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Abstract
It is well known that credibility theory in discrete time is closely related to the
discrete technique of Kalman filtering. In this paper we show the close relationship

between credibility theory and filter theory in discrete and continuous time as well

as between credibility theory in a discrete and continuous time setting.

1 Introduction

Credibility theory is a well-known method for developing estimators for the adequate cal-
culation of premiums considering both the individual and the collective claims history. In
Mehra (1975), Zehnwirth (1985), and Merz (2004), a general credibility model in discrete
time is explored, from which the famous discrete models of Bithlmann (1967), Bithlmann
& Straub (1970) and Hachemeister (1975) can be derived as special cases. For this general
model a recursion relationship for the credibility estimator is derived with the help of the
Kalman filter from discrete linear filter theory. For an exhaustive introduction in credi-
bility theory in discrete time an their close relation to the discrete technique of Kalman

filtering see Bithlmann & Gisler (2005).

In Merz (2004, 2005a) a general credibility model is presented which can be understood
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as the continuous analogon of the general model in discrete time. In analogy to discrete
theory, the Kalman-Bucy filter from continuous linear filter theory is used to calculate
a recursive relationship for the corresponding credibility estimator. In Merz (2005b) we
derive — from this continuous model — special credibility models which are the continuous
counterparts of the discrete models of Hachemeister (1975), Bithlmann & Straub (1970)
and Bithlmann (1967). For other special cases of the general credibility model in con-
tinuous time without discrete counterparts see Merz (2005b,c). The estimators of those

models have additional plausible statistical characteristics.

In Merz (2005a) we do not provide a detailed derivation of the conditional equations for
the credibility estimator and its mean squared prediction error in the general continuous
credibility model. In this paper, however, it will be shown how discretization of the state
and observation equations (two stochastic differential equations) of the general continuous
model described in Merz (2005a) results in two discrete stochastic difference equations
satisfying the assumptions of the general discrete credibility model presented in Merz
(2004). That is, from the conditional equations for the discrete credibility estimator for
the discrete credibility estimator and its mean squared prediction error we can derive —
by means of a suitable limiting transition — the corresponding conditional equations for
the discrete credibility estimator and its mean squared prediction error in the general
continuous credibility model. In doing so, we can establish a direct connection between
credibility theory and filter theory in discrete and continuous time, as well as between

credibility estimators in discrete and continuous time.

2 Notation

In what follows we will consider a probability space (£2,.4, P) and describe the behavior of
claims of a risk by a parameter 6. The value of 6 is a realisation of the random variable ©
(the risk parameter) on (€2, A, P), and the observed claims variables of the risk in discrete
and continuous time are given by the stochastic processes (Z;)ieny € L*}(Q, A, P) and

(Z1),50 € L' (Q, A, P), respectively. L*'(Q, A, P) and L**(Q, A, P) denote the Hilbert



spaces of all one-dimensional and k-dimensional square integrable random variables on €2
with scalar products (Z|g) := E(Z - ) and (X|y)x := Zle (Z;|9;), respectively. Two k-
dimensional random variables X,y € L?*(2, A, P) are said to be orthogonal, if the scalar

product (X|¥)x equals 0.

3 A general credibility model in discrete time

The Kalman filter algorithm of discrete linear filter theory may be viewed, inter alia,
as a recursive technique for calculating inhomogeneous linear Bayes rules. Since credi-
bility theory can be regarded as an area of linear Bayesian theory, credibility theory is
strongly related to the technique of Kalman filtering. This connection was developed for
the first time in Mehra (1975). Based on Mehra’s work, De Jong & Zehnwirth (1983)
and Zehnwirth (1985) were able to show how to embed the well-known credibility models
of Bithlmann (1967), Bithlmann & Straub (1970), the regression model of Hachemeister
(1975), the hierarchical model of Jewell (1975), and some evolutionary models into the
Kalman framework in order to obtain recursive forecasts of premiums and associated mean
squared prediction errors. Kremer (1994) shows how to derive robustified credibility esti-
mators by using robust versions of the Kalman filter. For practical parameter estimation

in the context of credibility theory via Kalman filter see Kremer (1995).

Mangold (1987) and Merz (2004) explore a credibility model that is based on the Model
Assumptions 3.2 below. The model can be regarded as a generalization of the model of
Hachemeister (1975). But in contrast to the model of Hachemeister it allows for a time-
dependent vector bl((:)) of regression coefficients. By using the Kalman filter, Mangold

(1987) and Merz (2004) derive a recursive relationship for the estimator and the associ-

ated mean squared prediction error.

