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Deutsche Zusammenfassung der
Dissertation

“Entwurf, Simulation und
Implementierung eines
Fahrzeugfolgesystems mittels
Stereobildverarbeitung”

0.1 Einfiihrung

as Auto der Zukunft wird zunehmend intelligenter. Systeme wie das ABS sind

heute bereits selbstverstindlich. Das elektronische Stabilitiatsprogramm ESP ist
ein weiteres Indiz fiir diesen Trend. Der adaptive Tempomat, der die eigene Geschwin-
digkeit an die Geschwindigkeit des vorausfahrenden Fahrzeugs anpafit, bestitigt den
Trend zu mehr Intelligenz im Auto. Als weitere Stufe werden Assistenzsysteme fiir das
Auto auf den Markt kommen, die den Fahrer immer mehr von seinen Fahraufgaben
entlasten. Solche Systeme arbeiten unter anderem mit Kamerasensorik.

Die Dissertation beschéftigt sich mit dem Bildverstehen von Straflenszenen, die auf
Sensordaten eines Stereo-Kamerasystems basieren. Die Hauptanwendung zielt auf ein
autonomes Fahren im Stop-and-go-Verkehr ab. Im Rahmen der Dissertation wird eine
Situationsanalyse der Straflenszene fiir ein Fahrzeugfolge-Szenario vorgenommen, um
Daten fiir die Langs- und Querfithrung des Fahrzeugs zu gewinnen.

Die vorgestellten Algorithmen nutzen die Sensordaten des Stereo-Kamerasystems,
kénnen aber auch fiir andere Sensoren adaptiert werden, die Entfernungsinformation
liefern.

0.2 Das Fahrzeugfolgesystem

0.2.1 Grundprinzip

Die Fahraufgabe im Stop-and-go-Verkehr besteht hauptsichlich aus dem Folgen eines
vorausfahrenden Fahrzeugs. Diese Aufgabe 148t sich durch Vermessung des Abstands
und des seitlichen Versatzes des vorausfahrenden Fahrzeugs automatisieren. Dieses

XV



xvi DEUTSCHE ZUSAMMENFASSUNG DER DISSERTATION

Kopplungsprinzip wird auch elektronische Deichsel genannt. Das Verhalten des au-
tonomen Fahrzeugs ist dem eines Anhingers sehr dhnlich. Das Ansteuern von Gas
und Bremse (Léngsfiihrung) wird dabei so vorgenommen, daf} ein Sicherheitsabstand
zum vorausfahrenden Fahrzeug eingehalten wird. Das Lenkrad (Querfithrung) wird so
angesteuert, daBl man immer auf die aktuelle Position des vorausfahrenden Fahrzeugs
zufahrt. Im folgenden wird das vorausfahrende Fahrzeug Fiihrungsfahrzeug genannt,
da es das autonome Fahrzeug fiihrt.

0.2.2 Der Kamerasensor

Als Sensor fiir die Umgebungserfassung sind zwei Kameras am Riickspiegel im Wagenin-
neren montiert, die nach vorne gerichtet die Verkehrsszene erfassen. Bei den parallel
angeordneten, kalibrierten Kameras werden signifikante Punkte im linken Bild mit
dem rechten Bild korreliert und so korrespondierende Punkte gefunden. Deren Entfer-
nung kann durch Triangulation bestimmt werden. Ergebnis dieser Korrespondenzsuche
ist eine 3D-Punktwolke. Nimmt man weiterhin eine konstante Orientierung zwischen
Kamera und Strafle an, kann man zu allen bestimmten 3D-Punkten die Position relativ
zur Strafle bestimmen, wobei alle Punkte iiber der Strafle Objekten zugeordnet werden.
Durch Zusammenfassung mehrerer beieinander liegender 3D-Punkte zu einem Cluster
kénnen Roh-Objekte gebildet werden. Durch Verfolgen und Wiederfinden in darauf
folgenden Bildpaaren entstehen Objekte.

Das Objekt, das bei gleichbleibendem Lenkradeinschlag als erstes in der Spur des
eigenen Fahrzeugs ist, stellt ein potentielles Fiihrungsfahrzeug dar. Der Fahrer muf
das System explizit einschalten, bevor das Fahrzeug dem Objekt automatisch folgt.
Der automatische Fahrmodus wird beendet, wenn das Fiihrungsfahrzeug aus dem Er-
fassungsbereich verschwindet. Aus Sicherheitsgriinden kann man jederzeit das System
abschalten und manuell weiterfahren.

0.2.3 Regelung und Fahrzeugaufbau

Die von der Bildverarbeitung ermittelten Mefidaten des vorausfahrenden Fahrzeugs
werden iliber Regelalgorithmen zu Stellgréfien fiir die Aktuatoren umgewandelt, die
Gas, Bremse und Lenkrad elektronisch ansteuern.

Die Bildverarbeitungs- und Regelalgorithmen laufen auf reguliren PCs, die im Kof-
ferraum des Versuchstragers untergebracht sind und Schnittstellen zu den Aktuatoren
haben. Die Bilddaten werden iiber einen Framegrabber in den PC eingelesen.

0.3 Analyse des Systems

0.3.1 Probleme beim Standard-Fahrzeugfolgen
Das Deichselprinzip hat im reguliren Verkehr folgende Nachteile:

e Beim oben beschriebenen Fahrzeugfolgen weicht das autonome Fahrzeug von der
Trajektorie des vorausfahrenden Fahrzeugs ab, wenn man in eine Kurve einlenkt.



0.4. ERWEITERUNGEN DES SYSTEMS xvil

Die Kurve wird geschnitten. Fiir beliebige Trajektorien des vorausfahrenden
Fahrzeugs treten meistens Abweichungen auf. Diese nehmen mit zunehmendem
Abstand zum vorausfahrenden Fahrzeug zu. Der Mindestabstand zum voraus-
fahrenden Fahrzeug ist jedoch gesetzlich geregelt und begrenzt die Genauigkeit
dieser Methode.

e Sobald die vorhandene Sensorik im Auto keine Rundumsicht gewéhrleistet, kann
das Fahrzeug nicht vollautonom fahren. Die begrenzte Umgebungserfassung
fiihrt in scharfen Kurven dazu, dal der Erfassungsbereich verlassen wird und
das Fiihrungsfahrzeug “verloren” geht. Auch potentielle Hindernisse liegen oft
auflerhalb des Erfassungsbereichs.

e Beim Folgen der Trajektorie eines Fiihrungsfahrzeugs im Sicherheitsabstand kon-
nen jederzeit andere Verkehrsteilnehmer in die geplante Trajektorie eindringen.
Dies kann bei Systemen, die gegeniiber solchen Hindernissen blind sind, zu Unfil-
len fiithren.

0.3.2 Losungsansatze

Oben beschriebene Probleme kénnen durch neu entworfene Algorithmen behoben wer-
den. Im einzelnen wurden folgende Algorithmen konzipiert:

e Das Kurvenschneiden kann vermieden werden (siehe Abschnitt 0.4.1), wenn der
abgefahrene Pfad des vorausfahrenden Fahrzeugs rekonstruiert wird. Dazu ist
auch eine Eigenpositionsbestimmung notwendig (siehe Abschnitt 0.4.2).

o Bei Verlassen des Erfassungsbereichs ist es moglich, die Trajektorie oder die Posi-
tion von Hindernissen in einem unbewegten Koordinatensystem zu extrapolieren
(siche Abschnitt 0.4.3).

e Durch Beriicksichtigung aller Hindernisse in der Szene wird die Trajektorie des
vorausfahrenden Fahrzeugs modifiziert. Dabei wird die Trajektorie als elasti-
sches Band behandelt, das von Hindernissen abgestofien wird und eine gewisse
Steifigkeit besitzt, um glatte Trajektorien zu erzeugen (siehe Abschnitt 0.4.4).

0.4 Erweiterungen des Systems

0.4.1 Pfadbasiertes Fahrzeugfolgen - der CUT-Algorithmus

Durch Ausnutzung der Historie der 3D-Messungen des vorausfahrenden Fahrzeugs kann
man die Trajektorie des Fiihrungsfahrzeugs rekonstruieren. Dazu mufl zuerst eine
Eigenpositionsbestimmung in einem unbewegten Koordinatensystem erfolgen.

Eine schnelle Eigenpositionsbestimmung kann durch Aufintegration der Daten des
Geschwindigkeitssensors und des Lenkwinkelsensors iiber die Zeit erfolgen. Unter der
Annahme eines stationidren Lenkverhaltens, einer flachen Fahrbahn und vernachléssig-
baren Seitenwinds kann man iiber ein Fahrzeugmodell die Orientierung und Position
des Fahrzeugs im unbewegten Koordinatensystem bestimmen.
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Mit dieser Information kann man zu jedem Zeitpunkt die Positionsdaten des vo-
rausfahrenden Fahrzeugs im unbewegten Koordinatensystem bestimmen. Durch Riick-
transformation ins Fahrzeug-Koordinatensystem steht die gesamte Trajektorie zur Ver-
fiigung.

Von dieser Trajektorie wird ein Punkt in bestimmter Entfernung ausgewihlt, auf
den mit dem Deichselprinzip zugefahren wird. Je nach Vorausschau wird dabei wei-
terhin die Kurve geschnitten, aber wenn die Vorausschau die halbe Entfernung zum
Fithrungsfahrzeug ist, reduziert sich das Kurvenschneiden bereits auf ein Viertel. Mit
diesem Ansatz wird der Trajektorie des Fiihrungsfahrzeugs gefolgt anstatt direkt dem
Fiihrungsfahrzeug. Dieses Verhalten liefert den Namen des Algorithmus: CUT -
Control Using Trajectory.

0.4.2 Eigenpositionsbestimmung

Die oben beschriebene Eigenpositionsbestimmung durch Integration der Eigenbewe-
gung hat mehrere Fehlerquellen:

e Die Annahme eines stationdren Lenkverhaltens, einer flachen Fahrbahn und ver-
nachlissigbaren Seitenwinds treffen offensichtlich nicht immer zu.

e Bei niedrigen Geschwindigkeiten liefert der Geschwindigkeitssensor falsche Werte
(Diskretisierung der Raddrehzahlmessung).

e Der Lenkwinkelsensor liefert baubedingt Offsets des Lenkwinkels, die aufinte-
griert zu erheblichen Positionsfehlern fiihren.

Durch Ausnutzung von Bilddaten kann man diese Eigenpositionsbestimmung unter-
stiitzen. Dazu werden vertikale Landmarken und gerade Linien benutzt, soweit sie
im Kamerabild gefunden werden konnen. Vertikale Landmarken sind Leitpfosten,
Verkehrsampeln, Baume oder Verkehrszeichen, die &hnliche Signaturen im Entfer-
nungsbild haben. Diese werden als stationir angenommen, und iiber Verfolgung der
Landmarken iiber mehrere Bilder hinweg wird die Eigenbewegung geschitzt. Dasselbe
Vorgehen kann unter Beobachtung von geraden Linien entlang der Strale gewahlt wer-
den, wozu sich beispielsweise oft Spurmarkierungen eignen. Die Bewegungsschitzungen
mit Bilddaten und Bewegungssensoren werden iiber ein Kalman-Filter fusioniert, das
die Fehler der Schitzung unter der Annahme von Gauflschem Rauschen minimiert.
Das Kalman-Filter schéitzt Eigenposition und Ausrichtung des Fahrzeugs im ruhenden
Koordinatensystem. Lenkwinkel und Geschwindigkeit gehen als Parameter in das Sy-
stemmodell ein. Die Positionen stationirer Landmarken bzw. die Geradenparameter
der Spurmarkierungen werden als Messungen behandelt und tragen zur Korrektur der
pradizierten Position bei.

0.4.3 Kartographierung

Wenn man eine erfolgreiche Eigenpositionsbestimmung vorgenommen hat, kann man
alle 3D-Punkte in das unbewegte Koordinatensystem eintragen. Als néchsten Schritt
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nimmt man auf dieser Basis eine Clusterung vor, bei der auch 3D-Punkte aus ver-
gangenen Zeitpunkten beriicksichtigt werden kénnen. Damit kann eine Extrapolation
stationarer Hindernisse vorgenommen werden.

Bei bewegten Hindernissen miissen die alten 3D-Punkte moglichst schnell geldscht
werden, da sonst diese Objekte einen “Schweif” von vergangenen 3D-Punkten hinter
sich herziehen.

0.4.4 Kollisionsvermeidung

Bisher wurde zur Fiihrung des Fahrzeugs nur der Pfad des Fiihrungsfahrzeugs genutzt.
Das reicht nicht aus in Situationen, bei denen ein Hindernis in den Pfad zwischen
Fiihrungsfahrzeug und eigenem Fahrzeug hineinragt. Um alle Hindernisse in der Umge-
bung zu beriicksichtigen, wird der Pfad des Fiihrungsfahrzeugs modifiziert, indem er
als elastisches Band behandelt wird. Dabei werden Anfangs- und Endpunkt festge-
halten. Hindernisse in der Umgebung des elastischen Bands iiben abstoBende Kréifte
auf das Band aus. Diese Krifte werden durch Modellierung der Hindernisse als Poten-
tialberge und durch Bildung des Gradienten entlang des Potentials berechnet. Auch
Fahrbahnspuren werden als virtuelle Hindernisse modelliert. Innerhalb des Bandes,
das als Teilchenkette mit Federn dazwischen modelliert wird, sorgen die Federkrafte fiir
einen glatten Verlauf des Bandes. Eine Restriktionskraft stellt sicher, daf} die Teilchen
sich nicht entlang des elastischen Bandes bewegen. Die Federkrifte bekommen eine
Ruhelage, die sicherstellt, dafl in Abwesenheit von Hindernissen weiterhin dem Pfad
des Fiithrungsfahrzeugs gefolgt wird.

Diese Krafte werden iterativ berechnet, bis sich ein Kréftegleichgewicht einstellt.
Das Versuchsfahrzeug fihrt den daraus resultierenden Pfad ab. Mit diesem Ansatz
kann auch ein autonomes Fahren ohne Fiihrungsfahrzeug implementiert werden, indem
man den Zielpunkt des elastischen Bandes dem Hindernispotentialfeld frei aussetzt.
Falls sich Hindernisse unausweichlich in den Weg zum Fiihrungsfahrzeug stellen, wird
durch Bremsen eine Kollision vermieden. Danach mufl der Fahrer wieder das System
aktivieren, um in den automatischen Fahrmodus zu gelangen.

Das natiirliche Fahrverhalten eines typischen Fahrers dient als Anhaltspunkt fiir
die Wahl der Hindernispotentialform. Diese ist sowohl von der Position als auch von
der Geschwindigkeit des Hindernisses beziiglich des eigenen Fahrzeugs abhingig.

0.5 Simulation

Um die Wirksamkeit der im letzten Abschnitt vorgestellten Algorithmen zu tiberpriifen,
wurden Simulationen durchgefiihrt. Die Bildverarbeitung, die Fahrzeugsensoren oder
das Fahrzeug selbst kénnen getrennt simuliert werden. Des weiteren konnen simulierte
Hindernisse im Versuchsfahrzeug genutzt werden, um die Algorithmen unabhéngig von
der Bildverarbeitung zu testen.
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0.6 Ergebnisse

0.6.1 Ergebnisse fur das Trajektorienfolgen

Beim Einlenken in eine Kurve wurde das Kurvenschneiden bei hochdynamischen Fahr-
mandévern von 1.2m auf 0.5m reduziert. Bei zahlreichen Testfahrten konnten Verbes-
serungen des Fahrzeugfolgeverhaltens in allen Situationen erreicht werden.

Die Prazision des Fahrzeugfolgens ist durch die MeBgenauigkeit der Bildverar-
beitung und durch die Tragheit des Lenkaktuators begrenzt. Des weiteren sind Tief-
paBfilter implementiert, die die Prizision des Systems zugunsten des Fahrkomforts
reduzieren. Durch Einsatz eines TiefpaSfilters werden plotzliche Anderungen des Lenk-
winkels gefiltert.

0.6.2 Ergebnisse der Eigenpositionsbestimmung

Insbesondere bei Langsamfahrten wurden, im Vergleich zu der puren Integration der
Bewegungsparameter, erhebliche Verbesserungen in der Eigenpositionsbestimmung er-
reicht. In Simulationen wurde eine Eigenpositionsbestimmung auf 15¢m genau vorge-
nommen bei einer Fahrstrecke von 50m und unter Annahme von stark verrauschten
Sensordaten. Hierbei wurden sechs Landmarken beobachtet. Die Genauigkeit der Po-
sitionsbestimmung steigt mit der Anzahl der beobachteten Landmarken.

0.6.3 Ergebnisse der Kollisionsvermeidung

Viele dynamische Szenarien wurden nachgestellt, um den Algorithmus sicher zu testen.
In allen Féllen wurde dem Hindernis erfolgreich ausgewichen, selbst wenn Abweichun-
gen von der Trajektorie des Fiihrungsfahrzeugs von bis zu 1m notwendig waren. In
Szenen ohne zusitzliche Hindernisse folgt das System weiterhin der Trajektorie des
Fiihrungsfahrzeugs.

Alle Algorithmen wurden erfolgreich im Versuchsfahrzeug erprobt und laufen in
Echtzeit. Trotz des iterativen Verfahrens zur Kollisionsvermeidung liegen die Rechen-
zeiten pro Zyklus selbst im ungiinstigsten Fall unter 50ms.

0.7 Schluf3folgerungen

Mit oben beschriebenen Algorithmen kann die Prizision beim Fahrzeugfolgen erheb-
lich erhéht werden. Dariiber hinaus gewinnt das System an Sicherheit, da auf alle
erkannten Hindernisse reagiert und gegebenenfalls ausgewichen wird. Durch einen be-
grenzten Erfassungsbereich und durch unumfahrbare Hindernisse ist unter Umstanden
eine manuelle Ubernahme notwendig. Solche Situationen erkennt das System selbst
und warnt den Fahrer.



Abstract

T he motor vehicle of the future is equipped with an increasing number of intelligent
systems. Anti-lock brakes (ABS) are considered standard today. The electronic
stability program (ESP) system underlines the tendency towards more intelligence in
the car. Further steps include driver assistance systems that facilitate driving by taking
over parts of the driving task. For that purpose, the environment around the vehicle
is perceived with appropriate sensors, such as cameras.

This dissertation focuses on the image analysis of traffic scenes using a stereo camera
system as the main sensor. Its main application is autonomous driving in stop-and-go
traffic. This thesis considers situation assessment, planning, and decision. In order
to extract symbolic data from the camera data flow, it is necessary to develop some
additional algorithms in addition to the well established image processing algorithms.
The resulting data are used by control algorithms to send commands to the actuators
for longitudinal and lateral vehicle guidance.

The thesis is divided into three parts. First, an algorithm is developed that al-
lows the autonomous vehicle to exactly follow the path of a preceding vehicle. For
this purpose, the paths of the autonomous vehicle and of the preceding vehicle are
reconstructed in an inertial reference frame. Second, for the temporal integration of
the acquired traffic scene data, a global map of the vehicle’s environment is built.
This map is the basis for the planning and decision stages that ultimately generate
the data for longitudinal and lateral control. This necessitates a self-localization in an
inertial reference frame. A Kalman filter fusing motion parameters of the vehicle and
measurements of stationary objects from the cameras is employed. Third, the control
commands which are issued to the actuators must guarantee a collision-free path. This
collision avoidance capability is obtained using the notion of an elastic band for the
path between the autonomous and the preceding vehicle. The elastic band is deformed
by obstacles in its vicinity that exert forces on the band and consequently deform it.
As a result, either a collision-free path is obtained or, in case of infeasible situations, a
warning to the driver is issued who must take over the control of the vehicle manually.

In this dissertation, design, simulation, and implementation of the above mentioned
algorithms are presented as well as results obtained under regular traffic conditions with
a research vehicle.

xx1



xxii Abstract



Chapter 1
Introduction

his chapter gives an introduction to the dissertation. Important terms used
throughout the thesis are defined.

1.1 Motivation

For a lot of people, driving is fun. However, it is also a tiring and dangerous task at
times. Although driving is considered simple and boring most of the time, drivers have
to be attentive all the time. They must always be prepared to react in a timely manner
to changes in the environment.

Doing the right thing at the right time while driving is not always easy. Humans
have limitations or even deficiencies when driving. For example, humans have a short
attention span. One becomes inattentive when performing a monotonous task. Fortu-
nately, this deficiency rarely leads to an accident. Car manufacturers have built counter
measures to human driving deficiencies for decades. One deficiency of human driving
is the skill to brake and to keep the car steerable at the same time. The anti-lock brake
system (ABS) introduced in cars in the eighties assists the driver while braking to keep
the car steerable at all times. It is standard equipment in today’s cars. Further inves-
tigations showed that drivers press the brake pedal too moderately when braking in an
emergency. The Brake Assistant introduced in 1997 assists the driver when performing
an emergency brake to obtain maximum deceleration. Frequently, drivers enter a curve
with too much speed and start skidding. The Electronic Stability Program (ESP) in-
troduced in 1997 assists drivers to prevent skidding in curves by braking. All these
systems only perceive the ego-vehicle. The adaptive cruise control (ACC) introduced
in 1998 is a system that perceives the environment in front of the car and determines
the distance to vehicles. It adjusts the speed accordingly.

Above systems are examples for driver assistance systems which are systems
that assist the driver while driving. This is usually achieved by on-board sensors that
perceive the ego-vehicle state and/or the vehicle’s surroundings.

The systems introduced above show the two main driving forces for innovations in
the automotive field. First, driving is made safer by ABS and ESP by assisting the
driver in critical situations. Second, a convenience system such as an adaptive cruise
control makes driving more comfortable and assists the driver in certain standard
situations. A third key factor for innovations is the competition in the automotive
field.
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The need for more safety on the roads is obvious when looking at the following
numbers: According to the “Bundesanstalt fiir Straflenwesen”, 8758 people were killed
in traffic accidents in Germany in 1996 [Straube et al. 97]. In the United States, 41967
people were killed in traffic accidents in 1997. In Japan, the situation is similar. There,
9640 fatalities in traffic accidents occurred in 1997 [0C98]. Normalized by the number of
inhabitants, all three countries have a similar traffic fatality rate per inhabitant. About
one half of these incidents could have been prevented by issuing a warning of pertinent
hazards in time. These are accidents due to delays in detection of hazards. Warnings
of pertinent hazards can be provided by driver assistance systems that perceive their
environment. Another 27% of the incidents could have been prevented with driver
assistance systems that control the vehicle by braking or steering [0C98, Iwasaki 99).
These are accidents due to mistakes in operation and judgment. Note that these
numbers assume perfect detection capabilities of the driver assistance system.

Another problem is the constantly increasing number of motorized traffic partici-
pants. The number of registered vehicles in Germany increased from 17 million in 1970
to 36 million in 1990 and 40 million in 1997. This is leading to dramatically increased
traffic density and congestion, since the length of the road network increased by less
than 3% in the last 20 years. The system introduced in this thesis is especially suited
to assist the driving task in a traffic congestion.

These numbers motivate research to increase safety, traffic flow, and convenience by
introducing so-called intelligent vehicles, which represent the core of this dissertation.
In this context, intelligence is defined as the capability to perceive, remember, adapt,
and manipulate.

1.2 Intelligent Vehicles

1.2.1 Introduction

Intelligent vehicles are equipped with sensors and computing devices that allow the
perception of the ego-state and the environment. From this input, intelligent vehicles
decide on appropriate action [Williamson 98b]. For example a steer-by-wire vehicle
senses the current vehicle state and is able to prevent skidding within physical limits.
Other systems need to sense the environment of the vehicle. An increasing intelligence
requires an increasing level of autonomy in the vehicle. Hence, many intelligent vehicles
are labeled autonomous vehicles. Looking in related transportation fields, aviation
or navy, autonomous components were introduced some years ago. An autopilot is
standard equipment in passenger planes today.

For environment-perceiving sensors, dependability, perception range, and percep-
tion quality are extremely important. These requirements are reasons for the delay of
automating functions in the car in comparison to factory automation. The outdoor
world on roads is much more challenging to perceive than an indoor environment on
a factory floor with controlled environmental conditions. Automotive sensors must
maintain function under all weather conditions. Compared to the environment on the
water and in the air, the traffic density on roads is much higher and the environment
is much more complex.
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The capabilities of today’s sensors are still very limited compared to the human’s
perception capabilities. Only small parts of the human perception can be replicated.
Nevertheless, a driver assistance system might have fewer perception capabilities, but
it is always attentive, unlike humans.

Intelligent vehicle research has a long history starting with extensive work in the
sixties. Consult [Fenton et al. 91] for an overview of the early work. Most of the work
focused on Automated Highway Systems (AHS). AHS are systems enabling automated
highway driving. Often, the intelligence is put on the roadway (e.g. inserting magnetic
markers in the road) which requires a change of the existing infrastructure. Systems
requiring a change of infrastructure are not considered here. A comprehensive analysis
of many aspects including the non-technical aspects of intelligent vehicles can be found
in [Lund 91].

The first vision-based intelligent vehicle applications were presented in the eighties.
Consult [Dickmanns 98] and references therein for a short overview of the early work.
Vision-based applications of intelligent vehicles are presented in more detail in the
following subsection.

1.2.2 Intelligent Vehicle Applications

Intelligent vehicle applications are becoming increasingly popular. The systems range
from safety features to convenience features. To limit this survey, only applications that
involve vision-based input are described. The first driver assistance system brought to
market that perceives its environment was an intelligent or adaptive cruise control.
Other systems such as lane-keeping assistant, lane change assistant, intersection as-
sistant, traffic sign assistant, route guide, traffic jam pilot, platooning system, and
auto-pilot are currently being investigated. Such systems are the focus of research at
several universities and car manufacturers and are described in the following.

Intelligent Cruise Control (ICC)

On a busy highway the main driving task is to stay in one highway lane and to follow the
preceding vehicle at a safe distance while obeying the speed limit. This task requires
constant attention, and a system that supports the driver to achieve this task increases
safety and convenience. Since the basic task to obey a speed limit is performed by the
cruise control, a system that also keeps a safety distance to leading vehicles is called
intelligent cruise control.

For this purpose, the environment around the vehicle must be sensed. Such a system
takes over part of the driving task on a busy highway: It keeps a certain maximum
speed and adjusts the speed when a preceding vehicle is detected. A safety distance
to the preceding vehicle on the highway is maintained. The regular cruise control is
enhanced with this feature. The first system of this kind was brought to the Japanese
market by Mitsubishi in the Mitsubishi Diamante in the mid nineties [Ludmann 95].
A laser radar was used for vehicle detection. A camera supported lane assignment. At
that time, the system was too expensive and only moderately reliable. Only the idle
engine torque was used for deceleration. Radar is used to detect the preceding vehicle
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in the system Distronic introduced on the market by DaimlerChrysler in 1998. Brake
and throttle are applied automatically to keep the safety distance.

Subaru [Sub99] introduced a system that uses two cameras to determine the distance
to the preceding vehicle [Saneyoshi 96]. A detailed description for such a vision-based
ICC system can be found in [Bohrer et al. 95]. There, monocular image processing
is used for tracking vehicles at highway speed and a stereo camera system is used for
small distances in stop-and-go traffic.

Summarizing, the main idea for intelligent cruise control is to follow another vehicle
at a safe distance, also called vehicle following (see also Section 1.3).

Lane Keeping Assistant

On most roads, lane markings facilitate navigation along the road. Lane-guided high-
way-cruising, which is equivalent to driving along lane markings, is another simple
driving task that can be automated.

Lane markings must be detected to perform this task. This is a well-researched
domain (see e.g. [Dickmanns 98] and references therein). Being able to robustly detect
the highway lanes, several applications are conceivable. A lane departure warner issues
an audible or visual warning when the vehicle departs from its lane. Alternatively,
a vehicle equipped with electronic steering can be autonomously guided along the
highway lane [Franke et al. 94]. The systems takes over only part of the driving to
keep the driver in the loop, i.e. alert. The necessary control algorithms to navigate the
vehicle along the lanes are described e.g. in [Mayr 95].

