion, the approximated GPR is the most compact model that can perform a
new prediction with the least amount of computations. The main drawback of this model
is its reduced accuracy. On the other hand, the proposed MTCN architecture delivers
the most accurate results and require less space both in Flash memory and in RAM
than the TCN. However, this model requires, for this specific application, more MAC
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operations than the other three evaluated models. All the presented models fit into the
target plattform, which settings can be seen In Table 5.5.

5.2.6 Flexibility of the proposed approach for failure forecasting
So far, the results presented in this case study were obtained with the data of the Type-A
DUs. To demonstrate the flexibility of this prognostic method for the implementation
with diverse electric drives, the approach was applied to forecast the failures of the Type-
B DUs. Due to the similarity in the data of both DU types, the same data cleansing
procedure, which is explained in Section 5.2.1, was performed. The feature extraction
from the raw signals and the preprocessing of these variables took place as described in
Section 5.2.2. Through the feature selection stage, the following relevant features were
found: std-MTP, std-nMotor, std-Tin, peak-MTP and peak-nMotor. These features were
used to compute the HI and to train the GPR models. After the data labeling stage was
performed, the DUs were classified as follows: 24 DUs are categorized as A group, 17
as B group and 23 as C group. The dataset with the C class DUs, which was used to
train, test and validate the regression models, is shown in Table 5.6. A piecewise linear
function is also used to construct the target vector. The magnitude of maxRUL decreased
from 300 to 250, which means that the EOL of this DU type is reached sooner once the
degradation has started.

Table 5.6: Properties of the Type-B DU dataset used to train the learning algorithms.

Parameter GPR MTCN
Dataset XredU ,YU XnormU ,YU

Dataset size {28977,5},{28977,1} {28991,22},{28991,1}
Size train set 85[%], 19 DUs 75[%], 17 DUs

Size validation set - 15[%], 4 DUs
Size test test 15[%], 4 DUs 5[%], 2 DUs

maxRUL 250

Four models were created to estimate the RUL of the electric drives: an exact GPR, a
GPR approximated with the FITC method [69], a TCN model and a MTCN architecture.
In order to accelerate the search of the optimal hyperparameters of the TCN and MTCN
models, the initial population of the GA contained 8 randomly generated individuals
and the best 8 individuals that were obtained in the hyperparameter optimization of each
model for the Type-A DUs. Then, only 20 populations were evaluated instead of 50
as with the first drive type. The optimized hyperparameters of both architectures are
displayed in Table 5.7.

The predictions performed by the GPR models were smoothed with a mean moving
average filter that has a window of 10. Figure 5.15 depicts the target RUL of three DUs
and the predictions performed by the four evaluated models. The first chart displays the
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5.2 Failure prognosis of drive units for pedelecs

Table 5.7: Optimized hyperparameters obtained with the GA for the Type-B DUs.

ks dilRL nb f ilt wt dr η bs ndense n f latten gN
TCN 3 24 9 3 0.3 1e-3 11 20 17 -

MTCN 3 24 7 3 0.32 1e-2 11 15 17 0.2

results of a sample that belongs to the train batch. The four models provided a precise
prediction, but the TCN and MTCN architectures had a lower deviation in their outputs,
although none smoothing filter was used. In the second chart, the target function of a
sample corresponding to the validation set is shown. Only the predictions of the MTCN
and TCN models are shown, because the GPR does not use samples for validation. Both
architectures delivered a similar estimation, but the TCN had a slightly better accuracy
in values close to zero. Finally, the third chart depicts the predicitions done by the four
models for a sample of the test batch. The GPR models could not generalize correctly.
Their estimation of the TTF was delayed. Thus, the alert for maintenance might be
activated too late. On the other hand, the MTCN could predict the failure on time and its
output had less fluctuations than the output of the TCN, which indicates a more reliable
estimation.
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Figure 5.15: RUL predictions with TCN and MTCN models for three different Type-B
DU samples.

The performance of each model as well as their size and amount of MAC operations
are summarized in Table 5.8. On one side, the MTCN achieved the lowest RMSE val-
ues for the validation and test datasets as well as the highest CRA for the test dataset.
This demonstrates that the MTCN generalizes better than the other evaluated models. On
the other hand, the TCN had also a good performance with unseen samples and with a
smaller network. Furthermore, this architecture needed around 20% less MAC computa-
tions than the MTCN. Finally, the approximated GPR resulted in a very compact model
with only a 3% of the MAC computations of the MTCN. Nevertheless, this reduced
model was not able to generalize as well as the MTCN and TCN architectures.
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Chapter 5 Case study: Condition Monitoring of Pedelec Drive Units

Table 5.8: Results of the GPR, TCN and MTCN architectures for the drive units Type-B.

GPR TCN MTCNExact Approximated
R

M
SE Train 36 44 33 43

. Validation - - 51 48
Test 68 67 56 48

C
R

A Train 50 44 48 39
Validation - - 49 47

Test 44 42 41 47
Number of parameters 134775 12003 5970 7300

MAC operations 134772 12000 311330 385100

With the dataset of the Type-B DU it was demonstrated how flexible the developed
approach is. Only with minor changes the failure prognosis of a new electric drive could
be performed.

5.3 Diagnosis of faulty elements of pedelec drive units
Within this second case study, the data was collected directly in a bike during normal
rides instead of on test benches. The objective is to validate the fault diagnosis algorithms
with the type of data that is normal during the operation of the pedelecs. For example,
here there were not only three operating settings but a wide range of possible motor
performances. Thus, the algorithms were adapted for these varying settings. In this
experiment, the signals that were collected were defined instead of using the variables
that were available in an existing database.

5.3.1 Experimental setup description
All the experimental tests were carried out with a downhill Bike. A data logger GL1010
was connected to the drive unit to record the data for the training and validation phases
of the described approach. In total, 23 CAN-signals were collected with a sampling fre-
quency of 100Hz. Furthermore, an external three axes accelerometer was glued to the
side of the drive unit. This sensor was sampled with 24kHz and thus, it required an
additional recording system known as SQuadriga II, which was mounted to the handle-
bar. This hardware was added to compare the proposed method, which uses the internal
sensor signals, with a sensor type that is frequently used in condition monitoring. Fig-
ure 5.16 depicts the experimental setup. Fifteen Drive Units were tested in total, five of
which were taken as reference, i.e. they did not present any symptom of a fault. The
remaining drive units were prepared with two different error patterns. The first batch
of five drive units had a damaged bearing; the second batch had a damaged gear. Both
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5.3 Diagnosis of faulty elements of pedelec drive units

parts were slightly damaged so it was still possible to drive the bicycle with these drive
units. A route of 25 km with slopes of over 13% was determined to perform the tests.
Therefore, it was possible to cover all performance ranges of the drive unit. The route
was driven twice with each sample. Contrary to failure prognosis, failure diagnosis is a
task that can be accurately done with a compact ML model as a SVM.

