

Highly Interactive
Web-Based Courseware

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Frank Hanisch

aus Reutlingen

Tübingen
2004

Tag der mündlichen Qualifikation: 11.02.2004
Dekan: Prof. Dr. Martin Hautzinger
1. Berichterstatter: Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer
2. Berichterstatter: O.Univ.-Prof. Dr.Dr.h.c.mult. Hermann Maurer
 (Technische Universität Graz)
3. Berichterstatter: Prof. Dr. Dr. Friedrich W. Hesse

iii

Zusammenfassung

Zukünftige Lehr-/Lernprogramme sollen als vernetzte Systeme die Lernenden
befähigen, Lerninhalte zu erforschen und zu konstruieren, sowie Verständnis-
schwierigkeiten und Gedanken in der Lehr-/Lerngemeinschaft zu kommunizieren.
Lehrmaterial soll dabei in digitale Lernobjekte übergeführt, kollaborativ von
Programmierern, Pädagogen und Designern entwickelt und in einer Datenbank
archiviert werden, um von Lehrern und Lernenden eingesetzt, angepasst und
weiterentwickelt zu werden. Den ersten Schritt in diese Richtung machte die
Lerntechnologie, indem sie Wiederverwendbarkeit und Kompabilität für hyper-
mediale Kurse spezifizierte. Ein größeres Maß an Interaktivität wird bisher
allerdings noch nicht in Betracht gezogen. Jedes interaktive Lernobjekt wird als
autonome Hypermedia-Einheit angesehen, aufwändig in der Erstellung, und weder
mehrstufig verschränk- noch anpassbar, oder gar adäquat spezifizierbar.
Dynamische Eigenschaften, Aussehen und Verhalten sind fest vorgegeben.

Die vorgestellte Arbeit konzipiert und realisiert Lerntechnologie für hypermediale
Kurse unter besonderer Berücksichtigung hochgradig interaktiver Lernobjekte.
Innovativ ist dabei zunächst die mehrstufige, komponenten-basierte Technologie,
die verschiedenste strukturelle Abstufungen von kompletten Lernobjekten und
Werkzeugsätzen bis hin zu Basiskomponenten und Skripten, einzelnen
Programmanweisungen, erlaubt. Zweitens erweitert die vorgeschlagene Methodik
Kollaboration und individuelle Anpassung seitens der Teilnehmer eines
hypermedialen Kurses auf die Software-Ebene. Komponenten werden zu
verknüpfbaren Hypermedia-Objekten, die in der Kursdatenbank verwaltet und von
allen Kursteilnehmern bewertet, mit Anmerkungen versehen und modifiziert
werden.

Neben einer detaillierten Beschreibung der Lerntechnologie und Entwurfsmuster
für interaktive Lernobjekte sowie verwandte hypermediale Kurse wird der Begriff
der Interaktivität verdeutlicht, indem eine kombinierte technologische und
symbolische Definition von Interaktionsgraden vorgestellt und daraus ein visuelles
Skriptschema abgeleitet wird, welches Funktionalität übertragbar macht.
Weiterhin wird die Evolution von Hypermedia und Lehr-/Lernprogrammen
besprochen, um wesentliche Techniken für interaktive, hypermediale Kurse
auszuwählen. Die vorgeschlagene Architektur unterstützt mehrsprachige,
alternative Inhalte, bietet konsistente Referenzen und ist leicht zu pflegen, und
besitzt selbst für interaktive Inhalte Online-Assistenten. Der Einsatz hochgradiger
Interaktivität in Lehr-/Lernprogrammen wird mit hypermedialen Kursen im
Bereich der Computergraphik illustriert.

v

Abstract

The grand vision of educational software is that of a networked system enabling the
learner to explore, discover, and construct subject matters and communicate
problems and ideas with other community members. Educational material is
transformed into reusable learning objects, created collaboratively by developers,
educators, and designers, preserved in a digital library, and utilized, adapted, and
evolved by educators and learners. Recent advances in learning technology
specified reusability and interoperability in Web-based courseware. However, great
interactivity is not yet considered. Each interactive learning object represents an
autonomous hypermedia entity, laborious to create, impossible to interlink and to
adapt in a graduated manner, and hard to specify. Dynamic attributes, the look
and feel, and functionality are predefined.

This work designs and realizes learning technology for Web-based courseware with
special regard to highly interactive learning objects. The innovative aspect initially
lies in the multi-level, component-based technology providing a graduated
structuring. Components range from complex learning objects to toolkits to
primitive components and scripts. Secondly, the proposed methodologies extend
community support in Web-based courseware – collaboration and personalization –
to the software layer. Components become linkable hypermedia objects and part of
the courseware repository, rated, annotated, and modified by all community
members.

In addition to a detailed description of technology and design patterns for
interactive learning objects and matching Web-based courseware, the thesis
clarifies the denotation of interactivity in educational software formulating
combined levels of technological and symbolical interactivity, and deduces a visual
scripting metaphor for transporting functionality. Further, it reviews the evolution
of hypermedia and educational software to extract substantial techniques for
interactive Web-based courseware. The proposed framework supports multilingual,
alternative content, provides link consistency and easy maintenance, and includes
state-driven online wizards also for interactive content. The impact of great
interactivity in educational software is illustrated with courseware in the Computer
Graphics domain.

vii

Acknowledgements
This thesis was conducted during my occupation as Research Assistant at
the Graphical-Interactive Systems group of the Wilhelm Schickard
Institute (WSI/GRIS), University of Tübingen.

First and foremost, I would like to thank my advisor Prof. Wolfgang
Straßer for supporting me throughout my work, and giving me the freedom
in research I needed. The referees Prof. Hermann Maurer and Prof.
Friedrich W. Hesse I would like to thank for rendering their expert opinion
with respect to my work.

Much gratitude is given to those who supported me and were of great help
throughout the cooperations and meetings. Special thanks go to, in
alphabetic order, Prof. Steve Cunningham (California State University
Stanislaus), Dr. L. Miguel Encarnação (Fraunhofer CRCG, Providence),
Prof. Dr. Thomas Ertl (University of Stuttgart), Prof. Dr. James D. Foley
(Georgia Institute of Technology), Prof. Maike Franzen (University of
Applied Sciences Solothurn), Prof. Mike McGrath (Colorado School of
Mines), Prof. Dr. Michael H. W. Hoffmann (University of Ulm), Prof. Dr.
Reinhard Klein (University of Bonn), and Prof. Dr. José Carlos Teixeira
(University of Coimbra). I would also like to thank Dr. Beatriz Barquero
(KMRC Tübingen), Tobias Bolch (University of Erlangen), Dr. Ulrike Creß
(KMRC Tübingen), Prof. Craig Gotsman (Technion – Israel Institute of
Technology), Dr. Kurt Kratschmann (IBM IT Education Services), Martin
Rotard (University of Stuttgart), and Simon Wiest (University of
Tübingen) for technical feedback and evaluation.

Further thank is due to the colleagues and students of the WSI/GRIS,
especially to my students Sven Gottwald, Christian Holzer, Patrizia
Nardin, and Benjamin Nill. The Runge Kutta integrator is courtesy of my
colleague Michael Hauth, and the Shear Warp factorization of Alexander
Ehlert.

A special thank belongs to my wife and my family for their appreciation.

viii

Contents

1 Introduction ...11
1.1 Grand Challenges .. 11
1.2 The Computer Revolution ... 13
1.3 Structure and Scope .. 14

2 Basics ...17
2.1 Interactivity ... 18

2.1.1 GUI Characteristics ... 18
2.1.2 Perception and Cognition... 20
2.1.3 A Qualitative Framework .. 22

2.2 Hypermedia.. 24
2.2.1 Origins .. 24
2.2.2 Design Principles.. 25
2.2.3 The Web .. 29

2.3 Web-Based Courseware... 31
2.3.1 Educational Software... 32
2.3.2 Learning Management Systems.. 36
2.3.3 Content Management... 38
2.3.4 Learning Technology Standards.. 42

2.4 Interactive Learning Objects .. 45
2.4.1 Repositories .. 45
2.4.2 Software Components .. 52
2.4.3 Scripting.. 54

2.5 Conclusion.. 57

3 GRIS/ILO Interactive Learning Objects59
3.1 MVC Interactivity.. 60
3.2 Software Components.. 61

3.2.1 The ORC-SG Design Pattern... 61
3.2.2 Object, Renderer, Constraint (ORC) 62
3.2.3 Scene Graph and GUI (SG).. 65
3.2.4 The Toolkit.. 70

3.3 Adaptability and Interoperability... 71
3.3.1 Scripting.. 71
3.3.2 Networking ... 75
3.3.3 Scripting Database... 77
3.3.4 Drag & Drop Scripting ... 79

 ix

4 Web Framework.. 83
4.1 Organization and Production.. 84

4.1.1 Layered Database Model.. 84
4.1.2 Template-Driven Generator... 85
4.1.3 Offline Management... 87

4.2 Web-based Authoring .. 89
4.2.1 Online Wizards ... 90
4.2.2 Learner Support ... 92
4.2.3 Author Support... 95

5 Case Studies... 99
5.1 Electronic Webmaster ... 100

5.1.1 Project ... 100
5.1.2 Institution ... 100
5.1.3 Bibliography ... 103

5.2 Image Processing and Video Communications 105
5.2.1 Project ... 105
5.2.2 Visual Programming .. 105
5.2.3 Component Programming .. 108

5.3 Scientific Visualization.. 110
5.3.1 Project ... 110
5.3.2 Scripting.. 110
5.3.3 Community ... 114

6 Conclusion & Directions for Future Work.......................... 117

Abbreviations .. 121

Name Index .. 122

Subject Index... 124

Bibliography .. 127

 11

1 Introduction

1.1 Grand Challenges
In 2002, the Computing Research Association (CRA) asked what are the
"grand research challenges" in computer science and engineering? Not
surprisingly, education was selected as one of the big five [CRA02]. It is
the 20-year old vision of information technology enabling learners to
participate in community networks, where they engage with other
learners, tutors, and teachers in self-expression, exploration, and learning
by discovery and by doing. It is also the vision of a learning environment
that adapts to the participant’s needs in a transparent manner, and allows
all participants to enhance this environment through the construction of
both new learning objects and compositions of interoperable ones.

Keynote speeches at ED-MEDIA 2002 [Barker02] echo the same longing
for a system that lets children of all ages express, consider, and work with
ideas of science (Alan Kay, “The Computer Revolution Hasn't Happened
Yet”), a “Next-Generation Educational Software” (Andries van Dam) for
creating dynamic science content based on both a pedagogical methodology
– well-proven learner-driven and model-based techniques – and a multi-
level, component-based technology. Educational material is meant to
become reused in multiple contexts and for multiple purposes, and become
organized and shared in digital libraries. A systematic reuse of such
learning objects requires standardized metadata and presentation
(Hermann Maurer, “What Have We Learned in 15 Years about
Educational Multimedia?”); standards, in turn, could provide the basis for
innovative collaborative learning techniques.

Research in learning technology currently specifies learning object
metadata and learning management systems. Despite the fact that today’s
educational software is Web-based, and, from the very beginnings in the
1950s, has its strengths originating in its interactive, multimedia nature,
research continues to focus on low-interactive, rather text-based material.
While necessary, metadata does not meet our needs for interactive
(dynamic) learning objects. How can we specify, link, adapt, exchange, and
combine parts of interactive learning objects? Can we enable all
community members performing these tasks? Instead, the “killer problem”
[vanDam02] can be rather located in learning object design that aims
towards gradation and interoperability. Research must develop adequate
design principles allowing learners and educators to work with interactive
material, adapting it to their needs, and integrating it in their
environment. This thesis addresses these challenges and proposes
adequate methodologies which are integrated into real educational
software.

The thesis consists of two parts. At first, we review basic principles of
interactivity, hypermedia, and educational software, and present our ideas
of how Web-based teaching with interactive learning objects could (and
should) be. Following an understanding of the concept of highly interactive
Web-based courseware, we move on to the second part, where we propose
and realize an adequate framework for it. We provide combined levels of

12 1 Introduction

technological and symbolical interactivity with “Model View Controller
(MVC) Interactivity”, and accompany visual programming with innovative
visual scripting in the form of image-based “Drag & Drop Scripting”. Our
“ORC-SG (Object, Renderer, Constraint, Scene Graph, and Graphical User
Interface)” design pattern encapsulates matters of learning object state,
appearance, functionality, and graphical visualization/interaction into
reusable software components. Finally, the proposed Web framework
introduces a “Layered Database Model” supporting multilingual,
alternative content, a template-driven courseware generator assuring
consistent linking and easy maintenance, and online wizards benefiting
from an integrated state machine which offers authorization, session
management, default values, undo, and preview.

We develop educational software in the field of Computer Graphics, which
is archetypical in several aspects; we naturally face the needs for complex
visualizations, we bring along profound knowledge in human-computer
interaction, and we are familiar with component-based technology (see
Figure 1). We started to employ interactive Web-based courseware at the
department Graphical-Interactive Systems, Wilhelm Schickard Institute
(WSI/GRIS), University of Tübingen, in 1995. Courseware typically
accompanies lecture, and serves both as learning and programming
platform for exercises and student projects. Apart from lectures on
Computer Graphics (“Computergraphik spielend lernen”, awarded with a
“Landeslehrpreis”), Computational Geometry, Geometric Modeling, Image
Processing, Video Communications, and Scientific Visualization (“Spielend
Visualisieren”), we performed student projects on Geometry, Cultural
Heritage, and Dynamic Systems, and applied our courseware at Technion
– Israel Institute of Technology, FernUniversität Hagen, University of

Stuttgart, University of Erlangen,
and IBM IT Education Services.
Currently, we are participating in
the foundation of the SIGGRAPH/-
Eurographics CGEMS (Computer
Graphics Educational Materials)
repository [Figueiredo03].

Throughout the thesis, we illustrate
our ideas with extracts from our
latest projects. While our
department’s “Electronic Web-
master” demonstrates capabilities
f the Web framework, two lectures

on image processing and video
essing illustrate how we apply

model-based (top-down) visual pro-
gramming and a low-level (bottom-
up) component programming for
education. Our courseware on
cientific visualization further

provides fine-grained hypermedia
terlinking, visual scripting, and

o

proc

s

in

Figure 1: The shear warp
factorization represents a volume
rendering technique for
visualizing 3D arrays of sampled
data [Lacroute94]. This learning
object reuses software components
to visualize slices (top left) and
offers interaction with the
classification functions (bottom
left) and the perspective
parameters (right side).

1 Introduction 13

community support. The “GRIS/ILO Interactive Learning Objects”
repository features a representative cross section from more than 130
learning objects, available at http://www.gris.uni-tuebingen.de/projects/ilo.

1.2 The Computer Revolution
Web-based teaching is an interdisciplinary field. Terminology varies
widely depending on the user’s background. Most evident is the denotation
of interactivity in education, which has become an often-cited, long-winded
term. We have combined it with two other magic bullets, hypermedia and
courseware. What exactly is “interactive Web-based courseware”? Can we
imagine education based on interactive hypermedia, that is, software
enabling learners to create and evolve dynamic models to invent, express,
and refine ideas? If so, what characteristics do we consider best? Let us
review potential benefits of computer technology for facilitating learning as
enumerated by Alan Kay [Kay91] in 1991.

The first benefit is great interactivity. […] A second value is the ability of the
computers to become any and all existing media […].

Third, and more important, information can be presented from many different
perspectives. Marvin L. Minsky of MIT likes to say that you do not understand
anything until you understand it in more than one way. Computers can be
programmed so that “facts” retrieved in one window on a screen will automatically
cause supporting and opposing arguments to be retrieved in a halo of surrounding
windows. An idea can be shown in prose, as an image […]

Fourth, the heart of computing is building a dynamic model of an idea through
simulation. Computers can go beyond static representations that can at best argue;
they can deliver sprightly simulations that portray and test conflicting theories […]

A fifth benefit is that computers can be engineered to be reflective. […] Finally,
pervasively networked computers will soon become a universal library, the age-old
dream of those who love knowledge. Resources now beyond individual means […] will
be potentially accessible to anyone.”

Kay predicted the computer to become a direct manipulation learning tool,
featuring great interactivity, proper use of hypermedia, and fruitful
collaboration (see also his Dynabook vision [Kay77]). In the course of our
argumentation, we will sharpen these concepts as follows:

• An interaction in educational software represents a learning
process occurring while modifying objects (2.1.3). We consider an
object as highly interactive learning object, if it provides means
for manipulating its appearance, its dynamic state, and its
functionality (3.1) directly by physical actions. Effects are
immediately visible (2.4.2).

• Real hypermedia integrates interactive multimedia, means for
collaboration, and means for personalization (2.2). Hypermedia
linking must be reliable and fine-grained even for interactive
objects (2.4.3). Today, educational software is Web-based (2.3.2).

• Sophisticated courseware facilitates administration, learning, and
authoring (2.3.2). Content represents reusable, interoperable
learning objects, archived in a repository, and shared, annotated,
and expanded by the courseware community (2.3.3).

http://www.gris.uni-tuebingen.de/projects/ilo

14 1 Introduction

1.3 Structure and Scope
Let us briefly discuss the structure and scope of the thesis. Cross-
references are enclosed in round brackets, indices for inline keywords
(bold-faced), names (in italics), and references can be found at the end of
the thesis.

The first part of the thesis reviews basic principles of interactivity (2.1),
hypermedia (2.2), and Web-based courseware (2.3) with special respect to
interactive learning objects (2.4).

We sharpen the term interactivity and emphasize its relevance for
learning by identifying three approaches, the developer's view (2.1.1), the
educator's view (2.1.2), and the communication theorist's view (2.1.3).
Next, we reflect on characteristics and shortcomings of interactive
hypermedia. We outline hypermedia’s origins (2.2.1) and design principles
(2.2.2) that lead to its current representative, the Web (2.2.3). Similar we
portray the evolution of educational software (2.3.1) to learning
management systems (2.3.2), where we focus on content management
(2.3.3) and learning technology standards (2.3.4). We describe the vision
and reality of repositories for interactive learning objects (2.4.1), and
consider matters of software architecture allowing for object reuse, that is,
software components (2.4.2), and within-component adaptability (2.4.3).

The second part presents the multi-level, component-based architecture of
our “GRIS/ILO Interactive Learning Objects” (3), an adequate Web
framework (4), and case studies (5).

We combine major concepts of interactivity into “MVC Interactivity” (3.1)
to reformulate terminology in terms of Computer Graphics principles.
Next, we propose and realize an “ORC-SG” architectural design pattern
(3.2.1) that encapsulates matters of learning object state, appearance,
functionality, and graphical visualization/interaction into reusable
software components, respectively into objects, renderers, constraints
(3.2.2), scene graph nodes, and user interface components (3.2.3). Our
implementation provides a toolkit of basic components for containers, data
structures, 2D/3D geometry, images/video, and physical quantities (3.2.4).
A scripting architecture (3.3.1), generalized to a network model (3.3.2),
renders software components adaptable and interoperable. We discuss our
“Scripting Database” approach (3.3.3) to organize interactive learning
objects in digital libraries, and illustrate some of our most urgent needs
regarding future learning technology standards. Lastly, we suggest a
visual scripting mechanism, “Drag & Drop Scripting” (3.3.4), which
communicates learning object state and functionality between other
hypermedia objects, or native applications.

Our Web framework consists in turn of a “Layered Database Model”
(4.1.1), a template-driven courseware generator assuring consistent
linking and easy maintenance (4.1.2), an offline tool for managing content,
structure, and design (4.1.3), and online wizards (4.2.1) providing
community support for learners (4.2.2) and authors (4.2.3). Community
members may not only discuss, annotate, rate, and modify text and
illustrations, but also interactive learning objects, software components,
and scripts.

1 Introduction 15

We give three case studies. While an “Electronic Webmaster” illustrates
capabilities of our Web framework (5.1), two educational applications of
software components contrast model-based visual programming with low-
level component programming (5.2). A last showcase demonstrates fine-
grained hypermedia interlinking, visual scripting, and community support
(5.3) in an interactive Web-based courseware.

Our initial goal with this thesis is to provide design guidelines for
developing reusable highly interactive learning objects. We do not consider
open questions concerning intellectual property, billing, and quality
assurance. The presented component-based technology offers graduation
and interoperability in a Java-enabled Web environment. Similar, our
digital library vision contains not only large-scale entities, but also multi-
granular software components and sub-component pieces (scripts). We
develop methodologies for authoring, customization, and personalization of
interactive learning objects; the tools, however, remain prototypes. Lastly,
although we feel our work is interdisciplinary, our proof-of-concepts target
the SMET (Science, Mathematics, Engineering, and Technology) domain,
and do not deny a Computer Graphics origin.

We do not question the added value of interactivity and hypermedia in
education. Today, interactivity in SMET education is generally regarded as
to be crucial. However, we agree in that it is mostly applied
inappropriately. Interactivity and hypermedia do not make learning fun
and teaching easy. Yet, they are able to represent complex models and
processes, and relationships between objects or alternative views. We
witness them as integral part of our education, and wish to leverage the
use of highly interactive learning objects in Web-based teaching. Specific
learning theories, didactics, and usability have been respected, but are
mentioned rather implicitly, and only as needed.

Finally note that, in spite of the potential of adaptable components for
realizing adaptive systems – which Kay promoted in his fifth argument
(1.2) –, we rather stick to Ben Shneiderman’s preference for high-level
interactivity [Shneiderman97]. We believe that future learning technology
standards and software agents will provide an adequate base for adaptive
educational systems [Brusilovsky96, Brusilovsky98], but current
technology is still in its infancy.

 17

2 Basics

2.1 Interactivity ... 18
2.1.1 GUI Characteristics ... 18
2.1.2 Perception and Cognition... 20
2.1.3 A Qualitative Framework .. 22

2.2 Hypermedia.. 24
2.2.1 Origins... 24
2.2.2 Design Principles.. 25
2.2.3 The Web .. 29

2.3 Web-Based Courseware... 31
2.3.1 Educational Software ... 32
2.3.2 Learning Management Systems.. 36
2.3.3 Content Management... 38
2.3.4 Learning Technology Standards.. 42

2.4 Interactive Learning Objects .. 45
2.4.1 Repositories... 45
2.4.2 Software Components .. 52
2.4.3 Scripting.. 54

2.5 Conclusion.. 57

18 2 Basics

2.1 Interactivity
 “[T]he point is not: interaction yes or no. The point is: more or less. All the named
characteristics of interactivity are gradients” [Jaspers91]

An interaction describes an action (Latin: agere) between (Latin: inter) two
or more participants; technology in human-computer interaction in turn
provides a certain degree of interactivity. Members of the diversified
educational community differ about the denotation of interactivity.
Although interactivity has become an often-cited panacea for education
[Aldrich98] – even more when combined with hypermedia – it is still
trivialized to menu selection, clickable objects, or linear sequencing
[Sims95].

In the following, we sharpen the term interactivity as it relates to Web-
based teaching and emphasize its relevance for learning. We identify three
approaches: the developer's view of interactivity as graphical user
interface (GUI) characteristics (2.1.1), the educator's view of interaction
between internal and external knowledge representation (2.1.2), and the
communication theorist's view providing a qualitative framework (2.1.3).
Later, we reformulate the results in terms of Computer Graphics
principles (3.1) and illustrate the impact of a consequent implementation
of a great interactivity with components of our own courses (3.2).

2.1.1 GUI Characteristics
Nowadays, we associate interactivity with multimedia. Ambron and
Hooper [Ambron88] define multimedia as product of media (text, audio,
visuals), technology (computers), and products (education, games, kiosk) –
multimedia is not inherently interactive. However, the potential for
interactivity might be multimedia’s best distinguishing feature
[Borsook91]; or, put another way, if any differences between different
media can be found, it might be the interaction factor [Schulmeister97].

The relationship between humans and technology is well-investigated in
the field of Human-Computer Interaction (HCI), which deals with the
design, evaluation, and implementation of interactive computing systems,
and with related human factors [Hewett92, Myers98]. In HCI terminology,
an interaction is formed by a user action using a range of input devices
(keyboard, mouse, touch screen, etc.) and resulting in some form of visual
or audio output (text, graphics, etc.). As we focus on Web-based teaching,
we restrict ourselves to input devices mouse and keyboard, and to limited
Web browser GUI. Note that many of the HCI pioneers also broke new
ground for hypermedia. Exactly 40 years ago, Ivan Sutherland presented
the first interactive computer graphics system (Sketchpad); soon later, he
joined the Department of Defense’s Advanced Research Projects Center
(ARPA), birthplace of the Internet. Think of Douglas Engelbart's NLS
system – he casually invented the mouse and the first hypertext system –
and his notions of connectivity and multiple views of information. Ben
Shneiderman, who coined the term “direct manipulation”, developed
HyperTies, the first hypertext system presenting illuminated, selectable

2 Basics 19

links. We will review the common history of HCI and hypermedia in
section 2.2.

Today, interaction styles range from input by command line, menu,
multiple choice, forms, spreadsheets, and natural language, to direct
manipulation. Following Ben Shneiderman, direct manipulation
[Shneiderman82, Shneiderman97] comprises (1) continuous representation
of the objects and actions of interest, (2) physical actions or button presses
instead of complex syntax, and (3) rapid incremental reversible operations
whose effect on the object of interest is immediately visible. Direct
manipulation lowers initial hurdles for novices as well as it enables
experts to work more efficiently. Users get immediate feedback and gain
confidence and mastery as they initiate and control actions and may
predict system responses. The most prominent representative of direct
manipulation, Drag & Drop (DnD, a shortcut for Copy & Paste) is
supported by all major platforms (OLE/Win32 DnD, CDE/Motif dynamic
protocol, MacOS, OS/2, and JavaOS/Java).

Facing the request for a better adaptability (and extensionality), we
advance from the DnD gesture layer to the programming layer. Alan Kay
envisions the computer as a personal, dynamic medium (1.2). The benefits
of computer technology for facilitating learning are, in his words [Kay91],
at first a "great interactivity", next, the hypermedia aspect of integrating
all multimedia and representing information alternatively, and, last but
not least, the capability of expressing and simulating dynamic models of
ideas. Kay emphasized the need for a simplified programming framework;
even children should be able to manage programming tasks [Kay77]. His
ideas led to Smalltalk (2.2.2), the first object-oriented programming
system. One of its design principles is the use of building blocks
[Ingalls81], nowadays called software components (2.4.2), which represent
reusable parts of applications. Apple Macintosh was the first to promote its
widget toolkit (collection of GUI components) to enforce a consistent
interface [Myers98]. Today, the Java Swing package contains about 40
GUI components, including the whole range from buttons, menus, input
fields, and lists, to more advanced components such as WYSIWYG (what
you see is what you get) styled text or HTML editors.

Software components come with several kinds of interactivity. Rod Sims
[Sims00] identifies levels of interactivity with respect to the learner’s role.
His taxonomy provides combinable, interactive constructs that “can be
integrated to provide comprehensive and engaging instructional
transactions" [Sims95]. The proposed levels consist of object activation,
linear and hierarchical interactivity, support, update, construction,
reflection, simulation, hyperlink, non-immersive contextual (microworld),
and immersive virtual (virtual reality) interactivity (see Table 1). Most of
them can be directly mapped to corresponding software components.
However, learning objects are typically composed of several components,
and therefore cannot be classified clearly within this framework. Sims
further gives clues on how to extend such constructs to provide statements
about didactics or quality [Sims00]. We will incorporate these aspects in
the next sections.

20 2 Basics

Construct Description

Object
Object activation (e.g. button clicks) followed by a system
response.

Linear
Forward/backward movements through a predetermined
linear sequence.

Hierarchical
Linear interactivity preceded by a selection (e.g. menu
selection).

Support
Optional performance support (e.g. general or context-
sensitive help).

Update
Analysis of a user action, and generation of a matching
update/feedback.

Construct Problem solving requires manipulating component objects.

Reflective
Non-intelligent feedback opposing user’s response with
correct answer.

Simulation
User control; individual selections determine a training
sequence.

Hyperlinked Browsing a knowledge base.

Microworld
Training tasks of the work experience in a virtual
environment.

Virtual
Reality

Moving and acting inside of a complete virtual world that
responds.

Table 1: Rod Sims’ taxonomy with combinable, interactive constructs can
be directly mapped to software components [Sims95].

2.1.2 Perception and Cognition
Interactivity design concepts such as direct manipulation or the desktop
metaphor model use familiar instances of everyday life to bridge the gap
between abstraction and reality. The homoiconic Smalltalk programming
language expresses any characteristics of a system, even the language
itself, uniformly – for users, internal and external representations are
essentially the same. However, authors such as Aldrich, Rogers, and Scaife
[Aldrich98] argue that, besides understanding interactivity in terms of
“physical activities at the interface” or supporting models of learning, we
need to analyze the “cognitive interplay between internal and external
representations that arise in the different settings”.

Interactive environments typically use internal and external
representations in concert. An interaction occurs as a perceptual or
cognitive process when users utilize, adapt, or construct an external
representation in a given activity (see cognitivism, 2.3.1). Common
interactions are searching, parsing, recognizing, abstracting, re-
representing, remembering, or keeping track of different stages of a
problem or activity.

2 Basics 21

Following Rogers and Scaife [Rogers98], an external representation
comprises four cognitive properties: computational offloading (how much
do different external representations reduce the amount of cognitive effort
required to solve a problem?), re-representation (if they have the same
abstract structure, do they make problem-solving easier or more difficult?),
graphical constraining (are the applied graphical elements of a
representation able to constrain the kinds of inferences that can be made
about the underlying concept?), and temporal/spatial constraining (do
different representations make relevant aspects of processes and events
more salient when distributed over time and space?). Based on such a
framework, they develop guidelines for audiences such as developers,
educators, or parents (see Table 2). A guide consists of “a set of questions
and dimensions that [users] can usefully employ when thinking about the
added value of interactivity” [Aldrich98].

Interactions occur (1) from external to internal representation and (2) from
internal to external representation. The first direction describes
integration of information. Domain knowledge in SMET often requires
formal representations of complex, often invisible, abstract concepts.
Rogers and Scaife [Rogers98] ask, “what is the best way of structuring
different media, such that they convey the appropriate kind, level, and
abstraction of knowledge for a given domain?” Different kinds of media
and interactivity used in parallel allow for a more effective way of
understanding concepts. All representations should be dynamically
interlinked to visualize the relationships between them. They note:

“[A] central question is: how can we determine the most effective way of displaying
and coordinating multiple representations at the interface whilst at the same time
supporting the interactions and activities which the user should be able to control and
do for themselves?”

We should allow learners to modify (correct or incorrect) elements in any
representation. Effects of modifying components in one representation
should be displayed simultaneously in all other representations. (A major
part of our work will deal with this task.) Varying the level of
computational offloading (the effort it takes to solve a problem) might look
like this: introduce an abstract concept by depicting a simple
illustration/animation of a concrete instantiation, then switch to an
interactive learning object, and finally to a hypertext.

Explicitness
and visibility

How to direct learner’s attention to key components,
e.g. visualize normally “hidden” processes?

Cognitive tracing
How to allow users to manipulate and annotate
dynamic representations?

Ease
of production

How easy is it for users to create external
representations?

Combinability
and modifiability

How to enable the system and the users to combine
different kinds of representations?

Table 2: Rogers and Scaife develop design guidelines for interactive
learning objects. Guides assist developers, educators, or parents with a

set of questions and dimensions. [Aldrich98]

22 2 Basics

The inverse cognitive process, construction of external representations,
refers to learning methods such as highlighting text, making marginal
notes, or sketching text-based ideas graphically. They ask, “to what extent
can they be supported, simulated or extended at the interface?” Having a
better understanding of how to create content will help users to
understand the system. Moreover, it will enable learners to develop their
understanding of the content by making individual changes to it (2.3.1).
We should require the learner to test out hypotheses in different contexts,
run a simulation, or build a model that will help the learner in developing
a better mental model of the function and structure of a system.

Now, how does this approach map to physical interactivity? Both consider
level of user control, extend of annotating, amount of feedback, and
complexity of domain knowledge. Rogers and Scaife [Rogers98] note that
their design concepts could be concretized “in terms of design parameters
such as the type of media, the kinds of navigation aids, and use of color”.
We end up with well-known usability guidelines; however, we believe
(1.3) that usability guidelines provide only subjective hints and the
usefulness of a learning object is mainly determined by the developer’s or
educator’s mastery. To cultivate such competence, the presented catalog of
questions and dimensions appears to be more adequate than a mere list of
bits and pieces.

