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Zusammenfassung in deutscher

Sprache

Ziel dieser Dissertation ist die Entwicklung einer Theorie fiir eine Klasse von ab-
strakten Differentialgleichungen mit unendlicher Verzogerung und nicht-autonomer
Vergangenheit. Die Motivation fiir das Studium solcher Gleichungen kommt daher,
daf in vielen Fallen die Verzogerung auf eine in der Vergangenheit modifizierte “his-
tory function” wirkt. Dabei ist die Modifikation der “history function” durch eine
Evolutionsfamilie gegeben, die ein nicht-autonomes Cauchyproblem 16st, das zum
Beispiel mit einer Diffusion in der Vergangenheit assoziiert ist.

In Kapitel 1 geben wir zwei Beispiele, die zeigen, dafl die iiblichen retardierten
partiellen Differentialgleichung nicht ausreichen. Insbesondere analysieren wir eine
Populationsgleichung mit Diffusion (siehe [22] oder [70]) und ein Zellmodell, das von
Mahaffy, Pao, Busenberg in [12], [13], [41] und [42] untersucht wurde. Wir erkléren,
warum die benutzten Verzégerungsterme nicht exakt sind und schlagen modifizierte
Verzogerungsterme vor.

Kapitel 2 ist in drei Abschnitte gegliedert. Im ersten stellen wir die Definition
und fundamentale Eigenschaften einer Evolutionsfamilie auf einem Banachraum X
und der assoziierten Evolutionshalbgruppe auf L?(R_, X') vor. Im zweiten Abschnitt
diskutieren wir die Wohlgestelltheit des nichtautonomen Cauchyproblems, das mit
mit der Existenz einer Evolutionsfamilie in Verbindung gebracht werden kann. Im
letzten Abschnitt erinnern wir an die Defintionen des kritischen Spektrums und der
kritischen Wachstumsschranke einer Halbgruppe. Insbesondere zeigen wir, daf§ fiir
eine Evolutionshalbgruppe das kritische Spektrum beziehungsweise seine kritische
Wachstumsschranke mit dem gewohnlichen Spektrum beziehungsweise Wachstumss-
chranke zusammenfallen.

Im Kapitel 3 diskutieren wir die Wohlgestelltheit der retardierten partiellen Differ-
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entialgleichung mit nicht-autonomer Vergangenheit und zeigen, dafi diese dquivalent

zu einem Cauchyproblem

cP
o U©) = (%)

fiir einen linearen Operator (C, D(C)) auf dem Produktraum &£ := X x L’(R | X)
ist. Anschliefend geben wir Bedingungen an, die garantieren, da§ (C, D(C)) eine
starkstetige Halbgruppe (7(t));>o erzeugt. In diesem Fall sind die Losungen der

urspriinglichen Gleichung durch
w(t)y z
(%) =T®(F),

gegeben, wobei wu; die modifizierte “history function” ist.

Im vierten Kapitel untersuchen wir die Stabilitat der Halbgruppe (7 (t)):>0 mittels
Spektralmethoden. Im ersten Abschnitt betrachten wir den Hilbertraumfall. Unter
Verwendung des Satzes von Gearhart-Greiner -Priiss geben wir Bedingungen dafiir
an, dafl (7 (t)):>o gleichméflg exponentiell stabil ist. Im zweiten Abschnitt beweisen
wir mittels des kritischen Spektrums den spektralen Abbildungssatz fiir (7(¢))i>o.
Im letzten Abschnitt zeigen mit Hilfe dieses Satzes, dafl die Wachstumsschranke von
(T (t))s>0 durch

wo(T) = max{s(C),we(U)}

gegeben ist.

In Kapitel 5 wenden wir diese Theorie auf die beiden im ersten Kapitel vorgestell-
ten Beispiele an und geben Bedingungen dafiir an, dafl Losungen fiir die Popula-
tionsgleichung und fiir das Zellmodell existieren. Ferner geben wir Bedingungen an,

die garantieren, daf} diese Losungen gleichmiflg exponentiell stabil sind.



Introduction

Nothing changes more consistently than the past...
the past that influences our lives (is) not what actually
happened but what (we) believe happened.

[Gerald W. Johnson, 1890-1980]

Why do we need differential equations with delay? The answer is that many
processes in biology, physics, chemistry, engineering, economics, etc. involve time
delays. They occur so often that to ignore them is to ignore reality.

The original motivation for studying differential equations with delay came from
the theory of feedback control theory. In fact, in the 40’s Minorsky (see [45]) pointed
out very clearly that in feedback mechanisms a finite time is required to receive in-
formation and then react to it. The importance of such problems has contributed to
the rapid development of the theory of partial differential equations with dependence
on the past.

J. Hale in [32] and G. Webb in [68] were among the first who applied semigroup
theory to delay equations. Such equations can be written in an abstract way on a
Banach space X, using the standard notation (see, e.g., [38] or [70]), as

where (B, D(B)) is a (unbounded) operator on X and the delay operator & is
supposed to belong to L(W'?([-1,0],X), X). Recently, many authors, e.g., A.
Batkai, O. Diekmann, K.J. Engel, S.M. Verduyn Lunel, R. Nagel, S. Piazzera, A.
Rhandi, J. Wu (see [5], [6], [7], [8], [20], [22], [33], [55], [57] or [70]) have continued
the study of (DF) in this spirit obtaining well-posedness and qualitative results.



The aim of this thesis is to study a class of differential equations with infinite delay
which we call delay equations with nonautonomous past. The motivation for these
equations is that in general the previous delay equations are lacking an important
feature frequently appearing in reality. In fact, as we show in Chapter 1 for a
population equation and for a model on genetic repression, the history function
describing a given system will be submitted to a modification, e.g., by a diffusion
process, while time is passing. Therefore, the delay should act on this modified
history function.

Since this modification is assumed to be governed by a nonautonomous Cauchy
problem which again is solved by an ewvolution family on a Banach space, these two
concepts play an essential role in this thesis. However, both of them have to be
considered on the halfline R_ only, and in order to define a corresponding evolution
semigroup we need a boundary condition at s = 0. That is where the delay operator
enters the scene. The interplay of these four concepts is the underlying idea of this
thesis and allows to obtain a semigroup solving the original equations. Moreover,

spectral methods enable us to determine the asymptotic behavior of these solutions.

We now describe more precisely the content of the present thesis.

In Chapter 1 we give two examples to explain the motivation why delay equations
are not “good enough” in some cases. In particular, we analyze a population equa-
tion with diffusion presented by K.J.Engel and R. Nagel in [22] or by J. Wu in [70]
and the genetic repression studied, e.g., by Mahaffy, Pao, Busenberg in [12], [13],
[41] or in [42]. We explain why the term on which the delay acts is not realistic, and
we propose a modified term.

Chapter 2 is organized in three sections. In the first one we state definitions
and fundamental properties of a backward evolution family ¢ :=(U(t, 5));<s<o oOn
a Banach space X and of the associated backward evolution semigroup (7o(t)):>0
defined as

U(s,s+t)f(t+s), s+t<0,

0, s+1t>0,

(To(t) f)(s) =

on LP(R_, X). Such backward evolution families I/ arise as the solutions of backward

nonautonomous Cauchy problems of the form

a(t) = —A@t)ult), t<s,

(NCP)
u(s) =z € X, s <0,



where (A(t), D(A(t)))t<o are (unbounded) linear operators on a Banach space X.
In Section 2.2 we discuss the well-posedness of (NCP) and characterize it by prop-
erties of the generator (Gy, D(Gy)) of the backward evolution semigroup (7o(t)):>0
associated to U.
In the last section we recall the definitions of the critical spectrum and the critical
growth bound of a semigroup which will be used in an essential way in Chapter
4. Moreover, we prove that for a backward evolution semigroup its spectrum and
its growth bound coincide with its critical spectrum and its critical growth bound,
respectively (see Theorem 2.20 and Corollary 2.21).

In Chapter 3 we discuss the well-posedness of the delay equations with nonau-

tonomous past. Such equations can be written as

u(t) = Bu(t) + ®u;, ¢t >0,
(NDE)  qu(0) == € X,
uo = f € (R, X),

where (B, D(B)) is a closed, densely defined operator, the delay operator ® : D(®) C
LP(R_,X) — X is a linear operator and u; is the modified history function (see
Definition 3.2). In Section 3.1, following the approach of A. Batkai and S. Piazzera
(see [5], [6], [7], [8] or [55]), we prove the equivalence of (NDFE) to an abstract
Cauchy problem

(CP)

for a linear operator (C, D(C)) on the product space £ := X x LP(R_, X). This is
shown by proving that the following relation between a classical solution i/ : R, — &
of (CP) and a solution u : R — X of (NDE) holds

where
U(s,0)u(t+ s), t+s>0,

U(s,t+s)f(t+s), t+s<0.

u(s) =

In Section 3.2 the well-posedness of (C'P) is studied. In particular, we prove that
(C,D(C)) generates a strongly continuous semigroup (7 (t))s>o by rewriting C as a



sum of two matrices, C = Cy + F, where Cy generates a Cy—semigroup (7o(t))s>0
on £ and F is the operator corresponding to the delay ®. Using the perturbation
theory of Miyadera-Voigt, we show that (C, D(C)) is a generator. In the last section,
using the technique of our paper [24], we show that this approach also gives classical
solutions to a two variable version of (NDFE), proposed by S. Brendle and R. Nagel
in [10], of the form

%) 0

_ = — < >
atu(t, s) asu(t, s)+ A(s)u(t,s), s<0,t>0,
%u(t, 0) = Bu(t,0)+ dult,-), t>0.

In Chapter 4 we study the stability of the solution semigroup using spectral meth-
ods. We assume, in the first section, that the product space £ is a Hilbert space
and that the backward evolution semigroup (75(t))s>¢ and the semigroup (S(t)):>0
generated by B are stable. The theorem of Gearhart-Greiner -Priiss (see, for exam-
ple, [22, Theorem V.1.11]) allows us to say how the delay operator influences the
stability of the semigroup (7(¢)):>o and hence under which assumptions the semi-
group (7 (t))s>o is uniformly exponentially stable. In Section 4.2, using the critical
spectrum of a semigroup, we prove that, under appropriate assumptions on B, the
spectral mapping theorem holds for (7°(¢)):>o. The proof of this theorem is based on
the perturbation results on the critical spectrum due to S. Brendle, R. Nagel and J.

Poland (see [11]) and on Theorem 4.14 where we prove that
Oeit(To(t)) = o (To(t)).
In Section 4.3 we obtain, as a consequence of the above spectral mapping theorem,
wo(T) = max{s(C), wo(U)}.

In the last chapter we apply this theory to the two examples presented in the
first chapter and obtain conditions such that there exist solutions for the popula-
tion equation and for the genetic repression. Moreover, we give conditions which
guarantee that these solutions are uniformly exponentially stable.

Some of the results in Chapters 3 and 4 are in collaboration with G. Nickel (see
[25], [26]), while the investigation of population equation (Chapter 5) will be con-
tinued jointly with L. Tonetto (see [27]).
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Chapter 1

Two Motivating Examples

The purpose of this chapter is to present two examples in order to justify the in-
troduction and investigation of a new class of delay equations, the so-called delay

equations with nonautonomous past.

1.1 A Population Equation with Diffusion

Since the 80’s, the use of functional analysis and, in particular, semigroup meth-
ods for the study of population equations is well established and documented in
the monographs by O. Diekmann and J.A.J. Metz [19] and by G.F. Webb [69].
Among the recent papers, we mention [35], [53], [58], [59], where the authors study
populations depending on time, age, and spatial diffusion.

We look at the following population equation which is derived from biological as-
sumptions in [70, Introduction] and discussed by semigroup methods in [22, Example
VI.6.19)].

The population density u(t, z) at time ¢ and position z € [0, 1] satisfies

(1.1) %u(t, T) = %u(t,x) —d(z)u(t, z) + b(x) / u(t + s, x)ds,

fort >0, r <0, and x € [0, 1] with the initial condition
u(s,z) = f(s,z), z€[0,1],s € [r,0],

and boundary conditions

0 0

—u(t,0) = 7t

t.1)=0, t>0.
ax (7) ) _
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In particular in [22, Example VI.6.19] or in [70, Introduction] the authors consider
a point delay, i.e.,
b(z)u(t +r, x)

instead of 0
b(:(:)/ u(t + s, z)ds.

Here, the functions d and b, defined in [0, 1] with values in R, represent the
mortality and the birth rate, respectively, while 7 is the delay due to pregnancy.

The meaning of equation (1.1) is that the variation of the population density is
given by the diffusion, i.e., by the migration of the population, minus the contribu-
tion due to deaths plus the contribution due to births (depending on the delay).

In [22, Section VI.6], K. Engel and R. Nagel rewrite (1.1) as an abstract delay
equation, and apply semigroup techniques.

However, according to equation (1.1) the newborns at time ¢ at position z depend
only on pregnant females that where at time ¢ + r at the same position z. Clearly,
this is unrealistic since also the pregnant individuals move during the time between
t+r and t. Due to such a migration process in the past, the value u(t+ s, ) should
be replaced by a modified value u(t + s, z), for s € [r,0].

In this way our population equation becomes

0 0?

St ) = 5 gult, ) — dxu(t, @) + b{a) / Ut + 5, 7)ds,

fort >0, r <0, z € ]0,1] and some “modified history function” u(t + -, x).

(1.2)

Our aim in this thesis is to make this precise and then solve the above equation.

In fact, we will study a large class of abstract equations including this example.

1.2 (enetic Repression

Systems of delayed reaction diffusion equations have been used frequently in mod-
elling genetic repression, (see, e.g., J. Wu [70, Introduction]). The study of these
equations goes back to the 60’s with B.C. Goodwin, F. Jacob and J. Monod (see,
e.g.,[29], [30] or [36]).

In particular, B.C. Goodwin suggested that time delays caused by the processes
of transcription and translation as well as spatial diffusion of reactants could play a

role in the behavior of this system.



