
A method of weighting adjustment
for survey data subject to

nonignorable nonresponse

Li-Chun Zhang

2002



Editorial Board:
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Wolf Bihler Statistisches Bundesamt, Germany

Anthony Davison Swiss Federal Institute of Technology, Switzerland

Paul Knottnerus Centraal Bureau voor de Statistiek, The Netherlands

Seppo Laaksonen Tilastokeskus (Statistics Finland), Finland

Andreas Quatember Johannes Kepler University Linz, Austria

Jean-Pierre Renfer Swiss Federal Statistical Office, Switzerland

Chris Skinner University of Southampton, United Kingdom

IST–2000–26057–DACSEIS

The DACSEIS research project is financially supported within the IST
programme of the European Commission. Research activities take place in
close collaboration with Eurostat.

http://europa.eu.int/comm/eurostat/research/

http://www.cordis.lu/ist/

http://www.dacseis.de/

DACSEIS research paper series 2



A method of weighting adjustment for survey
data subject to nonignorable nonresponse

Li-Chun Zhang

Statistics Norway
Kongensgt 6

P.B. 8131 Dep.
N-0033 Oslo, Norway

E-mail: li.chun.zhang@ssb.no

Abstract: Weighting adjustment is a standard quasi-randomization approach for
survey data subject to nonresponse Little (1986). The existing methods are
typically based on the assumption that nonresponse is independent of the survey
variable conditional to the auxiliary variables used to form the adjustment cells. In
this paper we consider nonignorable nonresponse which is independent of certain
auxiliary information conditional to the variable of interest. We estimate the size of
the sample adjustment cells using a method of moment conditional to the sample.
The method relies on only the nonresponse mechanism, and is independent of the
sample design. In variance estimation, we evaluate the nonresponse effect on esti-
mation and design, analogously to the concept of design effect. By comparing the
nonresponse effects under a nonignorable model against those under an ignorable
one, we obtain a means of measuring the effect of nonignorability. We motivate and
illustrate our approach for estimation of household composition.

Keywords: weighting adjustment, nonresponse effect, effect of nonignorability,

stratified simple random sampling, post-stratification

1 Introduction

For the survey of living conditions (SLC) in 1999, a simple random sample of 4958 persons
was selected from all persons of age 16 or over in the population. Household information
was obtained from 3758 of them, so that the nonresponse rate was just over 24%. Our
objective here is to estimate the number of households by the size of the household in the
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population. As auxiliary information from the population administrative register, we have
the size of the family in which a person is registered. This information can be linked to
the sample through a personal identity number. There are important differences between
a registered family and a dwelling household. For instance, a household may contain
several registered families and generations. While a registered family never involves more
than two generations, its members may live in separate households. Exploratory data
analysis (Table 1) shows that the nonresponse rate is higher among persons from smaller
registered families. This agrees to the fact that smaller households are more difficult
to reach than the larger ones. Under-representation of smaller households among the
respondents implies that nonresponse presumably is nonignorable in the sense of Rubin
(1976), because it seems unlikely that the probability of nonresponse may be independent
of the actual size of the household, given the size of the family in the register.

Table 1: Response rate (%) in the SLC by the registered family size and the person’s age

Number of persons in the registered family
Age of the person 1 2 3 4 ≥ 5

Under 45 71.4 (625) 76.2 (265) 77.4 (517) 83.8 (722) 81.4 (474)
Between 45 and 64 66.6 (311) 74.7 (581) 78.1 (329) 79.3 (237) 81.9 (116)
Over 64 62.0 (316) 72.4 (410) 80.4 (51) 100 (4) 0 (0)

Note: Numbers in the parentheses indicate how many persons the response rate is based on.

