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Zusammenfassung in deutscher

Sprache

In dieser Arbeit untersuchen wir Cauchyprobleme für Differentialgleichungen mit

nichtlokalen Anfangsbedingungen und Cauchyprobleme für abstrakten Differential-

gleichungen mit unendlicher Verzögerung (siehe, z.B., [13–15, 19, 35, 36, 46, 51, 52,

86, 87] für Motivation und konkrete Anwendungen).

In Kapitel 1 erhalten wir solche Ergebnisse für semilineare Integrodifferentialglei-

chungen, die bekannte Resultate aus [14, 17, 61, 70] wesentlich verallgemeinern. Dies

wird an Beispielen aus der Wärmeleitungsgleichung in Materialien mit Gedächtnis

gezeigt.

In Kapitel 2 wird diese Untersuchung für semilineare Evolutionsglei-chungen weit-

ergeführt. Mit Hilfe (C, ω,Mη)-zulässiger Paare erhalten wir neue Existenzresultate

für milde und klassische Lösungen.

Im dritten Kapitel untersuchen wir Cauchyprobleme für Funktionaldifferentialgle-

ichungen in Banachräumen mit unendlicher Verzögerung. In Abschnitt 2 diskutieren

wir die Gleichung zu einem Cauchyprobleme auf einem Banachraum X der Form





u(t) = g(t) +

∫ t

σ

f(t, s, u(s), us)ds (σ ≤ t ≤ T ),

uσ = φ,

wobei 0 ≤ σ < T , g(t) ∈ C([σ, T ], X), f ∈ C([σ, T ]× [σ, T ]×X ×P , X) und φ ∈ P
(einem Zulässig-Phasenraum). In Abschnitten 3 - 5 untersuchen wir die folgenden

Typen von Cauchyproblemen für Funktionaldifferentialgleichungen mit unendlicher

Verzögerung: 



u′(t) = Au(t) + f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,





u′(t) = A(t)u(t) + f(t, u(t), ut), 0 ≤ t ≤ T

u0 = φ
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(nichtautonome Cauchyprobleme), und





u′(t) = A

[
u(t) +

∫ t

0

F (t− s)u(s)ds

]
+ f(t, u(t), ut), 0 ≤ t ≤ T

u0 = φ

(Integrodifferential-Cauchyprobleme), wobei T > 0, A und {A(t)}t≥0 lineare Opera-

toren auf einem Banachraum X sind, {F (t)}0≤t≤T ⊂ L(X), f ∈ C([0, T ]×X×P , X),

und φ ∈ P . Eine Reihe von neuen Resultaten erhalten wir mit Hilfe Nichtkompak-

theitmaßen und Kamke-Funktionen oder Lipschitz-Bedingungen.

In Kapitel 4 beweisen wir Regularitätseigenschaften der Lösungen, falls der Ba-

nachraum die Radon-Nikodym Eigenschaft besitzt.

Kapitel 5 enthält eine Untersuchung der Wohlgestelltheit abstrakter Funk-

tionaldifferentialgleichungen und nichtautonomer semilinearer Funktional-

Evolutionsgleichungen mit unendlicher Verzögerung in beliebigen Banachräumen.

Unter der Annahme, dass der nichtlineare Term Fréchetdifferenzierbar ist, erhalten

wir Verallgemeinerungen von Ergebnissen von [3, 8, 13, 22, 23, 35, 36, 45, 46, 48, 51,

58, 59, 71, 77, 78, 84, 86, 87]). Die Wohlgestelltheitresultate für nichtautonomen

Cauchyprobleme ist ganz neu.
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Introduction

Nonlocal Cauchy problems

Nonlocal Cauchy problem, namely the Cauchy problem for a differential equation

with a nonlocal initial condition u(t0) + g(t1, . . . , tp, u) = u0 (here 0 ≤ t0 < t1 <

· · · < tp ≤ t0 + T and g is a given function), is one of the important topics in

the study of the analysis theory. Interest in such a problem stems mainly from the

better effect of the nonlocal initial condition than the usual one in treating phys-

ical problems. Actually, the nonlocal initial condition u(t0) + g(t1, . . . , tp, u) = u0

models many interesting nature phenomena, with which the normal initial condition

u(0) = u0 may not fit in. For instance, the function g(t1, . . . , tp, u) may be given by

g(t1, . . . , tp, u) =
∑p

i=1 ciu(ti) (ci (i = 1, . . . , p) are constants). In this case, we are

permitted to have the measurements at t = 0, t1, . . . , tp, rather than just at t = 0.

Thus more information is available. More specially, letting g(t1, . . . , tp, u) = −u(tp)

and u0 = 0 yields a periodic problem and letting g(t1, . . . , tp, u) = −u(t0) + u(tp)

gives a backward problem. From Byszewski [14, 15], L. Byszewski and V. Laksh-

mikantham [19] and the references given there, one can find other information about

the importance of nonlocal initial conditions in applications. There have been many

papers concerning this topic (cf., e.g., [5, 9, 14, 15, 17–19, 52, 61, 68] and references

therein). However, much of the previous research was done under the condition

“M(K + TL) < 1” (where M , K, T and L are some internal constants in the re-

lated nonlocal Cauchy problem) or its analogues (cf., e.g., [14, 17, 61] or Chapter 1

of this thesis). This condition turns out to be quite restrictive. In particular, limited

by it, the results obtained for nonlocal problems can not cover those classical results

regarding Cauchy problems with normal initial data. Thus, there naturally arises a

question:

Can the above condition be relaxed such that the results for nonlocal

Cauchy problems cover the corresponding ones for normal Cauchy prob-

lems?

In Chapter 1, we are concerned with the Cauchy problem for semilinear integro-

differential equations with nonlocal initial conditions. Under general and natural

hypotheses, we establish some new theorems about the existence and uniqueness of
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solutions for the nonlocal Cauchy problem. As a consequence, we give an affirmative

answer to the question above for such a nonlocal Cauchy problem, and we also unify

and extend the corresponding theorems given previously for the Cauchy problem for

differential equations or integrodifferential equations with nonlocal initial conditions.

Moreover, we present two examples, one of which comes from heat conduction in

materials with memory, to indicate that, in contrast with ours, the previous results

are not applicable to them.

In Chapter 2, we continue our study of the nonlocal Cauchy problems. Our tar-

get now is to give some new results about the existence and uniqueness of mild

and classical solutions of nonlocal Cauchy problems for semilinear evolution equa-

tions. We introduce a new notion, called (C, ω, Mη)-admissible pair, and carry out

our investigation in Banach spaces WB,ω
η1,η2

(T ) motivated by Jackson [52]. We prove

certain nonlinear convolution integral equations in Banach spaces, to which the ex-

isting related results did not apply, to possess continuous solutions. As applications,

new existence and uniqueness theorems for mild and classical solutions of nonlocal

Cauchy problems for semilinear evolution equations are obtained. Moreover, a re-

sult on the existence and uniqueness of a classical solution of a semilnear parabolic

equation with a boundary condition and a nonlocal initial condition is given as an

example. The present results generalize some previous related theorems. Further-

more, even for classical semilinear abstract Cauchy problems, the results here are

new.

Delay equations

Equations with delay (i.e., with some of the past states of the systems) are of-

ten more realistic mathematical models for practical problems compared with those

without delay, and they have been studied for many years (see, e.g., [3, 7, 8, 10–13,

22, 23, 32, 35, 36, 44–48, 51, 53–60, 63, 71, 74–79, 83, 84, 86, 87] and references therein).

General references for delay equations are the monographs by Burton [13], Diek-

mann, van Gils, Verduyn Lunel and Walther [35], Hale and Verduyn Lunel [46],

Hino, Murakami and Naito [51], Webb [86], and Wu [87]. From the monograph by

Engel and Nagel [36], one can find a very nice treatment of abstract delay equations

by the operator semigroup theory.

In this dissertation, we study delay equations in a quite general framework of

admissible phase space, which satisfies hypotheses weaker than those required in
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the previous literature and includes the space Lp((−∞, 0], X). Therefore, our results

are extensions of many known results on delay equations for infinite delay as well as

for finite delay given in, e.g., [3, 8, 13, 22, 23, 35, 36, 45–48, 51, 53, 54, 58–60, 63, 71, 74–

79, 84, 86, 87]).

We would like to mention that the investigation of functional differential equations

with infinite delay in an abstract admissible phase space was initiated by Hale and

Kato [45] and Schumacher [77] (for X = Rn), and that Banks, Burns, Delfour,

Herdman and Mitter were among the first who studied equations with finite delay

in the state space X×Lp([−r, 0], X) (cf. [7, 10, 32]). The method of using admissible

phase spaces has proved to be significant in dealing with infinite delay problems,

because in this way one can treat a large class of functional differential equations

with infinite delay at the same time and obtain general results. On the other hand,

as shown, e.g., in [7, 10–12, 32, 83], the product space X×Lp([−r, 0], X) is well suited

for the investigation of certain problems involving control systems governed by delay

equations.

In Chapter 3, we consider mainly the solvability of the Cauchy problem for four

classes of abstract functional equations with infinite delay. We address first, in

Section 2, the Cauchy problem for a functional integral equation with infinite delay

in a Banach space X,





u(t) = g(t) +

∫ t

σ

f(t, s, u(s), us)ds (σ ≤ t ≤ T ),

uσ = φ,

where 0 ≤ σ < T , g(t) ∈ C([σ, T ], X), ut(θ) = u(t + θ) (θ ∈ R−), f ∈ C([σ, T ] ×
[σ, T ]×X ×P , X) is a given function and φ ∈ P (an admissible phase space). The

solvability of the functional integral equation above is investigated under hypotheses

based on noncompactness measures and Kamke functions or the Lipschitz condition.

The uniqueness and continuous dependence (on initial data) of the solutions are also

discussed. Second, in Sections 3 – 5, we consider the Cauchy problem for a semilinear

functional differential equation with infinite delay





u′(t) = Au(t) + f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,

the Cauchy problem for a nonautonomous semilinear functional equation with infi-
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nite delay 



u′(t) = A(t)u(t) + f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,

and the Cauchy problem for a functional integrodifferential equation with infinite

delay





u′(t) = A

[
u(t) +

∫ t

0

F (t− s)u(s)ds

]
+ f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,

where T > 0, A and {A(t)}t≥0 are given linear operators in X, {F (t)}0≤t≤T ⊂ L(X),

f ∈ C([0, T ]×X×P , X), and φ ∈ P . By applying the given results in Section 2, we

obtain some new and basic solvability and wellposedness results for these problems.

In Chapter 4, we investigate the regularity for a functional differential equation

with infinite delay in a Banach space X satisfying the Radon-Nikodym property.

Some regularity results are established. Theorems 4.2.6 and 4.2.7 in this chapter

are entirely new, and others are generalizations of the corresponding results in our

papers [57, 59].

In Chapter 5, we are interested in the deep investigation of the wellposedness

of the Cauchy problem for abstract functional equations with infinite delay in

the general case, i.e., the space X being a general Banach space. Our objective

is to establish wellposedness theorems, on the Cauchy problems for a semilinear

functional differential equation and a nonautonomous semilinear functional equa-

tion with infinite delay, when the nonlinear term f is Fréchet differentiable. In

Section 1, we introduce a new concept for a continuously differentiable function

φ ∈ P , called one-point-property. In terms of it, we set up a wellposedness result on

the former one (autonomous case), which generalizes the corresponding results in

[3, 8, 13, 22, 23, 35, 36, 45, 46, 48, 51, 58, 59, 71, 77, 78, 84, 86, 87]). Section 2 is devoted

to the nonautonomous case. The wellposedness result given there is new even for

the finite delay case.
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Chapter 1

Semilinear integrodifferential
equations with nonlocal initial
conditions

1.1 Introduction and Preliminaries

We consider the Cauchy problem for a semilinear integrodifferential equation with

a nonlocal initial condition




u′(t) = A

[
u(t) +

∫ t

t0

F (t− s)u(s)ds

]
+ f(t, u(t)), t ∈ [t0, t0 + T ],

u(t0) + g(t1, . . . , tp, u) = u0,

(1.1.1)

in a Banach space X, where

• A is the generator of a C0 semigroup on X;

• {F (t)}t∈[0,T ] ⊂ L(X) (the space of continuous linear operators from X to itself)

is a strongly continuously differentiable family such that





F (t)(D(A)) ⊂ D(A), t ∈ [0, T ],

AF (·)u(·) ∈ L1([0, T ], X), u(·) ∈ C([0, T ], [D(A)]),

F (·)u ∈ C1([0, T ], X), u ∈ X,

(1.1.2)

where D(A) is the domain of A, and [D(A)] is the space D(A) with the graph

norm;
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• f(·, ·) ∈ C([t0, t0 + T ]×X,X) and

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, t ∈ [t0, t0 + T ], x, y ∈ X, (1.1.3)

for a constant L > 0;

• 0 ≤ t0 < t1 < · · · < tp ≤ t0 + T ;

• the X-valued function g(t1, · · · , tp, ·) on C([t0, t0 + T ], X) satisfies

‖g(t1, . . . , tp, φ)− g(t1, . . . , tp, ψ)‖ ≤ K max
t∈[t0,t0+T ]

‖φ(t)− ψ(t)‖,

φ, ψ ∈ C([t0, t0 + T ], X),
(1.1.4)

for a constant K > 0.

A typical example of the Cauchy problem for the integrodifferential equation in

(1.1.1) with normal initial data is the following mathematical model coming from

the study of heat conduction (or viscoelasticity) for materials with memory (see,

e.g., [21, 43]) 



q(t, x) = −cux(t, x)−
∫ t

0

b(t− s)ux(s, x)ds,

ut(t, x) = −qx(t, x) + f(t, x),

u(0, x) = u0(x),

(1.1.5)

where q is the heat flux, c a constant, b : [0,∞) → (−∞,∞), u the temperature of

the material, and f the externally supplied heat. The second equation is the balance

equation. Assuming c = 1, then (1.1.5) can be rewritten as





ut(t, x) =
∂2

∂x2

[
u(t, x) +

∫ t

0

b(t− s)u(s, x)ds

]
+ f(t, x),

u(0, x) = u0(x).

This is a form of the normal Cauchy problem for the integrodifferential equation

in (1.1.1) with A = ∂2

∂x2 by noting that A = ∂2

∂x2 with domain H2(0, 1) ∩ H1
0 (0, 1)

generates a C0 semigroup on L2(0, 1). The integrodifferential equation in (1.1.1)

and its analogues have been investigated in many articles. We refer the reader to

[5, 33, 34, 40–42, 61, 62] and references cited there.
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Interest in the Cauchy problem for differential equations with nonlocal initial

conditions stems mainly from the better effect of the nonlocal initial condition than

the usual one in treating physical problems. Actually, the nonlocal initial condition

u(t0) + g(t1, . . . , tp, u) = u0 (1.1.6)

in (1.1.1) models many interesting nature phenomena, with which the normal initial

condition u(0) = u0 may not fit in. For instance, the function g(t1, . . . , tp, u) may

be given by

g(t1, . . . , tp, u) =

p∑
i=1

ciu(ti),

where ci (i = 1, . . . , p) are constants. In this case, (1.1.6) allows the measurements

at t = 0, t1, . . . , tp, rather than just at t = 0. Hence more information is available.

More specially, letting g(t1, . . . , tp, u) = −u(tp) and u0 = 0 in (1.1.6) yields a periodic

problem and letting g(t1, . . . , tp, u) = −u(t0)+u(tp) gives a backward problem. From

Byszewski [14, 15], L. Byszewski and V. Lakshmikantham [19] and the references

given there, one can find other information about the importance of nonlocal initial

conditions in applications. There have been many papers concerning this topic

(cf., e.g., [5, 9, 14, 15, 17–19, 52, 61, 68] and references therein). However, much of

the previous research was done under the condition “M(K + TL) < 1” (M :=

maxt∈[0,T ] ‖T (t)‖ and {T (t)}t≥0 is the C0 semigroup generated by A) or its analogues

(cf., e.g., [14, 17, 61]). This condition turns out to be quite restrictive. In particular,

limited by it, the results obtained for nonlocal problems can not cover those classical

results regarding the case when F ≡ 0 and g ≡ 0, i.e., the following differential

equations with usual initial conditions

u(t) = Au(t) + f(t, u(t)) (t0 ≤ t ≤ t0 + T ), u(t0) = u0 (1.1.7)

(cf. [70, Chapter 6]). Thus, there naturally arises a question:

Can the above condition be relaxed such that the results for nonlocal

problems cover the corresponding ones for (1.1.7)?

In this chapter, among others we will give an affirmative answer to this question

(see Corollary 1.2.2 (1), Theorem 1.2.7, Remark 1.2.3 (c) and Remark 1.2.9 (a)).

In Section 2, we first study the existence and uniqueness of solutions for a general

integral equation ((1.2.3) below), and then investigate the corresponding problems

8



for (1.1.1). The theorems formulated are unifications and extensions of those given

previously for the Cauchy problem for differential equations or integrodifferential

equations with nonlocal initial conditions. As the reader will see, the hypotheses

in our theorems are in reasonable weak forms and the proofs provided are concise.

Moreover, following every main result, we append a remark with a detailed analysis

of how the result extends and improves the known ones. Finally, in Section 3,

we apply our theorems to two concrete problems, one of which comes from heat

conduction in materials with memory. It is indicated that, in contrast with ours,

the previous results are not applicable to them.

To begin with, we recall that there is a strongly continuous family {R(t)}t∈[0,T ] ⊂
L(X) such that

(i) R(0) = I, R(·)y ∈ C1([0, T ], X) ∩ C([0, T ], [D(A)]) (y ∈ D(A)).

(ii) for every t ∈ [0, T ], y ∈ D(A),

d

dt
R(t)y = A

[
R(t)y +

∫ t

0

F (t− s)R(s)yds

]

= R(t)Ay +

∫ t

0

R(t− s)AF (s)yds.

(1.1.8)

(cf., e.g., [34, 40, 42, 62]).

Definition 1.1.1. A mild solution of (1.1.1) is a function u ∈ C([t0, t0 + T ], X)

satisfying

u(t) = R(t− t0)[u0 − g(t1, . . . , tp, u)] +

∫ t

t0

R(t− s)f(s, u(s))ds,

t ∈ [t0, t0 + T ].

(1.1.9)

A classical solution of (1.1.1) is a function

u ∈ C1([t0, t0 + T ], X) ∩ C([t0, t0 + T ], [D(A)])

satisfying (1.1.9).
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1.2 A general integral equation and an integrod-

ifferential equation with nonlocal initial con-

dition

Assume that

(H1) {S(t)}t∈[0,T ] ⊂ L(X) is a strongly continuous family, and ‖S(t)‖ ≤ Me−ωt

(t ∈ [0, T ]), where M and ω ≥ 0 are constants.

(H2) h : C([t0, t0 + T ], X) → X and there exists a nonnegative function Φ on

C([t0, t0 + T ], [0,∞)) satisfying




Φ(kµ) ≤ kΦ(µ), ∀ k > 0, µ ∈ C([t0, t0 + T ], [0,∞)),

Φ(µ1) ≤ Φ(µ2), ∀




µ1, µ2 ∈ C([t0, t0 + T ], [0,∞))

with µ1(t) ≤ µ2(t) (t ∈ [t0, t0 + T ]),

(1.2.1)

such that

‖h(φ)− h(ψ)‖ ≤ Φ(‖φ− ψ‖), φ, ψ ∈ C([t0, t0 + T ], X). (1.2.2)

We first look at a general integral equation

v(t) = S(t− t0)[u0 − h(v)] +

∫ t

t0

S(t− s)f(s, v(s))ds, t ∈ [t0, t0 + T ]. (1.2.3)

Theorem 1.2.1. Let (1.1.3), (H1) and (H2) hold and MΦ
(
e(ML−ω)(•−t0)

)
< 1. Then

for all u0 ∈ X, (1.2.3) has a unique solution v ∈ C([t0, t0 + T ], X).

Proof. Let u1 ∈ C([t0, t0 + T ], X) be fixed and u1,0 := u0 − h(u1). Define an

operator F on C([t0, t0 + T ], X) by

(Fu)(t) = S(t− t0)u1,0 +

∫ t

t0

S(t− s)f(s, u(s))ds, t ∈ [t0, t0 + T ]. (1.2.4)

Clearly, F (C([t0, t0 + T ], X)) ⊂ C([t0, t0 + T ], X). By a standard argument, we see

that F has a unique fixed point u2 ∈ C([t0, t0 + T ], X). Using induction we infer

that there exists a sequence {un}∞n=2 ⊂ C([t0, t0 + T ], X) such that

un(t) = S(t− t0)un−1,0 +

∫ t

t0

S(t− s)f(s, un(s))ds, t ∈ [t0, t0 + T ], n ≥ 2, (1.2.5)
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where

un−1,0 = u0 − h(un−1). (1.2.6)

A combination of (1.1.3), (1.2.1) (1.2.2), (1.2.5), and (1.2.6) shows

eωt‖u3(t)− u2(t)‖ ≤ eωtMΦ(‖u2(t)− u1(t)‖)

+ML

∫ t

t0

eωs‖u3(s)− u2(s)‖ds, t ∈ [t0, t0 + T ].

By Bellman-Gronwall’s inequality,

‖u3(t)− u2(t)‖ ≤ Me(ML−ω)(t−t0)Φ(‖u2(t)− u1(t)‖), t ∈ [t0, t0 + T ].

Therefore, by induction again, for each t ∈ [t0, t0 + T ],

‖un(t)− un−1(t)‖

≤ Me(ML−ω)(t−t0)
(
MΦ

(
e(ML−ω)(t−t0)

))n−3
Φ(‖u2(t)− u1(t)‖), n ≥ 3.

According to the assumption, we obtain for any m > n ≥ 3

max
t∈[t0,t0+T ]

‖um(t)− un(t)‖

≤
m−1∑
i=n

max
t∈[t0,t0+T ]

‖ui+1(t)− ui(t)‖

≤ max
{
M, Me(ML−ω)(T−t0)

}
Φ(‖u2(t)− u1(t)‖)

m−1∑
i=n

(
MΦ

(
e(ML−ω)(t−t0)

))i−2

−→ 0, as n →∞;

that is, {un}∞n=2 is a Cauchy sequence in C([t0, t0 + T ], X). Therefore, there is a

u ∈ C([t0, t0 + T ], X) such that

lim
n→∞

un(t) = u(t) uniformly for t ∈ [t0, t0 + T ].

This together with (1.2.4) – (1.2.6) implies that u(t) is a continuous solution of

(1.2.3). The uniqueness of the solution of (1.2.3) is obvious.

2
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Corollary 1.2.2. Let (1.1.3), (H1) and one of the following assumptions hold.

(1) There is a constant K > 0 such that

‖h(φ)− h(ψ)‖ ≤ K max
s∈[t0,t0+T ]

‖φ(s)− ψ(s)‖ (φ, ψ ∈ C([t0, t0 + T ], X)),

and KMeT max{ML−ω,0} < 1.

(2) There are constants K > 0, t0 ≤ q < r ≤ t0 + T such that

‖h(φ)− h(ψ)‖ ≤ K

∫ r

q

‖φ(s)− ψ(s)‖ds (φ, ψ ∈ C([t0, t0 + T ], X)),

and




KM(r − q) < 1 if ML = ω,

KM

ML− ω

(
e(ML−ω)(r−t0) − e(ML−ω)(q−t0)

)
< 1 if ML 6= ω.

(3) There are c1, . . . , cp ∈ C such that

‖h(φ)− h(ψ)‖ ≤
p∑

i=1

|ci|‖φ(ti)− ψ(ti)‖ (φ, ψ ∈ C([t0, t0 + T ], X)),

and M

p∑
i=1

|ci|e(ML−ω)(ti−t0) < 1.

Then for all u0 ∈ X, equation (1.2.3) has a unique solution v ∈ C([t0, t0 + T ], X).

Proof. Applying Theorem 1.2.1 to the functions

Φ(µ) = K max
s∈[t0,t0+T ]

µ(s), Φ(µ) = K

∫ r

q

µ(s)ds, Φ(µ) =

p∑
i=1

|ci|µ(ti),

respectively, we obtain the desired conclusions.

2

Remark 1.2.3. (a) The proof of Theorem 1.2.1 shows a way to compute the

continuous solution of (1.2.3).

(b) Corollary 1.2.2 (1) gives a generalization of [61, Theorem 3.2], because

12



(1) the operator family {S(·)} and the mapping h(u) in Corollary 1.2.2

(1) are more general than the operator family {R(·)} and the mapping

g(t1, . . . , tp, u(t1), . . . , u(tp)) respectively;

(2) if we let

t0 = 0, ω = 0, S(·) = R(·), h(u) = g(t1, . . . , tp, u(t1), . . . , u(tp)),

then Corollary 1.2.2 says that (1.10) – (1.11) in [61] has a unique mild

solution for any u0 ∈ X provided MK < e−MTL. But, Theorem 3.2 in

[61] is not applicable for any K ≥ 0 when MTL ≥ 1, since then

MK + MTL ≥ 1.

(3) for M, K, T, L ≥ 0, the inequality MKeMTL < 1 does not imply M(K +

TL) < 1 even if MTL < 1 (for example, let MK = 3
4

and MTL = 1
4
,

then MTL < 1 and MKeMTL < 1, but M(K + TL) = 1). However, the

converse holds. In fact, for M, K, T, L ≥ 0 the inequality M(K+TL) < 1

implies

MKeMTL < MKe1−MK < 1,

by noting that the function ξ 7→ ξe1−ξ is increasing on [0, 1].

(c) Corollary 1.2.2 (1) covers naturally and directly the “existence and uniqueness”

part of [70, p.184, Theorem 6.1.2], because if h ≡ 0 then K ≡ 0 which means

that the assumption KMeT max{ML−ω,0} < 1 always holds.

Using the idea in the proof of Theorem 1.2.1 we can also obtain the following

theorem.

Theorem 1.2.4. Let A generate a strongly continuous semigroup {T (t)}t≥0. Write

Ωr := {u; u ∈ X and ‖u‖ ≤ r} (r > 0). Assume the following.

(i) There exists a constant L0 > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L0‖x− y‖, t ∈ [t0, t0 + T ], x, y ∈ Ωr.

(ii) There exists a constant K0 > 0 such that

‖g(t1, . . . , tp, φ)− g(t1, . . . , tp, ψ)‖ ≤ K0 max
t∈[t0,t0+T ]

‖φ(t)− ψ(t)‖,

φ, ψ ∈ C([t0, t0 + T ], Ωr).

13



(iii) The inequality M0 (‖u0‖+ G + T (rL0 + F )) ≤ r holds with

M0 := max
s∈[t0,t0+T ]

‖T (s)‖, F := max
s∈[t0,t0+T ]

‖f(s, 0)‖,

and G := supφ∈C([t0,t0+T ],Ωr) ‖g(t1, . . . , tp, φ)‖.

(iv) M0K0e
M0TL0 < 1.

Then 



u′(t) = Au(t) + f(t, u(t)), t0 ≤ t ≤ t0 + T,

u(t0) + g(t1, . . . , tp, u) = u0

(1.2.7)

has a unique mild solution u ∈ C([t0, t0 + T ], Ωr).

Remark 1.2.5. (a) Theorem 1.2.4 is an extension of [14, Theorem 3.1] for the same

reasons as in (1) and (3) of Remark 1.2.3.

(b) The conclusion of Theorem 1.2.4 is also true if replacing the assumption (iii)

by the following weaker one.

(iii′) The inequality M0 (‖u0‖+ G + TF0) ≤ r holds with

M0 := max
s∈[t0,t0+T ]

‖T (s)‖, F0 := sup
s∈[t0,t0+T ],φ∈C([t0,t0+T ],Ωr)

‖f(s, φ(s))‖,

and G := supφ∈C([t0,t0+T ],Ωr) ‖g(t1, . . . , tp, φ)‖.

For the case of h(·) taking the form h(φ) =
∑p

i=1 ciφ(ti) for every φ ∈ C([t0, t0 +

T ], X), here c1, . . . , cp ∈ C, we present the following Theorem 1.2.6 which is sharper

than Corollary 1.2.2 (3). Furthermore, this result unifies and extends both of [61,

Theorem 4.3] and [17, Theorem 3.1] (see Remark 1.2.9 below).

Theorem 1.2.6. Let (1.1.3) and (H1) hold and for some c1, . . . , cp ∈ C. Take

h(φ) :=

p∑
i=1

ciφ(ti) (φ ∈ C([t0, t0 + T ], X)).

Assume that B :=

(
I +

p∑
i=1

ciS(ti − t0)

)−1

∈ L(X) and

‖B‖M
p∑

i=1

|ci|e−ω(ti−t0)
(
eML(ti−t0) − 1

)
< 1.

Then for all u0 ∈ X, equation (1.2.3) has a unique solution v ∈ C([t0, t0 + T ], X).

14



Proof. By the standard arguments, we see that for every x ∈ X, there is a unique

vx(·) ∈ C([t0, t0 + T ], X) satisfying

vx(t) = S(t− t0)x +

∫ t

t0

S(t− s)f(s, vx(s))ds, t ∈ [t0, t0 + T ]. (1.2.8)

Hence

vx(ti) = S(ti − t0)x +

∫ ti

t0

S(ti − s)f(s, vx(s))ds, i = 1, . . . , p, (1.2.9)

and (1.1.3) implies that for every x1, x2 ∈ X,

eωt‖vx1(t)− vx2(t)‖ ≤ eωt0M‖x1 − x2‖+ ML

∫ t

t0

eωs‖vx1(s)− vx2(s)‖ds.

Thus Gronwall-Bellman’s inequality indicates that

‖vx1(t)− vx2(t)‖ ≤ Me(ML−ω)(t−t0)‖x1 − x2‖, x1, x2 ∈ X. (1.2.10)

Fix u0 ∈ X and define an operator G : X → X by

Gx = Bu0 −B

p∑
i=1

ci

∫ ti

t0

S(ti − s)f(s, vx(s))ds, x ∈ X. (1.2.11)

Then, by virtue of (1.1.3) and (1.2.10) we obtain for every x1, x2 ∈ X,

‖Gx1 − Gx2‖ ≤ ‖B‖
p∑

i=1

|ci|
∫ ti

t0

Me−ω(ti−s)L ‖vx1(s)− vx2(s)‖ ds

= ‖B‖M
p∑

i=1

|ci|e−ω(ti−t0)
(
eML(ti−t0) − 1

) ‖x1 − x2‖ .

This means that G is a contractive operator on X. Therefore G has a unique fixed

point x∗ ∈ X. Thus, from (1.2.11) and (1.2.9) it follows that

x∗ = u0 −
p∑

i=1

ciS(ti − t0)x∗ −
p∑

i=1

ci

∫ ti

t0

S(ti − s)f (s, vx∗(s)) ds

= u0 −
p∑

i=1

civx∗(ti).

This together with (1.2.8) shows that vx∗(t) is the solution of (1.2.3) as desired.

2

We now return to the nonlocal Cauchy problem (1.1.1).
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Theorem 1.2.7. Let (1.1.2) - (1.1.4) hold. Suppose that M and ω are constants

such that ‖R(t)‖ ≤ Me−ωt (t ∈ [0, T ]) and λ := MKeT max{ML−ω,0} < 1. Then for

every u0 ∈ X, (1.1.1) has a unique mild solution u.

Moreover, (1.1.1) has a unique classical solution provided

u0 − g(t1, . . . , tp, u) ∈ D(A), f ∈ C1([t0, t0 + T ]×X,X). (1.2.12)

Proof. From Corollary 1.2.2 (1) and the fact that a classical solution of (1.1.1)

is also a mild solution of (1.1.1), we judge that (1.1.1) has at most one classical

solution.

On the other hand, Corollary 1.2.2 (1) says that for every u0 ∈ X, (1.1.1) has

a mild solution u(t). Next, we show that u(t) is continuously differentiable on

[t0, t0 + T ]. The proof of this fact is almost standard (cf. [70]). We give it here for

completeness.