1.2 Genetic Repression

cytoplasm

N 0\ w

v/

ribosomes

o T [
0

Figure 1.1: cell

The later studies of these models included either time delays (see, e.g., [4], [40]
or [65]) or the spatial diffusion (see, e.g. [42]). We now explain the model from [12]
and [41], which includes spatial diffusion and time delay (see Figure 1.1).

The eucharyotic cell consists of two compartments where the most important
chemical reactions happen. Such compartments are enclosed within the cell wall,
unpermeable to the mRNA (messanger ribo nuclein acid) and to the repressor, and
separated by the permeable nuclear membrane. The first compartment w is the
nucleus where mRNA is produced. The second compartment, denoted by Q \ w,
is the cytoplasm in which the ribosomes are randomly dispersed. The process of
translation and the production of the repressor occurs here.

We denote by u; and v; the concentrations of mRNA and of the repressor, respec-
tively, in w if s = 1 and in Q \ w if i = 2. These two species interact to control each
other’s production. In the nucleus w, mRNA is transcribed from the gene at a rate
depending on the concentration of the repressor v;. The mRNA leaves w and enters
the cytoplasm Q\w where it diffuses and reacts with ribosomes. Through the delayed
process of translation, a sequence of enzymes is produced which in turn produces a
repressor vs. This repressor comes back to w where it inhibits the production of w.

This process can be written as the following system of equations.
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(du (t
u;t( ) = h(vi(t +71)) — brua(t) + al/ [ua(t, x) — uy(t)]dS,,
ow
- dv;t(t) = —bouy(t) + az/ [vg(t, ) — v1(t)]dS,,
) ow
N2t ) Nt 2) — bras(t, o). re0\w.
ov ?f x)
287{ = Dy Avy(t, ) — bava(t, ) + cous(t + 72, 1), v e\ w,

with boundary conditions

Qua(t, x)

)
vy (?7 x)

= —[ilua(t,z) —ui(t)], = € Ow,

= —fi[va(t, z) —v1(t)], = € Ow,

o)
Ougy (tl, r)  Ovs(t, x)
on  0On

=0, x € 0N

The constants b; are kinetic rates of decay, a; are rates of transfer between w e
2\ w and are directly proportional to the concentration gradient. The constants
D; are the diffusivity coefficients, and the constant c¢q is the production rate for the

repressor. The function A is a decreasing function in v; and represents the production

of mRNA. Tt is of the form , where k is a kinetic constant and p
1 + k‘(vl (t + Tl))p

is the Hill coefficient. The delay —r; > 0 is the transcription time, i.e., the time
necessary to the transcription reaction, and —ry > 0 is the translation time. The
constants 3; and Jj are the constants of Fick’s law (see, e.g., [2, Chapter VI] or [64,
Chapter V]). In a one dimensional model, as in [41], the interval (0, 1) corresponds
to the cytoplasm and the nucleus is localized in 0 (see Figure 1.2). The equations
(1.3) become

du;t(t) = h(vi(t 4+ 1)) — byus () + a1 (ua(t, 0) — uy(t)),
(1.5) dvﬁzft) = ~baus(t) + az(v2(t, 0) — v (1)),
) 2
Z% - D% - bralte ) ze0,1],
L vzét, z) _ D, U(;;E,-z’x) — byvo(t, ) + cous(t + 12, 2), x € [0, 1],
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1 1.9 - .2
ur(t) <l ug(x,@t) Q
U1 (t) IO - V2 (xv té . ' -
IO Z 1|

ﬁ = unpermeable cellular wall

Figure 1.2: cell in one dimension

with boundary conditions

W = —Bu(us(t,0) — us(t)).

(L6) % = — B (u(t.0) — 1 (1)),
GUQ(% 1) . 8'02(t7 1) =0
or Oz

However, according to this model, the variation of the repressor vy (t, z) at time ¢
and position = depends on the mRNA which was at time ¢ + ro at the same position
x. Asin Section 1.1, this is unrealistic because the mRNA is submitted to a diffusion
process between ¢ + 7o and ¢.

Thus, also in this case, us(t + ro, ) must be modified. If uy(t + 9, x) is this

modification, the last equation in (1.5) becomes

Ova(t,z) D D?vy(t, )

8t = ) 81;2 — bz’Ug (t, x) —+ Cgﬂg(t + Ta, x)

Again, we will develop a theory to treat such delay equations.



Chapter 2

Tools

Life can only be understood backward
but it must first be lived forward.
[S. Kierkegaard, 1813-1855]

Most problems in this thesis will have the form of (or will be written as) an

abstract Cauchy problem

uw(t) = Au(t), t>0,

(
(CF) uw(0) =z € X,

on a Banach space X, where A : D(A) C X — X is a linear operator (see, for
instance, [22], [23], [28], [49], [54]).

A function v : Ry — X is then called a classical solution of (CP) if u is
continuously differentiable on R, , u(t) € D(A) for all ¢ > 0 and (CP) holds.
Moreover, we say that (C'P) is well-posed if for every x € D(A) there exists
a unique solution u(-,x) of (CP), D(A) is dense in X, and for every sequence
(xn)nen € D(A) satisfying lim,, o x, = 0, one has lim,, o u(t, z,,) = 0 uniformly
on compact intervals of R, .

The well-posedness of (C'P) can be characterized using the concept of a
Co—semigroup (T(t))s>o and of its generator. In fact, (CP) is well-posed if and
only if the operator A is the generator of a Cy— semigroup (7'(t)):>o - In this case,
the semigroup yields the unique solution of the associated abstract Cauchy problem,
i.e., for all z € D(A), the function ¢ +— u(t) := T'(t)x is the unique solution of (C'P)
(see [22, Proposition 11.6.2]).
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Replacing the operator A by time dependent operators A(t) leads to the nonau-

tonomous abstract Cauchy problem

a(t) = A(t)u(t), teR,

(NCP),
u(s)=r € X, t>s,

which is treated, e.g., in [16], [22, Chapter IV.9], [51], [52], [54], [61], [60], [62] or
[63]. In order to study this (NCP),, we use the concept of an evolution family,
to which we can associate a strongly continuous semigroup on X —valued function
spaces. These semigroups characterize many features of the evolution family and
are called evolution semigroups (see [1], [39] [51], [52], [60], [61], [63]).

For our purposes, we have to study backward nonautonomous abstract

Cauchy problems of the form

a(t) = —A(tu(t), t<s,

(NCP),
u(s) =z € X, s <0,

on a Banach space X. This leads to backward evolution families and backward

evolution semigroups.

2.1 Backward Evolution Families and Backward

Evolution Semigroups

In this section, we state the definitions, notations and some of the fundamental prop-
erties of a backward evolution family on the Banach space X and of the associated

backward evolution semigroup on E := LP(R_, X)), respectively.

Definition 2.1. A family (U(t, s))i<s<¢ of bounded, linear operators on a Banach
space X is called an (exponentially bounded, backward) evolution family on R_
if

(i) U(t,r)U(r,s) =U(t,s) and U(t,t) = 1d forall t<r <s<0,
(ii) the mapping (t,s) — U(t, s) is strongly continuous,

(iii) [|U(t,s)|| < Me*s=1) for some M > 1,w € R and all t < s < 0.
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Remarks 2.2. (1) We observe that if U := (U(t, s))<s<0 is a backward evolution
family, then the family (V(7,0));>,>0, defined by

V(r,o0):=U(-1,—0) for 7>0>0,

is a forward evolution family (see, e.g., [22, Definition V1.9.2] or [60, Proposition
1.2] for the definition). So all results on forward evolution families can be

transferred to backward evolution families as well.

(2) The exponential bound in (i7i) is needed in order to obtain strongly continuous

evolution semigroups.

We define the growth bound of (U(t, s))t<s<oby
wo(U) := inf{w € R: I M, > 1 with |U(t,s)|| < M,e** ¥ fort < s < 0}.

We will use evolution semigroup techniques as developed in [16], [22, Section VI.9],
[47], [60], [61] or [63]. To that purpose, we extend the backward evolution family

(U(t, 5))1<s<o to an evolution family (U(t, s)):<s on all of R.
Definition 2.3. (1) The evolution family (U(t,s))i<s<o on X is extended to an

evolution family (U(t, s));<s on R by setting

Ul(t, s) fort < s <0,
Ult,s) = U(t,0) fort <0< s,
U(0,0) =Id for0 <t <s.

(2) On the space E := LP(R,X), we then define the corresponding evolution

semigroup (7(t))s>o by

U(s,s+t)f(s+1) fors <s+1t<0,
(T(6)F)(s) = U(s, s+) f(s+t) = { U(s,0)f (s + 1) for s <0< s+t
J?(8+t) for0 < s <s+t,

for allfe E,sER,t > 0.

It is easy to prove that the semigroup (T(t))tzo is strongly continuous on E (see
[22, Lemma V1.9.10]). We denote its generator by (G, D(G)). Remark that we did

not assume any differentiability for (U (¢, s))¢<;, and hence the precise description of

the domain D(G) is difficult (compare Section 2.2 below, or see [47]). However, in

[56, Proposition 2.1], the following important property of D(G) is proved.
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Lemma 2.4. The domain D(é) of the generator G of the evolution semigroup
(T(t))tz(] in LP(R, X) is a dense subspace of Cy(R, X).

Moreover, we can make the following remark.

Remark 2.5. The evolution semigroup (7'(t));>¢ can be written as
Tf=U(,-+0T0f, fekF,

where (Tl(t))tzg is the left translation semigroup on the space E with generator
C'f := f’ on the domain

D(é) =W R, X) = {fe E : f absolutely continuous and f € E}

Since (G, D(G)) is a local operator ([56, Theorem 2.4]), we can restrict it to the
space E := LP(R_, X) by the following definition.

Definition 2.6. Take
D(G) = {fp_ : f € D(G)}

and define N N
Gf=(Gf)p.  for f = fir_ € D(G).

Remark 2.7. Recently, H. Nguyen Thieu proved that (G, D(G)) coincides with an
operator (I, D(I)) defined analogously to [44, Introduction and Preliminaries].

This operator G with its maximal domain D(G) is not a generator on E. However,
if we identify E with the subspace Y := {f € E : f(s) = 0 Vs > 0}, then E remains

invariant under (7°(t)):>o yielding, using Remark 2.5, the semigroup described in the

following lemma.

Lemma 2.8. The semigroup (Ty(t))i>o induced by (T(t))i>0 on E is

U(s,s+t)f(t+s), s+t<0,
0, s+t>0,

(To(£)f)(s) = Uls, s + 1)(Ti(£) f)(s) =

for f € E, where the left translation semigroup (Ti(t))i>0 on E is defined by

ft+71) for t+71<0,
0 for t+7>0.

(1) f)(7) =
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The following lemma characterizes the generator of this semigroup.
Lemma 2.9. The generator (Go, D(Gy)) of (To(t))i>0 is given by

D(Go)={f € D(G)NE : f(0)=0},  Gof =GY.

Proof. Since (T (t))s>o is the restriction of (7'(t));>o to the invariant, closed subspace
E, where we identify £ with Y, the generator of (To(t))s>o is the part of GinY,
ie.,

G, f = Gf,

with domain

D(G,)={feD@G)nNY:Gf Y}

Since (G is a local operator, then (Gf)(s) = 0 for all s > 0. Thus we can identify
D(Gy) with D(é|Y), and the thesis follows.
U

We thus end up with operators
(Go, D(Go)) C (G, D(G)) C (G, D(G)),

where only the first and the third are generators on E and E, respectively.

2.2 Well-posedness of Backward Nonautonomous

Cauchy Problems

In this section we adapt the concept of well-posedness of nonautonomous Cauchy
problems (see, e.g., [47], [51] [52]) to our situation, i.e., we replace R by R_ and
consider

u(t) = —A)u(t), t<s<0,

vop), 0= A0, 1<ss

u(s) =z € X,
on a Banach space X for a family (A(t), D(A(t)))ter_ of (unbounded) linear opera-
tors. Such nonautonomous Cauchy problems on a half line have been studied, e.g.,
by D. Henry, H. Nguyen Thieu, N. Van Minh, F. Rébiger, R. Schnaubelt (see, e.g.,

[34], [43] or [44]).
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Definition 2.10. A continuous function u : (—oo,s] — X is called a classical
solution of (NCP); if us(-,z) = u(-) € C'((—o0,s], X),u(t) € D(A(t)) for all
t <s<0,u(s) ==z and u(t) = —A(t)u(t) for t < s <0.

Definition 2.11. For a family (A(¢), D(A(t)))ter_ of linear operators on the Banach
space X, the nonautonomous Cauchy problem (NCP); is called well-posed with
regularity subspaces (Y;) cr_ if the following holds.

(i) (Existence) For each s € R_ the subspace
Y :={x € X : there exists a classical solution for (NCP)s} C D(A(s))

is dense in X.
(ii) (Uniqueness) For every = € Y; the solution wu,(-, z) is unique.

(iii) (Continuous dependence) The solution depends continuously on s and z,
ie,ifs, »seR_, z, =2z €Y, with z, €Y} , then

s, (t, 20) — s (t, )| — O
uniformly for ¢ in compact subsets of R_, where

ug(t,z) if s >t,
Us(t, z) = (t,2) T
x if s < t.

If, in addition, there exist constants M > 1 and w € R such that
[[us(t, 2)|| < Me“C=0 |z

for all x € Y; and t > s, then (NCP); is called well-posed with exponentially

bounded solutions.

The conditions required to obtain a well-posed Cauchy problem (NCP),, when
A(+) is a family of bounded operators, are well understood (see [18] or [23] for details).

In the general case, when the operators are unbounded, it is a very delicate matter
to prove that a nonautonomous abstract Cauchy problem is well-posed.

We connect well-posedness to the existence of a backward evolution family solving

the nonautonomous Cauchy problem.
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Definition 2.12. A backward evolution family (U(t, s)):<s<o is called a backward
evolution family solving (NCP); if there are dense subspaces Y; of X such that
the function ¢ — u(t) = U(t, s)x is a classical solution of (NCP); for s € R_ and
rz ey,

Remark 2.13. We observe that the well-posedness of (NCP), on regularity
subspaces (Yy)ser_, see [22, Section IV.9], is equivalent to the well-posedness of

the following forward Cauchy problem

(CP)

on regularity subspaces Z, =Y _, with solutions v(7) := V(7, o)z, where the family
(V(7,0))r>0>0 is the forward evolution family corresponding to (U(t,s))i<s<o (see
Remark 2.2.1) and the operators B(7) are defined as B(r) := A(—71), 7 € R,.