In Model 1, that is the discrete credibility model 1 based on Model Assumptions 3.2,

PEred at time i = 0, 1,2, ... is defined as the orthogonal projection

E (#i41]0) 1



of the adequate individual premium E (Z;41|0) on the subspace

Li = {geLz’l(Q,A,P) ’ g:a0+2ak~fk with ag,aq,...,q; ER}.
k=1

Lk = ®f:1 L} denotes the product space of k identical copies of L}.
To formulate the Model Assumptions 3.2 we need the concept of r-dimensional discrete
white noise.
Definition 3.1 A r-dimensional discrete white noise process (W;)ien € L*"(Q, A, P) with
intensity (R(i))ieN C R™" is defined by

a) E(w;) =0 for alli € N and

b) E(W;-W,)=0d;; - R(i) for all i,j € N.!

The (k x k)-dimensional prediction error covariance matrices of b;(©),+ —and b;(0)x,

respectively, are denoted by

Pli.i - 1) = E( (5:(6) - b(®)s, ) - (5(6) - bi(6)s,) ) .
3.1
P(i,i) i E((bi(é) ~,(0)zr) - (b:(6) - bi(é)ﬁf)T).

Model Assumptions 3.2 (Model 1) For the stochastic process (Z;)ien and the risk pa-
rameter © on (Q, A, P) the following assumptions hold:
D1) Given © the claims variables (&;)ien € L**(Q, A, P) are conditionally uncorrelated.

D2) For all i € N there exist measurable functions b;(©) € L**(Q, A, P) of © and

unknown matrices Y € R™* such that
E(;]0) = V) - bi(O).

D3) There is an r-dim. discrete white noise process (W;)ien with intensity (R(i))ieN,

such that by (©) and W; are uncorrelated and
bi1(0) = A(i) - b;(©) + B(i) - W; (3.2)

for alli € N, where A(i) € R¥* and B(i) € R*".

1§, ; denotes the Kronecker-Symbol, i.e. we have §; ; =1 for i = j and §; ; = 0 else.
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The following Lemma states that under Model Assumptions 3.2 the claims variables ;
coincide with their conditional expectations E (#;]©) except for a one-dimensional white

noise process.

Lemma 3.3 If the claims variables (Z;);en € L*1(Q, A, P) are conditionally uncorrelated

given O, then (0;)ien with
;= i; — B (%;]0) (3.3)

is a one-dimensional discrete white noise process with intensity o? := E ( Var (fél\(:))) for

all i € N.

Proof: We have to show that a) and b) from Definition 3.1 are satisfied. Obviously,
from (3.3) we get E (7;) = 0 for all 7+ € N. Also,

G5 = 5B (5~ BEO) - (5, - (516)]0) )
:E<COV (iz,fﬂé))

holds for all 7,7 € N. Since #; and Z; (i # j) are conditionally uncorrelated given 0, we

get

B (5 %) = by 07 with of == B (Var (#:/0) ).

From (3.3) we get, for all i € N, the representation
Zi = Vi - bi(0) + o (3.4)

for the claims variables.

Since 02 = 0 a.s. implies Var (#;/©) = 0 we can assume without loss of generality that
02 > 0 for all i € N. The following result summarizes the most important characteristics

of (ﬁi)ieN and ({;VZ)ZEN
Lemma 3.4 Under Model Assumptions 3.2 we have:

bt



a) bi(0) and v; := &; — E(%;|0) are uncorrelated for alli,j € N.
b) U; and W, are uncorrelated fori,j € N.
¢) E(Wi—1-0) =0 forallte€ L], andieN.

Proof: a): Since b,4(0) (I = 1,...,k) and &, = #; — E(i,/©) are orthogonal and
E (9;) =0 for all 4,5 € N, we have

Cov (17j7 bl(é)) =

b): From model assumption D3) and a) we get

(~_

77;’ ) (bi-l-l(é) - A(Z) )

B(i) - E (v; - W) - B(i) - W;)

(

b
(0; - bi+1(0)) — A() - E

E
E
E
0

for all matrices B(i) € R¥" and i,j € N. Together with E(?;) = 0 this implies
Cov(v;, w;) =E (9; - w;) — E (0;) - E(W;) =0 forall ¢,j € N.

