
Improved Collision Detection and

Response Techniques for Cloth Animation

Johannes Mezger, Stefan Kimmerle, Olaf Etzmuß

WSI-2002-5
August 2002

Graphisch-Interaktive Systeme
Wilhelm-Schickard-Institut

Universität Tübingen
D-72076 Tübingen, Germany

e-mail: {mezger,kimmerle,etzmuss}@gris.uni-tuebingen.de
WWW: http://www.gris.uni-tuebingen.de

c© WSI 2002
ISSN 0946-3852

Improved Collision Detection and Response Techniques for Cloth

Animation

Johannes Mezger, Stefan Kimmerle, Olaf Etzmuß
WSI/GRIS

University of Tübingen
Sand 14, 72076 Tübingen, Germany

email: {jmezger,kimmerle,etzmuss}@gris.uni-tuebingen.de

Abstract

In the animation of deformable objects, collision
detection and response are crucial for the perfor-
mance. Contrary to volumetric bodies, the accu-
racy requirements for the collision treatment of tex-
tiles are particularly strict because any overlapping
is visible. Therefore, we apply methods specifically
designed for deformable surfaces that speed up the
collision detection.

In this paper the efficiency of bounding volume
hierarchies is improved by adapted techniques for
building and traversing these hierarchies. An ex-
tended set of heuristics is described that allows to
prune the hierarchy. Oriented inflation of bound-
ing volumes enables us to detect proximities with
a minimum of extra cost. Eventually, the distance
of the mesh faces is computed accurately, and con-
straints respond to the collisions.

CR Categories:

I.3.5 [Computational Geometry and Object Mod-
eling]: Object hierarchies, Physically based
modeling

I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

Keywords:

Cloth Simulation, Collision Detection, Collision
Response.

1 Introduction

A physically correct cloth simulation requires col-
lision avoidance and therefore an effectively robust

detection system. Each penetration violates real-
ity and often results in expensive correction proce-
dures. As collision detection has to be performed
at discrete points of the simulation time, the size of
the simulation time step must be limited such that
collisions can be correctly detected and resolved in
between.

Since much progress has been achieved in im-
proving the numerical solution, most animations
employ large time steps for fast simulations. How-
ever, large time steps make the collision detection
and response more difficult because the movement
during one time step can be significant. The best
solution to accommodate this is the early detection
of collisions in a specified collision region around
the object. Collision detection algorithms must
be extended to detect such proximity also. More-
over, the collision response schemes need to adapt
to large time steps and avoid interpenetration of
the collision objects while still allowing realistically
close distances between them.

In this paper we employ the notion of object-
based hierarchies, first applied to cloth modelling
by Volino et al. [28]. The hierarchical representa-
tions of all objects, including the deformable sur-
faces of arbitrary meshed textiles are built in a pre-
processing step. We will study and evaluate differ-
ent techniques to improve the hierarchy generation
and to speed up the updating and traversal of the
trees. In order to save computation time, several
heuristics are used to prune the trees, including cur-
vature and coherence criteria.

As not only collisions but also proximities are
to be detected, the bounding volumes are inflated.
In order to minimize additional overlapping of the

1

bounding volumes, the inflation is oriented in the
direction of high velocity.

Accurate collision response is only possible with
a measure of the distance between the mesh faces.
There are several algorithms that can compute this
distance with only very few iterations. Using the
distance of the faces, an adaptive, constraint-based
collision response approach is employed to avoid in-
terpenetrations. To model resting contacts between
close objects, the collision response is scaled by the
relative velocity of the colliding faces.

2 Previous Work

Many collision detection methods for various pur-
poses have been developed in the past [22]. Some of
them are employed and adapted for the particular
requirements of cloth modelling.

Collision detection for convex polyhedra has been
extensively studied and is based on the GJK-
Algorithm [12], Lin-Canny-Algorithm [21] or V-
Clip [24]. Non-convex objects can be decomposed
into convex parts [10, 9]. R-trees [14] provide
the theoretical basics for bounding volume hierar-
chies [3, 13, 20, 19, 16, 26], which are mostly used
to generate hierarchical representations of complex
meshes. In addition, possibly colliding objects are
identified by Sweep-and-Prune strategies [5]. As
opposed to bounding volume hierarchies, regular
grids partition the scene into voxels [4, 32]. Al-
ternatively, graphics hardware [1] can be employed
to detect collisions in image-space, which was even
investigated for cloth modelling [27].

More independency of the detection costs of the
complexity of the objects is achieved with implicit
representations, as the potential of implicit surfaces
provides a straightforward collision test for the ap-
proximated objects [7, 8].