2.1.3 A Qualitative Framework
Direct manipulation constructs not only objects, but also cognitive
concepts, such as geometric models, or relations of objects and parameters.
Rolf Schulmeister [Schulmeister97, p. 341] strictly separates technical
aspects of interactivity from its symbolical meaning by depicting learning
by direct manipulation (technical) as ‘learning by constructing’
(symbolical). In moving towards the communication theorist’s point of
view, we describe the nature of an interaction by methodologies based on
theories of learning (2.3.1). Common models of Rhodes and Azbell
[Rhodes85] or Schwier and Misanchuk [Schwier93] for example embody
ideas of behaviourism (reactive learning, e.g. drill & practice),
constructivism (proactive learning, i.e. self-active), and cognitivism
(mutual learning, e.g. adaptive systems). Interactions now represent a
learning process occurring while modifying objects. Consequently,
hyperlinked interactivity (2.1.1) symbolizes no more interaction, but mere
navigation [Schulmeister03, p. 209].

Current efforts in creating standards for learning object metadata classify
interactivity to enable educators searching/browsing for learning objects in
digital libraries. The LOM (Learning Object Metadata, 2.3.4) specification
for example denotes the interactivity level within an ordinal range from
very low to very high, but, in its current version, does not assign any
characteristics to these ranges. This indicates only subjective impressions
and rules out any international understanding [Schulmeister03, p. 208].
Some developers will weight the frequency of interactions, some will
consider the quality, and others the multimedia type. Therefore,
Schulmeister [Schulmeister03, pp. 210] proposes a qualitative framework
consisting of six degrees of interactivity that can be directly mapped to

2 Basics 23

0
Observation

(no interactivity)

The user contemplates a multimedia object
(e.g. image, video, sound, automated program)
and performs necessary media actions (e.g.
start, stop), or navigation.

1

Observe multiple
representations

(illustrative actions)

The user may choose from a set of options and
contemplate temporal (slow motion, step-wise)
or spatial (point of view) versions of
multimedia objects. Examples: slide show,
alternative data lists.

2

Modification of
representation

(motivating actions)

The user may vary the visualization, but not
the content of a multimedia object (e.g. pan,
zoom, rotate graphical scenes and objects).

3

Modification
of content

(interaction with
cognitive concepts)

Content is no more pre-prepared, but
generated as response to the user. The user
may create different visualizations or visualize
different relations by varying parameters.
Mostly found in SMET domain, e.g. parameter
manipulation in physical simulations.

4

Construct objects
or models

(microworld)

The user constructs new objects and designs
underlying models or processes. Examples
belong mostly to the SMET domain where
objects and processes can be expressed
adequately, e.g. dynamic geometry software
like Cinderella [Kortenkamp99].

5

Feedback

(intelligent
analysis)

The user gets intelligent responses according
to his actions. Schulmeister mentions again
Cinderella, which applies an automated
theorem checking engine.

Table 3: Schulmeister provides a qualitative framework for classifying a
learning object’s interactivity in six ascending degrees. Each degree

includes all aspects of the lower ones. [Schulmeister03]

LOM levels (see Table 3, and 2.3.4). With ascending degree, the related
theory of learning alters from behaviourism to instructionalism to
constructivism. The 4th level corresponds to learning by discovering, the 5th
level to learning by construction.

Schulmeister implicitly assumes that developers design these levels
properly. Consistent with LOM, each level includes all aspects of the lower
ones. In practice, such an ascending order rarely occurs; a learning object
as we know it rather presents a mixture of Sims’ ingredients (2.1.1). A
learning object may include feedback but no multiple representations, or it
may offer construction without permitting modification of the
representation. Also, from our point of view, feedback should be adequate,
but not mandatory intelligent (which would require user/task modeling).
Nevertheless, Schulmeister’s proposition provides a far more elaborate and
useful taxonomy than current standardization efforts.

24 2 Basics

2.2 Hypermedia
“I have always imagined the information space as something to which everyone has
immediate and intuitive access, and not just to browse, but to create.” [BernersLee99,
p. 157]

In this chapter, we review the common origin of hypermedia and graphical
user interfaces. We contrast their most prominent representatives – the
Web and the Desktop – in order to reflect on characteristics and
shortcomings of interactive Web-based courseware. In contrast to other
retrospections [Conklin87, Andrews96, Nielsen95, MuellerProve02], we
outline milestones of hypermedia with regard to interactivity. System
relationships are sketched in [Johnson89].

Following Keith Andrews [Andrews96, p. 13], hypermedia generalizes
hypertext to include other kinds of multimedia in addition to text.
Hypertext in turn consists of nodes and node connections – hyperlinks. A
hyperlink is made of a source anchor specifying the starting point in a
document, and a destination anchor defining a second location. Users
navigate from source to destination anchor by activating the hyperlink,
which we call ‘browsing’. Linking resembles the ‘goto’ programming
instruction, and implicates similar problems. At first, it accounts for the
“lost in hyperspace” syndrome [Conklin87, Maurer96, chapter 8.1] that
describes user disorientation during browsing due to missing navigational
aids. The second major shortcoming is the “broken link” (dangling link
[Andrews96, p. 26]), which typically emerges during authoring or server
migration, when a link’s destination anchor is lost, but the source anchor
remains. ”Real hypermedia” [Andrews96, p. 14] is interactive, integrates
interactive multimedia and provides means for collaboration and
personalization. We will see that all hypermedia pioneers intended to
create a highly interactive medium.

2.2.1 Origins
We start our short history of the Web in 1945, the year when John von
Neumann established the base of computers by describing concepts of a
stored program, and Konrad Zuse developed the first programming
language. Vannevar Bush described a microfilm-based Memex system, “a
sort of mechanized private file and library” [Bush45]. He envisioned the
use of hyperlinks and trails to archive scientific writings, annotate, and
associate segments of the knowledge base, and to keep track of related
data. Trails anticipated future guided tours, i.e. pre-defined paths along a
given chain of thought.

In 1962, Joseph Licklider became head of the US Department of Defense’s
(DoD) Advanced Research Projects Agency (ARPA), which was to improve
the military's use of computers. He redirected funding from private sector
to university research institutions, such as Douglas Engelbart’s proposed
“augmentation laboratory” at Stanford Research Center. At the time,
computers operated in batch mode. Licklider dreamed of interactive
computing going beyond punch cards (“man-computer symbiosis”,
[Licklider60]). His vision of an “intergalactic” network engaging users in
browsing, retrieval, and creation of new knowledge, laid the foundation for

2 Basics 25

ARPANET, the first Internet. DoD and the National Science Foundation
(NSF) further facilitated the early public growth of the Internet, for
example by enforcing the TCP/IP Internet standard.

Licklider’s successor was Ivan Sutherland. His 1963 Ph.D. thesis at MIT,
“Sketchpad: A Man-Machine Graphical Communications System”
[Sutherland63], presented the first interactive computer graphics. Using a
light pen and a 40-button command box, Sketchpad users could create,
directly manipulate, duplicate, and store engineering drawings on the
display. Constraints such as orthogonal lines could be applied, and the
drawing area could be zoomed and scrolled. In the 1960s, batch mode
processing usually occupied the computer exclusively for hours; therefore,
this novel form of interactivity was called “on line”. Sutherland invented
what we call real-time interaction with computers.

About the same time, Douglas Engelbart worked out his HCI vision of
instant connection and communication. Having a strong sense for
automation and re-use, he recognized the importance of building tools – to
spend a lot of time and energy first on building tools, then on applications.
Based on Bush’s vision, his NLS (On Line System) was the first point-and-
click hypertext system, for which his group invented the mouse. In 1968,
Engelbart demonstrated interactive text editing and groupware facilities
such as screen sharing among remote users [Engelbart68, vanDam87]. His
notions of connectivity and of multiple views of information would carry
forward until today, but remain largely unrealized [Meyrowitz89]. NLS
became the second node on ARPANET, redefining completely the concept
of “online”.

Parallel to the work of Engelbart, Ted Nelson coined the term hypertext,
defining it as “non-sequential writing”. He proposed Xanadu [Nelson65,
Nelson82] in the 1960s, a system incorporating a hyperlinked repository
for the entire world’s knowledge ever published. Xanadu would include
transclusion, a kind of inclusion by reference allowing reuse of content in
multiple contexts. Work on Xanadu continues until today [Nelson99], but
only parts have ever reached the state of prototypes. Among Nelson’s
visions were stretch text that elastically expands and contracts in place,
and hypergrams, a kind of interactive illustrations [vanDam87]. Xanadu
would have solved the broken link problem, as it provides version
management, and global, unique identifiers for hypertext nodes. Versions
are not deleted, but preserved forever by the system.

In 1967, Nelson collaborated with Andries van Dam to build HES
(Hypertext Editing System, [vanDam69, vanDam87]) at Brown University.
The text-based HES supported arbitrary-length content, and content
reuse. Nelson left the group soon after realizing that HES was instead
turning into a (the first) word processing system.

2.2.2 Design Principles
Heavily inspired by Engelbart’s “mother of all demos”, van Dam in turn
redesigned HES to FRESS (File Retrieval and Editing System,
[vanDam87]). FRESS offered bi-directional links and webs representing
collections of links. Links had types, which could be employed, for example,

26 2 Basics

to indicate information about the link target (e.g. by a pictogram) before
users actually activated the link. Link anchors were not stored in content,
but organized separately in a link database, thus avoiding broken links
(the link source can now be notified that its destination has changed) as
well as it allows for referencing content where links cannot be embedded
(e.g. read-only content, or video). It is also a prerequisite for
personalization, e.g. annotation [Andrews96, p. 26]. FRESS also presented
the first-ever undo facility. Van Dam’s subsequent system ELS (Electronic
Document System, [vanDam87]) further included graphical documents. It
introduced page thumbnails, graphical links, and a context timeline for
visiting recent pages and linked neighbors (“because context is so
important”). The content’s level of detail could be varied and navigation
adapted according to traversed keywords. An authoring tool enabled the
user to create pages, chapters, links, and graphics.

Context is also the reason why Alan Kay developed overlapping windows.
In 1969, he laid ground for Smalltalk and windows with his Ph.D. thesis
“The Reactive Engine" [Kay69] at the University of Utah (Ivan Sutherland
is one of the committee members). Design principles behind Smalltalk can
be found in Daniel Ingalls’s writing [Ingalls81]; they led to Model View
Controller and software components (2.4.2). The Smalltalk architecture
had its core based on object-oriented programming with a uniform message
system, enabling the user to interact with any aspect of the system.
Objects could be adapted on the system level and interlinked system-
widely. Objects referred to each other and sent messages in order to
change their internal state, which extended the hyperlink paradigm
naturally [MuellerProve02, p. 21]. Evolution has turned into just the
opposite. Instead of a uniform programming system, today we face insular,
application-centered operation systems; at best, applications provide
restricted and non-conform scripting or macro functionality (2.4.3). Today,
Kay's idea of a common programming platform is represented best by
Java. Kay and Ingalls continue their work on Smalltalk until today; the
Squeak system (presented in Kay’s keynote at ED-MEDIA 2002
[Barker02]), e.g. transforms the Smalltalk environment into a standard
Web browser.

Soon after, Kay and others founded the Xerox Research Center in Palo Alto
(Xerox PARC), established to explore the use of computers in office
environments. PARC researchers, among them members of Engelbart's
group, create the modern GUI. Frank Halasz‘s hypertext system
NoteCards enabled users to build new applications on top of it, and made it
easy to customize the browser. It brought with it about fifty node types
such as text, video, animation, graphics, and actions [Halasz88,
Conklin87]. Charles Simonyi and others developed Bravo, representing not
only the first WYSIWYG word processing application, but actually the first
version of Microsoft Word [Johnson89]. David Canfield Smith introduced
icons and visual programming in his Ph.D. project Pygmalion [Smith77],
making it possible to connect components by direct manipulation (2.4.2).
Alan Borning‘s ThingLab [Borning81] added to Smalltalk the Sketchpad
notions of constraints (2.4.2), specifying relations that must be
maintained. Larry Tesler articulated the concept of modelessness

2 Basics 27

[Tesler81, Meyrowitz89], demanding that users should always be able to
easily understand their state within the system. Finally, in 1981 the Xerox
Star system changed opinions about the design of interactive systems
[Johnson89] by introducing the WIMP (windows, icons, menus, and the
pointer device) metaphor. Apple Macintosh (1984) and Microsoft Windows
3.0 (1990) brought these concepts to the masses.

The 1980s put forth an immense number of hypermedia systems. Again,
members of van Dam’s group, among them Norman Meyrowitz and Nicole
Yankelovich, developed the most sophisticated one, Intermedia
[Meyrowitz86]. Object-oriented and WIMP-designed, it aimed for
integrating all application programs into a hypermedia system. Meyrowitz
argues that the failure of hypertext to reach its full potential stems from
the development of “insular, monolith packages that demand the user to
disown his or her present computing environment to use the functions of
hypertext and hypermedia” [Meyrowitz87]. In contrast, Intermedia
allowed for interoperability across a range of software components by
providing a common API for all participating applications to share linking
information. Linking followed the Copy & Paste metaphor: users set
hyperlinks by selecting “Start Link” in any document’s region and
“Complete Link” in another arbitrary location. Links became a seamless
part of the GUI:

“Linking functionality must be incorporated, as a fundamental advance in
application integration, into the heart of the standard computing toolboxes […] and
application developers must be provided with the tools that enable applications to
'link up' in a standard manner. Only when the paradigm is positioned as an
integrating factor for all third-party applications, and not as a special attribute of a
limited few, will knowledge workers accept and integrate hypertext and hypermedia
into their daily work process." [Meyrowitz87]

Intermedia was limited to Unix A/UX and would never be used
widespread. Meyrowitz continued to focus media technology for the
Internet; he developed Shockwave and became today’s president of
Macromedia. He sees the hypermedia system as the desktop of tomorrow
[Meyrowitz89] excelling in integration, aesthetics, perspective, access,
service, community, and adaptation (see Table 4). In short, the system
must provide underlying technology, not applications.

With respect to integration, the potential of a container component model
is illustrated best by Andrea diSessa‘s Boxer [diSessa85, diSessa86b]
system. Boxer represents any information entity as box; a box may contain
other boxes or data such as text or graphics. In contrast to other
hypermedia systems, hierarchy is expressed naturally by nesting lower-
level nodes directly within their parents. We can Copy & Paste any box
into any other Boxer workspace. Flipping a box (face-up, face-down) offers
an alternate view or internal state; for instance, we may flip a graphics box
to see the rendering program. Programs are boxes with input/output
variables together with other boxes specifying behavior. The Boxer
language is homoiconic (like Smalltalk), that is, we can access, modify, and
execute any data – which is also its major drawback: we are restricted to
the proprietary Boxer environment.

28 2 Basics

Theme Tasks of the Desktop of Tomorrow

Integration

Ease of linking, associating, combining, and incorporating
components. Technology therefore has to provide a link
database, link modes such as hyperlinking, warm linking
(sending data), and hot linking (synchronizing data), and a
container component model to create composites.

Aesthetics

Provide a sophisticated look (visual) and feel (operational).
Allow users to develop components conform to the highest
graphical design ideals, and maintain consistency,
reliability, familiarity, and direct-manipulability.

Perspective
Provide multiple views of information. Support e.g. tasks, or
trails.

Access
Allow for exploring, browsing, retrieving, and storing data.
Technology therefore has to provide a database with a lens-
like user interface.

Service
Provide standard general-purpose tools (linking, reference,
linguistic services such as dictionary, thesauri, spell-
checker, etc., and online services).

Community
Support user groups in synchronous and asynchronous
collaboration (access rights, annotations, conferencing,
shared editing).

Adaptation

Adapt to the user and, inversely, enable users to customize
the system to perform functions that were not included by
the system designers. Technology must allow for scripting
to manipulate functions, let the user interactively
manipulate an application’s internal components.
Applications should be able to register objects and methods
that can be queried or manipulated by scripting.

 Table 4: Meyrowitz’s vision of a hypermedia system is that of a desktop
of tomorrow providing linking technology, a familiar look & feel,

multiple views of data, standard tools (calendar, spell-checker, etc.),
community support, and scripting. [Meyrowitz89]

According to Jeremy Roschelle (developer of the Boxer graphics engine,
who continues the research on software components until today, see 2.4.1),
hypermedia’s public breakthrough came with Apple’s Hypercard in 1987,
bundled free with every Macintosh system [Roschelle98]. HyperCard
dramatically increased the number of educators able to produce their own
interactive courseware. Users could customize objects, sequence screens of
information by a stack metaphor, and construct buttons triggering scripts.
The HyperTalk scripting language supported dynamic linking by
computing links on the fly.

Between 1988 and 1990, developers of major hypermedia systems (among
them Engelbart, Halasz, and Meyrowitz) abstracted their principles into
the Dexter Hypertext Reference Model [Halasz90] to provide standard
hypermedia terminology. It divides system architecture into three layers:

2 Basics 29

the storage, the within-component, and the run-time layer. While the
storage layer describes a database containing a network of nodes and
links, the run-time layer covers presentation, user interaction, and
dynamics. The within-component layer, which describes content or
structure inside of nodes, is not elaborated. Instead, the Dexter model
formalizes a mechanism for specifying and anchoring to the interior of
hypermedia objects independent from its current type (text, graphics,
animations, or dynamic programs). Specified anchors remain constantly
referable; only their value might change to reflect internal modifications.

Based on the lessons learned from Intermedia, in 1990 Hermann Maurer’s
group at Graz University of Technology began developing the hypermedia
system Hyper-G [Andrews96, Maurer96], known today as Hyperwave. The
Hyperwave server is designed to handle large amounts of multimedia data,
which can be physically spread over multiple servers. The system
incorporates technology such as a link database for bidirectional linking
and automatic link consistency, and searchable object metadata (arbitrary
name/value attributes). Underlying design guidelines are compiled in the
MANKIND project [Maurer97]. The system fulfills Meyrowitz’s demands
for community support, as it provides access rights, annotations, shared
editing, and a network protocol supporting synchronous communication
and user sessions.

“To ensure the success of a hypermedia system, it must allow users also to act as
authors, allow them to change the database, create new entries for themselves or other
users, create a personal view of the database as they need it, and, above all, allow the
system to be used also for communication and cooperation.” [Andrews94]

Hypermedia documents are stored in an object-oriented database using a
set-based data model (clusters, 2.3.3). References to clusters have unique
names (UNL); similar to Xanadu and the Dexter model, this avoids broken
links.

2.2.3 The Web
In 1991, Tim Berners-Lee demonstrated the World Wide Web (WWW, W3)
at CERN, inventing the Web’s core independently from Nelson’s and
Maurer’s work. An URL (Uniform Resource Locator) mechanism
incorporates other Internet protocols such as FTP, Gopher, or Newsgroups;
by this, “’the Web’ has embraced and become almost synonymous with ‘the
Net’” [Andrews96, p. 10]. The Web uses HTTP (Hypertext Transfer
Protocol based on TCP/IP) to transfer network data and HTML (Hypertext
Markup Language) to separate content from design and structure. Two
years later, NCSA (National Center for Supercomputer Applications at the
University of Illinois) presented the graphical Mosaic browser rendering
the World Wide Web the most popular web. From that time on, the
browser client has driven Web technology.

The more mature Hyperwave system could not turn around the Web’s
steady growth in popularity; in particularly, its browsers (Harmony,
Amadeus) could not keep up with standard Web browsers in terms of
functionality. (Later, Hyperwave compensated this drawback by a Web
gateway [HIM99] transforming protocols and delivering HTML to ordinary
Web browsers). The limitations of the Web would lead to many

30 2 Basics

ambiguities. An URL contains the physical document location, so it may
produce broken links. HTTP is stateless; in contrast to Hyperwave’s
protocol, it supports neither subsequent connections, nor user sessions.
Lastly, with Mosaic many details of Berners-Lee initial proposal
[BernersLee89] – such as typed links, multiple linking options (embed,
jump to, show in separate window, etc.), scripting, and full integration of
browsing and editing – are lost.

In 1994, ex-members of NCSA developed Netscape Navigator to seize
Mosaic's commercial role. Microsoft released Windows 95 with built-in
connectivity to their Microsoft Network (MSN) hoping it will replace the
Web. Yet, they soon turned to a Web-based strategy, making MSN a Web
site and developing Internet Explorer. This was the beginning of the
browser war. Microsoft integrated the browser into its operating systems;
Netscape in turn created the open source Mozilla browser. More than 100
browsers evolved (see e.g. the browser archive at http://browsers.evolt.org).
Only a few could withstand Microsoft and Netscape’s market role, e.g.
Opera, which started as a research project run by Norway’s
telecommunication company Telenor, and would consistently manage to
gain innovative features.

Also in 1994, Berners-Lee founded the World Wide Web Consortium
(W3C), intended to lead the Web to its full potential by developing common
protocols ensuring interoperability. Currently, W3C recommends 53
specifications [W3C03] targeting for example Web publishing (HTML,
XML), linking (XLink, XPointer), 2D vector graphics (SVG), or multimedia
synchronization (SMIL). The open source W3C Amaya browser seamlessly
integrates editing and remote access, and serves as framework for other
W3C technologies. Likewise, standards initiatives of the Internet
Engineering Task Force (IETF) address Web issues such as the HTTP
extension WebDAV (Distributed Authoring and Versioning,
[Whitehead98]).

Despite of Kay’s Dynabook vision, the Web still provides little interactivity,
i.e. opportunities for learners to compose or construct their own ideas
[Roschelle98]. Web browsers render content “read-only” and bring with
them a “Web mode” incompatible to the Desktop (hyperlink paradigm vs.
direct manipulation and WIMP). Missing dynamics features are
compensated for either by server extensions (CGI – Common Gateway
Interface), or, client-side, by browser plug-ins and scripting (DHTML).
VRML [Bell95] introduced interactive simulations (virtual worlds) in 1995.
At about the same time, Macromedia presented the Shockwave and Flash
plug-ins for (pixel-oriented, respectively vector-oriented) interactive Web
graphics; both are very popular today. Founded in 1992 to create
interactive multimedia CD-ROMs, Macromedia provided authoring tools
such as Authorware, Director, and Dreamweaver for creating Web and
Flash/Shockwave content (with extensions for learning content). Flash is
also integrated into two other widespread browser plug-ins for multimedia
content, Apple Quicktime and RealNetworks RealPlayer. While focusing on
audio/video, Quicktime further supports sprite animations and mouse
interactions.

http://browsers.evolt.org/

2 Basics 31

Figure 2: Java 3D provides access to low-level structures. Here, we access
and visualize a 3D scene’s depth buffer (top left) as gray-valued image
(top center) and feed it to a stereogram image filter (SIRDS, top right).
Users may directly manipulate filter parameters (bottom line).

In 1996, the HTML 3.2 specification [W3C03] finally included Sun’s Java
programming language. Initially part of browser functionality (Java
1.0/1.1), it has now become a standard browser plug-in (Java 2). The Java
core is enriched with optional packages such as Java Advanced Imaging
(JAI), Java Media Framework (JMF), Java 3D, and others [Sun03]. While
providing high-level design concepts, they delegate rendering to low-level
(native) libraries and hardware, e.g. Java 3D relies on OpenGL and
Direct3D. Note that Java still provides access to low-level structures by
encapsulating them into objects (see Figure 2).

2.3 Web-Based Courseware
“But the problems that remain […] are how to make sufficient room for two
fundamental elements of scientific education in the training of the young. These
elements are: (a) the genuine “activity” of the students, who will be required to
reconstruct, or in part rediscover, the facts to be learned; and (b) above all, individual
experience in experimentation and related methods.” [Piaget73, p. 34]

Having reviewed the evolution of the Web and the Desktop as today’s
representatives of hypermedia and graphical user interfaces, we now
consider their use for education. We survey the classes of educational
software and respective learning theories (2.3.1), and then present the

32 2 Basics

concept of a learning management system (2.3.2), which allows us to
specify required properties, and compare our approach of Web-based
courseware with others. Principles of content management such as a set-
based data model, template-driven generators, and online wizards offering
community support will be discussed in more detail (2.3.3). We close with a
brief discussion of learning technology standards (2.3.4) that promise to
provide adequate object metadata and interoperability.

2.3.1 Educational Software
The idea to support the learning process by the use of computers
(computer-based teaching, CBT) and the Web (WBT) has lead to many
variants and acronyms [Schulmeister97, p. 93, Blumstengel99,
Maurer01b] such as CBE, CBI, CAT, CAI, CAL, CBL, CML, CMT, ICAI, or
ITS. They accentuate respectively the base (B) of a computer (C) or an
intelligent (I), interactive (I) system (S) to aid (A), assist (A), manage (M),
or support (S) education (E), instruction (I), learning (L), teaching (T),
training (T), or tutoring (T).

Peter Baumgartner [Baumgartner92] notes that any educational software
is based on a learning theory, whether the authors aimed for it, or not.
The “Theory into Practice” database [Kearsley03] contains more than 50
theories relevant to teaching and learning. Romiszowski [Romiszowski86]
for example differentiates philosophical positions and their emphasis on
useful content (Humanist), outcomes (Behaviorist), process (Cognitivist
and Developmental), or system (Cybernetic). We restrict ourselves to the
classic triad behaviourism, cognitivism, and constructivism (see Table 5,
and [Schulmeister97, Blumstengel99, Sims00]).

Learning
Theory

Behaviorism Cognitivism Constructivism

Mind is… passive interactive autarkic

Knowledge
is…

stored processed constructed

We learn… “what”, facts
“how”,

understanding

“how we come to
know”,

discover solutions

Strategy teach, instruct observe, help
cooperate,

do not teach

Interactivity hard-wired dynamic autonomous

Educational
Software

tutoring
system,

drill & practice

adaptive system,
intelligent

tutoring system

microworld,
simulation,
hypermedia

Table 5: Learning theories with underlying assumptions, paradigms,
and related classes of educational software. Adapted from

[Baumgartner92, Blumstengel99].

2 Basics 33

Let us go back to the first attempts of CBT in the 1950s, the time when
behaviorism had significant impact on education. A behaviorist
concentrates on observable, evaluable behavior, and avoids referring to the
learner’s internal states such as feelings or cognitive processes
[Kearsley03]. Edward Thorndike [Thorndike22] characterized learning as
the result of associations forming between stimuli and responses.
Behaviorism forms the base of today’s classroom setting. Further, as a
single teacher cannot appropriately assist 30 students simultaneously,
Burrhus Frederic Skinner [Skinner54] suggested a teaching machine for
individual use that could present and reinforce information, and choose the
level of difficulty according to the learner’s performance. Due to
technological constraints, Skinner’s theory of programmed instruction
produced only gap-filling tests [Schulmeister97, p. 93] or linear “page-
turning” programs. Behaviorism became associated with tutoring systems,
trial & error, and drill & practice; typically, interactivity is hard-wired
[Baumgartner92, Blumstengel99].

In the 1960s, Jerome Bruner [Bruner66] focused on mental processes and
put down the theoretical foundation for cognitivism, which deals with the
question of how we achieve, structure, conceptualize, and transfer
information. Learning occurs by interactions between internal and
external models (2.1.2). At first, efforts to optimize these interactions led to
instructional design models. David Merrill for example developed the
component display theory specifying ingredients necessary for efficient
learning for a given objective and learner: rules, examples, recall, and
exercise with feedback. He implemented his theory in the course structure
of his TICCIT project (Time-shared Interactive Computer Controlled
Information Television, [Merrill80, Schulmeister97, p. 98]) at the
University of Texas and Brigham Young University. Many future
authoring tools for instructional design would follow his principles.
Adaptive systems and intelligent tutoring systems continue the search for
a representation producing the most effective learning experience for a
given individual and subject. (In some ways, reusable learning objects have
the same intention.) TICCIT received funding of the DoD to determine
whether CBT may reduce cost and time for training. The same initiative
supported Donald Bitzer’s group at the University of Illinois in developing
the more technical PLATO (Programmed Logic for Automated Teaching
Operation, [Bitzer70, Schulmeister97, p. 98]). PLATO introduced
networking to CBT by offering a central computer with courseware and
permitting to use it from terminals, communicate and include statistics
and feedback [Maurer02]. Again, this corresponds with a principle of
Bruner, namely the ability to verbalize to one and others (see community
support, 2.3.3).

34 2 Basics

Bruner’s principle of discovery learning [Bruner61] – that we gain
knowledge most effectively by personal discovery – leads to
constructivism. He sees knowledge represented enactively (tactile
experience through manipulating objects), iconically (visual stimulation
through comparing and contrasting), and symbolically (abstract
reasoning). While Jean Piaget [Piaget70] relates these modes to periods of
childhood development, Bruner treats them as present and accessible
anytime (with one of them dominant in each period). Piaget argues that we
are born with a tendency to organize our thinking processes, and mental
models consist of basic building blocks (schemes) and larger structures.

The work of Bruner and Piaget heavily influenced Xerox PARC
researchers such as Alan Kay (see Table 6). Kay directed his Learning
Research Group at PARC to develop a user interface that should explicitly
address all three modes of understanding and manipulating the world
around us (see direct manipulation and WIMP design, 2.2), an idea
expressed best with their slogan “doing (mouse) with images (windows,
icons), makes symbols (programming, Smalltalk)” [Kay93]. Piaget also
collaborated with Seymour Papert at MIT, who developed Logo [Papert80]
as a programming language for children in the late 1960s. Initially a
mechanical robot connected to the computer, the turtle became a virtual
plotter for creating vector graphics. In the 1990s, Logo was expanded to
LEGO/Logo [Resnick91] linking Logo with the LEGO construction kit. The
commercial LEGO Mindstorms products included new types of LEGO
blocks such as lights, motors, and sensors for building machines, and new
types of Logo building blocks (that is, software components) for building
programs. The argumentation takes the line of constructivism:

“In our experience, design activities have the greatest educational value when
students are given the freedom to create things that are meaningful to themselves (or
others around them). In such situations, students approach their work with a sense of
caring and interest that is missing in most school activities. As a result, students are
more likely to explore, and to make deep "connections" with the mathematical and
scientific concepts that underlie the activities.” [Resnick91]

DiSessa [diSessa86a] describes science learning as a re-experiencing
process. Instead of learning a new concept through learning definitions, we
must experience and re-experience the concept in different contexts, and
gradually reorganize our intuitions into more complete models. Whereas a
cognitivist regards learning as cognitive process occurring between
external (the educator’s) and internal (the learner’s) model, a
constructivist understands learning as the result of internal cognitive

Bruner enactive iconic symbolic

Piaget sensorimotor concrete formal

Kay doing with images makes symbols

GUI mouse icons/windows programming

Table 6: Bruner and Piaget’s learning theories lead the creators of the
first graphical user interface to a WIMP design (windows, icons, menus,

and mouse pointer). [Kay93]

2 Basics 35

processes – knowledge is constructed [Blumstengel99]. Following this
principle of “learning without being taught”, Papert introduced the concept
of microworlds [Papert80]. A microworld such as the Logo world of turtle-
geometry represents an explorative learning environment that does not
formulate concepts to be learned explicitly. Authoring tools offering visual
programming implicitly establish associations between software
components and provide the ability to manipulate the structure and
behavior of microworlds at a high conceptual level [Birbilis00]. Discovery
learning further provided a solid base for simulations, which expose the
underlying dynamic model, and for educational hypermedia, which
supports self-controlled exploration per se [Blumstengel99].

Following van Dam [vanDam87], Nelson was the first one to point out the
importance of hypermedia in teaching. In the 1970s, van Dam applied
FRESS (2.2.2) in schools. Students of an English poetry course had to
analyze and critique a poem; the context included word glosses, references
to other poems, and some professional analyses. In a second phase, they
reviewed other students’ writings together with the teacher’s comments,
and, in turn, reworked their analysis accordingly.

