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Abstract

The aim of this study is a numerical investigation of the static and dynamic prop-
erties of the otoliths. The otoliths are a part of the vestibular system, located in
the inner ears. They sense accelerations of the head. In the static case, information
retrieved from them indicates the orientation of the head with respect to gravity.
Under dynamic conditions, they provide information about the current direction
and magnitude of head acceleration. Two important parts of the otoliths can be
distinguished with respect to their function in the sensory apparatus, the otolith
membrane and macula. The otolith membrane, a flat, layered filament structure is
deformed by head accelerations. Though materials within the inner ear have simi-
lar densities, this membrane is subject to external accelerations because it contains
higher density crystals, known as otoconia. The otolith macula contains hair cells,
the sensory units of the otoliths. These cells feature small hair bundles which pro-
trude into the otolith membrane, superimposed on the macula. If the membrane is
deformed, the hair bundles are tilted and associated hair cells change their polariza-
tion. The resulting signal is subsequently reported to the brain.

Up to now little work has been devoted to this sensory apparatus though it is known
that it plays a important role within the vestibular system. The current investigation
tries to improve the understanding of this structure by simulating the responses of
the otolith membrane, using the method of finite elements (FEM). This method is
especially well suited for this problem since the curved boundary and shape of the
otolith membrane present no problem to it. As a result of this approach, membrane
displacements are obtained which depend on the direction and magnitude of head
acceleration.

Based on recent findings with regard to the morphology of the membrane and mea-
surements of the 3 dimensional (3D) shape of the otolith macula, the numerical
model tries to mimic information processing by these sensors as close as possible.
Deformations of the membrane depend on the local orientation of the macula and
the direction of head acceleration. The model suggests that interactions within the
membrane are of minor importance. This means that different parts of the mem-
brane with different orientation interact weakly. The curved shape of the macula
only affects interactions in small membrane areas, which have high local curvature.
To verify FEM results, the dynamics of the membrane were studied using transfer
functions. We derived the functions for the case of an infinitely extended, planar
membrane. Comparison with corresponding FEM results showed only minor dis-
crepancies. From this it may be concluded that the lateral border of the otolith



membrane has no effect on the movement of the whole structure and only leads to
appreciable effects in the vicinity of the border. Our results also predict that oto-
conia may exhibit resonant behavior within their supporting filament matrix. This
resonance is expected to occur for frequencies between 100 and 1000 Hz. If such
a resonance exists, structural damage can be imposed on the otolith membrane by
loud sounds from the frequency range mentioned above.

The polarization is determined by the tilt of hair bundles associated with the cells.
Based on the local displacement of the otolith membrane, the polarization of hair
cells was calculated. This modelling indicates that head orientation with respect to
gravity as well as time-dependent changes of head acceleration are represented in a
distributed fashion on the macula level.
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Introduction 1
1 Introduction

1.1 The Vestibular System

The essential task of the vestibular system is to gather information about body pos-
ture and movement which allows us to maintain balance while standing upright and
move through space. It is also of great importance for the visual system since focus-
ing on a specific target during movements requires knowledge about head position
and velocity. These skills are thought to be essential for surviving. Several sensory
systems are involved in gathering this kind of information. Movements of the head
are primarily sensed by the vestibular organs which are located in the inner ears.
Further cues about the body state of position and motion are deduced from visual
information. Propriocetive receptors located in muscles and tactile sensors under the
skin of hands and feet are also involved in this task. There is further evidence that
vestibular information is gathered from receptors probably located in the kidneys
or liver (Mittelstaedt, 1995). All this sensory information is integrated in the brain
to form a consistent representation of body posture and movement. The vestibular
system thereby plays a dominant role, especially for eye movements. Impairments
of this system can result in severe disorientation and nausea.

Of all the sensors participating in the vestibular system, the vestibular organ has
acquired special attention. This is mainly due to our spatial orientation, which is
predominantly guided by sensory inputs originating in this organ. Eye movements
are fairly simple to measure and a direct link exists between vestibular input and
ocular output. Since visual cues are eminently important in everyday life, disorders
of the vestibular-ocular system and their treatment are of great medical interest. Be-
cause of this, an understanding of this system and the way of information processing
performed by it, is highly valuable.

The human vestibular organ is made up of two distinct subsystems: the semicircular
canals and the otoliths. While the semicircular canals (see Fig. 1) measure head
angular velocity, the otoliths provide magnitude and direction of head acceleration.
Those accelerations can either be related to changes of head velocity or gravity. The
term otolith will refer here to all structural and functional aspects of this organ.
Sensory inputs from the semicircular canals and the otoliths need to be combined
to form a consistent picture of the state of head movement. This process is called
sensory integration and examples of it can be found in many other biological sen-
sory systems. There is also a wide range of technical applications where sensory
integrations needs to be performed. Thus sensory integration represents a general
problem and it is interesting to understand how nature solves it. The vestibular
organ is particularly suited to study this process since it is build relatively simple
compared with other human sensory systems. Facilities exist further to apply a wide
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range of vestibular stimuli accompanied with simultaneous measurement of ocular
movements.

Figure 1: The inner ear labyrinth and its orientation with respect to the head. The arc-like
structures on the left are the three semicircular canals, while the sacs which host the otoliths are
visible in the center. The spiral structure on the lower right is the cochlea, the sensory organ of
hearing. All this organs are innervated by neurons that belong to the vestibular nerve. The figure
is due to Max Brodel (1937).

The interest in the vestibular organ and specifically the otoliths is further increased
by the observation that space motion sickness is likely related to them (Diamond and
Markham, 1992; Markham et al., 2000). This nauseatic state, induced by movements
in a zero g environment, is known since the start of human spaceflight. About 60%
of all humans send to space are susceptible to this more or less severe distortion.
Adaptation to the new environment happens after several days. During everyday
life the brain is used to certain combinations of inputs from different sensors and
has representations for them. If sensory integration leads to a state which cannot
be resolved within this usual patters, nausea is a common reaction of the body.
For example many people feel sick while reading on a bus. In this case the eye
movements for reading do not correspond with the vestibular signals, induced by
the movements of the bus. There are reasons to believe that this effect, termed
sensory mismatch, also causes space motion sickness, though the exact path which
leads to this phenomenon is unknown.
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Progress to the solution of these problems requires a close understanding of how
external stimuli are transformed to neural signals by the sensory systems.

Any movement in space is composed of a rotatory and a translatory component,
and the vestibular organ has accordingly evolved ways to transduce these two types
of stimuli: the semicircular canals, which respond to rotatory movements, and the
otoliths (also known as maculae organs), which indicate translatory movements and
gravity. Our understanding of these structures is largely based on two pillars: on the
one side, an extensive experimental database exists about eye movements elicited
by linear or rotational movements of the head in space. The large interest in this
type of investigation is in part based on the significant clinical applications, which
allow important diagnostic conclusions from the observed eye movements. The other
focus of investigations has been on the study of structure and function of individual
hair cells. They are the mechanical sensors of the inner ear, found in the otoliths,
semicircular canals and the auditory system. On this front, one of the driving forces
is the importance of hair cells for the understanding of hearing function and deficits.
The structure connecting these two pillars, i.e. the transduction of actual head
movements into displacements of individual hair cells, is less well understood. In
particular, research in this area has concentrated on the transduction properties of
the semicircular canals (Rabbitt et al., 1995). Investigations have obtained consid-
erable knowledge about the mechanical displacement at the sensory hair-cells, and
a close understanding of these displacements, even for high accelerations and with
plugged semicircular canals (Damiano and Rabbitt, 1996; Rabbitt et al., 1999). We
further have a detailed knowledge about the anatomical connections that transduce
these stimuli (Leigh and Zee, 1999). In contrast, determining the appropriate re-
sponse to a head acceleration, which is mediated by the otoliths, is computationally
and behaviorally much more complex. First of all, the central nervous system (CNS)
is confronted with an ambiguous stimulus: the forces acting on the otoliths may be
coming from a change in the orientation with respect to gravity (e.g. a head tilt to
the left), or they may be due to accelerations (e.g. a acceleration to the right). Once
the CNS has established its best guess about the direction and magnitude of the
acceleration, it has to consider the fixation distance in establishing the appropriate
response, i.e. the eye movement response that will keep the target of interest on
the fovea: keeping our eyes on a target 10 cm in front of our face while moving the
head left or right requires large compensatory eye movements; looking at the moon
during the same movement requires practically no eye movements.

One way to determine the way accelerations are transformed to neural signals is the
use of a numerical model that takes into account all known facts about the otoliths.
A numerical model also allows to investigate the effect of three-dimensional (3D)
orientation and shape of the otolith maculae, the sensory organs of the otoliths (also
known as sensory epithelium). Several anatomical investigations have focused on
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Figure 2: Shape of left Utricle (A) and Saccule (B). A section of the layered otolith structure is
shown in (C) indicating the otoconia-, mesh- and gel-layer. The shaded regions in the center of
the otoliths has special properties and is termed striola. Arrows indicate the direction of hair cell
polarizations.

this issue (Takagi and Sando, 1988; Sato et al., 1992; Curthoys et al., 1999).

The otoliths, utricle and saccule are basically flat (2-dimensional) structures located
in the inner ear labyrinth (Fig. 1). Both can be identified by the shape of their
lateral boundaries: While the saccule resembles an inverted L, the utricle has a
more compact kidney-like shape. Contrary to long-standing assumptions they are
not planar but show some substantial curvature (Takagi and Sando, 1988; Curthoys
et al., 1999). Otoliths are organized structurally in several layers with mechanically
different properties (Fig. 2). One of their most remarkable features, also indicated
in the word "oto-lith” (ear-stone), are crystals embedded in the topmost layer. The
density of these crystals is higher than the surrounding materials and accelerations
of the head result in forces acting on them. The underlying mesh and gel layer
can be distinguished by the different structure of their filament matrix. Like the
otoconia layer, they are part of the otolith membrane. The term otolith membrane
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is used for all filament parts of the otolith system that are displaced with respect to
the head. The layers are superimposed on the sensory organ of the otoliths, known
as macula, which is made of hair cells and connective tissue. Hair cells "sense”
displacements via hair bundles attached to them. Bending of the bundles results in
de- or hyperpolarization of the corresponding hair cell. The bending direction which
leads to maximum excitation of the cell is termed polarization direction and may be
characterized with a vector.

Up to now, the prevailing view, published in many textbooks, was that otoliths
are planar structures aligned with the head coordinate system (see Fig. 3). It was
assumed that the utricle lies in a horizontal and the saccule in a vertical plane, thus
resulting in an angle of 90° between them. In accordance with these assumptions,
figure 3 shows deformations of the otolith membrane in head upright position for
two acceleration cases. Figure 3A shows shear displacements in the sacculus, which
are caused by gravity. Additional acceleration to the left leads to displacements of
the utricle in figure 3B.

A 5 R

Figure 3: Simplified view of utricular and saccular otolith shapes in head upright position. The
sections of the otoliths reveal shear displacements of the sacculus in the case of gravitational forces
alone (A) and additional displacements of the utricle for an acceleration to the left (B).

Though this view captures the qualitative properties of otolith mechanics, any quan-
titative investigation of this system needs to address the curved shape of these struc-
tures. In this study finite element analysis was employed to incorporate the curvature
of the maculae into a model of the otolith membrane. Using this well-known tech-
nique, the equilibrium and dynamic displacements of the otolith membrane were
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calculated. One of the central questions regarding displacements is to what degree
the curvature affects movements of the membrane as a whole. If the mechanical
coupling within the membrane were strong enough, displacement of one part of the
membrane would lead to displacements of other parts as well. Observations have
shown that accelerations that are locally perpendicular to the membrane do not lead
to displacements. Due to the curvature it would theoretically be possible though
that even parts that are locally perpendicular to the acceleration get displaced by
forces transmitted through the otolith membrane. Even the nature of displacements
elicited by simple static accelerations in various directions is not yet known. It
would be easy to think of a mechanical system where the curvature of a surface
allows movements in one direction but prevents displacements in others. Does such
an effect happen in the otolith system?

Based on the calculated membrane displacements and the measured directions of hair
cell polarization it is possible to determine the distribution of hair cell excitation on
the whole otolith macula (Kondrachuk and Sirenko, 1987). It is expected that accel-
erations in different directions lead to corresponding, different excitation patterns.
What do these patterns look like? What are the typical distances on the macula
were changes in the patterns arise? It is also interesting to compare the findings of
numerical models with the results of experimental investigations of otolith signals
in the vestibular nerve (Fernandez and Goldberg, 1976a,b; Goldberg et al., 1990a).
Recordings from the vestibular nerve using exactly the same paradigm as employed
in our numerical investigation (Fernandez et al., 1972) have found a remarkably rich
set of single-neuron discharge rates. To test the results of our numerical model, we
compared our theoretical results with these experimental findings.

1.2 The Otolith Membrane

The otolith system, utricle and saccule, is located in two small sacs within the inner
ear labyrinth. Each sac hosts a sense organ, the macula, which contains the direction
sensitive hair cells. Though it has been known for a long time that otoliths sense
accelerations of the head, a detailed view of the mechanical properties has long been
hampered by the problem of the fixation of otolith tissue (Lindeman, 1969).

Figure 4 sketches a cross section through an otolith organ (saccule) while figure 5
shows a micrograph of this area. Like in all other sensory systems of the inner ear,
hair cells represent the sensory units which respond to displacements of the hair
bundles by a change of excitation. They are firmly attached to the skull by connec-
tive tissue and covered by three consecutive layers of a morphologically separable
meshwork (Kachar et al., 1990). Unfortunately, different authors have used different
terms for these layers. The topmost otoconia-layer consists of a filament meshwork,
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containing calcium carbonate crystals known as otoconia (Lins et al., 2000) (see
figure (6)).

extension

hair cell hair cell

Lateral gel layer M Type Il % Type |

Endolymph
Fluid

Otolith
Membrane
Mesh-Layer
Gel-Layer Hair Cells &
} Connective
Tissue

Figure 4: The layered structure of the otoliths. The figure also depicts the two kinds of hair cells
found found in the macula, the sensory organ of the otoliths.

