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1 Introduction

The question “Where is the market?” has been of interest to researchers for over a decade.
It was first addressed in the early 1990s, when a number of studies examined stocks that
were listed on several regional U.S. exchanges. The simultaneous trading of one stock on
several exchanges gave rise to competition among the different trading venues and mea-
suring the importance of each market for the price discovery process of the common stock
became the subject of research (see Hasbrouck 1995, Harris et al. 1995). In the following
years the competition intensified due to the rapidly growing number of internationally
cross-listings and the question “Where is the market?” went global. In particular for
smaller stock exchanges, the large U.S. markets posed a threat, since they might take over
the price discovery process of the dually listed stocks and thereby diminish the importance
of the respective home market. In recent years the focus of price discovery studies has
shifted away from stock markets and spread to various fields in empirical finance. Whether
in the case of commodity markets (see Figuerola-Ferrett and Gonzalo 2010), the treasury
market (see Mizrach and Neely 2008) or newly developed derivative markets such as the
one for credit default swaps (see Blanco et al. 2005), the question which market leads price
discovery is always one of the first to be asked.

However, the huge and diversified amount of empirical research into measuring contribu-
tions to price discovery is not mirrored by an adequate number of studies concerning the
methodological aspects. The two prevalent measures both date back to 1995, Hasbrouck’s
(1995) information shares and the Gonzalo and Granger (1995) approach. In 2002, the
Journal of Financial Markets devoted an issue to measuring contributions to price discov-
ery, in which both approaches are compared and critically evaluated (Journal of Financial
Markets, 2002, Vol. 5, Issue 3). Since then only very few advances have been made with
regard to improving the methodologies used or proposing innovative approaches to mea-
sure contributions to price discovery.

This thesis presents three methods that either resolve drawbacks of the standard method-
ologies or offer new approaches to quantify contributions to price discovery. In Chapter 2,
the standard approaches are summarized and discussed. Since a number of studies point
out that the method developed by Hasbrouck’s (1995) has more economic appeal than the
Gonzalo and Granger (1995) approach and it further is the method that is more frequently
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applied, emphasize is put on the former. The main drawback of the Hasbrouck (1995) in-
formation shares is that it does not deliver a unique measure. The method is based on
a Vector Error Correction Model that involves an identification problem concerning the
contemporaneous effects of price innovations. The solution proposed by Hasbrouck (1995)
results in upper and lower bounds for a market’s contribution to price discovery. In the
case of tight bounds the non-uniqueness of the measure is less severe. However, in many
application the bounds diverge substantially and the price leadership becomes blurred.
Chapter 3 offers a solution to this drawback. It is based on a joint research paper with
Joachim Grammig, A new approach to estimate unique market information shares. We
propose to use distributional assumptions in order to resolve the indeterminacy problem
of the Hasbrouck (1995) approach. These assumptions match the stylized facts detected
for financial return data, namely fat tails and tail dependencies. Fat tails imply that
we observe extreme values in the empirical distributions more often than predicted by a
normal distribution. Tail dependence refers to the phenomenon that the correlation of in-
novations in various markets in the center of their distribution differs from the correlation
in the tails. These features can be described by modeling price innovations as a mixture of
two normal distributions, so that the tail and center observations are generated from two
regimes associated with different variances. The idea to use mixture normals to identify
idiosyncratic innovations was first brought forward by Lanne and Liitkepohl (2010). In
order to identify unique information shares, further restrictions are necessary, which we
provide from the economics behind the “one security-multiple markets” setting of the price
discovery analysis. Our method is illustrated in an empirical application to credit default
swap and corporate bond markets data, for which we measure contributions to the pricing
of credit risk. The results emphasize the informational leadership of the more liquid credit
derivatives market during the pre-crisis period by the gain in accuracy achieved by being
able to deliver a unique measure rather than upper and lower bounds.

The standard approaches to measuring contributions to price discovery are based on a Vec-
tor Error Correction Model and thereby model the evolution of prices and price changes.
As mentioned by Hasbrouck (1995), the main issue when measuring the importance of dif-
ferent markets to the pricing of one common asset is to determine which market moves first.

Since all markets are assumed to be linked by an arbitrage relation all prices will reflect
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the same information in the long run. Yet, which market incorporates new information
first? If the underling data is available in equally spaced intervals, such as daily frequency,
the chronology of information processing cannot be fully observed. However, in the case
of high frequency data, for instance in form of intraday quote or transaction data, the
sequence of events can deliver useful information concerning the consecutive incorporation
of information in different markets. Chapter 4 presents an approach that analyzes price
discovery from this perspective. It is based on a joint research paper with Kerstin Kehrle,
International Price Discovery in Stock Markets - A Unique Intensity Based Information
Share. Rather than sticking to the standard approach of modeling price changes, we pro-
pose an innovative method that is based on a model for the arrival rates (intensities) of the
price processes in a bivariate intensity model. The intensity roughly gives the probability
of a transaction event within the next instant. We use Russell’s (1999) ACI model that
allows for a flexible interaction between the two markets’ conditional intensities. When
information is incorporated into one market’s prices, arbitrage makes sure that the other
market’s prices subsequently adjust to retain the equilibrium. An increased intensity in
one market arising from the incorporation of new information should subsequently increase
the intensity in the other markets. We suggest a new information share measure which is
based on the relative cross effects of shocks to the intensities in the different markets. Our
model is applied to high frequency data of a large sample of Canadian stocks, which are
cross-listed on the New York Stock Exchange. The results are in favor of the home market
as the leading market, although the contribution of the U.S. market is not negligible. In
a cross sectional analysis we also examine potential determinants of contributions to price
discovery. We find no evidence for stock related factors being of any importance, but that
relative liquidity is the main determinant of information shares.

While the approaches in Chapters 3 and 4 rely on rather heavily parametrized models and
distributional assumptions, Chapter 5 applies the model free concept of transfer entropy to
measure information flows between financial markets. It is based on the research paper Us-
ing transfer entropy to measure information flows from and to the CDS market. Transfer
entropy was introduced within the context of information theory, whose general aim was
to optimally encode messages such that they can be transmitted more quickly. For that

purpose it was necessary to quantify the information that can be gained from a specific
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sequence of transmitted symbols. Transfer entropy is designed as the Kullback-Leibler
distance of transition probabilities. The assumptions concerning the data are minimal.
It does not require the existence of a cointegration relation between different time series,
but quantifies information transfer without being restricted to linear dynamics. We pro-
pose an information share measure constructed from this method. Furthermore, we derive
standard errors based on a block bootstrap that enable inference, in particular to exam-
ine the statistical significance of the estimated information flow - an issue that has not
been addressed so far. The method is applies to examine the information flow between
a sample of European credit default swaps and the corporate bond market. In addition,
the information transfer between the iTraxx as a measure for credit risk and the VIX as
a proxy for market risk is analyzed. The results indicate that the information flow from
the credit default swap market to the bond market is larger than vice verse. Concerning
the dynamic relation between market and credit risk, we find uni-directional information

flow from the VIX to the iTraxx.
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2 Standard Measures for Contributions to Price Discovery

There exist currently two standard measures for contributions to price discovery in a
multiple market setting. Hasbrouck’s (1995) information shares and the Gonzalo and
Granger (1995) permanent-transitory decomposition. Both approaches rely on the law
of one price. Prices in different trading venues which refer to the same underlying asset
and are linked by an arbitrage relation cannot deviate from each other in the long run.
In econometric terms these prices are cointegrated. While prices in each market are I(1)
variables, a linear combination of them yields a stationary process. This means that there
exists one stochastic trend common to all price series. According to Hasbrouck (1995) this
common trend can be interpreted as the efficient price of the asset underlying all markets.
Generally, the Hasbrouck information shares as well as the Gonzalo and Granger (1995)
approach rely on a Vector Error Correction Model (VECM) to describe the dynamics of

the price processes:
Ap,=af'p, | +T1Ap, 1+ ...+ T 1Ap, 1 +us (2.1)

where p, = (pf,...,p})', T'1 to Ty_1 are n x n parameter matrices. u; = (uf,...,u})’ is
a white noise vector with zero means and covariance matrix 3,. B denotes the n x 1
cointegration vector. The vector a = (a?, ..., a™)’ contains the coefficients associated with
the speed of adjustment of each price series to deviations from the equilibrium. There

exists a Vector Moving Average Representation of the model given by
P =up+EBiupq + Boupo+ ... = E(L)uy (2.2)

from which the Stock and Watson (1988) common trends representation can be derived:

P, =E1)) us+E(L)u . (2.3)

The first term on the right hand side captures the common random walk component.
The second term includes the transitory effects. =(1) is the sum of the moving average
coefficients and gives the permanent impact of an innovation in each series. The special

case of a “one security-multiple market ” setting with cointegrated prices implies that the
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permanent impact of innovations in each price series is equal for all markets and the row
vectors in E(1) are identical. In the following we denote this common row vector by &,

which gives

t
=1 us+E(Lu (2.4)

where ¢ is a column vector of ones. According to Hasbrouck (1995) ¢£ is the component of
the price change that is due to new information as it is permanently impounded into the
prices. He interprets this component as the common factor or underlying efficient price
(compare also Lehmann (2002)and Hasbrouck (2002)).

In Gonzalo and Granger (1995) the common factor is defined by a linear combination of

current prices in different markets

pr=f+g9, (2.5)

where f, = I'p,. I gives the common factor coefficient vector and g, includes the transitory
components. Identification of the common factor is achieved by assuming that these
transitory components do not Granger-cause prices in the long run. They also show that
I' is orthogonal to the vector of adjustment coefficients in Equation (2.1). Harris et al.
(2002) suggest that these factor loadings in the permanent-transitory decomposition of
the price processes can be used to measure contribution to price discovery. The measure,

which in the following we will refer to as the adjustment coefficient ratio, is given by

o]

Adj! = <——
2]:1 ||

(2.6)
A straightforward advantage of the adjustment coefficient ratio is that it is easy to compute
and a unique measure. However, Baillie et al. (2002) and Hasbrouck (2002) point out that
the common trend f, in Equation 2.5 does not have to be a random walk and therefore
might not be a martingale, which renders its economic relevance questionable. Apart from
that the approach neglects further dynamics of the price process, such as their variances
and contemporaneous correlation in the innovations (see Hasbrouck 1995, Hasbrouck 2002,

De Jong 2002, Lehmann 2002, Baillie et al. 2002).
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The Hasbrouck information shares are based on a decomposition of the variance of the
efficient price innovations (v;). These are given from Equation (2.4) by vy=&u, and their
variance by X, = £€X,£’. Decomposing the variance into contributions from each market
is straightforward if ¥, is a diagonal matrix, which means that the residuals u; are not
contemporaneously correlated. Yet, this is not the case in most applications. As a solution
to this identification problem, Hasbrouck (1995) models the contemporaneously correlated

innovations u; as a linear combination of uncorrelated innovations &;:
uy = Be; (2.7)

where g is a vector of zero mean and unit variance variables and the n x n coefficient matrix
B is restricted to be the lower triangular matrix resulting from a Cholesky decomposition
of 3,, so that 3, = CC’ and

u; = Ce; . (2.8)

For C being triangular implies that prices in the market ordered first are not contempora-
neously affected by innovation in the remaining markets, while vice verse contemporaneous
effects of its own innovations are not restricted. This hierarchy goes down to the market
ordered last, which can be contemporaneously affected by innovations in all other mar-
kets, but its own cross effects are restricted to zero. Hasbrouck information shares are
then computed by decomposing the efficient price innovation variance, X, = ECC’¢’ into
contributions from the different markets

187 = w : (2.9)

§'CC’e

where [¢/C]; denotes the j* element of the vector £C. According to Johansen (1991)
the common row vector £ in the matrix = can be derived from the VECM parameters as
follows

qg—1

=B [ (I, =Y T8 o . (2.10)

i—1

[

~

Concerning the information shares the Cholesky decomposition implies that the contri-
bution of the market ordered first is maximized and that of the market ordered last is

minimized. Since there is no theoretical justification for such a hierarchy, the common
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solution is to permutate the ordering of the markets. This yields upper and lower bounds
of information shares.

Several studies point out that the Hasbrouck information shares are based on a definition
of price discovery that has more economic appeal compared to the Gonzalo and Granger
(1995) approach (see Hasbrouck 2002, De Jong 2002, Lehmann 2002, Baillie et al. 2002).
Yet, the fact that it does not deliver a unique measure but upper and lower bounds for
information shares is its crucial drawback. If the bounds are tight, their midpoint might
well be taken as a proxy for the true information share. If the contemporaneous correla-
tion is high, these bounds can diverge considerably. Particularly, when dealing with high
frequency data, the non-uniqueness of the Hasbrouck shares constitute a severe problem.
Figure 2.1 illustrates the link between the sampling frequency and the divergence of the

Hasbrouck bounds.

NYSE Information Share

I A I L J

0 100 200 300 400 500 600

o
o

Sampling Interval in Seconds

Figure 2.1: Information share estimates at different frequencies. The graph shows the de-
pendence of Hasbrouck information shares on the sampling frequency. It displays the upper and lower
bound (solid lines) of the NYSE information share as well as the associated midpoint (dotted line) for the
Canadian NYSE interlisted stock Abitibi Consolidated Inc. (ABY), estimated at different frequencies. The
estimates are calculated over 62 trading days (January first 2004 to March 31st 2004) using the first two
hours of trading.

It shows the New York Stock Exchange (NYSE) information share for ABY, a Canadian

stock, whose home market is the Toronto Stock Exchange. It is obvious that at a sampling



2 Standard Measures for Contributions to Price Discovery 9

frequency of two minutes, the bounds have already become extremely wide. This is the
result of the contemporaneous correlation increase when lowering the sampling frequency,
since the lead-lag relationship gets blurred at lower frequencies. Lien and Shrestha (2009)
propose a solution to that problem based on another decomposition of ¥,,. However, while
the Cholesky decomposition used by Hasbrouck can be interpreted as lower and upper
bounds for the true information share, the decomposition of Lien and Shrestha (2009) lacks
any economic intuition and presents merely one of many ways to decompose a covariance
matrix. The issue of identification of unique shares therefore remains unresolved in current
literature.

Estimation of the measures outlined above is usually preceded by a cointegration analysis
of the data. This includes unit root tests of the variables as well as testing for the existence
and the number of cointegration relations. Commonly, the Dickey-Fuller test statistic is
used to examine whether the variables are I(1) and the Johansen trace and maximum
eigenvalue statistics are applied to test for cointegration (see Dickey and Fuller 1981,
Johansen 1988). Estimation of the VECM in Equation (2.1) can be done via Least Squares
(see Liitkepohl 2005) or Maximum Likelihood according to Johansen (1991). The number
of lags in the VECM can be conveniently determined by the Schwarz of Akaike information
criterion (see Schwarz 1978, Akaike 1969, Akaike 1971). Standard errors for the price
discovery measures can be derived via the delta method in the case of the Gonzalo and
Granger (1995) approach. Concerning the Hasbrouck information shares Grammig et al.
(2005) propose a bootstrap along the lines of MacKinnon (2002). This procedure works
as follows: First VECM parameters in Equation (2.1) are estimated and then employed
to simulate price series using observations from the original price series as starting values.
In the case of a parametric bootstrap, the residuals u; in Equation (2.1) are independent
draws from a specific distribution. In the case of a non-parametric bootstrap, the empirical
distribution of the VECM innovation is used. Next, the VECM parameters and price
discovery measures are estimated from the simulated series. This procedure is repeated
and finally standard errors for parameter and information share estimates are computed

from the empirical distribution of the bootstrap estimates.

! Davidson and MacKinnon (2000) recommend choosing the number of bootstrap replications B such
that a(B+1) is an integer. Testing one-sided at 5% significance, B = 399 implies that the 20th largest
bootstrap estimate is the critical value at a = 0.05.



3 A Data Driven Approach to Estimate Unique Information Shares 10

3 A Data Driven Approach to Estimate Unique Information

Shares

The trading of securities on multiple markets raises the question of each market’s share in
the discovery of the informationally efficient price. We exploit salient distributional fea-
tures of multivariate financial price processes to uniquely determine these contributions.
Thereby we resolve the main drawback of the widely used Hasbrouck (1995) methodology
which merely delivers upper and lower bounds of a market’s information share. When
these bounds diverge, as is the case in many applications, informational leadership be-
comes blurred. We show how fat tails and tail dependence of price changes, which emerge
as a result of differences in market design, can be exploited to estimate unique information
shares. The empirical application of our methodology emphasizes the leading role of the
credit derivatives market compared to the corporate bond market in pricing credit risk

during the pre-crisis period.

This chapter is based on the article Tell-Tale Tails - A new approach to estimate unique

market information shares by Joachim Grammig and Franziska J. Peter (2010).
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3.1 Introduction

One of the most frequently asked questions in empirical finance is “Where is the market?”
Whether in the case of cross-listings of stocks or newly developed derivative markets, this
question has stirred up an enormous amount of research. Booth et al. (2002), for instance,
examine the role of upstairs and downstairs markets in the price discovery process at the
Helsinki Stock Exchange, while Huang (2002) estimates the contributions of market mak-
ers and electronic crossing networks to the price formation of NASDAQ stocks. Hasbrouck
(2003) analyzes the importance of different trading venues for the price discovery process
of U.S. equity indices. The share of the futures market in U.S. treasury price discovery is
the focus of a study by Mizrach and Neely (2008), and Blanco et al. (2005) estimate the
share of the bond market and the market of credit default swaps (CDS) in the process of
pricing credit risk. While dealing with the same question in different trading environments,
all these studies report Hasbrouck (1995) information shares which is the most prevalent
approach to measure contributions to price discovery.

In this chapter we resolve the main drawback of Hasbrouck’s (1995) methodology which
does not deliver a unique measure, but merely information share upper and lower bounds.
These bounds can diverge considerably and hinder a clear detection of the market that
leads price discovery. Our approach identifies unique information shares by exploiting dis-
tributional properties of financial data, namely fat tails and tail dependence. Thereby we
deliver a more accurate measure which can be applied to study price discovery in various
fields of financial research.

Within Hasbrouck’s methodology, information shares are defined as each market’s con-
tribution to the variance of the efficient price innovations. However, within a vector
equilibrium correction framework the efficient price variance can generally not be decom-
posed without further restrictions. For that purpose Hasbrouck (1995) uses the Cholesky
factorization of the innovation covariance matrix which implies a hierarchical ordering in
terms of the contemporaneous information flow. Permuting the ordering of markets results
in upper and lower information share bounds. When these bounds diverge, they measure
contributions to price discovery very inaccurately.

Our approach towards estimating unique information shares is related to the identification

of structural shocks through heteroskedasticity (see Rigobon 2003) and non-normal inno-
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vations (see Lanne and Liitkepohl 2010). These papers show that structural innovations
within a multiple time series framework can be identified if the data exhibit heteroskedas-
ticity that can be described by a multi-regime process associated with different innovation
variances. We connect this insight with two salient facts of financial price processes: fat
tailed return distributions combined with tail dependence. We show how these features,
which may result from differences in market liquidity, can be exploited to disentangle the
contemporaneous correlations of the price innovations across markets. In particular, the
occurrence of a large price movement in one market can either represent an informative
event or a transitory liquidity shock. Contemporaneous price movements of the other
markets reveal the informational content of the large price change, and thereby identify
market idiosyncratic innovations. Those tell-tale tail observations are the key to deliver
unique information shares.

Drawing on the approach put forth by Lanne and Liitkepohl (2010), we assume that mar-
ket idiosyncratic price innovations come from mixture distributions, and that the observed
price innovations emerge as a linear combination of these structural shocks. We show that
the resulting multivariate mixture distribution can account for fat tails and tail depen-
dence, which we exploit for the computation of unique information shares. The basic data
requirement to achieve this goal is that the correlations of the market price innovations in
the tails and in the center of their joint distribution are sufficiently different.

Since there are no identifying restrictions suggested by finance theory, the possibility to
disentangle the contemporaneous correlation structure of price innovations based on distri-
butional properties of financial data is quite appealing. However, Lanne and Liitkepohl’s
method delivers ambiguous results if applied without further restrictions. In particular,
we show that one would merely identify sets of information shares, while not being able
to allocate them uniquely to the markets. We offer a solution by proposing identifying
restrictions which naturally arise from the one security-multiple markets framework.

We use the new methodology to measure the contribution of the CDS and the corporate
bond market to the pricing of credit risk. The results emphasize the informational lead-
ership of the more liquid credit derivatives market during the pre-crisis period. They also
corroborate the conclusions of previous studies that identify relative market liquidity as

the most important variable for explaining market information shares (see e.g. Yan and
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Zivot 2010). Liquidity, as a result of market design, attracts trading volume and promotes
a market’s leadership in price discovery. The methodology proposed in this chapter sys-
tematically exploits the informational content of those market design effects to deliver a

unique measure of a market’s information share.

3.2 Fat Tails, Tail Dependence, and Unique Information Shares
3.2.1 Motivation and Econometric Specification

The identification of variance shares and idiosyncratic innovations as defined in Equations
(2.9) and (2.7) is a prevalent problem in various fields of economics. As an alternative to
the Cholesky decomposition, macroeconomic VAR, analyses exploit theoretically motivated
restrictions on long run effects, by imposing constraints on 2B, and/or short run effects,
by imposing restrictions on B (see Liitkepohl 2008). However, finance theory does not
suggest such restrictions concerning the one security-multiple markets framework. As a
result, the indeterminacy of Hasbrouck’s information share measure remained a caveat for
15 years.

Our proposed solution exploits two stylized facts of financial price processes: fat tails
and tail dependence. Fat tails mean that large negative or positive price changes occur
more frequently than predicted by a normal distribution (see e.g. Haas et al. 2004). By
tail dependence we refer to the phenomenon that the correlation of price changes in the
tails of the distribution is different from that in the center (see e.g. Longin 2001). While
these empirical facts are not at odds with finance theory, there are no first principles
explanations for their existence.