 “Electronic graffiti, as I though of them. The reason I encouraged such annotations
was that I remembered that when I was in college with Ted, I would always grab the
dirtiest copy of a book in the library, rather than the cleanest one, because the dirtiest
ones had the most marginalia, which I found very helpful.” [vanDam87]

Consequently, the subsequent Intermedia system (2.2.2) was meant to
prototype a future hypermedia system providing “a user-level framework
for creating exploratory contexts of educational and research materials for
students and faculty” [Meyrowitz89]. Apple’s Hypercard enabled educators
to create dynamic educational hypermedia. Maurer [Maurer02] reflects on
the era of authoring systems and underlying technology (e.g. interactive
videodisks) before the advent of the Web in the 1990s. During the time the
Web appeared, advanced authoring facilities were competing with the
continuous discussion of learning models. This was not only a battle
between authoring systems and browsers, but also between cognitivism
and constructivism. The importance of communication and collaborative
work grew steadily, as did the spread of large educational environments.
The educational community started standardizing protocols and metadata.
In the new millennium, the trend moved towards learning technology
standards to provide a common platform for future educational software.
Maurer states:

“To use electronic educational material on a large scale it is necessary to be able to
locate and re-use material created elsewhere. It is with satisfaction that we can
observe a continued harmonization between North-American and European efforts in
this important area. It is also gratifying to see that the necessity for communication,
collaboration, and large digital libraries accessible via the Web is now universally
accepted as basis for viable learning systems. […] It has also become clear that a
substantial learning system needs a huge array of administrative features and that
the authoring of material is just a small part of what is necessary to make e-Learning
work.” [Maurer02]

36 2 Basics

2.3.2 Learning Management Systems
Imagine an ideal piece of educational software. What requirements should
it meet? Educational software today is Web-based software, reflected, e.g.,
in SCORM’s (Sharable Content Object Reference Model, 2.3.4) assumption
of a Web-based infrastructure [ADL01a, p. 30]. Therefore, it first has to
compensate for the limits of the Web and the Desktop (2.2). Basing a
hypermedia system on the solid foundation of a learning theory –
behaviorism, cognitivism, constructivism, or a combination of them (2.3.1)
– entails further requirements concerning administration, learning, and
authoring. The current trend of learning management systems (LMS)
intends to meet both hypermedia and pedagogical needs. An LMS refers to
a suite of functionalities designed to deliver, track, report on, and manage
learning content, student progress and student interactions [ADL01a, p.
30, LSAL03, p. 5]. In contrast to proprietary educational software, LMS
content represents reusable, interoperable entities. Learning technology
standards (2.3.4) are supposed to provide the base required for an LMS to
work.

According to Schulmeister, an LMS architecture [Schulmeister03] covers
the domains administration, learning, and authoring (Table 7). A
repository stores all data; it is realized as one or more databases accessed
by public interfaces (API). Administrational functionality includes
managing courses (i.e. course structuring, executing
lecture/tutorial/homework), users with specific roles (student, educator,
tutor, administrator, developer, etc.), and institutions (i.e. curricula,
library, billing), as well as tracking user activities and allowing for self-
tests and evaluation [Schulmeister03, p. 10]. Learning tasks cover course
presentation and common tools for learning (calendar, mindmaps, etc.),
communication (e.g., e-mail, chat, white board, discussion board), and
personalization (of design, layout, and contents, e.g., annotations). Finally,
authoring tasks include creating and modifying teaching material ranging
from interface design to a particular learning object (e.g., text, slides,

illustrations, animations,
interactive objects) to exercises
and tests (following a learning
object, or spanning several ones).
A must for any Non-English
content is support of multiple
languages, both in interface
design and content.

Present systems concentrate on
parts of this ideal architecture
only. For example, some systems
provide only rudimental
administration functionality, or
link to external learning objects
instead being based on an own
repository. The smallest LMS
consisting of a single course is
called courseware – our own

Adminis-
tration

Learning
Environment

Authoring

user courses interface
design

courses communication learning
objects

institutions tools exercises

evaluation personalization tests

Interfaces – API

Repository – Database
user data, course data,

learning objects, metadata

Table 7: Schulmeister’s ideal LMS
supports administration, learning,

and authoring. Data is kept in a
repository. [Schulmeister03]

2 Basics 37

implementation represents such a system. Variants such as a learning
environment or a learning content management system rather accentuate
learner activities, or content respectively. Schulmeister [Schulmeister03]
and Baumgartner [Baumgartner02] evaluate more than 100 current LMSs
and set up a feature list. Let us exemplary characterize the senior of
LMSs, WebCT.

Example (WebCT): Murray Goldberg developed WebCT in 1997 at the
University of British Columbia in Vancouver in order to facilitate course
preparation and enrich students’ learning experiences. Version 3.6
consists of a set of tools (CGI and JavaScript scripts, images, and Java
applets) and uses HTML functionality without database functionality.
The upcoming version will be based on Java and an Oracle database.
Wizards guide course developers, administrators, learners, and graders
in completing common tasks. Developers may arrange the course
homepage (a separate HTML page), syllabus, content modules,
calendar, discussion boards, mail, and chat. Tools allow for uploading
files, arranging paths (linear trails), setting the course design (colors,
page layout), and setting up user accounts. Authors may toggle between
a presentation and a design mode; in the latter case, an integrated
HTML editor simplifies the production of WYSIWYG content.
Evaluation tools allow for tests and polls. Its interface supports multiple
languages.

Many of the described tasks meet more general requirements of an
hypermedia system. Remember Meyrowitz’s demands for a desktop of
tomorrow (2.2.2): not applications, but the system must provides means for
easy component composition and linking, as well as a uniform look & feel
and alternatives in structure (e.g. trails) and content (e.g. multi-lingual,
adaptable multimedia). Common services such as calendar, e-mail,
annotations, chat, white board, discussion board, etc. must become system
services.

Example (Browser history): The navigation history of today’s Web browsers
represents a list of visited pages. An LMS has only limited access to its
internal structure: in general, only relative movements, forwards or
backwards, are possible (by scripting). Imagine the history would
become a system service instead of a browser feature. History items (i.e.,
visited Web pages) would be stored in a standard Desktop folder. The
LMS could sort, search, edit, group, share, archive, etc, the history with
familiar Desktop facilities. Note that we can interpret trails similarly.

Example (Calendar): Each LMS provides its own, proprietary calendar
tool. If it became a system service, we could reuse the calendar in any
application, e.g. in the user’s e-mail program or word processor, and any
given data could be shared with others using standard Desktop network
security and access rights. Microsoft’s server-side scripting environment
ASP.NET suggests a Web-based solution – it enables developers to
include an interactive calendar component simply by using the
statement <asp:Calendar runat=”server”/>.

Typically, an LMS lacks in the authoring domain. It integrates only
rudimentary support for WYSIWYG hypertext editing (as in the case of

38 2 Basics

WebCT) and delegates all non-trivial authoring facilities to external
authoring tools. Again, evolution takes the application-centered line (cp.
with 2.2.2) instead of integrating authoring functionality into the system’s
core. Authors may create, e.g. hypertext with a WYSIWIG editor (e.g.
Microsoft Frontpage, Macromedia Dreamweaver), code editor (e.g.
Macromedia Homesite, Emacs), or their favorite word processor (e.g.
LaTeX, Microsoft Word, Adobe FrameMaker) using the hypertext export
facility [Klein98a, Wiest01]. Likewise, we find applications for text-based
questions and tests (click2learn’s Toolbook Instructor, Macromedia
Authorware, Microsoft LRN) supporting the related IMS specification
[Smythe02]. IMS covers only multiple-choice tests or drag & drop puzzles;
other tests, such as true/false, multiple choice, drag & drop, match item,
text entry, or hot spot (identification of a particular region of the screen),
graphics (e.g. Corel Draw, Adobe Photoshop), animations and interactive
objects with medium complexity (e.g. Macromedia Director, Flash,
Shockwave, Microsoft Powerpoint), are created separately. In the case of
highly interactive objects, not only content, but also the programming
architecture is handcrafted. Integrated developing environments (IDE)
allow for implementing, assembling, and testing software components and
applications, which are, in the case of Java, available for free (e.g. Sun
ONE Studio, Borland JBuilder, Eclipse).

In a word, we find authoring tools and programming architectures
separated from LMS architecture. Resulting courseware shows up
fundamental deficiencies in modifications and interlinking: learning
objects, in particular interactive ones, become black boxes that can
neither be modified sufficiently (e.g. choosing parameters or enhancing
functionality) nor be interlinked properly with their context (e.g.
synchronizing an object’s state with a guided tour). All-in-one applications
claiming to create unified, interlinked, and interactive courseware (e.g.
Toolbook or Director) reach a proper interlinking by the use of proprietary
Web formats – now the whole courseware appears as a read-only, autarkic
black box (e.g. a Flash application with interlinked text, images, etc.).

2.3.3 Content Management
As a Web-based information and communication system, an LMS must
naturally deal with the organization, production, delivery, and update of
Web content, that is, with content management. Nowadays, the
appropriate Web framework [Hanisch00b] consists of an underlying
database, a template-driven generator, a standard Web browser, and
online wizards (see Figure 3).

We obtain efficient functionality for data organization by database
technology. Actions such as query, select, insert, or update can be
expressed in the standardized SQL (Structured Query Language), which
abstracts from data representation and describes operations in a
declarative way (goal-oriented, with a syntax like “select [items] from
[table] where [criteria]”). Hyperwave (2.2.2) and Home [Duval95] further
employ a set-based data model providing “support for orthogonal yet
closely coupled structuring, linking, and search facilities” [Andrews96, p.
30] as system service. Documents can be grouped into collections or

2 Basics 39

clusters to implement, for example,
alternative media types and
content, multilingual data, and
versioning. They have a rich set of
associated metadata useable in
queries or data visualization.

Example (Multilingual documents
with clusters): While Web
technology provides support for
multiple languages by setting a
browser variable
(HTTP_ACCEPT_LANGUAGE)
and appropriate server
mappings for content
negotiation, this technique is rarely used. An approved method is letting
the user choose the language on the entry page and then follow different
paths through the server for different languages [Schmaranz96].
Consider the consequences in a courseware scenario, coming along with
content in two or more languages, in multiple versions (short, medium,
and long versions), and in alternative formats targeting screen (HTML),
print (PDF), network bandwidth (ASF/RM/QT video streams), or plug-
ins (SVG, MathML, etc.). Authors could hardly create Web pages
consistently, or include functionality to change language settings at
arbitrary locations. Clusters, on the other hand, allow for adjusting
content on the fly: users specify preferences through metadata, e.g.
English/long/screen/58k/MathML, and the matching Web page is
generated system-side. Because of assembly works on sub-document
layer, clusters potentiate content reuse – the database may e.g. store
language-independent blocks of a page only once.

Figure 3: LMS content
management deals with the
organization, production, delivery,
and update of Web content.

 Web
Server

User

Standard
Browser

Online

Wizards

T
em

pl
at

es

Community
(Clients)

Author Database

Content management separates content, structure, and design – a
necessity not only if we want to reuse objects in a different context, but
also for pedagogical and content/form reasons. Maurer [Maurer97] notes
that, based on the many lessons learnt, the system must include built-in
guidance for courseware design (but not dictatorship), like e.g. the use of
fonts, color, graphics, guided tours, or feedback. Usually, design
templates steer courseware generation from the core data, resulting in an
uniform look & feel. They provide orientational and navigational aids, as
well as an automatic structuring and maintenance of information
[Andrews94, p. 27]. The Exploratories project classifies common structural
patterns as reusable hypertext building blocks [Spalter00] such as Locator
(“you are here”), Overview (accentuated already by Shneiderman
[Shneiderman89]), Lecture, Laboratory, etc.; it is not meant to be an
exhaustive classification, but a basic support for authors to improve
standard navigation behavior. Authors may modify courseware design
globally simply by editing the corresponding template. Using different
templates for the same content creates different views.

Example (Link template) Remember that hyperlinks are part of the
database (see Section 2.2.2). A link template may visualize the link type
by a pictogram, validate the link target, and include further hints into

40 2 Basics

the main text, mouse-over text [Nielsen95], browser status bar, etc., in
order to anticipate the target’s type and content, e.g. a chapter title, file
size, or illustrative thumbnail. Another link template may follow a link
structure (forwards and backwards) and visualize a global or local
graph. Electronic text books use many such templates, for example (1)
the linear path to a chapter, (2) all subchapters of a given chapter, and
(3) back-links to chapters that cite the current one.

A template contains statements, loops, and variables that are filled up
with appropriate data. It is represented textual or hard-coded, and carried
out by an appropriate generator. A generator works either as an
independent application (creating static Web pages frequently, e.g. once
per day), or server-side (dynamic) as server add-on (e.g. CGI or Java
Servlets) or server-side scripting (e.g. JSP, ASP, or PHP). While the latter
ones are attractive for up-to-date information and personalization, they
lack – compared to static generators – in speed, stability, and offline
utilization (see Table 8). The major drawback of static generators, that
changes are not visible instantly, can be compensated by content-specific
server-add-ons (e.g. a discussion board servlet). Such hybrids balance
static and dynamic pages according to the nature and frequency of
updates. Note that generating static pages already is a form of caching.

Content management deals further with community support, that is with
archiving, expanding, sharing and transferring a community’s knowledge –
the non-intelligent part of knowledge management [Maurer01a], in
contrast to computerized or artificial knowledge. The LMS Gentle
[Dietinger98] (based on Hyperwave, and recently renamed to Hyperwave
eLearning Suite [HIM00]) for example collects all knowledge attached to a
document (questions, answers, remarks, discussion boards, etc.) and

Frequently-Generated Static Pages Dynamic Pages

+ responsiveness & scalability
+ offline versions (e.g. CD-ROM)
+ stand-alone (server/system

independency)
+ can use 3rd party search engines
+ less issues integrating 3rd party

tools

- changes are not visible instantly
- generation might be time-consuming

(in large, dynamic Web sites)
- server replication might be complex

(e.g. in distributed environments)

+ up-to-date information & templates
+ support changing contents (news,

banners, advertisements, etc.)
+ easier to do personalization

- require know-how to avoid

deficiencies in responsiveness &
scalability (e.g. caching, cache pre-
loading)

- extra work required to create offline
versions

- require specific server/system/tools
- costs (usually per server per CPU)

 rather small, static Web sites large, dynamic sites (e.g. kiosk,
news)

Table 8: While dynamic Web pages are attractive for up-to-date
information and personalization, static ones offer speed, stability,

and offline utilization. A hybrid generator balances them
according to the nature and frequency of updates.

2 Basics 41

includes it into the knowledge base. Maurer argues that, after a warm-up
phase with human specialists, the system can generate potential answers
for incoming requests automatically. Search is resolved bottom-up on sub-
document level, from words to paragraphs, chapters, and documents.

Figure 4: Gentle wizards manage course structure, content, and users
online [HIM00].

As casual users will not accept database interfaces or simple input masks,
an LMS must provide authors and learners with adequate input facilities.
Online wizards allow distributed modification of the courseware on the fly
[Helic00]; user input is versioned [Maurer96] and, after verification of the
editorial staff, integrated automatically. A rating system assures quality
by maintaining profiles for authors, learners, and content. Background on
Web-based groupware functionality can be found in the domain of CSCW
(Computer Supported Cooperative Work, [Bentley97, Dix96]).

Online wizards work task-dependently; Gentle, e.g. provides wizards to
manage courseware structure, content, and users (see Figure 4,
[Dietinger98, HIM00]); WebCT, on the other side, only provides basic,
simple-structured interfaces (2.3.2). Typically, they revert to templates for
structuring common, re-occurring workflows [Baumgartner02], and to
define rules and constraints for user authorization, data input steps,
preview, and database actions.

Example (Java Struts) The Struts framework [Apache00] for developing
online wizards is based on Java Servlets and a modified Model View
Controller design (2.4.2): while the View contains static “template” text
and dynamic content based on the interpretation (at page request time)
of special action tags, the Model contains the system’s internal state and
the actions that we can take to change it. The Controller, finally, focuses
on receiving HTTP requests from the client, decides what action is to be
performed, and then delegates responsibility to the subsequent View.

42 2 Basics

2.3.4 Learning Technology Standards
Learning technology standards specify learning object metadata and
interoperability. They aim at enabling educators to search/browse digital
libraries, integrate the object of preference into their curriculum, and
adapt it to their needs. Based on appropriate standards, an LMS could
launch third-party learning objects, track them, and adapt them to the
user.

So far, we have used the term learning object without explanation; let us
now briefly clarify its meaning. According to the IEEE Learning
Technology Standards Committee (LTSC, see below), any entity, digital or
non-digital, which can be used, reused or referenced during technology-
supported learning, represents a learning object – in short, any resource
that we can reuse to support learning. Wiley [Wiley00, Chapter 1.1]
surveys the many names of learning objects, among them knowledge
objects (Merrill, 2.3.1), pedagogical documents (ARIADNE, [ARIADNE02]),
sharable content object (SCORM, [ADL01a]), online learning materials
(MERLOT [SmithGratto02]), and educational components (ESCOT,
[Roschelle99]). Some authors create educational material but are not
aware of it or do not care, e.g. in the realms of games or virtual reality.
Terminology for interactive learning objects is tangled even more: variants
range from interactive multimedia instruction [ADL01a], interactive
illustrations [Beall96], explorable microworlds [Papert80, Birbilis00],
exploratories (combining exploratorium and laboratory [Simpson99]),
virtual experiments [Hanisch99], to games, manipulations, and
simulations [MathForum03].

Wiley notes that the building block metaphor applied to learning objects
(technically, 2.2.2, or pedagogically, 2.3.1), leads to wrong assumptions. In
LEGO land, a LEGO block is compatible with any other LEGO block.
Assembly is fun and simple; anyone can put them together. Six standard
2x4 blocks correspond with over 100 million combinations. Obviously, we
prefer combinations with educational value. Learning objects in the SMET
domain will mostly require theoretical background and training. A single
statement is true: we need standards to ensure learning objects’
interoperability.

The longing for interoperable hypermedia documents already showed in
the work of Engelbart and Nelson, and produced standards such as
TCP/IP, HTTP, and HTML/XML (2.2). Records of normative standards are
kept by organizations such as the Institute of Electrical and Electronics
Engineers (IEEE), the International Organization for Standardization
(ISO), and the International Electrotechnical Commission (IEC). Learning
technology standards are still evolving, and we act on specifications
instead (see Table 9). Erik Duval, who is both technical editor for the
standard on learning objects metadata (LOM) and president of the
ARIADNE Foundation, outlined the current state of learning object
metadata, participating organizations, and future roadmap in his
workshop at ED-MEDIA 2002 [Duval02]. We may expect a formal ISO
learning technology standard in a few years.

2 Basics 43

ADL
(1997)

Advanced Distributed Learning Initiative. Started by
the DoD and the White House Office of Science and
Technology Policy, ADL collects and recommends best-
practice specifications in the SCORM standard, and
creates testbeds for learning objects and LMSs.

AICC
(1998)

Aviation Industry Computer Based Training
Committee. Provides interoperability guidelines for
LMSs, especially to standardize training technologies
for aviation industry.

ARIADNE
(1995)

Alliance of Remote Instructional Authoring and
Distribution Networks of Europe. Creates tools and
methodologies for the share and reuse of learning
objects (see KPS, 2.4.1). Includes a strong emphasis on
respect for multiple (European) cultures and languages.

IMS
(1997)

Instructional Management Systems Global Learning
Consortium. Initially a project of the EDUCAUSE
association, the scope of IMS specifications include
Web-based course management systems, content
metadata and packaging, and question & test.

LTSC
(1998)

IEEE Learning Technology Standards Committee. The
LTSC Learning Object Metadata (LOM) working group
P1484 collaborated with ARIADNE and IMS to produce
an educational metadata IEEE/LOM contains technical,
didactical, and legal metadata, and is widely respected.

PROMETHEUS
(1999)

PROmoting Multimedia Access to Education and
Training in EUropean Society. An open European forum
to improve the quality and use of learning technology,
and to protect European multicultural values.

Table 9: Several organizations collaborate to specify learning technology
with regards to metadata, interoperability, and LMSs. Great interactivity

is not yet considered.

In their current state, learning technology standards do not support highly
interactive learning objects properly. However, we believe that future
specifications will include advanced issues of interactivity. We have
therefore chosen to sketch the application of the Sharable Content Object
Reference Model (SCORM, [ADL01a]) to interactive learning objects. Later
on, in the context of our own projects, we will describe our most urgent
needs (3.3.3).

The SCORM can be traced back, again, to interests of the Department of
Defense (DoD), which spends more than $17 billion annually for military
schools that offer nearly 30,000 military training courses to almost 3
million military personnel and DoD civilians, many of them aimed
maintaining readiness [GAO03]. Most courses occur at centralized training
facilities; they span weeks or months. DoD plans to convert about 50
percent of these courses into online courses with estimated costs of $10,000
per hour. (Note that less than five percent of DoD training programs

44 2 Basics

routinely uses interactive training technologies [ADL01a, p. 28] – a more
frequent use would surely raise costs.) To avoid unnecessary expense, the
DoD started the ADL initiative, which “envisions the creation of […]
repositories where learning objects may be accumulated and cataloged for
broad distribution and use” [ADL01, p. 12]. ADL integrates four major
areas into the SCORM: metadata, course-structure format, data model,
and an application interface. It mandates how educational material must
be organized, structured, and indexed so that different LMSs can cooperate
in delivering a courseware to a learner. In SCORM terminology, course
text, illustrations, tables, scripts, and highly interactive learning objects
represent assets, arbitrary pieces of a sharable content object (SCO).

"The content structure can represent a content aggregation ranging from very, very
small learning resources – as simple as a few lines of [HTML] or a short media clip –
to highly interactive learning resources that are tracked by an LMS. The Content
Structure is neutral about the complexity of content, the number of hierarchical levels
of a particular course (i.e., taxonomy) and the instructional methodology employed to
design a course.” [ADL01b, p. 114]

Let us investigate how the SCORM metadata (which, in turn, applies
LOM) supports interactive learning objects. Metadata categories deal at
first with general information and issues relating to lifecycle, rights,
annotation, and classification. Assigning them is normally trouble-free.
The same is true for technical metadata stating format (MIME types), size,
URL location, and requirements (e.g., browsers, plug-ins). Regarding
educational metadata, SCORM restricts vocabulary to a set of pre-defined
values; only for specifying a learning resource type, SCORM suggests best
practice vocabulary or user-defined terms. To specify an interactive
learning object, we would combine some best-practice vocabulary for the
learning resource type: exercise, simulation, questionnaire, diagram,
figure, graph, index, slide, table, narrative text, exam, experiment,
problem statement, and self assessment. Further details would be given as
custom vocabulary, and as free text description.

SCORM differentiates between two types of interactivity type: learning-by-
doing (active) and learning-by-reading (expositive). Simulations belong to
the first type, as do questionnaires or exercises. Second type
representatives are e.g. video clips, or hypertext. We can denote the
interactivity level within a range from very low to very high, which suffice
our needs – provided that SCORM will assign certain characteristics to
these ranges, e.g. statements about physical interaction style (e.g.
command line, menu, direct manipulation, 2.1.1) and cognitive activities
(observation, modification of objects/model, feedback, 2.1.3). We also lack
metadata for dynamic behavior (point & click vs. continuous interactions),
bi-directional interactivity, and input devices (keyboard, mouse, touch
screen, etc.).

The SCORM runtime environment [ADL01c] specifies interoperability,
that is, how the LMS launches and tracks learning objects, and how
objects exchange information. Current SCORM documentation considers
learning objects as black boxes; in particularly, it does not address intra-
learning object branching or navigation within the learning object
[LSAL03, p.39]. Objects may communicate with the LMS and store and
retrieve string values (resolved through JavaScript calls); therefore, it

2 Basics 45

must support an appropriate interface. We can use this mechanism to
launch an object in a specific state, or store its current state for later use.
However, the model prohibits learning objects to set values of other ones
(or ask the LMS to do so). If we want to interlink different learning objects,
e.g. to synchronize their states, we would have to bundle them into a single
learning object. Another motive for creating such bundles is SCORM’s
current launch model: it allows only one learning object to be active at a
time – despite the fact (2.1.2) that learners usually work simultaneously
with multiple objects, for example, with synchronized theory, exercises,
and exploratory learning objects.

2.4 Interactive Learning Objects
In the discussion of interactivity in WBT, we portrayed the evolution of
educational software to LMSs (2.3). Such systems obtain reusable
educational modules (learning objects) from an integrated or external
repository. In the following, we concentrate on a particular subset of
learning objects, namely highly interactive ones. We describe the vision of
digital libraries, and actual repositories holding interactive learning
objects in the SMET domain, mainly in the field of Computer Graphics
(2.4.1). Then, we consider – top-down – matters of software architecture
allowing for object reuse. We provide an insight in software components
(2.4.2) and adaptability (2.4.3), which refers to the within-component layer.

2.4.1 Repositories
The rising interest in repositories for educational material consolidates
efforts of the diversified educational community. Developers, teachers, and
designers have recognized the need for collaboration in order to create the
best-possible learning objects, and, moreover, to preserve and reuse them.
This is true in particular with regard to the production of interactive ones,
which has proven difficult and extraordinarily time-consuming [Spalter03,
Roschelle98]. Spalter and van Dam, for example, estimate “the cost of
creating a single well-designed, highly graphical, and interactive online
course in the commercial domain from several hundred thousands dollars
to a million or more”. They note also that production by and for the
educational community entails social issues such as limited funding or
timescales that preclude the application of reusable modules.

The US National Science Foundation (NSF) has started a major research
initiative on the design and creation of digital libraries [NSF03]. It
supports the vision of a national SMET education digital library, which
combines curriculum material developed in previously funded NSF
projects, enhances current SMET education, and includes future material
[Owen00]. As examples, we discuss results of the NSF-funded projects
Exploratories, ESCOT, EOE, and MERLOT, and further include two
European projects, ARIADNE and E-Slate, which are funded by European
Union Research & Development or national projects.

A digital library is meant not only to provide Web-based housing of
learning objects with browsing functionality – which is the task of a
repository –, but also to offer advanced services (via well-defined protocols)

46 2 Basics

for structuring and accessing material, as well as for community tasks.
Typically, a specialized staff ensures the library’s integrity and continued
existence over time [Owen00, Yaron01]. For practical reasons, content is
limited to some specific domain. Here, we focus on research problems of
digital libraries concerning matters of collecting, describing, finding,
reusing, and adapting interactive learning objects. Problems with
intellectual property issues, social issues, system specificity, and others
can be found, e.g. in [Spalter03].

We have pointed out that learning technology standards provide the
technological base for a digital library (2.3.4). However, currently they
neither support matters of great interactivity, nor advanced
interoperability. As an intermediate solution for accelerating production
and developing adequate component technology, several projects therefore
created repositories for interactive learning objects and software
components (see Table 10). The comprehensive Web/Comp project
[diSessa01] of Boxer-father Andrea diSessa (2.2.2) gives further insights
into state-of-the-art repositories and component-based educational
computing.

Projects developing interactive learning objects typically develop a Java
component architecture, which – following Kay’s line (2.2.3) – renders any
object inspectable, modifiable, and extendable. Roschelle [Roschelle98]
mentions that technically, the idea of a programming language as system
architecture has proved problematic due to the difficulties in keeping in
pace with rapidly advancing interactive technology. Consequently,
Microsoft’s C# language supports diversity in programming languages. A
language-independent approach would also standardize repositories that,
for now, collect interactive learning objects in various media types such as
Flash, Shockwave, Director, Authorware, Toolbook, SVG, etc.

The Exploratories project [Beall96, Simpson99, Spalter03] publishes
findings about strategies for creating and using educational Java applets.
Following the line of other projects of Andries van Dam‘s research group
(2.2), it represents Brown’s most current contribution to Web-based
teaching. Their granularity strategy [Laleuf01] decomposes a learning
object into a graduated, multi-level component hierarchy from self-
complete applications to components to sub-components, providing objects
at all levels. All their applets use an “Exploratory” base component to
support a consistent baseline of features (e.g. startup behavior, basic
menus, basic container). In contrast to projects like E-Slate or ESCOT (see
below), this approach enables programmers to access all aspects even of
complex components. On the other hand, project members had to state
that creating a complete collection for a single course leads to a huge effort
that is hardly to manageable for a non-profit research group of ten people.
Like similar projects, they report technical problems with browser
compatibility (i.e. Java plug-in versions, JavaScript functionality, security
settings) and system specificity (i.e. setup, user permissions, classpath,
network issues). Some stated problems are typical in the university
environment, such as student’s lacking prerequisites in software design
(i.e. object-oriented programming, component reusability).

2 Basics 47

Exploratories
(1996)

The Brown University Computer Graphics Research
Group’s latest effort to leverage the computer's potential
for use in education follows the line of Andries van Dam
and others (see HES, FRESS, and Intermedia, 2.2.2). In
developing interactive microworlds for teaching
introductory Computer Graphics, the project explores the
use of software components and strives for understanding
underlying design patterns.

E-Slate
(1993)

Manoulis Koutlis and Thanasis Hadzilakos at Computer
Technology Institute, Greece, originally planned to create
microworlds for learning Geography. Funded by national
and European Community based Research & Development
projects, it has become a long-term project going through
many educational and end-users collaborations, as well as
many technological re-designs.

ESCOT
(1998-2001)

Educational Software Components of Tomorrow. Jeremy
Roschelle, Chris DiGiano, Roy Pea, and Jim Kaput at SRI
International’s Center for Technology in Learning explored
the use of Java-based component technology in math
education. Focusing on reusability, they interconnected
third-party JavaBeans components and substantiated the
use of a scripting architecture.

EOE (1994)

Educational Object Economy. James Spohrer founded the
first and largest repository of educational Java applets at
Apple's Learning Communities Group in order to enable
the formation of an educational developer community. EOE
features 2,600 applets, with a fair number of broken links.

Merlot (1997)

Multimedia Educational Resource for Learning and On-
line Teaching. Administered and led by the California
State University Center, this international cooperative
organizes a repository of high quality learning objects.
Merlot provides sophisticated metadata and employs a
peer review process in combination with user comments to
assure quality.

ARIADNE
KPS (1996)

The Knowledge Pool System represents the core of
ARIADNE’s infrastructure, coordinated by Erik Duval.
This digital library organizes learning objects with
sophisticated, multilingual metadata, i.e. LOM (2.3.4)
extended with semantic metadata for science type,
discipline, and sub-discipline. A concept navigator allows
for browsing more intuitively.

Table 10: Educational repositories collect interactive learning objects
and work on challenges such as component granularity, reusability,

and quality assurance.

48 2 Basics

More than 50 applets [vanDam02] explore concepts in the areas of color
theory, signal processing, scene graphs, lighting and shading, viewing
techniques, texture mapping, and linear algebra (see Figure 5). Available
software components mainly focus on Java 3D primitives (arrow, axes,
cone, cube, cylinder, grid, sphere, etc.) and interactive 3D widgets
(translate/rotate draggers). Users may run the applets with their Web
browser (using the built-in Java Virtual Machine, or a Java plug-in) or
browser-independently with Java WebStart. Applets and components are
bundled as Java archive (JAR) files and can be downloaded for free.

The long-term E-Slate project [Birbilis00, Kynigos01] in Greece creates an
easy-to-use visual component toolkit for teachers. Due to problems with
software compatibility [Spalter03], they also develop a custom desktop,
that is, a container environment (see Boxer, 2.2.2) offering integrated
authoring and education. On the icon-driven desktop, users may
interconnect components through visual “plug and socket” programming,
which provides both a data flow and protocol (component dependencies)
connectivity. An essential Logo scripting component extends built-in
plug-in control facilities. Each component carries a set of scriptable
primitives involving data passing, state changes, and event handling, all of
them available through the desktop. Like in other builder tools, the user
may directly manipulate component layout and appearance. Components
are JavaBeans that must implement an additional E-Slate API. About 30
components span information handling and visualization tasks (database,
map viewer, chart, vector), media handling (image editor, canvas, TV, Web

Figure 5: The Exploratories project at Brown University develops Java
applets for teaching introductory Computer Graphics. Exploratories
combine exploratorium and laboratory aspects, and provide graduated,
multi-level component design. [Laleuf01]

2 Basics 49

Figure 6: The E-Slate project in Greece creates an easy-to-use visual
component toolkit for teachers. A custom desktop allows for modifying
component layout and appearance, and lets users control component
primitives by scripting. [Birbilis00}

browser), simulation support (agent, turtle, stage, time, clock, variation),
and common GUI controls (button, checkbox, menu, list, text, etc.). We still
can infer the project’s early plan, which was to create microworlds for
learning Geography (see Figure 6). The chosen granularity balances
usability and flexibility: users can modify components through visual
programming and scripting only to some degree, further modifications
must be resolved on source code level. Desktop environment, learning
objects, and components are available free of charge.

Between 1998 and 2001, the ESCOT project [Roschelle99, Parnafes01]
created component-based software for middle school math. Their declared
goal was to investigate how software components may support the
educational community in developing interactive learning objects; research
focused on component reusability and interoperability. ESCOT reached a
critical mass of components by collaborating with several companies (and
saved time and costs [Spalter03]). They adapted and incorporated existing
mathematics educational resources, such as Geometers Sketchpad,
SimCalc, AgentSheets, EOE components (see below), and others;
component granularity ranges from simple GUI widgets such as scrollers,
sliders, number and text entry boxes to more complex, customizable
components that such as a grapher, a spreadsheet, an histogram, a
geometry sketching component, and agent-based simulation components.
The Mozilla Rhino engine formed the base for a JavaScript scripting

50 2 Basics

component. Such component reuse
minimizes implementation efforts –
Sketchpad, for instance, brings with
it all geometry functionality,
maintains all geometry relation-
ships, and provides drag & drop
interactivity and animation. As it
publishes parameters, measure-
ments (e.g., the area of a polygon),
and actions to the component’s API,
ESCOT can modify and trigger
them via standard Java components
(e.g. a button). The main drawback
of third-party components lies in
intellectual property issues and
licensing [Spalter03]; now that the
project is finished, its public re-
pository contains about 40 applets.

