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Abstract

Learning-based methods for sequential decision making, i.e., methods which leverage data, have
shown the ability to solve complex problems in recent years. This includes control of dynamical
systems, as well as mastering games such as Go and StarCraft. In addition, these methods often
promise to be applicable to a wide variety of problems.

A subclass of these methods are model-based methods. They leverage data to learn a model
which allows predicting the evolution of a dynamical system to control. In recent research, it was
shown that these methods, in contrast to model-free methods, require less data to be trained. In
addition, model-based methods allow re-using the dynamics model when the task to be solved
has changed, and straightforward adaptation to changes in the system’s dynamics.

One particular focus of this thesis is on learning dynamics models which can data-efficiently
adapt to changes in the system’s dynamics, as well as the efficient collection of data to adapt a
learned model. In this regard, two novel methods are presented.

In the application domain of autonomous robot navigation, in which both parameters of the
robot and the terrain are subject to change, a novel method comprising an adaptive dynamics
model is presented and evaluated on a simulated environment.

A further advantage of model-based methods is the ability to incorporate physical prior
knowledge for model design. In this thesis, we demonstrate that leveraging physical prior
knowledge is advantageous for the task of tracking and predicting the motion of a table tennis
ball, respecting its spin.

However, model-based methods, in particular planning with learned models, have to cope with
certain challenges. For long prediction horizons, which are required if the effect of an action is
apparent only far in the future, model errors accumulate. In addition, model-based planning is
commonly computationally intensive, which is problematic if high-frequency, reactive control
is required. In this thesis, a method is presented to alleviate these problems. To this end, we
propose a two-layered hierarchical method. Model-based planning is only applied on the higher
layer on symbolic abstractions. On the lower-layer, model-free reactive control is used. We show
successful application of this method to board games which can only be interacted with through
a robotic manipulator, e.g., a robotic arm, which requires high-frequency reactive control.





Zusammenfassung

Lernbasierte Verfahren zur sequenziellen Entscheidungsfindung, d. h. Verfahren, die Informatio-
nen aus Daten extrahieren und nutzen, haben in der jüngeren Vergangenheit komplexe Probleme
gelöst. Dies umfasst die Regelung dynamischer Systeme und die Beherrschung von Spielen wie
Go und StarCraft. Zudem versprechen diese Verfahren, auf eine große Klasse von Problemen
anwendbar zu sein.

Eine Unterklasse dieser Verfahren sind modellbasierte Verfahren. In ihnen wird aus Daten ein
Modell gelernt, was es ermöglicht, Aussagen über das zukünftige Verhalten des zu regelnden
Systems zu treffen. In jüngerer Forschung hat sich gezeigt, dass diese Verfahren im Vergleich
zu modellfreien Verfahren, in denen kein explizites Modell über das Verhalten des Systems
gelernt wird, dateneffizienter zu lernen sind. Weiterhin ermöglichen modellbasierte Verfahren
die Weiternutzung des Systemmodells, wenn sich die zu lösende Aufgabe ändert, und eine
einfache Adaption des Systemmodells, wenn sich die Dynamik des Systems ändert.

Diese Arbeit beleuchtet u. a. Aspekte des Lernens von Systemmodellen unter dem besonderen
Fokus der dateneffizienten Adaptierbarkeit auf sich ändernde Dynamik sowie das effiziente
Sammeln von Daten zur Adaption eines gelernten Modells, wozu zwei neuartige Verfahren
vorgestellt werden.

Im Anwendungsfeld der Roboternavigation, in der sowohl Parameter des Roboters als auch
der Bodenbeschaffenheit Änderungen unterliegen, wird ein Verfahren basierend auf adaptiven
Dynamikmodellen vorgestellt und empirisch in einer Simulationsumgebung untersucht.

Ein weiterer Vorteil modellbasierter Verfahren ist die einfache Einbindung physikalischen
Vorwissens in die Modellbildung. In dieser Arbeit wird demonstriert, dass dies vorteilhaft ist für
die Modellierung und Vorhersage der Flugbahn eines Tischtennisballs unter Berücksichtigung
der Eigenrotation des Tischtennisballs.

Modellbasierte Verfahren, insbesondere modellbasiertes Planen, unterliegen jedoch auch Nachtei-
len: Bei langen Prädiktionshorizonten, welche erforderlich sind, wenn sich der Effekt einer Aktion
erst weit in der Zukunft auswirkt, akkumulieren sich Modellfehler. Zudem ist modellbasiertes
Planen sehr rechenintensiv, was für eine hochfrequenten, reaktive Regelung problematisch ist.
In dieser Arbeit wird ein Verfahren vorgeschlagen, um diese Probleme des modellbasierten
Planens abzuschwächen. Dazu wird in einer zweistufigen Hierarchie nur auf der oberen Ebene
modellbasiertes Planen auf symbolischen Abstraktionen genutzt, während auf der unteren Ebene
modellfreie, reaktive Regelung zum Einsatz kommt. In dieser Arbeit wird dieses Verfahrens
erfolgreich zum Lösen von Brettspielen angewendet, mit denen nur in Form von robotischen
Manipulatoren (bspw. ein Roboterarm) interagiert werden kann, welcher eine hochfrequente
reaktive Regelung benötigt.
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Notation

Numbers, Vectors, Matrices, Sets

ℝ Set of real numbers
ℝ>0 Set of real numbers greater than zero
ℝ≥0 Set of real numbers greater or equal to zero
ℕ Set of natural numbers, excluding 0
ℕ0 Union of natural numbers and {0}
𝑥, 𝑋 A scalar (𝑥 ∈ ℝ, 𝑋 ∈ ℝ)
𝒙 A column vector (𝒙 ∈ ℝ𝑛 , includes vectors of dimension 1, i.e., scalars)
𝑿 A matrix (𝑿 ∈ ℝ𝑛×𝑚)
[𝒙]𝑖 𝑖th entry of vector 𝒙 (1-based indexing)
[𝑿 ]𝑖 , 𝑗 Entry of matrix 𝑿 at row 𝑖 and column 𝑗 (1-based indexing)
𝑿⊤ Transpose of 𝑿
𝑿−1 Inverse of square nonsingular matrix 𝑿 ∈ ℝ𝑛×𝑛

X A finite, ordered collection of elements (tuple), e.g. X = (𝒙1 , 𝒙2 , 𝒙3)
𝒳 A set, e.g. 𝒳 = {𝒙1 , 𝒙2 , 𝒙3}
𝑰𝑛 Identity matrix of size 𝑛 × 𝑛
1𝑛 All-one vector of dimension 𝑛
0𝑛 All-zero vector of dimension 𝑛
0𝑛×𝑚 All-zero matrix of dimension 𝑛 × 𝑚
diag(𝒔) Square matrix with 𝒔 on its diagonal and 0 elsewhere

Sequential data

𝒐𝑛 Observation at timestep 𝑛
𝒔𝑛 State at timestep 𝑛
𝒂𝑛 Action at timestep 𝑛
𝑟𝑛 Reward at timestep 𝑛
𝑥𝑚:𝑛 Ordered list of elements from 𝑚 to 𝑛 (inclusive), i.e., 𝑥𝑚:𝑛 :=

(𝑥𝑚 , 𝑥𝑚+1 , . . . , 𝑥𝑛−1 , 𝑥𝑛)
𝑥(𝑡) Variable 𝑥 at continuous time 𝑡 ∈ ℝ

Probability distributions

𝒙 ∼ 𝒩(𝝁,𝚺) Random variable 𝒙 is distributed according to a (multivariate) Gaus-
sian distribution with mean vector 𝝁 and covariance matrix 𝚺

𝑝(𝒙) = 𝒩(𝒙 | 𝝁,𝚺) 𝑝(𝒙) is the p.d.f. of a Gaussian distribution
𝑥 ∼ 𝒰[𝑎, 𝑏] 𝑥 ∈ ℝ is uniformly distributed on the closed interval [𝑎, 𝑏]
𝑥 ∼ 𝒰{1, . . . , 𝐾} 𝑥 ∈ {1, . . . , 𝐾} is uniformly distributed, i.e., Pr[𝑥 = 𝑘] = 1

𝐾 , ∀𝑘 ∈
{1, . . . , 𝐾}.



𝔼𝒙∼𝑝(𝒙)[ 𝑓 (𝒙)] Expectation of 𝑓 (𝒙), with 𝑥 distributed according to distribution with
p.m.f./p.d.f. 𝑝(𝒙)

Information theory

H[𝑝(𝒙)] Shannon entropy of a probability distribution with p.m.f. 𝑝(𝒙)
H[𝑝(𝒙)] Differential entropy of a probability distribution with p.d.f. 𝑝(𝒙)
H(𝒙) Shannon (differential) entropy of a random variable 𝒙
H(𝒙 | 𝒚) Conditional Shannon (differential) entropy of a random variable 𝒙

given 𝒚
KL[𝑝(𝒙) | | 𝑞(𝒙)] Kullback-Leibler divergence between a probability distribution with

p.d.f./p.m.f. 𝑝 and a probability distribution with p.d.f./p.m.f. 𝑞
I(𝒙 , 𝒚) Mutual information between two random variables 𝒙 and 𝒚, with

𝒙 , 𝒚 ∼ 𝑝(𝒙 , 𝒚)
I(𝒙 , 𝒚 | 𝒛) Conditional mutual information between the random variables 𝒙 and

𝒚 given 𝒛, with 𝒙 , 𝒚, 𝒛 ∼ 𝑝(𝒙 , 𝒚, 𝒛)

All logarithms occurring in computing the Shannon entropy, differential entropy, Kullback-
Leibler divergence, mutual information, and conditional mutual information, are to the base 𝑒
(Euler’s number). Consequently, all the above quantities are measured in “nats".

Miscellaneous

𝒪(<expr>) Big O notation; an algorithm has time or memory complexity in the
order of <expr>, e.g., 𝒪(𝑚𝑛3).

ReLU(𝒙) Rectified Linear Unit (ReLU). For 𝒙 ∈ ℝ𝐷 , [ReLU(𝒙)]𝑖 =
max([𝒙]𝑖 , 0) ∀𝑖 ∈ {1, . . . , 𝐷}.

𝒥 An objective function for maximization (e.g., evidence lower bound,
max𝜃 𝒥(𝜃)).

ℒ An objective function for minimization (e.g., loss function, min𝜃 ℒ(𝜃)).
𝟙[<predicate>] Iverson bracket (Iverson, 1962). Takes value of 1 if <predicate> is true,

0 otherwise.
𝒙 = onehot(𝑛, 𝑁) Vector 𝒙 ∈ {0, 1}𝑁 with [𝒙]𝑛 = 1, [𝒙]𝑚 = 0 ∀𝑚 ∈ {1, . . . , 𝑁} \ {𝑛}.



Acronyms

p.d.f. Probability density function
p.m.f. Probability mass function
BFS Breadth-first search
BOED Bayesian optimal experimental design (see Subsection 4.3.1)
CEM Cross-entropy method (see Subsection 2.6.1)
GP Gaussian process (see Subsection 3.3.1)
EKF Extended Kalman Filter (see Subsection 6.3.5)
ELBO Evidence lower bound (see Subsection 2.5.2)
LGSSM Linear Gaussian state-space model (see Section 6.3)
MDP Markov decision process (see Subsection 2.3.1)
ML Machine learning (see Section 2.4)
NP Neural Process (see Subsection 4.3.2)
POMDP Partially observable Markov decision process (see Subsection 2.3.2)
RL Reinforcement learning (see Subsection 2.3.6)
VAE Variational Auto-Encoder (see Subsection 2.5.3)





Overview 1.
1.1. Introduction

This thesis revolves around sequential decision making problems, in which an agent takes actions
in an environment in order to fulfill some task. We assume aspects of the task and environment to
be unknown, which the agent has to infer from data — i.e., it has to incorporate learning.

An example for such a problem is learning to play a board game, e.g., chess, in which an agent
learns which moves are more likely to lead to a win than others. When playing a board game,
deciding on which moves to make is not the only decision making problem. In addition, the
execution of a move itself also requires decision making, e.g., about how to move the hand in
order to grasp a chess piece. This may also incorporate learning, e.g., about which movements
are suited to reliably grasp the chess piece.

The way humans make decisions can be linked to the dual process theory of cognitive psychology,
which suggests two different modes of human thinking (Evans, 1984). Kahneman (2003) denotes
them by System 1 (intuition, thinking fast) and System 2 (reasoning, thinking slow). System 1 is
fast, affective, automatic or even unconscious. Exemplarily, a chess player observes a particular
opening by his opponent. Through historic plays, he has collected experience on which reacting
strategy is promising to win the game, and selects his next move accordingly.

System 2, however, is slow and effortful. Relating to the chess playing example, an example of
System 2 thinking is when a player imagines multiple possible moves, evaluates their outcomes,
and chooses his next move based on these considerations.

Technical implementations of sequential decision making agents can be classified into model-free
and model-based approaches (Moerland et al., 2023; Sutton, 1991; Sutton and Barto, 2018). Model-
free approaches typically share properties of System 1: Action selection is based on (learned)
heuristics, and fast. Typically, a mapping (policy) is learned from a current situation (e.g., chess
board state) to an action (game move), which bounds the solution to a particular task.

With a model-based approach, multiple possible futures can be imagined and evaluated, which
is computationally intensive, but easier to apply to a variety of tasks. For this, a model of the
environment is learned, modeling the effect of an action, e.g., the effect of a particular chess
move on the board state. Leveraging a model to foresee the consequences of actions and acting
accordingly is related to the slow and effortful operations of System 2.

In some environments, in particular in the real world, the dynamics are subject to change —
exemplarily, the chess opponent changes his playing style, or the chess piece might be slightly
moist, making it more difficult to grasp. A model-based method is more straightforward to adapt
to this situation, as the model only encodes information on the environment’s dynamics, and not
on the task, unlike the policy does in a model-free method. Another advantage of model-based
methods is that physical prior knowledge can easily be integrated into the model. This aligns
with the classification by Kahneman (2003), stating that operations of System 1 (model-free) “are
governed by habit and [. . . ] therefore difficult to control or modify", while operations of System
2 (model-based) are “relatively flexible and potentially ruled-governed".
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Model-based methods to sequential decision making and their adaptation capabilities form
the main body of this thesis. We propose a novel method for adaptive dynamics models which
are learned directly from high-dimensional observations such as images in Chapter 3. With
the capability to adapt to varying dynamics, the question arises on how to interact with an
environment in order to quickly learn how it behaves, and subsequently adapt the model
based on this experience. Figuratively speaking, a human might “experiment" with the moist
chess piece to learn how is behaves under different graspings, to be able to stably grasp it. A
computational method for this active learning of dynamics models is presented in Chapter 4. In
Chapter 5 we consider the special case of robot- and terrain-aware navigation, in which a robot,
whose dynamics are subject to change, has to navigate over varying terrains. We also address this
with adaptive dynamics models. Chapter 6 demonstrates the efficacy of incorporating physical
prior knowledge in a model which predicts the motion of a table tennis ball for robotic return.
The board game example introduced above serves as a good example for the challenges adressed
in Chapter 7. In order to play a board game, not only logical planning capabilities are required
(to plan the next move), but also fast and reactive control (for moving a robotic hand). We present
a learning agent which captures these two requirements.

Structure of this thesis While the above aims to serve as an informal introduction to model-
based sequential decicion making and the challenges adressed in this thesis, after commenting
on historical remarks, we will outline the contributions of this thesis in a more technical way.
For this, we first briefly introduce some basic terminology as preliminaries for the following
discussions. Then, we present general and real-world challenges of sequential decision making
(Section 1.4), followed by concepts and approaches to sequential decision making and their
relation to the aforementioned challenges in Section 1.5. The contributions of this thesis are
summarized in Section 1.6, followed by a list of accompanying publications (Section 1.7) and
software releases (Section 1.8). More detailed technical preliminaries are presented in Chapter 2,
followed by a detailed discussion of the thesis’ contributions in Chapters 3 to 7. Chapter 8
concludes the thesis and outlines future research directions.

1.2. Historical remarks

The research field of sequential decision making has a long history and is approached by a
variety of disciplines. Many of its formal roots stem from the area of optimal control, such
as the introduction of the Markov decision process (MDP) by Bellman (1957a) and solution
approaches based on dynamic programming (Bellman, 1957b). While these approaches assume
the dynamics of the environment to be known, the research field of reinforcement learning has
had, historically, more emphasis on the (trial and error) learning aspect of decision making
(Sutton and Barto, 2018). Nowadays, MDPs and methods from dynamic programming find wide
usage in the domain of reinforcement learning.

Over the last years and decades, the combination of learning and sequential decision making
has gained even more attention with the advent of powerful algorithms and learning methods
for function approximators, subsumed under the term machine learning. It has, subsequently,
found widespread applications in areas such as gameplay (Mnih et al., 2015; D. Silver et al.,
2016; Vinyals et al., 2019), economics (Mosavi et al., 2020), and healthcare (C. Yu et al., 2021).
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The application area most closely related to this thesis is that of controlling physical systems, in
particular robotic systems (Kober and Peters, 2012; Kroemer et al., 2021).

Artificial intelligence Building sequential decision making agents is strongly related to artificial
intelligence. While several interpretations of this term exist, for many authors, the concept of an
agent which acts either humanly or rationally is a cornerstone of computational and artificial
intelligence (Russell and Norvig, 2009). This thesis is focused on rational agents, in which the task
to fulfill is formalized by the maximization of an objective function.∗

1.3. Brief terminology primer

We follow terminology as in reinforcement learning literature (see, e.g, Sutton and Barto (2018)).
More details can be found in Chapter 2.

An environment has an internal state. The state at the next timestep depends (through the
environment’s dynamics) on the current state and the action applied by the agent. Depending
on the current state, the environment generates an observation with an observation function.
An environment can be fully observable or partially observable. In the first case, the current
state of the environment can be inferred from a single observation with full certainty — e.g.,
if the observation is the state. In the latter case, the agent estimates a belief state given past
observations using a state estimator. Every action the agent takes in an environment is judged by
a scalar reward, generated by the reward function. The goal of the agent is to act in a way which
maximizes the expected discounted sum of rewards, i.e., the expected return. A policy outputs
an action (or a distribution over actions for stochastic policies) given the current environment’s
state (in fully observable environments), or belief state (in partially observable environments).
The policy can be parametric (e.g., a neural network) or non-parametric, e.g., a planner. A value
function outputs, given the current environment’s state (or belief state), and, optionally, the
next action, the expected return when following a particular policy. The above setup can be
formalized as a Markov decision process (Bellman, 1957a; Puterman, 1994).

We consider the environment’s dynamics, observation function, and reward function as separate
entities. In the general case, the policy and value function implicitly depend on the environment’s
dynamics and on the reward function.

∗ Regarding acting humanly, in particular, the Turing test (Turing, 1950), Russell and Norvig (2009) comment: “The
quest for ‘artificial flight’ succeeded when the Wright brothers and others stopped imitating birds and started using
wind tunnels and learning about aerodynamics. Aeronautical engineering texts do not define the goal of their field
as making ‘machines that fly so exactly like pigeons that they can fool even other pigeons.’"
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Dynamics

Observation fcn.

Reward fcn.

𝒔𝑛+1
State 𝒔𝑛

Environment

Agent
𝒐1:𝑛

𝑟1:𝑛
𝒂0:𝑛−1

Observation 𝒐𝑛+1

Reward 𝑟𝑛+1
Action 𝒂𝑛

Figure 1.1.: Interplay between an environment and the agent. Based on a sequence of past rewards, actions, and
observations, the agent sends the next action to the environment. In the partial observation setting, the state is not
available outside the environment. The agent might have full access to the reward function, as denoted by the dotted
line.

1.4. Challenges

Some challenges in sequential decision making are of general nature, which occur in all kinds
of environments, regardless of whether it is purely virtual (e.g., a simulated physical system),
or a real-world physical system (Subsection 1.4.1). Other challenges are especially prevalent in
decision making for real-world physical systems, such as robots (Subsection 1.4.2).

1.4.1. General challenges

Credit assignment problem and sparse reward What makes sequential decision making
challenging in general is the credit assignment problem (Minsky, 1961). It is hard to attribute an
outcome to an action if the action’s effect is apparent only very far in the future. The credit
assignment problem is particularly pronounced in sparse reward settings, in which, in the extreme
case, the agent is only rewarded once it has reached a final goal, after taking many sequential
actions. Exemplarily, one of the first moves in a chess game can decide about a lose or win of the
game, several tens or hundreds moves later.

Multiple dynamics and tasks In the standard Markov decision process formulation, an agent
aims to optimally solve a single task on a single environment. A more generalist agent is able to
act optimally on a set of dynamics and tasks. If the set of dynamics and tasks is known in advance
and the agent is not expected to adapt to novel tasks, this is termed multi-task reinforcement learning
in the reinforcement learning literature (T. Yu et al., 2019).

Novel dynamics and tasks As an extension to multi-task reinforcement learning, we can also
require the agent to generalize to dynamics and tasks which were unseen during the initial learning
phase. Such approaches are subsumed in the literature under the term meta reinforcement learning
(T. Yu et al., 2019).
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High-dimensional observations High-dimensional observations can be present in real-world
and virtual settings. In classical control, sensor selection and -placement plays a central role in
the control system design process (see, e.g., Skogestad and Postlethwaite (2005)). Typically, it is
assumed that low-dimensional measurements of the system to control are available, such as
angles and angular velocities of a robot’s joints. However, for some systems, sensor placement is
not feasible, and only observations in form of images or video is available.

1.4.2. Challenges in real-world environments

Sample efficiency Collecting data in the real world (e.g., from physical systems, or animal trials)
is usually time- and cost-intensive. Different to a simulation, a real-world experiment cannot run
faster than real time. Additionally, the experiment may fail and need human intervention to be
reset. Also, hardware may fail and needs to be repaired or replaced. Consequently, the learning
algorithms should be sample-efficient.

Non-stationary dynamics The physical world we are surrounded by is subject to a multitude
of variations through biological, chemical and physical effects. Exemplary, over time, weather
conditions may change, the behavior of a robotic system varies due to wear and tear of its
hardware, or friction parameters change due to corrosion or biofilms on surfaces. These effects may
render the agent’s learned internal representations invalid, and require adaptation capabilities
to novel dynamics.

Real-time control In highly dynamic real-world systems, the design of the decision rule and
its implementation on hardware need to allow for fast decision making. Different to a simulation,
the real world cannot be paused to compute a control action. Exemplarily, the cart-pole system
by Jervis and Fallside (1992), used by Deisenroth and Rasmussen (2011), is controlled at a rate of
50 s−1.

Changes in the observation function A third component of the Markov decision process, next
to the dynamics and reward function, which might be subject to change especially in real-world
environments, is the observation function. Constructing an agent which can cope with changes in
the observation function is especially important if images are used as inputs, as disturbances in
image inputs are very common (e.g., different lighting conditions or different camera angles).

In this thesis, established concepts and novel approaches are discussed which address each of
the above mentioned challenges to some extent, except changes in the observation function.

1.5. Established concepts and approaches

In this section, approaches from literature are reviewed, and their relation to the aforementioned
challenges is expressed. Along the way, we will pose research questions which are discussed in
this thesis.
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1.5.1. Model-based vs. model-free

Approaches to sequential decision making can be classified as model-based and model-free
approaches. In model-based approaches, an explicit representation of the transition dynamics of
the environment is learned, while in model-free approaches, this is not the case. For the following
discussions, we assume the environment to be fully observable or the state estimator to be
independent of the dynamics. Otherwise, the state estimator has to provide the same adaptation
capabilities as the dynamics model for the agent to be able to adapt to novel dynamics.

Model-free methods In model-free approaches, no component is learned or given which
encodes information on the dynamics of the environment explicitly. Instead, the agent learns
components which depend simultaneously on both the environment’s dynamics and the rewards
(such as a parametric policy or value function). Popular model-free approaches are built upon
Q-learning (Watkins, 1989), such as Deep Q Networks (DQN) (Mnih et al., 2015), or policy
gradient methods, such as Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)
and Proximal Policy Optimization (PPO) (Schulman et al., 2017), or a combination of both, such
as Soft Actor-Critic (SAC) (Haarnoja et al., 2018). The main advantage of these approaches is
that the decision rule (in form of a parametric policy or arg max-operation on the action value
(Q) function) can be evaluated with low computational cost, enabling real-time control. As no
explicit representation of dynamics is maintained, it is not straightforward to incorporate prior
knowledge (e.g., through laws of physics), into the learning algorithm. Model-free methods
cannot easily adapt to novel tasks or dynamics, as their solution representation entangles each of
these components. A standard model-free agent has to be retrained (including costly interactions
with the environment) if the task (reward function) changes, even if the environment’s dynamics
do not change. Model-free methods are known to be notoriously sample-inefficient (see, e.g.,
comparisons in Chua et al. (2018) and Hafner et al. (2020, 2019)).

Model-based methods Model based methods do maintain an explicit representation of (an
approximation to) the environment’s dynamics. Examples for such representations are forward
dynamics models (𝒔𝑛 , 𝒂𝑛 → 𝒔𝑛+1), reverse dynamics models (𝒔𝑛+1 , 𝒂𝑛 → 𝒔𝑛), and inverse
dynamics models (𝒔𝑛 , 𝒔𝑛+1 → 𝒂𝑛). This thesis focuses on forward dynamics models. Model-
based methods can further be separated into two branches: Model-based planning and model-
based reinforcement learning approaches (we follow the definition by Moerland et al. (2023)).
In the first concept, no parametric policy or value function is learned. In the second concept, a
parametric policy or value function is learned on top of a dynamics model. As a representation
of the dynamics is maintained separately, incorporating prior knowledge about the dynamics of
the system is possible. In the extreme case, in environments such as board games, the dynamics
are fully known in advance and can be incorporated accordingly (see, e.g., D. Silver et al. (2016)),
increasing sample-efficiency of the learning process. Model-based methods were shown to be
very sample efficient compared to model-free methods, even with only minimal assumptions
made on the dynamics of the environment (e.g., Chua et al. (2018), Deisenroth and Rasmussen
(2011), and Hafner et al. (2019)). What is termed model learning here is strongly related to system
identification in the (optimal) control community (see Ljung (1986) for an overview).

Model-based planning In model-based planning methods, learned representations depending
on the dynamics and the task (reward) are strictly separated. A planner leverages the dynamics
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and reward model (or reward function) for planning an action sequence. Advantages of this
approach are that (i) the dynamics model and reward model can be adapted separately to
novel dynamics and tasks, and (ii) no entangled representations, such as the policy or value
function, have to be retrained once the dynamics or task have changed. As a limitation to (i)
it is to mention that separate adaptation is only possible if the dynamics model remains to
capture the parts of the state space relevant for the task with sufficient accuracy. For complex
systems and tasks, in many approaches, only local dynamics models are learned, which capture
dynamics relevant for a particular task, e.g., through data collection on task-oriented execution
of the planner (as in Hafner et al. (2019)). A disadvantage of the model-based planning approach
is that planning is a compute-intensive operation and meeting real-time requirements can be
challenging. Exemplary methods are Embed2Control (Watter et al., 2015), PlaNet (Hafner et al.,
2019), and PETS (Chua et al., 2018).

Model-based reinforcement learning Model-based reinforcement learning combines learning
an explicit representation of the environment’s dynamics (or leveraging known dynamics) with
components which implicitly depend on both the dynamics and the task, such as a parametric
policy or value function. Three principled variants of model-based reinforcement learning can
be distinguished.

▶ In the first variant, the model is known, and a value function is learned as a heuristic for
planning. This methodology is used exemplarily by D. Silver et al. (2016).

▶ The second variant learns a parametric policy and/or value function from combined expe-
rience which stems from the actual environment and from the learned model (hypothetical
experience). This family of approaches dates back to the Dyna algorithm (Sutton, 1991).

▶ As a third variant, a family of approaches was developed which leverage the differentiability
of the learned model for updating parameters of a parametric policy through gradient
ascent on the cumulative reward. Exemplary methods for this are PILCO (Deisenroth and
Rasmussen, 2011) and Dreamer (Hafner et al., 2020).

Adapting such models to changes in the environment’s dynamics and task are not as straightfor-
ward as in model-based planning due to the existence of components which hold entangled
representations of dynamics and task (parametric policy, value function). However, after adapting
the dynamics and/or reward model or replacing the reward function, retraining the entangled
representations might be possible leveraging the learned models, without additional data
collection on the environment. As the decision rule is expressed by a reactive parametric policy
and no time-intensive planning is required, model-free reinforcement learning approaches are
less challenging to apply for real-time control tasks than model-based planning methods.

1.5.2. Meta (reinforcement) learning

As outlined in Section 1.4, being adaptable to changes in the task and environment’s dynamics
(e.g., caused by effects present in the real world) is a desirable property of decision making
agents. Also, such agents should be able to adapt with minimal additional data, due to the
cost incurred with data collection in the real world, and with minimal compute required for
retraining.
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Such adaptation problems can be addressed with the methodology of meta-learning. The general
idea of meta-learning is learning to learn (Thrun and Pratt, 1998). It has found broad application
in machine learning and neural networks, also outside the domain of sequential decision making
(see Hospedales et al. (2022) for an extensive survey). In an initial stage, a meta model is learned.
This model is not designed to perform optimally on a particular task, but designed in a way such
that it can data- and compute-efficiently adapt to a target task. Exemplarily, Finn et al. (2017) proposed
two meta-learning schemes for general neural network models, without particular focus on
decision making problems. They have in common that, for adaptation, weights of the model
are updated. The updates are computed either by the method of steepest descent, or through a
recurrent neural network.

In meta reinforcement learning (see, e.g., T. Yu et al. (2019) for a definition), a meta-agent is learned
in a way such that it can efficiently adapt to its target task and environment. For learning, a
distribution of tasks and environments is considered. A meta-agent, which is shared among all
tasks and environments, is learned to perform optimally without (zero-shot) or with minimal
(few-shot) additional interactions on a previously unseen test environment.

As outlined in Subsection 1.5.1, adapting to novel tasks (in form of given reward functions) is
rather straightforward for model-based planning agents, given the dynamics model is sufficiently
accurate for the tasks considered. For novel dynamics, the dynamics model needs to be adapted,
which is what we will discuss in Subsection 1.5.3.

1.5.3. Adaptive dynamics models

An adaptive dynamics model can leverage learned structures to adapt to novel dynamics without
the need for expensive additional data collection or model retraining. One approach to adaptivity
are context-conditional models, in which predictions depend on contextual observations. An
example for such a model is the Gaussian process dynamics model used by Deisenroth and
Rasmussen (2011). However, Deisenroth and Rasmussen (2011) used physical measurements as
observations and did not consider high-dimensional observations.

This leads us to the first research question discussed in this thesis:
Research question 1 Can we learn a Gaussian process dynamics model from images, and how
well does it adapt to changes in the dynamics?
We will detail this question in Chapter 3.

Learning adaptive dynamics models can also be explicitly formulated as a meta-learning problem
(see Subsection 1.5.2). A meta-dynamics model is learned on a distribution of environments
with the ability to adapt, in a sample-efficient manner, specifically to a particular environment
instance. The two weight-adaptation schemes proposed by Finn et al. (2017) were successfully
applied by Nagabandi et al. (2019) to model-based planning problems. Another approach to
adaptive models is to capture its variations in a global latent variable. A general approach to this,
formulated in the context of neural networks, are methods from the Neural Process (NP) family
(Garnelo et al., 2018b). An exemplary application of a NP dynamics model in model-based
reinforcement learning is proposed by Lee et al. (2020), in which a set of past observations
modulate the dynamics model through a context variable. A Gaussian process latent variable
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model with applications in model-based reinforcement learning was proposed by Sæmundsson
et al. (2018).

Related to the problem of an adaptive model is the question how informative data should be
collected on a novel environment to allow the model to adapt to the actual dynamics. We will
discuss this question in Subsection 1.5.4.

1.5.4. Active inference for efficient data collection

The problem of efficient data collection concerns all sequential decision making agents which
incorporate some form of data and where data collection incurs any kind of cost. To obtain a
better decision making strategy, an agent may even act temporarily suboptimally with respect
to its task, in order to collect additional data. Thus, over its lifetime, an agent has to decide
between (i) acting optimally with respect to the task, given its current knowledge, and (ii), acting
suboptimally with respect to the task, but gaining additional knowledge about the environment
dynamics and task (in form of rewards). This is known as the exploration-exploitation tradeoff (see,
e.g., Sutton and Barto (2018) for a more in-depth discussion). In a nutshell: During the time the
agent is busy with data collection it is likely to act suboptimally with respect to its task. Thus,
collecting new data should be efficient.

Let us look at this problem from the model-based planning perspective. In order to be able
to solve a wide variety of tasks, we aim for a dynamics model which accurately captures the
actual dynamics of the system for large parts of the state space. To this end, we need to perform
active inference in form of experiments in the environment. This is achieved by executing action
sequences which excite the environment in a way which is maximally informative, i.e., reveals
maximum information on the dynamics of the environment. When learning from scratch, the
informativeness of actions is determined by what has already been observed, and the structure
which is assumed for the dynamics model. For dynamical systems, we need to consider that we
cannot query the environment arbitrarily, but are constrained by its dynamics. Thus, finding
a maximally informative sequence of actions is again a sequential decision making problem
in itself. Buisson-Fenet et al. (2020) formulate such an active inference scheme for learning
Gaussian process forward dynamics models from scratch. Sekar et al. (2020) develop a similar
method for active learning of a forward model implemented with recurrent neural networks.
In the above two approaches, the structure of the dynamics model is defined a-priori through
the Gaussian process with its respective mean- and covariance function or the recurrent neural
network design.

In many practical cases, however, it can be assumed that the dynamics to model are from some
environment from a particular distribution of environments, e.g., inverted pendulums with a
pole mass from a specific interval.

With the above, we reach the next research question:
Research question 2 Instead of leveraging an assumed structure on the environment dynamics,
can we learn structure over a distribution of environments, and perform active inference to identify
the dynamics of a particular environment instance?
We will detail this question in Chapter 4.
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To approach the above research question, we leverage a context-conditional dynamics model
in Chapter 4. The dynamics model contains a latent variable which is inferred from contextual
observations to adapt to varying dynamics.

In terrain-aware autonomous robot navigation, certain aspects of the environment are subject to
change. This does not only include intrinsic parameters of the robot, such as actuator gains, but
also the ground surface (Sonker and Dutta, 2021). Consequently, the agent is not only required
to adapt to varying dynamics of the robot, but also to different terrain surfaces depending on the
robot’s location.

This leads us to the research question:
Research question 3 Can challenges present in the domain of terrain-aware autonomous robot
navigation be tackled with context-conditional dynamics models as presented in Chapter 4?
We will detail this question in Chapter 5.

1.5.5. Incorporating structure

As mentioned in Subsection 1.5.1, in model-based methods, we can incorporate a-priori knowledge
on the dynamics of the environment. In the extreme case, the model is known without the need
to incorporate data, for example, as rules of a board game, as in D. Silver et al. (2016). In system
identification terminology (see, e.g., Nelles (2001)), such models are called white-box models.
The other extreme are black-box models, in which the model is solely identified from data. From
a learning-theory perspective, such models are typically not useful. When fitting a function
𝑓 : 𝒳 → 𝒴 , 𝑓 ∈ ℱ to a finite set of datapoints {𝒙(𝑘) , 𝒚(𝑘)}𝐾𝑘=1, without making any restricting
assumptions on the function class ℱ (such as smoothness), no conclusions can be made on
the value of the function at unseen points 𝒙∗ (Luxburg and Schölkopf, 2011). Thus, formally, a
truly black box model will only be a lookup table. Models for which some structure is assumed,
and, additionally, data is used to identify parameters, are called gray-box models. Consequently,
nearly all models in which parameters are identified from data are gray-box models. Colloquially,
the term black-box model is also used for models which only make minimal assumptions on the
model class, e.g., expressive neural network models. This meaning is adopted in this thesis.

Investigating the properties of blackbox- and graybox methods on a particular task is a
central element of the next research question:
Research question 4 For the particular task of tracking and prediction the motion of a table
tennis ball for return with a robotic arm, what are the properties of a physics-informed gray-box
method, compared to non-physics informed black-box methods?
We will detail this question in Chapter 6.

1.5.6. Hierarchy

Incorporating hierarchy into the design of the decision making agent aims at decomposing a
complex problem into simpler subproblems. A (sub-)agent is rewarded for achieving a subgoal
or successfully fulfilling a subtask. By this, credit assignment and sparse reward problems are
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attenuated. The need for hierarchies in reinforcement learning agents to cope with this problem
in long-horizon decision-making settings has already been discovered in early works such as
(Dayan and Hinton, 1992; Sutton et al., 1999; Watkins, 1989).

Long-horizon sparse-reward tasks are problematic to both model-free and model-based agents.
An agent, which updates its behavior only based on tasks rewards, will, in consequence, not
update its behavior when only observing a reward of 0. An agent which acts randomly will
continue to act randomly, and the probability of solving the task is that of random chance.

To this end, hierarchical methods were developed which consist of agents on multiple layers.
A higher-level agent commands a lower-level agent to fulfill subtasks or reach subgoals. The
lower-level agent is rewarded when reaching the subtask, independent of the task reward,
and can thus update its behavior accordingly. Thus, meaningful behavior is learned even in
absence of task rewards. For the higher-level agent, an action now corresponds to commanding
a lower-level agent, effectively reducing the decision horizon of the higher-level agent. Learned
subtask solutions can now be chained by the higher-level agent to achieve complex tasks.

In Subsection 1.5.7 we detail methods to learn meaningful behavior even in absence of task
rewards.

1.5.7. Learning without task reward

Learning without a task-specific reward is coined task agnostic learning in reinforcement learning
literature. Task-specific, extrinsic reward is distinguished from a task-agnostic, intrinsic reward.

Task-agnostic pre-training of agent components finds its applications in meta reinforcement
learning, accelerating the ability of an agent to adapt to a specific task (e.g., in Sekar et al. (2020)).
Also, it is used for pre-training low-level agents in a hierarchical setup. In Sharma et al. (2020), a
set of diverse skills is trained using an intrinsic reward derived from an information theoretic
criterion. A skill is a parametric policy augmented by an additional parameter which modulates
its behavior. Jointly, a single-step forward model is learned, modeling the skill dynamics, which
can be used in a hierarchical setup for planning over skills. However, as the forward model only
models single-step transitions, the problem of error accumulation still exists for long-horizon
tasks.

This leads us to the final research question discussed in this thesis:
Research question 5 Can we learn a multi-step forward model and a set of skills jointly for
model-based planning on the high-level and fast, reactive control on the lower level? How well does
it perform on long-horizon sparse-reward settings?
We will detail this question in Chapter 7.

1.6. Thesis contributions

In relation to the research questions posed in the previous section, in the following the
contributions of this thesis are summarized.
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1. In Chapter 3 we present a non-parametric approach to adaptive dynamics models. The
dynamics of the environment are modeled in the latent space of a variational autoencoder
using Gaussian processes. This allows the model to generalize to previously unseen
environment variations such as modified mass and actuator gain parameters of an inverted
pendulum. We demonstrate that, for adaptation, it requires fewer data points than a deep
learning based baseline model.

2. Aside from formulating adaptive models, we are interested in exciting an environment in a
way which is informative about the variations present to perform system identification, with
the assumption that the environment is from an assumed distribution of environments.
In Chapter 4, we interpret this as a problem of Bayesian optimal experimental design
(BOED, Chaloner and Verdinelli (1995) and Lindley (1956)), and propose an according
identification/calibration algorithm. We show that we obtain a more accurate dynamics
model after calibration when using actions to excite the environment proposed by our
approach, compared to random actions.

3. In terrain-aware autonomous robot navigation, not only intrinsic parameters of the robot
are subject to change, but also the ground surface. In Chapter 5 we present a terrain- and
robot-aware dynamics model (TRADYN), which can adapt to changes in intrinsic robot
parameters and leverage terrain information for (throttle-) energy-efficient navigation.

4. In Chapter 6 we present a state-of-the-art approach for tracking and predicting the motion
of a table tennis ball, incorporating effects caused by the ball’s spin and impact with
the table. Our approach outperforms existing deep-learning-based baselines through
identifying parameters of a physics-based model from data through a filtering process.
Our learning-based formulation allows adapting to different settings of the ball launcher
to infer the initial spin of the ball, improving the predictive accuracy of the model even
further.

5. In Chapter 7 we do not investigate the problem of adaptive models, but rather the
issue of solving problems which require long-horizon planning and reactive control. We
consider physically embedded board games as a class of problems requiring these two
capabilities. Those are challenging for model-free reinforcement learning approach due to
the combinatorial complexity of the state space, and challenging for model-based planning
due to the accumulation of error in forward model predictions. We present an approach
termed SEADS combining model-based planning and model-free reinforcement learning.
SEADS is able to solve physically embedded board games with high success rates, in
contrast to the baselines considered.

1.7. Publications

Large parts of this thesis have been published in peer-reviewed conference proceedings. Each
chapter mentioned in Section 1.6 relates to one of the main publications (i) — (v) listed below.
The publications are given in the order of chapters of this thesis.

During the course of my PhD, I have contributed to further works in the domain of dynamics
model learning and model-based planning (side publications). However, these works are not
considered as integral parts of this thesis.
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1.7.1. Main publications

(i) N. Bosch, J. Achterhold, L. Leal-Taixé, and J. Stückler (2020). ‘Planning from Images with
Deep Latent Gaussian Process Dynamics’. In: Proceedings of the Learning for Dynamics and
Control Conference (L4DC). Chapter 3.

(ii) J. Achterhold and J. Stueckler (2021). ‘Explore the Context: Optimal Data Collection for
Context-Conditional Dynamics Models’. In: Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS). Chapter 4.

(iii) S. Guttikonda, J. Achterhold, H. Li, J. Boedecker, and J. Stueckler (2023). ‘Context-
Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics
Model’. In: Proceedings of the IEEE European Conference on Mobile Robots (ECMR). Chapter 5.

(iv) J. Achterhold, P. Tobuschat, H. Ma, D. Büchler, M. Muehlebach, and J. Stueckler (2023).
‘Black-Box vs. Gray-Box: A Case Study on Learning Table Tennis Ball Trajectory Prediction
with Spin and Impacts’. In: Proceedings of the Learning for Dynamics and Control Conference
(L4DC). Chapter 6.

(v) J. Achterhold, M. Krimmel, and J. Stueckler (2022). ‘Learning Temporally Extended Skills
in Continuous Domains as Symbolic Actions for Planning’. In: Proceedings of the Conference
on Robot Learning (CoRL). Chapter 7.

1.7.2. Side publications

▶ C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolínek, and G. Martius
(2020). ‘Sample-efficient Cross-Entropy Method for Real-time Planning’. In: Proceedings of
the Conference on Robot Learning (CoRL).

The cross-entropy method planning algorithm (CEM, Rubinstein (1999)) finds widespread
use in the field of (model-based) planning for robotics and dynamical systems, also in the
remainder of this thesis. Its computational complexity however poses a challenge in apply-
ing CEM to real-time planning tasks. Pinneri et al. (2020) develop several improvements
to CEM, termed iCEM, to reduce its computational footprint and allow use in real-time
applications. I have contributed to (Pinneri et al., 2020) by evaluating iCEM on the task of
planning from pixels (Hafner et al., 2019).

▶ R. K. Kandukuri, J. Achterhold, M. Möller, and J. Stueckler (2020). ‘Learning to Identify
Physical Parameters from Video Using Differentiable Physics’. In: Proceedings of the German
Conference on Pattern Recognition (GCPR) and

R. K. Kandukuri, J. Achterhold, M. Möller, and J. Stueckler (2022). ‘Physical Representation
Learning and Parameter Identification from Video Using Differentiable Physics’. In:
International Journal of Computer Vision 130.1.

Using differential physics simulators (e.g. Amos et al. (2018)) as forward models has several
advantages over black-box models, e.g. (recurrent) neural networks. It allows for physical
interpretability of parameters and latent states, and, due to imposing more structure on
the learning problem, may require fewer data to be trained. However, this comes at the
expense of the need to define the problem structure beforehand, i.e., to define the physical
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scene. In his master’s thesis, Rama Kandukuri formulated and implemented algorithms for
identifying physical parameters (e.g., masses and friction coefficients) of objects from video
data. The thesis was concucted under advisory by Jörg Stückler and me, and examined by
Michael Möller at the University of Siegen. The work of this thesis led to the publications
(Kandukuri et al., 2020) and (Kandukuri et al., 2022).

1.8. Open-source software releases

In order to allow other researchers to reproduce and build upon our work, we have published
the software and data related to results presented in this thesis for public access on GitHub.

▶ Chapter 3, Bosch et al. (2020): Planning from Images with Deep Latent Gaussian Process
Dynamics.
https://github.com/EmbodiedVision/dlgpd.

▶ Chapter 4, Achterhold and Stueckler (2021): Explore the Context: Optimal Data Collection
for Context-Conditional Dynamics Models.
https://github.com/EmbodiedVision/explorethecontext.

▶ Chapter 5, Guttikonda et al. (2023): Context-Conditional Navigation with a Learning-Based
Terrain- and Robot-Aware Dynamics Model.
https://github.com/EmbodiedVision/tradyn

▶ Chapter 6, Achterhold et al. (2023): Black-Box vs. Gray-Box: A Case Study on Learning
Table Tennis Ball Trajectory Prediction with Spin and Impacts.
https://github.com/EmbodiedVision/tabletennis-spin-impacts

▶ Chapter 7, Achterhold et al. (2022): Learning Temporally Extended Skills in Continuous
Domains as Symbolic Actions for Planning.

• Environment implementations:
https://github.com/EmbodiedVision/seads-environments/

• Agent implementation:
https://github.com/EmbodiedVision/seads-agent

https://github.com/EmbodiedVision/dlgpd
https://github.com/EmbodiedVision/explorethecontext
https://github.com/EmbodiedVision/tradyn
https://github.com/EmbodiedVision/tabletennis-spin-impacts
https://github.com/EmbodiedVision/seads-environments/
https://github.com/EmbodiedVision/seads-agent


Preliminaries 2.
Before presenting technical background on particular topics, we introduce the concept of
probabilistic graphical models in Section 2.1, used widely in this thesis. Further important concepts
are the Markov process (Subsection 2.2.1) and the related state-space model (Subsection 2.2.2).

The overarching theme of this thesis are sequential decision making problems, basics of which
we introduce in Section 2.3, in combination with methods from the field of machine learning,
briefly introduced in Section 2.4. Section 2.5 is dedicated to latent variable models.

In model-based planning, model learning and planning are intertwined to solve problems of
sequential decision making. In Section 2.6 we give a short overview on the planning methods
used in this thesis.

2.1. Probabilistic graphical models

We make repeated use of probabilistic graphical models in this thesis, in particular, Bayesian
networks (for reference, see Murphy (2012, chap. 10) or Bishop (2007, chap. 8.1)). A Bayesian
network is a directed acyclic graph visualizing a factorization of the joint probability distribution
of a set of random variables. The nodes of the graph correspond uniquely to random variables,
while edges indicate conditional dependence. Let us, for simplicity, name all random variables in
the graphical model (𝒙1 , . . . , 𝒙𝑉 )where𝑉 is the number of variables. Then, the joint distribution
is given by the product of conditional distributions

𝑝(𝒙1 , . . . , 𝒙𝑉 ) =
𝑉∏︂
𝑣=1

𝑝(𝒙𝑣 | {𝒙𝑣′ | 𝑣′ ∈ Pa(𝑣)}) (2.1)

where Pa(𝑣) are the parent nodes of node 𝑣.

We distinguish different types of nodes by visual features. It is important to note that for the
factorization of the joint distribution, these visual features are irrelevant. Observed random
variables are depicted with a shaded background. In contrast, latent or unobserved random
variables have a plain background. A circle depicts a general random variable. A rhombus
denotes a special variable which depends deterministically on its parent nodes, i.e., a deterministic
mapping 𝒙𝑣 = 𝑓 ({𝒙𝑣′ | 𝑣′ ∈ Pa(𝑣)}) exists. We refer to Figure 2.1a for an example.

The plate notation can be related to a generator expression for set of random variables. For each
node within the plate, an instance exists for each instance index in the index set given at the
bottom of the plate. See Figure 2.1b for an example.
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𝒙1

𝒙2 𝒙3

𝒙4

(a) Bayesian network with two latent nodes 𝒙1,
𝒙2, one deterministic node 𝒙3, and one ob-
served node 𝒙4. Joint distribution 𝑝(𝒙1 , . . . , 𝒙4) =
𝑝(𝒙1)𝑝(𝒙2 | 𝒙1)𝑝(𝒙3 | 𝒙1)𝑝(𝒙4 | 𝒙2 , 𝒙3).

𝒙𝑘

𝒚𝑘

𝑘 ∈ {1, . . . , 𝐾}
(b) Bayesian network with plate notation. Joint distribu-
tion 𝑝(𝒙1 , . . . , 𝒙𝐾 , 𝒚1 , . . . , 𝒚𝐾) =

∏︁𝐾
𝑘=1 𝑝(𝒙𝑘)𝑝(𝒚𝑘 | 𝒙𝑘).

Figure 2.1.: Two exemplary Bayesian networks. See Section 2.1 for details.

2.2. Markov processes

2.2.1. Markov process

Mathematically, sequential decision making problems are typically formalized as Markov
decision processes. Before introducing the Markov decision process in Subsection 2.3.1, we will
first introduce the Markov process, on which the definition of a Markov decision process builds
upon.

𝒔0 𝒔1 𝒔2 𝒔𝑁

𝒂0 𝒂1 𝒂𝑁−1

Figure 2.2.: Directed graphical model of an action-conditioned Markov process with states 𝒔𝑛 and actions 𝒂𝑛 .

