Smooth projective planes,
smooth generalized quadrangles,
and isoparametric hypersurfaces

DISSERTATION

DER MATHEMATISCHEN FAKULTAT
DER EBERHARD-KARLS-UNIVERSITAT TUBINGEN
ZUR ERLANGUNG DES GRADES EINES DOKTORS
DER NATURWISSENSCHAFTEN

VORGELEGT VON

STEFAN IMMERVOLL
IM SOMMERSEMESTER 2001



TAG DER MUNDLICHEN PRUFUNG: 4. JuLi 2001

DEKAN: PROFESSOR DR. CH. LUBICH
1. BERICHTERSTATTER PROFESSOR DR. V. BATYREV
2. BERICHTERSTATTER PROFESSOR DR. H. SALZMANN



DIESE DISSERTATION IST DEM GEWIDMET,

DER MIR AM MEISTEN DABEI GEHOLFEN HAT.






Contents

Zusammenfassung

Introduction

Part 1
Smooth Generalized Quadrangles

and Isoparametric Hypersurfaces

1. Smooth Generalized Quadrangles
Introduction ........ .. .
Preliminaries ....... ...
Smoothness Properties of Generalized Quadrangles ............
Properties of Smooth Generalized Quadrangles ................

Similar Smooth Incidence Structures ............cc ...

2. Isoparametric Hypersurfaces of Clifford Type
Introduction ....... ... i
Main Theorem ....... ... i

CONSEQUENICES . vttt ettt ettt et e e i

3. Isoparametric Triple Systems and Geometry
Introduction ....... ... i
[soparametric Triple Systems ............ ...,

The Geometry of Isoparametric Hypersurfaces ................

10
10
12
15
23
28

31
31
32
38



Part 11
Smooth Projective Planes —

Characterizations and Examples

4. Characterizations of Smooth Projective Planes
Introduction ....... ... i

Implicit Characterizations of Smooth Geometries..............

5. Examples of Smooth Projective Planes
Introduction ....... ... i
Proofs and Details ....... ... ...

References

63

65
65
66

72
72
75

90



Zusammenfassung

Die vorliegende Dissertation besteht aus zwei Teilen, die durch ein gemein-
sames Prinzip verbunden sind: die Charakterisierung glatter Geometrien

mittels (differential-)topologischer Bedingungen.

In Teil I dieser Arbeit verwenden wir eine solche Charakterisierung von
Tits-Gebauden vom Typ C, (verallgemeinerte Vierecke), um ein differential-
geometrisches Problem weitgehend zu losen, das von Thorbergsson vor ca.
10 Jahren in seinen Arbeiten [35] und [36] formuliert wurde. Wir beweisen

den folgenden

Satz. SeiJ eine kompakte, zusammenhangende isoparametrische Hyperfla-
che in einer Sphare. Falls J vier verschiedene Hauptkriimmungen besitzt,

ist die mit J assoziierte Inzidenzstruktur ein Tits-Gebaude vom Typ Cs,.

Die Konzentration auf kompakte, zusammenhangende isoparametri-
sche Hyperflachen mit vier verschiedenen Hauptkrimmungen ist keineswegs
so speziell, wie sie vielleicht erscheinen mag. Nach [27] ist jede zusam-
menhangende isoparametrische Hyperflache in einer Sphare eine offenene
Teilmenge einer kompakten, zusammenhangenden isoparametrischen Hy-
perfliche J. Ferner konnen nach [28] nur 1, 2, 3, 4 oder 6 verschiedene
Hauptkrimmungen auftreten. In den ersten beiden Fallen ist J selbst eine
geometrische Sphare bzw. ein Produkt zweier geometrischer Spharen, und
die Fokalmannigfaltigkeiten sind Punkte bzw. geometrische Spharen, siehe
[31]. In den verbleibenden Féllen ist mit der isoparametrischen Hyperflache
J und ihren Fokalmannigfaltikeiten P und L eine interessante Inzidenzstruk-

tur verbunden. Man erhalt sie, indem man J vermoge der Projektionen auf



P und L als Fahnenraum JF in P x L einbettet.

Im Fall dreier verschiedener Hauptkrimmungen lafit sich relativ einfach
zeigen, daf} die assoziierten Inzidenzstrukturen (P, L,JF) verallgemeinerte
Dreiecke, d.h. projektive Ebenen, sind. Bereits E. Cartan klassifizierte die
kompakten, zusammenhangenden isoparametrischen Hyperflachen mit drei
verschiedenen Hauptkriimmungen, siehe [7]. Nach [18] sind die assoziierten
Inzidenzstrukturen genau die klassischen projektiven Ebenen iiber den vier

reellen alternativen Divisionsalgebren.

Im Fall von sechs verschiedenen Hauptkrimmungen ist bekannt, daf}
alle Hauptkrummungen entweder die Vielfachheit 1 oder die Vielfachheit
2 besitzen. Ferner existiert jeweils genau eine maximale Familie homo-
gener isoparametrische Hyperflachen mit diesen Parametern. Es gibt keine
weitere isoparametrische Hyperflache mit sechs verschiedenen Hauptkrum-
mungen der Vielfachheit 1 in einer Sphéare, vergleiche [37]. Bis auf die
Frage, ob eine inhomogene isoparametrische Hyperflache mit sechs ver-
schiedenen Hauptkrimmungen der Vielfachheit 2 existiert, sind somit auch
die isoparametrischen Hyperflachen mit sechs verschiedenen Hauptkrium-
mungen in Spharen klassifiziert. Im homogenen Fall sind die auftretenden

Inzidenzstrukturen verallgemeinerte Sechsecke, vergleiche [36].

Die bisher noch offene Frage, ob mit isoparametrischen Hyperflachen
mit vier verschiedenen Hauptkrimmungen in Spharen ebenfalls stets Tits-
Gebaude assoziiert sind, wird durch den obigen Satz beantwortet. Der Fall
isoparametrischer Hyperflachen mit vier verschiedenen Hauptkrimmungen
ist wesentlich reichhaltiger als die anderen Falle. Insbesondere sind solche
Hyperflachen bis jetzt noch nicht klassifiziert. Zu ihnen gehoren die in [10)]
mittels reeller Darstellungen von Cliffordalgebren konstruierten Beispiele,
die in Kapitel 2 untersucht werden. Wir beweisen dort innerhalb der Theo-
rie der Cliffordalgebren, dafl die assoziierten verallgemeinerten Vierecke
(siehe [36]) glatte verallgemeinerte Vierecke sind. Die isoparametrischen

Hyperflachen dieses Typs umfassen bis auf zwei homogene Beispiele alle



bekannten isoparametrischen Hyperflachen mit vier verschiedenen Haupt-
kriimmungen in Sphéren, siehe [10]. Kapitel 3 ist dem Beweis des obigen
Satzes mit Hilfe der Theorie isoparametrischer Tripelsysteme gewidmet.
Auf dem Weg zu einem Beweis dieses Satzes erhalten wir weitere neue
Resultate iiber die Geometrie isoparametrischer Hyperflachen. In Kapi-
tel 1 untersuchen wir detailliert das Wechselspiel zwischen verschiedenen
Glattheitseigenschaften verallgemeinerter Vierecke. Insbesondere beweisen
wir eine zu Beginn angesprochene Charakterisierung glatter verallgemeiner-
ter Vierecke, die die Grundlage fir die Hauptresultate der Kapitel 2 und 3
bildet.

In Teil IT dieser Arbeit losen wir ein klassisches Problem der topologi-
schen Geometrie. Es war bisher nicht bekannt, ob es nicht-klassische pro-
jektive Ebenen gibt, deren Punkt- und Geradenraum reell analytische Man-
nigtaltigkeiten sind, so dafl Schneiden und Verbinden durch reell analytische
Abbildungen gegeben sind. Wir konstruieren Beispiele solcher Ebenen in
den Dimensionen 2, 4 und 8. Ferner sind diese Ebenen die ersten Beispiele
nicht-klassischer glatter projektiver Ebenen mit grofilen Automorphismen-
gruppen. In Dimension 2 stimmen sie mit einer von Segre entdeckten Klasse
projektiver Ebenen {iberein, siehe [33]. Eine ausfiihrlicher Einfiihrung in
diesen Problemkreis geben wir in der Einleitung zu Kapitel 5. Grundle-
gend fur den Nachweis, daf} es sich tatsachlich um projektive Ebenen han-
delt, ist eine Charakterisisierung glatter projektiver Ebenen in Kapitel 4.
In Analogie zu Kapitel 1 werden in diesem Kapitel glatte Inzidenzstruk-
turen untersucht, die eine Verallgemeinerung glatter projektiver Ebenen

darstellen.

Wenn ich auch uber die Themen dieser Dissertation nicht mehr mit
Richard Bodi diskutieren konnte, so habe ich doch sehr von den “Nach-

wirkungen” der endlosen Gesprache mit ithm wahrend meines Studiums



profitiert. Ich mochte ihm dafir herzlich danken. Kapitel 4 entspricht im
wesentlichen einem Teil einer gemeinsamen Publikation mit ihm, siehe [4].
Linus Kramer danke ich fiir hilfreiche Gesprache, die mir wertvolle Anregun-
gen fir meine Dissertation gegeben haben. Dem Referenten meiner Arbeit
[16] habe ich die Idee zu verdanken, meine Resultate aus dieser Arbeit mit
der Theorie isoparametrischer Tripelsysteme zu verbinden. Bei der Familie
Parantainen, und insbesondere bei Annika Parantainen, mochte ich mich
fur die Gastfreundschaft wahrend eines Aufenthalts in Finnland bedanken,
wo ein wesentlicher Teil des zweiten Teils dieser Dissertation entstanden ist.

Meinem Betreuer, Victor Batyrev, danke ich fiir die Freiheit, die er mir
in der mathematischen Forschung gelassen hat, und fir das Vertrauen, das
er mir dabei stets entegengebracht hat. Abschlielend mochte ich Reiner

Salzmann danken fir zahllose interessante Gesprache und Anregungen.



Introduction

This thesis consists of two parts, which are joined by a common princi-
ple: the characterization of smooth geometries by means of (differential-)

topological conditions.

In Part I we use a caracterization of Tits buildings of type C, (general-
ized quadrangles) in order to solve to a large extent a differential-geometric
problem which was posed by Thorbergsson ca. 10 years ago in his papers

[35] und [36]. To be more precise, we prove the following

Theorem. Let J be a compact, connected isoparametric hypersurface with
four distinct principal curvatures in a sphere. Then the incidence structure

associated with J and its focal manifolds is a Tits building of type C,.

The concentration on compact, connected isoparametric hypersurfaces
with four distinct principal curvatures is not as special as it might seem.
By [27], every connected isoparametric hypersurface in a sphere is an open
subset of a compact, connected isoparametric hypersurface J. Moreover,
by [28], the number g of distinct principal curvatures is equal to 1, 2, 3,
4 or 6. In the first two cases, J is a geometric sphere or a product of two
geometric spheres, and the focal manifolds are points or geometric spheres,
respectively, see [31]. In the other three cases, an interesting incidence
structure is associated with J and the focal manifolds P and L. It is obtained
by embedding J into P x L by means of the projections onto P und L. The
image of J in P x L is denoted by .

In the case of three distinct principal curvatures it is not difficult to

show that the incidence structures (P, L, F) are generalized triangles, i.e.



projective planes. The isoparametric hypersurfaces with three distinct prin-
cipal curvatures have been classified by E. Cartan, see [7]. The associated
incidence structures are precisely the classical projective planes over the

four real alternative division algebras, see [18].

In the case g = 6, it is known that all principal curvatures either have
multiplicity 1 or multiplicity 2. Moreover, in both cases there exists pre-
cisely one maximal family of isoparametric hypersurfaces with these param-
eters, and in the case of multiplicity 1, this family is unique up to isometries
of the sphere, cf. [37]. Hence, also the isoparametric hypersurfaces with six
distinct principal curvatures in spheres are classified, except for the ques-
tion whether there is an inhomogeneous hypersurface of this type whose
principal curvatures have multiplicity 2. In the two homogeneous cases, the
incidence structures associated with these isoparametric hypersurfaces are

generalized hexagons, cf. [36].

The question, whether Tits buildings are associated also with isopara-
metric hypersurfaces with four distinct principal curvatures in spheres, is
answered affirmatively in the theorem above. The class of isoparametric hy-
persurfaces with four distinct principal curvatures in spheres is much wider
than in the other cases. In particular, these isoparametric hypersurfaces
have not been classified so far. Except for two homogeneous hypersurfaces,
all known examples may be described by means of real representations of
Clifford algebras, see [10]. In Chapter 2, we will prove within the theory
of Clifford algebras that the generalized quadrangles associated with these
isoparamatric hypersurfaces of Clifford type are smooth generalized quad-
rangles. Chapter 3 is dedicated to a proof of the above theorem by means
of the theory of isoparametric triple systems. On the way to a proof of this
theorem we will obtain further new results on the geometry of isoparamet-
ric hypersurfaces. In Chapter 1 we will investigate in detail the interplay
between various smoothness properties of generalized quadrangles. In par-

ticular, we will prove a characterization of smooth generalized quadrangles



mentioned at the beginning of the introduction, which will serve as a basis

for the main results in the Chapters 2 and 3.

The theorem above is related to Thorbergsson’s papers [35] and [36]. In
[35], he shows that isoparametric submanifolds in spheres of codimension
at least 2 give rise to Tits buildings of rank at least 3. In his proof, he
needs the fact that homogeneous isoparametric hypersurfaces with 2, 3 or
4 distinct principal curvatures in spheres give rise to generalized g-gons.
This is more or less obvious for ¢ = 2, and for ¢ = 3 it follows by a
geometric argument due to Thorbergsson, see [18], 3.3 and 3.4. The case
g = 4 is a special case of the theorem above. In [35], Thorbergsson uses
instead of direct geometric arguments the homogeneity of the isoparametric
hypersurfaces in order to apply results of [13]. Our main result together
with the elementary arguments in the cases g = 2, 3 provides a short cut

for this step in Thorbergsson’s proof.

In Part II of this thesis we will solve a classical problem in topological
geometry. We will prove that there exist non-classical projective planes
whose point space and line space are real analytic manifolds such that
the geometric operations of joining points and intersecting lines are real
analytic maps on their respective domains. Our examples of these real
analytic projective planes have the dimensions 2, 4, or 8. Furthermore, these
planes are the first examples of non-classical smooth projective planes with
large automorphism groups. In dimension 2, they correspond to a class of
projective planes discovered by Segre, see [33]. We will give a comprehensive
introduction to this problem area at the beginning of Chapter 5. The basis
of our proof that the incidence structures constructed in this chapter are
indeed projective planes is a characterization of smooth projective planes
in Chapter 4. Analogously to Chapter 1, we will investigate in this chapter
smooth incidence structures, which are generalizations of smooth projective

planes.






Part 1




Chapter 1

Smooth Generalized Quadrangles

Introduction

In this chapter we investigate the interplay between various smoothness
properties of generalized quadrangles. In the next chapters we will ap-
ply our results (in particular, Theorems 1.10 and 1.17) in the context of

isoparametric hypersurfaces in spheres.

After giving the basic definitions and introducing some notation in
the first section, we will consider generalized quadrangles whose sets of
vertices are smooth manifolds. Our major results in the second section
are Theorems 1.10 and 1.17. These results characterize the smoothness of
certain maps associated with a generalized quadrangle in a natural way in
terms of transversality conditions involving point rows, line pencils, etc. We
present Theorem 1.10 here as an example for the character of these results
since it can be stated without introducing too much notation at this point.

For the definition of smooth generalized quadrangles, see the first section.

Theorem. Let (P,L.F) be a generalized quadrangle which satisfies the

following conditions:

(SGQ1) There are positive integers a, b such that P is a smooth manifold of
dimension 2a + b and L is a smooth manifold of dimension a + 2b.
(SGQ2) The flag space F is a (2a + 2b)-dimensional submanifold of P x L
such that the canonical projections 7p : F — P and g : F = L

are submersions.
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If moreover for each antiflag (p, L) € (P x L)\F the submanifolds Py x L,
and F intersect transversally in Px L, then (P, L, F) is a smooth generalized

quadrangle.

Here, P, denotes the point row corresponding to the line L, and £, denotes
the line pencil associated with the point p, see the first section. As a conse-
quence of (SGQ1) and (SGQ2), point rows are a-dimensional submanifolds
of P and line pencils are b-dimensional submanifolds of L, cf. Lemma 1.6.
Hence, the transversality condition in the above theorem makes sense and

means that for each (¢, K) € (Pr x £,) N F the tangent spaces satisfy
T(q’K)(fPL X Lp) N T(q’]{)?: {0}

In the third section we will establish differential-topological properties
of smooth generalized quadrangles. In this way we will see that the condi-
tions imposed in the preceding section are indeed satisfied by every smooth
generalized quadrangle. In particular, smooth generalized quadrangles have
the properties used as conditions in the above theorem. In the fourth sec-
tion we will characterize smooth generalized quadrangles among incidence
structures which have similar differential-topological properties. The main
result of this section, Theorem 1.17, is particularly useful for applications.

It may be stated as follows:

Theorem. Let (P,L,F) be an incidence structure which satisfies the fol-

lowing conditions (a,b € N):

(SIS1) The point space P and the line space L are compact, connected
smooth manifolds. The dimensions of P and L are 2a + b and
a + 2b, respectively.

(SIS2) The flag space F is a (2a 4 2b)-dimensional closed submanifold of
P x L, and the canonical projections mp : F — P and 7g : F — L

are submersions.
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(SIS3) For every antiflag (p, L) € (P x L)\F, the submanifolds P x L,

and F intersect transversally in P x L.

Then there is a finite number n such that P; x L, and F intersect in

precisely n points for each antiflag (p, L) € (P x L)\7F.

In particular, an incidence structure (P, £, F) satisfying the conditions
of this theorem is a smooth generalized quadrangle provided that there is
at least one antiflag (p, L) € (P x L)\F such that Py x L, and F intersect in
exactly one point. Note that in contrast to conditions (SGQ1) and (SGQ2)
we assume here that P and L are compact and connected and that F is

closed in P x L.

Preliminaries

Let (P,L,5) be an incidence structure, where P denotes the set of points,
L the set of lines and F C P x L the set of flags. The sets P and L are
assumned to be disjont. We call a point  and a line y incident if (x,y) € F.
The elements of V= P U L are called vertices. A k-chain (k € N) is a
sequence (vg,vy,...,v;) of vertices such that v; is incident with v;4, for
0 <1< kand v; # v for 0 < i < k— 1. We say that the vertices vy
and v are joined by this k-chain. Two vertices 2 and y are said to have
distance d(x,y) = k if they are joined by a k-chain and k is minimal with
respect to this property.