Figure 5: Light micrograph of a section of the otolith epithelium and membrane. The picture
shows hair cells (HC), supporting cells, gel layer (CF) and the mesh layer (GL). The Otoconia and
and their connecting filament were removed. Hair bundles originating from the hair cells and their
attachment to the mesh layer (arrows) are visible along with cavities in the mesh layer above them.
The scale bar has a length of 5.0um. (Taken from (Kachar et al., 1990); Courtesy of Elsevier).
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Figure 6: View of the otoconia embedded in the filament network. The scale bar has a length of
1.0um. (Taken from (Lins et al., 2000) with permission from Elsevier.)

Since the otoconia have a higher density than the underlying parts of the otolith
membrane and the surrounding endolymph fluid, their position with respect to the
sensory epithelium is displaced by accelerations. Recent findings indicate that the
middle layer, which will be termed mesh-layer, is also relatively stiff (Benser et al.,
1993; Kondrachuk, 2000). Structurally it consists of a densely and randomly inter-
connected filament matrix. Its function is probably to distribute the forces acting
on the otoconia in a homogeneous fashion. The more elastic lower layer represents
the main source of flexibility within the otolith membrane (Kondrachuk, 2000). It is
connected to the apical surface of the macula. In comparison with the mesh-layer, its
meshwork is less densely connected and exhibits a columnar structure (see figure 7).
It’s visco-elastic properties resembles those of a gel, and is therefore called gel-layer
(Grant et al., 1984; Grant and Best, 1986, 1987; Grant and Cotton, 1990; Grant
et al., 1993) (other names are columnar and sub-otolithic layer). A band like region
in the center of the otoliths, known as striola can be distinguished (see Fig. 2). This
regions exhibits different properties with respect to otoconia size (Lindeman, 1969),
filament structure (Lim, 1976) and hair cell characteristics (Goldberg et al., 1990b).

If a constant acceleration is applied, for example by a tilt of the head, the otoconia
will move until the buoyant force acting on them is counterbalanced by elastic forces
that originate in the otolith membrane. The gel is commonly treated as a Kelvin-
Voight fluid, i.e. a visco-elastic element with linear elasticity. Due to the structure
of the system, forces parallel to the layers lead to a shear deflection of the gel layer,
while perpendicular forces have virtually no effect. The curved shape of the otoliths
ensures that for any direction of linear acceleration, at least some parts of them will
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Figure 7: Filament structure of the gel layer (columnar filament layer) revealed by freeze etching.
Microvilli are visible on the apical surface of the supporting cells in the lower part of the figure.
In the upper part, the dens random meshwork of the mesh layer can be seen. The scale bar has a
length of 0.5um. (Taken from (Kachar et al., 1990); Courtesy of Elsevier).

experience a shearing force. Therefore shape and orientation of the otoliths are of
central interest for understanding their mechanical response.

The shape and orientation of the otolith maculae have been subject to dispute for
a long time. Few attempts have been made to determine them quantitatively since
the fixation of this structure is complicated. Probably the only measurements of
human maculae are the ones by Takagi et al. and Sato et al. (Takagi and Sando,
1988; Sato et al., 1992). They employed a computer-aided technique to reconstruct
temporal bone structures in fine detail from serial sections in three dimensions. The
data sets used for simulation and visualization have been taken from these studies,
and Figure 2 shows shape and position of the macula of the left utricle and saccule in
stereotactic coordinates. The underlying surfaces were created by introducing new
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data points, especially where the surfaces meet the coordinate axes. The result of
this procedure was controlled visually. They are included to clarify the shape of the
otoconia-covered area. Both figures are based on approximately 300 measured data-
points, which have been subjected to a smoothing procedure. The original data set
included even more points organized in rows along the sliced surface. Completely
outlying rows were deleted, and rows that were obviously displaced with respect
to the rest of the data were shifted to align with the other rows. The data set
was further rotated to coincide with head stereotactic coordinates. This procedure
made use of the orientation of the semicircular canals, which were also included in
the data set and measurements of their orientation in man (Blanks et al., 1975).
Based on the resulting data set, a representation on an equally spaced grid was
created. We used a standard analytical program for this transformation (Igor Pro
3.14; WaveMetrics Inc.). The resulting geometry was then used for the figures as
well as for the simulations. Fig. 2A shows that the whole utricular surface is
tilted upward frontally by about 30°, with the tilt becoming larger anteriorly. The
upper portion of the saccule macula (Fig. 2B) is largely parallel to the mid-sagittal
plane (defined by dorso-ventral and anterior-posterior axes), while the lower part is
tilted temporally. The position of the striola has been taken from observations by
Lindeman (Lindeman, 1969). Curthoys et al. have obtained similar anatomical data
sets for the otolith maculae of Guinea pigs (Curthoys et al., 1999). Their study also
finds that the otoliths maculae are curved surfaces.

1.3 Hair cells

The hair cells of the otolith macula detect displacements within the otolith mem-
brane. They come in two types: flask-like type I and spherical type II cells. Both
cell types feature a bundle of interconnected short hairs named stereocilia, which are
linked to one taller hair known as kinocilium. The length of the stereocilia thereby
increases gradually in the direction to the kinocilium, giving the impression of a
staircase. The stereocilia are embedded into the gel layer, while the kinocilia of
the extra-striola area are attached to the mesh-layer (Kachar et al., 1990) or even
protrude into the otoconia-layer above (Lim, 1976; Ross et al., 1987). For kinocilia
in the striola region the attachment is not clear yet. The polarization of hair cells is
determined by direction and magnitude of the deflection of the kinocilium (Shotwell
et al., 1981): deflection of the hair bundle towards the kinocilium leads to a depolar-
ization, and deflection in the opposite direction to a hyper-polarization of the hair
cell. Investigations have suggested that the tip links are directly connected to me-
chanically gated transduction channels (Assad et al., 1991). Thus deflection of the
hair bundles leads to a stretching of the tip links which in turn leads to an opening
of the transduction channels.
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Figure 8: Scanning micrograph and reconstruction of a hair bundle (Courtesy of E. Peterson and
W. Grant).

Hair cells are innervated by neurons located in Scarpa’s ganglion, which lies in the
internal auditory meatus. Generally hair cells are innervated by more than one
neuron. Neurons further usually form connections with several hair cells. Besides
afferent neurons, which transport information to the brain, they are also innervated
by efferent neurons. This leads to a complex innervation pattern at the macula
level. It is assumed that some processing of hair cell signals already occur at this
stage. Because of this, investigations presented in this thesis are restricted to hair
cell responses.

Hair cells can be distinguished by their innervation. Type I cell are contacted by
a calyx ending which envelopes the cell body while type II cells are contacted by
boutons. Investigations have suggested that vestibular neurons can be characterized
by the types of hair cells they innervate (Fernandez et al., 1990). They are grouped
into calyx units, which only innervate one or more type I cells, bouton units that
exclusively feature bouton endings and dimorphic unit which show both types of
contacts. While calyx units are chiefly found in the striola region, bouton units
seem to be absent there. Dimorphic units can be found anywhere on the macula
(Goldberg et al., 1990b). Depending on their location (striola or extra-striola region)
units further exhibit tonic/phasic or tonic discharge properties.

Vestibular neurons show a resting discharge rate of about 80Hz (Goldberg and Fer-
nandez, 1971). Deflections of the hair bundles lead to a modulation of this firing



Introduction 12

rate. These neurons project mainly to the vestibular nucleus in the brain stem. The
vestibular nucleus is thought to integrate information from different sensory inputs,
namely the semi-circular canals, otoliths and vision. Some neurons project to the
ipsilateral cerebellar cortex and one of the deep cerebellar nuclei. The study of
the vestibular system may thus also reveal information about the cerebellum, since
vestibular neurons are the only ones which have direct pathway to it.
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2 Methods

Several analytical and numerical techniques were used to derive the properties of
the stimulus transition, apparent in the otoliths. Mechanical responses of a 3D
model of the otolith membrane were calculated in the static (time-independent) and
dynamic (time-dependent) case using the method of finite elements (FEM). To this
end a program was written which incorporates this method. Commercially available
software (Abaqus 6.0, Abaqus Inc.) and an open source code (Calculix 0.92 by
G. Dhondt and K. Wittig) were also employed in this investigation. A transfer
function of a simplified model was developed and employed to validate these results.
Fractional calculus was used to describe the response characteristics of tonic/phasic
striola hair cells.

2.1 Continuum Mechanics

The theory of continuum mechanics forms the basis for the description of the me-
chanical properties of the otolith membrane. It involves the description of strain and
stress within an extended body. Taken together a set of partial differential equations
can be found which describe the mechanical responses of this body. Notations in
this chapter were chosen similar to (Lai et al., 1993). Bold face letters specifically
indicate vector quantities.

2.1.1 Strain

If a body undergoes deformation, parts of it get displaced with respect to its frame of
reference. The deformed body may then be described with respect to its deformed
(Eulerian description) or its initial configuration (Lagrangian description). Body
coordinates x; may further depend on time t. In Lagrangian description they can
thus be indicated as:

x;i = xi(21, %2, X3, 1)

Here letters with a hat indicate the initial configuration.

A body in a particular initial state at reference time f; is transformed to another
configuration at f,. Because of this, a point P (initially at location P; with coordi-
nates X) is subject to a displacement u, which results in a new location of that point
at time #, (see Fig. 9):

X =X+uX,t)

A point Q with the location X + dX in the neighborhood of P is displaced to:

X+dx =X+dX+uX+dx,t)
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After subtraction of these equation one obtains:

u(X+dx)

Figure 9: Deformation of a body. The figure illustrates the changes, due to deformation within
the body.

dx =dX+uX +dx, t) —u(k,t)

or

dx = dx + (Vu)dx

This may be rewritten to:

dx = Fd% (1)
with
F=1+Vu

To find the relationship between the length of dx and dX one takes the dot product
of equation (1) with itself. This results in:

(ds)* = dx - dx = dX"F'Fdx (2)
with
F'F=(I+Vu)(I+Vu)=I+Vu+((Vu)' +(Vu)'Vu (3)

The components of (Vu)?Vu are small quantities of higher order than the compo-
nents of Vu. If these higher order elements are neglected, equation (3) becomes:
F'F~I1+Vu+ (Vu)' =1+2E (4)

E is known as infinitesimal strain tensor. The components of this tensor in rectan-
gular coordinates are:

1 &u,‘ auj
Eij=3 (aaej * 85@) 5)
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or
Juy 1(9m @) 1(% %)
%1 2 (axz ton) 2\os T o
—| 1(m 4 9m Juz 1(9u %)
[El=] 3 (axz + 8)?1) 9% 2 (a;es * %%, (6)
1 (% 8&) 1 (@ %) Jus
2\0%; 9% ) 2\0% ' 9% 923

Geometrically, diagonal elements of (6) represent the unit elongation (i.e. the in-
crease in length per unit original length) of an material element which was originally
in the dX; direction (see Fig. 9):

ds —ds
& b

Here d§ and ds are the lengths of dx; before and after deformation of the body.
Off-diagonal elements E;; can be identified with the change of angle y;; between two
material elements d&; and df; which were originally perpendicular to each other:

Vij = 2Ej;

The change of angle is also known as shear strain, while the unit elongation due to
diagonal elements is termed normal strain.

The infinitesimal strain tensor is important since it enters into the stress-strain
relationship.

2.1.2 Stress

Continuum mechanics is concerned with the motion and displacement properties of
extended bodies. To describe these properties in the form of differential equations,
small volumes of the body are considered. Forces acting on these volumes are dis-
tributed over its surfaces. Because of this, they are described in terms of stress
vectors, which incorporate the size of a surface. Stress vectors t, are defined as:

tn = lim H (7)

Here AF indicates the force acting on a small surface AA. According to Chauchy’s
stress principle, the stress vector on a surface depends only on the unit normal vector
n to the surface. It has been found that the stress vector can be described in terms
of n:

t, = Tn (8)
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In this formula T represents a tensor which transforms the unit normal vector into
the stress vector. T is known as stress tensor. Diagonal elements of T are normal
stresses to the surface, while off-diagonal elements represent shearing stresses. For
the components of the unit normal vector of the surface this may also be written as:

te,‘ = Tel (9)

2.1.3 Stress-Strain Relationship

According to Hook’s law, stresses within a body can be described in terms of body
strains, i.e. T = T(E) with T and E being the stress and strain tensor, respectively.
With respect to a basis e; the relation between T and E for a linear elastic solid can
be stated as (using the Einstein summation convention):

Tij = CijuEn (10)

Here Cjju, the elasticity tensor, is a fourth order tensor that describes the relation
between stress and strain. In the case of an isotropic material equation (10) can be
simplified to:

Tij = CijklEkl = /\(Ell + EZZ + E33) + ZIUEU = /\E(Si]‘ + Z‘UEZ] (11)

or

T = Ael + 2uE (12)

Here e indicates the trace of the strain tensor and A and p are the Lame’s constants.
The constant p is also known as as shear modulus. These constants determine
the mechanical deformation of the body. More commonly in use than the Lame’
constants are Young’s modulus E, and the Poisson ratio v. They are related to each

other by:
_ pBGA+2p)
Ey - A+ H (13)
A
V_—Z(A+[J) (14)

If the stress and strain tensor are written in vector form and renamed to T and €,
equation (12) can also be stated as:

T =[Dle (15)

where
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T1 Eq
Ty Ex
| Ts3 | Es
T T | 2B,
Tos 2Ex
T13 2E13
and
1-v v v 0 0 0
V 1-v v 0 0 0
E v v 1-v 0 0 0
D] = Y h 1
Pl=amoa=m| o o o =2 0o o (16)
0 0 0 0 =2 9o
0 0 0 0 0 1=

This form of the stress-strain relationship will be used in the further development
of the finite element formulation.

2.1.4 Equation of the moving continuum

It is assumed that the movement of each particle of a continuum can be described
according to Newton’s second law. The particle may be viewed as a small cube in
rectangular coordinates (see Fig. 10). The forces acting on it are due to the stresses
on its six surfaces. In addition, body forces like weight may exist. Based on this,
the equation of motion of a small volume filled with material of density p can be
stated as:

palAx1AxoAxz = perfBAx1AxpAxs

te, (x1 + Axy, X2, x3) — te, (X1, X2, X3)

+ AX1AXZAX3
AX1
te, (X1, %0 + Axy, x3) — te, (X1, X2, X
4 e (X1, X2 2,X3) — te, (X1, X2, X3) Axy AxaAs
A.'X'Z
te. (X1, X, X3 + Axz) — to, (X1, X2, X
N s (X1, X2, X3 A;) e, (X1, X2, X3) At At AXs
3

Here t,, are stress vectors acting on the cube surface with direction i. The cube is
further characterized by the side lengths Ax;. Inertial forces are proportional the
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acceleration a of the body. B is an external acceleration which leads to a force
proportional to the effective density p.ss. This density is the difference between the
density of the body and the density of the material surrounding it.