Consider the action-conditioned stochastic process given by the directed graphical model in Fig-
ure 2.2. We can factorize the joint distribution over states and actions as 𝑝(𝒔0 , . . . , 𝒔𝑁 , 𝒂0 , . . . , 𝒂𝑁−1) =
𝑝(𝒔0)∏︁𝑁

𝑛=1 𝑝(𝒔𝑛 | 𝒔𝑛−1 , 𝒂𝑛−1)𝑝(𝒂𝑛−1). The depicted process is termed (first-order) Markov process∗

as the probability distribution on 𝒔𝑛 (for any 𝑛 ∈ {1, . . . , 𝑁}) becomes independent of states
{𝒔𝑚 | 𝑚 < 𝑛 − 1} and actions {𝒂𝑚 | 𝑚 < 𝑛 − 1} when conditioned on 𝒔𝑛−1 and 𝒂𝑛−1, i.e.

𝑝(𝒔𝑛 | 𝒔0 , . . . , 𝒔𝑛−1 , 𝒂0 , . . . , 𝒂𝑛−1)

=
𝑝(𝒔0 , . . . , 𝒔𝑛 , 𝒂0 , . . . , 𝒂𝑛−1)
𝑝(𝒔0 , . . . , 𝒔𝑛−1 , 𝒂0 , . . . , 𝒂𝑛−1)

=
𝑝(𝒔0)∏︁𝑛

𝑘=1 𝑝(𝒔𝑘 | 𝒔𝑘−1 , 𝒂𝑘−1)𝑝(𝒂𝑘−1)
𝑝(𝒔0)∏︁𝑛−1

𝑘=1 𝑝(𝒔𝑘 | 𝒔𝑘−1 , 𝒂𝑘−1)𝑝(𝒂𝑘−1)𝑝(𝒂𝑛−1)
= 𝑝(𝒔𝑛 | 𝒔𝑛−1 , 𝒂𝑛−1).

As a consequence, for predicting the state distribution for timestep 𝑁 given past states and
actions, i.e. 𝑝(𝒔𝑁 | 𝒔0 , . . . , 𝒔𝑁−1 , 𝒂0 , . . . , 𝒂𝑁−1), it suffices to observe the state and action at
the immediately preceding timestep 𝒔𝑁−1, 𝒂𝑁−1. State and action observations for timesteps
𝑛 < 𝑁 − 1 do not convey additional information on the conditional distribution of 𝒔𝑁 .

∗ One also says the process is Markov or fulfills the Markov property.
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2.2.2. State-space models

𝒔0 𝒔1 𝒔2 𝒔𝑁

𝒂0 𝒂1 𝒂𝑁−1

𝒐1 𝒐2 𝒐𝑁

Figure 2.3.: Directed graphical model of a state-space model with latent states 𝒔𝑛 , observations 𝒐𝑛 , and actions 𝒂𝑛 .

An extension of the fully observable Markov process described in Subsection 2.2.1 to partial
observability is the state-space model. The sequence of random variables (𝒔0 , . . . , 𝒔𝑁 ) is distributed
according to a Markov process, and conditioned on actions, i.e. 𝑝(𝒔0 , . . . , 𝒔𝑁 , 𝒂0 , . . . , 𝒂𝑁−1) =
𝑝(𝒔0)∏︁𝑁

𝑛=1 𝑝(𝒔𝑛 | 𝒔𝑛−1 , 𝒂𝑛−1)𝑝(𝒂𝑛−1). The variables (𝒔0 , . . . , 𝒔𝑁 ) are latent, i.e., unobserved.
However, the random variables (𝒐1 , . . . , 𝒐𝑁 ) are observed, with each 𝒐𝑛 conditionally distributed
as 𝑝(𝒐𝑛 | 𝒔𝑛). We assume states, actions and observations being real-valued vectors in this
section.

The state-space model is characterized by the initial state density 𝑝(𝒔0), the transition model
𝑝(𝒔𝑛 |𝒔𝑛−1 , 𝒂𝑛−1), and the observation model 𝑝(𝒐𝑛 |𝒔𝑛). Typically, densities of interest are conditioned
on actions 𝒂0 , . . . , 𝒂𝑁−1, and no particular density 𝑝(𝒂0 , . . . , 𝒂𝑁−1) on actions is assumed.

The state-space model can constitute a joint transition/observation model for partially observable
Markov decision processes (see Subsection 2.3.2). As outlined in Subsection 2.3.4, action decisions
in POMDPs are made based on the belief of a state 𝒔𝑛 , which incorporates all past actions and
observations. Thus, we are particularly interested in computing the density 𝑝(𝒔𝑛 | 𝒐≤𝑛 , 𝒂0:𝑛−1),
which is called filtering density. By 𝒐≤𝑛 we denote that some observations may be unavailable.
If all observations are available, 𝒐≤𝑛 = 𝒐1:𝑛 . Also, in particular for solving MDPs/POMDPs
with planning (see Subsection 2.3.5), we are interested in prediction densities of the form
𝑝(𝒔𝑛 | 𝒐<𝑛 , 𝒂0:𝑛−1).

2.3. Sequential decision making

2.3.1. Markov decision process

In a Markov decision process (MDP) (Bellman, 1957a; Puterman, 1994), it is assumed that the
transition dynamics of the environment are a Markov process (Subsection 2.2.1). In order to
specify a sequential decision making problem, the MDP does not only describe the transition
dynamics, but also, encoded through the reward function, a particular task to be solved. An agent,
being an (approximate)† solution to an MDP, aims to maximize future rewards‡.

MDP on finite sets of states and actions We present the definition by Otterlo and Wiering
(2012). A discrete-time Markov Decision Process (MDP) on finite sets of states and actions is
defined as a four-tuple (𝒮 ,𝒜 , 𝑇(𝒔𝑛+1 , 𝒂𝑛 , 𝒔𝑛), 𝑅(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1)) where 𝒮 is the set of states, 𝒜
is the set of actions, 𝑇(𝒔𝑛+1 , 𝒂𝑛 , 𝒔𝑛) : 𝒮 × 𝒜 × 𝒮 → [0, 1] with

∑︁
𝒔𝑛+1∈𝒮 𝑇(𝒔𝑛+1 , 𝒂𝑛 , 𝒔𝑛) = 1 the

† Approximate in the sense of potentially non-optimal
‡ This is kept vaguely purposefully here, we refer to the paragraph Optimality criteria for more details.
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transition function and 𝑅(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1) : 𝒮 × 𝒜 × 𝒮 → ℝ the reward function. The process is
termed Markov as the transition function is fully determined by the current state and action and
does not depend on further states or actions from the past. Similarly, the reward function only
depends on the current state and a single past state and action. With a finite set of states, the
transition function encodes the probability of reaching state 𝒔𝑛+1 when applying action 𝒂𝑛 in
state 𝒔𝑛 . The reward function outputs the reward for a particular transition (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1). The
agent chooses actions based on a policy, which we will introduce later.

MDP on continuous state and action spaces We follow the introduction by Hasselt (2012)
for MDPs on state spaces which are subsets of the space of real-valued vectors of dimension
𝐷S, i.e., 𝒮 ⊆ ℝ𝐷S , which is a continuous space. For the following considerations, it is not
relevant whether the action space is a finite set or also a subset of real-valued vectors; we
will denote it with 𝒜. For a continuous state space, the transition dynamics are given by a
conditional probability density function 𝑝(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛). The reward function is again defined as
𝑅(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1) : 𝒮 ×𝒜 ×𝒮 → ℝ. We deviate from the definition by Hasselt (2012) and for now
define the MDP as four-tuple (𝒮 ,𝒜 , 𝑝, 𝑅). The definition by Hasselt (2012) contains a mandatory
discount factor 𝛾 (see below).

Optimality criteria In order to solve a decision making problem formulated as an MDP,
additional information about how exactly the agent should maximize its future rewards is
required. Typically, an agent aims at maximizing an expected discounted cumulative reward, i.e.
expected return, on a finite-time horizon of length 𝑁 , i.e.,

𝒥 = 𝔼

[︄
𝑁−1∑︂
𝑛=0

𝛾𝑛𝑅(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1)
]︄
, (2.2)

or an infinite-time horizon

𝒥 = 𝔼

[︄
∞∑︂
𝑛=0

𝛾𝑛𝑅(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1)
]︄
. (2.3)

The discount factor 𝛾 ∈ [0, 1] controls the far-sightedness of the agent. A small discount factor
encourages the agent to seek for reward in the near future, while for a discount factor approaching
1, the agent cares less how far the reward is obtained in the future. A discount factor 𝛾 < 1
ensures convergence of the geometric series in Equation 2.3 even for a constant reward (Sutton
and Barto, 2018). As the horizon and discount factor have influence on the solution of the MDP,
commonly, the MDP four-tuple is extended by the discount factor, and, if applicable, the time
horizon.

Policy The solution to an MDP may be obtained and represented in various ways. All solutions
have in common, that, at the final stage, a policy decides on the action 𝒂𝑛 to take in state 𝒔𝑛 . The
policy might be parametric (e.g., a neural network), or non-parametric, e.g., a planner. In the
general case, action selection is stochastic, i.e., 𝒂𝑛 ∼ 𝜋(𝒂𝑛 | 𝒔𝑛), where 𝜋 is a probability mass
function (for a finite set of actions) or probability density function (for a continuous space of
actions). In Subsection 2.3.3 we will detail several approaches on how to obtain and represent
a policy for sequential decision making problems formulated as Markov devision processes.
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At this point, please note the concept of a random policy, which is not to be confused with a
stochastic policy. While typically not obtained as a solution to an MDP, a random policy randomly
selects actions from the action space, e.g., for a real-valued action bounded between [−𝑎, 𝑎],
𝑎𝑛 ∼ 𝒰[−𝑎, 𝑎]. A random action is commonly used to collect data from an environment without
focusing on a particular task.

2.3.2. Partially observable Markov decision processes

In physical systems, the underlying Markovian state 𝒔𝑛 usually cannot be directly observed to
perform action selection with a policy. Rather, only observations 𝒐𝑛 in form of noisy measurements
are available. A sequential decision making problem in which the environment’s state 𝒔 is not fully
observable (as in Subsection 2.3.1) can be formalized as partially observable Markov decision process
(POMDP) (Kaelbling et al., 1998). Formally, one must again distinguish between a finite set of
observations𝒪 and a continuous space of observations𝒪 ⊆ ℝ𝐷O . In the first case, the observation
function is defined as 𝑂(𝒐𝑛 , 𝒔𝑛 , 𝒂𝑛−1) : 𝒪 × 𝒮 × 𝒜 → [0, 1] with

∑︁
𝒐𝑛∈𝒪 𝑂(𝒐𝑛 , 𝒔𝑛 , 𝒂𝑛−1) = 1

(Kaelbling et al., 1998). In the latter case, the observation function is a probability density function
on the observation space, conditioned on state and action, i.e. 𝑝(𝒐𝑛 | 𝒔𝑛 , 𝒂𝑛−1) (Spaan, 2012).
For notational simplicity we will always refer to the observation function as 𝑝(𝒐𝑛 | 𝒔𝑛 , 𝒂𝑛−1),
being a probability mass function or probability density function, depending on the context. In
this thesis, we assume the observation function to be independent of the action, i.e., given by
𝑝(𝒐𝑛 | 𝒔𝑛) (see Figure 1.1).

2.3.3. Solution strategies to MDPs

With the theory of Markov decision processes, we now have a formal background for the
sequential decision making strategies introduced in Subsection 1.5.1, which were

▶ model-based planning,

▶ model-based reinforcement learning, and

▶ model-free reinforcement learning.

In Subsection 2.3.5 we will detail background on model-based planning, and in Subsection 2.3.6
central ideas of reinforcement learning, which are relevant for this thesis.

2.3.4. Solution strategies to POMDPs

As the state is no longer directly observable in POMDPs, action selection has to take place
depending on the history of observations 𝒐1:𝑛 and actions 𝒂0:𝑛−1. Past observations and actions
can be absorbed into a belief state. For a finite set of states, the belief state is a probability mass
function over the set of states (Kaelbling et al., 1998). For a continuous state space, the belief
state is a probability density on the state space (Kochenderfer, 2015), represented by, e.g., its
moments (mean and covariance for a Gaussian distribution). The process of forming a belief state
from past observations and actions is called filtering, with 𝑝(𝒔𝑛 | 𝒐1:𝑛 , 𝒂0:𝑛−1) being the filtering
distribution. In contrast to the observations, the belief state fulfills the Markov property, such
that solution approaches to MDPs can be extended to POMPDs when using the belief state as a
Markov state.
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2.3.5. Model-based planning

Model-based planning approaches to sequential decision making problems are two-staged (see,
e.g., Chua et al. (2018), Hafner et al. (2019), and Moerland et al. (2023)).

In the first stage, the dynamics of the environment are captured with a dynamics model. This
typically entails learning a forward dynamics model of the form 𝑞(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛), which approxi-
mates 𝑝(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛). If the mapping from states to rewards is unknown, a reward model can
also be learned via function approximation,˜︁𝑟(𝒔𝑛 , 𝒂 , 𝒔𝑛+1) ≈ 𝑅(𝒔𝑛 , 𝒂 , 𝒔𝑛+1). We will denote both
a known mapping and function approximator by˜︁𝑟 in the following.

In the second stage, a planner optimizes an objective function 𝒥 (e.g., expected return) over a
sequence of 𝐻 actions from the action space starting from an initial state distribution 𝑝𝑛(𝒔𝑛), i.e.

(𝒂∗𝑛 , . . . , 𝒂∗𝑛+𝐻−1) = max
(𝒂𝑛 ,...,𝒂𝑛+𝐻−1)∈𝒜𝐻

𝒥((𝒂𝑛 , . . . , 𝒂𝑛+𝐻−1), 𝑝𝑛 , 𝑞,˜︁𝑟). (2.4)

The variable 𝐻 is termed the horizon of the planning problem. For details on planning algorithms
which implement Equation 2.4 we refer to Section 2.6.

Open-loop planning Based on the sequence of optimal actions computed in Equation 2.4,
the simplest approach to solve the associated decision making problem would be to apply it
sequentially to the environment, neglecting the resulting states (𝒔𝑛+1 , . . . , 𝒔𝑛+𝐻) (or observa-
tions (𝒐𝑛+1 , . . . , 𝒐𝑛+𝐻) for POMPDs). This strategy is called open-loop planning. It is, however,
problematic for the following reasons:

1. The model 𝑞 may suffer from model bias (Deisenroth, 2010, sec. 3.2), i.e., it does not capture
the actual dynamics 𝑝(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛) accurately enough in the state regions of interest.
During planning, model errors accumulate, making model predictions and thus planned
actions at timesteps far into the future very unreliable.

2. In a POMDP, the belief state can be very uncertain if none or only a few observations have
been observed, also negatively impacting the task performance for the sequence of actions
computed.

Closed-loop planning The above two issues are mitigated by closed-loop planning, also
referred to as model-predictive control or receding-horizon control (surveyed by, e.g., García et al.
(1989) and Schwenzer et al. (2021)). From the computation in Equation 2.4, only the first action
is applied to the environment. The resulting state 𝒔𝑛+1 (in an MDP) or observation 𝒐𝑛+1 (in a
POMDP) is recorded. In a POMDP, the belief state is updated given the most recent observation.
Thus, at any point in time, all information available on the state of the system is incorporated.
Consequently, action decisions are not based on predicted states, which curbs the effects of
accumulating model errors. Given the updated state or belief, Equation 2.4 is carried out again
(starting at 𝑛 + 1) to compute the next optimal action.
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2.3.6. Reinforcement learning

In this subsection we give a short overview on basic concepts and terminology of reinforcement
learning relevant for this thesis. For a more in-depth treatment we refer to Sutton and Barto
(2018). All following definitions are based on the assumption that the sequential decision making
problem is formalized as a Markov decision process (Subsection 2.3.1) with an infinite-horizon,
discounted optimality criterion as in Equation 2.3. The action space𝒜 and state space 𝒮 may be
finite sets or continuous spaces.

Action value function The action value function 𝑄𝜋 : 𝒮 × 𝒜 → ℝ gives, for a policy 𝜋,
the expected return when applying action 𝒂 in state 𝒔 and following the policy 𝜋 afterwards
(Watkins, 1989). Thus, it entangles the environment’s dynamics, the reward function, and the
policy. The optimal action value function 𝑄∗ refers to the action value function of an optimal
policy, i.e., the policy which maximizes the expected return: 𝑄∗(𝒔 , 𝒂) = max𝜋𝑄𝜋(𝒔 , 𝒂) (Sutton
and Barto, 2018, eq. 3.16). If we have access to the Q function of the optimal policy 𝑄∗, we can
implement the optimal policy 𝜋∗ as an arg max operation

𝜋∗(𝒔) = arg max
𝒂∈𝒜

𝑄∗(𝒔 , 𝒂). (2.5)

State value function The state value function 𝑉𝜋 : 𝒮 → ℝ is strongly related to the action
value function. It gives, for a policy 𝜋, the expected return when following the policy 𝜋 from
state 𝒔 onwards. It can be computed from the action value function with

𝑉𝜋(𝒔) = 𝔼𝒂∼𝜋(𝒂 | 𝒔)[𝑄𝜋(𝒔 , 𝒂)]. (2.6)

Q-learning Based on the concept of dynamic programming (Bellman, 1957b), a consistency
relation (Bellman equation) for the optimal action value function can be formulated (see,
e.g., Sutton and Barto (2018, eq. 3.20)), which states

𝑄∗(𝒔𝑛 , 𝒂𝑛) = 𝔼𝒔𝑛+1∼𝑝(· | 𝒔𝑛 ,𝒂𝑛)

[︃
𝑟(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1) + 𝛾 max

𝒂′∈𝒜
𝑄∗(𝒔𝑛+1 , 𝒂′)

]︃
. (2.7)

Q-learning is an algorithm presented by Watkins (1989) (for finite state and action spaces) which
computes, through interaction with an environment, under some assumptions given by Watkins
and Dayan (1992), an optimal action value function. For an observed transition, i.e., a tuple of the
form (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1 , 𝑟𝑛+1) with 𝑟𝑛+1 = 𝑅(𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1), and some action value function 𝑄, we can
compute an action value 𝑄̄(𝒔𝑛 , 𝒂𝑛)which fulfills the consistency equation in Equation 2.7

𝑄̄ = 𝑟𝑛+1 + 𝛾 max
𝒂′∈𝒜

𝑄(𝒔𝑛+1 , 𝒂′). (2.8)

𝑄 is now updated with a step-size parameter 𝛼 as

𝑄(𝒔𝑛 , 𝒂𝑛) ← (1 − 𝛼)𝑄(𝒔𝑛 , 𝒂𝑛) + 𝛼𝑄̄. (2.9)
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The next action to be applied on the environment is chosen via 𝒂 = arg max𝒂′ 𝑄(𝒔 , 𝒂′). However,
for convergence, all state-action pairs have to keep being visited, making exploration, e.g. by
choosing a random action occasionally (𝜖-greedy), mandatory (Sutton and Barto, 2018).

Maximization bias The action value function𝑄(𝒔𝑛 , 𝒂𝑛)maintained by Q-learning is an estimate
to the true action value, computed from a finite number of experience samples on the environment.
Let 𝑄̂(𝒔𝑛 , 𝒂𝑛) be the true action value. When choosing an action, we aim to choose the action
that maximizes the true action value arg max𝒂 𝑄̂(𝒔𝑛 , 𝒂). What Q-learning does, however, is to
maximize the estimate over the action value arg max𝒂 𝑄(𝒔𝑛 , 𝒂) for action selection. This leads
to a systematic overestimation of the true action value, named the maximization bias. Double
Q-learning (Hasselt, 2010) is an approach to mitigate this bias by using different value functions
𝑄𝐴, 𝑄𝐵 for action selection and value estimation, i.e.

𝑄̄
𝐵
= 𝑟𝑛+1 + 𝛾𝑄𝐵

(︃
𝒔𝑛+1 , arg max

𝒂′∈𝒜
𝑄𝐴(𝒔𝑛+1 , 𝒂′)

)︃
(2.10)

𝑄𝐴(𝒔𝑛 , 𝒂𝑛) ← (1 − 𝛼)𝑄𝐴(𝒔𝑛 , 𝒂𝑛) + 𝛼𝑄̄
𝐵
. (2.11)

The functions 𝑄𝐴 and 𝑄𝐵 regularly change roles, i.e., 𝑄𝐵 is used for action selection and 𝑄𝐴 to
compute the update on 𝑄𝐵.

Continuous state spaces In continuous state spaces, function approximators such as neural
networks can be used to estimate action values. Let 𝑄𝜽(𝒔 , 𝒂), 𝑄𝜽′(𝒔 , 𝒂) be two functions
estimating Q values from a continuous state 𝒔, parametrized by 𝜽 and 𝜽′, respectively. An
extension of double Q learning to continuous state spaces was presented by Hasselt et al. (2016).
Again, different value functions are used for action selection and value estimation. The target
value is computed as

𝑄̄ = 𝑟𝑛+1 + 𝛾𝑄𝜽′
[︃
𝒔𝑛+1 , arg max

𝒂′∈𝒜
𝑄𝜽(𝒔𝑛+1 , 𝒂′)

]︃
. (2.12)

Given an observed transition (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1 , 𝑟𝑛+1), a stochastic gradient descent update with
learning rate 𝛼 can be formulated as

𝜽← 𝜽 + 𝛼(𝑄̄ −𝑄𝜽(𝒔𝑛 , 𝒂𝑛))∇𝜽𝑄𝜽(𝒔𝑛 , 𝒂𝑛). (2.13)

In contemporary Q-learning algorithms with continuous state spaces, the parameters of the
target network 𝜽′ usually slowly track the parameters 𝜽 with

𝜽′← 𝜏𝜽 + (1 − 𝜏)𝜽′ (2.14)

with 𝜏 ≪ 1, see, e.g., Haarnoja et al. (2018) and Lillicrap et al. (2016).

Actor-critic algorithms The Q-learning algorithm presented above only learns an approxi-
mation to the true action value function without explicitly representing a policy, and is thus a
value-based method. Neglecting exploration, actions are chosen through an arg max operation
(Equation 2.5). In continuous action spaces, performing an arg max operation over the space of
actions is not straightforward and potentially very time-consuming.
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A second class of reinforcement learning algorithms, named policy-based methods, e.g., REIN-
FORCE (R. J. Williams, 1992), directly learn a (parametrized) representation of a (near-optimal)
policy 𝜋(𝒂 | 𝒔), and are directly applicable to continuous action spaces. However, these methods
are typically plagued with high-variance gradient estimates during training, slowing down
convergence (Konda and Tsitsiklis, 1999).

In actor-critic methods (Konda and Tsitsiklis, 1999), both an actor (a policy) and a critic, assessing
the quality of an action (e.g., an action value function), are learned, reducing the gradient
variance of purely policy-based methods. The actor-critic design enables to extend the concept
of Q-learning to continuous action spaces. In algorithms such as deterministic policy gradient
(DPG, D. Silver et al. (2014)), deep deterministic policy gradient (DDPG, Lillicrap et al. (2016)),
and soft actor-critic (SAC, Haarnoja et al. (2018)), the arg max operation is replaced by a policy,
which is updated by gradient ascent in the direction of increasing action values estimated by 𝑄.
However, also actor-critic algorithms exist which leverage a state-value function as their critic,
e.g., proximal policy optimization (PPO, Schulman et al. (2017)).

Soft actor-critic Soft actor-critic is a model-free reinforcement learning algorithm for sequential
decision making problems with continuous state- and action spaces. As the name states, it is an
actor-critic method, which maintains an approximation to the state- and action value function
and a parametrized policy, all implemented as neural networks. To circumvent the maximization
bias it maintains a separate target network for the state value to compute the update for the
action value network. The weights of the target network are updated with exponential moving
averages from the weights of the state value network. The main difference of soft actor-critic
compared to previous actor-critic methods such as DDPG is that it not only aims to maximize
the expected return, but also the expected entropy of the policy 𝜋, i.e.,

𝜋∗ = max
𝜋
𝒥(𝜋) = max

𝜋

𝑁∑︂
𝑛=0

𝔼(𝒔𝑛 ,𝒂𝑛)∼𝜌𝜋 [𝑟(𝒔𝑛 , 𝒂𝑛) + 𝛼H[𝜋(· | 𝒔𝑛)]] , (2.15)

which is a concept known as maximum entropy reinforcement learning. In the above equation,
𝜌𝜋 represents the joint distribution of states and actions induced by the policy and transition
dynamics of the Markov decision process. Experiments by Haarnoja et al. (2018) have shown
that SAC outperforms the prior actor-critic algorithms DDPG (Lillicrap et al., 2016) and PPO
(Schulman et al., 2017) on a set of baseline tasks both in asymptotic performance and sample-
efficiency.

2.4. Machine learning

The main focus of this thesis lies on the combination of learning and sequential decision making.
To this end, let us recapitulate the following definition by Mitchell (1997):

Definition 2.4.1 A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

Learning an agent which maximizes the expected return when interacting with an environment,
based on experience collected on the environment, can thus be seen as a problem of machine
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learning. To achieve this, sub-problems can occur which are machine learning problems
themselves. Exemplarily, in model-based agents, obtaining a dynamics model (from experience)
which should minimize prediction error is also a machine learning problem.

2.4.1. Empirical risk minimization

In many cases, the performance measure is given as an expectation over a random variable
following some distribution. For training a dynamics model, this could be the expected prediction
error on a distribution of states and actions. However, for training, only a finite set of (independent
and identically distributed) samples (the training set) is available to estimate the expected
performance, and the performance is only empirically optimized. In literature, this is known
as empirical risk minimization (Vapnik, 1991), where risk is a performance measure to minimize.
Optimizing the estimated expected performance does not necessarily imply that the expected
performance is optimized — a phenomenon known as overfitting. To this end, a different, disjoint
set of finite samples is required to estimate the expected performance, called test set. In the
following chapters, we maintain disjoint train- and test sets to train and evaluate the proposed
algorithms.

2.4.2. Likelihood maximization

A machine learning problem commonly occurring in this thesis is that of likelihood maximization.
Given a probabilistic model 𝑝(X | 𝜽) we aim to find a parameter vector 𝜽 which maximizes the
likelihood

𝜃∗ = max
𝜽

𝑝(X | 𝜽). (2.16)

For numerical reasons, typically the logarithm of the likelihood is maximized.

2.5. Latent variable models

In latent variable models (see, e.g., Bishop (2007)), data

𝒛(𝑘)

𝒚(𝑘)

𝑘 ∈ {1, . . . , 𝐾}
Figure 2.4.: Non-sequential latent variable
model.

generation is modeled by a hierarchical process. At the
top of the hierarchy, a single or a collection of unobserved
(latent) random variables condition the generation of the
observed random variables. The state-space model pre-
sented in Subsection 2.2.2 is such a latent variable model.
For simplicity, in this section, we limit our discussion to
a non-sequential latent variable model.

Let us exemplarily consider a dataset of images of hand-
written digits from 0 to 9. For the process of crafting a single image, we may first decide on
which digit to draw. Formally, we sample the digit to draw 𝒛 ∈ {0, . . . , 9} from the probability
distribution 𝑝(𝒛).§ Second, we draw the particular digit; however, each drawing may underlie
stochastic variations, such as the writing style. We can denote this probabilistically as the

§ Although 𝒛 denotes a scalar here, we use a bold font for generality.
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conditional distribution 𝑝(𝒚 | 𝒛) for an image 𝒚 of digit 𝒛. This process is represented formally as
a directed graphical model for a dataset of 𝐾 images in Figure 2.4.

While in this example the latent variable 𝒛 is discrete, 𝒛 can also be continuous in more complex
models to capture a larger variety of variations in the data. In the following, we will consider
models with continuous 𝒛 and 𝒚, as this is the most relevant case for this thesis.

The latent variable model in Figure 2.4 is fully characterized by the distribution over 𝒛, which
is 𝑝(𝒛), and the conditional distribution 𝑝(𝒚 | 𝒛). Given a dataset of observations 𝒚(𝑘) with
𝑘 ∈ {1, . . . , 𝐾}, two tasks are of particular interest. First, we are interested in modeling the
data generation process, i.e., 𝑝(𝒛) and 𝑝(𝒚 | 𝒛). Second, modeling the posterior distribution
𝑝(𝒛 | 𝒚) is relevant for multiple tasks, such as embedding a higher-dimensional observation into
a lower-dimensional latent space.

For general, non-linear latent variable models, computing the posterior distribution 𝑝(𝒛 | 𝒚)
exactly is not tractable. The framework of variational inference provides methods to approximate
this posterior distribution.

2.5.1. Variational inference

The general idea of variational inference is to frame the problem of approximate inference as
an optimization problem (see, e.g., Blei et al. (2016) for an introduction). Variational inference
describes the process of finding a probability density 𝑞∗(𝒛) from a family of densities 𝒬 which
minimizes the Kullback-Leibler divergence to the exact posterior density 𝑝(𝒛 | 𝒚), i.e.,

𝑞∗(𝒛) = arg min
𝑞∈𝒬

KL[𝑞(𝒛) | | 𝑝(𝒛 | 𝒚)]. (2.17)

2.5.2. Evidence lower bound

At a first sight, the optimization problem in Equation 2.17 seems to be of limited usefulness. In
order to find an optimal 𝑞∗(𝒛), we need to know 𝑝(𝒛 | 𝒚), which we assumed to have no access to
in the first place. However, with the definition of the Kullback-Leibler divergence between two
probability density functions (Cover and Thomas, 2006, p. 251)

KL[𝑞(𝒛) | | 𝑝(𝒛 | 𝒚)] =
∫

𝑞(𝒛) log
𝑞(𝒛)

𝑝(𝒛 | 𝒚) d𝒛 (2.18)

and Bayes’ theorem

𝑝(𝒛 | 𝒚) = 𝑝(𝒚 | 𝒛)𝑝(𝒛)
𝑝(𝒚) , (2.19)

we arrive at the following expression

KL[𝑞(𝒛) | | 𝑝(𝒛 | 𝒚)] = log 𝑝(𝒚) −
∫

𝑞(𝒛) log 𝑝(𝒚 | 𝒛)d𝒛 + KL[𝑞(𝒛) | | 𝑝(𝒛)]. (2.20)

As the KL divergence is non-negative (Cover and Thomas, 2006, p. 252) for all (𝑞, 𝑝), it follows

log 𝑝(𝒚) ≥
∫

𝑞(𝒛) log 𝑝(𝒚 | 𝒛)d𝒛 − KL[𝑞(𝒛) | | 𝑝(𝒛)]. (2.21)
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As the right-hand side of the inequality in Equation 2.21 lower-bounds the log evidence log 𝑝(𝒚),
it is termed evidence lower bound. When reconsidering Equation 2.20, as the log evidence log 𝑝(𝒚)
is not a function of 𝑞, we can conclude that maximizing the evidence lower bound with respect to 𝑞
minimizes KL[𝑞(𝒛) | | 𝑝(𝒛 | 𝒚)], which was the objective we initially formulated in Equation 2.17.

2.5.3. Variational autoencoder

Recent advances in deep neural networks allow for complex observation models 𝑝(𝒚 | 𝒛), such
as conditional image generation models. However, even for a small neural network with a single
nonlinear hidden layer, the posterior 𝑝(𝒛 | 𝒚) is intractable (Kingma and Welling, 2014).

Given a dataset of observations𝒴 = {𝒚(𝑘)}𝐾𝑘=1 one may resort to sampling-based approximate
inference techniques, yielding an approximate posterior 𝑞(𝒛(𝑘) | 𝒚(𝑘)) for each datapoint. This
approach is computationally expensive for large datasets. It can not leverage previously performed
computations for performing inference on datapoints within the set of observations𝒴 nor on
novel, unseen datapoints.

To share computations across datapoints and for the ability to generalize to unseen data, Kingma
and Welling (2014) propose to learn a parametric model to perform approximate inference, which
maps an observation 𝒚 to parameters of a probability distribution, e.g., mean and covariance
matrix of a multivariate Gaussian distribution for a continuous latent variable 𝒛 ∈ ℝ𝐷 . The
idea of sharing computation among separate inference tasks is known as amortized inference
(Gershman and Goodman, 2014; Stuhlmüller et al., 2013).

2.5.4. Reparametrization trick

Recapitulating the evidence lower bound in Equation 2.21, we observe that it contains an
expectation term and a Kullback-Leibler divergence term. The expectation term is of the form

𝔼𝒛∼𝑞(𝒛 | 𝝓)
[︁
log 𝑝(𝒚 | 𝒛, 𝜽)]︁ = ∫

𝑞(𝒛 | 𝝓) log 𝑝(𝒚 | 𝒛, 𝜽)d𝒛, (2.22)

where we have made the dependence of 𝑝 and 𝑞 on parameters 𝜽, 𝝓 explicit. For gradient-based
optimization, it is required to compute gradients of the above expectation with respect to 𝜽 and
𝝓. In Kingma and Welling (2014) a method is presented, called the reparameterization trick, which
provides Monte Carlo estimates of gradients of expectations such as the above.

For generality, in the following, 𝑓 is an arbitrary function depending on the random variable
𝒛 ∼ 𝑞(𝒛 | 𝝓) and on a parameter 𝜽, and 𝐸 is the expectation

𝐸 = 𝔼𝒛∼𝑞(𝒛 | 𝝓)
[︁
𝑓 (𝒛, 𝜽)]︁ . (2.23)

Differentiating Equation 2.23 with respect to 𝜽 is straightforward, with

𝜕

𝜕𝜽
𝐸 = 𝔼𝒛∼𝑞(𝒛 | 𝝓)

[︃
𝜕

𝜕𝜽
𝑓 (𝒛, 𝜽)

]︃
. (2.24)
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An unbiased Monte Carlo estimate for the gradient 𝜕
𝜕𝜽𝐸 is given by

1
𝐾

𝐾∑︂
𝑘=1

𝜕

𝜕𝜽
𝑓 (𝒛(𝑘) , 𝜽) with 𝒛(𝑘) ∼ 𝑞(𝒛 | 𝝓). (2.25)

Differentiating Equation 2.23 with respect to parameters 𝝓 of the density 𝑞 is more involved, as
we cannot, without further modifications, note down 𝜕

𝜕𝝓 𝑓 (𝒛(𝑘) , 𝜽).

The reparameterization trick (Kingma and Welling, 2014) proposes to make the dependence of 𝒛(𝑘)

on 𝝓 explicit through a differentiable transformation 𝑔, such that

𝐸 = 𝔼𝝐∼𝑝𝜖(𝝐)
[︁
𝑓 (𝑔(𝝐,𝝓), 𝜽)]︁ . (2.26)

Now we can obtain an unbiased estimate of the gradient of𝐸w.r.t. 𝝓 analogously to Equation 2.25,
i.e.,

1
𝐾

𝐾∑︂
𝑘=1

𝜕

𝜕𝝓
𝑓 (𝑔(𝝐,𝝓), 𝜽) with 𝝐(𝑘) ∼ 𝑝𝜖(𝝐). (2.27)

2.6. Planning and trajectory optimization

The basic idea of model-based planning and model-predictive control is to find an action
sequence (𝒂∗𝑛 , . . . , 𝒂∗𝑛+𝐻−1)which maximizes a performance objective 𝒥 , i.e.,

(𝒂∗𝑛 , . . . , 𝒂∗𝑛+𝐻−1) = max
(𝒂𝑛 ,...,𝒂𝑛+𝐻−1)∈𝒜𝐻

𝒥(𝒂𝑛 , . . . , 𝒂𝑛+𝐻−1). (2.28)

In control and planning tasks, the objective 𝒥 typically contains terms which depend on
intermediate states of the dynamical system 𝒔𝑛 , 𝒔𝑛+1, . . ., 𝒔𝑛+𝐻 . The dependencies between states
can, e.g., be modeled by a learned forward dynamics model 𝒔𝑛+1 ∼ 𝑞(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛).
In shooting algorithms, an initial state distribution 𝑝(𝒔𝑛) (or samples thereof) are propagated
with forward dynamics 𝒔𝑛+1 ∼ 𝑞(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛), and state-dependent terms are evaluated on
propagated state distributions or state samples. In contrast, in collocation algorithms, intermediate
states are added to the variables to optimize, and compliance with the dynamics of the system
is added as a constraint to the optimization problem (Betts, 1998; Rybkin et al., 2021; Tedrake,
2023).

In general, optimization algorithms can be distinguished by up to which order gradient
information (i.e., derivatives) is incorporated into the optimization process. A zero-order
optimization algorithm is gradient-free, i.e., no gradient information is incorporated.

2.6.1. Cross-entropy method

The cross-entropy method is a zero-order stochastic optimization algorithm, which has its roots
in literature on rare event probability estimation with the cross-entropy measure (Boer et al.,
2005; Rubinstein, 1996, 1999). To optimize an objective function 𝒥(𝒙), first, a set of candidates is
sampled from an initial distribution 𝑝(𝒙). A subset of elite candidates, which yield the highest
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values on 𝒥(𝒙), is used to adjust (re-fit) the distribution 𝑝(𝒙). From the re-fit distribution, a new
set of candidates is sampled, and the iteration continues, typically until a pre-defined limit of
optimization iterations is reached.

In model-based planning algorithms, the cross-entropy method is commonly employed for
action selection in a shooting setting. We provide pseudocode of the CEM algorithm for trajectory
optimization, as used in Chapters 3 to 5 in this thesis, in Algorithm 1.

Algorithm 1: Cross-entropy method (CEM) for trajectory optimization

Input: Objective function 𝒥 : 𝒜𝐻 → ℝ, 𝒜 = [−𝑎max , 𝑎max]𝐷A

Planning horizon 𝐻,
Maximal action magnitude 𝑎max,
Number of optimization iterations 𝑇,
Number of candidates 𝑁cand,
Number of elites 𝑁elites
Result: Optimal action sequence (𝒂∗1 , . . . , 𝒂∗𝐻)

1 Initialize 𝝁𝑛 = 0𝐷A , 𝝈2
𝑛 = 1𝐷A · 𝑎2

max ∀𝑛 ∈ {1, . . . , 𝐻};
2 for 𝑡 = {1, . . . , 𝑇} do
3 Sample 𝑁cand candidate sequences
4 (𝒂𝑘1 , . . . , 𝒂𝑘𝐻), 𝑘 ∈ {1, . . . , 𝑁cand} with 𝒂̂𝑘𝑛 ∼ 𝒩(𝝁𝑛 , 𝝈2

𝑛), 𝒂𝑘𝑛 = clip(𝒂̂𝑘𝑛 ,−𝑎max , 𝑎max);
5 Evaluate objective 𝒥𝑘 = 𝒥(𝒂𝑘1 , . . . , 𝒂𝑘𝐻);
6 Obtain set of elites 𝒮elites ⊂ {1, . . . , 𝑁cand}
7 with |𝒮elites | = 𝑁elites, 𝒥𝑘′ ≥ 𝒥𝑘 ∀𝑘′ ∈ 𝒮elites , 𝑘 ∈ {1, . . . , 𝑁cand} \ 𝒮elites;
8 Re-fit beliefs
9 𝝁𝑛 ← 1

𝑁elites

∑︁
𝑘∈𝒮elites 𝒂

𝑘
𝑛 ;

10 [𝝈2
𝑛]𝑑 ← 1

𝑁elites−1
∑︁
𝑘∈𝒮elites [𝒂𝑘𝑛 − 𝝁𝑛]

2
𝑑 ∀𝑑 ∈ {1, . . . , 𝐷A};

11 end
12 Set (𝒂∗1 , . . . , 𝒂∗𝐻) ← (𝝁1 , . . . , 𝝁𝐻);

Despite the fact that with contemporary machine learning frameworks gradient computation is
straightforward, zero-order (gradient-free) trajectory optimization algorithms are a common
choice when combined with learned high-capacity, e.g. neural network based, dynamics models
(Tedrake, 2023). Examples of learned dynamics models with CEM trajectory optimization can
be found in Chua et al. (2018), Hafner et al. (2019), and T. Wang and Ba (2020). Tedrake (2023)
formulates possible explanations for this. First, population-based methods, such as CEM, benefit
from the single instruction multiple data parallelism provided by contemporary hardware such as
GPUs, in which the time complexity for evaluating the objective function grows sublinearly with
the number of candidates. Second, population-based methods are less prone to fall into local
minima. When high-capacity function approximators are used to model system dynamics, this
problem may be even more pronounced compared to simple physics-based dynamics.
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3.1. Introduction

In Subsection 1.5.1 we have reviewed model-free and model-based approaches to sequential
decision making, and their particular advantages and disadvantages.

We have seen that one advantage of model-based methods, compared to model-free methods, is
that, as long as the model is accurate enough for regions of the state space which are relevant for
the set of tasks to consider, a set of tasks can be covered by reusing the learned dynamics model.
Thus, model-based agents provide a way to approach the novel tasks challenge (Subsection 1.4.1),
without requiring additional interaction with the environment.

As a second advantage, past research has shown that model-based methods can reduce the
amount of environment samples required for training the agent, compared to model-free
approaches (Chua et al., 2018; Deisenroth and Rasmussen, 2011; Hafner et al., 2019), even for a
single task (c.f., the sample-efficiency challenge in Subsection 1.4.2).

Both advantages makes these methods especially attractive for applications in robotics and
real-world settings, as collecting experience in real environments, such as driving a vehicle or
moving a robot, is often time- and resource-consuming, and mistakes can incur significant costs.
This is aggravated by the fact that environment dynamics in real-world environments are likely
to be non-stationary (c.f., the non-stationarity challenge in Subsection 1.4.2).

A method which provides a particularly sample-efficient approach to sequential decision making
is PILCO (Deisenroth and Rasmussen, 2011). PILCO is a model-based reinforcement learning
method. Based on a learned dynamics model, implemented by Gaussian process regression,
policy search is conducted to learn a parametrized policy. A central role for contributing to
the sample-efficiency of PILCO was attributed to the Gaussian process regression model, as
it handles uncertainty in dynamics caused by scarcity of data in a principled way, thereby
mitigating model bias. PILCO assumes observations of the environment to be available as
low-dimensional measurements. However, in many problems of interest the underlying state
of the world is only indirectly observable through images (c.f., the high-dimensional observations
challenge in Subsection 1.4.1).

As Gaussian process regression is a method which makes predictions based on contextual
observations, it is a promising approach to adapt to non-stationarities in the environment’s
dynamics, mitigating the need of retraining the dynamics model.

In this chapter, we aim to extend PILCO to high-dimensional observations such as images.
The dynamics of an environment are modeled by a Gaussian process in the latent space of a
variational autoencoder. In our experiments, we put a special emphasis on the data efficiency of
adapting to non-stationarities in the environments dynamics.

Specifically, we make the following contributions:

▶ We combine Gaussian processes (GPs) with neural networks to learn latent dynamics
models from visual observations. All parts of the proposed deep latent Gaussian process
dynamics (DLGPD) model can be trained jointly by optimizing a lower bound on the
likelihood of transitions in the image space.
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▶ We integrate the learned system dynamics with learning a reward function and use the
models for model-predictive control. In our experiments, the predictions of the learned
dynamics model enable the agent to successfully solve an inverted pendulum swingup
task.

▶ We demonstrate that the latent Gaussian process dynamics model allows the agent
to quickly adapt to environments with modified system dynamics from only a few
rollouts. Our approach compares favorably to the purely deep-learning based baseline
PlaNet (Hafner et al., 2019) in this transfer learning experiment.

3.2. Related work

Bayesian nonparametric Gaussian process models (Rasmussen and C. K. I. Williams, 2006) are a
popular choice for dynamics models in reinforcement learning (RL) (Deisenroth et al., 2009; Ko
et al., 2007; Rasmussen and Kuss, 2003; J. M. Wang et al., 2005). When the low-dimensional states
of the environment are available to the agent, PILCO (Deisenroth and Rasmussen, 2011) achieves
remarkable sample efficiency and is able to solve a swingup task in a real cart-pole system with
only 17.5 seconds of interaction. Deep PILCO (Gal et al., 2016) replaces GPs in PILCO with
Bayesian neural networks to learn the dynamics model. The method is not demonstrated to learn
an embedding of high dimensional image observations but directly operates on low-dimensional
state representations.

Model-free deep RL algorithms have shown good performance in image-based domains (Lillicrap
et al., 2016; Mnih et al., 2015), but they commonly require a large number of interactions. On the
other hand, model-based RL can often be more data-efficient. Many such algorithms learn low-
dimensional abstract state representations (Lesort et al., 2018) and model the system dynamics
in the learned latent space (Fraccaro et al., 2017; Karl et al., 2017). Some approaches such as
E2C (Watter et al., 2015), RCE (Banĳamali et al., 2018) or SOLAR (M. Zhang et al., 2019) learn
locally-linear latent transitions and plan for actions based on the linear quadratic regulator (LQR).
In comparison, we learn a non-local, non-linear dynamics model to select actions by planning in
latent space. PlaNet (Hafner et al., 2019) learns a recurrent encoder and a latent neural transition
model to efficiently plan in latent space. All components of PlaNet are modeled through deep
neural networks. We propose to model state transitions with GPs to reduce the number of model
parameters, provide better uncertainty estimates, and generally increase the data-efficiency.

Our formulation provides a data-efficient way to transfer a learned dynamics model to different
system dynamics. Closely related are meta-learning approaches that also learn to transfer
between different properties for the same task, e.g. Killian et al. (2017), Sæmundsson et al. (2018),
and Al-Shedivat et al. (2018). While our models are not specifically trained for transferability, it
is an inherent property of our formulation.

3.3. Preliminaries

This section is not part of Bosch et al. (2020).

Of particular relevance for this chapter are preliminaries on model-based planning (see Sub-
section 1.5.1), state-space models (see Subsection 2.2.2), Gaussian process regression (see
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Subsection 3.3.1), variational inference and variational auto-encoders (see Section 2.5) and the
cross-entropy method (CEM) planning algorithm (see Section 2.6).

3.3.1. Gaussian processes

A Gaussian process (GP, see e.g. Rasmussen and C. K. I. Williams (2006) for reference) describes
the distribution of a finite collection of scalar quantities 𝑦𝑛 ∈ ℝ, 𝒚 = [𝑦1 , . . . , 𝑦𝑁 ]⊤, paired
with corresponding inputs 𝒙𝑛 ∈ 𝒳 ,X = (𝒙1 , . . . , 𝒙𝑁 ). It is fully described by a mean function
𝑚 : 𝒳 → ℝ and a covariance function 𝑘 : 𝒳 ×𝒳 → ℝ. By

𝒎(X) = [𝑚(𝒙1), 𝑚(𝒙2), . . . , 𝑚(𝒙𝑁 )]⊤ (3.1)

we abbreviate the evaluation of the mean function for a collection of inputs X. We denote the
pairwise evaluation of the covariance function on a collection of inputs X as

𝑲(X,X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑘(𝒙1 , 𝒙1) 𝑘(𝒙1 , 𝒙2) · · · 𝑘(𝒙1 , 𝒙𝑁 )
𝑘(𝒙2 , 𝒙1) 𝑘(𝒙2 , 𝒙2) · · · 𝑘(𝒙2 , 𝒙𝑁 )

...
...

. . .
...

𝑘(𝒙𝑁 , 𝒙1) 𝑘(𝒙𝑁 , 𝒙2) · · · 𝑘(𝒙𝑁 , 𝒙𝑁 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

The covariance function 𝑘 must fulfill the property that its pairwise evaluation 𝑲(X,X) on
arbitrary collections of input points yields a matrix which is positive semidefinite and thus is
a valid covariance matrix. Note that the above definitions include possibly infinite input sets 𝒳.
Exemplarily, 𝒙 might refer to continuous time, in which 𝒳 ⊆ ℝ, or a real-valued vector, in which
𝒳 ⊆ ℝ𝐷 .

Definition 3.3.1 A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution (Rasmussen and C. K. I. Williams, 2006).

With the above definitions, the finite collection of scalar quantities 𝒚 at input locations X is jointly
Gaussian distributed with mean 𝒎(X) and covariance matrix 𝑲(X,X), i.e.,

𝒚 ∼ 𝒩 (𝒎(X),𝑲(X,X)) . (3.3)

Regression Let us now investigate how we can leverage the idea of Gaussian processes for
the task of function regression from noisy measurements. We slightly restrict the setting and
assume inputs to be vectors of dimension 𝐷, i.e., 𝒙 𝑖 ∈ ℝ𝐷 ,X = (𝒙1 , 𝒙2 , . . . , 𝒙𝑁 ), as this is the
most relevant setting for the modeling of dynamical systems. We assume measurements to be
generated by an underlying, unknown function 𝑓 : ℝ𝐷 → ℝ, which are additionally perturbed
by zero-mean Gaussian noise with variance 𝜎2

n, i.e.