As in [52, Proposition 2.5], we can show that for each well-posed (NCP); there
exists a unique backward evolution family (U(t, s))i<s<o solving (NCP)s, i.e., the
function t — wu(t) := U(t, s)x is a classical solution of (NCP), for s € R and
r ey,

Lemma 2.14. If (NCP), is well-posed and the backward evolution family
(U(t, 5))1<s<o solves it, then

U(t,s)Y, CY; C D(A(t))
forallt < s <0.

Moreover, the well-posedness of the backward nonautonomous Cauchy prob-
lem (NCP), can be characterized by properties of the generator (Go, D(Gy)) of
(To(t))t>0. As in [52, Theorem 2.9], one can prove the following theorem.

Theorem 2.15. Let X be a Banach space and (A(t), D(A(t)))wer_ be a family of

linear operators on X. The following assertions are equivalent.

(i) The backward nonautonomous Cauchy problem (NCP), for the family
(A(t), D(A(t)))ter_ is well-posed with exponentially bounded solutions.
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(ii) There exists a wunique evolution semigroup (Ty(t))e>o with generator
(Go, D(Gy)) and an invariant core D such that

Gof =AC)f+ f' ae
for f € D.

In particular, we have the following result which can be shown in the same way
as in [60, Proposition 1.13].

Proposition 2.16. Let (NCP), be well-posed with regularity subspaces (Ys)ser_
solved by an evolution family (U(t, s))i<s<o. Let (Go, D(Gy)) be the generator of the

corresponding evolution semigroup (Ty(t))e=o on E. Then the set
Do:={f € WH(R_.X): f(0) =0, f(s) € Yy, s = A(s) f(s) € E}
is a core of Gy. Moreover

Gof = f'+A(C)f ae.
for f € Dy.
Finally, we state a lemma which will be useful for Propositions 3.7 and 3.8.

Lemma 2.17. (a) If a continuous function f € LP(R, X) satisfies f = ﬁR_ €
D(G) and fg, € W(R,, X), then f € D(G) and

U(s,s +t)(Gf)(s+t) fors<s+1t<0,
(GT(t)J?)(S) = U(S,O)f'(s +1) fors <0< s+t,

f'(s+1) for0<s<s+t.

(b) If fr € D(GQ) and fr, € C*(R,, X), then

(T - = UG-+ f(+ 1)) € D(G)

and
%mt) Pie. = GTM) P
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Proof. (a) By definition, T(t)]?is given by

U(s,s+1t)f(s+1) for s <s+1t<0,
(T(t)f)(s) = U(5,0) (s + ) for s <0< s+t
f(s+t) for0 < s < s+t

For s > 0 and h > 0, we thus obtain that

HF (1) F(s) = TOF(5)] = 2 (Fls + 4+ ) = Fls 1),

which converges to f'(s +1t) as h | 0.
For s <0 <s+tand h > 0, we have

L+ mF(s) - T Fis)] = U(s.0) [LEHEIZTEE0 ]

which converges to U(s, 0)f"(s+1t) as h | 0. Since ﬁR+ € W' (R, , X), this implies
LP—convergence.

Finally, for s < s +¢ < 0, we obtain the desidered result by extending ﬁR_ to a
function in D(G) and restricting it afterwards.
(b) Take a € C*(R) such that a(s) =1 for s < t+1 and a(s) = 0 for s > t + 2.
Then af satisfies the assumption in (a), i.e., af € LP(R, X), f := (a]"v)\Rf € D(G)

and (af)r, € W'2(R;, X). By the locality of G the assertion follows. O

2.3 The Critical Spectrum and the Critical
Growth Bound for a Backward Evolution

Semigroup

It is wellknown that the spectral mapping theorem does not hold for all strongly
continuous semigroups. In general, only one inclusion is true, i.e., if (e*);5¢ is the

strongly continuous semigroup generated by A, then
e C g(ett), t>0.

In [48], J. Poland and R. Nagel introduced the critical spectrum in order to deal

with this problem. Following their paper we recall their definitions.
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Let X be a Banach space and 7 := (T'(t));>0 be a strongly continuous semi-
group on X. We can extend this semigroup to a semigroup 7 ::(T(t))tzo on

X = {(zn)nen C X : SUp,,en ||Zn]| < 00}, no longer strongly continuous, by

T(t) (l’n) = (T(t)xn)neNu (J;n)neN € jZ
Now, the subspace

XT = {(xn)neN € X : limsup ||T(t)xn - xn” = 0}
t}0 neN

is closed and (T'(t)):>o -invariant. Therefore, on the quotient space
X = ),Z/)A(:T
the quotient operators

Tt)F+ Xr) =TT+ X7, T+ XreX,
are well defined and yield a semigroup 7 := (T(t));>0 of bounded operators on X.
Definition 2.18. The critical spectrum of the semigroup (7'(t)):>¢ is defined as
Ouit(T(1)) := o(T(t)), t>0,
while the critical growth bound is
Werit(T) :=inf{w € R: 3 M > 1 such that ||T(t)|| < Me“for allt > 0} = wy(T'(+)) .

For our purposes it will be important to determine the critical spectrum and the
critical growth bound of a backward evolution semigroup.
Let U :=(U(t, s))i<s<o be a backward evolution family on R_ and (7;(t)):>o the

corresponding evolution semigroup on F, i.e.,

U(s,s+t)f(s+1), s+t<0,
0, s+1t>0,

(2.1) (To(2) f)(s) ==

for f € E. Then, following [16, Theorem 3.22], [22, Section VI.9], [43, Corollary
2.4] or [44, Theorem 2.3] one can prove that the spectral mapping theorem holds for

(To(t))e>o0 -
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Theorem 2.19. Let (Go, D(Gy)) be the generator of (To(t))i>o on E. Then o(Ty(t))
is a disk centered at the origin and the spectrum o(Gg) is a halfplane. Moreover,

(To(t))e=0 satisfies the spectral mapping theorem
a(To(t)) \ {0} = et7(G0) ¢ >0.
In particular, s(Go) = wo(To(-)) = wo(U).
Based on this result we can compute the critical spectrum for (To(t)):>o -

Theorem 2.20. The critical spectrum of Ty :=(Ty(t))¢>0 coincides with its spectrum,

(2.2) Tei(To(t)) = o(To(t)), > 0.

Proof. * D7 Tt is obvious that 0. (To(t)) C o(To(t)).
“ C 7 Using rescaling, the inclusion follows if we can show that

(2.3) 2miZ € 0(Goy) = 1 € 04 (To(1)).

Since the spectrum o(Gy) is the union of the approximate point spectrum Ao (Gy)
and the residual spectrum Ro(Gy) (see, e.g., [22, Section IV.1]), it follows from
2miZ C 0(Gy) that at least one of the sets

Ao (Gy) N 2miZ or Ro(Gy) N 2milZ

is unbounded. In the first case the assertion follows from [9, Proposition 4]. Assume
now that 2mik, € Ro(Gy) for some unbounded sequence (k,)nen.
Observe next (see [22, Proposition IV.2.18]) that

- ~ !

2.4) e (To(0) = o(Ta(t)) = (T (1)
2.5) (%) = (%/Xn) = (Xn)" € (X).

By [22, Proposition IV.2.18], one has

(2.6) 2mik,, € Ro(Gy) = Po(Gy) for all n e N.
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Therefore, there exists 2/ € X', ||«.| = 1, such that T}(t)z! = > #nty! for ¢t > 0
n n 0 n n
and all n € N.

We define )
y, =a, — T, <ﬁ> x, =22, forneN
It holds that T3(1)y!, = v/, and
1
(2.7) lim (y,, z,,) = lim (z], z,, — Ty <—> Tn) = 0.
n—00 n— o0 2k,

for all (z,)nen € Xr3-

Define 3’ € (X)' such that
(' (@n)) = ¢y, 2a))  forall (z,) € X,
where 1) is a Banach limit on [*. By (2.7),
y € (Xr)" and To(1)y = (Ty(y) =y
Thus Ty (1)y' = ¢ and 1 € o(Tp(1)). O

Corollary 2.21. The critical growth bound of a backward evolution semigroup is

equal to the growth bound of the corresponding evolution family, i.e.,
Werit(To () = wo(U) = wo(To(+)).
Proof. By Theorem 2.20, we have
Werit (To(+)) = wo(To(+)),

while Theorem 2.19 implies
wo(To(+)) = wo(U).



Chapter 3

Well-posedness

The distinction between the past,
present, and future is only an illusion,

however persistent.
[A. Einstein, 1879-1955]

3.1 Delay Equations with Nonautonomous Past

as Abstract Cauchy Problems

Motivated by the examples in Chapter 1, we now introduce a new type of delay
equations. We start from linear partial differential equations with delay and recall

that they can be written in an abstract way and using standard notation as

w(t) = Bu(t) + ®uy, t >0,
u(0) =z € X,
Uy = f € Lp([_lao]aX)v

(DE)

for some Banach space X, where (B, D(B)) is a closed, densely defined operator
on X, the delay operator ® : W'#([-1,0],X) — X is a linear operator, and the
history function u; : [-1,0] — X is defined as u(7) := u(t + 7) for 7 € [—1,0].
Many authors, e.g., O. Diekmann, J. Hale, S.M.V. Lunel, I. Miyadera, J. Wu studied
such delay equations using semigroups and we refer to [20], [32], [33], [38] or [70] for
this theory.
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Problems

Recently, A. Batkai and S. Piazzera in [5], [6], [7], [8], [55] studied (DE) with
semigroup techniques in an LP—setting. In particular, they showed that solving
(DE) is “equivalent” to solving the abstract Cauchy problem

(CP)

on the product space £ := X x LP([—1,0], X), where B is defined by the operator
matrix
B &
B .=
0 d/dr

D(B) = {(}) € D(B) x W™(|-1,01.X) : f(0) =z}

on the domain

Applying perturbation theory for Cy-semigroups they proved the generator prop-
erty of B, hence well-posedness of (DFE). In addition, they obtained results on the
asymptotics of the solutions of (C'P) and hence of (DE) (see [15]).

In this thesis we also allow infinite delay, so we substitute the compact interval
[—1,0] by R_.

Using this semigroup approach, the meaning of (DF) is that if we start with the
history function f, this function is shifted to the left by —t, and for values greater
than —t the value of the solution is given by the delay operator ® applied to the
shifted function (see Figure 3.1).

As we have seen in Chapter 1, there are cases in which the function f is not only
shifted but also modified by an evolution family.

For this reason, we replace the delay equations (DFE) by equations that we call

delay equations with nonautonomous past

u(t) = Bu(t) + ®ay, t >0,
u(0) =z € X,
o= f e LP(R_, X).

(NDE)

Here, the delay operators acts on a modified history function u; (see below).

We now fix the notations and assumptions to be used in the rest of this thesis.
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Figure 3.1: history function

General assumptions 3.1. 1. The operator (B, D(B)) is the generator of a
Co-semigroup (S(t)):>0 on X.

2. The (linear) delay operator ® : Co(R_,X) N LP(R_,X) C D(®) — X is
bounded with respect to || - ||, or || - ||cc-

3. The evolution family (U(t,s)):<s is the extension (as in Definition 2.3) of
an evolution family (U(t, s))i<s<o solving a backward nonautonomous Cauchy
problem for a family of operators (A(t), D(A(t)))tcr_ on regularity subspaces
Y;.

Definition 3.2. The modified history function (see Figure 3.2) @; in (NDE) is
defined as

) U(r,t+7)u(t+7) fort+7>0,
Ue\T) - = ~
U(r,t+71)f(t+7) fort+7<0,

U(r,0)u(t+ 1) fort+7>0>r,
Ulrt+71)f(t+7) forO>t+7>7

for 7 <0.

Remark 3.3. In the definition of the modified history function w; two time variables

t and 7 appear. The variable ¢ can be interpreted as the “absolute time” and 7 as

the “relative time”.
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Figure 3.2: modified history function

Definition 3.4. 1. We call a function v : R — X a classical solution of

(NDE) if

(i) ue C(R X)NCHR:, X),

(i) u(t) € D(B), us € D(®), t > 0,
(iii) w satisfies (NDE) for all t > 0.

2. We call (NDE) well-posed if

(i) for every () in a dense subspace S C X x LF(R_, X) there is a unique
(classical) solution u(z, f,-) of (NDFE) and

(ii) the solutions depend continuously on the initial values, i.e., if a sequence

(m") in S converges to (?) € S, then u(z,, f,,t) converges to u(z, f,t)

fn
uniformly for ¢ in compact intervals.

It is now our purpose to investigate existence and uniqueness of the solutions of
(NDE). To do this we can use the same approach of A. Batkai and S. Piazzera
from [7], i.e., we reformulate equation (NDFE) as an abstract Cauchy problem on
the space £ := X x LP(R_, X) using, instead of the derivative %, the operator GG
from Definition 2.6.

Definition 3.5. Consider the operator given by the matrix

(2
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on the domain
D(C):={(7) e D(B)x D(G) : f(0)==z} in &=X x LP(R_,X)
and the corresponding abstract Cauchy problem

U(t) = CUt), t>0,

cP
“r UW©) = (7).

It is easy to show that C is closed and densely defined on £. We now prove that
(NDE) and the abstract Cauchy problem (C'P) are “equivalent”, i.e., (NDFE) has
a unique solution for () € D(C) continuously depending on the initial value if and
only if (CP) is well-posed (in the usual sense). In analogy to [7, Theorem 2.8], we
thus obtain well-posedness of (NDE) by proving well-posedness of (C'P) for the

operator (C, D(C)).