¢): From & = E (%|0©) + @, model assumption D2) and b) we get
B (Wi @) =B (\’fvi_l (V- bi(©) + @l))

=EK ({”Vi—l : y(l) : bl(é))



for &, € {#1,...%;_1}. Since W;_; and w;_; are orthogonal it follows by model assumption
D3) that
E (\—7{72'_1 . i’l) - E <V~VZ'_1 . y(l) ‘ (A(l - 1) . bl_l(é) + B(l - 1) . V~Vl_1))
=E (Wit -V - Al = 1) - b 1(8)),

and by iteration

-1 )

i=1
Since W;_; and by () are uncorrelated (cf. D3)) and E(W,_;) = 0, we see that E (Wit -
) =0foralli=23...andl=1,...,i—1. |

By means of the Kalman Filter, we get the following result for the estimator P¢™¢ in

Model 1 (cf. Model Assumptions 3.2).

Theorem 3.5 Under Model Assumptions 3.2
P = Vi) - bis1 (O) (3.5)

holds for all © € Ny. The estimators for bi+1((:)) are defined recursively by

bis1(0)r = AM) bi(@) s | +AG) () (7= Vi bi(@)ss ) (36)

for all i € N with initial value bl(é)ﬁg =F (bl(C:))) and Kalman gain

1

K@i) = P(i,i—1)- yg) (V- Pi,i—1) - y({) +o7) (3.7)

Here
ol = E(Var(fﬂé)) ,
and for the prediction error covariance matrices we have
P(1,0) = Cov(b(6),b:1(0)) ,
P(i+1,4) = A() - P(i,i) - A@@)" + B(i) - R(i) - B(i)" and (3.8)
P(i,i) = (1= K(i) - V) - Pli.i = 1).



Proof: See for example Merz (2004), p. 151. |

Based on this result and by making additional assumptions one can find recursive re-
lationships for the credibility estimators in the credibility models of Biithlmann (1967),
Bithlmann & Straub (1970), the regression model of Hachemeister (1975), the hierarchi-
cal model of Jewell (1975), and some evolutionary models. For details see De Jong &

Zehnwirth (1983), Zehnwirth (1985) and Bithlmann & Gisler (2005).
From assumption D3) we immediately get

bi41(0) s = A(i) - bi(©) zi + B(i) - (W:) (3.9)

k-
If {ty,..., %1} form an orthonormal basis of £} we get

(Wi1) 2

= B(W; - i) - iy

=1

c- Using c) from Lemma 3.4 we have ((fvi)ﬁ =0,

K3 7

for the orthogonal projection (v~vz)

hence (3.9) is equal to

From this and (3.6) we get

A(i) - bi(©) r = Afi) - (A(z’ —1) b1 (O) g+ K(0) - (g: — V- b,-(é)ﬁfl))



or, equivalently,
bi(©)gr = A —1) bt (O)gs +K(0) (7= Yy bi(®)ss ) (B.11)

for the estimator b;(0)q+. Finally, since £f = R, we have

%

b1(0) 4 = E(b1(0)). (3.12)

4 A general credibility model in continuous time

In this section we summarize the results from Merz (2005a,b,c). Motivated by the strong
relationship between filter theory and credibility theory in a discrete time setting, a credi-
bility theory in continuous time is developed in these papers. By means of the continuous
analogon to the Kalman filter — the Kalman-Bucy filter — a recursive algorithm for the
credibility estimator in the general credibility model 4.2 described below is derived in
Merz (2005a). In Merz (2005b,c) we deduce further special credibility models in continu-
ous time from this model and examine the statistical characteristics of the corresponding
credibility estimators. Three of these models can be regarded as the continuous counter-
parts of the models from Bithlmann (1970), Bithlmann & Straub (1967) and Hachemeister
(1975), respectively. For the other models no direct discrete counterparts have been found

so far.

Let (Z4)i>0 be the claims variables in a continuous time setting, and let (§;);>0 be the
stochastic process defined by the stochastic differential equation (4.4). Then the credibil-

ity estimator P&C[ed at time ¢ for time ¢ 4 0 is given by the orthogonal projection
E (#1460,
of the adequate individual premium E (:it+5|(:)) on the subspace L£;. L; is defined by
L= {gj c L**(Q, A, P) | there is a sequence (fy,)nen € £F with

Jim 5~ | = 0,



where

L] = {gjeL2’1(Q,A,P) ‘ gj:ao—l—Zayéui with ag, a1, ..., a, € R,

i=1
m €N andOSuiSt}.