𝑦̂ = 𝑓 (𝒙) + 𝜖 𝜖 ∼ 𝒩(0, 𝜎2
n). (3.4)

In probabilistic regression, we are interested in the (joint) distribution of a collection of unobserved
function values 𝒇 ∗ ∈ ℝ𝑀 at inputs X∗ = (𝒙∗1 , . . . , 𝒙∗𝑀), given perturbed observations 𝒚̂ ∈
ℝ𝑁 at inputs X = [𝒙∗1 , . . . , 𝒙∗𝑁 ]. Formally, this corresponds to the conditional distribution
𝑝( 𝒇 ∗ | X∗ , 𝒚̂,X).
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According to the Gaussian process formulation with additive Gaussian observation noise,
observed and unobserved function values are jointly Gaussian distributed with[︃

𝒚̂
𝒇 ∗

]︃
∼ 𝒩

(︃ [︃
𝒎(X)
𝒎(X∗)

]︃
,

[︃
𝑲(X,X) + 𝜎2

n𝑰 𝑲(X,X∗)
𝑲(X∗ ,X) 𝑲(X∗ ,X∗)

]︃ )︃
, (3.5)

corresponding to the distribution 𝑝( 𝒇 ∗ , 𝒚̂ | X∗ ,X). We obtain 𝑝( 𝒇 ∗ | X∗ , 𝒚̂,X) from 𝑝( 𝒇 ∗ , 𝒚̂ | X∗ ,X)
through conditioning, which again yields a Gaussian distribution

𝒇 ∗ ∼ 𝒩
(︂
𝝁 𝑓 ∗ ,𝚺 𝑓 ∗

)︂
(3.6)

with posterior mean and covariance matrix given by

𝝁 𝑓 ∗ = 𝒎(X∗) + 𝑲(X∗ ,X)[𝑲(X,X) + 𝜎2
n𝑰]−1(𝒚̂ −𝒎(X∗)) (3.7)

𝚺 𝑓 ∗ = 𝑲(X∗ ,X∗) − 𝑲(X∗ ,X)[𝑲(X,X) + 𝜎2
n𝑰]−1

𝑲(X,X∗). (3.8)

Covariance function The covariance function 𝑘(𝒙1 , 𝒙2) encodes how much the corresponding
output values (𝑦1 , 𝑦2) correlate. The covariance function is also commonly called kernel. The
choice of the mean and covariance function (and its hyperparameters) encodes a-priori knowledge
on the stochastic process. In regression, if we expect the underlying function to be smooth,
our choice of covariance function should reflect this. Similarly, if we expect our function to be
periodic, we should choose a periodic covariance function. A widely used covariance function for
vector-valued inputs which poses a smoothness prior on the underlying function is the squared
exponential kernel (Rasmussen and C. K. I. Williams, 2006)

𝑘(𝒙𝑝 , 𝒙𝑞) = 𝛼2 exp
(︃
−1

2
(𝒙𝑝 − 𝒙𝑞)⊤𝚲(𝒙𝑝 − 𝒙𝑞)

)︃
(3.9)

In our case, 𝚲 = diag(𝒍)−2, where 𝒍 is a vector of characteristic lengthscales. The factor 𝛼2 is termed
outputscale.

Model selection Gaussian process regression is a non-parametric approach. In parametric
approaches, such as neural network regression, the training data (X, 𝒚̂) is used to fit parameters
of a function approximator, which in turn is used to make predictions on unseen datapoints.
In contrast, in Gaussian process regression, the training data is directly leveraged to make
predictions by conditioning a Gaussian distribution. However, similar to parametric approaches,
the Gaussian process regression has hyperparameters. Among these hyperparameters are the
choice of mean- and covariance function and their parameters, and the choice and parameters of
the observation model. Generally, the problem of choosing hyperparameters is referred to as model
selection. There are two prominent approaches to model selection for Gaussian process regression,
which is leave-one-out cross validation and marginal likelihood maximization (Rasmussen and
C. K. I. Williams, 2006). We will focus here on the marginal likelihood for quantifying model fit,
as it emerges in the derivation of the training objective of the model proposed in Chapter 3. For
computing the marginal likelihood, function values 𝒇 are marginalized with

𝑝(𝒚̂ | X, 𝜽 𝑓 , 𝜽𝑦) =
∫

𝑝(𝒚̂ | 𝒇 ,X, 𝜽𝑦)𝑝( 𝒇 | X, 𝜽 𝑓 )d 𝒇 . (3.10)
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The term 𝑝( 𝒇 | X, 𝜽 𝑓 ) is given by the Gaussian process prior, which is 𝒩 (𝒎(X),𝑲(X,X)). The
parameter vector 𝜽 𝑓 thus contains parameters of the mean and covariance function. The
observation likelihood 𝑝(𝒚̂ | 𝒇 ,X, 𝜽𝑦), is, as defined in Equation 3.4, also Gaussian

𝑝(𝒚̂ | 𝒇 ,X, 𝜽𝑦) = 𝒩
(︁
𝒇 , 𝜎2

n𝑰
)︁
, (3.11)

where 𝜽𝑦 = 𝜎2
n. The marginal likelihood is thus be given as

𝑝(𝒚̂ | X, 𝜽 𝑓 , 𝜽𝑦) = 𝒩
(︁
𝒚̂ | 𝒎(X),𝑲(X,X) + 𝜎2

n𝑰
)︁
. (3.12)

3.4. Method

We propose a novel approach for learning system dynamics from high-dimensional image
observations. We combine the advantages of deep representation learning with Gaussian
processes for data-efficient Bayesian modeling of the latent system dynamics. For control, the
agent requires a model of the dynamical system as well as a reward model and an encoder to
infer its belief over latent states from observations. In the following, we formulate our learning
framework which learns all these components jointly from applied actions, and observed images
and rewards. We also propose our approach for model-predictive control and transfer learning
based on our learned models.

3.4.1. Deep Gaussian process state-space models

We consider dynamical systems with latent states 𝒔 ∈ ℝ𝐷S , actions 𝒂 ∈ ℝ𝐷A , and observations
𝒐 ∈ [0, 1]𝐷O . We call 𝑝(𝒔𝑛+1 | 𝒔𝑛 , 𝒂𝑛) = 𝒩(𝒔𝑛+1 | 𝑔(𝒔𝑛 , 𝒂𝑛),𝚺𝑔) the state-transition model for
discrete time steps 𝑛 ∈ ℕ with state-transition function 𝑔 and output noise covariance matrix
𝚺𝑔 = diag(𝝈2

n,𝑔). The observation model 𝑝(𝒐𝑛 | 𝒔𝑛) is associated with the observation function
ℎ, where 𝔼[𝒐𝑛] = ℎ(𝒔𝑛) is the expected observation; we will give an analytical expression for
the full likelihood later. In addition, we consider a control task specified by a reward model
𝑝(𝑟𝑛+1 | 𝒔𝑛 , 𝒂𝑛) = 𝒩(𝑟𝑡+1 | 𝑟(𝒔𝑛 , 𝒂𝑛), 𝜎2

n,𝑟) with reward function 𝑟(𝒔𝑛 , 𝒂𝑛) and output noise
covariance 𝜎2

n,𝑟 . Figure 3.1a illustrates the generative process.

A possible approach to learn the above models would be to restrict 𝑔, ℎ, and 𝑟 to families of
parametric functions such as deep neural networks. However, these usually require large training
datasets in order to avoid overfitting. On the other hand, Bayesian nonparametric methods
such as GPs often perform well with smaller datasets. We combine their respective properties
and choose different types of methods for the different model components. First, we model the
transition function through a GP 𝑔 ∼ 𝒢𝒫(𝜇𝑔(·), 𝑘𝑔(·, ·)), with mean function 𝜇𝑔 : (𝒔𝑛 , 𝒂𝑛) ↦→ 𝒔𝑛
and squared exponential∗ (SE) kernel function 𝑘𝑔 . For state dimensionality 𝐷𝑆 > 1 we model
each output dimension of the transition function with a conditionally independent GP. Similarly,
we chose a GP reward model 𝑟 ∼ 𝒢𝒫(𝑟min , 𝑘𝑟(·, ·))where 𝑟min is the minimal reward observed in
the collected training data, and 𝑘𝑟 the SE kernel. We model the observation function (decoder) ℎ
with a transposed-convolutional network. With 𝒉𝑛 = ℎ(𝒔𝑛), the observation likelihood 𝑝(𝒐𝑛 | 𝒔𝑛)

∗ See Subsection 3.3.1 on the squared exponential kernel.
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(a) State-space model with latent states 𝒔, conditioned on
actions 𝒂, yielding observations 𝒐 and rewards 𝑟. We use
a simplified approximate filtering density 𝑝(𝒔𝑛 | 𝒐≤𝑛) ≈
𝑞(𝒔𝑛 | 𝒐𝑛) (dashed arrows).

𝒊𝑛−1

𝒐𝑛 = ⊕
𝒊𝑛

𝒊𝑛
𝒐𝑛+1 = ⊕

𝒊𝑛+1
. . .

. . .

(b) We model observations 𝒐𝑛 as stacked subsequent
images 𝒊𝑛 ⊕ 𝒊𝑛−1, in order to infer velocity information
from a single observation.

Figure 3.1.: Generative state-space model (a) for observations, which we model as stacked images (b).

is given by

𝑝(𝒐𝑛 | 𝒔𝑛) =
𝐷O∏︂
𝑖=1
(ℎ𝑛,𝑖)𝑜𝑛,𝑖 · (1 − ℎ𝑛,𝑖)(1−𝑜𝑛,𝑖) , (3.13)

where ℎ𝑛,𝑖 is the 𝑖th element of 𝒉𝑛 (𝑜𝑛,𝑖 is the 𝑖th element of 𝒐𝑛). For a state-space model in
general, to obtain an estimate of the latent state 𝒔𝑛 (the filtering density 𝑝(𝒔𝑛 | 𝒐≤𝑛 , 𝒂<𝑛)), past
observations and actions have to be incorporated (see Subsection 2.2.2). Here, we make the
simplifying assumption that from a single observation the filtering density can be sufficiently
approximated (see Figure 3.1a), using a learned a probabilistic encoder of the form 𝑞(𝒔𝑛 | 𝒐𝑛) =
𝒩 (︁

𝒔𝑛 | 𝑓𝝁(𝒐𝑛),𝑫𝑫⊤
)︁

with 𝑫 = diag( 𝑓𝝈(𝒐𝑛)). The location and scale parameters 𝑓𝝁(𝒐𝑛), 𝑓𝝈(𝒐𝑛)
are inferred by an encoder neural network 𝑓 . We refer to Appendix A.2 for architectural details
on the encoder 𝑓 and decoder ℎ.

To enable state inference from a single observation, we consider observations 𝒐𝑛 to consist of
two stacked subsequent frames 𝒊𝑛−1 ⊕ 𝒊𝑛 (see Figure 3.1b). This allows for approximate inference
of positions and velocities, which is sufficient to fully describe the state of the pendulum task
considered in our experiments. Note that for different environments with more complex states
or with long-term dependencies it might not be possible to infer a state from two subsequent
frames and hence be necessary to choose a more general encoder 𝑞(𝒔𝑛 | 𝒐≤𝑛 , 𝒂<𝑛), e.g. by filtering
through a recurrent encoder as done by Hafner et al. (2019).

3.4.2. Training objective

We jointly learn all parameters of the model, which include the weights of the neural networks
and the hyperparameters of the GP, from interactions with the environment. Consider transitions
(𝒐𝑛 , 𝒂𝑛 , 𝒐𝑛+1 , 𝑟𝑛+1) collected by interacting with the environment. To model the covariances
of individual data points we group the observed transitions into a joint training dataset
D = (O,A,O′,R′), with O = (𝒐1 , . . . , 𝒐𝑁−1), A = (𝒂1 , . . . , 𝒂𝑁−1), O′ = (𝒐2 , . . . , 𝒐𝑁 ), and
R′ = (𝑟2 , . . . , 𝑟𝑁 ). We further define latent states S = (𝒔1 , . . . , 𝒔𝑁−1) and S′ = (𝒔2 , . . . , 𝒔𝑁 ).
With the encoder 𝑞(𝒔𝑛 | 𝒐𝑛) we factorize the approximate filtering density as 𝑞(S | O) =∏︁𝑁−1

𝑛=1 𝑞(𝒔𝑛 | 𝑜𝑛) and 𝑞(S′ | O′) = ∏︁𝑁
𝑛=2 𝑞(𝒔𝑛 | 𝒐𝑛). Similarly, with our observation model we can
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write 𝑝(O | S) = ∏︁𝑁−1
𝑛=1 𝑝(𝒐𝑛 | 𝒔𝑛) and 𝑝(O′ | S′) = ∏︁𝑁

𝑛=2 𝑝(𝒐𝑛 | 𝒔𝑛). Finally, since we model the
state transitions and the rewards through GPs, the densities 𝑝(S′ | S,A) and 𝑝(R′ | S,A) are from
multivariate Gaussian distributions which we do not factorize over individual transitions.

We marginalize the data likelihood 𝑝(O′,R′ | O,A) in the following way:

𝑝(O′,R′ | O,A)
=
x

𝑝(O′ | S′) 𝑝(S′ | S,A) 𝑝(R′ | S,A) 𝑞(S | O)dS dS′ (3.14)

= 𝔼𝑞(S′ | O′)𝑞(S | O)

[︃
𝑝(O′ | S′) 𝑝(S′ | S,A) 𝑝(R′ | S,A) 1

𝑞(S′ | O′)
]︃
. (3.15)

With Jensen’s inequality we obtain our training objective as a lower bound on the log-likelihood:

log 𝑝(O′,R′ | O,A)
≥ 𝔼𝑞(S′ | O′)

[︁
log 𝑝(O′ | S′)]︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(I): Reconstruction

+𝔼𝑞(S′ | O′)
[︁− log 𝑞(S′ | O′)]︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(II): Encoder regularization

+ 𝔼𝑞(S′ | O′)𝑞(S | O)
[︁
log 𝑝(S′ | S,A)]︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(III): State transitions

+𝔼𝑞(S | O)
[︁
log 𝑝(R′ | S,A)]︁⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

(IV): Reward

.

(3.16)

We refer to Bosch et al. (2020) for a more detailed derivation. The four terms of the derived lower
bound have readily interpretable roles: The first term (I) describes a (negative) reconstruction
loss. Since the decoder parametrizes a Bernoulli distribution over pixel values, it is equivalent to
the negative binary cross-entropy loss. The second term (II) corresponds to the differential entropy
of the encoder 𝑞(𝒔𝑛 | 𝒐𝑛) and can be interpreted as a regularization term on the encoder. For
multivariate Gaussian distribution with diagonal covariance matrix 𝚺 = diag([𝜎2

1 , . . . , 𝜎
2
𝐷]), the

differential entropy is proportional to
∑︁
𝑖 log (𝜎𝑖). Thus, the term prevents vanishing variances.

Term (III) describes the likelihood of transitions in latent state space in expectation over the
encoder. Since the state transitions are modeled with a GP, the inner likelihood corresponds to the
so-called marginal log-likelihood (MLL), which is a common training objective for hyperparameter
selection in Gaussian process regressions (Rasmussen and C. K. I. Williams, 2006). Similarly, (IV)
shows the MLL for the reward GP, again in expectation over the encoder. For the loss terms (I),
(III), and (IV) we estimate the outer expectations using a single reparametrized sample (Kingma
and Welling, 2014; Rezende et al., 2014). The differential entropy (II) can be computed analytically,
since the encoder provides a multivariate Gaussian distribution.

For computational tractability, we maximize the lower bound in Equation 3.16 over batched
subsamples of our training dataset, which for Gaussian processes can be theoretically justified
by the subset-of-data-approximation (Hayashi et al., 2020; Liu et al., 2020). To improve training
stability, we normalize the encoded states (S, S′) batch-wise to zero mean and unit variance before
passing them to the transition- and reward GPs. For testing we compute fixed normalization
parameters from the full training dataset. Before decoding predicted states the normalization is
reversed. Furthermore, we limit the signal-to-noise ratio of the squared exponential kernels of
transition and reward GPs by minimizing an additional penalty term (see Appendix A.1).
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Figure 3.2.: In general, for prediction, we iteratively perform mean prediction with the transition Gaussian process,
starting from the expected state 𝔼𝒔𝑛∼𝑞(𝒔𝑛 | 𝒐𝑛 )[𝒔𝑛] inferred from 𝒐𝑛 using the encoder. For control, we additionally
regress the reward using the reward GP. For video prediction, we can decode the predicted states 𝒔̂𝑛 using the
decoder.

3.4.3. Posterior inference with latent Gaussian processes

To compute the predictive distributions of the transition model and reward model, the GPs need
to be conditioned on evidence. With the training data D = (O,A,O′,R′) and the encoder 𝑞(𝒔 | 𝒐)
we compute latent states (S, S′), using reparametrized samples (Kingma and Welling, 2014;
Rezende et al., 2014) of the predicted distribution as the state representations. For an arbitrary
but known state 𝒔∗𝑛 and action 𝒂∗𝑛 we then obtain the posteriors 𝑝

(︁
𝒔∗𝑛+1 | 𝒔∗𝑛 , 𝒂∗𝑛 , ((S,A), S′)

)︁
and

𝑝
(︁
𝑟∗𝑡+1 | 𝒔∗𝑛 , 𝒂∗𝑛 , ((S,A),R′)

)︁
through standard posterior GP inference (Rasmussen and C. K. I.

Williams, 2006).

3.4.4. Model-predictive control

We employ our learned system dynamics for model-predictive control (MPC) (García et al., 1989).
Key ingredients for MPC are our learned transition and reward models as well as the encoder
which infers latent states from image observations. The observation model is not required for
planning. Fig. 3.2 illustrates prediction with our probabilistic model. We use the cross-entropy
method (CEM)† (Boer et al., 2005; Rubinstein, 1996) to search for the action sequence that
maximizes the expected sum of rewards 𝔼

[︁∑︁𝑇
𝑡=1 𝑟𝑡

]︁
. Starting from the mean state encoding of

the most recent observation, we compute a state trajectory by forward-propagating the predicted
mean. We then approximate the expected reward by averaging the mean prediction of the reward
model for 5 samples of the marginal state distribution for every timestep.

3.5. Experiments

We demonstrate our learning-based control approach on the inverted pendulum (OpenAI Gym
Pendulum-v0 (Brockman et al., 2016)), a classical problem of optimal control and continuous
reinforcement learning. The goal of this task is to swingup an inverted pendulum from its
resting (hanging-down) position. Due to bounds on the motor torques, a straight upswing of the

† See Subsection 2.6.1 for details on the cross-entropy planning method.
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pendulum is not possible, and the agent has to plan multiple swings to reach and balance the
pendulum around the upward equilibrium.

For data collection, we excite the system with uniformly sampled random actions 𝑎𝑡 ∼ 𝒰[−2, 2].
We initialize the system’s state with angles 𝜃0 ∼ 𝒰[−𝜋,𝜋] and angular velocities 𝜃̇0 ∼ 𝒰[−8, 8].
We collect 500 rollouts for training and 3 pools of evidence rollouts, containing 200 rollouts each.
Each rollout contains 28 transitions.

We represent latent states as 3-dimensional real-valued vectors 𝒔𝑛 ∈ ℝ3. The observations consist
of two subsequent images stacked channel-wise, with image size 64 × 64 pixels and RGB color
channels. We model the probabilistic encoder 𝑞(𝒔𝑛 | 𝒐𝑛) by a convolutional neural network with
two output heads for mean and standard deviation. The decoder 𝑝(𝒐𝑛 | 𝒔𝑛)mapping from the
latent space to the observation space is implemented by a transposed-convolutional neural
network. For more details on the architecture, see Appendix A.2.

For implementation, we use PyTorch (Paszke et al., 2019) and GPyTorch (Gardner et al., 2018).

3.5.1. Training

The lengthscales of the squared exponential kernel are initialized as 𝑙 = softplus(0) ≈ 0.693. The
outputscales of the transition GPs are initialized to 𝛼2 = 1, the output noise variances to 𝜎2

n = 0.2.
We pose Gamma(1, 5) priors on the outputscales and lower bound the outputscales to 10−2. For
the reward GP, the outputscale 𝛼2

reward is initialized to the variance of the rewards in the first
batch, the output noise variance to 0.2 · 𝛼2

reward. All output noise variances are lower bounded by
𝛼2 · 10−3. The mean function for the reward GP is set constant as the minimum of all collected
rewards, to predict a minimal reward for unseen regions of the state space. All parameters of our
model are jointly optimized with Adam (Kingma and Ba, 2015), with a learning rate of 10−3 and
a batch-size of 1024. To encourage the encoder to learn an embedding for the forward modelling
task, we stop gradients from the reward model to the encoder. We train all models for 2000
epochs. To observe the effect of neural network initialization and training data shuffling, we
report control performance on three separately trained models.

We train PlaNet (Hafner et al., 2019) on the same training data like our model (500 pendulum
rollouts with random initialization and random actions), plus additionally 200 rollouts which
is the maximum number of evidence rollouts we use, which gives 700 rollouts in total. Based
on the best average performance on 5 validation rollouts, we choose a model after 3.8 million
steps of training. This model serves as the base model for fine-tuning on data from modified
environments. For fine-tuning, we evaluate all models every 20k steps for the first 100k steps
and every 100k steps for up to 1 million steps, and report results for models where the mean
performance is best.

3.5.2. Pendulum swingup

Performance on the swingup task is evaluated on a system randomly initialized with angle
𝜃0 ∼ 𝒰[𝜋−0.05,𝜋+0.05] (pole hanging downwards) and angular velocity 𝜃̇0 ∼ 𝒰[−0.05, 0.05].
As evaluation metric, we report the achieved cumulative reward over 150 steps. In order to apply
the DLGPD model on prediction and control tasks, the transition and reward GPs have to be
conditioned on encoded observations, actions and rewards collected from previous environment
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Figure 3.3.: Visualizing the 3-dimensional latent space of the learned embedding. States are colored according to
true physical states of the pendulum (angle and angular velocity). On the two rightmost panels, an MPC-planned
trajectory for swingup is shown, with ✕ marking the final state.

interactions. For this we use subsets of rollouts (between 10 and 200 rollouts) from the evidence
pools. We use CEM for planning (see Subsection 3.4.4) with a planning horizon of 20 steps.
We report results for 3 control trials on 3 trained models conditioned on a subset of each of
the 3 evidence pools (i.e. 27 runs per subset size). The control performance results in terms of
cumulative reward are depicted in Figure 3.4(a). We observe that our approach achieves higher
average cumulative reward than PlaNet in this environment already for a small set of evidence
rollouts (≥ 20). In Figure 3.5(a) we additionally report the success rate on the pendulum swingup
task. As there is no common definition of “success" for the Pendulum-v0 environment, we defined
a swingup trial to be successful if the last 25 steps of 150 total steps exceed a reward of −1 (0
is the maximum achievable reward for this environment, and −16.27 the minimum achievable
reward). Both PlaNet and DLGPD achieve a success rate of 100 %. Fig. 3.3 shows a learned latent
embedding and a trajectory followed by the CEM planner.

3.5.3. Transfer learning

By modeling the state transitions through a GP, we can learn new state-transition functions of
systems with different dynamical properties in a very data-efficient way, as long as the other
model components (observation model, reward model, encoder) can be re-used. In particular, we
observed that the agent does not require additional training and that it is sufficient to replace the
evidence in the transition GP (see Subsection 3.4.3) with new data of the modified environment,
e.g. collected by a random policy. In the following, we investigate the sample efficiency of our
model for adapting to environments with changed physical parameters using new random
rollouts. We compare our approach with PlaNet (Hafner et al., 2019) which is fine-tuned on the
same rollouts.

To evaluate adaptation capabilities to environments with changed intrinsic properties, we derive
three variants of the Pendulum-v0 environment. For the inverted action environment, we flip the
sign of the action before passing it to the original environment. Second, we make the pole lighter
by reducing its mass from 𝑚 = 1 to 𝑚 = 0.2; we also increase the pole’s weight to 𝑚 = 1.5.
Results of PlaNet variants and DLGPD conditioned on evidence from the modified and the
original environments (matching/mismatching) are shown in Figures 3.4(b-d). For inverted
actions, our approach achieves significantly higher cumulative reward even for a small number
of rollouts in the evidence. PlaNet clearly performs less well with the same amount of training
data. With a lower mass than the original pendulum, MPC with both modelling approaches still
achieves the swingup without additional data. For increased mass, our approach achieves higher
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Figure 3.4.: Cumulative rewards for PlaNet and our DLGPD model for swingup of the inverted pendulum in different
settings. For the detailed discussion see Subsection 3.5.2 for (a) and Subsection 3.5.3 for (b-d).
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Figure 3.5.: Success rate for PlaNet and our DLGPD model for swingup of the inverted pendulum in different settings.
See Subsection 3.5.3 for details.

cumulative reward than PlaNet with only a few extra rollouts. In addition to the cumulative
reward, we also evaluated our experiments with respect to the ratio of successful rollouts.
Please see Figures 3.5(b-d) for a visualization of the results. We observe that DLGPD matches or
outperforms the success rate of PlaNet for evidence sizes ≥ 20 in all settings and is able to adapt
to changes in the environment with only a few extra rollouts.

3.6. Limitations

This section is, in large parts, not part of Bosch et al. (2020).

The main limitation of the presented approach concerns applicability to more complex systems
than the presented inverted pendulum.

In follow-up experiments to Bosch et al. (2020), we were not able to successfully apply the
approach to perform a swing-up on the CartPole environment from the DeepMind Control
Suite (Tassa et al., 2018). As a main reason, we identify the need for many datapoints in the
Gaussian process conditional to sufficiently capture the system dynamics, which is prohibitive in
terms of memory- and computational requirements. A sparse parametric approximation, such as
pseudo-inputs (Snelson and Ghahramani, 2005), would reduce these requirements, however, at
the cost of losing the ability to straightforwardly adapt to novel dynamics by simply replacing the
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Gaussian process conditional. Sæmundsson et al. (2018) present a Gaussian process based latent
variable model for adaptive dynamics models. Thus, a potential direction for future research is
to extend the approach by Sæmundsson et al. (2018) to image inputs. However, different to our
approach, this requires training on multiple environments to achieve adaptability, while our
approach is trained on a single environment. An alternative to modeling the dynamics of the
environment globally is to limit the datapoints in the conditional to regions of the state space
which are important for a particular task. This could be achieved through collecting training
data intermittently while trying to solve the task, as in PILCO (Deisenroth and Rasmussen, 2011)
and PlaNet (Hafner et al., 2019).

Second, related to the first limitation, the computational complexity of forward predictions is in
the order of𝒪(𝑁2), where 𝑁 is the number of datapoints in the Gaussian process conditional. For
large 𝑁 , planning is very computationally intensive, which poses a challenge to meet real-time
requirements on physical systems. To alleviate this problem, one could learn a model-free
agent from hypothetical experience sampled from the learned forward model, as in Dyna-like
approaches (Sutton, 1991), or back-propagate through the forward model, as in Hafner et al.
(2020). However, to adapt to novel environment dynamics, these representations have to be
retrained. This incurs additional computational operations, but no further costly interaction
with the real-world system.

A further simplifying assumption is that a Markovian belief state can be estimated from two
subsequent image observations. However, extending the proposed method to more complex,
e.g., recurrent, encoder architectures, is straightforward.

Lastly, for planning, we forward propagate mean states without propagating their uncertainty.
A probabilistic treatment of the forward prediction, e.g. through moment matching or Monte
Carlo sampling, might further improve data-efficiency.

3.7. Conclusion

We propose DLGPD, a dynamics model learning approach which combines deep neural networks
for representation learning from images with Gaussian processes for modelling dynamics and
rewards in the latent state representation. We jointly train all model parameters from example
rollouts in the environment and demonstrate model-predictive control on the inverted pendulum
swingup task. Our latent GP transition model allows for data-efficient transfer to tasks with
modified pendulum dynamics without additional training, by conditioning the transition GP on
rollouts from the modified environment. In comparison to a state-of-the-art purely deep learning
based approach (PlaNet, Hafner et al. (2019)) our method demonstrates superior performance in
data-efficiency for transfer learning.

Scaling and evaluating our approach on more complex tasks, environments and eventually
robotic systems is an interesting topic for future research, and we refer to Section 3.6 for challenges
in this regard.
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Conditional Dynamics Models’. In: Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS) (Achterhold and Stueckler, 2021).

The above publication was presented as a poster presentation at the International Conference on
Artificial Intelligence and Statistics (AISTATS) 2021, online event.

Author contributions are as follows:

Scientific
ideas

Data
generation

Analysis &
Interpretation

Paper
writing

Jan Achterhold 80 % 100 % 80 % 75 %
Jörg Stückler 20 % 0 % 20 % 25 %

Jan Achterhold conceived the idea of using the uncertainty in a Neural Process based dynamics
model for calibration / system identification. Jörg Stückler regularly provided feedback on the
approach during its development. Jan Achterhold implemented the algorithm and performed
the experiments. Jan Achterhold and Jörg Stückler wrote the paper.

We provide additional materials, including the conference poster, athttps://explorethecontext.
is.tue.mpg.de/. We provide our implementation at https://github.com/EmbodiedVision/
explorethecontext.

4.1. Introduction

Building a sample-efficient model-based agent which can efficiently adapt to non-stationarities
being present in the environment has two dimensions. First, the dynamics model itself needs to
be adaptive, such as the contextual Gaussian process dynamics model presented by Deisenroth
and Rasmussen (2011), which we leveraged for transfer learning in Chapter 3. Second, the data
collection process needs to be efficient. A sequence of actions executed on an environment in
order to adapt a dynamics model should carefully be chosen to reveal the maximum amount of
information and minimize redundancies.

In this chapter, we focus on the efficiency of the data collection process.

In Chapter 3, the prior distribution over dynamics is defined by a Gaussian process prior with a
squared exponential kernel, which expresses an assumption of smoothness in the dynamics. A
posterior predictive model is obtained through conditioning on transitions from the environment
(the context observations).

https://explorethecontext.is.tue.mpg.de/
https://explorethecontext.is.tue.mpg.de/
https://github.com/EmbodiedVision/explorethecontext
https://github.com/EmbodiedVision/explorethecontext
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Here, we also leverage contextual models to implement adaptivity. However, we depart from
the Gaussian process formulation due to its computational complexity, and build our dynamics
model upon the Neural Process (NP) (Garnelo et al., 2018b) framework.

The Neural Process formulation differs from the Gaussian process formulation in two ways.
First, instead of manually defining structure of dynamics in form of a prior over functions,
here, the structure is learned by dynamics from a given distribution over environments (e.g.,
pendulum environments with varying pole masses). Second, an environment-specific latent
variable captures the specifics of the dynamics of a particular environment instance. We assume
this latent variable to be unobserved, and inferred through a set of context transitions. Overall,
the model is context-adaptive as the Gaussian process models mentioned above.

This process can also be interpreted as a form of meta-learning (Finn et al., 2017; Thrun and
Pratt, 1998), as we learn to adapt a shared dynamics model (conditioned by a latent variable) to a
specific environment.

Neural Process based dynamics models were previously proposed by several authors. B. Zhu
et al. (2020) demonstrate that a Neural Process based dynamics model allows to infer underlying
physical quantities through the context-conditional latent variable. Lee et al. (2020) encode
past transitions into a latent variable, yielding a dynamics model which can adapt to changes
in dynamics. Both works do not explicitly make use of the uncertainty of the latent variable.
Our main contribution presented in this chapter is to leverage this uncertainty for active system
identification.

We ask: Given an environment from a family of environments (e.g., the family of pendulums with
varying pole masses), what action sequence should one apply to the (unknown) environment to
identify it as quickly as possible within that family (e.g., to infer the mass of the pendulum’s pole)?
An optimization procedure seeks for transitions of the environment being most informative for
the latent variable, while respecting the dynamical constraints of the environment.

The latent variable formulation allows us to formulate a calibration procedure which optimizes
for a sequence of actions that minimizes uncertainty in the latent context variable. We formulate
an open-loop and model-predictive calibration algorithm to plan for the optimal sequence of
actions to execute.

On an illustrative toy environment (Subsection 4.5.2), we show that the uncertainty in the latent
context variable corresponds to the informativeness of the set of context observations about the
latent factors.

We also apply our method to a modified “Pendulum" environment from OpenAI Gym (Brockman
et al., 2016) and a modified “MountainCar" environment (Moore, 1990) which we both extended
by varying properties of the underlying dynamics (Subsections 4.5.3 and 4.5.4). Our algorithm
exhibits a reasonable and explainable behavior on these environments. The calibration procedure
we propose yields a calibration sequence which outperforms a random calibration sequence
in terms of prediction accuracy of the calibrated dynamics model, and in terms of planning
performance when using the calibrated dynamics model in a model-predictive control setting.

In summary, our contributions are as follows:

▶ We apply the framework of Neural Processes (Garnelo et al., 2018b) with a probabilistic
context encoder to formulate a latent dynamics model. We demonstrate in experiments that
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the probabilistic model yields meaningful posterior uncertainties in the context variable
given observations of dynamical systems.

▶ Based on this probabilistic formulation, we develop an information-theoretic calibration
scheme based on expected information gain (EIG) and model-predictive control (MPC). We
further demonstrate that our calibration scheme outperforms a baseline which generates
actions randomly, in terms of prediction accuracy and planning performance of the
calibrated model.

4.2. Related work

Neural Processes The idea of context-conditional modeling of distributions over functions
using a permutation invariant context embedding was first introduced by Garnelo et al. (2018a)
as Conditional Neural Processes (CNPs). The authors apply CNPs on image completion and
classification tasks. While Garnelo et al. (2018a) mainly use a deterministic belief for the context
encoding, also a latent variable model is introduced, but a deterministic influence of the latent
context encoding on function predictions remains. Garnelo et al. (2018b) present a more formal
treatment of the latent variable model formulation coined Neural Processes (NPs). Sequential
Neural Processes (Singh et al., 2019) extend the original Neural Processes formulation by a
temporal dynamics model on the latent context embedding. Applications of the Neural Process
framework for dynamics model learning have recently been proposed by B. Zhu et al. (2020),
who show that the latent variable relates to underlying physical quantities of simulated systems,
and Lee et al. (2020), who formulate adaptive dynamics models for model-based reinforcement
learning tasks. In contrast to these works, in our work the uncertainty in the latent variable is
leveraged for active system identification / calibration.

Dynamics Model Learning In the seminal PILCO approach (Deisenroth and Rasmussen, 2011),
Gaussian Process (GP) dynamics models are learned for control tasks such as cart-poles. Fraccaro
et al. (2017) propose an approach for modelling systems with partial observability through
linear time-dependent models, with state inference performed by Kalman filtering in the latent
space of a variational autoencoder. To enable planning in the learned dynamics models, Watter
et al. (2015) learn locally linear models. Probabilistic dynamics models in combination with
planning based on the cross-entropy method (Rubinstein, 1999) have shown to outperform
model-free reinforcement learning approaches in terms of sample efficiency (Chua et al., 2018)
and can be trained directly on image representations (Hafner et al., 2019). These methods do not
consider variations in the underlying system which can be explained through context variables.
We develop a probabilistic context-dependent dynamics model and an information-theoretic
planning scheme for calibration based on model-predictive control.

Meta-Learning Neural- and Gaussian processes can be seen as types of meta learning algo-
rithms which facilitate few-shot learning of the data distribution (Garnelo et al., 2018a,b). Meta
learning of dynamics models has been explored in the domain of model-based reinforcement
learning (Nagabandi et al., 2019; Sæmundsson et al., 2018). Nagabandi et al. (2019) propose
to combine gradient-based (Finn et al., 2017) and recurrence-based (Duan et al., 2016) meta
learning for online adaptation of the dynamics model. Different to our approach, this meta
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learning scheme does not explicitly model the dynamics model dependent on a context variable.
Calibration on the target system requires fine-tuning the deep neural network. We propose
a deep probabilistic model and a learning scheme which allows for inferring such a context
variable through calibration. Similar to our approach, Sæmundsson et al. (2018) include a latent
context variable into a probabilistic hierarchical dynamics model which they choose to model
using Gaussian processes. The method uses probabilistic inference to determine a Gaussian
context variable from data. We use a deep encoder to regress probabilistic beliefs on the context
variable and propose an information-theoretic approach for dynamics model calibration.

Active Learning and Exploration The method we propose for system calibration differs in
substantial points from what is termed exploration in reinforcement learning. While in exploration
the goal of the agent is to visit previously unseen regions of the state space for potentially finding
behaviors yielding higher returns, we assume to stay in the domain of systems we observed
during training. However, some concepts from exploration approaches in reinforcement learning
translate to our method, especially those based on uncertainty- and information-theoretic active
learning principles (Epshteyn et al., 2008; Golovin et al., 2010; Sekar et al., 2020; Shyam et al.,
2019; Tschantz et al., 2020). Buisson-Fenet et al. (2020) develop an active learning approach
for GP dynamics models exploiting the GP predictive uncertainty. Popular examples of active
learning strategies are expected error reduction (EER) (Roy and McCallum, 2001) or expected
information gain (EIG) (Lindley, 1956; MacKay, 1992). Our information-theoretic calibration
approach is formulated based on a variant of EIG.

4.3. Preliminaries

This section is not part of Achterhold and Stueckler (2021).

4.3.1. Optimal Design of Experiments

In an experiment, one tries to obtain information on a subject. Exemplarily, medical researchers
perform clinical trials to gain information on the response of patients on a particular treatment
or drug, or social scientists perform questionnaires to survey political sentiments.

Oftentimes, experiments are costly, and to perform experiments which are actually informative
about the quantities of interest is crucial. The set of choices on how to conduct an experiment,
e.g., the selection of test subjects and questionnaire questions, are referred to its design.

The field of Optimal Design of Experiments (Pukelsheim, 2006) is concerned with mathematically
approaching the question of how a (sequence of) experiments should be designed such that it is
maximally informative. This ultimately helps in reducing the number of experiments required
to obtain the desired quantities of interest. Bayesian optimal experimental design (see Chaloner
and Verdinelli (1995) and E. G. Ryan et al. (2016) for an overview) specifically leverages Bayesian
methods for this purpose.

For further treatment, let us first formalize the process of an experiment (see Figure 4.1): An
experimenter chooses an experiment design 𝜼 from the space of designs 𝒟, in order to gain
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information on parameters 𝜷 ∈ ℬ of the experiment’s subject. After performing an experiment,
the experimenter observes an outcome 𝒚 ∈ 𝒴.

A single experiment might not be sufficient to estimate the parameters of interest. In this case, a
sequence of experiments needs to be designed. Each new design can be based on the outcomes of
the previous experiments 𝒚. In literature, this is referred to as adaptive or sequential experimental
design (E. G. Ryan et al. (2016) also contains a survey on sequential methods).

Experiment
on subject

with 𝜷 ∈ ℬ

Experimenter

Outcome
𝒚

Experiment design
𝜼

Figure 4.1.: Sequential experiment process

The above problem formulation resembles that of a sequential decision making process as introduced
at the very beginning of this thesis in Chapter 1. The experimenter is an agent. The subject
and the process of experimentation comprise the environment, which is commanded with a
particular experiment design 𝜼 (the action), and outputs the outcome 𝒚 (the observation).

However, an optimality criterion still needs to be defined, which judges the quality of an
experiment executed. To judge the quality of a single experiment, Lindley (1956) propose the
Expected Information Gain (EIG). The information gain (IG) measures the reduction in Shannon
(differential) entropy of the distribution on the parameter vector 𝜷 from before the experiment
H[𝑝(𝜷)] to after the experiment H[𝑝(𝜷 | 𝒚, 𝜼)], i.e.,

IG(𝒚, 𝜼) = H[𝑝(𝜷)] −H[𝑝(𝜷 | 𝒚, 𝜼)]. (4.1)

This information gain can be measured after 𝒚 has been observed, i.e., after the experiment has
been conducted. The experimental design, however, happens before conducting the experiment.
At this point, the random variable 𝒚 is unknown. To this end, Lindley (1956) proposes to use the
expected information gain instead, with

EIG(𝜼) = 𝔼𝒚∼𝑝(𝒚 | 𝜼,𝜷)𝑝(𝜷)
[︁
H[𝑝(𝜷)] −H[𝑝(𝜷 | 𝒚, 𝜼)]]︁ , (4.2)

taking the expectation over outcomes 𝒚.

The expected information gain is particularly well suited for the problem of sequential experi-
mental design, as the posterior of the previous experiment can be used as prior 𝑝(𝜷) for the next
experiment (E. G. Ryan et al., 2016).

In this chapter, we evaluate a sequence of experiment designs, which are actions in our case, by
their overall expected information gain on a latent variable 𝜷, i.e.,

EIG(𝜼1:𝑁 ) = 𝔼𝒚1:𝑁∼𝑝(𝒚1:𝑁 | 𝜼1:𝑁 ,𝜷)𝑝(𝜷)
[︁
H[𝑝(𝜷)] −H[𝑝(𝜷 | 𝒚1:𝑁 , 𝜼1:𝑁 )]

]︁
, (4.3)

and, in a model-based planning fashion, optimize this action sequence leveraging a learned
model of the environment and a planner.
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In related work, Foster et al. (2019) propose variational approximations for EIG estimation
to infer an informative sequence of experiments. Differently, we learn a context-dependent
dynamics model which facilitates EIG estimation from the latent context posterior under
dynamics constraints. However, their approach relates to our method as they proposed to use
function approximators for amortized inference, which is similar to our context encoder, giving
an amortized posterior for the latent context variable.

4.3.2. Neural Processes

In Section 2.5 we have seen latent variable models for single datapoints, and in Subsection 2.5.3
an implementation of a latent variable model with function approximators as observation- and
recognition models. In this section, we will present the idea of Neural Processes (Garnelo et al.,
2018b), in which the latent variable 𝜷 parametrizes a function 𝑔𝜃(𝒙 , 𝜷). As in variational autoen-
coders (Kingma and Welling, 2014), the observation- and recognition model are implemented
with neural networks.

Observational data, indexed over 𝑘 ∈ {1, . . . , 𝐾}, is assumed to be generated by 𝒚(𝑘) = 𝑓 (𝜶, 𝒙(𝑘))+
𝝐(𝑘). The unobserved variable 𝜶 ∈ 𝒫𝛼 modulates the behavior of the function 𝑓 . Gaussian additive
noise 𝝐(𝑘) ∼ 𝒩(0,𝑸𝜖), which is independent among the datapoints, perturb the observations.
The covariance matrix 𝑸𝜖 can be constant, as in Garnelo et al. (2018b), or, more generally,
depending on the input 𝒙(𝑘) and latent variable 𝜶, e.g., with 𝑸𝜖 = diag 𝜎2

𝜖(𝜶, 𝒙(𝑘)), where 𝜎2
𝜖 is a

function 𝜎2
𝜖 : 𝒫𝛼 ×ℝ𝐷 → ℝ𝐷

≥0.

In the general case, the function 𝑓 , latent variable 𝜶 and covariance matrix 𝑸𝜖 are unknown.
We introduce the superscript ·𝛼 for 𝒙 and 𝒚 to denote that 𝒚(𝛼,𝑘) is generated from 𝒙(𝛼,𝑘) and 𝜶.
To model the process, an observation model is employed, which models observations from a
particular function instance parametrized by 𝜶 as 𝒚(𝛼,𝑘) = 𝑔𝜃(𝜷(𝛼) , 𝒙(𝛼,𝑘)) + 𝝎(𝑘) with Gaussian
additive noise 𝝎(𝑘) ∼ 𝒩(0,𝑸𝜔). The variable 𝜽 captures parameters of the function 𝑔. Again,
𝑸𝜔 can be constant as in Garnelo et al. (2018b), or depend on 𝜷(𝛼) and 𝒙(𝛼,𝑘). The parameter
𝜽 also captures the properties of 𝑸𝜔. The latent variable 𝜷(𝛼) is inferred from a context set 𝒞𝛼,
containing pairs of (𝒚(𝛼,𝑘) , 𝒙(𝛼,𝑘)) generated by 𝑓 (·, 𝜶)

𝒞𝛼 = {(𝒚(𝛼,𝑘) , 𝒙(𝛼,𝑘))}𝑘∈𝒞idx
, (4.4)

indexed by the index set 𝒞idx. As the true posterior 𝑝𝜃(𝜷 | 𝒞𝛼) is intractable, for inference on 𝜷, a
recognition model 𝑞ctx(𝜷 | 𝒞𝛼) is employed as in Subsection 2.5.3, called context encoder.

For a function instance 𝜶 and a given context set 𝒞𝛼, the training objective is to find 𝜽 which
maximizes the log-likelihood of target values D𝛼

𝑦 at target locations D𝛼
𝑥

log 𝑝𝜃(D𝛼
𝑦 | D𝛼

𝑥 , 𝒞𝛼) (4.5)

with
D𝛼
𝑥 = [𝒙(𝛼,𝑘)]𝑘∈𝒟idx , D𝛼

𝑦 = [𝒚(𝛼,𝑘)]𝑘∈𝒟idx
, (4.6)

indexed by the index set𝒟idx. The context index set and target index set are disjoint.
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We slightly deviate from the derivations in Garnelo et al. (2018b). For notational convenience, we
combine target locations and target values to the target data

D𝛼 = (D𝛼
𝑥 ,D𝛼

𝑦 ). (4.7)

We generalize the objective in Equation 4.5 to maximizing

log 𝑝𝜃(D𝛼 | 𝒞𝛼) = log 𝑝𝜃(D𝛼
𝑦 ,D𝛼

𝑥 | 𝒞𝛼) = log 𝑝𝜃(D𝛼
𝑦 | D𝛼

𝑥 , 𝒞𝛼) + log 𝑝(D𝛼
𝑥 | 𝒞𝛼). (4.8)

However, we assume 𝑝(D𝛼
𝑥 | 𝒞𝛼) to be constant, such that the two objectives are equivalent up to

an offset.

The method should be capable of handling different context set sizes. Therefore, the overall
objective is an expectation over the parameter 𝜶, sampled target data of fixed size 𝑇, and a
sampled context set of random size 𝐶. With that, the final objective is written as

max
𝜽

𝔼𝜶∈Ω𝛼 ,𝐶∈Ω𝐶 ,
D𝛼 ,𝒞𝛼∼Ω 𝑓 𝛼 (𝐶,𝑇)

log 𝑝𝜃(D𝛼 | 𝒞𝛼). (4.9)

In the above equations, Ω𝛼 and Ω𝐶 denote distributions on the latent parameter 𝜶 and the
context set size 𝐶, respectively, and Ω 𝑓 𝛼 (𝐶, 𝑇) is a distribution over context- and target sets with
prescribed sizes.

As in Subsection 2.5.3, the approach Garnelo et al. (2018b) choose for the optimization problem
in Equation 4.9 is via variational inference. First, a variational inference objective is posed to
obtain an approximate posterior density 𝑞ctx(𝜷 |D𝛼 , 𝒞𝛼) for the true posterior 𝑝(𝜷 |D𝛼 , 𝒞𝛼)with

𝜽∗ ,𝝓∗ = min
𝜽,𝝓

KL[𝑞ctx(𝜷 | D𝛼 , 𝒞𝛼) | | 𝑝𝜃(𝜷 | D𝛼 , 𝒞𝛼)]. (4.10)

Here, 𝝓 denotes the parameters of the recognition model 𝑞ctx(𝜷 | D𝛼 , 𝒞𝛼).

With the conditioned version of Bayes’ theorem

𝑝𝜃(𝜷 | D𝛼 , 𝒞𝛼) = 𝑝𝜃(D𝛼 | 𝜷, 𝒞𝛼)𝑝𝜃(𝜷 | 𝒞𝛼)
𝑝𝜃(D𝛼 | 𝒞𝛼) (4.11)

and the assumption that the target data D𝛼 is independent of the context set 𝒞𝛼 given 𝜷, i.e.
𝑝𝜃(D𝛼 | 𝜷, 𝒞𝛼) = 𝑝𝜃(D𝛼 | 𝜷), we arrive at the following bound for the predictive posterior
log-likelihood (following derivations in Subsection 2.5.1)

log 𝑝𝜃(D𝛼 | 𝒞𝛼) ≥ 𝔼𝜷∼𝑞ctx(𝜷 | D𝛼 ,𝒞𝛼)
[︁
log 𝑝𝜃(D𝛼 | 𝜷)]︁ − KL

[︁
𝑞ctx(𝜷 | D𝛼 , 𝒞𝛼) | | 𝑝𝜃(𝜷 | 𝒞𝛼)]︁ .

(4.12)

In Garnelo et al. (2018b), 𝑞ctx(𝜷 | 𝒞𝛼) is also used to approximate the intractable posterior density
𝑝𝜃(𝜷 | 𝒞𝛼), yielding

log 𝑝𝜃(D𝛼 | 𝒞𝛼) ⪆ 𝔼𝜷∼𝑞ctx(𝜷 | D𝛼 ,𝒞𝛼)
[︁
log 𝑝𝜃(D𝛼 | 𝜷)]︁ − KL

[︁
𝑞ctx(𝜷 | D𝛼 , 𝒞𝛼) | | 𝑞ctx(𝜷 | 𝒞𝛼)]︁ .

(4.13)
Le et al. (2018) and Volpp et al. (2021) point out that, due to this approximation, Equation 4.13 is
not a proper evidence lower bound. As in Subsection 2.5.3, the right-hand side of Equation 4.13
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is maximized with respect to 𝜽 and 𝝓 for jointly learning the observation model and recognition
model (context encoder).

Permutation invariance As it encodes context data, the recognition model 𝑞ctx is called context
encoder. Its input is a set of contextual observations. Consequently, the output of the context
encoder should not depend on the order of context observations — it should be invariant to
permutations in the context observations. This requires a careful architectural design of the
context encoder. Garnelo et al. (2018b) leverage ideas from Deep Sets (Zaheer et al., 2017), which
achieves permutation invariant set encodings through a permutation invariant aggregation
operation (e.g., sum, mean, max) on embeddings of set elements.

Conditional distribution Similar to Equation 4.8, log 𝑝𝜃(D𝛼 | 𝜷) decomposes to

log 𝑝𝜃(D𝛼 | 𝜷) = log 𝑝𝜃(D𝛼
𝑦 | D𝛼

𝑥 , 𝜷) + log 𝑝𝜃(D𝛼
𝑥 | 𝜷). (4.14)

The factor 𝑝𝜃(D𝛼
𝑦 | D𝛼

𝑥 , 𝜷) thus, in combination with the context encoder 𝑞ctx(𝜷 | 𝒞𝛼), allows
making contextual predictions.

Relation to Gaussian processes Overall, the possibility to make contextual prediction with
invariance to permutations in the context set, the fact that the combination of latent variable 𝜷
and the observation model 𝑝𝜃(D𝛼

𝑦 | D𝛼
𝑥 , 𝜷) defines a distribution over functions, and the ability

to estimate uncertainty in its predictions, makes the Neural Process model behave similarly to
a Gaussian process regression model (see Subsection 3.3.1). However, compared to Gaussian
processes, the Neural Process features a computational advantage. The computational complexity
of Gaussian process regression scales cubically 𝒪(𝑁3) to the number of datapoints 𝑁 in the
conditional (Rasmussen and C. K. I. Williams, 2006). The Neural Process regression scales
linearly 𝒪(𝑁) in the number of datapoints in the conditional.