For x € P we denote by L, = {y € V | d(x,y) = 1} the line pencil
through z. Analogously, we call the set P, = {y € V' | d(y, z) = 1} the point
row associated with z € L. For # € V we set Dox = {y € V | d(x,y) = 2}.

1.1 Definition. A generalized quadrangle is an incidence structure (P, L, F)
which satisfies the following axioms:
(1) d(x,y) < 4 for any z, y € V.
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(2) If d(z,y) = k < 4, then the k-chain joining x and y is unique.
(3) For any z € P, y € L we have |P.|, |L,| > 3.

According to axiom (2) we can define maps
E {<U07vk) e V? | d(UOﬂJky) = k} Rl

for kK = 2 and k = 3 with fy(vg,v2) = vy and f5(vg,v3) = (v1,v2), where
(vo, v1, vy) and (vg, vy, va, v3), respectively, are the uniquely determined

k-chains joining the vertices vy and vi. Analogously, we define a map
g:{(vo,v3) € V? | d(vg,vs3) =3} =V : (vg,v3) = vs.

1.2 Definition. A generalized quadrangle is called a topological quadrangle
if the point space and the line space are endowed with topologies which are

neither discrete nor anti-discrete such that the map f3 is continuous.

Remark. In a topological quadrangle, the map f, is continuous on its

respective domain, see [12], Proposition 2.3.

For the sake of simplicity, the words “differentiable” and “smooth” will
be used in the sense of C*°. By a “submanifold” we will always mean a

smoothly embedded submanifold of a smooth manifold.

1.3 Definition. A topological quadrangle (P, L, JF) is called smooth if the
point space P and the line space L carry smooth structures such that the

map f3 is smooth.

Remark. In a topological generalized quadrangle the domain of the map
f3 is open in V X V since the flag space F is closed in P x L (see [12],
Proposition 2.4). Therefore, if P and L are smooth manifolds, it makes
sense to require the map f3 to be smooth. Note that all the above definitions

are self-dual.



£ L4 L

If (P,L,F) is a topological generalized quadrangle, then the spaces P
and L as well as point rows and line pencils are either all connected or all
totally disconnected, cf. [12], Proposition 3.3. Hence, all these spaces are
connected if (P, L, F) is a smooth generalized quadrangle. In this case, the
topologies on P and L are even compact, see [12], Proposition 3.4. Topo-
logical quadrangles whose sets of vertices are compact spaces will be called
compact quadrangles in the following. Among the generalized quadrangles
with compact topologies on the point space and the line space, the compact

quadrangles may be characterized as follows (see [14], 2.1 (a)).

1.4 Proposition. A generalized quadrangle (P, L, F) with compact topolo-
gies on P and L is topological if and only if F is closed in P x L.

Remark. Proposition 1.4 is not true without the compactness assumptions,
cf. [14], 1.2 (5). In the next section, we will give an analogous characteri-

zation for smooth generalized quadrangles (see Theorem 2.5).
The following Proposition follows directly from Lemma 2.7 in [17].

1.5 Proposition. If (P, L, F) is a compact quadrangle such that point rows
and line pencils are manifolds, then P, L and F are also manifolds, and we
have dim®P = 2p + q, dim L = p + 2q and dim F = 2p + 2q, where p and q

denote the dimensions of the point rows and the line pencils, respectively.

Remark. It can be seen by means of the geometric operations that any two
point rows (line pencils) of a topological generalized quadrangle are home-
omorphic (see [12], Lemma 2.2). Hence, the definition of p and ¢ makes
sense. If (P, L,F) is a smooth generalized quadrangle, then by [5], 4.2 and
4.4, point rows and line pencils are submanifolds of P and L, respectively,

which are homeomorphic to spheres. Thus Proposition 1.5 can be applied in
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this case. Any two point rows (line pencils) of a smooth generalized quad-
rangle are even diffeomorphic. The proof is the same as in the topological

case.

Smoothness Properties

of Generalized Quadrangles

The aim of this section to investigate various relations between different
smoothness properties of generalized quadrangles. We show that under
weak differential-topological assumptions point rows and line pencils are
submanifolds of the point space and the line space, respectively. The oper-
ations of intersecting lines and joining points are smooth on their respec-
tive domains, provided that any two intersecting point rows and any two
intersecting line pencils intersect “weakly transversally”, see Definition 1.7
and Theorem 1.12. Generalized quadrangles which satisfy even stronger

transversality conditions are shown to be smooth, see Theorem 1.10 and
Corollary 1.11.

The generalized quadrangles (P,L,F) considered in this section are

assumed to satisfy the following two additional axioms:

(SGQ1) There are positive integers p, ¢ such that P is a smooth manifold of
dimension 2p+ q and L is a smooth manifold of dimension p+ 2q.
(SGQ2) The flag space F is a (2p + 2¢g)-dimensional submanifold of P x L
such that the canonical projections 7p : F — P and 7g : F - L

are submersions.

Remark. Note that the axioms (SGQ1) and (SGQ2) are self-dual. Since
we do not require that P and L are compact and that F is closed in P x L,
a generalized quadrangle satisfying the above axioms is not known to be

a topological one. In the case of a compact quadrangle, the dimension



assumptions above are satisfied automatically by Proposition 1.5, which
can be applied since, as a consequence of the proof of the next lemma
(without using the dimension assumptions in (SGQ1) and (SGQ2)), point

rows and line pencils are submanifolds of P and of L, respectively.

1.6 Lemma. Let (P,L,F) be an incidence structure which satisfies axioms
(SGQ1) and (SGQ2). Then (non-empty) point rows are p-dimensional sub-
manifolds of P and (non-empty) line pencils are g-dimensional submanifolds

of L.

Proof. By duality it suffices to give a proof for point rows only. The point
row P, associated with some line x € L is the set Wg)(ﬂzl(x)). Since 7,
is a submersion, the set 7151(51;) is a submanifold of F. Moreover, we have
dimn; ' () = dimJF — dimL = p. The map p, : P = Px L : 2+ (2,2) is
smooth and we have p, o 7T(]>|7r21(x) = idﬂzl(x). This proves that 7Tg>|7r£1(x) :
7151(:13) — P is an embedding. Hence, P, is a p-dimensional submanifold of

P. O

1.7 Definition. Two submanifolds Ny, N5 of a smooth manifold M are said
to intersect transversally in x € N1NN, if the tangent spaces satisty T, N+
T.Ny = T,M. They are said to intersect transversally if they intersect
transversally in each common point. We say that two point rows P,, P,
intersect weakly transversally in some point x € P, if we have T, P,NT,P, =

{0}. Weakly transversal intersection of line pencils is defined dually.

Remark. By Lemma 1.6 and the dimension assumptions in (SGQ1), two
point rows (line pencils) can never intersect transversally in the usual sense.
Therefore we have introduced this notion. It is astonishing that for smooth
generalized quadrangles the dimension of the span of the spaces T, P., z €
L., may vary with the point x € P. This is a consequence of [10], 5.8, and
[36], as was pointed out in [5], Section 5.
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1.8 Proposition. Let (P, L, F) be a compact generalized quadrangle which
satisfies axioms (SGQ1) and (SGQ2) and has the property that any two
intersecting point rows (line pencils) intersect weakly transversally. Then
for each x € L (each x € P) the set Dox is a (p+q)-dimensional submanifold
of L (of P).

Proof. By duality, we need to consider only the case in which z is a point.

Since 7 is a submersion, the set
72 (8a) = {(y2) € F | dla,y) =2, 2 € Lo} U{a} x L,

is a (p + ¢)-dimensional submanifold of F. The projection 79 maps the
submanifold ¥, = {(y,2z) € F | d(z,y) = 2,z € L.} onto Dax. A
continuous inverse is given by the map Doz — F, 1 y = (y, fa(z,y)).
Note that f, is continuous by the Remark after Definition 1.2. Thus it
1s sufficient to show that the restriction of w9 to F, is an immersion.
Choose (y,z) € J, arbitrarily. Because of 73,'(y) = {y} x £, we get
{0} x T L, C ker((Dwp)(,,.)). Since mp is a submersion, we even have
{0} x T, L, = ker((Dnyp)
show that (Dmp)(,..)
prove that T, .. N ({0} x T.L,) = {(0,0)}. By definition of F,, we have
F. € P x L, and therefore T(, .,F, C T, P x T, L,. Because L, and L,
intersect weakly transversally in z € £, we have T, L, NT_.L, = {0}. This

(y,)) for reasons of dimension. Hence, in order to

restricted to T, .yF, is one-to-one, we only have to

proves the above equality. Hence, the map 7wp|s_ is an embedding, and Doz

is a submanifold of the point space P. O

The next lemma is formulated in a more general way than necessary
for the proof of Theorem 1.10. We will use it also in the fourth section,
where we will characterize smooth generalized quadrangles within a more

general class of incidence structures.

1.9 Lemma. Let (P,L,F) be an incidence structure which satisfies axioms

(SQG1) and (SGQ2). Assume that F and P,, x L., intersect transversally
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in (x1,x9) € P x L for some antiflag (x3,z9) € (P x L)\F. Then there are
open neighbourhoods U of (xg,z3) in L xP and U’ of (x1,x2) in Px L such
that for any (yo,ys) € U there is exactly one intersection point (y1,y2) of
F and P,, x L, in U'. Furthermore, the map U — U’ : (yo,y3) — (y1,y2)

defined in this way is smooth.

Remark. We do not assume here that (zq,22) € P x L is the only inter-

section point of P, x L., and J.

Proof. We prove this lemma by means of the implicit function theorem.
By F* we denote the submanifold of L x P obtained from F C P x L by
interchanging points and lines: (z,y) € F < (y,z) € F*. Since F* is a
smoothly embedded submanifold of £ x P, there is an open neighbourhood
Wi C L x P of (zg,21) and a submersion ¢ : W; — RPT? which vanishes
exactly on F* N W,. Analogously, we find submersions ¢y : Wy — RPT,
Y3 : W3 — RPT? on open neighbourhoods Wy C P x L, W3 C L x P of
(z1,29) and (23, 23), respectively, such that ¢»5 ' (0) = FNW, and ¢35 ' (0) =
F*NW;3. We put
P:(LxP)? = (LxP)x(PxL)x (LxP):
(Yos y1:y2,y3) = (Yo, Y1: Y15 Y25 Y2, Y3),
Y Wy x Wo x W3 — RPT39: (u, v, w) = (3 (u), 92 (v), 3(w)),

and set W = =1 (W, x Wa x W3). In this way we define a smooth map

F:W — R (yo g1, 92, y3) = 1 0 0(Yo, Y1, Y2, Y3),

which vanishes if and only if (yo,y1) € F* N W1, (y1,y2) € FN W, and
(y2,y3) € F*NWs. For (yo,y1,y2,y3) € W, this is equivalent to (y1,y2) €
(Pyo x Lyy) NF. In order to apply the implicit function theorem, we have
to show that the differential of the map

{<ylay2) €ePxL | <$0,yl,y2,x3) c W} N R3P+34 .

(yl?yz) = F(x()vylayvaS)
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at (wq,xp) is regular. Since DF, = D¢, Dy, and D, vanishes pre-
cisely on T (40 2 )F* X Tioy 2)F X T4, 24)F ", this means that

D(,Qx({()} X Tajl P x T@L X {O}) N <T(a70,501)37* X T(scl ’wz)ﬁ"x T(Iz,wa)?*) = {O}
Choose (u,v) € T, P x T,,L such that
Dgox(07u,v,0) - T(xo’xl)gj* X T(xl’m)g‘~ X T(xz’xa)gj*.

By definition of ¢ we have Dy, (0,u,v,0) = (0, u,u,v,v,0). Hence, we get
(0,u) € Tipy,onT*, (u,v) € T(yy )T, and (v,0) € T(y, 2,y F*. Since 7o
and g are submersions, we have the identities ({0} x T, P)NT (4, o) T* =
{0} x Ty, Py and (T4, £ x {0}) N Ty, 00 T* = To, Loy x {0}, cf. the proof
of Proposition 1.8. We conclude that

('U,U) € (Txl “PCUO X Ta?zLa?a) N T(:vl,a?g)?: {0}7

since for reasons of dimension the transversal intersection of P,, x L., and
Fin (x1,22) € P x L is equivalent to (T, Pry X ToyLoy) N T4y 20T =
{0}. By the implicit function theorem, we conclude that there exist open
neighbourhoods U of (xg,z3) in £ x P and U’ of (z1,22) in P x L and a
smooth map f : U — U’ such that for any (yo,y3) € U and (y1,y2) € U’
we have (yo,y1,¥2,y3) € W and

(Y1,92) € (Pyy x Ly ) NF <= F(yo,y1,y2.y3) = 0 <= (y1.y2) = f(Yo0.Y3)-

Hence, for any (yo,ys) € U there is precisely one (y1,y2) € U’, namely
f(yo,ys), such that (y1,y2) € (P, x L,,) NTF. This completes the proof. O

Remark. Lemma 1.9 shows that incidence structures which satisty the
above conditions admit locally defined maps similar to the map f3 in the

case of a generalized quadrangle.
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In Theorem 1.10 and Corollary 1.11 we present two implicit charac-
terizations of smooth generalized quadrangles. Since we do not assume
the generalized quadrangles considered in these results to be compact, it
is not even obvious that they are topological. The smoothness of the map
f3 will follow directly from the preceding lemma without using continuity

assumptions.

1.10 Theorem. Let (P,L,F) be a generalized quadrangle which satisfies
axioms (SGQL) and (SGQ2). If for each antiflag (y,z) € (P x L)\F the
submanifolds P, x L, and F intersect transversally in P x L, then (P, L, F)

is a smooth generalized quadrangle.

Proof. The map f3 assigns to any antiflag (y, z) € (P x L)\F the unique
intersection point of 3 and P, x L,. By the previous lemma, the domain

of f3 is open and f3 is a smooth map. O

Remark. This theorem yields a very useful criterion for the smoothness of
generalized quadrangles. In the next chapter, we will use it as an essential
tool for our proof that generalized quadrangles arising from isoparametric

hypersurfaces of Clifford type are smooth quadrangles.

1.11 Corollary. Let (P, L, F) be a generalized quadrangle. Assume that in
addition to (SGQ1) and (SGQ2) the following two conditions are satisfied:

(1) For every x € V, the set Dox is a submanifold of P or L, respectively.
(ii) For every antiflag (y, z) € (P x L)\TF, the point row P, and Dy inter-

sect transversally in P. The dual statement also holds.

Then (P,L,F) is a smooth generalized quadrangle.

Remark. Though the quadrangle (P, L, ) is not known to be compact,
the map 79 restricted to F, (see the proof of Proposition 1.8) induces a
smooth bijection between the (p+ ¢)-dimensional submanifolds ¥, and Doz

for every x € P, provided condition (i) is satisfied. By Sard’s Theorem (or
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by invariance of domain) we conclude that Doz has dimension p+ ¢ for each
x € P.

In Proposition 1.8, we have seen that for compact quadrangles weakly
transversal intersection of intersecting point rows and line pencils implies
that for each # € V the set Doz is a submanifold of P or L, respectively.
Conversely, if the sets D,z are submanifolds of P for each x € P (see
(1)) and if they intersect point rows transversally in the sense of (ii), then
intersecting point rows intersect weakly transversally: for any two distinct
point rows P, and P, which intersect in a point x € P we choose a point
w € P.\{z}. Since T,P, + T,;Dyw = T, P, we get T, P, NT,Dyw = {0}
for reasons of dimension. Because of P.\{w} C Dyw, we conclude that
T,P, NT, P, = {0}, i.e. the two point rows P, and P, intersect weakly

transversally. The dual statements are also true.

Proof of Corollary 1.11. By Theorem 1.10, we only have to show that for
every antiflag (y, z) € (P x L)\F the submanifolds P, x £, and F intersect
transversally in P x L. So, let (23, 20) € (PxL)\F and (z1,22) = f(xo, 23).

For reasons of dimension, it suffices to show that
(Tan j)5170 X Ta72'£’a73) N T(Sﬂl,ﬂw)g—~ = {O} (*)

The (p+g)-dimensional submanifolds 75" (P,, ) and 7z ' (£L.,) of F intersect

in (z1,x9) € F. For their tangent spaces we have
T(Sl?ha?z)ﬂ-ﬂ_)l(j)xo) g (Ta71 j)CUO X TCUQDZ:UO) N T(I‘hl‘z)? (**)
and
Ty o)z (L25) € (TeyDowg X TyyLoy) N Ty 0 T (% * %)

According to (ii), the point row P, intersects Dox3 transversally in z1 and

the line pencil L., intersects Doz transversally in x,. Therefore we have
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T(eyon g (Lay) N T(eyenTp (Pay) = {0}. For reasons of dimension we

get
Tioren) ™ (Peo) B Ty an Tz (Lay) = Tioy o0 F-

In order to verify (%), we take two vectors (uj,us) € T(xlm)ﬂg_)l(ﬂ)xo),
(v1,v2) € T(ajhxz)ﬂgl(ﬁ)xa) and assume that (uy + vy, us +v2) € T, Py X
T.,L.,. Because of u; € T, P, (see (xx)) we get v; = (ug +v1) —uy €
T, Pry- On the other hand we have vy € T, Doxs (see (x%x)), which forces
vy to be 0. So, we get (0,v2) € ({0} xT,, Lo,)NT (4, )T by equation (xxx).
Because of ({0} xT,,L)NT (4, 2,y F = {0} xT,,L,, we conclude that v, = 0,
since the line pencils £, and L., intersect transversally in x5 € L (see the
remark preceding this proof). In the same way, we get u; = 0 and uy = 0.

This proves equation (%) and completes the proof. O

The following theorem shows that under the assumptions of Proposi-
tion 1.8 the operations of joining points and intersecting lines are smooth

on their respective domains.

1.12 Theorem. Assume that (P, L,F) satisfies the conditions of Propo-
sition 1.8. Then the set Py = {(x,y) € P* | d(z,y) = 2} is a (3p + 2q)-
dimensional submanifold of P?. Dually, the set Ly (defined analogously) is
a (2p + 3q)-dimensional submanifold of L?. Furthermore, the maps fs|»,

and fy|g, are smooth.