1

2

1- Drive Unit
2 - Data logger
3 – 3-Axis 
accelerometer
4 – SQuadriga II

4

3

Figure 5.16: Setup used for the data generation and collection.

Data cleansing

A first filtering function removed all the information that was considered as irrelevant for
the present approach. This data refers to the measurement segments where the drive unit
was switched off, which occurs during the standstill of the bicycle, when the user stops
pedaling or when the maximum assistance speed (25km/h) is exceeded.

5.3.2 Search of optimal range
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Figure 5.17: Distribution of MTR during
real rides.

Figure 5.17 depicts the distribution of the
requested motor torque of all tests after
the data cleansing procedure. Contrary to
the endurance test, during normal rides the
maximum motor loads are rarely reached.
Thus, the task was to find the range of this
reference signal at which the SVM model
performs better. To this end, Algorithm 7
was implemented. In total, 220 different
ranges were evaluated. Since there were
3 different classes, 3 SVM models were
generated. For each model, the optimal
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Chapter 5 Case study: Condition Monitoring of Pedelec Drive Units

range should be located. The search of the optimal range was performed with 4 DUs
of each class. The remaining samples of every class were used to test the selected range
and features.

First, the following seven time-based features for each data array with a length dt of 5
seconds were computed: mean (2.1), standard deviation (2.4), peak to peak (2.11), kur-
tosis (2.6), skewness (2.5), RMS(2.2) and crest factor (2.12). Then, the extracted signals
were normalized with the z-score normalization (2.14). After the feature generation, the
number of signals increased from 23 to 161. By using the SVM-RFE, 161 SVM models
had to be trained for each range, which took in average 50 seconds. With 220 ranges
to be evaluated and three different classification tasks, the search with the normal SVM-
RFE would take around 9 hours. On the other hand, the optimization of this method with
the SA algorithm enabled the evaluation of a reduced amount of models to obtain an op-
timal feature subset. The search for each range was reduced to an average of 20 seconds,
which gives a total of around 3.5 hours for the complete search. This is a reduction in a
factor of 2.5.

Figure 5.18 displays the search with the normal SVM-RFE and with the SVM-RFE op-
timized by SA. This example corresponds to the search within the range 230−345mNm
of the classes: reference and damaged gear. On one side, the normal SVM-RFE requires
160 iterations to find the best feature space. At the beginning of the search there is a

0 50 100 150
0

30
60

Sc
or

e

0 50 100 150
0.95

1

A
cc

ur
ac

y

0 50 100 150
0

75
150

Fe
at

ur
es

(a) SVM-RFE.

0 5 10 15
0

30
60

Sc
or

e

0 5 10 15
0.9

0.95
1

A
cc

ur
ac

y

0 5 10 15
0

75
150

Fe
at

ur
es

(b) SVM-RFE with SA optimization.

Figure 5.18: Dimensionality reduction within optimal range selection.

linear decrease in score. The score reduction is caused by the lower amount of fea-
tures selected, and a slight increase of accuracy with less features. Only at the end of the
search, when there were only 8 features or less left to train the model, the score increased
due to rapid decrease in accuracy. On the other hand, this technique accelerated with the
SA required only 30 iterations, from which 14 were the accepted transitions that are dis-
played in Figure 5.18b. The proposed dimensionality reduction technique delivered an
optimal feature subset with 8 variables and a cross validation accuracy of 97.6% for the
specific analyzed range.
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5.3 Diagnosis of faulty elements of pedelec drive units

The results of the three searches of the optimal range are depicted in Figure 5.19. The
x and y-coordinates of each chart represent the minimum and maximum values of the
analysed motor torque ranges, and the saturation bar to the right represents the score.
Low scores represent an SVM classifier with high accuracy and a reduced number of
features.
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Figure 5.19: Scores of every evaluated range for each classification task.

It can be seen that, in all cases, during the operation of the motor with low loads, the
separation of the classes is more reliable than when the DU operates with high loads or
when the complete torque spectrum is considered. One reason behind the large scores in
the ranges with high loads is the consideration of the factor γ/Npoints to estimate the energy
E in Algorithm 7, where Npoints is the amount of data points in the evaluated range. As
seen in Figure 5.17, loads over 2Nm are scarce. Therefore, the data collected in this
range is minimal, which increases the score. This factor assures that the selected optimal
range is frequently reached by the users.

5.3.3 Results and comparison with a traditional method for fault
diagnosis

In Table 5.9, the resulting optimal range and feature subset for each classification task are
reported. In all cases, the range that enabled an accurate identification of the failure type
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Chapter 5 Case study: Condition Monitoring of Pedelec Drive Units

comprised 115 to 230mNm. On the other hand, the optimal feature subset changed for
each classification task. The features extracted from one or more motor currents (IA, IB,
IC) were always present in the best feature subsets. Also the currents and voltages (id,
ud, uq), which are obtained with the Park-transformation, were relevant DU signals that
enabled the fault diagnosis. Finally, the motor angular speed (Nmotor) and the Y-axis
of the accelerometer within the DU (AccY) provided significant information to identify
certain error patterns. The motor torque together with the motor angular speed were the
most relevant signals that were used to forecast the RUL of the DUs within the endurance
test. Since the motor torque is derived from the currents, it is reasonable that these raw
signals are also useful to diagnose the fault type.

Table 5.9: Results of the fault diagnosis approach.

Classes Optimal Optimal Data Score test [%] Parametersrange feature subset Points TPR TNR Accuracy

Reference - Gear 115-230
IA(µ), IC(µ)

262 95.2 98.7 96.9 582
AccY(RMS)

Reference - Bearing 115-230
Nmotor(RMS),

215 96.2 90.5 93.2 606IA(µ,κ), IC(κ)
ud(µ,σ ,RMS)

Bearing - Gear 115-230
IB(µ), id(η)

267 94.3 97.1 95.2 656
uq(µ), AccY(µ)

The scores presented in Table 5.9 correspond to the data collected from the DUs be-
longing to the test batch. Each data point represents a measurement with length dt. In the
results, not only the overall accuracy is considered but also the true positive rate (TPR)
and the true negative rate (TNR). These metrics are important mainly if there is a data
inbalance. The TPR is given by T P/(T P+FN) and the TNR by T N/(T N +FP), where T P are
the true positives, T N the true negatives, FP the false positives and FN the false nega-
tives. The true values refer to the correctly classified samples and the false values to the
wrongly sorted samples. The worst performance was achieved by the models responsi-
ble to identify DUs with a damaged bearing. Around 10% of the measurements of the
test DU with a damaged bearing were misclassified as good DUs and almost 6% were
classified into the category damaged gear. The overall accuracy of the three SVM mod-
els is between 93 and 97%. To achieve a more accurate diagnosis, a fuzzy logic can be
intergrated to the system, which determines the fault type only after a predefined amount
of consecutive measurements have been classified to the same category.

