Feature Constraint Grammars

von

Thilo Gotz

Philosophische Dissertation
angenommen von der Neuphilologischen Fakultat
der Universitat Tubingen

am 21.12. 1999
Yorktown Heights, NY

2000

Gedruckt mit der Genehmigung der Neuphilologischen Fakultat

Haupberichterstatter:

Mitberichterstatter:
Mitberichterstatter:
Mitberichterstatter:

Dekan:

der Universitat Tiibingen

Prof. Dr. Erhard Hinrichs

Prof. Dr. Uwe Ménnich

Priv. Doz. Dr. Fritz Hamm

Prof. Dr. Robert T. Kasper (Ohio State University, USA)

Prof. Dr. Bernd Engler

Contents

Acknowledgments 4

1 Introduction 5
2 Feature terms and feature constraints 9
2.1 Introduction 9
2.2 A feature term language: FL 11
2.3 Checking satisfiability: constraint solving 16
2.3.1 Variables and negation 19

2.3.2 Featureconstraints L. 22

2.3.3 From terms to constraints 28

2.3.4 Normalizing constraint matrices 31

2.4 Alternative feature description languages 39

2.4.1 Models of total information vs. models of partial in-

formation L o Lo 39

2.4.2 Closed world vs.openworld 40

2.4.3 Other parameters. 42

2.5 Open world reasoning and negation 43
2.6 Conclusion 56

3 Constraint grammars 57
3.1 Grammar formalisms 0oL, 59
3.2 Validity vs. satisfiability-based approaches 63

3.3

3.4
3.5
3.6

Feature constraint grammars
3.3.1 Translating to first order logic
332 Anexample oL
Undecidability of prediction
Normal form grammars

Conclusion e

From grammars to logic programs

4.1
4.2
4.3
4.4
4.5

Adding relation symbols: R(FL)
Translating to R(A) o o
Soundness
Completeness Lo

Conclusion e

Lazy evaluation

5.1
5.2

5.3

Lazy resolution
Soundness of finite successo oL
5.2.1 Soundness of finite failure
5.2.2 Infinite proofs and completeness of finite failure
Conclusion

5.3.1 Detecting infinite proof branches

Adding relations

6.1
6.2
6.3
6.4
6.5

Syntax and semanticso oL L
Some properties of definite clauses
Translating feature terms with relations
Compiling grammars L0
Correctness of resolution oL L.
6.5.1 Success derivations
6.5.2 Failed derivations 0oL

6.5.3 Conclusion e

80
81
84
89
94
96

98
100
106
112
113
114
115

6.6 Adding full negation 135

6.6.1 Stablemodels oL, 136

6.6.2 Grammars with full negation 138

6.6.3 Someexamples 140

6.7 Conclusion 141

7 Conclusion 143
7.1 Implementation 144

Acknowledgments

I would like to thank my advisors Erhard Hinrichs and Uwe Monnich for
their advice and encouragement. Without their support after I left Tiibingen
to take a job with IBM, this dissertation would not be finished today.

I would also like to thank the other members of my committee, Bob Kasper
and Fritz Hamm, who worked under extreme time pressure to provide valu-
able feedback on my dissertation.

Most of the work reported in this thesis was carried out in the context of
SEFB 340 of the Deutsche Forschungsgemeinschaft. I am grateful to Erhard
Hinrichs and Dale Gerdemann for keeping me in bread and butter for several
years, and for providing such a stimulating research environment.

[am also grateful to my colleagues at the IBM Watson Research lab for giv-
ing me time and encouragement to work on my dissertation: David Johnson,
Fred Damerau, Frank Oles and Warren Plath.

A special thanks goes to the people who have had the most profound in-
fluence on my way of thinking and working; my fellow students Detmar
Meurers and Frank Morawietz, and my teachers Dale Gerdemann and Paul
King.

Last not least, I would like to thank Sigrid Beck for encouragement, rock
climbing, and other good things.

Chapter 1

Introduction

This thesis is concerned with the logical foundations and computational
modeling of constraint-based grammar formalisms. By computational mod-
eling I understand the testing of the empirical predictions of a given grammar
on a computer. This subsumes, e.g., the parsing problem: given a grammar
and a string, does the grammar predict that the string is grammatical, or
ungrammatical? However, I see this only as an instance of a more general
problem: given a (partial) description of a linguistic structure (a tree, say)
and a grammar, does the grammar predict that linguistic structures of that
description exist? And if such structures exist, what do they look like?

The grammar formalism that I'll be looking at specifically is Head-driven
Phrase Structure Grammar (HPSG, Pollard and Sag 1994). However, the
general points are valid for other feature logic constraint grammar for-
malisms. It is important to distinguish between constraint formalisms (gram-
mar formalisms, programming languages) and rule-based formalisms. The
constraint-based idea is that any structure is well-formed according to the
grammar or program unless it is specifically ruled out by a constraint. A
constraint grammar is thus a set of constraints that rule out non well-formed
(ungrammatical) structures. In a rule-based formalisms, on the other hand,
some structure is well-formed only if generated by some rule in the grammar
(or program). A rule-based grammar is thus a set of rules that generate the
well-formed (grammatical) structures. I will discuss the differences between
the two approaches in more detail in Chapter 3. There I will also show that
HPSG is to be understood as a constraint formalism in that sense.

HPSG grammars are expressed as sets of implications in an attribute-value
language. Attribute-value expressions have a history that is almost as long as

modern linguistics itself. Their more recent introduction into computational
linguistics is usually credited to Kay (1979). However, it was not until much
later that the first investigation into the formal properties of such systems
was published (Rounds and Kasper 1986). In their seminal work, Rounds
and Kasper (1986) defined what came to be known as a Rounds-Kasper
calculus. They defined attribute-value expressions as a formal language with
a semantics based on partial record structures. Partial record structures
were used at the time as a device to explicate the semantics of records in
denotational semantics of programming languages.

A few years later, Smolka (1988) proposed a different approach to the seman-
tics of attribute-value expression. His work was based on classical model-
theory of first-order logic. This split the researchers into two opposing
camps: the partial objects camp and the classical logic camp. The clas-
sical logic followers argue that since a subset of first-order logic is sufficient
to account for the semantics of attribute-value expressions, this is the natu-
ral way to go. Since first-order logic is very well understood, it will serve as
an excellent basis for feature logic. According to this view, the tools of de-
notational semantics, developed to account for the semantics of imperative
programming languages, are complete overkill for a simple problem like the
semantics of attribute-value expressions. Among the proponents of this view
are Smolka (1988), Johnson (1988) and King (1989). The partial objects
followers, on the other hand, argue that since we’re very much interested
computation, we should avail ourselves of the powerful domain-theoretic
tools developed in the denotational semantics community. Proponents of
this view include Rounds and Kasper (1986), Carpenter, Pollard, and Franz
(1991) and Carpenter (1992).

This thesis falls into the classical logic camp. It is one of the main goals
of this thesis to show that with a classical semantics for feature logic, one
can compute as well as or better than with partial objects-based account.
However, most of the time, the differences are minimal and only of philo-
sophical or aesthetic interest. Where there are major differences between
the approaches, I will be careful to point them out.

The more or less informal notions of HPSG were given a foundation based
on classical logic in King (1994). Yet although the logical notions are clear
enough, there is no operational semantics to go with the logic. Thus, in
NLP practice, HPSG-based grammars are implemented as phrase structure
grammars or (constraint) logic programs. HPSG principles are then en-
coded as relations (e.g., ID-schemata) or added as feature logic constraints

to relations wherever appropriate (e.g., the Head-Feature Principle). The
translation from HPSG principles to rules and constraints needs to be done

by hand.

From a linguistic perspective, this is an undesirable state of affairs. Lin-
guistic theories can not be tested directly, they have to be recoded into
something which bears a more or less close similarity to the original the-
ory. Moreover, this has to be done by hand. In this thesis, I propose a
computational mechanism that works directly on HPSG grammars.

The thesis is organized as follows:

e Chapter 2 introduces our feature logic and examines its properties. I
will relate my approach to other feature logics and examine possible
alternatives. In the computational part of the chapter, I will show how
the descriptive logic can be understood as a constraint logic. I will
provide a terminating rewrite system for constraint set normalisation,
thus showing that the satisfiability problem for our logic is decidable.

e Chapter 3 considers the notion of grammar and how a grammar de-
fines the well-formed linguistic structures. We call this the prediction
problem. Prediction will be shown to be fundamentally different for
constraint and rule-based grammars. We examine the abstract compu-
tational properties of prediction by giving an undecidability result and
by showing its relation to problems of first-order predicate logic. The
last part of the chapter will be dedicated to defining a normal form for
grammars that makes them more amenable to automatic processing.

e Chapter 4 defines a translation from feature constraint grammars to
constraint logic programs, i.e., a rule-based grammar formalism. The
soundness and completeness properties of this translation will make
the relation between the two approaches more transparent.

e Chapter 5 defines the procedural interpretation of HPSG grammars.
We show that our method is complete for the negative case, i.e., when
the grammar does not admit a given term. The results of ch. 3 tell us
that we can’t do any better.

e In Chapter 6, we consider extending our logic with relational con-
structs. Relations can be defined in a clausal language similar to con-
straint logic programming. We consider the semantic issues involved

and extend our procedural semantics to deal with the added complex-
ity. As it turns out, we obtain the same completeness results as for
the simpler logic without relations.

The theoretical ideas presented in this thesis have been implemented to a
large extent in the ConTroll system in the context of a research project
“Efficient Compilation of HPSG Grammars” at the University of Tiibingen,
Germany. This project was part of the SFB 340, funded by the German
Research Council (Deutsche Forschungsgemeinschaft). The effort was lead
by Erhard Hinrichs and Dale Gerdemann. Contributors to ConTroll include:
Bjorn Aldag, Natali Alt, Dale Gerdemann, John Griffith, Carsten Hess,
Detmar Meurers, Guido Minnen, Frank Morawietz and Stephan Kepser.

In the final chapter, I will detail which parts of the thesis have been im-
plemented, and which not. See (G&tz and Meurers 1997a) and (G6tz et al.
1997) for more background on ConTroll.

Chapter 2

Feature terms and feature
constraints

2.1 Introduction

In this chapter, I will discuss different feature description languages, the
basic component of the grammar architecture(s) to be introduced in later
chapters. There are many different feature description languages, but they
all have some points in common.

o Features (or attributes) are used to denote the fact that objects have
certain properties. In the notation I will use, the expression f : ¢
describes all objects that have property f (with value ¢).

e A notion of reentrancy (or structure sharing) is used to denote the
fact that certain (distinct) properties of some object have identical
values. For example, f: X A g : X describes all objects that have the
properties f and g, whose values must be identical.

e Types (or sorts) are often used to classify objects.

I will consider alternative languages in Sec. 2.4, also from a historical per-
spective. In Sec. 2.2, I will introduce the logic that will be used throughout
the rest of this thesis. An important computational problem for our descrip-
tion language is satisfiability. In Sec. 2.3, I will give a terminating algorithm
to solve this problem, thus showing it is decidable.

The use of feature-value pairs in linguistics and computational linguistics
has a long history. It is probably fair to say that it is as old as modern
linguistics itself. Some versions of feature-value pairs are used in many, if
not most, theories of phonology, morphology, and syntax. For example,
in syntax, many authors represent a syntactic category as a combination
of the features N and V, both of which can take + or — as value. So
instead of noun, verb, preposition and adjective, we use (N : +,V : =),
(N : =V :4),(N: -,V :—-)yand (N : +,V : 4), respectively. Now
suppose some grammatical constraints apply to both verbs and adjectives.
Since we can talk about a category (V' : +), the fact that verbs and adjectives
fall into a natural class is built into our representation. This technique is
called underspecification. We simple don’t talk about the V part of the
category. Underspecification should be contrasted with disjunction, where
we explicitly list all possibilities. So instead of (V' : +), we could also say
verb V adjective. For the finite case, disjunction and underspecification are
clearly equivalent, and it is a question of aesthetics which one prefers. There
are, however, cases where underspecification can finitely express an infinite
number of possibilities, which can not be achieved with a (finite) disjunction.

It computational linguistics, the use of feature-value pairs may be traced
back to Martin Kay’s Functional Grammar (FG, Kay (1979)). The first
logic-based approach to feature-value pairs is generally attributed to (Rounds
and Kasper 1986). Their contribution was the insight that there should be
a strict separation between a description language and the models of that
language. However, their model theory was not based on classical logic. In-
stead, they chose as models finite partial graph structures. The motivation
for this step would appear to be mainly computational.

The partial models can be seen to stand in a subsumption ordering, with
the more general (i.e., unspecific) models subsuming more general ones. It
was relatively simple to find a (finite set of) most general satisfier(s) for
a given description. That is, a model that is more general than all other
models satisfying the description. Conversely, it is also the case that every
model subsumed by the most general satisfier also satisfies the description.
Furthermore, given two descriptions A and B, we can find the most general
satisfier for A A B by finding the most general satisfiers for A and B, and
then finding the most general model that is subsumed by both of them. This
operation is generally called unification and can be efficiently computed.

In the late 80s, Smolka (1988) and King (1989) independently realized a
model theory based on classical first order logic. This split the feature logic

10

camp into two halves. One half maintained that one should stick with partial
models, since they worked well for computation. The other half claimed that
one could do computation with a classical description language just as well.
Furthermore, a classical model theory gave one access to the host of results
from that field, without having to reinvent the wheel. I will argue for the
latter position in this dissertation.

Types! were, to the best of my knowledge, introduced into feature logic
with the first HPSG book (Pollard and Sag 1987). King (1989) gave the
first formal account of a typed feature logic. Computation with a typed
feature logic was first considered in (Carpenter, Pollard, and Franz 1991),
and later in Carpenter’s book (Carpenter 1992).

The logic I will introduce in the next section is not yet another feature logic.
The contribution is to show how to compute with a logic with a standard
classical model theory.

2.2 A feature term language: FL

The logic FL described in this section is based on those of (King 1994),
(Smolka 1992) and (Dérre 1994). We begin by defining what the interpre-
tation structures of our language are. The basic properties of the language
and its interpretations are fixed in a logical signature. As usual, the signa-
ture defines the non-logical symbols of the language. In our case, those are
a set of type symbols, and a set of feature symbols. The type symbols are
arranged into a finite join semi-lattice (i.e., a partial order with a greatest
symbol, usually denoted as T). Particular importance is attached to those
types that do not subsume any other types. Since we have to refer to this
subset very often, we use a special symbol for it: V.

Definition 2.1 (signature)
A signature is a quadruple (T, <, F, approp) s.t.

e 7 is a finite set of types, and (T, <) is a join semi-lattice,

e V={te T |ift' <t thent' =t} is the set of minimal types,

'Some people say types, others say sorts. Given that the distinction is not very clear-
cut to begin with, it doesn’t really matter. One might argue that sorts are subsets of the
domain, whereas types can also be higher-order. Since we do not talk about higher-order
types, we might just as well use the term sorts. However, we will stick with types, since
that is what most people use.

11

e F is a finite set of feature names, and

e approp:V X F — T is a partial function from pairs of minimal types
and features to types

The join semi-lattice (7, <) is called the type hierarchy. The whole signature
is usually depicted graphically as a graph structure. An example is shown
in Fig. 2.1. In this example, we use SMALL CAPS FONT for feature names
and lower case italics for type names.

sign
PHON list
CAT cat
ero
n v z one two it

word Karl lacht

hc-phrase

HEAD-DTR sign elist nelist

COMP-DTR sign HD T

TL list

Figure 2.1: An example signature

Clearly, we can read off all the information of the signature from such a
graph. The approp function is shown in attribute value matrix (AVM) no-
tation with the respective types. In the example, approp(word,HD) is un-
defined, whereas approp(word,PHON) is defined, and approp(word, PHON) =
list. Notice that in Def. 2.1, approp was only defined for types in V, but

12

the example shows appropriate features for the type sign, which is not in
V. This is so because intuitively, we would like to provide non-redundant
information in the graph. The definition of approp on the set of minimal
types naturally gives rise to a function approp¥*, defined for all types. We
will use the following notation: if fis a partial function, then we write f(z)]

for “f is defined on 2” and f(z)1 for “f is undefined on z”.

Definition 2.2 (approp*)

Let (T,=,F, approp) be a signature. approp*(t, f) | iff for all t' € V, if
t' < t, then approp(t', f) |. If defined, then approp*(t, f) = V{t" | t' €
V, t' <t and approp(t, f) =t"}.

We can thus depict approp* in our graphs, and we can furthermore restrict
ourselves to showing non-redundant information only, leaving the readers to
infer inherited appropriateness themselves.

We're now ready to define interpretation structures. Interpretations are
simply sets of objects, together with functions that interpret the features,
and a function that assigns a type to each object. The functions interpreting
the features have to respect the appropriateness conditions set forth in the
signature.

Definition 2.3 (interpretation)

Let S = (T,=,F, approp) be a signature. An S-interpretation is a triple
I=U,S,A)s.t.

e U is a set of objects, the domain of T

e §:U — V is a total function from the set of objects to the set of
minimal types

o A:F — UY is an attribute interpretation function s.t.

— for each u € U, for each f € F, if approp(S(u), f) is defined and
approp(S(u), f) =t, then A(f)(u) is defined and S(A(f)(u)) <t

— for each w € U, for each f € F, if A(f)(u) is defined, then
approp(S(u), f) is defined and S(A(f)(u)) < approp(S(u), f)

The function V associates a minimal type with every object. This is different
in alternative logics to be discussed in Sec. 2.4. Note also how the attribute

interpretation function A is restricted by approp. If some object u is of
(minimal) type ¢, then A(f)(u) is defined iff approp(t, f) is defined, and the

13

object A(f)(u) must be of appropriate type. Let us consider an example,
which we will also depict as a graph (Figure 2.2 on p. 14).

o G BAR hc-phrase CAT
(2) Ok

CMP-DTR
two CAT
° BAR word
H G word
CAT
PHON

n

BAR

° ne-list @ ne-list
HD
TL HD HD TL e

Zero
elist

@ Karl @ @ acht e elist

Figure 2.2: An example interpretation

The objects are the nodes of the graph, and the labeling of the nodes in-
dicates the typing function: object 1 is of type two, object 2 is of type
hc-phrase, and so on. The edges of the graph show the attribute interpreta-
tion function. A(BAR) maps object 2 to object 1, 5 to 4 and 7 to 11. Notice
that the objects that A(BAR) is defined on are exactly those of type sign.

We now turn to the definition of our formal description language. We will
assume a countably infinite set VAR of variables. Variable names will al-
ways be UPPER CASE ITALICS letters. Feature terms are built from the
symbols defined in a signature, variables, and the logical connectives A, V
and .

Definition 2.4 (S-terms)
Let S = (T, =, F, approp) be a signature.

14

o X is a S-term if X € VAR

e t is a S-term ifteT
e f:¢isaS-term if f € F and ¢ is a S-term.
o 1 Ao, P1V ¢y, —py are S-terms if ¢1 and ¢9 are S-terms.

We leave out reference to the signature if it is clear from the context. Ad-
ditionally, we allow the term ¢; — ¢9 to stand for —¢; V . Parentheses
are used to disambiguate terms. In the absence of parentheses, we use the
following operator precedence conventions (in decreasing order):

e A

As mentioned above, feature terms denote sets of objects in an interpreta-
tion. There is no explicit quantification, variables are generally assumed to
be existentially quantified. Feature terms are interpreted using a variable
assignment function.

Definition 2.5 (variable assignment)

Let T = (U,S, A) be an interpretation. A variable assignment is a total
function o : VAR — U. Write ASS for the set of all assignments for some
given interpretation.

Next, we define term interpretation.

Definition 2.6 ([]%)
Term interpretation is defined with respect to an interpretation 7 and a
variable assignment o € ASS:

o [X]E = {a(X)} if X € VAR
[t = {u el | S(u) <t} ifteT
[f: ¢z = {u e U (AN (W)L A (A())(u) € [4]2}
[¢1 A 4215 = [41]5 N [¢2]5

[¢1V ¢212 = [61]5 U [42]

[-¢]z = U\[¢l

15

We’re often not interested in the denotation of a term with respect to a
specific variable assignment. Instead, we want to know which objects can be
described by a term given a suitable variable assignment. We thus abstract
away from the variable assignment.

Definition 2.7 ([-]?)
[¢]F = U [¢l
a€ASS

Let 7 be the interpretation defined in Fig. 2.2. We then get the equalities
shown in Fig. 2.3.

[word]? = {5,7}

[sig” = {2,5,7)
[caT : 4]F = {2,7}
[word A BAR : two]r = {5}
[wordV BAR : two]r = {2,5,7}
[~word]f = {1-4,6,8—15}
[BAR : ~two]? = {7}
[cAT : X AHEAD-DTR : caT : X[= {2}
[word A he-phrase]*? = { (inconsistent)

Figure 2.3: Example term denotations

We conclude this section with a definition of what it means for two feature
terms to be equivalent.

Definition 2.8 (equivalence of feature terms)
For each feature term ¢, 1, ¢ =) iff for each interpretation I, [¢]* = [+]*.

2.3 Checking satisfiability: constraint solving

We can now consider the first practical problem: determining if a given term
is satisfiable or not.

Definition 2.9
A feature term ¢ is satisfiable iff there is an interpretation T s.t. [¢]* # 0.

16

This problem has been shown to be decidable for several languages closely
related to one presented here. The trick is to bring a term into some normal
form that displays (un)satisfiability. Since later chapters will depend on
what exactly the normal form looks like, we will investigate this in some
detail.

Following (Smolka 1988), the transformation of a term into normal form
proceeds in three steps. First, the term is brought into disjunctive normal
form, pushing negation down to variables. This term in disjunctive normal
form is then transformed into a set of sets of what Smolka called feature
constraints. In a last step, these sets will then be brought into a normal form
displaying (un)satisfiability. Furthermore, we can compact the normal form
down into a smaller but equivalent representation. This is called unfilling.
We begin with a definition of what we mean by disjunctive normal form

(DNF).

Definition 2.10 (DNF)

We say that a feature term is a simple term iff it contains no disjunction
and the only occurrence of negation is in front of variables. A feature term
is in DNF iff it is a disjunction of simple terms.

Using the following equivalences, we can eliminate negation from our terms
everywhere except in front of variables. We will use L as an abbreviation?
for X A =X, for some variable X. This is the simplest way of expressing
inconsistency in our language.

s —¢=¢
o “($AY)= (¢ VY)
o (¢VY)=(=pAY)
. ﬁtz{ VIt [e VAL 2} i {t' |t e VAL At} £0

L otherwise
fim¢, if {t| t €V, approp(t, f)1} =0
fi(=¢) VV{t |t €V, approp(t, f)1}, otherwise

ZNote that there is no L symbol in the type hierarchy. We use it simply to denote a
false or inconsistent term. T, on the other hand, is both a type symbol and our way of

* ~(f:¢) E{

denoting a necessarily true term. This is because, by our definition of a signature and its
interpretation, the term T will always be true, under any interpretation and assignment.

17

The second to last equivalence needs to be so complicated because the empty
disjunction is not part of our language. As usual, the empty disjunction is
inconsistent.

The last equivalence is not completely obvious. From the definition of term
interpretation it is clear what an expression of the form —(f: ¢) must denote:
it’s true of all objects that don’t have f defined on them or that have f
defined and mapping onto an object not in the denotation of ¢. We can
describe all objects that don’t have f defined on them with the disjunction of
all minimal types ¢ s.t. approp(t, f) is undefined. That gives us the following
result.

Proposition 2.1
Let S = (T, =, F, approp) be a signature s.t. 3t € V. approp(t, f) 1. For
every S-interpretation T = (U, S, A),

[=f : 61F = [£:(=¢) v V{t | approp(t, f)1}]*

Proof
[-f:4]" = U [-f:¢]Z

acASS

= U U\lf¢la

acASS

= U u\{ued | A(f)(w)iA A(f)(v) € [4]2}

acASS

= U ({uvet | Af)(wtru{vet | A(f)(u) ¢ [¢]2})

acASS

= U ({uet]| approp(S(u), f)1}u{u et | A(f)(u) € [~¢]Z})

acASS

= U (UIZ | approp(t, f)1} U [f:=4]3)

acASS

= U [f:(=¢) v V{t | approp(t, f) 1}]x
acASS
[f:(=¢) v V{t | approp(t, £)1}1*

We thus know that every term can be transformed into an equivalent term
where negation occurs only in front of variables in a finite number of steps.
Using the distributive laws and the fact that f:(¢ V) = fioV fi9p , we can

now bring such a term into disjunctive normal form.

18

2.3.1 Variables and negation

We digress at this point to reflect on the interaction of our quantifier-less
approach to variables, and negation. The unrestricted use of variables and
negation has undesired consequences. Although we would like negation to
behave classically, this is not the case in our system.

Proposition 2.2
It is not the case that for all interpretations T = (U, S, A), for all terms ¢,

[-¢]* = U\ [¢]*

Since we’ve defined [-¢]Z = U \ [¢]Z, this can only have to do with variable
assignments, i.e., variables.

Example 2.1
Let T = (U,S, A) be an interpretation s.t. |U| > 2 and X be a variable. We
have the following:

[XIF = U [X]Z = {a(X)|aeASS} = U,
a€ASS

but also

-xTF = U [-XIE = U u\{a(X)} = U

a€ASS a€ASS
Notice that for this equation to hold, U has to contain at least two elements.

The easiest way out of this is to disallow negative occurrences of variables,
or even make do without variables. As (King 1989) shows, there are no
logical reasons to use variables, everything can be expressed using path
equations. However, variables are a useful notational convenience, and some
form of variables is necessary when using relations, as we will do later on.
We will therefore describe a class of feature terms where negation has the
desired effect. This is done by restricting the use of variables, in a way that
arguably does not restrict the expressive power of the formalism. We begin
by augmenting our language with path equations and path inequations.

Definition 2.11 (path equations and inequations)
1. A path is a member of F*. Write ¢ for the empty path.

2. If my, my are paths, then m1 & 79 is a feature term (path equation).

19

3. If my, my are paths, then w1 g 7y is a feature term (path inequation).

Definition 2.12 (path interpretation)
If (U, S, A) is an interpretation, then

1. A*(e) = idy, the identity function on U.
2. A*(fm) = A(f) 0 A*(m)
Definition 2.13 (denotations of path equations and inequations)
1 [rrn]l =
{uet [A*(m)(w) |, A*(x')(u)| and A*(7)(u) = A*(7')(u)}

2. [r it vl =
fue U | A(m)(u)d, A*(r')(u)} and A*(r)(u) £ A*(r')(w)}

It is intuitively clear that feature terms that can be equivalently expressed
without the use of variables, i.e., using only path equations and inequations,
behave classically with respect to negation. We will first show that this is
indeed so, and then define a class of feature terms that are “safe” to use in
this sense.

Definition 2.14 (FV)
We write FV(¢) for the set of free variables in ¢.

Of course, there are not bound variables in our terms. Thus, the term “free
variables” will always mean the set of all variables.

We give the next proposition without its easy proof.

Proposition 2.3
For every interpretation Z, for every term ¢, for every assignment o and 3:

If for every X € FV(¢), a(X) = B(X), then [¢]% = [[¢]]g

Corollary 2.4
IfFV(¢) = 0, then for each o € ASS, [¢]% = [¢]%

Corollary 2.5
IfFV(¢) = 0, then for each interpretation T = (U, S, A), [-¢]* = U \ [¢]*

Definition 2.15 (var-terms)

20

1. For each variable X, X is a (positive) var-term.
2. For each variable X, =X is a (negative) var-term.

3. If ¢ is a (positive/negative) var-term and f is a feature, then f:¢ is a
(positive/negative) var-term.

4. Nothing else is a var-term.

Definition 2.16 (VNF)
1 = \/ ¢, Is in variable normal form (VNF) iff each ¥; = (¢, A s,) s.t. 95

is a conjunction of var-terms and FV(¢,;,) = 0.

Proposition 2.6
Let ¢ be in DNF. For each disjunct ¢; in ¢, there is a ; = (5, A ;) s.t.
1, Is a conjunction of var-terms, FV(¢;,) = 0 and ¢; = ;.

Proof Using the fact that f: (¢ AY) = f:pA f:9, we can bring each disjunct
into the required format. |

Definition 2.17 (negation safe terms)
¢ in VNF is called negation safe iff for each disjunct ¢; in ¢ and each variable
X, if X occurs negatively in ¢;, then it also occurs positively in ¢;.

Proposition 2.7
If ¢ is negation safe, then there is a term v s.t. FV(¢) = 0 and ¢ = 9.

Proof Let ¢ = ¢1 V...V ¢r, where for each ¢;, ¢; = (i1 A dia A Pi3) s.t. i1
is a conjunction ¢;1,1 A ... A ¢;1,, of positive var-terms, ¢;2 is a conjunction
Gi21 A\ ... A pigm of negative var-terms and FV(¢;3) = 0. For each ¢;, define
bi=Nrxr |1<jk<n, ¢a;j=m:X, ppgp=7": X}AN{m % 7|
1<j<n 1<k<m, ¢pp;=m:X, o =" : 2 X} A ¢;3. Clearly,
¢; = ;. Thus, we get that ¢ = \/151»51 ;. [|
Unfortunately, this does not mean that every negation safe term can itself
be negated with the expected result. It only means that an equivalent
term exists that can be negated. A reasonable example would be the term
f: X A g:X. When negated, it turns out to be?

