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NUMERICAL SIMULATIONS OF DISK-PLANET INTERACTIONS

ABSTRACT

The aim of this dissertation is to study the dynamical interactions occurring between a
forming planet and its surrounding protostellar environment. This task is accomplished by
means of both two- and three-dimensional numerical simulations. In order to render the
proper development of the work, results from such calculations are presented according
to the same temporal order they were achieved.

The first part of my research plan concerned global simulations in three dimensions.
These were intended to investigate the large-scale effects caused by a Jupiter-size body
still in the process of accreting matter from its neighborhood. For the first time, this prob-
lem was tackled in a three-dimensional space. The computations are global in the sense
that they embrace a whole portion of circumstellar disk, extending over a radial distance
interval of eleven astronomical units. For computational reasons, we relied on a local-
isothermal equation of state to describe the thermal properties of disk material. Simu-
lations show that, despite a density gap forms along the orbital path, Jupiter-mass pro-
toplanets still accrete at a rate on the order of 0.01 Earth’s masses per year when they are
embedded in a disk whose mass, inside twenty-six astronomical units, is 0.01 solar masses.
In the same conditions, the migration time scale due to gravitational torques by the disk is
around one hundred thousand years. These outcomes are in good agreement with previ-
ous assessments obtained from two-dimensional calculations of infinitesimally thin disks
as well as from linearized analytical theories of disk-planet interaction.

The global approach is the most rigorous way of treating planets in disks because it
avoids making simplified assumptions on the propagation of the perturbations induced
by the embedded body. Yet, this approach usually prevents from attaining numerical res-
olutions necessary to inquire into the local effects of disk-planet interactions and to handle
those arising from Earth-mass objects. The second part of my work was dedicated to over-
come this restriction by employing a nested-grid technique within the frame of the two-
dimensional approximation. The method allows to perform global simulations of planets
orbiting in disks and, at the same time, to resolve in great detail the dynamics of the flow
inside the Roche lobe of both massive and low-mass planets. Therefore, it was applied to
planetary masses ranging from one Jupiter-mass to one Earth-mass. In each case, the high
resolution supplied by the nested-grid technique permits an evaluation of the torques, re-
sulting from short and very short range gravitational interactions, more reliable than the
one previously estimated with the aid of numerical methods. Likewise, the mass flow onto
the planet is computed in a more accurate fashion. Resulting migration time scales are in
the range from roughly twenty thousand years, for intermediate mass planets, to a million
years, for very low as well as high-mass planets. Growth time scales depend strongly on



ABSTRACT v

the protoplanet’s mass. Above 64 Earth-masses, this time scale increases as the 4/3-power
of the planet’s mass. Otherwise it raises as the 2/3-power, occasionally yielding short
lengths of time because of the two-dimensional geometry. Circumplanetary disks form
inside of the Roche lobe of Jupiter-size secondaries. Its azimuthally-averaged rotational
velocity is nearly Keplerian, though it becomes sub-Keplerian as the mass of the perturber
is decreased. In contrast, a hydrostatic envelope builds up around a one Earth-mass object.

As a natural evolution, the nested-grid strategy was implemented in three dimen-
sions. In order to evaluate the consequences of the flat geometry on the local flow structure
around planets, simulations were carried out to investigate a range of planetary masses
spanning from 1.5 Earth’s masses to one Jupiter’s mass. Furthermore, in such calculations
protoplanets were modeled as extended structure and their envelopes were taken into ac-
count through physically realistic gravitational potentials of forming planets. Outcomes
show that migration rates are relatively constant when perturbing masses lie above ap-
proximately a tenth of the Jupiter’s mass, as prescribed by Type II migration regime. In a
range between seven and fifteen Earth’s masses, it is found a dependency of the migration
speed on the planetary mass that yields time scales considerably longer than those pre-
dicted by linear analytical theories. Type I migration regime is well reproduced outside of
such mass interval. The growth time scale is minimum around twenty Earth-masses, but
it rapidly increases for both smaller and larger mass values. With respect to accretion and
migration rates, significant differences between two- and three-dimensional calculations
are found in particular for objects with masses smaller than ten Earth-masses. The flow
inside the Roche lobe of the planet is rather complex, generating spiral perturbations in
the disk midplane and vertical shocks in the meridional direction. Recirculation is also
observed in many instances.

The final part of this work was dedicated to the simulation of non-local isothermal
(i.e., radiative) models. Hence, with such calculations the locally isothermal hypothesis
was relaxed and for the first time the full thermo-dynamics evolution of the system could
be modeled. Since the complexity of the problem does not allow a detailed description of
all the energy transport mechanisms, we use a simplified but physically significant form
of the energy equation, by restricting to two-dimensional computations. Different temper-
ature regimes are examined, according to the magnitude of the fluid kinematic viscosity.
The gap structure was found to depend on the viscosity regime, and only cold environ-
ments offer the right conditions for a wide and deep gap to be carved in. The temperature
profile inside the circumplanetary disk falls off as the inverse of the distance from the
planet. Clockwise rotation is established around low-mass non-accreting planets, because
of large pressure gradients. As for migration and accretion, estimates are generally on the
same order of magnitude as those acquired with the aid of local isothermal models. Since
the gap is generally filled in the high-viscosity case, Type I migration regime might extend
to larger planetary masses.
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CHAPTER 1

EXTRASOLAR PLANETS:
OBSERVATIONS, STATISTICS, AND

THEORY

This first chapter intends to summarize our present knowledge on extrasolar planets. We
will briefly discuss what we have learned so far from observations and what is the status
of the theories on planet formation.

1.1 Introduction

There are many billions of stars in the Galaxy and a similar number of galaxies popu-
late the universe. Billions of Billions of stars are around us, though their distance is often
hardly conceivable. Billions of Billions of chances that there are other “Worlds” in the uni-
verse, besides our own. Speculations on the existence of other planetary systems have
accompanied the history of mankind thinking, starting from the great Greek philosophers,
such as Epicurus and Aristotle.

It is doubtless, however, that more than the mere presence of planets beyond the Solar
System, the real aim of human beings is the search for extraterrestrial “life”, as we can
conceive it. Although the former issue may be now considered a new topic of research, the
latter still remains at the frontiers between science and philosophy. The ancestral enigma
about whether or not we are just an anomaly in the universe is far from been solved.

Since the beginning of the last century, scientists have started to discuss, on physi-
cal basis, about the existence and formation of extrasolar planets (see, e.g., Spitzer 1939).
Premature announcements of detections were also made but subsequently declared to be
false.

Years had to pass for this intriguing field to achieve significant steps forward. In fact,
the last two decades have been witness to rapid scientific advances. Our understanding
of planetary formation has improved a lot. New methods for detecting extrasolar planets
have been developed. Observational campaigns for targeted searches have been initiated.
Starting from the middle of the past decade, all these efforts have produced strong and

3
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convincing evidences for the existence of a number of planets outside the Solar System.
Extrasolar bodies should be typically billions of times as faint as their host stars and

separated from them by less than one second of arc. At optical wavelengths, this com-
bination makes direct detection extremely demanding, especially from the ground. For
this reason alternative techniques have been developed in order to observe the dynamical
perturbations induced on the star by an orbiting planet.

From the historical viewpoint, radio pulsar timing provided the first detection of an
extrasolar planetary-mass body orbiting a neutron star (Wolszczan and Frail 1992). This
offers an extraordinary example of how robust the process of planet formation is, since
that object must have been born from a post super-nova explosion environment. High-
precision radial velocity measurements resulted in the detection of the first planetary body
surrounding main-sequence stars in 1995. Few years later, in 1998, gravitational microlens-
ing provided evidences of a low-mass planet orbiting a star near the center of our Galaxy,
30 000 light years away from us.

An always update list of extrasolar planet detections, with relevant information and
details about each of the single entries, can be found on the Web pages of the Extrasolar
Planet Encyclopedia (http://www.obspm.fr/planets), and of the California & Carnegie
Planet Search (http://exoplanets.org/). These sites can give an immediate idea of
the human resources actively involved in the field.

All of the extrasolar planets discovered so far, by means of radial velocity measure-
ments, have masses between 0.2 and 11 M� (M� is the mass of Jupiter), orbital periods in
the range 3–1700 days, and semi-major axis comprised between 0.04 and 2.8 AU. Bodies
with masses considerably lower than Jupiter’s cannot be detected with current radial ve-
locity techniques, whereas longer-period planets have likely escaped detection due to the
short observational coverage period. However, most of these newly discovered systems 1

have orbital properties which do not match those measured in our Solar System. Over one-
third of them have orbital eccentricities larger than 0.3 and two-thirds orbit the host star
within the Sun-Mercury distance. Although Doppler measurements preferentially select
planets in tight orbits, these findings are surprising anyway. Theoretical and observational
progresses in understanding planet formation and evolution have been fast, but the so-
lution of this puzzling scenario is far from been complete. Based on these data, around
5% of all solar-type star in the Galaxy may host massive planets and an even larger per-
centage may harbor lower mass planets. Extrapolating these numbers, one could expect
that the Milky Way is crowded with the presence of one billion planets (Perryman 2000).
Though not many planetary systems are known to have more than one planet (only 12%
of them are multiple), it is likely, according to the current knowledge, that giant planets
have companions, yet to be discovered.

Section 1.2 is a short review of the detection methods. Since this is only an introduc-
tory chapter, it is meant to give just the basic information regarding the treated issues.
Interested readers should refer to the cited papers, which are more specific. Section 1.3
describes current efforts and future projects, intended for new discoveries and for char-
acterizing already known extrasolar planets. Then, in § 1.4, we summarize the statistical
information which can be gathered from observations. Finally, in § 1.5, we present the

1With the term “system” one generally refers to the parent star and the orbiting planet(s).
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current status of theories on planet formation.
The rest of this dissertation deals primarily with the late stages of the evolution of

protoplanets. It will be rather technical, therefore a general introduction to the topic seems
necessary in order to realize the context which this work enters. With the aid of numerical
calculations we intend to inquire the advanced stages of planetary formation.In particular
we focus on the phase when the material, from which they generated, can either influence
and actually determine their final characteristics, or rather destroy them.

1.2 Detection Techniques

Over the past one and a half decades, new techniques have emerged that enable
the detection of planets around stars. Although almost all of the currently known ex-
trasolar planets, which are generally classified as giant planets, have been detected via
high-precision radial velocity measurements, it appears rather improbable that the same
method might be applicable to the detection of planets with mass significantly lower than
Jupiter’s. Hence other techniques have to be refined in order to pursue the goal of discov-
ering objects in the “habitable zone”, i.e., in that distance range where liquid water can
exist on the planet’s surface.

We begin by describing the so called “indirect techniques”, which have provided all
of the apparent detections of Jupiter-like planets around solar-type stars. Direct imaging of
extrasolar objects is still the major challenge in the field. We also mention about evidences
of circumstellar disks, since they are intimately connected with planet formation.

Further details on detection of extrasolar planets can be found, for example, in Woolf
and Angel (1998), Marcy and Butler (1998), and Perryman (2000).

1.2.1 Doppler Technique

Stellar displacements about a fixed point are caused by gravitational interaction with
a massive companion, such as another star or a giant planet. This happens to our Sun,
which moves at a speed of ∼ 13 m s−1 around the Solar System barycenter. If we consider
a star of mass M�, around which a body of mass Mp revolves with an orbital period P ,
then the amplitude of the stellar radial velocity, induced by the companion is (Marcy and
Butler 1998)

K =
(

2πG
P

)1/3 Mp sin i
(M� +Mp)2/3

1√
1 − e2

, (1.1)

where e and i are the orbital eccentricity and inclination, respectively. The orbit’s period
is given by Kepler’s third law. If the orbit is circular and Mp � M�, then the amplitude
reduces to

K = 28.4
(

P

1 year

)−1/3 (
Mp sin i
M�

) (
M�
M�

)−2/3

, (1.2)

A Jupiter mass at 1 AU causes a reflex amplitude of 28.4 sin i m s−1, which is easily de-
tectable. A confident detection requires that the amplitude be at least four times as large
as the Doppler error. Thus, a Doppler precision of 3 m s−1 enables minimum amplitude
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detections of 12 m s−1. Therefore, a Jupiter-mass companion, orbiting a Sun-like star at
5.2 AU (K = 12.5 sin i m s−1), would be on the limit. A Saturn-mass companion would
be detected only within one astronomical unit. For an Earth-mass object the reflex am-
plitude would be far below the limit (K = 0.1 sin i m s−1). The sin i dependency implies
that systems seen face-on (i = 0◦) provide no measurable Doppler effect. Additionally,
radial velocity measurements can only determineMp sin i, rather thanMp. Thus, since the
system inclination is usually not known, they furnish a lower limit to the planetary mass.
Though the amplitude K is not related to the distance between the star and the observer,
signal-to-noise considerations set an upper magnitude limit, which is typically around the
magnitude V = 8. From the above relations one can realize that Doppler measurements
favor the detection of large bodies orbiting at short distance from the primary.

In order for the Doppler technique to be effective, stellar surfaces are required to have
stable velocities. Surface turbulence, rotation, and pulsation can prevent planet detections
or produce false ones. Based on studies of velocity stability of late-type dwarfs, the limit
to the Doppler technique resides around 3 m s−1, which has been already achieved (Butler
et al. 1996).

1.2.2 Astrometric Detections

The path followed by a star orbiting the star-planet barycenter appears as an ellipse
when projected on the plane of the sky, whose angular semi-major axis α is given by

α =
(
Mp

M�

) (a
d

)
, (1.3)

where a and d represent the semi-major axis of the orbit and the system distance, respec-
tively. In the above relation α is in arcseconds when a is in astronomical units and d in
parsecs. Hence, the astrometric signature of a planet is proportional to both its mass and
its orbital distance.

A Jupiter planet orbiting the Sun would result in an angular amplitude α = 500 µas,
when viewed from 10 pc, which would lower to 0.1 µas for the Earth. Therefore, the re-
quired astrometric accuracy to detect planets typically ranges from micro to milli-arcseconds.
This method is particularly sensitive to orbital periods longer than a year, thus it is comple-
mentary to radial velocity measurements. Moreover, it can be applied to hot and rapidly
rotating stars for which the Doppler technique is not so appropriate. In the lucky event
that a is already known from spectroscopic observations, d from the parallax of the star,
andM� form the spectral type, then astrometry yields directly the planetary mass, instead
of Mp sin i. Furthermore, a single epoch astrometric observation can constrain the system
inclination. For multi-planet systems, astrometric observations are able to determine the
relative orbital inclination of the various components.

Astrometric detections demand extremely accurate positional measurements over a
long period of time. For example, unconfirmed reports of small astrometric displacements,
consistent with planetary-mass bodies, have been made for Barnard’s star (Mp = 0.7 and
0.5 M�, with P = 12 and 20 years respectively, van de Kamp 1982) and for Lalande 21185
(Mp = 0.9 M� and a period of 5.8 years, Gatewood 1996).
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1.2.3 Photometric Technique

The first observations of extrasolar planets impressed the scientific community with
a striking evidence: the presence of Jupiter-size bodies orbiting the parent star at some
tenths of astronomical unit (Mayor and Queloz 1995). This discovery implies that transits
of planets, in front of stellar disk, should commonly occur.

Actually, O. Struve, back in 1952, was the first to conceive detections of extrasolar
planets by means of eclipse signatures of the star by the planet.

The fractional drop in the measured light from the star can be quantified by the factor

f =
∆L�
L�

=
(
Sp

R�

)2

, (1.4)

in which we indicated as Sp/R�, the planet-to-star radius ratio and as L�, the star lumi-
nosity. A Jupiter-size object would obscure 1% of the solar disk. The percentage would
lower to 0.008% in case of an Earth-size body. The occultation duration depends on the
orbital distance a of the planet (via its period) as well as on the stellar radius:

∆t � 13
(
M�
M�

)−1/2 ( a

1 AU

)1/2
(
R�
R�

)
hours. (1.5)

Jupiter transits the Sun in 29 hours, while the Earth takes 13 hours.
A photometric variation of 1% is easily measurable from the ground with automated

wide-field telescopes that can acquire CCD images of thousands of stars simultaneously.
Moreover, such 1% dimming is distinguishable from other effects, like star spots and pho-
tospheric granulation fluctuations. This can be accomplished with small class telescopes,
permitting the establishment of large observational campaigns.

Yet, for a transit to occur, the orbital inclination i must be such that

tan i >
(

a

R�

)
. (1.6)

Equation (1.6) implies that the orbit needs to be nearly edge-on (i = 90◦). In fact, if
a = 0.1 AU and Sp = R�, the inclination angle i ∈ [87.3◦, 90◦]. Its well-known from
galactic astronomy that, for randomly oriented planes in the sky, the probability P that the
inclination angle falls between i′ and 90◦ is P[i′, 90◦] = cos i′. Thus, 4.7% of all Jupiter-like
planets, orbiting at a tenth of astronomical unit, are expected to transit.

Charbonneau et al. (2000) observed the first transit of an extrasolar planet (HD 209458)
which had been discovered in a radial velocity survey.

Planetary transits are extremely precious since they can provide a great wealth of
information. Planet radii can be directly measured by the fractional reduction of star light
during the transit. Transits also allow to measure the orbital inclination, once a andR� are
known. Hence, they permit to determine the planet’s mass from Mp sin i. When Mp and
Sp are known, the density can be evaluated. As a consequence, distinctions can be made
between gaseous giants and rocky planets and constraints are yielded on their chemical
composition.
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1.2.4 Gravitational Microlensing

Gravitational lensing is the amplification of light rays from a distant source by an
intervening object. It was first considered by Einstein in 1936. The relative motion between
the background source, the interposed lens, and the observer leads to apparent brightening
and subsequent dimming of the resulting image. This may occur over a time scale of hours.

The essential formulas used to analyze gravitational lensing have been reported by
many authors (see, e.g., Refsdal and Surdej 1994). Investigations have been carried out
and it has been found that, when one or more planets orbit the primary lens, detectable
fine structures in the photospheric signature of the background object occurs relatively
frequently, even for low-mass planets. The probability of observing such fine structures
are estimated to be around 17% for Jupiter-like and 3% for Saturn-like systems.

Bennett et al. (1999) reported of a microlensing event as the first convincing example
of planet’s discovery with this technique, though it was contested afterward (Albrow et al.
2000).

The advantages of microlensing for planet detection are the high sensitivity, even for
low-mass objects and its effectiveness out to very large distances because it requires no
photons from either the planet or the parent star. In fact it represents the only technique
capable of detecting interstellar planetary-mass bodies. However, the major disadvantage
is that specific systems cannot be selected for study. Once a microlensing event occurs, it
is quite unlikely that another recurs, for the same system, on a relevant time scale.

1.2.5 Direct Imaging

A future class of techniques involves direct imaging of planets around their host stars.
This is by far the most intriguing goal of extrasolar planet finders, since it represents the
only way to actually “see” a planet.

Lately, a lot of effort has been directed toward the issue. However, the prospect is
made complicated by the small fluxes expected from the planets, compared to those emit-
ted by the stars. Confining to the visible wavelength range, a Jupiter-like planet would
appear 10−9 times as luminous as its parent star. A solar-type star, at 10 parsecs, would
have a magnitude V = 5, whereas its Jupiter, at 5 AU, would have a magnitude V = 27,
and would be separated by 0.5 arcsec. In the range from 20 to 100 µm, the brightness
contrast increases to ∼ 10−5.

Direct imaging of planets requires that the noise in the point spread function (PSF)
wings is less than 4 (for the IR range) and 9 (for the visible range) orders of magnitudes
with respect to the brightness peak of the star. Had one only to consider light diffraction,
the minimum aperture, or baseline, D to fulfill the above requirement would be:

D > 0.4
(

λ

1 µm

) (
d

10 pc

) (
5 AU
a

)
m, (1.7)

where λ is the observing wave length, d is the distance to the star, and a is the separation
between the planet and the star. Thus, provided that enough light is gathered, diffraction
is not a real issue. Besides diffraction, PSF wings are caused also by atmospheric seeing
and exo-zodiacal light, which actually pose the biggest challenges to detect planets.
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Specific instruments are being developed to work in the infra-red range, such as the
coronographic adaptive optics and the ground-based interferometric imaging, and planned
to be attached to the largest observational facilities on Earth: the Keck, the Very Large Tele-
scope, and the Large Binocular Telescope.

1.2.6 Circumstellar Disks

In contrast to the observational difficulties for planets, it is now relatively easy to
observe disks (Beckwith and Sargent 1996). They are extremely large (extending over hun-
dreds of astronomical units from the star); they both emit and reflect light very efficiently.
Additionally, disks appear to be long-lived, between 106 and 107 years, and robust against
disruption caused by events accompanying early stellar evolution. They are surprisingly
common in our Galaxy and resemble the picture of our primitive solar nebula. Disks are
particularly evident due to the strong emission in the infrared wavelength range, between
2µm and 1 mm. Their spectra are much broader than any single-temperature black body.
In fact, they originate from thermal emission over a wide range of temperatures: from
∼ 1000 K, nearby the star, to ∼ 10 K toward the outer disk edges.

The star β Pictoris represents a famous example of debris disk (see, e.g., Artymow-
icz 1997). The disk was discovered from observations of the infrared satellite IRAS. The
innermost parts seem to be depleted of gas and dust, suggesting the presence of planets.

Most disks are observed around young T Tauri stars, which are close to star-forming
regions. Calculations imply that the disk phase, and thus planetary formation, only lasts
for a small fraction of the system’s total life time. In spite of this, some stars may maintain
disks around them for billions of years, without forming any planet (Perryman 2000).

A number of disks have been imaged by the Hubble Space Telescope. One of them,
namely HD 141569, apparently shows a dark band which could be ascribed to the presence
of a 1.3 M� planet that has carved a gap in it (Weinberger et al. 1999). The system is old
enough (106–107 years), so disk material is supposedly cool enough. This is a necessary
condition for the gap to be wide and deep and thus observable.

1.3 Observations of Extrasolar Planets

Already at the end of the eighties, early radial velocity surveys targeted some stars in
order to determine the brown dwarf mass function. This was done by searching for low-
mass (M� < 1 M�) binary companions of main-sequence stars (see, e.g., Campbell et al.
1988). As accuracy passed the threshold of 15 m s−1, moving toward the expected plan-
etary signals, groups working in the field intensified their efforts starting new observa-
tional campaigns and monitoring many more stars. The number of institutions presently
involved in this “planet hunt” is impressive. An incomplete list (from Perryman 2000)
includes: University of British Columbia; University of Arizona; McDonald Observatory
Planetary Search, Texas; Lick Observatory; Advanced Fibre-Optic Echelle at the Whipple
Telescope in Arizona; ESO Planet Search at the European Southern Observatory; the Ob-
servatoire de Haute Provence with the Elodie spectrometer; the Keck I 10-meter telescope
with the HIRES spectrometer; the Anglo-Australian Telescope; the Swiss 1.2-meter Euler
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Figure 1.1: Radial veloc-
ity measurements of 51 Pe-
gasi by Mayor & Queloz
(Extrasolar Planet Encyclo-
pedia). The periodic varia-
tion of the radial velocity
has been confirmed to be
due to a giant planet or-
biting the star very closely.
This was the first detection
of a giant planet around
main-sequence star.

telescope at La Silla with Coralie spectrometer; the 10-meter Texas Hobby-Eberly Tele-
scope. Within each program, between one and three hundred late-type stars (with a visual
magnitude V < 7.5) are being monitored in a systematic manner. The Coralie instrument
alone is surveying 1600 stars.

The first observation of a low-mass companion (11 M�), orbiting the star HD 114762,
was achieved in 1989. Yet, prior to 1995, no representative of a planetary Jupiter-mass
population had been found.

After one year of quiet study and careful examination, Mayor and Queloz (1995) an-
nounced the discovery of the first planetary candidate around the star 51 Pegasi (Fig. 1.1).
This detection was soon confirmed by the group at the Lick Observatory, who also re-
ported two new planetary systems that they had been surveying: 70 Virginis (Marcy and
Butler 1996) and 47 Ursae Majoris (Butler and Marcy 1996). Table 1.1 contains the Keplerian
orbital parameters of the first ten planetary candidate detections, along with some details
of the parent stars.

The short period of 51 Peg companion raised many controversies. In fact, besides
the unexpected short period, some proposed that the measured Doppler shifts arose from
non-linear radial stellar pulsations. Subsequent studies eventually proved that the planet
hypothesis was the most reasonable one.

New discoveries have followed at an amazing fast rate. It suffices to mention that the
planet candidate population has risen from 8, in 1998 (Marcy and Butler 1998) to 34, in
March 2000 (Perryman 2000). At the present date, October 2002, the number has increased
to 101 candidates, eleven of them belonging to multi-planetary systems. (Extrasolar Planet
Encyclopedia). All of them have been discovered by means of radial velocity measurements.
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Table 1.1: Orbital elements and host star properties of the first ten candidates as plane-
tary systems (from Perryman 2000). Entries are chronologically arranged, according to the
publication date of the the announcement. Actually, the first case lies somewhat on the
limit between very massive planets and low-mass brown dwarfs. The various symbols are
those introduced in the previous section.

Star Spectral M� d K Mp sin i P a e
Name Type [M�] [pc] [m s−1] [M�] [days] [AU]
HD 114762 F7V 0.82 40.6 615 10.96 84.03 0.351 0.33
51 Peg G5V 0.98 15.4 55 0.46 4.231 0.052 0.01
47 UMa G0V 1.03 14.1 51 2.60 1084.0 2.09 0.13
70 Vir G2.5V 1.10 18.1 316 7.42 116.7 0.482 0.40
τ Boo F7V 1.20 15.6 474 4.14 3.313 0.047 0.02
16 Cyg B G2.5 1.00 21.6 50 1.68 796.7 1.69 0.68
ρ CrB G2V 1.00 17.4 61 0.99 39.81 0.224 0.07
HD 187123 G3V 1.00 47.9 72 0.54 3.097 0.042 0.01
Gliese 876 M4 0.32 4.7 235 2.07 60.90 0.207 0.24
HD 217107 G7V 0.96 19.7 140 1.29 7.130 0.072 0.14

Other techniques have not been successful yet. However, for each of them, the hope of
many researchers relies on future ground-based and, above all, space programs.

Astrometric observations suffer many limitations when conducted from the ground,
which prevent attaining a precision better than milliseconds. They are by far more accurate
when made from outside the Earth’s atmosphere. Measurements from the space mission
Hipparcos, the only carried out so far, have been employed for detection of brown dwarfs.
Moreover, Hipparcos has provided constraints on planetary masses of known systems. Fu-
ture space astrometry experiments will try to reach accuracies around a micro-arcsecond,
like NASA’s SIM and ESA’s GAIA missions. The former will be dedicated to the detailed
orbit determination of systems detected from ground-based facilities. The latter will mon-
itor approximately a billion stars, up to the magnitude V � 20, as part of a census of the
galactic stellar population.

Ground-based photometry achieving an accuracy better than 0.1% is complicated by
variable atmospheric extinction. The situation would improve if detectors were operating
above the atmosphere. Eddington mission was planned by ESA. It includes a 1-meter tele-
scope with a wide field of view. After the first couple of years, to be dedicated to study
stellar seismology, the mission should be dedicated to planetary transit detections in up
to 700 000 stars. The expected precision is about 10−6, therefore it should capable of re-
vealing transits of Earth-mass objects orbiting main-sequence stars. US Kepler mission
was specifically designed to find Earth-mass bodies in the habitable zone, for a variety
of stellar types. Unfortunately, it was not selected as part of the NASA’s Discovery Pro-
gram. Another space project, COROT, is led by the French Space Agency and is scheduled
for launch in 2004. It will reach a photometric accuracy between 7 × 10−4 and 5 × 10−3.
These values will not probably allow detection of Earth-class planets, but slightly larger
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(and closer to the central star) objects might be targeted. Two similar projects (MONS and
MOST) have been planned by the Danish and Canadian Space Agencies.

Also in the case of gravitational microlensing, there are plans for space programs.
NASA’s SIM is planned for launch in 2005 and it is going to observe lensing events an-
nounced by ground-based facilities. GAIA mission, by ESA, could offer good opportuni-
ties as well.

Direct imaging would offer promising prospects to detect and characterize terrestrial
planets with an infrared space interferometer having a baseline on the order of 50 meters.
In fact, such facility would greatly improve the flux contrast between the planet and the
star. Besides, it would make accessible the spectral window 6–17 µm, which contains sig-
natures of molecular species, like H2O, CO2, O3, and CH4, considered indicators of life.
Both ESA and NASA plan to launch satellites (Darwin and TPF, respectively), equipped
with instruments of this kind, sometime after 2010. Additionally, the Hubble Space Tele-
scope, NASA’s SIRTF (a 0.85-meter infrared observatory), and the Next Generation Space
Telescope (to be launched in 2010) might also be capable of planet imaging.

1.4 Statistics of Extrasolar Planets

After a couple of years of discoveries, the depicted scenario turned out to be quite
bizarre and very different from what the general opinion expected: all of the planets were
revolving on either extremely close or extremely eccentric orbits. It was not clear, and still it
is not, whether the anomalies reside in the properties of our Solar System or those objects
just represent the tail of the brown dwarf distribution. It is almost certain that selection
effects have played a role. In fact, even with the highest Doppler precision measurements
of 3 m s−1, only minimum masses of 0.5 M� can be detected at 2 AU .

The statistical properties that we will discuss are based on a sample of 101 candidates.

1.4.1 Planetary Mass Function

The mass function2 of low-mass stellar companions starts to steepen below 10 M�
and continues to rise down to the detection limit, as shown in Figure 1.2. The data are ex-
tracted from surveys which would have easily detected any sub-stellar companions with
Mp sin i � 3 M�, orbiting at distances shorter than 2 AU. But great incompleteness is
likely to exist for Mp sin i � 1 M�, over the same range of distances. However, restrict-
ing to objects of shorter periods, with an accuracy of 3 m s−1, a Saturn-mass planet can be
revealed within 1 AU, and a Neptune-mass planet can be observed inside 0.1 AU. As a
result, the true mass function might be even steeper toward lower masses than that illus-
trated in Figure 1.2.

The scarcity of sub-stellar mass representatives having Mp sin i � 10 M� is quite
striking, since they would be easily detected by the monitoring campaigns conducted so
far. Apparently, less than 0.3% of the stars, with masses between 0.3 and 1.1 M�, have
companions in the range from 10 to 80 M� orbiting inside 3 AU. This characteristic is now

2The integral of mass function between M1 and M2 yields the total number of objects in that mass range.
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Figure 1.2: Sub-stellar
mass function obtained
from planetary candidates
listed on the Web site
of the Extrasolar Planet
Encyclopedia. The sample
should be complete for
companions more massive
than 3 M�, within 2 AU.

known as “brown dwarf desert”. A possible mechanism, which might have caused it, is
orbital migration due to gravitational interaction with circumstellar disk material.

1.4.2 Orbital Distances

As mentioned before, all the radial velocity observation with high precision are bi-
ased toward the discovery of planets in tight orbits, since short period bodies yield larger
Doppler signals (and over shorter times) relative to long period ones. This selection effect
could explain the excess of planets found within 0.2 AU, with respect to those revolving
outside 2 AU (see Fig. 1.3, left panel). However, it does not definitely offer any convincing
argument about the evidence that the range of distances a ≤ 0.2 AU is so greatly preferred
to the range from 0.2 to 0.7 AU.

Standard theories would predict giant planet formation only beyond ∼ 4 AU (Lis-
sauer 1993; Hubbard et al. 2002). Then, orbital migration by a gaseous circumstellar disk
would drive them all the way down to the small orbits that we observe today. This phe-
nomenon is one of the major topics of the present dissertation. Since the migration time
scale τM is proportional to the semi-major axis a, the larger a the longer τM results. There-
fore, one would expect that more planets should be observed at larger orbital distances.
Yet, as we will see in the next chapters, migration velocity may depend on various, poorly
known, parameters characterizing the protostellar disk, as well as on the planetary mass.
The piling up of objects at 0.05 AU may be due either to some types of halting mechanism
or, once again, to some intrinsic limitations of the observations.
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Figure 1.3: Orbital semi-major axis (left panel) and eccentricity (right panel) of planetary
candidates listed on the Web site of the Extrasolar Planet Encyclopedia. Symbols in the right
panel refer to the Solar System planets with the most eccentric orbits (Pluto, Mercury, and
Mars).

Figure 1.4: Eccentricity plotted versus
the semi-major axis of extrasolar planet
candidates. Tight orbits tend to be more
circular whereas large eccentricities are
found for distant planets. Green filled
diamonds represents objects less mas-
sive than one Jupiter’s mass.

1.4.3 Orbital Eccentricities

In the right panel of Figure 1.3 there is reported the histogram of the eccentricities
of the planet candidates, detected so far. It shows that a numerous ensemble of planets
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Figure 1.5: Left panel. Color-magnitude diagram of main-sequence stars with spectral
type extending from F0 to M7. Small dots represents stars nearer than 20 pc. Larger
dots indicate the positions occupied in the diagram by stars with planets. Right panel.
Metallicity histogram of the stars hosting planets (empty boxes) compared to that of the
nearest field stars (hatched region). It is evident that all of the star harboring planets are
metal-rich relative to the Sun, which is itself metal-rich compared to nearby field stars.
From Butler et al. (2000).

has very eccentric orbits (e > 0.2). Moreover, there seems to be a correlation between
orbital eccentricity and semi-major axis, favoring close circularized trajectories and more
elliptical distant ones (see Fig. 1.4). In the standard scenario of planet formation, orbits
should remain nearly circular. Yet, eccentricities can be easily driven away from zero via
gravitational perturbations in multi-planetary systems. Furthermore, in some cases high
orbital eccentricities may be related to the circumstance that the parent star belongs to a
binary system (Mazeh et al. 1997).

Recent investigations, on solar-type stars, indicate that extrasolar planets and brown
dwarfs have in common the same distribution of probability for orbital periods and ec-
centricities (Stepinski and Black 2000). Additionally, they share very a similar correla-
tion between periods and eccentricities and a similar lack of correlation between masses
and eccentricities. Thus, as some researchers have already suggested, the properties of
the present sample of extrasolar planets could appear more “natural” in the context of a
broader populations which included all low-mass stellar companions. As a matter of fact,
without enlarging the ensemble of planetary candidates, such an issue cannot be addressed
properly.

1.4.4 Properties of the Host Stars

Figure 1.5 (left panel) shows the color-magnitude diagram centered on the main se-
quence star with spectral type from F0 and M7. Types earlier that F5 do not offer those
sharp spectral features necessary for accurate Doppler measurements, because of their fast
rotation. The small dots, which indicate stars within 20 pc from the Hipparcos catalog,
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well define the main sequence. The vast majority of the stars harboring planets (larger
dots) lie on the main sequence and have a color indexB−V in the interval [0.5, 1.0]. Many
of these stars are also naked-eye stars. Except for dwarf M and K stars, stellar masses are
all around the solar mass value. Because of their faint luminosity, only since recently both
dwarf M and K stars are being monitored.

Another interesting characteristic of the stars that host planets is that they have sig-
nificantly higher metal content (elements heavier than helium), as demonstrated by the
histogram in Figure 1.5 (right panel). The comparison sample is constituted by G dwarfs
residing within 20 pc from the Sun. In some cases, like ρ1 55 Cnc and 14 Her, planet bear-
ing stars are among the most metal-rich stars in the solar neighborhood. Two possible
scenarios have been proposed to explain such an occurrence. In the first, high metallicity
environments would facilitate the birth of both metal-rich stars and rocky cores (and thus,
giant planets). This hypothesis is essentially based on the assumption the metals make
condensation easier. In the second, stars would be “polluted” or “enriched” by the cap-
ture of migrating bodies. Of course, in this last circumstance, the impact could have the
desired consequence only if the convective zone of the outer stellar envelope were suffi-
ciently small. Otherwise, the addition of heavy elements would be barely significant. We
have seen that most of the stars hosting planets are main-sequence solar-mass stars, hence
they are likely to have radiative cores with relatively small outer convection envelope.

1.5 Theory of Extrasolar Planet Formation

Formation theories concerning extrasolar planets generally follow the same arguments
as formation theories of planets in our Solar System. Since a couple of hundred years, this
has represented one of the most fundamental problems of science. An incredible amount
of work has been dedicated to it, which has resulted in different theories, yet no final con-
clusions have been reached. Many reviews have been written on the topic (e.g., Pollack
1984; Lissauer 1993; Wuchterl et al. 2000; Hubbard et al. 2002), which can give an idea of
our present-day knowledge on the issue.

The scenario of planetary formation is far from being complete, therefore only a rough
picture of it can be painted. This often has its foundations on the common physical knowl-
edge, observational, and experimental constraints collected from the Solar System. When
investigation must be based on available traces rather than on the necessary data, it hap-
pens that some implications cannot be demonstrated, and then they are just assumed for
the sake of the “common sense”.

In what we may call a “standard disk” picture, formation proceeds through several
stages (Lissauer 1993). Circumstellar material is made out of a mixture of gas and dust.
Because of sedimentation, dust particles settle into the midplane of the disk, generating
a dense layer. Grains are likely to collide and stick together, producing larger particles
whose size may range from 0.01 and 10 m (Beckwith et al. 2000). Afterward, collisions
lead to the formation kilometer-size bodies, also named “planetesimals”, over a period be-
tween 104 to 105 years. Planetesimals gravitationally interact with each other and possibly
settle on preferential Keplerian orbits, with gaps among them. In a third phase, complex
N-body interactions change the orbital paths of planetesimals so that there may be close
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encounters. As a result, some of these objects can be disrupted, or scattered away. Yet,
if encounters happen at low relative velocities, larger bodies may form, which are usu-
ally referred to as “planet’s embryos”. Embryos have masses around 1023 km, though
this value is quite uncertain and depends on the distance from the central star and certain
properties of the local environment. At this point of planet formation, a runaway growth
sets in. Over 107 to 108 years, terrestrial-size planets may generate. Actually, the length of
time is connected to the details of encounters between planetesimals. The growth should
end when the reservoir of planetesimals between planetary cores empties. If planet’s cores
grow large enough (∼ 10–30 M♁), their gravitational attraction leads to the accretion of
residual gas from the surrounding environment. Such process gives birth to giant gas
planets (Bodenheimer and Pollack 1986). In the popular picture, these planets happen to
be generated in the outer parts of the Solar System because the initial debris density might
have been higher there, due to lower temperatures and better conditions for condensation.
Gas accretion would then greatly reduce when disk-planet interactions eventually lead to
the carving of a density gap (Lin and Papaloizou 1993). Contrary to what initially argued,
simulations show that a Jupiter-mass planet can still accrete material through the gap (e.g.,
Kley 1999, and next chapters). But, with masses of a few Jupiter’s, accretion drastically
decreases and becomes negligible.

An alternative proposal for giant planet formation proceeds via gravitational instabil-
ities in a massive cool protostar nebula and subsequent fragmentation (Pollack 1984; Boss
2000). This mechanism would also accelerate giant planet formation.

This possible scenario has been shaped on the evidences offered by our Solar System.
Data furnished by extrasolar planets have brought new evidences some of which, unfor-
tunately, do not match to the aforementioned theory. These new evidences suggest that
three categories can be identified: Jupiter analogues (such as 47 UMa), planets on highly
eccentric orbits (such as 70 Vir), and “hot Jupiters” (such as 51 Peg) with small circular or-
bits. A reliable planet formation theory should encompass all of them and explain not only
the mass distribution but also the observed eccentricity and semi-major axis distributions.
Apparently, the standard picture depicted before only applies to the first category.

As a matter of fact, even the definition of planet should probably be revised since
planet-size free-floating bodies are observed and some stars may harbor both brown dwarfs
and giant planets (Hubbard et al. 2002). If brown dwarfs and extrasolar planets have a
common origin, in the broader framework of stellar companions’ formation, as pointed
out by Stepinski and Black (2000), then something needs to be changed in the standard
scenario.

Migration of planets (Goldreich and Tremaine 1980) may play a major role to reconcile
the standard theory with new evidences provided by extrasolar planets. In fact, giant
planets could as well form farther away from the star and then been moved inward by
gravitational torques, due to disk material (see, e.g., Lubow et al. 1999; Kley et al. 2001).
Yet, many open issues still remain on this topic, among the most important ones are how
to efficiently halt migration and whether it unconditionally happens to be inward. Various
mechanisms have been proposed to stop migration, such as the disruption of the disk near
the star by the stellar magnetosphere. Perturbations by stellar encounters have been also
considered, as a possible source of orbital eccentricity. Another mechanism heavily relies
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on the imperative of fast inward migration. Giant planets would continuously form and
then be accreted by the star, until the disk material would be diluted enough to allow
longer viscous evolution times. It is beyond doubts that massive disks (MD > 0.01 M�)
would offer a few chances, if any, to a massive body to survive. Thereby, many heavy
planets should form and be destroyed before one (or more) could eventually have a long-
lasting life.