X2

th (X1 X+ AX5,X3)
X1 2

X3 tn3(x1,x2,x3)

tn1(x1+Ax1,x2 X3)

tns(x1 Xp,Xg +AX,)
tnz(x1,x2,x3)

Figure 10: Stress vectors on the faces of a small cubic volume with side lengths Ax;, Ax, and Axs.

If the equation above is divided by the Ax; and on letting Ax; — 0, we obtain:

ote, Jt., I, B 17
8x1 * 8x2 * 8x3 * peff - pa ( )

Because of the relation between the stress vector and the stress tensor indicated in
equation (9), equation (17) can also be stated as:

JT;;

ox PefBi = pai (18)
or in vector notation:

divT + p.¢fB = pa (19)

For a linear elastic and isotropic material, the stress tensor T can be expressed in
terms of the strain tensor (equation (11):

8ui 8ui
Tij = Aeéi]' + ZyEl] = Aeél’]’ +u (a—x] + a—x]) (20)
After differentiation of this equation with respect to x;, one obtains:
IT;; de %, u;
— = A=—0;+ — + 21
aX]' aX]' g H (39(]'83(]' 8xj&xj) ( )
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It can further be found that
de de

8_x]-6ij = a—xz (22)
and 5
ou; _ K % _ de. (23)
8xjc9xi c?xi ij 33(1'
were

o= T Ot dn s
T dx;  Odx; dxy  Oxs

By combining equation (21),(22),(23), the derivative of the stress tensor in equation
(18) can be substituted and the equation of motion can be stated as:

0%u; de 0%u;

— = PeffBi+ (A + ) =— + p——— 24
P = PerrBit 05 ot G ox; (24
These equations for the description of the moving continuum are known as Navier’s
equations. They can be stated in invariant form as:

2
paa—tl; = PeffB + (A + u)Ve + udivVu (25)
with

e = divu

Navier’s equation does not account for damping effects. Damping may be introduced
by inserting velocity dependent terms into equation (25). These terms are analogous
to the terms that describe the elastic behavior of the material. This assumption is
applicable if the material can be characterized by isotropic, linear damping. It
further implies that the stress-strain relation of the material is time independent.
In addition to the Lame’ constants, further parameters are needed that characterize
damping. Equation (25) then becomes:

*u .
pﬁ = PefB +  (Aewa + feia)Ve + peadivVu
+ (/\visc + #visc)Vé + [lviscdiVVl:l (26)
with
é = diva

The Lame’ constants A and p are here renamed to Aq, and pe, to indicate their
relationship to the elastic properties of the material. Materials that exhibit elastic
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as well as damping characteristics are commonly referred to as visco-elastic materials,
with the velocity-dependent parameters Aqyse and tyis.

In the case of time-independent problems the left hand side of equation (25) (i.e.
the part related to acceleration) is set to zero and equation to be solved becomes:

0 = perfB + (Aeta + Ueta)Ve + pedivVu (27)

The static and dynamic properties of the otolith membrane can be described using
equations (27) and (26).

2.2 The Finite Element Method (FEM)

The static and dynamic properties of the otolith membrane were studied using the
method of finite elements. During the last decades this method has found numerous
applications, for instance in fluid dynamics, head transfer problems and electro dy-
namics. It is used here to model the displacement of the otolith membrane due to
externally applied accelerations in various directions. The finite element technique is
especially well suited for this problem, since the irregular boundaries of the macula
pose no problem to this technique.

In a first step the object to be simulated is broken down into a set of smaller
volumes, in our case hexahedrons (i.e. cubes) or tetrahedrons. The next step is to
implement the numerical representation of the differential equation. Central to the
finite element technique is the piecewise representation of the desired function, i.e.
the solution to the differential equation, with simple approximating functions. In our
simulations the solution to the differential equation was represented by a set of three
linear or quadratic functions (one for each spatial dimension) for each element. At
the corners of the elements, also called nodes, those approximating functions must
match to form a continuous overall solution. These matching conditions fix the
coefficients that characterize the approximating functions. Numerically this leads
to a system of linear equations. As a result one obtains the 3D node displacements
due to body forces, i.e. forces distributed over the hexahedrons, due to the external
acceleration. Special conditions apply at the surface of the simulated volume: the
nodes at the gel-skull boundary are not allowed to move, which reflects the tight
connection between otolith gel and skull. No interaction is assumed at the border
with the endolymph fluid. As the number of elements or the set of coefficients (using
a higher order polynomial) is increases, the approximation gets better. But there
are limitations to the increase of spatial resolution since the size of the resulting
linear equations rises very rapidly in 3D problems.
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The formulation of the method is different for time-independent and time-dependent
cases. For the latter case an additional time integration has to be performed. Various
numerical schemes are in use for this purpose. The derivation of the finite element
method was influenced by (Rao, 1982) and (Bathe and Wilson, 1976).

2.2.1 The Discretization Process

The first step in the application of the finite element method is the discretization
of the relevant domain into subregions (finite elements). This involves the choice of
appropriate element types. In general hexahedrons with quadratic approximation
functions (i.e. the three functions to approximate the three-dimensional displace-
ment of the element) were used in this investigation. Additionally cubes and tetra-
hedrons with a linear approximation function were employed for validation purposes.
Hexahedron elements are especially suited for this problem since they are less prone
to an numerical artefact known as locking. Element shapes were chosen in such a
way that they did not cross the borders between membrane layers. Because of this,
the mechanical properties of every element were determined by the layer it belonged
to. This yields a layered structure of the membrane, which is reflected by the layered
arrangement of the elements.

The construction of the discretization was based on the curved shape of the otolith
macula. An initial two-dimensional discretization was created manually by adjusting
a quadrilateral mesh on the curved macula. This mesh was subject to two conditions.
First it was required that all inner angles of the quadrilaterals were close to 90°. This
ensures the accuracy of the finite element solution. Second the whole macula area
needed to be covered with the quadrilaterals. Based on this initial mesh the three-
dimensional discretization of the otolith membrane was constructed. The nodes at
the corners of the quadrilaterals thereby served as the corners of the cubes for one
side of the lowest layer of hexahedrons. Similar to the conditions imposed on the
quadrilaterals it computationally desirable that the inner angles of adjacent cube
sides are close to 90°.

The nodes at the edges of the cubes were constructed by taking the cross product
of the side vectors defined by the quadrilateral discretization. This leads to a vec-
tor perpendicular to the surface of a quadrilateral. Since a minimum of one and
a maximum of four quadrilaterals border on a node of the quadrilateral mesh, a
compromise vector was calculated to account for the different orientations of the
different quadrilaterals. The arithmetic mean of the vector components served for
this purpose. Based on this vector, the edges of the cubes were calculated in a way
that ensured that every element belonged only to one type of material. Since the
otoconia layer deflections are mediated by the mesh layer and the displacements of
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this layer are small, each was discretized by one layer of finite elements. The gel
layer was further subdivided into two or three element sub-layers. This was done
to ensure appropriate results especially in the case of dynamical situations. The
resulting discretization of the utricular and saccular otolith membrane can be seen
in Fig. 11 and Fig. 12. This hexahedron grid also served as the basis for tetrahedron
discretization. In this case the cubes were further broken down into sets of five
tetrahedrons.

Figure 11: Hexahedron discretization of the utricular otolith membrane. Small dots indicate the
position of the nodes.
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Figure 12: Hexahedron discretization of the saccular otolith membrane. Small dots indicate the
position of the nodes.
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2.2.2 Shape functions

The finite element method rests on piecewise approximations of the solution of a
differential equation. For a complicated problem this means that the region of inter-
est is subdivided into smaller volumes (i.e. finite elements) and the solution within
this subregion is approximated by simple functions known as shape functions. Two
methods are in use to derive the shape functions. One is based on the global coordi-
nate system, while the other employs element specific local coordinates. Commonly
in use for this purpose are polynomials with an order up to three. In the case of a
linear approximation of a three dimensional problem, the approximation function of
a scalar field variable ¢(x, y,z) becomes in the global coordinate system:

O, y,z) =+ x+azy+agz (28)
and for a quadratic approximation:
o, y,z)=an+amx+azy+asz

+ as x2+a6 y2+0(722
+ag XY+ a9 Yz + g Xz (29)

The coefficients a; of equation (28) and (29) can now be expressed in terms of the
global coordinates and the values of the approximation functions at the nodes.

a) Linear tetrahedron shape functions

For a linear tetrahedron element this is carried out as follow (see Figure 13).
XY, 2,)

k
o9 2)) X0 Y, Z,)

J
X

%, 2,) "

Figure 13: Coordinates of a tetrahedron element.

At the four nodes (named 1i,j,k,1) equation (28) becomes:
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(]51’20(14-&2 Xi+ a3 Yi+ayz
¢j=a1+0¢2x]~+a3 y]'+0é4Z]'
Qr = a1+ X+ a3 Y+ ay Zk
(]51=0(1+052 Xi+asy+ay 2z

These are four equations which can be solved for the four unknown a’s. They can
be expressed as:

1

ay = 6—V(ﬂi¢i +a;p; + axdy + ary)
1

Oy = W(bl(Pl + b]'(]b]' + bk(Pk + bl(Pl)
1

as = (i + ¢jp; + cur + cichr)

1
ay = oo (dipi + djpj + dip + digpr)

where V is the volume of the tetrahedron. The volume and the coefficients are given
by:

1 x vy z
1 o o
V== 1 Xj Yi Zj (30)

1 Xk Yk Zk

1 x vy z
Xj Yj Z L y; z
a;i=| Xk Yk Zk bi=—|1 w z
XYooz Ly oz
x]- 1 Z]‘ x]' y]' 1
G=|xx 1 z di=—-|x y 1
X1 1 Z] X1 Y 1

The other coefficients are obtained by cyclic permutation of the indices.
This results can now be substituted into equation (28):

o(x,y,2) = Ni(x, y,2)¢p; + Ni(x, y,2)p; + Ni(x, y, 2)Ppr + Ni(x, y, 2)Pr (31)
= [N(x, y,2)1$p" (32)
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The field variable ¢(x,y,z) is therefore expressed in terms of the vector of nodal
values ¢p© with:

[N(x,y,2)] = [Ni(x,y,2) Nj(x,y,2) Ni(x,y,2) Ni(x,y,2)] (33)

1

Ni(x,y,z) = W(ai + bix + ciy + diz)
1

Ni(x,y,z) = 6—V(a]- +bix+cjy+djz)
1

Ni(x,y,2) = W(ak + bex + cry + diz)

1
Ni(x,y,z) = 6—V(al + bix + ¢y + djz) (34)

and
lof
(e — (Pf
¢ = o
Qi
This representation of the field variable (with an extension to a vector quantity
¢(x,y,z) is then used in the variational formulation of the mechanical-displacement
problem. The functions N;...Nj relate the field variable ¢(x,y,z) to the nodal
values of the variable. They are called shape functions and form a matrix with the
dimension 1 x n, were n is the number of element nodes.

b) Quadratic hexahedron shape functions

Another, more general method to derive shape functions rests on the transformation
to a local coordinate system for the elements. Using a linear transformation, a dis-
torted hexahedron can be mapped onto a non-distorted cube with unit side lengths
(Fig. 14). In this process the variables x, y and z are transformed to the variables
r, s and t of the natural coordinate system.

The advantage of this procedure rests on the fact that in the later stage of finite
element analysis integrations over the volume of the element need to be carried out,
which is much easier to perform in the non-distorted case. Figure 14 shows this
transformation to natural coordinates for a 20-node cube element. This element
has found a particularly wide range of applications in conjecture with a quadratic
approximation function (Eqn. (29)). If the origin of the natural coordinate system
is put into the center of the cube, the mapping for a 20-node cube element can be
stated as:

20 20 20
X = ZNixi; y= ZNi]/i} z= ZNizi/' (35)
i=1 i=1 i=1
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Figure 14: Transformation to natural coordinates for a 20-node cube element.

or
X1

X20

x\ [Ny ... Ny O ... 0 0 ... 01|lwn

z o ... 0 0 ... 0 N; ... Ny Y20

21

220

Thus the coordinates inside the cube are written as a function of the node coordi-
nates. Thereby the shape functions N; at the corner nodes (i = 1...8; see Fig. 15)
are given as:

N; = %(1 + 1) (1 + ss;)(1 + tt;)(rr; + ss; + tt; — 2) (36)
where 7;, s; and t; can take on the values +1. At the mid-side nodes i =9,11,17,19:
N; = %(1 — 1) (1 + ss;)(1 + 1)) (37)

where s; and t; can take on the values +£1. At the mid-side nodes i = 10,12, 18, 20:
N; = %(1 — ) (L +rr)(1 + 1)) (38)

where 7; and f; can take on the values £1. At the mid-side nodes i = 13,14, 15, 16:

N; = 31(1 — (1 + rr))(1 + s57)) (39)
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where r; and s; can take on the values +1.

These shape functions Nj are also used the characterize the magnitude of the field

variable ¢(x, y, z):

(P(x, y,Z) = [N](P(e) =[Ny ... Nzo]CP(e)
where
P1(x1, Y1, 21)
(I)(e) —
¢20 (220, Y20, 220)
8 19 7
39'4 17 * '//
- 18
S 1% & |
?16 ® 15
¢ ! 14
13 V4 11
12,0----- o-f--93
’.
[ O 10

Figure 15: Node numbering of the 20-node cube element.

Using these equations, a scalar quantity like temperature can be approximated
within an element. In the case of a vector quantity like displacement, the field
variable ¢ is generalized to a vector function (3-dimensional case):

Px(x, Y, 2) u(x, y,z)
o(x,y,2) =|Py(x,y,2) | = | v(x,y,2)
O-(x,y,2) w(x,y,z)

(40)

Individual components of this vector function still employ the same shape functions
as used for a scalar quantity. As a result, the vector of nodal values of the field vari-
able has a dimension of 3n, were n is the number of element nodes. Correspondingly
the shape functions are organized in a matrix with the dimension 3 x 3n.
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2.2.3 Derivation of the Finite Element Method - Static Case

The finite element method is built on variational methods. This means that the
underlying differential equation is solved by finding an extremal value of a cor-
responding functional. While there are several formulations in use, the following
derivation of the finite element method in the static case will focus on the principle
of minimum potential energy.

