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Abstract

A mathematical formalism was tailored for the description of mechanisms
complicating radiation therapy with a predominantly local component. The
functional representation of an NTCP function was developed based on the
notion that it has to be robust against population averages in order to be
applicable to experimental data. The model was required to be invariant
under scaling operations of the dose and the irradiated volume. The NTCP
function was derived from the model assumptions that the complication is a
consequence of local tissue damage and that the probability of local damage
in a small reference volume is independent of the neighbouring volumes. The
performance of the model was demonstrated with an animal model which has
been published previously (Powers et al 1998 Radiother. Oncol. 46 297-306).

1. Introduction

The mathematical description of normal tissue complication probabilities (NTCP) of radiation
therapy has been developed over the last two decades taking two distinct approaches:
the phenomenological definition of fit functions (Lyman 1985, Lyman and Wolbarst
1987, 1989) and the mechanistic modelling of dose-response relations (Schultheiss et al 1983,
Wolbarst 1984, Niemierko and Goitein 1991). The formalism developed in this paper draws
on mechanistic concepts to derive a phenomenological description of an NTCP function.

The range of validity of the model and the detail of the description of the dose response is
inevitably limited. Common experimental design and radiation therapy practice significantly
restrict the variability of the dose response and the available information. Whilst the former
is a blessing for any phenomenological approach to NTCP modelling, the latter is a curse for
mechanistic models. We assume the standpoint that the mechanistic assumptions in our model
ought not be taken further than they can be supported by experimental data or basic reasoning.

Any measurement of complication probabilities will a priori be limited to the group
of individuals which received that particular treatment. However, a ranking (or NTCP)
function is supposed to map a particular treatment onto the conditions of some experiment.
The fundamental problem is to identify ‘good observables’ which describe the dose
response sufficiently and self-consistently. The inevitable interpatient heterogeneity of dose
response can be built into the model by defining observables which are invariant under
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population averages. The generalization to inhomogeneous dose distributions can be made
by requiring certain ‘conservation laws’ for these quantities, which could be motivated by
mechanistic concepts. The validation of the model is then equivalent to proving the validity
of these invariance assumptions.

In particular, a formalism is introduced which allows us to go from experimentally
established dose-volume relations for homogeneous dose distributions to general,
inhomogeneous dose distributions.  This formalism requires that the ranking of dose
distributions be robust against scaling of the dose, and a reference volume. These
transformations have been chosen because they are accessible to experimental falsification
and hence can substantiate the observables of isoeffective dose and reference volume. This
particular set of transformations precludes distinctly non-local, so-called parallel complication
mechanisms with a macroscopic functional reserve (or macroscopic redundancy).

In section 2, the formalism which supports the transition from experimental settings to
clinical application is introduced. The relationship of the formalism to experiment and clinic
is established in section 3.

2. A phenomenological formalism for ranking treatment plans

This section attempts to illustrate the mathematical method which can also be used for
a different set of phenomenological assumptions. These assumptions do not pertain to
radiobiology: the definition of the volume effect here is merely a mathematical concept which
will not be given biological meaning until section 3.

The dose distribution D(X) is assumed to incorporate all time and fractionation effects by
means of a transformation to some standard dose per fraction. Let V > 0 be the reference
volume, i.e. the volume with respect to which the ranking function is normalized. In its most
general form, a ranking function F (D, V) induces an order on the set of all dose distributions
by assigning a non-negative real number. For convenience, the ranking function is defined on
dose distributions which “fill’ the entire R? to avoid boundary problems. The dose can safely
be imagined to be zero outside a certain volume of interest A. However, this should not be
confused with the reference volume V which is necessary to normalize F since the volume of
A need not be constant or universal.

