
 

Highly Interactive 
Web-Based Courseware 

 

 

 

Dissertation 
der Fakultät für Informations- und Kognitionswissenschaften 

der Eberhard-Karls-Universität Tübingen 
zur Erlangung des Grades eines 

Doktors der Naturwissenschaften 
(Dr. rer. nat.) 

 

 

 

vorgelegt von 
Dipl.-Inform. Frank Hanisch 

aus Reutlingen 

 

 

 

Tübingen 
2004 



  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tag der mündlichen Qualifikation: 11.02.2004 
Dekan:  Prof. Dr. Martin Hautzinger 
1. Berichterstatter:  Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer 
2. Berichterstatter:  O.Univ.-Prof. Dr.Dr.h.c.mult. Hermann Maurer 
 (Technische Universität Graz) 
3. Berichterstatter:  Prof. Dr. Dr. Friedrich W. Hesse



iii 

Zusammenfassung 

Zukünftige Lehr-/Lernprogramme sollen als vernetzte Systeme die Lernenden 
befähigen, Lerninhalte zu erforschen und zu konstruieren, sowie Verständnis-
schwierigkeiten und Gedanken in der Lehr-/Lerngemeinschaft zu kommunizieren. 
Lehrmaterial soll dabei in digitale Lernobjekte übergeführt, kollaborativ von 
Programmierern, Pädagogen und Designern entwickelt und in einer Datenbank 
archiviert werden, um von Lehrern und Lernenden eingesetzt, angepasst und 
weiterentwickelt zu werden. Den ersten Schritt in diese Richtung machte die 
Lerntechnologie, indem sie Wiederverwendbarkeit und Kompabilität für hyper-
mediale Kurse spezifizierte. Ein größeres Maß an Interaktivität wird bisher 
allerdings noch nicht in Betracht gezogen. Jedes interaktive Lernobjekt wird als 
autonome Hypermedia-Einheit angesehen, aufwändig in der Erstellung, und weder 
mehrstufig verschränk- noch anpassbar, oder gar adäquat spezifizierbar. 
Dynamische Eigenschaften, Aussehen und Verhalten sind fest vorgegeben. 

Die vorgestellte Arbeit konzipiert und realisiert Lerntechnologie für hypermediale 
Kurse unter besonderer Berücksichtigung hochgradig interaktiver Lernobjekte. 
Innovativ ist dabei zunächst die mehrstufige, komponenten-basierte Technologie, 
die verschiedenste strukturelle Abstufungen von kompletten Lernobjekten und 
Werkzeugsätzen bis hin zu Basiskomponenten und Skripten, einzelnen 
Programmanweisungen,  erlaubt. Zweitens erweitert die vorgeschlagene Methodik 
Kollaboration und individuelle Anpassung seitens der Teilnehmer eines 
hypermedialen Kurses auf die Software-Ebene. Komponenten werden zu 
verknüpfbaren Hypermedia-Objekten, die in der Kursdatenbank verwaltet und von 
allen Kursteilnehmern bewertet, mit Anmerkungen versehen und modifiziert 
werden. 

Neben einer detaillierten Beschreibung der Lerntechnologie und Entwurfsmuster 
für interaktive Lernobjekte sowie verwandte hypermediale Kurse wird der Begriff 
der Interaktivität verdeutlicht, indem eine kombinierte technologische und 
symbolische Definition von Interaktionsgraden vorgestellt und daraus ein visuelles 
Skriptschema abgeleitet wird, welches Funktionalität übertragbar macht. 
Weiterhin wird die Evolution von Hypermedia und Lehr-/Lernprogrammen 
besprochen, um wesentliche Techniken für interaktive, hypermediale Kurse 
auszuwählen. Die vorgeschlagene Architektur unterstützt mehrsprachige, 
alternative Inhalte, bietet konsistente Referenzen und ist leicht zu pflegen, und 
besitzt selbst für interaktive Inhalte Online-Assistenten. Der Einsatz hochgradiger 
Interaktivität in Lehr-/Lernprogrammen wird mit hypermedialen Kursen im 
Bereich der Computergraphik illustriert.  
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Abstract 

The grand vision of educational software is that of a networked system enabling the 
learner to explore, discover, and construct subject matters and communicate 
problems and ideas with other community members. Educational material is 
transformed into reusable learning objects, created collaboratively by developers, 
educators, and designers, preserved in a digital library, and utilized, adapted, and 
evolved by educators and learners. Recent advances in learning technology 
specified reusability and interoperability in Web-based courseware. However, great 
interactivity is not yet considered. Each interactive learning object represents an 
autonomous hypermedia entity, laborious to create, impossible to interlink and to 
adapt in a graduated manner, and hard to specify. Dynamic attributes, the look 
and feel, and functionality are predefined. 