Proof. We show first that P is a submanifold of P?. The smoothness of the
restriction of f5 to Py will then be an immediate consequence. The preimage

of the submanifold {(L,L) | L € L} of £ x £ under the submersion

XL - ?2 — 'E"z : (Ilvylv'vayZ) — (WL(xlvyl)aﬂ-L(vayQ)) — (ylvyZ)

is the submanifold {(z1,y, x2,y) € F x F} of F2. Hence,

3"2:{(331,3;,:132,3;) ES’PX37|$1 #xQ}
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is a submanifold of F2 with dimension (p + 2¢) + 2p = 3p + 2q. The set P

is the image of the smooth map

XP - 372 — 332 : <x17y7x27y) = (WT(xl,y),WT(xQ,y)) = (xlaxZ)

with continuous inverse

Xp' Py — Tyt (21, 29) = (21, folw1, 29), w2, fo21, 22)).

Thus Y9 maps Fo homeomorphically onto P5. It remains to show that
the differential of y9 is injective at each point of its domain. Choose
(1,y,22,y) € Fy and let v be a vector in the kernel of (Dx9)(z,.y.25,4)-
Then we have v = (0,u,0,u) € T, yF x T(,, T for some u € T, L. Be-
cause of ({0} xT,L)NT 5, ,)F = {0} xTyL,, and ({0} xT,L)NT(,, ,,F =
{0} x T,L,, (ct. proof of Proposition 1.8), we get u € T,L,, NT,L,,.
Since intersecting line pencils intersect weakly transversally, we conclude
that v = 0. Thus we have v = 0, and the injectivity of the differential
(DX®)(21,y,22,) 15 proved. Hence, xp is an embedding and P is a subman-
ifold of P?. The restriction of f5 to Py is the composition of the diffeomor-
phism x3' : Py — F5 and the smooth map Fo — L : (21,9, 22,y) — ¥.
Thus the map fy|p, is smooth. By duality, this completes the proof. O

Properties of

Smooth Generalized Quadrangles

In the preceding section, we established some smoothness properties of gen-
eralized quadrangles under various differential-topological assumptions. In
this section, we want to show that, vice versa, every smooth generalized
quadrangle satisfies those conditions. Hence, Theorem 1.10 and Corollary
1.11 yield characterizations of smooth generalized quadrangles. Similar re-

sults for smooth projective planes can be found in [3].
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1.13 Proposition. Let (P,L,F) be a smooth generalized quadrangle.
Then F is a submanifold of P x L and the natural projections 7p : F — P

and wg, : F — L are submersions.

Proof. We choose y € L and set W, = {z € P | d(z,y) = 3} x {2z €
L | d(y,z) = 4}. On the open set W, C P x L we define a smooth map
7 W, = FNW, : (z,2) — (9(9(x,y), 2),2) (for the definition of g, see
the first section). It is easily checked that this map is actually well-defined.
For each (z,z) € FNW, we have m(z,2) = (x,2). Hence, the map 7 is a
smooth retraction onto N W,. By [6], Theorem 5.13, the set FNW, is a
submanifold of W,,. Since P x L is covered by the open sets W, y € £, we
conclude that & is a submanifold of P x L.

It remains to show that the projections 79 and 7 are submersions.
Choose (z,y) € F. By duality, it suffices to prove that the differential
(D7) (2, © T(a,pT — ToP is surjective. Let z € L be a line which
intersects the line y in a point different from z. Then we have g(z,z) = y.
Weset 7. : P\P., > F: wr— (w,g(z,w)). The map 7, is smooth and we
have mpo 7, = id|p\p . Hence, (D7), D(7.), is the identity on T, P and

the surjectivity of (D7), ,) follows. H

(z,y

Remark. Due to this proposition and Lemma 1.6 (or by [5], Proposition
4.2), point rows and line pencils are submanifolds of P and £, respectively.
As in the preceding section, the dimensions of point rows and line pencils
are denoted by p and ¢, respectively. The second statement of Proposition
1.13 is also a consequence of Proposition 1.16 (f1). In the proof of this
proposition, however, we will already use the fact that point rows and line

pencils are submanifolds.

1.14 Proposition. Let (P,L,F) be a smooth generalized quadrangle.
Then for every x € P the set Dox is a submanifold of P. Furthermore,
for every antiflag (y, z) € (P x L)\F the submanifolds P. and D»y intersect

transversally in P. The dual statements also hold.
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Proof. We use a construction taken from [5], Definition 1.6 (cf. [17], Def-
inition 2.4). We choose an arbitrary antiflag (21, z4) € (P x £L)\F and set
fs(z1,24) = (22,23). Let vg € L., \{22}, v1 € Py, \{z1} and (vq,v3) =
fs(v1,v4), where vy = z4. Then the sequence v = (vg, vy, va,v3,04) is a

4-chain. By [5], Definition 1.6, we have a bijection

§v iz € P | d(z,v1) =4} = (Po,\{vs}) x (Loy\{v2}) ¥ (Po,\{v1}) :
X = (g(g(l‘,U0)7U4)7g<g(vo,16)71]3)79(.%71]2))

which can be expressed in both directions in terms of the map ¢g. Since the
map ¢ is smooth, the map &, is a diffeomorphism. In [5], the map & is
described in a more implicit way and the open set U,, = {x € P | d(z,v,) =
4} corresponds to Ps(vy,vg) in the notation used there, where it is called a
big cell. The sets Dyz1\P,, and P, \{vs} are contained in U,, and intersect
in z3 € U,,. For x € Dyz1\P,, we get g(x,vg) = 21 and g(z1,v4) = z3. Thus
we have

§v(D221\Pug) € {23} X (Lo \{v2}) X (Po, \{v1})- (1)

Now let x € P,,\{vs}. Then we have g(g(vo, z),vs) = v4 and g(x,v9) = vs.

Hence we get

Ev (P \{vs}) C© Pu, \{us}h x {va} x {us}. (2)

Since P.,\{z1} is contained in Dyz1\P,, and & is a diffeomorphism, we see
that the lines zo and z4 intersect weakly transversally in z3 € P. As the
antiflag (21, z4) € (P x L)\F was chosen arbitrarily, we conclude that any
two intersecting point rows (and, dually, any two intersecting line pencils)
intersect weakly transversally. Hence, for every x € V the set Doz is a
(p + q)-dimensional submanifold of P or L, respectively, see Proposition
1.8. Moreover, equations (1) and (2) show that Dyz; and P., intersect
transversally in z3 € P. Since (21, 24) € (P x L)\F was chosen arbitrarily,
this completes the proof. O
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Remarks. (i) In order to prove that the sets Doz, 2 € V, are submani-
folds of P or L, respectively, we have used Proposition 1.8 of the preceding
section. Here, we sketch a direct proof: let z € P and choose w € L,
arbitrarily. It suffices to show that D.z\P, is a submanifold of P. For
this purpose we choose v € P,,\{z}, y € L,\{w} and define a smooth map
p:{reP|dz,v)=4} 5 P2 g(z,9(y,x)). For every x € Dyz\P,,, we
have p(z) = x and, in fact, p is a smooth retraction onto Dyz\P,,. Hence,

by [6], Theorem 5.13, the set Dyz\P,, is a submanifold of P.

(ii) As mentioned in the proof of Proposition 1.14, any two intersecting point
rows (line pencils) intersect weakly transversally. Hence, the conditions
of Theorem 1.12 are satisfied. We conclude that for smooth generalized
quadrangles (P, L, F) the sets Py and Ly (in the notation of that theorem)
are smooth submanifolds of P? and L?, respectively and that fy|p, and

f2]z, are smooth maps.

1.15 Corollary. Let (P,L,JF) be a smooth generalized quadrangle. Then
for every antiflag (y,z) € (P x L)\TF, the submanifolds P, x L, and F

intersect transversally in P x L.

Proof. We take (x3,29) € (P x L)\F and put (zy,22) = f5(x0,23). By
Propositions 1.13 and 1.14, the conditions required in Corollary 1.11 are
satisfied. In the proof of that corollary, we showed that

(Taﬁ j)9170 X Twz'ﬁ’xa) N T(a?ha?z)?: {0}7

cf. equation (x). Thus, for reasons of dimension, the submanifolds ¥ and

Pry X L, intersect transversally in (z1,24) € P x L. a

According to Proposition 1.13 and the fibration theorem of Ehresmann,
see [6], Theorem 8.12, the flag space F is a smooth locally trivial fibre
bundle over P and over L. because J is compact by Proposition 1.4 and the

remark preceding that proposition. Nevertheless, it is interesting to note
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that the local trivializations may be realized by the maps fo and f5 (or g,
respectively). For the results of the following proposition in the topological
case, see [17], Lemma 2.2, and [19], Lemma 2.1.6 and Proposition 2.1.8. For

convenience, we restate the proofs in our notation in the smooth case.

1.16 Proposition. Let (P,L,F) be a smooth generalized quadrangle.
Then the following two statements hold:

(f1) The flag space F is a smooth locally trivial fibre bundle over P and
over L with projections mp and 7r,, respectively.

(f2) For every x € P, the set Dox is a smooth locally trivial fibre bundle
over L, with projection Dox — L, : 2+ fo(x,z). The dual statement
holds, too.

In both cases, the local trivializations may be expressed in terms of geo-

metric operations.

Proof. By duality, it suffices to show that F is a smooth locally trivial fibre
bundle over P. Solet x € P and U, = {y € P | d(z,y) = 4}. Then the map

o i (Up) = Up X Lot (y,2) = (y,9(2,2))

is a diffeomorphism whose inverse is given by

99;1 U, x L, — 7T3_)1(Ux) (y,2) = (y,9(2,9)).

The projection mp corresponds to the projection onto the first component
under this diffeomorphism. Since any two line pencils are diffeomorphic (cf.
remark after Proposition 1.5) and P is covered by the open sets U,, x € P,
the claim (f1) follows.

Now choose zg € P, 1 € L,,. Let 23 € L be a line which intersects

the line x1 in some point x5 # x¢. Then we have a smooth map

71 Dowo\Psy = (Lop\{@1}) X (Pay\{22}) 1 2 = (fa(wo,2), 9(2, 23))



with smooth inverse

P (e M) X (M) = Dowo\Pe, : (1 2) = (2.0).

As above, we see that Dsxzy is a smooth locally trivial fibre bundle over L, .
By duality, the claim (f2) follows. N

Similar Smooth Incidence Structures
In this section, we prove the following

1.17 Theorem. Let (P, L. F) be an incidence structure which satisfies the
following conditions (p,q € N):

(SIS1) The point space P and the line space L are compact, connected
smooth manifolds. The dimensions of P and L are 2p 4+ q and
p + 2q, respectively.

(SIS2) The flag space F is a (2p + 2q)-dimensional closed submanifold of
P x L, and the canonical projections mp : F — P and 7p : F — L
are submersions.

(SIS3) For every antiflag (y,z) € (P x L)\F the submanifolds P, x L,

and F intersect transversally in P x L.

Then there is a finite number n such that P, x L, and J intersect in precisely

n points for each antiflag (y,z) € (P x L)\TF.

Remark. Note that two submanifolds which intersect transversally need
not have a common point. The canonical projections 7p : F — P and
7 » F — L are surjective since JF is compact, submersions are open maps,
and P, L are connected. Hence, by Lemma 1.6, point rows P, and line
pencils L, are submanifolds of P and L, respectively, where dim®, = p

and dim £, = ¢. Furthermore, point rows and line pencils are compact.
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The conditions above are satisfied for every smooth generalized quad-
rangle, see the first and the third section. Theorem 1.17 shows that inci-
dence structures which have (differential-) topological properties similar to
those of smooth generalized quadrangles are quite close to generalized quad-
rangles from the incidence geometric point of view. The following corollary
characterizes smooth quadrangles among similar incidence structures. It
will be used in Chapter 3 in order to prove that isoparametric hypersur-
faces with four distinct principal curvatures in spheres give rise to smooth

generalized quadrangles.

1.18 Corollary. Let (P,L,F) be an incidence structure which satisfies the
conditions of Theorem 1.17. If there is an antiflag (y, z) € (P x L)\F such
that P, x L, and F intersect in exactly one point, then (P, L, F) is a smooth

generalized quadrangle.

By the fibration theorem of Ehresmann ([6], Theorem 8.12) we get the

following

1.19 Proposition. Assume that (P, L,F) is an incidence structure which
satisfies the conditions of Theorem 1.17. Then F is a smooth locally trivial
fibre bundle over P and over L. As a consequence, any two point rows (and

any two line pencils) are diffeomorphic.

The proof of Theorem 1.17 follows from Lemma 1.9 by purely topological

arguments.
Proof of Theorem 1.17. Since F is compact, the set
O={(y,2) € (PxL\F| (P. xL,)NTF =0}

is open in P x L. Choose an antiflag (z3,29) € (Px L)\(FUO) (if it exists).
By (SIS3), the submanifolds P,, x L., and F intersect transversally in
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P x L. Hence, for reasons of dimension, the set (P,, x L.,)NF is a compact
O-dimensional submanifold of P x L. Thus the set (P, x L,,) N F is finite

and we have a well-defined map
n: (L xPN\F->N:(z,y) = (P, x Ly) NF|.

We set k = |(P,, x L,,) N F| and denote the intersection points of P, X
L., and F by (;Ugi),;véi)), t = 1,..., k. By Lemma 1.9, there is an open
neighbourhood W of (xg,z3) in £ x P and there are pairwise disjoint open
neighbourhoods W; of (wii),xgi)) in P x L such that for any (yo,y3) € W
there is exactly one intersection point (yy),yéi)) eW;of P, xL,, and T,
i=1,...,k. Hence, we have 1(yo, ys) > n(zo, x3) for each (yo,y3) € W. We
want to show that there is a neighbourhood U C W of (xg, x3) in £ X P such
that 7 is constant on U. Assume to the contrary that such a neighbourhood

(n) ~(n)

does not exist. Then there is a sequence (3, ,93 )n € W converging to
(o, x3) such that n(gé”),gén)) > k for each n € N. Hence, for every n € N
we can find an element (gi”),gén)) € (ng(n) X L‘)g(n)) N(F\ Ule W;). Since

F is compact and Ule W, is open, there is a subsequence of ((Q;n)agén)))n

which converges to some element (y1,72) € (Pr, X Lzy) N (?\Ule Wi).
This is a contradiction to (P,, X L.,)NTF = {(:L‘gl)7xgl)) | i =1,...,k}.
Hence, the map 7 is constant on some open neighbourhood U C W of
(x0,x3). Since (z3,x0) € (P x L)\(FU Q) was chosen arbitrarily and O is
open in P x L, we conclude that n is a locally constant map. By (SIS1), the
manifolds P and £ and therefore also the manifold (P x £)\F are connected.

Hence the map 7 is even constant. This completes the proof. O



Chapter 2

Isoparametric Hypersurfaces

of Clifford Type

Introduction

In [10], Ferus, Karcher and Miinzner constructed examples of isoparametric
hypersurfaces in spheres by means of representations of Clifford algebras on
R! or, equivalently (cf. [10], 3.3), by means of Clifford systems on R?'. For
short, we will call them isoparametric hypersurfaces of Clifford type or of
FKM-type, as in [5]. Except for two homogeneous examples in dimensions
8 and 18, their examples include all known isoparametric hypersurfaces in
spheres with four distinct principal curvatures. Note that by a remarkable
result of Minzner ([27], Theorem A, and [28]) only 1, 2, 3, 4 or 6 distinct
principal curvatures can occur for isoparametric hypersurfaces in spheres.
The possible hypersurfaces in the first three cases have already been clas-
sified by E. Cartan, see [18] for a different approach in the case of three
distinct principal curvatures. In particular, it turns out that all these hy-
persurfaces are pieces of orbits of subgroups of orthogonal groups under the
standard operation.

In the case of four distinct principal curvatures, isoparametric hyper-
sufaces in spheres are not necessarily homogeneous in this sense, and the
geometries associated with such isoparametric hypersurfaces and their fo-
cal manifolds can be more complicated. In [36], Thorbergsson showed that
isoparametric hypersurfaces of FKM-type and their focal manifolds give

rise to generalized quadrangles and he claimed that, as a consequence of his



proof, they were even smooth generalized quadrangles. In the next section,
we will prove the smoothness of these generalized quadrangles by means of
Theorem 1.10. Even more, we will see in the last section that our approach
also yields an elementary proof for the result that the incidence structures
associated with isoparametric hypersurfaces of FKM-type are generalized

quadrangles.

Main Theorem

In this section we will prove and make precise the following theorem, which

contains the main result of this chapter.

2.1 Theorem. Generalized quadrangles associated with isoparametric hy-

persurfaces of FKM-type are smooth generalized quadrangles.

Before giving a proof of this theorem, we will first discuss some general
properties of isoparametric hypersurfaces in spheres, and we will associate
to each such hypersurface with at least two distinct principal curvatures
an incidence structure. Then we will specialize to hypersurfaces of FKM-
type. In this case, some properties of these incidence structures, which are
obtained by the general theory, can be verified easily by explicit calculations.
As references for our brief account of the general theory of isoparametric
hypersurfaces we mention [7], [8], [27], and [31]. For a comprehensive survey

on isoparametric hypersurfaces, see [37].

2.2 Definition. An orientable hypersurface with constant principal curva-

tures in the sphere is called an zsoparametric hypersurface.

We will always identify the sphere in the above definition with the unit
sphere in some euclidean vector space. Furthermore, we will consider only

connected hypersurfaces. Hypersurfaces in the sphere which are parallel to



an isoparametric hypersurface J are isoparametric again. In this way, an
isoparametric hypersurface gives rise to an «soparametric famaily of such hy-
persurfaces. Besides these parallel hypersurfaces there are precisely two par-
allel submanifolds of lower dimension, the so-called focal manifolds, which
we denote by P and L, respectively. There are two projections pp : J — P
and pg ' J — L along great circles normal to J. These projections are
submersions, and J may be chosen in the isoparametric family in such a
way that for each z € J the images pp(z) and pg (z) have spherical distance
% from z, where g denotes the number of distinct principal curvatures, see
[27], Section 6. For g > 1, we may embed J into P x L by means of the
map z — (pp(z), pe(2)). The differential of this map is actually injective
at every point of J since the kernels of Dpgp and Dpy, are eigendistributions
of the Weingarten map which belong to different eigenvalues. The image of
Jin P x L is denoted by F. In this way we obtain an incidence structure
(P,L,F). The canonical projections 7p : F — P and g : F — L are sub-
mersions, since even the projections pp and pg have this property. A point
x € P and a line y € £ are incident if and only if the spherical distance of
z and y is equal to 7, cf. [18], Proposition 3.2.

We will now specialize to isoparametric hypersurfaces of FKM-type.