4.4. Method

We assume that the observed data of a dynamical system is generated by the following
parametrized Markovian discrete-time state-space model

𝒔𝑛+1 = 𝑓 (𝒔𝑛 , 𝒂𝑛 , 𝜶) + 𝝐𝑛 (4.15)

with 𝑛 ∈ ℕ0, 𝒔𝑛 ∈ 𝒮 ⊆ ℝ𝐷S , 𝒂𝑛 ∈ 𝒜 ⊆ ℝ𝐷A , 𝜶 ∈ 𝒫𝛼, 𝝐𝑛 ∼ 𝒩(0,𝑸𝑛), and 𝑸𝑛 a diagonal
covariance matrix. We assume states to be fully observable. In the following, the term rollout
of length 𝑁 refers to a sequence of states and actions R = (𝒔0 , 𝒂0 , 𝒔1 , 𝒂1 , . . . , 𝒂𝑁−1 , 𝒔𝑁 ), with
Equation 4.15 holding for each transition (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1). The parameter 𝜶 refers to unobserved
system parameters which modulate the dynamics of the system. Exemplarily, 𝜶 may contain
actuator gains and friction coefficients of a robotic system.

The target data D𝛼 consists of a rollout chunk of length 𝑇, which is a subsequence of a rollout,
i.e., D𝛼 = (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1 , . . . , 𝒂𝑛+𝑇−1 , 𝒔𝑛+𝑇) of the system for fixed parameters 𝜶. Context data
𝒞𝛼 = {(𝒔 , 𝒂 , 𝒔+)} with 𝒔+ = 𝑓 (𝒔 , 𝒂 , 𝜶) + 𝝐 is a set of transitions generated by the system with
parameters 𝜶. We aim at determining an approximate probabilistic context-conditional dynamics
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𝜷𝒞𝛼

𝒔0 𝒔1 𝒔2

𝒂0 𝒂1

(a) The action-conditioned Markovian dy-
namics are modeled deterministically in a la-
tent space. Observations 𝒔𝑛 are conditioned
on their respective latent state 𝒛𝑛 . The dy-
namics are conditioned on actions 𝒂𝑛 and
a latent context belief 𝜷 which encodes an
observed context set 𝒞𝛼 . For prediction, the
initial latent state is inferred from the first
observation 𝒔0 (dashed line).

𝒔0

Encode

Decode

𝒔̂0

GRU GRU

𝜷 𝒂0 𝜷 𝒂1
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𝒔̂1 𝒔̂2

(b) Implementation of the context-conditional forward dynamics
model. The initial state 𝒔0 is embedded as hidden state of a gated
recurrent unit (GRU) cell. The GRU makes a single-step forward
prediction in the latent space using embeddings of the context
variable 𝜷 and action 𝒂 as additional inputs. Latent states are
mapped to Gaussian distributions on the state space for decoding.

Figure 4.2.: Graphical model (a) and implementation (b) of the proposed context-conditional forward dynamics.

model 𝑞fwd(𝒔𝑛 | 𝒔0:𝑛−1 , 𝒂0:𝑛−1 , 𝒞𝛼) which maximizes (an approximation to) the expected data
log-likelihood

max
𝜽

𝔼𝜶∈Ω𝛼 ,𝐶∈Ω𝐶 ,
D𝛼 ,𝒞𝛼∼Ω 𝑓 𝛼 (𝐶,𝑇)

log 𝑝𝜃(D𝛼 | 𝒞𝛼) (4.16)

where Ω𝛼 is a distribution of parameter values 𝜶, Ω𝐶 is a distribution of context set sizes, and
Ω 𝑓 𝛼 (𝐶, 𝑇) is a distribution over target data and context sets with context set size 𝐶 and target
chunk length 𝑇. The vector 𝜽 parametrizes the generative model.

4.4.1. Latent context variable

Since we cannot directly observe 𝜶 and also do not know its representation, we introduce a
latent variable 𝜷 ∈ 𝐷𝛽 whose representation we learn and which encodes context information
corresponding to 𝜶 contained in the context set,

log 𝑝𝜃(D𝛼 | 𝒞𝛼) = log
∫

𝑝𝜃(D𝛼 | 𝜷)𝑝𝜃(𝜷 | 𝒞𝛼)d𝜷. (4.17)

We model 𝑝𝜃(D𝛼 |𝜷)with the forward transition model 𝑞fwd(𝒔̂𝑛+𝐻 | 𝒔̂𝑛 , 𝒂𝑛:𝑛+𝐻−1 , 𝜷) and approximate
𝑝𝜃(𝜷 | 𝒞𝛼) by 𝑞ctx(𝜷 | 𝒞𝛼), the context encoder. For a graphical depiction of our modeling approach,
see Figure 4.2.

4.4.2. Transition model

We model sequences in a conditional auto-encoder scheme, in which we obtain predictive
distributions for immediate reconstructions, single-step predictions, and multi-step predictions.
Given a sequence of states 𝒔0:𝑁 , actions 𝒂0:𝑁−1 and a latent context variable 𝜷, we approximate
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the likelihood under the predictive model 𝑞 as

𝑝𝜃(D𝛼 | 𝜷) ≈
𝑁∏︂
𝑛=0

𝑞fwd(𝒔̂𝑛 = 𝒔𝑛 | 𝒔𝑛) ·
𝑁∏︂
𝑛=1

𝑞fwd(𝒔̂𝑛 |𝑛−1 = 𝒔𝑛 | 𝒔𝑛−1 , 𝒂𝑛−1 , 𝜷) ·
𝑁∏︂
𝑛=2

𝑞fwd(𝒔̂𝑛 |0 = 𝒔𝑛 | 𝒔0 , 𝒂0:𝑛−1 , 𝜷).
(4.18)

The above equations correspond to reconstruction, single-step, and multi-step prediction
likelihoods. The transition model 𝑞fwd(𝒔̂𝑛+𝐻 | 𝒔̂𝑛 , 𝒂𝑛:𝑛+𝐻−1 , 𝜷) is given as follows. We assume
non-linear dynamics parametrized by 𝜷 and disturbed by additive zero-mean Gaussian noise 𝝐

𝒔̂𝑛+𝐻 = ℎ(𝒔𝑛 , 𝒂𝑛 , . . . , 𝒂𝑛+𝐻−1 , 𝜷) + 𝝐. (4.19)

We implement the dynamics by a recurrent GRU cell (Cho et al., 2014) which operates in an
embedding space. The encoders 𝑒s, 𝑒a and 𝑒𝛽 lift, respectively, the state 𝒔𝑛 , action 𝒂𝑛 and latent
context variable 𝜷 to the embedding space in which the GRU operations are performed

𝒛𝑛 = 𝑒s(𝒔𝑛),
𝒛𝑛+1 = ℎRNN(𝒛𝑛 , [𝑒a(𝒂𝑛), 𝑒𝛽(𝜷)])

(4.20)

where [·, ·] denotes concatenation. The decoders 𝑑s,𝜇 and 𝑑s,𝜎2 map the propagated hidden state
back to a distribution on the state space

𝒔̂𝑛+𝐻 ∼ 𝒩
(︁
𝑑s,𝜇(𝒛𝑛+𝐻), diag(𝑑s,𝜎2(𝒛𝑛+𝐻))

)︁
. (4.21)

4.4.3. Context encoder

The context encoder 𝑞ctx(𝜷 | 𝒞𝛼) encodes a set of transitions 𝒞𝛼 into a Gaussian belief over the
latent context variable

𝑞ctx(𝜷 | 𝒞𝛼) = 𝒩
(︂
𝜷 | 𝑑𝛽,𝜇(𝒛𝛽), diag(𝑑𝛽,𝜎2(𝒛𝛽))

)︂
(4.22)

As a first step of the encoding procedure, every transition is lifted separately into an embedding
space ℝ

𝐷F
≥0 using the transition encoder 𝑒trans, which is non-negative due to its terminal ReLU

activation function
𝑒trans : 𝒮 ×𝒜 × 𝒮 → ℝ

𝐷F
≥0 , 𝒛 = 𝑒trans(𝒔 , 𝒂 , 𝒔+). (4.23)

Then, the embedded transitions are aggregated by max pooling, making the aggregated
embedding invariant to the ordering of transitions in the context set 𝒞𝛼, which is a common set
embedding technique (Garnelo et al., 2018a; Zaheer et al., 2017)

[𝒛𝛽]𝑖 = max
(𝒔 ,𝒂 ,𝒔+)∈𝒞𝛼

[𝑒trans(𝒔 , 𝒂 , 𝒔+)]𝑖 , (4.24)

where [·]𝑖 denotes the 𝑖-th element of a vector. For an empty context set, we fix 𝒛𝛽 = 0. The mean
and diagonal elements of the covariance matrix of the Gaussian belief over 𝜷 are computed from
the aggregated embedding using multilayer perceptrons

𝑑𝛽,𝜇 : ℝ𝐷F
≥0 → ℝ𝐷𝛽 , 𝑑𝛽,𝜎2 : ℝ𝐷F

≥0 → ℝ
𝐷𝛽

>0 . (4.25)
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While 𝑑𝛽,𝜇 follows a standard architecture, we structure 𝑑𝛽,𝜎2 to resemble the behavior of Bayesian
inference of a latent variable given noisy measurements (Murphy, 2012). In this setting, adding a
datapoint to the set of measurements cannot increase uncertainty over the latent variable. Due
to the non-negativity of 𝑒trans and the monotonicity of the max pooling operation, this can be
achieved by requiring 𝑑𝛽,𝜎2(·) to be monotonically decreasing in the sense

[𝑑𝛽,𝜎2(𝒛)]
𝑖
≥ [𝑑𝛽,𝜎2(𝒛 + 𝚫𝒛)]𝑖

∀𝒛 ∈ ℝ𝐷F
≥0 ,𝚫𝒛 ∈ ℝ𝐷F

≥0 , 𝑖 ∈ {1, . . . , 𝐷𝛽}.
(4.26)

To model this strictly positive, monotonically decreasing function, we squash the negated output
of a multilayer perceptron having non-negative weights and activations, 𝑑non−neg(𝒛𝜷) through a
Softplus function [𝑥]⊕ = log(1 + 𝑒𝑥) (elementwise for vectors)

𝑑𝛽,𝜎2(𝒛𝜷) = [−𝑑non−neg(𝒛𝜷)]⊕ . (4.27)

We fix the scale of the latent belief by forcing the latent belief for an empty context set to the unit
Gaussian𝒩(0, 𝑰)with a KL divergence penalty term

ℒKL(𝒞𝛼) = KL(𝑞ctx(𝜷 | 𝒞𝛼 = {}) | | 𝒩(0, 𝑰)). (4.28)

4.4.4. Evidence maximization

For general non-linear dynamics models, the integral in Equation 4.17 cannot be solved analytically.
Garnelo et al. (2018b) derive a lower bound on the log evidence

log 𝑝𝜃(D𝛼 | 𝒞𝛼) ≥
𝔼𝜷∼𝑞ctx(𝜷 | D𝛼∪𝒞𝛼)

[︁
log 𝑝𝜃(D𝛼 | 𝜷)]︁ − KL(𝑞ctx(𝜷 | D𝛼 ∪ 𝒞𝛼) | | 𝑝𝜃(𝜷 | 𝒞𝛼)) (4.29)

which is further approximated by approximating 𝑝𝜃(𝜷 | 𝒞𝛼) by 𝑞ctx(𝜷 | 𝒞𝛼) (Garnelo et al., 2018b;
Le et al., 2018; Volpp et al., 2021). With a slight abuse of notation, the expression D𝛼 ∪𝒞𝛼 forms a
union of all transitions in the target data chunk D𝛼 and all transitions in the context set 𝒞𝛼. In this
work, we train our predictive model directly for multistep prediction by using an appropriate
approximation to the likelihood

𝒥logll(D𝛼 , 𝜷) =
𝑁∑︂
𝑛=0

log 𝑞fwd(𝒔̂𝑛 = 𝒔𝑛 | 𝒔𝑛) +
𝑁∑︂
𝑛=1

log 𝑞fwd(𝒔𝑛 | 𝒔𝑛−1 , 𝒂𝑛−1 , 𝜷) +
𝑁∑︂
𝑛=2

log 𝑞fwd(𝒔𝑛 | 𝒔0 , 𝒂0:𝑛−1 , 𝜷),
(4.30)

see Equation 4.18, and a factor 𝜆KL for the KL divergence term as in Higgins et al. (2017), yielding
the approximate lower bound

log 𝑝𝜃(D𝛼 | 𝒞𝛼) ⪆
𝔼𝜷∼𝑞ctx(𝜷 | D𝛼∪𝒞𝛼)

[︁𝒥logll(D𝛼 , 𝜷)]︁ − 𝜆KLKL(𝑞ctx(𝜷 | D𝛼 ∪ 𝒞𝛼) | | 𝑞ctx(𝜷 | 𝒞𝛼)). (4.31)

The expectation operator in Equation 4.31 is approximated by a single sample 𝜷 ∼ 𝑞ctx(𝜷 |D𝛼∪𝒞𝛼).
Conclusively, for a single pair of target chunk D𝛼 and context set𝒞𝛼, the training loss we minimize
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with respect to parameters of the forward model 𝑞fwd and context encoder 𝑞ctx states

ℒ(D𝛼 , 𝒞𝛼) = − (︁𝒥logll(D𝛼 , 𝜷) − 𝜆KLKL
[︁
𝑞ctx(𝜷 | D𝛼 ∪ 𝒞𝛼) | | 𝑞ctx(𝜷 | 𝒞𝛼)]︁ )︁ + ℒKL(𝒞𝛼) (4.32)

with ℒKL defined in Equation 4.28.

As the latent context belief 𝑞ctx(𝜷 | 𝒞𝛼) is a multivariate Gaussian distribution with diagonal
covariance matrix, the KL divergence term KL(𝑞ctx(𝜷 | D𝛼 ∪ 𝒞𝛼) | | 𝑞ctx(𝜷 | 𝒞𝛼)) decomposes into
a sum of KL divergences between scalar Gaussian distributions

KL(𝑞ctx(𝜷 | D𝛼 ∪ 𝒞𝛼) | | 𝑞ctx(𝜷 | 𝒞𝛼)) =
∑︂
𝑖

KL(𝑞ctx([𝜷]𝑖 | D𝛼 ∪ 𝒞𝛼) | | 𝑞ctx([𝜷]𝑖 | 𝒞𝛼)). (4.33)

We clip KL(𝑞ctx([𝜷]𝑖 |D𝛼 ∪𝒞𝛼) | | 𝑞ctx([𝜷]𝑖 | 𝒞𝛼)) at a minimum of 0.1 during training. This avoids
local minima during the beginning of training, in which the KL divergence approaches 0 through
𝑞ctx(𝜷 | ·)modeling a constant distribution independent of the context observations, while other
loss components are not properly minimized.

We detail the minimization of the objective in Equation 4.32 on empirical samples of D𝛼, 𝒞𝛼 in
Subsection 4.5.1.

4.4.5. Computing optimal action sequences for calibration

We will now discuss algorithms to utilize the learned models from above to define optimal
calibration schemes. We refer to “calibration" as the process of inferring unknown latent variables
governing the dynamics of a system, while assuming that the model is a member of the family
of dynamics models seen during training.

We formulate finding optimal actions to apply to a system for calibration as a Bayesian optimal
experimental design problem with an information-theoretic utility function (Chaloner and
Verdinelli, 1995; Lindley, 1956). We choose an action sequence 𝒂0 , . . . , 𝒂𝑁−1 to maximize the
expected information gain

EIG(𝒂0:𝑁−1 | 𝒔0 ,𝒯0) =
𝔼R∼𝑞fwd(R | 𝒔0 ,𝒂0:𝑁−1 ,𝒯0)

[︁
H[𝑞ctx(𝜷 | 𝒯0)] −H[𝑞ctx(𝜷 | 𝒯0 ∪ chop(R))]]︁ (4.34)

where 𝒔0 is the current state of the system, 𝒯0 are already observed transitions on the system
to calibrate and H[·] represents differential entropy. The belief over the latent context variable
𝑞ctx(𝜷 | 𝒯 ) after observing a set of calibration transitions 𝒯 is given by the context encoder.
The imagined rollout R = (𝒔0 , 𝒂0 , 𝒔̂1 , 𝒂1 , . . . , 𝒂𝑁−1 , 𝒔̂𝑁 ) is chopped into a set of transitions
chop(R) = {(𝒔0 , 𝒂0 , 𝒔̂1), (𝒔̂1 , 𝒂1 , 𝒔̂2), . . . , (𝒔̂𝑁−1 , 𝒂𝑁−1 , 𝒔̂𝑁 )}. The distribution of imagined rollouts
of the system 𝑞fwd(R | 𝒔0 , 𝒂0 , . . . , 𝒂𝑁−1 ,𝒯0) is generated from the multi-step transition model
while marginalizing out the prior belief over the latent context variable

𝑞fwd(R | 𝒔0 , 𝒂0:𝑁−1 ,𝒯0) =∫
𝑞fwd(R | 𝒔0 , 𝒂0:𝑁−1 , 𝜷)𝑞ctx(𝜷 | 𝒯0)d𝜷.

(4.35)

We get a Monte Carlo approximation to the expectation in Equation 4.34 by approximate
sampling from the above distribution. To obtain a sample, we first sample from the latent context
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distribution 𝜷0 ∼ 𝑞ctx(𝜷 | 𝒯0). Next, we form the imagined rollout R as defined above, where 𝒔̂𝑛
are mean predictions from the learned transition model, i.e. 𝒔̂𝑛 = 𝔼𝑞fwd(𝒔̂𝑛 | 𝒔0 ,𝒂0:𝑛−1 ,𝜷0)[𝒔̂𝑛].
The action sequence which the EIG maximization yields is most informative for the latent
context variable (minimizes the posterior entropy) given the a-priori belief, i.e., taking the a-priori
uncertainty about the context variable into account.

Open-loop calibration In the open-loop calibration case, we initialize the set of already
observed transitions as the empty set 𝒯0 = {}. We then optimize for a sequence of actions
𝒂∗0 , . . . , 𝒂

∗
𝐻−1 to fulfill

𝒂∗0 , . . . , 𝒂
∗
𝐻−1 =

arg max
𝒂0 ,...,𝒂𝐻−1∈𝒜𝐻

EIG(𝒂0 , . . . , 𝒂𝐻−1 | 𝒔0 ,𝒯0 = {}) (4.36)

using the cross-entropy method (Rubinstein (1999), see Subsection 2.6.1). We call 𝐻 calibration
horizon.

MPC calibration The open-loop calibration scheme computes a static action sequence at the
beginning of the calibration procedure. The planned action sequence is not updated during
calibration. However, knowledge about the system obtained through already executed system
interactions may be valuable to re-plan the remaining calibration actions. Therefore, we propose
a closed-loop calibration method which resembles a model-predictive control scheme known
from feedback control theory, which we term MPC calibration. We refer to Subsection 2.3.5 for
a discussion on open-loop and closed-loop planning. For MPC calibration, we compute an
open-loop calibration sequence at every timestep, with 𝒯𝑛 containing already observed transitions
(𝒯0 = {}). From this calibration sequence, the first action is applied to the system and the resulting
transition is appended to 𝒯𝑛 , giving 𝒯𝑛+1. This is repeated for a fixed number of timesteps 𝑁 .
Let 𝒔𝑛 be the current state of the system and 𝒯𝑛 contain already observed transitions. At each
timestep, we optimize

𝒂∗𝑛 , . . . , 𝒂∗𝑛+𝐻−1 =

arg max
𝒂𝑛 ,...,𝒂𝑛+𝐻−1∈𝒜𝐻

EIG(𝒂𝑛 , . . . , 𝒂𝑛+𝐻−1 | 𝒔𝑛 ,𝒯𝑛), (4.37)

and apply 𝒂∗𝑛 as next action to the system. We abbreviate Equation 4.37 as

𝒂∗𝑛 = EIG_MPC(𝒔𝑛 ,𝒯𝑛) (4.38)

in case we are just interested in the first action 𝒂∗𝑛 . The planning horizon 𝐻 is upper bounded by
the maximal planning horizon 𝐻max and the remaining steps to reach the calibration horizon as
𝐻 = min(𝐻max , 𝑁 − 𝑛). Due to the repeated optimization, the MPC calibration scheme is more
computationally intensive than the open-loop scheme. We refer to Figure 4.3 for a visualization
of the MPC calibration scheme.
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Model
𝑞ctx(𝜷 | 𝒯 )

𝑞fwd(𝒔𝑛+1:𝑛+𝐻 |𝒔𝑛 , 𝒂𝑛:𝑛+𝐻−1 , 𝜷)

1. Initialize 𝒯 = {}, Initial state 𝒔0.
2. Loop:

Test envi-
ronment 𝜶∗

𝒂𝑛 = EIG_MPC(𝒔𝑛 ,𝒯 )

Next state 𝒔𝑛+1
𝒯 ← 𝒯 ∪ (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1)

MPC calib.
loop

To calibrate a model for a previously unseen test environment 𝜶∗, we iteratively compute an optimal action 𝒂𝑛 using
the expected information gain (EIG) objective. The action 𝒂𝑛 is applied to the environment. The resulting transition is
recorded as the tuple (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1), which is appended to 𝒯 . Finally, we obtain the calibrated model by conditioning
on all transitions obtained from the calibration rollout 𝒯 .

Figure 4.3.: Model predictive control (MPC) based calibration loop.

4.5. Experiments

We evaluate our approach for learning and calibrating context-dependent dynamics models on
an illustrative toy problem, a modified Pendulum environment from OpenAI Gym (Brockman
et al., 2016) and a MountainCar environment with randomly sampled terrain profiles.

4.5.1. General procedure

Data collection For each experiment, we collect random data from the respective environments.
For this, we first sample 𝐾 environment instances, varying in their hidden parameters 𝜶. Then,
we simulate two rollouts of length 100 on each sampled environment instance, by applying
independently sampled actions starting from a random initial state. We term these rollouts
R(𝑘)𝐴 ,R(𝑘)𝐵 , where 𝑘 ∈ {1, . . . , 𝐾}. More specific details are given in the “Data collection" paragraph
of each experiment.

Model training From the pre-generated data, we form a batch of 𝐿 losses as given in Equa-
tion 4.32 for stochastic gradient descent minimization as follows

ℒbatch =
𝐿∑︂
𝑙=1
ℒ(D(𝑙) , 𝒞(𝑙)). (4.39)

For each item 𝑙, first, an index 𝑘 is sampled uniformly from𝒰{1, . . . , 𝐾}. The target chunk D(𝑙)

is of length 50, taken from R(𝑘)𝐴 , with the index of the initial state randomly sampled. For the
context set, first, a context set size 𝐶 is randomly sampled 𝐶 ∼ 𝒰{0, . . . , 𝐶max}. 𝒞(𝑙) is a context
set of size 𝐶 sampled from transitions in R(𝑘)𝐴 ,R(𝑘)𝐵 . We refer to Appendix B.2.1 for details on the
context set sampling procedure.

The batch size 𝐿, maximal context set size 𝐶max and number of training environments instances
𝐾 varies per environment and is detailed in the respective subsections.
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We train all models using the Adam optimizer (Kingma and Ba, 2015). We evaluate the
models after training for 50k steps for the toy problem and 100k steps for Pendulum and
MountainCar∗. We perform all evaluations on 3 independently trained models per environment
and model configuration. We set the KL divergence scaling factor in Equation 4.31 to 𝜆KL = 5.
We train our models using the Adam optimizer (Kingma and Ba, 2015) with parameters
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1e−4 and a learning rate of 1e−3. We scale gradients such that the vector
of concatenated gradients has a maximal 2-norm of 1000.

4.5.2. Toy system

First, we introduce an illustrative toy-problem showcasing the fundamental principles of our
method. It is a discrete-time dynamical system in state-space notation

𝒔𝑛+1 =

(︃
0.8 0.2
−0.2 0.8

)︃
𝒔𝑛 +

(︃
𝛼
0

)︃
𝛿(𝑎𝑛) + 𝝐𝑛 (4.40)

with 𝝐𝑛 ∼ 𝒩(0, 𝑰 · (0.01)2), 𝒔0 ∼ 𝒩(0, 𝑰), 𝛼 ∈ [−1, 1], 𝑎𝑛 ∈ [−2, 2]. The state transition matrix
leads to a damped oscillation when the system is not excited. A non-linear function 𝛿 squashes
the action 𝑎 before it is applied to the system. Inference about the parameter 𝛼 from empirical
system trajectories is only possible when at least one transition (𝒔𝑛 , 𝑎𝑛 , 𝒔𝑛+1) is observed with
𝛿(𝑎𝑛) ≠ 0. As squashing functions we define 𝛿<1(𝑎) = max(1−|𝑎 |, 0) and 𝛿>1(𝑎) = max(|𝑎 |−1, 0),
with the superscript denoting which 𝑎 are mapped to non-zero values, thus, being informative
for the value of 𝛼. We train separate models for each squashing function 𝛿<1(𝑎), 𝛿>1(𝑎). As we
assume homoscedastic noise in this experiment, we learn a constant 𝑑s,𝜎2 independent of 𝒛. We
use a batchsize 𝐿 = 64 and maximal context set size 𝐶max = 10.

Data collection To collect training and validation data, we sample 𝐾 = 6000 values of 𝛼 ∼
𝒰[−1, 1] and generate a rollout pair for each 𝛼, with the initial state sampled from 𝒔0 ∼ 𝒩(0, 𝑰)
and the control inputs from 𝑎𝑛 ∈ 𝒰[−2, 2].

Evaluation As a first evaluation, we visualize the entropy of the latent context variable for
informative and non-informative context sets. We generate random transitions (𝒔0 , 𝑎0 , 𝒔1)with
𝜷 ∼ 𝑞ctx(𝜷 | 𝒞𝛼 = {}), 𝒔0 = 0, 𝑎0 ∼ 𝒰[−2, 2] using the learned transition models for both
squashing functions 𝛿<1(𝑎) and 𝛿>1(𝑎). We use the learned model instead of the known ground-
truth model for generating transitions to simulate the first step of a calibration procedure, in
which the true model is unknown. From each transition, we construct a single-element context
set and compute the latent context belief using the learned context encoder. In Figure 4.4a, we
plot the entropy of the latent context belief for each action 𝑎, averaged over samples from 𝜷.
For the posed systems with 𝛿<1(𝑎) (𝛿>1(𝑎)), a single-element context is informative for 𝛼 if and
only if it contains a transition with an action |𝑎 | < 1 (|𝑎 | > 1). We observe that the entropy is
minimized correspondingly for our learned model which demonstrates that the context encoder
predicts uncertainty well.

∗ In (Achterhold and Stueckler, 2021) it has been mistakenly written that models with minimal validation loss
over the course of training were selected for the final evaluations. However, due to an implementation error
discovered in January 2024, effectively, the models at the end of the training procedure were used for evaluation.
The repository at https://github.com/EmbodiedVision/explorethecontext contains a separate branch, fixing
this error. Qualitatively, we observe that the two variants yield similar results.

https://github.com/EmbodiedVision/explorethecontext
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(a) Characteristic behavior of the latent context belief
encoder on the toy problem. First row: Depiction of
the action squashing functions 𝛿<1(𝑎), 𝛿>1(𝑎) (effec-
tive action magnitude). Action regions which are in-
formative for inferring the hidden parameter 𝛼 are
shaded in gray (𝛿(𝑎) ≠ 0). Second row: Average en-
tropy (normalized to [0, 1]) of the latent context belief
H[𝑞ctx(𝛽 | 𝐶 = {𝒔 , 𝑎, 𝒔+})] for actions 𝑎 in systems with
Gaussian transition noise 𝝐 ∼ 𝒩(0, 𝑰 · (0.01)2) (orange)
and 𝝐 = 0 (blue). Non-informative actions yield a high
entropy of the latent context belief, for informative ac-
tions, the entropy negatively correlates to the effective
action magnitude. Without transition noise, the entropy
attains its minimum faster for increasing effective action
magnitude as 𝛼 can be inferred from low-magnitude
actions with low variance.
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(b) Evaluation of model prediction error for the toy prob-
lem. Depicted is the prediction error (lower is better) of
models with random and optimal (open-loop) calibra-
tion with {1, 2, 3} calibration transitions, for both action
squashing schemes 𝛿<1(𝑎) (left) and 𝛿>1(𝑎) (right).

Figure 4.4.: Evaluation of the toy-problem environment (see Subsection 4.5.2).

In a second experiment, we evaluate the model accuracy in terms of prediction error after
calibration on a set of random rollouts for 3 independently trained models. We sample 50
system instances with 𝛼 ∼ 𝒰[−1, 1], and for each instance we generate 20 random rollouts.
For calibration, we limit the maximum number of transitions to {1, 2, 3} and perform open-
loop calibration (see Subsection 4.4.5) on each system instance. As baseline, we use randomly
sampled transitions for calibration. Each calibration rollout is initialized at 𝒔0 = 0, for the
random calibration rollouts we uniformly sample actions from 𝒰[−2, 2]. In Figure 4.4b we
depict the mean squared prediction error of the learned models for open-loop optimal and
random calibration sequences of different lengths. The prediction error is significantly lower for
optimally calibrated models compared to randomly calibrated models. As a single informative
transition is sufficient to calibrate the system, MPC calibration has no advantage over open-loop
calibration for this system.

4.5.3. OpenAI Gym Pendulum

In addition to the toy problem presented above, we evaluate our calibration method on a
modified Pendulum environment from OpenAI Gym (Brockman et al., 2016). The Pendulum
environment is a simulation of an inverted pendulum subject to gravitational force and actuable
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(b) MountainCar

Figure 4.5.: Prediction error (lower is better) of the learned (a) Pendulum and (b) MountainCar models, either
conditioned on calibration data obtained with a random rollout (blue), open-loop calibration (orange), MPC calibration
(green). For the red curve, we train models without the strictly-decreasing variance constraint in the context encoder
and perform MPC calibration. We plot mean (line) and 20% / 80% quantiles (shaded area, for random and MPC
calibration only for visual clarity) over 3000 rollouts. Our proposed calibration schemes reduce prediction error
compared to random calibration. MPC calibration compares favorably to open-loop calibration. Enforcing the
decreasing variance constraint in the context encoder slightly reduces model error after calibration for Pendulum. For
MountainCar, both model variants perform similarly. Calibration rollouts contain 30 transitions for the Pendulum
and 50 transitions for the MountainCar environment.

by a motor in the central rotary joint (see Figure 4.6a). Due to torque limits, the pendulum cannot
reach an upright pose without following a swing-up trajectory.

After the motor torque 𝑢 is clipped to a maximum magnitude of 2, we multiply it with an
angle-dependent factor 𝑢 ← 𝑢 · 𝑠𝑖 · 𝛼𝑖 . The sign 𝑠𝑖 and factor 𝛼𝑖 are sampled independently for
every quadrant of the pendulum system (𝑖 ∈ {1, 2, 3, 4}) from 𝛼𝑖 ∼ 𝒰[0.5, 2], 𝑠𝑖 ∼ 𝒰{−1, 1}
(see Figure 4.6a). We use a batchsize 𝐿 = 512 and maximal context set size 𝐶max = 50.

Data collection To collect training and validation data, we first sample 𝐾 = 110000 environments
with 𝑠𝑖 and 𝛼𝑖 sampled as above. For each environment, we generate 2 independent rollouts with
𝑢𝑛 ∼ 𝒰[−2, 2] and 𝒔0 ∼ 𝒰[−𝜋,𝜋] × 𝒰[−8, 8], with the first dimension being the pendulum
angle and the second dimension its angular velocity.

Evaluation The initial state of the pendulum for calibration is sampled from𝒰[𝜋 − 0.05,𝜋 +
0.05] ×𝒰[−0.05, 0.05], i.e. with the pole pointing nearly downwards with small angular velocity.
In contrast to the toy problem, we use the MPC calibration scheme with a CEM planning horizon
of 𝐻max = 20 and a calibration rollout length of 30. To approximate the expected information
gain from Equation 4.34, we use 20 Monte Carlo samples. We generate 50 environments for
calibration with independently sampled 𝑠𝑖 , 𝛼𝑖 . For each environment, we generate 20 random
rollouts with 𝒔0, 𝑢𝑛 sampled as in the “Data collection" paragraph. On each environment, we
apply our proposed calibration schemes and compare the predictive performance of the learned
dynamics model for open-loop, MPC and random calibration. For random calibration, we sample
random actions 𝑢𝑛 ∼ 𝒰[−2, 2].

Figure 4.6b depicts the angle of the pendulum over time for random and MPC calibration
rollouts. Due to gravitational forces and inertia of the pendulum, the rollouts only cover the
lower two quadrants. Thus, with these random calibration rollouts, the dynamics in the upper
two quadrants cannot be inferred. In contrast, the MPC rollouts exhibit a swing-up behavior to
reason about the dynamics in all four quadrants. Note that this behavior solely comes from the



60 4. Active Inference for Adaptive Dynamics Models


1
2


3 
4

(a) Pendulum dynamics vary per
quadrant. The pendulum pole is de-
picted in red.

Ra
nd

om
M
PC

(b) Pendulum angle extruded over time (starting at center) for random
and MPC calibration rollouts. In contrast to random calibration rollouts,
MPC calibration rollouts cover all quadrants to infer their dynamics.

Figure 4.6.: Properties of the Pendulum environment.

objective to minimize entropy over the latent context variable and not through explicit modelling,
e.g. via rewards.

In Figure 4.5a we show the prediction error of the learned dynamics model when calibrated
in the open-loop, MPC and random scheme. For each predicted state we compute the mean
squared error to the ground-truth state (with the angle represented as [sin(𝜃), cos(𝜃)]) and plot
its statistics (mean and quantiles) aggregated over 50 randomly sampled systems, 20 rollouts
per system and 3 independently trained models, giving 3000 rollouts. Similarly to the results
from Subsection 4.5.2, the prediction error for models calibrated with the proposed calibration
schemes is lower than when calibrated with random system interventions.

As for the pendulum task in principle a single transition is sufficient to infer the dynamics in the
quadrant covered by the transition, one can expect that (1) the entropy of the latent context belief
decreases for an increasing number of quadrants covered by a context set; (2) adding transitions
from an already covered quadrant to the context set does not lead to a strong reduction of
entropy; (3) the entropy is minimized when all four quadrants are covered. Our learned context
encoder features all of those properties, as we evaluate in Figure 4.7a. The figure depicts how
the information (entropy) of the latent context belief behaves for different context sets covering
different numbers of quadrants. See Figure 4.7a for more details.

Control experiment In this experiment, we evaluate the performance of the calibrated models
for serving as forward dynamics models in a model predictive control setting. The task is to
swing-up the Pendulum into an upright pose, which requires careful trajectory planning as, due
to torque limits, the Pendulum cannot be driven to the upright pose directly. Consequently, the
calibrated dynamics model has to yield accurate predictions for successfully solving the task.
Planning is conducted using CEM with a planning horizon of 20 and a manually constructed
swing-up reward function from the OpenAI Gym Pendulum implementation (Brockman et al.,
2016). For all experiments, the number of transitions in a calibration rollout is set to 30.

As depicted in Figure 4.7b, planning with a dynamics model conditioned on data collected using
the MPC calibration scheme gives similar performance (return) to using a ground-truth model
of the Pendulum environment. In contrast, planning with a model conditioned on randomly
sampled transitions yields a significantly lower performance.
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(a) Entropy of the latent context belief mainly depends
on the number of covered quadrants by the context set
and is barely affected by the number of context transi-
tions larger one in each quadrant. We randomly generate
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(b) Swingup task cumulative reward (return) on 50 ran-
domly sampled environment instances using a learned
context-conditional model and an analytic reward func-
tion for planning. The learned model is conditioned
on 30 transitions collected using the MPC calibration
scheme or random sampling, respectively. “MPC gain"
is gain in return when using MPC calibration scheme
instead of random calibration. “Nominal groundtruth
model" refers to the baseline performance when plan-
ning using groundtruth dynamics as forward model
with 𝛼𝑖 = 1.25.

Figure 4.7.: Extended evaluations on the Pendulum environment. Qualitative evaluation of the entropy of the latent
context belief (a) and task performance when using the calibrated forward model for model-predictive control (b).

4.5.4. MountainCar environment

The MountainCar environment was first introduced by Moore (1990) and is a common bench-
marking problem for reinforcement learning algorithms. In its original formulation, the task is to
steer a car from a valley to a hill on a 2D profile. Due to throttle constraints on the car, the agent
has to learn to gain momentum by first steering in the opposite direction of the goal. We extend
the MountainCar environment to randomly sampled 2D terrain shapes, train context-conditional
dynamics models on random rollouts and evaluate our proposed calibration routines. Figure 4.8a
illustrates randomly sampled terrain profiles. The terrain profile of the MountainCar environment
is generated by a linear combination of Gaussian functions 𝑔(𝑥; 𝑙 , 𝑤) = exp

(︂
− 1

2
(𝑥−𝑙)2
𝑤2

)︂
𝑦 = 0.5 · 𝑔(𝑥;−1, 0.3) + 0.5 · 𝑔(𝑥; 1, 0.3) +

𝑁∑︂
𝑛=1

ℎ𝑛 · 𝑔(𝑥; 𝑙𝑛 , 𝑤𝑛) (4.41)

with 𝑥 ∈ [−1, 1], 𝑁 ∼ 𝒰{2, . . . , 7}, ℎ𝑛 ∼ 𝒰[0.1, 0.3], 𝑙𝑛 ∼ 𝒰[−1.5, 1.5], 𝑤𝑛 ∼ 𝒰[0.1, 0.5]. The
Markovian state of the environment is represented by the current horizontal position and
horizontal velocity. An external tangential acceleration 𝑢 ∈ [−3, 3] can be applied to the car.
We locally approximate the dynamics of the car as a sliding block on an inclined plane with
friction, where the slope of the plane is given by the average of the profile’s gradient at the
current point and the gradient at the simulated next point, akin to Heun’s method for solving
ordinary differential equations (Butcher, 2016). We use a batchsize 𝐿 = 512 and maximal context
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(b) Random (top) vs MPC (bottom) calibration rollouts on 5 sampled
MountainCar profiles (pink: t=1, yellow: t=50). The MPC rollouts cover
larger extents of the profile to infer its shape. For better visibility, rollouts
are extruded over time towards the positive y-direction.

Figure 4.8.: Properties of the MountainCar environment.

set size 𝐶max = 50.

Data collection For training and validation data collection, we generate 𝑘 = 60000 MountainCar
environment instances (50000 training / 10000 validation) with randomly sampled terrain
profiles. On each environment instance, we generate two randomly initialized (𝑥0 ∼ 𝒰[−0.8, 0.8],
𝑥̇0 ∼ 𝒰[−2, 2]) rollouts with random actions 𝑢𝑛 ∼ 𝒰[−3, 3].

Evaluation All calibration rollouts contain 50 transitions and are initialized at 𝑥0 = 𝑥̇0 = 0. We
depict the resulting random and MPC calibration rollouts in Figure 4.8b. Similar to the Pendulum
environment, the MPC calibration exhibits an explorative behavior to gain information about
the terrain shape. The prediction error is evaluated on 50 randomly sampled terrain profiles, 20
randomly generated rollouts per profile and 3 independently trained models, giving 3000 rollouts
in total. The model prediction error is depicted in Figure 4.5b for different calibration schemes.
Again, our proposed calibration schemes compare favorably to using random transitions for
calibration. The CEM planning horizon for MPC calibration for this environment is set to
𝐻max = 30 in our experiments.

4.5.5. Ablation studies

In Appendix B.4, we show studies on the performance of the calibrated models when using
multiple rollouts for calibration and/or varying the number of transitions in a calibration
trajectory. We find that (i) the advantage of increasing the trajectory length vanishes at some
point, e.g., in the Pendulum case, when all quadrants have been observed. Using multiple
calibration rollouts is not advantageous for the Pendulum environment: If the calibration
trajectories are too short, the upper quadrants will be missed in all of them. In the MountainCar
case, multiple rollouts are advantageous, potentially due to the fact that this allows the exploration
of regions which were previously unexplored as the car got stuck in a local minimum. For more
details, we refer to Appendix B.4.
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4.6. Limitations

This section is not part of Achterhold and Stueckler (2021).

The main limitation of the proposed approach is the assumption that the environment is fully
observable. This design decision was made on purpose. For a partially observable environment,
a belief state has to be formed based on a sequence of past observations. If the belief state is in a
learned latent space, information on the dynamics of the system might be captured also by the
latent state, instead of being fully captured by the global latent variable 𝜷. Potentially, this is not
an issue, as it might lead to a representation of 𝜷 which only captures variations which can not
be inferred from past observations. However, this hypothesis needs to be investigated by further
research. Interpreting 𝜷 and its uncertainty, as done in this chapter, is less straightforward if
information on the variations of the dynamics are also captured by the latent state, which is why
this case is not considered here.

4.7. Conclusion

In this chapter, we propose a learning method for context-dependent probabilistic dynamics
models and an information-theoretic calibration approach to adapt the dynamics models to
target environments from experience. We apply the framework of Neural Processes (Garnelo
et al., 2018b) with a probabilistic context encoder to formulate our latent dynamics model and
propose a learning approach that learns meaningful predictions of the uncertainty in the context
variable. Our calibration approach uses expected information gain in the latent context variable
as optimization criterion for model-predictive control. For evaluation, we construct an illustrative
toy environment, on which we can easily distinct informative and non-informative actions
for inferring a latent parameter. Experiments on this toy problem reveal the characteristics
of the probabilistic encoding for informative and non-informative actions. We also introduce
parametrized pendulum and mountain car environments to demonstrate our method on more
complex systems. On these systems, our proposed calibration methods yield models with
significantly lower prediction errors compared to random calibration. In future work, we plan to
extend our method for learning dynamics models of real systems and for model-based control
and reinforcement learning. Modelling partially observable environments also is an interesting
avenue of future research.
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Suresh Guttikonda handed in his Master’s thesis titled Learning a Context-Conditional and Terrain-
Aware Kino-Dynamics Model for Autonomous Mobile Robots at the University of Freiburg on
September 1st, 2022.

Jörg Stückler proposed extending the context-conditional dynamics model presented in Explore
the Context (Achterhold and Stueckler, 2021) for the task of terrain-aware navigation with
mobile robots which possess varying internal parameters. Suresh Guttikonda, Jörg Stückler
and Jan Achterhold developed the idea of performing terrain lookup during planning. Suresh
Guttikonda implemented the terrain profile generation algorithm, and performed experimental
studies combining a robot model from a physics simulator, the dynamics model proposed by
(Achterhold and Stueckler, 2021), and the cross-entropy method planning algorithm. For the
publication, Jan Achterhold replaced the physics simulator by a simple unicycle-based dynamics
model with Runge Kutta integration, and implemented, executed, and analyzed all presented
experiments. All authors regularly discussed the approach. Jan Achterhold, Jörg Stückler, and
Suresh Guttikonda wrote the paper.

We provide our implementation at https://github.com/EmbodiedVision/tradyn.

https://github.com/EmbodiedVision/tradyn
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Figure 5.1.: Terrain- and robot-aware control-efficient navigation. We propose a method for control-cost optimal
navigation with learned dynamics models. Our method can adapt to varying, unobserved properties of the robot,
such as the mass, and spatially varying properties of the terrain, such as the friction coefficient. In the above example
of navigating from a single starting point (white cross) to two different goals (black cross), as a result, our method
circumvents areas of high friction coefficient and favors areas of low-friction coefficient. As the dissipated energy also
depends on the mass of the robot, a heavy robot (𝑚 = 4 kg, blue, orange) is allowed to take longer detours to the goal
than a light robot (𝑚 = 1 kg, green, red).

5.1. Introduction

Autonomous mobile robot navigation — the robot’s ability to reach a specific goal location — has
been an attractive research field over several decades, with applications ranging from self-driving
cars, warehouse and service robots, to space robotics. In certain situations, e.g., weeding in
agricultural robotics or search and rescue operations, robots operate in harsh and unstructured
outdoor environments with limited or no human supervision to complete their task. During such
missions, the robot needs to navigate over a wide variety of terrains with changing types, such
as grass, gravel, or mud with varying slope, friction, and other characteristics. These properties
are often hard to fully and accurately model beforehand (Sonker and Dutta, 2021). Moreover,
properties of the robot itself can change during operation due to battery consumption, weight
changes, or wear and tear of the robot. Thus, the robot needs to be able to adapt to both changes
in robot-specific and terrain-specific properties.

In this work, we develop a novel context-conditional learning approach which captures robot-
specific and terrain-specific properties from interaction experience and environment maps.
To adapt to robot-specific parameters, we leverage concepts for adaptive dynamics models
presented in Chapter 4, in which variations in dynamics are captured by a latent context variable.
The context variable is inferred online from observed state transitions. The terrain features are
extracted from an environment map and additionally included as conditional variable for the
dynamics model.

We develop and evaluate our approach in a 2D simulation of a mobile robot modeled as a
point mass with unicycle driving dynamics that depend on a couple of robot-specific and
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terrain-specific parameters. Terrains are defined by regions in the map with varying properties.
We demonstrate that our context-aware dynamics model learning approach can capture the
varying robot and terrain properties well, while a dynamics model without context-awareness
achieves less accurate prediction and planning performance.

In summary, in this chapter, we contribute the following:

1. We propose a terrain- and robot-aware probabilistic deep forward dynamics model
(TRADYN) which can adapt to robot- and terrain-specific properties that influence the
mobile robot’s dynamics.

2. We demonstrate in a 2D simulation environment that these adaptation capabilities are
crucial for the predictive performance of the dynamics model.

3. The learned context-aware dynamics model is used for robot navigation using model-
predictive control. This way, efficient paths can be planned that take robot and terrain
properties into account (see Figure 5.1).

5.2. Related work

Some approaches to terrain-aware navigation use semantic segmentation for determining
the category of terrain and use this information to only navigate on segments of traversable
terrain (Valada et al., 2017; Yang et al., 2018). Z. Zhu et al. (2019) propose to use inverse
reinforcement learning to learn the control costs associated with traversing terrain from human
expert demonstrations. These methods, however, do not learn the dynamical properties of the
robot on the terrain classes explicitly like our methods.

In BADGR (Kahn et al., 2021) a predictive model is learned of future events based on the current
RGB image and control actions, which can be used for planning navigation trajectories. The
predicted events are collision, bumpiness, and position. The model is trained from sample
trajectories in which the events are automatically labelled. Grigorescu et al. (2021) learn a
vision-based dynamics model which encodes camera images into a state observation for model-
predictive control. Different to our approach, however, the method does not learn a model that
can capture a variety of terrain- and robot-specific properties jointly. Siva et al. (2021) learn an
offset model from the predicted to the actual behavior of the robot from multimodal terrain
features determined from camera, LiDAR, and IMU measurements. In Xiao et al. (2021) a method
for learning an inverse kinodynamics model from inertial measurements is proposed to handle
high-speed motion planning on unstructured terrain. Sikand et al. (2022) use contrastive learning
to embed visual features of terrain with similar traversability properties close in the feature
space. The terrain features are used for learning preference-aware path planning. Different to
our study, the above approaches do not distinguish terrain- and robot-specific properties and
model them concurrently.

Several approaches for learning action-conditional dynamics models have been proposed in the
machine learning and robotics literature in recent years. In the seminal work PILCO (Deisenroth
and Rasmussen, 2011), Gaussian processes are used to learn to predict subsequent states,
conditioned on actions. The approach is demonstrated for balancing and swinging up a cart-pole.
Several approaches learn latent embeddings of images and predict future latent states conditioned
on actions using recurrent neural networks (Finn et al., 2016; Hafner et al., 2019; Lenz et al., 2015;
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Oh et al., 2015). The models are used in several of these works for model-predictive control and
planning. Learning-based dynamics models are also popular in model-based reinforcement
learning (see e.g. Nagabandi et al. (2018)). Shaj et al. (2020) propose action-conditional recurrent
Kalman networks which implement observation and action-conditional state-transition models
in a Kalman filter with neural networks. While these approaches can model context from past
observations in the latent state of the recurrent neural network, some approaches allow for
incorporating an arbitrary set of context observations to infer a context variable (Lee et al., 2020)
or a probability distribution thereon (Achterhold and Stueckler, 2021). In this chapter, we base
our approach on the context-conditional dynamics model learning approach in Achterhold and
Stueckler (2021) to infer the distribution of a context variable of robot-specific parameters using
Neural Processes (Garnelo et al., 2018b).

5.3. Preliminaries

This section shortly recapitulates the dynamics model presented in Chapter 4.