Theorem 3.6. The delay equation (NDE) is well-posed if and only if the operator
(C,D(C)) defined above is the generator of a strongly continuous semigroup (T (t))e=o
on €. In this case, (NDFE) has a unique solution u for every (?) € D(C) given by

m (TW(5)). 120

&1 ult) = f(t), a.e.t <0,

where m; s the projection onto the first component of £.

The main part of the assertion is a consequence of the following two propositions,
while the continuous dependence follows from the relation between the solutions of
(NDE) and (CP).

Proposition 3.7. Consider (7) € D(C) and let Ry > t — U(t) := (Z(t;) €fa

v(t
classical solution of (C'P) with initial value (?) Then for the function u: R — X

defined by
z(t), t>0,

DN 0wt <o

we have uy = v(t) for everyt > 0 and u is a classical solution of (NDFE).
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Proof. Since U is a classical solution of (C'P), we obtain that v € C*(R,, L?(R_, X))

solves the equation

y(t) = Gy(t), t=>0,
(3:2) y(t)(0) = z(t), t=>0,
y(0) = f,

in the space LP(R_, X). On the other hand, also the function ¢ —s U, -4t)u(-+t) =

U,(+) solves equation (3.2) since @,(0) = U(0,#)u(t) = 2(t) for t > 0, Gy = up_ =
f € D(G), and, by Lemma 2.17 (b), we have u € D(G). Thus @; = (T(t)u)mf is
differentiable with derivative Gu;. We now define ¢ — w(t) := v(t) —u; which solves
(3.2) but with f = 0 and z(-) = 0. In this way it is the solution of the abstract
Cauchy problem for the generator GG with initial value 0 which implies w(t) = 0.

Therefore, we obtain

and thus v is a solution of (NDE). O
The converse of Proposition 3.7 is also true.

Proposition 3.8. Let (7) € D(C) and let u : R — X be a classical solution of
(NDE). Then the function
Ry >t (')

is a classical solution of (C'P) with initial value (7).

Proof. Since the function v is a solution of (NDE), it remains to show that the
function t — u; is continuously differentiable with derivative Gu;. In order to show
this, observe that ujj,.) € C*'(Ry, X) and ur_ = f € D(G). Thus, by Lemma 2.17
(b), we obtain u € D(G) and thus

d ~ d ~ ~ o
%T(t)u = %U(w c+tu(-+1t) =GT({t)u=GU(-, -+ t)u(- +1).
Restricting this equation to R_ yields the desired result. O

Proof of Theorem 3.6. We assume that (C, D(C)) is the generator of a strongly con-
tinuous semigroup (7 (¢)):>o . Then the Cauchy problem (C'P) has a unique classical
solution ¢ for all () € D(C) and
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Thus, the function u defined in (3.1) is a solution of (NDE) by Proposition 3.7.
Uniqueness follows from Proposition 3.8.

Conversely, if (NDE) is well-posed, then for every (7) € D(C) equation (NDE)
has a unique solution u. Then Proposition 3.7 yields that for every (?) € D(C) the
abstract Cauchy problem (C'P) has a classical solution which is unique by Propo-
sition 3.8. Since (NDE) is well-posed, these solutions depend continuously on the
initial values. Finally, since (C, D(C)) is a closed operator by [22, Theorem I11.6.7],
(C, D(C)) generates a strongly continuous semigroup on LP(R_, X). O

Remark 3.9. We consider
(3.3) u(t) :=

as a mild solution of (NDE) for every (§) € €.
Our reason for this terminology is the following corollary.

Corollary 3.10. If (C,D(C)) is the generator of a Co—semigroup (T (t))i>0 . then
the function u : R — X defined in (3.3) for every (?) € & satisfies the integral
equation
ult) = 2+ B [ u(s)ds + ¢ [) Ugds, t>0,

f(t), ae.t€R_,

where uy is as in Definition 3.2.

Proof. Let w5 be the projection onto the second component of &, i.e., 71'2(?) = f

for all (§) € €.
First Step: We prove that

(3.4) u=m(T(t)(F)) ae.

Indeed, (3.4) holds by Proposition 3.7 for (7' ) € D(C). Take now (§) € £ and a
sequence (") € D(C) converging to (7). Since the semigroup (7 (£))s>o is strongly
continuous, the sequence T (¢)(§") converges to T (¢)(F) in £.

Let
m(T() (7). t=0,

ualf) = fn(t), a.e. t<0.
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Since ('} ) € D(C), we have (i, ); = (T (¢)(F"))-
Moreover,

(Wn)i(5) = U(s, 5+ thun(s +1) = U(s,s + )m (Tt +5) ()

holds for —t < s < 0. By our assumptions, it follows that ||(4,): — u||, — 0, as n —
+00. Thus, there exists a subsequence (u,, ); of (,); such that (u,,):(s) — (u)(s)
a.e..

Since
(tn,)e(s) = ma(T(8) (5o ))(5) = ma(T(8)(F))(s),
we can conclude that
u=m(T(t)(F)) ae.
If s < —t, one has

(@n)e(s) = Ul(s,s + thun(s +1) = U(s, s + 1) fuls +1).

Since ||fn, — fll, = 0, there exists a subsequence f,, of f, such that f,, (s) — f(s)
a.e.. Thus

(1, )e(s) = U(s,5 + t)tn, (s + ) = U(s, s + 1) fr, (s + 1)
— U(s, s+ 8)f(s+1t) = (@) (s) ae. fors < —t.

Proceeding as before, we have

”[lt = Tr9 (T(t) (

8
~—

) ae..

Second step: Taking the first component of the identity
x x ¢ x

70 (") = (“) =c / 7(s) (7 ds.
(f ) (f ) 0 f

wlt) — ¢ =1 f071'17-8)(33))
0 —r=m (mm)( e )]

=m _(B @) (fi ziszlis) = B/Utu(s)ds + @/Ot usds

for all ¢ > 0. O

one has
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3.2 The Generator Property

In view of Theorem 3.4 we now give sufficient conditions in order that C generates

a strongly continuous semigroup on £. First, we write C in the form

B 0 0 @
C=C+F:= +
0 (0 G) (0 0)

with domain D(Cy) = D(C) and F € L(D(Cy),E).

We then show that Cy generates a strongly continuous semigroup and finally apply
perturbation theory to Cy + F.

As a first step, we compute the resolvent R(A,Cy) of Cy for RA larger than the
growth bound wy(7o(+)) of the semigroup (7y(t))i>o from Lemma 2.8.

Lemma 3.11. (i) For each A € C with RA > wo(Ty(+)), we define the bounded
operator €\ : X — F by

(3.5) (exz)(s) := e™U(s,0)z, s<0,z€X.
Then exx is an eigenvector of G- with eigenvalue X for every x € X.

(ii) For each A € C with R\ > wo(To(:)) and X € p(B), we have X € p(Cy), and
the resolvent R(X,Cy) is given by

_ { R\, B) 0
(3.6) = (eAR()\7B) R()HGO))'

Proof. (i): Since RA > wo(To(+)), we take RA > w > wo(Tp(+)) and M, > 1 such

that [|U(r, s)|| < M,e“*="). Tt follows that [|ex||z(x,p) < — 22—
[P(RA—w)]P

Consider a € C*'(R) such that a(s) =1 for s < 1 and a(s) = 0 for s > 2 and
define
. eU(s,0)x for s <0,
f(s) =

eMr for s > 0,

for arbitrary x € X. Then ]7’:\ =af € E is continuously differentiable for s > 0 and
f(s) =0 for s > 2. For f, we obtain

T(t)f(s) = ™ i (s)
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forall0 < ¢ <1lands <0, where (7'(t))¢>o is defined as in Definition 2.3.2. Together
with the differentiability of f for s > 0 this implies f\ € D(G) and

(Gh)(s) = A)(s)
for every s < 0. By the definition of G this implies ez € D(G) and
Geyx = de\x.

(ii): Let A € p(B) with A > wo(To(+)), hence A € p(Gy). Then the matrix in (3.6)
is a bounded operator in £ defining the inverse of (A — Cy). In fact, for (7) € € we

T = R(X, B)x
Ry (f) B <€)\R(/\7B)x+R(/\7GU)f> € D(Cy)

since R(\, B)x € D(B), e\R(A\,B)x € D(G) and (exR(\, B)x + R(\,Go)f)(0) =
R(A, B)x. Moreover, by (i),

()\ — CU)R)\ (f) = ((}\ _ G)(G)\R(/\7 B)x + R(/\7 GU)f)> - (f)

since (A — G)exR(\, B)x = 0. As a result we obtain (A — Co) R, = Idg.
On the other hand, consider (§) € D(Co), thus z € D(B),f € D(G), and
f(0) = z. Tt follows that

R\(XA = Cy) (f) - (6)\$+R()\;GO)(/\_G)f> - <f>

(3.7) et + R(A, Go) (A = G) f = exf(0) + R(A, Go)(A = G)[f — exf(0)]
= exf(0) + R(X, Go)(A — Go)[f — exf(0)]
=eaf(0)+f—ef(0)=f

have

since

As the next step, we determine explicitly the semigroup generated by Cj.
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Proposition 3.12. The operator (Co, D(Cy)) generates a strongly continuous semi-

S 0
(St Tg(t))’ r=0

U(r,0)S(t+71)x, T+1t>0,
S { (7, 0)S(t + 7)
0, T+t<0.

group (To(t))i>0 on &€ given by

To(t) :

where Sy : X — LP(R_, X) is

Proof. In order to prove that (7o(t)):>0 is a semigroup, it is suffices to verify that
Sivs = SiS(s) + To(t)Ss for allt, s > 0.

In fact, we have

(3.8)

(StS(S)x) (T) + (To(t)Ssx)(T) _ {U(T, O)S(t + ’7'),5'(3)];7 T4+t> 07

0, T+t <0,
- (To(t) UC0)S(s+)z, ~+5>0, )

0, -+ 5 <0,
oSt s+ e, r+t>o0,
) 0, T+t <0,
r+

U(r,0)S(s+717+t)x, t<—1<(t+s),
0, elsewhere,

= (St4s7)(7)
forallz € X and 7 <0.
Now, denote the generator of (75(t))s>0 by (H, D(#)).Using the definition of the
function ¢ — S; and a result of R. Schnaubelt (see [61, Lemma 2.11}), one can prove

f0+°° e MSydt = exR(\, B). Thus, for ) sufficiently large,

[ R(\,B) 0 B
(3.10) = <6AR(A73) R(AjGO)) = R(A\.Co).
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It follows that (Co, D(Cy)) is the generator of (7o(t))s>0. O

By applying the bounded perturbation theorem we obtain the following immediate

consequence.

Theorem 3.13. Let (Cy, D(Cy)) be the generator of a strongly continuous semigroup
on & and let ® : LP(R_, X) — X be bounded. Then the operator (C,D(C)) is the

generator of a strongly continuous semigroup on &, thus (NDE) is well-posed.

In the case of unbounded ® (e.g. for point delays), we apply the theorem of
Miyadera-Voigt (see [46] or [66]), which we quote from [22, Corollary I11.3.16].

Theorem 3.14. Let (Wy(t))i>0 be a strongly continuous semigroup on the Banach
space X with generator (Hy, D(Hy)) and F : D(Hy) — X be a linear operator on
X. Suppose that there exist to > 0 and 0 < g < 1 such that

to
(3.11) | 1EWatoyslat < gl
0

for allz € D(Hy). Then (Ho+F, D(Hy)) generates a strongly continuous semigroup
(W (t))i>0 on £ satisfying
t
W(t)z = Wy(t)x +/ W(t — s)FWy(s)zds
0

for all x € D(Hy),t > 0.

If we take in Theorem 3.14 the semigroup (7q(t)):>0 as (Wy(t))s>o0 and the operator
F as F', we obtain the following result.

Theorem 3.15. Let (Cy, D(Cy)) be the generator of the strongly continuous semi-
group (To(t))i>0 defined as above and consider a linear operator ® : Co(R_, X) N
LP(R_, X) — X satisfying

(M) (A”@ww+%wVWWSqW?W

for some 0 < to, 0 < ¢ < 1 and for all (}) € D(Co). Then (C.D(C)) generates a

strongly continuous semigroup (T (t))i>o on & satisfying

T(t) (;) = (1) (’;) T /0 Tt — 8)FTo(s) (;) ds

for all (§) € D(Cy),t > 0. Thus (NDE) is well-posed.
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Proof. We only have to observe that

1776 () (7)1l = (8 ?) (Sg) To(Zt)> (f‘)H

_ (@(Stx n To(t)f)>

| = @Sz + To(0))]

for all () € D(Co). Therefore, (3.11) becomes (M). O

Example 3.16. Let 1 < p < oo and let nn : R_ — £(X) be of bounded variation
such that |n|(R_) < 4o0, where || is the positive Borel measure in R_ defined by
the total variation on 7. Let & : Co(R_, X)NLP(R_, X)) — X be the linear operator
given by the Riemann-Stieltjes integral

0
(3.12) o f ::/ fdn forall f e Co(R_,X)NLP(R_,X).

By [3, Proposition 1.9.4], this integral is well-defined. We now show that @ fulfills
condition (M), thus (NDE) is well-posed.

In fact, using the exponential boundedness ||U(t,s)|| < M,e“~" and putting
M :=sup,¢jo 1 [|S(r)|| < oo, we obtain for 0 < ¢ <1

/0 10(S, + To(r) ) dr

:/Ot

<l [ [ 100 ISt -+ ) din)ar

-

/ U(o,0)S(0 + r)zdn(o) + / Ulo,o+ 1) f(o+r)dn(o)

—-7r —OoQ

dr

+/0 /_OO |U(o, 0+ )| |[f(o+r)||d|n|(c)dr
< ||37||/0 /_ Mye “7||S(o + r)|| d|n|(c)dr +/0 /_ Moe" || f(o + )| dlnl()dr
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t 0 t —r
<l [ M [+l dn@yr + [ e [ s+ nldnle

gmmmw{AM([}wm)m h
w [ ([ isenas)amer+ [ ([ i) dco)]

01 7t1
SMJWPMWRMM+/UWWWW@+/ ﬂwwmwﬂ

—t —00

0 1
tﬂmwwm]

1
< Mo |n|(R) (¢M ]| + 77| £1],)

< MM ool o] +
where ;7 + 1% = 1. Thus we can conclude

1
7

/0|‘q’(5rx+To(r)f)lld7“ < MMuelP|n|(R)t7 (|| £l + [|])

for all 0 < t < 1. Choose now t, so small that M M,e/“|n|(R_)t¥ < 1. Then
condition (M) is satisfied with ¢ := M M_el“/"|n|(R_)tZ .