“(ffXANgX) = i XVgX

ftVvfimXVgtvg-X
= T

5We write f1 for \V{t |t € V A approp(t, f)1}

21

for all interpretations with more than one domain object. However, we also
have that

fiXNgX = frg and ~frg = ft Vgt V fsyg

which is exactly the desired result. This example should also make it clear
that it is really the absence of explicit quantification that causes the problem.
Suppose we encoded our feature descriptions as first order logic formulae.
For our example above, we would then get something like Jz,y. f(y) =
zAg(y) = z. The negation of this sentence is Vz,y. - f(y) =zV-g9(y) ==z
which, if we reformulate it slightly as Vz,y. f(y) =z — = g(y) = 2, can
be seen to posses the intended meaning. What we actually get, however,
when negating f: X A g: X is something like 3z,y. =(f(y) = 2z A g(y) = z).
Because all our variables are implicitly quantified from the outside, our
negation turns up inside the existential quantification and provides us with
unintended meanings.

To conclude, we have shown that we can freely use negation, as long as the
result is negation safe. We didn’t show that if some term is not negation
safe, then it has an undesirable denotation. However, we conjecture that
this is the case. The problem is that the denotation of an isolated negated
variable is [-X]? = U if [U| > 2, and [-X]? = 0 if |U| < 2. There is no
term that has exactly the complementary denotation.

This concludes the digression.

2.3.2 Feature constraints

We now turn back to the question of how to determine satisfiability of feature
terms. As we saw in the previous section, if a term is negation safe, we can
transform it into one without variables. Since our language without variables
is a notational variant of the logic defined in (King 1989), we can use the
decision algorithm of (Kepser 1994) to test for satisfiability. However,

e this doesn’t work for terms that are not negation safe,

e we also want to talk about the notion of unfilling (G6tz 1994), which
is not considered in Kepser’s work, and

e we're not satisfied with a theoretical decidability result. We want a
normal form that’s at least close to what’s actually being used in the
implementation.

22

Thus, we will devise a new normal form and decision algorithm, combining
(Smolka 1988), (Carpenter 1992), (G&tz 1994) and (Kepser 1994). We start
by defining the notion of feature constraints, following (Smolka 1988).

Definition 2.18 (feature constraints)
A feature constraint is of the form X|Y, X|-Y, X|t or X| f:Y, where X, Y
are variables, t is a type symbol and f is a feature symbol.

Definition 2.19 (feature constraint satisfaction)
Let T = (U, S, A) be an interpretation and o an assignment. Define satis-
faction of feature constraints as follows.

T,a = X|Y iff a(X) = a(Y)

T,a = XY iff o(X) # oY)

T o= X|tiff S(a(X)) <t

T, & X| Y iff A(f)(@(X)) 4 and A(f)(a(X)) = a(Y)

We will often need to talk about sets of constraints and sets of sets of
constraints. We call a (not necessarily finite) set of feature constraints a
feature clause, and a set of clauses a matrix. Feature clauses are interpreted
conjunctively, matrices disjunctively.

Definition 2.20
An interpretation T satisfies a feature clause ¥ iff there is a variable assign-
ment a s.t. T, = X.

Definition 2.21 (clause entailment)
For each set of feature constraints &, %', ¥ = %/ iff for each interpretation
T,ifT E X, then T E X'. We say that X entails 3.

Formally, we have introduced a new feature logic language. Whereas so far,
we’ve only talked about description languages, we’ve now introduced a rela-
tional language, a language that talks about relations between variables. A
feature constraint does not denote a set of objects in a given interpretation,
it is true or false with respect to a given interpretation and assignment.
Intuitively, sets of feature constraints are very similar to feature structures:
the variables in feature constraints correspond to nodes in a (concrete) fea-
ture structure. That is also the computational role of constraints: whereas

23

in a unification-based approach, we look for a most general feature struc-
ture satisfying a description, in a constraint-based approach, we translate
a description into an equivalent set of constraints and then check to see if
the resulting set is satisfiable. A very important difference though is that
sets of feature constraints need not be rooted, they don’t even need to be
connected in the sense that the underlying graph of a feature structure needs
to be connected.

Definition 2.22
Let ¥ be a feature clause, I' a matrix, 7 an interpretation and o an assign-
ment.

e Z,aEY iffforeacho € &, Z,a =0

e Z,alT iff forsome X €T, T,a X

This clearly gives us the standard interpretation of conjunction and disjunc-
tion. Notice in particular that for no Z, e : 7, = @, if () is interpreted as
a matrix. For the empty clause, on the other hand, we have that for each

T,a: T,a = 0.

Next we define an auxiliary notion that allows us to classify the variables
occurring in a feature clause.

Definition 2.23

Let ¥ be a set of feature constraints. If X|Y € ¥, X #Y and Y occurs
nowhere else in ¥, then Y is an auxiliary variable in ¥£. If Z € FV(X)
and Z is not an auxiliary variable, then it is a main variable in ¥.. Define
main(X) = {X € FV(X) | X is a main variable in ¥}.

Notice that the distinction between auxiliary and main variables makes no
intuitive sense for arbitrary clauses. For clauses in normal form as we define
them in the next definition, however, there is an intuitive difference. Main
variables correspond to nodes in a feature structure. They are the ones
that are really constrained. All the auxiliary variables do is point to a main
variable.

Definition 2.24
A feature clause ¥ is in normal form iff it has the following properties:

1. If X is a main variable in %3, then for some a € T, X|a € .

24

2. IEX|f:Y,X|f: Z€ X, thenY = Z.

3. If X|a, X|be€ X, then a =b.

4. If X|Y €e L and X #Y, then Y occurs nowhere else in X.
5. If X|-Y € Z, then X #Y.

6. If X|a, X|f:Y € X, then for each t,t' € V s.t. t < a and t' < a,
approp(t,)|, approp(t',)| and approp(t, f) = approp(t’, f).

7.If X|a, X|f:Y, Y|b € %, then for each t € V such that t
approp(t, f)| and b < approp(t, f).

A
R

Condition 1. says that each variable that is constrained in some way must be
typed. Condition 2. requires features to be functional. In cond. 3., we say
the typing information on each type must be unique. Condition 4. says that
if two variables are required to be identical, then the right-hand one must
be an auxiliary variable. This is to ensure that all information on a variable
is collected in one place. Condition 5. states that inequated variables must
be distinct. Notice that by definition, negated variables are always main
variables. Conditions 6. and 7. ensure that the typing information conforms
to the appropriateness conditions. In 6. we demand that if a feature is
defined on a variable, then the feature must be appropriate for the type
on the variable. The additional conditions ensure that our type discipline
is static. We will take up this point in a later section (see prop. 2.16 on
p. 38). Finally, cond. 7. requires that the variable a feature points to is
appropriately typed.

We will now show that each feature clause in normal form is satisfiable.
We begin by defining an interpretation that has exactly one object for each
minimal type in the signature. We need to make the unproblematic assump-
tion that the set of types is totally ordered in some arbitrary way. We will
assume standard lexicographic order for our purposes.

Definition 2.25

For each signature S = (T,=,F, approp), define an interpretation Ig =
(Us, Sg, Ag) with

o Us={u |t €V}

° Sg(ut) =t

25

Uy if approp(t, f) | and t' is the lex.
smallest minimal type s.t. t' <

approp(t, f)
undefined otherwise

o As(f)(w) =

Proposition 2.8
For each signature S, Zg is an S-interpretation.

Proposition 2.9
Let S = (T, =, F, approp) be a signature. If ¥ is a feature clause in normal
form, then Y. is satisfiable.

Proof

First, let 3/ be exactly like 3 except that each constraint X | a € X is replaced
by X|tin 3/, where t € V is the lex. smallest minimal types.t. ¢ < a. Clearly,
it suffices to show that X’ is satisfiable.

We now construct an interpretation Z and assignment a s.t. Z,a & %'

Define T = (U, S, A), where

o U =Ug U main(X)

. S(u) = Ss(u) ifuels
ot if w =X for some X € FV(X') and X|t € X'

As(f)(u) if u € Us and As(f)(u)l

Y if v = X for some X € FV(X') and
X|fYe¥
Uy if w = X for some X € FV(X'),
o A(f)(u) = X|t e & fornoY is X|f:Y €

3!, approp(t, f) | and t' € V is the
lex. smallest minimal type s.t. ¢ <

approp(t, f)
undefined otherwise

We need to make sure that Z is a S-interpretation. Suppose X|f:Y €
Y.. By condition 1. on normal form sets, we know that for some a,b €
T, X|a, Y|b € X and thus, for some t,¢' € V, X|t, Y|t' € ¥'. By
conditions 6. and 7. of a normal clause and construction of ¥, we know that
approp(t,)] and t' < approp(t, f). Conversely, if X|t € ¥, approp(t, f) |
and for no Y is X| f:Y € ¥, then A(f)(X){ and A(f)(X) = up for some
t' < approp(t, f). Thus, 7 is a S-interpretation.

26

Let B be some variable assignment on /. Define
X if X € main(X')

a(X)=1Y if X ¢ main(X)and Y| X € &/
B(X) otherwise

It remains to be shown that for each c € ¥/, T, a | c.

o If X|Y € ¥/ then a(X) = a(Y), by definition of .
o If X|-Y €X' then X #Y and X|Y ¢ ¥'. Thus, a(X) # a(Y).
o If X|t € ¥/ then S(a(X)) =t.

e If X| Y e ¥ thena(X)=X, oY) =Y and A(f)(X)=Y.

Thus, Z, « E ¥/, and furthermore, 7, = 3.
|

Normal form sets have a stronger property than just satisfiability: if X is
in normal form, then we can replace any X|a € ¥ with X|bif b < a, and
the new X is still satisfiable. This is particularly useful in practice, since
it means that the normalisation of a conjunction of two normal sets can be
computed very efficiently.

Sometimes, a normal form set contains information that is redundant and
can be removed. This concerns information that can be deduced from the
signature. We call removing such redundant information “unfilling”.

Proposition 2.10 (Unfilling)

Let S = (T,=,F, approp) be a signature. Furthermore, let £; = ¥o &
{X|f:Y, Y|b} s.t. X|a € Zo be in normal form and Y ¢ FV(3,). If
approp*(a, f) = b, then 1 = X».

Proof
Let T = (U,S, A) be an S-interpretation and o € ASS.

1. Suppose Z,a |= 2. Then 7, a | X5, since 3y C 5.

2. Suppose 7, o = L. Since approp*(a, f) | and approp*(a, f) = b, we
know that A(f)(a(X))] and S(A(f)(a(X))) < b. Since Y ¢ FV(X,),
L, oy A(£)(o(X))] = B

27

The intuitive content of this proposition is that information that’s not more
informative than what’s in the signature can be removed without changing
the denotation. See (G&tz 1994) for examples.

2.3.3 From terms to constraints

We’ve seen in the last section that feature constraints have a normal form
that exhibits satisfiability. What we’re interested in, of course, is to get
feature terms into that normal form. We will begin this section by defining
an algorithm to rewrite a feature term into a set of constraints. Since we’ve
already seen how to bring a feature term into DNF, we will only consider
conjunctive terms without negation, except in front of variables. We begin
by defining a translation procedure that takes a purely conjunctive feature
term with the negations pushed down, and translates it into an equivalent
feature clause. This translation is a slight variant of the one given in (Dérre
and Dorna 1993).

Definition 2.26 (trans)

1. trans(X,a) = {X|a}, if a is a type

2. trans(X,Y) = {X|Y}, if Y is a variable

(X,
(

3. trans(X,Y) = {X|-Y}, if Y is a variable

4. trans(X, f:T)={X| f:Y}U trans(Y,T), where Y is a new variable
(

5. trans(X,SAT) = trans(X, S)U trans(X, T)

Notice that trans is not a function, since it introduces arbitrary new vari-
ables. One could turn it into a function by the standard trick of well-ordering
the variables. However, since we don’t rely on the functionality of trans for
anything, we avoid this technical complication.

We will now show that the translation actually preserves the denotation.
Since the notion of denotation is not defined for feature clauses, we relate
the denotation of an input term ¢ in an interpretation Z with the set of
objects that can be assigned to X so that Z satisfies trans(X, ¢).

Proposition 2.11 (Correctness of trans)
Let D = Dy V ...V D, be in DNF. For each D;, 1 < ¢ < n, for each
interpretation T = (U, S, A), if X ¢ FV(D) then

28

[D;]* = {a(X) | Z,a = trans(X, D,)}

Proof

D: if 7, |= trans(X, D;), then a(X) € [D;]*. Proof by induction on the
definition of trans.

e 7,a = trans(X, a)
= T,aE X|a
= S(a(X))<a
= a(X) € [a]

o 7,a = trans(X,Y)
= T,a X|Y
= a(X)=a(Y)
= a(X) e [Y]:

e 7,a = trans(X, 1Y)
= T,a X|-Y
= a(X)#a(Y)
= o(X) e [YTG

o 7,a = trans(X, f:T)
= I,a = X| fY Utrans(Y,T)
= A(f)(a(X))] and A(f)(a(X)) = a(Y) and, by induction, a(Y) €
[T1Z
= o(X) € [£:T]5

o 7,a = trans(X,SAT)
= 7,0 = trans(X, S)Utrans(X,T)
= a(X) € [S]% and a(X) € [T]Z (by induction)
= a(X)e[SATIE

Since a(X) € [D;]%, it follows that a(X) € [D;]?.

o]

C: for each u € [D;]? thereis an a s.t. «(X) = v and 7, o |= trans(X, D;).

29

We prove a stronger result by induction on D;: if u € [D;]% where a(X) = w,
then there is an o' s.t. &/(X) = u, for each Y € FV(D), &/(Y) = a(Y) and
Z,o' E trans(X, D;).

o u € [a] where a(X)=u
= T,aE X|a
= Z,o = trans(X,a)

o u € [Y]L where a(X) = u
= aY)=u=a(X)
= T, X|Y
= Z,a = trans(X,Y)

o u € [-Y]Z where o(X) = u
= a(Y) #u=a(X)
= T,aF X|-Y
= 7,0 = trans(X,Y)
o u € [f: T)% where a(X) = u and trans(X, f: T) = {X|f: Y} U
trans(Y, T)

= 36. B(Y) = A(f)(u), f. a. Z € FV(D), B(Z) = a(Z) and Z,8 =
trans(Y,T)
(by induction, since Y ¢ FV(T))

= I, Bixu EAX| fiY} Utrans(Y,T)
(since X ¢ FV(trans(Y,T)))
= I, ﬂ[Xr—)u] IZ trans(X, f: T)

o u € [SAT]L where a(X) = u
= u € [S]L and u € [T]Z
= 36. 7,0 E trans(X, S), f(X) = v and for each Z € FV (D),
B(Z) = a(Z), and3p'. Z,6' E trans(X,T), B'(X) = u and for
each Z € FV (D), p'(Z) = a(2)
(by induction)

= if &/ = By, sp(ny),... Yosp!(va)), Where {Y1,... Y} =
FV(trans(X,T))\({X}UFV(D)), then 7,0’ | trans(X,SAT),
since (FV(trans(X, S))\({X}UFV(D)))n

30

(FV(trans(X, T))\({X}UFV(D))) =0 and
for each Y € FV(D), p(Y) = g'(Y)

Since X ¢ FV(D;), u € [D;]% and thus, by the induction above, o

A X 3 u)

exists with o/(X) = u and 7, o/ |= trans(X, D;).
|

2.3.4 Normalizing constraint matrices

We will now define a rewrite system to transform an arbitrary (finite) set of
constraints into one in normal form. However, since the result is sometimes
not unique, the rewrite system will not operate on sets of constraints, but
on constraint matrices (sets of sets of constraints).

Definition 2.27 (variable substitution)
Write X x/y] for ¥ with every occurrence of Y replaced by X.

The main work in normalizing constraint matrices consists in type checking.
This was first discussed, for a somewhat different logic, in (Carpenter et al.
1991). We use the following definition to express our typing rules more
succinctly.

Definition 2.28 (dom)
For every signature (T, <, F, approp), dom is a total function T xF — P(T)
s.t.

dom(a, f) = maz({b | b < a, approp(b, f)| and for each t,t' € V s.t.t < b
and t' < b, it is the case that approp(t, f) = approp(t’, f)})

A rewrite system for bringing feature matrices into normal form is shown
in Fig. 2.4. Clearly, a set of constraints ¥ is in normal form iff none of the
rewrite rules applies to {X}. This can be seen by an easy case analysis.

Proposition 2.12
Let ¥ be a set of feature constraints. ¥ is in normal form iff {£} /.

The intuition behind the rules is straightforward in most cases. Rule 1
ensures that typing information is present for all main variables. This is
necessary for the typing rules to fire. Rule 2 makes sure that a feature
defined on a variable does not point to two distinct variables. Rules 3a

31

1) TU{E} — TU{ZU{X|T}},
if X is a main variable in ¥ and fornoa € 7, X|t€ X

2) TU{SU{X|£Y,X|f:Z}} — TU{SU{X|£Y,Y|Z}},ifY £ Z

3a) TU{ZU{X]|e, X|b}} — TU{ZU{X]|c}},
if @ # b, glb(a,b) exists and glb(a,b) = ¢

3b) TU{XU{X|a,X|b}} — T, if glb(a, b) does not exist

4) TU{XU{X|Y}} — TU{Zx/yU{X|Y}},
if X#Y and Y € FV(Y)

5) TU{SU{X|-X}}—T

6) TU{EU{X|a,X| fY}} — TU{EU{X|c¢,X|f:Y}|c€ dom(a, f)},
if dom(a, f) # {a}

7a) TU{ZU{X|e, X| Y, Y|b}} — TU{EU{X|e, X|fY,Y]|c}},

if dom(a,) = {a}, approp*(a,) = d, glb(d,b) J, glb(d, b) = c
and c# b

7)) TU{ZU{X|a,X| fY,Y|b}} — T,
if dom(a, f) = {a} and glb(approp*(a, f),b) 1

Figure 2.4: Feature matrix rewriting

and 3b take care of multiple typing information on one variable. Either
the types are consistent (3a), then they are replaced by their greatest lower
bound in the type lattice. Or they they are inconsistent (3b), then the
whole clause is inconsistent and is removed. Rule 4 makes sure that if we
have two equated variables, all constraining information on these variables
is collected on one of them. Effectively, it makes one of the variables into an
auxiliary variable. If a clause contains the information that some variable is
not equal to itself, this clause is clearly inconsistent, and rule 5 removes it.
Rule 6 ensures that if a feature f is defined on some variable X, then the
type @ on X is in the domain of f. Furthermore, every type subsumed by a
must have the same type appropriate for f as a. As mentioned before, this

32

ensures that our type discipline is static. We will make this notion precise
in Prop. 2.16 on p. 38. Rules 7a and 7b, finally, ensure that the constraints
on the ranges of features specified in the appropriateness conditions are
met. Either the typing on a variable that a feature points to is consistent
with appropriateness conditions (7a), or inconsistent (7b), in which case the
clause is removed from the clause.

/\
/\ o

AN g

Figure 2.5: Example signature

A small example will illustrate the mechanics we’ve set up so far. We will
normalize the term f: Z A ¢g: Z with respect to the signature in fig. 2.5. Since
the term is already in disjunctive normal from, we can directly apply the
trans procedure.

trans(X, f1ZAN¢g:Z) = trans(X, f:Z)Utrans(X,¢:7Z)
= {X|f:Y}Utrans(Y, Z)Utrans(X,¢:Z)
= {X|fY,Y|Z}Utrans(X, ¢g:Z)
= {X|fY,Y|Z,X|¢g:Y'}Utrans(Y', Z)
{X| Y, Y|Z X|g:Y' Y| Z}

One possible normalisation is shown below. The individual steps are anno-
tated with the rules that will be applied, and the constraints that are used
to derive the next stage are underlined. Since we’re only dealing with a
single clause here, we ignore the fact that the rewrite system really applies
to matrices.

33

X[£Y,Y|Z,X|g:Y',Y'| Z}

X[£, Y|Y', X|g:Y' Y| Z}

X[£Y,Y|Y', X|g:Y,Y|Z}

{X| £, Y|Y, X|gY, Y| Z,X| T}

{X|£Y,)Y|Y', X|g:Y, Y| Z,X|T,Y|T}

{X|£Y,Y|Y', X|g:Y,Y|Z,X|dY|T}

{X|£Y,Y|Y' X|gY,Y|Z X|dY|bl} (7a
.)) g:))) c

X|fY,Y|Y' X|qY,Y|Z X|d,Y]|c2

U A A

We next consider termination of the rewrite system on finite sets of finite
sets of constraints. Notice that the rewrite rules can be strongly ordered: a
matrix can be closed under rule 1, and no application of another rule can
make rule 1 become applicable again (since no rule introduces new variables).
We will make use of this fact in our termination proof. The rules 2 through
4 also form a subsystem of their own. Once a matrix is closed under rules 1
through 4, no application of the other rules can make application of rules 1
through 4 necessary. Rule 5 comes next. The typing rules 6, 7a and 7b are
also strictly ordered, rule 6 having to apply before one of the others can.

Proposition 2.13
If T is a finite matrix of finite sets, then there are a I, T and natural

numbers n and m s.t. I' = TV 5 T" —£s, where rule 1) does not apply to
.

Proof

Suppose I' = {21, ..., 2}. IV can be derived in at most 2 X (|Z1|X...x |Zk|)
steps (since for each ¢, |main(%;)| < 2 x |%;|). Since none of the other rules
introduce any new variables, we can consider the rest of the rules without
rule 1).

We proceed by associating a weight with each set of constraints. Since each
rule application generates finitely many sets of constraints ¥’/ from a set X
(which is removed from the matrix), it suffices to show that for each of those
new Y/, weight(¥') < weight(X). A derivation defines a finitely branching
tree, and to show that the tree is finite, we need to show that every branch
is finite.

o weight(X|a)=1|{b]|b < a}|

34

o weight(X|Y)=1
o weight(X|-Y)=1

o weight(X| f1Y) =2

o weight(X) = (zejzweight(a)) X |main(Z)|

Now consider rule application. Rules 3b, 5 and 7b eliminate the clauses
they’re applied to, since these clauses are inconsistent. Their application
thus constitutes a terminal node in the derivation tree.

e If TUX — I'UX by application of rule 2), then weight(X') <
weight(X) — 1, since |main(X)| = |main(X')| .

e Suppose rule 3a) is applied: TU{ZU{X|a, X|b}} — TU{ZU{X | c}},
where a # b, glb(a,b)| and glb(a,b) = c. Let A= {a’' | o’ < a}, B =
{t/ | b/ Kb} and C = {c' | ¢ < c}. Assume w.lo.g. that |A| > |B|.
Since a # b and g¢ib(a, b) |, we know that |A| > 2. Thus, weight(X|a)+
weight(X|b) = |A| + |B| > 24 |B| > |B| > |C| = weight(X| c).

e Suppose rule 4) applies: TU{ZU{X|Y}} — TU{¥x/y]U{X|Y}},
with X #Y and Y € FV(Z). Now > weight(c) =
ce(ZU{X|Y})
weight(c), but |main(X U{X|Y})| = |main(Zx/y) U
o€(Zx/nU{XIY})
{X|Y})| - 1. Thus, weight(Xx/y) U{X|Y}) < weight(X U {X]|Y}).

e Suppose rule 6) is applied:
T U{SU{X|a, X|fY,Y|b}} — TU{SU{X|c, X|Ff:Y,Y|b}]|ce
dom(a, f)}, where dom(a, f) # {a}. But we know that for each ¢ €
dom(a, f), ¢ < e and ¢ # a. Thus, for each ¢ € dom(a, f), weight(XU
{X|a,X| fY,Y|b}) > weight(XU {X|c, X| f:Y,Y]|b}).

e Suppose rule 7a) is applied:
Tu{Zu{X|ae,X|f:Y,Y|b}} — TU{ZU{X]|e,X|f:Y,Y|c}},
where there is a d s.t. for all t € V s.t. t < q, it is the case that
approp(t,)4, approp(t,) = d, gib(d, b) |,
glb(d,b) = cand ¢ # b. Since ¢ < b and ¢ # b, we know that weight(X U
{X|a,X| fY,Y|b}) > weight(EU {X|a, X| f:Y,Y]|c}).

35

We can roughly estimate what the complexity of this procedure is. Closing
a clause under rule 1 is linear in the size of the clause. The same holds for
rules 2, 4 and 5, if we take variable substitution to be an atomic operation.
We can then close the clause under rules 3a and 3b, again in time linear to
the size of the (original) clause. Rule 6 introduces the real complexity. In
the worst case, each application of rule 6 can split up the the clause into as
many clauses as there are minimal types in the type hierarchy (|V|). Since
this may happen once for each feature selection constraint X| f:Y in the
clause, application of rule 6 is exponential in the number of such constraints.
Finally, closing under rule 7a and 7b is again linear in the size of the clause.

It remains to be shown that the rewrite system preserves the denotation of

a matrix.

Proposition 2.14
For each matrix ', T, interpretation T = (U, S, A) and assignment «, if
' — IV, then

T,aETif Z,a =T

Proof

Rule 1: obvious, since Z,a = X| T is always true.

Rule 2: 7,0 = {X| /1Y, X| £:2} & A(f)(@(X))), A(f)(a(X)) = a(Y)
and A(f)(a(X)) = a(2) < A(f)(a(X)) |, A(f)(a(X)) = o(Y) and
aY)=a(Z2) © IT,a E{X| Y, X|Y}

Rule 3a: obvious, since for each v € U, S(u) < glb(a,b) iff S(u) < a and
S(u) < b.

Rule 3b: obvious, since if g¢ib(a,b) T, then for each v € U, S(u) £ a or
S(u) £ b.

Rule 4): T,a EXU{X|Y} & ZT,aEZand a(X)=aY) & T,a
E[X/Y] U {X| Y}

Rule 5: obvious.

Rule 6: We need to show that
T,a ={X|e, X| Y, X|b} & Jce€dom(q,f).T,akE={X|c,X|fY,X|b}
Right to left is obvious, since for each ¢ € dom(a, f), ¢ < a.

T,a k= {X]a,X| £:Y, X|b}

36

= S(a(X)) 2 a, A(f)(a(X)) |, A(f)((X)) = a(Y) and S(a(Y)) 2 b

= 3c e dom(a, f). S(a(X)) < ¢, A(f)(@(X))}, A(f)(a(X)) = a(Y) and
(oY) 2 b

= Jeedom(e, f).IT,a = {X|c, X| /1Y, X|b}

Rule 7a: again, right to left is obvious, since ¢ < b. For left to right, we
have:

T,a={X|a, X| fY,Y|b},3d. Vt < a, t € V. approp(t,)|, approp(t, f) =
d, glb(b,d)] and g¢ib(b,d) = ¢

= S(a(X)) 2 a, A(f)(e(X)) L, A(f)(a(X)) = of
S(a(Y)) < b, S(a(Y)) < d, glb(b,d)} and glb(b,d) =
= S(

a(X)) 2 e, A(f) (X)), A(f)(a(X)) = oY) and S(a(Y)) < ¢
= T,aE={X|a, X|fY,Y]|c}

Rule 7b: If approp*(e, f) | and glb(approp*(a, f),b) T, then {X|a, X| f:
Y,Y| b} is inconsistent.

The interpretation constructed in the proof of prop. 2.9 is certainly finite
for finite clauses. However, if the clause was derived from a term, then
the interpretation is actually almost a feature structure. We will make this
precise by first defining what a feature structure is.

Definition 2.29 (feature structure)
Let S be a signature. A feature structure over S is a quadruple F'S =

U,u,8,A) s.t.
1. (U, S, A) is a S-interpretation,
2. U is finite,
3. 4 €U, and
4. for each u € U, for some path w, A*(r)(u)] and A*(7)(a) = u.

Corollary 2.15
Every satisfiable feature term is satisfied by a feature structure.

37

Proof

W.log.,let ¢ =¢1V...V¢, be aterm in DNF. Now apply the trans proce-
dure to one of the satisfiable disjuncts ¢; and let ¥ € NF({trans(X, ¢;)}).
Since . is in normal form, we can use the construction in the proof of
prop. 2.9 to give us an interpretation Z = (U4, S, A) and assignment « s.t.
Z,a E X. Since X is finite, we know that ¢/ is finite. Our root object
will be 2 = a(X), but there may be objects that are not reachable from
4. We thus have to restrict our domain to U’ = {u € U | A*(7)(@) | and
A*(m)(@) = u}. If we now restrict § with respect to U’ to &’ and A to A,
then T = (U',u,S’, A') is a feature structure that satisfies ¢.

As a final point of this section, we will examine how the rewrite system
behaves at run-time. We will generally find ourselves in the situation that
we have two sets of constraints X and X', both in normal form, and two
variables X € FV(Z) and X' € FV(2)* we wish to identify. That is, we
need to normalize the matrix I' = {SUX U{X| X'}}. The next proposition
will show that our type discipline is static, i.e., we can normalize I" without
using the type inference rules. This means that the sources of complexity
we identified for the rewrite system are not there at run-time. It also means
that I’ will not grow in size. It is either inconsistent, in which case its normal
form is the empty set, or it is consistent with just a single clause.

Proposition 2.16 (static typing)
Let ¥, %' be clauses in normal form, X € FV(X) and X' € FV(X'). Then

the matrix I' = {¥ U X' U {X| X'}} can be normalized using rules 2-5 only.

Proof
Clearly, rule 1 can never apply.

Assume w.l.o.g. that {Y|q,Y| f:Y'} C ¥ and that I' 5 IV D {Y|b,Y] f:
Y'}, where a # b. For the sake of clarity, we consider the derivation modulo
variable renaming. Obviously, we have that b < a. Also, dom(a, f) = {a},
thus dom(b, f) = {b}, and therefore, rule 6 doesn’t apply.