We build our approach on the context-conditional probabilistic neural dynamics model of Explore
the Context (EtC, Achterhold and Stueckler (2021), Chapter 4). In EtC, the basic assumption is
that the dynamical system can be formulated by a Markovian discrete-time state-space model

𝒔𝑛+1 = 𝑓 (𝒔𝑛 , 𝒂𝑛 , 𝜶) + 𝝐𝑛 , 𝝐𝑛 ∼ 𝒩(0,𝑸𝑛), (5.1)

where 𝒔𝑛 is the state at timestep 𝑛, 𝒂𝑛 is the control input, and 𝜶 is a latent, unobserved variable
which modulates the dynamics, e.g., robot or terrain parameters. Gaussian additive noise is
modeled by 𝝐𝑛 , having a diagonal covariance matrix 𝑸𝑛 . Not only 𝜶 is assumed to be unknown,
but also the function 𝑓 itself. To model the system dynamics, EtC thus introduces an approximate
forward dynamics model 𝑞fwd. To capture the environment-specific properties 𝜶, the learned
dynamics model is conditioned on a latent context variable 𝜷 ∈ ℝ𝐷𝛽 . A probability density on 𝜷 is
inferred from interaction experience on the environment, represented by𝐶 transitions (𝒔+ ← 𝒔 , 𝒂)

following Equation 5.1 and collected in a context set 𝒞𝛼 = {(𝒔(𝑘) , 𝒂(𝑘) , 𝒔(𝑘)+ )}
𝐶

𝑘=1. A learned context
encoder 𝑞ctx(𝜷 | 𝒞𝛼) infers a density on 𝜷. The target chunk D𝛼 = (𝒔𝑛 , 𝒂𝑛 , 𝒔𝑛+1 , . . . , 𝒂𝑛+𝑇−1 , 𝒔𝑛+𝑇)
of length 𝑇 is a subsequence of a trajectory on the environment. Both context set and target
chunk are generated on the same environment instance 𝜶. For a pair of target chunk and context
set, the learning objective is to maximize the marginal log-likelihood

log 𝑝𝜃(D𝛼 | 𝒞𝛼) = log
∫

𝑝𝜃(D𝛼 | 𝜷) 𝑝𝜃(𝜷 | 𝒞𝛼) 𝑑𝜷. (5.2)

with respect to the parameters 𝜽. Overall, we aim to maximize log 𝑝𝜃(D𝛼 | 𝒞𝛼) in expectation
over the distribution of environments Ω𝛼, context sizes 𝐶, and a distribution of pairs of context
sets and target chunks Ω 𝑓 𝛼 (𝐶, 𝑇), i.e.

max𝔼𝜶∈Ω𝛼 ,𝐶∈Ω𝐶 ,
D𝛼 ,𝒞𝛼∼Ω 𝑓 𝛼 (𝐶,𝑇)

log 𝑝𝜃(D𝛼 | 𝒞𝛼). (5.3)

The term 𝑝𝜃(D𝛼 |𝜷) is modeled by single-step and multi-step prediction factors and reconstruction
factors, all implemented by the approximate dynamics model 𝑞fwd

(︁
𝒔𝑛 | 𝒔0 , 𝒂0:𝑛−1 , 𝜷

)︁
, while

𝑝𝜃(𝜷 | 𝒞𝛼) is approximated by 𝑞ctx(𝜷 | 𝒞𝛼).
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Technically, the forward dynamics model is implemented with gated recurrent units (GRU, Cho
et al. (2014)) in a latent space. The initial state 𝒔0 is encoded into a hidden state 𝒛0. The control
input 𝒂 and context variable 𝜷 are encoded into feature vectors and passed as inputs to the
GRU

𝒛0 = 𝑒s(𝒔0) (5.4)
z𝑛+1 = GRU

(︁
𝒛𝑛 , [𝑒a(𝒂𝑛), 𝑒𝛽(𝜷)]

)︁
(5.5)

where 𝑒s, 𝑒a, and 𝑒𝛽 are neural network encoders. The (predicted) latent state z𝑛 is decoded into
a Gaussian distribution in the state space

𝒔̂𝑛 ∼ 𝒩
(︁
𝑑𝑠,𝜇(z𝑛), 𝑑𝑠,𝜎2(z𝑛)

)︁
(5.6)

using neural networks 𝑑𝑠,𝜇, 𝑑𝑠,𝜎2 .

The context encoder gets as input a set of state-action-state transitions 𝒞𝛼 with flexible size 𝐶. The
context encoder is implemented by first encoding each transition in the context set independently
using a transition encoder 𝑒trans, and, for permutation invariance, aggregating the encodings
using a dimension-wise max operation. This yields the aggregated latent variable 𝒛𝛽. Lastly, a
Gaussian density over the context variable 𝜷 is predicted from the aggregated encodings

𝑞ctx(𝜷 | 𝒞𝛼) = 𝒩
(︂
𝜷 | 𝑑𝛽,𝜇(𝒛𝛽), diag(𝑑𝛽,𝜎2(𝒛𝛽))

)︂
(5.7)

with neural network decoders 𝑑𝛽,𝜇, 𝑑𝛽,𝜎2 . The network 𝑑𝛽,𝜎2 is designed so that the predicted
variance is strictly positive and decreases monotonically when adding context observations.

To form a tractable loss, the marginal log likelihood in Equation 5.2 is (approximately, see Le
et al. (2018)) bounded using the evidence lower bound

log 𝑝𝜃(D𝛼 | 𝒞𝛼) ⪆
𝔼𝜷∼𝑞ctx(𝜷 | D𝛼∪𝒞𝛼)

[︁
log 𝑝𝜃(D𝛼 | 𝜷)]︁ − 𝜆KL KL

(︁
𝑞ctx(𝜷 | D𝛼 ∪ 𝒞𝛼) ∥ 𝑞ctx(𝜷 | 𝒞𝛼))︁ . (5.8)

similar to Neural Processes (Garnelo et al., 2018b). For training the dynamics model and context
encoder, the approximate bound in Equation 5.8 is maximized by stochastic gradient ascent
on empirical samples for target chunks and context sets. Samples are drawn from trajectories
generated on a training set of environments.

By collecting context observations at test time, and inferring 𝜷 using 𝑞ctx(𝜷 | 𝒞𝛼), the dynam-
ics model 𝑞fwd(𝒔𝑛 | 𝒔0 , 𝒂0:𝑁−1 , 𝜷) can adapt to a particular environment instance 𝜶 (called
calibration).

5.4. Method

In the modeling assumption of EtC, changes in the dynamics among different instances of
environments are captured in a global latent variable 𝜶 (see Equation 5.1) which is unobserved.
In terrain-aware robot navigation, among different environments, the terrain varies (with the
terrain layout captured by 𝛼terrain), in addition to robot-specific parameters such as actuator
gains (captured by 𝜶robot). In principle, both effects can be absorbed into a single latent variable
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Figure 5.2.: Architecture of our proposed terrain- and robot-aware forward dynamics model (TRADYN). The initial
state of the robot 𝒔0 is embedded as hidden state of a gated recurrent unit (GRU) cell. The GRU makes a single-step
forward prediction in the latent space using embeddings of the context variable 𝜷, action 𝒂 and terrain observation
𝝉 as additional inputs. Latent states are mapped to Gaussian distributions on the robot’s observation space for
decoding. While during training the actual terrain observation 𝜏(𝒔𝑛) is used, during prediction, the map 𝜏 is queried
at predicted robot locations 𝜏(𝒔̂𝑛). See Section 5.4 for details.

𝜶 = (𝛼terrain , 𝜶robot). Here, we make more specific assumptions, and assume the terrain-specific
properties to be captured in a state-dependent function 𝛼terrain(𝒔𝑛).

5.4.1. Terrain- and Robot-Aware Dynamics Model

Conclusively, we assume the following environment dynamics

𝒔𝑛+1 = 𝑓 (𝒔𝑛 , 𝒂𝑛 , 𝜶robot , 𝛼terrain(𝒔𝑛)) + 𝝐𝑛 (5.9)

with 𝝐𝑛 ∼ 𝒩(0,𝑸𝑛) as in Equation 5.1. In our case of terrain-aware robot navigation, 𝒔𝑛 refers to
the robot state at timestep 𝑛, 𝒂𝑛 are the control inputs, 𝜶robot captures (unobserved) properties
of the robot (mass, actuator gains), and 𝛼terrain(𝒔𝑛) captures the spatially dependent terrain
properties (e.g., friction). While we assume 𝛼terrain to be unobserved, we assume the existence of
a known map of terrain features 𝜏terrain(𝒔𝑛), which can be queried at any 𝒔𝑛 to estimate the value of
𝛼terrain(𝒔𝑛). Exemplarily, 𝜏terrain may yield visual terrain observations, which relate to friction
coefficients.

As we retain the assumption of EtC that 𝜶robot is not directly observable, we condition the
multi-step forward dynamics model on the latent variable 𝜷. In addition, we condition on
observed terrain features 𝝉0:𝑛−1, i.e.,

𝒔̂𝑛 ∼ 𝑞fwd(𝒔𝑛 | 𝒔0 , 𝒂0:𝑛−1 , 𝜷, 𝝉0:𝑛−1). (5.10)

We obtain 𝝉0:𝑛−1 differently for training and prediction. During training, we evaluate 𝜏 at ground-
truth states, i.e. 𝝉0 = 𝜏(𝒔0), 𝝉1 = 𝜏(𝒔1), etc. During prediction, we do not have access to ground-
truth states, and obtain 𝝉0:𝑛−1 auto-regressively from predictions as 𝝉0 = 𝜏(𝒔0), 𝝉1 = 𝜏(𝒔̂1),
etc.

To capture terrain-specific properties, we extend EtC as follows. We introduce an additional
encoder 𝑒𝜏 which encodes a terrain feature 𝝉. The encoded value is passed as input to the GRU,
such that Equation 5.5 is updated to

z𝑛+1 = GRU
(︁
𝒛0 , [𝑒𝜏(𝝉𝑛), 𝑒a(𝒂𝑛), 𝑒𝛽(𝜷)]

)︁
. (5.11)
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Also, the context set is extended to contain terrain features

𝒞𝛼 = {(𝒔(𝑘) , 𝜏(𝒔(𝑘)), 𝒂(𝑘) , 𝒔(𝑘)+ , 𝜏(𝒔(𝑘)+ ))}
𝐶

𝑘=1. (5.12)

We refer to Figure 5.2 for a depiction of our model.

For each training example, the context set size 𝐶 is uniformly sampled in {0, . . . , 50}. The target
chunk length is𝑁 = 50. As in EtC (Achterhold and Stueckler, 2021), we set𝜆KL = 5. The dimension-
ality of the latent variable 𝜷 is 16. For details on the networks (𝑒a , 𝑒𝛽 , 𝑑𝑠,𝜇 , 𝑑𝑠,𝜎2 , 𝑒trans , 𝑑𝛽,𝜇 , 𝑑𝛽,𝜎2)
we refer to Chapter 4 and Appendix B, as we strictly follow the architecture described therein.
The additional encoder network we introduce, 𝑒𝛽, follows the architecture of 𝑒𝜏 and 𝑒a. It contains
a single hidden layer with 200 units and ReLU activations, and an output layer which maps to
an embedding of dimensionality 200.

5.4.2. Path Planning and Motion Control

We use TRADYN in a model-predictive control setup. The model 𝑞fwd yields state predictions
𝒔̂1:𝐻 for an initial state 𝒙0 and controls 𝒂0:𝐻−1. For calibration, i.e., inferring 𝜷 from a context set 𝒞
with the context encoder 𝑞ctx, calibration transitions are collected on the target environment prior
to planning. This allows adapting to varying robot parameters. The predictive terrain feature
lookup (see Figure 5.2) with 𝜏(𝒔) allows adapting to varying terrains. We use the cross-entropy
method (CEM, Rubinstein (1999), see Section 2.6) for planning. We aim to reach the target
position with minimal throttle control energy, given by the sum of squared throttle commands
during navigation. This gives rise to the following planning objective, which penalizes high
throttle control energy and a deviation of the robot’s terminal position to the target position 𝒑∗:

𝐽(𝒂0:𝐻−1 , 𝒔̂1:𝐻) = 1
2

𝐻−1∑︂
𝑛=0

𝑢2
throttle,𝑛 + ||[𝑝̂x,𝐻 , 𝑝̂y,𝐻]⊤ − 𝒑∗ | |22. (5.13)

In our CEM implementation, we normalize the distance term in Equation 5.13 to have zero mean
and unit variance over all CEM candidates, to trade-off control- and distance cost terms even
under large terrain variations. At each step, we only apply the first action and plan again from
the resulting state in a receding horizon scheme.

5.5. Experiments

5.5.1. Simulation environment

Simulated Robot Dynamics

We perform experiments in a 2D simulation with a unicycle-like robot setup where the continuous
time-variant 2D dynamics with position p = [𝑝x , 𝑝y]⊤, orientation 𝜑′, and directional velocity 𝑣,
for control input 𝒂 = [𝑎throttle , 𝑎steer]⊤ ∈ [−1, 1]2, are given by
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Figure 5.3.: Exemplary rollouts (length 50) on two different terrain layouts (rows) and for two exemplary robot
configurations (low-inertia, high-inertia) (columns). Rollouts start from the center; actions are sampled time-correlated.
The low-inertia robot has minimal mass 𝑚 = 1 and maximal control gains 𝑘throttle = 1000, 𝑘steer = 𝜋/4. The high-
inertia robot has maximal mass 𝑚 = 4 and minimal control gains 𝑘throttle = 500, 𝑘steer = 𝜋/8. Equally colored
trajectories ( ,  ,  ) correspond to identical sequences of applied actions. See Subsection 5.5.1 for details.
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Figure 5.4.: Relationship of RGB terrain features 𝝉 (left column) to friction coefficient 𝜇 (right column). See
Subsection 5.5.1 for details.
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Figure 5.5.: Prediction error evaluation for the proposed model and its ablations (no terrain lookup / no calibration),
plotted over the prediction horizon (number of prediction steps). From left to right: Positional error (euclidean
distance), velocity error∗ (absolute difference), angular error (absolute difference). Depicted are the mean and 20%,
80% percentiles over 150 evaluation rollouts for 5 independently trained models per model variant. Our approach
with terrain lookup and calibration clearly outperforms the other variants in position and velocity prediction (left and
center panel). For predicting the angle (right panel), terrain friction is not relevant, which is why the terrain lookup
brings no advantage. However, calibration is important for accurate angle prediction. See Subsection 5.5.3 for details.

𝒑̇(𝑡) = [︁
cos 𝜑′ sin 𝜑′

]︁⊤
𝑣(𝑡)

𝑣̇(𝑡) = 1
𝑚
(𝐹throttle + 𝐹fric)

𝐹throttle = 𝑎throttle 𝑘throttle

𝐹fric = − sign(𝑣(𝑡)) 𝜇 𝑚 𝑔.

(5.14)

As our method does not use continuous-time observations, but only discrete-time samplings with
stepsize Δ𝑇 = 0.01 s, we approximate the state evolution between two timesteps as follows. First,
we apply the change in angle as 𝜑′ = 𝜑(𝑡 + Δ𝑇) = 𝜑(𝑡) + 𝑎steer 𝑘steer. We then query the terrain
friction coefficient 𝜇 at the position 𝒑(𝑡). With the friction coefficient 𝜇 and angle 𝜑′ we compute
the evolution of position and velocity with Equation 5.14. The existence of the friction term in
Equation 5.14 requires an accurate integration, which is why we solve the initial value problem
in Equation 5.14 numerically using an explicit Runge Kutta (RK45) method, yielding 𝒑(𝑡 + Δ𝑇)
and 𝑣(𝑡 + Δ𝑇). Our simulated system dynamics are deterministic. To avoid discontinuities, we
represent observations∗ of the above system as 𝒔(𝑡) = [𝑝x(𝑡), 𝑝y(𝑡), 𝑣(𝑡)/5, cos 𝜑(𝑡), sin 𝜑(𝑡)]⊤.
We use 𝑔 = 9.81 m s−2 as gravitational acceleration. Positions 𝒑(𝑡) are clipped to the range
[0, 1] m; the directional velocity 𝑣(𝑡) is clipped to [−5, 5] m s−1. The friction coefficient 𝜇 =
𝛼terrain(𝑝x , 𝑝y) ∈ [0.1, 10] depends on the terrain layout 𝛼terrain and the robot’s position. The
mass 𝑚 and control gains 𝑘throttle , 𝑘steer are robot-specific properties, we refer to Table 5.1 for
their value ranges.

Terrain layouts

To simulate the influence of varying terrain properties on the robots’ dynamics, we program-
matically generate 50 terrain layouts for training the dynamics model and 50 terrain layouts for
testing (i.e., in prediction- and planning evaluation). For generating terrain 𝑘, we first generate an

∗ As a correction to Guttikonda et al. (2023), we clarify that the velocity observation is normalized, i.e., 𝒔(𝑡) =
[. . . , 𝑣(𝑡)/5, . . .]⊤. Guttikonda et al. (2023) report the velocity error on the normalized velocity (𝑣/5). In Figure 5.5
(center panel), for clarity, the error on the non-normalized velocity 𝑣 is shown.
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Variant Thr. ctrl.
energy

Target
dist [mm]

Thr. ctrl.
energy

Target
dist [mm]

 −T, −C 4.08 7.82 3.96 2.69
 −T, +C 3.47 4.89 2.78 4.87
 +T, −C 2.01 4.57 1.88 5.14
 +T, +C 2.02 5.55 1.43 6.66

Figure 5.6.: Exemplary navigation trajectories and their associated throttle control energy and final distance to the
target (see table). The robot starts at the white cross, the goal is marked by a black cross. With terrain lookup ( +T,
-C and  +T, +C), our method circumvents areas of high friction coefficient (i.e., high energy dissipation), resulting in
lower throttle control energy (see table). Enabling calibration (+C) further reduces throttle control energy on the right
terrain. See Subsection 5.5.4 for details.
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Figure 5.7.: Comparison of model variants with and without terrain lookup and calibration†. 𝐸𝑣𝑘,𝑖 denotes the throttle
control energy for method 𝑣 on navigation task 𝑘 ∈ {1, . . . , 150} for a trained model with seed 𝑖 ∈ {1, . . . , 5}. We
show statistics (20% percentile, median, 80% percentile) on the set of pairwise comparisons of control energies
{𝐸row

𝑘,𝑖1
− 𝐸col

𝑘,𝑖2
| ∀𝑘 ∈ {1, . . . , 150}, 𝑖1 ∈ {1, . . . , 5}, 𝑖2 ∈ {1, . . . , 5}}. Significant (𝑝 < 0.05) results are printed bold (see

Subsection 5.5.4). Exemplarily, both performing terrain lookup and calibration (last row) yields navigation solutions
with significantly lower throttle control energy (negative numbers) compared to all other methods (columns). See
Subsection 5.5.4 for details.

† The code to compute the numbers in Figure 5.7 as reported by Guttikonda et al. (2023) contained an implementation
error, which caused only models of equal seeds (i.e., 𝑖1 = 𝑖2 in the caption of Figure 5.7) to be compared, but
not across different seeds. Here, corrected numbers are reported, which slightly differ from those by Guttikonda
et al. (2023) (max. abs. difference in median ctrl. energy: 0.004). The significance statements and variant order
w.r.t. median control energy (+T,+C < +T,−C < −T,+C < −T,−C) remain unchanged. The repository at https:
//github.com/EmbodiedVision/tradyn contains a separate branch, fixing this error.

https://github.com/EmbodiedVision/tradyn
https://github.com/EmbodiedVision/tradyn


5.5. Experiments 75

0 1
0

1

0 1
0

1

0.4 0.8
0.4

0.8

0.6 0.8
0.5

0.7

0.1
1.0

5.0

10.0

Fr
ic
tio

n
co
effi

ci
en

t

0.1
1.0

5.0

10.0

Fr
ic
tio

n
co
effi

ci
en

t

− Terr. lookup, − Calib.
− Terr. lookup, + Calib.

+ Terr. lookup, − Calib.
+ Terr. lookup, + Calib.

− Terr. lookup, − Calib.
− Terr. lookup, + Calib.

+ Terr. lookup, − Calib.
+ Terr. lookup, + Calib.

Figure 5.8.: Failure cases for the non-calibrated models. The top row shows the full terrain of extent [0, 1]m. The
bottom row is zoomed around the goal. In the cases shown, planning with the non-calibrated models does not
succeed in reaching the goal marked by the black cross within the given step limit of 50 steps, in contrast to the
calibrated models. See Subsection 5.5.4 for details.

unnormalized feature map 𝜏̂(𝑘), from which we compute 𝛼(𝑘)terrain and the normalized feature map
𝜏(𝑘). The unnormalized feature map is represented by a 2D RGB image of size 460 px×460 px. For
its generation, first, a background color is randomly sampled, followed by sequentially placing
randomly sampled patches with cubic bezier contours. The color value (𝑟, 𝑔, 𝑏) ∈ {0, . . . , 255}3
at each pixel maps to the friction coefficient 𝜇 = 𝛼terrain(𝑝x , 𝑝y) through bitwise left-shifts≪ as

𝜂 = ((𝑟 ≪ 16) + (𝑔 ≪ 8) + 𝑏)/(224 − 1)
𝛼terrain(𝑝x , 𝑝y) = 0.1 + (10 − 0.1)𝜂2.

(5.15)

The agent can observe the normalized terrain color 𝜏(𝑘)(𝑝x , 𝑝y) ∈ [0, 1]3 with 𝜏(𝑘)(𝑝x , 𝑝y) =
𝜏̂(𝑘)(𝑝x , 𝑝y)/255, and can query 𝜏(𝑘)(𝑝x , 𝑝y) at arbitrary 𝑝x , 𝑝y. The simulator has direct access
to 𝜇 = 𝛼(𝑘)terrain(𝑝x , 𝑝y). We denote the training set of terrains𝒜train = {𝛼(𝑘)terrain | 𝑘 ∈ {1, . . . , 50}}
and the test set of terrains 𝒜test = {𝛼(𝑘)terrain | 𝑘 ∈ {51, . . . , 100}}. We refer to Figure 5.4 for a
visualization of two terrains and the related friction coefficients.

Environment instance

The robot’s dynamics depends on the terrain 𝛼terrain as it is the position-dependent friction coeffi-
cient, and the robot-specific parameters 𝜶robot = (𝑚, 𝑘throttle , 𝑘steer). A fixed tuple (𝛼terrain , 𝜶robot)
forms an environment instance.
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Table 5.1.: Robot-specific properties.

Property Min. Max.

Mass 𝑚 [kg] 1 4
Throttle gain 𝑘throttle 500 1000
Steer gain 𝑘steer 𝜋/8 𝜋/4

Trajectory generation

We require the generation of trajectories at multiple places of our algorithm for training and
evaluation: To generate training data, to sample candidate trajectories for the cross-entropy
planning method, to generate calibration trajectories, and to generate trajectories for evaluating
the prediction performance. One option would be to generate trajectories by independently
sampling actions from a Gaussian distribution at each timestep. However, this Brownian random
walk significantly limits the space traversed by such trajectories (Pinneri et al., 2020). To increase
the traversed space, Pinneri et al. (2020) propose to use time-correlated (colored) noise with
a power spectral density PSD( 𝑓 ) ∝ 1

𝑓 𝜔 , where 𝑓 is the frequency. We use 𝜔 = 0.5 in all our
experiments.

Exemplary rollouts

We visualize exemplary rollouts on different terrains and with different robot parametrizations
in Figure 5.3. We observe that both the terrain-dependent friction coefficient 𝜇, as well as the
robot properties, have a significant influence on the shape of the trajectories, highlighting the
importance of a model to be able to adapt to these properties.

5.5.2. Model training

We train our proposed model on a set of precollected trajectories on different terrain layouts and
robot parametrizations. First, we sample a set of 10000 unique terrain layout / robot parameter
settings to generate training trajectories. For validation, a set of additional 5000 settings is used.
On each setting, we generate two trajectories, used later during training to form the target chunk
D𝛼 and context set 𝒞𝛼, respectively. Terrain layouts are sampled uniformly from the training
set of terrains, i.e.𝒜train. Robot parameters are sampled uniformly from the parameter ranges
given in Table 5.1. The robots’ initial state 𝒙0 = [𝑝x,0 , 𝑝y,0 , 𝑣0 , 𝜑0]⊤ is uniformly sampled from
the ranges 𝑝x,0 , 𝑝y,0 ∈ [0, 1], 𝑣0 ∈ [−5, 5], 𝜑0 ∈ [0, 2𝜋]. Each trajectory consists of 100 applied
actions and the resulting states. We use time-correlated (colored) noise to sample actions (see
previous paragraph). We follow the training procedure described in Achterhold and Stueckler
(2021), except we evaluate the models after 100k training steps.

Model ablation

As an ablation to our model, we only input the terrain features 𝝉 at the current and previously
visited states of the robot as terrain observations, but do not allow for terrain lookups in a map
at future states during prediction. We will refer to this ablation as No(−) terrain lookup in the
following.
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5.5.3. Prediction evaluation

In this section we evaluate the prediction performance of our proposed model. To this end,
we generate 150 test trajectories of length 150, on the test set of terrain layouts 𝒜test. Robot
parameters are uniformly sampled as during data collection for model training. The robot’s initial
position is sampled from [0.1, 0.9]2, the orientation from [0, 2𝜋]. The initial velocity is fixed to 0.
Actions are sampled with a time-correlated (colored) noise scheme. In case the model is calibrated,
we additionally collect a small trajectory for each trajectory to be predicted, consisting of 10
transitions, starting from the same initial state 𝒙0, but with different random actions. Transitions
from this trajectory form the context set 𝒞, which is used by the context encoder 𝑞ctx(𝜷 | 𝒞) to
output a belief on the latent context variable 𝜷. In case the model is not calibrated, the distribution
is given by the context encoder for an empty context set, i.e. 𝑞ctx(𝜷 | 𝒞 = {}). We evaluate two
model variants; first, our proposed model which utilizes the terrain map 𝜏(𝑝x , 𝑝y) for lookup
during predictions, and second, a model for which the terrain observation is concatenated to the
robot observation. All results are reported on 5 independently trained models. Figure 5.5 shows
that our approach with terrain lookup and calibration clearly outperforms the other variants in
position and velocity prediction. As the evolution of the robot’s angle is independent of terrain
friction, for angle prediction, only performing calibration is important.

5.5.4. Planning evaluation

Aside the prediction capabilities of our proposed method, we are interested whether it can be
leveraged for efficient navigation planning. To evaluate the planning performance, we generate
150 navigation tasks, similar to the above prediction tasks, but with an additional randomly
sampled target position 𝒑∗ ∈ [0.1, 0.9]2 for the robot. We perform receding horizon control as
described in Subsection 5.4.2.

Again, we evaluate four variants of our model. We compare models with and without the ability
to perform terrain lookups. Additionally, we evaluate the influence of calibration, by either
collecting 10 additional calibration transitions for each planning task setup, or not collecting any
calibration transition (𝒞 = {}), giving four variants in total.

As we have trained five models with different seeds, over all models, we obtain 750 navigation
results. We count a navigation task as failed if the final Euclidean distance to the goal exceeds
5 cm.

We evaluate the efficiency of the navigation task solution by the sum of squared throttle controls
over a fixed trajectory length of 𝑁 = 50 steps, which we denote as 𝐸 =

∑︁𝑁−1
𝑛=0 𝑢

2
throttle,𝑛 . We

introduce super- and subscripts 𝐸𝑣𝑘,𝑖 to refer to model variant 𝑣, planning task index 𝑘 and
model seed 𝑖. Please see Figures 5.6 and 5.7 for results comparing the particular variants. For
pairwise comparison of control energies 𝐸 we leverage the Wilcoxon signed-rank test with a
𝑝-value of 0.05. We can conclude that, regardless of calibration, performing terrain lookups
yields navigation solutions with significantly lower throttle control energy. The same holds
for performing calibration, regardless of performing terrain lookups. Lowest control energy is
obtained for both performing calibration and terrain lookup.

We refer to Table 5.2 for statistics on the number of failed tasks and final distance to the goal. As
can be seen, our terrain- and robot-aware approach yields overall best performance in Euclidean
distance to the goal and succeeds in all runs in reaching the goal. Planning with non-calibrated
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Table 5.2.: Distance to goal (median and 20% / 80% percentiles) and failure rate for 5 cm distance threshold to goal.
Variants are with/without terrain lookup (±T) and with/without calibration (±C). Our full approach (+T, +C) yields
best performance in reaching the goal and succeeds in all runs.

Variant Euclidean distance to goal [mm] Failed tasks
P20 median P80

 −T, −C 3.00 5.19 8.67 6/750
 −T, +C 3.13 5.23 7.65 0/750
 +T, −C 2.33 4.22 6.49 14/750
 +T, +C 2.16 3.85 5.61 0/750

models variants occasionally fails, i.e., the goal is not reached. We show such failure cases in
Figure 5.8.

5.6. Limitations

This section is not part of Guttikonda et al. (2023).

Main limitations of this work are the assumption that the robot’s state is fully observable (as
in Achterhold and Stueckler (2021), Chapter 4), and that the environment’s terrain map is fully
available a-priori. Thus, an interesting avenue of future work is to consider partially observable
environments, which requires forming a belief state from past observations, e.g. through a
recurrent encoder as in Hafner et al. (2019). However, this might lead to information on the
dynamics of the system to be captured by a latent belief state instead of the latent variable 𝜷,
as discussed in Section 4.6. Furthermore, the assumption of an a-priori available environment
map might be alleviated by learning a map from visual observations, commonly referred to
as visual simultaneous localization and mapping (visual SLAM) (e.g., surveyed by Macario Barros
et al. (2022)). Combining the active learning perspective from Achterhold and Stueckler (2021)
(Chapter 4) for identifying dynamics models with visual SLAM might allow building a (visual)
active SLAM (e.g., surveyed by Placed et al. (2023)) method.

5.7. Conclusion

In this chapter, we propose a forward dynamics model which can adapt to variations in
unobserved variables that govern the system’s dynamics such as robot-specific properties, as well
as to spatial variations. We train our model on a simulated unicycle-like robot, which has varying
mass and actuator gains. In addition, the robot’s dynamics are influenced by instance-wise
and spatially varying friction coefficients of the terrain, which are only indirectly observable
through terrain observations. In 2D simulation experiments, we demonstrate that our model can
successfully cope with such variations through calibration and terrain lookup. It exhibits smaller
prediction errors compared to model variants without calibration and terrain lookup, and yields
solutions to navigation tasks which require lower throttle control energy. In future work, we
plan to extend our novel learning-based approach for real-world robot navigation problems with
partial observability, noisy state transitions, and noisy observations.
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Declaration of contributions

The contents of this chapter are based on the publication

J. Achterhold, P. Tobuschat, H. Ma, D. Büchler, M. Muehlebach, and J. Stueckler (2023). ‘Black-Box
vs. Gray-Box: A Case Study on Learning Table Tennis Ball Trajectory Prediction with Spin and
Impacts’. In: Proceedings of the Learning for Dynamics and Control Conference (L4DC) (Achterhold
et al., 2023).

The above publication was presented as a poster presentation at the Learning for Dynamics and
Control Conference (L4DC) 2023, Philadelphia, PA, USA.

Author contributions are as follows:

Scientific
ideas

Data
generation

Analysis &
Interpretation

Paper
writing

Jan Achterhold 45 % 70 % 50 % 60 %
Philip Tobuschat 15 % 20 % 5 % 0 %
Hao Ma 15 % 10 % 5 % 10 %
Dieter Büchler 5 % 0 % 10 % 0 %
Michael Mühlebach 10 % 0 % 15 % 15 %
Jörg Stückler 10 % 0 % 15 % 15 %

This project was set out by Michael Mühlebach and Jörg Stückler to track and predict table tennis
ball motion including spin and impacts. Jan Achterhold proposed and implemented the idea
of learning the dynamics and observation model parameters through approximate likelihood
(computed by an extended Kalman filter) maximization. The dynamics model (ODE) had already
been, for a prior approach, formulated by Hao Ma. Philip Tobuschat was responsible for collecting
the offline trajectory data, which was used for training and evaluation. Philip Tobuschat and
Hao Ma helped with executing the robotic return experiments. Jan Achterhold implemented
the algorithm and performed the simulation experiments on the proposed algorithm and the
baselines. All authors regularly discussed the approach. Jan Achterhold, Hao Ma, Michael
Mühlebach, and Jörg Stückler wrote the paper.

We provide our implementation at https://github.com/EmbodiedVision/tabletennis-spin-
impacts.

6.1. Introduction

Playing table tennis with a robot is a long-standing challenge in robotics research (Andersson,
1989). A table tennis playing robot can be considered a sequential decision making agent which
is subject to several of the challenges presented in Section 1.4. First, as it is a real-world system,

https://github.com/EmbodiedVision/tabletennis-spin-impacts
https://github.com/EmbodiedVision/tabletennis-spin-impacts
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any learning algorithm has to cope with scarcity of data. Second, partial observability and noisy
measurements are properties of such systems: Exemplarily, information on the ball’s trajectory is
only available as noisy position measurements.

As a single measurement is insufficient to estimate a Markovian belief state on which robot
actions can be computed, multiple past measurements have to be filtered (Subsection 2.2.2).

Instead of learning a parametric policy yielding robot actions directly from the filtered belief
state, in this chapter we choose an approach which separately estimates the ball’s state, predicts
the future trajectory, and computes robot actions based on a predicted hitting point.

Our particular focus is on estimating the ball’s state from position measurements and predicting
its future trajectory. An important difficulty of this task are nonlinear effects arising from drag,
spin, and impacts with the table. Approaches to this problem can be distinguished by the
amount of physical knowledge being incorporated in the estimation- and prediction model’s
design process: Black-box models, such as high-capacity function approximators like neural
networks, only make use of minimal physical knowledge. Gray-box models, on the other hand,
more explicitly incorporate structure in form of laws of physics in their design process (see
Subsection 1.5.5). We propose a gray-box model which builds on existing knowledge about
the physical dynamics of a flying ball, including drag and spin effects. Our method is based
on the extended Kalman filter (EKF) and includes various parameters which are trained from
offline data. This gray-box approach demonstrates superior prediction performance compared
to two deep-learning based (black-box) baselines in our experiments. We demonstrate that our
approach allows incorporating and learning black-box components. We show that estimating
the ball’s initial spin from parameters of the ball launcher with a neural network, which is jointly
learned with other parameters of the dynamics, drastically improves prediction performance
over an uninformed initialization of the initial spin. Lastly, we perform experiments for returning
balls with a pneumatic artificial muscular robot based on trajectory predictions obtained with
our proposed approach, and achieve a return rate of 29/30 (97.7 %).

6.2. Related work

6.2.1. Time series models

Models for time series can be categorized into white-box, gray-box, and black-box models.
Black-box models follow a purely statistical, data-driven approach without incorporation of prior
physical knowledge on the system to model. In contrast, white-box models are purely based on
a-priori system knowledge, without incorporation of data. In gray-box models, both physical
a-priori knowledge and data are used for model design and the identification of its parameters.
For many dynamical systems, it is difficult or impossible to achieve accurate white-box modeling
due to unmodelled effects or variable parameters. Incorporation of data enables black- and
gray-box models to adapt to the specifics of the system at hand, which is why we will focus on
these two model classes in the following. Inferring dynamics models and their parameters from
data is classically referred to as system identification, see (Ljung, 1986) for an overview.
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Black-box models Black-box time series models often leverage a latent space formulation. They
comprise an encoder-decoder pair mapping to and from the latent space, and a forward model
in the latent space. Recurrent cells such as long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) or gated recurrent units (GRU) (Cho et al., 2014) are commonly used as
latent forward models. Such purely deterministic models can be extended by stochastic nodes to
handle noisy observations and transitions, as in variational recurrent neural networks (VRNN)
(Chung et al., 2015) or stochastic RNNs (SRNN) (Fraccaro et al., 2016). Several latent sequence
models have been proposed which allow for state estimation through filtering, such as the
Kalman-VAE (Fraccaro et al., 2017), Recurrent Kalman Networks (Becker et al., 2019), and Deep
Variational Bayes Filters (Karl et al., 2017). Hafner et al. (2019) present a recurrent (variational)
state-space model (RSSM) which they use for model-based reinforcement learning. We use RSSM
as a black-box baseline. Girin et al. (2021) present a comprehensive overview of latent sequence
models.

Gray-box models In our work, we follow a gray-box approach, yielding lower prediction error
than a black-box baseline and allowing for physical interpretation of the estimated quantities. In
contrast to the black-box models discussed above, gray-box models incorporate prior knowledge
about the system to model, such as the laws of physics. One line of work in this direction are
differentiable physics engines (Avila Belbute-Peres et al., 2018). These engines enable gradient-based
system identification from data for physical systems with a given structure. Our approach
combines ideas from system identification with machine learning. It is therefore capable of
exploiting prior knowledge from physics, while also learning parameters of the filter, dynamics,
and a state initialization neural network from data.

6.2.2. Table tennis ball trajectory modeling

Approaches for table tennis ball trajectory modelling and prediction can also be categorized
as white-box, black-box, and gray-box models. A common white-box approach is to use an
aerodynamic model of the ball respecting gravity, drag, and Magnus forces (Andersson, 1989)
and a physics-grounded rebound / impact model (Nakashima et al., 2010) in an extended /
unscented Kalman filter (Koç et al., 2018; Mülling et al., 2010; Tebbe et al., 2018; Q. Wang et al.,
2014; Y. Zhang et al., 2015; Z. Zhang et al., 2010). Common black-box models approximate the
ball trajectories with polynomial curves which are fitted to recorded data (H. Li et al., 2012;
Lin et al., 2020; Matsushima et al., 2005; Tebbe et al., 2018). We compare our approach to the
deep-learning based black-box approach by Gómez-González et al. (2020) which leverages a
variational auto-encoder architecture for table tennis ball trajectory prediction. The ball’s spin
constitutes a particular challenge for table tennis ball trajectory prediction, since it is hard to
infer from position measurements of the trajectory. As a result, prior works have resorted to
detecting the ball’s spin by following the brand logo on the ball (Y. Zhang et al., 2015) or by
equipping the racket with an inertial sensor (Blank et al., 2017). In our gray-box approach, we
use information from the ball’s launch process to initialize the spin. More precisely, we learn the
parameters of a neural network that relates the ball launcher settings to the initial spin of the ball.
This is shown to drastically improve the quality and accuracy of the predicted ball trajectories.
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6.3. Preliminaries

This section is not part of Achterhold et al. (2023).

6.3.1. Linear Gaussian state-space models

For particular types of state-space models (see Subsection 2.2.2), analytically tractable filtering
and prediction densities exist. One of such models is the linear Gaussian state-space model
(LGSSM).

The linear Gaussian state-space model is characterized by the initial state 𝒔0 being Gaussian
distributed

𝑝(𝒔0) = 𝒩(𝝁0 ,𝚺0), (6.1)

The mapping between subsequent states is linear, parametrized by the matrices 𝑨𝑛 and 𝑩𝑛 , and
perturbed with additive timewise uncorrelated Gaussian system or transition noise 𝜻𝑛 . Overall,
the subsequent state is given by

𝒔𝑛+1 = 𝑨𝑛𝒔𝑛 + 𝑩𝑛𝒂𝑛 + 𝜻𝑛 , with 𝜻𝑛 ∼ 𝒩(0,𝑸𝑛). (6.2)

The mapping between states and observations is also linear, parametrized by the matrix 𝑪𝑛 ,

𝒐𝑛 = 𝑪𝑛𝒔𝑛 + 𝝐𝑛 , with 𝝐𝑛 ∼ 𝒩(0,𝑹𝑛), (6.3)

and perturbed with timewise uncorrelated Gaussian measurement or observation noise 𝝐𝑛 .

6.3.2. Kalman Filter

The Kalman filter allows computing filtering and prediction densities for the Linear Gaussian
state-space model given above in analytically closed form, with Gaussian

▶ prediction density

𝑝(𝒔𝑛 | 𝒐<𝑛 , 𝒂0:𝑛−1) = 𝒩(𝒔𝑛 | 𝝁𝑛 |<𝑛 ,𝚺𝑛 |<𝑛) (6.4)

▶ and filtering density
𝑝(𝒔𝑛 | 𝒐≤𝑛 , 𝒂0:𝑛−1) = 𝒩(𝒔𝑛 | 𝝁𝑛 ,𝚺𝑛). (6.5)

The prediction density at timestep 𝑛 is conditioned on observations up to (excluding) timestep
𝑛, hence the subscript ·𝑛 |<𝑛 for the mean and covariance matrix. The filtering density at timestep
𝑛 does include all observation up to and including timestep 𝑛.

In the prediction step, the Kalman filter computes 𝝁𝑛 |<𝑛 , 𝚺𝑛 |<𝑛 given 𝝁𝑛−1, 𝚺𝑛−1, which are
parameters of a prediction (i.e., 𝝁𝑛−1 = 𝝁𝑛−1|<𝑛−1, 𝚺𝑛−1 = 𝚺𝑛−1|<𝑛−1), filtering, or the initial state
(𝝁0, 𝚺0) density.

𝝁𝑛 |<𝑛 = 𝑨𝑛−1𝝁𝑛−1

𝚺𝑛 |<𝑛 = 𝑨𝑛−1𝚺𝑛−1𝑨⊤𝑛−1 +𝑸𝑛−1.
(6.6)
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In the update step, to obtain the filtering density at timestep 𝑛, parameters of a prediction
density (including observations up to timestep 𝑛 − 1, i.e. 𝝁𝑛 |<𝑛 , 𝚺𝑛 |<𝑛), are updated with the
observation at timestep 𝑛

𝒗𝑛 = 𝒐𝑛 − 𝑪𝑛𝝁𝑛 |<𝑛
𝑺𝑛 = 𝑪𝑛𝚺𝑛 |<𝑛𝑪⊤𝑛 + 𝑹𝑛

𝑲𝑛 = 𝚺𝑛 |<𝑛𝑪⊤𝑛 𝑺−1
𝑛

𝝁𝑛 = 𝝁𝑛 |<𝑛 + 𝑲𝑛𝒗𝑛

𝚺𝑛 = 𝚺𝑛 |<𝑛 − 𝑲𝑛𝑺𝑛𝑲⊤𝑛 ,

(6.7)

yielding 𝝁𝑛 and 𝚺𝑛 .

In a recursion scheme, the initial state density is predicted forward in time with Equation 6.6
until the first observation becomes available, which is then used to obtain a filtering density with
Equation 6.7. This filtering density is again predicted forward in time until the next observation
arrives, and the recursion continues.

6.3.3. LGSSMs as Gaussian processes

From basic properties of the Gaussian distribution we can follow that any finite-length sequence
of states 𝒔1:𝑁 and measurements 𝒐1:𝑁 generated by a linear Gaussian state-sspace model (LGSSM)
are jointly Gaussian distributed. By the marginalization property of the Gaussian distribution,
this also holds for subsets of states and measurements. We can conclude that an LGSSM thereby
fulfills the conditions of Definition 3.3.1, and is thus a Gaussian process. In Subsection 3.3.1, we
have seen that analytical solutions for posterior inference in Gaussian processes exist. However,
their computational complexity scales cubically with the number of datapoints 𝑁 , i.e., 𝒪(𝑁3).
Albeit the presented solution is generally applicable to posterior inference in Gaussian process
regression, it does not take into account the particular factorization of the LGSSM, which
allows for more efficient computation. The Kalman filter (Kalman, 1960) leverages this structure
with recursive computations, and scales linearly with the number of measurements 𝒪(𝑁).
The relationship between Gaussian process regression and Kalman filters is well known in
literature. Exemplarily, Hartikainen and Särkkä (2010) study how to leverage the Kalman filter
for performing efficient temporal Gaussian process regression exactly for Matérn kernels, and
approximately for squared exponential kernels.

6.3.4. Inference in time series models with intractable filtering densities

In the general case, no tractable prediction and filtering densities exist. In these cases, one has
to resort to approximations. The extended Kalman filter (see, e.g., Jazwinski (1970) and Särkkä
(2013)) linearizes nonlinear transition- and observation models, and applies the Kalman filter on
the linearized models. We will discuss the extended Kalman filter in Subsection 6.3.5 in more
detail.

6.3.5. Extended Kalman filter

See Särkkä (2013) for a derivation of the extended Kalman filter prediction and update equations.
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The extended Kalman filter allows computing approximate prediction and filtering densities
for non-linear transition and observation models. However, in the form presented here, it still
assumes additive Gaussian noise and an initial state which is Gaussian distributed. Formally,

𝑝(𝒔0) = 𝒩(𝝁0 ,𝚺0) (6.8)
𝒔𝑛+1 = 𝑔(𝒔𝑛 , 𝒂𝑛) + 𝜻𝑛 , with 𝜻𝑛 ∼ 𝒩(0,𝑸𝑛) (6.9)
𝒐𝑛 = ℎ(𝒔𝑛) + 𝝐𝑛 , with 𝝐𝑛 ∼ 𝒩(0,𝑹𝑛). (6.10)

Here, 𝑔 : ℝ𝐷S × ℝ𝐷A → ℝ𝐷S and ℎ : ℝ𝐷S → ℝ𝐷o are the transition model function and
observation model function, respectively. In order to apply the extended Kalman filter, these
functions are required to be differentiable.

The extended Kalman filter is based on two central ideas:

▶ Prediction and filtering densities are approximated by Gaussian densities

𝑝(𝒔𝑛 | 𝒐<𝑛 , 𝒂0:𝑛−1) ≃ 𝒩(𝒔𝑛 | 𝝁𝑛 |<𝑛 ,𝚺𝑛 |<𝑛) (6.11)

𝑝(𝒔𝑛 | 𝒐≤𝑛 , 𝒂0:𝑛−1) ≃ 𝒩(𝒔𝑛 | 𝝁𝑛 ,𝚺𝑛). (6.12)

▶ The non-linear transition and observation model functions 𝑔(𝒔𝑛 , 𝒂𝑛) and ℎ(𝒔𝑛) are linearized
at the mean of the distribution over 𝒔𝑛 , which allows to employ Kalman filtering locally,
i.e., at the particular linearization of 𝑔 and ℎ.

We denote the transition and observation models linearized at (𝒔 = 𝝁, 𝒂) as

˜︁𝑔𝝁(𝒔 , 𝒂) = 𝑔(𝝁, 𝒂) + 𝑮(𝝁, 𝒂) · (𝒔 − 𝝁), ˜︁ℎ𝝁(𝒔) = ℎ(𝝁) + 𝑯(𝝁) · (𝒔 − 𝝁) (6.13)

with the Jacobians

𝑮(𝝁, 𝒂) = 𝜕𝑔(𝒔′, 𝒂)
𝜕𝒔′

|𝒔′=𝝁 , 𝑯(𝝁) = 𝜕ℎ(𝒔′)
𝜕𝒔′

|𝒔′=𝝁. (6.14)

In analogy to the Kalman filter prediction step in Equation 6.6, the extended Kalman filter
prediction step is given by

𝝁𝑛 |<𝑛 = 𝑔(𝝁𝑛−1 , 𝒂𝑛−1)
𝚺𝑛 |<𝑛 = 𝑮(𝝁𝑛−1 , 𝒂𝑛−1)𝚺𝑛−1𝑮⊤(𝝁𝑛−1 , 𝒂𝑛−1) +𝑸𝑛−1.

(6.15)

Similar to Equation 6.7, the extended Kalman filter update step is given by

𝒗𝑛 = 𝒐𝑛 − ℎ(𝝁𝑛 |<𝑛)
𝑺𝑛 = 𝑯(𝝁𝑛 |<𝑛)𝚺𝑛 |<𝑛𝑯⊤(𝝁𝑛 |<𝑛) + 𝑹𝑛

𝑲𝑛 = 𝚺𝑛 |<𝑛𝑯⊤(𝝁𝑛 |<𝑛)𝑺−1
𝑛

𝝁𝑛 = 𝝁𝑛 |<𝑛 + 𝑲𝑛𝒗𝑛

𝚺𝑛 = 𝚺𝑛 |<𝑛 − 𝑲𝑛𝑺𝑛𝑲⊤𝑛 .

(6.16)

If 𝑔(𝒔 , 𝒂) = 𝑨𝒔 + 𝑩𝒂, ℎ(𝒔) = 𝑪𝒔, i.e., the state-space model is linear, the extended Kalman filter
yields prediction and filtering densities identical to those of the Kalman filter.
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6.3.6. Parameter identification with the KF/EKF

As outlined above, filtering a sequence of observations corresponds to a recursive application
of predict- and update steps. The densities obtained after the predict step, so-called one-step
prediction densities, can be leveraged to compute the marginal likelihood (marginalized over the
hidden states) of an observation sequence (see Särkkä (2013) for a derivation)

𝑝(𝒐1 , . . . , 𝒐𝑁 | 𝜽). (6.17)

In the case of an extended Kalman filter, it is an approximation to the actual marginal likelihood, as
the filtering- and prediction densities are approximated with Gaussian densities. The likelihood
depends on the parameters of the stochastic process 𝜽, which are, e.g., moments of the initial
state distribution, transition noise covariance, observation noise covariance, observation model
function and transition model function. This allows to identify these parameters from a finite set
of observations by likelihood maximization (see Subsection 2.4.2). As the one-step prediction
densities are a by-product of the filtering process, as filtering itself, computing the marginal
likelihood has a computational complexity of order 𝒪(𝑁).

6.4. Method

We present a gray-box method based on the extended Kalman filter (EKF), which includes
parameters that are learned from data. In our notation, scalars are denoted by lowercase letters
(𝜎), vectors are denoted by bold lowercase letters (𝝈), and matrices are denoted by bold uppercase
letters (𝚺). The operator diag(𝒙) forms a square matrix with 𝒙 on its diagonal. The operator [𝑥]⊕
applies the softplus function and adds a constant: [𝑥]⊕ = log(1 + 𝑒𝑥) + 10−6 (elementwise for
vectors).

6.4.1. Physical model

We assume the ball’s dynamics in free-flight (not impacting with the table) to follow the ordinary
differential equation (ODE)

𝒗̇(𝑡) = −𝑘d ∥𝒗(𝑡)∥2 𝒗(𝑡) + 𝑘m(𝝎(𝑡) × 𝒗(𝑡)) + g (6.18)

with linear velocity 𝒗⊤(𝑡) = (𝑣x(𝑡), 𝑣y(𝑡), 𝑣z(𝑡)) and its Euclidean norm ∥𝒗(𝑡)∥2, angular velocity
(spin) 𝝎⊤(𝑡) = (𝜔x(𝑡), 𝜔y(𝑡), 𝜔z(𝑡)), drag coefficient 𝑘d, Magnus effect coefficient 𝑘m and
gravitational acceleration g⊤ =

(︁
0, 0,−9.802 m s−2)︁ . We model the table impact by a linear map

that relates the pre- and post-impact velocity 𝒗 and spin 𝝎 as

((𝒗+)⊤ , (𝝎+)⊤)⊤ = C((𝒗−)⊤ , (𝝎−)⊤)⊤ , C ∈ ℝ6×6 (6.19)

where the superscripts + (−) indicate the linear/angular velocities directly after (before) table
impact.
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6.4.2. Discrete-time state-space model

We formulate a discrete-time state-space model for the ball trajectory for filtering and prediction.