Remark 3.17. As concrete delay operators ® having the form (3.12) we can take,
for all f € Ch(R_, X)NLP(R_, X),

o= [ " B (s,

where ¢(-) € L}Y(R_), or
Of :=0,f,

where ¢, is the Dirac measure for some s < 0.

3.3 Classical Solutions

By Theorem 3.6 we obtained classical and mild solutions of (NDE). We now show
that our approach also yields solutions to the following system of equations intro-
duced by S. Brendle and R. Nagel in [10]:

) 9
_ ha - — <0, t>
(3.13) Spults) = Sults)+ A(sJults), 50,20,

(3.14) D u(t,0) = Bu(t,0)+ du(t, ), t>0,

ot
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where A(s) are (unbounded) operators on a Banach space X for which the associated
nonautonomous Cauchy problem (NCP), is well-posed, B is the generator of a
strongly continuous semigroup (S(t))s>o on X and @, the delay operator, is a linear
operator from a space of X —valued functions on R_ into X. They find mild solutions
of the above equations by constructing an appropriate semigroup on Cy(R_, X),
while we proved in [24] that, under appropriate assumptions, their semigroup also
yields the classical solutions of (3.13) and (3.14).

With a similar technique we now find classical solutions of (3.13) and (3.14) using
our semigroup on &.

To this purpose we fix the additional assumptions to be used in this section.

General assumptions 3.18. (1) The generator (B, D(B)) is such that D(B) —
Yo.

(2) The operator (A(t), D(A(t)))er_ are such that the function s — A(s)(exz)(s) €
LP(R_, X) for z € D(B).

(3) The operator (C, D(C)), defined in Definition 3.5, is the generator of a strongly

continuous semigroup (7 (¢))¢>o -

Moreover we recall that the function €, and the space D are defined, respectively,

as in Lemma 3.11 and Proposition 2.16.

Proposition 3.19. The set
(3.15) D:=Dy®{exy:y € D(B)}
is a core of G. Moreover
Gf=f+A()f ae.
for f € D.
Proof. We first prove that D is dense in D(G) with respect to the graph-norm, i.e.,
Vf € D(G)and Ve > 0 there exists g € D such that ||f — g|l¢ < e

Let A be such that RA > wy(Ty(+)), hence A € p(Gy). Then, by [31, Lemma 1.2],
we obtain

D(G) = D(Gy) @ Ker(A — G),
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i.e., for every f € D(G) there exists fo € D(Gy) and x € X such that f = fy+ ez,
where p is a constant.

Since €, is bounded, there exists a positive constant M such that ||y zx,z) < M.

Let ky:=1+ M(1+ |A|) and € := i

Since D(B) and D, are dense in X and D(G)), respectively, (see Proposition
2.16), there exist zy € D(B) and gy € Dy such that

|z — xo||x < €

and
1.fo = golla, < €.

Let g := go + pexxg. Then g € D and

17 = glle = I1fo = golle + llexz — exzolla = lfo — gollap + llers — exzolle
<€+ ler —eaxolls + |Gy — Gerzoll g
< ¢ +llellecemllr = wollx + el ecx.mlle = wollx

<€+ M1+ M) =k =e

Moreover, Gf = f'+ A(:)f for f € D. In fact, write f € D as f = fo + peyzo for
fo € Dy and zy € D(B).
Then

Gf = G(fo+ pexwo) = fo + A() fo + pGexzo = fo + A(+) fo + prexwo

and
[T+ AC)f = fo+ (peazo) + A() fo + pA(-)exo.

Since

(pneazo)'(s) = puA(exzo)(s) + ue’\s%U(s7 0)zo = pA(exmo)(s) — wA(s)(exzo)(s),

it follows that Gf = f' + A(-)f for f € D.

The following lemma gives an other expression for D.

Lemma 3.20. The core D of D(G), defined in (3.15), coincides with

C:={feW"R_,X): f(0) € D(B). f(s) € Y,, s+ A(s)f(s) € L’(R_, X)}.
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Proof. “ 27 Let f € C' and put

g:=f- GAf(O)-

Using General assumptions 3.18.2 on the operators A(s), it is easy to prove that
g € Dy. In fact, g(0) = 0, g € W'?(R_, X) and the function s — A(s)g(s) =
A(s)f(s) + A(s)(exf(0))(s) € LP(R-,X). Since U(s,0)Yy C Y, then g(s) € Y.
Thus f =g+ e f(0) € D.
“C 7 Let f € D, then 3 fy € Dy and x € D(B) such that f = fy + pe .

One has f(0) = pz € D(B), and since U(s,0)Yy C Yj, it follows that f(s) € Y.
Moreover, by General assumtpions 3.18.2 on the operators A(s), we have that the
function s — A(s)f(s) € LP(R_, X). O

The proof of the following proposition is an immediate consequence of the Theo-
rem 3.15 and of the definitions of (74(¢))>¢ and of the function ¢ — S; (see Lemma
2.8 and Proposition 3.12, respectively).

Proposition 3.21. The projections of (T (t))i>0 onto the first and the second com-

ponent on g satisfy the following identities

(3.16) m(T(t)(%)) = B+ /0 et By (T(1)(%)) dr.

(3.17) T (T(E)(F))(s) =U(s,s+t)f(s+1t)

if s+t <0, and

(3.18) mA(T(t)(F))(s) = U(s,0)e" Bz + /OSH U(s,0)e" "By (T(t)(%)) dr
if s+t >0.
In order to have solutions of (3.13) and (3.14) in a classical sense, we consider
D:={(7) e D(B) x D: f(0) =z}

as a subspace of D(C).



3.3 Classical Solutions 35

Lemma 3.22. If the functions
s A(s)U(s,s+1t)f(s+1)
and
s A(s)U(s,0)g(s)
belong to € LP([—t,0], X) for all f(-) € LP»(R_, X) and g(-) € C([—t,0], D(B)), then
the space D defined above is a T —invariant subspace of D(C).

Proof. Let (7) € D, then T(t)(7) € D(C). Thus m(T(¢)(F)) € D(B),
mo(T()(7)) € D(G) and mo(T (£)(7))(0) = m(T(¢)(F)). It remains to prove that
mo(T(t)(F)) € D. To this end we consider two cases.

First case: For s > —t, by Proposition 3.21, we can write (7 (£)($))(s) as

ma(T () (F))(s) = Uls,0)ge(s),
where g(s) := e(*)Bg 4 fOSH e IBOm, (T (1) (7)) (7)f dr. Since (7) € D(C),
T (T (£)(7))(0) € D(B) and the function
(3.19) Ry 37 ®m(T(t)(7))(1) € X

is continuously differentiable. It follows that g;(-) € C*([—t, 0], X)NC([—t, 0], D(B)).
Hence ¢;(s) € Y for s € [—t,0] because D(B) C Y,. By assumption, we have that
U(s,0)Yy C Y, so m(T(t)(F))(s) € Y, and

(3.20) 88(7r2(7'(t)(§))(s) =— A(s)U(s,0)g:(s) + U(s,0)Bg(s)
+ U(s,0)Pma(T (t + s)(?)),

hence the map s — (ma(7(¢)(F)))(s) is differentiable. In order to prove the asser-
tion, it remains to show that the functions

@) [£.0] 5 s = (m(T () (7)) (5),

(it) [=£.0] 3 s = (A()mA(T(6)(F))(s)

are in LP(R_, X).

First of all we prove that the function in (ii) belongs to LP(R_, X). It is obvious
that (A(-)ma(T(t)(F))(s) € X because (A()mo(T () (F))(s) = A(s)(m2(T () (7)) (5)
and (mao(T(¢)(F))(s) € Yy C D(A(s)) € X. Since (mao(T(¢)(F))(s) = U(s,0)g:(s),



36

Well-posedness

it follows by the assumption in the theorem that s — A(s)(ma(7(¢)(F))(s) is in
LP(R_, X).

Now, since m (7 (t)(F))(0) € D(B) and the function in (ii) is in L?(R_, X), by
(3.20) it is an immediate consequence that the function in (i) is also in LP(R_, X).

Second case: For s < —t, by Proposition 3.21, we can write (7 (¢)(F))(s) as
m(T(#)())(s) =Uls.s+1)f(s +1)

and obtain

(3.21)
Os(ma(T(t) (F))(s) = — A(s)U(s, s + t) f(t+s) + U(s, s + t)A(s + t) f(s + 1)
+U(s.s+t)f'(s+1).

As before and using the assumption on A(s), we can show that the functions in (i)
and (ii) are in LP(R_, X) for s < —t¢.

Combining the two cases we conclude that D is 7 —invariant. O
Using the previous proposition we can prove the following theorem.

Theorem 3.23. Consider (§) € D(C) such that Ry > t — U(t) := (Zg;) €& is

a classical solution of (C'P) with initial value (‘fc) Under the assumptions of the

previous lemma, the function

(t,s) = v(t,s) :=m (T()(F)) (s)
is the unique classical solution of (3.13) and (3.14) whenever () € D.

Proof. By the previous lemma we have that 7(t)(7) € D if (7) € D. Since
Ry 5t —Ut) := (12)8) € & is a classical solution of (C'P) with initial value (%),
we obtain that v(¢, s) is continuously differentiable with respect to ¢ and s such that

G’U(t, ) = %v(fm ')7
Gu(t,0) = Bu(t,0) + du(t, )
and

Gu(t,s) = %v(t, s) + A(s)v(t, s).

So, v(t, s) satisfies the two equations (3.13) and (3.14).
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For the uniqueness, we assume that v(-,-) is a solution of (3.13) and (3.14) for
the initial value v(0,-) = f € D. From (3.14) and using the fact that (U(t, s)):<s<o

solves a nonautonomous Cauchy problem, we obtain

(3.22) %U(T’ syo(t, s) =Ulr,s) | Als)u(t. s) + %v(t, 5)
= U(r, 5)%1)(757 5) = %U(ﬁ s)o(t, )

for r < s < 0. Consequently, the expression
Ulr,s)u(t, s)
can be written as a function of » and s + ¢. From this it follows that

U(r,s+t)v(0,s+1t), s+t<0,

(3.23) U(r,s)u(t,s) =
U(r,0)v(s+1t,0), s+t>0,
for r < s < 0. Putting » = s, we obtain

U(s,s +t)v(0,s+1), s+1t<0,

(3.24) u(t,s) = U(s,000(s +1,0),  s+t>0.

By equation (3.14) we have
d
—v(t,0) = Bu(t,0) + du(t,-).

dt
Therefore, using the fact that v(0,-) = f, we obtain

t

(3.25) v(t,0) = B £(0) +/ BBy (7, ) dr.
0

Thus, by (3.23) and (3.24), we have

U(s,s+t)f(s+1), s+t<0,

(3.26) v(t,s) = s
U(s,0)et B f£(0) + [i7° ettt BOy(r,-)dr, s+t > 0.

Let now f = 0. Using Gronwall’s inequality (see [21, Lemma 2.A]), we see that
v(t,s) = 0. O
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Stability

4.1 Stability on Hilbert Spaces

As we have seen in the previous chapter, the solutions of (NDFE) are given, under

appropriate assumptions, by a semigroup (7 (¢)):>o and are of the form

n (T0(3), 120
f(t), a.e. t <0.

u(t) =

So, in order to obtain information about the stability of the solutions of (NDE), it
suffices to study the semigroup (7 (¢))e>o -

To that purpose, we use spectral methods as developed in [22, Chapter IV] and cal-
culate first the resolvent set p(C) and the resolvent R(A,C) of the operator (C, D(C))
on the space £.

Lemma 4.1. For A € C with R\ > wy(Ty(-)), we have that
A € p(C) if and only if A € p(B + Pe,y).

Moreover, for these A € p(C) the resolvent R(\,C) is given by

(4 1) R\ = T T‘)\(I)R(/\, Gg)
' YT ary (end + Id R, Gy)

with vy == R(\, B + Pe,).
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Proof. 7 =7 Take A € p(C). Then, for all (§) € & there exists a unique () € D(C)
such that

v\ [y
» wa?)- (1)

The second component in this equality is equivalent to
(A -0)f =
In particular, for ¢ = 0 one has
(4.3) A-G)f =

which implies f = eyz. In fact, by Lemma 3.11, f := e,z solves (4.3) and (f— A)( )
z—x=0. Thus f — f € D(Gy) and, since (A — G)(f — f) = (A = Go)(f — f) =
we conclude that f = f.

Thus, the first component in (4.2) turns into

(4.4) A=B)x—®f =(A— B —d¢))x =y.

Since this equation has a unique solution for each y € X, it follows that A €
p(B + ®e)).

