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Introduction

Psychophysiology has been growing increasingly important as an exper-

imental science that reveals the intricate relationships between psychological and

physiological processes (Birbaumer and Schmidt 2003). The peripheral psychophys-

iological responses – skin conductance, heart rate, the various electromyographic

reponces (EMG), etc. – constitute one of the three major components (physiolog-

ical, behavioral, cognitive) of any modern theoretical model of emotion (Öhman

and Birbaumer 1993). The investigation of the electrophysiological responses of the

central nervous system (CNS) plays an ever more important role in the study of

cognitive processess (Birbaumer and Schmidt 2003, pp. 492–503). The modern fun-

damental psychological research relies heavily on psychophysiological experimental

work.

Apart from its importance for testing the theoretical models of psychology, psy-

chophysiology has found various applications in psychological diagnostics, psy-

chotherapy, forensic psychology. Biofeedback training (Birbaumer and Rief 2000)

and the notorious lie detector (Lykken 1991) are only two of a plethora of examples

of how psychophysiological methods can be adopted for practical purposes.

The most popular applications of psychophysiology have used peripheral measures.

However, CNS electrophysiological responses and the methods of their measure-

ment and assessment as applied diagnostic methods of cognitive functioning have

been gaining increasing attention by neuroscientists and clinicians in the last decade.

Event-related brain potentials (ERPs) are the most popular kind of brain responses

9
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used in both fundamental and applied research. ERPs are extracted from the elec-

troencephalogram (EEG) and comprise various positive and/or negative waves (com-

ponents) of different duration that reflect the responses of the brain to changes

(events) in the external or internal environment of the organism (Picton and Hill-

yard 1988). ERPs are time-locked with certain latency to these events, which in the

most experimental paradigms are external stimuli of various complexity that are

presented visually or acoustically to the participants.

For about 15 years ERPs have been used for assessment of cortical information

processing in patients with severe disorders of consciousness, such as coma and veg-

etative state (Kotchoubey, Lang, Bostanov, and Birbaumer 2002). This technique

possesses two advantages that make it particularly important for the diagnostics

and prognosis of such patients. First, it has the highest possible temporal resolution

and follows cortical infomation processing in real time. Second, the technique is

very easy, so that ERPs can be recorded directly at a patient’s bedside practically

any time when necessary; the patient need not be especially prepared or moved

somewhere.

To date, a lot of data has been accumulated that many coma patients continue to

process information at different levels, as indicated by the ERP components P300

and the mismatch negativity (MMN) (Gott, Rabinovicz, and DiGiorgio 1991; Guerit,

Verougstraete, Tourtchaninoff, Debatisse, and Witdoeckt 1999; Kane, Moss, Curry,

and Butler 1998; Mutschler, Chaumeil, Marcoux, Wioland, Tempe, and Kurtz 1996;

Signorino, D’Acunto, Cercaci, Pietropaoli, and Angeleri 1997). The presence of these

components in some 20–50% of coma patients, as well as the prognostic value of the

ERP technique, is not questioned any longer (Fischer, Morlet, Bouchet, Luaute,

Jourdan, Salord, et al. 1999; Fischer, Morlet, and Giard 2000; Kane, Curry, Butler,

and Cummings 1993; Kane, Curry, Rowlands, Minara, Lewis, Moss, Cummins, and

Butler 1996; Kane, Butler, and Simpson 2000). The same diagnostic procedures have

been tested with completely paralyzed patients whose cognitive abilities cannot be

expressed in their behavior. The results show that these cognitive abilities, ranging
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from simple sine tone discrimination to speech perception, are grossly underesti-

mated by the initial neurological diagnosis and that the ERP technique (together

with other functional imaging techniques such as positron emission tomography

(PET)) can provide a better picture of the patient’s cognitive status (Kotchoubey,

Lang, Bostanov, and Birbaumer 2002; Kotchoubey, Lang, Baales, Herb, Maurer,

Mezger, Schmalohr, Bostanov, and Birbaumer 2001; Kotchoubey, Lang, Bostanov,

and Birbaumer 2003; Laureys, Faymonville, Degueldre, Fiore, Damas, Lambermont,

Janssens, Aerts, Franck, Luxen, Moonen, Lamy, and Maquet 2000).

All of the experimental and theoretical work presented in this dissertation has

been inspired by the general idea of applying the ERP technique for practical pur-

poses: cognitive diagnostics (Kotchoubey et al. 2002) and Brain-Computer Inte-

faces (BCI; Farwell and Donchin 1988; Birbaumer, Ghanayim, Hinterberger, Iversen,

Kotchoubey, Kübler, Perelmouter, Taub, and Flor 1999) for paralyzed people. As

it often happens, this markedly applied research has also produced some valuable

general results, whose importance goes beyond the particular applications. Most of

the results presented here, are described and discussed from the wider perpective

of fundamental research rather than with regard to the clinical applications. The

reason for this approach is that thus far, the developed methods have only been

demonstrated with healthy persons and have not yet been tested enough (or at all)

with patients.

Organization and Overview of the Dissertation

In Chapter 1, two new ERP paradigms are introduced, which were developed for the

diagnostics of a particular cognitive function – the recognition of affective prosody,

especially emotional voice quality. A new ERP component, the N300, is found to

reflect this recognition process. The N300 is interpreted as analogical to the well

known N400 response to semantically inappropriate words.
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Chapters 2 and 3 address the important issue of ERP component detection and

quantification mostly from the perspective of individual data assessment, which is

crucial for any reliable ERP diagnostics. Chapter 2 shows how the Continuouis

Wavelet Transform (CWT) can be used in ERP data analyses. A novel assessment

method, the total-average-CWT, is introduced and demonstrated on the ERP data

acquired in the emotional prosody experiments presented in Chapter 1. The results

show a clear superiority of the CWT method to the standard assessment methods.

In Chapter 3 a new ERP assessment method is introduced – the t-CWT, which is

based on the CWT and Student’s t-statistic. It is a largly improved version of the

total-average-CWT method presented in Chapter 2. The t-CWT is demonstrated

on two prototypical ERP paradigms – oddball and semantic priming – and its power

is compared to the power of various other assessment procedures – area measure-

ment and peak picking, Principal Component Analysis (PCA), Discrete Wavelet

Transform (DWT).

In Chapter 4, the detection and quantification method introduced in Chapter 3,

the t-CWT, is applied in the classification of ERP trials for the purposes of BCI.

In this application, the t-CWT is used as a general feature extraction method,

which provides the optimal variables describing the pattern that best discriminates

between the ERPs reflecting different cognitive processes. The method has been

validated in the International BCI Classification Contest 2003, where it was a winner

(provided best classification) on two ERP data sets acquired in two different BCI

paradigms – P300 speller and Slow Cortical Potential (SCP) feedback. These results

are presented in Chapter 4.

Acknowledgement
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A Note Added after Submission of the Dissertation

The results of the studies presented in this dissertation were reported in three journal

articles one of which is still in preparation and two were published after the sub-

mission of the dissertation. The studies on affective prosody described in Chapter 1

and the total-average CWT method described in Chapter 2 were reported in an arti-

cle published in March 2004 in Psychophysiology (Bostanov and Kotchoubey 2004).

The BCI applications of the t-CWT method described in Chapter 4 were reported

in a paper for the Special Issue on Brain-Machine Interfaces of IEEE Trancastions

on Biomedical Engineering from June 2004, where the results of the BCI Competi-

tion 2003 were published (Bostanov 2004). The applications of the t-CWT in the

ERP assessment and diagnostics described in Chapter 3 were reported in an article

currently still in preparation, which will be submitted to Clinical Neurophysiology.
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Chapter 1

Recognition of Affective Prosody:

ERPs to Emotional Exclamations

The affective state of a speaker can be identified from the prosody of her/his speech. Voice
quality is the most important prosodic cue for emotion recognition from short verbal utter-
ances and nonverbal exclamations, the latter conveying pure emotion, void of all semantic
meaning. In the study presented in this chapter, two context violation paradigms, pas-
sive oddball and priming, were adopted for the study the ERPs reflecting this recognition
process. A new negative wave, the N300, was found in the ERPs to contextually incon-
gruous exclamations. This component was interpreted as analogical to the well known
N400 response to semantically inappropriate words. The N300 appears to be a real-time
psychophysiological measure of spontaneous emotion recognition from vocal cues, which
could prove a useful tool for the examination of affective-prosody comprehension for the
purposes of both fundamental psychological research and applied clinical diagnostics.

1.1 Introduction

In the beginning was the Scream and the Scream became a Word.1 This may

well be the evolution theorist’s version of the story about the genesis of language.

All birds and mammals have a large repertoire of vocal and bodily signals (displays)

to express their motives and emotions (Darwin 1872; Scherer and Kappas 1988).

1In analogy with: ”In the beginning was the Word, and the Word was with God, and the Word
was God.” John 1.1. The New Oxford Annotated Bible. New Revised Standard Version, Oxford
University Press, New York (1991).

15
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Primates show some elements of semantic communication, uttering for instance, dif-

ferent cries of fear in the face of different kinds of danger (Seyfarth, Cheney, and

Marler 1980). Chimpanzees are even capable of learning some elementary proposi-

tional language and rudimentary abstract thinking (Premack 1971). Yet humans are

the only speaking creatures. Even they, however, use nonverbal utterances rather

than words, to express intense or sudden emotions (Goffman 1978). Humans have

inherited such screams, squeaks, moans, growls, etc., termed ”sounds of nature”

(Naturlaute), ”interjections”, ”emotional vocalizations”, ”response cries” or ”affect

bursts”, from their ancestors in evolution and these sounds, together with facial

expressions and bodily gestures, comprise the most natural and ancient language

of emotion communication whose expressiveness no words can ever achieve (Scherer

1994; Scherer 1985). These behavioural patterns seem to be quite similar in hu-

mans and lower primates – naive human listeners can identify correctly some basic

emotions from monkey vocalizations (Leinonen, Linnankoski, Laakso, and Aulanko

1991; Linnankoski, Laakso, Aulanko, and Leinonen 1994).

Although nonverbal affective exclamations are used relatively rarely in human ev-

eryday social communication, spoken language still possesses a variety of nonverbal

means to express emotions (Banse and Scherer 1996). These paralinguistic features

make up the affective, or emotional prosody of speech2. The ability to identify the

speaker’s emotions from prosodic cues is a distinct cognitive function, which is often

impaired in neurological patients with right brain damage (RBD) (Ross, Thomp-

son, and Yenkosky 1997). Neuropsychological research has shown that certain right

hemispheric lesions may even cause complete loss of this ability (sensory aprosodia)

without any significant impairment of other cognitive functions (Ross 1981). A dou-

ble dissociation has been found between comprehension of emotional prosody and

identification of affective facial expressions (Adolphs and Tranel 1999; Anderson and

Phelps 1998). The former function is associated with the right posterior sylvian cor-

tices (Ross, Orbelo, Burgard, and Hansel 1998), and the latter – with the amygdala

2Affective prosody stands in opposition to linguistic prosody, which serves semantic purposes,
e.g. discriminating an assertion from a question.
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(Adolphs, Tranel, Damasio, and Damasio 1994). Emotional-prosody comprehension

is a cognitive function of high clinical importance. Besides in RBD, it has been found

impaired in various neurological and psychic disorders: Parkinson’s disease (Breiten-

stein, Daum, and Ackermann 1998), Huntington’s disease (Speedie, Brake, Folstein,

Bowers, and Heilman 1990), schizophrenia (Ross, Orbelo, Cartwright, Hansel, Bur-

gard, Testa, and Buck 2001), alcoholism (Monnot, Nixon, Lovallo, and Ross 2001),

depression (Emerson, Harrison, and Everhart 1999), attention-deficit and hyperac-

tivity disorder (Manassis, Tannock, and Barbosa 2000), alexithymia (Lane, Sechrest,

Riedel, Weldon, Kaszniak, and Schwartz 1996).

Unfortunately, the term ”prosody” is often understood in a narrower sense, referring

to the suprasegmental features of speech defined only on a large time scale, that

is, pitch and loudness contours and speech and articulation rates (Crystal 1969;

Breitenstein, Daum, and Ackermann 1998). In this sense it does not include voice

quality, which is defined on a small time scale and is acoustically described by

the spectral characteristics (timbre) of the vocal sound signal, as well as by rapid,

possibly aperiodical changes in frequency which are not perceived as inflections, but

rather as specific vibrations or harshness of the voice (Laver 1980). Clearly, the

shorter an emotional utterance (verbal or nonverbal) is, the less prosodic features

are present in the narrow sense of the term, and the more important the voice

quality is for affect recognition. Thus, it is reasonable to hypothesize that short

exclamations convey emotion predominantly by voice quality. Furthermore, Scherer

(1986) suggested that voice quality is the key to the differentiation of emotions in

affective speech.

On the other hand, the term ”sensory aprosodia”, as introduced by Ross (1981),

denotes impaired comprehension of all affective components of language, including

emotional voice quality. RBD patients were found equally impaired in affect recog-

nition from sentences and single-segment nonverbal utterances (”aaaahhhhhhh”) as

tested by the Aprosodia Battery (Ross, Thompson, and Yenkosky 1997). This find-

ing suggests that they missed all affective prosodic cues, including voice quality,



18 ERPs in Emotion Perception, Cognitive Assessment, and BCI

which is probably the main medium of emotion in short unisegmental vocalizations.

There is apparently some inconsistency in definitions, which is perhaps one reason

why voice quality has received so little attention from neuroscientists.

Phonetics defines voice quality in terms of settings. One possible definition of a

setting is: a long-term average configuration of the vocal organs, biasing all speaker’s

phonation and articulation for a certain time period (Laver 1980). Thus settings

cause audible variations of those acoustical parameters, which constitute the physical

description of voice quality. Settings can be controlled either deliberately by the

speaker, or reflexively by physiological changes (muscle tension, etc.) triggered by

his or her affective state (Laver 1980; Scherer 1986; Scherer 1994). In the latter

case, we can hypothesize that the same settings are at work in nonverbal and verbal

utterances and that emotional vocalizations and emotional speech share the same

or similar voice quality and, possibly, other prosodic features as well.

In conclusion we can summarize the tree most important features of nonverbal emo-

tional exclamations. First, they convey the speaker’s affective state much better

than words do. Second, they most probably abstract some key prosodic features,

primarily the voice quality, of (verbal) emotional speech. And third, the underlying

physiological mechanisms are similar in all primates.

1.2 Experiments

Event-related brain potentials (ERP) have proved extremely useful in studying nor-

mal (Kutas and Hillyard 1980) and impaired (Hagoort, Brown, and Swaab 1996) se-

mantic speech comprehension, as well as the processing of linguistic prosody (Stein-

hauer, Alter, and Friederici 1999). ERP components of latency from about 200ms

to 500ms are perfectly suited for testing affect recognition from short, one-syllable

verbal or nonverbal utterances, because the voice quality, which can be regarded

as the main medium of emotion in this case, is present and perceivable from the
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very onset of a vocalization. This allows for good time locking and, consequently,

small variance in ERP component latencies. However, only few studies have em-

ployed ERPs to investigate recognition of emotional voice quality in particular and

affective prosody in general. Twist, Squires, Spielholz, and Silverglide (1991) inves-

tigated ERPs to emotional prosodic stimuli in an oddball task. The participants

listened to one-syllable words spoken with neutral (frequent stimuli) and surprised

(rare, target stimuli) intonation. They were instructed to press a button on the

occurrence of the rare, emotional stimuli. The P300 ERP component to the targets

had a diminished amplitude and delayed latency in RBD patients compared to left

BD patients and healthy controls. Erwin, Van Lancker, Guthrie, Schwafel, Tan-

guay, and Buchwald (1991) tested emotion recognition in autistic participants and

found a surprisingly normal P300 response to the rare targets in an oddball task

with happy and angry prosodic stimuli. However, since only two different stimuli

were presented in the latter experiment, participants might have discriminated them

merely by their physical differences and occurrence frequencies (see below).

Other researchers addressed lateralization issues in affective prosody processing.

Erhan, Borod, Tenke, and Bruder (1998) investigated ERPs to emotionally spoken

nonsense syllables in a dichotic listening task. Pihan, Altenmuller, and Ackermann

(1997) and Pihan, Altenmuller, Hertrich, and Ackermann (2000) studied direct-

current (DC) components of the electroencephalogram (EEG) acquired during lis-

tening to sentences with different emotional prosody.

The main purpose of the study presented in this chapter was to find a reliable,

real-time psychophysiological measure of immediate and spontaneous recognition of

affective prosody, specifically emotional voice quality, presumably captured in its

purest and prototypical form, as extant in exclamations. Using nonverbal vocal-

izations as stimulus material should also prevent the production of any linguistic

prosody on the part of the speaker, which may confound the subsequent acoustical

analysis of affective prosody (Leinonen et al. 1997). On the part of the listener, it

forestalls any semantic processing, which possibly interferes with emotion recogni-
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tion. Moreover, as already mentioned, emotional exclamations are a language per

se and hence deserve special interest in their own right.

An active oddball task (with an instruction defining the targets) has two important

disadvantages: first, it tests discrimination rather than recognition, and second, dis-

crimination could be achieved mainly on the basis of physical differences between,

and occurrence frequencies of, the two acoustic signals without making much use of

their emotional connotation. (However, the poorer performance of the RBD partic-

ipants reported by Twist et al. (1991) suggests at least some affect discrimination

along with physical discrimination in the active prosodic oddball task.) That is why,

in this study, two other paradigms, based on context violation rather than on stimu-

lus infrequency or novelty, were adopted for the investigation of emotion recognition.

An important feature of meaningful stimuli is that they can build a context, which

induces some expectations about the next-coming stimuli. For instance, when one

hears the sentence: ”He spread the warm bread with...”, one expects the usual end-

ing, ”butter”, and when the unexpected word ”socks” comes instead, the cognitive

processes related to the context violation are reflected by the N400 ERP compo-

nent in one’s EEG (Kutas and Hillyard 1980). This effect has been replicated many

times with various kinds of visual and acoustic stimuli: written and spoken words

and sentences (Bentin, McCarthy, and Wood 1985; Bentin, Kutas, and Hillyard

1993; Kutas and Hillyard 1980; McCallum, Farmer, and Pocock 1984), pictures of

objects (McPherson and Holcomb 1999) and human faces (Jemel, George, Olivares,

Fiori, and Renault 1999), environmental sounds (Van Petten and Rheinfelder 1995),

etc..

1.2.1 Oddball

If in a passive oddball paradigm (without any specific task) two categories of stimuli

are presented instead of two single stimuli, the rare stimuli may elicite an N400 rather

than a P300 (Schlaghecken 1998). The stimuli must have some meaning, so that the
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frequent stimuli generate a context and provoke some expectations, which are then

broken by the occurrences of the deviant stimuli. By the same mechanism, an N400

to rare, incongruous, non-target stimuli can be found in an active oddball (Bentin,

Mouchetant-Rostaing, Giard, Echallier, and Pernier 1999).