Before we outline the mathematical details of our methodology, let us first illustrate how
fat tails and tail dependence can help disentangle the contemporaneous correlation of the
price innovations. For that purpose we follow Rigobon (2003) who uses scatter plots to
visualize identification through heteroskedasticity. Our illustration focuses on the case of
n = 2 markets.

The three panels in Figure 3.1 depict scatter plots of composite price innovations v and us.
The upward sloping regression lines indicate the positive contemporaneous correlation of

the price innovations on the two markets. All three panels show price innovations clustering
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Figure 3.1: Scatter plots of composite price innovations. The lines result from a regression
of u1 on us.

in the dense center of the bivariate distributions. In Panels I and II the correlations of
the innovations in the center and in the tails of the bivariate distribution are distinctly
different. Price innovations in the dense center of the Panel I distribution are positively
correlated. However, tail observations in market two do not tend to be accompanied by
particularly large absolute values of u;. The Panel II data also exhibit tail dependence,
but the correlation in the dense center is smaller than in the tails. Here the marginal
distribution of wu; is more leptokurtic, with price innovations that are mostly small in
absolute value, but with occasional large positive or negative shocks. If, however, there is
a large and positive (negative) innovation in market one, then the market two innovation
tends to be large and positive (negative), too. The converse does not hold true: The

horizontally flattened dense center of the Panel II scatter plot implies that extreme market
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two price innovations do not tend to be accompanied by u; observations that are large in
absolute value.

An economic explanation for such observations is that the design of the trading process on
market two may entail temporary shortages of liquidity, which cause large absolute price
changes. These liquidity shocks on market two do not affect the common efficient price,
and thus do not contemporaneously spill over to market one. As it turns out, such market
imperfections are very useful for our quest. They reveal the contemporaneous dependence
structure which is the key to identify unique information shares. In detail, given the factor

structure

ur | biq b1 €1 7 (3.1)
Uz ba1 b2 €2

the Panel I and II scatter plots suggest that the weight by 2, which transfers an idiosyn-
cratic price shock occurring on market two into the price innovation of market one, is
small, while b 1 is large.

Let us now set up a statistical model that accounts for fat tails and tail dependence. For
that purpose, we draw on Lanne and Liitkepohl’s (2010) idea to identify structural shocks
in a VAR framework by assuming mixture distributions for the residuals. Such an as-
sumption may not be obvious or sensible in a macroeconomic analysis involving variables
like GDP, money supply, unemployment and interest rates. In the present application,
however, it perfectly matches the stylized facts observed in financial data.

We retain the factor structure u; = Be; = We;, where W denotes a non-singular matrix,
and e; is an n-dimensional vector of contemporaneously and serially uncorrelated innova-

tions. It results from a mixture of two serially independent Gaussian random vectors,

e~ A(0,1I,) with probability v
e = (32)

ey ~ A (0,¥) with probability 1 —~

where 0 < v < 1 and W is a diagonal matrix with positive elements 1, .., ¥,,.

As shown by Rigobon (2003), the identification of structural shocks through heteroskedas-
ticity relies on the existence of regimes with different innovation variances. Unlike Rigobon
(2003), who assumes exogenously defined variance regimes, Equation (3.2) specifies only a

regime probability. This entails the necessity to deal with and deliver identifying restric-
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tions. We will address this issue in the next section and for now assume that the set of
mixture parameters 6,, = {7, ¥, W} can be uniquely identified.
It follows from (3.2) that the covariance matrix of the idiosyncratic innovations e, is given
by

Y=, +(1-yT¥ , (3.3)

such that
3, =BB =WX. W | (3.4)

which implies that B = WX, Information shares which are independent of the ordering
of markets, can then be computed replacing the Cholesky matrix C in Equation (2.8) by
wWx03 viz
51(2)
[fWe?]
ISx(0,0,) = ——x— .
where 0, = {a,8,T'1,...,Ty} collects the VECM parameters. The X subscript indicates

that the identification of information shares exploits the informational content of extreme

(tail) observations.

Figure 3.2 illustrates how mixture of normal distributions can produce fat tails and tail
dependence. The three Panels reveal that the innovations displayed in Figure 3.1 were
drawn from bivariate normal mixtures with a low and a high variance regime. Tail depen-
dence prevails in Panels I and II, since here ¢; # 15, while in Panel III 91 = 5. Identical
regime variances imply that the correlation of the innovations is the same in the low and
the high variance regime. In other words, the dependence of innovations in the tails of the
distribution is not different from that in the center when 1 = 5.

Figure 3.2 also reveals that the off-diagonal elements of the weight matrix W are as sus-
pected by eyeballing the Panel I and II scatter plots in Figure 3.1. The parameter w2
— the weight with which the idiosyncratic market two innovation e, contemporaneously
affects the price on market one — is smaller than wy 1, the weight with which the market
one idiosyncratic innovation e; contemporaneously affects the price on market two. Fat
tails along with tail dependence represent the basic data features to successfully apply our

methodology. Using mixtures of normal distributions, with regime variances that are dif-
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Figure 3.2: Scatter plots of composite price innovations with DGPs revealed. Data are
generated by bivariate mixture distributions. The small dots represent observations from regime 1, the
circles represent observations from regime 2. The lines result from regressions of w1 on us using data from
the respective regimes.

ferent across markets, one can account for these features in a statistical model. However,
as we will outline in the next section, additional restrictions are required to identify the

vector of ISy information shares according to Equation (3.5).
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3.2.2 Identification

The identification of unique information shares involves two aspects, namely to determine
the set of information shares and to allocate them to the n markets. As shown by Lanne
and Liitkepohl (2010), the identification of the weighting matrix W requires that the
diagonal elements of ¥ (the idiosyncratic innovation variances) are all different. This result
corresponds to Rigobon’s (2003) finding that in order to permit identification through
heteroskedasticity the regime variances have to be different.

In particular, Lanne and Liitkepohl (2010) show that if ¥ contains different elements on
its main diagonal, then the columns of W are identified up to a multiplication of one or
many of its columns by —1. However, being able to identify the columns of W only up
to a sign shift does not affect the information shares computed according to Equation
(3.5). Furthermore, the sign indeterminacy can be easily resolved by restricting the main
diagonal elements of W to be greater than zero. This is a sensible restriction in almost
any application. In the present context it implies that an idiosyncratic price innovation
on market i, e;;, contemporaneously impacts on the composite innovation u;; with the
same sign and a nonzero weight.

However, distinct main diagonal elements of W ensure the identification of the columns of
W, but not their ordering. The consequences are severe, as it is only possible to identify
the set of information shares, but not to assign them uniquely to the n markets. As we
prove in Appendix A, there exist n! possibilities to allocate information shares to the n
markets. These information share vectors result from alternative parametrization which
are observationally equivalent to 6,, = {v, ¥, W}. They imply the same joint density of

the random vector u; which, resulting from Equation (3.2) and u; = Wey, is given by

u) Nl
f(ut; em) =7 X (271')_% det(W)—l exp {_ t(WW ) )}

2
w,(WIW') "y, }
5 :

(3.6)

+ (1 =) x (27)"2 det(®) %% det (W)~ exp {—

We refer the reader to Appendix A for a formal proof. The key insight is that distinct di-
agonal elements of ¥ identify W uniquely only if the ordering of the columns of W cannot
be altered. However, the re-parametrization 6, = {v, ¥*, W*} where W* = WP and

U* = P'UP, with P a permutation matrix of order n, is observationally equivalent to the
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original parametrization 6,, = {v, ¥, W}, such that f(us;6%,) = f(us;0,,).2 This implies
that there exist n! — 1 sets of mixture parameters which are observationally equivalent
to the original parametrization. Furthermore, there exist n! additional parametrization
O = {7, E’,W} where W = wwlsp, U =P'¥ P and 4 =1 —+. These parametriza-
tion are also observationally equivalent to 6,,.

As we show in Appendix A, these alternative parametrization permute the original infor-

mation shares according to
ISx(0;,,0,) = I1Sx (0, 0,) = ISx (0, 0,) x P, (3.7)

such that there exist n! different, but observationally equivalent information share vectors.
In other words, it is impossible to determine which information share belongs to a single
market.

Equation (3.7) implies that in order to ensure identification we need additional restrictions
that prevent the permutation of the columns of W and the diagonal elements of W. For-
tunately, the one security-multiple markets application framework suggests the following

constraints:

Wi > 0 vV 4
(3.8)
wi; > |w;l Vo j#FL

where w; ; is the row 4, column j element W. The restriction that the diagonal elements of
W are larger than the remaining elements in the same column is economically plausible,
since we expect the weight with which the idiosyncratic shock originating in market 4, e; ¢,
contemporaneously affects the own market composite price innovation u;; to be larger in
absolute value than the weights with which it contemporaneously affects the composite
price innovations of all other markets.

The restrictions in (3.8) leave P = I,, as the only eligible permutation matrix. The two

remaining parametrization 6,, and 8,, = {1—v, ¥~ W®%5} imply the same allocation of

information shares to the n markets. Restricting one of the regime variances to be greater

2 A permutation matrix P results from permuting the rows of an identity matrix. Every row and column
therefore contains one element that equals one and the remaining elements are zero. Consequently,
there exist n! distinct permutation matrices of order n, one of which is the identity matrix. Post-(pre-)
multiplication by a permutation matrix results in a matrix where the columns (rows) of a matrix are
interchanged according to the permutation implied P. The operation WP thus permutes the columns
of W. The operation P’"®P permutes the diagonal elements of ¥ accordingly.
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than one leaves #,, as the only eligible parametrization. Together with the restriction
that all elements of ¥ are distinct, the constraints in (3.8) suffice to identify the set of

information shares and allocate them uniquely.

3.2.3 Estimation

Maximum Likelihood presents the natural method to estimate the model parameters.

Using u; = A(L)p;, where
AL)=1-L—-aB'L-T|AL—...—T, AL (3.9)

and Equation (3.6), the conditional log-likelihood function reads

Z(Om, 00) = iln <7 x (2) " det(W) ' exp {_M}

t=1 , 2 - (3.10)
+ (1 —7) x (27)" 2 det(®) ™% det(W) L exp {_ut(W\Il;N )" u } >

Estimation of the VECM parameters 6, and the mixture parameters 6,, in a single step
is computationally burdensome. We therefore adopt the two-step estimation strategy
outlined by Liitkepohl (2005) and Vlaar (2004). The first step either estimates the coin-
tegrating vectors, or uses those suggested by theory (i.e. 3'=[t,—1 —I,-1]). Equation
by equation OLS of the VECM in (2.1) then delivers consistent estimates of 8, which can
be used to compute an estimate of the long run impacts vector € from Equation (2.10).
The second estimation step maximizes the concentrated log-likelihood which results from
replacing the VECM parameters in (3.10) by their first step estimates, i.e. u; is replaced
by

Gy=(1-L-aBL-T/AL—.. —T, AL Yp, | (3.11)

to obtain estimates of 6,,. Maximization of the concentrated log-likelihood imposes the
identifying constraints (3.8). Plugging in the first step estimates 0, and the second step
estimates 6, in (3.5) delivers ISy information share estimates. Standard errors for the
estimates resulting from this two-step procedure can be delivered by a parametric boot-

strap along the lines of MacKinnon (2002). We conduct a parametric bootstrap to provide
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standard errors and confidence intervals for parameter and information share estimates
resulting from the two-step estimation procedure outlined in Section 3.2.3. The procedure
works as follows. We first draw an iid sequence of random variables from a normal mix-
ture distribution. This distribution is generated using the mixture parameters which are
estimated in the second (Maximum Likelihood) step of the estimation procedure. Next,
we generate simulated price series according to Equation (2.1) using observations from the
original price series as starting values, the estimated or pre-specified cointegrating vectors,
the first step OLS estimates of the VECM parameters, and the simulated mixture resid-
uals. The length of the simulated series equals the number of observations in the original
data set plus 100. We discard the first 100 data points in order to reduce the dependence on
the starting values. The two-step estimation procedure described in Section 3.2.3 is then
applied to the simulated data. We store the resulting parameter estimates and compute
estimates of £ using Equation (2.10), upper and lower bounds of Hasbrouck information
shares according to Equation (2.9), and /Sy information shares according to (3.5). This
procedure is repeated B = 399 times, as suggested by Davidson and MacKinnon (2000).
They recommend choosing the number of bootstrap replications B such that a(B + 1) is
an integer. B = 399 implies that the 20th largest bootstrap estimate is the critical value
at a = 0.05. Standard errors for parameter and information share estimates are computed

from the empirical distribution of the bootstrap estimates.

3.3 Empirical Application
3.3.1 Credit Default Swaps, Credit Spread, and the Price of Credit Risk

To illustrate the benefit of our methodology we revisit a research question addressed by
Blanco et al. (2005) who quantify the information share of the corporate bond market and
the market for credit derivatives in pricing credit risk. Given the importance of credit
securitization and the controversial role played by credit derivatives during the recent fi-
nancial crisis, research on this topic is more relevant than ever.

Both corporate bonds and credit derivatives, of which CDSs are the most important instru-
ments, are traded on over-the-counter markets. The corporate bond market determines

credit spreads (pcgs), the difference between risky bond yields and the risk-free rate. A
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CDS is a contract between two counterparties trading credit risk. The protection buyer
transfers default risk by paying a fee to the protection seller who is willing to assume the
risk. In return, the buyer receives a payoff if the underlying financial instrument defaults.
The economic effect of a CDS is thus similar to that of an insurance contract, but the buyer
of credit protection via a CDS does not necessary have to hold the insured security. The
annualized fee, expressed in basis points of the notional volume, is referred to as the CDS
price (pcps). Since credit spread and CDS price are linked by an approximate arbitrage
relation (see Duffie 1999, Hull and White 2000a, Hull and White 2000b), Blanco et al.
(2005) assume cointegration between the two I(1) price series such that pcps: — pcsy is
1(0).3

Blanco et al.’s (2005) study is an exemplary application of Hasbrouck’s (1995) method-
ology. They set up the VECM in Equation (2.1) with pi; = pcps: and pay = pesy-
Here the common stochastic trend can be interpreted as the price of credit risk. This
research question is especially interesting for the application of our methodology, since
liquidity matters on markets for credit risk. Collin-Dufresne et al. (2001) point out that
movements in liquidity premia explain a large proportion of the total variation in credit
spreads. As outlined in Section 3.2, differences in market liquidity are the key to identify

unique information shares.

3.3.2 Data

We make use of the data on CDS prices and credit spreads collected by Blanco et al.
(2005).* The time series of CDS prices are midpoints of daily close- of-business indicative

quotes supplied by the CDS broker CreditTrade and J.P. Morgan Securities. The CDS

3 The arbitrage relation can be explained as follows. Suppose an investor buys a T-year par bond with
yield to maturity of y issued by the reference entity. The investor also buys credit protection on that
entity for T years at pcps. The net annual return is y — pcps which, by arbitrage, and because default
risk is eliminated, should be equal to the T-year risk-free rate denoted by z. If y — pcps < z, then
shorting the risky bond, writing protection on the CDS market, and buying the risk free rate would
present an arbitrage opportunity. If y — pcps > z, then buying the risky bond and protection, and
shorting the risk-free bond becomes profitable. Accordingly, the price of the CDS should equal the
credit spread, pcps = pcs = y — x. However, with market imperfections such as liquidity premia,
not exactly matching maturity dates, and cheapest to delivery options in case of default, the arbitrage
relation is not perfect. Assuming cointegration accounts for the approximate nature of the arbitrage
relation between CDS price and credit spread.

1 We are grateful to R. Blanco for making these data available.
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COUNTRY SECTOR RATING pcps pcs Apcps Apcs Apcps Apcs CORR
AOL United States Internet BBB 93.20 80.17 5.48 7.46 17.04 14.54 0.02
BANK OF AM. United States Banking A 36.14 39.69 2.58 4.41 12.24 4.73 0.07
BANK ONE United States Banking A 45.17 50.78 2.71 5.90 5.79 0.51 -0.02
BEAR STEARNS United States Banking A 71.40 80.93 3.84 6.76 9.83 1.66 0.02
CITIGROUP United States Banking AA 32.17 26.43 2.72 4.94 9.88 0.70 -0.02
FLEET BOSTON United States Banking A 49.32 44.08 2.05 4.99 12.31 17.77 0.19
Forp United States Automobile/finance BBB 143.47 140.89 7.57 6.70 7.31 6.57 0.26
GE CAPITAL United States Finance AAA 30.40 7.18 2.27 5.56 71.63 0.63 0.07
GENERAL MoOT. United States Automobile/finance BBB 119.04 108.39 5.72 6.6 4.22 0.915 0.15
GOLDMAN Sachs United States Banking A 51.91 55.72 2.98 5.40 7.62 0.80 -0.01
JPMORGAN United States Banking AA 44.52 42.02 2.67 3.8 7.82 2.648 -0.10
MORGAN ST. United States Banking AA 47.67 47.98 3.21 4.97 18.69 4.82 0.03
LEHMAN BRoOS. United States Banking A 69.86 77.61 3.82 7.28 6.80 1.80 -0.03
MERRILL LyNCcH United States Banking AA 50.24 43.56 2.98 5.58 18.08 0.67 -0.02
WAL MART United States Retail AA 19.77 -0.85 0.99 4.59 43.99 9.30 0.04
WELLS FARGO United States Banking A 26.32 30.17 2.38 5.37 15.60 3.78 -0.07
BriTisH TEL. United Kingdom Telecom. A 103.02 113.04 4.12 4.69 2.67 0.60 0.27
COMMERZBANK Germany Banking A 27.31 14.70 1.11 3.64 32.73 0.44 -0.07
DAIMLER Germany Automobile BBB 128.50 120.65 4.92 6.01 3.65 1.15 0.28
DeuTSCHE TEL. Germany Telecom. BBB 144.64 121.46 7.70 4.67 5.34 4.36 0.47
FraT Italy Automobi A 106.30 100.52 4.48 3.27 5.95 3.60 0.31
IBERDROLA Spain Utilities A 32.54 49.25 1.01 3.00 40.57 17.80 0.04
METRO Germany Retail BBB 62.94 80.29 1.99 3.55 42.29 6.70 0.06
SIEMENS Germany Telecom. AA 44.69 33.68 2.04 3.47 9.43 33.48 0.12
TELEFONICA Spain Telecom. A 85.65 73.31 4.06 2.75 10.13 0.77 0.22
Vorvo Sweden Automobile A 72.50 79.83 3.95 2.86 19.19 4.18 0.13

Table 3.1: Data descriptives. The table lists the reference entities and basic descriptives of CDS prices and corporate bond spreads. We report the mean
of the CDS price and credit spreads (in basis points) as well as the standard deviation, kurtosis and correlation of their first differences. The sampling period
is January 2, 2001 to June 20, 2002 (383 trading days).
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prices are for single-name standard ISDA benchmark contracts for physical settlement, a
notional volume of $ ten million, and five years maturity, the most liquid maturity in the
CDS market.® Risky bond yields are from Bloomberg. By linearly interpolating yields
between three and five years and yields with more than six and a half years to maturity
at the start of the sample, a five-year yield to maturity is estimated to match the CDS
maturity. Euro and Dollar five year swap rates, respectively, are used as proxies for the
risk-free rate. The resulting time series of CDS prices and credit spreads for 33 reference
entities (16 U.S. and 17 European companies) run from January 2, 2001 to June 20, 2002
(383 trading days). In the following, we focus on those 26 reference entities for which
the data support the existence of the hypothesized cointegrating relation (see Table III in

Blanco et al. 2005). Descriptive statistics are reported in Table 3.1.

3.4 Estimation Results and Discussion

Two-step estimation of ISx information shares is performed as described in Section 3.2.3.
Estimation results are reported in Tables 3.2 and 3.3. For the first step estimation, we
assume the theoretical cointegrating vector 3 = (1, —1)" and ¢ = 2 in Equation (2.1). The
first step estimates are used to compute upper and lower bounds of Hasbrouck information
share estimates and alternative measures of contributions to price discovery.

Table 3.2 reports the mixture parameter estimates and the Wald test results for the null
hypothesis of identical regime variances, ¥; = 1. For all reference entities the null is
rejected at conventional significance levels. As outlined above, this is a necessary condition
for the identification of unique information shares according to our methodology.