Lane Change Assistant

Performing a lane change on a highway is potentially dangerous. Vehicles behind and
on the sides must be accounted for before performing a lane change. The support
for monitoring and detecting vehicles in the blind spot is considered especially helpful
[Yoshioka et al. 99]. A warning is issued when a vehicle closes up fast in the blind spot.
In Germany, due to the large relative velocities on highways, detection of vehicles far
away is necessary [Knoeppel et al. 99].

Intersection Assistant

Intersections have a high risk potential for collisions. So applications that recognize
intersections and vehicles closing in from the side can prevent collisions by warning the
driver. [Mori et al. 95] presents a vision-based system that quantifies the risk potential
for vehicles at an intersection. The necessary recognition of intersections is investigated
in [Gengenbach et al. 98]. Tracking of the objects around the intersection is presented
in [Heimes et al. 98]. There, the camera sensors cover a large field of view to perceive
the intersection in front of the ego-vehicle.
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Traffic Sign Assistant

Traffic signs inform the driver of the current speed limit and other vital information.
Occasionally, the driver overlooks traffic signs or forgets what the most recent traffic
sign denoted. So while driving on a highway it is beneficial to have a system that rec-
ognizes traffic signs and informs the driver of the currently imposed speed limit. Traffic
sign recognition systems usually rely on color information and use the significant shapes
of traffic signs. See [Ritter 92] for some early work running at near real-time speed.
More mature systems running in real-time are described in [Ritter 96], [Estable 96],
and [Paclik et al. 99].

Traffic Jam Pilot

Automated stop-and-go driving is the task of a traffic jam pilot. In contrast to the other
systems introduced so far, this system operates at small velocities. It is considered a
comfort or convenience system. Driving in a traffic jam is a boring driving task. Such
a system is able take over the complete driving task, although the driver must still
be prepared to take over manually at any time. Early work at very small velocities is
presented in [Parent et al. 94]. Technically, it is a similar task to the intelligent cruise
control, i.e. driving behind a preceding vehicle at a certain safety distance. Only the
velocity range is different (see also Section 1.3). The preceding vehicle is subsequently
called leader vehicle since it leads the ego-vehicle.

Platooning System

On highways, driving in convoys would be very useful for companies operating large
truck fleets. Having a fleet of vehicles driving one behind the other is also called
platooning. Platoon applications permit a convoy of guided vehicles to operate au-
tonomously. Only the first vehicle must be driven manually.

An early vision-based system designed for platooning is presented in [Daviet et al.
96]. Platooning uses the same basic technology as a single vehicle-following system but
asymptotic stability must be considered for platoons. Asymptotic stability is achieved
when the control algorithms operate in such a way that no matter how many vehicles
are connected all vehicles are controlled in a stable fashion. Commercial truck platoons
are the most likely application of platooning techniques.

Route Guide - Navigation Systems with Digital Maps

Today, navigation systems provide digital maps of the current vehicle environment and
are able to guide the driver to a specified location. With these maps and accurate
positioning, more advanced applications are conceivable. With very accurate digital
maps, even controlling a car becomes feasible [Scrase 99]. To account for unforseen
obstacles an obstacle detection system is necessary in addition. The fusion of digital
maps with local sensors such as radar data is necessary to achieve a reasonable safety
level. Research on such fusion schemes is presented e.g. in [Jocoy et al. 99]. A first
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spin-off of such activities could be a system that warns the driver of upcoming curves
by using only digital map data.

Many other application systems can be envisioned by using global positioning and
digital map data. These systems are beyond the scope of this thesis.

Auto-Pilot

Autonomous driving systems would be able to completely take over the driving task.
Fully automated highway cruising in regular traffic is far from reality today. This
is considered a longterm objective. A panoramic view around the car is necessary.
Nevertheless, feasibility studies show the capabilities and potential of such systems
(see e.g. [Ulmer 94]). Important recognition tasks to approach complete autonomy
are presented in [Franke et al. 98]. These recognition tasks include the recognition of
vehicles, cyclists, pedestrians, miscellaneous obstacles, traffic lights, and traffic signs.

1.2.3 Sensors for Intelligent Vehicles

A crucial part of an intelligent vehicle is its sensor system. It must be able to take over
parts of the recognition tasks of the human eyes and constitutes the basis for the intel-
ligent vehicle’s behavior. Although we focus on optical sensor input here, the following
list of sensors covers the most popular sensors for intelligent vehicle applications and
is provided for completeness. The sensors to determine the ego-vehicle state such as
velocity are not covered here. Only one hardware element out of this list, the camera,
is a passive sensor, i.e. relies solely on reflected, not self-emitted, radiation signals. The
other sensors, active sensors such as radar or laser range finder, measure distance by
measuring the travel time of the signal from emission to reception, which is propor-
tional to the distance. Envisioning a world of intelligent vehicles, interference among
similar active sensors might become a problem [Williamson 98b]. Another important
criterion for intelligent vehicles is the susceptibility to weather conditions. This short
survey utilizes insights from [Masaki 98].

Millimeter-wave Radar

A modulated radar signal is sent out and the incoming reflections are sensed. The
emitted signals are typically pulse-coded. Doppler shifts are measured via Fast Fourier
Transform which yields information on the relative velocity of the measured object.
The distance is measured via time of flight methods. Radar sensors are widely used in
aviation to determine distances and velocities.

The reflection signals work well for most human-made materials. However, the
reflected signal becomes very weak in the presence of highly fractal surfaces such as a
fur coat or sand. Obstacles made out of these materials might not be detected. Radar
works well at day and night. Rain and fog do not deteriorate the signal significantly
whereas heavy snowfall causes problems.

One drawback is the limited total opening angle achievable at one time. Even a
combination of radar beam signals provides only limited angular resolution.
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To get a reasonable opening angle and several signals, the radar beam is usually
scanned electronically. Scanning must be performed very quickly to avoid skewed range
measurements. Alternatively, having several radar beams measuring simultaneously
becomes prohibitively expensive.

Ultrasonic/Sonar Sensors

Ultrasonic or sonar sensors send out ultrasonic signals and sense the impulse response.
Sonar systems are widely used in underwater vehicles. The signal range is limited to
a few meters and the most common intelligent vehicle application is a parking assist
system. In addition, the measurement rate is limited due to time of flight delays. The
speed of sound is basis for the time of flight measurements. Moreover, imaging is not
possible due to the low angular resolution of the sensor. Another problem are winds
that “blow” the signal away.

Laser Radar

Laser range finders (laser radars) use time of flight measurements of modulated laser
pulses to determine depth. A scanner system can build a range image, allowing post
processing of the obtained range image. Laser scanners typically operate in the infrared
wavelength domain. Due to intensity limitations to prevent eye damage, the range is
somewhat limited (< 20m). In addition, these signals are susceptible to rain and fog
since the intensity decreases quickly. A scanning device can be avoided by building an
array of lasers but this is still very expensive for a reasonable imaging array.

Infrared Pattern Systems

Infrared pattern systems send out an infrared pattern with a projector and sense the
projected patterns with infrared cameras. The distance for every part of the pattern is
computed via triangulation, where the source and the camera are at different positions.
Pattern correspondence for triangulation is established via image processing. Current
systems deliver distance measurements up to 20m, limited by the emitter signal which
has to be low in intensity to be considered safe for the human eye. Near infrared
cameras operate on regular CCD camera hardware with an infrared filter.

This method of depth determination has mostly been used in indoor environments.

Camera

Cameras, i.e. sensors exploiting vision cues, are exceptional to this list since they
operate passively. The same sensor principle is applied to signals in the near infrared
wavelength domain by attaching an appropriate filter to the camera. These systems
always produce intensity grayscale or color images that do not deliver direct Euclidian
measurements. Pattern recognition algorithms have to be used (see Section 2.1).
Another exception of vision sensors is the ability to detect lane markings, whereas
the other sensor types measure distances which are not discriminative for lane markings.
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Cameras capture visual information. The image acquisition proceeds roughly as
follows: Photons reflected from the viewed scene enter the camera and go through a
lens. These photons are converted to electrons on a photo-sensitive layer in the imaging
plane, where the electric charges are read out and yield intensities.

The main camera types used to date are CCD! and CMOS? cameras. Typically both
types deliver analog read out signals that have to be converted with a frame grabber
to digital values. One intrinsic problem of CCD cameras is blooming, a phenomenon
occurring when too many photons hit one CCD pixel in a short time. The conversion
from photons to electrons yield too much charge which “leaks” into adjacent pixels and
produces artifacts along the readout direction of the CCD chip.

Digital cameras are becoming increasingly popular since a frame grabber is no
longer necessary, but other impediments such as the lack of accurate synchronization
among several cameras delay their employment.

When using two cameras, 3D information is obtained by correspondence analysis
and triangulation of the corresponding points. A stereo camera system delivers 3D
information covering a solid angle depending on the field of view. Radar and laser
scanners typically deliver 3D information for a scan line in one plane. In this work
we use two CCD cameras to build a system that performs vehicle following at small
velocities for automated stop-and-go driving.

1.3 Vehicle-Following Systems

The principle of following a leader vehicle has already been applied several times in
the above mentioned applications. These applications include

e intelligent highway cruising,
e automated stop-and-go driving, and
e platooning.

The system described in this thesis performs automated stop-and-go driving. Vehi-
cle following is considered the main task for such a traffic situation. We define vehicle
following as the procedure of following a leader vehicle with the position of the leader
vehicle being the main guidance. When an infeasible or dangerous situation is detected,
the system has to recognize it and has to return control to the driver.

Extending the stop-and-go scenario, vehicle following at a safe distance always
provides a safe driving mechanism. The main idea is simple: Follow the leader vehicle
that just passed through that path and therefore was collision-free at that time. The
notion is that the leader vehicle “creates” a collision-free path, which the intelligent
vehicle follows. Even when the leader vehicle gets involved in a collision the following
vehicle can still brake in time. So we extend our vehicle-following system beyond the
stop-and-go velocity range up to the urban velocity range.

LCharged Coupled Devices
2Complementary MOS transistor technology, low power consumption
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1.4 Limitations of Previously Proposed Solutions

The focus of this thesis is on vehicle following as required to perform autonomous stop-
and-go driving. Several research institutes and universities have developed vehicle-
following systems (see e.g. [Franke et al. 95, Daviet et al. 96, Lorei et al. 99]). Pla-
tooning includes the same capability but is usually applied to more than two vehicles
following each other. None of the platooning applications known to the author consider
the case of non-automated vehicles interfering with the platoon in traffic besides the
leader vehicle. Moreover, most of the platooning systems require external infrastruc-
ture (e.g. [Guldner et al. 98]). Other traffic participants except for the leader vehicle
are basically not detected and consequently, a collision with these traffic participants
cannot be excluded. Hence, these applications are not suitable for regular traffic - they
typically need a dedicated lane.

[Weber et al. 95] and [McLauchlan et al. 97] describe a vision-based system that
performs distance-keeping following a leader vehicle and lane-keeping. Again, no other
traffic participants besides the leader vehicle are considered. Similarly in [Franke et
al. 98], the main focus of recognition is on the leader vehicle and no other traffic
participants are used to determine the path.

If the distance between the leader vehicle and the intelligent vehicle is very small,
this collision-avoidance component is not relevant. However, for vehicle following sys-
tems in regular traffic a minimum safety distance applies just as it does for manual
drivers. Hence, a component ensuring a collision-free path at all times is deemed nec-
essary. This collision-free path must be maintained at all times, even when it becomes
necessary to depart from the leader vehicle’s path. These situations occur when ob-
stacles intruded the leader vehicle’s path after the leader vehicle has passed through.
When no collision-free path is found, a braking maneuver is performed.

Moreover, in almost all previously cited vision-based vehicle-following systems, only
the current position of the leader vehicle is used for vehicle following and a circular
arc is interpolated in between which can lead to significant deviations in arbitrarily
shaped paths. Again, this becomes more significant with increasing distance between
the vehicles.

In addition, only the current scene is analyzed and objects beyond the sensor range
are not considered. This is helpful for systems with a limited field of view to extend
their field of view.

1.5 Objectives of the Proposed System

The vision-based vehicle-following system described in this thesis overcomes the above
mentioned limitations. The algorithms leading to the performance increase are the
main part of the thesis and are described in Chapters 4 through 7. Within these
improvements, a novel ego-position estimation algorithm is presented.

An extremely important criterion for algorithm selection is their suitability for real-
time on regular off-the-shelf PCs. For our system, no specialized hardware equipment
is necessary. In addition, this thesis avoids restrictions imposed on previous vehicle-
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following systems. Specifically we perform vehicle following
e without dedicated leader vehicle, i.e. any vehicle can be followed,
e without dedicated lanes, i.e. anywhere,

e without external infrastructure, e.g. GPS, digital maps, magnetic markers, trans-
ponders, or vehicle-to-vehicle communication,

e with only local on-board sensors, and
e considering all obstacles in the traffic scene.

This strategy makes our system independent of external sources and allows the same
performance everywhere, e.g. also in tunnels, where GPS signals cannot be received.
The system has been tested extensively in urban traffic environments, where the variety
of obstacles is extremely challenging.

1.6 Contributions of this Thesis

In this section, the main contributions of this thesis are described. First, a novel
algorithm for following the exact path of the leader vehicle is presented. Second, an
algorithm for ego-position estimation is described, which exploits previously detected
features and is hence very fast. This precise ego-position estimation allows the creation
of a global map in an inertial reference frame. One benefit of this map is an increased
field of view compared to the current local field of view in the ego-centered reference
frame. Third, a general path-based approach to collision avoidance is presented. This
approach uses global knowledge of the whole path of the ego-vehicle, avoids local
minima problems for feasible paths, and allows the fusion of vehicle-following and
lane-following behavior. In addition, other behaviors such as lane-keeping at constant
speed can be achieved.

Note that all algorithms presented here are tested with a vision-based autonomous
vehicle. However, none of the algorithms make explicit use of vision-data; they rely
on the extracted 3D information from a stereo-camera system. Any other range sensor
delivering 3D data can be used to implement the algorithms. For an overview of
alternative sensors, see Section 1.2.3.

The restriction of performing vehicle-following at small velocities is not essential for
the proposed algorithms. Only the kinematic constraints such as imposing a minimum
turning radius have to be extended to higher velocities. These resulting dynamic
constraints such as limiting the occurring lateral accelerations have to be considered.

1.7 Thesis Overview

The remainder of this thesis is devoted to vision-based vehicle following. In Chapter 2
related work in this field is described, with a focus on real-time image processing and
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intelligent vehicles More specific related work of the developed algorithms precede the
relevant chapters.

Chapter 3 gives a description of the vehicle-following system upon which this the-
sis is based. The description covers the hardware, the software environment, image
processing algorithms, the controller algorithms, the actuators, and the simulation
environment.

A novel algorithm for path-based vehicle-following is presented in Chapter 4. In
contrast to previous algorithms, the history of the leader vehicle is taken into account.

In Chapters 5 and 6, algorithms are presented, that allow a representation of the
environment in an inertial reference frame. The former chapter focuses on ego-position
estimation whereas the latter describes the actual mapping algorithm.

Chapter 7 constitutes the main part of this thesis describing collision avoidance
strategies for vision-based vehicle-following systems. Besides reasoning for and de-
scribing of the chosen elastic band approach, details on the potential field choice and
on human driving behavior are also included.

Results on the overall performance of the system are presented in the result sections
of Chapters 4 through 7. Comparisons to similar systems found in the literature are
made when available.

The final chapter includes a summary of the presented work, some discussion, and
conclusions. The chapter closes by pointing out future work.

Why did we organize the thesis that way? In order to globalize vehicle following a
view of the scene in an inertial reference frame is necessary. This enables us to perform
path-based vehicle following (Chapter 4). However, determining the ego-position by
only integrating the motion parameters introduces errors. So an ego-position estimation
system using vision information is used (Chapter 5). Previously detected obstacles that
are beyond the current field of view must be kept in a global map to consider them
for path planning (Chapter 6). Finally, a dynamic collision avoidance component is
necessary to avoid obstacles that interfered with the leader vehicle path since the leader
vehicle has passed through that point (Chapter 7). To perform this task, an initial path
to follow must be provided (Chapter 4) and the own position in a global reference frame
must be known (Chapter 5).
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Chapter 2
Related Work

T his chapter gives an overview of related work in the fields of image processing and
intelligent vehicles. Work specifically related to the algorithms presented in this
thesis can be found in the “related work” sections of the respective chapters.

2.1 Image Processing

This section gives an introduction to related work in image processing. After a brief
introduction to image processing and vision theory, a list of related work is provided.
Due to the huge amount of literature, this list is limited to work relevant to real-time
image processing for automotive applications.

2.1.1 Introduction

Image processing algorithms can be categorized with respect to a number of features.
Image processing steps such as image rectification or image restoration are considered
low-level image processing. The next step, detecting structure or objects in an image
is called pattern analysis or pattern recognition. Specifically for visual signals, it is
also called computer vision or machine vision. Algorithms using more abstract repre-
sentations of the image, are classified as either image or pattern understanding. These
distinctions are fuzzy throughout the literature.

Image processing started to grow with computer speed. An early and good book
on pattern recognition is [Duda et al. 73].

A general introduction to image processing and image understanding can be found
in [Shirai 87]. [Jdhne 91] presents a more mathematical treatment of image processing.
A detailed description of morphological methods of image processing is presented in
[Zamperoni 91]. Most methods described here can be found in these books.

With increasing computing power, analysis of image sequences becomes more fea-
sible. [Faugeras 93] covers image sequence analysis and presents a very good and
rigorously mathematical introduction to three-dimensional computer vision.

2.1.2 Human and Machine Vision Theory

Human vision was compared to computer vision by Marr in the late 70’s. [Marr et
al. 80] describes a theory of edge detection where human edge detection is identified

13
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as multi-scale edge detection. Edge detection via Laplacian of Gaussian, a contrast
enhancing second derivative filter, delivers the so-called primal sketch, a 2 1/2 D rep-
resentation of the scene. This edge detection scheme has a similar structure to a
physiological model of simple cells.

A computational theory of human stereo vision is presented in [Marr et al. 79],
which exhibits many similarities to the currently used stereo algorithms in the au-
tomotive field. However, algorithms on resolving ambiguities of multiple potential
matches are hard to incorporate in real-time stereo algorithms.

2.1.3 Image Processing Algorithms

The list below covers computer vision algorithms relevant to intelligent vehicle appli-
cations. The following discrimination criteria are used:

1. Number of cameras: One, two or more cameras can be used.

2. Feature basis: Image processing algorithms are categorized based upon pixels,
features (e.g. edges, variances or textures) or areas/regions here. Frequency in-
formation as opposed to spatial information is also used to generate features.
However, these applications are not included here.

3. Number of dimensions: Static 2D or 3D image analysis have different applica-
tions. Time represents an additional dimension when performing image sequence
analysis.

4. Frequency of the sensed signal: Image processing algorithms can operate on all
kinds of image types including images from the visible spectrum, infrared images,
and radar images.

5. Resolution of the sensed signal: Here, one distinction is between binary images
and grayscale images. Another one concerns the frequency resolution. Grayscale
images yield intensities without color resolution, color images maintain the color
information by applying spectral filters.

6. Processing speed: Underlying control algorithms for intelligent vehicles require
response times faster or as fast as the human reaction time. Otherwise, prompt
response in a dynamic environment cannot be guaranteed. This leads to desired
processing times of the sensor inputs of less than 100ms. In less dynamic envi-
ronments, such as on planetary explorations e.g. on Mars, cycle times may be
larger. Also, information systems not prompting for immediate response (e.g.
traffic sign recognition systems) may consume more time. All intelligent vehi-
cle applications must run in real-time, i.e. must have a guaranteed maximum
response time depending on the application.

7. Implementation: Implementation can be done in hardware which allows massively
parallel and fast computation. Hardware dedicated to a specific task must be
designed. Alternatively, the implementation can be done in software which allows
more flexibility.
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8. Application domain: Image processing algorithms are tailored to all kinds of
applications, i.e. structured objects of all shapes can be detected. Automotive
applications represent only a small field.

9. Active versus Passive Vision: In [Schiehlen et al. 94], a vision system is presented
that controls the pan and tilt of the camera depending on the image input. In
this way an active or purposive vision is achieved. The camera focuses on the
part of the image that seems interesting. Without active camera control the same
paradigm is applied by only analyzing a certain region of interest in the image
depending on the current image input. Passive vision devotes the same attention
level to every part of the image independent of the current input.

number of pixel ‘ 4,25,26]
area| [2] 1 |
B -
’ ! number of dimensions
feature [1j ‘
1345611 | a2
pixel| [7.810]

number of cameras

Figure 2.1: “Image cube” of the image processing algorithms listed here. Note that the relative
majority of the algorithms operate with area-based stereo vision algorithms in three dimensions.

For object detection on roadways, color image analysis does not contribute much
additional information compared to grayscale image analysis. Considering adverse
weather conditions, such as night, rain, fog, and snow, color information is the first
piece of information to deteriorate. Color blind drivers are just as good drivers as others
when it comes to object detection although traffic light and traffic sign recognition
might be impeded.

Binary images are more relevant in other domains (e.g. character recognition, track
recognition in particle detectors [Dao et al. 99, Marks et al. 99, Gehrig 97]) than in
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our application domain and are not covered here.

The processing speed is not a good means of discrimination since it depends on the
hardware. The same holds true for algorithmic implementation: Running an algorithm
in hard- or software is mostly a matter of cost and computation time.

The application domain is noted in the list below, but a division in application
domains is not considered meaningful, since a lot of the algorithms are generic to the
type of object they detect.

This section can still be divided in several ways. Therefore a cube to distinguish
the respective features is deemed appropriate (see Figure 2.1). The axes of the cube
are the number of cameras, the number of pixels for feature extraction (pixel, feature,
area), and the number of dimensions (2 to 4 dimensions, where time represents one
dimension).

The reference numbers in the cube refer to the numbers in the enumerated section
below. The index numbers are sorted by the number of cameras.

Looking at the image processing cube (see Figure 2.1), it is striking that the ma-
jority of references is found in the “two-camera plane” performing area-based image
analysis. This is due to the fact that our system uses a stereo camera system as well.
Stereo vision needs no prior model knowledge to extract depth from images and is thus
suitable for the task of detecting and measuring objects in wildly varying environments.

Approaches that rely heavily on complex models are not covered in this survey
since they tend to become unreliable in complex traffic scenarios. Extreme variations
of shapes of cars and other traffic participants occur. Moreover, strongly varying
illumination conditions must be accounted for. Most algorithms presented here have
weak model assumptions.

Other approaches not adequately covered are learning systems such as neural net-
works (see e.g. [Pomerleau 92] ). The performance of such systems relies heavily on
numerous and well selected samples. Since these systems are mostly concerned with
classification or recognition rather than detection, they are not covered here. We are
mostly concerned with object detection, i.e. finding objects of any kind, whereas
object recognition also specifies the type of object. One example of a trainable
detection system can be found in [Papageorgio et al. 99).

One more technique to extract depth from images not covered here is depth from
shading. This technique exploiting knowledge of the illumination model is not suitable
for real-time applications due to its complexity. In addition, sensor fusion schemes are
omitted here (see e.g. [Langer et al. 96]).

An interesting general introduction to object recognition is given in [Liter et al. 96],
where parallels to biological systems are emphasized. The use of models versus features
is discussed.

2.1.4 Image Processing Using One Camera

In the following list, the most popular image processing methods are presented, includ-
ing snakes, optical flow, motion stereo, and various stereo correlation methods.

1. The concept of snakes to segment non-rigid regions in an image is introduced in
[Kass et al. 88]. Extensions can be found in [Blake et al. 92]. In that approach,
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a Physics model of an elastic band is used and it is exposed to forces exerted
by edge features of the segment boundaries. This yields a smooth segmented
region. Since this is an iterative process, it is not straightforward to implement
this algorithm in real-time. The mathematical model of such an elastic band is
used in Chapter 7 for collision avoidance.

. [Yezzi et al. 99] describes a region-based segmentation algorithm. It is based on

the snake algorithm described by Terzopolous in [Kass et al. 88]. In contrast to
the original approach, no feature extraction is performed to find the segment
boundaries. All pixels in the image contribute to the snake shape (global evolu-
tion). There, the number of regions to be segmented has to be known.

. [Matthies et al. 89] tries to estimate depth from image sequences using stereo

motion. Stereo motion is equivalent to stereo vision provided that the relative
camera position is known and provided that the observed scene is static. The
recursive depth estimation is performed by an extended Kalman filter. Two meth-
ods of computing the depth, pixel-based and feature-based, are presented, and
the pixel-based approach proves to be more robust and accurate. This approach
is not applicable to dynamic environments since it assumes static objects.

. Object detection based on color cluster flow in color images is presented in

[Heisele et al. 95] and [Heisele 98]. It shows good performance even in occluded
scenes but motion cues are needed. Non-moving objects in a scene remain unde-
tected.

. Object detection based on optical flow in image sequences is presented in [Enkel-

mann et al. 94] . One important drawback affecting all optical flow approaches
is the dependence on motion cues.

. Early work on optical flow can be found in [Biilthoff et al. 89]. Based on this

work, [Mallot et al. 91] introduces inverse perspective mapping for object detec-
tion and simplification of optical flow computation. Inverse perspective mapping
means transforming the 2D image into the 3D world assuming everything to be
in one plane, i.e. the ground. Elevated objects appear distorted and optical flow
computation enables object detection. This idea was taken over by several vision-
based intelligent vehicle systems (e.g. [Broggi 95]). The “flat road assumption”
is an assumption underlying most stereo vision systems presented here.

. A reduced optical flow method looking at only one line in the camera, called

time-slice analysis, is presented in [Heichel 95]. This method is applied to blind-
spot monitoring. Complex object detection is not possible since only one spatial
dimension is accounted for, but the algorithm speed is a great advantage.

. Since cameras project 3D information onto 2D, depth information is lost. To

recover depth, it is also possible to use the change of focus of the camera and
determine depth through blurring [Krotkov 89]. This approach proves to be time-
consuming and not very robust, but yields depth perception without stereo or
additional models.
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A lot of effort is also devoted transferring the time-consuming low-level vision
algorithms into hardware (VLSI chips) to allow very fast computation (see e.g.
[Wyatt et al. 92, Masaki et al. 94]). Another example for parallelizing simple
algorithms in hardware is the GOLD system [Broggi 95]. There, the inverse
perspective mapping [Mallot et al. 91] is implemented in hardware. Toyota has
developed a real-time vision system processing several low-level algorithms in
hardware (covering optical flow, stereo vision, and template matching) and al-
lowing high-level algorithms in software to use these results [Ninomiya et al. 95].

The perspective effect in road scenes can be compensated for by sub-sampling
[Graefe et al. 96]. The near region is sub-sampled (see Figure 5.1 for a typical
traffic scene), so that all distance regions have the same number of pixels in
horizontal direction. That yields a constant number of pixels per lane (constant
lane width assumed). This procedure yields roughly constant object detection
performance for a large range of distances.

Motion stereo is used in [Zhang et al. 97] to perform object detection with three
different algorithms. Two of these algorithms only give qualitative information
about the presence/absence of objects using one camera while the third one
obtains the 3D location of objects above the ground assuming a flat ground
similar to [Franke et al. 96] using a stereo camera system. While the first two
algorithms are appealing because of their speed, they lack metric information
which is vital for our application.

[Dickmanns et al. 94] presents a 4D approach to image processing problems using
extended Kalman filters. This idea has been adopted by numerous researchers
and is considered one of the crucial ideas in using image processing for control
tasks. Multiple object detection and tracking is possible. Refer to [Dickmanns 98]
and references therein for a complete review. Kalman filtering is also performed
in our object tracking algorithm.