For s ∈ [t0, t0 + T ] and x ∈ X, denote

y1(s, x) =
∂

∂s
f(s, x), y2(s, x) =

∂

∂x
f(s, x). (1.2.13)

By (1.1.3), we have

max
s∈[t0,t0+T ]

‖y2(s, u(s))‖ < ∞, (1.2.14)

and




f(s, u(s + σ))− f(s, u(s)) = y2(s, u(s))(u(s + σ)− u(s)) + ω1(s, σ),

f(s + σ, u(s + σ))− f(s, u(s + σ)) = y1(s, u(s + σ))σ + ω2(s, σ),
(1.2.15)

where limσ→0
‖ωi(s,σ)‖

σ
= 0 uniformly on [t0, t0 + T ] for i = 1, 2.

Let (1.2.12) hold. Then

d

dt
(R(t− t0)(u0 − g(t1, . . . , tp, u))) ∈ C([0, T ], X).

Thus, by the standard arguments we deduce that the integral equation

x(t) =

{
d

dt
(R(t− t0)(u0 − g(t1, . . . , tp, u))) + R(t− t0)f(t0, u(t0))

+

∫ t

0

R(t− s)y1(s, u(s))ds

}
+

∫ t

0

R(t− s)y2(s, u(s))x(s)ds,

t ∈ [t0, t0 + T ]
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has a unique solution x(t) ∈ C([t0, t0 + T ], X).

Making use of (1.1.9), (1.2.13) - (1.2.15), we obtain

u(t + σ)− u(t)

σ
− x(t)

=
1

σ
[R(t + σ − t0)−R(t− t0)][u0 − g(t1, . . . , tp, u)]

+
1

σ

∫ t

t0

R(t− s)[ω1(s, σ) + ω2(s, σ)]ds

+

∫ t

t0

R(t− s)[y1(s, u(s + σ))− y1(s, u(s))]ds

+
1

σ

∫ t0+σ

t0

R(t + σ − s)f(s, u(s))ds−R(t− t0)f(t0, u(t0))

+

∫ t

t0

R(t− s)y2(s, u(s))

[
u(s + σ)− u(s)

σ
− x(s)

]
ds.

(1.2.16)

By virtue of the fact that the norm of each of the four terms on the right-hand side of

(1.2.16) tends to 0 as σ → 0, in conjunction with the Gronwall-Bellman inequality,

we see that u(t) is continuously differentiable on [t0, t0 +T ] and its derivative is x(t).

This implies that f(t, u(t)) ∈ C1([t0, t0 + T ], X). Thus, by (1.1.8) and (1.1.9) we

conclude that u(·) satisfies

u′(t) = A

[
u(t) +

∫ t

t0

F (t− s)u(s)ds

]
+ f(t, u(t)), t ∈ [t0, t0 + T ],

i.e., u(·) is the unique classical solution of (1.1.1).

2

Likewise, by Corollary 1.2.2 (2)-(3) and Theorem 1.2.6, we have the following

result.

Theorem 1.2.8. Let M and ω be constants such that ‖R(t)‖ ≤ Me−ωt (t ∈ [0, T ]),

and let one of the following assumptions hold.

(1) There are constants K > 0, q and r with t0 ≤ q < r ≤ t0 + T such that

‖g(t1, . . . , tp, φ)− g(t1, . . . , tp, ψ)‖ ≤ K

∫ r

q

‖φ(s)− ψ(s)‖

(φ, ψ ∈ C([t0, t0 + T ], X)),
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and





KM(r − q) < 1 if ML = ω,

KM

ML− ω

(
e(ML−ω)(r−t0) − e(ML−ω)(q−t0)

)
< 1 if ML 6= ω,

(2) For some c1, . . . , cp ∈ C,

g(t1, . . . , tp, φ) =

p∑
i=1

ciφ(ti) (φ ∈ C([t0, t0 + T ], X)).

Suppose that B :=

(
I +

p∑
i=1

ciR(ti − t0)

)−1

∈ L(X) and

‖B‖M
p∑

i=1

|ci|e−ω(ti−t0)
(
eML(ti−t0) − 1

)
< 1. (1.2.17)

Then the conclusions of Theorem 1.2.7 hold.

Remark 1.2.9. (a) Theorem 1.2.7 covers naturally and directly [70, p. 187, Theo-

rem 6.1.5].

(b) Theorem 1.2.8 unifies and generalizes [17, Theorems 3.1 and 4.3] and [61,

Theorems 4.3 and 4.4]. Let us illustrate this point in detail.

(i) Specialized to the case F ≡ 0 and ω = 0, Theorem 1.2.8 (2) extends [17,

Theorems 3.1 and 4.3]. Actually, in this case, the inequality (1.2.17) becomes

‖B‖M
p∑

i=1

|ci|
(
eMLti − 1

)
< 1. (1.2.18)

Suppose that the hypotheses in [17, Theorems 3.1 and 4.3] hold. Then

MLT

(
1 + ‖B‖M

p∑
i=1

|ci|
)

< 1. (1.2.19)

So

MLT < 1, ‖B‖M
p∑

i=1

|ci| < (MLT )−1 − 1, if MLT 6= 0,
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and hence

‖B‖M
p∑

i=1

|ci|
(
eMLti − 1

) ≤ ‖B‖M
p∑

i=1

|ci|
(
eMLT − 1

)

<
(
(MLT )−1 − 1

) (
eMLT − 1

)
< 1.

Thus (1.2.19) implies (1.2.18).

Clearly the converse is not true.

Moreover, we mention that the assumption on initial data in [17, Theorem 4.3]

was

Bu0 ∈ D(A), B

∫ ti

t0

R(ti − s)f(s, u(s))ds ∈ D(A), i = 1, 2, . . . , p. (1.2.20)

Write w1 := u0 −
p∑

i=1

ciu(ti). Then by

u(t) = R(t− t0)w1 +

∫ t

t0

R(t− s)f(s, u(s))ds (t ∈ [t0, t0 + T ])

and (1.2.20), we have

w1 = Bu0 −
p∑

i=1

ciB

∫ ti

t0

R(ti − s)f(s, u(s))ds ∈ D(A).

(ii) Taking t0 = 0 in Theorem 1.2.8 (2), we have

‖B‖M
p∑

i=1

|ci|e−ωti
(
eMLti − 1

)
< 1. (1.2.21)

We say that (1.2.21) is implied in the hypotheses

ω −ML > 0, M

p∑
i=1

|ci|e(ML−ω)ti < 1 (1.2.22)

given in [61, Theorems 4.3 and 4.4], and (1.2.21) is indeed much weaker than (1.2.22).

In fact, if

α := M

p∑
i=1

|ci|e(ML−ω)ti < 1,
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then β := M

p∑
i=1

|ci|e−ωti < 1. This implies

∥∥∥∥∥
p∑

i=1

ciR(ti)

∥∥∥∥∥ < 1, so that B ∈ L(X)

and ‖B‖ ≤ 1

1− β
. Therefore,

‖B‖M
p∑

i=1

|ci|e−ωti
(
eMLti − 1

) ≤ 1

1− β
(α− β) <

1

1− β
(α− αβ) = α < 1.

This shows that (1.2.22) implies (1.2.21). On the other hand, for

γ :=

∥∥∥∥∥
p∑

i=1

ciR(ti)

∥∥∥∥∥ < β < 1, 1 ≤ α < 1 + β − γ,

we have

‖B‖M
p∑

i=1

|ci|e−ωti
(
eMLti − 1

) ≤ 1

1− γ
(α− β) < 1,

i.e., (1.2.21) holds but not (1.2.22).

In addition, similar to Theorem 1.2.4, we have the following extension of [14,

Theorem 5.1].

Theorem 1.2.10. Let A generates a strongly continuous semigroup {T (t)}t≥0. As-

sume the following.

(i) The function f : [t0, t0 + T ]×X → X is continuously differentiable and there

exists a constant L0 > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L0‖x− y‖, t ∈ [t0, t0 + T ], x, y ∈ Ωr,

where Ωr is as in Theorem 1.2.4.

(ii) The function g : [t0, t0 + T ]p × C([t0, t0 + T ], X) → D(A) and there exists a

constant K0 > 0 such that

‖g(t1, . . . , tp, φ)− g(t1, . . . , tp, ψ)‖ ≤ K0 max
t∈[t0,t0+T ]

‖φ(s)− ψ(s)‖,

φ, ψ ∈ C([t0, t0 + T ], Ωr).
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(iii) The vector u0 ∈ D(A) and the inequality M0(‖u0‖+ G + TF0) ≤ r is true for

M0 := max
s∈[t0,t0+T ]

‖T (s)‖, F0 := sup
s∈[t0,t0+T ],φ∈C([t0,t0+T ],Ωr)

‖f(s, φ(s)‖,

and G := supφ∈C([t0,t0+T ],Ωr) ‖g(t1, . . . , tp, φ)‖.

(iv) M0K0e
M0TL0 < 1.

Then (1.2.7) has a unique classical solution.

1.3 The case concerning compact operator family

Let {S(t)}t≥0 be a family of continuous linear operators from X to X which is

strongly continuous on [0, T ] and compact on (0, T ]. Clearly

M := max
t∈[0,T ]

‖S(t)‖ < ∞.

Denote

Br := {x ∈ X; ‖x‖ ≤ r}, r > 0,

Yr := {φ ∈ C([t0, t0 + T ], X); φ(t) ∈ Br for t ∈ [t0, t0 + T ]}, r > 0.

Theorem 1.3.1. Assume that

(i) f : [t0, t0 + T ] ×X → X is continuous in t on [t0, t0 + T ] and for each r > 0

there exists a constant L(r) > 0 such that

‖f(t, u)− f(t, v)‖ ≤ L(r)‖u− v‖, t ∈ [t0, t0 + T ], u, v ∈ Br.

(ii) g(t1, . . . , tp, ·) : C([t0, t0 + T ], X) → X and there is a δ ∈ (0, T ) such that for

any φ, ψ ∈ Yr with φ(s) = ψ(s) (s ∈ [t0 + δ, t0 + T ]),

g(t1, . . . , tp, φ) = g(t1, . . . , tp, ψ).

(iii)

lim
r→0

(
M sup

φ∈Yr

‖g(t1, . . . , tp, φ)‖+ MT sup
s∈[t0,t0+T ], φ∈Yr

‖f(s, φ(s))‖
)

1

r
< 1.
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Then the integral equation

u(t) = S(t− t0)(u0 − g(t1, . . . , tp, u)) +

∫ t

t0

S(t− s)f(s, u(s))ds (1.3.1)

has at least one solution u ∈ C([t0, t0 + T ], Br).

Proof. Write

Y (δ) := C([t0 + δ, t0 + T ], X),

Yr(δ) := {φ ∈ Y (δ); φ(t) ∈ Br for t ∈ [t0 + δ, t0 + T ]}, r > 0.

Fixing v ∈ Yr(δ), we define a mapping Fv on Yr by

(Fvφ)(t) = S(t− t0)(u0− g(t1, . . . , tp, ṽ))+

∫ t

t0

S(t− s)f(s, φ(s))ds, t ∈ [t0, t0 +T ],

where

ṽ(t) =





v(t) if t ∈ [t0 + δ, t0 + T ],

v(t0 + δ) if t ∈ [t0, t0 + δ].

Clearly, by the condition (iii) we know that there is a sufficiently large r > 0 such

that

‖(Fvφ)(t)‖ ≤ M

(
‖u0‖+ sup

φ∈Yr

‖g(t1, . . . , tp, φ)‖+ T sup
s∈[t0,t0+T ], φ∈Yr

‖f(s, φ(s))‖
)

≤ r, t ∈ [t0 + δ, t0 + T ], φ ∈ Yr.

Therefore, the mapping Fv maps Yr into itself. Moreover, by the definition of Fv

we obtain inductively that for m ∈ N ,

‖(Fm
v φ)(t)− (Fm

v ψ)(t)‖ ≤ (ML(r)(t− t0))
m

m!
max
s∈[t0,t]

‖φ(s)− ψ(s)‖,

t ∈ [t0, t0 + T ], φ, ψ ∈ Yr.

Hence, we infer that for m large enough, the mapping Fm
v is a contractive mapping.

Thus, by a well known extension of the Banach contraction principle, Fv has a

unique fixed point φv ∈ Yr, i.e.,

φv(t) = S(t− t0)(u0 − g(t1, . . . , tp, ṽ)) +

∫ t

t0

S(t− s)f(s, φv(s))ds, t ∈ [t0, t0 + T ].

(1.3.2)
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Based on this fact, we define a mapping G from Yr(δ) into itself by

(Gv)(t) = φv(t), t ∈ [t0 + δ, t0 + T ].

From (1.3.2), we deduce that for t ∈ [t0, t0 + T ], v1, v2 ∈ Yr(δ),

‖φv1(t)− φv2(t)‖ ≤ ‖S(t− t0)(g(t1, . . . , tp, ṽ1)− g(t1, . . . , tp, ṽ2))‖

+ML

∫ t

t0

‖φv1(s)− φv2(s)‖ ds.

This gives, by Gronwall-Bellman’s inequality, that for t, v1 and v2 as above

‖φv1(t)− φv2(t)‖ ≤ eMLT‖S(t− t0)(g(t1, . . . , tp, ṽ1)− g(t1, . . . , tp, ṽ2))‖.

Therefore

‖(Gv1)(t)− (Gv2)(t)‖ ≤ eMLT‖S(t− t0)(g(t1, . . . , tp, ṽ1)− g(t1, . . . , tp, ṽ2))‖,
t ∈ [t0 + δ, t0 + T ], v1, v2 ∈ Yr(δ).

(1.3.3)

Next we show that G maps Yr(δ) into a precompact subset of Yr(δ). To this end,

we recall that {S(t)}t≥0 is a compact semigroup, which means that for each t ∈
[t0 + δ, t0 +T ],, S(t− t0) is a compact operator on X and t 7→ S(t− t0) is continuous

on [t0 + δ, t0 +T ] in the uniform operator topology. Accordingly, we deduce that for

each t ∈ [t0 + δ, t0 + T ], the set

{S(t− t0)(u0 − g(t1, . . . , tp, ṽ)); v ∈ Yr(δ)} is precompact in X,

and that the family of functions

{S(• − t0)(u0 − g(t1, . . . , tp, ṽ)); v ∈ Yr(δ)} is equicontinuous, (1.3.4)

because the set {g(t1, . . . , tp, ṽ); v ∈ Yr(δ)} is bounded by assumption (iii). Thus

for every t ∈ [t0 + δ, t0 + T ] and every sequence {vn}n∈N ⊂ Yr(δ), there exists

{nk}k∈N ⊂ {n}n∈N such that {S(• − t0)(u0 − g(t1, . . . , tp, ṽnk
))k∈N converges, and

therefore {(Gvnk
)(t)k∈N converges by (1.3.3). This implies that for each t ∈ [t0 +

δ, t0 + T ], the set {(Gv)(t); v ∈ Yr(δ)} is precompact in Y . On the other hand, for

each ε > 0, there exists σ > 0 such that

‖(S(t− t0)− S(s− t0))g(t1, . . . , tp, ṽ)‖ < εe−MLT
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valid for all v ∈ Yr(δ), t, s ∈ [t0 + δ, t0 + T ] with |t− s| < σ, by assertion (1.3.4). It

follows from (1.3.3) that for these v, t, s,

‖(G)v(t)− (Gv)(s)‖ < ε,

that is, the family of functions {(Gv)(·); v ∈ Yr(δ)} is equicontinuous. Now an

application of Arzela-Ascoli’s theorem justifies the precompactness of G(Yr(δ)). It

is clear that Yr(δ) is a bounded closed convex subset of Y (δ). Therefore we can

make use of Schauder’s fixed point theorem to conclude that G has a fixed point

v∗ ∈ Yr(δ). Put u = φv∗ . Then

u(t) = S(t− t0)(u0 − g(t1, . . . , tp, ṽ∗)) +

∫ t

t0

S(t− s)f(s, u(s))ds, t ∈ [t0, t0 + T ].

(1.3.5)

But

g(t1, . . . , tp, ṽ∗)) = g(t1, . . . , tp, u),

since

v∗(t) = (Gv∗)(t) = φv∗(t) = u(t), t ∈ [t0 + δ, t0 + T ],

by the definition of G. This concludes, together with (1.3.5), that u(t) is a solution

of (1.3.1). The proof ends then.

2

A direct corollary of Theorem 1.3.1 is the following.

Corollary 1.3.2. Assume that

(i) f : [t0, t0 + T ]×X → X is continuous in t on [t0, t0 + T ] and

‖f(t, u)− f(t, v)‖ ≤ rα1‖u− v‖, t ∈ [t0, t0 + T ], u, v ∈ Br,

for 0 ≤ α1 < 1.

(ii) g(t1, . . . , tp, ·) : C([t0, t0 + T ], X) → X and there is a δ ∈ (0, T ) such that for

any φ, ψ ∈ Yr with φ(s) = ψ(s) (s ∈ [t0 + δ, t0 + T ]),

g(t1, . . . , tp, φ) = g(t1, . . . , tp, ψ).

(iii)

‖g(t1, . . . , tp, φ)‖ < C (1 + ‖ϕ‖Y )α2 , ϕ ∈ Y,

for 0 ≤ α2 < 1.

Then (1.3.1) has at least one solution u ∈ C([t0, t0 + T ], Br).
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1.4 Applications

Example 1.4.1. Let us consider an operator A on a Banach space X generating

an analytic semigroup {R(t)}t≥0 on X such that

‖R(t)‖ ≤ e−
t
3 , ‖AR(t)‖ ≤ 1

t
e−

t
3 (t ≥ 0).

Clearly, the operator A = ∆ − 1
3
I in the Banach space X = L2(Rn) with D(A) =

H2(Rn) is an example. From [24, 36, 37, 39, 70, 73, 85, 88], one can find many other

examples.

Suppose that f : [0, 3]× C([0, 3], X) → C([0, 3], X) is continuous with

‖f(t, x)− f(t, y)‖ ≤ 1

3
‖x− y‖, t ∈ [0, 3], x, y ∈ X,

and

g(1, 2, φ) =
1

2
φ(1)− 1

2
φ(2) (φ ∈ C([0, 3], X)).

Set t0 = 0, T = 3, L = ω =
1

3
, M = 1, p = 2, c1 =

1

2
, c2 = −1

2
, t1 = 1, and t2 = 2.

Then

α = M

p∑
i=1

|ci|e(ML−ω)ti =
1

2

(
eL−ω + e2(L−ω)

)
= 1,

β = M

p∑
i=1

|ci|e−ωti =
1

2

(
e−

1
3 + e−

2
3

)
< 1,

and

γ =

∥∥∥∥∥
p∑

i=1

ciR(ti)

∥∥∥∥∥ =
1

2
‖R(2)−R(1)‖ =

1

2

∥∥∥∥
∫ 2

1

AR(s)ds

∥∥∥∥ ≤
1

2

∫ 2

1

e−
s
3

s
ds ≤ 1

2
e−

1
3 ln 2.

Hence

β − γ ≥ 1

2
e−

1
3

[(
1 + e−

1
3

)
− ln 2

]
> 0,

and 1 = α < 1 + β − γ. By Remark 1.2.9, (1.2.17) holds. So, the nonlocal Cauchy

problem 



u′(t) = Au(t) + f(t, u(t)) (0 ≤ t ≤ 3),

u(0) + g(1, 2, u) = u0
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has a unique mild solution u ∈ C([0, 3], X) by Theorem 1.2.6. But [61, Theorem

4.3] is not applicable since α = 1; neither is [17, Theorem 3.1] since

MTL

(
I + M‖B‖

p∑
i=1

|ci|
)

= 1 + ‖B‖ ≥ 1.

Example 1.4.2. Let Ω be a bounded open connected subset of R3 with C∞-

boundary, and let α and β be in C2([0,∞), R) with α(0) and β(0) positive. We

consider an equation arising in the study of heat conduction in materials with mem-

ory (cf., e.g., [41, 43]):



θ′(t)

η′(t)


 =




0 I

α(0)∆ −β(0)I







θ(t)

η(t)




+

∫ t

0




0 I

α′(t− s)∆ −β′(t− s)I







θ(s)

η(s)


 ds +




0

a(t, θ(t))


 .

(1.4.1)

Set X = H1
0 (Ω)× L2(Ω),

A =




0 I

α(0)∆ −β(0)I


 , D =

(
H2(Ω)

⋂
H1

0 (Ω)
)
×H1

0 (Ω).

From [20], we know that A generates a C0 semigroup {T (t)}t≥0 on X with ‖T (t)‖ ≤
Me−γt (t ≥ 0) for constants M, γ > 0. For any given l > 0 and each t ∈ [0, 4l] set

F (t) = (Fij(t)) , here

F11(t) ≡ F12(t) = 0, F22(t) =
α′(t)
α(0)

I,

F21(t) = −β′(t)I + β(0)F22(t).

Assume that

‖F22(t)‖, ‖F21(t)‖ ≤ γ

2M
e−γt, t ∈ [0, 4l],

‖F ′
22(t)‖, ‖F ′

21(t)‖ ≤
γ2

4M2
e−γt, t ∈ [0, 4l].

Then it follows from [40, p. 344] that the resolvent operator R(t) for (1.4.1) satisfies

‖R(t)‖ ≤ Me−
γt
2 , t ∈ [0, 4l].
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Suppose that a(t, θ) : [0,∞)×H1
0 (Ω) −→ L2(Ω) satisfies

‖a(t, x)− a(t, y)‖L2(Ω) ≤ γ

2M
‖x− y‖H1

0 (Ω), x, y ∈ H1
0 (Ω), t ∈ [0, 4l], (1.4.2)

and define b(θ) : C([0, 4l], H1
0 (Ω)) −→ L2(Ω) by

b(θ) = (Ml)−1

(∫ 2l

(2−ε)l

(grad θ)(s)ds +

∫ 4l

(4−ε)l

(grad θ)(s)ds

)
, (1.4.3)

where ε < 1
2
. Then, by virtue of Theorem 1.2.7, we infer that for each θ0 ∈ H1

0 (Ω),

η0 ∈ L2(Ω), equation (1.4.1) (for t ∈ [0, 4l]) together with the nonlocal initial data




θ(0)

η(0)


 +




0

(Ml)−1

(∫ 2l

(2−ε)l

(grad θ)(s)ds +

∫ 4l

(4−ε)l

(grad θ)(s)ds

)




=




θ0

η0




(1.4.4)

has a unique mild solution




θ(·)

η(·)


 ∈ C ([0, 4l], H1

0 (Ω)× L2(Ω)). In fact, if we

write

f(t, u) =




0

a(t, θ)


 for t ∈ [0, 4l], u =




θ

η


 ∈ X,

g(2l, 4l, φ) =




0

b(θ)


 for φ =




θ

η


 ∈ C([0, 4l], X),

then by (1.4.2) and (1.4.3),

‖f(t, u)− f(t, v)‖ ≤ γ

2M
‖u− v‖, u, v ∈ X, t ∈ [0, 4l], (1.4.5)

‖g(2l, 4l, φ)− g(2l, 4l, ψ)‖ ≤ 2εM−1 max
t∈[0,l]

‖φ(t)− ψ(t)‖, φ, ψ ∈ C([0, 4l], X).

Clearly, λ (in Theorem 1.2.7) = 2ε < 1. Therefore, by using Theorem 1.2.7 we

obtain immediately the desired conclusion for any γ and l > 0. Nevertheless, [61,

Theorem 3.2] is not applicable to the nonlocal Cauchy problem (1.4.1) and (1.4.4)

if γl ≥ 1
2
(1 − ε) > 1

4
. From (1.4.5) it is easy to see that the larger γ is, the larger

the set of admissible f ’s becomes.
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Chapter 2

Nonlocal Cauchy problems for
semilinear evolution equations

2.1 Basic definitions

In this chapter, we will continue our study of the nonlocal Cauchy problems. Our

target now is to give some new results about the existence and uniqueness of mild and

classical solutions of nonlocal Cauchy problems for semilinear evolution equations.

We will introduce a new notion, called (C, ω, Mη)-admissible pair (see Definition

2.1.3), and carry out our investigation in Banach spaces WB,ω
η1,η2

(T ) (see (2.2.1) be-

low) motivated by Jackson [52]. We first, in Section 2, establish an existence and

uniqueness theorem for the continuous solution of a general convolution integral

equation in a Banach space (equation (2.2.2)), and then in Section 3 apply our main

result (Theorem 2.2.1) to yield existence and uniqueness theorems for mild and clas-

sical solutions of nonlocal Cauchy problems for semilinear evolution equations. As

an example, we give a result on the existence and uniqueness of a classical solution

of a semilnear parabolic equation with a boundary condition and a nonlocal initial

condition. The results obtained in this chapter are generalizations of related results

by Jackson [52] (see Remarks 2.2.2 and 2.3.5). Moreover, even for the corresponding

classical abstract Cauchy problems the results here are new.

Let X be a Banach space, and C a bounded and injective linear operator on X.

Definition 2.1.1. (cf., e.g., [25, 30]) A strongly continuous family {V (t)}t≥0 of

bounded linear operators on X is called a C-regularized semigroup on X, if
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(1) V (0) = C, and

(2)

V (t)V (s) = CV (t + s) for all s, t ≥ 0. (2.1.1)

The generator G of {V (t)}t≥0 is defined by

Gx = C−1

[
lim

t→0+

1

t
(V (t)x− Cx)

]

with

D(G) = {x; the limit exists in the range of C}.

Definition 2.1.2. (Compare, e.g., [36, p. 137]) A closed linear operator B in X

is said to have fractional powers if there exists a family of closed linear operators

{Br}r≥0 such that

(1) B0 = I (the identity), B1 = B, and

(2)

BηBδ ⊂ Bη+δ for all η, δ ≥ 0. (2.1.2)

Definition 2.1.3. A pair {B, {V (t)}t≥0}, comprised of a closed linear operator

B and a strongly continuous family {V (t)}t≥0 of bounded linear operators on X, is

called a (C, ω, Mη)-admissible pair (admissible pair, in short) on X if B has fractional

powers, {V (t)}t≥0 is a C-regularized semigroup on X, and there exist constants

ω ∈ R and Mη such that

BηV (t)u = V (t)Bηu, η ≥ 0, t ∈ [0, T ], u ∈ D (Bη) , (2.1.3)

‖BηV (t)u‖ ≤ Mη
e−ωt

tη
‖u‖ , 0 ≤ η ≤ 1, t ∈ (0, T ], u ∈ X, (2.1.4)
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Example 2.1.4. Let {S(t)}t≥0 be an analytic semigroup on X generated by −A

satisfying

‖S(t)‖ ≤ const e−ωt, t ≥ 0, (2.1.5)

for some ω ∈ R. Then {A − ωI, {S(t)}t≥0} is a (I, ω,Mη)-admissible pair on X

for certain constants Mη. In fact, it is clear that A− ωI has fractional powers (the

usual ones, cf., e.g., Balakrishnan [4], Engel and Nagel [36], Henry [49], Pazy [70], van

Casteren [85] or Xiao and Liang [88]). Moreover, it is known that (2.1.3) and (2.1.4)

hold with S(·), A−ωI in place of V (·), B, respectively (cf., e.g., [4, 36, 49, 70, 85, 88]).

Example 2.1.5. Let A be an operator of n-type θ (0 ≤ θ < π
2
, n ∈ N ∪ {0}) (see

deLaubenfels, Yao and Wang [31, Definition 1.3]) and the family {W (t)}t≥0 be the

analytic A−n-regularized semigroup on X generated by −A (see deLaubenfels [30,

Definition 21.3]). Then A has fractional powers {Ar}r≥0 defined as in [31] or in

Straub [80]. The formulas (2.1.3) and (2.1.4) can be verified for some constants ω

and Mη by a combination of the results and the techniques of [30], [70, Sections 2.5

and 2.6], and [80]. Therefore, {A, {W (t)}t≥0} is a (A−n, ω,Mη)-admissible pair on

X.

2.2 An integral equation with (C, ω, Mη)-

admissible pair

Let {B, {V (t)}t≥0} be a (C, ω, Mη)-admissible pair on X, where B has fractional

powers {Br}r≥0. For any two fixed real numbers η1 and η2 for which 0 ≤ η1 ≤ η2,

η2− η1 < 1, and Bη1 has a bounded inverse, we define the space WB,ω
η1,η2

(T ) (see, e.g.,

Jackson [52]) by

WB,ω
η1,η2

(T ) :=
{

u ∈ C ([0, T ],D (Bη1)) ∩ C ((0, T ],D (Bη2)) ;

sup
0≤t≤T

tη2−η1 ‖Bη2u(t)‖ < ∞
} (2.2.1)

equipped with the norm

‖u‖W B,ω
η1,η2

(T ) = sup
0≤t≤T

{
eωt ‖Bη1u(t)‖+ eωttη2−η1 ‖Bη2u(t)‖} .
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It is clear that WB,ω
η1,η2

(T ) is a Banach space.

Consider the nonlinear convolution integral equation

u(t) = V (t)[u0 − h(u)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ], (2.2.2)

where

(i) u0 ∈ C (D (Bη1)) ,

(ii) the X-valued function h on WB,ω
η1,η2

(T ) satisfies

h : WB,ω
η1,η2

(T ) −→ C (D (Bη1)) . (2.2.3)

(iii) the operator f from WB,ω
η1,η2

(T ) to the space of X-valued functions on [0, T ]

satisfies

C−1f : WB,ω
η1,η2

(T ) −→ L∞ (0, T ;D (Bµ)) (2.2.4)

for a constant µ ≥ 0 with

η2 − 1 < µ ≤ η1. (2.2.5)

It is easy to see by V (0) = C and (2.1.3) that

C (D (Bη1)) ⊂ D (Bη1)). (2.2.6)

In the sequel, β(·, ·) denotes the β-function.

In the following we prove existence and uniqueness of continuous solutions to

equation (2.2.2). In inequalities (2.2.8) and (2.2.9) of (b) we impose global Lipschitz

conditions on h and f , whereas in (2.2.12) of (c) we employ an adapted Lipschitz

condition on f and a global one on h.

Theorem 2.2.1. (a) Fix u0 ∈ C (D (Bη1)). For every u ∈ WB,ω
η1,η2

(T ), the function

t 7→ V (t)[u0 − h(u)] +

∫ t

0

V (t− s)f(u)(s)ds ∈ WB,ω
η1,η2

(T ). (2.2.7)
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(b) Let the function h satisfy

‖Bη1h(u)−Bη1h(v)‖ ≤ K‖u− v‖W B,ω
η1,η2

(T ), u, v ∈ WB,ω
η1,η2

(T ) (2.2.8)

for some K > 0, and let the operator f satisfy

‖eωttγBµC−1[f(u)− f(v)]‖L∞(0,T ;X) ≤ L1‖u− v‖W B,ω
η1,η2

(T ),

u, v ∈ WB,ω
η1,η2

(T ),
(2.2.9)

for some constants L1 > 0, γ ≥ 0 with η1 − µ + γ ≤ 1. In addition, assume

that the constants in (2.1.4), (2.2.4), (2.2.8) and (2.2.9) satisfy

κ :=
(
Mη1−µβ(1− η1 + µ, 1− γ) + Mη2−µβ(1− η2 + µ, 1− γ)

)

×L1‖C‖T 1−η1+µ−γ + (M0 + Mη2−η1) K

< 1,

(2.2.10)

Then for any u0 ∈ C (D (Bη1)), equation (2.2.2) has a unique solution u ∈
WB,ω

η1,η2
(T ).

(c) Fix T > 0, L1 ≥ 0. Fix µ ≥ 0 and γ ≥ 0 such that

η2 − µ + γ < 1. (2.2.11)

Then there exists a constant K > 0 such that for all functions h for which

(2.2.8) is valid, and all operators f for which

‖eωttγBµC−1[f(u)(t)− f(v)(t)]‖

≤ L1 sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖+ eωssη2−η1 ‖Bη2(u(s)− v(s))‖

]
,

u, v ∈ WB,ω
η1,η2

(T ), t ∈ [0, T ],

(2.2.12)

is true, equation (2.2.2) has a unique solution u ∈ WB,ω
η1,η2

(T ) for any u0 ∈
C (D (Bη1)).

Remark 2.2.2. (1) Theorem 2.2.1 generalizes Lemma 3.1 and Theorem 3.2 in [52]

for the case where R0 = ∞, because of the following.
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(i) The (C, ω,Mη)-admissible pair {B, {V (t)}t≥0} on X is more general than the

corresponding ones considered in [12]. One of the reasons is that the regular-

ized operator semigroup is a generalization of the classical strongly continuous

operator semigroup (see, e.g., Davies and Pang [25] and deLaubenfels [30]).