Along with ISy estimates, Table 3.3 contains lower and upper bounds of the Hasbrouck
information share estimates of the CDS market. We further include the estimates of the

long run impact coefficients € = (£cps,&cs)’, and the ratio of adjustment coefficients

lacs|

= —12esl 6 Gtandard errors for these estimates as well as for Hasbrouck in-
lacps|+lacs|

Acs

formation shares are obtained applying the non-parametric bootstrap procedure outlined

® The International Swaps and Derivatives Association (ISDA) contracts define default events and ways
of settlement in case of default (cash or physical delivery, i.e. delivery of a reference asset).
6 Baillie et al. (2002) show that with 3 = (1,—1)’ it follows from Equation (2.10) that logs]

lacpsltlacs| ™
[€cpsl
lécpsl+lécs!”
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REFERENCE ENTITY | U (5 o4 w11 w12 wa1 W22 WALD TEST
AOL 14954.108 4.851 0.729 0.086 -0.020 0.004 4.711 892
(1279.240) (0.813)  (0.038)  (0.197))  (0.029) (0.048) (0.207) < 0.01
BANK OF AM. 363.193 1.423 0573 0.203 0.014 0.032  3.865 375
(73.767) (0.257)  (0.030)  (0.061)  (0.022)  (0.032)  (0.211) < 0.01
BANK ONE 32.856 1.365 0.640 0.737 -0.053 0.102 4.971 119
(5.939) (0.282)  (0.039)  (0.064)  (0.065)  (0.099)  (0.262) < 0.01
BEAR STEARNS 119.039 1.900 0.661  0.587  0.000 0.014 5.122 184
(21.405) (0.345)  (0.031) (0.076) (0.054) (0.074) (0.265) < 0.01
BriTisH TEL. 725.767 1.168 0433 0.201  0.031  0.059  4.157 505
(149.080) (0.240)  (0.035)  (0.119)  (0.037)  (0.042)  (0.277) < 0.01
CITIGROUP 66.632 0.835 0.649 0.535 0.010 0.045 4.652 290
(11.593) (0.146)  (0.034) (0.049) (0.044) (0.054) (0.212) < 0.01
COMMERZBANK 488.851 0.663 0.893 0.151 -0.003 -0.038 3.229 233
(112.523) (0.237)  (0.023) (0.032) (0.011) (0.033) (0.153) < 0.01
DAIMLER 39.521 2.142 0494 1.043 0.013 0.388  4.277 83
(8.166) (0.442)  (0.043)  (0.123)  (0.139)  (0.101)  (0.334) < 0.01
DeuTscHE TEL. 173.237 3.656 0.369  0.730 -0.064 0.227  2.298 115
(38.506) (0.721)  (0.033)  (0.206)  (0.137)  (0.073)  (0.210) < 0.01
Fiar 310.047 1.192 0.500 0.352 -0.001 0.074 2.713 126
(64.739) (0.296)  (0.043) (0.149) (0.062) (0.039) (0.209) < 0.01
FLEETBOSTON 708.814 1.715 0551  0.110 -0.008 0.061  3.834 329
(132.471) (0.359)  (0.035)  (0.057)  (0.018)  (0.044)  (0.257) < 0.01
ForD 22.850 6.439 0.681 2.654 -0.199 0.765  3.655 12
(4.188) (1.171)  (0.037) (0.194) (0.401) (0.324) (0.284) < 0.01
GE CAPITAL 1588.611  1.629 0.866  0.155  0.002 0.036 4.734 438
(383.333) (0.353)  (0.023) (0.058) (0.011) (0.036) (0.208) < 0.01
GENERAL MOT. 28.993 2.095 0.550 1.523  0.132 0.342 4.883 65
(5.498) (0.433)  (0.045) (151) (0.182)  (0.137)  (0.357) < 0.01
GOLDMAN SACHS 123.067 1.148 0.644 0.428 -0.056 0.015  4.693 325
(21.717) (0.215)  (0.031) (0.055) (0.037) (0.047) (0.247) < 0.01
IBERDROLA 632.948 5.582 0.885 0.117 -0.007 0.020 2.138 188
(139.851) (1.284)  (0.020) (0.019) (0.008) (0.040) (0.088) < 0.01
JPMORGAN 1229.124  4.515 0.481 0.105 -0.023 -0.011 2.171 367
(208.009) (0.852)  (0.033)  (0.081)  (0.031)  (0.029)  (0.169) < 0.01
LEHMAN BROS. 82.699 1.067 0.560 0.612 -0.007 -0.027 6.210 208
(14.513) (0.197)  (0.034) (0.076) (0.060) (0.072) (0.344) < 0.01
MERRILL LYNCH 861.935 0.922 0.662 0.172 -0.014 -0.008 4.995 882
(164.308) (0.149)  (0.031)  (0.080)  (0.018)  (0.027)  (0.231) < 0.01
METRO 485.798 8.201 0.804 0.199 -0.043 0.022 2.115 166
(103.403) (1.821)  (0.028)  (0.046)  (0.023)  (0.056)  (0.112) < 0.01
MORGAN ST. 345.376 2.220 0.679  0.293 -0.021 0.025  4.029 269
(65.204) (0.402)  (0.028) (0.068) (0.027) (0.040) (0.210) < 0.01
SIEMENS 1393.361  4.135 0.695 0.098 -0.010 0.022 2.223 395
(250.220) (0.817)  (0.036)  (0.075)  (0.021)  (0.039)  (0.130) < 0.01
TELEFONICA 567.298 1.463 0.623  0.275  0.004 0.044 2.291 600
(117.300) (0.248)  (0.030)  (0.105)  (0.031)  (0.023)  (0.118) < 0.01
Vorvo 225.962 2.786 0.689  0.460  0.075  0.052  2.124 261
(40.362) (0.481)  (0.029) (0.076) (0.042) (0.030) (0.109) < 0.01
WAL MART 408.636 2.157 0.882  0.138  -0.007 0.054  4.087 213
(84.480) (0.526)  (020) (0.018)  (0.009)  (0.055)  (0.174) < 0.01
WELLS FARGO 82.850 1.418 0.749 0.496  0.000 -0.022 4.529 110
(14.654) (0.305)  (0.030) (0.044) (0.038) (0.073) (0.223) < 0.01

Table 3.2: Mixture model estimation results. The table shows second step ML estimates of
the mixture parameters using the first step VECM residuals as input. The CDS price is the first series,
the bond spread the second. In parentheses we report standard errors from a parametric bootstrap (see
Chapter 2). The last column gives the values of the Wald statistic for a test of 11 = 12 along with the
corresponding p-values.
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in Chapter 2. Table 3.3 shows that the mean of j\cs, averaged across reference entities,
amounts to 0.84. This indicates a strong (weak) adjustment of the credit spread (CDS
price) to previous day price. The Hasbrouck information share estimates also indicate a
larger contribution of the CDS market to price discovery. While for some reference entities
the bounds of the Hasbrouck information shares are narrow, they are quite wide for others.
For instance, the lower bound of the CDS market Hasbrouck information share estimate
for Ford amounts to 52.3 %, (s.e. = 20.3), the upper bound is 80.0 % (s.e. = 16.9).

The last column in Table 3.3 reports the estimates of the CDS market ISx information
shares. For the reference entity Ford the ISx estimate amounts to 83.4 % (s.e. = 16.8), a
value above the Hasbrouck information share upper bound estimate.

Table 3.3 shows that the more pronounced leadership of the CDS market indicated by
our unique information share measure is a general result. For those reference entities with
wide bounds, the ISy information shares tend to be close to the Hasbrouck information
share upper bounds. The CDS market ISx estimate averaged across entities amounts to
86.1 % which is close to the mean upper bound of the Hasbrouck share.

This result of a distinct informational leadership of the more liquid CDS market corrobo-
rates the conclusions of Grammig et al. (2008) who study price discovery for internationally
cross-listed stocks and identify relative market liquidity as the most important variable
for explaining the information shares of home and foreign market. Liquidity, as a result of
market design, attracts trading volume and promotes a market’s leadership price discovery
(see also Yan and Zivot 2010). Our findings suggest that this conclusion also holds for
markets trading credit risk.

The scatter plots of the VECM residuals depicted in Figure 3.3 match and illustrate the
liquidity story. The four panels show horizontally flattened dense centers of the bivariate
distributions, which imply that tail observations for the credit spread residuals do not
tend to be accompanied by extreme CDS residuals. However, when the CDS residual is
large and positive (negative), the credit spread residual tends to be large and positive
(negative), too. This pattern complies with the notion of a corporate bond market where
transitory price changes may occur only due to a lack of liquidity. Price innovations in
the more liquid CDS market, on the other hand, tend to convey information with respect

to the price of credit risk which spills over contemporaneously to the credit spreads.
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REFERENCE ENTITY | Acs &cps &cs | HasBrouck IS(CDS) | ISx(CDS)
LOW UP MID
FORD 0.58 0.31 0.22 | 52.3 80.0 66.2 83.4
(0.21) (0.09) (0.08) (20.3) (16.9) (18.3) (16.8)
DAIMLER 0.81 0.48 0.12 71.3 94.1 82.7 93.9
(0.23) (0.12) (0.11) (21.8) (14.2) (17.6) (13.8)
TELEFONICA 0.59 0.29 0.20 65.9 87.0 76.4 86.9
(0.25) (0.12) (0.10) (23.3) (20.0) (21.4) (18.0)
FI1aT 0.79 0.45 0.11 79.4 97.6 88.5 97.6
(0.20) (0.16) (0.14) (20.2) (12.5) (15.8) (9.1)
(GENERAL MOT. 0.75 0.40 0.14 | 72.1 90.1 81.1 88.3
(0.23) (0.07) (0.06) | (16.0) (11.0) (13.1) (11.0)
VorLvo 0.52 0.26 0.24 | 59.0 76.5 67.8 74.5
(0.22) (0.08) (0.07) | (20.4) (17.8) (18.8) (18.0)
BriTisa TEL. 0.87 0.50 0.07 | 829 97.8 90.3 97.5
(0.14) (0.15) (0.12) (20.9) (13.5) (16.7) (13.1)
FLEET BOSTON 0.93 0.48 0.04 84.2 97.1 90.7 97.3
(0.05) (0.07) (0.05) (19.4) (10.7) (14.3) (9.6)
COMMERZBANK 0.82 0.42 0.09 69.0 76.9 72.9 69.2
(0.24) (0.07) (0.04) (20.9) (22.7) (21.6) (23.0)
WAL MART 0.85 0.41 0.07 | 58.1 65.8 62.0 66.5
(0.03) (0.08) (0.03) (21.2) (20.5) (20.7) (19.6)
SIEMENS 0.88 0.45 0.06 | 88.7 95.8 92.2 96.1
(0.23) (0.10) (0.08) (18.0) (14.0) (15.8) (13.3)
DEUTSCHE TEL. 0.72 0.83 -0.33 | 89.6 95.2 92.4 94.6
(0.16) (0.99) (0.89) | (23.7) (9.5) (14.5) (8.9)
IBERDROLA 0.77 0.40 0.12 58.9 64.5 61.7 65.3
(0.23) (0.07) (0.05) (22.2) (21.8) (21.9) (20.5)
CITIGROUP 0.72 0.33 0.13 | 65.8 70.7 68.3 70.4
(0.15) (0.04) (0.03) (14.9) (13.7) (14.0) (13.6)
BANK ONE 0.69 0.30 0.14 | 51.5 56.0 53.8 58.2
(0.17) (0.03) (0.03) | (16.7) (16.2) (16.2) (14.8)
BANK OF AM. 0.93 0.43 0.03 | 95.5 98.7 97.1 98.5
(0.06) (0.09) (0.09) (17.0) (13.5) (15.0) (11.5)
MORGAN ST. 0.83 0.42 0.09 | 88.4 91.3 89.8 91.7
(0.17) (0.06) (0.06) (16.1) (14.2) (15.0) (12.8)
WELLS FARGO 0.75 0.33 0.11 67.1 69.1 68.1 67.1
(0.11) (0.04) (0.04) (18.4) (17.2) (17.2) (15.6)
LEHMAN BROS. 0.80 0.39 0.10 84.0 86.0 85.0 84.2
(0.11) (0.04) (0.03) (10.9) (11.1) (10.9) (10.1)
GE CAPITAL 0.98 0.53 0.01 97.8 99.8 98.8 99.8
(0.16) (0.08) (0.05) (10.1) (7.5) (8.6) (7.9)
METRO 0.88 0.43 0.06 | 94.0 95.4 94.7 96.8
(0.19) (0.07) (0.06) | (15.0) (13.8) (14.2) (12.4)
BEAR STEARNS 0.78 0.36 0.10 82.5 83.7 83.1 83.7
(0.16) (0.04) (0.04) (14.1) (13.1) (13.4) (12.1)
MERRILL LYNCH 0.90 0.43 0.05 96.5 97.7 97.1 96.7
(0.26) (0.05) (0.04) (8.7) (9.3) (8.9) (9.7)
JP MORGAN 0.94 0.47 0.03 | 99.2 100.0 99.6 99.4
(0.12) (0.09) (0.08) (11.6) (13.7) (12.4) (10.5)
AoL 0.97 0.48 0.01 99.6 99.9 99.7 99.9
(0.23) (0.08) (0.07) (6.4) (5.2) (5.7) (6.9)
(GOLDMAN SACHS 0.80 0.37 0.10 | 84.1 84.1 84.1 85.6
(0.21) (0.04) (0.04) (12.9) (12.6) (12.5) (11.5)
MEAN 0.84 0.42 0.08 | 784 86.6 82.5 86.3
STD. DEV. 0.11 0.10 0.10 15.2 12.9 13.5 13.0

Table 3.3: Alternative measures for contributions to price discovery. The table reports the
adjustment coefficient ratio (Acs = %), long run impact coefficients (écps and Ecs), Hasbrouck
information shares for the CDS price (lower bound, upper bound, midpoint) and modified information

shares for the CDS price (ISx (CDS)). The values in parentheses are bootstrap standard errors.
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Figure 3.3: Scatter plots of VECM residuals. The four panels show scatter plots of residuals

from the first step VECM estimation for four reference entities. u; are CDS residuals, uz credit spread
residuals. The lines result from a regression of u; on wus.

The estimates of the weight matrix W reported in Table 3.2 are in line with these scatter
plots. The estimate of ws 1, the weight with which an idiosyncratic CDS innovation con-
temporaneously affects the credit spread, tends to be larger than the estimate of wy o, the
weight with which an idiosyncratic credit spread innovation contemporaneously affects the
CDS price. The estimate of wy 2 is in most cases not significantly different from zero. The
relative illiquidity of the corporate bond market thus helps to identify contemporaneous
effects and facilitates the estimation of unique information shares.

For some of the reference entities, the bounds of the Hasbrouck information shares are
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narrow because the contemporaneous correlations of the credit spread and CDS price
residuals are small. In these cases, the estimates of the off-diagonal elements of W are
small and not significantly different from zero, and the ISx estimates are close to the
Hasbrouck information share midpoints. We take it as a sign of robustness that both the
standard identification method and the one proposed in this chapter deliver very similar
results when no ambiguity in terms of wide bounds prevails. Furthermore, the estimation
precision in terms of standard errors is comparable for Hasbrouck and ISy information

shares. Hence, the increase in precision offered by our methodology is unambiguous.

3.5 Concluding Remarks

“Where does price discovery take place?” is one of the key questions in empirical finance.
It is raised when studying the competition for order flow between traditional and alter-
native trading platforms, national and international exchanges, and parallel markets for
traditional and innovative financial instruments. Hasbrouck’s (1995) methodology is the
standard approach to address this research question empirically. He proposes to estimate
the information share for each of the parallel markets on which financial instruments linked
by the law of one price are traded. Information shares result from a variance decomposi-
tion of the innovations of the markets prices’ common stochastic trend which is associated
with the notion of the efficient price of the underlying security.

The competitive edge of Hasbrouck’s information shares over alternative methodologies to
measure contributions to price discovery is widely accepted (see the synopsis by Lehmann
2002). However, most applications suffer from a lack of identification since the contempo-
raneous dependence structure of price innovations across markets cannot be disentangled
without further restrictions. As a solution, Hasbrouck (1995) performs a Cholesky decom-
position of the covariance matrix of the price innovations. Thereby a hierarchical ordering
of markets is assumed that is hardly ever justifiable. In empirical work researchers often
resort to permuting the ordering of the markets, which yields upper and lower bounds of
information shares rather than a unique measure. These bounds can become so wide that
it is impossible to determine even the leading market.

This chapter resolves the problem of undetermined information shares by exploiting the
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informational content of distributional properties of financial prices. We show that differ-
ent dependencies of contemporaneous price innovations in the tails and in the center of
the distributions deliver the necessary information to determine unique information shares.
Such tail dependence can be caused by the design of the trading process which may induce
market specific liquidity effects. Since in most applications of the Hasbrouck methodol-
ogy the market structures are clearly different - this is why alternative trading platforms
emerge in the first place - our methodology presents an appealing solution. Regarding the
pricing of credit risk, it is the relatively higher liquidity of the CDS market compared to
the corporate bond market which sharpens the finding of the informational leadership of
the credit derivatives market during the pre-crisis period.

The relation between market liquidity and contributions to price discovery has recently
been emphasized by Yan and Zivot (2010). Our methodology systematically exploits the
informational content of those market design effects and thereby delivers a unique measure
for a market’s information share. Researchers concerned with quantifying contributions

to price discovery have a new tool to sharpen their conclusions.



3 A Data Driven Approach to Estimate Unique Information Shares 31

Appendix A: Propositions and Proofs

Proposition 1. Denote by 0, = {v, ¥, W} the set of mizture parameters that yields
the density of f(u;6p,) given in Equation (3.6), and by 6, = {a,3,T1,..., Ty} a set of
VECM parameters. Suppose the main diagonal elements of W are all greater than zero,
and that the elements of the diagonal matriz ¥ are distinct. Furthermore, let IS x (0., 6,)
denote the vector of information shares given by Equation (3.5). Then, holding the mixture
probability v fized, there exist n! — 1 further sets of mizture parameters 0, = {~, ¥*, W*}
given by n! — 1 distinct permutations of the columns in W and the corresponding elements

m W,

T = P'OUP (3.12)

W* = WP (3.13)

where P is a permutation matriz of order n. The parametrization 0}, are observationally

equivalent to 6, in that

flug0) = f(ug6r,) . (3.14)

and permute the original vector of information shares according to

ISx (0%,,0,) = ISx (0, 0,) x P . (3.15)

Proof: To prove the first part of Proposition 1 note that the observational equivalence of
two mixture parametrization 6,, = {v, ¥, W} and 6}, = {7, ", W*} entails identity of
the variance covariance matrices Var(u;) = YWW' 4+ (1 — v )WOIW' = yW*W*' 4 (1 —
VW T*W* . Hence, let Q be a matrix, such that W* = WQ, and ¥* be a diagonal

matrix with distinct positive elements. Then f(w;6,,) = f(u;6;,) implies

W, + (1 =) ¥W = WQpL, + (1 - 1) ¥ QW' . (3.16)

Multiplication of 3.16 from the left with W—! and from the right with its transpose and

rearranging terms yields

7L, - QQ) =(1-7)(Q¥Q -v) . (3.17)
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This holds for 0 < v < 1 only if both sides of Equation (3.17) are zero which implies that
¥ =QUQ (3.18)

and

QQ =1, . (3.19)

It follows from Equation (3.19) that Q has to be orthogonal, i.e. Q = Q~!. Hence
Equation (3.18) can be regarded as a spectral decomposition of ¥, where ¥* contains the
eigenvalues of ¥ on its diagonal, and the columns of Q are the corresponding eigenvectors.
As all elements of W are assumed to be distinct, the columns of Q are linearly independent,
unit length vectors. Consequently, all possible solutions for Q are given by Q = PS, where
P is an n-dimensional permutation matrix and S an n-dimensional diagonal matrix, whose
diagonal elements are either 1 or —1. Therefore W* = WPS, which implies that the
columns of W are identified up to multiplication by —1. However, as the main diagonal
elements of W are restricted to be greater than zero, only S = I, is eligible which yields
(3.13). This implies that there exit n! permutations of the columns in W of which n! — 1
yield a matrix W* which is distinct from W. The only permutation matrix that leaves
the ordering of the columns in W unchanged is P = I,,. Regarding Equation (3.18) it
follows that

¥ = PSU*S'P' = PU*P’ . (3.20)

Solving for ¥* yields (3.12). ¥* = P'WP is a diagonal matrix, which results from a
permutation of the diagonal elements of W. This proves the first part of Proposition 1.

To prove (3.15), start from Equation (3.5), which written in detail reads

€W (L, + (1 - 7)w)*5]®

IS x (Om, 0) = EW(OL, + (1 —7)®)W'¢

(3.21)

Since (3.16) holds, 6,, and 6, imply the same covariance matrix of u;, the denominator
in Equation (3.21) is not affected by the permutation of elements in W and ¥ according
to Equations (3.12) and (3.13). Therefore ISx(6},,60,) can differ from ISx(6,,,6,) only
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by their numerators, which relate to each other by

[EW* (71, + (1 =) ®)P)) = [EWP(YI, + (1 — 7)P'®P)0%))
= [¢WPP'EP|@
_ [EIW/22'5](2)P

Thus, ISx(05,,0,)=ISx (0., 0,)P, such that ISx (6},,0,) # ISx(0m,6,) V P # L,. This
leaves n! — 1 distinct permutation matrices P associated with n! — 1 different sets of
mixture parameters which are observationally equivalent, but imply different information

share vectors. Thereby the proposition is proven. [J



3 A Data Driven Approach to Estimate Unique Information Shares 34

Proposition 2. Denote by 0, = {7, ¥, W} the set of mizture parameters that yields
the density of f(u;6y,) given in Equation (3.6), and by 0, = {a,B,T'1,..., T} a set
of VECM parameters. Suppose that the elements of the diagonal matriz W are distinct.

Furthermore, let ISx (0., 6,) denote the vector of information shares given by Equation

(3.5). If it holds for the elements of W that

wi; >0 vV 1
(3.22)
wig > |wil Y F
then there exists only one set of mizture parameters 0 = {7, ¥, W}, given by
7 = l-9
v = Pyl (3.23)
W = We's

that is observationally equivalent to 0, in that f(w;60,,) = f(ug;0p,). Furthermore, the

parametrization 0, implies
ISx (0, 0,) = ISx (0, 0,) - (3.24)
Proof: Let Q be a matrix, such that W = WQ, then it has to hold that
WL, + (1 — 7)W= WQ[(1 — )1, +7P]|Q'W' . (3.25)

By multiplying (3.25) from the left with W~! and from the right with its transpose and

rearranging terms yields

1L - QPQ) =(1-7)(QQ - ¥) . (3.26)

This holds only if both sides of Equation (3.26) are zero, which implies that Q¥Q’ = I,
and that QQ’ = ®. The latter equation gives Q = ¥%5, and using this result for the
first yields ¥ = ¥~ and W = W which shows Equation (3.23). The restrictions in
(3.22) rule out permuting the columns of W and the diagonal elements of ¥. Without
these restrictions W = WP and ¥ = PUP’ with P # I, would yield n!—1 observationally
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equivalent parametrization. Thereby the first part of Proposition 2 is proven.

