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Zusammenfassung in Deutscher Sprache

Thema dieser Dissertation ist die Wohlgestelltheit und Asymptotik von nichtautono-
men funktionalen Partielle-Differentialgleichungen der Form

%g@y:B@m@y+¢@u¢ £>0, (DPDG)
und

Wesentliches Hilfsmittel zur Diskussion sind Evolutionshalbgruppen, die von der Evo-
lutionsfamilie auf einer Halbgeraden erzeugt werden (siehe [14], [23, Chap. VI.9], [72],
[55], [56]), sowie die Theorie der Randstorung eines Generators (siehe [29]).

In Kapitel 1 werden die grundlegenden Konzepte iiber Evolutionhalbguppen und Evo-
lutionsfamilien auf einer Halbgeraden behandelt. Hier werden alle Hilfsmittel bereit-
gestellt, die wir spater benotigen, einschliesslich der Ergebnisse iiber die exponentielle
Dichotomie allgemeiner Evolutiongleichungen.

In Kapitel 2 betrachten wir zuerst die Gleichung (DPDG) mit nichtautonomer Ver-
gangenheit der Form

ot -

Du(t,s) = Lult,s)+ A(s)ult,s), t>0>s.

{6mum = Bu(t,0) + du(t,.), t>0,
au

Wir konstruieren eine stark stetige Halbgruppe, die diese Gleichung lost. Dann benutzen
wir die Charakterisierung der hyperbolischen Halbgruppe (siehe [58, Theorem 2.6.2]), um
die Robustheit der exponentiellen Dichotomie der Losungen zu erhalten. Am Ende des
Kapitels studieren wir mit dem Methoden und Ergebnissen aus Kapitel 1 die Robustheit
der exponentiellen Dichotomie der Losungen der allgemeinen nichtautonomen (DPDG).
Wir bekommen ahnliche Ergebnisse fiir Delayoperatoren, die nur auf einem endlichem
Intervall wirken.

In Kapitel 3 schlagen wir eine Halbgruppenbehandlung zu autonomer (NPDG) der
Form

%FUt :BFut—f—CI)ut fal]StZO,
up(t) =(t) fallst <0,

vor.
Durch Anwendung die Theorie der Storungen des Operator auf dem Rand konnen wir
eine Losungshalbgruppe fiir die obige Gleichung unter Bedingungen an den Differenzop-
erator F' konstruieren und die Wohlgestelltheit der Gleichung zeigen.
In Kapitel 4 benutzen wir die ahnlichen Ideen wie in Kapitel 2, um die Wohlgestellt-
heit und die Robustheit der exponentiellen Stabilitdt der Losungen der (NPDG) mit

1



2 ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE

nichtautonomen Vergangenheit der Form

S F(u(t,")) = BFult,-)+®u(t,"), t>0,

Dult,s) = Zu(t,s) + A(s)u(t, s), t>02>s,
zu bekommen. Schliesslich, in Kapitel 5, erweitern wir unsere Methoden und Ergeb-
nisse aus Kapitel 1, um allgemeine nichtautonome (NPDG) zu betrachten. Wir erhalten

ahnliche Resultate fiir Delayoperatoren und Differenzoperatoren, die auf endlichem Inter-
vall wirken.
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Introduction

Functional partial differential equations (FPDE’s) arise from various applications. We
refer to Hale [34, 35|, Wu [81], Wu and Xia [82] for numerous examples and applications
of FPDE’s. In general, non-autonomous FPDE’s can be written in an abstract form as

%u(t) — B(tu(t) + ®(t,u), t>0, (0.1)

for FPDE’s of retarded type, and as

%Fut = B(t)Fu;+ ®(t,u), t>0, (0.2)
for FPDE’s of neutral type.

Here, the linear (unbounded) operators B(t) ”generate” a strongly continuous evolution
family (U(t, s))i>s>0 on a Banach space X, ® and F, called the delay operator and the
difference operator, respectively, are X-valued mappings defined on C(|—r,0], X) (or on
Co(R_, X)). Finally, the history function u;, t > 0, is defined by wu,(f) := u(t + 6) for
6 € [-r,0] (or 8 € R ). Precise definitions and assumptions will be given later in this
thesis.

For the equation (0.1), there are many systematic treatments dealing with the well-
posedness and stability of the solutions (see, e.g., Fitzgibbon [24, 25], Pazy [63], Ruess
[32, 67, 68] and Wu [81] and references therein). However, regarding more general
asymptotic behavior of the solutions to (0.1), e.g., exponential dichotomy, there still are
many open problems. Recently, the technique of ”evolution semigroup” has been applied
to the problem of existence and robustness of exponential dichotomy with great success.
One of advantages of using this method is that it allows one to relate the exponential
dichotomy of the solutions of (0.1) to properties of the spectra of the corresponding
evolution semigroup generated by the equation (0.1) defined on R. We refer to Aulbach
and Nguyen Van Minh [2] and Giihring, Rébiger and Schnaubelt [31] for results on the
robustness of exponential dichotomy of the solutions to (0.1) in this case. However, for
the equation (0.1) defined only on the half-line R; the problem of finding conditions for
the robustness of exponential dichotomy seems to be open. The main difficulty is that,
in case the equation (0.1) is defined only on the half-line R, , one may not immediately
have the corresponding right translation evolution semigroup as in the case of the whole
line. One needs to take into account a suitable boundary condition at zero to define the
corresponding right translation evolution semigroup.

Therefore, as a first attempt to fill this gap, we consider a special (but interesting)
case of the equation (0.1), i.e., the case of FPDE’s with non-autonomous past which have
been proposed by Brendle and Nagel [10]. These equations are an appropriate model for
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6 INTRODUCTION

many biological and physical systems (see Fragnelli [28]) and have the form

(0.3)

Su(t,s) = Fu(t,s) + A(s)ult,s), t>0>s.

{%u(t,O) = Bu(t,0) + du(t,.), t>0,
Here, the function wu(-,-) takes values in a Banach space X, B is a linear operator on X,
and @, called the delay operator, is a linear operator from a space of X-valued functions on
R_ into X. Finally, A(s) are (unbounded) operators on X for which the non-autonomous

Cauchy problem

{dz—(j) = —A)z(t), t< s <0, 0.4
z(s) =uzs€ X,

is well-posed with exponential bound. In particular, there exists an exponentially bounded
backward evolution family U = (U(t, s)):<s<o solving (0.4), i.e., the solutions of (0.4) are
given by z(t) = U(t, s)z(s) for t < s < 0.

We then apply the theory of evolution semigroups as developed by Chicone and La-
tushkin [14], Schnaubelt [23, Chap. VI.9], [72] and others (see [55, 56]) to study the
well-posedness and the asymptotic behavior of the solutions of the equation (0.3). Our
approach may be summarized as follows.

We first define an abstract differential (maximal) operator G' on the space Cyo(R_, X)
(see Definition 1.23). We then perturb this operator at the boundary using the delay
operator ® (and the operator B) to obtain a restriction Gp ¢ of G. For this restriction we
compute explicitly its resolvent using its representation by an integral equation. We then
show the Hille-Yosida estimates to obtain a generator of a semigroup (I, (t)):>0 which
solves (0.3) in a mild sense (see [10, Sections 1 and 2 |).

At this point we would like to note that the idea of perturbing a (maximal) operator at
the boundary to obtain a generator was introduced by Greiner [29]. It has been then used,
e.g., by Engel [22], Casarino et al. [12, 13| to obtain generators of semigroups solving
many important equations arising in applications. The idea of representing an operator
using an integral equation has been used, e.g., by Nguyen Van Minh [53], Nguyen Van
Minh, Rébiger and Schnaubelt [55] to study exponential dichotomy of evolution equations
(see also [40, 54, 56]). In our thesis we combine these two ideas to solve the equation
(0.3) and to study the asymptotic behavior of its solutions. We then use this approach
to investigate the more general equation

{%F(u(t, ) = BFu(t,) +®u(t,-), t>0,

0.5
Dult,s) = Zu(t,s) + A(s)u(t, s), t>0>s, (0.5)

which can be called a neutral partial differential equation with non-autonomous past.

Our thesis is divided into five chapters. In Chapter 1, we briefly recall some basic
concepts of evolution families and evolution semigroups on a half-line. All the auxiliary
results for the later use are presented here. We also include in this chapter the results
on the asymptotic behavior of the solutions to general evolution equations on a half-line
with special emphasis on exponential dichotomy.

In Chapter 2, we first deal with the equation (0.3). Using the evolution semigroup
approach and the ideas described above, we are able to construct a strongly continuous
semigroup solving (0.3). We then use the characterization of hyperbolic semigroups (see
Neerven [58, Theorem 2.6.2]) to study the robustness of the exponential dichotomy of the
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solutions to (0.3). It turns out that the robustness of the exponential dichotomy can be
obtained in an elegant manner using the evolution semigroup approach. At the end of
Chapter 2, we use the methods and the results from Chapter 1 to study the robustness of
exponential dichotomy of the solutions to non-autonomous partial functional differential
equations (0.1). We obtain similar results for delay operators acting on a finite interval
[—7‘, 0]

In Chapter 3, we propose a semigroup approach to linear autonomous neutral partial

functional differential equations of the form
{%Fut — BFu;, + ®u, for t >0, 06)
up(t) =¢(t) fort <O0. '
It is interesting that the picture of well-posedness of the equation (0.6) can be clearly seen
through Tiibingen glasses. That is, using the idea of perturbing a (maximal) operator at
the boundary we can construct a strongly continuous semigroup solving (0.6) and obtain
the well-posedness of the equation (0.6) under appropriate conditions on the difference
operator F'. In this way we extend and improve results by Hale [34], Wu [81, Chap 2.3]
and Datko [18].

In Chapter 4, we use the same approach and ideas as in Chapter 2 to obtain the
well-posedness and the robustness of exponential stability of partial neutral functional
differential equations with non-autonomous past (0.5). Finally, in Chapter 5, we extend
the methods and results from Chapter 1 to study non-autonomous partial neutral func-
tional differential equations (0.2) and obtain the similar results for equations with delay
and difference operators acting on a finite interval [—r, 0].
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thank Ulf Schlotterbeck and all the members of Arbeitsgemeinschaft Funktionalanalysis
in Tibingen with whom I have shared remarkable moments in many mathematical and
social activities.

Finally, the support by the Vietnamese Government during the past years is gratefully
acknowledged.






CHAPTER 1

Evolution Families and Evolution Semigroups on a Half-line

In this chapter we introduce some basic concepts of evolution families and evolution
semigroups on a half-line. We also present the auxiliary results for the next chapters as
well as some results on the asymptotic behavior of the solutions to evolution equations,
with special emphasis on exponential dichotomy for evolution equations on the half-line.

1. Motivation and preliminaries

It is known that, in order to deal with evolution families on the whole line, the tech-
nique of ”evolution semigroup” has been applied with great success (see [14], [53], [56],
[23, Chap. VI.9] and references therein). It turns out that the asymptotic behavior of
evolution families on the whole line, especially their exponential dichotomies, can be char-
acterized by spectral properties of the corresponding evolution semigroups. We refer to
Schnaubelt [72] for an excellent review on this approach. However, for evolution families
on the half-line R, , the situation becomes more complicated. One of the main difficulties
in dealing with evolution families on R, is that we do not immediately have the corre-
sponding right translation evolution semigroups as in the case of evolution families on the
whole line. The main point is that we have to include a suitable boundary condition to
define the corresponding right translation evolution semigroup. Therefore, it is necessary
to develop an analogous theory for the evolution families and evolution semigroups on the
half-line. We begin with the definition of an evolution family ¢/ on R, .

DEFINITION 1.1. A family of bounded linear operators i = (U(t, s)):>s>0 on a Banach
space X is a (strongly continuous, exponentially bounded) evolution family on the half-line
if

(i) U(t,t) = Id and U(t,r)U(r,s) =U(t,s) for t >r > s >0,
(ii) the map (t,s) — U(t, s)x is continuous for every z € X,
(iii) there are constants N > 1 and a € R such that |U(¢, s)|| < Ne®t=*) fort > s > 0.

Then the constant
w(U) :=inf{a € R : there is N > 1 such that ||U(t,s)|| < Ne*"®) ¢ > s> 0}
is called the growth bound of U.

This notion of evolution families arises naturally from the theory of evolution equations
which are well-posed (see, e.g., [62, Chap. 5], [60], [71]). In fact, in the terminology of
[62, Chap. 5] and [60], an evolution family arises from the following well-posed evolution
equation

dt
u(s) =uzs€ X,

{du_(t) = A(t)u(t), t > s >0, (1.1)

9



10 1. EVOLUTION FAMILIES AND EVOLUTION SEMIGROUPS ON A HALF-LINE

where A(t) are (in general unbounded) linear operators for ¢ > 0. We refer to Nagel
and Nickel [57] for a detailed discussion of well-posedness for non-autonomous abstract
Cauchy problems on R.

For a complex Banach space X we will consider the function space (endowed with the
sup-norm)

Co(Ry, X) :=={v:R; — X : v is continuous and tlim v(t) =0} =: Cy
—00

In order to overcome difficulties in dealing with evolution families on the half-line as
stated above, one idea proposed by Brendle and Nagel [10] is to extend (U (%, 5))i>s>0 to an
evolution family (U(t,s)):>s on R. This extension allows us to use the known techniques
for evolution families on R from [14], [53], [56], or [23, Chap. VI.9]. This extension will
be

Ult,s) fort > s >0,

U(t,s) == { U(t,0) fort>0>s,

U0,0)=1Id for0>t>s

yielding the corresponding right translation evolution semigroup.

DEFINITION 1.2. On Cy(R,X), the right translation evolution semigroup (T'(t)):>o

corresponding to (U(t, s))¢>s is given by

i i U(s,s —t)f(s—t) fors>s—t>0,
(T)f)(s) :=U(s,s —t)f(s —t) = { U(s,0)f(s — t) fors >0>s—t,

f(s—1) for0 >s>s—t,
for all f € Cy(R,X),s € R,t > 0.

We can see that this semigroup is strongly continuous on Cy(R, X) (see [23, Lemma
VI1.9.10]) and denote its generator by (G, D(G)). We then have the following properties
of this operator.

LEMMA 1.3. For @, f in Co(R,X) and X € C the following assertions hold.
(i) @ € D(G) and (A — G)a = f if and only if & and f satisfy the integral equation

a(t) = e MU (t, s)u(s) + /t e NEOT (¢, 6) f(€)de for allt > s. (1.2)

(ii) The operator (G, D(G)) is a local operator in the sense that for @ € D(G) and
u(s) =0 for all a < s < b we have that [Gu)(s) =0 for all a < s < b.

PROOF. (i) Let & € D(G) and Gii = \ii — f. We first observe that the evolution
semigroup, corresponding to the evolution family (e *¢=*)U(t, 5)),5s, is (e MT(t));0 with
the generator —A\+G. Therefore, by basic semigroup theory (see, e.g., [23, Lemma I1.1.3]),
we have that

eMT() — i = /0 CeP(E) (<A + )i = — / P (6

0
ie.,

i =e MT(t)a+ /t e NT(€)fd¢ fort > 0.
0



1. MOTIVATION AND PRELIMINARIES 11

By the definition of T'(¢) we obtain that @ and f satisfy the equation (1.2).
Conversely, if u, f € Cp(R, X) satisfy the equation (1.2), then by reversing the above
argument we obtain

e MT ()i — 1 = / t e MT(E)f(€)dE, t>0.
0

In particular, this implies that u € D(é) and G = \i — f.
(ii) By (i) we have that

a(t) = U(t, s)i(s) — /t U(t,6)[Ga)(€)d¢  for @€ D(G) and t > s.

Therefore, if 4(s) = 0 for all a < s < b, then

1
s—t

/s U(t,6)[Gu)(€)de =0 foralla<t<s<b.

By the strong continuity of U(t, s) we obtain, for s | ¢, that
(Ga](t) = U(t,t)[Ga)(t) =0 for all t € (a,b).
[

The locality of G allows us to define an operator G on Cy := Cj (R, X) in the following
way (see Brendle and Nagel [10, Definition 2.7]).

DEFINITION 1.4. Take

D(G) == {flr, : f € D(G)}
and define o )
[Gf](t) == [Gf](t) for t > 0 and f = flg, .

Analogously to Lemma 1.3, we now have the following description of G.

LEMMA 1.5. Letu, f € Cy = Co(Ry, X) and X\ € C. Thenu € D(G) and (A—G)u = f
if and only if u and f satisfy

t
u(t) = e MU (t, 5)u(s) —1—/ e N=OU (¢, €) f(€)de fort>s>0. (1.3)
PROOF. If u, f € Cj satisfy the equation (1.3), then we extend u, f to R by
for ¢ >

alt) = ug\)t ort>0

e Mg(t) fort <O,

~ ) f®) fort >0

T leMg(t) fort<o.

Here, g : R. — X is continuously differentiable with compact support such that g(0) =
u(0), ¢'(0) = £(0). We then have that @ and f belong to Co(R, X). A straightforward
computation yields that @ and f satisfy the equation (1.2). Therefore, by Lemma 1.3, we
obtain (A — G)& = f. By the definition of G we have that (A — G)u = f.
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Conversely, if u € D(G) and (A — G)u = f, then, by the definition of G, there exist
@, f € Co(R, X) such that i|g, =u, flr, = f and (A\—G)@ = f. By Lemma 1.3, % and f
satisfy the equation (1.2). Restricting this equation to R, we have that u and f satisfy
(1.3). O

The operator G becomes a generator only if we restrict it to a smaller domain, e.g.,
D = {u € D(G) : [Gu](0) = 0} (see [55, Lemma 1.1]). However, for later applications
we consider a more general case and make the following assumption.

ASsSumMPTION 1.6. Let (B, D(B)) be the generator of a strongly continuous semigroup
(e!P);>0 on the Banach space X satisfying ||e'?|| < Me“2! for some constants M > 1 and
wy € R.

DEFINITION 1.7. On the space Cy = Cyp(R, X)) we define a right translation evolution
semigroup (T (t))e>0 by
U(s,s —t)f(s—t) fors—t>0

for all f € E.
U(s,0)et=9Bf(0) fors—t<0 or all /

[Tho(t)f1(s) = {

One can easily verify that (75 (t)):>0 is strongly continuous. We denote its generator
by G’é,o.
We then have the following properties of G% o and (T 4(t))>0-

PROPOSITION 1.8. The following assertions hold.
(i) The generator of (T (t))i>0 is given by
D(Go) = {f € D(G): f(0) € D(B) and (G(f))(0) = Bf(0)},
rB,of = Gf for fe D( %,0)-

(ii) The set {\ € C: ReX > w(U) and X\ € p(B)} is contained in p(G ). Moreover,
for X in this set, the resolvent is given by

[R(\, G5,0) f1(8) = e™U (2, 0)R(, B) f(0) +/ e Ot €) f(€)dE  for f € Cy, t>0.
0
(iii) The semigroup (Tgo(t))i=0 satisfies
ITE o) < Ke*', t >0,

with K :== M N and w := max{w;,ws} for the constants M, N,w, and we appear-
ing in Definition 1.1 and Assumption 1.6.