Very recently, Trilling et al. (2002) conducted a numerical statistical study on the sur-
vival of giant protoplanets, for a variety of initial conditions. They conclude that, because
of fast inward migration, surviving planets have relatively large semi-major axes (several
astronomical units). Hence, the planets observed to this date only represent a small frac-
tion (25% to 33%) of the giant planet population around solar-type stars. Many undetected
objects must exist, orbiting at large distances (d � 2 AU) from the parent stars. Further-
more, they find that the efficiency of giant planet formation is very high and that between
10% and 80% of all solar-type stars should host a giant planet during their pre-main se-
quence phase.

But probably both semi-major axis and eccentricity distribution must be inserted in
a larger context in which multiple-planet formation and/or interaction is contemplated.
Attempts to numerically study these situations have already been initiated (Kley 2000;
Snellgrove et al. 2001). Unfortunately, multi-planet systems do not provide the wealth of
information required to tackle this problem yet. Too many degrees of freedom are still
present. Future observational programs could hopefully eliminate some of them and clar-
ify some aspects of this puzzling problem. In only a few years many steps forward have
been made and many others are likely to be taken in the near future.

1.5.1 Interaction between Disks and Embedded Planets

Regardless of the precise mechanisms which lead to the formation of planets, once
an Earth-like object has formed, it affects the surrounding medium via gravitational per-
turbations. As a consequence, particular locations (Lindblad resonances) are excited and
spiral density waves emanate from around L1 and L2 Lagrangian points. When the mass
of the perturber is large enough, the perturbation regime becomes non-linear. The planet
removes angular momentum from material inside of its orbit and transfers it to material
outside of the orbit, eventually opening a density gap along the orbital path. Yet, the per-
turbed disk environment reacts to the planet. As a result, the planetary orbit has to adjust
to the gain or loss of energy and angular momentum. Therefore semi-major axis, the eccen-
tricity, and the inclination change in time and the way they change eventually determines
the planet survival.

The problem of disk-planet interaction has been approached by means of analytical
studies as well as of local and global numerical simulations.

The first evaluation of the exchange of angular momentum and energy between a
disk and an embedded body was performed by Goldreich and Tremaine (1980). By using
a linear perturbation theory for thin disks they concluded that the time scale over which
the semi-major axis of a Jupiter-type planet would change is around 104 years. Yet, be-
cause of their approximations, they could not estimate the direction of the drifting motion.
Papaloizou and Lin (1984) found that, due to the balance of viscosity and tidal angular mo-
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mentum transfer, a density gap is generated and that a Jupiter-mass planet would open a
gap even in a disk whose aspect ratio is ≈ 0.05. Ward (1986) conducted an analytical study
of the Lindblad torques, taking into account density, pressure, and sound speed gradients
inside the disk. He showed that the direction of the radial migration is usually toward
the central star and that Earth-mass planets migrate on a time scale much shorter than the
disk life time. Only if the mass is large enough to open a deep and wide gap, migration
slows down (Ward 1997). Recently, Tanaka et al. (2002) analyzed both Lindblad and coro-
tation torques arising from a three-dimensional isothermal disk. They found that torques
exerted at corotation locations can reduce the migration speed of low-mass planets. The
same conclusion was reached by Masset (2001).

From the numerical point of view, this problem was tackled for the first time by
Miki (1982), who carried out two-dimensional hydrodynamic simulations of the gas flow
around a planet embedded in a disk with a local linearized shearing sheet method. Within
the framework of local simulations, Miyoshi et al. (1999) modeled disks with planets in
both two and three dimensions in order to determine gravitational torques in the linear
regime, i.e., for protoplanets with masses smaller than roughly a tenth of Jupiter’s. More
recently, following a similar strategy, Tanigawa and Watanabe (2002) inquired into the
details of the two-dimensional flow structure around protoplanets, evaluating the mass
accretion rate. Local simulations have the asset of better resolving the flow and density
structures around protoplanets, because only a small portion of disk is taken into account.
However, they do not allow to compute directly the torque balance onto the protoplanet.
Moreover, they are more sensitive to the chosen boundary conditions. Additionally, it is
not certain whether, in the absence of large scale features, the local flow is correctly repro-
duced. For example, local computations cannot account for the gap formation. For this
reason the global description, where the domain covers an entire disk ring, should always
be preferred to the local one. Global and fully non-linear simulations were performed
by Kley (1999), Bryden et al. (1999), Lubow et al. (1999), and Masset (2002), assuming the
planet on a circular orbit, and by Kley (2000) and Nelson et al. (2000), following the planet’s
orbital decay. Both gravitational torques and mass accretion could be estimated.

The present work proceeds with this line of research, attempting to move ahead on
unexplored grounds. Via global computations, we simulate Jupiter-size planets in three-
dimensional disks, analyzing both planet’s migration and accretion. The lack of simula-
tions accounting for all the three dimensions is a sign of the difficulties posed by them.
But they are necessary because only comparing outcomes from computations in two- and
three-dimensions one can be reasonably sure of the limitations and the applicability range
of (more affordable) models in two dimensions. Unfortunately, global simulations have
the disadvantage of not allowing an appropriate resolution in the Roche lobe of the per-
turber. Yet, the flow in the vicinity of a protoplanet is fundamental for the determination of
some of its final properties, such as mass and rotation rate. Furthermore, the fluid dynam-
ics inside of the Roche lobe gives indications concerning satellite formation. By means of
an appropriate numerical tool, though still treating the disk globally, we resolve all the de-
terminant length scales of the problem in a very accurate manner. We therefrom achieve an
accurate representation of the flow around protoplanets with masses as large as Jupiter’s
and as small as the Earth’s, in both two and three dimensions. In this context it should be
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pointed out that a thorough investigation of planet formation has to include not only local
aspects but also global ones. All of the studies conducted so far (see, e.g., Bodenheimer and
Pollack 1986; Wuchterl 1991, 1993; Tajima and Nakagawa 1997) have used physically de-
tailed (one-dimensional) models but have neglected the interaction of the forming planet
with the surrounding medium. Finally, in order to have a more realistic and faithful pic-
ture of disk-planet interactions, we attempt to tackle the outstanding issue of coupling the
thermal part to the dynamics evolution of the system.



For as to what we have heard you affirm, that there

are other Kingdoms and States in the World inhabited

by human Creatures as large as yourself, our Philoso-

phers are in much doubt, and would rather conjecture

that you dropt from the Moon, or one of the Stars; be-

cause it is certain, that a hundred Mortals of your Bulk

would, in a short time, destroy all the Fruits and Cat-

tle of his Majesty’s Dominions.

JONATHAN SWIFT,
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1726





CHAPTER 2

GLOBAL SIMULATIONS IN THREE

DIMENSIONS

This chapter will mostly deal with global computations of embedded Jupiter-mass planets in
three dimensions. Therefore, unlike all the calculations performed so far, also the vertical
structure of the disk will be resolved. This will allow to evaluate the global effects that
the vertical dimension may have on disk-planet interactions and the differences existing
between global models in two and three dimensions.

2.1 Introduction

The only global and non-linear numerical computations of planets embedded in disks
have been performed by relying on the two-dimensional approximation, as anticipated
in § 1.5.1. The need of approaching this problem by employing a full three-dimensional
description resides in the nature of the planet’s perturbations. In fact, the perturbing effects
due to the gravitational force exerted by the planet are largest around its Roche lobe. Even
though accretion disks are geometrically thin, when considered from the global point of
view, they might be not as such when considered from the length scales over which planet
perturbations are strongest. Although theoretical arguments can be invoked to justify the
validity range of the flat geometry, only 3D calculations can give the final proof.

In § 2.2, we introduce the physical model and we also state all the assumptions and
approximations. In § 2.3, we present a test calculation analyzing the ability of the code to
describe disks in three dimensions. Sections 2.4 and 2.5 contain the results for the complete
cases including the planet. The conclusions are given in the last § 2.6.

2.2 Model Description

In calculating the dynamical evolution of an accretion disk, it is usually assumed that
the mean free path between individual particles is small compared to the overall extent of
the disk. Thus, the evolution is described best by the hydrodynamic approximation includ-
ing viscosity, i.e., the Navier-Stokes equations. Here, we consider a full three-dimensional
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model which includes the vertical extension of the disk.
The disk is non-self-gravitating and is orbiting a protostar having a mass of 1 M�. The

total mass of the disk MD within the simulated region, 2.08 to 13 AU, is 3.5 × 10−3 M�.
Embedded in this disk there is a massive protoplanet of typically 1 M� but a smaller mass
of 0.5 M� has been considered as well. The planet is assumed to be on a fixed circular
orbit throughout the evolution.

2.2.1 Basic Equations

Suited best for this problem are spherical polar coordinates (O;R, θ, ϕ) where R de-
notes the radial distance from the origin, θ the polar angle measured from the z-axis, and
ϕ denotes the azimuthal coordinate starting from the x-axis.

In this coordinate system, the mid-plane of the disk coincides with the equator (θ =
π/2), and the origin of the coordinate system, R = 0, lies in the center of mass of the star
and planet. Sometimes we will need the radial distance from the polar (i.e., the rotational)
axis which we denote by a lower case r = R sin θ, which is the radial coordinate in cylin-
drical coordinates.

For a better resolution of the flow in the vicinity of the planet, we work in a rotating
coordinate system which rotates with the orbital angular velocity Ω, which is identical to
the orbital angular velocity of the planet

Ωp =

√
G (M� +Mp)

a3
(2.1)

where M� is the mass of the star, Mp the mass of the planet, and a is the distance of the
star from the planet. For the sake of comparison, we calculated additional models in the
inertial frame.

The full hydrodynamic equations, including the viscous terms, spelled out in spher-
ical polar coordinates can be found for example in Tassoul (1978) or Mihalas and Weibel
Mihalas (1999). However, as we use here a more conservative variant of the momentum
equations including a rotating frame of reference we quote them explicitly.

The radial momentum equation reads

∂ρ uR
∂t

+ ∇ · (ρ uR u) = ρ
u2
θ

R
+ ρ (ω + Ω)2R sin 2θ − ∂p

∂R
− ρ

∂Φ
∂R

+ fR, (2.2)

where ρ denotes the density of the gas, u = (uR, uθ, uϕ) is the velocity of the gas, ω is the
azimuthal angular velocity as measured in the rotating frame, p is the gas pressure, and Φ
denotes the gravitational potential due to the star and the planet.

The meridional momentum equation is

∂(ρR uθ)
∂t

+ ∇ · (ρRuθ u) = ρ (ω + Ω)2R2 sin θ cos θ − ∂p

∂θ
− ρ

∂Φ
∂θ

+ fθ. (2.3)

The angular momentum equation reads

∂ρ ht
∂t

+ ∇ · (ρ ht u) = − ∂p

∂ϕ
− ρ

∂Φ
∂ϕ

+ fϕ, (2.4)
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where we defined the total specific angular momentum

ht = (ω + Ω) R2 sin 2θ, (2.5)

i.e. the azimuthal velocity in the rotating frame is given by uϕ = ωR sin θ.
The Coriolis force of the last equation for uϕ has been incorporated into the left hand

side. Thus, it is written in such a way as to conserve total angular momentum best. This
conservative treatment is necessary to obtain an accurate solution of the embedded planet
problem, as demonstrated by Kley (1998).

The vector f includes the viscous forces and it has the following components: fR =
ρ [∇ · S]R, fθ = ρR [∇ · S]θ, and fϕ = ρR sin θ [∇ · S]ϕ. The components of the divergence
of the stress tensor S, in spherical polar coordinates, are explicitly stated in Mihalas and
Weibel Mihalas (1999). For the description of the viscosity we assume a Reynolds stress-
tensor approach with a constant kinematic viscosity coefficient ν having the value 10−5 in
dimensionless units (see next section for an explanation), which translates into a Reynolds
number of 105. For the given vertical thickness of the disk (H/r = 0.05) this value for ν is
equivalent to α ≈ 4 × 10−3 at the planet location.

For simplicity, to avoid any complications due to internal heating and radiative trans-
port, we treat here only disks with a specified temperature distribution (see below).

2.2.2 Numerical Issues

The calculation are performed using the three-dimensional nested grid MHD-code
NIRVANA, whose details will be explained in the next chapter.

For computing convenience, we use dimensionless units where all the lengths are
normalized the distance of the planet to the star, i.e., r0 = 5.2 AU. The unit of time is the
inverse orbital frequency of the planet t0 = 1/Ωp. The evolutionary times as quoted in the
result sections are typically given in units of the orbital period P = 2π/Ωp of the planet.
The density ρ0 is normalized such that the total mass of the disk is 3.5 × 10−3 M�.

The computational domain consists of a spherical polar section of the disk, extending
radially from Rmin = 0.4 to Rmax = 2.5, meridionally from θmin = 80◦ to θmax = 90◦, and
azimuthally from 0 to 2π. Vertically, the computational domain has an extension of 10◦

measured from the equatorial plane, which is sufficient to include the whole disk. For the
standard case, the domain is covered by (NR, Nθ, Nϕ) = (128, 20, 128) grid cells, which
are distributed equidistantly in R, θ, and ϕ. For the higher resolution cases the number
of azimuthal grid cells is increased to 384. Some additional simulations required different
grid resolutions which will be explicitly given when such computations are discussed.

We have assumed reflection symmetry with respect to the equatorial plane, and sim-
ulate only the upper half of the disk, as mentioned above. In the azimuthal direction, we
use periodic boundary conditions, and in the radial direction we chose closed inner and
outer boundaries. For a more detailed discussion on the boundary conditions, along with
some effects ascribable to them, see CHAPTER 5.
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2.2.3 Initial Setup

The initial disk is assumed to be axi-symmetric with respect to the polar axis, θ = 0, of
the coordinate system. The gas moves with Keplerian velocity around the central star and
has no radial and vertical motion; that means the velocity at t = 0 is u = [0, 0, (ΩK −Ω)R],
where ΩK is the Keplerian angular velocity of the gas, ΩK = (GM�/r3)1/2, and we have
included the correction caused by the rotating coordinate frame. For simplicity we neglect
any vertical dependence of uϕ in the initial conditions because the vertical thickness H of
protoplanetary disks at a given distance r from the center is typically very small compared
to the radius.

Here we assume that the disk has a constant relative thickness h = H/r at all radii. This
is usually a good approximation for accretion disks since detailed vertical models give,
for regions which are not flared, a very weak dependence of H/r with radius, typically
H/r ∝ r0.1. Here we choose three different values ranging from H/r = 0.05 up to H/r =
0.15. A thin Keplerian disk is radially in equilibrium as gravitational and centrifugal forces
approximately balance because pressure effects are small. The vertical structure can be
obtained from the equation of hydrostatic equilibrium (in cylindrical coordinates). If one
assumes that the disk is thin and is locally isothermal, T = T (r), one finds easily that the
local vertical density profile is given by a Gaussian (Frank et al. 1992). Hence, neglecting
again geometry effects, we use as initial density

ρ(t = 0) =
ρ0

(r/r0)3/2
exp

[
−

(
ϑ

h

)2
]
, (2.6)

where ϑ = π/2 − θ is the polar angle measured from the mid-plane of the disk. The
constant ρ0, which sets the total mass of the disk, is arbitrary as long as no back-reaction
of the disk onto the orbit of the planet or self gravity is taken into account. Here we adjust
ρ0 such that the total mass of the disk within the computational domain (from 2.08 to
13.0 AU) is MD = 3.5 × 10−3M�. The radial dependence has been chosen such that the
vertically averaged density Σ(r) =

∫ +∞
−∞ ρdz, i.e., the surface density, falls off as r−1/2.

This allows a direct comparison of the new three-dimensional results with previous two-
dimensional computations by Kley (1999). The constant r0 is some reference radius which
we may choose to coincide with the present-day Jupiter orbital radius. The temperature
law follows from the constancy of h, and is given by

T = h2
(µmH

k

) (
GM�
r

)
, (2.7)

where µ is the mean molecular weight, mH is the hydrogen mass, and k is the Boltzmann
constant. Since only the gas pressure p enters the momentum equations written before and
p ∝ T/µ, these calculations are independent of the specific value of the mean molecular
weight.

In general we consider that a planet with mass 1 M� = 0.001 M� is located at R = 5.2
AU and, since we are working in the corotating frame, at the fixed azimuthal angle ϕ = π.
Yet, lower planetary masses will be also simulated.
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The standard model (§ 2.4) refers to a modest resolution of (NR, Nθ, Nϕ) = 128 × 20×
128) grid-cells. However, to test the reliability of this apparently low resolution concerning
the accretion and migration rate (that is gravitational torques) we also considered higher
resolution models with with different physical parameters, as given in Table 1 below. We
note that, using the standard resolution, there are about 4.5 radial and only 1.7 azimuthal
grid-cells within the Roche lobe of a Jupiter-mass planet. However, since mass is taken
out continuously from the middle of the Roche lobe we believe that this resolution may be
sufficient to yield reliable results. This is tested by higher resolution cases, which give in
fact essentially the same outcomes for the mass accretion and the migration rate.

2.3 A Test Case

As this is the first application of the code to three-dimensional disks we present, in the
beginning, results of a test calculation where we study the evolution of a section of a disk,
without a planet, toward dynamical equilibrium. Then we describe our results obtained
for the full embedded planet case.

We start with an initially constant density ρ = constant configuration rotating with
Keplerian speed around the star. The radial and vertical velocities have been set to zero
initially. For the given temperature profile, which is constant on θ = constant-surfaces,
we expect the vertical density profile to become Gaussian (see above) and for the surface
density Σ the final radial distribution should follow the law Σ ∝ r−1/2.

In Figure 2.1 we display the radial dependence of the azimuthally averaged surface
density at different times. We note that during the whole time evolution, that is during
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Figure 2.2: Time evolution of the total kinetic energies in the radial (x) and meridional (y)
direction.

500 orbits or 200000 time steps, the azimuthal asymmetry did not grow beyond 10−13. At
t = 0, the constant three dimensional density yields a profile Σ0 ∝ r. During the evolution
toward equilibrium sound waves are generated which are slowly damped by the viscosity,
and finally the density profile approaches the analytic solution.

The viscous damping is illustrated in Figure 2.2, where the time evolution of the total
kinetic energy of the radial and vertical velocity components are displayed. After a brief
and fast initial decline due to non-linear effects, the decay proceeds on the long viscous
time scale.

The evolution toward vertical equilibrium is displayed in Figure 2.3 where we plot
the vertical density distribution at r = 1, at different evolutionary times. As expected from
hydrostatic equilibrium, the vertical structure settles to a Gaussian distribution, because of
the vertical constant temperature.

2.4 Planet Embedded in a Disk: Standard Model

Now we first consider our standard case of a Mp = 1 M� planet embedded in a disk
with the constant vertical height H/r = 0.05, equivalent to a Mach number of 20 through-
out the disk. As described above we start from an initially axi-symmetric configuration
with a gap imposed (see also Fig. 2.7 below). Gravitational interaction of the planet with
the disk leads to the creation of tightly wound trailing spiral density waves.

In Figure 2.4 the overall structure of the surface density Σ is displayed after 150 or-
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bits of the planet. The spirals emanate from the vicinity of the planet and reach the outer
boundary. Since the radial outer border is closed to mass flow, there the waves are re-
flected, which is more clearly seen in the right panel of Figure 2.4. This reflection is some-
what larger for the computations performed here than that observed in previous calcula-
tions executed by Kley (1999) (with the code RH2D) because the computational domain is
smaller.

In the region outside of the planet two spirals are inter-twined and in the inner region
three. This difference is caused by the location of the appropriate Lindblad resonances
in comparison to the radial extent of the gap. Only resonances which are located farther
away from the planet than the gap size can be excited effectively.

In Figure 2.5 the density slice ρ(R, θ, π) is shown at t = 150 orbits. In addition, the two-
component velocity field (uR, uθ) is shown. Inside the gap, around R = 1, the flow field
is definitely directed toward the mid-plane of the disk, onto the planet. Even from the far-
thermost grid cells, at R ≈ 1, the velocity points to the position of the planet. This implies
that all the fluid elements, along the vertical direction, are involved in the planet accretion
process as it is assumed when adopting a 2D approximation. This can be attributed to the
fact that, because of the continuous mass extraction from within the Roche lobe, the ver-
tical hydrostatic balance is lost which allows material from all heights to fall down onto
the planet. Clearly seen in Figure 2.5 are also the locations of the spiral waves which show
up as density enhancements reaching from the mid-plane of the disk all the way down to
the surface. At all heights the arms are at the same radial position because in case of the
isothermal assumption the wave propagation speed is the same at all heights. Caused by
the closed inner boundary conditions, the density becomes very large near Rmin = 0.4

At each side of the planet, a column of material is also visible, it extends from θ = 0
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Figure 2.4: The surface density distribution at t = 150 orbits. Left in Cartesian x − y
coordinates, right in radial and azimuthal coordinates (r − ϕ plane).

to θ � 0.05. Though not very well resolved in the radial direction, this material might be
contained within the Hill sphere of the planet which, in the present case, has a radius of
� 0.069 in dimensionless units. From the velocity field, it seems that the fluid elements be-
longing to these structures, move toward the planet according to bow-shape stream lines.
High-resolution computations, presented in CHAPTER 5, indicate that those are signatures
of shock fronts, where the laminar flow is disrupted.

In Figure 2.6 we plot the density structure in the θ − ϕ plane at the planet’s location
R = 1 for the same model. Also here the loss of vertical hydrostatic equilibrium is reflected
by the vertically downward motion of the gas.

The radial dependence of the surface density is shown in Figure 2.7 together with
other simulations using always identical physical parameters. The initial density profile
is given by the dark dotted line. We use two different codes RH2D (labeled 2D: solid
lines) and NIRVANA (labeled N2D: dashed lines; N3D: dashed-dotted lines) where we use
the latter one in a 2D setup and in the previously described 3D setup. Each of the three
models is run in the inertial and the corotating frame. The initial total matter content of
the models has been adjusted to agree in all cases. Clearly the overall agreement of all
models is very good, the shape of the gap is identical for all models. The only difference
is that the models run with NIRVANA show a larger variation at the outer radial boundary
(at R = 2.5) which is an indication of a stronger wave reflection in the NIRVANA-code,
possibly due to slightly different boundary conditions.

The good agreement of the different models is corroborated in Figure 2.8 where we
plot the obtained total mass accretion rate Ṁp onto the planet for the different models.
Only for the corotating 3D cases the obtained Ṁp appears to be slightly but not significantly
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Figure 2.6: Density distribution and velocity field in the θ − ϕ plane at R = 1 (where the
planet is located) after 150 orbits.

higher. The accretion rate does not depend on the chosen resolution as is shown by the
higher resolution model (384 azimuthal grid-cells, otherwise identical to N3d rot.) which
has been run only until t ≈ 100 due to limited computational resources.

2.4.1 Gravitational Torques

The gravitational force F of the disturbed non-axi-symmetric density distribution of
the disk creates a torque T = r × F on the planet, which eventually alters its orbital
elements. For the present work however, these changes have no dynamical influence, be-
cause we assume that the planet remains on a fixed circular orbit. The resulting radial
distribution of the vertical z-component of the torque is shown, as a solid line, for the stan-
dard 3D-model (N3D rot.) in Figure 2.9. It shows a strong variation (spikes) with radius
that is caused by the spiral density structure. The Figure shows also the same quantity as
obtained from the N2D rot. model. As one can see, the two curves have slightly differ-
ent shapes only close to the planet (at R ≈ 0.9 and R ≈ 1.1), where the 3D result is less
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variable.
The total torque T⊥ can be obtained by integrating Tz(r) over all radii. An applied

torque on the planet changes its angular momentum Lp = ma2 Ωp and leads to a change
in its orbital distance

ȧ =
2

aMp Ωp
T⊥. (2.8)

As the direction of the motion is determined by the sign of the total torque, it is clear
already from Figure 2.9 that the planet will migrate inward. The main contribution to this
lowering of a comes from the density in the trailing spiral arm near the outer edge of the
gap. The deep minimum at r ≈ 1.7 refers to the 2 : 1 outer Lindblad resonance. It has
been demonstrated already (Lubow et al. 1999; Nelson et al. 2000) that the material lying
at radii larger than the planet’s semi-major axis tend to move the planet inward while inner
material has the opposite effect. As there is typically more mass (larger area) in the outer
region the net effect will be an inward migration of the planet. For the time scale of this
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migration

τM =
a

|ȧ|

we find for all the models τM ≈ 105 years if we assume a total disk mass within [rmin, rmax]
of 3.5 × 10−3 M�. This compares favorably with the analytic results of Goldreich and
Tremaine (1980) based on a linear analysis which results for the same disk density also in
a time scale of about 105 years. The dynamical evolution of migrating planets has been
studied in detail, in a two-dimensional framework, by Nelson et al. (2000).

2.5 Varying the Disk Height and the Planetary Mass

We have also run models with smaller planet masses and higher H/r ratios. The pa-
rameters of some of such models are listed in Table 2.1. For all of them the boundary con-
ditions at inner radial border are such that they allow matter to outflow from the compu-
tational domain but not to inflow. For each set of physical parameters we have performed
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Figure 2.9: Radial distribution of the torque component Tz on the planet at time t = 150
orbits for the models N3D rot. (solid line) and N2D rot. (dotted line).

two- and three-dimensional calculations at much higher resolution than the standard test
case discussed in the previous section. As can be seen from the Table we have chosen the
number of grid-cell in the azimuthal ϕ-direction such as to make the grid-cells approxi-
mately square shaped, which required Nϕ = 384 grid-cells. The number of grid-cells in
the vertical direction was higher for the model P3 (Nθ = 30) because of the larger H/r.

In order to illustrate how the density wave pattern varies with the thickness of the
disk, the density for model L is plotted in Figure 2.10. That relative to models C and P3 is
shown in Figure 2.11. To intensify the contrast between high densities in the outer part of
the disk and the low densities in the gap and the inner disk regions, a logarithm scaling
of Σ is used in some panels (see Figure captions for details). Since the propagation of the
spiral perturbations is governed by the sound speed, we must expect that the thicker the
disk the wider the spiral waves are. One can clearly observe such occurrence in Figure 2.10
and the right panels of Figure 2.11. On the other hand, waves can propagate in the vertical
direction. There are resonances which lie above the disk mid-plane and therefore, if the
disk is thick enough to enclose those locations, the intensity of spiral perturbations is re-
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Table 2.1: Parameters of the 2D (A, D, P2a, P2b) and 3D (B, C, P3) models used to compare
the planet mass accretion rate. Model L simulates a very thin disk.

Model Ma
p H/rb R-Rangec θ-Range ∆R ∆ θd ∆ϕe

B 0.50 5.0 × 10−2 [0.4, 2.5] [80◦, 90◦] 0.01640 0.01027 0.01653
A 0.50 5.0 × 10−2 [0.4, 2.5] 0.01640 0.01653
L 1.00 2.5 × 10−2 [0.4, 2.5] [85◦, 90◦] 0.01640 0.00969 0.01653
C 1.00 1.0 × 10−1 [0.4, 2.5] [70◦, 90◦] 0.01640 0.00997 0.01653
D 1.00 1.0 × 10−1 [0.4, 2.5] 0.01640 0.01653
P3 1.00 1.5 × 10−1 [0.4, 6.5] [60◦, 90◦] 0.04766 0.01939 0.04987
P2a 1.00 1.5 × 10−1 [0.4, 6.5] 0.04766 0.04987
P2b 1.00 1.5 × 10−1 [0.4, 6.5] 0.04766 0.01653
(a) The planet mass is normalized to the mass of Jupiter.
(b) r represents the distance from the rotational axis.
(c) The radial extent is given in units of the orbital radius Rp.
(d) The resolution is expressed in radians.
(e) ϕ ∈ [0, 2π].

Figure 2.10: Left. Surface density for the additional model L (see Table 2.1) which simu-
lates a Jupiter-mass object in a disk with h = 0.025. The color scaling is logarithmic. Right.
Mass density in a vertical slice containing the planet. The section of the Roche lobe is also
indicated. Note how sharp the spiral perturbations appear.
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Figure 2.11: Surface density for two additional models (see Table 2.1). The color scaling
is logarithmic in the left panels, linear in the right panels. Top. Model C has Mp = 1 M�
and h = 0.1. Bottom. In model P3 the disk is quite thick (h = 0.15) and therefore the radial
extent of the domain was enlarged. The central hollow observed in the right panels is due
to the combined effects of the gap and the depletion of the inner disk.

duced and the density appears smoother. This effect is visible in Figure 2.11 in the panels
regarding the surface density.

For the sake of completeness, we also show the surface density and the mass density
for a model which has Mp = 0.5 M� and a standard pressure scale heightH/r = 0.05. The
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Figure 2.12: Left. Surface density for the additional model B (see Table 2.1) which sim-
ulates a 0.5 Jupiter-mass object in a disk with h = 0.05. The color scaling is logarithmic.
Right. Mass density in a vertical slice containing the planet. The section of the Roche lobe
is also indicated for comparison.

gap and perturbation pattern scale as the sphere of influence of the planet and therefore as
M

1/3
p . Thus, not much difference is expected to be seen between model B and our standard

model discussed in § 2.4.
In case of the Models A and B the ratio of the Hill radius (RH) to the local thickness

of the disk is almost unity. One can see that, after 200 orbits, the 3D model accretion
rate (Fig. 2.13, upper-left panel) is 12% less than that of the corresponding 2D model. For
Models C and D (Fig. 2.13, upper-right panel) the ratio RH/H decreases to 0.7 and the
two curves show a difference of 10%. In the lower-left panel of the same Figure one can
clearly see that, despite the difference in azimuthal resolution, the 2D model (P2a and P2b)
results differ very little, while the 3D one lies almost the 30% below. These comparisons
show that whenever RH/H ≤ 1, the 2D approximation starts to break down and the 2D
accretion rates lie consistently above the 3D values.

2.6 Conclusions

We have performed 3D simulations of embedded Jupiter type planets in a protostellar
disk of mass MD = 10−2 M�. We have shown that for a fully three-dimensional standard
model, having the vertical disk thickness H/r = 0.05 and the constant (dimensionless)
viscosity ν = 10−5, the obtained mass accretion rate Ṁp ≈ 6 × 10−5 M�/yr and migration
time scale of τM ≈ 105 yr are in very good agreement with corresponding 2D calculations.
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Figure 2.13: Mass accretion rates obtained
from models listed in Table 2.1. Top-left:
Model B, solid line; Model A, dotted line.
Top-right: Model C, solid line; Model D,
dotted line. Bottom-left: Model P3, solid
line; Model P2a, dotted line; Model P2b,
dashed line.

The value for the accretion rate Ṁp quoted in Kley (1999) is lower than the value obtained
in this work because here we take into account the accretion from both sides of the disk
while previously we considered only accretion from outside. Hence, we conclude that in
this standard case the two-dimensional (r–ϕ) calculations give an adequate representation
of the evolution of planets in disks.

However, this agreement between 2D and 3D calculations can only be expected if the
vertical extent of the Roche lobe of the planet is comparable to the disk thickness or larger,
that is for high planetary masses. If the Roche lobe is much smaller than the disk thickness
the gap will not be opened fully, and one may expect that some of the disk material will
flow across the gap, which is not fully cleared in these circumstances, and does not end up
onto the planet. This situation has been addressed with lower q and higher H/r models,
and indeed we find a slightly reduced mass accretion onto the planet in these cases.

The present results and those previously published concerning mass accretion and
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planet migration by ourselves and others, although in rough agreement with each other,
may nevertheless suffer from insufficient resolution of the flow within and around the
Roche lobe of the planet. Once within the Roche lobe the gas will form a miniaturized
accretion disk around the planet. The question on how fast the accretion flow will be
depends on the local viscosity within this sub-disk. If the disk is able to transport all the
incoming material rapidly enough, the mass removal scheme used here will be satisfactory.

To address these questions much higher numerical resolutions possibly by applying
methods of grid refinement will have to be used. Very interesting first results have been
presented by Cieciela̧g et al. (2000b) but this issue definitely requires more work. Next
chapters are devoted to computations executed with a grid refinement method known
as Nested-Grid Technique. It will allow us to overcome all resolution restrictions and in-
vestigate in great detail what happens nearby a protoplanet, while maintaining a global
treatment of the disk.
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CHAPTER 3

NUMERICAL METHOD AND

NESTED-GRID TECHNIQUE

This chapter is devoted to a generic description of the numerical method we have adopted
to solve the equations of magneto-hydrodynamics, though we work in a purely hydrody-
namics context. However, since there exists an extensive literature on the subject, this
chapter is not meant to be a complete overview of such a method. In fact we will mostly
focus on a particular strategy to gain local resolution and accuracy in the calculations we
aim at.

3.1 Introduction

The variety of astrophysical systems which can be approximated as either magneto-
-hydrodynamical (MHD) or hydrodynamical (HD) flows is a proof of the importance that
fluid dynamics modeling has in this field. The applicability range of MHD and HD de-
scriptions spans from processes occurring in the intergalactic and interstellar media to
those taking place in the nuclei of galaxies and stars. The assumptions required to analyt-
ically solve HD equations are so restrictive to make analytic solutions of no practice use.
Therefore, theoretical astrophysicists have broadly relied on numerical solutions of these
equations. As consequence of the growing interest in the field and the extensive use of
this approach, many numerical methods have been developed to solve the HD equations.
One of the most straightforward and well-tested is the method of the finite differences, a
so called grid-based method. In finite differencing, physical quantities, such as density and
momenta, are discretized over a grid of points and derivatives are approximated to the
ratio of finite differences. The assets of such a scheme are so many that it represents, by
far, the most used numerical method in theoretical astrophysics.

The distinctive property of the systems of astronomical interest is that many physical
effects have to be included in order to have a realistic model. These effects usually involve
time scales which may differ by many order of magnitudes. Hence, each of them must be
handled appropriately. Moreover, very often also the length scales of the various physical
phenomena may be significantly different. These may lead to not accurate results if the
spatial resolution, i.e., the distribution and the number of the points is not sufficient all
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over the investigated region. Thus, even a numerical approach to the problem is not at all
an easy task.

The resolution issue can be addressed by a mesh refinement technique. The followed
strategy is to increase the number of the grid points in regions where the spatial gradient of
the physical quantities is large. Several of such techniques have been worked out and they
can be broadly divided in two categories: adaptive refinements and static refinements. In
the first category the grid structure evolves with time whereas in the second it is static and
does not change in time. Adaptivity usually implies a complexity in coding which may be
very difficult to implement. Furthermore, astrophysical applications have proved that it is
very powerful for some problems but not so useful for others.

Adaptive mesh refinement techniques are basically characterized either by redistribut-
ing a fixed number of grid cells or by generating finer cells whenever necessary. In the first
case grid cells are allowed to move and therefore even an initial simple mesh becomes
topologically very distorted as time goes by. Mesh distortion has two undesired conse-
quences: discretization errors, different in each coordinate direction, are introduced and
the formal convergence rate of the finite differences scheme is generally restricted to the
first order for fully adaptive 2D and 3D problems. However, this strategy has been applied
successfully in 1D problems (e.g. Dorfi and Drury 1987). The second case of adaptive mesh
refinement has been elaborated by Berger and Oliger (1984) and is based on structured grid
patches. Patches are made out of a fixed number of grid points and can be generated or
destroyed wherever some criteria are met. Patches may be laid over pre-existing patches
up to a selected level, allowing a very fine resolution in confined regions. Some numer-
ical codes have been implemented based on this technique and applied to astrophysical
problems (Ziegler 1998; Plewa and Müller 2001) but mainly in Cartesian coordinates.

However, in order to avoid adding the complexity of a numerical procedure to the
complexity of the physical nature of the problem, we rely on a static refinement strategy
based on the use of multiple nested grids. Static methods are simpler to code and to handle,
they are more robust and easy to control. Yet, contrary to adaptive methods they are less
general and successfully applicable only to a more restricted class of problems.

The nested grid technique is represented by a hierarchical sequence of grids where,
starting from a basic grid, successively finer resolution grids, called also subgrids, are
”nested” within coarser ones. For the sake of simplicity we will refer to equidistant grids
in the coordinate space. This will assure also a higher convergence rate of the finite differ-
ence scheme. The level of nesting can be arbitrarily high and as many subgrids as desired
can be comprised in a particular grid level, provided that no subgrid overlapping occurs.

In contrast to the adaptive mesh refinement technique, the topological character of the
grid is conserved during the computation. The integration of the HD equations proceeds,
whatever the hierarchy level, on a simple equidistant mesh. To preserve the conservative
nature of the underlying hyperbolic equations, neighboring subgrids interacts with each
other.

In the next section we briefly describe the numerical procedure used to solve the HD
equations and in § 3.3 we introduce the nested grid technique as implemented here. Sec-
tions 3.4, 3.5, and 3.6 are specifically devoted to those aspects of this technique which have
been modified and improved in order to make the scheme more stable with respect to
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the type of computations that we intended to perform. In the final section, we give some
remarks on the performances of this method.

3.2 Numerical Method

In order to study the planet-disk interaction, we utilize a finite difference method to
solve the standard hydrodynamic equations,i.e., those outlined in the previous chapter for
the 3D problem and those presented in the next chapter for the 2D one. As we intend to
achieve a very high resolution around the planet, we can use a static refinement technique,
as the multiple nested grids. This is possible since, as already stated in CHAPTER 2, we can
choose a rotating basic grid and assume that the planet orbital eccentricity is zero. Thereby,
the position of the planet remains fixed within the grid hierarchy.

The above requirements are provided by an early FORTRAN-Version of NIRVANA

(Ziegler and Yorke 1997), which is a 3D, nested-grid, MHD code, based on a covariant Eu-
lerian formalism. The relevant equations are solved on a mesh structure having a constant
spacing in each coordinate direction. When the code is applied to three-dimensional disks,
it is natural to use a spherical polar coordinate system. However, when it is applied to a
two-dimensional geometry, i.e., to an infinitesimally thin disk, the natural choice becomes
a cylindrical reference frame where the z-dimension is switched off.

For our purposes, the code is used in a pure hydrodynamics mode. This is indeed a
good approximation in our case because, at the planet distance, circumstellar material has
temperatures around ∼ 100 K. Thus matter is not ionized, i.e., no plasma effects arise and
magnetic field are so weak that can be neglected.

Fluid advection and source terms (right-hand side of equations, see § 2.2 and § 4.2) are
treated via an operator splitting technique with a time explicit multi-step solution proce-
dure. This can be sketched as follows. If we let w be the vector of the physical quantities1

(ρ, e, ρu), then the equations can be formally written in a very compact way:

∂w

∂t
= L1[w] + L2[w] + L3[w] + · · · + LP [w]. (3.1)

Each of the operators L1,L2, . . . ,LP is the mathematical representation of a term (e.g.,
advection, pressure gradient, gravitational force, viscous force, etc.) in the HD equations.
The finite-difference multi-step procedure can be formulated as

W (1) −W (0)

∆t
= L1[W (0)],

W (2) −W (1)

∆t
= L1[W (1)],

W (3) −W (2)

∆t
= L1[W (2)],

W (P ) −W (P−1)

∆t
= L1[W (P−1)], (3.2)

1Here we indicate with ρ the mass density (and with “Σ” the surface density), with “e” the specific energy,
and with u the velocity vector.
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where ∆t = tn+1 − tn is the time interval and t = tn the starting time. Operators L(1,...,P )

and quantitiesW are discrete approximations of L(1,...,P ) andw, respectively. Starting from
W (0) = W (tn) one getsW (1), which is used in the successive sub-step. Eventually, one ends
up with W (P ) = W (tn+1). The order of the operators L(1,...,P ) generally has little effect on
the numerical solution. Such procedure is formally first-order accurate in time. However,
in some cases, the order arrangement can improve the accuracy order of the solution.

A detailed description about how the complete procedure can be actually coded, in-
cluding also magnetic fields and radiation transfer, can be found in the famous trilogy of
papers by Stone and Norman (1992a,b) and Stone et al. (1992). These three papers rep-
resent an excellent reference and constitute the core of the famous ZEUS code, a widely
employed numerical tool in astrophysics. NIRVANA is a ZEUS-type code.

As for the fluid advection, NIRVANA uses a second-order monotonic transport al-
gorithm, introduced by van Leer (1977), which guarantees global conservation of mass
and angular momentum. In order to maintain the second-order accuracy, the directional
splitting of the three advection operators must be symmetric. A strict symmetric split-
ting would add, however, extra computational time, for which reason symmetry is im-
proved by simply alternating the splitting order between successive cycles. Higher orders
schemes, such as the Piecewise Parabolic Algorithm (PPA) (Colella and Woodward 1984),
have been lately used for astrophysical purposes. Yet, though PPA is unrivaled in its abil-
ity to keep sharp contact discontinuities, it is computationally very expensive. For many
multi-dimensional applications, such as ours, it is not clear whether this high cost gener-
ates significantly better solutions than those provided by van Leer’s algorithm, when it is
run at finer resolutions.