Since (3.25) holds, the vector ISx (6,,) can only differ from ISx(6,,) by the vectors in the

numerators, but

EWEL + (1 -7)T)?) = [EWEO (1)L, + 98]
= [EW((1 =TT, + 72T )7 (3:27)
= [EWOL, + (1 - 7)®)*)®

As the right hand side of (3.27) is the numerator of IS x (6,,) it follows that ISx(0,,) =

ISx(6,,) which proves the second part of Proposition 2. [J
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4 An Intensity Based Information Share

In this chapter we propose a new measure for contributions to price discovery based on
Russell’s (1999) autoregressive conditional intensity model. While previous studies rely on
equally spaced high frequency data, we use the information conveyed by quote revision in-
tensities to determine a market’s information share. Thereby, we account for the irregular
nature of the data. An empirical application to U.S.listed Canadian stocks supports previ-
ous evidence for the home market leadership in price discovery. Based on a cross sectional

analysis we confirm the positive link between liquidity and contributions to price discovery.

This chapter is based on the article A new approach to estimate unique market information

shares by Kerstin Kehrle and Franziska J. Peter (2010).
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4.1 Introduction

According to Coffee (2002), increasing globalization and improved technology will lead to
a decay in the number of securities exchanges around the world. Small national exchanges
will lose their share in trading to large international exchanges, which provide a more
efficient trading environment. Carpentier et al. (2007) examine this development for the
Canadian stock exchanges with respect to the U.S. markets. They report a rapidly grow-
ing share of U.S. markets in trades of Canadian stocks up to the point where interlisted
stocks are absorbed by the foreign market and delisted on the home market. These devel-
opments foreshadow small national stock exchanges as markets for illiquid stocks that fail
to attract investors on the large markets (see Gaa et al. 2002). Thus, within the context
of international cross-listed stocks, it is of paramount interest to national stock exchanges
that they remain the dominant market with regard to price discovery.” The competition
among smaller national and the large U.S. markets for the leadership in price discovery
has therefore grown immensely and has stirred up an increasing amount of research. The
main contribution of this chapter is summarized as follows. We develop a new informa-
tion share, i.e. a measure for the home and foreign market contributions to the price
discovery process, by applying Russell’s (1999) autoregressive conditional intensity model
(ACI). The bivariate intensity approach accounts for the informational content of time
between consecutive quoted price changes within a market and the timing interdependen-
cies between the price processes on both markets. In contrast to the commonly applied
Hasbrouck (1995) methodology we exploit the irregular occurrence of price changes and
deliver a unique information share rather than lower and upper bounds. In an empirical
application we analyze the price discovery process of Canadian stocks that are traded on
the Toronto Stock Exchange (TSX) and cross-listed on the New York Stock Exchange
(NYSE). Furthermore, we examine potential determinants of information shares in a cross
sectional analysis.

Evidence from previous studies suggests that the main part of price discovery for cross-
listed stocks takes place in the home market. Eun and Sabherwal (2003) examine a sample
of U.S. listed Canadian stocks based on the relative adjustment of prices in a market

to deviations from the equilibrium price. They conclude that the contribution of the

" For a comprehensive study concerned with cross-listings in stock markets see Karolyi (2006).
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U.S. market cannot be neglected, while the home market clearly leads price discovery.
Adjustment coefficients as a measure for price discovery, however, have been criticized,
since they do not account for the contemporaneous correlations and variances of market’s
price innovation (see De Jong 2002, Baillie et al. 2002). The major part of empirical studies
applies Hasbrouck’s (1995) method, who defines the information share as the contribution
of a market’s price innovation to the variance of the efficient underlying price innovations.
Grammig et al. (2005), Hupperets and Menkveld (2002) and Korczak and Phylaktis (2010)
use the Hasbrouck (1995) methodology to estimate the home and foreign market share in
price discovery for U.S. listed stocks from various countries. They conclude that trading
on the home market stock exchanges contributes most to price discovery, while trading on
the NYSE primarily takes place to offset arbitrage opportunities.

The main drawback of the Hasbrouck (1995) approach is that it merely delivers upper
and lower bounds for an information share. The method requires equidistant sampled
quotes and depending on the chosen sampling frequency the information share bounds
can diverge considerably. Consequently, the conclusions concerning the leading market
are rather vague, see Hupperets and Menkveld (2002) and Korczak and Phylaktis (2010).
We revisit the question of how to measure the contribution to price discovery in a multiple
market setting based on the following considerations. First, as it is acknowledged in
the financial markets literature (see e.g. Dufour and Engle 2000, Engle 2000, Engle and
Lunde 2003, Frijns and Schotman 2009), the irregular occurrence of trades and quotes and
the time between consecutive financial market events reveal the dynamics of price responses
to new information in the market. Hence, arbitrary sampling schemes used to obtain
regular spaced data neglect this part of the price dynamics and induce an undesirable loss
of information. Second, as pointed out by Hasbrouck (1995), “...the information share
measures who moves first in the process of price adjustment.” If price discovery is indeed
understood as which market “moves first”, an information share measure that is derived
from an approach that directly embeds the irregular sequence and timing of the price
process seems to be a straightforward consequence. We take this irregularity of the data
into account and derive an information share by modeling the arrival rates (intensities)
of the price processes using Russell’s (1999) ACI model. An intensity roughly gives the

probability of a cumulated quote change within the next instant.
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The dynamics of the intensity functions are driven by innovations that allow for a flexible
interaction and simultaneously affect the conditional intensities on both markets. Since
the arbitrage relation between prices in parallel markets force an immediate incorporation
of new information arising in one market in the second market’s price, we expect market
spill over effects due to the innovations. We argue that the larger the effect of an innova-
tion in one market on the other markets intensity, the more the former contributes to the
price discovery process. Our proposed method therefore uses these cross effects to derive
a new unique measure for contributions to price discovery which does not suffer from an
identification problem inherent in the Hasbrouck (1995) approach. We empirically analyze
the price discovery process of Canadian stocks, which are traded on the TSX and cross-
listed on the NYSE. Our results show a clear leadership of the T'SX in the price discovery
process. With an average information share of 73%, the contribution of the TSX is more
pronounced than indicated by Eun and Sabherwal (2003). Furthermore, we show that the
intensity based information share is able to detect the leading market for the majority of
the sample stocks. We examine potential determinants of a market’s contribution to price
discovery by conducting a cross sectional regression of the intensity based information
share on stock specific factors and liquidity related variables. Our results show that only
liquidity proxies as the relative spread, medium trades and trading volume contribute to
a market’s price determination. This implies that providing an efficient and liquid trading
environment, is of special interest for small national stock exchanges that seek to maintain

their dominance in the price discovery process of cross-listed stocks.

4.2 A New Measuring for Price Discovery in International Stock Mar-

kets
4.2.1 The Autoregressive Conditional Intensity Model

In the empirical application we consider stocks that are simultaneously traded on the TSX
and the NYSE. This section introduces a bivariate autoregressive conditional intensity

(ACT) model that is applied to price events® of a stock listed on both markets. We start

8 We define price events as cumulated absolute midquote changes that we refer to as informative price
events. A detailed description follows in Section 4.2.2.
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by defining the point process {t} 7;1 as the stochastic sequence of price changes on the
market s in calendar time ¢, where s = 1 corresponds to a price event on the T'SX and
s = 2 refers to a price event on the NYSE. The associated counting functions that count
the number of s-type events through ¢ are indexed by N*(t). Pooling and ordering of the
arrival times, tl1 and t? yields a simple point process {¢;}?_; with counting function N ().
We assume that the arrival times are strictly distinct, 0 < t1 < to... < t,. Due to this
assumption the individual point processes are strictly orderly, too. Figure 4.1 gives an
illustration of a pooled point process N(t) consisting of two individual processes N!(¢)

and N2(t).

t t3 th t
TSX L |2 |3 )
Process

2 t2 20
.. (®)
Drocess | | |

Pooled [ | | | s | | Time t

Process T 1 1 1 1 1
t1 to l3 4 ts [FN0)) UN(t)+1

Figure 4.1: Pooled point process illustration. The figure gives an illustration of a simple point
process N(t) that consists of two individual counting processes N'(t) and N?2(t). {tzl}?zll denotes the

arrival times of events on the TSX and {tf ?:21 corresponds to price event times on the NYSE. A time

sequence {¢;};—; containing both event time series is obtained by pooling and ordering the individual event
times. As a consequence, an event occurring on the TSX does not depend only on its own history but is
allowed to depend on the history of the NYSE process, as well, and vice verse.

The internal filtration denoted by 3¢ consists of the complete information path of the
left continuous counting process N(t). The Sy-intensity process that characterizes the
evolution of N*¥(t) is then

1 / !
X'(6:S1) = lim <P[N(E+A) = N*(t) > 0, N (t+ &) = N¥'(¢) = 0[S (4.1)

Vs # ', where s’ = 1,2. Equation (4.1) gives an instantaneous probability of observing
an s-type price event conditional on the information set available at ¢.

Russell’s (1999) ACI model defines the s-type conditional intensity function as,

A (t;51) = At ()¢ (1) (4.2)
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with a baseline intensity function given by A3 = exp(w®) and 1*(t) which captures the dy-
namic structure of the conditional intensity. ¢*(¢) accounts for diurnal patterns which are
common when dealing with high frequency financial data. The 2 x 1 vector, 1, = (Q,Z)Zl, 1/)1-2)’,

is parametrized in terms of a vector autoregressive moving average (VARMA(1,1)) process,

2

;= Z(asgf—l +BY_)yiy (4.3)

s=1

where a° is a 2 x 1 coefficient vector and B is a 2 x 2 autoregressive coefficient matrix.
In order to ensure positivity of A*(¢; 3¢) in Equation (4.2), we define 1*(t) = exp (@fv(t))
y; denotes an indicator variable that takes on the value one if the ith price event of the
pooled process comes from the TSX (s = 1) or the NYSE (s = 2) process and zero
otherwise. Henceforth, we denote an innovation originating in the home market (TSX)
with superscript 1 and the corresponding coefficient vector with a'. The first element of
al (a}) then measures the impact of a TSX innovation on the TSX conditional intensity.
The second element (a3) gives the cross effect of an innovation in the TSX process on
the NYSE conditional intensity. Analogously, we denote NYSE associated shocks with a
superscript 2. Following earlier studies (see Russell 1999, Bauwens and Hautsch 2006, Hall
and Hautsch 2006), we restrict the autoregressive coefficient matrix B to be diagonal.
Then, the diagonal elements of B determine the long run impact of a shock and stationarity
of the process is ensured if the eigenvalues of B (i.e. its diagonal elements) lie inside the
unit circle.

According to Russell (1999) the specification of the innovation in Equation (4.3) is based

on the integrated intensity which is computed by piecewise integration of A*(¢; 3y),

t; tj41
NGt = [ NwSdu= Y [ 2 sd (4.4)
tffl ] t~j

for j denoting all points with ¢5_; < t; <t <t

Using the random time change theorem any non-Poisson process can be transformed into a
standard Poisson process which implies an iid standard exponential distributed integrated
intensity, i.e. A®(¢{_;,t7) ~iid Exp(1) (see Hautsch 2003, Brémaud 1981, Bowsher 2007).

Following Bauwens and Hautsch (2006), we then define the innovation in Equation (4.3)
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as logarithm of an iid exponential variate centered by its unconditional expectation,?

e = —0.5772 —InA*(£5_, &) . (4.5)

i

Hence, an innovation in the ACI model has the interpretation of the deviation between the

f—l’ zs]

realized number of events and the expected number of events within the interval (
This implies that positive values of ¢; indicate an underprediction of arrival rates and
negative values an overprediction.

The model parameters are estimated by the method of maximum likelihood. The log-

likelihood function of the two-dimensional ACI process can be expressed as

2 n
InZ(0) =D > {=A(timr ts) + 45 N (15 S0)} (4.6)

s=1 i=1
with @ = (w® a® B) collecting the parameters of interest for s = 1,2. The first term on
the right hand side of Equation (4.6) corresponds to the s-type intensity integrated over
(ti—1,t;] and the second to the probability of the arrival times in the pooled process. The

log-likelihood can be maximized by standard nonlinear optimization algorithms.

If the model is specified correctly, the resulting s-type residuals, £/ = A®(¢7_;,¢t;), should
be iid unit exponentially distributed. Hence, the dynamic and distributional properties

of the estimated residuals can be evaluated by an overdispersion test suggested by Engle

and Russell (1998). Their test statistic against excess dispersion, /% (02 — 1), follows

2
zs

asymptotically a normal distribution, where 0%, denotes the variance of the s-type residual
series and n® denotes the number of price events in the process s. The amount of autocor-
relation in the residuals not explained by the specified model is assessed by a Ljung-Box
test. However, if the assumption of exponentially distributed innovations is not supported
by the data, we achieve consistent quasi-maximum likelihood estimators of 8 by specifying
only the conditional mean of the innovation distribution (see White 1982, Bollerslev and

Wooldridge 1992).

9 As indicated by Hautsch (2003), the logarithm of an iid exponential variate yields a minimum Gumbel
variate, In A®(t5_,t{), with mean -0.5772 and variance o2 = 7% /6.
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4.2.2 The Data

We empirically examine Canadian stocks traded on the TSX, which are cross-listed on the
NYSE. These cross-listings are particularly well suited for price discovery analysis, since
the trading times of the TSX and NYSE coincidence and the whole trading period can
be examined. Apart from that the large number of Canadian NYSE listed stocks allows
for further cross sectional analysis concerning the determinants of information shares.
In detail we use quote data for 83 Canadian NYSE listed stocks. The NYSE data are
extracted from the Trade and Quote (TAQ) DVDs supplied by the NYSE. Toronto quote
and trade data were taken from the Equity Trades and Quotes data set provided by the
TSX. The sample period covers 62 trading days from 1% of January 2004 to 315! of March
2004. Continuous trading on both exchanges takes place from 9:30am to 4:00pm. Table
4.1 gives the stock ticker and company names.

Following Engle and Russell (1997) and Bauwens and Hautsch (2006), the quote data
were thinned based on a function of price marks. We first compute bid and ask midquotes
and construct cumulative absolute price changes that are retained whenever they exceed
a specific threshold. We set this threshold to 0.025 Canadian Dollars for the TSX returns,
which after accounting for the exchange rate and the minimum tick size corresponds to
0.02 U.S. Dollars for the NYSE return series. The thinning algorithm is applied to reduce
the amount of noise due to microstructure effects that should not be considered as a
movement in the fundamental price. Thereby, we obtain what we refer to as informative
price events.!® The ACI model introduced in the previous section assigns zero probability
to the simultaneous occurrence of two events and therefore quote revisions with the same
time stamp within one market are treated as one. Finally, events with the same time
stamp in both markets are deleted.!! Table 4.2 gives summary statistics for the filtered
data. Across 83 stocks the average daily number of quote revisions is 158 on TSX and
181 on NYSE. Quote revisions on TSX and NYSE occur on average every 4.5 min and 3.5
min, respectively. On the TSX the most frequent stock has a midquote change every 23 s

and the least quoted stock updates its midquotes every 21 min on average. Accordingly,

10 The filtering process is subject to an arbitrary threshold and for robustness checks we conduct all
subsequent analyses for the next higher and next lower thresholds. The results are qualitatively similar
and are available upon request.

1 On average across all sample stocks only 5% of the data are affected by this selection rule.
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TICKER  COoMPANY NAME INDUSTRY
ABX Barrick Gold Gold Mining
ABY Abitibi Consolidated Inc. Paper
AEM Agnico Eagle Mines Ltd. Gold Mining
AGU Agrium Inc. Chemicals (Specialty)
AL Alcan Inc. Metals and Mining
BCE BCE Inc. Foreign Telecom.
BCM Canadian Imp. Bank of Commerce ank
BEI Boardwalk Equities Real Estate Holding
BGM General Motors Corp. Automobllc
BMO Bank of Montreal 1k .
BNN Brascan Corp. Rea Estate Holding
BN Bank of Nova Scotia . Bank
BP Brookfield Properties Corporation Real Estate Holding
BR Broadridge Inc. IT Services and Consulting
BVF Biovail Corp. Pharmaceuticals
cCJ Cameco Corp. Nonfcrrous Metals
CGT CAE Inc. erozpace
CJR Chorus Entertainment Inc. Broadcasting and Entertainment
LS 8elestlca nc. Electronics
NI anadian National Railway ransport
CNQ Canadian Natural Ressources Petroleum (Producing)
CcOoT Cott Corp. Soft Drinks
CP Canadian Pacific Railway Transport
CWG CanWest Global Communications Corp.  Broadcasting and Entertainment
DTC Domtar Corp. Paper
ECA EnCana Corp. Energy
ENB Enbridge Inc. Gas Distribution
ERF Enerplus Resource Fund Exploration and Production
EXEA Extendicare Inc. Health Services_
FDG Fording Canadian Coal Trust Mining (Other Mines)
FFH Fairfax Financial Holdings Ltd. Property and Casualty Insurance
FHR Fairmont Hotels Resorts Inc otcls
ES our Seasons Hotels Inc. go els
G oldcorp Inc. d Minin
GIB CGI Group Inc. Computer Services
GIL Gildan Activewear Inc. Clothing and Accessories
GLG Glamis Golds Ltd. Gold Mining
HBG Hub International Ltd. Insurance
IDR Intrawest C?orp Hotels
IPS IPSCO Inc. Metals and Mining
QW Quebecor World Publishing
ITN Intertan Inc. Electronics .
ITP ntertape Polymer Group Inc. ontainers and Packaging
KFS Kingsway Financial Services Inc. Insurance
KGC Kinross Gold Corp. Gold Mining
LAF Lafarge North America Inc. Construction Materials
MDG Meridian Gold Inc. Gold Mining
MDZ MDS Inc. Medical Equipment
MFC Manulife Financial Corp. Insurance
MGA Magna International Inc. Auto Parts
MHM Masonite International Corp. Building Products
MIM MI Developments Inc. Gambling
MWI Moore Wallace Com utor Services
N Inco Ltd. Metals and Mining
NCX Nova Chemicals Corp. Commodity Chemicals
NRD Noranda Inc. Metals and Mining
NT Nortel Networks Foreign Telecom.
NXY Nexen Inc. Energy
OPY Oppenheimer Holdings Inc. Investment Services
PCZ Petro-Canadian Com. Integrated Oil and Gas
PD Placer, Dome Promous Metals
PD Precision Drilling Corp quipment and Services
PGH Pengrowth Energy Exploratlon and Production
PKZ PetroKa akhstan Inc. ]é troleum
POT Potash é E %emlca
PWI Primewest Energy Trust Energy
RBA Ritchie Bros Auctioneers Industrial Equipment
RCN Radlant Communications Telecommunications
R Rogers Pub {I’III‘E"IL ing Limited Publishing
RY Royal Bank of Canada Bank
RYG Royal Group Technologies Ltd. Building Products
ELF un Life Financial Serv. Insurance
U uncor Energy Petroleum
TAC TransAlta Corp. Conventional Electricity
TD Toronto Dominion Bank
TEU CP Ships L né Maritime
TLM Talisman Energy Energy
TOC Thomson Corp. Informatlon Services
TRA Terra Industries hemicals
TRP TransCanada Corp. nergy
TU Telus Corp. Telecommunlcatlons
VTS Veritas DGC Inc. Energy
Z1 Zarlink Semiconductor Inc Semiconductors

Table 4.1: Sample stocks.

together with the full company name and their industry.

The table shows the ticker symbols of the 83 Canadian sample stocks
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the NYSE duration averages range between 46 s and 20 min.

DESCRIPTIVE | #Q'  #Q* 7t 72

Min 14.43 16.39 22,79  46.31
Q25 73.65 92.67 110.33  91.21

M | 159.79 181.61 263.47 205.45
Q75 | 197.30 237.85 288.65 242.50
Max | 999.89 499.82 1241.81 1217.31

Table 4.2: Descriptive statistics across 83 sample stocks. For TSX the superscript s equals 1
and for NYSE s = 2. The columns labeled #Q° give the average of the number of observations per day.
Columns labeled 7° contain the daily average of transaction durations in seconds. The table displays the
mean (M), the first (Q25) and third quartile (Q75), and the minimum (Min) and maximum (Mazx) of
#Q° and 7° across 83 sample stocks. All statistics are calculated over the sample period from January 1st
to 31st of March 2004.

Several authors (see e.g. Engle and Russell 1997) point out that price durations exhibit
an intraday pattern in the rate of arrival. To account for that we diurnally adjust the
data prior to estimation. Assuming the separability of the time function and stochastic
function in Equation (4.2), the elimination of the time-of-day effects proceeds in two steps.
First, the typical intraday pattern (¢;) is estimated by regressing the transaction durations
(1; = t; — t;—1) of the pooled process on polynomial and trigonometric time functions (see
Eubank and Speckman 1990 and Appendix B1). Second, dividing the durations by their
estimated typical shape gives intraday adjusted durations, i.e. 7, = % Finally, a diurnally

adjusted arrival times series of the pooled process is achieved by setting the first arrival

time of the day to zero and cumulating adjusted durations for each day.

INTRADAILY PATTERN OF DURATIONS (FHR)

1000
Original Data |-
900 ]|~ Fstimated

Durations (in sec.)

9:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00

Time of Day

Figure 4.2: Intraday pattern of durations. The figure shows the transaction durations (Original
Data: black dots) of the pooled process for one of our sample stocks (FHR). As visible from the figure,
transaction durations exhibit a N-shape. The typical intraday pattern is captured by the estimated seasonal
figure (Estimated: solid line).
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Figure 4.2 shows the quote durations on of our sample stocks before removing the intra-
day pattern. As clearly visible from the figure, transaction durations exhibit the typical

N-shape. The intraday pattern is captured by the estimated intraday effects.

4.2.3 Intensity Based Unique Information Shares

In order to measure contributions to price discovery, we draw our attention to the cross
effects of the conditional intensities associated with quote changes on the home and for-
eign market. As prices in both markets refer to the same underlying asset, the law of
one price holds. This implies that informative price events occurring in one market will
subsequently be incorporated into the prices of the other market to offset arbitrage oppor-
tunities. Consequently, surprising quote adjustments in one market trigger price events in
the other market and increase the other market’s conditional intensity. Analogously, the
unexpected absence of price changes in one market reduces the other market’s intensity.
This corresponds to positive cross effects. We propose to use the size of the markets’ cross
effects to measure the relative importance of a market in the price discovery process.