PRrROOF. (i) This can be found in [10, Proposition 2.8].
(ii) Observe that for f € Cy, A € p(B) and Re\ > w(U) the function

u(t) := eMU(t,0)R(X, B)f(0) + /0 t POU (L, €) f(6)de,  t>0,

belongs to Cy and is the unique solution of the equation (1.3) with the initial condition
u(0) = R(\, B)f(0). This condition is equivalent to (A — B)u(0) = f(0) = [(A — G)u](0)
or [Gu|(0) = Bu(0). This means that u € D(Gpp) and u = R(X,Ggy)f.

(iii) This follows immediately from the definition of (1% 4(t))>0- O
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Beside the function space Cy = Cy(R,;, X), we also consider its following closed
subspace

Coo = {’U e Cy: U(O) = 0}
Furthermore, for a closed subspace Z of X, we define the subspace Cz of Cy by
Cy .= {f € (Cy: f(O) € Z} (14)

In order to characterize exponential dichotomies of evolution families we need the
following special cases of the evolution semigroup (77 ¢(t)):0-

DEFINITION 1.9. The evolution semigroup 7 = (T'(¢)):>o on Cj is given by

T(t) = Tgo(t) fort >0, ie.,
o - (Y e mss

It can be seen easily that this evolution semigroup leaves invariant Cyg. Hence, we
can define the semigroup (7y(t)):>0 as the restriction of 7 to the space Cpp. We denote
the generators of (Tp(t)):>0 and (T'(t)):>0 by Go and G, respectively.

In the next section we will need the following operators.

DEFINITION 1.10.
(a) On the space C we define the operator Ix by

Ix := —G on the domain D(Ix) := D(G). (1.6)
(b) For a closed subspace Z of X we define the operator I by
D(Iz):=D(Ix)NCy; and Izu:= Ixu for u € D(I). (1.7)

The following properties is an immediate corollary of Lemma 1.5 and Proposition 1.8.

LEMMA 1.11.
(a) Let u, f € Coo. Then u € D(Gy) and Gou = —f if and only if

u(t) = /t U(t, &) f(&)dE  forallt > 0. (1.8)
0
(b) Let u € Cy and f € Coy. Then u € D(Gx) and Gxu = —f if and only if

u(t) = Ul(t, s)u(s) + /t U(t,&)f(&)dE  forallt > s> 0. (1.9)

(¢) The operator Gy is injective and the part of —Iz in Cyo, i.e., D(Gy) = {u €
D(Iz)NCyo : Izu € Cyo} and Gou = —Izu for u € D(Gy).
(d) The operator (Ix,D(Ix)) is an extension of (—Gx,D(Gx)) and

ker Ix =kerGx = {u € Cp : u(t) :== U(t,0)u(0), t > 0}.

PROOF. Since (Tp(t)):>o is the restriction of (T°(t))i>0 to Coo, we have that G is the
restriction of Gx to Cp. By definition of (T'()):>0 (see (1.5)), we obtain that Gx = Gj .
Therefore, the assertions (a) and (b) follow from Proposition 1.8 (a) and Lemma 1.5 by
taking A =0 and B = 0.

The assertions (c) and (d) follows from (a), (b) and the definitions of the operators
Iy and Iy, respectively. (]
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We refer the readers to [55, Lemma 1.1, Remarks 1.2, 1.4] for another proof of the
above lemma using directly the integral equation (1.9).

2. Exponential dichotomy

In this section we will characterize the exponential dichotomy of evolution families
using the operators Iy and I defined in (1.6), (1.7), respectively. Let us outline the
history of the problem. We consider the linear differential equation

d
d—j:A(t)cc, t>0, zeX,

where A(t) are (in general) unbounded linear operators on a Banach space X. One of
the central research interests regarding the asymptotic behavior of the solutions to the
above equation is to find conditions for the solutions to be stable or to have exponential
dichotomy. In the case that A(-) is a continuous matrix function, Perron [64] first observed
a relation between the asymptotic behavior of the solutions and the properties of the
differential operator 4 — A(f) as an operator on the space BC(Ry,R") of R"-valued
bounded continuous functions on the half-line R,. These results served as a starting
point for numerous work on the qualitative theory of solutions to differential equations.
We refer the reader to the books by Massera and Schéffer [51] and Daleckii and Krein
[16] for a characterization of the exponential dichotomy of solutions to the above equation
in terms of the surjectiveness of the differential operator 4 — A(t) in the case of infinite
dimensions with bounded A(t). Levitan and Zhikov [49, Chap. 10| extended this to the
case of unbounded A(t) for equations defined on R. For equations defined on the half-
line with unbounded A(t), in order to characterize the exponential dichotomy, apart from
the surjectiveness of the differential operator % — A(t), one needs additional conditions,

namely a complement of the stable subspaces (see [16], [51], [55]).

Recently there has been an increasing interest in the unbounded case (see, e.g., [8],
[9], [23], [40], [44], [54], [58], [73]). In particular, we mention the recent paper [55] in
which a new characterization of exponential dichotomy was given in Hilbert spaces using
only conditions on 4 — A(¢) and A(t) — & (more precisely, its closure). These conditions
are closely related to the evolution semigroup 7 = (7'(t)):;>0 associated to an evolution
family U = (U(t, s))t>s>0 on the half-line defined as in (1.5).

In this section we shall use the concept of ezponentially dichotomous operators (see
[5, 9]) and introduce quasi-ezponentially dichotomous operators to characterize the ex-
ponential dichotomy of evolution family /. Our main results are contained in Theorems
1.15, 1.16 and 1.18 extending known results for finite dimensional spaces (see [5, 9]).
Before doing so, we now make precise the notion of exponential dichotomy.

DEFINITION 1.12. An evolution family & =(U(t, s))¢>s>0 on the Banach space X is
said to have an ezponential dichotomy on [0, 00) if there exist bounded linear projections
P(t), t >0, on X and positive constants N, v such that

(a) U(t,s)P(s) = P(t)U(t,s), t > s> 0,

(b) Take Q(t) := Id— P(t) and denote the restriction U(t, s)| : Q(s)X — Q(¢)X, t >
s >0, by Ug(t,s). Then Ugy(t,s) is an isomorphism (and we denote its inverse
by Ug(s,t) : ker P(t) — ker P(s) fort > s >0),

(c) |U(t,s)z|| £ Ne¥(t=9)||z|| for z € P(s)X, t > s >0,
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(d) [[Uq(s, t)zl| < Ne="")|jz|| for z € Q(t)X, t > 5 > 0.
The bounded linear projections (P(t)):>o are called dichotomy projections, while the pos-

itive constants N, v are called the dichotomy constant and dichotomy exponent, respec-
tively.

The following lemma, whose proof can be found in [55, Lemma 4.2] and in [23, Lemma
VI1.9.17], supplies some properties of evolution families having an exponential dichotomy.

LEMMA 1.13. LetU = (U(t, s))t>s>0 be an evolution family having an exponential di-
chotomy on [0, +00) with the corresponding dichotomy projections (P(t))t>0 and constants
N >0, v > 0. Then the following assertions hold.

) M := sup, || P(t)]| < oc.

) [0,t] 2 s = Ug(s,t) € LIQ(t)X,X) is strongly continuous for t > 0.

) t — P(t) is strongly continuous.

) Ugl(t,s)x = Ug(t,r)Ug(r,s)x for x € Q(s)X andt,r,s > 0.

e) |U(t,s)P(s)]| < MNe =9 fort>s>0.

£) [|Ug(s,t)Q(t)|| < MNe (=% fort > s > 0.

In the paper [55, Theorems 4.3, 4.5], the authors have proven the following charac-
terization of exponential dichotomy.

THEOREM 1.14. Assume thatU = (U(t, s))i>s>0 s an evolution family on the Banach
space X and Z is a closed linear subspace of X. Let the subspaces Xo(to) of X be defined
as

Xo(tyg) ={z e X : tlim U(t,top)r =0} forty > 0. (1.10)
—00
Then the following assertions are equivalent.

(i) U has an exponential dichotomy with the corresponding dichotomy projections
(P(t))i>0 satisfying ker P(0) = Z.
(ii) Iz : D(Iz) C Cz — Cy is invertible.
(iii) Ix is surjective and the space Xo(0) defined by (1.10) is complemented with its
complement being Z .

In this section we shall characterize the exponential dichotomy of evolution families
by other properties of the operators I'x and I;. These operators are called exponentially
dichotomous and quasi-exponentially dichotomous operators, respectively. The former has
been introduced in [5] and [9]. For sake of completeness, we recall its definition. To do
this, we use the basic facts on strongly continuous semigroups (see [23, 62] and references
therein). Besides ordinary semigroups defined on the positive half-line, henceforth also
called right semigroups, we also consider semigroups defined on the negative semiaxis.
These are called left semigroups.

Let (V(t))ies be a strongly continuous right or left semigroup. Here, J is the half-line
[0,00) or (—o0,0] according to (V(t));es being a right or left semigroup, respectively. It
is known that there exist constants M and w such that

V) < MeM, te T,
If the above inequality is satisfied for a given real number w and some positive constant

M, we say that (V(t))ies is of exponential type w. Semigroups of negative exponential
type are called exponentially decaying.
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We introduce next the concepts of exponentially dichotomous and quasi-exponentially
dichotomous operators. Let (S, D(S)) be a linear operator on a Banach space Y. Let
P :Y — Y be a bounded projection of ¥ commuting with S, i.e., PD(S) C D(S) and
PSy = SPy for all y € D(S). Put Y_ :=ImP and Y, := ker P. Then

Y=Y @Y, (1.11)
and this decomposition reduces S. By this we mean that
D(S)=[D(S)NY_|®[D(S)NY,], (1.12)

S maps D(S)NY_ into Y and maps D(S)NY, into Y, . With respect to the decomposition
(1.11) and (1.12), the operator S has the matrix representation

S (%— SO+> . (1.13)

Here S_ := S |y_ (Y. — Y_) is the restriction of S to Y., Sy := 8|y, (Yy = Y,) is the
restriction of S to Y. The domain D(S_) of S_ is D(S) NY_, the domain D(S, ) of S,
is D(S)NY,. Thus, (1.12) can be written as D(S) = D(S_) & D(S,).

The operator S is said to be exponentially dichotomous if the operators S_ and S in
(1.13) are generators of exponentially decaying strongly continuous left and right semi-
groups, respectively. In that case, the projection P is called the separating projection for
S. We say that S is of exponential type w(< 0) if this is true for the semigroups generated
by S_ and S..

The operator S is said to be quasi-exponentially dichotomous of exponential type
w < 01if, in (1.13), the operator S, is the generator of an exponentially decaying strongly
continuous right semigroup of exponential type w(< 0) and the operator S_ is a left
Hille-Yosida operator of type w, that is an operator satisfying the following conditions.

There exists a positive constant M such that the set {\ € C: Re\ < —w} is contained
in the resolvent set p(S_) and the resolvent R(\; S_) satisfies

M

IR(X; S2)" < (“Re) —w)n

for ReA < —w and all n € N. (1.14)

We refer the readers to [23, Chap. IL.3] and [59, Chap. 3] for more information
about Hille-Yosida operators and their role, e.g., in the theory of adjoint semigroups.
Note that, if a left Hille-Yosida operator is densely defined, then it is the generator
of a strongly continuous left semigroup. Therefore, a quasi-exponentially dichotomous
operator is exponentially dichotomous if and only if the corresponding operator S_ is
densely defined.

We now come to our first main result. It characterizes the exponential dichotomy of
an evolution family in terms of the exponential dichotomy of the operator Ix.

THEOREM 1.15. Let U = (U(t, s))i>s>0 be an evolution family on the Banach space
X. Then the following assertions are equivalent.

(i) U has an exponential dichotomy with the corresponding dichotomy projections
(P(t))i>0 satisfying ker P(0) = X.
(ii) Ix is ezponentially dichotomous.
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PRrROOF. We first note that condition (i) does not imply that the evolution family U/
has a trivial exponential dichotomy. We refer the readers to [55, Example 4.6] for an
example of an evolution family which has a nontrivial exponential dichotomy with the
corresponding dichotomy projections (P(t));>o satisfying ker P(0) = X.

(ii)=-(i): Assume that [x is an exponentially dichotomous operator of exponential type
w(< 0). By a remark in Section 1 of [5], the strip {A € C : |Re\| < —w} is contained in
p(Ix). In particular, Ix is invertible. By Theorem 1.14, U/ has an exponential dichotomy
with the corresponding dichotomy projections (P(t)):>o satisfying ker P(0) = X.

(i)=(ii): We prove this in several steps.
1) Let the condition (i) be satisfied. We define P : Cy — Cy by (Pf)(t) = P(t)f(t)
for f € Cy. Then P is a projection on Cy. We now prove that
Plx = IxP |piry) - (1.15)

From the definition of Iy and the equality P(t)U(t,s) = U(t, s)P(s) we have

P(t)u(t) = U(t, s)P(s)u(s) +/ U(t, &) P(&)[Ix (w)](§)d¢ for u € D(Ix).
Again by definition of Iy, we obtain that P(-)u(-) € D(Ix) and

Ix(P()u()) = P()x (w)](-)-
This yields (1.15).
Note that (1.15) implies that P(D(Ix)) € D(Ix), whence,

2) Here we contruct a strongly continuous, exponentially decaying left semigroup
(So(t))tgo on Im7P.
Note that

ImP = {f € Cy: f(s) € ImP(s), s > 0},
ImP C Cyp (because ker P(0) = X), and ImP is invariant under the semigroup (7(¢))s>o-
Hence, we can define the operators (Sy(t));<o on ImP by

So(t)f :==To(—t)f for f € ImP and ¢t < 0. (1.16)
We recall from Section 1, Definition 1.9, that the semigroup (7(t)):>0 on Cyp is given by

U(s,s—t)f(s—t) fors>t>0

for all f € Cyo. 1.17
0 for 0<s<t¢ or all f 00 ( )

[To(t) f1(s) = {

From the exponential dichotomy of U = (U(t,s))i>s>0 and the definition of (Ty(t))i>0
one can easily see that (Sy(t))i<o is a strongly continuous, exponentially decaying left
semigroup satisfying

[So(®)]l < Ne™*, t <0,
where the positive constants /N and v are defined by the exponential dichotomy of U/.

3) We show next that the generator of (Sp(t))i<o is Ix |mp=: Ix.
Since (Tp(t))¢>0 leaves ImP invariant, we may denote the restriction of (Tp(t)):>o on ImP

by (Tp(t))e=o and the generator of (Th(t))s=0 by Go.
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Denote by K the generator of (Sy(t)):<o. By the equality (1.16) and Lemma 1.11, we
obtain that
So(t)f — To(t)f —
oOF TS~ f

Kf = lim
t10 t 10 t
= —Gof =Iyf for fe D(K)or feD(Iy),
hence, K = Iy (here we use the fact that D(Iy) C ImP C Cy).

4) We now contruct a strongly continuous, exponentially decaying right semigroup
(S(t))+>0 on ker P. Note that

ker P ={f € Cy: f(t) € ker P(t), t > 0}.
We define the right semigroup (S(t)):>0 on ker P by
(S@)f)(s) =Ugq(s,s+t)f(s+t) fort,s>0.

By the definition of Ug(s,t), we have that (S(t)f)(s) = Ug(s,s+1)f(s+t) € ker P(s) for
f € ker P and t,s > 0. Therefore, S(t) : ker P — ker P. By the exponential dichotomy of
(U(t,s))i>s>0 and Lemma 1.13, we can easily see that (S(¢)):>o is a strongly continuous,
exponentially decaying right semigroup satisfying
1S(#)]] < Ne ™, t > 0.

5) We conclude the proof by showing that the generator of (S(t))i>0 is Ix |kerp=: 5.
Denote by L the generator of (S(t));>0. We shall prove the following:

Letu, f € kerP. Then u € D(L) and Lu = f if and only if (1.9) holds.

In fact, let Lu = f. The general theory of linear semigroups (see, e.g., [23, Lemma
I1.1.3]) yields

S(r)u—u = /T S(&)Ludé = /T S(&) fd¢ for T > 0.
Thus " . ’
Seu=u+ [ s©rde,
hence "
Ug(s,s+ 1)u(s +7) =u(s) + /T Ug(s,s+ &) f(s+&)dE for s,t > 0.
Applying Ug(s + 7, s) on both sides and I(l)OtiIlg that u, f € kerP we have

u(s+ ) :U(s—irT,s)u(s)+/OTU(5—|—T,5—|—§)f(s—|—§)d§.

Putting ¢ := s + 7 we obtain the equation (1.9).
Conversely, if u, f € kerP satisfy the equation (1.9), then by reversing the above
argument we obtain

¢
S(t)u—u = / S(€) fde for t > 0.
0
In particular, this implies v € D(L) and Lu = f.
By the definition of I5; we have that L = I. O

Our next result characterizes the exponential dichotomy of an evolution family by the
quasi-exponential dichotomy of the operator I (see [41]).
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THEOREM 1.16. LetU = (U(t, 5))i>s>0 be an evolution family on the Banach space X
and let Z # {0} be a closed subspace of X. Then the following assertions are equivalent.

(i) U has an exponential dichotomy with the corresponding dichotomy projections
(P(t))i>0 satisfying ker P(0) = Z.
(ii) I is quasi-exponentially dichotomous.

PROOF. (ii)=-(i): Assume that I is a quasi-exponentially dichotomous operator of
exponential type w < 0. Then I, = I, & I}. Here, I, is a left Hille-Yosida operator.
Furthermore, since I} is the generator of an exponentially decaying right semigroup of
exponential type w < 0, we have that {\ € C : ReX > w} C p(I}). Thus, {\ € C :
IReA| < —w} C p(Iz). In particular, Iz is invertible. By Theorem 1.14, U/ has an
exponential dichotomy with the corresponding dichotomy projections (P(t)):>o satisfying

ker P(0) = Z.

(i)=-(ii): We prove this in several steps.
1) Let the condition (i) be satisfied. We define P : Cy — Cy by (Pf)(t) = P(t)f(t)
for f € Cy. Then P is a projection on Cy. We now prove that

PI; = I,P |puy) - (1.18)
From the definition of I; and the equality P(t)U(t,s) = U(t,s)P(s), we have

P(t)u(t) = U(t,s)P(s)u(s) +/ U(t, &) P (&) z(w)](£)dE for u € D(Iz),

and P(0)u(0) =0 € Z since u(0) € Z.
Again by definition of Iz, we obtain that P(-)u(-) € D(Iz) and

I7(P()u(-)) = P()Uz(w)]().

This yields (1.18).
Note that (1.18) includes P(D(1z)) C D(Iz), whence,

2) Here we prove that I, := I |imp: ImP — ImP is a left Hille-Yosida operator.
Note that

ImP ={f € Cy: f(s) € ImP(s), s >0},
and
D(I;) = D(Iz) NImP C ImP N Cy since ImP(0) N Z = {0}. (1.19)

It is easily seen that (T(t))i>0 leaves ImP N Cpy invariant. Hence, we may denote
the restriction of (Tp(t))i>0 to ImP N Cog by (To(t))e=0 and the generator of (Tp(t))s>0 by
Go. By Lemma 1.11, we have that (—Go, D(—Gy)) € (I,,D(I,)). By the exponential
dichotomy of U, the semigroup (To(t))tzo is exponentially decaying of exponential type
—v < 0. Hence, by the Hille-Yosida Theorem, the inclusion {\ € C : ReX > —v} C p(Gy)
holds. We will prove that the set I := {\ € C: Re\ < v} is contained in p(I).