The first experiment of the present study was a passive oddball with emotional vo-

calizations. The category of the frequent stimuli comprised four exclamations of joy:

”Yeeh!”, ”Heey!”, ”Wowh!” and ”Oooh!”. A single exclamation of woe: ”Oooh!”,

served as a deviant stimulus. All five exclamations had the same occurrence fre-

quency of 20%. The same vowel ”o” was purposefully chosen for both the sad

exclamation and one of the joyful exclamations – without an active instruction to

assign one of the vocalizations as a target, there was no clearly defined rare stimu-

lus. Thus the expressed emotion was the only feature distinguishing ”Oooh!” (woe)

as deviant. The context violation effect was readily discernable: Listening to the

(randomized) stimulus sequence gave the impression of a man who was expressing

his joy, but now and then unexpectedly uttered a sound of despair and deep sorrow.

(Note the difference between this design and the standard passive oddball paradigm

with only two meaningless sine tones presented in Chapter 3.)

The experiment still shared some of the shortcomings of a standard oddball

paradigm. First, emotional differences were inevitably expressed by some physi-

cal parameters which left at least the theoretical possibility of ”mechanical”, rather

than, or along with, emotion discrimination. Second, only two mutually converse

emotions were included, which raised the question, whether woe was really sponta-

neously recognized, or it was merely inferred by discrimination, possibly based more

on different arousal level than on valence (Banse and Scherer 1996). And third, since

joy is a positive emotion and woe is a negative one, the question arose whether the

ERP to the rare stimulus was not in fact valence-specific, and reflecting motivational

evaluation rather than, or along with, recognition processes (Ito, Larsen, Smith, and

Cacioppo 1998).
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1.2.2 Priming

The second experiment was aimed to replicate the results of the first experiment and

to answer the three open questions that were formulated above. A paradigm from

the study of Van Petten and Rheinfelder (1995), which demonstrated the concep-

tual relationships between spoken words and environmental sounds, was adopted.

In that study, an N400 was found to sounds preceded by inconsistent words, e.g.

a sound of helicopter rotor (target) preceded by the word ”dog” instead of ”heli-

copter” (prime). In the priming experiment described in this chapter, 9 different

spoken emotion names were presented as primes and 9 corresponding emotional

vocalizations were presented as targets. The inconsistent combinations were: ”joy”-

[grief], ”pleasure”-[rage], ”surprise”-[disappointment], ”disappointment”-[surprise],

”grief”-[joy], ”disgust”-[terror], ”rage”-[fright], ”fright”-[pleasure], and ”terror”-[dis-

gust]. (Square brackets denote an exclamation expressing the respective emotion.)

By taking words rather than vocalizations as primes, any possible priming by phys-

ical features was forestalled. Including a number of different emotions was thought

to engender more recognition and less simple discrimination. Finally, by construct-

ing three types of inconsistent pairs: positive-[negative], negative-[positive], and

negative-[negative], it is aimed to ensure that the elicited ERP response was not

valence-specific.

1.3 Methods

1.3.1 Participants

There were 19 participants (10 male, 9 female, mean age ≈ 26 years) in the oddball

experiment and 29 participants (16 male, 13 female, mean age ≈ 23 years) in the

priming experiment. According to self report, all participants were right-handed,

their mother tongue was German and none of them had a history of mental or neuro-
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logical diseas. Most of them were students and all were paid for their participation

(15DM/hour). None of the participants in the first experiment took part in the

second one.

1.3.2 Stimuli

All stimuli were recorded digitally at 22.05kHz/16bit sampling rate. All exclama-

tions were uttered by the first author – male, non-native German speaker (Bulgarian)

– and the emotion names were spoken by a female, native German speaker. Neither

of the speakers was a professional actor. Stimulus duration varied from 750ms to

870ms in the oddball and from 630ms to 980ms in the priming experiment. In the

oddball, ”Oooh!” (woe) and ”Oooh!” (joy) had approximately the same duration

≈ 840ms. In the priming, the longest emotion name, ”disappointment” (German:

”Enttäuschung”), lasted approximately 790ms.

1.3.3 Procedure

In the oddball experiment, each of the 5 exclamations occurred 60 times in a ran-

domized sequence of 300 trials, which were presented at a constant rate of 1 stimulus

per 1.1s. The word-exclamation pairs in the priming experiment were presented in a

randomized sequence of 108 pairs, where each of the nine exclamations was repeated

12 times – 6 times preceded by the correct emotion name and 6 times preceded by

a wrong name. The stimulus onset asynchrony between a word and an exclamation

was 1s and the presentation rate was 1 pair per 3s. Digitized EEG (time resolution:

2ms/step (500Hz), voltage resolution: 0.1678µV/step) was continuously recorded

from 9 scalp positions according to the 10-20 system: Fz, Cz, Pz, F3, F4, C3, C4,

P3, P4. In the oddball, all electrodes were referenced to the linked mastoids; in the

priming the nose was used as reference and subsequent off-line rereferencing to the

mastoids did not yield any considerable change in results. Electrical eye activity
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was recorded by bipolar acquisition from the following sites: FP2 and a site below

the right eye – for vertical eye movements and eye blinks; F7 and F8 – for horizontal

eye movements.

In both experiments, the only instruction given to the participants was to listen

attentively. At the end of each experiment the participants were asked to describe

in detail what they had heard (verbal reports).

1.3.4 Data Analysis

The acoustic features of the oddball stimuli were analyzed with the short-time

Fourier Transform (STFT). The EEG was filtered on-line (bandpass: 0.1Hz-70Hz,

notch: 50Hz). EEG epochs were created off-line. Eye-blink and eye-movement

artefacts, both vertical and horizontal, were corrected off-line by a computerized

procedure (Miller, Gratton, and Yee 1988; Gratton, Coles, and Donchin 1983). Tri-

als with voltage exceeding 90µV in any EEG channel were considered artefacts and

were excluded from further analysis. Averages for each participant as well as grand

averages over all participants were calculated for each experimental condition using

a 100ms prestimulus baseline.

All ERP components were detected by visual inspection of the grand average wave-

forms and quantified with the classical area and peak measures obtained from the

individual-participant averages. The area measure was computed as the average

voltage in a time window determined by visual inspection of the grand average

waveforms. The peak measure was defined as the maximum voltage in the same

time window for positive ERP components and as the minimum value for negative

waves.

The ERP components were also quantified by wavelet measures. The corresponding

theory and the obtained results from participant-average and single-trial analyses

are presented in Chapter 2.
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All ERP measures were tested for statistical significance by three-way analyses of

variance (ANOVA) with factors: condition(2) × FCP(3) × LMR(3), where FCP

abbreviates: frontal/central/parietal, and LMR abbreviates: left/mid/right. The

experimental conditions were ”Oooh”(joy)/”Oooh!”(woe) in the oddball (the other

joyful exclamations were not considered) and consistent/inconsistent in the priming.

FCP and LMR were taken as within-participant or within-trial factors, whereas the

experimental condition was taken as a within-participant factor for the participant-

average ERP measures. Left/right and frontal/parietal asymmetries were studied

by linear contrasts; predominance at the vertex Cz was studied by quadratic con-

trasts. (With threefold topography factors, a main effect or an interaction with the

condition factor may reflect either an asymmetry or a central deviation, or both;

contrasts specify which of the three is true.)

The area and peak computations were performed with MATLAB 6.0, and the

ANOVAs – with SPSS 11.0.

1.4 Results

For the sake of brevity and clarity, only significant ANOVA probability values (p-

values) and no effect sizes are reported.

1.4.1 Oddball

Verbal reports

All participants identified correctly the emotions expressed by the presented excla-

mations. ”Yeeh!”, ”Heey!”, ”Wowh!” and ”Oooh!” (joy) were described as ”cheer-

ful”, ”joyful”, ”merry”, expressing ”pleasure”, ”positive surprise”, ”admiration”.

”Oooh” (woe) was described as ”mourning”, ”suffering”, expressing ”grief”, ”des-
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peration”, ”pain”.

Acoustical analysis

Figure 1.1 shows that emotional voice quality, and more precisely emotional timbre,

was the only prosodic feature which distinguished ”Oooh!” (woe) from the joyful

exclamations.
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Figure 1.1: STFT spectrograms of the first 200ms of each of the exclamations in the
oddball experiment. Darker shades indicate higher intensities. The first dark stripe
from the bottom represents the fundamental frequency f0, the second represents the
first harmonic f1, etc. Two principal spectral parameters discriminating between
the emotions are readily discernable: first, the energy distribution between f0 and
f1 is in favour of f0 for joy and clearly in favour of f1 for woe, and second, the
proportion of energy contained in frequencies above f11 (≈ 4.5kHz) is also fairly
larger for woe than for joy. Other acoustic parameters – f0-mean (pitch), f0-contour
(intonation), amplitude envelope (accentuation), – vary among all exclamations and
have approximately mean values for ”Oooh!” (woe).

ERP measures

The ERP components found in the waveforms can be seen in Figure 1.3. The direct

comparison between ”Oooh!” (woe) and ”Oooh!” (joy) at Fz is shown in Figure 1.2.

The N300 amplitude was significantly larger for ”Oooh!” (woe) than for ”Oooh!”

(joy) by the main effect of condition with the area measure measure (p = 0.03)

but not with the peak measure. No significant topographic effects (as analysed by
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Figure 1.2: Grand average waveforms at Fz for ”Oooh!” (woe) and ”Oooh!” (joy)
in the oddball experiment. The ERP to ”Oooh!” (joy) is almost the same as the
average of all 4 joyful exclamations (see Figure 1.3).

quadratic contrasts) were found for the N300 component with either the area or the

peak measure (but see Chapter 2).

The N600 amplitude was significantly larger for ”Oooh!” (woe) than for ”Oooh!”

(joy) at frontal sites by the condition×FCP interaction with both participant-

average measures: area (p = 0.03) and peak (p = 0.04). No significant topographic

effects (as analysed by quadratic contrasts) were found for the N600 component with

either the area or the peak measure (but see Chapter 2).

The P1000 amplitude was significantly larger for ”Oooh!” (woe) than for ”Oooh!”

(joy) at frontal sites by the main effect of condition with the peak measure (p = 0.04),

but not with the area measure, as well as by the condition×FCP interaction with

area measure (p = 0.01), but not with the peak measure.

No significant lateralization (linear-contrast effects of LMR or LMR×condition) was

found for any of the components (even with the single-trial wavelet measures, see

Chapter 2).
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Figure 1.3: Grand average waveforms for the 4 joyful exclamations: ”Yeeh!”,
”Heey!”, ”Wowh!”, ”Oooh!” (all 4 averaged together), and for the doleful one:
”Oooh!”, in the oddball experiment. Besides the P50/N100/P200 complex, three
further prominent ERP components can be distinguished: N300 – an early nega-
tive wave with peak latency ≈ 300ms, duration ≈ 100ms, peak-to-peak amplitude
≈ 1.5µV, and broad scalp distribution; N600 – a later, slower negative wave with
latency ≈ 600ms, duration ≈ 400ms, and centro-frontal distribution; P1000 – a
late positive wave with latency ≈ 1000ms, duration ≈ 150ms, and centro-frontal
distribution.
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1.4.2 Priming

Verbal reports

All participants in the priming experiment identified consistent and inconsistent

word-exclamation pairs and reported that each of the 9 emotional words was followed

some times by the corresponding vocalization and some times by (an) inappropriate

one(s).

ERP measures

The ERP components found in the waveforms can be seen in Figure 1.4.

The N300 amplitude was significantly larger for the inconsistent vocalizations by the

main effect of condition with the peak measure (p = 0.03), but not with the area

measure. No significant topographic effects (as analysed by quadratic contrasts)

were found for the N300 component with either the area or the peak measure (but

see Chapter 2).

No significant effects were found for the P500 component with either the area or the

peak measure (but see Chapter 2).

No significant lateralization (linear-contrast effects of LMR or LMR×condition) was

found for any of the components (even with the single-trial wavelet measures, see

Chapter 2).

The significance of the N300 effect was also tested separately for each of the three

kinds of word-exclamation pairs: positive-[negative] (”joy”-[grief], ”pleasure”-[rage],

”surprise”-[disappointment]), negative-[positive] (”grief”-[joy], ”fright”-[pleasure],

”disappointment”-[surprise]), and negative-[negative] (”disgust”-[terror], ”rage”--

[fright], ”terror”-[disgust]). No significant effects were found with either the area

or the peak measure (but see Chapter 2).
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Figure 1.4: Grand average waveforms for the consistent and inconsistent exclama-
tions in the priming experiment. Besides the P50 and the N100, two further ERP
components can be seen: an N300 very similar to the one elicited by the sad ex-
clamation in the oddball, and a P500 - a positive wave with latency ≈ 500ms and
duration ≈ 150ms.
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1.5 Discussion

The verbal reports confirmed that participants identified all emotions correctly. The

results of the acoustical analysis support the hypothesis that nonverbal vocalizations

convey emotion primarily by voice quality.

An early negative ERP component, the N300, was elicited both by the deviant emo-

tional exclamations in the passive oddball paradigm and by the inconsistent affect

vocalizations in the priming experiment. The most plausible interpretation of the

N300 is an early, well time-locked N400-like wave, which reflects cognitive processes

related to context violations and broken expectations and thus implies emotion

recognition from the prosodic features of the nonverbal stimuli. As discussed above

(see Experiments), the finding of an N400-like response to the meaningful infre-

quent stimuli in a passive oddball paradigm is hardly surprising – apparently, the

frequent joyful exclamations served as a context background for the incongruous,

rare, doleful exclamation. The occurrence of the N300 in the ERP to both positive

and negative inconsistent exclamations contradicts the hypothesis of valence speci-

ficity of this component. The short latency and duration of the N300 indicate rapid

affect recognition based primarily on the voice quality of the first 100-150ms of the

exclamations. This result is consistent with an earlier finding of emotion recognition

from extremely short voice samples with duration < 100ms (Pollack, Rubenstein,

and Horowitz 1960).

The most similar design to the present priming experiment among the earlier N400

studies is the above-cited study of environmental sounds by Van Petten and Rhe-

infelder (1995) (see Experiments). The N400 reported there had the same onset

latency ≈ 200ms, but a much longer duration (≈ 700ms) than the duration of the

N300 (≈ 100ms) found by us. This may be due to a large latency variance of the

negative wave elicited by incongruous sounds. As it has already been pointed out

above, emotional exclamations are apparently recognized very rapidly by their onset

voice quality, while other environmental sounds may be impossible to identify from
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their onset acoustics. This was surely true for at least one of the sounds described

by Van Petten and Rheinfelder (1995): ”horse hooves striking pavement”. (At least

two consecutive strokes need to be processed in order to classify this stimulus as

congruous or incongruous and perhaps even more are necessary for correct identifi-

cation – nowadays this particular sound is not so commonplace in our environment).

Such hard-to-recognize sounds would elicit a brain response with much later onset

and peak latency than easy-to-recognize sounds like affective vocalizations. It is rea-

sonable to suppose that the resulting ERP component in the average waveform of all

different environmental sounds (which in the study by Van Petten and Rheinfelder

(1995) were 99) would have onset latency determined by the easiest-to-recognize

stimuli, whereas its duration would be determined by the hardest-to-recognize stim-

uli. The ERP peak latency would be determined by the most frequent stimulus

recognition latency. Furthermore, the variance in the recognition point across stim-

uli is not the only possible source of latency variance – it is plausible that there

was considerable variance in identification time across participants. With 99 dif-

ferent sounds presented, it is unlikely that all of them were equally familiar to all

participants. Apparently, the opposite holds for emotional exclamations – the short

duration of the N300 suggests that all affective stimuli presented in the present

experiments were identified equally rapidly by all participants.

A more careful visual inspection of the ERP to incongruous environmental sounds in

the study of Van Petten and Rheinfelder (1995) may give rise to another interesting

interpretation. Actually, two separate negative waves can be seen in the waveform:

a narrow peak at approximately 300ms, closely resembling the N300 found in the

present study, and an immediately following later wave with much longer dura-

tion, like the N400 to incongruous words. When words were presented second in

pair, preceded by related or unrelated sounds, the resulting N400 showed no such

morphological differentiation. However, the authors reported and discussed in both

cases only one, undivided N400 with onset latency ≈ 200ms and long duration.

Assuming that the ERP to incongruous environmental sounds really comprises two
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distinct components, the following possible interpretation may be suggested: The

early component is actually an N300 like the N300 to incongruous exclamations

found in the present study. It reflects the rapid recognition of the easy-to-recognize

sounds from thier onset acoustics. The second wave reflects a more elaborate recog-

nition process analysing the complicated temporal structure of the sound signals. In

the case of simple emotional exclamations there is nothing more left to learn from

the signals after the initial recognition of the expressed affect, and hence there is

no second process and no second ERP component. Such interpretation is based on

the notion that emotional exclamations are qualitatively different from most other

environmental sounds – while exclamations usually convey a static picture of the

speaker’s instant affective state, most other sounds represent some time evolution of

the physical world, and every next sound fragment may potentially add new infor-

mation about some changes in the environment. On the contrary, further processing

of an emotional exclamation does not yield any information about the evolution of

the affective state, but only unravels more subtle nuances. It should be noted also

that the sound signals used in the study of environmental sounds had much longer

duration = 2500ms than the emotional stimuli in the present study.

The interstimulus variation in ERP component latencies was systematically inves-

tigated for the case of spoken words by Woodward, Owens, and Thompson (1990):

the peak latency of the negative wave ranged from 366ms to 670ms with a mean

latency of 474ms. This value corresponds closely to the peak latency (≈ 460ms)

of the N400 to semantically incongruous last words in spoken sentences (McCallum

et al. 1984). Interparticipant N400 latency variability is also high even in the case

of the N400 to visually presented words. As Moreno, Federmeier, and Kutas (2002)

reported in a recent study, the N400 peak latency ranged from approximately 300ms

to 400ms even in participants of the highest English proficiency, thus resulting in

an N400 latency ≈ 350ms in the grand average ERP. Comparing these and other

semantic priming results to the outcomes of the present experiments, we can sum-

marize that all nonverbal affective vocalizations that were presented were recognized
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by all of the participants approximately 150ms earlier than an average word takes to

be recognized by an average person. If we assume that the recognition of emotional

exclamations is also representative for the recognition of affective prosody of verbal

material in general (see Introduction), and more specifically for the identification of

onset emotional voice quality of spoken words, then we can conclude that emotion

is grasped considerably faster than meaning. This conjecture can be proved (or dis-

proved) by an experiment in which emotionally spoken words are presented instead

of nonverbal vocalizations (see below). This is a very interesting point, because if

the conjecture is true, it will mean that affect recognition could potentially bias

or override further semantic processing, especially in case of contradiction between

prosody and semantics (inadequate affect). For instance, communicating in a cheer-

ful voice the news of the death of a beloved one, may result in distorting or ignoring

the meaning of the message on the part of the listener. This notion may appear to

be similar to the well known theory of fast emotional response based on rapid but

superficial stimulus recognition by the amygdala, preceding the slower but precise

recognition by the cortex (LeDoux 1993). Our concept, however, is essentially differ-

ent. As already mentioned (see Introduction), a great body of evidence exists, which

indicates that affective prosody is processed by the cortex and not by the amygdala.