We start by examining the long run impacts of an innovation shock on the conditional
intensities by analyzing the full dynamics of the markets’ interdependencies. For this
purpose, we compute impulse response functions and derive the cumulated effects of a
shock in period i on ); 4 Iterating the ARMA specification in Equation (4.3) h periods

forward yields
$ion = a’elyq +Ba‘el, ,+ ..+ B Patel, + B late) + By,

To isolate the standard deviation shock o. = 1/72/6 in period i, all subsequent shocks
are set to their unconditional mean, E[ef] = 0. Furthermore, the unconditional mean
E [{pl] = 0 is used as a starting value for 1]) The impulse response functions are then

given by,
IR'(h) =B"tals., and  IR%*h) =B'la%s, (4.7)

where ITR' denotes the bivariate impulse response function associated with an innovation
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in the TSX price process and analogously I R? gives the bivariate impulse response function
associated with a shock in the NYSE price process. Summing up the effects in each period

delivers the cumulative impulse response functions,

h h
CIR'(h)=) B 'a's. and CIR*(h)=>» B/ 'a’c. . (4.8)
j=1 j=1
For a stationary process the effects of a shock die out in the long run. Thus, the cumulative
impulse response functions in Equation (4.8) for h — oo converge to a finite vector given
below:

lim CIR' =[1 —-B]'als.  and lim CIR? =[1 — B] ‘a0, . (4.9)

h—o00 h—o00

Figure 4.3 shows cumulated impulse response functions as derived in Equation (4.8) and
their convergence to the terms in equation Equation (4.9) averaged over 73 sample stocks.
The left panel depicts the impact of a standard deviation shock in the TSX intensities
and its impacts on TSX and NYSE processes. Analogously, the right panel illustrates the
impacts of a NYSE standard deviation shock.

TSX shock NYSE shock

MO [—7sx o 1sx il DR I Y ———
~ -~ TSX —> NYSE —— NYSE —> NYSE

0 50 150 250 350 450 0 50 150 250 350 450

Figure 4.3: Cumulated impulse response function of a standard deviation innovation shock.
The figure shows cumulated impulse response functions for the recursive process {Z; in Equation (4.3) av-
eraged across our sample stocks (see Table 4.1). The left panel depicts the impact of a standard deviation
shock on the TSX and its impact on the TSX process (solid line) and on the NYSE (dashed line). Anal-
ogously, the right panel illustrates the impact of a standard deviation shock on the NYSE on the NYSE
process (solid line) and on the TSX (dashed line).

Due to the arbitrage relation between prices in both markets, we find positive spillover
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effects, i.e. positive intensity shocks have significant positive impacts on the other market’s
conditional intensity. More precisely, the other market experiences an increase in the
frequency of quote adjustments which we associate with an information flow into this
market. The extreme case of no cumulated cross impacts would indicate that the market’s
conditional intensity does not react to unexpected events in the other market. As expected,
own market’s shocks, i.e. TSX — TSX and NYSE — NYSE, have larger impacts than
shocks of the other market, i.e. TSX — NYSE and NYSE — TSX. The long run effects of
a TSX shock on the NYSE intensity tend to be larger than the effects of a NYSE shock on
the TSX intensity. These differences in the markets’ reaction might be due to differences
in the market characteristics on the TSX and NYSE and should be accounted for when
comparing effects across markets.

Hence, in order to determine the contributions to price discovery, we focus on the mag-
nitude of cumulated cross effects in either market (CIR} and CIR?) and account for
differences in the markets specific adjustment to intensity shocks. We therefore suggest
to standardize the cumulative cross effects by the cumulative impact of the own market’s
shock. Consequently, g§—2€ denotes the cross effect of a NYSE intensity shock on the

TSX conditional intensity, standardized by the impact of a TSX shock on TSX’s intensity.

CIR}
CIR2

gives the analog ratio for the NYSE. Considering the equations in (4.9), this ratio
straightforward reduces to % for TSX and % for NYSE. Finally, in order to simplify
the interpretation of our measure, we confine the information shares to lie between zero
and one by taking the standardized cross effects of each market relative to the sum of

standardized cross effects:

1 2
) o , of
118" = —— and I15° = —— (4.10)
ay as ar ay
ot o ta

Equation (4.10) gives the unique intensity based information shares, where I1S' denotes
the TSX and I15? the NYSE contribution to price discovery. Standard errors of the I19

can be computed via the delta method.
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4.3 Results and Discussion

As outlined in Section 4.2.1 estimation of the model parameters is done via maximizing
the likelihood function in Equation (4.6). We do not allow previous day shocks to affect
the next day’s intensity, hence, the likelihood function is re-initialized each day and be-
comes the sum of independent day-likelihoods. Table 4.3 contains descriptive statistics for
the estimated ACI coefficients over 73 stocks which have positive a® estimates.'? Stock

specific results can be found in Table 4.7 in Appendix B2.

EstivaTes | M Std Q25 Q75 Min Maz M(SE) #sig
ot -1.285 0.329 -1.499 -1.079 -2.031 -0.169 0.0351 73
o2 20.936 0.286 -1.150 -0.737 -1.630 -0.278 0.0317 73
it 0.116 0.030 0.095 0.131 0.051 0.213 0.0074 73
il 0.052 0.023 0.039 0.062 0.005 0.171 0.0050 72
a2 0.030 0.017 0.020 0.035 0.004 0.132 0.0044 70
a2 0.070 0.031 0.046 0.088 0.020 0.178 0.0051 73
bt 0.927 0.032 0.905 0.947 0.834 0.981 0.0076 73
b2 0.929 0.038 0.905 0.955 0.801 0.993 0.0082 73

Table 4.3: Estimation summary results. The table contains descriptive statistics for the estimated
parameters of the ACI model in equations (4.2) and (4.3). The table displays the mean (M), the standard
deviation (Std), the first (Q25) and third quartile (Q75), and the minimum (Ain) and maximum (Maz)
of the estimated parameters over all sample stocks. M(SE) is the average standard error of the estimates
and #sig gives the number of significant estimates on a 5% significance level over the sample stock. The
descriptive statistics are computed over 73 stocks that have positive a® estimates.

The estimated baseline intensities exhibit small standard errors and are statistically sig-
nificant at the 1% level of confidence. The cross sectional correlation between the ratio of

~1
baseline coefficients exp(@) L and the number of quotes on T'SX relative to the total

’ exp(@T)+exp(@?)
number of quotes on TSX and NYSE is 0.9. Therefore, the baseline function captures very
well the differences in the intensity levels in the two markets.

According to Table 4.3 the short run impacts of TSX innovations on the NYSE process are
on average about twice as large as the effects of NYSE innovations on the TSX intensity.
For 70 stocks the innovation spill over effects from the TSX on NYSE and the effects from
NYSE on TSX are significant at the 5% level. From the duration modeling literature (see

e.g. Engle and Russell 1998), we expect and find strong persistence of innovation shocks

12 The stocks which are excluded according to these criteria are BEI, BR, CJR, FFH, and OPY. BGM and
ITN were excluded prior to estimation due to erroneous data. VTS, EXEA, and LAF do not achieve
proper convergence.
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_ TSX B NYSE
Ticker | &' oa  OD' AC' LB'| & o, OD? AC? LB?
ABX 1.00 1.32 26.93 0.05 22.14 | 1.00 1.17 14.41 0.04 20.40
ABY 1.04 1.46 16.85 0.02 0.87 | 1.02 1.43 1897 0.03  2.11
AEM 1.00 1.40 27.84 0.01 0.67 | 1.02 1.35 26.10 0.03 6.32
AGU 1.01 1.62 41.36 0.02 252 | 1.0l 1.44 28.01 0.03 6.31
AL 1.00 1.38 51.42 0.02 6.85 | 1.00 1.30 43.45 0.04 45.18
BCE 1.00 1.41 21.11 0.03 298 | 1.0l 1.37 23.72 0.03 5.22
BCM | 0.99 1.50 4843 0.0l 2.09 | 1.01 1.54 70.42 0.03 25.14
BMO | 1.00 1.50 42.89 0.04 18.30 | 1.00 1.54 63.86 0.03 12.29
BNN 1.01 1.73 61.05 0.01 0.72 | 1.0l 1.75 85.60 0.05 41.15
BNS 0.99 1.52 39.97 0.01 0.38 | 1.01 1.56 63.06 0.04 26.77
BPO 1.03 1.92 63.40 0.04 6.59 | 1.00 1.58 48.88 0.05 18.12
BVF 1.01 1.54 60.50 0.06 55.63 | 1.01 1.45 47.39 0.07 80.92
cglJ 0.99 1.77 92.18 0.05 32.65 | 1.01 1.73 113.79 0.05 76.00
CGT 1.05 1.50 11.77 -0.02 0.29 | 1.04 1.39 10.25 0.08 591
CLS 1.01 1.46 44.92 0.06 50.52 | 1.00 1.44 42.75 0.06 44.53
CNI 0.99 1.62 71.95 0.04 23.46 | 1.00 1.47 56.05 0.02 8.44
CN 0.98 1.54 59.77 0.03 10.66 | 1.00 1.65 106.15 0.02 14.03
CcO 1.01 1.77 57.50 -0.01 0.47 | 1.02 1.60 50.79 0.03  7.22
CcpP 1.00 172 57.51 -0.01 1.39 | 1.01 1.42 36.68 0.05 25.18
CWG | 1.01 2.27 8399 0.00 0.06 | 1.03 1.90 47.16 0.10 24.96
DTC 1.02 1.59 2859 0.00 0.01 | 1.03 1.42 2292 0.03 2.68
ECA 0.99 1.46 49.55 0.03 16.26 | 1.01 1.30 32.17 0.06 59.40
ENB 1.06 2.07 79.71 0.01 0.17 | 1.01 1.75 84.97 0.00 0.24
ERF 1.01 1.70 0.06 30.93 | 1.02 1.55 53.21 0.06 36.68
FDG 1.01 1.92 11231 0.07 62.91 | 1.01 2.01 151.04 0.07 103.29
FHR 1.02 1.71 56.17 0.02 3.43 | 1.00 1.69 57.72 0.01 0.9
FS 1.01 1.66 80.52 0.06 57.52 | 1.00 1.74 92.32 0.03 12.16
GG 1.02 1.37 27.16 0.05 16.20 | 1.01 1.21 15.37 0.08 61.91
GIB 1.04 1.53 15.16 -0.03 1.04 | 1.02 1.56 20.09 0.04 2.37
GIL 1.02 2.14 9295 0.04 883 | 1.01 2.13 130.89 0.05 25.49
GLG 1.01 1.52 43.99 0.04 12.29 | 1.01 1.37 31.83 0.06 39.80
HBG 1.03 1.94 81.02 0.06 21.74 | 1.01 1.93 61.17 0.08 28.71
IDR 1.01 1.78 56.06 0.03 4.83 | 1.01 1.66 50.42 0.02  2.39
IPS 1.03 1.97 59.37 0.03 2.30 | 1.02 1.90 67.38 0.07 27.57
IQW 1.02 1.82 5523 0.01 0.48 | 1.00 1.55 42.79 0.07 33.52
ITP 1.03 1.91 5296 0.04 4.50 | 1.02 1.98 76.35 0.03 6.53
KFS 1.07 1.97 44.44 0.03 2.33 | 1.02 1.69 42.80 0.04 5.88
KGC 1.04 1.37 16.68 0.04 3.76 | 1.02 1.19 8.62 0.07 16.18
MDG | 1.01 1.49 34.65 0.03 4.34 | 1.01 1.33 25.06 0.03 9.98
MDZ 1.02 1.65 33.02 0.02 0.88 | 1.03 1.58 34.88 0.05 10.18
MFEC 1.00 1.47 36.84 0.04 10.20 | 1.00 1.52 4822 0.02  6.42
MGA | 0.99 1.66 89.45 0.04 28.85 | 1.00 1.48 64.74 0.02 10.84
MHM | 1.00 2.10 83.03 0.00 0.00 | 1.01 1.97 108.71 0.04 17.56
MIM 1.02 1.96 8226 0.03 6.64 | 1.00 1.95 83.27 0.02  4.04
TW 1.03 1.93 70.35 0.08 32.93 | 1.01 1.73 43.38 0.03 4.53

1.00 1.42 57.20 0.04 38.40 | 1.00 1.40 53.39 0.05 51.21
NCX 1.02 1.65 46.38 0.03 3.69 | 1.00 1.49 39.98 0.02  3.52
NRD 0.99 1.48 34.65 0.02 1.76 | 1.00 1.48 41.62 0.03  6.41
NT 0.97 1.09 4.86 0.05 10.53 | 0.97 1.13 6.07 0.01  0.12
NXY 0.99 1.67 67.34 0.02 4.59 | 1.00 1.73 100.08 0.03 18.76
PCZ 0.99 1.60 62.38 0.04 19.34 | 1.02 1.58 75.86 0.04 26.52
PDG 1.01 1.30 25.25 0.04 16.42 | 1.00 1.21 17.58 0.03  8.90
PDS 0.99 1.86 111.20 0.02 4.82 | 1.00 1.55 64.08 0.04 22.69
PGH 1.06 1.92 64.56 0.07 20.22 | 1.05 1.69 51.12 0.07 29.07
PKZ 0.99 2.12 167.71 0.04 24.13 | 1.01 1.73 92.52 0.05 45.61
POT 0.99 1.86 146.13 0.05 68.52 | 0.99 1.67 95.75 0.04 31.37
PWI 1.03 1.59 3814 0.03 5.82 | 1.03 1.49 3248 0.08 37.45
RBA 1.01 2.21 100.67 -0.03 4.50 | 1.01 2.07 97.92 0.08 41.63
RCN 1.00 2.71 188.03 0.00 0.04 | 1.02 2.42 199.52 0.02  8.11
RG 1.00 1.84 59.01 -0.01 0.16 | 1.02 1.55 42.62 0.02 4.52
RY 0.99 1.46 38.76 0.02 4.46 | 1.00 1.43 47.91 0.04 22.19
RYG 0.99 1.95 66.46 0.03 5.55 | 1.02 1.76 59.05 0.07 27.84
SLF 0.99 1.53 44.03 0.03 6.99 | 1.01 1.39 36.96 0.03 9.01
SU 1.00 1.51 46.44 0.02 3.10 | 1.02 1.41 3896 0.05 26.12
TAC 1.10 1.89 36.60 0.00 0.02 | 1.02 1.68 38.47 -0.01  0.43
TD 1.00 1.41 2852 0.02 4.05 | 1.01 1.43 3837 0.02 6.02
TEU 1.03 1.73 4589 0.00 0.00 | 1.01 1.62 47.52 0.04 12.67
TLM 0.99 1.64 70.05 0.00 0.26 | 1.01 1.53 74.69 0.03 21.39
TOC 0.99 1.66 49.05 0.03 6.49 | 1.02 1.54 47.93 0.04 14.63
TRA 1.02 3.07 216.86 0.02 1.86 | 1.06 1.94 56.44 0.07 17.78
TRP 1.01 1.57 31.08 0.04 4.92 | 1.02 1.35 24.52 0.05 18.36
TU 1.01 1.77 58.69 0.02 2.66 | 1.02 1.82 9245 0.01 2.61
ZL 1.04 1.66 22.98 0.04 2.73 | 1.02 1.46 15.41 0.03 1.08

Table 4.4: Residual diagnostics for the ACI model. The table presents residual diagnostics for
the estimated residuals corresponding to TSX (s = 1) and NYSE (s = 2). AC? denotes the value of the
first order autocorrelation and columns labeled with LB?® contain the corresponding Ljung-Box statistic.
&° and 0z contain the mean and the standard deviation of the estimated residuals and OD?® gives the
test statistic of the overdispersion test of Engle and Russell (1998). This statistics has a limiting normal
distribution under the null with a 5% critical value of 1.645. The statistics are computed for 73 stocks that
have positive a® estimates. For full company names see Table 4.1.
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which is reflected by large autoregressive coefficients. Across our sample stocks b' is on
average 0.927 and b? is 0.929. Turning to the test statistics concerning the model specifi-
cation, the results for the Ljung-Box test in Table 4.4 for the first autocorrelation of the
estimated residuals are mixed. For some stocks the null hypothesis of no autocorrelation
cannot be rejected. Furthermore, the table shows that the means of the estimated resid-
uals are on average close to one for both markets. Overall, the results indicate that some
excess dispersion is still present, nevertheless we obtain consistent estimators based on the

quasi maximum likelihood method.

TSX NYSE

DescripTIvE | 118" HIS},, HIS), HIS,.. Adj' | 11S* HIS:,, HIS., HIS.., Adj
M 72.6 394  86.2 62.8 67.6 | 27.4 13.8  60.6 37.2 324
M(SE) 6.2 2.9 1.9 23 26 6.2 1.9 2.9 23 26
Std 17.6 24.1  19.7 20.3 26.0 | 17.6 19.7  24.1 20.3 26.0
Q25 63.2 159  81.3 48.2 50.0 | 15.1 1.0 39.7 20.7 9.2
Q75 84.8 59.5  98.7 78.3 90.6 | 36.2 18.6  83.9 49.8 49.7
Min 17.1 0.0 1.1 0.6 02 1.3 0.0 17.6 88 0.0
Maz 98.7 82.4 100.0 91.2 100.0 | 82.9 98.9 100.0 99.4 99.8

Table 4.5: Intensity based information shares — descriptives. The table presents descriptives
computed over the information shares using an intensity based and the standard Hasbrouck approach in
percent. The descriptives are the mean (M), the standard deviation (Std), the mean of the information
share standard error (M (SE)), the 25% quantile (Q25), the 75% quantile (Q75), the minimum (Min)
and maximum (Max) over the cross sectional information shares. The midpoint and the lower and upper
bounds of Hasbrouck are denoted by HIS; ,,;, HIS},, and HIS,,, respectively. Columns labeled 11S5°
give the unique intensity based information share. For TSX s = 1 and NYSE s = 2. The descriptives are
computed over 73 stocks that have positive a® estimates.

Table 4.5 displays summary results for the unique intensity based information share ac-
cording to Equation (4.10). Stock specific results can be found in Table 4.8 in Appendix
B2. As the Hasbrouck methodology is a well established measure, we also report Has-
brouck information shares. Additionally, we present results for the adjustment coefficient
ratios.

The average home market intensity based information share (I15) amounts to 73%, which
implies a clear leadership of the TSX in the price discovery process. The adjustment
coefficient ratios (Adj) also support the TSX as the leading market and match results of
Eun and Sabherwal (2003), who examine Canadian stock data from a period in 1999. They
conclude that about two thirds of adjustment is done by NYSE prices. The Hasbrouck
information share midpoints (H1S) deliver similar results with an average TSX midpoint

of 63%. Stock specific findings are illustrated in Figure 4.4, which shows the intensity
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based information shares along with their 0.95 confidence bounds and the corresponding
Hasbrouck information shares midpoints with the upper 0.95 confidence interval for the
upper HIS share and the lower 0.95 confidence interval for the lower HI1S share.

On average Hasbrouck information shares differ by 47 percentage points. These results
correspond to previous findings by Korczak and Phylaktis (2010), who examine Candian
data using the Hasbrouck methodology. Note that the Hasbrouck and our intensity ap-
proach model different aspects of the price processes. We therefore do not a priori expect
them to deliver exactly the same results. However, as the Hasbrouck methodology is a well
established measure, we take the qualitatively similar results as evidence that information
can be gained from modeling bivariate intensities. Regarding the extremely wide bounds
of the Hasbrouck information share estimates, the advantage that can be derived from our
unique intensity based information share is straightforward.

Since the HI1S bounds differ by 47 percentage points on average the leading market can
only be determined for 28 out of 73 stocks. For the remaining stocks the H IS bounds do
not allow for any conclusion concerning the importance of the trading venues for the for-
mation of the fundamental price. Using the 15, we are able to answer the question “which
market leads?” for 54 out of 73 stocks. We find 50 stocks for which the TSX significantly
dominates price discovery and in only 4 cases we detect a higher NYSE information share.
These findings emphasize the advantage of the intensity based information share which is a

quite accurate measure to determine a market’s contribution to the price discovery process.

4.4 Cross Sectional Analysis

As visible from the descriptive statistics in Table 4.5 and Figure 4.4, the variation of the
information shares among the sample stocks is considerably high. An interesting task is
therefore to analyze the factors that influence a market’s intensity based information share
by running cross sectional regressions.

For this purpose, we use the TSX information share as dependent variable and perform

1181t
1-I1S?

one. We follow previous studies by Korczak and Phylaktis (2010), Eun and Sabherwal

a logistic transformation, In ( ), to ensure that predicted values lie within zero and

(2003) and Grammig et al. (2005) and select a set of liquidity related variables and firm
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Figure 4.4

information shares (solid circle) and their 0.95 confidence bounds (cross) as well as the Hasbrouck information share midpoints (circle) along with the upper

0.95 confidence interval for the upper HIS share and the lower 0.95 confidence interval for the lower HIS share (vertical dashed lines).
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specific factors.

As liquidity related variables we consider the relative spread (Spread), measured by the
quoted spread on the TSX relative to the spread on the NYSE, and traded volume
(T'szVol) given by the number of shares traded on TSX relative to the total number
of shares traded on TSX and NYSE.