In fact, for A € I, if f € ImP N Cyp and (A —1,)f =0, then I, f = Af € ImP N Cy.
This implies that Gof = —Af. This observation, together with the fact that —\ € p(Gy),
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yields that f = 0. Hence, A — I, is injective. To prove the surjectivity of A — I, we
observe that for f € ImP and A € K the function

u(t) = /0 AOU(1,€)(€)de (1.20)

belongs to ImP N Cyy and satisfies the equation

= | Ul () + FE)dE, ¢ 0.

This yields I,u = Au + f. Thus, A — I, is surjective. Therefore, we obtain A € p(I,).
We now show the resolvent estimate (1.14) for the resolvent R(\;I,). Indeed, by the
formula (1.20), the resolvent R(\;1,) is given by

[RONIZ) f](t) = — /t AU (L, &) f(€)dE  for Rel < v and f € ImP. (1.21)
0

By this expression, we obtain that

d d [*
FRGIN0 = 35 [ SCoueo e
= - [ (-0 U s
" for Rel < v and f € ImP.

Proceeding by induction, we obtain

PIRKIN = [ UG Ode forneN.  (12)

d\» 0
On the other hand, from the resolvent identity

R(A 17) = R(p; 1) = (= MR I R(p; 1)

it follows that for every A € p(I,), the mapping A — R(\; I;) is holomorphic and

d _ _
aR()\le) = _R(AQIz)Z-
Proceeding again by induction, we find
dn
WR(A;J‘g) = (=1)"n!R(\; I;))". (1.23)

Comparing (1.22) and (1.23) yields

RO ;)" f](1) = (—1)"ﬁ /0 (t - €1 NOU (L, €) F(€)de.

Hence,

RO @) < L), / (t — € TelRN V9| £ dg

N ! n— EeA—UV
~ g L e
*+JO

(by changing variable n :=t — &)
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N = - EeA—V
: m/ U P L
N
= mllfll for all t > 0, ReX < v, and n € N.
Therefore,
N
|R(N; )" < m for ReA < v and n € N.

3) By the same way as in proof of Theorem 1.15 (parts 4), 5)) (with the condition
Z # {0}) we can prove that the operator I := I |k p: ker P — ker P is the generator
of an exponentially decaying right semigroup defined on ker P by

(St)f)(s) =Ug(s,s+t)f(s+1), t,s > 0.

3. Perturbations

In this section we study the robustness of the exponential dichotomy of evolution
families under small perturbations. More precisely, let H be a strongly continuous and
uniformly bounded function from R, into the space £(X). Then it is known (see [23,
Theorem VI.9.19]) that there exists a unique evolution family (Ug(t,s))i>s>0 satisfying
the variation of constants formula

Ug(t,s)x =U(t,s)x + /t U, )H(E)Uy (&, 8)xde, t>s>0,x € X. (1.24)

We will prove that, if (U(t, s))¢>s>0 has an exponential dichotomy and the norm || H (-)|| :=
sup,~o || H (t)|| is sufficiently small, then (Ug(¢,s)):>s>0 has an exponential dichotomy as
well. We note that, if we consider (U(t, 5))s>4>0 to be "generated” by a concrete well-posed
non-autonomous Cauchy problem, e.g., as in (1.1), then we have that (Ug(¢,s))i>s>0 is
”generated” by the perturbed problem of (1.1), i.e., by

{dz_gt) = (A(t) + H(t))u(t), t > s >0,

u(s) =uzs€ X. (1.25)

Therefore, our result reveals that the exponential dichotomy of the solutions to the prob-
lem (1.1) is robust under small perturbations by bounded operators H(t). We also note
that, if we consider the evolution family (U(t,s));>s on R, then the result is well-known
(see [23, Theorem VI1.9.24] and references therein).

THEOREM 1.17. Let the evolution family U = (U(t, s))i>s>0 have an exponential di-
chotomy and let H be a strongly continuous and uniformly bounded function from R,
into the space L(X). Then, if the norm ||H ()| := sup;~q ||H(t)|| is sufficiently small, the
evolution family Uy = (Ug(t,8))i>s>0 defined as in (1.24) has an exponential dichotomy
as well.

PROOF. Since U has an exponential dichotomy, by Theorem 1.14, we have that for
f € Cp the equation (1.9) has at least a solution u(-) given by (see [55, (4.1)])

ult) = /0 U(t,€)1(6)de / T Ut OQ(E) f(©)dE, 1> 0. (1.26)
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We now define the Green’s function

— [POUET)  fortzT >0,
G(t, T) = {—UQ(t, T)Q(T) fOI‘ 0 S t S T.

Then the formula (1.26) can be rewritten as

MG=AWG&OﬂO%,t20 (1.27)

We thus obtain the general form of the solutions belonging to Cy of the equation (1.9) by
adding to the solution already obtained an arbitrary term of the form U(¢,0)y for some
arbitrary element y of the subspace X(0) defined in (1.10).

Therefore, all the solutions belonging to Cy of equation (1.9) are represented by the
formula

MﬂzUw®y+AmeOﬂO%J20, (1.28)

where y = P(0)u(0) is an arbitrary element of the subspace X¢(0).
In the equation (1.24), we now put z(t) := Ug(t,0)z. Then, this can be rewritten as

(t) = U(t,0)z + /Ot U(t,€)f(€)dE, >0, (1.29)

corresponding to the function f(¢) = H(t)z(t). The formula (1.28) permits us to represent
the solution belonging to Cy in the form

mwzvmmy+éwawaﬂwmaa,t2m (1.30)

for some y € X(0).
We now prove that, if ||H(-)|| is small enough, then we can represent this solution in
a nicer form. More precisely, we can write

z(t) =T(t)y, vy € Xo(0), (1.31)

for some bounded operator-valued function I'(¢) on R, . To that purpose, we consider the
operator S : Cy — Cy defined as

Sule) == [ G HEuE)E, >0
0
Using the exponential dichotomy of U, we estimate the norm of S in £(Cy) by
Isul < NIHOlswp [ e Cde]u]
t>0 Jo

) >
CNIHC) ]l for w e Co.

IN

Hence, ||S|| < 2N||H(-)||. We note that the equation (1.30) can be written as
(I —8S)x(-)=U(,0)y fory e Xy(0). (1.32)

Therefore, if ||H ()| < 5%, then ||S|| < 1 and hence the operator I — S is invertible.
Thus, the representation (1.31) follows with I'(-)y := (I — S)~'(U(-,0)y) for y € X(0).
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Furthermore, by applying Neumann’s series for (I — S)~!, we obtain

N
T < m

v

for all ¢t > 0. (1.33)

We now define the stable subspaces of X corresponding to the perturbed evolution
family Uy by
Xo(ty) ={z e X: lim Up (t, to)z = 0} for to > 0. (1.34)
—00

We prove next that X(0) is closed and complemented. To that purpose, let z € X(0)
be arbitrary. Then the function Ug(-,0)z is a solution belonging to Cy of the equation
(1.29). Therefore, by (1.30) and (1.31) we have

= Un(0,0)z =y + / " G(0, ) HOT()yde = (I — QO)RP(0))y,

where y € X(0), and

R= /0 " Q(0)U(0, ) QE) H(E)T(E) P(0)de

is a bounded operator. By Lemma 1.13 and the estimate (1.33) we have that
M2NZ||H(-)]]
v =2N|H()|

Therefore, the bounded operator I — Q(0)RP(0) maps the subspace X,(0) onto X(0).
This operator has the bounded inverse

(I = Q(O)RP(0)) * =1+ Q(0)RP(0),
and hence the subspace X'O(O) is closed. The operator

P(0) = (I—Q(0)RP(0))P(0)(I —Q(0)RP(0))™*
= (I =Q(0)RP(0))P(0)(I +Q(0)RP(0)) = P(0) — Q(0)RP(0)
is a projection whose range coincides with XO(O). The complementary projection has the
form

1R < (1.35)

Q(0) =1 - P(0) = Q(0) + Q(0)RP(0) = Q(0)(I + RP(0)),
showing that X;(0) = X;(0).
We estimate next the trajectories Ug(t,0)x with the initial value = belonging to the
subspaces Xo(0) and X;(0), respectively.
We first consider the trajectories Uy (t,0)z with z € Xo(0). Putting z(t) := Ug(t,0)z,
by (1.30) we have that, for t > s > 0,

z(t) = U(t,0)y+ /000 G(t, )H(&)x(&)dé  for some y € X(0)

_ POUt 0y + /0 " GO H(E)n()de

— P(OU(ts) (U(s,0>y+ / G(s,@H(f)x(&)dg)

0

- / " P(OU (1, 5)G(s, ©) H(E)2(€)de + / " GO H(E)n(e)de
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= P(U(t, s)a(s) - / CP)U(t, 5)P(s)U (s, ) H(E)2(€)de
/ T PO, 5)Uo(s, Q) H(E)a(€)dé + /0 " GO H(E)n(e)de
— PO s)ss) + [ T GO H(E)e(E)de.

Therefore, by the exponential dichotomy of ¢/ we obtain that

_|_

lz(®)]] < Ne ()| + NIIH(-)II/ e "z (©)|dg fort > s> 0.

Applying now Gronwall’s Lemma from [16, Lemma II1.2.2] we have that there exist
positive constants /N; and p such that

Uk (t,0)z|| < Nye #9)||Ug(s,0)z|| for z € Xy(0) and ¢t > s > 0. (1.36)

Similarly, if we consider the trajectories Uy (t,to)x with z € Xy(ty) and to > 0, then we
obtain that there exist positive constants N; and p such that

U (t, to)z|| < Nie "9 Uy (s, to)z|| for z € Xo(to) and t > s >ty > 0. (1.37)

We estimate next the trajectories Uy (t,0)z with = € X;(0) = X;(0). Putting z(t) :
Ug(t,0)x, by (1.24) we have that, for 0 <t <,

£t) = (to>x+/0U<t§ (6)(€)de

= x—i—/U
0

— QU)Ualt, 9)Q(s) (U(s,m / (s,@H(ox(s)ds)

—Q(t)Uq(t, 5)Q(s )/ Ul(s, E)H(§)=(€ )d§+/ U(t, &) H (&)x(§)dE

0 0

= Q)Uo(t, $)Q(s)x(s) — /0 Ualt, (s, ) H(E)2(€)de
+/0< (1) + QU (¢, &) H(€)(€)de
— Q)Ualt, 5)Q 0 Jo(€)de

0

- [ vett@)H (€)a(c)s + / (P(H) + QO H(a()ds

= Ug(t,)Q(s)a(s) + [ POUE)H(€)x(€)de - / Ua(t, Q) H(€)x(€)de.

Here we use the fact that

Uq(t, s)Q(s)U (s, &) = {UQ(tvﬁ)Q(ﬁ) for0<t<¢<s,

Q)U(t,€) for0 <¢<t<s.
Therefore, by the exponential dichotomy of U/, we obtain that

lz(@)]| < Ne 9|z (s)|| + NIIH(-)II/O e " Hlz()lldg for0<t<s.
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By this inequality, it follows from [16, Corollary II1.2.3] that there exist positive constants
N; and p such that

|Ux(t,0)z|| < Nye D) Ug(s,0)z| for & € X1(0) and s >t > 0. (1.38)

Finally, we put X,(t) := Ug(t,0)X,(0) for t > 0. Then it is straightforward to see
that X = Xo(t) ® X1(t). Let now P(t) be the projection from X onto X(t) with kernel
X1(t). Then, by (1.37), (1.38), and by the definitions of X¢(t) and X;(t), we have that
the evolution family Uy = (Ug(t, s))i>s>0 has an exponential dichotomy with dichotomy

projections (P(t))>o- O

The following perturbation theorem is of different nature. That is, we consider the
same evolution family (U(¢,s))i>s>0 on X but with different subspaces Z. More pre-
cisely, for closed subspaces Z; and Zy of X, we shall investigate the relation between
the invertible operators Iz, and Iz, associated to the evolution family having exponen-
tial dichotomies with the corresponding dichotomy projections (Pyi(t)):>o and (Pa(t))i>0
satisfying ker P;(0) = Z; and ker P»(0) = Zs, respectively. The following theorem can
be considered as an extension of the results known for finite dimensional spaces (see |9,
Theorem 1.3]).

THEOREM 1.18. Let Zy and Zs be closed subspaces of X. Let I, and I, be operators
defined as in (1.7) corresponding to Zy and Zs, respectively. Assume that I;, and Iy,
are invertible. Let (Py(t))i>0 and (Pa(t))i>o0 be the corresponding dichotomy projections
defined by the exponential dichotomies of the evolution family U = (U(t,s))t>s>0 and
satisfy ker Py (0) = Z; and ker P»(0) = Zs, respectively.

Then X = Zy & ImP;(0) and

I} =1;' — KMI;'. (1.39)
Here, the operator K : X — Cy is given by
[Kz](t) == U(t,0)Py(0)z, x € X, t >0, (1.40)

and M : Cy — X is given by M f := f(0).
PROOF. From the proof of [55, Theorem 4.5, Corollary 3.3], we have that
ImP;(0) = ImP,(0) = Xo(0) :={z € X : tlim U(t,0)z = 0}.
—00

Hence, X = Z, ® ImP,(0) = Z> @ ImP;(0). We define the operator B as
B: X — C()
[Bzx](t) = U(t,0)P(0)z for all z € X.

By the exponential dichotomy of U, the operator B in an element of £(X, Cy). By Lemma
1.11 (d), we obtain
ker Ix =ImB. (1.41)

The equality ImP;(0) = ImP»(0) yields P»(0) = Py(0)P2(0). This implies that K =
BP,(0). Note that ImB = ker Iy, and M B = P;(0). In addition, BP;(0) = B. Hence,

BMB = B. (1.42)
Let now g € Cy be arbitrary. Since Ix extends both Iz, and Iz,, we have that
Ix(I7) —I;Ng =131, —151;'g=0.
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By (1.41), this implies that there exists € X such that
(I} —1;)g = Ba. (1.43)
By (1.42), this leads to
(I} —I;1)g = BMBz = BM(I;] —I,')g. (1.44)
Note that (1.43) and M B = P;(0) imply that
M(I,}—1I,"g= MBz = Pi(0)z € ImP;(0).
This, together with the fact that ImP; (0) = ImP5(0), yields
M(I} —I,1)g = P(0)M(I,)} — I,!)g. (1.45)

Since I,'g € D(Iz,) C Cgz,, we have that M1,'g € Zs.
However, Zs = ker P3(0), thus, P»(0)M1;!g = 0. Hence, (1.45) implies that

M(I;} — I g = —Py(0)MI,]g. (1.46)
It follows from (1.46) and (1.44) that
(I} — 1,9 = —BP(0)MI,g. (1.47)
Since K = BP,(0), this leads to
Ilg=1,'g— KMI,'g. (1.48)
However, g € Cy is arbitrary, thus, (1.39) holds. O

4. An example

We illustrate our results by the following example.
ExXAMPLE 1.19. We consider the problem

Du(t,z) = > ki—1 Dran(t, ) Dyu(t, ©) + ou(t, ) + b(t, v)u(t, x)
fort>s>0, €

> hier Mk(T)an(t, ) Diu(t,z) =0, t > s >0, x € 00

u(s,x) = f(x), z€Q.

(1.49)

Here Dy, := a%k and  is a bounded domain in RY with smooth boundary 9 oriented by
outer unit normal vectors n(z). The coefficients ay,(t,z) € C)(Ry, L=(Q)), p > 3, are

supposed to be real, symmetric, and uniformly elliptic in the sense that
n

Z ap(t, z)vpvy > nvf>  for a.e. z € Q and some constant i > 0,
k=1

while the coefficient b(¢,x) belongs to Cy(R, L*(Q2)). Finally, the constant § is defined
by

1
= ——nA
5 2177
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where A < 0 denotes the largest eigenvalue of Neumann Laplacian Ay on 2. We now
chose the Hilbert space X = L*(Q2) and define the operators C(t) via the standard scalar
product in X as

(©(0)£.9) == Y [ auDuf()(t,2)Diglt,2)da
k=179
with D(C(t)) = {f € W>*(Q) : 3¢ nk(2)an(t,z)Dif(x) = 0, = € 0Q}. We then write
the problem (1.49) as an abstract Cauchy problem

Lu(t,:) = A(t)u(t,)+ H(t)u(t,), t>s>0
U(S, ) = f € Xv

where A(t) := C(t)+d and H(t) : X — X defined by (H(t)f)(z) :=b(t,z)f(z) for f € X.

By Schnaubelt [74, Chap. 2, Theorem 2.8, Example 2.3], we have that the the op-
erators A(t) generate an evolution family having an exponential dichotomy with the di-
chotomy exponent v and dichotomy constant N provided that the Holder constants of
a, is sufficiently small. By Theorem 1.17 we now obtain that, if

v

sup ||b(¢, ) || =) < ==,
tzg”( Mz Q) SN

then the evolution family solving the problem (1.49) also has an exponential dichotomy.

5. Evolution semigroups and evolution families on R_

For later applications we briefly consider backward evolution families defined on R_
as follows.

DEFINITION 1.20. A family of bounded linear operators U = (U(t, s)):<s<o on a Ba-
nach space X is called a (strongly continuous, exponentially bounded) backward evolution
family on R_ if

(i) U(t,t) =Idand U(t,r)U(r,s) =U(t,s) fort <r <s <0,
(ii) the map (¢,s) — U(t, s)z is continuous for every x € X,

(iii) there are constants N > 1 and w; € R such that ||U(t,s)|| < Net(9 for

t<s<0.

The constant
w(U) = inf{a € R : AN > 1 such that |U(t,s)|| < Ne*™)  for all t < s < 0}
is called the growth bound of U.

This notion of backward evolution families arises when we consider well-posed evolu-
tion equations on the negative half-line R

dq.:iit) = —A(t)u(t), t < s <0,
u(s) =z, € X.

(1.50)

More precisely, we will say that the Cauchy problem (1.50) is well-posed with expo-
nential bound if there exists an exponentially bounded backward evolution family U =
(U(t, s))t<s<o solving (1.50), i.e., the solutions of (1.50) are given by x(t) = U(¢, s)z(s) for
t < s < 0. Clearly, for backward evolution families on R, we have the same results as
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in the case of "forward” evolution families on R, . For later use, we summarize the con-
struction of the corresponding left translation evolution semigroups and some auxiliary
results.

First, the evolution family (U(t, s))i<s<o is extended to a backward evolution family
on R by setting

U(t,s) fort <s <0,
Ul(t,s) =< U(t,0) fort <0 <s,
U(0,0)=Id for0<t<s.

DEFINITION 1.21. On E := = Co(R, X), we define the left translation evolution semi-
group (T(t))eo corresponding to (U(t, s))e<s by

U(s,s+t)f(s+1t) fors<s+t<0,
(T(t)f)(s) :==Ul(s,s+t)f(s+1t) = U(s,0)f(s+1t) for s <0< s+t
f(s—i—t) for 0 <s<s-+t,

forall fe E,s € R,t > 0. -~ 3
We also denote its generator by (G, D(G)).

As in Lemma 1.3, we then have following properties of the operator (G, D(G)).
LEMMA 1.22. For @, f in E and X € C the following assertions hold.
(i) @ € D(G) and (A — G)i = f if and only if i and f satisfy the integral equation

a(t) = DU (¢, s)u(s) —l—/ AT (¢, €) f(€)de forallt < s. (1.51)

t

(ii) The operator (G, D(G)) is a local operator in the sense that for @ € D(G) and
u(s) =0 for all a < s < b we have that [Gu)(s) =0 for all a < s < b.

