Local rigidity of 3-dimensional
cone-manifolds

DISSERTATION

der Fakultit fiir Mathematik und Physik
der Eberhard-Karls Universitat Tiibingen

zur Erlangung des Grades eines Doktors
der Naturwissenschaften

vorgelegt von
Hartmut Weif}
aus
Kassel

2002



Tag der miindlichen Qualifikation: 19. Dezember 2002
Dekan: Prof. Dr. Herbert Miither
1. Berichterstatter: Prof. Dr. Bernhard Leeb
2. Berichterstatter: Prof. Dr. Joan Porti



Fiir Sabine



Zusammenfassung in deutscher Sprache

Eine 3-dimensionale Kegelmannigfaltikeit ist eine 3-Mannigfaltigkeit C, die wir als
kompakt und orientiert voraussetzen, zusammen mit einer singuldren geometrischen
Struktur. Genauer hat man eine Langenmetrik auf C, die auf dem Komplement
eines eingebetteten geoditischen Graphen ¥ durch eine glatte Riemannsche Metrik
konstanter Schnittkriimmung x € R induziert wird. ¥ ist der sogenannte singulére
Ort, M = C'\ X bezeichnet man als den glatten Teil. Fiir Umgebungen singulérer
Punkte schreibt man lokale Modelle vor, und zwar fordert man, dafl eine Umgebung
eines singuliren Punktes modelliert sei durch den k-Kegel {iber einer 2-Sphire mit
einer sphérischen Kegelmetrik, fiir prizise Definitionen sei der Leser auf Kapitel 2
verwiesen. Jeder Kante in ¥ kann ein sogenannter Kegelwinkel zugeordnet werden,
sind die Kegelwinkel héchstens 7, so ist X trivalent.

3-dimensionale Kegelmannigfaltigkeiten treten in natiirlicher Weise in der Geome-
trisierung 3-dimensionaler orbifolds auf. Der Deformationsraum dieser Strukturen
spielt eine wesentliche Rolle im Beweis des Orbifold-Theorems durch M. Boileau,
B. Leeb und J. Porti (vergl. [BLP1] und [BLP2]).

In dieser Arbeit untersuchen wir den lokalen Deformationsraum solcher Kegelman-
nigfaltigkeitsstrukturen. Das technische Hauptresultat ist ein Verschwindungssatz
fiir L2-Kohomologie des glatten Teils der Kegelmannigfaltigkeit.

Theorem 1 Sei C' eine 3-dimensionale Kegelmannigfaltigkeit konstanter Kriimmung
k € {—1,0,1} mit Kegelwinkeln < 7. Es bezeichne (€, V¢) das Vektorbiindel der in-
finitesimalen Isometrien auf M = C\ ¥ mit dem natiirlich gegebenen flachen Zusam-
menhang. Im euklidischen Fall bezeichne Erqns C € das parallele Unterbiindel der
infinitesimalen Translationen. Dann gilt im hyperbolischen und im sphérischen Fall

HIIP (M, 5) =0,
im euklidischen Fall hingegen gilt
HII/2 (M’ gtrans) = {w € Ql(Ma gtrans) | Vw = 0} .

Wir verwenden hier eine Bochner-Weitzenbdck Formel fiir den Hodge-Laplace Op-
erator auf 1-Formen mit Werten in £ in Kombination mit analytischen Techniken,
die im wesentlichen von J. Briining und R. Seeley stammen, vergl. [BS]. Die
Hauptschwierigkeiten liegen hier in der Tatsache begriindet, dal die Riemannsche
Metrik auf dem glatten Teil nicht vollstandig ist.

Wir bezeichnen mit R(m M,SL2(C)) den Raum der Darstellungen der Fundamen-
talgruppe von M nach SLy(C). SLy(C) operiert hierauf durch Konjugation, es sei
X (m M,SLy(C)) der Quotient. R(mM,SLy(C)) trage die kompakt-offene Topolo-
gie, X (w1 M, SLy(C)) die Quotiententopologie. Indem man eine hyperbolische Struk-
tur auf ihre Holonomiedarstellung hol abbildet, kann X (m; M, SL2(C)) lokal mit
dem Raum der hyperbolischen Strukturen auf M identifiziert werden, die Kegel-
strukturen bilden einen Teilraum.

Als Konsequenz aus dem L2-Verschwindungssatz zeigen wir, dal X (71 M, SLy(C))
in der Nihe einer hyperbolischen Kegelstruktur glatt ist. M ist homotopiedquivalent
zu einer Mannigfaltigkeit mit Rand M., die man dadurch erhilt, dal man eine e-
Umgebung der Singularitdt herausschneidet. Auf dem Rand von M. haben wir N
Meridiankurven, wobei N die Anzahl der Kanten in ¥ bezeichnet. Wir erhalten
neben der Glattheit folgende lokale Parametrisierung:



Theorem 2 Sei C eine hyperbolische Kegelmannigfaltigkeit mit Kegelwinkeln < 7.
Sei {p1,...,un} die Familie der Meridiankurven, wobei N = 7 — 3x(8M.). Dann
ist die Abbildung

X(TrlM: SL?(C)) - CN:X — (tlu (X)7 s >tuN (X))
ein lokaler Diffeomorphismus um x = [hol].

Als Konsequenz hieraus erhalten wir lokale Starrheit in folgendem starken Sinne:
Der Raum der hyperbolischen Kegelmannigfaltigkeitsstrukturen wird lokal durch
die Kegelwinkel parametrisiert. Eine hyperbolische Kegelmannigfaltigkeitsstruktur
kann insbesondere nicht deformiert werden, ohne den Kegelwinkel zu verdndern.

Im sphérischen Fall wird der Raum der Strukturen lokal mit X (myM,SU(2)) x
X (w1 M,SU(2)) identifiziert, dabei sind R(m; M,SU(2)) und X (71 M,SU(2)) wie im
hyperbolischen Fall definiert. Die Holonomiedarstellung spaltet als ein Produkt
hol = (hol;, hol;). Analog zum hyperbolischen Fall erhalten wir:

Theorem 3 Sei C' eine sphirische Kegelmannigfaltigkeit mit Kegelwinkeln < m, die
nicht Seifert-gefasert ist. Sei {u;,...,un} die Familie der Meridiankurven, wobei
N =71 = 3x(0M.). Dann ist die Abbildung

X(mM,SU(2)) = RY, xi = (tu (%), - - > tun (X2))
ein lokaler Diffeomorphismus um x; = [hol;] for i € {1,2}.

Hieraus folgt genauso wie im hyperbolischen Fall lokale Starrheit: sphéirische Kegel-
mannigfaltigkeitsstrukturen werden lokal durch die Kegelwinkel parametrisiert. Eine
sphérische Kegelmannigfaltigkeitsstruktur kann nicht deformiert werden, ohne den
Kegelwinkel zu verdndern.

Wir erwarten auch fiir das kohomologische Resultat im euklidischen Fall Anwen-
dungen, zum jetzigen Zeitpunkt kénnen wir allerdings kein geometrisches Resultat
formulieren.
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1 Introduction

A 3-dimensional cone-manifold is a 3-manifold C equipped with a singular geometric
structure. We will assume that C is compact and oriented. More precisely, one has a
length-metric, which is in the complement of an embedded geodesic graph ¥ induced
by a smooth Riemannian metric of constant sectional curvature kK € R M \ X is
called the smooth part of C, while ¥ is called the singular locus. Neighbourhoods of
singular points are modelled on k-cones over 2-spheres with spherical cone metrics.
For precise definitions we refer the reader to Chapter 2. One associates with each
edge contained in ¥ the so-called cone-angle, which is a positive real number. If all
cone-angles are < 7, then a connected component of ¥ is either a trivalent graph
or a circle.

3-dimensional cone-manifolds arise naturally in the geometrization of 3-dimensional
orbifolds. The concept of cone-manifold can be viewed as a generalization of the
concept of geometric orbifold, where the cone-angles are not restricted any more to
the set of orbifold-angles, which are rational multiples of 7.

The deformation space of cone-manifold structures (or short: cone-structures) on
a cone-manifold C' with fixed toplogical type (C,X) plays an important role in the
proof of the Orbifold Theorem by M. Boileau, B. Leeb and J. Porti, cf. [BLP1] and
[BLP2]. The proof of the Orbifold Theorem in the general case requires the analysis
of cone-manifold structures with cone-angles < 7, where the singularity is allowed
to have trivalent vertices. The case, where the singular locus is a union of circle
components, i.e. a link in C, has earlier been settled by M. Boileau and J. Porti, cf.
[BP].

In this thesis we investigate local properties of the deformation space of cone-
manifold structures with cone-angles < 7. We consider the general case under
this cone-angle restriction, where trivalent vertices are allowed. In particular we
prove local rigidity in the spherical and in the hyperbolic case.

In the hyperbolic case there are some important results known. There is on the one
hand Garland-Weil local rigidity (cf. [Gar]), which applies in any dimension > 3
to the space of complete, finite-volume hyperbolic structures on a given hyperbolic
manifold. On the other hand, C. Hodgson and S. Kerckhoff proved a local rigidity
result for 3-dimensional hyperbolic cone-manifolds in [HK]. Their proof applies to
the case, where the singular locus ¥ is restricted to be a link in C, but where the
cone-angles are allowed to be < 27.

Our main technical result is a vanishing theorem for L2-cohomology on the smooth
part M of the cone-manifold C' with coefficient in the flat vector-bundle of infinites-
imal isometries. Recall that L2-cohomology is by definition the cohomology of the
subcomplex of the de Rham complex, which consists of those forms w such that w
and dw are L2-bounded.

Theorem 1.1 Let C' be a 3-dimensional cone-manifold of curvature k € {—1,0,1}
with cone-angles < 7. Let (£,V¢) be the vector-bundle of infinitesimal isometries
of M = C'\ X with its natural flat connection. In the Euclidean case let Eipqns C €
be the parallel subbundle of infinitesimal translations. Then in the hyperbolic and
the spherical case

H}.(M,E) =0,

while in the Euclidean case
H}Jz (M’ gtrans) = {w € Ql(Ma gtrans) | Vw = 0} .

The proof of this theorem is analytic in nature. The main difficulty is caused by the
non-completeness of the constant-curvature metric on M, the smooth part of the



cone-manifold. On a complete Riemannian manifold the Hodge-Laplace operator on
differential forms is known to be essentially selfadjoint, cf. [BL] and the references
therein. This is something we cannot expect to hold here.

On the other hand, the fact that the singularities of the metric are conical in a sense
to be made precise, allows us to apply separation of variables techniques. This has
already been explored by Cheeger, cf. [Che].

One main ingredient is a Hodge theorem for cone-manifolds, which allows to iden-
tify L?-cohomology spaces with the kernel of a certain selfadjoint extension of the
Laplacian on forms. For reasons which will become clear later we call this particular
selfadjoint extension A(dpqee):

Hi:(M,E) = ker AY(dmaz)

The second one is a Bochner-Weitzenbock formula for the Laplacian on 1-forms
with values in our particular flat vector-bundle (£, V¢), resp. the parallel subbundle
Eirans C € in the Euclidean case.
The essence of the Bochner technique is that the Weitzenbock formula may be used
to bound the Laplacian on compactly supported 1-forms from below, i.e. to find
C > 0 such that

(Aw,w) 2 > C{w,w) 2

for all w € QF (M,€). If one can show that this lower bound extends to hold for
AY(dmqz), ie.
<A1 (dmaw)wuw>L2 >C (w,w)L2

for all w € dom A!(dy42), one obtains that ker A!(dpmaz) = 0, hence via the Hodge
theorem that H'(M,€) = 0. In the Euclidean case, where one does not get a
positive lower bound, one has to vary this argument a little.

In the complete, finite-volume case this settles everything in view of the essential
selfadjointness of the Hodge-Laplacian (cf. [Gar]). In our case it requires a more
detailed study of the selfadjoint extensions of the Hodge-Laplacian. Here we use
the techniques of Briining and Seeley, cf. [BS], along with some basic functional
analytic properties of the de-Rham complex presented in a very convenient form for
us in [BL].

In the hyperbolic and in the spherical case we may conclude local rigidity from the
vanishing of L2-cohomology, let us now briefly discuss this.

If ¥ C C is the singular locus, for € > 0 let U.(X) be the e-neighbourhood of ¥ in
C intersected with the smooth part: Us(X) = B(X) N M. Let M, = M \ U.(%),
which is topologically a manifold with boundary. Let 7 be the number of torus
components in M., then N = 7 — 2x(0M.) equals the number of edges of the
singular locus.

In the hyperbolic case, the holonomy representation of the smooth, but incomplete
hyperbolic structure on M lifts to a representation

hol : 11 M —s Tsom+H? = SLy(C).

Let R(m1 M,SL2(C)) denote the SLa(C)-representation variety of w1 M, i.e. the set
of group homomorphisms p : my M — SL2(C) equipped with the compact-open
topology. The set-theoretic quotient of R(m M, SLy(C)) by the conjugation action
of SL2(C) equipped with the quotient topology is denoted by X (7w M, SLy(C)).
This is not to be confused with a quotient construction by means of geometric
invariant theory in the algebraic category. One feature of our presentation is rather
that we can avoid these issues.

The above defined spaces may be badly behaved in general, but near the holonomy
representation of a hyperbolic cone-structure we can show smoothness. This will be
shown with transversality arguments as a consequence of the L2-vanishing theorem.



Theorem 1.2 Let C' be a hyperbolic cone-manifold with cone-angles < w. Let
{p1,...,un} be the family of meridians, where N = 7 — 3x(0M.). Then the map

X (mM,SLy(C)) = C,x = (tu (X); - - -, tun (X))
is a local diffeomorphism near x = [hol].

The quotient space X (m1 M, SL2(C)) may be considered, at least locally, as the de-
formation space of hyperbolic structures on M. Hyperbolic cone-structures corre-
spond to representations, where the meridians p; map to elliptic elements in SLy(C).
Therefore the previous theorem implies local rigidity in the following strong sense:

Corollary 1.3 (Local rigidity) Let C be a hyperbolic cone-manifold with cone-
angles < w. Then the set of cone-angles {ai,...,an}, where N = 7 — %X((?ME),
provides a local parametrization of the space of hyperbolic cone-structures near
the given structure on M. In particular, there are no deformations leaving the
cone-angles fixed.

In the spherical case, the holonomy representation of the smooth, but incomplete
spherical structure on M lifts to a product representation

hol = (holy, holy) : m M —s Tsom+S® = SU(2) x SU(2).

In the same way as in the hyperbolic case we may introduce R(w1 M,SU(2)) and
X (w1 M,SU(2)), the SU(2)-representation variety and its quotient by the conjuga-
tion action of SU(2). In the statement of the following result we have to include
the additional hypothesis C' not Seifert fibered to ensure that hol; : my M — SU(2)
are non-abelian.

Theorem 1.4 Let C be a spherical cone-manifold with cone-angles < m, which
is not Seifert fibered. Let {u;,...,pun} be the family of meridians, where N =
7 — 3x(0M,). Then the map

X(W1M7 SU(Z)) - RN7XZ' = (tu1 (X'i); s atuN (Xz))
is a local diffeomorphism near x; = [hol;] for i € {1,2}.

As in the hyperbolic case we conclude local rigidity from this.

Corollary 1.5 (Local rigidity) Let C' be a spherical cone-manifold with cone-
angles < m, which is not Seifert fibered. Then the set of cone-angles {aq,...,an},
where N = 17 — %x(@ME), provides a local parametrization of the space of spher-
ical cone-structures near the given structure on M. In particular, there are no
deformations leaving the cone-angles fixed.

The geometric significance of the cohomological result in the Euclidean case is not
yet clear to the author. This is something to be worked out in the future.

I would like to thank Prof. Dr. Bernhard Leeb, my thesis advisor, for his support
and encouragement, and for raising my interest in the geometry of cone-manifolds.
I would like to express my gratitude to Prof. Dr. Joan Porti for answering many of
my questions concerning representation varieties and related things. Furthermore,
I would like to thank Dr. Daniel Grieser for giving me a valuable introduction into
analysis on singular manifolds. I am indebted to the members of the geometry and
topology group in Tiibingen, namely Dr. Sebastian Goette and Jonathan Alze, for
many mathematical discussions less or more directly related to the subject of this
thesis. Finally I would like to thank my parents for making it possible for me to
study mathematics.



2 Cone-manifolds

In this chapter we define the notion of cone-manifold in the 2-dimensional and the
3-dimensional case. This may easily be generalized to higher dimensions.

Recall the definition of the generalized trigonometric functions

ﬁ sin(vkr) : k>0
sn(r) = L r : k=0
Wi sinh(v/|&|r) : k<O
cos(v/kr) : K>0
csx(r) = 1 : k=0
cosh(y/|klr) @ k<O

These are the unique solutions of the ODE

f'tr) +6f(r)=0
with initital conditions

sn.(0) =0 and snl(0)=1
csx(0) =1 and ¢s,(0)=0.

If (N, g") is a Riemannian manifold we define for k < 0 the k-cone over N to be

the space
cone, N =R x N

equipped with the Riemannian metric

g =dr? +sn’(r)g" .

For k > 0 we define the k-suspension to be the space

suspy N = (0,7/ /%)

equipped with the Riemannian metric

g =dr? +sn’(r)g" .
For all k € R and € > 0 small enough the truncated k-cone cone, (o .) N is defined
in the obvious way.

Definition 2.1 A cone-surface S of curvature k¥ € R is a compact, oriented sur-
face which carries a length metric with the property that there are a finite number
of points {z1,...,2r} C S (the cone-points) and numbers {ai,...,ar} C RE (the
cone-angles), such that N = S\ {z1,...,z;} is a smooth Riemannian manifold
of curvature k and for each ¢ the e-ball around a cone-point intersected with the
smooth part U.(z;) = B:(z;) N N is isometric with the k-cone over the circle of
length «;.

We will also use the notation int S for N = S\ {z1,...,z}, the smooth part of the
cone-surface. For k € {—1,0,1} we will call S respectively hyperbolic, Euclidean or
spherical. Let us call (S, {z1,...,zr}) the topological type of S.

The following theorem is a straightforward extension of the classical Gaufl-Bonnet
theorem for surfaces:



Theorem 2.2 (GauB3-Bonnet) Let S be a cone-surface of curvature k and N =
S\ {z1,...,z,}. Then

k
27x(S) = /N K dvol + 2(277 — ;).

i=1

Using this theorem it is easy to classify the spherical cone-surfaces S with cone-
angles are < 7. The underlying space has to be S? and we obtain two types:

S:{ Sz(fz,ﬂ,v) or
S*(a)

S%(a, B,7) is the double of a spherical triangle with angles a/2, 3/2,v/2. It is often
suggestively called spherical turnover. S?(a) is the double of a spherical bigon with
angle a/2. It is sometimes called spherical spindle.

These cone-surfaces are rigid, i.e. they are determined up to isometry by the topo-
logical type and the set of cone-angles.

Definition 2.3 A cone-3-manifold C of curvature k € R is a compact, oriented 3-
manifold which carries a length metric with the property that there is a distinguished
subset ¥ C C (the singular locus) such that M = C'\ ¥ is a smooth Riemannian
manifold of curvature «x and for each « € ¥ the e-ball around z intersected with the
smooth part U.(xz) = B.(z) N M is isometric with the k-cone over the smooth part
of a spherical cone-surface S, .

We will also use the notation int C for M = C \ X, the smooth part of the cone-
manifold. For k € {—1,0,1} we will call C respectively hyperbolic, Euclidean or
spherical. Let us call (C,X) the topological type of C.

If z € ¥ is a singular point and U, (z) = cone, (o) int S, , then we call S, the link
of z in C. The hypothesis that the underlying space C' is a manifold implies that
the links of singular points are cone-surfaces with underlying space S2.

If the cone-angles are < 7w we in particular obtain that links of singular points are
either S?(a, B,7) or S?(a). This implies that the singular locus ¥ is a trivalent
graph embedded into C.

Cone-manifolds with cone-angles < 27 may be viewed as metric length spaces with
curvature bounded from below in the sense of Alexandrov. A discussion from this
point of view may be found in [BLP1].

3 Analysis on cone-manifolds

By analysis on C we mean analysis on M = C' \ ¥, the smooth part of our cone-
manifold. M is a smooth Riemannian manifold, but incomplete.

In this chapter we discuss some functional analytic properties of differential oper-
ators on noncompact manifolds. In contrast to the compact situation one has to
distinguish more carefully between a differential operator acting on smooth, com-
pactly supported sections of some vector-bundle and its closed realizations as an
unbounded operator on the Hilbert space of L2-sections.

3.1 Differential operators on noncompact manifolds

Let (M, g) be a Riemannian manifold (possibly noncompact, possibly incomplete)
and let (£, h), (F,h”) be hermitian vector-bundles over M. The naturally associ-
ated L2-spaces L%(&), L?(F) depend on the equivalence classes of g and h®, h”.



We consider a differential operator P acting on sections of £ as an unbounded,
densely defined operator with domain the compactly supported sections:

P:L*(€) D domP = Cg(£) — L*(F).
The formal adjoint of a differential operator P
P': L[*(€) D dom P! = C3(F) — L*(€)

is uniquely defined by the relation (Ps,t) = (s, P‘t) for all s,t € Cg>. P' is again
a differential operator, hence densely defined.

P is said to be symmetric (or formally selfadjoint) if {Ps,t) = (s, Pt) holds for
all 5,t € Cgy.

The domain of the adjoint of P is given as follows:

dom P* = {s € L*|u ~ (Pu, s) bounded linear functional for u € dom P}.

