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Tag der mündlichen Prüfung: 27. November 2003
Dekan: Prof. Dr. H. Müther
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Zusammenfassung in deutscher Sprache

Inhalt dieser Arbeit sind die Untersuchung und der Vergleich von Wettbe-
werbsmodellen in Form sogenannter Konvektions-Diffusions-Gleichungen und
ihre Anwendung vorwiegend im Bereich der granularen Medien. Während die
qualitative Theorie der Reaktions-Diffusions-Gleichungen gut entwickelt ist, da
diese als Modelle immer da auftreten, wo Interaktionen zwischen verschiedenen
Spezies zusammen mit Ausbreitungsvorgängen untersucht werden, erscheinen
die hier betrachteten Systeme von Konvektions-Diffusions-Gleichungen als recht
neuartig. Sie stehen in enger Verbindung mit Viskositätsansätzen für Erhaltungs-
gleichungen, werden hier aber als eigenständige Systeme untersucht. Das Ziel der
Arbeit ist es, diese Gleichungen als Modelle für Phänomene insbesondere bei
granularen Medien zu rechtfertigen, z. B. durch Übergang von Partikelsystemen,
und ihre mathematischen Eigenschaften zu untersuchen.

Das Prinzip, welches besagt, dass “zwei ähnliche Arten nicht denselben Le-
bensraum bewohnen können”, war schon Naturforschern im 19. und frühen
20. Jahrhundert bekannt. So untersuchte beispielsweise A. Hansmann in
[Hansmann57] die beiden eng verwandten Vogelarten Phylloscopus trochilus und
Phylloscopus bonelli (Laubsänger) und führte die räumliche Trennung ihrer
Lebensräume auf den Wettbewerb zwischen beiden zurück. Der Beitrag von
V. Volterra ([Volterra26], [Volterra28]) prägte die theoretische Forschung auf
dem Gebiet der Koexistenz. Er konstruierte ein Modell für zwei Spezies, die um
eine begrenzt zur Verfügung stehende Nahrungsquelle kämpfen und zeigte, dass
fast immer eine der beiden Arten ausstirbt. Zusammen mit A. J. Lotka gab er
den heute bekannten Lotka-Volterra Wettbewerbsmodellen den Namen. Diese
Gleichungen lassen, abhängig von den Parametern, in ihrer allgemeinen Form
sowohl die Koexistenz als auch das wettbewerbsbedingte Aussterben einer Art
zu. Volterras Arbeit schuf die Voraussetzungen für die bedeutenden theoretischen
und experimentellen Studien von G. F. Gause (siehe [Gause34]), welcher im Jahre
1935 die ökologische Hypothese formulierte, dass zwei Arten mit vergleichbaren
Eigenschaften nicht denselben Lebensraum bewohnen können. Auch bei nur
geringfügigen Unterschieden wird eine der beiden Arten aussterben. Um diesem
Prinzip zu entgehen, muss demnach wenigstens eine der beiden Arten ihre
ökologische Nische wechseln oder erweitern. R. McGehee und R. A. Armstrong
([McGehee77]) schließlich stellten das Problem der Persistenz und Koexistenz
auf eine solidere mathematische Basis, gaben einen Überblick über verschie-
dene Wettbewerbsmodelle und führten strikte Beweise der bekannten Hypothesen.



x Zusammenfassung in deutscher Sprache

Das Prinzip des wettbewerbsbedingten Ausschlusses spielt heutzutage auf zahlrei-
chen Gebieten wissenschaftlichen Interesses eine unverzichtbare Rolle. Im Bereich
der Genetik beispielsweise ermöglicht erst die große Zahl unterschiedlicher Allele,
welche an ein und demselben Genlokus auftreten und in gewisser Weise um
ihr Überleben in der Population kämpfen, eine ausreichende Anpassung der
Art an wechselnde Umwelteinflüsse. Dies gilt als eine treibende Kraft für die
Evolution. Aber auch die wirtschaftliche Entwicklung beispielsweise wird seit
jeher offensichtlich durch Gesetze des Wettbewerbs geprägt. So liegt es nahe,
dass die Entstehung von Monopolen in den westlichen Industrienationen auf
ähnliche Mechanismen zurückzuführen ist. Es stellt sich die Frage, inwieweit
das Kartellrecht dieser Entwicklung entgegenzuwirken vermag, indem es durch
globale und nationale Bestimmungen den Wettbewerb reglementiert. Neben
der Garantie einer gewissen Sozialverträglichkeit ist hier das Hauptziel, die
Vielschichtigkeit des Marktes zu erhalten: Die Voraussetzungen für eine Koexi-
stenz mehrerer Konkurrenten sollen durch die Reglementierung geschaffen werden.

In dieser Arbeit lösen wir uns von der Anschauung des Wettbewerbs zwischen
Menschen oder Tieren und verallgemeinern das Konzept auf leblose Arten. Letz-
tere mögen chemische Substanzen sein, welche in einem Reagenzglas miteinander
reagieren, es kann sich aber auch um feste Teilchen handeln, die der Gravitation
ausgesetzt sind und sich in ihrer Bewegung gegenseitig beeinflussen. Vor allem
während der letzten Jahre hat der Bereich der granularen Materie in der Physik,
aber auch in der Mathematik, an Bedeutung gewonnen. Die Dynamik des Systems
wird hier durch die Interaktion von Partikeln verschiedener Größe, Form und
Oberflächenbeschaffenheit und unterschiedlicher spezifischer Dichte bestimmt.
Diese mischen oder entmischen sich und können unter dem Einfluss äußerer Kräfte
wie Schüttelbewegungen oder Vibration Muster ausbilden. In diesem Sinne stehen
also auch leblose Teilchen im Wettbewerb miteinander. Man könnte sagen, sie
kämpfen um eine Position in der gegebenen Geometrie. Die Modelle, die wir be-
nutzen, bestehen aus Systemen sogenannter Konvektions-Diffusions-Gleichungen.
Derartige parabolische partielle Differentialgleichungen wurden bereits auf dem
Gebiet der Konvektion von Flüssigkeiten untersucht, ihre Anwendung im Bereich
der granularen Medien ist jedoch weitgehend unerforscht. Wir vertiefen uns
daher in der vorliegenden Arbeit auf dieses Gebiet und untersuchen, inwieweit
die durch die Modelle getroffenen Aussagen mit Computersimulationen oder
Experimenten übereinstimmen. Zu diesem Zweck wurde ein Vielteilchenmodell
implementiert, welches das Schütteln eines mit granularem Material gefüllten
Behälters simuliert. Darüberhinaus hatten wir die Gelegenheit, im Labor von H.
Herrmann am Institut für Computeranwendungen I der Universität Stuttgart
selbst Schüttelexperimente durchzuführen und so unsere theoretischen Modelle zu
perfektionieren. Neben der Untersuchung von granularen Medien betrachten wir
im Rahmen dieser Arbeit auch verwandte Modelle, welche ähnliche physikalische
und biologische Sachverhalte beschreiben, zum Beispiel Sedimentation oder den
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Chemostaten mit Diffusion. Regelmäßig werden wir zu der eingangs gestellten
Frage zurückkehren, inwieweit die Beschreibung solcher Vorgänge mit Hilfe von
Konvektions-Diffusions-Gleichungen möglich ist.

Kapitel 2 dient vorwiegend der Herleitung eines Konvektions-Diffusions-Modells
aus elementaren mikroskopischen Gesetzmäßigkeiten, welche für die Dynamik in
Vielteilchensystemen verantwortlich sind. Wir beginnen mit einem Random-Walk -
Prozess, welcher die Bewegung einzelner Partikel in einem vertikalen Gefäß be-
schreibt und ergänzen die Gleichung Schritt für Schritt, um so vor allem dem Ein-
fluss unterschiedlicher Korngrößen und unterschiedlicher spezifischer Dichte auf
die globale Dynamik Rechnung zu tragen. Das Gefäß wird hierbei der Einfachheit
halber auf ein Intervall [0, l] reduziert, wobei l > 0 dann die Höhe des Gefäßes dar-
stellt. Auf diese Weise gelangen wir schließlich zu zwei verschiedenen Modellen.
Das eine erzeugt Segregation durch Auftrieb großer Teilchen. Das andere bewirkt
die Trennung der Medien durch den sogenannten Paranuss-Effekt, d.h. kleine Par-
tikel füllen die Lücken zwischen den größeren Körnern und gelangen so nach unten.
Beide Modelle haben die Form einer Konvektions-Diffusions-Gleichung

ut = (d(u)ux)x − f(u)x (1)

auf dem Intervall [0, l] mit Neumann-Randbedingung

d(u)ux = f(u) (2)

in x = 0, l, wobei die Komponenten des Vektors u die relativen Partikeldichten
bezeichnen und d(u) ein skalarer Diffusionskoeffizient ist, welcher von den
Dichten abhängt. Im folgenden Kapitel 3 werden derartige Systeme parabolischer
partieller Differentialgleichungen in der allgemeinen Form (1), (2) untersucht.
Wir zeigen, dass Lösungen unter relativ schwachen Voraussetzungen an die
Konvektionsfunktion f für alle Zeit existieren, dass die Gesamtmassen im Gefäß
erhalten bleiben und dass die Konzentrationen keine unphysikalischen Werte
außerhalb des Intervalls [0, 1] annehmen können. Darüberhinaus konvergieren die
Lösungen im Falle einer Mischung zweier Teilchenarten stets zu einem stationären
Zustand des Systems. Modelle der Form (1), (2) können schließlich auf den Fall
der sogenannten Replikator-Dynamik angewandt werden, welche aus dem Bereich
der Populationsdynamik bekannt sind. Für diesen speziellen Fall zeigen wir gar
Eindeutigkeit der Gleichgewichtszustände.

In Kapitel 4 lösen wir uns von den Neumann-Randbedingungen (2) und
ermöglichen das Ein- und Austreten von Substanz durch Deckel und Boden
des Gefäßes. Das sogenannte Zweipunkt-Randwertproblem schreibt Dirichlet-
Randbedingungen der Form

u(0) = a, u(l) = b

mit festen Konzentrationsvektoren a und b vor. Wir verallgemeinern einen
Existenzbeweis für stationäre Lösungen von B. Di Bella (siehe [DiBella02]) und
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zeigen Eindeutigkeit des Gleichgewichtes im skalaren Fall.

Sedimentation ist ein weiterer Prozess, welcher sich durch Gleichungen der Form
(1), (2) modellieren lässt. Wir adaptieren in Kapitel 5 Modellansätze von G. G.
Stokes, G. J. Kynch, G. K. Batchelor und J. H. Masliyah (siehe zum Beispiel
[Stokes51], [Kynch52], [Batchelor82.1], [Batchelor82.2] und [Masliyah79]) und
vergleichen die Resultate vor allem in Bezug auf die Trennung verschiedener
Korngrößen. In diesem Zusammenhang untersuchen wir auch die Auswirkungen
eines variablen Diffusionskoeffizienten und versuchen so, die Abhängigkeit der
Sedimentationszeit von der Gefäßhöhe zu berücksichtigen.

In Kapitel 6 analysieren wir ein allgemeines Chemostatmodell für zwei intera-
gierende Spezies und eine limitierende Nahrungsquelle. Die Konzentrationen der
Spezies und des Substrates werden dabei als homogen betrachtet. Im Vergleich
zu zahlreichen Arbeiten von G. J. Butler, S. B. Hsu oder S. K. Wolkowicz
(e.g. [Butler85.1], [Hsu94.1], [Wolkowicz92]) werden hier sehr allgemeine, monoto-
ne Nahrungsaufnahmefunktionen und Auswaschraten betrachtet. Für eine große
Klasse von Modellen wird die Konvergenz zu einem Koexistenzpunkt nachgewie-
sen. Die Erkenntnisse aus diesem System gewöhnlicher Differentialgleichungen be-
nutzen wir in Kapitel 7. Dort wird ein Chemostat mit inhomogenen Konzentra-
tionen modelliert, indem die Gleichungen aus dem vorigen Kapitel durch einen
Diffusionsterm ergänzt werden. Das resultierende System parabolischer partieller
Differentialgleichungen

st = D0(1− s)− uf(s) + δssxx,

ut = u [f(s)−D1] + δuuxx

erzeugt unter gewissen Umständen laufende Wellen auf der reellen Achse.
Dabei ist s die Konzentration des Substrates und u die der Spezies, welche
sich von s ernährt. Die monotone Funktion f bestimmt die Nahrungsaufnahme
der Lebewesen, während die Konstanten D0 und D1 den Zufluss von Substrat
bzw. die Mortalitätsrate der Art beschreiben. δs und δu sind die jeweiligen
Diffusionskonstanten.

Die analytischen Resultate vor allem aus den Kapiteln 2, 3 und 5 werden in
Kapitel 8 mit Simulationen eines zweidimensionalen Vielpartikelmodells ver-
glichen. Die Grundlage bildet ein Algorithmus, welcher für eine vorgegebende
Zahl kreisförmiger Teilchen unterschiedlichen spezifischen Gewichts und unter-
schiedlicher Größe die Newtonschen Bewegungsgleichungen löst. Diese Teilchen
kollidieren mit benachbarten Partikeln, die Stöße werden dabei als teilelastisch
angenommen. Im Laufe der Zeit verliert das gesamte System durch die Stöße
Energie und die Teilchen sinken zu Boden. In regelmäßigen Abständen erhält
das Material nun einen nach oben gerichteten Impuls. Dieser Prozess simuliert
die Schüttelbewegung des Gefäßes. Die Beobachtungen aus den analytischen
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Modellen bestätigen sich in der Teilchensimulation: Wir erreichen eine Trennung
der Medien, der Grad der Entmischung wird dabei in erster Linie durch Größe
und spezifisches Gewicht der Partikel beeinflusst. Kapitel 9 schließlich dient der
Untermauerung der Theorie durch Schüttelexperimente. Neben dem bekannten
Paranuss-Effekt beobachten wir vor allem auch die Ausbildung von Konvekti-
onszellen in vibrierendem granularem Material. Vergleichbar mit dem aus der
Konvektion von Flüssigkeiten bekannten Rayleigh-Bénard -Effekt bilden sich hier
Bereiche aus, in denen Teilchen bestimmter Größe und Masse an die Oberfläche
treten und an anderer Stelle wieder versinken.
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Chapter 1

Introduction

The idea that “two similar species are not likely to live together” was already
held by naturalists in the nineteenth and early twentieth centuries. The earliest
known reference is to a remark of A. Hansmann. In his paper published in
1857 (see [Hansmann57]), he describes the natural habitats of two closely allied
bird species, the willow warbler (Phylloscopus trochilus) and Bonelli’s warbler
(P. bonelli). He comes to the conclusion that their similarity forces these two
species to occupy different ecological niches. However, the first known use of
the word niche in an ecological context did not occur until the year 1910 (see
[Johnson10]). The theoretical contribution that really started investigation of the
subject of coexistence was that of V. Volterra (see [Volterra26], [Volterra28]). He
constructed a model of two species competing for a single resource and showed
that one of the species almost always must go extinct. Together with A. J. Lotka
(see [Lotka32]), he gave the name to the well-known Lotka-Volterra models, which
describe competition between two species. These equations in their general form
admit both coexistence and competitive exclusion, depending on the parameters.
Volterra’s work stimulated the incisive theoretical and experimental studies of
G. F. Gause, who in 1935 (see [Gause34]) formulated an ecological contention,
stating that two species with similar ecology cannot live together in the same
place. In other words, if two non-interbreeding populations occupy the same
ecological niche and if they are sympatric, in the sense that they occupy the
same territory, then even a slight difference in their reproduction potentials will
eventually lead to a complete extinction of the disadvantaged species. In order for
both of them to coexist, at least one must come to occupy a different ecological
niche. Thus, species standing in competition are forced to adapt to the changing
environmental influences. The principle of the survival of the fittest, as crude and
straightforward as it may seem, is crucial for the advancement of any kind and
stands at the origin of evolution. Gause’s definition of the term competition and
its consequences in an ecological context is consistent with the modern description
as “the act or action of seeking to gain at the same time and usually under or
as if under fair or equitable rules and circumstances” and a “more or less active
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demand by two or more organisms or kinds of organisms at the same time for
some environmental resource in excess of the supply available, typically resulting
in ultimate elimination of the less effective organisms from the particular ecologic
niche” (see [Merriam-Webster93]). R. McGehee and R. A. Armstrong (see
[McGehee77]) reformulated the problem of coexistence and competitive exclusion
and analyzed various examples. They placed the discussion on a solid mathe-
matical basis and gave proofs of the known results. A chronological summary of
the scientific discussion on competition and coexistence is given in [Hutchinson78].

The principles of competition and of competitive exclusion unquestionably play
an indispensable role in many fields of scientific interest, some rather alien to
ecology. Often, microscopic biological processes follow the same patterns. In
genetics, for example, the large number of different alleles being found at the
same gene locus, competing for survival within a certain population of organisms,
enables adequate adaptation of the species to a changing environment and is
the driving factor of evolution itself. But also economic thinking has long been
dominated by the concept of competition, and the often desired persistence
of a multifaceted community of competitors on the market frequently depends
crucially on global as well as national regulations and relatively strong legislative
restrictions. The end of the formerly eulogized free market economy giving
free rein to unrestricted competition and ruled solely by the interplay of offer,
demand and price, is most often a monopoly, which many countries in the modern
economical world have set out to prohibit. As a result, the society as such, rather
than the individual competitors, are forced to band together in order to ensure
ongoing free competition, which, not to forget, is seen as the major driving force
for an accelerated progress and new inventions.

In the present thesis, we abandon the idea of human beings or animals being in
competitive relationship with each other and generalize the concept of competi-
tion to lifeless species. The latter could be chemical substances reacting in a test
tube in a fluid medium or solid particles, which are subject to gravity and which
influence and constrain each other in their movement. Especially during the past
years, the field of research of granular material has gained in esteem among both
physicists and mathematicians. Here, the dynamics of the system is ruled by
the interplay of grains of different size, weight, shape or surface structure, which
mix, segregate or form patterns and thereby try to defy gravity and reach a
position high in the reaction vessel. Accordingly, the particles in a metaphorical
sense compete for a position on the vertical axis. The models we use are for the
most part systems of partial differential equations said of convection-diffusion
type. Such parabolic equations have been employed to describe diffusive effects
in fluids, but their application in the field of granular matter is recent. We set
out to investigate, to which extent these models are capable of predicting and
reproducing the effects observed in experiments and simulations. To this end,
we implemented a multi-particle model in order to compare its results to the



3

theory and to shaking experiments, which we conducted in the laboratory of
H. Herrmann at the Institute of Computational Physics I of the University of
Stuttgart. At the same time, we intend to compare our convection-diffusion
equations to other models describing competition, such as sedimentation models
or the diffusive chemostat. Consistently throughout this thesis, we will return
to the questions of competitive exclusion and coexistence of species and, more
generally, to the global effects of the microscopic interaction.

In chapter 2, we start by setting up a very simple discrete model describing the
compaction of a single particle species in a vertical container due to gravitation.
With a certain scaling of space and time, we can take the corresponding difference
equation to a continuous-time-continuous-space limit, the resulting partial
differential equation is shown to satisfy the basic properties required by the
physical setup in mind. In the following, the simple discrete model is amended
step by step in order to take into account mixtures of particles of varying size,
shape and surface coarseness. Furthermore, the species are allowed to interact,
thus giving rise to segregation phenomena. The most famous example is the
so-called Brazil nut or müsli effect, which owes its name to the observation, that
nuts and other large particles found in cereals always form the topmost layer.
The heuristic interpretation agreed upon to date is the following: During the
shaking process (for example when the cereals are bagged), small grains fill up the
gaps left in between the larger ones, and the latter move up. The second half of
the chapter is concerned with discrete systems incorporating undirected random
motion in addition to directed convection, and their continuous counterparts, the
so-called convection-diffusion models. The latter are more adequate to describe
natural processes, which, due to the large number of interacting individuals, are
practically always afflicted with a random component. Simulations at the end of
the chapter illustrate the sedimentation and segregation process. The examples
of convection-diffusion partial differential equations derived and analyzed in
chapter 2 are generalized in chapter 3. Under relatively weak restrictions on
the convection term, we can show the existence of global solutions as well as
the convection to stationary solutions of the equation for a general number n of
species. This general parabolic equation plays a central role in the present thesis.
Even though it is derived with the specific idea of mixing granular material
in mind, the model itself is very unspecific and leaves room for applications
in the biological or chemical field (see for example chapters 5 and 7). While
the models discussed in chapters 2 and 3 both describe a mixture of granular
material in a container with closed lid and solid bottom, the system in chapter
4 models compaction and segregation in an open vessel, the ends of which are
connected to reservoirs with prescribed saturation levels. Here, particles can
enter and leave the container, the concentrations of the species on the boundary
are prescribed by those in the surrounding medium. The aim of chapter 5 is
to interpret and to generalize the phenomenon of sedimentation in the setting
of convection-diffusion equations. Previous work by G. J. Kynch and J. H.
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Masliyah ([Kynch52], [Masliyah79]) can be connected to the present problem.
We also present a new approach to modeling sedimentation via variable diffusion
coefficients. In chapter 6, we discuss a different type of competition models,
the so-called chemostat system. Unlike previous work by G. J. Butler, S. B.
Hsu, P. Waltman, G. S. K. Wolkowicz and others (see for example [Butler83],
[Butler85.1], [Butler85.2], [Butler86], [Butler87], [Wolkowicz92], [Wolkowicz95],
[Wolkowicz96], [Wolkowicz97], [Wolkowicz98.1] and [Wolkowicz98.2]), we treat a
general equation admitting arbitrary monotone nutrient uptake functions and
washout rates. We analyze existence and stability of stationary points and show
convergence to the coexistence state for a large class of uptake functions. Chapter
6 represents the spadework for the following chapter 7, which is dedicated to the
study of the diffusive chemostat model. At the origin is again the ODE from
chapter 6, which is now furnished with a diffusive term. The resulting chemostatic
interaction on the real axis exhibits traveling waves. The theory is again fortified
by computer simulations. In chapter 8, we conduct multi-particle simulations.
On the basis of simple, partly elastic particle collisions between spherical grains,
we observe sedimentation and segregation effects and illustrate the dependence
of the latter on particle sizes and specific weights. Chapter 9 collects the results
of some exemplary shaking experiments, which we conducted in order to back
the theoretical results. While the segregation properties of different mixtures of
seeds and small balls are compared, we also try to explain the appearance of
convection cells in vibrated material. The latter effect is similar to the so-called
Rayleigh-Bénard phenomenon observed in heated fluid. Material rises in the
center of such a convection cell and sinks again at its edge.

Resuming our main results, we can say that systems of convection-diffusion
partial differential equations to a large extend fulfill the demands made on
models describing competition in granular material. Due to their general form,
they leave room for applications in various related fields as well. Some of the
phenomena, which are familiar to the reader from everyday experience, such as
basic properties of sedimenting material, the Brazil nut effect or simple pattern
formation and compaction effects in shaken or vibrated granular mixtures can
be predicted by our models and are reproduced by computer simulations. But
many other effects remain to date unexplained. For future work on the field
of granular matter modeling, it would be desirable to refine the influence of
particle shape and surface condition on the global interaction between the species
composing a granular mixture. We would like to get deeper insight into the
mechanisms causing complex effects, such as the convection rolls (see chapter
9) or horizontal asymmetries. Such phenomena have so far only been explained
heuristically. On the mathematical side, we still owe a detailed characterization
of convection-diffusion systems exhibiting a unique equilibrium state. While
chapter 3 reveals examples of such systems, a general classification could not be
performed. One of our main goals will be to determine conditions which ensure
the uniqueness of the stationary constellation for arbitrary numbers of granular
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components in the mixture.
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Chapter 2

Random walk models for

particle segregation and

compaction

Summary. The present chapter is devoted to the elementary study of random
walk processes describing the migration of particles in a closed container. This
approach produces simple models in the form of conservation laws, i.e. hyperbolic
partial differential equations, which are discussed in the first half of the chapter.
The following sections deal with more elaborate models incorporating a diffusive
component. They can be interpreted as viscosity versions of the hyperbolic equa-
tions. The mathematical analysis of the resulting diffusion-convection equations
will be the topic of later chapters.

2.1 Introduction

The main goal of this work is to study mathematical models for segregation,
compaction and sedimentation processes in granular matter under the influence
of gravity and other forces, such as stochastic reshuffling. In the simplest case
of a single species of particles, segregation of material is not observed and the
movement of the individual grains results in mere sedimentation and compaction.
In general, the mixture is composed of several species. Due to different physical
qualities, such as size, weight, overall shape or microscopic surface structure, the
grains are then apt to cant or to pass each other more or less smoothly. In a
typical experiment, the particles are grains of sand, pebbles or different kinds
of seeds. They are encased in a container, usually a high glass cylinder, which
is vibrated or rotated, or they are poured from an elevated source onto a heap.
Typically, the patterns emanating from segregation processes are horizontal
stripes, which can be distinguished by color.

If the particles have identical size and shape but differ in weight, we expect
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buoyancy effects to dominate the segregation process and drive the lighter grains
to the top. In case the particles all have the same specific weight and similar
shapes, while their sizes vary considerably, the large grains will move up. This
quite unexpected phenomenon is widely known as the Brazil nut or müsli effect
(see [Barker90], [Barker93] or [Rosato87]). If particles differ in more than one
aspect, for example in specific weight and size, the type of occurring patterns
cannot be predicted as easily (see for example [Hong01]).

Throughout this thesis, we look at the physical processes involved in the segrega-
tion dynamics as if the particles were competing for certain positions on a vertical
scale. This view is supported by the fact that very similar mathematical models
arise on the one hand in sedimentation theory, e.g. the Masliyah and Kynch
models (see [Bürger00.1], [Bürger00.2], [Kynch52] or [Masliyah79]), and, on the
other hand, in the theory of molecular evolution, e.g. the so-called replicator
equations (see [Eigen79], [Hofbauer98]). These analogies between models for
granular mixtures and models for the evolution of molecular or animal and plant
species suggests to include into the present modeling approach other aspects
such as competition and fitness. Of course, we merely exploit analogies; we do
not claim that fitness is actually a character of sand grains or seeds. In a much
wider context, our models could be adapted in order to describe living beings
interacting actively and competing for some vital source, such as food or habitat.

Many authors have studied theoretical models to describe particle interaction in
sedimenting or segregating granular material. In most cases, complex procedures
describing the interaction of individual particles were implemented, and the
resulting computer simulations were compared to experimental data. In contrast
to most of the work in this field over the past years, we set out to derive a
relatively simple mathematical model from elementary considerations concerning
the physical properties of the particle species. Starting with the simplest case
of a granular material composed of a single type of grains, we then extend the
model in order to incorporate various grain types and more complex laws of
interaction. Our considerations are guided by general ideas and approaches
developed for example in [Duran93], [Jullien92], [Luding96.2], [McNamara99],
[Rosato87] or [Vladimirova99]. Last but not least, some helpful ideas were taken
from [deLarrard99].

In sections 2.2 through 2.8, we gradually develop more and more realistic models
still without the diffusive component mentioned above. Due to the quality of the
resulting systems of equations, we have to deal with regularity aspects and the
formation of shocks. Via the viscosity solution approach discussed in section 2.5,
we then bridge to diffusion-convection equations. Throughout the remainder of
the chapter, we present various approaches and compare them on the basis of
computer simulations. Our main interest will always be the question whether the
system describes the physical realities reasonably well and exhibits the phenomena
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of sedimentation and segregation observed in experiments. In section 2.15, we
discuss some general results concerning the stationary solutions of the segregation
models. In this context, we fall back on some properties of so-called competitive
systems of ordinary differential equations.

2.2 Discrete models without random movement

As a first step in the development of our segregation model, we derive a simple
discrete model incorporating gravitation but neglecting random movement of
particles. We think of the vertical container as of a set of stacked compartments
numbered from i = 0 at the bottom to i = N + 1 at the uppermost level. We
consider one type of grains, hence the capacity of the compartment is a fixed
number C. Let us denote by a the transition rate from one compartment to the
one directly below. To begin with, we will restrict to simple linear transition
rates. Since our idea is to model particle movement in a closed container, we
have to impose boundary conditions satisfying the physical requirements of a
solid lid and bottom. For example, we could say that the lowest layer i = 0 is
already filled with grains such that no more particles can be added. For the
uppermost level i = N + 1, we impose an empty cell. Since particle transi-
tion from one cell to the other can only take place downward, this means that
the only compartments of interest are the intermediate ones numbered i = 1 to N .

Let ui = ui(t) be the number of grains in the ith cell at time t. If there is empty
space in the cell below, particles can fall down and gradually fill up the lower
cell. Suppose that the particle flow is proportional to both the number ui and the
remaining capacity in cell number i−1. Hence the change in the ith compartment
during a small time interval ∆t is

ui(t+∆t)− ui(t) = a[(C − ui(t))ui+1(t)− (C − ui−1(t))ui(t)]∆t+ o(∆t). (2.1)

Letting ∆t → 0, we get the system of ordinary differential equations

u̇i = a[(C − ui)ui+1 − (C − ui−1)ui], (2.2)

i = 1, . . . , N , with boundary condition

u0 = C,

uN+1 = 0.
(2.3)

This set of differential equations is defined in IRN . We are only interested in
solutions which correspond to physically realistic situations. With this restriction
in mind, we have two different sets which we call M and M̂. The set M is the
set of all possible particle distributions,

M = {u = (ui) : 0 ≤ ui ≤ C for i = 1, . . . , N},
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while M̂ is the set of all monotonous particle distributions with the property that
the particle density decreases from bottom to top,

M̂ = {u ∈ M : ui ≥ ui+1 for i = 1, . . . , N − 1}.

The following proposition summarizes some basic properties of system (2.2) (2.3).

Proposition 2.2.1 (Positivity, total mass and monotonicity of the discrete sys-
tem.)
(i) Solutions starting from initial data in M exist for all positive times and stay
in M.
(ii) Solutions starting in M̂ stay in M̂ for all positive times.
(iii) Solutions starting in M preserve total mass, i.e.

d

dt

N
∑

i=1

ui = 0.

(iv) The stationary solutions of system (2.2), (2.3) are contained in M̂. They
have the form

ui = C, i = 1, . . . , i0 − 1,

0 ≤ ui0 ≤ C,

ui = 0, i = i0 + 1, . . . , N

for some i0 ∈ {1, . . . , N}. Furthermore, these equilibria are completely character-
ized by their total mass C(i0 − 1) + ui0 , i.e. i0 is determined by the equation

C(i0 − 1) + ui0 =
N
∑

i=1

u0i ,

where u0i = ui(t = 0) is the number of grains in the cell i at time t = 0.
(v) The potential energy

E =
N
∑

i=1

iui

is non-increasing along trajectories.
(vi) Every solution starting in M converges to the stationary state with the total
mass given by the initial distribution.

Proof. (i) Invariance of M:
Positivity: Suppose ui vanishes for some i. Then, obviously, u̇i = Cui+1 ≥ 0. This
is sufficient to ensure that ui cannot drop below zero ([Amann83], theorem 16.9,
p. 240).
Upper bound: If ui = C then the argument works in the same way. We have
u̇i = −(C − ui−1)ui ≤ 0.
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Hence, if the initial data satisfy 0 ≤ ui ≤ C, this property is preserved for all
positive times.
(ii) Straightforward calculation yields

1

a
v̇i = −(C − vi)vi + (C − ui+1)vi+1 + uivi−1,

where vi = ui − ui+1. Suppose vi reaches zero from above. Then v̇i/a = uivi−1 +
(C − ui+1)vi+1 ≥ 0, which, by the same argument, guarantees non-negativity of
vi for all times.
As in (i), two neighboring particle numbers ui and ui+1 can not become equal if
they are not equal from the beginning.
(iii) Straightforward calculation yields

d

dt

N
∑

i=1

ui =
N
∑

i=1

u̇i = 0,

i.e. total mass is preserved.
(iv) Let u = (ui) be an equilibrium state in M. From u0 = C and (C − u1)u2 = 0
it follows that either u1 = C or u1 ≤ C, u2 = 0. Suppose it has been shown that
ui ≤ C, ui+1 = 0. By induction it follows that also ui+2 = 0.
(v) Check that

d

dt

N
∑

i=1

iui =
N
∑

i=1

ia[(C − ui)ui+1 − (C − ui−1)ui]

= −a

N−1
∑

i=1

(C − ui)ui+1

≤ 0.

Actually, as we will see in (vi), the potential energy functional E only vanishes
on stationary solutions.
(vi) By (v), E is a Lyapunov functional. On the ω-limit set of any trajectory in
M, we have (C − ui)ui+1 for i = 1, . . . , N − 1. But by (iv), these are exactly the
equilibrium states of the system.
This proves proposition 2.2.1. 2.

In a physical context, proposition 2.2.1 states that particles gradually fall down
in the container and fill it up to a certain level, depending on the total number
of particles and the size of the vessel. The latter has a solid bottom, and no
grains can enter through the top. Once the grains are densely packed from the
bottom upward and no particles are left in the top part, the uppermost non-void
compartment might be only partly filled with grains. In experiments, due to the
restriction to downward particle motion, the density of the packing will decrease
with growing height in the vessel. (For an illustration see figure 2.1.) In reality, a
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(a) (b)

Figure 2.1: The simplest discrete model. A container is divided in vertical direction in
a certain number of compartments, each containing particles of the same size and weight
(a). Under the influence of gravity, particles start to fall down from one cell to the one
below and gradually fill up the lower cells (b).

physical system will never reach the optimal (or virtual) packing density, which is
equal to 0.74 for mono-size spheres in three dimensions (see [Aste00]). Depending
on the compaction process or the type of external forces applied in order to shake
the material, for mono-size spheres values between 0.6 and 0.7 are feasible.

2.3 A first continuum model

In a next step, we derive a continuum model from (2.2), (2.3). We divide the
interval Ω = [0, l] representing the vessel into thin layers and describe solutions in
the limit as continuous functions on Ω. Now the quantity C is the capacity per
length. Furthermore, normalize the rate parameter to a = 1. As in section 2.2, we
first write down a difference equation governing the changes in particle numbers
in both discrete time and space steps. Instead of numbering the cells from i = 0
to i = N , let us introduce a space variable x and denote by ∆x the height of
one layer in the vessel. Let u = u(t, x) be the number of grains per length, hence
u(t, x)∆x is the number of grains in a cell which occupy the section from x to
x+∆x in the container. Thus, we get

[u(t+∆t, x)− u(t, x)]∆x = {[C − u(t, x)]u(t, x +∆x)−
−[C − u(t, x−∆x)]u(t, x)}∆t.
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After rearranging and division by ∆x∆t, we get

u(t+∆t, x)− u(t, x)

∆t
=C

u(t, x+∆x)− u(t, x)

∆x
−

− u(t, x+∆x)− u(t, x−∆x)

∆x
.

(2.4)

Taking both sides of (2.4) to the limit as ∆t, ∆x −→ 0, we end up with the
conservation law

ut = Cux − (u2)x (2.5)

with boundary condition

u(t, 0) = C,

u(t, l) = 0
(2.6)

for some positive l, the height of the container. Note that (2.5) is very similar to
the well-known Burgers’ equation. An example is given in [Renardy93].

As before, we are only interested in physically feasible grain distributions. There-
fore, define

Mc = {u ∈ C1[0, l] : 0 ≤ u(x) ≤ C for 0 ≤ x ≤ l},
M̂c = {u ∈ Mc : u

′(x) ≤ 0 for 0 ≤ x ≤ l}.

Mc is the set of particle distributions with concentrations varying between 0 and
C, while the subset M̂c contains only monotone functions. With these definitions,
the continuous analogon of proposition 2.2.1 holds, at least formally: The solutions
have the desired physical properties, as long as they exist. But they may cease to
exist due to the evolution of shocks.

Proposition 2.3.1 (Positivity, total mass and monotonicity of the continuous
system.) (i) Solutions starting in Mc exist up to some time ts > 0 and stay in
Mc for 0 ≤ t < ts.
(ii) Solutions starting in M̂c stay in M̂c for 0 ≤ t < ts.
(iii) Solutions starting in Mc preserve total mass,

d

dt

∫ l

0
udx = 0.

(iv) The formal equilibrium states of (2.5), (2.6) are not contained in Mc. They
are characterized by their total mass and have the form

ū(x) =

{

C x < l0

0 x > l0
(2.7)
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for some l0 ∈ [0, l].
(v) The potential energy

Ec =

∫ l

0
xu(x)dx

is non-increasing along trajectories.
(vi) Every solution starting in Mc converges in a weak sense to the equilibrium
determined by the total mass.

Proof.

(i) We anticipate the result of proposition 2.4.1 of section 2.4. Hence we know, that
there is a strictly positive time ts until which no shocks occur. For all t ∈ [0, ts),
the solution inherits the upper and lower bounds as well as the regularity of the
initial function u0 = u(0, ·).
(ii) Again by proposition 2.4.1, solutions are monotone for all 0 ≤ t < ts if the
initial function is in M̂c.
(iii) Verify that

d

dt

∫ l

0
u(t, x)dx =

∫ l

0
utdx

= [u(C − u)]l0
= 0

due to the boundary condition, i.e. total mass is preserved.
(iv) Stationary solutions of (2.5), (2.6) are characterized by Cux = 2uux, i.e.
u(C − u) = const = 0 due to (2.6). Therefore, u2 = Cu, i.e. u = C or u = 0
everywhere. In view of (ii), the only feasible equilibria are the step functions
ū(x) = C for x < l0 and ū = 0 above l0. Theoretically, any arbitrary step
function taking values ū = 0 and ū = C also represents a stationary solution to
system (2.5), (2.6). In order to find the physically correct equilibrium, we interpret
the non-continuous solutions as viscosity solutions. We postpone the question of
choosing adequate discontinuous solutions to section 2.5.
(v) Check that

Ėc =

∫ l

0
xutdx

= [x(u(C − u))]l0 −
∫ l

0
u(C − u)dx

≤ 0

due to the boundary condition (2.6) and (i), i.e. Ec is non-increasing along solu-
tions.
(vi) Once we agree to choose the discontinuous functions in (iv) as the appropri-
ate stationary states of our system, we have Ec(ū) = Cl20/2 and Ėc(ū) = 0, i.e.
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Ec −Cl20/2 is a Lyapunov functional. Note that the value l0 depends uniquely on
the initial distribution u0(x) = u(0, x). In fact,

l0 =
1

C

∫ l

0
u0(x)dx.

This proves proposition 2.3.1. 2.

2.4 The propagation of shocks

Equation (2.5) is a conservation law of the form

ut + f(u)x = 0, (2.8)

where f(u) = u(u − C), i.e. f ′(u) = 2u − C. The characteristic curves of (2.8)
satisfy

x̂′(t) = f ′(u(x̂(t), t)).