The locality of G' allows us to define an operator G on E := Cy(R_, X) as follows.

DEFINITION 1.23. Take

D(G) = {fle_: f € D(G)}
and define
[GfI(t) == [Gf](t) fort<O0and f= flr .

Analogously to Lemma 1.22; we now have the following description of G.

LEMMA 1.24. Letu, f € E = Cy(R_, X), and A € C. Thenu € D(G) and (A\—G)u =
f if and only if u and f satisfy

u(t) = e)‘(t’s)U(t, s)u(s) + /5 e)‘(t’g)U(t,ﬁ)f(é)dé fort <s<0. (1.52)

t



5. EVOLUTION SEMIGROUPS AND EVOLUTION FAMILIES ON R_ 29

Similarly to Definition 1.7, for an operator B as in Assumption 1.6 we construct
the following left translation evolution semigroup which will play an important role in
our investigation of delay partial differential equations with non-autonomous past (see
Chapter 2).

DEFINITION 1.25. On the space E = Cy(R_, X') we define a left translation evolution
semigroup (Tpo(t))i>0 by

[T0(t)f](s) = {

U(s,s+t)f(s+t) fors+t<0
U(s,0)et)Bf0) for s+t >0

We denote its generator by Gpp.

for all f € E.

As in Proposition 1.8, we then have the following properties of Gg o and (I5,(t))t=o-

PROPOSITION 1.26. The following assertions hold.
(i) The generator of (ITpo(t))e0 s given by
D(Gpo) = {feD(G): f(0) e D(B) and (G(£))(0) = Bf(0)},
Gpof = Gf for f € D(Gpyo).

(ii) The set {\ € C: ReX > w(U) and X € p(B)} is contained in p(Gpg,). Moreover,
for \ in this set, the resolvent is given by

[R(A, Gp)f1(t) = eMU(t,0)R(A, B) £(0) + / OU( &) f(dE for f€E, t <.

(iii) The semigroup (To(t))i>0 satisfies
1Tpo(t)]| < Ke*', >0,

with K :== M N and w := max{w;,ws} for the constants M, N,w, and we appear-
ing in Definition 1.20 and Assumption 1.6.

REMARK 1.27. The above notions and results will be used in Chapters 2 and 4 to
study delay and neutral partial differential equations with non-autonomous past.






CHAPTER 2

Delay Partial Differential Equations

This chapter is devoted to the investigation of delay partial differential equations
(DPDE’s) with non-autonomous past (see the equations (2.2) and (2.3) below) and non-
autonomous delay partial differential equations (see the equation (2.25) below). We note
that DPDE’s with non-autonomous past are special cases of non-autonomous DPDE’s.
We refer to Nickel and Rhandi [61] for information about the relation between DPDE’s
with non-autonomous past and non-autonomous DPDE’s. In Section 1, we briefly ex-
plain why the study of partial functional differential equation plays an important role in
many biological, chemical and physical systems. In Section 2, using the theory of evo-
lution semigroups introduced in the previous chapter, we are able to obtain results on
the well-posedness for linear DPDE’s with non-autonomous past as well as on robustness
of exponential stability and dichotomy of the solutions. In Section 3, we consider some
concrete examples to illustrate our results. Finally, in Section 4, we extend our methods
and results from Chapter 1 to study non-autonomous DPDE’s with the delay operators
acting on a finite interval [—r,0].

1. Motivation

Many biological, chemical and physical processes can be mathematically modeled via
functional partial differential equations. In the following we will quote several examples
to illustrate this fact.

Let us start with an example from population ecology. It is known that the central
aspects of a model for the growth of a population in a spatially heterogeneous environ-
ment are rules for local growth or kinetics, and schemes for distribution of individuals or
communication among local environments. The most familiar model incorporating these
features are reaction diffusion equations. If we treat a single-species population moving
along a line, then, using the linearization as in [15, Chap. 2] we are led to the following
equation near the equilibrium states (see Wu [81, p. 5] and references therein for more
details)

Ou(x,t) 0?u(x,t) 0

Wt _ 2 +bu(t,x)+/_T[dn(s,t)]u(x,t+s).

Here, u(z,t) is the density of the diffusing species, and the function of bounded variation
n(t, s) is the rates of exchange within the diffusing species.

The next example arises from control theory. As an example we consider the system
of mechanisms of a computer using the information from the transducers to generate the
appropriate control signals (see [3, 79]). Then, the controlled signals may be delayed in
time due to the possible presence of time delays in actuation and in information transmis-
sion and processing. A simplified mathematical description of the overall control system

31
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may be given by (see Wang [79])

Ou(z,t) 0?u(z,t)

5 =a 92 +clf(u(z,t — 1)) — u(z,t)]

defined on a one-dimensional spatial domain 0 < x < 1, where u(z,t — r) is the time-
delayed temperature distribution and f represents a distributed temperature source func-
tion depending on u(x,t — ). In practice, it is of interest to determine the stability of its
equilibrium states with respect to various perturbations using the principle of linearized
stability and perturbation theory (see [3, 4, 38, 76, 79] and references therein).

Our last example comes from structured population models. Gyllenberg and Heijmans
[33] (see also [52, 80]) considered a model for the dynamics of a population of single cells
which can be distinguished from each other according to their size and the particular cell
cycle phase they are in. For the concrete model in which the cell cycle consists of two
distint phases they derived the following equation

Jont, ) + - lg(nlt, )] = i)Yol
ply *(2))b(y (= 1
oty T

Here ¢t denote time and x the cell size. The unknown n is the size distribution of cells
in the first phase. The functions g, u, and b are the rate at which cells of size = grow,
die, and transit to the second phase, respectively. The constant 7 > 0 is the constant
duration of the second phase, y(x) is the size of a new-born cell whose mother entered
the second phase (exactly 7 time units before) with size x, and p(x) is the fraction of cells
who survive the second phase given that they entered it with size x.

We refer to [3, 4, 38, 52, 79, 80, 81] for detailed discussions on various examples
of biological, chemical and physical models which may be described via functional partial
differential equations. With appropriate choices of phase spaces and partial differential
operators the above equations may be formulated (linearized near the equilibrium states)
in an abstract form as

dt
Ug = Q.

{iu(t) = Bu(t) + du, fort >0, (2.1)
Here, the function z(-) takes values in a Banach space X, B is some linear (partial
differential) operator on X, the history function x; : R — X is defined by

z(s) :==ax(s+t), s<O0.

Finally the delay operator ® is a linear operator from a space of X-valued functions on
R_ into X. From [23, Corollary VI.6.3] we know that, if we choose a relevant space of
initial data, e.g., £ := Cy(R_, X), then there exists a semigroup (T ¢(t)):>0 solving the
equation (2.1) on E. If we now consider the function v : R, x R — X defined as

u(t, s) = [I'e(t) f](s),

then we obtain the equality
2u(t s) = 2u(t s)
ot 7 9s T

which is known as the balance law between the velocity of the evolution process in the
past and in the future (see [20, p. 39-40]). However, in many applications this balance law
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may not be true. An idea introduced by Brendle and Nagel [10] to control the unbalance
is to suppose that the value of the history function is modified according to an evolution
law. Consequently, this modification leads to the following system of equations which are
known as delay partial differential equations with non-automous past (see [10, Eqns. (1)

and (2)])

%u(t, 0) = Bu(t,0)+ Du(t,.), t>0, (2.2)
0 0
au(t, s) = gu(t, s) + A(s)u(t, s), t>0>s. (2.3)

Here, the function u(-,-) takes values in a Banach space X, the (partial differential)
operator B and the delay operator ® are the operators as before. Finally, A(s) are
(unbounded) operators on X for which the non-autonomous Cauchy problem
{d“”—(t) = —A)z(t), t< s <0,

dt

z(s) =z,€X (2.4)

is well-posed with exponential bound. As discussed in Chapter 1, Section 4, there exists
an exponentially bounded backward evolution family U = (U(t, s))¢<s<o solving (2.4), i.e.,
the solutions of (2.4) are given by

z(t) =Ul(t,s)x(s) fort <s<O0.

These two equations describe a system with delay (the equation (2.2)) acting on a non-
autonomous past (the equation (2.3)). They have been solved using semigroup methods
in the space Cyo(R_,X) in [10] or in the space LP(R_,X) in [26]. We may note that
the model of "non-autonomous past” seems to be particularly well suited for biological
systems with delays and diffusion. We refer to Fragnelli [28] for concrete examples. In this
chapter, we will study the asymptotic behavior of the equations (2.2) and (2.3). More
precisely, via evolution semigroup method we will study the robustness of exponential
stability and dichotomy of the solutions under small perturbations of the delay operator.

2. Linear delay partial differential equations with non-autonomous past

In this section, we use the theory of evolution semigroups as recalled in Chapter
1, Section 1, where we defined an abstract differential operator G on Cy(R_, X) (see
Definition 1.23). We now use the delay operator ® (and the operator B) to define a certain
restriction Gp g of G. For this restriction we then compute explicitly its resolvent and
show the Hille-Yosida estimates. In this way, we obtain a semigroup (75,6 (t)):>o which
solves (2.2) and (2.3) in a mild sense (see [10, Sections 1 and 2 ]). The advantage of
our method, using a direct description of the resolvent, is that it yields explicit stability
estimates. In particular, we can show that the exponential stability and exponential
dichotomy of this semigroup, hence of the solutions of (2.2) and (2.3), is robust under
small perturbations of the delay operator ®.

2.1. Evolution semigroups with delay. In this subsection we consider a bounded
linear operator ® : E := Cy(R_, X) — X, called delay operator, and the linear operator
B generating a strongly continuous semigroup (e'”);>o on the Banach space X as in
Assumption 1.6. We use them to define the following restriction of the operator G from
Definition 1.23.
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DEFINITION 2.1. The operator (Gpe, D(Gpe)) on E = Cy(R_, X) is given by
D(Gpe) = {f € D(G): f(0) € D(B) and (Gf)(0) = Bf(0) + [},
Gpof = Gffor f € D(Gps).

We recall that in [10] the authors, using extrapolation methods from [66], proved
that the operator Gp ¢ generates a strongly continuous semigroup (75,¢(t))t>o- In this
subsection we compute the resolvent of G g ¢ and show that it satisfies the conditions of the
Hille-Yosida theorem. This approach allows us to obtain information on the robustness
of the system under small perturbations of the delay operator ®.

THEOREM 2.2. Let ey : X — E be the function defined by [exz](t) := eMU(t,0)z
fort <0, z € X and ReX > w(U), where w(U) is the growth bound of U defined as in
Definition 1.20. Let the constants K and w be defined as in Proposition 1.26. Then the
following assertions hold.

(i) The set {A € C: ReX > K||®| + w} C p(Gps), and for ReX > K||®| + w the

resolvent of Gpe satisfies
R(N\,Gpa)f =exR(\,B)®R(\,Gga)f + R(N\,Ggo)f, fe€E. (2.5)
(i)
K
(ReA — K||®|| —w)
(iii) For Re\ > K?||®|| + w we have

R\, Gpe)ll < for ReA > K||®|| + w.

K
(ReX — K2||®|| — w)"
(i¥) The operator Gp e is densely defined.

IR\, Gro)"| < for alln € N, (2.6)

PRrROOF. (i) Note that, for A > K||®|| + w, the equation
0
ut) = MU ORNB)(F0) + #0) + [ IS fort<0 (27
t

is equivalent to

u=exR(\ B)®u+ R(\, Gpp)f. (2.8)
If for each f € E and Re\ > K||®| + w this equation has a unique solution u € E, then
u(0) = R(A\, B)(f(0) + ®u). This is equivalent to

(A=B)u(0) = [(A — G)u](0) + du or [Gu](0) = Bu(0) + Pu.
Hence, by Lemma 1.24, u € D(Gp) and v = R(\,Gps)f. Therefore, to prove (i) we
have to verify that, for each f € E and ReA > K||®|| +w, the equation (2.8) has a unique
solution u € E. Let M) : E — E be the linear operator defined as M, := eyR(\, B)®.
Since A satisfies ReA > K||®|| + w, we have that M) is bounded with
K@

Rel —w
Therefore, the operator I — M, is invertible, and the equation (2.8) has a unique solution
U= (I — MA)flR(A, GB,O)f- Thus,

R(\,Ga)f = M\R(\,Ga)f + R(\,Gpp)f,

|M,|| < < L.
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and (2.5) follows.
(ii) By the Neumann series (I —M,)~! = "> / M} we have that, for ReA > K||®||+w,

RN, Gso)ll = D> MIR(A,Gro)l

n=0

K > .
n=0

E <~ ( Kol \"
= (ReX —w) nE—:o <Re)\ - w)
K
(ReX — K||®|| —w)
(iii) We shall prove this by induction. By (2.5) we obtain that
R\ Gpo)" = exR(\,B)BR()\,Gps)" + R\, Gpo)RO\, Gpo)"
= exR(\,B)®R(\,Gps)" + R(\,Gpo)exR(\, BYPR(A, Gpe)" 1+
+R(\, Gpo)? ( ,Gpo)" 2

= GAR()\, B)@R()\, GB,<p)n + R()\, GB’O)(B)\R(A B)CI)R( B )n 1—|—
+R()\, Gpo)?exR(\, B)®R(\,Gpa)" 2+ -+ -+ R(), G O (2.9)

Clearly, (2.6) holds for n = 1. If it holds for n — 1, we prove it for n.

In fact, for ReA > K?||®|| + w, we obtain, by (2.9) and induction hypothesis, that

n Ko
1B\ Ga)"l < 5= IR Gaa)" |+
K| 2|
_|_
(Re\ — w)?(ReX —w — K2||®||)"!
K] N
(ReX — w)3(ReA — w — K2||®||)"—2

Ko LK
(Rel — w)"(Re\ —w — K2||®||)  (Re\ —w)™

Putting a := Re\ — w; b := Re\ —w — K?||®||, this yields
b K29 [ 1 1 1 1
—||R(A M<K Ce il
R0 Gearl < & | (G e )
K2|®| (== — 5 1
= K a b o
[ a?b - - ar
K

= — 1(notethata—b=K2||<I>||)-
aob™—

_|_

_|_

Hence,

K K

R(\,Gpe)"|| < = = '
IR Coa)ll < 5 = (Rex o — 2]

(iv) For A > K||®|| + w, by (2.5) we have that
D(Gpe) = R(\,Gpe)E = (I—eAR()\,B)q))_IR()\, Gpo)E = (I—exR(A, B)@)_lD(GB,O).
Since D(Gpy) is dense in E, and I — e,R(\, B)® is an isomorphism we obtain that
D(Gp.,e) is dense in E. O
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The Hille-Yosida Theorem now yields the following results.

COROLLARY 2.3. The operator Gps 15 the generator of a strongly continuous semi-
group (T e(t))i=0 satisfying

ITp0(t)]| < KNI ¢ > o,

where the constants K and w are defined as in Proposition 1.26.

COROLLARY 2.4. If the backward evolution family U and the semigroup (e'®);>o are
ezponentially stable and ||®|| is small enough, then the semigroup (Tpe(t))i>0 is also
exponentially stable.

PROOF. The assumption that U and (e');>o are exponentially stable means that
w = max{wy,wy} < 0. Therefore, if [|®|| < —3%5, then the semigroup (T,e(t)):>0 is also
exponentially stable. U]

2.2. Spectra and hyperbolicity of evolution semigroups. In this subsection
we first compute the spectra of the evolution semigroup (Tso(t))i>0 on E = Cp(R_, X)
and its generator. This will be used to prove the robustness of the hyperbolicity of
the semigroup (Tp,e(t)):>0 under small perturbations by the delay operator ®. We first
compare (Tsp(t)):>0 to its restriction to the subspace Cyp := {f € E : f(0) = 0}. This
restriction has already been studied in Chapter 1 for evolution families on R, (see Chapter
1, Definition 1.9 and Lemma 1.11).

LEMMA 2.5. Let the semigroup (To(t))i>0 on E = Co(R_, X) be defined as in Defi-
nition 1.25 wiht the gnerator Gpg. Denote by (To(t))i>o the restriction of (Tpo(t))i>0 to
the subspace Cyy and let Gy be its generator. Then the following assertions hold.

(1)
o(Tpo(t)) C o(To(t)) Ua(eP) for t>0. (2.10)
(i)
o0(Gpo)Uo(B) =0(Go)Ua(B). (2.11)
PROOF. (i) Endow X & Cpyy with the 1-norm
1@, A = [[f1] + [|z]] for (z, f) € X & Coo.

For a fixed continuous real valued function ¢ with compact support satisfying ¢(0) = 1,
we consider the linear operator

J:E=Cy(R ,X) — X & Cy,
o= (FQ0), f = () £(0)).
Then J is an isomorphism and its inverse is given by
J ' X®Cypy — E,
(@, f) — f+¢()z
Therefore, by similarity, the operators

etB 0

70) 1= TT0007 = (1,000 - 1500 1ul)) 20
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form a semigroup satisfying o (T'(t)) = o(Tso(t)). Let now A € p(To(t)) N p(e'?). Then
the operator

< A\ — et 0 )
(Tpo(t) —eP)p(-) A —To(t)
is invertible with inverse
( (A —etP)! 0 >
—(A=To(t)) [(Tro(t) — eP)p()](A —eP) 1 (A =To(t)
Hence A € p(T(t)) = p(Tso(t)). This means that p(Ty(t)) N p(e'?) C p(Tpo(t)). Thus,
(i) follows.
(ii) By Proposition 1.26, we have p(Go) N p(B) C p(Gp,). Hence,
0(Gpyp) C o(Gy) Ua(B). (2.12)
It remains to prove that
o(Go) C o(Gpy) Ua(B). (2.13)
In fact, if A — G is injective, then so is A — G because G| is the restriction of Gg g to
Coo-

Let now A € p(B) and A — Gpp be surjective. We will verify that A — Gy is also
surjective. Indeed, let f € Cyp be arbitrary. Then, by the surjectivity of A — G, there
exists a function u € D(Gpyp) such that (A — Gpo)u = f. By definition of Gpy we have
that 0 = f(0) = Au(0) — [Gpoul(0) = (A — B)u(0). Therefore, u(0) = 0 and u € Cyo.
Hence, (A — Go)u = (A — Gpo)u = f. Thus, A — G is surjective. This yields

p(Gpo) N p(B) C p(Go),
and inclusion (2.13) follows. O

In [55, Corollary 2.4] it has been proved that a Spectral Mapping Theorem holds for
the semigroup (7p(t)):>0. More precisely, we have

7(Go) = {A € C: ReA < w(Ud)}

and

o(To(t))\{0} = et(G) ¢ >0. (2.14)

By this and Lemma 2.5 we obtain the following.

THEOREM 2.6. Let the operators Gy and Tgy(t) be defined as in Lemma 2.5. Then
the spectral equality

[o(Tp.0(t))Uo(e)\{0} = [°(%) Ua(eB)\{0}, ¢ >0, (2.15)
holds.
PROOF. By Lemma 2.5 and (2.14) we have that
0(Tsot) Uae@®\{0} € [o(To(#) Uo(e®)\{0}

W [0y (e )\ {0}
= [ Ue®) U o(e?))\ {0}

= [ U ()] (o}

TN [eHteCra B | o))\ {0}
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=[98 U ) U (e P\ {0}
C  [o(To(t) Ua(e™)\{0}.
Thus, (2.15) follows. O

Therefore, using the spectral characterization of hyperbolic semigroups (see [23, The-
orem V.1.15]), the above theorem allows the following consequence.