Since P is densely defined there is a unique ¢t € L? such that (Pu, s) = (u,t) for all
u € dom P. Then let P*s =t by definition. P* is a closed operator. Recall that a
linear operator A is called (graph-) closed if dom A equipped with the graph norm
llzlla = (||lz||> + ||Az||?)? is complete.
P* obviously extends P! (P! C P*) so P* is densely defined. Note that P is
symmetric if and only if P C P*.
A natural question to ask is if P admits closed extensions, and the answer is always
yes. Define

Pz = (Pt)*

and

P** is well-defined since P* is densely defined. P** then equals P, the (graph-)
closure of P, i.e. the domain of P,,;, can be characterized as follows:

2
dom Ppin = {5 € L*|3(sn)nen C dom P with s, L%, s such that

(Psy)nen is a Cauchy sequence in L?}

and P, (8) = lim, o0 Sp-
We say that Ps = t in the distributional sense if (s, Ptu) = (t,u) holds for all
u € Cgy. The domain of Pp,, may then be written as:

dom P, = {s € L?|Ps € L*}

and P,,4,(s) = Ps in the distributional sense. Clearly P4z O Pnin and both are
closed extensions of P. P,,,, is maximal with respect to having Cg;j in the domain
of its adjoint. This condition means that P}, still extends P*.

If P is symmetric we ask for selfadjoint extensions. Recall that a closed symmetric
operator A is called selfadjoint if A = A*. P is called essentially selfadjoint if
Ppin is selfadjoint. Since for a symmetric operator P,,,, = P* this is the case if
and only if P;n = Ppge- Selfadjoint extensions need not exist in general.

On the other hand if we assume that our operator P is semibounded there is alway
a distinguished selfadjoint extension which preserves the lower bound. This feature
will turn out to be particularly useful.

P semibounded means by definition that there exists ¢ € R such that (s, Ps) >
c(s, s) for all s € dom P.

Recall that a semibounded quadratic form ¢ : domq x domgq — L? with lower
bound c is closed iff dom q equipped with the norm ||z||, = (¢(z) + (1 — ¢)||=||?)'/?
is complete.
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Theorem 3.1 (the Friedrichs extension) [RS, Thm. X.23] Let P be a semi-
bounded symmetric operator and let q(s,t) = (s, Pt) for s,t € dom P. Then g
is a closable quadratic form and the closure § is the quadratic form of a unique
selfadjoint operator Pg, the so-called Friedrichs extension of P. dom Pg is con-
tained in dom G and P is the only selfadjoint extension of P with this property.
Furthermore, Pr satisfies the same lower bound as P.

Theorem 3.2 (von Neumann) [RS, Thm. X.25] Let A be a closed densely de-
fined operator. Then A*A with dom A*A = {z € dom A|Az € dom A*} is selfad-
Jjoint.

For a differential operator of the form P = D!D we obtain ¢(s) = (Ds,Ds) > 0
and consequently dom g = dom D,,,;,,- A consequence of von Neumann’s theorem is
(with A = Dyin(Dinaz) respectively) that DY o Dy and DY, Dy, are selfad-
joint extensions of P.

On the other hand dom D¢, Dpip is obviously contained in dom D,,;, = dom7g.
Therefore we get as an important corollary

Corollary 3.3 D! D,.:, is the Friedrichs extension of DD.

maxr

3.2 The de-Rham complex

Let (£,V¢) be a flat vector-bundle equipped with a hermitian metric h®. The
metric will not necessarily be assumed parallel.
We denote the exterior derivative coupled with the flat connection again by d. As
an operator

d: Qe (M,E) — Q;;H(M,S)

d is uniquely determined by the relation d(a ® s) = da ® s + (—1) *la ® Vs, where
« is an ordinary form and s a section of €.

Let w(hf) = (h€)"1(VEh¢). w(h®) measures the deviation of h¢ from being parallel.
Then we get for the formal adjoint of d:

dt — (_l)np+n+1 *(d+w(h£))*

on (compactly supported) £-valued p-forms.
Following Cheeger, a choice of a closed extension d!,;,, C d* C di, . of d* for each i

will be called an ideal boundary condition for the de-Rham complex if
di(dom d*) C dom di*?
and
d*lod =0
hold for all ¢ (cf. [Che]). In particular this means that

... —domd® = domdtt — ...

is a complex in the sense of homological algebra. This is a particular instance of a
so-called Hilbert complez, see [BL] for the definition and a general discussion.
Note that d¢ ;, and d¢,,, are itself ideal boundary conditions.

Given an ideal boundary condition J, we may form the adjoint complex

... — dom(d")* @), dom(d—')* — ...,



where clearly (di)t . ) C (d)* C (d?)t_ . for all i. Uniqueness of the ideal boundary

min maz
condition also implies df ;. =dt, .-
Recall that the Hodge-Dirac operator D = d + d* decomposes as a direct sum
D = D®* @ D°% where

D : Qgy (M, E) — Q4 (M, €)

and
odd __ ev . Oodd ev
D% = (D)t : QU4(M, €) — Q%(M,E).

An ideal boundary condition d yields closed extensions of D, D¢’ and D°d4:
D(d) = d+ (d)"
and
D(@)°/°% = (d + (@)*)°/%
For the particular ideal boundary conditions d;;, and dp,, we obtain
D(dmin) = dmin + dinaq

and
D(dmaz) = dmaz + diy, -

Note that we do not claim that in general any of these extensions equals the minimal
or maximal extension of D itself.

Lemma 3.4 D(d)® is a closed extension of D®. D(d)°% = (D(d)**)*. Further-

more D(d) is a selfadjoint extension of D.

Proof. Since the ranges of d and (c?)* are orthogonal, the assertion follows. @

Recall that the Hodge-Laplace operator is the square of the Hodge-Dirac op-
erator:

A = D? = dd" + d'd
A selfadjoint extension D of D yields an extension of A.
A(D) = D?
Lemma 3.5 A(D) is a selfadjoint extension of A.

Proof. The assertion follows from von Neumann’s theorem (3.2). B

If D = D(d) then we set

We have that

A(dﬂ’wn) = dmindinaz‘ + dtmazdmi"

and
A(dmaz) = dmazdim’n + dim'ndmaw

Note again that these extensions need not be equal to the minimal or maximal
extension of A itself.

Lemma 3.6 Ar = Dyy0zDmin

12



Proof. The assertion follows from Corollary (3.3). 6

We single out the following consequence since it is the basis for our main line of
argument towards the adaption of the classical Bochner technique in our singular
context.

Corollary 3.7 If D is essentially selfadjoint, then Ap = A(d) for any ideal bound-
ary condititon d, in particular Ap = A(dpnaz)-

Proof. If D is essentially selfadjoint, then since D(d) is a selfadjoint extension of
D, we obtain Dy, = D(d) = Dpasz- Now the assertion follows from the previous
lemma. Bl

Once essential selfadjointness of D is established, this result allows to extend lower
bounds obtained for A on compactly supported forms to A(d;qz) On its respective
domain. Our interest in this particular extension will become clear from the next
section.

3.3 Hodge theory

The cohomology of the compactly supported de-Rham complex Qgp(M ,€) is by
definition compactly supported cohomology

H (M,€) =kerd' NQL,(M,€)/imd Q" (M,E).

-
To define L?-cohomology we consider the following subcomplex of Q* (M, £):
Q8L (M, E) = {w e (M, &) |w € L*and dw € L?},

which we will refer to as the smooth L2-complex. By definition L?-cohomology is
the cohomology of the smooth L2-complex, i.e.

Hio(M,E) =kerd NQ%(M,E)/d QLN (M,E).
Note that d* considered on Q% (M, &) or on 2 ,(M, €) will in general not be closed,
i.e. does not give rise to an ideal boundary condition as defined above. Recall that
an ideal boundary condition yields a complex
o — domd Ly dom d —s ...
Let us denote the cohomology of this complex by
H' =kerd/imd" .
We define the d-harmonic i-forms to be
Hi =kerd' Nker(d~1)*.
For ideal boundary conditions there is a quite general Hodge theorem, which goes

back to Kodaira (cf. [Kod]) in the case of the d,4,-complex. For a slightly more
general statement in the context of Hilbert complexes we refer to [BL].

Theorem 3.8 (weak Hodge-decomposition) Let d be an ideal boundary con-
dition for the de-Rham complex. Then for each i there is an orthogonal decompo-
sition

LPNT*M ® £) = H! @ imdi—! @ im(d?)*
and furthermore

Hi = ker Al(d) = ker D(d) N L*(A'T*M & £).

13



Proof. Note that kerd® C L2(A'T*M & €) is a closed subspace, since di is a closed
operator. Therefore we can decompose

L*(A'T*M ® &) =(ker d')* & ker d*
=(kerd)* @ imdi—! @ (kercfi N (im Ji_l)J‘)

Now it is a standard fact from functional analysis that for a closed operator A we
have (ker A)* = im A* and (im A)' = ker A*. Hence we can substitute

(kerd')* = im(di)*
(imd~")* = ker(d*~1)*

and thus obtain the desired decomposition. The additional statement is straight-
forward to check. @

For d = dmaz We obtain the d,,q;-harmonic, or L?-harmonic, i-forms as
,Hinaa: - ker dzna:c N ker(dz 1)mzn

and the weak Hodge-decomposition has the form

LAANT*M @ &) =H:,,, ®imdina, @ im(di)?

min-

We define a map
v H — H
o —> a+imc7i_1

Injectivity of ¢ is equivalent with im d*~! Nker(di—!)* = 0, which is always the case,
since _ N
imdi-1 = (ker(d' 1)*)*.
Surjectivity of ¢ is equivalent with
imd ! =imdi1,
therefore we obtain the following enhancement of the Hodge decomposition, which

is due to Cheeger (cf. [Che]) in the case of the dp,4,-complex. Again a more general
statement may be found in [BL].

Theorem 3.9 (strong Hodge-decomposition) If im di=1 is closed for all i, then
there is an orthogonal decomposition

L*(NT*M ® ) = H ®@imd* ! @ im(d?)*,
and furthermore v : H — H' is an isomorphism.

A sufficient condition for di-t to have closed range is finite dlmensmnahty of H' on
the one hand, since ker d' /im d1 finite dimensional implies that im di 1 is closed
in ker d’, hence in L2(A'T*M ® £). Note that by the closed-range theorem (d')*
has closed range if and only if d' has closed range.

On the other hand, if D(d)* has closed range, then d' and (d+!)* will have closed
range for all i even. Similarly, if D(d)°% has closed range, then d' and (di+!)*
will have closed range for all i odd. Since D(d)°% = (D(d)*)*, the closed-range
theorem implies that D(J)e” has closed range if and only D(J)"dd has closed range.
It is easy to show that D(d)® has closed range if dom D(d)®® equipped with the
graph norm embeds into L?(A®*T*M ® £) compactly.

This latter condition is related to the question of discreteness of the spectra of the
operators D(d) and A(d). Recall that an operator is said to have discrete spectrum
if its spectrum consists of a discrete set of eigenvalues with finite multiplicities.

14



3.4 Smoothness

For any ideal boundary condition d we may define the following smooth subcomplex
of the Hilbert-complex associated with d:

.. — domd N Q¥ (M, €) L5 domd*! N QI (M, E) —s ...
Let us denote the cohomology of this complex by PNIém, ie.
Hiw =kerd NQH(M,E)/d " (domd " NQ 1 (M,E)).
Note that for d = dmaz We obtain the smooth L?-complex:

dom d

mazx

NQYM,E) = QL. (M,E).

The following theorem is due to Cheeger in the case of the d;,q,-complex (cf. [Che]),
while [BL] consider the case of ideal boundary conditions for a general elliptic
complex.

Theorem 3.10 [BL, Thm. 3.5] Let d be an ideal boundary condition. Then the
inclusion of the smooth subcomplex domd’ N Q(M,E) — domd® induces an iso-
morphism on the level of cohomology, i.e. H:o. = H'.

Corollary 3.11 The inclusion of the smooth L*-complex Q¢ ,(M,€£) — dom d!

max
. . . z' ~ z'
induces an isomorphism H}.(M,€E) = H}, ..

Note at this point that Hodge theory forces us to consider the particular ideal
boundary condition d,, ., if we are interested in L2-cohomology. This will be crucial
for the further discussion.

4 Spectral properties of cone-manifolds

In this chapter we essentially use the techniques of Briining and Seeley to analyze the
closed extensions of the Hodge-Dirac operator on a a 3-dimensional cone-manifold.
The main reference for the first order case will be [BS]. The analysis relies heavily
on the fact that the spaces we consider are locally conical, i.e. neighbourhoods of
points are isometric to (k-)cones over spaces of lower dimension. This allows to
apply separation of variables techniques.

To keep the exposition self-contained here, we describe these techniques in detail.
Furthermore we adopt a more elementary viewpoint than in [BS], in particular we
give a direct argument for discreteness of the relevant operators.

Let us further mention that [BS] deal with isolated conical singularities only, i.e.
the links of singular points are smooth Riemannian manifolds, where in our case we
have to allow the links of singular points to be again singular, namely the spherical
cone-surfaces S%(a, 3,7v) and S?(a).

It turns out that local analysis near singular points reduces in some respects to
spectral analysis on the link of the singular point. As a consequence we will have to
investigate spectral properties of cone-surfaces first, and then use this information
to study 3-dimensional cone-manifolds. This will be made precise.

4.1 Separation of variables

Let us consider the following model situation: Let (V, g"V) be a Riemannian mani-
fold of dimension n and U. = cone, (o) N. We have

g,y = dr® +sn2(r)gl,

15



where r € (0,¢) and z € N. We may think of N as the (smooth part of the) link
Sy of a singular point z in a cone-manifold, U, serves as a model for the (smooth
part of the) e-neighbourhood U, (z) of a singular point x in M.

Furthermore, if a flat vector-bundle (£, V¢) is given on N, it extends in a unique
way to a vector-bundle on U, with a flat connection, which is trivial in the radial
direction. We will again denote this flat vector-bundle by (£, V¢).

We identify £-valued p-forms on U, with pairs of r-dependent forms on N via

O35 ((0,), 95 (N, €) © OB, (N, £)) — O2,(UL, )
(69) = sna(r) P TE G A dr + sng(r)P F .
Since

//|¢|?VdrdvolN=/ snn(r)2(p*1)*"|¢/\dr|?]sdvolUE
o JN Ue

and .
/ / W’ﬁv drdvol :/ snn(r)Qp_”W%e dvoly, ,
0 N Ue
we have a corresponding identification of L2-spaces:
L? ((0,e), LX(AP™'T*N @ €) @ L*(APT*N ® €)) = L*(APT*U, ® €).

Since
du, (snn(r)(p_l)_%¢ A dr) =sn,(r)P V" 2dyo Adr

and

we have that

&P = ( snn(T)_ldéj\T_l (_1)1) [% + (p - %) Ctn(r)] >
Ue 0 sny(r)~tdy

considered as an operator
Ce ((0,6), 9571 (N,E) @ Q2 (N, £)) — Cg ((0,), Q8,(N, €) @ QBN E)) .
Passing to the formal adjoints we immediately obtain
(), = (&) = ( Sgn( ) Hdi)p-1 0 )
S (=P [£ + (3 —p+Dctu(r)] sne(r) " (diy)p
considered as an operator
Cep ((0,€), 28,1 (N, €) @ QL (N, €)) — CF ((0,¢), Q5,%(N, &) & Q2,1 (N, €)) .

We may identify r-dependent forms on N of arbitrary degree with either even or
odd forms on U,:

C3 ((0,2), B (N, 6)) —5(U-,€)

[254]
(¢°,...,0") — Z sy (r)2H1 3 2 A i
=0
(3]

£ n ()it
i=0
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and

€35 ((0,2), D)o W, (N, 6)) —9 (UL, €)

[5]
(6% ") — D snu(r)* B¢ Adr

=0
[*3*]

+ Z snn(r)2z+1—5¢2z+1
i=0

We obtain that the even part of the Hodge-Dirac operator
Dg - Qe (U, &) — Q54U €)

may be written with respect to these decompositions as

1
LN

¢ Or  sng(r) Bi(r)

considered as an operator

C35 ((0,), Do W, (N, €)) — C35 ((0,2), By (N E))
where
csg(r)co
B.(r)=Dn +
csk(r)en
with
cp=(-1)*(p—3)-

Note that lim,_,q B, (r) is independent of k € R, more precisely we have

Co
lim B.(r) = Dy +
r—0

Cn

Definition 4.1 (model operator) Let B = lim,_,o B, (r) and

0 1

Pri=— 4
B or + sn (1)

The operator Pf serves as a model operator for the even part of the Hodge-Dirac op-
erator on the cone, since it captures its essential analytic features. This is expressed
by the following lemma:

Lemma 4.2 dom(D{} )mez = dom(Pg)maz, moreover the graph norms || - [|per
and || - ||ps are equivalent, in particular dom (D¢} )min = dom(Pg)min-

Proof. Since

Co
Bi(r) =B cse(r) —1
sn.(r)  sng(r)
Cn
and )
lim e =1 _

r—=0  sn(r)

17



we see that Dg? differs from P just by a bounded 0-th order term. From this we
easily obtain that the domains of the maximal extensions of the operators coincide
and that the graph norms are equivalent.

Since the domain of the minimal extension is just the closure of C¢gy with respect
to the graph norm, we arrive at the assertion of the lemma. E

4.2 The radial equation

The operator B is obviously symmetric on Q2,(N, £). Note also that B does not de-
pend on the radial variable r € (0,¢) any more. If B admits a selfadjoint extension,
we can use the spectral decomposition of L2(A*T*N,£) to transform the model
operator Pf into a direct sum of operators P on the interval (0,¢) parametrized
by the spectral values. This will work out particularly well, if B is essentially self-
adjoint and has discrete spectrum.

For b € R let 5 )
Pr=— .
> or * sn ()

We will consider Py acting on Cg5(0,1). Furthermore let P, = P}, i.e.

0 b
Po=—+-.
b 8r+r

It is enough to study the operator P; in view of the following lemma.
Lemma 4.3 dom(FPy)mae = dom(P)mas, moreover the graph norms || - ||pr and
Il ||p, are equivalent, in particular dom(P})min = dom(Py)min-
Proof. Since Pf — Py = ¢(r)b with
1 1

sng(r) r

p(r) =

and
lim ¢(r) =0,

we see that P} differs from Py just by a bounded 0-th order term. In the same way
as before this implies the assertion of the lemma. Gl

Note that
(Bof) (r) =r " &%),
therefore Py f = 0 if and only if

and Py f = g if and only if

) = FQr 40 / " Peo)de.

For any subinterval (,1) C (0, 1) the graph norm of P, is equivalent to the ordinary
H'-norm, since % € L>=(6,1). H'-functions - more generally: W1:!-functions - on
(6,1) are absolutely continuous on [4, 1], hence differentiable almost everywhere. For
absolutely continuous functions the fundamental theorem of calculus holds, i.e. ¢ €
AC([6,1]) if and only if p(r) )+ f{ ¢'(0)do for r € [6,1]. Therefore the above

integral representation remains vahd for f e dom(P,,)mam (take () = rb f(r)).
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Let us also mention in this context that by Sobolev embedding H'(4,1) < €% ([5, 1])
continuously.

It follows from either of these observations that f € dom(P;),q, i continuous on
(0,1) and has a continuous boundary value at r = 1, i.e. f € C°((0,1]).

We define two integral operators acting on L2(0, c0):

(Ty10)(r) = 1~ / " Po(o)de,

where b is arbitrary, and

(Tyog)(r) = = / " P o(e)de,

for b > —1. Note that b > —1 implies that r® € L?(0,1) and therefore with the
Cauchy-Schwarz inequality fOT 0°g(0)do < .

Lemma 4.4 [BS, Lemma 2.1] For g € L?(0,1) we have the estimates

1
(Thog)(r)] < 3 (2b+ 1)~ ( / |g(g)|2dg)
0
for b > ——, and

T%|2b+1|7%”9”L2(0,1) , b< -1
[(Ty,19) ()| < r3|logr(3|lgllr201) , b=—
—b(2b+1)73 llgllz20,y » b>—3

’

=ON= N

in particular Ty 19 € L*(0,1) if b < .

Proof. With the Cauchy-Schwarz inequality we have

|(Th09) ()] < 77" ( / sz) : ( / y W) 3
:r_b([2:l:11]> (/ l9(0) )
wrione ot ([ wor)

which proves the first estimate for b > ——, and for b # —1

/|g

=r=b |2 — 1|% |26+ 1|~

é/lrlg(a)22

i 1
<r P 102 26+ 12 |gll 20,y -

2b+1 :|

|(To19) ()] < ‘ [zb +1

Now for b < —1 and r € (0,1) we have |r?**1 — 1| < r?»*! and therefore
1 _1
|(To,19) (r)] < 72|26+ 1|72 |Igll L2(0,1) 5
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while for b > —1% and r € (0,1) [r?**! — 1| <1 and therefore

[(To,19) ()] <r=° (2b+1) 2 llgllz2(0,1) -

For b = — 1 we obtain
1
1 1 T 2 2
(@oag) (] < ¥ logrl | [ (o)
1
1 1
<r?|logr|? |lgllL2(0,1) 5
which gives the remaining estimate. @

Lemma 4.5 (decay estimates) Let f € dom(P;)mqes- Then for r € (0,1) and
with g = P, f we have

B+ (Tle@P)? . b2

If(r)] < r O+ @b+ )72 gllz01) 5 bE (=5, 5)
PFO|+ 7 logrlllglraey . b=-}
r @+ 325+ 1 gl D<)

Proof. The estimates for b < % follow directly from the integral representation

fr)y=r""f(1) + (To9) (r)

and the corresponding estimates for T3 19 from the preceding lemma. For the case
b > 1 we observe that for b > 1 (in fact already for b > —1) r® € L?(0,1), hence
rbg € L'(0,1) by the Cauchy-Schwarz inequality. This implies that r°f has its
distributional derivative in L'(0,1) and is therefore absolutely continuous on [0, 1].
We obtain
f(r) =r7"C + (Tu09) (r)

Now r=% & L*(0,1) for b > 1, therefore C' = 0, so the estimate for T} og gives the
result. @

Corollary 4.6 Let f € dom(P;)maes and r € (0,1). Ifb & (—3, %), then
£ < OO (1 + logr(2) £l
in particular f € C°([0,1]) with f(0) =0, while if b € (—%,1), then

If() < COrlfllp, -

Proof. The case b > % follows directly from the above estimates. For the other
cases we again refer to the integral representation

Fr) =r="f(1) + (Tr9) (r)

and observe that r~° f(1) € L?(0,1) for b < 3. Therefore the bound on T},1 g trans-
lates into a bound on |f(1)| in terms of || f||z2(0,1) and [|g|/z2(0,1)- This plugged into
the decay estimates gives the result, which clearly implies that f(r) = o(1) asr — 0
in the first case. @

Next we prove a property analogous to the L2-Stokes property.
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Proposition 4.7 (integration by parts) Let ¢ € C*(0,1) be a cut-off function
with ¢ = 1 near 0 and ¢ = 0 near 1. Foru € dom(P})maz let f = pu € dom(Py)maz,
and let g € dom(P})mas. Then for b & (—3%,1) the following holds:

<(Pb)ma$fa g)LQ(O,l) = <fa (Plf)mawg>L2(0,1)

Proof. With (P,)t = —P_;, we calculate

=i {uat- [ 1(50) < [ ()]
= lim {f(1)g(1) = £(8)9(8)} + (f, (P})maz9) 1201, -

Now f(1) = 0 and lims_,o f(6)g(d) = 0 according to the decay estimates. Therefore
lim {£(1)9(1) — f(0)9(8)} = 0
-0

and we obtain the result. @
This statement becomes wrong, if we allow b € (—%,1). To see this, let f(r) =
@(r)r=° with ¢ as above and g(r) = r°. Note that Py(r — r=°) = P{(r — r%) =0,

so clearly f € dom(P,)maz and g € dom(Pyf) 4. But on the other hand
lim {£(1)9(1) — f(6)9(8)} = 0 — lim f(9)g(d) = —1,
—0 §—0

so we have a boundary contribution.