Particular advances in accelerating the self-
collision detection are achieved by Volino et al. [28].
They use a region-merge algorithm to build hierar-
chies on top of a polygonal mesh, storing adjacency
information for the regions. The region normals are
sampled to determine the curvature of a region and
to reject self-intersections. They also introduce a
technique that observes the history of close regions
to guarantee a consistent collision response [6]. Re-
cent publications [29] additionally address k-DOPs
as bounding volumes. Provot [25] describes a sim-

ilar approach for the surface curvature heuristic,
which we extend in our system. Johnson et al. [18]
show how normal cone hierarchies can accelerate
not only distance computations, but also lighting
and shadowing.

Collisions between deformable objects are much
more difficult to treat than collisions between rigid
objects, because a response for each face or particle
has to be computed and care must be taken not to
introduce additional stiffness. Therefore, several
collision response schemes for cloth animation have
been presented. While Baraff and Witkin [2] use
a constraint based approach, Volino et al. [30] set
position, velocity, and acceleration for the colliding
particles. Volino [30] and Provot [25] also propose
techniques for handling multiple collisions.

3 Bounding Volumes

In complex dynamic scenes, bounding volumes have
to be permanently readapted to the approximated
geometry. Arbitrary object deformations cannot be
expressed by rigid rotations and translations, thus
orientable bounding volumes like OBBs [13], Qu-
OSPOs [16], or Dynamically Aligned DOPs [31] are
not suitable for cloth modelling. We choose com-
mon k-DOPs [19] as they show better convergence
than spheres [17] or ordinary AABBs [26].

The advantages of a bounding volume hierarchy
of k-DOPs over other hierarchies are exposed in
section 4.

3.1 k-DOPs

A k-DOP[19] (discrete oriented polytope) is a con-
vex polyhedron defined by k halfspaces denoted as

Hi = {x ∈ Rm | nT
i x ≤ b, ni ∈ N, bi ∈ R}.

The normals ni of the corresponding hyperplanes
of all k-DOPs are discrete and form the small
set N = {n1, . . . , nk} ⊆ Rm. For arithmetic reasons
the entries of the normal-vectors are usually cho-
sen from the set {−1, 0, 1}. In order to turn
the intersection test for the polyhedrons into sim-
ple interval tests, the hyperplanes have to form
k/2 parallel pairs. E.g. an axis aligned bound-
ing box (AABB, 6-DOP) in R3 is given by N6 =

2

{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}, an octahedron (8-
DOP) is generated by setting all normal compo-
nents to ±1. We usually use 14-DOPs (N14 =
N6∪̇N8) or 18-DOPs (AABB with clipped edges).

The easiest way to build the k-DOP bounding
volume for a set of points is inserting them into
a primarily empty k-DOP by updating its k/2 in-
tervals accordingly. The overlap test between two
k-DOPs is implemented by interval tests similar to
the common AABB, indicating disjointness as soon
as one pair of intervals is disjoint. Thus, the maxi-
mal number of interval tests is k/2 (in the overlap-
ping case).

3.2 k-DOP Inflation

In order to use rather large time steps for the simu-
lation, not only real collisions but also object prox-
imities have to be detected. Let εclose be the max-
imum distance of two meshes where proximities
have to be detected, depending on the velocities
of the vertices and the time step size. Enlarging
the k-DOPs by an offset εclose/2 in each of its k
directions turns the usual overlap test into prox-
imity detection. It easily can be verified that the
overlap of such two enlarged k-DOPs is a necessary
condition for actual εclose–proximity.

3.3 Oriented k-DOP Inflation

The unoriented inflation implies a higher degree of
self-overlapping between contiguous bounding vol-
umes. Thus, the number of overlap tests severely
increases depending on the amount of inflation. For
this reason, the unoriented inflation is restricted to
close proximities and cannot be used to detect po-
tential collisions among objects with higher relative
velocities.

To retrieve collisions within the movement of the
objects between two frames, the bounding volumes
have to enclose the space which is likely to be tra-
versed. To determine this space, the next time
step size and the velocity of the vertices have to
be estimated. Then, the new vertex positions can
be extrapolated and the bounding volumes can be
readapted to inclose the old as well as the new ver-
tices. But, as this method would at least double the
cost of updating the leaves of the bounding volume
hierarchy, we introduce the oriented k-DOP infla-
tion as shown in figure (1).

D e f o r m i n g
o b j e c t

D O P

I n f l a t e d D O P
O r i e n t e d

i n f l a t e d D O P

p 1

p 3

p 2

v 1

v 2

v 3

Figure 1: Estimated movement and oriented infla-
tion of the 8-DOP.