COROLLARY 2.7. If the operator (B, D(B)) generates a hyperbolic semigroup (e'?);>¢
and if the backward evolution family U = (U(t,s))i<s<o is exponentially stable, then the
semigroup (T o(t))i>0 ts hyperbolic.

PROOF. The assumption that U is exponentially stable means that w(U) < 0, hence
s(Go) < 0 by (2.14). Therefore, 0(Gp) NiR = (). By the hyperbolicity of (e'?);>o we have

(etU(Go) U O_(etB)) N eiR _ @
The hyperbolicity of (T 0(t)):>0 now follows from (2.15) and [23, Theorem V.1.15]. O

The main purpose of this section is to prove the robustness of hyperbolicity of the
semigroup (I'5,4(t)):>0 under small perturbations of the delay operator ®. To do so we
need the following characterization of hyperbolic semigroups (see [58, Theorem 2.6.2]).

THEOREM 2.8. Let (T'(t))i>0 be a Cy-semigroup on a Banach space X with the gen-
erator A. Then the following assertions are equivalent.
(1) (T(t))e>0 is hyperbolic.
(ii) iR C p(A) and
L N1 om
(C, 1)-% R(iw + ik, A)x := ]\11_13;0 N ; k;n R(iw + ik, A)z

converges for all w € R and x € X.

We note that the above theorem is taken from [58, Theorem 2.6.2], while its proof is
essentially due to G. Greiner and M. Schwarz [30, Theorem 1.1 and Corollary 1.2]. A
continuous version of the above theorem is proved by M. Kaashoek and S. Verduyn Lunel
in [44, Theorem 4.1].

In order to apply this theorem we have to compute the resolvent R(\, Gp ) starting
from the resolvent R(A, Gpp). This can be done as follows.

LEMMA 2.9. Let the backward evolution U be exponentially stable and the operator
(B, D(B)) be the generator of a hyperbolic semigroup (e');>0. Then for sufficiently small
||®|| there exist an open strip ¥ containing the imaginary axis and a function Hy which
s analytic and uniformly bounded on ¥ such that

R()\, GB’.:}) = H)\R(A, GB,O) fOT A E . (216)

PROOF. By [44, Theorem 4.1] and the hyperbolicity of (e'#);>0, we obtain that there
exist constants P, v > 0 such that

IR(A\,B)|| < P, forall |Re)\ <uw.
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By the exponential stability of i/, there exist constants w; > 0 and K such that
|U(t,s)|| < Kie=**¢™) forall t<s<0. (2.17)
Let now w be a real number such that 0 < w < min{w;, »}. We then put
Y :={A e C:|Re)\| < w}

and
P :=sup||R(X, B)|. (2.18)

AT

As in the proof of Theorem 2.2, we first verify that for each f € E and A € X the
equation (2.8) has a unique solution u € E.

Let M, : E — E be the linear operator defined as M) := e)R(\, B)® with e, as in
Theorem 2.2. For A € ¥, this operator is bounded and satisfies

1

|My|| < K P||®|| <1 if, in addition, ||®| < —— KD

Therefore, the operator I — M, is invertible, and the equation (2.8) has a unique solution
u= (I — My)"'R(\,Ggo)f. Putting Hy := (I — M,)~! we obtain

R()\, GB,.:}) — HAR(/\, GB70).

Since,

Hy= (I —M,)" ZMA, (2.19)
it follows that

|2y < Z [ M|

< ) (KiP||e|)"

n=0

1
= ————— forall A € ¥ and ||®| <

1— K P||®| K,\P’

Since ||M"|| < (K P||®]|)™ for all A E ¥ and the series > >° (K, P||®||)" converges for
|®]| < K 5, we obtain that, if [|®|| < K 5, then the Neumann series (2.19) converges uni-

formly for all A € 3. This fact, together with the analyticity of M), yields the analyticity
of H)\. O

We now come to our main result of this subsection and obtain conditions for expo-
nential dichotomy of solutions of the equations (2.2) and (2.3).

THEOREM 2.10. Let the backward evolution U be exponentially stable and the operator
(B, D(B)) be the generator of a hyperbolic semigroup (€'%);>o. Then, for sufficiently small
|®||, the semigroup (Ts.s(t))i>0 is hyperbolic.
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ProoF. By Corollary 2.7, the evolution semigroup (To(t))e>0 is hyperbolic. We first

prove that, for sufficiently small || ®||, the sum L o S0 R(iw+ik, Gpe) is bounded
in £(E). In fact, by Lemma 2.9, we have

N-1

[R(iw + ik, Gpe) fl(s) =

2| =
M7
MS

3
Il
=)
£
Il

12

i

=]~
g

n

[(]‘ + Minrik + Mszrzk: +- )R(Zw + Zk? GB,O)f](S) =

i
Dy
T

[
=z =
(]

[R(iw + ik, Gp0) f](s)+

T
Dy}
T

e(iw+ik)SU(8, O)R('Lw + Zk, B)(I)R(u,u + ’Lk, GB,O)f + .- (220)

2=

3
Il
o
E
Il

|
3

for s e R_.
Note that the semigroup (T5,(t));>0 is hyperbolic, hence e 2™ € p(Tso(27)) for all
w € R. Using the formula (see [23, Lemma I1.1.9])

t
R(\,Gpo)(1 — e MTpy(t)) = / e *Tpy(s)ds for A € p(Gryp),
0

we obtain
2T
R(Z(.U + 2k7 GB,O) — / 6_(iw+ik)tTB,0(t)(1 o 6_27rinB,0(27T))_1dt.
0

The first term of (2.20) can now be computed as

k=—n
2m
on(t) = %m > 0 and /0 on(t)dt = 2n (2.21)
(see [30, Theorem 1.1]), the norm of the first term in (2.20) can be estimated by
1 N-1 n
%2 D Rliw+ik,Gpo)f| < Cillf] (2.22)
n=0 k=—n

with C1 := 27 supg,, <, {||(1 — e ™ Tpo(2m)) |} SuPg<i<art I TBo(t)]|}-
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We now compute the second term of (2.20). For s € R | we have

r
3

M+ R(iw + ik, Gpo) f(s) =

2l

k

i
o

=
L

I
==
(]

e k)3 (s, 0)R(iw + ik, B)®R(iw + ik, Gpo) f

n=0 k=—n
1 N—-1 n 2
- €(iw+ik)SU(8,0)/ e—(iw+i]€)T€TB(1 27TB) ldT
N 0
n=0 k=—n
2T
o / e WHRITL o (8)(1 — e ™ Tpo(2m)) " fdt
2T 2T 1 N-1 =n ’
— / / [_ efzkz (t+7—s) 71w(t+’rfs)U(8, O)GTB(]. . eQwB)fl
0 0 N _
n=0 k=—n

OTpo(t)(1 — e ™ Tpo(2m)) " fdrdt

2T 2T
= / / on(t4+7—5)e T (5,0)e7B (1 — e27B) !
o Jo ,
®Tpo(t)(1 — e ™ Tgo(27)) " fdrdt.
Therefore, using (2.17) and (2.21), the norm of the second term of (2.20) can be estimated
by
CLEGCol|@l[I £l with Cy = 27 [|(1 — e*™) 7} sup {[le"[I} (2.23)
0<t<2nm
and K, C} as in (2.17), (2.22), respectively.
By induction, the norm of the n* term of (2.20) is estimated by

Ci(K1 o[ @)1 711-

Moreover, the series >~ | C1 (K1 Cs||®||)" converges if | ®|| < =& . Hence, for these ||®||

the sum LS IS R(iw + ik,Gp s) is bounded in £(E )

We now prove the convergence of (C,1)->", ., R(iw + ik,Gpe)f for w € R and f €
E. This can be done by using the idea from [30, Theorem 1.1]. By [69, II1.4.5], it is
sufficient to show convergence on a dense subset. From iR C p(Gp) and the spectral
mapping theorem for the residual spectrum (see [23, Theorem IV.3.7]) we obtain that
e *™“ does not belong to the residual spectrum Ro(Tp¢(27)). This implies that (1 —
e ™ Tp ¢(2m))E is a dense subset of E. Let f := (1 — e ?™“Tp ¢(27))g. Then

N— n n
%Z Z (iw+ ik, Gp.0)(1—e 2™ T g Z 3 / e HRST, | () gds.
n=0 ke

n=0 k=—n
(2.24)
Now e ™ T ¢(+)g is a continuous function with Fourier coefficients

1

2T
= / ef(iw+ik)sT37¢(s)gds‘
0

Qu= -

Therefore, by Fejer’s Theorem [48, Theorem 1.3.1], the sum in (2.24) converges as N — oo.
The assertion of the theorem now follows from Theorem 2.8. U
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3. Examples

In this section we investigate some concrete examples. In the first example we shall
determine the ”sufficient smallness” of ||®|| ensuring the robustness of exponential stabil-

ity.

EXAMPLE 2.11. Let 2 be a bounded domain in R" with smooth boundary. The
Dirichlet Laplacian generates an analytic semigroup (e®);>o on X := L*(Q2). We then
take operators A(s) as

A(s) = a(s)A,
where the function a(-) € L} (R_) satisfies a(-) > v > 0 for some constant . These

loc
operators generate a backward evolution family (U(r, s)),<s<o given by

U(r,s) = el alndna for r <s<0.
We then have
U (r,s)|| = ellr a(mdmlo < o1ho(s—t) for r < s <0,

where \g < 0 denotes the largest eigenvalue of A. Therefore, we can choose in Definition
1.20 the constants N = 1 and w; = 7\¢g < 0. We now define the delay operator ® by

0
of ::/ ©(s)f(s)ds for f € E,

— 00

where ¢(-) € L'(R). We then have
@[] < {leC)ler-

Let now B generate a semigroup (e'%);>o satisfying [|e'?|| < Me“?" with wy < 0. From
the definition of (T (t)):>0 we obtain

I T50(t)]| < Mem>thow2dt ¢ >,
Hence, in Corollar 2.3 we can choose K = M. Therefore, if

max{yAg,ws}
M? ’
then the semigroup (T,6(t)):>0 is exponentially stable.

le() e < =

The next example gives an explicit estimate for the size of perturbations of ® under
which the exponential dichotomy persists.

ExXAMPLE 2.12. We consider again Example 4.8 with the same backward evolution
family U(r, s) := elUr 90412 and the same delay operator ®f := ffoo ©(s)f(s)ds. How-
ever, let now B generate a hyperbolic semigroup (e!?),>¢ satisfying |R(A, B)|| < P; for
|Re)| < wy (for instance, we can take B to be a sectorial operator satisfing o(B) NiR = )
as in [50, Example 2.1.4] or [73, Example 4.2]). Take 0 < w < min{—yAg, w2} and put

Y:={A € C:|Re) <w}

and
P := max{sup{||R(\, B)||}, 27 ||(1 — €*™®) || sup {[|e""|]}}.
P 0<t<2nm
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We obtain that the semigroup (75,6 (t)):>0 is hyperbolic if

1
o)l < 5

4. Non-autonomous delay partial differential equations

We now consider the general non-autonomous delay partial differential equations with
delay operators acting on a finite inteval [—r,0]. More precisely, we study a semi-linear
non-autonomous delay partial differential equations of the form

(DPDE) {%ut = B(t)u(t) + ®(t,u;) for t > a, (2.25)

u, =¢eC:=C(-r0],X).

We assume that B(t) are (unbounded) linear operators such that the corresponding
Cauchy problem

i =Bbult), t>s5>0, (2.26)
u(s) =uxs € X, '

is well-posed with exponential bound. This means that there exists an exponentially
bounded evolution family U = (U(t,s))i>s>0 solving (2.26), i.e., the solutions of (2.26)
are given by x(t) = U(t, s)z(s) for t > s > 0. We will use the term ”the operators B(t)
generate the evolution family (U(t,s))t>s>0” to indicate the above well-posedness.

We refer to [24, 25, 32, 63, 67, 68, 78, 81| for concrete examples and special cases
of the above equation, e.g., the case when B(t) := B is independent of ¢. The fact
that the operators B(t) generate the evolution family (U(t, s))>s>0 allows us to solve the
equation (2.25) in a mild manner. Roughly speaking, we will prove that the mild solution
of DPDE (2.25) exists uniquely on the interval [a — r,b] of the real line provided that
the delay operator ®(t,¢) is Lipschitz continuous with respect to ¢ € C uniformly for
all t € [a,b]. Moreover, our estimates allow us to obtain the robustness of exponential
stability and of exponential dichotomy of the system under small perturbations of the
delay operator ®. We begin with the proposition about existence and uniqueness of the
mild solution to the equation (2.25). The proof of this proposition can be done using the
same idea as in [63], [78] and [81, Theorem 2.1.1] (see also [24, 25, 32]). However we
will present this proof for sake of completeness.

PROPOSITION 2.13. Let the operators B(t) generate the evolution family (U(t,s))i>s>o0-
Suppose that the delay operator ® : [a,b] x C — X is continuous and satisfies a Lipschitz
condition

1 (¢, ¢) — @(¢, )| < Lll¢ =l for all t € [a,b], ¢,9 € C:=C([-r,0], X),  (2.27)

where L s a positive constant. Then, for given ¢ € C there exists a unique continuous
function u : [a — r,b] — X which solves the initial value problem

{M)zU@@M@+ﬁU@$ﬂmw@,agt§Q
Uy = Q.

Moreover, the solutions depend continuously on the initial conditions.

(2.28)
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PrOOF. For a given ¢ € C, we define a mapping
Hy: C(la —r,b],X) = C(la—r,b, X)

(Hyu)(t) = {U(t’ a)p(0) + [, U(t, s)®(s,us)ds fora <t <b

o(t —a) fora—r <t<a.
Hence, denoting by || - || the norm in C([a — r,b], X ), we obtain
|(Hou)(t) — (Hov)(t)|| < PL(t — a)|lu — v||loo for a <t <b (2.29)
and (Heu)(t) — (Hgv)(t) = 0 for a —r < t < a, where P := sup,.,<,; |U(t, s)||. By
induction we obtain
I3 — (g 0y < LHEZDN

and (Hgu)(t) — (Hgv)(t) = 0 for a —r < ¢ < a. Hence,

|lu —v]|e fora <t <b (2.30)

[#5u = Hgolloe < P i~ o]l
For n large enough we have that (PL(Z—TQ))R < 1. Therefore, by the contraction principle,

H, has a unique fixed point u in C([a — r,b], X). By the definition of H4, we have that
u is a solution of the problem (2.28).
The uniqueness of v and the continuous dependence of v on the initial data can be

proved as follows. Let v be the solution of the equation (2.25) on [a — r, b] with the initial
value ¢. Then

u(t) —v(t) = (Heu)(t) — (Hyv)(t)
holds for a —r < ¢ < b. By definition of H,, we have that

[(Hou)(t) = (Hyo)@)] < Kea(ttfa) I — Y[+
+ | KLe®")||u, — v,||ds for a <t < b, and
[(Hou)(t) = (Hyo) @) < Ko =9 fora—r<t<a, (2.31)

with the constants K and a appearing in Definition 1.1.
Therefore,

lu(t) —v(@®)] < Ke(ol(tfa)||¢ — [+
+/ K Le®9)||lu, — v,||ds for a <t < b, and
lut) —o(@)|| < K¢ —o| fora—r<t<a (2.32)
Hence, if o > 0, then
¢
|y — v¢]] < Ket9||p — || + / KLe®9|lu, — v,||lds foralla <t <b, (2.33)

and if @ < 0, then

t
||ug —ve]| < Kearea(t“)||¢—¢||+/ KLe et =9 ||lu,—uv,||ds forall a <t <b. (2.34)
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Now, the inequalities (2.33), (2.34) and Gronwall’s inequality imply that

(2.35)

[y — vp|| < Kt KD g — 4| if a >0
t tf = Ke—oﬂ'e(a-‘rKLg*ar)(t_a) ||¢ B w” lf o< 0

Therefore, the uniqueness and the continuous dependence on the initial data of u follow.
O

REMARK 2.14. Assume that the delay operator ® : [0,00) x C' — X is continuous
and satisfies the inequality (2.27) uniformly for all ¢ > 0 and ¢,% € C. Then the unique
solution u(t) of (2.25) is defined on [—r,00). If, in addition ®(¢,0) = 0 for ¢ > 0, then
u = 0 is a solution of (2.25) with the initial condition ¢ = 0. We say that the solution
u with the initial condition ug = ¢ is exponentially stable if there exist positive constants
K and w such that ||u]| < Ke™*||¢|| for all £ > 0. Then the inequality (2.35) yields a
sufficient condition for the solution u to be exponentially stable. That is, if the operators
B(t) generate an exponentially stable evolution family (i.e., @ < 0) and the Lipschitz
constant L is small enough (i.e., L < —%%5), then the solution u is exponentially stable.

We note that, if we impose appropriate conditions on B(-), ® and initial data ¢, then
we can deduce that a mild solution defined as in (2.28) is differentiable and satisfies the
equation (2.25) (see [81, Chap. 2]).

We now consider the robustness of exponential dichotomy of the system under small
perturbations. To that purpose, we restrict ourself to the case of linear delay operators.
That is, ® is now a strongly continuous and uniformly bounded function from R, into
the space L(C([—r,0],X), X), and hence we will write ®(¢)(u;) instead of ®(¢,u;). More
precisely, we consider the equation

Sue = B(t)u(t) + (1) (uy) for t > 5 >0 (2.36)
e C=C(raX) |
or in the mild form
{Z(t> - Z (t,a)$(0) + [ U(t, )@ (s)(us)ds, a<t<b (2.37)

where, as above, the evolution family (U(t, s)):>s>0 is generated by B(t).

Clearly, ® satisfies the inequality (2.27) uniformly for all ¢ > 0 and ¢,¢ € C (with
Lipschitz constant L = sup,~ ||®(¢)||). Therefore, by Remark 2.14, we obtain that, for
¢ € C([~r,0], X), the equation (2.37) has a unique solution u(-). This solution is defined
on [—r,00) and depends continuously on the initial data. This fact allows us to define a
strongly continuous evolution family V = (V (¢, s)):>s>0 on the Banach space C([—r, 0], X)
as

V(t7 8)¢ = 'U't('v ¢)> (238)
where the function w(+, ¢) is the solution of the equation (2.37) satisfying us(-, ¢) = ¢.
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Therefore, by (2.37), we have the following relation between the evolution family
(V(t,5))i>s>0 and the evolution family (U(t,s)):>s>0 generated by B(-):

U(t+6,s)p(0)+
V(t,s)p(0) = + fstw Ut+60,)P(&)(V(E s)p)de fort>t+60>s (2.39)
o(t+0 —s) fort—r <t+4+0 <s.

We now come to our last result of this chapter about the robustness of exponential di-
chotomy of the solutions to the equation (2.37).

THEOREM 2.15. Assume that the operators B(t) generate the evolution family U =
(U(t, s))t>s>0 having an exponential dichotomy. Let ® be a strongly continuous and uni-
formly bounded function from R, into the space L(C([—7,0],X),X). Then, if the norm
|1D(-)|| := sup,q ||®(t)]| is sufficiently small, the evolution family V = (V(t,5))i>s>0 de-
fined as in (2.38) has an exponential dichotomy as well.