One can require as an important practical quality of a ranking function to make dose
distributions comparable to homogeneous dose distributions on certain standard volumes. To
achieve this, the notion of an isoeffective dose is introduced. This is an intuitive concept
borrowed from treatment planning: the ranking of a given dose distribution is compared with
the ranking of a homogeneous dose on a volume of the size of the reference volume

F(D,V)=Fd,V) (1)

with d being the isoeffective dose of the dose distribution D. If d exists for all dose distributions
D, and is unique, the ranking function is termed reducible. The isoeffective dose of D is denoted
by d(D, V). Reducibility is equivalent to the assumption that a dose-oriented DVH reduction
scheme exists. Notice that this definition of reducibility does not require a volume threshold for
the isoeffective homogeneous dose distribution. With this definition complication mechanisms
which show the existence of a certain functional reserve are excluded. Conversely, it follows
that isoeffective dose is not a good observable for ‘parallel” complications.

In the following the volume effect as a function of reference volume and isoeffective dose
is established which relates certain transformations of dose and volume. In this development
a scaling operation for both is chosen. In order that the volume effect should apply equally
to homogeneous and inhomogeneous dose distributions, we require that the ranking is robust
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against these transformations, i.e. for any two dose distributions, the order of their ranking
must be preserved under these transformations. This is called the concept of faithfulness.

To achieve this, two scaling operators which act on D are introduced. Operator R is a
scaling of the dose by a factor r > 0:

RD(X) =rD(X) 2)
and operator S is a scaling transformation of R? with a scaling ratio s > 0
vol (§X) = s vol (X) 3)

which in the case of a homogeneous and isotropic dose response is equivalent to a scaling' of
the reference volume V with s:

S:V > sV. 4)

These transformations reflect the most fundamental consideration in treatment planning:
how can a greater dose tolerance be achieved by a reduction in the irradiated volume (and
vice versa)? One way to arrive at a useful means to rank treatment plans or assess treatment
outcome is to demand that the ranking function can account for these transformations in a
consistent fashion. This requirement is by no means rooted in biological considerations, but
in clinical and experimental practice, or even necessity. We will find in section 3 that it can be
substantiated by biological observations. The definition of this special kind of ‘faithfulness’
follows.

The reducible ranking function F is R-faithful if

F(RD,V)=F(@d,V) for all D, R. 5)
Likewise, the reducible ranking function F is S-faithful if
F(DS,V)=F(d,sV) forall D, S. (6)

If a ranking function is both R- and S-faithful, it is termed faithful. These definitions assure
that the isoeffective dose and the reference volume are meaningful observables both for
experimental design and treatment planning. If a complication complies with S-faithfulness,
one can extrapolate from a dose—volume relation found experimentally for homogeneous doses
to a dose—volume relation for arbitrary dose distributions. It must be pointed out that this
definition of ‘faithfulness’ is a severe limitation of the range of the modelling to the subset of
complications for which an isoeffective dose is a meaningful quantity.

The rationale for these assumptions is two-fold. Firstly, they can be independently falsified
with clinical and experimental data. Even if the NTCP function shows a reasonable fit, the
underlying mechanistic or phenomenological model assumptions can be wrong and require
individual verification. Secondly, despite the enormous effort required to collect clinical data, a
great amount of detail will be blurred by inevitable interpatient heterogeneities. The properties
of the ranking function necessarily have to be robust against the population averages exhibited
by experimental data.

For example, a dose response has to be assumed not to be S-faithful if there exists a volume
threshold below which arbitrary doses may be given without causing morbidity (as could be
the case in radiation pneumonitis for example (Yorke et al 1993, Jackson et al 1993, Boersma
et al 1995, Graham ef al 1999)). If the dose response is not R-faithful, then a modest increase
in total dose could be much more dangerous when the dose distribution is homogeneous than
when some part of the volume is completely spared. Non-local dose-response mechanisms
will show a violation of faithfulness due to long-range interactions with inherent dose and
macroscopic length scales.

! Fors < 1 the irradiated volume vol A < vol SA, A = {¥ € R® : DS(¥) > 0} is inflated by the scaling.
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In order that experimental design elucidates the faithfulness of the underlying
physiological dose response, an experiment has to comprise at least a series of various uniform
doses given to a set of partial volumes of differing size, each for a group of individuals.