Since

d

dt
u(x̂(t), t) = uxx̂

′ + ut

= uxf
′(u) + ut

= 0

for characteristics, we get u(x̂(t), t) = b = const, hence x̂′(t) = f ′(b) and thus

x̂(t) = tf ′(b) + x̂(0). (2.9)

Proposition 2.4.1 (Interval of existence and regularity.) If the initial function
u0 = u(0, ·) is at least once continuously differentiable, then solutions of system
(2.5), (2.6) exist up to some strictly positive time ts > 0. This time horizon
depends only on

max
x∈[0,l]

f ′(u0(x))

and becomes smaller with growing maximal derivative. Furthermore, the solution
respects the bounds of u0 and inherits its regularity, i.e. if u0 ∈ C1[0, l], then
u(t, ·) ∈ C1[0, l] for all t ∈ [0, ts). Finally, if u0 is monotone, then so is u(t, ·) for
0 ≤ t < ts.

Proof. Let us write the characteristic equations corresponding to (2.5) as

ṫ = 1,

ẋ = 2u− C,

u̇ = 0.

(2.10)
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System (2.10) has solutions

t = s,

x = x0 + (2u0 − C)s,

u = u0,

i.e. the characteristic lines are given by

x(t) = x0 + (2u0 − C)t, (2.11)

where u0 here denotes the value of the function u0(·) at x = x0. Denote by u1, u2
two values of the function u0(·) at x1 < x2, respectively. Equation (2.11) yields

0 = x2 − x1 + 2(u2 − u1)t.

If u2 > u1, then these two characteristics do not intersect for t ≥ 0. In case
u2 < u1, they intersect at t = (x2 − x1)/(2(u1 − u2)) > 0. If T is a lower bound
for the intersection time, then

u1 − u2
x2 − x1

≤ 1

2T
. (2.12)

Using the Mean Value Theorem of calculus for continuously differentiable initial
functions u0(·), we get the condition −u′

0 ≤ 1/(2T ). In other words, if the
derivative u′

0 is bounded, then there is a minimal intersection time ts satisfying
(2.12) for all x2 > x1 ∈ [0, l].

With the behavior of the characteristics understood, it is clear that the latter
only transport information (i.e. values of the solution of (2.5), (2.6)) from one
point of the interval [0, l] to another. In other words, the solution at some time
0 ≤ t < ts results as a mere diffeomorphic transformation of the domain [0, l].
As a consequence, the image of the function u never changes, as long as t stays
below ts, and hence the bounds as well as the monotonicity of the initial function
are conserved. In order to see that the regularity is conserved as well, we choose
t ∈ [0, ts), x ∈ [0, l] and determine the value of u at the point (t, x). This value
determined by the value of the initial function u0(·) at some point x0. In order
to see that this correspondence is bijective, we write (2.11) as a continuously
differentiable function of the unknown x0,

F (x0) := x0 − x+ (2u0(x0)− C)t = 0.

F can be reversed if its derivative is non-zero. But

F ′(x0) = 1 + 2tu′0(x0),

which is strictly positive whenever

u′0 > − 1

2t
. (2.13)
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Note that (2.13) is exactly the non-intersection condition for the characteristics
we derived previously. Hence, for 0 ≤ t < ts, the function F is invertible and its
inverse is again continuously differentiable. This proves proposition 2.4.1. 2.

As an example, let us choose the initial function to be u0(x) = C − Cx/l (see
figure 2.2(a)). We see that at time t = l/(2C), a shock develops at x = l/2.

C

0

0 l/2 l
x

u 0

(a) Example of a linear initial con-
dition.

l/(2C)

0

t

0 l/2 l
x

(b) The characteristics impinge
on the shock.

Figure 2.2: Linear initial conditions and characteristics for the conservation law (2.5)
with boundary condition (2.6).

Below this shock, u is equal to the cell capacity C. Above, u = 0. This is exactly
the stationary solution we expect.

If the initial condition u0 has not this particular form, the shock can form at an
earlier time. For example, choose

u0(x) =











C

(

1 + cos

(

3

2
πx

))

/2 0 ≤ x < 2C/3

0 2C/3 ≤ x ≤ l

(2.14)

(figure 2.3(a)). This time, the shock occurs at an earlier time ts < l/(2C). The
corresponding stationary solution is again given by (2.7).

In order to interpret functions with discontinuities like (2.7) as solutions of a
conservation law of the form (2.5), (2.6), we consider weak solutions.

Definition 2.4.2 (Weak solutions.) A weak solution of an equation of the form
(2.8) with boundary condition u(0, x) = u0(x) is a function u : IR2+ −→ IRn, such
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0

C

0 l/2 2l/3 l
x

u 0

(a) A non-linear, monotone initial
function.

t

l/(2C)

0

0
x

l/2 l

t s

xs

(b) The shock develops at an ear-
lier time 0 < ts < l/(2C).

Figure 2.3: Example of a non-linear initial condition.

that
∫ ∞

0

∫ ∞

−∞

[u(t, x)Φt(t, x) + f(u(t, x))Φx(t, x)] dxdt+

+

∫ ∞

−∞

u0(x)Φ(0, x)dx = 0

for every function Φ ∈ C1
0(IR

2+), where IR2+ = {(t, x) : t ≥ 0, x ∈ IR} and C1
0

denotes the set of C1 functions with bounded support.

As the following proposition shows, this definition extends the concept of a solution
to step functions of the form (2.7).

Proposition 2.4.3 (Step function as weak solution.) The step function (2.7) is
a weak solution of the conservation law (2.5) with boundary conditions (2.6).

Proof. Let Φ ∈ C1
0(IR

2+) with suppΦ ⊂ Sr, where Sr is a ball in IR2 with radius
r > max {l, C}. We have

∫ ∞

0

∫ ∞

−∞

[uΦt + f(u)Φx] dxdt+

∫ ∞

−∞

u0Φ0dx =

=

∫∫

S
[uΦt + f(u)Φx] dxdt+

∫ ∞

−∞

u0Φ0dx

=

∫∫

S
[(uΦ)t + (f(u)Φ)x] dxdt+

∫ ∞

−∞

u0Φ0dx,

since in [0, l0) ∪ (l0, l], u is a classical solution and thus

(uΦ)t + (f(u)Φ)x = (ut + f(u)x)Φ + uΦt + f(u)Φx

= uΦt + f(u)Φx.
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Using Green’s Theorem and the fact that suppΦ ⊂ Sr, we finally get

∫ ∞

0

∫ ∞

−∞

[uΦt + f(u)Φx] dxdt+

∫ ∞

−∞

u0Φ0dx =

=

∫∫

∂S
−uΦdx+ f(u)Φdt+

∫ ∞

−∞

u0Φ0dx

=−
∫ l

0
u0Φ0dx+

∫ l

0
u0Φ0dx

= 0,

i.e. u0 is a weak solution. 2.

We can now follow solutions of (2.5), (2.6) beyond a single shock. If xs is the locus
of the shock developing at time t = ts and if we denote by ur and ul the value of
u on the right and left side of the shock, respectively, and if s is the characteristic
speed, i.e. the velocity at which the shock moves, then the Rankine-Hugoniot
condition (see for example [Renardy93]) yields

s(ur − ul) = f(ur)− f(ul)

−Cs = 0,

i.e. the shock stays at xs. With the Rankine-Hugoniot condition verified, we can
apply the Lax shock condition (see again [Renardy93]), which in the case of a
single shock states

f ′(ul) >s > f ′(ur)

2ul − C >0 > 2ur − C

C >0 > −C,

i.e. the characteristic speeds left and right of the shock are C and −C respec-
tively. Consequently, the characteristics impinge on the shock which stays at
x = xs for all t > ts (see figure 2.4). This phenomenon is described as a loss
of information. Note that, once a solution develops a shock, the stationary
(weak) solution in general is not reached yet. In order to follow the solution
beyond the shock, one has therefore to extend the concept of the solution yet
again and allow functions with discontinuities. At this point, we will not go into
any details concerning weak solutions in general. Instead, we refer to [Renardy93].

When hyperbolic partial differential equations, such as (2.5), are used to model
granular material, we can imagine each individual particle moving on its char-
acteristic curve in space and time. Hence, as long as the characteristics do not
intersect, the grains cannot pass each other. An area in the vessel, which is al-
ready filled with material, cannot be penetrated by another particle. In shaking
experiments, we expect the movement of the container to mix up the material and
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t

0
x

t s

xs

Figure 2.4: The characteristics impinge on the shock. At x = l0 the characteristic line is
vertical. The shock stays at l0.

thus enable the grains to diffuse. Consequently, one of our next goals will be the
analysis of parabolic equations including a diffusive term. Such equations are also
used in order to identify physically relevant solutions, so-called viscosity solutions,
among all the weak solutions of a hyperbolic problem.

2.5 The viscosity solution approach

As we have seen in proposition 2.3.1(iv), the physically realistic stationary solu-
tions are at best weak solutions of the evolution equation (2.5), (2.6). Therefore
we need a suitable selection principle for solutions. Such a principle is provided
by the viscosity approach, where a small second order term ε∂2

x is added in order
to make the equation parabolic. In terms of the physical model of a vertical
vessel filled with granular matter, this term can be seen as representing small
random perturbations of the particles’ motion, which otherwise is governed by the
conservation law. Thus, in the present context, the addition of the viscosity term
is not merely a mathematical procedure to select certain solutions, but it also
represents a physical phenomenon. Indeed, in the conservation law (2.5), before
a shock occurs, particles travel on their particular characteristics and keep the
order they had in the initial data. According to the model, particles cannot pass
each other. Therefore the evolution of the density is performed by reshuffling the
values of the initial data without changing their order. The viscosity term gives
more flexibility, which can be interpreted as stochastic changes of the grains’
positions. This stochastic effect can fill gaps and smooth humps.

Let ε be a small parameter. Consider the parabolic equation

ut = Cux − (u2)x + εuxx (2.15)

with boundary condition

Cu− u2 + εux = 0 (2.16)
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at x = 0, l. Notice that (2.16) implies

d

dt

∫ l

0
udx =

[

Cu− u2 + εux
]l

0
= 0,

i.e. the total mass of the particles is conserved.

Before we continue with the investigation of the stationary solutions of (2.15),
(2.16), we have to guarantee the existence of solutions.

Proposition 2.5.1 (Existence of solutions.) System (2.15), (2.16) has a unique
classical solution u = u(t, x), which exists globally for all t ≥ 0.

Proof. The proof of existence of solutions is postponed to chapter 3, which we
devote entirely to the study of parabolic equations. 2.

Our goal is to find stationary solutions of the new system (2.15), (2.16) and
then consider the limit of these solutions as the diffusion parameter ε tends to zero.

Setting ut equal to zero and using the boundary condition, we find that stationary
solutions satisfy

u′ =
1

ε
u(u− C), (2.17)

where the prime indicates derivation with respect to the space variable. If we use
Riccati’s trick and introduce v = v(t, x) = 1/u(t, x), equation (2.17) becomes

v′ =
1

ε
(Cv − 1),

the solution of which is v(x) = 1/C + κexp (Cx/ε), i.e.

uε(x) =
C

1 + κCeCx/ε
. (2.18)

The parameter κ in (2.18) is determined by the total mass M , where naturally
M ≤ Cl:

M =

∫ l

0

C

1 + κCeCx/ε
dx

= ε

∫ κelC/ε

κ

1

z(z + 1)
dz

= ε

[

ln
z

z + 1

]κelC/ε

κ

= εln
(κ+ 1)elC/ε

1 + κelC/ε
,
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which yields

κ =
elc/ε − eM/ε

elC/ε
(

eM/ε − 1
) .

Hence the unique stationary solution with total mass M is given by

uε(x) =
CelC/ε

(

eM/ε − 1
)

CexC/ε
(

elC/ε − eM/ε
)

+ elC/ε
(

eM/ε − 1
) . (2.19)

Finally, as ε tends to zero, we find

uε(x) −→
ε→0



















C− for x < M/C

C

C + 1
for x = M/C

0+ for x > M/C

,

i.e. the viscosity solution (2.7) is the desired step function (see figure 2.5).

C

0 lM/C x

u

Figure 2.5: The step function (2.7) is the viscosity solution of system (2.15), (2.16).

2.6 Discrete models for n types of particles

In order to analyze the properties of mixtures of different grains varying in size
and specific weight, we start again with one type of particles. For simplicity we
think of spherical balls. If we neglect boundary effects, then the space filling
properties are independent of the size of the balls. This relation follows from a
simple scaling argument for any regular or statistical packing, in particular for
the practically densest packing which appears when we shake granular material in
an experiment. This mathematically obvious fact can be interpreted in practical
terms as follows: On the one hand, the number of gaps left between individual
grains is larger when we fill the volume with small balls. On the other hand, the
gaps are smaller and these two effects balance each other.

The situation changes if we use two types of balls of distinctly different size, still
having the same specific weight. Now the smaller balls can partially fill the gaps
between big balls and thus reduce the empty space and increase the density of
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the packing. If such a mixture of two grain types is stirred for a short time,
or if the container is tapped in order to make the grains slightly rearrange, one
can achieve dense packings, in which the averaged mass density depends on the
sizes of the two types of balls and their relative proportions in the mixture. We
have imposed the condition that the material be stirred only for a short time for
the following reason: If we shake the container rapidly and for a longer period
of time and thus introduce more kinetic energy into the system than is done by
mere stirring, the so-called Brazil nut or muesli effect can take over, i.e. space
liberated by large particles at the bottom of the vessel can be occupied by small
grains, while the motion of the small balls rarely leaves enough space for one big
grain to fall down. As a result, the big particles will gradually move up in the
mixture and finally settle towards the top.

If we consider a mixture of two kinds of balls of equal size but different specific
weight, yet another effect appears. Any random mixture, however inhomoge-
neous, will remain stationary as long as gravitational forces do not overcome
static friction. If the mixture is stirred, then friction becomes small and grav-
itation will cause buoyancy effects and the heavier grains will move to the bottom.

Finally, most real mixtures contain balls varying both in size and specific weight.
In this case, depending on the situation, either the Brazil nut effect or the
buoyancy effect will dominate. An overview of packing properties of various types
of mixtures, including theoretical and experimental results concerning mixtures
composed of two or more grain types, is given in [Aste00]. In the remainder of this
chapter, we discuss the four previously described situations, the one with equal
grains and with grains varying in size, weight or both, in a sequence of heuristic
models. Our goal is to find a unified approach which explains all observed effects
in terms of the potential energy of the mixture.

Now we have the following general problem: There are k species of grains num-
bered i = 1, . . . , k. If Vi is the volume occupied by one grain of type i, and if we
have a sample of ui individual particles of that type, then the volume occupied
by this sample is Ui = uiVi. We take samples from all species, each with volume
Ui, and produce a homogeneous mixture with practically densest packing, then
this packing leaves a volume of empty space which we call U0. In an experimental
setting, the number U0 would be determined experimentally, for given grain sizes
Vi, from the numbers ui, i.e., as a function of the ui.

Hence the total volume is given by U = U0 + U1 + · · · + Uk. We repeat that
the empty space U0 is a function of the particle numbers ui. Let us denote this
function by Φ,

U0 = Φ(u1, . . . , uk).

The function Φ is a material parameter. By definition, it is homogeneous of degree
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one, i.e.
Φ(αu1, . . . , αuk) = αΦ(u1, . . . , uk)

for all α > 0.

In order to describe the dynamics of such a system under the influence of gravity,
we have to determine the conditions under which one individual particle can move
into a cell already partly filled with grains. Let us therefore divide the container
into N layers, each of height h, numbered j = 1, . . . , N , and let uj

i denote the

number of grains of type i in the jth layer. Accordingly, let U j
i be the volume

occupied by grains of type i in the jth cell. In other words, each state of the
system is described by an N × k-matrix of the form







uN1 . . . uNk
...

. . .
...

u11 . . . u1k






.

Suppose each layer has a fixed cell volume denoted by C. If the cell at height j
contains a mixture of grains (uj

1, . . . , u
j
k), then the probability of another particle,

say of type i, to fall down from the level j + 1 and enter the jth cell will depend
on the number of available particles uj+1

i on the upper level as well as on their
volume Vi and the available space in cell j. The latter is determined as follows:
We hypothetically add one particle of type i to the mixture in cell j and calculate
the empty space left by this new mixture,

iŨ
j
0 = Φ(uj1, . . . , u

j
i−1, u

j
i + 1, uji+1, . . . , u

j
k). (2.20)

Now, if the new occupied volume iŨ
j
0 +

∑k
ν=1 U

j
ν + Vi is still smaller than the

capacity C, then the particle can move from j + 1 down to j. Otherwise, it stays
at j+1 and the state vector (uj

1, . . . , u
j
k) is unchanged. (For illustration see figure

2.6.) These considerations yield the following discrete-step equation governing the
dynamics of the above two-species system:

u̇ji =uj+1
i

(

C −
k
∑

ν=1

U j
ν − iŨ

j
0 − Vi

)

+

−

− uji

(

C −
k
∑

ν=1

U j−1
ν − iŨ

j−1
0 − Vi

)

+

,

(2.21)

j = 1, . . . , N , where ( )+ denotes the positive part. The parameter a denotes
again the transition rate due to gravitation, the only driving force in the system.
Again, as in section 2.3, equation (2.21) is the result of a continuous-time limit of
a difference equation, while the space variable remains discretized. The function
(2.21) is not differentiable at the point, where the terms in parentheses touch
zero. For practical reasons, it seems more reasonable to approximate (2.21) by a C 1
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j

j+1

(a) An arbitrary, in
general not optimally
packed, mixture of
grains.

j

j+1

(b) A rearrangement of
the particles is sought,
in which the new grain
has enough space to en-
ter.

j

j+1

(c) If the particle is
small enough, there ex-
ists a packing including
the new grain, which is
dense enough to fit into
one cell.

Figure 2.6: The method of determining available space for new particles to enter a cell.
An arbitrary mixture (a) of grains in a cell j of the container is optimally rearranged in
a way that a new particle can enter from the compartment j +1 above. Even though the
actually occupied volume might be smaller than the cell capacityC, no such rearrangement
might be found (b). In this case, the particle stays in cell j +1. Consequently, only small
grains can enter and occupy gaps between larger particles (c).

function in the neighborhood of these critical points. Thus, if F j
i = F f

i (u1, . . . , uk),
i = 1, . . . , k, designates a suitable approximation of the function

F̃ j
i (u1, . . . , uk) =

(

C −
k
∑

ν=1

U j
ν − iŨ

j
0 − Vi

)

+

, (2.22)

then equation (2.21) becomes

u̇ji = uj+1
i F j

i − ujiF
j−1
i . (2.23)

In order to describe the physical idea correctly, we impose the boundary conditions

F 0
i = 0,

uN+1
i = 0

(2.24)

for i = 1, . . . , k. From a physical point of view, (2.24) guarantees that no
particles can enter the vessel through the lid and that the bottom is solid (or
already optimally filled with grains). Equations of the form (2.23) with boundary
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conditions (2.24) have been used in the past to model the way parking cars
gradually fill up a parking lot of given dimensions. Since these dynamics are
very similar to those observed in granular material during compaction, some
of the ideas have been adapted in order to gain new insight (see for example
[Krapivsky93], [Tarjus92] or [Wackenhut02]).

Since (2.23), (2.24) allows particle motion in downward direction only, we ex-
pect that the system is dissipative, i.e. particle constellations change only in the
direction of diminishing potential energy.

Proposition 2.6.1 (Potential energy of the discrete model.) Let ρi denote the
specific density of the grains of type i and define the total potential energy of the
system by

G =
N
∑

j=1

j

(

k
∑

i=1

U j
i ρi

)

.

Then, G can only decrease in time, i.e. its time derivative Ġ is non-positive.

Proof. We write G =
∑

imi

(

∑

j ju
j
i

)

, where mi = ρiVi is the mass of an

individual particle of type i. Then

Ġ =
∑

i

mi





∑

j

ju̇ji





=
∑

i

mi





∑

j

j
(

uj+1
i F j

i − ujiF
j−1
i

)





= −
N
∑

ν=1

uνi F
ν−1
i

≤ 0,

hence the total potential energy cannot grow during the process of sedimentation.
2.

Notice that Ġ vanishes only if for all ν = 1, . . . , N , uν
i = 0 or F ν−1

i vanishes. This
does not necessarily mean that G tends to a global minimum. We will come back
to this point in section 2.16 and again in section 8.3 of chapter 8.

2.7 Transition to a continuous model

As in section 2.3, we introduce the space variable x designating the height in the
container and let ui = ui(t, x) denote the number of grains of type i at time t in



2.7. Transition to a continuous model 27

a compartment of fixed volume C occupying the section [x, x+∆x]. Expressed in
terms of t and x, the original difference equation takes the form

1

a
[ui(t+∆t, x)−ui(t, x)]∆x =

={ui(t, x+∆x)Fi(u(t, x)) − ui(t, x)Fi(u(t, x−∆x))}∆t

={[ui(t, x+∆x)− ui(t, x)]Fi(u(t, x))+

+ ui(t, x) [Fi(u(t, x)) − Fi(u(t, x−∆x))]}∆t

={
[

∆xuix(t, x) +O(∆x2)
]

Fi(u(t, x))−
− ui(t, x)

[

∆xFix(u(t, x)) +O(∆x2)
]

}∆t,

(2.25)

where u designates the vector (u1, . . . , uk)
T . The function Fi = Fi(u) in (2.25) is

now some continuous analogon of F j
i . In view of (2.22), the most manifest choice

is a continuously differentiable approximation Fi = Fi(u1, . . . , uk) of

F̃i = F̃i(u) =

(

C −
k
∑

ν=1

Uν − iŨ0 − Vi

)

+

.

Here, Uν = Uν(x) is the relative volume occupied by grains of type ν at position
x in the vessel, and iŨ0 = iŨ0(x) is the continuous analogon of (2.20). Then,
carrying (2.25) to the limit as ∆t,∆x −→ 0, we end up with the conservation law

uit = a(uiFi)x (2.26)

with boundary condition

Fi(0) = 0,

ui(l) = 0
(2.27)

for i = 1, . . . , k, where l is now the height of the container.

Proposition 2.7.1 (Potential energy of the continuous model.) System (2.26)
with boundary conditions (2.27) is dissipative, i.e. the total energy

H =

∫ l

0
x

k
∑

i=1

Ui(x)ρidx

decreases along trajectories.

Proof. Writing the total potential energy as

H =
∑

i

mi

∫ l

0
xui(x)dx,
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we get

Ḣ =
∑

i

mi

∫ l

0
xu̇i(x)dx

= a
∑

i

∫ l

0
x(uiFi)xdx

= −a
∑

i

mi

∫ l

0
uiFidx,

which is always non-positive. 2.

2.8 An example with two types of spherical particles

Before proceeding to a model for the segregation of granular material, we
illustrate some properties of the systems analyzed in sections 2.6 and 2.7 by
means of a computer simulation. We will use the discrete system (2.23), (2.24)
for the implementation.

Let us consider a two-dimensional vessel containing two-dimensional spherical
particles of two different sizes. As figure 2.7 illustrates, the optimal fill level for
a single grain type is approximately γ1 = 0.91, regardless of the radius of the
particles. Now we add a second type of grains with radius r = (2 −

√
3)R/

√
3,

Figure 2.7: The fill level of an optimal packing with discs of the same radius R. We
cut a rectangle out of a region which is optimally filled with spheres and count their
number. In a box of length 6R and height 3

√
3R we find 9 balls. Hence, the fill level is

γ1 = 9πR2/(18
√
3R2) or π/(2

√
3), which is approximately 91 percent.

chosen in such a way that the small balls fit exactly into the gaps between the
large ones in the optimal one-particle packing of figure 2.7. It stands to reason
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to assume that the the best filling using both grain types is illustrated in figure
2.8. Let one layer in the vessel have unit volume C = 1 and let the radius of

Figure 2.8: If the container is optimally filled with a mixture of two types of grains,
the large ones with radius R, the small ones with r = R(2 −

√
3)/

√
3, we count nine

large spheres and eighteen small ones in the box. Hence, the fill level has increased to
γ2 = (9R2π + 18r2π)/(18

√
3R2) or π(3 + 2(2−

√
3)2)/(6

√
3), which is approximately 95

percent.

the larger spheres be R = 10−3. Thus, the optimal one-particle packings contain
umax
1 = 106γ1/π and umax

2 = 3 · 106γ1/(π(2 −
√
3)2) grains, respectively. In each

layer j, the function F j
1 therefore becomes zero at u1 = umax

1 − 1, u2 = 0 and at
approximately u1 = 0, u2 = umax

2 − γ1R
2/r2, since about γ1R

2/r2 small particles
occupy the space of one big one. For u1 = u2 = 0, F j

1 = 1 − V1 = 1 − 10−6π. In

the same way, F j
2 vanishes at u1 = umax

1 , u2 = 0 and at u1 = 0, u2 = umax
2 −1 and

has its maximal value 1− V2 = 1− 10−6π(2−
√
3)2/3 at u1 = u2 = 0. In order to

keep calculations simple, we suppose that F j
i are linear in between the designated

points, hence their graphs have the shapes illustrated in figure 2.9. Assuming
these functions for available space, we run a simulation. The result shows nicely
how the two particle types settle towards the bottom of the container (figure 2.10).

Up to this point, we have developed a model for the interaction of particles of
varying size during the process of compaction. Here, the differences in size are of
great importance, since they lead to denser packings in comparison to mono-size
material. Notice that we have not yet implemented any diffusive effects, which
play a role in real systems. We will do so in the following, thus creating the
possibility for the granular material to segregate under the influence of additional
forces as periodic shaking or vibration.
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Figure 2.9: The graphs of the linearly interpolated available space functions F j
1
and F j

2

for the two grain types of figure 2.8.

2.9 A random walk model with drift term

In the present and following sections, we address the design of more realistic
compaction and segregation models. As in the previous sections, we will derive
partial differential equations from elementary random walk models describing the
microscopic particle movement. Now, however, we add a random component to
the transition rates, thus supplying the equations with a diffusive term. Starting
with a random walk on a grid in continuous time and the limiting case of a
diffusion equation, we step by step incorporate various effects which finally yield
a system adequate to describe segregation in vertical direction. First we neglect
gravity and suppose that the vessel of height l contains a certain number Ntot of
particles. Dividing the vessel in small compartments, we denote by Nk the number
of particles in the kth compartment. We assume that each particle is subject to
a random walk, i.e. at any time and at any point in the vessel a particle has a
certain constant rate of moving to the right or left. Then the change of the particle
number in time will be given by

d

dt
Nk = α̃(Nk+1 +Nk−1 − 2Nk), (2.28)

where α̃ is the rate of moving to a neighboring site (see figure 2.11). Model (2.28)
assumes constant rates and does not take into account interactions between the
particles. We assume that the rate is inversely proportional to the square of the
distance between compartments, i.e. α̃∆x2 ≡ D is a constant. In the limit for
small ∆x, we get the diffusion equation

Nt = DNxx (2.29)
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(a) Uniform initial distribution.
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(b) The distribution at t = 50.
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(c) The distribution at t = 100.
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(d) The approximate stationary state,
t = 200.

Figure 2.10: Simulation of (2.23), (2.24) with C = 1, R = 10−3. We used the functions
F j
i represented in figure 2.9 and started with a homogeneous distribution. In each layer,

we initially placed 1.2 · 105 large grains and 4.8 · 106 small ones. Due to gravitation,
the particles move towards the bottom of the container. In the limit state, all the large
particles have gathered at the bottom of the container and formed a densest packing.
Small grains were able to fill up the gaps left in between up to a certain point. The
surplus of small particles forms a single-particle-type layer on top of the mixture. For
better visibility, the number of large grains (dashed lines) is scaled by a factor of 10.

with diffusion rate D.

If we supply equation (2.29) with the Neumann boundary condition

Nx = 0 (2.30)

at x = 0, l, saying that particles cannot enter or leave the vessel, then clearly
all solutions of system (2.29), (2.30) converge to states with homogeneous
distributions throughout the vessel, and the appearing concentration (or par-
ticle number per site) depends only on the total number of grains in the container.
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∼α

∼α

(a) simple.

+T

−T

(b) volume filling.

Figure 2.11: Random walk without gravity. The simplest particle transition rate is
constant (subfigure (a)). Density-dependent rates (subfigure (b)) yield volume-filling
functions. Here, a grain can only enter a neighboring cell, if the available space at the
destination is sufficiently large.

In a first step towards a more general model, we suppose that gravity acts in the
negative x-direction of the (vertical) vessel. Furthermore, we assume that the
particle distributions are homogeneous at each height x, i.e. the grains can only
move up or down. Thereby, we reduce the real three-dimensional physical setup
to a one-dimensional model. Note that we do not want to treat here the case
of a very thin vessel (like for instance a vertical tube), where boundary effects
become important and the movement of the particles is limited by their ability
to pass each other vertically. The simplification to one dimension can be justified
since we are mainly interested in vertical segregation and compaction of granular
material. Again, we consider a continuous-time, discrete-space random walk, and
we restrict attention to one-step jumps. We point out that our main interest lies
in treating mixtures of at least two types of particles in the vessel, where N and
n then designate their respective numbers.

Denote by T+
k the rate for a particle of the first type in the cell k to move up to

the position k + 1, and by T−
k its rate of jumping down (see figure 2.12). For the

corresponding rates for particles of the second type we use lower case letters, t−k
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+T

−T

Figure 2.12: The influence of gravity adds a new component to the transition rates of
the particles. Downward movement is favored.

and t−k . For a mixture of two species, the system of master equations then reads

d

dt
Nk = T−

k+1Nk+1 + T+
k−1Nk−1 −Nk(T

+
k + T−

k ),

d

dt
nk = t−k+1nk+1 + t+k−1nk−1 − nk(t

+
k + t−k ).

(2.31)

If the rates are constants, then these equations describe independent random walks
for two types of grains with possibly different rates.

2.10 Compaction of a single particle species

We modify the parameters in (2.31) and adapt it to different situations. First
consider jumping rates of the form

T+
k = α̃− β̃Gk,

T−
k = α̃+ β̃Gk,

(2.32)

where α̃ and β̃ are constant. Thus, in addition to the constant term α̃ giving rise to
a non-biased diffusion process as in section 2.9, we have a second term depending
on the composition of the mixture in the kth cell. Typically, Gk specifies a drift due
to gravitation. We assume α̃ > β̃Gk in (2.32), which guarantees that the resulting
jumping rates do not become negative. If we chose for example Gk = Mg∆x,
where M is the mass of an individual particle, g the gravitational constant and
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∆x the grid size, then

d

dt
Nk =(α̃+ β̃Mg∆x)Nk+1 + (α̃− β̃Mg∆x)Nk−1−

−Nk(α̃+ β̃Mg∆x+ α̃− β̃Mg∆x),

=α̃(Nk+1 +Nk−1 − 2Nk) + β̃Mg∆x(Nk+1 −Nk−1).

(2.33)

The gravitational coefficient Gk = Mg∆x, as modeled above, has the form a
potential energy. When the particle falls down from one cell to the one below, this
potential energy is transformed into kinetic energy. For a given grid size, the drift
term thus depends on the masses of the particles, which seems to be a reasonable
approach. If now the rate β̃ scales as β̃ = β/(∆x2), we get in the parabolic limit

Nt = DNxx + 2βMgNx. (2.34)

Equation (2.34) is a diffusion-convection model for a single species with constant
diffusion coefficient D and convection rate β. If we write (2.34) in divergence form,

Nt = −Jx, (2.35)

then the flux J = −DNx − 2βMgN drives the particles towards the bottom of
the container. We expect to see the grains aggregate at the bottom. This feature
is verified by simulation (see figure 2.13). In view of (2.35), we impose that the
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Figure 2.13: Sedimentation of particles of a single type under the influence of gravity.
We used the set of master equations (2.33) with M = 0.06, α̃ = 1, β̃ = 0.4 and a total
number of Ntot = 2020 particles in a vertical vessel of height l = 100 divided into 101
cells.

flux vanishes at the boundary of the domain, i.e. the boundary condition reads

DNx + 2βMgN = 0 (2.36)
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at x = 0, l.

Proposition 2.10.1 (Global solution.) Equation (2.34) with boundary condition
(2.36) has a unique classical solution, which exists for all positive times.

Proof. Global existence of solutions to convection-diffusion equations is guar-
anteed, provided the convection function satisfies some growth conditions. For
the proof of proposition 2.10.1, as well as the discussion on global existence of
solutions to more complex systems developed later in the present chapter, we
refer to chapter 3. 2.

The stationary solutions of (2.34), (2.36) are the solutions of the ordinary differ-
ential equation

N ′ = −2
β

D
MgN, (2.37)

where the prime indicates differentiation with respect to the space variable. The
solutions of (2.37) are

N(x) = λe−2βMgx/D,

where the parameter λ is determined by the total number N̄ of grains in the vessel,
i.e.

N̄ =

∫ l

0
N(x)dx

=

∫ l

0
λe−2βMgx/Ddx

=
λ

2βMg/D

(

1− e−2βMgl/D
)

,

hence

λ = 2
N̄βMg/D

1− e−2βMgl/D
. (2.38)

The random walk model discussed in this section assumes independent movement
of the individual grains. In contrast to the models in sections 2.11 or 2.14, particles
do not interact. They are all driven to the bottom of the container in the same
way. In the light of the lacking competition between grains, the stable steady
state in form of the strictly convex curve (2.38) is not surprising (figure 2.13).
This behavior will change in section 2.11, where particle movement is limited
by the available space per cell. Here, the typical sigmoid-shaped distributions
appear as stable states. Of course, a model assuming independent motion does
not describe the physical reality correctly and should be understood as a first step
towards more realistic models.
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2.11 The volume filling model for a single species

We move one step ahead in the development of a random walk model simulating
segregation. Some effects observed in shaken or vibrated granular material, such
as the Brazil nut effect or effects similar to the Rayleigh-Bénard phenomenon
in fluid dynamics (see also chapter 9), can be explained in terms of very basic
particle properties, above all the size and mass of grains. Thus, the remainder
of this chapter will be mainly dedicated to the study of so-called volume filling
models. These are models in which the available space per cell determines, among
other variables, the transition rates.

First we develop a model for only one particle species. We do not expect new
phenomena besides the compaction already exhibited in section 2.10. Nevertheless,
the analysis will be helpful in the development of more complicated models. We
start with the same setup as in section 2.10, using transition rates of the form
(2.32). This time, however, the gravitational term Gk will not only depend on
the particle mass M , but also on the available space at the destination. Thus,
when a cell k in the container is already filled with a large number of particles,
the rate for yet another particle to move to that cell will decrease. In reality,
this rate depends on all the details of the configuration of the particles located
at the destination of the incoming particle. In [Wackenhut02], the situation is
simplified insofar, as the author computes the available free volume for the site
of the incoming particle (neglecting the locations of that volume and the relative
position of the incoming particle). Here we further simplify and let the rate depend
on the total available volume only. Thus, the microscopic effects of the shaking
process, which generates space between the grains, are not taken into account.
We therefore choose a gravitational term of the form Gk = MgQk or, expressed in
terms of the specific weight ρN of the material and the volume VN of the particle,

Gk = ρNVNgQk, (2.39)

where Qk = Qk(Nk) is a non-increasing function with Qk(0) = 1. A discussion of
different so-called volume filling functions Qk is postponed to a later section.

As in section 2.9, we pass to the parabolic limit to find

Nt = DNxx + 2βρNVNg(Q(N)N)x (2.40)

with Neumann condition

Nx = −2
β

D
ρNVNgQ(N)N (2.41)

at the boundary x = 0, l. We call the system (2.40), (2.41) the Q-model.

We compare our previous segregation model (2.34), (2.36) to the Q-model (2.40),
(2.41) by means of a simulation (see figure 2.14). For the implementation, we use
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(a) Volume filling functions, which are
merely continuous, in general yield con-
tinuous solutions.
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(b) If we use differentiable volume fill-
ing functions, the stationary states are
smooth as well.

Figure 2.14: Sedimentation of particles of a single type under the influence of gravity
and the presence of a restricting volume filling function Q. We used again the set of
master equations (2.31) with transition rates (2.32), (2.39). Subfigure (a) was generated
using a volume filling function of the form (2.42), while (b) was produced with the help
of (2.43). Parameter values are ρN = 3, VN = 0.02, α̃ = 1.7, β̃ = 0.4. A total number
of Ntot = 2020 particles in a vertical vessel of height l = 100, divided into 101 cells, were
initially (at time t = 0) distributed evenly all over the vessel.

the discrete model with a single equation of the form (2.31). The special choice
for the function Qk is

Qk(Nk) =

{

1 if 0 ≤ Nk ≤ Nmax

0 otherwise
. (2.42)

Here, Nmax denotes the maximal number of particles fitting into one cell. We
use again the particle volume VN to write Nmax = V max /Vn, where V max is
the volume of one cell, or, in other words, the maximal available space at one
discrete site of the vessel. Notice that, in contrast to figure 2.13, the steady state
distribution in figure 2.14(a) exhibits a flat part at about 50 grains per cell at the
bottom of the container. Evidently, this is the effect of the volume filling function
Qk, which limits the number of particles per site.

Alternatively, we use the continuously differentiable function

Qk(Nk) =

{

(Nk −Nmax )2 if 0 ≤ Nk ≤ Nmax

0 otherwise
, (2.43)
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which yields a smooth stable distribution as shown in figure 2.14(b).

The stationary solutions of system (2.40), (2.41) are solutions of the ordinary
differential equation

N ′ = −2
β

D
ρNVNgQ(N)N, (2.44)

which are decreasing functions taking values between 0 and Nmax .

2.12 The Q-model for two types of particles

We return to two particle species, using again the system of equations (2.31). The
transition rates of the form (2.32) with constant Gk are replaced by

T+
k = α̃− β̃Gk, T−

k = α̃+ β̃Gk,

t+k = α̃− β̃gk, t−k = α̃+ β̃gk,
(2.45)

where Gk, gk are convection terms which depend on the location k of the particle
in the vessel. The volume filling functions Qk = Qk(Nk, nk) and qk = qk(Nk, nk)
have the following properties:
(a) Qk(0, 0) = qk(0, 0) = 1.
(b) Qk and qk are decreasing functions in both arguments.
(c) Qk and qk vanish if the total number of particles Nk+nk reaches a certain level
and stay zero henceforth. Property (c) guarantees that, given the size of a cell,
the number of particles cannot exceed a certain value. Of course, when there is no
more space for a large particle, smaller grains may still enter. We now construct
the transition rates using these volume filling functions. With T ±, t± as in (2.45),
we choose

Gk = ρNVNgQk,

gk = ρnVngqk.
(2.46)

Then, in the parabolic limit, system (2.31) becomes

Nt = [DNx + 2βρNVNgQ(N,n)N ]x ,

nt = [Dnx + 2βρnVngq(N,n)n]x ,
(2.47)

The boundary conditions read

DNx + 2βρNVNgQ(N,n)N = 0,

Dnx + 2βρnVngq(N,n)n = 0
(2.48)

at x = 0, l. The equations (2.47) are coupled convection-diffusion equations in
divergence form. In view of the boundary conditions (2.48), the total masses of
the two species are conserved.
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Next, we discuss the preservation of positivity and the boundedness of the solutions
of (2.47), (2.48). SinceN and n physically describe particle numbers, we would like
them to be confined to the intervals [0, Nmax ] and [0, nmax ] for the given positive
constants Nmax and nmax , respectively. The following proposition establishes this
property.

