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1. Introduction 

 

Since many decades metal-ceramic restorations represent the most popular 

and successful solution for restoring extensively damaged teeth or replacing 

missing ones. Clinical studies show a survival rate of metal-ceramic restorations 

of about 90% after a period of 10 years (Creugers et al., 1994; Scurria et al., 

1998; Lang et al., 2004). On the other hand, metal frameworks have inherent 

disadvantages, such as material corrosion and discoloration of gingival tissues 

adjacent to the crown margins (Riley EJ, 1977). 

The last two decades all-ceramic restorations have been increasingly gaining 

acceptance. Ceramic materials can successfully replicate the esthetic qualities 

of natural teeth (Webber et al., 2003). Furthermore they show better 

biocompatibility and low plaque accumulation (Campbell and Sozio, 1988) and 

have low thermal conductivity (Tinschert et al., 2001a). However, despite their 

strength under compression, they are brittle materials with limited tensile 

strength, which limits their indications (Pröbster and Diehl, 1992; Piconi et al., 

1998; Lawn et al., 2001). 

At first all-ceramic restorations were used for inlays and later the indications 

were expanded to onlays, partial crowns and veneers and single front crowns. 

Later stronger materials like silicium-dioxide glass-ceramic (IPS Empress® 2, 

Ivoclar Vivadent, Lichtenstein), or glass-infiltrated alumina In-Ceram® Alumina 

(Vita, D-Bad-Säckingen)  were introduced to the market, which were also 

appropriate for small front teeth  bridges.  

Today different materials are available for all-ceramic restorations. The 

mechanical properties of recently developed high-strength ceramics make them 

appropriate as core materials for all-ceramic restorations (Tinschert et al., 

2001b) and  together with the constant development of CAD/CAM technologies 

promise a new era in restorative dentistry. 

Zirconia holds a unique place amongst oxide ceramics due to its excellent 

mechanical properties (Denry and Kelly, 2008), which are attributed to the 
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transformation toughening mechanism, similar to that exploited in quenched 

steel (Kosmac et al., 1999). The interest in the material zirconia is increasing 

because of its strength and recent improvements in CAD/CAM technologies. 

Today, zirconia is being manufactured under optimized industrial conditions and 

can be designed for its processing by computer-aided design/manufacturing 

(CAD/CAM) technologies (Tinschert et al. 2001b) so that high quality all-

ceramic restorations can be produced for teeth and implants (Meyenberg et al., 

1995; Luthardt et al., 1998). However, it is essential, that its properties, the 

effect of different treatments and the long-term behavior of the material are first 

evaluated in-vitro and in clinical conditions, in order to optimize the fabrication 

procedures and be able to use zirconia with safety in the daily practice. 

 

2. Literature Review 

 

2.1 History/ Evolution of dental ceramics 

  

At all times people have tried to fabricate tooth restorations using tooth colored 

minerals, but it was the control of the porcelain manufacturing in Europe at the 

beginning of the 18th century, which accelerated the use of ceramics in 

dentistry and dental technology (Kelly et al., 1996). Traditional porcelain is a 

blend of three minerals: quartz, feldspar and pure white clay 

(Al2O3·2SiO2·xH2O). In order to produce various shades and translucencies, 

pigments and opacifying agents are added to porcelain. After baking, the 

material contains small leucite crystals and/or alumino-silicate crystals 

embedded in a silicate glass (a non-crystalline, amorphous matrix). Leucite, a 

reaction product of potassium feldspar and glass, is responsible for the optical 

properties, thermal expansion, strength and hardness of porcelain (Rosenblum 

and Schulman, 1997). 

In 1723, Piere Fauchard was credited with recognizing the potential of porcelain 

enamels and initiating research with porcelains to imitate the color of teeth and 



10 
 

gingival tissues (Jones, 1985). In 1774, Alexis Duchateau and Nicholas Dubois 

de Chemant fabricated the first successful porcelain dentures. Dubois de 

Chemant, who improved porcelain formulations continually during his scientific 

career, was awarded both French and British patents. In 1808, in Paris, 

Giuseppangelo Fonzi introduced individually-formed porcelain teeth that 

contained embedded platinum pins. Their esthetic and mechanical versatility 

provided a major advance in prosthetic dentistry.  

At the beginning of the nineteenth century Charles Henry Land developed the 

porcelain jacket crown, based on a feldspathic composition, which is still used 

today in a slightly modified form. Jacket crowns were the only fixed esthetic 

restorations available at that time (Freese, 1959). Despite their esthetic 

advantages, the restorations failed to gain widespread popularity because of 

their high probability of fracture, low strength and poor marginal seal. This 

technique went out of fashion once the metal-ceramic era began (Jones, 1985). 

Several attempts were undertaken throughout time to improve porcelains. In the 

late 1940‘s firing of porcelain under vacuum reduced porosities and improved 

the esthetic appearance of ceramic restorations (Jones, 1985). The introduction 

of gap-graded finer porcelain powders with better packing densities made 

carving and layering of green porcelain easier and improved the esthetics. A 

noteworthy development occurred in the 1950s, with the addition of leucite to 

porcelain formulations that elevated the coefficient of thermal expansion to 

allow their fusion to certain gold alloys to form complete crowns and fixed partial 

dentures (FPDs)  (McLean, 2001). 

Refinements in metal-ceramic systems dominated dental ceramics research 

during the past 35 years and resulted in improved alloys, porcelain-metal 

bonding and porcelains (Kelly et al., 1996). In the 1960‘s, following the era of 

plastic restorations, a return by the dental profession was made to the use of 

ceramics for crown and bridge fabrications (McLean and Hughes, 1965). 

Porcelain crowns and pontics were constructed from copings of gold with 

cemented porcelain facings or from gold alloys veneered with low-fusing 



11 
 

porcelain. The unsightly appearance of gold margins was considered a 

shortcoming (McLean and Hughes, 1965). 

In 1965, McLean and Hughes performed a study on the reinforcement of dental 

porcelain with ceramic oxides. They found that the use of alumina crystals as a 

reinforcing phase (40-50%vol) in a glass matrix provides a substantial 

improvement in the mechanical properties of fired specimens that reach a 

flexural strength of 130 MPa. In their study, various techniques of reinforcement 

of porcelain were used. The most significant effect was achieved by the use of 

an already sintered alumina core (97% consistency in alumina crystals) 

veneered with enamel porcelain. The maximum breaking stress value was five 

times higher than that of conventional dental porcelains. The authors stated that 

this principle could be adapted for the fabrication of pontics (McLean and 

Hughes, 1965). Prefabricated alumina backings, veneered with aluminous 

porcelain (Vitadur-N) and cemented onto the gold framework of the FPDs, were 

used for the fabrication of pontics (McLean, 1967). In 1968, MacCulloch was the 

first to use glass ceramics in dentistry (McLean, 2001). The interest in esthetic 

all-ceramic restorations was renewed with the introduction of a castable glass 

ceramic (Dicor, Dentsply/York Division, York, Penn., USA). The material 

contained tetrasilic fluormica crystals that increased the strength and the 

resistance to crack propagation. Despite the enhanced mechanical properties, 

the material was not strong enough for the fabrication of posterior all-ceramic 

FPDs (Schwickerath, 1986b). 

In the mid-1970s, special shoulder porcelain masses were developed and 

applied in collarless metal-ceramic restorations to overcome the esthetic 

problems of metal-ceramic restorations (Riley EJ, 1977; McLean, 2001). 

In 1982, McLean introduced the platinum foil-reinforced alumina FPD, in order 

to reduce the frequent problem of fracture at the connector area. Oxidation of 

the tin coating provided a mechanism for bonding of porcelain and the 

traditional cast-metal framework was eliminated. Its application was 

recommended only for the replacement of single anterior teeth (McLean, 2001). 

Because of the high failure rate at the connector sites, this restorative option 
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was not feasible for the fabrication of bridges and was limited to the fabrication 

of jacket crowns (Rosenblum and Schulman, 1997). 

In the past two decades, several approaches have been suggested to enhance 

the strength of ceramics. These approaches have generated toughened 

ceramics with microstructure that substantially differs from that of conventional 

feldspathic porcelains. Their common feature is a considerable crystalline 

phase in the glassy matrix that contributes to their physical, mechanical and 

optical properties. Particle size and distribution, nature and amount of the 

crystalline phase affect the fracture behavior of these ceramics. In addition, 

mismatches in thermal expansion coefficients among various phases can cause 

localized stresses at phase boundaries improving the overall toughness (Seghi 

and Sorensen, 1995). 

In 1989, In-Ceram Alumina glass-infiltrated ceramics (Vita Zahnfabrik, Bad 

Sackingen, Germany) were introduced. The material has a 70% crystalline 

content in its mass. This made it possible to fabricate frameworks for three-unit 

anterior FPDs (Kappert and Krah, 2001). In 1991 IPS-Empress® (Ivoclar-

Vivadent, Schaan, Liechtenstein), which uses the principle of leucite crystal 

dispersion, was brought to the market. The later developed IPS Empress® 2 

(Ivoclar-Vivadent, Schaan, Liechtenstein), a lithium disilicate glass ceramic with 

66% crystalline content, showed a flexural strength 3 times greater than that of 

Empress® 1. The sintered, high alumina-content glass-infiltrated ceramic core 

material (In-CeramAlumina) and the recently developed lithium disilicate glass-

ceramic (Empress 2), respectively are recommended for anterior fixed partial 

dentures (FPDs) (Scotti et al., 1995; Sorensen et al., 1998) and three-unit FPDs 

replacing the first premolar (Sorensen et al., 1998; Edelhoff et al., 1999). 

Further efforts to enhance the strength of ceramic cores were made by adding 

leucite (Optec HSP, Jeneric/Pentron, Wallingford, USA), aluminium oxide (Hi-

Ceram, Vita Zahnfabrik), or zirconium dioxide crystals (Mirage II, Mirage Dental 

Systems, Chameleon Dental) to conventional feldspathic porcelains. However, 

the resultant ceramic did not meet the requirements for the fabrication of 

posterior FPDs (Tinschert et al., 2001b). 
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Alumina- and Zirconia-based ceramics are the most recent core materials for 

all-ceramic crowns and FPDs. Because of their outstanding loading capacity, 

these materials seem to be promising in their potential applications (Luthardt et 

al., 1998; Tinschert et al., 2000a; Tinschert et al., 2000b; Tinschert et al., 

2001a; Luthardt et al., 2001a).  

 

2.2 Composition and properties of dental ceramics 

 

Dental ceramics consist of a compound of metals (aluminium, calcium, lithium, 

magnesium, potassium, sodium, tin, titanium, and zirconium) and nonmetals 

(silicon, boron, fluorine, and oxygen) that may be used as a single structural 

component, such as when used for a CAD-CAM inlay, or as one of several 

layers used for the fabrication of a ceramic-based restoration. 

Conventional dental porcelain is a vitreous ceramic based on a silica (SiO2) 

network and potash feldspar (K2O·Al2O3·6SiO2), soda feldspar 

(Na2O·Al2O3·6SiO2) or both. Pigments, opacifiers and glasses are added to 

control the fusion temperature, sintering temperature, thermal contraction 

coefficient, and solubility. The feldspars used for dental porcelains are relatively 

pure and colorless. Therefore, pigments must be added to produce the shades 

of natural teeth (Anusavice, 2003). Most of the ceramics are characterized by 

their refractory nature, hardness, and chemical inertness. A hardness of a 

ceramic similar to that of the enamel is desirable to minimize the wear of the 

ceramic restoration as well as of the enamel. These materials are abrasion-

resistant and relatively chemically inert and insoluble and thus fully 

biocompatible and neutral to other restoration materials in the mouth.  The 

mineral building-blocks of the ceramics can be selected and adjusted in such a 

way, that ideal optical properties are achieved in order to reproduce in a 

restoration the full range of natural tooth shades (Kunzelmann et al., 2006), 

making thus great esthetics the most attractive property of ceramics 

(Anusavice, 2003). Furthermore, ceramics demonstrate excellent insulating 
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properties, such as low thermal conductivity, low thermal diffusivity, and low 

electrical conductivity.  

On the other hand, a characteristic property of ceramics is their brittleness and 

the lower fracture toughness and flexural strength compared to metals, 

especially when flaws and tensile stresses coexist in the same region of the 

restoration (Kunzelmann et al., 2006). This flaw may be a surface microcrack 

created by occlusal adjustments or a subsurface porosity by a processing 

mistake during the fabrication of the restauration. (Rosenblum and Schulman, 

1997). 

 When tension stress is applied, small flaws tend to open up and propagate 

cracks (crack propagation theory) (O' Brian W.J., 2002). Irregularities in a bulk 

of the material, such as discontinuities and/or abrupt changes in shape or 

thickness in the ceramic contour, act as stress raisers, making the restoration 

more prone to failure. Stress around a stress raiser is higher than the average 

stress in the body of the material. Because of the stress concentration at 

surface scratches and other defects (brittleness), ceramics tend to fail at stress 

levels that are much lower than the theoretical strength to be tolerated. 

 Compared to metals, which can yield to high stress by deforming plastically, 

ceramics tend to have no mechanism for yielding to stress without fracture (O' 

Brian W.J., 2002). Therefore, cracks may propagate through a ceramic material 

at low average stress levels. As a result, ceramics and glasses have lower 

tensile strengths than compressive strengths (O' Brian W.J., 2002).  

 

2.3 Mechanisms of increasing the fracture resistance of ceramics  

  

i) Development of residual compressive stresses:  
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The thermal expansion coefficient (CTE) of the core ceramic is slightly greater 

than that of the veneering ceramic. This mismatch allows the core material to 

contract slightly more upon cooling from the firing temperature to room 

temperature, and leave the veneering ceramic in residual compression while 

offering additional strength (Mackert, 1988).  

  

ii) Minimize the number of firing cycles:   

 

Firing procedures sinter the particles densely together and produce a relatively 

smooth surface. In addition, they increase the concentration of leucites in the 

porcelain, which in turn leads to an increase of the TEC and a further mismatch 

between core/veneering porcelain. This mismatch will cause immediate or 

delayed crack formation in the porcelain (Mackert, 1988; Mackert and Evans, 

1991; Fairhurst et al., 1992). 

 

iii) Minimize tensile stress through optimal design of ceramic restorations:  

  

Dental restorations containing ceramics should be designed in a way to 

overcome their weaknesses. The design should avoid exposure of the ceramic 

to high tensile stresses (Anusavice, 2003). In the case of a crown, tensile 

stresses can be reduced by using strong core materials with appropriate 

thickness, since these stresses are distributed on the inner surface (the core 

material is in tension) (Kelly, 1995; Zeng et al., 1996; Lawn et al., 2001). 

 

iv) Ion Exchange (or chemical tempering):  
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This process involves the exchange of larger potassium ions for the smaller 

sodium ions (a common constituent of a variety of glasses) (Anusavice et al., 

1992). If a sodium-containing glass article is placed in a bath of molten 

potassium nitrate, potassium ions in the bath exchange places with some of the 

sodium ions on the surface of the glass particles. The potassium ion is about 

35% larger than the sodium ion. Squeezing of the potassium ion into the place 

formerly occupied by the sodium ion creates large residual compressive 

stresses in the surfaces of the glasses subjected to this treatment. However, the 

depth of the compression zone is less than 100 µm, so that this effect would be 

easily worn out after long–term exposure to certain inorganic acids (Anusavice 

et al., 1992; Seghi et al., 1995). 