The viscosity part was added to the original implementation and is treated explicitly
(Kley 1999). The full form of the viscous stress tensor has been implemented for a New-
tonian fluid according to the Stokes hypothesis, i.e. with a bulk viscosity ζ = 0 (see Mihalas
and Weibel Mihalas 1999).

3.3 Nested-Grid Technique

This technique is particularly useful when very high local resolution is required at
specific and predefined points of the computational domain. In our situation, this allows
us to simulate both the overall behavior of the disk and the immediate surroundings of the
planet. Since this kind of numerical approach is quite new for the calculation of disk-planet
interaction, we describe the method to some extent, but only referring to our particular and
specific case.

A similar numerical scheme has been adopted, for astrophysical simulations, by a
number of authors. Ruffert (1992) used this approach to investigate the collision between
a white dwarf and a main-sequence star. In his paper the numerical method is explained
in detail. Yorke et al. (1993) and Burkert and Bodenheimer (1993) simulated the collapse of
a protostellar cloud. An application to flux-limited radiation hydrodynamics can be found
in Yorke and Kaisig (1995). Lately, Yorke and Sonnhalter (2002) has used such strategy,
with a frequency-dependent radiation transport to study the early stages of star formation.
Applications have been made also to other fields. For example, Skamarock et al. (1989)
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l = 1

l = 3 l = 2

Figure 3.1: Face-up projection of a three-level grid system in two-dimensional cylindrical
coordinates. On the finest subgrid (l = 3) the linear spatial resolution is four times as large
as it is on the main grid (l = 1).

employed it for numerical weather prediction.
The method relies on the basic idea that, whenever a greater resolution is needed in a

designated region, a finer subgrid is located inside the main grid (i.e., the one covering the
whole computational domain). If the resolution is not high enough yet, another subgrid
may be placed on the underlying one. Since any subgrid can host a finer subgrid structure,
a grid hierarchy is generated, also called “system of nested grids”. In principle there is no
limit to the degree of nesting. A three-level hierarchy, in 2D cylindrical coordinates, is
shown in Figure 3.1 whereas one in 3D Cartesian coordinates appears in Figure 3.2.

The necessary equations are then integrated, independently, on every grid level. How-
ever, two neighbor subgrids must exchange the necessary information whenever the inte-
gration proceeds from one grid level to another.

Since the scheme is time-explicit, restrictions are imposed on the time step because, for
stability reasons, the Courant-Friedrichs-Lewy (CFL) condition must be fulfilled during
each integration, on each level.

In order to avoid lengthy formulas and incomprehensible pictures, we will gener-
ally illustrate how a nested system of grids works in 2D cylindrical coordinates (O; r, ϕ),
because this is one of the two cases that we are interested in (i.e., to represent an infinites-
imally thin disk). The hydrodynamical unknowns are the density and the velocity com-
ponents (see Fig. 3.5 and 3.7, or § 3.5.1, for the definition of such quantities on the compu-
tational grid). To depict disks with thickness, 3D spherical polar coordinates (O;R, θ, ϕ)
are used (as done in CHAPTER 2). Thus, what we say for the 2D case directly applies to
the radial and azimuthal coordinates of the 3D case, provided that the cylindrical radius r
coincides with the polar radius R. Thereupon, we mention how they must be extended to
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l = 1
l = 2

l = 3

Figure 3.2: Three-level grid system in three-dimensional Cartesian coordinates. Each vol-
ume cell on the main grid (l = 1) is divided into 43 volume cells on the the finest subgrid
(l = 3).

include the co-latitude coordinate, by using similarity arguments. Yet, complete formulas
will be also presented in an explicit form, for the 3D case, since the interpolation procedure
may be somewhat more complex.

3.4 Basic Integration Cycle

Although any refinement ratio would be possible, the risk of numerical instabilities
and inaccuracies at the interfaces between two neighboring grids increases as this ratio
grows. Since we are interested in keeping the algorithm as stable as possible, in our calcu-
lations we use the smallest possible refinement ratio:

∆r(l + 1)
∆r(l)

=
∆θ(l+ 1)

∆θ(l)
=

∆ϕ(l + 1)
∆ϕ(l)

=
1
2
, (3.3)

where ∆r(l), ∆θ(l), and ∆ϕ(l) represent the mesh discretization, along each direction,
on the grid level l (here l = 1 identifies the main grid). In order to analyze a complete
integration cycle, let’s suppose that we have a three-level hierarchy at an evolutionary
time t. The cycle will be completed when on each grid the system has evolved for the
same time:

1. We always start the integration from the finest level. During the first step of the cycle,
this grid is evolved for a time interval

∆t1(3) = min
[
∆tCFL

1 (3),
1
2

∆tCFL
1 (2),

1
4

∆tCFL
1 (1)

]
, (3.4)
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Figure 3.3: Scheme of a com-
plete integration cycle for a
three-level grid system. Ar-
rows indicate the direction of
information transfer when in-
tegration proceeds from a level
to the next lower one. Straight
arrows stand for the solution
updating process on the lev-
els 2 and 1 (i.e., form fine to
coarse grids). Bow-arrows indi-
cate the data transfer for setting
the boundary quantities on the
levels 3 and 2 (i.e., form coarse
to fine grids).

where ∆tCFL
1 (l) represents the time step resulting from the CFL criterion applied to

the level l (see, e.g., Ziegler 1998; Kley 1999), after its latest integration. Thus, ∆t1(3)
accounts for the CFL stability criterion on the whole set of grids.

2. The third grid has to be integrated once more because of equation (3.3). Since after
the first step this was the only level to evolve, we only have to check the new CFL
time step for this grid, ∆tCFL

2 (3). Then it can move further in time for an interval

∆t2(3) = min
[
∆tCFL

2 (3),
1
2

∆tCFL
1 (2),

1
4

∆tCFL
1 (1)

]
. (3.5)

3. Now level 2 can be integrated for a time

∆t3(2) = ∆t1(3) + ∆t2(3) ≤ ∆tCFL
1 (2), (3.6)

so that numerical stability is automatically assured. At this point of the cycle the
first information exchange takes place: the solution on the level 2 is corrected via the
more accurate solution of the level 3; the boundary values of the level 3 are updated
by using the solution of the level 2, which covers a larger domain. These fundamental
interactions will be described later.

We have just seen that a level l + 1 has to be visited two times as often as the level l.
Then the next two cycle steps will be similar to the first two, provided that the appropriate
CFL time steps are employed to compute ∆t4(3) and ∆t5(3). During the sixth step, the
level 2 evolves for ∆t6(2) = ∆t4(3) + ∆t5(3). Eventually, during the seventh step, the
integration of the level 1 is performed using a time step ∆t7(1) = ∆t3(2)+∆t6(2) which is,
by construction, smaller than ∆tCFL

1 (1). The cycle is now complete and each grid level has
evolved for the same amount of time ∆t7(1). The entire cycle sequence is schematically
sketched in Figure 3.3.

In general, within this kind of cycle, a level l is integrated 2l−1 times.
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Figure 3.4: Interface between a subgrid and its host in 2D cylindrical coordinates. The
light-colored zone marks those cells containing boundary values needed for the subgrid
integration, the “ghost cells”. The darker region refers to the so-called “active zone”, where
values are effectively computed on the subgrid. The thick line, which separates the pre-
vious regions, encloses the grid cells on the coarse grid whose content is replaced by the
more accurate one coming from the subgrid.

3.5 Downward Information Transfer

We already mentioned that after the third step of the iteration cycle, grids 3 and 2
have to exchange some information. In general, this exchange must occur every time the
grid level l evolves to the same time as the level l + 1. Because of the higher resolution,
we assume the solution of the level l + 1 to be more accurate than that of the level l.
Therefore, the fine-grid solution replaces the coarse one on the common computational
domain. Whatever the level in the hierarchy is, the frame formed by the first and the last
two grid cells are ghost cells (see Fig. 3.4). This indicates that they contain the boundary
values necessary to perform the algorithm integration. Ghost cells of level l + 1 do not
contribute to the updating process of the solution of level l.

The replacement procedure is straightforward: in 2D a surface-weighted average, us-
ing the nearest fine values, substitutes the coarse quantity. For example, referring to Fig-
ure 3.5, the averaged coarse density (ΣC) is

ΣC =
∑

iΣ
F
i Ai∑
iAi

=
(ΣF

1 + ΣF
4 )A1 + (ΣF

2 + ΣF
3 )A2

2 (A1 +A2)
. (3.7)

In this geometry, since the advected quantities are the radial momentum density Σur and
the angular momentum density Σ r2 ω, these are the interpolated quantities, along with Σ.
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Figure 3.5: Surface weighted average of the surface density. A coarse cell is shown along
with the four fine cells it comprises. As a scalar, the surface density is cell-centered within
the appropriate refinement (dots). ΣC represents the new, interpolated, value of the coarse
cell; ΣF

i are the fine interpolating quantities. Because of the fixed value of ∆ϕ(l), A1 = A4

and A2 = A3.

In three-dimensional spherical coordinates, the surface-weighted average turns into a
volume-weighted average, which involves 8 fine cells. Similarly to the surface elements,
volume elements are azimuthally independent. Therefore, in the 3D-geometry the equiv-
alent of equation (3.7) only requires four independent volume sectors.

Interpolation of scalars can be easily figured out by considering the 2D area elements
as the projection of a set of volume elements onto the plane θ = π/2. Then, a second set
of four volumes must be added on the top of it. The upper set is located at the co-latitude
θ(l + 1) whereas the lower set is located at latitude θ(l + 1) + ∆θ(l+ 1).

In three dimensions, the other interpolated quantities are the linear momentum den-
sity ρ uR, and the angular momenta in the meridional and azimuthal directions: Rρuθ
and R sin θρ uϕ (strictly speaking, these are angular momentum densities). As vectors’ in-
terpolation might appear not so trivial as the one yielding the updated values of scalar
quantities, we will also propose explicit algorithms, employing grid-related quantities in
spherical polar coordinates (see § 3.5.1).

Since velocities are centered at the sides of a cell (see Figs. 3.6 and 3.7 for the cylindrical
geometry), this average is a little more complex than the previous one and requires six
terms in two dimensions. Indicating with uC the coarse value of the linear (i.e., radial)
momentum density to be interpolated and with uF

i the surrounding fine grid values, we
have:

uC =
(uF

1 + uF
6 )A1 + (uF

2 + uF
5 )A2 + (uF

3 + uF
4 )A3

2 (A1 +A2 +A3)
. (3.8)

The angular momentum can be handled accordingly by using the appropriate finer-grid
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Figure 3.6: Surface weighted average of the radial momentum density u = Σur. Two
coarse cells are drawn (thick lines). Fine cells are delimited by thin lines. Because of the
staggered structure of the grid, vectors are face-centered within the cell.

quantities and area patches. Both can be easily identified by drawing a picture similar to
Figure 3.6.

In three dimensions, interpolation of momenta take 12 file cells to be accomplished.
Following similarity arguments, a formula for the updated linear momentum can be writ-
ten down without much effort (see § 3.5.1). Azimuthal and meridional angular momenta
are interpolated in a similar fashion once the correct fine-grid quantities and volume ele-
ments are identified. Unfortunately, 3D sketches in spherical polar coordinates do not help
much. In contrast, 2D projections may result more useful to the goal.

In a successive step, velocities are retrieved, both in 2D and 3D. Since the gravitational
potential is assigned, it doesn’t need to be transferred from a finer level to a coarser one.
The same is valid for the energy density in the circumstance that no energy equation is
solved. However, if the energy transport is accounted for and an energy equation has to
be solved, as a scalar, energy density receives the same treatment as the mass density.
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3.5.1 Interpolation Formulas in Three Dimensions

The aim of this section is to furnish some algorithms useful for updating the values of
scalars and momenta on a coarse grid with those computed on the hosted (finer) one, in
spherical polar coordinates.

For such purpose, we indicate with ρC the mass density to be interpolated on the
level l. The interpolating values, on the finer subgrid level l + 1, are indicated simply as
ρ(i, j, k). For the density average, the i-index varies between i and i+1 and so do the other
two indexes.

Accordingly, uC
R, uC

θ and uC
ϕ are the coarse radial, meridional and azimuthal angu-

lar momentum. The finer values from which they are reset will be denoted as uR(i, j, k),
uθ(i, j, k), and uϕ(i, j, k), respectively2. For the average of the radial vector component, the
i-index varies between i− 1 and i+ 1, while the other two indexes vary between j (k) and
j + 1 (k + 1). In case of the meridional angular momentum, the j-index ranges from j − 1
to j + 1, while the others are i (k) and i+ 1 (k+ 1). For the azimuthal angular momentum,
it is the k-index to extend over the wider range. Such occurrence depends on the mesh
locations where these vector components are defined.

The finer grid coordinates (on level l + 1) are (Ri, θj, ϕk), and the grid spacing is
(∆R,∆θ,∆ϕ). This is constant over the computing mesh. In all of the above quantities,
we dropped the level index (l + 1) to avoid being too cumbersome. Since the grid has
a staggered structure, scalars are volume-centered, i.e., ρ(i, j, k) lies at (Ri + ∆R/2, θj +
∆θ/2, ϕk + ∆ϕ/2), while ρC

R resides at (Ri + ∆R, θj + ∆θ, ϕk + ∆ϕ) (the linear resolution
doubles from a grid to the hosted one). Instead, vector components are centered each on
a different face of the volume element. For example, the radial component uR(i, j, k) is
located at (Ri, θj + ∆θ/2, ϕk + ∆ϕ/2), whereas the coarse radial momentum uC

R is defined
at (Ri, θj + ∆θ, ϕk + ∆ϕ). The location of the other quantities follows by similarity.

The interpolation is basically a volume-weighted average, as already mentioned be-
fore. It is meant to refine the solution computed on the level l by means of that resulting
from integration of the finer resolution level l + 1. Eight volumes are necessary to carry
out a scalar interpolation. Momentum interpolations require that twelve spherical sectors
must be employed, one for each of the involved fine-grid quantities. Yet, since the metric in
a spherical polar topology is independent of the azimuthal angle ϕ, some of them actually
coincide. Hence, a smaller number of such elements are to be found. In order to distin-
guish among the four volume sets, we introduce the notations V (ρ), V (R), V (θ) and V (ϕ),
according to the quantity to average (ρC, uC

R, uC
θ , and uC

ϕ). These four sets differ because of
the space metric.

Once the correct elements have been chosen, the coarse mass density can be replaced
by

ρC =

∑
ijk ρ(i, j, k)V

(ρ)(i, j)

2
∑

ij V
(ρ)(i, j)

. (3.9)

In fact, sectors V (ρ) are ϕ-independent, thus only four volumes enter this average. In a

2Note that these are momenta and not velocities.
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similar manner, new momenta can be written, in a concise form, as

uC
Ξ =

∑
ijk uΞ(i, j, k)V (Ξ)(i, j, k)∑

ijk V
(Ξ)(i, j, k)

, (3.10)

where Ξ = (R, θ, ϕ). For computational purposes, a volume element is preferentially cast
into the form

V =
(
∆R3/3

)
(−∆ cos θ) (∆ϕ) . (3.11)

The set of sectors V (ρ) required in equation (3.9) is the following

V (ρ)(i, j) =
1
3

(
R3
i+1 −R3

i

)
[cos (θj) − cos (θj+1)] ∆ϕ (3.12)

V (ρ)(i+ 1, j) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
[cos (θj) − cos (θj+1)] ∆ϕ (3.13)

V (ρ)(i, j + 1) =
1
3

(
R3
i+1 −R3

i

)
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ (3.14)

V (ρ)(i+ 1, j + 1) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ (3.15)

Also for the radial and meridional directions, the denominator of equation (3.10) re-
duces to 2

∑
ij V

(Ξ)(i, j), though the summation includes six terms, this time. Therefore,
the set of volume elements necessary for the interpolation of the radial momentum uC

R are:

V (R)(i− 1, j) =
1
3

[
1
8

(Ri−1 +Ri)3 −R3
i−1

]
[cos (θj) − cos (θj+1)] ∆ϕ (3.16)

V (R)(i, j) =
1
24

[
(Ri +Ri+1)3 − (Ri−1 +Ri)3

]
[cos (θj) − cos (θj+1)] ∆ϕ (3.17)

V (R)(i+ 1, j) =
1
3

[
R3
i+1 −

1
8

(Ri +Ri+1)3
]

[cos (θj) − cos (θj+1)] ∆ϕ (3.18)

V (R)(i− 1, j + 1) =
1
3

[
1
8

(Ri−1 +Ri)3 −R3
i−1

]
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ (3.19)

V (R)(i, j + 1) =
1
24

[
(Ri +Ri+1)3 − (Ri−1 +Ri)3

]
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ (3.20)

V (R)(i+ 1, j + 1) =
1
3

[
R3
i+1 −

1
8

(Ri +Ri+1)3
]

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ (3.21)
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The group of elements involved in the updating process of the meridional angular mo-
mentum uC

θ is:

V (θ)(i, j − 1) =
1
3

(
R3
i+1 −R3

i

)
{cos (θj−1) − cos [(θj−1 + θj)/2]} ∆ϕ (3.22)

V (θ)(i, j) =
1
3

(
R3
i+1 −R3

i

)
{cos [(θj−1 + θj)/2] − cos [(θj + θj+1)/2]} ∆ϕ (3.23)

V (θ)(i, j + 1) =
1
3

(
R3
i+1 −R3

i

)
{cos [(θj + θj+1)/2] − cos (θj+1)} ∆ϕ (3.24)

V (θ)(i+ 1, j − 1) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
{cos (θj−1) − cos [(θj−1 + θj)/2]} ∆ϕ (3.25)

V (θ)(i+ 1, j) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
{cos [(θj−1 + θj)/2] − cos [(θj + θj+1)/2]} ∆ϕ (3.26)

V (θ)(i+ 1, j + 1) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
{cos [(θj + θj+1)/2] − cos (θj+1)} ∆ϕ (3.27)

In order to perform the interpolation of the azimuthal angular momentum uC
ϕ , the

following set of volume elements is required:

V (ϕ)(i, j, k − 1) =
1
3

(
R3
i+1 −R3

i

)
[cos (θj) − cos (θj+1)] ∆ϕ/2 (3.28)

V (ϕ)(i+ 1, j, k − 1) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
[cos (θj) − cos (θj+1)] ∆ϕ/2 (3.29)

V (ϕ)(i, j + 1, k − 1) =
1
3

(
R3
i+1 −R3

i

)
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ/2 (3.30)

V (ϕ)(i+ 1, j + 1, k − 1) =
1
3

[
(Ri+1 + ∆R)3 −R3

i+1

]
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ/2 (3.31)

V (ϕ)(i, j, k) = 2V (ϕ)(i, j, k − 1) (3.32)

V (ϕ)(i, j + 1, k) = 2V (ϕ)(i, j + 1, k − 1) (3.33)
V (ϕ)(i+ 1, j, k) = 2V (ϕ)(i+ 1, j, k − 1) (3.34)

V (ϕ)(i+ 1, j + 1, k) = 2V (ϕ)(i+ 1, j + 1, k − 1) (3.35)

V (ϕ)(i, j, k + 1) = V (ϕ)(i, j, k − 1) (3.36)

V (ϕ)(i, j + 1, k + 1) = V (ϕ)(i, j + 1, k − 1) (3.37)

V (ϕ)(i+ 1, j, k + 1) = V (ϕ)(i+ 1, j, k − 1) (3.38)

V (ϕ)(i+ 1, j + 1, k + 1) = V (ϕ)(i+ 1, j + 1, k − 1). (3.39)

Equations 3.28 through 3.39 imply that the denominator of equation (3.10) is also equiva-
lent to 2

∑
ij V

(ϕ)(i, j, k).
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3.5.2 Flux Corrections

We now explain the procedure through which mass fluxes at grid interfaces are cor-
rected. To do so, we will restrict to the two-dimensional case. In spherical polar coor-
dinates flux vector components are three, but radial and azimuthal fluxes are treated in
the same manner as they are treated in 2D, provided that the correct metric factors are
introduced in the formulas.

In order to guarantee global mass and momentum conservation for the whole hierar-
chy, we have to make sure that the normalized momentum flux components

F2D =
[

Σur
r∆ϕ∆t

,
Σ r2 ω
∆r∆t

]
, (3.40)

across the border between a subgrid and its host grid (indicated in Fig. 3.4), are equal
in both level solutions whenever the grid has evolved for the same time as the subgrid.
However, each grid evolves independently and for a time interval different from that of
the lower one. Thus, even after the solution updating process described above, the amount
of momentum flowed across the borders might not coincide in the respective solutions. To
remove this possible discrepancy, at the coarse-fine grid border, these quantities are taken
from the fine grid integration.

In Figure 3.7 the situation for the azimuthal momentum flux is depicted. Two fine cells
participate in this process. Referring to the integration cycle traced in § 3.4, f jk(l) represents
the value of the quantity Σ r2 ω/(∆r∆t), at the grid-grid interface location, as computed
during the k-th cycle step on level l. An additional index (j = 1, 2) is needed to identify
the radial position of the two fine cells involved (for example, on level 3), but it does not
concern the coarse grid quantity to be replaced (on level 2).

Suppose we are at the end of the third cycle, when the first interaction, between levels
2 and 3, occurs (first straight arrow in Fig. 3.3). Because of the refinement ratio established
by equation (3.3), quantity f3(2) will be reset as:

f3(2) =
1
2

∆t1(3)
∑

j f
j
1 (3) + ∆t2(3)

∑
j f

j
2(3)

∆t3(2)
(3.41)

This correction is accounted for directly while performing the advection of radial and an-
gular momenta.

In three-dimensions, the normalized flux components, with which the above correc-
tion is accomplished, are

F3D =
[

ρ ur
R2 sin θ∆θ∆ϕ∆t

,
ρR uθ

R sin θ∆ϕ∆R∆t
,
ρR sin θ uϕ
R∆θ∆R∆t

]
. (3.42)

3.6 Upward Information Transfer

The boundary conditions on the main grid are usually imposed depending on the
physics and geometry of the problem: symmetry, periodicity, etc. In the case of a subgrid,
boundary values must be attached, in some way, to the values of the underlying grid. This
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~
f 1

(3)

~
f (3)

2 ~
f (2)

u
ur

ϕ

j=1

j=2

Figure 3.7: Momentum flux correction scheme in 2D. Momentum flux components are
centered as velocity field components, whose locations are shown in the upper left cor-
ner. f̃(2)∆r(2) = f3(2)∆t3(2)∆r(2) represents the amount of angular momentum, flowed
across the coarse cell border, during the third cycle step (see Section 3.4). f̃1(3)∆r(3) =
f1
1 (3)∆t1(3)∆r(3) + f1

2 (3)∆t2(3)∆r(3) represents the same quantity transported, during
the first two cycle steps, across the j = 1 fine cell border. The coarse quantity is replaced

by
[
f̃1(3) + f̃2(3)

]
∆r(3).

point turned out to be extremely delicate for our calculations. In NIRVANA, the boundary
values of a certain level l were just set by means of a linear interpolation of the quantities
on the lower level l − 1. Because of the strong variations in density and velocity, due to
the formation of shock fronts in our simulations, this method fails and produces numerical
inconsistencies.

Therefore, we raised the order of the interpolation. However, this introduces another
potential trap. In fact, a high-order interpolation (higher than the first order) is not mono-
tonic and can produce a new minimum. This is not acceptable since, for example, the den-
sity is a non-negative quantity. Then the interpolating function should be monotonised.
In order to handle this problem we have used the same approach as described in Ruffert
(1992), that is by employing the monotonised harmonic mean (van Leer 1977).

Then, if we have a function sampled at x − ∆x, x and x + ∆x, with values gL, g and
gR, respectively (as shown in Fig. 3.8), the averaged value at x+ ε is

g(ε) = g +
2 ε
∆x

max
[
(g − gL) (gR − g)

gR − gL
, 0

]
, (3.43)
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Figure 3.8: Behavior of a harmonic mean against a geometric mean. Grey filled circles in-
dicate the harmonic values assumed by gε. Open circles indicate the corresponding values
when the geometric mean is applied. The plot intends to simulate a shock front. If we
keep the left value gL unchanged and make the right one gR four times as large, the geo-
metric mean value will increase proportionally. In turn, the harmonic mean will change so
slightly that its variation is not visible on this plot.

provided that −∆x/2 ≤ ε ≤ ∆x/2.
If we adopt this kind of average on a 2D-mesh, each interpolation generally involves

3 × 3 coarse quantities. On a 3D-mesh it takes 3 × 3 × 3 coarse volume elements, thus
the procedure may consume a fair fraction of the whole simulation time if total number
of grid levels ng ≥ 4. It proceeds by averaging the selected coarse values along a certain
direction, three at a time. This results in three new quantities. A further harmonic average
of these, along the other direction, generates the subgrid boundary value at the correct
position. Figure 3.9 shows how the procedure works in the case of the surface density. In
three dimensions, the first step produces nine quantities. A second step reduces them to
three and a third one yields the final result. The step order is expected to have only little
influence on the final outcome.

As density is cell-centered, εr and εϕ are always one fourth of the coarse grid linear
size. Since the averaging process is performed for each direction separately and the grid is
always logically cubic, it is not affected by the metric of the mesh, i.e. it is performed as if
a Cartesian grid were used.

For the velocity components we have to distinguish two different cases (see Fig. 3.10
for a two-dimensional representation): whether the boundary value lies on a coarse cell
border or whether it does not. In the first case, either εr or εϕ is zero. Then only three coarse
values participate in the average (nine in three dimensions), along either the azimuthal or
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Figure 3.9: Harmonic average: surface density boundary values. The light-colored zone
indicates subgrid ghost cells. Darker region belongs to the active subgrid zone. Nine
coarse values (big black circles) are engaged in the average. The value to be interpolated
is shown as a small black circle. During a first step, equation (3.43) is applied three times
along the ϕ-direction. Three new values are generated (gray small circles), having the
correct, final azimuthal coordinate. These are averaged to obtain the final value at the
correct radial location. Small open circles refer to the other boundary quantities whose
value depends on the same coarse quantities.

the radial direction. In the second case the interpolation proceeds exactly as explained for
the surface density.

In case that the set of unknowns were enriched with other variables (such as the grav-
itational potential Φ, the thermal energy E, the magnetic field B, etc.) all the boundary
conditions for scalar quantities would be fixed as done for the mass density, whereas vec-
tors would be treated as the velocity.

3.7 Final Remarks

In this section we will discuss the computational abilities of the nested grid technique,
when applied to disk-planet interaction calculations.

The particular properties of such an astrophysical system make it optimal for the ap-
plication of this kind of static mesh refinement method. In fact, it allows a detailed descrip-
tion of the flow feature nearby the protoplanet, while accounting for the whole protostellar
disk, which is physically very important. This will be proved in the next chapters, where



60 3.7. Final Remarks

εr

ϕε

Figure 3.10: Harmonic average of radial velocity component in two dimensions. Two cases
are shown. In one case the position of the velocity component lies on a coarse grid border
(thick lines), requiring only three coarse quantities (one single average). In the other case
nine coarse quantities are needed as for the density interpolation. The only difference is
that εr is one half of the radial coarse size.

two- and three-dimensional models are presented.
The applicability of the method relies, however, on the assumption that the orbital

eccentricity is zero. One could object that, because of gravitational interactions, the planet’s
orbit cannot be a priori considered circular. Yet, there are theoretical arguments suggesting
that eccentricity growth is very unlikely in the situations we deal with. Furthermore, the
rate of variation of the semi-major axis of the orbit, due to migration, is very small and
no change could be appreciated over the simulated evolutionary time. Anyway, this static
refinement method could be modified and brought to a more sophisticated level with not
much effort. First of all, the grid hierarchy could be allowed to move in order to follow
the planet orbital migration and/or eccentricity variation. Secondly, subgrids levels could
be added and destroyed during the system evolution whenever and wherever necessary.
This would make it a semi-adaptive method.

Because of the small array size of the subgrids, a finite difference algorithm based on
nested grids is not appropriate to be run on vector processors. In contrast, the method
would suit to be adapted and run on multi-processors computers. Yet, this issue has not
been considered during this work, but planned for the future.

Thereupon, the following considerations are based on single-processor computations.
Up to a certain nesting degree, computational time is determined by the size of the main



CHAPTER 3: NUMERICAL METHOD AND NESTED-GRID TECHNIQUE 61

grid or level l = 1. This can be easily proved. Let M1 × M2 × M3 be the size of the main
grid and S1 × S2 × S3 be that of any nested subgrid. Let’s name TM the amount of time
needed to integrate the set of equations over the basic grid. Then, if Rk = Mk/Sk, the time
taken to perform the integration over a single subgrid patch is:

TS =
TM

R
, (3.44)

where R = R1 × R2 × R3. In two dimensions, for convention, R2 is always equal to one.
Now, according to what explained in § 3.4, each level l + 1 is integrated twice for a single
integration of the level l. Thereby, the overall time required for moving across a hierarchy
with ng levels is:

T = TM + TS

ng∑
l=2

2l−1, (3.45)

which, recalling equation (3.44), can be otherwise written as

T = TM +
TM

2R

ng∑
l=2

2l. (3.46)

It can be easily demonstrated that the summation in equation (3.44) is equal to
(
2ng+1 − 4

)
,

thus the computing time is

T = TM +
TM

R
(2ng − 2) . (3.47)

Equation (3.47) implies that a large gain in local resolution can be achieved without
a great cost, compared to a single grid simulation. In fact, to simply double the linear
resolution in a single-grid mode, the number of grid points in one direction has to be
doubled, which roughly makes the computation two times as long. When the resolution
is the double in all the directions, the time is enlarged by a factor 2D, where D is the
dimension of the problem. In contrast, according to equation (3.47), T doubles only when
(2ng − 2) ≈ R. In the highest resolution simulations that we have performed so far, in
two-dimensional as well as in three-dimensional geometry, R � 15. Hence T � 2TM only
when ng = 4, which implies a local increase in resolution equal to 8 × 8 × 8. When l > 5,
most of the computing time is spent on the integration of the equations over the subgrids.
At this point every time a subgrid level is added the simulation takes two times as long.

In CHAPTER 4 will be presented two-dimensional simulations in which up to seven
grid levels are employed, obtaining a resolution that would require a 4267 × 4258 single-
grid computation to be attained. In CHAPTER 5 we will discuss three-dimensional sim-
ulations in which up to five grid levels are used, reaching a resolution equivalent to a
single-grid size of 1067 × 825 × 1064 cells.





It’s lovely to live on a raft. We had the sky, up there, all

speckled with stars, and we used to lay on our backs

and look up at them, and discuss about whether they

was made, or only just happened – Jim he allowed

they was made, but I allowed they happened; I judged

it would have took too long to make so many. Jim said

the moon could a laid them; well, that looked kind of

reasonable, so I didn’t say nothing against it, because

I’ve seen a frog lay most as many, so of course it could

be done. We used to watch the stars that fell, too, and

see them streak down. Jim allowed they’d got spoiled

and was hove out of the nest.

MARK TWAIN,

THE ADVENTURES OF HUCKLEBERRY FINN,

1885





CHAPTER 4

TWO-DIMENSIONAL COMPUTATIONS

WITH NESTED GRIDS

In this chapter we will present the first application of the nested-grid technique to the prob-
lem of disk-planet interaction. Though these simulations are restricted to the flat geometry,
they will show how powerful this scheme is since it allows to reach a resolution, and hence
an accuracy, around the protoplanet by far finer than all the previous computations.

4.1 Introduction

Almost all of the computations, performed so far, have used a single grid which re-
solves the Roche lobe of a Jupiter-mass planet only with very few grid cells. As an exam-
ple, in the highest resolutions presented in CHAPTER 2 at most 9 grid cells lie across the
Roche lobe of a planet. Recently, Cieciela̧g et al. (2000b,a) used an Adaptive Mesh Refine-
ment method to resolve the immediate surroundings of the planet, but they did not give
any estimate of the mass accretion rate onto the planet and magnitude of the gravitational
torques acting on it. This might be a hint that, though very powerful, that technique is not
easily applicable to planets in disks.

In order to achieve better resolutions some authors (see § 1.5.1) have relied on lo-
cal simulations, i.e., only an azimuthal portion around the planet is taken into account.
However, since density waves induced by embedded planet-like objects can travel a long
distance (on the order of many AU) into a protostellar nebula, local simulations remain a
rather disputable issue.

For this reason we aim at the structure and dynamics of the gas flow in the close
vicinity of the planet, while performing global disk simulations. In order to obtain the
necessary high spatial and temporal resolution, we use a nested-grid formalism which
allows an accurate computation of fluid dynamics around protoplanets and, along with it,
a precise evaluations the mass flow onto the planet and the acting torques.

In the next section we layout the equation which govern the system evolution and
which are solved by means of the strategy outlined in CHAPTER 3. We describe the setup
of the various numerical models in § 4.3. The main results are presented in § 4.4 and our
conclusions are given in § 4.5.

65
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4.2 Physical Model

For the purpose of this study, we assume that the opening angle of the protostellar
accretion disk is very small. We describe the disk structure by means of a two-dimensional,
infinitesimal thin, model using vertically averaged quantities, such as the surface mass
density

Σ =
∫ +∞

−∞
ρdz,

where ρ is the regular, three-dimensional mass density. We work in a cylindrical coordinate
system (r, ϕ, z) whose origin is fixed at the center of mass of the star and the planet, and
where the plane of the disk coincides with the z = 0-plane.

The gas in the disk is non-self-gravitating and is orbiting a protostar having a mass
M� = 1 M�. The total mass of the disk MD, within the simulated region, which extends
from 2.08 to 13 AU, is 3.5×10−3 M�. Embedded in this disk there is a massive protoplanet
with a mass Mp, which ranges from one Earth-mass (M♁) to one Jupiter-mass (M�), de-
pending on the considered model. The planet is assumed to be on a fixed circular orbit
throughout the evolution. We employ a rotating coordinate system, corotating with the
planet, whose azimuthal position is kept constant at ϕp = π. The angular velocity Ω of the
rotating frame is then given by

Ω = Ωp =

√
G (M� +Mp)

a3
, (4.1)

where G is the gravitational constant and a is the distance of the planet from the star.
The evolution of the disk is given by the two-dimensional (r, ϕ) continuity equation

for Σ and the Navier-Stokes equations for each of the two components of the velocity field
u ≡ (ur, uϕ). Thus, the set of equations reads

∂Σ
∂t

+ ∇ · (Σ u) = 0, (4.2)

∂(Σur)
∂t

+ ∇ · (Σur u) = Σ r (ω + Ω)2 − ∂P

∂r
− Σ

∂Φ
∂r

+ fr, (4.3)

∂[Σ r2 (ω + Ω)]
∂t

+ ∇ · [Σ r2 (ω + Ω)u] = −∂P
∂ϕ

− Σ
∂Φ
∂ϕ

+ fϕ. (4.4)

Here ω = uϕ/ r is the angular velocity and P is the vertically integrated (two-dimensional)
pressure. The gravitational potential Φ, generated by the protostar and the planet, is given
by

Φ = Φ� + Φp = − GM�
|r − r�| −

GMp

|r − rp|
, (4.5)

where r� and rp are the radius vectors to the star and the planet, respectively. The effects
of viscosity are contained in the terms fr and fϕ which give the viscous force per unit area
acting in the radial and azimuthal (fϕ/r) direction:

fr =
1
r

∂(r Srr)
∂r

+
1
r

∂Srϕ
∂ϕ

− Sϕϕ
r
,
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fϕ =
1
r

∂(r2 Srϕ)
∂r

+
∂Sϕϕ
∂ϕ

.

Since we assume a zero bulk viscosity ζ , a constant kinematic viscosity ν and we do not
include any artificial viscosity in our numerical models, the relevant non-zero components
of the three-dimensional viscous stress tensor S are

Srr = 2 ν Σ
(
∂ur
∂r

− 1
3
∇ · u

)
, (4.6)

Sϕϕ = 2 ν Σ
(
∂ω

∂ϕ
+
ur
r

− 1
3
∇ · u

)
, (4.7)

Srϕ = ν Σ
(

1
r

∂ur
∂ϕ

+ r
∂ω

∂r

)
, (4.8)

where the divergence of the velocity field can be written as

∇ · u =
1
r

∂(r ur)
∂r

+
∂ω

∂ϕ
. (4.9)

A more general form of the relations (4.6), (4.7) and (4.8), within the two-dimensional
cylindrical approximation, is given for example in Kley (1999).

In the set of equations above we have omitted the energy equation because in this
study we will be concerned only with a relatively simple equation of state which does not
require the solution of an energy equation. We shall use an isothermal equation of state
where the surface pressure P is related to the density Σ through

P = c2s Σ. (4.10)

The local isothermal sound speed cs is given here by

cs =
H

r
vK, (4.11)

where vK =
√
GM�/r denotes the Keplerian orbital velocity of the unperturbed disk.

Equation (4.11) follows from vertical hydrostatic equilibrium. The ratio h of the vertical
height H to the radial distance r is taken as a fixed input parameter. With this choice, the
temperature T is proportional to 1/r, as written in CHAPTER 2. Here we use a standard
value

h =
H

r
= 0.05,

which is typical for protostellar accretion disks having a mass inflow rate of Ṁ ≈ 10−7

M� yr−1. With this value of h, our kinematic viscosity coefficient is equivalent to α =
4 × 10−3 at the radial position of the planet (ν = α csH).

Since the mass of the planet is very small in comparison to the mass of the star, because
we always use here a ratio q = Mp/M� smaller than 10−3, the center of mass is located
very close to the position of the star. In the following we will often identify the radial
distance from the origin of the coordinate system with the distance from the central star.

The set of equations written above is solved numerically, on a set of stacked grids, by
NIRVANA, as explained in CHAPTER 3.
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4.3 General Model Design

The main goal of this study is the investigation of the characteristic features of the
hydrodynamic flow within the Roche lobe of the planet. This means that we must be able
to resolve a characteristic length, the Hill radius:

RH = a

(
Mp

3M�

) 1
3

. (4.12)

Moreover, we intend to do that for a variety of planet-to-star mass ratios. In order to reach
such resolutions, we build a series of grid systems having the planet located approximately
in the middle, at each level of the hierarchy. Smaller planets require higher degrees of
nesting.

From now on, we refer to non-dimensional units. All the lengths are expressed in
units of the distance a. This is constant because the planet moves on a fixed circular orbit,
with radius

rp =
a

(1 + q)
. (4.13)

Masses are in units of the central stellar mass and time is given in units of the planet’s
orbital period. However, in order to convert them into conventional physical units, we
assume that a = 5.2 AU and, as already mentioned, M� = 1 M�. This implies that one
planet orbit takes 11.8 years.

The whole azimuthal range of the disk is taken into account by considering a computa-
tional domain represented by 2π×[rin, rout], where rin = 0.4 and rout = 2.5. This is covered
by a 142 × 422 mesh (main grid), allowing a resolution such that ∆r(1) = ∆ϕ(1) = 0.015
and constraining the resolution on each other grid level, according to equation (3.3). The
size of any higher grid level is 64 × 64.

4.3.1 Smoothing of the Potential

The perturbing action of the planet is exerted via its gravitational potential Φp. From
a numerical point of view, it is usually smoothed in order to prevent numerical problems
near the planet. Thus, we write the denominator of Φp in equation (4.5) as

√
|r − rp|2 + δ2.

However, the smoothing length δ cannot be the same all over the grid system because of
the different grid size involved at each level. Then we use the following grid-dependent
length:

δ(l) = min
[
RH

5
, λ(l)

]
, (4.14)

where
λ(l) =

√
∆r2(l) + r2p ∆ϕ2(l) �

√
2 ∆r(l). (4.15)

The value of constant part, in equation (4.14), has become a kind of standard in single
grid simulations (Kley 1999; Lubow et al. 1999; Kley 2000). This is always used on the
main grid whereas the grid dependent part always prevails on the highest grid level. This
choice results in a very deep potential in the immediate vicinity of the planet.
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Figure 4.1: Planet mass accretion
scheme. Wherever a cell center
lies in the dark-colored zone, after
each integration its density is low-
ered by an amount ∆Σ such that
∆Σ/Σ = 2π κev ∆t, where ∆t is
the integration time step interval. If
the cell center falls into the light-
colored zone ∆Σ is only one third
of that value. For a typical main
grid time interval and κev = 5, we
would get ∆Σ/Σ ≈ 1.2 × 10−2.
Anyway, this evacuation process is
performed only on the highest grid
level for better accuracy.

4.3.2 Mass Accretion Procedure

The presence of the planet affects the nearby disk density also because it can accrete
matter. Planet accretion is accounted for by removing some mass from the region defined
by |r−rp| ≤ κac. Using this notation, we refer not only to the radial extent of the accretion
region but also to the fact that the region is centered at rp.