PRrOOF. The proof is a minor modification of the proof of Theorem 1.17 in Chapter
1. We just have to use the variation of constants formula (2.39) instead of the formula
(1.24). O



CHAPTER 3

A Semigroup Approach to Linear Neutral
Partial Differential Equations

1. Motivation

In the beginning of the twentieth century (see [11, 70]), neutral differential equations
were considered to be a special type of differential-difference equations. Examples of such
equations are

u'(t) —u'(t— 1)+ u(t) =0,
u'(t) — u(t — 1) —u(t — V2) =0,
u'(t) — 2u(t) +u'(t — 1) — 2u(t — 1) = 0,
(see [6, 7, 11, 37, 70]), or in general form of differential order n and difference order m:
Flt,ult),u(t —ri), o, w(t — ), o' (8), 0/ (8 = 71), ooy W (E = i), e
e u™ (), u™ (=), u™ (- rm)] =0

for some function F of (m + 1)(n + 1) variables.

In order to understand the origins of names such as ”delay”, "neutral”, etc., let us
consider the general form of linear differential-difference equations of differential order 1
and difference order 1, i.e.,

aou'(t) + a1’ (t — w) + bou(t) + byu(t —w) = f(t) for fixed w > 0. (3.1)

If ag = a; = 0, then this equation is simply called a difference equation. It does not
contain any differential terms.

If ag # 0, a; = 0, then this equation is called a differential-difference equation of re-
tarded type or simply a delay differential equation, because it describes a system depending
on its states in the past.

If ap = 0, a; # 0, then this equation is called a differential-difference equation of
advanced type or simply an advanced differential equation, because it describes a system
depending on its states in the future.

Finally, if ag # 0, a; # 0, then this type of differential-difference equations is of mixed
type with "retarded” and ”advanced” arguments. Therefore, in this case, the equation
is called a differential-difference equation of neutral type or simply a neutral differential
equation. We refer to Bellman and Cooke [6, Chap. 2| for the full history of the problem.

Recently, Wu and Xia [82] have considered a network of transmission lines and have
shown that the corresponding system of hyperbolic equations is equivalent to a system of
neutral differential-difference equations. Such an equation can be formulated as

0 0?

aFUt = awFUt + @Ut (32)

which is called a neutral partial differential equation (NPDE). Here, the function u belongs
to C([—7,0],X) for some r > 0 and a Banach space X of functions on the unit circle

47
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St eg, X = HY(S') or X = C(S"), the history function u; is defined by u(f) :=
u(t +60) for 6 € [-r,0] and ¢ > 0. Finally, F' and @, called the difference operator and
delay operator, respectively, are bounded linear operators from C([—r,0], X) into X. A
systematic treatment for the above equation is due to Hale [34, 35], in which he has given
the basic existence and uniqueness results as well as properties of the solution operator.

In this chapter we propose a semigroup approach to linear NPDE’s. It turns out that
the well-posedness of linear NPDE’s and the robustness of exponential stability of their
solutions can be obtained in an elegant manner via semigroup methods. To this purpose
we formulate linear NPDE’s in an abstract form as

%Fut :BFUt—f—(pUt fOI'tZO,

up(t) = p(t) fort <o0. (3.3)

(NPDE) {

In the examples, B is some linear partial differential operator, while the operators F' and
® are called difference operator and delay operator, respectively. We refer to Hale [34, 35],
Wu [81, Chap 2.3], Wu and Xia [82], Adimy and Ezzinbi [1] for concrete examples. In
order to treat these equations in an abstract manner, we choose a Banach space X and
consider the solution u(-) as a function from R to X. Then, the corresponding history
function is defined as

u(s) :==u(t+s) forallt >0, s <0.

Moreover, B is a linear operator on X (representing a concrete partial differential opera-
tor), while F' and ® are linear operators from an X-valued function space , e.g., Cop(R_, X)
into X. More precisely, we make the following assumption.

AssuMPTION 3.1. On the Banach spaces X and FE := Cy(R_, X) we consider the
following operators.

(i) Let (B, D(B)) be the generator of a strongly continuous semigroup (e'?);>¢ on
X satisfying ||et?|| < Me*? for some constants M > 1 and w; € R.

(ii) Let the difference operator F : E — X and the delay operator ® : E — X be
bounded and linear.

Under these assumptions we will solve the equation (NPDE) by constructing an ap-
propriate strongly continuous semigroup on the space E. This semigroup will be obtained
by proving that a certain operator (see Definition 3.4) satisfies the Hille-Yosida conditions
as long as we can write the difference operator as F' = §y — ¥ with ¥ being ”small” (see
(3.8)). If the delay and difference operators only act on a finite interval [—r, 0], it can be
shown that the smallness of ¥ can be replaced by the condition "having no mass in 0”
(see Definition 3.8).

In the case of ordinary neutral functional differential equations on finite dimensional
spaces X, we refer the readers to Hale and Verduyn Lunel [36, Chap. 9], Engel [21],
Kappel and Zhang [45, 46| for results about well-posedness and asymptotic behavior of
the solutions as well as the use of the condition "having no mass in 0” (or, "nonatomic
at zero”, see Remark 3.9). In the case of infinite dimensional spaces X, such a condition
appeared in Schwarz [71] (see also Datko [18]), where the generator property has been
shown under dissipativity conditions for ordinary neutral functional differential equations.
Hale [34, 35] and Wu [81, Chap 2.3] assumed B to generate an analytic semigroup and
also obtained a semigroup solving (NPDE) in a mild sense if ¥ is nonatomic at zero.
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2. Neutral semigroups with infinite delay

Under Assumption 3.1, we consider the operator (G,,, D(G,,)) on E := Co(R_, X),
defined by

D(Gn) = {feENnC'R_,X): f € E},
Gnf = [ for f e D(Gp). (3.4)
We are now looking at various restrictions of this (maximal) operator yielding gener-

ators of strongly continuous semigroups. We start with a simple case.

DEFINITION 3.2. On the space E = Cy(R_, X') we define a the operators T o(t) by

t , t S Oa
[T5,0(t) f1(s) = {Z(Si;_B;(O), i it > 0,

for f € EF and t > 0.
Moreover, we define the operator (Gg o, D(Gp,)) by

D(Ggo) = {f€D(Gn):f(0)eD(B),f €k, and f(0)=Bf(0)},
Gpof = [ for f e D(Gpy).

For the reader’s convenience, we recall the following properties of Gg o and (T o(t))>0
from Proposition 1.26.

ProOPOSITION 3.3. The following assertions hold.

(1) (Tso(t))e0 is a strongly continuous semigroup on the space E with the generator

(GB,O’ D(GB,O)).
(ii) The set {\ € C: ReXA >0 and X € p(B)} is contained in p(Gpyp). Moreover, for
A in this set, the resolvent is given by

0
[R(\, Gro) fI(t) = €R(X, B)f(0) + / MOf(&)de for fEE, t<0.  (35)

¢

(iii) The semigroup (Tsp(t))i>0 satisfies
I T5o(®)] < Me*, £ >0, (3.6)
with wy := max{0,w, } for the constants M and wy appearing in Assumption 3.1.
We now take the delay operator ® and the difference operator F' (see Assumption 3.1)

to define a different restriction of the operator G,,.

DEFINITION 3.4. The operator G re is defined by

Gpref := [ on the domain
D(Gpre) = {f€D(Gy):FfeDB)and F(f')=BFf+®f}. (3.7)

Our aim is to find conditions on F' such that the operator G s becomes the generator
of a strongly continuous semigroup. To do so, we write F' in the form

Ff:f(O)—\I/f, fEEa (38)
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for some bounded linear operator ¥ : E — X. The domain of Gp r¢ can then be rewritten
as

D(Gpre) ={f € D(Gm) : f(0) = ¥f € D(B) and f'(0) = B(f(0) = ¥ f) + &f + ¥ f'}.

It is now our main result that, if the operator ¥ is ”small”, then Gp g is densely
defined and satisfies the Hille-Yosida estimates, hence generates a strongly continuous
semigroup.

To that purpose and for each A € C satisfying ReA > 0, we define the operator
ex: X — E by

[exz](t) == Mz fort <0, z € X. (3.9)

THEOREM 3.5. Assume that the difference operator F' is of the form (3.8) such that
U satisfies the condition ||¥V|| < 1. Then the following assertions hold.

(i) A € p(Gpra) for each X > w, + {13

Proposition 3.3). For such A the resolvent of Gg po has the form
R()\, GBypycp)f = eA[\PR(/\, GB,F,<I>) + R(/\, B)(CI)R()\, GBypycp) — \If)]f—i-
+R(\,Gpo)f for feE. (3.10)

(with the constants we and M as in

M@
1=l

L
R\, G < — A > Ao.
|| ( ) B,F,‘I>)|| = ()\_)\0) fO?” > Ao
(iii) For A > wp := max{2XAg,wqs + L||®||} and P := 3e[(M + L)|| V|| + 2M + 1] we
have that

(i) For L := ML ong g := wy +

we have
1w

P
()\ — (.do)n
(iV) The operator Gg pe is densely defined.

IR\, G re)"|| < for alln € N.

PROOF. (i) We first observe that for u, f € E and A € C, we have that v € D(G,,)
and A\u — G,u = f if and only if u, f satisfy the equation

u(t) = M u(s) + /S A f(€)de fort < s <0. (3.11)
t
Note that, for A > ws and by (3.5) the equation
u(t) = eM[Wu+ R(\, B)(f(0) + du — T f)] + /0 MO f(¢)de for t <0 (3.12)
is equivalent to t

u=ex(Yu+ R(\, B)®u) —exR(\, B)¥f + R(\,Gpyo)f. (3.13)

If, for each f € E and A > )\, this equation has a unique solution v € E, then u(0) =
Vu+ R(\, B)(f(0) + ®u — ¥ f). This is equivalent to

(A — B)(u(0) — Tu) = [(A — Gypu)u](0) + Pu — T(A — Gy )u

v (0) = B(u(0) — Yu) + du + Pu'.
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Hence, by the above observation and the definition of Gp r ¢, we have that u € D(Gg ro)
and u = R(\,Gpa,r)f. Therefore, to prove (i) we have to verify that for A > A¢ and each
[ € E the equation (3.12) has a unique solution u € E.

Let M) : E — FE be the linear operator defined as

M, =ex(¥ + R(\, B)?). (3.14)

Since \ > wy + KHQH , we have that M, is bounded and satisfies

¥l
M|l
— W

1M < (]l + ——" < 1.

Therefore, the operator I — M, is invertible, and the equation (3.12) has a unique solution
u= (I — M) YR\ Gpp)f —exR(\,B)Vf). Thus,
R()\, GB’F’.:p)f = M)\R(A, GB,F,<p)f — GAR()\, B)\Iff + R()\, GB,O)f (315)

and the identity (3.10) follows.
(ii) By the Neumann series (I — My)~' = >">° ' M} we have that

IR Gera)l = 1) MI(R(\,Gro) — exR(A, B)Y))|

< (ZIIMK‘II)—M(+ -

M+ M|V & ( M||‘1’||>
< —E Y
- (A — wy) el + Wy
M —|—M||\If||

(1 - ||\Ij||)(>‘ — W2 — 1]\{||||<‘1;||\‘)
L

A—Xo
(ili) For A > A\ and u := R(\,Gp ra)f, we have
u(t) = e[YR(\,Gpre)f +R(\, B)(@RN, G ra)f = Wf + [0))+
+ / A f(6)de fort < 0.

We extend u and f to functions on R by

_o Ju() for t <0 o) () for t <0
at) = {e’\tg(t) fort >0 and f(8) := { eMg'(t) fort >0, (316)
where we take g(t )+ fo T)dT with
o) = {6t[t)\2 — A[Au(0) — L£(0)] + [\ — 1]£(0)  for 0 < t< L
0 for ¢t > I

Then g is continuously differentiable with compact support contained in [0, i] satisfying
9(0) = u(0), ¢'(0) = —£(0), and
le*g' (&)l < 3e[(M + L) W[ + 2M + 1] f]
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for A > max{2X\o,ws + L||®||} and all t € R,. Hence, the functions @, f belong to the
Banach space Cp(R, X) and satisfy the equation

a(t) = e a(s) + /s O f(e)de for t < s, (3.17)

and 3
£} < 3e[(M + L)[[¥][ + 2M + 1][| f]l. (3.18)

We now look at the left translation semigroup (T(t))i>o on the Banach space E :=
C()(]R,X), i.e.,

(T(t)f)(s) == f(s+1t) forall f € E, s € R, and t > 0. (3.19)

This semigroup is strongly continuous on E and its generator is

ém = i on the domain
ds

D(G,) = {feENCYR X): f € E}
(see [23, Chap. I1.2]). Furthermore, we observe that for v,w € E and A € C, we have

that v € D(G,) and Av — Gv = w if and only if v, w satisfy the equation (3.17). Since
A € p(Gy,) for A > Ao, we obtain that « = R(\,Gy,)f for A > )¢, where @ and f are
defined as in (3.16).

Therefore, by (3.16), we have that
[R(A, G ra) fI(t) = u(t) = a(t) = [R(A, G) f(2)

for t <0 and A > max{2\g, w2 + L||®||} =: wo.
By induction we obtain

[RO\, G.ra)"fl(t) = [R(\, Gp)" f](t) for t <0 and A > wy.

Using the fact that G,, is the generator of the strongly continuous semigroup (T'(t))e>0
on E and by the inequality (3.18), we have

RO, Gora) AW = 1RO, G A
IFI _ 3el(M + I|¥|| + 2 + 1
< Wl S e 1

for all t <0, A > wp, and all n € N. Therefore, putting P := 3e[(M + L)|| V|| +2M + 1]
we obtain b
IR\, Gerae)" fll < ——||f]] for A >wp and n € N.
()\ - (.Uo)n
(i¥) For A > Ao we consider the operator S : E — E defined by
Sfi:=—exR(\,B)¥f+ R(\Ggo)f, feE.

Observe that if its range ImS is dense in E, then we have, by (3.15), that D(Gpre) =
R(\,Gpre)E = (I—My)~'ImS is dense in E. Therefore, it is enough to verify that ImS
is dense in E. Since D(G,,) is dense in E, we only need to show that ImS O D(G,,) =
DA —G,).

In fact, for u € D(A — G,,) there exists f € E such that

u(t) = eMu(0) + /0 MO f(€)de for t < 0.
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Since the operator B is densely defined, there exists a sequence (y,) C D(B) such that
limy, 00 Y = u(0). Let (z,) C X be a sequence such that R(X, B)z, = yp.

For each n € N we choose a real valued, continuous function «,(t) with support
contained in [max{—2=, ——2—1} 0] satisfying a,,(0) = 1 and sup,q |, (t)] < 1.

n? nflzn]]

By the condition ||¥|| < 1, we have that the functions
f(t) = (I = an()¥) Hom()(zn — £(0)) + (), nEN,
belong to E. Moreover, these functions satisfy
fn(t) = an(t)(zn + ¥ (fn) = £(0)) + £(D),
fn(0) = ¥(fn) = n,

Jall + 2011
|

and
1fall <
We now put

un(t) = RO\ B)(fa(0) — Tf,) + / A9 £ (6)de.

Then u,, = Sf,, hence u,, € ImS, and for A > Ay we obtain
0
[un(t) = u(t)|| = leX(R(A, B)z, — u(0)) +/t MO (fa(€) — f(£))de]]
0
< IIyn—U(0)||+/t |t ()] ([|nll + (12N £l + 11.£(0)]])dt

’ ([ (llznll + 211 £1)
< w0+ [ el A
max —;,_W
1 A+ DS oo
< lyn —u(0)|| + + — 0 uniformly for all t € R _.
n(L—wf) - [T
This means that lim,, .o, v, = u. Thus, I'm.S is dense in E. ]

The Hille-Yosida Theorem now yields the following main result.

THEOREM 3.6. Let the difference operator F have the form (3.8) with U satisfy-
ing ||¥|| < 1. Then the operator Gpre generates a strongly continuous semigroup
(Tpra(t))i0 on E satisfying

1 T8,pae(t)|| < P, >0,
where the constants P and wy are defined as in Theorem 3.5.
We conclude this section by a result about ”well-posedness” of the equation (NPDE).

To this end, we denote by t — u(+, @) the classical solution of the equation (NPDE) cor-

responding to the initial condition ug = ¢, i.e., t — wu(-, ) is continuously differentiable
and satisfies the equation (NPDE).

COROLLARY 3.7. Assume that the difference operator F' is of the form (3.8) such that
U satisfies | V]| < 1. Then the equation (NPDE) is well-posed. More precisely, for every
¢ € D(Gp,rae) there ezists a unique classical solution u(-,p) of (NPDE) given by

u(+, 0) = T ra(t)e,
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and for every sequence (¢n)neny C D(Gpre) satisfying lim, . ¢, =0, one has
lim w(-, ,) =0
n—r00

uniformly in compact intervals.

PRrROOF. By Theorem 3.6, the operator (Gp re, D(Gprae)) defined by (3.7) is the
generator of the strongly continuous semigroup (T rs(t)):>0-
For ¢ € D(Gp,re) we put u; := T ro(t)p. Then it is clear that v, € D(Gp,re) C
D(G,,). We now show that u, satisfies the equation (NPDE). Indeed, we have
d Fuyyp, — Fuy i FT(t+h)p — FT(t)p
———— =lim

%Fut - Ilzli% h h—0 h

T(W)T(t)p — T
~ Flim WIWe =TW _ g, o (0 — BET(1)p + OT(1)e
_).
= BFut + @ut.

For the uniqueness of the solution, we prove that, if v, is a classical solution of (NPDE)
satisfying vop = 0, then v, = 0 for all ¢ > 0. In fact, since v, satisfies (NPDE) and
v € D(G,,), we have that

Fugp — Fuy Vt+h — Ut

d
BF'Ut—i‘(b'Ut = %F/Ut:}bg% h :F}Lg%

Therefore, v; € D(Gp,re) satisfies the Cauchy problem

%vt = Gprav; fort >0,
Vo = 0.

o /
= F,.

Since Gp,ro is the generator of a strongly continuous semigroup, this Cauchy problem
has a unique solution v; = 0 (see [23, Theorem I1.6.7]).

Finally, the last assertion, called the continuous dependence on the initial data of the
solutions, follows from the uniform boundedness of the strongly continuous semigroup
(Tp,re(t))i>0 on compact intervals. O

3. Neutral semigroups with finite delay

In this section, we study the equation (NPDE) on a finite delay interval [—r, 0], i.e.,

{%Fut — BFu, +®u, fort>0, (3.20)

Ug :@EC([—T,O],X),

where F' and ® are now operators from C([—r,0],X) into X. We again assume the
difference operator F' to be written as in (3.8), i.e.,

Fo=¢(0)— Ty, p € C([-r,0], X), (3.21)

for some bounded linear operator ¥ : C'([—r,0], X) — X. However, instead of assuming
U to be "small”, we suppose that U has no mass in 0 (see Definition 3.8 below). Our main
idea is to renorm the space C([—r,0], X) such that, with the new equivalent norm, the
norm of ¥ is small, so we can adapt the arguments from the previous section. This idea
has been used, e.g., by M. Schwarz [71] to study ordinary neutral functional differential
equations via dissipativity conditions. We begin with the definition of "no mass in 0”.
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DEFINITION 3.8. A bounded linear operator ¥ € L£(C([—r,0],X), X) is said to have
no mass in 0 if for every € > 0 there exists a positive number § < r such that

19(f)llx < ellflle for all f € C([—r,0], X) satisfying suppf < [3,0].