Hasbrouck (1995) classifies trades into volume categories and finds that a relative higher
number of medium size trades are positively correlated with the relative information share.
We compute medium trades MedTrad as the number of the medium shares to total shares
traded on TSX relative to the ratio of the medium shares to total shares traded on NYSE.!3
We also control for firm and sector specific properties. We use sector dummies as explana-
tory variables. Furthermore, we include the number of years a firm has been listed on the
NYSE through 2004 (YearListed) and F'Sale

Additionally, the regression contains the firm size measured by the log of a firm’s market
capitalization, LM ktCap.'*

As Spread, MedT'rad and TszxVol are highly correlated, we include them into the re-
gressions one by one. Thus, regressions (1)-(3) in Table 4.6 control for the firm size and
each contains a proxy for liquidity. Concerning the Spread, the results reveal a negative
and statistically significant coefficient at the 1% level, which implies that a lower relative
spread on the home market is linked to a higher TSX information share. The coefficient
of the relative proportion of medium trades (MedT'rad) and the coefficient for TszVol
are positive and significant on the 1% level. As regressions (4) and (5) show, the firm
specific variables are not statistically significant. We find evidence neither for a relation
between a firm’s size and a market’s information share, nor do the duration of listing on
the NYSE, the proportion of a company’s foreign sales or industry characteristics have
any significant effects. Using the intensity based information share we confirm a positive
link between the relative liquidity on a market and its contribution to price discovery (see
Eun and Sabherwal 2003, Korczak and Phylaktis 2010). As acknowledged by Grammig
et al. (2005), these findings indicate a link between those two variables rather than a
causal relation. Nevertheless we argue that liquidity related variables rather than stock

specific factors determine a market’s dominance and thus suggest it is the market’s design

13 A medium trade is based on a trade category of 2,501-10,000 shares.
4 Market capitalization as reported on 31 December 2003 in the TSX Factbook (2003).
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EXPLANATORY (1) (2) (3) (4) (5)
VARIABLE
Constant 1.120 0.540 -1.175 -1.515 -1.323
(1.767 (2.300) (1.663) (1.629) (1.513)
LMFEtCap 0.574 -0.070 0.283 0.416 0.170
(0.786) (1.133) (0.855) (0.855) (0.808)
Spread -0.925 ***
(0.162)
MedTrad 0.507 ***
(0.139)
TsxVol 2.551 HF* 2.522 HH* 2.643 *H*
(0.412) (0.451) (0.459)
YearListed -0.004 -0.002
(0.003) (0.004)
FSale 0.002 0.004
(0.003) (0.003)
Mining 0.126
(0.312)
Manufacturing -0.075
(0.361)
Transport 0.370
(0.302)
Finance 0.353
(0.313)
Rﬁdj 0.423 0.150 0.432 0.423 0.413

Table 4.6: Cross sectional regression results. The table reports cross sectional OLS estimates. The

115!
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transformation ensures predicted regression values within 0 and 1. The regression includes 73 stocks that
have positive a® estimates. LMktCap is the log market capitalization as reported on 31 December 2003
in the TSX Factbook (2003). Spread denotes the ratio between the percentage spread on the TSX and
percentage spread on the NYSE. MedTrad gives the ratio of proportions of shares traded in Canada and on
the NYSE in medium-sized lots of 2,501to 10,000 shares. T'sxV ol denotes the ratio between trade volume
on the TSX and NYSE denoted in CAD. YearListed denotes the number of years a company has been
listed on the NYSE and F'Sale is the ratio of foreign sales to total sales. The remaining variables are sector
dummies. We classify five industry groups. Mining, Manufacturing, Finance, and Transport/Utility are
dummies corresponding to four of these groups. The fifth industry group serves as benchmark sector and
includes service and retail firms. Ridj give the regression’s adjusted R squared. The numbers in parentheses
below the estimates are standard errors computed from the heteroskedasticity-consistent covariance matrix
following White (1980). *** ** and * indicate the corresponding statistical two-tailed significance at a =
1%, 5%, and 10%, respectively.

dependent variable is the logistic transformation of the TSX information share, In ( ) The logistic
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that matters for price discovery. These results imply that providing an efficient trading
environment and attracting investors in order to increase liquidity, is of special interest
for small national stock exchanges that seek to maintain their dominance in the price

discovery process of cross-listed stocks.

4.5 Concluding Remarks

Investors’ decision to invest and companies’ intention to list their stocks on a stock ex-
change depends on the ability of an exchange to provide a prospering trading environment.
As a result of an increasing globalization and improved technology, small national ex-
changes fear to lose their attractiveness for investors and companies. In particular, within
the context of international cross-listed stocks, it is of paramount concern for a national
stock exchange to remain the dominant market with regard to price discovery.

We propose a new approach to measure the contribution of trading venues to the price dis-
covery process of internationally cross-listed stocks. We use a bivariate intensity approach
as an alternative to the commonly applied vector error correction model in order to take
the irregularity of the data into account. Based on the autoregressive conditional intensity
model of Russell (1999), contributions to price discovery are measured by modeling the
interdependencies of the trading processes in both markets. In contrast to the Hasbrouck
(1995) approach, the new intensity based information shares deliver unique results rather
than upper and lower bounds. Furthermore, we show that the suggested approach provides
a more accurate analysis to determine the leading market in the price discovery process.
In our empirical application we examine Canadian stocks which are listed on the TSX as
well as on the NYSE. We find that despite the concern of the TSX to lose its share in
price discovery to the NYSE, trading on the T'SX still plays the most important role. This
confirms previous results by Korczak and Phylaktis (2010), Eun and Sabherwal (2003), and
Grammig et al. (2005), who also analyze Canadian stocks. We show that the leadership of
the TSX is even more pronounced than indicated by previous studies. The average TSX
information share amounts to 73%.

Concerning potential determinants of a market’s information share, we conduct cross sec-

tional regressions and find as Grammig et al. (2005), Eun and Sabherwal (2003), and
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Korczak and Phylaktis (2010) that liquidity contributes positively to a market’s price
determination. These results imply that providing an efficient trading environment and
attracting investors in order to increase liquidity, is of special interest for small national

stock exchanges that seek to maintain their dominance in the price discovery process.



4 An Intensity Based Information Share 58

Appendix B1: Adjustment of Intraday Effects

In order to diurnally adjust the quote data, we follow Eubank and Speckman (1990) and
regress the quote durations of the pooled process on polynomial and trigonometric time

functions. The regression equation reads for some integers d > 0 and 0 > 0 as follows,

d 6
Ti = Bo + Z Bit] + Z[ﬁ]c cos(jt;) + B sin(jt;)] + & (4.11)
j=1 j=1
where the duration is 7; = t; — t;_1. The number of polynomial and trigonometric terms

are selected by a generalized cross-validation measure defined as,

nRSS
GCV = =2 —d_17 (4.12)

where RSS denotes the residual sum of squares and n the number of observations. In
order to avoid overfitting we restrict in the selection d and d to be smaller than three. To
compute a typical time-of-day function we select the specification of Equation (4.11) that

minimizes the GC'V in Equation (4.12).
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TICKER ‘ ! @? al al a? a2 bt b2
ABX -0.860 -0.678 0.082 0.050 0.029 0.078 0.932  0.909
(0.027) (0.020) (0.015) (0.007) (0.008) (0.011) (0.024) (0.020
ABY -0.952 -0.560 ~ 0.126 ~ 0.055 ~0.048 ~0.084 0.853  0.88
(0.049) (0.056) (0.031) (0.021) (0.015) (0.021) (0.047) (0.050
AEM -0.925 -0.702 ~ 0.110 ~ 0.058 ~ 0.056 ~ 0.100 ~ 0.834  0.85
(0.030) (0.029& (0.016) (0.010) (0.010) (0.013) (0.038) (0.035)
AGU -1.074 -0.909 ~ 0.098 ~ 0.050 0.036 ~ 0.076 ~ 0.916  0.901
(0.053) (0.055) (0.013) (0.009) (0.008) (0.014) (0.017) (0.029)
AL -0.940 -0.738 ~ 0.106 ~0.056 0.032  0.077  0.935 ~ 0.930
(0.019) (0.022) (0.007) (0.006) (0.004) (0.008) (0.008) (0.014)
BCE -1.079 -0.655 ~ 0.177 ~ 0.051 ~ 0.025 ~ 0.060 ~ 0.875 ~ 0.930
(0.035) (0.039) (0.021) (0.009) (0.008) (0.010) (0.025) (0.018
BCM -1.268 -0.737 ~ 0.117 ~ 0.055 0.020 ~ 0.043 ~ 0.915 0.93
(0.031) (0.045) (0.014) (0.010) (0.005) (0.006) (0.016) (0.016)
BEI -0.936  0.011 ~ 0.243 -0.024 0.021  0.044  0.702 ~ 0.976
(0.145) (0.128) (0.202) (0.010) (0.038) (0.016) (0.359) (0.016
BMO -1.378 -0.840 ~ 0.105 0.040 0.015 0.036 0.948  0.96
(0.041) (0.049) (0.014) (0.007) (0.004) (0.006) (0.011) (0.009)
BNN -1.604 -0.998 ~ 0.114 ~ 0.052 0.020 ~ 0.045 ~ 0.943 = 0.948
(0.049) (0.052) (0.010) (0.007) (0.004) (0.007) (0.008) (0.010
BNS -1.435 -0.645  0.133 ~ 0.067  0.024 0.045  0.919  0.91
(0.039) (0.052) (0.017) (0.016) (0.005) (0.007) (0.017) (0.029)
BPO -1.500 -0.752 ~ 0.113 ~0.034 0.025 0.102 0.914  0.889
(0.056) (0.048) (0.020) (0.009) (0.008) (0.011) (0.023) (0.021
BR -2.304 -1.678 ~ 0.079 ~ 0.020 -0.023 ~ 0.095 ~0.987  0.96
(0.067) (0.033) (0.004) (0.004) (0.003) (0.012) (0.001) (0.010)
BVF -1.250 -1.143 ~ 0.081 ~ 0.050  0.035  0.069 ~ 0.976 ~ 0.970
(0.043) (0.051) (0.006) (0.005) (0.005) (0.009) (0.003) (0.005)
ccJ -1.747 °-0.925 ~ 0.107 ~ 0.063  0.016 ~ 0.093 ~ 0.968 ~ 0.924
(0.047) (0.057) (0.010) (0.006) (0.004) (0.009) (0.004) (0.013
CGT -0.658 -0.278 ~ 0.213 ~0.171 ~0.011 ~0.042 0.860 0.83
(0.087) (0.080) (0.042) (0.047) (0.017) (0.021) (0.048) (0.091
CJR -2.135 -1.535  0.101 -0.034 -0.006 0.076  0.897  0.97
(0.076) (0.113) (0.033) (0.006) (0.014) (0.009) (0.049) (0.004)
CLS -1.031 -1.057 ~ 0.091 ~ 0.049 0.032 0.054 0.961  0.966
(0.040) (0.048) (0.009) (0.007) (0.005) (0.009) (0.006) (0.008)
CNI -1.200 -0.833 ~ 0.121 ~ 0.065 0.020 0.080 ~ 0.937 ~ 0.887
(0.033) (0.035) (0.009) (0.007) (0.004) (0.010) (0.007) (0.023)
CNQ -1.552 -0.779 ~ 0.137 ~ 0.062 0.023 ~ 0.071 ~ 0.941 = 0.926
(0.042) (0.061) (0.014) (0.010) (0.003) (0.010) (0.010) (0.020)
CcoT -1.462 -1.039 ~ 0.070 ~ 0.028 0.018 0.052 0.960  0.962
(0.050) (0.047) (0.008) (0.006) (0.005) (0.008) (0.006) (0.007
cP -1.223 -0.774 ~ 0.117 ~ 0.057 ~ 0.025 ~ 0.049 ~ 0.918 ~ 0.92
(0.040) (0.080) (0.014) (0.016) (0.006) (0.016) (0.016) (0.042
CWG -1.291 -1.266  0.054 ~ 0.010 ~ 0.025 0.026 0.937  0.97
(0.075) (0.082) (0.017) (0.005) (0.011) (0.011) (0.024) (0.014)
DTC -1.180 -0.715 ~ 0.095 ~ 0.055 0.034 ~ 0.084  0.918  0.877
(0.054) (0.048) (0.019) (0.015) (0.009) (0.012) (0.025) (0.032
ECA -1.076 -0.871 ~ 0.105 0.051 ~0.032 ~0.040 0.951 ~ 0.96
(0.033) (0.040) (0.009) (0.007) (0.005) (0.006) (0.007) (0.009
ENB -1.825 -0.855 ~ 0.137 ~ 0.059  0.016 ~ 0.057 0.940  0.93
(0.051) (0.051% (0.016) (0.009) (0.005) (0.006) (0.010) (0.010)
ERF -1.584 -1.282  0.087  0.043 0.031 ~ 0.045  0.960 ~ 0.977
(0.050) (0.049) (0.008) (0.004) (0.005) (0.006) (0.003) (0.003)
FDG -1.819 -1.630 ~ 0.093 ~ 0.049 0.022  0.056 0.967  0.970
(0.058) (0.070) (0.009) (0.005) (0.004) (0.008) (0.004) (0.005
FFH -1.317 -1.533 ~ 0.145 ~ 0.015 -0.014 ~ 0.147 ~ 0.948 = 0.91
(0.045) (0.030) (0.006) (0.004) (0.004) (0.008) (0.004) (0.007)
FHR -1.155 -1.118 ~ 0.085 ~ 0.045 0.042 0.091 ~ 0.917 = 0.929
(0.053 (0.053% (0.012) (0.007) (0.007) (0.010) (0.016) (0.012)
FS -1.099 -1.088 ~ 0.090 0.071 ~0.027 ~ 0.159 ~ 0.931 ~ 0.845
(0.040) (0.047) (0.008) (0.006) (0.006) (0.018) (0.010) (0.029)
GG -0.909 -0.771 ~ 0.066 ~0.034 ~0.035 0.046 0.950 ~ 0.970
(0.030) (0.035) (0.009) (0.005) (0.006) (0.008) (0.010) (0.007
GIB -0.954 -0.550 ~ 0.122 ~ 0.052 0.038 ~ 0.054 0.873  0.92
(0.069) (0.085) (0.024) (0.022) (0.015) (0.021) (0.029) (0.044)
GIL -1.825 -1.286  0.141  0.030  0.023 ~ 0.098 ~ 0.925  0.946
(0.060) (0.066) (0.014) (0.006) (0.007) (0.007) (0.009) (0.006)
GLG -1.111 °-0.903 ~ 0.086 ~ 0.060 0.034 ~ 0.072  0.938 = 0.932
(0.041) (0.049) (0.009) (0.008) (0.006) (0.012) (0.011) (0.018
HBG -1.107 -1.520  0.080 ~ 0.041 ~ 0.026 = 0.114 ~ 0.925 ~ 0.90
(0.059) (0.092) (0.007) (0.010) (0.009) (0.033) (0.009) (0.041)
IDR -1.170 -0.968 ~ 0.138 ~ 0.039  0.034  0.104  0.850 ~ 0.905
(0.046) (0.050) (0.014) (0.009) (0.009) (0.011) (0.023) (0.018
IPS -1.380 -1.219  0.112  0.005 0.025 0.059 0.901 = 0.97
(0.081) (0.074) (0.029) (0.007) (0.010) (0.009) (0.040) (0.006)
IQW -1.521 -0.911 ~ 0.115 0.045 0.024  0.039  0.932 ~ 0.952
(0.053) (0.060) (0.015) (0.009) (0.009) (0.011) (0.013) (0.015)

continued |
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TICKER ‘ ol @2 at al a? a2 bt b2
ITP -1.386 -1.039 0.111 0.029 0.016 0.073 0.902 0.932
(0.061) (0.066) (0.012) (0.008) (0.008) (0.009) (0.014) (0.010
KFS -1.48 -0.74 0.12 0.04 0.01 0.071 0.944  0.93
(0.064) (0.058) (0.016) (0.010) (0.007) (0.009) (0.009) (0.010)
KGC -0.78 -0.600 0.138 0.079 0.044 0.09 0.878  0.868
(0.036) (0.033) (0.022) (0.015) (0.013) (0.024) (0.033) (0.051)
MDG -1.06. -0.644 0.114 0.07 0.03 0.107  0.91 0.801
(0.036) (0.028) (0.014) (0.013) (0.008) (0.017) (0.018) (0.057)
MDZ -1.224 -0.766  0.099 0.076 0.013 0.041 0.914  0.877
(0.055) (0.057) (0.016) (0.017) (0.006) (0.009) (0.020) (0.036
MFC -1.08 -0.83 0.134 0.086 0.03 0.11 0.90 0.88
(0.033) (0.038) (0.012) (0.008) (0.006) (0.012) (0.014) (0.019)
MGA -1.216 -0.908 0.116  0.051 0.010  0.097 0.935 0.890
(0.031) (0.041) (0.007) (0.005) (0.003) (0.013) (0.006) (0.025
MHM -2.031 -1.27 0.134 0.02 0.017  0.081 0.935 0.95
(0.070) (0.069) (0.018) (0.006) (0.006) (0.007) (0.012) (0.005)
MIM -1.263 -1.434 0.114 0.050 0.033 0.114 0.903 0.926
(0.073) (0.068) (0.013) (0.008) (0.007) (0.011) (0.017) (0.010)
MWI -1.36 -1.386  0.089  0.055 0.05 0.120  0.961 0.931
(0.082) (0.085) (0.013) (0.011) (0.008) (0.019) (0.007) (0.016)
N -0.89 -0.934 0.097 0.04 0.02 0.061 0.94 0.951
(0.025) (0.033) (0.008) (0.005) (0.004) (0.007) (0.009) (0.009)
NCX -1.137 -0.818 0.098 0.036 0.012 0.065 0.902 0.911
(0.041) (0.043) (0.014) (0.007) (0.006) (0.008) (0.020) (0.017)
NRD -1.21 -0.84 0.141 0.06 0.02 0.03 0.926  0.954
(0.042& (0.063) (0.015) (0.012) (0.006) (0.010) (0.013) (0.018
NT -0.16 -0.48 0.154 0.053 0.13 0.178 0.970  0.96
(0.071) (0.061) (0.017) (0.013) (0.016) (0.018) (0.005) (0.007)
NXY -1.537 -1.03 0.11 0.046  0.02 0.06 0.945  0.947
(0.041) (0.068) (0.009) (0.006) (0.003) (0.008) (0.006) (0.011)
OPY -1.196 -1.552 0.126  0.023 -0.053 0.143 0.934 0.834
(0.097) (0.076) (0.014) (0.021) (0.010) (0.034) (0.009) (0.061
PCZ -1.69 -1.15 0.12 0.06 0.02 0.036 0.96 0.97
(0.047) (0.042) (0.009) (0.006) (0.004) (0.005) (0.003) (0.003
PDG -0.834 -0.710 0.07 0.038 0.054 0.086 0.947  0.94
(0.027) (0.030) (0.008) (0.006) (0.007) (0.015) (0.010) (0.017)
PDS -1.115 -1.041 0.145 0.048 0.024 0.070 0.896 0.931
(0.036) (0.062) (0.012) (0.007) (0.005) (0.011) (0.013) (0.020)
PGH -1.664 -1.27 0.094 0.054 0.03 0.04 0.981 0.984
(0.062) (0.054) (0.009) (0.007) (0.007) (0.010) (0.002) (0.003
PKZ -1.435 -1.341 0.147  0.03 0.05 0.07 0.918  0.95
(0.054) (0.065) (0.010) (0.005) (0.006) (0.009) (0.009) (0.008)
POT -1.02 -1.156  0.131 0.02 0.009 0.13 0.897  0.887
(0.037) (0.036) (0.010) (0.004) (0.004) (0.013) (0.015) (0.020)
PWI -1.499 -1.366 0.084 0.056 0.034 0.040 0.979 0.984
(0.056) (0.053) (0.011) (0.008) (0.009) (0.011) (0.004) (0.004
RBA -2.00 -1.45 0.10 0.02 0.051 0.124  0.95 0.95
(0.083) (0.090) (0.008) (0.005) (0.008) (0.013) (0.004) (0.007)
RCN -1.91 -1.467 0.188  0.031 0.025 0.100 0.899  0.939
(0,068) (0.076) (0.026) (0,006) (0.008) (0.007) (0.014) (0,006)
RG -1.36. -0.84 0.135 0.07 0.037  0.05 0.895  0.907
(0.049) (0.053) (0.014) (0.011) (0.008) (0.007) (0.017) (0.018)
RY -1.339 -0.706 0.118 0.054 0.013 0.033 0.944  0.951
(0.033§ (0.039) (0.014) (0.008) (0.004) (0.005) (0.010) (0.011)
RYG -1.83 -1.401 0.131 0.066  0.04 0.05 0.95 0.964
(0.075) (0.065) (0.017) (0.010) (0.009) (0.010) (0.008) (0.007
SLF -1.176  -0.751 0.127  0.089  0.03 0.066 0.914 0.89
(0.033) (0.036) (0.011) (0.012) (0.005) (0.009) (0.012) (0.024)
SU -1.074 -0.809 0.112 0.064  0.037 0.061 0.939 0.931
(0.035) (0.041) (0.010) (0.008) (0.006) (0.010) (0.010) (0.017
TAC -1.30 -0.484  0.12 0.04 0.031 0.02 0.916  0.95
(0.061) (0.055) (0.026) (0.014) (0.009) (0.006) (0.026) (0.015)
TD -1.18 -0.698 0.120 0.066 0.015 0.046 0.931 0.925
(0.033) (0.050) (0.016) (0.015) (0.005) (0.012) (0.016) (0.031)
TEU -1.357 -0.785  0.13 0.08 0.018  0.06 0.92 0.894
(0.049) (0.064) (0.013) (0.015) (0.007) (0.012) (0.011) (0.031)
TLM -1.358 -0.732 0.128 0.064 0.025 0.070 0.917 0.915
(0.031) (0.051) (0.011) (0.010) (0.004) (0.012) (0.011) (0.025)
TOC -1.364 -0.824 0.13 0.071 0.036  0.04 0.90 0.921
(0.066) (0.060) (0.031) (0.014) (0.007) (0.009) (0.035) (0.024)
TRA -1.50 -1.251 0.051 0.006  0.020 0.079 0.973  0.964
(0.118) (0.082) (0.018) (0.005) (0.009) (0.015) (0.009) (0.009
TRP -1.405 -0.611 0.204  0.07 0.054  0.05 0.894  0.93
(0.051) (0.048) (0.039) (0.016) (0.010) (0.011) (0.033) (0.021)
TU -1.515 -1.075 0.115 0.035 0.004 0.025 0.939 0.971
(0.053) (0.050) (0.014) (0.005) (0.004) (0.003) (0.011) (0.003
ZL -0.83 -0.67 0.111 0.02 0.01 0.02 0.96 0.99
(0.080) (0.063) (0.023) (0.009) (0.009) (0.005) (0.010) (0.004)

Table 4.7: Stock specific estimation results. The table contains estimated parameters of the ACI
model. Standard errors are reported in parentheses. For full company names see Table 4.1
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5 Using Transfer Entropy to Measure Information Flows

Using the concept of transfer entropy we quantify the information flow between the credit
default swap (CDS) and bond market in order to determine their importance in the process
of pricing credit risk. The results show that overall information flows almost to an equal
amount into both directions with a slight informational dominance of the CDS market.
Furthermore, the dynamic relation between market risk and credit risk is examined by
measuring the information transmission between the iTraxx and the VIX. Transfer en-
tropy estimates indicate uni-directional information flow from the VIX to the iTraxx. We
also conduct block bootstraps to allow for statistical inference, an issue that has not been

addressed so far.