Since mass is removed from the system after each integration step, the evacuation rate
depends on an input parameter κev as well as on the integration time step. The details of
the accretion process are given in Figure 4.1. This removal is accomplished only on the
highest (finest) hierarchy level and the removed mass is not added to the dynamical mass
of the planet, but just monitored. A standard value κev = 5 is used, while we set κac

between 8.0 × 10−2 and 9.4 × 10−2 RH. These values are such that only few grid cells,
on each side of the planet, are involved in the gas accretion, making it a locally confined
process. For the Jupiter-mass planet, ∼ 12 × 12 cells participate. The lowest number of
employed cells is ∼ 8 × 8, which is used for the smallest planet (Mp = 1 M♁). The largest
is ∼ 18 × 18 and is adopted for a planet with Mp = 0.5 M� (166 M♁). This circumstance is
due to the high numerical resolution of the model (see Table 4.1).

Note that the sphere of influence of the accretion process consists of a region with a
typical radius of 0.1RH, quite smaller than the protoplanetary radius, whereas the planet is
usually assumed to fill its Roche lobe during the growth phase (Bodenheimer and Pollack
1986; Tajima and Nakagawa 1997). As the present study does not take the energy equation
into account, it precludes a detailed treatment of the internal structure of the protoplanet
(see Wuchterl et al. 2000, and references therein; see also Fig. 4.9 below), hence the inferred
accretion rates may still be unreliable.

4.3.3 Initial and Boundary Conditions

The initial density distribution is proportional to r−1/2. However, we superimpose
to this an axi-symmetric gap around the planet, obtained by an approximate balance of
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Figure 4.2: Initial surface density distribution for q = 10−3, q = 10−4, and q = 10−5.
Σ(r, ϕ) = Σ(r) at t = 0. The gap greatly reduces when q gets small enough.

the viscous torque and the gravitational torque due to the planet (P. Artymowicz, private
communication). Figure 4.2 shows the surface density, at t = 0, for some selected planet
masses. The initial velocity field is that of a Keplerian disk.

As boundary conditions, periodicity is imposed at ϕ = 0 and ϕ = 2π. We allow
matter to flow out of the computational domain at the inner radial border (rin) whereas we
set reflective boundary conditions at the outer radial border (rout). The angular velocity is
set equal to the unperturbed Keplerian value ΩK =

√
GM�/ r3, both at rin and rout.

For low-mass planets (Mp � 10M♁), boundary conditions should not affect much the
system evolution because density waves damp before reaching r = rout and are very weak
when they reach r = rin. For more massive planets, some reflection is seen at the outer
radial border. Further, the torque exerted by the planet pushes the inside-orbit material
inwards. As a result, because of the open boundary at r = rin, the inner disk is partially
cleared and consequently positive torques originating there reduce. The higher the plane-
tary mass is the stronger these two effects appear.
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4.3.4 Model Specifications

In this paper, we are mainly interested in investigating how disk-planet interactions
change by varying q, the planet-to-star mass ratio. Table 4.1 summarizes the values of q
used in different models along with the number of grid levels employed. For reference, a
measure of the linear resolution ξ, in units of the Hill radius RH, is given for the highest
level as well. Some models have different prescriptions than the ones outlined above, as
specified in the Table 4.1.

Few models may deserve some comments. Model ELEN2 and WPRO1 aim at checking
whether results from CIRO1 and CIRO2 (respectively) are resolution-dependent. This test
is negative, as we show in the next sections. Since the planet position (rp, ϕp) can fall any-
where within a grid cell according to the value of q in equation (4.13) and to the definition
of the grid, some asymmetries could arise. These might have some effects on the finest
levels, due to the small value of the smoothing factor δ. In order to achieve a complete
symmetry, in the model GINO1 the planet is placed at the corner of a main grid cell (i.e.,
the intersecting point of four grid cells). This property is such that, on every other gird
level, the planet always sits on the cross-point of four grid cells. CIRO3 and its counter-
part, GINO1, give almost identical results. As we never noticed any significant difference
in both torque and mass accretion rate calculations, when comparing “centered” and “non-
centered” planet models, we decided not to center the planet for our convenience. Since in
the Jupiter-mass case the inner-disk is greatly depleted, model ELEN1 was run to evaluate
the influence of its presence on the gravitational torque. For this reason, in such model we
prevent matter from draining out of the inner radial border by setting reflective boundary
conditions.

4.4 Main Results

Hereafter we mainly discuss three models, namely CIRO1, CIRO2, and CIRO3. We
concentrate on them because they cover a mass range from 1 M� down to 3.3 M♁. Never-
theless, whenever required by our discussion, we mention other particular models. Some
results, concerning the whole set of models given in Table 4.1, are presented as well.

4.4.1 Overall Flow Structure

Large-scale interactions (whose effects extend over 2π in azimuth and cover a large
radial extent) of a Jupiter-mass planet with the surrounding environment, have already
been treated numerically in a number of papers (Artymowicz 1992; Kley 1999; Bryden
et al. 1999; Kley et al. 2001). An example of large-scale features can be seen in Figure 4.3,
where the comprehensive result of a nested-grid computation is displayed.

Planets with a lower value of q should perturb the disk less and have a weaker large-
scale impact on it. For these reasons we discuss only the medium (|r−rp| ∼ RH) and small
(|r − rp| � RH) scale effects of such interactions.

Nonetheless, it’s worthwhile to note that large-scale structures are clearly visible in
our smallest mass models, as proved in Figure 4.4. In CIRO3 (Mp = 3.3 M♁), a trailing
density wave, emanating from the planet, spirals around the star for about 4π, vanishing
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Figure 4.3: Overview of the surface density Σ on the six-grid system of model GINO3
(Mp = 0.5 M�), after 210 orbits. The top-left panel shows the main grid (l = 1) which
encloses the whole simulated disk region. From left to right and top to bottom, the other
panels zoom in onto the planet. The highest grid level lies over a surface, roughly 0.5 ×
0.5 RH

2, which comprises just four grid-cells on the main grid. The over-plotted curve
represents the Roche lobe of the restricted three-body problem. Plus signs indicate the
positions of L1 and L2 Lagrangian points, respectively on the left and the right of the
planet.
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Table 4.1: Model specific parameters: q = Mp/M�; ng is the number of grid levels; ξ =
∆r(ng)/RH is the normalized grid resolution on the finest level. Each model is let evolve,
at least, till 200 orbits.

Model q ng ξ Notes
CIRO1 1.0 × 10−3 5 1.3 × 10−2

CIRO2 1.0 × 10−4 6 1.5 × 10−2

CIRO3 1.0 × 10−5 7 1.6 × 10−2

PEPP1 3.0 × 10−6 7 2.3 × 10−2

PEPP2 1.5 × 10−5 7 1.4 × 10−2

PEPP3 3.0 × 10−5 7 1.1 × 10−2

PEPP4 6.0 × 10−5 7 8.6 × 10−3

WPRO1 1.0 × 10−4 7 7.3 × 10−3

WPRO2 1.0 × 10−4 6 1.5 × 10−2 (a)

GINO1 1.0 × 10−5 7 1.6 × 10−2 (b)

GINO2 2.0 × 10−4 6 1.2 × 10−2

GINO3 5.0 × 10−4 6 8.5 × 10−3

ELEN1 1.0 × 10−3 5 1.3 × 10−2 (c)

ELEN2 1.0 × 10−3 6 6.8 × 10−3

ELEN3 5.0 × 10−4 6 8.5 × 10−3 (d)

(a) Same as CIRO2, but κev = 10.
(b) Same as CIRO3, but the planet is symmetrically

placed with respect to the grid cells.
(c) Same as CIRO1, but reflective boundary conditions

are set at r = rin.
(d) Same as GINO3, but κac is 40% smaller.

approximately at r = 2. In PEPP1 (Mp = 1 M♁), a similar feature spirals for almost 2π,
disappearing at r = 1.5. Although we did not investigate this issue any deeper, it may
happen that results from local simulations could be influenced by not taking into account
entirely such global features.

In Figure 4.5 the surface density is shown along with the velocity field for the three
CIRO-models. As a reference, the Roche lobe (of the relative three-body problem) is over-
plotted. From the upper row of this figure (Mp = 1 M�) we can see the patterns of the
two main spirals (left panel). They reach the Roche lobe, but do not enter it. In fact, they
are replaced by two streams of material which start from two points (located at r = 0.94,
ϕ = 3.12 and r = 1.07, ϕ = 3.07, respectively), where the flow is nearly at rest with
respect to the planet1. Each of them enters the Roche lobe, encircles the planet and hits
the other one on the opposite side. As a result of the collision, the material is shocked and
the flow is redirected towards the planet. Hence, these streams assume the form of two
spirals, winding around the planet (right panel) for 2π. That such smaller scale spirals

1They are designated as “X-points” by Lubow et al. (1999).
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Figure 4.4: Global view of four simulated circumstellar disks in which intermediate-mass
protoplanets are embedded: Mp = 20 M♁ (top left), Mp = 10 M♁ (top right), Mp =
3.3 M♁ (bottom left), and Mp = 1 M♁ (bottom right). These images show how the spiral
perturbation fades as the perturbing mass of the planet is reduced. Although very weak,
the spiral front winds for 2π even around a one Earth-mass planet.

are detached from the main ones can be inferred from the direction of the flow. Along
the main spirals the material follows the disk rotation around the star, moving away from
the planet. Along the small ones the gas orbits the planet. In fact, they represent the
outstanding features of a circumplanetary disk. A more detailed description of the flow
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regions around and inside the Roche lobe, concerning a Jupiter-mass planet, can be found
in Lubow et al. (1999).

The case Mp = 33 M♁ (Fig. 4.5, middle row) has many analogies to the previous
one. This planet is able to open a gap in the disk, as a permanent feature. However, it is
neither so wide (the base width is 0.15 against 0.4) nor so deep (40% against 0.5% of the
maximum surface density) as it is for a Jupiter-mass planet. The overall behavior of the
matter entering the Roche lobe is very similar (left panel). The up-stream disk material,
relative to the nearest X-point, reaches it, inverts partially the direction of its motion and
flows into the Roche lobe. The gas stream penetrating from the left X-point turns about the
planet, atϕ < ϕp, and collides with the stream incoming from the other X-point, generating
the upper spiral arm (at ϕ > ϕp). However, now the locations, from which these gas
streams depart (r = 0.97, ϕ = 3.14 and r = 1.03, ϕ = 3.135, respectively), lie closer to
the L1 and L2 points. The circumplanetary spirals are less twisted around the planet than
before. They wrap around it for an angle π (right panel).

For the less massive planet,Mp = 3.3M♁, the situation is somewhat different (bottom
row of Fig. 4.5). In fact, within the Roche lobe, the signs of spiral fronts are very feeble,
though some traces can still be seen. They assume the shape of a bar-like structure which
extends, for 0.3 RH, from side to side of the planet at ϕ � ϕp. As indicated by the velocity
field, the circumplanetary disk roughly occupies the entire Roche lobe (right panel).

Taking into account the other models as well, the following scenario can be proposed:
the lower the value of q, the shorter and straighter the circumplanetary spirals become.
For example, in model PEPP2, they track a tilde-like pattern, extending for a total length of
0.4 RH.

4.4.2 Density in the Planet’s Environment

So far we have described qualitatively the main hydrodynamic structures which are
present, near the planet, on the length scale of a Hill radius. We shall now discuss, more
quantitatively, two aspects of the surface density, observable on shorter length scales (�
0.5 RH). Both of them have repercussions on the torque exerted on the planet by the close-
by matter, as explained later. First of all we should notice that Σ(r, ϕ) is not perfectly
symmetric with respect to the planet, in none of our reference models. Such property can
be checked by means of an accurate examination of Figure 4.6. In this figure the contour
lines of the surface density (i.e., lines on which Σ is constant) are plotted, for the finest grid
levels l = ng. In case of CIRO1 (top-left panel, Fig. 4.6), one can see that the right-hand arm
(ϕ > ϕp) twists towards the planet more than the other one does. The curvature 2 ratio of
the more external spiral parts (indicated by thick lines in the figure) is 0.9. Furthermore,
the right-hand arm lies closer to the planet than the left-hand one, as can be evaluated
from the positions of the arc centers (marked with plus signs). Contour line asymmetries
are fainter in the case of CIRO2 (top-right panel, Fig. 4.6). However, a quantitative analysis
shows that the external ridges of the spirals (thick lines) have slightly different curvatures.
Moreover, their centers (plus signs) are not aligned with the planet position (represented
by a big dot). In particular, if we consider the contours between 1.03 and 2.02 (arbitrary

2The curvature of a circle of radius R is 1/R.
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Figure 4.5: Surface density and velocity field for three selected models. Top row. CIRO1:
grid level l = 3 (left panel) and l = 4 (right panel) at t = 375 orbits. Middle row. CIRO2:
grid level l = 4 (left panel) and l = 5 (right panel) at t = 325 orbits. Bottom row. CIRO3:
grid level l = 5 (left panel) and l = 6 (right panel) at t = 225 orbits. To avoid too much
confusion, only 40% of the velocity field vectors are drawn. The over-plotted curve and
plus signs have the same meaning as in Figure 4.3. Close to the planet, the velocity field is
roughly Keplerian (see § 4.4.7).
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Figure 4.6: Surface density contours on the
finest grid level. The evolutionary time
is the same as in Figure 4.5. Upper-left:
CIRO1. Upper-right: CIRO2. Lower-left:
CIRO3. See the text for an explanation of
the thick bow-lines and the plus signs.

units), the right-hand ridge is a little straighter than the left-hand one. In fact, the ratio
between their curvatures is 0.93. Also in this case, the arc centers indicate that external
parts of the right-hand arm are a little nearer to the planet than those of the left-hand arm.
Indeed, surface density asymmetry is evident, in the case of CIRO3 (bottom-left panel,
Figure 4.6). At r � 1.001 and ϕ < ϕp, the density is systematically lower than it is on the
opposite side (r � 0.999, ϕ > ϕp). Following the shape of density contours, it is possible
to track what remains of the spiral arms. The pre-shock material conveys the more convex
form to these lines, at r � 0.999 and r � 1.001

4.4.3 Spiral Pattern

From the analytical point of view, a spiral arc is a polar function of the type Θ = Θ(�),
where � is the polar distance and Θ the polar angle. A spiral can be generally defined
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Figure 4.7: Analytical approximation of the spiral pattern observed in the circumplanetary
disks. Left panel. Disk around a 20 M♁ planet. Right panel. Disk around a 10 M♁ planet.
The white line is given by equation (4.17). The correction factor ς in both cases is very close
to unity.

through its opening angle Υ(�):
dΘ
d�

= tan Υ(�). (4.16)

When displayed in a Cartesian x–y plane, the opening angle Υ(�) represents the angle
between the tangent to the curve and the polar distance �.

Spiral shaped wave fronts are rather common in the astronomy context. Among the
most striking examples of spiral features are the arms of a certain type of galaxies. On
smaller scale, spiral waves are also induced within protostellar disks. The opening angle,
as defined above, is approximately given by arctanM, where M is the local Mach number
(Godon et al. 1998). Within a circumplanetary disk, very similar features are observed,
as proved by Figure 4.5. Indeed, also the nature must be alike since, for a wide range
of planetary masses,the ridges of the spirals are well reproduced by the following polar
curve:

Θ − Θ0 = 2 k
(√

rp
�0

−
√
rp
�

)
, (4.17)

where k = ς
√
Mp/M∗/h. The quantity k

√
rp/� represents the Mach number of the cir-

cumplanetary flow. The factor ς is a correction due to the fact that the flow regime around
the protoplanet is slightly sub-Keplerian (see § 4.4.7). Figure 4.7 demonstrates how equa-
tion (4.17) fits to the spiral perturbation around intermediate-mass planets.
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Figure 4.8: Surface density plot of the highest grid level. Left: CIRO1 at t = 375 orbits.
Right: CIRO2 at t = 325 orbits. The Hill coordinates, (xH, yH), are so defined: xH =
[rp cos(ϕp) − r cos(ϕ)]/RH, yH = [rp sin(ϕp) − r sin(ϕ)]/RH. The star is situated along the
negative xH-axis. The azimuth ϕ increases with yH.

4.4.4 The Core

Finally, we would like to mention what happens, in our models, at very short dis-
tances from the planet. We described, in § 4.3.2, how material is removed from the neigh-
borhood of the planet. This is usually a small fraction of the available matter, during each
integration time step of the main grid. If ∆M ev is the evacuated amount of mass, then
typically

∆Mev

M
≈ ∆Σ

Σ
≈ 10−2

(see the caption of Fig. 4.1). This choice accounts for the fact that a planet should not be able
to accept, very rapidly, all the material the surrounding environment can offer (Wuchterl
1993).

Since not all of the matter is taken away, it should pile up at the location of the planet,
eventually forming a very dense core. Indeed, this is what we find, as already visible in
Figure 4.6, where density contour lines crowd around the planet at (rp, ϕp). Figure 4.8
displays better how this feature looks like for models CIRO1 and CIRO2. In order to make
a comparison of the linear extension of such cores with the Hill radius, we introduce the
Hill coordinates. These are defined as a Cartesian reference frame with origin on the planet
and coordinates normalized to RH (see the caption of Fig. 4.8 for details). In these two
cases, the core width, 2 η (exactly defined below), can be estimated to be approximatively
0.1 RH.

One reason for the sharpness of these peaks is the very small length scale we adopt
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to smooth the potential of the planet (§ 4.3.1). On the finest grid level the smoothing
length δ is equal to λ(ng) � 1.4∆r(ng) (see eq. [4.15]). From Table 4.1 one can deduce
that δ ∼ 10−2 RH (though it changes a little for the different values of q). Despite that, the
core width always equals at least 6∆r(ng). Other two hints suggest that such features are
not just a numeric product. According to models CIRO2 and WPRO1 (which differ only in
the number of grid levels), the core width is very similar. If we cut the peak at Σ = 2 on the
finest level of each model, its extent, at r = rp, is 6 and 11 grid cells, respectively. Models
CIRO1 and ELEN2 agree in a very similar way. Furthermore, the structure of these peaks
does not depend on the exact placement of the planet within a grid cell, as models CIRO3
and GINO1 prove. Since the amount of core material may be related to the accretion pro-
cess, the parameters κev and κac are likely to modify the local density. The core widths (as
introduced before) of models CIRO2 and WPRO2 differ by about 20% while the difference
is somewhat less in case of GINO3 and ELEN3.

However, in order to study the exact properties of such features a more detailed phys-
ical treatment is required in proximity of the planet. This may be part of future compu-
tations which include a more detailed treatment of the internal constitution of the proto-
planet. Anyway, properties such as the local surface density profile and the velocity field
indicate that the core structure could be approximated to that of a rotating and isother-
mal gas, in hydrostatic equilibrium. In model PEPP1 (1 M♁), the rotation of the core is
very slow. Hence, its density profile can be well reproduced by that of an isothermal and
hydrostatic gas, as demonstrated in Figure 4.9, where we compare the numerical results
(crosses) with an analytic solution for a hydrostatic isothermal core (solid line).

As pointed out, the material within the core region is strongly coupled to the planet,
due to the small distances. In some way, it may be considered as part of the protoplanet
itself, whose structure we may not resolve well enough in the present paper. Whatever
its nature, it is very likely that the angular momentum transferred, by the core material
to the planet, may influence the planet’s spin angular momentum rather than its orbital
one. As we are treating the planet as a point mass we cannot estimate its spin. Therefore
we decided to exclude this region from the torque computation. To do that, we need a
quantitative estimate of the core radius η, for every model in Table 4.1. We adopt the
following procedure: the average density Σ̄ is computed over the region 0.2 RH ≤ |r −
rp| ≤ 0.5 RH. Then we define the core width (2 η) to be that where Σ = 2 Σ̄. In Figure 4.10
(left panel) the dependence of 2 η versus q is displayed. The ratio η/RH decreases for
increasing values of q. However, between 3.3 and 33 M♁, it seems to vary very little.
Our measure of the core sizes is performed at a particular time (for CIRO-models, they
are indicated in Figure 4.5). Anyway, such estimates are not affected much by this choice
because the cores reach a steady state, early during the system evolution. As an example,
Figure 4.10 (right panel) shows how the core mass M(η) assumes a static value very soon.

As already mentioned, the spiral features vanish for low values of q, and for Earth-
mass planets the core becomes the most prominent feature within the Roche lobe.

4.4.5 Torque Exerted on the Planet

Any protoplanet embedded in a protostellar environment suffers gravitational torques,
exerted by the surrounding disk material. If the density distribution were symmetric with
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Figure 4.9: The core width is generally much larger than that proper for an isothermal,
hydrostatic, configuration. In fact the centrifugal force, due to axial rotation of the gas
around the planet, may play an important role in supporting the structure. This is not the
case for the core around an Earth-mass planet (model PEPP1). Thus, the structure equation
reads: d Φp = −c2s d Σ/Σ, where Φp is the smoothed potential of the planet. The constancy
of the sound speed (cs = h

√
GM�/a) implies that the gas is isothermal. In the figure, the

surface density of PEPP1, at ϕ = ϕp (yH = 0), is represented by “×” signs. The over-plotted
curve is the solution of the previous structure equation. Clearly, the peak density Σ0 is
somehow connected to the accretion procedure.

respect to the planet, or with respect to the line connecting the star with the planet, the re-
sultant total torque would be zero. However, we have just seen that this is not the case, and
even around a planet as small as 3.3 M♁, the matter distribution is not axially symmetric.
Thus, we expect a non-zero total torque from the disk, acting on the planet. In response to
it, because of the conservation of the orbital angular momentum, the planet has to adjust
its semi-major axis, which leads to a migration phenomenon.

In the present computations, we evaluate the torque exerted on the planet in a straight-
forward way. First the gravitational force acting on the planet fg(i, j), due to each grid cell
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Figure 4.10: Left panel. Core width, 2 η, in units of the Hill radius as a function of the
mass ratio q. CIRO and PEPP-models are considered along with GINO2 and GINO3. The
measure errors are assumed to be equal to ξ (see Table 4.1). Right panel. Mass within a
distance η from the planet versus time. The core mass M(η) is normalized to the mass of
the planet.

(i, j), is calculated. The torque, with respect to the star, is then

t(i, j) = rp × fg(i, j). (4.18)

Since we are interested in the z-component of this vector, we perform the scalar product
ẑ · t(i, j) = tz(i, j), where ẑ is the unit vector of the vertical direction. Finally, by summing
over all i and j, we obtain the total disk torque TD, whereas the simple contraction over
the azimuthal index j gives the radial distribution of the torque.

The quantity tz(i, j) is computed on each grid level. Where the computational do-
main is covered by more than one level, the torque tz(i, j) on the finest grid is considered
for the evaluation of TD. We don’t work with time averaged torques because they were
checked not to vary considerably with time during the last 100 orbits of the computation.
Thereupon we use their values at the end of the simulations.

In order to avoid the region dominated by the core, we exclude a certain area from the
computation of TD. Because of the way we defined the core radius η, some core material
may still lie outside |r − rp| = η. Therefore, for safety reasons, we choose not to take into
account the planet neighborhood defined by |r−rp| ≤ β = 2 η. The only level, upon which
this operation is relevant, is the highest since it provides the gravitational torque form the
regions closest to the planet. On coarser levels such operation is meaningless since inner
torques are taken from elsewhere. But it can be useful to confer a more regular look to the
radial torque profile. We generally adopt the value β = 5 δ(l) for l < ng.
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Figure 4.11: Radial distribution and two-dimensional contour map of the gravitational
torque exerted by the disk on the planet. Left panels. CIRO1: levels l = 4 and l = 5.
Center panels. CIRO2: levels l = 5 and l = 6. Right panels. CIRO3: levels l = 6 and
l = 7. The two-dimensional torque distribution (bottom panels) is reported for the finest
grid level and is normalized to its maximum, absolute, value.

However, as this might be somewhat arbitrary, we discuss in a separate section how
the choice of β, on the finest level, affects the value of the total torque TD.

Because of the global angular momentum transfer, the disk material (orbiting the star),
at r > rp, exerts a negative torque on the planet whereas the inside-orbit gas tends to
increase its angular momentum. This tendency changes, as material closer to the planet is
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accounted for, and it may reverse eventually, once in the circumplanetary disk (for Mp =
1M�, such behavior was also found by Lubow et al. 1999). The radial torque distribution,
from CIRO-models, is shown in Figure 4.11. The two sets of profiles belong to the grid
levels l = ng − 1 (top row) and l = ng (middle row). In the case of CIRO1 (top row,
left panel), the sign reversal of the torque is not completed yet. However some negative
torques are exerted from regions inside the planet orbit and some positive torques are
exerted from the opposite side. On the domain covered by this grid (fourth level), the
torque contribution coming from xH < 0 is positive while the one coming from xH > 0 is
negative. The resulting net torque is positive, as the magnitude of the latter contribution
is 2.4 times smaller than that of the former. The torque behavior gets more complex if we
restrict to a region closer to the planet (middle row, left panel). Though not evident at
a first glance, the signs are reversed if compared to the preceding grid level. The torque
exerted by the region xH > 0 is definitely positive and, in magnitude, almost 30 times as
large as that arising from the region xH < 0. Thus, this region exerts a strong, positive,
net torque. Indeed, the phenomenon of the torque sign reversal is clear in the case of
CIRO2 and CIRO3 (Fig. 4.11, center and right panels). For both grid levels, inside-orbit
material lowers the angular momentum of the planet while outside-orbit material acts in
the opposite direction. On the finest level of CIRO2, the ratio of the negative to the positive
torque contribution is just 0.96 (in absolute value), whereas it is 0.3 for CIRO3.

In order to check which is the overwhelming contribution, between positive and neg-
ative torques, on the various grid levels, we can define the partial torque T (l). This rep-
resents the total torque computed over the entire domain but the part covered by the grid
level l + 1 and such that T (ng) = TD. Figure 4.12 illustrates the sign of the partial torque
and its relative strength, on each grid level, for CIRO-models. We can see that the total
torque is negative in all of the three models. In CIRO1 and CIRO2 all levels, but the high-
est, contribute to lower the planet angular momentum. On the contrary, the matter inside
the finest level raises the overall torque (of a fair amount in case of CIRO1). In CIRO3, a
positive torque is exerted by the material outside a region, around the planet, with a linear
extension ∼ 2h rp. Instead, levels 3, 4, 5, and 6 provide negative torques, which are then
weakened considerably by the positive torque coming from the finest level.

An overview of the torques exerted by different portions of the disk, for all the relevant
models, is given in Table 4.2. First of all we notice that, within 0.5 RH, the phenomenon of
the sign reversal is observed in all of the models, but PEPP1 and GINO2. Anyway, in the
latter case, the torque inside this region is positive.

In CIRO-models and in model GINO3, the reversal of the sign is such to produce a
positive torque over the domain |r − rp| < 0.5 RH. This is because the surface density of
the leading material is slightly higher than that of the trailing matter (§ 4.4.1 and Fig. 4.3).
In contrast, the torque is negative in case of PEPP2, PEPP3, and PEPP4. We note, however,
that the positive torques exerted by the outside-orbit material, within this region, strongly
attenuate the magnitude of the negative net torque exerted by the rest of the disk.

Clearly, since neighboring material may tend to reduce the magnitude of negative
torques acting on the planet, it could either slow down its inward migration or reverse the
direction of its motion.

As anticipated, the sign reversal of the radial torque distribution is not observed in
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Figure 4.12: Partial torque T (l), normalized to |TD|, plotted against the grid level l for:
CIRO1, CIRO2, and CIRO3. T (ng)/|TD| = −1 because, by definition, T (ng) = TD and TD is
negative for these models.

model PEPP1 (Mp = 1 M♁). Due to the very low mass of the perturber, the only structure
present inside the Roche lobe is the density core. Whatever level is considered, the inside-
orbit gas always provides positive torques while negative ones come from the outside (see
also Table 4.2). Negative torques are somewhat stronger, on any grid level. Almost the
50% of the total torque is generated between ∼ 0.5h rp and ∼ h rp, at the starting positions
the disk spirals.

2D-Torque Distribution

The detailed balance of the torques, arising from very close material, depends on the
medium and small-scale density structures around the planet, such as the shape of spirals.
Therefore, referring to what was stated in the previous section, we can deduce that the
radial torque asymmetry is a direct consequence of the asymmetric distribution of the gas
with respect to the planet.
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Table 4.2: Gravitational torque exerted on the planet arising from different disk regions, for
the relevant models of Table 4.1. The entire domain is divided into three region: outside
the Hill circle; inside the circle of radius RH/2 and the zone in between. Then they are
divided further in order to distinguish between inside-orbit (in) and outside-orbit (out)
contribution. The torque is computed over each of these regions, by employing β = 2 η
and according to the value of the normalized distance from the planet d = |r − rp|/RH.
Torques are normalized to |TD|.

d ≤ 0.5 0.5 < d < 1 d ≥ 1Model
in out in out in out

CIRO1 −0.03 2.08 −1.18 −0.43 0.53 −1.97
CIRO2 −3.07 3.23 −1.06 0.94 2.04 −3.08
CIRO3 −1.93 3.13 −0.49 −0.97 7.26 −8.00
PEPP1 0.33 −0.40 0.33 −0.36 4.22 −5.12
PEPP2 −2.32 2.05 −0.18 −0.18 1.91 −2.28
PEPP3 −2.61 2.07 −0.16 −0.01 0.85 −1.14
PEPP4 −3.01 2.41 −0.29 0.25 0.84 −1.20
GINO2 2.47 −1.65 −1.44 1.02 2.56 −3.96
GINO3 −1.54 5.12 −2.06 −0.34 1.90 −4.08

Thus, a more comprehensive description of the torque behavior requires its full two-
dimensional distribution. In the bottom panels of Figure 4.11, the contour lines of the
two-dimensional torque, tz , are shown for each reference model. The interesting point to
notice here is that the largest magnitude torques arise from the corotation locations, i.e.
where r = rp (xH � 0). Here in fact, fg(i, j) is perpendicular to rp and the cross-product
in equation (4.18) achieves its maximum (minimum). The material leading the planet (at
ϕ > ϕp or yH > 0), pulls it ahead and makes it gain angular momentum. The trailing
material brakes the planet making it lose angular momentum.

Let’s consider two fluid elements at (0,± yH) and write their mass density as Σ±. Then
we can write |t±z | ∝ rp Σ±/y2

H, which yields:

|t+z | − |t−z | ∝ rp
∆Σ
y2
H

, (4.19)

where ∆Σ = Σ+−Σ−. Any mismatch of the surface density, ∆Σ, causes a torque mismatch
amplified by an amount equal to y−2

H . It’s worth noticing that, on larger distances |r−rp| ∼
rp, the torque mismatch is amplified less, in fact:

|t+z | − |t−z | ∝
∆Σ
rp

. (4.20)

This is the reason why surface density asymmetries near the planet have a very strong
impact on TD, and they can easily prevail against the more distant ones.

The region responsible for the maxima and minima of the radial torque distributions
in the middle row of Figure 4.11 can be identified by means of the 2D-torque maps. For
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example, in the case of CIRO1, we see that the maximum at xH = −0.15 and the minimum
at xH � 0.15 are produced at yH � 0.1 and yH � −0.1, respectively. In the other two cases,
radial distribution extremes rise from regions where the torque function tz is steeper than
it is on the opposite side of the planet.

4.4.6 Planet Migration

If we consider a planet moving on a circular orbit, we find that the rate of change of
its orbital distance a, caused by an external torque TD, is

da
dt

=
2TD

Mp aΩp
. (4.21)

Analytical estimates of TD show that two limiting cases exist, depending on whether
the planet is massive enough to generate a gap or not. In the first case of small plane-
tary masses, we have the so-called type I migration. Ward (1997) derived the following
expression: (

da
dt

)
I

� −1
2
q h−3 aΩp

(
π a2 Σ
M�

)
. (4.22)

The direction of the migration is inwards because of the dominating role of the outer Lind-
blad resonances3 Ward (1986, 1997). In the second case the planet is more massive, opens
up a gap, and the evolution is locked to that of the disk. As a general trend, the disk material
drifts inwards on the viscous time scale, and so does the planet. It follows that(

da
dt

)
II

= −3 ν
2 a

= −3
2
αh2 a Ωp, (4.23)

which is known as type II migration. Comparing equation (4.22) with equation (4.23), it
turns out that type I drift is faster than type II (i.e., faster than viscous diffusivity) whenever

q � 3αh5

(
M�
π a2 Σ

)
. (4.24)

The parameter values employed here4 yield a right-hand side equal to 2.8× 10−6, which is
just a bit smaller than an Earth-mass (0.93 M♁). Fast type I migration should continue till
the planet grows enough to impose a gap on the disk. By that time, however, it could have
already impacted the parent star. Once entered this fast drifting regime, it seems that the
planet may survive only if the growth time scale τG ≡ Mp/Ṁp is much smaller than the
migration time scale τM ≡ a/|ȧ|.

In Figure 4.13 the migration time scale τM is shown for the main models listed in
Table 4.1. The drifting motion is directed inwards in all cases. The lowest migration veloc-
ity belongs to the Earth-mass planet (PEPP1). The second lowest drifting velocity is that

3This is true as long as the temperature gradient within the disk is negative (Ward 1986).
4If we take into account the dependence of the unperturbed surface density upon the radial distance r, the

mass inside the planet’s orbit is π a2 Σ = 0.38 MD.
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Figure 4.13: Migration time scale τM versus the mass ratio q. Open triangles represent the
results from models CIRO, PEPP, GINO2, and GINO3. The total disk torque TD is computed
assuming β = 2 η, for each model. This means that the region lying inside |r − rp| = 2 η
is not taken into account. In order to express τM into physical units, we suppose that
the planet orbits at a = 5.12 AU in a disk with mass MD = 3.5 × 10−3 M�. The solid
curve over-plotted represents predictions of the analytical theory as formulated by Ward
(1997), for the case of “strong” viscosity (α = 4× 10−3 in our case) and accounting only for
Lindblad torques. It is derived assuming an unperturbed constant surface density and a
disk temperature dropping as 1/r. The behavior of this curve reduces to equation (4.22)
and equation (4.23) letting q → 0 and q → ∞, respectively. The meaning of the dashed line
is discussed in the text. The vertical line marks the value given by equation (4.24).

of the Jupiter-mass planet (CIRO1). The most rapidly migrating planet is the one having
Mp = 20 M♁ (PEPP4).

In agreement with predictions of analytical theories, the drift velocity |ȧ| increases for
increasing planet mass, just as prescribed by type I migration (eq. [4.22]). The fast speed
branch has a turning point around q � 6 × 10−5, after which migration slows down con-
siderably. Past this point, |ȧ| drops as the planet mass increases. According to the linear
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theory, this property announces the transition to type II migration (eq. [4.23]). As a com-
parison, the complete theoretical behavior of τM (solid line) is also reported in Figure 4.13.
It was derived by Ward (1997) for viscous disks with α � 10−4. Equations. (4.22) and
(4.23) represent the asymptotic branches of this curve for very light and very heavy plan-
ets, respectively. We also plot (long-dash line) the recent outcome by Tanaka et al. (2002).
They derived a general formula which is comprehensive of both Lindblad and corotation
torques, in 2D as well as in 3D. Their linear theory, which was developed for (vertically
and radially) isothermal and inviscid disks, is applicable as long as the Hill radius of the
planet is much smaller than the local disk scale height. Hence we can refer to it only in the
Type I migration regime.

In all the models under examination, numerical simulations predict a slower drift
than Ward’s analytic theory does. Roughly, migration is two times as slow for models
GINO2, GINO3, PEPP3, and PEPP4; three times as slow for CIRO1, CIRO2, CIRO3, and
PEPP2; planets as massive as 3.3 and 67 Earth-masses migrate on the viscous time scale
of the disk (eq. [4.23]). Such discrepancies are likely to arise also because the theoretical
(solid) curve in Figure 4.13 does not include corotation torques. Yet, we have seen that just
these torques slow down inward migration. This can be inferred also by comparing the
two linear analyses presented in Figure 4.13.

It is generally assumed that the smaller the perturbations, the more suitable linear
theories are in describing disk-planet interactions. Consequently, the migration time scale
we compute for PEPP1 (1 M♁) should match as close as possible the theoretical prevision.
Compared to Ward’s prediction, τM is six times as large, whereas the agreement with the
formula by Tanaka et al. (2002) is complete. Between 3 and 10 M♁, our simulations predict
slightly faster migration velocities. This could be attributed to the inviscid approximation
and to non-linearity effects. In this respect, Miyoshi et al. (1999) found that, at 5 AU, non-
linear effects appear whenever Mp � 5 M♁. The choice of β in the numerical experiments
performed here may play some role as well.

It’s worthy to note here that the relevance of co-orbital torques, to the orbital evolu-
tion of a protoplanet, was already pointed out by Ward (1993). A further increment of
migration times is to be expected if a full three-dimensional treatment of the system is
achieved, especially when low-mass planets are dealt with. Local simulations by Miyoshi
et al. (1999), global simulations by Kley et al. (2001), and the linear wave theory by Tanaka
et al. (2002) indicate that effects due to the disk thickness contribute to reduce the magni-
tude of the overall torque experienced by the planet. In a flat disk, gas is more efficient
in generating torques because it constantly dwells in the planet’s orbital plane. In a 3D
geometry, material near the vertical of the planet exerts almost a vertical force which does
not affect the z-component of the torque in equation (4.18).

β-dependence

In the above discussion, as explained in § 4.4.5, we do not account for the torque
exerted by matter closer than β = 2 η to the planet. Now we would like to relax this
assumption and consider how material, lying even closer, affects the overall torque TD.
Before, however, we inquire about the local effects of β. We mentioned already that the
tendency of the nearby gas is to increase the angular momentum of the planet. As we
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Figure 4.14: Radial torque profiles for β
equal to η (solid line), 2 η (dotted line)
and 3 η (dash line). Investigated models
are CIRO1 (top-left), CIRO2 (top-right) and
CIRO3 (bottom-left).

enter the core dominated zone, such tendency may grow stronger and stronger, reducing
more and more the magnitude of the negative torque exerted by the rest of the disk. If
we consider different values of β, we find out that the radial torque distribution changes
drastically. In order to investigate that more quantitatively, we choose two other values:
β = η and β = 3 η.

In Figure 4.14, for each of the reference models, the new torque profiles are compared
to the previous one (β = 2 η), on the relevant grid level (l = ng). For a Jupiter-mass
planet (CIRO1), we obtain a gradually reinforcement of the positive torque exerted by the
involved domain (top-left panel). In fact, with β = 3 η, it results 20% smaller than it is by
using β = 2 η and 45% larger if we adopt β = η. If we employed the value β = η, in place
of β = 2 η, the total torque would be still negative, but its magnitude would result 18 times
as small and τM would increase accordingly, as Equation (4.21) implies.

For Mp = 33 M♁ (CIRO2), the same trend is observed (Fig. 4.14, top-right panel). The
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net torque contribution increases for decreasing values of β. It is negative for β = 3 η and
positive for β = η (and β = 2 η, as mentioned above). Compared to the case β = 2 η, the
magnitude of the net torque, exerted by this level, is 6.5 and 8 times as large, for β = 3 η
and β = η respectively. Further, with β = 3 η, TD gets 2 times as negative while, with
β = η, it still keeps the negative sign but reduces of 6 times.

Finally we analyze the smallest reference planet Mp = 3.3 M♁ (CIRO3). As showed
in Figure 4.11 (middle row, right panel) the radial torque profile is quite asymmetric and
dominated by a huge maximum at xh ≈ 0.05. This is greatly enhanced by including in
the torque computation matter closer to the planet (Fig. 4.14, top-left panel). In contrast,
the net torque results negative, by using β = 3 η, but so greatly attenuated that it almost
vanishes. In fact its absolute value becomes 28 times as small as it is with β = 2 η and
its contribution to TD is negligible (≈ 2%). On the other hand, performing the torque
computation by using β = η, a strong positive contribution is provided by the material on
this level, such to compensate the negative torques arising from the rest of the disk and
turning the overall torque sing to positive. The influence of close-by material, in this case,
would reverse the direction of the planet migration.

An overview of the effects, due to nearby matter, on the migration time scale τM, is
given in Figure 4.15. Actually, these plots show the dependence of v/τM ∝ TD upon β,
where v = ȧ/|ȧ| indicates the direction of the planet’s migration. The distance where
β = 2 η is marked with a vertical, solid line. TD is directly proportional to the mass of the
disk MD. Therefore, to remove this potential restriction, in these plots we let it as a free
parameter and write MD as k × 10−3 M�, although we use k = 3.5 for our estimates. In
Figure 4.15, TD = TD(β) is presented for all of the three reference models.

In CIRO1 (upper-left panel), TD becomes larger as β gets smaller. The sign of the total
torque changes around β = η, the threshold of the density core. As a comparison, the
behavior of TD, versus β, is reported also for the model ELEN1. In this case, because of the
closed inner radial border, the amount of matter inside the orbit of the planet is five times
as large as that of CIRO1. Outside the Hill circle, the torque exerted by the inner-disk, in
case of ELEN1, is twice as large as that measured in CIRO1. Instead, torques arising from
the outer-disk nearly coincide. Inside the Hill circle, in ELEN1, the contribution to TD is
relatively small down to ∼ 0.1 RH whereas, in CIRO1, it never appears to be negligible.