Therefore, equation (2.2.2) is more general than equation (2.3.1) in [52]. In

order to facilitate the comparison with [52], we mention that the number 1
2

in

[52, (2.2) – (2.4), (2.7) – (2.9), (3.3)] can be replaced by 1 without having any

influence on the sharpness of the related conditions and the conclusions. It

looks as if Ms1/2 in [52, (3.3)] should be M0.

(ii) Assertion (c) of Theorem 2.2.1 reveals that many nonlinear convolution inte-

gral equations in Banach spaces of the form (2.2.2), for which

(Mη1−µβ(1− η1 + µ, 1− γ) + Mη2−µβ(1− η2 + µ, 1− γ))

×L1‖C‖T 1−η1+µ−γ

≥ 1,

hence to which the present-day results could not be applied, possess continuous

solutions.

(2) Even in the special case where h = 0, the result is new.

(3) Similar comments apply to Theorems 2.2.4,2.3.1 and 2.3.2 below.

Proof of Theorem 2.2.1. We fix u0 ∈ C (D (Bη1)).

(a). From (2.1.1) – (2.1.4), (2.2.4), (2.2.5) and the strong continuity of {V (t)}t≥0

on [0, T ], it follows that for all 0 ≤ t ≤ r ≤ T , u ∈ WB,ω
η1,η2

(T ),

∥∥Bη2−µ[V (r − s)− V (t− s)]Bµf(u)(s)
∥∥

=
∥∥Bη2−µV (t− s)[V (r − t)− C]BµC−1f(u)(s)

∥∥

≤ Mη2−µ
e−ω(t−s)

(t− s)η2−µ

∥∥[V (r − t)− C]BµC−1f(u)(s)
∥∥

−→ 0, as r → t for every s ∈ [0, t),
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and

‖Bη2−µ[V (r − s)− V (t− s)]Bµf(u)(s)‖

≤ 2M0Mη2−µ
e|ω|T

(t− s)η2−µ
‖C−1Bµf(u)‖L∞(0,T ;X), for a.e. s ∈ [0, t].

(2.2.13)

Since 0 ≤ η2 − µ < 1 the right-hand side of (2.2.13) is integrable on [0, t]. This

observation, together with Lebesgue’s dominated convergence theorem implies that

for every 0 ≤ t ≤ r ≤ T , u ∈ WB,ω
η1,η2

(T ),

∥∥∥∥Bη2

∫ r

0

V (r − s)f(u)(s)ds−Bη2

∫ t

0

V (t− s)f(u)(s)ds

∥∥∥∥

≤
∥∥∥∥Bη2

∫ t

0

[V (r − s)− V (t− s)]f(u)(s)ds

∥∥∥∥ +

∥∥∥∥Bη2

∫ r

t

V (r − s)f(u)(s)ds

∥∥∥∥

≤
∥∥∥∥Bη2−µ

∫ t

0

[V (r − s)− V (t− s)]Bµf(u)(s)ds

∥∥∥∥

+

∥∥∥∥Bη2−µ

∫ r

t

V (r − s)Bµf(u)(s)ds

∥∥∥∥

≤
∫ t

0

∥∥Bη2−µ[V (r − s)− V (t− s)]Bµf(u)(s)
∥∥ ds

+Mη2−µ

∫ r

t

e|ω|T

(r − s)η2−µ
‖Bµf(u)‖L∞(0,T ;X)ds

−→ 0 as r → t.

Hence the function t 7→ Bη2
∫ t

0
V (t − s)f(u)(s)ds is continuous from the right in

[0, T ). A similar reasoning shows that it is also continuous from the left in (0, T ].

Therefore the function

t 7→ Bη2

∫ t

0

V (t− s)f(u)(s)ds ∈ C ([0, T ], X) . (2.2.14)

Likewise, we obtain the function

t 7→ Bη1

∫ t

0

V (t− s)f(u)(s)ds ∈ C ([0, T ], X) . (2.2.15)
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As a consequence of (2.2.14) and (2.2.15), the function

t 7→
∫ t

0

V (t− s)f(u)(s)ds ∈ WB,ω
η1,η2

(T ). (2.2.16)

In view of (2.2.6) and the strong continuity of {V (t)}t≥0 on [0, T ] we see that for all

u ∈ WB,ω
η1,η2

(T ), the function

t 7→ V (t)[u0 − h(u)] ∈ C ([0, T ],D (Bη1)) , (2.2.17)

and by (2.1.4),

sup
0≤t≤T

{
tη2−η1 ‖Bη2V (t)[u0 − h(u)]‖} ≤ Mη2−η1e

|ω|T ‖Bη1 [u0 − h(u)]‖ .

Moreover, by (2.1.1) – (2.1.4), (2.2.3) and the strong continuity of {V (t)}t≥0 on

[0, T ] we deduce that for each u ∈ WB,ω
η1,η2

(T ), and 0 < t ≤ r ≤ T ,

∥∥∥Bη2V (r)[u0 − h(u)]−Bη2V (t)[u0 − h(u)]
∥∥∥

=
∥∥Bη2−η1V (t)(V (r − t)− C)Bη1C−1[u0 − h(u)]

∥∥

≤ Mη2−η1

e|ω|T

tη2−η1

∥∥[V (r − t)− C]Bη1C−1[u0 − h(u)]
∥∥

−→ 0 as r → t.

Thus the function t 7→ Bη2V (t)[u0 − h(u)] is right continuous in (0, T ). A similar

reasoning shows that it is left continuous in (0, T ]. So the function

t 7→ V (t)[u0 − h(u)] ∈ C ((0, T ],D (Bη2)) .

This together with (2.2.17) gives that the function

t 7→ V (t)[u0 − h(u)] ∈ WB,ω
η1,η2

(T ). (2.2.18)

According to (2.2.16) and (2.2.18), we infer (2.2.7).

(b). We define an operator F on WB,ω
η1,η2

(T ) by

(Fu)(t) = V (t)[u0 − h(u)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ], u ∈ WB,ω
η1,η2

(T ).

(2.2.19)
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Assertion (a) of Theorem 2.2.2 shows

F (
WB,ω

η1,η2
(T )

) ⊂ WB,ω
η1,η2

(T ).

By (2.1.2) – (2.1.4), (2.2.6), (2.2.8) and (2.2.9), we deduce that for any t ∈ [0, T ],

u, v ∈ WB,ω
η1,η2

(T ),

eωt ‖Bη1 [(Fu)(t)− (Fv)(t)]‖+ eωttη2−η1 ‖Bη2 [(Fu)(t)− (Fv)(t)]‖

≤ eωt {‖V (t)Bη1 [h(u)− h(v)]‖+ tη2−η1 ‖Bη2−η1V (t)Bη1 [h(u)− h(v)]‖}

+eωt

∥∥∥∥
∫ t

0

Bη1−µV (t− s)Bµ [f(u)(s)− f(v)(s)] ds

∥∥∥∥

+eωttη2−η1

∥∥∥∥
∫ t

0

Bη2−µV (t− s)Bµ [f(u)(s)− f(v)(s)] ds

∥∥∥∥
≤ M0 ‖Bη1 [h(u)− h(v)]‖+ Mη2−η1 ‖Bη1 [h(y)− h(z)]‖

+eωtMη1−µ

∫ t

0

e−ω(t−s)

(t− s)η1−µ
‖Bµ [f(u)(s)− f(v)(s)]‖ ds

+eωttη2−η1Mη2−µ

∫ t

0

e−ω(t−s)

(t− s)η2−µ
‖Bµ [f(u)(s)− f(v)(s)]‖ ds

≤ (M0 + Mη2−η1) K‖u− v‖W B,ω
η1,η2

(T )

+L1‖C‖
[
Mη1−µ

∫ t

0

1

(t− s)η1−µsγ
ds + tη2−η1Mη2−µ

∫ t

0

1

(t− s)η2−µsγ
ds

]

×‖u− v‖W B,ω
η1,η2

(T )

≤ κ‖u− v‖W B,ω
η1,η2

(T ),

(2.2.20)

and hence

‖Fu−Fv‖W B,ω
η1,η2

(T ) ≤ κ‖u− v‖W B,ω
η1,η2

(T ).

Here κ is the constant as defined in (2.2.10). Therefore, F is a contractive mapping.

Thus, F has a unique fixed point u ∈ WB,ω
η1,η2

(T ) by the Banach contraction mapping

theorem. Clearly, this u(t) is the desired continuous solution of (2.2.2).

(c). Fix operator f for which (2.2.12) is valid. For each z ∈ WB,ω
η1,η2

(T ) and each

function h on WB,ω
η1,η2

(T ) satisfying (2.2.3), we define an operator Fz,h on WB,ω
η1,η2

(T )

by

(Fz,hu)(t) = V (t)[u0 − h(z)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ]. (2.2.21)
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Assertion (a) of Theorem 2.2.2 indicates

Fz,h

(
WB,ω

η1,η2
(T )

) ⊂ WB,ω
η1,η2

(T ), z ∈ WB,ω
η1,η2

(T ),

for every function h defined on WB,ω
η1,η2

(T ) satisfying (2.2.3). In the same way as

we got (2.2.20), by (2.1.2) – (2.1.4), (2.2.6) and (2.2.12) we now obtain, for any

t ∈ [0, T ], u, v ∈ WB,ω
η1,η2

(T ),

eωt ‖Bη1 [(Fz,hu)(t)− (Fz,hv)(t)]‖+ eωttη2−η1 ‖Bη2 [(Fz,hu)(t)− (Fz,hv)(t)]‖

≤ L1‖C‖
[
Mη1−µ

∫ t

0

1

(t− s)η1−µsγ
ds + tη2−η1Mη2−µ

∫ t

0

1

(t− s)η2−µsγ
ds

]

× sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖+ eωssη2−η1 ‖Bη2(u(s)− v(s))‖

]
.

(2.2.22)

By (2.2.11) we can choose a constant ε such that

η2 − µ + γ < ε < 1.

This means

1

ε
(η1 − µ) < 1,

1

ε
γ < 1,

1

ε
(η2 − µ) < 1, ε− η1 + µ− γ > 0. (2.2.23)

By virtue of (2.2.22), (2.2.23) and the Hölder inequality, we deduce that for any

t ∈ [0, T ],

eωt ‖Bη1((Fz,hu)(t)− (Fz,hv)(t))‖+ eωttη2−η1 ‖Bη2((Fz,hu)(t)− (Fz,hv)(t))‖

≤ L1‖C‖
[
Mη1−µ

(∫ t

0

(
1

(t− s)η1−µsγ

) 1
ε

ds

)ε (∫ t

0

ds

)1−ε

+tη2−η1Mη2−µ

(∫ t

0

(
1

(t− s)η2−µsγ

) 1
ε

ds

)ε (∫ t

0

ds

)1−ε
]

× sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖+ eωssη2−η1 ‖Bη2(u(s)− v(s))‖

]
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≤ L1‖C‖t1−ε

[
Mη1−µt

ε−η1+µ−γβε

(
1− 1

ε
(η1 − µ), 1− 1

ε
γ

)

+tη2−η1Mη2−µt
ε−(η2−µ+γ)βε

(
1− 1

ε
(η2 − µ), 1− 1

ε
γ

) ]

× sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖+ eωssη2−η1 ‖Bη2(u(s)− v(s))‖

]

≤ L1‖C‖t1−εT ε−η1+µ−γ

[
Mη1−µβ

ε

(
1− 1

ε
(η1 − µ), 1− 1

ε
γ

)

+Mη2−µβ
ε

(
1− 1

ε
(η2 − µ), 1− 1

ε
γ

)]

× sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖+ eωssη2−η1 ‖Bη2(u(s)− v(s))‖

]
.

(2.2.24)

Therefore, for any t ∈ [0, T ], we obtain

eωt
∥∥Bη1((F2

z,hu)(t)− (F2
z,hv)(t))

∥∥ + eωttη2−η1
∥∥Bη2((F2

z,hu)(t)− (F2
z,hv)(t))

∥∥

≤ L1‖C‖
∫ t

0

[
Mη1−µ

1

(t− s)η1−µsγ
+ tη2−η1Mη2−µ

1

(t− s)η2−µsγ

]

× sup
0≤r≤s

[
eωr ‖Bη1((Fz,h)u(r)− (Fz,hv)(r))‖

+eωrrη2−η1 ‖Bη2((Fz,h)u(r)− (Fz,hv)(r))‖
]
ds

≤ (L1‖C‖)2

[
Mη1−µ

∫ t

0

s1−ε

(t− s)η1−µsγ
ds + tη2−η1Mη2−µ

∫ t

0

s1−ε

(t− s)η2−µsγ
ds

]

×T ε−η1+µ−γ

[
Mη1−µβ

ε

(
1− 1

ε
(η1 − µ), 1− 1

ε
γ

)

+Mη2−µβ
ε

(
1− 1

ε
(η2 − µ), 1− 1

ε
γ

) ]

× sup
0≤r≤t

[
eωr ‖Bη1(u(r)− v(r))‖+ eωrrη2−η1 ‖Bη2(u(r)− v(r))‖

]

≤ Q(L1‖C‖)2

[
Mη1−µ

(∫ t

0

(
1

(t− s)η1−µsγ

) 1
ε

ds

)ε (∫ t

0

(
s1−ε

) 1
1−ε ds

)1−ε

+tη2−η1Mη2−µ

(∫ t

0

(
1

(t− s)η2−µsγ

) 1
ε

ds

)ε (∫ t

0

(
s1−ε

) 1
1−ε ds

)1−ε
]
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× sup
0≤r≤t

[
eωr ‖Bη1(u(r)− v(r))‖+ eωrrη2−η1 ‖Bη2(u(r)− v(r))‖

]

≤ (QL1‖C‖)2

(
t2

2!

)1−ε

sup
0≤r≤t

[
eωr ‖Bη1(u(r)− v(r))‖

+eωrrη2−η1 ‖Bη2(u(r)− v(r))‖
]
,

where

Q := T ε−η1+µ−γ

[
Mη1−µβ

ε

(
1− 1

ε
(η1 − µ), 1− 1

ε
γ

)

+Mη2−µβ
ε

(
1− 1

ε
(η2 − µ), 1− 1

ε
γ

) ]
.

Using induction we infer that for any t ∈ [0, T ], n ∈ N ,

∥∥Bη1((Fn
z,hu)(t)− (Fn

z,hv)(t))
∥∥ + tη2−η1

∥∥Bη2((Fn
z,hu)(t)− (Fn

z,hv)(t))
∥∥

≤ (QL1‖C‖)n

(
tn

n!

)1−ε

sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖

+eωssη2−η1 ‖Bη2(u(s)− v(s))‖
]

(2.2.25)

Let n be a positive integer so large that

(QL1‖C‖)n

(
T n

n!

)1−ε

< 1.

Then (2.2.25) shows that Fn
z,h is a contractive mappings from WB,ω

η1,η2
(T ) to WB,ω

η1,η2
(T ).

By the well known extension of the Banach contraction principle Fz,h has a unique

fixed point uz,h ∈ WB,ω
η1,η2

(T ).

Accordingly, we see that for every z ∈ WB,ω
η1,η2

(T ) and function h on WB,ω
η1,η2

(T )

satisfying (2.2.3), there exists a unique uz,h ∈ WB,ω
η1,η2

(T ) such that

uz,h(t) = V (t)[u0 − h(z)] +

∫ t

0

V (t− s)f (uz,h) (s)ds, t ∈ [0, T ]. (2.2.26)

For each function h on WB,ω
η1,η2

(T ) satisfying (2.2.3), define an operator Gh on

WB,ω
η1,η2

(T ) by

Ghz = uz,h, for every z ∈ WB,ω
η1,η2

(T ).
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Clearly, Gh is well defined and

Gh

(
WB,ω

η1,η2
(T )

) ⊂ WB,ω
η1,η2

(T ).

A combination of the definition of Gh, (2.2.26), (2.1.1) – (2.1.4), (2.2.3), (2.2.6),

(2.2.11) and (2.2.12) shows that for all y, z ∈ WB,ω
η1,η2

(T ) and t ∈ [0, T ],

eωt ‖Bη1 [(Ghy)(t)− (Ghz)(t)]‖+ eωtt(η2−η1) ‖Bη2 [(Ghy)(t)− (Ghz)(t)]‖

≤ eωt

{
‖Bη1V (t) [h(y)− h(z)]‖

+

∥∥∥∥
∫ t

0

Bη1−µV (t− s)Bµ [f(Ghy)(s)− f(Ghz)(s)] ds

∥∥∥∥

+

∥∥∥∥∥tη2−η1Bη2−η1V (t)Bη1

[
h(y)− h(z)

]∥∥∥∥∥

+tη2−η1

∥∥∥∥
∫ t

0

Bη2−µV (t− s)Bµ [f(Ghy)(s)− f(Ghz)(s)] ds

∥∥∥∥
}

≤ M0 ‖Bη1 [h(y)− h(z)]‖+ Mη2−η1 ‖Bη1 [h(y)− h(z)]‖

+L1‖C‖
∫ t

0

[
Mη1−µ

1

(t− s)η1−µsγ
+ tη2−η1Mη2−µ

1

(t− s)η2−µsγ

]

× sup
0≤r≤s

{
eωr

[
‖Bη1 [(Ghy)(r)− (Ghz)(r)]‖

+r(η2−η1) ‖Bη2 [(Ghy)(r)− (Ghz)(r)]‖
]}

ds

≤ [M0 + Mη2−η1 ] ‖Bη1 [h(y)− h(z)]‖

+L1‖C‖ [Mη1−µ + Mη2−µ] T η2−η1

∫ t

0

1

(t− s)η2−µsγ

× sup
0≤r≤s

{
eωr

[
‖Bη1 [(Ghy)(r)− (Ghz)(r)]‖

+r(η2−η1) ‖Bη2 [(Ghy)(r)− (Ghz)(r)]‖
]}

ds.

Thus, thanks to [49, p. 189, Lemma 7.1.2], we obtain by (2.2.11) that there exists

a positive constant M independent of u0 such that

‖(Ghy)− (Ghz)‖W B,ω
η1,η2

(T ) ≤ M ‖Bη1 [h(y)− h(z)]‖ , y, z ∈ WB,ω
η1,η2

(T ).
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We conclude that if h satisfies (2.2.8) for K = 1
2M

, then

‖(Ghy)− (Ghz)‖W B,ω
η1,η2

(T ) ≤
1

2
‖y − z‖W B,ω

η1,η2
(T ), y, z ∈ WB,ω

η1,η2
(T ). (2.2.27)

This means that the operator Gh is contractive operator on WB,ω
η1,η2

(T ). Therefore by

the Banach contraction principle, Gh has a unique fixed point zh ∈ WB,ω
η1,η2

(T ), and

this zh(t) is precisely the desired continuous solution of (2.2.2).

The proof is then complete.

2

The following result, which is an extension of [52, Theorem 3.2], is about the case

where the function h and the operator f only satisfy local conditions in u. Write

U(R0) =
{

u ∈ WB,ω
η1,η2

(T ); ‖u‖W B,ω
η1,η2

(T ) ≤ R0

}
, R0 > 0.

Theorem 2.2.3. Let the function h satisfy

h : U(R0) −→ C (D (Bη1)) , (2.2.28)

h(0) = 0, and suppose

‖Bη1h(u)−Bη1h(v)‖ ≤ K‖u− v‖W B,ω
η1,η2

(T ), u, v ∈ U(R0), (2.2.29)

for some constant K > 0. Let the operator f satisfy

C−1f : U(R0) −→ L∞ (0, T ;D (Bµ)) (2.2.30)

for some constant µ ≥ 0 with η2 − 1 < µ ≤ η1.

(a) Assume that

∥∥eωttγBµC−1[f(u)− f(v)]
∥∥

L∞(0,T ;X)
≤ L1‖u− v‖W B,ω

η1,η2
(T ), u, v ∈ U(R0),

(2.2.31)

for constants L1 > 0, γ ≥ 0 with η1 − µ + γ ≤ 1. Let the constants in (2.1.4),

(2.2.29), (2.2.30) and (2.2.31) satisfy (2.2.10). Then for any u0 ∈ C (D (Bη1))

for which

‖V (t)u0 +

∫ t

0

V (t− s)f(0)ds‖W B,ω
η1,η2

(T ) ≤ (1− κ)R0, (2.2.32)

where κ is as in (2.2.10), equation (2.2.2) has a unique solution u ∈ U(R0).
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(b) Assume that

‖eωttγBµC−1[f(u)(t)− f(v)(t)]‖

≤ L1 sup
0≤s≤t

[
eωs ‖Bη1(u(s)− v(s))‖+ eωssη2−η1 ‖Bη2(u(s)− v(s))‖

]
,

u, v ∈ U(R0), t ∈ [0, T ],

(2.2.33)

and

‖V (·)u0‖W B,ω
η1,η2

(T ) + (M0 + Mη2−η1)Ch

+

(
Mη1−µ

1− η1 + µ
+

Mη2−µ

1− η2 + µ

)
T 1−η1+µCf ≤ R0,

(2.2.34)

where

Cf := sup
u∈U(R0)

‖Bµf(u)‖L∞(0,T ;X), Ch := sup
u∈U(R0)

‖Bη1h(u)‖.

Then if the constant K in (2.2.29) is small enough, equation (2.2.2) admits a

unique solution u ∈ U(R0).

Proof. (a) Fix u0 ∈ C (D (Bη1)) such that (2.2.32) holds. For any z ∈ U(R0),

define (as in (2.2.19)) an operator F on U(R0) by

(Fu)(t) = V (t)[u0 − h(u)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ].

Then by the same arguments as in the proof of Theorem 2.2.2 (b), we see that F is

a contractive mapping. Also, by (2.2.32) we have for any u ∈ U(R0),

‖F(u)‖W B,ω
η1,η2

(T ) ≤ ‖F(u)−F(0)‖W B,ω
η1,η2

(T ) + ‖F(0)‖W B,ω
η1,η2

(T )

≤ R0,

that is,

F(U(R0)) ⊂ U(R0).

The Banach contraction principle yields the desired conclusion.

(b) For every z ∈ U(R0), define an operator Fz on z ∈ U(R0) by

(Fzu)(t) = V (t)[u0 − h(z)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ].
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Then by (2.1.2) – (2.1.4), (2.2.6), (2.2.28) – (2.2.29), and (2.2.34), we obtain for any

u ∈ U(R0),

eωt ‖Bη1(Fzu)(t)‖+ eωttη2−η1 ‖Bη2(Fzu)(t)‖

≤ ‖V (t)u0‖W B,ω
η1,η2

(T ) + eωt ‖V (t)Bη1h(z)‖+ eωttη2−η1 ‖Bη2−η1V (t)Bη1h(z)‖

+eωt

∫ t

0

∥∥Bη1−µV (t− s)Bµf(u)(s)
∥∥ ds

+eωttη2−η1

∫ t

0

∥∥Bη2−µV (t− s)Bµf(u)(s)
∥∥ ds

≤ ‖V (·)u0‖W B,ω
η1,η2

(T ) + (M0 + Mη2−η1) ‖Bη1h(z)‖

+Mη1−µ

∫ t

0

1

(t− s)η1−µ
‖Bµf(u)(s)‖ ds

+Mη2−µt
η2−η1

∫ t

0

1

(t− s)η2−µ
‖Bµf(u)(s)‖ ds

≤ ‖V (·)u0‖W B,ω
η1,η2

(T ) + (M0 + Mη2−η1)Ch

+

(
Mη1−µ

1− η1 + µ
+

Mη2−µ

1− η2 + µ

)
T 1−η1+µCf

≤ R0,

that is,

Fz(U(R0)) ⊂ U(R0), z ∈ U(R0).

The same reasons as in the proof of Theorem 2.2.2 (c) give the desired conclusion.

This completes the proof.

2

2.3 Nonlocal Cauchy problems for evolution

equations

In this section we apply Theorem 2.2.1 to give some existence and uniqueness the-

orems for mild and classical solutions of nonlocal Cauchy problems for semilinear

evolution equations.
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Let {B, {V (t)}t≥0} be a (C, ω, Mη)-admissible pair on X, let B have fractional

powers {Br}r≥0 and WB,ω
η1,η2

(T ) be the space defined in Section 2. Suppose that G is

the generator of {V (t)}t≥0, and 0 < t1 < t2 < · · · < tp ≤ T (p ∈ N).

By virtue of Theorem 2.2.1, we have the following results. The first two is about

the mild solutions and the third one is about classical solutions.

Corollary 2.3.1. Assume that the function g satisfies

g : [0, T ]p ×WB,ω
η1,η2

(T ) −→ C (D (Bη1)) (2.3.1)

and

‖Bη1g(t1, · · · , tp, u)−Bη1g(t1, · · · , tp, v)‖

≤ K‖u− v‖W B,ω
η1,η2

(T ), u, v ∈ WB,ω
η1,η2

(T )
(2.3.2)

for some constant K > 0, and the operator f satisfies (2.2.4), (2.2.5) and (2.2.9).

Let the constants in (2.1.4), (2.2.4), (2.2.9) and (2.3.2) satisfy (2.2.10). Then for any

u0 ∈ C (D (Bη1)), the nonlocal Cauchy problem for semilinear evolution equation





u′(t) = Gu(t) + Cf(u)(t), 0 < t ≤ T,

u(0) + Cg(t1, . . . , tp, u) = Cu0,
(2.3.3)

has a unique mild solution u ∈ WB,ω
η1,η2

(T ), i.e., there exists a unique function u ∈
WB,ω

η1,η2
(T ) which satisfies

u(t) = V (t)[u0 − g(t1, . . . , tp, u)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ]. (2.3.4)

Corollary 2.3.2. Fix T > 0, L1 ≥ 0. Fix µ ≥ 0 and γ ≥ 0 such that (2.2.5) and

(2.2.11) hold. Then there exists a constant K > 0 such that for all functions g satis-

fying (2.3.1) and (2.3.2), and for all operators f satisfying (2.2.4) and (2.2.12), the

problem (2.3.3) has a unique mild solution u ∈ WB,ω
η1,η2

(T ) for any u0 ∈ C (D (Bη1)).
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Theorem 2.3.3. Assume that {V (t)}t≥0 is an analytic semigroup on X. Let ω0 < ω

and B = −(G + ω0I). Fix T > 0, L1 ≥ 0. Fix µ ≥ 0 and γ ≥ 0 such that

η2 − 1 < µ < η1 and η2 − µ− γ < 1. Suppose that the operator f from WB,ω
η1,η2

(T ) to

L∞ (0, T ;D (Bµ)) satisfies (2.2.12) with C = I, and suppose in addition that f(u)(·)
is locally Hölder continuous on (0, T ] whenever u ∈ WB,ω

η1,η2
(T ) and Bη2u(·) is locally

Hölder continuous on (0, T ]. Then there exists a constant K > 0 such that for

any u0 ∈ D (Bη1) and any function g from [0, T ]p ×WB,ω
η1,η2

(T ) to D (Bη1) satisfying

(2.3.2), the nonlocal Cauchy problem for semilinear evolution equation





u′(t) = Gu(t) + f(u)(t), 0 < t ≤ T,

u(0) + g(t1, . . . , tp, u) = u0,
(2.3.5)

has a unique classical solution u ∈ WB,ω
η1,η2

(T ), i.e., there exists a unique function

u ∈ WB,ω
η1,η2

(T ) which is continuously differentiable on (0, T ] and satisfies (2.3.5).

Proof. As in Example 2.1.4, {B, {V (t)}t≥0} is a (I, ω, Mη)-admissible pair on X

for certain constants Mη, associated with the usual fractional powers {Br}r≥0. By

Theorem 2.3.2 with C = I, there exist a constant K such that for any u0 ∈ D (Bη1)

and any function g satisfying (2.3.2), equation (2.3.5) has a unique mild solution

u ∈ WB,ω
η1,η2

(T ).

Fix u0 ∈ D (Bη1) and g with (2.3.2). We will show that the mild solution u of

(2.3.5) is a classical solution. To this end, we observe

u(t) = V (t)[u0 − g(t1, . . . , tp, u)] +

∫ t

0

V (t− s)f(u)(s)ds, t ∈ [0, T ]. (2.3.6)

In view of Pazy [70, p. 113, Corollary 4.3.3], it suffices to prove f(u)(·) is locally

Hölder continuous on (0, T ].

From (2.3.6) we have for 0 < t < t + σ ≤ T ,

‖Bη2(u(t + σ)− u(t))‖

≤ ‖Bη2−η1 (V (t + σ)− V (t))‖ ‖Bη1 [u0 − g(t1, . . . , tp, u)]‖

+

∫ t

0

∥∥Bη2−µ (V (t− s + σ)− V (t− s))
∥∥ ‖Bµf(u)(s)‖ ds

+

∫ t+σ

t

∥∥Bη2−µV (t− s + σ)
∥∥ ‖Bµf(u)(s)‖ ds.

(2.3.7)
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Note that for 0 ≤ s < t < t + σ ≤ T ,

V (t− s + σ)− V (t− s) =

∫ σ

0

GV (t− s + τ)dτ

= −
∫ σ

0

ω0V (t− s + τ)dτ −
(∫ σ

0

B
1
2 V (τ)dτ

)
B

1
2 V (t− s),

and so

‖Bη2−η1 (V (t + σ)− V (t))‖ ≤ |ω0|
∫ σ

0

∥∥Bη2−η1V (t + τ)
∥∥ dτ

+

(∫ σ

0

∥∥∥B
η2−η1+1

2 V (τ)
∥∥∥ dτ

) ∥∥∥B
η2−η1+1

2 V (t− s)
∥∥∥ ,

‖Bη2−µ (V (t− s + σ)− V (t− s))‖ ≤ |ω0|
∫ σ

0

∥∥Bη2−µV (t− s + τ)
∥∥ dτ

+

(∫ σ

0

∥∥∥B
η2−µ+1

2 V (τ)
∥∥∥ dτ

) ∥∥∥B
η2−µ+1

2 V (t− s)
∥∥∥ .

Hence, we see by (2.3.7) and (2.1.4) that Bη2u(·) is locally Hölder continuous on

(0, T ]. So is f(u)(·) by the assumption on f . This ends the proof.

2

We now discuss an example.

Example 2.3.4. Suppose that Ω is a bounded open subset of Rn with a smooth

boundary Γ, and A is a strongly elliptic operator in X = L2(Ω), defined by





Au =
n∑

i,j=1

∂u

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑
i=1

bi(x)
∂u

∂xi

+ c(x)u,

D(A) = H2(Ω) ∩H1
0 (Ω),

where aij(x), bj(x), c(x) are sufficiently smooth real-valued functions of x in Ω,

H2(Ω) and H1
0 (Ω) are Sobolev spaces (see, e.g. Lions and Magenes [64], Adams [2],

or Pazy [70] for more information on the Sobolev spaces Hm
0 (Ω) (m ∈ N)). It is

known that −A is the generator of an analytic semigroup {S(t)}t≥0 on L2(Ω). Take

ω ∈ R such that

‖S(t)‖ ≤ const e−ωt, t ≥ 0.
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Let A be as above. Let ω0 < ω and B = A − ω0I. Assume that the continuous

function F : Ω× [0, T ]×R×Rn → R satisfies

tγ|F (x, t, ξ, y)− F (x, t, ξ′, y′)| ≤ l (|ξ − ξ′|+ |y − y′|) , (2.3.8)

for some constants l > 0 and 0 ≤ γ < 1
2
. Then there exists a constant K > 0 such

that for all functions g : [0, T ]×WB,ω
1
2
, 1
2

(T ) → X satisfying

‖g(t1, . . . , tp, u)− g(t1, . . . , tp, v)‖ ≤ K‖u− v‖W B,ω
1
2 , 12

(T ), u, v ∈ WB,ω
1
2
, 1
2

(T ),

the semilinear nonlocal Cauchy problem





ut + Au = F (x, t, u,∇u), on Ω× (0, T )

u
∣∣
Γ

= 0,

u(x, 0) + g(t1, . . . , tp, u) = u0(x),

has a unique classical solution u ∈ WB,ω
1
2
, 1
2

(T ) for any u0 ∈ H1
0 (Ω).

Proof. First we note that

D
(
B

1
2

)
= H1

0 (Ω).

Define the operator f from WB,ω
1
2
, 1
2

(T ) to L∞(0, T ; X) by

f(v)(t) := F (x, t, v,∇v), v ∈ WB,ω
1
2
, 1
2

(T ), t ∈ [0, T ].