Little and Rubin (1987) distinguish between the modeling and quasi-randomization
approach to nonresponse in sample surveys. Apart from the case of missing completely
at random (MCAR), a typical assumption of weighting adjustment under the quasi-
randomization approach is that nonresponse is independent of the survey variable condi-
tional to the auxiliary variables available. Even when ignorable nonresponse as such is not
true, useful adjustments can be obtained due to the correlation between the auxiliary and
survey variables Zhang (1999). Indeed, once we depart from the MCAR-assumption,
the objective of analysis can no longer be to provide a single valid inference, since a
nonresponse model, ignorable or not, can never be conclusively established based on the
data alone. Nevertheless, contextual evidences and conceptual considerations may sug-
gest that the inference is likely to be less biased under some nonresponse models, possibly
nonignorable, than others (e.g. Molenberghs et al. (1999)).

Little (1986) discusses adjustment methods under the assumption of ignorable non-
response. The household composition being categorical variables, it is natural in the
present case to form adjustment cells by response propensity stratification according to
the nonresponse probability of each unit. Motivated by the nonresponse situation in the
SLC, we begin by defining a number of nonresponse classes in the sample which, among
other things, depend on the size of the household (Table 2). The sizes of the nonresponse
classes are therefore unknown among the nonrespondents. We assume that, within each
nonresponse class, the probability of nonresponse is independent of the size of the family
in the register. Any identifiable subgroup of a nonresponse class can now be used as an
adjustment cell. With the simple multinomial sampling, our model of conditional inde-
pendence is formally a decomposable graphical model Lauritzen (1996), which again is
a subclass of the log-linear models Forster and Smith (1998). To estimate the sizes
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Table 2: Definition of nonresponse classes in the SLC

No. Nonresponse class No. Nonresponse class

I 1-person household, person’s age under 45 VII 3-person household
II 1-person household, person’s age between 45 and 64 VIII 4-person household
III 1-person household, person’s age over 64 IX Others
IV 2-person household, person’s age under 45
V 2-person household, person’s age between 45 and 64
VI 2-person household, person’s age over 64

of the adjustment cells among the nonrespondents, we apply a method of moment con-
ditional to the sample, which depends on only the nonresponse mechanism. The method
is thus valid regardless of the underlying sampling distribution of the selected units. The
details of the weighting adjustment will be explained in Section 2.1 and 2.2.

From the quasi-randomization perspective, both the sampling error and the nonresponse
contribute to the total variance of an estimator. Variance calculation is more informative
if it is able to describe to us the various effects of nonresponse. Denote by EM and varM

expectation and variance with respect to the nonresponse mechanism, and ED and varD

that with respect to the sample design. To facilitate the derivation of the total variance
of an estimator, denoted by τ̂ , it is often helpful to employ either of the following two
decompositions, i.e.

var(τ̂) = ED[varM(τ̂)] + varD(EM [τ̂ ]) = EM [varD(τ̂)] + varM(ED[τ̂ ]),

where the inner expectation and variance are treated as conditional ones. For instance,
Rao and Sitter (1995) apply the former approach, whereas Fay (1991) and Shao
and Steel (1999) make use of the latter. However, while both ED[varM(τ̂)] and
varM(ED[τ̂ ]) are mainly due to nonresponse, neither of them summarizes in itself all
the effects of nonresponse.