ESCOT promoted its work for use
in real classrooms by designing the
Drexel MathForum’s electronic
Problem of the Week (ePoW,
[MathForum03]), a well-established
institution and process in which
interesting, non-standard math

problems are posted to the international Web audience. Students work on
the problems and submit solutions, and the MathForum offers feedback,
help, and exemplary solutions. Finally, ESCOT evaluated the use of visual
programming builder tools (2.2.2). They customized Sun’s BeanBuilder, a
tool for connecting JavaBeans components, to support common wiring
patterns and enhance connection flexibility.

Figure 7: ESCOT demonstrated
how component reuse supports the
educational community in
developing interactive learning
objects. The project created middle
school math problems using third-
party components, and promoted
them in the Drexel MathForum.
[Roschelle99, MathForum03]

There are also many repositories collecting stand-alone educational
material. One of the first efforts in creating a community developing and
using Java applets is the EOE [Azevedo01]. It organizes applets by areas
and covers a large variety of subjects such as Computer Science, Social
Sciences, Arts & Music, etc. (actually, most of them belong to the SMET
domain). Applet metadata briefly describes object functionality, and
provides source code for user modifications, member reviews, pedagogy
(prerequisites, learning level, educational objectives, use time, form,
structure, interactivity level), and technical comments. EOE’s primary
trouble is that the repository collects only links to objects. In 2000, roughly
30% of their applets had broken links or other technical defects.
Furthermore, they use a proprietary set of metadata providing only
subjective tendencies instead of comparable concepts. For example, applet
metadata may state “discovery” pedagogy, “hyperdimensional” structure,
“high” interactivity, “image” presentation, and “math” relation. As EOE
relies on free-form metadata, searches become practicable only for the
licensing, source availability, and target education level. Such lacks reflect
in community activities. In the field of Geometry, 8 out of 142 learning

2 Basics 51

object members have given reviews, with only 2 technical comments, and
neither metadata nor pedagogy information. (Note that educational value
and use of a given source code is not considered in metadata.) Searching or
browsing becomes difficult. Not a single applet provides end-user
accessible parameters through which we can tailor the applet even mildly.
EOE applets are not based on software components; they exist as stand-
alone, non-interoperable entities.

 MERLOT [SmithGratto02] improves this basic strategy. Like EOE, the
repository collects links to web sites assisting education in a variety of
content areas. It arranges subject categories into subcategories, which
makes searching/browsing for learning objects a lot easier. Material type is
not restricted to Java applets, but ranges from simulation, animation,
tutorial, drill & practice, quiz/test, lecture/presentation, collection, case
study, to reference material. Regarding interactive learning objects, the
repository features about 2250 simulations and 300 animations. Metadata
for the primary audience and technical format (15 common formats, e.g.
Java, Shockwave, Flash) is similarly detailed. Developers can attach
source code to allow user modifications. MERLOT assures quality by
employing a (five-star) peer review system and user ratings. Two higher
education faculty members take part in the reviewing process, and a
learning object must average three stars to become part of the repository.
The review process covers three areas: quality of the content (accuracy,
clarity of presentation, relevance), ease of use (interface design for faculty
and students, engagement, interactivity), and effectiveness as a teaching
tool (objectives, potential for integration into classes, instructional
flexibility). About 950 out of 8800 learning objects come with peer reviews,
among them 250 simulations. The MERLOT community is active: approx.
1850 users have submitted ratings and comments such as reports of
activities they have developed to use in conjunction with the sites.

The sophisticated ARIADNE Knowledge Pool System (KPS, [Duval01,
Duval02]) represents a digital library for learning objects with
standardized metadata (2.3.4). Having a European background,
multilinguality is one of KPS’s key issues. ARIADNE metadata rearranges
the LOM document hierarchy and introduces semantic metadata for
science type and sub-discipline. Users may browse or search for science
type by successively restricting available disciplines, sub-disciplines, main
concepts, main concept synonyms, and secondary concepts. A concept
navigator allows for browsing concept space. ARIADNE further develops
tools for storing, searching, and retrieving their learning objects, e.g. the
TM5 tool for test queries. KPS contains 1300 active learning objects (400
validated ones), whereas active objects denote courses, exercises,
experiments, problem statements, questionnaires, self-assessments, and
simulations. If we restrict searching to technical media (MIME) types, we
find 46 Flash/Shockwave objects and 21 Java applets, mostly animations
and low interactive objects in the SMET domain. Because metadata
supports neither software components nor adaptability (e.g. in terms of
Model View Controller, or by describing parameters and methods, or by
including source code) produces stand-alone black boxes that can be used
only “as is”. Compared to MERLOT, we miss reviews and user feedback.

52 2 Basics

2.4.2 Software Components
So far, we considered content reuse as entities. Let us now address parts of
interactive learning objects. Along the way, we have already met the
building block design principle (2.1.1), messaging and visual programming
(2.2.2), and projects developing interactive learning objects (2.4.1). Today,
developers generally agree in basing development onto a toolkit of reusable
software components [Klein98a, Laleuf01]. Roschelle [Roschelle98] states:

 “In our role as developers, we cannot afford build up high quality versions of each
component we need from scratch. In fact, some components, such as computer
algebra, are so expensive to build that we cannot afford to build them at all. […].
[Component software architecture] could allow our development efforts to focus on
narrow niches where we can make a unique contribution while allow our research
efforts to draw upon a much wider collection of standard educational components.”

Use of components redefines both programmer and educator tasks, as it
“redefines the line between software creation and content authoring”
[Yaron01]. Educational material is no longer seen “as is”, but as a learning
object that can (and should) be adapted. In the same line, learning theories
demand that the learner should be engaged in a construction process, i.e.
creating and modifying software models to refine the learner’s own mental
model (2.3.1). How many interactive learning objects did ever fit your own
mental model of the represented topic? The great challenge is to create a
matching set of graduated, interoperable software components for both
programmers’ and educators’ use. Yaron explains why interactivity and
reusability are, in some ways, opposing goals:

“From a collections perspective, the level of interactivity required for engaging
activities leads to monolithic chunks of software that are difficult to subdivide into
components that promote adaptation and reuse.” [Yaron01]

We define a software component as an internal element of an learning
object that can be reused in other learning objects. The argumentation of
component reusability follows the one for learning objects. However, only a
handful of projects within the educational community deal with component
issues [Spalter03]. Moreover, software components employed in an
educational environment have different properties than all-purpose
components – an educational software component must support teaching
and learning per se. For example, understanding a concept might require
studying a component’s interior (model). Content visualization (view) and
interactivity (control) should match didactical goals. In addition,
programming will generally favor understandable software structures
(source code) over efficiency. Cunningham and Bailey, for example,
illustrate the use of the scene graph structure for teaching
[Cunningham01].

Any component software architecture (CSA) must deal with issues related
to reusability (are components exchangeable?), extensibility (can we plug-
in custom components?), granularity (smart, flexible components vs. ready-
to-use application-like components), standards (will they interoperate with
third-party components?), relationships (can the system update
interdependent component parameters automatically?), and interactivity
(are there built-in control structures that support direct manipulation?).
Popular component standards are e.g. Microsoft COM (component object

2 Basics 53

model) or .NET (components with metadata), Sun JavaBeans (standard
Java component model), Enterprise JavaBeans (server-side components,
J2EE – Java 2 enterprise edition, ONE – open net environment), and
Borland Delphi components (VCL – visual component library, CLX –
component library for cross-platform development). They support
component models such as data flow, data sharing, event-based messaging,
and Model View Controller.

Model View Controller (MVC, [Krasner88]) deals with component
interdependencies by decoupling a component’s core data and functionality
(Model), presentation (View), and user interaction (Controller). The Model
notifies its Views when it changes and enables the View to query the
Model’s state. The View renders the contents of a model, accessing Model
data and specifying its representation. It is the View's responsibility to
react to model changes and maintain consistency in its presentation. The
View forwards user gestures (e.g. button clicks, menu selections) to the
Controller, which defines behavior; it interprets user gestures and maps
them into actions to be performed by the Model. Note that MVC –
separating an object's functionality, visual representation, and
interactivity – is a Smalltalk design principle (2.2.2), and still the design
pattern of choice for interactive Java applications [Singh02]. We will apply
Schulmeister’s interactivity levels (2.1.3) to the MVC pattern later (3.1),
and extend MVC further to a more granular one regarding construction
and interaction issues (3.2.1).

Example (Model View Controller) Consider particles thrown into a vector
field, e.g. flowing water. MVC would encapsulate geometry and physics
in the Model components (particle position, velocity, acceleration, etc.),
employ View components for graphs, tables, etc., and Controller
components for user interactions, e.g. mouse or keyboard actions to
change a mode, or parameter.

Separating Model from View is essential for synchronizing multiple
representations of shared data (2.1.2). In Java, dependencies are resolved
by event-based messaging. Each View that is interested in changes of a
Model creates and registers a listener object. As the Model is updated, it
notifies each listener by sending a corresponding event object. JavaBeans
components use such messaging to implement data flow; specialized events
notify listeners of property changes, which might be vetoable (that is,
listeners may prevent actions from occurring). Builder tools like Sun’s
BeanBuilder (see visual programming, 2.2.2, and ESCOT, 2.4.1) make it
possible to design data flow visually by operating on JavaBeans metadata,
which specifies publicly available properties, functionality, and
connectivity.

Interdependencies comprising a bi-directional nature can hardly be
managed by simple messaging. Remember for instance the geometry
constraints in Sketchpad (2.2.1) or ThingLab (2.2.2). We require an
additional mechanism providing tools for reasoning about messages and
responses, in particular about the interactions among them; Alan Borning
therefore introduces constraint components [Borning81]. A constraint
represents a relation among components that must always hold. It is

54 2 Basics

specified by a rule and a set of methods for satisfying the constraint. More
generally, a constraint can be seen as an algorithm component – Brown
University’s algorithm animation system BALSA [Brown84] for instance
uses such components for separating algorithm from animation issues, and
the dynamic geometry software Cinderella [Kortenkamp99] takes a similar
approach.

A more complex graphical presentation is represented by scene graph
components [Strauss92, Bell95]. This directed, acyclic graph consists of a
set of container components (group nodes), scene nodes holding geometry
information, attributes (color, texture, etc.), camera parameters, and
behaviors (interactivity and animation). Actions traverse the scene graph
in order to render the scene, perform picking, calculate bounding boxes,
etc. Until today, there is no built-in interaction mode for 2D/3D graphical
scenes, neither in Java 2D, nor in Java 3D. Typically, the system (e.g.
OpenGL) only supports picking, and developers build custom behavior
toolkits to include interaction modes such as zoom, pan, rotate, walk,
select, and drag & drop. We will discuss details of the scene graph
structure later, when we compare classic approaches with our own
extensions (3.2.3).

2.4.3 Scripting
 “[T]he principal challenge is moving the conception of component software from a
developer-centric viewpoint toward a domain-centric viewpoint” [Roschelle99].

Developers reduce the complexity of developing interactive learning objects
by decomposing them into software components (2.4.2), not only to save
time and cost, but also to enable end users to customize content, layout,
and user interface. However, interactive learning objects and
corresponding components are executable pieces of software, and difficult
to adapt to the diverse needs of the educational community.

Many of the EOE’s applets (2.4.1) enable adaptation by including Java
source code. Skilled programmers may then rework a learning object
completely, using efficient data structures and low-level communication.
However, Yaron [Yaron02] mentions that “even if source code is available,
and the changes required to make the content useful in the particular
classroom are small, instructors do not typically have the time or expertise
needed to implement them”. Many other members of the educational
community [Roschelle99] criticize the current excess of computer
programming in developing interactive learning objects. Normally,
educators with pedagogical expertise lack in technical background, which
excludes them from the creation process of an interactive learning object.
Papert’s approach therefore was to simplify programming (see Logo, 2.3.1).
Kay’s working group set off a further shift towards direct manipulation,
drag & drop construction, and visual programming (see Smalltalk, 2.2.2,
and ESCOT’s use of builder tools, 2.4.1). Current tools such as ALICE
[Conway97] reduce programming to graphical if-then-rules and automate
common tasks. However, as Adele Goldberg, a member of Kay’s group and
his later successor, mentions (as cited in [Roschelle98]), the principle
problem remains: few educators have the time or inclination to become
programmers at all.

2 Basics 55

We therefore turn to a complement model that seems to be more natural
for authors that are not technically inclined: creating Web content and
extending its abilities. Yaron [Yaron01] characterizes that approach as
follows: Instead of viewing “the creation of curriculum material as
primarily a programming task, and simplifying programming to the point
where it becomes accessible to instructors […], our approach starts from a
very different perspective, that of curriculum creation as Web authoring”.
He argues that most members of the educational community are already
familiar with Web-based authoring such as using hypertext links or
image maps. Basing authoring on the hyperlink paradigm has – from an
author’s perspective – advantages compared to simplified programming. It
is straightforward to go from creating a hypertext link to sending a
message to a learning object. Instead of linking to an entire object, we
might introduce links to, from, and between software components (or other
internal items or substructures).

Such an interlinking with an object’s substructures requires a mechanism
specifying link anchors and targets independently from the object’s content
type, content, and structure. Remember the Dexter Hypertext Reference
Model that regards the object’s interior (‘within-component layer’) as being
outside of the hypertext model per se (2.2.2). Instead, it proposes indirect
addressing by a pair of anchor identifier and value. While the identifier
provides a constant, unique referent for linking, the anchor value specifies
some item or substructure within an object. Obviously, only the application
responsible for handling the object can interpret the anchor value; as the
object changes over time, the anchor value will be changed to reflect
structural changes or movements of the item to which the anchor is
conceptually attached.

Technically, browser plug-ins render the Web interactive (2.2.3). The
communication model between plug-in content and hypermedia
environment seriously restrains interoperability. Consider today’s
interactive Web content: does it show adequate hypermedia embedding or
rather black box behavior? In the case of Java applets – which ironically
start up as gray boxes – authors may access all public API functionality of
the object by the use of scripting. Scripting languages like AppleScript,
JavaScript, or VBScript (VisualBasic) allow for lightweight programming
[Roschelle96]. They offer an object model of the current application and
facilitate control of object behavior within and across hypermedia objects.
Authors embed Web scripts as plain text into HTML content. A Web
browser initiates and starts scripts either when opening a Web page or
after specific user interactions such as button or mouse-over events. The
other way round, scripts may also process messages (events) from software
objects, e.g. to synchronize objects, or give context help.

A first approach therefore is to define public methods and properties of an
interactive learning object that then may serve as anchor identifiers.
Wolfgang Christian implements this idea in his Physlets (applets for
teaching physics) toolkit [Christian00]. Each of his components ships with
a predefined set of properties and methods that we may use in scripting.
Christian further splits learning objects into many small, but
interconnected components (applets) that can be distributed all-over a Web

56 2 Basics

Figure 8: Christian’s Physlets represent small, interoperable components
for teaching physics. They offer predefined, scriptable properties and
methods. Working as applets, physlets can be distributed all over a Web
page, and still share data and communicate. [Christian00]

page. This allows authors to interlink, for example, non-interactive, in-
structional course text with interactive, constructive microworlds.
(Horwitz [Horwitz95] calls a microworld (2.3.1) that is connected with its
hypermedia context by scripting a hypermodel.) However, we cannot
restrict a Physlet’s given set of public functionality. Roschelle mentions:

“The more functionality and flexibility an application offers, the greater is its
usefulness. On the other hand, we only want to use a constrained set of carefully
tuned features that can help students focusing their work.” [Roschelle96]

The Physlet component granularity is not graduated. While each Physlet
component represents an application, internal items or substructures are
not encapsulated into components. Functionality that was not foreseen
must be implemented by a new component. Jeremy Roschelle, who
concentrates on flexibility in authoring mathematical representations and
manipulating the object’s user interface, made a first step towards more
graduated, scriptable components. His MathWorlds [Roschelle96] project
enables users to control interface issues with AppleScript scripts, record
scripts, and attach scripts to the interface. ESCOT and E-Slate (2.4.1)
consequently encapsulate scripting functionality, i.e., a script parser and
interpreter, into corresponding scripting components (JavaScript,
respectively Logo) – that way, developers can adjust publicly available
functionality as needed. Lastly, Roschelle mentions the use of so-called
factored programs, which encapsulate MVC’s direct manipulation
controllers, to generate scripts on user interactions.

2 Basics 57

2.5 Conclusion
This first part of this thesis concerned the nature of interactive Web-based
courseware. We described interactivity in terms of direct manipulation,
physical GUI ingredients, cognitive process, and quality. A combined
definition will be given in the second part. We contrasted the WIMP-
designed Desktop with the Web, which is limited to the hyperlink and
plug-in technology, and portrayed efforts to render the Web valuable for
education by focusing on structure, interactive multimedia, collaboration,
and personalization.

While a start has been made with learning management systems and
metadata standards, great interactivity is not considered in current
learning technology. We found that current interactive learning objects act
as black boxes in a Web-based courseware, which can be neither adapted,
nor interlinked in a fine-grained manner. Development swallows a lot of
resources, and resulting software cannot be reused. We therefore outlined
approaches to software components and scripting that promise to provide
adaptability and interoperability on all software levels. However, many
questions are left open. Can we conceptualize and realize a multi-level,
scriptable, component-based architecture? If so, how do we manage
learning objects, software components and scripts in a Web-based
courseware, and allow community members to work with them? We will
give appropriate answers in the second part.

 59

3 GRIS/ILO Interactive Learning Objects

3.1 MVC Interactivity.. 60
3.2 Software Components.. 61

3.2.1 The ORC-SG Design Pattern ... 61
3.2.2 Object, Renderer, Constraint (ORC).. 62
3.2.3 Scene Graph and GUI (SG).. 65
3.2.4 The Toolkit.. 70

3.3 Adaptability and Interoperability... 71
3.3.1 Scripting.. 71
3.3.2 Networking ... 75
3.3.3 Scripting Database ... 77
3.3.4 Drag & Drop Scripting ... 79

60 3 GRIS/ILO

3.1 MVC Interactivity
We already clarified the denotation and relevance of interactivity in
learning by emphasizing successively the physical, perceptual-cognitive,
and communication-theoretic points of view (2.1). Let us now combine the
major concepts of interactivity and reformulate the terminology in terms of
Computer Graphics principles, particularly in terms of the Model View
Controller (2.4.2). We propose a so-called MVC Interactivity [Hanisch03b]
that provides a precise definition of highly interactive learning objects. In
our notion, a highly interactive learning object allows for directly
manipulating its view, parameters, and functionality.

At first sight, MVC meets technological, didactical, and cognitive demands.
The paradigm separates interface issues (Controller, e.g. direct
manipulation) from an object's visual appearance (View) and its state or
functionality (Model). However, parameter interactivity differs in its
symbolical meaning from interactivity on the structure/model layer. We
therefore break down MVC's Model into parameters and internal
functionality; while the first represents an object's state, the latter
comprises the underlying structure and components. Note that
Schulmeister’s understanding of an object’s model refers to its
functionality, that is, to its structure and components (object parts), and
the object’s state corresponds with his notion of parameters (2.1.3).

We consider an object a highly interactive learning object if it provides
means for

1. representation of domain knowledge that may induce a learning
process

2. illustrative actions

3. direct manipulation of object view

4. direct manipulation of all essential object parameters

5. direct manipulation of object functionality (structure, components)

6. adequate feedback and help

We integrate all levels of Schulmeister's taxonomy, require direct
manipulation in all aspects, and explicitly ask for a proper design of
interactivity with respect to the range of interactive parameters. Note that
we strive for great interactivity only – other degrees of interactivity can be
derived. Point 1 formally defines a learning object (2.3.4).

We imply that a highly interactive learning object visualizes complicated
topics and relationships graphically and allows for direct manipulation of
all parameters belonging to the topic's core. Learners can modify internal
components and get visual feedback or help wherever needed. Modifying
the model may require visual scripting (3.3.4) or visual programming
(2.2.2).

3 GRIS/ILO 61

3.2 Software Components

3.2.1 The ORC-SG Design Pattern
Developing hundreds of highly interactive learning objects naturally leads
to a component-based architecture supporting MVC, constraints, and a
scene graph structure (2.4.2). MVC separates an object’s functionality,
appearance, and interactivity, constraints encapsulate component
interdependencies, and a scene graph represents complex graphical scenes.
We portrayed how to create and modify learning objects by connecting
components (programmatically or visually).

However, there is no design pattern combining such component types.
While MVC is included into popular component standards, constraints still
require custom structures. The scene graph exists as a separate,
incomplete architecture (for example, we have Java 3D, but not a 2D scene
graph), requiring custom extensions, e.g. to provide adequate interactivity.
Moreover, we have argued for a multi-level architecture enabling us to
adapt, combine, and exchange components on all levels. We therefore
propose and implement a more granular MVC component model with
respect to construction and interactivity, which we call ORC-SG (object,
renderer, constraint, scene graph, GUI) [Hanisch03a].

Our implementation is based on Java 2 (see Figure 9). To maximize
usability (and minimize netload), we heavily used the included packages
Java2D and Java Swing, and, as appropriate, the standard packages Java
Advanced Imaging (JAI), Java Media Framework (JMF), and Java 3D –
packages providing basic functionality for mathematics, geometry,
visualization, and user interfaces. Our own packages extend this
framework, respectively with components encapsulating objects,
constraints, renderers, GUI, and a scene graph structure. The latter ones
include sub-packages for a scene graph’s nodes, actions, and GUI.

We do not ship interactive learning objects with all these components;
instead, we bundle components into packages (Java archives, JAR) and
specify required packages in
the learning object metadata.
Browser or plug-in may then
reuse formerly downloaded
(cached) packages, and the
learning object’s actual
netload shrinks to a few
kilobytes. To avoid complex
component interde-
pendencies between different
packages, we set up layered
packages containing only
one-directional dependencies,
and use adapter
components with standard
Java interfaces like
JavaBeans properties.

Figure 9: The ORC-SG design pattern for
a component-based software architec-
ture. Front- and back-end of the highly
interactive learning objects we developed
are standard Java packages.

62 3 GRIS/ILO

3.2.2 Object, Renderer, Constraint (ORC)
Usually, MVC’s model encapsulates both state and functionality of a
component. As educators, we are also interested in its construction.
Consider Bézier curves – how would we teach them without the
constructive algorithm of de Casteljau? Therefore, we further separated
constructive information into a constraint component (e.g. orthogonal
lines, a point on a curve, 2.4.2). A constraint automates necessary
parameter updates, which is useful in the case of many interdependent
parameters (see Figure 10). Before performing the update, we announce
parameter changes to all listeners registered for the given type of
modification, and let them accept or veto the change, or constrain data
accordingly. The update phase is restricted to the ORC layer; further
updates involving SG components must either be promoted
programmatically (to avoid rendering visual information multiple times) or
be handled directly within the specific component (e.g. in response to a
user input).

Instead of implementing a constraint solver, we simply rely on a data
flow model (forcing the author to avoid circle definitions, which might
otherwise lead to deadlocks). Our result are reusable and exchangeable
algorithms – which is useful for more than just teaching alternative
computer graphics algorithms.

Figure 10: Constraints encapsulate constructive information. In this
example, they manage bi-directional, direct manipulation of all essential
parameters, while synchronizing dependencies automatically.

3 GRIS/ILO 63

Our Object components store state
information and primitive
functionality. They fit smoothly into
the Java 2D/3D component
hierarchy, e.g. point components
derive from the corresponding Java
component, and abstract point
functionality supports both
dimensions. Our geometry objects
(point, vector, mesh, etc.) contain a
transformation cache to avoid
redundant recalculation of
transformed states.

Example (Curve Objects) All of our
parameter curve objects, from
simple point sets to
Taylor/Lagrange/Bézier/-
BézierSpline/BSpline curves to
arbitrary functions (our parser
component supports standard
math and trigonometric
functions), derive from a Curve
component. This abstract base
component provides
functionality for querying the
point list, performing equality and epsilon tests, calculating derivations,
bounding box, length, distances, etc. A flatness parameter controls curve
approximation by a discrete number of points; we perform recursive
interval bisection until the resulting points’ distance is less than the
given flatness (see Figure 11). For each affine transformation operating
on the curve, we store the transformed discrete points in the
transformation cache (a simple hash table). Derived components
implement case-dependent functionality such as single point queries or
replaces functionality such as the general difference method for
calculating derivations by optimized derivations, e.g. for Bézier curves
or explicitly given ones.

Figure 11: Geometry objects hold
state information and primitive
functionality, together with a
transformation cache. All of our
parameter curves derive from an
abstract curve providing
functionality like curve
approximation for a given flatness.
Our abstract curve renderer in
turn draws curves output-
sensitively, using polylines and
one-pixel default flatness.

In contrast to this, our renderer components hold an object’s view – its
visual information. This enables students to change views and focus on
teaching content in programming, without having to deal with technical
output issues (see Figure 12). In MVC, it is the view's responsibility to
react to model changes and maintain consistency. In ORC-SG, renderers
are passive components; the scene graph will perform all necessary
synchronization. Renderers may hold arbitrary properties to describe
their appearance (e.g. colors, line strength, strokes, or fill type). The
renderer’s base component stores them as string-value pairs in a hash
table and allows for a scripting style like renderer.setProperty(inactive-
Color, Color.black) independent of the actual renderer type. A property
cache ensures efficiency: we cache properties additionally in the derived
renderer, and retrieve them from the hash table only if they become

64 3 GRIS/ILO

invalid. As users wish to select
an object’s visual shape
instead of geometry, renderers
further hold selection
functionality such as picking
with a screen point or an
arbitrary shape (e.g. a rec-
tangular selection).

Example (Picking) Our string
renderer provides both a
‘pickable’ and a ‘pickInside’
boolean property. If merely
the first property is set, we
let users pick the string’s
bounding box on screen.
While this is useful for
small-sized text, such
picking behavior might
confuse users when dealing
with larger-scaled text.
There, they would rather
expect to pick only visible
portions of the string, that
is, the inner area of the
characters, – which is, in
fact, the behavior that our
second property enforces.
Picking with an arbitrary sh
test each character’s midpoint, and pick the string only if half the
characters lie inside.

Figure 12: Encapsulating visual infor-
mation into renderers enables students
to change views and focus teaching
content in programming. Here, students
pilot a racing car to the goal by
programming and connecting a spline
curve’s Bézier segments with C0, C1, or
G1 continuity, without having to deal
with technical output issues.

ape is similarly resolved per character. We

All of our renderers render into the standard Java Graphics2D object. That
way, we can output into any Java GUI component, or render into any other
component providing a Graphics2D object, like the Java Image component.
Many of our renderers further work output-sensitively, a necessity for
fine-detailed graphical scenes such as grids, point clouds, or vector fields.
Just imagine setting a small zoom factor for vector fields while keeping
grid size constant – rendering would slow down immediately.

Example (Output-Sensitive Rendering) Our curve renderer contains
properties such as line strength, strokes (e.g. dotted, textured), point
color, inactive and active color (most of our renderers visualize objects in
two states, inactive/unselected and active/selected), a pickable flag
determining if users may select the object, and a flatness parameter
(with one-pixel default, see Figure 11). We render the curve into a
Graphics2D object (which, in the simplest case, belongs to a graphics
canvas) bringing with it an affine (canvas) transformation, clipping
bounds, and several rendering hints, e.g. antialiasing, dithering, or
interpolation. Curve flatness results from calculating the required
flatness *before* the canvas transformation meeting the given rendering
flatness was applied. We query the curve points, perform line clipping,

3 GRIS/ILO 65

and finally draw a polyline using the given stroke. Note that affine
canvas transformations (zooming, rotating, translating, etc.) will
produce different point sets due to varying curve flatness; however, we
have to perform interval bisection only once, and then pick points in the
bisection tree accordingly. Only scene transformations operating on the
curve will require us to re-approximate the curve.

Objects, constraints, and renderers form a self-contained package. As the
number of possible constraints and renderers is unlimited, a plug-in
architecture allows for incorporating additional, custom ones. Our plug-
in mechanism retrieves components by Java Reflection and naming
conventions: we search for components with predefined syllables in a list of
default locations, try to retrieve the class file dynamically via Java
Reflection, and create an instance fitting to the given set of parameters.
Users may extend the lists of locations and syllables. Third-party
components can be included in supplementary packages.

Example (Plug-In Architecture) We create a geometry constraint for
orthogonal lines with the statement Geo. constrain(“orthogonal”,
outLine, inLine, inPoint). The plug-in mechanism scans all given
locations and syllables, retrieves a fitting OrthogonalConstraint2D
component in the package grdev.geo.objects2D.constraints, and
instantiates it. The constraint immediately connects to the input
parameters inLine and inPoint, and updates the output parameter
outLine to become orthogonal to inLine through inPoint. We locate
renderers similarly; each geometry object possesses a default renderer
specified by naming conventions, e.g. we render a Point2D component by
default with a Point2DRenderer. Note that the string-based approach
integrates seamlessly into a scripting architecture (3.3.1).

3.2.3 Scene Graph and GUI (SG)
Two other packages consider user interactivity. While a scene graph
package provides advanced interactive visualizations, a GUI package
extends the standard Java Swing component set with our own GUI
components.

We developed specialized GUI components for reoccurring setups in
animation (play, pause, forward, backward, etc.), file operations (e.g. file
browser, image browser), layout (pre-defined, bordered panel groups), or
informational tasks (e.g. progress level). They supply a consistent look &
feel (2.2.2) and circumvent common pitfalls like concurrency in multi-
tasking (threads), local activities vs. networking or applications vs. applets
(class path, data access, security), and packaging (data access in JAR files).

Example (Scalar GUI) We implemented a text field interpreting its input as
a scalar value. A simple command in the form of ‘scalar.setComponent
(textField)’ connects this text field to a corresponding scalar component;
from now on, these two are kept synchronized. Developers may
optionally define the number of decimal places, lower and upper
bounds, and increments, which inserts buttons accordingly. The
increments define an adaptive speed-up behavior (initial delay, fast
forward/backward) enabling users to keep buttons pressed (see, e.g.

66 3 GRIS/ILO

Figure 12, bottom left). Besides, remember a common pitfall when using
floating-point arithmetic: it is rarely exact. The increment 0.1 for
example would need an infinitely recurring binary (and would produce
results like 1.000000000000001 instead of 1). We therefore employ Java
BigDecimal functionality providing anticipated rounding behavior.

All of our GUI components are based on standard Java functionality.
Remember further the adapter mechanism resolving component
interdependencies between packages. In the scalar GUI example, an
adapter translates the scalar component’s parameter change events into
less efficient, but standard, JavaBeans property change events, and vice
versa. (Technically, the adapter components is registered as parameter
change listener to the scalar component, and as property change listener to
the GUI component. It reacts by firing a corresponding property change
event, respectively a parameter change event).

The scene graph package provides default interaction behavior and
visualization for our objects. This reduces technical issues and enables
authors to concentrate on an learning object’s didactical value, e.g. by
enriching mathematical theory with concepts of digital storytelling (see
Figure 12). A scene graph consists of nodes, actions, and a scene graph
GUI. Nodes are made of at least one pair of geometry objects and
matching renderer; we assemble them into a classical scene graph
hierarchy (2.4.2) representing all information of our graphical scene. For
performance reasons, we permit multiple occurrences of a node in the tree.
Usually, our scene nodes contain an additional interaction sub-tree, which
assembles several basic scene graph nodes to provide a desired interaction
behavior. A first benefit is that we may reuse already implemented – and
familiar – functionality. Nodes that must render text (e.g. labels in a
coordinate system) can integrate labels with a string node; as our string
nodes can be drag & dropped, users may use this feature to rearrange
labels to fit their needs. A second benefit is the fact that we now can
implement different interaction modes by providing different sub-trees.
Think of interacting with a 2D circle: while one sub-tree might offer users
to directly manipulate circle parameters by three interactive points on the
circle’s boundary, a second sub-tree might offer only two points, center and
radius, for modification.

) root root

Figure 13: We accompan
side) holding arbitrary f
etc.). Setting a flag at a g
below. Unsetting a flag i
node is set, propagating t

 set

A

?

?

root.unsetAt(flag, path(A)

y the scene graph with a global state tree (left
lags (visible, selected, restricted scene actions,
iven path indicates that it is also set at all nodes
nvolves checking the nodes on the path and, if a
he flag to all children (right side).

?

?