From (2.3.8) we deduce that

‖tγ [f(u)(t)− f(v)(t)] ‖ ≤ l0

∥∥∥B
1
2 (u− v)

∥∥∥ , t ∈ [0, T ], u, v ∈ WB,ω
1
2
, 1
2

(T ) (2.3.9)

for some constant l0 > 0. Thus applying Theorem 2.3.3 with

η1 = η2 =
1

2
, µ = 0

gives rise to the conclusion. The proof is complete then.

2
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Remark 2.3.5. Example 2.3.4 shows that a number of nonlocal problems, for which

previous results are not applicable, do have unique classical solutions. For instance,

when the constants T or l, for a nonlocal Cauchy problem as in Example 2.3.4, is

large enough such that

M 1
2
β(

1

2
, 1− γ)l0T

1
2
−γ ≥ 1

where l0 is the constant in (2.3.9), then the condition (2.3.3) in [52] fails to be

satisfied (in the case of Example 2.3.4, the associated constants in [52] read s1 =

s2 = 1, δ = 1, k = K, L1 = l0) no matter how small is the constant K.

48



Chapter 3

Solvability of the Cauchy problem

for abstract functional equations

with infinite delay

3.1 Introduction

Equations with delay (i.e., with some of the past states of the systems) are often

more realistic to describe natural phenomena compared with those without delay,

and they have been studied for many years (see, e.g., [3, 7, 8, 10–13, 22, 23, 32, 35, 36,

44–48, 51, 53–60, 63, 71, 74–79, 83, 84, 86, 87] and references therein). In the present

chapter, we will consider mainly the solvability of the Cauchy problem for four

classes of abstract functional equations with infinite delay.

We will address first, in Section 2, the Cauchy problem for a functional integral

equation with infinite delay in a Banach space X,





u(t) = g(t) +

∫ t

σ

f(t, s, u(s), us)ds (σ ≤ t ≤ T ),

uσ = φ,

(3.1.1)

where 0 ≤ σ < T , g(t) ∈ C([σ, T ], X), ut(θ) = u(t + θ) (θ ∈ R−), f ∈
C([σ, T ] × [σ, T ] ×X × P , X) is a given function and φ ∈ P (cf. the definitions of

notations below). The solvability of (3.1.1) is investigated under hypotheses based

on noncompactness measures and Kamke functions or the Lipschitz condition. The
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uniqueness and continuous dependence (on initial data) of the solutions are also

discussed.

Second, in Sections 3 – 5 , we consider the following Cauchy problems for the

semilinear functional differential equations, nonautonomus functional equations and

functional integrodifferential equations with infinite delay in Banach spaces




u′(t) = Au(t) + f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,
(3.1.2)





u′(t) = A(t)u(t) + f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,
(3.1.3)

and



u′(t) = A

[
u(t) +

∫ t

0

F (t− s)u(s)ds

]
+ f(t, u(t), ut), 0 ≤ t ≤ T,

u0 = φ,

(3.1.4)

where T > 0, A and {A(t)}t≥0 are given linear operators in X, {F (t)}0≤t≤T ⊂ L(X),

f ∈ C([0, T ]×X × P , X), and φ ∈ P . By applying the given results on (3.1.1), we

obtain some new and basic solvability and wellposedness results for (3.1.2) – (3.1.4)

We undertake our study in a quite general framework of admissible phase space,

which satisfies hypotheses weaker than those required in the previous literature and

includes the space Lp((−∞, 0], X). Therefore, our results are extensions of many

known results on delay equations for infinite delay as well as for finite delay given

in, e.g., [3, 8, 13, 22, 23, 35, 36, 45–48, 51, 53, 54, 58–60, 63, 71, 74–79, 84, 86, 87]).

We would like to mention that the investigation of functional differential equations

with infinite delay in an abstract admissible phase space was initiated by Hale and

Kato [45] and Schumacher [77] (for X = Rn), and that Banks, Burns, Delfour,

Herdman and Mitter were among the first who studied equations with finite delay

in the state space X×Lp([−r, 0], X) (cf. [7, 10, 32]). The method of using admissible

phase spaces has proved to be significant in dealing with infinite delay problems,

because in this way one can treat a large class of functional differential equations

with infinite delay at the same time and obtain general results. On the other hand,

as shown, e.g., in [7, 10–12, 32, 83], the product space X×Lp([−r, 0], X) is well suited

for the investigation of certain problems involving control systems governed by delay

equations.
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Definition 3.1.1. A Banach space (P , ‖ · ‖P), consisting of functions from R− into

X, is called an admissible phase space if P has the following properties.

(H1) For any t0 ∈ R and a > 0, if x : (−∞, t0 + a] → X is continuous on [t0, t0 + a]

and xt0 ∈ P , then xt ∈ P and xt is continuous in t ∈ [t0, t0 + a].

(H2) There exist a continuous K(t) > 0 and a locally bounded function M(t) ≥ 0

of t ≥ 0 such that

‖xt‖P ≤ K(t− t0) max
s∈[t0,t]

‖x(s)‖+ M(t− t0)‖xt0‖P

for t ∈ [t0, t0 + a] and x as in (H1).

The following are three typical examples of admissible phase spaces.

Example 3.1.2. Let 1 ≤ p < ∞. Then P = Lp(R−, X), consisting of X-valued

p-Bochner integrable functions on R−, is an admissible phase space.

Example 3.1.3. Let r > 0, 1 ≤ p < ∞ and q : (−∞,−r] → R+ be a nondecreasing

function. Let

P :=

{
φ(θ); φ : R− → X strongly measurable,

continuous on [−r, 0], and
∫ −r

−∞ q(θ)‖φ(θ)‖pdθ < ∞
}

,

with norm

‖φ‖P =

{∫ −r

−∞
q(θ)‖φ(θ)‖pdθ

} 1
p

+ max
−r≤θ≤0

‖φ(θ)‖.

Then P is an admissible phase space satisfying ‖φ(0)‖ ≤ K‖φ‖P (for all φ ∈ P) for

a constant K.

Example 3.1.4. Let q : R− → R+ be a nondecreasing continuous function such

that

q(0) = 1, q(−∞) = ∞, supθ∈[−∞,−t]

q(t + θ)

q(t)
is locally bounded for t ≥ 0.
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Let

P :=

{
φ(θ); φ : R− → X continuous and lim

θ→−∞
‖φ(θ)‖
q(θ)

= 0

}
,

with norm

‖φ‖P = sup
−∞≤θ≤0

‖φ(θ)‖
q(θ)

.

Then P is an admissible phase space satisfying ‖φ(0)‖ ≤ K‖φ‖P (for all φ ∈ P) for

a constant K.

For the convenience of the reader we recall the following definitions and lemma.

Definition 3.1.5. (cf., e.g., [6, 26–28, 50]) Let B be a bounded subset of a Banach

space X. The Kuratowski measure of noncompactness of B is defined as

α(B) := inf{γ > 0; B admits a finite cover by sets of diameter ≤ γ}.

Lemma 3.1.6. (cf., e.g., [6, 26–28, 50]) Let X be a Banach space with dim X = ∞,

B and G bounded sets of X. Then

(1) α(B) = 0 if and only if B is relatively compact.

(2) α(λB) = |λ|α(B) for every λ ∈ R.

(3) α(B + G) ≤ α(B) + α(G).

(4) α(B ∪G) ≤ max{α(B), α(G)}.

(5) B ⊂ G implies α(B) ≤ α(G).

(6) α is continuous with respect to the Hausdorff distance %H defined by

%H(B, G) = max

{
sup

B
d(x,G), sup

G
d(x,B)

}
.

Definition 3.1.7. (compare, e.g., [6, p. 70]) Let a, b ∈ R, c and c ∈ R+. A real

nonnegative function K(t, µ, ν) on (a, b)× [0, c)× [0, c) is called a Kamke function if
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(i) it is Lebesgue measurable in t for every (µ, ν) ∈ [0, c) × [0, c) and continuous

in (µ, ν) for a.e. t ∈ (a, b), and K(·, 0, 0) = 0;

(ii) for all 0 ≤ µ ≤ µ ≤ c, 0 ≤ ν ≤ ν ≤ c and a.e. t ∈ (a, b),

K(t, µ, ν) ≤ K(t, µ, ν) ≤ k(µ,ν)(t), (3.1.5)

where k(µ,ν)(t) is a locally integrable function on (a, b) for each µ, ν.

3.2 Functional integral equations with infinite de-

lay

In this section we are concerned with the solvability of the Cauchy problem for the

functional integral equations with infinite delay (3.1.1). We first give a general local

solvability result for (3.1.1).

Theorem 3.2.1. Let 0 ≤ σ < T and P be an admissible phase space. Let f ∈
C([σ, T ]× [σ, T ]×X ×P , X) and f(·, s, x, φ) be uniformly continuous in (s, x, φ) ∈
[σ, T ]×X ×P. Suppose that there is a Kamke function K(·, ·, ·) on [σ, T ]× [0, a]×
[0, maxt∈[0,T−σ] K(t)a] for some a > 0 such that

(i) for every bounded set B ⊂ X and Ω ⊂ P,

α(f([σ, T ]× {s} ×B × Ω)) ≤ K(s, α(B), α(Ω)), a.e. s ∈ [σ, T ]; (3.2.1)

(ii) $(t) ≡ 0 is the unique nonnegative absolutely continuous solution to the dif-

ferential equation

$′(t) = 2K(t,$(t), K(t− σ)$(t)), a.e. t ∈ (σ, T ]

satisfying

lim
t↑σ

$(t)

t− σ
= $(σ) = 0,

where K(·) is the function as in (H2).
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Then for every φ ∈ P and g(t) ∈ C([σ, T ], X) with g(σ) = φ(0), there exists a real

number τ(σ, φ, g, f) such that (3.1.1) has a solution u(t) on (−∞, τ(σ, φ, g, f)]. In

this case, we also say that (3.1.1) has a solution u(t) on [σ, τ(σ, φ, g, f)].

Proof. For each τ > σ, b > 0, φ ∈ P , we introduce the following notation, which

will be used throughout this chapter,

P [σ,τ ] :=

{
u : (−∞, τ ] → X; u

∣∣∣
[σ,τ ]

∈ C([σ, τ ], X) and uσ ∈ P
}

,

and

P [σ,τ ]
φ,g (b) :=

{
u ∈ P [σ,τ ]; max

t∈[σ,τ ]
‖u(t)− g(t)‖ ≤ b, uσ = φ

}
.

Then the space P [σ,τ ] is a Banach space under the norm

‖u‖P [σ,τ ] := max
t∈[σ,τ ]

‖u(t)‖+ ‖uσ‖P ,

and the set P [σ,τ ]
φ,g (b) is nonempty, closed and convex.

Since f ∈ C([σ, T ]× [σ, T ]×X ×P , X), we see that for every φ ∈ P there exists

a real number δ(φ, f) > 0 such that

‖f(t, s, x, ψ)‖ ≤ ‖f(t, s, φ(0), φ)‖+ 1, for all t, s ∈ [σ, T ], (3.2.2)

if

‖x− φ(0)‖ ≤ δ(φ, f), ‖ψ − φ‖P ≤ δ(φ, f). (3.2.3)

Moreover, it follows from g(t) ∈ C([σ, T ], X) that there exists a real number τ(σ, g) ∈
[σ, T ] such that

‖g(t)− g(σ)‖ ≤ δ(φ, f)

2

[
max

t∈[σ,T−σ]
K(t) + 1

] if t ∈ [σ, τ(σ, g)]. (3.2.4)

For every φ ∈ P with φ(0) = g(σ), we let

u0(t) :=





g(t), t ∈ [σ, τ(σ, g)],

φ(t− σ), t ∈ (−∞, σ].
(3.2.5)

Then by (3.2.4),

‖u0(t)− φ(0)‖ ≤ δ(φ, f), if t ∈ [σ, τ(σ, g)], (3.2.6)
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and by (H1), there exists a real number τ(σ, φ, g) ≤ τ(σ, g) such that

‖u0
t − φ‖P = ‖u0

t − u0
σ‖P ≤

1

2
δ(φ, f), if t ∈ [σ, τ(σ, φ, g)]. (3.2.7)

For any b > 0, set

τ(σ, φ, g, f, b)

:= min

{
b

2

[
max

t,s∈[σ,T ]
(‖f(t, s, φ(0), φ)‖+ 1)

] + σ,

δ(φ, f)

2

[
max

t,s∈[σ,T ]
(‖f(t, s, φ(0), φ)‖+ 1)

] [
max

t∈[σ,T−σ]
K(t) + 1

] + σ, τ(σ, φ, g)

}

(3.2.8)

and for each n ∈ N , define

un(t) :=





g(t) +

∫ t

σ

f(t, s, un−1(s), un−1
s )ds, t ∈ [σ, τ(σ, φ, g, f, b)],

φ(t− σ), t ∈ (−∞, σ].

(3.2.9)

Then

un
σ = φ, n ∈ N. (3.2.10)

Moreover, by (3.2.9), (3.2.6), (3.2.7), (3.2.2) (with (3.2.3)) and (3.2.8),

‖u1(t)− g(t)‖ ≤ b, t ∈ [σ, τ(σ, φ, g, f, b)];

and by (3.2.9), (3.2.6), (3.2.7), (3.2.2) (with (3.2.3)) and (3.2.4),

‖u1(t)− φ(0)‖ = ‖u1(t)− g(σ)‖

≤ ‖g(t)− g(σ)‖+

∫ t

σ

‖f(t, s, u0(s), u0
s)‖ds

≤ 1

2
δ(φ, f) +

1

2
δ(φ, f)

= δ(φ, f), for t ∈ [σ, τ(σ, φ, g, f, b)];

(3.2.11)

and by (3.2.10), (H2), (3.2.9), (3.2.5), (3.2.8), (3.2.6), (3.2.7) and (3.2.2) (with
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(3.2.3)),

‖u1
t − φ‖P

= ‖u1
t − u0

σ‖P

≤ ‖u1
t − u0

t‖P + ‖u0
t − u0

σ‖P

≤ max
t∈[σ,T−σ]

K(t)[τ(σ, φ, g, f, b)− σ] max
t,s∈[σ,τ(σ,φ,g,f,b)]

‖f(t, s, u0(s), u0
s)‖

+‖u0
t − u0

σ‖P

≤ 1

2
δ(φ, f) +

1

2
δ(φ, f)

= δ(φ, f), for t ∈ [σ, τ(σ, φ, g, f, b)].

(3.2.12)

By induction and noting that

‖u2
t − φ‖P

≤ ‖u2
t − u0

t‖P + ‖u0
t − u0

σ‖P

≤ max
t∈[σ,T−σ]

K(t)[τ(σ, φ, g, f, b)− σ] max
t,s∈[σ,τ(σ,φ,g,f,b)]

‖f(t, s, u1(s), u1
s)‖

+‖u0
t − u0

σ‖P for t ∈ [σ, τ(σ, φ, g, f, b)],

(3.2.13)

it will now be verified that

‖un(t)− g(t)‖ ≤ b, t ∈ [σ, τ(σ, φ, g, f, b)], n ∈ N, (3.2.14)

‖un(t)− φ(0)‖ ≤ δ(φ, f), for t ∈ [σ, τ(σ, φ, g, f, b)], n ∈ N, (3.2.15)

‖un
t − φ‖P ≤ δ(φ, f), for t ∈ [σ, τ(σ, φ, g, f, b)], n ∈ N. (3.2.16)

(3.2.10) and (3.2.14) imply that

un(·) ∈ P [σ,τ(σ,φ,g,f,b)]
φ,g (b), n ∈ N. (3.2.17)

(3.2.15), (3.2.16) and (3.2.2) (with (3.2.3)) imply that

max
t,s∈[σ,τ(σ,φ,g,f,b)]

‖f(t, s, un(s), un
s )‖ ≤ max

t,s∈[σ,T ]
‖f(t, s, φ(0), φ)‖+ 1, n ∈ N.

(3.2.18)
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Furthermore, by (3.2.9) and (3.2.18)

max
z∈[σ,t]

∥∥un(z)− u0(z)
∥∥

= max
z∈[σ,t]

‖un(z)− g(z)‖

≤ (t− σ) max
t,s∈[σ,T ]

(‖f(t, s, φ(0), φ)‖+ 1), t ∈ [σ, τ(σ, φ, g, f, b)], n ∈ N,

(3.2.19)

and for every n ∈ N , σ ≤ w ≤ z ≤ t ≤ τ(σ, φ, g, f, b),∥∥∥∥
∫ z

σ

f(z, s, un(s), un
s )ds−

∫ w

σ

f(w, s, un(s), un
s )ds

∥∥∥∥

≤
∫ τ

σ

‖f(z, s, un(s), un
s )− f(w, s, un(s), un

s )‖ds

+

[
max

t,s∈[σ,T ]
‖f(t, s, φ(0), φ)‖+ 1

]
(z − w).

(3.2.20)

Since f(·, s, x, φ) is uniformly continuous with respect to (s, x, φ) ∈ [σ, T ]×X ×P ,

it follows from (3.2.20) that for each t ∈ [σ, τ(σ, φ, g, f, b)],

the set





∫ ·

σ

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[σ,t]





n∈N

is equicontinuous.

Therefore by virtue of [27, Proposition 7.3, p. 43] we have

α








∫ ·

σ

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[σ,t]





n∈N




≤ sup
z∈[σ,t]

α

({∫ z

σ

f(z, s, un(s), un
s )ds

}

n∈N

)
, t ∈ [σ, τ(σ, φ, g, f, b)].

Thus, thanks to Heinz’s theorem ([50, Theorem 2.1]) (see also [28]) we obtain

α

({
un(·)

∣∣∣
[σ,t]

}

n∈N

)

≤ α

({
g(·)

∣∣∣
[σ,t]

})
+ sup

z∈[σ,t]

α

({∫ z

σ

f(z, s, un−1(s), un−1
s )ds

}

n∈N\{1}

)

≤ 2

∫ t

σ

sup
z∈[σ,t]

α
({f(z, s, un(s), un

s )}n∈N

)
ds

≤ 2

∫ t

σ

sup
z∈[σ,τ ]

α
({f(z, s, un(s), un

s )}n∈N

)
ds, t ∈ [σ, τ(σ, φ, g, f, b)].

(3.2.21)
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Let b = a
2

(the constant given in the hypotheses) and τ(σ, φ, g, f) := τ
(
σ, φ, g, f, a

2

)
.

Then by (3.2.19) and (H2), we have

max
z∈[σ,s]

∥∥un
z − u0

z

∥∥
P ≤ (s− σ) max

t,s∈[σ,T ]
(‖f(t, s, φ(0), φ)‖+ 1) max

t∈[σ,T−σ]
K(t)a,

s ∈ [σ, τ(σ, φ, g, f)], n ∈ N.

(3.2.22)

By (3.2.19) and (3.2.22), we see that for every ε > 0, there is a 0 < η ≤ τ(σ, φ, g, f)−
σ such that for all s ∈ [σ, σ + η],

∥∥f(t, s, un(s), un
s )− f(t, s, u0(s), u0

s)
∥∥ <

ε

2
, t ∈ [σ, T ], n ∈ N.

Consequently,

α
(
{f(t, s, un(s), un

s )}t∈[σ,T ], s∈[σ,σ+δ], n∈N

)

≤ α
(
{f(t, s, u0(s), u0

s)}t∈[σ,T ], s∈[σ,σ+δ]

)

+α
(
{f(t, s, un(s), un

s )− f(t, s, u0(s), u0
s)}t∈[σ,T ], s∈[σ,σ+δ], n∈N

)

≤ ε

2
.

Thus, if we define

ς(t) := 2

∫ t

σ

sup
z∈[σ,τ ]

α
({f(z, s, un(s), un

s )}n∈N

)
ds, t ∈ [σ, τ(σ, φ, g, f)],

then the nonnegative function ς(t) is absolutely continuous on [σ, τ(σ, φ, g, f)] and

ς(σ) = 0. Moreover, (2.9) implies that

lim
t↑σ

ς(t)

t− σ
= 0.
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A combination of (3.1.5), (3.2.1), (3.2.9), (H2) and (3.2.21) gives that

ς(t) ≤ 2

∫ t

σ

K (
s, α

({un(s)}n∈N

)
, α

({un
s}n∈N

))
ds

≤ 2

∫ t

σ

K
(

s, α

({∫ s

σ

f(s, ν, un−1(ν), un−1
ν )dν

}

n∈N\{1}

)
,

K(s− σ)α

({
un(·)

∣∣∣
[σ,s]

}

n∈N

) )
ds

≤ 2

∫ t

σ

K (s, ς(s), K(s− σ)ς(s)) ds, t ∈ (σ, T ].

This, together with hypothesis (ii) and the comparison theorem, yields that ς(t) ≡ 0.

Hence, by (3.2.21) we have

α

({
un(·)

∣∣∣
[σ,τ(σ,φ,g,f)]

}

n∈N

)
= 0.

So the set

{
un(·)

∣∣∣
[σ,τ(σ,φ,g,f)]

}

n∈N

is relatively compact in C([σ, τ(σ, φ, g, f)], X).

Therefore, by noting (3.2.17), there exist a sequence {ni} ⊂ N and a function

u(t) ∈ P [σ,τ(σ,φ,g,f)]
φ,g (b)

such that

lim
i→∞

max
t∈[σ,τ ]

‖uni(t)− u(t)‖ = 0.

Moreover, (H2) implies that

lim
i→∞

max
t∈[σ,τ ]

‖uni
t − ut‖P = 0.

Thus thanks to Lebesgue’s dominated convergence theorem, we obtain u(t) is a

solution of (3.1.1) on [σ, τ(σ, φ, g, f)].

2

The following theorem concerns the situation when f is compact.
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Theorem 3.2.2. Let 0 ≤ σ < T and P be an admissible phase space. Let f ∈
C([σ, T ] × [σ, T ] × X × P , X) being compact. Then for every φ ∈ P and g(t) ∈
C([σ, T ], X) with g(σ) = φ(0), there exists a real number τ(σ, φ, g, f) such that

(3.1.1) has a solution u(t) on [σ, τ(σ, φ, g, f)].

Proof. Let φ ∈ P and g(t) ∈ C([σ, T ], X) with g(σ) = φ(0). From the proof

of Theorem 3.2.1, we know that there is a sequence {un(·)}n∈N such that (3.2.15),

(3.2.16), (3.2.17) and (3.2.18) hold for any given b > 0. Fix b > 0 and write

τ(σ, φ, g, f) := τ(σ, φ, g, f, b). The compactness of f and [σ, τ(σ, φ, g, f)] implies

that there exists a subsequence {nk} ⊂ N and a continuous function h(t, s) of (t, s)

such that

f (t, s, unk(s), unk
s ) → h(t, s), as k →∞

uniformly for t ∈ [σ, τ(σ, φ, g, f)] and s ∈ [σ, τ(σ, φ, g, f)]. So for any ε > 0, there is

a k ∈ N such that for all k ≥ k,

‖f (t, s, unk(s), unk
s )− h(t, s)‖ ≤ ε, for all t, s ∈ [σ, τ(σ, φ, g, f)].

Therefore, for every k ≥ k, σ ≤ w ≤ z ≤ t ≤ τ(σ, φ, g, f),

∥∥∥∥
∫ z

σ

f(z, s, unk(s), unk
s )ds−

∫ w

σ

f(w, s, unk(s), unk
s )ds

∥∥∥∥

≤
∫ z

σ

‖f(z, s, unk(s), unk
s )− h(z, s)‖ds

+

∫ z

σ

‖f(w, s, unk(s), unk
s )− h(w, s)‖ds

+

∫ z

σ

‖h(z, s)− h(w, s)‖ds +

(
max

t,s∈[σ,T ]
‖f(t, s, φ(0), φ)‖+ 1

)
(z − w)

≤ (2ε + ‖h(z, s)− h(w, s)‖)T +

(
max

t,s∈[σ,T ]
‖f(t, s, φ(0), φ)‖+ 1

)
(z − w),

where s ∈ [σ, τ(σ, φ, g, f)]. This implies that for each t ∈ [σ, τ(σ, φ, g, f)],

the set





∫ ·

σ

f (·, s, unk(s), unk
s ) ds

∣∣∣∣∣
[σ,t]





k∈N,k≥k

is equicontinuous.
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Hence

α








∫ ·

σ

f (·, s, unk(s), unk
s ) ds

∣∣∣∣∣
[σ,t]





k∈N,k≥k




≤ sup
z∈[σ,t]

α

({∫ z

σ

f (z, s, unk(s), unk
s ) ds

}

k∈N,k≥k

)
, t ∈ [σ, τ(σ, φ, g, f)],

and then

α

({
unk(·)

∣∣∣
[σ,t]

}

k∈N,k≥k

)

≤ 2

∫ t

σ

sup
z∈[σ,τ ]

α
(
{f (z, s, unk(s), unk

s )}k∈N,k≥k

)
ds, t ∈ [σ, τ(σ, φ, g, f)].

This means there is a sequence nki
⊂ N and a function u(t) ∈ P [σ,τ(σ,φ,g,f)]

φ,g (b) such

that

lim
i→∞

max
t∈[σ,τ ]

‖uni(t)− u(t)‖ = 0.

Consequently, u(t) is a solution of (3.1.1) on [σ, τ(σ, φ, g, f)].

2

When f has a local Lipschitz continuity in third and forth component, we have

the following local existence, uniqueness and continuous dependence theorem for

(3.1.1).

Theorem 3.2.3. Let 0 ≤ σ < T and P be an admissible phase space. Let f ∈
C([σ, T ]× [σ, T ]×X ×P , X) and for every r > 0, there exist a constant H(r) such

that for each t, s ∈ [σ, T ],

‖f(t, s, x, φ)− f(t, s, y, ψ)‖ ≤ H(r) (‖x− y‖+ ‖φ− ψ‖P) ,

for all x, y ∈ X, φ, ψ ∈ P with max {‖x‖, ‖y‖, ‖φ‖P , ‖ψ‖P} ≤ r.

(3.2.23)

Then for every φ ∈ P and g(t) ∈ C([σ, T ], X) with g(σ) = φ(0), there exists a real

number τ(σ, φ, g, f) such that (3.1.1) has a unique solution u(t) on [σ, τ(σ, φ, g, f)].
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Moreover, define

Tsup(σ, φ, g, f) := sup{τ > σ; (3.1.1) has a unique solution u(·) on [σ, τ)},
(3.2.24)

and let u(t) (resp. û(t)) be the solution of (3.1.1) on [σ, Tsup(σ, φ, g, f)] (resp. [σ,

Tsup(σ, φ̂, ĝ, f)]) with respect to φ ∈ P (resp. φ̂ ∈ P) and g(t) (resp. ĝ(t)). Then

there is a constant L̃(u, û, τ0) such that

‖u− û‖P [σ,τ0] ≤ L̃(u, û, τ0)

(
max

t∈[σ,τ0]
‖g(t)− ĝ(t)‖+ ‖φ− φ̂‖P

)

for each

τ0 < min{Tsup(σ, φ, g, f), Tsup(σ, φ̂, ĝ, f)}.
Proof. As in the proof of Theorem 3.2.1, we can define, for every b > 0, φ ∈ P and

g(t) ∈ C([σ, T ], X) with g(σ) = φ(0), a real number τ(σ, φ, g, f, b) by (3.2.8) and a

sequence {un(·)}n∈N by (3.2.9) such that (3.2.15), (3.2.16), and (3.2.17) hold. Fix

b > 0 and write τ(σ, φ, g, f) := τ(σ, φ, g, f, b). By (3.2.23) and (H2) we have

‖un(t)− un−1(t)‖

≤ (t− σ)H (max{‖φ(0)‖+ δ(φ, f), ‖φ‖P + δ(φ, f)})
(
‖un−1(t)− un−2(t)‖+ K(t− σ) max

s∈[0,t]
‖un−1(s)− un−2(s)‖

)
,

t ∈ [σ, τ(σ, φ, g, f)], n ∈ N \ {1},
that is,

max
s∈[0,t]

‖un(s)− un−1(s)‖

≤ (t− σ)H (max{‖φ(0)‖+ δ(φ, f), ‖φ‖P + δ(φ, f)})
(

1 + max
t∈[0,T−σ]

K(t)

)
max
s∈[0,t]

‖un−1(s)− un−2(s)‖,

t ∈ [σ, τ(σ, φ, g, f)], n ∈ N \ {1}.
Then by using (H2) and a standard argument based on the generalized Banach con-

tractive mapping principle (by replacing τ(σ, φ, g, f) with a smaller one if necessary),

we verify the existence of a solution of (3.1.1).

62



The uniqueness of the solution of (3.1.1) is implied by (H2), (3.2.23) and Gronwall-

Bellman’s inequality. So Tsup(σ, φ, g, f) exists. Let u(t) (resp. û(t)) be the solution

of (3.1.1) on [σ, Tsup(σ, φ, g, f)] (resp. [σ, Tsup(σ, φ̂, ĝ, f)]) with respect to φ ∈ P
(resp. φ̂ ∈ P) and g(t) (resp. ĝ(t)), and fix

τ0 < min{Tsup(σ, φ, g, f), Tsup(σ, φ̂, ĝ, f)}.

Then by (3.1.1), (3.2.23) and (H2) we have

‖u(t)− û(t)‖

≤ ‖g(t)− ĝ(t)‖+ H

(
max

t∈[σ,τ0]
{‖u(t)‖, ‖û(t)‖, ‖ut‖, ‖ût‖}

)

∫ t

0

[(
1 + max

t∈[0,T−σ]
K(t)

)
sup

η∈[0,s]

‖u(η)− û(η)‖+ sup
t∈[0,T−σ]

M(t)‖φ− φ̂‖P
]

ds.

Hence,

max
η∈[σ,t]

‖u(η)− û(η)‖

≤ max
t∈[σ,τ0]

‖g(t)− ĝ(t)‖

+TH

(
max

t∈[σ,τ0]
{‖u(t)‖, ‖û(t)‖, ‖ut‖, ‖ût‖}

)
sup

t∈[0,T−σ]

M(t)‖φ− φ̂‖P

+H

(
max

t∈[σ,τ0]
{‖u(t)‖, ‖û(t)‖, ‖ut‖, ‖ût‖}

)

×
(

1 + max
t∈[0,T−σ]

K(t)

) ∫ t

0

max
η∈[0,s]

‖u(η)− û(η)‖ds.

By the Gronwall-Bellman’s inequality, there is a constant L̃(u, û, τ0) such that

‖u(η)− û(η)‖P [0,T ] ≤ L̃(u, û, τ0)

(
max

t∈[σ,τ0]
‖g(t)− ĝ(t)‖+ ‖φ− φ̂‖P

)
.

2

Now we turn to the global existence of solutions for (3.1.1). One will find that

further assumptions must be made since the global existence of the solutions for
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(3.1.1) fails quite often, more precisely the solutions of (3.1.1) having finite maximal

intervals of existence blow up (in some sense).

Theorem 3.2.4. Let σ ≥ 0 and P be an admissible phase space. Suppose the

continuous function f : [σ,∞)× [σ,∞)×X ×P → X satisfies one of the following

conditions:

(1) the hypotheses of Theorem 3.2.1 holds for every T > 0, and for every T , r > 0,

there exists a constant H(T, r) such that

‖f(t, s, x(s), xs)‖ ≤ H(T, r), for all t, s ∈ [σ, T ], x(·) ∈ P [σ,T ]

with max
s∈[σ,T ]

{‖x(s)‖, ‖xs‖P} ≤ r;

(3.2.25)

(2) f
∣∣∣
[σ,T ]×[σ,T ]×X×P

is compact for every T > 0;

(3) for every T > 0 and r > 0, there exists a constant H(T, r) such that

‖f(t, s, x(s), xs)− f(t, s, y(s), ys)‖ ≤ H(T, r) (‖x(s)− y(s)‖+ ‖xs − ys‖P) ,

for all t, s ∈ [σ, T ], x(·), y(·) ∈ P [σ,T ]

with max
s∈[σ,T ]

{‖x(s)‖, ‖y(s)‖, ‖xs‖P , ‖ys‖P} ≤ r.