" <7 For A € p(B + ®¢,), the operator R, : £ — £, defined above, is bounded.
To show that it is the inverse of (A — C), we proceed as in Lemma 3.11.(ii). If

(%) € &, then
(%) = @+ ryPR(N, Go) f e D(C)
A f ENT AT -+ (6)\7’)\@ + Id)R()\7 G(])f

since ®¢, is a bounded operator and
(6)\7’)\1,' + (6)\7“)\@ + ]d)R()\, Go)f)((]) = T\T + T’)\q)R()\, Go)f

Moreover, it follows that

since

(/\ — B)(T‘)\.’L' —+ ’/’)\(I)R(/\, Gg)f) — Q)(GAT)\.’L' —+ (6)\7')\4) —+ [d)R()\, Go)f)
= (/\ — B - (I)G)\)T')\Q)R(A, Go)f — (I)R(/\7 G(])f + (/\ — B - (I)G)\)T')\.’L' =T
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and

()\ - G)(G)\T)\ﬂi + (6)\73\@ + ]d)R()\7 Gg)f)
= (/\ — G)G)\’/’)\.’E + ()\ — G)G)\T')\(I)R(/\, G(])f + (/\ - G)R()\, Go)f = f

As a result, we obtain (A — C)R, = Idg.
On the other hand, take (§) € D(C), thus f(0) = 2 € D(B) and f € D(G). It

follows that

since

(A — Blx—r\@f + PR\ Go)(AN—G)f
= (A =B)f(0) = r\®f + r\®R(\, Go)(A — G)(f — exf(0))
A(A=B)f(0) = @f)) + 1@ f — raPerf(0)
= ry\(A=B—=2®¢,)f(0)=x

I
<

and

6)\7’)\()\ — B)JI + R()\, Go)()\ — G)f
= an(A=B)f(0) + R, Go)(A = G)(f — exra(A = B) f(0))
6)\7’)\(>\ — B)f(()) + f - 6)\7')\(>\ — B)f((]) = f

O

We now generalize a result of A. Batkai and S. Piazzera (see [7, Lemma 4.3]) using
the following definition (see [3, Section V.1] or [50, Section 1.3]).

Definition 4.2. Let (A, D(A)) be the generator of a strongly continuous semigroup
on a Banach space X. The abscissa of uniform boundedness of the resolvent of
Ais

so(A) :=inf{w € R: {RX > w} C p(A) and sup ||R(N, A)|| < oo}
RA>w
It is shown in [50, Sections 1.2, 4.1] that

—00 < 5(A) < 50(A) < wp(4) < 0.
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In the following we assume that ® is as in Example 3.16, i.e,

af = /_(;fdn

for all f € Co(R_, X)NLP(R_,X), 1 < p < +oo, where  : R — L(X) is a
function of bounded variation such that |n[(R_) < +oo. In addition, we assume
that

(4.5) / o7 djy|(o) < +o0

—o0
for 2 + -5 = 1. By Theorem 3.15, our matrix (C, D(C)) is the generator of a strongly
continuous semigroup (7 (¢));>¢ on the Banach space £. For this generator we want
to estimate so(C).
To that purpose we assume that so(B) < 0 and wo(7p(-)) < 0. Moreover, we take
« < 0 such that
7 := max{so(B),wo(To(-))} < a

and define
ay = sup ||[(Peq i R(a + iw, B))"|| < +o0
w€eR
for each n € N.
Theorem 4.3. If
(4.6) Qo= ) n < +00,
0

then so(C) < a < 0.

Proof. The proof follows the idea of [5, Theorem 3.1]. Take A := +iw with § > a.
The functions A — ®ey and A — (PeyR(A, B))™ are analytic and, by our assumption
on so(B), bounded for R\ > a.

Since the suprema of bounded analytic functions along vertical lines RA =

decrease as ¢ increases (see [17, Chapter 6]), we obtain

sup ||(PestiwR(S + iw, B))"|| < a,, for each n e N.
w€eR
It follows that

R(B+iw. B) Y (PesriR(B + iw, B)))" € L(X)
n=0
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for > «a. In fact,

IR(B +iw, B) Y (®es1iwR(B+ iw, B)))"| < NZSUPH Peg i R(B + iw, B)))"||
n=0

n=0"

§NZan:Naa

with N := supg., [|[R(8 +iw, B)||.
It is easy to check that

+o00
R(B+iw, B) Y (PespinR(B+iw, B)))" = R(B + iw. B + Pegyi).

n=0

This implies that {f +iw € C: 8 > a} C p(C).
We now have to show that R(/ + iw,C) is bounded on the right halfplane deter-

mined by a. We already know that R(f + iw, B + ®es.4,) is uniformly bounded on
{8 > a}. Since a > wy(Ty(+)), the same holds for R(S + iw, Gy).
Finally, the function A — ®R(A, Gy) is bounded since

[ BRG] = H / RGO < [ 1RO Go1) )l
< / 0

‘ < /0 e (1) fds> (o) )

<[ ([ 100560+ s)lds ) dinlo

—00

<u, [ OO ([ e lsto+ sllas ) dio)
<, [ ° ([ 15+ 9las) dtalto
/ ( / 10t dlol(o)

< M, / 1210 dln] (o)

dln|(o)

| /\

0 1
< Mol fllrce / o7 djn)(0) < +oo

—oQ

for every A = 8+ iw with § > « and every f € LP(R_, X). Here, M, is a constant
such that ||U(r, s)|| < M,e=7).
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From Lemma 4.1 we know that the resolvent of C is given by (4.1). Since all
terms of this matrix remain bounded in the halfplane determined by «, we conclude
SUPgs, [[R(B + 1w, C)|| < oo, hence s¢(C) < a < 0. O

Here is a stronger, but simpler condition implying the same conclusion. Assume
that so(B) < 0 and wy(Ty(-)) < 0 and take o < 0 such that

7 := max{so(B),wo(To(-))} < a.
Corollary 4.4. If

(4.7) sup || PeqtiwR(a + iw, B)|| < 1,

weR
or, in particular, if

1
Sup,er || R(ar + iw, B)[|”

(4.8) sup || Peqriv]] <
weER

then so(C) < a < 0.

Proof. 1t holds that

(4.9)  ay, :=sup ||[(PeqtiwR(a + iw, B))"|| < sup || PeqriwR(a + iw, B)||" =: ¢",
weR weR

where, by assumption, ¢ < 1. Thus

+oo +00
(4.10) Zan < Zq" < +o0.
n=0 n=0
Applying the previous theorem, the assertion follows. O

Finally, using the theorem of Gearhart-Priiss-Greiner, we obtain the followig im-

mediate consequence.

Theorem 4.5. Consider E = L*(R_, X) for a Hilbert space X. Under the assump-
tions of Theorem 4.3, the semigroup (T (t))i>o is uniformly exponentially stable on
E, ie.,

wo(T(+)) < 0.

Similarly, one obtains a Hilbert space version of Corollary 4.4.
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4.1.1 Examples

In this subsection, we give two examples, where we always take & as in Example
3.16.

In the case that A(t) =0, i.e., U(t,s) = Id for all t < s <0, we are in the situation
amply studied by A. Bétkai and S. Piazzera on the compact interval [—1,0] (see,
e.g..[6] [7], [8]).

Example 1. Take A(t) = A to be the generator of a uniformly exponentially
stable Cp— semigroup (Q(t));>0 on a Hilbert space X. Let F := L*(R_, X) and
B a normal operator on X such that it is the generator of a strongly continuous
semigroup (S(t));>o with so(B) < 0. Take a < 0 such that

(4.11) 7 = max{so(B),wo(Q(:))} < a.

In this example, the regularity subspaces Y; coincide with D(A), the evolution
family U is given by U(t, s) = Q(s —t), and the operator G, generates the strongly

continuous semigroup (7o(t))s>o defined by

(To0)1)(7) = Q)T (0) ) () = 4 DI D T HE<0
0, T+1t>0.

With these assumptions, by Theorem 3.15, the matrix (C, D(C)) is the generator of
a strongly continuous semigroup, and the delay equation (NDE) is well-posed.

In order to show that this semigroup is uniformly exponentially stable, we have
to verify the convergence of the series in (4.6). Using that B is a normal operator

on a Hilbert space, we obtain that

1 1
S R ) ,B — - - = ,
Rl Bl = R o) ~ oD
(see [37, Section V.3.8]). In particular, if B is selfadjoint with compact resolvent,
then

) 1
sup || R(iw, B)|| = 7
weR |)‘1|

where \; is the largest eigenvalue of B.
Now, since U(t,s) = Q(s — t), the growth bound of U is equal to the growth
bound of (Q(t))+>0 and, by (4.11), & > wy(U). Thus there exists a positive constant
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M, > 1 such that [|U(r,s)|| < Ma,e**™"). Moreover for A = f + iw, where 3 > a,
one has

ex € Co(R_, X) N LP(R_, X).

Hence, it follows from the definition of ®, that

0

| Peqinll = ”81”11) | Pearivyl = HSIHJP | et (5, 0)ydn (o) ||
yl|=1 yl|=1 —00
(4.12) -
< / € Moe" djn| (o) = M| (R_ ).

Assume N := M, |n|(R_) < |so(B)| (or N < |A1]). Then the series in (4.6) converges
and, applying Theorem 4.5 or Corollary 4.4, we have that, if N < |so(B)| and

0
(4.13) / o7 djn| () < +oo,

then the semigroup (7 (t)):>o is uniformly exponentially stable, and the solutions of
(NDE) decay exponentially.

Example 2. Consider E := L*(R_, X) for a Hilbert space X. Take A(t) = a(t)B,
where a(-) € C(R_) with a(t) > 0 and (B, D(B)) is a normal operator on X such
that so(B) < 0. In this case, the evolution family is given by U(t,s) = el) o(1)4)B
and the regularity subspaces Y; coincide with D(B) for all ¢ < 0 (see [24, Example
4.7]). Moreover, the growth bound of (U(t, s)):<s<ois given by

1 s+h
wo(U) = inf sup <E/ a(a)da> Ao

h>0 44 p<0

where )\ is the largest eigenvalue of B.
Take a < 0 such that

7 :=max{so(B),wo(U)} < a.

Under the above assumptions, the operator (C, D(C)) is the generator of a strongly
continuous semigroup (7 ())s>o. Thus (NDE) is well-posed.
In order to find conditions implying that this semigroup is uniformly exponentially

stable, we can proceed as in Example 1.
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4.2 The Spectral Mapping Theorem

In this section we return to general Banach spaces and prove a spectral mapping
theorem for the semigroup (7(t));>0 . To do this we use the representation of
(T(t))i>0 by the Dyson-Phillips series and make the following assumption slightly
stronger than condition (M) in Theorem 3.15 (compare [67]).

Assumption 4.6. There exists a function ¢ : Ry — R, satisfying lim; ,o¢(¢) = 0
such that

(4.14) /0||<1>(57~1f+T0( Plidr < a@) [|(7)]

for ¢ > 0 and each (7) € D(Co).
Remark 4.7. The concrete delay operators of Remark 3.17 even satisfy (4.14).

By the perturbation theorem of Miyadera-Voigt we then know that (Co+F, D(Cy))
generates a strongly continuous semigroup (7(t)):>o on £ given by the Dyson-

Phillips series

8

+

T(t) =) Tal(t)

3
Il
=)

for all t > 0, where

) =/0 Tt — $)FTo(s) () ds

for ¢ > 0 and each (7) € D(Co). Thus (NDE) is well-posed.
Now, let R(-) be a norm continuous function from R, to £(X) and define the
function
[0,+00) 5t Ry € L(X, E)

by
U(s,0)R(t+ s)x fort+s>0,
(Riz)(s) ==

0 elsewhere.

Then we can prove the following lemma.

Lemma 4.8. The function [0,4+00) 3t — R, € L(X, E) is norm continuous.
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Proof. Let t > 0, M = sup,¢joq [[R(¢)|| and 1 > h > 0. One has

lim || Ry, — By = lim sup ( / (Boonz) — (Rtm)fng(m)
R_

h=0j2)<1

—t
= lim sup </ WU(7,0)R(t + h + 7)z|Pdr

st lall<t \J —(t+h)

RS =

+ [ 10t o)A+ b 7y - U 0)R( -+ el

—t
< lim sup ( / (Me || R(t + h+ 7| ] Pdr
h=01jz<1 \J —(t+h)

Flel? [ IO IRG -+ o+ - R+

i ;
< lim sup M, ||z||e/“It+") </ ||R(t+h+f)||pd7>

h=0 |l <1 —(t+h)

0 P
+ lim sup M, |z (/ e “||R(t + h+ 7) —R(t+T)deT>

h=0z)|<1

< ’lllmM elwlt+h) </ ||R(o |pd0>
%

1
0 P
+ lim M, el (/ |R(t+h+7)— R(t+ T)Ilpd7>

< lim M|, @) prp,
h—0

1
0 P
4 lim M, el“!t (/ |R(t+h+7)— R(t+ T)Ilpd7>
h—0 —t

This last term tends to zero as h — 0" since R(-) is uniformly norm continuous

on compact intervals. The proof for h — 0~ is similar.
O

In order to obtain a spectral mapping theorem, we need an assumption on the
semigroup without delay, i.e., on the semigroup (S(t)):>o generated by B. The
following turns out to be appropriate.

(4.15)
(B, D(B)) generates an immediately norm continuous semigroup (S(t)):>o on X.
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and

for t > 0, where S; is defined as in Proposition 3.12.

Remark 4.9. (1) It is easy to prove that (V(t));>0 is a semigroup and

V(t)=To(t) + Q(t) forall ¢t>0.
(2) Since (S(t))s>0 is immediately norm continuous, it follows from Lemma 4.8 that
the function ¢ — Q(t) is norm continuous from (0, +o0) to L(E).

In the next step, we extend both semigroups (74(t))¢>0 and (V/(t))s>0 to semigroups
To = (;,Va(t))tz(] and V := (V(t))tz(] on & (for definition see Section 2.3) and show

that their spaces of strong continuity coincide.
Lemma 4.10. We have gff = 5%

Proof. Using the definitions of (V' (t));>0 and (7o(t))s>0, we obtain

i S(hyz — 5
)0 )N 1)

< [|She]l-

However,

0
ISialey= [ WSwadDlPdr = [ [0(r0)S(h-+ r)apar
(4.16) . -
S/ MPeTP MEPPATIP|| g|Pdr < CPePPIIHD R 2|2,
—h

where w and M, are such that ||U(t,s)|| < M,e*® for t < s < 0, M5 and @ are
such that [|S(¢)|| < Mgze® for t > 0 and C' := M_,M;. Clearly, the last term tends
to zero as h 0. U

The next lemma relates the semigroup (75(t)):>o and the operators Q(t). This

relation will be used in Proposition 4.12.
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Lemma 4.11. With the above definitions we have
lim [ To(h)Q(t) — Q(t+h)|| =0 for all t > 0.