The potential energy 7, of an elastic body is defined as:
m,=1—W, (41)

with 7t being the strain energy and W, the work done on the body by external forces.
The principle of minimum potential energy states that of all possible displacements
that are compatible with the boundary conditions, the state which will be assumed
makes the potential energy take on a minimum value. This state is called the
equilibrium and the variation of equation (41) becomes zero:

om, = 6m —6W, =0 (42)

The total strain energy stored in a linear elastic body is:

= % f f f eltdv (43)

v

were T is the vector of stress components, € the vector of body strains (see Chapter
(2.1.3)) and V is the volume of the body. By using equation (15) and assuming no
initial stresses, the strain energy is expressed as:

= % f f f e’[D]edV (44)

External forces can be due to forces acting on the surface of a body or body forces.
Body forces might act on any part of a body, like gravity. The work done by external
forces is expressed as:

W, = fjf(mpbx + oy, + wipp,)dV + [f(ugbsx + o5, + wips,)dS (45)
W, = f J f (U)',dV + [ f (U)' dS (46)

or
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with 1, being the vector of known body forces and 1, the vector of surface forces.
Displacements due to these forces are indicated by the vector

u(x/ Y Z)
U(x,y,2) = [v(x, Y, z)]

w(x,y,z)

(47)

By substituting equation (44) and (46) into equation (41), the potential energy of a
body can be described as:

T, (1, v, W) = %f‘vffeT[D]edV—fjf(U)wadV—[f(U)Twst (48)

The problem is now to find a displacement field U that minimizes the potential
energy 7i,.

If the body is discretized into a set of N finite elements, equation (48) holds for each
element separately and the total potential energy is the sum of element potential
energies:

N
_ 2 (e)
T = T(p
e=1

were 7'(;,6) is the element potential energy. Equation (48) can now be restated for a

single element e as:

) = % f f f e’[D]edV - f f f (U),dV - f f (U)'pds (49)

Ve S

Using shape functions and equation (6), the strain vector € can now be expressed
in terms of the nodal displacement vector ¢:

du A
€xx ox Jx 0 0
v 0
€yy oy 0 oy 0 y
dw 9
= €57 _ oz _ 0 0 2z - — [B]q)(e) (50)
¢ & 2 2
Xy dy = ox dy ox w
€ v 4 Jdw 0o <2 2
yz Jdz = dy Jdz dy
Jw du J o)
€xz ot o z w U
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were [B] incorporates the matrix of shape functions [N]:

[B]

[N] (51)

O O Py © o

e o S © o
S Mo e © S ©

Using this relation and the shape function approximation of the displacement func-
tions U (see equation (47)), equation (49) can be stated as:

<=5 [ [ @oreromseoay

Ve

- [[[ @iy - [[@ormry.s (52

Ve s@©

Since the vector of nodal displacements q><e> is no function of the integration variable,
it can be taken out of the integrals. This vector is associated with a specific element
e. If the matrices inside the integral are appropriately enlarged with zeros, the
element nodal displacement vectors can be gathered to a vector @, which contains
all nodal displacements. This global nodal displacement vector has a dimension of
3M, were M is the number of nodes in the body. Based on this considerations the
potential energy of the body is found as:

N
m, = % @'Y’ f f [BI"[D][B]dV | ®
e=1

v
- cDTeZNf fv I f [NI",dV - Sf( f [NT".dS (53)

Since equation (53) expresses the potential energy in terms of the nodal displace-
ments @, an extremum of the potential energy, which is generally associated with
its minimum, can be found by requiring;:

Jr, dn, an,
_— = ,.,. = :O (54)
8<I)1 8(132 8(D3M
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This yields for equation (53):

N
. fv I f (BI'[DI[BIAV | @ =
- ZN; f f f [N]Ttl)de+€zz S[ )f [N]",dS (55)

Ve

This equation can be written as:

N N
Y KO =) P+ Y (56)
e=1 e=1
or
[K]D = P (57)

Equation (57) represents a system of linear equation which after solution yields the
nodal nodal displacements of the body ®.

The different parts of equation (55), (56) and (57) are named:

[K¥] = f f f [B]'[D][B]dV Element stiffness matrix

Ve
N
[K] = Z[K(e)] Global stiffness matrix
e=1
Pée) = f f f [N ]Ttl)de Vector of element body forces
Ve
Pge) = f f [N ]Tll)st Vector of element surface forces
5@
N
P= Z Pée) + Pge) Global force vector
e=1

Central to this procedure is the assemblage of the matrices [B], which characterize
element strains and the integrations over the element volumes to obtain the element
stiffness matrix. As apparent from equation (51), a differentiation of the shape func-
tions is required. In the case of a tetrahedron with linear approximation functions,
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the matrix of shape functions can be written as:

N, O ON 0O 0 N O 0 N 0 0
[NNJ =l 0 N, 0O 0 Nj O 0 N, 0 0 N O (58)
0 0Nf O ON 0 0 N 0O 0 N,

This represents the generalization of matrix (33) to a vector field variable. The
shape functions are given by equation (34). Since the variables x,y and z appear
linearly in them, only the coefficients of the shape functions appear in the matrix

[BJ:

by 0 0 bj 0 0 b 0O O b O
¢ 0 0 ¢ O ¢ 0 0 ¢ O
1[0 0d 0 0 d 0 0 d 0 0 4
Bl = — (59)
6V (oF bl‘ 0 C]' b]’ 0 Ck bk 0 Cy bl 0
0 di Ci 0 d]' C]' 0 dk Ck 0 dl C;
di 0 b d 0 b d 0 b d 0 b

This results in the matrix product [B]'[D][B] becoming independent of the integral
over the volume of the element. Thus the evaluation of the integral yields the volume
of the tetrahedron element (30) and the element stiffness matrix becomes:

[K“] = VO[B]'[D][B]

In the case of a quadratic hexahedron element, the creation of the element stiffness
matrix is more complicated. Like for the tetrahedron it is based on the relation
(51). The matrix of shape functions [N] is now of the dimension 3x60 with the shape
functions defined by equation (36) to (39). While the derivatives of the relation (51)
are in terms of the global coordinate system x, y and z, the shape functions have
been expressed in the natural coordinate system r, s, and t of the hexahedron. To
carry out these differentiations the chain rule is applied:

N INigx 4 INidy | INigz
or ox or dy odr dz or
% — aNl' ox aNi a]/ (9N,‘ o0z 60
9 s T oyas Tz o (60)
IN; IN; gx , IN; 9 :
= INigx o INidy . INigz
o ot T oyt T oz o
[ ox Y 2 IN; IN;
ar dr or ox ox
_ | ox 9y oz N | = IN;
| 9s 9s 0os En [J] y (61)
Jx ﬂ 9z JN; JN;

|l ot ot ot o0z o0z
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The matrix [J] is the Jacobian, which can be written (using (35)) as:

> (L) ¥ (L) T (2)
x 9% 9z A A A= A
dr Jr or 20 20 0
| ax 9y a9z | — IN; IN; IN;
[J]= d ds ds | Z(_sxi) Z(Iyz) Z‘(_szi) (62)
x O oz i=1 i=1 i=1
ot ot ot 20 20 20
JN; JdN; IN;
Y (5a) (5w L(%=)
L =1 i=1 = i
For small distortions of the element, the Jacobian matrix is invertible. This yields:
oN; N;
ox ar
dN; _ -1 JdN;
|| 2 (63)
IN; oN;
0z ot

from which the derivatives with respect to x, y and z can be computed.

To obtain the element stiffness matrix, it is necessary to carry out the integral over
the volume of the element. Unlike in the case of linear approximation functions,
the integral depends on the variables r, s and t. Because of the transformation to
natural coordinates, the stiffness matrix can be written as:

1 1 1
[K©] = f f f [BI'[D][B] |J| dr ds dt (64)

were |J| represents the determinant of the transformation, which is the determinant
of the Jacobian matrix. This integral is evaluated numerically. Several schemes
like Newton-Cotes and Gaussian quadrature are used for this purpose. Two point
Gaussian quadrature has proved to be an effective method, to solve equation (64).
Unlike the Newton-Cotes scheme, Gaussian quadrature employs integration points
which are unevenly spaced and will be denoted R;, S; and Tk.

Equation (64) then becomes:

Ry S T

1= Y, Y (BI'DuBI), (65)

R,':Rl S]-:51 Tk:Tl

The expression

(IBI"[DI[B] 1)

Ri,S;, Tk
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indicates that the summations in equation (65) are evaluated at the points R;, S;
and Ty. For a cube with unit side length and two point Gaussian quadrature, these
points are Ry = S; = T; = —0.57735 and R, = S, = T, = +0.57735. This procedure
needs to be carried out for every element and the global stiffness matrix is then
assembled from the element stiffness matrices.

2.2.4 Derivation of the Finite Element Method - Dynamic Case

As in the static case, the derivation of the finite element method for a dynamic
problem rests on a variational principle. Using Hamilton’s principle, this can be

stated as:
ta

0 f Ldt=0 (66)
f
Here L indicates the Lagrangian of the system, given by
L=T-m, (67)
were T is the kinetic and 71, the potential energy of the body.

By using the field variable U of displacement-velocity and the element density P,
the kinetic energy of an element e can be expressed as:

7O _ % f f f p(0) Uav (68)

Ve

The element potential energy of an element is given by (49). If the existence of a
dissipative force proportional to the velocity is assumed, the dissipative function of
the element can be defined as:

RO — % f f f (0) [rmudv (69)

%G
where [TT] is the matrix of damping coefficients, analogously to [D].

In the static case, the field variable U of displacement is expressed by nodal dis-
placements, using shape functions:

U(x,y,z,t) = [N(x,y, z)]q)(e)(t) (70)

This transformation is also used in dynamic problems. Since the shape functions do
not depend on time, they are extended here for the the field variable velocity as:

U(x, y,2,t) = [N(x, y,2)|$p“(t) (71)
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The kinetic, potential and dissipative energies T, 71, and R can now be restated,
using the relation (71). This yields for the kinetic energy:

T = ZT@ = Z f f f "[N]dV | d (72)

%G

and for the potential energy analogously to (52):

1 N
=5 D@ fo [B"[D][B]dV | ®

Vv

o3| [ o [fres] o

Ve 5

and for the dissipative function:

R= ZR@ %qn fof [N]'[N]dV | b (74)

Ve

Here @ and @ are the vectors of global nodal displacements and the global vector
of nodal velocity respectively. If matrices and vectors, which involve the integrals
are defined by:

N
= Z f f 1"[N]1dV Global mass matrix

e=1 )
N
[K] = Z fff[B]T[D][B]dV Global stiffness matrix
e=1 Ve
N
= Z f f f [N]av Global damping matrix
=l Yyl
N
P, = Z f f [N ]Tlp As Vector of nodal surface forces
e=1 .~
P, = f f [N ]Tll)de Vector of nodal body forces
0]

P=P,+P Global vector of nodal body loads
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kinetic, potential and dissipative energies can be stated as:

1

T = EciaT[M]cin
T, = %(I)T[K]tb - o'p
R= %(i)T[C](i)

Hamilton’s principle is equivalent to Lagrange’s equations, which can be stated as:

o) () (55) ™

Here it is assumed that displacements are expressed in terms of the global vector
of nodal displacements @. Derivatives in equation (75) are with respect to the
components of this vector ¢; or its time-derivative ¢; (i.e. the nodal velocity). The
function R incorporates dissipative properties of the body. If the relations for the
kinetic, potential and dissipative energies found above are put into equation (75),
the equation of motion of the body can be obtained as:

[MID(t) + [ClD(t) + [K]D(t) = P(t) (76)

This matrix equation needs to be integrated over time to obtain the nodal movements
of the body.

In most cases little is known about the damping properties of a elastic body. Because
of this, equation (76) is often simplified by expressing the damping matrix as a linear
combination of the mass and stiffness matrix (Rayleigh damping):

[C] = a4[M] + b4[K] (77)

Here a; and b, are coefficients that determine to which degree mass and stiffness
matrices participate in the damping matrix.

2.2.5 Time-Integration of Dynamic Problems

Several schemes exist to perform the time-integration of equation (76). Newmark’s
method and nodal superposition are two schemes that are commonly applied for this
purpose.

Using Newmark’s method, the desired time interval is broken down into successive
time steps. The time intervals At of the steps need not have identical length though
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there may be a upper bound to them. Body movements after the first time step
are computed, starting from an initial configuration with respect to nodal displace-
ments and velocities. The configuration at the end of this step then serves as initial
condition for the next step. This procedure is repeated till the end of the desired
time interval is reached. For each step, a solution to the equation:

[M] + [K]cD(HAt) — P(t+At) (78)

= (t+AL) " [C]q-)(t+At)
is sought, were the superscript (t + At) indicates the value of a variable at the end of
the next time step. Known at the actual time t are the nodal displacements, veloc-
ities and accelerations. Newmark suggested the following formulas to approximate
displacements and velocities after a step At:
s AL

O = @'+ (1-y)Atd +yAt

s fH+AL

(79)

s AL

O = @ + At + (% _ 5) (AP + B(AL (80)

Equation (80) can be inverted to express & in terms of @M. This formulation

can than be used in equation (79) to replace " The resulting expressions for

the accelerations and velocities at the end of the time step only include the known
variables C'I')t, Ci)t, @' and the unknown nodal vector of displacements @'*2f. They
are substituted into equation(78). This yields a system of equations for the unknown
vector @A which can be solved using standard techniques like LU- or Cholesky-
decomposition. After every step velocities and accelerations need to be updated
using equation (80) and (79). The advantage of the Newmark method is its simplicity
and unconditional stability if y is chosen as 1/2 (to avoid artificial damping) and B
as 1/6, which implies a linear variation of the acceleration in the time interval Af.
On the other hand the computational work involved in this method is proportional
to the number of required time steps. This is prohibitive if the discretization of a
body leads to a large number of elements. To overcome this limitation the mode
superposition method can be applied.