(3.2.26)

Then for every φ ∈ P and g(t) ∈ C([σ, T ], X) with g(σ) = φ(0),

limt↑Tsup(σ,φ,g,f)‖u(t)‖ := lim sup
t↑Tsup(σ,φ,g,f)

‖u(t)‖ = ∞, (3.2.27)

lim
t↑Tsup(σ,φ,g,f)

(‖u(t)‖+ ‖ut‖P) = ∞, (3.2.28)

provided that Tsup(σ, φ, g, f) < ∞, where Tsup(σ, φ, g, f) is the number as in (3.2.24).

Proof. The proof of case (1).

Given φ ∈ P and g(t) ∈ C([σ,∞), X) with g(σ) = φ(0). The existence of

Tsup(σ, φ, g, f) is ensured by Theorem 3.2.1. Let u(t) be the solution of (3.1.1)

with respect to σ, φ, g, and f on [σ, Tsup(σ, φ, g, f)), and suppose that

Tsup(σ, φ, g, f) < ∞ and limt↑Tsup(σ,φ,g,f)‖u(t)‖ < ∞.
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Then there exists a constant b1 such that

sup
t∈[0,Tsup(σ,φ,g,f)+1−σ]

{K(t), M(t)}

max
t∈[σ,Tsup(σ,φ,g,f)+1]

‖g(t)‖

sup
t∈[σ,Tsup(σ,φ,g,f))

‖u(t)‖





≤ b1. (3.2.29)

For each b > 0, t ∈ (σ, Tsup(σ, φ, g, f)) and η ∈ (0, 1), we define

P [t,t+η]
φ,g,u (b) =

{
x : (−∞, t + η] → X; x

∣∣∣
[t,t+η]

∈ C([t, t + η], X),

max
τ∈[t,t+η]

‖x(τ)− g(τ) + g(t)− u(t)‖ ≤ b, x
∣∣∣
(−∞,t]

= u
∣∣∣
(−∞,t]

}
.

Then P [t,t+η]
φ,g,u (b) is a closed convex subset of P [σ,t+η]. From (H2) and (3.2.29) it

follows that

max
τ∈[σ,t+η]

{‖x(τ)‖, ‖xτ‖} ≤ b2, x ∈ P [t,t+η]
φ,g,u (b),

where b2 = max{b + 3b1, b1(b + 3b1 + ‖φ‖P)}.
Let b = a

2
(the constant given in the hypotheses) and for every x ∈ P [t,t+η]

φ,g,u (b),

define

(Fx)(s) =





g(s)− g(t) + u(t) +

∫ s

t

f(s, µ, x(µ), xµ)dµ, t ≤ s ≤ t + η,

u(s), s ∈ (−∞, t].

Then Fx ∈ P [t,t+η] by (H1). Moreover, by (3.2.25) we have for each x ∈ P [t,t+η]
φ,g,u (b),

max
s∈[t,t+η]

‖(Fx) (s)− g(s) + g(t)− u(t)‖ ≤ H(Tsup(σ, φ, g, f) + 1, b2)(τ − σ). (3.2.30)

Hence there exists a real number

τ̃(σ, φ, g, f, b) ∈ (0, 1) being independent of t ∈ [σ, Tsup(σ, φ, g, f)), (3.2.31)

such that

max
s∈[t,t+eτ(σ,φ,g,f,b)]

‖(Fx) (s)− g(s) + g(t)− u(t)‖ ≤ b, x ∈ P [t,t+eτ(σ,φ,g,f,b)]
φ,g,u (b).

(3.2.32)
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That means that

Fx ∈ P [t,t+eτ(σ,φ,g,f,b)]
φ,g,u (b). (3.2.33)

Let

x0(s) =





g(s)− g(t) + u(t), s ∈ [t, t + τ̃(σ, φ, g, f, b)],

u(s− t), s ∈ (−∞, t].

Clearly x0(·) ∈ P [t,t+eτ(σ,φ,g,f,b)]
φ,g,u (b). Define

xn(s) := Fxn−1(s), s ∈ (−∞, t + τ̃(σ, φ, g, f, b)], n ∈ N. (3.2.34)

Then xn(·) ∈ P [t,t+eτ(σ,φ,g,f,b)]
φ,g,u (b) for all n ∈ N , and (3.2.30) says that

max
z∈[t,s]

‖xn(z)− x0(z)‖

= max
z∈[σ,t]

‖xn(z)− g(z) + g(t)− u(t)‖

≤ H(Tsup(σ, φ, g, f) + 1, b2)τ̃(σ, φ, g, f, b), t ∈ [t, t + τ̃(σ, φ, g, f, b)], n ∈ N.

(3.2.35)

Observing that for every t ≤ w ≤ z ≤ s ≤ t + τ̃(σ, φ, g, f, b),

∥∥∥∥
∫ z

t

f(z, µ, xn(µ), xn
µ)dµ−

∫ w

t

f(w, µ, xn(µ), xn
µ)dµ

∥∥∥∥

≤
∫ τ

t

‖f(z, µ, xn(µ), xn
µ)− f(w, µ, xn(µ), xn

µ)‖dµ

+H(Tsup(σ, φ, g, f) + 1, b2)(z − w),

and using the similar arguments as in the proof of Theorem 3.2.1, we deduce that

(3.1.1) has a solution x(·) in P [t,t+eτ(σ,φ,g,f,b)]
φ,g,u (b). (3.2.31) allows us to take a t ∈

[σ, Tsup(σ, φ, g, f)) such that

0 < Tsup(σ, φ, g, f)− t < τ̃(σ, φ, g, f, b),

that is,

t + τ̃(σ, φ, g, f, b) > Tsup(σ, φ, g, f).

This is in contradiction with the definition of Tsup(σ, φ, g, f). As a consequence we

get (3.2.27).

66



Now let us show (3.2.28). If this is false then there is a sequence {tn}n∈N ⊂
[σ, Tsup(σ, φ, g, f)) and a constant b3 such that

lim
n→∞

tn = Tsup(σ, φ, g, f), (3.2.36)

‖u(tn)‖+ ‖utn‖ ≤ b3, n ∈ N. (3.2.37)

From (3.2.27) and the fact that ‖u(·)‖ is a continuous function, it follows that there

exists a sequence {ηn}n∈N such that

lim
n→∞

ηn = 0, ‖u(tn + ηn)‖ = b3 + 2 max
t∈[σ,Tsup(σ,φ,g,f)]

‖g(t)‖+ 1,

and

max
t∈[tn,tn+ηn]

‖u(t)‖ ≤ ‖u(tn + ηn)‖, (3.2.38)

by noting that if necessary, we can replace the sequence {tn}n∈N with another one

satisfying (3.2.36) and (3.2.37).

On the other hand, it is clear that

‖u(tn + ηn)‖

≤ ‖u(tn)‖+ ‖g(tn + ηn)− g(tn)‖+

∫ tn+ηn

tn

‖f(tn + ηn, z, u(z), uz)‖dz

≤ b3 + 2 max
t∈[σ,Tsup(σ,φ,g,f)]

‖g(t)‖+ ηnH(Tsup(σ, φ, g, f), b4),

where

b4 =

(
b3 + 2 max

t∈[σ,Tsup(σ,φ,g,f)]
‖g(t)‖+ 1

)(
max

t∈[σ,T−σ]
K(t) + 1

)
+ sup

t∈[σ,T−σ]

M(t)b3.

Letting n →∞ yields a contraction with (3.2.38). This implies that (3.2.28) is true.

The proof of case (2).

In this case, there is certainly a constant H(Tsup(σ, φ, g, f), b2) such that

maxs∈[t,t+η] ‖(Fx) (s)− g(s) + g(t)− u(t)‖

≤ H(Tsup(σ, φ, g, f), b2)(τ − σ), x ∈ P [t,t+η]
φ,g,u (b).

A similar argument in the proof of (1), combined with the techniques in the proof

of Theorem 3.2.2, leads to the conclusion .
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The proof of case (3).

A combination of the condition (3.2.26) with the proof of case (1) and the proof

of Theorem 3.2.3 gives the desired conclusion.

2

The following result presents a sufficient condition for the existence of the global

solution of (3.1.1).

Theorem 3.2.5. Let σ ≥ 0, P and f ∈ C([σ,∞) × X × P , X) be as in Theorem

3.2.3 and

‖f(t, s, x, φ)‖ ≤ h0(t)[h1(s)‖x‖+ h2(s)‖φ‖P + h3(s)], t, s ∈ [σ,∞), x ∈ X, φ ∈ P ,

(3.2.39)

where h0 ≥ 0 is a locally bounded function on [σ,∞) and hi ≥ 0 (i = 1, 2, 3) are

locally integrable functions on [σ,∞). Then

Tsup(σ, φ, g, f) = ∞
for any φ ∈ P and g(t) ∈ C([σ,∞), X) with g(σ) = φ(0).

Proof. Take σ ≥ 0, φ ∈ P , and g(t) ∈ C([σ,∞), X) with g(σ) = φ(0). Let u(t)

be the corresponding solution of (3.1.1) on [σ, Tsup(σ, φ, g, f)). Then by (3.2.26) and

(H2) we have for any t ∈ [σ, Tsup(σ, φ, g, f)),

‖u(t)‖ ≤ ‖g(t)‖+

∫ t

σ

h0(t)
[
h1(s)‖u(s)‖+ h2(s)K(s− σ) max

τ∈[σ,s]
‖u(τ)‖

+h2(s)M(s− σ)‖φ‖P + h3(s)
]
ds.

Therefore for each t ∈ [σ, Tsup(σ, φ, g, f)),

max
τ∈[σ,t]

‖u(τ)‖

≤ max
τ∈[σ,Tsup(σ,φ,g,f)]

‖g(τ)‖+ sup
τ∈[σ,Tsup(σ,φ,g,f)]

h0(τ)

[
sup

τ∈[0,Tsup(σ,φ,g,f)−σ]

‖M(τ)‖‖φ‖P
∫ Tsup(σ,φ,g,f)

σ

h2(s)ds +

∫ Tsup(σ,φ,g,f)

σ

h3(s)ds

]

+ sup
t∈[0,Tsup(σ,φ,g,f)]

h0(τ)

∫ t

σ

[h1(s) + h2(s)K(s− σ)] max
τ∈[σ,s]

‖u(τ)‖ds.
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Thus by Gronwall-Bellman’s inequality, for any t ∈ [σ, Tsup(σ, φ, g, f)),

max
τ∈[σ,t]

‖u(τ)‖ ≤ const,

where the constant is independent of t. This, together with Theorem 3.2.4, shows

that Tsup(σ, φ, g, f) = ∞.

2

The next result shows that the solution of (3.1.1) exists uniquely on the whole

interval [σ, T ] and depends continuously on g and φ in the normal sense, provided

that f has the uniform Lipschitz continuity.

Theorem 3.2.6. Let 0 ≤ σ < T , f ∈ C([σ, T ] × [σ, T ] ×X × P , X) satisfying the

“Uniform Lipschitz Condition”, i.e., there exists a constant Lf > 0 such that for

each t, s ∈ [σ, T ],

‖f(t, s, x, φ)− f(t, s, y, ψ)‖ ≤ Lf (‖x− y‖+ ‖φ− ψ‖P) , for x, y ∈ X, φ, ψ ∈ P .

Then for every φ ∈ P and g(t) ∈ C([σ, T ], X) with g(σ) = φ(0), (3.1.1) has a unique

solution u(t) on [σ, T ].

Moreover, let u(t) and û(t) be the solutions of (3.1.1) on [σ, T ] with respect to

φ ∈ P and g(t) and to φ̂ ∈ P and ĝ(t) respectively. Then there is a constant L̆ such

that

‖u− û‖P [0,T ] ≤ L̆

(
max
t∈[0,T ]

‖g(t)− ĝ(t)‖+ ‖φ− φ̂‖P
)

.

Proof. A combination of the related arguments in the proof of Theorems 3.2.3 and

3.2.4 yields the result. Another approach of proving this theorem is to employ the

generalized Banach contractive mapping principle.

2

Remark 3.2.7. Similarly, there exists a corresponding result to every related the-

orem in Sections 3 – 5.
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3.3 Applications to the functional differential

equation

From now on, we concentrate on the case of σ being 0. It is not so hard to modify

our results below to the case of σ being not 0 .

Definition 3.3.1. ([82]) Let C be an injective operator in L(X) and τ > 0. An

operator family {E(t)}t∈[0,τ ] ⊂ L(X) is called a local C-regularized semigroup on X

if

(i) E(0) = C and E(t + s)C = E(t)E(s) for s, t, s + t ∈ [0, τ ],

(ii) {E(t)}t∈[0,τ ] is strongly continuous.

The operator A defined by

D(A) = {x ∈ X : lim
t→0+

1

t
(E(t)x− Cx) exists and is in R(C)}

and

Ax = C−1 lim
t→0+

1

t
(E(t)x− Cx), for each x ∈ D(A),

is called the generator of {E(t)}t∈[0,τ ]. We also say that A generates {E(t)}t∈[0,τ ].

Definition 3.3.2. Let E ∈ L(X), A a closed operator in X and τ > 0. An operator

family {E(t)}t∈[0,τ ] ⊂ L(X) is called a local E-existence family for A if

(i) {E(t)}t∈[0,τ ] is strongly continuous,

(ii)
∫ t

0
E(s)xds ∈ D(A) and

A

(∫ t

0

E(s)xds

)
= E(t)x− Ex, for every x ∈ X, t ∈ [0, τ ]. (3.3.1)

We also say that the operator A has a local E-existence family {E(t)}t∈[0,τ ].
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Remark 3.3.3. It is easy to see that a local C-regularized semigroup generated by

A is also a local C-existence family for A. When τ = ∞, the local C-regularized

semigroup coincides with the C-regularized semigroup. It is known that the concept

of local C-regularized semigroups or C-regularized semigroups is really a generaliza-

tion of classical C0 semigroups as well as integrated semigroups since there are many

examples of operators which generate C-regularized semigroup or local C-regularized

semigroups but C0 semigroups or integrated semigroups (cf., e.g., [29, 30, 82, 88] and

references cited there). On the other hand, the concept of local existence families is

an extension of local C-regularized semigroups. When τ = ∞, the existence family

in Definition 3.2 was called the mild existence family (cf., [29, 30]). For the sufficient

conditions for A having an E-existence family {E(t)}t∈[0,T ] and other information

on existence families, please refer to [29, 30]. For the local one, please refer to, e.g.,

[82].

In what follows, it is supposed that

the zero function is the unique continuous solution of x(t) = A
∫ t

0
x(s)ds (t ≥ 0),

(3.3.2)

where the operator A is the coefficient operator in (3.1.2).

Remark 3.3.4. It is easy to see that (3.3.2) holds automatically for the generator

A of a local C-regularized semigroup.

Definition 3.3.5. A function u : (−∞, a) → X is called a mild solution of (3.1.2)

on [0, a) if u ∈ C([0, a), X) satisfying

u(t) =





E(t)z +

∫ t

0

E(t− s)f̃(s, u(s), us)ds, t ∈ [0, a),

φ(t), t ∈ (−∞, 0],

(3.3.3)

where z ∈ X with Ez = φ(0), and f̃ ∈ C([0, T ]×X × P , X) with Ef̃ = f .

Remark 3.3.6. The integral equation (3.3.3) is independent of the choices of z and

f̃ . This can be seen by (3.3.2), which implies that for every x, y ∈ X with Ex = Ey,

E(t)x = E(t)y, t ≥ 0.
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This indicates

max
t∈[0,T ]

‖E(t)z‖ ≤ L̃‖φ(0)‖[R(E)], (3.3.4)

where L̃ is a constant, and ‖φ(0)‖[R(E)] := inf{‖z‖; Ez = φ(0)}.

Definition 3.3.7. A function u : (−∞, a) → X is called a classical solution of

(3.1.2) if

u ∈ C1([0, a), X) ∩ C([0, a), [D(A)])

satisfying (3.1.2) on [0, a) .

Now we are in a position to give the solvability and wellposedness results for

(3.1.2) by applying the obtained results on (3.1.1) in Section 2.

Theorem 3.3.8. Assume that T > 0, A has a local E-existence family {E(t)}t∈[0,T ].

Let P be an admissible phase space and f̃ ∈ C([0, T ]×X × P , X).

(1) Suppose one of the following conditions

(1i) f̃ is compact;

(1ii) E(t) is compact for 0 < t ≤ T ;

(1iii) {E(t)}t∈[0,T ] is norm continuous for t > 0, and there is a Kamke function

K(·, ·, ·) on [0, T ]× [0, a]× [0, maxt∈[0,T ] K(t)a] for some a > 0 such that

for every bounded set B ∈ X and Ω ∈ P,

α(f̃({s} × B × Ω)) ≤ K(s, α(B), α(Ω)), a.e. s ∈ [0, T ],

and $(t) ≡ 0 is the unique nonnegative absolutely continuous solution to

the differential equation

$′(t) = 2limδ↑0‖E(δ)‖ sup
t∈[0,T ]

β(E(t))K(t,$(t), K(t)$(t)), t ∈ (0, T ]

(3.3.5)

satisfying

lim
t↑0

$(t)

t
= $(0) = 0, (3.3.6)
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where K(·) is the function as in (H2), and for each t ∈ [0, T ],

β(E(t)) = inf{γ ∈ R+; α(E(t)B) ≤ γα(B) for all

bounded countable sets B ⊂ X}.

Then for each φ ∈ P with φ(0) ∈ R(E), there exists a real number

Tsup(φ,E(·), f̃) such that (3.1.2) has a mild solution u(t) on [0, Tsup(φ,E(·), f̃)].

(2) Suppose that for every r > 0 there is a constant H(r) such that for all t ∈ [0, T ],

‖f̃(t, x, φ)− f̃(t, y, ψ)‖ ≤ H(r) (‖x− y‖+ ‖φ− ψ‖P) ,

for every x, y ∈ X, φ, ψ ∈ P with max {‖x‖, ‖y‖, ‖φ‖P , ‖ψ‖P} ≤ r.

(3.3.7)

Then for each φ ∈ P with φ(0) ∈ R(E), there exists a real num-

ber Tsup(φ,E(·), f̃) such that (3.1.2) has a unique mild solution u(t) on

[0, Tsup(φ,E(·), f̃)]. Moreover, if u(t) and û(t) are the mild solutions of (3.1.2)

on [0, Tsup(φ,E(·), f̃)] with respect to φ ∈ P and on [0, Tsup(φ̂, E(·), f̃)] to

φ̂ ∈ P respectively, then there is a constant L(u, û, τ0) such that

‖u(t)− û(t)‖P [0,τ0] ≤ L(u, û, τ0)
(
‖φ(0)− φ̂(0)‖[R(E)] + ‖φ− φ̂‖P

)
,

for each τ0 < min{Tsup(φ,E(·), f̃), Tsup(φ̂, E(·), f̃)}.

Proof. Let g(t) = E(t)z (Ez = φ(0)) and f = E(t − s)f̃(s, ·, ·). Then the

conclusions, except that under the condition (1iii), come from Theorems 3.2.2 and

3.2.3.

Now we prove that (1iii) implies also that for each φ ∈ P with φ(0) ∈ R(E), there

exists a real number Tsup(φ, E(·), f̃) such that (3.1.2) has a mild solution u(t) on

[0, Tsup(φ,E(·), f̃)].

After a repetition of the first part of the proof of Theorem 3.2.1, we get a sequence

{un(·)}n∈N such that (3.2.15), (3.2.16), (3.2.17) and (3.2.18) hold for any given b > 0.
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By (3.2.18), we have for every n ∈ N , 0 ≤ η ≤ w ≤ z ≤ t ≤ τ(0, φ, g, f, b),
∥∥∥∥
∫ z

0

f(z, s, un(s), un
s )ds−

∫ w

0

f(w, s, un(s), un
s )ds

∥∥∥∥

≤
∫ η

0

‖f(z, s, un(s), un
s )− f(w, s, un(s), un

s )‖ds

+

∫ w

η

‖E(z)− E(w)‖‖f̃(s, un(s), un
s )‖ds +

∫ z

w

‖f(w, s, un(s), un
s )‖ds

≤ 2

[
max

t,s∈[0,T ]
‖f(t, s, φ(0), φ)‖+ 1

]
(η + z − w)

+

∫ w

η

‖E(z)− E(w)‖‖f̃(s, un(s), un
s )‖ds.

Hence, by the norm continuity of {E(t)}t∈[0,T ] for t > 0, we get for each t ∈

[0, τ(0, φ, g, f, b)], the set





∫ ·

0

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[0,t]





n∈N

is equicontinuous. Thus

proceeding as in the second part of the proof of Theorem 3.2.1, we obtain the desired

result.

2

When the family {E(t)}t∈[0,T ] is a local C-regularized semigroup on X, which

means it has the semigroup property (i.e., (i) of Definition 3.3.1 holds), we can obtain

the following result without the compactness or norm continuity of {E(t)}t∈[0,T ] as

required in Theorem 3.3.8.

Theorem 3.3.9. Let T > 0 and A generate a local C-regularized semigroup

{E(t)}t∈[0,T ]. Let P be an admissible phase space and C−1f̃ ∈ C([0, T ]×X×P , X).

Suppose that there is a Kamke function K(·, ·, ·) on [0, T ]×[0, a]×[0, maxt∈[0,T ] K(t)a]

for some a > 0 such that for every bounded set B ∈ X and Ω ∈ P,

α(C−1f̃({s} ×B × Ω)) ≤ K(s, α(B), α(Ω)), a.e. s ∈ [0, T ],

and that $(t) ≡ 0 is the unique nonnegative absolutely continuous solution to the

differential equation (3.3.5) satisfying (3.3.6). Then for each φ ∈ P with φ(0) ∈
R(C), there exists a real number Tsup(φ,E(·), f̃) such that (3.1.2) has a mild solution

u(t) on [0, Tsup(φ,E(·), f̃)].
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Proof. Let φ ∈ P with φ(0) ∈ R(E), and let g(t) = E(t)z (Cz = φ(0)) and

f = E(t − s)f̃(s, ·, ·). Then from the proof of Theorem 3.2.1, we have a sequence

{un(·)}n∈N such that (3.2.15), (3.2.16), (3.2.17) and (3.2.18) hold for any given b > 0.

By Definition 1.5, we know that for every 0 ≤ t < τ(0, φ, g, f, b) and ε > 0, there

are sets B1(t), . . . , Bm(t) (m ∈ N) such that

Bk(t) ⊂
{∫ t

0

E(t− s)C−1f̃(s, un(s), un
s )ds

}

n∈N

, k = 1, . . . , m,

{∫ t

0

E(t− s)C−1f̃(s, un(s), un
s )ds

}

n∈N

=
m⋃

k=1

Bk(t),

diameter(Bk(t))

≤ α

({∫ t

0

E(t− s)C−1f̃(s, un(s), un
s )ds

}

n∈N

)
+ ε, k = 1, . . . , m,

where diameter(Bk(t)) means the diameter of the set Bk(t). Thus, letting

Nk(t) =

{
n ∈ N ;

∫ t

0

E(t− s)C−1f̃(s, un(s), un
s )ds ∈ Bk(t)

}
, k = 1, . . . , m,

gives N = ∪m
k=1Nk(t). Fix t and η ∈ [t, τ(0, φ, g, f, b)], and define

B̃k(t, η) :=





∫ ·

0

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]





n∈Nk(t)

, k = 1, . . . , m.

Then 



∫ ·

0

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]





n∈N

=
m⋃

k=1

B̃k(t, η).

Choose arbitrarily two elements

∫ ·

0

f(·, s, uik(s), uik
s )ds

∣∣∣
[t,η]

,

∫ ·

0

f(·, s, ujk(s), ujk
s )ds

∣∣∣
[t,η]
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from every B̃k(t, η) (k = 1, . . . , m). Then for every t ≤ z ≤ w ≤ η,

∥∥∥∥
∫ z

0

f(z, s, uik(s), uik
s )ds−

∫ z

0

f(z, s, ujk(s), ujk
s )ds

∥∥∥∥

≤
∥∥∥∥
∫ t

0

E(z − s)f̃(s, uik(s), uik
s )ds−

∫ t

0

E(z − s)f̃(s, ujk(s), ujk
s )ds

∥∥∥∥

+

∥∥∥∥
∫ z

t

f(z, s, uik(s), uik
s )ds−

∫ z

t

f(z, s, ujk(s), ujk
s )ds

∥∥∥∥

≤ ‖E(z − t)‖
∥∥∥∥
∫ t

0

E(t− s)C−1
[
f̃(s, uik(s), uik

s )ds− f̃(s, ujk(s), ujk
s )

]
ds

∥∥∥∥

+2 max
ν,s∈[0,T ]

(‖f(ν, s, φ(0), φ)‖+ 1)(z − t), k = 1, . . . , m, i, j ∈ N.

Accordingly, when η − t is small enough, we obtain by ik ∈ Nk(t) and jk ∈ Nk(t),

diameter(B̃k(t, η)) ≤ max
ν∈[0,δ]

‖E(ν)‖diameter(Bk(t)) + 2ε.

Therefore,

α








∫ ·

0

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]





n∈N




≤ diameter(Bk(t, η))

≤ max
ν∈[0,δ]

‖E(ν)‖α
({∫ t

0

E(t− s)C−1f̃(s, un(s), un
s )ds

}

n∈N

)
+ 2ε.

Thus, thanks to Heinz’s theorem ([50, Theorem 2.1]) and Nussbaum’s Lemma ([69,
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Lemma 1]), we get for each t ∈ [0, τ(0, φ, g, f, b)),

α








∫ ·

0

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[0,t]





n∈N




≤ sup
t∈[0,t]

lim
η↑t

α








∫ ·

0

f(·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]





n∈N




≤ limδ↑0‖E(δ)‖ sup
t∈[0,t]

α

({∫ t

0

E(t− s)C−1f̃(s, un(s), un
s )ds

}

n∈N

)

≤ limδ↑0‖E(δ)‖ sup
t∈[0,T ]

β(E(t)) sup
t∈[0,t]

∫ t

0

α
({

C−1f̃(s, un(s), un
s )ds

}
n∈N

)
.

Let b = a
2

(the constant given in the hypotheses) and τ(σ, φ, g, f) := τ
(
σ, φ, g, f, a

2

)
.

Then the similar arguments as in the last part of the proof of Theorem 3.2.1 leads

to our conclusion.

2

Remark 3.3.10. Suppose that C−1f̃ ∈ C([0, T ]×X×P , X) and C−1f̃ = f(1) +f(2)

where f(1) is Lipschitz continuous and f(2) is compact. Then f̃ satisfies the related

assumption in Theorem 3.3.9

As shown in the following theorem, a (or unique) classical solution can be obtained

with one more condition on f̃ .

Theorem 3.3.11. Let T > 0, A generate a local C-regularized semigroup

{E(t)}t∈[0,T ] and P be an admissible phase space. Let f̃ ∈ C([0, T ]×X×P , X), and

for all u(·) ∈ P [0,T ] with u(0) ∈ C(D(A)),




f̃(s, u(s), us) ∈ D(A), for s ∈ [0, T ],

∫ T

0

‖Af̃(s, u(s), us)‖ds < ∞.
(3.3.8)

(1) If C−1f̃ satisfies the conditions in Theorem 3.3.9, then for each φ ∈ P with

φ(0) ∈ C(D(A)), there exists a real number Tsup(φ,E(·), f̃) such that (3.1.2)

has a classical solution u(t) on [0, Tsup(φ, E(·), f̃)).

77



(2) If f̃ satisfies (3.3.7), then for each φ ∈ P with φ(0) ∈ C(D(A)), there exists

a real number Tsup(φ,E(·), f̃) such that (3.1.2) has a unique classical solu-

tion u(t) on [0, Tsup(φ,E(·), f̃)). Moreover, let u(t) and û(t) be the classi-

cal solutions of (3.1.2) on [0, Tsup(φ,E(·), f̃)) with respect to φ ∈ P and on

[0, Tsup(φ̂, E(·), f̃)) to φ̂ ∈ P respectively. Then there is a constant L(u, û, τ0)

such that

‖u(t)− û(t)‖P [0,τ0] ≤ L(u, û, τ0)
(
‖φ(0)− φ̂(0)‖+ ‖φ− φ̂‖P

)
, (3.3.9)

for each τ0 < min{Tsup(φ,E(·), f̃), Tsup(φ̂, E(·), f̃)}.

Proof. The proof of (1).

By Theorem 3.3.9, for each φ ∈ P with φ(0) ∈ C(D(A)), there exists a real number

Tsup(φ,E(·), f̃) such that (3.1.2) has a mild solution u(t) on [0, Tsup(φ,E(·), f̃)) given

by

u(t) =





E(t)z +

∫ t

0

E(t− s)f̃(s, u(s), us)ds, t ∈ [0, Tsup(φ,E(·), f̃)),

φ(t), t ∈ (−∞, 0],

(3.3.10)

where z ∈ D(A) and Cz = φ(0). Fix t ∈ [0, Tsup(φ,E(·), f̃)) and set

ut(s) =





u(t), s ∈ [t, T ],

u(s), s ∈ (−∞, t].

Then ut(·) ∈ P [0,T ]. Thus (3.3.8) implies that

f̃(s, u(s), us) = f̃(s, ut(s), ut
s) ∈ D(A), for s ∈ [0, t], (3.3.11)

and ∫ t

0

‖Af̃(s, u(s), us)‖ds ≤
∫ T

0

‖Af̃(s, ut(s), ut
s)‖ds ≤ ∞. (3.3.12)

On the other hand, from [40] it follows that for x ∈ D(A), t ∈ [0, τ ],

E(t)x ∈ D(A), AE(t)x = E(t)Ax, (3.10)

and ∫ t

0

E(s)Axds = A

∫ t

0

E(s)xds = E(t)x− Cx. (3.3.13)
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Therefore, by (3.3.11) we have

d

dt
E(t− s)f̃(s, u(s), us) = E(t− s)Af̃(s, u(s), us), 0 ≤ s ≤ t < Tsup(φ,E(·), f̃).

(3.3.14)

Taking a derivative in t of the first equality of (3.3.10), we get, by (3.3.11) – (3.3.14),

u(t) is a classical solution of (3.1.2).

The proof of (2).

Suppose that u(t) is a classical solution of (3.1.2) on [0, Tsup(φ,E(·), f̃)). Then

u0 = φ, and

d

dt
E(t− s)C−1u(s)

= −AE(t− s)C−1u(s) + E(t− s)C−1Au(s) + E(t− s)f̃(s, u(s), us),

for 0 ≤ s ≤ t < Tsup(φ,E(·), f̃),

i.e.,

u(t)− E(t)C−1φ(0) =

∫ t

0

E(t− s)f̃(s, u(s), us), 0 ≤ t < Tsup(φ, E(·), f̃).

This means that the classical solution of (3.1.2) must be the mild solution of (3.1.2).

Thus conclusion (2) is a consequence of Theorem 3.3.8 (2) and the arguments in the

proof of (1) above.

2

3.4 Applications to the nonautonomous func-

tional differential equations

In this section, we consider the Cauchy problem for nonautonomous functional dif-

ferential equations (3.1.3). We first recall the following notion.

Definition 3.4.1. An operator family {U(t, s)}0≤s≤t≤T ⊂ L(X) is called a (strongly

continuous) evolution system if

(1) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T .

(2) (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .
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Remark 3.4.2. “Evolution system” is also called evolution family, evolution oper-

ators, evolution process, propagator, or fundamental solution. Please refer to, e.g.,

[1, 36–38, 70, 81, 90] for more information about this system.

Now we give a general result about the “mild solution” of (3.1.3).

Theorem 3.4.3. Let T > 0, {U(t, s)}0≤s≤t≤T ⊂ L(X) being an evolution system,

P an admissible phase space, and f ∈ C([0, T ]×X × P , X).

(1) Suppose that there is a Kamke function K(·, ·, ·) on [0, T ] × [0, a] ×
[0, maxt∈[0,T ] K(t)a] for some a > 0 such that

(1i) for every t ∈ [0, T ] and for every bounded set B ⊂ X and Ω ⊂ P,

α(F ({t} × {s} ×B × Ω)) ≤ K(s, α(B), α(Ω)), a.e. s ∈ [0, t],

where F (t, s, ·, ·) = U(t, s)f(s, ·, ·).
(1ii) $(t) ≡ 0 is the unique nonnegative absolutely continuous solution to the

differential equation

$′(t) = 2 max
η∈[0,T ]

limz↑η‖U(z, η)‖K(t,$(t), K(t)$(t)), a.e. t ∈ (σ, T ]

satisfying (3.3.6).