Based on faithfulness, the volume effect function b is defined, which links the dose
transformations R to the volume transformations S. First, the set of admissible ranking
functions is restricted further. A reducible ranking function F (D, V) is said to be monotonic if
it is monotonic in the two scalars d and V. Continuity and differentiability in either argument
of a reducible ranking function F are established in the canonical way.

Let F be a monotonic, faithful, continuous and differentiable ranking function. The
volume effect

bd,V,r)=s @)
is then defined by
F(D,V) = F(RDB(D,V,R), V) ®)
I faithfulness I
Fd,vV) = F@rd,bd,V,r)V) ©)

where S = B(D, V, R) is the scaling operator with scaling factor s = b(d, V,r). This
function exists and is unique under the conditions given. The volume effect function b links
the fractional increase in dose r to a fractional decrease in irradiated volume s at the same
level of toxicity. It defines the lines of equal ranking in the (7, 5) space at a given (d, V). The
function b will be increasing in r. In general, the volume effect function b will be dependent
on all its variables, but this dependence may be hidden by population averages and the limited
range of clinical dose variation. For the isoeffect, equation (9) reads

d(RD, bV) = const. (10)

This definition of volume effect follows clinical considerations. Depending on the
objectives, dose and volume are altered along a line b(r) = s at the same level of toxicity; for
example, conformal radiotherapy aims to decrease the irradiated volume (increase the reference
volume V') in order to be able to increase the dose to that volume. The method of defining the
volume effect by pairing transformations of dose and volume which leave the ranking invariant
is not restricted to the two transformations chosen here and may be a generally fruitful concept.

In the following, a ranking function is derived with the lowest-order approximation that
the volume effect function depends neither on d nor V. In practice, this can easily originate
from experiment design in the limit of low complication rate, since neither this assumption
nor faithfulness need to hold for very high isoeffective doses or small volumes.

Starting from equation (9), we form the partial derivative of F with respect to r:

JOF(rd, V) 8b_ 9F(d, bV

d an
ad ar av
In order that this equation be independent of r and b, we use b(1) = 1 and arrive at
oFd', V' aFd', V'
ad av

for some characteristic constant k£ > 0, since the volume effect b must be increasing with r.
Although k is a function of d and V, we use the lowest-order Taylor approximation which
is justified by the small range of d and V encountered in practice in the limit of low NTCP
approximations. This partial differential equation leads to the most general form of F

Fd,V)=G@d'v™ (13)
=G<1/V/D"(5c’) dx3> (14)
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with G being some differentiable, monotonically increasing function. The corresponding
volume effect function reads

b(ry=s=r* (15)

and is independent of 4 and V.

These infinitely many ranking functions share the same volume effect. If G is set to be the
identity, we find that the well-known Kutcher—Burman DVH reduction scheme (Kutcher and
Burman 1989) is also among these ranking functions. Equation (14) invokes faithfulness which
might be, even in spite of experimental evidence for some dose distributions, unsubstantiated.
This step is motivated in section 3 by biological model assumptions.

3. A set of mechanistic model assumptions for local complication mechanisms

The formalism developed above forms the framework for a class of NTCP models which is
restricted by phenomenological properties of the ranking function F. This function assigns a
figure of merit to every dose distribution D in some given volume (e.g. organ) with respect to
an arbitrary reference volume V. The first model assumption is that such a function exists for
the complication in question?.

For the ranking function, we demand that for any given dose distribution D there be a
homogeneous dose distribution d on a volume with size V' with the same ranking as D. This
concept of an isoeffective dose with an independent reference volume restricts the range of the
ranking function to complication mechanisms which do not show a macroscopic functional
reserve.

It is reasonable to require that the ranking be preserved if the dose distribution is subject
to scaling operations of the dose or the reference volume. This choice does not accord
to all radiation complications, yet it is necessary to introduce a ‘conservation law’ for the
ranking function to mediate the transition from homogeneous to arbitrary inhomogeneous dose
distributions. This idea of invariant ranking under scaling of dose and volume is formalized
with the concept of S(pace) and R(esponse) faithfulness. These assumptions are closely related
to mechanistic biological assumptions. In contrast to them, the phenomenological assumptions
are easily falsifiable.