Proposition 2.12.1 (Boundedness of solutions.) Let the initial data N(0, x),
n(0, x) for the system (2.47), (2.48) be continuous, non-negative and bounded
by the constants Nmax , nmax , respectively. Then the solutions (N(t, x), n(t, x))
satisfy 0 ≤ N(t, x) ≤ Nmax , 0 ≤ n(t, x) ≤ nmax for all t ≥ 0.

Proof. For the proof of positivity, we refer to chapter 3, where we treat general
equations of the form ut = (d(u)ux)x − f(u)x. In proposition 3.5.1 of section
3.5, we show that under certain, relatively weak conditions on the convection
function f , positivity of the solutions is preserved. The conditions required apply
to system (2.47), (2.48).

In order to show that upper bounds exist for N and n, we use a similar comparison
argument. The proof is carried out for N , but it can be used for n without
modification. Consider the auxiliary function

v(t, x) := N(t, x) − εet

for some constant ε to be specified later. Suppose N were to become larger than
some value N̄ > Nmax somewhere in the interval [0, l]. This is equivalent to saying
that the function v touches N̄ from below at some point x0 for some ε > 0 for the
first time. Suppose x0 ∈ (0, l). At the touching point, we have vx = 0, vxx ≤ 0
and

vt = Nt − εet

= DNxx + 2βρNVNg[Q(N,n)N ]x − εet.

But for N > Nmax , Q is constantly equal to zero. Hence,

vt = DNxx − εet

= Dvxx − εet

< 0.

This is a contradiction, since v was supposed to touch N̄ from below. If the
touching point is on the boundary, x0 = 0 or x0 = l, then the boundary condition
(2.48) implies Nx = 0, and hence Nxx ≤ 0. Again, vt < 0, which is a contradiction.
Consequently, N cannot exceed any value N̄ > Nmax and must therefore be
bounded by Nmax . 2.
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We close this section with a remark on the monotonicity of the stationary solutions
of (2.47), (2.48), which are given by

Nx = −aQN,

nx = −bqn.
(2.49)

Here, a = 2βρNVNg/D and b = 2βρnVng/D.

Proposition 2.12.2 (Monotonicity.) The solutions of (2.49) are all non-
increasing for x ∈ [0, l].

Proof. Since the constants a and b, as well as Q and q, are non-negative
everywhere, monotonicity follows immediately. 2.

Since the stationary solutions of the system (2.47), (2.48) are monotone, (see
figure 2.15), the system describes compaction effects only, while segregation does
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Figure 2.15: Compaction of particles simulated by a Q-model for two types of particles
with gravitational terms (2.46). Parameter values are VN = 0.015, Vn = 0.01, ρN = 200/3,
ρn = 100, α̃ = 2, β̃ = 0.2. A total number of N tot = ntot = 2020 particles is in the vessel.
The solid line represents the small particles, while the number of large grains is given by
the dashed line.

not take place.

2.13 A Q-model for two grain types exhibiting segre-

gation

As we mentioned above, the model discussed in section 2.12 does not describe
segregation of granular material. This is not surprising in view of the underly-
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ing microscopic dynamics. The transition rates (2.45) with gravitational term
(2.46) stipulate that, except for an undirected rate α̃ giving rise to a diffusional
component, all particles are equally driven towards the bottom of the container,
independent of their type. Thus, we did not enable the larger or lighter particles
to move towards the top and generate empty space for the smaller or heavier ones
to fill up. Consequently, we update the model by adding a shaking term to (2.45),
which continuously pushes all the grains up and lets them settle according to the
dynamics described before. Consider

T+
k = c̃+ α̃− β̃Gk, T−

k = α̃+ β̃Gk,

t+k = c̃+ α̃− β̃gk, t−k = α̃+ β̃gk
(2.50)

with Gk, gk as in (2.46), where c̃ is now the extra shaking rate acting only in
positive x-direction. If c̃ scales as c̃∆x2 ≡ c, then we get in the parabolic limit

Nt = [DNx + (2βρNVNgQ(N,n)− c)N ]x ,

nt = [Dnx + (2βρnVngq(N,n)− c)n]x ,
(2.51)

with boundary condition

DNx + (2βρNVNgQ− c)N = 0,

Dnx + (2βρnVngq − c)n = 0
(2.52)

at x = 0, l.

We emphasize that the stationary states of (2.51), (2.52), given by the solutions
of

Nx =
c− 2βρNVNgQ

D
N,

nx =
c− 2βρnVngq

D
n

(2.53)

in general are not monotone any more. In fact, if we choose a non-physical, very
large shaking rate c,

c̃ > 2βmax {ρN , ρn}max {VN , Vn}g,

all solutions will be strictly increasing. The upward momentum introduced into
the system is then too large for the particles to settle at all. They accumulate at the
top. As we know from shaking experiments (see also chapter 9), there is an optimal
range, within which the shaking rate must be chosen to get visible segregation.
While it has to be so small, that the grains can settle to the ground after each
shake, it must be large enough for the interaction to take place in domains with
very condensed material. The stationary states of the discrete system (2.31) with
transition rates (2.50) are shown in figure 2.16 for different values of c̃. We used



42 Chapter 2. Random walk models for particle segregation and compaction

0 20 40 60 80 100

0
1

0
2

0
3

0
4

0
5

0
6

0

x

p
a

rt
ic

le
 n

u
m

b
e

r

(a) c̃ = 0.001.

0 20 40 60 80 100

0
1

0
2

0
3

0
4

0
5

0
6

0

x

p
a

rt
ic

le
 n

u
m

b
e

r

(b) c̃ = 0.02.
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(c) c̃ = 0.04.
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(d) c̃ = 0.2.

Figure 2.16: Stationary states for the Q-model, system (2.31) with the linearly decreasing
volume filling functions Q, q given in (2.54), and different shaking constants c̃. Parameter
values for all pictures are VN = 0.03, Vn = 0.01, ρN = ρn = 1, g = 10, α̃ = β̃ = 0.4. The
solid line represents the small particles, the number of large grains is given by the dashed
line.

the volume filling functions

Q(N,n) = 1− NVN + nVn

1− VN
,

q(N,n) = 1− NVN + nVn

1− Vn
,

(2.54)
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which are linearly decreasing in each argument. In fact, they represent crude linear
interpolations. We will justify such volume filling functions below. As in the case
c̃ = 0, the time-dependent solutions stay non-negative:

Proposition 2.13.1 (Positivity of the Q-model.) Consider system (2.51), (2.52)
with initial functions satisfying N(0, x), n(0, x) ≥ 0 for all x ∈ [0, l]. Then solu-
tions stay non-negative for all time.

Proof. Again, we refer to the proof of the general convection-diffusion problem,
proposition 3.5.1, carried out in section 3.5 of chapter 3. 2.

Finding upper bounds for N and n turns out to be more difficult. While
lacking the natural upper bounds Nmax and nmax , the model (2.51), (2.52)
is not inconsistent. The shaking parameter c̃, as it appears in the equations,
drives particles towards the top of the container independently of their local
concentration. We therefore expect concentrations to become large especially on
the right boundary x = l. If we assume that the upward transition rate at each
location is limited by the available space above, e.g. if we replace c̃ by by c̃Qk+1

and c̃qk+1, respectively, then the resulting equations again preserve the upper
bounds.

The volume filling function (2.54) giving rise to the above simulations is the result
of a very crude approximation. Before we use our model to compare the behavior of
different particle mixtures, we legitimate the use of linear functions Q, q. Imagine
an optimal two-dimensional packing of mono-size balls with radius R (see figure
2.17(a)). While having a volume of only R2π, each ball occupies the area of the
surrounding regular hexagon, which equals 2

√
3R2, i.e. about z := 1.1 times as

much. Of course, this ratio becomes larger for suboptimal packings. Suppose a
cell of volume 1 were partly filled with a mixture of large balls with radius R and
small balls with radius r. Then, for a large ball, the available space in the cell is

Q(N,n) := 1− zNVN − znVn. (2.55)

Since the small grains can also fill up the wedges between the large spheres, the
available space for a small ball is

q(N,n) := 1−NVN − znVn (2.56)

(see also figure 2.17(b)). Hence linear functions Q and q are justified.

Within the framework of the segregation system (2.51), (2.52), we can now in-
vestigate the effects of different specific densities of the grains. We start with a
bi-disperse mixture of balls with a volume ratio of VN/Vn = 1.5. Both particle
types have the same specific density, i.e. the mass ratio equals 1.5 as well. Us-
ing the volume filling functions (2.55), (2.56), the simulation in figure 2.18 nicely
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(a) Available space for another
large particle. The triangular
gaps between the grains cannot be
filled.

(b) Small particles can take not
only the space potentially occu-
pied by another large particle, but
also the triangular gaps left blank
in between the big grains.

Figure 2.17: Volume filling properties of large and small particles.
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Figure 2.18: Segregation of two types of grains. We used the system of master equations
(2.31) with transition rates (2.50), gravitational terms (2.46) and volume filling functions
(2.55), (2.56). Parameter values are α̃ = 1, β̃ = 0.4, c̃ = 0.1, M = 1.5, m = 1, VN = 0.015,
Vn = 0.01 and z = 10/7. The solid line represents the small grains, while the number of
the large particles is indicated by the dashed curve.

shows the compaction of the material as well as a relatively strict segregation due
to the difference in size, driving the large balls to the top. If we now decrease
the mass of the smaller grains, we expect that at some point the equilibrium is
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reversed and the larger, heavier particles move to the bottom. This phenomenon
is shown in figure 2.19.
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Figure 2.19: We used the same model and set of parameters as in figure 2.18, with the
exception that the mass of the smaller particles was decreased from 1 to 0.3. This is
enough for the segregation to reverse its direction. The larger, heavier particles (dashed
line) now form the bottom layer, with the small grains (solid line) on top.

2.14 A random walk model with buoyancy effect

Before we set out to derive another model, which is apt to describe segregation of
granular material without using volume filling functions as in section 2.13, we recall
the physical laws governing the settling of particles in a liquid due to gravitation
and buoyancy. Suppose a spherical particle of radius r made of a material with
specific weight ρ is submerged in a container filled with fluid. If the fluid has a
specific weight ρf then Stokes’ settling velocity of the ball is

vsett =
2r2g(ρ − ρf )

9η
,

where g is the gravitational constant and η the viscosity of the fluid. We use the
same idea in the case where the medium surrounding the spherical particle is not
a fluid but a mixture of other particles of the same or other type. In this case, of
course, the friction between the individual particles will prevent the grains from
moving at all, unless we introduce some sort of shuffling or shaking that creates
space between particles and thus enables fluctuation. Using again the basic master
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equations (2.31), we choose transition rates of the form

T+
k = α̃− β̃Gk, T−

k = α̃+ β̃Gk,

t+k = α̃− β̃gk, t−k = α̃+ β̃gk,
(2.57)

where now Gk and gk depend on the difference in specific weight between the
considered particle and the surrounding mixture of particles. Let

Gk = (ρN − ρ̄k)VNgh,

gk = (ρn − ρ̄k)Vngh,
(2.58)

where ρN and ρn are the specific weights of the particles of type N and n, respec-
tively. ρ̄k is the mean specific weight of the Nk particles of type N and the nk

particles of type n in the kth cell. Thus, ρ̄k = (NkρNVN + nkρnVn)/V
max , where

V max is the volume of one cell. If α̃ and β̃ scale as α̃∆x2 ≡ D and β̃∆x2 ≡ β,
respectively, then in the parabolic limit

Nt = [DNx + 2βVNgN(ρN − ρ̄)]x ,

nt = [Dnx + 2βVngn(ρn − ρ̄)]x ,
(2.59)

with ρ̄ = (NρNVN + nρnVn)/V
max . The appropriate boundary conditions are

DNx + 2βVNgN(ρN − ρ̄) = 0,

Dnx + 2βVngn(ρn − ρ̄) = 0
(2.60)

at x = 0, l. While conservation of total mass for (2.59), (2.60) is straightforward
due to the divergence form of the equations, the boundedness of the solutions
requires attention. Since no physical upper bounds appear in the equations ex-
plicitly, we cannot give a priori estimates. Here, we prove the conservation of
positivity.

Proposition 2.14.1 (Positivity of the buoyancy model.) Consider the system
of diffusion-convection equations (2.59) with boundary conditions (2.60). If the
initial functions satisfy N(0, x) ≥ 0, n(0, x) ≥ 0, then the solutions stay non-
negative for all times.

Proof. System (2.59), (2.60) is a special case of the general convection-diffusion
model analyzed in chapter 3. We therefore refer to the proof of proposition 3.5.1
on page 67. 2.

In view of the boundary conditions (2.60), the equilibrium states of system (2.59)
are solutions of

N ′ = −2
β

D
VNgN(ρN − ρ̄),

n′ = −2
β

D
Vngn(ρn − ρ̄),
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Figure 2.20: The stationary states of the discrete system (2.31) with transition rates
(2.57) and gravitational terms (2.58). Parameter values are α̃ = 0.3, β̃ = 0.4, ρN = 1,
ρn = 0.01 and VN = Vn = 0.01. Segregation due to the difference in specific weight takes
place. The solid line represents the small particles, the dashed curve the large ones.

which are typically non-monotone functions of the shape shown in figure 2.20.
Hence, the ρ-model discussed in this section, as the Q-model in section 2.13,
exhibits segregation of granular material.

2.15 On competitive systems and stationary solutions

The stationary solutions of both the Q-model in section 2.13 and the buoyance
model in section 2.14 are solutions of a system of ordinary differential equations
of the form

u̇ = u(γ − β1u− β2v),

v̇ = v(δ − β1u− β2v),
(2.61)

where γ, δ, β1 and β2 are positive constants. The derivative is taken with respect
to the variable x. The vector (N,n) designating particle numbers in sections 2.13
and 2.14 is replaced by the general notation (u, v). System (2.61) represents a
Lotka-Volterra competition model (see for example [Murray93]). Its nullclines,
given by β1u+ β2v = γ and β1u+ β2v = δ, respectively, are parallel straight lines
(see figure 2.21), hence, the only equilibria lie on the axes. A coexistence point
does not exist. In two dimensions, we can derive some interesting properties of
the stationary states of the original segregation models, (2.51), (2.52) and (2.59),
(2.60).
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(a) The nullclines and some typical tra-
jectories of system (2.61) in the case
γ > δ. Parameter values are γ = 3,
δ = 2, β1 = 3 and β2 = 4.
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(b) Nullclines and trajectories of the
same system, only this time with γ = 2
and δ = 3.

Figure 2.21: Simulation of some typical solutions of system (2.61) for different sets of
parameters.

Proposition 2.15.1 (Invariance and monotonicity of competitive systems.)
(I) The open positive cone C := {(u, v) ∈ IR2 | u, v > 0}, as well as the two axes,
are invariant under solutions of system (2.61).
(II) Furthermore, any solution exhibits at most one sign change of the derivative.
In other words, only one of the following four cases is possible:
(i) N and n are both strictly increasing.
(ii) N and n are both strictly decreasing.
(iii) One of the two components is strictly increasing, the other one strictly de-
creasing.
(iv) One of the two components is strictly monotone (increasing or decreasing),
the other one exhibits exactly one local extremum in the open interval (0, l).

We point out that case (i) is unphysical when the solutions describe particle
concentrations in a vertical container. The interesting case is (iv), since it
describes segregation.

Proof. (I) The invariance of the axes and the cone C is straightforward due to
the form of the equations.
(II) If we restrict to the open set C, the Jacobian

J =

(

γ − 2β1u− β2v −β2u
−β1v δ − 2β1u− β2v

)
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is a competitive matrix, since its off-diagonal entries are both strictly negative.
(For an overview on cooperative and competitive systems, we refer to [Smith95].)
Part (II) thus follows from [Smith95], proposition 2.1 on page 34. 2.

In the following, we discuss the existence of stationary solutions of the Q-model
and of the buoyancy model, i.e. solutions of (2.61), for a given total mass propor-
tion of the two species. Therefore, write the system (2.61) as

ż(t) = g(z(t)),

and let G be the solution operator,

d

dt
G(t, z) = g(G(t, z)),

G(0, z) = z,

for z = (u, v)T ∈ C̄, t ≥ 0. The vector of relative total masses z̄ is then defined by

∫ l

0
G(t, z)dt = z̄l

for a given container height l. Define the total mass operator H : [0,∞)× IR2 −→
IR2 by

H(l, z) :=
1

l

∫ l

0
G(s, z)ds,

H(0, z) := z.

(2.62)

H is continuous and maps [0,∞) × C̄ into C̄, where the axes are again invariant
due to proposition 2.15.1, part (I). Note that H(0, ·) is the identity. In chapter 3,
we will show that in the case of a slightly different system of convection-diffusion
equations, stationary solutions exist for any given container height and for any
given vector z̄ of relative total masses (see theorem 3.5.2 in section 3.5). In the
present case, i.e. for systems (2.51), (2.52) and (2.59), (2.60), this is not true in
general.

Proposition 2.15.2 (Non-existence of stationary states.)
(I) Let z̄ ∈ C be given. Then there exists a container height l∗, for which H(l∗, z) 6=
z̄ for all z ∈ C̄.
(II) Let a container height l > 0 be given. Then there exists a vector z̄ of relative
total masses, which is not realized by H(l, ·). In other words, H(l, z) 6= z̄ for all
z ∈ C̄.

Proof. (I) For any set of parameters, system (2.61) has exactly one stable equi-
librium E on one of the two axes, and its domain of attraction is all of C (see
[Murray93], section 3.5, page 80/81). Let z̄ ∈ C and choose a small open ball Br
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of radius r > 0 around E, such that z̄ /∈ Br. Denote by Br/2 the ball of radius
r/2 around E. Let z ∈ C. Since E attracts all trajectories, there is a t1 > 0
such that G(t, z) ∈ Br/2 for all t > t1. Choose t2 > 2t1|‖z‖ − r|/r, where ‖ · ‖
designates the Euclidean norm in IR2. Then t1‖z‖ + t2r/2 < r(t1 + t2), i.e. for
l∗ := max {t1 + t2, 1}, we have ‖H(t∗, z)‖ < r. Hence, the vector z̄ is not realized
by H(l∗, ·). This proves part (I).
(II) We first argue on one of the axes and then carry forward the argument to the
interior C by continuity. Without loss of generality, let z̄ be on the u-axis. Since
H(l, C) ⊆ C and both axes are invariant respectively, we have to look for a point
z on the u-axis such that H(l, z) = z̄. Since v = 0 in z̄, system (2.61) reduces to

u̇ = u(γ − β1u), (2.63)

the solution of which is

u(x) =
1

(

1
u0

− β1

γ

)

e−γx + β1

γ

. (2.64)

In case the trajectory starts below the equilibrium, i.e. if u0 < γ/β1, the function
(2.64) is defined for all positive and negative values of x. However, if u0 > γ/β1,
then (2.64) explodes at x∗ := ln (1 − γ/(β1u0))/γ < 0. Note that x∗ −→ 0 for
u0 −→ ∞. For the given container height l > 0, choose ū such that |x∗| < l/2.
Then, the solution (2.64) of (2.63) can only be traced backward in x over an
interval of length less than half the container height for any starting point u0 > ū.
This is equivalent to saying, that every solution of system (2.61) starting at a
point z = (u0, 0)

T on the u-axis spends more than half the time below ū, and
hence, the first component of H(l, z) is less than ū. We have thus proven part
(II) of proposition 2.15.2 for z̄ = (ū, 0)T on the u-axis. Since H is continuous in
particular with respect to its second argument z, we can generalize the result
to points z̄ ∈ C close to the axis. This completes the proof of proposition 2.15.2. 2.

We point out, that the previous proof crucially depends on the fact that the local
particle concentrations are not a priori bounded from above. In particular, they
do not always add up to a constant. In chapter 3, we will analyze a system of
convection-diffusion equations, for which concentrations always add up to one.
This is equivalent to saying, that one species is designated the role of a medium,
like a fluid or air, in which the other species move and which fills up all the gaps
in between the grains. In that case, we are able to show, that stationary states
exist for any given total mass distribution.

Even though solutions of system (2.61) do not exist for any given total mass
distribution, as shown in proposition 2.15.2, the solutions are unique when they
exist:
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Theorem 2.15.3 (Uniqueness of stationary states.) Let the competitive Lotka-
Volterra system (2.61) with strictly positive constants γ, δ, β1 and β2 be given,
and consider the total mass operator H : [0,∞) × IR2 −→ IR2 defined in (2.62).
If for a given container height l > 0 and a given vector z̄ in the positive cone C,
the equation

H(l, z) = z̄ (2.65)

has a solution z ∈ C, then this solution is unique. In other words, for a given
total mass distribution, there is at most one corresponding stationary state.

Proof. In order to prove uniqueness, we give the explicit solution of (2.61) and
use the monotonicity of the mapping H. Verify that

u(x) = u0e
γx δγ

Z(x)
,

v(x) = v0e
δx δγ

Z(x)

(2.66)

solves system (2.61) for

Z(x) = v0γβ2

(

eδx − 1
)

+ uoδβ1 (e
γx − 1) + δγ,

where (u0, v0) designates the initial point, i.e. in terms of the particle models of
sections 2.13 and 2.14 the vector of concentrations at the bottom of the vessel.
Now, with z := (u0, v0), the two components of H have the form

H1(l, z) =
1

l

∫ l

0
u0e

γx δγ

Z(x)
dx,

H2(l, z) =
1

l

∫ l

0
v0e

δx δγ

Z(x)
dx

for l > 0. For l > 0, the derivatives of H are

∂

∂u0
H1 =

δγ2

u20l

∫ l

0

eγx

Z2

[

β2v0

(

eδx − 1
)

+ d
]

dx,

∂

∂u0
H2 =

δγ2v0
u30l

∫ l

0

eδx

Z2

[

β2v0

(

eδx − 1
)

+ d
]

dx− δγv0
u20l

∫ l

0

eδx

Z
dx

= −δγv0
u20l

∫ l

0

eδx

Z2

[

δβ1 (e
γx − 1) +

δγ

u0

]

dx,

∂

∂v0
H1 = −δγ2β2

u0l

∫ l

0

eγx

Z2

(

eδx − 1
)

dx,

∂

∂v0
H2 =

δγ

u0l

∫ l

0

eδx

Z
dx− δγ2β2v0

u20l

∫ l

0

eδx

Z2

(

eδx − 1
)

dx

=
δ2γ

u0l

∫ l

0

eδx

Z2
[β1 (e

γx − 1) + γ] dx,
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i.e. the Jacobian has positive diagonal and negative off-diagonal elements.
Straightforward calculation yields the Jacobian determinant

det JH =
δ4γ3β1
u30l

2

(
∫ l

0

eγx

Z2

)(
∫ l

0

eδx (eγx − 1)

Z2

)

+

+
δ4γ4

u40l
2

(
∫ l

0

eγx

Z2

)(
∫ l

0

eδx

Z2

)

+

+
δ3γ4β2v0

u40l
2

(∫ l

0

eδx

Z2

)

(

∫ l

0

eγx
(

eδx − 1
)

Z2

)

.

For l > 0, this expression is always strictly positive. Hence, all principal minors
of JH are strictly positive, and the Jacobian is a so-called P-matrix (see e.g.
[Gale65]). Suppose for some given l > 0 and a given vector z̄ ∈ C of relative total
masses, the equation (2.65) has two distinct solutions z1 6= z2 ∈ C. Choose a
rectangular region R 3 z1, z2, the sides of which are parallel to the u- and v-axis,
respectively. On such a rectangle, the P-matrix JH is univalent (see theorem 4 of
[Gale65]), which is a contradiction. This completes the proof of theorem 2.15.3.
2.

2.16 The potential energy and the shaking process

Reconsider the basic model (2.34) describing the compaction for a single particle
type. From a heuristic point of view, it is evident that the compaction process
gradually reduces the potential energy of the particles in the vessel up to a certain
experimental minimum (even though the theoretical optimal packing can never be
reached in practice; see also [Aste00], [deLarrard99]). Surprisingly, the situation is
different in the case of several mixing particle types. Imagine a material composed
of small and big grains of the same (for example spherical) shape. If the specific
weight of both grain types is the same, we observe that during the shaking process,
the large particles tend to move up and form a uniform layer on top of the small
grains. This Brazil nut effect is reproduced by our particle simulations in chapter 8
and the experiments described in chapter 9. Figure 2.22 shows two different levels
of compaction for the same material composition. Clearly, the fill level in subfigure
(a), which represents the completely segregated limit state, is higher, and thus the
overall potential energy is larger than in the mixed state in subfigure (b). Now,
we gradually increase the specific weight of the large balls. At some point, we
will have reached a situation in which the two effects, the buoyancy driving large
grains up and the gravitation favoring a downward movement of heavy particles,
balance each other. Before we reach this equilibrium configuration, we can make
heavy grains move up by shaking the container. This energy paradox could be
explained as follows: The Brazil nut effect is commonly explained by the fact that
the gaps between large particles can be filled by small ones, while small grains
rarely create gaps big enough for a big grain to fit in. In a polydisperse particle
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(a) Complete segregation, the
theoretical equilibrium state of a
shaking experiment.

(b) Mixed states are much denser
and energetically favorable. The
fill level is lower.

Figure 2.22: Sketch of two energetically different limit states.

mixture, this disparity creates a ratchet effect. The energy introduced by the
shaking lifts the heavy, large grains onto a higher level, while their way down is
blocked. In chapter 8, we illustrate this ratchet effect by simulations tracking the
overall potential energy of the system along trajectories.
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Chapter 3

Segregation of granular

material by diffusion and

convection

Summary. We use a convection-diffusion equation to model segregation within
a mixture of particles of different size, shape or surface structure in a vertical
vessel. Convection describes competition between species on a vertical scale,
whereas random noise (shaking) allows particles to exchange positions. For two
species, it is shown that the solutions converge to a unique distribution along the
vertical scale. For more than two species, at least one equilibrium distribution
exists (there are examples with multiple equilibria). For a class of models with
simple competition laws, uniqueness of the equilibrium is shown for any number
of species.

3.1 Introduction

The Brazil nut effect is a well-known phenomenon in granular media: A mixture
of two kinds of grains which differ in size is filled into a vertical (glass) cylinder
and then stirred or shaken. The bigger grains tend to move up. In some sense
the smaller particles fall between the gaps of the bigger ones. If the grains differ
also in specific weight, shape, coarseness of the surface etc., or if more than two
kinds of grains are used, then the behavior may become more complex. It seems
that there are not too many experimental results on segregation with more than
two kinds or a continuous distribution of grain sizes.

However, the case of two types of particles has been studied by several au-
thors. In [Hong01], [Lätzel00], [Luding96.1], [Luding97], [Luding98], [Luding99]
and [Luding01], the particles are modeled as hard spheres. In [Lätzel00] and
[Luding97] qualitative features of the material are derived from laws for the
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contacts between individual particles. In [Luding98] and [Luding99] a cooling
process is used to describe segregation, whereas in [Luding96.1] pattern formation
caused by vibration is investigated. [Hong01] and [Luding01] analyze percolation
and condensation effects in granular material with both varying size and specific
density. In [Rosato87] an adaptation of the Monte Carlo cooling method is used
to analyze size segregation that occurs by shaking mixtures of two types of grains.
Cellular automaton models are used in [Anderson93], [Cizeau99], [Makse97.2] and
[Makse98.1] to study stratification and pattern formation in poured mixtures.
In [Boutreux99], [Gray98], [Makse97.1], [Makse97.3] and [Makse99.1] continuum
models are used to explain segregation in surface flows and flowing avalanches, i.e.
so-called kinetic sieving. In [Karolyi98] experiments and theory are compared with
respect to surface flows in 2D silos, and in [Makse98.2], stratification is studied
experimentally. [Gray97], [Makse99.2] and [Ristow99] deal with segregation and
pattern formation in rotating drums. Finally, [Duran93], [Farkas02], [Pöschel95]
and [Wambaugh02] study microscopic phenomena, such as the so-called ratchet
effect, the formation of convection cells in vibrating mixtures and local disruptions
in the structure of granular material giving rise to global effects, which favor or
accelerate segregation.

Since the details of the interactions between several kinds of particles will differ
widely and are also not generally known, we propose a heuristic model based on
diffusion and convection, i.e. the model has the form of a convection-diffusion
system. The idea is that the different species compete with each other for an
appropriate position on a vertical scale via different convection rates and that
random noise gives sufficient freedom for grains to pass between other grains.

The model studied in this chapter is unrealistic insofar as we assume that the
proportion of empty space is constant throughout the vessel independently of the
composition of the material. Hence we do not allow for compaction. Thus, the
system should be seen as our first attempt towards a general model for segregation.

In section 3.2 we describe the model system and we introduce the necessary
invariance and conservation properties. In section 3.3 we show, that in the case of
two species, there is a unique stationary distribution of grains which depends only
on the initial total masses of the two species. This stationary solution is globally
stable, i.e. for any initial distribution within the vessel (given the total masses)
the solution of the convection-diffusion system will approach this equilibrium. In
section 3.5 the case of more than two species is studied. We show that for any set
of total masses there is at least one equilibrium solution. Simple examples with
three species show that the equilibrium may not be unique. In section 3.8, we
study a special model for n species with a simple competition law, the so-called
replicator equation with linear fitness. Here we can prove uniqueness. Section
3.9 treats a more general type of replicator equations, for which uniqueness does
not necessarily hold. Model refinements and particle simulations are deferred to
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sections 3.10 and 3.11, respectively.

3.2 The model

Following the simple experimental setup described in chapter 2, we consider a
vessel in the form of a vertical cylinder of height l. Assuming that the distribution
of the material is homogeneous in horizontal direction, we simplify the physical
setup to a one-dimensional model. Hence, the container is represented by the
interval Ω := [0, l], where x = 0 corresponds to the bottom and x = l to the
top. We assume there are n types or species of particles numbered i = 1, . . . , n.
Let ui(t, x) be the density of the ith species at level x and time t. We collect
these into a vector u = (u1, ..., un)

T . Here u is a column vector, the symbol T

means transpose. We assume that the motion of particles in vertical direction,
caused by shaking and the influence of gravity, can be described by diffusion and
convection. Diffusion is a random (Brownian) undirected motion, convection
is directed and depends strongly on the types of interacting particles and their
relative frequencies. We understand the model in such a way, that the diffusion
term accounts for the random effects of shaking that provides space for convective
motion. The convection term incorporates effects of friction of grains and of small
grains falling into the gaps between large grains ([Gray98], [Barker90]). Hence
the model assumes the general form of a system of convection-diffusion equations.
We underline that this is a standard form of model that should be applied when
a more detailed description (transport equation, Boltzmann equation, particle
model) is not available or not applicable for lack of estimates for experimental
parameters. In fact, for many macroscopic models, convection-diffusion equations
occur as limiting cases for rapid microscopic motion and frequent changes of
direction. The model must be written in divergence form because of conservation
of mass.

Our final equation governing the changes in relative particle densities thus assumes
the general form

uit = (Di(u)uix − fi(u))x

for i = 1, . . . , n. We assume that the functions Di and fi are twice continuously
differentiable. We collect the diffusion coefficients into a diagonal matrix D(u) =
(Di(u)δij) and we interpret the functions fi(u) as components of a vector field
f(u) = (fi(u)). We also will use later the vector of all 1’s, eT = (1, . . . , 1). In
vector notation the system assumes the form

ut = (D(u)ux − f(u))x . (3.1)

The model does not account for empty space between grains. It is tacitly assumed
that the grains fill the volume completely or, equivalently, that empty space is
evenly distributed throughout the vessel whatever the distribution of species is.
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Although this assumption is not realistic, the model is a first step in the study of
mixtures. More complex models would allow for variable distributions of empty
space and hence also for compaction effects.

At first glance, one might try to give one of the n species forming the granular
material the role of the suspension medium or the empty space, thus granting
it essentially the same qualities as the other ones, which are composed of actual
particles. But this straightforward approach is not very realistic. Since the
medium has to be able to fill the gaps in between the grains, whatever their
size is, we would have to assume that the imaginary particles composing the
medium are infinitely small. But this contradicts the fact that the medium is
displaced step by step by the real particles moving down in the cylinder during
the sedimentation process. Very small grains, on the contrary, would seep through
the granular material and gather at the bottom of the container.

In order to face the problem of this special role of the medium, we will follow
two different approaches in chapter 5, thus interpreting the particle densities or
settling velocities as being measured relative to those of the surrounding medium.

At this point, we would like to emphasize the general nature of equation (3.1).
Besides the physical context described above, a biological interpretation could
be of some importance, when it comes to modeling interaction between living
species. Instead of considering small grains driven by gravitation and competing
for the most privileged space in the topmost layers of the granular material,
we imagine biological species being in competition with each other for some
vital quality. The latter could be a food source, a desirable temperature or a
favored habitat, but also light in the case of submerged algae (see for example
[Wörz-Busekros76] or [Radach74]). The species adapt more or less efficiently
to the environmental situation and other competing species or predators. The
term competition, widely used to describe interaction between species in general,
finds its original meaning in this biological interpretation. Here, the function
f in equation (3.1) incorporates all interactions between the populations, while
D = D(u) is again a diffusion matrix allowing for random movement of the
individuals.

The system (3.1) must be supplied with boundary conditions. As we shall see in a
moment, the requirement of conservation of total mass for each species determines
the boundary condition uniquely. We require

D(u)ux − f(u) = 0 (3.2)

at x = 0, l. In order for the model to be realistic, we have to impose two further
requirements.
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(i) The particle densities ui are non-negative.
(ii) At each space point x and time t the particle densities add up to 1.

For these requirements to be fulfilled, the following assumptions on the diffusion
rates and the vector field are sufficient and also necessary.

(a) The diffusion rates (which may depend on the vector u of densities) are the
same for all species, i.e. the diffusion matrix D(u) is a multiple d(u)I of the
identity matrix.
(b) The diffusion rate is positive, d(u) > 0.
(c) eT f(u) =

∑n
i=1 fi(u) ≡ 0.

(d) ui = 0 implies fi(u) = 0.
(e) ∂fi/∂uj |ui=0 = 0 for i 6= j.

With these hypotheses the system and the boundary condition read

ut = (d(u)ux − f(u))x , (3.3)

d(u)ux − f(u) = 0 (3.4)

at x = 0, l. The positivity of the diffusion coefficient (condition (b)) is just the
standard condition which ensures that diffusion is not degenerate.

Proposition 3.2.1 (Conservation of total mass and constant sum.) All solutions
of system (3.3), (3.4) conserve the total mass of each one of the species in the
vessel. Furthermore, condition (c) above guarantees that the particle densities add
up to one at every point x.

Proof. From the differential equation (3.3) and the boundary condition (3.4) we
get

d

dt

∫ l

0
udx =

∫ l

0
[D(u)ux − f(u)]x dx

= [D(u)ux − f(u)]|l0
= 0.

(3.5)

Hence total mass is preserved.

Next, in view of (3.3), (3.4) and hypothesis (c), the scalar function eTu satisfies
the diffusion equation

(eTu)t = eTut =
(

d(u)(eTu)x
)

x
(3.6)

and the boundary condition

(eTu)x(0) = (eTu)x(l) = 0. (3.7)
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We have eTu0(x) ≡ 1. Hence, both the given function u and the function which
is uniformly equal to one satisfy the differential equation and the boundary
condition, and therefore they are identical, eTu(t, x) ≡ 1. This shows that
everywhere masses add up to one. 2.

We close this section with the subject of global existence of solutions.

Theorem 3.2.2 (Global existence of the time-dependent solution.) Under the
hypotheses stated above, i.e. in particular if f is at least twice continuously dif-
ferentiable and if the diffusion matrix D(u) = (Di(u)δij) is diagonal, then the
solutions of system (3.1) with boundary condition (3.2) exist globally in time.

Proof. The spadework for our proof was done by H. Amann, who intensively
studied the conditions for local and global existence of solutions to quasi-linear
parabolic systems. We refer to [Amann89], theorem 3, and show in the following
that the necessary conditions are satisfied. First of all, with ajk(·, t, u) = D(u)
in definition (0.9) of Amann’s paper being a diagonal matrix, and for b0(·, t, u) =
diag (f1(u), . . . , fn(u)) and δ = 1 in definition (0.10), system (3.1), (3.2) qualifies
as a normally elliptic boundary value problem in the sense of [Amann89]. The
triangularity conditions (0.16) through (0.18) simply reduce to the diagonality
of D(u), since the domain Ω is one-dimensional in our case, i.e. since m = 1 in
theorem 3 of [Amann89]. In condition (0.20), we can choose λ = 1 and d(z) :=
max {‖f ′(u)‖, 1}, where ‖ · ‖ designates the spectral norm of the matrix. Finally,
the solution u is trivially bounded away from ∂G, since f is defined globally. With
the boundedness of the solutions guaranteed by proposition 3.5.1 in section 3.5,
the global existence follows. 2.

3.3 The case of two species

In the case of two species we can, in view of eTu = 1, put u1 = u, u2 = 1 − u
and f1(u1, u2) = f1(u, 1 − u) = f(u). Then we get the scalar convection-diffusion
equation

ut = (d(u)ux − f(u))x (3.8)

with the boundary condition

d(u)ux − f(u) = 0 (3.9)

at x = 0, l. As in the general case, we require conditions (a) through (e) above.
In the case n = 2 these assume the following simpler form:

(a),(b) d(u) > 0.
(c) says that f2 = −f1, hence becomes redundant.
(d) f(0) = f(1) = 0.
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(e) is a consequence of (d) for n = 2.

Besides the conservation of the total mass of the grains in the container stated in
proposition 3.2.1, the positivity of the solutions is a desirable property of systems
modeling the variation of physical densities. The following proposition establishes
this fact for scalar equations of the form (3.8) with boundary conditions (3.9).

Proposition 3.3.1 (Positivity in the scalar case.) Consider system (3.8), (3.9).
If the initial density distribution satisfies u(0, x) ≥ 0 for all x ∈ [0, l], then posi-
tivity is preserved for all time.

There is a well-developed machinery for maximum and comparison theorems for
parabolic equations and for getting strict inequalities from weak inequalities by
using comparison functions (see [Walter70], [Prottere84] or [Friedman64]). It
appears that the results in these monographs apply only to standard Dirichlet
or Neumann conditions or to boundary conditions of the third kind with strong
monotonicity properties. For our type of boundary condition, we have to use a
specially designed comparison function and some local estimates.

Proof. Let D be a positive constant which will be specified later and define
b := f ′(0)/D−1, a := 1/l. Then b+1 = f ′(0)/D = 2al+b−1 holds. Furthermore,
define the function

ρ(x) = eax
2+bx.

Then ρ′(x) = (2ax+b)ρ(x) and ρ′′(x) = ρ(x)[2a+(2ax+b)2]. It is straightforward
to check that

f ′(0)

D
ρ(0)− ρ′(0) =

f ′(0)

D
− b = 1 (3.10)

and

−f ′(0)

D
ρ(l) + ρ′(l) = eal

2+bl. (3.11)

Consider a time horizon T > 0. Since we investigate the solution u in the neigh-
borhood of zero, we may restrict to small absolute values without loss of generality.
Thus, we define

M := sup
ξ∈(−1,1)

|f ′′(ξ)|.