 ?
 ?

? set

?

set

3 GRIS/ILO 67

Note that our 2D scene graph contains two different types of
transformation nodes: an object and a canvas transformation. This
corresponds to the camera node and object transformation known from
classic 3D scene graphs. We included this differentiation to make use of
object caching (3.2.2). The first class, object transformations, operates on
geometry objects; their results are cached within these objects. The second
class merely transforms the canvas we draw on, i.e. it represents
alternating global views, or interactivity that globally zooms, rotates, or
pans the scene. Canvas transformations can be stored directly in the
standard Java Graphics2D object, which optimizes rendering.

Arbitrary scene graph actions traverse the node hierarchy in order to
render the scene, pick some objects, drag them, and so forth. Simple
models reflect the current state during scene graph traversal by a global
push/pop state. Such an approach is not suitable for highly interactive
graphical scenes. We replaced the state object with a global state tree
holding arbitrary state flags. Flags mark nodes located at specific scene
paths as, for example, visible, selected, or active for specific actions only.
We optimized this state tree straightforwardly by saving shared states of
siblings in their parent node (see Figure 13). While initially the tree is
collapsed to a single node, we insert marked nodes successively whenever
needed. State tree functionality consists of node primitives (set, unset,
reset, isSet) and node operations specified by paths (setAt, unsetAt,
isSetAt). While setting a flag at a given path indicates that it is also set at
all nodes below, unsetting a flag involves checking the nodes on the path
and, if a node is set, propagating the flag to all children. If all nodes
become marked, the state tree’s size becomes equal to the scene graph’s
tree size; therefore, interactive mass scenes would require further
optimization.

Our 3D nodes use Java 3D functionality. Java 3D encapsulates
functionality for non-static scene graph interactions into so-called
behaviors. However, the built-in collection (billboard, LOD, interpolators)

Figure 14: Our reconstruction of the Schickard calculator makes heavy
use of the scene graph structure. We used a drawing found in Kepler’s
letters (left side, [Löringhoff78]) for modeling, and created Java 3D
components with corresponding behaviors. Users may directly
manipulate buttons, sliders, and gears, and obtain context help when
moving the mouse over them.

68 3 GRIS/ILO

does not cover the ability to react adequately to user input. We had to
develop custom mouse and keyboard input behaviors to provide
interactivity with both single scene nodes (scaling, rotating, and
translating not only the entire scene, but also single nodes within the
scene), and constrained behaviors (picking with subsequent animation,
movements along some axis, periodical behaviors, etc.) [Hanisch01b].

Example (Schickard Calculator): Wilhelm Schickard, appointed professor
of oriental languages, astronomy, mathematics, and geodesy at the
University of Tübingen, invented the first known four-species
mechanical calculator to add, subtract, multiply and divide. In 1623, he
wrote to his dear friend Johannes Kepler,”[..] what you have managed to
calculate by hand, I've tried to perform in mechanical ways in the last
days and have constructed a machine consisting of eleven complete and
six garbled gearwheels. It calculates instantly and ‘automatically' (this
word was written in Greek letters!) given numbers: adding, subtracting,
multiplication and division. You would burst out laughing if you would
be here and live to see how the left digits, if it goes over the tens or
hundreds, increase on their own or while doing a subtraction taking
something off" [Löringhoff78]. Some hundred years later, the faculty of
Computer Science in Tübingen was named after Schickard.

Our reconstruction of the Schickard calculator [Hanisch01b] employs a
scene graph and enables users to perform calculations like Schickard
did, watch the calculator from any viewpoint and even gain an insight
view of the 17 gearwheels (see Figure 14). Users may follow a trail
explaining the handling, or obtain context help (see Figure 15).

Reusing slider, button, gearwheel, and cylinder components speeded up
the scene modeling, and economized both CPU memory and disk space.
While we implemented global interactions such as zooming, rotating,
panning, and picking parts of the scene using standard Java 3D
components (in our case the buttons, wheels and sliders), constrained
interaction behavior required for the 8 slider movements and for the
rotation of the 6 white gear cylinders (so-called Neper cylinders) took
some more effort. We represented them as picking behaviors with
subsequent animations (the cylinders), left/right movements (the
sliders), or periodical behaviors (the turning of a gearwheel that
stimulates its neighbor to turn every 10th step).

Finally, the scene graph package contains an appropriate scene graph
GUI component, which maps user gestures and keyboard input into
corresponding scene graph actions and resolves appropriate rendering
actions. Compared with MVC, our GUI components and our scene graph
GUI inherit all controller tasks.

We make further use of the scene graph structure by labeling scene nodes
with metadata. That way, we realize context-sensitive references from a
learning object’s internal items to its hypermedia context. For example,
consider a learning object offering direct manipulation of a triangle’s
special point (see Figure 16): according to its location, we expect context
help respectively for the incenter, centroid, circumcenter, or orthocenter
(there are more than 400 known triangle centers).

3 GRIS/ILO 69

Figure 15: In exploring our reconstruction, the user may perform
calculations like Schickard did, watch the calculator from any viewpoint,
and even gain an inside view on the 17 gearwheels by making the case
transparent and watch the gears move.

70 3 GRIS/ILO

Therefore, before offering
help or references within a
learning object, we request
metadata of all currently
selected scene graph nodes
and GUI components with
keyboard focus. We then
collect, hierarchically
bottom-up, all classifi-
cations within the scene
graph and create
hyperlinks to similar
classified hypermedia
elements. As we will
illustrate later (3.3.3),
authors have to describe all
metadata appropriately.

Figure 16: By labeling scene nodes with
metadata, we are able to offer context help.
The hyperlinks lead to corresponding
passages of the course text.

3.2.4 The Toolkit
Most of our interactive learning objects visualize algorithms and offer
interaction with all essential parameters of an algorithm. For that reason,
we identified reoccurring basic components for containers, data structures,
2D/3D geometry, images, video, and physical quantities [Hanisch00a].

We require a container model to create component composites and
express hierarchy naturally (2.2.2). The Java language brings with it a
Container component serving as a base component for windows or any
other component occupying space on screen. Sadly, the embedding of
browser plug-in content is incompatible with the Desktop’s container
model, and technology restrains us from bridging this gap (2.2.3).
However, we are able to remove some obstacles by offering a base
component for interactive learning objects, which enables users to toggle
between document embedding mode (an embedded Java applet’s position
on the page is fixed) and overlapping windowing mode, and run the object
as a stand-alone application or applet, either locally or online. Our custom
resource loader decides on the correct sequence of local and network
locations to be searched for, and bypasses annoying security issues that
would arise in a naive implementation (for example, the default resource
loader is limited to the applet’s server). Finally, the base component
displays startup and copyright information, and contains scripting (3.3.1)
and networking (3.3.2) functionality.

By building composites of standard Java components and our ORC-SG
components (using the Java Container or scene graph containers), we
reach a graduated component hierarchy, i.e. a multi-level component
architecture (2.4.1). While components of the ORC-SG layer represent
universal, core elements of our architecture and our final, self-contained
learning objects belong to a specific domain, composite components
typically show up a granularity in-between; though they belong to a

3 GRIS/ILO 71

specific domain, they are still
universal, basic components. We have
developed more than 130 interactive
learning objects in the field of
Computer Graphics, Geometric
Modeling, Computational Geometry,
Imaging and Video Processing, and
Scientific Visualization (see case
studies, 5) using such a toolkit of
basic components. We developed
toolkit extensions first, before any
actual learning object; in fact, we
spent most of our time on the former
(which is typical for component
software). We identified components
for visualizing and interacting with
data structures (list, graph, tree, etc.),
geometry (camera. screen, grid, etc.),
images and video (viewers, filters,
etc.), and physical quantities (scalar,
vector, field, light, etc.). Scene graph
composites (so-called nodekits), plain
text components, and image
components provide direct
manipulation and drag & drop
functionality.

Figure 17: Development of a
toolkit of basic components
typically precedes the
development of an actual
learning object. We created this
visualization of the raycasting
algorithm by connecting basic
component composites (here,
scene graph nodekits). All visible
parameters can be manipulated
directly.

Example (Basic Components) The learning object in Figure 17
demonstrates how we visualized the idea of raycasting. Several scene
graph components implement the camera, the screen (a 1D pixel array),
the objects (two circles), a point light, grid, and canvas. Using the
standard dragging behavior, all visible parameters can be manipulated
directly. The screen component listens to camera modifications and
automatically adjusts its parameters. Similarly, the circles listen to the
camera ray property and send the intersection information to the light
source, which calculates the lighting model. Finally, the screen
component sets the pixel hit by the ray to the color calculated by the
light source. We reach a proper visualization by animating the camera
ray property, that is, by looping through all values.

3.3 Adaptability and Interoperability

3.3.1 Scripting
Concerning reusability of interactive learning objects, we strive for (1)
adaptability in design, layout, and functionality, and (2) interoperability
with other objects (2.4.3). Our ORC-SG design pattern encapsulates
matters of visualization, construction, and interaction into software
components. However, interactive learning objects still appear isolated
within a courseware, and modifications require low-level programming.
Let us now focus on an appropriate scripting architecture enabling end

72 3 GRIS/ILO

users to modify and exchange all components from within their Web
environment, and interlink them with other ones.

With publishing languages (X)HTML and Java, a natural choice for a
scripting language was JavaScript. We equipped our base component for
interactive learning objects (3.2.4) with a single, publicly accessible
scripting method; all scripting actions are delegated to a scripting
component. Currently, our parser/interpreter prototypes cover only a
subset of the JavaScript (ECMA) grammar. Scripts may import user-
defined classes, instantiate objects, and call their methods. We further
modified our GUI components to execute scripts on user actions. While a
simple button component resolves standard script sequences, we simplified
script syntax for multiple-choice components such as check boxes (a
true/false value), combo boxes (one out of a list of string values), radio
buttons (an integer value), etc. Scripts may therefore contain variables,
which are replaced dynamically according to the user’s choice.

The interpreter falls back on Java Reflection to create components or call
their methods. As all scripts are located client-side, we obtain a
performance overhead only in Java Reflection’s search for constructors and
methods, and, of course, in any deferred loading of required resources
(classes, images, and data). A custom class loader component assures that
our interpreter retrieves new components at first from (already cached)
Java archives (JAR files), then from default plug-in paths, and then from
given Web locations or local file systems.

End users may now create an entire learning object using an ‘empty’ base
component plus an initial script. In practice, it is more likely that
programmers code a learning object’s initial functionality traditionally,
and carefully declare a set of parameters as script instances afterwards.
That way, developers can hide specific internal details, as well as filter
publicly accessible information. The scripting component stores all script
instances in a hash table; in contrast to the Java garbage collection
mechanism, we explicitly permit users to remove instances. Scripts using
an instance not yet created (which typically occurs with badly arranged
script sequences) are ignored. Besides, note that it is not the browser who
handles invalid scripts, but our scripting component. Browser-side
scripting would immediately report invalid scripts to the user; some
browsers would also disable further scripting. Our approach enables the
learning object to decide which reactions should be accomplished
autonomously.

We classify scripts as settings (that merely modify parameters) and
operations (that modify the view, structure, or components, like
instantiating a new object). In contrast to other projects, we organize
scripts – like all other courseware’s components – in our database (3.3.3).
We will describe later (4.1.2) how the courseware’s generator applies
templates and inserts referred scripts as JavaScript sequences into the
final Web page. Our script templates work in a context-dependent
manner: according to the target location, we insert scripts, for example,
either as hyperlink and pictogram, or together with an illustration
allowing the user to preview script effects. We designed the templates to

3 GRIS/ILO 73

Figure 18: By embedding scripting instructions into hypermedia content,
authors may illustrate the current topic directly within the user’s
learning object.

avoid unwanted results of script combinations by restricting the script’s
scope to the current Web page. This also ensures that multiple instances of
a learning object (embedded at different locations within a courseware) do
not interfere.

Scripting in interactive courseware performs tasks such as illustrating
content, synchronizing learning objects, visualizing alternative points of
views, or introducing functionality incrementally. At first, educators can
illustrate statements presented in text passages or slides directly within
the corresponding interactive learning object (see Figure 18). Authors may
for example design script settings to visualize specific setups or special
cases, or readjust parameters to match the textual description. Script
operations may exchange constraints and renderers, construct additional
scene graph nodes, adapt the GUI, or even import self-defined components.
Scripts respect the current state of a learning object, which means that
none of the learner’s modifications are lost in a session.

A second scripting application is synchronization of an object with
others. Consider the common case of a guided tour; with each step, we
naturally want to match a learning object’s state with the described setup.
With scripting, we can now synchronize them, step-by-step, and learners
may start their self-studies at any point.

Example (Scripting Applications) Consider the use of hyperlink scripting
depicted in Figure 18. The current course text defines and explains basic
properties of a B-Spline curve. A corresponding interactive learning
object offers the learner to discover them constructively. The author

74 3 GRIS/ILO

motivates the curve by comparing it with a Lagrange interpolation. We
enriched the hypertext with scripts modifying the interactive learning
object to visualize both the B-Spline and Lagrange interpolation (Figure
18, left). The learner may compare the curves’ behavior graphically by
modifying control points, degree, etc. Later on, another text passage
compares the spline with a Bézier curve (Figure 18, right) and offers
similar scripts to rearrange the learning object.

We can further employ the same learning object at different places in the
courseware for visualizing the alternative points of view on the theory.
(Even for the simple theorem of Pythagoras there are about 400 different
known proofs.) Reusing learning objects introduced earlier in the
courseware minimizes the cognitive load, as it provides an already familiar
environment.

Example (Alternative points of view) The learning object introduced in
Figure 10 pinpoints relationships between the scalar product of vectors
and trigonometric curves. We can interpret the scalar product as the
scalar portion of the projection of one vector on the other one. In case of
normalized vectors, we obtain just the cosine of the enclosed angle.

Figure 19: Scripting can visualize alternative points of view on the
theory. This Web page (left window) revisits an already familiar
interactive learning object (top window) to pinpoint a second inter-
pretation; scripts rearrange the scene and data flow accordingly (bottom
window).

3 GRIS/ILO 75

Vector normalization corresponds with a scaling to the standard circle;
there, learners immediately understand the well-known relationships
between sine, cosine and tangent by applying the theorem of Pythagoras
and intercept theorems – rotating one of the vectors rotates the values
around the standard circle and we obtain the trigonometric curves.
Alternatively, another passage in the course text interprets the
trigonometric curves as the locus of a fixed point on the rolling circle,
and rearranges the scene and data flow accordingly. Figure 19 depicts
the learning object’s setup before (top window) and after scripting
(bottom window). Note that the data flow is bi-directional: learners can
manipulate not only vectors, but also angle, curve points, and location of
the rolling circle. We could explore more relationships by switching from
Euclidean to Gaussian plain, e.g. the theorem of Euler.

Lastly, transferring a learning object‘s functionality into corresponding
text passages or illustrations enables educators to introduce
functionality gradually, and to reduce an otherwise overloaded GUI. We
will give a detailed example later (5.3). Learners get only the functionality
they need to understand the current text passage. Reading on (and
activating corresponding hyperlinks), they meet other scripts that extend
the learning object’s design, layout, or functionality.

3.3.2 Networking
To overcome a learner’s isolation in Web-based teaching, we generalized
our scripting architecture (3.3.1) to a network model permitting
collaborative work (2.3.1). We designed a simple client/server architecture
that allows executing one online session per learning object, each of which
can be used for either a classroom scenario or a consultation/examination.
(We teach an average of 20 students per lecture, and do not have to
perform any load balancing.)

Again, we equipped our base component for interactive learning objects
(3.2.4) with necessary multi-user functionality. That way, any of our
learning objects becomes network-compatible, a potential client to
participate in an online session. (However, to be of value in a real-life
scenario, a learning object’s setup must be well-developed.) The default
layout now includes a networking button indicating the current state
(inactive, passive, i.e. active but not participating in a session, and
participating), and providing access to the learning object’s active user list
and chat. Our communication model imitates the classroom setting.
After logging in, a user may request to participate in a running session. If
the tutor agrees, the user’s learning object registers as a net listener and
becomes synchronized to the tutor’s learning object. A participant must not
interfere, except that he may chat, or leave the session. However, the
tutor’s role may be handed over, and the appointee may then demonstrate
an action, or carry out some task. Apart from its use as a classroom
scenario, we can also utilize the single-tutor-many-listeners (1:n) model for
remote consultation/examination (n=1).

Users may enter a session at any time. To perform the required
synchronization, we make use of scripting. The state of any scriptable

76 3 GRIS/ILO

object can be queried; the
object in turn generates a
state-setter script that can
be used in scripting to reset
the object’s state to the one
at hand. A learning object,
respectively its scripting
component, must provide
similar functionality. In
general, we gather all
script instances, combine
their identifiers and state-
etter scripts, and send the

overall script sequence to
the new participant.
However, remember that
the tutor may perform

arbitrary script operations modifying the object’s view, structure, or
components. Our current prototype simply sends all scripts ever made
(disconnecting the participant’s view during this period to avoid flickering).
Note that such a dynamic script generation mechanism enables us to
create script settings on the fly.

s

Figure 20: An extended scripting
architecture allows networking in a
classroom setting. The tutor transmits
scripts and parameter changes to all
participants. Control can be handed over.

Data stream (byte)
Admin stream (character)

Client with tutor rights
Client with listener rights

The server organizes the list of participants, and synchronizes the state of
their learning objects. We set up one session per learning object identifier.
The server uses two separate ports for administration and data (see Figure
20). As we restrict ourselves to one-way data communication, we only have
to deliver scripts and parameter changes from the tutor to all participants.
Furthermore, constraints update dependent parameters client-side. We
therefore have to transmit initial parameter changes only, which
substantially reduces the number of script instructions as well as the
netload. Entire scripts are transferred only if they are undefined,
otherwise we simply send their identifier.

Example (Networking) Let us enable the learning object introduced above
(see the previous Example, and Figure 19) for networking. Although too
straightforward to be applied fruitfully in a real-life scenario, it still
demonstrates the economy in data exchange. Server-side, we simply
register its identifier to the session manager’s list of valid learning
objects. For synchronizing the clients’ states, we have to transfer angle
and vector point locations – all remaining parameters are hooked on
them via constraints. Therefore, we declare both angle and vectors as
net properties. If we have allowed users for scripting the global scene
transformation (i.e. letting them zoom, rotate, or translate the scene), the
corresponding transformation matrix must become a net property, too.

For reasons of security and reliability, we permit only registered scripts to
be performed in networking. In the context of community support (4.2.2) ,
we will discuss how we could set up such a set of registered scripts
automatically utilizing a rating system.

3 GRIS/ILO 77

3.3.3 Scripting Database
“Scripting opens up significant new possibilities for interactive guides. […] A remote
person or computer guide could send scripts […]. Guides could be supplied by an
open, free market [Roschelle96].

With reusable software components and scripting, we can now advance
towards the organization of highly interactive learning objects in digital
libraries. We already emphasized the need for decentralization and
community support (2.3.3). Chapter 4 will discuss our Web framework
concerning Web-based authoring, content management, and production.
Here, we focus on aspects of our scripting database.

Developers cannot foresee and implement all the desired functionalities of
a highly interactive learning object. A framework covering all fields in
SMET education exceeds the manpower of any group of developers (2.4.1).
Firstly, creating highly interactive learning objects requires expertise in
the subject, programming, pedagogy, didactics, and design. Secondly,
employing them in a Web-based courseware requires a team of educators,
tutors, and administrators who are able to perform Web-based authoring
and scripting. A decentralization of the required knowledge might be the
only way to guarantee a courseware’s sustainability and continuous
enhancement.

From the learner’s point of view, Web-based courseware must offer
cooperative tools such as discussion boards, chat, or annotations. The
feedback obtained from our students using such tools reveals the need for
referencing a specific state of an interactive learning object, or sharing
their own setups. Some of our programming exercises result in new scripts,
software components, and learning objects. Of course, we would like to
integrate such work into ours. Similarly, educators and other end users are
likely to produce their own extensions. How may we benefit from the
community’s work, that is, include user-defined scripts, components, or
entire learning objects? Our answer is to deal with them as with all the
other, non-interactive content. Collect them, organize their core data in a
database, require metadata, generate final objects via templates and style
sheets, share them with other users, make it possible to refer to them in
editing, and let community members annotate, rate, and modify them.

Note that our interactive learning objects do not have only primitive
properties (e.g. boolean/integer/string data type), but arbitrary scripts.
While the script identifier must provide a constant, unique reference for
hyperlink scripting (see the within-component layer of the Dexter
Hypertext Reference Model, 2.4.3), script content may change over time. We
respect the need for reliable anchor targets by setting up a set of registered
scripts providing valid targets in editing (i.e. for inserting hyperlinks with
scripting instructions in chat, discussion boards, course text, and other
Web content).

The learning object’s metadata specifies identifier, title, category,
classification, interactivity level (3.1), corresponding project, abstract,
illustration, initial dimension, main Java class, initial script (performed on
startup, 3.3.1), required component packages (JAR files), required software
environment (Java plug-in, Java packages), authors, version, and a

78 3 GRIS/ILO

timestamp. Script metadata consists of identifier, title, learning object
identifier, type (setting/operation), status (unofficial/registered), abstract,
and illustration. Likewise, script instances come with identifier, title,
script identifier, class, and description.

Now, how does this approach fit in with current learning management
systems (LMS), and in particularly with learning technology standards
such as the Sharable Content Object Reference Model (SCORM, 2.3.4)? We
have already stated that current specifications do not support highly
interactive learning objects properly. However, we believe that future
standards will include advanced issues of interactivity, components, and
scripting. We therefore wish to outline the application of the SCORM to
interactive learning objects with a scripting architecture, and illustrate
some of our most urgent needs.

In SCORM terminology, course text, illustrations, tables, scripts, and
interactive learning objects represent assets, arbitrary pieces of a sharable
content object (SCO). One of SCORM’s metadata categories defines
relationships between assets or SCOs; for scripting, for example, we would
use best practice vocabulary ‘ispartof’, ‘requires’, or ‘references’. SCORM
restricts the kinds of relationships to a predefined set of values. We would
like to extend this set, that is, to include e.g. an ‘iscounterpart’ relation for
script operations that have inverse scripts (undo functionality). Moreover,
describing the learning resource type with best-practice vocabulary
(simulation, experiment, problem statement, self-assessment, exercise,
diagram, figure, graph, table, and narrative text) immediately turns out to
be problematic if we consider dynamic, scriptable content – which enables
end users to modify all aspects of the learning object. There is a similar
problem in the case of metadata such as learning time; the SCORM mainly
deals with static learning units that learners work through in one go. In
contrast to that, we aim for an interlinking of (complementary or
alternative) learning objects content that suits learning best in a cognitive
sense.

SCOs can communicate with the LMS and store and retrieve string values
(resolved through JavaScript calls, which fits our approach perfectly). We
can use this mechanism to launch an interactive learning object in a
specific state, or store its current state for later use (via dynamic script
generation, 3.3.2). However, the model prohibits SCOs to set values of
other SCOs (or ask the LMS to do so). Any means for synchronization,
adaptation, or other scripting applications would be lost. As a workaround,
we would have to bundle all assets interlinked by scripting into one, large
SCO.

Another key problem is SCORM’s current launch model: it allows only one
SCO to be active at a time – but, we want learners to work simultaneously
with our synchronized theory and interactive learning objects. Again, this
would be a motive for creating bundles.

3 GRIS/ILO 79

3.3.4 Drag & Drop Scripting
Let us finally come back to our notion of highly interactive learning objects
(3.1). We have required direct manipulation in all aspects, including object
view, all essential object parameters, and object functionality (structure,
components). While GUI and scene graph components already meet major
demands, we are still not satisfied with the symbolical meaning of
hyperlink scripting, which simply hides programming aspects behind a
hyperlink, and provides no means for cognitive association between script
and target object.

Furthermore, browser plug-in technology seriously restrains inter-
operability between hypermedia objects (2.2.3, 2.4.3). Typically, the script's
scope is restricted to the current browser document, or to its siblings. We
can not script local learning objects from Web pages, and, vice versa,
scripts located outside the browser application (e.g. within a word
processor, or a presentation program) will not work with Web content.
More generally, only hypermedia objects belonging to the same context
may communicate through scripting.

We therefore introduce a visual scripting mechanism, Drag & Drop
Scripting, which communicates parameters and functionality beyond the
browser barrier – between other hypermedia objects or native applications.
Scripting instructions are encrypted into standard images, and performed
by physically operating the image on the learning object, or on parts of it.
The basic idea of Drag & Drop Scripting is as follows: (1) source out a
learning object's functionality into scripting operations, (2) encrypt a script
in an image that illustrates the result of the script, (3) permit the user to
drag and drop the image onto the learning object, and (4) decrypt the
scripting operation inside the learning object and execute it.

Remember that Drag & Drop (DnD, 2.1.1) represents a platform-
independent direct manipulation paradigm operating beyond application
boundaries and that it is part of the user's familiar desktop environment.
Nearly all of the Java Swing components support DnD natively, others
have to implement a minimal DnD API [Sun98]. We transfer all scripting
functionality to the DnD action's source and destination object; that way,
our approach works even if the user has disabled browser scripting
functionality.

Our framework organizes scripting instructions in a script database (3.3.3)
and steers Web page generation by templates (4.1.2). Illustrating images
are part of our script metadata. The script template converts scripts into a
corresponding HTML sequence, creates a thumbnail, and embeds it into
the final Web page. In addition, it now hides the script in the image.
Currently, we perform a least significant bit (LSB) insertion that works
only with lossless image formats. In fact, each pixel stores 2 bits of our
data. In the case of 8-bit images, which are less forgiving to LSB
manipulation, we simply color the pixels in the Web page's background
color. An improved version would use watermarking or a steganographic
system [Johnson98], and support JPEG images. We start with a header
(magic number, learning object identifier, border color, etc.) that enables

80 3 GRIS/ILO

the learning object to identify script images, and validate or deny the drop
action. The subsequent data block contains the script.

Next, the learning object has to become aware of DnD actions. Any of its
GUI components that may receive a drop action must implement the DnD
API and delegate work to our scripting component. In this manner, we
have prepared fundamental components of our architecture, which already
cover the bigger part of our learning objects for Image Processing and
Video Processing (e.g. image browser, image viewer, video player).

Example (Drag & Drop Scripting): Figure 21 demonstrates an interactive
learning object teaching basics of color spaces in Video Processing,
respectively RGB and YUV color spaces. We have provided scripts and
images that modify parameters of the video renderer (to visualize YUV
channels separated, or combined), rearrange the object's layout (to
insert controls for lightness/saturation/contrast or the amount of
red/green/blue), and apply other YUV formats. Learners perform a
script action by placing the corresponding image on the learning object.
For example, a course slide (left side) might ask the learner about the
effect of reducing not only color information (U and V), but also
luminance (Y). By dragging the accompanying image (left window,

Figure 21: This interactive learning object illustrates color spaces in
Video Processing. A Web page provides theory and scripts (embedded
into images) that may be operated on the object via Drag & Drop. Users
may drop video frames to the timeline or any other location, including
native applications.

3 GRIS/ILO 81

bottom center) into the interactive learning object (right window), the
learner can experience in a simulation that the eye is more sensitive to
luminance detail than color detail.

When the user starts a dragging action in our video renderer, we extract
the current video frame and embed a script sequence that will prompt
the video player to reposition the video stream according to the frame’s
timestamp. The user can drag the frame to the object’s timeline (right
window, top panel) or any other application that supports DnD. Note
that applications that resample DnD images (e.g. Microsoft PowerPoint)
will distort a primitive LSB encryption.

 83

4 Web Framework

4.1 Organization and Production.. 84
4.1.1 Layered Database Model.. 84
4.1.2 Template-Driven Generator... 85
4.1.3 Offline Management... 87

4.2 Web-based Authoring .. 89
4.2.1 Online Wizards ... 90
4.2.2 Learner Support ... 92
4.2.3 Author Support... 95

84 4 Web Framework

4.1 Organization and Production
Courseware, or learning management systems in general, must perform a
sophisticated content management (2.3.3) to supply community members
with means for content creation, modification, and extension. In this
chapter, we describe in detail how we organize core data by a layered
database model (4.1), generate all Web pages automatically (4.1.2), and
offer an offline tool for managing content, structure, and design templates
(4.1.3). The subsequent chapter will focus on online wizards (4.2.1)
supporting learners (4.2.2) and authors (4.2.3)

4.1.1 Layered Database Model
Content management is based on database technology to provide efficient,
large-scale query and update functionality. Since databases differ (for
example in object type and maximal allowed string length), and data can
be physically spread to many databases, we developed an abstract
database manager. The manager interacts with the underlying databases
and simplifies both queries and updates. The high-level, platform-
independent Java database interface (JDBC) enables us to employ any
standard relational database.

We support two types of structuring, a horizontal one separating structure,
content, and design, and an orthogonal, hierarchical one using a set-based
data model and metadata (2.3.3). Our proposed layered database model
modifies the second structuring by introducing layers – data is distributed
into layers according to its attributes (see Figure 22). Similar to the use of
sets, layers enable us to organize alternative versions of content such as
multilingual data or multiple depths in information. Each version
corresponds with one layer; if a UNL (2.2.2) request fails for one specific
layer, the database manager queries the next layer in the hierarchy.

Layer-independent data and structure
information has to be stored on only one layer.

A major benefit of such a model is link
consistency. The database manager will
automatically fill content gaps with an equivalent
version from some other layer, which will
eventually lead to mixed (but valid) content, like
a Web page containing parts in different
languages. This mechanism is carried out
implicitly, i.e. developers do not have to bother
with versions of data; they simply set a preferred
layer, and perform their query, insert, or update
in familiar SQL syntax. Database actions may
target either a single layer, or all layers. While

le-layer actions typically insert layer-
independent data or update incrementally given
data, actions targeting all layers insert or remove
layer-dependent data such as course text. The
manager assures that such actions are performed

sing

Figure 22: A layered
database model
supports alternative
versions of data and
incrementally given
data while keeping
links consistent.

4 Web Framework 85

consistently; for example, a single “insert subchapter” action leads to
changes on all layers, as well as in structure.

Besides issues of internationalization and adaptation of the level of detail,
another reason for us to introduce layers was the fact that it allows us to
support incrementally given data. Authors may now supply their input
without having to fill in data for all layers immediately. Our online
wizards (4.2), which allow for Web-based authoring of the courseware,
come with built-in layer support; they initially prompt the user to provide
data for the default layer, and leave input data for all other layers
optional. Requiring less data lowers the inhibition threshold for user-side
extensions, and enables us to incorporate multiple authors in content
creation, e.g. translation.

Example (Layered Database Model) Figure 22 illustrates how we represent
multilingual content by layers. We have registered three languages to
the database manager, and defined corresponding successors. Authors
may now concentrate on a single language (here, the German language)
and include more translations (here, to English and French) step by
step, which speeds up content creation. If our database manager queries
specific data that has not been translated yet, it redirects the query to
some other version. In addition, we subdivided the German version into
an expert (short), a standard, and a novice (detailed) version, each
represented by a layer. Language-independent data like structure,
images or videos without text, and audio are stored only on the lowest,
German expert layer.

Although not stipulated by the model itself, we found out that both
maintenance (backup, translation/adaptation) and export of a single
version are cut down significantly if we use exactly one physical database
per layer.

Using metadata, we achieve a more graduated structuring. Remember
that we extended the LOM specification by custom metadata, e.g. for
scripts and instances (3.3.3). Our courseware generators (4.1.2) apply
specific metadata filters to create content versions. For example, we
remove optional marginal information, lengthy examples, or annotations to
create short versions; conversely, we insert them in detailed versions
together with questions, gap-filling texts, and self-tests. We furnish data
and metadata comprising a predefined set of values with dictionaries,
which are employed by the database manager to translate one-layer data
to other layers on the fly. Most obvious is the application of a dictionary
with internationalized keywords (see case studies, 5.1); others, e.g.
abbreviations, are possible. Note that dictionaries work context-
sensitively: a specific translation in the context of one object type might
differ from translations in other contexts. Therefore, any of our dictionary
entries requires the specification of an object type.

4.1.2 Template-Driven Generator
Our hybrid generators balance static and dynamic content (2.3.3) and
automate all courseware production. Now, we briefly outline static content

86 4 Web Framework

production; the dynamic part will be discussed in the context of online
wizards (4.2).