Furthermore, the present study is about emotion recognition from a stimulus and

not about emotional response to that stimulus. Although an emotional response

implies some minimal stimulus recognition, the opposite is not true: recognition of

affective prosody does not necessarily imply emotional experience on the part of the

listener: Imagine the extreme case of a psychopath who hears someone crying with

terror: ”Help!”. If the above conjecture is correct, he will first recognize that the

crying person is terrified and only then (just fractions of the moment later) will he

understand that the person needs help. However, both discoveries will most likely

leave him impassive.

In the study of environmental sounds, the reported N400 to incongruous sounds

was significantly larger at the left than at the right scalp sites; the N400 to ver-
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bal stimuli, on the contrary, showed a reverse, right-sided asymmetry (Van Petten

and Rheinfelder 1995, see the works cited therein and the authors’ discussion about

”paradoxical lateralization”). In the present experiments, no significant lateraliza-

tion effect was found in the scalp distribution of the N300 to emotional exclamations.

This may indicate that different neural substrates are involved in the cognitive pro-

cessing of affective vocalizations versus other environmental sounds. However the

spacial resolution and source localization ability of an EEG from 9 scalp positions

are too low to adequately address lateralization issues and these were not in the

focus of interest of the present study.

An open question remains as to what extent the affect recognition process was fa-

cilitated by learning during the experiments. One possible scenario is that in the

first, say, 10-20 trials the participants identified emotions by all prosodic features

manifested by the whole vocalizations, and then quickly learned to discriminate the

already familiar stimuli just from their onset. This problem stems from the great

number of repetitions of the same few different exclamations. A further question

is whether emotion recognition (or discrimination) from the first 100-150ms of the

vocalizations was based solely on voice quality, or it also utilized intonation and

accentuation patterns that could be perceivable even from such a short time in-

terval and could be discernable but not definable from the spectrogram. Apart

from a more elaborated acoustical analysis, there are at least three other ways to

tackle these problems: first, by using a large variety of exclamations by many dif-

ferent people (different voices), thus avoiding repetitions; second, by using digitally

manipulated sound signals derived form one and the same neutral vocalization by

artificial selective variation of voice quality (Pihan et al. 2000); and third, using

abridged vocalizations as stimulus material, e.g. the first 100ms (Pollack et al.

1960). Another important question is to what extent nonverbal vocalizations and

emotional speech share the same prosodic features. Profound acoustic analyses are

required to clarify this issue. Whatever the answer may be, however, the proposed

abridgement technique can be utilized for the study of emotion recognition from ver-
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bal utterances by presenting short word fragments, e.g. single vowels, as stimulus

material.

The other ERP components that were found in the experiments demand further

investigation to clarify their relation to emotion recognition. At this point, it should

be noted that in the oddball paradigm, ERPs to different stimuli are compared

to each other, while in the priming experiment, one and the same stimulus elicits

different ERPs in two different experimental conditions. This might indicate that

the ERP components that were found in the oddball but did not appear in the

priming could possibly reflect physical differences between the stimuli, rather than

their emotional meaning.



Chapter 2

Continuous Wavelet Measures of

ERP Components

The classical measures, area and peak, used in Chapter 1 are the most popular estima-
tors of ERP components. Although they are in standard use in ERP research, they are
very rough estimators, which heavily rely on visual inspection of the waveforms, and are
thus prone to experimenter bias. In this Chapter, a new ERP component detection and
estimation method is introduced, which is based on the Continuous Wavelet Transform
(CWT) and does not rely on visual inspection of the waveforms but allows more auto-
mated detection of peaks. At the same time it provides more precise estimation of ERP
components and yields larger statistical difference effects than classical methods do.

2.1 Introduction

The assessment of the acquired EEG data is an important step in an ERP

experiment. Especially in clinical applications, in which ERPs are used for cognitive

diagnostics, it is vitally important to have a reliable assessment procedure, which

would allow the clinician to make judjements at a high confidence level about the

patient’s status of neurocognitive functioning.

The purpose of the study presented in this chapter was to develop an estimation

method based on the continuous wavelet transform (CWT) (Samar, Bopardikar,

Rao, and Swartz 1999; Ende, Louis, Maass, and Mayer-Kress 1998), which would

37
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reduce the variance of the obtained ERP measures, would make them suitable for

single-trial assessments and would improve ERP component detection from average

waveforms. Such procedure should be applicable in individual assessment, and in

particular, in the diagnostics of severe neurological patients whose cognitive abili-

ties cannot be expressed in their behavior (Kotchoubey et al. 2002). The method

described in this chapter should be seen as a first step towards this goal. A mathe-

matically and computationally more elaborate CWT method is presented in Chapter

3. The review of previous studies as well as the mathmatical details of the CWT

are also postponed for Chapter 3.

2.2 Continuous Wavelet Transform

CWT is a mathematical transformation which maps time curves onto smooth, two-

dimensional surfaces called scalograms1. Computationally the CWT is obtained

from the cross-covariance of the ERP curve with a given template function called

wavelet, which is systematically varied in width (scale) and position in time. The

local extrema of the CWT give the template’s scale and time positions of best match

(highest covariance) with the ERP curve. Thus a peak in the curve is represented by

a peak in its scalogram, where the two-dimensional position of the latter indicates

the time position (component latency) and the width (component duration) of the

former. In this sense, CWT is similar to some classical template-matching algorithms

used in single-trial ERP analysis (Smulders, Kenemans, and Kok 1994). However,

a crucial advantage of CWT is the special form of the wavelet template, which

allows for optimal scale separation and hence better distinction of overlapping ERP

components.

1”CWT” denotes both the transformation and its result. As regards the second case, ”CWT”
and ”scalogram” are further used interchangeably, as synonyms.
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2.3 The total-average-CWT method

The total-average-CWT method introduced here was tested on the ERP data ob-

tained from the experiments presented in Chapter 1. In the following, the procedure

is described step by step.

CWTs were computed for each participant’s average waveform as well as for each

single trial and each electrode, using the ”Mexican Hat” wavelet (Ende et al. 1998).

Three different ERP measures were obtained from both participant averages and

single trials: area, fixed-wavelet and matched-wavelet.

An area was computed as the average voltage in a time window determined by

visual inspection of the grand average waveforms (see Chapter 1). The area can be

seen as a kind of primitive template matching: computationally it is equivalent to

the cross-covariance of each participant average and each single trial with a fixed

rectangular template2 (Figure 2.1) which is fitted visually to an ERP component

(also detected visually) in the grand-average waveforms, without any additional

fitting of the template’s (window’s) position and width to individual participant

averages or single trials.

A wavelet measure was defined as a CWT value (the cross-covariance of the wave-

form with a wavelet) at certain time and scale according to the following procedure.

First, a total grand average was calculated for each experiment. The total grand

average included all trials of all participants of both experimental conditions sub-

ject to further statistical analysis. Then the CWT scalogram of the total grand

average at Cz was computed. ERP components were identified as local extrema in

this scalogram. This approach avoids the accumulation of chance involved in the

detection of ERP components from difference waveforms (see Chapter 3 for details).

2Strictly speaking, this is only true under the assumption that the mean of an EEG curve is
zero, which may be wrong for single (baseline-corrected) sweeps; however, this does not lead to loss
of generality of our reasoning. In the case of a wavelet template, this assumption is unnecessary,
because the mean of a wavelet is by definition zero.
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The procedure is further illustrated on the example of the N300 wave found in the

oddball experiment described in Chapter 1. The total average and its scalogram are

displayed in Figure 2.1. The position of the N300 minimum was approximately: time
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Figure 2.1: The rectangular area template, the wavelet template, the total grand
average of both experimental conditions in the oddball experiment (lower plot), and
its CWT scalogram (upper plot). Each point of the scalogram represents the cross-
covariance of the total grand average with a wavelet of the corresponding time and
scale. Extrema in the scalogram correspond to peaks in the waveform. Extremum
scale gives a measure of peak width (ERP-component duration). The scale of the
Mexican Hat wavelet (lower plot) is defined as the half-width between its zeros (thick
horizontal line). Note that the area template has no minima under the zero line and
hence cannot separate larger scales.

= 290ms, scale = 45ms. Accordingly, the N300 fixed-wavelet measure was defined

as the CWT value at this same position for all participant averages, all single trials

and all channels. The N300 matched-wavelet measure was defined as the minimum

CWT value in the rectangular window 270ms < time < 310ms, 35ms < scale < 55ms

in each participant-average and each single-trial scalogram. Thereby, the matched
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wavelet was partly adjusted to compensate for inter- and intraparticipant latency

variations. Thus the fixed wavelet was fitted only once to the total grand average

and then the cross-covariance with each participant average and each single trial was

taken as a measure of the N300 effect, while the matched wavelet was additionally

fitted to each participant-average and each single-trial waveform.

The other classical ERP measure, the peak -measure, was also obtained from the

waveforms (see Chapter 1). The computation of peaks was similar to that of the

areas with the only difference that the maximal or minimal voltage in the window

of interest was taken instead of the average value.

Similarly to Chapter 1, all ERP measures were tested for statistical significance by

three-way analyses of variance (ANOVA) with factors: condition(2) × FCP(3) ×

LMR(3). FCP and LMR were taken as within-participant or within-trial factors,

whereas the experimental condition was taken as a within-participant factor for the

participant-average ERP measures and as a between-trials factor for the single-trial

ERP measures. Left/right and frontal/parietal asymmetries were studied by linear

contrasts; predominance at the vertex Cz was studied by quadratic contrasts.

The wavelet computations were performed with MATLAB 6.0, and the ANOVAs –

with SPSS 11.0.

2.4 Results

For the sake of brevity and clarity, only significant ANOVA probability values (p-

values) and no effect sizes are reported. The results obtained with the fixed-wavelet

measure are similarly not reported and the matched wavelet, which produced gener-

ally slightly better results, especially in the single-trial assessments, is further simply

referred to as ”wavelet”. The results obtained with the peak measures were similar to

those obtained with the area measures and are also not reported here. (See Chapter 1
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for significant p-values obtained with the peak measure from the participant-average

waveforms). Although, not all 4 ERP measures (area and wavelet, both single-trial

and participant-average) are needed to characterize the components, their compari-

son is useful for testing the new total-average-CWT assessment method. Comparing

(p-values) is equivalent to comparing effect sizes (cumulative probability distribution

functions are monotonous).

2.4.1 Oddball

The ERP components found in the waveforms can be seen in Chapter 1, Figure 1.3.

The direct comparison between ”Oooh!” (woe) and ”Oooh!” (joy) at Fz is shown in

Chapter 1, Figure 1.2.

The N300 amplitude was significantly larger for ”Oooh!” (woe) than for ”Oooh!”

(joy) by the main effect of condition with both participant-average measures: area

(p = 0.03) and wavelet (p = 0.001), as well as with the single-trial wavelet (p <

0.001), but not with the single-trial area. The component was predominant at the

vertex (Cz) by the significant quadratic contrasts of FCP, LMR and FCP×LMR with

both wavelet measures: participant-average (p = 0.005) and single-trial (p < 0.001),

but not with the area measures.

The N600 amplitude was significantly larger for ”Oooh!” (woe) than for ”Oooh!”

(joy) at frontal sites by the condition×FCP interaction with both participant-

average measures: area (p = 0.03) and wavelet (p < 0.001), as well as with the

single-trial wavelet (p < 0.001), but not with the single-trial area. The component

was predominant at mid-line sites by the significant quadratic LMR contrast with

all of the measures: participant-average – area (p = 0.02) and wavelet (p = 0.001),

and single-trial – area (p = 0.008) and wavelet (p < 0.001).

The P1000 amplitude was significantly larger for ”Oooh!” (woe) than for ”Oooh!”

(joy) at frontal sites by the main effect of condition with both wavelet measures:
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participant-average (p = 0.03) and single-trial (p = 0.01), but not with the area mea-

sures, as well as by the condition×FCP interaction with both participant-average

measures: area (p = 0.01) and wavelet (p < 0.001), as well as with the single-trial

wavelet (p < 0.001), but not with the single-trial area.

No significant lateralization (linear-contrast effects of LMR or LMR×condition) was

found for any of the components.

2.4.2 Priming

The ERP components found in the waveforms can be seen in Chapter 1, Figure 1.4.

The N300 amplitude was significantly larger for the inconsistent vocalizations by the

main effect of condition with both wavelet measures: participant-average (p = 0.02)

and single-trial (p = 0.04); the effect was also nearly significant with the participant-

average area (p = 0.05), but not with the single-trial area. The component was

predominant at the vertex Cz by the significant quadratic contrasts of FCP, LMR,

and FCP×LMR, with both wavelet measures: participant-average (p = 0.03) and

single-trial (p < 0.001), but not with the area measures.

The P500 amplitude was significantly larger for the inconsistent vocalizations by

the main effect of condition with both wavelet measures: participant-average (p =

0.04) and single-trial (p < 0.006), but not with the area measures. The component

was predominant at parietal sites by the significant linear FCP contrast with both

wavelet measures: participant-average (p < 0.001) and single-trial (p < 0.001), but

not with the area measures. Notwithstanding visual impression, the linear-contrast

effect of FCP×condition was not significant.

No significant lateralization (linear-contrast effects of LMR or LMR×condition) was

found for any of the components.

The significance of the N300 effect was also tested separately for each of the three
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kinds of word-exclamation pairs: positive-[negative] (”joy”-[grief], ”pleasure”-[rage],

”surprise”-[disappointment]), negative-[positive] (”grief”-[joy], ”fright”-[pleasure],

”disappointment”-[surprise]), and negative-[negative] (”disgust”-[terror], ”rage”--

[fright], ”terror”-[disgust]). Both wavelet measures were significant for the nega-

tive-[positive] pairs (p < 0.05) and nearly significant for the positive-[negative] and

negative-[negative] pairs (0.05 < p < 0.07); the area measures were not significant.

2.5 Discussion

A new CWT-based method was developed for the better detection and assessment of

ERP components from single trials as well as from participant averages. Essentially,

it is a kind of template matching, where the template is a wavelet, and it is fitted to

the signal not only in time (component latency) but also in frequency (scale, peak

width). In all assessments, the wavelet measure yielded larger ANOVA effects than

the traditional area and peak measures. This effect was particularly pronounced

in the single-trial assessments – from all cases in which the wavelet measure was

significant there was only one in which the area was significant. This result is not

surprising, considering that the traditional area measure does not separate scales,

and hence peaks of different widths, especially slow waves and DC components, are

taken into account in a single component assessment, thus increasing variance and

reducing statistical effect size and statistical power. This is best understood if the

area measure is seen as template matching with a fixed rectangular template, which

takes only positive values, while the wavelet template with its two deep minima

extracts only peaks of nearly the same scale (Figure 2.1).

Furthermore, the total-average-CWT method has three important advantages upon

its ancestors, the classical template-matching, single-trial algorithms (Smulders et al.

1994): First, the template is fitted to the signal not only in time, but also in scale.

Second, the template is a wavelet, which guarantees better scale separation than

non-wavelet templates, and hence better selective sensitivity of the wavelet mea-
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sures to particular ERP components, as well as better separation of overlapping

components (Samar et al. 1999). Third, the scale and time position of the tem-

plate are determined from the total average of all trials (or all participant averages)

entering the subsequent statistical analyses. The detection of ERP peaks from the

total-average scalogram is blind to the separation of the sample into categories ac-

cording to the experimental conditions (e.g. ”congruous” versus ”incongruous”).

That makes it statistically more appropriate for testing difference hypotheses than

traditional methods, which use the average of one category of trials or the difference

waveform of the two categories for component detection. The post hoc visual selec-

tion of time windows of interest from the difference waveform may bias subsequent

statistical significance tests by accumulation of chance. The total-average scalogram

allows ERP component detection without visual inspection of the ERP curves, thus

reducing experimenter bias. One systematic study using signal detection theory

showed that computer-based methods may be more efficient in ERP detection than

human observers (Valdes-Sosa et al. 1987). The issues of statistical power, sta-

tistical correctness and human-experts’ fallibility are of particularly high relevance

for individual assessment and diagnostics in clinical settings where only single-trial

assessment is possible, the number of trials is limited, and individual patients’ ERP

components differ substantially from those observed in group averages (Kotchoubey

et al. 2002). That is why, this growing field of ERP research can be seen as the

primary and most natural area for application of the CWT method. Furthermore,

in any ERP paradigm in which new or small components are examined (like in the

present study), classical measures may prove unsatisfactory, and wavelet measures

may yield much better and reliable results.

An obvious shortcoming of the total-average-CWT method comes with the relatively

rare case when both experimental conditions elicit an ERP component of the same

latency, width, and amplitude, but with different polarity, as such waves would

cancel each other in the total average. An improved version of the CWT method,

the t-CWT, which provides a solution to this problem is presented in Chapter 3.
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Chapter 3

ERP Assessment with the t-CWT

Method

The usage of the ERP technique in clinical applications for diagnostic purposes, requires
special methods of EEG data assessment, based on single trial analysis. The total-average-
CWT method introduced in Chapter 2 is an example for one such method. In this chapter,
a new, largely improved version of the method, the t-CWT, is introduces. The t-CWT
is based on the CWT and Student’s t-statistics. The method was systematically tested
in two prototypical ERP paradigms, oddball and sematnic priming, which belong to basic
tools for ERP based cognitive diagnostics. The method was compared to other assess-
ment procedures based on Principal Component Analysis (PCA) and the Discrete Wavelet
Transform (DWT). Similarity to clinical settings was achieved by the individual assess-
ment of each participants ERP data. Both whole waveforms and single ERP components
were assesed by multivariate procedures including PCA data set reduction, Hotellings T 2-
test and a randomization test. The assesment of the whole ERP waveforms is particularly
relevant to the paradigms of the context violation class already introduced in Chapter 1.
The results demonstrated the superiority of the t-CWT to the other assessment methods.

3.1 Introduction

Detection and quantification of ERP components has evolved to a

separate interdisciplinary branch of ERP research. A variety of assessment methods

at different levels of sophistication and practicality have been proposed. All of these

methods have basically the same objective: to extract from the highly stochastic and

chaotic EEG signal those patterns, which reflect the neurocognitive processes that

47
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are investigated in the ERP experiments. In this chapter, it will be demonstrated

how the total-average CWT method introduced in Chapter 2 can be improved to

provide better extraction of such patterns for the purposes of both fundamental and

applied-clinical research.