CIRO2 (upper-right panel) behaves somewhat differently from CIRO1. The total torque
attains a minimum around β = 0.15 RH, where τM � 3 × 104 years. Then the positive
torques, exerted by close matter, increase the total torque, though it remains negative all
the way down to β = 0.03 RH. Below such value, TD diverges positively. Results from the
higher resolution model, WPRO1, do not differ significantly (dashed line in Fig. 4.15).

TD varies smoothly, as a function of β, in case of CIRO3 (lower-left panel) . The torques
arising from the region enclosed between β ≈ 0.2 RH and β ≈ 0.4 RH almost cancel out,
so that the total torque appears nearly constant (τM ≈ 105 years). At shorter distances,
positive torques prevail over the negative ones and TD starts to increase. The sign of the
total torque reverses at β � 0.12 RH. For example, at β = η, its value is quite positive,
imposing an outward migration rate τM � 3 × 104 years.

Some comments should be devoted to how the smoothing length affects the total
torque. We did not try to reduce further its value, however we ran some models, identical
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Figure 4.15: Migration time τM as a func-
tion of β, the radius of the region excluded
from the computation of the torque. The
ratio v = ȧ/|ȧ| indicates the direction of
the planet drift: v < 0 for inward migra-
tion. The star-planet distance a has the
same value as in Figure 4.13. The disk
mass is cast into the form MD = k ×
10−3 M�. Since in this paper we are us-
ing the value k = 3.5, the factors in round
brackets become 2.9 × 105 and 2.9 × 104

years, respectively. The solid, vertical, line
indicates the length β = 2 η (see Fig. 4.10).

to CIRO1, but multiplying λ (see eq. [4.15]) by some integer number. A larger smooth-
ing length tends to smear out more the surface density nearby the planet. Besides, it also
causes the material to be distributed more symmetrically around it. Both tendencies con-
tribute to reduce the magnitude of the net torque arising from a region with radius ≈ λ.

4.4.7 Circumplanetary Disk: Gas Flow

In § 4.4.1 we described in detail how gas flows into the Roche lobe of a planet, for
three particular values of its mass.

If a planet is massive enough, say Mp � 10 M♁, the streams of matter, entering the
Roche lobe, produce strong shock waves which then rule the gas flow inside this region.
Material passing through the shock fronts is deflected towards the planet, tightening its
orbit on it. Less massive planets are not able to cause strong perturbations inside the
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Roche lobe. As a consequence, the flow pattern appears more uniform around the planet.
Now we would like to investigate quantitatively the rotational regime of the gas inside

the circumplanetary disks. In particular, we would like to estimate how much it resembles
a Keplerian one. In order to address this issue we decompose the local velocity field u, in
two components, representing the in-fall velocity win and the rotational velocity wrot of the
fluid relative to the planet. The first component is defined as:

win = −u · r − rp

|r − rp|
,

which is positive if a fluid element moves towards the planet. The quantity wrot is the
projection of u along the direction orthogonal to r − rp and such that (wrot × win) · ẑ is
positive. With this choice wrot is positive for a counter-clockwise rotation.

If circumplanetary disks were regular accretion disks, we should expect them to be in
a “Keplerian” regime. This is characterized by the rotational velocity

wK
rot =

√
GMp

|r − rp|
, (4.25)

and the inward viscous diffusion

wD
in =

3 ν
2 |r − rp|

. (4.26)

Equations (4.25) and (4.26) don’t include the smoothing length, δ, because its effects were
checked to be unimportant. Comparingwrot andwin with equation (4.25) and equation (4.26),
respectively, we can estimate how much the circumplanetary flow is close to be Keplerian,
i.e. close that of an unperturbed viscous disk.

Figure 4.16 shows, for CIRO-models, the contour lines of win normalized to wD
in (top

panels) and wrot normalized to wK
rot (bottom panels).

As first remark we note that, if we compare Figure 4.16 to Figure 4.6, lines of equal
surface density perturbation are also lines of equal velocity perturbation, as spiral wave
theory predicts.

From the top panels of Figure 4.16, we can see that material approaches the planet
along well defined patterns. Contours win = 0 mark locations where the flow rotates
around the planet without altering its distance from it. They also separate regions in which
material proceeds towards the planet from those where it moves away. One of these con-
tours runs along the spiral ridges. Across it, the in-fall velocity changes abruptly its sign.

The ratio win/w
D
in becomes smaller as the gas comes closer to the planet. Since the

viscous diffusion wD
in is not related to Mp, it’s possible to compare the magnitude of win

for the different cases. Contour level values indicate that it gradually reduces as Mp gets
smaller.

As regards the rotational component of the velocity field wrot (Fig. 4.16, bottom pan-
els), we can see that it is generally slightly belowwK

rot. For the Jupiter-mass case, this can be
seen also in Figure 4.17. Centrifugal over-balance regions are not present around the small-
est planet (Mp = 3.3 M♁). Instead, they are observed in CIRO1, at (xH, yH) ≈ (−0.1, 0.3)
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Figure 4.17: The plot shows the ratio wrot/w
K
rot at ϕ = ϕp (yH = 0), as computed on the

grid level l = 6 of the model ELEN2 (Mp = 1 M�). The core area, in the Jupiter-mass case,
extends for [0.08 × 0.08] RH

2 (see Figure 4.10, left panel). The resolution, in ELEN2, is such
that this is covered by ∼ 12 × 12 grid cells.

and (0.15, 0.1), and in CIRO2, where they are labeled. In both cases, anyway, the ratio
wrot/w

K
rot is very close to unity. Centrifugal under-balance is mainly established along spi-

ral ridges. This is in agreement with the idea that spiral arms are zones of compression,
hence pressure plays a more active role in supporting the gas.

In all of the three cases shown in Figure 4.16, wrot reveals somewhat a circular sym-
metry only within a distance ∼ η from the planet. Yet, we have to notice that this coincides
nearly with the region from which matter is removed to simulate the gas accretion. Fig-
ure 4.17 also indicates that the core material (§ 4.4.4) rotates slower, when it approaches its
center.
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Figure 4.18: Mass accretion rate onto the planet versus time, in units of 10−4 disk masses
per orbital period of the planet. For MD = 3.5 × 10−3 M� and a = 5.2 AU, one dimen-
sionless unit corresponds to 2.95 × 10−5 M� yr−1. The initial accretion rate is very small
for model CIRO1 because of the imposed initial gap.

4.4.8 Accretion onto the Planet

Gas matter closely orbiting the planet is eligible to be accreted once its distance, |r −
rp|, is less than κac ≈ 9 × 10−2 RH. The details of this process are described in § 4.3.2
(see also Fig. 4.1). In general, the mass accretion rate of a planet, Ṁp, becomes relatively
constant after the gap (if any) has evolved to a quasi-stationary state.

For a Jupiter-mass planet (CIRO1) this happens around 100 orbital periods, as indi-
cated by the solid line in Figure 4.18. The theoretical gap imposed at the beginning of the
evolution (see Fig. 4.2) is deeper and wider, at ϕ = ϕp, than it is later on. For this reason
Ṁp is negligibly small at early evolutionary times. The partial replenishment is related to
the formation of the circumplanetary disk which supplies matter for the accretion process.

Smaller planets dig narrower and shallower gaps so this quasi-steady regime is reached
even earlier. For both CIRO2 (Fig. 4.18, short-dash line) and CIRO3 (long-dash line), Ṁp
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reduces a little as the evolution proceeds. This is likely due to the depletion of the inside-
orbit disk. In case of CIRO1, most of the inner-orbit material is cleared out during the
transitional phase (75% after 100 orbits). Therefore, it does not contribute much during the
quasi-steady phase.

In Figure 4.19, the accretion rate is plotted against the mass ratio (left panel), in di-
mensionless units as in Figure 4.18. Ṁp increases as the planet mass increases and reaches
a maximum around 0.5 M� (model GINO3). Beyond this point the curve starts to drop.
In fact, the accretion rate of CIRO1 lies between those of CIRO2 (Mp = 33 M♁) and GINO2
(Mp = 67 M♁). The accretion rates for planets with masses above about 10−4 M� (33 M♁)
are consistent with those obtained by recent models studying the evolution of giant proto-
planets (Tajima and Nakagawa 1997). For smaller masses our accretion rates are substan-
tially higher. Two-dimensional approximation may be partially responsible for this since
all the gas is confined to the disk midplane. Actually, Kley et al. (2001) showed that ac-
cretion rates in disks with thickness are smaller than those in infinitesimally thin disks as
soon as the scale height of the disk becomes comparable with the Hill radius of the planet.
However, all the more detailed studies of protoplanetary evolution are spherically sym-
metric (see the review by Wuchterl et al. 2000), and accretion via a planetary accretion disk
may allow, anyway, for higher rates.

We did not perform computations involving planets heavier than one Jupiter-mass so
we cannot follow the trend of the curve for larger values of q. However, Lubow et al. (1999)
found that Ṁp decreases in the mass range from 1 to 6 M�.

In the right panel of Figure 4.19 the growth time scale τG ≡ Mp/Ṁp is plotted versus
q. Logarithmic scaling of the axes shows that the curve decreases almost linearly with
respect to the mass of the planet. If we perform a linear least-square fit of the values for
which q ≥ 2 × 10−4, corresponding to Mp = 67 M♁, we get:

d log(1/τG)
d log(q)

= −0.66.

This equation yields:
τG ∝ q0.66 � q2/3. (4.27)

At higher values of q, the curve steepens, decreasing more rapidly. Taking into account the
growth time scales relative to the two most massive planets, one finds

τG ∝ q1.34 � q4/3. (4.28)

Therefore, as a planet becomes more massive, the growth time scale grows with an increas-
ing power of its mass. Thus, we can argue that very high mass planets should be extremely
rare.

Influence of Numerics

Finally, we comment on the influence of some numerical parameters upon the mass
accretion rate. Table 4.3 lists some results, after the same number of orbits, for various
models which can be useful to the goal. The value of Ṁp may depend on the mass evac-
uation rate κev as well as on the radius κac of the accretion region. By comparing models
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Figure 4.19: Left panel. Mass accretion rate Ṁp as function of the mass ratio q. Quantities
are normalized to the disk mass MD. Right panel. Dependence of the growth time scale
τG ≡ Mp/Ṁp on the planet mass (filled triangles). MD = 3.5 × 10−3 M� is employed
to express τG into years. The two-branch solid line represents the first-order polynomial
fitting the data (see equations 4.27 and 4.28).

CIRO2 and WPRO2, it turns out that doubling κev, the accretion rate is only 11% higher. In
order to estimate how relevant the extension of the accretion region may be, we ran the
model ELEN3 for which we adopted a length κac equal to 0.6 times that used for GINO3
(the rest of the model set-up being identical). We obtain an accretion rate 8% smaller.

Further, Ṁp could depend on the numerical resolution as well. Indeed, this depen-
dency turns out to be very weak, as indicated by two sets of models. ELEN2 and WPRO1
have, in the accretion region, a resolution two times as high as that of CIRO1 and CIRO2,
respectively (see Table 4.1). Despite this fact, in the first case, the accretion rates differ by
just 2%, whereas the difference amounts to 4% in the second.

As mentioned in § 4.3.4, the planet in not symmetrically centered within a grid cell.
Model GINO1 was designed to accomplish a fully symmetric configuration (as already
explained in § 4.3.4). However, the planet accretion rate is not affected by this position
shift, as can be seen by comparing the values in Table 4.3, belonging to CIRO3 and GINO1.

The accretion procedure we use in the present work is the same as in Kley et al.
(2001). Their evaluations of Ṁp, for two-dimensional models with Mp = 0.5 and 1 M�,
are roughly twice as high as the estimates given in the left panel of Figure 4.19. Yet, in that
paper, though κev was set to 5, κac is equal to 0.5 RH, thus the accretion region exceeds by
40 times that used in this paper for models GINO3 and CIRO1.
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Table 4.3: Mass accretion rate onto the planet for different numerical parameters. This
quantity is reported at the same evolutionary time for similar models. Ṁp is given in units
of disk masses per orbit.

Model q Ṁp Orbits
CIRO1 1.0 × 10−3 8.7 × 10−5 200
ELEN2 1.0 × 10−3 8.9 × 10−5 200
GINO3 5.0 × 10−4 1.2 × 10−4 200
ELEN3 5.0 × 10−4 1.1 × 10−4 200
CIRO2 1.0 × 10−4 9.0 × 10−5 280
WPRO1 1.0 × 10−4 8.6 × 10−5 280
WPRO2 1.0 × 10−4 1.0 × 10−4 280
CIRO3 1.0 × 10−5 4.5 × 10−5 120
GINO1 1.0 × 10−5 4.5 × 10−5 120

4.5 Conclusions

A number of numerical simulations concerning disk-planet interactions have been
performed to get new insights into the scenario of the joint evolution of protoplanets and
their environment. They have confirmed analytical theories for gap formation and planet
migration.

However, many open questions still remain. The most important unsolved issue is
the influence of the ambient gas on the dynamical evolution of a planet. Another one is
the way disk-planet interaction changes when small planets, in the mass range of Neptune
and Earth, are considered.

We began to investigate in both directions by means of a nested-grid technique, which
is particularly suitable for treating these problems. The main asset of this numerical scheme
is the possibility of achieving, locally, a very high spatial and temporal resolution. With
such a method we are able to resolve very accurately both the inner parts of the Hill sphere
of the planet and the global structure of the disk; consequently we can treat the whole az-
imuthal extent of the disk.

As regards the issues mentioned above, with the present chapter we tackled some out-
standing problems concerning the growth and migration of protoplanets, covering a range
from one Jupiter-mass down to one Earth-mass. Thus, even though we do not include the
detailed energetic balance of the planetary structure, which is still beyond present day
computer facilities, this study represents a definite improvement in the determination of
the torque balance on protoplanets.

Our main achievements can be summarized as follows.
Inside the Hill sphere of the planet a circumplanetary disk forms. Within it strong

spiral density waves develop, if the planet mass is larger than ∼ 5 M♁. These waves
assume the shape of a two-arm pattern. The two spiral arms are slightly asymmetric with
respect to the planet. For decreasing planet masses, they stretch and shorten. Matter is
observed to pile up at the location of the planet, generating a very high density zone (we
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named as density “core”), which might represent its primordial gaseous envelope.
Nearby material exerts positive torques on the planet, slowing down, considerably in

some cases, its inward migration. Most of these torques arise from corotation regions, i.e.
from gas lying on the planet’s orbit. Not all analytical models about migration include
them. This can be one of the reasons why our estimates of the migration time scales give
somewhat higher values than those predicted by Ward’s 1997-theory. On the other hand,
Tanaka et al. (2002) account also for corotation torques, but non-linearity and viscosity may
play some role in the little discrepancies between their formula and our results.

Within a distance of ∼ 0.1RH from the planet, the point-mass approximation becomes
too restrictive and maybe not appropriate. Therefore, the structure of the planet should be
also taken into account over such a length scale. This is absolutely necessary if one wants
to evaluate how much of the angular momentum, transferred by closely orbiting matter, is
conveyed to the spin of the planet rather than to its orbital angular momentum.

The Keplerian rotational regime of circumplanetary disks is affected by spiral pertur-
bations. Just as for the mass density, the more massive the planet is, the stronger such
perturbations are. Gas material, passing through the spiral fronts, is deflected towards the
planet. Instead, in the inter-arm regions it moves away from it. This is in analogy with the
spiral wave theory in galaxies. Around Earth-mass planets, the rotation of the gas is very
slow if compared to the Keplerian rotation. In fact, in this particular case, the density core
has nearly a hydrostatic structure.

The mass accretion rate, as a function of the mass of the planet, has a maximum
aroundMp = 0.5M�. As long asMp � 0.2M�, the growth time scale of a planet increases,
approximatively, as Mp

2/3. For more massive planets, it increases roughly as Mp
4/3. Such

a dependence may contribute to limit the size of a massive planet.
Since we just started to explore these new grounds, each of the items above may de-

serve a more specific and dedicated study.
Next efforts should be devoted to refine the physical model, especially in the vicinity

of the planet, and to approach high resolution three-dimensional computations. There-
upon, some of the future developments will be:

• improving the equation of state by using an alternative form which accounts for the
planet’s structure;

• evaluating possible effects due to the two-dimensional approximation of the disk,
via nested-grid three-dimensional simulations;

• including an energy equation, by implementing an approximate treatment of radia-
tive transfer and viscous dissipation.



The people come with nets to fish for potatoes in

the river, and the guards hold them back; they come

in rattling cars to get the dumped oranges, but the

kerosene is sprayed. And they stand still and watch

the potatoes float by, listen to the screaming pigs being

killed in a ditch and covered with quicklime, watch

the mountains of oranges slop down to a putrefying

ooze; and in the eyes of people there is the failure; and

in the eyes of the hungry there is a growing wrath. In

the souls of the people the grapes of wrath are filling

and growing heavy, growing heavy for the vintage.

JOHN STEINBECK,
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1939





CHAPTER 5

THREE-DIMENSIONAL

COMPUTATIONS WITH NESTED

GRIDS

This chapter is dedicated to the application of the nested grid technique to global calcula-
tions in three dimensions. Furthermore, the assumption of handling the protoplanet as a
point-mass is overcome by means of analytical models for planetary envelopes. The ne-
cessity of describing the physics of disk-planet interactions by accounting for all the three
spatial dimensions arises from the intrinsic nature of the problem. In fact, though the slim-
ness hypothesis is safely applicable to circumstellar disks, it is not guaranteed that such
hypothesis works as well in circumplanetary disks, i.e., in the vicinity of forming planets.

5.1 Introduction

In the majority of the previous studies, the disk is modeled as a two-dimensional (r–
ϕ) system, by using vertically-averaged quantities. Two main arguments lie behind this
choice. First, on a physical basis, the validity of a two-dimensional description is consis-
tent because the Hill radius of a massive object is larger or comparable to the disk semi-
thickness. In fact, this basically means that the sphere of gravitational influence of the
embedded body, i.e., the Hill sphere, contains the whole vertical extent of the disk. But
this usually implies that the planet must have a mass on the order of one Jupiter-mass.
Second, a less massive planet has a weaker impact on the disk, requiring a higher resolu-
tion to compute properly and highlight its effects. Such requirement typically rules out a
full three-dimensional treatment. Although there is still a lot of information to be gained
by performing 2D simulations (e.g., to study radiative effects or multi-planet systems) in
particular in the case of large and medium mass planets, provided that the local resolution
around the planet is accurate enough, three-dimensional effects become more and more
important as the mass of the simulated planet is reduced.

Yet, in many instances, the use of the two-dimensional approximation is merely dic-
tated by the computational costs of 3D calculations which are generally not affordable.

103
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Depending on the resolution one is interested in, 3D runs still take more than an order of
magnitude of CPU time with respect to 2D runs. As a proof of the severe limitations posed
by fully three-dimensional calculations, only very few papers have been published on this
issue (see § 1.5.1).

In CHAPTER 1 it was pointed out that to obtain reliable results in three dimensions,
the flow within the Roche lobe needs to be accurately resolved. Calculations presented
in CHAPTER 4 have proved that the nested-grid technique comfortably adapts to simulate
planets in disks because global-, small-, and very small-scale features of the flow can be
captured simultaneously with a high degree of accuracy.

In this chapter we intend to combine the fully three-dimensional and global treatment
of disk-planet interactions with a nested-grid refinement technique in order to carry out
an extensive study on migration, accretion, and flow features around large- and small-size
protoplanets. Thus, the work presented here comes as an extension to that reported in
CHAPTER 2 and 4. In addition, here we abandon the standard approach of treating the
planet as a point-mass but rather assume it has an extended structure.

The outline of the chapter is as follows. Section 5.2 deals with those aspects of the
physical description that we adopt and which were not already specified in CHAPTER 2.
We explain how we approximate the protoplanet’s structure by using different solutions
for the gravitational potential. Section 5.3 presents a brief overview about the numeri-
cal procedures employed in this work and describes the technical details of the models.
As for the implementation of the nested grids in three dimensions, for brevity we mainly
refer to the two-dimensional strategy traced in CHAPTER 4. The various results of our sim-
ulations are addressed in § 5.4. Fluid circulation, gravitational torques, orbital migration,
mass accretion rates, and how all of them depend on the perturber mass are examined. A
comparison between 2D and 3D models and an analysis of some numerical effects are also
carried out. In § 5.5 two issues related to 2D and 3D geometry effects are discussed in more
detail; we finally present our conclusions in § 5.6.

5.2 Physical Description

The nature of most astrophysical objects is such that their behavior can be approxi-
mated to that of fluids. This is indeed the case for circumstellar disks, hence we can rely
on the hydrodynamic formalism to describe them. The equations of motion that govern
the evolution of a disk in a spherical polar coordinate system {O;R, θ, ϕ} are presented
in CHAPTER 2 and therefore, for the sake of brevity, we refer the interested reader to it.
We assume the disk to be a viscous medium and include the viscosity terms explicitly by
employing a complete stress tensor for Newtonian fluids (see e.g., Mihalas and Weibel
Mihalas 1999,Chapter 3).

The set of equations for the hydrodynamic variables (ρ, uR, uθ, uϕ) is written with
respect to a reference frame rotating at a constant rate Ω, around the polar axis θ = 0,
and whose origin O resides in the center of mass of the star–planet system. The planet is
maintained on a fixed circular orbit, lying in the midplane of the disk (θ = π/2). If we let
Ω coincide with the angular velocity of the planet Ωp, the planet does not move within the
reference frame. The assumption that a single protoplanet, not heavier than Jupiter, moves
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on a circular orbit is reasonable because the global effect of the resonances, arising from
disk–planet interactions, in most of the cases favors an eccentricity damping (Papaloizou
et al. 2001; Agnor and Ward 2002).

Disk material evolves under the combined gravitational action of a star and a massive
body. As long as the inner parts of low-mass protostellar disks are concerned, self-gravity
can be neglected. Indicating with R� the radius vector pointing to the position of the star,
the gravitational potential Φ of the whole system is represented by

Φ = − GM�
|R − R�| + Φp, (5.1)

where M� is the stellar mass. In equation (5.1), the function Φp identifies the perturbing
potential of the planet, which we leave unspecified for the moment.

Since the energy equation is not considered in the present work, we join an established
trend (e.g., Kley 1999; Lubow et al. 1999; Miyoshi et al. 1999; Nelson et al. 2000; Papaloizou
et al. 2001; Tanaka et al. 2002; Masset 2002; Tanigawa and Watanabe 2002) and use a locally
isothermal equation of state as closure of the hydrodynamic equations

p = c2s ρ, (5.2)

where the sound speed cs equals the Keplerian velocity vK times the disk aspect ratio
h = H/(R sin θ) (H is the pressure scale-height of the disk). As the ratio h is assumed
to be constant, the disk is azimuthally and vertically isothermal, whereas radially T ∝
h2M�/(R sin θ). This simplified approach permits to circumvent the difficulties posed by
the solution of a complete energy equation which nobody has tackled yet. In fact this
kind of computations would require a length of time which is presently not affordable.
As reference, even without including energetic aspects, the CPU-time consumed by our
three-dimensional global simulations is already between ten and twenty times as long as
that spent by two-dimensional ones. An investigation into the effects that may arise in two-
dimensional disks when an energy equation is also taken into account, will be presented
in CHAPTER 6.

However, an important issue to improve the physical description of the system in the
vicinity of the protoplanet is to adopt an appropriate equation of state which can account
for the protoplanetary envelope. Yet, in our case this would imply that either p or ρ should
be specified in some volume around the planet. In order to avoid this, we choose to con-
strain the local structure by means of suitable analytic expressions for Φp. We assume that
the protoplanet has a measurable size, i.e., it can be resolved by the employed computa-
tional mesh. Within the planetary volume, we approximately take into account the effects
due to self-gravity by imposing a certain gravitational field. Since we aim at covering var-
ious possible scenarios, we utilize four different forms of planet gravitational potential,
each representing a protoplanet with different characteristics. It is worthwhile to point out
that with this choice none of the hydrodynamic variables (ρ, uR, uθ, uϕ) is prescribed in any
case. They simply evolve in a particular gravitational field. Therefore, planetary material
is allowed to interact with the surrounding environment so that their mutual evolutions
are still connected.
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5.2.1 Planet Gravitational Potential

With no exception, both numerical and analytical work that have so far investigated
the interactions between massive bodies and protostellar disks have made the point-mass
assumption, i.e., the protoplanet has a finite mass Mp but no physical size, as is done in
CHAPTER 2 and 4. This property is expressed through the gravitational potential

ΦPM
p = − GMp

|R − Rp|
, (5.3)

where Rp is the radius vector indicating the position of the planet.
Because of the singularity at R = Rp, a parameter ε is introduced in order to smooth

the function over a certain region. If we denote S = R−Rp the position vector relative to
the planet, the smoothed point-mass potential can be written in the following form

ΦPM
p = −GMp

ε

[
1 +

(
S

ε

)2
]− 1

2

. (5.4)

A physical meaning of the smoothing length can be deduced from equation (5.4). The
potential Φp enters the Navier-Stokes equations through its derivatives, which can be re-
duced to ∂Φp/∂S because of the spherical symmetry of the gravitational field. Restricting
to distances S < ε, a binomial expansion of that derivative yields

∂ΦPM
p

∂S
� GMp

ε2

(
S

ε

)[
1 − 3

2

(
S

ε

)2
]
≈ GMp

ε2

(
S

ε

)
. (5.5)

As we will see in § 5.2.1, equation (5.5) can be interpreted as the sign-reversed gravi-
tational force, per unit mass, exerted by a spherically homogeneous medium of radius ε.
Thus, the smoothing may act as an indicator of the size of the planet.

Equation (5.4) may be appropriate to describe the solid core of a protoplanet which
does not possess any significant envelope. Indicating with q the planet-to-star mass ratio
Mp/M�, in these computations we apply the potential ΦPM

p in models with q > 6 × 10−5,
i.e., twenty times the Earth mass (M♁) when M� = 1 M�. In all cases the smoothing
parameter ε is set to 10% of the Hill radius RH

1. Along with equation (5.4), we introduce
three alternative expressions for Φp, namely the potential of a homogeneous sphere (ΦHS

p );
that describing a fully radiative and static envelope (ΦST

p ); and finally that proper for a
fully convective and static envelope (ΦKW

p ). A comparative example of their behavior is
reported in Figure 5.1.

Among the last three solutions, only the gravitational potential generated by a ho-
mogeneous sphere has a completely different behavior from that given in equation (5.4),
while ΦST

p as well as ΦKW
p compare better to a smoothed point-mass potential. This is

clearly seen in Figure 5.1 and formally shown in § 5.2.1 and § 5.2.1. Thereupon, one should
expect that computation results should depend only marginally on the adopted gravita-
tional potential, except when Φp = ΦHS

p .

1The Hill sphere is a measure of the volume of the Roche lobe. In a purely restricted three-body problem,
parcels of matter inside the Roche lobe are gravitationally bound to the secondary. Hence, they are confined
to that volume of space.



CHAPTER 5: THREE-DIMENSIONAL COMPUTATIONS WITH NESTED GRIDS 107

Figure 5.1: Left panel. Gravitational acceleration (−∂Φp/∂S) inside a 20M♁ planet as gen-
erated by the three potential functions ΦPM

p , ΦHS
p , and ΦST

p (eqs. [5.4], [5.6], and [5.7] respec-
tively). Accelerations are normalized to −GMp/S

2
p, where Sp is the envelope radius. The

core mass (see § 5.2.1) is 15M♁ while Sp = 0.52RH. The core is supposed to have a density
of 5.5 g cm−3. The point-mass potential is smoothed over a length ε = 0.1RH whereas in
the Stevenson’s potential δ = 5 × 10−2RH. Right panel. The same quantity is displayed
inside a 90M♁ planet but this time involving the potential solution ΦKW

p (eq. [5.9]). The
adiabatic exponent is Γ = 1.43 while the core mass is 60M♁. In all circumstances, the
gravitational potential outside the envelope radius is of the type given in equation (5.4).

Homogeneous Sphere Solution

The gravitational potential generated by a homogeneous spherical distribution of mat-
ter can be calculated in a straightforward way by a direct integration of the gravitational
force. Thereby one finds

ΦHS
p =


−GMp

2Sp

[
3 −

(
S
Sp

)2
]

if S ≤ Sp

−GMp
S if S > Sp

, (5.6)

where Sp is the radius of the sphere, i.e., the planet’s radius. No smoothing is needed in
this case since the force converges linearly to zero as the distance S approaches zero. Thus,
there is no risk of numerical instabilities.

Strictly speaking, equation (5.6) is valid inside very extended and nearly homoge-
neous envelopes without considerable cores. Then, one may think of the functions ΦPM

p

and ΦHS
p as rendering two opposite extreme situations. Though ΦHS

p does not represent a
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very realistic scenario of planet formation, for the sake of comparison and completeness,
we will apply this potential to high- as well as low-mass bodies.

Stevenson’s Solution

Stevenson (1982) proposed a simplified analytical model of protoplanets having en-
velopes with constant opacity and surrounding an accreting solid core. He developed a
radiative zero solution for hydrostatic and fully radiative spherical envelopes, which implies
that both hydrostatic and thermal equilibrium are assumed inside the planet’s atmosphere.
Under these hypotheses, the core can grow up to a critical mass whose value is that beyond
which at least one of the two equilibria ceases to exist (see discussion in Wuchterl 1991)
and the structure cannot be strictly static any longer. The critical core mass also sets an up-
per limit to the envelope and total mass of the planet. It can be proved that, at this critical
point, Mc/Mp = 3/4, where the mass of the core Mc is influenced by neither the nebula
density nor its temperature.

The potential of the gravitational field established by a fully radiative envelope can be
obtained from the density profile (see Stevenson 1982) by applying the Poisson equation.
Since the solid core size is by far below the resolution limit of these computations, the form
of the Stevenson’s potential can be cast in the form

ΦST
p =


− GMc√

S2+δ2
− GM†

e√
S2+δ2

[
1 −

(
S
Sp

)
+ ln

(
S
Sc

)]
if S ≤ Sp

− GMp√
S2+δ2

if S > Sp

. (5.7)

In equation (5.7) we have indicated with Sc the core radius. The quantity M †
e is equal

to the planet’s envelope mass Me = Mp −Mc divided by ln(Sp/Sc). The presence of the
parameter δ, also in the solution valid outside the envelope, is necessary for continuity
reasons at S = Sp. In these simulations we set δ = 0.05RH.

If the core has a density ρc = 5.5 g cm−3 and accretes at the rate of 5 × 10−7 M♁ yr−1,
assuming an envelope opacity equal to 1 cm2 g−1 and a mean molecular weight of 2.2, the
critical total mass is 36 M♁. Hence we will use equation (5.7) only for protoplanets whose
total mass Mp is less than that value. Furthermore, we will suppose that the ratio of the
total planetary mass to the core mass is the critical one. Therefore the core mass is always
known once the mass Mp is assigned a value. Then, supplying ρc, the radius Sc can be
fixed.

The effects caused by equation (5.7) are actually similar to those caused by equa-
tion (5.4), as seen in Figure 5.1. In a more formal way, inside of the sphere S = Sp, the
normalized difference RST between the two gravitational fields can be quantified by the
ratio of

∣∣∂ΦST
p /∂S − ∂ΦPM

p /∂S
∣∣ to ∂ΦPM

p /∂S, that is

RST =
1

4 ln(Sp/Sc)

[(
δ

S

)2

−
(
δ

Sp

) (
δ

S

)
+ ln

(
Sp

S

)]
. (5.8)

In the above relation, the equality ε = δ was imposed. RST is a decreasing function of S.
Referring to the models addressed in the left panel of Figure 5.1, RST � 5% at S/Sp = 1/3.
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This result is only slightly affected by the mass of the planet because Sp is a slowly varying
function of Mp.

Wuchterl’s Solution

Along with the fully radiative envelope, other static solutions were found. Follow-
ing the track of Stevenson’s arguments, Wuchterl (1993) developed an analytical model
for protoplanets with spherically symmetric and fully convective envelopes. In this case
the hydrostatic structure is determined by the constant entropy requirement that is ap-
propriate when convection is very efficient. Supposing that the adiabatic exponent Γ =
d ln p/d ln ρ is constant throughout the envelope, integrating the envelope density one
finds that a solution for the planet gravitational potential is

ΦKW
p =


− GMc√

S2+δ2
− GM‡

e√
S2+δ2

[(
ζ
ζ−1

) (
S
SΓ

p

)
−

(
1
ζ−1

)(
S
SΓ

p

)ζ
− Π

]
if S ≤ SΓ

p

− GMp√
S2+δ2

if S > SΓ
p

, (5.9)

where we set ζ = (3Γ − 4)/(Γ − 1) and Π = (Sc/S
Γ
p )ζ . Moreover, the envelope mass is

written as Me = (1 − Π)M ‡
e . The condition for stability of gas spheres (Γ > 4/3) implies

that ζ is positive. This particular form of ΦKW
p is obtained by choosing an envelope radius

equal to SΓ
p = (Γ − 1)Rac, with Rac = GMp/c

2
s the accretion radius. Outside Rac the

thermal energy of the gas is higher than the gravitational energy binding it to the planet.
As in Stevenson’s solution, critical mass values exist for the envelope structure to

be static. However, unlike the fully radiative envelope case, now the critical core mass
depends on both the temperature and the density of ambient material. Furthermore, the
critical mass ratio is Mc/Mp = 2/3 (for details see Wuchterl 1993). Setting Γ to 1.43 and
the mean molecular weight to 2.2, if nebula conditions are TNeb = 100 K and ρNeb =
10−10 g cm−3, the critical total mass is Mp = 274 M♁.

Wuchterl’s solution well applies to massive protoplanets since they are likely to bear
convective envelopes.

Concerning the differences between equation (5.9) and equation (5.4), the situation is
alike to that met in § 5.2.1 (see right panel of Fig. 5.1). In this circumstance, for S ≤ Sp, the
normalized difference can be written as

RKW =
(

1
3

)
1

1 − Π

{
1 +

(
ζ

ζ − 1

)(
δ

Sp

)(
δ

S

)[
1 −

(
S

Sp

)ζ−1
]
−

(
S

Sp

)ζ
}
. (5.10)

As before, the equality ε = δ is assumed and RKW decreases with S. Using the param-
eters adopted for the models illustrated in the right panel of Figure 5.1, RKW � 18% at
S/Sp = 1/3. In the considered range of masses, this number is nearly constant. In fact,
equation (5.10) can be approximated to

RKW ≈
(

1
3

)[
1 −

(
S

Sp

)ζ
]
. (5.11)
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5.2.2 Physical Parameters

We consider a protostellar disk orbiting a one solar mass star. The simulated region
extends for 2π around the polar axis and, radially, from 2.08 to 13 AU. The aspect ratio is
fixed to h = 0.05 throughout these computations. As in CHAPTER 2, the disk is assumed
to be symmetric with respect to its midplane. This allows us to reduce the latitude range
to the northern hemisphere only, where θ varies between 80◦ and 90◦. The co-latitude
interval includes 3.5 disk scale heights and therefore it assures a vertical density drop of
more than six orders of magnitude (see § 5.3.3). The mass enclosed within this domain
is MD = 3.5 × 10−3 M�, which implies, in our case, that a mass equal to 0.01 M� is
confined inside 26 AU. Disk material is supposed to have a constant kinematic viscosity
ν = 1015 cm2 s−1, corresponding to α = 4 × 10−3 at the planet location.

The orbital radius of the planet is Rp = 5.2 AU and its azimuthal position is fixed to
ϕ = ϕp = π. We concentrate on a mass range stretching from 1.5 M♁ to one Jupiter mass
(M�), implying that the mass ratio q = Mp/M� ∈ [4.5 × 10−6, 10−3] if M� = 1M�. A
detailed list of the examined planetary masses, along with the adopted potential form is
given in Table 5.1.

The choice of few of the above parameters represents one typical example during the
early phase of plant formation. Additionally these simulations offer the good advantage
that in fact the system of equations is cast in a non-dimensional form, thus all of the out-
comes are “scale-free” with respect to M�, MD, and Rp.

According to studies of the early evolution of protoplanets, the Roche lobe is usually
filled during the growth phase. In such calculations the envelope is allowed to extend
to either the Hill radius RH or the accretion radius Rac (Bodenheimer and Pollack 1986;
Wuchterl 1991; Tajima and Nakagawa 1997). Except for Wuchterl’s solution, where we set
Sp = SΓ

p = (Γ− 1)Rac, the estimates of planet radii used in the simulations were provided
by P. Bodenheimer (2001, private communication). They originate from a combination of
RH and Rac at an ambient temperature of T = 100 K (see Fig. 5.2). The values of Sp,
employed in each model, are also reported in Table 5.1.

It is worthwhile to stress that the planetary (or more properly, the envelope) radius
Sp does not represent any real physical boundary but only the distance beyond which the
planet’s potential reduces to one of the type given in equation (5.4).

5.3 Numerical Issues

The set of hydrodynamic equations that characterize the temporal evolution of a disk-
planet system is solved numerically by means of a finite difference scheme provided by an
early FORTRAN-coded version of NIRVANA (Ziegler and Yorke 1997; Ziegler 1998). The
code has been modified and adapted to our purposes as described in CHAPTER 2, CHAP-
TER 3, and references therein. In order to investigate thoroughly the flow dynamics in the
neighborhood of the planet, a sufficient numerical resolution is required. We accomplish
that by employing a nested-grid strategy. This can be pictured as either a set of grids, each
hosting an inner one, or a pyramid of levels: the main grid (level one) includes the whole
computational domain, while inner grids (higher levels) enclose smaller volumes around
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Table 5.1: List of all the simulated planet masses: q = Mp/M� is the non-dimensional
quantity that enters the simulation. Note that Mp = 333 M♁ = 1.05 M�. The ratio RH/a

is equal to (q/3)1/3 (see § 5.2.1). Unless stated otherwise, envelope radii Sp are expressed
through a combination of the Hill (RH) and the accretion (Rac) radius of the planet, as
plotted in Figure 5.2 (courtesy of P. Bodenheimer). When required, we set M c = (2/3)Mp

for a fully convective envelope and Mc = (3/4)Mp for a fully radiative one. The core
radius is computed assuming a constant density ρc = 5.5 g cm−3 in both cases.

Mp
(a) /M♁ q Sp/RH RH/a Potential
333 1.00 × 10−3 0.87 6.9 × 10−2 PM, HS
253 7.60 × 10−4 2.30(b) 6.3 × 10−2 KW
166 5.00 × 10−4 0.78, 1.70(b) 5.5 × 10−2 PM, KW, HS

93 2.80 × 10−4 1.20(b) 4.5 × 10−2 KW
67 2.00 × 10−4 0.70, 0.96(b) 4.0 × 10−2 PM, KW
33 1.00 × 10−4 0.60 3.2 × 10−2 PM, HS
29 8.80 × 10−5 0.58 3.1 × 10−2 ST
20 6.00 × 10−5 0.52 2.7 × 10−2 HS, ST
15 4.50 × 10−5 0.46 2.5 × 10−2 ST
12.5 3.75 × 10−5 0.44 2.3 × 10−2 ST
10 3.00 × 10−5 0.38 2.1 × 10−2 PM, HS, ST
7 2.10 × 10−5 0.34 1.9 × 10−2 ST
5 1.50 × 10−5 0.29 1.7 × 10−2 HS, ST
3 1.00 × 10−5 0.23 1.5 × 10−2 ST
1.5 4.50 × 10−6 0.16 1.1 × 10−2 ST

(a) Values are rounded to the nearest integer numbers.
(b) Planetary radius used in the Wuchterl’s solution: Sp = SΓ

p = (Γ − 1)Rac (see § 5.9).

the planet, with increasing resolution. Levels greater than one are also called subgrids
since they are usually smaller in size. The linear resolution, in each direction, doubles
when passing from a grid to the inner one.

The basic principles upon which the nested-grid technique relies and how it is applied
to disk-planet simulations in two dimensions is explained in detail in CHAPTER 3 and ref-
erences therein. The extension to the three-dimensional geometry, though requiring some
more complexity in the exchange of information from one grid level to the neighboring
ones, is nearly straightforward (see CHAPTER 3 for details).

5.3.1 General Setup

For the study of the variety of planetary masses indicated in Table 5.1, meeting both
the requirements of high resolution and affordable computing times, we realized a series
of five grid hierarchies, whose characteristics are given in Table 5.2. With mass ratios q
larger than 2× 10−4 (67 M♁) only grids G0 and G1 are utilized whereas smaller bodies are
investigated with the other grid hierarchies. Thereupon, the finest resolution we obtain
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Figure 5.2: Envelope ra-
dius Sp, as provided by
P. Bodenheimer (2001,
private communication),
compared to the Hill
radius RH and the ac-
cretion radius Racc. In a
locally isothermal disk
with aspect ratio h, RH

is larger than Rac when
q < h3/

√
3. While the scale

of the left vertical axis is
referred to orbital radius
Rp = 5.2 AU, the scale on
the right one is compared
to the radius of Jupiter
R� = 7.1 × 104 km.

in the whole set of simulations varies form 0.03 to 0.06RH. In all of the models presented
here, the planet is centered at the corner of a main grid cell, which property is retained
on any higher hosted subgrid. As the planet radial distance is Rp = a/(1 + q), we adjust
it by tuning the value of the star-planet distance a. Adjustments never exceed 0.7% over
the nominal value of Rp given in § 5.2.2. Every model is evolved at least till 200 orbits.
The evolution of massive planets (Mp ≥ 67 M♁) is followed for 300 to 400 orbital periods
because they take longer to settle on a quasi-stationary state.