This work designs and realizes learning technology for Web-based courseware with 
special regard to highly interactive learning objects. The innovative aspect initially 
lies in the multi-level, component-based technology providing a graduated 
structuring. Components range from complex learning objects to toolkits to 
primitive components and scripts. Secondly, the proposed methodologies extend 
community support in Web-based courseware – collaboration and personalization – 
to the software layer. Components become linkable hypermedia objects and part of 
the courseware repository, rated, annotated, and modified by all community 
members. 

In addition to a detailed description of technology and design patterns for 
interactive learning objects and matching Web-based courseware, the thesis 
clarifies the denotation of interactivity in educational software formulating 
combined levels of technological and symbolical interactivity, and deduces a visual 
scripting metaphor for transporting functionality. Further, it reviews the evolution 
of hypermedia and educational software to extract substantial techniques for 
interactive Web-based courseware. The proposed framework supports multilingual, 
alternative content, provides link consistency and easy maintenance, and includes 
state-driven online wizards also for interactive content. The impact of great 
interactivity in educational software is illustrated with courseware in the Computer 
Graphics domain. 
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1 Introduction 

1.1 Grand Challenges 
In 2002, the Computing Research Association (CRA) asked what are the 
"grand research challenges" in computer science and engineering? Not 
surprisingly, education was selected as one of the big five [CRA02]. It is 
the 20-year old vision of information technology enabling learners to 
participate in community networks, where they engage with other 
learners, tutors, and teachers in self-expression, exploration, and learning 
by discovery and by doing. It is also the vision of a learning environment 
that adapts to the participant’s needs in a transparent manner, and allows 
all participants to enhance this environment through the construction of 
both new learning objects and compositions of interoperable ones. 

Keynote speeches at ED-MEDIA 2002 [Barker02] echo the same longing 
for a system that lets children of all ages express, consider, and work with 
ideas of science (Alan Kay, “The Computer Revolution Hasn't Happened 
Yet”), a “Next-Generation Educational Software” (Andries van Dam) for 
creating dynamic science content based on both a pedagogical methodology 
– well-proven learner-driven and model-based techniques – and a multi-
level, component-based technology. Educational material is meant to 
become reused in multiple contexts and for multiple purposes, and become 
organized and shared in digital libraries. A systematic reuse of such 
learning objects requires standardized metadata and presentation 
(Hermann Maurer, “What Have We Learned in 15 Years about 
Educational Multimedia?”); standards, in turn, could provide the basis for 
innovative collaborative learning techniques.  

Research in learning technology currently specifies learning object 
metadata and learning management systems. Despite the fact that today’s 
educational software is Web-based, and, from the very beginnings in the 
1950s, has its strengths originating in its interactive, multimedia nature, 
research continues to focus on low-interactive, rather text-based material. 
While necessary, metadata does not meet our needs for interactive 
(dynamic) learning objects. How can we specify, link, adapt, exchange, and 
combine parts of interactive learning objects? Can we enable all 
community members performing these tasks? Instead, the “killer problem” 
[vanDam02] can be rather located in learning object design that aims 
towards gradation and interoperability. Research must develop adequate 
design principles allowing learners and educators to work with interactive 
material, adapting it to their needs, and integrating it in their 
environment. This thesis addresses these challenges and proposes 
adequate methodologies which are integrated into real educational 
software. 

The thesis consists of two parts. At first, we review basic principles of 
interactivity, hypermedia, and educational software, and present our ideas 
of how Web-based teaching with interactive learning objects could (and 
should) be. Following an understanding of the concept of highly interactive 
Web-based courseware, we move on to the second part, where we propose 
and realize an adequate framework for it. We provide combined levels of 



12 1 Introduction 

technological and symbolical interactivity with “Model View Controller 
(MVC) Interactivity”, and accompany visual programming with innovative 
visual scripting in the form of image-based “Drag & Drop Scripting”. Our 
“ORC-SG (Object, Renderer, Constraint, Scene Graph, and Graphical User 
Interface)” design pattern encapsulates matters of learning object state, 
appearance, functionality, and graphical visualization/interaction into 
reusable software components. Finally, the proposed Web framework 
introduces a “Layered Database Model” supporting multilingual, 
alternative content, a template-driven courseware generator assuring 
consistent linking and easy maintenance, and online wizards benefiting 
from an integrated state machine which offers authorization, session 
management, default values, undo, and preview. 