Here, || - || is the L*'-norm ||Z|| := 1/(Z|Z) for all # € L*!(Q, A, P) indicated by the

scalar product (-|-), and LF := ®i:1 L; denotes the product space of k identical copies of

L;. The subspace L; consists of all random variables § € L*'(Q, A, P) that are the limit

of a sequence of linear-affine random variables from £; with respect to the L*!-Norm.

Obviously,
L7 C L, CLY(Q,0(3,]0<u<t),P)C L*(Q,A P)
for all t > 0 and the elements from £; have the representation
o)+ [ ot ds.
where f(t) and g(u) are deterministic functions.

As in the discrete time setting we have the following relationship between the individual
premium E (Z,445]0), the credibility-estimator Ped, and the Bayes-estimator PBayeS =

E(E (7045]0) ‘a(éu\o <u< t)):

Pcred E (Z145]0)c, (E (fi"t+5|é)L%l(Q,a(gulogugt),P))£ = (Pt]f;“yes)ﬁ )
t t

Let (Zu)gcy<; € L**(Q, A, P) be a stochastic process, where

Zu,k
In order to be able to formulate the model assumptions of the general continuous model

in a more concise way, we introduce, for all 0 < u < t, the subspace

m k
IC:’O = {'g c L2’1(Q,A, P) ‘ g = ZZ@U . 21%‘3‘,]' with Qi S ]R,m eN

i=1 j=1

and 0 < u;; §t}
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. Baves . ~
3 Pt,éayeé =E (Z14510) 2.1

. 5
p . B Cred
. /\/E (Pt,éayes_ Prse )

2. = E(#44519)c,

2,0(5,|0<u<t),P)

Ly

Figure 1: Ceometrical illustration of the estimators E (Z45]0), P2 and Pt as or-

thogonal projections on suitable subspaces of L*1(£2, A, P) and their relationship to each

other.
of L*1(Q, A, P) and its closure
Kz .= {gj c L*'(Q, A, P) | there is a sequence (§y,)neny C K7° with
tin 7~ ] = 0}

for all t € [0, 00]. The subspace K7"° consists of all linear-affine random variables that can

be built from the k& one-dimensional stochastic processes

(Zua)o<u<ty - - - (Zuk)o<u<t

of z. Tts closure K? contains all random variables § € L*»!(Q, A, P) that are the limit of

a sequence from K;*° with respect to the L*!-norm.

To formulate the general continuous model we need a proper continuous counterpart of

Definition 3.1. For a motivation of the following definition see Merz (2005a).
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Definition 4.1 An r-dimensional process (Wi),5, € L*"(Q, A, P) with orthogonal incre-

ments and intensity (R(t)) is defined by

t>0

a) E(Wy) =0 forallt >0,

b) there is a mapping R : [0,00) — R"™" t +— R(t) such that for allt > 0 R(t) is a

symmetric non-neqgative definite matriz, and for the covariance matrices holds
t
Cov(Wy, W) = /R(s) ds (4.1)
0

for all 0 <t < u,

¢) the r? functions R;; : [0,00) — R, ¢t — R;;(t) (1 <4,5 <) of the mapping R are

continuous.

Important examples of stochastic processes with orthogonal increments are given by
Wiener-Lévy processes as well as homogeneous and inhomogeneous centered Poisson pro-

cesses.

Analogous to (3.1), the (k x k)-dimensional prediction error covariance matrices of b,(0) ck

are defined by

P(t) := E((bt(é) — bt(é)ﬁf) : (bt((:)) — bt(é)ﬁf)T> . (4.2)

Model Assumptions 4.2 (Model 2) For the r- and one-dimensional processes W :=

(Wt)iso and v = (0;) 5, with orthogonal increments and intensity (R(t)),., and (o})

t>0 t>0’

respectively, the risk parameter © on (0, A, P) and the claims variables (Zt) > it holds

that
Cl) ()50 € L2 (LA, P).

C2) There ezist a stochastic process (bt((:)))t>0 C L*%(Q, A, P) and known (1 x k)-

matrices (Y(t)) such that, for all t > 0, bt(C:)) is a measurable function of ©

t>0

and

E(%]0) = Y - bi(6).