Gas accretion is estimated following the procedure sketched in CHAPTER 4. For better
accuracy, mass is removed only from the finest grid level according to an accretion sphere
radius κac and an evacuation parameter κev. The former defines the spherical volume
which contributes to the accretion process whereas the latter can be regarded as a mea-
sure of the removal time scale in such volume. Two-dimensional simulations showed that
the procedure is fairly stable against these two parameters. We constrain the amount of
removed mass per unit volume not to exceed 1% of that available, as was done in CHAP-
TER 4. Regarding the extension of the sphere of accretion κac, we performed simulations
using different values, as stated in Table 5.3. Since the planet actually works as a sink, our
procedure only furnishes upper limits to realistic planetary accretion rates (see discussion
in Tanigawa and Watanabe 2002).

However, we also inquire how mass removal can possibly affect gravitational torques
and, more generally, the dynamics of the flow in the planet neighborhood by means of
models in which accretion is prohibited.
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Table 5.2: Grid sizes are reported as the number of grid points per direction: NR×Nθ×Nϕ.
The third column (ng) indicates the number of levels within the hierarchy. In order to
achieve sufficient resolution within the Roche lobe of the planet, grids G0 and G1 have
been used only for planetary masses in the range [67 M♁, 1 M�]. Grids are ordered accord-
ing to their computing time requirements, which grow from top to bottom. The hierarchy
G5 has been employed to execute the model with Mp = 12.5 M♁ (see discussion at the end
of § 5.4.2).

Grid Main Grid Size ng Subgrid Size No. of models
G0 121 × 13 × 319 4 54 × 12 × 48 10
G1 143 × 13 × 423 4 64 × 12 × 64 5
G2 121 × 13 × 319 5 54 × 12 × 48 19
G3 143 × 13 × 423 5 64 × 12 × 64 12
G4 121 × 23 × 319 5 54 × 22 × 48 4
G5 133 × 13 × 395 5 84 × 16 × 84 1

5.3.2 Boundary Conditions

In order to mimic the accretion of the flow towards the central star, an outflow bound-
ary condition is applied at the inner radial border of the computational domain. The outer
radial border is closed, i.e., no material can flow in or out of it. The same condition exists
at the highest latitude θ = 80◦. Since the disk is symmetric with respect to its midplane
as mentioned in § 5.2.2, symmetry conditions are set at θ = 90◦. On subgrids, except for
the midplane where symmetry conditions are applied, boundary values are interpolated
from hosting grids, by means of a monotonised second-order algorithm (see CHAPTER 3
for details).

The open inner radial boundary causes the disk to slowly deplete during its evolution.
For all the models under study, we observe a depletion rate ṀD = −Ṁ� measuring ≈
10−8 M� yr−1, in agreement with the expectations of stationary Keplerian disks: Ṁ� =
3π ν Σ (Lynden-Bell and Pringle 1974).

In cases of gap formation, material residing inside the planet’s orbit tends to drain
out of the computational domain. Since this material transfers angular momentum to the
planet, the lack of it may contribute to reduce both the migration time scale and the planet’s
accretion rate. To evaluate these effects, a Jupiter mass model was run with a closed (i.e.,
reflective) inner radial border.

5.3.3 Initial Conditions

The initial density distribution is a power-law of the distance from the rotational axis
r = R sin θ times a Gaussian in the vertical direction

ρ(t = 0) = ρ0(r) exp

[
−

(
cot θ
h

)2
]
, (5.12)
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Table 5.3: The parameter κac represents the radius of the accreting region. Within this
sphere the mass density is reduced by roughly 1% after every time step. The length κ ac =
0.1RH should be small enough to make the accretion procedure almost independent of the
evacuation parameter κev (Tanigawa and Watanabe 2002). At q = 3 × 10−5 (Mp = 10 M♁)
a non-accreting simulation was performed with Φp = ΦHS

p (eq. [5.6]) as well as with Φp =
ΦST

p (eq. [5.7]). In the case of lowest mass model (Mp = 1.5 M♁), we allowed the ratio
κac/Sp to be less than 0.5, as in all of the other models. For a better evaluation of Ṁp, we
used a modified version of the grid system G3 which contains a sixth level, comprising
(approximately) the planet’s Hill sphere.

Mp/M♁ q κac/RH Accreting Onlya

333 1.0 × 10−3 0.20, 0.15, 0.10 No
253 7.6 × 10−4 0.10 Yes
166 5.0 × 10−4 0.10 Yes

93 2.8 × 10−4 0.10 Yes
67 2.0 × 10−4 0.20, 0.10 No
33 1.0 × 10−4 0.20, 0.10 No
29 8.8 × 10−5 0.20, 0.10 No
20 6.0 × 10−5 0.15, 0.10 No
15 4.5 × 10−5 0.10 Yes
12.5 3.75 × 10−5 0.10 Yes
10 3.0 × 10−5 0.10 No
7 2.1 × 10−5 0.10 Yes
5 1.5 × 10−5 0.10 No
3 1.0 × 10−5 0.10 Yes
1.5 4.50 × 10−6 0.07 Yes

(a) “ No” entry stands for the existence of a non-accreting model.

which is appropriate for a thin disk in thermal and hydrostatic vertical equilibrium. The
dependency of the midplane value ρ0(r) with respect to r is such that the initial surface
density profile Σ decays as 1/

√
r, as required by the constant kinematic viscosity. However,

we also ran a few models where the form of ρ0(r) is such to account for an axi-symmetric
gap, as often done to speed up the computations at early evolutionary times.

The initial velocity field of the fluid is a purely, counter-clockwise, Keplerian one cor-
rected by the grid rotation: u(t = 0) ≡ (0, 0, vK − Ωp r). Thus, the partial support due to
the radial pressure gradient is neglected in the beginning.

5.4 Simulation Results

5.4.1 Flow Dynamics near Protoplanets

Two-dimensional computations have shown that a circumplanetary disk forms around
Jupiter-type planets, extending over the size of its Roche lobe (Kley 1999; Lubow et al.
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1999; Tanigawa and Watanabe 2002). The numerical experiments conducted in CHAPTER 4
proved this characteristic to belong not only to massive bodies but also to protoplanets as
small as 3 M♁. It was demonstrated that the flow of such disks is approximately Keple-
rian down to distances ∼ 0.1RH from the planet. One of the main features of these disks
is a two-arm spiral shock wave whose opening angle (that between the wave front and
the direction toward the planet) is an increasing function of the mass ratio q and, below
Mp = 67 M♁, it is roughly given by arctan(M), in which M = |u|/cs is the Mach number
of the circumplanetary flow. The spiral patterns shorten and straighten as the perturber
mass decreases (see § 4.4.3). Eventually, for even smaller masses they disappear and are
not observable anymore when one Earth mass is reached.

Three-dimensional simulations shed new light on these circumplanetary disks, demon-
strating that they can behave somehow differently from what depicted by two-dimensional
descriptions. Differences become more marked as the mass of the embedded protoplanet
is lowered. A major point is that spiral waves are not so predominant as they are in the 2D
geometry. This is clearly seen in the left columns of Figure 5.3 and 5.4, where the midplane
(θ = π/2) density is displayed for four different planetary masses. The double pattern of
the spiral is still visible around a 67 M♁ protoplanet (Fig. 5.3, bottom left panel). However,
when considering a planet half of that size, spiral traces are too feeble to be seen on the im-
age (Fig. 5.4, top left panel). Such an occurrence was to be expected since the energy of the
flow is not only converted into the equatorial motion but can be also transferred to the ver-
tical motion of the fluid. It was already known from wave theories for circumstellar disks
(Lubow 1981; Lubow and Pringle 1993; Ogilvie and Lubow 1999) and related numerical
calculations (Makita et al. 2000) that the three-dimensional propagation of spiral perturba-
tions may be significantly different from that obtained in two dimensions because of the
existence of vertical resonances. Furthermore, Miyoshi et al. (1999) already noted in their
shearing sheet models the weakening effect of the finite disk thickness upon the formation
of spiral waves around embedded protoplanets. Hence we may argue that the averaging
of the pressure and the gravitational potential, which is accomplished in an infinitesimally
thin disk, enhances spiral features in disks.

The remainder of this section is devoted to a general description of the vertical circu-
lation of the material in the vicinity of the planet. We start inspecting what happens in the
slice ϕ = ϕp, i.e., in theR–θ surface containing the planet (see middle panels in Fig. 5.3 and
5.4). The first thing to note is that the material above the equatorial plane moves toward
the planet with a negligible meridional component, in fact |uθ| � u (where u = |u|). There-
fore matter is nearly confined to θ-constant surfaces. This circumstance favors the use of
2D outcomes as predictions of 3D expectations (Masset 2002). However this turns out to
be true only far away from the planet. In fact, as the fluid enters a certain region around
the Hill sphere, its dynamics changes drastically. The beginning of this zone is marked
by two shock fronts, which actually develop well outside the Roche lobe of the restricted
three body problem. The distance of the shock fronts from the perturber, if compared to
RH, shrinks from 2.61 to 1.16 as Mp is increased from 10 M♁ to 1 M�. Generally, shocks
are not placed symmetrically with respect to the planet. Past these shocks, material is de-
flected upward and recirculates downward, while approaching the radial position of the
planet (see middle panels in Fig. 5.3 and 5.4).
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At R ≈ Rp, matter suffers an unbalanced gravitational attraction by the planet and
accelerates downward towards it. Velocities are supersonic, reaching a Mach number M �
8, when 67 M♁ � Mp ≤ 1 M�, and M � 2 if Mp = 20 M♁. They become subsonic for
planetary masses between 10 and 1.5 M♁, ranging from 30 to 5% of the local sound speed.
Because of the sinking material, at θ = π/2 the flow field is slightly horizontally divergent
from the planet location.

As one can judge from Figure 5.4 (middle panels), the flow gets less and less sym-
metric, with respect to Rp, as the planet mass is reduced. Recirculation persists before the
planet (R < Rp) but vanishes behind it (R > Rp). Any symmetry disappears starting from
Mp = 5 M♁ downwards.

Along the azimuthal direction (slice R = Rp, i.e., in the surface ϕ–θ containing the
planet), the right panels of Figure 5.3 and 5.4 show an even more complex situation. Below
166 M♁, the region of influence of the planet appears to be more comparable in size with
the Roche lobe. However, apart from that, the general behavior of the flow differs from
case to case, having in common a rapid descending motion when the material lies above
the planet. Around Jupiter-sized planets some kind of weak, non-closed, recirculation may
be seen. This flow feature is still present at both sides of a 29 M♁ planet (top right panel,
Fig. 5.4), whereas it tends to vanish in models with lower q-ratios.

Non-accreting Protoplanets

Here we should dedicate some attention to the differences existing between accreting
and non-accreting protoplanets. Since the gas is locally isothermal, pressure is propor-
tional to the density according to equation (5.2). Because of the mass removal, density
nearby the planet is lower in accreting models than it is in non-accreting ones. In Table 5.4
the mass M̂e enclosed within the envelope radius Sp is quoted for the two sets of models,
along with the mean density ρ̂e. These values demonstrate that the amount of material
contained in the volumes of non-accreting planets can be considerably larger than in the
other case (even 6 times as much). Since the pressure must converge in the two cases, when
the distance from the planet S � Sp, a higher mean pressure in the envelope intuitively
implies a larger magnitude of the pressure gradient inside this region.

As an example, we illustrate in Figure 5.5 the velocity field in two perpendicular slices
θ = π/2 (i.e., the equatorial plane) and ϕ = ϕp (i.e., the surface R–θ passing through the
planet), in order to show how the enhanced density values affect the local circulation. The
targeted body has Mp = 20 M♁ because, among the eight available models for which ac-
cretion is not considered (see Table 5.3), this is the one that suffers an orbital migration sub-
stantially different from accreting counterpart models. From the isodensity lines displayed
in Figure 5.5, one can infer that matter is spherically distributed around the non-accreting
protoplanet (upper panels). For this reason the net torque arising within a region of radius
≈ RH is nearly zero. This does not happen in the other case because the symmetry is not
so strict.

The lower left panel clearly indicates the existence of a rough balance between gravi-
tational and centrifugal force, with the pressure gradient playing a marginal role in oppos-
ing the planet potential gradient. On the other hand, from the circulation in the upper-left
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Table 5.4: All masses are relative to the Earth mass. The mean density ρ̂e within the
planet’s radius is expressed in cgs units. We consider only simulations which were
run with the Stevenson’s potential. The mass M̂e is evaluated assuming a disk mass
MD = 3.5 × 10−3 M�. Hence, the values in the Table do not account for the disk depletion
rate ṀD, which is on the order of 3 × 10−3 M♁ yr−1.

No Accretion Accretion

Mp M̂e ρ̂e M̂e
a M̂e

b M̂e
c

67 7.07 × 10−1 9.37 × 10−11 1.07 × 10−1 . . . 7.67 × 10−2

29 2.74 × 10−1 1.45 × 10−10 6.49 × 10−2 . . . . . .
20 2.26 × 10−1 2.43 × 10−10 3.68 × 10−2 3.18 × 10−2 . . .
10 1.29 × 10−2 7.12 × 10−11 9.76 × 10−3 . . . . . .

5 2.24 × 10−3 5.56 × 10−11 2.17 × 10−3 . . . . . .
(a) From models with κac = 0.10RH.
(b) From models with κac = 0.15RH.
(c) From models with κac = 0.20RH.

panel of Figure 5.5 one can deduce that the pressure gradient is no longer negligible com-
pared to the potential gradient and can therefore counterbalance its effects.

Moreover, the flow above the disk midplane (upper center and upper right panels)
suggests that gas is ejected at R < Rp. Such phenomenon must be ascribed to the pressure
gradient as well, since the fluid opposes any further compression. These qualitative argu-
ments will be quantitatively corroborated in § 5.5, where we will show that the increased
amount of matter causes the envelope to be pressure supported.

We mention in the caption of Figure 5.5 that the flow may travel supersonically within
the atmospheric region, though both Stevenson’s and Wuchterl’s gravitational potential
rely on the hypothesis of quasi-hydrostatic equilibrium. Such discrepancy can be attributed
to the rate of mass removal from the innermost parts of the planet’s envelope, which is not
considered in the derivation of those analytic solutions. In fact, while supersonic speeds
have been measured in some accreting models, the flow is always subsonic the envelope of
non-accreting planets. This can be also understood with simple arguments. We said before
in this section that mass accretion is responsible for the Keplerian-like circulation around
protoplanets, in the disk midplane. Hence, the local (equatorial) Mach number should be
on the order of

√
q Rp/S/h. If evaluated at S ≈ Sp, this quantity yields M ≈ 1.3 for a

20 M♁ body, which is comparable to the value reported in the caption of Figure 5.5. Along
the vertical direction, if the velocity is approximated to that of a spherically accreting flow
then uθ ≈ Ṁp/(4π S2 ρ). At S = κac = 0.1RH, that relation gives a (meridional) Mach
number M ≈ 1.8 when applied to the accreting model shown in Figure 5.5. Also this
number is similar to the measured value.
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5.4.2 Gravitational Torques

Gravitational torques are believed to be responsible for the migration of protoplanets
from their initial formation sites. In this work torques are directly estimated from the grav-
itational force exerted by each fluid element of the circumstellar disk on the planet. When
computing the gravitational force, we consider the density solution on the finest available
grid level. This procedure permits to obtain higher accuracy because of the increasing
resolution of hierarchy levels.

Since the planet is an extended object, torques acting on each of its portions should be
calculated and then added up to give the total torque vector, whose most general expres-
sion is

TD =
∫
MD

∫
Mp

(Rp + S) × GdMD(R) dMp(S)
|R − Rp − S|3 R, (5.13)

in which all of the gravitational contributions due to star, the planet, and disk self-gravity,
etc. are implicitly enclosed in the differentials dMD(R) and dMp(S). Equation (5.13) ex-
plicitly states that circumstellar material can alter both the orbital and rotational spins of a
protoplanet. However, here we shall confine our study to variations of the planet’s orbital
angular momentum because the evaluation of the rotational spin requires a rigorous treat-
ment of the envelope self-gravity. This is not done here, as stated in § 5.2 (see eq. [5.1]).
Thereby, we can proceed as if the whole planetary mass were concentrated in its geomet-
rical center R = Rp and integrate the force over the whole disk domain, excluding the
volume Vp occupied by the planetary envelope. Yet, outside of such volume the gravita-
tional potential is always that of a point-mass object (see the behavior of eqs. [5.4], [5.6],
[5.7], and [5.9], for S > Sp), therefore equation (5.13) simplifies and becomes

TD = Rp ×
∫

R/∈Vp

∇ΦPM
p ρ(R) dV (R). (5.14)

The orbital angular momentum of a protoplanet can be affected only by the z-component
(that parallel to the polar axis) of the torque vector TD. To avoid useless distinctions, we
indicate this component as TD. The sign of TD determines the gain (positive torques) or
loss (negative torques) of orbital spin. Larger spins correspond to more distant orbits.
Since torques generally change on time scales on the order of ∼ 50 revolutions, we work
with their final magnitudes. We usually observe a slow decay of |TD| with time (see end of
§ 5.4.4).

Two-dimensional computations reveal that torques exerted by circumplanetary mate-
rial may amount to a fair fraction of the total torque, unless a suitable smoothing length
(usually of the size of the Hill radius) is used in the planet gravitational potential Φp. This
is caused by the high surface densities reached around the planet and the lack of a vertical
torque decay which naturally occurs in three dimensions (see § 5.5). In fact, in 3D, we ob-
serve that torques arising from locations close to the planet do not play such an important
role as they do in 2D.

Analyzing the relative strength of torques exercised by different disk portions, it turns
out that in the mass range q ∈ [2× 10−4, 1× 10−3], dominating negative torques arise from
distances S � 1.2hRp, where h is the disk aspect ratio. Below 33 M♁, the most effective
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contributions are generated by material lying between S � 0.6hRp and S � 2.2hRp.
Therefore we can conclude that predominant torques are exerted at distances from the
planet comparable with the Hill radius. Not more than 10% of TD is built up by matter
located within S ≈ 0.6hRp.

Apart from the 20 M♁ protoplanet, the total torque evaluated in non-accreting models
does not deviate considerably from that estimated in accreting ones, independently of the
used potential. In fact, simulations based on the potentials ΦPM

p , ΦHS
p , and ΦST

p (eqs. 5.4, 5.6,
and 5.7 respectively) supply values of TD which differ by less than 40%. This circumstance
may signify that, whether or not a protoplanet is still accreting matter from its surround-
ings, this is not generally crucial to the gravitational torques by the circumstellar disk.
Thereby, being an exception, the case Mp = 20 M♁ deserves some comments. For such
mass, the torque integrated over the first two grid levels (S � 2.2hRp) yields a positive
value for both accreting and non-accreting planets. When adding the contributions from
the third and forth level (0.6hRp � S � 2.2hRp), the torque experienced by the planet
lowers but, while it becomes negative in the accreting case, it still remains positive in the
non-accreting counterpart. It is especially matter residing between 1 and 2RH from the
planet that builds up the difference. As material in the uppermost grid level (S � 0.6hRp)
of the non-accreting simulation does not exert any significant torques (some little nega-
tive contribution is indeed measured in the accreting model), TD keeps the positive sign
although, in magnitude, it is eleven times as small as that evaluated in the accreting case.
This phenomenon of torque reversal for non-accreting planets with masses of about 20 M♁
may be related to the very long migration time scales obtained for fully accreting models
having masses Mp ≈ 10M♁ (see below, and Fig. 5.6).

5.4.3 Orbital Migration

Conservation of orbital angular momentum implies that a protoplanet has to adjust
its orbital distance from the central star because of external torques exerted by the disk.
If the orbit remains circular, the time scale over which this radial drift motion happens is
inversely proportional to TD, according to the formula:

τM =
a

|ȧ| =
Mp a

2 Ωp

2 |TD|
. (5.15)

In equation (5.15) we indicated with Ωp and a the planet’s angular velocity and its distance
from the star, respectively. Linear, analytical theories (e.g., Ward 1997) provide two sepa-
rate regimes governing the migration of low- (type I) and high-mass (type II) protoplanets.
Both migration types predict that the planet moves toward the star. More recent studies by
Masset (2001) and Tanaka et al. (2002) have reconsidered the role of co-orbital corotation
torques and proved that they can be very effective in opposing Lindblad torques. Hence,
they can significantly slow down inward migration. Two-dimensional results presented
in CHAPTER 4 well fit to these predictions. A further reduction of the migration speed is
expected from a full 3D treatment of torques, as also derived numerically by Miyoshi et al.
(1999) and theoretically predicted by Tanaka et al. (2002).

Figure 5.6 shows our estimates for the migration time scale τM as computed for models
having different masses and in which the potential solutions ΦPM

p , ΦKW
p , and ΦST

p were
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Figure 5.6: Migration time scale versus the mass ratio q = Mp/M�. Outcomes from sim-
ulations carried out with the various forms of gravitational potential are marked with dif-
ferent symbols. At q = 10−4 and 6 × 10−5, calculations carried out with the point-mass
potential were initiated with a density gap (see § 5.3.3). To avoid confusion, migration
rates obtained from models with Φp = ΦHS

p (eq. [5.6]) are quoted in Table 5.5. The solid
line represents the theoretical prediction by Ward (1997), which It does not include coro-
tation torques and 3D effects. Both are indeed accounted for in the analytical model by
Tanaka et al. (2002) (dashed line). The scale on the right vertical axis gives the migration
rates of a protoplanet orbiting at 1 AU from the primary.

adopted. We compare these values with the two analytical theories developed by Ward
(1997) (solid line) and Tanaka et al. (2002) (dashed line). The first of them comprises both
migration regimes, though accounting only for Lindblad torques. The second theory is
limited to type I migration, albeit it treats both Lindblad and corotation torques. Moreover,
the first is explicitly two-dimensional whereas the second is applicable in two as well as
three dimensions.

As one can see from Figure 5.6, numerical results are very similar for Mp ≥ 67 M♁,
yielding τM ≈ 5 × 104 years, whatever of the four gravitational potential is used (see also
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Table 5.5: Migration rates from accreting and non-accreting models in which Φp = ΦHS
p

(eq. [5.6]). Time scales are different from those indicated in Figure 5.6 only at Mp = 33, 20,
and 10 M♁.

τM [years]

Mp/M♁ q Accretion No Accretion
333 1.0 × 10−3 5.04 × 104 4.80 × 104

166 5.0 × 10−4 4.76 × 104 . . .
33 1.0 × 10−4 2.10 × 105 2.54 × 105

20 6.0 × 10−5 5.74 × 105 . . .
10 3.0 × 10−5 5.26 × 105 4.78 × 105

5 1.5 × 10−5 6.19 × 105 . . .

Table 5.5). While this time scale is consistent with Ward’s 1997 description if Mp = 67 M♁,
for more massive planets it is nearly two times as short as the theoretical prediction. The
depletion of the disk inside the planet’s orbit is probably responsible for part of the dis-
crepancy (see § 5.4.6), because Ward’s theory assumes a disk with a constant unperturbed
surface density. In the type I regime, our numerical experiments with Φp = ΦST

p (eq. [5.7])
well reproduce the behavior of the analytical curve when Mp = 30, 20, 5, 3.3, and 1.5 M♁.

Computations executed with Φp = ΦHS
p (eq. [5.6]) probably underestimate the magni-

tude of differential torques because of the much weaker gravitational field. Nevertheless,
for Jupiter-mass and Earth-mass protoplanets, migration times yielded by these models
well compare to those displayed in Figure 5.6, as proved by the values reported in Ta-
ble 5.5.

Significant deviations from the linear estimate of Tanaka et al. (2002) are observed
in the mass interval [7, 15] M♁, where the migration time is longest at 10 M♁. For this
planet τM, estimated with Stevenson’s as well as the point-mass potential, is thirty times
as long as the theoretical description by Tanaka et al. (2002) predicts. This depends on
the strong positive torques arising at S > 2hRp which are not efficiently contrasted by
negative ones generated inside S � hRp. However, for this particular planetary mass,
we obtain discrepant estimates from computations performed with different resolutions.
In fact, the simulation carried out with the grid G2 yields a positive total torque acting
on the planet, i.e., it predicts an outward migration, whereas models based on the higher
resolution hierarchies G3 and G4 provide a negative total torque. Yet, the absolute value
of TD evaluated with grid G4 is a seventh of that achieved with grid G3.

Since we believe that gravitational torques are accounted for in a more accurate fash-
ion by hierarchy G3 than by grid G4 because of the arguments in § 5.4.6, we may rely more
on the outcome of the hierarchy G3 (shown Fig. 5.6) rather than on the other two. We note
that such migration time (τM = 3.3 × 106 years) is roughly the double of that supplied by
the 10 M♁ non-accreting model.

We have further inquired into the matter by running a simulation with Mp = 12.5 M♁
and Φp = ΦST

p (see Table 5.1). Based on the experience acquired with models executed with
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grids G3 and G4, we set up the high-resolution hierarchy G5 (see Table 5.2). This grid is
designed to better resolve those regions responsible for the strongest torque contributions
in the mass interval [7, 15] M♁. As seen in Figure 5.6, the resulting migration rate follows
the trend established by the other assessments in this range of masses.

The interesting property that computed migration time scales are very long for ten
Earth-mass planets may be caused by non-linearity effects. We note, in fact, that in nu-
merical simulations the first traces of a trough in the density structure is observed around
the same value ofMp and gap formation starts when disk-planet interactions become non-
linear. However, this issue needs to be addressed more thoroughly with future computa-
tions.

5.4.4 Mass Accretion

Three-dimensional computations of one Jupiter-mass bodies provide estimates of the
mass accretion rate Ṁp on the same order of magnitude as those obtained by two-dimen-
sional ones (see CHAPTER 2). Two-dimensional calculations performed by the authors
reveal a maximum of the accretion rate, as function of the mass, around 0.5 M� (see
CHAPTER 4). Yet, those estimates appear surprisingly high in the very low-mass limit.
Part of the reasons may lie in the assumed flat geometry which cannot account for the ver-
tical density stratification. The present simulations overcome this restriction, hence they
permit to evaluate also the effects due to the disk thickness.

The values of Ṁp is plotted against the planetary mass in Figure 5.7. As comparison,
estimates relative to models with different gravitational potential solutions are shown. The
overall behavior of the data points resembles that reported in CHAPTER 4, with a peak
around 0.3 M�. For Mp = 1 M� the agreement between two and three-dimensional
models is very good and not much discrepancy is seen down to Mp = 20 M♁, since values
are comparable within a factor 3 (see § 5.4.5). Below this mass, however, the accretion rate
rapidly declines, which drop is not observed in 2D outcomes. In fact, one can infer from
Figure 5.7 that the dynamical range of Ṁp stretches for more than two orders of magnitude.
By using model results obtained applying the point-mass, Stevenson’s, and Wuchterl’s
potential (eqs. [5.4], [5.7], and [5.9] respectively) the following approximate relation can be
found:

log

[
Ṁp

M♁/yr
]
� b0 + b1 log q + b2 (log q)2 , (5.16)

whose coefficients are b0 = −18.47 ± 0.76, b1 = −9.25 ± 0.38, and b2 = −1.266 ± 0.046.
Equation (5.16) holds as long as the mass ratio q ∈ [4.5 × 10−6, 10−3] or, for a one solar-
mass star, when 1.5 M♁ ≤ Mp ≤ 1 M�. Such an equation can be applied to scenarios
studying the global long-term evolution of young planets.

Calculations in which the homogeneous sphere potential ΦHS
p (eq. [5.6]) is adopted

yield accretion rates substantially lower (from 3 to 15 times) than those achieved when the
other potential forms are employed. This is due to the weak gravitational attraction this
potential exerts within the planet’s envelope. As proved by Figure 5.1, the gravitational
field can be 100 times as small as that established by the other three potential functions for
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Figure 5.7: Planet’s accretion rate as function of the normalized planet mass q. Different
symbols stand for the different forms of gravitational potential Φp adopted in the com-
putations. Apart from those models run with the homogeneous sphere potential ΦHS

p (see
eq. [5.6]), mass is removed from a volume, centered on the planet, with radius κac = 0.1RH

(see Table 5.3 for some details concerning the simulation with Mp = 1.5 M♁). Models for
which Φp = ΦHS

p have κac equal to 0.2RH if Mp > 20 M♁ and to 0.15RH if Mp = 20 M♁;
otherwise κac is set to 0.1RH.

S ≤ Sp. Also in this circumstance, a relation similar to equation (5.16) exists for which the
coefficients are b0 = −19.42 ± 2.68, b1 = −9.96 ± 1.41, and b2 = −1.42 ± 0.18.

While the accretion rate is fairly stable with time for masses below 30 M♁, it keeps
reducing for higher masses. Between 67 M♁ and 0.8 M�, Ṁp drops by 10 to 20% during the
last 50 orbits of the simulations. This is an indication of a deepening gap and a depleting
disk. As for the dependency upon the accretion volume, from our numerical experiments
it is found that doubling the radius κac, the accretion rate grows at most by 30%. The
smaller the planet mass, the less sensitive Ṁp is to the parameter κac.
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Figure 5.8: Left panel. Migration rates as evaluated in two-dimensional (CHAPTER 4) and
three-dimensional models (this paper). Right panel. Using the same sources as in the left
panel, a comparison of the growth time scales τG ≡Mp/Ṁp, between 2D and 3D outcomes,
is shown. Filled triangles, in both panels, indicate results obtained from three-dimensional
models in which the planetary gravitational potential is ΦPM

p , ΦST
p , or ΦKW

p .

5.4.5 Comparison with 2D Models

In this Section we aim at comparing the migration time scale as well as the planet’s
accretion rate obtained in these simulations with those presented in CHAPTER 4. However,
while two-dimensional estimates of Ṁp (Fig. 4.19 in CHAPTER 4) are directly comparable
to those plotted here in Figure 5.7, the time scales τM shown in Figure 4.13 of CHAPTER 4
are not completely consistent with those in Figure 5.6. Therefore they need to be corrected.

This is because in the present study torques are integrated all over the disk domain
excluding the planet envelope, i.e., the sphere of radius S = Sp. Instead, in CHAPTER 4 the
excluded region has a radius ≈ 0.1RH (for details see CHAPTER 4, § 5.4). From Table 5.1
one can see that, above 33 M♁, the envelope radius Sp can be much larger than a tenth of
the Hill radius.

Figure 5.8 illustrates the migration rate τM (left panel) and the growth time scale τG ≡
Mp/Ṁp (right panel) as computed in the two geometries. Orbital migration estimated by
means of 3D simulations is slower than that evaluated in 2D calculations only below 33 M♁
(q = 10−4). As for planet’s accretion, the most important difference is the rapid drop, for
Mp < 10 M♁, observed in disks with thickness. The larger values of three-dimensional
estimates, measured in the range 10 M♁ � Mp � 1 M�, are due to the gap which is not
so deep as it is in two-dimensional models, hence the average density around the planet
is higher. This fact can be partly attributed to gravitational potential effects that, as we
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mentioned in § 5.4.1, are intensified by the flat geometry approximation.

5.4.6 Numerical Effects

In CHAPTER 4 it was found that, upon increasing the smoothing parameter, there is
a reduction of the torques’ mismatch, over a region around the planet whose linear size
is comparable with the double of the smoothing length. A 33 M♁ model was run with
a point-mass potential without any kind of softening. This is possible because none of
the hydrodynamical variables is placed at a cell corner, where the planet lives. A similar
simulation was performed applying a grid dependent smoothing of the type described
in CHAPTER 4. Resulting migration time scale and mass accretion are not significantly
affected by the smoothing choice.

As for the consequences of the circumstellar disk depletion, inside the planet’s orbit,
we ran a Jupiter mass model with both inner and outer radial borders closed. Since more
material is available in the disk portion R < Rp (roughly twelve times as much), one
should expect larger values for both Ṁp and τM. Indeed, accretion is two times as much
as that calculated in the model with open inner border. Positive torques arising from the
inner disk are also stronger and TD is reduced by 50%, i.e., the migration time scale is two
times as long.

When simulating a Jupiter-size body embedded in a disk with no initial gap, a density
indentation is gradually carved in. In order to skip the gap formation phase, an approxi-
mate analytical gap is sometimes imposed in the initial density distribution (see Kley 1999).
We performed three computations adopting this choice. In these cases a partial shrinking
and refilling of the analytical gap is observed. Besides, material drains out of the inner
radial border faster than it does in our standard models (no initial gap). Hence, the inner
disk depletion is intensified. With respect to standard models, we measure smaller accre-
tion rates and longer migration time scales. Discrepancies in both quantities stay below
20%, after 200 orbits. However, since the model outcomes indicate a tendency to converge
as the evolution proceeds, a more appropriate comparison should be made after a long-
term evolution.

Grid Resolution

Hardly any hydrodynamic calculation is strictly resolution independent. Thus, for
completeness we analyze in this section how our estimates on migration and accretion vary
because of different hierarchy resolutions. Two tests are presented for each of the quantities
Ṁp and TD. They are computed with the aid of grid systems G3 and G4 and then results are
tested against those calculated with the less resolved hierarchy G2 (see Table 5.2). In this
way we aim at checking finite resolution effects in the radial and azimuthal directions and,
separately, those in the meridional direction. In fact, G3 and G2 have the same number of
grid points in the vertical direction but ∆R[G3] = 0.82∆R[G2] and ∆ϕ[G3] = 0.75∆ϕ[G2].
In the other test case (G4 against G2), R and ϕ gridding is unchanged while the number of
latitude grid points is nearly doubled.

With regard to the mass accretion rate (Fig. 5.9, left panel) differences are below 20%.
Though the number of grid cells in the accretion sphere is enlarged by a factor either 1.7 or
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Figure 5.9: Left panel. Comparison of the accretion rate Ṁp as computed on grid sys-
tems with different resolutions. Squares indicate that the ratios Ṁp[G4]/Ṁp[G2] are drawn,
whereas triangles refer to the ratios Ṁp[G3]/Ṁp[G2] (see text). Right panel. The same type
of comparison for the total torque TD experienced by the protoplanet. Squares and trian-
gles have the same meaning as before. At Mp = 10 M♁, we compare results from models
with the homogeneous sphere potential given in equation (5.6), when available (for this
particular mass value, see the comments in § 5.4.2).

2, no systematic tendency seems to arise from this test. Something different happens to the
total torque (right panel). In fact, while the increased resolution in the latitude direction θ
does not play any considerable role, the larger number of grid points in R and ϕ causes a
reduction of the total torque magnitude between 20 and 30%. This is not at all unexpected.
On one hand circumstellar disk spirals are better captured by a finer gridding in the radial
and azimuthal dimension. Thus Lindblad torques are accounted for in a more accurate
fashion. The Figure proves this to be especially true when the ratio q is small, because of
the diminishing wave amplitudes. On the other hand, due to the vertical exponential drop
of the density and the lack of temperature stratification, disk layers above the midplane
don’t contribute very much to TD. A finer resolution along the vertical dimension cannot
sensitively modify the total torque outcome.

5.5 Discussion

Here we devote some further comments to the differences between accreting and non-
accreting protoplanets and then to the effects of the vertical density structure on the grav-
itational torques acting on embedded objects.
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Figure 5.10: Midplane quantities (z = 0 or θ = π/2) azimuthally averaged around the pro-
toplanet for two simulations in which Φp = ΦST

p and Mp = 20 M♁. The solid line belongs
to the a non-accreting model, the dashed line to an accreting one. Left-Top: mass den-
sity. Right-Top: centrifugal acceleration. Left-Bottom: rotational velocity. Right-Bottom:
velocity component along the radial distance l (see § 5.5). All of the four quantities indi-
cate that the envelope is mostly pressure supported in the non-accreting case whereas it is
mainly centrifugally supported in the other.

5.5.1 Pressure Effects in Protoplanetary Envelopes

For the purpose of carrying out a local analysis in the vicinity of accreting and non-
accreting protoplanets, we introduce a cylindrical coordinate reference system {O ′; l, ψ, z}
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with its origin O′ coinciding with the planet position and the z-axis perpendicular to the
disk midplane. Hence, we will have that S2 = l2 + z2. The longitude angle ψ is counter-
clockwise increasing, and ψ = π points toward the star. Supposing that the flow nearby the
planet is stationary, neglecting fluid advection and viscosity, the Navier-Stokes equation
for the radial momentum reads:

w2
ψ

l
=
∂Φp

∂l
+

1
ρ

∂p

∂l
, (5.17)

wherewψ is the azimuthal velocity component around the planet. Excluding the particular
situation represented by a homogeneous sphere (eq. [5.6]), the first term on the right hand
side of equation (5.17) is positive (see Fig. 5.1). Recalling equation (5.2), we see that the
second term is proportional to the density gradient, which is negative, and therefore it
reduces the centrifugal accelerationw2

ψ/l. In Figure 5.10 we show some quantities, at z = 0,
averaged over the angle ψ, regarding the same simulations addressed in § 5.4.1 (Mp =
20 M♁ with Φp = ΦST

p ). From the top left panel one can realize that the mean density is
indeed higher in the non-accreting case (solid line) than it is in the accreting case (dashed
line), as it was argued in § 5.4.1 from the values in Table 5.4. In order to evaluate how much
the pressure gradient affects the left hand side of equation (5.17) in both cases, we plot the
average of such quantity (〈w2

ψ〉/l) in the top right panel of Figure 5.10. The centrifugal
acceleration is much smaller in the envelope of the non-accreting model (solid line) than
it is in that of the accreting one. Such circumstance is a clear indication that the envelope
is pressure supported in the first case. The behavior of the averaged velocities 〈wψ〉 and
〈wl〉 is shown in the two bottom panels. As expected in a pressure dominated flow, the
magnitude of both velocity components is smaller in the non-accreting model (dashed
lines).

5.5.2 Torque Overestimation in 2D Geometry

Gravitational torques exerted by a three-dimensional disk onto a medium- or low-
mass protoplanet are weaker than those generated by a two-dimensional disk. Miyoshi
et al. (1999) state that the total torque TD in 3D is 0.43 times as small as that in 2D. Some-
thing similar was found by Tanaka et al. (2002). Our fully non-linear calculations predict
that low-mass protoplanets have a migration rate an order of magnitude less in disks with
thickness than they have in infinitesimally thin disks. One of the main reasons for that re-
lies upon the vertical decay of the density, as one can demonstrate easily with a simplified
approach.

Let tz be the z-component of the gravitational torque exerted by a column of mass
Σ l dl dψ, located at distance l from the planet (see § 5.5.1). The surface density is defined as
Σ =

∫
ρdz. If fg is the force exerted by such mass distribution, projected on the equatorial

plane, then we can write
tz = Rp fg sinψ. (5.18)

The ratio of tz[3D] to tz[2D] is therefore equal to

χ =
fg[3D]
fg[2D]

=
l3

Σ

∫ +∞

−∞

ρ

(l2 + z2)3/2
dz. (5.19)
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Figure 5.11: Ratio of the
tree-dimensional to the
two-dimensional torque
exerted by a column of
material lying at a mid-
plane distance l from the
protoplanet (see § 5.5). The
upper x-axis is in units of
the disk semi-thickness
at the planet location:
H = hRp.

Since fg[3D] and fg[2D] are coherent in sign, χ is also equal to the ratio of |tz[3D]| to |tz[2D]|.
In order to quantify this quantity, we can assume a Gaussian mass density profile with a
scale height H , which is appropriate as long as no deep gap has formed. Thus

χ =
l3√
2πH

∫ +∞

−∞

exp
(
− z2

2H2

)
(l2 + z2)3/2

dz. (5.20)

The ratio χ as function of l is plotted in Figure 5.11 and it evidences how a two-
dimensional geometry overestimates the magnitude of gravitational torques acting on the
protoplanet. In the limit l2 � z2, χ converges to 1, which proves that only torques arising
from locations near to the planet (l � H) are magnified.

Though larger torque magnitudes do not necessarily imply faster migration speeds,
they can favor a larger mismatch between negative and positive torques and therefore
shorter τM.

5.6 Conclusions

On the background of the numerical computations of disk-planet interaction pre-
sented in CHAPTER 2 and IV, we have combined the full 3D geometry of a circumstellar
disk with a nested-grid technique in order to investigate in detail flow dynamics, orbital
decay, and mass accretion of protoplanets in the mass range [1.5 M♁, 1 M�]. Besides, we
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overcome the point-mass assumption by employing analytic expressions of the gravita-
tional potential derived from simple theoretical models of protoplanetary envelopes. Each
of them applies to distinct physical situations: when the envelope mass is negligible with
respect to the core mass; when the envelope is homogeneous and much more massive than
the core; when the envelope is fully radiative, and finally when it is fully convective.