The basic idea of the mode superposition method is to uncouple (i.e. diagonalize)
equation (76) by a linear transformation. Using the initial conditions of the sys-
tem, the uncoupled differential equations can be solved. The resulting generalized
displacements are then transformed back. The transformation can be stated as:

@ (1) = [TIO®) (81)

Since in general only two matrices can be diagonalized simultaneously, assumption
(77) is used to bring equation (76) into a appropriate form. Substituting the trans-
formation (81) into equation (76) yields:

[MI©(®) + [CIO() + [KIO(H) = P(t) (82)
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with
[M] = [T]"[M][T]
[C] = [TT[C][T]
[K] = [TI"[K][T]
P=[T]'P

The transformation matrix [T] can be found by considering the solutions to the
undamped free vibrational equilibrium equation which corresponds to (82). It can
be stated as:

[M]® + [K]® =0 (83)

This equation can be solved by:
O = Esinf[w(t - ty)] (84)

After substitution of this solution into (83) a generalized eigenproblem is obtained:

W [MIE = [KIE (85)
Using standard techniques, eigenvectors &; and eigenfrequencies w; with the prop-
erties
1 ifi=j
EME={ )
0 ifi+#]
and

0<at<...<aw?<...

if found. The eigenvectors E; are termed mode shape vectors. After arranging them
as columns of the modal matrix [E] and the eigenfrequencies in a diagonal matrix
[Q]?, the solutions of (85) can be written as:

IMI[E]Q] = [K][E] (86)
Using this equation and the orthogonality relation [E]'[M][Z] = I one finds
[E]"[KI[E] = [QF

Thus [E] would be a suitable transformation matrix [T]. With the help of this
relations and assumption (77), equation (82) becomes:

O(t) + (al + L[ QP)O () + [QIO(t) = P(t) (87)

By taking the initial conditions of the body and (time-dependent) external forces
into account, this set of decoupled differential equations can be solved numerically.
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The main advantage of the node superposition method is that only a subset of the
eigenfrequencies need to be considered if the external forces vary sufficiently smooth
over time. In this case only a small number of the eigenvectors, which correspond
to the lowest eigenfrequencies, are used in the transformation. Critically to this
procedure is the choice of a sufficient number of eigenmodes. Compared to a time-
stepping algorithm like Newmark’s method, the modal superposition technique offers
considerably reduced computational work if the requirement of smoothly varying
external forces is met.

2.3 Transfer Function

The dynamic properties of a mechanical system can be described conveniently with
transfer functions if the system possesses certain properties. Its underlying differ-
ential equation is required to be linear as well as time invariant. For an externally
applied sinusoidal stimulus, such a system exhibits a sinusoidal response, with the
amplitude and phase shift depending on the applied frequency. This approach is
used here to describe the frequency dependent displacement amplitudes and phase
shifts, relative to sinusoidal head accelerations.

For an infinitely extended, planar otolith, Grant et al. derived an analytical solution
(Grant et al., 1993). They assumed a two-layered membrane: an otoconia and a gel
layer, covered by endolymph fluid. Because of recent physiological findings, their
approach was extended in this investigation to a three-layer system by including an
intermediate mesh layer. The transfer function of this system was derived by taking
the Laplace transforms of the individual parts and connecting them via boundary
conditions. This yields a transfer function which describes the frequency dependence
of the displacement amplitude at the gel/mesh layer boundary. This location was
chosen because it is assumed that the displacements in this region are sensed by the
hair cells and subsequently signaled to the brain. The transfer function represents a
one-dimensional approximation of the displacement amplitudes. Displacements are
strictly parallel to the the layers.

The dynamics of the otoconia layer in a lumped analysis can be described as:

dvu, 3
pohoy - (po - p)hoB -
t

Jdvy U, v,
f &yf yf:[) 0 aym Ym=hm aym ym_l’l

—tm

This differential equation is written with respect to the velocity v, of the otoconia
layer. Inertial and external forces are indicated on the left hand side of the equation.
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These forces are equated to forces acting on the boundary with the endolymph fluid
and the mesh layer (see Fig. 16). The velocities of the mesh and endolymph layer
are indicated by v,, and vy respectively. While the shear elasticity of the mesh layer
is measured by the shear modulus G, it is assumed that the endolymph fluid is
not capable of emanating forces proportional to static displacements. Forces on the
otoconia layer due to the endolymph fluid are therefore viscous forces proportional
to the velocity at the boundary of the layers. This essentially yields damping of the
otoconia layer movements. Damping in addition with elastic forces are assumed at
the mesh layer boundary. The shear viscosity of those layers are indicated by p,y,
(mesh layer) and pf (endolymph fluid). Heights of the otoconia, mesh and gel layer
are termed h,, h, and hg respectively. The variables y¢, y,, and y, indicate that
they are valid only within their respective layers.

Y

Endolymph-
Fluid

h, Gel-Layer

X

Figure 16: Geometrical variables and structure of the otolith membrane for the derivation of the
mechanical transfer function.

B is an external acceleration of the body directed parallel to the layers and p, —p =
pefs the difference between the density of the otoconia layer and the surrounding
material. The difference is called the effective density. It will be assumed that
initially the velocity v, and displacement 6, of the otoconia layer is zero:

Uo(yl 0) = O/ 50(% O) = O

The dynamics of the mesh layer can be described by:

t
2 2
p%:Gmfdt[& v’”]ﬂl O (89)
0

ot oy, "oV,

As in the case of the otoconia membrane, this is a partial differential equation for
the velocity, here the velocity function within the mesh layer. Inertial forces are on
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the left hand side of the equation while elastic and damping forces are on the right
hand side. A similar equation can be stated for the gel layer:

t

Ps _ g ~[~dt[820g] o0y (90)

P— = Lg 52 | THe 2
ot X 8yg 8yg

The parameters in this partial differential equation with respect to the gel velocity v,

are the shear modulus G, and the shear viscosity p,. Initial conditions for equation

(89) and (89) are chosen in accordance with the otoconia layer conditions:

Um(ym/ O) =0, 6m(ym/ O) =0

and
Ug(yg/ 0) =0, 6g(]/g/ O) =0

Mesh and gel layer differ with respect to their boundary conditions. At the boundary
with the otoconia layer, the mesh layer velocity is equal to the otoconia layer velocity.
Similarly the velocity at the gel/mesh layer interface v, is identical in both layers.
This can be stated as:

Z)m(hnw t) = vo(t)/ Z]m(or t) = Z)gm(f)

Since the gel layer is tightly attached to the skull, the velocity is zero at this bound-
ary. Further, the velocity at the mesh layer interface is required to match. Thus:

Ug(hg/ t) = Ugm(t)/ Ug(ol t)=0
The mechanical properties of the endolymph fluid are described by:

v f 82’0f (91)
Py = Hf 3o

ot dy i
Based on the considerations regarding equation (88), only velocity related forces
appear on the right hand side of the equation. Like in the other cases it is assumed
that no movements are present at the otoconia- endolymph boundary initially:

04(0,0) = 0

It is further assumed that no movement of the endolymph fluid occurs at large
distances from the otoconia layer. Since the velocities at the otoconia/endolymph
interface are required to match, the boundary conditions for the endolymph fluid
can be stated as:

vr(0, 1) = vo(2), vf(00,t) =0



Methods 43

Equation (88), (89), (90) and (91) are now subject to Laplace transforms with
respect to time. This yields for the otoconia layer (taking the initial conditions into
account):

G, dvy,

S Y

v,

(9’Uf
Ym

PoNoSTV(8) — hopeffB = =—

E (92)

yf:() Ym =hy, Ym =hm

Here s indicates the Laplace transform variable. With the help of the initial condi-
tions one obtains for the endolymph fluid:
(9zvf
psUf = pfo—
8y}

which can also be stated as:

— - For=0 (93)

Using +/ps/uf = x5 and the boundary conditions, this ordinary differential equation
is solved by:

vF(Y5,8) = vo(s)e ™ (94)
The derivative of this equation with respect to yy, needed in (92), is then obtained
as:

% = oK pe I
Yy
which evaluated at yy = 0 yields:
dv
-1 = UKy (95)

By taking the Laplace transform of the mesh layer equation and using the initial
conditions, one gets:
G,, %0, v,

oo Mo

PSUy =

or > )
U ps _
32 Gt HmSUm =0 (96)

Using the boundary conditions, the solution to this differential equation can be
stated as:

Z7;11(]/m/ s) = o vgm(S)

—Kmhm — eKmhm

[e_KWL (hm_]/m) _ eKm (hm _ym)]

—UO(S) —KmY. KimY
+ e_Kmhm —_ eKmhm [e = e ! m] (97)
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This equation employs the abbreviation:

ps?

K = 4| =———
" G + LS

From this, the derivatives of the velocity at the gel/mesh layer boundary can be
derived as:

dv VoK
- = — — UgmKm h(i<c,,
EI N N VgmKm cOth(ic, /1) (98)
and at the mesh/otoconia layer interface:
8vm Vom®m
5. =T 1 1~ olm h m'tm
E Sinh(k,l) + UKy, coth(x,,hyy) (99)

Since the underlying partial differential equations of the gel and mesh layer are
identical, the differential equation (96) after Laplace transformation is identical too.
Using the boundary conditions, the solution for the gel layer can be stated as:

sinh(x,y,)

Vg(Yg,8) = Ugm(s)m (100)
were the abbreviation
ps’
Ke= 4| =——
8 Gy + HUgS
has been used. The derivative at the gel/mesh layer interface then becomes:
dv cosh(xh,)
8 88
—| =y K,——— =, th(x 1 101
|, Cgmig sinh(xhy) Ognicg coth(icgh) (101)
8

The equations (92), (95), (98), (99) and 101 are five equations for the five unknowns:

v,

8vf
Iy I

Yy

90n
Y

4

Ym =hm,

To;  Ogmy

4

yf=0

Ym =0

This system of equations can be solved for the velocity at the gel /mesh layer interface
Vgm(8). After some algebraic transformations the following result is obtained:

hopesB
Ogn(s) = e (102)
(Pohtos — pstcs)y1 + (22 + )2

with K
vy = K—m coth(xghg) sinh(i, 1) + cosh (i)
8
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and
Km

ya= _sinh(Kmhm)
Since the time integral of the velocity is the displacement, Laplace transformation
and the assumption of no initial displacement produces:

+ Y1k, coth(x,h,,)

1
6gm(s) = gvgm

After insertion of this result into equation (102) and dividing by B, the mechanical
transfer function of the displacement at the gel/mesh layer boundary becomes:

Ogm _ opess (103)

B (pohos — psKy)syr + (Gu + tms)y2

The results can be visualized in the form of Bode plots which depict the amplitude
and phase shift as a function of the stimulus frequency.

2.4 Fractional Calculus

The velocity of a particle is represented by the first derivative of its location with
respect to time. Likewise acceleration corresponds to the second derivative. Frac-
tional calculus generalizes this concept to differentiations of non-integer order. It is
thus possible to define a 1.5 differentiation, with the resulting function being a "mix-
ture” of velocity and acceleration. Fractional calculus is a general concept, which
for example is applied to stimulus induced neural responses. It has been shown that
the time-dependent, tonic/phasic excitation properties of neurons innervating the
striola region can be described by this method (Hess, 1992).

Based on the mechanical displacement of the gel layer and polarization vector of
striola hair cells, we calculated their static excitation at all time steps. Since the
directions of the polarization vectors were manually adjusted under visual control,
discontinuities were associated with the orientation of these directions. To reduce
this local effect as well as numerical inaccuracies, we applied a simple moving average
filter on neighboring striola points to smooth the local hair cell potential (Equation
106). This time series was then subjected to fractional differentiation. We used a
fraction of € = 0.31 (Hess, 1992). The differentiation was accomplished numerically
using the Griinwald-Letnikov formula (Oldham and Spanier, 1974):

Efl) 1y, . Te+1) .
dre ‘E;(_l)]r(jﬂ)r(e—ﬁ1)f(t_]h) (104)
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Here h indicates the time step size, and I' the gamma function. Subject to the
fractional differentiation is the function f, (in our case the time series of excitations)
which is given at discrete points in time. The sum needs to be evaluated for every
time step. We varied the number of terms N, which participate in the sum, to test if
convergence occurred. The Griinwald-Letnikov formula represents a generalization
of the finite difference method to a non-integer order of differentiation.
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3 Mechanical Results

3.1 Mechanical Properties of the Otolith Membrane

To characterize the mechanical system, we need to define the orientation of the
otolith maculae and find reasonable estimates for its mechanical parameters. For
the representation of spatial properties, the head centered stereotactic coordinate
system was chosen. This is defined by the mid-sagittal plane and by Reid’s plane
(given by the lower rim of the orbita, and the center of the external acoustic meatus),
with the positive x-, y-, and z-axis pointing forward, left, and upward, respectively.
The otoconia-layer was assumed to have a constant height of 15um while the height
of the gel- and mesh-layer were taken to be 10um (Grant and Cotton, 1990; Grant
et al., 1993).

Gel-layer and otolith membrane density have been measured to be 1.0g/cm?® (Money
et al., 1971) while the mean density of the otoconia-layer is about 2.0g/cm? (Trincker,
1962). We chose to treat all layers as homogenous isotropic materials. The force-
displacement relations of the gel-, mesh- and otoconia-layer are described by the
Lamé constants Ager, Uget, Ames, tmes and Aopo , Hoto Tespectively. By assuming that
the gel-layer is almost incompressible (Poisson constant v = 0.49) it is possible to
obtain Ag. Young’s modulus of the gel-layer Ez; was estimated to be 10.0 Pa
(Kondrachuk, 2001a). This leads to a value for Ag, of 164.4 Pa, and translates to
a shear constant g of 3.35 Pa (Equation 13,14). This value is in good agreement
with values derived from studies of human sensitivity to acceleration, which was
measured to be 0.002g (Peters, 1969). Using the given material parameters, this
acceleration leads to a deflection of the order of Inm. Deflection measurements at
the cochlea showed that this is the minimum magnitude the hair cells can detect
(Sellick et al., 1982). Measurements of gel-layer elasticity of the bullfrog saccule lead
to a Young’s modulus E that was substantially larger, i.e. to a much stiffer gel-layer
(Benser et al., 1993; Kondrachuk, 2000). This is probably due to the fact that the
function of the frog saccule differs from that of the mammal saccule (Kondrachuk,
2000). Nevertheless, we used the elasticity ratio between gel-layer and mesh-layer
(Emes/Egel ® 20) found in that investigation to fix the elasticity of the mesh-layer and
the otoconia-layer. We also assumed that these layers are virtually incompressible,
like the gel-layer.