2.1.5 Image Processing Using Two Cameras

[Moravec et al. 99] performs stereo matching with the sum of squared differences
correlation criterion. The next processing step builds a scale-tree of the image
driven by image features, which allows a stereo matching on multiple resolution
scales. The result is a dense depth image that is able to associate depth even
with unstructured parts of the image. However, this algorithms takes about 10s
per image on current Pentium PCs.

[Franke et al. 96] introduces a pixel-based bit-operator as the basis for stereo
matching. The result is a relatively dense disparity map. With a flat road
assumption and histogramming by distance, objects on the road are formed. A
leader vehicle is identified as the closest object in front of the ego-vehicle which
can be autonomously followed.
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A powerful object detection algorithm is presented in [Saneyoshi 96], [Saneyoshi
94], and [Saneyoshi et al. 93]. In [Saneyoshi 94] typical problems for stereo ap-
proaches such as non-detection of low-textured objects are described. Some high-
level algorithmic details are given in [Saneyoshi et al. 93]. Object detection is
performed by histogramming the dense depth map. This algorithm relies on
specialized hardware for real-time performance.

One of the first systems to apply stereo vision to autonomous vehicles can be
found in [Bruyelle et al. 92]. The key to speed here is to use only one scan line
to perform object detection. Stereo matching is performed by matching edges in
the scan line. However, cluttered scenes cannot be analyzed with one scan line.

A promising stereo system is introduced in [Weber et al. 95]. Based on that
work, a combined lane detection and object detection system is presented in
[Taylor et al. 96]. Further work shows object detection with an application to
distance keeping to the leader vehicle with the same algorithm [McLauchlan et
al. 97] . The key difference to most other stereo systems presented here is the use
of “ground plane stereo”. Before starting the correlation, all pixels of one image
are transformed with the assumption that they lie on a plane on the ground.
So all points on the ground have zero disparity which is determined quickly.
Protruding points have non-zero disparity and constitute objects.

A stereo vision system for off-road applications in an HMM-WYV is presented in
[Matthies et al. 95]. It is able to detect both objects and holes in the ground. In
addition, infrared cameras are used with the same algorithm to allow night vi-
sion. Standard stereo procedures such as using multi-resolution image-pyramids,
correlation via sum of squared differences and left-right-consistency checks are
efficiently performed in specialized digital signal processors.

[Konolige 97| introduces a stereo engine enhancing contrast with the Laplacian
of Gaussian. The sum of absolute distances is used as the correlation measure.
Searching a limited range of disparities yields a simple manageable piece of hard-
ware that delivers a full range image in real-time.

Based on [Broggi 95|, a lane and object detection system is implemented [Bertozzi
et al. 96]. For the object detection, a very similar stereo approach to [Weber
et al. 95] is implemented making use of the inverse perspective mapping in the
GOLD system.

In [Yoda et al. 98] a fast depth extracting stereo algorithm is presented that
operates on a coarse level. The coarse depth image helps the system to determine
specific regions of interest. These regions are subsequently analyzed with the
maximum available resolution. Specialized hardware is used to build the image
pyramid necessary for the correlation.

In [Bohrer et al. 95], a short-range stereo vision system called “vision bumper” is
presented. The disparity between the two images are removed by inverse perspec-
tive mapping of both images assuming a flat road. Comparing the two warped
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images yield the same image except for regions where the flat road assumption is
violated. These areas constitute objects protruding from the ground. No metric
information is obtained.

[Schiehlen et al. 94] presents a bifocal camera system. Two different focal lengths
provide different resolutions. The camera system is attached to a rotating plat-
form where gaze control is performed. Areas of interest are selected in saccadic
motions similar to vision systems of vertebrates. No stereo evaluation by trian-
gulation is performed. An experiment with saccadic movements for traffic sign
recognition is presented.

2.1.6 Image Processing Using Multiple Cameras

[Schenk 98] uses the same algorithm described in this thesis to measure distances
to boxes in a robotic environment. He uses three cameras to avoid occlusion
problems. Note that only two cameras are evaluated at one time. Hence this
system is labeled a multi stereo vision system. The relative error in distance
measurement is less than 1%.

An obstacle detection system for long range is presented in [Williamson 98a]
and [Williamson 98b]. The basic matching problem is solved with the sum of
absolute differences (SAD). A discrimination between objects on the ground and
protruding objects is achieved by comparing the regular stereo matching result
with the ground plane stereo matching result. Protruding objects yield better
matches with regular stereo matching, whereas features on the ground match
better with ground plane stereo. Moreover, three cameras and a large baseline
are used to detect objects far away and to perform multi-baseline stereo matching.
This removes accidental correspondences.

A remarkable stereo engine that delivers a video-rate dense depth map is pre-
sented in [Kanade 95]. It uses up to six cameras and performs multi-baseline
stereo matching to avoid ambiguities. The sum of absolute differences (SAD) is
used as the basic correlation criterion and the sum over all SADs of all stereo pairs
determines the depth for every pixel. A Laplacian of Gaussian filter is applied
before correlation to enhance contrast. Due to the heavy computational load of
the correlation, a video rate was only achievable by implementing the correlation
in hardware.

2.2 Intelligent Vehicles

This section describes related work on intelligent vehicles. Only a list of the most
prominent intelligent vehicle systems is provided here. This list is by no means com-
plete and covers only publicly funded projects. Many car manufacturers also conduct
research on intelligent vehicles within their company. This thesis is part of such a
research effort. A survey on vehicle-following systems is given in Chapter 4.
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2.2.1 Europe
PROMETHEUS

A breakthrough in autonomous vehicle research was achieved during the work on the
EU sponsored project PROMETHEUS!. The final demonstration of all involved par-
ties was held in Paris in 1994. Among other research demonstrators VITAZII was
presented [Ulmer 94]. It was able to autonomously drive on freeways, to obey speed
limits, to perform lane-keeping, and to pass other vehicles on command. The un-
derlying vision-based detection system used 18 cameras that made a panoramic view
possible around the vehicle. A transputer system with 80 processors provided the com-
puting power for the image processing. Lane detection, object detection, and traffic
sign recognition were successfully implemented in real-time. Also, the symmetry of
vehicle rears was exploited in the object detection system [Brauckmann et al. 94].

Another demonstrator within PROMETHEUS was VaMoRs-P of the University
of Armed Forces in Munich. Four cameras, some on rotating platforms, provided an
almost panoramic view [Dickmanns et al. 94]. VaMoRs-P and VITA II shared some
algorithms.

French automobile manufacturers cooperated to build the prototype CAROS3
[Raboisson et al. 94] performing obstacle detection with a monocular color camera. In
addition, they implemented an intersection assistant [Bellon et al. 94] that is able to
detect cars approaching an intersection.

MOTIV

MOTIV* is an ongoing EU sponsored research program focusing on methods to enhance
traffic throughput and safety. [Lorei et al. 99] and [Fritz 99] describe projects on truck
platooning in mixed traffic within this project. Both use vision to detect the leader
vehicle with a fixed pattern. Hence this vehicle following procedure only applies to
dedicated leader trucks. The vehicle-following principle is called electronic towbar,
representing the idea of a truck towing another truck.

2.2.2 USA
California PATH Project

The PATH® project was initiated in 1986 under the leadership of the University of
California at Berkeley. Various techniques for AHS are researched. An overview
of the PATH program is given in [Shladover et al. 91]. Besides other projects there
has also been extensive research in vision-based intelligent vehicles [Weber et al. 95,
McLauchlan et al. 97]. Regarding the control algorithms a lot of work has been per-
formed in the area of robust lateral control [Guldner et al. 96, Guldner et al. 98].

'Programme for a European Traffic with Highest Efficiency and Unprecedented Safety
2Vision Technology Application

3Collision Avoidance by Road extraction and Obstacle detection System

4Mobilitdt und Transport im intermodalen Verkehr (mobility and transport in mixed traffic)
SPartners for Advanced Transit and Highways
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NAHSC

The NAHSC (National Automated Highway Systems Consortium) conducted exten-
sive research on intelligent vehicles from 1994-1997 which resulted in a demonstration
of various systems in San Diego in August 1997. This demonstration included the work
within the PATH project. Both systems exploiting external infrastructure and systems
relying on local sensing were presented. The Robotics Institute of the Carnegie Mellon
University presented several vision-based intelligent vehicle applications with a series
of demonstrators [Thorpe et al. 97].

After an intermission of two years, continuing work is performed under the project
IVI®. So far, only conceptual work has been done.

2.2.3 Japan

The most money for intelligent vehicle research is provided in Japan. There, the very
densely populated country suffers from chronic traffic congestion. The focus is on
infrastructural technologies where most funds are allocated.

Advanced Safety Vehicle (ASV)

Japanese automobile manufacturers have developed Advanced Safety Vehicles (ASV)
in cooperation with MITI” emphasizing research in safety. An overview of the activities
including research vehicles and sensor investigations can be found in the Proceedings
of the Intelligent Vehicles 96 Symposium [Hashimoto 96]. Besides CCD cameras, radar
sensors and infrared cameras receive a considerable amount of attention. Algorithmic
details are not given.

AHSRA

AHSRA?® was founded in 1996 with the purpose of coordinating research activities in
Japan. Numerous universities, 21 industry partners and the employees at AHSRA
work closely together on advanced highways. The emphasis lies on research to make
the road infrastructure intelligent, not the vehicle [0C98]. Current research activities
are summarized in [Iwasaki 99].

Intelligent Vehicle Initiative
"Ministry of International Trade and Industry
8 Advanced cruise-assisted Highway Systems Research Association



Chapter 3
System Environment

T his chapter addresses the experimental setup used for the thesis. First, the em-
ployed hardware is described, followed by a description of the software architec-
ture, the image processing algorithms, the planning & decision algorithms, and the
controller algorithms. The remaining sections are devoted to the development and
simulation environment.

3.1 Hardware

Our vehicle-following system is implemented on a Mercedes Benz E-class 420. The
research vehicle is equipped with throttle, brake, and steering wheel that can be set
electronically. The sensor system, i.e. the stereo camera system, is mounted on the
rearview mirror. The image processing algorithms run on an Intel-based computer in
the trunk. A Motorola-based computer hosts all interfaces to actuators (brake, throttle,
steering wheel) and runs the controller software.

The Intel Pentium computer connected to the cameras is linked via PCI bus to a
Stemmer RGB frame grabber where the images are acquired.

Electronic

Vehicle Computer Steering ‘ Elect/)c)mc Gas/Brake

——— =
~_" =
T I

v,

Image Processing Computer

Stereo Camera System

Figure 3.1: The E-class Mercedes with sensors, actuators and computers.
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As shown in Figure 3.1, the trunk of the Mercedes E-class car hosts the vehicle
computer (Motorola 604 computer with operating system Lynx OS), and the image
processing computer (Intel Pentium IT computer with operating system Linux). They
are controlled from an X-terminal attached to the dashboard. The video output of the
frame grabber is displayed on a monitor. The stereo cameras are located under the
rearview mirror towards the wind shield. This spot provides a wipeable area for the
cameras guaranteeing adequate viewing conditions. The two computers are connected
via Ethernet over a communication hub.

Important vehicle data (e.g. vehicle velocity, steering wheel angle) are received from
the vehicle’s controller area network (CAN) bus.

3.2 Software

For our research vehicle we have two separate operating systems on separate comput-
ers for the controller and for the image processing algorithms. The communication
between the two hosts is performed via PVM (Parallel Virtual Machine [Geist 94]).
The controller algorithms running under LynxOS communicate with the CAN-Bus
where the vehicle data is available. The image processing algorithms run under Linux.
They are written in ANSI-C and are compiled using a GNU C-Compiler. The con-
troller algorithms need the longitudinal and lateral location of the leader vehicle and
the relative velocity. Extensions to this simple vehicle-following scheme are presented
in subsequent chapters.

Figure 3.2 shows the processes involved in the complete system. The ellipses rep-
resent processes, whereas the lines represent the communication channels.

keyboard
\ \ :
PVM :
| | |
\ buf ~
‘ [ shared memory ] [ shared memory ]
| shared memory |
OO
_ Image Processing
Vehicle Computer Computer

Figure 3.2: Processes in the complete system.

cmdifc Process on the image processing computer serving as the interface to the user.
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ipa The process running the stereo vision algorithms.

s2v_send Buffer process for decoupling the communication from the “sensor” to the
“vehicle”.

v2s_read Buffer process for decoupling the communication from the “vehicle” to the
“sensor” .

ipi Process on the vehicle computer serving as the interface to the stereo vision algo-
rithms.

Supplementary to the real-time environment, a standalone software system of the
image processing algorithms is available that receives its image input from files (see
Section 3.6).

Figure 3.3 shows a data-flow diagram of the whole system. Image acquisition,
object detection, control, and the actuators are described in this chapter. The planning
and decision module is the main contribution of this thesis and receives considerable
extensions in subsequent chapters.

image acquisition
sensor input

new position, velocity, steering angle
images
t:=t+dt

object detection

objects

planning and decision vehicle motion

leader vehicle position, relative velocity and acceleration

control

desired motor torque, brake pressure, steering actuator current

actuators

actual motor torque, brake pressure, steering actuator current

Figure 3.3: Data-flow diagram of the vehicle-following system.
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3.3 Image Processing Algorithms

In this section the basic object detection algorithms are described. The main parts
are image acquisition, feature extraction, feature matching, cluster analysis of the 3D
points, and temporal analysis to confirm clusters over time. Additional algorithms are
described that estimate the road geometry and detect lane markings. Camera calibra-
tion is covered in the final subsection. The result of the image processing algorithms
is a consistent situation assessment which yields a list of detected objects with metric
information.

3.3.1 Image Acquisition

The images are taken using a grayscale CCD camera made by COBRA with 768 by
568 pixels. The images are grabbed in interlaced mode at half the video frame rate
(12Hz). Only half-images are analyzed. Images of the two cameras are grabbed pixel
synchronously, using two out of the three channels of the RGB frame grabber.

The shutter time of the camera is automatically adjusted to the brightness of the
recorded scene. Hence controlling the shutter is not necessary in the image processing
step.

The focus is adjusted to infinity and the aperture is set accordingly to map all
objects further away than 2m sharply. Closer objects appear blurry which is indeed
desired for objects on the windscreen such as fly debris or raindrops. The focal length

varied in the experiments between 12mm and 7.5mm which is equivalent to a 28° to
48° field of view.

3.3.2 Stereo Camera Geometry and Camera Model
Camera Arrangement

The stereo camera system used here has a geometry as described in Figure 3.4. The
calibration of the external camera parameters (orientation) and internal camera pa-
rameters is described in Section 3.3.10.

The sensor coordinate system is illustrated in Figure 3.4. The origin of the coordi-
nate system is in the midpoint between the two cameras. The Y axis points upwards.
X and Z axis are illustrated in Figure 3.4, where the Z axis is parallel to the optical
axes.

The Pin-Hole Model

A simple approximation for mapping rays of the real world into a CCD camera is the
pin-hole model. (U,V') represents the CCD sensor coordinate system, the sensor center
represents the origin of the image plane, U points to the right, V downwards, and
(X,Y, Z) represents the camera coordinate system with its origin at the focal point
(see Figure 3.5).
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Figure 3.4: The sensor system viewed from above.
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Figure 3.5: Central projection when imaging with a pin-hole camera. Note that the X-axis is offset
by half the baseline from the sensor coordinate center which is not reflected here.

A point M (z., y., z.) is mapped onto m on the sensor plane with the coordinates
(us,vs). The intercept theorem yields:

xc'f
Us = )

Ze

yc'f
, = . 3.1
v = & 3.1)

The pixel densities in U- and V direction (k,, k, [Pixel/mm]) are obtained from the
data sheet of the sensor chip. With the coordinate system described above, the image
coordinates (u,v) of m are computed via

w o= u,-ky = M,
Ze
v o= vk, = w (3.2)

One point in space is mapped onto two different locations in the two cameras. This



28 CHAPTER 3. SYSTEM ENVIRONMENT

difference is called disparity. A more accurate camera model is introduced in Sec-
tion 3.3.10.

Selection of the Camera Parameters

The selection of the focal length is determined by the required field of view, i.e. opening
angle. Having the cameras at the rearview mirror, it is important to cover the full
area in front of the bumper. Another parameter to tune is the base line between the
two cameras. Too long a baseline leads to a large blackout zone, where no stereo
correspondence can be established. On the other hand, a disparity of more than 1 or 2
pixels should be available for all interesting distance domains to maintain an adequate
resolution.

A baseline of the size of the rearview mirror with approximately an opening angle
of 40° results in a reasonable tradeoff of large field of view on one hand and accuracy
in distance determination and detection reach on the other hand. With our camera
chip, this is equivalent to a focal length of about 8mm.

3.3.3 Feature Acquisition

Before performing the search for corresponding points in a stereo image pair, it has to
be tested whether there is enough structure in a given area. Areas without structure
(e.g. plain white walls) cannot be matched. An interest operator has to be applied in
order to determine areas of sufficient structure. [Brandes 95] used a variance operator
to find structure. Here we use the horizontal Prewitt operator, a simple edge detector.
Only areas with enough structure undergo feature matching.

The exact location of the edge is irrelevant because the edge only triggers an area-
based correspondence search where the exact locations of two areas in the respective
images are found.

3.3.4 Feature Matching

Stereo correspondence analysis is greatly simplified by exploiting the so-called epipolar
constraint [Faugeras 93]. This constraint limits the search for corresponding points to
a one-dimensional search along the epipolar line, which is defined as the intersection of
the image plane with the epipolar plane, defined by the optical centers and the image
point. Taking one point in the left image, only the same line of the right image has to
be analyzed for correspondence with our camera arrangement.

Two types of correspondences can be used: Feature-based and area-based. With
a feature-based correspondence one performs a feature extraction on both images and
tries to find feature correspondences in the next step. Area-based correspondences
correlate the grayscale values directly.

Several correspondence measures are applicable. Typically correlation functions are
evaluated. The sum of absolute differences of grayscale values or the sum of squared
differences would be examples.
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According to [Aschwanden 93], the most suitable correlation measure for image
processing is the normalized mean-free cross-correlation function (CCFMF) defined as

n Smst (Piul + i 05 + ) - Pr(up + 4,05+ J))

CCFMF = 5 2
\/ Poo S PHub 46,0 + ) - 02 S Pr(ul + 4, vh + )

(3.3)

Here P'(u},v!) denotes an intensity value of a window in the left camera image and
P (up, vy) a value of a window in the right camera image of size n-m along the epipolar

line. The values P'(ul, +i,v} + j) and P"(uj + i,v} + j) represent intensities of mean-
free windows
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Prup+i,v;+7) = Plluy+iv,+7) -y (3.4)

with p representing the mean value of the window,
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[Aschwanden 93] shows that the CCEFMF is optimal with respect to Gaussian image
noise. The result of the CCFMF is a value between -1 and 1. Higher values represent
higher similarity. The window pair with the highest correlation value is the determined
correspondence point. To suppress erroneous correspondences, a threshold is applied
to the correlation values. Erroneous correspondences might occur due to occlusions.

To increase the accuracy of the correspondence, a widely used sub-pixel interpola-
tion is applied (e.g. [Brandes 95]). The correlation function is approximated around
the maximum by a parabola. The exact location of the maximum is the maximum of
the fitted parabola

1
., 5(corry — corr_y)
p = UpT

(3.6)

2 - corry — corry — corr_y’

where corrg is the maximum correlation value and corry, corr_; are the values around
the maximum. This method increases correlation accuracy from 1 pixel to 0.25 pixel
[Aschwanden 93].

The stereo analysis is performed on all pixels within the region of interest which is
the whole image in the horizontal direction. Some information in the vertical direction
is skipped where only the hood or the sky is imaged. To limit computation time, only
a certain disparity range is searched for, typically from 2.5m on.

In addition, once a stereo correspondence is found, the disparity area to be searched
in the next frame is limited to an area around the previously found disparity.
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Feature Matching Problems

Stereo vision has some inherent disadvantages that also apply to human vision to a
large extent.

Occlusion: Occlusion is due to the occurrence of a depth discontinuity which causes
an obstructed view of the part of the scene behind the occluding edge, and thus
is “observed” by only one of the cameras. Accidental correspondence might be
established due to the texture of the part occluded by one camera. Occluded
situations might be resolved using motion-based grouping [Beymer et al. 96]. In
simple situations, a counter-check starting with the right image and looking for
correspondences in the left images can help reduce false matches.

Repetitive Texture: When the texture is repetitive, such as the bricks in a brick
wall, multiple possible correspondences exist. This can lead to wrong matches.

Lack of Texture: In real world scenes, most objects and surfaces are textured. This
forms a basis for the strength of an area-based match by providing a statistically
matchable pattern. However, part of the scene may be without texture and, in
that area of the scene, no match will be possible.

Mirror: There may be a highly reflective mirror plane in front of a car, e.g. a large
glass window. In that case, due to the reflection of the light, the distance to the
reflected object will be measured, not the distance to the mirror itself.

3.3.5 3D Reconstruction

In order to extract depth from the found correspondences, a simple 3D reconstruction
algorithm is applied, based on the simple geometry of the camera arrangement (see
Figure 3.4). The distance of point P (z,,yp, 2,) W.r.t. the sensor coordinate system is
computed via

f-b
2y = —
ST
(v 4+ v5) - 2
Yp = T,
ub -z b ul-z b
P P p 4
Z - = 3.7

where (uf,vy) and (ul,v}) constitute the pixel location in the left and right camera

of the corresponding point. vﬁ, and v, must be the same value due to our camera
arrangement but when taking lens distortions into account the values might differ (see
Section 3.3.10). Consult Figure 3.4 to view the underlying triangulation performed
here.

In order to transform this point into the vehicle coordinate system, a simple rotation
around the pitch axis and a translation from the sensor center to the road surface is

performed. The essential underlying model to extract height y and lateral position x
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is a flat road assumption. The orientation between the optical axis of the camera and
the road, the pitch angle 6, is hereby assumed fixed, neglecting pitch movements of
the car. This is a weak underlying model, where all objects are defined as structures
protruding from the road. The z axis is parallel to the vehicle’s longitudinal axis, the
y axis points upwards, and the z axis runs left. The point P (z,y, 2) w.r.t. the vehicle
coordinate system is computed via

z = yp-sind + 2z, - cosb,
Yy = Yp-cost — z, - sinb + Ysens,
T = I, (3.8)

where ¥y,.,s is the height of the camera sensor above the road. The vehicle coordinate
system is the coordinate system used throughout the thesis.

The above stereo reconstruction is performed for all found stereo correspondences
and the output is a list of 3D points. The CCFMF proves to be a very robust and
accurate measure for stereo correspondence which yields very few mismatches and small
errors.

3.3.6 Feature Combination

Once a list of reconstructed 3D points is obtained, preliminary objects can be formed.

To extract objects from 3D measurements, we apply a spatial clustering method to
all 3D points except for the ones on or below the ground. Here the weak model of a
flat road is used. All 3D points below a certain height are omitted. Note that beam
reflections on a wet road surface appear below the ground and are thus discarded. The
list of 3D points is traversed and two 3D points are connected when their Euclidian
distance is below a certain threshold. This cluster connectivity is protocoled using
coloring schemes known from Graph theory [Cormen et al. 90]. The straightforward
implementation of this procedure has a complexity of O(n?) with n being the number
of 3D points which is prohibitive for real-time applications when n is large. Using some
heuristics (e.g. a 3D point on the far left part of the image is most likely not close to a
3D point at the far right of the image), the order of the algorithm stays the same but
n becomes an acceptable number.

Cluster attribute data include dimensions (length, width, and height) represented
as a bounding box, and a center location. The center location is computed by averaging
all contributing 3D points. When computing the distance to an object, the contributing
3D points far away are weighted much less than the close ones since we want to measure
the rear of the object.

3.3.7 Object Detection
Object Formation

One difficulty in combining data from different frames is the matching between con-
secutive frames, also called the correspondence problem. How can we match data from
one frame to the next? Closely related to that issue is the tracking problem (see e.g.



32 CHAPTER 3. SYSTEM ENVIRONMENT

[Sobiesk et al. 98]). We match objects from different frames by requiring them to be
close together in space. This procedure works well for small scene changes between
consecutive frames.

The clusters of 3D points constitute raw objects. When they are confirmed at
geometrically nearby areas in consecutive frames they become an object. This avoids
sudden responses to accidental formations of clusters. Once an object is established,
the object is tracked with Kalman filters (see Section 5.5) and extrapolation is allowed.
This is especially important in rain, when a windshield wiper occludes objects in a
single frame.

To measure the center of the found object precisely, the symmetry of the object is
determined. The symmetry operator used here is described in [Zielke et al. 93]. The
combination of the bounding box center and the location of maximum symmetry is
Kalman filtered, which yields the computed lateral position for every detected object.

The distance is computed using the 3D locations of all contributing 3D points with
more weight given to the closer ones since we want to measure the rear of the object.
The dimensions of the objects receive no further filtering except for extrapolation to
keep a reactive behavior.

The whole object detection mechanism is summarized in Figure 3.6. After applying
an interest operator, 3D points are generated for areas with sufficient structure (bot-
tom). To form clusters, these 3D points are connected based on Euclidian distance
(middle). If these clusters persist over time, objects are formed (top). In this graph,
the complexity of the extracted features grows towards the top.

Merging and Splitting of Objects

Using the very basic cluster algorithm to form objects, traffic participants might be
merged to one object when driving nearby and split later on again. Merging and
splitting is detected by comparing the object data to the previous frame and looking
for overlaps. Small interframe changes are assumed here. In addition, a model imposing
a maximum width of a road vehicle is introduced and the bounding boxes of the vehicles
are split if an extra-large bounding box occurs.

Obstacle Detection Quality

A quantitative evaluation criterion for sensor systems is introduced in [Matthies et
al. 94] . For design and comparison, obstacle detectability is evaluated in two stages.
First, the quality of the range data from stereo vision itself is investigated. Second, the
obstacle detectability for a straightforward obstacle detection algorithm is evaluated.
The range data quality is based on a stereo matching algorithm with the sum of squared
differences as the correlation criterion. These systematic errors are taken into account
in Section 5.6.4. According to [Aschwanden 93], other correlation measures deliver
superior measurement quality. For obstacle detection, formulae for detecting false
positives or missing false negatives are given. However, these formulae cannot be used
for our obstacle detector since the algorithms are different.

Our chosen sensor has proven to be reliable under all reasonable conditions. Experi-
ments included rain, fog, and snow during daytime or nighttime. The obstacle detection
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Figure 3.6: Feature hierarchy for the object detection process.
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quality has been evaluated empirically. No situations were encountered where nearby
obstacles were overlooked. Similarly, no phantom obstacles' were observed.

3.3.8 Lane Marking Detection

A lot of literature can be found on lane detection (see e.g. [Dickmanns 98] or [Kreucher
et al. 99] for an overview). Since lane markings are of limited importance here, the
detection algorithm is only described very briefly.

Lane markings are detected in the same manner as objects using the detected 3D
points that lie close to the road surface. Additional road models limit the risk of
accepting shadows and the like for the lane detection process. These lane points are
connected and Kalman filtered. The final result of lane detection can be described as
a polygon. This polygon is input to the collision avoidance algorithm introduced in
Chapter 7.

3.3.9 Road Geometry Estimation

The simple flat road assumption is not valid under all circumstances. For one, braking
and reaccelerating cause pitch movements. An even more serious effect is the non-
flatness of real roads. Roads go uphill and downhill and have transitions. Just before
a road goes uphill, structures on the road are mistaken as structures above the road
and are treated as obstacles.

To compensate for this effect, a simple pitch angle estimator is implemented. We
still assume a flat road which is a valid approximation for short stretches of road. But
we estimate our pitch angle while we drive. This produces a line fit through the 3D
profile of the road for the range of sight of the system.