12



C3) The stochastic process (bt((:))) is a solution of the k-dimensional SDE (state

>0

equation)

dby(©) = A(t) - b,(0) dt + B(t) dw, (4.3)

with initial value condition by(©) = b(O) and mappings A : [0, 00) — R¥F ¢ —
A(t) and B:[0,00) — R*" t +— B(t) with continuous functions a;; : [0,00) —
R, t — a;;(t) fori,j =1,...,k and by, : [0,00) — R, t +— by,(t) forp=1,... k and
qg=1,...,r, respectively. Furthermore, there exists a stochastic process (§t)t20 C

L*Y(Q, A, P) which is a solution of the SDE (observation equation)
d3; = Y - by(©) dt + di, (4.4)

with initial value condition 5o = 0. Here, Y : [0,00) — RY* ¢ — Y is a

mapping with continuous functions yy; : [0,00) — Rt — yy;(t) fori=1,... k.

K4) Cou(w,0) = 0 for all w € K¥ and v € KY,. Also, Cov(b(é),ﬂ) = 0 for all
uwe k¥ JKy,.

Contrary to the discrete case, the prediction of the future individual premium E (Z;5|©)
at time ¢ > 0 is no longer based directly on the claims variables (Z,)o<u<:. Rather, the

observations are now given by the aggregate claims process (§;) The notation for

0<u<t:

(3¢) g<u<; is motivated by the fact that

t
gt:/ E (7,|©) du + o, (4.5)
0

which follows from assumptions C2) and C3). Therefore we get

E(Zét):/o E(%,) du and dEd(ft) = E (%)

for all ¢ > 0. That is, the expected increase of (§t)t20 at time t = ty equals the expected

claim E (Z;,) at time ¢t = t,.

In Merz (2004) and (2005a) we show by means of the Kalman-Bucy filter from continuous
filter theory that in Model 2 (cf. Model Assumptions 4.2) the credibility estimator P5y? at

13



time ¢ for E (#,,5|©) is given by the Theorem 4.3 below. Here, ® denotes the fundamental

matrix of
A :[0,00) — R¥* ¢ A1)

in the state equation (4.3). That is,

0
o B(t5) = A(t) ®(t,5) (4.6)

with initial value condition ®(0,0) = I. Since ®(¢,s) - ®(s,t) = I, the matrix ®(¢,s) is
invertible for all s,t € [0,00) (cf. Boyce & DiPrima (1995), p. 470ff. or Bucy & Joseph
(1968), p. 5E.).

Theorem 4.3 Under Model Assumptions 4.2
PG =Y (i) - ®(L+0,1) - by(O) ok (4.7)
holds for all t,0 > 0. The estimators bt((:))ﬁf for by(©) are defined by the SDE
dby(©) 5 = (A() ~ P(0)- Yiy - (02)7 Y (y) - by () d
+P(t)- Y- (07) 7" ds,

with initial value condition
bo(é)c’g = E(by(0))

for allt > 0. The prediction error covariance matrices (P(t)) are given by the differ-

t>0

ential equation

()= B()-R() B~ P(1)- Y], (07) - Yo - P(1)

+A@l)-Pt)+P@1)-At)"

with initial condition

P(0) = Cou(by(0),by(0)) -

14



4.1 The continuous Hachemeister model

In Merz (2005b) Model 2 (cf. Model Assumptions 4.2) is specialized by the additional

requirement that for all t > 0

db,(©) =0 (4.10)

for the state equation with initial value condition by(©) = b(©). The resulting model
can be regarded as the continuous counterpart of the Hachemeister regression model
(1975). As from the discrete version of this model we can, for example, derive models
that incorporate a polynomial trend or a seasonal fluctuation in continuous time. In
particular, in Merz (2005b), we show that in the important special case where k = 1 the

credibility estimator is given by

t
[ 5 ds.
Pt%red _ Y(t+5) . Ct . Ot — + (I _ Ct) - E (b(@)) , (411)
[
0 u
t > 0, with credibility factor
t 2
[ du
C,:= — (4.12)
Y
PO)~' + [ 52 du
0 u

That is, the credibility estimator (4.11) and factor (4.12) have essentially the same form

as in the classic model of Hachemeister.

4.2 The continuous Biuhlmann model

If, in addition, we specify in Model 2 (cf. Model Assumptions 4.2) that
db,(©) =0 (4.13)
with initial condition by(6) = b(0) as well as
Yy=1 and o} =o0> (4.14)

15



for all ¢ > 0, we obtain the continuous analogon of the Bithlmann model (1967) (see Merz

(2005b)). In this special case the estimator is given by

s
Py = (1—Ct)'M+Ct'7t (4.15)

for all t,d > 0 with p:= E (%) (collective premium) and credibility factor

im— (4.16)

o2
Var(b(é)) +i

Again, the credibility estimator has the same form as its discrete counterpart. Moreover,
in Merz (2005b), we show that the convergence properties and the relation to the corre-
sponding Bayes estimator proved by Schmidt (1990) for the credibility estimator in the
model of Biithlmann also hold for (4.15).