  

v) Thermal Tempering:   

  

This is a process of creating residual surface compressive stresses by rapidly 

cooling the surface of the object while it is hot and in the softened (molten) 

state. This rapid cooling produces a skin of rigid glass surrounding a soft 

(molten) core. As the molten core solidifies˜ it tends to shrink, but the outer skin 

remains rigid. The pull of the solidifying molten core, as it shrinks, creates 

residual tensile stresses in the core and residual compressive stresses within 

the outer surface, inhibiting the initiation and the growth of cracks (Anusavice, 

1991; De Hoff, 1992). 

  

vi) Dispersion strengthening:  

  

This involves the reinforcement of ceramics with a dispersed phase of a 

different material that is capable of hindering a crack from propagating. Dental 

ceramics containing primarily a glass phase can be strengthened by increasing 
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the crystal content of leucite, lithium disilicate, alumina, magnesia-alumina 

spinell, zirconia and other types of crystals (McLean and Hughes, 1965).  

When a tough, crystalline material such as alumina (Al2O3) is added to a glass, 

the glass is toughened and strengthened, because the crack cannot pass 

through the alumina particles as easily as it can pass through the glass matrix 

(McLean and Hughes, 1965; Jones, 1983).  

The amount of toughening depends on the crystal type, its size, its volume 

fraction, the interparticle spacing, and its relative thermal expansion coefficient 

to the glass matrix. In most instances, the use of a dispersed crystalline phase 

to disrupt crack propagation requires a close match between the thermal 

contraction coefficients of the crystalline material and the surrounding glass 

matrix (Jones, 1983).  

  

vii) Transformation toughening:  

  

The dispersion strengthening process relies on the toughness of the particle to 

absorb energy from the crack and deplete its driving force for propagation. The 

transformation toughening process relies on a crystal structural change of a 

material under stress to absorb energy from the crack (Morena, 1986). Zirconia 

(ZrO2) ceramic is a good example for this mechanism. The material is 

polymorph occurring in three forms: monoclinic (M), tetragonal (T) and cubic 

(C). Pure zirconia is monoclinic in room temperature. This phase is stable up to 

1170°C. Above this temperature it transforms into tetragonal and then into a 

cubic phase at 2370°C. When ZrO2 is heated above 1170°C, the transformation 

from the monoclinic to the tetragonal phase is associated with a 5% volume 

decrease. Reversely, during cooling, the transformation from the tetragonal to 

the monoclinic phase is associated with a 3% volume expansion. These phase 

transformations, however, induce stresses which result in crack formations. The 

inhibition of these transformations can be achieved by adding stabilizing oxides 
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(CaO, MgO, Y2O3), which allow the existence of tetragonal-phase particles at 

room temperature. When sufficient stress develops in the tetragonal structure 

and a crack in the area begins to propagate, the tetragonal grains transform to 

monoclinic grains. The associated volume expansion results in compressive 

stresses at the edge of the crack front and extra energy is required for the crack 

to propagate further (Tateishi and Yunoki, 1987).  

  

 2.4 Classification of high-strength all-ceramic systems 

 

From a chemical perspective, a ceramic is an inorganic, non-metallic material, 

whose interatomic bonding is covalent or ionic. The material characteristics of a 

ceramic are determined by: 

a) the chemical compound of which it consists (SiO2, ZrO2, Al2O3 etc.) 

b) its atomic 3D structure, amorphous or crystalline. An amorphous 

structure has no long range order, whereas in a crystalline structure, every atom 

takes an exactly defined place within a 3D network.(3M Espe, 2008). All-

ceramic dental materials can be very different in their chemical composition as 

well as in 

their structure and therefore demonstrate very different material properties. 

Veneer ceramics are feldspathic porcelains which consist almost entirely of an 

amorphous glass phase and therefore deliver ideal optical characteristics for the 

veneering. 

The high strength core ceramic materials in dentistry can be classified in three 

major different groups according to their chemical structure (Figure 2.1-3): glass 

ceramics, glass infiltrated ceramics and polycrystalline ceramics (Kelly et al., 

1996; Raigrodski, 2005; Kunzelmann et al., 2006). 
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Fig. 2.1. Glass ceramic (contains 
glass), e.g. Empress® I/II. 

   

 

 

Fig. 2.2. Infiltrated ceramic (contains 
glass), e.g. In-Ceram®. 

 

Fig. 2.3. Polycrystalline ceramic 
(glassfree), e.g. Lava™. 
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Fig. 2.4. All-ceramic systems. 
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2.4.1 Glass-ceramics  

 

Glass-ceramics are multi-phase materials and contain crystalline constituents in 

addition to an amorphous glass phase.  

 

2.4.1.1 Silicate ceramics 

 

Silicate ceramic such as feldspathic and glass ceramic is manufactured from 

quartz, kaolin and feldspar in a vitreous melt. The glass or silicate ceramic is 

formed through heat treatment and crystal-forming additives (Kunzelmann et al., 

2006). The main representatives of this category are the IPS Empress® (Ivoclar 

Vivadent, Schaan, Lichtenstein) and the Optec® OPC (Jeneric Pentron, 

Kusterdingen, Germany). In such glass ceramics the hardening of the ceramic 

is achieved by finely dispersed leucite and feldspar crystals.  

The restorations are highly translucent providing the potential for a highly 

esthetic restoration (Heffernan et al., 2002a; Heffernan et al., 2002b). 

Therefore, they are not recommended for cases where the underlying abutment 

is a discolored tooth, a metallic-core built up, or a metal implant abutment. 

However the reported flexural strength of this core material ranges between 

105-120 MPa and the fracture toughness from 1.5 to 1.7 MPa x √m (Seghi and 

Sorensen, 1995; Seghi et al., 1995). The strength of these restorations depends 

on a successful bond to the tooth structure and therefore they must be 

adhesively cemented. Their indication is restricted only for veneers or crowns at 

the front region giving survival rates up to 95% after 11 years of clinical service 

(Fradeani and Redemagni, 2002). 
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2.4.1.2 Lithium Disilicate and Fluorapatite glass ceramics  

 

By adding lithium or other materials, the physical properties of glass ceramics 

are additionally improved and reach strengths up to 450 MPa (Kunzelmann et 

al., 2006). The main representatives of this category are the Empress II® 

(Ivoclar, Schaan, Liechtenstein) (lithium disilicate) and the IPS e.max® (Ivoclar, 

Schaan, Liechtenstein) (fluorapatite glass ceramic) core materials. Empress II® 

is composed of densely arranged lithium disilicate crystals (over 60% volume) 

uniformly bonded in an amorphous glassy matrix. The framework can be 

fabricated either with the lost-wax and heat-pressure technique, or can be 

milled out of prefabricated blanks (Raigrodski, 2004a). The interlocking 

structure of the ceramic hinders crack propagation and elevates flexural 

strength to 300-400MPa (Quinn et al., 2003; Raigrodski, 2004b).  

Adhesive luting is recommended for these restorations to initiate a stable bond 

to the tooth and enhance their strength and longevity (Edelhoff et al., 1999; 

Kunzelmann et al., 2006). The material is indicated not only for the fabrication of 

anterior FPDs, but also for short-span posterior FPDs (pontic not wider than a 

premolar) extending up to the second premolar (Sorensen et al., 1998; Edelhoff 

et al., 1999). Esquivel-Upshaw et al. reported a survival rate of 93% for 

posterior Empress II® FPDs after 2 years (Esquivel-Upshaw et al., 2004), 

whereas Marquardt reported a survival rate of 100% for single crowns and 70% 

for FPDs extending up to the second premolar after 5 years of function 

(Marquardt and Strub, 2006).  

 

2.4.2 Glass-infiltrated oxide ceramics  

 

Glass-infiltrated oxide ceramics consist of framework materials based on 

aluminium oxide (alumina) infiltrated with glass (lanthanum glass) to increase 

strength. 
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The main representatives of this category are In-Ceram Alumina®, In-Ceram 

Spinell® and In-Ceram Zirconia® (Vita, Bad Säckingen, Germany).  

 

2.4.2.1 In-Ceram Alumina® (Vita, Bad Säckingen, Germany)  

 

The material is composed of a highly sintered-alumina glass-infiltrated core and 

the veneering porcelain. The fabrication of the core/framework can be carried 

out either with the slip-cast technique, by electrophoretic depositing (EPD), by 

copy milling or by the milling out of prefabricated partially sintered blanks 

through CAD-CAM technology (Tinschert et al., 2001b; Pröbster and Groten, 

2006), which are described later.  

For the slip-casting technique an aqueous suspension of aluminium oxide 

powder, called a slip, is applied to a refractory die and the restoration is 

modeled. The slip is porously sintered at 1120˚C for 10 hours in a ceramic 

furnace. The porous sintered framework is then infiltrated with lanthanum glass 

during a second firing process at 1100˚C, which gives the material its final 

strength (Kunzelmann et al., 2006; Pröbster and Groten, 2006). 

Similar to the galvanoplating technique, electrophoresis involves the migration 

of charged particles in a liquid and highly homogeneous, electrical field. 

Electrophoretic depositing includes two different partial processes: 

1. The electrophoretic migration of charged particles in the electrical field, which 

are dispersed in a liquid and 

2. the deposition of the particles on a membrane (membrane deposition). 

Compared to the manual application of the slip, very high density and 

homogeneity of the particles is achieved. After electrophoretic depositing, the 

framework features high precision of fit and is sintered porously (shrinkage-free) 

and subsequently infiltrated with the special glass in accordance with the VITA 

In-Ceram® technique (Pröbster and Groten, 2006).  
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The flexural strength of the material ranges between 236 and 600 MPa 

(Giordano et al., 1995; Guazzato et al., 2002) and the fracture toughness 

between 3.1 and 4.61 MPa x √m (Seghi et al., 1995; Wagner and Chu, 1996). 

The increased toughness and strength of In-Ceram Alumina is explained 

through the crack-bridging mechanism. The crack propagation is deflected 

along the grain boundaries, causing friction between the separated fragments. 

The longer path of the crack and the friction between the parts are responsible 

for dissipating the initial energy (Guazzato et al., 2002). 

The material is recommended for anterior and posterior crowns, as well as for 

3-unit anterior FPDs (Sorensen et al., 1998; McLaren, 1998). 

  

2.4.2.2 In-Ceram Spinell® (Vita, Bad Säckingen, Germany)  

 

The In-Ceram Spinell® consists of a MgAl2O4 core infiltrated with glass. Its 

flexural strength is lower than that of  In Ceram Alumina® ranging between 283 

and 377 MPa (Magne and Belser, 1997; McLaren, 1998), but its translucency is 

twice as high. Therefore, it is indicated for anterior crowns, where esthetic 

demands are higher (Fradeani and Redemagni, 2002). 

 

2.4.2.3 In-Ceram Zirconia® (Vita, Bad Säckingen, Germany)  

 

The In-Ceram Zirconia® core consists of glass-infiltrated alumina with 35% 

partially stabilized zirconia. The fabrication may be carried out with the same 

methods as for In-Ceram Alumina®. Its flexural strength ranges from 421 to 800 

MPa and its fracture toughness from 6 to 8 MPa x √m (Seghi and Sorensen, 

1995; Guazzato et al., 2002). The high strength of In-Ceram Zirconia is 

attributed to the phase transformation toughening mechanism that takes place 

in the material (McLaren and White, 1999), which is described later. 
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In a biaxial flexural strength test, no statistically significant difference was found 

between the strength of In-Ceram Zirconia and In-Ceram Alumina discs 

(Guazzato et al., 2002; Guazzato et al., 2004a). The authors attributed this to 

little particle transformation and the effect of pores in the mass of In-Ceram 

Zirconia. Other in vitro studies reported that the fracture strength value of three-

unit all-ceramic FPDs, fabricated with the CAD/CAM technology using In-Ceram 

Zirconia blanks, was between 1000-2000 N (Tinschert et al., 2000a; Tinschert 

et al., 2001a). 

 

2.4.3 Polycrystalline ceramics 

 

Polycrystalline ceramics are monophase materials with densely packed 

particles and no glassy components. Pure polycrystalline oxide ceramics have 

only been in clinical use for about 15 years (e.g. Procera®) For the first time 

they displayed a type of material that possesses sufficient stability for posterior 

applications, whereas pressed ceramics, such as Empress have been used 

successfully only for anterior applications for more than 10 years, however, the 

latter was not being used for fixed partial dentures for posterior applications. 

Alumina and zirconia are the only two polycrystalline ceramics suitable for use 

in dentistry as framework materials able to withstand large stresses. A dental 

material needs to adjust to the different influences and conditions of the oral 

environment. It should have high stability in order to spontaneously withstand 

extreme stresses and high fracture toughness in order to show the optimal 

tolerance level towards defects. Various examinations prove higher stability of 

infiltrated ceramics than of glass ceramics (Wagner and Chu, 1996; Tinschert et 

al., 1999b; Tinschert et al., 2000a; Tinschert et al., 2000b). 

The highest stability, however, has been measured in polycrystalline ceramics 

(Wagner and Chu, 1996; Tinschert et al., 1999a; Tinschert et al., 2000b; Marx 

et al., 2002; Curtis et al., 2006a). These materials are shown to provide both 

necessary esthetics and material properties required of a modern tooth 
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restoration (Marx et al., 2002). Today, polycrystalline oxide ceramics are mainly 

processed by applying Computer-Assisted-Design/Computer-Assisted-

Machining (CAD/CAM) technologies using industrial pre-fabricated ceramic 

blocks which possess a very high micro-structure quality due to a standardized 

manufacturing procedure.  

 

2.4.3.1 Aluminium oxide ceramics 

 

 The Procera® AllCeram System (Nobel Biocare, Göteborg, Sweden) 

 

This system creates high-precision crown copings, frameworks for fixed partial 

dentures, abutments of densely sintered pure alumina consisting of more than 

99.9% aluminium oxide particles of 5μm grain size with a dry pressing 

technique against the enlarged die of a prepared tooth (Kunzelmann et al., 

2006). 

The frameworks are fabricated with the help of the Procera system, which 

consists of a computer-controlled scanning and design station located in a 

dental laboratory. Tooth models are tactile scanned in 3D using either the 

Procera® Piccolo or the more advanced Procera® Forte. Designs are sent via 

the Internet to the manufacturing center of Nobel Biocare (Göteborg, Sweden) 

where the system mills a 20% enlarged metal refractory die on the basis of the 

3-D data. This enlargement is made in order to compensate the sintering 

shrinkage of the high purity alumina powder, that is pressed against the stump 

(White et al., 1996). The alumina cores of copings and pontic are milled 

individually and fully sintered at 1600°C to their correct size.  

The flexural strength of the material ranges between 464 and 687MPa (Wagner 

and Chu, 1996; Esquivel-Upshaw et al., 2001; Itinoche et al., 2006).  

For the fabrication of FPDs, the minimal recommended dimensions for the 

connectors are 3 mm in height and 2 mm in width (Raigrodski, 2004b). 

http://www1.nobelbiocare.com/en/esthetic-solutions/products/software-and-scanners/default.aspx
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2.4.3.2 Zirconium dioxide ceramics (ZrO2) 

 

Zirconia-based materials were initially introduced for biomedical use in 

orthopedics for  total hip replacement, because of their excellent mechanical 

properties and biocompatibility (Piconi et al., 1998; Piconi and Maccauro, 1999). 

Zirconia ceramics have been used in dentistry for orthodontic brackets (Keith et 

al., 1994), post-and-core systems (Meyenberg et al., 1995; Kern and Wegner, 

1998), implant abutments (Wohlwend et al., 1997; Glauser et al., 2004) and 

implants (Kohal et al., 2004; Kohal and Klaus, 2004). 