To perform a new prediction, the SVM model requires only the samples that are sup-
port vectors and the kernel parameters. Thus, the amount of parameters that have to be
stored in the microcontroller is very reduced. All the models can make efficient predic-
tions with less than 1000 parameters. In total, around 1800 parameters are required to
identify the two type of faults described in this case study. The fault diagnosis is per-
formed with the three SVM models in a DDAG architecture, which was described in
Section 4.8
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Figure 5.20: Correlation plot between two
motor currents. © 2019 IEEE [101].

Figure 5.20 depicts the correla-
tion plot between the mean values
of the motor phase currents IA and
IC, which are two relevant features of
the SVM model that separates DUs
with damaged gears from healthy
DUs. Furthermore, a SVM model
was trained only with these two vari-
ables. The solid line in the chart rep-
resents the hyperplane constructed by
the SVM model. Within this figure, it
is seen that the selected features make a clear distintion between both classes, which
simplifies the task for the selected classification model.

Finally, the fault diagnosis with the data of the external 3-Axis acceleometer was per-
formed. To this end, the raw signals were transformed into the frequency spectrum by
the FFT. Since the frequency spectrum is dependent on the rotational speed of the motor,
a measurement of one minute with a driver cadence as constant as possible was done.
Figure 5.21 depicts the FFT of the accelerometer Y-axis, which shows the clearest dif-
ference between the fault types. Actually, no machine learning algorithm was required
to identify the error patterns with this type of sensor. As seen in this chart, the faulty
samples caused high amplitudes in specific frequencies, which were different for each
fault type. On the other hand, the DUs without anomalies had low amplitudes among
the complete frequency spectrum. With this analysis, it is demonstrated how this type

Scaled frequency
1 1

Scaled frequency

Reference
Damaged Bearing

Reference
Damaged Gear

Figure 5.21: FFT of Y-Axis of the external accelerometer.

of sensors are ideal for condition monitoring of electric drives of vehicles. However, the
cost of the external sensor and of the data acquisition hardware can easily reach several
thousand euros. It would be unfeasible to adapt such hardware to a pedelec and even
to a car. Therefore, the propossed fault diagnosis approach remains as a very efficient
technique to classify the fault type of electric drives on-board.
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Chapter 5 Case study: Condition Monitoring of Pedelec Drive Units

5.4 Conclusion of the case study
Through this case study, it was possible to evaluate the effectiveness of the three core
components of the developed approach, which are the data labeling, the failure prog-
nosis and the failure diagnosis, with a real system application. First, the technique to
determine the RUL of the electric drives showed consistency with the mechanical ex-
aminations that were done after the conclusion of the tests. The proposed data labeling
method is an easier method to determine the magnitude of the failure than by analyzing
each mechanical element. This technique is also suitable as condition monitoring method
within endurance tests for example. Furthermore, the fault prognosis approach enabled
an accurate estimation of the RUL of the elctric drives with machine learning models
that are suitable for an implementation in the target platform . The proposed MTCN ar-
chitecture demonstrated the most robust performance and this with a smaller model size
than the TCN. It was also demonstrated how with minor changes, the algorithms can be
adapted to forecast the failure of a different electric drive type. Finally, with the fault
diagnosis approach an accurate identification of the fault type during the normal oper-
ation of the drive was achieved. This required the location of an optimal motor torque
range and feature subset, which enabled the generation of a reliable model. Moreover,
the approach can be a cost-effective solution to perform an on-board monitoring.

Within this work, the fault prognosis and diagnosis have been performed with two
independent models. Nevertheless, the MTCN is already able to predict failures even
with multiple fault types. This implies that the extracted features in the first CNN lay-
ers should contain enough information to perform a classification of the error patterns.
To this end, a dense layer with a Softmax activation should be integrated to the archi-
tecture, as depicted in Figure 5.22. This new architecture would avoid the need of two
independent models.
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Figure 5.22: MTCN for simultaneous RUL estimation and fault diagnosis.
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Chapter 6

Case study: Failure Forecasting of
Aircraft Engines

The objective of this case study is to validate and compare the developed algorithms for
RUL estimation against other related techniques, such as the approaches described in
Section 3. To this end, the open source database known as Commercial Modular Aero
Propulsion Systems Simulation dataset (C-MAPSS) [83] is used. This chapter first gives
a description about the C-MAPPS database. Then both failure forecasting algorithms
are implemented to predict the time to failure (TTF)) of the aircraft engines. Finally, a
comparison with other machine learning approaches is given. Through this case study, it
is also possible to evaluate the flexibility of the methodology to be implemented to other
rotating machinery besides electric drives.

The experiments described in Section 6.2 were performed with Matlab R2019b and a
32 GB RAM. On the other hand, the experiments from Section 6.3 are performed with
an NVIDIA Quadro P2000 with 5 GB, CUDA 10.2 and Tensorflow 2.1 [2]. The results
of this case study have been published in [62].

6.1 Database description

Figure 6.1: Diagram of engine simu-
lated in C-MAPPS. © 2006 IEEE [84].

C-MAPPS is a simulation framework, which
is used to reproduce run-to-failure experiments
of aircraft gas turbine engines. Figure 6.1 de-
picts the diagram of the simulated turbofan
engine. Since over 1000 run-to-failure ex-
periments are simulated, the database is vast
enough to train not only traditional machine
learning (ML) models but also deep learning
(DL) architectures. Thus, this database has
become the most common choice to train and
validate learning algorithms for failure predic-
tion.
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Chapter 6 Case study: Failure Forecasting of Aircraft Engines

The C-MAPPS database has 4 data subsets, each of one has a different number of
operating conditions, fault conditions and data length, as shown in Table 6.1. Each subset
is further divided in training and test datasets.