Through a series of 48 simulations, we inspect the evolution and differences of pro-
toplanets represented by the aforementioned gravitational potentials. We analyze the be-
havior of both accreting and non-accreting objects. Furthermore, we evaluate physical and
numerical effects due to our standard set-up of the models. The computations clearly show
that to accurately determine the early physical evolution of planets three-dimensional ef-
fects have to be taken into account.

The main results of our studies can be summarized as follows.
Above the disk midplane the flow is nearly laminar only far away from the planet.

The region of influence of the planet extends well outside the Hill sphere and its bound-
aries are marked by vertical shock fronts. Past the shock, matter is deflected upward and
then downward. In some cases, a closed recirculation is also observed. In the disk mid-
plane, spiral waves around the planet are not as strong and tight as they appear in two
dimensions because of wave deflection in the vertical direction.

In the mass range of their applicability, Stevenson’s and Wuchterl’s gravitational po-
tentials produce flow structures, close to the planet, similar to those determined by a
smoothed point-mass potential. Migration times and accretion rates are alike. In contrast
models with the (unrealistic) potential of a homogeneous sphere yield different dynam-
ics though, as for τM and Ṁp, not much difference is observed for Jupiter and Earth-size
bodies.

Since the numerical accretion procedure might be considered somewhat arbitrary, we
ran several models in which the protoplanet does not accrete at all. Non-accreting mod-
els behave differently from accreting ones in a volume whose size is roughly comparable
with the Hill sphere. Within this region matter is pressure supported and thus a spherical
envelope builds up. Except for the case Mp = 20 M♁, the total torque TD exerted by the
disk is on the same order of magnitude as that measured in accreting models.

According to Ward’s theory (Ward 1997), the migration speed settles to a constant
value when the planet-to-star mass ratio q � 4×10−4. Our numerical results give a similar
trend at a slightly different magnitude though. Most of these simulations predict an in-
ward migration except the one where a 20 M♁, non-accreting, protoplanet is involved. In
the mass range [7 M♁, 15 M♁] migration speeds can be 30 times as slow as those predicted
by Tanaka et al. (2002) although, outside of this range, the agreement between our compu-
tational data and the type I migration by the same authors is remarkably good. We suspect
that this surprising outcome may be caused by the onset of non-linear effects appearing
around ten Earth’s masses, which conspire to give such long migration time scales. If cor-
rect, this much slower inward motion may help to solve the problem of the too rapid drift
of planets toward their host stars.

In agreement with studies on planet formation (Bodenheimer and Pollack 1986; Tajima
and Nakagawa 1997), the growth time scale shortens as the protoplanet’s mass increases.
The minimum is found at Mp = 20 M♁. Albeit the feeding process slows down as soon as
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angular momentum transferred by the planet to the surrounding material is large enough
to dig a density gap. Then, at Mp ≈ 1 M�, the accretion rate greatly reduces and the
growth time scale becomes consistently very long. We present an analytical formula for
the growth rate which may be useful for global studies in planet formation.

As long as migration and mass accretion are concerned, two-dimensional computa-
tions still yields reliable results when the mass ratio q � 10−4 (Mp � 30 M♁ ifM� = 1 M�).
In practice, 2D geometry is applicable whenever the Hill radius RH exceeds the 60% of the
local pressure scale height of the disk H . But for smaller masses three-dimensional calcu-
lations have to be considered.

The three-dimensional calculations presented here achieve a new level of accuracy by
using a sophisticated nested-grid technique. This numerical feature allows a global and
local resolution not obtained hitherto. However, similar to all of the previous calculations,
the models presented here have one principal limitation: the lack of an appropriate energy
equation. Because of this we could not couple the thermal and the hydrodynamical evo-
lution of the system. If one wishes to do that in three dimensions, the energy equation has
to include radiation and convective transfer. Yet, only with massive parallel computations
one can hope to pursue this goal.



I have seen wicked men and fools, a great many of

both; and I believe that both get paid in the end; but

fools first.

ROBERT LOUIS STEVENSON,
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1886





CHAPTER 6

BEYOND LOCAL ISOTHERMAL DISK

MODELS

In this final chapter we return to modeling disk-planet interactions by means of models
in two dimensions. However, in contrast to the computations presented in the preced-
ing chapters and all those available in the literature, the system will not be considered
locally isothermal. In other terms, also the thermal evolution of the protostellar disk will
be simulated. Nested grids are applied in order to investigate the global behavior of the
circumstellar disk along with the local thermal effects in the protoplanet environment. Al-
though only a simplified form of energy equation is solved, these simulations represent
another step forward in the field of planet formation and evolution.

6.1 Introduction

The history of numerical simulations in astrophysics has always been tied to the avail-
ability of computing resources and associated numerical algorithms. Computations of
planets in disks have had a similar fate.

Since the very first attempt of modeling a protoplanet interacting with its primitive
nebula by Miki (1982), two decades have passed. Seventeen years had to go by for tack-
ling this problem with the strength of new and more powerful tools (Kley 1999; Bryden
et al. 1999; Lubow et al. 1999). Revitalized by the mounting interest in extrasolar plan-
ets, boosted by seven years of uninterrupted new detections, the scientific community
has devoted an extraordinary effort to disk-planet interaction calculations that has grown
stronger and stronger in the last three years. A glance at the “Extra-solar Planets Bibliog-
raphy” (http://www.obspm.fr/encycl/bibli.html) is instructive.

Although the directions of investigation are diverse, according to the personal belief
of the “fundamental” processes ruling formation and evolution of planets, limitations and
restrictions represent an issue to deal with. As a matter of fact, numerical calculations
still lag behind our present knowledge of the possible physical effects occurring in those
systems. Thereupon, simplifying assumptions and prescriptions are always demanded.
Nonetheless, steps forward have been made to reduce their number.
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The track of all this work has adapted to this philosophy. We have performed the first
three-dimensional global computations of planets in disks; we have conducted the first
planet mass-dependent study, with extremely high resolution calculations, both in two
and three dimensions. We conclude this work by relaxing another approximation: that of
treating a disk as a locally isothermal system.

The literature is full of studies on accretion disk modeling, with various degree of
sophistication. And the most sophisticated ones usually adopt the 2D or 1+1D schemes1.
The reason for this resides in the difficulty of dealing with all the necessary ingredients in a
full 3D scheme. Numerical simulations usually involve a parameter study, because labora-
tory experiments and/or observations do not provide the required information. Thereby,
wasting thousands of hours of CPU time, with extremely detailed models based on poorly
known parameters, would be just insane. That’s why, until very recently, radiation (e.g.,
Dullemond et al. 2002), convection (e.g., Agol et al. 2001), magnetic fields (e.g., Matt et al.
2002) , mixture of gas and dust (e.g., Suttner and Yorke 2001), and chemical evolution (e.g.,
Markwick et al. 2002) have been approached via vertical r–z models. In this manner, at
least one can acquire a spectrum of possible approximate and restricted solutions.

In order to overcome the local-isothermal hypothesis, we introduce an energy trans-
port in 2D, (r–ϕ) models. We include all the (supposedly) major causes responsible for gen-
eration, transfer, and loss of energy in low-temperature circumstellar disk environments.
We take advantage of the small aspect ratio of the disk, and assume that all the radiation
transport is effective only in the vertical direction. Such restriction has been proved to
work reasonably well in accretion disks, away from the boundary layer (see, e.g., Pringle
1981). It heavily relies on the disk slimness assumption, thus it might still be inappropriate
in the local environment around a protoplanet. However, around there, the disk becomes
even thinner when the planet gravitational action is accounted for. Hence, the amount of
energy transported by radiation in the vertical direction still may be larger than that trans-
ported horizontally. This might not be the best kind of thermal description, nonetheless
it allows to investigate processes which have never been considered so far, i.e., the joint
thermo-hydrodynamics evolution of disk-planet interactions.

The outline of this chapter is the following. In the next section we introduce the phys-
ical formulation of the problem. Since the equations of hydrodynamics in cylindrical co-
ordinates have already been written down in CHAPTER 4, here we focus on the equation
for the thermal energy density and all the constitutive equations which are necessary to
solve it. Thus, the choice of the opacity table is discussed along with the issue of how the
disk scale height is consistently computed. Then, the artificial viscosity topic is addressed.
Section 6.3 concerns the numerical method utilized to solve the energy equation. Besides
this, a series of tests is presented, with the aim at checking the validity of the numerical so-
lutions provided by the method. In § 6.4 we specify the models’ parametrization and other
details. Section 6.5 describes some global properties of “Hot”, “Warm”, and “Cold” mod-
els with different masses. Section 6.6 deals with the discussion of the local flow around
protoplanets. In § 6.7 we report the results for mass accretion and gravitational migration.
Our conclusions are presented in § 6.8.

1Although some 3D simulations of MHD effects in accretion disks have also been performed.
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6.2 Physical Formalism

As mentioned in the previous section, we are going to tackle the problem of energy
transfer in accretion disks. Since solving the full set of equation in three dimensions (i.e.,
continuity, momentum, and an appropriate energy equation) is computationally difficult
at the moment (see § 6.1), as first approximation we go back to infinitesimally thin disk
models.

The reason for this choice is two-folded. On one hand, it allows affordable computa-
tional times; on the other, it permits to adopt a strategic assumption in writing the energy
equation, i.e., that the horizontal energy transport can be neglected compared to the ver-
tical one. In other words, in a 2D disk one can assume that radiation transport is only
effective along the direction perpendicular to the equatorial plane of the disk2.

Hence, let us describe the disk material via the same Navier-Stokes equation intro-
duced in § 4.2, where the working coordinate frame is a cylindrical one {O; r, ϕ}. Through-
out this chapter the notations are the same as those used in CHAPTER 4. The origin is lo-
cated at the center of mass of the star and the planet. From equations 4.2, 4.3, and 4.4, it
turns out that the unknowns of the problem are3 (Σ, ur, uϕ,Φ, P ).

As in the computations discussed before, we avoid dealing with the Poisson equation
and rather assume that the gravitational field is only determined by the star and the planet,
neglecting the self-gravity of the disk material itself. Thereby, we rely on a smoothed point-
mass gravitational potential of the type described in CHAPTER 4 and 5:

Φ = − GM�
|r − r�| −

GMp√
|r − rp|2 + δ2

, (6.1)

where r� and rp are the radius vectors indicating the positions of the star and the planet,
respectively. However, instead of imposing a smoothing length different on each grid
level, as done in CHAPTER 4, we set the parameter δ as a constant length, as already exper-
imented in CHAPTER 5 (see § 6.4 for quantitative details).

So far the set of equations has been closed by adding an equation of state which con-
nects the local gas (two-dimensional) pressure to the surface density via a local isothermal
sound speed cisos :

cisos = h

√
GM�
r

. (6.2)

Thus, the Mach number of the flow is considered constant throughout the system, con-
strained solely by the disk aspect ratio h = H/r (e.g., Kley 1999; Lubow et al. 1999; Miyoshi
et al. 1999; Nelson et al. 2000; Papaloizou et al. 2001; Tanaka et al. 2002; Masset 2002; Tani-
gawa and Watanabe 2002).

Only Kley (1999) and Tanigawa and Watanabe (2002) ran some simulations using a
polytropic equation of state of the type P = K Σγ . However, never an energy equation of
any kind has been taken into account.

2In principle, such an assumption can also be made in three-dimensional thin disks.
3More generally, the set of unknown quantities comprises mass density, velocity components, gravitational

potential, temperature, and radiation energy.



140 6.2. Physical Formalism

In the present calculations we use an ideal equation of state which directly ties the gas
pressure P to the thermal energy density (energy per unit area) E:

P = (γ − 1)E, (6.3)

where the adiabatic index γ is a constant.
If we suppose that disk material behaves as a perfect gas, then the temperature can be

retrieved from the ratio of the density to the pressure:

T =
(µmH

k

) P
Σ
, (6.4)

where µ is the mean molecular weight, mH is the hydrogen mass, and k the Boltzmann
constant. The adiabatic sound speed is given by

cs =

√
γ

(
k T

µmH

)
. (6.5)

In writing equation (6.3) we have implicitly assumed that radiation pressure Prad is
small compared to gas pressure, thus it can be neglected. Such hypothesis is connected to
the low temperatures we deal with (in fact Prad ∝ T 4) and can be checked afterward.

6.2.1 Energy Equation

Because of the employed equation of state (eq. [6.3]), now we have five unknowns and
four equations. Thus, an equation for E is necessary in order to close the system.

Equations for energy transport differ according to the processes that have to be in-
cluded for a correct description of the energy budget of fluid elements. In our case, we
suppose that a parcel of disk fluid can gain or lose thermal energy only because of flow
advection (due to the fact that the parcel itself is in motion), compressional work, viscous
dissipation (i.e., the work made by viscous shear forces that goes into heat), and dissipa-
tive effects due to radiation transport. In this sense, rather than strictly treating the transfer
of radiation in the disk, we will account only for the cooling effects that radiation causes.
Then, the energy equation takes the following form

∂E

∂t
+ ∇ · (E u) = −P ∇ · u + Υ − Λ. (6.6)

In equation (6.6) we indicated with Υ the dissipation function and with Λ the radiated
energy. In two dimensions, either of these quantities is an energy flux. We will soon
see that both functions are always positive, thereby the former acts as a heating source,
whereas the latter as a cooling term. In this study we do not consider irradiation from the
central star which is presumably an effective heating mechanism only in the outer parts of
circumstellar disks (see, e.g., D’Alessio et al. 1998), whose effects however are reduced by
small disk scale heights.
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For our numerical purposes, the function Υ can be directly computed from the com-
ponents of the viscous stress tensor (Mihalas and Weibel Mihalas 1999) Srr, Sϕϕ, and Srϕ,
whose expression is given in CHAPTER 4 (eqs. 4.6 through 4.8):

Υ =
1

2 ν Σ
(
S2
rr + S2

ϕϕ + S2
rϕ

)
+

2 ν Σ
9

(∇ · u)2, (6.7)

where ∇ · u is given in equation (4.9). With some algebraic computations it can be proved
that equation (6.7) is equivalent to equation (12) of Collins et al. (1998). The divergence
term in the equation arises because a three-dimensional definition of stress tensor S is
adopted. Since Srr, Sϕϕ, and Srϕ must be computed for the integration of the momen-
tum equations, equation (6.7) is the most straightforward way to calculate the dissipation
function.

In a full three-dimensional disk, the last term on the right-hand side of equation (6.6)
is equal to ∇ · F , where F is the frequency-integrated radiation flux:

F = −16σR

3κρ
T 3 ∇T. (6.8)

In the above equation σR is the Stefan-Boltzmann constant, κ is the opacity coefficient4, ρ
is the mass density, and T the gas temperature. As mentioned before, we will suppose that
the amount of energy transported by radiation in the vertical direction is much larger than
that transported horizontally, i.e., |Fr|, |Fϕ| � |Fz|. The validity of this statement holds as
long as the vertical extent of the disk remains very small compared to the disk extent in
the other directions. Thus, in a two-dimensional cylindrical disk we will have

Λ =
∫ +∞

−∞
∇ · F dz �

∫ +∞

−∞

∂Fz
∂z

dz. (6.9)

Since the vertical disk structure is not meant to be accounted for, it is possible to equate the
pressure scale height to the photospheric scale height and assume that all the radiation is
liberated at z = ±H . Thereupon, equation (6.9) becomes

Λ =
∫ +H

−H

∂Fz
∂z

dz = F (H) − F (−H) = 2F (H). (6.10)

In 2D disks it is useful to measure the emitted flux by means of an effective temperature:
F (H) = σR T

4
eff , therefore

Λ = 2σR T
4
eff . (6.11)

The factor 2 indicates that in a disk radiation escapes from both of its sides.
A simple relation between the midplane temperature and the emergent radiation flux,

i.e., a relation Teff = Teff(T ), can be found by writing equation (6.10) in the following form

Λ = 2
∫ H

0

∂Fz
∂z

dz = 2 [F (H) − F (0)] , (6.12)

4The opacity coefficient is a frequency-dependent quantity. However, when dealing with a frequency-
independent radiative transfer, opacity is integrated over the frequency range, by using weighing functions.
This process generates mean opacity coefficients such as, for example, Planck’s and Rosseland’s (see, e.g.,
Mihalas and Weibel Mihalas 1999).
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and then applying equation (6.8):

[F (H) − F (0)] = −4
3
σR

κρ

[
∂T 4

∂z

]H
0

≈ 4
3
σR

κρH

[
T 4(0) − T 4(H)

]
. (6.13)

In the inner parts of a circumstellar disk the inequality T 4(0) � T 4(H) generally holds
(e.g., Bell et al. 1997; D’Alessio et al. 1998), hence equation (6.13) yields

Λ ≈ 2σR T
4

(3/4) τ
, (6.14)

in which we introduced the optical thickness τ = κρH = 1
2 κΣ (we generally adopt a

Rosseland mean opacity). We notice that with the previous definition the total disk optical
thickness is 2 τ . From now on, the quantity T refers to the disk midplane temperature.

Equation (6.14) represents a fairly good approximation when the medium is optically
very thick, i.e., τ � 1. This is indeed the case in those regions of unperturbed accretion
disks which we simulate, because Σ is large enough. Yet, because of the action of massive
bodies, in our case deep density gaps form where material is very diluted and the disk
may become very thin. In addition there are zones, where the disk spirals interact with the
circumplanetary disk spirals, which can have very low densities. Such conditions make
equation (6.14) not applicable. Hubeny (1990) found a more rigorous relation between
the effective and midplane accretion disk temperature, which represents a generalization
of the gray model of the classical stellar atmospheres in local thermodynamic equilibrium.
According to Hubeny’s theory, in a circumstellar disk the following equality holds:

Λ = 2σR T
4

[
3 τ
8

+
√

3
4

+
εH
4 τ

]−1

. (6.15)

According to equation (6.15), the emitted flux is inversely proportional to τ in optically
thick disk portions, whereas it becomes proportional to τ in the opposite limit. The quan-
tity εH is equal to the ratio between the Rosseland and the Planck mean opacities. This
quantity can be also roughly interpreted as the ratio of total extinction (i.e., absorption plus
scattering coefficient) to the pure absorption coefficient: κext = κabs+κsc. As for it concerns
the computations we have carried out, we set εH = 1 because we neglect radiation scat-
tering (see § 6.3.1). Thus no distinction is made between the extinction and the absorption
coefficients.

Equation (6.15) mimics the radiative losses of both optically thick and optically thin
media, and therefore is very suitable to our purposes. In fact, it has been successfully
applied to many studies on accretion disks (Popham et al. 1993; Godon 1996; Collins et al.
1998; Huré et al. 2001).

6.2.2 Opacity Table

In order to calculate the disk optical semi-thickness τ , we adopt the opacity formulas
derived by Bell and Lin (1994) (see Fig. 6.1), as an improvement of those by Lin and Pa-
paloizou (1985). Eight temperature regimes are identified according to the dominant pro-
cesses active in each of them. Transitions between two confining regimes are smoothed,
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Figure 6.1: Rosseland opacity coefficient κ as function of the temperature for three different
values of the mass density ρ (from Bell and Lin 1994). The legend quotes the density
magnitude in g cm−3. One can realize, from the figure, that opacity is nearly independent
of the ρ up to 800 K. Afterward, κ becomes sensitive to ρ.

following the procedure described in Lin and Papaloizou (1985). Contributions from dust
grains, molecules, atoms, and ions are accounted for. Since we simulate a distance range
where disk material is generally relatively cold (below a few hundred Kelvin degrees),
dust opacity is crucial for an accurate estimation of radiative losses (Lin 1981). Because of
this, Bell’s opacity includes grain absorption as tabulated by Alexander et al. (1989).

However, for the sake of comparison we ran some test cases (see § 6.3.1) with a new
opacity coefficient developed by Dimitry Semenov and collaborators (2001, private com-
munication) and based on the improved grain opacity tables by Henning and Stognienko
(1996). They aimed at coupling gas and dust opacities, focusing on the temperature range
proper to protostellar disk environments.

In either case, the midplane temperature T and mass density ρ have to be provided in
cgs units. In turn κ = κ(T, ρ), has units of square centimeters per gram. We have explained
in CHAPTER 4 that in the infinitesimally thin disk approximation, dynamics variables are
vertically integrated. Thus, the mass density ρ is not directly available. It must be retrieved
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from the surface density and the disk semi-thickness H . For this purpose, we assume that

ρ =
Σ

2H
. (6.16)

In the next section we explain how the disk scale height H is calculated in a fashion such
to account also for the gravitational influence of the planet. This guarantees a more refined
and consistent modeling of the system.

6.2.3 Disk Scale Height

Inside a circumstellar disk it is natural to assume that material is in hydrostatic equi-
librium along the vertical direction (Pringle 1981; Frank et al. 1992). Let gz be the grav-
itational acceleration in the z-direction within the disk, then the hydrostatic equilibrium
reads:

P

Σ
= 2

∫ H

0
gz dz. (6.17)

The factor 2 is necessary because the midplane pressure sustains both sides of the disk.
In the preceding chapters we have used equation (6.17) to obtain the disk pressure

from the density and the pressure scale height, assuming that gz = GM�/(r2 + z2) and
omitting the planet gravitational attraction.

In the present study, we compute the pressure directly from the thermodynamics pro-
cesses occurring in the gas, thus we can use equation (6.17) to estimate the disk scale height
H in a consistent fashion. This quantity, in fact, is needed to obtain the mass density from
the surface density (see § 6.2.2). Since the left-hand side of equation (6.17) is equal to c2s/γ,
and thus an independent quantity, we can integrate the right-hand side in order to get
an implicit function of H . Furthermore, the effects due to the gravitational field of the
protoplanet can be included in this evaluation. If we set q = M�/Mp and s = |r − rp|,
equation (6.17) generates the implicit function

H2

2 r2
− q√

(s/r)2 + (H/r)2
=

r

2 γ

(
c2s

GM�

)
− q

(r
s

)
. (6.18)

Although there are no constraints on the ratio s/r, because with nested grid com-
putations that ratio can be very small, the aspect disk ratio H/r is smaller than one, by
working hypothesis, otherwise the 2D geometry would not be consistent. Therefore, the
second term on the left-hand side can be expanded in a binomial series in H/r (up to the
its second power), obtaining H as an explicit function:

H2 =
r

γ

(
c2s

GM�

)[
1
r2

+ q
( r

s3

)]−1

. (6.19)

We note that, in the limit q → 0 or s � r, equation (6.19) yields
√
γ H = cs/ΩK, as in

regular accretion disks. Close by the planet, i.e., in the circumplanetary disk where s �
r, the above relation reduces to

√
γ H = cs/

√
GMp/s3, which resembles the previous
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limit because the circumstellar orbital frequency is replaced by the circumplanetary one.
Rearranging the terms in equation (6.19), a more compact expression can be written:

H2 =
1
γ

(
cs
ΩK

)2 [
1 + q

(r
s

)3
]−1

. (6.20)

Equation (6.20) has a singularity at s = 0. This arises from the corresponding singularity
in the gravitational potential Φ, which is overcome by introducing the smoothing length
(eq. [6.1]). In our computations, for consistency reasons, the distance

√
s2 + δ2 substitutes

s in equation (6.19).

6.2.4 Artificial Viscosity

Non-linear effects in wave propagation inevitably lead to shock formation. This is in-
deed the case in our simulations as shown in the previous chapters. In ideal fluids shocks
are mathematical discontinuities. Therefore, in finite-differencing schemes, they must ex-
tend only over one or two grid points. In order to provide the correct jump conditions,
ahead and behind a shock front, dissipative terms have to be present in the equations. This
is usually done by introducing a non-linear viscous pressure otherwise known as artificial
viscosity. In contrast to the calculations presented in the other chapters, now it is possible
that stronger shocks develop, since the pressure is no longer proportional to the density.
Therefore, the physical viscosity might not be sufficient to provide the correct conditions
across shock fronts.

The classical way of dealing with artificial viscosity is that introduced by von Neu-
mann and Richtmyer back in 1950. This approach is based on the analysis of planar shocks
in one dimension. The extension to multidimensional problems has been proved to be ad-
equate enough as long as space geometry is Cartesian. Yet, the most rigorous treatment of
shocks in a multidimensional space, with a generic metric tensor, requires the definition
of an isotropic viscous stress tensor Q (Winkler and Norman 1986), whose components are
(Mihalas and Weibel Mihalas 1999):

Qij = µQ

[
(∇u)ij −

1
3
∇ · u

]
δij . (6.21)

Because of the Kronecker symbol δij , only the diagonal elements survive. We chose to
discard the off-diagonal tensor components because they may lead to artificial angular
momentum transport. The coefficient of artificial is so defined:

µQ = −L2 Σ min (∇ · u, 0), (6.22)

where L represents the length over which the shock is smeared. This is usually fixed to the
maximum grid spacing. The coefficient µQ is positive only for compression and zero for
expansion, so the artificial viscosity is large in shocks and negligibly small elsewhere.

Since the artificial viscous tensor acts as a pseudo-pressure, it affects both momentum
and energy equations through the terms ∇ · Q and Q · ∇u (meant as a tensor product), re-
spectively. Both equations are updated, by using the corrects componentsQ ij , as explained
in Stone and Norman (1992a). One side-effect is that Q can reduce the viscous time step by
a factor which is proportional to

[
L2 ∇ · u

]−1.
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6.3 Energy Equation Solver

The general numerical method employed to solve the hydrodynamical equations on a
hierarchy of nested grids, applied to simulations of disk-planet interactions, has been ex-
plained in CHAPTER 3. In contrast to previous calculations, thermal energy densityE now
appears as an independent variable. Here we outline how the source terms (right-hand
side of eq. [6.6]) are dealt with. In the framework of the nested-grid scheme, whenever
required, E is interpolated from a finer to a coarser grid and vice versa, according to the
procedures depicted in § 3.5 and § 3.6, respectively.

The energy equation (eq. [6.6]) is solved by means of a multi-step operator splitting
method. The first step takes care of the energy advection and this is done in the same
fashion as the advection of the other dynamical quantities, i.e., through the van Leer’s
algorithm. Viscous dissipation and radiative cooling are treated by means of a predictor-
corrector scheme, which is second-order accurate in time. This proceeds as follows:

Epred − En
∆tn

= Υn − Λn,

Λpred = Λ[Epred], (6.23)
En+1 − En

∆tn
= Υn −

1
2

(
Λn + Λpred

)
.

In the above equation we have indicated with the subscript n the quantity values from the
preceding sub-step and with ∆tn the computing time interval. The heating and cooling
terms are considered simultaneously because they have definite and opposite signs, and
in a stationary disk without planets, they determine the local energy budget (i.e., Υ � Λ).

During the course of the first experiments, it was discovered that, due to very high
pressures and large values of the flow divergence (in the wake of the circumplanetary spi-
rals), the compressional work could lower the thermal energy by a large amount. Con-
sequently, the predictor-corrector procedure applied to this equation term occasionally
resulted unstable, producing negative energy values. Therefore we decided to take ad-
vantage of equation (6.3) and use an analytic solution for updating the energy.

In the framework of the operator-splitting approach, in order to correct the energy
because of the gas compression/dilation, we have to solve numerically the equation

∂E

∂t
= −P ∇ · u, (6.24)

which becomes, with the aid of the state equation

∂E

∂t
= −(γ − 1)E∇ · u. (6.25)

Equation (6.25) has an analytic solution, given by E = E0 exp [−(γ − 1)∆t∇ · u], where
∆t is a time interval over which the divergence ∇ · u has not changed. Hence, thermal
energy density can be updated as follows:

En+1 = En exp [−(γ − 1)∆tn∇ · un]. (6.26)
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We notice that, expanding the exponential of equation (6.26) in a Taylor series and
keeping all the terms up to the second order in ∆tn, one gets

En+1 − En
∆tn

= −Pn∇ · un +
1
2

(γ − 1)Pn ∆tn (∇ · un)2, (6.27)

where Pn = (γ − 1)En. It easy to prove that equation (6.27) is equivalent to a predictor-
corrector scheme. The above equation also shows that the second-order correction always
increase the thermal energy.

Although the procedure in equation (6.26) is not so general as the predictor-correc-
tor algorithm, it is more accurate and unconditionally stable. Furthermore, contrary to
what may seem at first glace, from the computational viewpoint it is faster than the other
because it requires less mathematical operations.

6.3.1 Some Tests

We have tested the equation energy solver from both the numerical and the physical
point of view. Here we will present some of these tests.

The first test is intended to check whether the equation of energy furnishes physically
consistent results by comparing the computed temperature to that derived from some an-
alytical, significant solution of equation (6.6). If we deal with a stationary Keplerian disk
then the energy budget simplifies enormously. In fact, in a pure Keplerian flow both energy
advection and compressional work are negligibly small. Therefore equation (6.6) reduces
to (e.g., see Pringle 1981)

Υ − Λ = 0. (6.28)

From the same hypotheses, it follows that the dissipation function can be written in a
simple form

Υ = Σ ν
(
r

dΩK

dr

)2

=
9
4

Σ ν Ω2
K. (6.29)

In fact, in a Keplerian flow, (∂ur/∂r)2 and (ur/r)2 are both much less than (r ∂ΩK/∂r)2. If
we additionally assume that the disk is optically thick then the emitted flux can be approx-
imated to

Λ = 2σR T
4
eff � 2σR T

4

(3/8) τ
, (6.30)

as implied by equation (6.15), when τ � 1. Recalling that τ = 1
2 κΣ, then, equating

equation (6.29) and equation (6.30) yields

T 4 =
27
128

κ ν

σR
Σ2 Ω2

K. (6.31)

Now we assume that disk material has an opacity which we can be cast in the form

κ = κ0 T
2 cm2 g−1. (6.32)

Morfill et al. (1985) relied on this Kramer-type law with κ0 = 2 × 10−6 to investigate the
global properties of viscous accretion disks, extending over a wide range of astronomical
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units, and the consequences for the protoplanetary environment. Placing equation (6.32)
in equation (6.31), one finds

T =
√

27
128

κ0 ν

σR
Σ ΩK. (6.33)

Such expression allows a direct comparison with the temperature distribution obtained
from simulations, whose setup involves equation (6.29), equation (6.30), and the opacity
law 6.32.

In order to carry out a comparison of this kind, we simulated an unperturbed disk
(i.e., without any embedded body), with borders at 1 and 20 AU, surrounding a Solar-mass
star. The disk mass is MD = 0.03 M� and the kinematic viscosity is ν = 5 × 1016 cm2 s−1.
Both the initial surface density and temperature are constant: Σ(t = 0) = 197 g cm−2 and
T (t = 0) = 352 K. Once the system has reached a stationary state, the surface density is
expected to decay as 1/

√
r, because ν is constant. (Lynden-Bell and Pringle 1974). Indeed,

this is what one can observe in Figure 6.2 (left panel), where the azimuthally averaged,
computed surface density 〈Σ〉 (crosses) is fitted by the power-law

Σ = 300

√
5 AU
r

g cm−2. (6.34)

On the other hand, equation (6.33) states that T ∼ Σ ΩK ∼ 1/r2, or more precisely, T =
104 (5 AU/r)2 K. Figure 6.2 (right panel) shows how the calculated averaged temperature
〈T 〉 (crosses) fits to this analytic estimation.

For the sake of completeness, we repeated the same type of test in which, instead of
the above relation (eq. [6.32]), we chose the Kramer’s law κ = 6.6 × 1022 ρT−3.5 cm2 g−1,
as in Frank et al. (1992). From the physical viewpoint, it must be noted that the validity of
this formula is restricted to the inner parts of accretion disks and thus it does not suit to the
simulated radial extent as well as equation (6.32) does. Anyway, even in this circumstance,
we got a very good agreement between analytical and numerical results.

With the second type of test we intend to make sure that the algorithm is numerically
stable in the sense that it always converges to the same solution whatever the initial con-
ditions are. To do that we set up two simulations in which the full form of equation (6.6) is
solved. This means that the dissipation function is given by equation (6.7), the irradiated
flux is that in equation (6.15), and the Bell’s opacity coefficient (§ 6.2.2) is employed. The
disk radial domain is the same as before, but now the disk mass is smaller (MD = 0.01 M�)
and so is the viscosity (ν = 1016 cm2 s−1). The initial Σ is imposed to be constant and equal
to 66 g cm−2 for both models. As initial temperature, in one model T (t = 0) = 14.5 K,
while in the other T (t = 0) = 580 K. The “cold” as well as the “hot” model soon evolve to-
ward a stationary state. Figure 6.3 contains initial and stationary profiles of 〈Σ〉 (left panel)
and 〈T 〉 (right panel) of the two simulations. Clearly, in each of the cases, the solutions
match. This indicates that initial values play no role in the equilibrium solution achieved
after the system has relaxed. The relaxation time somehow depends on Σ(t = 0), whereas
scarcely any dependency on T (t = 0) is measured.

Finally, we examine some implications related to the opacity tables. A simulation was
performed with the same parametrization as the “hot” model discussed before (see blue
line in Fig. 6.3). But instead of choosing Bell’s opacity, this model is based on the new
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Figure 6.3: Simulations intended to check whether stationary solutions are connected to
the initial temperature and density. In this case the full energy equation is solved (eq. [6.6])
along with equation (6.7) and equation (6.15). The opacity table is that by Bell and Lin
(1994). Some additional model details are reported in the text. Averaged surface density
is displayed in the left panel and the averaged temperature in the right panel. The solid
blue and red lines represent the initial “cold” and “hot” distributions, respectively (they
coincide in the left panel). The two overlapping curves (thick black and thin yellow lines)
indicate the stationary solution for the two models.

tables by Semenov and collaborators (2001, private communication). The resulting surface
density distribution, at equilibrium, is hardly distinguishable from that in the left panel
of Figure 6.3. Indeed, not much difference is observed between the stationary averaged
temperature profiles, as demonstrated in Figure 6.4. The result is not surprising, since
already Liu and Meyer-Hofmeister (1997) tested the influence of different opacity tables on
the vertical structure of accretion disks and found that the change in disk structure, due to
an improved opacity coefficient, is hardly perceivable when compared to the uncertainties
connected with the general disk parameterization.

Hence, throughout these simulations we use the opacity coefficient by Bell and Lin
(1994), without any further inquiry on its reliability and/or applicability to the protostellar
environment conditions that we simulate. Yet, it is worthy to note that this opacity table
is well tested and has been extensively adopted in accretion disk studies (see, e.g., Godon
1996; Bell et al. 1997; Klahr et al. 1999; Armitage et al. 1999; Papaloizou and Terquem 1999;
Nomura 2002).

Equation (6.15) contains the quantity εH which can be interpreted as the ratio of extinc-
tion to the absorption coefficient. Yet, the physical conditions of the protostellar environ-
ment are such that it is allowed to neglect radiation scattering and write κext � κabs, and



CHAPTER 6: BEYOND LOCAL ISOTHERMAL DISK MODELS 151

Figure 6.4: Comparison between two protostellar disk models which differ only on the
choice of the opacity tables. The solid blue line is produced by the model run with Bell’s
opacity formulas (Bell and Lin 1994), whereas the thick black line comes from the model
executed with the new opacity tables by Semenov and collaborators (2001, private com-
munication). The temperature is slightly larger in this second case with respect to the first
one. Discrepancies generally stay within 20%. In all of the simulations we will present
hereafter, the quantity εH (see eq. [6.15]) is set to one. The reason for this is shown in this
plot. The thin yellow line belongs to a simulation in which opacity by Semenov et al. was
employed and εH computed as κext/κabs. No differences exist with the model where the
postulate εH = 1 is made.

hence εH � 1. As proof of this, one calculation was executed by including εH = κext/κabs,
in equation (6.15). The resulting temperature is shown in Figure 6.4 as a thin yellow line.
Obviously, the hypothesis εH = 1 is quite correct in our applications.

6.4 Model Parameters

Model parametrization deserves more attention in these computations than it did in
the simulations presented so far. The reason for this resides in the nature of the opacity
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coefficient (see § 6.2.2). In fact, κ is always in cgs units, because it is mostly derived by
means of experimental measures. Hence, lengths and masses are to be fixed in physical
units and consequently outcomes will not be scale-free, as they were before.

As in previous simulations, we model a circumstellar disk, orbiting a one-solar-mass
star (M� = 1 M�), whose radial borders are rmin = 2 AU and rmax = 13 AU. The ini-
tial mass enclosed in this domain is MD = 4.8 × 10−3 M�, i.e., 0.01 M� within 20 AU
(D’Alessio et al. 1998). That is 1.37 times as much as the value assumed in the other chap-
ters. Since in stationary Keplerian disks, the energy budget is regulated by the balance
between viscous dissipation and radiative losses (eq. [6.28]), the magnitude of viscosity
may play an important role. Hence, we will cover three viscosity regimes: ν = 1.0 × 1015,
5.0 × 1015, and 1.0 × 1016 cm2 s−1 (Bell et al. 1997). Besides physical viscosity, we consider
an artificial viscosity, which is active only in compression regions, according the tensor
formulation explained in § 6.2.4. The length L is chosen to be equal to the maximum grid
spacing, on each grid level (Stone and Norman 1992a; Ziegler 1998). The mean molecular
weight is µ = 2.39 (Morfill et al. 1985) and the adiabatic index γ = 1.4.

Figure 6.5 shows some averaged quantities of non-perturbed, stationary disks with
the aforementioned characteristics. To distinguish among the different viscosity (and tem-
perature) disk regimes, models will be generally referred to as “Hot” (H), “Warm” (W),
and “Cold” (C).

An embedded planet is placed at rp = 5.2 AU (ϕp = π). We make the same choice
as in CHAPTER 5, and force the planet position to coincide with a main-grid cell corner,
by fixing an adequate value of the planet-to-star distance a. In order to obtain reliable
outcomes in the two-dimensional geometry, we consider a planetary mass range extending
from Mp = 33 M♁ to Mp = 1 M� or, in terms of mass ratios q = Mp/M�, we have models
with q = 1×10−4, 2×10−4, 5×10−4, and q = 1×10−3. It was demonstrated in CHAPTER 5
that, concerning gravitational torques and mass accretion, 3D models agree quite well with
2D ones in that mass range.

However, since the disk thickness may be sufficiently small, even for low protoplan-
etary masses (see eq. [6.20]), we go as far as to simulate an additional C-model with
Mp = 20 M♁. Figure 6.6 shows the disk semi-thickness in the planet’s neighborhood,
proving that the condition H � RH locally holds.

The smoothing length δ is set to 2 × 10−2 RH (see eq. [6.1]). All of the models are
executed in an accreting and a non-accreting mode. When accretion onto the planet is
allowed, the procedure outlined in § 4.3.2 is utilized. The evacuation parameter κev is
equal to 5, as in CHAPTER 4, whereas κac = 0.1RH. The latter length should be short
enough to let the whole accretion procedure to be almost independent of κ ev, as proved by
Tanigawa and Watanabe (2002).

Figure 6.7 illustrates the influence of the domain radial extent (both inner and outer
one) for Jupiter C-models. Models provide quite consistent outcomes over the matching
domain. Differences exist only close to the inner border, due to inflow boundary condi-
tions. A smaller inner radius implies larger (Keplerian) fluid velocities to take care of.
Thus, because of the Courant condition, smaller time steps are used in the calculations if
one does not wish to lose resolution. For the example presented in Figure 6.7, since the two
computations have the same numerical resolution, the larger domain model is computed
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Figure 6.5: Some characteristics of radiative, unperturbed and stationary disks, as func-
tion of the kinematic viscosity. Radial boundaries are closed in order to achieve a strict
stationarity by preventing mass losses. The surface density drops as 1/

√
r. As long as the

total disk mass is independent of ν, Σ does not depend on it either (top-left panel). At
r = rp = 5.2 AU, the midplane temperature (top-right panel) varies form 50 to 150 K,
when ν is increased from 1015 to 1016 cm2 s−1. Differences between the highest and lowest
values, at radial boundaries, are even smaller. Disk effective temperatures (i.e., irradiated
energy to the 1/4 power) change only by a factor of roughly 1/2 (bottom-left panel). The
disk aspect ratio h = H/r is not strictly constant (bottom-right panel), slightly declining
as the radial distance increases. Variations are confined within 20, 30%.
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Figure 6.6: Because of the
gravitational field of the
embedded planet, the disk
scale height may reduce
considerably in its proxim-
ity, as prescribed by equa-
tion (6.20). This effect is
shown here in case of a
20 M♁ object within a C
disk model. For compari-
son, RH/rp = 0.027.

with a time step which is generally a half of that used in the other model.

6.4.1 Initial and Boundary Conditions

Initial conditions require the assignment of the three functions Σ(t = 0), E(t = 0),
and u(t = 0) that we suppose to be axi-symmetric because we start from a stationary
disk. However, instead of choosing the initial energy density, we prefer to fix the initial
temperature and retrieve E via equations (6.3) and (6.4).