For rule 7a and 7b, assume w.l.o.g. that {Y|a,Y| f:Y',Y|b} C 2. Suppose
further that T = IV D {Y|¢, Y| f:Y',Y|d}. We know that dom(a, f) =
{a} and thus, approp*(a, f) = approp*(c, f). Therefore, since d < b and

*Y and ¥’ may or may not be standardized apart (FV(Z)NFV(Z') = 0). This makes

no difference for the rewrite system.

38

glb(approp*(a, f),b) = b, glb(approp*(c, f), d) = d, and rule 7a doesn’t apply.
Since glb(approp*(c, f),d)|, rule 7b is also not applicable.

2.4 Alternative feature description languages

There are numerous other approaches to feature description languages, dif-
fering in both syntax and semantics. We will first give a non-exhaustive list
of possible variations, and then look at a specific instance in more detail.

2.4.1 Models of total information vs. models of partial infor-
mation

The logic we presented in the preceding sections takes the view that an in-
terpretation provides total information about the real objects that we want
to talk about. In fact, our interpretations are the things that we want to
talk about. Another possibility is to consider the models to provide partial
information themselves, to be partial models of the real world. This view in-
duces the possibility of imposing an ordering on models: some provide more
information than others. This ordering is usually called feature structure
subsumption, since models in this setup are generally feature structures. We
say that a feature structure A subsumes feature structure B iff A contains
the same or less information than B.

In the total information approach, partiality resides solely with the descrip-
tions, our feature terms. Underspecification is syntactic, the semantic ob-
jects are totally specified. The partial information approach introduces a
second level of underspecification, namely the models.

Computationally, the partial information approach offers the possibility to
compute with the models. This works by representing a description ¢ by
a finite set of feature structures MGS(¢) (the most general satisfiers of ¢)
with the property that for any feature structure B described by ¢ there
is a feature structure A € MGS(¢) s.t. A subsumes B. Conversely, any
feature structure subsumed by some A € MGS(¢) must be described by
¢. Notice that MGS(¢) must be finite. In fact, it should be as small as
possible, for practical purposes. This is often not feasible under the total
information approach. As we’ve seen in the previous section, we use normal
form descriptions.

39

We can call computing with models unification-based, since the most impor-
tant operation is the merging of the information in two feature structures,
called unification. More precisely, a unifier of two feature structures A and
B is a greatest (with respect to the subsumption ordering) feature structure
C that contains all the information of A and B. For the unification approach
to work, we need to require that for every feature logic expression ¢ there is
a finite set S of feature structures (the most general satisfiers of ¢) s.t. for
each feature structure A, if A satisfies ¢, then for some B€ES, B subsumes

A.

So for the unification approach to work, we require that

e the class of models is ordered by subsumption, and

e that the most general satisfier property obtains.

We will later see that for one of the logics we present, the most general
satisfier property doesn’t hold.

The important difference between unification and constraint solving is that
constraints are syntactic entities that restrict the class of possible struc-
tures, whereas in a unification approach, explicit models are constructed.
To determine satisfiability of a given expression in a constraint-based ap-
proach, it is thus not necessary to compute explicit unifiers, it is sufficient
to determine if a given set of constraints is consistent. In general, one can
therefore treat a larger class of languages with constraint solving techniques
than with unification (Baader and Siekmann 1994).

2.4.2 Closed world vs. open world

In the context of typed feature logic, the distinction closed world vs. open
world interpretation can refer to two entirely different matters.

Interpretation of the type hierarchy

Closed world interpretation of the type hierarchy expresses the view that all
types of objects that exist are mentioned in the type hierarchy. Specifically,
this means that the domain of an interpretation is partitioned by the minimal
types. This means that each object is of exactly one minimal type. Also,
the denotation of each type is the union of the denotations of its minimal
subtypes.

40

An open world interpretation makes no such assumptions. It is usually
required that the denotations of the minimal types are disjoint, but the
union of the denotations of the minimal types does not cover the whole
universe of an interpretation. A non-minimal type type can have objects in
its denotation that are not in the denotation of any of its subtypes.

Consider a type hierarchy with a type sign with phrase and word as its only
immediate subtypes. A closed world interpretation requires that any object
of type sign is also a phrase or word. Under an open world interpretation,
objects of type sign that are neither of type phrase nor word are possible.

There are two major differences between the two approaches. One concerns
negation. In a closed world approach, full classical negation is (theoretically)
no problem. An open world approach has in general considerable problems
with negation. There are several ways to get around this problem, the
easiest one being to give up on classical negation. Another possibility will
be mentioned later on.

The other difference has to do with appropriateness conditions and is of a
mainly practical nature. The type inferencing required to test descriptions
for satisfiability is in some sense a lot messier for a closed world approach
than for an open world approach. Even for purely conjunctive descriptions,
closed world inference is, as we’ve discussed, NP hard. That closed world
inference is NP hard was first shown by Bob Carpenter (personal communi-
cation). We will see in the next section that under certain conditions, type
inference for open world reasoning can be more efficient.

Open world normal forms are also smaller (their representations) and their
unification is generally cheaper. Closed world inference, however, is com-
pletely static, whereas some dynamic type inferencing is necessary under an
open world approach.

It appears that the ease of type inference is the reason that many practical
system chose an open world approach to type hierarchy interpretation. The
CUF (Dérre and Dorna 1993) system (among others) however is so powerful
as to allow both kinds of inferences on different parts of the hierarchy.

Choosing the domain of interpretation
Our logic is completely free as to what the objects in the domain of an in-

terpretation are. This is called an open world approach, since a user of the
logic is completely free to apply it to a domain of his/her choosing. The

41

domain just has to satisfy the general requirements of an interpretation.
This is the standard approach in mathematical logic. A different approach
is to fix a basic domain of interpretation, and require the domain of each
interpretation to be a subset of the basic domain. This approach is useful
if there is an intended interpretation one wants to talk about. Instead of
carefully defining ones interpretations to have all the properties of the in-
tended interpretation, one simply talks about the intended interpretation
in the first place. In the context of feature logic, this could be some set of
suitably well-formed feature structures. For our purposes, there is no deci-
sive difference between the two approaches. A practical system will compute
with some internal data structure that can be viewed either as some normal
form description or as objects in the fixed domain or constraints on objects
or whatever else is most convenient.

The same differences can be found in logic programming literature. For
example, one can view standard logic programming as making statements
about first order logic expressions (the “traditional” view, see (Lloyd 1984))
or as constraint logic programming over the universe of Herbrand terms.
There is no practical difference whatsoever (but there are some subtle the-
oretical ones), it’s just a question of perspective.

We’ve chosen an open world approach in this sense for two reasons: it’s
more flexible and we don’t have an intended interpretation.

2.4.3 Other parameters

A big difference between feature logics is often their type system. Types
where introduced into feature logic in (Smolka 1988).

Many feature logics differ in the expressive power of their syntax. Most
logics, e.g., do not allow the unrestricted use of negation (and thus, im-
plication). Others are more expressive still. Smolka (1992) allows explicit
quantification over variables, thus rendering the satisfiability problem for his
logic undecidable. Some logics do not use variables, but path equations. As
we’ve seen before, this gets around some problems with unbound variables
in the scope of negation.

Some authors have relaxed the condition that features must be functional.
Manandhar (1995) used this construction to model linear precedence con-
straints. Another extension is named or distributed disjunction (D&rre and
Eisele 1991), a construct that allows the compact computational represen-
tation of disjunctive information.

42

2.5 Open world reasoning and negation

Since open world reasoning is of considerable interest for computational
linguistics, we will in this section consider a feature logic with open world
type inference and full negation. This logic was first developed in (Carpenter
1992). However, Carpenter (1992) used a unification approach to his logic.
This led to problems with negation since the most general satisfier property
doesn’t hold. We will give an example of this later. First, however, we need
to define the logic.

Definition 2.30 (open world signature)
A signature is a quadruple (T, <, F, approp) s.t.

e 7 is a finite set of types, and (T, <) is a join semi-lattice
e F is a finite set of feature names

e approp : T X F — T is a partial function from pairs of types and
features to types s.t. if t' < ¢t and approp(t, f) |, then approp(t’, f) |

and approp(t', f) < approp(t, f).

Notice that the only difference between an open world signature and the sig-
natures as we’ve defined them before lies in the appropriateness conditions.
What we’ve previously defined as a closure property of approp, namely ap-
prop*, is now part of the signature proper. That is, approp is defined for all
types, not just minimal ones. The consistency condition imposed on approp
simply ensures correct inheritance of features and their values.

Definition 2.31 (open world interpretation)
Let S = (T, =, F, approp) be a signature. An S-interpretation is a quadruple
I=U,S,A)s.t.

e U is a set of objects, the domain of T
e §:U — T is a total function from the set of objects to the set of types

e A:F — UY is an attribute interpretation function s.t.

1. for each uw € U, for each f € F, if (A(f))(u) is defined, then
approp(S(u), f) is defined and S((A(f))(u)) < approp(S(u),)

2. for each u € U, for each f € F, if approp(S(u), f) is defined and
approp(S(u), f) =t, then A(f)(u) is defined and S(A(f)(u)) < ¢

43

Notice that the type assignment function no longer assigns a minimal type
to each object, but rather some arbitrary type. Following the terminology
of (Carpenter 1992), we can call a structure obeying condition 1. of the
definition of A well-typed. A structure obeying both conditions is called
totally well-typed.

F1: Q sign F2: Q phrase

CAT PHON CAT

mp () elis () () w

Figure 2.6: Example feature structures

Term interpretation is exactly identical to the closed world case. We can
now see why the most general satisfier property does not hold for this logic.
We will use the signature given in Fig. 2.1 on p. 12 and consider the feature
structures in Fig. 2.6. The term we’re interested in is —phrase. Feature
structure F1 of Fig. 2.6 is described by this, whereas F2 is not. However,
F1 subsumes F2. In our most general satisfier set for -phrase we would
need a feature structure that subsumes F1, but not F2, which is clearly
impossible. Under the usual definition of feature structure, this logic is thus
not amenable to a unification approach. There are several options one can
pursue at this point.

1. One can simply throw out negation. If a given application doesn’t
require the use of negation, that is the easiest option.

2. One can enrich the notion of model to accommodate negative concepts.
Carpenter (1992) introduced the notion of inequated feature structures
to be able to handle inequations, a restricted form of negation, in
his logic. One can do the same thing for negated type expressions.
However, the feature structures would then appear to lose the intuitive
appeal that they had before.

3. The possibility we will pursue here is to use a constraint solving ap-
proach, instead of unification. This also lets us compare closed and
open world typing more easily.

44

We have to consider that not all tautologies that held under a closed world
interpretation also hold under an open world one. Clearly, nothing changes
for the boolean tautologies. What changes is the interaction of negation with
feature selection, and the negation of types. Under open world reasoning, it
is not generally possible to replace a statement —a, where a is a type symbol,
by another statement that doesn’t involve negation. Before we can examine
this issue further, we need an auxiliary definition.

Definition 2.32 (intro)
Let S = (T, =, F, approp) be a signature. intro: F — 27 is a total function
from the set of features to the power set of types where for each f € F,

intro(f) = max({t | approp(t, f)1}).

If |intro(f)| < 1 for each f € F, we say that S obeys the feature introduction
condition (Carpenter 1992). As we will see later, the feature introduction
condition has ramifications for type inference. For a discussion of the feature
introduction condition, see (King and Gétz 1993).

Proposition 2.17
Let S = (T, <, F, approp) be a signature, f € F and ¢ be a term. Then for
each open world interpretation T = (U, S, A) of S,

gl =0 A)V fimgl*

teintro(f)

Proof

45

= U [-f:4]z
acASS
= U u\[fela
acASS
= U UN{uel [(AN))(u) LA A(F)(u) € [413}
acASS
= etgss({u €U | (AN 1TU{u et | A(S))(v) € [412})
= U ({u e U | approp(S(u), f) 1} U{v € U | A(f))(u) €
acASS

[~412})

= U (fu e U | =3t € intro(f). v € [tJEYu{u € U |
a€ASS

A(f))(w) € [-412})
= U IC A)V fimdlg

a€ASS teintro(f)
= (A OV
teintro(f)
|

We can now define what it means for a feature term to be in (open world)
disjunctive normal form.

Definition 2.33 (DNF)

A feature term is in DNF if it is a disjunction of conjunctions (with no
disjunctions “inside”), and the only place where negation occurs is in front
of variables and type names.

It is obvious that each feature term can be transformed into an equivalent
one in DNF in finite time. Next, we look at feature constraints.

Definition 2.34 (feature constraints)

A feature constraint is of the form X|Y, X|-Y, X|t, X|-t or X| f:Y,
where X,Y are variables, t is a type symbol and f is a feature symbol.

As we said above, we can not in general eliminate negation in front of types.
Thus, we had to introduce an additional feature constraint that we didn’t

46

need in the closed world case. Constraint satisfaction is also identical, except
that we need to say what the condition for the new constraint is.

Definition 2.35 (constraint satisfaction)

o Z,aEX|Y iff ao(X) = oY)

T,a = X|Y iff o(X) # oY)

T ol X|tiff S(a(X)) <t

T o= X|—t iff S(a(X)) £ ¢t

T, = X| f:Y iff A(f)(@(X)) 4 and A(f)(a(X)) = a(Y)

We now define a normal form for feature clauses and show that every clause
in normal form is satisfiable.

Definition 2.36 (open world normal form)
A feature clause % is in normal form iff it has the following properties:

1. If X is a main variable in %, then for some a € T, X|a € X.

2. X f:Y,X|f:Z€X, thenY = Z.

3. If X|a, X|be X, thena =b.

4. If X|a, X| b€ X, thena # b and b < a.

5. If X|—a, X|-b€e X, then b £ a.

6. If X|Y € &, then Y occurs nowhere else in 3.

7. fX|-Y €%, then X #Y.

8. If X|a, X| f1Y, Y|be€ X, then approp(a, f)| and b < approp(a, f).
Condition 4. requires that negative type information must be more specific
than positive one. Again with reference to our example type hierarchy on
p. 12, consider the feature clause {X | —sign, X | word}. This is clearly incon-
sistent, since if something is a word, then it is necessarily also a sign. In
{X|—list, X | word}, the information that the object denoted by X is not a

list is redundant, because a word can never be a list, anyway. These cases
are ruled out by condition 4. The clause {X| —~word, X| sign}, on the other

47

hand, is allowed. It says that the object denoted by X can be a sign or a
hc-phrase, but not a word.

Condition 5. is not strictly necessary for satisfiability, it just keeps the con-
straint clauses smaller. Consider the clause {X|-list, X | —e-list}. The in-
formation that the object denoted by X is not an e-list is redundant, since
we also know that it may not be a list of any kind.

Finally, note that we only need a single condition (cond. 8) to ensure that
the appropriateness conditions are met. This is so because objects need not
be of a maximally specific type. The appropriateness conditions can thus
be checked with the types that are actually constraining the variables, with
no need to “look down” at the minimal types.

Before we show that every feature clause in normal form is satisfiable, we
define a useful standard interpretation. It has exactly one object of each
type. This is very similar to Zg we defined in Sec. 2.3.2.

Definition 2.37 (Zg)
For each signature ¥ = (T, <, F, approp), define an interpretation Ig =
(Us, Sg, Ag) with

.Z/{S:{UtltET}
[} SS(’LLt):t

undefined otherwise

o As(f)(u) = { e if approp(t, f) | and t' = approp(t, f)

Proposition 2.18
If S =(T,=<,F, approp) is a signature and ¥ is a feature clause in normal
form, then Y. is satisfiable.

Proof

We construct an interpretation Z and assignment « s.t. Z,a = 3. Define

Z=(U,S,A), where

e U=UsU{X | X € main(2)}

. S(u) = Ss(u) ifuels
ot if w =X for some X € FV(X) and X|t € &

48

As(f)(u) if u € Us and Ag(f)(u)l

Y if v = X for some X € FV(X) and
X|fYeX
o A(f)(u) =< uw if v = X for some X € FV(¥),

X|t e X, fornoY is X|f:Y € %,

approp(t, f)] and t' = approp(t, f)
undefined otherwise

Let 8 be some variable assignment. Define

X if X is a main variable in ¥
a(X)=¢Y if X is an auxiliary variable and Y| X € &
B(X) otherwise

It remains to be shown that for each c € &, 7, a = c.

o If X|Y € ¥ then a(X) = a(Y), by definition of «a.
o If X|Y € £ then X #Y and X|Y ¢ 2. Thus, a(X) # «(Y).

If X|a € X then S(a(X)) = a.

If X|—a € X then for some b, X|be E, S(a(X))=b,a# band a < b.
Thus, S(a(X)) £ a.

If X| fY € Z then a(X) =X, oY) =Y and A(f)(X) =Y.

Thus, Z,a E 2.
|

At this point, we need to consider how we get from terms to constraint
matrices. However, since the definition of trans for this logic is almost
identical to the closed world case, we leave it out. The same holds for
the correctness proof, which is only a minor variation of the one given for
Prop. 2.11.

We now turn to the definition of the rewrite system for open world reasoning,
shown in Fig. 2.7 on p. 50. In large parts, it is identical to the one given for
closed world reasoning.

We have already discussed the intuition behind rule 4a in the example above.
Rule 4b takes care of the case when the negated type provides non-redundant
information. 4b can only apply when we have a multiple inheritance hierar-
chy.

49

1) TU{E} — TU{ZU{X|T}},
if X is a main variable in ¥ and fornoa € 7, X|t € X

2) TU{SU{X|£Y,X|f:Z}} — TU{SU{X|fY,Y|Z}},
ifY +# 2

3a) TU{ZU{X]|e, X|b}} — TU{ZU{X]|c}},
if b # a, glb(a,b) exists and glb(a,b) = ¢

3b) TU{ZU{X|a,X|b}} — T, if glb(a, b) does not exist
4a) TU{ZU{X]|a,X|-b}} —T,ifa<b
4b) TU{ZU{X|a, X|b}} — TU{EU{X]|e, X|~c}},
if @ £ b, glb(a,b) exists, glb(a,b) = c and b # ¢
4c) TU{ZU{X|a,X|-b}} — TU{ZU{X]|a}},if glb(a,b)t
5) I‘U{EU{X|—|a,X|—|b}} — FU{EU{X|—|Q}},
ifa#bandb=<a

6) TU{ZU{X|Y}} — TU{Zx/yU{X|Y}},
if X#Y and Y € FV(Y)

7) TU{SU{X|-X}} —T

8) TU{XU{X|q,X| Y, Y|b}} —

TU{ZU{X| e, X| f:Y,Y|b} | c € max({glb(a,d) | d € intro(f)})},
if approp(a, f)1

9a) TU{ZU{X|e, X| Y, Y|b}} — TU{ZU{X|e, X|fY,Y]|c}},
if approp(a, f) |, glb(b, approp(a, f)) ., glb(b, approp(a, f)) = ¢
and c# b

9b) TU{ZU{X|e X|fY,Y|b}} — T,
if approp(a, f) | and gib(, approp(a, £))1

Figure 2.7: Matrix rewriting for open world reasoning

50

T
a b
c d e
Figure 2.8: An example signature

Assume we have the signature in Fig. 2.8 and the constraints {X|a, X | —b}.
The constraint X | a tells us that the object denoted by X may be of type a,
c or d. The constraint X | —b tells us that the object denoted by X may be
neither of type b, nor d, nor of type e. We thus know that the object denoted
by X must be of type a or of type ¢. This is non-redundantly expressed with
the set {X|a, X|—d}, which is exactly what we get from applying rule 4b
to {X| e, X|-b}. Rules 4c and 5 take care of the cases when a negated type
does not provide constraining information, as discussed with the example
on p. 47 above.

Rules 8, 9a and 9b ensure the correctness of the typing information with
respect to the appropriateness conditions. These rules are a straightforward
encoding of the procedures TypDom and TypRan of (Carpenter 1992). No-
tice that rule 8 makes use of the set intro(f). This is the only place where
some constraint clause may be split up into several. Thus, if a signature
obeys the feature introduction condition, consistency can be determined
much more efficiently. Rule 8 makes sure that the variable the feature f
is applied to is appropriately typed. The object denoted by X must be in
the domain of f. Rules 9a and 9b do the same for the variable f maps to,
ensuring that the object denoted by Y is in the range of f. Note that rule 8
requires that approp(a, f) is undefined, whereas rules 9a and 9b require the
opposite. This means that these rules apply in a strict sequence.

Again, we will give no proof that a set of constraints ¥ is in normal form iff
none of the rewrite rules applies to {£}. This can be seen by an easy case
analysis.

We next consider termination of the rewrite system on finite sets of finite
sets of constraints. We use the same techniques as in Sec. 2.3.2, but the

51

weights are somewhat different in this proof.

Proposition 2.19
IfT is a finite matrix of finite sets, then there are [V, I'" and natural numbers

n and m s.t. I = " 5 " —/+, where rule 1) does not apply to I".

Proof

Suppose I' = {¥4, ..., Zk}. [V can be derived in at most 2X (| 21| X...X|Zk|)
steps (since for each 4, |main(%;)| < 2 X |X]). Since none of the other rules

introduce any new variables, we can consider the rest of the rules without
rule 1).

We define the weight of each set of constraints.
o weight(X|a)=1|{b]|b < a}|
o weight(X|—a)=[{b|b < a}|
o weight(X|Y)=1
o weight(X|-Y)=1

o weight(X| fY)=2

o weight(X) = (EE:E weight(a)) X |main(X)|

Now consider rule application, ignoring the obvious cases:

e If TUY — T U3 by application of rule 2), then weight(¥') <
weight(X) — 1 (Jmain(T)| < |main(X')|) .

e Suppose rule 3a) is applied: TU{ZU{X |a, X|b}} — TU{ZU{X|c}},
where a # b, glb(a,b)| and glb(a,b) = c. Let A= {a' |a’ <a}, B=
{6/ | b < b} and C = {c' | ¢ < c}. Assume w.lo.g. that |A] > |B].
Since a # b and g¢ib(a, b) |, we know that |A| > 2. Thus, weight(X|a)+
weight(X|b) = |A| 4+ |B| > 2+ |B| > |B| > |C| = weight(X| ¢c).

e If rule 4b) applies, then ¢ < b and ¢ # b. Thus, weight(X|—c) <
weight(X | —b).

52

e Suppose rule 6) applies: TU{ZU{X|Y}} — TU{Zx/yyU{X|Y}},
with X #Y and Y € FV(Z). Now > weight(c) =
ce(ZU{X|Y})
> weight(c), but |main(X U{X|Y})| = |main(Zx/y) U
g€(Zx/nU{XIY})
{X|Y})| — 1. Thus, weight(Xx/y] U{X|Y}) < weight(Z U {X|Y}).

o If rule 8) applies, then for each new ¢, ¢ < b and ¢ # b. Thus,
weight(X | c) < weight(X|b).

e Rule 9a): same as rule 7).

As before, we can roughly estimate the complexity of this procedure. If the
feature introduction condition does not hold, the cost is also exponential
in the size of the clause, due to rule 8. If feature introduction does hold,
however, rule 8 will never split up the clause into several ones. The number
of times we have to consider combinations of constraints is then bounded
by a constant factor (determined by the signature), the the cost is linear
in the size of the clause. Notice also that under feature introduction, the
number of clauses we get out of the rewrite system is less than or equal to
the number we put in.

The run-time behaviour under open world type inference is not quite so nice.
The typing system is not static. We will give a simple example involving
rule 9b. Rule 9a may also need to be applied at run-time. Rule 8, on the
other hand, does not. Consider the signature in Fig. 2.9. Suppose we have
the clauses X = {X|a,X| f:Y,Y|true} and X' = {Z|c}, both in normal
form. Now we try to normalise {£ U X' U {X| Z}}, yielding the following
derivation.

{{X|e,X| f:Y,Y|true, X | Z,Z| c}}

L {X|a,X|c,X|Z,X| f:Y,Y|true}} (6)
L {X|e,X|Z,X| f:Y,Y]|true}} (3a)
L9 (9b)

We already mentioned above that under the feature introduction condi-
tion, INF({Z})| < 1. Carpenter (1992) shows that under certain conditions,
NF({X}) gives us a unique (up to renaming) most general satisfier.

53

T

Abool
a
[f bool]

A true false

b c
[true [false

Figure 2.9: An example signature

Definition 2.38 (approp™)
Define approp™ as the smallest relation s.t.

e approp™(t,t') if approp(t, f) = t' for some f

e approp™ (t,t") if approp(t, f) = t' for some f and approp™ (¢',t")

Please note that approp™ has nothing to do with approp*.

Proposition 2.20
For each feature term ¢, there is a most general satisfier if the following
conditions are met (Carpenter 1992):

1. The feature introduction condition holds.
2. ¢ contains no disjunction and negation.
3. approp™ is anti-symmetric.

The third condition ensures that the trivial interpretation Zg contains no
cycles.

Finally, we show that the rewrite system preserves the denotation of a ma-
trix.

Proposition 2.21
For each matrix I', T, interpretation T = (U, S, A) and assignment «, if
' — IV, then

54

T,aETift T),a =T

Proof

Rule 1): obvious, since Z,a |= X | T is always true.
Rule 2):

T o {X| £V, X| £:2)

& A(f)(a(X)) L, A(f)(a(X))
& A(f)(a(X)) L, A(f)(a(X))
& Tk {X|1:Y,Y|Z)

Rule 3a): obvious, since for each v € U, S(u) < glb(a,bd) iff S(u) < @ and
S(u) < b.

Rule 3b): obvious, since if ¢lb(a,bd) 1, then for each v € U, S(u) A a or
S(u) A b.

Rule 4a): if ¢ < b then forno Z, o Z,a = {X| a, X| —b}.

(Y) and A(f)(a(X)) = a(2)
(Y) and a(Y) = a(Z)

(63
(8

Rule 4b): 7, a = {X]| a, X| b}, glb(a,b)| and glb(a,b) = c
& S(a(X)) Ra, S(a(X)) A band glb(a,b) =c
& S(a(X)) Raeand S(a(X)) A c
o T,aEA{X|a,X|~c}

Rule 4¢): 7, a = {X| a} and g¢ib(a,b) 1
= S(a(X)) R aand S(a(X)) £ b
= I,alE={X|a, X| b}

Rule 5): Z,a = {X|—a} and b < a
= S(a(X)) A aand S(a(X)) A b
= I,Ozlz {X|—|a,X|—|b}

Rule 6): Z,a EXU{X|Y} & ZT,aEZand a(X) =aY) & T,a
E[X/Y] U{X|Y}.

Rule 7): obvious.

Rule 8): right to left is obvious. Consider left to right:

T,a = {X|a, X| f:Y, X| b}

55

= S(a(X)) = a and for some d € intro(f), S(a(X)) < d
= for some ¢ € max({glb(a,d) | d € intro(f)}), S(a(X)) < c

= T,a = {X|c}
Rule 9a): again, right to left is obvious. For left to right, we have:

I,aF {X|a, X|fY,Y]b}

= S(a(X)) 2o, A(f)(a(X))|, A(f)(a(X)) = oY) and S((Y)) < b
= approp(a, f) !, glb(b, approp(a, f))| and S(a(Y)) =< gib(b, approp(a, f))
= I,a | {X|a,X| f:Y,Y] glb(b, approp(a, f))}

Rule 9b): this is also obvious, since the clause that is removed is clearly
inconsistent.

2.6 Conclusion

In this chapter, we have investigated the foundations of feature logics. We
defined what signatures, terms and interpretations are, and examined the
computational properties of the satisfiability problem.

We chose to address the satisfiability problem with a constraint-based ap-
proach. We feel that a constraint-based approach improves upon a unification-
based approach by keeping semantics and computation strictly separate. It
obviates the need for things like, e.g., inequated feature structures, which are
strictly unnecessary from a semantic point of view and were only introduced
to make unification work in the presence of path inequations.

The constraint-based approach, on the other hand, is very flexible and can
easily accommodate language extensions. It is also straightforward to use
in as a relational constraint language, as we will see in ch 6. There is no
need to invent things like multi-rooted feature structures, or encode relations
(like phrase structure rules) as feature structures (cf. Shieber 1989). These
properties are built into the constraint approach.

56

Chapter 3

Constraint grammars

In this chapter, we will examine the notion of grammar in our feature logic
setting. In particular, we will be interested in how a grammar defines the
grammatical structures, and how it rules out the ungrammatical ones. Apart
from details of the underlying formalism, it is these properties that can help
us distinguish between different grammar formalisms. Grammar formalisms
seem to fall into two basic categories, namely constraint grammars and rule-
based grammars. Constraint grammars are characterized by the fact that
their expressions are interpreted as constraints that rule out non-well formed
structures. That is, any structure is considered well-formed unless specifi-
cally ruled out by a grammar expression. In rule-based grammars, on the
other hand, grammar expressions are considered as production rules. No
linguistic structure is considered well-formed unless it is generated by some
grammar expression.