Let us come back to our horizontal structuring separating data into
content, structure, and design. All of our generator components must
combine these parts to produce final Web pages. Data consists of different
types of hypermedia elements like course text, links, illustrations,
multiple-choice tests, interactive learning objects, and scripts. We
represent only primitive structure information (object and courseware
hierarchy such as parent/child/siblings relations, and sets defined by
metadata) as database objects, and transfer matters of navigation and
design into templates. Our templates can be defined textually, or be hard-
coded in Java to perform complex data operations and image processing.
We created a template parser to enrich standard HTML/XML blocks with
algorithmic functionality (variables, if-clauses, and loops), database
queries (SQL syntax, or a simplified data iterator), and common image/file
operations (e.g. thumbnails, watermarks, file transfer between database
and server). Templates are vital during the courseware’s warm-up or
evaluation phase – they enable us to customize design, layout, and content
filters quickly by performing little changes to the corresponding templates.
Generator components feed templates with context-dependent data
(current layer, path to root, parent, children, siblings, referring objects,
relative location in document, etc.) and thereby provide a mechanism to
define context-dependent template blocks.

Example (Design Templates) Our design template registered for
illustrations imports an image from the database, converts it to the
specified dimension and image type, and overlays a watermark. We
have defined it context-dependently. Consider therefore a layout pattern
with main text and marginal: if an author places an illustration within
the main text, the template displays it directly at that position, letting
the current paragraph flow around it. If the illustration is placed in the
marginalia, a thumbnail with an hyperlink to an additional page is
created, which displays the image and its subtitle together with
references back to all objects containing the illustration. In the first case,
we display a given subtitle as mouse-over text. The template is given
textually - modifying the design is trouble-free and requires no deeper
programming knowledge or tool.

We update our courseware daily (see case studies, 5.1); on demand, we
initiate the generator phase immediately. A generator requests a
courseware’s hierarchy structure, fetches the root node, recursively collects
its children, and traverses them. We interpret a set of leaves sharing the
same parent as belonging to a single document. The generator processes
the document template, and composes a Web page accordingly. Each leaf
may contain arbitrary hypermedia objects; they are embedded into the
final Web page using the templates registered for that kind of objects. All
courseware, including course text, illustrations, embedded interactive
learning objects, and scripts, and several lists and indices (table of
contents, figures, glossary, interactive learning objects, bibliography,
member list, etc.) is produced in this way. We further include content
belonging to the dynamic part of the courseware that is rated to be useful

4 Web Framework 87

as static content (annotations, frequently asked questions, ratings, etc.).
Finally, we provide a mechanism to exclude complete directories from the
generation phase, and create (or reference) a default Web page only. This
proves practical for self-contained subprojects that usually want to design
a custom Web page. Similar, we do not generate the courseware’s root
page, as it is typically designed individually (e.g. a welcome page or
overview).

A link database (2.2.2) organizes links as separate UNL objects to ensure
link consistency. Links are typed, and generators may process them bi-
directionally, which lays ground for an adequate courseware interlinking.
In general, interlinking refers to (1) connections between entire
hypermedia objects, (2) connections within an object, and (3) connections
between an object’s within-component layer and other hypermedia objects.
Interlinking object parts becomes complicated when dealing with pieces of
software; we have therefore dealt with software components and scripting
(3.2.3, 3.3.1). Creating bidirectional connections between entire
hypermedia objects, interactive or not, can be accomplished by templates.
Whenever we encounter a link object during courseware generation, we
retrieve the corresponding link template for that type, process the block
matching the current context, and embed object references into the Web
page. To insert back-references, we follow one of the following strategies
dependent on the link type and context. For 1:1 connections, we simply
insert the back-reference when we process the target object. Otherwise, we
may immediately insert all existing back-references, either at the place or
in the target document (see Example above). As core data may be reused in
multiple coursewares, we restrict back-references to the current
courseware by introducing a courseware identifier. Lastly, we may
delegate back-referencing to some other template.

Example (Back-References) To interlink our BibTeX bibliography (see case
studies, 5.1.3) with community members adequately, we employ link
templates that delegate back-referencing to some other template. We
initially create all references from members in their bibliography
entries, which we include as personal publication lists (template A).
Finally, we process all objects containing lists of bibliography entries,
and reference each entry back to its counterpart on the member’s
personal publication list (template B). Template A therefore stores
corresponding linking information in template B.

4.1.3 Offline Management
Our courseware management tool enables us to modify structure, content,
and design offline. This tool is meant only to perform fundamental
changes; most community members prefer Web-based authoring (4.2).

The tool’s architecture consequently maps the horizontal data structuring
to three components, a structure editor, a content editor, and a design
editor (see Figure 23), which we implemented respectively as a tree editor,
a text editor, and a property editor (see Figure 24). While the underlying
database manager handles all data queries and updates, generator
components create the courseware on request (4.1.2). Components

88 4 Web Framework

communicate standard JavaBeans properties; therefore, we can exchange
them with any other text editor wrapped in a Java container. Most of our
generator components produce hypertext, i.e. Web pages. For specific sub-
structures like our interlinked PDF bibliography (5.1.3), we further
implemented PDF generators. Slides and lecture notes could be integrated
similarly. We can plug-in arbitrary template components; our courseware
for example typically include templates for document, illustration, link,
exercise, bibliography, multiple-choice, gap-filling test, interactive learning
object, and script.

The actual data loading and storage is delegated to the database manager.
Functionality and data flow is as follows (see Figure 23): on loading, the
structure editor requests the courseware hierarchy and builds a matching
tree. The author may rearrange courseware structure by drag & drop or
cut & paste, and rename specific nodes. We enforce naming conventions to
result in transparent path names (URLs). For instance, leaves forming
document parts (4.1.2) automatically receive a link shortcut, which is used,
for example, in the navigation block of the document template. As we built
the link shortcut from parts of the full title using a set of plausible rules,
the full title will naturally anticipate its shortcut. Once the author selects
a specific node, we message the node identifier to the content editor, and
the current generator component.

The content editor in turn queries the database manager to retrieve the
actual content, and offers modification thereof. At present, we have
implemented a plain text mode, a prototype design mode (providing icons
for common objects, and simplified block actions), and a WYSIWYG
preview. The editor constantly scans the input for object references (or
“template tags”) that identify template type, object, and optional
parameters, and compiles them to a tag list. Changes to the tag list are
messaged to the design editor.

The design editor scans the template tag list and creates (or updates)
corresponding template components. For each template, we generate an
editable property list representing all template text properties, and include

Figure 23: We developed a courseware management tool for modifying
our courseware offline. The component architecture reflects a strict
separation of structure, content, and design. Data flow is denoted with
arrows.

4 Web Framework 89

Figure 24: Our courseware management tool enables us to modify
structure, content, and design offline. We may edit the courseware
hierarchy in tree view (left side), edit a node’s content in plain text or
design mode with WYSIWIG preview (top right), and steer object
embedding by template properties (bottom right). Activating a single
button starts courseware generation.

any custom template GUI. Templates may query the database manager for
available objects, and enable users to select and modify them, e.g. via a
custom thumbnail list (see Figure 24). The design editor allows the user to
switch the template type and access the template GUI. Selecting an object
produces an appropriate template tag, which we send back to the content
editor, and embed it at the current cursor position.

4.2 Web-based Authoring
Organizing courseware objects in database layers (4.1.1) and steering
courseware generation by templates (4.1.2) creates a basis not only for
matters of maintenance and interlinking, but also for personalization and
collaborative work (2.3.3). In the following, we present an appropriate
state machine for online wizards (4.1.1) providing all community members
with Web-based authoring functionality. An abstract base wizard allows us
to derive new online tools quickly. We discuss some of the most essential
wizards of our courseware, divided into wizards for learners (4.2.2) and
wizards for authors (4.2.3). Keep in mind that our approach presumes a
scripting database (3.3.3) to include fine-grained, interactive content.

90 4 Web Framework

4.2.1 Online Wizards
Our online wizards enable community members to annotate, modify, and
rate arbitrary courseware objects, including scripts. For each type of
object, we register an appropriate online wizard. Each object template
(4.1.2) defines an activation block for its wizard accordingly, which can
then be inserted into a Web page. Community members can activate
wizards directly on site. To reduce the cognitive load presented to the
standard user, we create Web pages both for study mode (offering only
learning-related wizards, e.g. annotations, exercises, and rating) and for
editing mode (containing all wizards); a single button lets the user toggle
them. Technically, we create these versions by running the generator twice
with different metadata.

The technological platform of our online wizards are Java Servlets (server-
side applets). Servlets provide a component-based, platform-independent
method for building Web-based applications, without the performance
limitations of CGI programs (2.2.3). In particular, while CGI requests are
answered in a separate process by a separate instance of a CGI program,
servlets are loaded and initiated once, and stay in memory between
requests. Moreover, servlets may answer requests concurrently.

We base our online wizards upon a well-defined state machine that
comfortably manages authorization, default values, undo facility, preview,
and problems like temporary log-offs, deactivated cookies, or firewalls (see
Figure 25). All wizards start with an authorization step presenting an
ordinary login screen to the user. Optionally, we identify a user by the
Internet Protocol (IP) number (and keep him logged in forever; otherwise,
he is logged out after some idle time). After successful authorization, the
user may select his object of choice. Applications may skip this step and
provide a default selection instead. We guide the user through all required
data steps. During each state transition, we store the given data in a
temporary IP database; data is reloaded from the courseware’s database

Figure 25: The core of our online wizards constitutes a state machine
offering undo facility and default values. Database actions are displayed
below the corresponding steps.

4 Web Framework 91

only in the selection phase. The IP-based storage mechanism preserves
data session-independently and works even if the user logs out during the
input phase, or turns off browser cookies. After providing visual feedback
in a preview phase, we send the given data from the IP database back to
the courseware’s database. We also send an e-mail notification to the
editorial board in order to verify the data.

In general, the user may arbitrary step forward (we provide default values
as far as possible by filling in existing data, or reusing previously entered
data) and backward (undo) while entering data. Thus, we neither direct
the user into dead ends, nor prompt for data twice. In case of obligatory or
invalid data, we restrict forward movement and redirect the user to the
corresponding step. Each wizard contains a set of rules specifying
constraints and possible redirection (to a previous step, or an auxiliary
step indicating the error). Rules that do not specify a redirection will stall
step transition and set an appropriate flag to indicate invalid data.

Example (Online Wizard): Community members of our courseware may
modify personal member information by using of a corresponding online
wizard. They activate the wizard through a hyperlink either on the
courseware’s member list, or on a specific member page. In the first case,
we let the user select a specific member from a list (users need
administrative rights to change other member’s information). Several
data input steps prompt for the member’s name, affiliation, photograph,
and other information. We provide default values for any data, except
the obligatory name, which is required to enter preview. We check for
flags indicating invalid name/image information; in case of errors, we
redirect the user to the respective step, and highlight the input field
appropriately.

Our abstract base wizard implements basic functionality for user
management (e.g. passwords, roles, groups), states (e.g. rules, variables,
defaults), data operations (e.g. image/file upload, IP database management
– we delegate all work to the database manager, 4.1.1), step design
(uniform navigation and layout), internationalization (e.g. languages,
dictionary), and e-mail notification. Any task-specific wizard is derived
from this base component and ships with textually defined wizard
properties and state templates. While the properties contain rules and
multilingual text, the templates define the HTML block displayed in a
given state (see the courseware generator’s template parser, which uses
the same mechanism, 4.1.2). Instead of defining states by templates, we
may alternatively hard-code them. Note that a derived wizard inherits all
functionality from its super component, including templates. That way, we
designed the login screen only once for the base wizard; the same goes for
rules like the obligatory username and dictionary entries (translations and
abbreviations) for salutation, terms of copyright, and common expressions.

As we employ simple HTML forms for data input, we end up with plain
text editing functionality only. In our current courseware, authors do not
complain, as their content creation tools allow for HTML export. A more
adequate Web form would implement a word processor (e.g. Macromedia
Contribute) or use JavaScript and browser-specific functionality.

92 4 Web Framework

Community members may include references to other object types (course
text, illustrations, glossary, bibliography, member pages, interactive
learning objects, scripts, etc.) using vocative hyperlinks – textual pointers
that match a given set of rules, like “see chapter nn” [Maurer96]. Wizard
properties hold a list of search patterns together with phrases that may
occur nearby. Optionally, members may define URN references explicitly
using conventional XML syntax.

We spent more effort in creating an adequate GUI for editing multi-
layered data. Consider interfaces that allow for modifying layered data
independently: authors would soon become tired of changing between
layers and produce inconsistent content. Therefore, we support parallel
editing on multiple layers, e.g. editing of multi-lingual data or data with
different depths of information. Our state machine contains functionality
to iterate over all registered layers, and offers authors to switch layers at
any state. This mechanism works also for layer-independent data.
Normally, a wizard starts prompting for data in the language matching
the user settings, and then iterates over all other layers in a subsequent
step (reusing the initial input as default for all other layers). In specific
cases, users may create alternative versions in a single step. We provide,
for example, a simultaneous editing of short, standard, and detailed
versions using a Wiki-like (http://c2.com/cgi/wiki) smart syntax, which
simply marks specific blocks with metadata. The generator’s metadata
filters will then decide if a block becomes visible or not. Of course, the
smart syntax approach requires authors to set up content carefully.

Usually, the wizard GUI will adapt to the current layer, too. Consider for
example multi-lingual data, which requires us to provide international
data in- and output facilities. Our approach enables the user to change the
wizard’s language settings in any state. We outsourced all textual
information into wizard properties and provided translations for all
registered languages. The base wizard fills the template according to the
user’s language settings. Note that we translate not only the wizard GUI,
but also the given data; for instance, if the user has given data in English
and subsequently switches to a German layer, we check the dictionary for
a matching entry, and, if found, display the German translation instead.
Common phrases are translated automatically using a context-sensitive
dictionary (4.1.1).

4.2.2 Learner Support
From the learners’ point of view, a courseware must allow annotations,
structuring, and active participation in courseware development (2.3.1). In
essence, we must overcome their a priori passive and isolated role by, for
example, offering them to ask questions at any place, or to talk with other
community members.

We differentiate community members by an extensible set of roles, e.g.
administrator, owner of a contribution, active or passive author (an active
author will react on learners’ questions), learner, tutor, lecturer, guest,
anonymous, etc. Roles affect the set of possible actions a wizard offers.
While a tutor or lecturer for example may execute a remote consultation, a

http://c2.com/cgi/wiki

4 Web Framework 93

learner may only participate. Members may set up their own groups, and
restrict access to their contributions to some specific group or member.
Similarly, administrators may restrict wizards to specific roles, groups, or
members. One of our wizards summarizes the member status together
with a list of contributions (sorted by the courseware hierarchy), and
enables users to change personal information such as name, affiliation,
photograph, etc. Of course, only administrators may change a member’s
role. The wizard further offers to set notification flags for some
substructure in the courseware hierarchy. If an incoming contribution
matches the chosen flags (e.g. annotation, or discussion), the member gets
a corresponding e-mail notification.

Our most basic online wizards handle annotations, context-help, a
discussion board, and a rating system. We may attach them to arbitrary
content types by registering them to a specific pair of object type and object
identifier (see Figure 26). That way, contributions become object-centered
instead of tool-centered, an important property regarding information
structuring (cp. with document-centered vs. application-centered, 2.2.2).

Figure 26: Community support in our courseware renders any object as a
potential target for annotations, context help, a discussion board, and
our rating system. Here, we let community members discuss (bottom left
window) programming exercises (top left window), and add their own
notes, questions, answers, and links (right window).

94 4 Web Framework

Example (Object-Centered Wizards) All our interactive learning objects
automatically provide a discussion board (see below) responsible for
that specific object, or topic. We therefore equipped the interactive
learning object’s base component with functionality to switch to the
discussion board directly from the chat. That way, users may discuss
topics presented in the object in a separate area, without having to deal
with discussion threads belonging to other topics, respectively learning
objects. Similarly, our course text templates contain a block mapping
course chapters to corresponding online wizards. Community members
may annotate that specific course text, obtain help for its topics, or rate
its quality directly on site.

Let us consider these wizards in more detail. Firstly, an annotation
wizard offers object add-ons such as notes, questions and answers, and
related links. This enables learners to personalize content and to work
with the courseware actively. Furthermore, public contributions might
help other readers to understand the learning content, and serve authors
as starting point for improvements or corrections. Combined with the
rating system, the list of questions and answers further implements a
Frequently Asked Questions (FAQ) list. A similar wizard provides context
help. We follow the same mechanism as for graphical scenes (3.2.3): again,
we initially check for any available user selection (technically, we retrieve
selected text with browser scripting). We collect hierarchically, bottom-up,
entries for the selected word (or object), then for the current paragraph,
and finally for the surrounding course text. Note that we employ context-
sensitive entries and a rating system; otherwise, this approach would not
scale for a larger number of entries.

Our discussion board wizard in turn provides means for asynchronous
communication. We have designed it to be clearly structured, using topic
trees. Boards and their respective sub-trees can be restricted to specific
members or groups; in that case, they are not visible for others. Besides
targeting a specific learning object (see the Example above), we may
explicitly dedicate a discussion board to a particular subject. Each board
notifies a list of moderators about new contributions, and offers optional e-
mail notification for future replies to a given contribution. Of course, we
highlight unread contributions per member. In our university setting, we
favor – wherever possible – asynchronous communication; for instance,
most of our students work out their programming projects in groups in our
department’s computer pool. We execute the bigger part of lecturer/tutor
consultation in restricted discussion boards, and reduce additional labor by
publishing individual threads for public benefit. (We have also
implemented a HTTP-based chat wizard making synchronous
communication possible. However, we did not observe a single reasonable
session carried out in any of our projects).

To improve the quality of contributions, we employ a rating system. A
wizard enables members to rate objects (course text, illustrations,
interactive learning objects, scripts, etc.) on the fly, or, if they are willing
to spend the time, hand in detailed reviews. Based on such evaluations, we
set up profiles for authors, participants, and content, which, in the long-
term, help us to improve our courseware. We grade authors and create

4 Web Framework 95

rankings of the best contributions, busiest authors, and most wanted
supplementations or corrections. As an average, we simply take the
median.

Example (Rating System) We apply our rating system to the list of
questions annotated to some course texts. If any of them is rated as
important (on the average), we notify the editorial board. For those, our
system might already serve as a preliminary stage to finding the
answer: unofficial readers’ answers that are rated to be useful might
serve as a starting point, whereas other answers might indicate weak
content that evokes misinterpretations, or lack of motivation.

Finally, a learner may activate a self-test wizard to review learning
content. We attached the wizard to specific sub trees of the course
hierarchy. That way, a learner may infer subject matter accurately. In the
enquiry phase, we collect all questions belonging to the given sub tree, and
randomly choose some of them. We support multiple-choice questions with
alternative verbalization; each entry consists of a set of questions and
incorrect and correct answers; we pick each set randomly. If the learner’s
response contains incorrect answers, we reformulate the questions by
picking another verbalization. Note that we make all statistics anonymous
to protect the learner’s privacy.

4.2.3 Author Support
Our base wizard component (state machine and state templates, 4.2.1)
enables us to create wizards quickly. We have developed more than 30
task-specific wizards providing Web-based authoring facilities regarding
matters of institution (members, projects, areas of research, etc.),
bibliography (BibTeX entries, search, etc.), and courseware (course text,
illustration, glossary, history/timeline, self-test, remote consultation, etc.).
Our cases studies will present some of them in more detail (5.1 and 5.3).
For now, let us focus on the most innovative ones, namely our wizards for
interactive learning objects and scripting.

We have implemented wizard prototypes offering Web-based authoring of
an interactive learning object’s data, scripts, and documentation of created
script instances (see Figure 27). We assist authors in specifying an
interactive learning object in all data/metadata input steps, just as we
would handle non-interactive content. In particular, we request required
component packages, data and metadata, e.g. title, classification, abstract,
initial script, main class, and illustrative image (see scripting database,
3.3.3). We supply default values. For example, if the user does not specify a
main class, we use the learning object’s base component. We require
authors to test the initial script immediately at the preview step. A
supplementary test page therefore presents the uploaded learning object
(or its base component, i.e. an empty container) together with a scripting
text area containing the initial script. The author may execute the script to
ensure correct behavior. Moreover, the author may change the script, and
review the outcome immediately.

Two other online wizards deal with the definition or modification of a
learning object’s scripts, and, afterwards, with the documentation of

96 4 Web Framework

created script instances. Again, authors have to test their scripts at the
preview step. If a script defines new instances, we prompt for the
instances’ title, class, and description. We detect a default class
automatically. The class will be used later to interlink a learning object’s
help section with the API section of the programming guide.

Multiple authors may now create and modify interactive learning objects
and accessory scripts just with browser functionality. Even untrained
authors can perform scripting if guided by examples. However, scripts
created by different authors may have poor compatibility. To avoid major
problems, we restrict custom defined scripts to work with the initial set of
packages only. Authors will eventually have to create a new learning
object based on an extended set of packages.

Some scripts will require changes of existing scripts. We reduce scripting
errors through compatibility checks that match modified script
instructions with a set of pre-defined script patterns [Hanisch02a]. For
example, we tolerate the conditional call of a ‚setXXX’ script, if the
condition tests the existence of an instance defined by another ‚doXXX’
script. This assures that script behavior does not depend on effects of the
‚doXXX’ script. Modifications that go beyond this can be suggested in the
learning object’s discussion board, but are likely to be performed only if
there is no doubt that there will not be any negative side effects. Our
rating system will detect other obstacles: after a warm-up phase, we can
identify high quality learning objects, software components, and scripts, or
deprecate other ones.

Remember further that we generalized our scripting architecture to a
network model, usable in a classroom scenario, or remote
consultation/examination (3.3.2). A server delivers scripts and initial
parameter changes to all participants. In offline mode, users may test

Figure 27: Online wizards for interactive learning objects guide authors
through authorization, informational data (multilingual), metadata,
scripting, and preview.

4 Web Framework 97

arbitrary scripts; but in networking, we allow tutors to perform only
registered scripts verified as useful, bug-free, and secure. Our technical
experts base their decision on the corresponding results of the rating
system. The main reason for introducing registered scripts was reliability
– tutors should never be allowed to render a learning object unstable. As
scripting is resolved client-side and learning objects might, for example,
have permission to access the file system, a learning object achieves the
‘secure’ grade only through staff ratings.

 99

5 Case Studies

5.1 Electronic Webmaster ... 100
5.1.1 Project ... 100
5.1.2 Institution ... 100
5.1.3 Bibliography ... 103

5.2 Image Processing and Video Communications 105
5.2.1 Project ... 105
5.2.2 Visual Programming .. 105
5.2.3 Component Programming.. 108

5.3 Scientific Visualization.. 110
5.3.1 Project ... 110
5.3.2 Scripting.. 110
5.3.3 Community ... 114

100 5 Case Studies

5.1 Electronic Webmaster

5.1.1 Project
Let us start the case studies with a side project demonstrating the
capabilities of our Web framework, in particular data layers (4.1.1),
generator templates (4.1.2), and online wizards (4.2.1). The goal of the
project was to create an Electronic Webmaster for maintaining our
department’s homepage (http://www.gris.uni-tuebingen.de), i.e. to provide
both content management and Web-based authoring. The homepage
should list current and senior staff, areas of research, projects, a gallery,
vacancies, events (conferences, workshops, etc.), and publications. Web
pages should become multi-lingual; besides German, English, and French,
we had to include the local dialect Swabian to celebrate the 50th
anniversary of our region, Baden-Württemberg in southwest Germany, in
2002. Content should be maintained consistently and become fully
interlinked. Web pages should be generated automatically, including
member pages with personal publications and links to related material.
Finally, the core data had to be made accessible for other applications.
Bibliography data, for example, should be reused in the department’s
annual report.

5.1.2 Institution
The department Graphical-Interactive Systems at the Wilhelm Schickard
Institute (WSI/GRIS) was founded in October 1986 by the appointment of
Wolfgang Straßer at the University of Tübingen. Today, about 25 research
assistants and Ph.D. students work in areas related to interactive
computer graphics. Our area of research for example, Interactive Web-
Based Courseware, has produced coursewares accompanying lectures in
Computer Graphics (a two-semester, four hours per week course taught by
Reinhard Klein and awarded with a ‘Landeslehrpreis’), Geometric
Modeling, Computational Geometry, Image Processing, Video
Communications, and Scientific Visualization. The next two case studies
will describe the most recent courses in more detail (5.2, 5.3).

Using our Web framework consisting of a layered-database model, an
abstract database manager, a template-driven generator, and online
wizards with a built-in state machine, the Electronic Webmaster’s
implementation phase was straightforward. We had to arrange multi-
lingual layers, define the department-specific look by designing templates,
and create task-dependent online wizards allowing for Web-based
authoring. As we could import most of the core data from other sources,
only a single type of data, the BibTeX bibliography, took some effort. We
will therefore describe the bibliography part in its own section (5.1.3).

We started with setting up database layers for the desired languages
German, English, French, and Swabian. We registered corresponding
ODBC data sources, which can be accessed using a bridge to JDBC. Our
database manager may connect to any standard JDBC/ODBC data source;
in our case, we simply based it on Microsoft Access, as that was already

http://www.gris.uni-tuebingen.de/

5 Case Studies 101

contained in our software environment. After taking an inventory of the
department’s active data, we set up object types, (respective database
tables) for chapter structure, chapter text, staff, illustrations, links,
seminars, areas of research, projects, vacancies, events, gallery,
bibliography, hardware reservation, and a discussion board. While we had
to enter for example project data on all layers (multi-lingual title,
keywords, and abstract), we could organize staff data (title, name,
profession, room, e-mail, homepage, phone, member type – assistant,
student, senior, etc.) on a single layer, and offer corresponding dictionary
entries for a member’s profession.

Next, we designed appropriate generator templates for each object type,
defining the department-specific look. Object types such as structure,
chapter text, illustration, and vacancy, which contain rather primitive
elements (HTML blocks, variables, and lists), could be handled easily by
text templates. In cases like staff, area of research, or seminar, which
require nested iterations and the creation of additional documents, we
built text templates covering parts of the final Web pages, and combined
them by low-level programming. Consider for example a staff member’s
personal page: we iterate over all members, collect each member’s general
data, areas of research, projects, seminars, and bibliography, retrieve
template blocks respectively, and combine them into the final personal
Web page. We generate several versions of the publication list, including
plain text style, BibTeX style, abstracts, and PDF. Both HTML and PDF
lists include links to the full papers and supplementary material. Lastly,
our JPEG generator supplies a printable business card.

Our generators rebuild the department’s homepage daily. As noted earlier
(4.1.2), some Web pages are excluded from this generation phase. For
example, we do not create projects pages; instead, we generate a project
list with title, members, and keywords, and link to the project’s default
Web page (i.e. we delegate management of the project subtree to project
members). Second, we create area pages only in part; while we generate
the area list normally, we defined a specific area page’s overall layout by
templates. The templates automatically insert sections for navigation,
associated projects, staff members working in that area, and related
publications. Afterwards, we mark the content section with tags and let
the members fill in the blank space to suit their needs. Authors indicate
changes by triggering an online wizard, which in turn transfers content
into our database.

Other online wizards offer Web-based authoring of institutional data.
Except structure, which we entrusted to the Webmaster only (using the
offline management tool, 4.1.3), staff members may modify objects of any
type. All task-dependent wizards, from chapter text, staff, illustrations,
links, seminars, areas of research, projects, vacancies, events, and gallery
to, finally, hardware reservation, use the standard data flow of the state
machine. As a result, we were able to realize all states with text templates.
Step one typically offers selection of an existent object or the creation of a
new entry, step two queries general data in the default language (for most
of our staff members, this is German), then requests non-textual data
(images, video, PDF, etc.), and prompts for internationalized data (English,

102 5 Case Studies

Figure 28: To celebrate our region’s 50th anniversary, we created a multi-
lingual homepage for our department. Online wizards request data in
German, English, French, and the local dialect Swabian.

French, and Swabian, see Figure 28) simultaneously in a fourth step. After
preview, we notify the Webmaster via e-mail.

The templates realize an adequate interlinking of all objects. A sample
walkthrough might start at the homepage’s welcome page, move on to the
staff list, retrieve a specific member, look up a paper on his publication
list, follow a link to one of the member’s projects, and then to the area of
research the project belongs to, and from there, on to other members
working in that area, or to their publications. We decided on relevant
paths (and interlinking) by evaluating Web server statistics (see Figure
29).

Wizard properties define obligatory data (e.g. area title) and provide
context-sensitive dictionaries (e.g. member profession). To facilitate user
input of timeframes (e.g. conferences and workshops, or hardware
reservation), we implemented a string-based date parser supporting multi-
lingual input. Note that our wizards adapt both GUI and given data

5 Case Studies 103

automatically, whenever an author changes language settings. Switching
from German to English for example will cause a wizard to prompt for
English data in step two, and include already given German data in step
four.

5.1.3 Bibliography
Community support for bibliography data entails facilities for uploading
data, generating lists, searching the data, and Web-based authoring.
Again, we employed a generator component and state templates;
furthermore, we had to implement a BibTex parser supporting the common
LaTeX data format.

Firstly, several upload wizards allow the inclusion of data entries in
common bibliography formats (BibTeX, HTML forms, free text) together
with full papers (PDF, PostScript) and supplementary material (video,
slides). Data is stored in BibTeX format. We handle bibliography data like
all other data; appropriate templates steer the filtering and generation of
publication lists belonging either to individual staff members or to all staff
members and some timeframe. Publications belonging to our department
are clearly marked by a specific BibTeX keyword.

A second class of bibliography wizards realize a dynamic search (2.3.3);
either a quick search, a professional search, or a LaTeX-specific citation
search. While the quick search retrieves bibliography entries containing a
given search text, the professional version lets the user precisely define
pairs of BibTeX fields and search text. The citation search retrieves entries
matching a given AUX (auxiliary) file that records citations in LaTeX. The
wizards can also be queried by other applications. That way, we create the
bibliography section of our department’s annual report on the fly: staff
members just have to cite the bibliography keys of our bibliography
database (each entry includes a set of aliases), and let LaTeX create the
AUX file, which is then utilized to generate the LaTeX BIB file
automatically.

We further adapted the state machine’s data flow to permit modification of
existing bibliography entries. Authors first retrieve existing data using one
of our search wizards, then edit the BibTeX entry in a HTML form, and
submit it again to the upload wizard. Duplicate entries using the same
bibliography key require authors to synchronize inconsistent fields
manually.

104 5 Case Studies

Figure 29: We evaluate Web server statistics to evolve courseware
structuring. These diagrams display the use of our department’s
homepage (left side) and interactive learning objects of our Computer
Graphics courseware (right side) in the winter semester 2002/2003.
Visitors mostly requested staff member publications, lectures, and our
courseware on Computer Graphics. Our most popular interactive
learning objects visualize texture mapping, the Bresenham algorithm,
and Fourier analysis. (Statistics include only Web pages and Java applet
main classes. Robots, API documentation, and auxiliary pages were
excluded. Keep in mind that we usually distribute our courseware on CD-
ROM.)

5 Case Studies 105

5.2 Image Processing and Video Communications

5.2.1 Project
This second case study is meant to demonstrate how we apply component-
based programming (2.4.2) in education (2.3.1). We present two
complementary applications of interactive learning objects accompanying
lectures at our institute. While the first one, a small courseware on Image
Processing [Hanisch99] developed and employed in 1999 and 2000, focuses
on visual programming of image filter chains, the second one, a courseware
on Image Communications [Hanisch03b] held in 2001 and 2002, employs
component programming to teach video processing. Each course took two
hours per week and was taught by Andreas Schilling. Exercises required
the same amount of time. Programming tasks in the first course
represented a structure-based, top-down approach comprising, e.g. gap
filling to complete filter loops. In contrast, exercises of the second course
required low-level, bottom-up programming of entire components like the
creation of a video renderer, filter, or stream. We compare these two
approaches in the following sections.

5.2.2 Visual Programming
Our courseware on Image Processing includes interactive learning objects
for teaching basics of image histograms and modifications, image
operations and blending, discrete Fourier transformation, convolution
kernels, image correction and reconstruction, decoding and encoding of
image formats, edge detection, and image warping. Learning object
development was preceded by the creation of a JavaBeans toolkit
containing more than 50 image filters. Two-thirds of them could be based
on native JAI (2.2.3, 3.2.1) filters; however, we reimplemented some of
them for educational matters, i.e. to use them for gap-filling exercises on
source code level. In addition, 15 GUI components offer image browsing,
loading, editing, transcoding, storing, and interaction with histograms,
filter kernels, transformations, and other properties. Learning objects are
programmed visually by constructing a component data flow graphically in
a builder tool (we used Sun’s BeanBuilder, cp. the ESCOT project, 2.4.1).
Therefore, each component sends property changes (2.4.2). Note that data
flow naturally represents all stages from image retrieval to image
processing and image viewing and storing as it matches the conceptional
model of image filter chains.