Free flight We introduce a state-space model for the ball dynamics with state

𝒛(𝑡) = (𝒑⊤(𝑡), 𝒗⊤(𝑡),𝝎⊤(𝑡), 𝑎d(𝑡), 𝑎m(𝑡))⊤ ∈ ℝ11 (6.20)

where 𝒑 ∈ ℝ3 is the position of the ball’s center in Cartesian coordinates. The variables 𝑎d, 𝑎m
parameterize the drag and Magnus coefficients 𝑘d(𝑡) = 𝑎2

d(𝑡) + 𝜖, 𝑘m(𝑡) = 𝑎2
m(𝑡) + 𝜖 to avoid

explicit non-negativity constraints and stabilize training. We choose 𝜖 = 0.05 in our experiments.
As in Equation 6.18, 𝒗 ∈ ℝ3 and 𝝎 ∈ ℝ3 relate to linear and angular velocity, respectively. To
model free-flight phases, we time-discretize the ODE in Equation 6.18 by Euler’s method

𝒑(𝑡 + Δ𝑡) = 𝒑(𝑡) + Δ𝑡𝒗(𝑡)
𝒗(𝑡 + Δ𝑡) = 𝒗(𝑡) + Δ𝑡 (−𝑘d(𝑡)| |𝒗(𝑡)| |𝒗(𝑡) + 𝑘m(𝑡)(𝝎(𝑡) × 𝒗(𝑡)) + g)
𝝎(𝑡 + Δ𝑡) = 𝝎(𝑡), 𝑎d(𝑡 + Δ𝑡) = 𝑎d(𝑡), 𝑎m(𝑡 + Δ𝑡) = 𝑎m(𝑡)

(6.21)

The function 𝒛(𝑡 + Δ𝑡) = 𝑔free(𝒛(𝑡),Δ𝑡) abbreviates Equation 6.21. To refer to states at discrete
time indices 𝑛 ∈ {1, . . . , 𝑁} we use the notation 𝒛𝑛+1 = 𝑔free(𝒛𝑛 ,Δ𝑇). In our setting, Δ𝑇 =

1
180 s−1 ≈ 5.56 ms as the cameras of the video tracking system are triggered with a fixed frequency
of 180 s−1.

Impact model An impact of the ball with the table occurs within a discrete-time increment
from 𝑛 to 𝑛 + 1 if the lower edge of the ball (with radius 𝑟) at 𝑝z,𝑛+1 − 𝑟 penetrates the table, i.e.,
𝑝z,𝑛+1 − 𝑟 < ztable. We approximate the time of impact Δimp ∈ [0,Δ𝑇] with a simplified model to
avoid numerical instabilities. It incorporates the velocity of the ball at the last discrete timestep
before the impact 𝑣z,𝑛 , the gravitational acceleration 𝑔z, and the height difference to the table
ℎ = −((𝑝z,𝑛 − 𝑟) − ztable) such that Δimp = −(𝑣z,𝑛 +

√︁
𝑣z,𝑛 · 𝑣z,𝑛 + 2𝑔zℎ)/𝑔z. The state of the ball

just before the impact is given by 𝒛− = 𝑔free(𝒛𝑛 ,Δimp). At the time of impact, the velocity and
spin are updated according to Equation 6.19, yielding the state 𝒛+ after impact. We denote this
by 𝒛+ = 𝑪′𝒛− with 𝑪′ = blockdiag(𝑰3 , 𝑪 , 1, 1). After the impact a free-flight phase follows, such
that at the next discrete timestep, the state is 𝒛𝑛+1 = 𝑔free(𝒛+ ,Δ𝑇 − Δimp).

Joint model We denote our discrete-time forward step, incorporating free flight and impacts,
as

𝒛𝑛+1 = 𝑔(𝒛𝑛) =
{︄
𝑔free(𝒛𝑛 ,Δ𝑇) if

[︁
𝑔free(𝒛𝑛 ,Δ𝑇)

]︁
z − 𝑟 ≥ ztable

𝑔free(𝒛+ ,Δ𝑇 − Δimp) otherwise,
(6.22)

where [𝒛]z extracts the z-coordinate of the position in state 𝒛.
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6.4.3. Extended Kalman Filter (EKF)

For filtering and prediction, we assume the ball dynamics as in Equation 6.22 with additive
Gaussian noise

𝒛̂𝑛+1 = 𝑔(𝒛̂𝑛) + 𝜻, 𝜻 ∼ 𝒩(0, diag([𝝈𝑞]⊕)), 𝝈𝑞 ∈ ℝ11. (6.23)

We obtain measurements of the ball’s center 𝒎𝑛 ∈ ℝ3 through a vision tracking system,
which we assume to be perturbed by additive Gaussian measurement noise, i.e. 𝒎𝑛 = 𝒑̂𝑛 + 𝝐,
𝝐 ∼ 𝒩(0, diag([𝝈𝑟]⊕)) with 𝝈𝑟 ∈ ℝ3. We estimate a belief of the state 𝑝(𝒛̂𝑛 | 𝒎1:𝑛), given past
position measurements 𝒎1:𝑛 , with an extended Kalman filter. Occasionally, the vision tracking
system is unable to compute a position estimate (e.g. due to occlusions), which leads to missing
measurements. To this end, we introduce the operator 𝜏(𝑛), which maps to the index of the 𝑛th

available measurement.

State initialization We are interested in initializing the state belief at the time when the second
measurement is available, i.e. 𝑝(𝒛̂𝜏(2) |𝒎𝜏(1) ,𝒎𝜏(2)). The expected ball’s position is estimated by the
second measurement, 𝒑 = 𝒎𝜏(2), and the expected velocity 𝒗 by a finite difference approximation
𝒗 = (𝒎𝜏(2) −𝒎𝜏(1))/(Δ𝑇(𝜏(2) − 𝜏(1))). The initial values for the position and velocity covariance
are learned and denoted by Σ𝑝 = diag([𝝈𝑝]⊕), Σ𝑣 = diag([𝝈𝑣]⊕). Before a table impact has
happened, we can relate the ball’s spin to the launcher parameters (as we assume the spin to be
constant within the free-flight phase). After an impact has happened, this is no longer possible,
as the impact changes the initial spin of the ball. We indicate by 1ai whether 𝒎𝜏(2) is taken after an
impact. To compute a belief for the initial spin, we first assume the launcher’s head to be oriented
horizontally along the x-axis. For this launch orientation, we compute a “canonical spin" and its
covariance depending on the motor parameters 𝒔m (see Subsection 6.5.1), which we denote by
𝝎→x = 𝑓 𝜔(𝒔m ,Ψ 𝑓 ), Σ𝜔→x = diag([ 𝑓 Σ𝜔 (𝒔m ,Ψ 𝑓 )]⊕). The functions 𝑓 𝜔 , 𝑓 Σ𝜔 are implemented by a
neural network with two heads with parameters Ψ 𝑓 . The azimuthal launch orientation can be
changed by rotating the whole launcher frame by 𝜙 𝑓 and by rotating the launcher’s head by 𝜙𝑙
(see Figure 6.2c). The elevational launch orientation can be changed by rotating the launcher’s
head by 𝜃𝑙 . To obtain the initial spin in the world coordinate system, we rotate the “canonical"
spin 𝝎→x accordingly. We absorb all rotations in a rotation matrix Rrot(𝜙 𝑓 + 𝜙𝑙 , 𝜃𝑙), such that
𝝎 = Rrot𝝎→x, Σ𝜔 = RrotΣ𝜔→xR⊤rot. These considerations only hold true for the free-flight phase
after ball launch. After a table impact has happened, we cannot directly relate the ball spin to
the launcher parameters. Therefore, in this case, we set the moments of the initial spin 𝝎 = 0,
Σ𝜔 = diag([𝝈𝜔,ai]⊕). During training, we obtain the angles 𝜙𝑙 ,𝜃𝑙 from piecewise linear regression
models which map from launcher parameters 𝒔𝜙, 𝒔𝜃 to 𝜙𝑙 , 𝜃𝑙 . We obtained these models on
the training split of trajectories recorded from the default launcher orientation. For the default
orientation, we assume the launcher to shoot balls in the −y direction, i.e. 𝜙 𝑓 = −90◦. When
evaluating the filter in simulation or on the real robot, we infer the total azimuthal launch angle
𝜙 𝑓 + 𝜙𝑙 from the first two measurements of the trajectory, to avoid measuring the orientation of
the launcher frame 𝜙 𝑓 . In summary, we provide the information (𝜙 𝑓 , 𝜙𝑙 , 𝜃𝑙 , 𝒔m , 1ai) of the ball
launch to the model. As an ablation, we initialize 𝝎 = 0, Σ𝜔 = diag([𝝈𝜔]⊕), not depending on this
information. For the drag and Magnus effect coefficient, we learn the mean and covariance of the
initial state. The full initial state belief incorporating the first two available measurements is thus
given by 𝝁𝜏(2)|𝜏(1:2) = (𝒑⊤ , 𝒗⊤ ,𝝎⊤ , 𝑎d , 𝑎m)⊤, Σ𝜏(2)|𝜏(1:2) = blockdiag(Σ𝑝 ,Σ𝑣 ,Σ𝜔 , [𝜎𝑎d]⊕ , [𝜎𝑎m]⊕+).
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In summary, the parameters of our gray-box model are

Ψ =
(︂
C, 𝝈𝑞 , 𝝈𝑟 , 𝝈𝑝 , 𝝈𝑣 ,𝝍 𝑓 , 𝝈𝜔 , 𝝈𝜔,ai , 𝑎d , 𝑎m , 𝜎𝑎d , 𝜎𝑎m

)︂
.

For the initial values of the parameters in Ψ and details on the spin initialization network, please
see Appendix C.1.

Prediction step We follow the standard extended Kalman filter prediction step, yielding the
prediction mean and covariance matrix 𝝁𝑛+1|1:𝑛 = 𝑔(𝝁𝑛 |1:𝑛), Σ𝑛+1|1:𝑛 = JΣ𝑛 |1:𝑛J⊤ +Q, where J is
the Jacobian matrix of the transition model, J = 𝜕

𝜕𝒛𝑛
𝑔(𝒛𝑛)|𝒛𝑛=𝝁𝑛 |1:𝑛 .

Correction step In the case of missing observations, we perform multiple prediction steps
before correcting the state belief with the next available measurement. We now assume that at
timestep 𝑛 + 1 a measurement is available. For the correction step, we first compute the Kalman
gain K with the observation matrix H = [I3 , 03×8] as K = Σ𝑛+1|1:𝑛H⊤(HΣ𝑛+1|1:𝑛H⊤ + R)−1.
From this, we obtain the corrected moments as 𝝁𝑛+1|1:𝑛+1 = 𝝁𝑛+1|1:𝑛 + K(m𝑛+1 − H𝝁𝑛+1|1:𝑛),
𝚺𝑛+1|1:𝑛+1 = (I −KH)𝚺𝑛+1|1:𝑛 .

Learning For notational simplicity, we again assume that there are no missing observations. Let
𝒫 = {(m̂𝑘

1 , . . . , m̂
𝑘
𝐿𝑘 )}

𝐾

𝑘=1 denote the set of training trajectories, consisting of 𝐾 sequences of ball
position measurements, each sequence being of length 𝐿𝑘 . The chunk operator expands a single
trajectory into 𝐿+1−𝑁 chunks of length𝑁 = 50: chunk(m̂1 , . . . , m̂𝐿) = {(m𝑖 , . . . ,m𝑖+𝑁−1)}𝐿+1−𝑁

𝑖=1 .
By 𝒫𝑐 = ⋃︁𝐾

𝑘=1 chunk(m̂𝑘
1 , . . . , m̂

𝑘
𝐿𝑘 ) we denote the set of training chunks and Δ(𝒫𝑐) the distri-

bution over training chunks with uniform probability. For learning the filter parameters Ψ, we
maximize their expected marginal log-likelihood under the training chunk distribution, that
is, maxΨ 𝔼m1:𝑁∼Δ(𝒫𝑐) log 𝑝(m3:𝑁 | m1 ,m2 ,Ψ). As we do not aim to learn a generative model of
chunks but are only interested in applying the learned model for filtering and prediction, we
additionally condition the marginal log-likelihood on the first two measurements, since we
use these for initializing the filter. The marginal log-likelihood log 𝑝(m3:𝑁 | m1 ,m2 ,Ψ) can be
decomposed (Särkkä, 2013) as follows

log 𝑝(m3:𝑁 | m1 ,m2 ,Ψ)

=
𝑁∑︂
𝑛=3

log 𝑝(m𝑛 | m1:𝑛−1 ,Ψ)

=
𝑁∑︂
𝑛=3

log𝒩(m𝑛 | 𝝁𝑛 |1:𝑛−1 ,Σ𝑛 |1:𝑛−1)

(6.24)

which allows for an iterative computation with complexity 𝒪(𝑁) when filtering the
chunk (m1 , . . . ,m𝑁 ). We maximize the expected marginal log-likelihood on batches of chunks
with batchsize 64 using the Adam optimizer (Kingma and Ba, 2015) with learning rate 5 · 10−3.
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(a) Setup with the ball launcher (left) and the robot arm
(right).
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(b) Dataset of recorded table tennis trajectories, launched
from the “default" orientation. Five randomly selected
trajectories are colored.

Figure 6.1.: Experimental setup (a) and visualization of recorded trajectories (b).

6.5. Experiments

We conduct several experiments to answer the following research questions: Q1: How large is the
prediction error of the EKF model, and how does it compare to black box baselines? Q2: Does
supplying the launch parameters (launch direction, launcher motor speeds) to the predictive
model improve prediction performance for the EKF and the RSSM baseline? We use a neural
network to infer the initial ball spin from motor parameters, leading us to Q3: Does the spin
inferred from the launcher parameters relate to a simple spin model derived from physical
principles? Finally, we are interested in the ratio of balls returned by a robot arm (Büchler et al.,
2016) when using the proposed model for trajectory prediction (Q4).

6.5.1. Setup

In Figure 6.1 we show our experimental setup. A ball launcher shoots table tennis balls towards
a robot arm that is actuated with pneumatic artificial muscles (Büchler et al., 2016). The position
of the ball is measured using four RGB cameras as described in Gómez-González et al. (2019).
Details of the ball launcher are described in Subsection 6.5.1. The robot is only used for the return
experiment in Subsection 6.5.6. For training the predictive models, we use recorded trajectories
(Subsection 6.5.1).

Launcher details

The ball launcher follows the design of Dittrich et al. (2022). It accelerates the table tennis
ball using three rubber wheels which are actuated by brushless motors. The azimuthal and
elevational angle of the launcher’s head can be adjusted with servo motors to change the direction
of the launch. The launcher frame can be freely positioned and rotated about the z-axis, as
parameterized by the angle 𝜙 𝑓 . We refer to Figure 6.2 for more details on the launcher, including
its geometry and the launch angles. The angular velocity of the top-left, top-right, and bottom
motor are controlled through three actuation parameters 𝒔m = (𝑠m,tl , 𝑠m,tr , 𝑠m,b)⊤ ∈ [0, 1]3. The
mapping from actuation parameters to angular motor velocity is nonlinear, see Figure 6.3. The
azimuthal (𝜙𝑙) and elevational (𝜃𝑙) launch angles can be controlled through two parameters
𝑠𝜙 ∈ [0, 1], 𝑠𝜃 ∈ [0, 1]. We fit piecewise linear functions to the launch angles of the recorded
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(a) Ball launcher. (b) Schematic drawing
(rear view).
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Figure 6.2.: Experimental setup of the ball launcher. (a) Photo of the launcher (taken in the direction of ball launch,
with table in background), (b) a schematic drawing of the launcher with rotating wheels (gray) and ball (orange), (c)
frame (𝜙 𝑓 ) and launch angles (𝜙𝑙 , 𝜃𝑙), (d) shoot directions for the “default" and “unseen" configurations.
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Figure 6.3.: Relation of launcher parameters 𝒔 ∈ [0, 1]5 to launch angles 𝜙𝑙 , 𝜃𝑙 and angular velocity of launcher
wheels. The left two panels show the result of piecewise linear regression (red) to initial trajectory angles (blue);
the right panel shows angular velocity of wheels depending on the actuation. The outlier (orange, center panel) is
excluded.

trajectories to find a mapping from the actuation parameters 𝑠𝜙 ∈ [0, 1], 𝑠𝜃 ∈ [0, 1] to launch
angles 𝜙𝑙 , 𝜃𝑙 (see Figure 6.3). The azimuthal launch direction can further be changed by rotating
the launcher’s frame about the z-axis by the angle 𝜙 𝑓 . For the default orientation, we oriented the
launcher such that it shoots along the negative y-axis for 𝜙𝑙 = 0, i.e., 𝜙 𝑓 = −90◦.

Data recording

For collecting trajectories for training, validation, and testing, we position the launcher at six
different positions and orientations (see Figure 6.2d). We term one particular position/orientation
default, which we use both for training and testing, and the other five unseen, which we use
for testing only. On the default orientation we collect 334 trajectories, which we split in 108 for
training, 63 for validation, and 163 for testing. For each of the five unseen configurations we
collect 30 trajectories which are used for testing only. For each trajectory we randomly sample the
launcher parameters uniformly from 𝑠𝜙 ∈ [0.4, 0.6], 𝑠𝜃 ∈ [0.7, 1.0], 𝑠tl ∈ [0.095, 0.155] (default),
𝑠tl ∈ [0.105, 0.165] (unseen), 𝑠{tr,b} ∈ [0.135, 0.195] (default), 𝑠{tr,b} ∈ [0.145, 0.205] (unseen). To
simulate different launcher orientations, we optionally augment the training data by rotating
each trajectory by a random angle 𝜙 𝑓 ∈ [0, 2𝜋] about the z-axis at the point with minimal z
coordinate. We add 19 rotated trajectories for each existing trajectory to the training set, which
forms the augmented dataset.
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Figure 6.4.: Prediction error for various methods on the test set of default (def.) and unseen (uns.) launcher positions,
with and without ball launch information (launch info), for a prediction horizon of one second (see Subsection 6.5.2).
Depicted statistics are over the prediction errors for ten independently trained models. All models are trained on
the augmented dataset, except “EKF w/o aug.". The EKF model outperforms the RSSM (Hafner et al., 2019) and
TVAE (Gómez-González et al., 2020) models (a). The EKF’s prediction error can further be reduced by providing ball
launch information (b).

6.5.2. Prediction performance

Evaluation protocol The predictive performance of the investigated models is quantified by
measuring the prediction error when filtering until one second before the trajectory ends, and
predicting the remaining part of the trajectory. For shorter trajectories, we filter at least ten
measurements. The prediction error for each sequence is given by the maximum Euclidean
distance between the last five prediction-measurement pairs.

Baselines As a first baseline, we train a recurrent state-space model, taken from a re-
implementation of the PlaNet model by Hafner et al. (2019), implemented by Arulkumaran
(2021). We inherit the standard parameters except for the “free nats" parameter, which we
determined empirically as 0.3 for minimal average prediction error on the validation split of the
default dataset. Optionally, we pass the same ball launch information used in the EKF model
for state initialization as action to the RSSM model. We train the model for 100,000 steps. As a
second baseline, we train a trajectory variational auto-encoder (TVAE) from Gómez-González
et al. (2020), using the provided implementation by Gómez-González (2022). We use a model
length of 250 as our longest trajectory is 235 steps. We train the model until the validation loss
increases.

Results We refer to Figure 6.4 for a visualization of the results. We observe that augmenting
the training data is important for the EKF approach presented herein to generalize to the unseen
launcher positions (Figure 6.4a). In all settings, the EKF approach shows superior performance
compared to the RSSM and TVAE baselines. Figure 6.4b shows that initializing the spin using
ball launch information reduced the prediction error drastically, both on the default and unseen
launcher configurations. We show representative filtering and prediction results on three
trajectories in Figure 6.5.
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Figure 6.5.: EKF filtering / prediction results on the unseen launcher orientations (with ball launch information).
We filter until one second before the end of the trajectory (orange) and predict the remaining one second (green).
Measurements are colored blue. We show every tenth measurement for visual clarity. Shown are the trajectories with
max. / median / min. prediction error at the end of the trajectory from all unseen launcher configurations, over ten
independently trained models. The median prediction error is 10.3 cm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pred. horizon [s]

0

1

2

Pr
ed

.e
rr
or

[m
]

(a) All methods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pred. horizon [s]

0.0

0.1

0.2

0.3

0.4

Pr
ed

.e
rr
or

[m
]

EKF w/ li.
EKF w/o li.
RSSM w/ li.

RSSM w/o li.
TVAE

(b) EKF methods only (note different scaling of 𝑦-
axis).

Figure 6.6.: Prediction error for varying prediction horizons. We evaluated the prediction error on 150 evaluation
trajectories from the unseen dataset, for 10 independently trained models per method. We show the median error as a
solid line, the shaded area covers values between the 10th and 90th percentile. We compare variants with (w/ li.) and
without (w/o li.) providing launch information.

6.5.3. Prediction error for varying prediction horizons

We refer to Figure 6.6 for a visualization of the prediction error for varying prediction horizons.
We filter the trajectory from its beginning until the respective prediction horizon remains. For
each trajectory, the prediction error is given by the maximum Euclidean distance over the last
five measurement-prediction pairs, as stated in Subsection 6.5.2. The proposed EKF method
clearly outperforms the baselines RSSM (Hafner et al., 2019) and TVAE (Gómez-González et al.,
2020) for all considered horizons. Supplying ball launch information (w/ li.) generally reduces
the prediction error.

6.5.4. Spin evaluation

With this experiment, we aim to verify the plausibility of spins which are estimated by the
learned neural network 𝑓 𝜔(𝒔m ,𝝍 𝑓 ) given launcher parameters 𝒔m (see Subsection 6.4.3). For
this, we formulate a simple model for the ball spin, which is derived from the geometry of the
launcher (see Figure 6.2b). We model the ball’s spin for a launcher which is oriented to shoot
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Figure 6.7.: Correlation of spin values estimated by the neural network (NN) 𝑓 𝜔(𝒔m ,𝝍 𝑓 ) from motor actuations
𝒔m and spin values computed with Equation 6.25. Both estimated spin values highly correlate, indicating physical
plausibility of spins estimated by 𝑓 𝜔(𝒔m ,𝝍 𝑓 ), see Subsection 6.5.4 for details.

balls in the −y direction as(︂
𝜔x,−→−𝑦 , 𝜔y,−→−𝑦 , 𝜔z,−→−𝑦

)︂⊤
=

𝜔tl𝛼

(︃
1
2
, 0,−

√
3

2

)︃⊤
+ 𝜔tr𝛽

(︃
1
2
, 0,
√

3
2

)︃⊤
+ 𝜔b𝛾(−1, 0, 0)⊤.

(6.25)

The reasoning behind the model is that every motor adds a spin component to the ball, which
is the motor speed (𝜔tl , 𝜔tr , 𝜔b) scaled by a constant (𝛼, 𝛽, 𝛾). We note that the bottom motor
causes a negative spin about the x-axis. The direction of the spin of the top motors is obtained by
rotating the bottom-motor spin unit vector (−1, 0, 0)⊤ by 120◦ (240◦) about the y-axis. For this
experiment, we obtain the values for 𝜔tl,tr,b from measurements for the angular launcher wheel
velocity given the actuation parameters (see Figure 6.3). For all test trajectories from the default
dataset, we first compute the spin for a launch in x direction with 𝑓 𝜔(𝒔m ,𝝍 𝑓 ). We rotate this
spin by −90◦ about the z-axis to obtain the spin in −y direction, as in Equation 6.25. Finally, we
obtain the parameters 𝛼, 𝛽, 𝛾 by minimizing a squared error between the rotated spins from 𝑓 𝜔

and the spins estimated by Equation 6.25. In Figure 6.7 we show that the two spin estimates
highly correlate, indicating that the values 𝑓 𝜔(𝒔m ,𝝍 𝑓 ) indeed relate to the actual spin of the
ball. It is important to note that without additional physical information, we can determine
the spin only up to a scaling factor. This is because we both learn 𝑘m = 𝑎2

m + 𝜖 and 𝝎 which
appear as a product in Equation 6.18. The actual spin could be inferred as 𝝎∗ = 𝑘m𝝎/𝑘∗m with
𝑘∗m = 𝐶m𝜌𝐴𝑟/(2𝑚) for known values of the ball’s mass 𝑚, Magnus lift coefficient 𝐶m, ball radius
𝑟, air density 𝜌 and cross-sectional area 𝐴 = 𝜋𝑟2.

6.5.5. Parameter analysis

For the impact matrix 𝑪 we learn

𝑪 =

[︃
𝑪vv 𝑪v𝜔
𝑪𝜔v 𝑪𝜔𝜔

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.54 −0.01 −0.00
0.01 0.55 0.00
−0.01 −0.00 −0.92

−0.01 0.12 0.01
−0.11 −0.01 −0.01
0.01 0.00 0.00

0.19 −1.40 0.01
1.44 0.14 −0.03
0.01 −0.05 0.15

−0.20 0.09 −0.03
−0.01 −0.12 −0.01
0.05 −0.05 1.37

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.26)
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Figure 6.8.: Trajectories of balls launched towards the robot arm (at 𝑦 ≈ 0), with unreturned trajectories colored
orange. See Subsection 6.5.6 for details.

We interpret 𝑪 to be composed of four submatrices, mapping velocities and spins before to
velocities and spins after impact. For each row in each submatrix, we highlight the dominating
component. Submatrix 𝑪vv maps velocities before impact to velocities after impact. Velocities are
dampened in all directions x, y, z and have no interacting effects. As expected, only the velocity
in z-direction flips sign. Submatrix 𝑪v𝜔 maps spins before impact to velocities after impact.
A positive spin about the y-axis increases the x-velocity after impact (𝜔y↑→ 𝑣x↑); a positive
spin about the x-axis decreases the y-velocity after impact (𝜔x↑→ 𝑣y↓). Investigating 𝑪𝜔v,
analogously, a negative y-velocity increases spin about the x-axis (𝑣y↓→𝜔x↑), and a positive
x-velocity increases spin about the y-axis (𝑣x↑→𝜔y↑). The abovementioned relations between
spins and velocities before and after impact are physically plausible, considering the geometry of
the table setup. A negative velocity in 𝑧 direction (i.e., towards the table) reduces the spin about
z as the bottomright entry of 𝑪𝜔v is positive (0.15). This relation is reasonable due to friction
effects. That our simplified linear model only approximately captures physical reality becomes
apparent when investigating 𝑪𝜔𝜔, i.e., the mapping of spins before impact to spins after impact.
The bottomright entry of 𝑪𝜔𝜔 suggests that the spin about the z-axis is amplified by the impact.
We hypothesize that this effect cancels with the spin attenuation due to negative z-velocities. We
leave posing constraints on 𝑪, e.g. for rotational symmetries, and nonlinear impact effects, for
future work.

For the learned values of the remaining parameters, please see Appendix C.1.2.

6.5.6. Return performance

We evaluate the performance of our ball motion predictions by intercepting and returning balls
with a four-degrees-of-freedom robot arm, where each degree of freedom is controlled by a pair
of pneumatic artificial muscles (PAMs) (Büchler et al., 2023, 2016). The robot arm is controlled
by a learning-based iterative control framework for trajectory tracking (Ma et al., 2022). A table
tennis racket is attached to the robot arm in order to return balls. As the ping-pong ball flies
through the air, its position, velocity, and spin are continuously estimated with the EKF presented
herein. The future evolution of the ball’s states is then simulated in a receding horizon scheme
using the learned model of the ball dynamics, with the latest state estimate as the initial condition.
This predicted ball trajectory is used to determine the interception of the ball with the racket,
which we represent as a pair of position (the interception position of the ball and the racket) and
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time (the time of interception). The predicted trajectory, and therefore the interception point, is
repeatedly recalculated, as the state estimate is updated and improved with new measurements
of the ball. The robot arm successfully returns 29 of 30 (97.7 %) launched balls, leveraging the
EKF for filtering and prediction presented above. When the launcher information is not used
to initialize the spin (see Subsection 6.4.3), 26 of 30 launched balls are returned. We refer to
Figure 6.8 for a visualization of returned and unreturned trajectories.

6.6. Limitations

This section is not part of Achterhold et al. (2023).

In this chapter, to predict the ball’s trajectory, we assume information on the ball launch process to
be available. In our case, this information is available as parameters of the ball launcher. However,
tracking and predicting the ball motion should also be possible for balls played by humans. In
literature, evidence is presented that for anticipating the ball trajectory, humans, similar to our
method, also leverage additional cues. Exemplarily, results by Zhao et al. (2018) indicate that
advanced table tennis players are able to better anticipate ball trajectories by observed body
kinematics, compared to novice players. Klein-Soetebier et al. (2020) conclude that table tennis
players can discriminate different ball rotations by the impact sound of the ball on the racket,
and that artificially removing these cues by wearing headphones negatively impacts the player’s
performance. Conclusively, in future work, we aim to replace the ball launcher parameters by
detections of the racket in through inertial measurement data (Blank et al., 2017) and/or video
(Gao et al., 2021), human pose estimation (Kulkarni and Shenoy, 2021), or auditory cues.

6.7. Conclusion

Based on a physically grounded model for the aerodynamic behavior of a flying ball respecting
Magnus and drag effects and the extended Kalman filter, we have designed a filter and predictive
model for table tennis ball trajectories. As we fit the parameters of the filter on offline data, no
tedious tuning of initial, transition, and observation covariances is required. Our formulation
allows for learning a neural model which estimates the ball’s initial spin from ball launch
information. This drastically improves the performance of long-term predictions compared to an
uninformed initialization. Our results also support the findings of other works, which state that
the ball’s spin can only insufficiently be estimated from ball position measurements alone (Blank
et al., 2017; Y. Zhang et al., 2015). Our method could constitute groundwork for future research
which, e.g., incorporates information on the racket movement to estimate the ball’s spin and
predict its future trajectory with high accuracy. A further interesting avenue for future work is to
include ball pose measurements, e.g. by detecting the brand logo (Y. Zhang et al., 2015) or other
patterns (Gossard et al., 2023), into the model.
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Declaration of contributions

The contents of this chapter are based on the peer-reviewed conference publication

J. Achterhold, M. Krimmel, and J. Stueckler (2022). ‘Learning Temporally Extended Skills in
Continuous Domains as Symbolic Actions for Planning’. In: Proceedings of the Conference on Robot
Learning (CoRL) (Achterhold et al., 2022).

The above publication was presented as an oral presentation at the Conference on Robot Learning
(CoRL) 2022, Auckland, New Zealand.

Author contributions are as follows:

Scientific
ideas

Data
generation

Analysis &
Interpretation

Paper
writing

Jan Achterhold 70 % 90 % 80 % 75 %
Markus Krimmel 0 % 10 % 0 % 5 %
Jörg Stückler 30 % 0 % 20 % 20 %

Jörg Stückler proposed to investigate learning combinations of symbolic representations and
low-level (subsymbolic) skills. Jan Achterhold conceived the idea of learning skill-conditioned
policies jointly with a forward model, modeling the effect of skill execution, through mutual
information maximization. Jan Achterhold conceived the idea of using physically embedded
single-player board games as benchmarking environments. Jörg Stückler regularly provided
feedback on the approach during its development. Jan Achterhold implemented the majority
of the algorithm, except the BFS planner, which was implemented by Markus Krimmel. Jan
Achterhold performed and analyzed the experiments. Jan Achterhold and Jörg Stückler wrote the
majority of the paper, Markus Krimmel contributed pseudocode for the planning algorithm.

We provide additional materials at https://seads.is.tue.mpg.de. We provide our implemen-
tation at https://github.com/EmbodiedVision/seads-environments (physically embedded
single-player board game environments) and https://github.com/EmbodiedVision/seads-

agent (SEADS agent).

7.1. Introduction

Reinforcement learning (RL) agents have been applied to difficult continuous control and discrete
planning problems such as the DeepMind Control Suite (Tassa et al., 2018), StarCraft II (Vinyals
et al., 2019), or Go (D. Silver et al., 2016) in recent years. Despite this tremendous success, tasks
which require both continuous control capabilities and long-horizon discrete planning are
classically approached with task and motion planning (Garrett et al., 2021). These problems still
pose significant challenges to RL agents (Mirza et al., 2020). An exemplary class of environments

https://seads.is.tue.mpg.de
https://github.com/EmbodiedVision/seads-environments
https://github.com/EmbodiedVision/seads-agent
https://github.com/EmbodiedVision/seads-agent
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which require both continuous-action control and long-horizon planning are physically embedded
games as introduced by Mirza et al. (2020). In these environments, a board game is embedded
into a physical manipulation setting. A move in the board game can only be executed indirectly
through controlling a physical manipulator such as a robotic arm. We simplify the setting
of Mirza et al. (2020) and introduce physically embedded single-player board games which do
not require to model the effect of an opponent. Our experiments support the findings of Mirza
et al. (2020) that these environments are challenging to solve for existing flat and hierarchical RL
agents. In this chapter, we propose a novel hierarchical RL agent for such environments which
learns skills and their effects in a known symbolic abstraction of the environment.

A concrete example for a proposed embedded single-

Figure 7.1.: The LightsOutJaco environment.

player board game is the LightsOutJaco environment (see
Figure 7.1). Pushing a field on the LightsOut board toggles
the illumination state (on or off ) of the field and its non-
diagonal neighboring fields. A field on the board can only
be pushed by the end effector of the Jaco robotic arm. The
goal is to reach a board state in which all fields are off.
The above example also showcases the two concepts of
state and action abstraction in decision making (Konidaris,
2019). A state abstraction function Φ(𝒔𝑡) only retains
information in state 𝒔𝑡 which is relevant for a particular
decision making task. In the LightsOut example, to decide
which move to perform next (i.e., which field to push),
only the illumination state of the board is relevant. A move can be considered an action abstraction:
A skill, i.e. high-level action (e.g., push top-left field), comprises a sequence of low-level actions
required to control the robotic manipulator.

We introduce a two-layer hierarchical agent which assumes a discrete state abstraction 𝒛𝑡 =
Φ(𝒔𝑡) ∈ 𝒵 to be known and observable in the environment, which we in the following refer to as
symbolic observation. In our approach, we assume that state abstractions can be defined manually
for the environment. For LightsOut, the symbolic observation corresponds to the state of each
field (on/off). We provide the state abstraction as prior knowledge about the environment and
assume that skills induce changes of the abstract state. Our approach then learns a diverse set of
skills for the given state abstraction as action abstractions and a corresponding forward model
which predicts the effects of skills on abstract states. In board games, these abstract actions
relate to moves. We jointly learn the predictive forward model 𝑞𝜃 and skill policies 𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘) for
low-level control through an objective which maximizes the number of symbolic states reachable
from any state of the environment (diversity) and the predictability of the effect of skill execution.
The forward model 𝑞𝜃 can be leveraged to plan a sequence of skills to reach a particular state of
the board (e.g., all fields off), i.e. to solve tasks. We evaluate our approach using two single-player
board games in environments with varying complexity in continuous control. We demonstrate
that our agent learns skill policies and forward models suitable for solving the associated tasks
with high success rate and compares favorably with other flat and hierarchical RL baseline
agents. We also demonstrate our agent playing LightsOut with a real robot.

In summary, we contribute the following:

▶ We formulate a novel RL algorithm, which, based on a state abstraction of the environment
and an information-theoretic objective, jointly learns a diverse set of continuous-action
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skills and a forward model capturing the temporally abstracted effect of skill execution in
symbolic states. We term our agent SEADS for Symbolic Effect-Aware Diverse Skills.

▶ We demonstrate the superiority of our approach compared to other flat and hierarchical
baseline agents in solving complex physically-embedded single-player games, requiring
high-level planning and continuous control capabilities.

7.2. Related work

Diverse skill learning and skill discovery Discovering general skills to control the environ-
ment through exploration without task-specific supervision is a fundamental challenge in RL
research. DIAYN (Eysenbach et al., 2019) formulates skill discovery using an information-theoretic
objective as reward. The agent learns a skill-conditioned policy for which it receives reward if
the target states can be well predicted from the skill. VALOR (Achiam et al., 2018) proposes to
condition the skill prediction model on the complete trajectory of visited states. Warde-Farley
et al. (2019) train a goal-conditioned policy to reach diverse states in the environment. Variational
Intrinsic Control (Gregor et al., 2017) proposes to use an information-theoretic objective to learn
a set of skills which can be identified from their initial and target states. Relative Variational
Intrinsic Control (Baumli et al., 2021) seeks to learn skills relative to their start state, aiming to
avoid skill representations that merely tile the state space into goal state regions. Both approaches
do not learn a forward model on the effect of skill execution like our approach. Sharma et al.
(2020) propose a model-based RL approach (DADS) which learns a set of diverse skills and
their dynamics models using mutual-information-based exploration. While DADS learns skill
dynamics as immediate behavior 𝑞(𝒔𝑡+1 |𝒔𝑡 , 𝑘), we learn a transition model on the effect of skills
𝑞(𝒛𝑇 |𝒛0 , 𝑘) in a symbolic abstraction, thereby featuring temporal abstraction.

Hierarchical reinforcement learning Hierarchical RL can overcome sparse reward settings
and time extended tasks by breaking the task down into subtasks. Some approaches such as
methods based on MAXQ (Dietterich, 2000; Z. Li et al., 2017) assume prior knowledge on the
task-subtask decomposition. In SAC-X (Riedmiller et al., 2018), auxiliary tasks assist the agent in
learning sparse reward tasks and hierarchical learning involves choosing between tasks. Florensa
et al. (2017) propose to learn a span of skills using stochastic neural networks for representing
policies. The policies are trained in a task-agnostic way using a measure of skill diversity based
on mutual information. Specific tasks are then tackled by training an RL agent based on the
discovered skills. Feudal approaches (Dayan and Hinton, 1992) such as HIRO (Nachum et al.,
2018) and HAC (Levy et al., 2019) train a high-level policy to provide subgoals for a low-level
policy. In our method, we impose that a discrete state-action representation exists in which
learned skills are discrete actions, and train the discrete forward model and the continuous skill
policies jointly. Several approaches to hierarchical RL are based on the options framework (Sutton
et al., 1999) which learns policies for temporally extended actions in a two-layer hierarchy.
Learning in the options framework is usually driven by task rewards. Recent works extend the
framework to continuous spaces and discovery of options (e.g. Bacon et al. (2017) and Bagaria and
Konidaris (2020)). HiPPO (A. C. Li et al., 2020) develops an approximate policy gradient method
for hierarchies of actions. HIDIO (J. Zhang et al., 2021) learns task-agnostic options using a
measure of diversity of the skills. In our approach, we also learn task-agnostic (for the given state
abstraction) hierarchical representations using a measure of intrinsic motivation. However, an
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important difference is that we do not learn high-level policies over options using task rewards,
but learn a skill-conditional forward model suitable for planning to reach a symbolic goal
state. Jointly, continuous policies are learned which implement the skills. Several approaches
combine symbolic planning in a given domain description (state and action abstractions) with
RL to execute the symbolic actions (Guan et al., 2022; Illanes et al., 2020; Kokel et al., 2021; Lyu
et al., 2019; M. R. K. Ryan, 2002). Similar to our approach, the approach by Guan et al. (2022)
learns low-level skill policies using an information-theoretic diversity measure which implement
known symbolic actions. Differently, we learn the action abstraction and low-level skills given
the state abstraction.

Representation learning for symbolic planning Some research has been devoted to learning
representations for symbolic planning. Konidaris et al. (2018) propose a method for acquiring a
symbolic planning domain from a set of low-level options which implement abstract symbolic
actions. In James et al. (2020) the approach is extended to learning symbolic representations
for families of SMDPs which describe options in a variety of tasks. Our approach learns action
abstractions as a set of diverse skills given a known state abstraction and a termination condition
which requires abstract actions to change abstract states. Toro Icarte et al. (2019) learn structure
and transition models of finite state machines through reinforcement learning. Ugur and Piater
(2015) acquire symbolic forward models for a predefined low-level action repertoire in a robotic
manipulation context. Chitnis et al. (2022) concurrently learn transition models on the symbolic
and low levels from demonstrations provided in the form of hand-designed policies, and use
the learned models for bilevel task and motion planning. The approach also assumes the state
abstraction function to be known. In T. Silver et al. (2022) a different setting is considered
in which the symbolic transition model is additionally assumed known and skill policies
that execute symbolic actions are learned from demonstrations. Other approaches such as
DeepSym (Ahmetoglu et al., 2022) or LatPlan (Asai and Fukunaga, 2018) learn mappings of
images to symbolic states and learn action-conditional forward models. In Asai and Fukunaga
(2018) symbolic state-action representations are learned from image observations of discrete
abstract actions (e.g. moving puzzle tiles to discrete locations) which already encode the planning
problem. Our approach concurrently learns a diverse set of skills (discrete actions) based on
an information-theoretic intrinsic reward and the symbolic forward model. Differently, in our
approach low-level actions are continuous.

7.3. Method

Our goal is to learn a hierarchical RL agent which (i) enables high-level, temporally abstract
planning to reach a particular goal configuration of the environment (as given by a symbolic
observation) and (ii) features continuous control policies to execute the high-level plan. Let 𝒮 ,𝒜
denote the state and action space of an environment, respectively. In general, by𝒵 = {0, 1}𝐷
we denote the space of discrete symbolic environment observations 𝒛 ∈ 𝒵 and assume the
existence of a state abstraction Φ : 𝒮 → 𝒵. The dimensionality of the symbolic observation 𝐷 is
environment-dependent. For the LightsOutJaco environment, the state 𝒔 = [𝒒 , 𝒒̇ , 𝒛] ∈ 𝒮 contains
the robot arms’ joint positions and velocities (𝒒 , 𝒒̇) and a binary representation of the board
𝒛 ∈ {0, 1}5×5. The action space𝒜 is equivalent to the action space of the robotic manipulator.
In the LightsOutJaco example, it contains the target velocity of all actuable joints. The discrete
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𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)

𝒛0 𝒛𝑇 = 𝒛(1)

Φ(𝒔0) Φ(𝒔𝑇)

𝒔0 𝒔𝑇
𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘)

Figure 7.2.: Symbolic abstraction Φ and temporal skill abstraction demonstrated on the LightsOutJaco environment.
The symbolic observation 𝒛 represents the discrete state of the board while 𝒔 contains both the board state and the
state of the Jaco manipulator. Executing skill 𝑘 by applying the skill policy 𝜋(·|·, 𝑘) until termination leads to a change
of the state of the board, which is modeled by 𝑞𝜃 with a single action 𝑘.

variable 𝑘 ∈ 𝒦 ,𝒦 = {1, . . . , 𝐾} refers to a particular skill, which we will detail in the following.
The number of skills 𝐾 needs to be set in advance, but can be chosen larger than the number of
actual skills.

We equip our agent with symbolic planning and plan execution capabilities through two
components.

First, a forward model
𝒛̂ = arg max

𝒛′
𝑞𝜃(𝒛′ | 𝒛, 𝑘) (7.1)

allows to enumerate all possible symbolic successor states 𝒛̂ of the current symbolic state 𝒛 by
iterating over the discrete variable 𝑘. This allows for node expansion in symbolic planners.

Second, a family of discretely indexed policies (skills)

𝜋 : 𝒜 ×𝒮 ×𝒦 → ℝ, 𝒂𝑡 ∼ 𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘) (7.2)

aims to steer the environment into a target state 𝒔𝑇 for which it holds that Φ(𝒔𝑇) = 𝒛̂, given that
Φ(𝒔0) = 𝒛 and 𝒛̂ = arg max𝒛′ 𝑞𝜃(𝒛′ | 𝒛, 𝑘) (see Figure 7.2).

7.3.1. Skill policies

We can relate this discretely indexed family of policies to a set of 𝐾 options (Sutton et al.,
1999). An option is formally defined as a triple O𝑘 = (𝒮𝐼𝑘 , 𝛽𝑘 ,𝜋𝑘) where 𝒮𝐼𝑘 ⊆ 𝒮 is the set of
states in which option 𝑘 is applicable, 𝛽𝑘(𝒔0 , 𝒔𝑡) : 𝒮 × 𝒮 → [0, 1] parametrizes a Bernoulli
probability of termination in state 𝒔𝑡 when starting in 𝒔0 and 𝜋𝑘(𝒂𝑡 | 𝒔𝑡) : 𝒜 × 𝒮 → ℝ is
the option policy on the action space 𝒜. We will refer to the option policy as skill policy in
the following. We assume that all options are applicable in all states, i.e., 𝒮𝐼𝑘 = 𝒮. An option
terminates if the symbolic state has changed between 𝒔0 and 𝒔𝑡 or a timeout is reached, i.e.,
𝛽𝑘(𝒔0 , 𝒔𝑡) = 𝟙[(Φ(𝒔0) ≠ Φ(𝒔𝑡)) ∨ (𝑡 = 𝑡max)]. To this end, we append a normalized counter 𝑡/𝑡max
to the state 𝒔𝑡 .
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𝒔0 𝒔1 . . . 𝒔𝑇1 . . . 𝒔𝑇1+𝑇2

𝜋(𝒂0 | 𝒔0 , 𝑘1) 𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘1) 𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘2)

𝒛(0) 𝒛(1) 𝒛(2)
𝑞𝜃(𝒛(1) | 𝒛(0) , 𝑘1) 𝑞𝜃(𝒛(2) | 𝒛(1) , 𝑘2)

Φ(𝒔0) Φ(𝒔𝑇1) Φ(𝒔𝑇1+𝑇2)

Figure 7.3.: Temporal abstraction induced by skills 𝜋(· | ·, 𝑘) with associated forward model 𝑞𝜃 on symbolic
observations 𝒛(𝑛). Executing a skill until termination can be interpreted as a single action 𝑘 transforming the symbolic
observation 𝒛(𝑛) → 𝒛(𝑛+1) denoted by the bracketed (·) time indices.

We define the operator apply as

𝒔𝑇 = apply(𝐸,𝜋, 𝒔0 , 𝑘) (7.3)

which applies the skill policy 𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘) until termination on environment 𝐸 starting from
initial state 𝒔0 and returns the terminal state 𝒔𝑇 . We also introduce a bracketed time notation
which abstracts the effect of skill execution from the number of steps 𝑇 taken until termination

𝒔(𝑛) = apply(𝐸,𝜋, 𝒔(𝑛−1) , 𝑘) (7.4)

with 𝑛 ∈ ℕ0. The apply operator can thus be rewritten as 𝒔(1) = apply(𝐸,𝜋, 𝒔(0) , 𝑘)with 𝒔(0) = 𝒔0,
𝒔(1) = 𝒔𝑇 . We refer to Figure 7.3 for a visualization of the bracket notation.

7.3.2. Symbolic forward model

The symbolic forward model 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘) aims to capture the relation of 𝒛0, 𝑘 and 𝒛𝑇 for
𝒔𝑇 = apply(𝐸,𝜋, 𝒔0 , 𝑘) with 𝒛0 = Φ(𝒔0), 𝒛𝑇 = Φ(𝒔𝑇). It factorizes over the symbolic observation
as

𝑞𝜃(𝒛𝑇 | 𝑘, 𝒛0) =
𝐷∏︂
𝑑=1

𝑞𝜃([𝒛𝑇]𝑑 | 𝒌 , 𝒛0) =
𝐷∏︂
𝑑=1

Bernoulli([𝒛𝑇]𝑑 | [𝜶𝑇(𝒛0 , 𝑘)]𝑑) (7.5)

where 𝐷 is the dimensionality of the symbolic observation∗. We assume 𝒛 ∈ 𝒵 to be a binary
vector with𝒵 = {0, 1}𝐷 . The Bernoulli probabilities 𝜶𝑇(𝒛0 , 𝑘) : 𝒵 ×𝒦 → (0, 1)𝐷 are predicted
by a learnable neural component. We use a neural network 𝑓𝜃 to parameterize the probability of
each dimension in 𝒛0 to flip 𝒑flip = 𝑓𝜃(𝒛0 , 𝑘), which simplifies learning if the change in symbolic
state only depends on 𝑘 and is independent of the current state. Let 𝜶𝑇 be the probability that
the binary state is “true" (for each dimension), then 𝜶𝑇 = (1− 𝒛0) · 𝒑flip + 𝒛0 · (1− 𝒑flip). The input
to the neural network is the concatenation [𝒛0 , onehot(𝑘, 𝐾)]. We use a multilayer perceptron
with two hidden layers with ReLU nonlinearities, each having 256 units.

7.3.3. Objective

For any state 𝒔0 ∈ 𝒮 with associated symbolic state 𝒛0 = Φ(𝒔0) we aim to learn 𝐾 skills
𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘) which maximize the diversity in the set of reachable successor states {𝒛𝑘𝑇 =
Φ(apply(𝐸,𝜋, 𝒔0 , 𝑘)) | 𝑘 ∈ 𝒦}. Jointly, we aim to model the effect of skill execution with the

∗ The index operator [𝒙]𝑑 returns the 𝑑th element of vector 𝒙.
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forward model 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘). Inspired by Variational Intrinsic Control (Gregor et al., 2017) we
take an information-theoretic perspective and maximize the mutual information I(𝒛𝑇 , 𝑘 | 𝒛0)
between the skill index 𝑘 and the symbolic observation 𝒛𝑇 at skill termination given the symbolic
observation 𝒛0 at skill initiation, i.e.,

max I(𝒛𝑇 , 𝑘 | 𝒛0) = max (H(𝒛𝑇 | 𝒛0) −H(𝒛𝑇 | 𝒛0 , 𝑘)) . (7.6)

The intuition behind this objective function is that we encourage the agent to (i) reach a diverse
set of terminal observations 𝒛𝑇 from an initial observation 𝒛0 (by maximizing the conditional
entropy H(𝒛𝑇 | 𝒛0), see Figure 7.4a) and (ii) behave predictably such that the terminal observation
𝒛𝑇 is ideally fully determined by the initial observation 𝒛0 and skill index 𝑘 (by minimizing
H(𝒛𝑇 | 𝒛0 , 𝑘), see Figure 7.4b).

𝑘 =
1

𝑘 = 2

𝑘 =
1

𝑘 = 2

(a) Diversity objective (H(𝒛𝑇 | 𝒛0) ↑): Distinct skills
should lead to distinct state transitions.