The standard assessment of an ERP component includes three basic steps (see Chap-

ters 1 and 2). First, the average waveforms for the two experimental conditions are

obtained from each individual participants data. Second, the grand-average wave-

forms, obtained by averaging across all participants, are visually inspected and the

ERP component of interest is detected by simply finding the time window, in which

the two ERP curves corresponding to the two experimental conditions diverge sub-

stantially. Third, the amplitude of the ERP component is measured in each par-

ticipants average waveforms, by the mean voltage (area) or the peak value in the

visually determined time window. This measure undergoes an analysis of variance

(ANOVA) with, generally, two factors: topography (i.e., scalp distribution) and

experimental condition. The single measurements are those obtained from the par-

ticipants’ averages and not from the single trials.

This standard assessment procedure is simple and plausible, but this is at the cost

of important shortcomings. First, the within-participant variance is not utilized,

it gets lost by the averaging procedure. This approach decreases the total vari-

ance in the data (only the between-participant variance remains), but this is at the

cost of a dramatic reduction of the sample size by a factor equal to the number of

single EEG trials performed with each participant in each experimental condition.

Second, the visual inspection of the grand-average waveforms is a quite unreliable

method of ERP component detection – it is imprecise and prone to experimenter

bias. Third, the area and peak measures give very rough estimates of ERP com-

ponent amplitudes. For instance, they are not applicable in single-trial analyses,

because they cannot separate the scales (= wavelengths = inverse frequencies) of

the highly chaotic oscillations present in the single-trial EEG signals (see Chap-

ter 2). Thus, a good method for detection and quantification of ERP components
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should provide: first, a clearly defined mathematical procedure for detection of ERP

components, and second, a sensitive and discriminative mathematical measure for

component quantification which should be applicable with single trials. ”Sensitive

and discriminative” denotes the ability to measure only a single ERP component

defined by its position in time and its duration (position on the scale dimension).

This includes good scale separation. The area and peak measures do not satisfy

these two criteria. The time window in which they are applied is determined visu-

ally by the experimenter; the area measures all components at a scale larger than

the window width and the peak does not discriminate between different scales at all

(unless the signals are filtered priorly).

Several techniques have been proposed for ERP component extraction from single

trials (Smulders, Kenemans, and Kok 1994). The classical ones use template match-

ing, i.e., computing the cross-correlation (Woody 1967; Fabiani, Gratton, Karis, and

Donchin 1987) or cross-covariance (Pfefferbaum and Ford 1988) between the EEG

sweep and a predefined waveform, or peak picking after low-pass filtering of the sig-

nal (Ruchkin and Glaser 1978), which is virtually the same, since low-pass filtering

is equivalent to a convolution (cross-covariance) of the signal with a certain template

in the time domain. Recently, more sophisticated single-trial estimation methods

based on template decomposition (Lange, Pratt, and Inbar 1997), subspace regular-

ization (Karjalainen, Kaipio, Koistinen, and Vauhkonen 1999), maximum-likelihood

solutions (Jaskowski and Verleger 1999), competitive neural networks (Lange, Siegel-

mann, Pratt, and Inbar 2000), etc. have been proposed.

With the rise of the wavelet era (Samar et al. 1999), single-trial algorithms based on

the Discrete Wavelet Transform (DWT) came to existence (Demiralp, Yordanova,

Kolev, Ademoglu, Devrim, and Samar 1999; Demiralp, Ademoglu, Schurmann,

Basar-Eroglu, and Basar 1999). Such algorithms give a highly economical and struc-

tured representation of the information contained in EEG sweeps, but suffer the

general disadvantage that this representation is predefined by the dyadic scheme

(see Figure 3.2) and hence cannot be adjusted to a given ERP structure. More
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complicated algorithms, using, e.g., wavelet packets (Raz, Dickerson, and Turetsky

1999) or wavelet networks (Heinrich, Dickhaus, Rothenberger, Heinrich, and Moll

1999; Heinrich, Moll, Dickhaus, Kolev, Yordanova, and Rothenberger 2001) have

been proposed to remedy this situation. Another possible solution is to give up the

representation of the whole signal and to concentrate on feature extraction. One

such approach utilizes the CWT introduced in Chapter 3, which yields a highly re-

dundant representation of the EEG signal as a function of two independent variables

– time and scale (or frequency). Local extrema of this function indicate prominent

features of the signal – transient peaks or oscillations.

Samar et al. 1999 commented that the CWT ”is not very efficient”. They pointed

out that firstly, the information it displays is highly correlated and therefore unnec-

essarily redundant for analytic purposes, and secondly, it is very time consuming to

compute directly.

In Chapter 2 a CWT-based method for detection and measurement of ERP compo-

nents was introduced and its superiority to the classical area and peak methods was

demonstrated. In this approach, ERP components are identified with local extrema

in the CWT scalogram. Thereby, the redundancy of the CWT representation is

turned into an advantage – it allows much better localization in both time and fre-

quency than the fixed dyadic structure of the DWT does. The second disadvantage

of CWT, pointed out by Samar et al. 1999 – the heavy computational load – can

be overcome by a fast computational algorithm. One such algorithm developed in

the present study is described in this chapter.

A major disadvantage of the total-average-CWT method proposed in Chapter 2

arises from the fact that the ERP components are detected from the total grand

average waveform obtained by averaging over all trials from both experimental con-

ditions. This procedure was chosen for reasons of statistical correctness – any de-

tection procedure that utilizes the difference waveforms or is otherwise based on the

separation of the EEG trials into groups according to the experimental conditions
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involves accumulation of chance. For instance, in a 1000ms-long EEG epoch the

probability for the occurrence of a 200ms-long wave by chance is roughly 5 times

higher than in a 200ms-long epoch. If the statistical significance of such a wave

is tested by ANOVA or some other test, the α-level should be corrected to take

into account the chance accumulated by choosing out of 5 possible 200ms-wide time

windows the one defined by the maximal difference between the two ERPs. The

problem is that there is no adequate analytical correction procedure that takes into

account the correlations between the data from the 5 windows and the fact that

the windows are not actually fixed in time shift and length. The usage of wavelet

measures, which do not rely on time windows, makes the problem even more com-

plicated. Generally, any preselection of variables from the essentially multivariate

ERP data sets faces the same problem, if information about the separation of the

data into two samples according to the two experimental conditions is used to define

a selection criterion. This holds for windows in the time domain, frequency bands,

principal components, wavelet coefficients, etc.

Using the total average for ERP component detection in Chapter 2 was a way to

avoid the accumulation of chance. In this approach, however, components from both

experimental conditions are mixed together, and the method relies only on scale

separation to discriminate between ERP waves of equal latency. This situation is

clearly suboptimal, since in the extreme (but actually improbable) case of two ERP

components of the same scale, latency and amplitude, but with different polarity,

the method would fail to detect the waves because they would cancel each other in

the total average waveform. Apart from this extreme and rare example, the total-

average-CTW method generally does not provide the optimal, most ”sensitive and

discriminative” measure for detection and quantification of ERP components.

In the present chapter, an improved CWT-based feature extraction method, the

t-CWT, is introduced. It was originally developed (by the author of the present

dissertation) for classification of single-trial ERPs in brain-computer interfaces. The

method was validated at the International BCI Classification Competition 2003
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(Blankertz, Müller, Curio, Vaughan, Schalk, Wolpaw, Schlögl, Neuper, Pfurtscheller,

Hinterberger, Schröder, and Birbaumer 2004), where it was a winner on two of the

ERP data sets obtained in two different BCI paradigms – P300 speller (Farwell

and Donchin 1988) and slow-cortical-potentials feedback (Birbaumer, Ghanayim,

Hinterberger, Iversen, Kotchoubey, Kübler, Perelmouter, Taub, and Flor 1999).

These results are presented in Chapter 4. The t-CWT method is similar to the

total-average-CTW method. The ERP components are identified again by the local

extrema in a scale-time plot – the scalogram. The crucial difference is that this

scalogram is not obtained from the total average, but from the difference waveform

and from the variance in every scale-time sample point of the scalogram. The within-

experimental-condition variance is computed from all the single-trial scalograms.

Then Student’s t-value is computed for each scale-time point and the obtained

surface, called t-CWT or t-value scalogram, is used for ERP component detection.

The thus obtained local extrema are the points of maximal difference between the

CWTs of the two experimental conditions. Thus, the t-CWT method is certainly

prone to accumulation of chance, which poses an obstacle to its application for

testing of statistical hypotheses about the difference between two samples of ERPs.

(However, there is no problem for discriminant analysis and classification.)

The aim of the study presented in this chapter was to adopt the t-CWT method for

use in ERP component significance testing and estimate its power. A randomization

test is proposed as a simple solution to the accumulation-of-chance problem. Fur-

ther, the strength of the method is demonstrated in individual-participant analyses,

in which, on the one hand, the usage of single trials is inevitable, and on the second,

previous group data can be used for ERP-component detection purposes without

concern about accumulation of chance.

The present study also addressed another, widely neglected aspect of ERP assess-

ment – the statistical comparison of the whole waveforms. This is particularly rele-

vant for the wide class of context violation paradigms already mentioned in Chapter

1. In such paradigms, the presented stimuli have some meaning along with their
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physical properties, and the the cognitive processing of this meaning is reflected

by the measured ERPs. The experiments are accordingly designed to enhance the

ERPs related to these higher cognitive processes and to neglect the processing of

stimulus novelty, or occurrence frequency, or primitive physical features like sound

frequency, picture color, stimulus duration, etc..

As already discussed in Chapter 1 an important property of meaningful stimuli is

that they can build a context, which induces some expectations about the next-

coming stimuli. The violation of these expectations is reflected by the N400 compo-

nent in the ERPs to incongruous stimuli. However, the N400 amplitude and latency

(whether quantified by classical area and peak measures or by more advanced wavelet

methods) are an oversimplified representation of the ERP response to incongruous

stimuli. The investigator may be interested in any significant difference between

the ERPs to congruous and incongruous stimuli, because it would necessarily imply

that the meaning of the stimuli as well as the context were adequately processed

by the participant’s cortex. This is not quite true for paradigms from the oddball

class, in which various cognitive processes may be reflected in the difference ERP

(Birbaumer and Schmidt 2003) – dishabituation of the orientation reaction reflected

by increased N100 amplitude to deviant stimuli, physical mismatch reflected by the

Mismatch Negativity (MMN), detection of novel, or rare, or target stimuli reflected

by the P300, etc.. But in a context-violation paradigm, if the investigator is inter-

ested in the first place to find out, whether the brain can at all decipher, or not,

the meaning encoded in certain stimuli, she or he might wish to first compare the

whole ERPs elicited by the congruous and incongruous stimuli before concentrating

on specific ERP components.
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3.2 The t-CWT Method

3.2.1 CWT

The CWT W (s, t) of a signal f(t), where t is the time variable (should not be

confounded with Student’s t!), is defined (Samar et al. 1999; Ende et al. 1998) by:

W (s, t) =
1√
s

∞∫
−∞

f(τ) ψ
(
τ − t

s

)
dτ, (3.1)

where t denotes the time shift, s denotes the scale (also measured in time units) and

ψ is the wavelet function, which has a zero mean:

∞∫
−∞

ψ(t) dt = 0. (3.2)

Hence, the CWT is a kind of template matching (Smulders, Kenemans, and Kok

1994), i.e. a computation of the cross-covariance between the signal and a prede-

fined waveform, which is shifted forwards and backwards in time and dilated and

constricted in scale (see Chapter 2). The local extrema of W (s, t) are the points of

best match between the signal and the template in the time-scale (time-frequency)

domain. They can be identified visually from the time-scale plot ofW (s, t), the scalo-

gram Figure 3.5, 3.8, or automatically, by an appropriate algorithm. The advantage

of the CWT over the classical template matching methods (Smulders, Kenemans,

and Kok 1994) arises from the special properties of the wavelet template, which

allow optimal scale separation of ERP components (see Chapter 2).

The choice of a particular wavelet function ψ(t) in (3.1) depends on what kind of

features should be extracted from the signal f(t). Wavelets that are well localized

in the time domain like the ”Mexican Hat” are used for detection of ERP compo-

nents and wavelets that are well localized in the frequency domain like the Morlet

wavelet are used for detection of salient oscillations (Ende et al. 1998; Senkowski
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Figure 3.1: The Mexican Hat wavelet; s = 500ms, t = 500ms.

and Herrmann 2002). The application described here uses the Mexican Hat (Fig.

3.1) given by:

ψ(t) = (1− 16t2)e−8t2 . (3.3)

Note that (3.3) differs from the standard definition of the Mexican Hat: ψ(t) =

(1 − t2) exp(−t2/2) used in Chapter 2 in the 4 times larger unity scale. In the

standard definition the scale is the half width between the zeros of the Mexican

Hat (Figure 2.1); in the definition given by (3.3) the scale is slightly larger than

the distance between the minima (Fig. 3.1). This is done for convenience – thus

defined, the scale is approximately equal to the wavelength (inverse frequency) of the

Mexican Hat, which in ERP applications corresponds to the approximate duration

of the ERP waves.

3.2.2 t-CWT

The t-CWT method for ERP detection and quantification uses the CWT and Stu-

dent’s two-sample t-statistic. It is performed in 5 simple steps:

1. The CWT W kn(s, t) of the signal fkn(t) is computed for each channel k and



56 ERPs in Emotion Perception, Cognitive Assessment, and BCI

each single trial n according to (3.1).

2. The mean CWTs W k
g (s, t) and the variances σk

g (s, t) are obtained for each

of the two samples (groups) of trials corresponding to the two experimental

conditions:

W k
g (s, t) =

1

Ng

Ng∑
n=1

W kn(s, t), (3.4)

σk
g (s, t) =

1

Ng − 1

Ng∑
n=1

(
W kn(s, t)−W k

g (s, t)
)2
, (3.5)

where g = 1, 2 and Ng denotes the number of trials in sample g.

3. The two-sample t-statistic tk(s, t) is computed:

tk(s, t) =

√
N1N2

N1 +N2

dk(s, t)

σk
pl(s, t)

, (3.6)

where dk(s, t) = W k
2 (s, t)−W k

1 (s, t) is the difference average CWT and σk
pl(s, t)

is the pooled variance of the two samples.

4. The points (ski, tki), at which the functions tk(s, t) have local extrema, are

found. These are the points of (locally) maximal difference (variance taken

into account) between the two samples in the time-scale domain and they

have the following interpretation: tki is the latency and ski is the duration of

ERP component i at scalp position k.

5. The CWT W kin is computed for each point (ski, tki) and each single trial n

according to (3.1):

W kin = W kn(ski, tki). (3.7)

W kin are the values of the single-trial CWTs at the points of maximal difference

between the two samples and they have the following interpretation: W kin is a

measure of the amplitude of the ERP component i at scalp position k in trial n.
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The importance of the variance for proper component detection was demonstrated

by a comparison of the t-CWT with the dCWT – a modification of the method, in

which only the difference scalogram dk(s, t) is used for detection of local extrema

and the variance σk
pl(s, t) is not taken into account (3.6).

When all values of i are taken into account, W kin give a representation of the whole

single-trial EEG signals, which is not systematic, but is based on feature extraction,

and the t-CWT can be used for significance testing of the difference between the

whole waveforms regardless of specific ERP components. The t-CWT method was

tested together with two known methods for systematic representation of whole

waveforms – PCA and DWT.

In the case when a particular ERP component should be detected and quantified,

only certain values of i are taken into account (e.g. only minima or only maxima,

see below). By taking only certain values of i, it was tested how the t-CWT method

handles single ERP components and the obtained measures were compared to the

classical area and peak measures.

In all applications, Hotelling’s two-sample T 2-test was used for comparison of mul-

tivariate means (Friston, Stephan, Heather, Frith, Ioannides, Liu, Rugg, Vieth,

Keber, Hunter, and Frackowiak 1996; Rencher 1998, pp. 85–87). Whole waveforms

and single components were tested by the same multivariate procedure.

3.2.3 Computational Algorithm

Since the CWT (3.1) is a linear transformation, it can be computed by multiplication

of the signal with the corresponding transformation matrix. Both the signal and

the matrix are represented in the time-frequency domain by DWT (Samar et al.

1999). This representation is much more economical than the original time domain

representation, because in every real application, events at scales smaller than some

cut-off scale sc are ignored (low-pass filtered) and hence, the corresponding wavelet
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Figure 3.2: A logarithmic grid with 7 × 7 PPSPO (for illustration purposes only
– 24 × 24 PPSPO were used in the applications). At s = 200ms there are exactly
7 points every 200ms, at s = 400ms there are exactly 7 points every 400ms, etc..
There are exactly 7 rows of points between s = 100ms and s = 200ms, 7 rows
between s = 200ms and s = 400ms, etc.. The DWT with its dyadic representation
scheme can be seen as digitized CWT sampled on the sparsest possible logarithmic
grid with 1 PPSPO providing an exact and non-redundant representation of the
signal.

coefficients can be deleted from the DWTs of the signals. The direct current (DC)

component can also be filtered out by deleting the first wavelet coefficient.

The CWT is sampled on a logarithmic grid in the time-scale plane (Figure 3.2),

which allows a constant, scale-invariant sample point density of dt × ds points per

scale per octave (PPSPO). The CWT of all signals is computed in one single step

– the matrix of the DWTs of the signals is multiplied by the CWT matrix. This

algorithm is very fast – in ERP applications it typically takes from 1ms to 10ms

per signal on an AMD 704MHz processor with 256MB of working memory (the

computational speed depends on the cut-off scale sc0 and the number of PPSPO).

Once the local extrema of tk(s, t) (3.6) are extracted, the CWT matrix is reduced
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by deleting all rows except those corresponding to the points (ski, tki) (3.7). The

features W kin (3.7) are obtained by multiplication with this reduced CWT matrix.

The DWT and any other linear preprocessing transformations (resampling by inter-

polation, filtering, etc.; see below) are also computed by matrix multiplication. The

advantage is that all consecutive operations are represented by one single transfor-

mation matrix, which is the product of the corresponding transformation matrices of

the individual operations. Only the CWT is computed in a second step, one channel

at a time, to avoid huge transformation matrices and to save working memory.

In the applications described below, all computations were performed with MAT-

LAB 6.0. The DWT matrix was computed with the wavelet toolbox Uvi Wave 3.0

using Symlets with 16 filter coefficients (González Sánchez, González Prelcic, and

Garćıa Galan 1996).

3.3 Experiments

Two prototypical ERP paradigms were used to test and demonstrate the t-CWT

method. The first was the well known oddball paradigm: two different acoustic

stimuli are presented repeatedly in a random order with different occurrence fre-

quencies; the rare stimulus elicits the P300 component in the ERP (Johnson 1988).