710

Proof. Using the definitions of (75(t))+>0 and Q(t) we have

S(h) 0 0 0\ (=
- s an (% 03 ( ) ()
(%) Sy To(h) Sy 0) \ f

g

0 0 T
\ =S 0) \7
0

—TO (t)StJI + SH_hLE

= sup
(7)

Since, see Proposition 3.12, Si,; = S,S(t) + To(h)S;, we obtain

0 B 0
—To(t)Six + Senz ) || ||\ SpS(t)x

for all z € X. As in Lemma 4.10 we can prove that

-

1508 ()2 1o x) < Cele®HOllpp ),

hence
sup ||SpS(t)z| zrr_ x) < CehllehtDlelpy
ll=ll<1
which tends to zero as h \, 0. O

The following proposition gives a relation between the critical spectrum of
(V(t))i=0 and (To(t))i>0 - In the proof we follow the idea of [11, Theorem 4.5].

Proposition 4.12. The critical spectrum of the semigroup (V (t))i>o is equal to the

critical spectrum of (To(t))i>o , i.e..

Oerit(V (1)) = 0erir(To(t))

fort > 0.
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Proof. Using the norm continuity of Q(¢) and Lemma 4.11, we obtain
lim [[7o(R)Q(t) — QO < 1im([[To(R)Q(t) — Q(t + Al + [|Q(t + ) — QM)[]) =0

for every t > 0. This implies that Q() maps € into &, hence Q(t) = 0 for ¢ > 0.

Therefore, we have
and hence

for t > 0. O

We can now relate the critical spectrum of (75(¢))>0 to the critical spectrum of
(To(t)) =0 -

Theorem 4.13. The critical spectra of the semigroups (To(t))i>0 on & and (To(t))i>0
on IP(R_, X) coincide, i.e.,

Terit(To(t)) = erit(To(t))
fort > 0.
Proof. By Remark 4.9.1, we know that
V(t) = To(t) + Q1)
and, using Proposition 4.12, we have
Terit (V (1)) = Ocrit (To(t))-
By the immediate norm continuity of (S(t)):>o , one has
Terit (V () = Oerit (To (1)) U it (S(t)) = Oerie(To () U {0} = it (To (#))-

Hence, the thesis follows.
]

Using the previous theorem and Theorem 2.20, the following result is immediate.
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Corollary 4.14. The critical spectrum of (To(t))i>0 is equal to the spectrum of the

backward evolution semigroup (To(t))i>o . i-e€.,
Ucrit(%(t)) = U(TU (t))
fort > 0.

We now prove that the first term 7;(¢) of the Dyson-Phillips series of (7 (t))>¢ is

norm continuous.

Proposition 4.15. The function
t— T1(t)
is morm continuous for t > 0.

Proof. The first Dyson-Phillips term 7;(¢) applied to (?) € D(Cp) yields

Tt (f> - / ot — ) FTo(s) (f> ds
[T [St—ys) 0 0 @\ [S(s)x 0 p
- /0 S,y Toit—=s)\o o)\ sz T
B /t S(t—s) 0
N 0 Si_s To(t — s)

B /t S(t— s)®(Ssz + To(s)f) ds
0 St—:;q)(‘ssﬂj + TO(S)f) ‘

We will prove norm continuity of both components separately.
(1): Let ¢t > 0,1 > h > 0. Then

/Hh S(t +h — s)®(Ssz +To(s)f) ds — /t S(t—s)®(Ssx+ To(s)f)ds

/tS(t + h —s5)®(Ssx + To(s) f) ds

+ t+hS(t+h—S)q)(SsiE—f—T(](S)f)dS—/IS(t—S)CI)(Ss$+T0(S)f)d8

< [ S+ k=) = S = (S + To(o) 1)

+ [ IS+ h= )9S + To(s) )l ds.
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By the change of variable s := 7 + ¢, we obtain that the first term is equal to
t
/ |IS(t+h—s)—S(t—s)||[|P(Ssz + To(s)f)] ds
0
h
+ [T1S= ) @( 100+ Tatr + 011 e

/||St+h—s S(t — 8)|[|8(S,z + To(s) £)|| ds

1G)

By condition (4.14), the Lebesgue dominated convergence theorem and by the

tends to zero as h — 0 uniformly for (§) € D(Co), ||(7)]| < 1.
For h — 07, the proof is analogous. Since D(B) is dense in &, it follows that the

+ sup |S(r)[q(h
0<r<1

immediate norm continuity of (S(t));>, we have that

/0 1S+ 1 = 5) = St = )| ®(Ssz + To(s) f)llds + sup [[S(r)lg(h

<r<1

first component of 7;(¢) is immediately norm continuous.
(2): For the second component we can proceed in a similar way, but we have to use
the norm continuity of the function ¢ — S; proved in Lemma 4.8.
Hence the map t — 7;(¢) is norm continuous.
O

Proposition 4.16. Under the assumption 4.15, the critical spectra of the perturbed
semigroup (T (t))i>0 and of the unperturbed semigroup (To(t))i>0 concide, i.e.,

(417) Ucm’t(T(t)) = Ucrit(%(t))'

Proof. Let Ry(t) := Y72, T;(t). By the previous proposition, the function ¢ + 71 (t)
is norm continuous. Hence, by [11, Proposition 4.7], the map

(4.18) t— Ry(t)

is norm continuous.
Since B satisfies the Assumption 4.6, a result of S. Brendle, R. Nagel and J.
Poland (see [11, Theorem 4.5]) implies the equality (4.17). O
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We are now ready to prove the spectral mapping theorem for the semigroup

(T())ezo0 -

Theorem 4.17. If B generates an immediately norm continuous semigroup and ¢

satisfies the stronger Miyadera-Voigt condition (see Assumption 4.6), then
(4.19) a(T(1)) \ {0} = " ua(To(t)) \ {0}
fort > 0.
Proof. By the previous remark, we have that
(4.20) Oarit (T (1)) = Ocrit(To(2))-
Thus, applying [11, Corollary 4.6], one has
a(T () \ {0} = €79 U oeie(To(1)) \ {0}.

By Theorem 4.13, we know that

Ucrit(f,a (t)) = Ucrit(TU (t))
for ¢t > 0, thus the assertion follows. O

The right hand side of (4.19) determines o(7 (t)) in a very satisfactory way. In-

deed, o(C) and €*(©) can be calculated via Lemma 4.1, while
o(To(t)) = {A € C: |A| < 0@}

by Theorem 2.19.

4.3 Stability on Banach Spaces

In the first section of this chapter we studied the stability for the semigroup cor-
responding to the delay equation (NDE) in a Hilbert space. In this section we
assume that £ is a Banach space and use the perturbation results due to S. Brendle,
R. Nagel and J. Poland on the critical growth bound (see [11]).

Lemma 4.1 is helpful to compute the spectral bound of the operator C. However,

in general, one has only

(4.21) 5(C) < wo(T)
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and by [48, Proposition 4.3],
(4.22) wo(T(+)) = max{s(C), weait(T(-))}

It follows from Proposition 4.16 and Theorem 4.13 that weit (7 (+)) = wo(U), hence

we obtain the following result.

Theorem 4.18. The growth bound of T is given by
wo(T(-)) = max{s(C),wo(U)}.

This theorem is nice because wq(U) depends only on the modification in the past,
while the spectral bound s(C) of the operator C can be computed using Lemma 4.1
and depends on B and ®.

However, the determination of all A € o(B + ®¢,) remains a very difficult task. In

this case the positivity is helpful as we can see in the next section.

4.3.1 Example

Let X be the Hilbert space L?[0,1], E := LP(R_, X) and B the Dirichlet Laplacian,
i.e., Bf :== Af with domain D(B) := {f € H?[0,1] : f(0) = f(1) = 0}. This
operator generates a positive analytic semigroup (S(t))i>0 with wei(S(t)) = —o0.
Moreover, the regularity subspaces Y; (see Remark 2.13) coincide with D(B) (see
[24, Example 4.7]). As in [10, Example 5] we define the operators A(s) as

where 0 < a(-) € C(R_). We recall that these operators generate a backward evolu-
tion family (U(t, s))i<s<o given by

U(t, s) = el a@dna -y < g <.

Since
Ut 9] = el e

where \g is the largest eigenvalue of A, we can compute directly the growth bound
Of (U(t, S))tﬁsgﬂ-
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Proposition 4.19 (see [10], Example 5). The growth bound of (U(t,s))i<s<o is

given by
1 s+h
wo(U) = inf sup <E/ a(a)d0> Ao-

h>0 44 p<o

Define the delay operator ® as in Remark 3.17, i.e.,

(4.23) Of = /_0 o(s)f(s)ds

for f € Co(R_, X)NLP(R_, X), where 0 < ¢(-) € L*(R_). Then @ fulfills condition
(M) (see [25, Example 4.6]). With these assumptions the operator (C, D(C)) is well
defined and is the generator of a strongly continuous semigroup 7 on £. Using the

positivity of (S(t)):>o and ®, we can prove, as in [10], the following result.

Proposition 4.20. The spectral bound s(C) of the generator C is the unique solution

of the equation

0
Ao + / B(s)eN el a0 gg — )
—00

Proof. By definition, we have

0 0

B+ ®ey, = A +/ p(s)eMells o)A g
—00
Using the spectral mapping theorem for selfadjoint operators, this implies
0 0
s$(B + ®ey) = Ao + / (;5(8)6)‘8€(f5 a(o)da)kod‘.;7
—00

where ) is the largest eigenvalue of A.

Since the function
0
A g + / B(5)eNells @)oo g
—00

is continuous and strictly decreasing, the spectral bound s(C) is the unique solution

of the equation

0
Ao+ / $(s)eMells a1 gs = .
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Moreover, one shows as in [22, Theorem VI.6.14] that
s(C) <0< s(B+ Pe) <0

<:>>\0+/ P(s (@)do)do gg < ().

By Theorem 4.18, we then obtain that the growth bound wy(7(-)) of the semigroup
(T (t))e>0 is given as

wo(T(+)) = max{s(C), wo(U)}-

Since wg(U) is less than 0, then the semigroup (7 (t)):>o is uniformly exponentially
stable if and only if

Ao —|—/ QS dUAOdS < 0.



Chapter 5
Applications

In this final chapter we apply the theory developed in the previous chapters to the

two examples presented in Chapter 1.

5.1 A Population Equation with Diffusion as a

Delay Equation with Nonautonomous Past

In Section 1.1 we have seen that the population equation studied by K. J. Engel and
R. Nagel in [22] or J. Wu in [70] is not realistic since the delay term u(t + s, x), s €
[r, 0], is not submitted to a migration process. To include such a phenomenon in our
model, we suppose, for simplicity, that this migration is given by a diffusion of the
form 2, where ,A is the Laplacian with Dirichlet boundary conditions (we write
»A to underline the fact that this diffusion is in the past).

To be more precise, we take the state space X := L'[0,1] and the Laplacian ,A

with domain
D(,A) = {f € W*'[0,1]: f(0) = f(1) = O}
Then the evolution family solving the corresponding Cauchy problem (see [25, Ex-
ample 6.1]) is
Ulr,s) =T(s—r), r<s<0,

where (T(t))ss0 = (€'7®)>0 is the heat semigroup in L'[0, 1]. Observe that wy(U) =
wo(T(-)) < 0. Thus the modification of u(t + s,z), s € [r,0], governed by this
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evolution family becomes
- U(s,s+t)f(s+1t), s+t<0 T(—=s)f(t+s), s+t<0,
u(t +s) := =
U(s,0)u(s+t), s+t>0 T(t)u(t+ s), s+t>0.

In order to rewrite (1.2) as a delay equation with nonautonomous past we make the
following assumptions and definitions.

General assumptions 5.1. (1) The mortality rate d is a nonnegative continuous
function from [0, 1] to R,.

(2) The birth rate depends on the state space variable and on the time. Moreover
b(-,-) is a positive function such that b(-,x) € L*(R_) for each = € [0,1] and
b(s,-) € C(]0,1]) for each s < 0.

General definitions 5.2. (1) As state space we take X := L'[0, 1].

(2) Let B := A, — My, where A, denotes the Laplacian operator on
D(A;) ={f € W*'0.1] : f'(0) = f'(1) = 0},

and M, is the multiplication operator induced by the continuous function d :
[0,1] — Ry, with D(M,) := X.

(3) Take (®f)(s) := ffoo b(s)f(s)ds, where f € Co(R_, X)NLP(R_, X), and b(s) :=
b(s,-).

Remark 5.3. The Neumann Laplacian A, in the General definitions 5.2 is different
from the Dirichlet Laplacian ,A that governs the diffusion in the past.

Reassuming, our population equation becomes

(5.1) %u(tjx) = aa—;u(t, z) —d(z)u(t, ) +/ b(s,z)u(t + s,x)ds,

— 00

fort >0,s <0andz € [0,1].
With the General assumptions 5.1 we can rewrite (5.1) as (NDE), in fact it
satisfies the General assumptions 3.1, in particular, for the first one, we refer to the

following proposition.
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Proposition 5.4. The operator (B, D(B)) is the generator of a strongly continuous

semigroup (S(t))i>o . Moreover (S(t))i>0 is a contractive semigroup.

Proof. Since the function d is bounded and D(M,) = X, by [22, Proposition 1.4.2],
M, is bounded.

Moreover, the Laplacian operator (A,, D(A,)) generates the heat semigroup
(T(t))t>0 on X. As we know

(5.2) IT@)|| <1 Vi>o0.

Thus, applying the bounded perturbation theorem (see, e.g. [22, Theorem
I11.1.3]), the operator

(5.3) B=A,— M, with D(B)=D(A,)
generates a Cy—semigroup (S(t))¢>o . Moreover
IS = fle" @ M| < [l | = T <1 V= 0.
U

Our aim is to prove that there is a solution of (NDE). According to Theorem
3.6, we have to show the the operator matrix (C, D(C)) is the generator of a strongly
continuous semigroup (7 (¢)):>o . By Theorem 3.15, it is sufficent to show that the
operator ® satisfies the Miyadera-Voigt condition or the stronger one (see Assump-
tion 4.6). At the same way of Example 3.16, one can prove that there exists a
function ¢ : Ry — R, , defined by ¢(t) := ||b||1tz% such that lim;_, ¢(¢) = 0 and

¢
(5.4 [ 1052+ Tt )l < a7
for ¢ > 0 and each (7) € D(C), where in this case

(5.5) (S,z)(7) := T(=7)S(r+7)z, r+72>0,

0, elsewhere,

T(r)f(r+71), r+71<0,
0, r+717>0,

(To(r) f)(7) =
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for f € LP(R_, X), and p’ is such that %%— i =1.