Then for each φ ∈ P, there exists a real number Tsup(φ, U(·, ·), f) and a

u : [−∞, Tsup(φ, U(·, ·), f)) → X

such that

u(t) =





U(t, 0)φ(0) +

∫ t

0

U(t, s)f(s, u(s), us)ds, t ∈ [0, Tsup(φ, U(·, ·), f)),

φ(t), t ∈ (−∞, 0].

(3.4.1)

(2) Suppose that for every r > 0 there is a constant H(r) such that for all t ∈ [0, T ],

‖f(t, x, φ)− f(t, y, ψ)‖ ≤ H(r) (‖x− y‖+ ‖φ− ψ‖P) ,

for every x, y ∈ X, φ, ψ ∈ P with max {‖x‖, ‖y‖, ‖φ‖P , ‖ψ‖P} ≤ r.
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Then for each φ ∈ P, there exists a real number Tsup(φ, U(·, ·), f) such that

(3.4.1) has a unique solution u(t) on [0, Tsup(φ, U(·, ·), f)). Moreover, let u(t)

and û(t) be the solution of (3.4.1) on [0, Tsup(φ, U(·, ·), f)) with respect to φ ∈ P
and on [0, Tsup(φ̂, U(·, ·), f)) to φ̂ ∈ P respectively. Then (3.3.9) holds for a

constant L̂(u, û, τ0).

Proof. Applying Theorem 3.2.3 to g(t) = U(t, 0)φ(0) and F (t, s, ·, ·), we get the

conclusion (2).

Now we prove the conclusion (1). From the proof of Theorem 3.2.1, we know that

for each φ ∈ P and b > 0, there is a sequence {un(·)}n∈N such that (3.2.15), (3.2.16),

(3.2.17) and (3.2.18) hold.

Since for every 0 < t ≤ τ(0, φ, g, f, b) and ε > 0, there are subsets C1(t), . . . , Cl(t)

(l ∈ N) of
{∫ t

0
F (t, s, un(s), un

s )ds
}

n∈N
, such that

{∫ t

0

F (t, s, un(s), un
s )ds

}

n∈N

=
l⋃

k=1

Ck(t),

diameter(Ck(t)) ≤ α

({∫ t

0

F (t, s, un(s), un
s )ds

}

n∈N

)
+ ε.

For any η ∈ [t, t(0, φ, g, f, b)), if we define

C̃k(t, η) :=





∫ ·

0

F (·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]

;

∫ t

0

F (t, s, un(s), un
s )ds ∈ Ck(η)



 ,

k = 1, . . . , l,

then





∫ ·

0

F (·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]





n∈N

=
m⋃

k=1

C̃k(t, η).
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Observing that for every t ≤ z ≤ w ≤ η,
∥∥∥∥
∫ z

0

F (z, s, uik(s), uik
s )ds−

∫ z

0

F (z, s, ujk(s), ujk
s )ds

∥∥∥∥

≤
∥∥∥∥
∫ t

0

U(z, s)F (s, uik(s), uik
s )ds−

∫ t

0

U(z, s)F (s, ujk(s), ujk
s )ds

∥∥∥∥

+

∥∥∥∥
∫ z

t

F (z, s, uik(s), uik
s )ds−

∫ z

t

F (z, s, ujk(s), ujk
s )ds

∥∥∥∥

≤ ‖U(z, t)‖
∥∥∥∥
∫ t

0

U(t, s)
[
F (s, uik(s), uik

s )ds− F (s, ujk(s), ujk
s )

]
ds

∥∥∥∥

+2 max
ν,s∈[0,T ]

(‖F (ν, s, φ(0), φ)‖+ 1)(z − t), k = 1, . . . , l,

where
∫ ·
0
F (·, s, uik(s), uik

s )ds
∣∣∣
[t,η]

and
∫ ·
0
F (·, s, ujk(s), ujk

s )ds
∣∣∣
[t,η]

are two elements of

C̃k(t, η) (k = 1, . . . , l). Therefore, for each t ∈ (0, τ(0, φ, g, f, b)],

α








∫ ·

0

F (·, s, un(s), un
s )ds

∣∣∣∣∣
[0,t]





n∈N




≤ sup
t∈[0,t]

lim
η↑t

α








∫ ·

0

F (·, s, un(s), un
s )ds

∣∣∣∣∣
[t,η]





n∈N




≤ limz↑t‖U(z, t)‖ sup
t∈[0,t]

α

({∫ t

0

F (t, s, un(s), un
s )ds

}

n∈N

)
.

Let b = a
2

(the constant given in the hypotheses) and τ(σ, φ, g, f) := τ
(
σ, φ, g, f, a

2

)
.

Then the similar arguments as in the last part of the proof of Theorem 3.2.1 leads

to our conclusion.

2

Next we present results about the “Y -valued solution” of (3.1.3) (under Hyper-

bolicity assumption) and the “classical solution” of (3.1.3) (under Parobolicity as-

sumption). We start with the following definitions of the “Y -valued solution” and

the “classical solution” of (3.1.3).
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Definition 3.4.4. (1) Let Y be a Banach space and be densely and continuously

imbedded in X. A function u : (−∞, a) → X with u ∈ C([0, a), Y ] is called

a Y -valued solution of (3.1.3) on [0, a) if u ∈ C1((0, a), X) satisfying (3.1.3) in

X.

(2) A function u : (−∞, a) → X is called a classical solution of (3.1.3) on [0, a)

if u ∈ C1([0, a), X), u(t) ∈ D(A(t)) for t ∈ [0, a) and u(t) satisfies (3.1.3) on

[0, a).

Hyperbolicity Assumption (cf., e.g., [70, 81]): For each t ∈ [0, T ], A(t) is

the generator of a strongly continuous semigroup {St(s)}s≥0 on X, and there exist

constants W and ω such that

(HA1) (ω,∞) ⊂ ρ(A(t)) for all t ∈ [0, T ], and for every nondecreasing sequence

{tn}k
1 ⊂ [0, T ],

∥∥∥∥∥
k∏

n=1

(λ− A(tn))−1

∥∥∥∥∥ ≤
W

(λ− ω)k
, λ > ω.

There is a Banach space Y which is densely and continuously imbedded in X and

satisfies

(HA2) For each t ∈ [0, T ], St(s)Y ⊂ Y (s ≥ 0),
{

St(s)
∣∣∣
Y

}
s≥0

is a strongly continuous

semigroup on Y , A(t)
∣∣∣
Y

is the generator of
{

St(s)
∣∣∣
Y

}
s≥0

on Y , and A(t)
∣∣∣
Y

satisfies (HA1) for some constants W̃ and ω̃,

(HA3) For each t ∈ [0, T ], Y ⊂ D(A(t)), A(t) ∈ L(Y,X) and t → A(·) is continuous

in the L(Y, X) norm.

Theorem 3.4.5. (Hyperbolic case) Assume that the “Hyperbolicity Assumption”

holds and {U(t, s)}0≤s≤t≤T is the evolution system associated with the family

{A(t)}t∈[0,T ]. Let U(t, s)Y ⊂ Y (0 ≤ s ≤ t ≤ T ) and for each y ∈ Y , U(t, s)y

be continuous in Y for 0 ≤ s ≤ t ≤ T , and let P be an admissible phase space and

f ∈ C([0, T ]×X × P , Y ).
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(1) If f is as in (1) of Theorem 3.4.3, then for each φ ∈ P with φ(0) ∈ Y , there

exists a real number Tsup(φ, U(·, ·), f) such that (3.1.3) has a Y -valued solution

u(t) on [0, Tsup(φ, U(·, ·), f)).

(2) If f is as in (2) of Theorem 3.4.3, then for each φ ∈ P with φ(0) ∈ Y ,

there exists a real number Tsup(φ, U(·, ·), f) such that (3.1.3) has a unique Y -

valued solution u(t) on [0, Tsup(φ, U(·, ·), f)). Moreover, there is a constant

L̂(u, û, τ0) such that (3.3.9) holds for every u(t) and û(t) being the Y -valued

solution of (3.1.3) on [0, Tsup(φ, U(·, ·), f)) with respect to φ ∈ P and on

[0, Tsup(φ̂, U(·, ·), f)) to φ̂ ∈ P respectively.

Proof. A combination of Theorem 3.4.3 and [81, Theorem 4.5.2] yields the existence

of the number Tsup(φ, U(·, ·), f) ensuring that (3.1.3) has a (resp. unique) Y -valued

solution u(t) on [0, Tsup(φ, U(·, ·), f)) under the hypotheses in (1) (resp. (2)).

On the other hand, let u(·) be a Y valued solution of (3.1.3) on

[0, Tsup(φ, U(·, ·), f)). Then by

∂

∂s
U(t, s)v = −U(t, s)A(s)v, for v ∈ Y, 0 ≤ s ≤ t ≤ T

(cf. [81]) and the hypotheses, we have

∂+

∂s
U(t, s)u(s) = U(t, s)f(s, u(s), us), 0 ≤ s ≤ t < Tsup(φ, U(·, ·), f),

that is, u(·) satisfies (4.2). Hence, for each φ ∈ P with φ(0) ∈ Y , the Y -valued

solution of (3.1.3) on [0, Tsup(φ, U(·, ·), f)) is unique under the hypotheses in (2).

Moreover, by Theorem 3.4.3 (2), we get the conclusion (2).

2

Parabolicity Assumption (cf., e.g., [70, 81]):

(PA1) For all t ∈ [0, T ], D(A(t)) = D being dense in X.

(PA2) For every t ∈ [0, T ] and complex number λ with Reλ ≤ 0, (λ + A(t))−1 exists

and satisfies

∥∥(λ + A(t))−1
∥∥ ≤ W

1 + |λ| , Reλ ≤ 0, t ∈ [0, T ],

for a constant W .
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(PA3) There are constants α ∈ (0, 1] and W such that

∥∥(A(t)− A(s))A(r)−1
∥∥ ≤ W |t− s|α, t, s, r ∈ [0, T ].

Theorem 3.4.6. (Parabolic case) Let the “Parabolicity Assumption” hold and

{U(t, s)} 0≤s≤t≤T be the evolution system associated with the family {A(t)}t∈[0,T ]. Let

P be an admissible phase space, f ∈ C([0, T ]×X ×P , X), and for all u(·) ∈ P [0,T ],

f(s, u(s), us) ∈ D (s ∈ [0, T ]) and

∫ T

0

‖A(t0)f(s, u(s), us)‖ds < ∞ (3.4.2)

for some t0 ∈ [0, T ].

(1) If f is as in (1) of Theorem 3.4.3, then for each φ ∈ P, there exists a real num-

ber Tsup(φ, U(·, ·), f) such that (3.1.3) has a classical solution u(t) on [0, Tsup(φ,

U(·, ·), f)).

(2) If f is as in (2) of Theorem 3.4.3, then for each φ ∈ P, there exists a

real number Tsup(φ, U(·, ·), f) such that (3.1.3) has a unique classical solu-

tion u(t) on [0, Tsup(φ, U(·, ·), f)). Moreover, let u(t) and û(t) be the classical

solutions of (3.1.3) on [0, Tsup(φ, U(·, ·), f)) with respect to φ ∈ P and on

[0, Tsup(φ̂, U(·, ·), f)) to φ̂ ∈ P respectively. Then (3.3.9) holds for a constant

L̂(u, û, τ0).

Proof. From [81, Section 5.2] we know that the evolution system {U(t, s)}0≤s≤t≤T

satisfies

(i)′ For all 0 ≤ s ≤ t ≤ T , U(t, s) : X → D := D(A(t)) (for all t ∈ [0, T ]),

t → U(t, s) is strongly differentiable, and ∂
∂t

U(t, s) ∈ L(X) being strongly

continuous on 0 ≤ s < t ≤ T .

(ii)′ For all 0 ≤ s ≤ t ≤ T ,




∂

∂t
U(t, s) = A(t)U(t, s),

‖A(t)U(t, s)A−1(s)‖ ≤ M̃,

(3.4.3)

where M̃ is a constant.
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(iii)′ For every z ∈ D and t ∈ (0, T ], U(t, s)z is differentiable in s on 0 ≤ s ≤ t ≤ T ,

and
∂

∂s
U(t, s)z = −U(t, s)A(s)z. (3.4.4)

Thus from Theorem 3.4.3 it follows that for each φ ∈ P , there exists a real number

Tsup(φ, U(·, ·), f) such that (3.4.1) has a (resp. unique) solution u(t) on [0, Tsup(φ,

U(·, ·), f)) under the hypotheses in (1) (resp. (2)). We have by (3.4.3),

∂

∂t
U(t, s)f(s, u(s), us) = A(t)U(t, s)A(s)−1A(s)A(t0)

−1A(t0)f(s, u(s), us),

0 ≤ s ≤ t ≤ Tsup(φ, U(·, ·), f),

and by “Parabolic Assumption”, there is a constant M such that

‖A(t)A(t0)
−1‖ ≤ M, for each t ∈ [0, Tsup(φ, U(·, ·), f)).

Therefore, by (3.4.2), we get

∫ t

0

∥∥∥∥
∂

∂t
U(t, s)f(s, u(s), us)

∥∥∥∥ ds ≤
∫ T

0

∥∥∥∥
∂

∂t
U(t, s)f(s, ut(s), ut

s)

∥∥∥∥ ds

< ∞, t ∈ [0, Tsup(φ, U(·, ·), f)),

where

ut(s) =





u(t), s ∈ [t, T ],

u(s), s ∈ (−∞, t].

Hence,

u′(t) = A(t)U(t, 0)φ(0) + f(t, u(t), ut) +

∫ t

0

A(t)U(t, s)f(s, u(s), us)ds

= A(t)u(t) + f(t, u(t), ut), t ∈ [0, Tsup(φ, U(·, ·), f)),

i.e., u(t) is a classical solution of (3.1.3) on [0, Tsup(φ, U(·, ·), f)).

Moreover, (i)′ and (3.4.4) imply that a classical solution of (3.1.3) is also a mild

solution of (3.4.1). This means (3.1.3) has a unique classical solution for each φ ∈ P
under the hypotheses in (2). Another direct consequence of this fact and Theorem

3.4.3 (2) is the conclusion (2).

2
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3.5 Applications to the functional integrodiffer-

ential equations

In this section, we assume that

(A1) A generates a strongly continuous semigroup on X, and (1.1.2) holds.

(A2) P is an admissible phase space and f ∈ C([0, T ]×X × P , X).

As known in Chapter 1, there is a strongly continuous operator family

{R(t)}t∈[0,T ] ⊂ L(X) such that R(0) = I, R(·)y ∈ C1([0, T ], X) ∩ C([0, T ], [D(A)])

(y ∈ D(A)), and (1.1.8) holds. {R(t)}t∈[0,T ] is called the resolvent family for (3.1.4).

See, e.g., [34, 40, 42, 62, 72] and references given there for more information about

the resolvent family or the integrodifferential equations without delay.

Definition 3.5.1. (1) A function u : (−∞, a) → X is called a mild solution of

(3.1.4) on [0, a) if it satisfies

u(t) =





R(t)φ(0) +

∫ t

0

R(t− s)f(s, u(s), us)ds, t ∈ [0, a),

φ(t), t ∈ (−∞, 0].

(3.5.1)

(2) A function u : (−∞, a) → X is called a classical solution of (3.1.4) on [0, a) if

u ∈ C1([0, a), X) ∩ C([0, a), [D(A)])

satisfying (3.1.4).

Theorem 3.5.2. Assume that for every r > 0, there exists a constant H(r) such

that for each t ∈ [σ, T ],

‖f(t, x, φ)− f(t, y, ψ)‖ ≤ H(r) (‖x− y‖+ ‖φ− ψ‖P) ,

for all x, y ∈ X, φ, ψ ∈ P with max {‖x‖, ‖y‖, ‖φ‖P , ‖ψ‖P} ≤ r.

(3.5.2)

Then for each φ ∈ P, there exists a real number Tsup(φ,E(·), f) such that (3.1.4)

has a unique mild solution u(t) on [0, Tsup(φ,E(·), f)). Moreover, there is a constant
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N(u, û, τ0) such that (3.3.9) holds for every u(t) and û(t) being mild solutions of

(3.1.4) on [0, Tsup(φ,E(·), f)) with respect to φ ∈ P and on [0, Tsup(φ̂, E(·), f)) to

φ̂ ∈ P respectively.

Proof. Apply Theorem 3.2.3 to g(t) = R(t)φ(0) and

f(t, s, ·, ·) =





R(t− s)f(s, ·, ·), t ≥ s,

R(s− t)f(s, ·, ·), t < s.

2

Theorem 3.5.3. Let (3.5.2) hold and let f ∈ C([0, T ] × X × P , [D(A)]). Then

for each φ ∈ P, there exists a real number Tsup(φ,E(·), f) such that (3.1.4) has a

unique classical solution u(t) on [0, Tsup(φ,E(·), f)). Moreover, let u(t) and û(t)

be classical solutions of (3.1.4) on [0, Tsup(φ,E(·), f)) with respect to φ ∈ P and

on [0, Tsup(φ̂, E(·), f)) to φ̂ ∈ P respectively. Then (3.3.9) holds for a constant

N(u, û, τ0).

Proof. By Theorem 3.5.2, we know that for each φ ∈ P with φ(0) ∈ D(A), there ex-

ists a real number Tsup(φ,E(·), f) such that (3.1.4) has a unique mild solution u(t) on

[0, Tsup(φ,E(·), f)). Thus by (1.1.8) and (3.5.1), we have, for t ∈ [0, Tsup(φ,E(·), f)),

du(t)

dt
= A

[
R(t)φ(0) +

∫ t

0

F (t− s)R(s)φ(0)ds

]
+ f(t, u(t), ut)

+

∫ t

0

AR(t− s)f(s, u(s), us)ds

+

∫ t

0

A

∫ t−s

0

F (t− s− η)R(η)f(s, u(s), us)dηds

= Au(t) + f(t, u(t), ut)

+A

[∫ t

0

F (t− s)

(
R(s)φ(0) +

∫ s

0

R(s− η)f(s, u(s), us)dη

)
ds

]

= A

[
u(t) +

∫ t

0

F (t− s)u(s)ds

]
+ f(t, u(t), ut).

This means that u(t) is a classical solution of (3.1.4) on [0, Tsup(φ, E(·), f)).
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Moreover, let u(t) be a classical solution of (3.1.4) on [0, Tsup(φ,E(·), f)). Then

by (1.1.8), (3.5.1) and the hypotheses, we obtain for t ∈ [0, Tsup(φ,E(·), f)),

u(t)−R(t)u(0)

=

∫ t

0

∂

∂s
R(t− s)u(s)ds

= −
∫ t

0

∫ t−s

0

R(t− s− η)AF (η)u(s)dηds +

∫ t

0

R(t− s)A

∫ s

0

F (s− η)u(η)dηds

+

∫ t

0

R(t− s)f(s, u(s), us)ds

= −
∫ t

0

∫ t−s

0

R(t− s− η)AF (η)u(s)dηds +

∫ t

0

∫ t

η

R(t− s)AF (s− η)u(η)dsdη

+

∫ t

0

R(t− s)f(s, u(s), us)ds

= −
∫ t

0

∫ t−s

0

R(t− s− η)AF (η)u(s)dηds +

∫ t

0

∫ t−η

0

R(t− µ− η)AF (µ)u(η)dµdη

+

∫ t

0

R(t− s)f(s, u(s), us)ds

=

∫ t

0

R(t− s)f(s, u(s), us)ds.

Therefore, a classical solution of (3.1.4) is also a mild solution of (3.1.4). By Theorem

3.5.2 we get the desired conclusion.

2
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Chapter 4

Regularity for abstract functional
equations with infinite delay in
spaces with the Radon-Nikodym
property

In this chapter we investigate the regularity for abstract functional equations with

infinite delay. Our attention now focus on (among others) the Cauchy problem for

the functional equation (3.1.2) in a Banach space X satisfying the Radon-Nikodym

property. Some regularity results are established. Theorems 4.2.6 and 4.2.7 below

are entirely new, and others are generalizations of the corresponding results in our

papers [57, 59].

4.1 Lipschitz continuity of solutions

This is a preliminary section and in this section X is still a general Banach space.

Our purpose is to find some sufficient conditions for the “Lipschitz continuity” of

solutions of the problems (4.1.2) and (4.1.7). The results given in this section will

be used in the next section.
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Let 0 ≤ σ ≤ T , and define

Q[σ,T ] :=

{
φ : R− → X; there are constants aφ > T and Lφ,P such that

φ(·) is Lipschitz continuous on [−aφ, 0], φ−aφ
∈ P and

∥∥φ−aφ+τ − φ−aφ

∥∥
P ≤ L(φ,P)τ for τ ∈ [0, T − σ]

}
.

(4.1.1)

Remark 4.1.1. Clearly, by (H1), we have Q[σ,T ] ⊂ P and the set

Q0 = {φ(θ); φ : R− → X is Lipschitz continuous with compact support}
is a subset of Q[σ,T ].

For a typical case of (3.1.1)




u(t) = g(t) +

∫ t

σ

E(t, s)f(s, u(s), us)ds (σ ≤ t ≤ T ),

uσ = φ,

(4.1.2)

where {E(t, s)}σ≤t,s≤T ⊂ L(X) is a strongly continuous family and f : [σ, T ]×X ×
P → X is a given function, we have

Theorem 4.1.2. Let 0 ≤ σ < T , P be an admissible phase space, and for every

r > 0 there exist a constant H̃(r) such that

‖f(t, x(t), xt)− f(s, x(s), xs)‖ ≤ H̃(r) (|t− s|+ ‖x(t)− x(s)‖+ ‖xt − xs‖P) ,

for any t, s ∈ [σ, T ], and x(t) ∈ P [σ,T ] with maxt∈[σ,T ]{‖x(t)‖, ‖xt‖P} ≤ r.

(4.1.3)

Suppose that

(1) φ ∈ Q[σ,T ], g(t) : [σ, T ] → X being Lipschitz continuous with g(σ) = φ(0),

there is a constant L(E(·,·),f) such that
∫ t

σ

‖[E(t + η, s + η)− E(t, s)]f(s, x(s), xs)‖ds ≤ ηL(E(·,·),f),

for t ∈ [σ, T ], η ∈ [0, T − t], x(·) ∈ P [σ,T ],

(4.1.4)

and (4.1.2) has a solution u(t) on [σ, Tsup(σ, φ, g, E(·, ·), f));
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or that

(2) φ ∈ P, g(t) : [σ, T ] → X being Lipschitz continuous with g(σ) = φ(0), there is

a constant L̃(E(·,·),f) such that

∫ t

σ

‖[E(t + η, s)− E(t, s)]f(s, x(s), xs)‖ds ≤ ηL̃(E(·,·),f),

for t ∈ [σ, T ], η ∈ [0, T − t], x(·) ∈ P [σ,T ],

(4.1.5)

and (4.1.2) has a solution u(t) on [σ, Tsup(σ, φ, g, E(·, ·), f)).

Then u(t) is Lipschitz continuous on [σ, τ0] for every τ0 ∈ [σ, Tsup(σ, φ, g, E(·, ·), f)).

Proof. The proof of case (1).

Let Lg be the Lipschitz constant for g and τ0 ∈ [σ, Tsup(σ, φ, g, E(·, ·), f)). Then

by (4.1.3) and (4.1.4) we deduce that for each t ∈ [σ, τ0], η ∈ [0, τ0 − t],

‖u(t + η)− u(t)‖

≤ ‖g(t + η)− g(t)‖+

∫ σ+η

σ

‖E(t + η, s)f(s, u(s), us)‖ds

+

∥∥∥∥
∫ t+η

σ+η

E(t + η, s)f(s, u(s), us)ds−
∫ t

σ

E(t, s)f(s, u(s), us)ds

∥∥∥∥

≤ ‖g(t + η)− g(t)‖+

∫ σ+η

σ

‖E(t + η, s)f(s, u(s), us)‖ds

+

∫ t

σ

‖E(t + η, s + η) [f (s + η, u(s + η), us+η)− f(s, u(s), us)] ‖ds

+

∫ t

σ

‖[E(t + η, s + η)− E(t, s)]f(s, u(s), us)‖ds

≤
[
Lg + max

t∈[σ,T ]
‖E(t)‖ max

t∈[σ,τ0]
‖f(t, u(t), ut)‖+ L(E(·,·),f)

]
η

+H̃

(
max
[σ,τ0]

{‖u(t)‖, ‖ut‖P}
)

max
t∈[σ,T ]

‖E(t)‖

·
∫ t

σ

[η + ‖u(s + η)− u(s)‖+ ‖us+η − us‖P ] ds

}
.
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Noting φ ∈ Q[σ,T ] and letting Lφ be the Lipschitz constant for φ on [−aφ, 0], we

obtain, by (4.1.2) and (H2), for every s ∈ [σ, t],

‖us+η − us‖P

≤ K(s + aφ − σ) sup
ν∈[−aφ+σ,s]

‖u(η + ν)− u(ν)‖

+M(s + aφ − σ)
∥∥φ−aφ+η − φ−aφ

∥∥
P

≤ K(s + aφ − σ)

[
sup

ν∈[−aφ,−η]

‖φ(η + ν)− φ(ν)‖

+ sup
ν∈[−η+σ,σ]

‖u(ν + η)− φ(ν − σ)‖

+ sup
ν∈[σ,s]

‖u(η + ν)− u(ν)‖
]

+ M(s + aφ − σ)L(φ,P)η

≤ K(s + aφ − σ)

{
Lφη + sup

ν∈[−η+σ,σ]

‖g(ν + η)− g(σ)‖

+ sup
ν∈[−η+σ,σ]

‖φ(0)− φ(ν − σ)‖

+ sup
ν∈[−η+σ,σ]

∥∥∥∥
∫ η+ν

σ

E(ν + η, µ)f(µ, u(µ), uµ)dµ

∥∥∥∥

+ sup
ν∈[σ,s]

‖u(η + ν)− u(ν)‖
}

+ sup
s∈[σ,T ]

M(s + aφ − σ)L(φ,P)η

≤
{

maxs∈[σ,T ] K(s + aφ − σ) sup
s∈[σ,T ]

M(s + aφ − σ)L(φ,P)

[
2Lφ + Lg + max

t,s∈[σ,T ]
‖E(t, s)‖ max

t∈[σ,τ0]
‖f(t, u(t), ut)‖

] }
η

+ maxs∈[σ,T ] K(s + aφ − σ) supν∈[σ,s] ‖u(η + ν)− u(ν)‖.

As a consequence, there are constants H and H such that

sup
ν∈[σ,t]

‖u(ν + η)− u(ν)‖ ≤ Hη + H

∫ t

σ

sup
ν∈[σ,s]

‖u(ν + η)− u(ν)‖ds.

Using Gronwall-Bellman’s inequality we have

sup
ν∈[σ,t]

‖u(ν + η)− u(ν)‖ ≤ Ĥη, t ∈ [σ, τ0], η ∈ [0, τ0 − t],

for a constant Ĥ. This implies that u(t) is Lipschitz continuous on [σ, τ0].
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The proof of case (2).

Fix τ0 ∈ [σ, Tsup(σ, φ, g, E(·, ·), f)) and let Lg be the Lipschitz constant for g.

Then by (4.1.5) we get for each t ∈ [σ, τ0), η ∈ (0, τ0 − t),

‖u(t + η)− u(t)‖

≤ ‖g(t + η)− g(t)‖+

∫ t+η

t

‖E(t + η, s)f(s, u(s), us)‖ds

+

∫ t

σ

‖[E(t + η, s)− E(t, s)]f (s, u(s), us) ‖ds

≤
(

Lg + max
t,s∈[σ,T ]

‖E(t, s)‖ max
t∈[σ,τ0]

‖f(t, u(t), ut)‖+ L̃(E(·,·),f)

)
η,

i.e., the solution u(t) of (4.1.2) (with respect to every φ ∈ P) is Lipschitz continuous

on [σ, τ0].

2

Corollary 4.1.3. Let 0 ≤ σ < T and P be an admissible phase space.

(1) Let f ∈ C([σ, T ] × [σ, T ] × X × P , X) satisfying that for every r > 0, there

exist a constant H(r) such that for each s ∈ [σ, T ],

‖f(s, x, φ)− f(s, y, ψ)‖ ≤ H(r) (‖x− y‖+ ‖φ− ψ‖P) ,

for all x, y ∈ X, φ, ψ ∈ P with max {‖x‖, ‖y‖, ‖φ‖P , ‖ψ‖P} ≤ r,

(4.1.6)

and (4.1.3). Then for every φ ∈ Q[σ,T ], g(t) : [σ, T ] → X being Lipschitz

continuous with g(σ) = φ(0) and strongly continuous family {E(t)}σ≤t≤T ⊂
L(X), the solution of





u(t) = g(t) +

∫ t

σ

E(t− s)f(s, u(s), us)ds, t ∈ [σ, T ],

uσ = φ,

(4.1.7)

on [σ, Tsup(σ, φ, g, E(·), f)) is Lipschitz continuous on [σ, τ0] for every τ0 ∈ [σ,

Tsup(σ, φ, g, E(·), f)).

(2) Let {E(t)}σ≤t≤T be a local C-regularized semigroup and C−1f ∈ C([σ, T ] ×
[σ, T ]×X×P , X). Suppose that there is a Kamke function K(·, ·, ·) on [0, T ]×
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[0, a] × [0, maxt∈[0,T ] K(t)a] for some a > 0 such that for every bounded set

B ∈ X and Ω ∈ P,

α(C−1f({s} ×B × Ω)) ≤ K(s, α(B), α(Ω)), a.e. s ∈ [0, T ],

and that $(t) ≡ 0 is the unique nonnegative absolutely continuous solution to

the differential equation

$′(t) = 2limδ↑0‖E(δ)‖ sup
t∈[0,T ]

β(E(t))K(t,$(t), K(t)$(t)), t ∈ (0, T ] (4.1.8)

satisfying

lim
t↑σ

$(t)

t− σ
= $(σ) = 0.

Then for every φ ∈ Q[σ,T ] with φ(0) ∈ R(C), and g(t) : [σ, T ] → X

being Lipschitz continuous with g(σ) = φ(0), the solution of (4.1.2) on

[σ, Tsup(σ, φ, g, E(·), f)) is Lipschitz continuous on [σ, τ0] for every τ0 ∈
[σ, Tsup(σ, φ, g, E(·), f)).

Proof. The proof of case (1).

Let

E(t, s) =





E(t− s), t ≥ s,

E(s− t), t < s.
(4.1.9)

Then (4.1.4) holds. This, together with Theorems 3.2.3 and 4.1.2 (1), implies (1).

The proof of case (2).

From the proof of Theorem 3.3.9, we see that (4.1.7) has a solution for every

φ ∈ Q[σ,T ] with φ(0) ∈ R(C), and g(t) : [σ, T ] → X with g(σ) = φ(0). Thus by

(4.1.7) and 4.1.2 (1), we get (2).

2

4.2 Regularity

We begin with the following definition of “strong solutions” of (3.1.2).

Definition 4.2.1. A function u : (−∞, a) → X is called a strong solution of (3.1.2)

if u is absolutely continuous on [0, a) and differentiable a.e. on [0, a) such that

u′(·) ∈ L1([0, a), X) satisfying (3.1.2) a.e. on [0, a).
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Theorem 4.2.2. Let T > 0 and P be an admissible phase space. Let A be closed and

has a local E-existence family {E(t)}t∈[0,T ] satisfying that for each z ∈ D(A), E(·)z
is an absolutely continuous X-valued function on [0, T ]. Let (3.3.2) hold and f̃ ∈
C([0, T ]×X ×P , X) satisfying (4.1.3) for σ = 0. If X satisfies the Radon-Nikodym

property, then for each φ ∈ Q[0,T ] with Ez = φ(0) (z ∈ D(A)), the corresponding

mild solution of (3.1.2) (if exists) is a strong solution of (3.1.2).

Proof. Let φ ∈ Q[0,T ] with Ez = φ(0) for a z ∈ D(A), and let u(t) be the

corresponding mild solution of (3.1.2) on [0, Tsup(φ)).