The pitch angle estimate is based on the found 3D features on the road, and assumes
a good starting value and little interframe changes. With the old pitch angle being 6,
the pitch angle change is estimated to be

ysens

) — arctan(22ene — Yy, (3.9)

A, s = arctan(
Rf Rf

where F (2, y¢, 2¢) is a 3D point considered to be on the road. Taking all n 3D points
available on the road yields
E?:lAeest,i

n

Al = (3.10)

The new pitch angle is Opey, = Ooiq + AB. This quantity is low-pass filtered via expo-
nential smoothing [Gehrig 91].

3.3.10 Camera Calibration

An abundance of calibration algorithms can be found in the literature (see e.g. [Tsai 87]
and [Lenz et al. 89]). For our research, we performed the following calibration steps.

ldetecting an obstacle where there is none
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External Camera Parameters

The external camera orientation of two parallel optical axes is achieved in the following
way [Schenk 98]: Looking at a point at a far distance, the rays enter both cameras at
the same angle due to

lim (tan(w) - tan(w)> = 0. (3.11)

Re—00 zc zc

When superimposing the pictures of the two cameras, rotatory differences are compen-
sated by bringing the horizons of both images into the same location. The yaw angle
difference is compensated by looking at a point far away and bringing this point to the
same location in both images.

This procedure yields an accuracy of about one pixel. Due to lens distortions and
neglect of the principal point, the optical axes might still not be perfectly parallel, i.e.
the convergence angle is not zero. A convergence angle of about 1° is realistic taking into
account the observations made in [Lenz et al. 89]. In [Overington 92| investigations
showed that up to a convergence angle of 6° disparity determination does not suffer
significantly when assuming parallel sensor planes.

Internal Camera Parameters

As an extension to the pin-hole model we also took the first order radial distortion
and the position of the principal point into account. The transformation equations
extending the pin-hole model to a model with radial first order lens distortion can be
found in e.g. [Schenk 98] or [Altunbasak et al. 99].

Due to computation time constraints, this transformation is only applied to the
already found 3D points. Hence, this transformation can only be applied to a stereo
camera system with very similar focal lengths and distortion coefficients. In addition,
the epipolar lines are still assumed to be lines, which is only valid up to a certain
lens distortion. The radial distortion coefficient is determined empirically by observing
reconstructed 3D points of a structured wall. With a distortion coefficient of zero
the wall appears pillow-shaped. With the correct distortion coefficient the wall is
reconstructed in 3D as a plane.

3.4 Planning and Decision

After perceiving the environment, plans and decisions have to be made to achieve an
appropriate response to the situation. This task is performed by the planning and
decision module. Another term in the literature for this task is behavior control. This
module determines the behavior of the vehicle. For the system described so far, the
main task of the planning and decision module is to select the leader vehicle and to
send the appropriate data to the controller.
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3.4.1 Determining the Leader Vehicle

[Hofmeyer 99] describes an algorithm that finds a leader vehicle for control purposes.
It takes the current steering wheel angle as a basis for the corridor in which to look for
a leader vehicle.

We take a similar approach. The basic idea underlying our approach is to assume
that little steering variations occur until one passes the current position of the leader
vehicle. Consequently the path associated with the current steering angle is projected
forward via the Ackermann model and the first object to intersect with this corridor
is considered the leader vehicle [Gehrig et al. 98a]. All other objects are considered
obstacles since they represent locations that have to be avoided. An extension of this
leader vehicle determination is described in Chapter 4.

The current leader vehicle position coordinates, the relative velocity, and the rel-
ative acceleration are sent to the control module. These values will be modified with
additional algorithms in subsequent chapters.

3.4.2 Human Machine Interface

The planning and decision module also hosts the human machine interface. While
driving autonomously, no human interaction is required. When driving manually and
a leader vehicle is available, i.e. when an object is found within the steering angle
corridor, the driver has to engage the system to start the autonomous driving mode.

Control is given back to the driver when an infeasible or dangerous situation is
detected, e.g. when the vehicle is not on a collision-free path anymore.

Control is also given back to the driver when the leader vehicle cannot be tracked
anymore. Reasons for that might be that the leader vehicle disappeared out of the
sensor’s field of view or that the leader vehicle was occluded.

3.5 Controller Algorithms

This section describes the controller algorithms used for the vehicle-following system.
After solving the recognition task, a desired path to follow has to be chosen. This path
has to be converted to control commands for the actuators. The actuators steer the
vehicle into the desired direction, closing the loop of recognition, decision, and control.
The first part gives an introduction to control theory followed by descriptions of the
longitudinal and lateral controllers, the vehicle sensors, and the actuators.

3.5.1 Introduction to Control Theory

[Follinger 94] gives a general introduction to linear control theory, compares observers
and Kalman filters and gives definitions of observability, controllability, and related
terms. More advanced topics, especially non-linear control theory, are covered in e.g.
[Isidori 95].

The controllers described here have mainly a linear structure relying on the three
standard control blocks: Proportional (P), Differential (D), and Integral (I).
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In this context, it is sufficient to know that a controller steers a controllable quantity
from any currently observed value to a desired value. The relation governing the desired
quantity is called the control law. By using a feedback proportional to the difference of
current and desired quantity, Agq, a P controller is implemented. In the same manner, I
and D controllers and combinations thereof can be created to obtain a feedback of the
derivative or the integral of Ag. This is only applicable when the controllable quantity
is directly observable, which is the case here.

3.5.2 The Longitudinal Controller

The longitudinal controller receives the distance, the ego-velocity, the relative velocity
to the leader vehicle, and the relative acceleration as input. From that a desired
acceleration is obtained that keeps a safety distance to the leader vehicle. For comfort,
not a strict distance is kept but rather intrusion into the safety zone is allowed. Here,
the control quantity is the difference between desired and measured acceleration.

The desired acceleration is fed into a PID controller and this value is converted
to desired brake pressure for the brake or desired torque for the motor management.
The motor management converts the desired torque to an actual throttle position. A
detailed description of the longitudinal controller can be found in [Fritz 98].

The safety distance is defined to be 1.8s time distance to the preceding vehicle, i.e.
the ego-vehicle always passes through a point on the road 1.8s later than the leader
vehicle. Vehicles driving closer than 0.9s behind the preceding vehicle are subject
to fines in Germany (see Bufigeldkatalog, violation number 404021). Thus, although
control techniques would allow a much closer inter-vehicle spacing for electronically
connected vehicles, a commercially available vehicle-following system would have to
obey the safety distance in order to be ready for manual takeovers at any time.

3.5.3 The Lateral Controller

The lateral controller receives distance and lateral offset to the leader vehicle as input.
From that a desired steering angle is computed. The difference between desired and
measured steering angle constitutes the controllable quantity that is regulated to zero.
The basic assumption for following a leader vehicle is that the measured rear of the
leader vehicle and the rear wheels of the ego-vehicle follow through the same circular
arc. This approach is presented in more detail in [Fritz 99]. Additional introductory
information on steering models for cars can be found in [Zomotor 87] or [DeSantis 95].
The resulting steering angle derived from these kinematic relations is fed into a PID
controller which yields the desired steering angle as output for the steering actuator.

This control scheme allows accurate vehicle following when going straight and when
driving in a curve with constant radius. Deviations from the leader vehicle’s path
occur in other cases. Modifications and extensions to this lateral control scheme and
alternatives are discussed in much more detail in Chapter 4.
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3.5.4 Vehicle Sensors

Only the standard velocity sensor displayed at the speedometer is used. It is based on
measuring the revolutions of the wheels, which is fairly accurate for velocities above
2m/s and good traction.

To sense the wheel angle, the steering wheel position is sensed. With the known
transmission ratio, the wheel angle is obtained easily. For sensing the steering wheel
position a rough position sensor is used. For more accuracy, an incremental sensor
is used that detects the steering wheel movements accurately. However, initialization
for the zero position is occasionally inaccurate and leaves a bias on the steering angle
measurements.

3.5.5 Actuators

The actuators used to perform vehicle following are an electronic throttle, electronic
brake, and an electronic steering wheel. The electronic brake receives a desired brake
pressure, and the electronic throttle receives a desired torque for the motor manage-
ment.

The electronic wheel used for the lateral control is similar to and based on a wind-
shield wiper motor that receives a desired current which it converts to a new steering
angle at the wheel.

The desired steering angle from the lateral control uses a vehicle model to determine
a desired torque on the steering wheel to hold this wheel position. The current steering
angle minus the desired steering angle yields a desired torque on the steering wheel to
change to that position. Adding these two values delivers the total desired torque on
the steering wheel and is translated to a desired current for the electronic motor. Again
through a low-level controller, this desired current moves the steering wheel and hence
the wheel. Since this motor is an inexpensive and only moderately accurate solution,
latencies and delays must be taken into account when designing the lateral control.

3.6 Off-line Development Environment

The development environment in the laboratory allows the use of the same image
processing algorithms off-line with additional debug information. We use Vista [Pope
et al. 94] to visualize the images and overlay our detection results. Instead of using
the frame grabber as image input we use images recorded while driving.

Whenever we encounter inexplicable detection failures we record the image sequence
and analyze the sequence off-line. These failures are reproduced in the off-line envi-
ronment and enhancements to prevent these failures can be made.

3.7 Simulation Environment

Several simulation models have been developed to verify the algorithms of this the-
sis. The complexity of the simulation environment gradually increases, putting more
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realism into the simulation.

3.7.1 Path-Based Vehicle Following

The basic simulation environment is used to verify the vehicle-following properties.
The leader vehicle is simulated as a point mass modeling the vehicle behavior as a one-
track bicycle model. The same dynamics apply to the ego-vehicle. See Section 4.5.2
for a detailed description of the vehicle model. An agenda can be pre-selected for the
leader vehicle and the ego-vehicle behavior is simulated with the actual controller code
and vehicle dynamics.

The sequence in the simulation is identical to the real system depicted in Figure 3.3.
The object detection system, i.e. the main sensor system is simulated. The planning
& decision, control, actuators and vehicle motion are either simulated or the simulated
object detection is applied to the research vehicle and real vehicle motion is generated.
When the research vehicle follows the simulated leader vehicle, excellent verification
and reproduction opportunities are available to the controller algorithms and for the
planning & decision system. In addition, vehicle dynamics models and actuator models
can be verified and tuned.

3.7.2 Ego-Position Estimation and Cartography

To verify the ego-position estimation algorithms, an extension to an arbitrary number
of obstacles, i.e. landmarks, is performed. In addition, lanes can be added to the
simulation.

Moreover, error models for the landmarks, lanes, and for the ego-vehicle sensors are
introduced. Both biases and proportional errors are implemented with varying weights.
Multimodal error distributions were not implemented. Bias errors are especially consid-
ered relevant for the steering angle, and proportional errors for the velocity. Obstacle
measurements receive a noise signal uniformly distributed. No Gaussian distribution
is used to avoid favorable distributions for the Kalman filter (see Section 5.5). The
simulation setup can be used to verify additional trajectory-planning algorithms for
parking maneuvers in the research vehicle.

3.7.3 Collision Avoidance

For collision avoidance, the dimensions of the point masses become relevant. So every
obstacle receives rectangular dimensions with arbitrary orientation. Thus, the environ-
ment around the vehicle is simulated as a box world. The whole image processing part
can be skipped and all relevant obstacle data is generated via simulation. The further
extension to more complex convex hulls is left to the real image processing system since
no principal benefit is expected for the simulation system.

The sensor simulation generates data in the x-z-plane, i.e. along the road surface.
No vertical road modeling is performed. Tests in the following chapters justify this
decision. Vertical variations of the road shape are accounted for by adapting the pitch
angle (see Section 3.3.9). Roll movements (rotations around the vehicle’s longitudinal
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axis) are negligible when driving a car with lateral accelerations below 4m/s%. Later-
ally slanted roads affect the tracking accuracy of the controller and are considered by
allowing a steering angle bias (see Chapter 5).



Chapter 4
Path-Based Vehicle Following

Q_ novel algorithm for the lateral control of vehicle-following systems is introduced
in this chapter. At the end of the introduction section, a chapter overview is
given.

4.1 Introduction

A crucial task for steering an autonomous vehicle along a safe path in a vehicle-following
scenario is the lateral control. The sensory input of such a lateral control are the posi-
tion coordinates of the leader vehicle (e.g. [Franke et al. 95]). The following problem
occurs: Due to the distance between the leader vehicle and the autonomous vehicle,
the lateral control has to interpolate a path between the two vehicles. Using as a path
either a straight line or a curve of constant curvature causes the autonomous vehicle
to deviate from the leader vehicle’s path. Before going into a detailed analysis of the
problem, the solution is summarized in the following.

Given a system delivering 3D points of the leader vehicle with time tags, one has
a handle to reconstruct the leader vehicle’s trajectory. In addition, one has to com-
pensate for the motion of the ego-vehicle by using its motion parameters. Once this
transformation is performed, the position coordinates of the leader vehicle are available
in an inertial reference frame. Knowing the position of the ego-vehicle in that refer-
ence frame, one can select any path point of the leader vehicle as input to the lateral
controller. This simple approach increases the precision of vehicle following systems
significantly and delivers a good starting point for collision avoidance systems that
require an initial path.

How is this chapter organized? In Section 4.2, the main problem is stated. Sec-
tion 4.3 gives an overview of related work. Section 4.4 introduces a new algorithm that
solves the problem explained above and allows exact path-following. In Section 4.5 a
mathematical treatment of the algorithm is provided. The impact of the new algorithm
on the planning and decision module is detailed in Section 4.6. Modifications to the
lateral controller are described in Section 4.7. Section 4.8 contains both simulation
results and results from our research vehicle. The final section summarizes, discusses
the results, and makes comparisons to other systems.

41
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4.2 Problem Statement

Ideally in a vehicle-following scenario, the autonomous ego-vehicle follows exactly the
path of the leader vehicle. Hereby, a path is defined by a series of points. A trajectory
is a path that includes time information at every point in space.

Browsing through the described vehicle-following systems in the literature, the lat-
eral control exhibits one serious drawback: With only using the current position infor-
mation of the leader vehicle, one has to interpolate the path between the two vehicles.
Both a straight line (trailer model) and a curve with constant curvature (circular arc)
have been tried in previous applications. The arc takes the non-holonomic constraint
of car-like vehicles into account. The non-holonomic constraint only allows motion
along the vehicle’s longitudinal axis according to the steering angle position at the
front wheels. These interpolation approaches cause the ego-vehicle to deviate from the
leader vehicle’s path. The phenomenon scales with the distance to the leader vehicle.
In platooning applications this behavior can cause the ego-vehicle to hit an obstacle
such as the curb in a curve or a parking vehicle. The deviation Ad of the paths is
illustrated in Figure 4.1.

leader vehicle

_ path of leader vehicle

path of autonomous vehicle “/A d

distance d

J> §
autonomous vehicle

m m

Figure 4.1: Path of the autonomous vehicle contrasted with the leader vehicle path. The autonomous
vehicle uses a controller corresponding to the trailer model.

4.3 Related Work

Already an abundance of autonomous vehicle systems have been presented that have
vehicle-following capabilities (e.g. [Franke et al. 98, McLauchlan et al. 97]). In these
presentations a popular approach to laterally guide the ego-vehicle was either lane fol-
lowing (e.g. [McLauchlan et al. 97]) or vehicle following (e.g. [Franke et al. 95, [Daviet
et al. 96]).

The first vehicle-following system based on stereo vision known to the author has
been presented in [Kehtarnavaz et al. 91]. Detection of the leader vehicle was facili-
tated with a unique, actively illuminated pattern. Thus, only a dedicated leader vehicle
could be used.
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Juberts presents a vision-based road and car-following system in [Juberts et al. 93].
Due to transmission delays, a transformation via inertial sensors of the road model into
the current image frame is needed and performed. Results show that up to 90km/h
autonomous road following is feasible. A velocity-dependent lookahead is needed for the
controller to track the lane center (see [Guldner et al. 98] and [Guldner et al. 96] for
stability issues of that approach). The planned car-following system uses two different
tracking algorithms for short and long (up to 30m) range and optionally vehicle data
from the leader vehicle in order to respond more timely to changes in the leader vehicle
path. However, it only tracks the current leader vehicle position.

A different approach in vehicle following is to follow the path of the leader vehicle,
not only the current position coordinates of the leader vehicle. This approach has been
tried in applications, where vehicle-to-vehicle communication (e.g. [Tang et al. 96]) and
typically also some absolute positioning system (e.g. [Kawabe et al. 96]) is available.
This is called path following.

Platooning systems, that control platoons using absolute positioning methods (e.g.
magnetic markers [Guldner et al. 98]) only communicating with the roadway are re-
ferred to as point-following systems [Shladover et al. 91]. These systems orient them-
selves only w.r.t. the road and do not allow much flexibility in platoon composition
changes.

However, the approach introduced here applies vehicle following using a path to
a vision-based autonomous system without using any communication infrastructure
or absolute positioning system [Gehrig et al. 98b, Gehrig et al. 98c]. One similar ap-
proach can be found in [Sukthantar 93]. There, car-following at night is performed
with a monocular camera system. For the lateral control, the trace of the leader ve-
hicle is recorded in a global inertial reference frame. The necessary global position
estimation of the ego-vehicle is delivered by an on-board controller in contrast to our
research. The tracking strategy is similar to ours using a pure pursuit tracker with a
certain lookahead distance [Wallace et al. 85]. The underlying lateral control is based
on the so-called trailer model which exhibits the same properties as a trailer following
the leader vehicle.

4.4 Introduction to the CUT Algorithm

For the sake of simplicity, we assume perfect sensor data and a very fast controller and
actuator to explain the basic idea.

Unlike previous vehicle-following systems, the algorithm makes use of the time
history associated with the leader vehicle. The idea of using the history of detected
vehicle data has been used in [Schiffmann et al. 97 to determine the lane in front of
the vehicle assuming the preceding car drives in the lane.

To determine the leader vehicle’s trajectory it is sufficient to store the position
coordinates of the leader vehicle and the motion parameters of the ego-vehicle over
time. In order to transform the position coordinates into an inertial reference frame,
one has to compensate for the motion of the ego-vehicle by using the ego-vehicle velocity
and steering angle. Knowing the position of the ego-vehicle in the inertial reference
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frame, one can select any path point of the leader vehicle as input to the lateral control.

However, real lateral controllers and actuators have a certain delay to guarantee
good damping characteristics and compensate for measurement errors of the sensor
data. The next path point to travel through must be a certain distance away from the
ego-vehicle in order to allow the desired steering angle to have an impact on the ego-
trajectory. To account for that, our algorithm always selects the path point that exceeds
a certain lookahead distance measured from the ego-vehicle. A linear interpolation
between path points is sufficient since their spacing is narrow. Furthermore, we adjust
the lookahead proportional to the ego-velocity which yields a constant time difference
between leader vehicle and ego-vehicle for all the path points passed through. This
accounts for the delay of the controller and actuator. A constant lookahead part is
added to account for the measurement errors of the sensors. Thus, the lookahead
distance [ has a constant part [,,;, accounting for measurement uncertainties and a
part proportional to the ego-velocity t;,. to account for the delay incurred by the
controller and actuator:

I = lmin + Vego ° Line- (41)

The mechanism is illustrated in Figure 4.2. Previous algorithms would have selected
the path point at t,.

This procedure enables us to follow arbitrarily shaped paths within non-holonomic
constraints, provided an ideal actuator and ideal measurements are available. Due to
filtering and actuator imperfections, path-following performance decreases for paths
with highly varying curvatures. Assuming the normal driving behavior of lane fol-
lowing, road geometry guidelines limit the variation in curvature changes on a road
(see e.g. [Behringer 94] for the guidelines of German road construction). Instantaneous
changes in orientation are not feasible due to the non-holonomic constraint of a car-like
vehicle. This non-holonomic constraint applies to the leader vehicle as well. Summa-
rizing one can say, that vehicle kinematics, vehicle dynamics, and actuator delays limit
the accuracy of the path-following algorithm.

The algorithm explained above is referred to as the CUT algorithm (CUT - Control
Using Trajectory) in subsequent sections.

4.5 Quantitative Analysis

4.5.1 Transformation into an Inertial Reference Frame

For the subsequent analysis, the reference frame introduced in Section 3.3.2 is used.
The origin is located at the sensor center (in the middle between the two CCD cameras)
projected onto the z-z-plane on the ground. The global reference frame is equivalent
to the local reference frame at the time of initialization and remains stationary. These
reference frames are visualized in the previous figures.

The (z, z) coordinates of the leader vehicle, the ego-velocity and steering angle are
needed to reconstruct both trajectories. We consider the problem in the z-z-plane. In
a first step the coordinates of the ego-vehicle are transformed into an inertial reference
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Figure 4.2: Mechanism of the CUT algorithm. Circles represent trajectory points of the ego-vehicle,
crosses represent points of the leader vehicle.
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Here veg0,, denotes the ego-vehicle velocity at time step n and ® denotes the change of
orientation since initialization (®¢ = 0):

A
b &,,® =508, (4.3)

frame:

360° - Jegon =2
Tego,n
®; reflects the change of orientation due to steering at time step ¢, n refers to the
current time step, n — 1 to the previous one. 7.4, is the radius of the ego-vehicle
connected to the steering angle (see Section 4.5.2). The primed coordinates refer to
the inertial reference frame.
In a second step, the coordinates for the leader vehicle are transformed into the
same reference frame:
(z,2) = (2, 2)

()= (G o (2). "

The above transformations are applied iteratively for every time step allowing the
coordinates to be transformed to any point and orientation the ego-vehicle has passed
through.
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The third and final step consists of transforming the trajectory of the leader vehicle
back into the reference frame of the ego-vehicle at the current time step:

() =ren(5)- (G ) (43)

The trajectory points are labeled with ¢ here to emphasize the fact that these trajectory
points are associated with time-stamps prior to the current time-stamp (n > 7).

From these trajectory coordinates (z;,2;), one is selected as input to the lateral
controller.

4.5.2 The Vehicle Model

The radius of curvature 74, is derived from the steering angle § using the Ackermann
model [Zomotor 87] extended by the self-steering gradient (see Figure 4.3). A detailed
description of vehicle models can be found in [Bergman 65] or [Bundorf 67]. The Ack-
ermann model is limited to small velocities and small lateral accelerations. In order to
make the Ackermann model also valid for higher velocities, the self-steering gradient of
the ego-vehicle is taken into account. This quantity subsumes the effects of moment of
inertia around the y-axis of the vehicle and its cornering stiffness. It is easily obtained

from data sheets.

a+b+SSG -2,
€gq0 4.
tan(s) (4.6)

Tego = 4/ 22 + b2. (4.7)

SSG denotes the self-steering gradient in [rad-s%/m]. See Figure 4.3 for an explanation
of the other used quantities.

Te =
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Figure 4.3: Ackermann Model (a: distance center to {ront axle, b: distance center to rear axle).

The model introduced here covers the steering behavior of a regular car for sta-
tionary steering behavior. In the integration step, the side slip angle is neglected.
Hence, the vehicle always moves along the vehicle’s longitudinal axis. Other models
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[Zomotor 87] that include side slip and steering behavior beyond 4m/s? lateral ac-
celeration can be used to compute 7.4, from 6 to extend the validity of the vehicle
model.

4.6 Planning and Decision for CUT

The CUT algorithm is an extension to the lateral control of the original algorithm pre-
sented in Chapter 3. Thus, the interface to the lateral controller needs to be modified.
This is described in the following.

The algorithm presented here enables us to find the leader vehicle from previous
frames more easily. Since we know the path of the leader vehicle (up to the previous
frame), we use this corridor to look for the new vehicle in the current frame when
driving autonomously. This works well for small interframe scene changes. With this
strategy, also strongly varying path shapes of the leader vehicle lead to the desired
leader vehicle. Previously, the leader vehicle might have been lost since the corridor
projected by the steering angle would not have led to the leader vehicle when the path
curvature strongly varied.

The driving states and their transition conditions are summarized in Figure 4.4.

The leader vehicle path as the search corridor is only used in the autonomous
driving mode. In manual driving mode, the leader vehicle is always selected using
the steering angle corridor. The reason is that in manual driving mode, the unknown
driver’s intentions guide the vehicle. Little changes in steering position are assumed.
The same argument applies to the initial detection of a leader vehicle, where also the
steering angle corridor is used to find a leader vehicle.

LV detected autonomous system engaged

LV tracked

9

autonomou

no LV

LV tracked/changed

manual manual

driving driving driving
mode mode mode
w/o LV w/ LV w/ LV

infeasible situation detected

LV = Leader Vehicle

LV lost

LV lost

Figure 4.4: State transition diagram of the different driving modes.
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4.7 The Lateral Control

4.7.1 Interface of the Lateral Controller

In previously presented lateral control algorithms [Franke et al. 95], the current = and
z position of the leader vehicle has been the input to the lateral control. This also
holds true for the controller presented in Chapter 3.5.3. These quantities are now
replaced by the z and z position of a path point closer to the ego-vehicle determined
by the lookahead distance. Using the same control law, the desired steering angle is
computed. The output to the actuator is the filtered desired steering angle.

4.7.2 The Lateral Controller

The choice of the lateral control algorithm is uncritical with respect to the interpolation
strategy since the distance to the target path point is comparatively small. Hence no
significant deviations occur. The path interpolation strategy (e.g. circular arc, straight
line) determines the control law.

However, a controller and an actuator with little delay and comparatively high
dynamics are needed to follow arbitrary paths. Design issues of such controllers are
beyond the scope of this thesis. These issues are addressed for the case of vision-based
lane-following in [Kosecka 98] and references therein.

In our simulation and in the research vehicle, the lateral control algorithm interpo-
lates a circular arc in the way described in Chapter 3.5.3.

In robotics, a generalization of the path following method is presented in [DDR99]
compared to trajectory tracking. Extending these ideas taking vehicle dynamics into
account is very tedious. Consequently, the PID controller described in Chapter 3.5.3
is used with above modifications.

4.8 Results

4.8.1 Simulation Results with an Ideal Controller

For the simulation a typical European street profile including a clothoid followed by a
circular arc such as shown in Figure 4.5 is used. The velocity of both vehicles is 10m/s
approximately constant over time and their distance is 25m constant over time.

The chosen street profile reflects a worst-case-scenario for vehicle following in our
application with limited opening angle of the sensor and limited velocity range in urban
areas.

The simulated controller assumes a circular arc and the actuator regulates the new
steering angle within 80ms. The lookahead distance is 12m from the sensor (11m from
the front axle). Simulation results are shown in Figure 4.6. Negative deviations are
deviations towards the center of the curve. The dashed line denotes the old approach
and the solid line marks the deviation using the CUT algorithm. Even less deviation can
be achieved by further reducing the lookahead but this also compromises the damping
characteristics of a realistic lateral controller.
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Figure 4.5: Route used for the simulation (coordinates in m).
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Figure 4.6: Simulated deviation of the trajectories between the ego-vehicle and the leader vehicle.
The solid line denotes the deviation using the CUT algorithm, the dashed line indicates the standard
approach.
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The above simulation did not take any uncertainties into account. For a simple noise
model, we take a noise signal of 3% of the distance uniformly distributed in z and of
0.5m uniformly distributed in z. That reflects the fact that position measurements
with 3D sensors typically have an error proportional to the distance. The noise in z-
direction is assumed to be independent of the distance since other effects incurring noise
such as occlusion dominate the error. No filtering of the sensor data was performed.
Figure 4.7 shows the results of the simulation including noise. No significant changes
occur compared to the perfect sensor data.
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Figure 4.7: Simulated deviation of the trajectories of the ego-vehicle to the leader vehicle with noise.
The simulated noise is 3% of the distance uniformly distributed in z and 0.5m uniformly distributed

in z.

4.8.2 Limitations of the Simulation

Above simulations illustrate the principal mechanism of the CUT algorithm. However,
it does not reflect reality in several respects:

e Real 3D sensor data needs filtering. The Kalman filter [Kalman 60] proves to be

a good means of filtering for data that can be associated with a dynamic model.
It is used for the trajectory measurements of the leader vehicle in our autonomous
vehicle. The dynamics are modeled using position, velocity, acceleration and jolt.
More details on Kalman filters are presented in Chapter 5.