4.3 The continuous Buhlmann & Straub model

If we replace assumption (4.14) by

1
Yy=1 and o} = W o? with W, >0 (4.17)

t

for all £ > 0, we get the estimator
1 t
J W, du 0

for all t,0 > 0 with u := E (Z;) (collective premium) and credibility factor

t
f W, du
¢ = 0 . (4.19)

t
o2
Var(b(é)) + ‘({‘ Wu du

This estimator is the continuous counterpart of the credibility estimator in the model of
Bithlmann & Straub (1970). In Merz (2005b) we show that the convergence properties
proven by Hess & Schmidt (1994) for the estimator in the model of Bithlmann & Straub
essentially hold for (4.18), too.
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4.4 The continuous exponentially weighted moving average

In Merz (2005b) we consider the special case of model 2 (cf. Model Assumptions 4.2)

derived by making the additional assumptions that

db,(©) = dW, with by(6)=b(O) (4.20)

and

Y(t) = 1, d:‘;t = b(@) dt + 1715, Var(b(@)) = 07 R(t) =R and 0-152 — 0'2 (421)

for all t > 0. This leads to the credibility estimator

t

PG =(1—c) p+c R— ~/sinh (1/% u> 3, (4.22)
2. [sinh R .u)du %
Vi s (v )

for all t,d > 0 with p:= E (%) (collective premium) and credibility factor

cosh( %-t)—l

cosh (/B 1)

The special thing about this estimator is that the claims variables (Z,)o<u<: (given by

(4.23)

Cy =

the aggregate claims process (8,)o<u<t) are now considered with bigger or smaller weights
according to their relevance at time t. Hence, the estimator (4.22) can be seen as the
continuous counterpart of the well known exponentially weighted moving average from

the theory of forecasting.

In Merz (2005b) we show that in contrast to the estimators in the continuous counterparts
of the models of Bithlmann and Biithlmann & Straub, (4.22) does not converge against
the individual premium E (Z;,5/©). In this model the asymptotic mean squared deviation
of (4.22) from the adequate individual premium is — reasonably — a strictly monotonic
increasing function of the heterogeneity of the underlying portfolio of risks (given by R),
of the expected variance within the policy considered (given by ¢?) and of the length & of
the forecast horizon (see Merz (2005b)).
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4.5 The continuous model with purely deterministic exponen-

tial premium growth

The first model described in Merz (2005¢) is obtained from the general continuous model

2 by the additional assumptions
dby(©) =7 -by(O) dt (r+#0) with by(©) =b(0O) (4.24)

as well as

bo(©) =b(O), E(b(©)) >0, Yy =1 and 0] =0” (4.25)

for all t > 0. This leads to the following estimator:

2-r-exp (r-(t+9))
exp(2-r-t)—1

t
E(f:sm =(1—ct) pegs+ce- . / exp (r - s) dss (4.26)
0

for all t,0 > 0 with collective premium
s = 7 B(3) = 9 B (b(©))

at time ¢t + ¢ and credibility factor
2-r-t)—1
¢ = exp(2-r-1) (4.27)

exp(2-7-t) + 2"‘*1/23;\28;@(;;)(@))

In analogy to the previous model, this estimator does not have a discrete counterpart.
In Merz (2005¢) we show that (4.26) is mean-square convergent against the asymptotic
individual premium only in case r < 0. For » > 0 the asymptotic mean square prediction
error of the credibility estimator P§"* depends on the intensity o of the process (v¢)io.
That means that a large expected variance within the policy (given by ¢2) implies a large
asymptotic mean square prediction error of Pt%“d. Moreover, a large exponential trend
(given by r > 0) and a large forecast horizon (given by 0) also imply a large asymptotic

mean square prediction error of P&red.
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4.6 The continuous model with exponential premium growth

The second model described in Merz (2005c¢) is obtained from the general continuous

model 2 by additionally requiring that
dby(©) =1 -by(O) dt +dWw, (r+#0) with by(©)=b(O) (4.28)
as well as
Var(b(©)) =0, E(b(©)) >0, Yy =¢, R(t) =R and ¢} = 0” (4.29)

for all t > 0. The additional assumptions lead to the estimator

67‘-(15—1—5)