In Section 2.3 we define the nonresponse effect (neff) on respectively estimation and
sampling, in analogy to the well-known concept of design effect (deff). Described in
words, the neff on estimation is the ratio between the total variance of an estimator,
and the sampling variance of the same estimator in the absence of nonresponse, under
the same sample design. Typically, the latter can be estimated using standard methods
by treating the imputed data as if they had been observed. The neff on estimation,
however, does not contain all the nonresponse effect. Nonresponse could also affect the
sample design because, in general, the respondents may differ systematically from the
nonrespondents. Had the nonresponse status been known for the whole population at
the design stage, we could have considered a stratified design, in which the actual sample
design was separately applied within the subpopulation of the respondents and that of
the nonrespondents. This would have led to a variance reduction except when there in
fact is no systematic difference between the two subpopulations. The neff on design is
thus defined as the ratio between the unstratified and the stratified sampling variance,
both in the absence of nonresponse. The overall neff is now given by the product of the
neff on estimation and the neff on design, which measures the total variance inflation due
to nonresponse.
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It is clear that the nonresponse effects can only be evaluated under an assumed nonre-
sponse model. By comparing the neff’s across different models, we are able to measure the
alternative nonresponse assumptions against each other. Of special interest are measures
of a nonignorable model against an ignorable one. We define the effect of nonignorability
(effn) for estimation as the ratio between the neff on estimation under a nonignorable
and an ignorable model. Whereas the effn for design is similarly defined between the neff
on design under the two models. The overall effect of nonignorability is given by the
product of the effn’s on estimation and design. In cases where we have a set of nonig-
norable models for consideration, we may prefer to fix one ignorable model for base-line
comparison. Together, deff and effn measure the various effects of missing data in terms of
variance. Section 2.3 provides the details in the case of stratified simple random sampling.
Empirical results based on the SLC are discussed in Section 3.

2 Method

2.1 A conditional independence nonresponse model

Denote by s the sample. Let yi, for yi = 1, ..., J , be the nonresponse class indicator of unit
i ∈ s. In particular, the definition of the nonresponse class may depend on the survey
variables (such as in Table 2), which are unknown for the nonrespondent units. Let xi,
for xi = 1, ..., K, be some auxiliary variable which is available for all i ∈ s. Let Ri = 1 if
response, and Ri = 0 if nonresponse. The conditional independence nonresponse model
is given by

P [Ri = 1|xi = x, yi = y] = P [Ri = 1|yi = y]. (1)

Let nxy be the number of respondent units with (xi, yi) = (x, y). Define mxy similarly for
the nonrespondents, which is unknown except from the marginal total mx =

∑
y mxy. We

have

Response Nonresponse (Unobserved)
Y = 1 Y = 2 · · · Y = J Nonresponse Y = 1 Y = 2 · · · Y = J

X = 1 n11 n12 · · · n1J m1 m11 m12 · · · m1J

X = 2 n21 n22 · · · n2J m2 m21 m22 · · · m2J

...
...

...
. . .

...
...

...
...

. . .
...

X = K nK1 nK2 · · · nKJ mK mK1 mK2 · · · mKJ

Under the nonresponse model (1), we notice that, at the current {nxy, m̂xy}, we have

P̂ [Ri = 0|yi = y] = (
∑

x

nxy +
∑

x

m̂xy)
−1(

∑

x

m̂xy)

and
Ê[mxy|nxy + m̂xy] = (nxy + m̂xy)P̂ [Ri = 0|yi = y].

Conditional to the observed mx =
∑

y m̂xy, we update m̂xy by

m̂xy = mxÊ[mxy|nxy + m̂xy](
J∑

j=1

Ê[mxj|nxj + m̂xj])
−1,
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and iterate. Notice that this is the EM algorithm for data arising from the simple multi-
nomial sampling. Convergence is usually not a problem. However, it is good practice to
choose moderate sizes of J and K, so as to avoid setting up tables with many small or
empty cells. See Smith, Skinner and Clarke (1999) for more detailed discussions
on this issue. Due to the restriction of mx =

∑
y m̂xy, the obtained {m̂xy} do not always

exactly satisfy, for y = 1, ..., J ,

m̂1y

n1y + m̂1y

=
m̂2y

n2y + m̂2y

= · · · =
m̂Ky

nKy + m̂Ky

. (2)

We may consider the algorithm above as a method of conditional moment regardless
of the sampling distribution of the (x, y)-cells. Any selected sample contains a certain
number of units with (xi, yi) = (x, y), denoted by cxy where

∑
y cxy =

∑
y nxy + mx. The

nonresponse mechanism which generates nxy and mxy has a Binomial distribution given
cxy. At each iteration we take expectation with respective to the nonresponse mechanism
alone, conditional to the current value of ĉxy = nxy +m̂xy. In this way the estimates {m̂xy}
are independently derived of the sampling distribution. It follows that we generally do
not use

∑
x(nxy + m̂xy)/(

∑
x,y nxy +

∑
x mx) as an estimate of the proportion of yi = y

in the population. To infer from the imputed sample to the population, we still need to
apply some weighting method appropriate for the sample design.