The oriented inflation updates each of the k/2
intervals depending on the normalized mean axis
v and the maximal velocity v̂ of the velocity cone
(section 5.2). The interval limits are increased by
the distance

di = εclose/2 + max(〈v, ni〉 · v̂ · 4t, 0), (1)

ni denoting the normal of the hyperplane and 4t
the expected time step size. At least k/2 of the
normal vectors do not point into the movement di-
rection, resulting in 〈v, ni〉 ≤ 0. If the velocity cone
has no principal direction of movement (α À 0),
the ordinary inflation by

d = max(εclose/2, v̂ · 4t)

is applied.

4 Dynamic k-DOP-Hierarchy

Although voxel-based methods like regular grids
can be useful for collision detection and even cloth
modeling [32], they do not support the detection of
proximities and therefore are not acceptable for the
large time step sizes of implicit solvers. Moreover,
object based heuristics which prune the collision
test for whole parts of the scene cannot operate on
voxels.

The dynamic approximation of meshes by im-
plicit surfaces provides very fast particle–surface
tests, but the simulation then depends on the res-
olution of the textiles, and an efficient self-collision
detection can barely be realized.

3

Graphics-hardware based methods [27] are
hardware-dependent and cannot solve the self-
collision detection problem either. As they gen-
erally return rather inexact distances, an accurate
collision response remains difficult.

Therefore, a realistic cloth modelling system re-
quires bounding volume hierarchies to be robust
and efficient at the same time. We propose to com-
bine the advantages of a top-down k-DOP hierarchy
with a surface curvature criterion.

4.1 Hierarchy Generation

Let BVk be the tightest k-DOP enclosing a set of

vertices and
⋃̃

the operation forming the tightest k-
DOP enclosing a set of k-DOPs. Then, like AABBs
also k-DOP bounding volumes satisfy the equation

BVk(V) =
⋃̃

p∈P (V)
BVk(p) (2)

for a set of vertices V and an arbitrary partition
P (V). Hence, the optimal bounding volume for
a node in the hierarchy can be easily computed by
merging its child bounding volumes. Vice versa the
hierarchy can be efficiently built using a top-down
splitting method. Figure (2) shows two hierarchy
levels for the 18-DOP-hierarchy of an avatar.

(a) (b) (c) (d)

Figure 2: Two levels of an 18-DOP-hierarchy. (a)
and (c) show the 18-DOPs, (b) and (d) the corre-
sponding regions on the surface.

In contrast to bottom-up methods [28], the initial
geometry fits well in the bounding volumes because
the faces of a region are selected such that they
correspond with the shape of the bounding volume.
However, dynamic meshes may of course lose this
property when movements other than translations
occur.

4.2 Node split

The bounding volumes are split according to the
longest side. In our implementation the longest side
of a k-DOP is determined by the face pair with the
maximum distance. The k-DOP is split parallel to
this face pair through its center. As generally some
polygons are cut by the splitting plane, they are as-
signed to that child node which would contain the
smallest number of polygons. In the lower hierar-
chy levels, if all polygons happen to be cut, each of
them is assigned to its own node. Finally, as the
corresponding vertices for the node are known, the
k-DOPs can be optimally fitted to the underlying
faces. Although this method is simple, it turns out
to be efficient on the one hand and to produce well
balanced trees on the other hand. The complete hi-
erarchy setup for objects holding several thousands
of polygons can be performed within merely a sec-
ond, allowing to add objects dynamically to the
scene. To achieve optimal collision detection per-
formance, the splitting continues until one single
polygon remains per leaf.

4.3 Lazy Hierarchy Update

Generally, the hierarchy update re-inserts the ver-
tices into the leaf k-DOPs and builds the inner k-
DOPs by unifying the k/2 intervals of the child
bounding volumes (equation 2). Parts of the hier-
archy where vertices do not traverse more than a
distance b, b < εclose/2, can be omitted during the
hierarchy update for a time t̂ = b/v̂, if proximities
smaller than εclose − 2b are to be detected, v̂ de-
noting the maximum speed of the vertices (figure
3).

PSfrag replacements

bb

εclose/2εclose/2

node1 node2

Figure 3: Tolerance distance for the lazy hierarchy
update.

Thus, the hierarchy update is accelerated for slow
parts of the scene and for small time step sizes.

4

4.4 Trees

Previous approaches employed binary trees to store
the hierarchy since they require the smallest num-
ber of overlap tests. However, the depth and num-
ber of nodes are maximal, and consequently the re-
cursion during overlap tests is deeper than for any
higher order tree.