(1) S = NP VP

(2) VP == IV |SVS

(3) IV = sleeps

(4) SV == know

(5) NP == Arthur | knights

Figure 3.1: A context free grammar

As an example, let us consider context free grammars as sets of expressions
in Backus-Naur form (BNF). Context free grammars are traditionally inter-

57

A N
A

v SV NP

Arthur sleeps knights know Arthur

Figure 3.2: Example trees

preted as rule-based grammars. However, one can equally well define them
as constraint grammars, as we shall see in the following example. Consider
the CFG in fig. 3.1 and the trees in fig. 3.2. Under a rule-based interpreta-
tion, every local tree must be generated by one of the rules in the grammar.
Thus, the first tree is grammatical, since the local trees are generated by
rules (1), (5), (2) and (3), respectively. The second tree is not well-formed,
since the local tree with VP as mother an SV and NP as daughters is not
generated by any of the productions. Under a constraint view, we interpret
the BNF expressions as implications. If the mother of a local tree is labeled
with the category to the left of the ::=, then the daughters must be labeled
with the categories to the right of the ::=. Under this view, the first tree is
well-formed, since all local trees obey all the constraints. The second tree
is non-well formed, since the offending local tree is ruled out by constraint
(2).

The way we have described it, the rule-based view and the constraint view
seem to be equivalent for context free grammar. However, this is not quite
true. Suppose there is a non-terminal symbol X that does not appear as the
left-hand side of a BNF expression. The rule-based view holds then that
no local tree whose mother is labeled with X is well-formed, since there is
no rule to generate such a tree. The constraint view, on the other hand,
says that every local tree with X labeling the mother is well-formed, since
there is no constraint to rule it out. For CFGs, the two approaches can be

58

made to coincide exactly!, but in general, this exemplifies again the main
difference between the two views. In the absence of constraints, everything
is well-formed, whereas in the absence of rules, nothing is.

As far as computation is concerned, at first glance it would appear that a
constraint approach must be much less efficient. To check some structure for
well-formedness, every substructure (local tree in the case of CFGs) must
be checked against every constraint. Under a rule-based approach, one
only needs to check each substructure against some rule. We will see later
that with appropriate grammar transformation and indexing techniques,
computation with constraint grammars can be just as efficient as with rule-
based grammars.

3.1 Grammar formalisms

Having drawn the basic distinction between constraint and rule-based gram-
mars, we can now see where some of the current grammar formalisms fit into
the scheme. What, for example, is the status of so-called constraint-based
grammar formalisms? Let us begin by considering a simple example from
computational linguistics, PATR-II (Shieber 1989).

S — NP VP,
NP:agr VP:agr,

S:cat VP:cat,

VP:cat v,

NP:cat ~ n.

2 2

Figure 3.3: A PATR-II rule

Figure 3.3 shows an example PATR-II rule. It is to be understood as a
phrase structure rule generating a local tree. The nodes of the tree are not
simply labeled with atomic symbols, but with complex feature structures.
The first line of the rule says that it generates a tree with two daughters.
The following lines place constraints on the possible feature structures the
nodes of the tree can be labeled with. It is possible for feature structures on
distinct nodes to share feature values. In the example, the agr value of the

'E.g., with an appropriate completion operation that adds a constraint for each non-
terminal symbol not occurring on the left-hand side of a grammar expression.

59

NP node is required to be identical to the agr value of the vp node. The ~
operator assigns atomic values to features (or more generally, paths).

Notice how the constraints in this setup work only locally. They restrict
the local trees generated by the rule. It is not possible in PATR-II to state
universal constraints that apply to all local trees. For example, it is not
possible to state the restriction that every non-terminal node must have a
head, a daughter that shares its cat value, for example. Thus, under the
distinction drawn in the previous section, PATR-II falls into the class of
rule-based formalisms.

A similar observation can be made about lexical-functional grammar (LFG,
Kaplan and Bresnan 1982). Intuitively, LFG and PATR-II are more or less
notational variants. Figure 3.4 shows an example of a LFG rule.

S — NP VP
(tsubj) =4 1=1
Figure 3.4: A LFG rule

Apart from the fact that LFG uses the symbol 1 to refer to the mother
of the local tree, and the symbol | to refer to the annotated category, the
expressive means of both systems are very similar, though not identical.
What is of interest here is that the LFG notion of grammaticality is one of
generation, just as with PATR-II. There is no way in LFG to place universal
constraints on structures. However, there is one universal constraint that is
part of every LFG grammar, namely the off-line parsability constraint. Us-
ing the formulation of Johnson (1988), we can define the off-line parsability
constraint as follows.

Definition 3.1 (off-line parsability constraint)
Every constituent structure must obey the following constraints.

1. It must not include a non-branching dominance chain with the same
category labeling two distinct nodes.

2. The empty string must not label any terminal node.

If we take the off-line parsability constraint to be part of every LFG gram-
mar, then LFG is not a pure rule-based system, but rather a mixed formal-
ism, with both rules and constraints. However, since this constraint is part

60

of every grammar, it seems much more plausible to interpret it as a con-
straint on LFG model structures in general, much like the constraint that
all trees must be finite. We can thus claim with some justification that LFG
is a rule-based formalism.

Let us now turn to another generative grammar formalism, namely Gener-
alised Phrase Structure Grammar (GPSG, Gazdar et al. 1985). In GPSG,
many different mechanisms interact to form a complex architecture: im-
mediate dominance (ID) rules, linear precedence (LP) statements, meta
rules, feature co-occurrence restrictions (FCRs), feature specification de-
faults (FSDs) and universal feature instantiation principles. The universal
feature instantiation principles are supposed to be the same for every gram-
mar, and thus have a similar status as the off-line parsability constraint. Let
us see how we can fit the rest of GPSG’s grammatical apparatus into our
rules vs. constraints distinction.

e ID rules are clearly rules, just as the phrase structure rules of PATR-II

or LFG.

e LP statements are constraints. Their interpretation is that no local
tree may violate an LP statement. In other words, every LP statement
must be true of every local tree.

e Meta rules fall out of our schema, since they produce new ID rules
from given ones, and do not directly generate or constrain linguistic
structures. We thus consider them part of the ID component.

e FCRs are also global constraints. Every “feature structure” that labels
a node in a tree must obey all the FCRs. In fact, the appropriateness
conditions as we introduced them play a role very similar to FCRs.
See (Gerdemann and King 1993) for discussion.

e The interpretation of FSDs is somewhat tricky. However, for our pur-
poses it is enough to say that, everything else being equal, a local
tree must satisfy the FSDs. Thus, FSDs are also interpreted as global
constraints.

Of the grammar frameworks considered so far, GPSG is the only one that is
constraint-based in the sense of constraint as we use it here. It is clearly a
mixed system with a set of rules (ID rules) and a variety of global constraints.
If one considers this setup with a view to processing, the ID rules play a
primary role. They generate structures which then have to pass the filters

61

of the global constraints. This is even made explicit in the formal definition
of tree admissibility given in (Gazdar et al. 1985).

1. rule system

(a) lexicon
(b) syntax
i. categorial component
ii. transformational component
(c) PF-component
(d) LF-component

2. principles

(a) bounding theory
(b) government theory
(c) 6-theory
(d) binding theory
)
)

(
(

C

e) Case theory

f

control theory

Figure 3.5: Components of a GB grammar (Chomsky 1981)

As far as it is possible to determine, this is similar in another grammatical
framework, namely Government and Binding theory (GB, Chomsky 1981).
Figure 3.5 shows the components of a GB grammar, which is subdivided into
rules and principles. The rules can be interpreted to be rules in our sense.
The lexicon and the categorial component of syntax together generate D-
structures. The transformational component consists only of the rule Move-
o, generating S-structures from D-structures. From S-structures, the PF-
and LF-components then generate PF- and LF-representations, respectively.

The principles, on the other hand, can be construed as constraints. This
is not totally clear-cut, since some principles are formulated as constraints
on, for example, Move-o. Now this is not a constraint in our sense, since
by constraint we mean restrictions on objects, not rules. However, it seems
that principles constraining rules in GB can generally be reinterpreted as
constraints on structures, i.e., trees. We can thus conclude that GB, like

62

GPSG, is a mixed framework, relying on both rules and constraints to gen-
erate grammatical structures.

It is worth pointing out that this is not the only possible way to characterize
GB. It has also variously been cast as a purely constraint-based formalism.
See (Rogers 1999) and references cited therein.

In HPSG (Pollard and Sag 1994) finally, grammars generally appear to be
constraint-based. This seems to be clear from the original formulation in
(Pollard and Sag 1987), although there is less formal elaboration in the 1994
book. Still, the general idea is that potential grammatical structures are
filtered out by constraints. There is some confusion as to the use of relations.
It is generally assumed that some logic programming like extension exists
for HPSG grammars. We will return to this issue in ch. 6.

3.2 Validity vs. satisfiability-based approaches

After the intuitive considerations of the last section, we will now approach
grammatical frameworks from a more formal angle. Following much recent
work, we will consider a grammar to be a set of formulae (a theory) of some
logic. The grammar framework may then determine the exact shape these
formulae can take, but the interpretation is taken care of by the logic. The
grammatical structures are simply the models of the theory. This approach
has two decisive advantages.

e The meaning of any given grammar is precisely defined. It is, at least in
principle, possible to falsify a purported grammar of a given language
by showing that it wrongly excludes grammatical sentences, or admits
ungrammatical ones.

e If one wants to provide a computational model of the grammar theory,
it is sufficient to provide a model of the underlying logic, if that is
possible. If the grammatical theory then changes, as it invariably
does, the computational model is still appropriate if the underlying
logic hasn’t changed.

The disadvantage of this approach is that only formulae of the chosen logic
are allowed as grammar statements. This can mean that an intuitively
simple statement may have to be spelled out as a long and complicated
formula. It is thus the responsibility of the computational linguist or logician
to come up with a logic that not only provides the expressive power to state

63

all grammatical rules and constraints, but that allows one to do so in a
concise and intuitive way.

We said above that in this logic-based approach, the grammatical structures
are the models of the grammatical theory, where model here means model
in the logical sense. However, we are normally interested in more general
questions. We will want our system to at least be able to tell us if there are
grammatical structures for a given string in our language, without having
to tell the system what the analysis should look like. In other words, we
want to solve the parsing problem. Or we may want to give the system a
partial description of some ungrammatical structure, and see if this structure
is actually excluded by our grammar. In general, given a theory © and a
single expression ¢, we want to know if ©® admits ¢ or not.

Following Johnson (1994), we can identify at least two approaches how this
informal notion can be made precise for any given theory of grammar. The
first one is based on the standard notion of logical consequence. Given a
theory ® and an expression ¢, we ask whether ¢ is a logical consequence of
O, i.e., whether ¢ is true in all models of ©. Johnson (1994) calls this the
validity-based approach, since for finite theories and logics with a deduction
theorem, determining logical consequence is equivalent to determining valid-
ity. The alternative is to ask if ¢ is true in some model of ©, a satisfiability
problem.

Let us consider this distinction from a computational point of view. Suppose
our underlying logic is standard first order predicate logic (FOL). We know
that the validity problem for FOL is undecidable. However, by the com-
pleteness theorem, we know that we can enumerate the valid FOL formulae.
Combining the two results tells us that we can not enumerate the ones that
are not valid. Thus, if we express the admission problem (does © admit ¢)
as a validity problem, we know that an algorithm exists that

e will terminate, if ® does in fact admit ¢, and

e may not terminate, if ©® does not admit ¢.

Now to determine satisfiability is in some sense the co-problem to deter-
mining validity. To be precise, we can express the question if ¢ is valid
equivalently as the question if —¢ is unsatisfiable. From this fact, we can
conclude that a notion of admission based on satisfiability has the following
properties.

e It is undecidable.

64

e The grammatical expressions are not recursively enumerable. That is,
there is no algorithm that is guaranteed to terminate if © admits ¢.

e The ungrammatical expressions are recursively enumerable.

It does not seem particularly important that the set of grammatical expres-
sions is not recursively enumerable. Since practically, we can not tell if a
query will never terminate, or it simply hasn’t terminated yet, but will in
a short while, the real difference is between decidable and undecidable for-
malisms. For undecidable grammar formalisms, it would not appear to make
a practical difference whether the admissibility problem itself is enumerable,
or its co-problem.

An interesting question is what, if any, is the connection between rules vs.
constraints and the validity vs. satisfiability distinction. We can observe for
now that Johnson’s example for a validity-based approach, namely Definite
Clause Grammars (DCGs), is a rule-based formalism in our sense. His
example for a satisfiability-based approach, a system very similar to the one
we shall define shortly, is constraint based.

3.3 Feature constraint grammars

In this section, we will define grammars in our feature logic and the Gener-
alised parsing problem. We will then explore how this architecture relates
to FOL and what this tells us about the complexity of our grammars.

Definition 3.2 (grammar)
A grammar is a pair (S, ©), where S is a signature and © is a finite set of
S-terms.

Definition 3.3 (model)
An interpretation T = (U, S, A) is a model of a set © of feature terms with
respect to a signature S iff for every u € U and for every ¢ € ©, u € [¢]*.

This is equivalent to saying that for every ¢ € ©, [¢]* = U. The definition
as we’ve given it emphasizes the constraint nature of grammar terms: every
constraint must be true of every object.

Grammaticality is a relation between grammars and linguistic structures.
However, as we pointed out above, a more interesting relation is generally
one between grammars and terms (or descriptions). Informally, we called

65

this the admission problem. We will continue to use admission as a general
term for all grammar formalisms. Following King (1995), we will call the
technical notion for our grammars prediction.

Definition 3.4 (prediction)
G = (S, 0) predicts a term ¢ iff there is a model of G s.t. [¢]* # 0. We

call ¢ a query.

This definition clearly makes our approach satisfiability based. G predicts
¢ just in case there is at least one model of G that makes ¢ true. This
will become even clearer when we consider how to translate the prediction
problem into a FOL satisfiability problem.

3.3.1 Translating to first order logic

It is clear that the feature logic we’ve defined is closely related to (a subset
of) FOL. Johnson (1991) showed this for the untyped case. A translation
for Speciate Re-entrant Logic (SRL, King 1994) was recently proposed and
proven correct in (Aldag 1997). Aldag’s work carries over almost unchanged
to our case.

We begin by defining a FOL signature for every FL signature. We simply
encode types as unary predicates, and features as binary ones. No other
symbols are needed. Next, we define a set of axioms to encode the properties
of the type hierarchy and the appropriateness conditions. Given a signature
S = (T, =, F, approp), define the translation S’ of S as the union of the
following sets.

1. {¥Ve.\{u(z) | v e V})

2. {Vz.v(z) = —=v'(z) | v,v' € V,v £ v}

3. {Va.t(z) = V{v(z) |[ve Vv <t} [te (T\V)}
4. {Vayz. (f(z,y) A f(z,2)) 2 y=2| f €T}

5. {Vz.v(z) = Jy. flz,y) At(y) v eV, t €T, f € F, approp(v, f) |,
approp(v, f) =t}

6. {Vz.v(z) —» ~Jy. f(z,y) | v €V, f € F, approp(v, f)1}

66

The first axiom encodes the fact that each object is of a minimal type.
The second one says that no object can be of two different minimal types.
Axiom set 3 encodes inheritance of the type hierarchy. If an object is of
a non-minimal type ¢, then it is also of some minimal type subsumed by
t. The other axiom sets encode the properties of features. Set 4 says that
features are functional. Set 5 says that for each object u of some minimal
type v, the feature f must be defined on w if f is appropriate for v, and the
object u is mapped to by f must be of the correct type. Finally, axiom set 6
requires that all features that are not appropriate for minimal type v must
be undefined on each object of type v.

We now turn to encoding FL terms (see sec. 2.2) in FOL. Since our terms
look rather different from SRL descriptions, we have to use a modified ver-
sion of Aldag’s translation. In fact, our translation will be very similar to the
trans procedure we use for converting terms into constraint sets. This high-
lights the close relation between our approach to constraint solving and the
translation to FOL. Given the translation of signatures above, we can view
constraint clauses as FOL formulae. For example, the clause {X|a, X| f:
Y,Y|b} can be written as the formula 3X. (a(X) A JY. (f(X,Y) A b(y))).
However, the translation to FOL is more general as it can also handle terms
that are not in disjunctive normal form. Below, we give the definition of
the translation procedure, which we’ll call fol. Like trans, fol takes two
arguments: a variable and a term.

o fol(X,Y):= (X =Y),if Y is a variable.
o fol(X,t) :=t(X),ift € T.

o fol(X, f: ¢) :=3Y. (f(X,Y)

, (@A) = (fol(X, ¢) A fol (X, 9)).
(¢ Vv ¥)) = (fol(X, ¢) v fol (X, 9)).
, (7)) = (—fol(X, ¢)).

A fol(Y, ¢)), where Y is new.
o fol(X

(
(X
o fol(X
fol (X

Notice that fol produces open formulae with exactly one free variable. We
will make use of this fact to encode the prediction problem.

Definition 3.5
Let S be a signature, © a set of S-terms and ¢ a S-term. Define the
translation

fol(S, 0, ¢) = ' U {VX.fol(X,0) | 6 € ©} U{IX.fol(X,)},

67

where S’ is the translation of S as defined above, and X ¢ FV(O U {¢}).

For every constraint #, the root variable of its translation is universally
quantified. This has the effect of making 6 true of every object in the
domain, which is exactly what we want for a constraint. The root variable
of ¢, on the other hand, is existentially quantified. It is sufficient for some
object in the domain to make the translation of ¢ true.

We’re now ready to state the main result of this section.

Proposition 3.1
Let S be a signature, © a set of S-terms and ¢ a S-term.

O predicts ¢ iff fol(S, ©, ¢) is satisfiable.

Proof

See the proof in (Aldag 1997). It carries over with minor modifications due
to the different syntax.

Given our discussion of the complexity of the satisfiability problem above,
we thus conclude that the non-prediction problem is recursive, i.e., there is
an algorithm that will terminate in finite time if a theory © does not predict
some term ¢. Unfortunately, this result tells us nothing about the positive
case, i.e., prediction. If by some chance we’ve hit upon a fragment of FOL
that is decidable, then the prediction problem would be recursive, as well.
However, we shall see in the next section that this is not the case.

3.3.2 An example

Let us return for a moment to the constraint vs. rule-based and satisfiability
vs. validity distinctions. We saw that the definition of model that we gave
makes our grammars constraint grammars. Given our definition of models,
only a satisfiability-based approach to prediction makes sense. To see this,
let us consider an example. We will encode the equivalent of the context
free grammar from the beginning of this section. The relevant signature is
shown in fig. 3.6. NT stands for non-terminal, BR for branching, NBR for
non-branching and PT for pre-terminal. We need two different VPs (VP1
and VP2), since we have both a branching and a non-branching VP rule.
The theory encoding the grammar is shown in fig 3.7.

68

T

T

NT list atom

phon list /\ N
phon-aux list elist ne-list

hd atom| Arthur sleeps knights

BR {NBR } PT i list
dtirl NT VP dtr NT
dtr2 NT

s VPL VP2 IV SV NP

Figure 3.6: An example signature

1. BR — phon : PO A phon-auz : PA
dirl : (phon : PO A phon-auz : P1)A
dtr2: (phon : P1 A phon-auz : P)

2. NBR — phon : PO A phon-auz : PA
dtr : (phon : PO A phon-auz : P)

3. PT — phon : [atom | T| A phon-auz : T
4. S — dtrl1 : NP A dtr2: VP

5. VP — (dtr: IV Vv (dtr1 : SV A dir2: S))
6. IV — phon : hd : sleeps

7. SV — phon : hd : know

8. NP — phon : hd : (knightsV Arthur)

Figure 3.7: Theory encoding a CFG

We use the usual conventions for abbreviating list expressions. [] stands for
e-list, [¢1, ..., ¢n) stands for (ne-listAhd : ¢y Atl: (... (ne-listAhd : ¢, Atl:
e-list)...) and [¢1,...,¢n | Y] abbreviates the term (ne-list A hd : ¢1 A tl:

69

(...(ne-list ANhd: o ANtl:). ..).

Our example uses a difference list encoding of the phonological string. Con-
straint 1 rules the distribution of the phonological string on binary branching
trees, constraint 2 on unary branching ones. Constraint 3 says that each pre-
terminal takes exactly one element off the string. Constraints 4 and 5 are
the grammar rules, and 5-7 the lexical entries.

phon-aux

Figure 3.8: An example model

A query for the sentence “Arthur sleeps” has the form ¢ = (S A phon :
[Arthur, sleeps| A phon-auz : []). Figure 3.8 shows an example of an inter-
pretation that makes ¢ true. With a little patience, one can verify that
fig. 3.8 is in fact an interpretation according to the signature in fig. 3.6. The
interpretation is also a model of our theory in fig. 3.7. Every constraint is
true of every object. Thus, we know that ¢ is predicted by our theory.

Let us now consider the sentence that was excluded by our grammar, namely
“knights know Arthur”. As query, we have the feature term ¢ = (S A phon :
[knights, know, Arthur] A phon-auz : []). An interpretation satisfying ¢ is
given in fig. 3.9. However, this interpretation is not a model of our theory,
since object 3 does not satisfy constraint 5. That constraint says that a VP
is either a unary branching structure, which object 3 isn’t, or that it’s a
binary branching structure with the second daughter an S. Since the second
daughter of 3 is 10, which is an NP, we have a contradiction to constraint 5.

70

phon-aux

Figure 3.9: An interpretation which is not a model

Of course, one counterexample is not enough to show that our theory does
not predict ¢. To show that, we would have to prove that there is no model
of our theory that satisfies ¢. In chapter 5, we will provide a proof method
that shows non-prediction in the general case.

3.4 Undecidability of prediction

In this section, we will give a proof of the undecidability of the prediction
problem. We show that one can encode a well-known undecidable problem,
the word problem for Thue systems, as a prediction problem. Our proof
is a variation of the one given in (Ait-Kaci et al. 1993). Our contribution
is a proof of the correctness of the encoding, which was omitted in (Ait-
Kaci et al. 1993). An undecidability proof for prediction in the SRL of
(King 1994) can be found in (King et al. 1999). That proof is based on the

71

encoding of a tiling problem.

We begin by giving a definition of Thue systems. Next, we give a translation
from word problems in Thue systems to prediction problems, and finally
show that this translation is correct. QOur exposition of Thue systems is
based on (Lewis and Papadimitriou 1981).

Definition 3.6 (Thue systems)

A Thue system T = {{u1,v1},...,{tun,vn}} is a finite set of unordered pairs
of strings over an alphabet (a finite set of symbols) ¥.. A Thue system T
determines a relation ~r on strings s.t. ¢ ~p y iff ¢ = z1u;29 and y = z1v;29
or ¢ = z1v;29 and y = z1u;29, for some 21,2y € ©* and {u;,v;} € T. The
reflexive transitive closure =1 of ~7 is the equivalence relation on strings
induced by T. The word problem for Thue systems is to determine, given
alphabet ¥, Thue system T and two strings z,y € ¥*, whether z =7 y.

A proof of the general undecidability of the word problem for Thue systems
can be found in (Lewis and Papadimitriou 1981).

We can now turn to the encoding of Thue systems as feature constraint
grammars. The idea is very simple. There will be only a single type in the
signature, and the symbols of the alphabet ¥ will be encoded as features.
For every pair of strings in the Thue system, the theory will require the
corresponding paths to be equated for every object in the universe.

Definition 3.7 (translation of Thue systems)
Let ¥ be an alphabet and T a Thue system over %.. The signature S =
(T, =, F, approp) encoding ¥ is defined as follows.

o T={T}
e [<T,
e F =1, and

approp(T, f) =T for each f € F.

We need a function :: from pairs of strings and terms to terms. We will use
:: as an infix operator, defined as follows.

v::¢::{¢ fu=e¢

fi(ung) ifv=fu, fED

Now define the theory © encoding T as ©® = {(T - u = X Av: X) |
{u,v} € T}.

72

We will now show that the word problem for Thue systems can be encoded
as a non-prediction problem for feature constraint grammars. It is sufficient
to show this, since the undecidability of non-prediction entails the unde-
cidability of prediction, its co-problem. We will show that for each Thue
system T, its encoding theory © and strings u,v, v =7 v iff ® does not
predict (v :: X Av 1 =X). We will break up the proof of this into two
propositions. Proposition 3.2 will prove the direction from left to right, and
Prop. 3.3 the other one.

Proposition 3.2
Let ¥ be an alphabet, T a Thue system, © the encoding of T and v,w
strings over ¥.. If v =1 w, then for each model T = (U, S, A) of O, for each
uw €U, A*(v)(u) = A*(w)(u).
Proof
By induction on the number of ~7 steps from v to w.
Suppose v = w. Then A*(v)(u) = A*(w)(u).
Now suppose v =7 v/, v' ~r w and for each model T = (U, S, A) of O, for
each u € U, A*(v)(u) = A*(v')(u). But then v’ = z1v;22 and w = zyw;z; or
v = zyw;zy and w = zyv;z; for some z1,2zy € ¥* and {v;, w;} € T. Thus,
(T 2 v XAw; 2 X) € O and for all v € U, A*(v;)(v') = A*(w;)(w).
Thus, A*(v)(u) = A*(w)(u).

|

Proposition 3.3

Let ¥ be an alphabet, T a Thue system, S = (T, <, F, approp) the signature
encoding ¥, © the encoding of T and v, w strings over ¥. If v Zr w, then
there is a model T of © s.t. [u :: X Aw = ~X]* £ 0.

Proof

We define a model that has the desired property. Define Z = (U, S, A) with
o U = %L _ (the set of strings modulo =r)
o S(u)=T, foreachu el
o A([ul=y)(f) = [uf]=y, for each [u]=, € U and f € F

First, we show that 7 is an S-interpretation. Clearly, the appropriateness
conditions are satisfied. To see that A is well-defined, note that v =7 w =
Vo =7 wo.

73

Next, we show that Z is a model of ©. For each constraint § = (T — ' ::
X Av' 1 X) € O, for each [w]=, € U:

0eco

= {u,W}eT

= wu' =7 wv'

= A*([w]z)(w) = [we']z, = [wo']zy = A ([w]=)(v')
= [w]=, € [6]*

We can now combine these results to give us our undecidability result.

Proposition 3.4
Let ¥ be an alphabet, T' a Thue system, S = (T, <, F, approp) the signature
encoding ¥, © the encoding of T and v, w strings over X.

v =7 w Iff © does not predict v :: X Aw 1 = X.

Proof
Right to left is prop. 3.3. For left to right, we have:
V=7 w
= for each model Z = (U4, S, A) of O, for each v € U, A*(u)(v) = A*(u)(w)
(prop. 3.2)
= for each model Z = (U, S, A) of ©, foreach u € U, u € [v :: X Aw :: X]?
= for each model T = (U, S, A) of ©, foreachu € U, u ¢ [v:: XAw :: =~ X]*
= O does not predict v :: X A w 1 2 X

|

3.5 Normal form grammars

Although the constraints in a grammar can in principle take any form, only
a certain form of term really makes sense as a constraint. Those have the
form ¢ — 9. In fact, usually ¢ will not be a complex term at all, but simply
a type name. Notice that any term can be trivially transormed into this
form when we note the following equivalence.

o =T ¢

74

In the later, computational chapters, we will require all grammar constraints
to be of the form ¢t — ¢, where t is some type name. Since the above men-
tioned method does not generally yield a very compact grammar representa-
tion, we will now discuss a method how to transform constraints of the form
¢ — 1 to an equivalent constraint of the form ¢ — %’ in a more intelligent
manner.

Before we do this, let’s look at a method that is sometimes found in the
linguistics literature. As an example consider as an example HPSG’s head
feature principle. This example was adapted from (Meurers 1994). See the
same paper for linguistically motivated arguments for why it is not a good
idea to manipulate the type hierarchy in the way described below.

We use the following notational conventions here: feature names are written
in upper case roman font, type names in lower case italics and variables in
upper case italics.

Example 3.1
DTRS: headed-struc —

SYNSEM: LOC: CAT: HEAD: X &
DTRS: HD-DTR: SYNSEM : LOC : CAT: HEAD: X

A method often employed to get rid of the complex antecedent is to intro-
duce new types into the type hierarchy. In this particular example, that’s
fairly easy: we simply introduce two new sub-types of phrase, headed-phrase
and non-headed-phrase (assume for the moment that there were no pre-
vious sub-types of phrase). headed-phrase and non-headed-phrase inherit
all their appropriateness specifications from phrase, except DTRS, which is
headed-struc on headed-phrase, and non-headed-struc on non-headed-phrase.
Having done this, we can now restate the head-feature principle as follows.

Example 3.2
headed-phrase —

SYNSEM: LOC: CAT: HEAD: X &
DTRS: HD-DTR: SYNSEM : LOC : CAT: HEAD: X

Of course, this scheme can not always be applied so easily. Consider a
principle of the form

SYNSEM: LOC: CAT: HEAD: verb — ¢,

75

where ¢ is some term. To turn the antecedent into a type, we would have
to introduce a verbal sign, e.g., v-sign (and its dual, non-v-sign). But that
is not enough, since in the type hierarchy, we can not express that a v-sign
takes the value verb under the path SYNSEM : LOC : CAT : HEAD, since
the appropriateness specifications only always go one level down. So to
give v-sign the desired properties, we have to introduce intermediate types
v-synsem, v-loc, v-cat, v-head and their respective duals. But that’s not all:
since sign has other sub-types, say word and phrase, these have to be cross-
classified with the new types, yielding yet more types v-word, non-v-word,
v-phrase and non-v-phrase. We won’t even consider what happens when the
antecedent gets yet more complex or contains variables.

There is a different, logical approach to this problem that does not affect the
type hierarchy. We will first explain the method, then consider an example.

1. Suppose we have an implication ¢ — 1. Bring ¢ into disjunctive
normal form ¢; V...V ¢,. This expands ¢ — 1 to a set of constraints
of the form ¢; — %, since (¢1V d2) = ¥ = (1 — P) A (¢2 —).