For practical utility, it should be possible to link a reduction in irradiated volume to an
increase in dose tolerance and vice versa. This is made explicit with the volume effect function b.
Quite generally, b is a function of dose d and reference volume V. Here b is approximated
to be independent of these quantities in the limit of low complication probabilities. This
approximation may be taken to higher orders of d and V if justified by experimental findings.
It is possible to derive a family of ranking functions for a given volume effect in equation (13).
The ranking function is in essence defined by the ‘conservation law’ with respect to some
transformation, which establishes a certain quantity as a meaningful observable, and the volume
effect function which links those transformations. With the particular choice of this paper, the
Kutcher-Burman DVH reduction technique is recovered.

All mathematical assumptions are congruous with the local nature of the so-called serial
or series type complications (Schultheiss et al 1983, Niemierko and Goitein 1991). These
complication mechanisms are perceived to be triggered by the loss of function or repair capacity
anywhere in the irradiated volume, no matter how small the lesion is initially (biological model
assumption I). Furthermore, the series model assumes that the probability p of local occurrence
at site X of the complication as a function of dose D (¥) is independent of its neighbourhood and

2 This should not be taken for granted since the ranking of dose distributions may be patient dependent.
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is identical at each point of the volume (biological model assumption II). These assumptions
are congruous with the former if the concept of functional subunits for these complications is
abandoned. Within the framework of the formalism, defining a dose-response function p(d)
for an FSU or P (V, d) for the whole organ is tantamount to fixing the volume effect function b
a priori. This is a rather problematic step since this dose-response is not easily accessible
experimentally and the details of the volume effect may only be very difficult to detect in
population averaged data. To avoid these difficulties we assume that if FSUs exist, they are
too small to influence the dose response on a macroscopic scale by their microscopic partial
damage repair capacity. Hence, the dose response does not show an intrinsic length scale, and is
therefore invariant under scaling of the volume, in other words it is S-faithful. Conversely, every
complication which does show a macroscopic functional interaction necessitates a different
choice of invariance property.

If all model assumptions hold, the NTCP function of the series type model is of the form
equation (13) and the definite form of G remains to be determined according to the biological
concepts. We assume that g(D) = 1 — p is the probability that the complication does not
occur in a unit volume v. If n unit volumes are irradiated with the same dose, the probability
that the complication does not occur in any volume is Q = g" = exp(n log g). It follows, that
the volume dependence of this series model is exponential, and hence

F(d.V) = exp (—%(d/doﬁ) (16)

with some constant dy and a volume effect parameter k. Notice thatlog g < 0, hence the minus
sign in the exponent. The NTCP function P for this model would thenbe P =1 — F(d, V).

It is shown in the following that S-faithfulness is invariant under population averages.
Following the previous paragraph, we find that the number of lesions in n unit volumes is
Poisson distributed with mean p = np if p is small, as it usually is if the unit volumes are not
too big. Equation (16) is recovered as the Poisson probability that no complication occurs. This
result stems from biological model assumptions I and II which demand that the complication
mechanism be entirely local in its nature, i.e. any interactions within the ensemble of unit
volumes are neglected.

By the same token it is possible to arrive at the NTCP function for a larger ensemble: the
set of all unit volumes of all individuals who participate in the trial, whose probabilities of
complication occurrence are certainly independent. For a group of m individuals all of whom
have n unit volumes of some organ irradiated with a dose d, the probability of no occurrence of
a complication in any individual is Poisson distributed with mean = % ™" | p;. This result
implies the same volume dependence of the NTCP function, in other words that S-faithfulness
is robust against population averages. If R-faithfulness is invoked, the population averaged
NTCP function has the same functional representation as the individual NTCP function, yet
with different parameters dy and k.