The damping effects are measured by the viscosity parameter. Based on electro-
physiological studies (Goldberg et al., 1990a) it has been found that the shear vis-
cosity of the gel layer is in the range between 0.1 Poise (Grant et al., 1993) and 1.0
Poise (Kondrachuk, 2000). We used a gel layer viscosity of 0.3 Poise. As mentioned
before, stiffness-proportional Rayleigh damping was employed. To account for a vis-
cosity of 0.3 Poise, the parameter b; (see equation 77) was found to be 0.01 s. We
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used the same value (b;=0.01 s) to model the mesh layer, since this value has not
been measured and the effects of damping should be small in this layer. We did not
include damping in the otoconia layer because its structure differs from the other
two layers. The remaining viscosity of the endolymph fluid has been measured to
be 8.5 1072 Poise (Steer, 1967).

The mechanical parameters used in this investigation are summarized in table 1.

p [g/cm?] E [g/cm s?] v [-] Viscosity [g/cm s]
Endolymph fluid 1.0 - - 85-107°
Otoconia layer 2.0 2.0-10° 0.49 -
Mesh layer 1.0 2.0-10° 0.49 6.0
Gel layer 1.0 1.0-10% 0.49 0.3

Table 1:  Mechanical parameters of the otolith membrane. Note that the viscosity parameter
refers to shear displacements.

3.2 Static Results
3.2.1 Displacement Curves

For accelerations in the yaw, pitch, and roll plane we calculated the translation of one
point at the gel/mesh-layer boundary. This location within the otolith membrane
was selected because it is assumed that hair cell potential is sensitive to displace-
ments at this boundary. The point was chosen in the central (striola) region to
minimize possible effects of the otolith membrane lateral boundary. It is indicated
by the black dot in Fig. 17.

Within each plane, all directions of acceleration were calculated, in steps of 30°.
Fig. 18 shows the resulting displacements for the left utricle, and Fig. 19 the cor-
responding curves for the left saccule. It was possible to reproduce the curves with
appropriately shifted and scaled sinusoidal functions to a high degree of precision.
Note that even purely horizontal accelerations can induce a significant vertical dis-
placement (Fig. 18A). Similarly, for purely vertical accelerations along the z-axis
(i.e. up or down), the utricle mesh- and otoconia-layers are displaced significantly
along the x-axis (Fig. 18B, 0°/180°). Since the otolith maculae are curved struc-
tures, this displacement is not constant throughout the maculae, i.e. different parts
are displaced with different magnitudes and directions.
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A

Figure 17: Location of points where displacements and hair cell activation were calculated. The
positions are indicated by black dots. The letters (F) and (D) refer to Fig. 20.

3.2.2 Lateral Boundary of the Otolith Membrane

The simulation also allowed to study the effect of the lateral gel-layer extension
on the displacement of the otolith membrane. Since the gel is clear it is hard to
determine this parameter experimentally. A gel-layer that extends beyond the area
covered by the otoconia membrane would need extra energy to deform. Thereby
the exact magnitude of this effect depends on the area covered by the gel. To test
the magnitude of that effect, the displacements of a gel-layer that has exactly the
same size as the otoconia-layer (i. e. no extension) were calculated, and compared
it with displacements of an otolith membrane with a large lateral extension of the
underlying gel area.
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Figure 18: 3D utricular displacements at the point indicated in Fig. 17A. The pictures on the
left indicate the force directions. The x-axis points forward, the y-axis to the left, and the z-axis
upward.

This extension was chosen so large that virtually no displacement occurred at the
lateral gel-layer boundary. The results indicate that the lateral boundary of the
gel-layer has only small effects that are confined to the vicinity of the lateral border.
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Figure 19: 3D saccular displacements at the point indicated in Fig. 17A. The pictures on the
left indicate the force directions. The x-axis points forward, the y-axis to the left, and the z-axis
upward.

3.2.3 Parameter Studies

For any numerical model of a biological system, the mechanical parameters that
characterize the model can only be specified with a limited accuracy. One of the
best established mechanical parameters of the otolith system is probably the effective
density of the otoconia-layer. It is estimated that this value is correct within a range
of 20%. It enters linearly into the model, which means that an error of the effective
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density will lead to a proportional change of displacements. Similarly, an error in
the height of the otoconia-layer causes a change of the perceived acceleration and
affects the displacements linearly. We assume that the height of the otoconia-layer,
like the height of all other layers, is associated with a maximum error of about 30%.
A similar magnitude of the error probably exists for Young’s modulus of the gel-
layer. All these errors cause a proportional change of scale of the displacement axis
in Figures 18 and 19, but do not affect other properties of the figures (sinusoidal
shape, relative amplitudes, phase shifts).
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Figure 20: Dependence of deflection on the elasticity (Young’s modulus) of the mesh- and otoconia-
layer. The elasticity on the abscissa is in units of the elasticity used in the simulation. The x, vy,
and z-deflections at the points (F) and (D) of Fig. 17 correspond to a linear acceleration along the
positive z-axis (e.g. head in upside-down position, ® = 0° in Fig. 19.
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Probably the least known mechanical parameters of mammal otoliths are the elas-
ticity of the mesh- and the otoconia-layer. At least the parameters should be consid-
erably larger than the elasticity of the gel-layer, since their filament matrix is much
tighter connected. They determine how much distant parts of the otoliths interact.

As mentioned above, different parts of the otolith membrane, especially parts with
clearly different orientations, interact only weakly if Young’s modulus of mesh- and
otoconia-layer is chosen twenty-fold larger than for the gel-layer. Figure 20 sum-
marizes the effects on displacements of two points on the saccule membrane at the
gel-/mesh-layer boundary if this parameter is changed. Note that the scaling is dif-
ferent for each direction of movement. The x-axis represents Young’s modulus of
elasticity in units chosen for our simulation (i. e. 1.0 represents 200.0 Pa). Each
curve represents the displacement of a point on the saccule in the head down position
(® = 0°; Fig. 19). The curves labelled with "D” or F” represent the displacement
of the corresponding points in Fig. 17. The displacements found at these points
indicate the range of deflections of the membrane, since they were chosen in regions
where the local slopes of the macula differed the most. All other displacements found
on the saccule are somewhere between these curves. It can be seen that movements
in the z-direction are affected strongest by a change of elasticity. Displacements at
the point (F), which lies in a region that is comparatively flat, remain almost unaf-
fected. In contrast, deflections at point (D) are markedly reduced. This is caused by
the larger curvature of the otolith membrane in this region, which leads an additional
bending of the mesh- and otoconia-layer compared to flat areas, where only shear-
ing displacements in the gel-layer are observed. Similar effects would be observed
if the elasticity of the gel-layer were changed. This effect is not considered here,
since mesh- and otoconia-layer dominate the distribution of forces within the otolith
membrane. With respect to parameter sensitivity we found that a wrong elastic-
ity of the upper two layers cause changing deflections in regions with substantial
curvature.

3.2.4 Curvature Effects

To investigate the effect of the otolith curvature in more detail, it is convenient
to define a planar otolith with an orientation that locally resembles the curved
maculae of real otoliths. Since otolith membranes are mainly flat structures, a plane
is a reasonable local approximation of their shape. We defined planes by the linear
equation:

z=ax+by (105)

with x, y, and z indicating head coordinates, and a and b defining the orientation of
the plane. The deflection of a planar otolith structure can be determined with a high
degree of precision from a finite difference model (Grant and Cotton, 1990). Since a
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planar structure is insensitive to acceleration components perpendicular to the plane,
its displacement due to acceleration can be derived by projecting the acceleration
into that plane. By comparing the response of such planar structures to the actual
displacements as predicted by our 3D model, we numerically determined the plane
orientation that best resembled the response of curved maculae for accelerations in
the three head planes. We found that planar approximations show almost the same
displacements as curved otolith membranes if the slope of the ideal plane corresponds
to the local slope of the curved macula. To test this further we employed the model
of a planar otolith macula with only the density of one single otoconia finite element
being larger than the endolymph density. This approach is similar to the one used by
Kondrachuk (Kondrachuk, 2000), with the difference that he considered local forces
originating from the tip of a probe. Our approach led to local displacements around
that element with an extension similar to the range where substantial changes of the
macula curvature occur (~ 300um). Only comparatively small displacements were
found in elements that were further away from the otoconia element with a nonzero
effective density.

3.2.5 Discussion of Static Mechanical Effects

Simulation of displacements of otolith membranes with numerical techniques has a
long tradition. Early simulations were restricted by the limited anatomical knowl-
edge about the otolith structure. Twizell (Twizell and Curran, 1977) and Hudetz
(Hudetz, 1973) used a planar, two dimensional approximation of the otolith mem-
brane with a space fixed lateral boundary. A marked improvement in our under-
standing of otolith mechanics was the introduction of a layered membrane structure
(Grant et al., 1984; Grant and Best, 1986, 1987; Grant and Cotton, 1990; Grant
et al., 1993). Grant was also the first to use the mechanics of visco-elastic materials
to describe membrane dynamics. His approach allowed the investigation of static
and dynamic responses, always making the assumption that the otolith epithelia
can be approximated reasonably well by planar surfaces. The same assumption was
made by Kondrachuk (Kondrachuk, 2000), who took up a suggestion by Kachar et
al. (Kachar et al., 1990) and sub-divided the space between the macula and the
otoconia-layer into two mechanically distinct parts. This allowed him to analyze the
experimental findings by Benser et al. (Benser et al., 1993), and to determine the
elastic properties of those layers. To our knowledge the simulations presented above
are the first to consider the actual 3D structure of the otoliths. Our results suggest
that the curvature of otolith membranes has no effect on the displacement of the
membrane as a whole, and that distant parts of the membrane can act almost in-
dependently. The deflection is related to the local orientation of the macula, which
can be approximated by a plane. Critical to this observation is the elasticity of
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the mesh- and otoconia-layer. If the elasticity were smaller, parts of the membrane
with different orientation would interact through forces transmitted by the upper
layers. If the elasticity were higher, it might become necessary to take the local
inhomogeneity of the membrane into consideration (for example the distribution
of otoconia, which have a size of about 10y m). Based on the parameters chosen
for this investigation we speculate that the otolith membrane has evolved in a way
that ensures non-interaction of parts with different orientations, while keeping the
elasticity of the upper layers large enough to obtain a homogenous distribution of
otoconia forces. We conclude that the curvature of the otolith maculae is directly
related to the need to sense a particular aspect of the acceleration. It is not involved
in some kind of mechanical "computation”.

We found that the displacements of the otolith membrane due to static accelerations
could be reproduced very well with sinusoidal functions. Since the partial differential
equation that guides the displacement is linear and distant parts of the membrane
do not interact, the mechanical response is determined by the local orientation of
the macula. As the direction of the acceleration vector rotates, the displacements
are largest if the vector is parallel to the local orientation of the macula, and zero if
it is perpendicular to it. For angles between these extremes the displacements can
be well approximated by sinusoidal functions since the displacements correspond to
the projection of the acceleration vector into the local plane.

Numerical simulations of the macula organs are hampered by the lack of exact mate-
rial parameters. For this reason we carefully evaluated the effects that would result
from changes in the critical parameters. We found that, with the exception of the
elasticity of the mesh- and otoconia-layer, all parameters just affect the magnitude of
the displacement of the curves shown in Figures 18 and 19, while other properties of
the curves are not altered. Given a gel-layer height of 10y m, the predicted displace-
ments on the order of several hundred nanometer seem reasonable for acceleration
with 1g. Higher accelerations arise in daily life during running or jumping and the
system should not be driven into saturation by these conditions. Of all the mechan-
ical parameters the elasticity of the mesh and otoconia-layer is probably the least
known, especially for mammal otoliths. Our investigations revealed that a change
of this parameter leads to altered deflections of the otolith membrane, depending on
the local curvature of the macula. For a better understanding of otolith kinematics
it is necessary to experimentally determine these parameters more exactly.

Planar approximations of otolith structure are also used in models that try to deter-
mine the otolith contribution to eye movements (Merfeld et al., 1993; Glasauer and
Merfeld, 1997; Haslwanter et al., 2000) or to the perceived orientation in space (Dai
et al., 1989). These models generally assume that otoliths are perfect transducers
of head accelerations. Our model does not directly contradict this assumption, es-
pecially since the simulations demonstrate that deflections occur regardless of the
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direction of acceleration, i.e. that there are no "blind spots”. Nevertheless, given the
ambiguity of linear accelerations (they can be due to gravity, or due to real accel-
erations), it is questionable if the brain is able to interpret all acceleration signals
correctly. It is likely that accelerations that are highly relevant in the usual scheme
of head movements are detected more accurately. Variable stereocilia elasticity may
be a way to tune mechanical responses. These hair bundles provide a substantial
part of gel-layer elasticity, and it was found that their mechanical properties ex-
hibit some variability (Benser et al., 1993). A systematic distribution of stereocilia
elasticity over the macula may be able to guide deflections in a way optimized to
species-specific needs.

3.3 Dynamic Results

While the knowledge about orientation with respect to gravity is of great signifi-
cance for body posture, it is even more important for humans to detect changes of
the orientation. Changes of the orientation with respect to gravity and changes of
acceleration in general provide essential information for the control of a inherently
unstable body.

3.3.1 Curvature Effects

Due to weak mechanical coupling, distant parts of the otolith structure interact
only marginally (Jaeger et al., 2002). We therefore studied the dynamic effects of
otolith curvature by investigating a comparatively small, quadratic section of the
otolith (300um x 300um). The planar otolith section was deformed in such a way
that the curved otolith region represented a section of a sphere with radius R (Fig.
21). A planar surface would correspond to an infinitely large curvature radius. The
deformed structure was then oscillated sinusoidally, parallel to the tangent of the
layers in the central region of the section, with a maximum acceleration of 1g, and
a frequency between 0.1 and 10 Hz. This frequency range covers all typical head
movements (Viirre and Demer, 1997). Due to the assumed incompressibility of the
otolith membrane, accelerations perpendicular to the layers yield virtually no effect.
Fig. 21 shows the transfer functions of the analytical solution (Equation 103), the
planar and deformed otolith sections. It depicts the magnitude and phase of the
displacements at the gel/mesh layer boundary in the central region of the section.
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Figure 21: Transfer function of a quadratic otolith section at the gel/mesh layer boundary. A)
While the displacements are identical for the planar section and the analytical case, finite curvature
of the section leads to a reduction of the displacement. B) The phase shifts are unaltered by the
magnitude of the curvature radius R. The inset illustrates the meaning of this parameter.