0

1
 2

3
 4
 5
 6

a

b
 c

d
 e
 f
 g

0
a

1
a
 2
a

2
b
 2
c

5
b
 6
b

6
d
 6
e

Collision

(a)

0

3
 4
 5
 6

a

d
 e
 f
 g

0
a

3
a
 4
a
 5
a
 6
a

6
d
 6
e
 6
f
 6
g

Collision

(b)

Figure 4: Recursion using binary trees (a) and
quadtrees respectively (b).

Figure (4) shows the reduction of recursion depth
for detecting two overlapping leaves by equivalent
quadtrees instead of binary trees. Note that in this
case the recursion depth is reduced by the factor
2, whereas the number of overlap tests remains
equal. However, if only the root nodes overlap
in the example, the quadtrees require four overlap
tests, which is two times more than using binary
trees. Since overlap tests for k-DOPs only need
k/2 interval tests in the worst (overlapping) case,
a slight increase of overlap tests is acceptable. Our
implementation is able to use arbitrary 2n-trees,
but quadtrees and octrees have turned out to be
the fastest.

5 Heuristics

In collision detection, heuristics can speed-up the
hierarchy update and the intrinsic collision test.
However, resulting errors have to be limited strictly
in order to preserve the accuracy of the entire col-
lision detection.

We use two different data structures (”cones”)
that represent both a principal direction and a mea-
sure for the correlation of a set of vectors.

5.1 Normal Cones

A very exact method to reject possible self-intersec-
tions for a certain region was suggested by Volino
and Magnenat-Thalmann [28], where a vector is
searched that has positive dot product with all nor-
mals of the region. If such a vector exists and the
projection of the region onto a plane in direction of
the vector does not self-intersect, the region cannot
self-intersect either.

In our system we employ Provot’s method [25],
which is very fast and accurate enough for regions
having a sufficiently convex border. The k-DOP re-
gions generated by our hierarchy setup usually meet
this condition, and moreover we are able to extend
easily the idea to the detection of self-proximities.
For every region a cone is maintained representing
a superset of the normal directions. The cone can
be calculated during the bottom-up hierarchy up-
date by very few arithmetic operations. The apex
angle α of the cone represents the curvature of the
region, indicating possible intersections if α ≥ π.
In order to detect proximities as well, we replace
this intersection criterion by the self-proximity cri-
terion α ≥ εcloseAngle for an angle εcloseAngle ≤ π.
It turned out that the choice of εcloseAngle is not
crucial. It just has to be decreased if the simula-
tion allows rather spiky bends.

Figure 5: Self-intersecting mesh with correlated
normals but concave shape.

5

Still there remains the problem that hierarchy re-
gions can have severe non-convex shape and there-
fore compromise the robustness of the surface cur-
vature criterion. Figure (5) shows such a surface
that self-intersects although the apex angle of its
normal cone is rather small. We divide such a
mesh into several face groups and build an adja-
cency matrix for the groups. The curvature heuris-
tic is not applied to non-adjacent groups during
the self-collision test. Thus, collisions of faces are
surely detected if they are separated on the surface
by at least one group.

The groups also play an important role in the
optimization of the primitive pair test (section 6.2).

5.2 Velocity Cones

We propose a new heuristic designed to prune off
those parts of the scene where only small velocities
occur. For that purpose we introduce the velocity
cone (figure 6), which is also used to detect tempo-
ral coherence during the detection process. A ve-
locity cone is computed similarly to a normal cone.

á

v

significance

node

Figure 6: Velocity Cone.

It represents an approximation of the velocity
distribution in a hierarchy node by a small num-
ber of values. On the one hand this permits fast
calculation during the hierarchy update, and on the
other hand the velocities of two nodes can efficiently
be compared. The angle α, the direction v, and the
height of the cone depend on the movement of the
vertices. In particular, α measures the correlation
of significant velocity vectors, and the height rep-
resents the total significance (e.g. the maximum
velocity v̂) of the movement.

6 Collision Detection and Dis-

tance Computation

We test two meshes for overlaps by recursively
traversing the inflated hierarchies from top to
down. Whenever two nodes overlap, all children
inside the longer k-DOP are tested against the
shorter one.

6.1 Proximity and Distance

Whenever two colliding hierarchy leaves have been
found, the distance between each pair of faces is
calculated, and candidate pairs are detected and
passed to the collision response. To handle not only
triangles but also polygonal primitives, we compute
the closest points between convex polygons with an
adapted implementation of the GJK algorithm [12].

We do not restrict the proximity detection to the
simple particle–face test, since it is not sufficient
for an accurate collision detection and limits cloth
modelling to high-resolution meshes (figure 7).