2. Suppose we have an implication ¢ — 1, where ¢ is purely conjunctive.
Since ¢ is conjunctive, we can find out which type ¢ all objects that
satisfly ¢ must have, and we can transform ¢ — 1 to (t A ¢) — 9.

3. (tAP) = = t— (mpV)

In principle, we’re done now, but we have a negated formula on the right
hand side. If the negated expression does not contain any variables, we can
actually transform it into a term not containing any negations (and if it
does, we can at least push negation down to the variables):

[] _|t = vtlev,t/ﬁttl

o -F:yp = F:pVv\/{t|teV,approp(t, F)1}

This looks very disjunctive, i.e., computationally unattractive. Yet there
is one piece of information that we can still use to our advantage: an in-

ferred type. We will explain what we mean by that with an example. We
abbreviate SYNSEM as SS, LOC as LC, CAT as CT, and HEAD as HD.

76

Example 3.3
SS:LC:CT: HD: verb — ¢

= signASS: LC: CT: HD: verb — ¢
since all and only signs have a SYNSEM attribute

= sign — (—SS:LC:CT:HD: verbV ¢)
= sign sign A (-SS: LC: CT: HD: verbV ¢)
= sign — ((sign A —=SS:LC: CT: HD: verbd) V (sign A ¢))

4

sign — ((signA (V{t |t € V, approp(t,SS) T}V
SS: -LC: CT: HD: verb)) V (sign A ¢))

sign — ((sign A SS: (-LC: CT: HD: verb)) V (signA ¢))
since sign A (\/{t | t € V, approp(t,SS)*1}) is inconsistent

sign — ((sign A SS: (synsem A ~LC: CT: HD: verd)) V (sign A ¢))

= sign — ((signASS:LC: CT: HD: (head A —verb)) V (sign A ¢))
= sign — (signA (SS:LC: CT: HD: (nounV adjV prepV func) V ¢))
= sign — (SS:LC:CT:HD: (nounV adjV prepV func)V ¢)

The idea is clear: when we have to deal with a term (—¢), we look for a
most specific type ¢ s.t. (—¢) is equivalent to ¢ A (—¢) in the given context.
By the context, we mean which feature the term occurs under. l.e., for a
given term ¢, it makes a difference if it occurs as SYNSEM: ¢ or as LOC: ¢,
since those two features have different types appropriate for them.

Then we expand ¢ to a possibly disjunctive term, and check each of the
disjuncts for consistency with ¢t. This way, we can eliminate many of the
disjuncts generated while expanding (—¢).

It is not so clear if the second approach is more efficient in the sense that it
generates less disjunctive information than the first one. It certainly localizes
the disjunctive information in a different part of the grammar, namely in
the set of constraints instead of in the type hierarchy. Whether this is good
or bad or indifferent is a practical question that we will not further persue
here.

The second approach has one big advantage over the first one, though: if
the transformation is done automatically (as it should), the second approach

77

doesn’t change the signature. This means that the grammar writers will not
see any types in their solutions that they never defined in the first place.

Since we have shown how to transform arbitrary implicational constraints
into ones that have just types as antecedents, we can now restrict our at-
tention to the simpler variety.

Definition 3.8 (grammar)
A grammar is a pair (S, R) s.t. S = (T, =<,F, approp) is a signature, R is a
finite set of S-terms s.t. RC {t - ¢ |t € T and ¢ is an S-term}

We now define an inheritance function IC' that will further simplify the
computational treatment of the grammaticality problem. We will require
our grammars to have the following form. For every maximal type t € V
there is at most one constraint ¢ — ¢. There are no other constraints.

Definition 3.9 (IC)

IC: T — Term is a total function from the set of types to the set of terms s.t.
IC(t) = tANicwr 41—y per @5 Where the empty conjunction is T. Let G = (S, R)
be a grammar s.t. the sets of free variables of the terms in R are pairwise

disjoint. Then Gro = (S, {t = IC(t) |t € VA IC(t) # T})

Clearly, Gj¢ is a grammar equivalent to G. We can thus assume that gram-
mars will always be in this format. For normal form grammars, we addi-
tionally demand that the consequents of the implicational constraints be in

DNF.

Definition 3.10 (normal form grammar)
We say that a grammar G = (S, R) is in normal form iff G = Gy¢ and for
eacht — ¢ € R, ¢ is in DNF.

3.6 Conclusion

In this chapter, we investigated how we can use our feature logic to define a
grammar formalism. We started out be considering the difference between
constraint formalisms and rule-based formalisms. We argued that the in-
tuitive difference between the two is as follows. In a rule-based formalism,
rules will generate individual structures. Each part of a structure must be
generated by some rule. In a constraint-based formalism, on the other hand,
each part of a structure must pass every constraint. We then went on to

78

consider some contemporary grammar formalisms from the linguistics liter-
ature. We found that most formalisms mix constraints and rules in some
form or other.

We then discussed the notion of validity vs. satisfiabiltity-based approaches
to formalizing grammar formalisms (Johnson 1994). This distinction applies
particularly to grammar formalisms based on classical logic. We concluded
that in that setting, validity-based approaches can be identified with rule-
based ones, and satisfiability-based approaches with constraint-based ones.

The grammar formalism we then defined is satisfiability /constraint-based.
We chose this approach because it follows naturally from the way grammars
are expressed in HPSG. We showed how the prediction problem for such
grammars can be translated into a first-order logic satisfiability problem,
and gave an undecidability result for prediction.

Finally, we considered how general feature logic grammars can be trans-
formed into a normal form that is more amenable to computation.

79

Chapter 4

From grammars to logic
programs

In this chapter!, we will consider a first approach to solving the prediction
problem for feature logic grammars. Our approach will be based on logic
programming, or more generally, constraint logic programming. We will
define a translation from HPSG constraint grammars into constraint logic
programs that preserves the prediction problem. We will show that there
can be no complete translation, yet we will argue that for theoretical as well
as practical reasons, it is interesting to see how closely one can approximate
HPSG grammars with logic programs. We will thus examine the proper-
ties of the translation in detail and come up with a restriction on HPSG
grammars that ensures the completeness of the translation.

Implementations of HPSG grammars are generally based on logic program-
ming. Now logic programs are also first-order theories, but the parsing
problem is different. Given a logic program P and a definite goal G (which
again codes the string we want to parse), we ask if P entails G, i.e., if every
model of P satisfies G. These two different ways of encoding the parsing
problem have recently been discussed in (Johnson 1994).

It would be desirable to have an automatic translation from HPSG gram-
mars to logic programs that preserves the parsing problem for two obvious
reasons: it would ensure the faithfulness of the encoding, and it would still
enable us to use the wealth of results that have been produced over the

!This chapter is a revised and expanded version of (Gotz and Meurers 1995) and (Gétz
1995).

80

last two decades or so for optimizing the execution of logic programs. We
could also use existing efficiently implemented logic programming systems
without having to custom build a new system for the prediction problem.
However, completely abstract considerations tell us that there can be no
completely faithful, decidable translation. Since the prediction problem is
undecidable, yet can be reduced to a first-order satisfiability problem, we
know that we can enumerate all negative instance, i.e., complete algorithms
for solving the non-prediction problem exist (Boolos and Jeffrey 1974). For
logic programming, on the other hand, well-known results tell us that only
for the positive problem instance do complete algorithms exist (cf. Lloyd
1984). We can therefore only give a translation that works in many, but not
all cases. In this paper, we consider a candidate translation and show for
which class of grammars it is a completely faithful coding. Our approach is
a direct encoding of grammar constraints as definite clauses. Finally, we will
argue that for most linguistically relevant grammars, the translation does
indeed give the desired results.

4.1 Adding relation symbols: R(FL)

The target language of our translation will be an instance of the constraint
logic programming scheme by Hoéhfeld and Smolka (1988). What we need
first is an appropriate constraint language. In principle, we already have
one: the feature constraints developed in ch. 2 would work. However, those
would be a bit cumbersome to use for the present purpose. Thus, we will
introduce a new constraint language that is closer to the notation used in
(Hohfeld and Smolka 1988) and easier to use. However, it should be obvious
that this is not much more than a notational variant of what we’ve developed
before.

Definition 4.1 (formulae)
o X = ¢ is a formula if X is a variable and ¢ is a term.

o Fi&F, is a formula if F| and Fy are formulae.

Definition 4.2
Formulae are assigned sets of variable assignments as denotations:

o [X=¢F={acASS|a(X) € [¢]2} ifX € VAR and ¢ is a term

o [F&R]E = [A]F N [F]* if Fy and F, are formulae

81

Note that the denotation of an equation is asymmetric, since we always know
that the left part is a variable. Yet this is only a more specific instance of
the general approach:

[¢=94]F ={a € ASS|TFuecUuc [¢]LAu e [¢]L}if ¢ and ¢ are terms.

(Smolka 1992) has both constraints, calling the more specific ones mem-
bership constraints. (Dorre 1994) uses a different, maybe more intuitive
notation for membership constraints. He writes T(X) instead of X = T.
This captures the intuition that the term T denotes a unary predicate. How-
ever, if term T is big, this notation is very hard to read. We will therefore
stick with our less intuitive, yet hopefully more readable notation.

Our feature logic fulfills all the requirements of (Hohfeld and Smolka 1988)
for a constraint language.

e it is decidable,
e closed under intersection,
e closed under renaming and

e compact.

We can therefore simply apply their schema to extend our language with
relation symbols and obtain a sound and complete operational semantics for
definite clause programs.

Definition 4.3 (R(FL))
1. R is a decidable set of relation symbols

2. the variables of R(FL) are the variables of FL
3. the constraints of R(FL) are defined inductively as follows

(a) every FL constraint is an R(FL) constraint

(b) if r € R is a relation symbol with arity n and & is an n-tuple
of pairwise distinct variables, then r(Z) is an R(FL) constraint
called an atom

(c) if F and G are R(FL) constraints, then so are
e () (empty conjunction)
e F & G (conjunction)
e F — @ (implication)

82

4. a definite clause is an R(FL) constraint A < ¢ & By & ... & B,,
where A, By, ..., B, are atoms and ¢ is an FL constraint

5. an interpretation A of R(FL) is obtained from an FL-interpretation
T with domain U by choosing for every r € R a relation r on U with
the same arity, and by defining:

(a) the domain of A is U

(b) [#]* = [#]* if ¢ is an FL formula

(c) [r(®)]A = {a € ASS | (%) € r4}

(d) [0]4 = ASS, [F & GT* = [F]* n [G]A
(e) [F = GIA = (ASS — [F]4) U [G]4

A goal in this setup is a conjunction of atoms and FL constraints. If P is a
set of definite clauses and G is a goal, then a FL constraint ¢ is a P-answer
of G just in case ¢ is satisfiable and ¢ — G is valid in every model of P.
(Hohfeld and Smolka 1988) prove two propositions showing that the minimal
model properties of conventional logic programs extend to their schema for
arbitrary constraint languages. We will make use of the FL-instances of
these propositions in our soundness proof later on.

Proposition 4.1 (Hohfeld and Smolka 1988, theorem 4.4, p. 12)
Let P be a set of definite clauses in R(FL) and let T be an FL interpretation.
Then the equations

rAo .= (), rAitt .= {a(Z) | (r(Z) « G) € P Aa € [G]4}

define a chain Ag C A; C ... of R(FL) interpretations extending Z. More-
over, the union | ;5 A; is the least model of P extending T.

Proposition 4.2 (Hohfeld and Smolka 1988, proposition 4.5, p. 12)
Let P be a set of definite clauses in R(FL), let G be a goal and ¢ an FL
constraint. Then ¢ — G is valid in every model of P iff it is valid in every
minimal model of P.

We now have a formal language for HPSG with a notion of grammaticality,
and we have R(L) with an operational semantics. We just somehow need
to connect the two. The basic idea is very simple: for each grammar G we
generate an R (FL)-program P that defines the unary relation gram encoding
grammaticality. We can then compute if ¢ is predicted by G by asking if
the goal gram(X) & X = ¢ has a P-answer.

83

4.2 Translating to R(7L)

To be able to illustrate the translation, we will work with a continuous
example throughout this section. We will use the CFG example from the
previous chapter, which we repeat here for convenience. The only thing
we’ve changed is the type appropriate for feature hd on ne-list. To make
the example a little more interesting, we change this type from atom to T.
The signature is shown in fig. 4.1, and the theory in fig. 4.2.

T
phon list
phon-aux list
elist Arthur knights
BR NBR PT
dtrl NT VP dtr NT sleeps
dir2 NT
ne-list
hd T
t list

Figure 4.1: An example signature

We begin our definition of the translation by stating what we consider to be
a correct translation.

Definition 4.4 (correct translation)
Let P be a logic program that defines the relation gram and G a grammar.
P is a correct translation of G iff

G predicts term ¢ iff the goal gram(X) & X = ¢ has a P-answer.

84

1. BR — phon : PO A phon-auz : PA
dirl : (phon : PO A phon-auz : P1)A
dtr2: (phon : P1 A phon-auz : P)

2. NBR — phon : PO A phon-auz : PA
dtr : (phon : PO A phon-auz : P)

3. PT — phon : [atom | T| A phon-auz : T
4. S — dtrl1 : NP A dtr2: VP

5. VP — (dtr: IV Vv (dtr1 : SV A dir2: S))
6. IV — phon : hd : sleeps

7. SV — phon : hd: know

8. NP — phon : hd : (knights\ Arthur)

Figure 4.2: Theory encoding a CFG

We now partition the set of types T into three subsets: constrained, hiding
and simple types. The motivation for the distinctions is computational and
in some sense already an optimization. In short, it obviates the need for
some rather complex partial evaluation later on and reduces the number of
choice points.

Here’s the intuitive meaning of the three sets:

e constrained types are exactly those types that unify with some an-
tecedent of the grammar, and whose structure is thus constrained by
the conditions stated in the grammar.

e hiding types are types that are not constrained themselves but “hide”
constrained types somewhere in their structure (loosely speaking).

e simple types are neither constrained themselves nor can they hide
constrained types anywhere. In other words, the grammar doesn’t say
anything about them.

Definition 4.5 (type interaction)
We say that two types t and t' interact if they have a common subtype, i.e.,
e Tt <tAt" <t

85

Definition 4.6 (directly constrained type)
A directly constrained type is a type that serves as antecedent of an impli-
cational constraint in the grammar, i.e., the set of directly constrained types

is{t|t= ¢ € R}.

In our example, {BR, NBR, PT, S, VP, IV, SV, NP} is the set of directly con-
strained types.

Definition 4.7 (constrained type)
A constrained type is a type that interacts with a directly constrained type.
Write C for the set of constrained types.

In addition to the directly constrained types, the set of constrained types
for our example contains {T,NT, VP1, VP2}.

Definition 4.8 (hiding type)
The set of hiding types is the smallest set H C T s.t.

1. if t is not a constrained type and t' < t, where t' is not a constrained
type s.t. approp(t’, f) is defined and approp(t’, f) is a constrained type,
thent € H

2. if t is not a constrained type and t' < t, where t' is not a constrained
type s.t. approp(t', f) is defined and approp(t', f) € H , thent € H

4.8 is a recursive definition, the base case of which is a type that has a
constrained type appropriate for at least one of its features. The only hiding
types in our example are ne-list and list.

Definition 4.9 (simple type)
A simple type is a type that is neither a constrained nor a hiding type.

{atom, Arthur, sleeps, knights, e-list} is the list of simple types for our exam-
ple.

Definition 4.10 (hiding feature)
If t is a constrained or hiding type, then f is a hiding feature on t iff
approp(t, f)| and approp(t, f) is a constrained or hiding type.

The hiding features are the computationally interesting features on a type,

as we will see later on. As it turns out, all features in our example are hiding
features. If we hadn’t changed the type hierarchy from the previous chapter,

86

Figure 4.3: An example type hierarchy

then neither would list or ne-list be hiding types, nor would the feature hd
and ¢l on ne-list be hiding features.

As another example, consider the type hierarchy in fig. 4.3. Suppose a is
the only directly constrained type. Then the set of constrained types is
{a,T}. By clause 1. of def. 4.8, we know that b; is a hiding type, since it
interacts with itself and has a constrained type (a) appropriate for feature
f. By the same clause, b is a hiding type, since it interacts with ;. T also
interacts with by, but it’s a constrained type, and thus cannot be a hiding
type. Finally, by clause 2. of def. 4.8, we know that c is a hiding type, since
it embeds a hiding type under feature g. So the only simple type in this
hierarchy is bs.

We will define three different sets of definite clauses defining the gram-
relation, one for simple types, one for hiding types and one for constrained
types. Notice that we only define clauses for minimal types since under our
definition of interpretation, every object is of some minimal type.

Definition 4.11 (P(G))
Let G be a grammar and S the set of simple types in Gjg. Define

Py(G) ={gram(X) « X =t|[te SAteV}

All the clauses for simple types represent base cases of the gram relation.
From our definition of simple types, it is intuitively clear that any term of
a simple type is admissible (if it’s satisfiable). A proof of this fact is given
in prop. 4.3. The clauses for the simple types of our continuing example are
shown in fig. 4.4 on p. 89.

Definition 4.12 (Px(9))
Let G be a grammar and H the set of hiding types in Gjg. For each type
t € H, define Clause(t) := gram(X) «+ X = (t A fi: Y1 A...A fao:

87

Y,) & gram(Y1) & ...& gram(Y,,), where fi ... f, are the hiding features of
t and X,Yq,...,Y, are pairwise distinct variables. Then let

Pr(G) = {Clause(t) |t € HAt € V}

This definition introduces a program clause for each minimal hiding type
by saying that an object of a hiding type is grammatical just in case the
objects under the type’s hiding features are also grammatical. The non-
hiding features play no role, since they only map to objects of simple types,
which are grammatical in any case. For our continuing “Arthur sleeps”
example, the clause for ne-list is shown in fig. 4.4.

For constrained types, the definition is exactly parallel, except that addi-
tionally we need to add the information from the implicational constraints.

Definition 4.13 (P.(G))

Let G be a grammar and C the set of constrained types in Gjo. Ift € C
then Clause(t):= gram(X) «+ X = (t AN IC(t) N fi: Y1 A A fo:
Y,) & gram(Y1) & ...& gram(Y,), where fi...f, are the hiding features
of t and X,Y1,...,Y, are pairwise distinct variables not occuring in IC(t).
Then let

P.(G) = {Clause(t) |t € C ANt € V}

As an example, consider the clause we would generate for the type IV in our
example. Note that IV inherits from PT, which means that the constraint
on PT needs to be conjoined to the one on IV:

gram(X) « X = (IV A phon: (Y1 A [sleeps | T]) &
phon-auz : (T AY2)) &
gram(Y1) & gram(Y3)

Note that the clause has been somewhat simplified to make it easier to read.
All clauses for constrained types in the “Arthur sleeps” example are shown
in fig. 4.5 on p. 90.

The complete program is simply the union of the three sets we’ve just de-

fined.

Definition 4.14 (P(G))
P(G) = P.(G) U PL(G) UP(G)

88

We can now give the complete grammar as a logic program. The individual
clauses have been simplified for better readability. The clauses for the simple
and hiding types are shown in fig. 4.4, and the ones for constrained types
are shown in fig. 4.5.

gram(X) « X = e-list

gram(X) « X = Arthur

gram(X) « X = sleeps

gram(X) « X = knights

gram(X) X = (ne-list\ hd: Y1 Atl:Y3) & gram(Y1) & gram(Y3)

Figure 4.4: Clauses for simple and hiding types

Note how the translation is in general insensitive to the form of the input
constraints. The relevant information is taken from the type hierarchy, plus
some extra information about types taken from the grammar. This means
that the specific properties of the constraint language (e.g., whether it al-
lows for negation or not) are irrelevant for the compilation process. The
important thing is that the constraint language provided by the target logic
programming language must be at least as powerful as the input constraint
language.

4.3 Soundness

Having defined the translation, we can now investigate it’s correctness. We
start by proving a strong soundness result showing that the minimal model
construction for the definite clause programs can be used to build models
for the corresponding grammar.

Definition 4.15

Let T = (U,S, A) be an interpretation.

IfU' C U, then Iyy = (U', Sppry Apsr,s [-]]I|“’> where for each f € F, for each
w € U, Ag(f)(w) | iff A(F)(w) | and A(f)(u) € U, and if Ao (F)(w) ,
then Ay ()(u) = A(F) (1)

89

gram(X) < X = (S A phon: Py A phon-auz : P A
dirl : (Yo ANP A phon : Py A phon-auz : P1) A
dir2: (Ya AVP A phon : Py A phon-auz : P)) &
gram(Py) & gram(Py) & gram(P) & gram(Y1) & gram(Y?)
gram(X) < X = (VP1 A phon: Py A phon-auz : P A
dirl : (Y1 ASV A phon : Py A phon-auz : P1) A
dir2: (Y2 AS A phon : Py A phon-auz : P)) &
gram(Py) & gram(Py) & gram(P) & gram(Y1) & gram(Y?)
gram(X) < X = (VP2 A phon: Py A phon-auz : P A
dir: (Y AIV A phon : Py A phon-auz : P)) &
gram(Py) & gram(P) & gram(Y')
gram(X) < X = (IV A phon: (Y1 A [sleeps | T]) &
phon-auz : (T AY2)) &
gram(Y1) & gram(Y3)
gram(X) « X = (SV Aphon: (Y1 A [knows | T]) &
phon-auz: (T AY,)) &
gram(Y1) & gram(Y3)
gram(X) < X = (NP A phon: (Y1 A [Arthur | T)) &
phon-auz : (T ANY2)) &
gram(Y1) & gram(Y3)

Figure 4.5: Clauses for constrained types

This definition takes an interpretation and “makes it smaller”. Note that
Iy is not always an interpretation.

Proposition 4.3

Let G = (£, R) be a grammar, Sg be the set of simple types in G, T =
(U, S, A) be an interpretation and W C U s.t. W = {u € U | V(u) € Sg}.
Then J = (W, Siw, Ajw, [-17) is a model of G.

Proof

90

To show that 7 is a model of G, we first need to show that J is an interpre-
tation. For this we need to show in particular that Ay meets definition 2.3:

for each u € U, for each f € F, if approp(S(u

), £) and approp(S(u), f) =t,
then (A(f))(u) is defined and S((A(f))(u)) <t

= fa.u € Wand f € F,if approp(Sjw(u), f)| and approp(5|w(u), f) =t,
then (Ajw(f))(u) is defined and S|W(Aw(f))(w)) < t, since t must be
a simple type

and

for each u € U, for each f € F,if (A(f))(u) is defined, then approp(S(u), f)
is defined and S((A(f))(u)) < approp(S(w), f)

= foreach u € W, for each f € F, if (Ajw(f))(u)], then approp(Sw(w), f)
is defined and Spy((Apw(f))(w)) < approp(Sw(u), f)

Thus, J is an interpretation.

Furthermore,

for each u € W, Sjy(u) is a simple type

= for each u € W, for each (t = T) € R, for each o € ASS, uw € [t = T]J
(since [¢] N [Sw(w)]d = 0)

= for each u € W, for each (t = T) € R, for some o € ASS, w € [t = T]J

= J is a model of G

This result says that as far as simple types are concerned, satisfiability and
prediction are equivalent. In other words, if there’s a term that we know
to be of a simple type with respect to some grammar, then that grammar
predicts that term iff the term is at all satisfiable.

The next proposition makes a related claim about hiding types. Intuitively,
it says that whether an object of a hiding type is part of a model of a certain
grammar only depends on whether the objects it’s mapped to are part of a
model. Note that this is not generally true of all objects. For constrained
types, this property also depends on what the mapped to objects “look like”.
This will be made explicit in proposition 4.5.

91

Proposition 4.4
Let G = (£,R) be a grammar, T = (U,S, A) be an interpretation and
W C U s.t. Iy is a model of G. If t is a minimal hiding type and u € U

s.t. S(u) =t and for each feature f, if A(f)(u)] then A(f)(u) € W, then
Tiwugu) is a model of G.

Proof

Clearly, Z)wu{u) is an interpretation. Furthermore,

t is a hiding type
= for each t' = T € R, for each o € ASS, [t]]g'WU{“} n [t/]]£|WU{u} —0

= foreacht' = T € R, for each a € ASS, v € [t' = T]]£|WU{'U.}

= Zjwu{u} is @ model of G

Proposition 4.5

Let G = (¥,R) be a grammar, T = (U,S, A) be an interpretation and
W C U s.t. Ty is a model of G. If t is a minimal constrained type and
u € U s.t. S(u) =t, for each feature f, if A(f)(u)] then A(f)(u) € W and

ift = T € IC(R) then for some o € ASS, u € [T]]ﬁ'W”{“}, then Zyygy) is a
model of G.

Proof
Let J = Zjwu{u}- Clearly, J is an interpretation. Furthermore,

t is a minimal constrained type and if t = T € IC(R), then for some «,
u € [T]7

= for each ¢/, for some a, if ' = T’ € IC(R) then v € [t' = T']7

= J is a model of G

Proposition 4.6
Let G be a grammar, T = (U, S, A), X C p(U) s.t. for each U' € X, Ty is
a model of G, and let W = | J X. Then I|W is a model of G.

92

Proposition 4.7
If G is a grammar, T = (U, S, A) a FL-interpretation and M the minimal
model of P(G) extending T, then L\ {uetd|(u)e[gramM} 18 @ model of G.

Proof

Firstly, since for each simple type t, (gram(X) « X =t) € P(G), we know
that for each ¢ > 1, U, = {u € U | S(u) is a simple type} C {u € U | (u) €
[gram]M:} (1)
We can now do an induction on the construction of M.

Clearly, T rucu|(uye[gram] Mo} = Ljp is a model of G.

Now suppose i > 1. Let W = {u € U | (u) € [gram]™i-1} and W' = {u €
U | (u) € [gram]*:}.

For each u € U,

ue W'

= S(u) is a simple type
= u €U, Us C W' and Ty, is a model of G by (1) and prop. 4.3

S(u) is a hiding type
= Thereisa (gram(X) « X =

P(G).Ja e ASS.a e [X =(
and a(X)=u

= Ttujuwuy, is @ model of G by (1) and propositions 4.3, 4.4 and 4.6

(WA fi:YiIA..)&gram(Y1)& ...) €

(S
SWA fi:Yi AL & gram(Yy) & .. M

S(u) is a constrained type

= There is a (gram(X) «+ X = (S(u) AN IC(S(uw)) A fi: Y1 A
)& gram(Y1) & ...) € P(G). Ja € ASS. a €
[X = (S(u) A ICS(w)) A f1: Y1 A ...) & gram(Y1) & ... M-
and a(X)=u

= Zj{ujuwuy, is @ model of G by (1) and propositions 4.3, 4.5 and 4.6

= I|W/ is a model of G

Thus, by induction and prop. 4.6, T ycy|(u)e[gram]M} i @ model of G.

93

Proposition 4.8 (soundness)
Let G be a grammar and ¢ a term. If gram(X) & X = ¢ has a P(G)-answer
then G predicts ¢.

Proof By props. 4.1, 4.2 and 4.7. |

This completes our soundness result: every answer computed by a program
we automatically compile from a grammar is a correct answer. We will
now investigate the opposite direction, i.e., if some term is predicted by the
grammar, does the program also provide an answer for it?

4.4 Completeness

Our method can’t be complete, for reasons outlined in the introduction to
this chapter. For some queries in some grammars there can be no finite
proofs (or refutations). E.g., adding the (reasonable) constraint

person = father: (person A gender: male)
to our example, this would be translated to
gram(X) < X = (person Afather : (Y A person A gender : male) & gram(Y')
which goes into an infinite loop on the query
gram(X) & X = person

This particular example could be handled using lazy evaluation as proposed
in (Ait-Kaci et al. 1993), but there are really pathological examples. What
we would expect is that we can prove completeness for some subset of the
decidable grammars. And indeed, we will show in this section that the
method is complete for grammars that exhibit a form of the finite model

property.

Definition 4.16 (Paths)
IfT =(U,S,A) and u € U, then Pathr(u) = {m | A*(m)(w)|}?

2Where A* is the reflexive transitive closure of .4

94

Definition 4.17 (semi-finite interpretation)
An interpretation T = (U,S, A) is called semi-finite iff for each v € U,
Pathz(u) is finite.

Proposition 4.9
Let T = (U,S, A) be an interpretation, G a grammar, P(G) the program
associated with G and M the minimal model of P(G) extending T.

IfW C U s.t. Iy is a semi-finite model of G and w € W, then u € {v | (v) €
[gram]M3}.