In all cases the phase shift is identical. The uppermost trace represents the amplitude
of the planar sample, which coincides almost perfectly with the analytical solution.
The lower traces indicate that for decreasing curvatures the displacement amplitude
is progressively reduced. Figure 22A shows the relation between the displacement
amplitude and curvature radius. While for a radius above 1000pum the amplitude
reduction is <10% compared to the planar sample, it is becoming more pronounced
for smaller radii. We found in our data set that the radius of curvature is in most
areas larger than 1000um. However, a small region on the utricle, which is marked
on Fig. 22B as "large curvature area” (LC), shows a local curvature radius of only
about 400pm.
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3.3.2 Discussion of Dynamical Curvature Effects

Only few studies exist that have investigated the dynamic behavior of the otolith
membrane (Grant and Cotton, 1990; Grant et al., 1993; Kondrachuk, 20015). These
studies were based on a number of simplifying assumptions: they assumed that the
otolith membrane consists of two individual sub-layers with different mechanical
properties and is planar. The present study eliminated these assumptions. In accor-
dance with experimental findings (Kachar et al., 1990), we subdivided the otolith
membrane into three different layer, i.e. we added a stiff intermediate mesh layer
to the otolith structure. Both the finite element response and analytical transfer
function that we derived for this setup showed that for flat parts of the otoliths, the
mesh layer adds no new aspects at the gel/mesh layer boundary: The displacement
amplitude remains constant for frequencies up to 1 Hz and decreases to zero for
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higher frequencies, while the phase shift gradually increases. The numerically and
the analytically derived transfer functions differ with respect to the treatment of
the endolymph fluid: While the analytical solution incorporates velocity dependent
forces of the endolymph on the otolith membrane, the finite element approach does
not. The similarity in the predicted responses suggests that viscous forces from the
endolymph have only minor effects on otolith displacements in the typical frequency
range of head movements.

For the 3-dimensional shape of the otoliths, we used experimentally measured data
from human otoliths (Takagi and Sando, 1988; Sato et al., 1992). Static investiga-
tions of otolith displacements that were based on these data have shown that the
local displacements are largely determined by the local orientation of the otolith
membrane (Jaeger et al., 2002). This allowed us to study the effects of curvature
on otolith displacements on a small, quadratic slice. Our results indicate that cur-
vature changes the response properties. While the phase shift remains identical to
the planar case, the amplitude is reduced over the whole frequency range. This can
be explained by the fact that elements outside the central region of the quadratic
slice are not subject to the optimal, parallel acceleration. Instead their displacement
depends on the local orientation. Since the deflections in the neighboring parts are
smaller, the displacement in the central region is reduced too. This reduction in-
creases as the radius of curvature becomes smaller. For most areas of the human
otoliths the curvature radius is >1000um, and the decrease of amplitude is less than
10%. However, on the utricle we also found a region where the radius is substan-
tially smaller (Fig. 22B). Interestingly, this region of large curvature is close to the
striola and shows a similar orientation. Speculations about the implications of this
proximity become even more tempting by the fact that other researchers have put
the striola more frontally and laterally than Lindeman did (Flock, 1964). It may
be possible that the areas of large curvature are specifically used to somehow opti-
mize the transduction of orientation and movement, especially since the direction of
largest curvature and the direction of hair cell polarization coincide there.

3.3.3 Effects at Higher Frequencies

To study the effects of higher oscillation frequencies on the otolith membrane, we
needed to abandon the simplifying assumption of isotropy in the otoconia layer.
If there are deflections of the otolith structure, they should be found in the vicin-
ity of the otoconia, since at least the gel layer is strongly damped. To investigate
such effects, we constructed a simple model, which included otoconia separated by
an isotropic inter-otoconial filament matrix. For this matrix we took a density of
1g/cm?, and for the otoconia crystals a density of 2.7g/cm® (Money et al., 1971).
Since measurements of the density of the otoconia layer, i.e. otoconia plus intercon-
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necting matrix, have shown that the combined density is about 2g/cm® (Trincker,
1962), we chose the distance between the otoconia such that it accounted for the
lower density of the compounded structure. The otoconia were approximated by
bricks with a basis length of 4um by 4um and a height of 6.5um, which were ori-
ented in the way indicated in Fig 23A. Experimentally it was found that the height
of most otoconia falls into the range 3 to 7um (Lindeman, 1969). To obtain the
desired overall density of 2g/cm®, a uniform spacing of 1um (in all dimensions)
between the otoconia (Fig 23A) was necessary. Young’s modulus of the otoconia
crystals was taken to be 104 Pa, and their Poisson’s ratio 0.3. These parameters
yielded otoconia which exhibit only tiny deformations.

The elastic properties of the inter-otoconial matrix directly influenced the results of
our simulations, and were therefore crucial parameters. Experiments have suggested
that the inter-otoconia matrix shows a much lower rigidity than the mesh layer
(Lins et al., 2000). For this reason we used elasticity constants identical to that
employed for the gel layer (i.e. a Young’s modulus 10 Pa, and Poisson’s constant
0.49). Since there is no clearly defined border between the inter-otoconial filament
and the endolymph, the endolymph fluid probably fills the inter-otoconial space.
Therefore we chose for the viscosity of the inter-otoconial matrix a value similar to
the endolymph fluid, 0.01 Poise.

The resulting transfer functions, shown in Fig. 23, were obtained numerically for os-
cillations with a maximum acceleration of 1g. The filled dots indicate the amplitude
and phase at the gel/mesh layer boundary in the central region of the structure,
depicted in Fig. 23A. The transfer function in this zone is very similar to the cor-
responding result without separated otoconia (Fig. 21): Frequency independence
below 5 Hz and a marked reduction of the amplitude around 10 Hz, accompanied
with an increasing phase lag. The amplitude approaches zero at about 100 Hz and
shows only minor deviations from this value at higher frequencies. The situation is
different for the otoconia. The open dots in Fig. 23B indicate the transfer func-
tion of a single otoconia crystal from the central region of the upper layer crystals
of Fig 23A. The amplitude at lower frequencies is considerably larger than at the
gel/mesh layer boundary. At around 10 Hz the displacement amplitude decreases,
which can be attributed to the reduced displacements of the underlying gel layer as
otoconia and gel-layer move together. For frequencies around 600 Hz the otoconia
undergo a resonance. Below the resonance frequency, the otoconia oscillate largely
in phase with respect to the external force. Above this frequency, they move in the
opposite direction. This is reflected in the change of sign of the amplitude in Fig.
23B. Depending on the magnitude of the acceleration, such a resonance could lead
to considerable stresses within the inter-otoconial matrix.
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Figure 23: : Effects at higher stimulation frequencies. A) Structure of the otolith membrane. The
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Transfer functions for the gel/mesh layer boundary (solid dots) and otoconia (open dots). The
otoconia show a resonance at about 600 Hz.
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3.3.4 Discussion of the Effects at Higher Frequencies

Our results indicate that otoconia show resonant behavior within the inter-otoconial
matrix. Crucial to the resonance frequency is the elasticity of the inter-otoconial
matrix, E;;, as well as the mass of the otoconia m. Since no experimental data are
available about the elasticity, our estimate relies on the observation that the rigidity
of this matrix is much smaller than that of the mesh layer. On the other hand, the
resonance frequency is related to these parameters by a square law:

Eint
m

fRes o

This ensures that even if the elasticity is wrong by a factor of 10, the resonance
frequency will only shift by a factor of 3. We estimate that the resonance frequency
falls into the range between 100 Hz and 1 kHz. Even if the elasticity is similar in all
parts of the otoconial layer, it is well known that otoconia have considerably different
masses: otoconia from the extra-striola region are larger than those from the striola.
For this reason no single resonance frequency can be expected. Instead it is more
likely that a whole band of resonance frequencies exists for the different parts of the
otolith membrane. We also observed small displacement amplitudes at the gel/mesh
layer boundary in the frequency region around the resonance. Interestingly investi-
gations have found otolith related responses in the vestibular nerve for stimulation
frequencies in the range between 200 and 400 Hz (Young et al., 1977). It was further
shown that intense impulse noise leads to a functional long term impairment of the
otolith apparatus (Perez et al., 2002).

While the mass of the otoconia and the elasticity of the inter-otoconial matrix de-
termine the resonance frequency, the damping provided by the fluid filled inter-
otoconial matrix specifies how pronounced the resonance is. If the damping were
stronger than assumed in our simulations, the amplitude of the resonance would
decrease. For an over-damped system, the resonance would vanish completely. If,
on the other hand, the fluid filled inter-otoconial matrix were not strong enough to
provide this magnitude of damping, oscillating acceleration in this frequency range
could lead to harmful results: Due to their different masses, different parts of the
otoconial layer oscillate with different phase relations. This would result in large
stresses within the inter-otoconial matrix, and could ultimately lead to a disruption
of the structure. In the clinic, such a process may help to clarify the origin of be-
nign paroxysmal positional vertigo (BPPV). Resonances of the otoconia may also
be linked to disorientation and stranding of whales and dolphins in areas where low
frequency active sonar (LFAS) has been used. The frequencies employed in this kind
of sonar fall into the frequency range where otoconia resonances may be expected.
While it is accepted that the high levels of sound used in these surveillance systems
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significantly impair the hearing of crustaceans, our simulations suggest an additional
mechanism for these observations, provided that the mechanical properties of their
otolith structure is similar to other mammals. For these reasons experiments using
high sound level from this frequency range (100 - 1000 Hz), accompanied by either
physiological or electro-physiological observations, could clarify these speculations,
and yield valuable insight into the mechanical properties of the otoliths.
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4 Hair Cell Results

4.1 Hair cell Properties

Direction and magnitude of otolith membrane deflections is detected by the hair
cells (Fernandez and Goldberg, 1976b; Shotwell et al., 1981). Short hair bundles,
called stereocilia, are embedded into the gel layer (Fig. 4). They are inter-connected
via tip-links (Hackney and Furness, 1995; Howard and Hudspeth, 1987), and linked
to a single long hair, the kinocilium. Bending of the hair bundle due to a deforma-
tion of the gel layer leads to direction-specific hyper-polarization or depolarization
of the hair cell. The direction leading to a maximum depolarization is indicated
by the polarization vector. The polarization vectors of different hair cells are not
randomly distributed over the epithelium, but show a distinct pattern (Lindeman,
1969), indicated by the arrows in Fig. 24.

Figure 24: Hair cell polarization directions. Bending of the stereocilia in the direction indicated by
the arrows leads to depolarization of the hair cells and an increase of the firing rate in corresponding
vestibular fibres. The letters (S) and (P) refer to Fig. 26.

Since we are dealing with curved 3-dimensional surfaces, we needed to determine
the 3D components of these polarization vectors. They were obtained by generating
a two-dimensional vector-field according to the observations by Lindeman, and then
projecting this field onto the curved macula. The intra-cellular hair cell potential
depends on the cosine of the angle between the local polarization vector and the
hair cell deflection (Shotwell et al., 1981). It was further assumed that the hair
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cell potential is linearly related to the magnitude of deflection, which is probably
justified as long as the external acceleration is smaller than about 3g (Fernandez
and Goldberg, 1976¢).

Depending on the location on the epithelium, two types of vestibular fibres can be
distinguished: Tonic/phasic units, which innervate hair cells situated in the striola
region, indicated by the shaded, band-like central region in Fig. 24, and tonic units
linked to the extra-striola region (Goldberg et al., 1990b). This distinction does not
coincide with the morphological type I and II hair cells: Type I cells in the striola
region contribute to tonic/phasic units while similar cells in the extra-striola region
are innervated by tonic units.

Tonic units show a firing rate proportional to the amount of deflection. For the
investigation of dynamic stimulations, the output of tonic/phasic units are of great
interest. Signals in the vestibular nerve related to these units are composed of a
transient, velocity dependent part which reflects the movement of the otolith mem-
brane due to changing acceleration, and a component that reflects the magnitude of
the hair bundle bending. The origin of the regional differences of the unit properties
are not clear yet. Based on morphological and theoretical considerations, Lim (Lim,
1976) and Kondrachuk (Kondrachuk, 2002) have argued that hair bundle displace-
ments in the striola region are due to fluid flow in the gel layer. As implied by these
investigations, it will be assumed that tonic/phasic properties already exit at the
hair cell level.

We assumed further that bending of the kinocilium determines the movement of the
stereocilia and is linearly related to the polarization of the hair cells. In extra-striola
regions, the tips of the kinocilia are attached to the mesh layer (Kachar et al., 1990)
or even protrude into the otoconia layer (Lim, 1976; Ross et al., 1987). In contrast,
the kinocilium of hair cells in the striola seems to be shorter (Fontilla and Peterson,
2000). For these hair cells it is not clear if or where the kinocilium is actually
attached to the otolith membrane. Under dynamic stimuli, the gel displacement is
in general no longer a linear function of the distance to the apical surface of the
hair cell: at the onset of acceleration, the upper parts of the gel layer get displaced
proportionally more than parts close to the epithelium. If the tips of the kinocilia
in the striola are close to the mesh layer, this would therefore result in the largest
sensitivity for motion. Because of this, we assume that the direction and magnitude
of the displacement at the gel/mesh layer boundary is proportional to hair cell
excitation.

In summary, the deviation of the local hair cell potential (HCP) from its resting
potential was calculated by

HCP o« g+ il = |u| cos(p il); Ipl =1 (106)



Hair Cell Results 67

where p'is the normalized polarization vector, i the displacement of the otolith mem-
brane at the border between gel and mesh-layer, and ”-” indicates a scalar product.
In addition to this, the transformation from a dynamic acceleration stimulus to hair
cell responses in the striola region are described by the use of fractional calculus
(Hess, 1992).

4.2 Hair cell responses under static conditions
4.2.1 Excitation Maps

After combining the otolith membrane displacements with the hair cell character-
istics it is possible to calculate hair cell excitation at every point on the macula.
This contrasts with single cell recordings, which can present only the activation of
individual cells. Since the displacements vary for different acceleration magnitudes
as well as directions, the resulting excitation patterns indicate different spatial rep-
resentations of those accelerations.