Rigid object

Textile Penetration

Figure 7: Particle based collision detection is inex-
act and resolution dependent.

Alternatively, virtual particles [11] can be in-
serted at critical positions, however they require
additional costly calculations.

In order to handle multiple collisions that occur
when textiles are clamped between other textiles or
body parts, all critical proximities are passed to the
collision response to ensure a smooth and accurate
response.

6.2 Self-collision

We traverse the hierarchy of a deformable object
by first checking whether the surface curvature cri-
terion indicates proximities. In this case the child
regions are recursively checked. Additionally, to de-
tect proximities across the child borders, the child
regions are recursively tested against each other
similarly to the standard detection process.

6

The faces of two overlapping leaves are first
tested for adjacency. If the faces belong to the same
or to two adjacent groups (section 5.1), only non-
adjacent faces with a significant angle are tested
against each other, since contiguous faces on flat
surfaces are not candidates for the collision re-
sponse.

This method for self-collision detection turns out
to be very efficient and only needs a fractional
amount of the total time used for the collision de-
tection.

6.3 Exploiting Coherence

A separation list as proposed by Li and Chen [20]
can be built to detect frame-to-frame coherence and
to reduce the costs for the hierarchy traversal. The
list stores the node pairs where the last recursion
stopped and the next detection process resumes
the recursion at these nodes. Instead of checking
whether a separation node moves up in the recur-
sion tree, we just track the nodes moving down and
rebuild the separation list after a while. The check
for upwards moving nodes is expensive and usually
fails anyway, as contacts in cloth simulation often
persist for a longer period of time.

However, we found out that due to the large
number of collisions occurring in cloth simulation,
the maintenance of the separation list mostly takes
more time than rerunning the k-DOP overlap tests.

Instead, in still scenes the velocity cones (sec-
tion 5.2) are useful to detect nodes with small rela-
tive velocities, as for those nodes the detection re-
sults from the previous time step can be collected.
The closest points of triangles are stored by their
barycentric coordinates, thus they do not need to
be recalculated during coherent movements. As-
suming sufficient planarity of the faces, this is also
valid for faces with more than three vertices. As
errors may accumulate, the results have to be re-
computed after a certain period of time depending
on the velocities and the εclose–distance analogi-
cally to the lazy hierarchy update (section 4.3).

7 Collision Response

For animated scenes an efficient collision response
method is crucial. In particular, numerical stabil-
ity and performance in the context of large time

steps has to be preserved and no additional stiff-
ness should be introduced into the system. In
our cloth simulation system we therefore use con-
straints based on the efficient implementation pre-
sented by Baraff and Witkin [2].

To allow large time steps and preserve stabil-
ity, our approach for collision detection and re-
sponse aims at avoiding collisions before they occur.
Therefore, not only colliding faces are detected but
also proximities, that is faces closer than a distance
εclose. In this case, the collision detection returns
pairs of colliding or close faces together with the
closest points on these faces. While the collision
detection process returns candidate faces, an ad-
equate collision response has to be calculated for
each involved particle. For that purpose, the col-
lisions are sorted by the estimated distance of the
two faces after the next time step. This distance is
estimated by the current distance and the relative
velocity.

Contrary to earlier approaches [15, 25], the ve-
locity is not constrained in the normal direction of
the close object but in direction of the closest point
pair of the close faces (figure 8). There is no differ-
ence between these direction for collisions between
smooth surfaces. However, for collisions between
non-smooth surfaces and edges, this approach leads
to a more stable collision response because there are
no discontinuities in the constrained direction.

Figure 8: Constraint direction for different cloth
particles at edge of rigid object.

If the velocity is constrained, it has to be pre-
set with appropriate values. The collision response
distinguishes between two different cases:

1. Collisions of two deformable faces.

2. Collisions between a deformable face and a face
of the pre-computed rigid environment.

In both cases only faces moving towards each
other are handled. Their velocity in the constrained
direction is set to assert a minimum distance dmin.

7

This velocity is scaled by γ = vrel/
dmin

∆t
to simulate

a resting contact, where vrel is the relative velocity
of the two faces and ∆t is the current time step.

In the first case no velocity and therefore no mo-
mentum is transferred between the two faces of the
object. In the second case additionally to the veloc-
ity used to assert the minimum distance, the veloc-
ity of the rigid object in the constrained direction
has to be added to the velocity of the deformable
object.

Thus, we constrain the velocity of the colliding
particles in the direction ns of the closest point pair
of the two faces and preset it to

v =
1

∆t
γ (dmin − d) + π (vr) , (3)

where π is the projection onto the oriented direction
ns, d is the distance between the two faces and vr is
the velocity of the rigid object. If interpenetrations
occur, the faces are separated again, as long as their
distance is smaller than a preset value.