For this purpose we need the following

2.3 Definition. For positive integers [, m, we call an (m + 1)-tuple of
symmetric matrices I, ..., P, € R?>*2L a Clifford system if we have for all
i,j €{0,....,m}

PZ'PJ' + PJPZ = 25231(1

We repeat some notions and constructions from [10]. The subspace

RZZXZZ

of symmetric matrices in is endowed with the scalar product given

by (A, B) = gtrace(AB). The unit sphere in the span of Fy,..., Py, is
called the Clifford sphere determined by this system and is denoted by
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Y(Py,...,Py,) or simply by . Every orthonormal basis of RX.(F, ..., Py,)

is again a Clifford system, and the function

H:R*SR:z— Z(Pm,x)z

1=0

depends only on (P, ..., P,,). Moreover, we have (Pz, Qz) = (P, Q)(x, x)
for all P, Q in the span of P, ..., P, and all € R*, where R?" is endowed

with the standard scalar product.

The following theorem contains some important results of [10], Section 4.

2.4 Theorem. Let Py, ..., P, denote a Clifford system on R?*' such that
[—m—1>0. We define

F:R* 5 R:z - (2,2)° - QZ(PZ-:L‘,@Z.

1=0

Then the intersection J of F~1(0) with the unit sphere S of R? is a con-
nected isoparametric hypersurface in S with four distinct principal curva-

tures of multiplicities m, | —m — 1. The focal manifolds are
P=F'1)NS={r€S|(Pur,z)=0,i=0,...,m}

and

L=F'(-1)nS= {y €S ‘ > (Piy.y)Piy = y}
1=0
where P has dimension 2l — m — 2 and £ has dimensionl +m — 1 .

That the sets 3= F~1(0)N'S in Theorem 2.4 are indeed isoparametric
hypersurfaces in S is shown by means of Miinzner’s differential equations,
see [27], Theorem 3, or the next chapter. By [36], the incidence structures
(P, L,F) constructed from these hypersurfaces of FKM-type as above are
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generalized quadrangles. They will be called Clifford quadrangles in the
sequel. Line pencils are m-dimensional submanifolds and point rows are

submanifolds of dimension [ — m — 1, cf. Lemma 1.6.

Setting a =1 — m — 1 and b = m, we see that conditions (SGQ1) and
(SGQ2) in the introduction of Chapter 1 are satisfied, cf. Theorem 1.10.
So, in order to prove Theorem 2.1, it remains to show that for Clifford
quadrangles (P, L, F) the flag space F and P, x L, intersect transversally
for every antiflag (p, L) € (P x L)\F. For the rest of this section, (P, L, F)
will always denote a Clifford quadrangle.

In our summary of properties of general isoparametric hypersurfaces
in spheres we have already mentioned that a point x € P and a line y € L
are incident if and only if the spherical distance of  and y is equal to %,
iLe. (x,y) = % for ¢ = 4. We need, however, a better description of the
incidence relation which contains more information on the position of the

tangent spaces of P and L (see also [22], 10.7).

2.5 Lemma. Let (P,L,F) be a Clifford quadrangle with Clifford system
FPy,...,Py. Then x € P and y € L are incident if and only if

m

1= 5 (3PP + 1)

i=0
Proof. Assume that the equation above is satisfied. Then (z,y) = %
is an immediate consequence since (Piz,z) = 0 for all € P. Now let
(r,y) = % Then the euclidean norm of v/2y — z is equal to 1. Since, by
the definition of £, the vector >_!" (Pyy,y)P;x has norm 1, too, it suffices
to show that

m

<\/§y — x, Z(Piy, y)PZx> = 1.
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This is correct because of (P;x,z) = 0 and

m

< 2Py )P > é; Py, y) Py, x >=<y,f€)=%-

1=0

O

For L € L, we set P, =% " (P,L,L)P;. Note that Py, is the unique
element P € ¥ such that PL = L: by setting P = Y_" v;P; (v; € R)
we obtain L = >." v,PL = > " (P;L,LYP;L. The P;L are linearly
independent, so we have v; = (P, L, L) for i = 0,...,m, which shows that
P = P;,. Conversely, if L and K are two lines having a common point ¢ € P
such that P, = Pk, then we have L = %(PL(] +q) = %(P](q +q) =K
by Lemma 2.5.

The proof of Theorem 2.1 is now completed by the following

2.6 Lemma. Let (P, L. F) be a Clifford quadrangle. Then F and Pr, x L,
intersect transversally for every antiflag (p, L) € (P x L)\F.

Proof. Let (p, L) € (PxL)\F be an antiflag and let (¢, i) be the intersection
point of Py x L, and Fin PxL. For reasons of dimension, it suffices to prove
that (TP x TxlL,) T, k)T = {0} in order to show that Py, x L, and F
intersect transversally in (¢, K). So let (u,v) € (TP x TxL,) N T (41T
A priori, we have F C P x L C R* x R* and hence (u,v) € R* x R?,
but we may identify these two vector spaces and consider u, v as ele-
ments of the same vector space R?!. The following equations for u and
v have to be understood in this sense. Note that in our description of in-
cidence in Lemma 2.5, from which these equations are derived, P and £
are also considered as subsets of the same vector space R?. By differen-
tiating the equation for the incidence relation as given in Lemma 2.5, we
see that u € T,P implies that Pru + u = 0. Analogously, v € TgZL,
implies that v = V23" (P;K,v)P;p. Finally, (u,v) € T4 k)T shows that
v = \/—(PA u+u) + \/_Zz o(Pi K, v)P;q. Since F and hence the Clifford
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quadrangle (P, L, F) depend only on the Clifford sphere X(F, ..., P,) we
may assume that P = . Then we have (PyK,v) = (K,v) = 0 because
of v € TRk CTkS. So, the last two equations above reduce to

v=1?2 Z(PiK, v)Pip
=1

and

1 m
v=—=(Pou+u)+ ﬁZ(PZ-K, v) Pyq.
\/5 =1
For simplicity we set \; = (P K, v) for ¢ = 1,..., m. Subtracting those two
equations yields Pyu+u = 2%, \;Pi(p—q). By applying the map id— P,
and using the identity Py Pr + Pr, Py = 2(Py L, L)id, we get

2(1 — (RL.LY)u=2)» X\(Pi = PLP)(p—q)
=1
because of Pru = —u. By differentiating the equations defining P (see

Theorem 2.4), we see that (u,P;q) = 0 (j = 1,...,m). So we have
S Al(P— PLP)(p—q),Pjq) = 0for j = 1,...,m. We set A =
(Atseo s Am), cij = (P — PLP)(p — q), Pjq), and C = (¢;5);; € R™>*™,
Then we have AC' = 0.

In the following calculations we will need several times that for ¢ =
1,...,m we have (P;p,q) = 0 : since p and ¢ are incident with K we
obtain Py(p — q) + (p — ¢) = 0 as a consequence of Lemma 2.5, hence
(Pi(ip—q),(p—q)) =—(Pilp—q),Po(p—q)) =0 for i € {1,...,m}. Then
we get (Pip,q) = 0 because of (Pip,p) = (Piq,q) = 0.

Let us now have a closer look at the entries ¢;; of the matrix C'. For the
diagonal elements we have ¢;; = ((id— P; P P;)(p—q), ¢q). Using the identity
PP, + PP, = 2(P,L,L)id, we get PP, P; = 2(P,L,L)P; — P;,, hence
cii={{p—q.9)+{(Pr(p—q),q). Here we have used that (P;(p—q),q) = 0 for
i =1,...,m. For the same reason we have (P, (p—q),q) = (PoL, L){Py(p—
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q),q) = —(PoL,L)(p—q,q). This shows that ¢;; = (1 —(PyL,L))({p,q)—1),
independently of ¢ € {1,...,m}. We set ¢ = (1 — (PyL,L))({p,q) — 1).
Assume that ¢ = 0. Then we have PyL = L because of p # ¢q. By the
remarks preceding this lemma we conclude that P;, = Fy = Pg and hence
L = K, a contradiction. So we have ¢ # 0. Now let us consider the other

entries of C. For ¢ # j we have

cij + cji =((PsP; — P;PLPj)(p — q),q) + (P;Pi — P;PLP;)(p — q),q)
=((P;PLP; + P;PLP;)(p — q).q)-

Using again the identity P, P + PP, = 2(P,L, L)id for k = i,j we see
that
PZ'PLPJ' + PjPLPZ' = 2<PjL, L>PZ + 2<PZL, L>Pj

Because of (P;(p—q),q) = (Pj(p—q),q) = 0, we conclude that ¢;; +¢;; = 0.

This shows that C = B + ¢ id, where B € R™*™ is skew symmetric
and ¢ # 0. In particular, C' is regular. So we have A = 0 and hence
(1 — (PyL,L))u = 0. As mentioned above, (FyL,L) = 1 is impossible,
which shows that u = 0. Moreover, v = \/52?;1 Ai P;p implies that v = 0.

This proves the lemma. O

Consequences

A closer look at the proof of Theorem 2.1 in the preceding section shows
that (in virtue of Corollary 1.18) we do not actually need Thorbergsson’s
result that the incidence structures (P, L,F) coming from isoparametric
hypersurfaces of FKM-type are generalized quadrangles. In the proof of
Lemma 2.6, e.g., it was not important that (¢, K') is the unique intersection
point of J and Pr, x L. Essentially, only the following properties of these
incidence structures were used, which are independent of Thorbergson’s

work:
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(SIS1) P and L are compact, connected smooth manifolds of dimensions

2a + b and a + 2b, respectively, where a =1 —m — 1 and b = m.
(SIS2) Fis a closed submanifold of P x £ of dimension 2a + 2b, and the

canonical projections 7p : F — P and 7 : F — L are submer-

sions.

Moreover, by Lemma 2.6 also the following condition is satisfied:

(SIS3) For every antiflag (p, L) € (P x L)\F, the submanifolds Py x L,

and F intersect transversally in P x L.

Hence, by Theorem 1.17 there is a finite number n such that Py x L,
and J intersect in precisely n points for each antiflag (p, L) € (P x L)\F. In
order to prove that (P, L, F) is a smooth generalized quadrangle it remains
to show that n = 1, cf. Corollary 1.18. But this is easily seen to be true
for all incidence strucures coming from arbitrary isoparametric (compact,
connected) hypersurfaces in spheres with four distinct principal curvatures:
let S be a great circle in S normal to the isoparametric submanifold J. Note
that by [27], Section 6, every great circle which intersects J orthogonally
in one point intersects J and the focal manifolds P and L orthogonally in
each intersection point. Moreover, the points of P NS and L NS follow

T

on S alternatingly at spherical distance 7 cf. also [18], Proposition 3.2.
Now, in the case g = 4 choose p € PN S and L € L NS with spherical
distance equal to %TW' Then there is exactly one pair (¢, K) € S x S such
that dist(p, K) = dist(K,q) = dist(¢q,L) = T, and we have ¢ € PN S,
K elLnS, and (¢, K) € F. Hence, the flag space F and Py, x L, intersect
in precisely one point of P x L, i.e. we have n = 1. So, our approach yields

an elementary proof for the following

2.7 Theorem. The incidence structures associated with isoparametric

hypersurfaces of FKM-type are smooth generalized quadrangles.
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In [22], Theorem 10.9, L. Kramer has given a purely algebraic proof
that these incidence structures are generalized quadrangles without proving
that they are smooth quadrangles. Our proof here is of a different nature:
the algebraic structure of Clifford systems is only used in order to establish
the transversality condition (SIS3). In fact, conditions (SIS1) and (SIS2)
are satisfied for incidence structures (P, £, F) coming from arbitrary (com-
pact, connected) isoparametric hypersurfaces J in spheres with four distinct
principal curvatures. Here, a and b are nothing else but the multiplicities
of the four distinct principal curvatures of J, see [27], Section 1, cf. [18],
Section 1. Note that by [27], Theorem 1, there are at most two different
values for these multiplicities.

So, besides the calculations in Lemma 2.6, which yield condition (SIS3),
we need nothing from the special situation of isoparametric hypersurfaces
of FKM-type. However, the proof of the transversal intersection of Pr, x L,
and F for every antiflag (p,L) € (P x L)\F as required in (SIS3) made

essential use of the structure of Clifford systems.



Chapter 3

Isoparametric Triple Systems
and Geometry

Introduction

The main result of this chapter essentially solves a problem posed by G.

Thorbergsson in his papers [35], [36]. It may be stated as follows:

Theorem. Incidence structures arising from isoparametric hypersurfaces
with four distinct principal curvatures in spheres are Tits buildings of type

Cs, also called generalized quadrangles.

Moreover, as a direct consequence of our proof, these generalized quad-
rangles are smooth quadrangles. In fact, they are real analytic and even
Nash quadrangles, see the end of the third section. On the way to our
main theorem, we will prove further new results on generalized quadran-
gles which are associated with isoparametric hypersurfaces in spheres. By
Corollary 3.7, e.g., the join map V which assigns to any two distinct points
p,q € Pwith £L,NL, # @ the unique line pV ¢ joining them is the restriction

of a rational map, and this map can be described explicitly.

Throughout this chapter, we will make essential use of the algebraic ap-
proach to isoparametric hypersurfaces developed by Dorfmeister und Neher
in [9]. Their theory of isoparametric triple systems turns out to be well-
suited for the description of geometric properties of incidence structures

derived from isoparametric hypersurfaces. As an example, we mention that



point rows and line pencils have a natural description in terms of eigenspaces
of linear operators which are defined by the triple product.

We have decided to carry out the calculations in the third section
explicitly, in order to show that only few calculations remain to be done if
the theory of isoparametric triple is used effectively. In the next section we
will give an introduction to this theory which presents the results that are
relevant for the proof of our main result. We will also give proofs if they are
not given explicitly in [9] or if they are essential for a better understanding
of the third section.

Isoparametric Triple Systems

In Chapter 2 we explained how incidence structures can be associated to
isoparametric hypersurfaces with ¢ distinct principal curvatures in spheres
for g > 2. For our proof that these incidence structures are smooth general-
ized quadrangles for g = 4, we will use Corollary 1.18, which characterizes
these objects by implicit conditions. As remarked at the end of Chapter 2,
conditions (SIS1) and (SIS2) in Theorem 1.17 are satisfied by incidence
structures (P, L, F) derived from arbitrary compact, connected isoparamet-
ric hypersurfaces J with four distinct principal curvatures in spheres. More-
over, we showed that in these incidence structures there always exist anti-
flags (p, L) € (P x L)\TF such that Py x L, and F intersect in precisely one
flag. So, in order to prove the main result of this chapter, it only remains
to prove condition (SIS3) for these incidence structures. This is a subtle
property. It will be verified in the next section by means of the theory
of isoparametric triple systems developed by Dorfmeister and Neher in [9].
Here, we present the parts of this theory which are relevant for the next

section.

Let J denote a compact, connected isoparametric hypersurface with g

distinct principal curvatures in the unit sphere S of a euclidean vector space
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V. By the second section of Chapter 2, the isoparametric hypersurface J
may be chosen in the corresponding isoparametric family in such a way that
for each z € J the images pp(z) and pg (2) have spherical distance 55 from
z. By [27], we then have J = F~1(0)NS, where F : V — R is a homogeneous

polynomial function of degree g which satisfies the two differential equations
(grad F(z),grad F(z)) = g*(x, 2)971,
AF(z) = (1/2)(ma — my)g*(x, x)g/z_l.

The polynomial F'is called a Cartan-Minzner polynomial. The parameters
my and mo denote the multiplicities of the four distinct principal curvatures
of J. Recall that there are at most two different values for these multiplic-
ities, and they are equal if g is odd, see [27], Theorem 1. The two focal
manifolds P and £ are given by P = F~'(1)NS and £L = F~!(-1) NS,
The starting point of the theory of isoparametric triple systems is the
observation that every homogeneous polynomial of degree 4 on V may be
written in the form 3(x, 2)? —2({z, z, 2}, ), where {-,-,-} : VXV XV = Vis
a trilinear map which satisfies the identies {1, 72, 13} = {2 (1), T (2), To(3) }
and ({x1,z2, 23}, 24) = (21, {29, 23, 24}) for all x1, 29,253,224 € V and all
permutations o of the set {1,2,3}. We put T'(z,y): V =V :z = {2,y, 2}
and T(z) = T(x,x) for z,y € V. For g = 4, the two partial differential
equations above translate into identities of the triple system (V, (-,-),{-,-,-})

associated with the polynomial F'.

3.1 Lemma. Let F': V — R be a homogeneous polynomial of degree 4
and let {-,-,-} be defined as above. Assume further that my and mo are
positive integers such that dimV = 2(m; 4+ mo + 1). Then F satisfies the

two differential equations above with g = 4 if and only if
Ha,z, 2} {z, 2, 2}) — W, 2){x, 2,2}, 2) + 18(x, 2)* = 0

and

traceT'(z,y) = 2(2my + ms + 3)(x,y)



for all x,y € V.

Proof. Because of grad F(z) = 12(x, 2)x — ${x,x, 2}, an easy calculation
shows that the first differential equation is equivalent to the first identity of
this lemma. Let us assume that F' satisfies the second differential equation.

The second-order derivative of F' at z € V is given by
Hp(z): VXV 5V :(z,y) - 24(x, 2)(y, 2) + 12(x, y){(z, z) = 8{{x, y, 2}, 2).

We choose z,y € V arbitrarily and set @1 : V — R : 2z — Hp(z)(z,y)
Q2 :V 5> R:ze (T(x,y)z,2). Then we have AQ2(z) = 2traceT(z,y
and, because of the second differential equation, AQ:(z) = Hap(z)(z,y)
16(mg —my){(z,y) for any z € V. Hence, the equation AQ,(z) = 48(z,y) +
24 dim V(x,y) — 8 AQ2(z) implies that

~—

(my — my){z,y) = 3{(x,y) + 3(my + my + 1){(x,y) — trace T'(z, y),

which is equivalent to trace T'(x,y) = 2(2my + ma + 3)(z, y).

Conversely, if this equation holds for x,y € V', then we see by means of
the same calculation that Hap(2)(z,y) = 16(my — mq){z,y) for all z € V.
Since AF is a homogeneous polynomial of degree 2, we have Hap(2)(z, z) =
2AF(z). This proves the second differential equation. O

The definition of isoparametric triple systems is motivated by Lemma 3.1.

3.2 Definition. An isoparametric triple system is a triple system (V (-, -},
{-,+,-}), where (V,(-,-)) is a euclidean vector space and {-,-,-} is a triple

product on V which satisfies the following axioms:

(ISO1) {-,-,-} is totally symmetric.

(ISO2) ({z,y,z},w) = (z,{y,z,w}) for all x,y,z,w € V.