Proof
The proof runs by induction on |Pathz(u)|.

| Pathz(u)| =1
= Pathz(u) = {e} and
1) S(u) is a simple type

= gram(X) + X = S(u) € P(G)
= we {v]| (v) € [gram]M}

2) §(u) is not a hiding type, since hiding types have at least one feature
defined on them

3) S(u) is a constrained type
= gram(X) + X = (S(u) & IC(S(u))) € P(G)
= we {o] (v) € [gram]™}

Furthermore,

i > 1, for each v € W s.t. |Pathz(v)| < 1, (v) € [gram]™ and |Pathz(u)| =
1+ 1
=

1) S(u) is a simple type

= gram(X) «+ X = S(u) € P(G)

= ue {v]| (v) € [gram]M}

95

2) S(u) is a hiding type

= gram(X)+— X =(S(v) & f1i: Y1 &...) & gram(Y1)...€ P(G)

= Ja € ASS. a € [X = (S(u) & f1: Y1 &...) & gram(Yy)..]M,
a(X) = u and for each j, a(Y;) = A(f;)(u), by the inductive hy-
pothesis

= Ja. a(X) =u and (a(X)) € [gram]M

S we {o] (o) € [gram]M)

3) S(u) is a constrained type

= gram(X) + X = (S(u) & IC(S(u)) & fi:Y1 &...) & gram(Y7)... €
P(9)

= Jo. a € [X = (S(u) & IC(S(w) & f1:Y1 &...) & gram(Y1) .. M,
a(X) = u and for each j, a(Y;) = A(f;) (), by the inductive hypoth-
esis

= Ja. a(X) = and (a(X)) € [gram]M

= u € {v| () € [gram]M}

We thus conclude that our translation is complete for grammars G with the
following property: if G predicts ¢, then ¢ is true in some semi-finite model of
G. One might argue that reasonable linguistic grammars should possess this
property, anyway. However, two points are worth mentioning here. Firstly,
in semi-finite models, we not only exclude “infinite” objects, but also cyclic
ones. We will be able to lift this restriction with the methods developed in
the next chapter. Secondly, even for a given grammar, it will be extremely
hard to prove that it has the finite model property. It would be extremely
useful to have a simple, decidable characterization of an interesting sub-class
of the decidable grammars. However, such a characterization is not known
at this point.

4.5 Conclusion

In this chapter, we have presented a compilation scheme that translates
feature logic constraint grammars into efficient logic programs by using a
classification of types. The compilation is sound and finitely complete.

96

We know from previous discussions that we can’t achieve a complete trans-
lation. Any translation that we come up with will be incomplete for un-
decidable subclasses of feature constraint grammars. We showed that the
translation is complete for grammars that have the finite model property.
Given that the translation is relatively straightforward, this is an interesting
result. We could probably catch an even larger class of grammars with a
more involved translation, but that is likely to be only of theoretical interest.

The question whether this translation is really practical is difficult to answer.
It is relatively clear that a logic program resulting from the translation would
have severe termination problems. It is a research area in and of itself to
find strategies to automatically deal with such termination problems. The
interested reader is referred to (Minnen 1998) and references cited therein.

97

Chapter 5

Lazy evaluation

In this section, we will look at an evaluation method for type constraint
grammars that has been discussed under the heading of lazy type evaluation.
But whereas this was normally used as an on-line optimization strategy, we
will show that given suitable grammars, lazy evaluation can be compiled
into an internal representation we generate from the grammar. We will base
this work on ideas presented in (Ait-Kaci et al. 1993). This chapter builds
on work described in (G6tz and Meurers 1999).

The basic idea of lazy type evaluation is that nodes with more information
content should be preferred in evaluation over nodes with less information
content. In practice, this takes the form that the evaluation of nodes with
no features defined on them is delayed. However, we would like to compute
this delaying information off-line instead of on-line. As it turns out, this
can be done quite easily in practice. Theoretically, on the other hand, lazy
evaluation changes our perspective on program semantics. Whereas our
previous programs had the property of persistence (any term subsumed by a
solution was also a solution), we give up this property to be able to compute
more efficiently and simply demand that if T is a solution and there are
more specific terms, then some of these more specific terms must also be
solutions. Recall that this is just our definition of grammaticality: a term T
is grammatical with respect to a grammar just in case the grammar has a
model that satisfies T. To be able to do this, we impose a well-formedness
condition on our grammars. This idea is due to (Alt-Kaci et al. 1993), who
imposed a strong syntactic restriction on their grammars. Given our model-
theoretic approach, however, we will also use a (weaker) model-theoretic
restriction.

98

Definition 5.1

Let ¥ = (T, =, F, approp) and G a grammar. G is called type consistent iff
G has a model T s.t. for each t € V, [t]* # 0.

From a grammar writing perspective, this property is weaker than any syn-
tactic property that would allow us to do the same thing, and thus more
desirable. On the other hand, it is very hard to check in the general case.
In fact, we have the following undesirable lemma.

Proposition 5.1
Given a grammar G, it is undecidable if G is type consistent.

Proof

We show this by reducing the grammaticality problem to a type consistency
problem. Let (7, <, F, approp) be a signature, V the set of minimal types,
G' agrammar and T a term. Let T be the top element of (7, <). Introduce a
new minimal type v ¢ V and a new top element Thew s.t. 7' = T U{v, Tpew}
and (7', <) is exactly like (7, <) with the additional requirement that T <
Thew and v < Tpew. Also introduce a new feature f ¢ F and modify approp
so that

! ! : ! !
approp (o 1) = { FPORCNT) Re A v e A
Now let G’ = GU{v — f:T}. Clearly, G admits T iff G’ is type consis-
tent. Since this is undecidable, the type consistency problem is in general
undecidable.

Like all undecidability results, this one also has to be taken with a grain of
salt. It is to be expected that for many — if not most — actual grammars,
a proof of type consistency (or inconsistency) can be automatically derived.
We could do this by assuming that a given grammar is type consistent, and
then running the derived program on every maximally specific type. If we
get no as an answer, we know that the grammar is not type consistent, if
we get yes, it is. By the above lemma, however, this test will not terminate
in the general case.

99

5.1 Lazy resolution

Before we can define how to derive lazy programs from grammars, we need
some auxiliary definitions. We begin by considering a semantic equivalence
relation on variables in feature clauses.

Definition 5.2
Let ¥ be a consistent set of constraints. Two variables X,Y € FV(X) are
equivalent in ¥ (X =2 Y) iff

VIia. (Z,aEZ = a(X)=aY))
Define [X]y ={Y | X =z Y}.

Consider the feature clause ¥ = {X|Y, Y| Z}. Since for any Z, a that satisfy
Y we have that a(X) = a(Z), it follows that X =5 Z. As another example,
consider ¥ = {X| f:Y, X| f: Z}. Since features are interpreted as functions,
we know that for any Z, « that satisfy ¥, a(Y) = a(Z) and thus, Y =5 Z.
Clearly, the normal form for feature clauses defined in definition 2.24 is
designed exactly to make this equivalence relation explicit. We thus get the
following lemma.

Proposition 5.2
Let X be a set of constraints. If ¥ is in normal form, then for each X,Y €

FV(Z), X=x Y if X|Y €S or Y| X € %.

We will sometimes be sloppy and talk about a variable X when we really
mean [X]x. However, this should always be clear from the context. When
Y is clear from the context, we will sometimes write [X] instead of [X]s.
We now need one more definition before we can turn to lazy programs.
The whole notion of a lazy derivation crucially builds upon the concepts
of branching and non-branching variables. A branching variable is one for
which a feature selection constraint is defined. A variable is called non-
branching (or terminal) iff it is not branching. All variables in one equiv-
alence class are either branching or non-branching. Consider the feature
clause ¥ = {X| f:Y, Y|a, X| Z}. Both X and Z are branching variables,
and Y is non-branching.

Definition 5.3 (branching variables)
Let ¥ be a feature clause and X € FV(X). X is branching in ¥ iff

100

Af. Y, Z. X =Y and Y| f: Z € . Write BV(X) for the set of branching

variables in 2.

We now turn to the definition of a lazy program derived from a grammar
G. A lazy program is a set of triples (X, X, S), where X is a feature clause
in normal form, X is a distinguished variable in ¥ (the root variable) and S
is a set of variable equivalence classes in 3. The set S is comparable to the
body of a clause in logic programming. It contains the information which
variables need to be “checked” during a derivation, where we still need to
apply constraints. This should become clear form an example later on.

Definition 5.4 (lazy program)

For eacht — ¢ € Gy, assume w.l.o.g. that ¢ is in disjunctive normal form.
Foreacht € Vs.t.t — ¢ € Gy¢ and ¥ € NF(trans(X, ¢)), (£, X, {[Y]z |
Y € BV(2), Y #£3 X, Y|a € X, a constrained }) € P(G). Nothing else is
in P(G).

The definition of a lazy program is a lot simpler than the one for non-lazy
programs of the last section. For example, the hiding types are completely
gone. Also, all and only the maximally specific constrained types have
clauses in the program.

We will use the example from the last chapter (see fig. 4.1 on p. 84 for the
signature and fig. 4.2 on p. 85 for the theory) to illustrate lazy compilation.
First, we need to translate the feature terms in the consequents of the im-
plicational constraints into feature clauses. The clauses are shown in figures
5.1,5.2, 5.3 and 5.4.

XIS,
X | phon: Py, Py list
X| phon-auz P, P|list
X| dirl: Yl, Y1| NP
1= Y1| phon: Py,
Y:1| phon-auz: Py, Py list
X| dtr2: Yg, Y2| VP
Y3 | phon: Py,
Y:| phon-auz: P J

Figure 5.1: Clause for type S

101

X|VP1,
X | phon: Py, Py| list
X| phon-auz: P, P|list
X| dtrt: Yy, Y1| SV
Yo = Y1| phon: Py,
Y1| phon-auz: Py, Py| list
det’r’QZYQ, Y2|S
Y3 | phon: Py,
Y2| phon-auz: P

Figure 5.2: Clause for type VP1

X| VP2,)
X | phon: Py, Py list
5. X| phon-aux: P, P| list
57 X|diry, Y|IV
Y| phon: Py,
Y| phon-auz P)
Figure 5.3: Clause for type VP2
X1V,
X| phon: Py, Py| ne-list
Yy = Py| hdY, Y| sleeps
Py tk P, P|list
X| phon-auz P J
X|8V,)
X | phon: Py, Py| ne-list
Y5 = Py|hdY, Y|knows
P ttP, P|list
X| phon-auz P
X| NP,
X | phon: Py, Py| ne-list
Y6 = Py| hdY, Y| Arthur
Py|tkP, P|list
X| phon-auz: P

Figure 5.4: Clause for types IV, SV and NP

102

Once we have the clauses, we can compile the program itself. The resulting
program is shown in fig. 5.5.

{<217X7 {Y17Y2}>7 <E27X7 {Y17Y2}>7 <E37X7 {Y}>7
<E4,X,®>, <E5,X,®>, <E6,X,®>}

Figure 5.5: Lazy program for “Arthur sleeps” grammar

Recall from the definition of a lazy program (def. 5.4 on p. 101) that a
program item is a 3-tuple consisting of a clause, a variable from that clause,
and a set of variables from the clause. The single variable is the root variable
of the clause, and the set of variables are subgoals in the sense that they
represent nodes that need to be checked further. Those goals correspond to
the gram goals from the last chapter. If you compare the number of subgoals
in the lazy version of our example in fig. 5.5 with that in the non-lazy version
of the last chapter (fig. 4.5 on p. 90), you will notice that the number of
subgoals is now significantly smaller. That is, we have not only simplified
the compilation, we have also drastically reduced the search space.

We now turn to solving queries with respect to a lazy program. We need a
few ancillary definitions.

Definition 5.5
If S is a set of types, then max(S):={a € S| forallbe S, if a < b then
a=b}.

Definition 5.6
gst(a) := max({b | b < a and b is not constrained }) is the set of greatest
simple types below a.

We can now specify what a one-step derivation is. We assume that there is
a selection function that for each item (X, S) with non-empty S picks out
an element of S.

Definition 5.7 (derivation item)
A derivation item is a pair (3, S), where ¥ is a feature clause and S is a
subset of the equivalence classes of BV (Z).

During a derivation step, we will change the constraint clause by adding new
information. This means that the variable equivalence classes in the derived

103

clause may be different from the ones in the original one.

Definition 5.8
Let X,% be feature clauses s.t. FV(X) C FV(X') and let S be a set of
variable equivalence classes from .. Define S|z := {[X]s | [X]z € S}.

Definition 5.9 (derivation)

(2, 5) N (2, 8" if [Y] is the selected variable (class) in S,
(A, X,S"y € P(G), FV(A)NnFV(Z) = 0,
¥ =NF(EZEUAU{Y|X}) is consistent and
§'= (Sjz U Sip) \{[Y]s}.

(%, S) N (2, S\ {[Y]}) if[Y] is the selected variable in S, Y|a € %,
begst(a) and &' = (Z\ {Y]|e})U{Y|b}

A derivation is a non-empty sequence (finite or infinite) of items D =
1
(I,In,Is,...) s.t. for each I;, I;4+1 € D, I, = I;11

Definition 5.10
A goal is an item (X, {[X] | X € BV(X), X|a € £, a constrained }), where
3} is finite and in normal form.

Due to our lazy approach, we can’t simply submit a term ¢ as a query
only selecting the root variable ((trans(X,¢),{[X]})), as we did in chap-
ter 4. This would lead to incorrect results, as we will see when we prove the
correctness of lazy resolution.

Definition 5.11
A successful lazy derivation is a finite derivation (%, S) +> (%', 0), where
(3, S) is a goal.

We can now consider some examples of goals and derivations. As our pro-
gram, we will continue using the “Arthur sleeps” example. Consider the
following trivial query.

({X[1V}, 0)
First note that this is indeed a legal goal. The set of variables is empty,
since there are simply no branching variables in the constraint set. But

this means that we don’t need to prove anything, the goal is already the
last item in a successful derivation. But why is this correct? Recall that

104

we require grammars to be type consistent. Our example grammar is type
consistent, as can be easily seen. That means that models of the grammar
with IV objects in their domain are guaranteed to exist — and this is all that
the example query asks: do objects of type IV exist in some model of the
grammar? Note that the fact that IV is a constrained type does not matter
in this case. Let’s consider a slightly more complicated query.

({X|1IV, X|phon-auzY, Y| e-list}, {[X]})

This time, we have a non-empty variable set. X is assigned a constrained
type (IV) and has a feature selection constraint defined for it. Thus, by the
definition of a goal, it needs to be in the variable set. We get the following
one-step derivation.

({X|1IV, X|phon-auz P, P|e-list}, {{X]}) +>

({X|1V, X|phon Py, Py| ne-list, Py| hd:Y,
Y| sleeps, Py|tkP, P|e-list, X|phon-auz: P}, 0)

We have thus successfully applied the definition of the IV constraint. No
other derivations are possible because

1. no other constraint is consistent with the goal, and

2. IV does not subsume an unconstrained type.

We now define the concept of a failed derivation. A derivation is failed if the
last item has a non-empty variable set and if no transition is possible from
the last item. If all derivations for a goal are failed, then the goal is failed
and the grammar does not admit the goal. Again, we implicitly assume a
goal selection function.

Definition 5.12
A goal (£, S) is finitely failed iff there are only finitely many derivations from
(2, S), and for each derivation from (3, S) there exist ¥’ and non-empty S’

s.t. (8,8) 5 (2,8 b

As an example, consider the following goal.

105

{X|1IV, X|phonY, Y| e-list}, {[X]})

This goal is failed since no transition is defined for it. There is no IV object
that has a e-list as phon value.

5.2 Soundness of finite success

The soundness proof for the success case proceeds in two steps. First
(prop. 5.4), we show that if a feature clause has certain properties, then there
is a model of the given grammar that satisfies the clause. Then (prop. 5.6),
we show that the feature clause in the last item of a successful derivation
has these properties. We begin by defining some auxiliary interpretations
that we will use in the next proof. Since the relevant grammars are type
consistent, we know that such models exist.

Definition 5.13

Let (T, <, F, approp) be a signature and G a type consistent grammar. For
everya € V,let T, = (U, S, A) be a model of G s.t. for someu € U, S(u) = a.
Furthermore, let u(Z,) denote some u € U s.t. S(u) = a.

The next proposition is the crucial result for the soundness of finite success.
It says that if a clause X is such that for each branching variable of a con-
strained type, the constraints on that variable entail some item in the lazy
program, then the grammar admits X. Intuitively this is the case since the
clause satisfies all the grammar constraints. In the proof, we show the exis-
tence of a model of the grammar that satisfies 3. We do this by constructing
a partial model that contains objects for the branching variables. The par-
tial model is constructed from some arbitrary interpretation that satisfies
3. Such an interpretation exists since ¥ is assumed to be consistent. This
partial model then gets “filled in” with some generic models as we defined
them in def. 5.13 — we have to make use of the fact that the grammar is
type consistent. If the grammar were not type consistent, then the whole
proof would break down and we could not actually show soundness of finite
success. The system is unsound for grammars that are not type consistent!
An example will illustrate this. We will use the following signature.

106

b

N
ol 5] 1]

We use a trivial (type consistent) grammar.

{ea - f: X Ng:X}

For the grammar and derivations in this example, we will use a simplified
AVM notation that is much more readable the constraint sets we use in the
formal definitions and proofs. The correspondence between this notation
and the underlying formal system should be immediately obvious. The lazy
program will then contain a single item.

[a
(| f b], =0
L9 [v]

Now if we pose the query f : b, we get the following derivation.

a

a
1
(E3 DA 3 SR A LA A
L g
That is, we’ve shown that the grammar admits our query (if the soundness
result holds). Now consider adding a new constraint to the grammar.

{e - f: X ANg:X, b—> f:XANg:X}

Our grammar is not type consistent anymore. The new constraint gives
inconsistent information about objects of type b: there can be no objects of
type b that satisfy this constraint. Now consider what happens to the lazy
program and the query. Since translation of the new grammar constraint

107

yields an empty matrix (the consequence of the constraint is inconsistent),
the lazy program derived from the new grammar is exactly identical with
the program derived from the first one. Thus, the derivation on the query
f : bis also identical and thus incorrect. Since there are no objects of type
b in any model of the grammar, the grammar does not admit f : 5. In fact,
there is no model of this grammar with a non-empty universe at all. Notice
that the incorrectness of this derivation stems only from the fact that we’ve
applied lazy derivation to a grammar that’s not type consistent. Consider
a different query, namely f: (¢ A f : a). That term will get translated into
the following query.

(X f [;] A=)

The variable set of this query also contains the tag , since c is a constrained
type and is a branching variable. The derivation then goes as follows.

¢ 1 1
@ mle,]] @O

(s @5
9 [v] |

For this query, we get the correct result since we require that some constraint
be applied to . The example has therefore shown that lazy evaluation will
not always work for grammars that are not type consistent. In fact, we can
show that type consistency is a necessary precondition for the correctness
of lazy evaluation.

Proposition 5.3
Let G be any grammar. If lazy evaluation is sound for P(G), then G is type
consistent.

Proof

Suppose G is not type consistent and let ¢ be an inconsistent type. Then
the goal ({X|t}, () is also a terminal item in a derivation of length 0, con-
tradiction.

108

This shows that any restriction that guarantees soundness of lazy evaluation
implies type consistency. It remains to be shown that type consistency is
also sufficient.

Proposition 5.4

Let S = (T, =, F, approp) be a signature, G a type consistent grammar,
Y a consistent set of constraints, T = (U,S,A) an interpretation and «
an assignment s.t. T, = X. If for each X € {X € BV(Z) | S(a(X)) is
constrained } thereis a (¥, X', S) e P(G) s.t. E =X U{ X| X'}, then G
admits 3.

Proof
Foreach a € V, [X], € FV(X), let Xl (UCQX]Q, SC[ZX]“, .A([ZX]Q> be a “copy”

of 7,. Define a new interpretation Z' = (', §', A’) and assignment o' s.t.

U= {veld|3IXY € FV(X). If € F. a(X) = », A(f)(u) | and
A(f)(w) =a¥Y)IU U{Us | e € VI UU{UE | a € V and [X], € =}

S(u) ifueld
S'(u) = { SHE=(u) it w e uMe
Sa(u) ifuel,
a(X) if X € FV(X) and 3Y € FV(X). 3f € F.
A(f)(e(X))} and A(f)(a(X)) = a(Y)
o (X) = w(Igley)) if X € FV(T) and =(3Y € FV(3). 3f € F.
A(f)(a(X)){ and A(f)(«(X)) = a(Y))
uw(Z,) otherwise, where a is the lex. smallest minimal
type
o’ if 3X,Y € FV(E). a(X) = u, A(f)(u)d,

A(f)(u) = a(Y) and &/(Y) = o
US(A(F)(w)) if 3X € FV(E) Ot(X) = U, .A(f)(u) i)
A(f)(w) = and =(3Y € FV(2). oY) = A(f)(v))
Aa(f)(w) if v €Uy and A (f)(u)d
AXe (£ () if w et and AFV(F)(w)y

undefined otherwise

We now show that 1. Z' is an interpretation with respect to S, that 2.
I',a' = % and that 3. Z' models G.

1. Clearly, we only need to consider objects v € (UNU’). First note that

109

A'(f)(w) | iff A(f)(w)]. Secondly, if A'(f)(w)] and A'(f)(u) € (UN
U"), then 8'(A'(f)(u)) = S(A(f)(u)), by definition of &’. And finally,
if A'(f)(u)) and A'(f)(u) ¢ UNU"), then A'(f)(u) = US(A(f)(w)) @0d
thus, §'(A'(f)(u)) = S(A(f)(w))-

2. By the definition of o, we know that for each variable X,Y € FV(X),
S(a(X))=8"(d/(X)) and o/(X) = &/(Y) iff a(X) = a(Y'). Therefore,
"o E X

3. We need to show that for each v € U’, u satisfies all the constraints in
G. This is clearly true for each u € U, or u € UCEX]“, for all @ and X.
Again, we have to consider objects u € (UNU'). We only need to worry
if S(u) is constrained. But if S(u) is constrained, then for some X €
FV(Y), a(X)=wnand X € {X € FV(X) | S(a(X)) is constrained and
Y e FV(E). 3f € F. A(f)(a(X)) ! and A(f)(a(X)) = a(Y)}, and
for some (X', X', S) € P(G), ¥ E T'U{X| X'}. Thus, every constraint
in G is true of u.

We’ve shown that there is a model Z’ of G s.t. [Z]? # 0. Therefore we’ve
shown that ¢ admits X.

We’ve shown that if every branching variable of a constrained type in a clause
has the property that its constraints entail a program clause, the clause is
admitted by the grammar. We will now show that during a derivation, each
variable in a clause either already has the desirable property, or it is on the
goal list. The two results together will give us the soundness result we’re
after.

Proposition 5.5

Let (%, S) be a goal and (%, S) 5 (%!, S"). For each branching X € FV(%'),
if X|a € ' and a constrained, then either for someY € [X|,Y € S, or for
some (A, Z, Ty e P(G), X' = AU{X|Z}.

Proof

We prove this result by induction on n.

n = 0: since (%, S) is a goal, every branching X € FV(X) s.t. X|a € ¥ and
a constrained is in S.

n ~» n+ 1: suppose (2, S) % (X', 8") N (=", 8").

110

1. Suppose Y is the selected variable in S’, (A, Z,T) € P(G), FV(A)N
FV(XZ) =0, 2'UAU{Y| Z} is consistent, 3" = NF(Z'UAU{Y| Z}) and
S" = (S|'E,, UTjgv) \ [Y]sr. Suppose X is branching in £, X|a € &"
and a is constrained. If X € [Y]gv, then ¥" = AU {Y|Z}. Oth-
erwise, for some X' € [X]gr, X' is branching in ¥/ or in A. If
X' is branching in ¥', then the condition holds by induction (either
for some X" € [X'|z, X" € S’ and thus, X" € S”, or for some
(A, Z',T"Y € P(G), & = AMU{X"| Z'} and thus, 2" = A'U{X"| Z'}).
If X' is branching in A, then by definition of (A, Z,T), X' € T and
thus, X' € S”.

2. Suppose that Y is the selected variable in S’, for some X € [Y],
X|a€e Xt <a,tissimple, ¥ = NF(Z'U{X|t}) and S” = S"\{Y}.

Since nothing has changed except for the variables in [Y], and those
are not constrained, the condition holds for (£”,S").

We can now combine the two previous propositions to get the soundness
result.

Theorem 5.6

Let G be a type consistent grammar and (%, S) a goal. If (%, S) = (%, 0),
then G admits Y.

Proof

(Z,8) = (2,0)

= ¥’ is consistent, £’ = ¥ and for each branching X € FV(¥') s.t. X|a €
¥’ and a is constrained, for some (A, Y, T) € P(G), &' E AU{X|Y} (by
prop. 5.5)

= G admits ¥’ (by prop. 5.4)

= @ admits ¥ (since &' E)

111

5.2.1 Soundness of finite failure

We will now show that if a goal (3, S) is finitely failed with respect to a
grammar G, then G does not admit 3. The reason why we can’t simply
show completeness of the success case and infer soundness of finite failure
from that should be clear from previous discussions: there can be no system
that is complete for the success case. However, we will show completeness
of finite failure in the next section.

The first proposition shows that if there is a derivation item (X, S) s.t.
S # 0 and G admits X, then we can derive at least one other item from
(2, S). Or put the other way round, if no other item can be derived from
(3, 8) ((£,8) #), then X is not admitted by G.

Proposition 5.7
Let G be a grammar and (%, S) a goal with S # 0. If G admits X, then there

are ¥/, 5" s.t. (£, 5) N (¥,S8") and G admits ¥'.

Proof

Let X be the selected variable in S and X' € FV(X) s.t. X =5 X' and
X'|a € ¥. Suppose T = (U,S,A) is a model of G and 7, a0 = .

1. If S(a(X)) is simple, then for some b € gst(a), S(a(X)) < b and
if ¥’ = NF(Z U {X|b}), then (2, S5) N (', S\ {X}). Furthermore,
Z,a | ¥ and thus, G admits 3.

2. If S(a(X)) is constrained, then for some (A, Z,T) € P(G), for some 3,

B(Y) ifY e FV(A)
— / fp—
B(Z) = a(X)and Z,5 = A. Define o/(Y) := { a(Y) otherwise
Let ¥’ := ZUAU{X| Z}. By definition of &', we know that Z, o' | X'
Thus, ¥’ is consistent, § admits ¥’ and (X, S) N (XL (SUT)\ {X}).

Definition 5.14)
(%, 8) is n-failed iff (X, 8) is finitely failed and n > max({n' | (%,8)
(X', 8") #2}).

It is now easy to show that for any finitely failed goal (¥,S), G does not
admit X. Notice by the way that the results in this section do not require

112

grammars to be type consistent. The correctness of failure does not depend
upon type consistency.

Proposition 5.8
Let G be a grammar. If (3, S) is n-failed for some n € N, then G does not
admit 3.

Proof

If n = 0, then (X, S) /. Suppose G admits X. Thus by prop. 5.7 some ¥/, S’
exist s.t. (X,.5) N (¥', 8", contradiction. Therefore, G does not admit 2.

Suppose the claim is true for n, and suppose (X, S) is (n + 1)-failed. Thus,
each (&', 8%) s.t. (£,5) N (¥, S') is n-failed and G does not admit ¥’. Thus
again by prop. 5.7, G does not admit .

5.2.2 Infinite proofs and completeness of finite failure

Definition 5.15
A derivation is fair iff for every item (3, S) and every variable X € S there

is an item (%', S') s.t. (%,5) > (X, S") and [X] ¢ S'.

Proposition 5.9
If G is a grammar, (2g, Sp) a goal and D = (£, Sp) N (31, S1) % ... an
infinite fair derivation, then G admits 3.

Proof

Consider Yo, = |J{Z; | © € N}. Since for each ¢ € N, %, is consistent and for
each 1 € N, 3,41 E X;, we know that ¥, is consistent (by compactness).
Furthermore, since D is fair, we know that if X is branching in ¥, and
X|a € ¥, a constrained, then a € V and for some I', a —» I' € G, for some
YR ET, B E ZU{X|Y}. Thus, by prop. 5.4, G admits ¥, and thus,
.

This proposition has two major consequences:
1. We can use it to show that for every ungrammatical term, there is a

finite proof that the term is in fact ungrammatical. Thus, our system
is complete for showing ungrammaticality.

113

2. The other consequence is a practical one. If we can detect an infinite
proof branch for some term, then we know that term is grammatical.
Of course this is not possible in the general case, but it may be possible
in some interesting sub-cases.

This concludes the completeness proof.

5.3 Conclusion

In this chapter, we provided a solution to the prediction problem based on
lazy type evaluation/unfolding. We showed that lazy evaluation was sound,
provided that the grammar is type consistent. We also showed that type
consistency is a necessary condition for the soundness of lazy evaluation.

Completeness was shown in the sense that each query that is not predicted
by the grammar will terminate. As before, we know that this is as good as
we can get, given the general undecidability of prediction.

On p. 59, we claimed that computation with constraint-based grammars
could be just as efficient as with rule-based ones. We showed that this is the
case in this chapter, since we have effectively solved the constraint satisfac-
tion problem through a rule application approach. In the system presented
in this chapter, there is not notion of arbitrarily generating structures, and
then running them through a constraint filter. Rather, through our gram-
mar transformations, we can use the constraints themselves to drive the
generation of appropriate structure.

Proof systems addressing related problems were described in (Carpenter
1992) and (Ait-Kaci et al. 1993). Carpenter’s system is unification-based,
and operates on the domain of finite feature structures. It uses an open-
world type system, and does not allow for negation. That means that con-
straints of the form ¢ — % are not allowed in general. Instead, Carpenter
defines type constraint (i.e., constraints of the form ¢t — ¢) to have a special
meaning that is outside of the normal term interpretation. We do not need
to do that, due to our constraint-based approach, as opposed to unification
of finite structures. Since Carpenter’s system is based on finite structures, he
obtains completeness for the prediction problem, and not the non-prediction
one.

The system of (Ait-Kaci et al. 1993) is similar in the sense that they use
an open world type interpretation, and don’t allow any form of negation.

114

However, their domain of interpretation are the finite and infinite feature
structures, which gives their system complexity properties similar to our
own. Their main contribution was their idea to put lazy evaluation on a
sound basis by restricting the form of grammars.