Let u be a fixed solution of problem (3.8), (3.9) and choose κ be so large, that

|d(u)ρ′′(x)| ≤ 1

4
κρ(x), (3.12)

|f ′(u)ρ′(x)| ≤ 1

4
κρ(x). (3.13)

This is possible, if we again restrict u to take values in the interval (−1, 1). Now
choose ε > 0 so small, that

ε|d′(u)ρ′2(x)eκT | ≤ 1

4
κρ(x), (3.14)



62 Chapter 3. Segregation of granular material by diffusion and convection

ε <
1

M
e−κT−2al2−2bl. (3.15)

Define the family of functions (with parameters κ and ε) v(t, x) := −ερ(x)eκt

with derivatives vt(t, x) = −εκρ(x)eκt, vx(t, x) = −ερ′(x)eκt and vxx(t, x) =
−ερ′′(x)eκt. Assume u − v reaches zero from above at (t0, x0) for some posi-
tive ε, κ. Suppose x0 ∈ (0, l). At this point, we have (u− v)x = 0, (u− v)xx ≥ 0
and (u − v)t ≤ 0. The latter is due to the fact that u − v has strictly negative
time-derivative in some neighborhood around (t0, x0) (otherwise u− v would not
have touched zero). Then,

0 ≥ (u− v)t

= d′(u)u2x + d(u)uxx − f ′(u)ux + εκρ(x)eκt

= d′(u)v2x + d(u)uxx − f ′(u)vx + εκρ(x)eκt

≥ d′(u)v2x + d(u)vxx − f ′(u)vx + εκρ(x)eκt

= d′(u)ε2ρ′2(x)e2κt − d(u)ερ′′(x)eκt + f ′(u)ερ′(x)eκt + εκρ(x)eκt

= εeκt[d′(u)ερ′2(x)eκt − d(u)ρ′′(x) + f ′(u)ρ′(x) + κρ(x)]

≥ εeκt(κρ(x)/4)

> 0,

which is a contradiction. Assume x0 = 0 or x0 = l. There, we have

(u− v)x =
f(u)

d(u)
+ ερ′(x)eκt

=
1

d(u)
f(−ερ(x)eκt) + ερ′(x)eκt

= εeκt
[

1

d(u)

(

−f ′(0)ρ(x) +
ε

2
ρ2(x)eκtf ′′(ξx0

)
)

+ ρ′(x)

]

,

where ξx0
is a constant depending on whether x0 = 0 or x0 = l (Taylor formula).

Here, we use u = v at x0. At this point, the choice of the constant D enters.
First consider the case x0 = 0. Let D := d(u(t0, 0)). Thus, according to the
preliminary definitions, f ′(0)ρ(0)/D−ρ′(0) = 1 and therefore, if ε is small enough
then (u − v)x < 0. Again, we have a contradiction since if u − v is zero for the
first time then we must have (u − v)x(0) ≥ 0. Now let x0 = l. If we choose
D := d(u(t0, l)) then −f ′(0)ρ(l)/D + ρ′(l) = eal

2+bl and thus

(u− v)x = εeκt
[

eal
2+bl +

ε

2D
ρ2(l)eκtf ′′(ξl)

]

.

The first term in brackets is greater than 1, whereas the absolute value of the
second term is at most ρ2(l)e−2al2−2bl/2, i.e. always less than 1/2. This means
(u − v)x(l) > 0, which is a contradiction since u − v is zero for the first time on
the right boundary x = l. Consequently, u− v cannot drop down to zero for any
ε, κ > 0, and hence, u itself cannot become negative. This proves proposition
3.3.1. 2.
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3.4 Stationary solutions in the scalar case

Let us look for stationary solutions of system (3.8), (3.9). From (3.8), we get
(d(u)ux − f(u))x = 0. Hence, d(u)ux − f(u) is a constant which vanishes in
view of the boundary condition (3.9). Thus, stationary solutions correspond to
solutions of the ordinary differential equation

d

dx
u = g(u) (3.16)

where
g(u) = f(u)/d(u). (3.17)

Of course we have
g(0) = g(1) = 0 (3.18)

by condition (d).

Proposition 3.4.1 (Monotonicity of equilibria in the scalar case.) All stationary
solutions of the one-dimensional equation (3.8) with boundary condition (3.9) are
monotone functions (increasing, decreasing, or constant) on the interval [0, l].

Proof. Solutions of scalar autonomous ordinary differential equations are always
monotone. 2.

Before investigating the qualitative behavior of the model, we discuss what we can
expect. For larger numbers of species and complicated interactions, we cannot rule
out complicated (e.g. oscillatory) behavior. But in the case of only two species,
i.e. in the case of one scalar differential equation, we expect that the process of
reshuffling by convection and diffusion leads to a stationary distribution. However,
since we can think of many different initial distributions with different proportions
of species, there must be many stationary solutions. Nevertheless, we can show
that for any given proportion of total masses of the two species there is exactly
one equilibrium. This fact is expressed in the following proposition.

Proposition 3.4.2 (Existence and uniqueness in the scalar case.) Let ū be the
relative total mass of the first species, such that

∫ l

0
u(x)dx = ūl (3.19)

is the absolute total amount in the vessel. For any number ū ∈ [0, 1], the differen-
tial equation (3.16) has exactly one solution satisfying condition (3.19).

Proof. We note that condition (3.18) ensures that every solution u(x) of equation
(3.16) with initial condition u0 = u(0) ∈ M = [0, 1] never leaves M . By the
existence and uniqueness theorem for ordinary differential equations, (3.16) has
exactly one solution for each u0 ∈ M . By the same argument solution curves
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cannot intersect and thus lie one above each other in the way indicated in
figure 3.1. In other words, the mapping F : u0 7−→ ū is strictly monotone and
therefore one-to-one. Furthermore, the solutions of (3.16) depend continuously
on the initial data u0 and we have F (0) = 0, F (1) = l in view of (3.18). As a
consequence, the mapping F is onto. 2.

Figure 3.1 shows the typical behavior of the species distribution for the function
f(u) = u(1− u) which corresponds to f1(u1, u2) = −f2(u1, u2) = u1u2. Solutions
for very small and very large proportions of u1 are convex or concave, respectively,
intermediate solutions show sigmoid behavior. The figure shows clearly that the
solutions of the ordinary differential equation can be parametrized either by their
initial data, i.e. their values at x = 0, or by the total mass ū. One can imagine,
that for n ≥ 3 and more complicated dynamics, where solutions can be still
parametrized by their initial data (as ensured by the existence and uniqueness
theorem for ordinary differential equations), there may be several or perhaps no
solutions for a given vector of proportions of total masses. Next we discuss the

0

0.2

0.4

0.6

0.8

1

u(x)

0.2 0.4 0.6 0.8 1x

Figure 3.1: The layers of stationary solutions for f(u) = u(1− u), d(u) ≡ 1, and l = 1.
Each curve represents the local proportion of the first one of two species as a function
of the height x ∈ [0, 1] in the vessel. The family of curves is parametrized either by the
initial value or by the total mass.

behavior of the time-dependent problem (3.8), (3.9). We have the following result:

Proposition 3.4.3 (Convergence to equilibrium in the scalar case.) For any
initial distribution u0 ∈ C3([0, l]) of species 1, the time-dependent solution of (3.8),
(3.9) converges to the unique equilibrium distribution characterized by the total
mass proportion ū.



3.4. Stationary solutions in the scalar case 65

Proof. As stated in section 3.2, f is assumed to be at least twice continuously
differentiable. Define the function of two variables

v(t, x) = d(u(t, x))ux(t, x)− f(u(t, x)).

Then

vt = d′(u)utux + d(u)uxt − f ′(u)ut,

vx = ut,

and thus

vt = a(t, x)vxx + b(t, x)vx (3.20)

with a(t, x) = d(u(t, x)), b(t, x) = d′(u)ux − f ′(u). The coefficients a and b are
bounded. Clearly, v vanishes on the boundary x = 0, l in view of (3.9). With
the smoothness conditions requested, the solution v goes to zero together with its
space derivative (see [Friedman64], p. 158, theorem 1). 2.

We point out the following fact: The function v = d(u)ux−f(u) satisfies equation
(3.20). Suppose at time t = 0,

d(u)ux ≥ f(u) (3.21)

(or d(u)ux ≤ f(u), respectively). Then by the comparison principle, the same
inequality holds for all positive t. If, for example, f is non-negative (see the exam-
ple section 3.3) and (3.21) holds initially, then u will be monotone in x for all time.

As an example we choose f(u) = u(1− u), d(u) = D = const. Then the ordinary
differential equation (3.16)

u′ =
1

D
u(1 − u) (3.22)

is a Riccati equation. The solution for the initial value u0 ∈ [0, 1] is

u(x) =
u0

(1− u0)e−x/D + u0

which is represented in figure 3.2. We observe that in the stationary solution the
first substance u1 is concentrated at the bottom of the vessel whereas u2 has its
maximum concentration at the top. We give the exact expression for the total
mass of species u = u1 as a function of the initial value u0 as

∫ l

0
u(x)dx =

∫ l

0

u0

(1− u0)e−x/D + u0
dx

= D · ln
[

(1− u0) + u0el/D
]

.

(3.23)
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Figure 3.2: Segregation of two types of particles due to diffusion and convection. A
stationary state of system (3.8) with d(u) ≡ D = 0.1 and u(0) = 0.01. The graph shows
the concentration of the first species in the vessel.
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Figure 3.3: The normed total mass ū of species u as a function of the initial value u0.
Parameter values are D = 1 and l = 1. The resulting map is a bijection of the interval
[0, 1].

Hence, we have an explicit formula connecting the initial data at x = 0 and the
total mass, namely

u0 =
eūl/D − 1

el/D − 1
.
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The dependence of ū on u0 is shown in figure 3.3. We emphasize, that the example
discussed in this section characterizes the qualitative behavior of any system of the
form (3.8). In a general situation some profiles may be increasing, some decreasing,
but they always form a set of nonintersecting layers.

3.5 The general case of n species

If we treat the case of more than two species, our convection-diffusion equation
becomes the vector equation

ut = (d(u)ux − f(u))x (3.24)

with boundary condition
d(u)ux = f(u) (3.25)

or, component-wise,

uit =
〈

d′(u) · ux
〉

uix + d(u)uixx −
〈

f ′
i(u) · ux

〉

,

d(u)uix = fi(u)
(3.26)

for i = 1, . . . , n, where 〈 · 〉 denotes the scalar product. As in the case of two
particle species, where the equations reduce to one dimension, positivity is also
conserved in the multi-dimensional case.

Proposition 3.5.1 (Positivity in the multi-dimensional case.) If the initial
(vector-valued) function u0(x) = u(0, x) of problem (3.24) satisfies u0

i (x) ≥ 0
for all i = 1, . . . , n and x ∈ [0, l] then the components of the solution u = u(t, x)
stay non-negative for all positive t.

Recall the component notation (3.26) of system (3.24), and suppose that at time
t = t̄ the ith component ui vanishes for the first time at x = x̄ ∈ [0, l]. First
assume 0 < x̄ < l. Then uix(t̄, x̄) = 0, uit(t̄, x̄) ≤ 0, uixx(t̄, x̄) ≥ 0. Hence at this
point,

uit = d(u)uixx −
∑

j 6=i

∂fi
∂uj

∂uj
∂x

.

The left hand side is non-positive, the first term on the right hand side is
non-negative, and the second term on the right hand vanishes in view of property
(e). Hence we would have a contradiction if one of the inequalities were strict.
This argument shows how property (e) enters. Next assume x̄ = 0 (or x̄ = l).
Then u(t̄, x) goes to zero from positive values, and so does ux(t, x) in view of the
boundary condition. It seems that it is unlikely that u and ux pass through zero
at the same time.

Proof. In order to prove the proposition, we proceed similarly to the scalar case in
section 3.3. We define the vector b component-wise by bi := (∂fi/∂ui(ū0))/D− 1,
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where the constant D will be specified later. Take a := 1/l and define the vector-
valued function ρ by ρi(x) := eax

2+bix. Then we get (∂fi/∂ui(ū0))ρi(0)/D−ρ′i(0) =

1 and (∂fi/∂ui(ū0))ρi(l)/D−ρ′i(l) = eal
2+bil. In the sequel, we will assume that the

concentration ui of species i takes a small negative value and derive a contradiction.
Therefore, we can restrict to values ui in the neighborhood of zero. Without loss
of generality, assume ui ∈ (−1, 1). Under this assumption, and in view of f ∈ C2,
the definition

M := max
i,j,k

sup
χ

∣

∣

∣

∣

∂2fi
∂uj∂uk

(χ)

∣

∣

∣

∣

(3.27)

makes perfect sense, when the supremum is taken over all χ ∈ (−1, 1). Consider
a time horizon T for problem (3.24), (3.25) and define the vector-valued function
v = v(t, x) component-wise by vi(t, x) := −ερi(x)e

κt and consider the function
u−v with initial data ui(0, x)−vi(0, x) = u0i (x)+ερi(x)e

κt and boundary condition
(u − v)ix = fi(u)/d(u) + ερ′ie

κt for some ε, κ > 0 to be specified later. Assume
u − v becomes zero for the first time in component i at (t0, x0), i.e. the vector
of concentrations is given by u = ū := (u0, . . . , ui−1, vi, ui+1, . . . , un). First, let
x0 ∈ (0, l). At (t0, x0), we have (ui − vi)x = 0, (ui − vi)xx ≥ 0 and (ui − vi)t ≤ 0.
In view of d(u) > 0, we get

0 ≥ (ui − vi)t

= 〈d′(ū) · ux〉uix + d(ū)uixx − 〈f ′
i(ū) · ux〉+ εκρi(x)e

κt

≥ 〈d′(ū) · ux〉vix + d(ū)vixx − 〈f ′
i(ū · ux〉+ εκρi(x)e

κt

= 〈d′(ū) · ux〉(−ερ′i(x)e
κt)− d(ū)ερ′′i (x)e

κt − 〈f ′
i(ū) · ux〉+ εκρi(x)e

κt.

(3.28)

In order to estimate the term (f ′
i(ū) · ux), we use Taylor’s formula. For i 6= k, we

have
∂fi
∂uk

∣

∣

∣

∣

ui=0

= 0

by assumption (e), and thus

∂fi
∂uk

(u) =
∂fi
∂uk

(ū) =
∂fi
∂uk

(ū0) +

〈

(ū− ū0) · grad
(

∂fi
∂uk

)

(ξk)

〉

= vi
∂

∂ui

(

∂fi
∂uk

)

(ξk),

where ξk is a constant vector (Taylor formula). In view of (3.27), we can find a
positive constant N , such that

∣

∣

∣

∣

∂

∂ui

(

∂fi
∂uk

)

(ξk)

∣

∣

∣

∣

≤ N.

Since the solution u of (3.24), (3.25) exists and is at least C2 for all positive times
(see theorem 3.2.2 in section 3.2), there exists a positive constant P , such that
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|ukx| ≤ P for all k = 1, . . . , n. Hence,

∣

∣〈f ′
i(ū) · ux〉

∣

∣ =

∣

∣

∣

∣

∣

∑

k

∂fi
∂uk

(ū)ukx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂fi
∂ui

(ū)vix + (n− 1)NPvi

∣

∣

∣

∣

=

∣

∣

∣

∣

−∂fi
∂ui

(ū)ερ′i(x)e
κt + ε(n− 1)NPρ′i(x)e

κt

∣

∣

∣

∣

.

Choose the parameter κ so large, that at (t0, x0),

|d(ū)ρ′′i (x)| ≤ κρi(x)/5,

|〈d′(ū) · ux〉ρ′i(x)| ≤ κρi(x)/5,
∣

∣

∣

∣

∂fi
∂ui

(ū)ρ′i(x)

∣

∣

∣

∣

≤ κρi(x)/5,

∣

∣(n− 1)NPρ′i(x)
∣

∣ ≤ κρi(x)/5.

(3.29)

Then, by (3.28),

0 ≥ εeκt[−〈d′(u) · ux〉ρ′i(x)− d(u)ρ′′i (x) + κρi(x)]− 〈f ′
i(u) · ux〉

≥ εeκtκρi(x)/5

> 0,

for any strictly positive ε, which is a contradiction. On the boundary x0 = 0 or
x0 = l, we have

(ui − vi)x =
fi(ū)

d(ū)
+ ερ′i(x)e

κt

in view of the boundary condition (3.25). By Taylor’s formula,

fi(ū) = fi(ū0) + 〈grad fi(ū0) · (ū− ū0)〉+
1

2

(

(ū− ū0)
THess fi(χx0

)(ū− ū0)
)

,

where χx0
is a constant depending on whether x0 = 0 or x0 = l. Hess fi is the

Hessian of the component fi. In view of (ū − ū0)
T = (0, . . . , 0, vi, 0, . . . , 0) and

assumption (d) of section 3.2, the equation for (ui − vi)x becomes

(ui − vi)x =
1

d(ū)

[

∂fi
∂ui

(ū0)vi + v2i
∂2fi
∂u2i

(χx0
)

]

+ ερ′i(x)e
κt

=
1

d(ū)

[

∂fi
∂ui

(ū0)(−ερi(x)e
κt) + ε2ρ2i (x)e

2κt ∂
2fi
∂u2i

(χx0
)

]

+ ερ′i(x)e
κt

= εeκt
{

1

d(ū)

[

−∂fi
∂ui

(ū0)ρi(x) + ερ2i (x)e
κt ∂

2fi
∂u2i

(χx0
)

]

+ ρ′i(x)

}

.
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Consider the case x0 = 0. Let D := d(u(t0, 0)). Using our preliminary definitions,
we see that (ui − vi)x < 0 if we choose ε small enough. This is a contradiction.
Now let x0 = l and D := d(ū). Then

− 1

D

∂fi
∂ui

(ū)ρi(l) + ρ′i(l) = eal
2+bl,

and thus

(ui − vi)x = εeκt
{

eal
2+bl +

ε

D
ρ2i (l)e

κt ∂
2fi
∂u2i

(χl)

}

.

The first term in brackets is always greater than one, whereas the absolute value
of the second term is at most equal to

1

2
ρ2i (l)e

−2al2−2bl,

i.e. less than 1/2. This is a contradiction. Consequently, u − v can never reach
zero from above, and hence, u itself cannot become strictly negative. This proves
proposition 3.5.1. 2.

The stationary solutions of system (3.24) with boundary conditions (3.25) are
solutions of the system of ordinary differential equations

u̇ = g(u) (3.30)

where g(u) = f(u)/d(u). Let G be the solution operator of (3.30), i.e.

d

dt
G(t, u) = g(G(t, u))

G(0, u) = u.

From hypotheses (c) and (d), it follows that the function g satisfies

ui = 0 ⇒ gi(u) = 0, (3.31)

eT g(u) ≡ 0. (3.32)

Define the simplex (generalized triangle or tetrahedron) of probability vectors

S = {u ∈ IRn |ui ≥ 0, i = 1, . . . , n,
n
∑

i=1

ui = 1},

The set S is the set of local distributions of the n species. The conditions (3.31),
(3.32) ensure that solutions of (3.30) starting in S remain in S for all times t
(positive or negative). Hence S is invariant with respect to the flow of (3.30). If
G(t, u), 0 ≤ t ≤ l, is the solution of (3.30) starting from u(0) = u, then

∫ l

0
G(t, u)dt = ūl. (3.33)
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defines the normed vector ū of total masses of the n species (the actual total mass
is given by ūl). The next theorem shows that for any distribution ū ∈ S of total
masses there is at least one stationary solution (exactly one in the case n = 2 by
Proposition 3.4.2).

Theorem 3.5.2 (Existence of equilibria in the multi-dimensional case.) Assume
(3.31), (3.32). For every ū ∈ S, there is at least one u ∈ S, such that (3.33)
holds.

Proof. Under the hypotheses of section 3.2 the system lives on the simplex S.
In the following argument we use the topological degree (see [Ortega70]). Let L
be some positive number (the largest height of the vessel we are interested in).
Define the function H : [0, L] × IRn −→ IRn by

H(l, u) =
1

l

∫ l

0
G(s, u)ds for l > 0, (3.34)

H(0, u) = u. (3.35)

The function H is continuous, and it maps [0, L]×S into S, H(0, ·) is the identity.
Let u ∈ ∂S, i.e. ui = 0 for some i. Then Gi(l, u) = 0 for the same i and hence also
Hi(l, u) = 0. Conversely, let H(l, u) ∈ ∂S for some l and u. Then Hi(l, u) = 0

for some i and hence
∫ l
0 Gi(t, u)dt = 0 or, equivalently,

∫ l
0 Gi(t, u)dt = 0. Then

ui = 0 which means u ∈ ∂S.
In short, H(l, ·) maps the interior S◦ of S into the interior and the boundary
∂S into itself. Also each lower-dimensional face of the boundary is mapped into
itself.
Now let ū ∈ S◦. Then H(l, u) 6= ū for all u ∈ ∂S. Thus, H defines a homotopy
of S and the degree deg (H(l, ·), S, ū) is well-defined for all l ∈ [0, L]. Since
deg (H(0, ·), S, ū) = 1, we have deg (H(l, ·), S, ū) = 1 for all l ∈ [0, L] and hence
the equation H(l, u) = ū has at least one solution in u ∈ S for all l ∈ [0, L].
Now assume ū ∈ ∂S. Then ūi = 0 for some i. Then, in the above argument,
replace S by the face of S corresponding to the positive components of ū. 2.

In general, there will be more than one stationary solution for a given mass
distribution. This can be seen from the following argument. Assume the system
(3.30) has a non-constant periodic solution with minimal period ω > 0. Choose
l = ω. Then for all points u on the periodic orbit we get the same value ū. In
this example we can extend the function from [0, l] periodically to the whole real
axis to get an infinitely high vessel with a periodic distribution of species. Then
the phase of this distribution can be chosen arbitrarily. We do not claim that
such choice of the function f or g is realistic. In section 3.6 we give an example
illustrating the above argument.

We reformulate the above result in terms of boundary value problems of second
order systems of ordinary differential equations. Theorem 3.5.2 says that the
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boundary value problem
v̈ = g(v̇) (3.36)

with boundary values

v(0) = 0

v(l) = ūl
(3.37)

has at least one solution in S for every ū ∈ S.

3.6 Non-unique stationary states

At this point we briefly interrupt the general discussion of conditions for unique
stationary solutions and give a counter-example exhibiting different equilibria with
the same total mass distribution. Consider system (3.24) with boundary condition
(3.25), where d(u) ≡ D = 1/

√
3, and the three-dimensional convection function is

given by

f1(u) = u1(1− u1 − 2u2),

f2(u) = u2(−1 + u2 + 2u1),

f3(u) = −f1(u)− f2(u).

(3.38)

Conditions (a) through (e) in section 3.2 are satisfied, and, denoting the vector
u = (x, y, z)T , the stationary solutions are solutions of the system of ordinary
differential equations

ẋ =
√
3x(1− x− 2y),

ẏ =
√
3y(−1 + y + 2x).

(3.39)

Due to the fact that concentrations always add up to one, we may omit the third
equation

ż = −ẋ− ẏ =
√
3x(x− 1)−

√
3y(y − 1) (3.40)

governing the change in z. The solutions of (3.39) are represented in fig-
ure 3.4(a). The three-dimensional system (3.39), (3.40) lives on the simplex
S = {(x, y, z) : x+ y+ z = 1} ⊂ IR3. It has stationary points in the three corners
of S and a coexistence point at P := ( 13 ,

1
3 ,

1
3). The boundary of S and the orbits

of system (3.39), (3.40) are represented in figure 3.4(b).

Linearization of (3.39) yields a system with matrix

JP =
1√
3

(

−1 −2
2 1

)

,

the eigenvalues of which are ±i. The two-dimensional system Ẋ = JPX is a
center, its trajectories are the ellipses sketched in figure 3.5(a). The two successive
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Figure 3.4: The center of system (3.39) and its projection onto the three-dimensional
simplex, system (3.39), (3.40).
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Figure 3.5: The orbits of the linear system described by the matrix JP , and the corre-
sponding flows after the variable transformations (3.41) and (3.42).

variable transformations

x 7→
√
3(x− y),

y 7→ x+ y
(3.41)
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and

x 7→
√
3x

y 7→ y
(3.42)

yield the orbits sketched in figures 3.5(b) and 3.5(c), respectively. They do not
change the period. The resulting system is the center ẋ = −y, ẏ = x, which is
known to have period T = 2π. As a result, the linear system described by JP also
has period equal to 2π. Thus, the closed orbits of system (3.39), (3.40) around
the point P have periods assuming all values in the interval [2π,∞), depending
on the starting point (x0, y0, z0) ∈ S. In fact, there could even be periods
of length smaller than 2π. The more trajectories approach one of the three
stationary points in the corners of S, the longer the corresponding period becomes.

The above argument shows, that for any container height l > 2π, there is at least
one closed orbit of (3.39), (3.40) with period equal to l. Each starting point on
this cycle yields a different stationary state with the same total mass distribu-
tion. Figures 3.6 and 3.7 show two sequences taken from computer simulations,
illustrating the fact that different stationary solutions exist and are locally sta-
ble. In both cases, we used system (3.24) with boundary condition (3.25),
where d(u) ≡ D = 1/

√
3, and the three-dimensional convection function is given

component-wise by (3.38). The container height equals 10 units of length, and
the total masses of the three species were chosen to be 3.2, 3.2 and 3.4 units of
mass, respectively. The two runs differ only in the initial mass distribution in the
container (see figure parts 3.6(a) and 3.7(a)).

3.7 Monotonicity and convergence

Before we approach the problem of convergence of the solutions, let us touch the
issue of monotonicity of the stationary states. Clearly, the equilibria of (3.24),
(3.25) in general need not be monotone any more, even though the corresponding
ordinary differential equation (3.30) is autonomous. In chapter 5, where we apply
the theory developed in the present chapter to the analysis of sedimentation
processes, we will encounter a special case, in which all components of the
convection function f are strictly negative everywhere. Of course, this guarantees
monotonously decreasing equilibria.

Once we know that stationary solutions exist for problem (3.36) with boundary
condition (3.37), we naturally ask the question of convergence to these steady
states as time progresses. Define

v := d(u)ux − f(u). (3.43)

It is straightforward to check that v satisfies

vt = d(u)vxx +Avx, (3.44)
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(d) At t = 3 units of time.
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(e) At t = 5 units of time.
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(f) At t = 30 units of time.

Figure 3.6: Sequence in the simulation of system (3.24) with boundary condition (3.25)
and convection function (3.38), where d(u) ≡ D = 1/

√
3 and l = 10. The concentrations

of the three types of grains are drawn in solid, dashed and dotted lines, respectively.

where A is the matrix uxd
′(u)T − f ′(u) and f ′ the Jacobian of f . Furthermore, v

satisfies v(0) = v(l) = 0. As the following theorem states, we can now realize the
convergence of the solutions of (3.24), (3.25) to a stationary state with the same
total mass distribution in a container with fixed height l, given that the norm of
the Jacobian of f does not exceed a certain value. In other words, if the container
height is too large, we cannot guarantee globally stable equilibria any more. In
this case, one could imagine the formation of steady waves or similar periodic
phenomena, disturbing the appearance of stationary states.

Theorem 3.7.1 (Convergence to equilibrium in the multi-dimensional case.) De-
note by A the Jacobian of the function f ,

A(t, x) := f ′(u(t, x)),
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(f) At t = 30 units of time.

Figure 3.7: Sequence in the simulation of the same system used to obtain figure 3.6, this
time with a different initial mass distribution. The stationary state, which is approxi-
mately that illustrated in part (f), shows layers of the same type, but with interchanged
roles of the three species.

and define

m := sup
t≥0

max
0≤x≤l

‖A(t, x)‖.

If l <
√
2π/m, then the function v defined in (3.43) tends to zero uniformly on

the interval [0, l] as t → ∞. Consequently, every solution u of (3.24), (3.25)
approaches equilibrium.

Proof. The function 〈v · v〉 = 〈v · v〉(t, x) (scalar product) satisfies 〈v · v〉t =
2〈v · vxx〉 − 2〈v ·Avx〉, 〈v · v〉x = 2〈v · vx〉 and 〈v · v〉xx = 2〈vx · vx〉+2〈v · vxx〉, and
thus solves the Dirichlet problem

〈v · v〉t = 〈v · v〉xx − 2〈vx · vx〉 − 2〈v · Avx〉 (3.45)
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with boundary condition

〈v · v〉(0) = 〈v · v〉(l) = 0. (3.46)

We rewrite (3.45) as

〈v · v)t = 〈v · v〉xx − 2 [〈vx · vx〉+ 〈v · Avx〉+ κ〈v · v〉] + 2κ〈v · v〉 (3.47)

with the parameter κ > 0 to be specified later. The form giving rise to the term
in brackets on the right hand side, Y := [〈vx · vx〉+ 〈v ·Avx〉+ κ〈v · v〉], is defined
by the matrix

P :=

(

1 1
2A

1
2A

T κ

)

,

in the sense that

〈vx · v〉P 〈vx · v〉T = Y.

We will choose κ as small as possible, but still large enough for Y to be non-
positive, thereby giving an upper estimate for 〈v · v〉t. The symmetric matrix P
is negative definite if and only if its determinant is positive. We therefore choose
κ = m2/4. With this choice made, equation (3.47) becomes the inequality

〈v · v〉t ≤ 〈v · v〉xx +
m2

2
〈v · v〉, (3.48)

which, in combination with the boundary condition (3.46), is a Dirichlet problem
with constant coefficient m2/2. Rescale x 7→ x

√

m2/2, t 7→ tm2/2. Relation
(3.48) becomes

〈v · v〉t ≤ 〈v · v〉xx + 〈v · v〉. (3.49)

It is known (see for example [Britton], p. 50, theorem 4.40) that (3.49) has a
critical patch width equal to π, i.e. if l lies below this value, the trivial solution
is stable and 〈v · v〉 tends to zero uniformly. In our case, we have to rescale this
patch width. The resulting condition for the uniform convergence to the trivial
state is thus l <

√
2π/m. Using [Friedman64], theorem 1, p. 158, we conclude

that u tends to zero as well. This completes the proof of theorem 3.7.1. 2.

3.8 A replicator type competition law with constant

fitness

There is one choice of the vector field f , for which we can show uniqueness of the
stationary state in any dimension n. We choose D = const. and

f(u) = Mu− (eTMu)u (3.50)
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where M = (miδij) is a diagonal matrix of order n and the mi are strictly positive
constants. Without loss of generality we assume m1 > m2 > ... > mn. In
coordinate notation the ordinary differential equation (3.30) reads

d

dx
ui =

1

D

[

miui −
(

n
∑

k=1

mkuk

)

ui

]

. (3.51)

This equation is just a renormalization of the linear system u̇ = Mu. In
theoretical ecology, this type of system has been called replicator equation (see for
example [Hofbauer98]). Here, the coefficient mi is the (constant) fitness of species
i in the population. The evolutionary success of the species, i.e. its relative rate of
increase u̇i/ui, is expressed as the difference between mi and the average fitness
m̄ =

∑

ukmk of the population. In section 3.9, we discuss the general replicator
system. There, the individual fitnesses will be linear functions of the state vector u.

The solution of (3.51) can be explicitly given as

ui(x) =
emix/Dui(0)

∑n
j=1 e

mjx/Duj(0)
. (3.52)

Then the equation
∫ l

0

emix/Dui
∑n

j=1 e
mjx/Duj(0)

dx = lūi (3.53)

establishes the connection between stationary solutions and total masses.

Theorem 3.8.1 (Uniqueness of equilibria for replicator models.) Consider the
system (3.1) with boundary condition (3.2), where the nonlinearity is given by
(3.50). For any choice ū ∈ S of total masses, there is exactly one stationary
solution.

Proof. Existence of solutions has been shown in theorem 3.5.2 of section 3.5.
We can assume D = 1. In this case the function H(l, ·), for l > 0, is given
component-wise by

Hi(l, u) =
1

l

∫ l

0

emixui
∑n

j=1 e
mjxuj

dx. (3.54)

H(l, ·) maps S onto S (as shown in the proof of theorem 3.5.2). Of courseH(0, u) =
u on S as before. Now we want to compute the Jacobian of H(l, ·) at a point
u ∈ S. For that purpose, we interpret (3.54) as a mapping from IRn → IRn and
later restrict to the set S. The Jacobian J has elements

∂Hi

∂ui
=

1

l

∫ l

0

1

(
∑n

k=1 e
mkxuk)

2 e
mix





∑

k 6=i

emkxuk



 dx > 0,

∂Hi

∂uj
= −1

l

∫ l

0

e(mi+mj)xui

(
∑n

k=1 e
mkxuk)

2 dx < 0

(3.55)
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for i 6= j. Thus, J has strictly positive diagonal elements and strictly negative
off-diagonal entries. Let us now restrict to solutions G = G(t, u) starting on the
simplex S, i.e. with u ∈ S. Along those trajectories, eTG(t, u) = eTu for all t, and
hence

eTH(l, u) =
1

l

∫ l

0
eTG(t, u)dt

= eT
1

l

∫ l

0
G(t, u)dt

= eT ū

is a constant. Consequently, eTJ = 0 for the system restricted to S, i.e. the
Jacobian of H has a zero eigenvalue, and the corresponding eigenvector is the
normal of S. Consider −J , which is a matrix with negative diagonal and posi-
tive off-diagonal elements. The Perron-Frobenius theorem (e.g. [Gantmacher59])
implies, that all eigenvalue of −J have non-positive real parts, and that zero is
a single eigenvalue. For the Jacobian J itself, this means that the restriction of
the system to the simplex S has only eigenvalues with strictly positive real part.
Its determinant is therefore strictly positive as well. Consequently, the degree
deg (H(l, ·), S, ū) (see for example [Ortega70]), which is the sum of the indices of
all solutions of the equation

H(l, u) = ū, (3.56)

equals the number of these solutions. Since H(l, ·) is homotopically equivalent to
the identity H(0, ·) on S and since (3.56) has no solutions on ∂S (see the proof
of theorem 3.5.2 in section 3.5), the degree is equal to one. Hence, uniqueness
follows. This proves theorem 3.8.1. 2.

In section 3.11 we compare the stationary states of a replicator type convection-
diffusion system with convection term (3.50) with those of a particle simulation.
An illustration of the corresponding density distributions is given is figure 3.12.

3.9 The general replicator equation with linear fitness

At present, we generalize the constant fitness model discussed in section 3.8 and
let the fitness mi of species i depend linearly on the state vector u (see again
[Hofbauer98]). Thus, we choose mi = mi(u) = (Au)i, where A = (aij) is the n×n
fitness matrix. If we normalize the diffusion constant to D = 1, and if U = (δijui)
is the diagonal state matrix, then the convection-diffusion equation reads

ut = uxx −
[

UAu− u(uTAu)
]

x
, (3.57)

or, in component notation,

uit = uixx −



ui





n
∑

j=1

aijuj −
n
∑

j,k=1

ajkujuk









x
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for i = 1, . . . n. As supplied before, we impose the boundary condition

ux = UAu− u(uTAu) (3.58)

at x = 0, l. Verify, that conditions (a) through (e) in section 3.2 are fulfilled
for equation (3.57). Positivity and upper bounds are preserved for all positive
times, and the concentrations of the species always add up to one. Hence,
the replicator model with linear fitness, system (3.57), (3.58), qualifies as a
granular matter model in the context of the present chapter. In some sense, the
underlying physical idea is similar to the buoyancy effect (see also the discussion
in section 2.14 of chapter 2). Here, the fitness of the species is just its capability
to move up in the container during the shaking process. Whether a species
prevails is determined by its own fitness in relation to the average fitness of
the population. Hence, the use of equation (3.57) in segregation models is justified.

Consider the stationary solutions of system (3.57) with boundary condition (3.58),
i.e. the solutions of

ux = f(u) = UAu− u(uTAu). (3.59)

As before, let G be the solution operator corresponding to (3.59), and define the
total mass operator H : IR× IRn −→ IRn by

H(l, u) =
1

l

∫ l

0
G(t, u)dt,

H(0, u) = u

(3.60)

for l > 0. As a consequence of theorem 3.5.2 in section 3.5, we have existence of
equilibria:

Corollary 3.9.1 (Existence of equilibria for linear fitness.) Assume (3.57),
(3.58). For every ū ∈ S and for every l ≥ 0, there is at least one u ∈ S, such that

H(l, u) = ū (3.61)

holds. 2.

Uniqueness of the solutions of (3.61) does not hold in general. The famous rock-
scissors-paper game, for example, has the fitness matrix

A =





0 1 −1
−1 0 1
1 −1 0



 ,

and the solutions of the corresponding stationary state equation (3.59) are periodic
orbits (see [Hofbauer98]). We showed in section 3.6, that such a center violates
the uniqueness property for large container heights l.
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3.10 Model refinements

In this section, we propose several refinements of the original model (3.1), (3.2).
In particular, we will be concerned with compaction effects in granular material
and the issue of optimal particle packings. To simplify matters, we choose the
diffusion matrix to be constant, D(u) ≡ D.

3.10.1 The maximal total density

The basic assumption underlying model (3.1), (3.2) is, that the grains composing
the mixture in the vessel can fill the available space completely, as a fluid would
be able to do. This analogy, of course, is generally false for granular material. In
all practical situations, the particles leave gaps, and the maximal packing density
umax lies below one. While the density of a theoretically optimal packing of mono-
size, two-dimensional balls for example is π/(2

√
3), or about 91%, experimental

packings only reach values between 60% and 70% (see also the discussion in section
2.8 of chapter 2 and [Aste00]). Thus, given the system (3.1), (3.2), we can meet
these concerns by directly limiting the convective flux f . For example, we can
multiply f by a function Φ = Φ(u) of the form

Φ(u) =

(

1− utot

umax

)p

, (3.62)

for some p ≥ 1, where utot = u1+ · · ·+un is the total particle concentration. The
convection-diffusion law then reads

ut = Duxx − [f(u)Φ(u)]x

with boundary condition
Dux = f(u)Φ(u).

In the case of a bi-disperse mixture, i.e. if n = 1, we end up with a one-dimensional
equation (see also section 3.3). Figure 3.8 shows the convection function fΦ for
f(u) = u(1−u) and umax = 0.8, as well as the corresponding stationary solutions
of (3.1), (3.2).

3.10.2 The special role of the medium

In the introduction to the present chapter (section 3.1), we mentioned the problem
we encountered with modeling the empty space between the particles. When
considering multi-disperse material, we tacitly assumed that this empty space (or
the sedimentation medium) is evenly distributed throughout the vessel. In reality,
of course, the packing density in the stationary state decreases with growing
height in the container. Consequently, the volumetric fraction occupied by the
medium is an increasing function of x. If compaction takes place, the upper layer
will eventually contain no particles at all (see also figure 3.9). Assigning one of
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0
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f(u)

0.2 0.4 0.6 0.8 1

u

(a) Sketch of the new convection func-
tion fΦ with Φ of the form (3.62) for
p = 1 and umax = 0.8.
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(b) The corresponding stationary solu-
tions show saturation at u = 0.8. Be-
yond (dotted line), solutions become
increasing functions of x and fail to
describe the physical reality of com-
paction.