The lateral controller and especially the actuator have slower control character-
istics than the simulated controller and actuator. Hence more delay occurs than
in the simulation.

The motion parameters used for the transformation have measurement errors.
In addition, systematic errors occur when the Ackermann model is violated, e.g.
when side slip occurs. Other effects include side winds and roads slanted along
the roll (z) axis. These errors are bounded and do not accumulate over time since
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only the relative position between ego-vehicle and leader vehicle is used. The ego-
velocity and steering angle are quite accurate since effects such as skewing are
negligible in the urban velocity range. Although measurements of the steering
angle are inaccurate for small velocities and hence yield inaccurate path curva-
ture, their contribution to the uncertainties is small because only the product
Vego - f(8)! appears in the transformation equations. Also, the imprecise velocity
measurements for velocities close to zero do not contribute much to errors since
only the integral of the velocity contributes to the transformation. For higher ve-
locities, the Ackermann model becomes invalid for comparatively small steering
angles. With the introduction of the self-steering gradient, this effect is taken
into account. To even extend the model beyond the stationary steering behavior,
more refined models have to be used. The most dominant error of ego-motion
estimation appears in a scenario where the car is driven at a small velocity over
an extended period of time. This problem is addressed in Chapter 5.

e 3D imaging devices have limited opening angle. For extremely curved trajectories
the leader vehicle might fall out of the field of view of the sensor device. This is
not taken into account in the simulation.

e The noise model used in the simulation is not realistic. Effects such as occlusion
are not taken into account.

4.8.3 Simulation Results with a Realistic Controller

We used our actual controller code and an actuator model to simulate a more realistic
behavior of the lateral control. The delay between desired steering angle and actual
steering angle is about 350ms, and all steering commands are low-pass filtered. More-
over, the real longitudinal controller is used, which leads to shorter distances between
ego-vehicle and leader vehicle. This reduces the effect of curve-cutting due to smaller
lateral offsets. We used the same profile from Figure 4.5 and applied the new controller
model. On average, the distance between ego-vehicle and leader vehicle was about 15m
being less towards the end of the simulation. Figure 4.8 shows a result of this simula-
tion. The lookahead distance was set to 9m. The standard approach still cuts the first
corner by 50cm whereas the CUT algorithm stays on track. While driving through the
curve, both approaches exhibit a lateral deviation of about 25¢m due to the actuator
delays. The overshoot at the end of the curve does not occur because the distance
between the two vehicles is about the lookahead distance at that point.

4.8.4 Real-World Results

Our test vehicle, the Mercedes-Benz E420 described in Chapter 3, is equipped with
actuators for throttle, brake, and steering wheel. The sensor system consists of two
CCD-cameras using stereopsis. The results presented here are obtained with cameras
having an opening angle of about 30°.

!Plugging Equation 4.6 into Equation 4.7 and that result into Equation 4.3 yields Function f.
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Deviation of Trajectories
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Figure 4.8: Simulated deviation of the trajectories between the ego-vehicle and the leader vehicle
using the full controller code. The solid line denotes the deviation using the CUT algorithm, the
dashed line indicates the standard approach.

The center of the leader vehicle is measured as described in Chapter 3.3.7. Other
approaches in truck platoons use a fixed pattern to determine the center of the leader
vehicle [Franke et al. 95]. The lateral z and longitudinal z coordinates of the leader
vehicle center are sent to the CUT algorithm.

In order to have the same initial conditions and the same behavior of the leader
vehicle we chose to use another simulation in the vehicle that creates a virtual leader
vehicle. We pick the same profile as in the off-line simulation for the leader vehicle
(only the first part of it due to limited space). The distance to the ego-vehicle is around
25m. The lookahead distance is set to 11m.

The controller presented in Section 3.5.3 is used. For passenger comfort and to
compensate for measurement errors the controller performs extensive low-pass filtering.
The intrinsic frequency of the vehicle of about 6 Hz has to be filtered out to avoid
resonances. In general, there is a tradeoff between ride comfort and path tracking
precision. In order to guarantee a comfortable ride, extensive smoothing has to be
performed which lacks tracking precision for leader vehicle driven in a sporty fashion.
The controller and actuator combined have a delay of around 350ms between desired
steering angle as computed from the z and 2z coordinates and measured steering angle
due to filtering and delay of the actuator.

Figure 4.9 shows a plot of the deviations of the paths between the leader vehicle
and the ego-vehicle. Negative deviations refer to deviations towards the inner side of
the curve (cutting the corner). As expected the standard approach of vehicle following
results in cutting the corner when driving through a clothoid. The path of the ego-
vehicle exhibits a slight overshoot due to the actuator delay. A decreased lookahead
distance leads to less damping and necessitates a faster actuator response.

In addition, the new CUT algorithm has been tested under real traffic conditions.
No instabilities or oscillating phenomena were observed. A comfortable ride was pro-
vided at all times. Storing several traffic scenes with lateral and longitudinal controller
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Figure 4.9: Real deviation of the trajectories between the ego-vehicle and the leader vehicle (solid:
CUT algorithm, dashed: Controller interpolating an arc), measured in the autonomous test car.

active and reconstructing the trajectories never yielded a deviation above 0.4m for
the CUT algorithm. Without the CUT algorithm, the observed deviations were much
larger in very similar traffic situations. These numbers are imprecise since the measure-
ment errors of the leader vehicle are not known. On the other hand the on-board leader
vehicle simulation used above provides perfect sensor data for proper comparison.

The motion parameters of the ego-vehicle were evaluated in a separate analysis.
Velocity measurements showed errors of less than 2% above 2m/s and the absolute
errors for smaller velocities were also within 1m/s, which does not contribute much
to errors of the path reconstruction. The steering angle turned out to be a critical
parameter. A steering angle bias of the sensor can be detected by comparing the
reconstructed trajectories going through a circle path both clockwise and counter-
clockwise. Errors on the steering angle sensor were found to be less than 2% for path
reconstruction under low lateral accelerations and dry weather conditions. In one out
of ten runs, a significant steering angle bias persisted (see Section 3.5.4). Motion
parameter errors can be compensated by measuring stationary objects in the traffic
scene (see Chapter 5).

4.9 Discussion

4.9.1 Comparison to Other Vehicle-Following Systems

Only very few quantitative data of vision-based vehicle-following systems are published.
Typically, the path deviation from the leader vehicle’s path is a good measurement qual-
ity. However, tracking performance depends greatly on the maneuvers of the leader
vehicle. Tracking performance degrades with increasing steering variations. In addi-
tion, the performance also depends heavily on the actuator hardware. So comparisons
are hard to make.
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[Daviet et al. 96] reports a lateral deviation of up to 60cm when following a leader
vehicle at 10m distance using a trailer model for the controller. [Kehtarnavaz et al.
91] reports deviations of up to 25¢m when following the car at about 11m/s on a 35m
radius with a distance of about 16m. Here the Ackermann model controller is used.

Vehicle-following systems using magnetic or electric markers exhibit typically a
better performance for path-tracking, e.g. [Guldner et al. 98] performs path-tracking
with path deviations of less than 20cm at all times.

[Fritz 99] quotes a lateral deviation of less than 30cm at all times with a controller
very similar to ours. In the tested scenarios, the distance to the leader vehicle is kept
comparatively small such that path deviations due to steering variations do not have
much impact. Again, a comparison is hard to make since in this application a truck is
used and the actuator hardware is different.

4.9.2 Discussion of the Proposed System

The CUT algorithm achieves a significant improvement in precision for the lateral
control in vehicle following systems at very little computational expense. To take
varying measurement quality of the position into account, the lookahead distance can be
adjusted accordingly. The error covariance matrices of the Kalman filtered trajectories
provide a good measurement of the quality. High diagonal values in the error covariance
matrix lead to an increase of the lookahead distance.

In addition, it is possible to estimate the current deviation of the ego-vehicle from
the leader vehicle’s path. Since both paths are computed in the same global reference
frame, a distance can be calculated. From that quantity one can derive the total
uncertainty of the control loop and adjust the lookahead distance accordingly.

Similar to the lateral control, a longitudinal control algorithm can be built: The
acceleration of the leader vehicle can be stored at every trajectory point and can be used
to obtain the same acceleration at the same position for the ego-vehicle. We decided
to keep the current longitudinal safety-distance-keeping control algorithm, because for
such an approach no remaining minimum distance is applicable. Future work on path-
based vehicle-following is addressed in Section 8.4.1.

The reconstructed leader vehicle path enables us to perform additional path plan-
ning taking other obstacles into account (see Chapter 7). The transformation into an
inertial reference frame and consequently the measurement of the motion parameters
can be improved significantly by using visual cues from the cameras. This is a common
approach in the field of robotics (see e.g. [Asada et al. 90]) and is discussed in the
following chapter.



Chapter 5

Ego-Position Estimation Using
Stereo Vision

N ecessitated by the previous chapter, an ego-position estimation algorithm is pre-
sented in this chapter to improve self-localization in an inertial reference frame.
The chapter overview can be found at the end of the introduction section.

5.1 Introduction

Our main objective in this chapter is to perform an ego-position estimate. We need
ego-position estimation to properly associate 3D data among the frames. Ego-position
estimation using only standard vehicle odometry (velocity and steering angle) can cause
non-negligible errors, especially in situations where side slip or skidding occurs. We
use stationary points in the scene to support the determination of our ego-position.
Two types of stationary objects are used: First, stationary vertical landmarks such as
traffic signs are used to compensate for errors in our localization prediction. Second,
lane markings measured in consecutive frames are used to compensate for orientation
errors. A precise ego-position estimation for intelligent vehicles is beneficial for the
following tasks:

e The CUT algorithm introduced in Chapter 4 benefits greatly from a precise ego-
position estimation. The path of the leader vehicle becomes more accurate with
a more accurate ego-position (see Equation 4.4).

e For proper mapping of the environment into an inertial reference frame using
sensor data from different times and viewpoints, ego-position estimation is of
uttermost importance.

e A good ego-position estimation enables us to improve our velocity estimate by
simple means (differentiation). This is especially relevant for small velocities
where the built-in vehicle sensor for velocity delivers erroneous readings. This
data improves the longitudinal control of the vehicle, since the decision whether
the car moves or not can be made more precisely.

e For parking maneuvers, a good ego-position estimate is necessary to properly
associate data from different frames (see Chapter 6).

99
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e With the approach chosen here, vehicle sensor data is combined with a vehicle
model for stationary steering behavior and compared to vision measurements. If a
large inconsistency of the two position estimates is found, the stationary steering
model no longer applies. The underlying road model implies full traction. Hence
the vehicle is most likely found in an unwanted state (skidding) and measures to
counteract that can be taken by steer-by-wire action.

How is this chapter organized? Section 5.2 gives an overview of related work both
in the field of intelligent vehicles and robotics. In Section 5.3 the necessary transfor-
mations and the vehicle model for motion integration are introduced. Ego-position
estimation techniques for an unknown environment are described in Section 5.4. The
Kalman filter used for that purpose is introduced in Section 5.5. The specific ego-
position estimation algorithms using vertical landmarks and lines are presented in Sec-
tion 5.6 and 5.7. A review on problems of observability connected with the proposed
algorithm is covered in Section 5.8. Alternative Kalman filter designs are discussed in
Section 5.9. Simulation results and real world results of our ego-position estimation
algorithms are shown in Section 5.10. A discussion comprises the final section.

5.2 Related Work

5.2.1 Overview

In the field of robotics, ego-position estimation, also called localization, is necessary for
successful navigation. In [Borenstein et al. 96], Borenstein tries to answer the related
question “where am I”. This book gives a thorough review of the localization methods
used to date. The main distinction is made between absolute positioning methods
(e.g. GPS) and relative positioning methods (e.g. dead reckoning). Dead reckoning
is a term borrowed from sailing (“deduced reckoning”) and refers to the procedure of
finding the current position by knowing a previous position and using velocity and
heading direction to deduce the current position.

Ego-position estimation is needed in almost all mobile robot applications. Ego-
position estimation in an unknown environment leads to the problem of relative ego-
position estimation. This position can be computed from the ego-motion. Integrating
the motion of the ego-vehicle leads to proper localization in an inertial reference frame.
Due to imperfect motion data localization errors accumulate over time.

The related work described here is limited to ego-position estimation algorithms
for unknown environments. A landmark navigation system where a priori knowledge
of the landmarks is needed can be found e.g. in [Hock 91]. First, vision-based local-
ization algorithms are described, followed by robot applications and intelligent vehicle
applications.

The algorithm described here has no absolute measurements available and relies
purely on relative position measurements but it is more than a dead reckoning approach
since more than the inertial sensors are used.
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5.2.2 Vision-Based Localization

An example of determining motion parameters from image sequences with several sim-
plifications is described in [Yagi et al. 88]. Most of the simplifications do not apply to
outdoor environments. [Asada et al. 90] determines motion parameters by matching
two consecutive views from a scene recorded with cameras mounted on top of a mobile
robot. Matching is performed by matching extracted line segments and the distance
is calculated via motion stereo. He also uses that information to create a relational
global map. In [Svoboda et al. 98] a vision-based ego-motion estimation algorithm is
described. Svoboda uses a panoramic camera view and estimates ego-motion from
motion flow of salient points.

A Dbiologically inspired ego-position estimation algorithm for homing (i.e. finding
back to your starting point) is described in [Steinhage et al. 98]. Minimalistic visual
navigation based on biological evidence is presented in [Franz 98], where a simple and
fast optical flow estimator is introduced.

[Adam et al. 99] presents a fusion of odometry and fixation using one camera. Only
the viewing angle to one observed landmark supports the odometry measurement. The
fusion is performed via a Kalman filter and yields only an improved vehicle dynamics
description, not an ego-position estimate directly.

In the robotics realm, [Chenavier et al. 92] introduces a similar approach to ours
that uses one camera. Chenavier extracts natural landmarks and uses their direction
to localize the mobile robot. In addition, odometry information is used and fused
with the landmarks using an extended Kalman filter. Since only the viewing angles of
the detected landmarks are used, three landmarks are needed to get an unambiguous
ego-position estimate.

A preliminary version of the algorithm described here has been developed in [Pen-
teker 99]. The ego-position estimation approaches of this thesis can also be found in
[Gehrig et al. 99a] and [Gehrig et al. 99c|.

5.2.3 Localization for Robots

[Yamauchi et al. 96] uses Evidence Grids (see Chapter 6) to support dead reckoning
by odometry. Evidence grids from previous frames are matched with the current grid.
[Edlinger et al. 91 presents a method based on correlation of laser range data and
odometry to obtain an ego-position estimate for a mobile robot. Continuous Local-
ization based on map-matching is presented in [Yamauchi et al. 98]. There, extracted
features from different times are matched. Localization via map matching and in-
tegration from three different sensor types, infrared, ultrasonic, and vision sensor, is
presented in [Courtney et al. 94]. Prior knowledge of the scene is necessary in that
approach.

5.2.4 Localization for Intelligent Vehicles

For cars, ego-motion estimation using vision clues has been investigated e.g. in [Uchi-
mura et al. 98] and [Wagner et al. 97]. In contrast to our research, they utilized only
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one camera. Both tracked several significant points in the scene and estimated the
motion flow. These works make extended use of the optical flow of image sequences.

[Ma et al. 98] describes a motion reconstruction algorithm of images for differential
views. Non-holonomic constraints of the motion simplify the algorithm. Comparisons
to other ego-motion estimation algorithms are made there and in references therein.

[Hsu 97] describes a method to determine motion parameters from images using
Kalman filters. The main purpose here lies in lane detection. Again, significant features
are tracked in time to determine the ego-motion.

Although impressive work has been performed in the field of localization, all al-
gorithms presented here put a considerable computational load on the system due to
feature extraction. We want to perform an ego-position estimate very quickly. Hence
a novel algorithm that uses 3D points already detected during object detection stage
is introduced here.

5.3 Ego-Position Estimation via Motion Integra-
tion

We do neither use an absolute positioning system such as GPS nor a gyroscope to
measure the yaw rate which leaves us with only the steering angle and the velocity to
integrate the ego-motion.

For the subsequent analysis, the reference frame introduced in Section 4.5 is used.
The global reference frame is equivalent to the local reference frame at the time of
initialization and remains stationary.

In order to transform the 3D measurements into the global reference frame, two
steps are performed. In the first step the coordinates of the ego-vehicle are transformed
into the global reference frame as described in Section 4.5.

In the second step, the 3D measurements are transformed into the global reference
frame, similar to Equation 4.4:

()-()ome(z) e

where the subscript m refers to measured 3D coordinates and [ refers to the measure-
ment in the local moving reference frame. The vehicle model underlying the vehicle
motion used here is described in Section 4.5.2. The integration of the vehicle motion in
this way yields an ego-position estimate that accumulates error over time. A method
to extend the ego-position estimation beyond dead reckoning is introduced in the next
section.

5.4 Ego-Position Estimation Using 3D Points

We want to support our ego-position estimation with an additional sensor. Our range
sensor, the calibrated stereo camera system, delivers 3D measurement of structured
points resulting in a sparse 3D point cloud (less than 1000 3D measurements). However,
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the algorithms described in the remainder of the chapter are applicable to any range
sensor delivering (sparse) range data.

The ego-motion estimation algorithms of Uchimura [Uchimura et al. 98] and Wag-
ner [Wagner et al. 97] rely heavily on good statistics since they need at least 50
significant points in a scene to produce a good estimation result. Hence, calculation
times of these algorithms with a fast processor are high. However, we need to perform
an ego-motion estimate very fast. Using the sensor data for velocity and steering angle
(see Section 3), our largest uncertainty lies in the estimation of the yaw angle and of
small velocities.

We decided to use stationary points in the scene to determine our ego-motion. Two
types of stationary objects are used (see Figure 5.1).

Vertical Landmarks: The first type of object are vertical landmarks such as traffic
signs, which are used to compensate for errors in our localization prediction.

Lane markings: The second type are lane markings, which are used to compensate
especially for orientation errors.

Our basic assumption is that all 3D points close to the ground are stationary (e.g.
moving shadows on the ground would violate this assumption). In addition, we as-
sume that a group of 3D points vertically aligned alongside the road are stationary as
well. This holds true for traffic lights, traffic signs, reflection posts, and trees, but a
skinny pedestrian walking alongside the road might be mistaken as stationary. These
primitives are input to our ego-position estimation algorithm.

Recursive matching of the current frame information with previous ones is per-
formed using the extended Kalman filter. This method is explained in the following
section.

5.5 Introduction to the Kalman Filter

Since most readers may not be familiar with the Kalman filter, a brief introduction is
deemed appropriate here.

-,

Figure 5.1: Typical traflic scene.
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For the purpose of fusing noisy 3D point measurements with noisy velocity and
steering angle measurements, an estimator is needed. An optimal linear estimator for
Gaussian distributed noise incorporating known system dynamics and noisy measure-
ments is the Kalman filter [Kalman 60)].

The Kalman filter [Kalman 60] is a set of mathematical equations that provides an
efficient solution to the discrete-data linear filtering problem. In this context, we limit
ourselves to a description of the discrete case. The continuous case does not provide
further insights. If the measurement or process relations are not linear, the extended
Kalman filter is used to attack the problem.

The Kalman filter algorithm consists of two steps: A time update step (“predic-
tion”) that uses only the system dynamics for prediction and a measurement update
(“correction”) step that incorporates the new measurements.

The Condensation-Algorithm as an alternative to the Kalman filter uses a stochastic
description and needs a-priori information of the error distributions but performs better
for highly non-Gaussian noise distributions (see e.g. [Isard et al. 98a, Isard et al. 98b]).

This Kalman filter introduction sticks to a common notation also found in [Welch
et al. 95]. For computer vision applications of the Kalman filter refer to [Faugeras 93]
and [Matthies et al. 89).

5.6 Ego-Position Estimation Using Vertical Land-
marks

5.6.1 Finding Vertical Landmarks

Vertical Landmarks were chosen as reference objects for ego-position estimation be-
cause they appear frequently along the road. Also, they have a unique and simple
signature: Their 3D points are vertically aligned. Searching through a pre-sorted list
of 3D points and checking for points with similar  and 2 coordinates is highly discrim-
inative in 3D and very fast. Furthermore, this method is particularly fast if one uses a
table of potential windows where to look for vertical alignments of 3D points. Other
heuristics such as limiting the search area to the area alongside the road can also be
used. Typical vertical landmarks that are suitable for ego-position estimation purposes
are traffic signs, reflections posts, and traffic lights. Trees along the road are also used
for that purpose. Summarizing, the detection and tracking of vertical landmarks works
as follows:

1. Detect structured 3D points in the current frame.
2. Remove 3D points located close to or under the road from the 3D point list.

3. Find vertical structures by comparing 3D locations of the found 3D points. 3D
points with similar 2 and 2 positions are connected. The position of the landmark
is the mean of all 3D points contributing to a vertical landmark. Alternatively,
a Hough transform of all 3D points can be performed that yields all line-like
structures above a certain threshold and yields their 3D locations by using a
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line fit for all contributing 3D points. This approach is computationally more
expensive but more accurate. An implementation of this approach is described
in [Penteker 99].

4. Once in tracking mode, only a narrow part around the area, where the last
landmark has been found, is searched for the landmark in the current frame. In
remaining areas new landmarks are searched. The search area for a landmark is
predicted via Kalman filter.

5.6.2 System Description

The Kalman filter equations and the variables involved are introduced along with our
ego-position estimation algorithm. The basic problem that the Kalman filter solves is
the estimation of the state Zy of a discrete-time controlled process that is governed by
the linear stochastic difference equation

.

fk—l—l = Akfk + Bﬁk + ’LUk = f(fk, l_l:k, u')'k) (52)
Measurements of the measurement vector Z’ are governed by
%, = HyZy, + T = h(Ty, O).- (5.3)

The random variables w, and U} represent process and measurement noise, respectively.
Ay, is the state transition matrix, B is the driving function matrix that relates the inputs
uy, to the states, 2} is the measurement vector. The index k denotes the sample time
step k. For a non-linear system, the matrices are replaced by the arbitrary functions
f and /_i, respectively.

We estimate the following states:

T
=1z |, (5.4)
o

where z, z, and ® are the location and orientation of the ego-vehicle.
Measurements are taken for x;; and z;;, the 3D-points of the local reference frame,
i.e. the raw measurement of the vertical landmarks from the moving vehicle:

AN
21,1
T2g | . (5.5)

29,1

Ny
I

The measured point refers to the measured vertical landmark projected onto the z-z-
plane. x; and z; are the global x and z-positions of the measured point.
The steering angle ¢ constitutes the vector for the driving function

u=1], (5.6)

which is actually incorporated in f in the extended Kalman filter formulation.
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5.6.3 Process Description

Using vehicle kinematics and the model derived in Section 4.5, we can formulate the
continuous system:

r = v-sind

z = wv-cos®d

. v

P S (5.7)
Tego (6)

Here, 7.4, denotes the path radius computed in Section 4.5.2. & is the orientation
w.r.t. the inertial reference frame. It is equivalent to the yaw angle in vehicle dynamics
applications when side slip is neglected. Implicitly stated are the following dynamics
equations for the vertical landmark:

Zp 0
21 0
:E.Q = 0
Za 0
(5.8)
From that we derive the Jacobian A,,ntinuous Of the system functions
0 0 v-cos®
Acontinwous = | 0 0 —v-sind | . (5.9)
00 0
By means of discretization one obtains the transition matrix A with
A — eAcontinuousAt_ (510)
Performing a Taylor expansion yields
1 0 v-cos®-At
A=|0 1 —v-sind®- At |. (5.11)

0 0 1

The control function B is not needed in the non-linear case. To compute the predicted
state £, the exact Equation 5.7 is used in discretized form:

Trp1 = [ (&, Gr)- (5.12)
To compute the error covariances, the transition matrix A is used:
P, = AP AT + Qx, (5.13)

where P~ is the error covariance projected ahead and () is the system noise matrix

describing the system uncertainty. We assume a linear system noise function w for

simplicity and consider the system noise of each state to be independent of the other

state, i.e. the states are uncorrelated. Thus all off-diagonal values of () are set to zero.
The system noise matrix ) could be adjusted in two cases:
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e The values of () are increased when the number of landmarks is increasing. The
more landmarks are found, the less important are the system model equations of
the system. The data of velocity and steering angle become less relevant.

e When the viewing angles between the landmarks is small, the ego-position esti-
mation using vertical landmarks becomes error-prone (triangulation with a small
angle, see Figure 5.3). Thus the values of ) are decreased to increase the confi-
dence in the motion integration.

The Kalman filter mechanism provides an adaptive scheme that covers these effects
to a certain extent. A small viewing angle yields a large measurement uncertainty
by error propagation and the measurements are automatically given less weight. The
number of landmarks is not explicitly taken into account in the Kalman filter, but little
variations in () do not affect the performance of the filter. Hence we keep the () values
constant (see Section 5.10.1).

5.6.4 Measurement Description

The measurement update step incorporates the new measurements. We measure z;;
and z;;, the coordinates of the vertical landmarks. These quantities are expressed in
terms of state variables (see Figure 5.2). Every additional landmark yields two new
measurement equations. We assume that our measurements are independent from each
other, i.e. uncorrelated. The measurement equations are

T1y Azicos® — Az sin® |
21 Az sin® + Az cos P

h(Z)=| 220 | = Azzcos® — Azpsin® | | (5.14)
24 Azosin® 4+ Azycos P

where Az; and Az; are shorthands for (z; — z) and (2; — 2), respectively. z; and z;
are the positions of the landmarks in the global reference frame. These values are
computed from the initial measurement transformed into the global reference frame.
Since a good initial localization leads to a better filter performance, one can re-adjust
the global location after a few measurements have been taken.

The Jacobian H of the measurement equations is straightforward to compute:

[ —cos® sin® —Az;sin® — Az cosP |

o —sin® —cos® Az;cos® — Az sind
H= _]z = | —cos® sin® —Axzysin® — Azycos® | | (5.15)
oz —sin® —cos® Azgcos® — Azysind

These equations are the input to the Kalman filter. The Kalman gain K is computed
using
Ky = Py Hi (Hy Py Hi + Ry) ™, (5.16)
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vertical landmark

global reference frame

Figure 5.2: Vertical landmark and lane marking measured from the global and the local frame.

where R is the measurement covariance matrix describing the measurement uncertainty.
The corrected state estimate is derived from

Th = Ty + K2k — h(Z,))- (5.17)

Equation 5.17 shows that an adjustment of the state prediction is only performed when
measurement Z;, and the predicted measurement of the predicted state h(Z,~) differ.
The corrected error covariance matrix is

Py = (I — KxHy)P; . (5.18)

Time update is performed at each time step. Measurement update steps are performed
whenever new measurements are available. When measurements for a landmark are
not renewed for a certain number of frames, the landmark is deleted. Measurement
variances are estimated using the relations between pixel noise and distance & offset:

err * 2§
Ry, = Roic12i1 = (%)2, (5.19)

2
Derr * zi,l

R, = Rai 2i :(f-k-b

)2, (5.20)

where pe,. denotes the pixel error. Refer to Section 3.3 for an explanation of the
other quantities. This non-linear error model for the depth stereo measurement is
also presented in [Matthies et al. 87]. Since the measurements are independent of each
other, all off-diagonal values are zero.
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5.7 Ego-Position Estimation Using Lanes

5.7.1 Finding Lane Markings

Finding lane markings is a standard procedure in intelligent vehicle applications (see
e.g. [Dickmanns et al. 94]). For our purpose we use 3D points extracted with our stereo
camera system and perform a Hough transform of all 3D points that lie close to the
ground plane. Only straight lane markings are considered in the current model.

Summarizing, the detection and tracking of straight lines on the ground works as
follows:

1. Detect structured 3D points in the current frame.
2. Remove 3D points located above the road from the 3D point list.

3. Find line structures by performing a Hough transform of all selected 3D points.
This yields all line-like structures above a certain threshold and yields their 3D
locations by using a line fit for all contributing 3D points. This approach is quite
accurate and efficient for the 3D points on the ground. Hough transform and line
fit parameters determine the quality of the found lines.