In a standard oddball task the participants are instructed to press a button on each

occurrence of the infrequent (deviant) stimulus or simply to count how many times

it occurs. Polich 1987; Polich 1989 showed that in a visual oddball, a P300 with a

little smaller amplitude is elicited even without an active discrimination task. (Lang,

Kotchoubey, Lutz, and Birbaumer 1997) replicated this finding also for the auditory

oddball. In such ”passive” oddball experiment, the participants are not given any

instructions and the deviant stimulus apparently attracts their attention merely by

its rare occurrence. (Note the difference between this paradigm, which utilizes only

two simple stimuli, and the passive oddball paradigm with meaningful stimuli in-
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troduced in Chapter 1.) In the present study, the t-CWT method was tested in a

passive oddball experiment, because this design is more appropriate for diagnostic

purposes than the active task and the obtained results are thus more relevant to

clinical applications with paralyzed patients (Kotchoubey et al. 2002).

The second paradigm that was used was a member of the context violation class. It

was the auditory semantic priming paradigm: spoken words are presented in pairs,

half of which are semantically consistent, e.g. ”man-woman”, ”strong-week”, etc.

and the other half are semantically inconsistent, e.g. ”monk-ear”, ”aunt-branch”,

etc. (Hagoort, Brown, and Swaab 1996). The N400 component in the ERP is

elicited by the incongruent second words. However this is not the only ERP response

to semantic incongruity – an additional positive wave, the P600, often follows the

N400. This positivity can be seen in ERP waveforms reported by many authors, but

usually, it remains uncommented, while only the N400 is in the focus of the interest

(McCallum, Farmer, and Pocock 1984). Münte, Heinze, Matzke, Wieringa, and

Johannes 1998 studied the P600 effect systematically and confirmed its significance,

thus challenging its traditional attribution to syntactic incongruences. They found

no evidence for specificity of the syntactic positive shift and concluded that the P600

is evoked by linguistic violations of different kinds, including semantic and syntactic

violations. In the present study, the P600 was taken into account by subjecting the

whole ERPs elicited by the congruous and the incongruous stimuli to multivariate

statistical tests. The semantic priming paradigm is one of the key diagnostic tools

used with paralyzed patients in clinical applications (Kotchoubey et al. 2002).
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3.4 Methods

3.4.1 Participants

36 healthy persons (20 female, mean age ≈ 27.5 years) participated in both ex-

periments. According to self report, all participants were right-handed and their

mother tongue was German. Most of them were students and all were paid for their

participation.

3.4.2 Stimuli

All stimuli were digitized at a sampling rate 22.05kHz/16bit. The rare and the

frequent stimuli in the oddball experiment were 50ms-long, 75dB-loud sine tones,

of frequency 0.8kHz and 1.3kHz respectively. All words for the priming experiment

were recorded by a female, native German speaker.

3.4.3 Procedure

Stimulus presentation

In both experiments, the stimuli were presented in short sessions with 3-4min pauses

between the sessions. The rare stimulus occurred 45 times and the frequent one

occurred 255 times in each of the 4 sessions of the oddball experiment. In the priming

experiment, 100 word pairs were presented in each of the 4 sessions. Half of the pairs

were semantically consistent, and the other half were semantically inconsistent.

The two tones in the oddball experiment were presented in a randomized sequence

at a constant rate of 1 tone every 0.85s. The word pairs in the priming experiment

were presented in a randomized sequence at a constant rate of 1 pair every 1.7s.

The stimulus onset asynchrony (SOA) between the first and the second word in a



62 ERPs in Emotion Perception, Cognitive Assessment, and BCI

pair was 0.5s.

In both experiments, the only instruction given to the participants was to listen

attentively.

EEG recording

Digitized EEG (time resolution: 2ms/step (500Hz), voltage resolution:

0.1678µV/step) was continuously recorded from 9 scalp positions according to the

10-20 system: Fz, Cz, Pz, F3, F4, C3, C4, P3, P4. All electrodes were referenced to

the linked mastoids. Electrical eye activity was also recorded by bipolar acquisition

from the following sites: FP2 and a site below the right eye – for vertical eye move-

ments and eye blinks; two sites laterally adjacent to the eyes – for horizontal eye

movements. The EEG was filtered on-line (band-pass: 0.1Hz-70Hz, notch: 50Hz).

3.4.4 Data Analysis

Preprocessing

EEG epochs were created off-line and referenced to the 100ms prestimulus baseline.

Eye-blink and eye-movement artifacts, both vertical and horizontal, were corrected

off-line by a computerized procedure (Miller, Gratton, and Yee 1988; Gratton, Coles,

and Donchin 1983). In the oddball experiment the 500ms-long epochs started at

100ms poststimulus. In the priming experiment the 1100ms-long epochs started also

at 100ms poststimulus;

Four types of statistical outliers were excluded from the data according to the fol-

lowing procedure. The maximal and the minimal voltage as well as the maximal

and the minimal value of the first derivative of the signal were found for each trial.

Means and standard deviations were obtained for each of these four variables. Tri-
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als, in which one of the values exceeded 3 standard deviations measured from the

mean, were considered outliers and rejected. As a result from this procedure about

5% of all trials in each participant’s data set were excluded from further analysis.

In the priming experiment, the data of the 4 sessions of each participant were pooled

together. Thus there were about 380 EEG sweeps in each participant’s data set after

outlier rejection.

The statistical analysis of the oddball data showed saturation effects already with

the data sets of the first session – all participants but one showed a significant

P3 response with all wavelet methods. In order to compare the test power of the

different methods, only 60 trials from the first session were retained (the first 51

standard and the first 9 deviant trials) and all other trials from the fist session as

well as the other sessions were dropped from further analyses.

Initial Filtering

The EEG signals were low-pass filtered in the time domain by convolution with the

function:

exp

(
−
(

4t

sc

)2
)

cos
(

2πt

sc

)
, (3.8)

where t denotes the time and sc – the cut-off scale. The thus defined cut-off scale is

related to the cut-off frequency fc by: fc = 1/sc. In both experiments sc = 100ms

(fc = 10Hz).

Log Time Sampling

After the initial filtering the EEG signals were resampled on a logarithmic time

scale. The new sampling rate was a linear function of time – the interval between

two adjacent time points was increased linearly. This was done to allow for time

dependent filtering (see below) with a cut-off scale linearly increasing with time
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(filtering frequency – linearly decreasing). The scale dilation per second λ defined

how many times the cut-off scale was increased with each second:

sc = sc0(1 + λt). (3.9)

In both experiments λ = 2 units per second. The log time sampling was performed

by spline interpolation.

Time Dependent Filtering

The EEG signals were low-pass filtered twice by the convolution procedure (3.8). In

effect, waves of latency t and duration shorter than sc0(1 + λt) were attenuated and

peaks of latency t and duration shorter than sc0(1+λt)/2 vanished altogether. This

procedure takes into account the fact that late ERP components usually have longer

duration than earlier waves. Thus a more economical presentation of the signal was

obtained. In both experiments sc0 = 200ms.

The first sc0/4ms of the signals were multiplied by (1 − cos 4πt/sc0)/2 to assure a

smooth onset. Analogically, a smooth decay was accomplished by cosine attenuation

of the last sc0(1 + λT )/4ms of the Tms long signal.

DWT

The EEG signals were represented in the time-frequency domain by DWT. This

step was not intended as additional filtering, but as a convenient and economical

representation, in which the higher frequencies (and the corresponding scales) that

had already been filtered out in the previous steps were separated from the retained

ones and deleted from the data set. Moreover, as described above, the CWT trans-

formation matrix was computed in the time-frequency domain defined by the DWT

and hence this representation was necessary for further analysis.
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PCA

As an alternative do the DWT, Principal Components were extracted from the

EEG signals in each channel (before DWT) using the total covariance matrix (not

the pooled one) and retaining only the eigenvectors with eigenvalues greater than

the average eigenvalue. Thus another economical representation of the signals was

obtained, in which the already suppressed frequencies (scales) were excluded from

the further analyses.

t-CWT

The EEG signals were CW-transformed for scales ranging from sc0(1 + λt)/2 to

4T (1 + λt), where T is the epoch length. (Note that, because of the log time sam-

pling, the actual scale range was again time dependent.) The single-trial scalograms

were sampled on a logarithmic grid with 24 × 24 PPSPO (Figure 3.3). ERP com-

ponents were detected and by the t-CWT method described above (3.5–3.7). The

procedure was also performed on the pooled data sets obtained by excluding the

data of one participant at a time from the pooled data of the whole group. The thus

detected ERP components from each pooled data set were used for the statistical

assessment of the individual data of the respective excluded participant. To show

the importance of taking the variance into account, the procedure was repeated on

the two-sample difference scalograms (dCWT). Because of the linearity of CWT,

this was equivalent to peak detection from the scalograms obtained directly from

the average difference waveforms, without computation of single-trial CWTs.

To test how the t-CWT method handles single ERP components, the above proce-

dure was repeated with taking into account only the local maxima in the oddball

t-scalogarms (P300 wave) and the local minima in the priming experiment (N400).

Additionally, the traditional area and peak measures of the P300 in the oddball

and the N400 in the priming were obtained by taking the average and maximum
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Figure 3.3: A CWT logarithmic grid with sc0 = 200ms, λ = 2 units per second
and 12× 12 PPSPO (for illustration purposes only – 24× 24 PPSPO were used in
the applications). Note that there are 12 sampling points between 0 and 0.1s at
scale 0.1s, 12 sampling points between 0 and 0.2s at scale 0.2s and so on. There are
6=12/2 sampling points between 0.5 and 0.7s at scale 0.1s according to the log time
sampling formula. There are 12 rows of points between scale 0.1s and 0.2s, 12 rows
of points between 0.2 and 0.4s and so on. The sampling point rows grow steeper
with increasing scale in accordance with the log time sampling formula.

voltage values respectively in the time windows from 250ms to 350ms (P300) and

from 200ms to 750ms (N400). These windows were determined by visual inspection

of the grand-average waveforms.

Thus 9 sets of components were obtained for each participant in each of the two

experiments: individual PCA, individual DWT, individual-t-CWT extrema, group-

t-CWT extrema and group-dCWT extrema; individual-t-CWT maxima or minima,

group-t-CWT maxima or minima, group area and group peak values. Note that the

group measures were obtained from the group data, but applied on the individual

data.
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Statistical Analysis

Each of the individual-participant component sets was further reduced by PCA

over all channels (from the total covariance matrix of the corresponding participant

component set). The greatest eigenvalues that cleared 95% of the variance were

retained. To compare the two experimental conditions, the two-sample T 2-Hotelling

test was performed on each of the 9 principal component sets for each participant.

Additionally, the individual-t-CWT method was incorporated in a randomization

test (Edington 1987) with 2000 randomizations to correct the result of the Hotelling

test for the accumulation of chance involved in the individual-t-CWT procedure

(preselection based on Student’s t-test from the very same two samples which are

compared).

The randomization test was performed as described in the following. The single

trials of the given data set were randomly assigned to one of two samples of the

same size as the original samples of the two experimental conditions. t-CWT peak

detection, PCA reduction and Hotelling test were performed as described above

and the resulting p-value was stored. This procedure was repeated many times and

finally the p-value obtained from the original samples was appended to the set of

p-values obtained from the random samples. The percentage of p-values less than,

or equal to, the original p-value was taken as the estimated probability that the

difference between the two original samples had occurred by chance, i.e. that H0

was true.

3.5 Results

3.5.1 Oddball

The grand average waveforms obtained from the oddball experiment are displayed

in Figure 3.4. The corresponding dCWT and t-CWT scalograms are displayed in
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Figure 3.5 and Figure 3.6 respectively. The results from the statistical assessment

of the individual-participant datasets are summarized in Table 3.1 and Table 3.2.

Table 3.1 shows the results for the whole waveforms and Table 3.2 shows the results

for the P300 component.



Chapter 3: ERP Assessment with the t-CWT Method 69

     

 

 

 

 

 
FZ  

0 200 400 600 800

−4

−2

0

2

4
CZ  

µV

ms

Standard
Deviant 

     

 

 

 

 

 
PZ  

     

 

 

 

 

 
P3  

     

 

 

 

 

 
P4  

     

 

 

 

 

 
C3  

     

 

 

 

 

 
C4  

     

 

 

 

 

 
F3  

     

 

 

 

 

 
F4  

Figure 3.4: Grand average waveforms obtained in the oddball experiment. The
following components in the ERP elicited by the deviant stimulus are readily dis-
cernable: N100 with increased amplitude, MMN with latency of about 200ms, P300
and late negativity with latency of about 450ms.
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Figure 3.5: dCWT scalogram obtained in the oddball experiment. Local maxima
are indicated by ⊕, local minima – by ⊗. The P300 maximum is detected at scale
≈ 320ms.
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Figure 3.6: t-CWT scalogram obtained in the oddball experiment. Local maxima
are indicated by ⊕, local minima – by ⊗. The P300 maximum is detected at scale
≈ 250ms. (note the difference to the dCWT scalogram).
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p-values
Participant group group individual individual individual individual

dCWT t-CWT PCA DWT t-CWT t-CWT
Hotelling Hotelling Hotelling Hotelling randomized Hotellingac

ALM 0.0069∗ 0.0001∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

BAG 0.0474∗ 0.0196∗ 0.0015∗ 0.0005∗ 0.0080∗ 0.0011∗ac

BAS 0.0003∗ 0.0001∗ 0.0009∗ 0.0011∗ 0.0010∗ 0.0001∗ac

BRA 0.0251∗ 0.0083∗ 0.0356∗ 0.0598 0.0105∗ 0.0020∗ac

BRU 0.0213∗ 0.0445∗ 0.0145∗ 0.0161∗ 0.0055∗ 0.0004∗ac

CIE 0.0010∗ 0.0009∗ 0.0001∗ 0.0001∗ 0.0060∗ 0.0005∗ac

ENC 0.0004∗ 0.0001∗ 0.0006∗ 0.0007∗ 0.0010∗ 0.0001∗ac

FEF 0.0542 0.0340∗ 0.2562 0.1576 0.0880 0.0171∗ac

FIC 0.0591 0.0386∗ 0.0785 0.1155 0.1285 0.0287∗ac

GIM 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

GOI 0.0002∗ 0.0004∗ 0.0000∗ 0.0000∗ 0.0015∗ 0.0000∗ac

GUS 0.0888 0.0134∗ 0.1539 0.0336∗ 0.0050∗ 0.0008∗ac

HAH 0.0147∗ 0.0207∗ 0.0073∗ 0.0112∗ 0.0115∗ 0.0014∗ac

HEA 0.0005∗ 0.0000∗ 0.0028∗ 0.0041∗ 0.0030∗ 0.0003∗ac

HII 0.0003∗ 0.0000∗ 0.0002∗ 0.0003∗ 0.0010∗ 0.0000∗ac

JUE 0.1923 0.0278∗ 0.1744 0.1167 0.0135∗ 0.0018∗ac

KAA 0.0001∗ 0.0002∗ 0.0005∗ 0.0005∗ 0.0020∗ 0.0002∗ac

KAC 0.1750 0.1825 0.0141∗ 0.0175∗ 0.0100∗ 0.0007∗ac

KUD 0.0004∗ 0.0004∗ 0.0003∗ 0.0004∗ 0.0005∗ 0.0002∗ac

MAH 0.0013∗ 0.0022∗ 0.0004∗ 0.0003∗ 0.0005∗ 0.0000∗ac

MAN 0.0000∗ 0.0006∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

MUV 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

NED 0.0154∗ 0.0060∗ 0.0088∗ 0.0152∗ 0.0040∗ 0.0003∗ac

OTS 0.2936 0.2080 0.2421 0.2936 0.6960 0.3351ac

RER 0.0014∗ 0.0002∗ 0.0003∗ 0.0007∗ 0.0055∗ 0.0009∗ac

ROC 0.0001∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

ROM 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

SCA 0.1309 0.0013∗ 0.3814 0.2518 0.0075∗ 0.0008∗ac

SCH 0.0002∗ 0.0001∗ 0.0000∗ 0.0001∗ 0.0005∗ 0.0000∗ac

SCK 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

SCT 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

SCW 0.0055∗ 0.0021∗ 0.0001∗ 0.0001∗ 0.0010∗ 0.0000∗ac

UMD 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

USD 0.0182∗ 0.0127∗ 0.0400∗ 0.0579 0.0115∗ 0.0007∗ac

WIB 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0005∗ 0.0000∗ac

ZIA 0.4431 0.1092 0.5548 0.5974 0.6495 0.3035ac

Mean p-value 0.0444 0.0204 0.0547 0.0487 0.0466 0.0194ac

Median p-value 0.0011 0.0005 0.0004 0.0005 0.0018 0.0002ac

Number of ∗ 28 33 29 28 32 34 ac

Percent ∗ 78% 92% 81% 78% 89% 94% ac

∗ significant at level α = 0.05.
ac biased by accumulation of chance.