The preceding result allows us to conclude that we do not have to impose boundary
conditions for P, at 0, if (and only if) b & (-1, 3)-

Corollary 4.8 Let ¢ € C*(0,1) be a cut-off function with ¢ = 1 near 0 and ¢ =0
near 1. For u € dom(Py)maz let f = gu € dom(P})maz- Then f € dom(Py)pmip for

b ¢ (_%7 %)
Put in another way, this means, that f may be approximated by compactly sup-

ported functions in the graph norm of Py, i.e. there exists a sequence f, € Cg;(0,1)
with ||f = fallp, = 0.

Proof. For all g € dom(P})ma, we have

((Py)maz f, g)L2(0,1) = <f> (Plf)mazg>L2(0’1)

This means that f € dom(P})%,,, = dom(Py)min- B
Let P = £ + sn.(r) ' B acting on C5 ((0,1) x N). We will assume that B
is essentially selfadjoint on Cg;’(N ), i.e. in equivalent terms Bjez = Bmin, since
B is symmetric,. We will furthermore assume that B has discrete spectrum. Let
{Us}pespec B be the collection of normed eigensections repeated according to mul-
tiplicities such that B¥, = b¥;. By interior elliptic regularity, the ¥, are smooth.
We have an orthogonal decomposition of L?-spaces

(N)= @ Ray,
bespec B
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and

Z(0,1)xN)= @ I0,1)®9,.
bespec B

The closure is to be taken with respect to the L2-norm. For f € L? ((0,1) x N) we
have an L2-convergent expansion

F=Y he,

bespec B

where

fr) = /N (F(r,2), Ty(x)) da.

Obviously we have

||f||2L2((0,1)><N)= Z ”fb”ZL?(O,l)'

bespec B

Lemma 4.9 Let f € L?((0,1) x N). Then P§f = g with g € L?((0,1) x N) if
and only if P§ fy = gy for all b € spec B. In particular f € dom(Pf)mae if and only
if fy € dom(Pf*)mqq for all b € spec B.

Proof. Let us assume first that P£f = g holds with f,g € L?((0,1) x N). By
definition this means that (f, Py‘@) > = (g, ¢) 1> for all ¢ € Cey ((0,1) x N).

If ¢ € Cg5(0,1) is an arbitrary cut-off function, we claim that this relation extends
to hold for ¢ = ¥, and b € spec B. Since the ¥}, won’t in general be compactly
supported, we choose sequences ¥y, € C’g,?(N ), which approximate ¥j, with respect

to || - |- This can be done since by assumption By,q; = Bmin. We obtain that
P (o(Ty — Ty ) = _9 (Ty — Ty ) + LB(xp —Ty,)
B \P ¥ bn)) = Br(P b b,n (Psnn(r) b b,n) -
Then it follows that ¢¥, , converges to ¢¥; with respect to || - ”Pg,t as n — o0o.

Since p¥;,, € Cg ((0,1) x N) we have

(fa Pg’t(‘P‘I’b,n»LQ = <g7 <p\I!b,H>L2

for all n. By continuity we obtain

(£, P (0%5)) 12 = (9, T 2.

Now the left-hand side of this equation equals

/ 1 [ rpten) = | 1 / (f, (—%w) wbwﬁmb)
- /0 ety /N (f,0) = /0 hPr,

whereas the right-hand side is given by

/Ol/N(g,sO‘I’b)z/olso/N(g,‘I’b)Z/Olgw-

Since ¢ was arbitrary, this means that P f = gy for all b € spec B.
Conversely, if P f, = g5 holds for all b € spec B, we have to show that

(f.PE'd) 12 = (g, )12
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is true for all ¢ € Cp ((0,1) x N). Now

(P52 = Y (fo (PE ) 120

bEspec B

and

<ga¢)L2 = Z <gba¢b)a

bEspec B

so we clearly get the result, if (Py‘@)y = P, ¢. This is verified by the following
computation:

(P5'e), = [ (Ptow) = |

N

_ 0 b _ phk,t
= <_§+snﬂ(r)>/jv(¢’mb)_Pb b

which in turn finishes the proof. El

0 1
(‘W* Ly, lI’b)

sn, (1)

Corollary 4.10 We have an orthogonal decomposition

dom(Pf)maz = @D dom(Pf)mas ® ¥y,
bespec B

where dom (Pg) maz is equipped with the graph inner product (-, -) px and the closure
is taken with respect to the corresponding graph norm || - || ps.

Lemma 4.11 Let f € dom(Pg)maz- Then f € dom(Pg)mn if and only if fi €
dom(Py) min for all b € spec B.

Proof. The proof essentially uses the observation that f € dom(Pf)min if and only
if (PEf,9)1> = (f, Pptg)r> for all g € dom(Py")mas. Now the left-hand side of
the equation in question equals

Z ((ng)bagb)L2(0,1) = Z <Plffb7gb>L2(0,1) ’

bespec B bespec B

since fy € dom(P})mas and gy € dom(P; ’t)m,m, while the right-hand side is given

by
Z <fba (Pg’tg)b>L2(071) = Z <fb; P;7tgb>L2(071) .
bespec B bespec B
We obtain that f € dOm(Pg)mz" if and only if <anfb7 gg>L2(0,1) = (fb; Pg’tgb>L2(0’1)
for all g, € dom(PIf’t)maz, i.e. that f, € dom(Pf)mi, for all b € spec B. &)

Corollary 4.12 We have an orthogonal decomposition

bespec B

where dom (P ) min is equipped with the graph inner product (-, -) ps and the closure
is taken with respect to the corresponding graph norm || - || ps.

The following lemma will turn out to be decisive in the question of essential selfad-
jointness of D on cone-manifolds.
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Lemma 4.13 Let ¢ € C*°(0,1) be a cut-off function with ¢ =1 near 0 and ¢ =0
near 1. For u € dom(Pf)maz let f = pu € dom(Pf)maz- Then f € dom(PfE)min if
specBN(—3,3) = 2.

Proof. This follows from the above discussion together with Corollary (4.8) and
Lemma (4.3). B

In the following we derive certain compactness properties which will be relevant
for the question of discreteness of D(dmaz) and A(dpaz) on cone-manifolds.

Lemma 4.14 The embedding dom(P,) 4z < L?(0,1) is compact for all b € R.

Proof. Given a sequence f,, € dom(P,)mqe, with a bound || f,||p, < C independent
of n, we have to extract a subsequence convergent in L2(0,1). On any subinterval
(6,1) C (0,1) the graph norm of Py is equivalent to the ordinary H'-norm, since
L € L*°(4,1). Recall that the embedding H'(,1) < C°([4,1]) is compact by
Rellich’s theorem. Therefore we obtain a locally uniformly convergent subsequence,
which we again denote by f,.

As a consequence of the decay estimates (cf. Corollary (4.6)) we have

()| < CO)rz 1+ |logr|2)|| fullp, < C'(b)r3 (1 + |logr|?)

ifb¢ (—%, %), and
|£n(r)] < CO)F | fullp, < C'(B)r°

if b € (—3,1). The functions 72 (1 + |logr|2) and 7~ with b < 1 are certainly in
L?(0,1). In any case we conclude with Lebesgue’s dominated convergence theorem,
that f, is convergent in L?(0,1). &l

Corollary 4.15 The embedding dom(Pf)mq, < L?(0,1) is compact for all b € R.

Proof. This follows from the previous lemma in view of Lemma (4.3). =

For b € R we define

)

f)}f:{(Pf)maw ) bE(—, )

N D=
N= D=

5 7

This determines a closed extension 135 of Pf such that

domﬁg = @ domf’b’*' ® Uy,
bespec B

where the closure is taken with respect to the graph norm ||-|| px . Note in particular
that P& = (P£)min if spec B N (-1 =2
Lemma 4.16 The embedding dom P — L ((0,1) x N) is compact.

Proof. The previous lemma implies that (Lf)maz : dom(PF)maez < L*(0,1) is a
compact embedding for all b € spec B. We derive an upper bound for the operator
norm of (Lf)min : dom(Pf)min — L*(0,1), where dom(Pf) i, is equipped with
the graph norm || - [| p=. For f € Cg5(0,1) we have

O%f  b(b+cse(r))f

PP f = ——5 + ——
v or? sn?(r) ’

24



and therefore integration by parts applied twice yields
1P Flz20.0) = (B P2 £) 2oy
_ / of ", / b(b -+ 5, (1)) /2
0 0

or sn2(r)

> Cu(®) 1/ z2(0,1) »

where Cy(b) /00 as |b] — co. Since Cgy(0,1) is dense in dom(Ff*) i We obtain

Il £11”
I(L§)minll* = sup T CRSTE -y
b recso\{oy 1117 + 1P £II?
< 1
SSETAOR

i.e. for large eigenvalues of B the operator norm of (L})min is uniformly small.
Let L denote the embedding dom P — L2 ((0,1) x N), furthermore for a > 0 let
7<% denote the projection onto the eigenspaces corresponding to eigenvalues b with
|b] < a. Since there are only finitely many such eigenvalues,

L<a=7r<aoL

is a compact operator and by the above estimates

1
L— L= = sup (L) minl)* € ——,
I | |b\2pa”( 5 )minl|® < 1+ Cr(a)

for a large enough. In particular, for a — 0o we obtain that L is a limit of compact
operators with respect to the operator norm and is therefore itself compact. =

4.3 Spectral properties of cone-surfaces

Let cone, (o) S& be the truncated cone over S3 of constant curvature &, i.e.
1 1
cone, (,c) S, = (0,€) X S,

with metric
dr® + sn’(r)d6?

where r € (0,¢) and § € R/aZ. Performing the change of variables § = -t we may
also write
coney (o,c) S =(0,e) x S*
with metric
el

Gr,0 = dr? + (2 )2 sni(r)dt2

m
where r € (0,¢) and 6 € R/27Z. In particular we see that all the metrics g, are
Bi-Lipschitz equivalent on (0,¢) x S*.

Nevertheless, it will turn out that certain analytic properties of the Hodge-Dirac,
resp. the Hodge-Laplace operator do depend on the cone-angle in a strong way.
If we consider the de-Rham complex with coefficients in a flat vector-bundle, then
also the holonomy around the cone-points affects the analysis.

25



4.3.1 Discreteness

Here we investigate the discreteness of the operators D(dpqz) and A(dpez) on a
compact, oriented cone-surface S. Particular attention will be paid to the spherical
cone-surfaces S%(a,3,7) and S?(a), which appear as the links of points in the
singular locus ¥ C C, where C' is a 3-dimensional cone-manifold.

A selfadjoint operator A is called discrete if its spectrum is discrete, i.e. if spec A
consists of a discrete set of eigenvalues with finite multiplicities. A necessary
and sufficient condition for A to be discrete is the compactness of the embedding
dom A — L?, where dom A is equipped with the graph norm || - || 4.

The results concerning discreteness will be valid without further restricting the cone-
angles or the holonomy of the flat vector-bundle (F,V7) around the cone-points
{z1,...,21} CS.

Proposition 4.17 The embedding dom D&, — L?(A°%4T*N ® F) is compact on

mazxr
N =int S, where S is a cone-surface and (F,V7’) a flat vector-bundle over N.

Proof. We construct a partition of unity on C' in the following way: Let {z1,..., 2}
be the set of cone-points, we choose £ > 0 such that the U.(z;) are disjoint. We
choose cut-off functions ¢; supported inside U, (z;) with ¢; = @;(r) and p; = 1 near
r = 0. Then we define p;,; =1 — Ele ©i-

Now let u,, € dom D&, be a sequence with ||u,||pe» < C. We have to extract a
subsequence convergent in L2.

Clearly @insu, has a subsequence convergent in L?: Let  C N be a relatively
compact domain with smooth boundary, such that supp @in: C Q2. Then by the
usual elliptic regularity results, @iniu, € HE(Q). Furthermore by the standard
elliptic estimate we have control over the H!-norm:

lpunlis ey < € (llpunllZaiay + 1D punlZaay ) = C llgunllhg -

Now by Rellich’s theorem H}(Q) embeds into L?(Q) compactly, which proves the
subclaim.

Thus we are reduced to a situation on the cone U. = coney (o) Sl ie. given a
sequence f,, = @uy, with || f,[|ps < C, we have to extract a subsequence convergent
in L2((0,1) x S}). The operator B is essentially selfadjoint and discrete, since the
cross-section of the cone is nonsingular in this case. Therefore the discussion from
the last section applies. It is a consequence of Corollary (4.8) that pu, € dom Pf,
therefore Lemma (4.16) yields the result. =

As a consequence we obtain that strong Hodge-decomposition holds for any ideal
boundary condition for the de-Rham complex on a cone-surface with coefficients in
a flat vector-bundle (F, V7), in particular for the d,,q,-complex. Here we refer the
reader again to Theorem (3.9) and the remark thereafter.

We summarize the results concerning Hodge-decomposition on cone-surfaces rele-
vant to L2-cohomology in the following statement:

Theorem 4.18 (strong Hodge theorem for cone-surfaces) Let S be a cone-
surface and (F, V) a flat vector-bundle over N = int S together with a fixed metric
h*. Then there is an orthogonal decomposition

L*(AN'T*N @ F) = Hi, o @ imdiy L @ im(d?)?

mazx mazx min’

and furthermore v : Hi, . — H? .. is an isomorphism. The inclusion of the smooth
L*-complex Q¢ ,(N,F) — domdt,,, induces an isomorphism H,(N,F) = H¢ ..

26



Since D°%4 = (D)t the same arguments yield that dom D% s L2(A*T*N ®F)

max

and in particular dom D,,,, < L2(A*T*N ® F) are again compact embeddings.

Proposition 4.19 The operators D(dpaz) and A(dpa,) are discrete on a cone-
surface S for (F,V7) a flat vector-bundle over N = int S.

Proof. This follows from the compactness of dom D,,,, < L?2(A*T*N ® F) since
dom D(dnqz) and dom A(d,,,.) are continuously contained in dom D,y g4 - Bl

4.3.2 Selfadjointness

In this section we will address the question of essential selfadjointness of the Hodge-
Dirac operator D on a cone-surface with coefficients in a flat vector-bundle (F, V7).
The answer to this question will essentially depend on the cone-angles and the
holonomy of the flat vector-bundle (F,V7) around the cone-points, since these
data determine the spectrum of the operator B on the cross-section of the cone.

If = is a cone-point, the smooth part of the e-ball around z will be isometric with
the s-cone over the circle of length o, i.e. U.(x) = cone, (o) Sl. In this situation
the model operator for the even part of the Hodge-Dirac operator on the cone is
given by

0 1

~or + sn (1)

1 1 dtsl
B =Ds + ? T B ’ 1 |-
—3 dsy —3

We determine the spectrum of the operator B, let us discuss the case with trivial
coefficient bundle first. If we identify functions and 1-forms on S} via

C*=(85) — Q(S3)
g—g-4dd,

Pg

with

we may write

It is easily verified that

and therefore we obtain

1 2
spec B = {—— + Ln,n € Z}.
2 a

We see that spec BN (—1,1) = @ if a < 2 in the case of trivial coefficients.

Let us now add a flat bundle to the situation. Let C(a) be the flat U(1)-bundle
on S! with holonomy ei,a € R. Without loss of generality we may assume that
a € [0,2m). Note that the bundles C(a) are topologically trivial. Any unitarily flat

bundle on S} decomposes as a direct sum of these. A flat connection is given by
.a
VA = d—i=de.
!

The associated Hodge-Dirac operator may be written as

0 -2 4+ie
DS&,C(OI) = ( 5 . 390 « )

o _sa
90 ~ 'a
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We obtain )
spec Dy () = {i 2m —a

and therefore

,nEZ},
1
spec B = {——i

5 ,nEZ}.

We see that spec BN (—%,%) =gifeithera=0and a <27 or a < a <27 — a.

In the latter case we must in particular have that a < 7.

2t —a

Definition 4.20 Let S be a cone-surface and (F,V7) a flat vector-bundle over
N =int S. If {z;} are the cone-points and Pf, is the model operator for D’ on
U.(z;), then we call (F,V’) cone-admissible if spec B; N (—%, ) = & for all i.
Note that this definition contains in an implicit way restrictions on the cone-angles
of S and the holonomy of the flat bundle (F, V7).

Remark 4.21 The previous discussion shows that if S has cone-angles < 7 and F
decomposes locally around the cone-points as a direct sum of trivial bundles R and
bundles of type C(a) with a < a < 27 — a, then F will be cone-admissible in the
sense of Definition (4.20).

Proposition 4.22 D¢ = D¢ on N if (F,V7) is cone-admissible.

mazx min

Proof. Given u € dom D, we have to show that already u € dom DZY, . We
choose a partition of unity on S as in the proof of Proposition (4.17).

Clearly pintu € dom D¢?, : As we have already observed in the proof of Proposition
(4.17), if Q C N is a relatively compact domain with smooth boundary such that
Supp @int C Q, then ginu € Hy(Q). Now Cgo(Q) is dense in Hg(92), therefore we
find a sequence f, € Cgy(€2) such that f, approximates f := p;,;u With respect to
the H'-norm. But since D maps H'(Q) continuously to L?(f2), f, approximates
f also with respect to the graph norm of D¢’ on , which proves the claim.

It remains to prove that ¢;u € dom D¢?, for i € {1,...,k}. But here we are again
in a situation on the cone U. = coney (o) SL. It is therefore sufficient to show that
f = pu € dom(PE)min for u € dom(Pg)maee and ¢ a cut-off function of the above
type. Now since (F,V7) is cone-admissible, spec BN (—3, 1) = @ will be satisfied.
Then Lemma (4.13) implies that f € dom(Pg)min, hence in dom D¢? @

min*

Corollary 4.23 D is essentially selfadjoint on N if (F,V7) is cone-admissible.
Proof. We have
po( )
considered as an operator
QL (N, F) @ Q4UN, F) — Q(N, F) ® Q04 (N, F)

and therefore
0 (D)Vin
Dmin =\ pev 0

min
and .
0 De
Dmam — ( Dev ( O)maz )
This shows that D0 = Dmin, i.€. that D is essentially selfadjoint. =

Corollary 4.24 Ap = A(dmaz) on N if (F,V7) is cone-admissible.
Proof. This follows from the essential selfadjointness of D with Corollary (3.7). @
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4.3.3 The first eigenvalue

Let A; be the smallest positive eigenvalue of A%(d,q;) on the smooth part of
S%(a, 3,7) (resp. S%(a)) with coefficients in a flat bundle (F, V7). Here we will
give a lower bound on A;, which will be sufficient for later purposes. Comparison
with the smooth case suggests that this bound might not be optimal.

The positivity of the curvature on the smooth part together with restrictions on the
cone-angles and on the holonomy of the flat bundle as in the previous section will
be the important assumptions here.

Proposition 4.25 Let S be either S%(a, 3,7) or S?(a) and let (F,V7) be a flat
vector-bundle over N = int S. If (F,V7) is orthogonally flat and cone-admissible,

then H! .. = 0. Moreover, under the same hypothesis, if \; denotes the smallest

positive eigenvalue of A°(dy,42), then A\; > 1.

Proof. Since (F, V%) is orthogonally flat, we may apply the standard Weitzenbock
formula on F-valued 1-forms

Aw = V'Vw + (Ric® id)w

where the action of the Ricci tensor on a scalar-valued 1-form « is determined by
the relation

9(Ric(a), B) = Ric(a, B)

for all B € Q'(N,R). In two dimensions the Ricci tensor of a spherical metric (i.e.
of constant curvature k = 1) is given by

RiC(- ’ ) = g( ) ')a

so we end up with
Aw = ViVw + w.

For w € Qip(N ,F) integration by parts yields

/N(Aw,w):/(Vti,w)+/ |w]|?
= [ver+ [z [ .

This means we have a lower bound for A on Q} (N, F):
(Beo,) g2 > [l

Since we know that A(dpmaz) = Ar if (F, V¥) is cone-admissible and the Friedrichs
extension preserves lower bounds, we obtain

<A(dmaw)wa w)LZ > ||w”%2

for all w € dom A'(dyqz). This proves the first part of the assertion. Now for
f € E,,, the \i-eigenspace of A%(dmaz), f # 0, let w := dpmasf. Then w # 0 and
AY(dmaz)w = dmazdt ;. dmezf = Mw. This yields the estimate A\; > 1. @

min

4.4 Spectral properties of cone-3-manifolds
For the local analysis around the singularity, we consider two cases:

1. z is a vertex
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2. z lies on a singular edge

In the first case, a neighbourhood of z in M is isometric with
U. (ZU) = CONE, (0,¢) int S2 (Oé, 137 7)

and in the second
U.(x) = cone, (o ) int S*(a)
The two cases can be treated simultaneously, let N denote either int S%(a, 8,7) or

int S%(a) in the following.