Zirconium (Zr) is a metal with the atomic number 40, which was discovered in 

1789 by the German chemist Martin Klaproth. The material has a density of 

6.49 g/cm³, a melting point of 1852°C and a boiling point of 3580°C. It has a 

hexagonal crystal structure and a grayish color. Zirconium does not occur in 

nature in a pure state. It can be found as zircon sand in conjunction with silicate 

oxide (Zr2SiO₄ , alvite) or as a free oxide ZrO₂  (baddeleyite, brasilite) (Piconi 

and Maccauro, 1999; Kunzelmann et al., 2006).  

In order to produce pure zirconia powders, complex and time-consuming 

processes that result in an effective separation of such elements are used. The 

material can be used after purifying as a ceramic biomaterial (Piconi and 

Maccauro, 1999). 

Pure Zirconia (ZrO2) has a high melting point (2680°C) and low thermal 

conductivity. However, its polymorphism restricts its widespread use in the 

ceramics industry. ZrO2 occurs in three crystallographic forms: monoclinic (M), 

tetragonal (T) and cubic (C). At ambient pressure, unalloyed zirconia can have 

three crystallographic forms depending on the temperature: the monoclinic 

phase, which is stable up to 1170°C, where it transforms to the more dense 

tetragonal phase with a 5% volume decrease, which in turn converts to the 

cubic phase over 2370°C up to its melting point (2680 °C) (Subbarao, 1981; 

Rauchs et al., 2001; Denry and Kelly, 2008). Reversely, while cooling, a 
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Monoclinc 

phase 

 

Tetragonal 

phase 

 

Cubic phase 

tetragonal to monoclinic transformation takes place in a temperature range of 

about 100°C below 1070°C and a volume increase of approximately 3-4% 

(Figure 2.5) which can lead to stresses and subsequent crack formation in the 

structure  (Christel et al., 1989; Piconi and Maccauro, 1999). 

 

Up to 1170°C        1170°C-2370°C          2370°C-2680°C 

5% volume          3-4%volume 

            decrease           increase  

 

 

Fig.2.5. The transformation of the ZrO2 crystalline phase depending on the 

temperature. 

 

 

2.4.3.2.1 Stabilized Zirconia 

 

The addition of stabilizing oxides to pure zirconia, such as calcia (CaO), 

magnesia (MgO), ceria (CeO2) or yttria (Y2O3) can inhibit the phase 

transformations of the material in room temperature resulting in a multiphase 

material named stabilized zirconia (Christel et al., 1989; Piconi and Maccauro, 

1999). 

The most useful mechanical properties can be obtained when zirconia is in a 

multiphase form known as Partially Stabilized Zirconia (PSZ) (Garvie et al., 

1975). PSZ can be obtained with the addition of smaller amounts of stabilizing 

oxides in pure zirconia, compared to that for obtaining fully stabilized zirconia. 

Several PSZ have been tested as ceramic biomaterials. Mg-PSZ is one of the 
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most commonly used zirconia-based engineering ceramics (Sundh and 

Sjögren, 2006), but a rather coarse grain size (30-40 μm) and residual porosity 

of the material reduce the interest for biomedical use (Piconi and Maccauro, 

1999). 

 

2.4.3.2.2 Y-TZP (Yttrium-Tetragonal Zirconia Polycrystalline) 

 

The addition of  approximately 2-3% mol yttria can stabilize zirconia ceramics in 

room temperature resulting in the formation of yttria-stabilized tetragonal 

zirconia polycrystalline (Y-TZP) (Swain et al., 1983; Masaki T., 1986), which is 

made of almost 100% small metastable tetragonal grains (Christel et al., 1989).  

The amount of the tetragonal phase as well as the mechanical properties 

depend on the yttrium content, the size of the matrix and the processing 

temperature (Piconi and Maccauro, 1999).                 

Addition of Y2O3 in higher concentrations produces a fully stabilized zirconia 

ceramic with a cubic phase only and lower fracture strength (Sato and Shimada, 

1985a). 

To obtain a metastable tetragonal structure at room temperature (3mol% Y2O3-

doped tetragonal ZrO2), the ceramic grain size must be less than 0.8μm 

(Theunissen et al., 1992). A critical grain size exists, linked to the yttria 

concentration, above which spontaneous T→M transformation of grains takes 

place, whereas this transformation would be inhibited in an overly fine-grained 

structure (Theunissen et al., 1992). 

The T→M transition in TZP materials depends not only on the Y2O3 content, but 

also on its distribution. The stabilizing oxide is introduced in ZrO2 during the 

early stages of the ceramic powder manufacturing process. Y2O3 can either be 

co-precipitated with ZrO2 salts or coated on the ZrO2-grains for the production of 

ceramic powders (Piconi and Maccauro, 1999). 
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2.4.3.3 Transformation-toughening mechanism 

 

Significant for its mechanical properties is the toughening mechanism due to 

transformation from the tetragonal phase to the monoclinic that occurs by a 

diffusionless shear process at near sonic velocities similar to those of 

martensite formation of quenched steel (Wolten, 1963). The tetragonal grains 

may transform into monoclinic as a result of external stresses generated by 

procedures like grinding, sandblasting or impact. This phenomenon can be 

explained through the lower surface energy of the tetragonal ZrO2 particles and 

the constraint of the rigid matrix on them that opposes their transformation to 

the less dense monoclinic form. The tetragonal ZrO2 grains can transform into 

the monoclinic phase when the constraint exerted on them by the matrix is 

relieved, i.e. by a crack advancing in the material (Reed and Lejus, 1977; Piconi 

and Maccauro, 1999). This transformation produces a 4% expansion which 

induces localized compressive stresses at the tip of a propagating crack (Figure 

2.6) (Green, 1983; Swain and Hannink, 1989; Chevalier et al., 1999; Luthardt et 

al., 2004) which counteract the external stresses on the crack tip and extra 

energy is required for the crack to propagate further (Tateishi and Yunoki, 

1987), thus counteracting strength degradation. 

This transformation corresponds the martensite transformation of steel which 

led Garvie to call zirconium dioxide ―ceramic steel‖ (Garvie et al., 1975). The 

result is a high initial strength and fracture toughness (Kappert and Krah, 2001) 

and, in combination with a low susceptibility to stress fatigue, an excellent life-

time expectancy for zirconia frameworks. 
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field under tension 

 

metastable tetragonal particle 

 

 

transformed particle (monoclinic)

Fig. 2.6. Representation of stress-induced transformation toughening process 

(Pospiech P., DGZPW annual congress, Wuppertal. Germany). Energy of the 

advancing crack is dissipated in phase transformation and in overcoming the 

matrix constraint by transforming grains. 

 

2.4.3.4 Physical and chemical properties of Y-TZP 

 

Table 2.1 shows that zirconia ceramic exhibits higher bending strength and 

fracture toughness than alumina ceramics (Wagner and Chu, 1996). 

Additionally, its Young‘s modulus is much lower than that of alumina, in the 

same order of magnitude of stainless steel alloys (CoCr alloy 230 GPa), 

pointing out its interesting elastic deformation capability. Fracture toughness is 

a very important physical property since it represents the ability of a material to 

resist crack growth. Clinically, lots of subcritical loads are applied on the 

materials by chewing, leading to the growth of subcritical cracks. Therefore, 

materials with higher fracture toughness are more ideal clinically, since more 

energy is required to cause crack growth (McLaren and Terry, 2002). 
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2.4.3.5 Mechanical Properties 

 

2.4.3.5.1 Flexural strength 

 

By flexural strength one understands the critical bending tension, at which a 

fracture occurs by crack formation. It is the limit of the elastic strain of a dental 

ceramic or the yieldable mechanical strain (Kappert and Krah, 2001). It is 

measured as the resistance (limit value) against forces, which act perpendicular 

Table 0. Physical and chemical properties of zirconia. 

Property Units Alumina Mg-PSZ TZP 

Chemical 
composition 
 

 

 
99.9% 

Al2O3+MgO 
 

ZrO2+ 8-10% 
mol  MgO 

 

ZrO2 3% mol 
Y2O3 

 

 
Density 

g cm-3 ≥3.97 5.74- 6 >6 

Porosity % <0.1 — <0.1 

Bending strength MPa >500 450-700 900-1200 

Compression 
strengrth 

MPa 4100 2000 2000 

Young‗s modulus GPa 380 200 210 

Fracture 
toughness KIC 

 
Mpa √m 

 

 
4 
 

 
7-15 

 

 
7-10 

 

Thermal 
expansion coeff. 

K-1 8x10-6 7-10 x10-6 11x10-6 

Thermal 
conductivity 

W m-1 K-1 30 2 2 

Hardness HV 2200 1200 1200 
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to the longtidunal axis of a body (bar or disc). On the side, on which pressure is 

applied during bending, prevails tensile stress.  

Zirconiumdioxide shows the highest flexural strength and at the same time the 

highest fracture toughness of all the ceramics (Kappert and Krah, 2001). The 

flexure strength of ZrO₂  is equivalent to that of CoCr alloys. Figure 2.7 shows 

the flexural strength of different all ceramic materials used in dentistry. 

 

 

Fig. 2.7. Flexural strength of different all ceramic dental materials in MPa 

(Pospiech P., DGZPW annual congress, Wuppertal, Germany). 

 

2.4.3.5.2 Modulus of elasticity (Young’s modulus) 

 

The modulus of elasticity describes the resistance of the material against 

flexible deformation and it is with the flexure strength one of the most important 

characteristics of a dental ceramic (Seghi et al., 1995; Kappert and Krah, 2001). 

For zirconium dioxide the young‘s modulus amounts to approximately 200-300 

GPa (fig. 2.8). 
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Other full-ceramic systems reach approximately 100 GPa while metal-ceramic 

systems reach values between 100 (for noble metal alloys) and 200 GPa (for 

non-noble metal alloys) (Baltzer and Kaufmann-Jionian, 2003). 

 

Fig. 2.8. E-modulus of different dental materials (Kappert, 2000). 

 

2.4.3.5.3 Fracture toughness 

 

Fracture toughness describes the ability of a material containing a crack to 

resist crack propagation and thus the fracture (Kappert and Krah, 2001). It is 

denoted KIc and has the units of MPa × √m. Fracture toughness is an 

expression of the reliability of the material. The value KIc shows the critical 

stress intensity factor for the fracture toughness. When the tension exceeds the 

fracture toughness, the crack becomes unstable. This results in crack 

propagation in supersonic velocity, which ends with the fracture of the ceramic. 

The KIc value is an experimentally determinable material characteristic 

frequently used for brittle materials as measure for their ability to absorb 

deformation energies. For Zirconium dioxide ceramic values of 10 Mpa × √m 
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can be obtained (Strub et al., 2005). The fracture toughness of some dental 

materials is shown on figure 2.9. 

 

Fig. 2.9. Fracture toughness of different dental materials (Pospiech P., DGZPW 

annual congress, Wuppertal, Germany). 

Statements about the fracture toughness are not sufficient for the evaluation of 

the fatigue strength of ceramics, because they do not take into consideration 

the long-term behaviour in different environment conditions. 

Other tear parameters play here an important role (Marx et al., 2001). One of 

these parameters describes the resistance of a ceramic against the subcritical 

crack growth (KI0). Tensions higher than the threshold value (K ≥ KI0), but 

smaller than the fracture toughness  

(K ≤KIC) cause the development of a subcritical crack growth. It degrades slowly 

but continuously the strength of a ceramic, which can lead to failure of a 

ceramic restoration far below the flexure strength of the material (Marx et al., 

2004). 
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2.4.3.5.4 Weibull modulus 

 

Large dispersions and an asymmetrical distribution of the breaking loads are 

characteristic for ceramic materials. The description of the strength behavior of 

dental ceramics with average values and standard deviations is inaccurate, 

because the measured values do not follow a normal distribution and can be 

described correctly with the Weibull distribution (Tietz, 1994). For ceramics the 

material-specific characteristic value is often indicated as Weibull characteristic 

strength (σ0). It designates the stress at which 63.2% of all tested specimens 

would fail. The distribution of the strength values is described as correlative to 

the standard deviation with the Weibull modulus (m). Thus from a series of 

measurements a forecast can be made over the strength behavior of 

construction units. The higher the Weibull-modulus m the closer the measured 

values lie to each other. The Weibull module is an expression of the mechanical 

reliability. As material-specific characteristic value it is an additional measure for 

the homogeneity of the failure distribution including manufacturing technical 

influences. For dental ceramics manufactured by dental technicians the Weibull 

module lies between 5 and 15 (Tinschert et al., 1999a; Tinschert et al., 2000b). 

For industrially manufactured ceramics the Weibull module can be between 15 

and 25, which shows high mechanical reliability (Baltzer and Kaufmann-Jionian, 

2003). 

 

2.4.3.5.5 Fatigue strength 

 

Fatigue strength is the stress limit which a material can resist in the long term in 

the given environment (corrosive influences of the oral cavity, dynamic chewing 

load) in the long term. For ceramics it is usually equivalent to approximately the 

half of the flexural strength and it is directly related to the fracture strength 

(Schwickerath, 1986a; Schwickerath, 1994). Geis-Gerstorfer and Fässler 

subjected Y-TZP bridges to dynamic loading whereby the fatigue strength of 
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480 MPa was less than 50% of the initial flexure strength of 1016 MPa (Geis-

Gerstorfer and Fässler, 1999). 

The chewing forces during normal chewing amount from 50 N to 250 N, in case 

of parafunctions (bruxism) values between 500 and 1000 N are measured 

(depending on the measuring method, measuring point and measuring 

instrument) (Körber and Ludwig, 1983). The chewing forces at the posterior 

region are up to four times higher than those at the anterior. Therefore 

prosthetics restorations at the molar regions should have a safety margin of 200 

N a fatigue strength of approximately 500 N (Körber and Ludwig, 1983). 

Accordingly an initial strength of at least 1000 N should be expected in order to 

ensure a favorable clinical prognosis at the posterior region (Tinschert et al., 

1999a; Tinschert et al., 2001a). 

 

2.4.3.5.6 Coefficient of thermal expansion 

 

The coefficient of thermal expansion (CTE) describes the degree of expansion 

of a material during a change of temperature of 1K. 

The CTE of framework and veneering materials are coordinated, whereby the 

CTE of the veneering material should be approximately 10-15% lower. Thereby 

a good adhesion of the ceramics during the cooling phase after the firing cycles 

as well as during thermocycling in the oral cavity can be guaranteed (Kappert 

and Krah, 2001). 

 

2.4.3.6 Biological safety of Y-TZP 

 

In vitro and in vivo studies have confirmed the high biocompatibility of Y-TZP 

when high purity zirconia-powders are used and have reported no local or 

systemic adverse reactions to the material (Christel et al., 1989; Ichikawa et al., 
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1992; Richter et al., 1994; Piconi and Maccauro, 1999; Covacci et al., 1999). 

Recent studies have demonstrated that fewer bacteria accumulate around Y-

TZP than titanium (Rimondini et al., 2002; Scarano et al., 2004). These findings 

have lead to the suggestion that zirconium oxide may be a suitable material for 

manufacturing implant abutments with a low colonization potential (Scarano et 

al., 2004). 

 

2.4.3.7 Aging of zirconia  

 

The mechanical performance of ZrO2 as a function of time is of particular 

concern in Y-TZP for biomedical applications. ZrO2-ceramics are prone to age 

in the wet environment, showing degradation of their mechanical properties. 