Table 3.1: Results of the statistical assessment of the whole waveforms obtained
from the single-participant data sets from the oddball experiment.
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p-values
Participant group group group individual individual

area P300 peak P300 t-CWT P300 t-CWT P300 t-CWT P300
Hotelling Hotelling Hotelling randomized Hotellingac

ALM 0.1027 0.1536 0.0009∗ 0.0006∗ 0.0000∗ac

BAG 0.3378 0.0649 0.0007∗ 0.0006∗ 0.0001∗ac

BAS 0.0858 0.2094 0.0000∗ 0.0006∗ 0.0000∗ac

BRA 0.1143 0.0584 0.0102∗ 0.0062∗ 0.0008∗ac

BRU 0.9931 0.9102 0.0225∗ 0.0364∗ 0.0033∗ac

CIE 0.3749 0.3845 0.0001∗ 0.0006∗ 0.0000∗ac

ENC 0.0325∗ 0.0206∗ 0.0000∗ 0.0012∗ 0.0000∗ac

FEF 0.0998 0.4819 0.0392∗ 0.1148 0.0204∗ac

FIC 0.8464 0.9328 0.0116∗ 0.0519 0.0059∗ac

GIM 0.0304∗ 0.0000∗ 0.0000∗ 0.0006∗ 0.0000∗ac

GOI 0.0120∗ 0.0033∗ 0.0001∗ 0.0006∗ 0.0000∗ac

GUS 0.6336 0.7215 0.0040∗ 0.0062∗ 0.0010∗ac

HAH 0.6274 0.0835 0.0011∗ 0.0062∗ 0.0004∗ac

HEA 0.8116 0.5949 0.0003∗ 0.0037∗ 0.0002∗ac

HII 0.0076∗ 0.0007∗ 0.0000∗ 0.0006∗ 0.0000∗ac

JUE 0.5351 0.6546 0.3189 0.0204∗ 0.0024∗ac

KAA 0.0440∗ 0.0503 0.0000∗ 0.0006∗ 0.0000∗ac

KAC 0.0297∗ 0.2188 0.0646 0.0086∗ 0.0004∗ac

KUD 0.0438∗ 0.0490∗ 0.0001∗ 0.0006∗ 0.0000∗ac

MAH 0.0016∗ 0.0602 0.0002∗ 0.0006∗ 0.0000∗ac

MAN 0.0042∗ 0.2377 0.0000∗ 0.0006∗ 0.0000∗ac

MUV 0.0001∗ 0.0001∗ 0.0000∗ 0.0006∗ 0.0000∗ac

NED 0.2269 0.2940 0.0009∗ 0.0031∗ 0.0001∗ac

OTS 0.6077 0.6089 0.1219 0.6241 0.2374ac

RER 0.0321∗ 0.0169∗ 0.0000∗ 0.0012∗ 0.0001∗ac

ROC 0.0113∗ 0.1233 0.0000∗ 0.0006∗ 0.0000∗ac

ROM 0.0016∗ 0.0137∗ 0.0000∗ 0.0006∗ 0.0000∗ac

SCA 0.1158 0.6977 0.0097∗ 0.0025∗ 0.0000∗ac

SCH 0.0058∗ 0.0942 0.0000∗ 0.0006∗ 0.0000∗ac

SCK 0.0003∗ 0.0001∗ 0.0000∗ 0.0006∗ 0.0000∗ac

SCT 0.5238 0.0569 0.0000∗ 0.0006∗ 0.0000∗ac

SCW 0.0027∗ 0.0029∗ 0.0649 0.0025∗ 0.0001∗ac

UMD 0.0000∗ 0.0005∗ 0.0000∗ 0.0006∗ 0.0000∗ac

USD 0.7263 0.9817 0.0213∗ 0.0154∗ 0.0012∗ac

WIB 0.0011∗ 0.0079∗ 0.0000∗ 0.0006∗ 0.0000∗ac

ZIA 0.4801 0.0331∗ 0.0768 0.5000 0.1608ac

Mean p-value 0.2362 0.2451 0.0214 0.0393 0.0121ac

Median p-value 0.0649 0.0742 0.0002 0.0006 0.0000ac

Number of ∗ 18 13 31 32 34 ac

Percent ∗ 50% 36% 86% 89% 94% ac

∗ significant at level α = 0.05.
ac biased by accumulation of chance.

Table 3.2: Results of the statistical assessment of the P300 measures obtained from
the single-participant data sets from the oddball experiment. The t-CWT measure
shows clear superiority to the classical area and peak measures.
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3.5.2 Priming

The grand average waveforms obtained from the priming experiment are displayed

in Figure 3.7. The corresponding dCWT and t-CWT scalograms are displayed in

Figure 3.8 and Figure 3.9 respectively. The results from the statistical assessment

of the individual-participant datasets are summarized in Tables 3.3 and 3.4. Table

3.3 shows the results for the whole waveforms and Table 3.4 shows the results for

the N400 component.
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Figure 3.7: Grand average waveforms obtained in the priming experiment. Besides
the N400, there is also a late positive wave elicited by the incongruous words. It can
also be interpreted as an indicator that the incongruous stimuli were successfully
recognized as words and their meaning was found inconsistent with the preceding
words (first in pair).
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Figure 3.8: dCWT scalogram obtained in the priming experiment. Local maxima
are indicated by ⊕, local minima – by ⊗. The late N400 minimum is detected at
scale ≈ 2200ms and time ≈ 450ms at frontal sites. At central and parietal sites, the
scale is smaller and the latency is approximately 400ms
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Figure 3.9: t-CWT scalogram obtained in the priming experiment. Local maxima
are indicated by ⊕, local minima – by ⊗. Note how different this scalogram is from
the dCWT scalogram. The late N400 minimum is detected at scale ≈ 600ms and
time ≈ 650ms at frontal sites. Also at central and parietal sites, the N400 scale is
some 500ms smaller than the one obtained from the dCWT scalogram. The late
positive wave is represented by a frontal maximum, while at the dCWT scalogram
it is represented by central and parietal maxima with 200ms shorter latency.
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p-values
Participant group group individual individual individual individual

dCWT t-CWT PCA DWT t-CWT t-CWT
Hotelling Hotelling Hotelling Hotelling randomized Hotellingac

ALM 0.0070∗ 0.0047∗ 0.0316∗ 0.0438∗ 0.0543 0.0049∗ac

BAG 0.0000∗ 0.0000∗ 0.0014∗ 0.0022∗ 0.0008∗ 0.0000∗ac

BAS 0.0010∗ 0.0010∗ 0.0001∗ 0.0002∗ 0.0008∗ 0.0000∗ac

BRA 0.0007∗ 0.0005∗ 0.0007∗ 0.0018∗ 0.0026∗ 0.0003∗ac

BRU 0.0001∗ 0.0001∗ 0.0001∗ 0.0002∗ 0.0008∗ 0.0000∗ac

CIE 0.5783 0.0463∗ 0.6021 0.6882 0.4823 0.1337ac

ENC 0.1734 0.0354∗ 0.0409∗ 0.0345∗ 0.0139∗ 0.0007∗ac

FEF 0.3728 0.4216 0.1331 0.1655 0.0398∗ 0.0044∗ac

FIC 0.0005∗ 0.0044∗ 0.0019∗ 0.0006∗ 0.0012∗ 0.0000∗ac

GIM 0.2121 0.1436 0.0012∗ 0.0016∗ 0.0024∗ 0.0001∗ac

GOI 0.1251 0.0129∗ 0.0274∗ 0.0341∗ 0.0018∗ 0.0001∗ac

GUS 0.0501 0.0278∗ 0.0088∗ 0.0037∗ 0.0006∗ 0.0001∗ac

HAH 0.8870 0.6353 0.8664 0.9252 0.8928 0.4572ac

HEA 0.0835 0.0363∗ 0.3024 0.2755 0.4446 0.1187ac

HII 0.5552 0.0343∗ 0.0710 0.1544 0.0247∗ 0.0035∗ac

JUE 0.2426 0.1874 0.3390 0.3271 0.0193∗ 0.0016∗ac

KAA 0.0011∗ 0.0023∗ 0.0048∗ 0.0072∗ 0.0024∗ 0.0001∗ac

KAC 0.0446∗ 0.0034∗ 0.0050∗ 0.0100∗ 0.0036∗ 0.0001∗ac

KUD 0.0083∗ 0.0016∗ 0.0245∗ 0.0202∗ 0.0066∗ 0.0001∗ac

MAH 0.0136∗ 0.0345∗ 0.1172 0.1225 0.1813 0.0271∗ac

MAN 0.0089∗ 0.0000∗ 0.0000∗ 0.0001∗ 0.0006∗ 0.0000∗ac

MUV 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0012∗ 0.0000∗ac

NED 0.0109∗ 0.0060∗ 0.0327∗ 0.0474∗ 0.0145∗ 0.0013∗ac

OTS 0.0247∗ 0.0783 0.0867 0.0556 0.0795 0.0079∗ac

RER 0.0033∗ 0.0187∗ 0.0281∗ 0.0489∗ 0.1946 0.0332∗ac

ROC 0.2589 0.0076∗ 0.0005∗ 0.0008∗ 0.0006∗ 0.0000∗ac

ROM 0.0173∗ 0.0077∗ 0.0293∗ 0.0333∗ 0.0241∗ 0.0021∗ac

SCA 0.0043∗ 0.0130∗ 0.0152∗ 0.0144∗ 0.0145∗ 0.0010∗ac

SCH 0.0088∗ 0.0226∗ 0.0391∗ 0.0834 0.1054 0.0158∗ac

SCK 0.0723 0.0086∗ 0.0324∗ 0.0361∗ 0.0066∗ 0.0004∗ac

SCT 0.0029∗ 0.0089∗ 0.0004∗ 0.0001∗ 0.0018∗ 0.0001∗ac

SCW 0.1131 0.0349∗ 0.0414∗ 0.0181∗ 0.0193∗ 0.0020∗ac

UMD 0.0000∗ 0.0000∗ 0.0001∗ 0.0001∗ 0.0006∗ 0.0000∗ac

USD 0.0187∗ 0.0110∗ 0.0782 0.0438∗ 0.0018∗ 0.0000∗ac

WIB 0.0000∗ 0.0000∗ 0.0000∗ 0.0001∗ 0.0006∗ 0.0000∗ac

ZIA 0.0048∗ 0.0019∗ 0.1188 0.1560 0.0127∗ 0.0011∗ac

Mean p-value 0.1085 0.0515 0.0856 0.0932 0.0737 0.0227ac

Median p-value 0.0122 0.0088 0.0277 0.0267 0.0066 0.0003ac

Number of ∗ 23 31 26 26 28 33 ac

Percent ∗ 64% 86% 72% 72% 78% 92% ac

∗ significant at level α = 0.05.
ac biased by accumulation of chance.

Table 3.3: Results of the statistical assessment of the whole waveforms obtained
from the single-participant data sets from the priming experiment.
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p-values
Participant group group group individual individual

area N400 peak N400 t-CWT N400 t-CWT N400 t-CWT N400
Hotelling Hotelling Hotelling randomized Hotellingac

ALM 0.0394∗ 0.1385 0.0061∗ 0.0752 0.0050∗ac

BAG 0.1443 0.3586 0.0000∗ 0.0011∗ 0.0000∗ac

BAS 0.0879 0.3416 0.0019∗ 0.0006∗ 0.0000∗ac

BRA 0.4871 0.9084 0.0002∗ 0.0025∗ 0.0001∗ac

BRU 0.2538 0.5599 0.0001∗ 0.0012∗ 0.0000∗ac

CIE 0.7900 0.8957 0.1043 0.0739 0.0058∗ac

ENC 0.5881 0.7919 0.0324∗ 0.0205∗ 0.0006∗ac

FEF 0.2615 0.3372 0.4319 0.0224∗ 0.0019∗ac

FIC 0.2443 0.0856 0.0024∗ 0.0012∗ 0.0000∗ac

GIM 0.6257 0.7642 0.1323 0.0019∗ 0.0000∗ac

GOI 0.3250 0.2363 0.0067∗ 0.0348∗ 0.0025∗ac

GUS 0.6315 0.9091 0.0159∗ 0.0006∗ 0.0000∗ac

HAH 0.6408 0.9444 0.6009 0.8534 0.3172ac

HEA 0.0380∗ 0.1893 0.0604 0.4323 0.0817ac

HII 0.8730 0.8813 0.0333∗ 0.0714 0.0054∗ac

JUE 0.2925 0.7476 0.1284 0.1789 0.0185∗ac

KAA 0.1650 0.8975 0.0020∗ 0.0019∗ 0.0000∗ac

KAC 0.6564 0.6233 0.0094∗ 0.0068∗ 0.0003∗ac

KUD 0.9414 0.8971 0.0010∗ 0.0143∗ 0.0005∗ac

MAH 0.1539 0.4540 0.0206∗ 0.1783 0.0163∗ac

MAN 0.0150∗ 0.0670 0.0000∗ 0.0006∗ 0.0000∗ac

MUV 0.0767 0.1860 0.0000∗ 0.0050∗ 0.0002∗ac

NED 0.2475 0.0585 0.0031∗ 0.0112∗ 0.0008∗ac

OTS 0.0088∗ 0.0562 0.0553 0.0795 0.0055∗ac

RER 0.0403∗ 0.0176∗ 0.0028∗ 0.1329 0.0132∗ac

ROC 0.2133 0.1559 0.0808 0.0087∗ 0.0003∗ac

ROM 0.4579 0.5996 0.0040∗ 0.1043 0.0080∗ac

SCA 0.6593 0.1614 0.0085∗ 0.0217∗ 0.0011∗ac

SCH 0.5718 0.9044 0.0185∗ 0.0335∗ 0.0027∗ac

SCK 0.8701 0.9855 0.0238∗ 0.2944 0.0348∗ac

SCT 0.0041∗ 0.0495∗ 0.0085∗ 0.0180∗ 0.0007∗ac

SCW 0.8032 0.7498 0.1296 0.0807 0.0063∗ac

UMD 0.0093∗ 0.1077 0.0000∗ 0.0006∗ 0.0000∗ac

USD 0.0160∗ 0.0063∗ 0.0065∗ 0.0012∗ 0.0000∗ac

WIB 0.0011∗ 0.0001∗ 0.0000∗ 0.0006∗ 0.0000∗ac

ZIA 0.0281∗ 0.0317∗ 0.0011∗ 0.0211∗ 0.0008∗ac

Mean p-value 0.3406 0.4472 0.0537 0.0774 0.0147ac

Median p-value 0.2507 0.3501 0.0076 0.0193 0.0007ac

Number of ∗ 10 05 27 24 34 ac

Percent ∗ 28% 14% 75% 67% 94% ac

∗ significant at level α = 0.05.
ac biased by accumulation of chance.

Table 3.4: Results of the statistical assessment of the N400 measures obtained from
the single-participant data sets from the priming experiment. The t-CWT measure
shows clear superiority to the classical area and peak measures.
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3.6 Discussion

By the study presented in this chapter, it was demonstrated how the t-CWT feature

extraction method originally developed for BCI applications can be applied in the

statistical assessment and significance testing of ERP components. The t-CWT

method produced generally larger effects (reflected by smaller p-values) than the

other methods it was compared with. This result was not unexpected, since the

t-CWT was specially designed to extract features that best discriminate between

the ERPs elicited in two different experimental conditions. To the best of our

knowledge, this is the first ERP component detection and quantification method

that is explicitly based on such criteria. Most other methods, which were briefly

reviewed above, detect ERP components from one of the two average waveforms

or from the difference waveform and usually do not take the variance into account.

The PCA can be adopted to take into account both the average differences and the

variance, by applying it to a sample of individual participants’ average difference

waveforms, but then it cannot use the within-participant variance contained in the

single-trials and hence cannot be applied to individual data. The t-CWT uses both

the mean difference and the total variance and thus utilizes the whole information

contained in the single-trials and does not lose statistical test power by sample size

reduction. In this study, the power of the t-CWT was tested with individual ERP

data, but it can be applied in group assessments as well – the individual participants’

data are simply pooled into one large data set, which is then processed according to

the same procedures that was demonstrated on the individual data sets. Moreover,

single ERP components detected and quantified with the t-CWT may be analyzed

further by standard ANOVA procedures instead of being subjected to the Hotelling

test.

The statistical test power of a given assessment method can be roughly estimated

by the percentage of participants who showed a significant ERP effect as assessed

with this method. The t-CWT method proved consistently more powerful than the
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other methods tested here. Whether the whole waveforms or single ERP components

were compared, the largest number of significant individual-participant effects was

obtained with the t-CWT method. It is important to emphasize the superiority

of the t-CWT to the dCWT, which demonstrates the importance of taking into

account the variance for proper detection of components that best represent the

differences between two ERPs.

In accord with the results from our previous study (see Chapter 2), the classical area

and peak measures yielded much bigger p-values and much fewer significant effects

than the wavelet measures (Tables 3.2 and 3.4) and thus proved quite inappropriate

for single-trial analyses. The PCA and the DWT provided very similar results in

terms of p-values and number of significant effects (Tables 3.3 and 3.1). In both

experiments, the percent of individual participants’ responses found significant with

the t-CWT method was higher than that obtained with the PCA and the DWT

(Tables 3.3 and 3.1). However the superiority of the t-CWT was not as pronounced

as its advantage over the area and peak measures.

Both the individual- and the group-features based assessments of the whole wave-

forms in the priming experiment yielded a higher percentage of significant responses

than the corresponding assessments of the N400 alone (Tables 3.3 and 3.4). Com-

paring the whole ERPs instead of single components certainly makes sense for the

paradigms of the context-violation class, where any significant difference between

the ERPs elicited by congruent and incongruent stimuli has a clear interpretation as

reflecting successfully accomplished cognitive processes of stimulus recognition and

context comprehension.

The present study addressed the issue of accumulation of chance, which is par-

ticularly important in the assessment of individual participants’ data without any

reference to previous group data. If the ERP components are detected from the

difference waveforms of the same data samples, which are then subjected to signif-

icance testing, some kind of a correction should be performed to compensate for
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the accumulation of chance involved in the procedure. This problem was solved by

adopting a randomization test. The rightmost columns of Tables 3.1, 3.2, 3.3, and

3.4 show the underestimated p-values and the corresponding overestimated numbers

of significant effects. The randomization test provides unbiased estimations of these

quantities, but it is time consuming An alternative is to use half of the trials for ERP

detection and the other half for significance testing. This method has the advantage

that it is much simpler and faster than the randomization test. It suffers, however,

a loss of test power by the sample size reduction by half. Nevertheless, in group

assessments, where a large number of trials from many participants is available, this

much simpler and faster solution may be preferred to the randomization test.

In the present study, the focus was placed on the assessment of individual partici-

pants’ ERP data, because this is exactly the case, in which single-trial analysis is

indispensable, the data samples are small, and individual differences in ERP struc-

ture may be accounted for by individual component detection. The assessment of

ERPs of single individuals is particularly important for clinical applications and

ERP-based diagnostics of cognitive functioning. Since the ERPs of neurological pa-

tients may be quite different from those of the healthy population (Kotchoubey et al.

2002), the version of the t-CWT method that detects ERP components from the

individual EEG without using any other data is particularly suitable for diagnostic

purposes.

A slight modification of the t-CWT using the Morlet wavelet instead of the Mex-

ican Hat (Ende et al. 1998) allows extraction of spectral features like e.g. phase-

locked (”evoked”) gamma activity (Senkowski and Herrmann 2002). For the case

of non-phase-locked (”induced”) activity, a complex wavelet should be used and the

absolute value of the complex covariance (3.1) should be taken at every time-scale

point of the single-trial CWT. More generally, the t-CWT may be applied to other

psychophysiological signals for extracting a pattern that best discriminates between

two samples of measurement data.
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Apart from its test power, the t-CWT method is attractive with its conceptual

simplicity, intuitive plausibility, scalogram visualization and clear interpretation of

the extrema of the t-value scalogram in terms of ERP components.

Thus far, only the advantages of the t-CWT have been discussed. There is, how-

ever, at least one important limitation of the method, which should be mentioned.