(ISO3) ({w,x, 2}, {w, 2, 2}) — N, 2){{z,z,z},2) + 18(x,2)> = 0 for all
reV.
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(ISO4) There exist positive integers m and my such that dimV' = 2(m, +
mo + 1) and trace T'(z,y) = 2(2my +mo + 3)(z,y) for all z,y € V.

By Lemma 3.1, we see that the polynomials describing compact, con-
nected isoparametric hypersurfaces with four distinct principal curvatures
in the sense of [27] are in one-to-one correspondence with isoparametric
triple systems. By differentiating the equation in (ISO3) and dividing by
6, we obtain the identity

{w, 2 {x, v, 2}} — 6{(x, v){x, v, v} — 3{x, {2z, v, 22 + 18(x, v)*x = 0. (»)

The successive linearizations of this identity are very important in the the-
ory of isoparametric triple systems. They are, however, quite complicated,

see [9], p. 193. We will use explicitly only the first linearization:

3T (x)*y + 2T (z, {x, 2,2 })y — 18(zx, 2)T(2)y — 3(z, {x, v, 2} )y
—12(z{x, 2, 2} y) + {x, 2, 2 Mz, y)) + 18(x, )y + 722 (x, x)(x,y) = 0.

Note that in this setting linearization is the same as differentiation (up to

a constant factor).

The two focal manifolds P and £ have an easy description in the context
of isoparametric triple systems: they coincide with the sets of mazimal
tripotents and minimal tripotents, respectively. By definition, a minimal
tripotent is an element x € S with {x,z, 2} = 6x, see [9], the comments
after Theorem 2.3 and Remark 2.4 (b). Analogously, a maximal tripotent
is a vector y € S with {y,y,y} = 3y, see [9], the comments after Theorem
2.5. These descriptions of P and L may be proved as follows: let z be an
extremal point of F restricted to S. Then grad F(z) = 12(z, z)z — ${z, z, 2},
and hence {z, z, z}, is a multiple of z. Choose A € R such that {z,z, 2z} = Az.
By means of equation (%), we get (A — 3)(A —6) = 0. We have F(z) =1
for A =3, and F(z) = —1 for A = —1. This proves the above description of
P=F"'1)NnSand L = F~!'(=1) NS in terms of tripotents.
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As in the theory of Jordan triple systems, the operators T'(z) play an
important role in the theory of isoparametric triple systems. For x € V,

it € R, we define

Vilz) ={y € V [ T(2)(y) = py, (z,y) = 0}.

An essential feature of isoparametric triple systems are Peirce decomposi-
tions of V relative to maximal or minimal tripotents. For p € P, L € L,
these Peirce decompositions are given by V = Rp @ Vi(p) & Vz(p) and
V = RL @& Vo(L) & Va(L), respectively, see [9], Theorem 2.2. Here, we
sketch a proof of these statements: by the first linearization of identity (),
we have 3T (p)? — 12T (p) + 9id = 0. Hence, for each eigenvalue A of T'(p) we
have A2 —4A+3X = (A—1)(A—3) = 0. This proves the Peirce decomposition
of V relative to p. In the case of L, the first linearization of equation (x)
yields 3T(L)*y — 6T(L)y — 72L{L,y) = 0. The self-adjoint operator T(L)
leaves the orthogonal complement Lt of L invariant. Hence, each eigen-
value of the restriction of T(L) to L+ satisfies the equation \? — 2\ = 0,
and the Peirce decomposition of V relative to L follows.

It can be shown that dimV3(p) = my + 1, dimVi(p) = my + 2ma,
dim Vo (L) = mo + 1, and dim V5 (L) = 2my + ma, see [9], Theorem 2.2. We
prove this statement for the Peirce spaces relative to L. By Lemma 3.1,
we have have trace T'(L) = 2(2m; + mo + 3). On the other hand, we have
traceT(L) = 2dimV5(L) + 6, which shows that dim Vo(L) = 2m; + ma.
Hence, we get dim V5 (L) = dimV — dim V5(L) — 1 = my + 1.

For vectors in the Peirce spaces V(L) and V2(L), the quite complicated
identities corresponding to the successive linearizations of equation (x) re-
duce to much simpler identities, see [9], Theorem 2.3. An analogous state-
ment holds for vectors in V;(p) (i = 1, 3), see [9], Theorem 2.5. In particular,
we mention the following four identities which will be used in the next sec-

tion (uo,vo,wo € VO(L)a ug, vz, w3 € VS(p)):

(1) {ug, Lyvo} =0
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{uo, vo, wo} = 2({uo, vo)wo + (vo, wo)up + (wo, ug)vo)
{u?)apa U3} - 3<’U3,U3>p

{ug, vz, w3} = <U3, v3)w3 + <U3, U}3>U3 + (w37 U3>U3

A~~~
=~ W N
— —

These identities correspond to equations (2.3), (2.6), (2.10), and (2.13) in
[9]. In the next section, we will see that the Peirce spaces V4(L), Vo(L),

Vi(p), and Vs(p) have a precise geometrical meaning.

The Geometry

of Isoparametric Hypersurfaces

The following Proposition establishes a close relationship between point
rows and line pencils on the one hand, and eigenspaces of the operators

T'(z) on the other hand. For definitions, see the preceding section.
3.3 Proposition. Let ¢ € P and K € L. Then we have

P =SN (%K +Vo(K)) and L,=Sn (%q +Vilg)).

Proof. First, we mention that point rows and line pencils are geometric
spheres of dimensions mo and my respectively. This can be seen as follows:
by comparing the notation of Theorem 2 in [27] and of equations (1.2) and
(1.3) in [9] (Miinzner’s differential equations as presented in the preceding
section), we see that mgy and m; in [27] correspond to m; and my (in this
order) in the notation of [9], which we have adopted as our notation. By
the proof of parts a) and b) of Theorem 4 in [27], we conclude that P =
SNF~1(1) has dimension m;+2ms and that L = SNF~!(—1) has dimension
2my + ms. So, we have dim Px = dim ﬂzl(K) =dimF — dimL = my and
dim &L, = m;. The well-known fact that point rows and line pencils are

geometric spheres is, e.g., an immediate consequencee of [27], Section 6, see

also [31], Theorem 6.2.9 (iii).
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On the other hand, the geometric spheres S N (%K + Vo(K)) and

SN (%q + V5(q)) have dimensions my and my, respectively, since Vj(K)
has dimension my + 1 and V3(q) has dimension m; 4 1, see the preceding
section. Hence, it suffices to prove the inclusions SN (%K + W (K)) C Pr
and Sﬂ(%q—l—vg(q)) C L. For this purpose, choose p € Sﬂ(%[f—l—VO(K))
arbitrarily. Then we have p = %K + po with pg € Vo(K) and ||po| =

S

So, we get . .
{p.p, P}_{ K +po, —= I’(‘FPO,—K‘FPO}
V2 V2

3
_ 2 K4 _{pO,A po} + {po, po.po’}
V22

because of {K, K, K} = 6K and {K,K,py} = 0. By using the identites
(1) and (2) in the preceding section, we see that {pg, K,po} = 0 and that
{poypoypo} = 6<Po,po)po = 3pg. Hence, we obtain {p P, p} = A + 3pg =
3p. This shows that p € P. Furthermore, we get (p, K) = (ﬁfx + po, K) =

%, i.e. p and K are incident. Hence, we have p € Pg, and the inclusion

SN (%K + Vo (K)) C Pk is proved.
The other inclusion is proved analogously' for L € SN (%q + V3(q)),
we have L = \/—q + L3 with ||Ls|]| = —=. We obtain
(L,L,L) { b Ly gt Ly, — +L}
s L = q 3, =4 3, =4 3
\/_ \/_ V2

= —q, 9,9} + ={q,q, L3} + L3, L3} +{L3, L3, L
2\[{qqq} 2{qq 3} \/—{q 3, L3} +{Ls, L3, L3}

9 9 3
=+ 5Ls+ + 5Ly =6L.
2\/_ ’ 2\/_q ’

Here, we have used that because of the identities (3) and (4) we have
{q,L3, L3} = %q and {Ls, Ls, L3} = 3(Ls, L3)L3 = %Lg. Hence, we have
L € £, and since (¢, L) = % is an immediate consequence of L = %Q—I—Lg,
we get L € L,. This proves the inclusion SN (%q + V3(q)) C L4 and com-
pletes the proof. O
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3.4 Corollary. A point p € P and a line L € L are incident if and only if
{p,L,L} = 3V2L.
If p and L are incident, then we also have {p,p, L} = 3L.

Proof. If p and L satisfy the equation {p,L,L} = 3v/2L, then we have
6(p, L) = (p.AL, L. L}) = ({p. L. L}, L) = (3V2L, L) = 32, ice. (p, L) =
%, which shows that p and L are incident. Conversely, if p and L are
incident, then we have p € P, which implies that p = %L + po with pg €
Vo(L) (see Proposition 3.3). Hence, we get {p,L,L} = {%L + po, L, L} =
3v2L. Analogously, by Proposition 3.3 we have L = %p + L3 with L3z €
V3(p). Thus, we obtain {p,p, L} = {p,p, %p + L3} = %p + 3L3 = 3L.
This completes the proof. O

Remarks. (i) It is not true that {p,p, L} = 3L implies that p and L are
incident. This may be seen as follows: let ¢ € P and L € L be incident. For
p = —q we have p € P (since {p, p,p} = 3p, for example) and {p,p, L} = 3L,
but p and L are not incident because of {p, L, L} = —3v/2L or (p, L) = — %

However, it is true that {p,p, L} = 3L implies that either p and L, or
—p and L are incident. A proof of this statement can be obtained in the
following way: as mentioned in the previous section, the euclidean vector
space V may be decomposed as an orthogonal sum Rp & Vi(p) & Vi(p).
Hence, we have L = (p, L)p+ Ly + L3 with Ly € Vi(p), Ls € V3(p), and
(p, LY* + (L1, L) + (L3,L3) = 1. In this notation, we get {p,p,L} =
3(p, L)Yp + Ly 4+ 3L3, and we see that {p,p, L} = 3L implies L; = 0. Using
the identities (3) and (4) of the preceding section, a short computation
shows that

6L ={L,L,L} ={({p.L)p + Ls, (p. L)p+ Ls. (p, L)p + Ls}
= 3(p, L)’p + 9(p, L) L3 4+ 9(p, L)(Ls, Ls)p + 3(L3, L3) Ls.
By replacing L3 by L — {(p, L)p and (L3, L3) by 1 — (p, L)?, we obtain

2(p, LY(1 — 2(p. L)*)p = (1 — 2(p, L)*)L
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after an easy calculation. Since p and L are linearly independent, we con-

clude that (p, L)? = 3. So, we have (p, L) = % or (—p, L) = %, and the

above statement is proved.

(ii) There is another possibility to prove Propositions 3.3 and 3.4 in reverse
order and in an essentially different way. Using this approach, we do not
need a priori the facts that point rows and line pencils are geometric spheres
and that their dimensions are ms and m;y, respectively. In contrast, these
properties were required in the proof of Proposition 3.3 presented above.
We sketch here this different approach.

As we have seen in the preceding proof, the identity {p, L, L} = 3v/2L
for p € P, L € L implies that (p, L) = % We want to prove directly that,
conversely, we have {p, L, L} = 3v/2L, provided that p and L are incident.
In this case, we have p = pp(z) and L = pg(z) for some z € J, i.e. p and L
lie on a great circle normal to the isoparametric hypersurface J, and both
have the same distance ¢ from z, see the preceding section. Hence, we
have ﬁ = 2 € J (where ||p+ L|| = 2cos §). Since the polynomial F is
homogeneous, we conclude that F(p + L) = 0. Using the description of F

via {-,-, -}, we get

3(p+L.p+ L)~ §<{p+ Lp+L,p+L}p+L)=0.
An easy calculation, which uses the identites {p,p,p} = 3p, {L, L, L} = 6L,
and (p, L) = %, shows that this equation is equivalent to ({p, L, L}, p) = 3.
By applying the first linearization of equation (%) with z = L and y = p,
we get
3{L,L,{L,L,p}}—6{L,L,p}—36vV2L = 0.
The scalar product with p yields ({L,L,p},{L,L,p}) = 18 because of
({p, L, L},p) = 3. Finally, we obtain
({p.L,L} —3V2L,{p,L,L} — 3v2L)
=({p, L, L}, {p, L, L}) = 6vV2({p, L, L}, L) + 18
—18 — 36+ 18 = 0,
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ie. {p,L,L} = 3v2L. So, we have given a direct proof for the description
of incidence in Corollary 3.4, which uses only the most basic parts of the
theory of Dorfmeister and Neher. The second result of that corollary may
be derived in a similar way by using the equation ({p, L, L}, p) = 3 and the
first linearization of equation (%) with = p and y = L.

The descriptions of point rows and line pencils given in Proposition 3.3
may be derived easily by means of these results: in the proof of Proposition
3.3, we have already proved directly that SN (%K + Vo(K)) C Px and
that SN (%q + Vs(q)) C L, for ¢ € P, K € L. In order to prove the
other inclusions, choose p € Px and L € L, arbitrarily. Then we have

T(K)(p — TA) = {p-— \}iK’ K,K} = 0, because of {p, K,K} = 3V2K

and {K, K, K} = 6K. This shows that p — %K € Vo(K) or, eqivalently,

that p € \}—K + VO(K). Analogously, we get T'(q)(L — Tq) = {q.q.L —

%q} = 3(L — 7 q), since {q,q,L} = 3L and {q,q,q} = 3q. Because of

(L—%q, q) = 0, we conclude that L—Tq € V3(q),i.e. that L € %Q‘I'VS((])-

This proves the equations for point rows and line pencils in Proposition 3.3.

The following corollary shows that the eigenspaces of the operators
T(z) have a precise geometrical meaning for x € P or x € L. For z € V,

we denote by zt the orthogonal complement of 2 in V.

3.5 Corollary. Let ¢ € P and K € L. Then the tangent spaces of the
point space P in q and the line space L in K are given by T,P = Vi(q)
and Tl = Vo(K). Moreover, for the tangent spaces of the point row
Pr in p and the line pencil L, in L we have T,Pr = Vo(K) N pt and
T,L, =Vs(q) N LL.

Proof. The statements on the tangent spaces of Pr and L, respectively,
are an immediate consequence of Proposition 3.3. As already mentioned at
the beginning of Proposition 3.3, we have dim P = m; 4+ 2ms and dim L =

2m; 4+ mo. By the preceding section, we also have dim Vi (q) = m; + 2my
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and dimV5(K) = 2my 4+ mo. Hence, it suffices to prove the inclusions

T,P CVi(q) and Tl C V5(K). Since the maps
VoView{r,z,2} -3z and V>V :y—{y,y,y} —6y

vanish on P and L, respectively, the differentials of these maps vanish on
T, P and T L, respectively. So, we get {q,q, u}—u=0and {K, K,v}—2v =
0, i.e. T(¢)(u) = v and T(K)(v) = 2v, for all u € T,P, v € TgkL. This

proves the required inclusions. O

Remark. In the proofs of Lemma 3.9 and Theorem 3.10 we will use the
fact that every tangent vector u € TP (v € TgL) and every line L € L,
(point p € Pk ) are orthogonal. This is a direct consequence of the geometric
properties of isoparametric hypersurfaces in spheres as they were presented
at the beginning of the preceding section. Of course, this statement is also
a consequence of Proposition 3.3 and the preceding corollary. Because of
u € T,P, we have u € Vi(q), and L € L, implies that L lies in the span
of ¢ and V3(q). Analogously, v € TgL and p € Py yield v € Vo(K) and
p € span{ K, Vy(K)}. Hence, we get (L,u) = (p,v) = 0.

The identities (ii) and (iv) in the next proposition are crucial for the

following results.

3.6 Proposition. Let p,q € P be incident with K € L. Then the following
two identities hold:

(i) {p,K,q} =3K
(i) {p.p.q} =2V2(1 — (p.q)) K +2(2(p.q) = L)p+ ¢
Let L, K € L be incident with q € P. Then we have the following two
identities:
(ili) {L,q, K} =3((L,K) - 1)g+ J5(L+K)
(iv) {L,L,K}=22({L,K) — 1)g+ 2((L,K) + 1)L 4+ 2K
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Proof. By Proposition 3.3, we have P = SN (%K + Vo(K)) and L, =
SN (%q + V3(q)). So, we may write p = %K + po. q = %K + qo.
L= %Q—FL;% and K = %q—l—[fg with pg,qo € Vo (&) and Ls, K35 € V3(q).
In order to prove (i), we use identity (1) in the preceding section, which

states that {pg, K, qo} = 0. We obtain

1
K. q) = { K+po, K, —K + }
{r, K, q} = po K, ==K + a0

N ... .
- §{I§7IX,[X}+—{IX,IX,Qo}+ pOalX I&}—I_{poalX qo}

NG v

= 3K.

In order to prove (ii), we first see that

1 1
b ={ =K +po, =K +po, =K + a0}
{p,p.q} = { Po, 5K+ o, 5K+ ao

1
= —{K, K, K} + -{K, K, + {K, KK,
9 \/5{ } 2{ ; QO} { ,Po}

. 1 .
+ \/i{liap())q()} + ﬁ{poapoa[&} + {pO;pOaQO}
3
= _[{—I' ) ) )
7 {po,po, qo}

since {po, I, qo} = {po, K, po} = 0. By equation (2), we have {pg,po,qo} =
2((po, Po)qo~+{Po, q0)Po+{q0, Po)Po) = qo+4{(po, qo)po because of ||po|| = %
After replacing pg by p — %K and qo by g — TA we get

(poprq) = %K +(a- %K) +4(p- %K,q - %K> (r- %[()
= V2K +q+ 4<<p, q) — %) (p - %K)
=2V2(1 — (p.q)) K +2(2(p.q) - p +4¢.