Recall that the model operator for the even part of the Hodge-Dirac operator on
the k-cone with two-dimensional cross-section NV is given by

0 1
pr=2 4 -
B or + sn(r)
with
-1 —1 d,
B =Dy + 0 =|dv 0 dy
1 dy 1

Let us assume that (F,V7) restricted to N is cone-admissible. Then Dy and in
particular the operator B will be essentially selfadjoint. Let us further assume that
(F,V7) restricted to N is orthogonally flat. Then the Hodge-%-operator defines a
linear isometry

x: L*(APT*N @ F) — L*(A"PT*N @ F),

where in this case n = 2. Note furthermore that these two conditions together imply
that H! =0 via Proposition (4.25). We determine spec B in the following.

mazx

For A > 0 let Ey be the \-eigenspace of
A(dmaw) = AO (dmaw) 2] Al (dmaw) @ A2 (dmaav) .

Let A > 0 be an eigenvalue and fy a corresponding eigensection of A%(d,;4,) With
| Allz2=1. Then
1 1
f 7_df 7_*df >*f }
{ SRV, RV, Ui

form an orthonormal basis of a Dy-invariant subspace Ey, C Ey. It is a conse-
quence of Theorem (4.18) that the Ey, provide an orthogonal decomposition of Ey
for f pairwise orthogonal. With respect to the given basis of Ef, we have

0 VA
D | v o0
N|Ef)\ - 0 _\/X
A 0
and correspondingly
-1 VX
= VA 0
Es 0 —\/X
_\/X 1
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For A = 0 we observe that if there is fo € HO _ with || fo||z2 = 1, then {fo, fo®dwvol}

max
form an orthonormal basis of Ey, C Eg = H?,,, ® H2,,, and we obtain

-1
BlEfO = ( 1 ) "

Note that Ey may well be 0. Therefore we obtain for the spectrum of B

1 1
specBC{—l,l}U{:l:E:I:\/Z—l-)\

We see that spec BN (—
given conditions by mean

X € spec A%(dpnas), A > 0} .

=

,%) =@if \y > %, which we can guarantee under the
of Proposition (4.25).

wm N

Definition 4.26 Let C be a 3-dimensional cone-manifold and (£, V¢) a flat vector-
bundle over M = int C'. If z is a singular point and Pg_ is the model operator for
D® on U.(z), then we call (£, V¢) cone-admissible if B, is essentially selfadjoint
and spec B, N (—1,1) = @ for all z € .

If we compare this definition with the cone-surface case, we note that a new issue
arises, namely that we have to include essential selfadjointness of the operator B on
the cross-section of the model cone into the definititon. This issue was not present in
the cone-surface case, since there the cross-section of the model cone was compact.

Remark 4.27 As a consequence of the previous discussion we observe that a suffi-
cient condition for (£, V) to be cone-admissible in the sense of Definititon (4.26)
is that the restriction of (£, V¢) to the link S, of a singular point z is orthogonally
flat and cone-admissible in the sense of Definition (4.20) for all z € X.

4.4.1 Discreteness

Here we investigate the discreteness of the operators D(d,,q,) and A(dp,) on a 3-
dimensional cone-manifold. In contrast to the 2-dimensional case we have to include
essential selfadjointness of the operator B on the links of the singular points into
the hypothesis to make the separation of variables approach work.

For simplicity we state the results concerning discreteness under the stronger hy-
pothesis that (£, V¢) is cone-admissible, though we do not need the assumption on
the spectrum of B as far as discreteness is concerned.

Proposition 4.28 The embedding dom D¢?, < L*(A°¥T*M ® &) is compact if
(£,V¢) cone-admissible.

Proof. Since X is compact we find finitely many x; € ¥ such that the B (z;) cover X.
Then {M, B.(x;)} is a finite open cover of C. We fix a partition of unity {@in:, i}
subordinate to this cover. Let U, (z;) = Be(z;) N M.

Now let u,, € dom D&’ . be a sequence with ||u,||pe» < C. We have to extract a
convergent subsequence in L2

Since i € C(?I‘,’(M ), clearly @;niu, has a convergent subsequence in L?: This
follows in exactly the same fashion as in the cone-surface case (cf. Proposititon
(4.17) and its proof).

On the other hand U (z) will be isometric with cone, (o . int S*(e, 8,7) if z is a
vertex or cone, () int S?(a) if z is an edge point. Thus we are reduced to a situa-
tion on the cone Uz = cone, (o) N. Without loss of generality we may assume that
@ = @(r) if r is the radial variable and ¢(r) = 1 for r small. If this is not the case
we just replace ¢ by a second cut-off function $ € Cgy (U:(z)) which satisfies these
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assumptions and in addition @ = 1 near supp ¢, and we replace u, by Uy = Qun,.
Since (&, V¥) is cone-admissible, the operator B will be essentially selfadjoint. B
will have discrete spectrum as a consequence of Proposition (4.17). As in the cone-
surface case we obtain that gu, € dom P§. We may now use Lemma (4.16) to
conclude the result. &

As a consequence we obtain that strong Hodge-decomposition holds for any ideal
boundary condition for the de-Rham complex on a 3-dimensional cone-manifolds if
(£,V¢) is cone-admissible, in particular for the d,,.,-complex. Here we refer the
reader again to Theorem (3.9) and the remark thereafter.

We summarize the results concerning Hodge-decomposition on 3-dimensional cone-
manifolds relevant to L2-cohomology in the following statement:

Theorem 4.29 (strong Hodge theorem for cone-manifolds) Let C' be a 3-
dimensional cone-manifold and (£,V¢) a flat vector-bundle over M = intC to-
gether with a fixed metric h®. If (§,V¢) is cone-admissible, there is an orthogonal
decomposition

L*(N'T*M ® £) = Hpyy © imdyy,,, @ im(d*)!

mazr mar min?

and furthermore ¢ : H:  — H

maxr max

L?-complex Q% ,(M,£) - domd:,,

is an isomorphism. The inclusion of the smooth
induces an isomorphism H}.(M, &) = H}

xz mazx*

Since D°%4 = (D®*)t, the same arguments yield that dom D234 s L2(A*T*M Q&)

max

and in particular dom D4, < L?2(A*T*M ® &) are again compact embeddings.

Proposition 4.30 The operators D(d,q.) and A(dy,qe) are discrete on M = int C
if (£,V¢) cone-admissible.

Proof. This follows from the compactness of dom D, 4, < L?(A*T*M ® £) since
dom D(dqz) and dom A(d,,) are continuously contained in dom D,y q4- Bl

4.4.2 Selfadjointness

In this section we establish essential selfadjointness of the Hodge-Dirac operator D
on the smooth part of a 3-dimensional cone-manifold M = int C, if the coefficient
bundle (&, V¥¢) is cone-admissible over M. Here the condition on the spectrum of
the operator B on the links of the singular points is essential.

Proposition 4.31 D¢ = D¢ on M if (£,V¢) is cone-admissible.

mazx min

Proof. Given u € dom D&~ we have to show that already u € dom D¢, . We

max mwn*
choose a partition of unity on C as in the proof of Proposition (4.28).
Since @int € Cf;’(M ) clearly piniu € dom DEY,, : This again follows in the same way
as in the surface-case (cf. the proof of Proposition (4.22)).
It remains to prove that p;u € dom D&%, . Again this brings us back to a situation
on the cone U. = cone, (o) N, where N = int $?(e, 8,7) or N = int $?(a). It is
therefore sufficient to show that f := pu € dom(Pg)min for u € dom(PE)maesz and ¢

a cut-off function of the above type. Since (&, V¢) is cone-admissible, B is essentially

selfadjoint and has discrete spectrum. Moreover, the condition spec BN(—3,3) = @
will be satisfied. Then Lemma (4.13) implies that f € dom(Pg)min, hence in
dom D¢? @

min®
Corollary 4.32 D is essentially selfadjoint on M if (£,V¢) is cone-admissible.

Proof. This follows as in the two-dimensional case from DY = D" . @
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Corollary 4.33 Ar = A(dmaz) on M if (£,V¢) is cone-admissible.

Proof. This follows from the essential selfadjointness of D with Corollary (3.7). @

5 The Bochner technique

5.1 Infinitesimal isometries

For simplicity consider M3 for k € {—1,0,1}. Let G = Isom* M and g its Lie-
algebra. g may be identified with the Lie-algebra of Killing vectorfields. Note
however, that the Lie-bracket in g corresponds to the negative of the vectorfield
commutator under this identification:

adg(X)Y = [X,Y]y = —[X,Y] = —LxY-
Fix a point p € M2 and let K = Stabg(p). Note that K = SO(T,M?2), since G
acts simply transitively on frames in constant curvature. Then we get the usual
decomposition (depending on p):
g=top,
where £ is the Lie-algebra of K. Recall that
t={X e (TM3)| X(p) =0}
and
p={X € D(TM})| (VX)(p) = 0}.

We have isomorphisms

p = T, M,

X — X(p)

and (in our constant-curvature situation)

£ = s0(T,M3)
X — Ax(p) := (VX)(p)-
We know that [€,€] C & [,p] C p and [p,p] C &, since € (resp. p) is the +1 (1)

eigenspace of the Cartan-involution on g induced by the geodesic involution on M?
about p.

Lemma 5.1 Under the identification g = so(T,M?2) & T,M? the Lie-bracket cor-
responds to
[(A7X)7 (B,Y)] = ([A7B] - R(X7 Y)7AY - BX)7

where [A, B] is the commutator in s0(T,M2) and R the Riemannian curvature
tensor.

Proof. Let X,Y € ¥, Z € p.

Aix,y1,Z2(p) = =Vz[X,Y](p) = =Vix,v1Z(p) — [Z,[X,Y]](p)
= [X= [Ya Z]](p) + [Ya [Z= X]](p)
=[X,VyZ =VzY](p) +[Y,VzX — Vx Z|(p)
= [X7 Vz,Y](p) + [Y7 VZX](p)
=—(VxVzY = Vy,vX)(p) — (VyVzX — Vy,xY) (p)
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= Vv, vy X() — Vv,xY(p)
= [Ax, Av]Z(p)

Let X € 6,Y € p.
[X,Y]4(p) = = (VxY = VyX) (p)

= VyX(p)
= AxY(p)

Let X be a Killing vectorfield. Let v be a geodesic with v(0) = p and 4(0) = Y (p).
Then X will be a Jacobi vectorfield along v. We obtain

0=V5V5X + R(X, %)Y
= Vi{Ax7} + R(X, 7)Y
= (V54x)¥ + R(X, 7)Y

Therefore we have
(VyAx)Y + R(X, Y)Y =0

We claim that the expression (VyAx)Z + R(X,Y)Z is symmetric in Y and Z.
Without loss of generality, we may assume [X,Y] = 0:

(VyAx)Z + R(X,Y)Z
=VyVzX -Vy,2X +R(X,Y)Z
=VyVzX +R(Y,Z)X —Vy,vX — R(Y,Z)X — R(Z, X)Y
=(VzAx)Y + R(X,2)Y

Therefore we obtain by polarization
(VyAx)Z + R(X,Y)Z = 0, X Killing vectorfield (%)
Let X,Y €p,Z € p.

Aixy1,Z(p) = =V z[X,Y](p) = {VzVxY = VzVy X}(p)
={-(VzAy)X + (VzAx)Y }(p)
=—{RY,2) X+ R(Z,X)Y}
=—-R(X,Y)Z

This is sufficient, since we know a priori that [¢,€] C &, [¢,p] Cp and [p,p] CE. @

Note that the usual formula for the curvature tensor of a symmetric space
R(X,Y)Z(p) = -[[X,Y],Z](p), X,Y,Z €p

is contained in the statement.

Corollary 5.2 Adg(g9)(A, X) = (Adk(g9)A, gX) for g € K = SO(T,M3).

Let £ = s0(TM32)®dTM?3. Tt is a vector-bundle of Lie-algebras. Extension of Killing
vectorfields induces a flat structure on &, such that a section o = (A4, X) is parallel
if and only if X is a Killing vectorfield and A = Ax.

Lemma 5.3 The flat connection on & is given by
V5 (4,X) = (VyA—R(Y,X),VyX — AY),

where V is the Levi-Civita connection on TM? and so(TM3) respectively.
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Proof. If VO and V! are two connections on a vector-bundle £, then the difference
V0 — V! =: ais a 1-form with values in End(€). If V% = 0, then —Vio = a(Y)o
for all Y € TM3.
Let VO = V¢ and V! = V, the Levi-Civita connection on £. Let X be a Killing
vectorfield. X determines a parallel section ox = (Ax,X) € I'(£). From equation
() we have

(VyAx)Z =—-R(X,Y)Z=R(Y,X)Z,

and from the very definition

VyX = AXY7
hence
OL(Y)(A, X) = (—R(Y, X)a _AY)
This proves the claim, taking into account that V&€ = V + a. =

In fact & = M2 x g and V¢ is just the trivial connection d written in terms of
the subbundles 7M?2 and so(TM?2).

Corollary 5.4 V{0 =Vyo +ad(Y)o foro € T(£),Y € TM?.
Proof. Lemma (5.1) implies that «(Y)o = ad(Y)o. El
We have a natural metric on £, namely

hE = (-, )sormz) ® (-, )z »

where 1
(Aa B)so(TMi) = D) tr(AB)

Recall the definition of the Killing form
By(a,b) = tr(ady(a)ad, (b))

for a,b € g. By is a symmetric bilinear form, which is Adg(g)-invariant for all
g € G. This implies in particular that adg(a) is antisymmetric with respect to By
for all a € g.

Let us compute By in terms of the decomposition g = € @ p. First of course the
relations [¢, €] C €, [¢,p] C p and [p,p] C € imply that £ and p are Bg-orthogonal.

Lemma 5.5 The restrictions of By to & = so(T,M3) and p = T,M? are given as
follows:

Bgly (+,-) = =4(-, )so(T,m2)
Bg|p ( ) ) = _4H('7 ')TpMi

Proof. Let us first calculate the restriction of By to €. Note that ady(A) preserves
€ and p for A € €. Tt is easily verified that

tre (adg(A)ady(B)) = tr (ade(A)ade(B)) = tr(AB)
for A, B € £. Obviously we have
try (ady(A)ady(B)) = tr(AB)
On the other hand )
(4, B)so(T,Mm2) = —3 tr(AB).
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This implies
By (A,B) = —4(4, B)ﬁo(TpMi)

for A, B € ¢.

Now consider the restriction of By to p. ady(X) switches € and p. For A € ¢

we have
adg(X)ady(Y)A = R(X, AY),

and therefore with {e;; = ¢! ® ¢; — ¢/ ® €;}i<; the standard orthonormal basis of
s0(T,M?) associated with a frame {e;}; and the dual coframe {e};:

try, (adg(X)adg(Y)) =) (eij, R(X, €iiY)) g0, M3)

= (e:,Y) (eij, R(X, ;) — (€, Y) (esj, R(X, €3))
i<j

= (e, Y) (R(X,¢j)eire;) — (€, Y) (R(X, e5)e;, €5)
i<j

For Z € p we have
ady(X)ady(y)Z = R(Y, Z)X

and therefore

try (adg(X)adg(Y)) = Z (es, R(Y, €)X ) 1 np

= — RIC(X, Y) = —2,"’\',(X, Y)TpMi
This proves the claim. @

Corollary 5.6 (k= 1) ad(Y) is antisymmetric with respect to h® for allY € TM2,
in particular V¢ is compatible with h, i.e. VERE = 0.

Corollary 5.7 (k = —1) ad(Y) is symmetric with respect to h¢ for all Y € TM3.

Let us now consider M, the nonsingular part of our cone-manifold X. The condition
that M is locally modelled on M2 is usually expressed in terms of the developing
map .

dev : (Mapo) — (M?ﬁ7p)

and the holonomy representation
hol : 1 (M, z9) — G = Isom™ M3 |

where dev is a local isometry and m; (M )-equivariant with respect to the deck-action
on M and the action via hol on M3.

We again denote by £ the bundle so(T'M)®T M. Since being a Killing vectorfield is
a purely local condition, we again have a flat connection V¢ on £ with the property
that parallel sections correspond to Killing vectorfields. The formula for V¢ given
in Lemma (5.3) applies as well.

In contrast to the model-space situation, £ will now have holonomy. It is easy to
see that the holonomy of £ along a loop v € m (M, zo) is given by Adohol(y) if we
identify &,, with g. Therefore we obtain an alternative description of &:

E =M X Adohol @
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The by this representation obvious Lie-algebra structure on £ is consistent with the
one given in Lemma (5.1).

The same considerations apply to the two-dimensional situation as well if we replace
M3 and its isometry group with the corresponding two-dimensional objects. Here
we restrict our attention to the spherical case. Let

SZ{S%@&w or
S*(a)

in the following. Since S is a spherical cone-surface and Isom* S2 = SO(3) we
obtain a holonomy representation

hol : 7 (int ) — Isom™ 82 = SO(3)
and developing map
dev :int S — S2.
Let us denote the vector-bundle of infinitesimal isometries with its natural flat
connection in this situation by (F, V7). We have

F = EEE‘ X Adohol 50(3) .

Since the adjoint representation of SO(3) on s0(3) is isomorphic with the standard
representation of SO(3) on R, we have alternatively

f:mxhole.

Now if z; € S is a cone-point with cone-angle a; and «; € m1(int S) a loop around
x;, then hol(vy;) is just rotation about the cone-angle a; around some fixed axis
in R®. Note that the axis of hol(y;) and the axis of hol(y;) need not coincide for
T; # ;.

This gives us a quite explicit description of F. In particular we see that locally
around the cone-points we have the following splitting

Flsi, =Clai) ® R,
where C(a;) denotes the flat U(1)-bundle over S} with holonomy e®*:.

Next we describe the restriction of £ to the links of singular points. Recall that if
z € ¥ is a singular point and S, is its link, then

if x is a vertex, and

S, = S%*(a)
if x is an edge point.
Lemma 5.8 Let S, be the link of a singular point x € 3. Then the restriction of

€ to int S, is given by:
Elings, = F O F,

where F is the flat vector-bundle of infinitesimal isometries on S,.

int

Proof. The holonomy of 7 (int S,,) fixes a point p € M2 and is therefore contained
in K = Stabg(p) = SO(T,M2). We have seen in Corollary (5.2) that Adg(g) =
(Adk(g),9) for g € K with respect to the splitting g = € @ p. Again, since the
adjoint representation and the standard representation of SO(3) are isomorphic, we
obtain two copies of F. =
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Proposition 5.9 Let C be a cone-manifold with cone-angles < 7. Then (&, V¢),
the vector-bundle of infinitesimal isometries of M = int C' with its natural flat
connection, is cone-admissible.

Proof. If x € ¥ is a singular point and Pj_ is the model operator for D¢* on U, (z),
according to Definition (4.26) we have to check that B, is essentially selfadjoint
and spec B, N (—3%,1) = &. If S, is the link of , via the previous results we have

g'intSz :f@f.

Clearly (F,V7) is orthogonally flat and, via Remark (4.21), cone-admissible over
int S, if the cone-angles are < m. Then we may apply Remark (4.27) to conclude
that (€, V¢) is cone-admissible over M. ]

In the Euclidean case for fixed p € E3 we have a group homomorphism
rot : Isom™ E* — Stabg (p) = SO(T,E?)
g—g+(@-9()
We may form the rotational part of the holonomy
rot o hol : 71; (M) — Stabg(p) = SO(T,E?).
On the other hand
Etrans =TM C & =s0(TM)®TM

is via the explicit formula for V¢ in Lemma (5.3) easily seen to be a parallel
subbundle of £. Note that in contrast

Erot :=850(TM)CE=s0(TM)TM
is not parallel. We rather obtain an exact sequence of flat vector-bundles
0— gtrans — & — gtrans — 0;

which does not split in general.
Since the rotational part of the holonomy is nothing but the holonomy of the flat
tangent bundle, we obtain

v 3
gtrans =M Xrot o hol R

In the same way as before one shows:

Lemma 5.10 Let C be a Euclidean cone-manifold. The restriction of E4pqns to the
link S, of a singular point x € ¥. is given as

gtTans|int S. — T,

where F is the flat vector-bundle of infinitesimal isometries on S,. Furthermore
Etrans 18 cone-admissible if the cone-angles are < 7.

5.2 Weitzenbock formulas
5.2.1 The spherical and the Euclidean case

Let (£, V¢) be an orthogonally flat vector-bundle. Recall the standard Weitzenbock
formula on £-valued 1-forms (for this formula to hold we really need that the metric
on & is parallel!):

Aw = V'Vw + (Ric®id)w
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The action of the Ricci tensor on a scalar-valued 1-form « is determined by the
relation

9(Ric(a), B) = Ric(a, B)

for all 3 € Q' (M, R). In three dimensions the Ricci tensor of a metric with constant
curvature k is given by
Ric(-,") =2k-9(-,-),

so we end up with

(k> 0)
Aw =ViVw + 2k - w

(k =0)
Aw = ViV

in the non-negatively curved cases.

5.2.2 The hyperbolic case

Here we use a different kind of Weitzenbock formula, essentially due to [MM]. We
use the notation of [HK]. Let &£ be the vector-bundle of infinitesimal isometries
and V¢ its natural flat connection. By abuse of notation we continue to denote
by V¢ the tensor-product connection on A*T*M ® & induced by the Levi-Civita
connection and V¢, in a similar twofold fashion we use the symbol V.