Table 6.1: C-MAPSS Data Set

Dataset FD1 FD2 FD3 FD4
Train trajectories 100 260 100 249
Test trajectories 100 259 100 248

Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

The training dataset contains the
simulation of engines from an oper-
ation under normal conditions until
the occurrence of the failure. On the
other hand, the test data consists of
segments of measurements that have
taken place at an unkown time prior to
the failure occurrence. The database
signals include the operational set-
tings and 21 sensor values. Figure 6.2 shows the time series of two different sensors
of a sample from the subset FD1 and of a sample from the FD4 subset. From Figure 6.2a
we can identify that with constant operating conditions, the time series clearly show a
change on their magnitude with the time. On the other hand, the sensor values collected
from turbines working under varying conditions do not have a trend that clearly indicates
the change in condition with the time, as seen in Figure 6.2b.
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(a) Sample from FD1 train dataset.
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Figure 6.2: Turbofan engine samples of two data subsets.
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6.1.1 Performance evaluation

The main task is to predict the remaining useful life (RUL) of the test trajectories at the
last available measurement. Saxena et al. [84] defined the metric Score (6.1) to compare
the performance of the approaches that are developed to solve this task. This metric
penalizes more heavily late predictions than early predictions. In either case, the penalty
grows exponentially with increasing error. In this work, the RMSE (4.9) is also used to
evaluate the performance of the proposed framework. For both metrics, the closer they
are to zero the better the performance is. All the results presented for this specific case
study were computed considering only the last data point of the tests trajectories, as it is
indicated by the developers of the database.

S =

{︄
∑

n
i=1 e−

di
13 −1 for di < 0

∑
n
i=1 e

di
10 −1 for di ≥ 0

(6.1)

di = RULest−RULtrue (6.2)

6.1.2 Data labeling

According to the dataset authors, the failure occured just after the last measurement of
each train trajectory was performed. Thus, the data labeling procedure was reduced
only to the construction of the target function. To this end the cycle time of the last
measured values was selected as tend in (4.6). Moreover, the creation of the piecewise
target function (4.7) requires the selection of maxRUL. This value has a great influence
in the score function. The magnitude maxRUL was defined emprically for each dataset.

6.2 Implementation with a GPR model

Not all stages of the methodology depicted in Figure 4.1 had to be performed in order
to predict the TTF of the turbines within this database. First, the data preparation was
not required, since this dataset was already structured in a similar way than the defined
data structure from Table 4.1. Moreover, the time series included in this database were
relatively short, with a length ranging from 20 to 550 samples. Thus, the feature ex-
traction stage of this approach was excluded. The procedure was then reduced to the
preprocessing of the sensor signals, the dimensionality reduction and the training of the
GPR model.

First, the 21 sensor signals and the three operating settings were normalized with the Z-
score standardization and then scaled in the range [0,1]. Afterwards, the dimensionality
reduction was performed according to Algorithm 1. Figure 6.3 shows the fitness values
obtained for each one of the 21 sensors. Each color represents the sensor fitness for a
specific dataset. As seen in the chart, the sensors had similar fitness values for the subsets
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Chapter 6 Case study: Failure Forecasting of Aircraft Engines

FD1 and FD3. On the other hand, the sensor measurements within the datasets FD2 and
FD4 had in general lower fitness values, due to the lack of a clear trend caused by the
changing operation conditions, as seen in Figure 6.2b.
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Figure 6.3: Fitness of the sensor values for each data subset.

As indicated in Algorithm 1, the feature selection depends on the factor Ps. This value
specifies that the features that make Ps of the cummulative sum are chosen as the relevant
features. To determine the optimal magnitude of Ps, the performance of the GPR model
with ten different possible values was evaluated. To this end an exponential covariance
function (Table 2.1) was selected. Figure 6.4 shows the RMSE values in dependence
of Ps for the four datasets. For this example, maxRUL is selected as 120 in all cases.
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Figure 6.4: Performance change in dependence of Ps.

As seen in Figure 6.4, the
RMSE remained almost constant
for all datasets with Ps values be-
tween 0.7 and 1. The RMSE
started its degradation from val-
ues around 0.6. The RMSE for
the case Ps = 0.7 was almost the
same as in Ps = 1. However,
the number of features was de-
creased around 50%, depending
on the subset. Since less features
represent a lower chance of over-
fitting, a value of Ps = 0.7 was selected. In Table 6.2 the selected sensors for each dataset
are shown. The data of these sensors, together with the first and second operation set-
tings, were used as inputs to the GPR model.

The value of maxRUL has a great influence on the performance of the learning algo-
rithm. In order to select an optimized quantity, values in the range [10,150] for FD1 and
FD3 were evaluated. Moreover, values in the range [50,200] were assessed for FD2 and
FD4. The score and RMSE values in dependence to maxRUL for the four datasets are
shown in Figure 6.5. The change in score and RMSE was very similar among all sub-
sets. With high values of maxRUL, the model tried to predict the TTF with more cycles
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in advance than it was capable of. By decreasing the value of maxRUL, the model could
more accurately predict the RUL when the TTF was equal or lower than the maximum
value of the piecewise function, since this is the maximum value that the model could
output. Nonetheless, the last measurement of several test trajectories took place over 150
cycles prior to the end of the useful life. Thus, the score of these trajectories increased
with an exponential rate with a decreasing maxRUL, as observed in Figure 6.5. The best
maxRUL for each dataset is reported in Table 6.2. Finally, a GPR model was built for
each dataset and trained using the corresponding sensors and maxRUL values.
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Figure 6.5: Results in dependence of maxRUL.

Table 6.2: Selected sensors and maxRUL for each data subset

Dataset Features Sensors maxRUL

FD1 11
S2, S4, S7, S9, S11, S12, S14, S15, S17, S20,

110
S21

FD2 12
S3, S4, S5, S8, S9, S11, S12, S14, S15, S16,

150
S18, S21

FD3 10 S2, S4, S7, S8, S9, S11, S12, S13, S14, S17 100

FD4 13
S2, S3, S4, S8, S9, S11, S14, S15, S16, S17,

130
S18, S19, S21

In Figure 6.6, a predicted trajectory for each data subset is displayed. The gray area
represents the 95% confidence interval that the GPR model outputs. The narrower the
confidence interval, the greater the certainty that the predicted value is correct. The GPR
models, which were built for the turbines operating under constant settings, delivered
a more reliable RUL estimation, since the predicted value did not change considerable
among two steps and the confidence interval was narrower. On the other hand, the built
models for the turbines of the datasets FD2 and FD4 generated predictions with greater
fluctuations and with wider confidence intervals. To reduce the effect of these variations,
the output of the GPR models for FD2 and FD4 were smoothed with a one sided mean
moving average filter (2.15) that had a window size of 10.
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Figure 6.6: Predicted RUL of four test trajectories with the GPR approach.