By the Radon-Nikodym property of X, we get for all z ∈ D(A), E(t)z is differen-

tiable a.e. t ∈ [0, Tsup(φ)). Arguing as in the proof [30, Proposition 2.7] we deduce

that E(t)z ∈ D(A) for a.e. t ∈ [0, Tsup(φ)) and
∫ t

0

AE(s)z = E(t)z − Ez, a.e. t ∈ [0, Tsup(φ)). (4.2.1)

Moreover, letting E(t, s) as in (4.1.9) and using Theorem 4.1.2 (1) and the Radon-

Nikodym property of X, we have

u(t) is differentiable a.e. on [0, Tsup(φ)). (4.2.2)

By (3.3.1),

A

∫ t−s

0

E(τ)f̃(s, u(s), us)dτ = E(t− s)f̃(s, u(s), us)ds− f(s, u(s), us)ds,

0 ≤ s ≤ t ≤ Tsup(φ).

This, together with the closedness of A, implies that for 0 ≤ s ≤ t ≤ Tsup(φ),

A

∫ t

0

∫ τ

0

E(τ − s)f̃(s, u(s), us)dsdτ

= A

∫ t

0

∫ t−s

0

E(τ)f̃(s, u(s), us)dτds

=

∫ t

0

[E(t− s)f̃(s, u(s), us)ds− f(s, u(s), us)]ds.

Hence, by (4.2.1), we infer that

u(t) = A

∫ t

0

u(s)ds +

∫ t

0

f(s, u(s), us)ds + z, 0 ≤ t ≤ Tsup(φ). (4.2.3)
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Using (4.2.2), (4.2.3) and the closedness of A, we obtain u(t) ∈ D(A) for a.e. t ∈
[0, Tsup(φ)) and

Au(t) = u′(t)− f(t, u(t), ut), a.e. t ∈ [0, Tsup(φ)).

This means that u(t) is a strong solution of (3.1.2).

2

A direct corollary of Theorem 4.2.2 and Theorem 3.3.8 is

Corollary 4.2.3. Let the assumptions of Theorem 4.2.2 hold, and let {E(t)}t∈[0,T ]

and f̃ satisfy the condition (1) (resp. (2)) of Theorem 3.3.8. If X satisfies the

Radon-Nikodym property, then for each φ ∈ Q[0,T ] with Ez = φ(0) (z ∈ D(A)),

there exists a real number Tsup(φ) such that (3.1.2) has a (resp. a unique) strong

solution u(t) on [0, Tsup(φ)).

Remark 4.2.4. Theorem 4.2.2 and Corollary 4.2.3 is new even for the corresponding

case without delay (cf. [30]).

When {E(t)}t∈[0,T ] is a local C-regularized semigroup, Theorem 4.2.2 can be im-

proved as follows.

Theorem 4.2.5. Let T > 0 and A be the generator of a local C-regularized semi-

group {E(t)}t∈[0,T ]. Let P be an admissible phase space and f̃ ∈ C([0, T ]×X×P , X)

satisfying (4.1.3) for σ = 0. If X satisfies the Radon-Nikodym property, then for

each φ ∈ Q[0,T ] with Ez = φ(0) (z ∈ D(A)), the corresponding mild solution of

(3.1.2) (if exists) is a classical solution of (3.1.2).

Proof. Let φ ∈ Q[0,T ] with Ez = φ(0) for a z ∈ D(A), and let u(t) be the

corresponding mild solution of (3.1.2) on [0, Tsup(φ)).

Since {E(t)}t∈[0,T ] is a local C-regularized semigroup, we have E(t)z is differ-

entiable in [0, Tsup(φ)) for every z ∈ D(A). On the other hand, by virtue of the

Radon-Nikodym property of X, (4.1.3) and Theorem 4.1.2, we obtain f̃(s, u(s), us)ds

is differentiable a.e. t ∈ [0, Tsup(φ)). Therefore, it can be proved that

t →
∫ t

0

E(t− s)f̃(s, u(s), us)ds
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is differentiable in [0, Tsup(φ)). This implies Theorem 4.2.5 is true.

2

Moreover, we can obtain the following two results if the related operator family

is supposed to have a good property.

Theorem 4.2.6. Let T > 0, {U(t, s)}0≤s≤t≤T ⊂ L(X) being a Lipschitz evolution

system (cf. [65, 66]), i.e., satisfying

‖U(t, s)− I‖ ≤ (t− s)Heω(t−s), 0 ≤ s ≤ t ≤ T, (4.2.4)

for some constants H, ω ≥ 0. Let P be an admissible phase space and f ∈ C([0, T ]×
X × P , X) satisfying (4.1.3) (for σ = 0). Then for each φ ∈ P, the solution

u(t) of (3.4.1) (if exists) on [0, Tsup(φ)) is Lipschitz continuous on [σ, τ0] for every

τ0 ∈ [σ, Tsup), and is differentiable a.e. t ∈ [0, Tsup(φ)) when X satisfies the Radon-

Nikodym property.

Moreover, if U(t, 0)φ(0) is differentiable in t ∈ [0, Tsup(φ)), then u(t) is differen-

tiable in t ∈ [0, Tsup(φ)) when X satisfies the Radon-Nikodym property.

Proof. Let φ ∈ P . By (4.2.4) we get for every t ∈ [0, T ], η ∈ [0, τ0 − T ],

‖U(t + η, 0)φ(0)− U(t, 0)φ(0)‖ ≤ ‖U(t + η, t)− I‖‖U(t, 0)φ(0)‖

≤ HeT max
t∈[0,T ]

‖U(t, 0)‖‖φ(0)‖η,

and for t ∈ [σ, T ], η ∈ [0, T − t], and x(·) ∈ P [σ,T ],

∫ t

0

‖[U(t + η, s)− U(t, s)]f(s, x(s), xs)‖ds

≤
∫ t

0

‖U(t + η, t)− I‖‖U(t, s)f(s, x(s), xs)‖ds

≤ THeT max
t,s∈[0,T ]

‖U(t, s)‖ max
t∈[0,T ]

‖f(t, x(t), xt)‖η,

i.e, (4.1.5) holds. Thus, by Theorem 4.1.2 (2), the solution u(t) of (3.4.1) (if exists)

on [0, Tsup(φ)) is Lipschitz continuous on [σ, τ0] for every τ0 ∈ [σ, Tsup).
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The Radon-Nikodym property of X and (4.1.3) implies that f̃(s, u(s), us)ds is

differentiable a.e. t ∈ [0, Tsup(φ)). Therefore, it can be proved that

t →
∫ t

0

U(t, s)f(s, u(s), us)ds

is differentiable in [0, Tsup(φ)). This, together with (4.2.4), means that u(t) is differ-

entiable a.e. t ∈ [0, Tsup(φ)) when X satisfies the Radon-Nikodym property.

Moreover, if U(t, 0)φ(0) is differentiable in t ∈ [0, Tsup(φ)), then u(t) is differen-

tiable in t ∈ [0, Tsup(φ)) since X satisfies the Radon-Nikodym property.

2

From [70, Section 5.2], we know that under the “Parabolic Assumption”, there is

an operator family {W (t, s)}0≤s≤t≤T ⊂ L(X) with the properties that it is strongly

continuous for 0 ≤ s ≤ t ≤ T , W ′(t, s) ∈ L(X) being strongly continuous on

0 ≤ s < t ≤ T , and

‖W (t, s)‖ ≤ M, ‖W ′(t, s)‖ ≤ M̂(t− s)α−1, 0 ≤ s < t ≤ T, (4.2.5)

for constants M > 0, M̂ > 0 and α ∈ (0, 1], such that

U(t, s) = Ss(t− s) + W (t, s), 0 ≤ s ≤ t ≤ T,

where for every t ∈ [0, T ], {St(s)}s≥0 is a strongly continuous semigroup on X

generated by A(t).

Theorem 4.2.7. Let {W (t, s)}0≤s≤t≤T be the evolution system as above, and f ∈
C([0, T ] × X × P , X) satisfying (4.1.3) for σ = 0. Then for each φ ∈ P with

φ(0) ∈ D, the solution u(t) of the Cauchy problem

u(t) =





W (t, 0)φ(0) +

∫ t

0

W (t, s)f(s, u(s), us)ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0]

(4.2.6)

(if exists) on [0, Tsup(φ)) is Lipschitz continuous on [σ, τ0] for every τ0 ∈ [σ, Tsup),

and is differentiable in t ∈ [0, Tsup(φ)) when X satisfies the Radon-Nikodym property.
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Proof. Let φ ∈ P and τ0 < Tsup(φ). For t ∈ [σ, T ], η ∈ [0, T − t], and x(·) ∈ P [σ,T ],

we obtain, from (4.2.5) and (4.2.6),

∫ t

0

‖[W (t + η, s)−W (t, s)]f(s, u(s), us)‖ds

≤
∫ t

0

∫ η

0

∥∥∥∥
∂W

∂µ
(t + µ, s)f(s, u(s), us)

∥∥∥∥ dµds

≤ max
t∈[0,τ0]

‖f(t, u(t), ut)‖
∫ η

0

∫ t

0

M̂(t + µ− s)α−1dsdµ

≤ Mη,

for a constant M . This means (4.1.5) holds for {W (t, s)}0≤s≤t≤T and f .

On the other hand, by (3.4.3), we have for t ∈ [0, T ], η ∈ [0, T − t],

‖W (t + η, 0)φ(0)−W (t, 0)φ(0)‖

≤ [‖A(t0)U(t0, 0)A(0)−1A(0)φ(0)‖+ max
t∈[0,T ]

‖S0(t)‖‖A(t0)A(0)−1A(0)φ(0)‖]η

≤ Mη,

where t0 ∈ [t, t + η] and M is a constant.

Therefore, by Theorem 4.1.2 (2) we get the desired Lipschitz continuity of the

solution u(t) of (4.2.6).

Similar reasoning as in the proof of Theorem 4.2.6 gives that u(t) is differentiable

in t ∈ [0, Tsup(φ)) when X satisfies the Radon-Nikodym property.

2
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Chapter 5

Wellposedness of the Cauchy
problem for abstract functional
equations with infinite delay

In the previous chapter, we investigated the regularity for abstract functional equa-

tions with infinite delay in spaces with the Radon-Nikodym property. We are now

interested in the wellposedness of (3.1.2) and (3.1.3) in the general setting of Ba-

nach spaces. In Chapter 3, we gave a few wellposedness theorems (Theorems 3.3.11,

3.4.5 and 3.4.6) under an assumption (among others) on the range of nonlinear term

f . Our objective here is to establish wellposedness theorems for (3.1.2) and (3.1.3)

when f is Fréchet differentiable. In Section 1, we introduce a new concept for a

continuously differentiable function φ ∈ P , called one-point-property. In terms of

it, we set up a wellposedness result for (3.1.2), which generalizes the corresponding

results in [3, 8, 13, 22, 23, 35, 36, 45, 46, 48, 51, 58, 59, 71, 77, 78, 84, 86, 87]). Section 2

is devoted to the nonautonomous problem (3.1.3). The wellposedness result given

there is new even for the finite delay case.

5.1 Wellposedness of (3.1.2)

Definition 5.1.1. A continuously differentiable function φ ∈ P is said to have

one-point-property if there exists a point a = a(φ) > 0 such that φ′−a ∈ P and the

derivative of φt (∈ P) at point t = −a in P is φ′−a.
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Remark 5.1.2. (1) If φ : (−∞, 0] → X is continuously differentiable with compact

support, then φ has one-point-property.

(2) Suppose that ‖φ‖P ≤ const‖ψ‖P for every φ, ψ ∈ P with ‖φ(θ)‖ ≤ ‖ψ(θ)‖ a.e.

θ ∈ (−∞, 0]. Then φ has one-point-property if φ (∈ P) is continuously differentiable

in (−∞, 0] and there exists a = a(φ) > 0 such that φ−a and φ′−a ∈ P .

Theorem 5.1.3. Let A have a local E-existence family {E(t)}t∈[0,T ]. Let P be an

admissible phase space and f̃ be continuously differentiable from [0, T ] × X × P
into X. Then (3.1.2) has a unique classical solution for any φ ∈ Q0 = {φ; φ :

(−∞, 0] → X with one-point-property, φ′(0) = Aφ(0) + f(0, φ(0), φ), and there is a

z ∈ D(A) such that Ez = φ(0)}. Moreover, if u(t) and û(t) are classical solutions

of (3.1.2) on [0, T ] with respect to φ ∈ P and to φ̂ ∈ P respectively, then there is a

constant L(u, û) such that

‖u(t)− û(t)‖P [0,T ] ≤ L(u, û)
(
‖φ(0)− φ̂(0)‖[R(E)] + ‖φ− φ̂‖P

)
.

Proof. It is clear that f̃ satisfies

‖f̃(t, x, φ)− f̃(t, y, ψ)‖ ≤ L ef (‖x− y‖+ ‖φ− ψ‖P) ,

for t ∈ [0, T ] x, y ∈ X, φ, ψ ∈ P ,
(5.1.1)

for a constant L ef > 0. Thus, according to Theorem (3.3.8) (2), we infer that for

any φ ∈ Q0, there exists u(t) ∈ P [0,T ]
φ such that

u(t) =





E(t)z +

∫ t

0

E(t− s)f̃(s, u(s), us)ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0],

=





E(t)z +

∫ t

0

E(t)f̃(t− s, u(t− s), ut−s)ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0].

(5.1.2)

We claim that it is sufficient to prove both u(t) (from [0, T ] into X) and ut (from

[0, T ] into P) are continuously differentiable if we want to show that u(t) is also the

classical solution of (3.1.2). In fact, if we know that u(t) and ut are continuously
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differentiable, then by [89, Corollary 3.2] we have

Au(t) = AE(t)z + E(t)f̃(0, φ(0), φ)− Ef̃(t, u(t), ut)

+

∫ t

0

E(t− s)
d

ds
f̃(s, u(s), us)dr,

u′(t) = AE(t)z + E(t)f̃(0, φ(0), φ) +

∫ t

0

E(t− s)
d

ds
f̃(s, u(s), us)dr.

This yields

u′(t) = Au(t) + f(t, u(t), ut).

This means u(t) is a classical solution of (1.1).

Write 



f̃ ′(1)(s, x, φ) =
∂

∂s
f̃(s, x, φ),

f̃ ′(2)(s, x, φ) =
∂

∂x
f̃(s, x, φ),

f̃ ′(3)(s, x, φ) =
∂

∂φ
f̃(s, x, φ).

Then

sup
s∈[0,T ]

∥∥∥f̃ ′(2)(s, u(s), us)
∥∥∥ , sup

s∈[0,T ]

∥∥∥f̃ ′(3)(s, u(s), us)
∥∥∥ ≤ const. (5.1.3)

We set for each τ > 0 and φ ∈ P ,

P [0,τ ]
φ =

{
u : (−∞, τ ] → X; u

∣∣∣
[0,τ ]

∈ C([0, τ ], X) and u0 = φ

}
.

Then P [0,τ ]
φ is a Banach space under the norm

‖u‖P [0,τ ] := max
t∈[0,τ ]

‖u(t)‖+ ‖φ‖P .

From φ ∈ Q0 and by (H1) it follows that φ′ ∈ P . For any ζ(t) ∈ P [0,T ]
φ′ , define

(F(ζ))(t) =





A(t)E(t)φ(0) + E(t)f̃(0, φ(0), φ) +

∫ t

0

E(t− s)f̃ ′(1)(s, u(s), us)ds

+

∫ t

0

E(t− s)f̃ ′(2)(s, u(s), us)ζ(s)ds

+

∫ t

0

E(t− s)f̃ ′(3)(s, u(s), us)ζsds, 0 ≤ t ≤ T,

φ′(t), t ∈ (−∞, 0].
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Then Fζ ∈ P [0,T ]
φ′ and F has a unique fixed point ζ(t) in P [0,T ]

φ′ by standard arguments.

Let

ζδ
s =

1

δ
(us+δ − us)− ζs.

Now we show that

lim
δ→0+

ζδ
s = 0. (5.1.4)

Clearly, φ ∈ Q0 implies that φ−a+δ (δ > 0), φ−a, φ′−a ∈ P . So we get by (H2), for

any s ∈ [0, T ), δ ∈ (0, T − s),

∥∥ζδ
s

∥∥
P

≤ max
t∈[0,T ]

K(t + a) max

{
max
η∈[0,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− ζ(η)

∥∥∥∥ ,

max
η∈[−δ,0]

∥∥∥∥
1

δ
(u(η + δ)− φ(η))− φ′(η)

∥∥∥∥ ,

max
η∈[−a,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− φ(η))− φ′(η)

∥∥∥∥
}

+ sup
t∈[0,T ]

M(t + a)

∥∥∥∥
1

δ
(φ−a+δ − φ−a)− φ′−a

∥∥∥∥
P

.

(5.1.5)

Our next task is to estimate every item on the right of (5.1.5).

First, by (5.1.1), (5.1.2) and (3.3.1), we get for each η ∈ [0, s],

u(η + δ)− u(η)

= E(η + δ)φ(0)− E(η)φ(0) +

∫ δ

0

E(η + δ − τ)f̃(τ, u(τ), uτ )dτ

+

∫ η+δ

δ

E(η + δ − τ)f̃(τ, u(τ), uτ )dτ −
∫ η

0

E(η − τ)f̃(τ, u(τ), uτ )dτ

=

∫ η+δ

η

A(τ)E(τ, 0)φ(0)dτ +

∫ δ

0

E(η + δ − τ)f̃(τ, u(τ), uτ )dτ

+

∫ η

0

E(η − τ)

{ [
f̃ (τ + δ, u(τ + δ), uτ+δ)− f̃ (τ, u(τ + δ), uτ+δ)

]

+
[
f̃ (τ, u(τ + δ), uτ+δ)− f̃ (τ, u(τ), uτ+δ)

]

+
[
f̃ (τ, u(τ), uτ+δ)− f̃ (τ, u(τ), uτ )

]}
dτ.
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So, for any η ∈ [0, s],

∥∥∥∥
1

δ
(u(η + δ)− u(η))− ζ(η)

∥∥∥∥

≤
∥∥∥∥

1

δ

∫ η+δ

η

A(τ)E(τ)φ(0)dτ − A(η)E(η)φ(0)

∥∥∥∥

+

∥∥∥∥
1

δ

∫ δ

0

E(η + δ − τ)f̃(τ, u(τ), uτ )dτ − E(η)f̃(0, φ(0), φ)

∥∥∥∥

+

∥∥∥∥
∫ η

0

E(η − τ)
[
f̃ ′(1) (τ, u(τ + δ), uτ+δ)− f̃ ′(1) (τ, u(τ), uτ ) + ω1(τ, δ)

]
dτ

∥∥∥∥

+

∥∥∥∥∥
∫ η

0

E(η − τ)

{ [
f̃ ′(2) (τ, u(τ), uτ+δ)− f̃ ′(2) (τ, u(τ), uτ )

]

×
(

1

δ
(u(τ + δ)− u(τ))− ζ(τ)

)

+
[
f̃ ′(2) (τ, u(τ), uτ+δ)− f̃ ′(2) (τ, u(τ), uτ )

]
ζ(τ)

+f̃ ′(2) (τ, u(τ), uτ )

(
1

δ
(u(τ + δ)− u(τ))− ζ(τ)

)
+ ω2(τ, δ)

}
dτ

∥∥∥∥∥
+

∥∥∥∥
∫ η

0

E(η − τ)

[
f̃ ′(3) (τ, u(τ), uτ )

(
1

δ
(uτ+δ − uτ )− ζτ

)
+ ω3(τ, δ)

]
dτ

∥∥∥∥ ,

where limδ→0+ ‖ωi(τ, δ)‖ = 0 (i = 1, 2, 3) which is implied by the continuous differ-

entiability of f̃ . Thus, noting that

sup
s∈[0,T ]

∥∥∥f̃(s, u(s), us)
∥∥∥ ≤ const, (5.1.6)

and using (5.1.1), (5.1.3) and Gronwall-Bellman’s inequality, we have

sup
η∈[0,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− ζ(η)

∥∥∥∥ ≤ N1(δ) + const

∫ s

0

sup
τ∈[0,s]

∥∥ζδ
τ

∥∥
P dτ, (5.1.7)

where limδ→0+ N1(δ) = 0.
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Second, observing

sup
η∈[−δ,0]

∥∥∥∥
1

δ
(u(η + δ)− φ(η))− φ′(η)

∥∥∥∥

≤ sup
η∈[−δ,0]

∥∥∥∥∥
1

δ
[u(η + δ)− φ(0)]− η + δ

δ
φ′(0)

+
1

δ
[φ(0)− φ(η)] +

η

δ
φ′(0) + φ′(0)− φ′(η)

∥∥∥∥∥

≤ max

{ ∥∥∥∥
1

δ
[φ(0)− φ(−δ)]− φ′(−δ)

∥∥∥∥ ,

sup
η∈(−δ,0]

∥∥∥∥
η + δ

δ

[
u(η + δ)− φ(0)

η + δ
− φ′(0)

]∥∥∥∥

+ sup
η∈(−δ,0]

∥∥∥∥
1

δ
[φ(0)− φ(η)] +

η

δ
φ′(0)

∥∥∥∥ + sup
η∈(−δ,0]

‖φ′(0)− φ′(η)‖
}

,

and

sup
η∈(−δ,0]

∥∥∥∥
[
u(η + δ)− φ(0)

η + δ
− φ′(0)

]∥∥∥∥

≤ sup
η∈(−δ,0]

∥∥∥∥
1

η + δ
[E(η + δ)φ(0)− φ(0)]− A(0)φ(0)

∥∥∥∥

+ sup
η∈(−δ,0]

∥∥∥∥
1

η + δ

∫ η+δ

0

E(η + δ − τ)f̃(τ, u(τ), us)dτ − f̃(0, φ(0), φ)

∥∥∥∥ ,

we obtain

lim
δ→0+

sup
η∈[−δ,0]

∥∥∥∥
1

δ
(u(η + δ)− φ(η))− φ′(η)

∥∥∥∥ = 0. (5.1.8)

It is easy to see that

lim
δ→0+

sup
η∈[−a,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− φ(η))− φ′(η)

∥∥∥∥ = 0. (5.1.9)

Finally, the one-point-property of φ means that

lim
δ→0+

∥∥∥∥
1

δ
(φ−a+δ − φ−a)− φ′−a

∥∥∥∥
P

= 0. (5.1.10)

Combining (5.1.7) – (5.1.10) together, we get that for any s ∈ [0, T ) and δ ∈
(0, T − s),

sup
η∈[0,t]

∥∥ζδ
η

∥∥
P ≤ N2(δ) + const

∫ t

0

sup
η∈[0,s]

∥∥ζδ
η

∥∥
P ds,
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where limδ→0+ N2(δ) = 0. According to Gronwall-Bellman’s inequality, (5.1.4) holds.

Clearly, (5.1.4) and (5.1.7) imply that

lim
δ→0+

sup
η∈[0,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− ζ(η)

∥∥∥∥ = 0.

Hence, u(t) is right continuously differentiable on [0, T ).

On the other hand, for any s ∈ (0, T ], δ ∈ (−s, 0),

∥∥ζδ
s

∥∥
P ≤ sup

s∈[0,T ]

K(s + a)

{
sup

η∈[−δ,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− ζ(η)

∥∥∥∥

+ sup
η∈[0,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− u(η))− ζ(η)

∥∥∥∥

+ sup
η∈[−a,0]

∥∥∥∥
1

δ
(φ(η + δ)− φ(η))− φ′(η)

∥∥∥∥
}

+ sup
s∈[0,T ]

M(s + a)

∥∥∥∥
1

δ
(φ−a+δ − φ−a)− φ′−a

∥∥∥∥
P

.

Noting

sup
η∈[0,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− u(η))− ζ(η)

∥∥∥∥

≤ sup
η∈[0,−δ]

∥∥∥∥∥
1

δ
[φ(η + δ)− φ(0)]− η + δ

δ
φ′(0)

+φ′(0)− ζ(η) +
1

δ
[φ(0)− u(η)] +

η

δ
φ′(0)

∥∥∥∥∥

≤ max

{
sup

η∈[0,−δ)

∥∥∥∥
η + δ

δ

[
φ(η + δ)− φ(0)

η + δ
− φ′(0)

]∥∥∥∥ + sup
η∈[0,−δ)

‖ζ(η)− φ′(0)‖

+ sup
η∈[0,−δ)

∥∥∥∥
1

δ
[φ(0)− u(η)] +

η

δ
φ′(0)

∥∥∥∥ ,

∥∥∥∥
1

δ
[φ(0)− u(−δ)]− ζ(0)

∥∥∥∥ + ‖ζ(0)− ζ(−δ)‖
}

,

we conclude by φ ∈ Q0, ζ(t) ∈ P [0,T ]
φ′ , and the right continuous differentiability of

u(t) that

lim
δ→0−

sup
η∈[0,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− u(η))− ζ(η)

∥∥∥∥ = 0. (5.1.11)
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Using the fact that for any s ∈ (0, T ], δ ∈ (−s, 0), η ∈ [−δ, s],

u(η + δ)− u(η)

= E(η + δ)φ(0)− E(η)φ(0) +

∫ η

−δ

E(η − τ)f̃(τ + δ, u(τ + δ), uτ+δ)dτ

−
∫ η

0

E(η − τ)f̃(τ, u(τ), us)dτ

= −
∫ η

η+δ

A(τ)E(τ)φ(0)dτ −
∫ −δ

0

E(η − τ)f̃(τ, u(τ), uτ )dτ

+

∫ η

−δ

E(η − τ)
[
f̃ (τ + δ, u(τ + δ), uτ+δ)− f̃ (τ, u(τ), uτ )

]
dτ,

(5.1.12)

we get by similar arguments as in getting (5.1.7) that

sup
η∈[−δ,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− ζ(η)

∥∥∥∥ ≤ N3(δ) + const

∫ s

0

sup
τ∈[−δ,s]

∥∥ζδ
τ

∥∥
P dτ, (5.1.13)

where limδ→0− N3(δ) = 0. Moreover, by the one-point-property of φ, we know that

lim
δ→0−

∥∥∥∥
1

δ
(φ−a+δ − φ−a)− φ′−a

∥∥∥∥
P

= 0.

Combining (5.1.11) – (5.1.12) and the obvious fact

lim
δ→0−

sup
η∈[−a,0]

∥∥∥∥
1

δ
(φ(η + δ)− φ(η))− φ′(η)

∥∥∥∥ = 0,

with the Gronwall-Bellman inequality, we obtain

lim
δ→0−

ζδ
s = 0. (5.1.14)

This implies that ut is left continuously differentiable on (0, T ]. (5.1.13) shows that

u(t) is left continuously differentiable on (0, T ].

2

5.2 Wellposedness of (3.1.3)

Theorem 5.2.1. Let T > 0, {A(t)}t∈[0,T ] be an operator family such that
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(i) there are constants M and ω such that

(ω,∞) ∈ ρ(A(t)) for t ∈ [0, T ],

and ∥∥∥∥∥
k∏

j=1

(λ− A(tj))
−1

∥∥∥∥∥ ≤
M

(λ− ω)k
for λ > ω

and every finite sequence {tj}k
1 ⊂ [0, T ] (k ∈ N),

(ii) D(A(t)) = D is independent of t ∈ [0, T ],

(iii) for every x ∈ D, the function A(t)x is continuously differentiable in [0, T ].

Let P be an admissible phase space and f be continuously differentiable from [0, T ]×
X × P into X. Then for any φ ∈ Q0 = {φ; φ : (−∞, 0] → X with one-point-

property, φ(0) ∈ D and φ′(0) = A(0)φ(0) + f(0, φ(0), φ)}, (3.1.3) has a unique

classical solution.

Moreover, let u(t) and û(t) be classical solutions of (3.1.3) for φ ∈ P and for

φ̂ ∈ P respectively. Then there is a constant M such that

‖u(t)− û(t)‖P [0,τ0] ≤ M
(
‖φ(0)− φ̂(0)‖+ ‖φ− φ̂‖P

)
. (5.2.1)

Proof. Endowing D with the graph norm of A(0):

‖x‖D := ‖x‖+ ‖A(0)x‖, x ∈ D,

we get a Banach space (D, ‖·‖D). By the hypotheses, we know that there is a λ ∈ R

large enough such that

J(t) = λI − A(t), t ∈ [0, T ]

is an isomorphism of (D, ‖·‖D) onto X for every t ∈ [0, T ], and J(t)y is continuously

differentiable in X for any y ∈ (D, ‖ · ‖D) and t ∈ [0, T ]. So J−1(t) is strongly

continuously differentiable in t ∈ [0, T ] and

d

dt
J−1(t)x = J−1(t)J ′(t)J−1(t)x, x ∈ X, t ∈ [0, T ],

where J ′(t) denotes the strong derivative of J(t).
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By virtue of [81, Theorem 7.4], there exists a unique evolution system

{U(t, s)}0≤s≤t≤T satisfying

U(t, s)D ⊂ D, for 0 ≤ s ≤ t ≤ T,

∂

∂t
U(t, s)y = −A(t)U(t, s)y, for y ∈ (D, ‖ · ‖D), 0 ≤ s ≤ t ≤ T,

and
∂

∂s
U(t, s)y = U(t, s)A(s)y, for y ∈ (D, ‖ · ‖D), 0 ≤ s ≤ t ≤ T.

The uniform boundedness principle implies that

‖J ′(t)J−1(t)‖ ≤ const, for t ∈ [0, T ],

‖J(t)U(t, s)J−1(t)‖ ≤ const, for 0 ≤ s ≤ t ≤ T.

Since f is continuously differentiable from [0, T ] ×X × P into X, we know that f

is uniformly Lipschitz continuous. This implies that for any φ ∈ P , there exists

x(t) ∈ P [0,T ]
φ such that

x(t) =





U(t, 0)φ(0) +

∫ t

0

U(t, s)f(s, x(s), xs)ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0].

(5.2.2)

Now we prove that x(t) is a classical solution of (3.1.3).

Define

P̃ [0,T ] =

{
u : (−∞, T ] → X; u

∣∣∣
[0,T ]

∈ C1([0, T ], X) and u0 ∈ P
}

,

endowed with the norm

‖u‖ eP [0,T ] := max
t∈[0,T ]

‖u(t)‖+ max
t∈[0,T ]

‖u′(t)‖+ ‖u0‖P .

Then P̃ [0,T ] is a Banach space.

Let φ ∈ P being continuously differentiable in (−∞, 0], and set

P̃ [0,T ]
φ :=

{
u ∈ P̃ [0,T ]; u0 = φ, u′0 = φ′

}
.

Then P̃ [0,T ]
φ is a nonempty closed convex subset of P̃ [0,T ].
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For every φ ∈ Q0 and u ∈ P̃ [0,T ]
φ , define

µt(θ) :=





u′(t + θ), 0 ≤ t + θ ≤ T,

φ′(t + θ), t + θ < 0.