Recall the relation V¢ = Vy +ad(Y) for Y € T M, where the endomorphism ad(Y")
is symmetric with respect to hé. Let in the following

e:T*M @ A*T*M — A*T'T*M
denote exterior multiplication, and
L TM @AT*M — A*~'T*M
denote interior multiplication. Then we have
d= Z e(e)Ve = Zs(ei) (Ve; +ad(e;)) .
i i
This implies
d = — Z t(e;) (Ve, — ad(e;))
i
Define
D := Ze(ei)vei and T := Z e(e)ad(e;),
i

i
this implies

Dt = — ZL(ei)Vei and Tt = Z t(e;)ad(e;).

i i
We obviously have d = D + T and d¢ = D! + T, let Ap := DD! 4+ D!D and
H :=TT!+ T!T. H is symmetric and non-negative.
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Lemma 5.11 A=Ap+ H

Proof. From the definitions we have

A =ddt + dtd
=Ap+H+ DT+ TD!+ DT +T'D

Therefore we have to show that DT + T D! + DT +T*'D = 0.
Note that the Lie-bracket is parallel with respect to the flat connection V¢, i.e

V% (o, 7)) = [V o0, 7] + [0, V& TI-
This means that ad is V¢-parallel:
[V, ad(0)] = ad(Vo)
With Vx = V& + ad(X) we obtain

[V, ad()] = [V§ - ad(X), ad(0)]
= ad(V0) — [ad(X), ad(0)]
=ad(Vxo +ad(X)o) — ad ([X, o))
= ad(VXa),
such that ad is also V-parallel. € and ¢ are certainly V-parallel. In normal coordi-
nates we may therefore assume that [V,,,ad(e;)] = [Ve,,e(€?)] = [Ve;, t(e;)] = 0.
Using the relation e(e?)c(e;) + t(e;)e(e?) = d;; we obtain

DT +T'D = Z e,]) + L(e]) (ei)) Ve, ad(ej)

= Z Ve ad(e;)

Similarly, we have

TD! + D'T = — Z (e(e?)u(e;) + t(ei)e(e?)) Ve, ad(e;)
4,
=- Z Ve, ad(e;).
This proves the claim. E
Lemma 5.12 H =}, ad(e;)® + i e(et)u(ej)ad ([es, 5])
Proof. We have, again using £(e¥).(e;) + t(e;)e(e¥) = oy, that

TT' +T'T = Z (€5) + tlei)e(e’)) ad(ei)ad(e;)

= Z ad(e;)? + Z (e(e")elej) — e(e?)i(es)) ad(e;)ad(e;)

i#j
= Zad(ei)2 + Z (e(e")elej) — e(e?)i(es)) ad ([eis e5])
= Zad Z u(ej)ad ([e;, €;])
This proves the claim. @
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Proposition 5.13 [Wei] There is a constant C' > 0 such that
(Hw,w)s > C(w,w)s
for allw € QY(M,€) and z € M.

Proof. We first observe that H : A'T*M ® £ — A'T*M ® £ preserves the de-
composition £ = so(TM)®TM. Since H is symmetric with respect to hf, we may
choose an orthonormal basis of eigenvectors {e* ® (ef, ® €as) }k.1,a<s- We have

H(*®e) = Z eF @ ad(e;)?e; + Z e ® ad ([ei, ex)) e

Now ad(e;)*e; = R(ei,e1)e; and ad ([e;, ex]) e = —R(e;, ex,)er, therefore

H*®e) = Zek ® R(ei,e)e; — Zei ® Rle;,er)e

and

(H(e'c ®e) e’ ® el) = —Z (R(er, ei)ei, er) Z(szk (eier)er, er)
i

= —Ric(e, ) — 0= -2k =2

With ey5 = e ® e5 — €® ® e, we have
B B

H(eF ® eqp) = Ze ® ad(e eag—}—Ze ® ad ([ei, ex]) eap

Now ad(ei) €aB = 6aiR(eia eﬂ)_éﬁi (eia ea) and ad ([eia ek]) €a = — [R(eia ek): eaﬁ]:
therefore

H(e* ® eqp) = 2¢F ® R(eq,e5) — Zei ® [R(ei,er), €eas]

and

(H(ek ® eag),ek ® eaﬁ) =2 (R(ea;eﬂ);eaﬁ) - Zézk ([R(eiaek)aeaﬂ] ;eaﬁ)

= 2(R(ea,€p),€ap) — 0
=-2 (R(eaaeﬂ)eﬁaea)

=2k =2
Therefore we have shown that (Hw,w), = 2(w,w), forallw € QY (M, ) and z € M.
In particular with C' = 2 we obtain the proposition. E

5.3 A vanishing theorem

In this section we prove the main result about L2-cohomology spaces of cone-
manifolds with values in the flat vector-bundle of infinitesimal isometries. This
completes the analytic part of our argument.

Theorem 5.14 Let C be a 3-dimensional cone-manifold of curvature k € {—1,0,1}
with cone-angles < 7. Let (£,V¢) be the vector-bundle of infinitesimal isometries
of M = C\ X with its natural flat connection. In the Euclidean case let E¢pgns C €
be the parallel subbundle of infinitesimal translations. Then in the hyperbolic and
the spherical case
H}g (M, g) = 0 )
while in the Euclidean case
Hll,2 (M7 EtTans) = {UJ € QI(M, gtrans) | Vw = 0} .

For convenience we give a proof for each constant-curvature geometry separately.
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5.3.1 The spherical case

Theorem 5.15 Let C be a spherical cone-manifold with cone-angles < 7. Let
M = C\ X and (&,V¢) be the vector-bundle of infinitesimal isometries of M with
its natural flat connection. Then

Proof. We recall the Weitzenbock formula for the Hodge-Laplace operator on &-
valued 1-forms, which in the spherical case (i.e. K = 1) amounts to

Aw = VIVw + 2w

for w € Q'(M, €). For w € QF,(M, &) integration by parts yields

/(Aw,w):/ (Vti,w)+2/ |w]|?
M M M
:/ |Vw|2+2/ w]?
M M
22 [ jop
M

This means we have a positive lower bound for A on Q (M, €):
(Aw,w) 2 > C{w,w) 2

with C = 2. Since (£,V?) is cone-admissible according to Proposition (5.9), we
obtain
AF = A(dmaw)

via Corollary (4.33). Since the Friedrichs extension preserves lower bounds, we
conclude
H) e = ker AY(dpaz) = 0.

Finally the strong Hodge theorem for cone-manifolds, Theorem (4.29), identifies
L?-cohomology with the dy,q,-harmonic forms. This implies H},(M,€) = 0 and
therefore proves the theorem. E

5.3.2 The Euclidean case

Theorem 5.16 Let C' be a Euclidean cone-manifold with cone-angles < m. Let
Eirans C & be the parallel subbundle of infinitesimal translations of M = C' \ X.
Then

H[1,2 (M; gtrans) = {w € QI(M; gtrans) | Vw = 0} .

Proof. The Weitzenbock formula for the Hodge-Laplace operator on &pqpns-valued
1-forms in the Euclidean case (i.e. kK = 0) amounts to

Aw = V'Vw
for w € Q(M, Etrans)- This implies with Corollary (3.3) that
Ap =V 02 Vimin -
Since Etrans C € is cone-admissible according to Lemma (5.10), we obtain

Ap = Aldmaz) -
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via Corollary (4.33). This implies that
A(dmaz) = Vinag Vimin -
For w € ker A'(d,qz) we have
0 = (A(dmaz)w, w)r2 = {VE 0o Vininw, )12 = || Vininw||72

We conclude that w € ker V5, On the other hand if w € L2(A'T*M ® Eirans)
satisfies Vw = 0 in the distributional sense, then

dw=(oV)w=0

and
dw=—(1oV)w=0

will be satisfied in the distributional sense, in particular w € ker D,,,4;. Since D is
essentially selfadjoint according to Corollary (4.32), we obtain w € ker D(dpmaz)-
Thus w € ker Al(d;;42). We obtain

ker Vingz C HL .o = ker AY(dpaz) C ker Viin
in particular
He o =ker Vige = {w € L*(A'T*M ® Erans) | Vw = 0} .

This implies via Theorem (4.29), the strong Hodge theorem for cone-manifolds,
that
HII/2 (M’ gtrans) = {w € Ql(Ma gtrans) | Vw = 0} ’

since ker A(dqz) consists of smooth sections. Note also that a parallel form w will
automatically be L2-bounded, since V is compatible with metric on Eirqns. This
proves the theorem. =

5.3.3 The hyperbolic case

Theorem 5.17 Let C' be a hyperbolic cone-manifold with cone-angles < mw. Let
M = C\ X and (€,V¢) be the vector-bundle of infinitesimal isometries of M with
its natural flat connection. Then

Hi.(M,E) =0.

Proof. The proof follows the same scheme as in the spherical case. For convenience
of the reader we also give full details in this case.
We recall that in the hyperbolic case we have a Weitzenbock formula for the Hodge-
Laplace operator for £-valued 1-forms of the type

Aw = D'Dw + DD'w + Hw,

where
(Hw,w) 2 > C{w,w) 2

for C' > 0 independent of w € Q'(M,€). For w € O, (M, &) integration by parts
yields

/M(Aw,w) N /M(DtDMW) - /M(Dth,w) * /M(Hw,w)
- /M IDwl” + /M DRl + /M(ijw)
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> f fof
M

This means we have a positive lower bound for A on Q (M, €):
<Aw:w>L2 >C <w7w)L2

for C > 0. Since (£,V¢) is cone-admissible according to Proposition (5.9), we
obtain
Ap = A(dmam)

via Corollary (4.33). Since the Friedrichs extension preserves lower bounds, we
conclude
H e = ker A (dyaz) = 0.

Finally the strong Hodge theorem for cone-manifolds, Theorem (4.29), identifies
L?-cohomology with the dy,qq-harmonic forms. This implies H;.(M,&) = 0 and
therefore proves the theorem. =l

6 Deformation theory

In this chapter we study the deformation space of cone-manifold structures on a
3-dimensional cone-manifold of given topological type (C,X). It is convenient to
use the more general framework of (X, G)-structures and deformations thereof, in
particular since there is a quite general theorem of [Gol], which relates the local
structure of the deformation space of (X, G)-structures to the local structure of
X(mM,G). By X(mM,G) we denote the quotient of R(m M,G), the space of
representations 71 M in G, by the conjugation action of G.

In our case the relevant (X,Q)-structure will be X = M2 and G = Isom* M3,
in fact by a theorem of [Cul], the holonomy representation of a 3-dimensional
cone-manifold structure may always be lifted to the universal covering group of
Isom* M2, which in the hyperbolic case is SLy(C) and in the spherical case is
SU(2) x SU(2). In the Euclidean case the rotational part of the holonomy lifts to
SU(2).

We will use the L2-vanishing theorem to analyze local properties of SLs(C)-, and
SU(2)-representation spaces. From this we will be able to conclude local rigidity in
the hyperbolic and in the spherical case.

6.1 (X, QG)-structures

Let (X, g%) be a Riemannian manifold upon which a Lie group G acts transitively
by isometries. Let M be manifold of the same dimension as X. Then we say that
M carries an (X, G)-structure if M is locally modelled on X, i.e. there is a covering
of M by charts {¢; : U; = X }ier such that for each connected component of C of
U; N Uj there exists gco,;,; € G such that gc;j o p; = ¢; on C. The collection of
charts {¢; : U; =& X}ier is called an (X, G)-atlas and an (X, G)-structure on M
is a maximal (X, G)-atlas. A detailed discussion of this kind of structure may be
found in [Gol], which we will mainly refer to in this section.
The most important examples are for our purposes of course 3-dimensional Rie-
mannian manifolds of constant sectional curvature k, which can be understood as
(X, G)-manifolds with X = M2 and G = Isom* M3.
Let us fix a basepoints zo € M and py € m'(zo), where m : M — M is the
universal covering of M. Then an (X, G)-structure on M together with the germ
of an (X, G)-chart ¢ : U — X around ¢ determines by analytic continuation of ¢
a local diffeomorphism .

dev: M — X |
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the developing map, and a representation
hol : m (M, z9) — G,

the holonomy representation, such that dev is equivariant with respect to hol, i.e.
dev oy = hol(y) o dev

for all v € m (M, zo). Conversely, a local diffeomorphism dev : M —» X, which is
equivariant with respect to a representation hol : 7y (M, zy) — G as above, defines
an (X, G)-structure on M together with the germ of an (X, G)-chart at zo. Note
that hol is uniquely determined by dev and the equivariance condition.

Let ’Dz X,G) (M) be the space of developing maps with the topology of C*-convergence
on compact sets. As usual we equip R(m (M, x0),G), the set of representations of
m1(M, z0) in G, with the compact-open topology. Associating its holonomy repre-
sentation with a developing map yields a continuous map

EX,G)(M) — R(m1 (M, z0),G)
dev — hol .

For simplicity we assume that M is diffeomorphic to the interior of a compact
manifold with boundary M U M, which is certainly the case for the object of our
main concern, namely the smooth part of a 3-dimensional cone-manifold.
Following [CHK] we introduce the equivalence relation ~ on the space of developing
maps, which is generated by isotopy and thickening. Clearly Diffq(M), the group
of diffeomorphisms of M isotopic to the identity, acts on the space of developing
maps, two structures equivalent under this action will be called isotopic. On the
other hand, if an (X, G) structure on M extends to M UOM x [0, &) for some € > 0,
this gives rise to an (X, G)-structure on M, which we will call a thickening of the
original structure. Let

D(X,G)(M) = D(X,G)(M)/N .
We obtain a G-equivariant map

D(X,G’) (M) — R(ﬂ-l (MJ m0)7 G)
[dev] — hol .

We define the deformation space of (X, G)-structures to be the quotient
Tix,0) (M) :=Dx,qy(M)/G .

Let X (m(M,z0),G) denote the G-quotient of R(mi(M,zq),G) by conjugation,
properties of this quotient in our particular context will be discussed in greater
detail in subsequent sections.

Let us assume that the action of G on R(m (M, o), ) by conjugation is proper,
this implies in particular by the G-equivariance of the above map, that the action
of G on D(x ) (M) is also proper. In this situation the arguments of [Gol] (cf. also
the discussion in [CHK]) yield the following theorem about the local structure of
the deformation space of (X, G)-structures:

Theorem 6.1 (Deformation theorem) [Gol] If the conjugation action of G on
R(m1(M,x0),G) is proper, then the map

7EX,G) (M) — X(Trl (M7 :L.O): G)
[dev] — [hol]

is a local homeomorphism.
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This theorem explains the meaning of representation spaces in the study of defor-
mations of (X, G)-structures: Local properties of X (mi(M,zq),G) translate into
local properties of the deformation space of (X, G)-structures on M.

By a theorem of M. Culler (cf. [Cul]) the holonomy representation of a cone-manifold
may be lifted to the universal covering group of Isom* M3:

hol : 7y M — Tsom+M?

In the hyperbolic case Isom+H? = SLy(C). We obtain that the flat vector-bundle
of infinitesimal isometries may be written as

&= MXA¢01?615[2(C)'

As a consequence & has a parallel complex structure, such that in particular all the

cohomology spaces H!(M, ) are complex vector spaces.

—

In the spherical case Isom*S? = SU(2) x SU(2). Therefore the lift of the holonomy
splits as a product representation

hol = (holy, holy) : m M — SU(2) x SU(2),

in particular the flat vector-bundle of infinitesimal isometries splits as a direct sum
of parallel subbundles:
E=6D &,

where .
gi =M X Adohol; 511(2) .

Consequently H*(M,€) = HY(M, &) & HI(M, &) for all i.

In the Euclidean case IsomtE?® = SU(2) x R®. We may lift the rotational part
rot : Isom™ E? — SO(3) to the universal covering groups:

rot : SU(2) x R® — SU(2).

We have an exact sequence

0= R® — Isom+E? 2% SU(2) — 1.
The lift of the translational part trans : Isom* E® — R3
frans : SU(2) x R* — R

is not a group homomorphism, but rather a group 1-cocycle of with coefficients in
the representation rot : SU(2) x R® —s SU(2), cf. the next section for definitions.
We obtain for the flat vector-bundle of infinitesimal translations

gtrans = Mx’“‘ hol Rg

rotohol
=M xAdof?{tolT&l 511(2) )

where we identify su(2) and R® as SU(2)-modules.

For notational convenience we will drop the distinction between hol and hol (resp.
between rot, rot and trans, trans) from here.
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6.2 The representation variety

Let I be a finitely generated discrete group. Once and for all we fix a presentation
(71, --,nl(ri)icr) of T'. The cardinality of the indexset I may a priori be infinite,
however most of the groups we will deal with will turn out to be finitely presented.
Let G = SLy(C) or SU(2). The representation variety R(I',G) is defined to be
the set of group homomorphisms p : I' - G. R(T,G) endowed with the compact-
open topology will be a Hausdorff space, compact in the case of SU(2).
The relations r; define functions f; : G — G such that R(T', G) may be identified
with the set {(A1,...,4,) € G"| fi(A1,...,A,) = 1Vi € I}. Since SLy(C) is a
C-algebraic (resp. SU(2) a R-algebraic) group and the f; are polynomial maps,
R(T,G) acquires the structure of a C-algebraic (resp. R-algebraic) set. Note that
R(T,G) won’t be a smooth space in general.
The action of G on G™ by simultaneous conjugation leaves the set R(I',G) C G™
invariant. Therefore the set-theoretic quotient X(I',G) = R(T', G) /G is well defined.
We endow X (T, G) with the quotient topology. X (I',G) will in general be neither
smooth nor even Hausdorfl. X (T', G) as we have defined it is not to be confused with
a quotient constructed in the algebraic category. This usually requires arguments
from geometric invariant theory, which we can avoid to use here.
A smooth family of representations p; : I' = G with py = p defines a group 1-cocycle
z:T' = g, where

2(7) = & _,pe(Vp(1) 7!
for v € T. Recall that Z'(T,g), the space of 1-cocycles of I' with coefficients in the
representation Ado p: I' — GL(g), is the the space of maps z : I' — g such that

z(ab) = z(a) + Ad o p(a)z(b)
for all a,b € T'. A cocycle z is a coboundary if there exists some v € g such that
z(a) =v — Ad o p(a)v
for all @ € T. Let BY(T', g) be the space of 1-coboundaries. Now by definition
H'(T,g) = Z'(T,g)/B'(T,g)

is the first group cohomology group of I with coefficients in the representation
Adop:T — GL(g). H'(T,g) is a real vector space.

We refer to Z!(T, g) as the space of infinitesimal deformations of the representation
p- We call a 1-cocycle z integrable, if there exists a (local) deformation p;, which is
tangent to z in the above sense.

It is easy to see that z € B1(T, g) if and only if z is tangent to the orbit of G' through
p, i.e. there exists a smooth curve g; in G with go = 1 such that

2() = &|,_, 9ep()gi ' p(v)

for v € T. A deformation p;(y) = g¢p(7)g; * will be considered trivial.
We use the following observation due to A. Weil (cf. [Wei]): Amap z: [ —» g
defines a group 1-cocycle if and only if the map

(Adop,z):T — GL(g) x g
v+ (Ad o p(v),2(7))

is a group homomorphism. GL(g) X g is the affine group of the vector-space g.
Using the fixed presentation of T', this identifies Z1(T, g) with a linear subspace of
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g". More precisely, the relations r; determine linear functions g; : g" — GL(g) X g,
such that

ZNT,9) = {(a1,...,am) € §"|gi(a1,-..,a,) = 0Vi € I'}.
On the other hand, ker df; may be identified with a subspace of g" via
(Ai,..., Ay) — (A1ATY, . AR ADY.
With these identifications we have the following lemma:

Lemma 6.2 [Wei] Z'(T, g) = N;er kerdf;.

Proof. An easy calculation shows that dfi(Ay,...,A,) = 0 for A; € Ty,G if and
only if g;(ai,...,a,) =0, where a; = A; A7 . @

If the equations (f;)icr cut out R(I',G) transversely near p, then the previous
lemma, identifies Z'(T',g) with the tangent space of R(T,G) at the point p. In
particular p will be a smooth point. If furthermore the G-action on R(T,G) by
conjugation is free and proper, then X (T', G) will be smooth near x = [p] and the
tangent space at Y may be identified with H'(T,g).

6.3 Integration and group cohomology

We wish to represent group cocycles of w3 M with coefficients in the representation
Adohol: m M — g =isom™M? by differential forms on M with values in €. This
will be achieved by means of integration.

Let zo be a base point in M, then for v € m1 (M, z0) and w € QL (M, &) closed we

define )
/7 o= /0 L WD)t € Eu,

where 7, ;) denotes the parallel transport along v from xq = y(0) to ~(t). Since w
is closed, the integral depends only on the homotopy class of v. If we identify &,,
with g, then we may set

zw<w)=/7weg.

Alternatively, we may proceed as follows: The flat bundle £ may be described as
an associated bundle & = M X ggono1 8- A function f : M — g descends to a section
o € (M, &) if and only if

f(yp) = Ad o hol(y) - f(p)

for all p € J\7.f, v € w1 (M, xo). Similarly, a 1-form & € 91(1\7, g) descends to a form
w € QY(M, €) if and only if

v*@w = Adohol(y) - @

for all v € m (M, zo). For w € Q(M,E) closed consider m*w € Q(M,7*E). Let
po € 7 1(zo) be a base point in M. After identifying &z, with g this yields a form
we Nt (M ,8), which satisfies the above equivariance condition. Now since M is
simply connected, there exists a primitive F' € C*° (M, g) such that dF = ©. For
~v € m (M, x9) we define

2u(y) = / w=F(yp0) — F(po) € 4.
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Since F' is determined up to an additive constant, this is well defined. Both defi-
nitions of the map 2, : m M — g associated with the closed form w € Q!(M, &)
clearly agree.

Lemma 6.3 If w € Q'(M,€&) is closed, then z, defines a group 1-cocycle, i.e.
25 € ZY(m1M,g). w is exact if and only if 2, is a coboundary, i.e. z, € B! (1M, g).