In Figure 6.7, the box plot with the score values of the trajectories in the 4 subsets
is shown. The median scores were between 1.2 and 4, and the maximum values of the
box plots were in the range from 13 to 50. All the values above the maximum values
were outliers. The outliers were mainly caused by two factors, either the target RUL
was many steps above the maximum output that the model could deliver or the trajectory
length was really short. Lets evaluate the specific case of FD2. Figure 6.8 depicts the
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Figure 6.7: Score of every test trajectory.

score in dependence of the target RUL, the trajectory length and the difference between
the predicted an real value. We can observe that indeed the trajectories, which were
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outliers, had a target RUL close to 200 and their length was really low. Only under
50 samples were collected for these turbines. The score of the three worst predictions
was 4687. This means that 1.1% of the turbines caused 45.5% of the total score for the
dataset FD2. In the last chart, it can be observed how with an increasing absolute value of
the residual between predicted and target value, the score increased exponentially. From
Figure 6.8, it can be concluded that the model is capable to perform accurate predictions
when the end of useful life is closer. This is more relevant in a real application, than to
accurately estimate the RULl hundreds or thousands of cycles in advance.
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Figure 6.8: FD2 scores in dependence of target RUL and trajectory length.

In Section 6.4, the total score and RMSE values for each dataset are given. Further-
more, in that section the method is compared with other machine learning approaches
proposed by other authors.

6.3 Implementation with an MTCN architecture
The presented framework for RUL estimation introduced in Section 4.7 was implemented
to perform the RUL estimation of the turbines belonging to the C-MAPPS database. Only
the feature extraction stage was not required due to the short length of the time series
collected for each turbine. Meanwhile, the data labeling procedure for this database was
explained in Section 6.1. Following the data labeling procedure explained in Section 6.1,
a piecewise linear target function was used to train the deep learning model. The optimal
values of maxRUL for each dataset found with the GPR model (Table 6.2) were as well
used to label the data for the MTCN architecture.

The signals were standardized with the Z-score normalization and the features were
scaled in the range [0,1]. The MTCN model does not require a feature selection stage
and only the constant variables were removed from the datasets. Afterwards, the time
series were transformed into feature maps, which were used as inputs to train the MTCN.
The feature map array of the training dataset was separated into training and validation
subsets. The separation was done by a ratio of aircrafts belonging to each dataset. The
training dataset was composed of the measurements that belong to 85% of the engines
and the validation dataset of the data of 15% of the turbines.
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As seen in Figure 6.9, the minimum trajectory length of each training dataset is greater
or equal that the median trajetory size of the corresponding test dataset. Thus, it was
probable that during the hyperparameter optimization, a sequence length greater than the
shortest test trajectory was chosen. To construct a feature map with shorter trajectories
than the sequence length, a zero padding was used. Therefore, it was neccesary to per-
form the training of the model including feature maps with zero padding. To this end, the
training and validation feature map arrays were adapted with the data regularization tech-
nique given by Algorithm 6. It was defined that the percentage of feature maps that were
duplicated (pm) was 75 for the train set and 100 for the test subset. The maximum num-
ber of rows of an image that could be filled with zeros was defined as: dL =W−minLtest ,
where W is the width of the input feature map and minLtest is the length of the shortest
trajectory in the test set.

FD1Train FD1Test FD2Train FD2Test FD3Train FD3Test FD4Train FD4Test
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Figure 6.9: Length of the train and test trajectories of each dataset.

An MTCN model was built and trained for each data subset. Every model had the
same architecture and only the training and test data changed for each learning algo-
rithm. The base architecture was tuned by means of a genetic algorithm as detailed in
Section 4.7.3. The subset FD4 was used to tune the model, since it is the most complex
dataset. Moreover, to compare the performance of the MTCN against the TCN, the same
procedure for hyperparameter tuning was performed to find an optimized TCN model.
The first step in the HP automatic tuning is the population creation, which is performed
according to Algorithm 3. This requires the definition of the minimum and maximum
possible values of each hyperparameter. These limits are presented in Table 6.3. More-
over, each population P was determined to have a size of 16 individuals (ni), each one
with 10 genes ng, which are the hyperparameters. Each individual was trained for 40
epochs and was evaluated with (4.10). Afterwards, the parents S were selected following
Algorithm 4 and the crossover step took place as indicated in section 4.7.3. A deter-
mined amount of genes of the new population Pnew were mutated following Algorithm
5. The parameters required for this algorithm were defined as follows: mutrate = 0.3,
∆mutrate = 0.95 and gpop = 160. The termination condition is given after all the desired
populations have been evaluated. In this case, 30 populations were assessed for each
model. Table 6.4 reports the found optimized hyperparameters for each architecture. Af-
ter the optimization procedure concluded, the maxRUL values were adapted to enhance
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Table 6.3: Constraints of the hyperparameters for the search with the genetic algorithm.

Hyperparameter llow lup
Kernel size (ks) 2 5

Dilation rate (dilRL) 21 25

Number of filters (k) 2 60
Window displacement (wt) 1 10

Dropout rate (dr) 0.05 0.75
Learning rate (lr) 1e-5 1e-2

Batch size (bs) 5 75
Number of neurons of dense layer (ndense) 1 200

Number of elements of the flatten layer (n f latten) 1 20
Satandard deviation of the Gaussian noise distribution (gN) 0 0.5

the models performance. The following limits were found as the best for both the MTCN
and TCN models: FD1-110; FD2-160; FD3-110; and FD4-150.

Table 6.4: Optimized hyperparameters obtained with the GA.

ks dilRL k wt dr η bs ndense n f latten gN

TCN 2 25 10 1 0.45 8e-3 46 162 7 -
MTCN 4 23 8 3 0.2 2e-3 20 20 10 0.5

Figure 6.10 depicts the estimated RUL of four different turbines performed by both the
TCN and MTCN models. The displayed curves correspond to the same turbines chosen
to demonstrate the suitability of GPR for RUL prediction (Fig. 6.6). As seen in Figure
6.10, both models were able to make an accurate estimation of the TTF. Moreover, the
MTCN showed a better performance with RUL values under 50, i.e. this model was
more accurate when the failure was closer.