4. Once in tracking mode, only a narrow part around the area where the last line seg-
ment has been found is searched for the landmark. The other areas are searched
for new lines. The search area is predicted via Kalman filter.

We update line data into our map from the lane markings every frame using only
the steering angle and the velocity in the first step (time update). In the second step,
we match the old lane information in the map with our current lane information and
correct our ego-position accordingly (measurement update).

The system and process descriptions of that approach are identical to the previous
one. Only the measurement description changes.

5.7.2 Measurement Description

We measure the distance of each line to the sensor center, d;;, and its orientation, 6;,
the parameters of each lane marking in the local reference frame described by the line
parameters. Their counterparts d; and 6; in the global reference frame are related via

di,l = dz —T- COS(QZ') — - sin(ﬁi), (521)

0;; = 0; — ®. (5.22)

Consult Figure 5.2 for the geometrical relations. Again, every additional lane marking
yields two additional measurement equations just like in Equation 5.14 for the case of
vertical landmarks. The computation of the Jacobian H of the measurement equations
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is straightforward:

—cosf; —sinf; 0

a—; 0 0 _1
H= _]3 — | —cosfy —sinfy 0 | (5.23)
0z 0 0o -1

Measurement variances of d;; and 6;; are considered roughly constant since the vari-
ances are bound by the Hough transform parameters. The global line parameters are
initialized by the first measurement and can be adjusted later. The mechanism of the
measurement update proceeds in the same way explained in Section 5.6.4.

5.8 Observability and Controllability Issues

A proper Kalman filter design needs to address observability and controllability
issues in order to guarantee convergence of the filter at all times [Kalman 60, Joseph 87].
Controllability is only important for systems where the output is used to control a
system. Here we use the Kalman filter as an observer estimating positions. So only
observability is relevant here.

5.8.1 Observability

The system model for a Kalman filter has to be observable at all times. Otherwise
filter divergence might occur. Intuitively, a system is observable if the state vector
and the measurement vector have a one-to-one correspondence, that is if there exists
a bijective mapping between state and measurement vector.

More formally, a dynamical system is locally observable, if the observability matrix
Q) obtained from the observability mapping ¢ with

h
h
dh

dt

(5.24)

2y
I

and Q) = gg: has rank n, where n is the number of states. The derivation of this test can

be found e.g. in [Hsu et al. 68] or [Isidori 95]. The time derivates of / can be computed
by substituting the state variable derivatives with the corresponding system equations.
Two measurements from one landmark are not enough:

dh O8hdZ Oh - — 2 Az;sin® — 2-Az, cos®
T T F@ay = | T A L (5.29)
dt 0r¥dt 0OF —v + EAI& cos® — EAzl sin ®

e

Computing 3z yields
7 v g v v v ;
oh _| wgsin o - cos o —-Anm cos P+ Az sin @ . (5.26)
oT —2cos® “sin® — Az;sin® - Az cosd
€go €go €go ego
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The lines in Equation 5.26 are just multiples of the lines in Equation 5.15 which both
contribute to the matrix ). Higher time derivatives of k do not increase the rank of
Q. Consequently, rank(Q) = 2 < 3, which means that the system is not observable
when only one landmark is available. )

For two landmarks, the rank of () increases to three just by considering % for
all realistic cases (e.g. 1 # &), which means that the system is observable. This is
also intuitive if one considers the observation of two landmarks. Figure 5.3 shows two
landmarks with a radius of their distance to the ego-vehicle. When only one landmark
is observed, the vehicle can be on any point of the respective circle. When both are
observed, only the two intersection points are feasible solutions. The ambiguity is
resolved by the values of the x coordinates of the landmarks.

As shown above for the case of vertical landmarks, both types of stationary ob-
jects chosen here yield unobservable systems when only one object is detected. The
ego-position cannot be unambiguously computed from that information. This may
cause the Kalman filter to become divergent, but this behavior has not been observed.
Moreover, the same stable behavior has been observed in a similar approach using one
camera [Chenavier et al. 92]. Since we use 3D data, already two landmarks yield a
stable and observable localization.

5.8.2 Controllability

Controllability has to be fulfilled for closed-loop systems, i.e. systems that control
a system. In our case, the Kalman filter is only used for observation purposes. The
problem of controllability is closely related to the @-Matrix. A very intuitive treatment
of the problem of controllability can be found in [Joseph 87].

5.9 Kalman Filter Design Alternatives

5.9.1 Full-State versus Reduced-State Kalman Filter

In below results, we have used the Kalman filter described above. Alternatively, we
also estimated the position of the landmark(s) which introduced another two states
per landmark (see [Gehrig et al. 99¢] for a detailed description). This corresponds to
a full-state Kalman filter as opposed to a reduced-state Kalman filter as introduced in
Section 5.4. Comparing both approaches we found out that the resulting differences
are small. Both approaches result in an unobservable process when using only one
landmark, but the error covariance increases very slowly with realistic data. When
more than one landmark is used, the reduced-state Kalman filter becomes observable,
whereas the full-state Kalman filter needs to estimate the position of the other land-
marks as well, which increases the number of states. The results are similar. The key
difference is that for stationary situations, the reduced-state Kalman filter reduces its
error more than the full-state Kalman filter due to the observability property.

The explanation for the success of the full-state Kalman filter is as follows: The
Kalman filter diverges only, if large errors occur. For small bounded errors the least
square error minimization within the filter provides a good fit. The difference only
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potential positions when landmark 1 observed

e

potential positions when landmark 2 observed

Landmark 1

Ego-position

Figure 5.3: Two landmarks and the respective possible ego-vehicle positions. One landmark al-
lows every point on a circle to be the ego-vehicle position whereas two points make the localization
unambiguous.



5.9. KALMAN FILTER DESIGN ALTERNATIVES 69

comes into play for large errors, that are compensated by the reduced-state Kalman
filter. After a certain time after introducing a large error the estimated value converges
to ground truth again. The full-state Kalman filter has no one-to-one mapping to the
measurements and keeps the error once introduced by a measurement with a large
error.

A drawback of the reduced-state Kalman filter are the limited error model de-
scription possibilities. Using the reduced state, only one error model (value in the
R-Matrix) for the relative distance between ego-position and landmark is used. The
full-state Kalman filter allows separate error models (more states). An alternative filter
to include more complex error models without Gaussian error distribution assumptions
is described in [Hanebeck et al. 99].

5.9.2 [Ego-Position Estimation with More States

Another possibility of making the system description more accurate is the incorporation
of vehicle dynamics. Equation 5.7 treats the ego-velocity as a parameter. More realis-
tically, one can incorporate more dynamics by introducing velocity and acceleration as
additional states and limiting the dynamics by setting the jolt to zero. The ego-velocity
Uest 18 NOW estimated, whereas before the velocity v was treated as a parameter. The
new state vector consists of

i=| @ (5.27)
Vest

Gest

with v, and a.g being the estimated ego-velocity and ego-acceleration. The system
model extends to

L = Ueg sSind
Z = Uggt-cosd
q') — Vest
Tego ()
Vest = (Qest
Qest = 0. (5.28)

The new measurement vector includes the measured velocity v and is computed via

v Vest
Ty Azicos P — Az sind
. 21 Az sin® + Az cos P
h(T) = Toy | = | Azgcos® — Azpsin® | - (5.29)
24 Azosin® 4+ Azycos P

Consequently, the discrete analogies change but all computations are straightforward.
Results of that Kalman filter are presented in the next section.



70 CHAPTER 5. EGO-POSITION ESTIMATION
5.10 Results

5.10.1 Ego-Position Estimation Simulation Results
Simulation Scenario

Ground truth of the ego-position is not available for our research vehicle. For that
reason we use simulated data than can easily be compared to simulated ground truth
to evaluate the Kalman filters.

Our simulation uses the vehicle model as described in Section 4.5.2 and allows for
erroneous sensor readings of velocity, steering angle, and 3D measurements.

In our simulated scenario the ego-vehicle takes the path depicted in Figure 5.4.
The ego-vehicle starts accelerating from 0 to 1m/s within one second and the velocity
remains constant for the remainder of the simulation, whereas the steering angle takes
values ranging from -8° to 8°, creating a zig-zag path. The algorithm proved to deliver

Path of the Ego-Vehicle
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Figure 5.4: Profile of the simulated path (solid line). The isolated points indicate the measured
landmarks, the dashed line shows the measured lane.

good results for a vast variety of parameter sets. For all simulation results presented
below, the following parameters for the system noise matrix are used:

001 0 0
Q=] 00 001 O (5.30)
0.0 0 0.005

This is roughly equivalent to an uncertainty of 0.1m in x and z and reflects an uncer-
tainty of about 2° for the steering angle. These estimates are conservative and a more
rigorous treatment presented in [Chenavier et al. 92] yield varying ) values depending
on the experimental setup. Since above parameters already deliver satisfactory perfor-
mance, no () value adjustments are performed. The pixel error p,,.,. from Equation 5.20
is set to 2 pixels.
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Vehicle Sensor Errors

The quality of the vehicle sensors in the research vehicle was investigated in Sec-
tion 4.8.4. This investigation was initiated due to the fact that vehicle sensors and
our used vehicle model deliver unsatisfactory position estimates under certain circum-
stances. On one hand, the velocity sensor reading at small velocities is unreliable. On
the other hand, the steering angle sensor delivers a bias occasionally (see Section 3.5.4).
Thus a simulation to investigate the robustness against erroneous vehicle sensor data
is conducted. For simplicity, the measurements are assumed to be perfect and two
landmarks are used for position estimation.

Table 5.1 shows position deviations for different levels of erroneous velocity data.
Even when the velocity sensor delivers a velocity off by a factor of 2, the position
estimate error stays within 0.6m for a stretch of 50m on average. The parameters of
? and R were not modified for this investigation. Experiments with more landmarks
yield even better localization (see right columns in below table).

Velocity | deviation for 2 landmarks | deviation for 6 landmarks
Error [%] | devayy [cm] | devmey [em] | devag[cm] | devpmeg [cm)]
0 0 0 0 0
10 6 12 3 7
20 11 25 6 14
50 28 62 16 34
100 57 123 32 68
average deviation less than 60cm in all scenarios

Table 5.1: Ego-position estimation errors versus velocity error. dev,,, denotes average deviation in
cm and devy,q, denotes maximum deviation.

Table 5.2 shows position deviations in the face of steering angle errors. Even up to
a 20° bias of the steering angle, only a deviation of less than 10cm occurred. This way,
a bias on the steering angle sensor can easily be compensated (see Section 3.5.4).

Table 5.2: Ego-position estimation errors versus steering angle error. Note that the deviation stays

below 10¢m.

Steering angle bias [°] | devgy, [cmn] | devia, [cm]
1 <1 <1
2 <1 <1
5 1 2
10 3 5
20 5 10
deviations less than 10¢m in all scenarios
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Ego-Position Estimation Using Vertical Landmarks

Figure 5.5 gives an example of the ego-position estimation performance. In the simula-
tion, the velocity sensor always delivers a velocity 20% larger than the actual velocity.
In addition, a 5% measurement error on the z and z-position of the vertical landmark
was added (uniformly distributed). Moreover, the steering angle was superimposed
with a 2° bias. The simulation scenario depicted in Figure 5.4 was employed. The
dashed line shows the Kalman filtered result of the ego-position deviation with devia-
tions of less than 20cm at all times. Without the measurement feedback, pure motion
integration leads to a much larger and increasing error (dotted line). Using two vertical
landmarks again improves localization accuracy (solid line). Note that observing one
landmark helps to reduce odometry errors already significantly. However, since the
system is not observable, the once accumulated error never returns back towards zero.
For two landmarks, the improvement in localization is shown in Figure 5.5 and can be
performed without the use of odometry information.
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Figure 5.5: Position deviation of the ego-vehicle compared to ground truth (simulated data). See
text for details.

In addition, for above scenario, the number of observed landmarks is increased from
1 to 6 for the same path. As expected the localization improves with more landmarks
observed. Table 5.3 gives a summary of the results.

Ego-Position Estimation Using Lane Markings

Figure 5.6 shows a result for the lane-based Kalman filter. Here, the steering angle
sensor exhibited a bias of 2°. The measured lane marking is located 2m to the right
with an orientation of 0°. The error on the distance parameter was set to 50cm and
the orientation error to 2° (uniformly distributed). All other simulation parameters
and the ego-vehicle path were kept the same. The steering angle bias can easily be
compensated and leads to a stable localization for the ego-vehicle (solid line). Pure
motion integration leads to a large and increasing error (dashed line).



5.10. RESULTS 73

Number of observed landmarks | devgyg [cm] | devmes [cm]
1 24.4 35
2 22.7 53
3 11.3 36
4 10.1 33
5 9.3 28
6 8.9 31

Table 5.3: Ego-position estimation errors versus number of landmarks. dev,,, denotes average
deviation in e¢m and dev,, ., denotes maximum deviation in e¢m.
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Figure 5.6: z position deviation of the ego-vehicle compared to ground truth (simulated data). See
text for details.



74 CHAPTER 5. EGO-POSITION ESTIMATION

Simulation runs incorporating both measurements of lanes and landmarks deliver
the more accurate ego-position estimations the more observations are made.

Ego-Position Estimation With Velocity Estimation

Figure 5.7 shows a result for the Kalman filter estimating ego-velocity and ego-accele-
ration as new states. The same simulation conditions to previous simulation runs apply
but the velocity sensor was set to deliver a velocity twice as fast as the real one. The
Kalman filtered estimate comes closer to the ground-truth velocity but still exhibits
significant deviations to the real velocity. The ego-position estimate is very similar to
Figure 5.5.

Real Igroun(_'i truth velocity "
Kalman filtered velocity
Measured velocity -----

15

velocity [m/s]

1

. 30 40 50
time [s]

Figure 5.7: Comparison of real velocity, measured velocity and Kalman filtered velocity. The velocity
estimate improves significantly with observing only one landmark.

5.10.2 Ego-Position Estimation Real World Results

The ego-position estimation algorithm using vertical landmarks has been run success-
fully in our research vehicle. The back court depicted in Figure 5.8 served as a test
scenario. A zig-zag course similar to the one in the simulation was driven.

Superimposing all 3D points by pure motion integration causes the stationary ob-
jects to smear due to accumulation of motion-integration errors (see Figure 5.9, left
side). The z-z-view in the figure shows all 3D measurements accumulated for a back
court sequence with 100 frames. Ideally, the lamppost would be represented as one
small dot in the graph. The “smearing” effect of pure motion integration is reduced
significantly with the ego-position estimation algorithm using only one vertical land-
mark (see Figure 5.9, right side). For this scenario the ground truth is not known.
Even for a perfect superposition of the local measurements, a smearing of the station-
ary objects would still occur due to measurement errors. Only the landmark circled in
Figure 5.9 is used for the position estimate. For this run, the full-state Kalman filter
described in [Gehrig et al. 99¢| has been used.



5.10. RESULTS 75

Figure 5.8: Back court scene to test the ego-position estimation algorithms. The landmark used for
ego-position estimation is the lamppost with the black rectangle drawn around it.

lamppost /

ego-vehicle path?

| i

| Motion integr. Kalman filtered

Figure 5.9: Bird view of the stationary scene from Figure 5.8. Ego-position estimation with pure
motion integration (left) and with Kalman filtering (right) is depicted. The Kalman filter approach
yields a better localization by observing the lamppost.
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The computation time to find vertical landmarks and to update the Kalman filter
is about 0.5ms on an Intel Pentium II 400 MHz PC.

5.11 Discussion

The ego-position estimation algorithms proposed in this chapter improve position ac-
curacy compared to pure motion integration. Real world results show that motion
integration errors are significantly reduced for small ego-velocities. The computational
burden of these algorithms is minimal taking into account that the necessary correla-
tions for finding the stationary landmarks have already been made.

The algorithm introduced above has similarities to the optical flow approach e.g.
in [Uchimura et al. 98]. Instead of tracking many unknown features in 2D and using
the power of statistics, our approach looks for more complex features and tracks these
features in 3D. In addition, we also use motion information from the vehicle. Alter-
natively, one could come up with a mixture of both approaches, where many features
are tracked in 3D in the picture, yielding a 3D optical flow field. More future work on
ego-position estimation is outlined in the final chapter.

Concurrent mapping and localization to minimize errors on both tasks is becoming
increasingly popular (see e.g. [Rencken 94]). However, such approaches are computa-
tionally expensive since map matching has to be performed. We decided to keep these
tasks separate.

Provided an accurate localization in an inertial reference frame, a combination of
the measurements from several frames is possible. This procedure to combine measure-
ments from different viewpoints, i.e. mapping or cartography, is covered in the next
chapter.



Chapter 6
Cartography Using Stereo Vision

aking use of the results from the previous chapter, a cartography algorithm
building a global map in an inertial reference frame is presented. The chapter
overview is given at the end of the introduction section.

6.1 Introduction

In this chapter, cartography of a road scene into an inertial reference frame is per-
formed. We need an ego-position estimation to properly associate 3D data among the
frames. This is achieved by using the algorithms proposed in the previous chapter.

Several intelligent vehicle systems for regular traffic have already been introduced
here. However, none of these approaches known to the author tried to map the envi-
ronment of the autonomous vehicle into an inertial reference frame.

Cartography is a common procedure in the field of robotics, mostly used for partially
known indoor environments. The road scenario differs from the indoor scenario in
several ways.

e The environment around a vehicle on the road is mostly unknown unless digital
maps and GPS are utilized.

e Many fast moving objects appear in the scene.

e For vision based sensors extremely varying illumination conditions must be han-
dled.

e Only coarse (e.g. GPS) or none positioning information is available, no fine in-
formation.

e The system response time must be very fast, for vision systems in the order of
the video frame rate (40 ms).

Our main motivation for a cartography into an inertial reference frame in this
framework is the opportunity to use 3D points from previous frames. This enables
us to extrapolate objects beyond the sensor range by simply using global map data.
For a parking assistant with limited opening angle of the sensor, a larger view can be
obtained, which is a major benefit for such a system. The mapping procedure described
in the following can be applied to a parking assist system without significant changes.

7
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For automated stop-and-go driving, knowledge of stationary objects beyond the sensor
range can prevent collisions with these objects in tight turns. Also, most of the benefits
described in Section 5.1 also apply to cartography.

For the subsequent discussion we use the following convention: A global map
is a map integrating information from different times and positions into an inertial
reference frame. A local map, on the other hand, uses only current information to
model the environment and has its origin at the sensor center of the moving vehicle.

How is this chapter organized? Section 6.2 gives an overview of related work both in
the field of intelligent vehicles and robotics. Section 6.3 describes the cartography based
on 3D points. Cartography results are shown in Section 6.4. A discussion comprises
the final section.

6.2 Related Work on Cartography

Intelligent vehicle applications without global positioning systems have mostly used
local maps only (see e.g. [Reichardt 96]). A global map used for vehicle following is
presented in [Sukthantar 93]. There, only the leader vehicle is registered in the global
map.

In robotics, obtaining global maps is crucial since most mission goals are specified
using global map data. The main distinction is made between topological and metric
maps. Topological or relational maps only give qualitative information about objects
in the map, e.g. object 0 is west of object 1. Relational local maps are used e.g.
in [Asada et al. 90], where cartography of a global map is achieved by superposition
of local maps. Another example for topological map representation is described in
[Meikle et al. 97]. There, views are stored at every learned location and topological
dependencies are inferred using a probabilistic framework. An overview of mobile
robot systems with topological representations of the environment can be found in
[Wershofen 95]. Since we want to use the global map for object formation and obstacle
avoidance which implies control, metric information is indispensable.

Metric, typically Euclidian, maps reflect the relation between objects in a quan-
titative way, e.g. object 0 is 1m west of object 1. Among Euclidian mapping tech-
niques, grid-based and continuous approaches exist. Metric maps for range data are
common for autonomous mobile systems, especially for systems equipped with unreli-
able range sensors (e.g. sonar sensors). Integrating sensor readings taken at different
times/positions and superimposing them makes a compensation of the erroneous mea-
surement readings feasible.

A popular approach for grid-based mapping, evidence grids, was pioneered by
Moravec [Moravec et al. 85]. This mapping technique is also referred to as certainty
grids or occupancy grids (see e.g. [Borenstein et al. 89] and [Matthies et al. 88]) with
slight modifications. Evidence grids model the free space around an autonomous sys-
tem for navigation and obstacle avoidance. This technique is mostly used for sonar
range data. [Moravec 96] presents a 3D mapping algorithm with evidence grids, where
a stereo camera system is used as sensory input. Refer also to [Moravec et al. 91]
for more details on evidence grids. Borenstein introduced a mapping and collision
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avoidance technique based on so-called histogram grids. However, this method is es-
pecially tailored to sonar range data to compensate for the low angular resolution
[Borenstein et al. 91].

One weakness of above mapping technique is its limited capability to map mov-
ing objects. Furthermore, discretization of the environment is necessary which might
compromise managing the data if a sufficiently large area is modeled with suitable
accuracy.

Other free-space representations besides evidence grids and the like can be found
in [Hoppen 92]. There, an overview of existing navigation approaches is given.

In our application grid-based approaches suffer from the large area we have to model
(see Section 6.3.1), so a non-grid-based approach is chosen. A very early example
of non-grid-based cartography can be found in Moravec’s dissertation [Moravec 80].
There, the free spaced is mapped into a graph rather than a grid. Another approach
can be found in [Rencken 94]. There, the mapping and localization problem is combined
by minimizing errors on both tasks. The intuitively appealing approach suffers from a
lot of heuristics that only apply to sonar range data. For an abridged description of
the presented cartography algorithm refer to [Gehrig et al. 99b].

6.3 Cartography Based on 3D Points

6.3.1 Selection Criteria for the Mapping Algorithm

In indoor environments a very limited area has to be mapped. When only an especially
limited two-dimensional representation of the environment is needed, accurate discrete
maps are easily obtainable.

For a vehicle in regular traffic, however, the only limiting factor on the covered area
is estimated by the reach of a tank of gas, conservatively estimated about 1000km.
Since the heading direction is unknown we have to map an area of 2000km - 2000km.
The position accuracy of the obstacles around the vehicle should be of the order 10cm
to allow precise navigation around the obstacles, which yields a prohibitive size of
20000000 - 20000000 = 4 - 104 cells.

Obviously, one can reduce this size by several orders of magnitude by some adaptive
scaling. Also, one could consider to only discretize the immediate surroundings of
the ego-vehicle (e.g. 100m - 100m), but then discretization has to be redone at every
time step since the vehicle is moving. This would involve a prohibitive number of
transformations.

The best and simplest choice is to keep the raw 3D point data as a list which has
to be scanned through for further tasks such as collision avoidance. Since only the 3D
points facing in the forward direction must be kept, this list is relatively short. We
decided to keep all 3D point data in an inertial reference frame. This way, only selected
3D points have to be transformed into the local reference frame.

For a parking assistant application, the grid-based mapping approach becomes in-
teresting again, since the area to be mapped can easily be restricted.
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6.3.2 Creating the Global Map

Our range sensor delivers 3D measurement of significant points resulting in a sparse
3D point cloud.

The global map is created accumulating 3D points from the current and previous
frames. The creation of objects in the local map is described in Section 3.3.7. The
same cluster criterion and object formation mechanism is now applied to the global
map. This results in a map similar to the local map but also objects beyond the sensor
range are kept in the object list.

6.3.3 Aging of 3D Points

To avoid smearing of the moving objects in the global map, old 3D points have to
be deleted from the map after a certain time period. 3D points that have other 3D
points from a more recent frame in their vicinity are kept longer in the map than
“loners”. That implicitly removes outliers and accidentals from the map quickly. This
approach is also able to handle clipping and occlusions automatically. Every 3D point
receives a survival number which is decremented every frame. Once a 3D point is not
reconfirmed in the current frame the survival number is decremented a second time.
When the survival number is zero, the 3D point is removed from the map.

Clipping of objects no longer occurs because object formation is based on the global
map where the data from previous frames are still available. The same applies to oc-
clusions. One could envision a heuristic to keep occluded and out-of-range objects even
longer since they cannot be updated with current measurements. But this is dangerous
since non-observed traffic participants behave unpredictable. Only predictions of up
to two seconds are considered reasonable. For a parking maneuver, longer predictions
are deemed appropriate.

6.4 Results

The results are obtained with our research vehicle driving at different speeds in different
locations. To show the potential and limitation of the method, three scenarios are
selected.

6.4.1 Results with Stationary Objects

Figure 6.1 depicts a scene with only stationary objects. The vehicle moves slowly
forward at a speed of about 1m/s in this sequence. Figure 6.2 shows that superimposing
several frames in the global map facilitates object detection tasks for stationary objects
compared to using only the local map (see Figure 6.3). Note that the car has moved
in this scene and superposition has been performed correctly by transforming all 3D
points into an inertial reference frame. 3D points on or below the ground are not
displayed in these figures.
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Figure 6.1: Back court sequence with stationary objects.
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Figure 6.2: Global map representation of the back court sequence. Note that all objects protruding
from the ground are detected.
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Figure 6.3: Local map representation of the back court sequence. Note that two lampposts on the
left are not recognized (too few 3D measurements).
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6.4.2 Results with Moving Objects

Looking at a more dynamic scene, Figure 6.4 shows a sequence where clustering on
the global map leads to heavy object smearing. A truck traveling at 25m/s is depicted
there. The ego-vehicle follows at about the same speed. The recognition with our
stereo system based on the global map is shown in Figure 6.5 on the left which exhibits
a severe smearing effect and which leads to a wrong distance determination of the
truck.

Figure 6.4: Dynamic freeway sequence with a truck.

Figure 6.5 on the right shows the sequence with only using the local map. Note,
that in the sequences described here, all 3D points from 5 frames are accumulated
in the global map. For the reason of better visibility, the aging of the 3D points is
omitted. One potential remedy of that smearing effect would be to suppress 3D point
accumulation for objects moving faster than a certain velocity. In order to use the
global map for control, the coordinates of the objects have to be transformed back to
the local reference frame of the ego-vehicle [Gehrig et al. 98c].

6.4.3 Results with Extrapolated Objects

The global map also allows to extrapolate objects that disappeared from the field of
view. One example is shown in Figure 6.6, where the leader vehicle drives along a line
of parking cars at a speed of about 10m/s. The ego-vehicle follows at about the same
speed.

Figure 6.7 depicts the parking cars sequence in the global (left) and local (right)
map. Note that the first car on the right in the scene is still visible outside the field
of view in the global map. The field of view is depicted as two lines along the road for
the left and right camera, respectively. The ego-vehicle is depicted on the bottom left
of both figures and the driven distance is depicted as a tail of the ego-vehicle bounding
box. Due to a different 3D point distribution in the local map, the second and the
third parking car are clustered as two separate objects there. The first parking car is
not visible anymore.
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Figure 6.5: Global (left) and local (right) map representation of the freeway sequence. Due to old
3D points from previous frames the position is estimated too close to the ego-vehicle on the left.

Figure 6.6: Sequence driving along parking cars.
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field of view

field of view

Figure 6.7: Global (left) and local (right) map representation of the parking cars sequence. Due to
old 3D points from previous frames the extent of the parking car line stretches beyond the field of

view in the global map.

6.5 Discussion
Cartography of the environment of an autonomous car is a beneficial procedure to

superimpose vision clues from several frames, especially for stationary objects. More
care must be taken for moving objects, since the distance determination of moving
object becomes skewed. Due to this object smearing effect, the cartography procedure
has not been used for the results presented in other parts of this thesis.
The computational burden of this algorithm is small. Only the clustering on the

global map as opposed to the local map takes up to 12ms in cluttered scenes since
more 3D points must be clustered. Future work on cartography is outlined in the final

chapter.
Ego-position estimation and cartography as described here yield an accurate map
With these ingredients, it is possible to enhance the vehicle-

of the environment.
following mechanism from Chapter 4 with a collision avoidance component that takes
all detected obstacles into account. This approach is detailed in the next chapter.