Figure 25 shows the distribution of hair cell excitations for the upright orientation
(middle), and for the head tilted 30° right- (top) or left- (bottom) ear down. To
this purpose, the excitation patterns on the curved otolith surfaces were projected
into the head planes, indicated by the small coordinate-system on the figure. The
activation varies rather smoothly over the epithelium, with the exception of regions
indicated here by dashed lines, which are approximately perpendicular to the striola.
In these regions a rapid change of the polarization occurs within a range of about
hundred micrometers. They can be found in the ventral part of the saccule and the
medial part of the utricle. The shape and location of these regions is related to the
direction of acceleration.
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Figure 25: Excitation maps of left utricle and saccule for three directions of acceleration. The
background color represents no polarization, while black and white indicate depolarization and
hyper-polarization, respectively. The maps are projections on the main head planes (as indicated
by the coordinate systems in Figs. 18 and 19. Shaded regions depict the location of the striola
and dashed lines indicate areas where the hair cell polarization changes rapidly.



Hair Cell Results 69

4.2.2 Response Curves

During systematic changes in roll and pitch, the polarization at different locations
on the macula consisted of only a limited set of activation patterns. Figure 26 shows
two such patterns for utricle and saccule. The locations of the corresponding cells
are indicated in Fig. 24 by the labels "P” and ”S” on the otolith surfaces.
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Figure 26: Examples of polarization for roll (dark points, solid line) and pitch (light points, dashed
line) at the locations indicated with (S) and (P) in Fig. 24. The left column shows utricular hair
cells, the right column saccular hair cells. Zero on the abscissa indicates the upright orientation,
and positive angles leftward and forward tilts, respectively. The horizontal line represents zero
polarization and positive values indicate hyper-polarization.

The graphs in Fig. 26 are remarkably similar to the recordings of the vestibular nerve
activity during static tilt experiments (Fernandez et al., 1972). The requirement to
simultaneously match amplitudes as well as phases for the roll and the pitch data
imposes considerable restrictions on the orientation of the otolith macula and the
directions of hair cell polarization, and eliminates the possibility to simply select the
best-matching patterns for roll or pitch. Note the similarities between the P-figures
of the saccule and the utricle.

4.2.3 Discussion of Static Hair cell Responses

Investigations into peripheral vestibular activity have up to now been restricted
to the analysis of individual vestibular nerve signals. Our simulations present for
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the first time a realistic image of the activation patterns over the whole otolith
epithelium. We were surprised to find small regions, indicated by dashed lines
perpendicular to the striola in Fig. 25, where the excitation level changes rapidly
over a short distance. The location and shape of these regions might provide a
important cue for the determination of head orientation.

Since type II cells are innervated by a single vestibular cell and the region of influ-
ence of multi-bouton type I cells is usually restricted to hair cells with a very similar
on-direction (D. Dickman, private communication), we expect that our simulated
excitation maps show a close correspondence to the activity in real vestibular nerve
cells. If the neural connections between the otolith epithelium and the vestibular
nuclei exhibit a topographic mapping, the same patterns should be found in the
activity of cells in the vestibular nucleus. This is supported by the good agree-
ment between typical activity patterns exhibited by our model during systematic
changes in pitch an roll, and corresponding experimental data (Fernandez et al.,
1972). Thereby we could not simply select the best-fit pattern: of all possible com-
binations of amplitude and phase shift, only a subset of all possible patterns was
found in our data. We found that there are regions on the saccule and utricle where
polarization patterns are rather similar (Fig. 26, "P”-curves). This stems from the
fact that the local orientation of the maculae and the polarization vectors of the
hair cells closely match in these regions. Contrary to the view that utricle and sac-
cule provide complimentary information, this may indicate that small parts of them
yield almost overlapping information. Utricle and saccule afferent fibers are usually
distinguished experimentally under the assumption that such regions do not exist.
While procedures applying this assumption are valid for most of them, our findings
suggest that there may be a small number of utricle nerves that are mistaken as
saccule fibers.

The interpretation of peripheral vestibular signals has so far concentrated on the
transduction properties of individual neurons, or on the interaction between two
spatio-temporally different neurons (Angelaki, 1992; Angelaki et al., 1992; Hess and
Angelaki, 1993; Angelaki and Dickman, 2000). The emergence of distinct activation
patterns for different static head orientations indicates an alternative option: the
information about head acceleration could also be contained in a distributed repre-
sentation over the whole epithelium. Large areas with similar innervation, as seen
in Figure 25, would render such a representation more stable than the interpretation
of signals from individual neurons. Since we want to understand the information
transmitted to the brain by the hair cells, the knowledge about force-displacement
relations of the macula is a first step to achieve this goal.
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4.3 Hair cell responses under dynamic conditions

4.3.1 Spatio-Temporal Excitation Maps

Based on the displacements at the gel/mesh layer boundary, the distribution of hair
cell polarization vectors, and fractional calculus we calculated the time dependent

excitation of hair cells at location along the striola.
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Figure 27: : Time course of utricular hair cell excitation over the striola. A and B correspond to
nose down and left ear down tilts, respectively. "Position” indicates the parameterized location on
the striola. The units of excitation are arbitrary. C shows the time course of excitation at various
positions in A (0, 3, and 5mm), along with the acceleration along the interaural axis.
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To investigate neural responses to natural stimuli, we chose small head tilts. Start-
ing from an upright position, the head rotated smoothly within 0.4 s forward (Fig.
27A) or to the side (left ear down, Fig. 27B). The final tilt angle was 10° with re-
spect to head upright position. Figure 27 shows the resulting excitation of utricular
striola cells. Zero on the "Position” axis corresponds to the lateral end of the left
utricle, and positive values parameterize the locations along the bent striola. At
the beginning ("Time” equal zero) the head is in an upright position, and the ex-
citation corresponds to the hair cell excitation in a static head-upright orientation.
After 0.2 s the head tilt starts, and finishes at 0.6 s. During this time, the excita-
tion represents the displacement as well as the displacement-velocity of the utricular
structure. Excitation (or inhibition) reach their maximum value before the end of
the head movement, and then approach the steady state value for the head tilted
orientation. Figures 27A and B show that different tilt directions lead to clearly
distinct excitation patterns. For a given tilt direction, however, the time courses
at different striola positions are quite similar. Fig. 27C presents the excitation at
three positions along the striola for the left ear down tilt case (Fig 27B). The result-
ing traces correspond to sections through the surface in Fig 27B at three different
positions, parallel to the time axis. For all three traces, the moment of maximum
excitation is identical, and the time during which the maximum excitation decays
to the tonic state is similar. Figure 27C also shows the magnitude of gravitational
acceleration along the interaural axis (thick, solid line).

4.3.2 Coding of Tilt Direction

The patterns of maximum excitation due to tilts into various directions are summa-
rized in Fig. 28 for both otoliths. Here the parameterization of the utricle striola
is identical to the one chosen in Fig. 27, while for the saccule zero corresponds to
the ventral end of the striola. For the thin solid line in the third row, left column,
the curves correspond to a section through the surface in Fig 27B (left ear down) at
the time of maximum excitation (ca. 0.5 s), parallel to the "Position” axis. The tilt
direction is characterized by an angle: 0° corresponds to forward tilt, 90° to left ear
down tilt, 180° to backward tilt, and so on. Excitations that correspond to move-
ments into opposite directions are grouped in the sub-figures. Maximum excitations
at smaller angles (0°, 45°....) are indicated by thin lines, while the corresponding
larger angles (180°, 225°,...) are indicated with thick lines. The dashed lines indicate
the starting, tonic excitation in a head upright position.

Though maximum excitations into opposite directions can look very different, they
closely represent mirror images of each other with respect to the initial excitation:
The "excitation difference”, defined as the area between the initial excitation curve
and the excitation curve in the tilted orientation, is similar at all positions on the
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striola. For a head tilt left-ear-down, the excitation difference is indicated by the
shaded area in Fig 28. Interestingly, the functional shape of the excitation curve does
not change strictly proportional to the tilt direction. There are contrary successive
tilt angles where the changes are large (0° to 45° at the utricle) and other angles
where they are small (45° to 90°). Though it might be expected that this kind
of acceleration stimulus predominantly leads to utricle responses, we also found
substantial excitations at the saccule.
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Figure 28: : Maximum excitation for tilts into different directions, indicated by the angles: 0°

corresponds to nose down, 90° to left ear down tilt etc . The excitations are shown with respect to
their position on the striola. Tilts into opposite directions are grouped in the sub-plots: The thin
line indicates the excitation due to low-angle tilts, while the thick line corresponds to large angles.
Along with the maximum excitation, the initial state, corresponding to head upright position is
included (dashed lines).
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4.3.3 Discussion of Dynamic Hair cell Responses

One goal of our study was to understand the neural representation of head move-
ments. The neural activity in the vestibular nerve is a product of mechanical dis-
placements, inter- and intracellular signal processing. Therefore a complete under-
standing of the system requires knowledge about the mechanical displacement of the
otolith membrane. We have restricted our presentation to the immediate effects of
displacements on hair cell excitation, since the implications of otolith-otolith and
otolith-canal convergence are still under investigation. Velocity sensitive hair cells
are chiefly found in the narrow striola region of the otoliths. This allowed us to
characterize these cells with a single position parameter, i.e. by their location along
the striola.

In Figs. 27A and B, the time course of excitation over the whole striola is shown for
different directions of head tilts. Since responses to sensory inputs are most likely
optimized for natural, everyday movements, we used natural small, 10° head tilts in
this study. We found that the excitation patterns which arise from nose down and
left ear down tilts are substantially different. This may indicate that the direction of
head acceleration and changes of the acceleration are coded in a spatially distributed
excitation pattern. It can further be noted that although both excitation patterns
are due to 10° tilts, left ear down tilts seem to be more effective, since the amplitudes
are larger in Fig. 27B.

Figure 27C shows that dynamic excitation responses are a mixture of tonic and
phasic components. Peak excitations occur simultaneously on different locations of
the striola. This indicates that the mechanical properties of the otolith structure
induce no time delays in the displacement between different parts of the striola,
and no information on tilt direction is coded here. Also the temporal decay of
the excitation patterns yields no information on the tilt direction: As Fig. 27C
shows, the time course of the decay from the maximum to the tonic state is similar
throughout the striola. Both observations support the assumption that tilt direction
is coded as spatially distributed activation pattern.

To test this assumption more systematically, maximum excitations were calculated
for several tilt directions of the head (Fig. 28). They were chosen because the
maximum excitation, together with the knowledge about the initial state, can be
taken as a suitable representation of the phasic part of the excitation. Several
conclusions can be drawn from Fig. 28. While it is generally assumed that the
saccule is unimportant for detecting movements around the head upright position,
our calculations indicate that in dynamic situations this might be wrong. Though
the largest excitation change from the initial to the maximum state is generally
smaller for the saccule, it is still a large fraction of the corresponding value for the
utricle. In addition, the contribution of the two otoliths to a central estimation of
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head movement may be influenced by the overall excitations change from all parts
of the striola. In Figure 28, this is indicated by the gray area for head tilts to the
left. The sub-plots "0°/180°” in the same figure suggest that the saccule may be
just as important as the utricle in the detection of head movements. One further
observation drawn from Fig. 28 concerns the sensitivity regarding the detection of
head movement directions. The maximum excitations for tilts into the 45°/225° and
90°/270° directions are very similar for the utricle as well as the saccule. On the
other hand these two sets are rather different than the other sets: Nose down tilts
may be clearly distinguished from left ear down tilts. This indicates that otoliths
show direction-depending sensitivities for the detection of head tilt direction. One
way to improve this situation would be to use information from the left and right
ear in the formation of a differential neural signal. Such a process has been proposed
by Green (Green and Galiana, 1998).
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5 Conclusions

Studies of the otolith system try to understand which information about the orien-
tation and movement of the head is transduced by them, the way this information is
represented in the brain and how it is integrated with sensory cues from other sys-
tems. The results presented in this investigation show that numerical simulation of
otolith membrane mechanics can yield valuable insight into acceleration processing
of this apparatus. It has been demonstrated that the model is able to reproduce mea-
surements from the vestibular nerve. This indicates that 3D models of the otolith
membrane provide a way to determine all the information available to the brain. In
contrast recordings from the vestibular nerve can only measure small samples of it.

Still much work is needed for a comprehensive understanding of the otoliths and the
vestibular system in general. Experimental investigations are particulary important.
Regarding the otolith membrane, experiments like those performed by Benser et al.
(Benser et al., 1993) would be very helpful: After removal of the otoconia layer
markers were placed on the mesh layer, and their displacement was then used to
determine material properties of the membrane. Since these experiments employed
the frog sacculus, similar investigations are needed for mammal otoliths. A thor-
ough understanding of otolith membrane mechanics also requires measurement of
elasticity of the inter-otoconial matrix. Up to now only a qualitative result is avail-
able (Lins et al., 2000). This and additional physiological testing could clarify if the
proposed resonance within the otoconia layer exists, as predicted by our simulations.

It is well known that different parts of the otolith membrane exhibit different mor-
phological properties. Most notably in this regard are differences between the striola
and the extra-striola region (Lim, 1976). These differences are probably also reflected
in altered mechanical parameters. A marked improvement of our model could be
obtained by including these differences. Regional differences exist not only with
respect to the otolith membrane. Hair cells (Fontilla and Peterson, 2000) and the
interconnections between them (Fernandez et al., 1990) are also affected. Exper-
imental investigations are needed to clarify the localization and purpose of these
differences.

All these suggestions call for a verification of the results obtained so far. This should
build a reliable basis for subsequent investigations concerning otolith related infor-
mation processing by the brain. Comparison of numerically obtained results with
certain experimental findings could then be used to determine the limits of this
model. Two types of experimental findings come to mind: Recordings from the
vestibular nerve and subsequent stages of information processing could be helpful to
determine the properties of the interaction between hair cells and vestibular nerves.
Psycho-physical experiments might further yield important clues. It has been ar-
gued that the perception of head tilt is determined by otolith responses (Dai et al.,
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1989). Related experiments usually measure the subjectively perceived amount of
tilt for different angles in the roll axis. The findings indicate that humans sys-
tematically mis-perceive tilt magnitude. Perception data are available for tilts that
cover all tilt directions. These data sets indicate that humans not only make sys-
tematic errors but also exhibit tilt-depending sensitivities in the perception of 3D
body orientations. Similarly the numerical model of the otoliths indicates higher or
lower sensitivity to changes about certain head positions. A link between psycho-
physical and numerically obtained results would support the validity of the model.
It is further interesting since psycho-physical findings usually involve many steps
of information processing. FEvidence of direct involvement of a sensory system in
generating a certain perception thus helps to clarify the functional significance of
the sensor.
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