The theoretical surface density profile of a stationary accretion disk, with constant ν,
is a power-law of the radial distance r (Lynden-Bell and Pringle 1974), which was also
numerically demonstrated in § 6.3.1. Thus, as starting density distribution for our simula-
tions, we set

Σ(t = 0) = Σ0

√
rp
r
. (6.35)

where Σ0 is determined by the disk mass value MD. Calculations are carried out for three
different viscosity magnitudes, which imply three temperature regimes (see Fig. 6.5) in the
protostellar environment. According to them, the initial temperature distribution is fixed.
The behavior of the profiles in top-left panel of Figure 6.5 can be roughly reproduced by
the power-law

T (t = 0) = T0(ν)
(rp
r

)1.8
. (6.36)

The initial temperature at r = rp is given in Table 6.1 for the three values of ν. Finally, the
initial circumstellar flow u(t = 0) is a Keplerian one, corrected for the grid rotation.
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Figure 6.7: Average surface density (left panel) and temperature (right panel) profiles
belonging to two Jupiter-mass test models which differ only by the extension of the radial
domain. The solid line refers to a model for which rmin = 1.3 AU and rmax = 20.8 AU
(MD = 7.5 × 10−3 M�), whereas the dashed line represents a standard radial domain
model ([2, 13] AU with MD = 3.5 × 10−3 M�). The kinematic viscosity corresponds to
those employed in C-models.

As for the boundary conditions, all models are run with a partially open inner radial
border and a reflective outer one. Thus, matter is free to flow out of the computational
domain, at r = rmin, but the opposite is not allowed. This is the same expedient invoked
in CHAPTERS 4 and 5 to artificially mimic the mass accretion toward the central star and
avoid spurious wave reflection at the inner domain edge, which is the closer to the planet.
The flow field is Keplerian both at rmin and rmax: u = [0, r (ΩK − Ωp)].

6.4.2 Numerical Specifications

Numerical issues have been presented in detail elsewhere, in the present chapter and
in preceding ones. Here we intend to give only some further specifications. As in CHAP-
TER 4, the basic computational mesh is made of Nr × Nϕ = 143 × 423 (ghost cells in-
cluded). Subgrids are all 64 × 64. All of the computations are based on a five-grid hierar-
chy. Thus, the finest resolution ranges from 1.3 × 10−2 (if Mp = 1 M�) to 3.4 × 10−2RH (if
Mp = 20 M♁), where RH = a (q/3)1/3 is the planet’s Hill radius.

Although we have not implemented a very sophisticated energy transport treatment,
these simulations take between 35 and 40% longer than those discussed in CHAPTER 4 for
equal-size grid hierarchies.
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Table 6.1: Values of the initial temperature as function the three values of the kinematic
viscosity. Temperatures are sampled at r = rp = 5.2 AU (T0), r = rmax = 2.1 AU ( Tmax),
and r = rmin = 13 AU ( Tmin).

ν [cm2 s−1] T0 [K] Tmax [K] Tmin [K]
1.0 × 1015 50 180 13
5.0 × 1015 110 235 22
1.0 × 1016 150 295 26

Figure 6.8: Average surface density (left panel) and temperature (right panel) in Jupiter-
mass models after 240 orbital periods. By this evolutionary time, models have settled on
a quasi-equilibrium state. The different profiles refer to different values of ν, as indicated
in the legends. The density gap, in the C-model (ν = 1015 cm2 s−1), is more than an order
of magnitude deeper (long-dash line) than it is in the other models. The temperature gap
follows the same trend, though differences are somewhat less pronounced.

6.5 Global Model Properties

First of all we examine the behavior of global quantities for some selected models. Fig-
ure 6.8 shows both the averaged surface density and temperature in Jupiter-mass computa-
tions with different kinematic viscosity. We note that matter (left panel) is more uniformly
distributed in the H- (solid line, ν = 1.0 × 1016 cm2 s−1) and W-model (short-dash line,
ν = 5.0×1015 cm2 s−1), with respect to the C-model (long-dash line, ν = 1.0×1015 cm2 s−1).
The density gap is not very deep and actually looks like a depression, because of the larger
viscosity coefficient and the depletion of the inner disk. Actually, these two effects have
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a common cause. On one hand, in fact, a large viscosity prevents the formation of wide
and deep gaps, as will be soon clarified. On the other hand, a large viscosity facilitates the
inner-disk depletion, since ṀD = −3π ν Σ (Lynden-Bell and Pringle 1974).

In contrast, in the Jupiter-mass C-model a well-defined and deep gap is carved in,
where the density is more than an order of magnitude lower than it is in the other two
models. Since material removed from gap regions is disposed at short distances, due to
the small damping length of the waves launched by the secondary, gap shoulders have
very high densities. Some authors have argued that these density enhancements might
trigger planet formation. If so, low viscosity disks should be more efficient in doing that.
The density peak in the middle of the gap is the signature of the circumplanetary disk.
The accumulation of material around the protoplanet in these models is highly enhanced
by the fact that no accretion is permitted onto the planet. When accretion is also accounted
for, the local density value at the planet location can become up to two orders of magnitude
smaller than that attained in non-accreting models (see § 6.6).

As it was to expect, a temperature gap accompanies the density gap (right panel,
Fig. 6.8). Also in this case the most extreme situation is represented by the C-model, where
temperatures drop below 20 K. Anyway, the general trend of temperature distributions is
such to allow 30, 40 K difference between temperatures in H- and C-models.

Global views of both density and temperature 2D-distributions are displayed in Fig-
ure 6.9. The top row illustrates the surface density, while the bottom one shows the tem-
peratures. From the density maps one can see that disk spirals get closer to each other
toward the outer border of the domain. In fact, circumstellar spirals propagate at a ve-
locity equal to the sound speed, which is proportional to

√
T (see eq. [6.5]). Thus, the

propagation velocity reduces as r increases and faster waves overtake slower ones. Past
the gap region, temperature decays more rapidly in the C-model (Fig. 6.8, right panel),
hence this phenomenon is more evident.

Shifting toward smaller masses, one realizes that the gap is gradually refilled. This is
visible in Figure 6.10, where non-accreting C-models of different mass are compared. At
Mp = 0.1 M�, the gap is completely filled and does not exist any longer. The striking
thing to notice is that at Mp = 0.2 M� however, a density trough is not only still present
but it is also fairly deep. Henceforth, we can conclude that the non-linear terms in the disk-
planet interaction, responsible for the gap formation, cease to exercise their role between
Mp = 0.1 M� and Mp = 0.2 M�. The standard criterion to open a gap in a disk require
two conditions (Lin and Papaloizou 1985, 1993). The first is a shock formation condition
given by: (

Mp

M�

)
> 3

(
H

r

)3

= 3h3, (6.37)

i.e., the Roche lobe must be larger than the disk scale height. Because of planet’s gravity
(see eq. [6.20]) and the low temperatures established in gap regions, this condition is al-
ways fulfilled when Mp � 0.2 M�. However, equation (6.37) is not satisfied by H-models
with Mp � 0.1 M�. The second condition concerns the requirement that tidal torques
exceed viscous torques and reads (

Mp

M�

)
>

(
40
R

)
, (6.38)
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Figure 6.10: Left Panels. Averaged surface density and temperature in C-models (ν =
1015 cm2 s−1) with different masses: Mp = 0.5 M� (solid line), Mp = 0.2 M� (short-dash
line), and Mp = 0.1 M� (long-dash line). Right Panels. 2D-distribution of the surface
density (top) and temperature (bottom) of a C-model with Mp = 0.2 M�. The density
is scaled linearly, while temperature is scaled logarithmically. Conversion factors are the
same as in Figure 6.9.

where R = r2 ΩK/ν is the Reynolds number. The right hand side of equation (6.38) is
proportional to ν and in our case goes from ≈ 4 × 10−3 (H-models) to ≈ 4 × 10−4 (C-
models). Thereby, we should not obtain gaps in any of the H-models. Figure 6.8 (solid
line) decently agrees with this prediction, since only a trough is dug in H- and W-models.
However, condition 6.38 is partly violated in the low-viscosity regime (Fig. 6.10), because
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Table 6.2: Ratio of the minimum density in the gap to the density at the gap’s taller shoul-
der (rounded to the first significant digit). Values are recovered from the azimuthal aver-
age of Σ around the star. The letters “NG” stand for “No Gap”. The symbol “�” appear
whenever at least one of criterion 6.37 and 6.38 is not fulfilled (N.F.).

C-MODELS H-MODELS
Mp/M� ACC. NON-ACC. N.F. ACC. NON-ACC. N.F.

1.0 < 0.01 < 0.01 0.6 0.8 �
0.5 0.06 0.2 0.9 NG �
0.2 0.3 0.4 � NG NG �
0.1 0.6 NG � NG NG �

0.06 0.8 NG � �

a clear gap is visible for the Mp = 0.2 M� case. One reason why the mentioned criterion
could not perfectly apply to our calculations resides in the fact that it was derived for
simple polytropic disks, while we simulate also the thermal evolution of the system. In
Table 6.2 we report the gap occurrence and depth for all of the models.

As regards the circumstellar disk spirals, only feeble traces are left. Temperature
distributions behave similarly, though large-scale signatures due to the planet are even
weaker. As explained further in this section, the absence of global disk features produced
by an embedded body invalidates direct imaging observations as a detection tool in the
intermediate-mass range, i.e., around a few times of Uranus’ mass.

From the thermal point of view, we can notice that the optical thickness of the models
is generally larger than one, throughout the computational domain (Fig. 6.11, left panel).
The averaged τ stays above 1 also at the outer disk (computational) edge. This is in agree-
ment with what was found for accretion disks around T Tauri stars (D’Alessio et al. 1998).
The density and temperature gap reflects in a similar feature in the distribution of τ (as
shown in Fig. 6.11). Nonetheless, even within the gap region, material is generally opti-
cally thick (τ � 1). The exception is represented by the C-model. In this case, the central
parts of the gap have an optical thickness around 0.01 (see Fig. 6.11, right panel). The most
diluted portions of the gap, situated where the circumplanetary disk merges into the gap,
have values of τ on the order of 10−2, 10−3.

Finally, we give a look at the emitted flux Λ, computed according to equation (6.15)
(see Fig. 6.12). From the observational point of view, disk gaps could represent a probe for
protoplanet detection. In fact, this is by far the most extensive imprint that a planet leaves
on a circumstellar disks. Prospective studies on observability of gaps due to Jupiter-mass
protoplanets, have already been presented by Wolf et al. (2002), and speculations on a
developing gap around the T Tauri star5 TW Hya have already been reported by Calvet
et al. (2002). Here we do not intend to address the issue of whether gaps (or disk inhomo-
geneities in general) are really observable or to what extent they are. However, we have
to notice that a necessary but not sufficient condition is that they must be wide and deep

5Actually, claims have been made (Brittain and Rettig 2002) that there exists a density gap also in the disk
surrounding Herbig AeBe star HD141569.
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Figure 6.11: Circumstellar disks are usually very optically thick. This plot shows that this
is generally the case even when a disk contains a Jupiter-mass bodies. The line sequence
is the same as in Figure 6.8 (data refer to the same models). Left panel. Optical thickness
averaged around the star. Only in the C-model, 〈τ〉 drops below 1. Right panel. Profiles
at ϕ � 0, i.e., 180◦ away from the planet location. As before, only in the gap region of the
C-model τ drops below 1.

in order for the flux emitted from this region to have the strongest contrast with respect to
the surrounding environment. From the lower panels of Figure 6.12 it appears clear that
low kinematic viscosities would favor this kind of investigation. Disk spirals are probably
too elusive to be captured by present-day ground-based instruments, despite the track ex-
hibited by the Mp = 1 M� H-model (top-left panel.) As mentioned earlier, we also argue
that it would seem rather unlikely to detect planetary masses smaller than Jupiter’s, by
means of these measurements. Center and right panels of Figure 6.12 display the emitted
flux in case of a Mp = 0.2 M� and Mp = 0.1 M� models. In both cases, the quantity
Λ furnished by H-models (top) looks quite smooth. Instead, some more inhomogeneities
appear in C-models (bottom).

6.6 Protoplanet Structure and Environment

Before the discussion of the smaller-scale flow features, i.e., those computed on higher
hierarchy levels, we shall return briefly to an hypothesis which now can be verified.

Equation (6.3) implicitly assumes that the radiation pressure is much smaller than
the gas pressure. Since there is little doubt about the validity of such assumption in an
unperturbed accretion disk, away from the boundary layer, we shall verify it in a region
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Figure 6.13: Ratio be-
tween the radiation and
the gas pressure, around
the protoplanet, for the
Jupiter H-model. The two-
dimensional map clearly
shows that physical con-
ditions, namely high den-
sities and not sufficiently
high temperatures, allow
to consider the gas pres-
sure as the only effective
one.

around a massive protoplanet and within the gap. This is done in Figure 6.13. Radiation
pressure usually dominates over gas pressure in regions of high temperatures and low
densities (Prad = aR T

4, where aR is the radiation density constant). We have seen that
inside the gap density may be very low, when Jupiter-mass planet are involved and the
viscosity is small enough. Yet, we have also showed that temperatures are extremely low
in those cases. In contrast, close to a Jupiter-mass body (s � RH), T can even be some
thousands of Kelvin degree, which may definitely boost radiation pressure. However,
the highest temperatures are campaigned (and actually caused) by the highest densities,
therefore the ratio between the radiation and gas pressure still lies much below one. A two-
dimensional plot of Prad/Pgas is illustrated in Figure 6.13 for a Mp = 1 M� H-model. The
same dynamical range results from (both accreting and non-accreting) W- and C-models.

6.6.1 Accreting Models

In this section we will restrict to the discussion of accreting H- and C-models, while
non-accreting counterparts will be examined in § 6.6.2.

Figure 6.14 indicates that, inside of the Roche lobe, the general aspect of the flow
circulation around 1 M� and 0.1 M� protoplanets resembles that obtained with local
isothermal models in two dimensions (CHAPTER 4). However, specific characteristics of
the flow do differ. A circumplanetary disk, extending approximately over the entire Roche
lobe, can be unambiguously distinguished for both masses and viscosity regimes. The
mass of such sub-disks around one Jupiter-mass protoplanets, within the 80% of the Hill
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Figure 6.14: Density distribution and velocity field aroundMp = 1 M� (upper panels) and
Mp = 0.1 M� (lower panels) models. Right panels refer to H-models (ν = 1016 cm2 s−1)
whereas left ones refer to C-models (ν = 1015 cm2 s−1). In each panel, color scales are
logarithmic. In the units used in the color bar, −3 corresponds to Σ = 328.7 g cm−2.

radius, is 1.03 × 10−5 M� in the H-model and 5.36 × 10−6 M� in the C-model. As regards
calculations withMp = 0.1 M� planets, the mass measured in the sub-disk of the C-model
is 4.03 × 10−6 M�, while the amount is nearly two times less in the H-model. It is worthy
to note that, considering the whole set of accreting models, the ratio of the sub-disk to the
planetary mass is always between ≈ 5 × 10−6 and ≈ 5 × 10−5.

The azimuthal average of the surface density distribution around the planet, inside



CHAPTER 6: BEYOND LOCAL ISOTHERMAL DISK MODELS 165

Figure 6.15: Average surface density performed around a Mp = 1 M� (left panel) and
Mp = 0.1 M� (right panel) protoplanets. Red and blue profiles refer to the H- and C-
models, respectively.

Table 6.3: Parameters that enter equation (6.39). This curve is a linear best-fit of the aver-
aged density 〈Σ〉 computed inside of the Hill sphere.

C-MODELS H-MODELS
Mp/M� 〈Σ〉0 [g cm−2] a1 RANGE 〈Σ〉0 [g cm−2] a1 RANGE

1.0 2.92 × 102 −4.4 [0.2, 1.0]RH 2.14 × 102 −2.3 [0.2, 1.0]RH

0.5 1.59 × 102 −2.0 [0.2, 1.0]RH 1.35 × 102 −1.3 [0.2, 1.0]RH

0.2 2.32 × 102 −1.5 [0.1, 1.0]RH 8.57 × 101 −0.5 [0.1, 1.0]RH

0.1 1.99 × 102 −0.9 [0.1, 1.0]RH 6.75 × 101 −0.2 [0.2, 1.0]RH

0.06 1.47 × 102 −0.4 [0.2, 1.0]RH

the Roche lobe, can be fitted by a relation of the type:

〈Σ〉 � 〈Σ〉0 ea1(s/RH), (6.39)

where s/RH ≤ 1 and larger than a threshold length (either 0.1 or 0.2 RH). The value of
〈Σ〉0 is reported in Table 6.3, along with the other fit parameter a1. One can see from this
Table that the exponential decay of the averaged density increases as Mp grows. For the
reference models, 〈Σ〉 is shown in Figure 6.15.

The presence of spiral features in the density distribution is a clear indication that the
circumplanetary flow is Keplerian-like. Indeed, decomposing the velocity field u into the
in-fall velocity (toward the planet) win and the rotational velocity (around the planet) wrot
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(see § 4.4.7 for details), it turns out that the former is more than an order of magnitude less
than the latter. In Jupiter-mass models, the rotational velocity drops nearly as 1/s because
of the action of the pressure gradient. As a consequence, the ratio ofw rot to the local Keple-
rian velocity decreases from 0.9, at s = 0.1RH, to ≈ 0.5, at s = 0.8RH. For 0.1 M� models,
this ratio declines at a similar rate. Moreover, in either case, the rotational regime is nearly
independent of the viscosity magnitude, in the range investigated by these computations.
Also the small magnitude of win implies some contribution from the pressure gradient in
supporting the orbiting material.

Comparing the right panels (C-models) of Figure 6.14 to Figure 4.5, one can clearly
see that spiral perturbations are less intense and more open. This is related to the lower
values of the Mach number in the circumplanetary flow, which governs the inclination
of the spiral wave with respect to the direction of the rotational motion. In fact, in local
isothermal models Miso �

√
q (rp/s)/h. If Mp = 1 M�, the Mach number drops from ≈ 8,

at s = 0.1RH, to 2, at s = 1RH. As comparison, in the circumplanetary disk displayed
in the upper-left panel of Figure 6.14, M lies between 2.4 and 1.4, whereas the low vis-
cosity Jupiter-model (upper-right panel) provides values between 3 and 1.5. The reason
for this mainly resides in the larger value of the sound speed (which is proportional to the
square root of the temperature: see eq. [6.5]). Hence, perturbations can travel faster and
are less distorted by the background motion of the flow. Besides this, the negative temper-
ature gradient within the sub-disk (see right panels of Fig. 6.16) prevents the Mach number
from diminishing too rapidly toward the outer regions of the circumplanetary disk. In the
Jupiter-mass models, illustrated in Figure 6.14, the azimuthally averaged M is approxi-
mately proportional to either s−0.1 (H-model) or s−0.2 (C-model). In the limit of a nearly
constant Mach number, wave perturbations assume the form of Archimedes’ spirals (see
§ 4.4.3).

Figure 6.16 shows the two-dimensional temperature distribution (left panels) around
Mp = 1 M� (top) and Mp = 0.1 M� (bottom) C-models. The surface plots indicate
that these distributions are rather symmetric with respect to the planet’s position, though
they are marked by weak spiral perturbations. In the Jupiter-mass case, maximum tem-
peratures range from roughly 1500 to 1000 K, whereas T reaches the value of the ambi-
ent medium (� 50 K) at the border to the Hill sphere. From the upper-right panel of
Figure 6.16 one can realize that the average temperature in the inner part of the Roche
lobe differ by less than a factor two for the two viscosity regimes. In the low-mass case
(Mp = 0.1 M�), the peak temperature is around one thousand kelvins and T ≈ 50 K
at s = RH, for both H- and C-model. Indeed, the average temperature profiles are very
similar in such models (see the lower-right panel).

Over the entire sub-disk domain, 〈T 〉 can be well fitted by the curve:

〈T 〉 � 〈T 〉s̄
( s̄
s

)ξ
, (6.40)

in which the length s̄ is set to 0.1RH, for convenience. Fitting parameters are reported in
Table 6.4, together with the validity range of the fitting function. From entries in the Table,
it turns out that the temperature generally falls off as 1/s.

Accreted matter would also contribute to raise the temperature of the circumplanetary
disk, via dissipation of gravitational energy into heat. This additional source of energy is
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Figure 6.16: Left Panels. Two-dimensional distribution, inside of the Roche lobe, of the
temperature around Jupiter-size (top) and 0.1 M� (bottom) accreting C-models. The value
T = 0.1 is equal to 1977 K. Right Panels. Since temperature distributions are quite
symmetric with respect to the planet position for both planetary masses, they can be az-
imuthally averaged. In these two panels, red profiles (upper ones) refer to the H-models
and blue (lower ones) to C-models.

not explicitly accounted for in these simulations 6. In contrast, assuming this contribu-

6Yet, if the size of the protoplanet were larger than the accreting radius κac, as probably is (see CHAPTER 5),
accreted matter would come to rest, and release all of its energy content, before it had been actually removed
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Table 6.4: Parameters that enter equation (6.40). This curve is a linear best-fit of the aver-
aged temperature 〈T 〉 computed inside of the Hill sphere. The column “RANGE” refers to
the validity range of the fit.

C-MODELS H-MODELS
Mp/M� 〈T 〉s̄ [K] ξ RANGE 〈T 〉s̄ [K] ξ RANGE

1.0 5.405 × 102 0.97 [0.05, 1.0]RH 9.534 × 102 0.96 [0.1, 1.0]RH

0.5 5.304 × 102 0.96 [0.05, 1.0]RH 8.425 × 102 0.95 [0.1, 1.0]RH

0.2 5.713 × 102 1.12 [0.05, 1.0]RH 6.713 × 102 0.90 [0.05, 1.0]RH

0.1 4.395 × 102 1.03 [0.05, 1.0]RH 4.868 × 102 0.79 [0.05, 1.0]RH

0.06 4.634 × 102 1.07 [0.05, 1.0]RH

tion as the only energy source around the planet, Tanigawa and Watanabe (2002) derived
temperature profiles of sub-disks with different sound-speed regimes, performing local
simulations with an isothermal equation of state. They found that the temperature would
scale as 1/

√
s, independently of the planetary mass.

We have to point out that, since radial transport of radiation is not taken into account
here, one should expect large temperature gradients to be smoothed out. But temperature
profiles are not extremely steep, at least in the range of distances covered by these models,
hence correction by radial transfer should not be dramatically relevant, as we are going to
demonstrate.

Radial Radiation Transfer in Circumplanetary Disks

Since the temperature gradient in the vicinity of a protoplanet may be quite steep, one
of the hypothesis used in § 6.2.1 might break down locally. We refer to the assumption
that the radiative flux in the vertical direction overwhelms those in the horizontal direc-
tion. With a semi-analytical, local analysis it is possible to make an a posteriori check of
that hypothesis and shed some light over this matter. For simplicity we will suppose that
the temperature distribution has a cylindrical symmetry around the planet, which is rea-
sonable enough (see left panels in Fig. 6.16). Hence the total flux of energy transferred via
radiation is

Λ �
∫ +∞

−∞
∂Fz
∂z

dz +
∫ +∞

−∞
1
s

∂

∂s
[s Fs] dz = Λz + Λs, (6.41)

where s is the distance from the planet. The two terms on the right-hand side can be
written as

Λz � −128σR

3κρ
T 4

H
, (6.42)

and

Λs � −ξ2 128σR

3κρ
H
T 4

s2
. (6.43)

from the system. Thus, also this energy source would have been implicitly considered in the computations.
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Equation (6.42) was obtained by setting ∂T/∂z ≈ T/H in equation (6.41), whereas equa-
tion (6.43) was derived by adopting equation (6.40), which we have checked to hold as
long as s̄ � s ≤ RH. The validity of the relation (6.9), used in § 6.2.1 (namely that Λ � Λz)
depends on the ratio of the left-hand sides of equations (6.42) and (6.43). Thus, this is the
quantity that must be evaluated:

|Λs|
|Λz|

= ξ2
(
H

s

)2

. (6.44)

According to equation (6.44), only when H < s the radiative cooling (eq. [6.15]) included
in the energy equation is also locally a good approximation. To cast the above ratio in a
more explicit form, one can use equation (6.20) in the limit s� r, which yields

(
H

s

)2

=
c2s
γ

(
s

GMp

)
. (6.45)

By using the form of the sound speed in equation (6.5), one gets

(
H

s

)2

=
(
k T

µmH

) (
s

GMp

)
. (6.46)

Therefore, because of the position made above on the temperature profile, equation (6.44)
becomes

|Λs|
|Λz|

= ξ2
(
k 〈T 〉s̄
µmH

) (
s̄

GMp

) ( s̄
s

)ξ−1

. (6.47)

Since the distance s is constrained by the applicability range of equation (6.40), the ratio
given by equation (6.47) is supposedly meaningful roughly for s ∈ [0.1RH, RH], for the
models considered here. With the appropriate values the ratio 6.47 becomes

|Λs|
|Λz|

= 0.145 ξ2
(

〈T 〉s̄
1000K

)(
M�
Mp

)2/3 ( s̄
s

)ξ−1

. (6.48)

Note that with equation (6.48) we evaluate equation (6.47) at a distance s from the planet
which shortens as Mp

1/3. Since the squared sub-disk aspect ratio grows as 1/Mp, the flux
ratio goes asMp

2/3. From Table 6.4, we see that |ξ−1| is between 0.03 and 0.12 in C-models
and between 0.04 and 0.21 in H-models. Therefore, the right-most term in equation (6.47)
can be considered as a unity term. Thus, around s ≈ s̄ = 0.1RH, |Λs| / |Λz| = 0.13 for the
Jupiter-mass H-model and a factor two smaller for the C-model. For the Mp/M� = 0.1,
the ratio increases to 0.2 and 0.3, respectively. Thereby, apart from regions closer than
∼ 0.1 RH to the accreting planet which cannot be investigated by these computations7,
radial radiation transport in the radial direction does not play a major role in the energy
budget of circumplanetary disk material. This is in agreement with the standard scenario
of the late stages of proto-Jovian disks (e.g., Coradini et al. 1989).
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Figure 6.17: Density distribution and velocity field around Mp = 1 M� (upper panels)
and Mp = 0.1 M� (lower panels) non-accreting models. Left panels show H-models
while right ones show to C-models Colors scale logarithmically in all of the panels. In the
units used in the color bar, −3 corresponds to Σ = 328.7 g cm−2.

6.6.2 Non-accreting Models

The overall flow structure and density distribution of non-accreting protoplanets are
drastically different from those of accreting ones. This can be clearly seen in Figure 6.17,

7The resolution limit of these simulations is 0.01 RH in Jupiter-mass models and 0.03 RH in 0.1 M� models.
Moreover, it must be pointed out that the actual size of protoplanets may extend beyond a tenth of the Hill
radius, as stated in CHAPTER 5.
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Figure 6.18: Average surface density (left panel) and temperature (right panel) around
1 M� protoplanets. Red profiles refer to the H-models whereas blue ones to C-models.

where we show the surface density and the flow field for Mp = 1 (upper panels) and
0.1 M� (lower panels) objects. The standard scenario of a Keplerian-like sub-disk is com-
pletely altered. This is a consequence of the large pressure gradient, built up by the large
density gradient, which allows matter to move on orbits not constrained by the centrifugal
balance. Therefore, the two-arm spiral feature is replaced by a more complex system of
multiple shock fronts across which material is first deflected toward the planet and then
ejected outward, as also indicated by the sign of the in-fall velocity win within the region.

The flow strongly diverges in a zone that has a radius equal to ≈ 0.4RH in the upper-
left panel (H-Jupiter model) and to ≈ 0.2RH in the upper-right panel (C-Jupiter model).
The average surface density inside of RH/3 is between one and two and a half orders
of magnitude larger than that measured accreting models. The mass collected in s ≤
0.8 RH is 1.97 × 10−4 M� and 4.30 × 10−5 M� for the Jupiter-mass H-model and the
C-model, respectively. Curiously, the mass ratio of the Galilean satellites to Jupiter is
2.07 × 10−4. The azimuthal average of the circumplanetary density, around Jupiter-size
objects, can be approximated to 〈Σ〉 � 1.2 × 104 (0.1RH/s)2.8 g cm−2 (H-model) and to
〈Σ〉 � 1.5 × 103 (0.1RH/s)

2.7 g cm−2 (C-model). The left panel of Figure 6.18 shows the
averaged surface density profiles around Mp = 1 M� objects.

A major difference can be also observed in the sub-disk circulation of low-mass mod-
els (Fig. 6.17, lower panels). In fact, the fluid rotates in a clockwise direction. In general,
the direction of rotation in sub-disks is determined by the balance among the Coriolis force
(which is proportional to the velocity and the mass of the planet), the pressure gradient,
and the gravitational attraction by the planet. Basically, referring to the lower-right panel
of Figure 6.17, the Coriolis deflects rightward fluid elements orbiting at r � rp. Therefore,
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Table 6.5: Parameters that enter equation (6.40) when applied to non-accreting models.

C-MODELS H-MODELS
Mp/M� 〈T 〉s̄ [K] ξ RANGE 〈T 〉s̄ [K] ξ RANGE

1.0 1.187 × 103 1.29 [0.05, 1.0]RH 1.909 × 103 1.11 [0.05, 1.0]RH

0.5 1.132 × 103 0.81 [0.05, 1.0]RH 1.458 × 103 1.00 [0.05, 1.0]RH

0.2 9.256 × 102 1.18 [0.05, 1.0]RH 9.335 × 102 0.76 [0.05, 1.0]RH

0.1 7.570 × 102 0.70 [0.05, 1.0]RH 6.242 × 102 0.59 [0.05, 1.0]RH

0.06 6.103 × 102 0.60 [0.05, 1.0]RH

it forces matter to cross the gap and to reconnect to the other side, while still moving in
a position upstream of the perturbed. In contrast, the term −dP/ds, supposedly positive,
opposes to reconnection upstream of the planet’s location but favors it downstream of the
planet. The prograde rotation that has been encountered so far indicates that the Corio-
lis deflection overwhelms the pressure gradient, that’s why reconnection across the gap
always occurs upstream of the planet. Evidently, in the low-mass models displayed in Fig-
ure 6.17, the pressure gradient drives material, flowing from upstream, past the planet’s
position and forces it to circulate clockwise around the perturber. Consequently, matter
entering the Hill sphere has an angular momentum anti-parallel (in the planet’s frame) to
that of the circumstellar disk. From 0.1 to 1 Hill radius, |〈wrot〉| increases roughly as

√
s.

The behavior of 〈Σ〉 resembles that of a power-law, as in Jupiter-mass cases, with powers
0.9 and 0.5, respectively for the H- and C-model.

The high pressure gradient is also caused by the large temperature gradient. Param-
eters for an analytic approximations of the average temperature 〈T 〉, according to equa-
tion (6.40), are reported in Table 6.5. Maximum temperatures, at s = 0.1RH, reach 1900 K
and 1200 K, in H- and C-models respectively (see also right panel in Fig. 6.18). At the limit
of the Roche lobe the temperature is somewhat higher than that measured in accreting
models and depends on the gap structure. They vary from ∼ 100 to ∼ 200 K. However,
The resulting temperature profiles are not much steeper than the one shown in § 6.6.1. Ac-
tually, toward low planetary masses they appear less steep. Performing the same check
as done in the previous section, it turns out that |Λs| / |Λz| is at most 0.3. Hence, even
in these circumstances the type of energy equation implemented here yields a reasonable
description of the thermal structure of sub-disks, down to ∼ 0.1RH.

6.7 Accretion and Migration

As done in the previous chapters for locally isothermal models, we estimate the mass
accretion rate of protoplanets by reducing the surface density around the planet, according
to a relation of the type ∆Σ/Σ = ∆t/τev (see § 4.3.2). This reduction process has a time scale
τev much smaller than the integration time step ∆t. This is of course very important, for
stability reasons. Figure 6.19 shows a comparison among the different types of simulations
conducted during the course of this work. In order to compare the estimates of Ṁp to
those from the other chapters, outcomes from isothermal models have to be rescaled by
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Figure 6.19: Compari-
son of the accretion rates
obtained from different
types of simulations. Red
and blue asterisks indi-
cate estimates provided
by the non-isothermal
models presented in this
chapter. Triangles and
squares represent the rates
furnished by local isother-
mal computations in two
(CHAPTER 4) and three
(CHAPTER 5) dimensions,
respectively. These last
two sets of values are
rescaled to match the disk
massMD = 4.8×10−3 M�,
used in non-isothermal
simulations.

the current disk mass (see § 6.4). In fact, here we are using a value of MD slightly larger
than that adopted in the other computations.

From Figure 6.19, one can see that C-models (blue asterisks) provide accretion rates
quite similar to those obtained from models with a fixed temperature distribution. This
occurrence is related to the quasi-Keplerian, circumplanetary flow observed in both kinds
of computations. H-models provide values of Ṁp (red asterisks) that, in case of Jupiter-size
planets, fall above the estimates from all of the other models. According to the accretion
procedure (see § 4.3.2), the larger the amount of matter contained in the accretion region
s = κac, the larger the accretion rate is. Within s = 0.1RH of a Jupiter-mass planet the mean
density computed in the H-model is roughly three times larger than that in the C-model
(Fig. 6.14). This is likely due to the larger fluid viscosity.

Figure 6.20 shows the total gravitational torque TD exerted by disk material onto ac-
creting planets, as the inverse of the migration time scale (TD ∝ 1/τM), according to the
procedure explained in § 4.4.5. The length β represents the radius of the circular region
around the planet’s position whose contribution is not accounted for. In the left panel of
Figure 6.20, this length is set equal to RH. Outcomes from C-models (and generally those
from H-models) compare well to the local-isothermal computations8. This is a clear indica-
tion that, in these viscosity regimes, thermal effects do not significantly alter the locations
of Lindblad resonances. Migration time scales in H-models differ by less than a factor two
from those in C-models. Only for Mp = 33 M♁, τM is appreciably longer. One may at-

8We should note here that local-isothermal calculations presented in CHAPTER 4 have the same viscosity
as C-models, which is a tenth of that adopted in H-models.



174 6.7. Accretion and Migration

Figure 6.20: Migration time scales plotted against the planetary mass. Notations are the
same as in Figure 6.19. Data points (asterisks) indicate the magnitude of the total gravita-
tional torque when this is computed excluding the contributions of matter residing inside
of the sphere s = RH (left panel) and within s = 0.5RH (right panel). Only accreting
models are considered.

tribute this to the absence of a gap in this model (see Table 6.2), and thus to the onset of the
Type I drifting regime.

In the right panel of Figure 6.20, we compute the total torque, reducing the value of
β to RH/2. Estimates provided by C-models do not change much because of this choice,
except for the 20 M♁ model. H-models are more sensitive to β: Jupiter-mass objects mi-
grate faster by slightly less than an order of magnitude; the 0.1 M� body drifts at a rate
30 times smaller. Some more insight can be gained by examining the function TD = TD(β),
reported in Figure 6.21 for Mp = 1 M� (upper-left panel), Mp = 0.1 M� (upper-right),
and Mp = 20 M♁ (lower-left panel). For Mp = 1 M� models, no significant net torque
arises from within the Hill sphere in the C-model (blue line). The situation appears dif-
ferent for the H-model (red line) because TD decreases to a minimum, around β = RH/2,
and then increases and changes sign around β = 0.1RH. At Mp = 0.1 M�, in either case,
dTD/dβ < 0, because of the positive torques arising within the sub-disk. In the C-model,
the total torque becomes positive when β � RH/2. In the 20 M♁ model, positive torque
are exerted down to ≈ 0.4RH and strong negative torques arise between ≈ 0.2RH and
≈ 0.4RH.

It is worthy to stress that the protoplanet’s volume may fill a fair fraction of the Hill
sphere, especially in the highest temperature environments (i.e., H-models). Thereupon,
migration rates plotted in the left panel of Figure 6.20 might be somewhat more meaningful
than those in the right panel.
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Figure 6.21: Inverse of the migration time
scale versus the radius β of the region ex-
cluded from the torque calculation. The
quantity v = ȧ/|ȧ| indicates the direc-
tion of the planet migration. Red lines re-
fer to H-models, blue lines to C-models.
Top-Left panel: Jupiter-mass models; top-
right panel: Mp = 0.1 M� model;
bottom-left panel: Mp = 20 M♁ C-model.

6.8 Conclusions

In this chapter we presented two-dimensional simulations of disk-planet interaction
in which, together with continuity and momenta equation, we solved also an energy equa-
tion that accounts for the major processes responsible for the energetic balance of fluid
parcels. Therefore, these computations allow to investigate the thermal properties of the
system. We restricted to the flat geometry in order to make some simplifying assumptions
on the radiative part of the energy budget, i.e., by treating the radiation transfer as a cool-
ing term. Two-dimensional approximation has been proved to work reasonably well as
long as the planetary mass is larger than a tenth of the mass of Jupiter. Because of this,
only planets more massive than 0.1 Mp have been simulated. We also considered differ-
ent temperature regimes by choosing different values for the kinematic viscosity. Both
accreting and non-accreting planets were investigated.
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From the global point of view and generally speaking, we can conclude that models
with a fixed temperature work decently well, though the details of the gap structure and
the shape of the disk spirals may differ. In particular, only with low viscosities a wide and
deep gap is carved in. Mean temperatures in the gap can be as low as 20–50 K, depending
on the viscosity regime.

From the local point of view, we have obtained the temperature distribution in circum-
planetary disks. These range from several hundred kelvin degrees, at distances � 0.1RH

from the planet, to values between 50 and 100 K, at the border of the Hill sphere. Az-
imuthal averages yield profiles dropping as the inverse of the distance from the planet. As
consequence of the thermal distribution in the sub-disk, the spiral features are weakened
and wrap around the planet more loosely. The density, averaged around the planet, shows
an exponential decay, which steepens as the planetary mass increases. Non-accreting mod-
els furnish a rather different scenario. Circulation in the Roche lobe is evidently not cen-
trifugally supported because of the large pressure built up mainly by the density gradient
and partly by the temperature gradient. Around Mp = 0.1 M�, clockwise rotation is
achieved as a result of the weakening of the Coriolis force with respect to the pressure
gradient term.

Accretion and migration rates are comparable to those evaluated with previous sim-
ulations. Once again we found that the material lying inside of the Roche lobe is able to
exert strong torques on the planet. Since the density gap is usually filled in H-models (see
Table 6.2), Type I migration regime might be valid starting from larger planetary masses
(see Fig. 6.20).
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ON THE CAT, THE COW, AND THE FRENCHMAN

I told about Louis Sixteenth that got his head cut off in France long

time ago; and about his little boy the dolphin, that would a been a

king, but they took and shut him up in jail, and some say he died

there.

”Po’ little chap.”

”But some says he got out and got away, and come to America.”

”Dat’s good! But he’ll be pooty lonesome – dey ain’ no kings here, is

dey, Huck?”

”No.”

”Den he cain’t git no situation. What he gwyne to do?”

”Well, I don’t know. Some of them gets on the police, and some of

them learns people how to talk French.”

”Why, Huck, doan’ de French people talk de same way we does?”

”No, Jim; you couldn’t understand a word they said – not a single

word.”

”Well, now, I be ding-busted! How do dat come?”

”I don’t know; but it’s so. I got some of their jabber out of a book.

S’pose a man was to come to you and say Polly-voo-franzy – what

would you think?”

”I wouldn’ think nuff’n; I’d take en bust him over de head – dat is, if

he warn’t white. I wouldn’t ’low no nigger to call me dat.”

”Shucks, it ain’t calling you anything. It’s only saying, do you know

how to talk French?”

”Well, den, why couldn’t he say it?”

”Why, he is a-saying it. That’s a Frenchman’s way of saying it.”

”Well, it’s a blame ridicklous way, en I doan’ want to hear no mo’

’bout it. Dey ain’ no sense in it.”
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”Looky here, Jim; does a cat talk like we do?”

”No, a cat don’t.”

”Well, does a cow?”

”No, a cow don’t, nuther.”

”Does a cat talk like a cow, or a cow talk like a cat?”

”No, dey don’t.”

”It’s natural and right for ’em to talk different from each other, ain’t

it?”

”Course.”

”And ain’t it natural and right for a cat and a cow to talk different

from us?”

”Why, mos’ sholy it is.”

”Well, then, why ain’t it natural and right for a Frenchman to talk dif-

ferent from us? You answer me that.”

”Is a cat a man, Huck?”

”No.”

”Well, den, dey ain’t no sense in a cat talkin’ like a man. Is a cow a

man? – er is a cow a cat?”

”No, she ain’t either of them.”

”Well, den, she ain’t got no business to talk like either one er the

yuther of ’em. Is a Frenchman a man?”

”Yes.”

”Well, den! Dad blame it, why doan’ he talk like a man? You answer

me dat!”

MARK TWAIN,

THE ADVENTURES OF HUCKLEBERRY FINN,

1885