Equations (iii) and (iv) are proved in an analagous way. By identity (3),
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we have {L3,q, K3} = 3(Ls, K3)q. Hence, we get

; 1 ;
{L.q.K} = —=q+ Ky }

{f 2

1 1
= 3 s Y + ’ 7[{ + L s Y + L ’ 7[{
2{q q Q} ﬁ{q q 3} \/5{ 3,4 Q} { 3,4 3}

_3,. 3

q+L3,q7

3
—K3 + —L3s + 3(L3, K3)q.
\/§ 3 \/§ 3 ( 3 3>q

Now, we obtain identity (iii) by replacing in this equation L3 by L — %q

and K3 by K — T

1 1
{L,q, K} = %Wri(ff— — )+i<L—— )

VaUT VR DAYV
+ 3<L — Lq K — LQ>Q
V27T 2
:_gq_l_ %[(4_ %L—I—?)((LJQ_ %)q
:3<<L,K>—1)Q+%(L+K)

For a proof of equation (iv), we use the identities {Ls, q, K3} = 3(Ls, K3)q,
{Ls,q.Ls} = 2q, and {L3, L3, K3} = 1 K3 + 2(L3. K3)L3, which are de-
rived from equations (3) and (4) in the second section. By means of these

identities, we get

1 1
{L7L7[(}:{ q+L37 q—I'L37 q—l'[(?)}
f f V2

= - =44 + ) 7[( + ) 7L
2ﬁ{q q.q} 2{(1 q, K3} +{q,q. L3}
+\/§{Q7L37[(3}+ \/_{Lg,Lg,Q}—l—{Lg,Lg,Ilg}

3 3
—=q+ A3+3L3+3W<L3,A3>q+—

2\/_ 2\/5

1. -
+ 5[13 + 2(L3, K3)Ls.
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Again, we replace Lz by L — %q and K3 by K — %q. In this way, we

obtain

1 1
{L,L,K} = iq + Q(K — —q) + 3<L — —q)

V2 V2 V2
+3V2((L, K) - %)q +2((L,K) - %) (£- %q)
= 2V2((L,K) - 1)q+ 2((L, K) + 1)L 4 2K. O

The first statement of the following corollary has been proved by Thor-
bergsson by a direct geometric argument, see [18], Lemma 3.3. Of course,

it is also a consequence of Theorem 3.10.

3.7 Corollary. Any two distinct points are joined by at most one line,
and any two distinct lines intersect in at most one point. The join map V
and the intersecting map A defined in this way are restrictions of rational

functions, and are explicitly given by

Vi{lpq) €PxPlp#q LynLy#0} =L

{pspa}t +2(1 = 2(p,q))p — ¢
2v2(1 - (p, q))

(p,q) =

and

/\:{(L,K’)ELXL|L75K7,?LQTK7£®}—>?:

(L,L,K} = 2((L,K) + 1)L — 2K

(LK) 2R(L, K) - 1)

O

The next corollary shows how the distances of p, ¢, L, and K are
related in the situation of Theorem 1.17. It will be used in the proof of
Theorem 3.10.
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3.8 Corollary. Let (p,L) € P x L and (¢, K) € (P, x L,) NF. Then we
have

L= V2(p, L) = 2(1 = (p,q))(1 = (L, K)).

Proof. The points p and ¢ are both incident with K. Hence, by Proposition

3.6, we have

{p.q,q} = 2v2(1 — (p,q)) K + 2(2(p, q) — 1)q + p.

Since ¢ is incident with L, we have ({p,q,q},L) = (p,{q,q,L}) = 3(p, L)
by Corollary 3.4. So, the scalar product with L yields

3(p, L) = 2V2(1 = (p,q) (L, K) + V2(2(p. q) — 1) + (p, L)-
By rearranging terms and dividing by —v/2, we obtain

—V2(p, L) = (1 = 2(p, q)) — 2(1 = (p, ¢)}{L. K)

and hence
1—v2(p, L) =2(1 = (p,q))(1 - (L, K)).
]
3.9 Lemma. Let p € P, (¢,K) € 75" (L)), and (u,v) € T(yi)7g (Lp)-

Then we have

(i) (u,v)= \/§<1 — (P, q)){v, v).
Dually, for L € L, (¢, K) € 75" (P), and (u,v) € T(qu)ﬂg_)l(ﬂ)L) we have
(i) (u,v) = V2(1 = (L, K)){u, u).

Remark. In this lemma, we consider u and v as vectors in the same
euclidean vector space V. The scalar product (u,v) has to be understood

in this sense.
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Proof. By Proposition 3.6 (ii), the map
PxL—=Vi(ey) = 2v2(1 = (p.a))y +2(2(p,2) = Dp+ 2 — {p,p,z}

vanishes identically on 7' (£,). Hence, for (¢, K) € n;'(£,) and (u,v) €
T (4.5 7= (L,), we get by differentiating this map

—2vV2(p,u) K + 4(p, u)p + u — {p, p, u} + 2v2(1 = (p.q))v = 0.

Because of v € T L, we have (K, v) = (p,v) = 0. Thus, the scalar product
with v yields

<uvv> - ({p,p, u},v) + 2\/5(1 - (p, Q>)<va> = 0.

Moreover, by Corollary 3.5, we have v € V3(p) and hence ({p,p,u},v) =
(u, {p,p,v}) = 3(u,v). This implies equation (i).

Now, let (¢, K) € 75" (P) and let (u,v) € T(qJ{)ﬂ;l(ﬂ’L). The map
PxL—=V:(ry) = 2vV2((L,y) — Do +2(1+(L,y)L+2y — {L, L,y}

is constant on 7' (P) by Proposition 3.6 (iv). As above, we see by differ-
entiating this map that

2V2((L,K) — 1)u + 2V2(L,v)q + 2(L,v)L + 2v — {L, L,v} = 0.
By forming the scalar product with u, we get
2V2((L, K — 1){u, u) + 2(u,v) — (u, {L, L,v}) =0

because of (¢, u) = (L, u) = 0. Furthermore, as a consequence of u € T, Py,
we have {L, L,u} = 0, see Corollary 3.5. This implies that (u,{L,L,v}) =
({L,L,u},v) =0, and equation (ii) follows. O
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Remark. As a consequence of Lemma 3.9 (i), we have T L,NT L, = {0}
for any two distinct line pencils £, and L, which intersect in a common
line K, i.e. they intersect weakly transversally in the sense of Definition
1.6. Dually, any two distinct intersecting point rows P; and Py intersect
weakly transversally. This may be seen as follows: let v € TP, NT P,
where Pr, N Px = {q}. Since u € T,Pr and 7y is a submersion, there is
some v € TxL such that (u,v) € T(q’]()ﬂﬂ_jl(ﬂ)L). Because of u € T Pg
and v € TgL, we have u € V5 (K) and v € V5(K), see Corollary 3.5. So we
get (u,v) = 0. By Lemma 3.9 (ii), we conclude that v = 0, since L and K

are distinct.
The following theorem presents the main result of this chapter.

3.10 Theorem. Incidence structures (P, L, F) which arise from (compact,
connected) isoparametric hypersurfaces with four distinct principal curva-

tures in spheres are smooth generalized quadrangles.

Proof. Let (p,L) € (P x L)\F be an arbitrary antiflag. As mentioned in
the preceding section, we only have to show that P; x £, and J intersect
transversally in P x L. Choose (¢, K) € FN(Pr x L,) arbitrarily (if this
intersection is non-empty). For reasons of dimension, it suffices to show
that the intersection of T(, )T and T, x)(Pr x L) is trivial. So, let
(u,v) € Tiqi)yF N (TyPr x TkL,). We have T (Lp) = TN (P x L),
and since the projection 7z : F — L is a submersion, this intersection
is transversal. By [6], Theorem 5.12, we get T(q’]()ﬂzl<£;p) = T.r)T N
(TyP x TgkL,). In particular, we have (u,v) € T(q’]{)ﬂgl<ﬁp). The fact
that (u,v) € Ty x) 75" (P1) is proved analogously. In the following, we will
consider u and v as elements of the same vector space V. We adopt this
point of view, since in Proposition 3.6 we assumed P and £ to be contained
in the same euclidean space V., and the following equations for u and v

are derived from identities given in that lemma. As in the proof of the
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preceding Lemma, we see by differentiating the map
PxL—V:(r,y)m2V2(1 = (p, )y +2(2p,2) = V)p+ 2 — {p,p,z}
that
—2vV2(p,u) K + 4(p, u)p + u — {p.p,u} + 2v2(1 = (p,q))v =0

because of (u,v) € T4 K 7= (£,). Recall that this map vanishes identically
on 7, (£,) by Proposition 3.6 (ii). In the sequel we will assume that u has

norm 1. Then the scalar product with u yields

4p,u)’ + 1 — ({p,p.u}, u) +2V2(1 — (p, q))(u, v) = 0.

Here, we have used that (K,u) = 0 by the remark after Corollary 3.5. By
Lemma 3.9 (ii), we have (u,v) = v/2(1 — (L, K)). Because of Corollary 3.8

we obtain
4<p7 u‘>2 +1- <{pap7 u‘}7 u) + 2<1 - \/5<p7 L>) = 0. <*)

By identity (2) or [9], Theorem 3.11 (a), the vector u is a a minimal tripo-
tent. In the sequel, we will use the Peirce decomposition of V' relative to
u. So, we may write p = (p, u)u + pg + p2 with p; € Vi(u), i = 0,2. Then
we have T'(u)(p) = 6(p, u)u + 2p, and hence ({p,p,u},u) = (p,{p,u,u}) =
6(p, u)? +2(p2, p2). By equation (1), we have T'(u)(L) = {u, L,u} = 0, since
u € Vo(L) by Corollary 3.5. Thus we get L € Vy(u) and (p, L) = (po, L).

Using these identities, we obtain from equation (x) that
4<p7 U>2 +1- <6<p7 U>2 + 2<p27p2>) + 2(1 - \/§<p07 L>) =0.

Because of |[p[|? = (p,u)* + (po, po) + (p2.p2) = 1, we get 1+ 2(po, po) —
Qﬁ(po, L) = 0. By the Cauchy-Schwarz inequality, we conclude that

0=1- 2\/§<P07L> + 2(po.,po) > 1 — 2\/§||P0|| + 2||Po||2 =(1- \/§||P0||)27
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which implies that |[po|| = <= and 1 — 2v/2(pg, L) + 1 = 0. Hence, we

V2
get (p,L) = (po,L) = %, which contradicts (p, L) € (P x £L)\F. This
contradiction comes from our assumption that ||u|| = 1. Since the condition

(u,v) € T )T N (TyPr x TxL,) is linear, we conclude that v = 0. By
Lemma 3.9 (i), we then get v = 0 since p # ¢q. So, we have shown that the
intersection of T, )T and T, k) (P x L) is trivial for arbitrary (¢, K) €
FN(Pr x L,). This completes the proof. O

It can be shown that for these generalized quadrangles the map f3 (see
Chapter 1) is not only smooth, but real analytic and even Nash, i.e. these
generalized quadrangles are real analytic and Nash quadrangles. For the
definition of Nash functions and maps, see [1], 2.9.3 and 2.9.9, cf. also Sec-
tion 8.1 in that book. The proof of this statement is based on an appropriate

modification of Theorem 1.10, which may be stated as follows.

3.11 Theorem. Let (P,L,F) be a generalized quadrangle which satisfies

the following conditions:

(SGQ1) There are positive integers a, b such that P is a real analytic (or
Nash) manifold of dimension 2a + b and L is a real analytic (or
Nash) manifold of dimension a + 2b.

(SGQ2) The flag space F is a (2a + 2b)-dimensional real analytic (or Nash)
submanifold of Px L such that the canonical projections 7p : F —

P and wg, : F — L are submersions.

If moreover for each antiflag (p, L) € (P x L)\F the submanifolds P x L,
and JF intersect transversally in P x L, then (P,L,F) is a real analytic
quadrangle (or Nash quadrangle, respectively).

Note that the transversality condition in this theorem makes sense,
since condition (SGQ2) implies that point rows and line pencils are sub-

manifolds of P and L, respectively, compare Lemma 1.6. In order to prove



this theorem, we only need to copy the proof of Theorem 1.10. This is
possible without any alterations by using the implicit function theorem for

real analytic maps or for Nash maps, respectively, see, e.g., [23], Theorem

1.8.3 and [1], Theorem 2.9.8.

It remains to check that the conditions of the above theorem are actu-
ally satisfied for generalized quadrangles (P, L, F) arising from isoparamet-
ric hypersurfaces with four distinct prinicipal curvatures in spheres. For
this purpose, we explain first how proofs of real analytic or Nash versions of

well-known theorems in elementary differential topology may be obtained.

By the proof of the constant rank theorem as given in [6], Theorem 5.4,
we see that this theorem is a consequence of the inverse function theorem,
which holds true also in the real analytic or Nash setting, see [23], Theorem
1.8.1 and [1], Theorem 2.9.7. So, we have an analogous statement for real
analytic (or Nash) maps of constant rank between real analytic (or Nash)
manifolds. In the following we concentrate on the Nash case for simplicity
of formulation. As a direct consequence of the constant rank theorem, we
obtain the following version of Theorem 5.7 in [6]: the image of an injec-
tive Nash immersion f : M — N which maps M homeomorphically onto
f(M) C N (where M and N are Nash manifolds) is a Nash submanifold
of N. A further consequence is a Nash version of the standard result on

preimages of regular values, see [6], Lemma 5.9.

Now we explain, how the conditions in the above theorem may be
verified by means of these results from elementary differentiable topology.
First, the isoparametric hypersurface 3 = F~1(0) NS = F|5'(0) is a Nash
submanifold of V', because S is a Nash submanifold of V" and 0 is a regular
value of the polynomial map F' restricted to S, see [27], Theorem 3. Choose
x € J arbitrarily. Since F' is a homogeneous polynomial of degree 4, we
have (gradF(z),z) = 4F(z) = 0, where |[gradF(z)|| = 4 by the first of
Minzner’s differential equations. As mentioned at the beginning of the

preceding section, the images pp(x) € F~1(1)NS and pg(x) € F~H(-1)NS



lie on a great circle normal to J and have distance ¢ from z. Hence, we get

1
pp(x) = cos % x + 1 sin g grad F(z)
and .
pe(x) = cos g T=7 sin g grad F'(z).

Thus, the projections pp and pg are described by polynomial maps. Since
they are submersions onto the focal manifolds, we conclude by the Nash
version of the constant rank theorem that P and L are Nash submanifolds
of V. Finally, by the embedding theorem presented above, we conclude
that the image & of the Nash submanifold J under the even polynomial
embedding pp X pg, 1 J— Px L is a Nash submanifold of P x L. So, we have
proved the remaining conditions in the above theorem. Hence, generalized
quadrangles derived from isoparametric hypersurfaces with four distinct
prinicipal curvatures in spheres Nash quadrangles and, in particular, real

analytic quadrangles.
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Chapter 4

Characterizations of
Smooth Projective Planes

Introduction

Compact projective planes play a prominent role in topological geometry.
The underlying incidence structure is a projective plane P = (P, L, F),
where P denotes the set of points, L the set of lines, and F C P x L the flag
space or incidence relation. Any two distinct points are joined by a unique
line and, dually, any two distinct lines intersect in a unique point. A projec-
tive plane P is called a topological plane if P and L are topological spaces
such that the join map and the intersection map are continuous. A topolog-
ical projective plane P is said to be a compact (connected) projective plane if
P (or equivalently £) is a compact (connected) topological space. Although
the continuity of the geometric operations is a natural postulate, it is some-
times inconvenient. A characterization of compact projective planes which
replaces continuity by other conditions is given in [32], 43.1: a projective
plane with compact topologies on P and L is a topological plane if and only

if the flag space F is a closed subset of P x L.

From topological geometry it is only a small step to smooth geometry.
For a smooth projective plane P = (P, L, F) we require the sets P and L to
be smooth manifolds and the geometric operations to be smooth on their
respective domains. Real analytic or Nash projective planes may be defined
analogously, see the next chapter. In view of the flag space characterization

of compact projective planes it is quite a natural question if there is an



analogous characterization for smooth projective planes. We will answer

this question in Corollary 4.4.

Implicit Characterizations of

Smooth Geometries

In this section we want to show how mild differential-topological assump-
tions affect the geometry which is encoded in incidence structures. We will

work with the following set of axioms:

Definition. An incidence structure J = (P, L, ) is called a smooth gen-
eralized plane, if there is a positive integer [ such that the following two

axioms are satisfied:

(SGP1) P and L are 2l-dimensional smooth manifolds.

(SGP2) the flag space JF is a 3l-dimensional submanifold of P x £, and the
canonical projections 7p : F = P: (p,L) » pand g : F - L:
(p, L) — L are submersions.

In Proposition 4.2 we will see that the notion of a smooth generalized
plane is adequate. Note that axioms (SGP1) and (SGP2) are self-dual and
hence smooth generalized planes satisfy the duality principle, i.e. every valid

statement remains true when the roles of P and L are interchanged.

4.1 Lemma. Let J = (P, L,JF) be a smooth generalized plane such that
the natural projections wp and mg are surjective. Then every (non-empty)
point row is an l-dimensional submanifold of P, and every (non-empty) line

pencil is an [-dimensional submanifold of L.

Proof. Because of our last remark, it suffices to prove the claim for line

pencils only. So let p € P. Then the inverse image 7T]_31<p) is a smoothly



embedded submanifold of F, since by definition 7p is a submersion. More-

over, dimnp'(p) = dimF — dimP = 3/ — 2] = . The map J, : L —

P x L :Lw (p,L)is smooth and we have 6, o 7TL|7F_1(p) =id, -1, This
P P

proves that 7TL|7[_1_31 ) 711—31(])) — L is a smooth embedding and thus £, is

(p
a smoothly embedded [-dimensional submanifold of L. O

Definition. Two lines L; and L, of a smooth generalized plane are said
to intersect transversally in some point p, if the associated point rows Pr,
and Pp, intersect transversally in p as submanifolds of P, i.e. their tangent
spaces in p span the tangent space T, P, or, equivalently, the intersection of
their tangent spaces in p is trivial. They are said to intersect transversally
if they intersect transversally in each common point. Note that two lines
which intersect transversally need not have a common point. Transversal

intersection of line pencils is defined dually.

The transversal intersection of two lines in some point implies that the
intersection map is "locally” well defined and smooth. In more detail, we

have the following

4.2 Proposition. LetJ = (P, L, JF) be a smooth generalized plane. Assume
that the lines Ly, Lo € L intersect transversally in p € P. Then there are
disjoint open neighborhoods U; of L; in L, 1= 1,2, and V of p in P such
that any two lines K; € U;, intersect in precisely one point K1 A Ky € V.
Moreover, the intersection map A : Uy x Uy = V 1 (K1, Ky) = K1 A Ky

defined in this way is smooth.

Proof. Since the flag space F is a submanifold of P x L, for « = 1,2 there
is an open neighborhood V; of (p,L;) in P x L as well as a submersion
¥; + Vi = R which vanishes exactly on the set FNV;. We set

Y Vix Vo = RUX R (21, 20) 0 (¥ (21), ¥a(22))
i LxLxP—(PxL)?: (K, Ko q)— (¢, Ki,q, K>)
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and for W = ¢=1(V] x V3) we put
F:W SR xR : (K, Ky, q) = o oKy, Ky, q).