This chapter is based on the article Using transfer entropy to measure information flows

from and to the CDS market by Franziska J. Peter (2010).
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5.1 Introduction

Detecting and measuring interactions between different time series has been the subject
of research studies in various areas. In finance the informational link between financial
markets is of particular interest. Yet, there exists only a small range of methods to em-
pirically examine these linkages. The predominant concept is that of Granger causality
(see Granger 1969), which is widely applied to detect causality in the sense of a lead-lag
relationship between time series. However, the conclusions that can be gained from this
method are limited to the mere existence of information flows rather than their quan-
tification. A measure for information transfer between financial markets exists only for
a particular setting of empirical applications: if the prices in different markets refer to
the same underlying asset, price discovery measures such as the Hasbrouck (1995) infor-
mation shares or the adjustment coefficient ratio (see Gonzalo and Granger 1995, Baillie
et al. 2002) can be used to determine informational dominance in a multiple market frame-
work. These methods require a cointegration relationship between the different time series
and only provide a sensible interpretation of the results if cointegration is supported by the
data as well as from an economic point of view. Furthermore, Granger causality and price
discovery measures are based on a Vector Autoregressive (VAR) or Vector Error Correc-
tion Model (VECM) framework, which states a rather restrictive assumptions concerning
the underlying (linear) dynamics.

As an alternative to these standard models we propose to apply the concept of transfer
entropy to measure information flows between different financial time series. Transfer
entropy is a model-free measure which is designed as the Kullback-Leibler distance of
transition probabilities. With very little assumptions this approach allows to quantify
information transfer without being restricted to linear dynamics.

There exist only few studies so far that apply transfer entropy within the context of finan-
cial markets. Kwon and Yang (2008a) analyze the information flow between the S&P 500,
the Dow Jones index and selected individual companies on a daily basis. Baek et al. (2005)
examine the information transfer between groups of NYSE listed stocks to determine mar-
ket sensitive and market leading companies, and Kwon and Yang (2008b) investigate the
strength and direction of information transfer between various stock indices using trans-

fer entropy. The measurement of interactions between the Indian stock and commodity
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market is the subject of a study by Reddy and Sebastin (2009). Finally, Marschinski and
Kantz (2002), who examine the strength of the coupling between Dow Jones and DAX,
propose a modification of the standard measure, the effective transfer entropy. Effective
transfer entropy corrects for the potential upward bias in the standard measure due to
finite sample effects. Still, none of these studies allows for any assessment concerning the
statistical significance of the detected information flows. We fill this gap by conducting
block bootstraps in order to simulate the empirical distribution of the measure and enable
statistical inference concerning the estimation results.

This chapter includes two empirical applications of transfer entropy. First it is used to
examine the information flows between the CDS and bond market, analyzing data on 36
iTraxx Europe companies. Both markets reflect the price of credit risk for the same ref-
erence entity and as outlined in Blanco et al. (2005) assuming cointegration between the
time series seems plausible. Since the data do not support this assumption for several
reference entities, the standard price discovery measure cannot be applied to the whole
sample (see Blanco et al. 2005, Doetz 2007). Transfer entropy does not rely on cointegra-
tion and using this approach we find that overall the information flow from the CDS to
the bond market is slightly larger than vice verse, which is in line with previous findings
(see Blanco et al. 2005, Doetz 2007, Grammig and Peter 2010).

Second, after determining the dominant market for pricing credit risk, further factors that
might influence the CDS market are analyzed by examining the question of causality be-
tween market risk and credit risk. Thereby we follow Figuerola-Ferretti and Paraskevopou-
los (2009) and consider the dynamic relation between iTraxx and VIX. We find that the
transfer entropy estimates for the flow of information from the VIX to the iTraxx are

statistically significant and exceed the information flow from the iTraxx to the VIX.

5.2 The Concept of Transfer Entropy

The concept of transfer entropy is best understood within the context of information
theory. In the era of early telecommunications, where communication was based on morse
code, Hartley (1928) introduced a measure for information based on the logarithm of the

number of all possible symbol sequences that can occur. The general aim was to optimally
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encode messages such that they can be transmitted more quickly. For that purpose it
was necessary to quantify the information that can be gained from a specific sequence of
transmitted symbols.

Consider the following example: When flipping a fair coin, there are two equally likely
outcomes, heads or tails. According to Hartley (1928) the information that can be gained
from flipping a coin once is given by H = log(ofls) = log(2). If the base of the logarithm
is 2, H = log,(2) = 1 and the measurement unit will be bits. Consequently, n flips of the
coin yield n bits of information (H = log(2") = n x logy(2) = n) and we would need n
binary digits to specify the resulting sequence (such as 1 for heads and 0 for tails).

In the case of symbols that are not equally likely, but occur with different probabilities,
pj, the amount of information gained from a specific symbol j is given by log(1/p;). The
average amount (per symbol) of information one can get from such a sequence is defined
as H = Z?:l pjlog(p%_), where n is the number of distinct symbols. This results in the
general formula of Shannon (1948): Assume that J is a discrete variable with probability
distribution p(j), where j labels the different values (or states) that J can take. Then the

Shannon entropy

Hy == " p(j) x log, p(4) (5.1)
j

gives the average number of bits needed to optimally encode independent draws from the
distribution of J. In the following log denotes the base 2 logarithm and the summation
runs over the distinct values of J.1> Shannon’s formula in equation (5.1) is a measure for
uncertainty. The more bits are needed to optimally encode realizations of the process, the
higher is its uncertainty. The largest amount of uncertainty will be given if all values of J
are equally likely, i.e., if J is uniformly distributed and a random draw can produce any
realization of J with the same probability.

The link between uncertainty and information follows from drawing on the Kullback-
Leibler distance (see Kullback and Leibler 1951). It can be used to define the excess
amount of bits needed for encoding when erroneously assuming a probability distribution

q(j) of J different from p(j):

5 This is just a question of units measurement. Base 2 logarithm indicates bits, base 10 gives digits and
the base of the natural logarithm yields nats.
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: Py
Ky =Y p(j) x log 290 (5.2)

- qa(s)
Turning to the bivariate case, let there be two discrete variables I and J with marginal
probability distributions p(i) and p(j) and joint probability pr;(i,j). The mutual infor-
mation of the two processes is given by the reduction in uncertainty compared to the
case where both processes are independent, i.e. where the joint distribution is given by
the product of the marginal distributions, p;; = p(i)p(j). The corresponding Kullback

entropy known as the formula for mutual information is given by

p(i, j)

My = %:p(i,j) x log —oanrs

) (5.3)
where the summation runs over all possible values ¢ and j. Mutual information can detect
any form of statistical dependencies between different variables. However, it is a sym-

metric measure and therefore does not deliver any evidence concerning the dynamics of

information exchange.

Let us switch to a time series context. Here, dynamical structure can be introduced when
transition probabilities are considered (see Schreiber 2000). Be I a stationary Markov
process of order k then it holds for the probability to observe I at time t 4+ 1 in state 4
conditional on the k previous observations that p(iii1|iz, ..., it—k+1) = P(ler1|its vy T—k)-
The average number of bits needed to encode one more time series observation if the

previous values are known is given by

hi(k) = =3 plicr.it”) x log plicrlit?) (5.4)

(k)

where i; /= (i, ..., %—k+1). Turning again to the bivariate case Schreiber (2000) proposes
to measure information flow from process J to process I by quantifying the deviation from
the generalized Markov property p(z’t+1\i£k)) = p(z’t+1\i§k), jt(l)), where [ gives the order of
the assumed Markov process for J. In the case of no information flow from J to I the

transition probabilities of I are not affected by previous observations of .J. Schreiber

(2000) then draws once more on the Kullback-Leibler distance to measure the deviation
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of the bivariate system from this assumption and derives the formula for transfer entropy
as
(l))

(k)
. (k) .( P lt+112 75

Ty_1(k,l) = Zp(ZtJ’_l,Zg ),jg )) x log (|—tkt (5.5)
()

p(iet1liy )

Tj_1 consequently measures the information flow from J to I. As in empirical applications
the transition probabilities have to be estimated from a specific sample, Marschinski and
Kantz (2002) show that this measure is likely to be biased due to small sample effects.

They propose a modification, the effective transfer entropy

ETy (k1) := Ty_i(k,0) — Ty, meqmt(ksl) (5.6)

where T, o .—1(k, 1) indicates the transfer entropy with series J shuffled. This is done by
randomly drawing values from the distribution of J and realigning them to generate a new
time series, which implies that all statistical dependencies between the two series have been
destroyed. T m.q—1(k,1) consequently converges to zero with increasing sample size and
any nonzero value of Tj_ . _1(k,{) is due to small sample effects representing the bias
in the standard entropy measure. Commonly, the data are shuffled several times and the
transfer entropy estimate averaged over the simulations is used to calculate the effective

transfer entropy.

To measure relevant but small scale causal structure and to allow for straight forward
conclusions concerning the dominant direction of information flow, some research studies

use the normalized directionality indexz (NDI). It is given by

ETJ—)I(ka l) B ETI—>J(]€7 l)
ET_1(k, 1) + ET1_;(k, 1)

NDI(L,J) = (5.7)

The index varies between —1 and 1, where negative values imply that the information
flow from I to J dominates and positive values indicate a larger information transfer from

J to I. If the index equals 1 (—1) then there is uni-directional causality from .J to I (I to .J).

In most empirical applications - even if already discrete - the data have to be further

discretized in order to reduce the number of possible states. The difficulties of discretizing
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the data and determining the partitions is generally referred to as the generating parti-
tions problem. There exist different methods for discretization of the data as well as for
estimation of the joint and conditional probabilities in Equation (5.5) (see for instance
Hlavackova-Schindler et al. 2007). In the following applications we will use a simple par-
titioning of the data into three disjoint bins (symbolic encoding), which is motivated by
economic considerations. Joint and conditional probabilities are then approximated by
the observed frequencies.

Furthermore, the choice of the block lengths, [ and k is a crucial point when calculating
transfer entropy measures. Generally, k& and [ have to be large enough to capture the in-
formation flow between two time series. On the one hand finite sample effects will become
more severe when increasing the block length. On the other hand, if k£ in Tj_1(k,{) is too
low then information contained in the past values of I might erroneously be assigned to
come from J. This will not happen if I is independent from itself with a delay of k. Con-
sequently, the dynamics within a single time series have to be considered when choosing
k. According to Reddy and Sebastin (2009) and Fraser and Swinney (1986) the selection
of the appropriate block length can be based on the mutual information. This is done
by calculation of mutual information between a time series and its own series lagged with
delay k as a function of the increasing block length k. The value of k associated with the
first local minimum of this function can be used as the optimal block length. The length

lof Jin Tj_1(k,l) is then commonly set to 1 or [ = k.

5.3 Empirical Applications

5.3.1 Pricing Credit Risk: Information Flows between the CDS market and
the Corporate Bond Market

With the emergence of the CDS market, default risk has become directly tradable in an
over-the-counter (OTC) market. A CDS is a contract between two counterparties which
transfers credit risk from the protection buyer to the protection seller, who is willing to
assume the risk for a pre-specified fee. In case of default of the underlying financial in-
strument the buyer receives a payoff. The CDS price is denoted in basis points and gives

the annualized fee of the notional volume. Credit risk is also determined implicitly by
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the corporate bond market as the difference between risky bond yields and the risk-free
rate. Consequently, as both markets price credit risk, they are linked by an approximate
arbitrage relation (see Duffie 1999, Hull and White 2000a, Hull and White 2000b). The
econometric translation of such a setting is a cointegration relation between credit spread
and CDS price, which means that both series follow one common stochastic trend that ac-
cording to Hasbrouck (1995) can be regarded as the efficient price of credit risk. Hasbrouck
(1995) furthermore proposes a Vector Error Correction Model (VECM) (see Blanco et al.
(2005), Grammig and Peter (2010) and Doetz (2007)) for such multiple market settings.
Decomposing the variance of the efficient price innovations that can be derived from such
a model into contributions from either market delivers the Hasbrouck (1995) information
shares (for details see Chapter 2). However, due to market imperfections such as liquidity
premia which not exactly match maturity dates and cheapest to delivery options in case
of default the arbitrage relation is not perfect. If cointegration is not supported by the
data, application of the Hasbrouck methodology might yield inconclusive results. In ad-
dition, the VECM is a rather restrictive model based on linear dynamics. Therefore we
present the transfer entropy estimates as an alternative approach, which relies on minimal
assumptions and does not require a cointegration relation between both time series.

We use CDS price and credit spread data collected by Doetz (2007).16 The data comprise
36 iTraxx companies and ranges from 21 January 2004 to 31 October 2006. They are
obtained from Bloomberg and Thomson Financial Datastream. Both series are closing
prices. The CDS spreads are midpoints of indicative bid-ask prices for 5-year contracts.
The 5-year bond spread was calculated by interpolation over to bonds with different ma-
turities. The risk-free rate over which the bond spread is calculated is proxied by the swap

rate. Table 5.1 gives information on the 36 reference entities used in this application.

16 We are grateful to N. Doetz for making these data available.
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TICKER COMPANY COUNTRY SECTOR

ALL ALLIANZ GERMANY FINANCIAL
ALT ALTADIS SPAIN CONSUMERS
ARC ARCELOR FRANCE INDUSTRIALS
BAY BAYER GERMANY INDUSTRIALS
BBI Bco BiLBao SPAIN FINANCIAL
BMW BMW GERMANY AuTos

BSA Bco SANTANDER CENTRAL HISPANO SPAIN FINANCIAL
CAR CARREFOUR FRrRANCE CONSUMERS
CAS CASINO GUICHARD-PERRACHON AND CIE  FRANCE CONSUMERS
COM COMMERZBANK GERMANY FINANCIAL
DAI DAIMLERCHRYSLER GERMANY AuTos

DBA DEUTSCHE BANK GERMANY FINANCIAL
DET DEUTSCHE TELEKOM GERMANY TMT

EDP ENERGIAS DE PORTUGAL PorTUGAL ENERGY

ELT ELECTRICITE DE FRANCE FRANCE ENERGY
ENB ENERGIE BADEN WUERTTEMBERG GERMANY ENERGY
END ENDESA SPAIN ENERGY
FOR Forrum OvI FINLAND ENERGY
FRAT FrANCE TELECOM FRANCE TMT

LAF LAFARGE FRANCE INDUSTRIALS
LOU LVMH FRrRANCE CONSUMERS
NAT NATIONAL GRID UK ENERGY
OTE ORGANISATION SOCIETE ANONYME GREECE T™MT

PSA PEUGEOT FRANCE AuTos

REP REPSOL SPAIN ENERGY
RWE RWE GERMANY ENERGY
STG ST GOBAIN FRANCE INDUSTRIALS
TELE TELEFONICA SPAIN TMT

TELI TELECOM ITALIA ITALY TMT

THY THYSSENKRUPP GERMANY INDUSTRIALS
TNOR TELENOR NORwWAY TMT

VAT VATTENFALL SWEDEN ENERGY

VIV VIVENDI FRANCE TMT

VOD VODAFONE UK TMT

VW VW GERMANY AuTos

WOL WOLTERS KLUVER NETHERLANDS TMT

Table 5.1: Reference entities. The table shows the ticker symbols, company names, country and
industry sector of the sample reference entities.



5 Using Transfer Entropy to Measure Information Flows 72

CcDS _ ,.CDS CDS
t = D¢

We calculate first differences of CDS prices r — pi7° and the correspond-

ing credit spreads rfs = ptcs — ptc_sl to ensure stationarity. The observations are then

partitioned into discretized values:

S(t) = 1 for r(t) <=q
S(t) = 2 for ¢1 <r(t) < qo

S(t) = 3 for r(t) >=q

The symbolic encoding above replaces each value in the return series of either market by
its symbol (1,2,3). We choose the 0.05 quantile of either series for ¢; and the 0.95 quantile

for ¢o.17.

The first bin corresponds to extremely large negative changes, the second to
intermediate and the third to extremely large changes in the CDS prices and the credit
spread. This choice is motivated by the leptokurtic distribution of changes in CDS prices
and credit spreads. As can be seen from Figure 5.1 they deviate from a normal distribution
and reveal fat tails and a peaked center. Within the context of price discovery the main
task is to determine which market moves first. Consequently, if a market dominates price
discovery, extreme changes in this market should be incorporated subsequently into the
other market’s prices. The observations in the tails of the leptokurtic return distributions
of CDS prices and bond spreads therefore are of major interest. In addition, since the
time series are likely to contain a considerable amount of noise due to the illiquidity of
the bond market and the over-the-counter trading of both assets, the intermediate bin is
kept rather large. Thereby, we seek to identify extreme changes more clearly. Based on
the conditional mutual information criteria, the block lengths are set to k = [ = 3 for all
reference entities (see Table 5.6 in Appendix C).

Table 5.2 shows results for the calculated effective transfer entropy along with the nor-
malized directionality index (NDI). Standard errors are derived from a block bootstrap

using 150 repetitions and a block length of 9 symbols.'® For all but two reference entities

7 Using the values of the 0.1 quantile and 0.9 quantile as cut-off points does not change the overall results.
When the observations in the second bin are further reduced, however, transfer estimates become mostly
insignificant.

8 The block length is increased to contain 9 symbols as it is well documented that a non-overlapping block
bootstrap with blocks too short destroys too much of the dependence structure and therefore yields a
downward bias of the estimated measure as well as an upward bias in the resulting variance. The block
length was chosen such that the bias is reduced, i.e. the distribution of the simulated transfer entropy
measures is centered around the measure derived from the original data.
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Figure 5.1: Kernel density plots of Allianz CDS and credit spread first differences. The
figure shows kernel density plots of CDS and credit spread first differences for Allianz (solid line) together
with the normal density (dashed line).
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(BMW and VAT) we observe statistically significant bi-directional information flows. For
ten reference entities the information flow from the bond to the CDS market is larger
than vice verse. This is also shown by the positive values of the NDI. Consequently, for
the majority of reference entities, the information flow from the CDS to the bond market
dominates. Again this is mirrored by the average NDI which is negative, indicating larger
transfer entropy estimates for the direction from the CDS to the bond market.

In order to render the results more easily comparable with the standard Hasbrouck infor-
mation shares, we calculate the CDS market effective transfer entropy based share (ET
share) as the information flow from CDS market to the bond market relative to the whole

information flow between the markets:

ET(cDS—cs)
ET SHARE (CDS) = . 5.8
(cDs) Er(cps—cs) + ET(cs—cDs) (58)

Table 5.3 shows the estimated adjustment coefficients and CDS market Hasbrouck infor-
mation share bounds and midpoints for those reference entities for which the data support
a cointegration relation (see Table 5.5 in Appendix C). The standard errors are in paren-
theses and come from a non-parametric bootstrap. The last column shows the ET share
of the CDS market with standard errors from the block bootstrap.