According to Heisenberg’s uncertainty relation, a wave’s good localization in the

time domain is inevitably at the cost of poorer localization in the frequency domain

and vice versa. Using the Mexican Hat wavelet for ERP component detection nec-

essarily implies a compromise between scale separation and time localization. The

point is that, while the central maximum of the Mexican Hat fits a given compo-

nent, the two lateral minima fit adjacent components of the same scale and opposite

polarity. Thus the obtained measure of the central component unavoidably contains

some information about the amplitudes of the adjacent components. According to

Heisenberg’s uncertainty relation, there is no possible remedy of this situation. The

time domain measures, area and peak, separate well the component of interest from

the adjacent components, but produce quite poor results in single trials analyses,

in which scale separation is crucial for proper component detection. This prob-

lem, however, ceases to exists when the comparison of the whole ERP waveforms,

regardless of specific components, is addressed by the t-CWT method.
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Chapter 4

The t-CWT as a Pattern

Recognition Method in BCIs

In the study presented in this chapter, the t-CWT method introduced in Chapter 2
was applied in two BCI paradigms – P300 speller and Slow Cortical Potential (SCP)
feedback. This approach to BCI feature extraction and classification was validated in the
International BCI Classification Contest 2003, where the t-CWT method was a winner
(provided best classification) on two ERP data sets acquired in these two paradigms. In the
P300 speller paradigm the method provided results, which were as good as those obtained
from simple and redundant features with a very powerful classifier based on machine
learning – the Support Vector Machines (SVM). The t-CWT method has the advantage
that it is very simple, intuitively plausible, readily visualizable and the extracted features
have clear interpretation as ERP components.

4.1 Introduction

Brain-computer interfaces (BCI) belong to the most inovative and

exciting applications of ERP research. They allow completely paralyzed people

to communicate with the world solely by means of their brain waves (Birbaumer,

Ghanayim, Hinterberger, Iversen, Kotchoubey, Kübler, Perelmouter, Taub, and Flor

1999; Kübler, Kotchoubey, Kaiser, Wolpaw, and Birbaumer 2001). One bit of infor-

mation is transferred from the brain to the computer by the discrimination between

two different ERPs. This process includes feature extraction from the raw signals of

85
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the electroencephalogram (EEG). The features that distinguish the ERPs may be

extracted in the time, frequency or time-frequency domain.

In a standard BCI paradigm there are two data sets – the training data set and

the test data set. Each data set contains two groups of ERP trials, reflecting two

different brain responses to certain stimuli. Each trial comprises the EEG signals

acquired from one or more scalp positions (channels). In the training data set the

two groups of trials are known – each trial carries the label of the group, to which it

belongs. The trials in the test data set are not labeled and have to be separated into

groups according to the pattern that discriminates between the groups of the train-

ing set. The success of the classification generally depends on two factors. The first

factor is how well the distinguishing pattern is represented by the features extracted

from the test data. The second factor is the power of the classification method.

It should be stressed that the two factors have independent impacts on classifica-

tion results. Powerful classifiers like, e.g., Support Vector Machines (SVM), may

yield very good results even using simple and redundant features (Meinicke, Kaper,

Hoppe, Manfred, and Ritter 2003; Kaper, Meinicke, Grossekathoefer, Lingner, and

Ritter 2004). The present study shows that, contrariwise, efficient feature extraction

may produce excellent results even with the most simple classification method, the

classical Linear Discriminant Analysis (LDA) (Rencher 1998, pp. 230–231).

The most popular ERP features are the areas and the peaks of the ERP components

(waves) defined by the mean and extremum voltage respectively computed in certain

windows in the time domain determined by visual inspection of the ERP waveforms

averaged across many trials (see Chapters 1 and 2). Although the quantification

of ERP components by areas and peaks is the standard procedure in fundamental

ERP research, these features are quite inappropriate for BCI purposes, because

they are too rough and yield poor results in single-trial analysis (see Chapter 3). An

alternative approach is to take simply all voltage values of the band-pass filtered

signals as time domain features and feed them into a powerful classifier based on

machine learning like SVM. This technique has proved extremely efficient in BCI
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applications (Meinicke, Kaper, Hoppe, Manfred, and Ritter 2003; Kaper, Meinicke,

Grossekathoefer, Lingner, and Ritter 2004).

The t-CWT method for detection and quantification ERP components, which was

introduced in Chapter 3, has been originally developed as a feature extraction

method for application in BCI paradigms. The efficiency of the method was demon-

strated in the International BCI Classification Contest 2003 (Blankertz, Müller,

Curio, Vaughan, Schalk, Wolpaw, Schlögl, Neuper, Pfurtscheller, Hinterberger,

Schröder, and Birbaumer 2004), where it was a winner on two of the ERP data

sets obtained in two different BCI paradigms – P300 speller (Farwell and Donchin

1988) and self-regulation of slow cortical potentials (SCPs) (Birbaumer, Ghanayim,

Hinterberger, Iversen, Kotchoubey, Kübler, Perelmouter, Taub, and Flor 1999). The

resuls are presented in this chapter.

4.2 BCI Study 1: P300 Speller

The P300 speller data sets were provided by the BCI group at the Wadsworth

Center, Albany, NY, USA. This dataset represents a complete record of P300 evoked

potentials recorded with BCI20001 using a paradigm described by Donchin, Spencer,

and Wijensinghe 2000 and originally by Farwell and Donchin 1988. In this paradigm,

the user is presented with a character display and instructed to focus attention

on a particular character (target) of her/his choice. The characters start to flash

randomly (see below for details) and each time the chosen character is illuminated,

the user’s brain reacts with an ERP response which is different from the one elicited

by the illumination of nontarget characters. The experiment is so designed that each

character in the display flashes exactly 2 times every 12 trials (see below). After

every 180 trials (15 12-trial blocks) the computer performs a classification of the

1BCI2000 is a flexible Brain-Computer Interface research and development platform. It supports
a variety of brain signals, signal processing methods, and user applications, and is available free of
charge for research purposes at http://www.bci2000.org.
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single-trial ERPs into two groups – target and nontarget responses – according to a

pattern extracted from previous (training) data acquired from the same user. The

character, which has elicited the most pronounced target responses is designated a

target character and written on the computer screen.

The training data is obtained in a slightly different design: at the beginning of each

180-trial block, the user is instructed which character she/he should focus at. Thus,

the real target stimuli and consequently, the real target responses are known in the

training data set, which allows the extraction of the pattern distinguishing target

from nontarget ERPs. The most prominent component of this pattern is the P300

wave with peak latency t ≈ 300ms poststimulus and duration s ≈ 200ms (Figure

4.3).

4.2.1 Experimental Procedure

This description of the experimental design of the P300 speller paradigm follows

closely the one provided by the organizers of the International BCI Classification

Contest 2003 from the Wadsworth Center, Albany, NY, USA (Blankertz et al. 2004).

The user was presented with a 6 by 6 matrix of characters (see Figure 4.1). The

users task was to focus attention on characters in a word that was prescribed by

the investigator (i.e., one character at a time). All rows and columns of this matrix

were successively and randomly illuminated at a rate of 5.7Hz. Two out of 12

illuminations of rows or columns contained the desired character (i.e., one particular

row and one particular column). The responses evoked by these infrequent stimuli

(i.e., the 2 out of 12 stimuli that did contain the desired character) are different

from those evoked by the stimuli that did not contain the desired character and

they are similar to the P300 responses previously reported (Farwell and Donchin

1988; Donchin, Spencer, and Wijensinghe 2000).

The EEG signals (digitized at 240Hz) were collected from 64 scalp positions (Fig-
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Figure 4.1: The character matrix display in the P300 speller paradigm. In this
example, the users task is to spell the word ”SEND”.

ure 4.2), form one participant in three sessions. The first two sessions were used

as training data for feature extraction ad the third session was used as a test data

set for classification. Each session consisted of a number of runs. In each run,

the participant focused attention on a series of characters forming one word. For

each character, user display was as follows: the matrix was displayed for a 2.5 s

period, and during this time each character had the same intensity (i.e., the matrix

was blank). Subsequently, each row and column in the matrix was randomly illu-

minated for 100ms (i.e., resulting in 12 different stimuli – 6 rows and 6 columns).

(After illumination of a row/column, the matrix was blank for 75ms.) Row/column

illuminations were block randomized in blocks of 12. Blocks of 12 illuminations were

repeated 15 times for each character (i.e., any specific row/column was illuminated

15 times and thus there were 180 total illuminations for each character). Each se-

quence of 15 blocks of illuminations was followed by a 2.5 s period, and during this

time the matrix was blank. This period informed the user that this character was
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Figure 4.2: Electrode scalp positions, from which the EEG was recorded in the P300
speller paradigm.
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completed and to focus on the next character in the word that was displayed on the

top of the screen (the current character was shown in parentheses).

The training data set (sessions 1 and 2) contained 7560 trials for 42 characters and

the test data set (session 3) contained 5580 trials for 31 characters. The objective

in the International BCI Classification Contest 2003 contest was to recognize the

correct characters in the training data set (session 3).

4.2.2 Data Analysis and Results

1000ms-long overlapping epochs starting at stimulus onset were extracted from the

row EEG signals. The signals were resampled on a logarithmic time scale by spline

interpolation and low-pass filtered as described in Chapter 3 with scale dilation per

second ds = 2 and cut-off scale s0 = 75ms. The filtered signals were represented

in the time-frequency domain by DWT. Only the first 32 wavelet coefficients corre-

sponding to scales s > s0(1+dst) were retained; the first coefficient was also deleted

(direct current (DC) correction). No baseline corection was performed.

Feature Extraction

Features were extracted from the training data set according to the t-CWT proce-

dure described in Chapter 3 with 12×12 PPSPO and 36×36 PPSPO. Additionally,

the local extrema of the difference average waveform CWTs, dk(s, t) (3.6), were

found for comparison purposes. The results for one scalp position are displayed at

Figure 4.3. Besides the P300 maximum, several other extrema were found in the

scalograms. Note the differences between the t-value scalogram and the ordinary

difference waveform scalogram. The P300 maximum was found at much smaller

scale by the t-CWT. Furthermore, the two late extrema at scale s ≈ 200ms in the

difference CWT were found insignificant by the t-CWT method; the contrary holds

for the early extremum at s ≈ 200ms, t ≈ 200ms.
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Figure 4.3: Average waveforms obtained from scalp position Cz (top of the head) and
the corresponding scalograms with lines of constant altitude, local maxima marked
by 4 and local minima marked by 5. Note that, unlike in Chapters 1, 2 and 3,
positivity is plotted upwards.
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Classification

The classification of the test data was done by classical LDA (Rencher 1998, pp.

230–231) performed in the feature space (3.7). The scalar product ρn of each single-

trial vectorW kin of the test data set with the coefficient vector cki of the discriminate

function (Rencher 1998, pp. 201–202) was computed:

ρn =
K∑

k=1

Ik∑
i=1

W kincki, (4.1)

where K is the number of channels and Ik is the number of local extrema in the t-

CWT of channel k. The value ρn is a measure of how well trial n matches the target

response pattern. The trials with the largest ρ in every 180-trial block determine

the target character. This was done according to the following procedure. The

”P300-score” of each trial was defined as the scalar product of that trial’s feture

vector with the coefficient vector of the discriminant function according to (4.1).

The P300-score of each row and column was defined as the sum of the P3-scores of

all trials in which this particular row or column was illuminated. The row and the

column with the highest P3-scores were classified as target row and target column in

this block of trials and the corresponding character according to the matrix display

was classified as target character in this block. The results of this classification

obtained in a feature space extracted from a 12× 12 PPSPO t-value scalogram are

displayed in Table 4.2. The resulting words obtained from each run are displayed in

Table 4.1.

Actually, the target characters were correctly identified from much smaller blocks

of trials. The method was tested on the first 12, 24, 36, etc. trials of each 180-

trial block (i.e. the first 1, 2, 3, etc. 12-trial blocks). All target characters were

identified correctly with as few as 48 trials per character (4 12-trial blocks) using a

36×36 PPSPO t-value scalogram (Table 4.3). The procedure was repeated with the

features extracted from the ordinary difference CWT scalogram (36 × 36 PPSPO)

– 84 trials per character (7 12-trial blocks) were needed for error-free classification
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__________________

Run Word

__________________

aas012r01: FOOD

aas012r02: MOOT

aas012r03: HAM

aas012r04: PIE

aas012r05: CAKE

aas012r06: TUNA

aas012r07: ZYGOT

aas012r08: 4567

__________________

Table 4.1: The words obtained from the test data set in the P300 speller paradigm.

(Table 4.4). (This means that a paralyzed patient using this speller would need

almost twice as much time to communicate a word, if the difference CWT is used,

compared to the time needed with the t-CWT method.)

The high scalogram resolution of 36 × 36 PPSPO also turned out to be important

– the results presented at the International BCI Classification Contest 2003 showed

that with a 12 × 12 PPSPO t-value scalogram, 72 trials (6 12-trial blocks) were

needed for perfect classification (Table 4.5) even after additional stepwise selection

of variables (Rencher 1998, p. 217).
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__________________________________________________________________________

Column number: Row number:
1 2 3 4 5 6 1 2 3 4 5 6

__________________________________________________________________________

Normalized column Selected Normalized row Selected Selected
scores: column: scores: row: character:

aas012r01:
17 8 0 8 22 45 6 52 28 10 0 7 3 1 F
5 15 48 15 0 17 3 7 30 47 14 0 2 3 O
9 23 41 17 11 0 3 17 19 37 20 8 0 3 O
7 0 21 55 15 1 4 45 21 11 10 0 12 1 D

aas012r02:
66 26 0 1 7 1 1 1 14 56 18 11 0 3 M
2 12 69 10 7 0 3 9 23 49 14 5 0 3 O
8 17 50 14 0 11 3 9 25 54 10 1 0 3 O

21 52 15 8 4 0 2 0 15 13 48 20 4 4 T
aas012r03:

8 69 10 6 0 7 2 23 51 17 0 9 0 2 H
51 22 8 16 0 3 1 61 16 9 11 2 0 1 A
64 12 8 10 7 0 1 22 18 35 20 5 0 3 M
aas012r04:

1 9 5 80 5 0 4 19 14 50 14 3 0 3 P
12 18 56 11 0 4 3 29 43 16 11 0 1 2 I
14 0 6 10 51 19 5 50 21 0 12 9 8 1 E
aas012r05:

7 20 58 12 4 0 3 46 21 12 11 0 11 1 C
65 10 7 0 10 8 1 65 22 4 8 0 1 1 A
2 3 0 17 62 16 5 22 54 11 0 13 1 2 K
6 0 20 15 48 11 5 56 21 10 7 6 0 1 E

aas012r06:
23 52 9 5 0 11 2 3 5 3 70 19 0 4 T
7 31 51 8 0 3 3 16 0 19 53 4 7 4 U
8 69 10 6 0 8 2 5 18 56 20 0 2 3 N

71 14 7 5 3 0 1 71 12 7 0 7 3 1 A
aas012r07:
22 66 3 2 7 0 2 5 17 8 20 50 0 5 Z
49 16 16 0 7 11 1 3 12 0 18 51 16 5 Y
75 19 2 0 2 3 1 22 42 19 11 5 0 2 G
14 21 39 16 9 0 3 21 16 40 21 0 2 3 O
29 49 7 9 0 6 2 0 11 21 48 19 1 4 T
aas012r08:

2 11 0 20 6 60 6 10 0 6 7 60 18 5 4
47 21 11 9 0 13 1 1 16 0 6 5 72 6 5
23 50 19 5 2 0 2 6 10 0 13 22 49 6 6
19 17 57 6 2 0 3 8 0 7 6 13 65 6 7
__________________________________________________________________________

Table 4.2: Normalized ”P300 scores” for each row and column of the character
matrix display obtained from the 180-trial blocks of the test data set. One such
block (15 illuminations of each row and each column) was needed for selecting one
character.
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_____________________________________________

Number of illuminations:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_____________________________________________

Selected character:

aas012r01:
F F E F F F F F F F F F F F F
O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
D D D D D D D D D D D D D D D

aas012r02:
M M M M M M M M M M M M M M M
O O O O O O O O O O O O O O O
N O O O O O O O O O O O O O O
N T T T T T T T T T T T T T T

aas012r03:
H I I H H H H H H H H H H H H
A A A A A A A A A A A A A A A
M M M M M M M M M M M M M M M

aas012r04:
P P P P P P P P P P P P P P P
I I I I I I I I I I I I I I I
D E E E E E E E E E E E E E E

aas012r05:
C C C C C C C C C C C C C C C
A A A A A A A A A A A A A A A
I I I K K K K K K K K K K K K
E E E E E E E E E E E E E E E

aas012r06:
T T T T T T T T T T T T T T T
1 U U U U U U U U U U U U U U
H N N N N N N N N N N N N N N
A A A A A A A A A A A A A A A

aas012r07:
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Z S Y Y Y Y Y Y Y Y Y Y Y Y Y
B A G G G G A G G G G G G G G
N O O O O O O O O O O O O O O
T N N T T T T T T T T T T T T

aas012r08:
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

_____________________________________________

Number of errors out of 31 characters:
10 5 4 0 0 0 1 0 0 0 0 0 0 0 0
_____________________________________________

Number of illuminations:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_____________________________________________

Table 4.3: Results obtained with 36×36 PPSPO in the t-value scalogram for 1, 2, 3,
etc. illuminations of each row and column of the character matrix display. Perfect
classification (character identification) was obtained with as few as 4 illuminations.
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_____________________________________________

Number of illuminations:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_____________________________________________

Selected character:

aas012r01:
F F K L L F F F F F F F F F F
U U O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
F D B D D D D D D D D D D D D

aas012r02:
M M M M M M M M M M M M M M M
O O O O O O O O O O O O O O O
N P O O O O O O O O O O O O O
N T T T T T T T T T T T T T T

aas012r03:
H H H H H H H H H H H H H H H
A A A A A A A A A A A A A A A
M M M M M M M M M M M M M M M

aas012r04:
P P P P P P P P P P P P P P P
I I I I I I I I I I I I I I I
E E E E E E E E E E E E E E E

aas012r05:
C C C C C C C C C C C C C C C
A A A A A A A A A A A A A A A
H I K K K K K K K K K K K K K
E E E E E E E E E E E E E E E

aas012r06:
T T T T T T T T T T T T T T T
1 U U U U U U U U U U U U U U
H N N N N N N N N N N N N N N
A A A A A A A A A A A A A A A

aas012r07:
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Z Y Y Y Y Y Y Y Y Y Y Y Y Y Y
A A A A G A G G G G G G G G G
O O O O O O O O O O O O O O O
T S T T T T T T T T T T T T T

aas012r08:
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

_____________________________________________

Number of errors out of 31 characters:
10 5 3 2 1 1 0 0 0 0 0 0 0 0 0
_____________________________________________

Number of illuminations:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_____________________________________________

Table 4.4: Results obtained with 36×36 PPSPO in the average difference scalogram
for 1, 2, 3, etc. illuminations of each row and column of the character matrix display.
Perfect classification (character identification) was obtained with 7 illuminations.
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_____________________________________________

Number of illuminations:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_____________________________________________

Selected character:

aas012r01:
F F K L L F F F F F F F F F F
O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
D D D D D D D D D D D D D D D

aas012r02:
M M M M M M M M M M M M M M M
U O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O
Z T T T T T T T T T T T T T T

aas012r03:
B B H H H H H H H H H H H H H
A A A A A A A A A A A A A A A
M M M M M M M M M M M M M M M

aas012r04:
P P P P P P P P P P P P P P P
I I I I I I I I I I I I I I I
D E E E E E E E E E E E E E E

aas012r05:
C C C C C C C C C C C C C C C
A A A A A A A A A A A A A A A
G I I K K K K K K K K K K K K
E E E E E E E E E E E E E E E

aas012r06:
T T T T T T T T T T T T T T T
1 U U U U U U U U U U U U U U
H N N N N N N N N N N N N N N
A A A A A A A A A A A A A A A

aas012r07:
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Z T Z Y Y Y Y Y Y Y Y Y Y Y Y
B F G G G G G G G G G G G G G
N O O U O O O O O O O O O O O
T N N T T T T T T T T T T T T

aas012r08:
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

_____________________________________________

Number of errors out of 31 characters:
11 5 4 2 1 0 0 0 0 0 0 0 0 0 0
_____________________________________________

Number of illuminations:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_____________________________________________

Table 4.5: Results obtained with 12×12 PPSPO in the t-value scalogram for 1, 2, 3,
etc. illuminations of each row and column of the character matrix display. Perfect
classification (character identification) was obtained with 6 illuminations.
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4.3 BCI Study 2: Self-Regulation of SCPs

The t-CWT method was also tested on two data sets provided by the BCI group

at the Institute of Medical Psychology and Behavioral Neurobiology, University of

Tübingen, Germany (Blankertz et al. 2004). The data were obtained from 5 scalp

positions with the Thought Translation Device (TTD) (Kübler, Kotchoubey, Hin-

terberger, Ghanayim, Perelmouter, Schauer, Fritsch, Taub, and Birbaumer 1999;

Hinterberger, Mellinger, and Birbaumer 2003) in a biofeedback experiment. In this

paradigm the user learns to steer the course of her/his EEG in negative or positive

direction, by willingly producing SCPs and getting immediate visual and/or acous-

tic feedback. This technique has been already successfully applied with paralyzed

patients, who thus learned to make binary choices by means of their brain waves

and thereby operate a speller or an internet browser (Hinterberger, Kaiser, Kübler,

Neumann, and Birbaumer 2001).