() exp((r—4-a) 1) =1

temgs Qo « ~
-/01_K-(r—§—K-eXp(a-s)-<r—l—§>) ds (4.30)

for all t,0 > 0 with collective premium

Pt,c:sred =1 —c) pegs+ce-

Hi+s = " E (@) =q- )R (b(é)))
at time ¢t + ¢ and credibility factor

(%).exp((r_;.a).t)_l

e (1‘1If'§a't)-exp<(7“_1'a)'t) |

(4.31)

N

where
Var (b(6)) — 2
Ko ar( (~)) 71’ a;:—-\/r2-02+q2~R
Var (b(0)) — 7 o
and
1 2 2., 42 2
T —?-<r o —a\/r -0 +q R)
1
Yo ——2-<r 02+0\/7’2 o2+ ¢? R)
q
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In Merz (2005¢) we show that for ¢ > 0 we have

r-(t+9) . t

re e +r s

Pt% I~ (1—ct) - pags + i e(n+r)~t(n_ 1 ) . / e’ ds,, (4.32)
0

where

e(n—l—r)-t -1

1
Cp = and n=—-r2-o2+¢ R.
o

Thus the credibility estimator (4.30) has the same asymptotic properties as the estimator

(4.26) in the previous model.

5 The relation between the general credibility mod-
els in discrete and continuous time

In what follows we will show how a discrete credibility model satisfying Model Assump-
tions 3.2 can be derived by discretization of the state equation (4.3) and the observation
equation (4.4) of the general continuous credibility model 2 (cf. Model Assumptions 4.2).
This model satisfies the assumptions 3.2 of the general discrete credibility model. With
the help of Theorem 3.5 and by taking the limit A — 0 for the increments h we obtain

Theorem 4.3 for the credibility estimator in the general continuous credibility model.

Let 0 =:tg < t; < ... < t,:=twithh:=Landt; :=i-hfori=1,...,nbean
equidistant partition of the interval [0,¢]. Furthermore let us assume that the stochastic
processes (U4)i>0 and (Wy)>o from Model 2 are continuous. In order to characterize the

behavior of various terms for A — 0 we will use the Landau symbols O and o:
f(h)
h

f(h) =o0(h) <= % — 0 for h — 0.

is bounded for h — 0
(5.1)

The O-case means that f(h) tends to zero at least as fast as h, whereas the o-case says

that f(h) tends to zero faster than h.
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With notation (5.1) we get the difference equations
- ~ tit1 -
bi,,, (6) — by, (6) = / (AW - b.(6) du + B(u) i)
t;

— A(t;) - b(8) - h+B(t:) - / s+ o(h)

i

for all i € Ny from the state equation (4.3) for the random vector of regression coefficients

b,(©). With

1 tit1

Wit1 1= I3 / dw,
_h (5.2)
_ Wi Wy,
h
for all 7 € Ny, this leads to
b, (©) = (I+A(t;) - h) - by, (0) + B(t;) - Wir1 - h + o(h). (5.3)

For the discrete r-dimensional stochastic process (W;)ien € L7 (€2, A, P) defined by (5.2),
it follows from part a) of Definition 4.1 that E (W;) = 0 for all i € N. Part b) of Definition

4.1 implies

B (Wi %)) = B (%, —W,,_,) - (%, =%, ,)")

([ [
- TR ds+ / “RE) ds) (54)

t;
2 [ R(s)ds ifi=j

— ti—1
0 ifi<y
for all 1 <4 < j <n. This is, (W;)ien C L*"(, A, P) is an r-dimensional discrete white

noise process (cf. Definition 3.1). From (5.4) we obtain

E(W; - W) =20 (# + o(h)) (5.5)

for the intensity of (W;);en. For the continuous observations §; we get, for all i € N, the

difference equations

§ti - §ti71 = Y(ti) ’ btz(é) ~h+ 6ti - {}ti—l + O(h)
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from the observation equation (4.4). With

fW:J%fi (5.6)
and
. Oy, — V4
' h
we obtain
5%=wmhﬂ@+@+%?. (5.7)

Analogous to the case of (W;);en, we can show that(9;);eny € L>1(Q, A, P) is a one-dimen-

sional discrete white noise process and that its intensity is given by

2

E (3 0;) = 6, - < o o(h)). (5.8)

If we compare equations (3.2) and (3.4) from the discrete model with equations (5.3) and

(5.7), respectively, we find the relations

A(i) = (I4+ A(t;) - h), B(i) =B(t;)-h and V) = Y, (5.9)

(3

for all i € N. In addition, if we compare the intensities of (W;);en and (7;);en (cf. (5.8) and
(5.5)) with those of the discrete r-dimensional and one-dimensional white noise processes
from the definition of the general discrete credibility model (cf. D3) in Model Assumptions
4.2 and Lemma 3.3) we find the relationships

R(t; :
EL ) +o(h) and o} = a}?