Since we constrain only one direction of the par-
ticle velocity, the particle is still free to move ac-
cording to the forces acting on it in the other di-
rections. Hence it is easy to model stiction by con-
straining the other directions and replacing the pro-
jected velocity of the rigid object by the entire ve-
locity of the rigid object in equation (3) such that
the cloth moves with the rigid object. Collision
constraints must be released when forces drag the
particle away from the collision object. These re-
lease forces are estimated at the beginning of every
integration step.

8 Results

We demonstrate first the accuracy and second the
performance of our system. Afterwards, the results
are summarized.

8.1 Accuracy

Several professional cloth modelling systems are
available for purchase. We compare the accuracy of
our system with ”Cloth” included in Mayar 4 Un-
limited1. Figure (9) shows the scene ”tableCloth”

1Mayar by Alias|Wavefront

(a)

(b)

Figure 9: Accuracy of collision detection and re-
sponse in Maya Cloth (a) compared to our sys-
tem (b).

consisting of a low-resolution table cloth (49 ver-
tices, 72 triangles), which drapes over a round ta-
ble. Both ”Cloth” and our system compute the
simulation of the falling cloth in real-time, but
”Cloth” only tests vertices with the collision ob-
ject and produces visually poor results due to pen-
etrations with the edge of the table. Our system
correctly detects all proximities and the constraints
safely prevent intersections.

8.2 Performance

In order to show the performance of the new meth-
ods, we compare the methods with four different
test scenes (table 1). The columns list the number
of particles, the number of polygons of the unde-

8

formable objects and the computation times needed
for the simulation. In particular, these are the du-
ration of the collision detection (CD), the collision
response (CR), the numerical solution of the parti-
cle system and finally the total simulation, not re-
garding the output. While the pants in the ”Walk
pants” scene are simulated as triangle-meshes, the
textiles of the other three tests are quad-meshes.
The rigid objects are all stored as triangle-meshes.

In the walking scenes a male avatar makes six
steps within about six seconds. One test is per-
formed wearing some pants that were created ac-
cording to real garments (scene ”Walk pants”, fig-
ure 12). The other two ”Walk” scenes (figure 13)
show a sweater and slacks that are present in two
different resolutions, namely a very low-resolution
(LR) and a very high-resolution version (HR).
Thus, the dependency on the complexity of the
meshes can be analyzed and the robustness of col-
lision detection and response can be compared.

Finally, the scene ”Tape” (figure 14) consists of
a tape of one meter in length, which is falling onto
a solid object and comes to rest after four seconds.
This scene particularly challenges the accuracy of
the self-collision detection and response.

All benchmarks are computed on a PC with a
Pentium 4 processor running at 2 GHz, and the
simulations are calculated with constant time steps
of size 0.01s. As well as the benchmarks also the
images are calculated with this step size, they are
not generated using smaller step sizes to get possi-
bly better visual results.

The collision detection defaults to 18-DOPs,
quad-trees and oriented inflation. If simpler bound-
ing volumes are used, the detection speed decreases
considerably. Tables (2, 3, 4, 5) list some examples
for non-optimal values, where ”HU” and ”CT” de-
note the computation times for the hierarchy up-
date and the intrinsic collision test respectively. For
the unoriented inflation an offset of εclose = 2cm
was used to insure robust detection and response.

8.3 Summary

Evidently the collision detection strongly improves
accuracy and performance by the advances de-
scribed in this paper. The oriented inflation al-
lows the implicit solver to choose large time step
sizes. Common bounding volumes have to be in-

Collision detection setup HU CT Total

Optimal 94 52 147

Unoriented instead of

oriented inflation

62 227 288

AABBs instead of

18-DOPs

72 83 155

Binary trees instead of

quadtrees

107 58 165

Table 2: Collision detection times for scene
”Walk pants” measured in ms per frame.

Collision detection setup HU CT Total

Optimal 59 47 106

Unoriented instead of

oriented inflation

58 133 192

AABBs instead of

18-DOPs

78 104 182

Binary trees instead of

quadtrees

93 49 142

Table 3: Collision detection details for scene
”Walk LR” measured in ms per frame.

Collision detection setup HU CT Total

Optimal 114 49 163

Unoriented instead of

oriented inflation

77 289 367

AABBs instead of

18-DOPs

101 100 201

Binary trees instead of

quadtrees

133 50 183

Table 4: Collision detection details for scene
”Walk HR’’ measured in ms per frame.