This particular NTCP function is only applicable to complications with a predominantly
local complication mechanism. A good candidate is lesions of the spinal cord. The
complication mechanism involves the supportive tissue, with the neural damage being
secondary to myelitis, necrosis or infarction. Both the neural damage and the primary radiation
damage are sufficiently local to be described by equation (16). Figure 1 shows a fit of the
model to the complication data obtained by Powers et al (1998). Their experiment involved
irradiation of canine spinal cord with fields of 4 cm and 20 cm length with several animals per
dose level. The two-parameter model was fitted to the 20 cm data with parameters k = 8.2 and
dy = 60.7 Gy with reference ‘volume’ V = 20 cm. To prove S-faithfulness, and support the
assumption of the simplest possible volume effect, the same fit parameters must also predict
the 4 cm data. To show this, a fit for the 4 cm data was obtained which amounts to k = 8.1
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Figure 1. The dose-response curves for the canine spinal cord experiment as in figure 1 of Powers
et al (1998). The full curve is the fit for the 20 cm data (x), also shown for the 4 cm data (*). The
broken curve is the direct fit to the 4 cm data. The good agreement for the 4 cm data supports the
assumption of S-faithfulness and the simplest possible volume effect for this model.

and dy = 61.2 Gy. For the direct fit, a X2 test delivered X2 = 0.62, whereas the parameters of
the 20 cm fit delivered x? = 0.66. On the basis of this simple test, neither assumption can be
rejected at a confidence level p =~ 0.1.

The extension from homogeneous to inhomogeneous dose distributions involves
assumptions which have to be substantiated by data obtained from experiments or clinical trials
conducted with homogeneous dose distributions. If it is possible to establish S-faithfulness for
a local dose-response mechanism, as in the example above, the extension may be made safely.
From equation (16) it follows that if a volume A is irradiated with dose d4 and a volume B
with dp, the ranking for the volume A + B would be

F(Da+p), V) =F(da, V)* F(dp, V) (17)

1
= exp (—7<vol (A)(da/do)* +vol (B)(dB/doY‘)) .y

By induction it follows that the iso-effective dose and NTCP function reads
Dk ¥)d 3\ I/k
= (M) (19
Vv
d \F

NTCP =1 —exp| — <—) . (20)

dy

Biological model assumptions I and II are a sufficient condition for S-faithfulness (the
converse does not hold). There are no equally strong arguments in favour of R-faithfulness.
From a mechanistic point of view, it is certainly not given in the limit of high doses because
it does not comply with the repair capacity of tissues for microscopic lesions. R-faithfulness
implies dose-scale invariance of the dose response which is inversely related to spatial-scale
invariance. If meso- and macroscopic interactions have to be taken into account, both volume
and dose-scaling symmetry are broken; this would be the case even for local complication
mechanisms in the limit of high doses, or small volumes. It can be conjectured that if the
dose-scale invariance did not hold for individuals, the population averages would obliterate
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these effects due to the variety of inherent dose-response parameters. The model can account
for dose- and/or volume-dependent volume effects by expanding the derivative of the volume
effect in equation (12) to higher orders in d and V. This is beyond the scope of this paper, and
rather difficult to back up experimentally. In some sense, the power law of the Kutcher—Burman
isoeffect is the smallest common denominator in a population dose response.

4. Conclusion

The goal of the model described in this paper was to determine a phenomenological NTCP
function with inclusion of mechanistic concepts for predominantly local dose-response
mechanisms. The design of the function was determined by the availability of clinical and
experimental data where population averages are inherent. It was assumed that the ranking of
treatment plans should be independent of the choice of the reference volume and reference dose
used for normalization. These steps were embedded in a formalism which is a suitable method
for generating model functions under controlled and experimentally accessible assumptions.
The formalism was linked to mechanistic concepts which originate from the critical element
model. The model is based on properties which are robust against population averages. This
is essential if model parameters have to be determined from experimental or clinical data.
The invariance properties of the formalism establish practically useful quantities as ‘good
observables’.

The model has two fit parameters if the dose—volume relation is approximated to the lowest
order. More intricate dose—volume relations may be established if indicated by experimental
findings. If the assumption of a local complication mechanism is not justified the formalism
does notapply. This will certainly be the case for organs showing a high tolerance against partial
damage such as lung, liver, kidney or parotid glands. The model was applied successfully to
animal spinal cord complication data, yet only similarly conducted experiments can eventually
validate it for other tissues.
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