R(i) = + o(h) (5.10)

for all @ € N. Thus, together with P(t;,t,—1) = P(t;,t;) + O(h) and (5.9), we get for
(3.11), (3.12) and (3.7), respectively, the representations

b (O)zs = (T+A(ti1) h) by, ()

i i—1
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with

bt1 (é)ﬁfo = E(btl(é))> (511)
where
K(t;) = (P(ti, t:) + O(h)) - Y{,,) - <Y(ti) - (P(ti, t:) + O(h)) - Y{,
, 1 (5.12)
o}, n)
+o o( ) :
Consequently;,
btz((:D)ﬁf - bti—1 (é)ﬁé‘ L ~
i h = = A(tl—l) . btifl (®>£i€171 + (P(t“tl) —+ O(h))
-1
Yoy - (h Y- (P(ti ti) + O(h)) - Yy + 0y, + b O(h)> (5.13)
- ~ h h
(% =Y, btz(@)ﬁfFl - %) + #-

From this result, using (5.6) and (5.11), and by taking the limit h = t; — t,_; — 0, we

obtain for b;(©) ¢ in the continuous time setting the SDE

@bi(6) s = (A(H) ~P(t) - YT - (07)+ Yo ) - bu(®)

(5.14)
+P(t)- Y- (07) " d5
with initial condition
bo(0) 1 = E(by(0)). (5.15)

For the prediction error covariance matrices of by,,,(0)x  we get from (3.8), (5.9) and
tit1
(5.10)

Pltisr,tis) = (T+A(t) - h) - Pt ti) - (T+ A(t;) - h)"
L B(t) h- (# + o(h)) h-B(t)T (5.16)

— K(tix1) - Yt - (P(ti,ti) + O(h))
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with
P(t1,to) = Cov(by, (©), by, (0)), (5.17)

where KC(t;) is defined as in (5.12). Also,

P(tigr, tivr) — Pt ts)
h

= A(t) - Pt t;) + Pt t;) - At)T + h- A(t;) - P(ti, ti) - At;)T

+B(t;) - (R(t) +h-o(h) - B(t:)" — (P(ti, t;) + O(h)) (5.18)

-1
Y- <h Y, - (P(ti, i) + O(h)) - Y,y +0p + h- o(h))

Yt - <P(tia ti) + O(h))

from (5.16). Taking the limit h = t;—t;_; — 0, (5.18) and (5.17) lead to the deterministic
differential equation

Oiz_ft)(t) —A@l)-Pt)+Pt)- A0 +B(t)-R(t)-B(®)T

(5.19)
—P(t)-Y{, - (6))" - Y - P(t)
with initial condition
P(0) = Cov(by(0), by(0)) (5.20)

for the prediction error covariance matrices P(t) in a continuous time setting. For the
credibility estimator at time ¢ for the prediction of the adequate individual premium at

time t + § we get from (3.5)
PO = Y5 bss(©) s + 05— ). (521)
Since
bir (©)cr = (T+ A(ti) - h) - br,(0) cx
(cf. (3.10) and (5.9)) it holds that
bw(é)% = (I+A(t;)9)- bti(é)% + 0(6 — h).
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If this is inserted into (5.21) and if we take the limit A = t;1; — t; — 0, we finally obtain
P = Yrs) - (T+ A(t) - 8) - by(0) g5 + 0(6). (5.22)

If we now compare (5.22) with formula (4.7) we see that when it comes to the derivation
of the credibility estimator Pﬁ{ed in a continuous time setting by means of discretization
of the state and observation equations of the continuous Model 2, application of the
results from discrete credibility theory (Theorem 3.5) and by taking the limit A — 0,
the fundamental matrix ®(t + 4, ) is replaced by its linear approximation (I + A(t)-4).
In particular, in the special case of a steady state matrix A := A(t) we have for the

fundamental matrix ®(t + 0, )

Ot 4 6,1) = A
LAk g
k!

k=0

=I+A -5+ 0(0).
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