In Fig. 6.11, the estimated RUL of the last measurement of each trajectory in FD4 is
depicted. It can be seen that the proposed model delivered a very close prediction to the
real value when the turbofan had less than 150 cycles prior to the failure occurrence. The
great increase in the score was caused by the samples, from which the measurements
were stopped when the RUL of the turbine was above maxRUL. This because we com-
puted the scores with the real RUL of the test aircraft engines and not with the piecewise
target function. Moreover, with our approach it is possible to predict the time of fail-
ure occurrence already 160 cycles in advance for FD2 and 150 cycles for FD4, which
are the most complex datasets. Most approaches can predict the failure 125 cycles in
advance and only in [4], authors could predict the failure occurrence with 135 cycles of
anticipation for the complex datasets.
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Figure 6.10: Predicted RUL of four test trajectories with the TCN and MTCN models. ©
2020 IEEE [62].

The following section introduces a quantitative comparison between the TCN and
MTCN models. Moreover, the performance of these architectures is compared with
other deep learning models published within the last five years as well as with approaches
based on traditional machine learning algorithms.

6.4 Comparison with other state of the art machine
learning models for RUL estimation

The comparison of the results achieved with the proposed algorithms among other ma-
chine learning techniques for RUL estimation is shown in Table 6.5. The approaches are
enlisted in order of publication year. Machine learning approaches comprise traditional
models such as kernel methods or neural networks; and deep learning architectures. For
the sake of simplicity, the traditional machine learning methods are refered as machine
learning models within this section. The approaches enlisted in Table 6.5 are introduced
in Chapter 3.

The first five methods in Table 6.5 are based on ML architectures, one of which is

114



6.4 Comparison with other state of the art machine learning models for RUL estimation

0 25 50 75 100 125 150 175 200 225 250

Test engine number

0

50

100

150

200

R
U
L

Real RUL Prediction

Figure 6.11: Predicted RUL by the MTCN of all test engines within the dataset FD4. ©
2020 IEEE [62].

the proposed approach that uses a GPR model with an exponential kernel for the RUL
estimation. Half of these methods are only tested with the first dataset, which is the least
complex. The multi layer perceptron built and trained by the authors in [82], achieved
the worst performance in all the datasets with scores exceeding one million for FD2 and
FD4. Authors in [53], proposed a Kalman Filter ensemble to perform the RUL estima-
tion. Though this model had an acceptable performance when a turbine operates under
constant settings, but if there were multiple working conditions or multiple failure types
arose, its efficiency decreased drastically. On the other hand, the developed methodology
that uses a GPR model had a better score and a lower RMSE for the datasets FD2, FD3
and FD4 than the other traditional machine learning methods. Only the SVR achieved
a better score in the subset FD1. Furthermore, the GPR also demonstrated a better per-
formance when the engines operate under varying settings in comparison to the deep
learning architectures based on CNNs [52, 82, 111].

The bottom eleven rows present the results of the methodologies that use deep learn-
ing models to predict the failure time of the aircraft engines. There are two main DL
architectures that were implemented to solve this sequence modeling task: CNNs and
LSTMs. On base of these architectures, new models with slight modifications or a com-
bination of both methods were proposed by the authors of the published works reported
in Table 6.5. It is clear how most of these approaches outperformed those using machine
learning models in all subsets.

The CNN [82], and the deep CNN [52] approaches showed a great efficiency for the
subsets FD1 and FD3, i.e. when the engine had only one operating setting. However,
they were not able to extract relevant features from sensor signals collected during the
operation under varying conditions. Thus, the CNN models had a bad performance with
the datasets FD2 and FD4. Not even the inclusion of dilated convolutions [111] increased
the performance of the predictive model with an operation under varying settings. Au-
thors in [104] proposed the DSCN architecture with residual blocks that used depthwise
separable convolutions instead of standard convolutions. Their architecture was able to
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Table 6.5: Results for C-MAPSS data set with state of the art ML algorithms.

Approach Score RMSE
FD1 FD2 FD3 FD4 FD1 FD2 FD3 FD4

M
ac

hi
ne

L
ea

rn
in

g ELM [37] 1046 - - - - - - -
SVR[42] 448 - - - - - - -
SKF [53] 3900 5e4 2.2e5 2.8e6 25.5 30.2 36 39
ensemble
MLP [82] 17972 7.8e6 17409 5.6e6 37.5 80.0 37.4 77.3

GPR 880 10296 993 7479 18.5 27.4 22 30.2

D
ee

p
L

ea
rn

in
g

CNN[82] 1287 13570 1596 7886 18.44 30.29 19.81 29.15
Deep LSTM[118] 338 4450 852 5550 16.14 24.49 16.18 28.17

BiLSTM[106] 295 4130 317 5430 13.65 23.18 13.74 24.86
Deep CNN[52] 274 10412 284 12466 12.61 22.36 12.64 23.31

TCN-LSTM[38] 1220 3100 1300 4000 23.57 20.45 21.17 21.03
DSCN[104] 261 4368 247 5168 10.95 20.47 10.62 22.64

RBM-LSTM[4] 231 3366 251 2840 12.56 22.73 12.1 22.66
Dilated CNN[111] - - - - 12.61 28.51 12.62 30.73

LSTM-Fusion [116] 255 1398 211 7727 11.18 16.12 10.24 21.97
TCN 459 5540 540 4032 18,31 24,05 17,31 25,44

MTCN 349 4728 426 3913 15.6 23.71 16.9 24.8

greatly increase the efficiency of an CNN model for the case that the engines run with
changing conditions. Furthermore, the inclusion of residual blocks with dilated causal
convolutions also improved the performance of CNNs for the datasets FD2 and FD4.
The first experiment using a TCN architecture [38] combined the TCN with LSTM lay-
ers. This architecture was very efficient for the dataset with changing conditions but,
strangely, worsened the performance of the CNN for the subsets with constant settings.
Moreover, the TCN model that was built within this work achieved a performance close
to the TCN-LSTM network for the FD2 and FD4 subsets, and had a much better effi-
ciency for FD1 and FD3. Finally, the proposed MTCN architecture outperformed the
traditional TCN in all data subsets. In fact, the proposed MTCN model achieved the
best results in the most complex dataset among all models that used CNN layers and
it was only outperformed by the LSTM model introduced in [4]. In general, the algo-
rithms with LSTM cells [4, 106, 116, 118] demonstrated a higher efficiency than CNN
models, especially for the subsets where the turbines worked with changing settings.
Particularly, the semisupervised architecture with LSTMs and restricted Boltzmann ma-
chines [4] achieved the best performance in the most complex dataset. Moreover, the
LSTM-Fusion provided the best result in the subsets FD2 and FD3. Nevertheless, these
architectures consisted of a great amount of parameters, which as well increased the
computation complexity and thus, complicates the embedded implementation of these
models.