Low temperature degradation (LTD) of zirconia known as ―aging‖, which leads 

to mechanical property degradation happens due to the progressive 

spontaneous transformation of the metastable tetragonal phase into the 

monoclinic phase (Piconi and Maccauro, 1999). This behavior is well known at 

a temperature range above 200°C and in the presence of water or vapor (Sato 

and Shimada, 1985a; Sato and Shimada, 1985b; Papanagiotou et al., 2006). 

The aging of zirconia was described in steps by Swab (Swab, 1991): 

1. The most critical temperature range is 200-300°C. 

2. Aging reduces strength, toughness and density of the material, and increases 

the monoclinic phase content.  

3. Degradation of mechanical properties is due to the T→M transition, which 

takes place with micro and macro cracking of the material.  

4. T→M transition starts on the surface and progresses into the bulk of the 

material.  

5. Reduction in grain size and/or increase in concentration of stabilizing oxide 

reduce the transformation rate.  
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6. T→M transformation is enhanced in water or in vapor.  

The models proposed to explain the spontaneous  phase transformation in TZP 

are based on the formation of zirconium hydroxides at the tip of the crack, which 

accelerates crack growth of pre-existing flaws and promotes the T→M phase 

transformation (Sato and Shimada, 1985a; Sato and Shimada, 1985b). 

The degradation resulting from aging is characterized by surface roughening 

and microcracking at the surface (Chevalier, 2006).  

The variability in aging behavior among different zirconia materials is related to 

the differences in equilibrium of the microstructural parameters, such as size, 

concentration and distribution of the grains as well as size and distribution of 

flaws (Lilley , 1990).  

The LTD rate of Y-TZP is related to several factors, such as chemical 

composition, duration of exposure to aging medium, loading of the ceramic 

restoration and manufacturing processes, all of which affect the microstructure 

of the material (Ardlin, 2002; Chevalier, 2006). 

Another relevant aspect for the stability of the material in a biological 

environment is the presence of glassy phases formed by SiO2, Al2O3, TiO2 or 

CaO impurities in grain boundaries. These impurities may come from the 

chemical precursors, from the milling bodies used in powder processing, they 

may be added to powders as sintering aids (Piconi and Maccauro, 1999) or may 

be components added for different purposes such as shade adjustment (Ardlin, 

2002). Their presence leads to a loss of stability of the tetragonal phase, as it 

was demonstrated that aluminosilicate glassy phases in grain boundaries are 

able to scavenge yttrium ions from TZP grains (Lin et al., 1990). 

The aging sensitivity of Y-TZP is directly linked to the type (compressive or 

tensile) and amount of residual stresses. Rough polishing produces a 

compressive surface stress layer beneficial for the aging resistance, while 

smooth polishing produces preferential transformation nucleation around 
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scratches, due to elastic/plastic damage and the tensile residual stresses 

occurred (Deville et al., 2006).  

Stable performances of  Y-TZP ceramics in a wet environment were reported by 

several authors (Swab, 1991; Chevalier et al., 1997; Geis-Gerstorfer and 

Fässler, 1999), which indicates that TZP stability can be controlled acting on 

parameters, such as stabilizing oxide concentration, distribution, grain size and 

residual stresses in the ceramics (Lepistö and Mäntylä, 1992), or the presence 

of the cubic phase (Chevalier et al., 2004).  

 

2.4.3.8 Zirconia as material for dental restorations 

 

Zirconium dioxide ceramics are being used in dentistry as framework materials 

for the fabrication of crowns and fixed partial dentures (Luthardt et al., 1998), as 

well as for implant abutments (Wohlwend et al., 1997) and orthodontic brackets 

(Keith et al., 1994). Today, polycrystalline oxide ceramics are mainly processed 

by applying CAD/CAM technology in means of milling industrial pre-fabricated 

ceramic blocks which possess a very high micro-structure quality due to a 

standardized manufacturing procedure. 

Frames can either be fabricated by grinding already sintered blanks (e.g. DCS®,  

Celay®), which is both time-consuming and leads to a high mechanical wear on 

tools, or by processing nonsintered (―green‖) or pre-sintered (―white‖)  zirconia 

blanks (e.g. Lava™). In the latter, restorations are milled from pre-sintered 

zirconia and are subsequently sintered to their full density. Thereby, the milling 

times are considerably shortened and the mechanical wear on the tools 

decreased. The restoration must, however, be milled in a larger size in order to 

compensate for the shrinkage during the sintering process (Raigrodski, 2004b). 

Green stage ZrO2-blocks can be milled using dry carbide burs, pre-sintered  

ZrO2-blocks can be milled using carbide burs under cooling liquid and milling of 
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completely sintered ZrO2-blocks requires the use of diamonds under cooling 

liquid (Witkowski, 2005). 

Apart from CAD/CAM technology new innovative techniques have lately been 

presented for the production of ZrO2-frameworks. Some of them have already 

been used in industry: 

The Sono-erosion technique makes use of ultrasound vibrations that act on fully 

sintered ZrO2-blocks to produce the framework of the restoration or the 

complete restoration with occlusal surfaces (Tinschert et al., 2001b). 

The electrophoresis technique is analogue to the galvanic technique and can be 

used for the fabrication of ZrO2-frameworks. 

In the so-called Electro-Deposited Ceramics-Technology (EDC), a model of the 

prepared teeth is made out of a mixture from wax and ceramic. Then, the wax is 

burnt out and the model is expanded to compensate for subsequent sintering 

shrinkage. A duplicate model is made and coated with silver lacquer (Rudolph 

et al., 2003). Ceramic particles are applied on the die to form the framework 

through electrophoretic deposition (Tinschert et al., 2001b). The framework is 

finally sintered to become stronger (Rudolph et al., 2003). 

The new fabrication techniques are very promising, as the damaging of ceramic 

material by milling and grinding is avoided.  

 

2.5 CAD/CAM 

 

2.5.1 Definition/Historical Background  

 

The term CAD/CAM, which comes from machine-tool technology and stands for 

―Computer-Aided-Design / Computer-Aided-Manufacturing‖, designates the 

three-dimensional planning of a workpiece on the screen of a computer with 

subsequent automated production by a computer controlled machine tool 
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(Tinschert et al., 2004). Francois Duret is viewed as the founder of CAD/CAM 

technology in dental medicine (Duret et al., 1988). His idea was based upon the 

assumption that the technologies established in industry could be easily 

transferred to dentistry. The industrial use of CAD-CAM allows the production of 

any number of similar workpieces automatically, while saving time and manual 

effort. In dental medicine, however, this philosophy cannot be applied due to the 

demands of the individual adaptation of the restoration design (one-of-a-kind 

production) to the patient (Tinschert et al., 2004). The manufacturing of zirconia 

crowns and bridges by direct sintering on suitable stumps or the application of 

conventional pressing or casting technologies is not possible due to the high 

processing temperatures of zirconia. Besides the extraordinary hardness of 

Zirconium dioxide ceramics prevents a simple and economical treatment. 

Therefore zirconium dioxide restorations can be manufactured mainly with 

CAD/CAM technologies (Luthardt et al., 1998). 

While thermal processing is necessary to shape the restoration in the 

pressable-ceramic and slip-casting techniques, subtractive procedures with 

CAD/CAM technology make it possible to produce all-ceramic restorations 

using prefabricated blanks. The advantage of this is that industrially pre-

fabricated ceramics blanks have defined physical properties and are used 

without thermal transformation, meaning that processing errors can be reduced 

(Kunzelmann et al., 2006). 

 

2.5.2  CAD/CAM Components  

 

The contemporary CAD/CAM systems consist of three components (Luthardt et 

al., 2001a; Luthardt et al., 2001b; Tinschert et al., 2004) 

1. The scanner, which scans the dental preparation provided by the dentist 

either intraorally or extraorally by reference to tooth models. For inlays and 

single crown frameworks, just the surface data of the prepared teeth need to be 

digitized. For FPD frameworks or additional occlusal characterization, further 
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data from the neighboring teeth and antagonists, as well as from the spatial 

relation of the prepared teeth to one another, are required.  

2. The software CAD consists of a computer unit used for the three-dimensional 

planning and design of restorations on the computer screen. The software 

programs available today offer a high level of intervention and permit the design 

and production of an individually adapted restoration.  

Systems which have no CAD component are not considered as CAD/CAM 

systems and they are described as only CAM systems (Witkowski, 2005). 

The hardware CAM covers different production technologies for converting the 

virtual restoration into a dental restoration. At present, computer-controlled 

milling or grinding machines are mainly used. They machine the restoration 

from the full material block consisting of prefabricated metal or ceramic. As a 

rule, after the CAM production, some manual corrections and final polishing or 

individualization of the restoration with staining colors or veneering materials 

are required to be carried out by the dental technician (Luthardt et al., 2001a; 

Luthardt et al., 2001b). 

 

2.5.3 CAM techniques 

 

The CAM technologies can be divided in three groups according to the 

technique used (Witkowski, 2005). 

2.5.3.1 Subtractive Technique from a Solid Block  

 

The CAM technique most commonly applied in manufacturing frameworks for 

single crowns and FPDs is to cut the contour out of an industrially prefabricated, 

solid block of different material. When industrial prefabricated zirconium dioxide 

blocks are used, the restoration can be shaped, as mentioned before, both 

before and after the block is sintered. Some examples of such systems are 

shown on figure 2.4. 
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2.5.3.1.1 The Lava system (3M/ESPE Dental AG, Seefeld, Germany) 

 

The LAVA™ system by 3M ESPE processes partially sintered zirconia ceramic 

as yttrium-stabilized blanks and is designed for manufacturing frameworks for 

crowns and fixed partial dentures. The central unit uses an optical scanner to 

scan multiple units at once. The software automatically finds the margin, 

suggests pontics and designs the desired framework (Giordano, 2002). 

Afterwards, with the milling machine, an oversized coping from partially sintered 

zirconia is milled out to compensate for sintering shrinkage. The dental 

technician can also send a model to a milling center, which then performs the 

scanning, design, milling and sintering. Alternatively, the dental technician can 

scan the model with the Lava™ Scan ST scanner, design the framework with 

the CAD Lava™ Design software and then send the data via internet to a 

Lava™ milling center (Giordano, 2002; Kunzelmann et al., 2006). After milling, 

but before sintering the restoration can be immersed in a staining solution to be 

coloured (Kunzelmann et al., 2006). 

 

2.5.3.2 Additive Technique by Applying Material on a Die  

 

There are three different systems that apply the framework material on a die of 

a prepared tooth (Witkowski, 2005):  

With the Procera system (Nobel-Biocare AB, Göteborg, Sweden) alumina or 

zirconia is dry pressed directly against an enlarged die and the temperature is 

raised to a temperature similar to the presintering stage. At this point in the 

process, the enlarged and porous coping is stable. Its outer surfaces are milled 

to the desired shape and the coping is removed from the enlarged die and 

sintered into the furnace for firing to full sintering. During this cycle, the coping 

shrinks to fit the dimensions of the original working die.  
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The WOL-CERAM-EPC-CAM-System (Wol-Dent, Ludwigshafen, Germany) 

generates the ceramic framework of crowns and FPDs  directly on the die of the 

master model with means of electrophoretic dispersion method within a few 

minutes. The outside contour is shaped by a CAM process. Then, the coping is 

removed from the die and sintered at high temperature (1140°C) (Wolz, 2002; 

Witkowski, 2005).  

The third system involves the solid direct form fabrication technique, which 

generates copings and frameworks for FPDs of pure Al2O3 and ZrO2 ceramics in 

a production center (CE.NOVATION, Inocermic, Hermsdorf Germany). The 

dispersed super-fine nanoceramic powders consist of particles well below 100 

nm in diameter. With this technology, the frameworks attain high strength and 

calculable sintering shrinkage (Brick et al., 2003). These new technologies are 

relatively new and need further development (Witkowski, 2005; Strub et al., 

2006).  

 

2.5.3.3 Solid free form fabrication  

 

This category includes new technologies originating from the area of rapid 

prototyping, which have been adapted to the needs of dental technology (Strub 

et al., 2006). The first system applying this technology for dental use was the 

wax plotter technique, which works according to the ink jet principle. The 

machine builds (solid free form) frameworks and full crowns in wax for the 

casting technique in alloys and titanium (Wax Pro 50, Cynovad, Montreal, 

Canada) (Witkowski, 2005). A second technology originating from rapid 

prototyping is the stereolithography (Perfactory, Delta Med, Frieberg, Germany). 

In this technique, the restoration is produced from light sensitive plastic, which 

can be converted into any desired alloy with the casting technique (Witkowski, 

2003). Occlusal splints and diagnostic templates for oral implantology can also 

be produced with this technique. Another technique is the selective laser 

sintering (SLS), which allows to build up frameworks of sinterable powder 
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materials. The materials are applied sequentially, or layer by layer, on the spots 

that are indicated from the CAM-model, and are then fused by means of a laser 

(Strub et al., 2006). 

 

2.5.4 Materials  

 

The material groups available for the various CAD-CAM systems are as follows:  

Silicate ceramics; glass-infiltrated aluminium oxide ceramics; densely sintered 

aluminium oxide ceramics; densely sintered zirconium dioxide ceramics (yttria-

tetragonal-zirconia-polycrystal), manufactured as green stage, presintered 

stage and completely sintered stage; titanium; precious alloys; nonprecious 

alloys; acrylics of improved strength and castable acrylics (Witkowski, 2005). 

 

2.5.5 Industrial preparation of zirconium dioxide ceramic (for the 

CAD/CAM) 

 

Processing 

The industrial production of the oxide ceramics begins with the cold isostatic 

pressing of the raw material and shaping methods, which result in stable chalk-

similar ―green bodies‖ with a high primary density (Tinschert et al., 2001b). 

Additionally there is  the possibility to ―hip‖ densely sintered oxide-ceramic 

blanks i.e. to consolidate at 1000 bar and 50°C under the sintering temperature 

again by hot-isostatic pressing (HIP: Hot Isostatic Postcompaction) in order to 

improve their stability against the growth of microcracks and thus the 

mechanical long-term behavior of the oxide ceramics (Christel et al., 1989). This 

procedure was introduced in 1986 by the company Metoxit (Rieger, 2001). 

The HIP technology runs in three stages: (1) Presintering of the Y-TZP without 

pressure in a non-oxide atmosphere up to approx. 95% of the theoretical 
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density (2) warm isostatic pressing process during which the residual porosity is 

removed (Christel et al., 1989); (3) white-firing in an oxygen-containing 

atmosphere, whereby the white color of the material is restored. 

The final strengthening of the formed ―green‖ and ―hipped‖ white bodies takes 

place afterwards in an oxidizing atmosphere at 1350-1550°C. 

 

2.5.6 Methods for the processing of zirconium dioxide ceramics by means 

of CAD/CAM procedure). 

 

Three methods can be differentiated as manufacturing methods (Tinschert et 

al., 2004; Witkowski, 2005): 

a) The processing of green, presintered ceramic blanks 

b) the processing of partially sintered, so called ―white‖ blanks, 

c) the processing of densely sintered blanks 

 

 Processing of Green blanks 

 

With this procedure a framework is milled out of a prefabricated porous block, 

which is manufactured by primary compression of the oxide-ceramic output 

powder and thus it is easy to process. The framework is subsequently densely 

sintered. 

A model is before digitized and the form of the framework is linear increased 

(about 20%), in order to compensate the shrinkage during the sintering process 

(Raigrodski, 2004b). The advantage of this procedure is the faster processing 

and the smaller wear of the milling instruments. 
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Investigations showed a reduction of the mechanical characteristics after the 

processing of densely sintered zirconium dioxide, which could be avoided with 

this procedure, because the subsequent sintering consolidates the milled raw 

blanks. (Luthardt and Musil, 1997; Luthardt et al., 1998; Kosmac et al., 1999). 