4.3.1 Experimental Procedure

This description of the experimental design of the SCP biofeedback paradigm follows

closely the one provided by the organizers of the International BCI Classification

Contest 2003 from the Institute of Medical Psychology and Behavioral Neurobiology,

University of Tübingen, Germany (Blankertz et al. 2004).

First Experiment

The EEG data (digitized at 256Hz) were collected from one healthy user from the

following 5 scalp positions: Cz, 2 cm frontal of C3, 2 cm parietal of C3, 2 cm frontal

of C4 and 2 cm parietal of C4. The user was asked to move a cursor up and down on

a computer screen, while his cortical potentials were recorded. During the recording,

the user received visual feedback of his SCPs (Cz-Mastoids). Cortical positivity lead
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to a downward movement of the cursor on the screen. Cortical negativity lead to

an upward movement of the cursor. Each trial lasted 6s. During every trial, the

task was visually presented by a highlighted goal at either the top or bottom of the

screen to indicate negativity or positivity from second 0.5 until the end of the trial.

The visual feedback was presented from second 2 to second 5.5. Only this 3.5 second

interval of every trial is provided for training and testing. The sampling rate of 256

Hz and the recording length of 3.5s resulted in 896 samples per channel for every

trial.

Second Experiment

The EEG data (digitized at 256Hz) were collected from an artificially respirated

patient in the last stage of Amyotrophic Lateral Sclerosis (ALS) from the same

scalp positions as in the first experiment. The patient was asked to move a cursor

up and down on a computer screen, while his cortical potentials were recorded.

During the recording, the subject received auditory and visual feedback of his slow

cortical potentials (Cz-Mastoids). Cortical positivity lead to a downward movement

of the cursor on the screen. Cortical negativity lead to an upward movement of

the cursor. Each trial lasted 8s. During every trial, the task was visually presented

by a highlighed goal at the top (for negativity) or bottom (for positivity) of the

screen from second 0.5 until second 7.5 of every trial. In addition, the task (”up”

or ”down”) was vocalised at second 0.5. The visual feedback was presented from

second 2 to second 6.5. Only this 4.5 second interval of every trial is provided for

training and testing. The sampling rate of 256 Hz and the recording length of 4.5s

resulted in 1152 samples per channel for every trial.
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4.3.2 Data Analysis and Results

Apart from the operant learning involved, there are two technical differences between

the SCP Feedback and the P300 Speller paradigm. First, the SCPs are ERP com-

ponents of much longer duration (scale) than the P300 and the other components

found in the P300 Speller paradigm. The log time sampling described in Chapter

3 allows the t-CWT method to handle early, short waves together with late, slow

waves in 3-4s-long epochs. Second, the classification of SCP responses is done simply

on a trial-by-trial basis according to a standard classification rule (Rencher 1998, p.

231), without using blocks of trials. This is related to the fact that SCPs are much

easier to recognize from single trials than the P300.

The data were processed similarly to the P300 Speller data sets but with prestimulus

baseline correction instead of DC correction and with scalogram resolution of 12×12

PPSPO.

At the International BCI Classification Contest 2003, the t-CWT method provided

the seventh best classification on the first Tübingen data set with 17.4% errors (the

contest winner had 11.3%) and the best result – 45.6% errors – on the second data

set (Blankertz et al. 2004). (All methods presented in the contest provided rather

poor results on this, second data set, which suggested, that it was really very hard,

if not impossible, to extract some useful discriminating pattern from it.)

4.4 Discussion

In the study presented in this chapter, the t-CWT methodintroduced in Chapter

3 was applied as feature extraction procedure in two BCI paradigms. In the P300

speller paradigm it provided clearly better classification of the single-trial ERPs than

the analogical procedure using the ordinary difference CWT. This result confirms

the results obtained in Chapter 3 and demonstrates again the importance of taking
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into account the variance in the data for proper ERP component detection.

The t-CWT is a feature extraction method and it can be combined with any classi-

fication procedure. Its power was demonstrated by using the most simple LDA

classification: the results were as good as those obtained from simple features

but with a powerful machine-learning based classifier, the SVM (Kaper, Meinicke,

Grossekathoefer, Lingner, and Ritter 2004). The t-CWT is attractive with its con-

ceptual simplicity, intuitive plausibility, scalogram visualization and clear interpre-

tation of the features in terms of ERP components. Moreover, the efficiency of

the t-CWT can possibly be increased further by using it in combination with such

advanced classification methods as SVM.



Summary and Conclusions

Two major results were presented in this dissertation: first, the newly found electro-

physiological brain response to inconsistent affective prosody marked by the N300

component in the ERP to incongruous emotional exclamations, and second, the

newly developed t-CWT feature extraction method for fully automated detection

and quantification of ERP components. Both results are important for both funda-

mental and applied-clinical psychophysiological research.

The two ERP paradigms introduced in Chapter 1 provide a means for tracking

the cognitive process of voice emotion recognition in real time. It appears that

this process is considerably faster than the analogical process of semantical-lexical

recognition. The study presented in Chapter 1 is the first to address the recognition

of emotional voice quality from a psychophysiological perspective. The found N300

effect is fairly small – about 1µV – and although it is big enough for the goals of

fundamental psychological research, it might be unsufficient for applied diagnostic

purposes in clinical settings. Nevertheless, the passive oddball paradigm introduced

in Chapter 1 has already been used with paralyzed patients and in single cases it

has worked very well in proving that the corresponding patient showed unimpaired

recognition of voice emotion (Kotchoubey, Lang, Bostanov, and Birbaumer 2003).

Such patients not only showed a significant N300 effect, but their whole ERPs also

resembled closely those of the healthy population as displayed in Chapter 1, Figures

1.3 and 1.4. However, as already mentioned in Chapter 1, the inerpretation of

the other components found in the ERP to the deviant emotional exclamation in

103
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the oddball paradigm is somewhat problematic, since these later components may

be attributed to simple acoustic mismatch cognitive processes. The N300 has a

much more straightforward interpretation as psyhophysiological measure of emotion

recognition, because it appeared also in the ERP to the incongruous exclamations in

the priming paradigm where the disparity between spoken words and exclamations

excludes an explanation in terms of simple acoustical mismatch. Hence the priming

paradigm should be more suitable for clinical diagnostcs than the oddball. The

problem is that the N300 effect found in the priming paradigm was even smaller

than the one found in the oddball. As discussed in Chapter 1, the experiment can

be largly improved by using more different emotional stimuli to avoid habituation

and produce correspondingly larger statistical effects.

Another way to improve the diagnostic reliability of the N300 responce in the

prosody paradigms is to use better methods for ERP detection and quantification.

The continuous wavelet measures of ERP components first introduced in Chapter

2 and then futher developed and improved in Chapter 3 provide much larger sta-

tistical effects than the classical area and peak measures. The significance of the

N300 effect was markedly improved even by the simpler total-average-CWT method

presented in Chapter 2. The t-CWT introduced in Chapter 3, which is essentialy

a pattern recognition method specially designed to extract the features (compo-

nents) that best discriminate between to samples of ERP signals, was tested in

two of the most popular ERP paradigms – oddball and semantic priming – which

are also key instruments in the ERP-based cognitive diagnostics (Kotchoubey et al.

2002). It provided better results than all other methods it was compared with.

The crucial role of taking into account the within- and between-participant variance

was demonstrated. The conclusion is that the t-CWT is fully capable of assessing

single-patients ERP data on a single-trial bases. The method will be further tested

on real coma patients in a large German-French study aimed at the investigation of

the neurocognitive functioning in coma state.

The t-CWT method was additionally validated in the International BCI Classifica-
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tion Contest 2003, where it was a winner (provided best classification) on two ERP

data sets acquired in two different BCI paradigms – P300 speller and SCP feed-

back. These results were presented in Chapter 4. By the application of the t-CWT

method, the P300 speller is immensely accelerated – from 5 to 10s are needed for

writing one character instead 30s as in the original paradigm.

The t-CWT method was implemented in a MATLAB 6.0 computer program, which

was extensively tested in various settings: whole waveforms and single ERP com-

ponents (Chapter 3), medium latency ERP components and SCPs (Chapter 4), few

EEG channels and dense electrode array (Chapters 3 and 4), group and individual

ERP data (Chapter 3). As a next step, it is planned to test the program on individ-

ual ERP data obtained from coma patients in the large German-French ERP coma

assessment study.

Generally, the CWT may be seen as a conceptual framework not only for the t-

CWT, but also for a variety of other ERP assesment methods based on template

matching. In Chapter 2 it has already been shown how the area measure can be

formally defined as matching to a rectangular template. Peak picking after low-pass

filtering (Ruchkin and Glaser 1978) can also be seen as component detection from

a single scale slice corresponding to the cut-off frequency in a certain scalogram.

Classical template maching algorithms also use a predefined scale, but adjust the

time shift of the (non-wavelet) template to the single trials. (Of course, this single-

trial fitting can be done also with the t-CWT method – in the same way that

it was done in Chapter 2 by the ”matched-wavelet” measure.) Furthermore, the

DWT with its diadic representation scheme (Samar, Bopardikar, Rao, and Swartz

1999) can be seen as a digitized CWT sampled on the sparsest possible logarithmic

grid with 1 PPSPO to provide an exact and non-redundant representation of the

ERP waveforms. Thus, thinking of ERP components as local extrema in some

scalogram plot may provide us with a clearer picture of their properties and better

understanding of their nature.
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A. Kübler, J. Perelmouter, E. Taub, and H. Flor (1999). A spelling device

for the paralysed. Nature 398, 297–298.

Birbaumer, N. and W. Rief (Eds.) (2000). Biofeedback-Therapie: Grundlagen,

Indikation und praktisches Vorgehen. Stuttgart: Schattauer.

Birbaumer, N. and R. F. Schmidt (2003). Biologische Psychologie (fifth ed.).

Berlin: Springer.

Blankertz, B., K.-R. Müller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw,
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(1996). Uvi Wave. Wavelet Toolbox for use with Matlab. Departa-

mento de Tecnolox́ıas das Comunicacións. Universidad de Vigo, Spain.
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A. Öhman (Eds.), The structure of emotion: Psychophysiological, cognitive

and clinical aspects, pp. 3–17. Seattle: Hogrefe & Huber.

Pfefferbaum, A. and J. M. Ford (1988). ERPs to stimuli requiring response pro-

duction and inhibition: effects of age, probability and visual noise. Electroen-

cephalogr. Clin. Neurophysiol. 71, 55–63.

Picton, T. W. and S. A. Hillyard (1988). Endogenous event-related potentials. In

T. W. Picton (Ed.), Handbook of Electroencephalographic Clinical Neurophys-

iology, Volume 3, pp. 361–426. Amsterdam: Elsevier.

Pihan, H., E. Altenmuller, and H. Ackermann (1997). The cortical processing of

perceived emotion: a DC-potential study on affective speech prosody. Neu-

roreport 8, 623–627.

Pihan, H., E. Altenmuller, I. Hertrich, and H. Ackermann (2000). Cortical activa-

tion patterns of affective speech processing depend on concurrent demands on

the subvocal rehearsal system. A DC-potential study. Brain 123, 2338–2349.

Polich, J. (1987). Comparison of P300 from a passive tone sequence paradigm and

an active discrimination task. Psychophysiology 24, 312–320.

Polich, J. (1989). P300 from a passive auditory paradigm. Electroencephalogr.

Clin. Neurophysiol. 74, 41–46.



116 ERPs in Emotion Perception, Cognitive Assessment, and BCI

Pollack, I., H. Rubenstein, and A. Horowitz (1960). Communication of verbal

modes of expression. Lang. Speech 3, 121–130.

Premack, D. (1971). Language in chimpanzee? Science 172, 808–822.

Raz, J., L. Dickerson, and B. Turetsky (1999). A wavelet packet model of evoked

potentials. Brain Lang. 66, 61–88.

Rencher, A. C. (1998). Multivariate Statistical Inference and Applications. New

York: John Wiley & Sons.

Ross, E. D. (1981). The aprosodias. functional-anatomic organization of the af-

fective components of language in the right hemisphere. Arch. Neurol. 38,

561–569.

Ross, E. D., D. M. Orbelo, M. Burgard, and S. Hansel (1998). Functional-

anatomic correlates of aprosodic deficits in patients with right brain damage.

Neurology 50(suppl 4), A363.

Ross, E. D., D. M. Orbelo, J. Cartwright, S. Hansel, M. Burgard, J. A. Testa,

and R. Buck (2001). Affective-prosodic deficits in schizophrenia: profiles of

patients with brain damage and comparison with relation to schizophrenic

symptoms. J. Neurol. Neurosurg. Psychiatry 70, 597–604.

Ross, E. D., R. D. Thompson, and J. Yenkosky (1997). Lateralization of affective

prosody in brain and the callosal integration of hemispheric language func-

tions. Brain Lang. 56, 27–54.

Ruchkin, D. S. and E. M. Glaser (1978). Simple digital filters for examining CNV

and P300 on a single-trial basis. In D. A. Otto (Ed.), Multidisciplinary Per-

spectives on Event-Related Brain Potential Research, pp. 579–581. Washing-

ton, DC: U.S. Government Printing Office.

Samar, V. J., A. Bopardikar, R. Rao, and K. Swartz (1999). Wavelet analysis of

neuroelectric waveforms: a conceptual tutorial. Brain Lang. 66, 7–60.

Scherer, K. R. (1985). Vocal affect signalling: A comparative approach. In

J. Rosenblatt, C. Beer, M.-C. Busnel, and P. Slater (Eds.), Advances in the



Bibliography 117

study of behavior, Volume 15, pp. 189–244. New York: Academic Press.

Scherer, K. R. (1986). Vocal affect expression: A review and a model for future

research. Psychol. Bull. 99, 143–165.

Scherer, K. R. (1994). Affect bursts. In S. H. M. van Goozen, N. E. Van de Poll,

et al. (Eds.), Emotions: Essays on emotion theory, pp. 161–193. Hillsdale, NJ,

US: Lawrence Erlbaum Associates.

Scherer, K. R. and A. Kappas (1988). Primate vocal expression of affective states.

In D. Todt, P. Goedeking, E. Newman, and D. Symmes (Eds.), Primate vocal

communication, pp. 171–194. Berlin, Heidelberg, New York: Springer.

Schlaghecken, F. (1998). On processing BEASTS and BIRDS: An event-related

potential study on the representation of taxonomic structure. Brain Lang. 64,

53–82.

Senkowski, D. and C. S. Herrmann (2002). Effects of task difficulty on evoked

gamma activity and ERPs in a visual discrimination task. Clin. Neurophys-

iol. 113, 1742–1753.

Seyfarth, R. M., D. L. Cheney, and P. Marler (1980). Monkey responses to three

different alarm calls: evidence of predator classification and semantic commu-

nication. Science 210, 801–803.

Signorino, M., S. D’Acunto, S. Cercaci, P. Pietropaoli, and F. Angeleri (1997).

The P300 in traumatic coma: Conditioning of the oddball paradigm. Journal

of Psychophysiology 11, 59–70.

Smulders, F. T., J. L. Kenemans, and A. Kok (1994). A comparison of different

methods for estimating single-trial P300 latencies. Electroencephalogr. Clin.

Neurophysiol. 92, 107–114.

Speedie, L. J., N. Brake, S. E. Folstein, D. Bowers, and K. M. Heilman (1990).

Comprehension of prosody in Huntington’s disease. J. Neurol. Neurosurg. Psy-

chiatry. 53, 607–610.

Steinhauer, K., K. Alter, and A. D. Friederici (1999). Brain potentials indicate



118 ERPs in Emotion Perception, Cognitive Assessment, and BCI

immediate use of prosodic cues in natural speech processing. Nat. Neurosci. 2,

191–196.

Twist, D. J., N. K. Squires, N. I. Spielholz, and R. Silverglide (1991). Event-

related potentials in disorders of prosodic and semantic linguistic processing

1. Neuropsychiatry, Neuropsychology, & Behavioral Neurology 4, 281–304.

Valdes-Sosa, M. J. et al. (1987). Comparison of auditory-evoked potential detec-

tion methods using signal detection theory. Audiology 26, 166–178.

Van Petten, C. and H. Rheinfelder (1995). Conceptual relationships between spo-

ken words and environmental sounds: event-related brain potential measures.

Neuropsychologia 33, 485–508.

Woodward, S. H., J. Owens, and L. W. Thompson (1990). Word-to-word variation

in ERP component latencies: spoken words. Brain. Lang. 38, 488–503.

Woody, C. D. (1967). Characterization of an adaptive filter for the analysis of

variable latency neuroelectric signals. Med. Biol. Eng. 5, 539–553.