𝑘 =
1

𝑘 = 1

𝑘 =
1

𝑘 = 1

(b) Predictability objective (H(𝒛𝑇 | 𝒛0 , 𝑘) ↓): Identical
skills should lead to identical state transitions.

Figure 7.4.: Visualization of the diversity and predictability objectives.

We reformulate the objective as an expectation over tuples (𝒔0 , 𝑘, 𝒔𝑇) by employing the mapping
function Φ as

I(𝒛𝑇 , 𝑘 | 𝒛0) = 𝔼(𝒔0 ,𝑘,𝒔𝑇 )∼𝑃

[︃
log

𝑝(𝒛𝑇 | 𝒛0 , 𝑘)
𝑝(𝒛𝑇 | 𝒛0)

]︃
(7.7)

with 𝒛𝑇 := Φ(𝒔𝑇), 𝒛0 := Φ(𝒔0) and replay buffer 𝑃.

Similar to (Sharma et al., 2020) we derive a lower bound on the mutual information, which is
maximized through the interplay of a RL problem and maximum likelihood estimation. To this
end, we first introduce a variational approximation 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘) to the transition probability
𝑝(𝒛𝑇 | 𝒛0 , 𝑘), which we model by a neural component.

We decompose the mutual information as

I(𝒛𝑇 , 𝑘 | 𝒛0) = 𝔼(𝒔0 ,𝑘,𝒔𝑇 )∼𝑃

[︃
log

𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)
𝑝(𝒛𝑇 | 𝒛0)

]︃
+ 𝔼(𝒔0 ,𝑘,𝒔𝑇 )∼𝑃

[︃
log

𝑝(𝒛𝑇 | 𝒛0 , 𝑘)
𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)

]︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

KL(𝑝(𝒛𝑇 | 𝒛0 ,𝑘) | | 𝑞𝜃(𝒛𝑇 | 𝒛0 ,𝑘))

(7.8)

giving rise to the lower bound

I(𝒛𝑇 , 𝑘 | 𝒛0) ≥ 𝔼(𝒔0 ,𝑘,𝒔𝑇 )∼𝑃

[︃
log

𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)
𝑝(𝒛𝑇 | 𝒛0)

]︃
(7.9)

whose maximization can be interpreted as a sparse-reward RL problem with reward

𝑅̂𝑇(𝑘) = log
𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)
𝑝(𝒛𝑇 | 𝒛0) . (7.10)



104 7. Learning Temporally Extended Skills for Planning

We approximate 𝑝(𝒛𝑇 | 𝒛0) as

𝑝(𝒛𝑇 | 𝒛0) ≈
∑︂
𝑘′
𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘′)𝑝(𝑘′ | 𝒛0) (7.11)

and assume 𝑘 uniformly distributed and independent of 𝒛0, i.e. 𝑝(𝑘′ | 𝒛0) = 1
𝐾 . This yields a

tractable reward
𝑅𝑇(𝑘) = log

𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)∑︁
𝑘′ 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘′) + log𝐾. (7.12)

In Subsection 7.3.5 we describe modifications we apply to the intrinsic reward 𝑅𝑇 which improve
the performance of our proposed algorithm.

To tighten the lower bound, the KL divergence term in eq. (7.8) has to be minimized. Minimizing
the KL divergence term corresponds to “training" the symbolic forward model 𝑞𝜃 by maximum
likelihood estimation of the parameters 𝜽 using gradient ascent

∇𝜃𝔼(𝒔0 ,𝑘,𝒔𝑇 )∼𝑃

[︃
log

𝑝(𝒛𝑇 | 𝒛0 , 𝑘)
𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)

]︃
= −∇𝜃𝔼(𝒔0 ,𝑘,𝒔𝑇 )∼𝑃

[︁
log 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘)

]︁
. (7.13)

7.3.4. Training procedure

The main training loop of our proposed SEADS agent consists of intermittent episode collection
and training the skill-conditioned policy 𝜋 and symbolic forward model 𝑞𝜃 (see Algorithm 2).

For episode collection we first sample a skill from a uniform distribution over skills 𝑘 ∼
𝒰{1, . . . , 𝐾}, reset the environment, collect the corresponding episode and append it to a long-
term (Episodesbuffer) and a short-term (Episodesrecent) episode buffer, holding the 𝑁buffer = 2048
/ 𝑁recent = 256 most recent episodes, respectively.

In the following we refer to the symbolic forward model as a general skill model. We introduce this
terminology, as, in Appendix D.7, we present results where the skill model is a skill discriminator
instead of a forward model (akin to Variational Intrinsic Control, Gregor et al. (2017)). For
training the skill policy and skill model we combine a sample of 256 episodes from the long-term
buffer and all 256 episodes from the short-term buffer. To account for mismatches between policy
executions and the predictions of the symbolic forward model, we relabel episodes. Please see the
following paragraphs for details on episode collection, relabelling, skill policy- and skill model
training.

Episode collection (collect_episode)

The operator collect_episode works similar to the apply operator defined in Equation 7.3. It
applies the skill policy 𝜋(𝒂𝑡 | 𝒔𝑡 , 𝑘) iteratively until termination. However, the operator returns
all intermediate states 𝒔0 , . . . , 𝒔𝑇 and actions 𝒂0 , . . . , 𝒂𝑇−1. Let Episodes be a collection of 𝑀
episodes and 𝑖 ∈ {1, . . . , 𝑀} denote a single episode Ep from this collection. This episode
is a tuple Ep = (𝑘 𝑖 , 𝒔 𝑖0 , . . . , 𝒔 𝑖𝑇 𝑖 , 𝒂 𝑖0 , . . . , 𝒂 𝑖𝑇 𝑖−1) where 𝑇 𝑖 is the episode length. A skill rollout
terminates either if an environment-dependent step-limit is reached, or when a change in the
symbolic observation 𝒛𝑡 ≠ 𝒛0 is observed. In our experiments we collect 32 episodes per epoch
(i.e., 𝑁episodes = 32).
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Algorithm 2: SEADS training loop
Input: Environment 𝐸, Number of skills 𝐾, Number of epochs 𝑁epochs, Number of new
episodes per epoch 𝑁episodes, Episode buffer sizes 𝑁buffer, 𝑁recent
Result: Trained skill-conditioned policy 𝜋(𝑎 | 𝑠, 𝑘) and forward model 𝑞𝜃(𝑧𝑇 | 𝑧0 , 𝑘)
Episodesbuffer = [], Episodesrecent = []
for 𝑛epoch = 1 to 𝑁epochs do

for 𝑛episode = 1 to 𝑁episodes do
Sample 𝑘 ∼ 𝑘 ∼ 𝒰{1, . . . , 𝐾}
𝑠0 = 𝐸.reset()
Ep = collect_episode(𝐸,𝜋, 𝑠0 , 𝑘)
Episodesbuffer.append(Ep), Episodesrecent.append(Ep)

end for
Episodesbuffer ← Episodesbuffer[-𝑁buffer:] {Keep 𝑁buffer most recent episodes}
Episodesrecent ← Episodesrecent[-𝑁recent:]
Episodes = sample(Episodesbuffer , 𝑁 = 256) ∪ Episodesrecent
EpisodesSM ← relabel(Episodes, 𝑝 = 1.0)
update_skill_model(EpisodesSM)
Episodes = sample(Episodesbuffer , 𝑁 = 256) ∪ Episodesrecent
EpisodesSP ← relabel(Episodes, 𝑝 = 0.5)
update_skill_policy(EpisodesSP)

end for

Relabelling (relabel)

Early in training, the symbolic transitions caused by skill executions mismatch the predictions of
the symbolic forward model. We can in hindsight increase the match between skill transitions and
forward model by replacing the actual 𝑘 𝑖 which was used to collect the episode 𝑖 by a different 𝑘 𝑖∗.
In particular, we aim to replace 𝑘 𝑖 by 𝑘 𝑖∗ which has highest probability 𝑘 𝑖∗ = max𝑘 𝑞𝜃(𝑘 | 𝒛 𝑖𝑇 𝑖 , 𝒛 𝑖0).
However, this may lead to an unbalanced distribution over 𝑘 𝑖∗ after relabelling, which is no longer
uniform. To this end, we introduce a constrained relabelling scheme as follows. We consider a
collection of episodes indexed by 𝑖 ∈ {1, . . . , 𝑀} and compute skill log-probabilities for each
episode which we denote by

𝑄 𝑖
𝑘 = log 𝑞𝜃(𝑘 | 𝒛 𝑖0 , 𝒛 𝑖𝑇 𝑖 ) (7.14)

where

𝑞𝜃(𝑘 | 𝒛 𝑖0 , 𝒛 𝑖𝑇 𝑖 ) =
𝑞𝜃(𝒛 𝑖𝑇 𝑖 | 𝒛 𝑖0 , 𝑘)∑︁
𝑘′ 𝑞𝜃(𝒛 𝑖𝑇 𝑖 | 𝒛 𝑖0 , 𝑘′)

. (7.15)

We find a relabeled skill for each episode (𝑘1∗ , . . . , 𝑘𝑀∗ ) which maximizes the scoring
max(𝑘1∗ ,...,𝑘𝑀∗ )

∑︁
𝑖 𝑄 𝑖

𝑘 𝑖∗
under the constraint that the counts of re-assigned skills (𝑘1∗ , . . . , 𝑘𝑀∗ ) and

original skills (𝑘1 , . . . , 𝑘𝑀)match, i.e.

𝑀∑︂
𝑖=1

𝟙[𝑘 𝑖∗ = 𝑘] =
𝑀∑︂
𝑖=1

𝟙[𝑘 𝑖 = 𝑘] ∀𝑘 ∈ {1, . . . , 𝐾}, (7.16)

which is to ensure that after relabelling no skill is over- or underrepresented. This problem can
be formulated as a linear sum assignment problem which we solve using the Hungarian method
(Kuhn, 1955; Munkres, 1957).
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For each episode in the argument of the relabel operator, we sample a Bernoulli variable
with success probability of 𝑝, indicating whether it may be relabeled. For training the skill
model we relabel all episodes (𝑝 = 1), while for the skill policies we only allow half of the
episodes to be relabeled (𝑝 = 0.5). The idea is to train the skill policies also on negative examples
of skill executions with small rewards. Episodes in which the symbolic observation did not
change are excluded from relabelling for the skill policies, as for those, the reward is constant
𝑅(𝑘) = −2 log(𝐾) ∀𝑘 ∈ 𝒦 (see Subsection 7.3.5).

Relabelling experience in hindsight to improve sample efficiency is a common approach in
goal-conditioned (Andrychowicz et al., 2017) and hierarchical (Levy et al., 2019) RL.

The union of potentially relabelled episodes and episodes which were excluded from relabelling
form the updated buffer which is returned by the relabel operator.

Skill policy update (update_skill_policy)

The skill policies 𝜋 are implemented and updated via the soft actor-critic (SAC) algorithm
(Haarnoja et al., 2018). A buffer of transitions, with each transition being of the form

𝑇 = ([𝒔 𝑖𝑡 , onehot(𝑘 𝑖 , 𝐾)], 𝒂 𝑖𝑡 , [𝒔 𝑖𝑡+1 , onehot(𝑘 𝑖 , 𝐾)], 𝑟 𝑖𝑡+1), (7.17)

is formed from all episodes in the episode collection EpisodesSP. The intrinsic reward 𝑟 𝑖𝑡+1 is set
to zero except for the last transition in an episode (𝑡 + 1 = 𝑇 𝑖), in which 𝑟 𝑖𝑡+1 = 𝑅(𝑘 𝑖) according to
Subsection 7.3.5. The operator [·, ·] denotes a concatenation of a state and one-hot encoding of
the skill index.

The skill policies are updated with 16 steps per epoch on batches comprising 128 randomly
sampled transitions from the transition buffer. For architectural details on the SAC skill policies,
see Appendix D.2.

Skill model update (update_skill_model)

We train the skill model on batches of tuples of the form (𝒛0 , 𝑘, 𝒛𝑇), constructed from episodes in
the episode buffer EpisodesSM. To sample a batch ℬ, we first sample a setℳ of 32 indices, each
in {1, . . . , 𝑀}, where 𝑀 is the number of episodes in EpisodesSM. The batch ℬ is then formed
as ℬ = {(𝒛 𝑖0 , 𝑘 𝑖 , 𝒛 𝑖𝑇 𝑖 )}𝑖∈ℳ . The skill model is trained to minimize an expected loss

ℒ = 𝔼ℬ

[︄ ∑︂
(𝒛0 ,𝑘,𝒛𝑇 )∈ℬ

ℓ (𝒛0 , 𝑘, 𝒛𝑇)
]︄

(7.18)

for randomly sampled batches ℬ of transition tuples. We optimize the skill model parameters 𝜽
using the Adam (Kingma and Ba, 2015) optimizer on four randomly sampled batches per epoch.
We use a learning rate of 10−3. The instance-wise loss ℓ to be minimized corresponds to the negative
log-likelihood ℓ = − log 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘) for symbolic forward models or ℓ = − log 𝑞𝜃(𝒌 | 𝒛0 , 𝒛𝑇)
for the VIC ablation (see Appendix D.7).
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7.3.5. Reward improvements

The reward in eq. (7.12) can be denoted as

𝑅(𝑘) = log 𝑞𝜃(𝑘 | 𝒛0 , 𝒛𝑇) + log𝐾. (7.19)

For numerical stability, we define a lower bounded term

𝑄̄𝑘 = clip(log 𝑞𝜃(𝑘 | 𝒛0 , 𝒛𝑇),min = −2 log(𝐾)) (7.20)

and write 𝑅0(𝑘) = 𝑄̄𝑘 + log𝐾.

In our experiments, we observed that occasionally the agent is stuck in a local minimum in
which (i) the learned skills are not unique, i.e., two or more skills 𝑘 ∈ 𝒦 cause the same symbolic
transition 𝒛0 → 𝒛𝑇 . In addition, (ii), occasionally, not all possible symbolic transitions are
discovered by the agent.

To tackle (i) we reinforce the policy 𝜋 with a positive reward if and only if no other skill 𝑘′ better
fits the symbolic transition (𝒛0 → 𝒛𝑇) generated by apply(𝐸,𝜋, 𝒔0 , 𝑘), i.e.,

𝑅norm(𝑘) = 𝑄̄𝑘 − top2𝑘′𝑄̄𝑘′ (7.21)

which we call second-best normalization. The operator top2𝑘′ selects the second-highest value
of its argument for 𝑘′ ∈ 𝒦 . We define 𝑅base(𝑘) = 𝑅norm(𝑘) except for the “No second-best norm."
ablation where 𝑅base(𝑘) = 𝑅0(𝑘).

To improve (ii) the agent obtains a novelty bonus for transitions (𝒛0 → 𝒛𝑇) which are not
modeled by the symbolic forward model for any 𝑘′ by

𝑅(𝑘) = 𝑅base(𝑘) −max
𝑘′

log 𝑞𝜃(𝒛𝑇 | 𝒛0 , 𝑘′). (7.22)

For the “No novelty bonus" ablation, we set 𝑅(𝑘) = 𝑅base(𝑘).

If the symbolic state does not change (i.e., 𝒛𝑇 = 𝒛0), we set 𝑅(𝑘) = −2 log(𝐾), which is the
minimum attainable reward due to the clipping operation in Equation 7.20.

7.3.6. Planning and skill execution

A task is presented to our agent as an initial state of the environment 𝒔0 with associated symbolic
observation 𝒛0 and a symbolic goal 𝒛∗. First, we leverage our learned symbolic forward model
𝑞𝜃 to plan a sequence of skills 𝑘1 , . . . , 𝑘𝑁 from 𝒛0 to 𝒛∗ using breadth-first search (BFS). We use
the mode of the distribution over 𝒛′ for node expansion in BFS:

successor𝑞𝜃 (𝒛, 𝑘) = argmax𝒛′∈𝒵 𝑞𝜃(𝒛′ | 𝒛, 𝑘). (7.23)

After planning, the sequence of skills [𝑘1 , . . . , 𝑘𝑁 ] is iteratively applied to the environment
through 𝑠(𝑛) = apply(𝐸,𝜋, 𝒔(𝑛−1) , 𝑘𝑛). Inaccuracies of skill execution (leading to different sym-
bolic observations than predicted) can be coped with by replanning after each skill execution.
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Algorithm 3: Task solution (without replanning). bfs_plan denotes breadth-first search over
a sequence of skills to transition 𝒛(0) to 𝒛∗, leveraging the symbolic forward model 𝑞𝜃. Nodes
are expanded in BFS via the function successor𝑞𝜃 : 𝒵 ×𝒦 →𝒵.

Input: environment 𝐸, skill-conditioned policy 𝜋, symbolic forward model 𝑞𝜃, initial state
𝒔(0) = 𝒔0, symbolic goal 𝒛∗, symbolic mapping function Φ
Output: boolean success
𝑁, [𝑘1 , . . . , 𝑘𝑁 ] = bfs_plan(𝑞𝜃 , 𝒛(0) = Φ(𝒔(0)), 𝒛∗)
for 𝑛 = 1 to 𝑁 do

𝒔(𝑛) = apply(𝐸,𝜋, 𝒔(𝑛−1) , 𝑘𝑖)
end for
success = (Φ(𝒔(𝑁)) == 𝒛∗)

Both single-outcome (mode) determinisation and replanning are common approaches to proba-
bilistic planning (Yoon et al., 2007). We provide pseudocode for task solution without replanning
in Algorithm 3, and vice versa, with replanning, in Algorithm 4.

Algorithm 4: Task solution (with replanning, max. 10 tries). bfs_plan denotes breadth-first
search over a sequence of skills to transition 𝒛(𝑛) to 𝒛∗, leveraging the symbolic forward model
𝑞𝜃. Nodes are expanded in BFS via the function successor𝑞𝜃 : 𝒵 ×𝒦 →𝒵.

Input: environment 𝐸, skill-conditioned policy 𝜋, symbolic forward model 𝑞𝜃, initial state
𝒔(0) = 𝒔0, symbolic goal 𝒛∗, symbolic mapping function Φ
Output: boolean success
𝑛 ← 0, success = False
for 𝑚 = 1 to 10 do
𝑁, [𝑘1 , . . . , 𝑘𝑁 ] ← bfs_plan(𝑞𝜃 , 𝒛(𝑛) = Φ(𝒔(𝑛)), 𝒛∗)
for 𝑖 = 1 to 𝑁 do
𝑛 ← 𝑛 + 1
𝒛̂(𝑛) ← successor𝑞𝜃 (Φ(𝒔(𝑛−1)), 𝑘𝑖) {Predict the symbolic state when applying skill 𝑘𝑖}
𝑠(𝑛) ← apply(𝐸,𝜋, 𝒔(𝑛−1) , 𝑘𝑖)
𝑧(𝑛) ← Φ(𝒔(𝑛))
if 𝒛(𝑛) ≠ 𝒛̂(𝑛) then

Break {If the actual symbolic state differs from the predicted state, we replan}
end if

end for
success = (Φ(𝒔(𝑁)) == 𝒛∗)
if success then

Break {Done}
end if

end for
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TileSwapCursor LightsOut-
Reacher
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Reacher
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Figure 7.5.: LightsOut (with on (red) and off (gray) fields) and TileSwap (fields in a rhombus are swapped if pushed
inside) board games embedded into physical manipulation settings. A move in the board game can only indirectly be
executed through controlling a manipulator.

7.4. Experiments

7.4.1. Environments

We evaluate our proposed agent on a set of physically-embedded game environments. We follow
ideas from Mirza et al. (2020), but consider single-player board games, which, in principle, enable
full control over the environment without the existence of an opponent. We chose LightsOut and
TileSwap as board games, which are embedded in a physical manipulation scenario with Cursor,
Reacher or Jaco manipulators (see Figure 7.5).

The LightsOut game consists of a 5 × 5 board of fields. Each field has a binary illumination state
of on or off. By pushing a field, its illumination state and the state of the (non-diagonally) adjacent
fields toggles. At the beginning of the game, the player is presented a board where some fields
are on and the others are off. The task of the player is to determine a set of fields to push to
obtain a board where all fields are off. The symbolic observation in all LightsOut environments
represents the illumination state of all 25 fields on the board𝒵 = {0, 1}5×5.

In TileSwap a 3 × 3 board is covered by chips numbered from 0 to 8 (each field contains exactly
one chip). Initially, the chips are randomly assigned to fields. Two chips can be swapped if they
are placed on (non-diagonally) adjacent fields. The game is successfully finished after a number
of swap operations if the chips are placed on the board in ascending order. In all TileSwap
environments, the symbolic observation represents whether the 𝑖-th chip is located on the 𝑗-th
field𝒵 = {0, 1}9×9.

A board game move (“push" in LightsOut, “swap" in TileSwap) is triggered by the manipulator’s
end effector touching a particular position on the board. We use three manipulators of different
complexity. Here, we only give a short introduction and refer to Appendix D.1 for more details.

Cursor The Cursor manipulator can be navigated on the 2D game board by commanding 𝑥
and 𝑦 displacements. The board coordinates are 𝑥, 𝑦 ∈ [0, 1], the maximum displacement per
timestep is Δ𝑥,Δ𝑦 = 0.2. A third action triggers a push (LightsOut) or swap (TileSwap) at the
current position of the cursor.

Reacher The Reacher manipulator (Tassa et al., 2018) consists of a two-link arm with two rotary
joints. The position of the end effector in the 2D plane can be controlled by external torques
applied to the two rotary joints. As for the Cursor manipulator, an additional action triggers a
game move at the current end effector coordinates.
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Table 7.1.: Number of feasible board configurations for varying solution depths. No feasible board configurations
exist with solution depth > 16.

solution depth
1 2 3 4 5 6 7 8

LightsOut 25 300 2300 12650 53130 176176 467104 982335
TileSwap 12 88 470 1978 6658 18081 38936 65246

solution depth
9 10 11 12 13 14 15 16

LightsOut 1596279 1935294 1684446 1004934 383670 82614 7350 0
TileSwap 83000 76688 48316 18975 4024 382 24 1

Table 7.2.: Number of initial board configurations for varying solution depths and dataset splits.

solution depth
1 2 3 4 5

LightsOut
train 7 99 785 4200 17849
test 18 201 1515 8450 35281
total 25 300 2300 12650 53130

TileSwap
train 7 31 179 683 2237
test 5 57 291 1295 4421
total 12 88 470 1978 6658

Jaco The Jaco manipulator (Campeau-Lecours et al., 2017) is a 9-DoF robotic arm whose joints
are velocity-controlled at 10 s−1. It has an end-effector with three “fingers" which can touch the
underlying board to trigger game moves. The arm is reset to a random configuration above the
board around the board’s center after a game move.

By combining the games of LightsOut and TileSwap with the Cursor, Reacher and Jaco manipulators
we obtain six environments.

As step limit for skill execution, we set 10 steps on Cursor and 50 steps in Reacher and Jaco
environments.

We ensure disjointness of board configurations used for training and testing through a hashing
algorithm (see Appendix D.1.4 for more details).

Solution depth We quantify the difficulty of a particular board configuration by the number
of moves required to solve the game (the solution depth). To find board configurations with
prescribed solution depth, we employ a breadth-first search (BFS) beginning from the goal board
configuration (all fields off in LightsOut, ordered fields in TileSwap). Board configurations are
expanded through applying feasible actions (12 for TileSwap, 25 for LightsOut). Once a new board
configuration is observed for the first time, its solution depth corresponds to the current BFS
step. By this, we find all feasible board configurations for LightsOut and TileSwap, and their
corresponding solution depths (see Table 7.1). In Table 7.2 we show the sizes of the training and
test split for LightsOut and TileSwap environments for solution depths in {1, . . . , 5}.
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Figure 7.6.: Quantitative evaluation of SEADS. Success rate of the proposed SEADS agent and baseline methods
on LightsOut, TileSwap games embedded in Cursor, Reacher, Jaco environments. SEADS performs comparably or
outperforms the baselines on all tasks. The solid line depicts the mean, shaded area min. and max. of 10 (SEADS, SAC
on Cursor) / 5 (HAC, SAC on Reacher, Jaco) independently trained agents.

Research questions With our experiments we aim at answering the following research ques-
tions:

1. How well does the SEADS agent perform on the proposed physically embedded single-
player games, compared to baseline agents? See Subsection 7.4.2.

2. Are the learned skills interpretable? What trajectories do they follow? How many steps do
they take before terminating? See Subsection 7.4.3.

3. How many steps are required in the environments to solve a game of particular solution
depth? See Subsection 7.4.4.

4. How many unique skills are detected by SEADS? See Subsection 7.4.5.

5. What is the influence of the design decisions (e.g., number of skills 𝐾) on the performance
of SEADS? See Subsection 7.4.6.

6. How well does SEADS perform on environments with additional challenges (Subsec-
tion 7.4.7), including a real-world setup (Subsection 7.4.8)?

7. What are the limitations of SEADS with respect to the games’ solution depths (Subsec-
tion 7.4.9)?

We approach these questions in the following subsections.

7.4.2. Task performance evaluation

To evaluate the task performance of our agent and baseline agents, we initialize the environments
such that the underlying board game requires at maximum 5 moves (pushes in LightsOut, swaps
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in TileSwap) to be solved.†

We evaluate each agent on 20 examples for each number of moves in {1, . . . , 5} required to solve
the game. We consider a task to be successfully solved if the target board configuration was
reached (all fields off in LightsOut, ordered field in TileSwap). For SEADS, we additionally count
tasks as “failed" if planning exceeds a wall time limit of 60 seconds. We evaluate both planning
variants, with and without replanning.

As an instance of a flat (non-hierarchical) agent we evaluate the performance of Soft Actor-Critic
(SAC, Haarnoja et al. (2018)). The SAC agent receives the full environment state 𝒔 ∈ 𝒮 which
includes the symbolic observation (board state). It obtains a reward of 1 if it successfully solved
the game and 0 otherwise.

In contrast to the Soft Actor-Critic agent, the SEADS agent leverages the decomposition of state
𝒔 ∈ 𝒮 and symbolic observation 𝒛 ∈ 𝒵. For a fair comparison to a hierarchical agent, we consider
Hierarchical Actor-Critic (HAC, Levy et al. (2019)), which, similar to SEADS, can also leverage
the decomposition of 𝒔 and 𝒛. We employ a two-level hierarchy, in which the high-level policy
sets symbolic subgoals 𝒛 ∈ 𝒵 to the low-level policy, thereby leveraging the access to the symbolic
observation.

We refer to Appendices D.5 and D.6 for implementation details on the SAC and HAC baselines,
respectively.

Figure 7.6 visualizes the performance of SEADS and the baselines. On all environments, SEADS
performs similar or outperforms the baselines, with the performance difference being most
pronounced on the Jaco environments, on which SAC and HAC do not make any progress. On the
Cursor environments, SEADS achieves a success rate of 100%. On the remaining environments,
the average success rate (with replanning) is 95.8% (LightsOutReacher), 95.5% (TileSwapReacher),
94.9% (LightsOutJaco), 98.8% (TileSwapJaco). As the number of environment steps varies per
model checkpoint due to varying skill lengths, the planning performance results are determined
at environment steps strictly below 500k (Cursor) / 10M (Reacher, Jaco) steps for which, for every
seed, at least one checkpoint exists with the same or higher number of environment steps.

7.4.3. Skill trajectories and -lengths

Contact points and skill trajectories We observe that SEADS learns game moves as distinct
skills. Exemplarily, on the LightsOutJaco and LightsOutReacher environments, different skills
relate to pushing different fields on the LightsOut game board (see Figure 7.7 for a visualization
of the end-effector’s contact points). In Figure 7.8 we provide a visualization of skill trajectories
for the LightsOutJaco and TileSwapJaco environments. Skill trajectories for the Cursor and Reacher
environments can be found in Appendix D.3.

Skill lengths We report the distribution of skill lengths (i.e., number of actions ap-
plied to the manipulator per skill) for successfully solved board instances in Figure 7.9.

† We limit the solution depth to 5 here due to the computational complexity of breadth-first search in the symbolic
domain for larger solution depths. We investigate larger solution depths in Subsection 7.4.9.
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(a) Contact points of Jaco end effec-
tor.

(b) Contact points of Reacher end
effector.

Figure 7.7.: Contact points of the Jaco (Reacher) end effector in the LightsOutCursor (LightsOutReacher) environments
when executing skill 𝑘 ∈ {1, . . . , 25} on 20 different initializations of the environment. Each skill is assigned a unique
color/marker combination. We show the agent performance after 1 × 107 environment steps. We observe that the
SEADS agent learns to push individual fields as skills.

k=0 k=1 k=2 k=3 k=4
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(a) Skill trajectories on LightsOutJaco.

k=0 k=1 k=2 k=3

k=4 k=5 k=6 k=7

k=8 k=9 k=10 k=11

(b) Skill trajectories on TileSwapJaco.

Figure 7.8.: Trajectories in Jaco-embedded environments for skills 𝑘 on 20 different environment initializations.
Colored lines show the 𝑥, 𝑦-coordinates of the Jaco hand, with the circular marker indicating the start position of the
skill. Green markers indicate contact locations with the board.
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Figure 7.9.: Analysis of skill lengths (number of manipulator steps executed within a single skill) for different
environments. Box-plots show the 25%/75% quartiles and median (green line). Whiskers extend to the farthest
datapoint within the 1.5-fold interquartile range. Outliers are plotted as circles.

While skill executions on the Cursor environments are typically short (median 3/2 manip-
ulator actions for LightsOutCursor/TileSwapCursor), the Reacher and Jaco environments re-
quire a higher number of manipulator actions per skill (median 11/12/9/13 for LightsOut-
Reacher/LightsOutJaco/TileSwapReacher/TileSwapJaco).

7.4.4. Solution length

In Figure 7.10 we provide an analysis how many low-level environment steps (i.e., manipulator
actions) are executed to solve instances of the presented physically embedded board games.
We show results for 10 trained agents and 20 initial board configurations for each solution
depth in {1, . . . , 5}. We only report results on board configurations which are successfully
solved by SEADS. We observe that even for a solution depth of 5, for the Cursor environments,
only relatively few environment steps are required in total to solve the board game (≈ 15
for LightsOutCursor, ≈ 10 for TileSwapCursor). In contrast, the more complex Reacher and Jaco
environments require significantly more interactions to be solved, with up to 400 steps executed
on TileSwapJaco for a solution depth of 5 and enabled re-planning.

7.4.5. Skill detection performance

In this subsection, we investigate how many distinct skills are learned by SEADS. If not all
possible moves within the board games are learned as skills (25 for LightsOut, 12 for TileSwap),
some initial configurations can become unsolvable for the agent, negatively impacting task
performance. To count the number of learned skills we apply each skill 𝑘 ∈ {1, . . . , 𝐾} on a
fixed initial state 𝒔0 of the environment 𝐸 until termination (i.e., apply(𝐸, 𝒔0 ,𝜋, 𝑘)). Among
these 𝐾 skill executions we count the number of unique game moves being triggered. We
report the average number of unique game moves for 𝑁 = 100 distinct initial states 𝒔0, after
training on 5 × 105 (Cursor) / 1 × 107 (Reacher, Jaco) environment interactions. On the Cursor
environments SEADS detects nearly all possible game moves (in average, 24.9 of 25 possible in
LightsOutCursor, 12 of 12 in TileSwapCursor). For Reacher almost all moves are found (24.3/11.8). In
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Figure 7.10.: Analysis of solution lengths (total number of manipulator steps required to solve the physically
embedded board games) for different environments, solution depths and planning with/without re-planning.
Box-plots show the 25%/75% quartiles and median (green line). Whiskers extend to the farthest datapoint within the
1.5-fold interquartile range. Outliers are plotted as circles.

the Jaco environments some moves are missing occasionally (23.6/11.5). We visualize the results,
including ablations (see Subsection 7.4.6 for details), in Figure 7.11. We demonstrate superior
performance compared to a baseline skill discovery method (Variational Intrinsic Control, Gregor
et al. (2017)) in Appendix D.7.

7.4.6. Ablation study

We substantiate our agent design decisions through an ablation study, in which we compare the
number of unique skills (game moves) detected for several variants of SEADS. For the ablation
study, we remove parts from our agent to quantify their impact on performance. This includes
training SEADS without the proposed relabelling, second-best normalization and novelty bonus.
We visualize the results of this study in Figure 7.11 and provide numerical results in Table 7.3.
We found all of these innovations to be important for the performance of SEADS, with the
difference to the full SEADS agent being most prominent in the LightsOutJaco environment. We
also observe that the “More skills" variant (equivalent to SEADS, but with 𝐾 = 30 for LightsOut,
𝐾 = 15 for TileSwap) yields a similar number of detected unique game moves as SEADS, which
is an encouraging result, justifying to over-estimate the number of skills 𝐾 in situations where
it is unknown. We conducted additional significance tests (see below paragraph for details),
after which we can state that we did not find any ablation to perform significantly better than
SEADS, nor SEADS to perform significantly worse than any ablation (including the “More skills"
ablation).

Significance test We perform one-sided Mann-Whitney U tests (Mann and Whitney, 1947) to
conclude about significance of our results. On each environment, for each of the 10 independently
trained SEADS agents, we obtain a set of 10 samples on the average number of detected skills.
Analogously, we obtain such a set of 10 samples for every ablation. We aim at finding ablations
which either (i) detect significantly more skills than SEADS or (ii) detect significantly fewer skills
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Table 7.3.: Number of average unique game moves detected by SEADS and its ablations, with mean and standard
deviation on 10 independently trained agents. Ablations which perform significantly worse than SEADS are colored
red. We did not find any ablation to perform significantly better than SEADS, nor SEADS to perform significantly
worse than any ablation (including the “More skills" ablation). We refer to Subsection 7.4.6 for details.

Cursor Reacher Jaco

LightsOut TileSwap LightsOut TileSwap LightsOut TileSwap

SEADS 24.94 ± 0.06 11.99 ± 0.02 24.3 ± 0.28 11.81 ± 0.13 23.64 ± 1.04 11.54 ± 0.27
No sec.-best norm. 24.74 ± 0.42 11.98 ± 0.03 24.42 ± 0.32 11.78 ± 0.11 22.28 ± 0.92 9.26 ± 1.17
No nov. bonus 24.83 ± 0.32 11.99 ± 0.03 23.75 ± 0.71 11.81 ± 0.09 20.24 ± 1.46 11.58 ± 0.29
No relab. 24.72 ± 0.39 12.0 ± 0.02 16.58 ± 4.62 3.62 ± 3.2 19.26 ± 1.0 11.53 ± 0.12
No forw. mod. relab. 24.9 ± 0.07 11.99 ± 0.02 22.73 ± 0.94 11.77 ± 0.28 11.5 ± 3.47 8.64 ± 1.83
No SAC relabelling 24.88 ± 0.09 11.98 ± 0.03 22.94 ± 1.51 11.76 ± 0.15 17.32 ± 2.54 11.05 ± 0.48

More skills 24.97 ± 0.03 11.99 ± 0.02 24.36 ± 0.36 11.8 ± 0.12 23.9 ± 0.47 11.47 ± 0.41

than SEADS on a particular environment. We reject null hypotheses for 𝑝 < 0.01. For (i), we first
set up the null hypothesis that the distribution underlying the SEADS samples is stochastically
greater or equal to the distribution underlying the ablation samples. For ablations on which this
null hypothesis can be rejected it holds that they detect significantly more skills than SEADS.
As we cannot reject the null hypothesis for any ablation, no ablation exists which detects significantly
more skills than SEADS. For (ii), we set up the null hypothesis that the distribution underlying
the SEADS samples is stochastically less or equal to the distribution underlying the ablation
samples. For all ablations there exists at least one environment in which we can reject the null hypothesis
to (ii), indicating that all ablations contribute significantly to the performance of SEADS on at least one
environment. The results of the significance test are highlighted in Table 7.3.

7.4.7. Environments with additional challenges

In this subsection, we investigate environments posing additional challenges to the SEADS
agent.

LightsOutJaco with a 3D board In addition to the LightsOutJaco environment presented in
Subsection 7.4.1, we introduce an additional environment LightsOut3DJaco. While in LightsOut-
Jaco the LightsOut board is a flat plane, in LightsOut3DJaco the fields are elevated/recessed
depending on their distance to the board’s center (see Figure 7.12a). This poses an additional
challenge to the agent, as it has to avoid to push fields with its fingers accidentally during
skill execution. Despite the increased complexity of LightsOut3DJaco over LightsOutJaco, we
observe similar results in terms of detected game moves (Figure 7.12b) and task performance
(Figure 7.12c). Both environments can be solved with a high success rate of 94.9% (LightsOutJaco)
and 96.3% (LightsOut3DJaco). We follow the same evaluation protocols as in Subsection 7.4.2 and
Subsection 7.4.5.

LightsOutBoard with more fields and spacing In this experiment, we investigate how well
SEADS performs on environments in which a very large number of skills has to be learned, and
where noisy executions of already learned skills uncover new skills with low probability. To this
end, we modified the LightsOutCursor environment to have more fields (and thereby, more skills
to be learned), and introduced a spacing between the tiles, which makes detecting new skills
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more challenging. For a fair comparison, we keep the total actionable area in all environments
constant, which introduces an empty area either around the board or around the tiles (see
Figure 7.13(a-e)). We make two main observations: First, as presumed, learning skills in the
LightsOutCursor environment with spacing between tiles requires more environment interactions
than for adjacent tiles (see Figure 7.13f). Second, for boards up to size 9 × 9, a large majority of
skills is found after 1.5 million environment steps of training (5 × 5 : 24.9/25, 7 × 7 : 48.6/49,
9 × 9 : 76.8/81). The LightsOutCursor environment with boardsize 13 × 13 poses a challenge to
SEADS with 119.3/169 skills detected after 1.5 million environment steps (see Figure 7.13). The
numbers reported are averages over 5 independently trained agents.

7.4.8. Robot experiment

To evaluate the applicability of our approach on a real-world robotic system, we set up a testbed
with a uArm Swift Pro robotic arm which interacts with a tablet using a capacitive pen (see
Figure 7.15a). The SEADS agent commands a displacement |Δ𝑥 |, |Δ𝑦 | ≤ 0.2 and an optional
pushing command as in the Cursor environments. The board state is communicated to the agent
through the tablet’s USB interface. We manually reset the board once at the beginning of training,
and do not interfere in the further process. After training for ≈ 160𝑘 interactions (≈ 43.5 hours)
the agent successfully solves all boards in a test set of 25 board configurations (5 per solution
depth in {1, . . . , 5}). We refer to Figure 7.15b for a visualization of the success rate of SEADS
over the course of training and to Figure 7.14 for a visualization of skills learned after ≈ 220𝑘
environment interactions.‡ Please see Appendix D.4 for more details on the robot experiment
setup.

7.4.9. Large solution depth analysis

In Figure 7.16 we present an analysis for solving LightsOut tasks with solution depths > 5 using
the learned SEADS agent on LightsOutCursor. We observe a high mean success rate of ≥ 98% for
solution depths ≤ 8. However, the time required for the breadth-first search (BFS) planner to find
a feasible plan increases from ≈ 2.02𝑠 for solution depth 5 to ≈ 301.8𝑠 for solution depth 9. We
abort BFS planning if the list of nodes to expand exceeds a size of ≈ 16 GB memory usage. All
experiments were conducted on Intel® Xeon® Gold 5220 CPUs with a clock rate of 2.20 GHz.

‡ We refer to the project page at https://seads.is.tue.mpg.de/ for a video on the real robot experiment.

https://seads.is.tue.mpg.de/
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Figure 7.11.: Skill detection performance of SEADS. Top row: Number of learned unique game moves for ablations of
SEADS. The solid line depicts the mean, shaded area min. and max. of 10 independently trained agents. Bottom row:
Relabelling ablation analysis. Relabelling both for the forward model and SAC agent training are important for the
performance of SEADS.
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(a) LightsOut3DJaco: A variant of the LightsOutJaco environment with elevated fields. In comparison to the LightsOutJaco
environment this environment poses an additional challenge to the agent, as it has to avoid to push fields with its
fingers accidentally during skill execution. We show the execution of a skill which has learned to push the center field
for 𝑇 = {0, 4, 8, 12, 14}.
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Figure 7.12.: Evaluation on number of (a) detected game moves and (b) task performance on LightsOut3DJaco (see
Subsection 7.4.7 for details).
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Figure 7.13.: Detected average unique game moves (skills) on LightsOutCursor environment for different board sizes
(Bs.) (5 × 5, 7 × 7, 9 × 9, 13 × 13) and spacing (Sp.) (boards visualized in (a-e)). The introduced spacing slows down
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120 7. Learning Temporally Extended Skills for Planning
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Figure 7.14.: Visualization of 320 trajectories executed on the uArm Swift robotic arm with positional displacement
actions, after the agent has been trained for ≈ 220𝑘 environment interactions. Each subpanel shows trajectories for a
specific symbolic action 𝑘. Green markers indicate push locations. Similar to the other environments, SEADS has
learned to push individual fields as skills.
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(a) Robot setup.
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7.5. Assumptions and limitations

Our approach assumes that the state abstraction is known, the symbolic observation 𝒛 is
provided by the environment, and that the continuous state is fully observable. Learning the
state abstraction too is an interesting direction for future research. The breadth-first search
planner we use for planning on the symbolic level exhibits scaling issues for large solution
depths; e.g., for LightsOut it exceeds a 5-minute threshold for solution depths (number of initial
board perturbations) ≥ 9. In future work, more efficient heuristic or probabilistic planners could
be explored. Currently, our BFS planner produces plans which are optimal with respect to the
number of skills executed. Means for predicting and taking the skill execution cost into account
for planning could be pursued in future work. In the more complex environments (Reacher, Jaco)
we observe our agent to not learn all possible skills reliably, in particular for skills for which no
transitions exist in the replay buffer. In future work one could integrate additional exploration
objectives which incentivize to visit unseen regions of the state space. Also, the approach is
currently limited to settings such as in board games, where all symbolic state transitions should
be mapped to skills. It is an open research question how our skill exploration objective could
be combined with demonstrations or task-specific objectives to guide the search for symbolic
actions and limit the search space in more complex environments.

7.6. Conclusion

We present an agent which, in an unsupervised way, learns diverse skills in complex physically
embedded board game environments which relate to moves in the particular games. We assume
a state abstraction from continuous states to symbolic states known and observable to the
agent as prior information, and that skills lead to changes in the symbolic state. The jointly
learned forward model captures the temporally extended effects of skill execution. We leverage
this forward model to plan over a sequence of skills (moves) to solve a particular task, i.e.,
bring the game board to a desired state. We demonstrate that with this formulation we can
solve complex physically embedded games with high success rate, that our approach compares
favorably with other flat and hierarchical RL algorithms, and also transfers to a real robot. Our
approach provides an unsupervised learning alternative to prescribing the action abstraction
and pretraining each skill individually before learning a forward model from skill executions. In
future research, our approach could be combined with state abstraction learning to leverage its
full potential.



Summary & Outlook 8.
8.1. Summary

In this thesis, we present approaches to challenges which affect model-based sequential decision
making agents, particularly in real-world environments.

In Chapter 1, we outlined the necessity of real-world agents to adapt to changes in the environ-
ment’s dynamics. This has motivated us to develop a novel, adaptive dynamics model based on
Gaussian process regression in the latent space of a variational auto-encoder, termed Deep Latent
Gaussian Process Dynamics (DLGPD, Chapter 3). The method allows decision making directly from
high-dimensional data such as images, which is an active area of contemporary research (Ha and
Schmidhuber, 2018; Hafner et al., 2020, 2019; Yarats et al., 2021). Differently to the aforementioned
approaches, our method can systematically handle changes in the environment’s dynamics. We
demonstrate on a Pendulum environment that our approach requires less additional data than
the purely deep-learning based approach PlaNet (Hafner et al., 2019) to adapt to changes in the
environment’s dynamics.

Another important aspect of learning-based real-world decision making, as outlined in Chapter 1,
is sample efficiency — collecting data in real-world environments typically incurs significant
costs. In environments which are subject to variations, this does not only create the need for
adaptive dynamics models, but also for interacting with the environment in a way which
allows to quickly identify the dynamics of a particular environment. This can be formulated
as a Bayesian Optimal Experimental Design problem (Chaloner and Verdinelli, 1995), as we
outlined in Chapter 4. In Chapter 4, we formulated an adaptive dynamics model based on the
Neural Process (Garnelo et al., 2018b) framework, which captures environment variations in a
global latent variable. Through data collection, we aim to maximize the Expected Information
Gain (Lindley, 1956), effectively minimizing the uncertainty in the global latent variable. We
show that we can compute action sequences which allow to efficiently identify the dynamics of
environments underlying diverse variations, in contrast to randomly sampled actions.

In the area of terrain-aware navigation, not only intrinsic parameters of the robot are subject to
change, e.g., actuator gains, but also the terrain typically varies depending on the location of the
robot. In Chapter 5, we presented our approach TRADYN which can cope with both types of
variations, based on the adaptive dynamics model presented in Achterhold and Stueckler (2021)
(Chapter 4). We evaluated the adaptation capabilities of our proposed approach on a simulated
unicycle-like robot, and show the importance of being able to adapt to varying robot parameters
and terrain properties.

In all approaches discussed so far, physical prior knowledge has only played a minor rule in
the model design process. Exemplarily, in Chapter 3, a smoothness prior is posed on the latent
dynamics through the use of a squared-exponential covariance function. Such kinds of models
are typically referred to as black-box models, in contrast to gray-box models, in which physical
prior knowledge is more explicitly incorporated (Nelles, 2001). Constraining the model class
through physical prior knowledge poses the risk of the model not accurately capturing the
actual dynamics, e.g., through unmodeled effects. On the other hand, strong regularization
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through physical prior knowledge can decrease the amount of training data required to learn a
well-generalizing model. In Chapter 6, we leveraged physical prior knowledge to learn a model
which allows for filtering and predicting the motion of a table tennis ball for robotic return. With
this gray-box approach, we achieve state-of-the-art predictive accuracy, outperforming black-box
baselines.

In Chapter 7, we focus on two further challenges of decision making in real-world systems.
First, in real-world decision making, some systems, such as robotic arms, require reactive,
high-frequency control. With model-based planning methods, this can be more challenging
to achieve than with model-free methods (Hafner et al., 2020; Pinneri et al., 2020). A second
challenge in sequential decision making we focus on in Chapter 7 is the credit assignment
problem: The effect of an action might become apparent only far in the future. One prime example
of environments which are subject to both challenges are physically embedded board games (Mirza
et al., 2020), in which a robotic manipulator is supposed to play a board game. A positive reward
signal is only given when the game is won, although this signal depends on actions applied far
in the past. Additionally, the robotic manipulator has to be controlled at a high frequency. In
Chapter 7, we designed a hierarchical agent termed SEADS, which combines advantages from
model-based and model-free methods with intrinsic motivation to autonomously learn skills
which cause diverse and predictable transitions in an abstraction of the environment’s state. We
show in Chapter 7 that our agent outperforms other flat and hierarchical agents on complex
embedded board games.

In conclusion, this thesis presents several approaches which advance the state-of-the-art in
several directions linked to model-based decision-making. This includes adaptive dynamics
models and their use for active system identification and terrain- and robot-aware navigation, a
state-of-the-art approach for predicting table tennis ball trajectories, and a novel hierarchical
agent combining the advantages of model-free and model-based methods. With these advances,
this thesis paves the way for potential future work in a variety of directions.

8.2. Future work

8.2.1. Real-world experiments

With our contributions DLGPD (Chapter 3), Explore the Context (Chapter 4), and TRADYN
(Chapter 5) we have taken a step towards sequential decision making agents which can cope with
problems being apparent in the real world. This mainly concerns the adaptivity of dynamics
models, active system identification, and robot- and terrain aware navigation. However, we have
made some simplifying assumptions in the development of these approaches, which do not
necessarily hold in real-world environments. We will comment on them and potential remedies
in the following paragraphs.

Gaussian process latent variable models from images While we have shown successful
application of the adaptive, Gaussian process based dynamics model presented in Chapter 3
to a system with relatively simple dynamics (inverted pendulum), we found it challenging
to model complex systems. This is due to the computational complexity of Gaussian process
regression. One potential direction of future work is to use the latent variable model presented



8.2. Future work 125

in Sæmundsson et al. (2018). It uses pseudo-inputs (Snelson and Ghahramani, 2005) to reduce
computational complexity. The model by Sæmundsson et al. (2018) could be used as a dynamics
model in the latent space, with jointly learned image encoders and decoders, as proposed in
Chapter 3. This, however, would require learning the dynamics model on a family of environments
underlying the variations to consider.

Partially observable environments and adaptive dynamics models The formulations in
Chapter 4 assume full observability of the environment, which does not hold in general in
real-world environments. In the case of partial observability, a belief state has to be formed
from past observations. In this case, however, not all factors which explain the variations in the
environments might be captured by the global latent variable. Instead, only factors which can not
be inferred from the set of past observations might be captured. While this is not problematic in
principle, it makes interpreting the global latent variable more challenging.

Learning a map for terrain-aware robot navigation For the terrain- and robot-aware navigation
approach presented in Chapter 5, the same considerations regarding partial observability hold
as for Chapter 4, as it uses the same dynamics model. In addition, we assume the environment
terrain map to be known a-priori. To relax this assumption, in future work, the approach
presented in Chapter 5 could be combined with (visual) simultaneous localization and mapping
(SLAM) to learn the map (see, e.g., Macario Barros et al. (2022)). A further interesting direction
for future work, leveraging the ideas of active inference presented in Chapter 4, could be to
extend this further to active SLAM (e.g., surveyed by Placed et al. (2023)). In active SLAM, the
idea is that the robot takes actions in order to obtain informative observations about the map.