Small corrections by the dental technician are nevertheless necessary because 

of the non-linear contraction. 

 

 Processing of “white” partially sintered blanks 

 

The white blanks become pre-sintered under pressure at 1000°C. They have 

about 55-70% degree of compression, which makes them still relatively porous. 

This procedure integrates the advantages of the ―green‖ and fully sintered 

blanks, but on the other hand there is more wear of the milling instruments and 

also a certain shrinking of the blanks during sintering, which must have been 

accurately estimated.  

 

 Processing of fully sintered blanks 

 

This process takes place after the final sintering of the ceramic blanks and the 

resulting ceramics show very good accuracy and physical properties (Graber 

and Besimo CE, 1994; Luthardt and Musil, 1997). 

This procedure is however time-consuming and costly because of the wear of 

the milling instruments (Tinschert et al., 2004).  

 

Examples of different zirconium dioxide products according to the degree of 

sintering are (Kunzelmann et al., 2006; Strub et al., 2006; Denry and Kelly, 

2008): 
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Milling at green stage: ZirkonZahn® (Steger, Brunneck, Italy), CE.NOVATION® -

System (CE.NOVATION, Hermsdorf, Germany) 

Milling at white stage : Lava™ Frame für LAVA™ (3M ESPE, Seefeld, 

Germany),Vita YZ Cubes® (Vita Zahnfabrik, Bad Säckingen, Germany) for 

CEREC InLab® (Sirona, Bensheim, Germany), IPS e.max ZirCAD (Ivoclar 

Vivadent AG, Schaan, Liechtenstein) für CEREC InLab®, Sirona, Bensheim, 

Germany), ZS-Blanks® for EVEREST® (KaVo, Biberach, Germany), Ceramill Zi 

(Amann Girrbach, Pforzheim, Germany), DC Shrink® for PRECIDENT® (DCS 

Dental, Allschwil, Switzerland). 

Milling at completely sintered or ―HIPed‖ stage:  DC-Zirkon® für Precident® 

(DCS Dental, Allschwil, Switzerland), ZH-Blanks® for EVEREST® (KaVo, 

Biberach, Germany), Denzir® for DECIM® (Decim AB, Skellefteå, Sweden), HIP-

Zirkon für Etkon® (Etkon AG, Gräfelfingen, Germany). 

 

2.6. Studies on surface and heat treatment of zirconia 

 

The usual steps for the fabrication and placement of an all-ceramic restoration 

with a zirconia frame involve grinding of the material in different stages, 

polishing, sometimes sandblasting and heat treatment. These surface 

treatments affect critically the properties of the material and thus its long-term 

stability and success. 

 

 

2.6.1 Grinding 

 

The influence of grinding on the flexural strength of zirconia ceramics is 

contradictory and related to the volume percentage of transformed zirconia, 
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which in turn depends on the metastability of the t/m phase transformation, the 

grinding severity and the locally developed temperatures(Gupta, 1980; Green, 

1983; Swain, 1985; Swain and Hannink, 1989; Kosmac et al., 1999; Kosmac et 

al., 2000). 

 

Many authors studied the effect of milling and grinding of Y-TZP and showed 

that these procedures reduce the flexural strength and reliability of the material 

(Xu et al., 1997; Kosmac et al., 1999; Luthardt et al., 2004; Curtis et al., 2006b), 

while on the other hand grinding under other conditions seems to be beneficial 

for the strength of the material (Xu et al., 1997; Guazzato et al., 2005b; Denry 

and Holloway, 2006; Sato et al., 2007) or even have no significant effect (Curtis 

et al., 2006b). 

Garvie et al. (1975) were the first to demonstrate that grinding increases the 

strength of ceramics containing metastable tetragonal zirconia. This is due to 

the T→M transformation on the surface of the material and the development of 

compressive strains from the transformation-related volume increase at a depth 

of several microns under the surface (Garvie et al., 1975; Gupta, 1980; Green, 

1983).  The surface compressive stresses prevent microcrack formation or 

propagation, but also surface and subsurface damage is promoted by grain 

pullout due to the volume increase and the formation of microcraters (Denry and 

Holloway, 2006). 

Apart from the strained tetragonal grains, a rhombohedral zirconia phase has 

been found to form after grinding, with similar consequences on the behavior of 

zirconia as the tetragonal phase (Denry and Holloway, 2006). 

Several studies have shown that grinding with coarse grit tools produce deep 

surface flaws, high surface roughness and extensive heat that reduce the 

flexural strength of zirconia and may determine the strength of the restoration 

(Kosmac et al., 2000; Ardlin, 2002; Tinschert et al., 2004). 
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More recently, Xu et al. reported an improvement in strength of Y-TZP upon fine 

grinding with 25 mm grit size diamond wheels, whereas coarser  grinding 

resulted in strength reduction (Xu et al., 1997). Curtis found no significant effect 

of the fine grinding to the flexural strength. However, Xu et al. did not correlate 

strength to the relative amount of transformed monoclinic phase obtained upon 

surface treatment. 

Swain and Hannink showed that manual grinding with low rotation speed is 

more effective than lapper-machine grinding in inducing the t/m  transformation 

(Swain and Hannink, 1989) and increasing the surface compressive layer 

(Ardlin, 2002). They demonstrated that in the case of machine grinding the local 

development of temperatures exceeded the m→t transformation temperature, 

causing reverse transformation (Kosmac et al., 2000; Ardlin, 2002).In this 

instance, the deep defects introduced by grinding are no longer counteracted by 

the transformation-induced compressive stresses and act as stress 

concentrators, lowering the mean flexural strength of the ceramic. The authors 

did not examine the strength response, however, since the strengthening 

mechanism of zirconia is mainly related to the t→m transformation, a greater 

mean flexural strength is anticipated when a larger amount of monoclinic phase 

is detected on the surface of the ceramic. On the basis of the study conducted 

by Swain and Hannink, Kosmac et al. inferred that the locally developed 

temperature must have exceeded the m→t transformation temperature. 

According to the same author the use of water spray during grinding reduces 

stresses, resulting in a decrease of the critical flaw size by about 30% (Kosmac 

et al., 2000).  

Luthardt examined the effect of CAD/CAM machining on zirconia crowns. They 

found that grinding of the inner surface induces surface flaws and microcracks 

at the internal surface of the occlusal region (Luthardt et al., 2004). As shown in 

failed restorations, these areas concentrate the greatest tensile stresses during 

clinical loading. Thus, it is important that the concentration of microcracks in 

these areas is minimized. 
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Fine-grained Y-TZP materials exhibit high strength after sintering, but are less 

tolerant to the damage caused by grinding than the tougher coarse-grained Y-

TZP, as the grinding-induced cracks extend deeper in its mass (Kosmac et al., 

2000). 

Guazzato found that the orientation of grinding has no significant effect on the 

strength of the material and that flaws distributed perpendicular to the grinding 

orientation initiate fracture when the specimen is loaded (Guazzato et al., 

2005b). 

The final effect of grinding on material strength depends on the amount of the 

transformed monoclinic phase (thickness of the transformed layer), the 

metastability of the t→m  transformation, the grinding severity and on the locally 

developed temperatures (Guazzato et al., 2005b). 

 

2.6.2 Sandblasting 

 

Sandblasting of the inner surface of a restoration is usually used to enhance the 

adhesion strength of the luting agent to the framework (Kern and Wegner 

1998). Several studies have also pointed out, that sandblasting of zirconia 

increases the flexural strength of the material (Kosmac et al., 1999; Guazzato et 

al., 2005b; Curtis et al., 2006b; Wang et al., 2007; Sato et al., 2007). According 

to Kosmac, sandblasting provides a powerful technique for strengthening Y-TZP 

at the expense of somewhat lower reliability (Kosmac et al., 2000). Guazzato 

also showed an increase of the flexural strength after sandblasting, which was 

attributed to the higher amount of monoclinic phase detected (Guazzato et al., 

2005b), which corresponds to the results of Sato and Ishgi (Ishgi, 2006; Sato et 

al., 2008).  

During air abrasion the sand particles cause significant damage to the 

material‘s surface, which is characterized by erosive wear and lateral cracks. 

However, a thin layer of  compressive stresses because of the transformed M-
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phase is formed, which counteracts the strength degradation caused by the 

sandblasting-induced flaws and effectively increases the strength (Kosmac et 

al., 1999; Guazzato et al., 2005b). The layer of the surface flaws caused by air 

abrasion does not exceed the layer of compressive stresses created by the 

phase transformation (Papanagiotou et al., 2006), which according to De Kler is 

up to 27 µm {De Kler , 2007 309 /id}. Lower temperatures and stresses are 

developed than in grinding which induces more effectively the t→m 

transformation (Guazzato et al., 2005b).  

In another study Curtis et al. found an increase of the strength as well as of the 

reliability of dry stored sandblasted zirconia contrary to Kosmac, which was 

explained by the combination of compressive stresses and low surface 

roughness (Curtis et al., 2006b) 

Sandblasting after grinding reduces the critical flaw size of the grinded surface, 

because it greatly levels the material surface and removes the larger grinding-

induced crack (Kosmac et al., 1999). 

On the other hand, other studies have shown that sandblasting before the 

cementation of Y-TZP restorations mechanically assists the growth of pre-

existing flaws, reducing the strength and lifetime of the restoration (Zhang et al., 

2004). 

 

2.6.3 Heat Treatment 

 

Several studies indicate that heat treatment influences the core materials in 

several ways even when the temperatures are below the core materials‘ own 

sintering temperature (Cattell et al., 2002; Guazzato et al., 2004b; Balkaya et 

al., 2005; Isgro et al., 2005; Sundh et al., 2005).   

Heat treatment of Y-TZP has been studied by several authors and in most 

studies it was found to have a counteracting effect to surface treatment on the 

flexure strength of zirconia. It has often been considered as an aging 
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accelerator for orthopedic implants of yttria-stabilized zirconia (Deville et al., 

2006; Chevalier, 2006) 

Heat treatment induces a reverse phase transformation and thus a reduction of 

the monoclinic phase {De Kler , 2007 309 /id;Guazzato, 2005 2 /id;Sato, 2007 

69 /id}, which leads to the release of the compressive stresses on the surface of 

the material and a reduction of its strength (Kosmac et al., 2000; Guazzato et 

al., 2005b). According to Oilo microcracks generated during the milling 

procedure or surface treatment may propagate during firing because of the 

alterations of the grain size and the relieved stresses (Oilo et al., 2008). This 

effect of the heat treatment with the m→t transformation may occur instantly as 

a given temperature is reached and regardless of the holding time (Guazzato et 

al., 2005b). 

 Denry et al. showed in a study, that annealing of ground or ground and 

polished specimens leads to the disappearance of residual strains (Denry and 

Holloway, 2006), while  Ishgi et al. found that all groups in their study had a 

negligible amount of monoclinic phase after firing and that firing reduced the 

flexure strength of the ground specimens (Ishgi, 2006). 

Contrary to these studies, Wang et al. and Ruiz et al. in their studies found the 

flexural strength of zirconia to be insensitive to heat treatment (Ruiz and 

Readey, 1996; Wang et al., 2007). 

Under clinical conditions, a greater amount of monoclinic phase on the surface 

and therefore a greater flexural strength may be desirable. On the other hand, 

an excessive amount of M-phase could lead to microcracking (Guazzato et al., 

2005b) and predispose the material to a more rapid moisture-assisted 

transformation over time and loading in the acidic and aqueous oral 

environment (De Aza et al., 2002). 

Even though many authors have showed that annealing of  surface treated 

zirconia leads to a reduction of  its flexural strength, several manufacturers 

recommend a ―Regeneration firing‖ in case of a surface modification of the 

material after sintering (for example Vita at 1000°C for 15 min; Ivoclar Vivadent 
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1050°C for 15 min). This firing is supposed to prevent the tension, which is 

created between the frame and the veneering ceramic due to the alteration of 

the CTE of the monoclinic Y-TZP (Vita Zahnfabrik, 2004; Ivoclar-Vivadent, 

2008). 

Nevertheless this recommendation should be seen critically, as the heat 

treatment of Y-TZP also in temperatures below 1000°C and independent of the 

holding time leads to a reverse transformation and the release of the 

compressive stresses (Guazzato et al., 2005b), which no longer counteract the 

flaws caused by the surface modification, thus lowering the strength of the 

material (Kosmac et al., 1999; Kosmac et al., 2000; Sundh et al., 2005; 

Guazzato et al., 2005b). 

 

3. Aim of the study 

 

Aim of this study was to evaluate the effect of sandblasting and/or wet grinding 

with fine burs as well as the effect of subsequent thermal treatment on the 

flexural strength and reliability of a Y-TZP ceramic (LAVA™, 3M ESPE, Seefeld, 

Germany). 

 

4. Outline of the study 

 

180 disc-shaped specimens of a Y-TZP ceramic were delivered from the 

manufacturer. The specimens were randomly divided in one control group and 5 

test groups of 30 specimens each. In the control group C the discs were left as 

delivered without further modification. The discs of group S were sandblasted 

with Al2O3 on the top surface, while the ones of group G were mildly ground with 

a fine-grained diamond bur on one side. The specimens of group SG were first 

sandblasted with alumina and were then ground with a fine-grained diamond 

bur. The top surface of the discs in group SF were first abraded with alumina 
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and subsequently annealed at 1000°C and the ones of group GF were first 

ground and then annealed at 1000°C. During the surface treatment of the 

specimens, some of them were damaged and were excluded from the study, 

thus resulting in the following distribution: 

Group C: 30 discs 

Group S: 30 discs 

Group SG: 27 discs 

Group G: 30 discs 

Group SF: 29 discs 

Group GF: 28 discs 

The roughness of the modified surface of five randomly chosen samples of 

each group was measured. Specimens of all groups were then examined with 

X-Ray diffraction analysis, in order to assess the status of the remaining 

monoclinic phase on the surface of the material. 

Subsequently all specimens were loaded in a universal testing machine until 

fracture occurred. 

Figure 4.1 shows the outline of the study: 
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Fig. 4.1. Outline of the study. 

176 disc-shaped 
Lava Frame™  

specimens

Group C

(Control )

30 specimens as 
delivered

Biaxial  flexure 
strength test, 

surface roughness, 
X-Ray diffraction 

analysis

Group S

(Sandblasted )

30 specimens 
alumina abraded 

with Al₂O3

Biaxial  flexure 
strength test, 

surface roughness, 
X-Ray diffraction 

analysis

Group G

(Ground )

30 specimens 
ground with a fine-
grained diamond 

bur

Biaxial  flexure 
strength test, 

surface roughness, 
X-Ray diffraction 

analysis

Group SG

(Sandblasted

+Ground )

27 specimens 
alumina abraded 
with Al₂O3 and 

ground with a fine-
grained diamond 

bur

Biaxial  flexure 
strength test, 

surface roughness, 
X-Ray diffraction 

analysis

Group SF

(Sandblasted

+Fired)

29 specimens 
alumina abraded 

with Al₂O3 and fired 
at 1000 ◦C

Biaxial  flexure 
strength test, 

surface roughness, 
X-Ray diffraction 

analysis

Group GF

(Ground+Fired )

28 specimens 
ground with a fine-
grained diamond 
bur and fired at 

1000◦C

Biaxial  flexure 
strength test, 

surface roughness, 
X-Ray diffraction 

analysis
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5. Materials and methods 

 

5.1 Material used for the fabrication of the Y-TZP discs 

 

180 Lava™ Frame discs (3M ESPE, Seefeld, Germany) were delivered from 

the manufacturer. 