Collision detection setup HU CT Total

Optimal 10 47 57

Unoriented instead of

oriented inflation

9.6 343 354

AABBs instead of

18-DOPs

6.5 72 78

Binary trees instead of

quadtrees

9.5 51 61

Table 5: Collision detection details for scene
”Tape” measured in ms per frame.

9

Scene Particles Solid polygons CD CR Solver Total
Walk pants 833 28784 88s 24s 35s 147s
Walk LR 713 28784 63s 25s 89s 177s
Walk HR 10757 28784 98s 41s 6430s 6570s
Tape 1449 580 23s 7.0s 315s 347s

Table 1: Scenes and computation times for the benchmarks.

tensively inflated in order to achieve an accurate
simulation and result in a severe performance loss
for the hierarchies. Furthermore, k-DOPs approx-
imate the textiles much better than simple axis
aligned bounding boxes and provide a reasonable
speed-up. A comparable speed-up is additionally
achieved by the higher order hierarchy trees.

Further details about some of the methods and
results can be found in [23].

9 Conclusions

In this work we have shown that the notion of
object hierarchies for collision detection for cloth
models can be advanced by an intelligent choice
of methods for all components of the detection,
namely hierarchy building, update, and traversal.
Moreover, an extended set of heuristics improves
the performance further such that the collision de-
tection is no longer a bottle neck in cloth modeling
systems.

More precisely we showed

• that k-DOPs are well suited for collision de-
tection between deformable and flat shaped
meshes like textiles

• how k-DOP hierarchies can be extended to
proximity detection with acceptable over-
head

• that it is worth while considering other trees

than binary trees if the bounding volume over-
lap test is fast

• how normal cones can be incorporated into
k-DOP hierarchies and how the concept of
face groups can still guarantee a correct self-
collision detection

• a way to easily represent movements of hierar-
chy nodes using velocity cones

• that constraints keep the collision response
stable even for low-resolution meshes needed
in real-time applications.

Future work will include the development of an
application of the presented hierarchies for multi-
resolution models.

References

[1] G. Baciu, W. Wong, and H. Sun. Hardware-
Assisted Virtual Collisions. In Proc. of the
ACM Symposium on Virtual Reality Software
and Technology, VRST, Taipei, Taiwan, pages
145–151, 1998.

[2] D. Baraff and A. Witkin. Large Steps in Cloth
Simulation. Computer Graphics, 32(Annual
Conference Series):43–54, 1998.

[3] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B.
Mitchell, and A. Tal. BOXTREE: A Hierarchi-
cal Representation for Surfaces in 3D. Com-
puter Graphics Forum, 15(3):387–396, 1996.

[4] R. Bigliani and J. W. Eischen. Collision De-
tection in Cloth Modeling. In Cloth and Cloth-
ing in Computer Graphics. ACM SIGGRAPH,
1999.

[5] J. D. Cohen, M. C. Lin, D. Manocha, and
M. Ponamgi. I-COLLIDE: An Interactive and
Exact Collision Detection System for Large-
Scale Environments. In Symposium on Inter-
active 3D Graphics, pages 189–196, 218, 1995.

[6] M. Courshesnes, P. Volino, and N. Magnenat-
Thalmann. Versatile and Efficient Techniques
for Simulating Cloth and Other Deformable
Objects. In Robert Cook, editor, SIGGRAPH
95 Conference Proceedings, Annual Confer-
ence Series, pages 137–144. ACM SIGGRAPH,
Addison Wesley, August 1995.

10

[7] M. Desbrun and M.-P. Cani-Gascuel. Active
implicit surface for animation. In Graphics In-
terface, pages 143–150, 1998.

[8] B. Eberhardt, J.-U. Hahn, R. Klein,
W. Straßer, and A. Weber. Dynamic Im-
plicit Surfaces for Fast Proximity Queries in
Physically Based Modeling. Technical Report
WSI-2000-11, Eberhard-Karls-Universität
Tübingen, June 2000.

[9] S. A. Ehmann. SWIFT - Speedy
Walking via Improved Feature Testing.
http://www.cs.unc.edu/∼geom/SWIFT/.

[10] S. A. Ehmann and M. C. Lin. Accurate and
Fast Proximity Queries Between Polyhedra
Using Surface Decomposition. In Computer
Graphics Forum (Proc. of Eurographics), 2001.

[11] O. Etzmuss, B. Eberhardt, M. Hauth, and
W. Strasser. Collision Adaptive Particle Sys-
tems. Proc. of Pacific Graphics, 2000.