Proof. If w is closed, we have to check the cocycle condition
2w (ab) = z,(a) + Ad o hol(a) - z, ()
for a,b € m (M). Let F be a primitive for @ = m*w. By definition of z, we have

2w (ab) = F(abpo) — F(po)
= F(abpo) — F(apo) + F(apo) — F(po) -

Since w is equivariant, for each v € m; M we obtain
d(Fory— Adohol(y)F) =0,
i.e. F satisfies the equations
Fory—Adohol(y)F =C,
for constants C,, € g. In particular
F(abpo) — F(apg) = Ad o hol(a) (F(bpo) — F(po)) ,

which proves the first claim.
For the second claim we have to check that w is exact if and only if there exist v € g
such that

2, () = Ad o hol(y)v — v (%)

for all v € m M. We first observe that w € Q!(M, €) is exact if and only if there
exists C' € g such that f = F' + C is equivariant. Now f equivariant implies that

/w = Ad o hol(7y) f(po) — f(po)

for all v € m M, such that with v = f(py) we arrive at relation (x). Conversely,
given (%) for some v € g, by choosing C' € g appropriately we may achieve that
f =F + C satisfies f(po) = v. Then again by the equivariance of & we obtain

/szdOhol(w)QH—Cv—v
8!

for some C., € g. Comparing this with (x) now implies that C., = 0 for all v € 71 M,
which means that f is equivariant. =

As a consequence of the preceding lemma, we obtain that the period map
P:HY(M,E) — H'(m M,g)

W] — [y = [ ]

is well defined and injective. Since we know from general considerations (cf. [Bro,
Thm. 5.2, see also p. 59]), that H'(M,€) = H'(m M, g), we find that the period
map provides an explicit isomorphism between H'(M, &) and H' (71 M, g).
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6.4 Isometries
6.4.1 Isometries of H?

The action of SLy(C) on H? by Poincaré extension identifies SLy(C) with the uni-
versal covering group of Isomt H? = PSLy(C). Here we use the upper half space
model. Let ¢ : SLy(C) — Isom* H? be the covering projection.

Semisimple elements in SLs(C) project to semisimple isometries. A semisimple
isometry ¢ has an invariant axis, this is the geodesic where d4, the displacement of
¢, assumes its minimum. If this minimum is positive, we call ¢ hyperbolic, otherwise
elliptic. Parabolic elements in SLy(C) project to parabolic isometries. Parabolic
isometries have a unique fixed point at infinity.

Lemma 6.4 A, B € SLy(C) commute if and only if ¢(A), ¢(B) are either semisim-
ple isometries and preserve the same axis v or ¢(A), ¢(B) are parabolic isometries
with the same fixed point at infinity.

The stabilizer of an oriented geodesic v is isomorphic to C*, more precisely, if we
work in the upper half space model H® = Cx R, then for v = {0} x R} we obtain

A0 *
StabSLz(C) (’Y) = {( 0 A1 > :AeC } .

St C Stabgr,, (g (7) corresponds to pure rotations around +, while R C Stabgr,, (c) (7)
corresponds to pure translations along . In particular, if we choose cylindrical
coordinates (7,6, z) around ~, we see that

1 ;0
Oa/00 = 5 ( (Z) i ) € slx(C)

and

1 1 0
08)8z = 5 ( 0 -1 ) €5[2((C).

The factor 1/2 comes from the fact that SLy(C) is a twofold cover of Isom™ H3.

Let ¢ = ¢(A) € Isomt H? be semisimple. Then A is conjugate to diag(A, A~1)
in SLy(C) for A € C*. Let z € C/2miZ such that A = exp(z). We define

L =2z¢€C/2nmil.

Then £ is determined by A (resp. by the set of eigenvalues {A\, A\"'}) up to sign. £
is called the complex length of A. If we orient v, the axis of ¢, the sign ambiguity of
L can be removed consistently for all elements in a neighbourhood of A. The real
part of £ equals the (signed) translation length of ¢ along 7, while the imaginary
part equals the angle of rotation around y. We obtain

tr A = exp(z) + exp(—z) = cosh(z).
Since the map z — L is a twofold covering, we obtain the following lemma:

Lemma 6.5 The implicitly defined function tr — L is locally biholomorphic if
tr # +2.

Let us denote by Z(p(I')) the centralizer of the representation p. Recall that a
representation p : I' — SLy(C) is called irreducible if there is no invariant line in
C? for the action of T via p.
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Lemma 6.6 Let T’ be a discrete group. For a representation p : T — SLo(C) the
following statements are equivalent:

1. p is irreducible.
2. p(T') has no fixed point at infinity.
If p is irreducible, then Z(p(T')) = {£1}.

Proof. p reducible means by definition that p(T') is conjugate to a group of upper
triangular matrices. This is equivalent with p(T') fixing co € C U {oo} if we look at
the upper half-space model of hyperbolic space.

Let us now assume that there is a non-trivial element A € Z(p(T")). If A is semisim-
ple, then the whole group p(T') is conjugate to a group of diagonal matrices. Sim-
ilarly, if A is parabolic, p(T') is conjugate to a group of upper triangular matrices.
In both cases p is reducible. =

6.4.2 Isometries of S3

We identify S* with the unit quaternions, i.e. S* = {z € H : |z| = 1}. If we view
the quaternions as a subalgebra of C2*? via,

L (VO (0 (0 LY (0
0 1)°" 0 —i ) 10 )" i 0 )

S? gets identified with the group SU(2) via

S? — SU(2)
L hi s a b
a J b a )’

where a,b € C with |a|? + |b|?> = 1. The map
¢ : SU(2) x SU(2) — SO(4)
(4, B) —s (z —» AzB™ )

exhibits SU(2) x SU(2) as the universal covering group of Isom* S? = SO(4).
Note that the diagonal matrices

{(3 %):,\esl}cSU(Q)

correspond to the geodesic v = CNS3. Here C is identified with R&ORi C H. For any
geodesic v C S® let us denote by v+ the geodesic which lies in the plane orthogonal
to 7. In the above case v+ = Cj N S = (Rj ® Rk) N S?, which corresponds to the

set of matrices \
0 ] 1
{(—X 0)./\€S}CSU(2).

A spherical isometry may be put in standard form, namely if ¢ = ¢(A, B) with
A, B € SU(2), then by conjugation we may achieve that A = diag()\,A) and B =
diag(p, ) with A\, u € S'. The matrix A corresponds to A € CN S and B to
p € CNS? if we identify SU(2) with S* as above. Then for 2 € S* we have

¢(x) = Aapa,
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such that ¢ preserves the Hopf-fibrations, which are associated with the complex
structures  ~ iz and x — zi on H. In particular, ¢ preserves vy = C N S® and
v+ = Cj N'S?, more precisely we have

é(n) = Xam

forne St =CnNS3, and
¢(nj) = (Aun)j

for nj € Cj N'S®. Note that v and v+ are the common leaves of the two foliations,
which are transverse everywhere else.

If 4 =1, then ¢ translates along the fibres of the Hopf-fibration obtained by left-
multiplication with S!, in particular the displacement of ¢ is constant on S3. Sim-
ilarly, if A = 1, then ¢ translates along the fibres of the Hopf-fibration by right-
multiplication with S'. Again the displacement of ¢ will be constant on S2.

If A = p, then ¢ is a pure rotation around 7, or equivalently, a pure translation
along 1. Similarly, if A\ = Ji, then ¢ is a pure rotation around v, or equivalently,
a pure translation along 7.

In particular, if we choose cylindrical coordinates (r,8, z) around v, we see that

T5/09 = (% ( 6 _Ol ) ,% ( 8 _OZ )) € su(2) @ su(2)

0o/0: = (% ( (Z) —Oz ),%( _OZ (2 )) € su(2) @ su(2).

The factors 1/2 arise from the fact that SU(2) x SU(2) is a twofold cover of Isom™* S3.

and

Lemma 6.7 ¢1, ¢ € Isomt S commute if and only they preserve the same pair
of orthogonal axes {v,vy*}.

By the term azis we mean the same thing as oriented geodesic.

PTOOf. Let ¢1 = ¢(A1,B1) and ¢2 = ¢(A2,B2) with Az,Bz (S SU(Z) If ¢1 and
¢2 commute, we may assume that A;, By, As and B, are simultaneously diago-
nal. Then it is easy to check that ¢; and ¢, preserve the axes v = C N S® and
vt =CjnSs.

On the other hand, if ¢; and ¢, preserve a pair of orthogonal axes, we may assume
that vy = CN 8% and v = Cj N S3. Again it is easy to check that then A;, By, A,
and B, have to be diagonal, hence ¢; and ¢» commute. E

Lemma 6.8 A spherical isometry ¢ = ¢(A, B) with A, B € SU(2) has a fixed point
if and only if A is conjugate to B within SU(2).

Proof. Without loss of generality we may assume that 1 is a fixed point of ¢. This
implies immediately that A = B. =l

We want to define a complex length in the spherical case, too. If ¢ = ¢(A, B)
with A conjugate to diag(),A) and B conjugate to diag(u, ), then let = € R/27Z
such that

A = exp(iz)
and y € R/27Z such that

p = exp(iy) .
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We define £; =z —y and L3 = 2 +y. Then £ = (£1,Ls) € R? /2172 is determined
by A and B up to sign and up to switching components. If ¢ preserves a pair
of orthogonal axes {v,7"}, these ambiguities can be removed in a neighbourhood
of (A, B) by orienting v and y*. Let us again call £ the ”complex” length of
(A,B) € SU(2) x SU(2). L£; equals the (signed) translation length along -y, while
L equals the (signed) translation length along v-. We obtain

tr A = exp(iz) + exp(—iz) = 2cosz
and
tr B = exp(iy) + exp(—iy) = 2cosy.
We set Tri(A,B) = tr A and Tra(A,B) = tr B. Since the map (z,y) — L is a

twofold covering, we obtain the following lemma:

Lemma 6.9 The implicitly defined function Tr = (Try, Tra) — L is a local diffeo-
morphism as long as Try # £2 and Try # £2.

We finish this section with the following lemma about SU(2)-representations:

Lemma 6.10 Let I’ be a discrete group. For a representation p : ' — SU(2) the
following statements are equivalent:

1. p is irreducible.
2. p(T) is non-abelian.

3. Z(p(T)) = {£1}.

Proof. p reducible implies, since SU(2) is a compact group, that p(T") is conjugate
to a group of diagonal matrices, hence that p(T') is abelian. Conversely, an abelian
subgroup of SU(2) is clearly conjugate to a group of diagonal matrices.

In particular, the centralizer of p will be non-trivial for a reducible representation.
Conversely, if A € Z(p(T')) is non-trivial, p(I") will be conjugate to a group of
diagonal matrices, hence p will be reducible. E

6.4.3 Isometries of E3

Here we concentrate on the discussion of the rotational parts of isometries of E3.
The map
SU2) x ImH — ImH
(A,z) — AzA™!
exhibits SU(2) as the universal covering group of SO(3) if we identify Im H with

R3. It is at the same time the adjoint representation of SU(2) if we identify Im H
with su(2). Let ¢ : SU(2) — SO(3) be the covering projection.

Lemma 6.11 A, B € SU(2) commute if and only if ¢(A), #(B) € SO(3) have the
same rotation axis.

Proof. Let x € ImH N S3. Then ¢(A)z = z if and only if Az = zA. From this the
statement is clear. ]

):)\651}.

Let v = Ri C ImH®. Then

A
Stabgu(2)(7) = {( 0

> o
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In particular, if we choose cylindrical coordinates (r,8, z) around v, we see that

1/4 0
Oo/0: = Oo/00 = 5 ( 0 —i ) € s5u(2).

Here we identify R® and su(2) 2 s0(3) as SU(2)-modules.

6.5 Cohomology computations

Let C be cone-manifold with singular locus ¥. A connected component of ¥ is
either a circle or a trivalent graph. Let M, = M \ B.(X), where B.(X) is the open
e-tube around ¥. Let U.(X) = B.(X)\X. Then M, is topologically a manifold with
boundary, which is a deformation retract of M. M. consists of tori and surfaces
of higher genus. OM, = U, (X) is a deformation retract of U, ().

Without loss of generality we may assume in the following that ¥ is connected.

6.5.1 The torus case

Let ¥ = S'. Then U.(X) is given as (0,) x T'?, where T? = R/A and A is the lattice
generated by (0, 2) — (8+a, z) and (0,2) — (8 —t,z+1). The metric is given as g =
dr? +sn2 (r)df? +cs? (r)dz2. Here a,t and [ are the parameters, which determine the
geometry of U (X), namely the cone-angle, the twist and the length of the singular
tube. Note that a function f in the coordinates (r,8, z) descends to a function on
U.(X) if and only if f(r,0,2) = f(r,0 + a,2) and f(r,0,z+1) = f(r,0 +t,2). Note
also that H*(U.(X),-) = H(T?,-) for any local coefficient system.

The forms df and dz are invariant under A and descend to forms on T2, which
generate the de-Rham cohomology of the torus, i.e. HY(T?,R) = R - [df] ® R - [dz].
Similarly, 8/00 and 0/0z descend to Killing-vectorfields on U.(¥). To be more
specific, 0/06 is an infinitesimal rotation around the singular axis and 9/0z an
infinitesimal translation along the same axis. Consequently, 05/9¢9 and 05,5, make
up parallel sections of the bundle &, i.e. 04/5.,05/9, € H°(T?,£) . In the Euclidean
case, 05,9, is a parallel section of Erans, i-e. 0575, € H O(T?, Etrans)- Recall that in
the Euclidean case the infinitesimal translations form a parallel subbundle Ey.qps C
&, which is isomorphic to the flat tangent-bundle.

Lemma 6.12 If the cone-angle is not an integer multiple of 2w, then in all cases
we have

HO(TZ,g) =R- 08/89 eR- 039/825

and in the Euclidean case
HO(TQ;gtrans) =R- 0p/8z-

Proof. Let X be the longitudinal and u be the meridian loop. Then 7;T? = ZA® Zpu.
Clearly HO(T?,€) = Z°(mT?;g) = {v € g|Ad o hol(y)v = v Vy € m T?}, which we
view as the infinitesimal centralizer of the representation hol : mT? = CNT', where
G is the universal covering group of G = Isom™ M32. We compute the centralizer
Z(hol(m T?2)) C G in each case.

In the hyperbolic case, let A = hol(A) € SLy(C) and B = hol(u) € SLy(C). Since
hol is the holonomy of a hyperbolic cone-structure with cone-angle not a multiple
of 27, we may assume that A = diag(n,n~!) and B = diag(¢,¢71) with 9, & # £1.
Then it is easy to see that Z(hol(mT?)) = {diag(¢,(™1),( € C*}. This clearly
implies that Z°(m T?,sl(C)) = R?. Since 05799 and 04,5, are closed and linearly
independent, the result follows.

In the spherical case, hol : m; T? — SU(2) x SU(2) splits as a product representation
hol = (holy, holy) with hol; : mT? — SU(2) for i € {1,2}. We then clearly have
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Z(hol(m T?)) = Z(holy(mT?)) x Z(holy(m T?)). Let A; = hol;(A) € SU(2) and
B; = hol;(u) € SU(2). Without loss of generality we assume that A; = diag(n;,7;)
and B; = diag(&;,&;) with n;,& € S'. Since hol is the holonomy of a spherical cone
structure with cone-angle not a multiple of 27, hol(x) must be a nontrivial rotation.
This implies that {£1,&,} = {&,&,} # {£1}. Then it follows that Z(hol;(m,T?)) =
{diag(¢,¢),¢ € S*} and Z°(m T2, 5u(2)) = R. As above 059 and 05/, provide a
basis for HO(T?,€).

In the Euclidean case, we consider hol : mT? — SU(2) x R® and the rotational
part rot o hol : m;T? — SU(2), where we continue to denote by rot the lift of
the rotational part rot : Isom™E® — SO(3) to the universal covering groups.
Let (4,a) = hol(\) and (B,b) = hol(u). We may assume without loss of gen-
erality that (A,a) = (diag(n,7),a) and (B,b) = (diag(,£),0). Since hol is the
holonomy of a Euclidean cone-structure with cone-angle not a multiple of 27,
hol(x) must be a nontrivial rotation. Therefore we obtain that Z(hol(mT?)) =
{(diag(¢, (), c),¢ € S, c parallel to the axis of #(B)}. Here ¢ denotes the projec-
tion SU(2) — SO(3). Similarly Z(rot o hol(m T?)) = {(diag(¢, (), c),¢ € S'}. Then
Z%(mT?,isom*E?) = R? and Z°(m T?,5u(2)) = R. Note finally that 054, is an
infinitesimal translation in the Euclidean case. @

We define forms

Wang = df ® 08/80
Wshr = d0 ® 055,
Wrws = dz ® 0559
Wien = dz ® 055 -

Since 05,59 and 05,5, are parallel, these forms are closed. These forms will be
tangent to the corresponding geometric deformations of the singular tube, i.e. wang
is supposed to change the cone-angle a, similarly for ¢t and I. wgp, will be tangent
to a deformation, which leads out of the class of cone-metrics (which may be called
a shearing-deformation). This will be made precise.

Lemma 6.13 The forms wyn, and wgp, are not L* on U.(X), whereas the forms
Wiws and wie, are bounded on U.(X) and hence L2.

Proof. We recall that the metric on U, (X) is given by g = dr?+sn? (r)d6*+cs2 (r)dz>.
Hence dvol = sn,(r)cs(r)dr Adf A dz. For w = a® ox with a € QY (U.(X)) and
X € I(TU.(%)) we have |w|*> = |a|® ([VX]? + |X]?).

Clearly

1 2 a |2 2 8 |2 2
Sni(r)a |dz| = CSQ(T)a |ﬁ| ZSHN(T), |E| :CSK(T).

|do|* =

Let

{er=2, e =sn,(r)"'Z, e =csu(r) ' &

be an orthonormal frame for TU.(X). A straightforward calculation shows that
with respect to this frame

0 —csg(r) O
VZ = eselr) 0 0 | € T(so(TU.(D))
0 0 0
and
0 0 ksng(r)
Ve = 0 0 0 € T(so(TU.(Z)),
—ksng(r) 0 0
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such that

K

|V%|2 = cs?(r), |V% R sn? (r).

We obtain
Wang[? = snZ(r) + cs?(r) o] = csZ(r) + k? snZ(r)
o sn2(r) 7T sn2(r)
and
sn2(r) + cs?(r) cs2(r) + k?sn2(r)
2 __ K 2 __ K K
|wtws| - T 5/ N |wlen| -

csz(r) csi(r)

In the first case we observe that |wgng|>dvol ~ |wshr|?dvol ~ sn,(r)~!, which is not
integrable for r € (0,¢). In the second case we find wyys and wie, bounded and
therefore L2-integrable. B

Lemma 6.14 If the cone-angle not an integer multiple of 2w, then we have in the
hyperbolic and the spherical case

HYT? &) =R - [Wang] ® R [wsnr] ® R - [wiws] ® R - [wien)s
while in the Euclidean case
Hl (T2, gtrans) =R- [wshr] eR- [wlen]-

Proof. Since H(T%, ) =R -0y 180 ® R-05/5., we obtain a short exact sequence of
flat bundles
0-R* =& E/R >0,

and in the Euclidean case, since H*(T?, Erans) = R+ 09/52,
0 - R - gtrans - gtrans/E — 0

Here we denote by R2 (resp. R) the trivial flat bundle of R-rank 2 (resp. 1). We
claim that the natural maps

HY(T?,R?) - HYT?€)
in the hyperbolic and the spherical case, and
Hl (Tza R) - Hl (Tz, gtrans)

in the Euclidean case, are isomorphisms. In the spherical and the Euclidean case we
use the parallel metric on & (resp. Etrans) to embed the quotient bundle into £ (resp.
Etrans) transversally to R? (resp. R). Then clearly H°(E /Rz) = H%Erans/R) =0
and we may use Poincaré duality to conclude that £/R* (resp. Eirans/R) is acyclic.
Then the result follows from the long exact cohomology sequence associated with
the respective coefficient sequence.

In the hyperbolic case we use the nondegeneracy of the parallel Killing form B to
embed £/R? into £. Since B is indefinite, to ensure transversality we have to check
that B restricted to RQ is nondegenerate. We use the local formula for the Killing
form in Lemma (5.5) with k = —1:

B(ox,oy) = —-4(VX,VY) +4(X,Y).
From the calculations in the previous lemma we obtain
B(O’a/ag,()’a/ag) =—4 COSh2(’I“) + 4sinh2(r) =—4

B(os/82,08/62) = —4 sinh?(r) + 4 cosh?(r) = 4
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B(os/59,09/92) = 0,

which shows that B|g> is nondegenerate. Then the result follows as above. @

We calculate the periods of the differential forms wgng, Wshr,Wtws and wie,. Let
zo = (0,0) be the basepoint of T2. For v € mT? and w € Q' (T?, &) closed, we have

a well-defined integral
1
/ w= / b (i),
lo% 0

where 7,(;) denotes the parallel transport along v from zo = v(0) to y(t). Recall
that the map v — z,(y) := fww defines a group 1-cocycle, i.e. z, € ZY(m T?,g), if
we identify &,, with g. The period map

P: HY(T?€) — H'(mT?,g)
[w] — [2]

is an isomorphism. Note that if w is of the form w = o ® o with Vo = 0, then f,y w

is very easy to compute:
[o=[a-o
v v

This remark applies in particular to0 Wang, Wshr, Wiws and wien. Let p € m1T? be the
meridian and \ € w72 the longitude, u(0) = A(0) = zo. Then

zang(,u') = /wang =a- (08/80):00 ) Zang()\) = /}\wang =—t- (Ua/ao)zo
"

zshr(ﬂ) = /wshr =a- (08/6z)aco ) zshr()\) = /)\wshr =—t- (08/6z)ac0
w

ztws(,u/) = /wtws =0, ztws()\) = /wtws =1- (Ua/aa)zo
w A

Zlen(u) = /wlen = 07 zlen()\) = /wlen =1 (Ua/az)zo .
o A

6.5.2 The higher genus case

Let ¥ be a connected graph with trivalent vertices. Then F, = 0U.(X) is a surface
of genus g = (N + 3)/3, where N is the number of edges of ¥. The smooth part of
the e-ball U, (v) of a vertex v € ¥ is homotopy equivalent to a pair of pants P.

Lemma 6.15 If the cone-angles are < w, then we have H°(F,,£) = 0 in all cases,
in particular in the Euclidean case H°(Fy, Etrans) = 0.