2.2 Weighting adjustment

Let sy = {i ∈ s; yi = y} be an adjustment cell in the sample by response propensity
stratification. The adjustment weight of any respondent unit i ∈ sy is given by

ai = (
∑

x

nxy)
−1(

∑

x

nxy +
∑

x

m̂xy). (3)

Let sxy = {i ∈ s; (xi, yi) = (x, y)}. Since all i ∈ sxy have the same response probability
under model (1), we could also use sxy as an adjustment cell, i.e. for any respondent
i ∈ sxy,

ai = n−1
xy (nxy + m̂xy). (4)

There will be no difference between (3) and (4) provided {m̂xy} exactly satisfy (2). Oth-
erwise, ai by (3) is more stable than that by (4), and leads to estimators with smaller
variances. Whereas ai by (4) may have better control over the bias, especially for domain
estimates. Notice that the sum of the adjustment weights over the respondent units is by
definition the size of the sample, which entails adjustment for nonresponse under model
(1).

The adjustments (3) and (4) differ somewhat from the standard weighting class adjust-
ment. In cases where the adjustment cells are formed using the auxiliary variables alone,
we always know which adjustment cell a nonrespondent unit belongs to. The design
weight of a respondent unit is then adjusted by a factor estimated at the population level.
For instance, let sc be such an adjustment cell in the sample. For any respondent unit
i ∈ sc, we would adjust its design weight by the factor

∑
i∈sc

π−1
i /

∑
i∈sc;ri=1 π−1

i , where
πi is the inclusion probability of unit i. In contrast, the adjustment weight ai under the
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nonignorable model (1) is derived from estimates at the sample level. That is, we estimate
the nonresponse sample at the (x, y)-cell level, i.e. {m̂xy}, without specifying to which
adjustment cell a nonrespondent unit belongs.

For any respondent unit i ∈ s, we define its weight as

wi = N(π−1
i ai)(

∑

i∈s;ri=1

π−1
i ai)

−1,

where N =
∑

i∈s π−1
i =

∑
i∈s;ri=1 wi is the size of the population. In the case of ri = 1

for all i ∈ s, this reduces to the weighted sample mean estimator since ai = 1. The
post-stratified weights are similarly given within each post-stratum. Let Nh be the size
of the population in post-stratum h, and sh the corresponding sample post-stratum. For
any respondent unit i ∈ sh, we let

wi = Nh(π
−1
i ai)(

∑

i∈sh;ri=1

π−1
i ai)

−1. (5)

Let zi be a survey variable of interest. We estimate its population total by

τ̂ =
∑

i∈s;ri=1

wizi =
∑

i∈s

riwizi, (6)

where we set riwizi = 0 in the case of ri = 0, without assigning any explicit values to wi

or zi.

2.3 Variance estimation and nonresponse effects

Take first the case of simple random sampling without replacement. We evaluate the
conditional variance of the post-stratified estimator given by (5) and (6) with h = x
Holt and Smith (1979). Shao and Sitter (1996) discusses Bootstrap variance
estimation for imputed survey data. Under condition (i) the sample size is not small, and
(ii) the sampling fraction is negligible, the various proposed Bootstrap methods all agree
closely with the infinite-population nonparametric Bootstrap for missing data Efron
(1994). Let sx = {i ∈ s; xi = x} and nx =