By definition of F' we have F(K;, K5,q) = 0 if and only if ¢ is a common
point of K1 and K. In order to prove the assertions of the proposition by
using the implicit function theorem it suffices to check that the differential

of the map
{qeP|(Li,Ly,q) e W} R xR": g F(Ly, Ly, q)

is regular at p. So let v € T}, P be in the kernel of this differential. The dif-
ferentials D, 1,,y41 and Dy, 1,)¥2 vanish exactly on T(, r,)F and T, 1) F,
respectively. Using the chain rule and the definition of ¢ we thus get

(Ua 0, v, O) € T(paLl)Sj X T(PaLz)‘rf'

Since the projection 7g is a submersion, the submanifolds P x {L;} and F

intersect transversally in P x L. Hence we have
(TpP X {O}) N T(p,Ll)Sj: TpPL1 X {O}

From (v,0) € T,

v € T,Pr,. Since the lines L; and L, intersect transversally in p, this

p.L.1)F we infer that v € T, P, , and analogously we get

implies that v = 0, and we have proved the proposition. O

A common notion in topological geometry is that of a stable plane, see
[25] and [26] for details. Before we are going to relate Proposition 4.2 to

stable planes we need two more definitions.

Definition. An incidence structure (P, L,JF) is called a linear space, if
each two distinct points p,q € P can be joined by exactly one line L, i.e.

(p, L), (q,L) € F, and every line is incident with at least one point.
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Definition. A smooth stable plane § is a linear space (P, L, F) which sat-

isfies the following axioms:

(SSP1) The domain O of the intersection map is an open subset of £ x £
(stability aziom). P and L are smooth manifolds such that the
join map V and the intersection map A are smooth.

(SSP2) Every line is incident with at least 3 points and dually.

4.3 Corollary. Let I = (P,L,5F) be a smooth generalized plane as well as
a linear space. Assume that any two distinct lines and any two distinct line

pencils intersect transversally. Then J is a smooth stable plane.

Proof. By the preceding proposition, the maximal domain of the intersec-
tion map is an open subset of L X L and both the join map and the intersec-
tion map are smooth. (Remember that the dual statement of Proposition

4.2 is also true.) The validity of axiom (SSP2) is a direct consequence of

Lemma 4.1 and (SGP1). O

If J is a stable plane, then the dimension assumptions in axioms (SGP1)
and (SGP2) are automatically satisfied and the integer [ is one of the num-
bers 1, 2, 4, or 8, see [25]. By [3], a smooth stable plane is a smooth gener-
alized plane, and any two distinct lines (line pencils) intersect transversally.
Thus, Corollary 4.3 yields a characterization of smooth stable planes. For
the particularly interesting case of smooth projective planes we formulate

this characterization as another corollary.

4.4 Corollary. Let P = (P, L, F) be a projective plane. Then the following

statements are equivalent:

(1) P is a smooth projective plane.

(ii) P is a smooth generalized plane such that any two distinct lines and

any two distinct line pencils intersect transversally.



This result may considerably facilitate the verification that a given projec-
tive plane is smooth. For example, the proof that the classical projective
planes P,F over the classical division algebras R, C, H (quaternions) and
O (octonions or Caley numbers) are smooth is now immediate.

The assumptions on the flag space contained in Corollary 4.4 (ii) are
indispensable. There are examples of non-smooth projective planes whose
point rows (and line pencils) are submanifolds, which intersect pairwise
transversally in P (in L), such that (SGP2) is not satistied. Moreover,
these planes cannot be turned into smooth projective planes by changing

the smooth structures on P and L, see [15].

We proceed with another characterization of smooth projective planes,
which does not start with an abstract projective plane but which uses addi-
tional assumptions on the topology of the plane instead. The next theorem

is the key to this characterization.

4.5 Theorem. Let J = (P, L,F) be a smooth generalized plane such that
any two distinct lines and any two line pencils associated with distinct points
intersect transversally. Assume that P and L are compact and connected
and that JF is closed in P x L. Then there are positive integers m,n such
that any two distinct points are joined by exactly m lines and any two
distinct lines intersect in exactly n points. Furthermore, any two points

rows (line pencils) are diffeomorphic.

Proof. The natural projections 7p and 7z are surjective since F is compact,
submersions are open maps, and P, L are connected. Thus point rows
and line pencils are [-dimensional manifolds, and there are two distinct
intersecting lines Ly, L,. By Proposition 4.2, the set of intersection points
is discrete and also compact, because the point rows Pr , Pr, are compact.
Thus, we have a finite set {p1, ..., p,} of intersection points. By Proposition
4.2 there exist disjoint neighborhoods U; of Ly and Us of L, in L and



pairwise disjoint open neighborhoods Vi,...,V,, of p1,...,p, such that any
two lines I{; € Uy and K5 € Us intersect in a unique pointof V;, i =1, ..., n.
By using the compactness of P we may pass to smaller neighborhoods such
that any two lines Ky € Uy, Ko € U, intersect in exactly n points. Hence,
each of the sets O = {(K1,K2) e Lx L | |P,, NP, |=k}, k=1,2,...1s
open in £ x L. Obviously, the set Oy = {(K;, K2) € Lx L | P, NP, =0}
is open, too. The connected set {(K,Ky) € L x L | K; # K»} is covered
by the pairwise disjoint open sets QO (K = 0,1,2,...). We conclude that
only one of the sets O is non-empty, namely Q,,. This proves that any two
distinct lines intersect in precisely n points. By duality, there is a positive
integer m such that any two distinct line pencils intersect in exactly m
lines. Equivalently, any two distinct points are joined by exactly m lines.
In order to prove the last assertion, we use the fact that the projection
mp : F — P is a smooth locally trivial fibration (by the fibration theorem
of Ehresmann, see [6], 8.12). Since 75'(p) = {p} x £, for p € P, we infer
that any two line pencils are diffeomorphic. Analogously, any two point

rows are diffeomorphic. O

Remark. It would be interesting to know whether n,m # 1 can actually

occur.

4.6 Corollary. Assume that J = (P, L, ) satisfies the conditions of The-
orem 4.5. If there are two lines whose intersection consists of at most one
point, or if there are two points which are joined by at most one line, then

J is a smooth projective plane.

This corollary will be used in the next chapter in order to construct
the first examples of non-classical smooth projective planes with large au-

tomorphism groups.



Chapter 5

Examples of Smooth Projective Planes

Introduction

In [33], B. Segre constructed examples of non-desarguesian smooth projec-
tive planes, whose lines are real algebraic curves in the real projective plane
with its usual real algebraic structure. The construction of these planes
was motivated by a prize-question posed by Het Wiskundig Genootschap
in 1955. However, as mentioned in [32], 75.6, he did ‘not consider the
question whether the planes are, for example, real analytic or algebraic
planes, that is, whether the geometric operations belong to one of these
categories’. In this chapter we show that the geometric operations of join-
ing points and intersecting lines are in fact real analytic and even Nash.
Furthermore, we present the first examples of projective planes with these
properties in dimensions 4 and 8. These results are obtained by real ana-
lytic or Nash versions of Corollaries 4.4 and 4.6, respectively. In fact, our
approach also yields a new proof for Segre’s result that the incidence struc-
tures constructed by him are projective planes. Note in this context that
finite-dimensional, compact, connected projective planes in general have
dimension 2, 4, 8 or 16, cf. [32], 52.5. It should be possible to prove an
analogous result in the 16-dimensional setting by using Veronese coordi-
nates instead of homogeneous coordinates (see [32], 16.1). Homogeneous
coordinates cannot be used in this case because of the non-associativity of

the octonions.

The projective planes considered in this chapter are constructed as

follows: the point space P and the line space L are copies of the point



space and the line space of P5K with their standard smooth, real analytic,
and real algebraic structure (K = R, C or H). Hence, points and lines may
be described by means of homogeneous coordinates in the usual way. A
point (z,y,z)" € P (where t denotes transposition) and a line (a,b,c) € £

are called incident if
(lal” + 6] + le|*) (az 4+ by + c2)(|2]” + [y + |2*) + Mc[Pez|z [ = 0.

Here, A € R is a fixed parameter. For A = 0 we get the incidence relation of
the classical projective plane P>K. The flag space F)y is the set of incident
point-line-pairs. The incidence structures Py = (P, L, F)) defined in this
way are self-dual. A polarity is given by the map P x L — P x L :
((x,y,2)t, (a,b,¢)) = ((@,b,)!), (T,7,%)), where “—” denotes conjugation.
Of course, the incidence structures P, cannot be expected to be projective
planes in general. In this chapter we prove that they are real analytic and
even Nash projective planes for |A| sufficiently small. To be more precise,
our proof yields that |[A| < § is sufficient. In [33], Segre proves in two
different ways that the planes P, are non-desarguesian for A # 0 and K = R.
In Section 1 (pp. 36/37) he shows this by a theoretical argument, and in
Section 4 (pp. 39/40) he verifies directly that Desargues’ theorem fails in
Py for A # 0 sufficiently small. A projective plane Py with K = C, H has a

2-dimensional subplane equal to the projective plane constructed by Segre

with the same parameter A and hence is not desarguesian for A # 0.

The projective planes presented in this chapter are the first examples
of non-classical smooth projective planes with large automorphism groups
and the first examples of non-classical real analytic projective planes. Note
that by [32], Theorem 75.1, or by [20], every holomorphic projective plane
is isomorphic to PoC with its usual holomorphic structure, and by [34] or
[21], every algebraic projective plane over an algebraically closed field is

Pappian.



Before we proceed, let us first recall some basic results on automor-
phisms of compact or smooth projective planes. The automorphism group
Y of a compact (smooth) projective plane P = (P, L,F) is the group of
all automorphisms of P as an incidence structure which induce homeomor-
phisms (diffeomorphisms) on P and L. These automorphisms are called
continuous automorphisms (smooth automorphisms). Note that by [5], 4.7,
a continuous automorphism of a smooth projective plane is smooth. The
automorphism group X of P is endowed with the compact-open topology
derived from its action on P or L, respectively. These two topologies co-
incide by [32], 44.2. In this way, L becomes a locally compact topological
group with a countable basis, see [32], 44.3. Hence it makes sense to define
the dimension of X, compare [32], 93.5 and 6. By a group of automorphisms
of P we mean a subgroup of X endowed with the induced topology.

By [2], the dimension of the automorphism group of a 2]-dimensional
non-classical smooth projective plane is at most 2, 6 or 16 for [ = 1, 2
or 4, respectively. These bounds are lower by 2 then the corresponding
bounds in the case of compact projective planes, but it is not known if
they are sharp. The projective planes P, admit Lie groups of smooth
automorphisms of dimension 1, 4 or 13 for [ = 1, 2 or 4, respectively.
In particular, our examples show that the bounds found by Bodi are not far
from the truth. The Lie groups of smooth automorphisms of the projective
planes P, mentioned above are in fact compact groups. This shows that,
in contrast to the automorphism groups of smooth projective planes, the
bounds for the dimensions of compact groups of automorphisms of non-
classical compact projective planes are the same as those in the smooth
setting for [ € {1,2,4}, see Theorem 5.9.

There are some further interesting results on smooth projective planes.
In [30], Otte proves that there are no smooth projective translation planes
besides the classical ones. The situation is different for differentiable affine

planes: in [29], Otte constructs examples of non-classical smooth affine



translation planes. In contrast, the only smooth affine planes of Lenz type

V are the classical planes, see [11].

An independent solution of the prize-question mentioned above was
presented by N. H. Kuiper, see [24]. He also constructed a non-desarguesian
projective plane whose point space is the real projective plane with its
ordinary real algebraic structure. The point rows of this plane, however, are
in general only semi-algebraic and not algebraic. The polynomial equations
by which the lines in general are defined describe real algebraic curves with
one isolated point, which is not part of the point rows. But after deleting
a suitable “line at infinity” one obtains in fact an affine plane with real
algebraic point rows. In the point set R? with coordinates (z,y), the lines
of these affine planes are the horizontal lines R x {—v} and the curves

described by equations of the form

1= ) (7o)
M2_|_1 y2_|_17

where p,v € R and p = 0,01,

The projective plane constructed by Kuiper is similar to the planes
constructed as projective closures of smooth affine generalized shift planes
in [15]. Except for the classical plane of the corresponding dimension, it
turned out that these projective planes are not smooth projective planes
with respect to arbitrary differentiable structures on the point space and the
line space. Motivated by this result, we conjecture that also the projective

plane found by Kuiper is not a smooth projective plane.

Proofs and Details

We first want to show that the incidence structures Py in general (A € R
arbitrary) admit non-trivial groups of smooth automorphisms which are

compact Lie groups.



5.1 Lemma. Let K = R. Then OsR acts on the incidence structure Py as

a group of smooth automorphisms.

Proof. Let T be the subgroup of O3R which fixes (0,0,1) € R?. This
subgroup is isomorphic to OsR. The standard action of I on R? induces
an effective smooth action of [ on the point space L. Analogously, we
define an effective smooth action of I on P by I x P — P : (v, (a,b,¢)") —
v~ Ha, b, c)'. By definition of the incidence relation in P, we see that the
induced action of [ on P x L leaves F) invariant, i.e. [ acts on P, as a

group of smooth automorphisms. O

5.2 Lemma. Let K = C. Then P, admits a group of smooth automor-
phisms isomorphic to the unitary group U,C. Also complex conjugation

induces a smooth automorphism of Py.

Proof. Let I be the subgroup of U3C which fixes (0,0,1) € C* with its
usual unitary structure. As in the preceding Lemma we see that [ acts on
Py as a group of smooth automorphisms. The second statement is also a

direct consequence of the definition of the incidence relation in P,. O

5.3 Lemma. Let K = H. Then P, admits a group of smooth automor-
phisms isomorphic to the product of SpingR and SpingR with amalgamated

centers.

Proof. Let [ be the subgroup of the unitary group UzH isomorphic to
UyH x UpH, which acts on the first two components of (z,y,z) € H? as
UsH and on the last component as U;H. Note that U;H is isomorphic to
SpingR and that UsH is isomorphic to SpingR, cf. [32], p. 624. The action
of [ on H? induces an effective smooth action of the product of U,H and
U, H with amalgamated centers on the line space £. As in the two preceding

lemmas we see that this group acts on P, by smooth automorphisms. [

By means of these three lemmas we will be able to choose appropriate

coordinates in the proof of the main result of this section.
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5.4 Theorem. The incidence structures Py = (P, L, F)) are smooth pro-

jective planes for |A| < 3.

The next lemma presents the most difficult part of the proof of this
theorem. In the sequel, we will use the description of the point space P
and the line space L of the incidence structure Py = (P, L, F) by means
of the standard charts: for the point space P, the corresponding open sets
Uy, Us, and Uz are given by x # 0, y # 0, and z # 0, respectively, and
these sets are identified with K? in the usual way. In the latter case, for
example, we use the map Us — K* : (2,9,2)" — (x/2,y/z). Analogously
we define open sets Vi, Vo, and V3 by a # 0, b # 0, and ¢ # 0, respectively,
which cover the line space L. Sometimes it will be convenient to identify K
with R! by choosing {1}, {1,i} or {1,4, 7, k}, respectively, as a basis of K
over R. In this way, left multiplication by some element ¢ € K gives rise to
a linear map L. : R® = R/, and right multiplication by ¢ induces a linear
map R, : R/ = R,

In order to avoid a too cumbersome notation we will sometimes use
the same names for different variables in the following two proofs, if such a

choice is natural, facilitates reading, and no confusion is possible.

5.5 Lemma. Let |A\| < 5. Then the set F° = FN (Us x V3) is a smooth
3l-dimensional submanifold of P x L. The restrictions of the natural pro-
jections mp and 7 to F° are submersions. The sets P, N Us and L, N V3
with p € mp(F°) and L € 7 (F°) are smooth I-dimensional submanifolds of
P and L, respectively. If two distinct lines L, L’ € V3 intersect in a point
p € Uz then the submanifolds Py, N Uz and Pr, N Us intersect transversally
in p. Also the dual statement holds.