Proof. If we restrict the holonomy of M to the smooth part of the e-ball U (v)
around a vertex v € ¥, then hol(m (U, (v)) fixes a point p € M3. U.(v) deformation-
retracts to P C OU.(X) = F,. Using the presentation 7 (P) = (1, pto, ps|pp1 papis =
1), we obtain that A; = hol(u;) € SU(2) project to rotations with mutually distinct
axes. This implies that Z(hol(m F,)) = Z(hol(m P)) = {#£1}, and therefore in
particular Z%(m F,,g) = H°(F,,E) = 0. E

Corollary 6.16 If the cone-angles are < w, then in the hyperbolic case we have

H(F,,&) = C%~C in the spherical case H'(F,,&;) 2 R%~° for i € {1,2}, and in
the Euclidean case H*(Fy, Etrans) = R¥76.
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Proof. Using the parallel Killing form B on £ in the hyperbolic case, resp. the
parallel metric on &; in the spherical case and on &;qns in the Euclidean case we
conclude with Poincaré duality that H2(F,,E) = H*(F,,&) = H*(Fy, Etrans) = 0.
Now for any flat bundle F one has x(Fy, F) = dim F - x(F,) = dim F - (2 — 2g).
Therefore dim H'(F,, F) = —dim F - (2 —2g) if H*(F,,F) = H*(F,,F) = 0, which
yields the result. Gl

Away from the vertices, the singular locus U.(X) can be given coordinates (r, 0;, z;)
with r € (0,¢), 0; € R/a;Z and z; € (0,1;). Here ¢ is the cone-angle around the i-th
edge and [; its length. Then the metric is given by g = dr? + sn2(r)df; + cs2(r)dz;.
We choose a function ¢; = ¢;(2;) such that ;(0) = 0, ;(l;) = I; and dg;|0,5) =
dgil;—s,4;) = 0 for § > 0. Then dyp; € Q'(U.(X)) is well-defined and so are

wiws =dp; ® 0550,

w;en = d‘Pl ® 08/0z; -

Note that these forms are supported away from the vertices of the singularity.

Lemma 6.17 The forms w},, and w},, are bounded on U.(X) and hence in par-
ticular L2.

Proof. This is essentially the same computation as in the torus case. @
Lemma 6.18 The de-Rham cohomology classes of the differential forms

1 1 N N
{wthJ Wiens - -+ Wiws> wlen}
are linearly independent in H'(F,,£).

Proof. Suppose we have a nontrivial linear relation between the above classes in
H(F,,£), say

tWhys + Wy + oo+ tnwl  FInwl, =do

for some o € ['(Fy,&). Since the forms wf,, and w},, are supported away from the
vertices, we obtain do = 0 in a neigbourhood of each vertex v;. A neighbourhood
U.(v;) of a vertex is homotopy equivalent to the thrice-punctured sphere P. Since
H°(P,&) =0, we have 0|y, (,;) = 0 for each vertex.

We obtain nontrivial linear relations on the tori 77 = R?/a;Z + l;Z, where o;
denotes the restriction of ¢ to a neighbourhood of the i-th edge:

1 1
tlwtws + llwlen = dUl

thiX)S + leljgn =doyn,
which is a contradiction in view of Lemma (6.14), since dy; is cohomologous to dz;
on T?. ]
6.6 Local structure of the representation variety

6.6.1 The torus case

Let ¢+ : T? — M be the inclusion of a torus boundary component. ¢ induces a group
homomorphism ¢, : m7T? — m M and a map ¢* : R(mM,G) — R(mT? Q) for
G = SLy(C) or SU(2) respectively.
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Lemma 6.19 The restriction of the holonomy of a hyperbolic cone-structure to
a torus boundary component, p = t}, hol : mT? — SLy(C), is a smooth point
of R(mT?,SLy(C)). The C-dimension of R(m1T?,SLy(C)) around p equals 4.
T,R(mT?,SLy(C)) may be identified with Z'(mT?,s,(C)).

Proof. We identify R(mT2,SL2(C)) with the (affine algebraic) set {(4,B) €
SLy(C) x SL2(C)| [A, B] = 1}. The kernel of the differential of the commutator map
kerd 4, p)[-,-] may be identified with the space of 1-cocycles Z* (T2, 51»(C)). We
know that dim¢ Z!'(m1T?,5l2(C)) = 4 from the cohomology computations. Note
that this implies that d(4,p)[-,-] is not surjective at (A4, B) = p. Without loss of
generality we may assume that p = (diag(A\, A™1), diag(u, p=1)) with A, u € C*. We
define a map

F:C" x C" x SLy(C) — SLy(C) x SLy(C)
(A, 1, A) — (Adiag(X, A"H) AT, Adiag(p, u~')A™Y)

We claim that rankc F' = 4 at (A, u,1). The image of F is certainly contained in
R(mT?,SLy(C)), such that an easy application of the implicit function theorem (cf.
[Wei], [Rag, Lemma 6.8]) yields the result. Consider the standard C-basis of sl(C):

=0 0)r=(o S)w=(V )}

Clearly C - h exponentiates to Z(p(m1T?)) = {diag(n,n~!)|n € C*}, the stabilizer
of p under the conjugation action of SLo(C). Now it is easily verified that

{dF(]-aO;O)adF(O;1:0)adF(O:O;x)adF(anay)}()\,u,l)

are linearly independent if A # +1 or y # +1. This implies that rankc F' at (A, u, 1)
is at least 4, but since imd, ,1)F C Z(mT?,5l2(C)), it has to equal 4. =

Corollary 6.20 x = [u}, hol] is a smooth point of X(mT?,SLy(C)). The C-
dimension of X (mT?,SLy(C)) around x equals 2. Ty X(mT? SLy(C)) may be
identified with H(m:1T2, s15(C))).

Proof. The restriction of F to C* x C* x {1} provides a local slice to the action
through p, upon which the stabilizer of p acts trivially. The tangent space to the
orbit through p may be identified with B!(mT?,sl5(C)). From the cohomology
computations we have dim¢ H!(m, T2, sl5(C)) = 2. &l

For v € T we define a function t, : R(I',SLy(C)) — C by t,(p) = trp(y). If p
is a smooth point of R(I',SLy(C)), then t, is smooth near p. Since tr is invariant
under conjugation, ¢, descends to a map on the quotient X (T, SLy(C)), which we
again refer to as t,. If x = [p] is a smooth point of X (T', SLy(C)), then ¢, is smooth
near x.

Let p = u%,hol and let z € Z'(mT?,sl5(C)) be given. If we have a deforma-
tion of p, i.e. a family of representations p; : m T2 — SL2(C) with po = p, which
is tangent to z, Le. 2(y) = %£|,_, pe(Y)p(y)~* for all v € mT?, we have that the
infinitesimal change of the trace of p(7) is given as

dty(2) = L|,_ trp(y) = tr (2(7)p(7)) .-

We wish to apply this t0 zang, Zshr; Ztws and zjen. Let p € mT? be the meridian
and A € mT? the longitude. We assume that

p(A) = ( . n91 ) € ST (C)
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and

s =(§ ) esta©

with 1, # £1. Then p preserves the axis v = {0} x Ry C H?, if we work in the
upper half-space model H®> = C x Ry. If we use cylindrical coordinates (r,#8, z)
around -y, then we have already observed that

1 .0
99/00 = 5 ( é . ) € sl (C)

—1

and

1/1 0
05/62 = 5 ( 0 -1 ) ES(Q(C).

Let us concentrate on the value of the cocycles zgng, Zshr, Ztws and zien, on the
meridian pu € mT%. We obtain

) =5 (g ) €u(©

i) =5 (5 ) ) esnl©,

while
Ztws (1) = Zien(p) = 0.

As a consequence we obtain for the infinitesimal change of trace

dtu(zang) = (7'04/2)(5 - fil) eC
dty(zsnr) = (a/2)(€ = €71) €C,

while
dt, (2tws) = dty(21en) = 0.

Note that £ — £71 # 0 since £ # +1. Since the cohomology classes of the cocy-
cles {Zang, Zshrs Ztws; Zien} Provide a R-basis of H'(mT?,sl2(C)), we obtain as a
consequence of the above calculations:

Lemma 6.21 The function t,, has C-rank 1 in a neighbourhood of x = [v}.» hol].
In particular, the level-set V' = {t, = t,(x)} is locally around x a smooth, half-
dimensional submanifold of X (mT?,SLy(C)). Furthermore, the cohomology class
of the cocycle zjen provides a C-basis for T, V. The cohomology classes of the
cocycles {Zws; Zien } provide a R-basis of T\ V.

We now turn to the spherical case.

Lemma 6.22 Let p; = tshol; : mT? — SU(2),i € {1,2}, be the restriction
of a component of the holonomy of a spherical cone-structure to a torus bound-
ary component. Then p; is a smooth point of R(m1T?,SU(2)). The R-dimension

of R(mT?,SU(2)) around p; equals 4. T,,R(m1T?,SU(2)) may be identified with
ZY(mT?,5u(2)).

Proof. As above we define a map

F: 8t x 8% x SU(2) —s SU(2) x SU(2)
(A 1, A) — (Adiag(A\, A" AT, Adiag(p, p)A™)
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We consider the standard R-basis of su(2):

=0 5)a=(5 o) #= (0 0))

Now R - i exponentiates to Z(p(m1T2)) = {diag(n,n~!)|n € S'}, the stabilizer of p
under the conjugation action of SU(2). It is easily verified that

{dF(17 07 0)7 dF(Oa ]-7 0)5 dF(07 07 J)) dF(07 07 k)}()\,u,l)
are linearly independent if A # 1 or u # £1. The result follows as above. B

Corollary 6.23 x; = [t} hol;], i € {1,2}, is a smooth point of X (mT?,SU(2)).
The R-dimension of X (mT?,SU(2)) around x; equals 2. Ty, X (mT?,SU(2)) may
be identified with H'(m T?,su(2)).

Proof. The restriction of F' to S x S x {1} provides a local slice to the action
through p;, upon which the stabilizer of p acts trivially. The tangent space to the
orbit through p; may be identified with B(m;T2,su(2)). From the cohomology
computations we have dimg H! (7 T?,5u(2)) = 2. @

For v € T we define a function t, : R(I',SU(2)) — R by t,(p) = trp(y). If p
is a smooth point of R(I',SU(2)), then t, is smooth near p. Since tr is invariant
under conjugation, ¢, descends to a map on the quotient X(I',SU(2)), which we
again refer to as t,. If x = [p] is a smooth point of X(I',SU(2)), then ¢, is smooth
in a neighbourhood of .

For a representation p = (p1, p2) : T = SU(2) x SU(2) and v € T let T%(p) = t(pi)-
This defines a function T, = (T, T7) : R(T',SU(2) x SU(2)) — R?, which we view
as a ”complex” trace function.

Let p = ¢hohol and let z = (21,22) € Z'(mT?, su(2) ® su(2)) be given. The
infinitesimal change of the trace of p(7) is given as

dT,(z) = (dty(z1),dt(22))

We wish to apply this t0 zang, Zshr, 2tws and zien. Let A € mT? be the meridian
and p € mT? the longitude. We assume that

p(A)z((%l ﬁ01>(%2 ﬁOZ ))eSU(Z)xSU(Z)

w=((5 2)(§ 2))emmsn

with & = & =: £ and £ # +1, since p(u) is a nontrivial rotation. Then p preserves
the pair of axes {v,v1}, where y = CNS? and v+ = Cj N S®. If we use cylindrical
coordinates (1,6, z) around -, then we have already observed that

0p/80 = (% ( (Z) _OZ ) ,% ( (Z] _OZ )) € su(2) @ su(2)

_(L(i 0
Ua/az_ 2 0 —’l )

and

and

%( BZ ? )) € su(2) @ su(2).
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In particular, this implies that 04,99 +05/5. € T'(U:(2), 1), and on the other hand
05780 — 05/0; € T(U:(X),E2). Therefore we have

Wiws + Wien € Ql(UE(Z)a 51)

and
Wiws — Wien € QI(UE(Z)7‘€2) -

Again, we concentrate on the value of the cocycles zgng, Zshr, 2tws and 2zjen on the
meridian pu € mT%. We obtain

Zang (1) = (% ( (Z] _Ol ) ,% ( 6 i)z )) € su(2) @ su(2)
Zshr(,u/):(%(é _OZ>,%(_OZ ?))Gsu(Z)easu@),

Ztws (,U) = Zlen(/Jf) =0.

As a consequence we obtain for the infinitesimal change of trace

while

dT,(zang) = a(—Im¢, —Im¢&) € R?
dTu(zshr) =a(-Im¢ +Im¢) € R )

while
AT, (z¢ws) = AT (z1en) = 0.

Note that Im¢ = (£ — £) # 0 since ¢ # +1. Since the cohomology classes of
the cocycles {Zang, Zshr» Ztws, Z1en } Provide a R-basis of H'(m T2, 5u(2) @ su(2)), we
obtain as a consequence of the above calculations:

Lemma 6.24 The function t,, has R-rank 1 in a neighbourhood of x; = [t} hol;].
In particular, the level-set V; = {t, = t,(x;)} is locally around x; a smooth, half-
dimensional submanifold of X (mT?,SU(2)). Furthermore the cohomology class of
the cocycle zuys + zien provides a R-basis of T, Vi, the cohomology class of the
cocycle zyys — z1en provides a R-basis of Ty, Va.

In the Euclidean case, let p = t}.,(rotohol). Then the arguments given in the
spherical case apply directly to yield

Lemma 6.25 Let p = to(rotohol) : mT? — SU(2) be the restriction of the
rotational part of the holonomy of a Euclidean cone-structure to a torus bound-
ary component. Then p is a smooth point of R(mT?,SU(2)). The R-dimension
of R(mT?,SU(2)) around p; equals 4. T,R(mT?,SU(2)) may be identified with
ZY(mT?,5u(2)).

and as a consequence

Corollary 6.26 x = [t} (rotohol)] is a smooth point of X (m1T?,SU(2)). The
R-dimension of X (m1T?,SU(2)) around x equals 2. T, X (mT? SU(2)) may be
identified with H' (71 T?, su(2)).

We assume that

W=7 7)esue
and
o= (§ ¢ )esue)



with & # +1, since p(u) is a nontrivial rotation around the axis v = Ri C ImTH.
After choosing cylindrical coordinates (r, 6, z) around vy we have

1/4 0
09/02 = 5 ( 0 —i ) € 511(2),

and thus we obtain

Zshr (1) = % ( é Oi ) € su(2)

and
Zien(p) = 0.

From this we conclude dt,(zsh,) = —aIm§ and dt,(21en) = 0.

Lemma 6.27 The function t, has R-rank 1 in a neighbourhood of x = [1}.»(rot o hol)].
In particular, the level-set V = {t, = t,(x)} is locally around x a smooth, half-
dimensional submanifold of X (mT?%,SU(2)). Furthermore the cohomology class of
the cocycle z.p, provides a R-basis of T, V.

6.6.2 The higher genus case

Let ¢ : F;, =+ M be the inclusion of a boundary component of higher genus g > 2.
¢ induces a group homomorphism ¢, : m F; = m M and a map ¢* : R(mM,G) —
R(mi Fy, Q) for G = SLy(C) or SU(2) respectively.

Lemma 6.28 Let p : m Fy; — SL2(C) be an irreducible representation. Then p is
a smooth point of R(m F,,SLy(C)). The C-dimension of R(mFy,SL(C)) around
p equals 69 — 3. T,R(m F,,SLy(C)) may be identified with Z*(m1 F,,sl»(C)).

Proof. We identify R(m Fy,SL2(C)) with the (affine algebraic) set
{(AlaBla .. 7Ag7Bg) € SL2((C)25 |f(A17B17 .- JAgaBg) = 1} )

where f(A1,B1,...,A4,By) = [A1,B1]-...-[Ag, By]. kerd, f may be identified with
the space of 1-cocycles Z!(m Fy,sl>(C)). We know that dimc Z1(m Fy,sl>(C)) =
69 — 3 from the cohomology computations. Hence rankc d, f = 3, i.e. d, f is surjec-

tive. Now the implicit function theorem implies that R(m; Fy, SL2(C)) is smooth at
p with TpR(Wng, SLQ(C)) = Zl(’ITng,S[Q(C)). =]

Corollary 6.29 The restriction of the holonomy of a hyperbolic cone-structure to
a boundary component of higher genus, p = 1}, hol : m Fy — SL»(C), is a smooth

point of R(mF,,SLy(C)). The C-dimension of R(mF,,SLy(C)) around p equals
69 — 3. T,R(m F,,SL2(C)) may be identified with Z'(m Fy, sl5(C)).

Proof. Clearly p is irreducible: If v € ¥ is a singular vertex and we restrict hol
further to U.(v), which deformation-retracts to a pair of pants P C Fy, then ¢}, hol
preserves a point p € H®. Now if p was reducible, then ¢} hol would preserve a
geodesic, which is a contradiction. El

Lemma 6.30 The action of SLy(C) on R;(T',SLy(C)) is proper for T' a finitely
generated group.

Proof. Recall that by definition a group action G x X — X is proper if the map

GxX—XxX,(g,z) — (gz,x)
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is proper. If we have a G-equivariant map from X to a proper G-space Y, then X
itself will be a proper G-space. We construct a continuous, SLz(C)-equivariant map

Rim- (F, SL2 ((C)) — H3
p — center(p) ,

where the ”center” of a representation will be the point in H3, which is displaced the
least in average by the generators of the group. This is a variant of a construction by
M. Bestvina (cf. [Bes]). More precisely, let us fix a presentation {y1,...,vn|(7i)ier)
of I'. We call a function f : H® — R (strictly) convex if it is (strictly) convex along
any geodesic. Note that the (modified) displacement function of A € SLy(C)

64:H* >R
x +— coshd(z, Az) — 1

is a convex function in general. It is strictly convex if A is parabolic. If A is
semisimple, it is strictly convex along any geodesic different from the axis of A. We
define

1 n
folz) = n Z‘sp('n) :
i=1

If we have a sequence z,, € H? which converges to o, € 0,,H?, then since p is
irreducible, there has to be at least one p(~y;) that does not fix z.,. Then it follows
that d,(,,)(2n) = oc. Therefore f, is proper. If we take any geodesic v, again since
p is irreducible, there has to be at least one p(v;) such that d,(,,) is strictly convex.
Therefore f, is strictly convex.

As a proper and strictly convex function, f, assumes its minimum at a unique point
in H?, which we define to be the center of p.

If we have a sequence of representations p, converging to p with respect to the
compact-open topology on R.(T',SLy(C)), then f, convergesto f, uniformly on
compact sets. Therefore the map p — center(p) is continuous.

Since dgap-1(x) = d4(B~'z) we have that center(BpB~!) = B center(p), i.e. that
p — center(p) is SLo(C)-equivariant.

This together with the fact that the action of SL2(C) on H? is proper proves the
lemma. @

Corollary 6.31 x = [}, hol] is a smooth point of X(m Fy,SLs(C)). The C-
dimension of X (w1 Fy,SL2(C)) around x equals 69 — 6. Ty X (w1 Fy,SL2(C)) may
be identified with H'(m Fy, sl3(C))).

Proof. Since the action of SL2(C) is proper, we have a local slice to the action. We
recall that the stabilizer of p, Z(p(m1Fy)), equals {£1}. Therefore X (1 Fy, SLy(C))
is locally around x the quotient of a free PSLy(C) action and therefore smooth. [

The meridian curves around the singularity give rise to a pair-of-pants decom-
position of Fy. Let {u1,...,un} be the family of meridians, where N = 3g — 3.
This may be used to give an alternative construction of R(m (Fy), SL2(C)), which
is better suited for our purposes.

Let P denote the thrice-punctured sphere, i.e. a pair of pants. The fundamental
group of P is the free group on 2 generators. We will use the following slightly
redundant presentation:

T P = (1, pr2, 3|y papro = 1) .
It follows that

R(7T1P, SLQ((C)) = {(A17A27A3) c SLQ((C)3|A1A2A3 = 1}.
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Clearly the map f : SLy(C)® — SLy(C), (A1, As, A3) — A; Ay A3 is a submersion,
such that R(m; P,SLy(C)) = f~1(1) is a smooth submanifold of C-dimension 6.
Let ¢; : S — P be the inclusion of the i-th boundary circle. Then the induced
map ¢} : R(m P,SLy(C)) — R(m1S*,SLy(C)) corresponds to the projection pr; :
R(m1 P,SLy(C)) — SLy(C), (A1, A2, A3) — A;, which is also a submersion.

Lemma 6.32 Let p = ¢}, hol be the restriction of the holonomy of a hyperbolic
cone-structure to a pair of pants P. Then the differentials {dt,,,dt,,,dt,,} are
linearly independent over C in T, R(m P,SLy(C)).

Proof. Tt is enough to show that there is a deformation ¢ — (A;(t), A2(t), A3(t)) €
R(m1 P,SL2(C)) with tr[A;] = tr[A3] = 0, but tr[A3] # 0. Without loss of generality
we may assume that A; = diag(A\, A~!) with XA # 0. Now since

% |t:0 tr [A1 (t)A2 (t)] = tr[AlAg] + tI‘[AlAQ] ,
we may choose A; (t) = A; and A (t) = B(t)A2B(t) ! for t — B(t) € SLy(C) with
B(0) = 1. Then A; = 0 and Ay = BA; — A3 B, so we obtain tr[A;] = tr[43] =0
and

% |t=0 tr [Al (t)A2 (t)] = tI‘[Al (BA2 - AQB)] .
Note that A, is not a diagonal matrix since p is irreducible. Therefore we can find
B € 5l3(C) such that BA; — A>B € sl3(C) has non-vanishing diagonal. This im-
plies that tr[4;(BAy — Ay B)] # 0. Since tr[A] = tr[A~"'] in SLy(C), we obtain that
tI'[Ag] # 0. [

Since p is irreducible, we can use Lemma (6.30) to conclude that x = [p] is a smooth
point in X (m P,SL2(C)). The local C-dimension of X (m P,SL2(C)) around y is 3.
The functions {t,,,t,,,tu,} are local holomorphic coordinates on X (m P,SLy(C))
near x.