∑
y nxy. We form a Bootstrap sample

by stratified resampling of nx + mx units from each sx, with all the associated (yi, zi, ri)
values, randomly and with replacement. We group the Bootstrap sample into {n∗

xy,m
∗

x} as
defined in Section 2.1, based on which we obtain τ̂ ∗ by the weighting adjustment method
described in Section 2.1 and 2.2. Independent repetitions give us τ̂ ∗

1 , ..., τ̂ ∗

B, and

v = v̂ar(τ̂ |{nx + mx}) = (B − 1)−1

B∑

b=1

(τ̂ ∗

b − B−1

B∑

d=1

τ̂ ∗

d )2. (7)

Consider now the case of zi = Iyi=y, where Iyi=y = 1 if yi = y, and 0 otherwise. Let Nx

be the size of the subpopulation with xi = x, and p̂xy = (nxy + m̂xy)/(nx +mx), such that

v0 =
∑

x

N2
x(nx + mx)

−1p̂xy(1 − p̂xy) and τ̂ =
∑

x

Nxp̂xy. (8)
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Had m̂xy been observed, τ̂ would have been the simple post-stratified estimator of the
population total of zi, whereas v0 would have been an estimate of its conditional sampling
variance assuming negligible (nx+mx)/Nx. Typically, we have v > v0, where the increment
is entirely caused by the fact that yi is missing from the nonrespondents. Since both v
and v0 are derived under the same sample design, we may define the nonresponse effect
(neff) on estimation as

neffest = v−1
0 v.

Nonresponse can also affect the sample design because, in general, the respondents may
differ systematically from the nonrespondents. Had ri been known throughout the popula-
tion, therefore, we could have considered a stratified design according to ri. Let n1,x = nx

and n0,x = mx. Let N̂r,x = Nxnr,x/(nx + mx) for r = 0, 1. Let p̂1,xy = nxy/nx, and
p̂0,xy = m̂xy/mx, such that

v1 =
∑

r

∑

x

N̂2
r,xn

−1
r,xp̂r,xy(1 − p̂r,xy) and τ̂ =

∑

r

∑

x

N̂r,xp̂r,xy. (9)

Notice that τ̂ is now the sum of two within-stratum post-stratified estimates, whereas v1

would have been an estimate of its conditional sampling variance, had (N̂1,x, N̂0,x) been
known to us in the first place. We may therefore define the nonresponse effect (neff) on
design as

neffdsg = v−1
1 v0.

The (overall) nonresponse effect is conveniently given by the product of neffest and neffdsg,
i.e.

neff = neffest · neffdsg = v−1
1 v.

The neff can only be defined under an assumed nonresponse model. By comparing the
neff’s obtained under alternative nonresponse models, we are able to measure different
assumptions against each other. In particular, we are interested in comparing a nonignor-
able model against an ignorable one. Under the present setting, we define the ignorable
model as

P [Ri = 1|xi = x, yi = y] = P [Ri = 1|xi = x]. (10)

The method of conditional moment gives us m̂xy = mxnxy/nx. The post-stratified es-

timator of T is the same with or without imputing {m̂xy}. Let neff
(pst)
est and neff

(pst)
dsg be

respectively the neff on estimation and design. We have neff
(pst)
dsg = 1 by definition, i.e.

stratification with respect to ri has no effect at all. Recall that in (9), v1 is calculated

assuming proportional allocation in the two population strata. Let neff
(imp)
est and neff

(imp)
dsg

be respectively the neff on estimation and design under the nonignorable model (1). We
define the effect of nonignorability (eff

n
) for estimation of model (1) against model (10)

as
effn,est(imp, pst) = neff

(imp)
est /neff

(pst)
est .

We define the effect of nonignorability (eff
n
) for design of the same pair of models as

effn,dsg(imp, pst) = neff
(imp)
dsg /neff

(pst)
dsg = neff

(imp)
dsg .