It is interesting to note a possible difference in proof systems for the two
approaches. In a system based on finite feature structures, an infinite proof
branch means a failure branch, since there are no infinite structures in the
domain. Yet to show failure in such a system, every proof branch must
be either infinite or failed. This means that by detecting infinite branches,
which are success branches in our system, we can terminate on a properly
bigger class of queries than a system based on finite structures.

5.3.1 Detecting infinite proof branches

If we could detect infinite proof branches in every case, then we would have
a decision procedure for the grammaticality problem. Since we know that
the problem is undecidable, we don’t need to waste our time looking for a
general infinite branch detection mechanism. Still, it is possible to detect
infinite branches in some cases, and we will now consider ways to do that.

Consider the example we had before.
person = father: gender: male

Suppose we would like to prove grammaticality of personA gender: male. We
start out with the constraint set

{X| person, X|gender:Y, Y| male}
Unifying in the constraint on person, we get something like

{X| person, X|gender:Y, Y| male, X|father:Z, Z| person, Z|gender:
Z', Z'| male}

The only variable that we can expand now is Z. We note that the constraint
on Z is exactly like the one we started out with (up to variable renaming).
We can therefore conclude that we could go on like this forever, expanding
variables of type person. Notice that this is an infinite proof branch only be-
cause Z is reachable from X . If this were not the case, then we would simply

115

have to prove the same thing in two different locations, so to speak, which
of course does not necessarily lead to an infinite proof, just a redundant one.

We can generalize what we learned from this example to the following con-
dition: if Y is reachable from X, X has already been expanded and the
constraints on Y are more general than the ones on X, then Y does need to
be expanded. This is so because we can generate a cyclic solution by iden-
tifying X and Y. Alternatively, we could also generate an infinite, periodic
solution.

Actually, the proof above could also be terminated by introducing a cycle
with X|Y. This should not lead one to conclude that term with infinite
proofs generally have finite, cyclic solutions as well. A simple example will
illustrate this.

count — current: X A next: (count A current: prev: X)

Now consider the query count A current: nil. There is no finite solution to
this query, cyclic or acyclic. An infinite solution is shown in fig. 5.6.
e count
current next

e count

e
/

nil e

prev

/N
/\/

non-nil

e

Figure 5.6: Infinite solution for count A current: nil

116

Chapter 6

Adding relations

It is common usage among HPSG linguists to assume that the description
language contains relation symbols in addition to the usual feature and type
symbols. We will now consider a way how to formally integrate definite
relations into feature constraint grammars as we’ve defined them in previ-
ous sections. This chapter builds on word described in (G&tz and Meurers

1997b).

Notice first that it is not possible to simply apply the constraint logic pro-
gramming scheme of (Hohfeld and Smolka 1988). If we simply wrapped the
CLP scheme around our current notion of grammar, we would end up with a
system that is not complete. Recall that (H6hfeld and Smolka 1988) requires
that the constraint language be decidable (that is, the satisfiability prob-
lem for that language). As we saw in ch. 3, the prediction problem, which
corresponds to the satisfiability problem, is undecidable. Not only is it un-
decidable, it is not even enumerable (only the co-problem, non-prediction,
is). Thus, in applying the CLP scheme to our grammars, we would end up
with a system where termination was guaranteed neither for queries that
are consequences of the program, nor those that aren’t. Since the whole
point of the CLP scheme is to provide an off-the-shelf sound and complete
procedural semantics for an arbitrary (decidable) constraint language, we
will need to come up with a different, customized solution.

The first issue we need to consider is that normally, relational atoms (relation
symbols applied to a proper number of arguments) are considered to have a
different semantic type than feature terms. Feature terms, as we’ve defined
them, denote sets of objects, whereas relational atoms denote truth values.
An atom can be either true or false in a given interpretation. If we want a

117

formalism where feature terms and relational atoms have the same syntactic
status, we need to reconcile this apparent contradiction. There are several
ways we could do this:

e Since for computational purposes, we translate our feature terms into
a relational language anyway (feature constraints), we could consider
this relational language as our primary language and thus have no
problems with integrating relations. However, this would be rather
awkward. Constraint matrices are in disjunctive normal form, and
we would thus be required to express grammars that way. It might
be possible to construct a different relational feature language that
allows a more natural and compact notation, but we will not pursue
this possibility any further here.

e Another possibility would be to change the notion of a truth value. We
might say that if a relational atom is true in a given interpretation,
then it denotes the whole domain U. If it is false, on the other hand,
it denotes the empty set (.

e The last option is the one originally proposed by (Dérre and Eisele
1991) and more recently described in (Dérre and Dorna 1993), namely
to use a functional interpretation for relations: one argument is always
the selected result argument, and the denotation of an atom is the
denotation of that argument.

Although the last option is maybe the most elegant one, we will stick with
the second alternative, since it simplifies the formal treatment. Notice also
that (Dérre and Dorna 1993) treat the functional notation by syntactically
translating it into the relational one. There is thus no profound difference
between the two approaches.

The work in this chapter draws heavily on techniques developed for logic
programming. I will presuppose an understanding of logic programming as
presented in (Lloyd 1984). Other techniques and results will be introduced
as necessary.

6.1 Syntax and semantics

Definition 6.1
A signature is a sextuple (T, =<, F, approp, R, Ar) s.t.

118

(T, =) is a finite join semi-lattice

V={teT|ift' <t thent =t}

F is a finite set of feature names

approp : V X F — T is a partial function from pairs of minimal types
and features to types

R is a finite set of relation symbols

e Ar: R — IN is a total function from the set of relation symbols to the
natural numbers (the arity function)

Definition 6.2 (interpretation)
Let S = (T, =X, F, approp, R, Ar) be a signature. An S-interpretation is a
quadruple T = (U, S, A, P) s.t.

U is a set of objects, the domain of T

ASS = UVAR s the set of variable assignments in 7

e §:U — V is a total function from the set of objects to the set of
minimal types

e A:F — UY is an attribute interpretation function s.t.

— for each w € U, for each f € F, if approp(S(u), f) is defined and
approp(S(u), f) =, then (A(f))(w) | and S((A(f))(u)) = ¢

— for each w € U, for each f € F, if (A(f))(u) is defined, then
approp(S(u), f) is defined and S((A(f))(u)) < approp(S(u), f)

e for each r € R, P(r) C UAT")

It will be useful to distinguish between ordinary feature terms, and relational
ones. We will use this distinction to disallow embedding of relation term
inside each other. Logically, there is no problem with this, but it would be
inconvenient from a practical perspective. We can also disallow relational
atoms in the scope of negation this way. We will discuss ways to relax this
condition later in this chapter.

Definition 6.3 (relational atom)
7(¢1,...,%n) is a relational atom iff r € R, Ar(r) = n and ¢1,..., ¢, are
feature terms

119

Definition 6.4 (relation terms)

L) if ¢ is a feature term
o A if A is an atom
o O1 AN, d1V do if ¢1 and ¢y are relation terms

Definition 6.5 (term interpretation)

We extend the interpretation function to also handle relation terms.

T =(U,S,A,P) be an interpretation.

U if(u,...,u,) € P(r)andu; €
o [r($1, . $m)]E = [$10a:- - s un € [4n]a

0 otherwise
o [¢1 A olll = [¢1]E N [4212
o [¢1V $2]Z = [p1]% U [¢2]2

Definition 6.6 (clauses)

Let

If A is an atom and ¢ is a relation term, then A := ¢ is a (definite) clause.

As an example of definite clauses, consider the encoding of the append rela-
tion. Notice how in the first clause, we use T to indicate an empty right-hand

side.

append(elist, X, X):=T
append(hd: H A ¢t T, X, hd H A tt R) := append(T, X, R)

Definition 6.7

Let T = (U,S, A, P) be an interpretation and C' be a set of definite clauses.

7 models C just in case for each r € R, for all uy,...,u, € U:
(uty ... ,un) € P(r) iff

Jo. I(r(P1y ... s Pn) = o) € C. Jug € U. ug € [do]EA. .. Aun € [bn]k

Notice how quantification works in this definition. All variables are existen-
tially quantified (via the existential quantification of the variable assignment
a). The n-tuples of objects, on the other hand, are universally quantified
over. This gives us the same effect as Clark’s completion semantics in logic

120

programming (Clark 1978). We illustrate this with an example. Suppose
we have the following logic program:

V L. append([], L, L).
VH,L,T1,T2. append([H|T1],L,[H|T2]) < append(T1,L,T2).
Then the completed program looks as follows:

VX,Y,Z. append(X,Y,Z) <
L X=[ANY=LANZ=L)V
(3H,L,T1,T2. X = [H|T1] A
Y=L AN Z=[H|T2] A append(T1,L,T2))

Together with an appropriate theory of equality, the completed program has
stronger properties than the original program (Lloyd 1984). First of all, the
original program is a logical consequence of its completion. The original
motivation of Clark for this definition was the fact that more negative facts
follow from a completed program. We have a similar motivation in that we
want to exclude unwanted solutions in our definition of prediction. Notice
that we only demand that there is some model of a grammar that satisfies a
goal, whereas in logic programming, every model of a program must satisfy
a query. This is too strong a requirement for our purposes, it wouldn’t
work with the rest of our framework. So instead we modify the meaning of
definite clauses. Speaking in fixpoint terminology, all and only fixpoints are
models for completed programs, which is exactly what we want. Notice that
this is still different from standard logic programming, where only the least
fixpoint is the intended model. However, since we’re dealing with structures
that can be cyclic or infinite (as opposed to Herbrand terms), a greatest
fixpoint semantics may be more appropriate.

As an example, suppose we would like to be able to say that all members of
a list have a certain property p. We might encode this in a relation all_p.

-
p(X) Aallp(Y)

all_p(elist) :
all p(hd: X A tLY) :

Since we’re using a greatest fixpoint approach, all_p may be true even for
infinite and cyclic lists. To see this, consider the example interpretation in
fig. 6.1. Objects 1 and 2 form a cyclic list, with nodes 3 and 4 as members.
Objects 3 and 4 are of some unspecified type a. Now assume that objects 3
and 4 are in the p relation, and 1 and 2 are in the all_p relation. It is easy to
verify that this interpretation is a model for the all_p clauses defined above.

121

nelist Q 2) neligt

Figure 6.1: Example interpretation for all_p relation

However, this example would not work if we took a least fixpoint approach
to the interpretation of definite clauses.

Notice that we consider definite clauses to be something different from our
standard grammar constraints. The reason why this must be so should be
clear from the semantics of definite clauses: there is some implicit universal
quantification going on there.

We will now give a new definition of implicational grammar constraints.
The purpose of this definition is to allow relational goals to be called in our
standard constraints, but to disallow them in the scope of negation.

Definition 6.8 (implicational constraints)
¢ — 1 is an implicational constraint iff ¢ is a feature term and v is a relation
term.

Definition 6.9 (grammar)

A grammar is a triple (£, R,C) s.t. ¥ = (T,=,F, approp, R, Ar) is a sig-
nature, R is a finite set of implicational constraints and C is a finite set of
definite clauses.

122

Definition 6.10 (model)
We define a model of a grammar (¥, R,C) to be an interpretation 7 s.t. 7
models C and for every u € U and for every T € R,u € [T]*.

The definition of prediction remains unchanged.

6.2 Some properties of definite clauses

At this point, it is useful to take a step back and review the reasons for
some of the decisions in this chapter. The intuitions for the use of relations
in the HPSG literature seem to derive from logic programming. Why, then,
do our definitions look so different from logic programming? Why can’t we
just add a definite clause component in a more straightforward manner?

Recall that our interest in definite clause theories in first order logic stems
from the fact that there is an effective procedure to list the logical conse-
quences of such theories. More precisely, only those consequences that are
existential conjunctive formulae, so-called queries, are listed. The important
point to note is that it’s logical consequences we can compute. Satisfiabil-
ity problems for definite clause programs are completely pointless. To see
this, note that the full Herbrand interpretation is a model for any definite
clause program. Thus, if we have some definite clause program P and some
formula ¢, then P A ¢ is satisfiable iff ¢ is satisfiable. However, we saw
that this is changed if we take the Clark completion of logic programs. The
Clark completion severely restricts the possible models of definite clause
programs, so that it makes in fact sense to consider satisfiability problems.
The reason is that the completion strengthens the weak implications of def-
inite clause programs to much stronger biimplications. But even with the
Clark completion, we can only approximate logic programming, due to our
satisfiability-based approach to prediction.

Another way in which first order logic programming differs from our case is
the difference in the basic logic: equations between first order terms, on the
one hand, and feature constraints on the other. Let us illustrate what we
mean by an example. Consider the logic program P

VX. p(X)

P has as logical consequences, among other things, p(a) (or equivalently,
dX. X = aAp(X)) and p(f(a)) (Y. Y = f(a) Ap(Y)). This so because ob-

jects X and Y s.t. X = a¢ and Y = f(a) must exist in every interpretation

123

of the corresponding signature, by the definition of first order structures,
and are thus contained in the p relation. Now suppose for a moment we
weren’t interested in implicational constraints, but only in logic program-
ming over typed feature terms. Considering again the above program, are
the expressions 3X. X|a A p(X)and IY,Z. Y|f:Z A Z|la A p(Y) log-
ical consequences of P? The answer is clearly “no”, since the existence of
objects X, Y and Z is not guaranteed. This is precisely the reason why in
the CLP scheme of (Hohfeld and Smolka 1988) the central computational
problem is not defined as one of determining logical consequence. Rather,
they describe an algorithm that, given a query %, will produce a satisfiable
solution constraint ¢ s.t. ¢ — 9 is a logical consequence of the program.
Note the difference to logic programming. There, we prove that the existen-
tial closure of a query is a logical consequence of a program, the existence
of appropriate objects is guaranteed in all models. In CLP, we prove that
the query is true in all models that contain the required objects, described
by the solution ¢. If a model doesn’t contain the necessary objects, then ¢
will be false and thus, ¢ — 7 is true.

After this brief comparison with logic programming, we now return to the
practical problem of computing with the extended formalism we have de-
fined. However, the issues discussed here should be kept in mind, as we will
return to consider them towards the end of this chapter.

6.3 Translating feature terms with relations

We now have to go through the steps of chapter 2 again, this time with the
addition of relation symbols: we need to define what constraints are, how to
get from terms to constraints and how to check satisfiability. Fortunately,
relations do not add much complexity here.

The first thing we need to worry about is how to get feature terms with
relations into disjunctive normal form. Since we don’t allow relational atoms
in the scope of negation anywhere, the only thing we need to worry about
is disjunction. We note the following.

Proposition 6.1
Let r be a relation symbol of arity n. Then

r(¢1a"'a(¢i1v¢i2)a"'a¢n) Er(¢1a"'7¢i1a"'a¢n)v
(D1, ey Bigye ey Pn)

124

With this additional equivalence, we can bring terms with relations into

DNF.

We now turn to feature constraints.

Definition 6.11 (feature constraints)
Let r be a relation symbol of arity n and X1,...,X,, be variables. Then
r(X1,...,Xn) Is a feature constraint.

The only difference between relation terms and constraints is that the argu-
ments of constraints are only variables.

Definition 6.12
Let T =(U,S, A, P) be an interpretation.

T,aE=r(Xy, ..., X,) iff (a(X1),...,a(X,)) € P(r)

The normal form for feature clauses remains completely unchanged. Since
we don’t have to deal with negative literals, adding relational constraints
can not make a clause inconsistent.! Trivially, one can assign P(r) = U"
to every relation symbol r of arity n to get a satisfier (provided that the
non-relational part is satisfiable).

We now extend the procedure trans that translates terms into constraints
to also deal with relational atoms.

Definition 6.13 (trans)
trans(X,r(¢1,...,¢n)) =

{r(Xi1,...,X,)} U trans(X1,¢1) U ... U trans(X,, ¢n),
where X1,...,X, are new variables.

The second argument of trans plays no role for relational atoms. This is
simply due to the fact that where an atom occurs in a term is completely
irrelevant.

Proposition 6.2 (correctness of trans)
Let D = Dy V ...V D, be in DNF. For each D;, 1 < 1 < n, for each
interpretation T = (U, S, A, P), if X ¢ FV(D) then

[D.]* = {a(X) | Z,a = trans(X, D,)}

!This would be different had we defined a typing scheme on arguments of relations,
similar to the appropriateness conditions for types. That would be desirable in a real
system, but we’ll leave it out for reasons of simplicity.

125

Proof

Recall that in the proof of prop. 2.11, we showed two directions. The proof
here is exactly identical, except for the added cases for relational atoms. We
will therefore only show these, and not repeat all the other cases.

D: if 7, o |= trans(X, D;), then a(X) € [D;]*. Proof by induction on the
structure of D;.

o 7,a|=trans(X,r(¢1, ..., ¢n))
= T,a = {r(Xi,...,X,)} Utrans(X1, ¢1) U...U trans(X,, ¢,)
(by definition of trans)

= (a(X1),..., (X)) € P(r), o(X1) € [41]3, -1 (Xn) € [dn]T
(by induction)

= o(X) € [r(¢,--.,dn)]2

Since a(X) € [D;]%, it follows that a(X) € [D;]7.

C: for each u € [D;]? there is an a s.t. «(X) = v and Z, o |= trans(X, D;).

We prove a stronger result by induction: if v € [D;]% where a(X) = u,
then there is an o' s.t. &/(X) = u, for each Y € FV(D), &/(Y) = a(Y) and
Z,o' E trans(X, D;).

o uc[r(¢s,... 7¢n)]]£

= Fug, ..., U g € [A1]%, ..., un € [Pn]L and (uq, ..., u,) € P(r)
= dai,...,op. for each j, 1 < j < n, a(X;) = u;, for each Y €
FV(¢;),

a(Y)=04(Y) and 7, oj |= trans(X;, ¢;) (by induction)

=if o/(X) = u, &/(Y) = o(Y) for each Y € (FV(trans(X;, ¢;)) \
FV(D;)) and
o' (Y') = a(Y') elswhere,
then 7, o/ = trans(X, r(¢1,..., ¢n))
(forall 1<k <i<
n, (FV(trans(Xy, ¢x)) NFV(trans(X;, ¢;))) \ FV(D;) = 0)

= 3. (X)) =u, VY € FV(D;). /(Y) = oY) and
Z,o = trans(X,7(é1,. .., ¢n))

Since X ¢ FV(D;), u € [D;]% , and thus, by the induction above, o'

A X su

exists with o/(X) = u and 7, o |= trans(X, D;).

126

6.4 Compiling grammars

Adding relations and definite clauses as we’ve done also necessitates some
changes in the compilation of grammars and the procedural semantics dis-
cussed in section 5.1. Recall that resolution meant adding constraints from
the grammar to a given clause. Where to add constraints was determined by
a set of variables encoding where constraints from the grammar still needed
to be applied. Now that we’ve enriched our notion of grammar by adding
definite relations, we also need to make sure that the constraints placed on
a relation by its definition are satisfied. We will have two different grammar
items: implicational items (the ones we already know) and relational items.
Common to both is the fact that what used to be a set of variables is now
a set of variables and relational constraints.

Definition 6.14 (grammar item)
Let G = (S,R,C) be a grammar s.t. (S, R) is in normal form. Grammar
items in P(G) are triples defined as follows:

1. Foreacht € V s.t.t — ¥ € R, for each clause £ € NF(trans(X, ¥)),
define

oV ={Y e FV(E) | Y # X,Y|a € £, a is constrained and
3Z,f.Y|f:Z € £}

o P:={A| A is a relational atom in ¥}
(X, S\ P, VUP) is in P(G).

2. Foreachr(¢1,...,¢n) := ¢o € C, let Xy, ...X,, be new variables. For
each
Y € NF(trans(Xo, ¢o) U ...U trans(X,, ¢,)), define

o V:={Y € FV(X) | Y|a € X, a constrained and 3Z, f. Y| f: Z €
z}

e P:={A| A is a relational atom in %}
(r(Xo,...,Xpn), Z\ P, VUP) is in P(G).

3. Nothing else is in P(G).

127

The items for definite clauses look rather familiar from constraint logic pro-
gramming. We have the clause head, a relational atom (first element), and
the clause body (third element). The second element is a set of constraints
on the variables occurring in the head and the body. What is unfamiliar is
that in the body, we may also have a bunch of variables from the constraint.
This is so because in the constraint, we may be talking about objects that
need to satisfy implicational constraints from the grammar. The items for
implicational constraints look rather similar, except that they don’t have a
clause head, but a root variable.

Since we’ve changed P(G), we now also need to augment the definition of
a derivation. As before, goal variables are ”cancelled” by application of
an implicational grammar item. Additionally, we now also have to resolve
relational calls against their grammar definitions.

Definition 6.15 (one step derivation)
(2,8) — (X', 8"), if the selected element Y € S is a variable, (X, X", S") €
P(G), ¥ =NF(ZUX"U{Y|X}) is consistent and S’ = (SU S")\ {Y}.

(3, 8) = (X, S\ {Y}), if the selected element Y € S is a variable, Y|a € T,
begst(a) and &' = (Z\ {Y]a})U{Y]|b}.

(2,8) — (X', 8", if the selected element r(Xog,...,X,) € S is a relational
atom,
(r(Yo,...,Yn), &', S"Y e P

(G), &' = (ZUZ"U{Xo|Yo,...,XnlYp}) is
consistent and S” = (SU S")\ {r

(Xo,...,Xn)}

Definition 6.16 (goal)
Let ¥ be a feature clause in normal form. Define

o V:={Y eFV(X)|Y]|a€ X,a constrained and 3Z, f. Y| f: Z € T}

e P:={A| A is a relational atom in X}

Then goal(¥) = (¥ \ P, V U P) is a goal.

6.5 Correctness of resolution
To obtain a correctness result for our new resolution procedure, we will

employ essentially the same methods as in Ch. 5. However, the presence
of relations complicates matters. We begin by considering the models for

128

the relational part of a theory. Above, we stated without proof that all and
only the fixpoints of a given base interpretation are models for the relational
theory. For soundness, it will be sufficient to consider the greatest fixpoint.
We will show that it always exists, and that it always produces a model.

First of all, though, we need to make precise what we are considering fix-
points of. We need a notion analogous to the Tp operator in logic program-
ming.

For the rest of this section, unless otherwise stated, we assume an implicit
signature.

Definition 6.17 (1y)
Let C be a set of clauses. Define the operator Ty on interpretations T =

U,S,A,P) as
To(I)=1,
where T' = (U, S, A, P') s.t. for each n-place relation r,

(u1,...,un) € P'(r) iff
Jo. A(r (1, ..., dn) == o) € C. Fug € U. ug € [Po]EA.. . Aun € [¢n]

To be able to obtain standard fixpoint results, we need to show that the T
operator is monotone. This is clearly the case, and we give the following
proposition merely for the sake of completeness. We write Z C 7' if 7 =

Uu,s,A,P),IT =U,S, A, P’ and for each relation symbol r, P(r) C P'(r).

Proposition 6.3 (monotonicity of Ty)
Let C be a set of clauses. Then Ty is monotone, ie., if T C I', then
To(T) C T (T).

Proof Let To(Z = (U,S,A,Q)), To(T' = U,S, A, Q")) and (ug,...,u,) €
Q(r). Then, Ja. I(r(¢1,...,dn) := o) € C. Fug € U. uy € [Ppo]EA. . .Au, €
[¢n]%. Since T C T, (ug,...,u,) € Q'(r). [|

Since the space of interpretations with a fixed domain, type assignment and
feature interpretation function forms a complete lattice under C, 1y has a
greatest fixpoint (e.g., Lloyd (1984)). We fix our previous claim that all and
only fixpoints are models for sets of clauses in a proposition.

Proposition 6.4
Let C be a set of clauses and 7 an interpretation. 7 models C iff Tp(Z) = T.

129

Proof
Follows directly from def. 6.7 and def. 6.17.
|

For ease of notation, we define a function T, mapping interpretations and
ordinal numbers to interpretations.

Definition 6.18
Let 7 be an interpretation, and C' a set of clauses. Define

Tc(Z,0) = T
To(Z,n+1) = Te(Te(Z,n))
Tc(Z,n) = U To(Z,n') for n a limit ordinal
n'<n
The following lemma will be useful in the soundness proof.

Definition 6.19

Let G = (S, R,C) be a grammar and T = (U, S, A, P) an interpretation. If
for each relation r of arity n, for each (ui,...,u,) € P, there is a clause
r(¢1,...,¢n) == ¢o € C and an T-assignment o s.t. u; € [n]%, ...,
Uun € [bn]% and [¢o]% # 0, then we say that T is downward closed with
respect to C.

Proposition 6.5
Let G = (S, R,C) be a grammar and T = (U, S, A, P) an interpretation. If
T is downward closed with respect to C, then T C gfp(T¢).

Proof
We will show that

e T¢(Z,n) is monotone, and

o for each n, T¢(Z,n) is downward closed.

n = 0: Obvious, since T¢(Z,0) =Z.

n 1s a successor ordinal:

e Since T¢(Z,n — 1) is downward closed, T¢(Z,n — 1) C T¢(Z, n), and

e since T¢(Z,n — 1) is downward closed, so is T¢(Z, n).

130

n 1s a limit ordinal:

e Obviously, T¢(Z,n) D T¢(Z,n'), for each n' < n.

e Since for each n’ < n, T¢(Z,n') is downward closed, so is T¢(Z, n).

Since T¢(Z, n) is monotone, it follows that Z C ¢fp(T¢).

6.5.1 Swuccess derivations

We can now turn to the soundness proof. The idea is as follows. Just as
in the case without relations, we show that we can build a model from a
successful derivation. The only difference is that this time, we need to make
sure that the resulting interpretation models the definite clause part of the
grammar.

We begin with a proposition similar to prop. 5.4. Since we still assume that
our grammars are type consistent, we know that models with at least one
object of each type exist. Note also that if we take two pairwise distinct
models of a given grammar, then the union (in the obvious sense of union)
of those two models is again a model of the grammar.

Proposition 6.6

Let S = (T,=,F, approp, R, Ar) be a signature, G = (S, R,C) a type con-
sistent grammar and ¥. a consistent set of constraints. Let T = (U, S, A, P)
be an S-interpretation and o an Z-assignment s.t. Z,a |= X. Since X is
consistent, such an interpretation is guaranteed to exist. If

e foreach X € BV(X) s.t. S(a(X)) is constrained, thereisa (X', ¥/, S) €
PG)st. TEZU{X|X"}, and

e foreachr(Xy,...,X,) € X thereisa(r(Y1,...,Yn), %, PUV) € P(G)
such that © = X' UPU{X,|Yy,..., X, Y.},

then G predicts 2.

Proof

The proof proceeds in several steps. First, we construct a new interpretation
7' that models the implicational constraints. Second, we construct another

131

interpretation Z" that also models the set of clauses. Finally, we show that
Y is satisfiable in Z".

For each a € V, [X], € FV(X), let IC[IX]“ = <L{£X]°‘,SC[LX]°‘,ALX]“> be a copy
of 7,. Define a new interpretation 7' = (U, §’, A’, P’) and assignment o/
s.t.

U= {veld|3X,Y eFV(E).3f € F. a(X) =u, A(f)(u)! and
A(f)(w)=a(Y)IU U{tha |a € V} U U{UZ |a € V and
[X]a € %}

S(u) ifueld
S'(u) = { S (w) if we uXle

Sa(u) ifuel,
a(X) if X € FV(X) and 3Y € FV(X). 3f € F.
A(f)(a(X))} and A(f)(a(X)) = «(Y)
if X € FV(Z) and ~(3Y € FV(Z). 3f € F.
A(f)(a(X))} and A(f)(a(X)) = a(Y))

w(Za) otherwise, where a is the lex. smallest minimal
type
u if 3X,Y € FV(E). a(X) = v, A(f)(u)l,

A(f)(w) = a(Y) and o/(Y) = o'
us(A(f)w) If X € FV(X). o(X) = u, A(f)(u) | and
A(f)(w) = ~(FY € FV(E). oY) = A(f)(u))
Aa(f)(w) if w €U, and A, (f)(u)l
AR (A(w) if we e and AX(f)(w)]

undefined otherwise

Pl(r) = {(uf, ..., up) | (w1,...,un) € P(r),V1,1 <4 <n.3X € FV(X) s.t
a(X) = w;, and either X € BV(Z) Auj = u; or
X ¢ BV(D) A vf = w(Zg 7y}

(a(X
UlPa(r) v |y P
acV X€FV(Z),a€V

Clearly, the proof that this is indeed an S-interpretation is similar to the
one for prop. 5.4. The added case of the relations is trivially true. Similarly,
given prop. 5.4, it is easy to see that 7', o' = X. Now let 7" = g¢fp(T¢).

132

Since Z' is downward closed, we know by prop. 6.5 that Z' C Z”. Thus,
I" o = 3.
It remains to be shown that Z” is a model of G. Again, the non-relational

part is the same as for prop. 5.4. The relational part is trivial, since Z" =
9fp(T¢). Therefore we’ve shown that G predicts .

We can use this proposition to show that successful derivations, finite or infi-
nite, are sound. For infinite derivations, we need the additional proviso that
the derivation be fair. All finite successful derivations are fair by definition.
We give the proof below independently of the finiteness of the derivation.

Theorem 6.7 (Correctness of success derivations)

Let G be a grammar and ¢ a feature term. If there exists a successful fair
derivation D = (ly,...) with respect to P(G) s.t. Iy = goal(trans(X, ¢)),
then G predicts ¢.