Figure 3.8: Convection functions of the form fΦ with f(u) = u(1− u), umax = 0.8 and
Φ of the form (3.62) impose an upper bound for the particle density. Stationary solutions
with initial values below this bound are feasible stable states for the physical system.
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TYPE 1

TYPE 2

AIR

TYPE 1

TYPE 2

shaking

Figure 3.9: The vessel containing two types of particles as well as air. Shaking makes
the particles move closer together, and the mixture ends up occupying a smaller volume.
This compaction takes place in most practical situations.

the n species the role of the medium does not solve the problem, either. If we
imagine it as being composed of very small grains, it would not form the top layer
in the equilibrium state, while large particles certainly do not have the ability to
fill the small gaps in a densely packed mixture.
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Instead of describing the fluctuation of the medium concentration directly, one
could consider the movement of the particles relative to that of the medium. The
convection term fi(u) = uivi, where vi is the absolute velocity of the grains of
type i, is then replaced by the equation

fi = ui



wi −
n
∑

j=1

ujwj



 ,

in which wi = vi − vmedium is the relative velocity of the grains. This approach
is due to J. H. Masliyah (see [Masliyah79] and [Bürger00.1], [Bürger00.2]). In
chapter 5, which is devoted to the study of sedimentation processes, we generalize
these ideas and link them to our basic model (3.1), (3.2).

3.10.3 More complicated convection functions

The convection functions we have used so far originate from very simple reaction
kinetics. The law of mass action (see for example chapter 5 of [Murray93] or the
original work on reaction kinetics by L. Michaelis and M. I. Menten, [Michaelis13])
states that the reaction rate is proportional to the product of the concentrations
of the reactants. When dealing with two species with concentrations u1 and u2,
this yields f(u1, u2) = u1u2, or, when reduced to one dimension, f(u) = u(1− u).
In subsection 3.10.1, we took a first step towards more complex kinetics. Figure
3.10 represents an example of another (fictitious) type of convection function.

3.11 Particle model simulations

The system of convection-diffusion equations used in the present chapter to
describe segregation of granular material looks relatively simple. All the particle
properties, such as size, weight and surface constitution, and all effects of
inter-particle collisions and rebounds from the container walls are resumed in
the convection function f . Such a basic model obviously entails the advantage
of variability and the possibility of analytical solutions. Nevertheless, one would
assume that precise predictions are impossible. Especially the Brazil nut effect,
which has, up to date, only been explained heuristically, and which certainly
incorporates numerous processes on a microscopic level, seems to be reflected
only roughly by the general model. If we want to compare the latter’s predictions
to real experiments or multi-particle simulations, the crucial point will be to find
a convection function comprising all these effects in a balanced manner.

In the present section, we use a particle simulation in order to compare its sta-
tionary states to those of our convection-diffusion model. We postpone a detailed
description of the algorithm used, as well as several other related particle simu-
lations, to chapter 8. Reconsider the replicator type convection-diffusion system
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(b) The corresponding stationary so-
lutions exhibit layers of increasing and
decreasing states.

Figure 3.10: More complex convection functions.

with convection function (3.50) for three species, i.e.

u1t = u1xx +

(

m1 −
3
∑

i=1

miui

)

u1,

u2t = u2xx +

(

m2 −
3
∑

i=1

miui

)

u2,

u3t = u3xx +

(

m3 −
3
∑

i=1

miui

)

u3.

(3.63)

We interpret the replicator coefficients mi as masses, i.e. with growing mi the
species have higher tendency to move down in the vessel. If we attribute the
highest mass to species u1 and the lowest one to u3, we expect the species to
segregate according to this mass distribution. Since u3 forms the top layer, we can
(with the restrictions explained in subsection 3.10.2) interpret it as the suspension
medium. Thus, we reduce the situation to two segregating particle species in fluid
or air. Figure 3.11 shows the stationary state of a particle model simulating the
sedimentation and segregation of two grain types under the influence of gravity
and forced by periodic shaking of the container. In figure 3.12, we compare the
density diagrams of the particle model and the replicator equation. Even though
the absolute values differ largely, the similarity cannot be dismissed.
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Figure 3.11: Simulation of the segregation of two types of particles under the influence
of gravity, forced by periodic shaking of the container holding the granular mixture. We
modeled a vessel of height 1 and width 0.3, containing 300 grains of radius 7.5 · 10−3 and
90 grains of radius 1.5 · 10−2.
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(a) Replicator equation.
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(b) Particle simulation.

Figure 3.12: Comparison of the stationary states of the replicator equation (a) and the
particle simulation (b). The solid and dashed lines represent the first and second grain
type, respectively, while the concentration of the medium is the dotted line. Both results
agree qualitatively.
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Chapter 4

The two-point boundary value

problem

Summary. A two-point boundary value diffusion-convection equation is used
to model the segregation and mixing properties of granular material or fluids
in a (vertical) container. We prescribe fixed concentrations at both ends of the
vessel. Diffusion is due to random Brownian motion, caused for example by simple
shaking of the vessel. Convection describes the interaction of the species, i.e. the
competition between particles or fluids of different type. For convection functions
depending only on the concentrations of the species, we show, that the time-
dependent solution in the scalar case converges to the unique stationary solution.
In the vector-valued case, and for more general convection functions, we prove the
existence of stationary solutions.

4.1 Introduction

In chapter 3, we analyzed a diffusion-convection equation with a convection func-
tion f depending only on the concentrations of the species. The model was sup-
plied with Neumann boundary conditions, guaranteeing that no matter can enter
or leave the vessel through its boundary. In the present chapter, we focus on the
corresponding two-point boundary value problem and prescribe constant bound-
ary conditions (sections 4.2 and 4.4). While we treat the special class of convection
functions f = f(u) depending only on the concentration u in sections 4.2 through
4.5, our main goal is the generalization to convection functions f = f(x, u(x)),
depending on the position x in the vessel as well (section 4.7). The corresponding
stationary solutions solve boundary value problems of nonlinear ordinary differ-
ential equations of second order. H. Epheser (see for example [Epheser55]) gives
necessary conditions in terms of Lipschitz bounds on the function. P. Cubiotti and
B. Di Bella (see [Cubiotti01]) show existence of stationary solutions under rela-
tively strong conditions on f . Their result is generalized to functions satisfying
certain global Lipschitz bounds in [DiBella02]. In section 4.7, we prove existence



88 Chapter 4. The two-point boundary value problem

of the solution for continuous, globally bounded f , using a different approach. As
in the case f = f(u), our proof can be generalized to functions with Lipschitz
bounds for small containers. Uniqueness follows in section 4.8 for the scalar case.

4.2 The model

As in chapter 3, we consider a (vertical) vessel containing a mixture of fluids
or particles with different physical properties. Instead of closing the vessel
at both ends, we imagine it to be connected to two large reservoirs, so-called
wash vessels, which contain given constant concentrations. Instead of using
static reservoirs, the ends of the container could be washed with a medium of
constant concentration (see figure 4.1). A similar situation naturally occurs

x=0

x=l

main vessel
containing the
mixture of
particles or
fluids

wash vessel 1

wash vessel 2

Figure 4.1: Two wash vessels are connected to the top and bottom of the main vessel
containing the particle mixture.

for example in rivers, when rocks or artificially inserted walls separate certain
compartments from the rest of the river bed. In these areas, the current be-
comes very small, which gives small fish the possibility to spawn, while the water
flux at both ends of the separated compartment provides fresh water and nutrient.

In a first step, let us assume one single species in the vessel. The general case of
more than one species will be treated in section 4.6, and again, for a more general
convection function, in section 4.7. Under the above assumptions, the concen-
trations at the boundary of the main vessel will be equal to the concentrations
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of the respective wash media for all time. As in chapter 3, we reduce the three-
dimensional vessel to one dimension and study the problem on the interval [0, l].
Hence, we impose the boundary condition

u(t, 0) = a, u(t, l) = b, (4.1)

where a and b are constant vectors. We use a convection function f of the same
type as in chapter 3, i.e. we assume, that f ∈ C2(IR) satisfies conditions (c) through
(e) in section 3.2. If we further restrict to constant diffusion d(u) ≡ 1, then our
model takes the form

ut = uxx − f(u)x (4.2)

with the Dirichlet boundary condition (4.1). Here, u = u(t, x) is the n-dimensional
concentration vector, defined for x ∈ [0, l] for some positive container height l. It is
obvious, that problem (4.2), (4.1) does not preserve the total mass of the species,
since material will leave (or enter) the main vessel according to the concentration
gradients across the two ends. In the case of two interacting species, we can
eliminate one equation via u2 = 1 − u1 and obtain a scalar model. This special
case will be treated in sections 4.4, 4.5 and 4.8.

4.3 Positivity and upper bounds

As in the case with Neumann boundary condition treated in chapter 3, the time-
dependent solutions of the two-point problem are bounded:

Proposition 4.3.1 (Positivity and boundedness.) Consider system (4.2) with
Dirichlet boundary condition (4.1).
(i) Suppose the n concentrations add up to one at t = 0, i.e. eTu(0, x) = 1
for all x ∈ [0, l], where e = (1, . . . , 1)T . If the boundary condition also satisfies
eTa = eT b = 1, then this property is preserved for all positive times.
(ii) Furthermore, ui(t, x) ∈ [0, 1], i = 1, . . . , n, for all t > 0 and for all x ∈ [0, l],
if the components ui(0, x) of the initial function are bounded in between zero and
one, and if the boundary condition satisfies ai, bi ∈ [0, 1], i = 1, . . . , n.

Proof. Property (i) follows from assumption (c). Positivity can be proven
similarly to the granular matter case with Neumann boundary condition, model
(3.1), (3.2) in section 3.2 of chapter 3. Here, we need assumptions (d) and (e).
Finally, boundedness from above follows from the positivity and from (i). For
details, we refer to the proofs of proposition 3.2.1 in section 3.2 and proposition
3.5.1 in section 3.5. 2.

In the scalar case n = 1, we can prove a somewhat stronger result.
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Proposition 4.3.2 (Local extrema.) The solutions of the scalar model (4.2),
(4.1) do not develop local extrema away from the boundary x = 0, l. In other words,
if the initial function u0 = u(0, ·) is monotone, then monotonicity is preserved for
all times.

Proof. Define the family of functions v(t) := −εet with parameter ε > 0, and
consider the difference u − v. Suppose u − v touches a value γ ∈ IR from above
for the first time at t = t0 > 0, x = x0 ∈ (0, l). Then, u is strictly less than γ in
some neighborhood around x0, since v < 0. At (t0, x0), we have

0 ≥ (u− v)t

= uxx − f ′(u)ux + εet

> 0,

since vx ≡ 0 and hence uxx(t0, x0) ≥ 0, ux(t0, x0) = 0. This is a contradiction.
Since the above argument goes through for any ε > 0, the concentration u cannot
drop below γ locally at an interior point, i.e. u cannot develop local minima.
Using the same argument with v(t) := εet, we deduce, that the solution cannot
form local maxima, either. This proves proposition 4.3.2. 2.

Proposition 4.3.2 in particular yields positivity for γ = 0. Furthermore, we educe,
that the time-dependent solution satisfies the lower and upper bounds assumed
by the initial distribution. In other words, if

u := min
x∈[0,l]

{u0(x)},

u := max
x∈[0,l]

{u0(x)},

then u(t, x) ∈ [u, u] for all t ≥ 0, x ∈ [0, l].

4.4 Existence and uniqueness of stationary solutions

in the scalar case

The stationary problem corresponding to the scalar equation (4.2) in integrated
form is

ux = f(u) + λ, (4.3)

with simultaneous consideration of (4.1). As the following proposition shows, the
stationary solutions of (4.3) with boundary condition (4.1) always exist and are
unique.

Proposition 4.4.1 (Existence and uniqueness.) Under the assumption f ∈
C2(IR) made in section 4.2, the boundary value problem (4.3), (4.1) has a unique
solution for every height l > 0 of the vessel.
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Proof. First assume a < b. Differentiation of (4.3) yields uxx = f ′(u)ux, i.e. with
v := ux,

ux = v,

vx = f ′(u)v.
(4.4)

The points (u, 0) are the only stationary points of the planar system (4.4). For
v 6= 0, we can rescale the x-variable in order to get

ux = 1,

vx = f ′(u).
(4.5)

This does not change the trajectories of the system away from the axis v = 0.
These trajectories satisfy dv/du = f ′(u), and are thus given by the one-parameter
family

v = f(u) + λ. (4.6)

Note that we are only interested in solutions of (4.5), for which v 6= 0 for all x,
since the original system (4.4) otherwise reduces to ux = vx = 0 and does not
have a solution for a 6= b. For a < b, we seek solutions with v > 0 for all x. Put

λ0 := − min
a≤u≤b

f(u).

If λ > λ0, then f(u) + λ > 0 for a ≤ u ≤ b, and the piece of trajectory

Γab := {(u, v)|a ≤ u ≤ b, v = f(u) + λ}

connecting {u = a} to {u = b} remains entirely in the half-space v > 0. Hence,
it yields a solution of (4.3), (4.1) for some l > 0 (see figure 4.2). Consider the
equation

l =

∫ l

0
dx =

∫ b

a

dx

du
du =

∫ b

a

du

f(u) + λ
. (4.7)

We interrupt the proof of proposition 4.4.1 for an auxiliary lemma.

Lemma 4.4.2 (Bijection.) Equation (4.7) gives us a one-to-one correspondence
between values l > 0 and the solutions of (4.3), (4.1), determined by the parameter
λ with λ0 < λ < ∞. In other words, the following hold:
(a) l is a strictly decreasing function of λ.
(b) l = l(λ) tends to zero as λ −→ ∞.
(c) l −→ ∞ as λ −→ λ0+.

Proof. (a) follows directly from (4.7). For large λ > λ0, the denominator f(u)+λ
becomes large, hence (b). For the proof of (c), we proceed in two steps. Since we
assumed a < b, we know that f(u) + λ0 ≥ 0 in [a, b]. First suppose f(a) + λ0 = 0
or f(b) + λ0 = 0. Without loss of generality, we can assume the former. Denote
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λ>λ0

λ<λ0

λ=λ0

a

u

v

b

Figure 4.2: Sketch of the one-parameter family of solutions of (4.3).

S := f ′(a) < ∞. Then, under the assumption of continuous differentiability of f ,
we have

f(u) + λ0 < (S + 1)(u− a)

in [a, a+ ε) for some ε > 0. Hence,

∫ a+ε

a

du

f(u) + λ
>

∫ a+ε

a

du

(S + 1)(u− a) + λ− λ0
,

which tends to infinity as λ −→ λ0+. Now suppose f(z) = 0 for some z ∈ (a, b).
Since f(u) ≥ 0 for all u ∈ [a, b], we must have f ′(z) = 0, i.e. for all S > 0, there is
a positive ε, such that f(u) < S(u− z) for all u ∈ (z, z + ε). Consequently,

∫ z+ε

z

du

f(u) + λ
>

∫ z+ε

z

du

S(u− z) + λ− λ0
,

which grows infinitely large as λ −→ λ0+. This proves lemma 4.4.2. 2.

For a > b, the above argument goes through in the same way with f(u) + λ < 0.
Finally, a = b yields the stationary solution u ≡ a for any l > 0. This proves
proposition 4.4.1. 2.

4.5 Dynamics of the scalar equation

Now that we have shown the existence and uniqueness of stationary solutions of
(4.2), (4.1) in the scalar case, we are naturally interested in the question of global
stability of these equilibria.



4.6. Stationary solutions of the vector-valued equation 93

Proposition 4.5.1 (Convergence for the scalar equation.) Every solution of the
scalar two-point problem (4.2), (4.1) converges to a stationary solution as t → ∞.

Proof. In case a = b, we define w = w(t, x) := u(t, x)− a. This function satisfies
wt = ut, wx = ux and wxx = uxx, i.e. w solves the equation

wt = wxx − f ′(u)wx (4.8)

with boundary condition w(0) = w(l) = 0. Problem (4.8) has a unique solution
which tends to zero uniformly on the interval [0, l] as t → ∞ ([Friedman64], p.
158, theorem 1). Thus u tends to a uniformly as t → ∞.
In the general case a, b ∈ [0, 1], the situation is more complicated, and a simple
subtraction of the straight line s(x) := a+(b−a)x/l does not solve the problem. In
[Brunovsky92], the authors prove a more general result concerning the convergence
of solutions of one-dimensional, non-autonomous equations with both the diffusion
matrix and the convection function being periodic in time. Instead of reproducing
their proof for our case of autonomous equations, we refer to their article, as well
as to previous work by H. Matano (see [Matano78], [Matano88]). 2.

4.6 Stationary solutions of the vector-valued equation

In the general vector-valued case, we admit a mixture of n ≥ 3 species in the
vessel. Even though we can not expect the stationary solutions of system (4.2),
(4.1), i.e. solutions of

uxx = f(u)x (4.9)

with boundary condition

u(0) = a,

u(l) = b,
(4.10)

to be unique, the latter always exist if the convection function f is bounded:

Theorem 4.6.1 (Existence of equilibria in the multi-dimensional case.) Suppose
‖f(u)‖ ≤ M for all u ∈ IRn for some positive constant M , where ‖ · ‖ denotes the
Euclidean norm in IRn. Then, system (4.9), (4.10) has a (not necessarily unique)
solution for any given vectors a and b.

Proof. We will use a degree argument. Problem (4.9) is equivalent to

ux = f(u) + λ, (4.11)

in consideration of (4.3), for any constant vector λ. Thus, let a container length
l > 0 and vectors a, b ∈ IRn be given. In order to solve (4.11), we have to find a
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vector λ, such that

u(l) = u(0) +

∫ l

0
f(u(x))dx +

∫ l

0
λdx

= a+

∫ l

0
f(u(x))dx+ lλ

= b

holds, where u(x) satisfies ux = f(u) + λ. We can assume a = 0 without loss of
generality. For 0 ≤ ε ≤ 1, define the mapping Fε : IR

n −→ IRn by

Fε(λ) = ε

∫ l

0
f(u(x))dx+ lλ− b. (4.12)

Fε is continuous for every 0 ≤ ε ≤ 1 and depends continuously on the parameter
ε. Solving (4.9), (4.10) is equivalent to finding a zero of F1 in IRn. In the sequel,
we determine an adequate domain for the mapping Fε. The equation Fε(λ) = 0 is
equivalent to

lλ = b− ε

∫ l

0
f(u(x))dx,

and thus, since f is assumed to be globally bounded by M ,

‖λ‖ ≤ ‖b‖
l

+ εM.

Define the domain B ⊂ IRn as

B :=

{

λ : ‖λ‖ ≤ ‖b‖
l

+M + δ

}

for some fixed small value δ > 0. We interrupt the proof of theorem 4.6.1 to state
an auxiliary lemma.

Lemma 4.6.2 (Zeros on the boundary.) The mapping Fε has no zero on the
boundary ∂B of B for 0 ≤ ε ≤ 1.

Proof. Let λ ∈ ∂B. From

u(l) = ε

∫ l

0
f(u(x))dx + lλ,

we get the estimate

‖u(l)‖ + ε

∫ l

0
‖f(u(x))‖dx ≥ l‖λ‖,
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and hence,

‖u(l)‖ ≥ l‖λ‖ − εlM

≥ l‖λ‖+ lM + lδ − εlM

> ‖b‖

for 0 ≤ ε ≤ 1. This proves lemma 4.6.2. 2.

We resume the proof of theorem 4.6.1. By lemma 4.6.2, Fε is a homotopy. For
ε = 0, the problem Fε(λ) = F0(λ) = 0 always has a solution, namely λ = b/l. In
view of lemma 4.6.2 and with the help of the homotopy invariance theorem, we
conclude the existence of a zero of F1, and hence the existence of a stationary
solution of system (4.2), (4.1). This proves theorem 4.6.1. 2.

Under somewhat weaker growth conditions on the function f , we can prove the
existence of stationary solutions for small containers. Again, we assume a = 0
without loss of generality.

Theorem 4.6.3 (Existence of equilibria for small containers.) Suppose f satisfies
‖f(u)‖ ≤ α + β‖u‖ for some non-negative constants α and β. If the container
height l is less than 1/(2β), then a stationary solution of system (4.2), (4.1) always
exists.

Proof. We proceed as in the case of theorem 4.6.1 and define a homotopy Fε by
(4.12) for 0 ≤ ε ≤ 1. From Fε(λ) = 0, we get

‖λ‖l ≤ ‖b‖+ εl(α+ βm),

where m ≥ 0 is the maximal norm the solution u of (4.11) can assume when x
runs from 0 to l. In the worst case ε = 1, hence

‖λ‖l ≤ ‖b‖+ l(α+ βm). (4.13)

Using

u(l) = ε

∫ l

0
f(u(x))dx+ λl,

we can give an upper bound for m. We have

m ≤ l(α+ βm+ ‖λ‖),

hence

m ≤ (α+ ‖λ‖)l
1− βl

,

and therefore, by (4.13),

‖λ‖l ≤ ‖b‖+ l

(

α+ β
(α+ ‖λ‖)l
1− βl

)

,
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or

‖λ‖l
(

1− βl

1− βl

)

≤ ‖b‖+ l

(

α+ β
αl

1− βl

)

. (4.14)

For βl < 1/2, the term 1− βl/(1 − βl) on the left-hand side of equation (4.14) is
strictly positive, and hence

‖λ‖l ≤ ‖b‖(1− βl) + αl

1− 2βl
.

Define the domain D ⊂ IRn by

D :=

{

λ : ‖λ‖ ≤ ‖b‖(1 − βl) + αl

(1− 2βl)l
+ δ

}

for some small δ > 0. Then, Fε has no zero on ∂D for 0 ≤ ε ≤ 1. F0(λ) = 0 has
the trivial solution λ = b/l. Hence, F1 has at least one zero. This proves theorem
4.6.3. 2.

4.7 Existence for general convection functions

We now generalize problem (4.2), (4.1) to a wider class of convection functions
f = f(x, u(x)), depending on the concentrations as well as on the position in
the vessel. In the present section, we prove a result similar to [DiBella02], using
a different approach. This will pave the way for the proof of uniqueness in the
scalar case in section 4.8.

Theorem 4.7.1 (Global existence of the time-dependent solution.) Let the
vector-valued function f = f(x, u(x)) be defined on [0, l] × IRn (as in section 4.2,
we assume f ∈ C2), and consider the two-point problem

ut = uxx − f(x, u(x))x (4.15)

with boundary values

u(0) = a,

u(l) = b,
(4.16)

where a and b are constant concentration vectors. If f is globally bounded, i.e. if
‖f(x, u)‖ ≤ M ∀x ∈ [0, l] ∀u ∈ IRn for some M ≥ 0, then (4.15), (4.16) has a
stationary solution.

Problem (4.15) is of the form

ut = uxx − g(x, u, ux). (4.17)
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In the case, where g actually depends on x, (4.15), (4.16) takes a somewhat simpler
form. Introducing v = v(t, x) := u(t, x)−[a+x(b−a)/l], we find vx = ux−(b−a)/l
and vxx = uxx. Thus, v satisfies a similar equation, namely

vt = vxx − g

(

x, v + a+ x
b− a

l
, vx +

b− a

l

)

(4.18)

with boundary condition

v(0) = v(l) = 0. (4.19)

This argument shows, that if g depends on x explicitly, then we can assume (4.19)
instead of (4.16) without loss of generality.

Historically, there are two standard approaches to solving (4.17), (4.16), the
contraction principle and the degree argument. The contraction approach was ini-
tiated by Picard (see for example [Picard08] and [Picard30]), the sharpest results,
in terms of Lipschitz bounds on g, were obtained by H. Epheser ([Epheser55])
and later by P. Cubiotti and B. Di Bella (see [Cubiotti01] and [DiBella02]).

Stationary solutions of (4.15) correspond to solutions of

ux = f(x, u) + λ, (4.20)

which is the stationary equation in integrated form. It is important to notice
that, given λ ∈ IR, solutions of (4.20), (4.16) do not always exist for all positive
x. A simple counter-example in the one-dimensional case is the equation
ux = u2 + λ with initial value u(0) = a > 0. The situation is even worse.
If we merely assume continuity of f , solutions of (4.20), (4.16) may not exist
for any λ, even in the scalar case. [DiBella02] gives a counter-example and
shows, that solutions of (4.20) with zero boundary condition in one dimension
exist for any λ, if there are constants p > 0 and q ≥ 0 such that |f(x, u)| ≤ p+q|u|.

Proof. In order to prove theorem 4.7.1, we use the invariance of the so-called
Leray-Schauder degree of a certain operator under homotopies, i.e. we adapt the
proof of theorem 4.6.1 in section 4.6 to the general convection function. Introduce
a new parameter ε ∈ [0, 1], and consider the family of boundary value problems

ux = εf(x, u) + λ (4.21)

with boundary condition (4.16). For ε = 0, the solution of (4.21), (4.16) is straight-
forward:

Lemma 4.7.2 (Trivial solution.) Let ε = 0. Problem (4.21) then takes the simple
form ux = λ. Thus, given the boundary values (4.16), λ = (b−a)/l, and the unique
solution is given by u(x) = a+ x(b− a)/l. 2.
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In the general case ε ∈ [0, 1], integration of (4.21) yields

u(x) = ε

∫ x

0
f(s, u(s))ds+ λx+ a, (4.22)

and thus

u(l) = b = ε

∫ l

0
f(s, u(s))ds+ λl + a. (4.23)

With the boundedness assumption on f , we find

‖λ‖∞ ≤
∥

∥

∥

∥

b− a

l

∥

∥

∥

∥

∞

+ εM, (4.24)

where ‖ · ‖ denotes the maximum norm of a vector. We now give an estimate for
u. From (4.22), we obtain

‖u(x)‖ ≤ ‖a‖∞ + ‖λx+ ε

∫ x

0
f(s, u(s))ds‖∞

≤ ‖a‖∞ +

∥

∥

∥

∥

(∥

∥

∥

∥

b− a

l

∥

∥

∥

∥

∞

+ εM

)

x+ εxM

∥

∥

∥

∥

∞

≤ ‖a‖∞ +

∥

∥

∥

∥

b− a

l

∥

∥

∥

∥

∞

l + 2εMl

using (4.24), and thus

‖u(x)‖∞ ≤ 2 (max {‖a‖∞, ‖b‖∞}+ εMl) . (4.25)

For some small δ > 0, define the set

B := {(u, λ) : ‖u‖∞ ≤ 2 (max{‖a‖∞, ‖b‖∞}+ εMl) + δ,

‖λ‖∞ ≤
∥

∥

∥

∥

b− a

l

∥

∥

∥

∥

∞

+ εM + δ},

which is a closed box in (C[0, 1])n × IRn. If u is a solution of (4.21), (4.16) for any
given ε ∈ [0, 1] with corresponding λ, then (u, λ) ∈ B \ ∂B. For ε ∈ [0, 1], define a
vector field Tε : (C[0, l])n × IRn → (C[0, l])n × IRn by

Tε

(

u
λ

)

(x) :=

(

u(x)− a− λx− ε
∫ x
0 f(s, u(s))ds

λ− b−a
l + ε

l

∫ l
0 f(s, u(s))ds

)

(4.26)

for x ∈ [0, l].

Lemma 4.7.3 (Homotopy.) Let ε ∈ [0, 1]. Then Tε is a homotopy on B, and
0 /∈ Tε(∂B).
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Proof. The statement follows from (4.24) and (4.25). 2.

We use the Leray-Schauder degree of the homotopy Tε : B → B in order to prove
existence of solutions of problem (4.20), (4.16). (For a detailed introduction to the
Leray-Schauder degree see for example [Deimling74].) This degree can be defined
for operators of the form T = I −K, where I is the identity and K is compact.
Compactness is established by the following lemma:

Lemma 4.7.4 (Compact operator.) The vector field Tε defined by (4.26) is of
the form I −K with compact K.

Proof. We have to show that K := I − Tε is compact for every ε ∈ [0, 1]. K is
defined by

K

(

u
λ

)

(x) =

(

a+ λx+ ε
∫ x
0 f(s, u(s))ds

b−a
l − ε

l

∫ l
0 f(s, u(s))ds

)

.

Let us first consider the operator P : u 7→
∫ x
0 f(s, u(s))ds.

Uniform boundedness: Since f is continuous and thus bounded on C := [0, l] ×
([0, 1])n, there is a positive constant R, such that ‖f‖∞ ≤ R. Thus, ‖Pu‖∞ ≤ Rl,
i.e. P is uniformly bounded on C.
Equi-continuity: Let ξ > 0 and |x− x′| < ξ. Then

‖(Pu)(x) − (Pu)(x′)‖∞ =

∥

∥

∥

∥

∥

∫ x

0
f(s, u(x))ds−

∫ x′

0
f(s, u(s))ds

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∫ x

x′

f(s, u(x))ds

∥

∥

∥

∥

∞

≤ |x− x′|R
< ξR

for any integrable function u with values in ([0, 1])n, i.e. the functions P (u) are
equi-continuous.
Using the Arzelà-Ascoli theorem, we conclude that P is compact. The rest is
straightforward. Since a and b are constant vectors and the term λx is linear in
x, the operator K is compact as well. This proves lemma 4.7.4. 2.

We now have all the tools, which are necessary to establish the existence of
solutions of the original problem (4.20), (4.16). If S is the set of solutions of
problem (4.21), (4.16), then S ⊂ B, and furthermore Tε(S) = 0. Since Tε is
of the form I − K with compact K, we can define the Leray-Schauder degree
D(Tε,B, 0). Since Tε is a homotopy with parameter ε, and since D(T0,B, 0) = 1,
we also have D(T1,B, 0) = 1, i.e. problem (4.20), (4.16) has at least one solution.
This proves theorem 4.7.1. 2.
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Note that we can generalize the statement of theorem 4.7.1 to convection functions
satisfying global Lipschitz bounds, as we have done in 4.6.3 for the special case
f = f(u):

Theorem 4.7.5 (Existence of equilibria for small containers for general f .) Sup-
pose f is continuous and satisfies ‖f(x, u)‖ ≤ α+βu for positive constants α and
β. If l < 1/(2β), then problem (4.15), (4.16) has at least one stationary solution.

Proof. We refer to the proof of theorem 4.6.3. 2.

4.8 Uniqueness of stationary solutions in the scalar

case

The approach developed in section 4.7 can be used to prove the uniqueness of
stationary solutions in the scalar case:

Theorem 4.8.1 (Uniqueness of equilibria in the scalar case.) Under the assump-
tions made in theorem 4.7.1, problem (4.15), (4.16) has a unique stationary solu-
tion in the scalar case.

Proof. We fall back on the operator Tε defined in (4.26).

Lemma 4.8.2 (Non-positive eigenvalues.) For every ε ∈ [0, 1], the linear part of
Tε always has two non-positive real eigenvalues or none at all.

Proof. If Lε is the linearization of Tε around (u, λ) ∈ B, then small perturbations
(ν, µ) satisfy

Lε

(

ν
µ

)

(x) =

(

ν(x)− µx− ε
∫ x
0 fu(s, u(x))ν(s)ds

µ+ ε
l

∫ l
0 fu(s, u(s))ν(s)ds

)

. (4.27)

Here, fu is the derivative of f with respect to the scalar u. The eigenvalue equation
for Lε takes the form Lε(ν, µ)

T = γ(ν, µ)T , i.e.

γν(x) = ν(x)− µx− ε

∫ x

0
fu(s, u(s))ν(s)ds, (4.28)

γµ = µ+
ε

l

∫ l

0
fu(s, u(s))ν(s)ds. (4.29)

Differentiation of (4.28) for γ = neq1 yields

ν ′(x) =
µ

1− γ
+

ε

1− γ
fu(x, u(x))ν(x),

the solution of which is given by

ν(x) =
µ

1− γ

∫ x

0

(

e
� x
s

ε
1−γ

fu(τ,u(τ))dτ
)

ds+ ν0e
� x
0

ε
1−γ

fu(τ,u(τ))dτ (4.30)
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(variation of constants). Using (4.28), we get ν(0)(γ − 1) = 0, i.e. ν(0) = ν0 = 0
for γ 6= 1. (4.28) also implies

ν(l)(γ − 1) = −µl− ε

∫ l

0
fu(s, u(s))ν(s)ds,

and, in combination with (4.29), we find

ν(l) =
γ

1− γ
µl. (4.31)

First consider the case γ 6= 1, i.e. ν0 = 0. Setting x = l in (4.30) and comparing
to (4.31), we get

γ =
1

l

∫ l

0

(

e
ε

1−γ

� l
s fu(τ,u(τ))dτ

)

ds > 0 (4.32)

Therefore, the real solutions of (4.28), (4.29) are strictly positive if they exist.
The case γ = 1 does not alter this result. This proves lemma 4.8.2. 2.

Using theorem 4.7 on page 136 of [Krasnosel’skii64], we conclude that the index of
every potential zero of Tε is one. Using lemma 4.7.3 in section 4.7, theorem 4.8.1
follows by the homotopy invariance theorem. 2.
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Chapter 5

Sedimentation

Summary. In the present section, we interpret the general diffusion-convection
equation developed and analyzed in chapter 3 in the context of sedimentation. We
recall earlier sedimentation models and try to carry over the basic mechanisms
leading to sedimentation of granular material in liquid suspension and identify the
corresponding parameters in our model.

5.1 Introduction

Sedimentation is by definition the process of depositing matter suspended in a
fluid as a result of gravitation and interaction of particles with the fluid and
possibly between particles. Most often, the deposited material consists of solid
particles suspended in water. Sedimentation is widely observed in nature, for
example in the formation of rocks, the formation of ore deposits or the deposition
of biological material at the bottom of lakes. It also has great industrial impor-
tance, especially in the chemical or biochemical industry. The priming period in
the process of biofilm formation and the treatment of wastewater are two areas
of application. Another example is the flotation of ore. This is a process of
physical separation, whereby an ore is ground with water to produce a pulp. Fine
bubbles of air introduced into this pulp attach to the precious minerals, which
have been liberated from the rest during the grinding process, and rise to the
surface. The froth containing the minerals can then effectively be removed from
the mixture. Instead of air bubbles, other chemicals are often used. Last but
not least, the principle of sedimentation in a wider sense is used in the various
chromatography and electrophoresis techniques, without which modern biological
research is unimaginable. Chromatography is a physical method used to separate
and analyze complex mixtures. The components to be separated are distributed
between two phases, the stationary bed and the mobile phase, which percolates
through the bed. The different rates of migration of the components as the mix-
ture moves over adsorptive materials provide separation. The great importance
of this segregation technique arises from the precision with which mixtures can be
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separated and purified, a quality which is indispensable in any chemical or bio-
processing industry. Electrophoresis embraces similar physical principles in order
to separate components of mixtures. The technique is based on the movement
of analytes through a conductive medium in response to an applied electrical field.

Sedimentation and settling of polydisperse suspensions has been studied in various
fields, such as biology, chemistry or geology. In [Batchelor82.1], a relatively simple
model describing the settling of a system of spherical particles in suspension
is analyzed, while numerical simulations are carried out in [Bürger00.1] and
[Bürger00.2]. Finally, [Bustos99] gives a summary of various approaches to
sedimentation.

We start by giving a purely heuristic approach to the phenomenon of sedimentation
in section 5.2, thus illustrating the dependence of the effect on particle density and
specific weight of the material and the surrounding medium. In 1851, G. G. Stokes
(see [Stokes51]) formulated his equation governing the limiting settling velocity of
spherical particles in a fluid, thus initiating a more and more elaborate discussion
on sedimentation processes. We recall the basic idea of his approach in section 5.3.
In section 5.4, we develop a general diffusion-convection model for sedimentation
and bridge to the analysis carried out in chapter 3. Sections 5.5 and 5.6 link our
approach to the well-known Batchelor and Kynch models, respectively. We try
to establish parallels between these models and ours and identify the parameters
in our equations. In section 5.7, we discuss a new sedimentation approach using
non-constant diffusion coefficients. Finally, numerical solutions are illustrated in
section 5.8.

5.2 Heuristic approach

Following chapters 3 and 4, we consider a vertical cylinder of height l, represented
by Ω = [0, l] and containing a mixture of grains of different size, density and
surface structure. Contrary to the setup we previously had in mind, we now
imagine the granular mixture in a liquid suspension. The species of grains are
subject to convectional movement (due to the gravitational force) as well as
diffusion (random, Brownian motion), the interaction of which we expect to lead
to sedimentation of the grains in combination with possible segregation of the
different species into more or less distinct layers (see figure 5.1). Depending on the
size of the particles and especially their individual shape (spherical or flattened),
the friction of the fluid will play a more or less important role. While hydrody-
namically favorable shapes experience relatively low frictional forces, grains with
leaf structures, which are encountered frequently in the context of sedimentation
in geological or biological processes, are subject to much higher forces. In some
cases, the sedimentation process may even come to a complete rest, and the
particles stay in suspension. An illustrative example taken from the culinary
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l

0

x

(a) The initial state: A
random mixture of par-
ticles in suspension.

l

0

x

(b) An advanced state
in the sedimentation
process: Sedimentation
and segregation are
clearly visible.

Figure 5.1: Heuristic illustration of the process of sedimentation. Two types of particles
(or biological species), represented by spheres, in liquid suspension, subject to gravity and
diffusion.

world is the so-called Danziger Goldwasser, a liqueur flavored with caraway
seed, orange peel and spices. Its name, which translates from German as gold
water, comes from the fact that it has minuscule flecks of gold leaf suspended in it.

Let u = u(t, x) with t ≥ 0, x ∈ Ω be the density (fraction of the total particle mass)
of a granular material in fluid suspension. In general, we consider a mixture of n
different species in the container, i.e. u is a vector of dimension n. As in chapter
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3, let

ut = (ux − F (u))x (5.1)

be the equation governing the change in concentration of the species. Then, F (u)
must have the dimension of a velocity. If we presume further, that F has the
form F (u) = uf(u), then f is a velocity as well. We interpret it as the settling
velocity of the particles.

Suppose that the density u is relatively high, i.e. that the distance between neigh-
boring particles is about of the order of their diameter. In this case, the particle-
particle interactions play an important role in the sedimentation process. We
speak of so-called hindered settling, as opposed to free settling, where the effects
of mutual interference may be disregarded. Under these conditions, the particles
in suspension have more or less free space to move, depending on whether the
density u is high or low (see figure 5.2). From this consideration, we deduce that

(a) Densely packed
balls; velocity zero.

(b) Moderately dense
packing; small velocity.

(c) Little density; high
velocity.