Image filters provide an abstract property query mechanism, which we
utilize to adapt the property panel to a specific filter. If the learner
connects the property panel to a filter component, the panel queries all
filter properties and sets up a matching GUI dynamically. That way, the
learner may reuse a single property panel to interact with different filter
components. For each property type (scalar, vector, kernel, image, etc.), we
have registered a corresponding GUI editor, which will become
instantiated, interlinked with the property, and embedded into the panel
GUI whenever needed.

106 5 Case Studies

Each exercise assigns a structure-based task to the learner: given a set
of input images with possible defects, how can we set up a filter chain
producing the desired output? We introduced the toolkit incrementally.
The first exercise offered a four-component subset, a browser, an RGB
multiply filter, a viewer, and a property panel (see Figure 30). The learner
simply had to connect them and interact with the RGB multiplicators. The
individual setups could be exported to a self-complete learning object, that
is, a composite JavaBean. Figure 31 depicts the learning object resulting
from the first exercise, together with the corresponding programming
instructions. Subsequent exercises extended the set of components and
asked the learner to design a more complex data flow. The fifth exercise for
example asked the learner to develop a low pass image filter (see Figure
32). We attached appropriate filters and viewers for the discrete Fourier
transformation and its inverse, diverse arithmetic image functions, 2D
image functions and generic images, and support for real and imaginary
values of complex images. In theory, low pass filtering entails a
convolution with some image function, which maps on a multiplication in
the frequency domain. The learner had to set up a data flow to normalize
the input image, transform it to the frequency domain, visualize the log-
magnitude of the complex result, multiply the transformed image with a
generic image to cut unwanted frequencies, and transform it back to the
time domain. Afterwards, he had to include and interpret different
convolution filters, e.g. a Gaussian, box, circle, hole, or line function.

Figure 30: Visual programming in a builder tool enables the user to
connect software components graphically by constructing a data flow.
Here, the learner creates an interactive learning object that modifies an
image’s color channels.

5 Case Studies 107

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import grdev.image.gui.*;
import grdev.image.filter.*;

public class FilterApplet extends JApplet {
 ImageBrowser b = new ImageBrowser();
 ImageViewer v = new ImageViewer();
 MultiplyConstFilter f = new MultiplyConstFilter();
 FilterPropertyPanel fp = new FilterPropertyPanel();

 public void init() {
 b.addPropertyChangeListener(v);
 f.addPropertyChangeListener(v);

 f.addFilterListener(fp);
 fp.addPropertyChangeListener(f);

 Panel p = getContentPane();
 p.setLayout(new BorderLayout());
 p.add("North", b);
 p.add("Center", v);
 p.add("South", fp);
 }

Figure 31: Programming interactive learning objects involves connecting
software components by data flow and setting up the layout. Source code
typically mirrors such clarity in structure. Only a modest number of
programming instructions (left side) is needed to create the same
learning object (right side) as created graphically in Figure 30. Visual
programming, however, requires no technical knowledge regarding the
specific programming language and environment.

}

Visual programming allows the learner to understand the structure of a
topic (here, algorithms) without having to become acquainted with the
software environment. We generally started with graphical constructions
to clarify the setup of the learning object and component dependencies;
then, we went further into essential aspects of the topic by switching to
gap-filling tasks in the components’ source code. That way, we avoided
confronting the learner with pure low-level programming, which would be
rather time-consuming when dealing with specific image formats or filter
performance.

Gap-filling programming tasks included mostly the development of
appropriate filter loops iterating over all image pixel values. The second
exercise for example requested a loop body implementing a threshold filter.
Learners could base their solution on exemplary source code of an invert
filter. Exercises such as local or global histogram equalization (rank filter
and lookup filter, respectively) extended this basic approach. The final
project addressed the reconstruction of a blurred image distorted by noise.
Learners had to implement an iterative inverse filter expanding the Taylor
series of an inverse Gaussian filter, and explore the impact of varying

108 5 Case Studies

noise (the process diverges beyond some noise threshold). In this case,
visual programming rather complicated the task, whereas component
programming turned out to be the better alternative.

5.2.3 Component Programming
Our courseware on Video Communications shares many characteristics
with our previously discussed courseware on Image Processing; in
particular, we could reuse all image filters and GUI components for video
filters working on single video frames. The great difference between these
courses, however, lies in the importance of structure. In our Video
Communications course, all applications share the same, typical data flow
from the data source via the processor to the data sink. The processor
decodes, filters, encodes, and renders a video stream. We do not focus on
video filter chains – essentially, they do not differ from image filters – but
individual components, i.e. data sources and sinks, codecs (decoder and
encoder pairs), filters, renderers, de-/multiplexers, and de-/packetizers.
Therefore, exercises naturally deal with component programming, that is,
with the design and implementation of new components rather than
with the composition and completion of existing ones.

We developed interactive learning objects for teaching the basics of time-
based data sources (Web camera, video clips, image lists, screen, generic
video), renderers for common formats (PAL/NTSC, JPEG compression,
RGB/YUV color spaces, aspect ratios), frame- and time-based filters
(transitions, image filters, and effects such as blue screen), and video
streaming (RTP). Again, we spent most effort on creating a component
toolkit. Our core framework for handling time-based media uses JMF
(2.2.3, 3.2.1). Programming exercises were accompanied by the source code
of a representative set of custom components. Each exercise dealt with a
specific component type. We started by developing an image list protocol;
the learner had to create a matching data source, encode it into a JPEG
stream, and include frame-seeking functionality. We provided only an
empty data source; the learner had to design his own test application for
playing the video. A later exercise dealt with data formats and color
spaces. Starting with a functional RGB renderer, we asked the learner to
implement a new YUV renderer component (see Figure 21, p. 80) and to
include it in the test program. A similar renderer handled widescreen.

Component programming requires fundamental knowledge of object-
oriented, low-level programming. In contrast to visual programming, it
enables the learner to understand all aspects of the learning content,
including implementation details, special cases, and strategies for
optimization. The overall structure of a problem stays in the background.
For example, let us consider a more sophisticated stop-motion project.
Learners created a storyboard, captured single frames or grabbed them
from a video, reused the image list data source, and applied a blue-screen
effect filter they had developed themselves. Some learners designed their
custom filters. Next, we required the credits to be generated on the fly by
some custom data source component. Learners finally concatenated their
created clips and applied a custom transition. Programming took place on
source code level, i.e. learners practiced Video Communications bottom-up.

5 Case Studies 109

Figure 32: This application of the discrete Fourier transformation
implements a low-pass filter. Learners may visualize an image in time
and frequency domain (first row), apply a convolution filter (second row),
and compare the result with the original image (third row). We ask the
learner to design the data flow and supply a matching convolution filter.

110 5 Case Studies

5.3 Scientific Visualization

5.3.1 Project
Our last case study demonstrates the use of scripting (3.3) and online
wizards (4.2) in an interactive Web-based courseware on Scientific
Visualization [Hanisch02b, Hanisch03a]. This two hours per week course
(with exercises taking the same amount of time) was taught by Stefan
Gumhold in 2002 and 2003. Scripting on the component- and within-
component layer enabled us to create a fine-grained courseware
interlinking. Learners can not only synchronize interactive learning
objects with other courseware objects, but also adapt, rearrange, and
exchange layout, design, and functionality (i.e. internal components and
structure). Furthermore, we provided appropriate community support.
Online wizards let learners personalize (annotate, rate, discuss, etc.) all
courseware objects, including interactive ones, and work with the
courseware collaboratively (reference, modify, share, etc.).

5.3.2 Scripting
We increased the effectiveness of our interactive Web-based courseware by
realizing an adequate courseware interlinking. Before we depict a sample
walkthrough in the domain of color vision (5.3.3), let us demonstrate how
we overcame some typical problems an interactive learning object has to
face in a Web-based environment, such as its isolated status, improper
applied interactivity, and an overloaded GUI.

Figure 33 illustrates how we taught vector field visualization. At first, we
included a course text providing the definition and basic properties of
vector fields, and several illustrations of symmetric, radial, and potential
fields (back window). We integrated a corresponding interactive learning
object to let the learner experience these facts in a constructive manner.
However, with black box interlinking (2.4.3) readings and interactivity
would have stayed essentially separated. To realize a fine-grained
interlinking, we applied our scripting approach and interlinked the
course text with the interactive learning object’s interior on the component
and sub-component layer. For each statement and illustration of the
course text, we embedded a script that adapts the object dynamically. The
scripts insert particles into our scene graph to illustrate a potential field,
redefine the vector field to be symmetric or radial, rearrange the GUI to
include text fields for a function parser, or visualize a streamline (the
surrounding windows show three different states). Other scripts exchange
renderers that realize popular visualization techniques such as arrow plot,
colorization, streamlines, and line integral convolution (LIC). As a result,
learners may now switch back and forth between readings and
interactivity freely, and adapt their interactive learning object to the
statements and illustrations of the course text. Note that our scripts
operate on the current object state, that is, they respect previously
performed modifications.

5 Case Studies 111

Figure 33: Our courseware reuses this interactive learning object several
times to illustrate different visualization techniques for vector fields.
Programming exercises ask learners to include log-magnitude
colorization, FastLIC, and their own algorithm.

Another major topic in Scientific Visualization is color vision. We have
developed teaching material similar to that used for vector field
visualization, and evaluated it with different target audiences. Besides our
own course, we have supported a five-day IBM workshop targeting
professional training, and an one-week student project for Thomas Ertl‘s
lecture on Graphical-Interactive Systems at the University of Stuttgart.
Exercises were carried out on site. We found that learners typically have
difficulties in understanding basics of color perception [Beall96, Foley95],
in particular the CIE color spaces and color defects (see Figure 34). CIE
color spaces are based on the fact that the human eye has three types of
color sensitive cones. It appears to be difficult for the learners to imagine
the 3D horseshoe shape of all visible colors and describe related properties

112 5 Case Studies

(see Figure 34, first row). Note that any color can be expressed in terms of
the two color coordinates (and a luminance term); matters of color (e.g.
hue, saturation, and dominant wavelength), interpolation, and color
gamuts are usually discussed only with 2D projections (ibid. second row,
left side). Therefore, learners rarely have to reflect the 3D shape and
related properties.

In our project, we asked the learners to simulate the effect of red, green,
and blue color blindness (protanopes, deuteranopes, tritanopes) by
calculating point projections onto a line (ibid. second row, right side). They
had to verify their implementation with a given color test plate (ibid. third
row). To solve this task, learners had to acquire an understanding of how
to convert values between the CIE color spaces, how to set up a conversion
matrix for a given color gamut within the CIE XYZ color space (using the
phosphor values and white point of their monitor), and how to deal with
out-of-gamut colors. Their solutions and questionnaires revealed that
many learners made wrong assumptions if we provided them with course
texts and non-interactive 2D illustrations only.

Based on such evaluations, we improved our interactive learning object in
several aspects. A first enhancement with respect to the data flow was to
allow graphical modification of all essential parameters, and to
interconnect all related components – that is, to provide proper, bi-
directional interaction. Learners can now compare a color’s location in
different color spaces, modify projection point and line, and apply arbitrary
color test plates. We further included a common work flow in the learning
process: visualize not only (1) one, fully saturated 2D projection of the 3D
horseshoe shape, but also (2) various luminance layers, then (3) locate
specific color values in the CIE color space, and (4) analyze corresponding
RGB color values.

Our improvements led to an overloaded GUI; even before that, some
learners had stated they could not identify properties described in theory
within our learning object. Therefore, we outsourced functionality by
embedding scripting instructions and hyperlinks into other courseware
objects. Statements from the course text are now illustrated directly in the
simulation; if learners read, for example, ‘projection lines of tritanopes
seem to be parallel, but intersect far away’, a matching script scales down
and translates the scene accordingly.

Finally, we modularized the simulation’s content and now introduce
functionality gradually. We used the fact that Java supports dynamic
loading of classes and separated all Java 3D functionality from Java 2 and
JAI functionality. Learners can now start working with 2D projections and
color plates only (see Figure 34, second and third row). As they switch to
theory and read about the 3D horseshoe shape, they may include the 3D
visualization (ibid. first row) into their current simulation. The script
modifies the layout to include a Java 3D canvas, three 2D graphs, and a
table containing all numeric values. It also rearranges the simulation’s
data flow: learners may select a color in any canvas, input field, or table,
and we update all other representations automatically.

5 Case Studies 113

Figure 34: Teaching basics of color perception and color defects. The first
row visualizes the 3D horseshoe shape of all visible colors. The second
row illustrates various CIE chromaticity diagrams together with the
effects of a color defect. The learner can simulate how protanopes,
deuteranopes, and tritanopes see the world. The result is demonstrated
in the third row.

114 5 Case Studies

5.3.3 Community
We close our case studies with a sample walkthrough a learner might take.
In particular, we show how to perform self-tests, communicate with
community members, and work with the courseware material.

Let us assume we seek information about color vision, for self-studies,
lecture preparation, or revision. On the courseware homepage
(http://www.gris.uni-tuebingen.de/projects/vis), we have the following
options for navigating to the appropriate chapter in the course text: we can
browse the chapter structure, search the index, browse the list of figures,
or browse the list of interactive learning objects. We locate a chapter on
color perception by searching the table of contents. By default, we obtain a
novice version containing gap-filling text, exercises, and marginal notes. If
we are tired of such optional information, we could switch to a condensed,
expert version. The gap-filling text represents a self-test: some words of
the course text are deleted and we are asked to choose a correct fill-in from
a combo box. Three pictograms provide help; one formulates an explicit
question whenever we move the mouse pointer over it, a second one starts
up an online wizard providing one or more hints, and the last one leads us
to an enquiry wizard to check our answers. We start reading the physical
basics of light and color, and explore the described properties such as
dominant wavelength, pureness, and luminance in the accompanying
interactive learning object. While modifying these parameters, we
simultaneously read the course text and activate some scripts (5.3.2) to
locate specific color values in our simulation. We fill out gaps by, for
example, naming a color that cannot be defined by a dominant wavelength
(e.g. magenta) or describing a color by a linear, additive mixture of two
spectral colors. After having similarly read and explored the basics of our
visual system (e.g. the tristimulus theory), the CIE color spaces, and color
defects, we conclude our self-test and enter the enquiry wizard. The wizard
collects all questions belonging to the current chapter and evaluates our
answers. In case of errors, the wizard reformulates the incorrectly
answered questions, and provides more hints.

Next, we discuss our subject with other community members. In the
marginalia, we find a discussion board (4.2.2) dedicated to the specific
topic color perception. The boards are structured hierarchically, so if we
are looking for a related topic, we can move to some board siblings (e.g.
color models), or upwards to a more general board (e.g. visual cues). Other
communication tools let us add short questions to the chapter, or answer
the ones posed by other community members. We could further arrange a
remote consultation with the tutor, in which we could synchronously
discuss our problems with understanding the text, or participate in an
online session with the interactive learning object. We prefer to express
our impression of the content and start the rating wizard for the current
course text. Feeling lazy, we skip the detailed review and just rate some
qualities as (good or bad), and provide an overall grading. The author will
receive our rating by email.

Finally, yet importantly, we start to work with the content, i.e. to
personalize, modify, and extend it (4.2.2, 4.2.3). We add a personal note to
the chapter, recording the insights we gained through communication and

http://www.gris.uni-tuebingen.de/projects/vis

5 Case Studies 115

the self-test. We make the note available for all community members, so
that, if many of them rate our contribution as useful, it will become a static
part of the courseware. One of the exercises included in the course text
asks us to complete the background section with historical material about
the visual system. Using an appropriate history wizard, we enter some of
the contributions of Isaac Newton (1642-1726), who recognized that white
light is made up of all the colors that we can see, and Hermann von
Helmholtz (1821-1894), originator of the variables hue, saturation, and
brightness, and advocator of the three-color system. If we take part in one
of the student projects, we are further entitled to modify or extend
particular passages of the course text as part of the assignment. Note that
during editing we may reference any other learning object or part of it (e.g.
a learning object, or a script). Other exercises provide us with the core CIE
XYZ data set and ask us to visualize it, or to set up a script to display the
color gamut of our own monitor in the visualization. Programming
exercises require us to study the simulation’s source code, and enhance the
algorithm handling out-of-gamut values, or implement the transition from
trichromatism to dichromatism. Finally, we are assigned the task of
designing our own online test for color perception defects, which will
become integrated into the courseware.

 117

6 Conclusion & Directions for Future Work
We have traveled the path from the first teaching machine to learning
management systems, and interrelated paths of hypermedia and graphical
user interfaces that led to the Web and the Desktop. We have met visions,
and grand challenges. Ours is that of interactive Web-based courseware,
which we witness as an integral part of our teaching and learning, and
which we would like to bring to the masses. We had to state that the basic
concept of interactivity, hypermedia, and courseware – the idea of an
highly interactive medium with means for collaboration, personalization,
and working with the content – is obscured due to absent technology and
concrete form.

Learning technologies have specified learning objects and learning
management systems. However, few methodologies exist for interactive
learning objects, and not a single one for highly interactive ones. While
technology provided direct manipulation, software components, and
scripting, didactics and cognitive theories established adequate mental
models, discovery learning, and microworlds. We combined these
approaches into an MVC Interactivity and formulated symbolical
interactivity levels in software terminology. As we required direct
manipulation not only for object view and parameters, but also for
functionality (components and structure), we presented visual Drag &
Drop Scripting. Our ORC-SG design pattern provided a more granular
MVC component model with respect to construction and interactive,
graphical content.

Through examples, we discussed an application of current learning
technology standards and illustrated some of our most urgent needs. To
include issues of interactivity and interoperability into a digital library, we
presented the concept and prototype of a scripting database, together with
online wizards enabling community members to modify interactive
learning objects online and interlink them with other learning objects in a
graduated manner. Certainly, our approach marks just the beginning of
collaborative authoring of interactive learning objects, an area that is not
yet explored. Effective systems will have to include appropriate authoring
tools. We are thinking of a Web-enabled integrated development
environment (IDE) letting community members program components and
scripts online, possibly visually. We also need Web-based component
models standardizing an object’s programming interface and
interoperability.

Subjects like these must become included into learning object metadata
and the runtime environment of a learning management system; then, we
might be able to specify, retrieve and adapt interactive learning objects
adequately, and evaluate user interactions on component and sub-
component layer. Andries van Dam wants interactive objects to become
clip models [vanDam02, CRA02], with the same characteristics as
conventional clip art.

The desired flexibility naturally requires collaborative efforts of the
educational community. Roschelle [Roschelle98] asked how to anticipate

118 6 Conclusion

and support an emerging community of practice around component
software and customizable curricula. Our Web framework represents a
prototype for such a social architecture. We manage learning objects,
components and scripts in the courseware’s repository, and let community
members share, annotated, rate, and extend them. Generator templates
and online wizards support them both in interlinking, and authoring. We
demonstrated the benefits of such an integrated system with examples
from our courseware. Yet, we had to postpone some ideas for future work.
Firstly, we did not mention the application of our layered database model
to software components. By providing alternative components, we could
render interactive objects useful for adaptive systems [Brusilovsky96];
besides multilinguality, we could precisely adapt presentation, structure,
and depth of information.

Secondly, concerning component reuse, we discussed only the tip of the
iceberg. In this project, we reused design, geometry, and structure
information to facilitate the development of interactive learning objects,
and adapt them to other courseware objects. Drag & Drop Scripting
allowed us to transport such information beyond the browser barrier. We
would like software components to become intelligent in the sense that
they should be evolved by community members in multiple microworlds or
online games, and transferred to different setups with their current
characteristics. Intelligent components must therefore comprise an
extendable, context-sensitive set of attributes, actions, and functionality.
Lastly, they will be shared and distributed in a digital library, and billed
on component base.

 119

 121

Abbreviations
Systems and projects are located in the Name Index (next page).

API Application Programming Interface

CGI Common Gateway Interface

CIE Commission Internationale de L’Eclairage

CSCW Computer Supported Cooperative Work

FAQ Frequently Asked Questions

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IP Internet Protocol

JAI Java Advanced Imaging

JDBC Java Database Connectivity

JMF Java Media Framework

JPEG Joint Photographic Experts Group

LIC Line Integral Convolution

LMS Learning Management System

LOM Learning Object Metadata

MVC Model View Controller

NTSC National Television System Committee

ODBC Open DataBase Connectivity

ORC-SG Object, Renderer, Constraint, Scene Graph, and GUI

PAL Phase Alternating Line

PDF Portable Document Format

RGB Red, Green, and Blue

RTP Real Time Transport Protocol

SCORM Sharable Content Object Reference Model

SMET Science, Mathematics, Engineering, and Technology

SQL Structured Query Language

TCP Transfer Control Protocol

URL Uniform Resource Locator

UNL Uniform Network Location

WIMP Windows, Icons, Menus, and Pointer device (mouse)

WYSIWYG What You See Is What You Get

YUV Luminance and Two Chrominance Signals

122 Index

Name Index
The following names are typed in italics in the main text.

A
ADL 43
AICC 43
Amaya 30
Andrews, Keith 24, 29, 39
ARIADNE 43, 51
ARPA 24

B
BALSA 54
Baumgartner, Peter 32, 37
Berners-Lee, Tim 29
BibTex 103
Bitzer, Donald 33
Borning, Alan 26, 53
Boxer 27
Bravo 26
Bruner, Jerome 33
Bush, Vannevar 24

C
CGEMS 12
Christian, Wolfgang 55
Cinderella 23, 54
Computing Research Association 11

D
Dexter Hypertext Reference Model 28,

55
diSessa, Andrea 27, 46
DoD 24, 33
Duval, Erik 42, 47
Dynabook 13, 30

E
ED-MEDIA 11
Electronic Webmaster 100
ELS 26
Engelbart, Douglas 25, 28
EOE 50
Ertl, Thomas 111
ESCOT 49, 56
E-Slate 48, 56
Exploratories 39, 46

F
Flash 30
FRESS 25, 35

G
Gentle 40, 41
Gumhold, Stefan 110

H
Halasz, Frank 26, 28
HES 25
HTML 29, 30
HTTP 29
Hypercard 28, 35
Hyper-G 29
HyperTies 18
Hyperwave 29, 38, 40

I
IEC 42
IEEE 42
IMS 38, 43
Ingalls, Daniel 26
Intermedia 27, 35
Internet Explorer 30

J
Java 19, 26, 31
Java 3D 31, 48, 54, 61, 67
Java Advanced Imaging 31, 61, 105
Java Media Framework 31, 61, 108

K
Kay, Alan 11, 13, 19, 26, 34
Klein, Reinhard 100

L
LEGO Mindstorms 34
Licklider, Joseph 24
Logo 34
LOM 22
LTSC 42, 43

M
MANKIND 29
MathWorlds 56
Maurer, Hermann 11, 29, 35, 39, 41
Memex 24
MERLOT 51
Merrill, David 33
Meyrowitz, Norman 27, 28, 37
Mozilla 30

 123

N
Nelson, Ted 25, 35
Netscape Navigator 30
Newton, Isaac 115
NLS 25
NoteCards 26
NSF 45

P
Papert, Seymour 34
Physlets 55
Piaget, Jean 34
PROMETHEUS 43
Pygmalion 26

Q
Quicktime 30

R
RealPlayer 30
Roschelle, Jeremy 28, 47, 56

S
Schulmeister, Rolf 22, 36, 60
SCORM 36, 43, 78
Servlets 90
Shneiderman, Ben 15, 18, 19
Shockwave 27, 30
Simonyi, Charles 26
Sims, Rod 19
Sketchpad 18, 25
Skinner, Burrhus Frederic 33
Smalltalk 19, 26
SMIL 30
Smith, David 26
SQL 38

Squeak 26
Star 27
Straßer, Wolfgang 100
Sutherland, Ivan 18, 25
SVG 30

T
Tesler, Larry 26
ThingLab 26
Thorndike, Edward 33
TICCIT 33

V
van Dam, Andries 11, 25, 35, 46, 47, 117
von Helmholtz, Hermann 115
von Neumann, John 24

W
W3C 30
Web/Comp 46
WebCT 37, 41
WebDAV 30
World Wide Web 29

X
Xanadu 25
Xerox PARC 26
XML 30

Y
Yankelovich, Nicole 27

Z
Zuse, Konrad 24

124 Index

Subject Index
The following subjects are typed bold-faced in the main text.

A
adapter 61, 66
adaptive system 15
added value 15
alternative points of view 74
annotation 94
authoring tools 38

B
behaviorism 33
behaviors 67
black boxes 38
browser 29
building block 19, 42

C
classroom 75
cognitivism 33
communication 114
community 40
compatibility 96
components 19, 26, 50, 52, 87, 108
constraint 26, 53, 62
construction 22
constructivism 34
container 27, 70
content 88
context 26
context help 94
courseware 13, 36

D
data flow 62
database 38
decentralization 77
design 88
dictionaries 85
digital libraries 45
direct manipulation 19
discussion board 94
drag & drop scripting 79

E
external representation 21

F
functionality 75, 112

G
generator 40, 76, 86

granularity 46, 70
graphical user interface 65
guidelines 21

H
highly interactive learning object 13, 60,

95
Human-Computer Interaction 18
hyperlinks 24
hypermedia 13, 24, 25, 35, 37
hypermodel 56

I
illustration 73
Image Communications 105
Image Processing 105
incrementally given data 85
integration of information 21
interaction 18, 20, 22, 25, 112
interactive constructs 19
interactivity 18
interlinking 87, 110
interoperability 27, 44

L
layers 84, 100
learning management system 36
learning object 42
learning technology standards 22, 42, 78
learning theory 32
link consistency 84
link database 26
look & feel 65

M
member status 93
messages 26, 53
metadata 22, 44, 51, 68, 77, 85
Model View Controller 53
modelessness 26
multimedia 18

N
network 24, 75

O
object 63
output-sensitive 64

 125

P
plug-in 30, 65
programming 19, 54, 107, 108
properties 63

R
rating system 94
renderer 63
repositories 25, 46, 50
review process 51

S
scene graph 54, 66, 67
Scientific Visualization 110
scripting 28, 48, 55, 72, 95
search 103
self-test 95, 114
server 76
structure 88, 106

synchronization 73

T
templates 39, 72, 86, 91, 101
toolkit 105, 108

U
upload 103
usability 22

V
visual programming 26

W
Web-based authoring 55, 91, 103, 114
WIMP 27
within-component layer 29
wizards 41, 90, 95, 101

Index 127

Bibliography
References are in alphabetical order of first author. For any given Web
resource (URL), the last date of access was November 20, 2003.

[ADL01a] Advanced Distributed Learning, Sharable Content Object
Reference Model (SCORM), Version 1.2, The SCORM Overview,
October 2001.
URL: http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=480

[ADL01b] Advanced Distributed Learning, Sharable Content Object
Reference Model (SCORM), Version 1.2, The SCORM Content
Aggregation Model, October 2001.
URL: http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=476

[ADL01c] Advanced Distributed Learning, Sharable Content Object
Reference Model (SCORM), Version 1.2, The SCORM Run-Time
Environment, October 2001.
URL: http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=483

[Aldrich98] Aldrich, F. Rogers, Y., Scaife, M., Getting to grips with
'interactivity': helping teachers evaluate the educational value of CD-
ROMs, British Journal of Educational Technology. 29(4):321-333,
1998.

[Ambron88] Ambron, S., and Hooper, K., Interactive multimedia,
Redmond, Microsoft, 1988.

[Andrews94] Andrews, K., Kappe, F., Maurer, H., Schmaranz, K., On
Second Generation Hypermedia Systems, Journal of Universal
Computer Science 0(0):127-135, November 1994.
URL: http://www.jucs.org/on_second_generation_hypermedia_systems

[Andrews96] Andrews, K., Browsing, Building, and Beholding Cyberspace,
New Approaches to the Navigation, Construction, and Visualisation
of Hypermedia on the Internet, Ph.D. thesis, Graz University of
Technology, 1996.
URL: http://www2.iicm.edu/keith-phd

[Apache00] Apache Software Foundation, The Apache Jakarta Project:
Struts User Guide, 2000-2003.
URL: http://jakarta.apache.org/struts/userGuide

[ARIADNE02] ARIADNE Foundation, ARIADNE Educational Metadata
Recommendation - V3.2, February 2002.
URL: http://www.ariadne-eu.org

[Azevedo01] Azevedo, F. S., EOE Profile, in: diSessa, A. (ed.), the
Web/comp project, March 2001.
URL: http://dewey.soe.berkeley.edu/~boxer/webcomp

[Bacher97] Bacher, C., Müller, R., Ottmann, T., Will, M., Authoring on the
Fly: a new way of integrating telepresentation and courseware
production, Proc. of ICCE '97, Kuching (Malysia), December 1997.

http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=480
http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=476
http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=483
http://www.jucs.org/on_second_generation_hypermedia_systems
http://www2.iicm.edu/keith-phd
http://www.ariadne-eu.org/
http://dewey.soe.berkeley.edu/~boxer/webcomp

128 Index

[Barker02] Barker, p. , Rebelsky, S., Proceedings of ED-MEDIA 2002.
World Conference on Educational Multimedia, Hypermedia &
Telecommunications, AACE, June 2002.
URL: http://www.diffuse.org/ED-Media-02.html

Abstracts of Opening Keynotes

[Baumgartner92] Baumgartner, p. , Payr, S., Lernen mit Software, 2nd ed.,
Innsbruck, StudienVerlag, 1992.

[Baumgartner98] Baumgartner, p. , Payr S., Learning with the Internet. A
Typology of Applications, Proceedings of ED-MEDIA 98 - World
Conference on Educational Multimedia and Hypermedia,
Charlottesville, AACE, pp.124-129, 1998.

[Baumgartner02] Baumgartner, p. , Häfele, K., Häfele, H., E-Learning:
Didaktische und technische Grundlagen, Sonderheft des bm:bwk,
CDAustria, Mai 2002.
URL: http://www.peter.baumgartner.name

[Beall96] Beall, J. E., Doppelt, A. M., Hughes, J. F., Developing an
Interactive Illustration: Using Java and the Web to Make It
Worthwhile, Computer Graphics (Proceedings of 3D and Multimedia
on the Internet, WWW and Networks), Bradford, UK, 1996.

[Bell95] Bell, G., Parisi, A., Pesce, M., The Virtual Reality Modeling
Language, Version 1.0 Specification, November 1995.
URL: http://www.web3d.org/VRML1.0

[Bentley97] Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D.,
Sikkel, K., Trevor, J., Woetzel, G., Basic Support for Cooperative
Work on the World Wide Web, International Journal of Human
Computer Studies 46:827-846, 1997.

[BernersLee89] Berners-Lee, T., Information Management: A Proposal,
CERN, Geneva, 1989.
URL: www.w3.org/History/1989/proposal.html

[BernersLee99] Berners-Lee, T., Weaving the Web, HarperCollins, 1999.

[Birbilis00] Birbilis, G., Koutlis, K., et al., E-Slate: A software architectural
style for end-user programming, presented at the 22nd International
Conference on Software Engineering (ICSE 2000), Limerick, Ireland,
2000.
URL: http://e-slate.cti.gr

E-Slate

[Bitzer70] Bitzer, D.L., Skaperdas, D., The Economics of a Large Scale
Computer Based Educational System: Plato IV, in: Holtzman, W.,
Computer Assisted Instruction, Testing and Guidance, pp.17-29, New
York, Harper and Row, 1970.

[Borning81] Borning, A., The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation Laboratory, ACM
Transactions on Programming Languages and Systems 3(4):353-387,
October 1981.

http://www.diffuse.org/ED-Media-02.html
http://www.peter.baumgartner.name/
http://www.web3d.org/VRML1.0
http://www.w3.org/History/1989/proposal.html
http://e-slate.cti.gr/

Index 129

[Bothun97] Bothun, G., Kevan, S., Micklavzina, S., Mason, D., Networked
Physics Curriculum: From Static Web to Dynamic Java,
International Journal of Modern Physics 8:79-91, 1997.

[Blumstengel99] Blumstengel, A., Entwicklung hypermedialer
Lernsysteme, Ph.D. thesis, University of Paderborn,
Wissenschaftlicher Verlag Berlin, 1999.
URL: http://dsor.uni-

paderborn.de/de/forschung/publikationen/blumstengel-diss

[Borsook91] Borsook, T. K., Higgenbotham-Wheat, N., Interactivity: What
is it and what can it do for computer-based instruction, Educational
Technology Research and Development, pp.11-17, October 1991.

[Bush45] Bush, V., As We May Think, The Atlantic Monthly, 176(1):101-
108, July 1945.
URL: http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

[Brown84] Brown, M. H., Sedgewick, R., A system for algorithm animation,
Computer Graphics, 18(3):177-186, 1984.

[Bruner61] Bruner, J. S., The act of discovery, Harvard Educational
Review, 31(1):21-32, 1961.