Lava™ Frame is the partially sintered zirconia ceramic processed by the Lava™ 

system as yttrium-stabilized green blanks . The Lava™ system (see also 

chapter 3.1.1.) comprises of a CAD/CAM procedure for the fabrication of 

Lava™ crowns and bridges made of zirconia for anterior and posterior 

applications. The frameworks are fabricated using CAD/CAM manufacturing 

techniques for pre-sintered zirconia blanks. The milled framework, whose size 

has been increased to compensate for the shrinkage during sintering, is 

sintered in a special high temperature furnace (Lava™ Therm), thus leading to 

a high strength restoration. 

The Lava™ Frame zirconium oxide frameworks are fabricated by milling 

centers. 

The physical properties of the material are shown on table 5.1. 
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5.2 Fabrication of the specimens 

 

180 disc-shaped specimens of Lava™ Frame (3M/ESPE Dental AG, Seefeld, 

Germany) zirconia ceramic were supplied by the manufacturer. 

The Lava™ Frame poles were initially trimmed to a diameter of 20.2 mm and 

then sliced in discs of 1.7 mm thickness with a carbide blade. After removing 

the surface to a thickness of 1.51 mm with a SiC sand paper (grit 320 µm, 

Table 5.1. Physical properties of Lava™ Frame 

(source: Lava™ Brochure, 3M/ESPE Dental AG, 

Seefeld, Germany). 

Density (ρ): 6.08 g cm-3 

Flexural Strength (s) (Punch test) > 1100 MPa 

Fracture Toughness (KIC): 5-10 MPa √m 

Young‘s  modulus of elasticity (E): > 205 GPa 

CTE: 10 x 10-6 K-1 

Melting point: 2700 °C 

Grain size: 0.5 μm 

Vickers hardness  1250 HV 
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P400), the discs were sintered in a Lava™ Therm furnace according to the 

recommendations of the manufacturer. 

The delivered disc specimens had a diameter of 16mm and an average 

thickness of 1.2 mm according to the ISO Norm 6872 for testing ceramics. 

On delivery the specimens were randomly divided in 6 groups of 30 specimens 

as follows: 

Group C (control) 

Group S (sandblasted) 

Groups SG (sandblasted and ground) 

Group G (ground) 

Group SF (sandblasted and fired) 

Groups GF (ground and fired) 

  

5.3 Microscopy after preparation 

 

Five random specimens were inspected under a light microscope (Wild 

Heerbrugg AG, Heerbrugg, Switzerland) at x12.5 magnification prior to testing 

to ensure that they were free from cracks and other processing defects. 

 

5.4 Measuring of the specimens 

 

The dimensions of the specimens were measured with a digital caliper 

(Digimatic CD-4 BS, Mitutoyo Corporation, Japan) before and after the 

preparation of the specimens. The thickness of each specimen was calculated 

as the mean of three measurements taken at random sites. 
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5.5 Preparation of the specimens 

  

 Control group 

 

In group C (control group) the specimens were left without any modification of 

the surface. 

 

 Sandblasting 

 

The specimens of group S (sandblasted group) were mounted on a metal table 

with double-faced adhesive tape (Tesa mounting tape, Tesa AG, Hamburg, 

Germany) and the metal table was set in the middle of the sandblasting 

apparatus ( PG400, Harnisch & Rieth, Winterbach, Germany). The blasting tip 

was fixed at a distance of 20mm from the specimen and perpendicular to them 

with double-faced adhesive tape (Tesa mounting tape, Tesa AG, Hamburg, 

Germany). The sandblaster unit was equipped with a nozzle of 2 mm diameter. 

The alumina abrasion regime was carried out for 20 sec for each specimen at a 

distance of 2cm at 2 bar with 50µm Al2O3 (Harnisch & Rieth, Winterbach, 

Germany). Abrasion was carried out uniformly across the specimen surface by 

moving the metal table to different directions to avoid formation of areas of 

localized stress. 

For the group SF (sandblasted and fired) the same regime was followed prior to 

the heat treatment. 

For the group SG (sandblasted and ground) the same regime was carried out 

prior to grinding. 
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After surface treatment the specimens were cleaned with ethanol in an 

ultrasonic bath (Sonorex RH, Bandelin, Berlin, Germany) for 15 min and then 

air-dried. 

  

 Grinding 

 

The specimens of group G were ground on the top surface with a fine-grit 

diamond bur (ISO-No. 806 314 111514 014, Komet Brasseler, Lemgo, 

Germany). The burs had a mean grain size of 30 µm, while the part of the burs 

with the diamond grains had a length of 8mm, thus covering exactly half of the 

surface of the zirconia discs. 

The diamond burs were mounted on a red-ring dental handpiece ( INTRA 

Compact 25 LHC, Kavo Dental, Biberach, Germany). The handpiece was 

mounted on an apparatus designed for standardized grinding. 

The specimens were fixed with double-faced adhesive tape (Tesa mounting 

tape, Tesa AG, Hamburg, Germany) on an acrylic block, which was fixed on a 

metal holder. The metal holder could be moved in two directions (on the ―X‖ and 

―Z‖ axis) by rotating two metal wheels; one for each direction. 

The handpiece was mounted on a holder that could be rotated 360 degrees and 

fixed in one position. The position of the holder with the handpiece could also 

be adjusted in two directions (on the ―Y‖ and ―Z‖ axis) by rotating a wheel for 

each direction. By adjusting these three elements, the surface of the diamond 

bur lay on and parallel to the surface of the disc specimen. The holder with the 

handpiece could then be moved manually on the ―X‖ axis on a metal rail during 

grinding. 

After adjusting the position of the handpiece and thus the diamond bur on the 

top surface of the specimen, the specimen was ground at a rotation speed of 

20000 rpm (the optimal speed according to the manufacturer) for 6 seconds by 

moving the holder with the handpiece manually back and forth on the ―X‖ axis. 
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Subsequently the specimen was dismounted and mounted again on the acrylic 

block rotated at 180° on the horizontal level and the regime was repeated to 

prepare the other half of the top surface of the specimen. 

The diamond burs were exchanged with new ones after grinding of five 

specimens. 

For the group GF the same regime was followed prior to heat treatment. 

For the group SG the same regime was carried out after sandblasting of the 

specimens of the group. 

After surface treatment the specimens were cleaned with ethanol in an 

ultrasonic bath (Sonorex RH, Bandelin, Berlin, Germany) for 15 min and then 

air-dried. 

Figure 5.1 shows the apparatus used for the grinding of the probes. 

 

 Heat treatment 

 

After the surface modification, the specimens of groups SF and GF were heat 

treated. The firing procedure was carried out in a ceramic furnace (Vita 

Vacumat 50 Vita Zahnfabrik, Bad Säckingen, Germany) for 10 minutes at 1000 

°C. The specimens were allowed to slowly cool down and the furnace was 

opened when the temperature reached 600 °C. The specimens were fired at 

this temperature after testing two samples fired at different temperatures; one at 

1000°C and one at 1150°C with X-Ray diffraction analysis. The analysis 

showed no difference in the amount of monoclinic phase between the samples 

and it was decided to carry out the firing procedures at the lower temperature in 

compliance with the recommendations of  the manufacturer (3M ESPE, Seefeld, 

Germany) for the ―Regeneration firing‖. 

During the surface treatment of the specimens, some of them were damaged 

and were excluded from the study, thus resulting in the following distribution: 
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Group C: 30 discs 

Group S: 30 discs 

Group SG: 27 discs 

Group G: 30 discs 

Group SF: 29 discs 

Group GF: 28 discs  

 

Fig. 5.1. Apparatus used for the grinding of the probes: 1) Zirconia disc sample, 

(1) 

(2) 

(6) 

(3) 

(4)  

)9) 

(5) 

(7) 

(8) 
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2) Dental handpiece, 3) Acrylic block, 4) Metal holder, 5) Metal wheels, 6) 

Holder, 7) Metal wheels, 8) Metal rail. 

 5.6 Measurements after the treatment 
 

Following the surface treatment of the specimens, the zirconia discs were once 

again measured as described above. The thickness of each specimen was 

calculated as the mean of three measurements taken at random sites. 

 

5.7 Microscopy after preparation 

 

Five random specimens of every group were inspected under a light 

microscope (Wild Heerbrugg AG, Heerbrugg, Switzerland) at x12.5 

magnification prior to testing to ensure that they were free from cracks and 

other processing defects. 

 

5.8 Tests 

 

5.8.1 Surface morphology 

 

The morphology of two random specimens of every of the six groups was 

examined with a scanning electron microscope (Leo 1430, Zeiss, Oberkochen, 

Germany) at 50, 100, 1000 and 2000 magnification and was fotodocumented. 

Aim was to display the micromorphology of the surface of the specimens and 

identify the impact of the surface treatments. 
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5.8.2 Surface roughness 

 

A profilometer (Perthometer R6P, MAHR GmbH, Göttingen, Germany) was 

used to determine the roughness of the tensile stress surface of 5 random 

specimens of every group. Five measurements (profiles) with a scan length of 

5.6mm were performed on five random probes of each group with the exception 

of group GF, where only pieces of three specimens could be used after the 

flexure strength test for this purpose. For the groups G, SG and GF the 

measurements were carried out perpendicular to the grinding direction.  

The variable for surface roughness Ra was recorded, where Ra is the arithmetic 

mean profile deviation. The mean values of the recordings were used in the 

analyses. 

 

5.8.3 X-Ray diffraction analysis 

 

X-ray diffraction (XRD) analysis was employed to examine the disc-shaped 

ceramic specimens following alumina abrasion and grinding, in order to assess 

the influence of the surface modification and the firing procedures on the phase 

composition and the occurrence of phase transformations in the Y-TZP ceramic. 

XRD was performed at 3M ESPE (3M ESPE, Seefeld, Germany) using a D8 

Discover Diffractometer (Bruker AXS, Karlsruhe, Germany). Specimens‘ 

surfaces were scanned with Cu Ka X-Ray and diffraction data were collected 

from the 2θ range between 10° and 90° with a step size of 0.0196°. A 

quantitative value of phase compositions of the Y-TZP ceramic was not 

calculated. 

 

 

 

 



67 
 

5.8.4 Biaxial flexure strength test (piston-on-three-ball test) 

 

The biaxial flexure test was performed according to the ISO 6872 for ceramics. 

 

 Biaxial flexural strength test fixture: 

 

For the support of the test specimen, three hardened steel balls with a diameter 

of 3.2±0.5 mm positioned 120° apart on a support circle with a diameter of 

10mm were used. A 0.5 mm thick plastic foil was placed at the center of the 

sample‘s surface to achieve homogenous load distribution. The sample was 

placed concentrically on these three supports and the load was applied with a 

flat punch with a diameter of 1.2 mm at the center of the specimen. 

 

 Testing machine and loading: 

 

Using a universal-testing machine (Zwick, Z010, Ulm, Germany), all samples 

were loaded at a cross speed of 1mm/min until fracture occurred (Fig. 5.2 and 

5.3). 

The loads required for fracturing the samples were recorded with the Zwick 

testXpert® 12.0 software. 

 

5.8.5 Statistical analysis 

 

Multiple comparisons of the results for the flexural strength and the surface 

roughness were made utilizing multiple Welch tests, because the requirement of 

variance equality for a one-way analysis of variance (ANOVA) was not met. The 
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p values, which were calculated with the Welch tests, were adjusted with the 

Bonferroni-Holm method. 

The variability of the flexural strength values was analyzed using the Weibull 

distribution and calculating the Weibull module (m) and the characteristic 

strength σ0, which is the flexural strength at a 63.2 % failure probability. 

The bi-axial flexure strength data was ranked in ascending order and Weibull 

analysis was performed on the resultant data to establish the reliability of the 

material by determining the probability of failure as a function of the applied 

stress (International Organization for Standardization, 1999). The intercept of 

the y-axis was ln(σ0) and the gradient of the graph was m signifying the 

reliability of the specimen group to have undergone testing. The Weibull 

analysis was performed on the flexural strength data by plotting ln ln[1/(1-Pf] 

against ln σ, where Pf is the probability of failure and σ is the tensile stress. The 

gradient of the strength distribution data (m) was determined by superimposing 

a regression line along the data points to calculate the Weibull modulus for each 

specimen group. A high value of m indicates a high homogeneity in the defect 

population and a more predictable rate of failure observed as a steep slope with 

a reduced scatter of data and increased reliability. 

The statistical analysis was performed with the help of Prof. Dr. K. Dietz at the 

Institute for Biometry and Statistics of the Eberhard-Karls University, Tübingen, 

Germany. For this purpose the software ―JMP‖, Version 7 was used. 
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Fig. 5.2. Schematic drawing of the biaxial flexure test. 
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Fig. 5.3. Picture of the apparatus for the biaxial flexure strength test. 

 

6. Results 

 

6.1 Flexure Strength  

 

Data of the biaxial flexure strength testing of all groups are presented 

graphically in figure 6.1. 

In general, all surface treatments tend to increase the mean flexural strength of 

the material and the following heat treatment tends to decrease it.  
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Fig. 6.1. Box-plot diagramm comprising the biaxial flexure strength of the six 

tested groups. The central box shows the data between the standard deviation. 

The mean flexure strength is presented as a star in the box. The median value 

is presented with a horizontal line within the box. The maximum and minimum 

values are illustrated via the upper and lower strokes. 

 

The average flexural strength and standard deviation of the tested groups, as 

well as the maximum and minimum values are shown on table 6.1. 

The statistical analysis revealed that the surface treatment of the zirconia 

probes had a significant effect on the flexural strength. Groups S, SG and G 

had significantly higher strength than the control group. There was no significant 

difference of strength between the groups S and SG and S and G, but the group 

SG had significantly higher strength than group G. 

The thermal firing following surface treatment (Groups SF and GF) reduced 

significantly the strength of the surface treated specimens, but it had no 
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significant effect compared to the control group, while there was also a 

significant difference found between the two groups, that underwent heat 

treatment subsequent to heat treatment ( 6.1). 

 

Table 6.1. Flexural strength (s), surface roughness (Ra), Weibull module 

(m) and characteristic strength (σ0) of the tested groups. 

Surface 

condition 

Roughness 

Ra (µm) 

Mean 

flexural 

strength 

(MPa) 

S.D. of 

strength 

(MPa) 

Max. 

strength 

(MPa) 

Min. 

strength 

(MPa) 

m σ0 

(MPa) 

Control 0.77 978
A,B

 108 1169 777 10.94 1024 

Sandbl. 0.7 1364
D,C

 213 1731 921 7.6 1452 

Sandbl. 

+Ground 
0.8 1452

D
 228 1837 952 7.4 1547 

Ground 0.56 1296
C
 205 1749 1041 7.4 1382 

Sandbl. 

+Fired 
0.6 901

A
 154 1218 570 6.9 963 

Ground 

+Fired 
0.94 1024

B
 101 1266 773 12.14 1068 

 

*Average flexure strength of the groups with same superscript letter was 

statistically not significantly different.      

       

 

 

 

6.2 Scanning electron microscopy (SEM) 
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SEM showed that the control group is characterized by a rather rough surface 

with several weakly attached grains on the surface (Fig. 6.2-A).  

Air-borne particle abrasion resulted in uniformly damaged surfaces with pitting, 

small surface defects and randomly orientated scratches and cracks, but less 

grains on the surface than the control group (Fig. 6.2-B).  

The ground surface is characterized by numerous parallel scratches with 

deformed and displaced material at the edge of the scratches, but all in all 

smoother than the previous groups (Fig. 6.2-C). 