REMARK 3.9. This definition is taken from [71, Definition I1.2.1]. We note that, if
U e L(C([-r,0],X), X) has the form

U(f) = / dn(6)]£(0)

r

for some function 7(-) of bounded variation, then the above definition is equivalent to the
fact that the function n(-) is nonatomic at 0 in the sense of Hale and Verduyn Lunel [36,
Chap. 9.2] or Wu [81, Chap. 2.3].

We are now prepared to renorm the space C' := C([—r, 0], X). Indeed, for each positive
number w, the new norm || - ||,, defined by

[fllo:= sup [[f(s)e™||lx, feC, (3.22)

—r<s<0

is equivalent to the sup-norm. Furthermore, we denote by C, the space C([—r,0], X)
endowed with the norm || - [|,.

LEMMA 3.10. Let the operator ¥ € L(C,X) have no mass in 0. Then there exists
a positive number w such that the norm of the operator ¥, as a bounded linear operator
from C,, into X, is smaller than one.

Proor. We first prove that there exists a number w > 0 such that

1
I ()lx < 5 for all f € C([—r,0], X) satisfying || f(s)|| < e*® for all s € [—r,0].

(3.23)
Indeed, since ¥ has no mass in 0, there exists a positive number § < r such that
19 (F)llx < sllf if suppf C [—4,0]. For this 6 we take an w > 0 such that ||¥|| < te®.
Now, for a given f € C([—r,0], X) satisfying || f(s)||x < e** for all s € [—r,0], we will
prove that ||¥(f)||x < 3. To that purpose, we put

) f(s) for s € [—r, —d]
fils) = {f(—é) otherwise,

and fa(s) := f(s) — fi(s). Then suppfo C [—6,0]. Therefore, we have that

I CHIx < 1COlx + 10 )x < ([P fillo + %(“fl”oo +fllee) <

and (3.23) follows.
Denote by ||¥]|,, the norm of ¥ as a bounded linear operator in £(C,,, X). Then, by
the inequality (3.23), we have that

)

DN | =

1
W]l = sup [[f]| = sup fll=5 <1
1

I1flle< sup_|[f(s)]le"~*<1
r<s<0
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This renorming allows us to adapt the arguments from the proof of Theorem 3.5 to
prove that the operator corresponding to (3.20) is the generator of a Cp-semigroup on the
space C'([—r,0], X). Note that the generator property of an operator is preserved when
passing to an equivalent norm.

THEOREM 3.11. Assume that the difference operator F' has the form Fyp = ¢(0) — Wy
with the bounded linear operator ¥ : C([—r,0],X) — X having no mass in 0, and let the
operator B generate a strongly continuous semigroup on X . Then the operator (G, D(QG)),

defined by

Gf := f' on the domain
D(G) = {feC([-r,0,X)NC"([-r,0],X): Ff € D(B)
and Ff'= BFf + ®f}, (3.24)

is the generator of a strongly continuous semigroup (T'(t))t>0 on C(|—r,0], X).

PROOF. Let C,, be the space C([—r,0],X) normed by the new norm | - ||, for w as
in Lemma 3.10. Then the norm of the operator ¥, as a bounded linear operator from C,,
into X, is smaller than one. Therefore, as in Theorem 3.5, one shows that the operator
(G, D(G)) defined by (3.24) is densely defined and satisfies the Hille-Yosida estimates,
hence, it generates a strongly continuous semigroup. U

Analogously to Corollary 3.7, we have the following result about the existence, unique-
ness, and continuous dependence on initial data of the solutions to NPDE (3.20).

COROLLARY 3.12. Assume that the difference operator F' is of the form (3.21) such
that U has no mass in 0. Then for every ¢ € D(G), there exists a unique classical solution
(-, ) of the equation (3.20), given by ui(-, ) = T(t)p, where the strongly continuous
semigroup (T(t))i>o is generated by the operator G as in Theorem 3.11. Moreover, for
every sequence (pn)neny C D(G) satisfying lim,, o @, = 0, one has lim, o (-, pn) = 0
uniformly in compact intervals.

Having established the well-posedness of the equation (3.20), we now consider the
robustness of the exponential stability of the solution semigroup. This can be done by
using the constants appearing in the Hille-Yosida estimates of the operator G.

COROLLARY 3.13. Let the assumptions of Theorem 3.11 be satisfied. In addition, let
the operator B generate an exponentially stable Cy-semigroup and the norm of the operator
U : C — X satisfy ||V|| < 1. Then, if the norm of the delay operator ® is sufficiently
small, the solution semigroup (T'(t))i>0 generated by (G, D(G)) is exponentially stable.

PROOF. We note that, in the case of the finite delay interval [—r, 0], the operators e,
defined as in (3.9) are well-defined for all A € C, and the exponent w, in the exponential
estimate (3.6) can be chosen as wy := w; with the constant M being replaced by K :=
max{M, Me “'"}, where the constant w; appears in Assumption 3.1. Therefore, for the
equation (3.20) on the finite delay interval [—r, 0], we can adapt the arguments in the proof
of Theorem 3.5 to obtain an analogue of Theorem 3.6. That is, the generator (G, D(G))
defined by (3.24) generates a strongly continuous semigroup (7°(t)):>o satisfying

IT(®)] < P, ¢ =0,
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with the constant P defined as in Theorem 3.5 and the constant

2K || 2| K+ K|V
W+ —————— |||}
1 — ||l 1— |||l

wp := max{2w; +

Now, the assumption that (e'%);>¢ is exponentially stable means that w; < 0. Therefore,

if ||@]] < %W, then the solution semigroup is exponentially stable. O

REMARK 3.14. In order to show the robustness of the exponential stability of the
solution semigroup as in the above corollary, we need the condition ||¥| < 1. This is
due to the fact that, in the renorming Lemma 3.10, the constant w > 0, which will
appear in the exponential bound of the solution semigroup, does not depend on the
operator B. Moreover, we do not have an explicit estimate for this constant. This
somehow corresponds to the fact considered by Hale [34, Theorem 1.2] that one needs
some additional conditions on the difference operator F' to develop a qualitative theory

of NPDE (3.20).

4. Examples

We now investigate some concrete examples.

EXAMPLE 3.15. We consider the equation

{%Fut = BFu; + ®u; fort >0, (3.25)

U =peC(-r0,X):=C.

Here, the defference operator F' : C' — X is defined by

0
Ff =10~ [ lan@)se). fec,
for some function of bounded variation 7(-) which is nonatomic at 0. The operator B
generates an analytic semigroup. Finally, the delay operator ® : C' — X is bounded and
linear (e.g., f := fBT ©(s)f(s)ds for f € C and some function ¢ € L'([—r,0])).

By Remark 3.9, Theorem 3.11 and Corollary 3.12 we obtain that the equation (3.25)
is well-posed. We note that, a similar problem has been considered by Hale [34] for
X = H'(S",R) and by Wu [81, Chap 2.3] for X = C(S",R) (with B := 2, and the
same F' and ®). They obtained the existence and uniqueness of the mild solutions to the
equation (3.25).

Moreover, using Corollary 3.13 and the fact that the Spectral Mapping Theorem holds
for analytic semigroups (see [23, Theorem IV.3.12]) we obtain that, if the spectral bound
s(B) < 0, the total variation Varp_,gn(-) < 1 and the norm ||®|| is sufficient small, then
the solutions of the equation (3.25) are exponentially stable.

Our methods may be extended to consider the equation posed by Datko [18].
EXAMPLE 3.16. In [18, Eq. (1)], Datko considered the equation

{% [u(t) - 27:1 Aju(t —r;)| = Bu(t) + Z;nzl Bju(t —r;) fort >0,

(3.26)
u(t) =¢(t) fort<0and ¢ € C([-r,0],X):=C,
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where, the operator B generates a strongly continuous semigroup, while the operators

{A;} and {B;} belong to £(X). Finally, the numbers 0 < ry <7y <--- < r, =71 are

fixed. This equation can be formulated in more general form as
%Fut = Bu(t) + ®u; fort >0, (3.27)
U =peC(-r0,X):=C.

Here, the operator B generates a strongly continuous semigroup, while the delay operator

®:C — X is given by ®¢p := 37", Bjp(—r;) for ¢ € C. Finally, the difference operator

F:C — X is defined by F = do — ¥ with Wy := 377" | Ajp(—r;) for ¢ € C showing that

¥ has no mass in 0.

We now consider the following operator

Gf := f' on the domain
D(G) = {feC'nC: f(0)€ D(B) and F(f') = Bf(0) + ®f} (3.28)

in the space C.

By the same methods as in Theorem 3.11 and Corollary 3.12, we obtain that the
operator GG defined above is the generator of a strongly continuous semigroup and the
equation (3.27) is well-posed.

Moreover, using Corollary 3.13, we can obtain, for the equation (3.26), an explicit
result on the robustness of exponential stability of the solution. Precisely, if the operators
B generates an exponentially stable semigroup (e'®);> satisfying

||| < Me ", >0, w; >0,
and if 77, ||A;]] < 1 and 77 |[Bj]| < %W, then the solutions of the equation
(3.26) are also exponentially stable.



CHAPTER 4

Neutral Partial Differential Equations
with Non-autonomous Past

In this chapter, inspired by Chapter 2, we shall consider the case of non-autonomous
past. To explain this teminology briefly, let us turn back to equation (3.3) in Chapter 3

%Fut :BFut—i-(but fOI'tZO,

up(t) =¢(t) fort <0. (4.1)

(NPDE) {

From Theorem 3.5 we know that, if Assumption 3.1 is satisfied, then there exists a corre-
sponding solution semigroup (I's ra(t)):>0. 1f we now consider the function v : Ry xR_ —
X defined as

u(t,s) = [Ts,ra(t)f](s),

then we obtain the equality

0 0
au(t, s) = gu(t, s),
which is known as the balance law between the velocity of the evolution process in the
past and in the future (see [20, p. 39-40]). However, in many applications this balance law
may not be true. An idea introduced by Brendle and Nagel [10] to control the unbalance
is to suppose that the value of the history function is modified according to an evolution

law. Consequently, this modification leads to the following system of equations

%F(u(t, ) = BFu(t,)+®ut,), t>0, (42)
9 9
o uts) = soult;s) +A(s)ults),  t202s. (4.3)

Here, the function u(-,-) takes values in a Banach space X and B is a linear operator on
X. The difference operator F' and the delay operator ® are bounded linear operators from
the space Cop(R_, X) into X. Finally, A(s) are (unbounded) operators on X for which the
non-autonomous Cauchy problem

{dw(t) = —A(t)z(t), t < s <0,

dt

z(s) =z,€X (4.4)

is well-posed with exponential bound. In particular, there exists an exponentially bounded
backward evolution family U = (U(t, s)):<s<o solving (4.4), i.e., the solutions of (4.4) are
given by z(t) = U(t, s)z(s) for t < s <0 (see Chapter 1, Section 5).

We refer to [10] for more information about ”non-autonomous past”. If F' has the
form Fp = ¢(0) for ¢ in relevant spaces, i.e., for delay PDE’s with non-autonomous past,
these equations have been solved using semigroup methods in the space Cy(R_, X) in
[10, 27] or in the space LP(R_, X) in [26, 28].
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As in Section 1 of Chapter 2, we again use the theory of evolution semigroups as intro-
duced in Chapter 1, where we defined an abstract differential operator G on Cy(R_, X)
(see Definition 1.23). We now use the difference operator F, the delay operator ® (and
the operator B) to define a restriction Gg g of G. Then, under appropriate assumptions
on F', we compute explicitly the resolvent of this restriction and show the Hille-Yosida
estimates. In this way, we obtain a semigroup (T re(t)):>0 which solves (4.2) and (4.3)
in a mild sense. Moreover, by computing the constants appearing in the Hille- Yosida
estimates, we can show that exponential stability of this semigroup, hence of the solutions
of (4.2) and (4.3), is robust under small perturbations of the delay operator ®.

1. Evolution semigroups with difference and delay

In this section, for the Banach spaces X and E := Cy(R_,X), we shall consider
bounded linear operators ® : £ — X, F' : E — X, called delay operator and difference
operator, respectively, and the linear operator B : X — X satisfying Assumption 3.1.
We use them to define the following restriction of the operator G from Definition 1.23 in
Chapter 1.

DEFINITION 4.1. The operator G r¢ is defined by
Gpraf := Gf onthe domain
D(Gprs) = {f€D(G): Ffe D(B)and F(Gf)=BFf+ ®f}. (4.5)
As in the formula (3.8), we write F' in the form
Fo = ¢(0) — Uy, p€E, (4.6)

for some bounded linear operator ¥ : £ — X. The domain of the operator Gp re can
then be rewritten as

D(Gpre) ={f € D(G): f(0)—¥fe D(B)and [Gf](0) =B(f(0)—Vf)+Pf+TGf}.

If the operator ¥ is "small”, we can prove that G p r o satisfies the Hille-Yosida estimates.
In order to handle the case of ”non-autonomous past”, we may, in principle, use techniques
similar as in Theorem 3.5 in Chapter 3. Heuristically, the first derivative % has to be
replaced by the operator G. More precisely, we have to use the integral equation

u(t) = eIU(L, s)u(s) + / S OU(t, € f(€)dE, t<s<0,

instead of the integral equation

u(t) = e)‘(t’s)u(s) + /5 eA(t*E)f(ﬁ)dg, t<s<0,

which has been used in the proof of Theorem 3.5 in Chapter 3 (see the equation (3.11)).
Furthermore, we have to use the left translation evolution semigroup defined as in Defi-
nition 1.25 in Chapter 1 instead of the left translation semigroup defined as in Definition
3.2 in Chapter 3.

THEOREM 4.2. Let the operator ¥ satisfy the condition ||¥| < & (with the constant
N as in Definition 1.20 in Chapter 1), and define the operator ey : X — E by

[exx](t) := eMU(t,0)x  fort <0, € X and Re\ > w(U).

Then the following assertions hold.
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(i) X € p(Gpra) for all X > w + 15{‘,?;\‘1',” (with the constants w and K as in Propo-

sition 1.26). For all such X the resolvent of G pe satisfies

R\, Gpre)f = ex[VR(\, Gpre)+ R\ B)(PR(A\, G re) — V)| f+
+R(A\, Gpo)f for feE, (4.7)

where the operator G is defined as in Definition 1.25 in Chapter 1.
(ii) For L := S gng Ao = w + Z12 we have

=N =N
IR Grpa)l < s for A o,
” (A= 2o)
(iii) For A > wy := max{2Ag,w + L||®||} and P := 3eN|[(K + L)||V|| + 2K + 1] we
have that
IR, Gra)"|| < 2 for all n € N.
o (A-—-a@)”

(i¥) The operator Gg pe is densely defined.

PROOF. By the remarks preceding the theorem, we can see that the proofs of (i), (ii)
and (iv) are similar to the proofs of (i), (ii) and (iv) in Theorem 3.5. To prove (iii) we
need some more involved techniques.

(ili) For A > A\ and u := R(\,Gp,ra)f, by (4.7) we have

ut) = eMU(t,0)[Tu+ R(\, B)(®u—Tf+ £(0))] + /t ’ AEOU (L, &) f(€)dE for t < 0.

We extend u, f to functions on R by

- u(t) fort <0
u(t) = O—wn)t
e g(t) fort>0,
. £t for t < 0
t) =
Uy {—e““"l)tg’(t) for ¢ > 0.

Here, wy is as in Definition 1.20, and ¢(¢) := u(0) + fot @(7)dT with

6¢[t(A —wi)? — A + wi][(A — wi)u(0) — 5 £(0)]+
o(t) = +H(A —w)t = 1]f(0)  for 0 <t < =,
0 for t >

1
A—wi ”

Then g is continuously differentiable with compact support contained in [0, «~—] having

A—w
the properties that g(0) = u(0), ¢'(0) = —f(0) and 1
le*=g' ()| < Be[(K + L)[[ || + 2 + 1| ]
for A > max{2\o,w + L||®||} andallt€R,.
Hence, @, f belong to F and satisfy the equation

a(t) = eMUy(t,0)a(0) + / ’ AEOTL (8, €) f(€)dE for t <0, (4.8)
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with
Ul(t,s) fort < s <0,
Uy(t, s) := { e<sU(t,0) fort <0 <s,
et (=07 (0,0) = er=UId  for 0 <t < s.
Moreover,

IF1l < 3e[(K + L) 2| + 2K + 1]||f]]- (4.9)

We now look at the left translation evolution semigroup (T1(t))>0 on the Banach space
E = Cy(R, X), defined by

U(s,s+1t)f(s+1) for s <s+t<0,
(Ti(t)f)(s) := Ur(s, s + 1) f(s + 1) = e HU(5,0)f(s +1) for s <0< s+t,
e f(s +t) for 0 <s<s+t.

As in Chapter 1, Section 1, we can see that this semigroup is strongly continuous on E
and its generator, which we denote by G, satisfies the following property.

For v,w € E and \ € C, we have that v € D(Gl) and \v — Gyv = w if and only if
v, W satzsfy the equation (4.8).

Therefore, we obtain @ = R(\,G1)f. Here we note that A € p(G) for A > \g > w;.
Thus, for ¢ <0 and A > max{2Ag,w + L||®||} =: wg, we have

[R(A, G.re) fI(t) = u(t) = a(t) = [R(\, G) f](1).

By induction we obtain
[R(A, G )" f1(t) = [RO\, G)" fI(t) for t < 0.

Using the fact that Gy is the generator of the strongly continuous semigroup (T (t));0
satisfying ||77(¢)|| < Ne“'t, and by inequality (4.9), we have

IBO. G AN = IBOLGP )]
< ool < X DML 2R L 1y

for all t <0, A\ > wp, and all n € N. Therefore, putting P := 3eN[(K + L)||¥| + 2K + 1]
we obtain

IR\, Gerae)"fl] < | f]| for A > wp and n € N.

P
()\ — wo)”

The Hille-Yosida theorem yields the following corollaries.

COROLLARY 4.3. If the operator W satisfies ||¥|| < + (with the constant N as in
Definition 1.20), then the operator Gp e generates a strongly continuous semigroup
(Tpra(t))i0 on E satisfying

|Ts,r,0(t)]| < Pe’,

where the constants P and wy are defined in Theorem 4.2.
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2. Well-posedness and robustness of stability

In this section we study the well-posedness of the equations (4.2) and (4.3) in a mild
sense and prove the robustness of exponential stability of the solutions under small per-
turbations of the delay operator. We start with the definition of the mild solutions to
(4.2) and (4.3).

DEFINITION 4.4. The function u(t,s) : Ry x R. — X is called a mild solution of
the equations (4.2) and (4.3) if u(¢, s) is continuously differentiable with respect to ¢, and
u(t,-) € D(G) satisfies:

{%F(u(t, )) = BFu(t,) + ®u(t,-), t>0,

Sut,)  =Gu(t,), t>0. (4.10)

REMARK 4.5. The operator G is a closure of the operator & + A(-). We refer to
[74, Theorem 1.14] or [60, Chap. 3| for detailed information on the relation between the
operators G and d% + A(+). Roughly speaking, there exists a core H for G (i.e., a linear
subspace of D(G) which is dense in D(G) with respect to the graph norm) such that
Gl = (£ +A("))|n. If we impose some appropriate conditions on the operators A(s) and
the initial data u(0,-), then we may have that u(t,-) € H and hence obtain the classical
solutions to (4.2) and (4.3) (see [27] for details). Therefore, we can consider the solutions
of (4.10) as mild solutions to (4.2) and (4.3).