Figure 5.2: The velocity of the particles in the granular material depending on the
package density.

their mean settling velocity f decreases with growing u, for example as

f(u) = fmax (ū− u), (5.2)

where fmax is the maximal settling velocity and ū designates the highest packing
density (figure 5.3(a)). Finally, F (u) = uf(u) is of logistic type (see figure 5.3(b)).
The linear relation (5.2) is only a first approximation, the actual dependence of the
velocity on the particle density is of more complicated nature. An example of the
resulting model (5.1) has been discussed and simulated in the context of segrega-
tion in chapter 3. We point out the particular nature of the diffusive component
in equation (5.1). As opposed to the granular matter model, where it enables
the particle interaction by creating gaps (due to the shaking of the container, for
example), diffusion in the present context describes small perturbations in the
movement of the grains due to differences in shape or surface structure, particle
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fmax

f(u)

u_
u

(a) Shape of the function f =
f(u).

u

F(u)=f(u)u

_
u

(b) The logistical function F (u) =
uf(u).

Figure 5.3: The (hypothetically) linear degression of the hindered settling velocity for rel-
atively high concentrations of the species and the resulting convection function of logistic
type.

collisions or turbulences in the flow of the fluid. Small diffusion coefficients yield
distinct segregation and thus represent the result of an experiment conducted in a
very high vessel, while large coefficients lead to less segregated material observed
in short containers. This issue will be of importance in section 5.7, where we use
diffusion coefficients depending on the concentrations of the particles.

5.3 A simple sedimentation model

Consider a mixture of small spherical particles of two different types, with specific
densities ρ1, ρ2 and volumes V1, V2, respectively. We will carry out the derivation
of a simple convection-diffusion equation governing sedimentation in the case of
these two types of particles, but the theory can be extended to the general case
of n interacting species.

Before we investigate the influence of the fluid surrounding the sedimenting grains
more closely in sections 5.4, 5.5 and 5.6, we oversimplify the situation in the
present section and neglect the effects of the fluid medium. Thus, we assume that
the grains fill up the space completely, without leaving gaps. Since we usually
act on the assumption, that these gaps are necessary to enable particle movement
at all, we have to attribute the grains a certain fluid quality. Of course, this
assumption is incorrect, when we deal with solid particles. Let us focus attention
on one of the two species, say the first one, with spheres of radius r1, volume



108 Chapter 5. Sedimentation

V1 = 4πr31/3 and specific weight ρ1. Pick one of these spheres and denote it by S.
It is suspended in a medium composed of species of both types (see figure 5.4).
If the species of type i are all spheres with the same density ρi, then the medium

S

Figure 5.4: A spherical particle denoted by S, suspended in a mixture of different parti-
cles.

surrounding S has an average density of

ρ̄ =
n1ρ1V1 + n2ρ2V2

n1V1 + n2V2
, (5.3)

where ni is the total number of grains of type i in the surrounding mixture.
Here, + we tacitly assumed that the mixture is homogeneous and, what is even
more problematic, that the grains fill up the whole space without leaving gaps in
between them. If we further assume, that all particles have the same size, then
(5.3) reduces to

ρ̄ =
∑

i

uiρi. (5.4)

Hence, if we interpret the surrounding particle mixture now as a fluid medium,
then S will descend (or rise, depending on the difference between ρ1 and ρ̄) at
a constant velocity, thus equalizing Stokes’ friction and gravitational force. (The
theoretical approach to this phenomenon was originally developed in [Stokes51].)
The so-called settling velocity is given by

vstok = −2r21g(ρ1 − ρ̄)

9η
, (5.5)

where g is the gravitational constant and η the viscosity of the surrounding
medium. The negative sign indicates, that the particles experience a downward
movement. Let ui be the relative density of species i (fraction of species i in the
mixture of two species). Then the flux of the first species is given by J1 = vu1.
Using equation (5.5) we get

J1 = u1c1(ρ1 − ρ̄)
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where c1 is a constant depending on r1, g and η,

c1 = −2r21g

9η
,

and ρ̄ is given by (5.4). Since the relative densities ui add up to one, it suffices
to set up only one equation, for example the one governing the change in u1, in
order to determine the behavior of the system. We have

J1 = c1u1

(

ρ1 −
∑

i

uiρi

)

= c1u1 (ρ1(1− u1)− ρ2(1− u1))

= c1u1(1− u1)(ρ1 − ρ2)

= c1∆ρu1(1− u1),

where ∆ρ = (ρ1 − ρ2). If this flux is the only factor determining the variation in
particle concentrations, we end up with an equation of the form

∂

∂t
u1 = − ∂

∂x
J1 = −c1∆ρ

∂

∂x
F (u1) (5.6)

governing the change in u1, where the function F is again of logistic type as in
section 5.2. Of course, solutions of equation (5.6) must satisfy boundary conditions
imposed at the ends of the vessel. To be precise, particles can neither enter nor
leave the top or bottom during the interaction, and thus

J1 = c1∆ρF = 0 (5.7)

at x = 0, l. Since c1 and ∆ρ are constants, the boundary condition (5.7) reduces
to F = 0, i.e. u1 = 0 or u1 = 1 at x = 0, l.

Proposition 5.3.1 (Conservation of total mass.) Equation (5.6) with boundary
condition (5.7) conserves the total mass of species u1, and hence also of u2, for
all positive times.

Proof. Equations of similar convergence form were shown in chapter 2 to
conserve total mass. 2.

We emphasize that the convection-diffusion equations used to model segregation
in chapter 3 in fact describe simple sedimentation of a single species in the case
of a one-dimensional equation. As we mentioned before, the interpretation of a
mixture of solid particles as a fluid bares difficulties. In the following, we will
incorporate the influence of a separate fluid medium, usually water, with fun-
damentally different properties than the solid particles. It will be attributed a
special role in the sedimentation process, the equation governing its change of
concentration will be of a different nature.
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5.4 A convection approach to sedimentation

Consider a suspension of n species, modeled by spheres with different radii but
with the same specific density ρs (a model, in which the particles may have
different material densities as well will be discussed below), in a fluid with specific
density ρf , contained in a vertical vessel of height l. We neglect effects in hori-
zontal direction, thus restricting to one space dimension. Let ui = ui(t, x) be the
volumetric concentration of species i and vi = vi(t, x) its velocity. Finally, let un+1

and vn+1 be the volumetric concentration and the velocity of the fluid, respectively.

We have to consider two different effects. The first one is diffusion (random motion
of the particles or biological species), the second one takes into account convec-
tional movement due to gravitation and interaction of the species. The convec-
tional flux of the ith species is given by J c

i = uivi whereas the diffusional flux is
Jd
i = −Diuix. The total flux J tot

i = Jc
i + Jd

i yields

ut = Duxx − f(u)x (5.8)

where f is given by fi(u) = uivi. Furthermore, we impose that the total flux
vanish at the boundary of the vessel, i.e.

Dux = f(u) (5.9)

at x = 0, l. Note that we have recovered a system of the same form used in
chapter 3, where it described interaction of individual particles in general. In the
following, we would like to compare our model to work done previously in this field.

At this point, we recall one of the major drawbacks of system (5.8), (5.9) in the
context of sedimentation. We already mentioned in chapter 3 the special role
of the suspension medium, the air or fluid surrounding the grains. One could
interpret the air as a granular material composed of infinitely small particles,
but this approach raises difficulties when it comes to interpreting the result:
Small grains were shown to move down in the process of shaking, a quality air
or any other light suspension medium does not have. In most of the remainder
of this chapter, we follow and compare two different approaches to the theory
of sedimentation. Both original models do not treat the medium explicitly,
and both lack a diffusion term. The first one, due to G. K. Batchelor (see
for example [Batchelor82.1] or [Bürger00.2]), emanates from the assumption of
absolute sedimentation velocities of each one of the n particle types. The second
approach has been followed by J. H. Masliyah and G. J. Kynch (see [Masliyah79],
[Kynch52]) and yields a system of equations known as the Kynch model. Here,
the settling velocities of the n grain types are taken relative to that of the
suspension medium, but an equation governing the medium itself does not exist.
We will use ideas of both approaches in our segregation model (5.8), (5.9).
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Before we go into further details of the above sedimentation approaches, we briefly
touch the hyperbolic problem corresponding to system (5.8), (5.9).

5.5 Batchelor’s approach

Consider one single sphere of radius r and density ρs, suspended in a fluid of
density ρf and viscosity η. The sphere then moves at a constant velocity, namely
Stokes’ settling velocity (5.5). Let us now investigate the situation, in which a
mixture of spheres differing in size and specific weight is in dilute suspension. If
we subdivide the mixture in n types and denote by ri and ρi the radius and specific
density of a particle of type i, respectively, then, according to G. K. Batchelor (see
[Batchelor82.1], [Batchelor82.2] and [Bürger00.2]), the velocities of the spheres are

vi = vi(u) = vstoki



1 +
n
∑

j=1

Sijuj



 . (5.10)

Here, vstoki is Stokes’ settling velocity for a grain of type i. The interaction coef-
ficients Sij appearing in (5.10) generally depend on the particles’ radii and spe-
cific densities and vary largely. While [Batchelor82.1] and [Batchelor82.2] give
several theoretical limiting approximations, a fit of experimental data is used in
[Bürger00.2] in order to derive the formula

Sij = −3.52− 1.04
rj
ri

− 1.03
r2j
r2i

(5.11)

for i, j = 1, . . . , n. Strictly speaking, the sedimentation coefficients Sij depend
not only on the size ratio of the particles, but also on their specific densities.
Expression (5.11) is obtained for equal densities. Equation (5.10) was used in
[Bürger00.2] in a conservation law with zero flux boundary condition. We will
extend the idea to general diffusion-convection equations of the type discussed in
chapter 3.

Note that a negative sign of vi means, that particles experience a downward move-
ment. Equation (5.11) is a crude approximation and is valid only if Brownian
motion of the individual grains is neglected and if the particle concentrations are
small (see [Batchelor82.2]). The latter in particular poses problems when it comes
to describing the final stage of the sedimentation process, in which the material
forms denser and denser packings and inter-particle effects come into play. We
will produce relief by introducing a saturation term, thus limiting the particle con-
centration to a prescribed fixed value in the first place (see below). For a single
sedimenting grain type u, equation (5.10) becomes

vi = vstoki (1− 5.59u),
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i.e. the settling velocity is constant and has the same value for all particles.

As we mentioned above, equation (5.10) describes the velocities of the spheres
correctly up to the order of ui but does not take into account the particles’ lack
of free space to move once the total volume density utot =

∑

ui reaches a certain
value umax . In order to avoid this problem, we can introduce a factor of (1 −
utot /umax ), or, as it is done in [Bürger00.2], of (1 − utot /umax )2. For reasons
of numerical stability, we only use the left branch of this volume limiting term
and extend it by zero into values beyond utot = umax . At the same time, we do
not want to alter the behavior of vi with respect to the concentrations ui in the
neighborhood of u = 0. Thus, we replace (5.10) by

vi = vstoki exp





n
∑

j=1

Sijuj + 2
utot

umax





(

1− utot

umax

)2

(5.12)

for i = 1, . . . , n and utot ≤ umax . The extension vi = 0 for utot > umax guarantees
stability of the densest state and does not change the continuity of the first
derivatives of vi. We use the exponential function in (5.12) in order to avoid a
change of sign for larger concentrations ui. Note that both the value and the first
derivatives of vi agree for (5.10) and (5.12).

In order to use Batchelor’s equation in our general sedimentation model of section
5.4, we define the components of the convection function f using the velocities
given in (5.12). Thus, we end up with an n + 1-dimensional system of the form
(5.8), where the n first components of the convection function f are given by

fi(u) = uiv
stok
i exp





n
∑

j=1

Sijuj + 2
utot

umax





(

1− utot

umax

)2

(5.13)

for i = 1, . . . , n and utot ≤ umax . We extend (5.13) by vi = 0 for utot > umax .
Finally, we define the (n + 1)st component of f (governing the change in the
volumetric density of the fluid) by

fn+1 = −
n
∑

i=1

fi. (5.14)

Corollary 5.5.1 (Boundedness and convergence.) Consider system (5.8) with
boundary condition (5.9) in section 5.4 for some positive diffusion constant D > 0.
Let the function f be defined by (5.13) and (5.14). Then, the solutions u = u(t, x)
of (5.8), (5.9) conserve positivity and total mass. All n+1 concentrations always
add up to one, and stationary solutions always exist (even though they are not
necessarily unique). Finally, for small container heights l, the time-dependent
solutions converge to an equilibrium state.
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Proof. Due to the definition (5.14) of the last component of the convection
function, condition (c) in section 3.2 of chapter 3 is satisfied. This ensures the
conservation of the total mass in the vessel. It is straightforward to verify, that
conditions (d) and (e) hold as well, hence positivity is conserved and particle den-
sities add up to one. Finally, theorem 3.7.1 in section 3.7 of chapter 3 guarantees
convergence to stationary solutions for small l. If fact, If A = A(t, x) is the Ja-
cobian of the function f defined in (5.13), (5.14), then the solutions converge if
l ≤ π

√
2/m, where

m = sup
t≥0

max
0≤x≤l

‖A(t, x)‖.

This completes the proof of corollary 5.5.1. 2.

Proposition 5.5.2 (Monotonicity of stationary states.) Consider the sedimenta-
tion model (5.8) with boundary condition (5.9) and a convection function (5.13),
(5.14), where the settling velocity is given by (5.12). Then, the first n components
of all equilibrium states are monotonously decreasing functions.

Proof. Stationary solutions of (5.8), (5.9) are solutions of the ordinary differential
equation

Dux = f(u)

with boundary condition (5.9). Since the first n components of the vector-valued
function f are all strictly negative, proposition 5.5.2 follows directly. 2.

The example of an equilibrium state in the case of three sedimenting particle
types is shown in figure 5.5. Here, we used a maximal particle concentration of
umax = 0.95, which is approximately the volume fraction filled by an optimal
mixture of three types of of the given sizes.

5.6 Masliyah’s equation and the Kynch model

Historically, G. J. Kynch was one of the first ones to develop a rigorous theory
for the sedimentation of particles dispersed in a fluid. In his treatise published in
1952 (see [Kynch52]), he formulated the conservation law

ut = Sx, (5.15)

where u is the volumetric particle concentration and S = uv the particle flux,
with v = vstok(1 − αu) being the speed of fall in the fluid. In case the grains are
all hard spheres of the same size and weight, the parameter α takes a value of
approximately 2.5. Under these assumptions, equation (5.15) reads

ut = vstok f̃(u)x, (5.16)

where f̃(u) = u(1−αu). The hyperbolic equation (5.16) is of the form we deduced
heuristically in sections 5.2 and 5.3. Following Kynch’s work, the equation has
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Figure 5.5: The stationary state of the sedimentation model (5.8), (5.9) for D = 5,
ρs = 2650kg /m 3, ρf = 1027kg/m 3. The radii of the three grain types are r1 = 2.5 ·10−4,
r2 = 5 · 10−4 and r3 = 1.5 · 10−3, their specific weights all equal ρs = 2650kg/m 3. We
used a dynamic fluid viscosity of η = 1.36 · 10−6m 2/s and set the gravitational constant
equal to g = 9.806m/s 2. The illustration shows monotone particle concentrations in the
sedimented equilibrium state (black curves). The empty space is plotted in gray.

been extended and modified, among others by J. H. Masliyah (see for example
[Masliyah79]), in order to incorporate the interaction between the individual
particles in a more accurate way and allow mixtures of grains of different physical
properties. We will discuss Masliyah’s contribution here and establish the
relationship to the model we used in chapter 3 to describe segregation. As before,
our aim is to derive an expression for the convectional particle flux J c and to
determine the convection function f in equation (5.8) governing the dynamics of
the sedimentation process (see the approach in section 5.4). In contrast to section
5.5, we consider the movement of the particles relative to that of the fluid and
thus do without setting up an equation for the change in fluid concentration.

In the vessel, the total particle concentration utot =
∑n

i=1 ui can take values
between zero and umax , where in general umax < 1. Let un+1 = uf = 1 − utot

be the volumetric fluid concentration and denote by vn+1 = vf the velocity of the
fluid. vf can be defined by

(

1− utot
)

vf +
n
∑

i=1

uivi = 0, (5.17)

which is another way of saying that the volume-averaged velocity vanishes at every
height in the vessel. Let us rewrite (5.17) in terms of the n relative velocities
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wi := vi − vn+1, i = 1, . . . , n. We get vf = −
∑n

i=1 uiwi and, since fi = uivi =
ui(wi + vn+1),

fi = ui



wi −
n
∑

j=1

ujwj



 (5.18)

for i = 1, . . . , n. In order to describe the physical realities correctly, we impose
boundary conditions. At the top and bottom of the vessel, all velocities vanish
and we have

Dux = f(u)

at x = 0, l. For the relative velocities wi appearing in the convection function
(5.18), J. H. Masliyah (see [Masliyah79]) derived the relation

wi = wstok
i V (utot ),

where wstok
i is Stokes’ settling velocity of one single spherical particle in a medium

of averaged density ρ = utot ρs + (1− utot )ρf , given by

wstok
i = −2

9

(1− utot )∆ρgr2i
ν

(see section 5.5) and V (utot ) is one of the hindered settling functions, for example
V (utot ) = (1 − utot )p for some p > 1 (see [Richardson54]). Equation (5.18) then
yields for i = 1, . . . , n

fi(u) = V
(

utot
)

ui



wstok
i −

n
∑

j=1

ujw
stok
j



 . (5.19)

It is interesting to observe, that (5.19) has, aside from the factor V (utot), the
outer form of a replicator competition law with constant fitnesses mi = wstok

i

(see equation (3.50) and the discussion in section 3.8 of chapter 3). Only this
time, the system does not live on the n-simplex S, since particle concentrations
do not necessarily add up to one. Nevertheless, one can show, that if u = u(t) is a
solution of (5.8) with convection function (5.19), then u(t)φ(t) lies on S for some
positive function φ. Furthermore, the factor V can be eliminated after rescaling
of time. Hence, the qualitative behavior of our sedimentation model is rendered
by the replicator equation. Figure 5.6 shows the stationary state of the system.
We used the same initial conditions as in section 5.5. The graph shows, that the
stationary solutions need not be monotone any more.

5.7 Variable diffusion

The hyperbolic sedimentation model of the form used originally in the approaches
due to G. J. Kynch, G. K. Batchelor and J. H. Masliyah (see also our compaction
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Figure 5.6: In contrast to figure 5.5, the stationary solutions of system (5.8), (5.9) with
convection function (5.19) are non-monotone in general. The particle concentrations are
plotted in black, the empty space is represented by the gray line.

and segregation models in the first half of chapter 2) usually develops shocks,
which are difficult to handle both mathematically and numerically. While the
parabolic equations derived in sections 5.5 and 5.6 avoid this problem by adding
a diffusive term to the conservation law, they also pose new difficulties. As we
mentioned before, these equations are designed to describe segregation processes
(see chapter 3). Even though sedimentation in some parts follows the same rules,
one important issue is not taken into account: The (stable) equilibrium state does
not depend on the height of the vessel and thereby on the time the sedimenting
material has to segregate, a phenomenon which contradicts all experimental
observations. On the contrary, it is the diffusion term, which constantly smears
the sharp layer boundaries and pushes the segregation, even though the material
has already settled to the bottom of the container.

We will try to produce relief by considering variable diffusion and convection terms,
both depending on the total particle density. To be more precise, let us consider
the vector equation

ut = [D(u)ux + γ(u)u]x (5.20)

with boundary condition
D(u)ux = −γ(u)u (5.21)

at x = 0, l, where u is the n-dimensional concentration vector and both D and
γ are matrices. Intuitively, one would assume that D and γ are in some sense
decreasing functions of u, and that D(u) = γ(u) = 0 if the total particle density
utot =

∑

ui exceeds a certain maximal value umax , namely that of the densest
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packing. Nevertheless, this reasoning does not necessarily hold for models derived
from simple random walk processes. In particular, we will see that in the case of
a single grain type, it stands to reason to assume that the diffusion function D is
in fact independent of the total density.

In order to gain some more insight, let us derive a one-dimensional sedimentation
model again from an elementary random walk process in the style of chapter 2.
Consider a one-dimensional grid and denote by uk the particle concentration at
position k. If α̃ is the diffusive transmission rate from one position to a neighboring
one, and if β̃ designates the rate of convective particle transmission, then the
standard continuous time discrete space random walk process reads

u̇k = α̃ [uk+1 + uk−1 − 2uk] + β̃ [uk+1 − uk] , (5.22)

where ∆x designates again the space increment, i.e. the vertical distance between
two compartments. If now α and β are the positive diffusion and convection
coefficients, respectively, and if α̃∆x2 ≡ α, β̃∆x ≡ β, then (5.22) yields in the
limit for ∆x → 0 the diffusion-convection equation

ut = αuxx + βux.

Now let us leave the idea of constant particle transmission coefficients α̃ and β̃
and suppose the transmission rates are proportional to the concentration u and
to the available space umax − u at the destination site. Then

u̇k =α̃ [uk+1(u
max − uk) + uk−1(u

max − uk)− uk(u
max − uk+1)− uk(u

max − uk−1)] +

+ β̃ [uk+1(u
max − uk)− uk(u

max − uk−1)]

=α̃umax [uk+1 + uk−1 − 2uk] +

+ β̃ [umax (uk+1 − uk)− uk(uk+1 − uk−1)] ,

and hence, in the parabolic limit,

ut = αumax uxx + β [u(umax − u)]x .

It is interesting to observe, that this modification of the transmission rate
does not alter the resulting diffusion constant D, but that it changes the
convection function. Thus, in the above terminology, γ(u) = umax − u, but
still D(u) ≡ α. At this point, let us take a brief look back at the heuristic
considerations in sections 5.2 and 5.3. Note that we recovered the same convection
function γ(u) = umax − u, which is just the free length of path of the grains’
fall, or, in other words, the concentration of the suspension medium. In the
light of this interpretation, the monotonicity assumption on γ makes perfect sense.

The actual interesting situation is the sedimentation of a mixture of different
particles. Let us treat a bi-disperse material as an example. As before, consider
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a one-dimensional grid and denote the concentrations of the two components at
position k by u1

k and u2k, respectively. The corresponding random walk process
under the influence of gravitation is then described by

u̇ik =α̃
[

uik+1(u
max − u1k − u2k) + uik−1(u

max − u1k − u2k)−
−uik(u

max − u1k+1 − u2k+1)− uik(u
max − u1k−1 − u2k−1)

]

+

+ β̃
[

uik+1(u
max − u1k − u2k)− uik(u

max − u1k−1 − u2k−1)
]

for i = 1, 2, which yields

u1t = α
(

umaxu1xx + u1u2xx − u2u1xx
)

+ β
[

u1(umax − utot )
]

x
,

u2t = α
(

umaxu2xx + u2u1xx − u1u2xx
)

+ β
[

u2(umax − utot )
]

x

(5.23)

in the parabolic limit. Here, utot is the total particle concentration, utot = u1+u2

and umax is its maximal value. Hence, the diffusion-convection system is of the
form (5.20) with diffusion matrix

D(u) = α

(

umax − u2 u1

u2 umax − u1

)

(5.24)

and a scalar convection function

γ(u) = β
(

umax − utot
)

. (5.25)

The adequate boundary condition is again

D(u)ux = −βu(umax − utot ) (5.26)

at x = 0, l.

The merits of the variable diffusion approach show up, when we look at stationary
solutions of (5.20), (5.21). Let us again use the example of two species with
diffusion term (5.24) and convection function (5.25). We are particularly interested
in the saturation property of the diffusion term D(u)u. If the total particle density
has reached its maximal value, for example in an advanced sedimentation stadium
at the container bottom, then the diffusion matrix D reduces to

D(u) =

(

u1 u1

umax − u1 umax − u1

)

,

and hence, [D(u)ux]x = 0, since (u1 + u2)x = (u1 + u2)xx = 0. Consequently, no
diffusion takes place. This, however, does not imply that arbitrary dense packings
are stationary states, as the following proposition shows.

Proposition 5.7.1 (Monotonicity of equilibria for variable diffusion.) The sta-
tionary states of (5.20), (5.21) with diffusion matrix (5.24) and convection func-
tion (5.25) are all strictly decreasing functions, unless the whole container is al-
ready optimally filled with material.
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Proof. The equilibria of system (5.20), (5.21) are solutions of

D(u)ux + γ(u)u = 0. (5.27)

If we denote by w = u1 + u2 the total particle concentration, then (5.27) yields

wx =
1

umax
w2 − w,

the solution of which is

w(x) =
umaxw0

(umax − w0)ex + w0
. (5.28)

As long as the total particle concentration stays below umax , w is thus strictly
decreasing. From (5.27), we also derive

u1x = − u1

umax
(umax − u1 − u2),

u2x = − u2

umax
(umax − u1 − u2).

Hence, strict monotonicity holds for each one of the two concentrations as well as
long as umax > u1 + u2. This proves proposition 5.7.1. 2.

Let us now return to the original idea of system (5.20), (5.21) with D and γ both
tending to zero as the total concentration approaches umax . In case of a single
particle type, the behavior of the equilibria at the left boundary is resumed in the
following proposition.

Proposition 5.7.2 (Slope of stationary states.) Suppose γ and D are both strictly
decreasing functions on the interval [0, umax ] with γ(0) = γ0 > 0 and D(0) = D0 >
0. Assume further, that γ(umax ) = D(umax ) = 0. We distinguish two cases:

(a) If b := lim
u→umax

γ(u)
D(u) < ∞, then the stationary solution of system (5.20), (5.21)

starts out with a slope equal to −b at u = 0.
(b) If b = ∞, the stationary solution has infinite slope at u = 0.
In any case, the stationary solution is a decreasing function.

Proof. Since γ and D are both non-negative and become zero only at u =
umax , the monotonicity of the stationary solutions follows from (5.29). Due to the
boundary condition, the stationary solutions of (5.20), (5.21) are solutions of

ux = − γ(u)

D(u)
(5.29)

wherever D(u) 6= 0. The crucial point is now the behavior of the ratio γ(u)/D(u)
in the limit as u → umax , i.e. in other words the ratio of the derivatives of γ and
D at u = umax in case both functions are C1. The behavior at zero can thus be
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characterized by either (a) or (b). 2.

Before we close this section on variable diffusion, we would like to illustrate the
behavior of the stationary solutions to problem (5.20), (5.21) in the general case
of several interacting species by means of an example. In order to avoid the
peculiarities of case (b) in proposition 5.7.2, we choose

γ(u) = (umax − u1 − u2) (5.30)

and
D(u) = εγ(u) (5.31)

for some ε > 0. Thus, stationary solutions start off with a slope equal to −1/ε at
x = 0 and satisfy

ε(umax − u1 − u2)ux = −(umax − u1 − u2)u,

i.e. either umax = u1 + u2 or ux = −u/ε. The latter yields solutions of the form
ui(x) = λie

−x/ε, while the former condition just characterizes dense packings.
Hence, the general variable diffusion approach fulfills the stipulated requirements:
Once a layer of dense material has formed at the bottom of the vessel, its
local composition is invariant. Above this dense layer, the concentrations decay
exponentially. On the boundary between these two deposits, we necessarily have
a discontinuity of the slope ux.

The question is now, which ones of the above equilibria are stable. As the simu-
lations in figures 5.7 and 5.8 show, the same total mass relation between the two
particle types can yield different stable states, depending on the initial distribu-
tion. In the first simulation, we introduced a layer of composite material into
the bottom half of the container. Hence, sedimentation only had a relatively short
time to segregate the two species, before the mixture gathered at the ground. In
comparison, a second simulation was conducted, in which the material had more
time to segregate. The resulting layers are more distinct.

5.8 Simulation of a particle sedimentation model

In order to judge the quality of the two models introduced in sections 5.5 and
5.6, we compare their predictions with the simulation of a particle model.

We imagine a suspension of spherical particles of varying size and specific weight.
During the sedimentation process, three different forces act constantly on each
individual particle. On the one hand, the gravitational force FG, which is propor-
tional to the particle’s mass, acts in vertical, downward direction and accelerates
the fall. On the other hand, the particle experiences a buoyancy force FB , di-
rected upward. It depends on the volume of the grain, as well as on the specific
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densities of the sedimenting material and the fluid. Finally, the particle is slowed
down by the flow resistance FD. It generally depends on the particle’s shape and
its velocity. Hence, the total acting force is given as the sum of the three forces,
respecting their respective signs,

F = −FG + FB + FD.

Consider one sediment particle with radius r and specific weight ρs, and denote
by ρf the specific weight of the suspension medium. Then

−FG + FB = −4

3
πr3g (ρs − ρf ) ,

where g is the gravitational constant. Furthermore, if we assume that the suspen-
sion fluid is at rest, the flow resistance acting on the sediment particle is given
by

−1

2
cDρfw|w|πr2,

where cD is the drag coefficient and w the vertical component of the velocity of
the grain. A. J. Raudkivi (see [Raudkivi76]) has derived the following dependency
of cD on the particle’s Reynolds’ number Re , which is given by Re = 2|w|r/ν:

cD =







24

Re

(

1 + 0.15Re 0.678
)

for Re ≤ Re crit,

c∞D for Re > Re crit.

Here, ν is the fluids dynamic viscosity, c∞D ≈ 0.424 is the limiting drag coef-
ficient for high particle velocities and Re crit is the critical Reynolds’ number,
Re crit ≈ 103.

For the simulation, we placed a total number of 1580 spherical particles of three
different sizes in an aqueous suspension and recorded the composition of the gran-
ular material after total sedimentation at the bottom of the container. The result
is shown in figures 5.9 and 5.10.
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(a) Initial distribution.
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(b) 104 iterations.
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(c) 2 · 105 iterations.
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(d) 4 · 105 iterations.
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(e) 6 · 105 iterations.
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(f) 9 · 105 iterations.

Figure 5.7: Simulation of the time-dependent solution of system (5.20) with boundary
condition (5.21). The solid and dashed lines represent the concentrations of the first and
second particle species, respectively, while the dotted line gives the total density. We used
the diffusion function (5.31) and a convection function of the form (5.30) with ε = 0.1,
the maximal particle concentrations was chosen to be umax = 1. We initially introduced
an inhomogeneous layer of material into the bottom half of the container (see (a)). The
simulation indicates, that the non-monotone distribution shown in (f) is an equilibrium.
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(a) Initial distribution.
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(b) 104 iterations.
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(c) 2 · 105 iterations.
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(d) 5 · 105 iterations.
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(e) 106 iterations.
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(f) 3 · 106 iterations.

Figure 5.8: Simulation of the time-dependent solution of system (5.20) with boundary
condition (5.21). As in figure 5.7, we used the diffusion (5.31) and a convection function of
the form (5.30) with ε = 0.1. Only this time, the material was initially introduced into the
top of the vessel. Thus, the grains had more time to segregate during the sedimentation.



124 Chapter 5. Sedimentation

Figure 5.9: Sedimentation of a total number of 1580 spherical particles in aqueous sus-
pension of specific density ρf = 1027kg/m 3. The radii of the three grain types are
r1 = 2.5 · 10−4, r2 = 5 · 10−4 and r3 = 1.5 · 10−3, their specific weights all equal
ρs = 2650kg /m 3. We used a dynamic fluid viscosity of ν = 1.36 · 10−6m 2/s and set
the gravitational constant equal to g = 9.806m /s 2. The illustration shows the sedi-
mented material at the bottom of the container at t = 1.6 · 104. The compaction is not
complete, some gaps are still visible.
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(a) Arbitrary initial distribution.
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(b) Time t = 4 · 103.
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(c) t = 8 · 103.
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(d) t = 1.2 · 104.
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(e) t = 1.6 · 104.
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(f) t = 2 · 104.

Figure 5.10: The density plots generated according to the particle simulation illustrated
in figure 5.9. The dotted line gives the concentration of the largest grains, the dashed
curve represents the intermediate grains, and the solid line the small particles.
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Chapter 6

The chemostat with

non-constant washout rates

Summary. The classical chemostat system describes the behavior of two species
competing for one substrate. The substrate is renewed at a constant rate, both
the species and the substrate are washed out at possibly distinct washout rates.
For this system, the competitive exclusion principle holds. We allow washout rates
depending on the densities and show that coexistence is possible.

6.1 Introduction

The chemostat consists of a vessel, the so-called growing chamber, containing a
certain number of biological (or chemical) species in a fluid medium. The species
interact indirectly in the sense that they compete for a limited resource (substrate)
which is diluted in the medium, and that they have more or less ability to adapt
to their environment in order to utilize the supply at the best possible rate. The
chamber is fed by a supply of fresh resource solution, while an outflow disposes
of used nutrient and maintains a certain fill level in the vessel. The inhabiting
species are gradually washed out together with the medium. We will in particular
focus on these washout rates and, in contrast to previous work by G. J. Butler
(see for example [Butler87], [Butler86] or [Butler85.1]), S. B. Hsu (see [Hsu94.1],
[Hsu94.2]) or S. K. Wolkowicz (see [Wolkowicz96] or [Wolkowicz95]), allow the
species to colonize and thus persist within the growing chamber. Once their
number becomes large, more and more individuals drop out of the colonies and
are washed out as well. Hence, the death rates or washout rates are not constant.
One could imagine, for example, a mussel bed with variable ability of the
individual animals to hold on to rocks or artificially inserted grilles (as it is done
in industrial mussel cultivation), or a competitive relationship between animals
with different ability to attach to the walls of their habitat (for an application to
the microflora in the guts of mammals see for example [Stemmons00]). Another
important field of application is the cultivation of so-called biofilms, thin layers
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of organic material formed under controlled conditions in the biofilm growing
chamber.

In section 6.2 we present a general model describing the competition of two species
with distinct, non-linear growth rates and mortalities and correlate the individual
terms to the biological setup in mind. The purpose of section 6.3 is to locate the
equilibrium states of the general system and analyze their local stability. Section
6.4 is a first step towards global stability analysis. We determine invariant sets
and discuss the boundedness of solutions. The proof of global stability of the
coexistence state is achieved in section 6.5 for a certain class of uptake functions.
An example for the coexistence point is analyzed in section 6.6, and the biological
implications are explained. Finally, section 6.7 presents a computer simulation of
the model for the case of linear uptake and washout functions.

6.2 The model

Consider the case of two species with concentrations xi, i = 1, 2, competing for a
single limited resource s. Let D ≥ 0 be the rate of substrate inflow into the vessel
(equal to the outflow rate). The washout rates of the species xi are modeled by
functions Di = Di(xi), i = 1, 2. Let fi = fi(s), i = 1, 2, be the nutrient uptake
functions of the two species. They are at the same time responsible for the overall
growth of the population. These considerations yield the following model:

ṡ = D(1− s)− x1f1(s)− x2f2(s),

ẋ1 = x1(f1(s)−D1(x1)),

ẋ2 = x2(f2(s)−D2(x2)).

(6.1)

We make the following assumptions:

(a) Let fi and Di be sufficiently smooth: fi, Di ∈ C1[0,∞).
(b) D0

i := Di(0) > 0, D′
i(x) > 0 and Di(∞) = D∗

i ∈ (D0
i ,∞).

(c) Let fi(0) = 0, f ′
i(s) > 0.

Biologically speaking, condition (c) includes the case of infinitely growing uptake
rates fi, which means that the nutrient consumption of the species can grow in-
finitely large if sufficient concentrations are supplied. This seems to contradict
biological facts, since real species have a level of saturation and hence experimen-
tally observable uptake always has a finite limit. Condition (b) models strictly
monotone washout rates, thus meeting our demands. The somewhat weaker con-
dition D′

i(x) ≥ 0 would allow to treat the often considered case of constant mor-
talities as a special case, but for analytical purposes we explicitly restrict to strict
monotonicity. Notice that the number of deaths per time unit, xiDi(xi), has a
positive derivative at xi = 0. This ensures a certain washout speed for small
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concentrations. When writing the first equation of system (6.1), we tacitly as-
sume a maximal substrate concentration of one. In the following discussion, we
therefore restrict to initial values s(0) ≤ 1. Note that if s were to be larger than
one hypothetically, then ṡ < 0 and the concentration would drop back below this
saturation level.

Lemma 6.2.1 (Extinction.) Suppose conditions (a) through (c) above hold for
system (6.1). If in addition fi(1) < D∗

i for some i, then this species will die out
and does not persist in the system.

Proof. It is clear from (6.1) that under the additional hypothesis of lemma 6.2.1,
ẋi is always strictly negative. This proves lemma 6.2.1. 2.

In most of the following discussion, we will therefore assume fi(1) > D0
i for

i = 1, 2. If we define si by fi(si) = Di(0), this condition reads

(d) si < 1, i = 1, 2.

6.3 Stationary points and their stability

Let us define Gi as the inverse function of Di (here we need strict monotonicity of
Di) and the values si and s by fi(si) = D∗

i and s = max {si}, respectively. Note
that Gi is only defined on the finite interval [D0

i , D
∗
i ] if D

∗
i < ∞. This will be im-

portant for the existence of the coexistence equilibrium (see proposition 6.3.3). In
order to find stationary points of the system (6.1) we draw the nullclines. Besides
the trivial substrate-only equilibrium S = (1, 0, 0), there can be two different one-
consumer equilibria, denoted by E1 = (s1, x11, 0) and E2 = (s2, 0, x22), at which in
each case the other species is extinct. With the above notation, the derivatives
ẋi, i = 1, 2, vanish for non-trivial xi if and only if xi = Gi(fi(s)) (see figure 6.1).
Thus, by the first equation of (6.1) the substrate concentration at a one-consumer
equilibrium Ei for species i is given by the equation

D(1− s) = Gi(fi(s))fi(s), (6.2)

if Ei exists. Finally, system (6.1) might have a coexistence equilibrium, which we
denote by E = (s∗, x∗1, x

∗
2). If E exists, the substrate concentration s∗ at this

stationary state solves the equation

D(1− s) =
2
∑

i=1

Gi(fi(s))fi(s). (6.3)

These are all possible equilibria. We will discuss conditions for the existence
and the stability of the above stationary states after giving two examples for the
uptake functions fi and the washout rates Di.
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Besides the case of constant uptake and mortality functions (which is not included
in (b), (c)), the simplest situation is the one with linear functions fi and Di. Let

fi(s) = ais,

Di(xi) = D0
i + kixi,

(6.4)

where ai, ki > 0 (see figure 6.1). In this case, the inverse Gi of Di is given by

0

1

2

1 2

x2−nullcline

s1_ s2_

1G (f1(s))f1(s)
x1−nullcline

D(1−s)

s

G (s)2(f2(s))f2

Figure 6.1: The nullclines of system (6.1) for the linear functions f1(s) = s, f2(s) = 2s,
D1(x1) = 1/2 + 2x1, D2(x2) = 2/3 + 3x2 and D = 1.

Gi(yi) = (yi − D0
i )/ki. It is defined on the half-open interval [D0

i ,∞). The
chemostat model (6.1) then becomes

ṡ = D(1− s)− x1a1s− x2a2s,

ẋ1 = x1(a1s− k1x1 −D0
1),

ẋ2 = x2(a2s− k2x2 −D0
2).