Proof. We identify the open subsets U3 C P and V3 C L with two distinct

copies of K?. By means of these identifications, the set 3° corresponds to

{(z.y,a,b) € K* xK* | (|a]” +[b]” +1)(az+ by + 1) (|« +|y|* + 1)+ A = 0}.
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For any (a,b) € V5 we define
Y(a,b) K2 5 K: (x,y) — (|a|2 + |b|* + )(ax + by + 1)(|5L‘|2 + |y|? + 1)+ A

We want to prove the technical result that the kernels of the differentials
De.y)9(ap) and D, )gar,pry have trivial intersection for any two distinct
quadruples (z,y,a,b), (x,y,a’,b’) € F°. By using transitivity properties of
the group of smooth automorphisms of Py (see the preceding lemmas) we
may assume that y = 0, x € R, and b € R. The above incidence relation
then shows that ax € R\{0} (because of |A\| < 1) and hence that a € R.
Analogously we see that @’ € R. For simplicity of formulation we will
assume in the following that K = H. Sometimes we will identify H with
R* and associate to any element w € H a vector (wq,ws,ws,wy) € R In
this way, the differential of the map ¢ : H — H : ¢ — [¢|* at some point
t € H corresponds to the map D9 : R* — R* : (wy, wy, w3, wy) = (2(wit;+
woty+wstz+waty),0,0,0). Now let (u,v) € ker D, 0yg(a,5)Nker D 0yg (a7 1)
and assume that (u,v) # (0,0). By differentiating g, at (z,0) we get

(R:cz-}—lLa + Laa?+1Da?19)u + (Rx2+1Lb + Laa?+1D019)U

1
= (:L‘2 + l)au + (ax 4+ 1)2zu; + (:L‘2 + 1)bv = 0. 1)

Here we have considered u and v as elements of R* in the first line and as

elements of H in the second line. Analogously, we get
(:L‘2 + 1)a'u + (a'z + 1)2xu; + (:L‘2 + 1)b'v =0, (2)

We multiply equation (1) by b from the left and equation (2) by b. Sub-

tracting the two equations obtained in this way yields
(ab — a'b)(:);‘2 + 1Du+ ((az + )b — (a’x + 1)b)22u; =0
and hence

(ab — a’b)((ac2 + 1)u+ szul) + (V' — b)2zu; = 0. (3)
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As a next step we want to prove that b # b'. If we have b/ = b € R,
then a and o’ are zeros of the real polynomial function p : R - R : s —
(82 + 0%+ 1)(sx + 1)(2? + 1) + X\. Let s € R with p(s) = 0 (if it exists).
Then we have 2s(sx + 1) + (s* + b* 4+ 1) = 0 which implies that
252 1
> —.
3s2+02+1" 3
Hence, we get p(s) = (s*+b*+1)(sz+1)(z*4+1)+ X > 5+ X > 0 because of

Al < %. Since p ist a real polynomial function of degree 3, this shows that

st+1=1-—

p has precisely one real zero. We conclude that a = ', a contradiction. So,
we have b # b’ and therefore also u # 0 by equations (1) and (2). Equation
(3) then yields

(b — b)_l(ab' —a'b) = —21‘1&1((1‘2 + 1)u+ 2:132u1)_1 (4)
and
lab’ — a'b]* (22)2u?
b —b2 (322 +1)%ui + (a2 + 1)2(u3 + uj + uj)
(22)* uf
(224 1)2 ul+ud+ul 4 ul
2r \2
< ( ) <1,
— xz —I—l _
Thus we get

(' —b)"Hab' —a'b)| < 1. (5)

On the other hand, equation (4) implies that

(b —b)"Hab —a'b)r+1=1-22%u; (2% + 1)u+ 22%u;)~*

= (.1‘2 + 1)u((:132 + 1)u+ 233211_.1)_1.
We conclude that
(@ + 172]up

(322 4+ 1)2u? + (22 4+ 1)2(u3 + u3 + u3)
(2° +1)? Jul”
~ (822 + 1) w?+us 4 ui+ul’

(0 —b)"Hab —a'b)x + 1> =
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Because of <3x;2-|_'|_11) > %, we get the inequality

1
() —b)"Hab' —a'b)x + 1| > 3" (6)
Since (x,0,a,b) € F° implies (a* + b* + 1)(az + 1)(z* + 1) + A = 0, we
have ax +1 = —A(a* +0* +1)"' (2% + 1)~ and, analogously, a’z + 1 =
—A(|a’]? + |V']* + 1)7 (22 + 1)~1. We multiply the first of these two equa-
tions by b’ and the second by b. After subtracting these two equations we

obtain

A (Jd P+ Y+ DY = (@ + b2+ 1)b
2+1 (@12 + D)+ PP+ 1)

(ab' — a'b)yx + (V' —b) = — . (7)

We have
(la'* + [b']* + 1)b" — (a® +b° + 1)b = (|a'[P — a®b) + (|V'[? — %) + (V' — ),

where |a'|*b — a?b = (b' — b)(a® + aa’ + |a’]?) — (ab’ — a’b)(a + a’) because
of ' € R, and [b/|?V — b = (V' — b)(|V'|> + Vb4 b2) — (b — b')b® with

b/_FZ 4b/2_|_b/2_|_b/2
. 2 3 4 < 4
e R R e

Hence, we get

[ I L R | R e A L e S (U O e VA D TR
< 0|2 + 6| + 307
and
(0" =)~ (| [V — a®D)]
< a4 lad'| 4 |a' 4 |(0' = b) ™' (ab’ — a'b)|(|a| + |a'])
< a® 4 |ad'| 4 |d'|? + |a| + |d]



£ £ v L

by equation (5). By putting together these inequalities with (6) and (7),

we obtain

% < |V =)~ (ab' — a'b)x + 1]

a? + lad'| + @' + [a| + @' + P2 + b+ 302 +1 O

< |A
<R @+ 0+ (| + PP+ 1)

Obviously, we have

a2_|_|a/|2_|_|b/|2_|_b2_|_1 <1
(a? + 0%+ 1)(la'|* + ']> +1) =

Because of s(1 —s) < 1,1.e. s < s?+ 1 for s € R, we get

la| + |a'| + |ad’| + [V | + b* < a® + |d'|* + |ad’|* + |V'D]* + 1 + °
< (a® + 07+ 1)(|d']* + [V + 1).

Hence, we obtain

(@ +|a' P+ [V']? +b° + 1) + (la| + |a'| + |aa’| + VD] + b*) + b
<3(a + 0% + 1) (P + [V]* + 1),

which shows together with inequality (8) that < 3]A[, in contradiction to
Al < %. Thus the kernels of the differentials D, ,yg(4,0) and D, )0’ )
intersect trivially for any two distinct quadruples (x,y,a,b), (z,y,a’,b’') €
F°.

We want to show next that there are infinitely many lines in V5 through
any point (z,y) € 7p(F°). By means of the transitivity properties of the
automorphism group of Py we may assume again that (z,y) = (x,0) with
x € R. Because of (z,0) € 7p(F°) there is a line (a’,d") € V3 incident with
the point (2,0). We then have (|a’|* + |V'|* + 1)(a’z + 1)(2? + 1) + A = 0,
which shows that x # 0. Hence the real polynomial function g, : R — R :
s (s2+0*+1)(sz+1)(2% + 1)+ X has degree 3 for every b € R. Thus, for



£ £ v L

any b € R there exists a € R such that (a® +b%+1)(azx+1)(2? +1)+ X = 0,
i.e. such that (z,0,a,b) € F°.

By (z,y) we denote again an arbitrary point of 7p(F°). Choose two
distinct lines (a,b), (a’,0") € V3 through (z,y). By definition of g(,; and
9(a’ ), the dimensions of the kernels of the two differentials D, ) g(4,5) and
D(2,y)9(a’,py) are at least . Since they intersect trivially, their dimension is
precisely [ and hence these differentials are surjective. In particular, also
the total differential of the map

JrR XK 5 K: (2, a.5) o (Jal?+ b2+ 1) (az+by+1) (|2 + ]y >+ 1)+ A

is surjective at every point of F°. Therefore F° is a 3/-dimensional subman-

ifold of U3 x V3 and hence of P x L.

Now we want to show that the restriction of the natural projection
7, to F° is a submersion. Choose (x,y,a,b) € F° arbitrarily. An element
of kerD(, , 45 7c has the form (u,v,0,0) with (u,v) € K?. By defini-
tion of F° we have D, 4)9(a.5) (4, V) = D4y a0 f(u,v,0,0) = 0. Since the
kernel of D, ,)g(a,p) 1s [-dimensional, we conclude that the dimension of
ker D (4 y,4,6)7c 18 at most [. Thus the differential D, , .5 7e is surjective.
Hence the restriction of mg to F° and, for reasons of symmetry, also the
restriction of mp to F° are submersions. By Lemma 4.1 it follows that the
sets P, N Uz and L, N V3 are smooth [-dimensional submanifolds of PP and

L, respectively, for any p € 7p(F°), L € ne(F°).

It remains to show that any two distinct lines L = (a,b) and L' =
(a’, V") in V5 which intersect in a point p = (z,y) € Us intersect transversally
in p. The dual statement then follows for reasons of symmetry. Choose
(u,v) in the intersection of the tangent spaces of the point rows P, and Py,
in p. Since g(,,p) vanishes on P, NU3, we conclude that D, ) g(a.p) (u,v) = 0.
Analogously, we get D, ,)g(a.1r)(¢,v) = 0 and hence (u,v) = (0,0), since
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the kernels of D, )g(a,p) (4, v) = 0 and D, 4)g(a.p) (¢, v) = 0 have trivial

intersection. This completes the proof. O

Proof of Theorem 5.4. As in the classical projective plane Py = P2K, the
point rows of the lines (1,0,0),(0,1,0) € L intersect precisely in the point
(0,0,1)" € P. Hence, by Corollary 4.6, it suffices to verify the conditions
of Theorem 4.5. We first show that the flag space JF) is a 3l-dimensional
submanifold of P x £ such that ng is a submersion. Then also the natural
projection wp is a submersion for reasons of symmetry. By the previous
lemma, it remains to prove these properties in neighbourhoods of flags (p, L)
in P x L, where the last coordinate of p or L is 0. By using transitivity
properties of the group of smooth automorphisms of Py (see lemmas 5.1~

5.3), we see that it is sufficient to consider the following cases:

(F1)  p=(x,y,1)", L =(1,0,0)
(F2) p=(x,1,0)", L =(1,0,0)
(F3) p=(1,0,0)", L = (a,b,1)

Note that the point (1,0,0)" and the line (1,0, 0) are not incident. Moreover,
the condition that (p, L) is a flag implies that = 0 in the first two cases
and that ¢ = 0in (F3). Asin the proof of the previous lemma we introduce
appropriate inhomogeneous coordinates. In the case (F1) we identify Us and
V1 with two copies of K2. In this way, the point p corresponds to (0,y) € K?
and the line L corresponds to (0,0) € K?. The set Fy x (Us x V) is then
given by (f(V)~1({0}), where f(!) is defined by

FfRE XK 5K
(2, y,b,¢) = (L+[D]* + [c|*) (@ 4 by + ) (Jo|* + [y[* + 1) + A|c[*c.

For any (b,c) € K? we define gE;)c) K2 - K: (z,y) = f(z,y,b,c). We

have D )9 E ) 0 : K* — K : (u,v) = (Jy|* + 1)(u + bv), which shows that

(0,
Do,,)9 E ) 0) is surjective. Hence, the total differential of (") in (0,y,0,0)
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is also surjective. Thus there exists an open neighourhood W of (p, L) in
P x L, such that ¥, N W is a 3l-dimensional submanifold of W. Moreover,
we see as in the proof of Lemma 5.5 that the restriction of the natural
projection mg to Fy N W is a submersion if the neighbourhood W of (p, L)

(1)

is so small such that the differential of g((l) 0) is surjective at all points of W.

For (F2) we identify Us and V; with K* such that (p, L) corresponds
to (0,0,0,0) € K? x K?. We define

IR XK 5K
(2, 2,b,¢) = (L4 [0 + [e*) (2 + D+ c2)([a + 1+ [2%) + Aefez]2]*

such that ¥y N (U, x V7) is identified with the set (f(z))_l({O}). The
differential of

(2)
07

9 K S K: (:U,z)l—>x(|x|2—|—1—|—|z|2),

0)

defined in anology to ggi)c

(u,v) +— u and hence surjective. As in the previous case we conclude that
there is an open neighbourhood W of (p, L) in P x L such that FyNW is

a submanifold of W and n¢ restricted to ¥ N W is a submersion.

- at (0,0) is given by D(o,o)gg(z))o) K2 —» K

In (F3) we identify U; x V3 with K* x K? such that the flag (p, L)
corresponds to (0,0,0,b) € K*. The set F\ N (U; x V3) is then identified
with (f®)~1({0}), where

B RE XK 5K
(Y, 2,a,0) = ([a* + 0] + 1)(a + by + 2) (1 + |y* + |2]%) + Az]2[*.

We define 9(((?)))1)) K2 - K: (y,2) = f®)(y,2,0,b). Then we have

3
Diooy gl : K = K (uw,0) = (b + 1) (bu+v),
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3)6) is surjective. The case (F3) is then completed

as the previous two cases above. Hence, & is a 3/-dimensional submanifold

which shows that D(o,o)gg

of P x L and the natural projections 7mp and 7 are submersions. Note
that F is obviously closed in P x L. Thus 7p and ¢ are surjective since &

is compact, submersions are open maps, and P, L are connected.

By Lemma 4.1, point rows and line pencils are [-dimensional submani-
folds of P and L, respectively. In order to complete this proof, it suffices
for reasons of symmetry to show that any two distinct lines L, L’ intersect
transversally. By using transitivity properties of the group of smooth auto-
morphisms of Py, the different possibilities of pairs (L, L") € L x L reduce

to the following three cases:
(L1) L=(a,b1), L =(a',V,1)

(L2) L= (a.b,1), L =(1,0,0)
(L3) L= (a,1,0), L' = (1,0,0)

In the first case, we may use the group of smooth automorphisms of P
in order to choose appropriate coordinates for possible intersection points
of L and L’. We may assume that these two lines intersect in the point

t

(1,0,0)" or in a point (z,y,1)". Since the second case has been treated

already in Lemma 5.5, we assume that the intersection point of L and L’
is (1,0,0)". Then we have a,a’ = 0 and hence b # b since L and L’ are
distinct. We identify the open sets U; and V3 with two disjoint copies of
K?* such that L and L’ are identified with (0, b) and (0,’), respectively, and
(1,0,0)" is identified with (0,0). The map 9((3?%)) of the previous paragraph
vanishes on P; N U;. Thus the differential

Dio,0yglsy 1 K = Kt (u,0) = (b2 + 1) (bu + v)

vanishes on the tangent space of P, N U; in (0,0), and an analogous state-

ment holds for the line L’. Since the kernels of the differentials D(()’O)gé(?;)b)
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g)b,) have trivial intersection, we conclude that L and L’ inter-

sect transversally in (1,0, 0)".

and D(o,o)gg

In the case (L.2), let (z,y, z)" denote an intersection point of L and L',
Then we have x = 0 and hence (z,y, z)" = (0,y,1)" or (z,y,2)" = (0,1,0)".
Let us first assume that (0,y,1)" is an intersection point of L and L’. By
means of the transitivity properties of the group of smooth automorphisms
acting on P, we may assume that y € R. After identifying Us with K2,
the intersection point corresponds to (0,y) and the submanifolds Pr, N Us
and P; NUs correspond to g(_a%b) (0) and {0} x K with g, ) as in the proof
of Lemma 5.5. Choose (u,v) in the intersection of the tangent spaces of

P, NUs and P; NUs in (0,y). Then we get
(y* + Dau+ (y* + Dbv + (by + 1)2yv; =0

by differentiating g, ) (compare the proof of Lemma 5.5) and u = 0. Thus
we have (y* + 1)bv + (by + 1)2yv; = 0 and hence

ly| [
bl = 2|by + 1 —
=2y + 112
provided that v # 0. We obtain that
y?
|by| < 2|by + 1|y2 1 < 2|by + 1].

Because of
9(ap)(0,y) = (la> + [p* + 1)(by + 1)(y" + 1) + A =0

we have |by 4+ 1| < |A|, which implies that 1 < |by| + |by + 1| < 3]}A|, a
contradiction. Thus we have v = 0. This proves the transversal intersection
of L and L' in (0,y,1)". Let us now consider the case that L and L’ intersect
in the point (0,1,0)". Then we have b = 0. We identify Us with K? such
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that (0,1,0)" corresponds to (0,0) € K*. The submanifolds P, N Us and
Ppr N Us are identifed with the submanifolds (g((i)o))_l({O}) and {0} x K|

respectively, where
gy K2 K (2,2) b (la? + 1) (az + 2)(Jo] + 1+ ]22) + Az] 22

The differential D<0,0)98)0) : (u,v) = (la]* + 1)(au + v) vanishes on the

tangent space of P, N Us in (0,0). This proves the transversal intersec-

tion of L and L’ in (0,1,0)", since ker D(o,o)géj)o) and {0} x K have trivial

intersection.
In the third case, both point rows Py, and Pp, are equal to point rows of

the classical projective plane Py = P,IK. Hence they intersect transversally.

O

For the projective planes Py, where |A| < %, the join map V and the
intersection map A are not only smooth but real analytic and even Nash, i.e.
they are real analytic or Nash projective planes, respectively. This statement

can be proved by an appropriate modification of Corollary 4.4.

5.6 Theorem Let P = (P, L,F) be a projective plane which satisfies the

following conditions:

(APP1) There is a positive integer | such that P and L are real analytic
(or Nash) 2l-dimensional manifolds.

(APP2) The flag space F is a real analytic (or Nash) 3l-dimensional sub-
manifold of P x L such that the canonical projections wp and 7

are submersions.

Suppose, moreover, that any two distinct point rows and any two distinct
line pencils intersect transversally. Then the join map V and the intersection

map A are real analytic (or Nash, respectively).

Note that point rows and line pencils are submanifolds of P and L,

respectively, by Lemma 4.1. Hence the transversality condition makes sense.



This theorem can be proved by simply copying the proof of Corollary 4.4 and
using a real analytic or Nash version, respectively, of the implicit function
theorem, see, e.g., [23], Theorem 1.8.3 and [1], Theorem 2.9.8.

It remains to check the conditions of the above theorem for the projec-
tive planes P, with |A| < %. For simplicity of formulation, we concentrate
on the Nash setting in the sequel. First, the point space P and the line
space L are copies of the point space and the line space of the classical
projective plane P,K with their usual algebraic structure. Hence, P and £
are Nash manifolds. In the proofs of Theorem 5.4 and Lemma 5.5 we have
shown that for each flag there is an open neighbourhood W in P x £ (iden-
tified with an open subset of K* x K?) and a real polynomial submersion
fw : W — Ksuch FynW = f;'(0). By a Nash version of the standard
result on preimages of regular values we conclude that &) is a Nash sub-
manifold of P x L, cf. the end of Chapter 3. The other conditions required
in Theorem 5.6 have already been verified above. Hence, the join map V
and the intersection map A are Nash and, in particular, real analytic. So,

we have proved the following

5.7 Theorem. The incidence structures P, are Nash projective planes

and, in particular, real analytic projective planes for |[\| < %.

The following theorem contains results on the dimensions of the au-

tomorphism groups of the planes P, which are direct consequences of the
lemmas 5.1, 5.2, and 5.3.

5.8 Theorem. The smooth projective planes P, admit groups of smooth
automorphisms which are Lie groups of dimension 1,4 or 13 for [ =1, 2 or

4, respectively. Furthermore, these groups are compact.

By the main result of [2], the dimension of the automorphism group of

a 2l-dimensional, non-classical smooth projective plane is at most 2, 6 or



16 for [ = 1, 2 or 4, respectively. By Theorem 5.8, the smooth projective
planes P, admit Lie groups of smooth automorphisms whose dimensions
come close to these bounds. The dimensions of automorphism groups of
non-classical compact projective planes of dimension 2/ can be higher than
in the smooth case, see [32], Section 65. The maximal dimensions of compact
groups of automorphisms of non-classical compact projective planes (with
[ =1, 2 or 4), however, are the same as the dimensions of the Lie groups
in Theorem 5.8, i.e. in this respect there is no difference between compact
projective planes and smooth projective planes: by [32], 32.21 and 22, a
compact group of automorphisms of a 2-dimensional, non-classical compact
projective plane is a Lie group of dimension at most 1. In the 4-dimensional
case, 71.9 and 72.6 in [32] imply that the dimension of a compact group of
automorphisms acting on a non-classical compact projective plane is at most
4. Finally, in dimension 8 a compact group of automorphisms acting on a
non-classical compact projective plane is at most 13-dimensional, see [32],
84.9. Even more, the connected component of such a group is necessarily
isomorphic to SO5R for [ = 1, to UyC for [ = 2, and to the product of
SpingR and SpingR with amalgamated centers for [ = 4. The following

theorem summarizes the general information obtained in this way.

5.9 Theorem. The bounds for the dimensions of compact groups of au-
tomorphisms of 2l-dimensional, non-classical smooth projective planes are
the same as those in the case of 2l-dimensional, non-classical compact pro-

jective planes for | € {1,2,4}.
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