We now come to our first about the well-posedness in a mild sense of the equations
(4.2) and (4.3).

COROLLARY 4.6. Assume that the difference operator F is of the form (4.6) with
U satisfying ||| < % for the constant N appearing in the Definition 1.20. Then the
equations (4.2) and (4.3) are well-posed in a mild sense. More precisely, for every ¢ €
D(Gp,ra) there exists a unique mild solution u(t,-,¢) of (4.2) and (4.8) given by

U’(tv ) 90) = TB,F,@(t)SOv
and for every sequence (¢n)neny C D(Gpre) satisfying lim, . ¢, =0, one has

lim wu(t, -, p,) =0

n—oo

uniformly in compact intervals.

ProOF. By Corollary 4.3, the operator (Gp re, D(Gp re)) defined by (4.5) is the
generator of the strongly continuous semigroup (Is re(t))t>o0-

For ¢ € D(Ggre) we put u(t,-) := Tpre(t)p. Then it is clear that u(t,-) €
D(Gp,re) C D(G) and that u(t, ) satisfies the second equation in (4.10). We now show
that u(t, ) satisfies the first equation in (4.10). Indeed, we have

0 - Fu(t + h,-) — Fu(t,-) FT(t+h)p — FT(t)p

g lut) = Jim h = lim n

TWTWe =TW$ _ oy o (0 = BET(1)e + OT(1)0

= Flim
h—0 h
= BFu(t, ) + du(t,-).

For the uniqueness of the solution, we prove that, if v(¢
equations (4.2) and (4.3) satisfying v(0,-) = 0, then v(¢,-) =

,-) is a mild solution of the
0 for all £ > 0. In fact, since
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v satisfies (4.10) and v(t,-) € D(G), we have that

0 .. Fu(t+h,-)—Fo(t,)
BFuv(t,-) + ®v(t,) = aFv(t,() _h’lll%(l) ah

_ o+ hy)—v J .

= Flim h = gt

= FGu(t,-).

Therefore, v(t, ) € D(Gp,re) satisfies the Cauchy problem

Lo(t,:) =Gprev(t,-) fort>0,
v(0,-) =0.

Since G ro is the generator of a strongly continuous semigroup, this Cauchy problem
has a unique solution v; = 0 (see [23, Theorem I1.6.7]).

Finally, the last assertion, called the continuous dependence on the initial data of the
solutions, follows from the uniform boundedness of the strongly continuous semigroup
(Tg,re(t))i>0 on compact intervals. O

Having proved the well-posedness in a mild sense of the equations (4.2) and (4.3), we
now use the constants appearing in the Hille-Yosida estimates of the operator Gp ro to
study the robustness of the exponential stability of the solution semigroup.

COROLLARY 4.7. If the backward evolution family U and the semigroup (e'?);>o are ex-

ponentially stable, ||¥|| < +, and ||®|| is small enough, then the semigroup (Tg o (t))i>0,

and hence the mild solution of the equations (4.2) and (4.3), is also exponentially stable.

PROOF. The assumption that ¢ and (e'?);>( are exponentially stable means that, in
Theorem 4.2, w = max{w;, w2} < 0. Moreover, we have

2K]|®||

wp = max{2XAg,w + L||®||} = max{2w + ;
1= Nl

w+ L||®||}.

Therefore, if [|®|| < —%, then the semigroup (I’s rs(t)):>o is also exponentially stable. [

3. Examples

We now consider some concrete examples and compute the “smallness” of ® explicitly.

ExXAMPLE 4.8. Let €2 be a bounded domain in R* with smooth boundary. The Dirich-
let Laplacian generates an analytic semigroup (€’2);>o on X := L*(Q). We then take
operators A(s) as

A(s) = a(s)A,

where the function a(-) € L;, (R_) satisfies a(-) > v > 0 for some constant . These
operators generate a backward evolution family (U(r, s)),<s<o given by

U(r, 8) = e(frs a(T)dT)A for r S S S 0
We then have
U (r,s)|| = el alr)dr)o < eYro(s—1) for r < s <0,
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where 0 > )y denotes the largest eigenvalue of A. Therefore, we can choose, in Definition
1.20, the constants N = 1 and w; = yA¢g < 0. We now define the delay and difference
operators by

of = / o(3)f(s)ds for f € E,

\Iff::/ w(s)f(s)ds for f € E,
where ¢(-) and ¥(-) belong to L}(R_). We then have
1] = lle()lzr,
1) = [l e

Let now B generate a semigroup (e'%);>o satisfying [|e'?|| < Me*“?" with wy < 0. From
the definition of (Ts(t))t>0 We obtain

1TB0(0)] < Mema{72o, walt >0

Hence, by Corollary 4.3, if ||¢(-)||z: < 1 then the equations (4.2) and (4.3) are well-posed.
Moreover, in Corollary 4.7 we can choose

M+ M)

K=M and L =
L—[]()]

Therefore, if

max{yAg, w
Ol < ~ 220z}

then the semigroup (75 re(t)):>0 and hence the solutions of (4.2) and (4.3) are exponen-
tially stable.

EXAMPLE 4.9. Let now the operators (—A(s))ser_ satisfy the following hyperbolic
condition (see, e.g., Pazy [62, Chap. V.3], Nickel [60, Chap. 4]).

(H1) The family (—A(s))ser_ is stable, i.e., all operators —A(s) are generators of Cp-
semigroups and there exist constants M > 1 and w; € R such that

(wy,00) C p(—A(s)) forall seR_

and
k
HR()\, —A(s;)|| € M(A —w)™" for all A > w;
j=1
and every finite sequence —oo < 87 < 59 < -+ - < 5, < 0.

(H2) There exists a densely embedded subspace Y — X which is a core for every
—A(s) such that the family of the parts (—A(s) |y )teR, in Y is a stable family
on the space Y.

(H3) The mapping R_ 5 s — A(s) € L(Y, X) is uniformly continuous.

(H4) There exists a family (Q(s))ser_ of isomorphisms of Y onto X such that for every
veY, Q(t)v is continuously differentiable in X on (—o0, 0] and

Q(s)A(5)Q(s) ' = A(s) + B(s)

for some strongly continuous family (B(s))scr_ of bounded operators on X.
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The delay and difference operators are defined by
Of:=af(0) for f € E and some o > 0,

Uf:=pf(0) for f € E and some § > 0.

By Pazy [62, Theorem V.4.8] or Nickel [60, Corollary 4.16] we obtain that there
exist a unique backward evolution family (U(t, s))t<s<o solving the Cauchy problem (4.4)
satisfying

U, s)|| < Me**D fort < s <0.
Let now the operator B generate an analytic semigroup (e‘?),>o with spectral bound
s(B). Then, by Corollary 4.3 we have that, if 5 < 1 then the equations (4.2) and (4.3)
are well-posed.

Moreover, by Corollary 4.7 and the Spectral Mapping Theorem for analytic semigroups
we obtain that, if wy < 0, s(B) < 0 and if

1—
a < —( f) max{e,, v for some 7 satisfying s(B) < v < 0,

M+ MB

then semigroup (T rs(t)):>0 and hence the solutions of (4.2) and (4.3) are exponentially
stable.




CHAPTER 5

Non-autonomous Neutral Partial Differential Equations

In this chapter we study the semi-linear NPDE’s of the form

8
{aFut = B(t)Fu; + ®(t,u;) fora <t <b (5.1)

Uq =¢eC :=C(-r0],X).

As in Section 2 of Chapter 2, we assume that the linear operators B(t) generate the
evolution family (U(t, s))i>s>0. This fact allows us to solve the equation (5.1) in a mild
manner if the difference operator F' has the form (4.6) with ||¥| being small. More
precisely, we will prove that, if F' satisfies the above condition, then the mild solution of
NPDE (5.1) exists uniquely on the interval [a — r,b] of the real line provided that the
delay operator ®(t,¢) is Lipschitz continuous with respect to ¢ € C' uniformly for all
t € [a,b]. Analogous results for autonomous NPDE have been obtained by Hale [34] and
Wu [81, Chap. 2.3] in which they used very complicated topological methods employing
Kuratowski measures of non-compactness. One of the main difficulties they encounter
is that one can not use the fixed point argument directly. In our method we use the
techniques related to the Neumann’s series of (I — W)~ ! to tranform the problem into
such a situation that we can apply the fixed point argument. Therefore, we need the fact
that W is ”small” (precisely, ||¥|| < 1). However, if ¥ is not ”small” but has no mass in
0, then we may use the renorming procedure to convert the case "W having no mass in
0” to the case ”W¥ being small” as in Section 2 of Chapter 3.

Moreover, by our estimates, we also obtain the robustness of exponential stability of
the system under small perturbations of the delay operator ®.

1. Well-posedness and stability

We begin with the result about existence, uniqueness and continuous dependence on
initial data of the mild solutions to the equation (5.1).

THEOREM b5.1. Let the difference operator F have the form (4.6) with | V| < 1. Let
the delay operator ® : [a,b] x C' — X be continuous and satisfy a Lipschitz condition

(¢, ¢) — (¢, ¥)|| < Lllg — ¢l for all t € [a,8], ¢,¢ € C:= C([=r,0], X),  (52)

where L s a positive constant. Then, for given ¢ € C there exists a unique continuous
function u : [a — r,b] — X which solves the following initial value problem

v =0 (5.3)

Moreover, the solutions depend continuously on the initial conditions.

{Fut =U(t,a)Fo+ [LU(t,s)®(s,us)ds, a<t<b,
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PROOF. Define the operator ¥ : C([a — r,b], X) — C([a — r,b], X) by

- v fora<t<b
Bul() = g0 restEd
U(u,) fora—r<t<a.
Since ||¥|| < 1 we have ||¥|| < ||¥|| < 1. Therefore, the operator I — ¥ is invertible. For
a given ¢ € C, we define a mapping
Hy: Cla—1,0],X) = C(la—r,b],X)

by
U(t,a)F¢+ tUt,sq)s,usds fora <t <b,
sty — [T+ [V (s,
o(t —a) — V(o) fora—r<t<a.
Hence, denoting by || - || the norm in C([a — r,b], X ), we obtain
[(Hou)(t) = (Hov)(#)]] < PL(t = a)lju = v]jo fora <t <b (5.4)

and (Hyu)(t) — (Hev)(t) = 0 for a —r < t < a, where P := sup,,<;<; |[|U(t,5)[|. By
induction we obtain

(PL(t —a))

[(Hgu)(t) — (Hgv) (D) < - lu—vljeo fora <t <b (5.5)

n!
and (Hju)(t) — (Hjv)(t) =0fora—r <t <a.
We now put Fy := (I — @)’17{45. Using the Neumann’s series, we then have

(Fou)(t) = (Fov)(t) = <Z ‘1’") Hou | (t) — [(Z ‘1’"> Hyv| (t)
= [(Heu)(t) — (Hpv)(1)] + [(FHsu)(8) — (THy0)(t)]+
(TP Hyu) () — (P*Hpv) ()] + - - - (5.6)
Next, we prove by induction that, for all n € N we have
(T Hou) (1) — (" Hgv)(O)]| < [C["PL(t — a)ju — v]low for a <t <0 (5.7)

and (U"Hyu)(t) — (I"Hgv)(t) =0 for a —r < t < a.
Indeed, for n = 0, the claim follows from (5.4). If the claim holds for n — 1 we prove
it for n. In fact, by definition of ¥, we have

T[(D" " Hyu),] — O[T " Hgv),] fora <t < b,
T[T Hgu)o) — O[T Hyv),] fora—r <t<a.
(5.8)

(" Hgu)(t) — (P"Hygv) () = {

By the inductive hypothesis we have that

0P Hgu)o(8) — (" Hy0),(0)] 18" Hgu) (+0) — (U™ Hgv)(t + 0)]|

[]" P PL(t + 6 — a)|lu — v]|
TP PL(t — a)||u — v||oo for a <t +60 < b

and (U "Hgu),(0) — [(I""Hyv),(0) = 0 for a — r <t + 60 < a. Thus, by (5.8), we have
108" Hgu)(t) — (P"Hgv) ()] < [1W]"PL(t — a)l|u — v]|oo fora <t <
and (U"Hgu)(t) — (I"Hyv)(t) = 0 for a — r < t < a. Hence, the claim follows.
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From the above claim it follows that

[(Fou)(t) = (Fso) (@) < (ZII‘MI") PL(t = a)llu = v]|o

n=0

PL(t —
_ P ) fras<e <y,
=¥
and (Fypu)(t) — (F4v)(t) = 0 for a —r <t < a. Proceeding by induction, we obtain
PL(t
IF30)0) — (o) < Tl vl for a << b
and (F3u)(t) — (Fpu)(t) = 0 for a—r < ¢ < a. Hence,
(PL(b—a))"

| Fou — Fov|loo < e
¢ ’ (1 = [[¥])mn!

For n large enough we have that % < 1. Therefore, by the contraction principle,

F, has a unique fixed point u in C(ja —r, b, X). By the definition of F,, we have that u
is a solution of the problem (5.3).

The uniqueness of v and the continuous dependence of u on the initial data can be
proved as follows. Let v be the solution of the equation (5.1) on [a — r, b] with the initial
value . Then,

u—v=Fyu—Fpv=(I—T0) "Hy)u— (I —F) "Hy)v.
Using Neumann’s series we arrive at

u(t) —v(t) = [(Heu)(t) — (Hyo) ()] + [(THyu)(t) — (TH ) )]+
(T Hu)(t) — (P*Hyv)(t)] + - forall t € [a —r,b].  (5.9)

By definition of #H,, the norm of the fisrt term in (5.9) can be estimated by
1(Hou)(t) — (Hyo)ON < K(1+ ||‘I’||) Do — )+
KLe ") ||lus — vs||ds  for a <t < b, and
[(Hou)(t) = (Hyo) D) < K(l +Ile =4l fora—r<t<a, (5.10)

with the constants K and a appearing in Definition 1.1.
Again, by induction, the norm of the nth term in (5.9) can be estimated by

100" Hgu)(t) — (T Hp0) ()] < I+ [[2[e o — ]|+
/ K Le®*)||lu, — v,||ds] for a <t < b, and
108" Hgu) (t) — (" Hyo) ()] < "KL+ [2)]l¢ — v fora—r <t <a, (5.11)

Therefore,

[ = vl]oo.

Jut) = o] < gl L+ et — v+

¢
K L9 |ju, — v,||ds] for a <t < b, and

A

) v € KU+ IPDI6 =yl fora—r<t<a  (512)
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Hence, if a > 0, then, for all a <t < b,

t
[M(1+||‘1’||)€“(t_“)||¢—¢||+/ KLe*"™ju, — v,||ds],  (5.13)

1
lue = vl € =
1 =[]

and if a < 0, then, for all a <t < b,
1 t
g —ve]| < ?M[K(HH‘I’H)@_M@““_“)||¢—1/1||+/ KLe™ e ||u,—v,||ds]. (5.14)
Now, the inequalities (5.13), (5.14) and the Gronwall’s inequality imply that

KA+¥]) (at-EL V(t—a .
WG( +1—|w||1)((Lt _ZJ|¢_¢“ ifa>0
KQAHY]) o —ar (ot T2 ) (E=a) g .

() el S5 6 — | if < 0.

g — vef| < (5.15)

Therefore, the uniqueness of v and the continuous dependence of u on the initial data
follow. O

COROLLARY 5.2. Assume that the delay operator ® : [0,00) x C' — X is continuous
and satisfies the inequality (5.2) uniformly for all t > 0 and ¢, € C. Let, in addition,
®(t,0) = 0 fort > 0. Then, if the operators B(t) generates an exponentially stable
evolution family and the Lipschitz constant L is small enough, the solution u with initial
condition uy = ¢ s also exponentially stable, i.e., there exist positive constants N and w
such that ||u| < Ne || @] for all t > 0.

PrOOF. By Theorem 5.1 and the assumption of the corollary, we have that, for each
initial value ¢, the equation (5.1) has a unique solution u(-) defined on [—r,00). The
condition that ®(¢,0) = 0 for ¢ > 0 implies that v(-) = 0 is a solution of the equation
(5.1) with the initial condition 1) = 0. Therefore, by inequality (5.15), we obtain

K)ot 2 =) o) a0
||ut|| S Kt;ﬂ[‘y‘yu) —ar (a+ KLe_O‘T)(t_a) . N (516)
ey € e loll if o <O,

with the constant K and « appearing in Definition 1.1 and Lipschitz constant L as in
(5.2). If now the operators B(t) generates an exponentially stable evolution family (i.e.,

a < 0) and if the Lipschitz constant L is small enough (i.e., L < —%), then the
solution u(-) is exponential stable. O
2. An example

We demonstrate our result by the following example.

ExXAMPLE 5.3. We consider the problem
%Fut(-) = B(t)Fu,(-) + ®(t)uy(-) for t > s > 0, (5.17)
us(+) = ¢(-) € C([=r,0], X) = C.

Here, the coefficients B(t) satisfy the following parabolic conditions (see, e.g., Pazy [62,
Chap. V], Schnaubelt [23, Chap. VI.9], Nickel [60, Assumption 4.1]).

(P1) The domain D := D(B(t)), t > 0, is dense in X and independent of ¢.
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(P2) For t > 0, the resolvent R(\, B(t)) exists for all ReA > 0 and there exists a
constant M such that

IR\, B(@)] <

M
for ReA >0, t > 0.
Al +1

(P3) There exist constants L and 0 < a < 1 such that
I(B(t) — B(s))B(t) Y| < L|t — s|* for s,t,7 > 0.

(Concrete examples of such operators B(t) can be found in [74, Examples 2.3, 3.10] and
references therein).

The delay operator ®(-) : Ry — £(C([ 7“ 0], X), X) satisfies L := sup, ||®(t)| < oc.
Finally, the difference operator F' € £(C([-r,0], X), X) is defined by

Ff = f(0)— @f == f(0 /w $)ds for f € C([-r,0),X),

where 9(-) belongs to L' ([—r,0]) and satisfies ||¢(-)||z1 < 1.

By Pazy [62, Theorem V.6.1] (see also [60, Corollary 4.12]), we have that the the
operators B(t) generate an evolution family (U(t,s)):>s>0- Therefore, by Theorem 5.1,
the equation (5.17) has a unique mild solution u(-) for each initial condition ¢ € C, and
the solutions depend continuously on the initial data.

If now, in addition, the operators B(t) also satisfy the following condition

(P4) the operators B(t)B(s)™! are uniformly bounded for ¢,s > 0 and there exists a

closed operator B(oo) with domain D such that

lim |(B(t) ~ B(o))BO)™!]| =0,

then, by Pazy [62, Theorem V.8.1] or Schnaubelt [23, Corollary VI.9.26], the evolution
family (U(t,s)))i>s>0 generated by B(t) is exponentially stable and satisfies

U, s)l < N9, ¢ > 5 >0,

for positive constants v and N. Hence, by Corollary 5.2, we obtain that, the mild solution
of the equation (5.17) is also exponentially stable if

1— .
LZStlZlE)HCI)(t)H < V( ]gfys)nm)
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