Proof

Let ¥ = U X, U \FV(X;)). In addition to what we proved for
2, 0)eD

prop. 5.9,< we ileed to show that for each 7(Xi,...,X,) € X there is a
(r(Y1,...,Yn),Z,PUV) e P(G)st. L EZUPU{X1|Y1,..., X0 Ya}
Since D is fair, there is an ¢ s.t. 7(Xy, ..., X,) € T'; is selected. Thus, there is
a(r(Y1,...,Yn), 2, PUV) € P(G)such that &; = Z'U{X1| Y1,..., Xn| Ya}.
Again, since D is fair, for each G € P there is an n s.t. G is selected after n
steps. Let j be the largest such n. Then 2,4 ;41 = Z'U{X1| Y1,...,X,| Y, }U
P. Now we can apply prop. 6.6, and together with the correctness of trans
(prop. 6.2), this completes the proof.

6.5.2 Failed derivations

Again, we will parallel the results of ch. 5. We start out by showing that if
at a given state in a derivation, we know that a model for this state exists,
then this can not be the a failure state. The addition of relations to our
framework does not add much complexity here. In particular, it is sufficient
to consider a given item in a derivation, although we throw away relational
atoms that we’ve already computed.

133

Proposition 6.8
Let G be a grammar and (3, S) a derivation item. If G predicts ¥ U (S \

FV(X)), then there are ¥/, S s.t. (£, S) N (¥, 8"y and G predicts &' U (S"\
FV(Z)).

Proof

Suppose X € FV(X) is the selected item in S. Then the proof is the same
as in prop. 5.7.

Now suppose the selected item in S is a relational atom 7(Xy,...,X,).
Suppose further that 7 = (4, S, A, P) is a model of G and 7, o = 3. Thus,
a(r(Xy,...,Xn), 2", PUV) € P(G) exists such that for some o/, 7,0/ |=
YU((S\FV(E)\r(X1,...,Xn))UP. Thus, ¥ is consistent, G predicts
¥ and (%, S) N (2, 8", where S" = ((S\FV(Z))\ r(Xy,...,Xn))UP.

6.5.3 Conclusion

We have seen that by adding a “conservative” version of relational extension,
we can obtain the same soundness and completeness result as in ch. 5. By
conservative, | mean that the semantics of the relational part is a straight-
forward extension of the non-relational part. Our greatest fixpoint approach
may have some non-intuitive consequences from a logic programming point
of view, but fits better with our general approach. For finite, acyclic struc-
tures, it all boils down to the same, anyway.

A restriction that I imposed on grammars was that I did not allow for
relational atoms in the scope of negation. I did this to be able to obtain a
sound and complete procedural semantics. There is abundant literature to
show that the computational properties of logic programs deteriorate very
quickly when negation is added. However, it is interesting from a purely
theoretical perspective what kind of semantics one would need to employ to
be able to lift the restriction on negation. We will do just that for the rest
of this chapter. However, I will make no attempt to provide a procedural
semantics, since this attempt could only be fragmentary.

134

6.6 Adding full negation

It is well known that the Clark completion does not allow for as many
negative inferences as one would wish, particularly for recursive relations.
Although we don’t allow relational atoms in the scope of negation, we’re
concerned with this problem due to our approach to prediction. We will
illustrate the problem with a simple example adapted from (Wallace 1993).
For an introduction to the use of negation in logic programming and prob-
lems with it, see (Shepherdson 1987) and (Kunen 1987).

T

N

a b

Suppose we have the type hierarchy shown above with only three types and
no features. We consider a grammar G with no implicational constraints
and the following clauses.

(e, q)
tp(X,Y) =p(X,Y)
tp(X,Z) =p(X,Y)Atp(Y, Z)

The relation tp is supposed to encode the transitive closure of p. However, we
get the following, somewhat surprising model: Z = (U, S, A, P), where U =
{a', b}, S(a) = a, S(¥) = b, P(p) = (a',)} and P(tp) = {(d, '), (a', &) }.
This means that G predicts ¢p(a, b), which is certainly not in the transitive
closure of p. What our intuitions about logic programming tell us is that
the model that we’re interested in is ' = (U, S, A, P’), which is exactly like
T except that P'(tp) = {(a’,a’)}. In 7', tp does in fact encode the (trivial)
transitive closure of p.

Suppose that we actually allowed atoms in the scope of negation. For the
example above this would mean that G predicts both tp(a, b) and —tp(a, b).
Interpreted as a logic program under the Clark completion, we could infer
neither the former nor the latter. That may not be desirable either, but it
is clearly preferable to our situation. To be able to infer both a “ground”
atom and its negation seems totally wrong.

135

The problems we’re facing here seem to be caused by the fact that we have
too many different interpretations that are all models of the given grammar.
It seems that if we could reduce the number of models to a few or even a
single one that is the intuitively correct one, then we wouldn’t be in so much
trouble. This is an approach that has been variously pursued in the logic
programming literature. An interesting approach from our perspective is the
stable model semantics of Gelfond and Lifschitz (1988). We will examine
stable models in the next section, and then see how the basic idea can be
implemented for our specific problem.

6.6.1 Stable models

The stable model semantics is not a completion semantics, but rather based
on the notion of a fixed point on a program transformation operator. The
semantics is not constructive, however. It requires, as Wallace puts it, an
oracle to produce a candidate model, which can then be checked for being a
fixed point and thus, a model. The property which distinguishes the stable
model approach from other fixed point semantics approaches is the fact
that the basic operation is not one on models, but on pairs of models and
programs. Qur presentation of the stable model semantics follows (Wallace

1993).

Finding a stable model for a logic program proceeds as follows. The first step
is to replace the input program clauses with their ground instances, yielding
a (usually infinite) variable free program. We then define the transformation
GL (Gelfond-Lifschitz), taking as input a Herbrand model and a ground
normal program. Let M be a Herbrand model and P a normal program.
We write inst(P) for the set of ground instances of clauses in P. The set
GL(M, P) is then defined to be all and only clauses A « By,..., B,, such
that A < Bi,...,Bm,C1,...,C, € inst(P), each B, is positive, each C; is
negative, and M = C4,...,C,. U M = Tor(m,p) T w, then M is a stable
model of P.

If the program is definite, then a stable model of that program exists, it
is unique, and it is the least fixed point of the T» operator. That’s nice
since it gets rid of the problem for the Clark completion we noted in the
preceding section. Recall that for the transitive closure program (p. 135),
the Clark completion predicted neither ¢p(a,b) nor —tp(a,b). The stable
model semantics, on the other hand, predicts —tp(a, b), which is intuitively
correct.

136

Some logic programs have inconsistent Clark completions. Since anything
can be deduced from an inconsistent set of sentences, this is not very useful.
Consider the example program below (from Wallace 1993).

pe—p
q(a)

This program makes perfectly good operational sense for queries concerning
g/1, it even has a unique least Herbrand model, despite its use of negation.
Despite these facts, its Clark completion is inconsistent, and thus useless.
The stable model semantics, on the other hand, provides a single stable
model, namely {g(a)}.

There is not always a unique stable model. Consider the example below.

p — g

g < 7p

We get one stable model where p is true and gq is false, and one where ¢ is
true and p is false. It would seem that similar, not quite so pathological
examples might occur in practice. It is therefore interesting that the stable
model semantics has something useful to say about those cases, when viewed
in terms of satisfiability.

The basic idea of the stable model semantics is that anything that can’t
be proven in finite time is assumed to be false. It achieves this effect by
requiring M to be the least fixed point of GL(M, P). Notice that the stable
model semantics is not constructive, and still suffers from the same draw-
backs as other canonical model approaches. A candidate model needs to be
a least fixed point for some operator, something that can not be checked me-
chanically. However, of all the canonical model approaches that have been
proposed for handling negation in logic programming, it has the most intu-
itive appeal. Finally, Wallace (1993) defines a completion semantics that is
equivalent to the stable model semantics for Herbrand interpretations. This
shows that the stable model semantics can even be reified as a completion
that works with the standard first order model theory. It is thus reason-
able to take the stable model semantics as our point of departure. We have
chosen to present the stable model semantics in terms of its original formu-
lation, and not Wallace’s completion, since our own approach looks much
more like the original version. However, the reader is referred to (Wallace
1993) for his very elegant completion semantics.

137

6.6.2 Grammars with full negation

We now turn back to feature constraint grammars. In this section, we will
lift the restriction on the use of negation imposed previously, and provide a
model definition for the amended syntax. For the syntax, we only need to
modify the definition of a relation term.

Definition 6.20 (relation terms)

L) if ¢ is a feature term

o A if A is an atom

e - ¢ if ¢ is a relation term

o b1 A, P1V P if ¢1 and ¢ are relation terms

We say that a clause is normal if the clause body is a conjunction of atoms
and negated atoms. Although a general definition of the semantics could
be given, we restrict our attention to normal clauses, as this considerably
simplifies some technical details. This restriction clearly does not affect the
expressive power of the system. A grammar is then as before, except for the
amended definition of relation terms, and the restriction to normal clauses.

We begin our definition of the models of a grammar with a definition of an
infinite sequence of sets, providing partial information about the model for
a set of clauses.

Definition 6.21 (nt)

Let S be a set and N C N a finite set of natural numbers. Define nt(S, N) to
be the set of all n-tuples over S, for alln € N, i.e., nt(S,N)={(a1,...,an) |
ay,...,a, €S, n€ N}

We write ran(f) for the range of a function f.

Definition 6.22
Let S = (T, =,F, approp, R, Ar) be a signature, C' a set of normal clauses,
T=(U,S,A,P)an S-interpretation and « a variable assignment. We write

[r(¢1, ... ,¢n)]]£ € P iff Huq, ..., un) € P(r). us € [[qbl]]g, ceyUp € [[gbn]]g

Definition 6.23 (P)
Let S = (T, =,F, approp, R, Ar) be a signature, C' a set of normal clauses
and T = (U,S,A,P) an S-interpretation. We say the infinite sequence

—

P = (Po, P1,...) models C iff

138

o foreachn € N, P, : R — nt(U, ran(Ar))
e Vr e R. Po(r)=10
e Vn>0.Vr € R. (u1,...,u,) € Pp(r) iff

— n= Ar(r)
— 3Ar(¢1,...,¢n) < BiA...AB;A-C1A...A=C; € C and Ja s.t.

* U € [¢1H£a <oy Un € |I¢n]]£
* [Blﬂga HRE [Bn]]g € Pn—l
* Yk e N. [C1]5, .. . [C515 ¢ Px

Definition 6.24 (model)
Let G = (S,0,C) be a grammar, where S = (T, <, F, approp, R, Ar), and
T={(U,S,A,P) an interpretation. T is a model of G iff

e foreach 0 € ©. [0]F =U
e P is defined

o Vr € R.V{(ug, ..., un). {(u1,...,un) € P(r) iff
for some k € N. (u1,...,un) € Pr(r)

This ugly piece of mathematics defines a semantics for clauses that is similar
to the least fixed point approach in logic programming. The intuition is very
similar to the T'p function used to construct the least Herbrand model (Lloyd
1984). If we only had definite clauses, we would get exactly the least fixed
point interpretation as the only possible model for a given domain. The
situation is complicated by the presence of negative literals. Like the stable
model semantics, our semantics does not say anything about negative literals
locally, for a certain P; in the derivation. In the stable model semantics,
this is achieved by requiring that the final model should entail the negative
literals in a clause, which is exactly what we do. Our equivalent of the
Tp function used in the stable model semantics is the positive part of the
P construction. The treatment of negative literals in clause bodies is part
of the definition of P in our case, since that seems more intuitive, but the
difference is clearly only notational.

Notice that our definition is clearly not constructive, since the condition on
negated atoms refers to the entire sequence. It is not even functional, in the
sense that P may not be unique. Since this is the same for the stable model
semantics, anything else would have been a surprise.

139

6.6.3 Some examples

Let us reconsider the transitive closure grammar G from p. 135, which we
repeat here for convenience. We had the the following type hierarchy

T

N

a b
and the set of clauses below.

p(a,a)
tp(X,Y) = p(X,Y)

tp(X,Z) :=p(X,Y)ANtp(Y, Z)

We saw that with the semantics from the last section, we predicted a model

I=(U,S,A,P), where

o U ={d,b},
o S(d')y=1ua, (V') =0,

e P(p) = {(d',d")} and P(tp) = {(d', '), (',) }.

This meant that G predicted tp(a,b), which was not intended. With our
new semantics, Z is not a model of G anymore. To see this, consider P
with respect to the grammar and interpretation above. If [tp(a, b)]% € P for
some «, then for some n € N, [tp(a, b)]% € P,. From the grammar, however,
we can see that then, [tp(a,b)]Z € P,_1, and so on. Since we know that
[tp(a,b)]% ¢ Po, we have a contradiction. In fact, the only possible model
of G with identical ¢4, § and Ais ' = (U, S, A, P'), where

P'(p) = {(d',a')} and P'(tp) = {{d’, d) }.

For our next example, we will keep the same grammar, but extend our type
hierarchy a little.

140

m

a b

—

« —
v QD

Consider the queries:

o -p(a,a)
o f:(XANa)Ag: (Y ANa)A—-p(X,Y)

Neither of those queries should be predicted by G. However, the first one
is in fact predicted by G, the second one isn’t. This is so because there can
be models that have no objects of type a in their domain, and where P(p)
is thus empty. This is different in the second query, where we explicitly
require objects of type a to exist. To paraphrase, the first query asks if
there are models such that it is not the case that there are objects of type
a that stand in the p relation. The second query, on the other hand, asks if
there are models that contain objects of type a that do not stand in the p
relation. One can therefore say that by mentioning the arguments outside
of the negative literal, we have moved the existential quantifier in the above
paraphrase out of the scope of the negation operator.

It is not possible to change this behavior of the logic, unless we take recourse
to some canonical base interpretation (like the set of abstract, totally well-
typed and sort-resolved feature structures, for example). We could then give
a canonical model semantics that always includes all admissible objects from
the base interpretation. Although this might be an interesting alternative,
we chose not to pursue it here, since we prefer the close connection to first
order logic our present architecture gives us.

6.7 Conclusion

In this chapter, we have examined the addition of a relational component to
our feature logic grammars. We first noted that it is not possible to employ
the constraint logic programming scheme of Hohfeld and Smolka (1988).

We then extended feature logic constraint grammars with a definite clause
component. Relational atoms were not allowed to appear in the scope of

141

negation anywhere (except, of course, implicitly in the clause head). Our se-
mantics for relations was based on a constraint version of Clark’s completion
semantics (Clark 1978). We then went on to show that with this conser-
vative relational extension, we were able to obtain the same soundness and
completeness results as in ch. 5.

In the final section of this chapter, we investigated possibilities to relax the
restriction on the use of negation. We first observed that we would lose our
computability results if we did that. We then presented the stable model
semantics (Gelfond and Lifschitz 1988) as a promising approach. Finally, we
showed how a version of the stable model semantics could be implemented
for the relational part of feature logic constraint grammars. We saw that it
is possible to give a somewhat intuitive treatment of negation in this system,
but that we lose both clarity and computational properties in the process.

Frank Richter and Manfred Sailer have investigated relations for HPSG in
particular (see, e.g., Richter et al. 1999). The two approaches are not
easily compared, since (Richter et al. 1999) not only introduce relations,
but also full-fledged general quantification. They thus obviate the need for
a special clausal notation for relations. Instead, relations can be defined
any way one can think of. Of course, it is not easy to see how one would
compute with a general system like that (but that is not the point of their
proposal). As far as we’re aware of, there has been no other proposal for
integrating implicational and relational constraints with a declarative and
computational semantics.

For our own proposal, we expect that a sound procedural semantics could
be implemented using constructive negation (Chan 1988). However, this is
beyond the scope of this dissertation.

142

Chapter 7

Conclusion

In this dissertation, we investigated the computational modeling of HPSG
grammars. Our goal was to directly use a formalization of HPSG based on
classical logic for computation. We used the work of King (1989, 1994) as
our point of departure.

We first focused on the problem of satisfiability for feature terms. We showed
how satisfiability problems can elegantly be solved using constraint solv-
ing methods. We discussed how constraint solving differs from unification-
based approaches in making computation independent of semantic struc-
tures. This yields a clearer separation of declarative and computational
semantics. Constraint-based methods are also more easily extended than
unification-based ones.

We examined the notion of grammaticality for grammars. In a logic-based
setting, this is naturally expressed as a relation between theories (sets of
formulae) and queries (individual formulae). We called this relation predic-
tion. Given these basic ingredients, there are two sorts of relationships we
might employ: satisfiability and logical consequence. We established that
for formalisms based on classical logic, there is a correspondence between
constraint-based grammar formalisms and a formulation of prediction in
terms of satisfiability. Conversely, a formalization of prediction as logical
consequence is natural for rule-based grammars.

For our own grammar formalism, we gave a definition of prediction based on
satisfiability. We established that prediction was undecidable, and not recur-
sively enumerable. However, we found that the co-problem, non-prediction,
is enumerable.

143

We further examined the relationship between satisfiability and logical con-
sequence-based approaches by giving a translation of feature logic constraint
grammars into constraint logic programs. As expected, the translation
turned out to be complete only for a subset of the decidable grammars.

We then established a proof method for the prediction problem based on
lazy type evaluation. This method turned out to be much simpler than the
translation to constraint logic programs. We showed that our method was
sound, and complete for the non-prediction case.

The addition of relations to our grammar formalism posed some interest-
ing problems. We wanted a notion of relation close to logic programming.
Our grammar formalism, however, supports a satisfiability-based notion to
prediction, as opposed to logical consequence in logic programming. We
resolved this issue by giving a semantics to definite clauses inspired by
Clark’s completion semantics, while overall retaining our satisfiability-based
approach. We extended our proof method to include definite relations, and
obtained the same soundness and completeness results as in the relation-free
case.

Finally, we considered relations in the scope of negation. We employed an
approach resembling the stable model semantics. It turned out that even
under a satisfiability-based approach, this semantics delivers intuitive results
in the presence of relations in the scope of negation.

7.1 Implementation

As mentioned in the introduction, large parts of what has been described in
this thesis has actually been implemented in the ConTroll! system. ConTroll
is based on its predecessor, Troll (Gerdemann et al. 1995), from which it
inherits the type system. The following list provides an overview of the
ConTroll features relevant to this thesis.

e Signatures, terms and their interpretation are implemented along the
lines discussed in ch. 2. The only restriction is that variables can
not occur in the scope of negation. That is, path inequations are not
implemented.

e Grammars are implemented as described in ch. 6. That is, definite

'See http://www.sfs.nphil.uni-tuebingen.de/controll/, as well as (Gétz and
Meurers 1997a) and (Gétz et al. 1997).

144

relations are fully supported. Grammar normalization as described
towards the end of ch. 3 is also supported. That means that the user
can write implicational constraints with complex antecedents, which
will then get compiled into the simpler form described in ch. 3.

e Lazy evaluation is implemented as described in ch. 5. The user must
therefore ensure that grammars are type consistent.

Of course, there is much more to ConTroll than just an implementation of the
logic. There are tools to ease the development of relatively large grammars
such as a GUI front-end, debugging tools, off-line grammar optimization
(Meurers and Minnen 1999) etc. See (G&tz and Meurers 1997a) for an

overview.

At a much more basic level, the proof systems developed in ch. 5 and 6
tell us nothing about an efficient evaluation strategy for goals. From a
practical point of view, this is a much more difficult problem than the correct
implementation of the logic. The execution strategy of ConTroll is based on
the concurrent Andorra principle (Haridi and Janson 1990), which basically
says, do as much deterministic computation as you can before you set a
choice point. In addition, ConTroll provides a number of concurrent control
primitives that allow the users to fine-tune the execution of their grammars.
The control primitives for ConTroll are described in (G6tz et al. 1997).

The ConTroll system has been used successfully to implement a large frag-
ment of German. See (Hinrichs et al. 1997) for a description of the fragment
and its implementation.

145

Bibliography

Ait-Kaci, H., A. Podelski, and S. C. Goldstein (1993). Order-sorted theory
unification. Technical Report 32, Digital Equipment Corporation.

Aldag, B. (1997). A proof theoretic investigation of prediction in
HPSG. Master’s thesis, Seminar fiir Sprachwissenschaft, Universitit
Tdbingen.

Baader, F. and J. Siekmann (1994). Unification theory. In D. M. Gabbay,
C. Hogger, and J. A. Robinson (Eds.), Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 2: Deduction Method-
ologies, pp. 41-125. Clarendon Press.

Boolos, G. S. and R. C. Jeffrey (1974). Computability and Logic (third
ed.). Cambridge University Press.

Bouma, G., E. Hinrichs, G.-J. Kruijff, and R. Oehrle (Eds.) (1999). Con-
straints and Resources in Natural Language Syntar and Semantics.
Cambridge University Press.

Carpenter, B. (1992). The logic of typed feature structures, Volume 32 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press.

Carpenter, B., C. Pollard, and A. Franz (1991). The specification and im-
plementation of constraint-based unification grammars. In Proceedings

of the 2nd International Workshop on Parsing Technology, pp. 143 —
153.

Chan, D. (1988). Constructive negation based on the completed database.
In R. A. Kowalski and K. A. Bowen (Eds.), Proceedings of the 5th
International Conference and Symposium on Logic Programming, pp.
111-125. MIT Press.

Chomsky, N. (1981). Lectures on Government and Binding, Volume 9 of
Studies in Generative Grammar. Foris Publications.

146

Clark, K. L. (1978). Negation as failure. In H. Gallaire and J. Minker
(Eds.), Logic and Databases, pp. 293—-322. New York: Plenum Press.

Dérre, J. (1994). Feature-Logik und Semiunifikation. Arbeitspapiere des
SEB 340 Nr. 48, Universitat Stuttgart.

Dérre, J. and M. Dorna (1993). CUF - a formalism for linguistic knowl-
edge representation. In J. Dérre (Ed.), Computational aspects of con-
straint based linguistic descriptions I, pp. 1-22. Universitdt Stuttgart:
DYANA-2 Deliverable R1.2.A.

Dérre, J. and A. Eisele (1991, January). A comprehensive unification
based formalism. DYANA Deliverable R3.1.B, Universitat Stuttgart.

Gazdar, G., E. Klein, G. Pullum, and I. Sag (1985). Generalized Phrase
Structure Grammar. Harvard University Press.

Gelfond, M. and V. Lifschitz (1988). The stable model semantics for logic
programming. In R. A. Kowalski and K. A. Bowen (Eds.), Proceed-

ings of the 5th Conference and Symposium on Logic Programming, pp.
1070-1080. MIT Press.

Gerdemann, D., T. Gétz, J. Griffith, S. Kepser, and F. Morawietz (1995).
Troll manual. Seminar fiir Sprachwissenschaft, Universitat Tiibingen.

Gerdemann, D. and P. J. King (1993). Typed feature structures for ex-
pressing and computationally implementing feature cooccurence re-
strictions. In Proceedings of 4. Fachtagung der Sektion Computerlin-
guistik der Deutschen Gesellschaft fiir Sprachwissenschaft, pp. 33—39.

Gotz, T. (1994). A normal form for typed feature structures. Arbeitspa-
piere des SFB 340 Nr. 42, Universitat Tiibingen.

Gotz, T. (1995). Compiling HPSG constraint grammars into logic pro-
grams. In Proceedings of the joint ELSNET-COMPULOG-NET-
EAGLES workshop on computational logic for natural language pro-
cessing, Edinburgh.

Gotz, T., D. Meurers, and D. Gerdemann (1997). The ConTroll man-
ual and user’s guide. Seminar flir Sprachwissenschaft, University of
Tibingen.

Gotz, T. and W. D. Meurers (1995). Compiling HPSG type constraints
into definite clause programs. In Proceedings of the Thrirty-Third An-
nual Meeting of the ACL, Boston. Association for Computational Lin-
guistics.

147

Gotz, T. and W. D. Meurers (1997a). The ConTroll system as large gram-
mar development platform. In Proceedings of the ACL/EACL post-
conference workshop on Computational Environments for Grammar
Development and Linguistic Engineering, Madrid, Spain.

Gotz, T. and W. D. Meurers (1997b). Interleaving universal principles
and relational constraints over typed feature logic. In Proceedings of
the 35th Annual Meeting of the ACL and the 8th Conference of the
EACL, Madrid, Spain.

Gotz, T. and W. D. Meurers (1999). The importance of being lazy. In
G. Webelhuth, J.-P. Koenig, and A. Kathol (Eds.), Lezical and Con-
structional Aspects of Linguistic Explanation, pp. 249-264. CSLI Pub-
lications.

Haridi, S. and S. Janson (1990). Kernel Andorra Prolog and its computa-
tion model. In D. H. D. Warren and P. Szeredi (Eds.), Proceedings of
the seventh international conference on logic programming, pp. 31-46.

MIT Press.

Hinrichs, E., D. Meurers, F. Richter, M. Sailer, and H. Winhart (1997).
Ein HPSG-Fragment des Deutschen, Teil 1: Theorie. Arbeitspapiere
des SFB 340 Nr. 95, Universitat Tibingen.

Héhfeld, M. and G. Smolka (1988). Definite relations over constraint lan-
guages. Technical Report 53, LILOG, IBM Deutschland.

Johnson, M. (1988). Attribute- Value Logic and the Theory of Grammar.
CSLI lecture notes.

Johnson, M. (1991). Features and formulae. Computational Linguis-
tics 17(2), 131-151.

Johnson, M. (1994). Two ways of formalizing grammar. Linguistics &
Philosophy 17, 221-248.

Kaplan, R. and J. Bresnan (1982). Lexical-functional grammar: A for-
mal system for grammatical representation. In J. Bresnan (Ed.), The
Mental Representation of Grammatical Relations, pp. 173-281. MIT
Press.

Kay, M. (1979). Functional grammar. In Proceedings fo the Fifth Annual
Meeting of the Berkeley Linguistics Society, pp. 17-19.

Kepser, S. (1994). A satisfiability algorithm for a typed feature logic.
Arbeitspapiere des SFB 340 Nr. 60, Universitdt Tibingen.

148

King, P. J. (1989). A logical formalism for head-driven phrase structure
grammar. Ph. D. thesis, University of Manchester.

King, P. J. (1994). An expanded logical formalism for head-driven phrase
structure grammar. Arbeitspapiere des SFB 340 Nr. 59, Universitit
Tdbingen.

King, P. J. (1995). From unification to constraint. Unpublished lecture
notes, University of Tiibingen.

King, P. J. and T. W. G&tz (1993). Eliminating the feature introduction
condition by modifying type inference. Arbeitspapiere des SFB 340
Nr. 31, Universitat Tiibingen.

King, P. J., K. I. Simov, and B. Aldag (1999). The complexity of modella-
bility in finite and computable signatures of a constraint logic for head-
driven phrase structure grammar. The Journal of Logic, Language and
Information 8(1), 83-110.

Kunen, K. (1987). Negation in logic programming. Journal of Logic Pro-
gramming 4 (4), 289-308.

Lewis, H. R. and C. H. Papadimitriou (1981). Elements of the Theory of
Computation. Prentice Hall.

Lloyd, J. W. (1984). Foundations of Logic Programming. Berlin, Germany:
Springer-Verlag.

Manandhar, S. (1995). Deterministic consistency checking of LP con-
straints. In proceedings of the 7th conference of the EACL, Dublin,
Ireland.

Meurers, W. D. (1994). On implementing an HPSG theory — aspects of
the logical architecture, the formalization, and the implementation of
head-driven phrase structure grammars. In: Erhard W. Hinrichs, W.
Detmar Meurers, and Tsuneko Nakazawa: Partial-VP and Split-NP
Topicalization in German — An HPSG Analysis and its Implementa-
tion. Arbeitspapiere des SFB 340 Nr. 58, Universitdt Tiibingen.

Meurers, W. D. and G. Minnen (1999). Off-line constraint propagation.
In G. Webelhuth, J.-P. Koenig, and A. Kathol (Eds.), Lezical and
Constructional Aspects of Linguistic Ezplanation, pp. 299-314. CSLI
Publications.

Minnen, G. (1998). Off-line Compilation for Efficient Processing with
Constraint-logic Grammars. Ph. D. thesis, Univesitdt Tibingen.

149

Pollard, C. and I. A. Sag (1987). Information-Based Syntaz and Seman-
tics. CSLI lecture notes.

Pollard, C. and I. A. Sag (1994). Head-Driven Phrase Structure Grammar.
Chicago: University of Chicago Press.

Richter, F., M. Sailer, and G. Penn (1999). A formal interpretation of
relations and quantification in HPSG. In (Bouma et al. 1999).

Rogers, J. (1999). A Descriptive Approach to Language-Theoretic Com-
plezity. Cambridge University Press.

Rounds, W. C. and R. T. Kasper (1986). A complete logical calculus
for record structures representing linguistic information. In 1st IFEFE
Symposium on Logic in Computer Science, pp. 38 — 43.

Shepherdson, C. J. (1987). Negation in logic programming. In J. Minker
(Ed.), Foundations of Deductive Databases and Logic Programming,
Chapter 1, pp. 19-88. Los Altos, CA: Morgan Kaufman.

Shieber, S. (1989). Parsing and Type Inference for Natural and Computer
Languages. Ph. D. thesis, Stanford University. Published as SRI Inter-
national, Technical Note 460.

Smolka, G. (1988). A feature logic with subsorts. LILOG Report 33,
IWBS, IBM Deutschland.

Smolka, G. (1992). Feature-constraint logics for unification grammars.
Journal of Logic Programming 12, 51-87.

Wallace, M. (1993). Tight, consistent, and computable completions for
unrestricted logic programs. Journal of Logic Programming 15, 243—
273.

150