Overall both measures reveal that the contributions of the CDS market are slightly larger
than the bond market contributions. The ET share shows a relative information flow of
59.0 % on average. This result is similar to the Hasbrouck information share midpoint
of 58.0 %. However, there are only 17 reference entities left for which the Johansen tests
indicate a cointegration relation and modeling the data using a VECM seems a plausible
approach. Considering the adjustment coefficients, there are five more reference entities
for an equilibrium relationship seems questionable. The error correction process implies
that prices correct for deviations from the equilibrium price. This notion is not supported
by adjustment coefficients which have the same sign. Furthermore, most of the estimated
coefficients are not statistically significant and the bootstrapped standard errors of the
information share estimates are also rather large. Apart from that, lower and upper in-
formation share bounds diverge considerably in most cases. These findings render the
information share bound midpoint a questionable proxy for the contribution the price dis-

covery process in this application. It is difficult to draw any clear conclusion by considering
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TICKER | ET(CS—CDS) ET(CDS—CS) NDI
ALL 0.050%** 0.081%** -0.242
(0.015) (0.018) (0.160)
ALT 0.038*** 0.038*** -0.007
(0.014) (0.017) (0.301)
ARC 0.023** 0.031** -0.145
(0.014) (0.016) (0.409)
BAY 0.056*** 0.060*** -0.034
(0.014) (0.015) (0.193)
BBI 0.027** 0.025** 0.030
(0.012) (0.014) (0.402)
BMW 0.011 0.019 -
(0.013) (0.014) (0.537)
BSA 0.012%* 0.044*** -0.560
(0.014) (0.015) (0.353)
CAR 0.030%** 0.056** -0.294
(0.015) (0.019) (0.306)
CAS 0.069*** 0.051*** 0.146
(0.015) (0.013) (0.181)
COM 0.036*** 0.034** 0.040
(0.014) (0.013) (0.290)
DAI 0.029*** 0.053*** -0.296
(0.011) (0.015) (0.207)
DBA 0.074%** 0.065** 0.066
(0.020) (0.019) (0.179)
DET 0.090*** 0.091*** -0.009
(0.017) (0.017) (0.151)
EDP 0.045%** 0.035%** 0.132
(0.013) (0.013) (0.245)
ELT 0.119*** 0.080*** 0.199
(0.018) (0.018) (0.135)
ENB 0.036*** 0.066*** -0.292
(0.014) (0.015) (0.180)
END 0.046%** 0.068*** -0.194
(0.013) (0.016) (0.171)
FOR 0.045%*** 0.032*** 0.175
(0.013) (0.013) (0.261)
FRAT 0.063*** 0.083*** -0.135
(0.014) (0.014) (0.141)
LAF 0.015* 0.018** -0.090
(0.013) (0.014) (0.461)
LOU 0.024%** 0.029*** -0.108
(0.012) (0.014) (0.308)

continued
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TICKER | ET(CS—CDS) ET(CDS—CS)  NDI
NAT 0.057%5% 0.017% 0.544
(0.018) (0.013) (0.292)
OTE 0.016%* 0.051%#% -0.529
(0.014) (0.019) (0.275)
PSA 0.051%#% 0.077%4 -0.200
(0.013) (0.017) (0.172)
REP 0.092%#* 0.069%** 0.144
(0.019) (0.016) (0.128)
RWE 0.069*** 0.117%5% -0.258
(0.015) (0.018) (0.137)
sTG 0.066** 0.077%#% -0.075
(0.016) (0.018) (0.161)
TELE 0.056%#* 0.050%** 0.059
(0.013) (0.013) (0.196)
TELI 0.028** 0.026%#* 0.046
(0.013) (0.015) (0.344)
THY 0.059%#* 0.068*** -0.072
(0.016) (0.015) (0.151)
TNOR 0.007* 0.024%* -0.546
(0.013) (0.014) (0.363)
VAT -0.007 0.004 -
(0.010) (0.010) (0.594)
VIV 0.056%#* 0.064*** -0.069
(0.012) (0.016) (0.165)
voD 0.033%* 0.04475% -0.145
(0.014) (0.018) (0.292)
VW 0.032%#* 0067+ -0.346
(0.014) (0.015) (0.236)
e 0.033%* 0.043%#* -0.136
(0.012) (0.015) (0.297)
MEAN | 0.044 0.052 -0.094

Table 5.2: Effective transfer entropy estimates. The table shows effective transfer entropy es-
The last column gives the
normalized directionality index. Negative (positive) values indicate a larger information flow from the
CDS (bond) to the bond (CDS) market. Standard errors derived from a block bootstrap are in parenthe-
sis. ¥ ¥* *FF*F indicate significance at the 10, 5, 1 % significance level.

timates calculated using the mean over shuffled data from 100 repetitions.
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TICKER ApJ. COEFF. HASBROUCK ET SHARE
cs cps | Low cps  UPcps  MID cps | cDs
ALL - - - - - 62.12
(7.36)
ALT -0.014 0.001 78.70 99.00 88.85 50.34
(0.010)  (0.009) (33.41) (28.49) (29.35) (15.52)
ARC -0.007 0.010 30.53 67.07 48.80 57.26
(0.008)  (0.011) (30.22) (22.39) (24.15) (20.39)
BAY -0.055 0.062 4.87 87.62 46.24 51.68
(0.042)  (0.029) (4.42) (13.40) (7.90) (9.16)
BBI - - - - - 48.52
(16.55)

BMW - - - - - -

(26.77)
BSA -0.018 0.000 99.80 99.99 99.90 77.98
(0.010)  (0.001) (13.99) (14.00) (13.93) (17.36)
CAR -0.023 0.006 61.66 72.17 66.92 64.72
(0.015)  (0.006) (28.46) (27.03) (27.62) (13.95)
CAS - - - - - 42.71
(10.28)
coM - - - - - 48.00
(14.89)
DAI 0.007 0.016 1.71 34.23 17.97 64.80
(0.011)  (0.013) (32.99) (21.84) (21.38) (10.54)
DBA - - - - - 46.68
(8.27)
DET - - - - - 50.44
(6.59)
EDP - - - - - 43.42
(12.95)
ELT - - - - - 40.06
- - - - - (6.60)
ENB - - - - - 64.61
(9.81)
END - - - - - 59.69
(8.51)
FOR -0.004 0.020 4.20 9.19 6.70 41.23
(0.011)  (0.010) (22.94) (25.45) (24.00) (13.04)
FRAT - - - - - 56.75
(8.00)
LAF -0.015 0.008 37.40 72.08 54.74 54.52
(0.012)  (0.008) (32.38) (26.62) (28.55) (22.56)
LOU - - - - - 55.40
(14.78)

continued
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TICKER ApJ. COEFF. HASBROUCK ET SHARE
s CDS LOW CDS UP CDS MID CDS | CDS
NAT - - - - - 22.80
(16.11)
OTE -0.011 0.010 38.53 54.13 46.33 76.46
(0.008)  (0.007) (27.78) (27.99) (27.73) (13.47)
PSA -0.009 0.011 19.99 33.56 26.77 59.99
(0.011)  (0.008) (32.74) (32.61) (32.44) (10.23)
REP - - - - - 42.82
(7.11)
RWE - - - - - 62.90
(6.70)
STG - - - - - 53.76
(8.23)
TELE -0.021 -0.002 97.85 98.44 98.15 47.03
(0.006)  (0.005) (8.82) (14.69) (10.87) (13.00)
TELI -0.002 0.006 5.20 69.41 37.31 47.68
(0.009)  (0.011) (31.89) (32.78) (25.26) (19.12)
THY 0.001 0.051 0.05 22.90 11.47 53.58
(0.015)  (0.018) (8.66) (22.87) (13.85) (8.58)
TNOR - - - - - 77.31
(22.02)
VAT -0.018 -0.001 99.62 99.72 99.67 -
(0.008)  (0.003) (21.22) (23.44) (22.21) (31.49)
VIV - - - - - 53.44
(8.24)
VOD -0.008 -0.001 99.32 96.86 98.09 57.27
(0.008)  (0.004) (32.68) (35.63) (33.49) (14.61)
VW -0.015 0.017 19.54 72.34 45.94 67.28
(0.011)  (0.009) (31.11) (31.12) (28.88) (11.79)
WOL -0.120 0.008 91.79 95.23 93.51 56.82
(0.020)  (0.006) (12.89) (11.14) (11.89) (14.85)

MEAN | 4635 6959  57.97 | 59.01

Table 5.3: Information share estimates. The tables shows the CDS market Hasbrouck information
share bounds and midpoints (for details see Section 2) as well as the CDS market effective transfer entropy
relative to the total information flow between the markets in percents. Hasbrouck shares are only calculated
for those reference entities, for which the Johansen cointegration tests support the existence of a equilibrium
price (see Table 5.5 in Appendix C). The transfer share is calculated only for those reference entities for
which at least one of the estimates is statistically significant at the 10% level. Standard errors are in
parentheses and derived from a non-parametric bootstrap for the Hasbrouck estimates and a blockbootstrap
for the effective transfer entropy share.
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Hasbrouck shares. In contrast the ET share standard errors are smaller and the transfer
entropy measure is able to deliver a clearer picture. As it does not rely on a cointegration

relation it is also applicable to all reference entities.'”

5.3.2 The Information Transfer between Market Risk and Credit Risk

Concerning the process of pricing credit risk, there is evidence that the bond market con-
stitutes the less important trading venue when compared to the CDS market. Yet, when
agents price CDS, they need information concerning credit risk, i.e the default probabil-
ity of the underlying reference entity. Some information might be gained from a rating
agencies, but can information concerning credit risk also be extracted from the stock mar-
ket? A theoretical link between stock market and credit risk can be found in the model
by Merton (1974). Empirical studies also document this link. Bystrom (2005) examines
the relation between the iTraxx indexes as a measure for credit risk and the stock price
movements of the underlying entities. He detects a positive correlation between stock
index return volatility and the iTraxx. Furthermore, Longstaff et al. (2007) as well as Pan
and Singleton (2007) find a link between sovereign credit risk and the VIX index, which
constitutes a measure for market risk. Overall, although the relationship between credit
risk and market risk has been the subject of research recently, none of these empirical
studies reaches beyond the point of detecting correlations.

To fill this gap the following section uses the concept of transfer entropy to determine
dynamic link between market risk and credit risk by quantification of the information
transfer between the iTraxx the VIX Index. The VIX is used as proxy for market risk. It
is based on the implied volatilities of S&P 500 index options and measures the expectations
of stock market volatility over the next 30 days.?°

The data comprise daily closing prices of the VIX ranging from 21 January 2004 to 31

19 The ET share was not calculated for VAT and BMW since the estimates in Table 5.2 do not show
significant information flows between the time series.

20 First constructed from the CBOE S&P 100 Index option prices the VIX was introduced in 1993. In
2003 the construction of the VIX was revised and the underlying index is changed the CBOE S&P
500 Index (see Whaley (2008)). As high VIX values are generally associated with a large amount of
volatility as a result of investor uncertainty the VIX is often used as a measure of market risk.
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October 2006 and the corresponding iTraxx Europe 5-year index data.?! Figure 5.2 shows

the time series of VIX and iTraxx over the pre-crisis sampling period.
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Figure 5.2: VIX and iTraxx. The figure shows the VIX and iTraxx time series. The left axis scale
belongs to the iTraxx (dashed line) and is denoted in basis points. The right axis scale measures the VIX
(solid line) given in percent.

Figuerola-Ferretti and Paraskevopoulos (2009), who also examine the dynamic link be-
tween market risk and credit risk. Using time series data before and throughout the
recent crisis they find cointegration between CDS prices and the VIX and estimate price
discovery measures based on a VECM. Yet, economic intuition does not readily provide
an interpretation for a common stochastic trend in market risk and credit risk measures.

We therefore use the concept of transfer entropy to examine information flows. After

21 The iTraxx Europe is a CDS index which is composed of the most liquid 125 CDS referencing European
investment grade credits. The index resulted from a 2004 merger of the two main CDS indices iBoxx
and Trac-c and is traded over-the-counter mostly with 5 years maturity.
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QUANTILES USED FOR ET(VIX—I1TrAXX) ET(ITrAXX—VIX) NDI

Ql Q2

0.05 0.95 0.013* 0.003 0.602
(0.009) (0.009)

0.10 0.90 0.018%* 0.011% 0.261
(0.011) (0.010)

0.15 0.85 0.032%+* 0.012%* 0.463
(0.012) (0.010)

0.20 0.80 0.028++* 0.001 0.901
(0.012) (0.008)

0.25 0.75 0.031%%* 0.003* 0.812
(0.011) (0.009)

0.30 0.70 0.039%+* 0.007+* 0.692
(0.010) (0.008)

0.35 0.65 0.041%%* 0.010% 0.606
(0.011) (0.009)

0.40 0.60 0.050%+* 0.023%* 0.364
(0.013) (0.011)

MEAN 0.031 0.009 0.588

STD. DEV. 0.012 0.007 0.218

Table 5.4: Effective transfer entropy for VIX and iTraxx. The table shows the effective transfer
entropy from VIX to iTraxx series and vice verse as well as the net directional index. All measures are
calculated with the data separated into three bins according to the values associated with the quantiles
given in the first two columns. Bootstrapped standard errors are in parenthesis. * ** *** denote statistical
significance on the 10, 5, 1% level of significance.

computing first differences in both series the observations are selected into three bins (see
Equation 5.8). Effective transfer entropy estimates are then calculated for both directions
according to Equation (5.6). The number of lags included is set to one to reduce finite
sample effects due to the rather short time series. The shuffled value is the mean over 150
repetitions and the standard errors come from a non-overlapping block bootstrap with a
block length of 5 and 200 repetitions. Furthermore, the thresholds for selection into the
three bins are varied to examine the robustness of the results, which due to the large num-
ber of reference entities and time consuming calculation was not possible in the previous
application. The net directional index (NDI) is given by Equation (5.7) and computed so
that positive values denote a net information flow from the VIX to the iTraxx and negative
values a net information flow from the iTraxx to the VIX.

Results are presented in Table 5.4. The information transfer from VIX to iTraxx is signifi-
cant at least at the 10% independent of the different binning. Vice verse, effective transfer
entropy estimates from iTraxx to the VIX are statistically significant at least at the 10%

for only 6 out of the 8 different binning. Averaged over all estimations, the effective trans-
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fer entropy of VIX to iTraxx amounts to 0.031, vice verse the average is 0.009. Generally,
the effective transfer entropy estimate for the flow from VIX to the iTraxx is larger than
the corresponding estimate of the reverse information flow and these results are robust for
different selection of observations into the three bins. This is also reflected in the positive
values of the NDI, which has an average of 0.588. To sum up, these results show that
there exists a dynamic relation between market risk and credit risk, with a predominant
influence of the VIX to the iTraxx. However, as usual causality does not imply that the
VIX itself causes the iTraxx in a sense of generating information concerning credit risk. In
this particular setting, the different market designs should be taken into account, namely
the OTC trading of the iTraxx versus electronic trading of the VIX. The information flow
from VIX to the iTraxx could also imply that both react to other (macro) factors, which
are incorporated into the VIX first, while the non-electronic OTC trading of the iTraxx

might induce a delay of incorporation of information.

5.4 Concluding Remarks

This chapter uses the concept of transfer entropy to examine the information transfer
between financial markets. Transfer entropy as defined by Schreiber (2000) quantifies in-
formation transmission based on the Kullback-Leibler distance. Its main advantages are
that it is non-parametric and accounts for linear as well as nonlinear dynamics. Thereby,
it constitutes an interesting alternative to standard measures such as Granger causality,
which can detect causality, but not quantify the amount of information transfer. In the
particular setting of measuring contributions to price discovery, it also states an appeal-
ing alternative to the standard Hasbrouck measure. In particular, if the data cannot be
modeled within a VECM framework due to the theoretical or empirical lack of a cointe-
gration relation or if the resulting information share bounds are extremely wide, transfer
entropy with its minimal data requirements can be applied to derive results concerning
the dominant direction of information flow. We apply the concept of transfer entropy to
examine the information flows between the CDS and bond market using data on 36 iTraxx
companies. The results show significant information flow into both directions, while the

information transfer from the CDS market to the bond market is slightly higher. These
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results are in line with previous findings concerning the informational dominance of the
CDS market over the bond market.

Furthermore, we examine information transmission between market risk and credit risk
as proxied by the VIX and iTraxx Europe Index. We find that information flows mainly
from the VIX to the iTraxx, which states an interesting result for the evaluation of credit
risk. Finally, the block bootstrap proposed in this chapter allows to conduct inference of

the estimated information flow measures, an issue that has not been addressed so far.
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Appendix C: Additional Tables
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TICKER HO: HO:

AT MOST ONE NONE
ALL 6.297** 9.081***
ALT 0.555 3.969**
ARC 2.295 6.819%**
BAY 2.263 48.859%**
BBI 4.852%* 10.043***
BMW 3.248* 7.319%%*
BSA 2.341 23.458%**
CAR 1.963 11.198***
CAS 3.594* 10.144%***
CcOoM 6.813*** 10.897***
DAI 1.046 4.070%*
DBA 6.050** 12.640***
DET 9.651*** 17.708***
EDP 3.712* 14.102%**
ELT 6.859*** 8.932%**
ENB 4.238%* 20.931%**
END 6.628%** 10.954***
FOR 1.917 8.502%***
FRAT 10.799*** 78.809%**
LAF 1.184 7.252%%*
LOU 10.815%** 22.846%**
NAT 2.880* 6.045%**
OTE 0.428 9.466***
PSA 2.218 5.757**
REP 14.883*** 47.748%**
RWE 4.510** 29.520%**
STG 19.939*** 42.513%**
TELE 1.780 28.305%**
TELI 0.236 2.014
THY 1.587 13.677***
TNOR 3.206* 14.522%**
VAT 2.737 14.252%**
VIV 4.441%* 6.945%***
VOD 1.429 2.736
VW 1.575 4.385**
WOL 0.515 34.092%**

Table 5.5: Johansen cointegration test statistics. The table shows the Johansen trace and max-
imum eigenvalue statistic. *** *** denote rejection of the null hypothesis on the 10, 5, 1% level of
significance.
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TICKER

CS
LOCAL MINIMUM

CDS
LOCAL MINIMUM

=

ALL
ALT
ARC
BAY
BBI
BMW
BSA
CAR
CAS
COM
DAI
DBA
DET
EDP
ELT
ENB
END
FOR
FRAT
LAF
LOU
NAT
OTE
PSA
REP
RWE
STG
TELE
TELI
THY
TNOR
VAT
VIV
VOD
VW
WOL

0.019
0.009
0.005
0.053
0.000
0.006
0.030
0.010
0.008
0.008
0.009
0.027
0.040
0.001
0.041
0.024
0.011
0.002
0.026
0.003
0.006
0.023
0.028
0.021
0.036
0.020
0.007
0.008
0.016
0.015
0.007
0.002
0.011
0.005
0.011
0.005

K
3
3
4
2
3
2
3
2
3
2
3
3
2
2
2
3
5
2
4
2
2
2
1
2
2
2
2
2
3
5
6
5
4
2
3
2

0.078
0.011
0.008
0.054
0.017
0.020
0.001
0.005
0.026
0.007
0.014
0.011
0.060
0.018
0.020
0.006
0.029
0.060
0.058
0.009
0.016
0.010
0.001
0.008
0.027
0.060
0.030
0.019
0.032
0.021
0.008
0.013
0.013
0.023
0.034
0.023

W N WWNDN PR NNNFAE WIUIIN RBR WWFRF&BRO W WWwutwotw N Ot k= NN =

Table 5.6: Optimal block length selection. The table shows the first local minimum of the mutual
information criteria for the optimal block length selection for each series.
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6 Summary and Conclusion

Measuring the contribution of different markets to the price discovery process of a common
asset has been the subject of many research studies in the last decade. In particular the
newly developed derivatives markets have given rise to an increasing number of empirical
studies examining the importance of each trading venue with respect to price discovery.
The information shares developed by Hasbrouck (1995) are the most prevalent measure
that has been applied in numerous empirical analyses. However, this approach suffers
from a lack of identification which often renders it very difficult to draw clear conclusions.
Chapter 3 proposes a data driven approach to resolve the identification problem inherent
in the Hasbrouck (1995) approach. Based on a distributional assumption the contempora-
neous effects of idiosyncratic price innovations can be determined, which results in unique
information shares. The empirical application to the credit default swap and corporate
bond market shows that the credit default swap market leads in price discovery for a set
of European and U.S. reference entities.

The approach presented in Chapter 4 takes a different perspective in order to develop a
new measure for contributions to price discovery. Price discovery is seen as the timing of
informative events and we use a model that accounts for the irregularity of high frequency
quote data. Estimates from a bivariate autoregressive conditional intensity model are used
to develop a new intensity based information share. Applied to a large set of Canadian
cross-listed stocks, it shows that the home market plays a more important role in price
discovery than the foreign (U.S.) market.

Finally, Chapter 5 refrains from any restrictive assumption with respect to the price dis-
covery process across markets, but estimates statistical dependencies between two time
series. It outlines and applies the concept of transfer entropy to measure information
flows from and to the credit default swap market. This non-parametric method relies on
only a few assumptions and is able to capture linear as well as nonlinear information flows
between time series. The empirical application provides evidence for bi-directional infor-
mation transfer between the credit default swap and corporate bond market for a set of
Furopean reference entities, while there is evidence for credit default swap market being
slightly more important with respect to information transfer.

The three new econometric approaches presented in this thesis all seek to answer the same



6 Summary and Conclusion 88

question. However, a general evaluation in the sense of which approach is best, is difficult.
The standard Hasbrouck (1995) information share and the method outlined in Chapter 3
are developed within a theoretical framework that models the efficient price of the common
underlying asset. It requires cointegration between the different price series and defines
contributions to price discovery by the share of a market in the variance of the innova-
tions to the efficient price. If the return series considered show high contemporaneous
correlation, leptokurtic distributions and tail dependence, the mixture normal assumption
outlined in Chapter 3 could be used to deliver a measure that is more accurate than the
standard Hasbrouck (1995) approach. These approaches need equally spaced data. In
the case of irregular high frequency data, the intensity based information share model
brought forward in Chapter 4 is able to capture the information in durations between
price changes, which gets lost when sampling at specific intervals. It also relies on the
idea of arbitrage, i.e. that informative price changes are subsequently incorporated into
the prices in the different markets. However, it does not explicitly require the existence
of a cointegration relation, nor does it make any assumptions concerning the equilibrium
price. In particular, in the case of electronic trading platforms such as limit order books
subsequent incorporation of information in several markets is often a question of a few
seconds. Modeling this specific irregular structure of high frequency data in a multivariate
framework in order to determine the leading market in price discovery therefore offers an
appealing alternative to the standard methods, for which the data are sampled arbitrarily
at a specific interval.

Transfer entropy as outlined in Chapter 5 is an overall less restrictive approach. It is not
based on any assumptions or model, but measures statistical dependencies. One might
argue that it lacks economic appeal, however, its advantage lies in the fact that it is not
restricted to nonlinear dependencies and offers a very general framework to measure in-
formation flows.

The choice of the most suitable method therefore depends on the specific empirical appli-
cation that is considered, the economic framework, availability and structure of the data.
Still, results from all three approaches should be subject to extensive robustness checks.
This requires testing for the existence of cointegration, the choice of sampling intervals,

and the suitability of the distributional assumptions in the case of the unique information
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share model of Chapter 3. The choice of the appropriate thresholds in the data filtering
process of the intensity based information share should be made with care and the desicion
of how to discretize the data necessary to apply the concept of transfer entropy demands
robustness checks. If these requirements are met any of the three methods presented in
this thesis has the capability to provide empirical evidence in order to answer the question

“Where is the market?” in a one security-multiple markets setting.
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