(6.5)

A nonlinear example is represented in figure 6.2. Here the parameter functions
take the form

fi(s) =
ais

1 + bis
,

Di(xi) = D0
i + ki(1− e−cixi),

(6.6)

where ai, bi and ci, i = 1, 2, are all strictly positive constants. Nutrient uptake
functions of such form are frequently used in biological modeling and describe
so-called Michaelis-Menten reaction kinetics. The inverse function Gi of Di in the
case (6.6) is given by

Gi(yi) =
1

ci
log

(

1− yi −D0
i

ki

)

,
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Figure 6.2: The non-linear case.

its domain is the finite interval [D0
i , D

0
i + ki].

In order to determine the stability of the equilibria Ei and E we consider the
Jacobian J . In general, the matrix J has the form





−D − x1f
′
1(s)− x2f

′
2(s) −f1(s) −f2(s)

x1f
′
1(s) f1(s)−D1(x1)− x1D

′
1(x1) 0

x2f
′
2(s) 0 f2(s)−D2(x2)− x2D

′
2(x2)



 .

First, we take a closer look at the substrate-only equilibrium S = (1, 0, 0). A few
properties are collected in the following proposition.

Proposition 6.3.1 (Trivial stationary state and stability.) The trivial stationary
point S always exists. Under the assumption (d) made in section 6.2, it is always
locally unstable both in x1 and x2 direction.

Proof. At the substrate-only equilibrium S, the Jacobian J takes the form

J0 =





−D −f1(1) −f2(1)
0 f1(1) −D1(0) 0
0 0 f2(1)−D2(0)



 . (6.7)

Assumption (d) in section 6.2 implies that two of the eigenvalues of J0 are strictly
positive. Consequently, S is locally unstable. This proves proposition 6.3.1. 2.
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In a biological context, inequality (d) guarantees that S is unstable against
invasion of x1 and x2. In other words, either species can immigrate into the
system, once a small number of individuals is introduced, if only the concentration
of the other species is low.

Next, let us analyze existence and stability of the one-consumer equilibria.

Proposition 6.3.2 (One-consumer equilibria and stability.) Under the assump-
tion (d) in section 6.2, both one-consumer equilibria Ei exist and are globally
stable in the positive quadrant of the (s, xi)−plane. Ei is locally stable in a three-
dimensional neighborhood (i.e., in addition, stable against the invasion of the other
species x3−i), if and only if

f3−i(s
i) < D0

3−i, (6.8)

where si is the value of s at Ei.

Proof. At the one-consumer equilibria Ei, the respective Jacobian matrices Ji
have the form

J1 =





−D − x11f
′
1(s

1) −f1(s
1) −f2(s

1)
x11f

′
1(s

1) −x11D
′
1(x

1
1) 0

0 0 f2(s
1)−D0

2





at E1 = (s1, x11, 0) and

J2 =





−D − x22f
′
2(s

2) −f1(s
2) −f2(s

2)
0 f1(s

2)−D0
1 0

x22f
′
2(s

2) 0 −x22D
′
2(x

2
2)





at E2 = (s2, 0, x22). We will carry out the proof for E1, the second equilibrium E2 is
treated in exactly the same way. Following (6.1) and using the strict monotonicity
assumptions (b) and (c), the stationary state E1 exists if and only if s1 < 1. The
stability of E1 in the (s, x1)−plane is determined by the 2x2 Jacobian

J̃1 =

(

−D − x11f
′
1(s

1) −f1(s
1)

x11f
′
1(s

1) −x11D
′
1(x

1
1)

)

.

It is straightforward to check that the eigenvalues of J̃1 always have strictly neg-
ative real part. Hence, E1 is locally stable in the (s, x1)−plane. For the global
stability in the plane we use a Bendixson argument. For x2 = 0, system (6.1)
reads

ṡ = D(1− s)− x1f1(s),

ẋ1 = x1 (f1(s)−D1(x1)) .
(6.9)

By rescaling the time variable, we can transform (6.9) into

ṡ =
D(1− s)

x1
− f1(s),

ẋ1 = f1(s)−D1(x1),

(6.10)
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the Jacobian of which is

Jtrans =

(

−D
x1

− f ′
1(s) −D(1−s)

x2
1

f ′
1(s) −D′

1(x1)

)

.

The divergence tr Jtrans of (6.10) is strictly negative everywhere. Hence, by
Bendixson’s negative criterion (e.g. [Perko96]), system (6.9) has no periodic orbits.
Furthermore, it is straightforward to check, that the simplex

E :=

{

(s, x1) ∈ IR2
+ : s ≥ 0, x1 ≥ 0, s+ x1 ≤

D

min {D,D0
1}

}

is positively invariant and globally attracting (see also proposition 6.4.2 in section
6.4). Hence, the equilibrium E1 (which is unique in IR2

+) is globally stable in
the positive two-dimensional cone. Finally, E1 is also locally stable in an open
three-dimensional neighborhood if the third eigenvalue f2(s

1)−D0
2 of J1 is strictly

negative. This completes the proof of proposition 6.3.2. 2.

In order to get a better picture of the situation, let us recall: The coexistence
equilibrium Ei exists if and only if si < 1, i.e. if and only if the function fi reaches
the value D0

i below s = 1. But this is the same as saying that fi(1) > D0
i , which

means that the corresponding eigenvalue of J0 is strictly positive and the trivial
substrate-only stationary state becomes unstable against invasion of the species
xi. Consequently, Ei and S can exist at the same time, but they cannot be both
locally stable. This point will be illustrated with the help of simulations in section
6.7. Furthermore, note that the conditions (6.8) for the local stability of Ei are
equivalent to si < si. Obviously, s1 < s2 ⇒ s1 < s2 and s2 < s1 ⇒ s1 < s2 (see
figure 6.2(b)). Hence, E1 and E2 cannot be both locally stable. In the following,
we discuss the situation of two locally unstable one-consumer equilibria. To this
end, we try to find conditions for the existence of the coexistence equilibrium E:

Proposition 6.3.3 (Coexistence equilibrium and stability.) The coexistence equi-
librium E exists if and only if all of the three following conditions hold:
(i) s1 < 1 and s2 < 1, i.e. both E1, E2 exist,
(ii) s < min {s1, s2},
(iii) D > D∗, where

D∗ :=

∑2
i=1 Gi(fi(s))fi(s)

1− s
. (6.11)

Whenever E exists, it is also locally stable.

Note that the critical value D∗ in (6.11) is defined only if condition (ii) in
proposition 6.3.3 holds.
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Proof. Clearly, a necessary condition for the existence of E is that ẋi vanishes
for i = 1, 2 in (6.1) for non-trivial xi. In addition, the equation

D(1− s) =
2
∑

i=1

Gi(fi(s))fi(s). (6.12)

must be satisfied for some s ∈ (0, 1), hence we need D > D∗ with D∗ as in (6.11).

In order to determine the stability of the coexistence point E we use the Routh-
Hurwitz criterion (see for example [Gantmacher59]). The characteristic polyno-
mial of the Jacobian at E is

λ3 +Aλ2 +Bλ+ C (6.13)

where the constants A, B and C are given by

A = D + x∗1[f
′
1(s

∗)D′
1(x

∗
1)] + x∗2[f

′
2(s

∗) +D′
2(x

∗
2)]

B = x∗1x
∗
2D

′
1(x

∗
1)D

′
2(x

∗
2)+

+ [D + x∗1f
′
1(s

∗) + x∗2f
′
2(s

∗)][x∗1D
′
1(x

∗
1) + x∗2D

′
2(x

∗
2)]+

+ x∗1f1(s
∗)f ′

1(s
∗) + x∗2f2(s

∗)f ′
2(s

∗)

C = x∗1x
∗
2D

′
1(x

∗
1)D

′
2(x

∗
2)[D + x∗1f

′
1(s

∗) + x∗2f
′
2(s

∗)]+

+ x∗1x
∗
2[D

′
1(x

∗
1)f2(s

∗)f ′
2(s

∗) +D′
2(x

∗
2)f1(s

∗)f ′
1(s

∗)].

(6.14)

By assumption, the constant D is non-negative and the derivatives of the functions
fi and Di are both strictly positive. Thus A, B and C are strictly positive as well.
Furthermore

det

(

A 1
C B

)

= AB − C.

Straightforward calculation shows that

AB − C =(D + x∗1f
′
1(s

∗) + x∗1D
′
1(x

∗
1) + x∗2f

′
2(s

∗) + x∗2D
′
2(x

∗
2))·

· [x∗1x∗2D′
1(x

∗
1)D

′
2(x

∗
2)+

+ (D + x∗1f
′
1(s

∗) + x∗2f
′
2(s

∗))(x∗1D
′
1(x

∗
1) + x∗2D

′
2(x

∗
2))+

+ x∗1f1(s
∗)f ′

1(s
∗) + x∗2f2(s

∗)f ′
2(s

∗)]−
− x∗1x

∗
2D

′
1(x

∗
1)D

′
2(x

∗
2)(D + x∗1f

′
1(s

∗) + x∗2f
′
2(s

∗))−
− x∗1x

∗
2(D

′
1(x

∗
1)f2(s

∗)f ′
2(s

∗) +D′
2(x

∗
2)f1(s

∗)f ′
1(s

∗))

=(D + x∗1f
′
1(s

∗) + x∗1D
′
1(x

∗
1) + x∗2f

′
2(s

∗) + x∗2D
′
2(x

∗
2))·

· (D + x∗1f
′
1(s

∗) + x∗2f
′
2(s

∗))(x∗1D
′
1(x

∗
1) + x∗2D

′
2(x

∗
2))+

+ (x∗1D
′
1(x

∗
1) + x∗2D

′
2(x

∗
2))x

∗
1x

∗
2D

′
1(x

∗
1)D

′
2(x

∗
2)+

+ (D + x∗1f
′
1(s

∗) + x∗2f
′
2(s

∗))(x∗1f1(s
∗)f ′

1(s
∗) + x∗2f2(s

∗)f ′
2(s

∗))

>0,
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since by assumption all terms are strictly positive. Finally,

det





A 1 0
C B A
0 0 C



 = (AB − C)C > 0,

since C > 0. Hence, the conditions of the Routh-Hurwitz criterion are satisfied
and the coexistence equilibrium E is stable whenever it exists. This proves
proposition 6.3.3. 2.

We observe that D∗ does not depend on D. Thus, for any given value of D∗ we
can always choose D > D∗ (under the assumption that condition (ii) in proposi-
tion 6.3.3 is satisfied). Biologically speaking, one can always design a system with
coexistence equilibrium by increasing the rate D of nutrient input into the cham-
ber. In terms of the two one-consumer equilibria, the condition for the existence
of the coexistence point can be formulated as follows: Condition (i) in proposition
6.3.3 guarantees the existence of two globally (in IR2

+) stable stationary states
Ei, i = 1, 2. Suppose condition (ii) holds, but D < D∗, i.e. E does not exist.
Without loss of generality, let E1 be the equilibrium, which is locally stable in the
open three-dimensional cone R3

+. If we now increase the parameter D, the new
stationary state E emerges from E1 and moves into R3

+. This bifurcation occurs
when D passes the critical value D∗. At the same time, E1 loses its stability
and E attracts all trajectories in the open cone. Figure 6.3 illustrates a sequence
of different positions of the coexistence point for varying D in the case of linear
uptake and washout rates. Figure 6.4 shows the nullclines and the substrate con-
centration at the coexistence equilibrium in the case of linear functions fi and Di.
Note that system (6.1) with the non-linear functions (6.6) represents an example,
in which the coexistence point does not exist because condition (ii) in proposition
6.3.3 is violated (see also figure 6.2(b)).

6.4 Invariant sets and boundedness of the solutions

From the structure of the equations of the general system (6.1) it is evident that
the positive orthant IR+

3 is positively invariant. Similarly, it follows that the set
{(s, x1, x3) ∈ IR+

3 : s ≤ 1} is positively invariant as well, i.e. the positivity of
the concentrations is conserved. Furthermore, the following positively invariant
and globally attracting bounded sets exist for the system with linear uptake and
washout rates and the general system, respectively:

Proposition 6.4.1 (Linear rates.) Consider system (6.5), i.e. the nutrient up-
take functions as well as the washout rates are supposed to be linearly dependent
on the concentrations of the species. Then the box shaped set

A =
{

(s, x1, x2) ∈ R3
+ : 0 ≤ s ≤ 1, 0 ≤ xi ≤ ai/ki

}

is positively invariant and globally attracting in IR3
+.
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x1

x2

E1

s

E=E
for D=D*

2

E2
E

Figure 6.3: Sequence of coexistence equilibria emerging from the locally stable one-
consumer stationary point E2 in the case of linear functions f1(s) = 2s, f2(s) = 3s,
D1(x1) = 0.2 + x1 and D2(x2) = 0.8 + 2x2. For D = D∗ ≈ 0.24, the coexistence point
coincides with E2. The values of the parameter D generating the sequence of coexistence
points are D = 0.54, 0.84, 1.44, 2.34, 3.54, 5.04. With varying D, the positions of E1 and
E2 move as well in their respective plane.
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1 2

G1(f1(s))f1(s)
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Figure 6.4: In the case of linear functions f1(s) = 2s, f2(s) = 3s, D1(x1) = 0.2 + x1,
D2(x2) = 0.2 + 2x2 and D = 1, condition (6.11) is satisfied. The coexistence substrate
concentration s∗ is the solution of (6.3).

Proof. Conservation of positivity and the upper bound for s have been shown
for solutions of the general system (6.1). From (6.5) it is evident that ẋi becomes
negative if xi > ai/ki. This proves proposition 6.4.1. 2.
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For the general system, upper bounds can only be given in terms of the parameters:

Proposition 6.4.2 (General system.) The simplex

B =
{

(s, x1, x2) ∈ R3
+ :

s ≥ 0, x1 ≥ 0, x2 ≥ 0, s+ x1 + x2 ≤ D/min {D,D0
1 , D

0
2}
}

is positively invariant and globally attracting for system (6.1).

Proof. In view of

ṡ+ ẋ1 + ẋ2 = D(1− s)− x1D1(x1)− x2D2(x2)

≤ D −
[

Ds+D0
1x1 +D0

2x2
]

≤ D − (s+ x1 + x2)min {D,D0
1 , D

0
2}.

(6.15)

we have ṡ+ ẋ1 + ẋ2 < 0 whenever s+ x1 + x2 ≥ D/min{D,D0
1, D

0
2}. 2.

6.5 Convergence to stationary solutions

Consider the set M defined by

M = {(s, x1, x2)|s ≥ 0, x1 ≥ 0, x2 ≥ 0, s+ x1 + x2 ≤ D/D∗}.
It is easy to show that M is a positively invariant set for the general system (6.1).
The aim of this section is to find a suitable Lyapunov function in the case of
a coexistence equilibrium. Once we know that such a function exists, we deduce
that every trajectory of system (6.1) approaches equilibrium. Let us start with the
case where one of the two species has disappeared from the system, thus leaving
a single species with concentration x1, uptake function f1 = f1(s) and mortality
D1 = D1(x1). The method of constructing a Lyapunov function will later be
generalized to the three-dimensional model (6.1). Denote by E1 = (s1, x11) the
one-consumer equilibrium, i.e. D(1− s1) = x11f1(s

1), f1(s
1) = D1(x

1
1), and define

a function V : R2
+ −→ R by

V (s, x1) =

∫ s

s1

f1(ξ)− f1(s
1)

f1(ξ)
dξ +

[

x1 − x1i

(

1 + log
x1
x11

)]

(6.16)

for s, x1 > 0. Note that each one of the two terms in (6.16) is non-negative
everywhere and vanishes only at (s1, x11). The first condition for Lyapunov
functions is satisfied. Furthermore, with ∂V/∂s = (f1(s) − f1(s

1))/f1(s) and
∂V/∂x1 = (x1 − x11)/x1 we get

V̇ =
∂V

∂s
ṡ+

∂V

∂x1
ẋ1

=

[

f1(s)− f1(s
1)

f1(s)

]

ṡ+

[

x1 − x11
x1

]

ẋ1

=

[

f1(s)− f1(s
1)

f1(s)

]

(D(1− s)− x1f1(s)) +
[

x1 − x11
]

(f1(s)−D1(x1)) .

(6.17)
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Next, we split V̇ into one part depending only on s and a second one depending
depending only on x1. Write

V̇ =

[

f1(s)− f1(s
1)

f1(s)

]

(

D(1− s)− x11f1(s)
)

+
[

x1 − x11
] (

f1(s
1)−D1(x1)

)

.

(6.18)
Both terms on the right hand side of (6.18) are strictly concave functions of s
and x1, respectively, and both have their absolute maximum at (s1, x11). Thus,
V represents a Lyapunov function for the two-dimensional system and the
one-consumer equilibrium E1 is globally stable. (This, we already know from
proposition 6.3.2.)

The general, three-dimensional system (6.1) is more complicated, even though the
same technique may be applied. We prove the following convergence result:

Theorem 6.5.1 (Global stability of the coexistence point.) Consider system
(6.1) with general, monotone uptake and mortality functions fi and Di satisfy-
ing conditions (a) through (c) in section 6.2. Suppose that s1 < 1, s2 < 1 and
D > D∗, where s1, s2, D

∗ are defined in section 6.3. If we impose in addition
that f2(s) = af1(s) for some constant a > 0 and for all s ≥ 0, then the existing
coexistence equilibrium E is globally stable.

Proof. In order to prove theorem 6.5.1, we define a function W : R3
+ −→ R by

W (s, x1, x2) =
2
∑

i=1

{

1

2

∫ s

s∗

fi(ξ)− fi(s
∗)

fi(ξ)
dξ +

[

xi − x∗i

(

1 + log
xi
xi∗

)]}

(6.19)

for s, xi > 0.

Lemma 6.5.2 (Lyapunov function.) Under the hypotheses of theorem 6.5.1, the
function (6.19) is a Lyapunov function for system (6.1).

Proof. Note that each one of the four terms in the above sum is always greater
than or equal to zero and that all four vanish only at the coexistence point E =
(s∗, x∗1, x

∗
2). Thus the first condition for Lyapunov functions is satisfied. We now

calculate the derivative of W along the solution curves.

Ẇ =
∂W

∂s
ṡ+

∂W

∂x1
ẋ1 +

∂W

∂x2
ẋ2

=

[

1

2

2
∑

i=1

fi(s)− fi(s
∗)

fi(s)

]

ṡ+
2
∑

i=1

[

xi − x∗i
xi

]

ẋi

=
f1(s)− f1(s

∗)

f1(s)
[D(1− s)− x∗1f1(s)− x∗2af1(s)] +

+ (x1 − x∗1)(f1(s
∗)−D1(x1))+

+ (x2 − x∗2)(af1(s
∗)−D2(x2)),

(6.20)
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where ṡ and ẋi are defined by equations (6.1). Due to the fact that ṡ and ẋi vanish
at E = (s∗, x∗1, x

∗
2), the first term in the last row of equation (6.20) is always non-

positive and becomes zero for s = s∗. The second and third terms are non-positive
as well. They vanish for x1 = x∗1 and x2 = x∗2, respectively. Hence, Ẇ is strictly
negative everywhere but in E. It is straightforward to check that the function
W itself is strictly positive in IR3\E and vanishes only at the equilibrium. This
proves lemma 6.5.2 and hence theorem 6.5.1. 2. 2.

6.6 Example of a coexistence equilibrium

We consider in this section linear uptake and mortality functions of the form
(6.4). We will be interested in the quality of the coexistence equilibrium and in
the problem of extinction and persistence of the two species. Suppose we have two
one-consumer equilibria E1 and E2 where the latter is stable. We mentioned above
that in this case the other point E1 cannot be stable as well. These conditions
can be expressed as follows:

0 <
D2(0)

a2
≤ D1(0)

a1
≤ 1 (6.21)

or, in terms of si,
0 < s1 ≤ s2 ≤ 1.

Under which conditions can the species x1 establish itself in the system, i.e. under
which conditions can we transform the stable equilibrium E2 into either a stable
point E1 or a coexistence equilibrium E (which is always stable)? The answer
to this question can be given by looking at the condition for the existence of E,
namely equation (6.11) which takes the form

D > D∗ =
D1(0)[D1(0)−D2(0)]

k2[a1 −D1(0)]
. (6.22)

Case 1. The species x1 can try to invert equation (6.21) either by increasing a2
or by decreasing D2(0). We will then have E2 instable and E1 stable.

Case 2. Species x1 also has the possibility to reach coexistence. This can be
done in two different ways. As we mentioned before, E can always be generated
or created by increasing the input rate D over the limit level D∗. Biologically
speaking this means that the input of nutrient s is high enough for each one of
the two competing species to have sufficient food supply and competition cannot
lead to the extinction of the weaker one of the two any more.

The other possibility is much more interesting. Suppose we increase the mortality
coefficients ki of the two species. This will decrease D∗ as can be seen in equation
(6.22). For any given input rate D the value of D∗ will eventually become smaller
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than D, and we have the situation of stable coexistence. The increase of mortality
of the two species can be thought of as being the effect of an increasing predation
of a hypothetical third species which is not considered in our model and which
feeds on the two species xi. If the number of individuals of this predator species
is held constant (or if it is always high enough such that predation can take place
at its maximum) then the mortality of xi will be proportional to xi and will not
depend on the number of predators any longer. This additional predation will
diminish the competing species in a way that only a relatively small number of
them will survive. As a result, competition will drop to a minimum since the
amount of substrate will not be a limiting factor any more.

6.7 Simulations

In order to illustrate the long-time behavior of system (6.1), we simulate some
typical trajectories in the case of linear uptake and mortality functions of the
form (6.4) (see figure 6.5). The resulting coexistence equilibrium is globally stable
in the open positive octant.
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(a) Trajectories starting in the (s, xi)-
plane approach the corresponding one-
consumer equilibria E1 and E2, respec-
tively. We chose the sets of initial
values (0, 1.8, 0.2), (0, 1, 1.8), (0, 0.2, 1)
and (1.8, 0, 0.2), (1, 0, 1.8), (0.2, 0, 1).
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(b) The heteroclinic orbits
connecting Ei to E.
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(c) Trajectories starting in the open
positive cone approach the coexistence
equilibrium. The starting points for
the three orbits were (1.8, 1.8, 0.2),
(0.2, 1.8, 1.8) and (1.8, 0.2, 1.8).
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(d) Projection onto the (x1, x2)-
plane, showing the same orbits as
in (c).

Figure 6.5: Simulation of system (6.1) with f1(s) = 2s, f2(s) = 3s, D1(x1) = 0.2 + x1,
D2(x2) = 0.2+2x2 and D = 1. The coexistence equilibrium E is globally attracting in the
positive cone, while E1 and E2 are stable in the (s, x1)- and (s, x2)-planes, respectively.
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Chapter 7

The chemostat with diffusion

Summary. A chemostat model of the type discussed in chapter 6 is generalized
in order to describe concentrations varying in space and time. Here, we focus on
solutions exhibiting traveling wave fronts.

7.1 Introduction

In the present chapter we generalize a chemostat model of the type analyzed in
chapter 6 for a single consumer species u. Instead of assuming homogeneous con-
centrations throughout the vessel, we now consider very long growing chambers
and allow, that the concentrations of the consumer as well as the nutrient may
depend on the position in the container. We restrict to one space dimension.
It turns out that under certain parameter restrictions and with certain initial
conditions, the concentrations propagate in form of traveling waves. Traveling
wave fronts have been studied frequently in the context of Lotka-Volterra type
predator-prey systems (see for example [Dunbar83], [Dunbar84] or [Dunbar86])
or the propagation of nerve signals (see [Feroe83] and [Feroe86]). The impor-
tance of traveling waves in ecological problems is discussed in [Okubo80]. In
[Fife79], the formation and propagation of waves in the more general setting of
reaction-diffusion systems is analyzed, while [Smoller83] provides a very detailed
discussion of shock waves of various types. Finally, [Bosch90], [Lewis02.1],
[Lewis02.2] and [Weinberger82] study the propagation velocities of wave fronts
especially in diffusion models of ecological interest and seek out conditions under
which minimal feasible wave speeds are attained. Special cases of diffusive
chemostat models for two competing consumers were analyzed in [Hsu93] and
[So91]. The authors studied the asymptotic behavior of solutions in the case of
Michaelis-Menten type uptake functions and constant consumer mortalities, as
well as the existence of inertial manifolds. A model for a single species in an
unstirred chemostat is analyzed in [Dung99].

In section 7.2, we recall some properties of the simple, stirred chemostat model
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exhibiting a single consumer species and motivate the generalization to a system
of partial differential equations describing consumer and substrate concentrations
which vary in space and time. In the case of a bounded domain and equal diffusion
coefficients, we can prove the convergence of the time-dependent solutions. Section
7.3 presents a heuristic approach to the propagation of traveling wave fronts. Here,
we suggest different types of waves and discuss the conditions, under which they
may occur. The traveling wave approach transforms the original two-dimensional
system back to a three-dimensional ODE system, the solutions of which yield
the shapes of possible wave fronts. The aim of section 7.4 is to locate possible
equilibria of the ODE system, which are at the same time boundary values for
the traveling wave. Sections 7.4.1 and 7.4.2 discuss the existence and stability of
the substrate-only equilibrium and the non-trivial stationary state respectively.
A mathematically and biologically interesting situation occurs, when the in- and
outflow of nutrient solution is stopped and the consumer depends on the substrate
present in the system (see section 7.5). In this so-called epidemic case, the system
exhibits a two-dimensional invariant of motion, and yet another type of traveling
waves can be observed. The conditions under which the minimal feasible wave
speed is attained are consistent with the ones predicted by the so-called linear
conjecture (see for example [Lewis02.1] and [Lewis02.2]). Two examples of the
above reduction are given in section 7.6. Finally, section 7.7 gives a brief outlook
to multi-consumer chemostat models incorporating diffusion.

7.2 The model for the chemostat with diffusion

Let us recall the so-called stirred chemostat with a single species u and a substrate
s,

ṡ = D0(1− s)− uf(s),

u̇ = u(f(s)−D1).
(7.1)

Here, D0 ≥ 0 is the nutrient input and washout rate. Throughout the first part
of this chapter, we will assume that D0 is strictly positive, i.e. the system is
constantly supplied with fresh nutrient solution. Only in the discussion of the
so-called epidemic case in section 7.5, we set the washout rate equal to zero. The
constant mortality or washout rate of the species u is denoted by D1. We suppose
D1 > 0. Finally, we impose f(0) = 0, and we restrict to strictly monotone
nutrient uptake functions, f ′(s) > 0 for all s.

The basic properties of system (7.1) are collected in the following proposition.

Proposition 7.2.1 (The simple chemostat.) Under the above assumptions on the
uptake function f and the parameters D0 and D1, the following hold for (7.1):
(i) Positivity of both s and u is preserved for all times.
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(ii) The substrate-only equilibrium (s, u) = (1, 0) always exists. It is locally asymp-
totically stable if and only if f(s) = D1 for some positive s < 1, which, in view of
the monotonicity condition on f , is equivalent to f(1) > D1.
(iii) System (7.1) exhibits a non-trivial stationary state (s, u) = (s̄, ū) if and only
if f(1) < D1, i.e. if and only if the trivial equilibrium is not locally stable. The val-
ues s̄ and ū are then given by f(s̄) = D1 and ū = D0(1− s̄)/f(s̄). This non-trivial
equilibrium is also globally stable.

Proof. We refer to the corresponding proofs for the general three-dimensional
system discussed in chapter 6. 2.

In the above model, one implicitly assumes that the concentrations of each of the
two reactants are constant all over the chemostat chamber. Now suppose we have
a one-dimensional vessel and concentrations vary in time as well as in space. Then,
u and s are subject to diffusion as well, and the resulting model is the system of
partial differential equations

st = D0(1− s)− uf(s) + δssxx,

ut = u(f(s)−D1) + δuuxx,
(7.2)

where u = u(t, x) and s = s(t, x) both depend on time t and space x, and where
δs and δu are the (constant) diffusion coefficients for s and u, respectively. Let us
first consider a short vessel, represented by the finite interval [0, l] for some l > 0.
At the ends of this vessel, we impose the no-flux boundary conditions

sx = ux = 0, (7.3)

x = 0, l. Following the idea of section 6.5 in chapter 6, we can prove convergence
of solutions of system (7.2) with boundary conditions (7.3) in the case of equal
diffusion rates:

Proposition 7.2.2 (Convergence of solutions to the diffusive chemostat.) Con-
sider the diffusive chemostat, system (7.2), (7.3) for equal diffusion rates δs =
δu =: δ. Then, the equilibrium s ≡ s̄, u ≡ ū is globally stable.

Proof. We define a function Y = Y (s, u) on the solutions (s, u) = (s(t), u(t)) of
(7.2), (7.3) by

Y :=

∫ s

s̄

f(ξ)− f(s̄)

f(ξ)
dξ +

[

u− ū
(

1 + log
u

ū

)]

,

where s = s(t, x), u = u(t, x). Then, Y ≥ 0 for all s, u ≥ 0, and Y = 0 if and only



146 Chapter 7. The chemostat with diffusion

if s = s̄, u = ū. Furthermore,

Yt =Ysst + Yuu+ t

=
f(s)− f(s̄)

f(s)
[D0(1 − s)− uf(s)] + δsxx

f(s)− f(s̄)

f(s)
+

+ (u− ū) [f(s)−D1] + δuxx
u− ū

u

=
f(s)− f(s̄)

f(s)
[D0(1 − s)− ūf(s)] + (u− ū) [f(s̄)−D1] +

+ δ

[

sxx
f(s)− f(s̄)

f(s)
+ uxx

u− ū

u

]

.

With

Yx =
f(s)− f(s̄)

f(s)
sx +

u− ū

u
ux

and

Yxx =
f ′(s)f(s̄)

f2(s)
s2x +

ū

u2
u2x +

f(s)− f(s̄)

f(s)
sxx +

u− ū

u
uxx,

we therefore get

Yt =
f(s)− f(s̄)

f(s)
[D0(1 − s)− ūf(s)] + (u− ū) [f(s̄)−D1] +

+ δYxx − δ

[

f ′(s)f(s̄)

f2(s)
s2x +

ū

u2
u2x

]

.

The boundary condition (7.3) implies

Yx = 0. (7.4)

Define a function V = V (s, u) on the solution space of (7.2), (7.3) by

V :=

∫ l

0
Y (s(t, x), u(t, x))dx.

Then

Vt =

∫ l

0

{

f(s)− f(s̄)

f(s)
[D0(1− s)− ūf(s)] + (u− ū) [f(s̄)−D1]−

−δ

[

f ′(s)f(s̄)

f2(s)
s2x +

ū

u2
u2x

]}

≤ 0

due to (7.4), and Vt = 0 only at the homogeneous equilibrium s ≡ s̄, u ≡ ū. Hence,
V is a Lyapunov function for system (7.2), (7.3). This proves proposition 7.2.2. 2.

Figure (7.1) shows a sequence of a simulation of system (7.2), (7.3). The result
confirms the theoretical prediction: The time-dependent solution converges to
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(a) Arbitrary initial function s(0, x),
u(0, x).
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(b) The solution at t = 0.4.
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(c) The solution at t = 1.2.
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(d) The solution at t = 2.
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(e) The solution at t = 4.
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(f) The solution at t = 12.

Figure 7.1: Solution of system (7.2), (7.3) for D0 = 0.6, D1 = 0.5, δu = 0.01 and f(s) = s
on an interval of length l = 1. The solid line represents the substrate concentration s, the
dotted line is the consumer concentration u. The simulation reproduces the theoretical
result: The time-dependent solution converges to the equilibrium s ≡ s̄ = 0.5, u ≡ ū = 0.6.
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the equilibrium state with homogeneous concentrations.

For the following discussion, we consider a very long vessel (theoretically, it has
infinite length), i.e. since we allow x ∈ IR, we do not impose boundary conditions.
In order to reduce the complexity of system (7.2) we set δs = 0. This restric-
tion corresponds to a situation in which the substrate (or the prey species in the
context of predator-prey models) diffuses much more slowly than the consumer
(the predator). One could imagine, for example, a plant species being consumed
by a relatively mobile animal. This assumption will reduce the dimensionality
of the system from four to three, thus making the analysis considerably simpler.
Rescaling of the variable u then yields

st = D0(1− s)− uf(s),

ut = u(f(s)−D1) + uxx.
(7.5)

7.3 Traveling waves

In order to explain the formation of traveling wave fronts in reaction-diffusion
systems of the type (7.5), we go back to the stirred chemostat model (7.1). As we
have seen in section 7.2, this system exhibits two stationary states, the stability
of which depends on the parameters and on the uptake function f . Suppose the
parameters are chosen in a way that the non-trivial equilibrium (s, u) = (s̄, ū)
is locally (and hence globally) stable, i.e. suppose f(1) < D1. In this case, we
distinguish three types of orbits (see figure 7.2). The heteroclinic orbit of type (3)

equilibrium
substrate−only

non−trivial
equilibrium(1)

(2)

(3)

s

u

Figure 7.2: The non-trivial stationary state and typical trajectories. The heteroclinic
orbit (3) connecting the trivial state (1, 0) to the equilibrium (s̄, ū) gives rise to a traveling
wave front.

is the only trajectory able to generate traveling wave fronts as solutions of system
(7.5), since it is the only one connecting two stationary points. If we impose the
boundary values (s, u) → (s̄, ū) for x → −∞ and (s, u) → (1, 0) for x → ∞, we
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expect the formation of a wave front between these two values moving at a certain,
as yet undetermined, wave speed c. Figure 7.3 illustrates such a wave. Here, we
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(a) The initial function u(0, x) is a step
function.
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(b) The solution at t = 40.
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(c) The solution at t = 80.
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(d) The solution at t = 120.

Figure 7.3: Solution of system (7.5) with the same parameter values as in figure 7.1:
D0 = 0.6, D1 = 0.5, δu = 0.01 and f(s) = s. The solid line represents the substrate
concentration s, the dotted line is the consumer concentration u. The (theoretically in-
finitely) long vessel is represented by the interval [0, 20]. We observe a traveling wave front,
which corresponds to the heteroclinic orbit of system (7.1) connecting the substrate-only
equilibrium (s, u) = (1, 0) to the stationary state (s, u) = (s̄, ū) = (1/2, 3/5). Accordingly,
the boundary values are s(−∞) = s̄ = 0.5, u(−∞) = ū = 0.6, and s(∞) = s0 = 1,
u(∞) = u0 = 0.

chose D0 = 0.6, D1 = 0.5, δu = 0.01 and f(s) = s. Hence, the corresponding
non-trivial equilibrium (s, u) = (1/2, 3/5) of system (7.1) is asymptotically stable.
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7.4 Analysis of the stationary states

We check for a traveling wave solution s(t, x) = S(x − ct), u(t, x) = U(x − ct),
where c denotes the velocity of the wave. System (7.5) yields

−cṡ = D0(1− s)− uf(s),

−cu̇ = u(f(s)−D1) + ü.
(7.6)

Note that we use again the notation s, u for the stationary wave concentrations
previously denoted by S, U . Both depend on the single new space variable X =
x− ct. The dots in system (7.6) thus denotes derivatives with respect to X. If we
introduce the new variable v = u̇, (7.6) becomes the first-order system

ṡ = −(D0(1− s)− uf(s))/c,

u̇ = v,

v̇ = −cv − u(f(s)−D1).

(7.7)

Proposition 7.4.1 (Stationary states.) System (7.7) has two possible stationary
states. The trivial substrate-only equilibrium S = (s, u, v) = (1, 0, 0) always exists.
The coexistence point E = (s, u, v) = (s̄, ū, 0) exists if and only if f(s) = D1

for some positive s < 1. The values s̄ and ū are then defined by f(s̄) = D1,
ū = D0(1− s̄)/f(s̄).

Proof. Under the hypotheses of section 7.2, proposition 7.4.1 follows immediately.
2.

In the following, we analyze the stability of the two stationary states. We will be
particularly interested in the so-called epidemic case, in which the nutrient input
and washout rate D0 drops to zero.

The general Jacobian

J =





(uf ′(s) +D0)/c f(s)/c 0
0 0 1

−uf ′(s) D1 − f(s) −c



 (7.8)

of system (7.7) yields the characteristic polynomial

χ =λ3+

+ λ2
[

c− (uf ′(s) +D0)/c
]

+

+ λ
[

f(s)−D1 − uf ′(s)−D0

]

+

+
[

(uf ′(s) +D0)(D1 − f(s)) + uf(s)f ′(s)
]

/c.

(7.9)
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7.4.1 The substrate-only equilibrium

The qualitative behavior of trajectories in the neighborhood of S is resumed in
the following proposition:

Proposition 7.4.2 (Substrate-only equilibrium.) The substrate-only stationary
state is always a saddle point in IR3, having a two-dimensional stable manifold Ms

and a one-dimensional unstable manifold Mu. If we reduce system (7.7) to Ms in
S, the latter can be a node or a focus, depending on the wave speed c.

Proof. At the substrate-only equilibrium S = (1, 0, 0) the characteristic polyno-
mial χ reduces to

χS(λ) =

(

λ− D0

c

)

(λ(λ+ c) + f(1)−D1). (7.10)

The eigenvalues of system (7.7) are thus λ0 = D0/c and

λ1,2 = −c/2± 1/2
√

c2 − 4(f(1) −D1).

For 0 < c2 < 4(f(1) − D1), the eigenvalues λ1,2 are complex with negative real
part. The stationary state is a three-dimensional saddle point, its reduction to
the stable manifold Ms a stable focus. In case c2 > 4(f(1)−D1), λ1,2 are negative
real numbers, the equilibrium point is again a saddle. This time, S reduces to a
stable node on Ms. 2.

7.4.2 The non-trivial stationary state

Proposition 7.4.3 (Non-trivial equilibrium.) The non-trivial equilibrium E is a
saddle point with a two-dimensional unstable manifold.

Proof. At the non-trivial equilibrium point E = (s̄, ū, 0), the term f(s)−D1 in
(7.9) vanishes and the characteristic polynomial becomes

χE(λ) =λ3+

+ λ2
[

c− (ūf ′(s̄) +D0)/c
]

+

+ λ
[

−ūf ′(s̄)−D0

]

+

+ ūD1f
′(s̄)/c.

(7.11)

Clearly, χE always has one negative real zero, since for λ = 0, χE = ūD1f
′(s̄)/c is

strictly positive. As for the other two eigenvalues, we can at least determine the
sign of their real part:

Lemma 7.4.4 (Roots of the characteristic polynomial.) Aside from the negative
real zero, χE has two roots in the positive complex half-plane.
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Proof. In order to prove lemma 7.4.4, we use the Routh-Hurwitz theorem (see
for example [Gantmacher59], theorem 2, p. 213). Writing the characteristic poly-
nomial as χE = a0λ

3 + b0λ
2 + a1λ+ b1 with coefficients

a0 = 1,

b0 = c− (ūf ′(s̄) +D0)/c,

a1 = −ūf ′(s̄)−D0,

b1 = ūD1f
′(s̄)/c,

the Routh scheme is

a0 =1 a1 =− ūf ′(s̄)−D0

b0 =c− ūf ′(s̄) +D0

c
b1 =

ūD1f
′(s̄)

c
c0 =− ūf ′(s̄)−D0−

− ūD1f
′(s̄)

c2 − ūf ′(s̄)−D0

d0 =
ūD1f

′(s̄)

c
.