8.2.2. Simulation-to-real transfer with adaptive dynamics models

A concrete application example of the approach presented in Chapter 4, which might be worth
investigating in future work, is that of simulation-to-real (Sim2Real) transfer. Dynamics models
learned from data generated by a simulator face the challenge that the real system may behave
slightly differently than the simulation, making the dynamics model less accurate. The approach
presented in Chapter 4 could be used to tackle this challenge. First, an adaptive dynamics model
is learned in simulation. Subsequently, with the approach presented in Chapter 4, experience is
collected in the real environment, in order to calibrate the adaptive dynamics model. Marco et al.
(2017) similarly propose combining data from simulation and the real world in an active learning
scheme based on Bayesian optimization. However, their objective is to tune the parameters of
a linear quadratic regulator in order to minimize a control cost function, instead of learning a
dynamics model.

8.2.3. Visual and auditory stroke cues for table tennis trajectory ball prediction

In Chapter 6, we demonstrate that we can learn a reasonable mapping from the ball launcher
parameters to the initial spin of the ball. Several studies indicate that human players also
leverage additional cues to estimate the table tennis ball spin, such as visual and auditory cues
(Klein-Soetebier et al., 2020; Zhao et al., 2018). An interesting direction of future work could be
to replace the ball launcher information by such cues, e.g., by estimating the racket movement
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through inertial measurement data (Blank et al., 2017) or video (Gao et al., 2021), human pose
estimation (Kulkarni and Shenoy, 2021), or auditory cues. Additionally, ball pose measurements,
e.g., by detecting the brand logo (Y. Zhang et al., 2015) or other patterns (Gossard et al., 2023),
could be included.

8.2.4. Jointly learning skills and state abstractions

A strong assumption made in Chapter 7 is that the state abstraction function Φ(𝑠) is known.
Learning the state abstraction function, e.g., by an auto-encoder with a symbolic latent space,
as in Ahmetoglu et al. (2022), is an interesting direction for future research. However, learning
task-agnostic diverse and predictable skills jointly with their corresponding abstraction is an
ill-posed problem without further regularization. In the example of physically embedded board
games, the learned state abstraction might include the state of the manipulator. In this case, a
diverse set of skills could just move the manipulator in distinct ways, without performing actual
game moves (e.g., pushing fields on the LightsOut board), making the actual game unsolvable.
Therefore, further regularization needs to be included, such as task rewards or slowness priors (S.
Li et al., 2021) on the state abstraction. Instead of learning an abstraction from scratch, leveraging
separately trained models providing annotations, e.g., in the form of scene graphs (see Chang
et al. (2023) for a survey), might also help to mitigate the ill-posedness.

8.2.5. Learning diverse skills from offline data

Learning from offline data for sequential decision making has become an active research topic
over the last years (Levine et al., 2020), also in the area of learning skills (Chebotar et al., 2021;
Rosete-Beas et al., 2022). It promises to be able to leverage the vast amount of data being available
on the internet, and thereby reduce the amount of specific interaction required in a particular
environment to a minimum. The objective that the effect of temporally extended skills should be
maximally diverse and predictive (evaluated under a forward model), as proposed in Chapter 7,
might be leveraged to learn a set of skills from offline data. As an abstraction, using language
annotations might be worth investigating, e.g., as provided by the dataset by Mees et al. (2022).
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Appendix: Deep Latent Gaussian Process
Dynamics Models A.

A.1. Signal-to-noise ratio (SNR) regularization

As covariance functions (between targets) for the transition GPs and reward GP we choose radial
basis function (RBF) kernels

𝑘(𝑥𝑖 , 𝑥 𝑗) = 𝛼2 exp
(︃
−1

2
(𝑥𝑖 − 𝑥 𝑗)⊤Λ−1(𝑥𝑖 − 𝑥 𝑗)

)︃
+ 𝛿𝑖 𝑗𝜎

2 (A.1)

with outputscale 𝛼 > 0, additive noise covariance 𝜎2, characteristic length-scales Λ =
diag([𝑙21 , . . . , 𝑙2𝐷]) and indicator function 𝛿𝑖 𝑗 (𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 , 𝛿𝑖 𝑗 = 0 otherwise). To improve
numerical stability, we regularize the ratio of outputscale and noise covariance of the RBF kernels
of the transition GPs (denoted by𝒦trans) and reward GP (denoted by 𝐾reward) by minimizing a
signal-to-noise penalty

ℒSNR =
∑︂

𝑘 ∈ 𝒦trans∪𝐾reward

[︃
log(SNR𝑘)

log(𝜏)
]︃ 𝑝

(A.2)

with SNR𝑘 = 𝛼𝑘/𝜎𝑘 , 𝜏 = 10, 𝑝 = 8. A similar regularization can be found in the PILCO
implementation (Deisenroth et al., 2013) (with 𝜏 = 1000, 𝑝 = 30). The final loss we minimize is
thus

ℒ = −ℒlower−bound + ℒSNR (A.3)

with

ℒlower−bound = 𝔼𝑞(𝑆′ | 𝑂′)
[︁
log 𝑝(𝑂′ | 𝑆′)]︁ + 𝔼𝑞(𝑆′ | 𝑂′) [︁− log 𝑞(𝑆′ | 𝑂′)]︁

+ 𝔼𝑞(𝑆′ | 𝑂′)𝑞(𝑆 | 𝑂)
[︁
log 𝑝(𝑆′ | 𝑆, 𝐴)]︁ + 𝔼𝑞(𝑆 | 𝑂) [︁log 𝑝(𝑅′ | 𝑆, 𝐴)]︁ (A.4)

(see Equation 3.16).

A.2. Encoder and decoder architecture

For mapping from observation space to latent space and vice versa, we use (transposed)
convolutional neural networks with ReLU non-linearities. The network architecture is similar
to the encoder and decoder used in (Hafner et al., 2019). The encoder parametrizes a normal
distribution by its mean 𝜇 and standard deviation 𝜎.

Table A.1.: Encoder architecture.

Input: 2 channel-wise concatenated RGB images (6 × 64 × 64)

Conv2D (32 filters, kernel size 4 × 4, stride 2) + ReLU
Conv2D (64 filters, kernel size 4 × 4, stride 2) + ReLU
Conv2D (128 filters, kernel size 4 × 4, stride 2) + ReLU
Conv2D (256 filters, kernel size 4 × 4, stride 2) + ReLU

𝜇: Linear (1024→ 3), 𝜎: Softplus(Linear(1024→ 3) + 0.55) + 0.01
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Table A.2.: Decoder architecture.

Input: 3-dimensional latent variable

Linear(3→ 1024) + ReLU
ConvTranspose2D (128 output channels, kernel size 5 × 5, stride 2) + ReLU
ConvTranspose2D (64 output channels, kernel size 5 × 5, stride 2) + ReLU
ConvTranspose2D (32 output channels, kernel size 6 × 6, stride 2) + ReLU
ConvTranspose2D (6 output channels, kernel size 6 × 6, stride 2) + Sigmoid

Output: 2 channel-wise concatenated RGB images (6 × 64 × 64)



Appendix: Active Inference for Adaptive
Dynamics Models B.

In the following, we provide supplementary details and analysis of the approach presented in
Chapter 4.

B.1. Architectural details

In the following, we describe the architectural details of our model. Notation-wise, [·; ·; . . .]
denotes a sequence of neural network layers. Linear(𝑀, 𝑁) indicates a linear layer with 𝑀 input
features and 𝑁 output features, ReluLinear(𝑀, 𝑁) is a linear layer with non-negative weights
𝑣𝑦 = ReLU(𝑾 )𝒙 + 𝒃. ReLU and Tanh represent ReLU and hyperbolic tangent nonlinearities,
respectively. Negate is a negation of the input features 𝒚 = −𝒙. SoftplusOffset(𝛾) symbolizes
a softplus nonlinearity with additive offset: 𝑦 = ln(1 + 𝑒𝑥) + 𝛾, which is applied elementwise.

B.1.1. Transition model

The transition model consists of encoders 𝑒s, 𝑒a and 𝑒𝛽 to lift state (dimensionality 𝐷S), action
(dimensionality 𝐷A) and latent context variable (dimensionality 𝐷𝛽) to an embedding space
with dimensionality 𝐷E = 200. A GRU cell (Cho et al., 2014) operates in the embedding space to
model the dynamics. The decoders parameterize mean and diagonal covariance on the state
space given a propagated embedding. Due to the constant additive noise assumption in the toy
problem environment, in those experiments, the diagonal state space covariance of the model is
learned as a constant and not modeled by a decoder.

State encoder 𝑒s:
[Linear(𝐷S, 200); ReLU(); Linear(200, 𝐷E); Tanh()]

Action encoder 𝑒a:
[Linear(𝐷A, 200); ReLU(); Linear(200, 𝐷E); ReLU()]

Latent context encoder 𝑔𝜷:
[Linear(𝐷𝛽, 200); ReLU(); Linear(200, 𝐷E); ReLU()]

GRU cell ℎRNN:
GRU cell with input dimension 2 ·𝐷E (concatenation of action and latent context), state dimension
𝐷E.

State decoder (mean) 𝑑s,𝜇:
[Linear(𝐷E, 200); ReLU(); Linear(200, 𝐷S)]

State decoder (diagonal covariance) 𝑑s,𝜎2 :
[Linear(𝐷E, 200); ReLU(); Linear(200, 𝐷S); SoftplusOffset(1e−4)]
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B.1.2. Context encoder

Components of the context encoder are the transition encoder and latent context decoder
networks for mean and (diagonal) standard deviation. The dimensionality of the transition
embedding space 𝐷F is 32 for the toy problem and 128 for all other experiments. In ablation
experiments in which we do not enforce the variance of the context encoder to be strictly
decreasing with the number of context observations (referred to as “- Decr. variance"), we replace
the ReluLinear layers by standard Linear layers.

Transition encoder:
[Linear(2𝐷S + 𝐷A, 200); ReLU(); Linear(200, 𝐷F); ReLU()]

Latent context decoder (mean):
[Linear(𝐷F, 200); ReLU(); Linear(200, 𝐷𝛽)]

Latent context decoder (diagonal standard deviation):
[ReluLinear(𝐷F, 200); ReLU(); ReluLinear(200, 𝐷𝛽); Negate(); SoftplusOffset(1e−2)]

B.2. Training details

Table B.1 gives values for the hyperparameters used for each experiment.

Table B.1.: Hyperparameters for the toy problem, Pendulum and MountainCar experiments.

Parameter Toy Problem Pendulum MountainCar

Number of training steps 50k 100k 100k
Latent context dimensionality 𝐷𝛽 1 16 16
Transition embedding space dimensionality 𝐷F 32 128 128

B.2.1. Data sampling

As detailed in the respective environment sections, for data collection, we first randomly sample
instances of the parameterized toy problem, Pendulum, and MountainCar environments. On
each environment instance, we generate two independent rollouts R𝐴 ,R𝐵, each with a randomly
sampled initial state and randomly sampled actions. We use rollout pairs from 5k instances of the
toy problem, 100k instances of the Pendulum environment and 50k instances of the MountainCar
environment as training data. For computing a validation loss during training, we generate
rollout pairs from additional 1k toy problem, 10k Pendulum and 10k MountainCar environment
samples. Environment instances used to evaluate the performance of the predictive model after
calibration do not overlap with instances used for training and validation.

The target chunk D𝛼 is a random, contiguous subsequence of length 50 of rollout R𝐴. Each
transition in the context set 𝒞𝛼 is independently sampled from the rollout R𝐴 with a probability
𝑝ctx−from−A or from the rollout R𝐵 with a probability 𝑝ctx−from−B = 1 − 𝑝ctx−from−A. For the toy
problem experiments, we fix 𝑝ctx−from−A = 0. For the Pendulum and MountainCar experiments,
we set 𝑝ctx−from−A = 0.5 for the first 30k training steps, then reduce it linearly to 𝑝ctx−from−A = 0
until step 60k, and keep it at this value until the end of training. We motivate this scheduling
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Figure B.1.: Prediction error (lower is better) of the learned (a) Pendulum and (b) MountainCar models, for MPC
calibration procedures with varying number of transitions per rollout (xT) and varying number of calibration rollouts
(xR). Each line represents the mean squared error over 3000 rollouts.

strategy to simplify the learning problem by increasing the average amount of context observations
which are informative for the target chunk. When the context set and target chunk are sampled
from different rollouts, they may cover disjoint parts of the state space, increasing the average
amount of non-informative transitions in the context set.

B.2.2. Validation loss computation

We randomly sample 5 batches from the validation data (with a batchsize of 64 for the toy problem
and 512 for Pendulum and MountainCar) to construct a validation dataset (see Appendix B.2.1).
For sampling the validation batches, we fix 𝑝ctx−from−A = 0. The validation loss is calculated
by applying the loss objective used for training (Equation 4.32) on the validation dataset. We
report results on models yielding the lowest validation loss within the given number of training
steps.

B.3. Planning details

To plan an optimal action sequence for calibration, we use a planning algorithm based on
the cross-entropy method (Rubinstein, 1999) (CEM, see Subsection 2.6.1). We set the number
of optimization iterations 𝑇 = 10, number of candidates 𝑁cand = 1000 and number of elite
candidates 𝑁elites = 100. The planning horizon is task dependent, during Open-Loop calibration,
we use the full calibration horizon as planning horizon (𝑁 = 30 for the Pendulum, 𝑁 = 50 for
the MountainCar). During MPC calibration, the planning horizon is given by 𝐻 as defined in
Subsection 4.4.5.

B.4. Ablation experiment: Number of calibration interactions

As an ablation experiment, we investigate the relation between the model prediction error of a
calibrated model and the number of system interactions performed during calibration. To this
end, we vary the number of calibration transitions per rollout and the number of calibration
rollouts we perform for calibrating a single system. In case of multiple rollouts, we add the
transitions of previous calibration rollouts to the set of already observed system transitions 𝒯0 in
the MPC calibration scheme.
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We vary the number of transitions per rollout as {15, 30, 50} transitions for the Pendulum
environment and {20, 50, 100} transitions for the MountainCar environment. The number of
calibration rollouts is selected from {1, 3}. The results reported in Section 4.5 use a single rollout
with 30 transitions for the Pendulum environment and 50 transitions for the MountainCar
environment.

See Figure B.1 for a depiction of the prediction error of the calibrated models.

For the Pendulum environment, we observe that short calibration rollouts with 15 transitions
yield significantly worse prediction results compared to rollouts of length 30 or 50, even when
performing multiple calibration rollouts. With too short rollouts, the calibration sequence can
not swing-up the Pendulum to cover all (especially the upper two) quadrants. On the other hand,
longer calibration rollouts (with 50 transitions) or more calibration attempts (3 rollouts with
30 transitions) do not yield significantly better results than a single calibration rollout with 30
transitions because all quadrants have already been covered.

For the MountainCar environment, an environment which exhibits more complex dynamics
variations than the Pendulum environment, we observe that more calibration data yields models
with lower prediction error for short-horizon predictions (< 15 steps). However, for long-horizon
predictions, a single long rollout (100 transitions) performs better than 3 short rollouts (50
transitions), although the total amount of calibration transitions is higher in the latter case. We
hypothesize that long calibration rollouts accurately explore regions which long system rollouts
reach (for long prediction horizons) and thus perform better for the long-horizon case than short
calibration rollouts.



Appendix: Table Tennis Ball Trajectory
Modeling C.

In the following, we provide extended results and architectural details of our table tennis
ball trajectory filtering and prediction approach. In Appendix C.1 we provide details on the
architecture, in particular the initial values for the learned EKF parameters, and the network
for estimating the initial spin. Appendix C.2 describes the computation of the Jacobian of the
forward model 𝑱 = 𝜕

𝜕𝒛 𝑔(𝒛) (cf. Equation 6.22).

C.1. Architectural details

C.1.1. Parameter initialization

In this section, we provide initial values for the parameters

Ψ =
{︂
C, 𝝈𝑞 , 𝝈𝑟 , 𝝈𝑝 , 𝝈𝑣 ,𝝍 𝑓 , 𝝈𝜔 , 𝝈𝜔,ai , 𝑎d , 𝑎m , 𝜎𝑎d , 𝜎𝑎m

}︂
we optimize during training.

We initialize the impact matrix 𝑪 with the assumption that the velocities in x- and y-direction
do not change during impact, while the velocity in z direction flips sign. We assume the spin to
stay constant in all dimensions. This yields

𝑪 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
as initial value for 𝑪. The parameter 𝝍 𝑓 refers to the parameters of the spin initialization network,
which is detailed in Appendix C.1.3. Initial values for the remaining parameters are given in
Table C.1.

C.1.2. Learned parameters

In Table C.2, we provide the values of Ψ after training for an exemplary EKF model (trained on
the augmented dataset, with providing ball launch information).

C.1.3. Spin initialization network architecture

The neural network for initializing the initial spin in canonical launch direction 𝒘→𝑥 based on
actuation parameters 𝒔𝑚 ∈ [0, 1]3 is parametrized as follows

𝒘→𝑥,𝜇,𝜎 = 𝑾 2 max(𝑾 1𝒔𝑚 , 0),
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Table C.1.: Initial values for parameters of the extended Kalman filter. The operator inv[·]⊕ (𝑥) inverts the softplus
function [·]⊕ , such that, e.g., the initial value for the initial position covariance is Σ𝑝 = diag([𝝈𝑝]⊕) = 𝑰3 · 10−4. The
operator [· : ·] denotes 1-based slicing, including start and end point. E.g., 𝝈𝑞[1 : 3] refers to the transition variance
of the ball’s position. Note that 𝝈𝜔 , 𝝈𝜔,ai are only used when the spin initialization network is not used or after
an impact has happened. In these cases, we assume the spin to highly vary, which is why we chose the values of
𝝈𝜔 , 𝝈𝜔,ai to be comparably large.

Parameter name Initial value Parameter name Initial value

Initial state variance Transition variance
𝝈𝑝 inv[·]⊕ (10−4) 𝝈𝑞[1 : 3] inv[·]⊕ (10−4)
𝝈𝑣 inv[·]⊕ (10−2) 𝝈𝑞[4 : 6] inv[·]⊕ (10−2)

𝝈𝜔 , 𝝈𝜔,ai inv[·]⊕ (1) 𝝈𝑞[7 : 9] inv[·]⊕ (10−3)
𝝈𝑎d inv[·]⊕ (10−2) 𝝈𝑞[10] inv[·]⊕ (10−2)
𝝈𝑎m inv[·]⊕ (10−2) 𝝈𝑞[11] inv[·]⊕ (10−2)
𝝈𝑟 inv[·]⊕ (10−3)

Initial state mean
𝑎d
√

0.1
𝑎m

√
0.1

Table C.2.: Learned values for parameters of the extended Kalman filter, for a model which leverages launch
information (thus, 𝝈𝜔 is not used).

Parameter name Initial value Parameter name Initial value

Initial state variance Transition variance
[𝝈𝑝]+ (1.38, 1.63, 1.00)⊤ · 10−6 [𝝈𝑞[1 : 3]]+ (1.00, 1.00, 1.00)⊤ · 10−6

[𝝈𝑣]+ (0.12, 0.14, 0.09)⊤ [𝝈𝑞[4 : 6]]+ (1.16, 1.19, 1.10)⊤ · 10−6

[𝝈𝜔,ai]+ (0.19, 3.28, 0.12)⊤ [𝝈𝑞[7 : 9]]+ ⎛⎜⎝
1.73 · 10−3

1.31 · 10−3

1.00 · 10−6

⎞⎟⎠[𝝈𝑎d]+ 5.70 · 10−6 [𝝈𝑞[10]]+ 1.16 · 10−6

[𝝈𝑎m]+ 3.10 · 10−3 [𝝈𝑞[11]]+ 1.30 · 10−3

[𝝈𝑟]+ (1.02, 1.03, 1.00)⊤ · 10−6

Initial state mean
𝑎d 0.2168
𝑎m 1.22 · 10−5

with 𝒘→𝑥,𝜇,𝜎 ∈ ℝ6, 𝑾 1 ∈ ℝ256×3, 𝑾 2 ∈ ℝ6×256. The max operator is applied elementwise.
The initial mean 𝒘→𝑥 is taken as the first three dimensions of 𝒘→𝑥,𝜇,𝜎[1 : 3], the latter three
dimensions parametrize the initial covariance as 𝚺𝜔→𝑥 = diag([𝒘→𝑥,𝜇,𝜎[4 : 6]]⊕).

C.2. Derivatives

For the extended Kalman filter, we need to compute derivatives (Jacobians) of the forward
dynamics J = 𝜕

𝜕𝒛𝑛
𝑔(𝒛𝑛). For computational considerations, we manually implemented the

derivatives. The dynamics depend on whether an impact has happened. We restate Equation 6.22
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with 𝒛+ = ℎ(𝒛−) = 𝑪′𝒛−:

𝒛𝑛+1 = 𝑔(𝒛𝑛) =
{︄
𝑔free(𝒛𝑛 ,Δ𝑇)

[︁
𝑔free(𝒛𝑛 ,Δ𝑇)

]︁
z − 𝑟 ≥ ztable

𝑔free(ℎ(𝑔free(𝒛𝑛 ,Δimp)),Δ𝑇 − Δimp) otherwise.

The function ℎ maps the state prior to the impact 𝒛− = 𝑔free(𝒛𝑛 ,Δimp) to the state after the impact
𝒛+ = ℎ(𝒛−). We abbreviate the remaining time after the impact as Δrem = Δ𝑇 − Δimp. First, we
consider free-flight dynamics, and compute the Jacobian

𝑱𝒛(𝒛𝑛 ,Δ𝑡) =
𝜕

𝜕𝒛′𝑛
𝑔free(𝒛′𝑛 ,Δ𝑡)|𝒛′𝑛=𝒛𝑛 (C.1)

for an arbitrary timespan Δ𝑡 given by the components

·/𝜕𝒑𝑛 ·/𝜕𝒗𝑛 ·/𝜕𝝎𝑛 ·/𝜕𝑎d,𝑛 ·/d𝑎m,𝑛
𝜕𝒑𝑛+1/· 𝑰 Δ𝑡𝑰 0 0 0
𝜕𝒗𝑛+1/· 0 Eq. C.2 Eq. C.3 Eq. C.4 Eq. C.5
𝜕𝝎𝑛+1/· 0 0 𝑰 0 0
𝜕𝑎d,𝑛+1/· 0 0 0 1 0
𝜕𝑎m,𝑛+1/· 0 0 0 0 1

with the following velocity derivatives

𝜕𝒗𝑛+1
𝜕𝒗𝑛

= 𝑰 − Δ𝑡𝑎2
d,𝑛

𝜕(| |𝒗𝑛 | |𝒗𝑛)
𝜕𝒗𝑛

+ Δ𝑡𝑎2
m,𝑛

𝜕(𝝎𝑛 × 𝒗𝑛)
𝜕𝒗𝑛

(C.2)

𝜕𝒗𝑛+1
𝜕𝝎𝑛

= Δ𝑡𝑎2
m,𝑛

𝜕(𝝎𝑛 × 𝒗𝑛)
𝜕𝝎𝑛

(C.3)

𝜕𝒗𝑛+1
𝜕𝑎d,𝑛

= −2Δ𝑡𝑎d,𝑛 | |𝒗𝑛 | |𝒗𝑛 (C.4)

𝜕𝒗𝑛+1
𝜕𝑎m,𝑛

= 2Δ𝑡𝑎m,𝑛(𝝎𝑛 × 𝒗𝑛). (C.5)

Let us now consider the case where an impact has happened. First, it is important to note that the
impact time Δimp (and thus also the remaining time Δrem) depends on 𝒛𝑛 , in particular 𝑣z,𝑛 , as

Δimp = −
(︃
𝑣z,𝑛 +

√︂
𝑣2

z,𝑛 + 2𝑔zℎ

)︃
/𝑔z.

We can thus write
𝒛𝑛+1 = 𝑔free(ℎ(𝑔free(𝒛𝑛 ,Δimp(𝒛𝑛))),Δrem(𝒛𝑛))

and obtain
𝜕𝒛𝑛+1
𝜕𝒛𝑛

=
𝜕𝑔free(𝒛+ ,Δrem)

𝜕𝒛+⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝐽1

𝜕𝒛+

𝜕𝒛𝑛⏞⏟⏟⏞
𝐽2

+ 𝜕𝑔free(𝒛+ ,Δrem)
𝜕Δrem⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝐽3

𝜕Δrem
𝜕𝒛𝑛⏞ˉ⏟⏟ˉ⏞
𝐽4
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with 𝒛+ = ℎ(𝑔free(𝒛𝑛 ,Δimp(𝒛𝑛))). The term (𝐽1) = 𝑱𝒛(𝒛+ ,Δrem) is given by the Jacobian in
Equation C.1. For later use, we introduce the Jacobian

𝑱Δ𝑡 (𝒛𝑛 ,Δ𝑡) =
𝜕

𝜕Δ′𝑡
𝑔free(𝒛𝑛 ,Δ′𝑡)|Δ′𝑡=Δ𝑡 , (C.6)

given as
𝑱Δ𝑡 (𝒛𝑛 ,Δ𝑡) = (𝒗⊤𝑛 , (−𝑎2

d,𝑛 | |𝒗𝑛 | |𝒗𝑛 + 𝑎2
m,𝑛(𝝎𝑛 × 𝒗𝑛) + 𝒈)⊤ , 0, 0, 0)⊤.

With Equation C.6, (𝐽3) is given by 𝑱Δ𝑡 (𝒛+ ,Δrem). Next, we decompose 𝐽2:

𝜕𝒛+

𝜕𝒛𝑛
=

𝜕ℎ(𝒛−)
𝜕𝒛−⏞ˉ̄⏟⏟ˉ̄⏞
𝐽2.1

𝜕𝒛−

𝜕𝒛𝑛⏞⏟⏟⏞
𝐽2.2

As ℎ(𝒛−) = 𝑪′𝒛−, it follows that (𝐽2.1) = 𝑪′. For (𝐽2.2) we have to take into account that
𝑔free(𝒛𝑛 ,Δimp(𝒛𝑛)) is a function of the state 𝒛𝑛 and of the impact time, which again is a function
of 𝒛𝑛 :

𝜕𝒛−

𝜕𝒛𝑛
=

d𝑔free(𝒛𝑛 ,Δimp(𝒛𝑛))
d𝒛𝑛

=
𝜕𝑔free(𝒛𝑛 ,Δimp)

𝜕𝒛𝑛⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝐽2.2.1

+ 𝜕𝑔free(𝒛𝑛 ,Δimp)
𝜕Δimp⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝐽2.2.2

𝜕Δimp

𝜕𝒛𝑛⏞ˉ⏟⏟ˉ⏞
𝐽2.2.3

The terms (𝐽2.2.1), (𝐽2.2.2) are given by the Jacobians 𝑱𝒛(𝒛𝑛 ,Δimp) and 𝑱Δ𝑡 (𝒛𝑛 ,Δimp), respectively.
For (𝐽2.2.3), let us recapitulate the computation of the impact time

Δimp = −
(︃
𝑣z,𝑛 +

√︂
𝑣2

z,𝑛 + 2𝑔zℎ

)︃
/𝑔z

with ℎ = −((𝑝z,𝑛 − 𝑟) − ztable), i.e.,

Δimp = −
(︃
𝑣z,𝑛 +

√︂
𝑣2

z,𝑛 − 2𝑔z((𝑝z,𝑛 − 𝑟) − ztable)
)︃
/𝑔z

= −
(︃
𝑣z,𝑛 +

√︂
𝑣2

z,𝑛 − 2𝑔z𝑝z,𝑛 + 2𝑔z𝑟 + 2𝑔zztable

)︃
/𝑔z.

For the derivative w.r.t 𝒛𝑛 (𝐽2.2.3) it follows that

𝜕Δimp

𝜕𝒛𝑛
= [0, 0, 𝜕Δimp

𝜕𝑝z,𝑛
, 0, 0,

𝜕Δimp

𝜕𝑣z,𝑛
, 0, 0, 0, 0, 0]

with
𝜕Δimp

𝜕𝑝z,𝑛
=

1√︂
𝑣2

z,𝑛 − 2𝑔z𝑝z,𝑛 + 2𝑔z𝑟 + 2𝑔zztable

,

𝜕Δimp

𝜕𝑣z,𝑛
=
−1
𝑔z

⎛⎜⎜⎝1 + 𝑣z,𝑛√︂
𝑣2

z,𝑛 − 2𝑔z𝑝z,𝑛 + 2𝑔z𝑟 + 2𝑔zztable

⎞⎟⎟⎠ .
From Δrem = Δ𝑇 − Δimp, it follows that 𝜕Δrem

𝜕𝒛𝑛
= − 𝜕Δimp

𝜕𝒛𝑛
, which finally gives (𝐽4).



Appendix: Learning Temporally Extended
Skills for Planning D.

In the following we provide supplementary details and analysis of the approach. We give
details on the implementation of the single-player board game environments in Appendix D.1,
including splitting initial board configurations in train- and test splits (Appendix D.1.4). Details
on the implementation of the SEADS agent are given in Appendix D.2. Skill trajectories on the
Cursor and Reacher environments are shown in Appendix D.3. Appendix D.4 provides additional
details on the real robot experiment. Finally, we give additional details on the SAC, HAC, and
VIC baselines (Appendices D.5 and D.7) and the hyperparameter search for SAC and HAC
(Appendix D.8).

D.1. Environment details

D.1.1. Cursor environments

At the beginning of an episode, the position of the cursor is reset to 𝑥 ∼ 𝒰(0, 1), 𝑦 ∼ 𝒰(0, 1).
After a game move, the cursor is not reset. Both LightsOut and TileSwap board extents are
(𝑥, 𝑦) ∈ [0, 1] × [0, 1].

D.1.2. Reacher environments

At the beginning of an episode, the two joints of the Reacher are set to random angles𝜃 ∼ 𝒰(0, 2𝜋),
𝜙 ∼ 𝒰(0, 2𝜋). After a game move, the joints are not reset. Both LightsOut and TileSwap board
extents are (𝑥, 𝑦) ∈ [−0.15, 0.15] × [−0.15, 0.15]. The control simulation timestep is 0.02 s, and
we use an action repeat of 2.

D.1.3. Jaco environments

At the beginning of an episode and after a game move the Jaco arm is randomly reset above
the board. The tool’s (end effector) center point is randomly initialized to 𝑥 ∼ 𝒰(−0.1, 0.1),
𝑦 ∼ 𝒰(−0.1, 0.1), 𝑧 ∼ 𝒰(0.2, 0.4) with random rotation 𝜃 ∼ 𝒰(−𝜋,𝜋). The LightsOut board
extent is (𝑥, 𝑦) ∈ [−0.25, 0.25] × [−0.25, 0.25], the TileSwap board extent (𝑥, 𝑦) ∈ [−0.15, 0.15] ×
[−0.15, 0.15]. We use a control timestep of 0.1 s in the simulation.

D.1.4. Train-/Test-split

In order to ensure disjointness of board configurations in train and test split we label each board
configuration based on a hash remainder. For the hashing algorithm we first represent the
current board configuration as comma-separated string, e.g. 𝑠 = ”1, 1, 0, . . . , 0” for LightsOut and
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𝑠 = ”1, 0, 2, . . . , 8” for TileSwap. Then, this string is passed through a CRC32 hashing function,
yielding the split based on an integer division remainder

split =

{︄
train CRC32(𝑠) mod 3 = 0
test CRC32(𝑠) mod 3 ∈ {1, 2} (D.1)

D.2. SEADS architectural details

SAC agent

We use an open-source soft actor-critic implementation (Tandon, 2021) in our SEADS agent.
Policy and critic networks are modeled by a multilayer perceptron with two hidden layers with
ReLU activations. For hyperparameters, please see the table below.

{LightsOut, TileSwap }- Cursor Reacher Jaco Robot (LightsOut)

Learning rate 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

Target smoothing coeff. 𝜏 0.005 0.005 0.005 0.005
Discount factor 𝛾 0.99 0.99 0.99 0.99

Hidden dim. 512 512 512 512
Entropy target 𝛼 0.1 0.01 0.01 0.1

Automatic entropy tuning no no no no
Distribution over actions Gaussian Gaussian Gaussian Gaussian

D.3. Skill trajectories

In Figures D.1 and D.2 we provide visualizations of trajectories executed by the learned skills on
the Cursor and Reacher environments, respectively.
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k=0 k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8 k=9

k=10 k=11 k=12 k=13 k=14

k=15 k=16 k=17 k=18 k=19

k=20 k=21 k=22 k=23 k=24

(a) Skill trajectories on LightsOutCursor.

k=0 k=1 k=2 k=3

k=4 k=5 k=6 k=7

k=8 k=9 k=10 k=11

(b) Skill trajectories on TileSwapCursor.

Figure D.1.: Trajectories in Cursor-embedded environments for skills 𝑘 on 20 different environment initializations.
Colored lines show the 𝑥, 𝑦-coordinates of the Cursor, with the circular marker indicating the start position of the
skill. Black markers indicate locations where a “push" was executed, and green markers where the push has caused a
change in the symbolic state.
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k=0 k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8 k=9

k=10 k=11 k=12 k=13 k=14

k=15 k=16 k=17 k=18 k=19

k=20 k=21 k=22 k=23 k=24

(a) Skill trajectories on LightsOutReacher.

k=0 k=1 k=2 k=3

k=4 k=5 k=6 k=7

k=8 k=9 k=10 k=11

(b) Skill trajectories on TileSwapReacher.

Figure D.2.: Trajectories in Reacher-embedded environments for skills 𝑘 on 20 different environment initializations.
Colored lines show the 𝑥, 𝑦-coordinates of the Reacher end-effector, with the circular marker indicating the start
position of the skill. Black markers indicate locations where a “push" was executed, and green markers where the
push has caused a change in the symbolic state.
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D.4. Real robot experiment

For the real robot experiment we use a uArm Swift Pro robotic arm that interacts with a LightsOut
board game. The board game runs on a Samsung Galaxy Tab A6 Android tablet with a screen
size of 10.1 inches.

We mapped the screen plane excluding the system status bar and action bar of the app (blue
bar) to normalized coordinates (𝑥, 𝑦) ∈ [0, 1]. A third 𝑧 ∈ [0, 1] coordinate measures the
perpendicular distance to the screen plane, with 𝑧 = 1 approximately corresponding to a distance
of 10 cm to the screen. To control the robot arm, we use the Python SDK from (uArm-Developer,
2021), which allows to steer the end effector to

−→
𝑋 = (𝑋,𝑌, 𝑍) target locations in a coordinate

frame relative to the robot’s base.

As the robot’s base is not perfectly aligned with the tablet’s surface, e.g. due to the rear camera,
we employed a calibration procedure. We measured the location of the four screen corners in
(𝑋,𝑌, 𝑍) coordinates using the SDK’s get_positionmethod (by placing the end effector holding
the capacitive pen on the particular corners) and fitted a plane to these points minimizing the
squared distance. We reproject the measured points onto the plane and compute a perspective
transform by pairing the reprojected points with normalized coordinates (𝑥, 𝑦) ∈ {0, 1} × {0, 1}.
To obtain robot coordinates (𝑋,𝑌, 𝑍) from normalized coordinates (𝑥, 𝑦, 𝑧)we first apply the
perspective transform on (𝑥, 𝑦), yielding 𝑋̂ = (𝑋,𝑌, 𝑍 = 0). We subsequently add the plane’s
normal to (𝑋,𝑌, 𝑍) scaled by 𝑧 and an additional factor which controls the distance to the
tablet’s surface for 𝑧 = 1.

The state of the board is communicated to the host machine running SEADS via USB through
the logging functionality of the Android Debug Bridge. The whole system including robotic arm
and Android tablet is interfaced as an OpenAI Gym (Brockman et al., 2016) environment.

The action space of the environment is 3-dimensional 𝑎 = (Δ𝑥,Δ𝑦, 𝑝), with the first two actions
being positional displacement actions Δ𝑥,Δ𝑦 ∈ [−0.2, 0.2] and the third action 𝑝 ∈ [−1, 1]
indicating whether a “push" should be executed. The displacement actions represent incremental
changes to the robotic arm’s end effector position. In normalized coordinates the end effector
is commanded to steer to (clip(𝑥 + Δ𝑥, 0, 1), clip(𝑦 + Δ𝑦, 0, 1), 𝑧 = 0.3), where (𝑥, 𝑦) are the
current coordinates of the end effector. If the push action 𝑝 exceeds a threshold 𝑝 > 0.6, first
the end effector is displaced, followed by a push, which is performed by sending the target
coordinates (𝑥, 𝑦, 𝑧 = 0), (𝑥, 𝑦, 𝑧 = 0.3) to the arm subsequently. Thus, the SEADS agent has to
learn temporally extended skills which first locate the end effector above a particular board field
and then execute the push.

D.5. SAC baseline

We train the SAC baseline in a task-specific way by giving a reward of 1 to the agent if the board
state has reached its target configuration and 0 otherwise. At the beginning of each episode, we
first sample the difficulty of the current episode which corresponds to the number of moves
required to solve the game (solution depth 𝑆). For all environments 𝑆 is uniformly sampled
from {1, . . . , 5}. For all Cursor environments we impose a step limit 𝑇lim = 10 · 𝑆, for Reacher and
Jaco 𝑇lim = 50 · 𝑆. This corresponds to the number of steps a single skill can make in SEADS
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multiplied by 𝑆. We use a replay buffer which holds the most recent 1 million transitions and
train the agent with a batchsize of 256. The remaining hyperparameters (see table below) are
identical to the SAC component in SEADS; except for an increased number of hidden units and
an additional hidden layer (i.e., three hidden layers) in the actor and critc networks to account
for the planning the policy has to perform. In each epoch of training we collect 8 samples from
each environment which we store in the replay buffer. We performed a hyperparameter search
on the number of agent updates performed in each epoch 𝑁 and entropy target values 𝛼. We
also experimented with skipping updates, i.e., collecting 16 (for 𝑁 = 0.5) or 32 (for 𝑁 = 0.25)
environment samples before performing a single update. We found that performing too many
updates leads to unstable training (e.g., 𝑁 = 4 for LightsOutCursor). For all results and optimal
settings per environment, we refer to Appendix D.8.1. For the SAC baseline we use the same
SAC implementation from (Tandon, 2021) which we use for SEADS.

{LightsOut, TileSwap }- Cursor Reacher Jaco

Learning rate 3 · 10−4 3 · 10−4 3 · 10−4

Target smoothing coeff. 𝜏 0.005 0.005 0.005
Discount factor 𝛾 0.99 0.99 0.99

Hidden dim. 512 512 512
Entropy target 𝛼 tuned (see Appendix D.8.1)

Automatic entropy tuning no no no
Distribution over actions Gaussian Gaussian Gaussian

D.6. HAC baseline

For the HAC baseline we adapt the official code release (Levy, 2020). We modify the architecture
to allow for a two-layer hierarchy of policies in which the higher-level policy commands the
lower-level policy with discrete subgoals (which correspond to the symbolic observations 𝑧 in our
case). This requires the higher-level policy to act on a discrete action space𝒜high = 𝒵. The lower-
level policy acts on the continuous actions space𝒜low = 𝒜 of the respective manipulator (Cursor,
Reacher, Jaco). To this end, we use a discrete-action SAC agent for the higher-level policy and a
continuous-action SAC agent for the lower-level policy. For the higher-level discrete SAC agent
we parameterize the distribution over actions as a factorized reparametrizable RelaxedBernoulli
distribution, which is a special case of the Concrete (Maddison et al., 2017) / Gumbel-Softmax
(Jang et al., 2017) distribution. We use an open-source SAC implementation (Tandon, 2021) for
the SAC agent on both levels and extend it by a RelaxedBernoulli distribution over actions for
the higher-level policy.

D.6.1. Hyperparameter search

We performed an extensive hyperparameter search on all 6 environments ([LightsOut, TileSwap ]
× [Cursor, Reacher, Jaco ]) for the HAC baseline. We investigated a base set of entropy target values
𝛼low , 𝛼high ∈ {0.1, 0.01, 0.001, 0.0001} for both layers separately. On the Cursor environments we
refined these sets in regions of high success rates. We performed a hyperparameter search on
the temperature parameter 𝜏 of the RelaxedBernoulli distribution on the Cursor environments
with 𝜏 ∈ {0.01, 0.05, 0.1, 0.5} and found 𝜏 = 0.1 to yield the best results. For experiments on
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the Reacher and Jaco environments we then fixed the parameter 𝜏 = 0.1. We report results on
parameter sets with highest average success rate on 5 individually trained agents after 5 × 105

(Cursor) / 1 × 107 (Reacher, Jaco) environment interactions. We refer to Appendix D.8.2 for a
visualization of all hyperparameter search results.

Parameters for high-level policy

all environments

Learning rate 3 · 10−4

Target smoothing coeff. 𝜏 0.005
Discount factor 𝛾 0.99

Hidden layers for actor/critic 2
Hidden dim. 512

Entropy target 𝛼high tuned (see Appendix D.8.2)
Automatic entropy tuning no
Distribution over actions RelaxedBernoulli

RelaxedBernoulli temperature 𝜏 tuned (see Appendix D.8.2)

Parameters for low-level policy

all environments

Learning rate 3 · 10−4

Target smoothing coeff. 𝜏 0.005
Discount factor 𝛾 0.99

Hidden layers for actor/critic 2
Hidden dim. 512

Entropy target 𝛼high tuned (see Appendix D.8.2)
Automatic entropy tuning no
Distribution over actions Gaussian

D.7. VIC baseline

We compare to Variational Intrinsic Control (VIC, Gregor et al. (2017)) as a baseline method
of unsupervised skill discovery. It is conceptually similar to our method as it aims to find
skills such that the mutual information ℐ(𝑠𝑇 , 𝑘 | 𝑠0) between the skill termination state 𝑠𝑇 and
skill 𝑘 is maximized given the skill initiation state 𝑠0. To this end it jointly learns a skill policy
𝜋(𝑠𝑡 | 𝑎𝑡 , 𝑘) and skill discriminator 𝑞𝜃(𝑘 | 𝑠0 , 𝑠𝑇). We adopt this idea and pose a baseline to our
approach in which we model 𝑞𝜃(𝑘 | 𝑧0 , 𝑧𝑇) directly with a neural network, instead of modelling
𝑞𝜃(𝑘 | 𝑧0 , 𝑧𝑇) indirectly through a forward model 𝑞𝜃(𝑧𝑇 | 𝑧0 , 𝑘). The rest of the training process
including its hyperparameters is identical to SEADS. We implement 𝑞𝜃(𝑘 | 𝑧0 , 𝑧𝑇) by a neural
network which outputs the parameters of a categorical distribution and is trained by maximizing
the log-likelihood log 𝑞𝜃(𝑘 | 𝑧 𝑖0 , 𝑧 𝑖𝑇 𝑖 ) on transition tuples (𝑧 𝑖0 , 𝑘𝑖 , 𝑧 𝑖𝑇 𝑖 ) (see Subsection 7.3.4). We
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Figure D.3.: Number of discovered skills on the LightsOutCursor, TileSwapCursor environments for the SEADS
agent and variants of VIC (Gregor et al., 2017). Only SEADS discovers all skills reliably on both environments. See
Appendix D.7 for details.

experimented with different variants of passing (𝑧 𝑖0, 𝑧 𝑖
𝑇 𝑖

) to the network: (i) concatenation [𝑧 𝑖0,
𝑧 𝑖
𝑇 𝑖
] and (ii) concatenation with XOR [𝑧 𝑖0, 𝑧 𝑖

𝑇 𝑖
, 𝑧 𝑖0 XOR 𝑧 𝑖

𝑇 𝑖
]. We only found the latter to show

success during training. The neural network model contains two hidden layers of size 256 with
ReLU activations (similar to the forward model). We also evaluate variants of VIC which are
extended by our proposed relabelling scheme and second-best reward normalization. In contrast to
VIC, our SEADS agent discovers all possible game moves reliably in both LightsOutCursor and
TileSwapCursor environments, see Figure D.3 for details. Our proposed second-best normalization
scheme (+SBN, sec. 3) slightly improves performance of VIC in terms of convergence speed
(LightsOutCursor) and variance in number of skills detected (TileSwapCursor). The proposed
relabelling scheme (+RL, sec. 3) does not improve (LightsOutCursor) or degrades (TileSwapCursor)
the number of detected skills.

D.8. Results of hyperparameter search on HAC and SAC baselines

D.8.1. Results of SAC hyperparameter search

Please see Figures D.4 to D.9 for a visualization of the SAC hyperparameter search results.
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Figure D.4.: Test performance of SAC agents on the LightsOutCursor environment for varying number of update steps
per epoch (𝑁) and parameters 𝛼. We evaluate 5 individual agents per configuration. The best configuration is marked
in bold (𝑁 = 1, 𝛼 = 0.1).
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Figure D.5.: Test performance of SAC agents on the TileSwapCursor environment for varying number of update steps
per epoch (𝑁) and parameters 𝛼. We evaluate 5 individual agents per configuration. The best configuration is marked
in bold (𝑁 = 1, 𝛼 = 0.1).
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Figure D.6.: Test performance of SAC agents on the LightsOutReacher environment for varying number of update
steps per epoch (𝑁) and parameters 𝛼. We evaluate 5 individual agents per configuration. The best configuration is
marked in bold (𝑁 = 0.5, 𝛼 = 0.001).
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Figure D.7.: Test performance of SAC agents on the TileSwapReacher environment for varying number of update steps
per epoch (𝑁) and parameters 𝛼. We evaluate 5 individual agents per configuration. The best configuration is marked
in bold (𝑁 = 0.25, 𝛼 = 0.001).
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Figure D.8.: Test performance of SAC agents on the LightsOutJaco environment for varying number of update steps
per epoch (𝑁) and parameters 𝛼. We evaluate 5 individual agents per configuration. The best configuration is marked
in bold (𝑁 = 0.5, 𝛼 = 0.0001).
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Figure D.9.: Test performance of SAC agents on the TileSwapJaco environment for varying number of update steps per
epoch (𝑁) and parameters 𝛼. We evaluate 5 individual agents per configuration. The best configuration is marked in
bold (𝑁 = 0.5, 𝛼 = 0.0001).
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D.8.2. Results of HAC hyperparameter search

Please see Figures D.9 to D.13 for a visualization of the HAC hyperparameter search results.
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Figure D.9a: Test performance of HAC agents on the LightsOutCursor environment for varying values for Relaxed-
Bernoulli temperature 𝜏 and entropy targets 𝛼high , 𝛼low. We evaluate 5 individual agents per configuration. The best
configuration is marked in bold (𝜏 = 0.1, 𝛼low = 0.1, 𝛼high = 0.001).



152 D. Appendix: Learning Temporally Extended Skills for Planning

0

100
0.
5

su
cc
.r
at
e

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc
.r
at
e

0

100

0.
01

su
cc
.r
at
e

0

100

0.
00

1

su
cc
.r
at
e

0

100

0.
00

01

su
cc
.r
at
e

0 0.5M
Env. steps

0

100

1e
-0
5

su
cc
.r
at
e

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps



lo

w
=


high =

HAC, TileSwapCursor, temp 0.01

0

100

0.
5

su
cc
.r
at
e

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc
.r
at
e

0

100

0.
01

su
cc
.r
at
e

0

100

0.
00

1

su
cc
.r
at
e

0

100

0.
00

01

su
cc
.r
at
e

0 0.5M
Env. steps

0

100

1e
-0
5

su
cc
.r
at
e

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps



lo

w
=


high =

HAC, TileSwapCursor, temp 0.05



D.8. Results of hyperparameter search on HAC and SAC baselines 153

0

100

0.
5

su
cc
.r
at
e

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc
.r
at
e

0

100

0.
01

su
cc
.r
at
e

0

100

0.
00

1

su
cc
.r
at
e

0

100

0.
00

01

su
cc
.r
at
e

0 0.5M
Env. steps

0

100

1e
-0
5

su
cc
.r
at
e

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps



lo

w
=


high =

HAC, TileSwapCursor, temp 0.1

0

100

0.
5

su
cc
.r
at
e

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc
.r
at
e

0

100

0.
01

su
cc
.r
at
e

0

100

0.
00

1

su
cc
.r
at
e

0

100

0.
00

01

su
cc
.r
at
e

0 0.5M
Env. steps

0

100

1e
-0
5

su
cc
.r
at
e

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps



lo

w
=


high =

HAC, TileSwapCursor, temp 0.5

Figure D.9b: Test performance of HAC agents on the TileSwapCursor environment for varying values for Relaxed-
Bernoulli temperature 𝜏 and entropy targets 𝛼high , 𝛼low. We evaluate 5 individual agents per configuration. The best
configuration is marked in bold (𝜏 = 0.5, 𝛼low = 0.5, 𝛼high = 0.001).
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Figure D.10.: Test performance of HAC agents on the LightsOutReacher environment for varying values for the
entropy targets 𝛼high , 𝛼low and fixed RelaxedBernoulli temperature 𝜏 = 0.1. We evaluate 5 individual agents per
configuration. The best configuration is marked in bold (𝜏 = 0.1, 𝛼low = 0.0001, 𝛼high = 0.0001).
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Figure D.11.: Test performance of HAC agents on the TileSwapReacher environment for varying values for the entropy
targets 𝛼high , 𝛼low and fixed RelaxedBernoulli temperature 𝜏 = 0.1. We evaluate 5 individual agents per configuration.
The best configuration is marked in bold (𝜏 = 0.1, 𝛼low = 0.0001, 𝛼high = 0.0001).
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Figure D.12.: Test performance of HAC agents on the LightsOutJaco environment for varying values for the entropy
targets 𝛼high , 𝛼low and fixed RelaxedBernoulli temperature 𝜏 = 0.1. We evaluate 5 individual agents per configuration.
The best configuration is marked in bold (𝜏 = 0.1, 𝛼low = 0.001, 𝛼high = 0.001).
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Figure D.13.: Test performance of HAC agents on the TileSwapJaco environment for varying values for the entropy
targets 𝛼high , 𝛼low and fixed RelaxedBernoulli temperature 𝜏 = 0.1. We evaluate 5 individual agents per configuration.
The best configuration is marked in bold (𝜏 = 0.1, 𝛼low = 0.0001, 𝛼high = 0.001).
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