We build up R(m; Fy,SLy(C)) from R(m P,SL2(C)) using two basic operations:

1. glue a pair of pants P to a connected surface with boundary S along a bound-
ary circle, call the resulting connected surface S’

2. glue a connected surface S along two different boundary circles, call the re-
sulting connected surface S’

In the first case m .S’ = 71 S U, 51 m1 P by van Kampen’s theorem and we have
R(m1S",SL2(C)) = R(m1S,SL2(C)) X p(r; 51,5L5(0)) B(m1 P, SLa(C))

via the maps
LE«L_)S : R(mS, SLQ(C)) — R(ﬂ'lsl,SLz(C))

and
v, p : R(m P,SLy(C)) = R(m1S*,SLy(C)),

which will be transversal since the latter one is a submersion. Therefore p = 1%, hol
is a smooth point in R(mS’,SL2(C)) since ps = t§hol is a smooth point in
R(m1S,SLy(C)) and pp = ¢} hol is a smooth point in R(m P, SL2(C)).

In the second case w1 S’ splits as an HNN-extension of 71S. More precisely, if

B, e € ™S are the loops around the boundary circles, which will be identified,
then 715" = (m1S, A|Aur A™! = p2). In this case we have

R(m 8',SL2(C)) = {(ps, B) € R(m15,SL2(C)) x SL2(C)|Bps (m1)B™" = ps(p2)}
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as a consequence. We show that the map

f : R(mS, SLQ(C)) X SLQ(C) — SLQ((C)
(ps, B) — Bps(u1)B~ " ps(p2) ™"

is a submersion near p = (%, hol. This implies that p = (pg, B) is a smooth point
in R(m S’,SLy(C)).

Surjectivity of df at p can be established as follows: Let 41 = ps(u1) and Az =
ps(pz2). Clearly the map B — BA; B~'A;! has Crank 2. Since {dt,,,dt,,} are
linearly independent, we can construct a deformation t — (pg): with (ps):(u2) = A
and dt,, (ps) # 0. This deformation will be transverse to im(B — BA; B 1A;").

Lemma 6.33 The differentials {dt,,,...,dt,, } with N = 3g— 3 are linearly inde-
pendent over C in T;R(m1 Fy, SLy(C)) for p = 1} hol.

Proof. This follows from the construction above by an inductive argument. We
assume for {y;} the family of meridians for S that the differentials {d¢,, } are linearly
independent.

In the first case we use Lemma (6.32) to conclude that for {u;} the family of
meridians for §’ the differentials {dt,;} are linearly independent. In fact, any
deformation of (ps, ps') gives rise to a deformation of ps' as long as 15 ps and
g1 pp Temain the same.

In the second case we observe that any deformation of pg gives rise to a deformation
of pg as long as ps(p1) and ps(uz2) remain conjugate, i.e. t,, and t,, remain the
same. Therefore if {y;} is family of meridians for S’ the differentials {dt,; } will be
linearly independent. El

Clearly
ZZws(//’J) = / wtws =0

and
zlen ;) / wlen =
wj
Therefore ]
dty; (2ws) =0
and

dt,, (zt,) =0.

As a consequence of the above discussion we obtain

Lemma 6.34 Thelevel-set V = {t,, =tu,(X),--->tun = tuy (X)} islocally around
X = [tF, hol] a smooth, half-dimensional submanifold of X (w1 Fy,SL»(C)). Further-

more, the cohomology classes of the cocycles {z},,,. .. ,zﬁn} provide a C-basis of
T, V. The cohomology classes of the cocycles {21y, Ziuns - - - » Zhus» Zien } Provide a
R-basis for T, V.

We now turn to the spherical case.

Lemma 6.35 Let p : m F;, — SU(2) be an irreducible representation. Then p is
a smooth point of R(m F,,SU(2)). The R-dimension of R(mFy,SU(2)) around p
equals 69 — 3. T,R(m F,,SU(2)) may be identified with Z'(m1 F,,su(2)).

Proof. This follows as in the case of SLy(C) from the cohomology computations
and the implicit function theorem. =l
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Corollary 6.36 Let p; =}, hol; : m Fy — SU(2),4 € {1,2}, be the restriction of a
component of the holonomy of a spherical cone-structure to a boundary component
of higher genus. Then p; is a smooth point of R(mi Fy,SU(2)). The R-dimension of
R(m1F,,SU(2)) around p; equals 69 — 3. T,, R(m1Fy,SU(2)) may be identified with
ZY (w1 Fy,5u(2)).

Proof. Clearly the p; are both irreducible: If v € ¥ is a singular vertex and we
restrict hol = (holy, hols) further to U, (v), which deformation-retracts to a pair of
pants P C Fy, then ¢} hol preserves a point p € S*. Without loss of generality we
may assume that p =1 € S® ¢ H. Then since

Stabsy(2)xsu(z)(1) = {(4,4) : A € SU(2)},

we obtain that ¢} hol; = ¢p hols. Now if p; or ps was reducible, then ¢} hol would
preserve a geodesic, which is a contradiction. E

Corollary 6.37 x; = [}, hol;], i € {1,2}, is a smooth point of X(m Fy,SU(2)).
The R-dimension of X (w1 F,,SU(2)) around x; equals 69 — 6. T, X (71 F,,SU(2))
may be identified with H* (71 F,,su(2)).

Proof. Since the group SU(2) is compact, the properness of the action is granted. We
recall that the stabilizer of p;, Z(p;(m1 Fy)), equals {£1}. Therefore X (7 F,,SU(2))
is near x; a quotient of a free PSU(2) action and therefore smooth. B

Lemma 6.38 The differentials {dt,,,...,dt,, } with N = 3g— 3 are linearly inde-
pendent in T, R(m Fy,SU(2)) for p; = v}, hol;.

Proof. The arguments in the hyperbolic case apply without essential change. =

We obtain finally

Lemma 6.39 The level-set V; = {tu, = tu(Xi)s--->tun = tun(Xi)} is locally
around x; = [}, hol;] a smooth, half-dimensional submanifold of X (m Fy, SU(2)).

The cohomology classes of the cocycles {2}, s+ Zions - - - » 24w + 21y, } Provide a basis
for Ty, V1, while the cohomology classes of the cocycles {zjy,s — Zions - - - » Ztuys — Zien |

provide a basis for Ty, V>.

In the Euclidean case we obtain along the same lines

Corollary 6.40 Let p = 1}, (rot o hol) : m Fy — SU(2) be the restriction of the ro-
tational part of the holonomy of a Euclidean cone-structure to a boundary compo-
nent of higher genus. Then p is a smooth point of R(m1 Fy,SU(2)). The R-dimension
of R(m1 Fy,SU(2)) around p equals 69— 3. T,R(m F,,SU(2)) may be identified with
ZY(m F,, su(2)).

Proof. Clearly p is irreducible, otherwise it would preserve a line in R®, which is
absurd in the presence of vertices. El

Corollary 6.41 x = [1}, (rot ohol)] is a smooth point of X (m Fy,SU(2)). The R-
dimension of X (m F,,SU(2)) around x equals 6g — 6. T, X (m1F,,SU(2)) may be
identified with H' (w1 F,, su(2)).

We obtain as in the spherical case

Lemma 6.42 The differentials {dt,,,...,dt,, } with N = 3g— 3 are linearly inde-
pendent in T R(m1 Fy,SU(2)) for p = 1}, (rot ohol).
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and finally

Lemma 6.43 The level-set V = {t,, = tu,(X),---stun = tun (X)} islocally around
X = [tF, (rot o hol)] a smooth, half-dimensional submanifold of X (m Fy,SU(2)). The

cohomology classes of the cocycles {z}.,., ...,z } provide a basis for T,V .

6.7 Local rigidity

Lemma 6.44 Let C be a hyperbolic or a spherical cone-manifold with cone-angles
< 7. Then:

1. The natural map HY(M,€) — H'(0M;,€) is injective.
2. dim H'(M,€) = 1 dim H'(0M,, €).

In the spherical case, the assertions hold for the parallel subbundles & C & sepa-
rately, i € {1,2}.

Proof. Let us look at a part of the long exact cohomology sequence of the pair
(M., dM,) with coefficients in £. The natural map q : H*(M.,0M.,€) — H' (M., €)
factors through L?-cohomology, since H'(M.,dM.,£) = H,(M,€):

—— HY(M.,dM.,€) ~—— H'(M., &) — > H (OM.,E) —

|

Hclp(Mag) H}P(Mag)

Since by our vanishing theorem H}, (M, ) = 0, we have that g is the zero map and
r: H (M., &) - H' (OM,,E) is injective.

Since the Killing form B on & (resp. the parallel metric h® in the spherical case)
provides a non-degenerate coefficient pairing, we can apply Poincaré duality to
conclude that H?(M.,0M.,£) = H'(M.,£)* and H?(M.,£) = H'(M.,0M_.,E)*.
The Poincaré duality isomorphisms are natural, such that we obtain the following
commutative diagram:

H(M., ) — = H'(M.,0M.,£)*

A’TP.D. uTP.D.

— H?*(M.,0M.,€) H*(M,,§) —

Since ¢* = 0, we obtain the following short exact sequence:

H'(M., &)

ZTP.D.

0—— H'(M.,§) — HY(OM.,E) —— H?*(M.,0M.,E) —=0

This implies that dim H!(M.,£) = %dim HY(OM.,E). In the spherical case these
arguments apply to the parallel subbundles &; C £ separately, i € {1, 2}. m
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6.7.1 The hyperbolic case

The following is a well-known fact about the holonomy representation of a hyper-
bolic cone-structure.

Lemma 6.45 The holonomy of a hyperbolic cone-structure hol : 1y M — SL5(C)
is irreducible.

Proof. For convenience of the reader we give a sketch of proof. Let us assume that
the holonomy representation is reducible. Then there is a point zo € J,cH? fixed
by the holonomy. This means that the horospherical fibration centered at zo, is
also preserved by the holonomy. The volume decreasing flow, which moves each
point = with unit speed towards z., along the unique geodesic connecting x and
Too, may then be pulled back via the developing map to a volume decreasing flow
on M. This is absurd since M has finite volume. @

Lemma 6.46 Let hol : my M — SLy(C) be the holonomy of a hyperbolic cone-
structure with cone-angles < w. Then hol is a smooth point of R(m M,SLs(C)).
The C-dimension of R(myM,SL(C)) around hol equals 7 + 3 — 3x(0M.), where T
is the number of torus components in OM.. Ty R(m1 M,SLs(C)) may be identified
with Zl(’ITlM,E[Q((C)).

Proof. We follow the discussion in M. Kapovich’s book (cf. [Kap]), which essentially
amounts to a transversality argument. The key to the proof is the following splitting
of M., which may be viewed as a generalization of the Heegard-splitting to 3-
manifolds with boundary.

Lemma 6.47 There exists a system of disjoint 1-handles {Hy,...,H;} in M. at-
tached to OM, such that My := M, \ int(U; H;) is a handlebody.

Proof. For a proof we refer to [Kap, Lemma 8.46]. @

The H; are called tunnels, the minimal number ¢ of tunnels in such a splitting
is called tunnel number of M.. Without loss of generality (though this is not essen-
tial to the argument) we assume minimality of the splitting in this sense.

As a consequence M, may be written as a union
M, = My Us M>,

where S is a surface of genus g = 1+t — x(0M,)/2. M, is homotopy equivalent to
the wedge product of the components of M. and ¢t — b + 1 circles, where b is the
number of components of OM,. Therefore we obtain by van Kampen’s theorem

7T1M5 = 7T1M1 H7r1.5' 7T1M2 5

where m; M; is the free group on g generators, and 7 M> splits as a free product
of the fundamental groups of the components of M, and t — b + 1 Z-factors.
Consequently we obtain for the representation varieties

R(myi M., SLy(C)) = R(my My, SL(C)) X g(r 5,8L.(0)) B(m1Ma,SLy(C)),
via the maps
res; = tge,yy, : B(m My, SLy(C)) — R(m.S,SL(C))
and

rese = L§<_,M2 : R(ﬂ'lMg,SLQ(C)) — R(ﬂ'lS, SLQ((C)) .
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R(m M1, SL2(C)) and R(m; Ms, SL2(C)) are smooth near the restriction of the holon-
omy of a hyperbolic cone-structure. Note that m1.S surjects onto m M. Since hol
is irreducible, this will also be the case for ¢g hol, which is therefore seen to be a
smooth point of R(mS,SL2(C)).

Therefore it is sufficient to show that res; and res; meet transversally at ¢% hol.
This will follow from the equation

dim¢ Z; (7T1M1,5[2 (C)) + dimg¢ Z; (7T1M2,5[2((C))
=dim¢ Z1(71'15,5[2((C) + dim¢ Z1(7F1M5,5[2((C)) R
if we identify Z1(m M, sl2(C)) with
{(21,22) € Z1(7T1M1,5[2((C)) D Z1(7T1M2,5[2((C)) |dresl(z1) = dreSQ(ZQ)} .

To obtain the desired equation, we have to calculate the dimensions of the cocycle
spaces. Note that Z!(TIIT",g) = Z!(T, g) ® Z1 (T, g).

o dimg Z*(m My, s13(C)) = 3+ 3t — 3x(0M.), since m My is the free group on
g=1+1t— x(0M.)/2 generators.

e dimg Z(m Ma,sl2(C)) = 7—3x(0M.) + 3t +3, since dim¢ Z! (7, T2, 512 (C)) =
4 at k5 hol, dime Z'(m Fy, 812 (C)) = —3x(Fy) + 3 at ¢y, hol and the funda-
mental group of a wedge of ¢ — b+ 1 circles is the free group on that number
of generators.

o dim¢ Z'(m1.5,512(C)) = 6t — 3x(0M.) + 3, since ¢ hol is irreducible. This
implies in particular that Z%(m; S, sl2(C)) = 0.

o dim¢ Z'(m M., s1,(C)) =7 — 3x(8M.) + 3, since we have by the cohomology
computations that dim¢ H' (M, €) = 1 dim¢ H*(0M,, ), furthermore hol is
irreducible, therefore Z°(m; M., sl(C)) = 0.

This finishes the proof. =

Corollary 6.48 x = [hol] is a smooth point of X (w4 M, SLy(C). The C-dimension
of X (myM,SLy(C) around x equals 7 — 3x(0M;), where T is the number of torus
components in OM.. Ty X (m1 M,SLy(C)) may be identified with H* (w1 M, sl5(C)).

Proof. Z(hol(my M)) = {£1} since hol is irreducible. Using Lemma (6.30) we pro-
ceed in the same way as in the surface case. B

We are now ready to state and prove the main result in the hyperbolic case.

Theorem 6.49 Let C' be a hyperbolic cone-manifold with cone-angles < mw. Let
{p1,...,un} be the family of meridians, where N = 7 — $x(0M.). Then the map

X (mM,SLy(C)) = C¥,x = (£ (1), - tun (X))
is a local diffeomorphism near x = [hol].

Proof. Without loss of generality we may assume that 3 is connected. Then we
have to consider two cases:

1. ¥ is a circle, i.e. OM, = T?

2. ¥ is a connected, trivalent graph, i.e. OM. = F
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Let us recall what we already know. The level-set of the trace functions

V= {t;“ = tui (X)a e atuN = tﬂ/N(X)}

is a smooth, half-dimensional submanifold of X (710M,,SLs(C)) in each case, since
the differentials {dt,,,...,dt,, } are Clinearly independent in H' (w1 8M,, SLy(C))*
at x. If we work in the de-Rham realization of H'(m0M.,SLy(C)), the classes of
the differential forms

{wr}wSJ wllenﬂ wtws’ wlen}
provide a basis of T, V. Furthermore, these forms are L?-bounded on U, (X).
On the other hand we know that the restriction map H!(M,E) — H'(OM,,€) is in-
jective with half-dimensional image. This means that X (71 M, SL,(C)) is immersed
into X (m10M,,SLy(C)) as a half-dimensional submanifold.
We claim that V and X (myM,SLy(C)) are transversal in X (m0M.,SLs(C)) at
x- It is sufficient to show that T,V and im(H"(M,€) — H'(OM.,£)) intersect
trivially in H'(0M.,E).
Let w € Q'(M, &) be a closed form such that [w][an, € Ty V. In particular, since
wiys and wi, = are L?-bounded on U, (X), w + do will be I*-bounded on U:(%) for
some o € I‘(U (%), &). We choose a cut-off function ¢, which is 1 in a neighbourhood
of ¥ and which is supported in Uc(X). Then go extends to a section on M, such
that w+d(gpo) is L?-bounded on M. Since H},(M,&) = 0, this implies that [w] = 0
in H'(M, ) and therefore [w]|aar, = 0.
It follows that the differentials {d¢,,,...,dt,, } are Clinearly independent already
in Hl(WlM,SLQ(C))*. =]

The complex length £; of the i-th meridian is related to its trace via
tu; (p) = £2cosh(L;/2) .

Locally the set of representations p : 1y M — SLy(C)) such that £; is purely imag-
inary for all ¢ € {1,..., N} corresponds to hyperbolic cone-structures on M. The
cone-angle «; is just the imaginary part of £;.

Corollary 6.50 (Local rigidity) Let C be a hyperbolic cone-manifold with cone-
angles < w. Then the set of cone-angles {ai,...,an}, where N = 7 — —X((‘?M ),
provides a local parametrization of the space of hyperbolic cone-structures near
the given structure on M. In particular, there are no deformations leaving the
cone-angles fixed.

6.7.2 The spherical case

Lemma 6.51 [BLP2], [Por, Lemma 9.1] Let hol : m M — SU(2) x SU(2) be the
holonomy of a spherical cone-structure. Then hol, and hols are both non-abelian,
unless ¥ is a link and M is Seifert fibered.

Proof. For convenience of the reader we give a sketch of proof. Let us assume that
hol; is abelian. Then we may assume that the holonomy is contained in S x SU(2).
This means that the Hopf-fibration on S C H obtained by left-multiplication with
S! C H is preserved by the holonomy and may be pulled back via the developing
map to a Seifert fibration on M. If hol, is abelian, then the Hopf-fibration obtained
by right-multiplication with S C H will be invariant under the holonomy, and the
same argument applies. In both cases the singular locus ¥ has to be a link, since
in the presence of vertices hol; and hol, are clearly irreducible. E
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Lemma 6.52 Let hol; : mM — SU(2) be a component of the holonomy of a
spherical cone-structure with cone-angles < 7. If M is not Seifert fibered, then hol;
is a smooth point of R(m; M,SU(2)). The R-dimension of R(m; M,SU(2)) around
hol; equals 7 + 3 — % x(0M.), where 7 is the number of torus components in M.
Thot, R(m1 M, SU(2)) may be identified with Z*(m M,su(2)).

Proof. The arguments in the hyperbolic case apply directly, the R-dimensions of
the su(2)-cocycle spaces are equal to the C-dimensions of the corresponding sl (C)-
cocycle spaces. E

Corollary 6.53 x; = [hol;] is a smooth point of X (w3 M,SU(2)). The R-dimension
of X (m M, SU(2)) around x; equals 7 — $x(0M.), where T is the number of torus
components in OM.. Ty, X (m1 M,SU(2)) may be identified with H* (71 M, su(2)).

Proof. The action of SU(2) on R(m M,SU(2)) is proper since SU(2) is a compact
group. Since hol; is non-abelian by Lemma (6.51), we have that Z(hol;(m M)) =
{%£1}. Now the result follows as in the surface case. @

The main result in the spherical case is the following theorem:

Theorem 6.54 Let C' be a spherical cone-manifold with cone-angles < 7, which
is not Seifert fibered. Let {u;,...,pun} be the family of meridians, where N =
7 — 3x(0M.). Then the map

X('/TlMa SU(2)) — RN:XZ' = (tul (Xi)a .. JtuN (Xz))
is a local diffeomorphism near x; = [hol;] for i € {1,2}.

Proof. The proof proceeds exactly along the same lines as in the hyperbolic case.
The level-sets of the trace-functions

Vvi = {tIh = tﬂ/l (X1)7 st 7tlLN = tILN(Xi)}

are smooth, half-dimensional submanifolds of X (m; M., SU(2)) near x; for i € {1,2}.
The classes of the differential forms

1 1 N N

{wtws + Wiens -+ Wws + wlen}

provide a basis for T}, V1, while the classes of the forms
1 1 N N

{wtws — Wiepy - oy Wiys — wlen}

provide a basis for Ty, V;. These forms are L?>-bounded on U.(X). The same argu-
ment as in the hyperbolic case shows, that T}, V; and im(H' (M, &;) - H'(OM;, &;))
are transversal for ¢ € {1,2}. It follows that the differentials {d¢,,,...,dt,,} are
R-linearly independent already in H!(m; M,SU(2))* at x; for i € {1,2}. @

Locally around hol the set of representations p = (p1, p2) such that t,; (p1) = t; (p2)
foralli € {1,..., N} corresponds to spherical cone-structures on M. The cone-angle
«; is related to the trace of the meridian via

tui(p1) = tu;(p2) = £2cos(i/2).

Corollary 6.55 (Local rigidity) Let C' be a spherical cone-manifold with cone-
angles < m, which is not Seifert fibered. Then the set of cone-angles {aq,...,an},
where N = 17 — %X((‘?ME), provides a local parametrization of the space of spher-
ical cone-structures near the given structure on M. In particular, there are no
deformations leaving the cone-angles fixed.
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6.7.3 The Euclidean case

The arguments given in the hyperbolic and the spherical case do not apply directly
in the Euclidean case. Note that H}IZ (M, Etrans) is always at least one-dimensional,
since the identity transformation viewed as an element

id € F(M, T M & TM) = Ql (M; gtrans)

is certainly parallel and therefore contributes nontrivially to Hjs(M,Erans)- It
is therefore subject to further investigation if smoothness of R(mM,SU(2)) near
rot o hol can be established and if a geometric rigidity result can be deduced from
this.

Furthermore, it would be desirable to relate this to work of J. Porti (cf. [Por])
concerning the question of regeneration of Euclidean into hyperbolic or spherical
structures.
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