According to Routh’s theorem, the number of zeros of χE lying in the pos-
itive complex half-plane equals the number of sign changes in the sequence
(a0, b0, c0, d0). Clearly, a0 and d0 are both strictly positive under the hypotheses
in section 7.2. Furthermore, straightforward calculation yields that c0 < 0
whenever b0 > 0. If b0 < 0, then c0 can be both positive or negative. In any case,
the above sequence always has exactly two sign changes. This proves lemma 7.4.4
and hence proposition 7.4.3. 2. 2.

We conclude this section with a remark on possible wave speeds. According
to the so-called linear conjecture (see conjecture 7.5.4 in section 7.5, as well as
[Weinberger82], [Lewis02.1] or [Lewis02.2]), the minimal feasible wave speed for
system (7.5) is

c∗ = 2
√

f(ζ)−D1, (7.12)

where ζ is the concentration of the substrate at the (unstable) trivial equilibrium,
ζ = 1. Relation (7.12) is plausible if we recall the situation: A traveling wave of
high consumer concentration moves into an area of maximal substrate concentra-
tion s = 1 (see figure 7.4). As in the example at the end of section 7.4, we imagine
a plant species s being consumed by an animal u. The animal is relatively mobile,
hence its diffusion rate is positive, while the plant species is immobile. The higher
the reproduction rate f of u, the faster the animal can feed through the plant
population. At the same time, a high mortality D1 reduces the wave speed, which
drops to zero for f(1) = D1.
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high consumer
concentration

maximal substrate
concentration,
no consumer

Figure 7.4: Illustration of a traveling wave feeding through the substrate, moving into
the area of maximal substrate concentration.

7.5 The epidemic case

In the so-called epidemic case the substrate solution is consumed in the chemostat
chamber without being reproduced. At the same time, the nutrient input is zero,
and species u can feed only on the amount of substrate initially inserted into the
vessel. We put D0 = 0, thus reducing the chemostat system (7.1) to

ṡ = −uf(s),

u̇ = u(f(s)−D1).
(7.13)

If we choose f(s) = s, (7.13) is just the well-known Kermack-McKendrick model
describing the spread of epidemic diseases. For the original work see [Kermack27],
an overview on variations of the model is given in [Hethcote94]. The stationary
points of (7.13) are all the points on the s-axis, (s, u) = ξ(1, 0) for ξ ∈ IR. Fur-
thermore, the trajectories can be calculated explicitly. The two equations (7.13)
yield

du

ds
=

D1

f(s)
− 1. (7.14)

In order to integrate (7.14), we use a new function G, defined by

G(s) =

∫ s

s0

1

f(τ)
dτ. (7.15)

Then, the solution curves of (7.13) are given by

u(s) = D1G(s)− s+ s0 + u0,

where (s0, u0) is the initial value. If we choose f to be the identity, f(s) = s, then
G(s) = ln s− ln s0, and hence, the equation for the invariant of motion becomes

u(s) = D1(ln s− ln s0)− s+ s0 + u0. (7.16)
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Figure 7.5: Solutions of the trivial chemostat in the epidemic case, system (7.13), for
initial values s(0) = 0.7, u(0) = 0.2 and s(0) = 1, u(0) = 0.8. The value of the parameter
is D1 = 0.5, the uptake function f is given by f(s) = s. Here, the stability of the
stationary states (s, u) = ξ(1, 0) changes at ξ = 0.5.

An example of (7.16) is represented in figure 7.5. As the trajectories show, the
stationary states change their local stability as ξ varies. Besides the trivial eigen-
value λ0 = 0 we have a second eigenvalue λ1, which changes its sign depending on
whether f(ξ) > D1 or f(ξ) < D1. If we suppose D0 = 0, the partial differential
equation (7.5) describing the propagation of the concentrations in space becomes

st = −uf(s),

ut = u(f(s)−D1) + uxx.
(7.17)

As the simulation in figure 7.6 suggests, it makes sense to look for traveling wave
solutions of system (7.17) as well. Using the traveling wave approach as in section
7.4, we end up with the system

ṡ = uf(s)/c,

u̇ = v,

v̇ = −cv − u(f(s)−D1).

(7.18)

In order to integrate system (7.18), we again use the function G defined in (7.15).
As we will see in the remainder of this section, the dynamics of system (7.18) is
relatively simple, even for general uptake functions f .

Proposition 7.5.1 (Invariant of motion.) System (7.18) has an invariant of mo-
tion Mκ, given by the zero set of

Vκ = v − c(D1G(s)− s− u)− κ,
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(a) The initial distribution shows a lo-
cally concentrated consumer u.
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(b) The solution at t = 30000 · 10−3.
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(c) The solution at t = 60000 · 10−3.
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(d) The solution at t = 90000 · 10−3.

Figure 7.6: Solution of system (7.17) for D1 = 0.5, δu = 0.01 and f(s) = s. The solid line
represents the substrate concentration s, the dotted line is the consumer concentration u.
We find again a traveling wave moving in positive direction.

where κ is determined by the initial conditions, κ = c(s0 + u0) + v0. In particu-
lar, for the initial value (s0, u0, v0) = (1, 0, 0), the parameter κ equals c and the
invariant manifold Mκ = Mc is given by

v = c(D1G(s)− s− u+ 1).

Proof. The third equation in (7.18) yields u = cĠ(s), which, in combination with
the first two equations, gives

ü = −cu̇− cĠ(s)[f(s)−D1]

= c[D1Ġ(s)− ṡ− u̇].
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After integration,

u̇ = v0 + c[D1G(s)− s− u]− c[D1G(s0)− s0 − u0],

i.e. for (s0, u0, v0) = (1, 0, 0), system (7.18) is equivalent to

ṡ = uf(s)/c,

u̇ = c[D1G(s)− s− u+ 1].
(7.19)

This proves proposition 7.5.1. 2.

Due to proposition 7.5.1, the dynamics of the original system (7.18) is now com-
pletely described by

ṡ = uf(s)/C,

u̇ = c(D1G(s)− s− u) + κ.
(7.20)

In particular, we can classify the stationary states as follows.

Proposition 7.5.2 (Classification of stationary states.) The stationary states of
system (7.20) are all the points on the s-axis, (s̄, ū) = γ(1, 0) for γ ∈ IR. The
stability of these points depends on the constants c and D1, as well as on the
function f . We distinguish three cases.
(a) If f(γ) = c2/4 +D1, then both λ1,2 are negative reals. The stationary state is
a stable node.
(b) If f(γ) > c2/4 + D1, then λ1,2 are complex with negative real part. Hence,
(s̄, ū, v̄) is a stable focus.
(c) If f(γ) < c2/4 +D1, there are three possibilities.
(c1) For f(γ) = D1 we get λ1 = −c < 0, λ2 = 0, and we have a degenerate stable
node.
(c2) For f(γ) < D1, λ1 is again negative, but λ2 is positive, i.e. (s̄, ū, v̄) is a
saddle.
(c3) Finally, if D1 < f(γ) < c2/4+D1, then both λ1,2 < 0, and the equilibrium is
again a stable node.

Proof. At each point γ(1, 0) on the axis of stationary points, the Jacobian takes
the form

(

0 f(γ)/c
c(D1/f(γ)− 1) −c

)

, (7.21)

and the eigenvalues are λ1,2 = −c/2±
√

c2/4 +D1 − f(γ). Hence, the proposition
follows directly. 2.

The preceding observations are schematically resumed in figure 7.7.

We have now all the tools in hand to completely describe traveling wave fronts in
the epidemic case, i.e. solutions of the three-dimensional system (7.18) which stay
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Figure 7.7: Stability and classification of the stationary points on the s-axis of system
(7.18).

non-negative for all times. First of all, note that the initial condition (s0, u0, v0)
uniquely determines the parameter κ and thus the invariant manifold Vκ, in which
the trajectory is embedded. Hence, for given (s0, u0, v0), the feasible stationary
states of (7.18) are given by the intersections of Vκ with the s-axis, i.e. by the
solutions of

κ+ c (D1G(s)− s) = 0. (7.22)

Due to the monotonicity of f , the function G is concave. Hence, (7.22) can have
at most two solutions. Clearly, if κ is small enough such that Vκ does not intersect
the s-axis, then (7.20) has no stationary states and u becomes negative at some
time for any initial value on the manifold. The stationary states of (7.18), which
yield traveling wave fronts, are those solutions of (7.22), which are locally stable
nodes, i.e. for which the parameters satisfy conditions (a) or (c3) in proposition
7.5.2. If κ = κ∗ is chosen in a way that (7.22) has a unique solution s∗, then
the latter is given by f(s∗) = D1 (differentiation of (7.22)). Finally, if (7.22) has
two distinct solutions, the one with the smaller value of s is always the unstable
equilibrium, while the other one is locally stable.

For κ ≥ κ∗, we can give a lower bound for the wave speed c.

Proposition 7.5.3 (Wave speed estimate.) The minimal feasible wave speed for
system (7.17) is given by

c∗ = 2
√

f(γ)−D1.
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Proof. Consider case (a) in proposition 7.5.2. For given f and D1 and for a
given set of initial conditions (s0, u0, v0), the point (γ, 0, 0) is a stable node if and
only if f(γ) ≥ D1 and c2/4 = f(γ) − D1. In case (c3), we need f(γ) ≥ D1 and
c2/4 > f(γ)−D1. In any case, the minimal feasible wave speed is c∗. 2.

The statement of proposition 7.5.3 is consistent with the linear conjecture:

Conjecture 7.5.4 (Linear conjecture.) Consider a reaction-diffusion equation of
the form

ut = Duxx + g(u) (7.23)

for a sufficiently smooth function g. If g(u) ≤ g ′(0)u, then the minimal speed of
traveling wave fronts of (7.23) is given by

c0 = 2
√

Dg′(0).

In [Bosch90], [Lewis02.1], [Lewis02.2] or [Weinberger82], more general conditions
are given for the minimal wave speeds to be attained. In the case of system (7.17),
the reaction term is the linear function

gs(u) = u(f(s)−D1).

Hence, c0 = c∗.

7.6 Two examples of the invariant manifold

In this section, we illustrate the reduction of system (7.18) to the invariant
manifold Vκ by means of two examples. In the first system, the traveling waves
discussed in section 7.5 do not occur naturally, i.e. the traveling wave approach
yields wave fronts exhibiting negative concentrations of the species u. In a second
example, we choose the set of parameters, and especially the wave speed c,
appropriately in order to create such a steady wave.

Let D1 = 0.5, and choose f to be the identity, f(s) = s. If we take the wave
speed to be equal to one, and if the parameter κ is chosen appropriately, then the
invariant manifold V1 is given by

v =
1

2
ln s+ 1− s− u. (7.24)

The graph of (7.24) is represented in figure 7.8. Two of the stationary states lie on
the manifold V1, namely S1 = (1, 0, 0) and S2 = (χ, 0, 0), where χ is approximately
equal to 0.2. Consider the reduced system (7.19) and calculate the derivatives.
The general Jacobian is

Jepi =

(

u s
1
2s − 1 −1

)

.
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Figure 7.8: The invariant manifold Vc for c = 1. The trajectories starting in V1 lie entirely
in the manifold. The parameter D1 is equal to 0.5, the function f is the identity, f(s) = s.
The s-axis (dotted line) intersects V1 twice, once in the stable focus (s, u, v) = (1, 0, 0)
(light grey patch) and a second time in an unstable equilibrium at s ≈ 0.2. The dark
shaded part of V1 corresponds to negative concentrations of u.

Hence, the eigenvalues of the projected system are λ1
1,2 = −1/2 ± i/2 at S1 and

λχ
1,2 = −1/2 ±

√

1 + 4χ(1/(2χ) − 1) at S2. Consequently, S1 is a stable focus
(case (b) in proposition 7.5.2), while S2 is a saddle (case (c2)). This example
is not adequate to describe the propagation of traveling waves of our original
system (7.17), since, due to the fact that the stable stationary state is a focus, all
solutions become negative eventually.

In our second example, we choose the set of parameters in order to design a
system exhibiting feasible traveling waves. Let D1 = 1/10, c = 1 and f(s) = s.
For κ = 1/5 + ln (5)/10, the invariant manifold Vκ is given by

v =

(

1

10
ln s− s− u

)

+
1

5
− 1

10
ln 5. (7.25)

The graph of (7.25) intersects the s-axis of stationary states again in two points.
One of them, at s = 1/5, is a stable node. As represented in figure 7.9, some
trajectories approach this equilibrium coming from positive values of u. Hence,
the corresponding traveling wave has positive concentrations everywhere.

7.7 Generalization to multi-consumer models

The discussion of traveling wave fronts appearing as solutions of chemostatic mod-
els with diffusion can be generalized to several consumers. For illustration, we
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Figure 7.9: For D1 = 0.1, c = 1 and f(s) = s, the invariant manifold Vκ with κ =
0.2 + ln (5)/10 intersects the s-axis again twice. This time, one of these stationary states
is a stable node (light grey patch), located at s = 0.2. The other one is unstable.

reconsider a system of two species u1 and u2, feeding on a single resource s, as the
one analyzed in section 6.2 of chapter 6. For clarity reasons we restrict to constant
washout rates Di(xi) ≡ Di = const for i = 1, 2. Thus, consider the model

ṡ = D0(1− s)− u1f1(s)− u2f2(s),

u̇1 = u1(f1(s)−D1),

u̇2 = u2(f2(s)−D2).

(7.26)

As in chapter 6, we impose that the nutrient uptake rates fi are strictly
monotonously increasing with fi(0) = 0. Under these assumptions, we saw that
system (7.26) can have four different stationary states. The substrate-only equi-
librium S = (1, 0, 0) always exist, while the two one-consumer stationary points
E1 and E2 appear only if f1(1) > D1 and f2(1) > D2 respectively. Necessary
and sufficient conditions for the existence of a coexistence point are discussed in
section 6.3 of chapter 6. Let us assume that the parameters in system (7.26) are
chosen in a way that the coexistence state E exists. Since E is stable, we can
distinguish two kinds of typical trajectories, the heteroclinic orbit connecting S
to E as well as the two heteroclinic orbits going from the one-consumer states
to the coexistence point (see figure 7.10). As in section 7.2, we consider a model
incorporating diffusion of the species, i.e. we implicitly allow the concentrations
to vary in space and time. Thus, consider

st = D0(1− s)− u1f1(s)− u2f2(s),

u1t = u1(f1(s)−D1) + δ1u1xx,

u2t = u2(f2(s)−D2) + δ2u2xx.

(7.27)
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Figure 7.10: Simplified illustration of the heteroclinic orbits of system (7.26) connecting
the substrate-only state S (arrow (1)) as well as the one-consumer equilibria E1 and E2

((2) and (3)) to the coexistence point E.

For each one of the heteroclinic orbits described above, we expect to find a traveling
wave solution of system (7.27). Figure 7.11 illustrates a wave front connecting S
to E.
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(b) The solution at t = 28.
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Figure 7.11: Solution of the three-dimensional system (7.27) for D0 = 2, f1(s) = s,
f2(s) = s/2, D1(x1) = x1 + 0.5, D2(x2) = x2 + 0.2 and δ1 = δ2 = 0.01. The solid
line represents the substrate concentration s, while the dashed and dotted lines are the
consumer concentrations u1 and u2, respectively. The sequence of pictures illustrates
a traveling wave moving to the right, connecting the trivial substrate-only equilibrium
S = (1, 0, 0) (values on the right boundary) to the coexistence point E (left boundary).
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Chapter 8

Particle simulations

Summary. In this section, we develop a model to simulate the microscopic be-
havior of multi-particle systems. On the basis of partly elastic inter-particle colli-
sions, repeatedly introduced kinetic energy and gravitation, the simulations show
the frequently discussed phenomena of shaken or stirred granular material, such as
sedimentation, compaction and particle segregation due to differences in size and
specific weight. The present model does not account for rotation of the individual
particles and deals with perfectly spherical grains only.

8.1 Introduction

The convection-diffusion models developed mainly in chapters 2 and 3 describe
sedimentation and segregation effects of granular material under the influence of
gravitation. The aim of the present chapter is to get a first verification of these
theoretical results with the help of a model predicting the change of position
of every individual particle. Even though there are still many restrictions and
simplifications, imposed mainly by the limited computer resources, we tried to
construct complex processes for the mixing of granular material as accurately as
possible.

Numerous authors have devoted themselves to the study of shaken or vibrated
granular mixtures. In [Luding01], an equation of state for two-dimensional
hard sphere systems is set up in order to compare the theoretical results with
computer simulations and to experiments conducted in [Clément91]. Computer
simulations are used in [Jullien92] and [Rosato87] in order to study segregation
in bi-disperse granular mixtures with particles differing in size, while [Duran93]
presents results of segregation experiments in two- and three-dimensional vessels.
Finally, [Pöschel95] investigates the development of convection cells within a
vibrated granular mixture.

In section 8.2, we describe the mechanism used to model collisions between parti-



164 Chapter 8. Particle simulations

cles, the only means of interaction in our model (rolling and gliding effects are not
accounted for). In section 8.3, we explain in short the way we process the data
obtained in form of particle and density diagrams. We also track the evolution of
the total potential energy during the segregation procedure, which gives us more
insight into the microscopic process of particle interaction. Finally, the plots and
diagrams are collected in section 8.4.

8.2 Modeling collisions of particles

The present simulation is based on the numerical solution of the Newtonian
equations of motion of spherical particles in a container with impermeable walls
and solid lid and bottom. A certain number N of such grains are introduced into
the vessel at the same time. Instead of choosing their initial positions at random,
we form layers in an order different from that of the anticipated outcome. For
example, when shaking a mixture of small and large grains of the same specific
weight, we start with a distribution in which the large particles are at the bottom,
thus establishing the worst possible initial situation. That way, the effect of the
segregation becomes more obvious. Due to the gravitational force acting on each
one of the grains, they accelerate and start to fall down. In the process of falling,
particles can collide with each other. In order to keep calculations simple, we
restrict to two-particle collisions and neglect the effect of several grains touching
at the same time. In an experiment, the actual collisions are of course partly
inelastic. But instead of modeling the deformation of the two collision partners
itself, we first calculate the new directions of the trajectories after the impact as
if the collisions were fully elastic and then add a friction parameter R, which
controls the loss of kinetic energy (see figure 8.1).

The major drawback of our model is the lack of rotational movement of the
particles. As far as the particle collisions are concerned, this means that the grains
are perfectly smooth. The exchange of energy due to an impact is performed only
at the level of translational kinetic energy. Evidently, waiving the implications of
particle rotation saves a lot of computing time and enables us to simulate systems
of the order of N = 104 particles. The major disadvantage is the fact that two
grains lying on top of each other cannot roll. They can only glide, a process which
takes more time and hence slows down the sedimentation and compaction (see
figure 8.2). In order to eliminate pattern formation resulting from a fixed order
of handling the particles, we use a random sweep method to choose and move
grains at each discrete time step. The various effects of different sweep methods
have been studied intensively, among others in the context of cellular automata
(see for example [Schönfisch99]).

While the N particles fall towards the bottom of the vessel and collide with each
other, they gradually lose energy and settle to the ground. This sedimentation
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Figure 8.1: Schematic depiction of a collision between two spherical particles. Given the
angles of incidence, the angles under which the balls leave the collision locus are calculated
as if the collision were fully elastic. Afterwards, the final velocity is reduced according to
the actual elasticity coefficient.

is accompanied by the compaction of the granular material. While the grains
still have a certain velocity, gaps appear between them and smaller grains fall
into these gaps. Once all particles have settled and their velocity has come
down to a minimum, the whole container is shaken. In regular time intervals, we
push each grain towards the top by adding a fixed velocity. Now, the process of
sedimentation and compaction starts again.

Notice that, instead of pushing the grains upward at fixed time intervals, one
could also constantly add kinetic energy to the system. Thus, the particles would
never come to a complete rest and a certain minimal temperature of the granular
gas would be maintained. This method, however, does not model the experiment
we have in mind. Instead, it advances the compaction of the material and is less
suitable for modeling segregation due to the Brazil nut effect.

8.3 Density diagrams and energy plots

In addition to studying the individual spherical grains and their positions in the
vessel, we generate a particle density plot right before every shake, i.e. when the
granular material has had enough time to settle completely to the ground. These
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(a) If particles can only glide off
of each other, the sedimentation
process takes more time.

(b) Angular momentum and the pos-
sibility of the grains to roll off of each
other would accelerate the sedimenta-
tion process.

Figure 8.2: Particles gliding and rolling off of each other.

plots show the volume occupied by grains of the various types as a function
of the height in the container, thereby giving information about the degree of
segregation in the mixture. In order to achieve this task, we divide the vessel into
50 layers, each with a thickness equal to l/50, and count the number of grains in
each such layer. The parameter l designates the container height.

Finally, an interesting issue in the context of segregation of granular material
is the change in total potential energy Epot. As we have already discussed in
chapter 2, the shaking process, as it is modeled in the present simulations, does
not necessarily reduce Epot. In fact, the Brazil nut effect drives large particles to
the top, even if their specific weight is slightly larger than the one of the smaller
grains. Thereby, the system reaches locally stable (due to the friction of the grains)
but globally unstable energy states (in the sense that the heavy large grains would
move back down if only enough space were provided between the small particles).
The driving force is the shaking, which repeatedly introduces energy. In the
absence of the shaking, the only observable effects are the sedimentation and the
compaction of the material, both of which tend to reduce potential energy.
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8.4 Simulations

Aside from the sedimentation of a single grain species, which does not as much
depend on the interaction of the individual grains, the simplest scenario is the
segregation of a granular material composed of two grain types. Figure 8.3 depicts
the subsequent stages in the segregation process. In order to demonstrate the
effect in the most obvious way, we chose an initial grain distribution, in which the
small grains form the top layer. As the last image of the sequence indicates, the
final state exhibits again two distinct layers. Only this time, the large grains are
on top. Obviously, this is what we expected. Nevertheless, it is very surprising
to observe the way this final situation attunes. Instead of seeping through the
layer of large balls, the small particles move down as a block on one side of the
vessel. It is not completely understood, why the segregation takes place in such
an unsymmetric manner, but the effect resembles the circular convective flow
which we observed in our experiments (see chapter 9) and which also occurs
in the Rayleigh-Bénard effect in fluid dynamics. Besides the fitfulness of the
shaking movement, which seems to influence to a large extent the sedimentation
procedure in the experiments, there seem to be other factors causing horizontal
inhomogeneity. The boundary of the container, of course, could be one reason.

The energy paradox described in section 8.3 is shown in figure 8.4. Here, we
added two large grains to a large number of relatively small particles. While the
specific density of the small grains is still equal to one, that of the big ones has
been increased by 20 percent. The corresponding evolution of the total potential
energy of the system is shown in figure 8.5. As we can see in figure 8.4, the large
balls move to the top one after the other in small steps. The corresponding energy
jumps are clearly visible.
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(a) (b) (c) (d) (e) (f)

Figure 8.3: Representation of the particle density distribution in the vessel. The top row
shows the individual particles in the vessel. The figures in the bottom row give relative
particle densities between zero and one (horizontal axis) as a function of the height in
the vessel (vertical axis). We observe segregation. The larger particles tend to move up.
Particle numbers are N1 = 300, N2 = 90. Both have the same specific weight, ρ = 1. We
used a friction parameter of R = 0.01. (a) Initial distribution. (b) After 2 shakes. (c)
After 4 shakes. (d) After 6 shakes. (e) After 8 shakes. (f) After 39 shakes.
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(a) (b) (c) (d) (e) (f)

Figure 8.4: Representation of the particle density at each height in the vessel. The top
row shows the individual particles in the vessel, the figures in the bottom row give relative
particle densities (horizontal axis) as a function of the height (vertical axis). We observe
segregation of the granular material. The larger grains tend to move up, the smaller ones
move down. Particle numbers are N1 = 0, N2 = 120, N3 = 2. The small grains have
specific weight ρ = 1, the bigger ones ρ = 1.2. Finally, we used a friction parameter of
R = 0.007. (a) Initial distribution. (b) After 50 shakes. (c) After 100 shakes. (d) After
150 shakes. (e) After 200 shakes. (f) After 386 shakes.



170 Chapter 8. Particle simulations

0 100 200 300 400

0.
03

6
0.

03
7

0.
03

8
0.

03
9

0.
04

0
0.

04
1

x

t$
V

1

Figure 8.5: The energy plot corresponding to the simulation illustrated in figure 8.4.
While the first large ball is driven to the top already after a few shakes, the second one
starts to move up only after about 250 joggles. Each time, the total potential energy
increases by approximately the same amount.
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Chapter 9

Segregation experiments

Summary. In chapters 2, 3 and 4, we used different theoretical approaches to
modeling segregation effects in shaken or vibrated granular mixtures. While the
aim of chapter 8 was to verify the above models via computer simulations, we also
conducted simple shaking experiments in order to confirm the theoretical results.
The fruit of these runnings are analyzed in the present chapter.

9.1 Introduction

Several authors have studied of shaken or vibrated granular mixtures, and some
of the effects giving rise to segregation or mixing of particles have been analyzed.
While [Gallas96], [Luding96.2] and [McNamara99] discuss different segregation
mechanisms in both two- and three-dimensional systems in general and compare
computer simulations to experimental data, [Farkas02] and [Wambaugh02] attach
particular importance to the so-called ratchet-induced segregation. [Duran93]
treats the simple but very instructive case of one large spherical particle sur-
rounded by material composed of very small grains and discusses the segregation
procedure on a microscopic level. So-called arching and vault effects are made
responsible for particle fluctuations due to this difference in size. The issue of
convection cells appearing in vibrated granular mixtures is treated in [Pöschel95].
Finally, [Barker93] gives a brief overview on segregation approaches and mentions
in particular the influence of vibration frequency and amplitude on experimental
results. Despite the lively interest, which research in this field has experienced
over the past years, some questions remain to date unexplained. Complex phe-
nomena, as for example the appearance of convection cells in vibrated material,
the equivalent of the so-called Rayleigh-Bénard experiment in fluid dynamics (see
[Getling98], [Tritton77]), confront the scientists with unresolved problems. But
also the well-known Brazil nut effect, which favors segregation due to differences
in grain size, has as yet only been explained heuristically.

In the present chapter, we support our segregation theory developed mainly in



172 Chapter 9. Segregation experiments

chapter 2 and formalized in chapter 3 by experiments, thus complementing the re-
sults obtained by our computer simulations in chapter 8. In section 9.2, we briefly
describe the experimental setup. While section 9.3 contains the results concerning
bi-disperse granular mixtures, section 9.4 deals with three kinds of species. Fi-
nally, the appearance of convection rolls, an effect similar so the Rayleigh-Bénard
effect in fluid dynamics, is discussed in section 9.5.

9.2 The experimental setup

As we have mentioned in previous chapters, segregation in mixtures of granular
material mainly depends on two properties of the individual particles, namely
their size and their specific weight. While a higher material density privileges
the downward movement in the container, an increase in size favors the so-called
Brazil nut effect, driving grains to the top. In order to eliminate denticulation
and friction effects, which might favor the one or the other particle species in their
tendency to ascend, we attached importance to using grains with nearly spherical
shape and smooth surfaces. Thereby, the results can be directly compared to our
computer simulations in chapter 8, which are designed for perfect spheres.

We chose seeds of amaranth (Amaranthus caudatus), green gram (Vigna radiata),
small lead balls and balls made of cotton batting with a larger diameter. The
physical properties of these four particle types are collected in table 9.1. At

Amaranth Green gram Lead Cotton batting

shape lentil ellipsoid spherical spherical

diameter 1-1.5mm 4mm 4mm 13mm

thickness 0.7-1mm 5-6mm 4mm 13mm

density 1215kg /m 3 1310kg /m 3 10725kg /m 3 270kg /m 3

Table 9.1: Shapes, sizes and specific densities of the particles used in the shaking exper-
iments.

each case, two or three of these four particle types were filled into a transparent
tube with closed bottom. For some experiments, we used a glass container with
circular cross section, measuring 35mm in diameter, for others, an acrylic glass
cylinder with a diameter of 46mm was used. In order to guarantee the accuracy
and reproducibility of the runnings, the shaking movement was induced by a
membrane vibrating with a constant frequency. The vibration amplitude was
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always between 2mm and 3mm , the frequency was adjusted to values between
10Hz and 14Hz , depending on the properties of the mixture and the fill level. We
thereby made allowance for the following circumstances: When pushed upwards
from an oscillating table, a single bouncing ball needs a certain well-defined time
to move up to the peak and back down to the ground. Obviously, this period of
time depends on the momentum the ball inherits from the table at each contact
(i.e. after all on the oscillating amplitude and frequency of the table) as well as on
the air friction and the energy loss of the partly inelastic collision (see [Tufillaro92]
for an overview on the subject of the bouncing ball). Granular matter essentially
obeys the same rules. Only in this case, the energy loss is much more important
due to the large number of collisions during each shaking cycle. When pushed
upwards with a certain force, the material has an intrinsic settling time. In our
experiments, we adapted the frequency of the oscillating membrane in order to
match this settling time. Thereby, we obtained a maximal oscillating amplitude
of the grains in the container. During the segregation process, the vibration was
stopped at regular intervals in order to record its effect. Photographs show the
grain distribution after each shaking period.

9.3 Two interacting particle species

In a first run, we filled lead and cotton batting balls into the acrylic glass
cylinder in a way, that the resulting mixture was more or less homogeneous.
The vibration was conducted at about 10Hz with an amplitude of 2mm . The
resulting sequence of pictures is shown in figure 9.1. Due to the relatively
large differences in particle size and specific weight, we clearly expect that the
cotton balls move up during the shaking process. This is verified in the experiment.

In a second run, amaranth seeds and green gram were shaken in the glass
container at 13Hz with an amplitude of 2.5mm (see figure 9.2). Here, the
difference in size is less important than in the previous case, and the specific
weight, which is slightly higher for green gram, favors the small particles to
move up. Nevertheless, the Brazil nut effect dominates, and we end up with a
segregated material with the large grains on top.

The Brazil nut effect became even more obvious, when we studied the segregation
properties of a mixture of amaranth with lead balls. Even though the specific
weight of lead is about nine times higher than that of amaranth, the latter moved
down, while the lead balls rose to the top (see figure 9.3). This illustrates, how
important the size difference is in comparison to other particle properties, such as
weight, shape or surface quality.
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9.4 Three particle species

In the case of three interacting species, our predictions also match with the exper-
imental results. We used a mixture of green gram, amaranth seeds and lead balls.
The segregation process is illustrated in the sequence of photographs in figure
9.4. Here, both the Brazil nut effect on the one hand and the simple downward
movement of heavy grains on the other hand, are nicely visible. While the small
amaranth seeds, initially forming the top layer in the vessel, seep through the
second layer of lead balls and gather at the bottom, green gram moves up. Due
to its specific density, which is much lower than that of lead, the grains go all the
way to the top. In the end, we distinguish again three layers, with the lead balls
forming the middle one. In contrast to the situation in the initial distribution in
figure 9.4(a), the roles of the small amaranth particles and the green gram seeds
are now interchanged.

9.5 Convection rolls

It was interesting to yet another effect observe during the shaking experiments.
In one case, a mixture of green gram and small lead balls was vibrated. Both
particle types have about the same diameter, and the ellipsoid shape of the green
gram seeds is not very pronounced. Thus, also the latter ones can be considered
as nearly spherical, and the driving force in the segregation process was merely
the difference in specific weight, which is by far higher for the lead balls. Even
though we expected a distinct segregation of the material, driving green gram to
the top, the result was a different one. Instead of a continuous separation of the
two grain types in the vessel, we observed a convectional movement generating
periodic fluctuation of the particle concentrations. The result was very similar to
that of the classical Rayleigh-Bénard experiment (see [Getling98] or the chapter
on convection in horizontal layers in [Tritton77]), in which a fluid heated from
below moves up through the center of the so-called Rayleigh-Bénard cell and sinks
again at its edges. The granular material rose on one side, while it descended
on the other (simplified illustration see figure 9.5(a)). Due to the difference
in the specific material density, the fluctuations were faster for one grain type
than for the other, resulting at the same time in a horizontal segregation of the
particle species (see photograph, figure 9.6(a)). It is not clear, what the trigger
for this phenomenon is and how the direction of the horizontal segregation is
determined. Nevertheless, it seems that the system is very sensitive to the nature
of the shaking process itself. Not only the vibration frequency, but to a large
extent also the shaking amplitude and direction have proven to influence the final
result. Against this background, it seems to be manifest, that the appearance of
convection rolls in shaken granular mixtures is due for the most part to a tilt of
the container. If the shaking movement is performed at an angle deviating only
slightly from the vertical, the rotational convection comes into effect and quickly
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dominates other segregation activity. Moreover, the effect seems to become
stronger with diminishing diameter of the container.

In another run, we observed a similar effect. Only this time, the mixture was
composed of green gram and amaranth. While the pure Brazil nut effect would
have driven the smaller amaranth particles to the bottom of the container, they
again performed a circular movement resembling that of the fluid in the Rayleigh-
Bénard cell. What was rather surprising was the fact, that only the amaranth
particles seem to perform this kind of fluctuation, while the green gram grains
only slightly changed the state of their distribution (see figure 9.6(b)). Hence,
the mixture formed an amaranth source in its center. The grains ascending to
the surface at this point were driven towards the edges of the vessel, where they
descended again (illustration see figure 9.5(b)). The elementary nature of this
phenomenon is very complicated and has not yet been fully understood. At this
point, we will content ourselves with a heuristic interpretation helping understand
the observations. One of the driving forces in the formation of sources in granular
mixtures seems to be the so-called ratchet effect (see figure 9.7 for illustration).
On the microscopic level, the surfaces of the individual grains in the mixture show
a more or less pronounced throatiness. In some cases, especially if this microscopic
shape is asymmetric and distinguishes one direction (as it is the case for the saw-
tooth shaped surface of the grains in figure 9.7), this leads to an obstruction of the
particle movement. The resulting motion becomes biased, driving different grain
types in opposite directions. This ratchet effect seems to be at least one determin-
ing factor in the formation of particle sources. While a certain species is driven up
through the center of the column (the amaranth seeds in the above example of a
mixture with green gram), the material seeks regions where it can redescend, pref-
erentially close to the boundary, where the gaps between the particles are usually
larger. Here, in addition, the ratchet effect is usually less pronounced, since the
surface of the container (glass or acrylic glass) is very smooth. This also explains
the fact that particle sources are observed more frequently in narrow cylinders
than in large vessels.
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(a) Initial distribution. (b) 100 cycles. (c) 300 cycles.

(d) 1800 cycles. (e) 3000 cycles. (f) 5100 cycles.

Figure 9.1: A mixture of lead and cotton batting balls is shaken with an amplitude of
approximately 2mm . As we expect, the cotton balls move to the top one by one, until
the material is almost completely segregated.



9.5. Convection rolls 177

(a) Initial distribution. (b) 130 cycles. (c) 260 cycles.

(d) 390 cycles. (e) 520 cycles. (f) 650 cycles.

Figure 9.2: Vibration of a mixture of amaranth and green gram. Again, the large grains
win and the Brazil nut effect drives green gram to the top.
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(a) Initial distri-
bution.

(b) 500 cycles. (c) 1500 cycles. (d) 3000 cycles.

(e) 4500 cycles. (f) 6000 cycles. (g) 7500 cycles. (h) 9000 cycles.

Figure 9.3: Vibration of a mixture of amaranth and lead balls. The Brazil nut effect
dominates and drives the lead balls to the top in spite of their high specific weight.
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(a) Initial distri-
bution.

(b) 500 cycles. (c) 1000 cycles. (d) 1500 cycles.

(e) 2250 cycles. (f) 3000 cycles. (g) 4500 cycles. (h) 6000 cycles.

Figure 9.4: Vibration of a mixture of green gram, amaranth and lead balls. Again, the
large seeds of green gram come to rest on top, while amaranth forms the bottom layer.
In spite of their high specific weight, the lead balls of intermediate size form the middle
layer.
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(a) The asymmetric convection roll,
observed in a shaken mixture of green
gram and lead balls of about equal size.

(b) The symmetric source of amaranth
seeds in a mixture with green gram.

Figure 9.5: Schematic illustration of the convection rolls observed in vibrated granular
mixtures. On the one hand, due to slight discrepancy between the shaking direction and
the orientation of the gravitational force, a rotational convection drives particles up on
one side of the vessel, while they sink back down on the opposite side (a). On the other
hand, the ratchet effect can counteract the Brazil nut effect and form particle sources in
the mixture (b).
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(a) Convection roll in a shaken mix-
ture of green gram seeds and lead
balls. The snapshot shows horizon-
tal segregation with green gram on
the left and lead balls on the right.

(b) Convection roll in green gram with
amaranth. Again, horizontal segrega-
tion due to the periodic movement is vis-
ible.

Figure 9.6: Convection rolls. Some mixtures of granular material exhibit horizontal
segregation and produce periodic fluctuations similar to the ones in the classical Rayleigh-
Bénard cell.
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Figure 9.7: Due to surface structure or microscopic throatiness, particles can lose their
ability to pass each other and jam. As a consequence, the introduced shaking energy is
transformed into unidirectional particle motion. This so-called ratchet effect can antago-
nize the Brazil nut effect, which is dominating under normal conditions.



Bibliography
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mit gewöhnlichen, nichtlinearen Differentialgleichungen zweiter Ordnung,
Math. Zeitschr. 61, pp. 435-454, 1955

[Farkas02] Z. Farkas, F. Szalai, D. E. Wolf, T. Vicsek, Segregation of granular
binary mixtures by a ratchet mechanism, Phys. Rev. E 65, pp. 022301 ff.,
2002

[Feroe86] J. A. Feroe, Existence of travelling wave trains in nerve axon equations,
SIAM J. Appl. Math. 46 (6), pp. 1079-1097,1986

[Feroe83] J. A. Feroe, Traveling waves with finitely many pulses in a nerve equa-
tion. Oscillations in mathematical biology (Garden City, N.Y., 1982), Lecture
Notes in Biomath. 51, pp. 61-101, Springer, 1983.



186 Bibliography

[Fife79] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, in:
Lecture Notes in Biomathematics 28, Springer, 1979

[Friedman64] A. Friedman, Partial Differential Equations of Parabolic Type,
Prentice-Hall, 1964
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[Pöschel95] T. Pöschel, H. J. Herrmann, Size segregation and convection, Euro-
phys. Lett. 29 (2), pp. 123-128, 1995

[Poundstone87] W. Poundstone, The Recursive Universe, Oxford Univ. Press,
1987

[Prottere84] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential
Equations, Springer, 1984

[Radach74] G. Radach, E. Maier-Reimer, The vertical structure of phytoplankton
growth dynamics, a mathematical model, Proc. of the Sixth Colloquium on
Ocean Hydrodynamics, Liège, 1974
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Hoffnungsthal
1981-1983 attendance at the Freiherr-von-Stein high school in
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