Clearly, µt ∈ P . Moreover, for each s ∈ [0, T ),

∥∥∥∥
us+δ − us

δ
− µs

∥∥∥∥
P

≤ max
t∈[0,T ]

K(t + a) max

{
max
η∈[0,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− u′(η)

∥∥∥∥ ,

max
η∈[−δ,0]

∥∥∥∥
1

δ
(u(η + δ)− φ(η))− φ′(η)

∥∥∥∥ ,

max
η∈[−a,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− φ(η))− φ′(η)

∥∥∥∥
}

+ sup
t∈[0,T ]

M(t + a)

∥∥∥∥
1

δ
(φ−a+δ − φ−a)− φ′−a

∥∥∥∥
P

, for 0 < δ < T − s,

and for each s ∈ (0, T ],

∥∥∥∥
us+δ − us

δ
− µs

∥∥∥∥
P

≤ sup
t∈[0,T ]

K(t + a)

{
sup

η∈[−δ,s]

∥∥∥∥
1

δ
(u(η + δ)− u(η))− u′(η)

∥∥∥∥

+ sup
η∈[0,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− u(η))− u′(η)

∥∥∥∥

+ sup
η∈[−a,0]

∥∥∥∥
1

δ
(φ(η + δ)− φ(η))− φ′(η)

∥∥∥∥
}

+ sup
t∈[0,T ]

M(t + a)

∥∥∥∥
1

δ
(φ−a+δ − φ−a)− φ′−a

∥∥∥∥
P

, for − s < δ < 0.
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Observing that

sup
η∈[−δ,0]

∥∥∥∥
1

δ
(u(η + δ)− φ(η))− φ′(η)

∥∥∥∥

≤ max

{ ∥∥∥∥
1

δ
[φ(0)− φ(−δ)]− φ′(−δ)

∥∥∥∥ ,

sup
η∈(−δ,0]

∥∥∥∥
η + δ

δ

[
u(η + δ)− φ(0)

η + δ
− φ′(0)

]∥∥∥∥

+ sup
η∈(−δ,0]

∥∥∥∥
1

δ
[φ(0)− φ(η)] +

η

δ
φ′(0)

∥∥∥∥ + sup
η∈(−δ,0]

‖φ′(0)− φ′(η)‖
}

,

≤ max

{ ∥∥∥∥
1

δ
[φ(0)− φ(−δ)]− φ′(0)‖+ ‖φ′(−δ)− φ′(0)

∥∥∥∥

sup
η∈(−δ,0]

∥∥∥∥
η + δ

δ

[
u(η + δ)− u(0)

η + δ
− u′(0)

]∥∥∥∥

+ sup
η∈(−δ,0]

∥∥∥∥
1

δ
[φ(0)− φ(η)] +

η

δ
φ′(0)

∥∥∥∥ + sup
η∈(−δ,0]

‖φ′(0)− φ′(η)‖
}

,

for s ∈ [0, T ), 0 < δ < T − s,

and

sup
η∈[0,−δ]

∥∥∥∥
1

δ
(φ(η + δ)− u(η))− u′(η)

∥∥∥∥

≤ max

{
sup

η∈[0,−δ)

∥∥∥∥
η + δ

δ

[
φ(η + δ)− φ(0)

η + δ
− φ′(0)

]∥∥∥∥ + sup
η∈[0,−δ)

‖u′(η)− u′(0)‖

+ sup
η∈[0,−δ)

∥∥∥∥
1

δ
[u(0)− u(η)] +

η

δ
φ′(0)

∥∥∥∥ ,

∥∥∥∥
1

δ
[u(0)− u(−δ)]− u′(0)

∥∥∥∥ + ‖φ′(0)− φ′(−δ)‖
}

,

for s ∈ (0, T ], −s < δ < 0,

we obtain for s ∈ [0, T ],

∥∥∥∥
us+δ − uδ

δ
− µs

∥∥∥∥
P
→ 0, as δ → 0,

that is, ut is continuously differentiable in [0, T ]. Therefore, f(t, u(t), ut) is continu-
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ously differentiable in [0, T ]. If we set





f ′(1)(t, x, φ) :=
∂

∂t
f(t, x, φ), t ∈ [0, T ], x ∈ X, φ ∈ P

f ′(2)(t, x, φ) :=
∂

∂x
f(t, x, φ), t ∈ [0, T ], x ∈ X, φ ∈ P

f ′(3)(t, x, φ) :=
∂

∂φ
f(t, x, φ), t ∈ [0, T ], x ∈ X, φ ∈ P ,

then for t ∈ [0, T ], x ∈ X, φ ∈ P ,

d

dt
f(t, u(t), ut) = f ′(1)(t, u(t), ut) + f ′(2)(t, u(t), ut)u

′(t) + f ′(3)(t, u(t), ut)(ut)
′.

Take φ ∈ Q0 and for every u ∈ P̃ [0,T ]
φ , write

(Fu)(t) :=





U(t, 0)φ(0) +

∫ t

0

U(t, s)f(s, u(s), us)ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0].

Observing that for t ∈ [0, T ],

∫ t

0

U(t, s)f(s, u(s), us)ds

= −
∫ t

0

∂U(t, s)

∂s
J−1(s)f(s, u(s), us)ds + λ

∫ t

0

U(t, s)J−1(s)f(s, u(s), us)ds

= −J−1(t)f(t, u(t), ut) + U(t, 0)J−1(0)f(0, φ(0), φ)

+

∫ t

0

U(t, s)
d

ds
J−1(s)f(s, u(s), us))ds + λ

∫ t

0

U(t, s)J−1(s)f(s, u(s), us)ds

= −J−1(t)f(t, u(t), ut) + U(t, 0)J−1(0)f(0, φ(0), φ)

+

∫ t

0

U(t, s)J−1(s)J ′(s)J−1(s)f(s, u(s), us)ds

+

∫ t

0

U(t, s)J−1(s)
d

ds
(f(s, u(s), us))ds + λ

∫ t

0

U(t, s)J−1(s)f(s, u(s), us)ds,
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and that

∥∥∥∥
1

δ
[(F)u(δ)− φ(0)]− φ′(0)

∥∥∥∥

=

∥∥∥∥
1

δ

[
U(δ, 0)φ(0) +

∫ δ

0

U(δ, s)f(s, u(s), us)ds− φ(0)

]
− φ′(0)

∥∥∥∥

=

∥∥∥∥
U(δ, 0)φ(0)− U(0, 0)φ(0)

δ
+

1

δ

∫ δ

0

U(δ, s)f(s, u(s), us)ds− φ′(0)

∥∥∥∥

→ ‖A(0)φ(0) + f(0, φ(0), φ)− φ′(0)‖ = 0, as δ → 0+,

we have

(Fu)′(t) =





−J−1(t)J ′(t)J−1(t)f(t, u(t), ut)− J−1(t)
d

dt
(f(t, u(t), ut))

+A(t)U(t, 0)φ(0) + A(t)U(t, 0)J−1(0)f(0, φ(0), φ)

−
∫ t

0

A(t)U(t, s)J−1(s)J ′(s)J−1(s)f(s, u(s), us)ds

+J−1(t)J ′(t)J−1(t)f(t, u(t), ut) + J−1(t)
d

dt
(f(t, u(t), ut))

−
∫ t

0

A(t)U(t, s)J−1(s)
d

ds
(f(s, u(s), us))ds

−λ

∫ t

0

A(t)U(t, s)J−1(s)f(s, u(s), us)ds

+λJ−1(t)f(t, u(t), ut), t ∈ [0, T ],

φ′(t), t ∈ (−∞, 0],

=





A(t)U(t, 0)[φ(0) + J−1(0)f(0, φ(0), φ)] + λJ−1(t)f(t, u(t), ut)

−
∫ t

0

A(t)U(t, s)
[
λ + J−1(s)J ′(s)

]
J−1(s)f(s, u(s), us)ds

−
∫ t

0

A(t)U(t, s)J−1(s)[f ′(1)(s, u(s), us)

+f ′(2)(s, u(s), us)u
′(s) + f ′(3)(s, u(s), us)(us)

′]ds, t ∈ [0, T ],

φ′(t), t ∈ (−∞, 0].
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For each φ ∈ P and r > 0, write

Br(φ) := {ψ ∈ P ; ‖ψ − φ‖P ≤ r} ,

Br(φ(0)) := {x ∈ X; ‖x− φ(0)‖ ≤ r} .

Obviously, there is a number r > 0 such that

M := max
{

f(t, x, ψ), f ′(1)(t, x, ψ), f ′(2)(t, x, ψ), f ′(3)(t, x, ψ);

t ∈ [0, T ], x ∈ Br(φ(0)), ψ ∈ Br(φ)
}

< ∞.

For every t ∈ [0, T ], let

f̄(t, x, ψ) := f(t, x, ψ)

∣∣∣∣∣
x∈Br(φ(0)), ψ∈Br(φ)

,

f̄(i)(t, x, ψ) := f ′(i)(t, x, ψ)

∣∣∣∣∣
x∈Br(φ(0)), ψ∈Br(φ)

, i = 1, 2, 3.

and let F , F(1), F(2) and F(3) be the extensions of f̄ , f̄(1), f̄(2) and f̄(3) respectively

to the whole space R×X × P such that

max
t∈R,x∈X,ψ∈P

{
F (t, x, ψ), F(1)(t, x, ψ), F(2)(t, x, ψ), F(3)(t, x, ψ)

} ≤ M.

By virtue of [26, Lemma 1.1], we get sequences {F n}n∈N , {F n
(1)}n∈N , {F n

(2)}n∈N , and

{F n
(3)}n∈N of locally Lipschitz functions, satisfying

‖F n(t, x, ψ)− F (t, x, ψ)‖ ≤ 1

n
, n ∈ N,

‖F n
(i)(t, x, ψ)− F(i)(t, x, ψ)‖ ≤ 1

n
, n ∈ N, i = 1, 2, 3,

and

max
t∈R,x∈X,ψ∈P

{
F n(t, x, ψ), F n

(1)(t, x, ψ), F n
(2)(t, x, ψ), F n

(3)(t, x, ψ)
} ≤ M + 1.
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For each n ∈ N , φ ∈ Q0 and u ∈ P̃ [0,T ]
φ , define

(Gnu)(t) :=





[U(t, 0)− I][φ(0) + J−1(0)f(0, φ(0), φ)] + φ(0)

+λ

∫ t

0

J−1(s)F n(s, u(s), us)ds−
∫ t

0

∫ τ

0

A(τ)U(τ, s)

× [λ + J−1(s)J ′(s)] J−1(s)F n(s, u(s), us)dsdτ

−
∫ t

0

∫ τ

0

A(τ)U(τ, s)J−1(s)[F n
(1)(s, u(s), us)

+F n
(2)(s, u(s), us)u

′(s) + F n
(3)(s, u(s), us)(us)

′]dsdτ,

t ∈ [0, T ],

φ(t), t ∈ (−∞, 0].

Take rn ≤ r such that

‖F n(t, x, ψ)− F n(t, y, ζ)‖ ≤ L(n, rn)(‖x− y‖+ ‖ψ − ζ‖),

t ∈ [0, T ], x, y ∈ Brn(φ(0)), ψ, ζ ∈ Brn(φ),

‖F n
(i)(t, x, ψ)− F n

(i)(t, y, ζ)‖ ≤ L(n, rn)(‖x− y‖+ ‖ψ − ζ‖),

t ∈ [0, T ], x, y ∈ Brn(φ(0)), ψ, ζ ∈ Brn(φ), i = 1, 2, 3,

and r̄n ≤ rn ≤ r such that

r̄n

(
max

t∈[0,T+a]
K(t) + sup

t∈[0,T+a]

M(t)

)
≤ rn.

Moreover, for each b > 0, r > 0, define

P̃ [0,b]
φ (r) =

{
u ∈ P̃ [0,b]

φ ; for every t ∈ [0, b], u(t) ∈ Br(φ(0))

and u′(t) ∈ Br(A(0)[φ(0) + J−1(0)f(0, φ(0), φ)])

}
,

then P̃ [0,b]
φ (r) is nonempty, convex and closed. Based on our analysis above, we

obtain for fixed φ ∈ Q0 and n ∈ N , there is a real number bn > 0 such that for every
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u ∈ P̃ [0,bn]
φ (r̄n),

‖(Gnu)(t)− φ(0)‖ ≤ r̄n, t ∈ [0, bn],

‖[(Gnu)(t)]′ − A(0)[φ(0) + J−1(0)f(0, φ(0), φ)]‖ ≤ r̄n, t ∈ [0, bn],

by noting that when bn is sufficiently small we have

max
s∈[0,bn]

‖(us)
′‖P ≤ max

s∈[0,bn]
‖(us)

′ − µs‖P + max
s∈[0,bn]

‖µs‖P

≤ 1 + max
t∈[0,T ]

K(t) max
s∈[0,bn]

‖u′(s)‖+ sup
t∈[0,T ]

M(t)‖φ′‖P .

This means that

Gn
{
P̃ [0,bn]

φ (r̄n)
}
⊂ P̃ [0,bn]

φ (r̄n).

In addition, for every u, v ∈ P̃ [0,bn]
φ (r̄n), t ∈ [0, bn],

‖(Gnu)(t)− (Gnv)(t)‖

≤ V

[
max

s∈[0,bn]
‖F n(s, u(s), us)− F n(s, v(s), vs)‖+ ‖F n

(1)(s, u(s), us)− F n
(1)(s, v(s), vs)‖

+‖F n
(2)(s, u(s), us)u

′(s)− F n
(2)(s, v(s), vs)v

′(s)‖

+
∥∥F n

(3)(s, u(s), us)(us)
′ − F n

(3)(s, v(s), vs)(vs)
′∥∥

]

≤
[
2 + max

s∈[0,bn]
‖v′(s)‖+ max

s∈[0,bn]
‖(vs)

′‖
]

V L(n, rn) max
s∈[0,bn]

[‖u(s)− v(s)‖+ ‖us − vs‖P ]

+V (M + 1)

[
max

s∈[0,bn]
‖u′(s)− v′(s)‖+ max

s∈[0,bn]
‖(us)

′ − (vs)
′‖

]

≤
[
2 + max

s∈[0,bn]
‖v′(s)‖+ max

s∈[0,bn]
‖(vs)

′‖
]

V L(n, rn)

×
(

1 + max
s∈[0,T ]

K(s)

)
max

s∈[0,bn]
‖u(s)− v(s)‖

+V (M + 1)

(
1 + max

s∈[0,T ]
K(s)

)
max

s∈[0,bn]
‖u′(s)− v′(s)‖,
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and similarly, for every u, v ∈ P̃ [0,bn]
φ (r̄n),

‖(Gnu)′(t)− (Gnv)′(t)‖

≤ V
[

max
s∈[0,bn]

‖u(s)− v(s)‖+ max
s∈[0,bn]

‖u′(s)− v′(s)‖
]
, t ∈ [0, bn],

where V , V are constants. Therefore, Gn is uniformly Lipschitz continuous in

P̃ [0,bn]
φ (r̄n). Consequently, we know that there is un(·) ∈ P̃ [0,bn]

φ (r̄n) such that

(Gnun)(t) = un(t), t ∈ (−∞, bn], (5.2.3)

and satisfying

[un(t)]′ =





A(t)U(t, 0)[φ(0) + J−1(0)f(0, φ(0), φ)] + λJ−1(t)F n(t, un(t), un
t )

+

∫ t

0

A(t)U(t, s)
[
λ + J−1(s)J ′(s)

]
J−1(s)F n(s, un(s), un

s )ds

−
∫ t

0

A(t)U(t, s)J−1(s)[F n
(1)(s, u

n(s), un
s )

+F n
(2)(s, u

n(s), un
s )(un)′(s) + F n

(3)(s, u
n(s), un

s )(un
s )′]ds,

t ∈ [0, T ],

φ′(t), t ∈ (−∞, 0].

(5.2.4)

Let (−∞, b̄n) be the maximal interval with respect to the existence of the solution

of (5.2.3) satisfying (5.2.4). Then there is a constant Ṽ which is independent of n

and δ such that for every n ∈ N and 0 < δ < b̄n,

‖(un(t))′‖

≤ Ṽ

(
1 +

∫ t

0

‖(un(s))′‖ds +

∫ t

0

‖(un
s )′‖Pds

)

≤ Ṽ T

(
1 + sup

t∈[0,T ]

M(t)‖φ′‖P
)

+Ṽ

(
1 + max

t∈[0,T ]
K(t)

) ∫ t

0

max
τ∈[0,s]

‖(un(τ))′‖ds, t ∈ [0, b̄n − δ],
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that is

‖un(t)‖, ‖(un(t))′‖ ≤ M̂, t ∈ [0, b̄n), n ∈ N, (5.2.5)

where M̂ is a constant being independent of n and δ.

Choose b̄ ∈ [0, T ] such that for all t ∈ [0, b̄],

‖u1
t − φ‖P ≤ r

2
(5.2.6)

and

max

{
1, 2 max

t∈[0,T ]
K(t)

} {
[U(t, 0)− I][φ(0) + J−1(0)f(0, φ(0), φ)]

+t|λ|(M + 1) sup
t∈[0,T ]

‖J−1(t)‖+ t2(M + 1)

[(
|λ|+ 1 + M̂

+M̂ max
t∈[0,T ]

K(t) + sup
t∈[0,T ]

M(t)‖φ‖P
)

sup
0≤s≤t≤T

‖A(t)U(t, s)J−1(s)‖

+ supt∈[0,T ] ‖J−1(t)J ′(t)J−1(t)‖
]}

≤ r

2
.

(5.2.7)

Next, we prove that b̄n ≥ b̄ for all n ∈ N , If this is false, then there is an n̄ ∈ N

such that b̄n̄ < b̄. Because un̄(·) satisfies (5.2.3) and (5.2.4) for t ∈ [0, b̄n̄), we deduce

that for every t̄, t ∈ [0, b̄n̄) with t̄ < t,

‖un̄(t)− un̄(t̄)‖

≤ ‖[U(t, 0)− U(t̄, 0)][φ(0) + J−1(0)f(0, φ(0), φ)]‖

+(t− t̄)

{
|λ|(M + 1) sup

t∈[0,T ]

‖J−1(t)‖+ T (M + 1)

[(
|λ|+ 1 + M̂

+M̂ max
t∈[0,T ]

K(t) + sup
t∈[0,T ]

M(t)‖φ‖P
)

sup
0≤s≤t≤T

‖A(t)U(t, s)J−1(s)‖

+ supt∈[0,T ] ‖J−1(t)J ′(t)J−1(t)‖
]}

,

and

‖un̄
t − un̄

t̄ ‖P
≤ max

s∈[0,T ]
K(s) max

s∈[0,t−t̄]
‖un̄(s)− un̄(0)‖+ sup

s∈[0,T ]

M(s)
∥∥un̄

t−t̄ − φ
∥∥
P .
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Therefore, there exist v ∈ X and ξ ∈ P such that

lim
t→b̄n̄

un̄(t) = v, lim
t→b̄n̄

un̄
t = ξ. (5.2.8)

In view of the local Lipschitz continuity of F n̄, we know that there is a number r̂ > 0

such that

‖F n̄(t, x, ψ)− F n̄(t, y, ζ)‖ ≤ L(r̂)(‖x− y‖+ ‖ψ − ζ‖),

t ∈ [0, T ], x, y ∈ B r̂(v), ψ, ζ ∈ B r̂(ξ).

Choosing t̂ ∈ [0, b̄n̄) such that

un̄(t) ∈ B r̂(v), un̄
t ∈ B r̂(ξ), t ∈ [t̂, b̄n̄),

we have for every t̄, t ∈ [t̂, b̄n̄) with t̄ < t,

‖F n̄(t, un̄(t), un̄
t )− F n̄(t̄, un̄(t̄), un̄

t̄ )‖

≤ ‖F n̄(t, un̄(t), un̄
t )− F n̄(t, un̄(t̄), un̄

t̄ )‖+ ‖F n̄(t, un̄(t̄), un̄
t̄ )− F n̄(t, v, ξ)‖

+‖F n̄(t, v, ξ)− F n̄(t̄, v, ξ)‖+ ‖F n̄(t̄, v, ξ)− F n̄(t̄, un̄(t̄), un̄
t̄ )‖

≤ L(r̂)(‖un̄(t)− un̄(t̄)‖+ ‖un̄
t − un̄

t̄ ‖+ 2‖un̄(t̄)− v‖+ 2‖un̄
t̄ − ξ‖)

+‖F n̄(t, v, ξ)− F n̄(t̄, v, ξ)‖.
(5.2.9)

Since for any t̄, t ∈ [t̂, b̄n̄) with t̄ < t,

‖(un̄)′(t)− (un̄)′(t̄)‖

≤ ‖[A(t)U(t, 0)− A(t̄)U(t̄, 0)][φ(0) + J−1(0)f(0, φ(0), φ)]‖

+|λ|(M + 1)‖J−1(t)− J−1(t̄)‖+ |λ| sup
t∈[0,T ]

‖J−1(t)‖

×‖F n̄(t, u(t), ut)− F n̄(t̄, u(t̄), ut̄)‖
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+

∫ t̄

0

∥∥∥[A(t)U(t, s)− A(t̄)U(t̄, s)]
[
(λ + J−1(s)J ′(s))

×J−1(s)F n̄(s, un̄(s), un̄
s ) + J−1(s)

(
F n̄

(1)(s, u
n̄(s), un̄

s )

+F n̄
(2)(s, u

n̄(s), un̄
s )(un̄)′(s) + F n̄

(3)(s, u
n̄(s), un̄

s )(un̄
s )′

)]∥∥∥ds

+(t− t̄)|λ|(M + 1) sup
0≤s≤t≤T

‖A(t)U(t, s)J−1(s)‖

×
{[
|λ|+ sup

s∈[0,T ]

‖J ′(s)J−1(s)‖
]

×
[
1 + M̂

(
1 + max

t∈[0,T ]
K(t)

)
+ sup

t∈[0,T ]

M(t)‖φ′‖
]}

,

we infer, by (5.2.5), (5.2.9) and noting that F n̄(t, v, ξ), J−1(t), A(t)U(t, s)y (y ∈
(D, ‖ · ‖D), s ≤ t) are uniformly continuous on [0, T ], that

lim
t→b̄n̄

(un̄)′(t) exists in X, and lim
t→b̄n̄

(un̄
t )′ exists in P . (5.2.10)

By similar arguments as in the proof of Theorem 3.2.4 and the proof of existence

of solution of (5.2.3) satisfying (5.2.4), we see that un̄(·) can be extended beyond b̄n̄

contradicting the definition of b̄n̄. Hence, for all n ∈ N , (5.2.3) has a solution un(·)
on [0, b̄] satisfying (5.2.4). Moreover, by (5.2.7) and (5.2.3), we have

un(t) ∈ Br(φ(0)), t ∈ [0, b̄], n ∈ N. (5.2.11)

From (5.2.6) and (5.2.7), it follows that

‖un
t − φ‖P

≤ ‖un
t − u1

t‖P + ‖u1
t − φ‖P

≤ max
t∈[0,T ]

K(t) max
t∈[0,b̄]

‖un(t)− u1(t)‖+ max
t∈[0,b̄]

‖u1
t − φ‖P

≤ max
t∈[0,T ]

K(t)

(
max
t∈[0,b̄]

‖un(t)− φ(0)‖+ max
t∈[0,b̄]

‖u1(t)− φ(0)‖
)

+ max
t∈[0,b̄]

‖u1
t − φ‖P

≤ r, t ∈ [0, b̄], n ∈ N,

that is,

un
t ∈ Br(φ), t ∈ [0, b̄], n ∈ N. (5.2.12)
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This, together with (5.2.11), implies that if we put

Gn(s) := F n(s, un(s), un
s )− f(s, un(s), un

s ), s ∈ [0, b̄], n ∈ N,

Gn
(0)(s) := F n

(1)(s, u
n(s), un

s )− f ′(1)(s, u
n(s), un

s )

+F n
(2)(s, u

n(s), un
s )(un(s))′ − f ′(2)(s, u

n(s), un
s )(un(s))′

+F n
(3)(s, u

n(s), un
s )(un

s )′ − f ′(3)(s, u
n(s), un

s )(un
s )′, s ∈ [0, b̄], n ∈ N,

then

lim
n→∞

‖Gn(s)‖ = 0, lim
n→∞

‖Gn
(0)(s)‖ = 0 uniformly for all s ∈ [0, b̄],

and

un(t) =





U(t, 0)φ(0) +

∫ t

0

U(t, s)f(s, un(s), un
s )

+

∫ t

0

{
U(t, s)[λ + J−1(s)J ′(s)]J−1(s)− J−1(s)J ′(s)J−1(s)

}
Gn(s)ds

−
∫ t

0

[U(t, s)− I]J−1(s)Gn
(0)(s)ds, t ∈ [0, T ],

φ′(t), t ∈ (−∞, 0],

(5.2.13)

(un(t))′ =





A(t)U(t, 0)[φ(0) + J−1(0)f(0, φ(0), φ)] + λJ−1(t)f(t, un(t), un
t )

−
∫ t

0

A(t)U(t, s)
[
λ + J−1(s)J ′(s)

]
J−1(s)f(s, un(s), un

s )ds

−
∫ t

0

A(t)U(t, s)J−1(s)[f ′(1)(s, u
n(s), un

s )

+f ′(2)(s, u
n(s), un

s )(un(s))′ + f ′(3)(s, u
n(s), un

s )(un
s )′]ds,

+λJ−1(t)Gn(t)−
∫ t

0

A(t)U(t, s)
[
λ + J−1(s)J ′(s)

]
J−1(s)Gn(s)ds

−
∫ t

0

A(t)U(t, s)J−1(s)Gn
(0)(s)ds, t ∈ [0, T ],

φ′(t), t ∈ (−∞, 0].

(5.2.14)
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Therefore, using the Lipschitz continuity of f , we get for any n, m ∈ N ,

‖un(t)− um(t)‖ ≤ V

(
max
t∈[0,b̄]

‖Gn(t)‖+ max
t∈[0,b̄]

‖Gn
(0)(t)‖

)

V

∫ t

0

max
τ∈[0,s]

‖un(τ)− um(τ)‖dτ, t ∈ [0, b̄],

where V , V are constants being independent of t ∈ [0, b̄], n and m. This means that

lim
n→∞

un(t) = v(t) uniformly on [0, b̄],

and

lim
n→∞

un
t = χt ∈ P uniformly on [0, b̄],

where

χt(θ) :=





v(t + θ), 0 ≤ t + θ ≤ b̄,

φ(t + θ), t + θ < 0.

Hence, for any ε > 0, we have if n is large enough then

max
s∈[0,b̄]

‖f(s, un(s), un
s )− f(s, v(s), χs)‖ ≤ ε,

max
s∈[0,b̄]

‖f ′(i)(s, un(s), un
s )− f(s, v(s), χs)‖ ≤ ε, i = 1, 2, 3.

Thus, (5.2.14) implies the uniform convergence of (un(·))′ as n →∞, and

lim
n→∞

(un(t))′ = v′(t) uniformly on [0, b̄],

lim
n→∞

(un
t )′ = (χt)

′ ∈ P uniformly on [0, b̄].

Consequently, the function

w(t) :=





v(t), t ∈ [0, b̄],

φ(t), t < 0

is a fixed point of F and satisfies

w′(t) = (Fw)′(t), t ∈ (∞, b̄].

So w(t) = x(t) on [0, b̄].
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It remains to prove the w(t) can be extended to (−∞, T ] such that the extension

is still a fixed point of F and continuously differentiable in [0, T ].

Let (−∞, b) with b < T be the maximal interval of existence of w(t). Then

w(t) = x(t) on [0, T ]. This implies that

lim
t∈b−

w(t) exists in X, and lim
t∈b−

wt exists in P .

Hence, there is a constant
˜̃
M such that

‖f(t, w(t), wt)‖ ≤ ˜̃
M, t ∈ [0, b),

‖f ′(i)(t, w(t), wt)‖ ≤ ˜̃
M, t ∈ [0, b), i = 1, 2, 3.

Thus, by

w′(t) = (Fw)′(t), t ∈ (∞, b),

we obtain

lim
t∈b−

w′(t) exists in X, and lim
t∈b−

(wt)
′ exists in P .

By similar arguments as above, we know that w(t) can be extended to an interval

[0, b+δ] (δ > 0) such that the extension is still a fixed point of F and w′(t) = (Fw)′(t)

in [0, b + δ]. The choice of b makes this no sense. So b = T . The analysis above

implies that the maximal interval of existence of w(t) should be (−∞, T ]. This

means that x(t) is a classical solution of (3.1.3).

The uniqueness and (5.2.1) is easy to see. This ends the proof.

2
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[8] A. Bàtkai and S. Piazzera, Damped wave equations with delay, Topics in

functional differential and difference equations (Lisbon, 1999), 51–61, Fields

Inst. Commun. 29, Amer. Math. Soc., Providence, RI, 2001.

125



[9] A. Boucherif, First-order differential inclusions with nonlocal initial condi-

tions, Appl. Math. Lett. 15 (2002), 409-414.

[10] J. A. Burns and T. L. Herdman, Adjoint semigroup theory for a class of

functional differential equations, SIAM J. Math. Anal. 5 (1976), 729–745.

[11] J. A. Burns, T. L. Herdman and H. W. Stech, Linear functional differential

equations as semigroups on product spaces, SIAM J. Math. Anal. 14 (1983),

98-116.

[12] J. A. Burns, T. L. Herdman and J. Turi, Neutral functionals integro-

differential equations with weakly singular kernels, J. Math. Anal. Appl.

145 (1990), 371-401.

[13] T. A. Burton, Stability and periodic solutions of ordinary and functional-

differential equations, Academic Press, Inc., Orlando, FL, 1985.

[14] L. Byszewski, Theorems about the existence and uniqueness of solutions of

a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162

(1991), 494-505.

[15] L. Byszewski, Uniqueness of solutions of parabolic semilinear nonlocal-

boundary problems, J. Math. Anal. Appl. 165 (1992), 472-478.

[16] L. Byszewski, Application of montone iterative method to a system of

parabolic semilinear functional-differential problems with nonlocal condi-

tions, Nonlinear Anal. TMA 28 (1997), 1347-1357.

[17] L. Byszewski, Application of properties of the right-hand sides of evolu-

tion equations to an investigation of nonlocal evolution problems, Nonlinear

Anal. TMA 33 (1998), 413–426.

[18] L. Byszewski and V. Lakshmikantham, Theorem about the existence and

uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,

Applicable Anal. 40 (1991), 11-19.

[19] L. Byszewski and V. Lakshmikantham, Montone iterative technique for non-

local hyperbolic differential problem, J. Math. Phys. Sci. 26 (4) (1992), 345-

359.

126



[20] G. Chen, Control and stabilization for the wave equation in a bounded

domain, SIAM J. Control 17 (1979), 66-81.

[21] R. M. Christensen, The Theory of Viscoelasticity: An Introduction, 2nd ed.,

Academic Press, New York, 1982.

[22] C. Corduneanu and V. Lakshmikantham, Equations with unbounded delay:

a survey, Nonlinear Anal. TMA 4 (1979), 831-877.

[23] J. M. Cushing, Integrodifferential Equations and Delay Models in Population

Dynamics, Lect. Notes in Biomath. 20, Springer, Berlin, 1977.

[24] E. B Davies, One Parameter Semigroups, Academic Press, London, 1980.

[25] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of

the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987) 181-208.

[26] K. Deimling, Ordinary Differential Equations in Banach spaces, Lect. Notes

in Math. 596, Springer-Verlag, Berlin, New York, 1977.

[27] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, New

York, 1985.

[28] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin,

New York, 1992.

[29] R. deLaubenfels, Existence and uniqueness families for the abstract Cauchy

problems, J. London Math. Soc. 44 (1991) 310-338.

[30] R. deLaubenfels, Existence Families, Functional Calculi and Evolution

Equations, Lect. Notes in Math. 1570, Springer-Verlag, Berlin, New York,

1994.

[31] R. deLaubenfels, F. Yau, S. Wang, Fractional powers of operators of regu-

larized type, J. Math. Anal. Appl. 199 (1996), 910-933.

[32] M. C. Delfour and S. K. Mitter, Hereditary differential systems with constant

delays. I. General case, J. Differential Equations 12 (1972), 213–235.

127



[33] W. Desch, R. Grimmer and W. Schappacher, Some considerations for linear

integrodifferential equations, J. Math. Anal. Appl. 104 (1984), 219-234.

[34] W. Desch, R. Grimmer and W. Schappacher, Well-posedness and wave prop-

agation for a class of integrodifferential equations in Banach space, J. Dif-

ferential Equations 74 (1988), 391–411.

[35] O. Diekmann, S. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay

Equations. Functional-, Complex-, and Nonlinear Analysis, Appl. Math. Sci.

110, Springer-Verlag, Berlin, New York, 1995.

[36] K. -J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution

Equations, GTM 194, Springer, Berlin, New York, 2000.

[37] H. O. Fattorini, The Cauchy Problem, Encyclopedia of Math. and Appl. 18,

Addison-Wesley Publishing Co., Reading, Mass., 1983.

[38] J. A. Goldstein, Abstract evolution equations, Trans. Amer. Math. Soc. 141

(1969), 159-185.

[39] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford

Univ. Press, New York, 1985.

[40] R. Grimmer, Resolvent operators for integral equations in Banach space,

Trans. Amer. Math. Soc. 273 (1982), 333-349.

[41] R. Grimmer and Liu, Integrated semigroups and integrodifferential equa-

tions, Semigroup Forum 48 (1994), 79-95.

[42] R. Grimmer and W. Schappacher, Weak solutions of integro-differential

equations and resolvent operators, J. Integral Equations 6 (1984), 205–229.

[43] G. Gripenberg, S. -O. Londen and O. Staffans, Volterra Integral and Func-

tional Equations, Cambridge Uni. Press, Cambridge, 1990.
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