Table 6.6 indicates the number of parameters of the architectures with the best scores
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and their computational complexity, which is given by the number of MAC operations.
The amount of parameters was obtained according to the information that the authors
provided about the network architecture. Only in [104], the number of parameters was
given by the authors. The MAC operations of the LSTM layers are given by (3.1). Mean-
while, the MAC operations of covolutional and depthwise separable convolutional layers
were computed by equations (2.51) and (2.52) respectively. Moreover, the ratio of the
best models in terms of size, computational complexity and performance for FD2 and
FD4 in comparison to the proposed MTCN model are presented in Table 6.6.

Table 6.6: Comparison of the models in terms of number of parameters and MAC oper-
ations. Baseline MTCN

Approach Parameters MAC Size MAC Score ratio
Operations ratio ratio FD2 FD4

BiLSTM [106] 82849 38773760 10.9 218 0.88 1.38
RBM-LSTM[4] 121264 18144264 16 102 0.72 0.73

LSTM-Fusion[116] 84201 3975500 11.1 22.3 0.3 1.98
DSCN[104] 51553 496912 6.8 2.8 0.92 1.32

TCN 14985 182382 1.9 1.03 1.17 1.03
MTCN 7553 177800 - - - -

The first three models consist of LSTM layers and the last three are architectures based
on CNNs. The LSTM models and the DSCN architecture achieved better results for FD2
in comparison to the proposed MTCN model. Only the RBM-LSTM [4] outperformed
the MTCN model in both datasets by around 30%. However, this was achieved at the
expense of a great computational complexity. The RBM-LSTM required over 18 million
MAC operations, which is over 100 times the number of computations required by the
MTCN. The high complexity came from the need of appending the complete measure-
ment of a turbine in a single feature map. Since the mean size of the test trajectories
within FD2 and FD4 is 150 and the number of signals is 24, the input images had an
average size of {150,24}. After the restricted Bolzmann machine layer, the size was
incremented to {150,64}. Thus, the computations within the first LSTM layer, which
had 128 hidden units, were almost 15 million. Another factor that has to be considered
for the embedded implementation of this accurate model is the great amount of param-
eters. Actually this model is the bigest among the 6 analyzed architectures, with 16
times more parameters than the MTCN. On the other hand, the BiLSTM[106] had an
improvement of 12% in comparison to the MTCN model for FD2, but it required over
38 million MAC operations, which is over 200 times more than the operations required
by the MTCN. The highest amount of computations took place at the second Bi-LSTM,
due to the amount of hidden units (32) combined with the size of input feature map,
which was of {128,150}. Thus, over 32 million operations were required in this layer.
Moreover, the LSTM-Fusion [116] reduced the score of the MTCN by 70% for FD2.
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Nevertheless, this model had a score of almost two times greater than our proposed ap-
proach in the most complex dataset (FD4). The authors that developed this architecture
mentioned that the model received inputs with different window lengths, which were in
the range from 10 to 100. By considering a value for W equivalent to 50, the number of
MAC operations was almost 4 millions for the evaluation of a single feature map. Even
though this model required only 1/10 of computations than the Bi-LSTM, it still had a
computation complexity 20 times greater than of the MTCN model.

The models with CNN layers had a reduction in the amount of MAC operations in
comparison to the LSTM architectures. The DSCN [104] architecture required less than
half of a million computations to achieve accurate results. In fact, it required only 3 times
more MAC operations than the MTCN model and it has a slight better performance for
FD2. Nevertheless, it is outperformed in the dataset FD4 by the MTCN. Moreover, our
proposed architecture had almost seven times less parameters than the DSCN, which
makes it more suitable for the implementation in an embedded system with a reduced
memory space. Finally, the proposed MTCN also demonstrated a better performance
than the TCN for both datasets. This improvement in accuracy was achieved by simul-
taneously halving the size of the model. However, the number of MAC operations were
only reduced by 3% in comparison to the TCN.

6.5 Conclusion of the experiment
The C-MAPPS database enabled the validation of the functionality of the regression
algorithms for RUL estimation. Furthermore, with this dataset it was possible to compare
the efficiency of the proposed approach against other related approaches. Finally, it was
demonstrated that with the proposed methodology, an accurate failure prediction can be
performed even with the arise of multiple fault types and varying operation conditions.

On one hand, the results achieved by the GPR are the best among all other traditional
machine learning algorithms for this database. Moreover, this model provides better
results than CNNs for the complex datasets (FD2 and FD4). As already explained in
Section 4.9.1, the computational complexity of the GPR is minimal, since only one mul-
tiplication takes place simultaneously and the result is added at each product. Thus, it
can be easily ported into an embedded system for an online monitoring of a mechanical
system. On the other hand, the proposed MTCN provides a higher accuracy than the
GPR. Actually, the MTCN architecture achieves results that are similar or even better
than the outcome of state of the art deep learning architectures. Moreover, the MTCN
requires less parameters and less MAC operations than any other published deep learning
approach for RUL estimation.
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Chapter 7

Summary and Future Research

This thesis aimed to develop a comprehensive methodology that covers all the relevant
stages, which are required to perform an on-board condition monitoring of electric drives.
This objective posed several research questions, being the main one: How to generate ac-
curate intelligent algorithms both for fault diagnosis as well as for failure prognosis that
can be deployed in an embedded system for an on-board monitoring. After an exten-
sive research of the state of the art, it was identified that an accurate fault diagnosis was
possible with traditional machine learning algorithms. These models are normally com-
pact and therefore easy to integrate into an embedded system. The greatest challange
arose from the need to develop a model that could perform an accurate failure prognosis
without having millions of parameters, which would restrict its deployment in an em-
bedded system. Two approaches were researched to overcome this challenge. First, a
Gaussian Process Regression was generated to solve the RUL estimation task. The case
studies demonstrated that the GPR, together with the preprocessing steps that are part of
the methodology, enabled an efficient RUL estimation even when the system operated
with changing conditions. Additionally, the approach presented in this work delivered
the best results for the C-MAPPS database when compared to other literature works that
were based on traditional machine learning algorithms. The proposed GPR model even
surpassed the performance of deep learning models like CNNs when the aircraft engine
operated with varying settings, as seen in Table 6.5.