The sandblasted and ground surface is similar to the ground surface, but 

rougher with parallel scratches and minor cracks visible between the traces left 

by the diamond bur (Fig. 6.2-D). 
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A.

 

B.

 

C.

 

D.

 

Fig. 6.2. SEM. A) Control: Weakly attached surface grains. B) Sandblasted: 

Pitting and small surface defects, but less surface grains. C) Ground: Parallel 

scratches, smoother surface D) Sandblasted and ground: Rough surface, 

scratches and minor cracks. 

 

6.3 Reliability 

 

Weibull statistical analysis of the biaxial flexural strength data yielded a plot of 

failure probability shown on Fig. 6.3 and two characteristic  parameters for each 

test group, the characteristic strength σ0 (which is the scale parameter) and the 

Weibull modulus m (which is the slope parameter).  

For all test groups, the highest reliability of strength was obtained for the group 

GF, as indicated by the m-value, followed by the control group. The Weibull 
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module of the three groups with surface modification (S, SG, G) dropped to 

approximately two thirds of the initial value (control group) after the surface 

treatment. Firing after sandblasting lead to a further drop of the m value, 

whereas firing of the ground specimens lead to the highest Weibull modulus of 

the tested groups. The results are summarized in Table 6.1. 

 

 

Fig. 6.3. Failure probability plots of the tested groups. 

 

6.4 Surface roughness 

The statistical analysis of the results of the surface profilometry indicated, that 

there was no significant correlation between the surface roughness and the 

flexure strength of the probes.  

The results of the measurements are presented in table 6.1. As indicated by the 

measured variable Ra, the ground and fired zirconia discs had the highest 

 

S 

G 

SG 

SF 

GF 

Control 

S 

G 

SG 

SF 

GF 
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surface roughness, followed by the sandblasted and ground (SG) and the 

control group, while the lowest surface roughness was found for the ground 

specimens.

As presented in table 6.2. the 

roughness of group G was 

significantly lower than in groups 

C, S and SG, while between the 

groups C, S and SG no significant 

difference was found. The group 

GF had also a significantly higher 

roughness than the groups S, G 

and SF and also group SF 

compared to the control group. 

 

Table 6.2. Comparison of the 

surface roughness. 0 indicates 

no significant difference; 1 

indicates that the difference is 

statistically significant. 

 

 

 

 

 

6.5 X-Ray diffraction 

 

The results of the X-Ray diffraction for the groups C, S, SG and G before the 

heat treatment are presented in figure 6.4. The monoclinic peak is almost 

exclusively at 28.2° (in the range of values 20-40° of the 2θ scale). As seen on 

the peak of the monoclinic phase in figure 6.5. the greatest amount of 

monoclinic phase was found in the sandblasted specimens, followed by the 

sandblasted and ground. Lower amounts of monoclinic phase were obtained for 

the group G and for the control group the monoclinic phase was negligible. The 

main peak of the tetragonal phase is detected at 30.2°. 

 

Group1 Group2 Significant 

difference 
C SG 0 

G SF 0 

S SG 0 

C S 0 

SG GF 0 

S SF 0 

C GF 0 

SG SF 0 

S GF 1 

C SF 1 

S G 1 

SG G 1 
SF GF 1 

G GF 1 

C G 1 
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Fig. 6.4. XRD pattern obtained by the surface of the control, sandblasted, 

sandblasted and ground and ground Y-TZP discs. ―T‖ the tetragonal and ―M‖ the 

monoclinic zirconia phase. 

M

↓ 

T

↓ 
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Fig. 6.5. Magnification of Fig. 6.4. between 28° and 32° of the 2θ scale. ―M‖ the 

monoclinic zirconia phase. 

  

Apart from the phase transformation, also a lattice distortion is observed in the 

surface treated groups, as indicated by the widening of the tetragonal peaks. 

The highest lattice distortion is found for the ground and sandblasted and 

ground discs, followed by group S. 

According to the XRD patterns obtained from the zirconia surfaces after firing, 

heat treatment resulted to the disappearance of the monoclinic peak of the 

surface treated specimens for all three groups S, SG and G, as well as to the 

reduction of the lattice distortion, as shown on figure 6.6. Nevertheless, as 

presented in figure 6.7. the regeneration of the lattice was not complete, as the 

tetragonal peaks of all groups remain wider than the one of the control group. 

The firing procedure had no effect on the XRD pattern of the control group. (The 

M

↓ 
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XRD patterns prior and after heat treatment are presented pairwise in chapter 

11). 

 

 

Fig. 6.6. XRD pattern obtained by the surface of the control, sandblasted, 

sandblasted and ground and ground Y-TZP discs after firing. 
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Fig. 6.7. Magnification of Fig. 6.6. between 28° and 32° of the 2θ scale. 

 

7. Discussion 

 

7.1 Effect of alumina abrasion 

 

The results of the present study revealed that the alumina abrasion regime with 

50µm particles increased the flexural strength of the zirconia material. This is in 

partial agreement with the results of several authors (Kosmac et al., 1999; 

Kosmac et al., 2000; Zhang et al., 2004; Guazzato et al., 2005b; Papanagiotou 

et al., 2006; Wang et al., 2007; Oilo et al., 2008). This increase is related to the 

phase transformation that occurs on the surface and leads to a layer of 

compressive stresses, which opposes the externally applied, crack-propagating 

tensile stress (Kosmac et al., 2000; Curtis et al., 2006a; Curtis et al., 2006b). 



81 
 

Sandblasting of zirconia causes erosive wear of the material leading to lateral 

cracks (Mencik, 1992; Kosmac et al., 2000; Xu L et al., 2000). Nevertheless, the 

flaws caused by the alumina abrasion in this study don‘t seem to exceed the 

thickness of the compressive stress layer, otherwise the flexure strength would 

have dropped (Peterson et al., 1998). 

Furthermore, as seen on figure 6.2. sandblasting increased the flexural strength 

possibly also by removing weakly attached surface grains and by the 

elimination of milling and grinding trace lines, also mentioned by Wang and 

Kosmac (Kosmac et al., 1999; Wang et al., 2007). This is also proved by the 

results of the profilometry, that show a reduced surface roughness compared to 

the control group. 

The fact that Curtis et al. did not find a significant increase of the flexure 

strength after sandblasting could be attributed to the fact, that the pressure 

used for the abrasion regime (4.8 bar) was higher than the one used in the 

current study (2 bar), as well as in the other studies (Guazzato 0.5 bar, Wang 

0.5 bar, Kosmac 4 bar). 

The results of the X-Ray diffraction analysis revealed that the sandblasted 

specimens had the highest peak of the monoclinic phase, which is in agreement 

with the results of Guazzato et al. and Kosmac et al. and explains the 

enhancement of the strength (Kosmac et al., 1999; Guazzato et al., 2005b). In 

the present study the exact amount of the phase composition was not 

measured. The knowledge of the exact amount of every phase present in the 

material could support better the results of the author for the specific material. 

Nevertheless, the results of Curtis et al., who also studied the LAVA™ Frame, 

highlighted that LAVA™ is a dual phase material, predominantly consisting of 

tetragonal and cubic phase (Curtis et al., 2006b) making up the reminder of the 

structure (Morena, 1986). Curtis showed that alumina abrasion also generates a 

transformed cubic phase on the surface of the material, which was associated 

with a toughening mechanism generating surface compressive stresses (Curtis 

et al., 2006b). It can be suggested that also in the present study the lattice 

distortion observed in the X-Ray diffraction results after sandblasting was due to 
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the transformed cubic phase of the material, which together with the increased 

monoclinic phase counteracted the external stresses and led to a high flexural 

strength. 

 

7.2 Effect of grinding 

 

The grinding regime of this study resulted in a significant increase of the 

strength of the material compared to the control group and close to the strength 

of the alumina abraded specimens. Several authors have come to similar 

results (Xu et al., 1997; Guazzato et al., 2005b; Sato et al., 2007), whereas 

others have found a negative (Xu et al., 1997; Kosmac et al., 2000; Luthardt et 

al., 2002; Curtis et al., 2006b; Wang et al., 2007) or no significant effect of 

grinding procedures on the flexural strength of Y-TZP materials. 

The positive effect of grinding is probably related to the conditions, under which 

the grinding procedures were carried out. In the studies of Kosmac et al. and 

Curtis et al. both authors performed a severe grinding regime with coarse grit 

burs, high rotation speed and no water spray cooling, which led to a decrease of 

the strength and generated radial cracks extending from the grinding grooves 

into the bulk (Kosmac et al., 2000; Curtis et al., 2006b). Swain and Hannink 

have previously showed that manual grinding with low rotation speed is more 

effective than lapper-machine grinding in inducing the t/m transformation (Swain 

and Hannink, 1989) and increasing the surface compressive layer (Ardlin, 

2002). Furthermore, Xu et al. found that grinding with a fine grit diamond wheel 

results to an increase of the strength, while using coarse grit wheels reduces 

the strength of the zirconia and according to Kosmac using water spray during 

grinding reduces the critical defect size up to 30% (Kosmac et al., 1999). The 

grinding conditions of this study were in agreement with these findings, which 

favored the retention of the transformed phase (Swain and Hannink, 1989; 

Guazzato et al., 2005b), explaining why the flexural strength did not drop as in 

other studies (Kosmac et al., 2000; Curtis et al., 2006b; Wang et al., 2007). 
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Curtis et al. also investigated a fine grinding regime using water spray, which 

resulted in not significantly higher strength than the control group, contrary to 

the current study and previous studies (Albakry et al., 2004; Guazzato et al., 

2005b). This could be related to the high rotation speed (300.000 rpm) used 

during grinding, which may have resulted to a reduced phase transformation on 

the surface, as severe grinding has been proven to be less effective in initiating 

t→m transformation (Gross and Swain, 1986; Virkar and Matsumoto, 1986; 

Urabe K et al., 1998). 

Surface profilometry revealed a lower surface roughness than the control group, 

contrary to the findings of Curtis et al. and Wang et al., which again maybe 

explained by the grinding conditions used in this study. 

The XRD pattern of the ground specimens shows a somehow lower monoclinic 

peak than the sandblasted group, which is in agreement with the study of 

Guazzato, but on the other hand the distortion of the lattice as indicated at the 

tetragonal peak is bigger than in the sandblasted group. This combination 

creates a toughening mechanism and results to a significantly higher flexural 

strength of the LAVA™ discs. 

 

7.3 Effect of sandblasting and grinding 

 

The biaxial flexure strength test revealed that the combination of sandblasting 

and grinding was most effective in increasing the strength of the material, 

contrary to the findings of Kosmac (Kosmac et al., 1999). In the present study 

the group SG had the highest strength of all groups with a statistically significant 

difference with all groups except for the sandblasted group. Kosmac et al. in 

their study used sandblasting with coarse alumina particles (110µm) and higher 

pressure, as well as dry grinding with coarse grit burs, which resulted in lower 

strength and very low amount of monoclinic phase.  
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The conditions of the alumina abrasion and grinding regime in the present study 

did not cause extensive flaws of the material or high stresses and favored the 

phase transformation on the material surface. As confirmed by the XRD pattern, 

this regime led to a higher monoclinic peak than in the ground group and also a 

bigger lattice distortion than in the sandblasted group. The combination of these 

two effects seems to have resulted in the highest strengthening effect of all 

tested surface modifications. 

The somehow higher surface roughness of the group did not affect the strength 

and could be related to a rather higher pressure during grinding of the 

specimens. According to Wang, the macroscopic surface roughness doesn‘t act 

as stress concentration site, but it is the sharp cracks and scratches that act as 

crack initiation sites. In this case, probably the surface was macroscopically 

rough with no deep, sharp flaws. Also the SEM images reveal a surface very 

similar to that of the ground group. 

It is important to stress here that the specimens used in this study as a control 

group were not extensively polished, contrary to other studies (Guazzato et al., 

2005b; Wang et al., 2007). That means that several of the machining and 

grinding induced flaws and weakly attached surface grains were still present, as 

shown by the results of the microscopy and profilometry. Further polishing may 

minimize the fabrication induced flaws and result in a greater flexural strength 

(Guazzato et al., 2005b) and thus a smaller difference for the strength between 

the modified groups and the control group. 

 

7.4 Effect of heat treatment 

 

Heat treatment resulted to a reduction of the mean strength for the sandblasted 

as well as the ground group. This counteracting effect of annealing to surface 

treatment on the flexure strength has been observed by several authors {De 

Kler , 2007 309 /id;Guazzato, 2005 2 /id;Ishgi, 2006 73 /id;Kosmac, 2000 6 /id}. 
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Heat treatment induces a reverse phase transformation {De Kler , 2007 309 

/id;Guazzato, 2005 2 /id;Sato, 2007 69 /id}, which leads to the release of the 

compressive stresses on the surface of the material and a reduction of its 

strength (Kosmac et al., 2000; Guazzato et al., 2005b). According to Alcala and 

Oilo microcracks generated during the milling procedure or surface treatment 

may propagate during firing because of the alterations of the grain size and the 

relieved stresses (Alcala and Anglada, 1997; Oilo et al., 2008). Denry et. al. 

showed in a study, that annealing of ground or ground and polished specimens 

leads to the disappearance of residual strains (Denry and Holloway, 2006). 

The cracks may propagate further into the material during the firing process due 

to the alteration in grain sizes and grain boundaries accompanied with relieved 

stress (Alcala and Anglada, 1997). 

The heating may also lead to changes in the shape of porosities and impurities 

embedded in the specimens, facilitating crack propagation (Chevalier, 2006). 

Additionally, some authors suggest that the material‘s original ability to undergo 

a phase transformation to arrest crack growth may be reduced by heating 

(Alcala, 2000). 

After annealing at 1000°C the mean strength of the sandblasted samples 

dropped from 1364 MPa to 901 MPa and for the ground from 1296 MPa to 1024 

MPa, which is the ―Griffith strength‖ of the material, i.e. the strength of damaged 

but unconstrained material, which reflects the contribution of the compressive 

stresses generated by the surface treatments to the overall strength (Kosmac et 

al., 2000). The mean strength of group SF was about 10% lower and the mean 

strength of group GF was higher than that of the control group, but the 

difference was not significant. This means that the surface flaws induced by the 

surface treatments were not detrimental for the material. Nevertheless, the 

strength of annealed ground discs was significantly higher than that of group 

SF. These findings are also in agreement with the study of Guazzato et al. and 

partially with the study of Kosmac et al. 
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Contrary to these studies, Wang et al. found the flexural strength of zirconia to 

be insensitive to the firing procedures (Wang et al., 2007). This is a predictable 

result, taking into account that the authors in this study didn‘t find a significant 

difference in the strength between the control and the sandblasted (with 50 µm 

particles) group, which means that there were no high compressive stresses on 

the surface and thus the heat treatment couldn‘t have any compressive stress 

releasing effect. 

Even though the firing was carried out at a temperature lower than the sintering 

temperature of the material, a reverse phase transformation took place. Several 

studies indicate that heat treatment influences the core materials in several 

ways even when the temperatures are below the core materials‘ own sintering 

temperature (Cattell et al., 2002; Guazzato et al., 2004b; Isgro et al., 2005; 

Sundh et al., 2005), whereas Swain and Hannink  indicate the 700°C as the 

temperature, above which a reverse transformation occurs (Swain, 1989). This 

effect of the heat treatment with the m→t transformation may occur instantly as 

a given temperature is reached and regardless of the holding time (Guazzato et 

al., 2005b). This could be explained by the fact, that the compressive stress 

layer is thin and only superficial, so the deeper parts of the bulk don‘t need to 

reach that temperature, but only the surface. 