[Bruner66] Bruner, J. S., Towards a theory of instruction, Cambridge,
Harvard University Press, 1966.

[Brusilovsky96] Brusilovsky, p. , Methods and techniques of adaptive
hypermedia, User Modeling and User-Adapted Interaction, 6(2-3):87-
129, 1996.

[Brusilovsky98] Brusilovsky, p. , Adaptive Educational Systems on the
World Wide Web: A Review of Available Technologies, Proc. of
workshop WWW-Based Tutoring at 4th International Conference on
Intelligent Tutoring Systems (ITS'98), 1998.

[Carr99] Carr, L., Hall, W., De Roure, D., The Evolution of Hypertext Link
Services, ACM Computing Surveys 31(4), December 1999.

[Conklin87] Conklin, J., Hypertext: An introduction and Survey, IEEE
Computer, 20(9):17-41, 1987.

[Christian00] Christian, W., Belloni, M., Physlets, Prentice Hall, NJ, 2000.
URL: http://webphysics.davidson.edu/Applets/Applets.html

[Conway97] Conway, M. J., Alice: Easy-to-Learn 3D Scripting for Novices,
Ph.D. thesis, University of Virginia, 1997.
URL: http://www.alice.org

[CRA02] Computing Research Association, Grand Challenge 3: Provide a
Teacher for Every Learner, in: Grand Research Challenges in
Information Systems, Final Report of the CRA Conference on "Grand
Research Challenges" in Computer Science and Engineering,
Warrenton, Virginia, pp.17-22, CRA, 2003.
URL: http://www.cra.org/Activities/grand.challenges

http://dsor.uni-paderborn.de/de/forschung/publikationen/blumstengel-diss
http://dsor.uni-paderborn.de/de/forschung/publikationen/blumstengel-diss
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
http://webphysics.davidson.edu/Applets/Applets.html
http://www.alice.org/
http://www.cra.org/Activities/grand.challenges

130 Index

[Cunningham01] Cunningham S., Bailey M. J., Lessons from Scene
Graphs: Using Scene Graphs to Teach Hierarchical Modeling,
Computers & Graphics, 25(4):703-711, 2001.

[Dietinger98] Dietinger, T. Maurer, H., Gentle – (General Networked
Training and Learning Environment), Proc. ED-MEDIA98, Juni
1998.

[diSessa85] diSessa, A. A., A Principled Design for an Integrated
Computational Environment, Human-computer interaction, 1:1-47,
1985.

 [diSessa86a] diSessa, A. A., Artificial Worlds and Real Experience,
Instructional Science 14:207-227, 1986.

 [diSessa86b] diSessa, A. A., Abelson, H., Boxer: A Reconstructible
Computational Medium, Communications of the ACM, 29(9):859-868,
1986.

[diSessa97] diSessa, A. A., Open toolsets: New ends and new means in
learning mathematics and science with computers, in Pehkonen, E.
(ed.), Proc. of the 21st Conference of the International Group for the
Psychology of Mathematics Education 1:47-62. Lahti, Finland, 1997.

 [diSessa01] diSessa, A. A. (ed.), the Web/comp project, January 2001.
URL: http://www.soe.berkeley.edu/~boxer/webcomp/

[Duval95] Duval, E., Olivié, H., O’Hanlon, p. , Jameson, D. G., HOME: an
Environment for Hypermedia Objects, Journal of Universal Computer
Science 1(5):269-291, Mai 1995.
URL: http://www.jucs.org/jucs_1_5/home_an_environment_for

[Duval01] Duval, E., Forte, E., Cardinaels, K., et al., The ARIADNE
Knowledge Pool System: a Distributed Digital Library for Education,
Communications of the ACM, 44(5):72-78, ACM, New York, Mai
2001.
URL: http://www.ariadne-eu.org

[Duval02] Duval, E., Ternier, S., Learning Object Metadata: A Hands on
Workshop, ED MEDIA 2002: World Conference on Educational
Multimedia, Hypermedia and Telecommunications, Denver,
Colorado, AACE, June 2002.
URL: http://www.diffuse.org/ED-Media-02.html

[Dix96] Dix, A., Challenges and Perspectives for Cooperative Work on the
Web, Proceedings of the ERCIM workshop on CSCW and the Web,
Sankt Augustin, February 1996.

[Eberhardt99] Eberhardt, B., Gürçay, H., Hanisch, F., Hüttner, T., Licht,
O., Nill, B., Books and Devices from the Old – their Renaissance in
Computer Graphics, Eurographics’99, Short paper, 1999.

[Engelbart68] Engelbart, D. C., The original 90-minute live public
demonstration of the online system NLS, in: Engelbart Collection in
Special Collections of Stanford University, December 1968.
URL: http://sloan.stanford.edu/mousesite/1968Demo.html

http://www.soe.berkeley.edu/~boxer/webcomp/
http://www.jucs.org/jucs_1_5/home_an_environment_for
http://www.ariadne-eu.org/
http://www.diffuse.org/ED-Media-02.html
http://sloan.stanford.edu/mousesite/1968Demo.html

Index 131

[Figueiredo03] Figueiredo, F. C. , Eber, D. E., Jorge, J. A., A Refereed
Server for Educational CG Content, The annual conference of the
European Association for Computer Graphics (Eurographics 2003),
University of Granada, Granada, September 2003.

[Foley95] Foley J., van Dam, A., Feiner S. K. , Hughes J. F., Computer
graphics, principles and practice, 2nd ed., Addison-Wesley, July
1995.

[Gamma94] Gamma, E., et al. Design patterns elements of reusable object-
oriented software, Reading, MA, Addison-Wesley, 1994.

[GAO03] United States General Accounting Office, MILITARY
TRANSFORMATION: Progress and Challenges for DOD's Advanced
Distributed Learning Programs, Report to Congressional
Committees, Washington DC, February 2003.
URL: www.gao.gov/cgi-bin/getrpt?GAO-03-393

[Halasz88] Halasz, F. G., Reflections on NoteCards: Seven Issues for the
Next Generation of Hypermedia Systems, Communications of the
ACM 31(7):836-852, 1988.

[Halasz90] Halasz, F. G., Schwartz, M. D., The Dexter Hypertext Reference
Model, Proc. of the Hypertext Standardization Workshop by National
Institute of Science and Technology (NIST), January 1990. Reprinted
in: Communications of ACM, 37(2):30-39, February 1994.

[Hanisch99a] Hanisch, F., Klein, R., Straßer, W., Ein Web-basierter
Computergraphik-Kurs im Baukastensystem, in: Engelien, M.,
Homann, J. (eds.), Virtuelle Organisation und Neue Medien -
Workshop GeNeMe99, pp.255-270, Eul-Verlag, Lohmar, 1999.

[Hanisch00a] Hanisch, F., Klein, R., Challenges in the Development of
Web-based Courseware using Virtual Experiments, in: Hoffmann, M.
H. W. (ed.), Innovations in Education for Electrical and Information
Engineering (EIE) – Proc. of the 11th annual conference of the
EAEEIE, pp.119-124, Universität Ulm, 2000.

[Hanisch00b] Hanisch, F., Basic Requirements for Interactive Web-based
Courseware, in: Auer, M. (ed.), Interactive Computer aided Learning
Applications and Experiences, Carinthia Tech Institute, School of
Electronics, Villach, 2000.

[Hanisch01a] Hanisch, F., Scripting and Cooperation for Interactive Web-
based Courseware, in: 3rd International Conference of New Learning
Technologies (NLT), University of Applied Sciences of Western
Switzerland, Fribourg, September 2001.

[Hanisch01b] Hanisch, F., Eberhardt, B., Nill, B., Reconstruction and
virtual model of the Schickard calculator, Journal of Cultural
Heritage, pp.335-340, Éditions scientifiques et médicales Elsevier
SAS, 2001.

[Hanisch02a] Hanisch, F., Authoring and Linking of Highly Interactive
Content within Web-based Courseware, Networked Learning in a

http://www.gao.gov/cgi-bin/getrpt?GAO-03-393

132 Index

Global Environment: Challenges and Solutions for Virtual Education
(NL 2002), Technical University of Berlin, 2002.

[Hanisch02b], Hanisch, F., Using Scripting to Increase the Impact of
Highly Interactive Learning Objects, ED-MEDIA 2002: World
Conference on Educational Multimedia, Hypermedia &
Telecommunications, Denver, Colorado, AACE, 2002.

[Hanisch03a] Hanisch, F., Straßer, W., Adaptability and Interoperability
in the Field of Highly Interactive Web-Based Courseware, Computer
& Graphics 27(4):647-655, 2003.
URL: http://www.gris.uni-tuebingen.de/projects/vis

Scientific Visualization courseware

[Hanisch03b] Hanisch, F., Straßer, W., Drag & Drop Scripting: How To Do
Hypermedia Right, in: Cunningham, S., Martin, D. (eds.),
Eurographics Education Presentations (EG'03), Eurographics
Association, 2003.

[Helic00] Helic, D., Maurer, H., Scherbakov, N., Web Based Training: What
do we expect from the system, Proc. of ICCE 2000, pp.1689-1694,
Taiwan, 2000.
URL: http://www.iicm.edu/iicm_papers/web_based_training.doc

[Hewett92] Hewett, T., Baecker, R., Card, S., Carey, T., Gasen, J., Mantei,
M., Perlman, G., Strong, G., Verplank, W., ACM SIGCHI Curricula
for Human-Computer Interaction, Report of the ACM SIGCHI
Curriculum Development Group, ACM, 1992.
URL: http://www.acm.org/sigchi

[HIM99] Hyperwave Information Management, Inc., Hyperwave
Administrator's Guide, Hyperwave Information Server, Version 5.1,
Westford, USA, September 1999.
URL: http://www.hyperwave.com

[HIM00] Hyperwave Information Management, Inc, Hyperwave: eLS
Expert’s Guide, Version 1.2, Westford, USA, 2000.

[Horwitz95] Horwitz, P., Linking Models to Data: Hypermodels for Science
Education, The High School Journal 79(2):148–156, 1995.

[IEEE02] IEEE Learning Technology Standards Committee (LTSC),
Learning Object Metadata Working Group, Draft Standard for
Learning Object Metadata (IEEE 1484.12.1-2002), July 2002.
URL: http://ltsc.ieee.org/wg12

[IMS01] IMS Global Learning Consortium, Inc., IMS Content Packaging
Specification, Version 1.1.2, August 2001.
URL: http://www.imsproject.org/content/packaging

[Jaspers91] Jaspers, F., Interactivity or instruction? A reaction to Merrill,
Educational Technology 31(3):21-24, 1991.

[Johnson98] Johnson, N. F., Jajodia, S., Exploring Steganography: Seeing
the Unseen, IEEE Computer, 31(2):26-34, February 1998.

http://www.gris.uni-tuebingen.de/projects/vis
http://www.iicm.edu/iicm_papers/web_based_training.doc
http://www.acm.org/sigchi
http://www.hyperwave.com/
http://ltsc.ieee.org/wg12
http://www.imsproject.org/content/packaging

Index 133

[Ingalls81] Ingalls, D. H. H., Design Principles Behind Smalltalk, BYTE
Magazine, August 1981.
URL: http://users.ipa.net/~dwighth/smalltalk/byte_aug81/design_principle

s_behind_smalltalk.html

[Johnson89] Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby,
C. H., Beard, M., Mackey, K., The Xerox Star: A retrospective, IEEE
Computer, 22(9):11-29, 1989.
URL: http://www.digibarn.com/friends/curbow/star/retrospect

URL: http://www.digibarn.com/stories/desktop-history/bushytree.html
The updated Bushy tree by John Redand and Bruce Damer.

[Kay77] Kay, A., Goldberg, A., Personal Dynamic Media. IEEE Computer,
10(3):31-41, March 1977.

[Kay69] Kay, A., The Reactive Engine, Ph.D. thesis, University of Utah,
1969.
URL: http://www.mprove.de/diplom/gui/kay69.html

[Kay91] Kay, A., Computers, Networks & Education, Scientific American
Magazine, September 1991.

[Kay93] Kay, A., The early history of Smalltalk, History of Programming
Languages archive, ACM SIGPLAN Notices, 28(3):69-95, 1993.

[Kearsley03] Kearsley, G., Explorations in Learning & Instruction: The
Theory Into Practice Database, August 2003.
URL: http://tip.psychology.org

[Klein98a] Klein, R., Hanisch, F., Straßer, W., Web- based Teaching of
Computer Graphics: Concepts and Realization of an Interactive
Online Course, in: Michael Cohen (eds), SIGGRAPH 98 Conference
Proceedings, Addison Wesley, 1998.

[Klein98b] Klein, R., Hanisch, F, Using a modular construction kit for the
realization of an interactive Computer Graphics course, in: Proc. of
ED-MEDIA & ED-TELECOM, AACE, USA, 1998.
URL: http://www.gris.uni-tuebingen.de/projects/grdev

Computer Graphics courseware

[Knox99] Knox, D., Fincher, S., Dale, N., Adams, E., Goelman, D.,
Hightower, J., Loose, K., Springsteel, F., The Peer Review Process of
Teaching Materials, Report of the ITiCSE’99 Working Group on
Validation of the quality of teaching materials, ITiCSE’99 Working
Group Reports 31(4), 1999.

[Kortenkamp99] Kortenkamp, U., Foundations of Dynamic Geometry,
Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1999.
URL: http://www.cinderella.de/papers/diss.pdf

[Kortenkamp02] Kortenkamp, U., Richter-Gebert, J., Making the Move:
The Next Version of Cinderella, Proc. of the First International
Congress Of Mathematical Software, World Scientific, pp.208ff.,
2002.

http://users.ipa.net/~dwighth/smalltalk/byte_aug81/design_principles_behind_smalltalk.html
http://users.ipa.net/~dwighth/smalltalk/byte_aug81/design_principles_behind_smalltalk.html
http://www.digibarn.com/friends/curbow/star/retrospect
http://www.digibarn.com/stories/desktop-history/bushytree.html
http://www.mprove.de/diplom/gui/kay69.html
http://tip.psychology.org/
http://www.gris.uni-tuebingen.de/projects/grdev
http://www.cinderella.de/papers/diss.pdf

134 Index

[Krasner88] Krasner, G. E., Pope, S.T., A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 system,
Journal of Object Oriented Programming, 1(3):26-49, 1988.

[Kuisma02] Kuisma, J. J., Watson, J. A., Scheduling and Monitoring
Dynamic Learning Objects on the Web, Proc. of the ED-MEDIA 2002
Conference, Denver, CO, June 2002.

[Kynigos01] Kynigos, C., Friedmann, J., E-Slate Profile, in: diSessa, A.
(ed.), the Web/comp project, March 2001.
URL: http://www.soe.berkeley.edu/~boxer/webcomp/

[Laleuf01] Laleuf, J. R. Spalter, A. M., A Component Repository for
Learning Objects: A Progress Report, Proceedings of ACM JCDL2001,
Roanoke, VA, 2001.
URL: http://www.cs.brown.edu/research/graphics/research/exploratory

The Exploratories Project

[Lacroute94] Lacroute, p. , Levoy, M., Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation, Proc.
SIGGRAPH '94, pp.451-458, Orlando, Florida, July, 1994.

[LSAL03] Learning Systems Architecture Lab, SCORM Best Practices
Guide for Content Developers, 1st edition, Carnegie Mellon
University, USA, February 2003.
URL: http://www.lsal.cmu.edu/lsal/expertise/projects/developersguide

[Licklider60] Licklider, J. C. R., Man-Computer Symbiosis, IRE
Transactions on Human Factors in Electronics, 1:4-11, March 1960.
URL: http://memex.org/licklider.pdf

[Löringhoff78] v. Freytag Löringhoff, B.B., Die Rechenmaschine, in Seck,
F., Mohr, J. C. B. (eds.) Wilhelm Schickard, Paul Siebeck, Tübingen
1978.

[MathForum03] The Math Forum, Math Forum @ Drexel, Drexel
University, 1994-2003.
URL: http://mathforum.org

[Maurer96] Maurer, H. (ed.), Hyperwave: The Next Generation Web
Solution, Addison-Wesley Longman, London, 1996.
URL: http://www.iicm.edu/hwbook

[Maurer97] Maurer, H., Necessary Ingredients of Integrated Network Based
Learning Environments, Proc. of ED-MEDIA 97 – World Conference
on Educational Multimedia and Hypermedia, pp.709-716, AACE,
June 1997.

[Maurer01a] Maurer, H., Sapper, M., E-Learning Has to be Seen as Part of
General Knowledge Management, Proc. of ED-MEDIA 2001, pp.1249-
1253, AACE, Charlottesville, USA, 2001.
URL: http://www.iicm.edu/iicm_papers/e-learning_part_of_KM.doc

[Maurer01b] Maurer, H., Computer-Based Teaching/Web-Based Teaching,
in: Rojas, R. (ed.), Encyclopedia of Computers and Computer History,
1:181-182, Fitzroy Dearborn Publishers, Chicago, 2001.

http://dewey.soe.berkeley.edu/~boxer/webcomp
http://www.cs.brown.edu/research/graphics/research/exploratory
http://www.lsal.cmu.edu/lsal/expertise/projects/developersguide
http://memex.org/licklider.pdf
http://mathforum.org/
http://www.iicm.edu/hwbook
http://www.iicm.edu/iicm_papers/e-learning_part_of_KM.doc
http://www.iicm.edu/iicm_papers/e-learning_part_of_KM.doc
http://www.iicm.edu/iicm_papers/e-learning_part_of_KM.doc
http://www.iicm.edu/iicm_papers/cbt_wbt.doc

Index 135

URL: http://www.iicm.edu/iicm_papers/cbt_wbt.doc

 [Maurer02] Maurer, H., What have we learnt in 15 years about
educational multimedia?, Keynote Presentation Ed-Media 2002, in:
Proc. ED-MEDIA 2002, 1:2-7, AACE Charlottesville, USA, 2002.
URL: http://www.iicm.edu/iicm_papers/edmedia_2002.doc

[Meyrowitz86] Meyrowitz, N., Intermedia: The architecture and
construction of an object-oriented hypemedia system and applications
framework, Conference Proceedings on Object-Oriented
Programming Systems, Languages and Applications, pp.186-201,
Portland, OR, ACM, September 1986.

[Meyrowitz87] Meyrowitz, N., The Missing Link: Why We're All Doing
Hypertext Wrong, in: The society of text: Hypertext, hypermedia and
the social construction of information, pp.107-114, MIT Press, 1989.

[Meyrowitz89] Meyrowitz, N., The Desktop of Tomorrow: From User-
Centered to Information-Centered Computing, Draft 0.95, Institute
for Research in Information and Scholarship (IRIS), Brown
University, Providence, July 1989.
URL: http://klynch.com/documents/tomorrow

[Merrill80] Merrill, M. D., Learner control in computer based learning,
Computers and Education, 4:77-95, 1980.

[MuellerProve02] Müller-Prove, M., Vision and Reality of Hypertext and
Graphical User Interfaces, Department of Informatics, University of
Hamburg, February 2002.

[Myers98] Myers, B. A., A Brief History of Human Computer Interaction
Technology, ACM interactions, 5(2):44-54, March 1998.

[Nelson65] Nelson, T. H., A File Structure for the Complex, the Changing
and the indeterminate, Proc. ACM National Conference. pp. 84-100,
1965.

[Nelson82] Nelson, T. H., Literary Machines, Mindful Press, Sausalito,
California, 1982.
URL: http://xanadu.com

[Nelson99] Nelson, T. H., Xanalogical Structure, Needed Now More than
Ever: Parallel Documents, Deep Links to Content, Deep Versioning
and Deep Re-Use, ACM Computing Surveys 31(4), December 1999.

[Nielsen95] Nielsen, J., Multimedia and Hypertext: The Internet and
Beyond, AP Professional, Boston, 1995.

[NSF03] National Science Foundation, National Science, Technology,
Engineering, and Mathematics Education Digital Library (NSDL),
National STEM Education Digital Library Program, Division of
Undergraduate Education, NSF, 2003.
URL: http://www.ehr.nsf.gov/due/programs/nsdl/

[Owen00] Owen, S. G., Sunderraman, R., Zhang, Y., The development of a
digital library to support the teaching of computer graphics and
visualization. Computer & Graphics 24(4):623-627, 2000.

http://www.iicm.edu/iicm_papers/cbt_wbt.doc
http://www.iicm.edu/iicm_papers/edmedia_2002.doc
http://klynch.com/documents/tomorrow
http://xanadu.com/
http://www.hbuk.co.uk/app/approf.htm
http://www.ehr.nsf.gov/due/programs/nsdl/

136 Index

 [Papert80] Papert S., Mindstorms: Children, Computers and Powerful
Ideas, Basic Books, Inc., New York, 1980.

[Piaget70] Piaget, J., The Science of Education and the Psychology of the
Child, Grossman, New York, 1970.

[Piaget73] Piaget, J., To Understand Is To Invent, The Viking Press, Inc,
Now York, 1972.
URL: www.montclair.edu/crc/piaget.html

[Parnafes01] Parnafes, O., diSessa, A., ESCOT Profile, in diSessa, A. (ed.),
the Web/comp project, March 2001.
URL: http://www.soe.berkeley.edu/~boxer/webcomp/

[Repenning95] Repenning, A., T. Sumner, Agentsheets: A Medium for
Creating Domain-Oriented Visual Languages, IEEE Computer,
28:17-25, 1995.

[Repenning01] Repenning, A., Ioannidou, A., Payton, M., Ye, W., Roschelle,
J., Using Components for Rapid Distributed Software-Development,
IEEE Software, 18(2):38-45, 2001.
URL: http://www.escot.org

Educational Software Components of Tomorrow

[Resnick91] Resnick, M., Ocko, S., LEGO/Logo: Learning Through and
About Design, in Harel I., Papert, S. (eds.), Constructionism, pp.141-
150, Ablex Publishing, Norwood, NJ, 1991.

[Rhodes85] Rhodes, D.M., Azbell, J.W., Designing interactive video
instruction professionally, Training and Development Journal,
39(12):31-33, 1985.

[Rogers98] Rogers, Y., Scaife, M., How can interactive multimedia facilitate
learning?, in Lee, J. (ed.), Intelligence and Multimodality in
Multimedia Interfaces: Research and Applications, AAAI Press,
Menlo Park, CA, 1998.
URL: http://www.cogs.susx.ac.uk/users/yvonner/ecoihome/IMMI.html

[Romiszowski86] Romiszowski, A. J., Developing auto-instructional
materials, Michols Publishing Company, New York, 1986.

[Roschelle96] Roschelle, J., Kaput, J., DeLaura, R., Scriptable applications:
Implementing open architectures in learning technology, in: Carlson,
p. and Makedon, F. (eds.), Proc. of Ed-Media 96 – World Conference
on Educational Multimedia and Hypermedia, pp.599–604, AACE,
1996.

[Roschelle98] Roschelle, Jeremy, Jim Kaput, Walter Stroup, Ted M. Kahn.
Scaleable Integration of Educational Software: Exploring the Promise
of Component Architectures, Journal of Interactive Media in
Education 98, Oct. 1998.
URL: http://www-jime.open.ac.uk/98/6

[Roschelle99] Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A.,
Jackiw, N., Suthers, D, Developing educational software components.
IEEE Computer, 32(9):50-58, September 1999.

http://www.montclair.edu/crc/piaget.html
http://www.soe.berkeley.edu/~boxer/webcomp/
http://www.escot.org/
http://www.cogs.susx.ac.uk/users/yvonner/ecoihome/IMMI.html
http://www-jime.open.ac.uk/98/6

Index 137

[Schmaranz96] Schmaranz, K., Professional Electronic Publishing in
Hyper-G: The Next Generation Publishing Solution on the Web,
Journal of Universal Computer Science 2(9):650-658, Springer Pub.
Co., Graz University of Technology, Austria, September 1996.

[Schulmeister97] Schulmeister, R., Hypermedia Learning Systems: Theory
– Didactics – Design. English online version of "Grundlagen
hypermedialer Lernsysteme", 2nd ed., Oldenbourg, München, 1997.
URL: http://www.izhd.uni-hamburg.de/paginae/Book/Frames/Start_FRAME.html

[Schulmeister03] Schulmeister, R., Lernplattformen für das virtuelle
Lernen: Evaluation und Didaktik. Oldenbourg, München, 2003.

[Schwier93] Schwier, R.A., Misanchuk, E., Interactive Multimedia
Instruction, Englewood CLiffs, NJ: Educational Technology
Publications, Inc., 1993.

[Shneiderman82] Shneiderman, Ben (ed.), Designing the User Interface.
Addison-Wesley, Reading, MA, 1992.

[Shneiderman89] Shneiderman, B., Reflections on Authoring, Editing and
Managing Hypertext, in: The society of text: Hypertext, hypermedia
and the social construction of information}, pp.115?-131, MIT Press,
1989.

[Shneiderman97] Shneiderman, Ben, Direct manipulation for
comprehensible, predictable, and controllable user interfaces, Proc. of
the ACM International Workshop on Intelligent User Interfaces ’97,
pp.33-39, New York, 1997.

[Skinner54] Skinner, B. F., The science of learning and the art of teaching,
Harvard Educational Review, 24(2):86-97, 1954.

[Simpson99] Simpson R. M., Spalter A. M., van Dam A., Exploratories: An
Educational Strategy for the 21st Century, Proc. of ACM SIGCSE
1999, 1999.

[Sims95] Sims, R., Interactivity: A Forgotten Art? ITFORUM, Paper #10,
November 1995.
URL: http://it.coe.uga.edu/itforum/paper10/paper10.html

[Sims00] Sims, R., An interactive conundrum: Constructs of interactivity
and learning theory, Australian Journal of Educational Technology,
16(1):45-57, 2000.
URL: http://www.ascilite.org.au/ajet/ajet16/sims.html

[Singh02] Singh, I., Stearns, B., Johnson, M., Designing Enterprise
Applications with the J2EETM Platform, Second Edition. Addison-
Wesley, 2001.
URL: http://java.sun.com/blueprints/patterns/MVC-detailed.html

[Smith77] Smith, D. C., Pygmalion: A Computer Program to Model and
Simulate Creative Thought, Birkhauser Verlag, Basel and Stuttgart,
1977.
URL: http://www.acypher.com/wwid/Chapters/01Pygmalion.html

A commentary of Smith on Pygmalion

http://www.izhd.uni-hamburg.de/paginae/Book/Frames/Start_FRAME.html
http://it.coe.uga.edu/itforum/paper10/paper10.html
http://www.ascilite.org.au/ajet/ajet16/sims.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://www.acypher.com/wwid/Chapters/01Pygmalion.html

138 Index

[Smythe02] Smythe, C., Shepherd, E., Brewer, L., Lay S., IMS Question &
Test Interoperability: ASI Information Model Specification, Final
Specification, Version 1.2, IMS Global Learning Consortium, Inc.,
February 2002.
URL: http://www.imsproject.org/question

[SmithGratto02] Smith-Gratto, K., Wicks, D., Berger, C., MERLOT:
Reaping the On-line Vineyard, Proc. ED-MEDIA 2002, 1:2-7, AACE,
Charlottesville, USA, 2002.
URL: http://www.merlot.org

Multimedia Educational Resource for Learning and Online Teaching

[Spalter00] Spalter, A. M., Simpson R., M., Reusable Hypertext Structures
for Distance and JIT Learning, Proc. of ACM Hypertext '00, 2000.

[Spalter03] Spalter, A. M, van Dam, A., Problems with Using Components
in Educational Software, Computer & Graphics 27(3):329-337,
Elsevier Science Ltd., June 2003.

[Strauss92] Strauss, p. S., Carey, R., An object-oriented 3D graphics
toolkit, Computer Graphics Siggraph 92, pp.341-349, ACM Siggraph,
July 1992.

[Sun98] Sun Microsystems, Inc., Proposal for a Drag and Drop subsystem
for the Java Foundation Classes. Final Draft v0.96, August 1998.
URL: http://www.java.sun.com/products/javabeans/glasgow

 [Sun03] Sun Microsystems, Inc., Java 2 Platform, Standard Edition
(J2SE), 1995-2003.
URL: http://java.sun.com/j2se

[Sutherland63] Sutherland, I. E., Sketchpad – A Man-Machine Graphical
Communication System, AFIPS Spring Joint Computer Conference
(SJCC ’63), pp.329-346, 1963.

[Tesler81] Tesler, L., The Smalltalk Environment, Byte, 6(8), pp.90-147,
August 1981.

[Thorndike22] Thorndike, E., The Psychology of Arithmetic. Macmillan,
New York, 1922.

[Tognazzini03] Tognazzini, B., First Principles, in: ASKTOG, May, 2003.
URL: http://asktog.com/basics/firstPrinciples.html

[vanDam69] van Dam, A., Carmody, S., Gross, W., Nelson, T. H., Rice, D.,
A Hypertext Editing System for the /360, Proc. of the Second
University of Illinois Conference on Computer Graphics, University
of Illinois, 1969.

[vanDam87] van Dam, A., Hypertext ’87 Keynote Address, Communications
of the ACM 31(7):887-895, 1988.
URL: http://www.cs.brown.edu/memex

[vanDam97] van Dam, A., Post-WIMP user interfaces, Communications of
the ACM, 40(2):63-67, 1997.

http://www.imsproject.org/question
http://www.merlot.org/
http://www.java.sun.com/products/javabeans/glasgow
http://java.sun.com/j2se
http://asktog.com/basics/firstPrinciples.html
http://www.cs.brown.edu/memex

Index 139

[vanDam02] van Dam, A., Next-Generation Educational Software, Brown
University and the NSF STC for Graphics and Visualization, ED-
MEDIA 2002 Keynote Presentation, Denver, Colorado, June 2002.
URL: http://www.cs.brown.edu/people/avd

[Weber97] Weber, G., Specht, M., User modeling and adaptive navigation
support in WWW-based tutoring systems. Proc. of User Modeling '97,
pp.289-300, 1997.

[W3C03] World Wide Web Consortium (W3C), W3C Technical Reports and
Publications, W3C, 1994-2003.
URL: http://www.w3.org/TR

[Whitehead98] Whitehead, E. J., JR., Wiggins , M., WebDAV: IETF
Standard for Collaborative Authoring on the Web, IEEE Internet
Computing 2(5):34-40, 1998.

[Wiest01] Wiest, S., Zell, A., Improving Web Based Training Using an
XML Content Base, in: Kalpic, D., Dobric, V., (eds.), Proc. of the 22nd
Intl. Conf. Information Technology Interfaces ITI 2000, pp.229-234,
Pula, Croatia, June, 2000.

[Wiley00] Wiley, D. A. (ed.), The Instructional Use of Learning Objects,
Agency for Instructional Technology, January 2002.
URL: http://www.reusability.org/read

[Yaron01] Yaron, D., Milton, D. J., Freeland, R., Linked active content: A
service for digital libraries for education, ACM Proceedings of the
Joint Conference on Digital Libraries, pp.25-32, 2001.

[Yaron02] Yaron, D., Milton, J., Freeland, R., Linked Active Content for
Digital Libraries for Education, Journal of Digital information 2(4),
2002.
URL: http://jodi.ecs.soton.ac.uk/Articles/v02/i04/Yaron

http://www.cs.brown.edu/people/avd
http://www.w3.org/TR
http://www.reusability.org/read
http://jodi.ecs.soton.ac.uk/Articles/v02/i04/Yaron

	Introduction
	Grand Challenges
	The Computer Revolution
	Structure and Scope

	Basics
	Interactivity
	GUI Characteristics
	Perception and Cognition
	A Qualitative Framework

	Hypermedia
	Origins
	Design Principles
	The Web

	Web-Based Courseware
	Educational Software
	Learning Management Systems
	Content Management
	Learning Technology Standards

	Interactive Learning Objects
	Repositories
	Software Components
	Scripting

	Conclusion

	GRIS/ILO Interactive Learning Objects
	MVC Interactivity
	Software Components
	The ORC-SG Design Pattern
	Object, Renderer, Constraint (ORC)
	Scene Graph and GUI (SG)
	The Toolkit

	Adaptability and Interoperability
	Scripting
	Networking
	Scripting Database
	Drag & Drop Scripting

	Web Framework
	Organization and Production
	Layered Database Model
	Template-Driven Generator
	Offline Management

	Web-based Authoring
	Online Wizards
	Learner Support
	Author Support

	Case Studies
	Electronic Webmaster
	Project
	Institution
	Bibliography

	Image Processing and Video Communications
	Project
	Visual Programming
	Component Programming

	Scientific Visualization
	Project
	Scripting
	Community

	Conclusion & Directions for Future Work
	Abbreviations
	Name Index
	Bibliography