The (overall) effect of nonignorability of model (1) against model (10) is given by

effn(imp, pst) = neff(imp)/neff(pst) = effn,est(imp, pst) · effn,dsg(imp, pst).
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Together, neff and effn measure the various aspects of the effect of missing data. We
may generalize formulae (7) - (9) to stratified simple random sampling, where the strata
cut across the division of the sample by x under model (1) and (10). Let g = 1, ..., G
be the stratum-index. Bootstrap for v is the same as before, except that the stratified
resampling is carried out within each sg. The formulae (8) and (9) can easily be rewritten
given {ngxy} and {m̂gxy}, i.e. the number of respondent and nonrespondent units from sg

with (xi, yi) = (x, y). We estimate m̂xy as before since the methods of conditional moment
are valid for arbitrary design. We obtain m̂gxy by the raking such that

∑
g m̂gxy = m̂xy

and
∑

y m̂gxy = mgx. As starting values we set

m̂gxy = m̂xyngxyn
−1
xy .

So far, we have considered the case of zi = Iyi=y. The Bootstrap v is the same for
arbitrary zi. To obtain v0 and v1 in general, we impute z∗

i as follows. Conditional to
(g, x), we let exactly m̂gxy units have value y, where m̂gxy is obtained as above. For
each i ∈ s, with (gi, xi, y

∗

i , ri) = (g, x, y, 0) where y∗

i denotes the imputed value of yi, we
draw z∗

i from {zi; (gi, xi, yi, ri) = (g, x, y, 1)}, randomly and with replacement. We now
estimate the sampling variance v∗

0 and v∗

1 based on {(gi, xi, z
∗

i ); i ∈ s}, where z∗

i = zi

if ri = 1. Repetitions give us v0 and v1 as the averaged values of v∗

0 and v∗

1. Notice
that we only use the hot-deck imputation for the analysis of neff and effn. Finally, for
surveys with nonnegligible sampling fractions, we need to employ the finite-population
correction in v0 and v1. Whereas for v, we must apply Bootstrap methods appropriate
for the finite-population, such as those described in Shao and Sitter (1996).

3 Application

The basic idea for estimation of household composition in the absence of nonresponse can
be described as follows. Let zi = 1, ..., Q be the classification of households. The sample
can be grouped into {cxz}, where cxz is the number of persons with (xi, zi) = (x, z).
Conditional to xi = x, i.e. among the subpopulation of registered families of the size x,
all the persons have the same inclusion probability under the sample design of the SLC.
It follows that

c−1
x cxz where cx =

Q∑

q=1

cxq

is an estimate of the probability that a person, taken randomly from the subpopulation
where xi = x, lives in a household with zi = z. Let Nx be the number of persons within
the subpopulation with xi = x. Let Izi=z = 1 if zi = z and Izi=z = 0 otherwise. We obtain

τ̂z =
∑

x

∑

i∈sx

wiIzi=z where wi = c−1
x Nx for i ∈ sx

as an estimate of the number of persons who live in households with zi = z. In case that
z is the size of the household, z−1τ̂z is an estimate of the number of households of the size
z. Given nonresponse, cxz = nxz + mxz, where mxz is missing and needs to be estimated.

We apply the method developed in Section 2.1 - 2.3 to the data of SLC 1999. Both
the observed and imputed data under model (1) are given in Table 3. Notice that the
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Table 3: Sample of the SLC by the size of the family and the size of the household

Number of persons in the family Number of persons in the household
Respondents 1 2 3 4 ≥ 5
1 565 236 30 12 6
2 37 830 49 12 5
3 57 148 460 24 9
4 54 47 100 578 18
≥ 5 26 13 19 57 366
Nonrespondents
1 299 93 8 2 1
2 19 289 12 2 1
3 26 52 115 4 2
4 24 17 25 96 4
≥ 5 12 5 5 9 78