The XRD pattern on figure 6.5.4 shows that annealing led to the disappearance 

of the monoclinic peak of the surface treated specimens. On the other hand, the 

distortion of the lattice at the tetragonal peak was reduced but not completely 

reversed and this reduction of the distortion was greater for the sandblasted 

specimens. It could be suggested that this remaining lattice distortion is the 

reason, that the ground and heated discs had a significantly higher flexure 

strength than the sandblasted and heated specimens and higher strength than 

the control group. 
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7.5 Reliability 

 

It is well known, that by investigating solely the mean flexure strength, the 

properties of the ceramics cannot be accurately characterized (Papanagiotou et 

al., 2006). The statistical analysis is important, when analyzing strength data, 

because ceramics have a wide variability in failure strengths, which is related to 

incorporated flaws. 

Reliability is discussed in terms of Weibull parameters m and σ0. Higher values 

indicate a more homogenous flaw distribution or that the flaws were located in 

areas of less stress and thus greater reliability, whereas the opposite is 

expected for low values. In the present study both sandblasting and grinding, as 

well as their combination increased the flexure strength of the material but at 

the expense of a somewhat lower reliability compared to the control group. 

These results are in partial agreement with the results of other authors (Kosmac 

et al., 2000; Wang et al., 2007), while Guazzato, Papanagiotou and Curtis made 

in their studies contradicting observations, finding higher m values compared to 

their control groups after sandblasting or fine grinding. Taking into account, that 

the initial m values of the control groups in these studies were rather low 

(between 7.5 and 8.5), it could be suggested that the control groups  had a 

rather inhomogeneous initial flaw distribution after fabrication, which may have 

been improved  after the surface treatment maybe by removing some bigger 

surface flaws. 

Contrary to the studies of Wang et al. and Curtis et al., where the authors 

related the m values and the flexure strength directly to the surface roughness 

of the treated specimens, no correlation was found between them in the current 

study. 

Subsequent firing of the discs resulted in the lowest Weibull module for the 

sandblasted and fired group and in the highest for the ground and fired group. 

Although as seen from the flexure strength results, neither sandblasting nor 

grinding induced flaws had any detrimental effect to the performance of the 
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material, it could be suggested, that the grinding procedures under the 

conditions of the present study removed some pre- existing surface flaws of the 

material, which in combination with some remaining lattice distortion after firing 

resulted in such a high reliability of the material. This could have been more 

effective in the group GF, which was the last group that was treated, taking into 

account that the method used could be applied more standardized after already 

having processed the other groups and having realized how to avoid mistakes 

during the procedure.   

Wang observed in his study an increase of the Weibull module after 

sandblasting and annealing, while Guazzato, in partial agreement to the current 

results, that firing increased the m for the ground group, but decreased it for the 

sandblasted specimens. Nevertheless, the m value was higher than that of the 

control group. Also Oilo observed a decrease of the scatter after firing, 

indicating that the initial variation in the ground surface evened out during the 

firing process (Oilo et al., 2008). 

As zirconia is a glassfree material, whether this is related to reverse 

transformation or due to relieving of any present pre-stresses, it remains a point 

for further investigation (Guazzato et al., 2002; Guazzato et al., 2005a; Wang et 

al., 2007). Although all tested groups had m values within the range of 5 to 15 

quoted for dental ceramics, the lower m values of most of the groups indicate 

that various treatments can affect the reliability of clinical performance of the 

material (Papanagiotou et al., 2006). 

Nevertheless, it must be noted, that despite the decrease of the m value in 

some groups, all groups had a Weibull characteristic strength higher than 900 

MPa, which results in acceptable low failure probability of the material up to 

bending stress level of 500 MPa (Kosmac et al., 2000). 
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7.6 Clinical relevance of the results 

 

The present study shows that surface modification and heat treatment have a 

counteracting effect on the biaxial flexure strength of zirconia. Furthermore, the 

specific influence of each treatment may be different than what was observed 

by other authors, due to variations of the methods used as well as the 

properties of the investigated materials. 

Surface modification of Y-TZP ceramics results to a phase transformation which 

creates a layer of surface compressive stresses because of the volume 

increase (Piconi and Maccauro, 1999). On the other hand, during the veneering 

firing procedures a tensile stress is necessary on the surface of the frame 

material, while the veneering material should have compressive stresses 

(Kappert, 2008). Due to the pre-existing compressive stresses on the zirconia 

surface this mechanism may not work effectively, because the CTE difference 

observed during the firing procedure between frame- and veneering material 

cannot be properly used, which would mean that the risk for chipping during 

clinical use increases (Kappert, 2008). On the other hand, according to 

Guazzato the reverse phase transformation occurs instantly as a given 

temperature is reached (Guazzato et al., 2005b). Since the veneering firing 

lasts a few minutes, this would suggest that a ―regeneration firing‖ before the 

veneering firing may be excessive. 

Nevertheless, Oilo et al. have showed  that additional firings after the first firing 

have little or no effect on the strength and reliability of the material and multiple 

firings as performed at the dental laboratory do not further deteriorate the 

material (Oilo et al., 2008). 

According to the results of the current study sandblasting increases the flexure 

strength of the material but with a lower reliability, while subsequent annealing 

results to strength lower than that of the control group, as well as lower 

reliability. These observations show, that firing has no benefits for sandblasted 

zirconia and the material should not be sandblasted prior to firing procedures 

and that the commonly used method of some laboratories to use air abrasion on 
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zirconia frames prior to veneering is risky and excessive and should be avoided. 

On the other hand, sandblasting with low pressure (0.5-2 bar) could be used 

effectively on the inner surface of restorations after the firing procedure and 

before cementation, especially with resin cements, thus creating a layer of 

compressive stresses as well as strengthening the bond. 

In the present study it was also observed, that grinding under the specific 

conditions increased the biaxial flexure strength of zirconia, but again with 

somewhat lower reliability. Subsequent annealing of the ground material 

resulted in flexural strength still higher than that of the control group and the 

highest reliability. These results lead to the conclusion, that corrections of 

sintered zirconia frames can be made at the laboratory or during the clinical ―try-

in‖ phase, as long as the grinding procedure is carried out with fine grit burs, low 

rotation speed and water cooling. This procedure might reduce some inherent 

or machining-induced flaws on the surface of the material. Subsequent 

annealing will release the surface compressive stresses, which is necessary for 

the veneering material and will also increase the reliability of the zirconia and 

keep the strength at higher levels than the control material. 

Since multiple firings have no negative effect on the strength and reliability of 

the material (Oilo et al., 2008), it is recommended to carry out a ―regeneration 

firing‖ before the veneering firing procedure, in order to be sure, that there is no 

compressive stress on the surface of the frame material already from the 

beginning of the veneering firing procedure. 

Furthermore, in the case of zirconia implant abutments, sometimes minor 

corrections have to be done at the dental laboratory, while there are also some 

companies that offer implant abutments that can be ground ―chairside‖. In those 

cases, subsequent firing could be beneficial and increase the reliability, while 

also retaining a high flexural strength. 

As the main function of the underlying framework is to support the ceramic 

veneer and to carry the loading forces, different laboratory tests are used to 

evaluate the internal 



91 
 

strength of zirconia frameworks. On the other hand, these tests don‘t take into 

account clinical factors like the nature of human occlusion and the loading 

environment. Nevertheless, they offer a controlled environment for evaluation of 

the variables of interest (Wang et al., 2007). 

Under clinical conditions, a greater amount of monoclinic phase on the surface 

and therefore a greater flexural strength may be desirable. On the other hand, 

an excessive amount of transformed phase could lead to microcracking (Sato 

and Shimada, 1985a; Guazzato et al., 2005b) and predispose the material to a 

more rapid moisture-assisted transformation over time and loading in the acidic 

and aqueous oral environment (De Aza et al., 2002). Since zirconia is the 

strongest of all dental ceramics, an initially weaker, but more reliable material 

may be preferable. Further studies need to be done, to assess the long-term 

clinical results of the different surface modifications. 

 

8. Conclusions 

 

Aim of this study was to assess the effect of surface treatments and subsequent 

annealing on Y-TZP ceramics. Within the limitations of this in-vitro study, 

following conclusions were drawn: 

 Sandblasting, grinding and their combination as performed in the current 

study increased the biaxial flexure strength of the investigated material. 

 The Weibull module was between 6.9 and 12.4 for all tested groups. 

 Firing after air abrasion decreased the strength and the reliability of the 

Y-TZP ceramic. Sandblasting before the veneering procedure should be 

avoided and used only before cementation, in order to increase the 

adhesion of the cement to the core material. 

 Grinding procedures after sintering should be done with low rotation 

speed, fine grit burs and water spray cooling. 

 Firing after grinding increased the reliability of the material, whereas the 

strength remained higher than the control specimens. 
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 If any grinding procedures are carried out after sintering of Y-TZP 

ceramics, a ―regeneration firing‖ is recommended prior to veneering of a 

restoration or the placement of an implant abutment. 

 Further studies need to assess the aging behavior and long-term clinical 

performance of surface treated Y-TZP ceramics. 

 

9. Summary 

 

Objective: The purpose of this study was to evaluate the influence of different 

surface treatments and subsequent annealing on the flexural strength and 

reliability of a Y-TZP dental ceramic. 

Materials and methods: Six groups of 27 to 30 zirconia discs (LAVA™ Frame; 

3M ESPE, Seefeld, Germany) underwent one of the following treatments: no 

treatment, sandblasting with alumina particles (50 µm, 2 bar), grinding with fine 

grit diamond burs (ISO-No. 806 314 111514 014, Komet Brasseler, Lemgo, 

Germany), sandblasting and subsequent grinding, sandblasting and subsequent 

annealing or grinding and subsequent annealing. Surfaces of random 

specimens were observed with scanning electron microscopy and their 

roughness was measured with a profilometer. After treatment, the biaxial flexure 

test was used to calculate the flexural strength of the discs and X-Ray 

diffraction analysis was employed to assess the influence of the surface 

modifications and the firing procedures on the phase composition and the 

occurrence of phase transformations in the Y-TZP ceramic. The data was 

analyzed utilizing multiple Welch tests with adjustment of the p values with the 

Bonferroni-Holm method, whereas the survivability was estimated using Weibull 

analysis. 

Results: All surface treatments significantly increased the flexural strength of 

the material and subsequent heat treatment decreased it, but to a level not 

significantly different from the control group. All groups had lower m values than 
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the test specimens, except for the ground and fired group, which had the 

highest reliability. 

No correlation was found between the surface roughness of the discs and the 

flexural strength. 

Conclusions: The present study suggests, that sandblasting and grinding can 

be used to increase the strength of the material in expense of somewhat lower 

reliability. Sandblasting should be employed only after the firing procedures to 

improve the adhesion of the cement to the material. Grinding procedures should 

be followed by a ―regeneration firing‖, in order to increase the reliability of the Y-

TZP material, while also keeping a high flexural strength. 

 

 10. Zusammenfassung 

 

Ziel: Ziel dieser Studie war, den Einfluss verschiedener 

Oberflächenbehandlungen und der anschließenden Wärmebehandlung auf die 

Biegefestigkeit und die Zuverlässigkeit einer Y-TZP Keramik  zu überprüfen. 

Materialien und Methoden: Sechs Gruppen mit 27 bis 30 Zirkoniumdioxid-

Scheiben (LAVA ™ Frame, 3M ESPE, Seefeld, Deutschland) bekamen eine der 

folgenden Behandlungen : keine Behandlung, Sandstrahlen mit Aluminiumoxid-

Partikeln (50 µm, 2 bar), Beschleifen mit feinkörnigen Diamanten (ISO-No. 806 

314 111514 014, Komet Brasseler, Lemgo, Deutschland), Sandstrahlen und 

anschließendes Beschleifen, Sandstrahlen und anschließenden Brand oder 

Beschleifen und anschließenden Brand. Oberflächen von zufällig ausgewählten  

Proben wurden mit Raster-Elektronen-Mikroskopie untersucht und deren 

Rauheit wurde mit einem Profilometer gemessen. Nach der Behandlung  wurde 

der biaxiale Biegeversuch zur Bestimmung der Biegefestigkeit der Scheiben 

verwendet und Röntgenbeugungsanalyse wurde angewendet, um den Einfluss 

der Oberflächen- und Wärmebehandlung auf die Phasenzusammensetzung zu 

beurteilen und das Auftreten von Phasenumwandlungen in der Y-TZP Keramik 

festzustellen. Die Daten wurden unter Verwendung von multiplen Welch-Tests 

und Anpassung der p-Werte mit der Bonferroni-Holm Methode analysiert, 
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während die Überlebensfähigkeit mittels Weibull Analyse geschätzt wurde. 

Ergebnisse: Alle Oberflächenbehandlungen haben die Biegefestigkeit des 

Materials signifikant erhöht und die anschließende Wärmebehandlung hat sie 

verringert, jedoch zu einem von der Kontrollgruppe nicht signifikanten Niveau. 

Alle Gruppen hatten niedrigere m Werte als die Testproben mit der Ausnahme 

der beschliffenen und gebrannten Gruppe, die die höchste Zuverlässigkeit 

aufwies. Zwischen der Oberflächenrauhigkeit der Scheiben und der 

Biegefestigkeit wurde keine Korrelation gefunden. 

Schlussfolgerung: Die vorliegende Studie legt nahe, dass Sandstrahlen und 

Beschleifen verwendet werden können, um die Biegefestigkeit des Materials zu 

erhöhen, jedoch auf Kosten einer etwas niedrigeren Zuverlässigkeit. 

Sandstrahlen sollte nur nach dem Keramikbrand zur Verbesserung des 

Haftverbundes des Zementes an dem Material angewandt werden. Ein 

Regenerationsbrand sollte dem Beschleifen folgen, um die Zuverlässigkeit des 

Y-TZP Materials zu erhöhen, wobei auch eine hohe Biegefestigkeit bewahrt 

werden kann.  
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11. Appendix 

 

Table 11.1. Results of the multiple comparisons of the mean flexural 

strength of the groups. 0 indicates no significant difference; 1 indicates 

that the difference was statistically significant. 

 

Gruppe 1 Gruppe 2 F Ratio DFDen Prob > F BH sig 

S G 1.6 57.9 0.2100 0.0500 0 

S SG 2.2 53.4 0.1409 0.0250 0 

C GF 2.9 56.0 0.0963 0.0167 0 

C SF 4.9 49.9 0.0310 0.0125 0 

SG G 7.3 52.6 0.0091 0.0100 1 

SF GF 12.9 48.6 0.0008 0.0083 1 

G GF 41.7 43.1 <.0001 0.0071 1 

C G 56.6 43.9 <.0001 0.0063 1 

S GF 61.2 42.1 <.0001 0.0056 1 

SG GF 79.8 35.7 <.0001 0.0050 1 

C S 78.3 42.9 <.0001 0.0045 1 

G SF 70.4 53.8 <.0001 0.0042 1 

C SG 97.3 36.2 <.0001 0.0038 1 

S SF 91.9 52.8 <.0001 0.0036 1 

SG SF 110.8 45.2 <.0001 0.0033 1 
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Fig. 11.1. XRD patterns of the control group before and after heat treatment. 
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Fig. 11.2. XRD patterns of the sandblasted group before and after heat 

treatment. 

 

Fig. 11.3. XRD patterns of the ground group before and after heat treatment. 
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Fig. 11.4. XRD patterns of the sandblasted and ground group before and after 

heat treatment. 
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