Thanks to perturbation theorem of Miyadera-Voigt, we can say that for each
initial values (7) € D(C) there exists a solution of (NDFE) and hence a solution of
(5.1).

In order to study the stability of this solution, we use a result obtained in Chapter

4, but before we make some remarks.

Remark 5.5. (1) Since the heat semigroup is analytic, the semigroup (S(t)):>o is
analytic (see, e.g., [22, Theorem II1.1.12]).

(2) Using the positivity e’®s and e, we can prove that the semigroup (S(¢))i>o
is positive by the Trotter product formula. Thus also the semigroup (7o(%))>0
and using [22, Theorem VI.6.11], we have the positivity of (7(t));>o too.

In Chapter 4, Theorem 4.18 it is proved that if (S(¢));>¢ is immediately norm

continuous then the growth bound of 7 is given by
(5.6) wo(T) = max{s(C),wo(U)}.

Since wo(U) < 0, where, we recall, (U(t, s))i<s<o is the evolution family associated
to ,A, then, by (4.18)

(5.7) wo(T) <0 ifand only if s(C) < 0.

Using again the positivity of (S(¢));>¢ and b, we can prove, as in Proposition 4.20,

the following result.

Proposition 5.6. The spectral bound s(C) of the generator C is the unique solution

of the equation

0
(58) Ao — Yo + / b(S)e()\i)\O)sds = )\,

oo

where \g is largest eigenvalue of A and o is the smallest spectral value of M.
Moreover
s(C) <0< s(B+Pe) <0

0
< Xo— 70+ / b(s)e M*ds < 0.

—OoQ
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So the solution of (NDFE) is uniformly exponentially stable if and only if \g —
Yo + fi)oo b(s)e *0*ds < 0. But, as we known, \g = 0, thus

0 0
Ao =% +/ b(s)e™%ds = = +/ b(s)ds = =0 +[|blls <0 = bl < 0.

This means that if the norm of the birth rate [[blj;y < inf,cjo1d(z), then the
solution of (NDE) is uniformly exponentially stable.

5.1.1 A Non Constant Diffusion in the Past

Assume, now, that the diffusion in the past is not constant, i.e., it is governed by
the operators A(t) := a(t)(,A), where 0 < a(-) € C(R_) and ,A is the Dirichlet
Laplacian as before. In this case the evolution family associated to these operators
is
(5.9) U(t,s) = el alo)dolsa

Since the norm of the evolution family is

(5.10) |U(t,s)]| = et a(0)do) N

where ), is the largest eigenvalue of ,A, we can compute directly the growth bound
Of (U(t, 8))t§s§0-

Proposition 5.7 (see [10], Example 5). The growth bound of (U(t,s))i<s<o 1S
given by

1 s+h
wo(U) = inf sup <E/ a(a)da) Aops

h20 54 p<0

Since ,A is the Dirichlet Laplacian, then \g, = —72 and wy(U) < 0.

Under the General assumptions 5.1, we can prove again that the operator @
satisfies the stronger Miyadera-Voigt condition, where the function ¢ : R, — R, is
defined by ¢(t) := ||b||1e*”2Ltt1% and L; is a positive constant such that 0 < a(7) < L;
for 7 € [—t,0].

By the perturbation theorem of Miyadera-Voigt, one has that there exists a solu-
tion of (NDE). To discuss the stability we proceed as before.

Using the positivity of (S(t))i>o and @, as in Proposition 4.20 we can prove the

following result.
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Proposition 5.8. The spectral bound s(C) of the generator C is the unique solution

of the equation

0
(5.11) Ao — Yo + / b(s)er el a@)n)do gg — ),

—OoQ

Moreover
s(C) <0< s(B+Pe) <0

0
& Ao — 70+ / b(s)ells a@))o gg g
Since again wo(U) < 0, then the semigroup (7 (t))s>o is uniformly exponentially
stable if and only if A\g — o + ffoo b(s)e(fs0 a(9)do)ho s < ().
Now, Ag = 0, so

0

S(C) < 0 & —, +/ b(s)ds < 0 bl < 7o,

—OoQ

as before.

5.2 Genetic Repression as a Delay Equation with

Nonautonomous Past

In the first chapter we have seen that the genetic repression proposed by J.M.
Mahaffy, C.V.Pao in [41] or J. Wu in [70] is not realistic since the delay term uy(t +
r, x), T9 < 0, is submitted to a migration process. Assume, for simplicity, that this
diffusion is constant (if it is not constant we can procede as in the Section 5.1.1),

i.e., it is given by e'*®) where, as in Section 5.1, »A is the Laplacian with domain

D(,A) = {f € W*[0,1] : £(0) = f(1) = 0}.

Again we write ,A to underline the fact that this diffusion is in the past. As
for the population equation, the backward evolution family (see [25, Example 6.1])
associated to this diffusion in the past is given by U(t, s) = T'(s—t), t < s < 0, where
(T(t))i>0 = (e'"®)4> is the heat semigroup. Thus the modification of us(t + 72, z)
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governed by (U(t, s))i<s<o becomes

- U(Tg,O)Ug(t+T2), 0§7‘2+t,
Us(t +12) 1 =
U(Tg,t+T2)f2(t+T2)7 T2+t§0,
(5.12)
. T(—’/’g)Ug(t + 7’2), 0 S To + t,
T(t)fo(t + 1), ro +t < 0.

Extending the evolution family (U(¢, s))i<s<o to all of R, we obtain the same situ-
ation as in Definition 3.2.

The problem now is to rewrite the genetic repression as a delay equation of the
form (NDE). To this end we make the following definitions.

General definitions 5.9. (1) As state space we choose X := R* x (L0, 1])%

(2) Take the function L : (W?1[0,1])*> — R* defined by

f(1)
f 9'(1)
(5.13) L = |4
9 B9+ f(0)
o2+ 9(0)
(3) Let
0 0 0 0 0 0
0 0 0 0 0 0
00 —b— 0 0
(5.14) B = 1o flo ,
0 0 0 —by — as 0 asmno
0 0 0 0 DA — by 0
0 0 0 0 0 DyA — by
with domain
b o
D(B) := y | ERY x (WAH01)2: L(]) = <b>
f Yy
g9

where 1o f := f(0), for f € C[0,1] and A denotes the Laplacian.
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(4) Let ® : WhP([—1,0], X) — X given by

000 0 0 0
000 0 0 0
(5.15) o, |00 0 h 0 0
000 0 0
000 0 0
000 0 cby, O

where we recall that (ho, vy, = , if we assume, for simplicity,

1+ k(ve(t —1))°
that ry = ry = —1.

Let now
a
b
U1 (t)
5.16 Ut) =
(5.16) 0=
us(t)
va(t)
and consider the delay equation
(5.17) U(t) = BU(t) + dUy, >0,
where
a
b
(5.18) U= |
Ult
Uz,
’U2t

The equation (5.17) is of the form (NDFE) and one can prove easily that, if
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a = b =0, a solution of (5.17) is also a solution of the genetic repression

duq (t
“;t( .- h(vi(t — 1)) = brua (t) + a1 (ua(t,0) — wa (1)),
duq (t
,U;Zt( ) = —bzvl(t) + Clz(?)g(t, 0) — Ul(t)),
(5.19) Qus(t,x) D Dus(t, ) ~ byua(t,2)
ot el N
L ”28t’x =D, v;xz,x — byva(t, ) + colla(t — 1, ),
with boundary conditions
Bus(t,0
2Dy n(t,0) — (1),
81}2 (t7 0) *
(520) T = _61 (1)2(ta 0) - Ul(t))a
Qus(t, 1) Oua(t1) .
or  Or

Moreover assume that the genetic repression satisfies the following initial condi-

tions
(w(s) = ().
(5.21) v1(s) = g1(s),
us(s, ) = fa(s, ),
(v2(5. ) = g2(5. 1),

for z € [0,1] and s € [—1,0].

Now we have to prove that (B, D(B)) is the generator of a strongly continuous
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semigroup. To this end we rewrite B in the form

0000 0 0 0000 0 0

0000 0 0 0000 0 0
Bofio_m_ |0 000 0 0 10000 an O

0000 0O 0 0000 0 am

0000 DiA 0 0000 0 0

0000 0 DA 0000 0 0

00 0 0 0 0

00 0 0 0

00 by+a; 0 0 0

oo 0 bta 0 0f°

00 0 0 b 0

00 0 0 0 b

with domains D(By) = D(B), D(©) = R* x (W'10,1])? and II € £(X). Let

D
B, — 1A 0
0 DA

and By := B By [22, Chapter VI, Section 4] B, generates a strongly contin-
uous positive semigroup (So(t))i>o.
Applying a result of V. Casarino, K.-J. Engel, R. Nagel and G. Nickel (see [14,

Corollary 2.8]), one obtains that (By, D(B,)) generates an analytic semigroup.

M Ker L*

Lemma 5.10. The operator © is By—bounded, having By—bound ag = 0.

Proof. Obviously, D(B,) C D(0) and for

b
Y = gm; - D(Bg),
]
we have
0
a 00)
OV = a;ﬁ((o) < lar f(O)[| + [[azg(0)]].
0
Since
0
0
1BVII= || o |-
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it sufficies to prove that for arbitrary small a,b > 0 there exist constants ¢, d € Ry,
such that [[f(0)[| < allf"[lx + 6]l fllx and [|g(0)|| < ¢[[f"llx + dl|f]lx-

Using the fundamental theorem of calculus and the fact that the operator T is
x
2 2

d d
p—bounded with ﬁ—bound (see [22, Example II1.2.2]), the assertion follows.

x x
U

The following proposition is now a consequence of [22, Theorem I11.2.10].

Proposition 5.11. The operator (B, D(B)) generates a positive analytic semigroup
(S(t))tz() on X.

Proof. From the previous proposition, the operator © is By—bounded with
By—bound ay = 0. Using [22, Theorem II1.2.10], one has that B;+© is the generator
of an analytic semigroup. Since IT € £(X), by [22, Theorem III.1.3], the operator
(B, D(B)) is the generator of a strongly continuous semigroup (S(¢))s>o -
Moreover, by [22, Proposition I11.1.12], (S(t)):>0 is analytic, while [14, Proposition
5.2] implies that it is positive as well. O

Remark 5.12. Observe that the delay operator ® is not linear, so we have to
linearize it with respect to the steady-state solutions. To find these solutions it
sufficies to set the time derivatives of the genetic repression equal to zero (see [41]
for details).

The linearization of ® about the equilibrium can be written as

000 0 0
000 0 0
@::0 00 hoqy 0 O |
000 0 0
000 O 0 0
000 0 g 0

where A is the linearization of h about the equilibrium v and it is given by
(5.22) h(vy(t — 1)) = h(v)vy (t — 1).

Note that h'(v]) < 0 since h is a decreasing function.
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Thus we can rewrite the linearized genetic repression as a delay equation with

nonautonomous past

U(t) = BU(t) + DU,
(5.23) U0 =ye X
U = f € L*(]-1,0], X).

To present the equation (5.23) as an abstract Cauchy problem, we consider the

operator matrix

B @
(5.24) C:= (0 Q) ,

with domain
(5.25) D(C):={(}7) € D(B) x D(G) : f(0) =y}

on the product space £ := X x LP(|—1,0], X ), where

o o o o o o
o o o o o o
o o Oofx o o

o ofk o o o
o Q) o o o o

o ©o o o ©

with domain
D(G) := (L*([-1,0])* x (W'?[-1,0])® x D(G) x W'P([-1,0], L*[0,1]).

Here the operator (G, D(G)) is defined as in Definition 2.6. If we take the operator
Go defined by

Go :

o O O O

o Oofk o o o
@
o

I
o o o o o o
o o o o o o
o o ofar o o

o
§r o o o o o
)



5.2 Genetic Repression as a Delay Equation with Nonautonomous Past 69

with D(Go) = (LP([~1,0])2 x (W'([~1,0])% x D(Go) x W([~1,0], L'[0,1]), then

it generates a strongly continuous semigroup (Wo(t))s>o. given by

Id 0 0 0 0 0
0 Id 0 0 0 0
Wolt)i= | © T(t) 0 0 0
00 0 Tt 0 0
00 0 0 T 0
00 0 0 0 T

Here the operator (G, D(Gy)) and the semigroups (To(t)):>0 and (T;(t)):>o are de-

fined as in Lemma 2.9 and in Lemma 2.8, respectively. The operator Cy defined

by
Co = B 0 |
0 Go

with D(Cy) = D(C), generates a strongly continuous semigroup (7o(t)):>0, given by

_[S@) o0
Tott) = ( s Wo(t)>'

Let 0 <t <1 and ¢(t) := chtpi’, where P := ||h(m4(f(—1)))| and %%—i = 1.

Then, using the fact that h is decreasing, one has
[ 1S+ Walrh)dr < [ 1bos(ma(S,) + maOW) )
0 0
b [ leadalms(Sez) + ms W) )l
Ot 7
h — d
< / |A(ma(f(r = 1)) dr
o [ N0 =D)L 156 = Dl
0
h — 1))l —1)||d
< [ ittt = )l -+ o [ 5= Dlar

1
o

< / |B(ra( F(=1))) ldr + col [1£7

< Pt+ col|f||t?
1
< Peot? (||yll + [ £1])

=
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for all (%) € D(Co).

By the perturbation theorem of Miyadera-Voigt, there exists a solution of (5.23)
and hence a solution of (5.19).

For the stability of the solutions of (5.23), one can proceed as in the previous
section. Also in this case wo(U) < 0. Thus the semigroup (7 (¢))+>o decays expo-
nentially if and only if s(C) < 0.
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