Chapter 7
Collision Avoidance

his chapter gives an overview of collision avoidance. Specifically, the elastic band
framework applied to vehicle following is presented. An overview of the chapter
is given in the following section.

7.1 Introduction

Collision avoidance is the task of navigating a vehicle without collision. Collision
avoidance has been the subject of extensive research both in the field of robotics and
intelligent vehicles. For intelligent vehicle applications, mostly longitudinal collision
avoidance, i.e. braking maneuvers, are considered.

Collision avoidance behavior of a completely autonomous car, VITA-II, was pre-
sented in [Reichardt 96], where behavioral patterns and potential fields were applied.
The potential field method yielded unsatisfactory performance for autonomous navi-
gation. Behavioral patterns were used for real driving maneuvers.

A lot of work on intelligent vehicles benefits from experience with mobile robots.
However, robotics ideas applied to intelligent vehicles for regular road traffic must take
the differences described in Section 6.1 into account.

In contrast to robotics, collision avoidance algorithms for intelligent vehicles usually
do not face maze-like environments on the road. Considering local sensing, there usually
is a feasible path and if not it is good strategy to stop. Street layouts of large cities
appear to be maze-like sometimes but this kind of path planning is left up to a mission
planning module and is not part of a collision avoidance algorithm. In our scenario, the
intelligent vehicle is not able to move back autonomously which also limits the search
space of feasible paths.

How is this chapter organized? Section 7.2 gives an overview of related work both in
the field of intelligent vehicles and robotics. In Section 7.3 the elastic band framework
is introduced. Section 7.4 describes the necessary adaptations to the elastic band
framework in order to tune the avoidance behavior towards that of human beings.
Section 7.5 discusses the incorporation of non-holonomic constraints into the elastic
band framework. Necessary modifications to the planning and decision module are
described in Section 7.6. Results are detailed in Section 7.7. A discussion comprises
the final section.
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7.2 Related Work

[Fujimura 91| presents an overview and categorization for planning and navigation
algorithms. The main distinction in most autonomous systems is made into planning,
navigation and piloting. Planning concerns mostly mission planning tasks and is left
to the driver in our application. Mission planning is performed off-line before starting
the mission. Some related work on mission planning is described in Section 7.2.1.

Piloting on the other end, concerns the control level and tries to convert desired
direction and speed commands into actual.

In between is the navigator who is responsible for collision avoidance and mo-
tion planning among other tasks. Collision avoidance is a very important task for
autonomous vehicles and includes avoiding obstacles by swerving or braking. Motion
planning in dynamic environments should be performed while moving, i.e. online. This
limits the computational complexity of such algorithms. Besides collision avoidance
behavior it usually also includes path planning towards a goal. Navigation tasks also
include mapping and localization (see Chapters 5 and 6). Here, related work on colli-
sion avoidance is presented.

The general 2D and 3D motion planning problem in a dynamic environment has
been proven to be NP hard when striving for the shortest path or the path of shortest
time [Canny et al. 87]. Consequently, all motion planning algorithms make additional
assumptions or use heuristics to reduce the computational complexity of the general
problem.

Related work on potential fields is listed in Section 7.2.2. Collision avoidance ap-
proaches based on physical models are described in Section 7.2.3. Other approaches
can be found in Section 7.2.4. The section concludes with an overview of collision
avoidance systems for intelligent vehicles (Section 7.2.5).

7.2.1 Mission Planning

In contrast to intelligent vehicles, a lot of robotics applications are designed to give
the robot complete autonomy. In order to achieve this, a mission planning level is
necessary (e.g. [Brooks 86)).

[Metea et al. 87] introduces a route planning algorithm for intelligent autonomous
land vehicles. Dynamic programming is used for the route planning algorithm. For
motion execution, a rule-based system is employed.

A path planner based on graph theory is introduced in [Petrov 95]. Here, the em-
phasis is on finding a feasible path in maze-like environments. For the obtainable field
of view of an autonomous vehicle, the visible streets do not exhibit such complicated
structures.

Mission planning using topological maps is discussed in [Leven et al. 99]. The area
is represented in a graph connecting rooms represented as nodes. Little Euclidian
information is used, which reduces the demand for precision for localization.
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7.2.2 Potential Field Approaches

A lot of work has been performed on collision avoidance for mobile robots since the
early eighties. The most prominent idea are artificial potential fields (e.g. [Krogh 84,
Khatib 85]). Hereby the ego-vehicle is modeled as a point charge and obstacles are
represented as charges repelling the ego-vehicle. The goal is represented by a point
charge of opposite charge. Obstacle charges are modeled as potentials and the gradient
of the superimposed potential field yields the direction command for the mobile robot.

[Tilove 90] analyzes different potential field approaches. Convergence and stability
issues are discussed. Local and global methods are distinguished by using either a local
or global map. Generalized potential fields depend not only on distance to obstacles
and can therefore determine irrelevant obstacles pointing away from the ego-path.
This method was first applied to velocity-dependent potentials in [Krogh 83]. Path
generation is performed either via hill-climbing or via force control. Hill-climbing
produces the path directly. Force-control computes an acceleration from the resulting
force, where vehicle dynamics can be taken into account.

[Koren et al. 91] shows inherent limitations of potential fields, that are not very
relevant for intelligent vehicles. The main problem is a local minimum, where a robot
might get trapped (zero resulting force). Other problems include passages between
closely spaced obstacles and oscillations in the presence of obstacles. The oscillations
can mostly be avoided by sensible parameterization and additional heuristics. The local
minima problem is only relevant when potential fields are used for force control. When
the output of the potential field method is a path instead of a force, the local minimum
problem results in a non-optimal path. [Khatib et al. 95] introduces extensions for
potential fields to avoid local minima by superimposing a rotational potential field to
the regular field. When a zero resulting force is obtained the rotational part of the
field yields a remaining force.

In [Borenstein et al. 89] a combination of occupancy grids and potential field meth-
ods is presented, called the Virtual Force Field. An inherent problem, the local mini-
mum trap, is solved here with heuristically switching to wall following behavior.

Krogh combines path planning of critical points via path relaxation and local ob-
stacle avoidance via generalized potential fields in [Krogh et al. 86]. [vP93] describes
path planning and collision avoidance based on potential fields in a similar way.

A popular approach to avoid local minima in potential field applications is the use
of harmonic potentials. These potential shapes guarantee the non-existence of local
minima for arbitrary obstacle shapes. However, the potential shape is limited to the
harmonic potential which has an unlimited reach. An implementation of that approach
can be found in [Guldner et al. 95] or [Guldner et al. 93]. [Grupen et al. 95] uses har-
monic potentials for collision avoidance, where kinematic and dynamic constraints are
included. This way, non-holonomic constraints for car-like vehicles are included.

7.2.3 Approaches Based on Physical Models

Other physical models besides potential fields are also popular for collision avoidance
within the robotics community.
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An alternative approach to the potential field methods is presented in [Decuyper et
al. 91], where analogies of the collision avoidance problem to hydro mechanics problems
are shown. Fluid dynamics equations are used. The fluid starts at the starting point
towards the goal point and obstacles obstruct the flow. From the resulting flow field
the planned path can be computed.

In [Steinhage et al. 98] and [Steinhage et al. 97], an approach to behavioral control
of robots is described that uses the model of dynamical systems. The path for nav-
igation and obstacle avoidance is generated solving dynamical differential equations.
The main advantage to potential fields is that the whole path is represented by steady
states. By using relaxation, stochastic noise always brings the system back to a steady
state in contrast to potential field approaches. The approach is rather time-consuming
due to the necessary relaxations. For this approach, low-level sensory information as
opposed to symbolic obstacle information is used.

Quinlan and Khatib present another approach to obstacle avoidance that uses the
model of an elastic band for a robot (see e.g. [Quinlan et al. 93a] and [Quinlan et al.
93b]). The elastic band framework is used for our application. An initial path has
to be supplied. This path is modeled as an elastic band that is subjected to forces,
exerted by obstacles which are represented as potential fields. This approach has also
been extended to non-holonomic mobile robots [Khatib et al. 96], where especially the
modeling of the free space changes. Brock extends that idea to the many-dimensional
configuration space of mobile manipulators [Brock et al. 98]. The resulting configura-
tions are called elastic strips. In [Rieger 00], the elastic band framework is revisited
and some preliminary work of this thesis is presented.

7.2.4 Other Approaches

Other approaches often include rule-based systems or systems executing behavioral
patterns.

The classic categorization of autonomous system tasks (see e.g. [Bhatt et al. 87]) is
into sensing, planning, navigating, motion execution, and control connected in a serial
fashion. Here the system can only operate successfully when all modules are func-
tioning. These are functional modules. A different division is presented in [Brooks 86].
Typically, a robotic system can be divided into planning, navigating, and piloting. The
subsumption architecture of Brooks divides a robotic system into levels of competence.
The main idea is to slice the hierarchy of the robot competences in a different way.
Different levels of behavior are designed, the simplest being wandering around. Higher
levels include collision avoidance and at some higher level mission planning. So Brooks
suggests task-achieving modules that can already operate when only the lowest level is
implemented. One collision avoidance example of Brooks using this architecture treats
every sonar sensor reading as a repulsive force scaled by the distance reading. The
resulting force yields the new heading direction.

[Gat et al. 94] picks up the idea of behavioral patterns of Brooks and applies it to
autonomous vehicles in space. There, the main key is to keep programs and robots
simple to achieve a low power consumption. One way to navigate with these constraints
is programming behavioral patterns. Such a rule-based system exhibits no unifying
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concept and is rather built on heuristics.

[Bhatt et al. 87] describes an early real-time system for a mobile robot. The sepa-
ration of tasks in planner, navigator and pilot is already performed. Higher level tasks
and pilot tasks are implemented as rule-based systems. For the navigator, a mix of
rules and search for optimal paths is applied to keep computational costs low.

Above mentioned systems use mainly rule bases for collision avoidance. The fol-
lowing systems have similarities to potential field approaches since they take also the
obstacle clearance into account quantitatively.

In [vP91] local collision avoidance is performed by building a local sector map.
The heading is set to the sector with maximum obstacle clearance. Indoor navigation
using dynamic stereo-image sequence analysis can be found in [Schreer 98]. Obstacle
forming is avoided. The obtained 3D points and their distribution lead the robot to
open terrain. The area of lowest obstacle density is the heading direction.

Another recent approach, the global dynamic window approach performs collision
avoidance by searching the space of possible speeds and headings for every computation
cycle of the robot [Brock et al. 99]. The objective function in the search space to be
minimized takes obstacle clearance and the heading towards the goal into account. The
global aspect is introduced by using a global planner that administrates the connectivity
of free space. This division makes high-speed navigation feasible.

7.2.5 Approaches for Intelligent Vehicles

Intelligent vehicles are often designed to increase safety and thus have collision avoid-
ance capabilities. Most systems, however, only have warning functions and do not
control the vehicle automatically. Here, only systems controlling the vehicle are pre-
sented.

[Niehaus et al. 94] describes a rule-based decision system for intelligent vehicles,
which makes the safest decision by considering the worst case. Only freeway environ-
ments are considered. This work is conceptual and awaits the test in real traffic.

[Freund 88] calculates avoidance trajectories for a single obstacle based on current
steering angle yielding a smooth trajectory. The result is always a clothoid, no arbitrary
paths are allowed. No implementation of such a system is available yet.

Work on collision avoidance at the University of Armed Forces in Munich is de-
scribed in [Dickmanns et al. 95] and [Kujawski 95]. By integrating GPS, digital maps
and landmarks, whole missions can be performed. The underlying decision system
employs a rule base.

[Shiller et al. 96] tries to find emergency collision avoidance maneuvers for intelli-
gent vehicles. The vehicle dynamics is modeled with the one-track bicycle model (see
Section 4.5.2). Simulation results are presented for a lane change maneuver when an
obstacle suddenly appears in the own lane. The length of the avoidance maneuver in
the own lane is minimized. No control algorithms to automate such maneuvers are
given.

[Gerdes et al. 99] looks at a potential field application in non-autonomous driving
applications. On force-control basis, also vehicle dynamics are taken into account
and combinations of different drive-assist systems are feasible. Simulation results are
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presented.

A completely autonomous car with obstacle avoidance capability is presented in
[Reichardt 96]. The application of potential fields to determine the risk yielded oscil-
latory behavior in overtaking situations. As a consequence, behavioral patterns were
implemented for obstacle avoidance maneuvers.

A very interesting approach both for robotics and intelligent vehicle applications
is presented in [Fiorini et al. 98]. In contrast to most other approaches presented
here, obstacle avoidance is performed in configuration and in velocity space. Other
approaches such as Krogh’s obstacle avoidance approach [Krogh 84] take the velocity
into account by modifying the potential shape. Dynamic and kinematic constraints are
taken into account. The set of feasible velocities and headings are intersected with the
set of admissible (non-colliding) velocities and a search yields headings and velocities
for either minimum travel distance or minimum travel time. In off-line applications,
an exhaustive search can be performed, for online applications several heuristics limit
the search space. The admissible velocities are computed by calculating the potential
colliding velocities and headings for every obstacle (so-called Velocity Obstacle) in
velocity-space and negating that set. For this computation, it is assumed that the
obstacle velocity is constant. However, this constraint is not always met. Furthermore,
this approach is tailored to circular obstacles and a representation of an obstacle with
arbitrary shape by circles yields many circles. Simulation results for a highway scenario
are presented. The same obstacle avoidance approach is used in [Prassler et al. 99,
where a robot navigates successfully through crowds of moving people. Similar to the
potential field approaches above, only distances to the current position are taken into
account and distances to a planned path are not available online. These quantities are
considered important when modeling human driving behavior (see Section 7.8).

7.3 Elastic Bands

7.3.1 Introduction to Elastic Bands

The original elastic band approach for collision avoidance was proposed by Quinlan
and Khatib [Quinlan et al. 93a]. Similar physical properties are used for snakes in
computer vision [Kass et al. 88]. An initial, feasible path must be delivered by a path
planner. This path is dynamically modified by treating the path as an elastic band
that is able to change its shape. The starting and end points are kept fixed. The total
energy of the elastic band is minimized yielding smooth paths. Forces acting on the
elastic band are computed by taking the gradient of the potential energy at discrete
path points. The repelling forces on the elastic band are produced by obstacles in the
vicinity of the path. In total, three types of forces are acting on the elastic band. These
forces are described in the following sections, where we base our analysis on the thesis
of Quinlan [Quinlan 94]. The treatment of the continuous case does not provide any
additional insights and can be found in [Quinlan 94].

For the underlying theory of elastic bands the reader is referred to books on Me-
chanics (e.g. [Brandt et al. 96, Kang et al. 95]).
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7.3.2 The Internal Contraction Force

The elastic band is modeled as a series of particles with a series of springs in between
in the discrete case. See Figure 7.1 for a representation of an elastic band. Hooke’s
law would suggest a force proportional to the amplitude of the displacement. However,
with defining zero as the unstrained state, the internal force would become larger
as the length of the elastic band increases. This would yield an avoidance behavior
which depends on the length of the elastic band which is undesirable. Hence we follow
Quinlan’s approach and let the internal potential be

V;'m& = kcE?:_fH(Ti-l-l - CTZH? (71)

where §; represents the i-th configuration particle along the elastic band, k. the constant
of elasticity, and V},; the internal potential of the elastic band. The elastic band consists
of n particles with n — 1 springs in between.

Consequently, the internal force f;m is computed via
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This normalized force ensures the same avoidance behavior independent of the band
length.

7.3.3 The External Force

The external force is due to obstacles that are modeled as potentials in the scene. Any
potential shape that repels the elastic band from obstacles is conceivable. We decided
to use Quinlan’s [Quinlan 94] position dependent potential superimposed by Krogh’s
velocity-dependent potential [Krogh 83]. The gradient of this potential, Fiut, vields the
external force. Details on the external force follow in Section 7.4.5.

7.3.4 The Constraint Force

The elastic band potentially reduces its internal energy by moving particles along the
elastic band. This is an undesired property since the band might thin out at some
parts. To constrain the motion along the elastic band, a constraint force f;omtr is
introduced with the direction ¢

— —
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F: P — + P —
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(7.3)

tangential to the elastic band. The force is computed by projection of the external
force along the elastic band,

- < fout£> o
fconstr = - ng| -1, (74)

where <, > denotes the scalar product.
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Figure 7.1: Representation of an elastic band as a series of particles with springs in between.

7.3.5 The Elastic Band Algorithm

The elastic band is simulated with reduced dynamics since only the equilibrium state
is of interest for obstacle avoidance. For every time step, the algorithm is repeated.
The path is represented by particles ¢; and these particles are subjected to the total
force

f_;ot = .ﬁnt + ﬁwt + ﬁonstr- (75)

With our pseudo-static simulation, the particles are moved along the total force to
the new position

(Ti,new = (Ti,old + o * ﬁot(cfi)- (76)

Higher order terms beyond particle acceleration are neglected here. Applying this
procedure iteratively yields a linear convergence and proved to be sufficiently fast for
our real-time application. The new configurations are recomputed until the total force
of all configuration points is sufficiently small, i.e. until the force equilibrium is reached.

Pathological situations such as two obstacles located closely to the left and right
of the initial path might yield an oscillatory behavior. We reduce the moving factor «
after a certain number of iterations to reduce these oscillations.

[Brent 73] introduces an optimization algorithm that minimizes a function of one
variable without computing derivatives and performs very few evaluations of that func-
tion. This procedure is used in the original approach to find the force equilibrium but
it is less efficient for situations where only very little path modifications occur.

In the original elastic band approach, the moving procedure is supplemented with
a procedure of adding and removing particles in order to maintain a collision-free path
at all times (see Section 7.4). So-called bubbles model the available free space around
a configuration. Adding particles becomes necessary when two adjacent bubbles do
not overlap anymore. Bubbles are circles with a radius of the minimum distance to the
closest obstacle for our two-dimensional case.

To speed up convergence of the elastic band algorithm, the final configuration from
the last time step can be used as the initial configuration for the next time step. Path
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transformations have to be performed to account for the interframe ego-motion. The
required modifications of the original approach for the vehicle-following scenario are
detailed in the next section.

7.4 Adaptations for Vehicle Following

7.4.1 The Basic Idea

The elastic band approach is adapted to the vehicle-following scenario here. The path of
the leader vehicle constitutes the initial path. Obstacles in the environment exert forces
on the band and move it into a final configuration. This is the path the ego-vehicle
tracks subsequently. There are configurations where the final path is still infeasible in
contrast to the original elastic band approach. In order to find these configurations,
a final clearance check along the envisioned ego-vehicle path is performed. If the
clearance check fails, the autonomous driving mode is switched off and the driver has
to take over the control of the vehicle manually.

Driving situations that necessitate this dynamic modification of the leader vehicle
path are

e passing a cyclist or pedestrian along the road while following a leader vehicle, or
e driving too close to parking cars due to the smaller size of the leader vehicle, or
e driving around a car that comes to a stop slightly inside the road intersection, or
e driving around a pedestrian that moved one step into the road.

Many more scenarios can be identified. In addition, further extensions of the au-
tonomous driving capability of such a vehicle definitely need this dynamic path plan-
ning component.

The following subsections cover extensions to the sensor data acquisition, details
on the distance computation to obstacles, algorithmic modifications to the elastic band
approach, potential shapes for obstacles and lanes, and the actual integration of the
approach in the existing system.

7.4.2 Object Formation

Our range sensor delivers a list of obstacles as described in Section 3.3.7. However, the
elastic band algorithms in this chapter are applicable to any sensor delivering range
data.

We assume a flat environment and use only the x and 2z coordinates of the objects
for collision avoidance.

One object corresponds to one clustered 3D point cloud projected to the z-z-plane
represented by its convex hull for collision avoidance purposes. A convex hull of a
set of points is defined as the smallest convex polygon containing the points. Basically,
the convex hull describes the contour of the obstacle. The obstacle representation as a
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convex hull was chosen instead of its bounding box since significant deviations from its
true obstacle shape occur in curves for the bounding box. Moreover, objects such as a
crowd of people standing close to each other, exhibit arbitrary shapes in the z-z-plane
and cannot be adequately described by rectangles. The convex hull is computed with
a recursive algorithm described in [Edelsbrunner 87] that works in O(n-log(n)), where
n is the number of points.

The relative velocities of the objects w.r.t. the ego-vehicle are computed based on
the center of the obstacles bounding boxes using an extended Kalman filter. One of the
extracted objects is the leader vehicle supplying the initial path. The other detected
objects constitute obstacles.

7.4.3 Distance Computation

The distance of the ego-vehicle to the obstacles is the most important quantity to
determine the external force. Since the distance is computed thousands of times in one
cycle, it is of uttermost importance to compute it fast.

If the bounding boxes of obstacle and ego-vehicle are more than the reach of the
potentials apart, no refined distance computation is necessary and the distance of
the bounding boxes is sufficient. The algorithm described below is only necessary for
obstacles being close to the ego-vehicle. This coarse to fine strategy saves a significant
amount of computation time.

Distance computation between two convex polyhedra is described e.g. in [Bobrow
89]. This algorithm is comparatively fast in general, but solves the distance compu-
tation in more than two dimensions. [Lin et al. 91] has a good incremental algorithm
for the distance computation but the initial distance computation is slow. Faster im-
plementations are available in two dimensions.

In our approach the distance computation between a rectangle (our ego-vehicle)
and a convex hull (obstacle) is reduced to a distance computation between two line
segments. The ego-vehicle’s orientation is parallel to the tangent on the elastic band.
When the ego-vehicle and the obstacle do not intersect, the distance is computed from
all points of the ego-vehicle to all obstacle points. The points with the minimum
distance are taken and the distance of the two adjacent line segments on both sides
is computed subsequently. Thus, a total of four line-segment-to-line-segment distance
computations is necessary.

The distance between the obtained obstacle line segments and the ego-vehicle line
segments is computed using Lumelsky’s algorithm [Lumelsky 85]. This algorithm is
about five times faster than the straightforward approach.

7.4.4 Modifications to the Original Elastic Band Approach

The vehicle-following application of the elastic band differs from the original idea in
the following ways:

e The initial path cannot be guaranteed to be collision free. Since the initial path
is created by the path of the leader vehicle, changes in the scene might have
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occurred since the leader vehicle has passed. It is possible that another car or a
cyclist/pedestrian has approached that path in the meantime. In addition, the
leader vehicle might be smaller in width than the autonomous vehicle and might
have chosen a path very close to an obstacle.

e The equilibrium position of the configuration particles is the leader vehicle path.
We want the autonomous vehicle to follow exactly this path in the absence of
obstacles. Hence the internal forces of the initial configuration receive an off-
set yielding zero in the absence of obstacles. The internal force used for our
application is thus computed as
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This also results in an offset term for the total energy of the band. This behavior
was chosen to maintain the intuitive vehicle-following behavior. Hence the best
strategy is to follow the leader vehicle path unless obstructions occur. In the
original approach, the elastic band was assumed to have zero length and would
always collapse to a straight line in the absence of obstacles.

e The concept of bubbles of free space disappears automatically by allowing initial
trajectories that are not collision free. By giving up on the bubble concept we
need an additional algorithm to reassure a collision-free path after the equilibrium
position has been found. This is done by geometrically checking for overlaps
along the final configuration of the elastic band. The procedure of adding and
removing particles becomes superfluous as well. More general, a collision-free
path can never be guaranteed in the presence of moving obstacles. A drastic
example would be a faster car than the own that intentionally wants to provoke
a collision. Provided sufficient driver skills in the “hunter” car, a collision is
unavoidable.

e A regular car is an intrinsically non-holonomic vehicle. The original algorithm
applies only to holonomic robots. This limitation has not been explicitly taken
into account. Hence the paths created by the elastic band could be infeasible for
non-holonomic cars. Since uncertainties in the 3D measurement of objects and
uncertainties in the vehicle control require additional slack around the planned
path, this is not considered a serious problem. In addition, the non-holonomic
constraint also applies to the leader vehicle and is reflected in the leader vehicle
path. Work on elastic bands for non-holonomic vehicles has been presented in
[Khatib et al. 96]. Section 7.5 is devoted to this problem.

e In regular traffic situations, lane markings are also used for vehicle guidance.
The lane markings are detected and are also modeled as virtual obstacles with
repelling forces pointing away from the lane boundaries towards the lane cen-
ter. Lanes are modeled as polygons so the same distance computation algorithm
as for obstacles is used. More details on the potential shape are presented in
Section 7.4.6.
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e When a classification for the obstacle into pedestrian, car, truck, bicyclist, or
other traffic participant is available, the repulsion factor for obstacles can be var-
ied according to the classification result. This way, an additional safety envelope
can be applied to pedestrians.

e The external force of the elastic band must be shaped to comply with natural
driving behavior. Drivers keep more distance from obstacles at high speed than
at low speed (e.g. parking situations). Therefore, a velocity-dependent potential
shape must be used. This is detailed in the following section.

7.4.5 The Potential Shape for the Obstacles

We have experimented with a lot of potential shapes and came to the conclusion that
potentials with limited reach best model human driving behavior. Usually, events and
objects further away than a certain distance from our planned path do not have an
impact on our actually driven path.

The original approach for elastic bands is designed for mobile robots that rarely ex-
ceed 2 m/s. So a position-dependent potential is sufficient. We modified this approach
in a way that the effective reach of Quinlan’s potential, d.ff, becomes a function of
velocity,
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where Vez1 ; denotes Quinlan’s potential of obstacle j at position ¢. d;(§) denotes the
distance between obstacle j and particle ¢ of the elastic band, k, is the repulsion gain.
din. increases the effective reach of the potential for increasing velocities.

In addition, we superimpose a velocity-dependent potential, introduced by Krogh
[Krogh 83]. Since we already know an initial path, only obstacles close to that path
are considered. A fading function for every obstacle j, ffuq, is multiplied with the
Krogh potential Vege ;(4),
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Urer 18 the projection of the relative velocity on the direction vector between ego-vehicle
and obstacle, @ represents the maximal possible deceleration. d; i, denotes the closest
distance of the j-th obstacle to the initial elastic band path. T; and 7; are minimum
(7;) and maximum (7}) avoidance time as defined in [Krogh 84]:
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Note that d; min is only available for obstacle avoidance algorithms that plan the whole
path. Algorithms only yielding current heading and accelerations do not deliver the
information to compute that quantity.

The idea behind Krogh’s velocity-dependent potential is the following: The min-
imum avoidance time represents a braking maneuver with maximum deceleration a.
The maximum avoidance time uses the full distance to the obstacle and brakes with a
constant deceleration. The reserve avoidance time T, is Tres = T; — 7;. The inverse
of that reserve time to respond to an obstacle represents the potential computed in
Equation 7.10. Note that the velocity-dependent potential described here inherits its
name from the fact that the potential magnitude and shape depends on the relative
velocity between ego-vehicle and obstacle. However, within one time step, this velocity
is constant.

Figure 7.2 shows an example of the chosen potential. In that scenario, the obstacle
on the right is stationary, whereas the left obstacle moves at half the speed of the ego-
vehicle which is 10m/s (upper left). Quinlan’s position-dependent potential is shown
in the upper right. In the lower left side, the Krogh potential is depicted which is
very similar to the superimposed potential. The most prominent effect of the Quinlan
potential is a potential barrier sideways of the obstacle. The Krogh potential immedi-
ately drops to zero sideways of the obstacle when the vehicle moves only perpendicular
to the obstacle. The Quinlan potential drops gradually to zero.

The total external force per particle is thus
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where J;(cj) is the direction vector from obstacle j to particle §. The total external
energy is computed from
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When an obstacle is unavoidable for or inside a particle of the elastic band, a maximum
force is exerted towards a direction, where obstacle clearance is obtained on the shortest
way. Details on how to find this direction are presented in [Rieger 00].