distribution of households by the household size is shifted towards the lower end among
the nonrespondents, which would not have happened under the ignorable model (10). The
adjustment weights are almost identical either by (3) or (4). Table 4 gives the estimates
by (4) and (5) with h = x, which are equivalent to the simple post-stratified estimates
based on the estimated {ĉxz}. The nonignorable model (1) and the ignorable model (10)
differ most strongly for 1-person households, where the nonignorable model gives higher
estimates both in terms of total and proportion. This is expected given the nonignorability
of nonresponse. Belsby and Bjørnstad (1997) study several methods for estimation
of household composition, based on the data of the Consumer Expenditure Survey 1992
with 32% nonresponse. They find that the ignorable nonresponse model (10) leads to
under-estimation of 1-person households, compared to the results of the Census 1990.
The bias there was about −6% for the proportion of 1-person households. In light of this
it seems plausible that the estimates under the nonignorable model here are less biased.

Also given in Table 4 are the corresponding Bootstrap total standard errors of the es-
timates, as well as the neff’s under both models and the effect of nonignorability for
estimation. The effn,dsg equals to the neffdsg under the nonignorable model in this case
because neffdsg = 1 under the ignorable model. Under both models, the neff on estimation
completely dominates the neff on design. Take e.g. the estimate of the total number of
households under the nonignorable model, the variance increment is 62% due to neffest,
whereas it is only 1% due to neffdsg. The systematic difference between respondents and
nonrespondents (Table 3) is thus not large enough to make an impact under a stratified
design. The corresponding neff under the ignorable model is 1.26, which seems to agree
with the nonresponse rate of 24%. The nonignorable model leads to larger standard errors
of the estimates compared to the ignorable model. Since effn,dsg

.
= 1 for all the estimates,

the inflation of variance is almost entirely due to estimation, i.e. the difference in the
imputation methods. The effect of nonignorability varies for different estimates, where
the effn,est is especially large for the number of 3-person households. Finally, the estimated
standard errors of the total of 1-person households suggest that, the difference between
the ignorable and nonignorable models is significant in this respect.
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Table 4: Estimation of the number of households by the size of the household

Number of persons in household
Ignorable nonresponse 1 2 3 4 ≥ 5 Total
Proportion (%) 40.5 31.7 12.0 10.6 5.3 100
Total (×1000) 857 672 254 224 112 2118
Standard error (×1000) 22 12 7 5 3 14
neffest 1.36 1.37 1.23 1.22 1.18 1.26
neffdsg 1 1 1 1 1 1
Nonignorable nonresponse
Proportion (%) 42.4 31.2 11.5 9.9 5.1 100
Total (×1000) 916 674 248 214 110 2163
Standard error (×1000) 25 14 9 6 3 16
neffest 1.64 1.73 1.83 1.47 1.48 1.62
neffdsg 1.007 1.002 1.003 1.010 1.001 1.010
effn,est for estimation 1.21 1.26 1.50 1.21 1.26 1.28

4 Summary

Standard weighting class techniques are useful estimation methods for sample surveys
subject to nonresponse. However, the existing methods may not be quite effective for
correcting the bias caused by nonignorable nonresponse. Less biased estimates may be
obtained using the method developed in this article. It is possible to define the nonre-
sponse model in a robust manner, even when we are unable to link all the appropriate
auxiliary information to the survey. For instance, under the stratified simple random sam-
pling, it may be plausible to simply use the stratum-index g as x under model (1). Such a
model is not meant to explain all the nonresponse. It is an instrument by which we may
achieve better adjustment of the bias caused by nonresponse. Contextual evidences and
conceptual considerations, however, are important for judging whether the estimates are
less biased under the nonignorable model than the ignorable one. Like the weighting class
approach in general, our method is feasible in large-scale surveys. The neff on estimation
and design have been defined in analogy to the well-known concept of deff, and are much
more informative than a single nonresponse rate. Moreover, they provide a means for
describing the effect of a nonignorable nonresponse assumption compared to an ignorable
one. Estimation of the total variance under the stratified simple random sampling can be
accomplished using the Bootstrap. For future applications it is helpful to have available
practical methods of variance estimation under more complicated sample designs.
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