[12] E. G. Gilbert, D. W. Johnson, and S. S.
Keerthi. A Fast Procedure for Computing the
Distance Between Complex Objects in Three-
Dimensional Space. IEEE Journal of Robotics
and Automation, 4(2), 1988.

[13] S. Gottschalk, M. C. Lin, and D. Manocha.
OBBTree: A Hierarchical Structure for Rapid
Interference Detection. Computer Graphics,
30(Annual Conference Series):171–180, 1996.

[14] A. Guttman. R-Trees: A Dynamic Index
Structure for Spatial Searching. Proc. ACM
SIGMOD Conference, Boston, pages 47–57,
1984.

[15] M. Hauth and O. Etzmuß. A High Perfor-
mance Solver for the Animation of Deformable
Objects using Advanced Numerical Methods.
In Proc. of Eurographics, 2001.

[16] T. He. Fast Collision Detection Using Qu-
OSPO Trees. Proc. of the 1999 symposium
on Interactive 3D graphics, pages 55–62, 1999.

[17] P. M. Hubbard. Approximating Polyhedra
with Spheres for Time-Critical Collision De-
tection. ACM Transactions on Graphics,
15(3):179–210, 1996.

[18] D. Johnson and E. Cohen. Spatialized Nor-
mal Cone Hierarchies. In ACM Symposium on
Interactive 3D Graphics. ACM SIGGRAPH,
2001.

[19] J. T. Klosowski, M. Held, J. S. B. Mitchell,
H. Sowizral, and K. Zikan. Efficient Colli-
sion Detection Using Bounding Volume Hier-
archies of k-DOPs. IEEE Transactions on Vi-
sualization and Computer Graphics, 4(1):21–
36, 1998.

[20] T.-Y. Li and J.-S. Chen. Incremental 3D Col-
lision Detection with Hierarchical Data Struc-
tures. In Proc. of the ACM Symposium on
Virtual reality software and technology, 1998.

[21] M. C. Lin and J. F. Canny. A Fast Algorithm
for Incremental Distance Calculation. In IEEE
International Conference on Robotics and Au-
tomation, pages 1008–1014, 1991.

[22] M. C. Lin and S. Gottschalk. Collision De-
tection Between Geometric Models: A Survey.
Proc. of IMA Conference on Mathematics of
Surfaces, 1998.

[23] Johannes Mezger. Effiziente Kollisionsde-
tektion in der Simulation von Textilien,
2001. Diploma Thesis, WSI/GRIS, Universität
Tübingen.

[24] B. Mirtich. VClip: Fast and Robust Polyhe-
dral Collision Detection. ACM Transactions
on Graphics, 17(3):177–208, 1998.

[25] X. Provot. Collision and Self-Collision Han-
dling in Cloth Model Dedicated to Design
Garments. In Graphics Interface, pages 177–
189. Canadian Information Processing Society,
Canadian Human-Computer Communications
Society, May 1997.

[26] G. van den Bergen. Efficient Collision De-
tection of Complex Deformable Models us-
ing AABB Trees. Journal of Graphics Tools,
2(4):1–14, 1999.

[27] T. Vassilev, B. Spanlang, and Y. Chrysanthou.
Fast Cloth Animation on Walking Avatars.
In Computer Graphics Forum (Proc. of Euro-
graphics), 2001.

11

[28] P. Volino and N. Magnenat-Thalmann. Ef-
ficient Self-Collision Detection on Smoothly
Discretized Surface Animations using Geomet-
rical Shape Regularity. Computer Graphics
Forum, 13(3):155–166, 1994.

[29] P. Volino and N. Magnenat-Thalmann. Im-
plementing fast Cloth Simulation with Colli-
sion Response. In Computer Graphics Inter-
national, June 2000.

[30] P. Volino and N. Magnenat Thalmann. Accu-
rate Collision Response on Polygonal Meshes.
Computer Animation Conference, 2000.

[31] G. Zachmann. Rapid Collision Detection by
Dynamically Aligned DOP-Trees. Proc. of
IEEE, VRAIS’98 Atlanta, 1998.

[32] D. Zhang and M. M.F. Yuen. Collision Detec-
tion for Clothed Human Animation. Proc. of
Pacific Graphics, 2000.

(a)

(b)

Figure 10: Inflated 18-DOPs (a) and detected clos-
est points (b) of a tape draping onto a plane.

12

Figure 11: Sheets of cloth falling on geometric objects (441 particles per sheet).

Figure 12: Walking man (833 particles for clothing, 28784 particles for avatar).

Figure 13: Walking man (10757 particles for clothing, 28784 particles for avatar).

Figure 14: Falling tape with 1449 particles.
13