Several restrictions regarding building the gradient of the potential field apply, e.g.
the potential might not even be differentiable at some positions [Quinlan 94]. This
might cause the algorithm to compute a wrong force in one iteration but because of
a movement of most particles in the elastic band, the situation is resolved in the next
iteration. Pathological cases might occur where a minimum energy configuration is not
achieved but additional checks on obstacle clearance always provide backup solutions.

7.4.6 The Potential Shape for the Lanes

Lane markings provide an important guidance for driving. Hence we use lanes to
support the vehicle-following procedure by modeling them as virtual obstacles.

To detect lanes, the 3D points already determined for object detection are used. 3D
points below a certain height are accounted for lane markings. Using some additional
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Figure 7.2: Visualization of the chosen obstacle potential shape. For the situation depicted in the
upper left, the Quinlan potential can be viewed in the upper right. Below the velocity-dependent
Krogh potential and the superimposed potential are shown.
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models such as lane width, a lane is fitted through the 3D points. The lane model
estimates current lane position, orientation, curvature, and change of curvature with
a Kalman filter. This result is sampled at discrete points which yields a polygon. The
polygon is input to the elastic band algorithm.

Only one lane to the left and one lane to the right (if existent) of the ego-position are
used for the algorithm. The potential for lanes is modeled with the Quinlan potential.
Being outside the lane yields a maximum potential, the potential in the middle between
the lanes is zero. Figure 7.4.6 shows an example of a lane potential.

When driving close to the lane center, no force results from the lane potential. Only
when driving close to the marking or even outside the lane, a force towards the lane
center is exerted.

7.4.7 Control with the Elastic Band

The result of the elastic band for the control algorithm is a modified path. The con-
troller is kept the same way as described in Chapter 4. Instead of the leader vehicle
path, the elastic band path is used for control. Hence, a change of shape of the leader
vehicle path only affects the actually driven path from that moment on, when the
lateral position for the current lookahead distance changes. The control behavior of
negotiating a path at a certain lookahead distance can also be found when observing
humans driving through a curve and tracking their fixation point [Land et al. 94].

Since the elastic band algorithm operates statically on the current scene snapshot
and is re-run at every time step, no connection between the elastic band results from
one frame to another exist. Sudden changes in the controller input might cause an
oscillatory behavior. Hence, a low-pass filter is applied to the lateral position delivered
by the elastic band path.

7.5 Extensions to Non-Holonomic Vehicles

The elastic band framework presented so far only delivers feasible paths for holonomic
vehicles. A car obviously is a non-holonomic vehicle since it has a minimum turning
radius that limits the heading changes.

This restriction is taken into account in [Khatib et al. 96]. The induced metric not
only considers the Euclidian distance to an obstacle but also takes the current heading
direction into account. This metric satisfies the requirement of a minimum turning
radius and also applies to the internal force. It tends to contract, but the zero position
is modified: A straight line in an obstacle-free environment cannot be obtained. The
result is a circular arc. The external force has a non-convex potential shape around
the border of the minimum turning radius, which leads to stability problems.

A special interpolation and smoothing algorithm is needed in this implementation
since the number of bubbles of free space must be kept small. The real-time imple-
mentation is made feasible through elimination of configuration points along the path.
Therefore, interpolation and smoothing is needed.

The result is an algorithm taken far away from the intuitive elastic band idea. The
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Figure 7.3: Visualization of the chosen lane potential shape. For the situation depicted in the upper
left, the Quinlan potential for lanes is depicted on the right.

backbone of this approach is the representation of free space which is not applicable
to the vehicle-following scenario.

So we decided to allow crooked paths implying turns below the minimum turning
radius and let the vehicle dynamics smooth out the path. With sensible parameteriza-
tion of the internal elastic band force, a feasible path for all typical traffic situations is
obtained. In addition, tight turns are suppressed by the lateral controller anyway to
provide sufficient ride comfort. When the vehicle is forced to an infeasible turn due to
obstacles, the deviations to the planned path are noticed immediately since the elastic
band algorithm runs in real-time. As a consequence, the control of the vehicle is given
back to the driver.

7.6 Planning and Decision for Elastic Bands

The elastic band framework is integrated easily using the path-based CUT algorithm
presented in Chapter 4.

Only the leader vehicle path of the CUT algorithm has to be exchanged with the
path resulting from the elastic band algorithm. The elastic band algorithm is invoked
right after the CUT algorithm has generated the leader vehicle path. The longitudinal
control remains unchanged, i.e. we still follow the leader vehicle at a safe distance.

The elastic band path is also used to check for overlaps with obstacles since we drive
along that path. Hence, when small intersections with an obstacle occur, the elastic
band algorithm bends the path such that no intersection with the obstacle occurs and
a collision-free path is obtained. As a safety measure the bent of the elastic band path
is monitored. In addition, when deviations of the leader vehicle path and elastic band
path beyond a certain threshold occur, the control is returned to the driver. Although
the elastic band path is still feasible in such a case, the behavior of the ego-vehicle
would already be far from that of a typical vehicle-following system.

The initial detection of the leader vehicle remains unchanged.



7.7. RESULTS 101

7.7 Results

7.7.1 Energy Minimization for Elastic Bands

Performing an iteration process for discretized steps that continues until force equi-
librium is obtained does not guarantee to find a position of minimum energy due to
discretization. To investigate the effect, we computed the total energy E = Ej; + Feyt
of the elastic band for every iteration step. As expected, the energy always decreases
unless a situation occurs where the algorithm oscillates around the position of mini-
mum energy. This might happen due to a too large moving factor « for the particles.
The differences in position are subtle and this situation is lead into equilibrium by
gradually reducing «. Note that this procedure does not guarantee a configuration of
minimum energy but a configuration close-by.

An example of the convergence quality and energy-minimizing procedure can be
viewed in Figure 7.4. The traffic scene depicted in Figure 7.9 and 7.10 is used to
produce the energy plot. It only takes 10 iterations to find the equilibrium state. The
simple constant step size provides a sufficiently fast convergence.
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Figure 7.4: Energy of the elastic band vs. iteration number. As desired, the total energy decreases
as we perform our gradient-descent algorithm.

A consequence of choosing the leader path as the zero-strained state is that the
smoothness of the resulting path depends on the smoothness of the leader vehicle
path. A smoothing function guarantees that the leader vehicle path is feasible for the
ego-vehicle.

7.7.2 Simulation Results

Simulation Results Without Lateral Control

The initial verification of the implemented algorithms was performed in an off-line
environment, where only a snapshot of a scene was analyzed. Parameter tuning was
performed in this environment.
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In Figure 7.5 a situation is shown, where the leader vehicle is slightly driving out
of lane and other cars drive to the left and right. Hence a slight path modification to
the right occurs due to the obstacles and also slightly due to the lane markings with
the elastic band algorithm. Obstacles are modeled as rectangles for simplicity. The
equilibrium state is found within 18 iterations.
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Figure 7.5: Simulation result of the elastic band algorithm (bird view).

Figure 7.6 shows an example, how the algorithm works in the absence of obstacles
but with lanes. When the leader vehicle slightly drives out of lane, the ego-vehicle is
guided back into the lane. No modification of the leader vehicle path occurs in the
absence of obstacles and lanes.
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Figure 7.6: Simulation result of the elastic band algorithm using lanes only (bird view).
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Simulation Results With Lateral Control

Collision avoidance maneuvers are dangerous to conduct in the real-world. It is not
safe to interfere with a car’s path when it moves. Maneuvers with especially little
clearance to obstacles are critical. So we decided to perform some of these maneuvers
in simulation first.

In Figure 7.7 an avoidance maneuver is presented, where a pedestrian slightly over-
laps with the driving corridor. Hence a swerving maneuver is performed. This maneu-
ver is performed in a simulation where the full controller code and an accurate vehicle
model of the ego-vehicle is employed. Due to the delay of the actuator a very close
maneuver resulted. To account for this delay, the required distance to the obstacle can
be increased to a certain extent. That yields an additional safety margin. The devia-
tion between desired path and actual path indicates that the algorithm necessitates a
faster actuator when using the simple control law introduced in Chapter 4.
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Figure 7.7: Bird view for a situation where a pedestrian slightly enters the driving corridor which
necessitates a swerve maneuver. The steering actuator described in Chapter 4 is used. The ego-vehicle
and the leader drive at 10m/s and they are about 20m apart.

Figure 7.8 shows the same situation with a model of a faster steering actuator. Note
that the deviation of the actual path to the desired path is significantly smaller.

7.7.3 Real World Results
Real World Results without Lateral Control

We integrated our elastic band framework in the basic vehicle-following system. Com-
puting the modified path runs in real-time without much optimization. With our
current parameterization, the elastic band finds its equilibrium state within 20 itera-
tions for most situations. In order to suppress oscillations around the equilibrium state,
the moving factor « is reduced after a certain amount of iterations (see Section 7.7.1).

Figure 7.9 shows a typical traffic scene with counter traffic on the left and a parked
obstacle (a dredger) on the right.
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Figure 7.8: Bird view for a situation where a pedestrian slightly enters the driving corridor which
necessitates a swerve maneuver using a faster actuator. A steering actuator with about 150ms delay
is used. The ego-vehicle and the leader drive at 10m/s and they are about 20m apart. An avoidance
maneuver with a comfortable safety margin results.

Figure 7.9: Traffic scene with a dredger at the right side of the street.
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The leading vehicle drove very close to the dredger (see initial path in Figure 7.10)
and has a smaller car than our research vehicle. Hence following the initial path brings
us dangerously close to the dredger. The elastic band approach yields the dashed path
in Figure 7.10 which avoids the dredger and keeps a safety distance from the car on
the left at the same time. Lane markings were not used here.
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Figure 7.10: Bird view for the dredger scene. The leader vehicle is located at the end (2 = 17.5m)
of the path and smaller than the ego-vehicle.

Real World Results with Simulated Obstacles

Further experiments have been conducted using the elastic band path as input to the
lateral control. Results using simulated obstacles in the research vehicle are described
in the following.

The steering actuator described in Chapter 4 was upgraded for the following ex-
periments. The delay from desired to actual steering angle could be reduced to about
150ms. With this actuator, we simulated obstacles in the research vehicle to test the
algorithm safely. In addition, the experiments can be reproduced exactly. Figure 7.11
shows a scene, where a small leader vehicle drives in a straight way very close to an
obstacle on the left. The ego-vehicle avoids this obstacle by performing a swerve ma-
neuver. Figure 7.12 shows the sequence of the swerve maneuver in three snapshots.
The desired path as output from the elastic band algorithm is depicted in a dashed
line. Note that the ego-vehicle does not follow exactly the elastic band path due to
non-holonomic constraints and due to the simple controller design.

In Figure 7.13 the leader vehicle drives straight. Another vehicle in the right lane
recognizes an obstacle ahead and starts to change its lane. When recognizing the
autonomous vehicle it brakes but overlaps slightly with the other lane. Hence a swerve
maneuver of the autonomous vehicle results similar to a maneuver a human would
conduct in such a situation.

In Figure 7.14 the leader vehicle passes a bicyclist and cuts back in too early for pure
vehicle following. Due to the elastic band path enough room is left for the bicyclist.
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Figure 7.11: Bird view for an actually driven situation where a pedestrian slightly enters the driving
corridor which necessitates a swerve maneuver. The ego-vehicle and the leader vehicle drive at 6m/s
and they are about 15m apart.
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Figure 7.12: Snapshots for the scene depicted in Figure 7.11.
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Figure 7.13: Bird view for a situation where a car slightly enters the driving corridor which neces-
sitates a swerve maneuver. The ego-vehicle and the leader vehicle drive at 8m/s and they are about
18m apart.

Figure 7.14 shows three snapshots of the scene that are 0.8s apart each. The ego-vehicle
leaves sufficient room for the bicyclist when returning to its lane.
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Figure 7.14: Bird view for a situation where the leader vehicle passes a bicycle and the ego-vehicle
must avoid the bicycle to not cut it. The ego-vehicle and the leader vehicle drive at 8m/s and they
are about 18m apart. The snapshots show that the bicycle is avoided successfully.

Real World Results Using Stereo Vision

After extensive tests with simulated obstacles, we performed avoidance maneuvers
with real image processing data in the research vehicle. A correct mapping of the
whole avoidance maneuver in an inertial reference frame is difficult to establish due
to localization and measurement uncertainties. In our chosen scenario, a human as a
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thin leader vehicle runs on a straight path at about 5m/s. A cardboard box is located
next to that path. The ego-vehicle has to avoid the box while following the human.
Figure 7.16 shows the deviation between leader vehicle and ego-vehicle path. The
deviation increases at the cardboard box location due to the avoidance maneuver. Fig-
ure 7.15 shows a snapshot of the scene. The depicted corridor is the corridor modified
by the elastic band algorithm. In a simple vehicle-following scenario, the car would
have touched the cardboard box.

Figure 7.15: Avoidance scene with a human as a leader vehicle passing close to a cardboard box
on the left. Due to the larger width, the ego-vehicle performs a swerve maneuver to avoid the box.
The elastic band path is depicted projected to the ground. The leader vehicle and the ego-vehicle are
about 12m apart.
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Figure 7.16: Deviation plot for the scene in Figure 7.15. The frame number roughly corresponds
to the z position in the global reference frame (constant velocity assumed). Compared to the image
data, the cardboard box location is depicted in the graph. Assuming the leader vehicle path runs
along the z axis at z = 0, the deviation curve also shows the path of the ego-vehicle.

We performed further tests in real traffic using the elastic band framework. The
desired avoidance maneuvers were properly performed in all encountered dynamic sit-
uations.
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Results under Adverse Visibility Conditions

Feasibility studies are usually concerned with default situations. The system presented
here is designed to keep a high performance level under all circumstances.

Figure 7.17 shows a scene where the leader car is far away and the vehicle center de-
termination delivers a slightly wrong measurement due to adverse visibility conditions.
Since the car is driving between two trucks and the elastic band framework delivers a
path with sufficient obstacle clearance, the erroneous center determination is corrected
and the ego-vehicle follows the car accurately (see Figure 7.18).

Figure 7.17: Traffic scene with trucks to the left and right of the leader vehicle. Back light, wet
street, and a large distance deteriorate detection.
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Figure 7.18: Bird view for the scene in Figure 7.17. The leader vehicle path becomes pushed towards
a straight path which is desirable for that scenario.

In all realistic scenarios the elastic band algorithm found an equilibrium state within
20 iterations. The average computation time for the algorithm with interfering obsta-
cles is about 10ms on a 400 MHz Intel Pentium II PC. Even in cluttered and complex
scenes, the maximum computation time always stays below 50ms.
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7.8 Discussion

In this chapter a dynamic collision avoidance component for the standard vehicle-
following approach has been introduced. The elastic band framework is used to modify
the initial path of the leader vehicle.

The results show, that for standard vehicle-following situations, no modification to
the vehicle-following principle is necessary. In dynamic situations, the intuitive obstacle
avoidance response is achieved.

Compared to the standard potential field approach of robotics, the global aspect of
the whole path constitutes the main difference. So local minima are not a problem here.
The feasibility of the whole path is not considered in local potential field approaches
and infeasible situations might be detected late. In addition, knowing the planned path
is necessary to determine the lateral distance of obstacles to the planned path. This
quantity is important, otherwise reflection posts ahead of the ego-vehicle in a curve
might cause erroneous responses.

Using potential field approaches only for the lateral control avoids the problem of
local minima but above mentioned lateral distance determination problem persists. In
general, the elastic band approach comes closer to a human’s intuition.

Modeling human driving behavior requires a lot of context knowledge that has to
be represented as a rule base in some way. However, we consciously skipped that step
and tried to model human driving behavior with a physical model in order to keep
things intuitive and to analyze global properties of the planned path (e.g. minimum
energy).

All collision avoidance algorithms based on physical models have limited validity
in extreme situations. A human driver has a lot more context knowledge and employs
many different behavioral patterns. But for the restricted scenario of vehicle following
at small to moderate speeds, the above presented algorithm works very well.

Another extension to make the approach more dynamically would be a prediction of
the other traffic participant’s trajectory. However, other people’s intentions and their
trajectories are inherently unpredictable. The only restrictions on trajectories can be
kinematic or dynamic constraints (e.g. purely lateral motion of cars do not occur). Our
approach treats every situation as static but replanning is performed every cycle and
hence changing environments become manageable.

An incorporation of traffic sign (especially speed limit signs) and traffic light recog-
nition is possible in the elastic band framework. Systems with these capabilities are
listed in Chapter 1. Both would mostly influence the longitudinal control. The lateral
control could be supplied by the elastic band framework with no restriction on the end
point. Lane following at constant speed without a leader vehicle could be performed
without modifications of the current approach. The end point of the elastic band would
be the lane center at a certain lookahead distance.

The real-time implementation in the research vehicle has been successfully tested
in numerous test drives. Computation time measurements show that real-time perfor-
mance is achieved without much optimization effort. The result of the elastic band
algorithm is successfully put into the feedback loop of the vehicle-following system.



Chapter 8
Conclusions and Outlook

8.1 Summary

Generalizations of and extensions to the vehicle-following problem in regular traffic
are presented. This dissertation focuses on the image analysis of traffic scenes based
on a stereo camera system as the main sensor. Its main application is autonomous
driving in stop-and-go traffic. Within this thesis, a situation assessment is performed.
A planning and decision module translates the situation into control commands for the
actuators to perform longitudinal and lateral vehicle guidance.

Standard vehicle following is composed of the task of following a leader vehicle at a
certain distance guided by only the current position of the leader vehicle. This thesis
introduces extensions to that notion which are divided into three parts.

1. An algorithm is developed that allows the autonomous vehicle to exactly follow
the path of a preceding vehicle. Unlike other vehicle-following systems, the whole
path and not only the current position of the leader vehicle is considered. In
the process of reconstructing the path of the preceding vehicle an ego-position
estimation in an inertial reference frame is necessary.

2. For the temporal integration of the acquired traffic scene data, a global map in
an inertial reference frame of the vehicle’s environment is built. This map is the
basis for the planning and decision stage that ultimately generates the data for
longitudinal and lateral control. For that purpose, a novel ego-position estimation
algorithm is developed fusing visual cues with motion parameters. In order to
extract symbolic data from the camera data flow, it is necessary to develop some
new image processing algorithms. Specifically, a fast algorithm to extract vertical
landmarks out of a 3D point cloud is developed.

3. Final control commands to the actuators must guarantee a collision-free path.
Pure vehicle-following reaches its limitations when another traffic participant en-
ters the path between the ego-vehicle and the preceding vehicle. This thesis
obtains a collision avoidance capability using the notion of an elastic band for
the path between the autonomous and the preceding vehicle. The elastic band
is deformed by obstacles in its vicinity that exert forces on the band and sub-
sequently deform it. Lane markings constitute virtual obstacles and help the
ego-vehicle to stay in its lane. As a result, either a collision-free path is obtained
or an infeasible situation is detected. In such a case, a warning to the driver is
issued who must take over the control of the vehicle manually.

111
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In this dissertation, design, simulation and implementation of the above mentioned
algorithms were presented as well as results with a research vehicle obtained under
regular traffic conditions.

8.2 Contributions

Summarizing, the main contributions of this thesis are:

e Design, simulation, implementation, and testing of a path-following algorithm
for vehicle-following systems with local sensing. This algorithm can easily be
extended to range sensors other than vision. The path-following algorithm de-
scribed in Chapter 4 is the first algorithm to attempt path following without
external infrastructure.

e Design, simulation, implementation, and testing of an ego-position estimation
algorithm. This algorithm uses 3D points already extracted from the obstacle
detection system. Again, this algorithm can be extended to other range sensor
data such as laser range finders. Only the feature extraction part would be
different. The ego-position estimation algorithm described in Chapter 5 has the
very appealing feature of only using data available from the object detection
system. The additional computational burden is minimal and the performance
is good when the basic assumption of the landmarks being stationary is not
violated.

e Design, simulation, implementation, and testing of a cartography algorithm spe-
cifically tailored to increase the density of the 3D point cloud. It is used to
extrapolate objects beyond the sensor’s field of view. An extension to a parking
assistant application is straightforward.

e Design, simulation, implementation, and testing of a collision avoidance algorithm
for vehicle-following systems. Again, this algorithm does not explicitly exploit
vision sensor data. Any range data could be used. The path of the leader vehicle
is treated as an elastic band and is subjected to forces exerted by obstacles in
the scene. In this context, lane markings are modeled as virtual obstacles. This
way, lane following and vehicle following are combined in our approach. The
initial path can also be supplied by a lane detecting system delivering a path in
the middle between two lane markings. The extension of the vehicle-following
scenario allows even more advanced driving assistance functions. For instance,
lane-following with a set speed would be a straightforward application. The
intuitively appealing elastic band framework delivers safe modified paths in a
vehicle-following scenario and even helps to handle bad measurement data.

8.3 Conclusions

What has been achieved in this thesis? The algorithms developed above are useful
for all platooning applications. However, significantly different vehicle dynamics must
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be taken into account for trucks. Furthermore, the consideration of all obstacles in
the scene is crucial for safety applications and performed here. Even autonomous
navigation would be feasible this way provided a panoramic view. In addition to
these extended vehicle-following capabilities, warnings of infeasible situations are given
earlier, since the whole path is considered and evaluated unlike local approaches.

In this thesis, the two concepts of vehicle following and lane following are combined
intuitively using the elastic band framework.

8.4 Future Work

A lot of work remains to be done. Better global goals can be formulated with a
global positioning system (e.g. GPS). Digital maps could further help to navigate the
vehicle autonomously. Additional recognition modules such as traffic light and traffic
sign recognition would contribute towards more autonomy. Elastic bands allow more
autonomous driving capabilities even without a leader vehicle. Scenarios such as lane
following while keeping a speed limit are feasible. Responses to traffic lights or traffic
signs can be integrated. However, the extension of the elastic band framework for
longitudinal control is not straightforward since it is a path-planning algorithm. Unlike
a trajectory-planning algorithm, no information is given on when to pass a specific point
on the path.

The remainder of this section covers future work specifically related to the algo-
rithms developed here.

8.4.1 Future Work for Path Following

The path-following approach introduced in Chapter 4 does not guarantee feasible paths
under all circumstances. A kinematic check on the reconstructed path of the leader
vehicle is performed but dynamic constraints are not taken into account. This becomes
important when the approach is extended beyond the urban velocity range.

Having the whole path of the leader vehicle at hand, it would be beneficial to include
the path curvature at the current position in the controller interface. By using such
information a reduction of the controller delay might be feasible. Well established lane-
following control algorithms also use this information. The lateral control algorithm
could be modified such that the path of the preceding vehicle is treated as a lane.
Standard lane-following control algorithms could be applied to follow that path.

8.4.2 Future Work for Ego-Position Estimation

The ego-position estimation algorithm using vertical landmarks has been tested exten-
sively in simulation and in regular traffic situations.

Concerning the extraction of vertical landmarks from the list of 3D points, a more
accurate method would enhance the quality of the algorithm. A line-fitting algorithm
would improve localization of the landmark. Another potential improvement can be
achieved by performing temporal matching of the landmark in the grayscale image to
improve data association from one frame to the next.
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8.4.3 Future Work for Cartography

In order to use this algorithm for highly dynamic scenes, several heuristics must be
introduced to suppress old 3D points from fast moving objects. Also, stationary objects
beyond the field of view could be kept in the global map for a longer period of time.
An application of that algorithm to a parking assistant seems promising.

8.4.4 Future Work for Collision Avoidance

The resulting paths from the elastic band framework do not necessarily comply with
the vehicle’s dynamic and kinematic constraints. A penalty function for violating these
constraints can be envisioned in order to achieve feasible paths.

No intelligent smoothing of the elastic band paths from one frame to another is
performed. Obstacles appearing for the first time cause sudden changes to the control
input. Smoothing could be achieved by letting the obstacles’ impact increase slowly
by adjusting the obstacle repulsion gain over a ramp. The same can be done when
an obstacle disappears. Clearly, this also increases reaction time in that approach and
might result in delayed responses.

In addition, one could investigate the use of the depth map as an alternative to
the obstacles as a basis for the potential. This would yield a more reactive response
closely related to the sensor data. The number of distance computations would increase
significantly but at the same time each computation would degenerate to a distance
computation between a point and a line segment.

The elastic band framework for collision avoidance might also benefit from a mod-
ification of the lateral control for path following. Treating the elastic band path as a
lane and performing lane-following seems promising.

8.5 Outlook

Looking into the future is difficult. Today’s sensor and computing technologies allow
the transfer of more and more complex functions into the vehicle of tomorrow. Intelli-
gent cruise control functions have already been introduced into the market by several
car manufacturers (Mitsubishi, DaimlerChrysler, Subaru). A traffic jam pilot has the
very appealing feature of supporting the driver in a task that is tiring and lacks the
joy of driving. The algorithms introduced above can be integrated in such a system
without any additional hardware costs since they would represent only software in an
embedded system.

The algorithms developed in this thesis especially support autonomous driving in
regular traffic. The path planning component introduced with the elastic band frame-
work is crucial and superior to local approaches when emulating human driving behav-
ior. Even without a leader vehicle, the framework is still applicable.



Appendix A
Hardware Environment

A.1 The Research Vehicle

The hardware equipment of the research vehicle used for the experiments presented in
this thesis is described here. Relevant vehicle data, actuators, the camera system, and
the computer equipment is covered.

A.1.1 Physical Dimensions

Our research vehicle is a Mercedes Benz E-class 420 built in 1995. All components
in addition to the standard equipment are described below. The relevant physical
dimensions of the vehicle are listed in Table A.1.

Distance sensor center to front of car 1.80m
Distance sensor center to front axle 1.00m
Distance sensor center to cog —0.33m
Distance sensor center to rear axle —1.83m
Car width (tire center to tire center) 1.60m
Height above ground of the camera system | 1.17m
Self-steering gradient 0.2°s? /m

Table A.1: Physical dimensions of the research vehicle used for the experiments. The center of
gravity is denoted as cog, a minus indicates that the point lies behind the sensor center.

A.1.2 Actuators

Besides the regular equipment of an E-class model, our research vehicle has additional
actuators for throttle, brake and steering wheel.

The throttle is actuated by sending appropriate messages to the ASR system (a
drive slip control system). The manual brake system is supplemented with an elec-
tronic brake made by ITT (ITT Smart Booster). Brake pressures are limited such that
emergency brake maneuvers cannot be performed automatically. However, decelera-
tions up to 8.3m/s? are achieved.

The steering wheel is controlled with an electronic steering mechanism built by
Weiss GmbH (Elstar steering control). It provides a mechanical fallback connection to
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the steering column. Communication among the various control devices is implemented
using two control area networks (CAN). The predecessor of this actuator used in the

APPENDIX A. HARDWARE ENVIRONMENT

experiments presented in Chapter 4 is described in Section 3.5.5.

A.1.3 The Stereo Camera System

For the experiments, two cameras made by Cobra were used. The focal lengths of the
lenses varied from 12mm during the experiments for the CUT algorithm to 7.5mm for
the elastic band experiments. The technical data of the camera system are listed in

Table A.2.

Baseline
Chip-size

Pixel
Radial distortion coefficient 1st order (12 mm lens)
Radial distortion coefficient 1st order (8.5 mm lens)
Radial distortion coefficient 1st order (7.5 mm lens)

0.23m
6.4 x 4.8mm
768 x 568pizel
0.0023mm 2
0.0035mm 2
0.015mm 2

Table A.2: Data sheet of the stereo camera system Cobra CS 5132.

A.1.4 Computers

For most of the experiments presented here, the following computer equipment was

employed. Table A.3 lists the most important properties of these computers.

Image Processing Computer Clock rate 400M H~
Operating system | Linux (SuSE 5.3)
Processor Intel Pentium II
RAM 384M B
Frame grabber Stemmer ITI
Vehicle Control Computer Clock rate 200MHz
Operating system Lynx OS 2.09
Processor Motorola 68030
RAM 64M B
Bus VME Bus
Modules CAN module 68333

Table A.3: Data sheet of the vehicle computers.
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