Aside from the GPR, in this thesis it was researched how a deep learning architec-
ture based on temporal convolutions could deliver an accurate and compact model that
would enable an on-board monitoring. This investigation resulted in the development of
a novel deep learning architecture named Multipath Temporal Convolutional Network
(Fig. 4.16). A genetic algorithm was implemented to automatically select the hyperpa-
rameters of the MTCN and its training settings, which guaranteed the obtainment of an
optimized model with reduced computational time and effort. The findings of the second
case study indicated that the MTCN delivered a performance that was very close to the
best LSTM model but with 16 times less parameters and 100 times less MAC operations,
as presented in Table 6.6. To the best of our knowledge, this network is the most compact
deep learning architecture that can accurately estimate the RUL of rotating machines.

A second research question was: How to generate a vast database that could enable
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the validation of the proposed methodology in a real case scenario. The generation of big
databases for failure prognosis is a very complex task, since electric drives can operate
hundreds of hours before providing any sign of degradation. In this work, it was pro-
posed to collect the data directly during the development phase, where electric drives go
through several tests, being the endurance tests the best experimental setup to collect big
data that enables the training of deep learning algorithms. The proposed methodology
overcomes the challenge of data labeling for regression tasks by means of an statistical
method. First, a health index that indicates the condition of each drive at every cycle is
computed. The HIs of the drives are used to estimate thresholds that indicate the begin-
ning of the degradation and the time at which the end of useful life is reached. From this
point, the probability of a sudden failure is very high. Thus, the latest point in time at
which the maintenance should take place is when this state is reached. The efficiency
of this data labeling approach was demonstrated in the first case study as seen in Figure
5.10. Furthermore, this approach has other useful applications, such as the optimization
of the time at which endurance tests are stopped, without adding any additional hardware
like current condition monitoring systems.

Following the proposed data collection and labeling approaches, a propietary database
was generated using sensor signals gathered in over 100 endurance tests of two types
of electric drive units for pedelecs. The data belonging to the first DU type was used
to prove the efficiency of the prognosis algorithms and the data labeling approach in a
real case scenario, as proposed in one of the objectives of this work. The GPR deliv-
ered good estimations with a very compact model. Nevertheless, when presented with
new samples, the output of the GPR presented great fluctuations,, which would hinder
the decision taking based merely on its outcome. On the other hand, the MTCN proved
a very high generalization capability with a compact model, which fits into the target
platform as shown in Table 5.5. Furthermore, the high flexibility of the model was val-
idated by performing the RUL estimation for the second DU type. With the GA it was
possible to quickly find an optimized MTCN architecture for this new task. Tables 5.4
and 5.5 present the results of the GPR and MTCN models for the first DU type in terms
of accuracy and model size. Meanwhile, the results of the prognosis models with the
data of the second DU type are summarized in Table 5.8. Furthermore, a second propi-
etary database consisting of data collected in normal rides of pedelecs with healthy and
slightly damaged electric drives was used to validate the diagnosis component of the
methodology. Several ranges of the motor performance were evaluated to find the oper-
ating condition at which the identification of the faults was more accurate during normal
rides. The SVM models had a better performance and required less features when the
electric drives operated with low torques. The findings of this case study demonstrated
that also the diagnosis component of the methodology delivers reliable estimations when
the monitored system operates with changing conditions.

Through these case studies it was possible to validate the suitability of the proposed
comprehensive methodology in a real case scenario and compare it to other related tech-
niques. The resulting models were accurate and compact enough, such that the decission
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taking regarding the time of maintenance could be based only on the predicted output,
which additionally could be computed direclty in the electric drive. Furthermore, Sec-
tion 4.9.2 provides a guideline to compress the size of the model and reduce the amount
of MAC operations, in case that the resulting models are still too large for a determined
embedded system.

The last requirement of the methodology, was that no additional hardware such as
sensors or data acquisition systems should be required to perform the monitoring of the
drive’s conditions. The objective was to obtain algorithms, which were able to extract
the relevant information directly from the existing sensors. Within the first case study,
it was demonstrated that sensors that are present in electric drives such as current and
rotor position sensors, as well as signals derived from them, like the motor torque and
the motor angular speed, are enough to perform a reliable diagnosis and forecasting
of mechanical failures. Therefore, this methodology could be easily implemented to
monitor the condition of other electric drive types such as drives for electric cars.

In this work, all initial research questions were solved and all initial objectives were
fulfilled. Therefore, it was possible to develop a comprehensive methodology for on-
board condition monitoring that met all the requirements defined at the beginning of the
thesis. In conclusion, this work proposes a method that succesfully fills the gaps in the
state of the art with regard to on-board condition monitoring.

7.1 Future Research
The proposed methodology demonstrates great effiiency towards on-board condition
monitoring of electric drives. However, this methodology can still be improved. Three
main aspects of the methodology that can be strengthened are:

• the reduction of size and amount of MAC operations of the MTCN model;

• the reduction of the amount of data required to train the model;

• and the synergy of both condition monitoring tasks in a single model.

An interesting technique to further reduce the computational complexity and size of
CNNs is by using depthwise separable convolutions [15] instead of standard convolu-
tions. The DSCs reduce the MAC operations by a factor of 1/C+ 1/kc · kw in comparison to
standard CNNs [19]. An aspect to be considered when implementing DSCs is the loss
in accuracy when the model parameters are quantized to fixed-point. As for reducing the
size of the model, techniques like knowledge distillation [30] or approximate computing
[63] can be researched.

As already explained throughout this thesis, the generation of big databases for failure
prognosis is a complex task that could take even years. Moreover, electric drives are
mass-produced components that are in continuous development. Thus, it is possible that
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an electric drive is replaced before enough data is collected for the generation of reliable
intelligent algorithms for condition monitoring. Transfer Learning plays an important
role to face this challenge, as it allows that knowledge gathered from previous system
generations can be transferred to the latest developed system. In the case of a deep
learning architecture, the previous knowledge refers to a model trained with the data of
old system generations. By only retraining the lasts layers of the base model with data
from a new, similar system, it would be possible to generate a reliable algorithm for
condition monitoring with a restricted amount of data available.

The last main aspect that can be further researched is how to integrate both condition
monitoring tasks into a single multi task model. In Section 5.4 an MTCN architecture
that outputs both the time to failure as well as the fault type is proposed. To train this type
of deep learning network, the fault type should be obtained with an statistical method,
similar as with the data labeling approach for failure prognosis. Thus, mechanical in-
spections after each test can be completely avoided. This type of multi-task network
should be investigated in more detail in upcoming works.
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