We develop educational software in the field of Computer Graphics, which 
is archetypical in several aspects; we naturally face the needs for complex 
visualizations, we bring along profound knowledge in human-computer 
interaction, and we are familiar with component-based technology (see 
Figure 1). We started to employ interactive Web-based courseware at the 
department Graphical-Interactive Systems, Wilhelm Schickard Institute 
(WSI/GRIS), University of Tübingen, in 1995. Courseware typically 
accompanies lecture, and serves both as learning and programming 
platform for exercises and student projects. Apart from lectures on 
Computer Graphics (“Computergraphik spielend lernen”, awarded with a 
“Landeslehrpreis”), Computational Geometry, Geometric Modeling, Image 
Processing, Video Communications, and Scientific Visualization (“Spielend 
Visualisieren”), we performed student projects on Geometry, Cultural 
Heritage, and Dynamic Systems, and applied our courseware at Technion 
– Israel Institute of Technology, FernUniversität Hagen, University of 

Stuttgart, University of Erlangen, 
and IBM IT Education Services. 
Currently, we are participating in 
the foundation of the SIGGRAPH/-
Eurographics CGEMS (Computer 
Graphics Educational Materials) 
repository [Figueiredo03].  

Throughout the thesis, we illustrate 
our ideas with extracts from our 
latest projects. While our 
department’s “Electronic Web-
master” demonstrates capabilities 
f the Web framework, two lectures 

on image processing and video 
essing illustrate how we apply 

model-based (top-down) visual pro-
gramming and a low-level (bottom-
up) component programming for 
education. Our courseware on 
cientific visualization further 

provides fine-grained hypermedia 
terlinking, visual scripting, and 

o

proc

s

in

 

Figure 1: The shear warp 
factorization represents a volume 
rendering technique for 
visualizing 3D arrays of sampled 
data [Lacroute94]. This learning 
object reuses software components 
to visualize slices (top left) and 
offers interaction with the 
classification functions (bottom 
left) and the perspective 
parameters (right side).  
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community support. The “GRIS/ILO Interactive Learning Objects” 
repository features a representative cross section from more than 130 
learning objects, available at http://www.gris.uni-tuebingen.de/projects/ilo.  

1.2 The Computer Revolution 
Web-based teaching is an interdisciplinary field. Terminology varies 
widely depending on the user’s background. Most evident is the denotation 
of interactivity in education, which has become an often-cited, long-winded 
term. We have combined it with two other magic bullets, hypermedia and 
courseware. What exactly is “interactive Web-based courseware”? Can we 
imagine education based on interactive hypermedia, that is, software 
enabling learners to create and evolve dynamic models to invent, express, 
and refine ideas? If so, what characteristics do we consider best? Let us 
review potential benefits of computer technology for facilitating learning as 
enumerated by Alan Kay [Kay91] in 1991. 

The first benefit is great interactivity. […] A second value is the ability of the 
computers to become any and all existing media […].  

Third, and more important, information can be presented from many different 
perspectives. Marvin L. Minsky of MIT likes to say that you do not understand 
anything until you understand it in more than one way. Computers can be 
programmed so that “facts” retrieved in one window on a screen will automatically 
cause supporting and opposing arguments to be retrieved in a halo of surrounding 
windows. An idea can be shown in prose, as an image […]  

Fourth, the heart of computing is building a dynamic model of an idea through 
simulation. Computers can go beyond static representations that can at best argue; 
they can deliver sprightly simulations that portray and test conflicting theories […] 

A fifth benefit is that computers can be engineered to be reflective. […] Finally, 
pervasively networked computers will soon become a universal library, the age-old 
dream of those who love knowledge. Resources now beyond individual means […] will 
be potentially accessible to anyone.” 

Kay predicted the computer to become a direct manipulation learning tool, 
featuring great interactivity, proper use of hypermedia, and fruitful 
collaboration (see also his Dynabook  vision [Kay77]). In the course of our 
argumentation, we will sharpen these concepts as follows: 

• An interaction in educational software represents a learning 
process occurring while modifying objects (2.1.3). We consider an 
object as highly interactive learning object, if it provides means 
for manipulating its appearance, its dynamic state, and its 
functionality (3.1) directly by physical actions. Effects are 
immediately visible (2.4.2). 

• Real hypermedia integrates interactive multimedia, means for 
collaboration, and means for personalization (2.2). Hypermedia 
linking must be reliable and fine-grained even for interactive 
objects (2.4.3). Today, educational software is Web-based (2.3.2).  

• Sophisticated courseware facilitates administration, learning, and 
authoring (2.3.2). Content represents reusable, interoperable 
learning objects, archived in a repository, and shared, annotated, 
and expanded by the courseware community (2.3.3). 

http://www.gris.uni-tuebingen.de/projects/ilo
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1.3 Structure and Scope 
Let us briefly discuss the structure and scope of the thesis. Cross-
references are enclosed in round brackets, indices for inline keywords 
(bold-faced), names (in italics), and references can be found at the end of 
the thesis.  

The first part of the thesis reviews basic principles of interactivity (2.1), 
hypermedia (2.2), and Web-based courseware (2.3) with special respect to 
interactive learning objects (2.4).  

We sharpen the term interactivity and emphasize its relevance for 
learning by identifying three approaches, the developer's view (2.1.1), the 
educator's view (2.1.2), and the communication theorist's view (2.1.3). 
Next, we reflect on characteristics and shortcomings of interactive 
hypermedia. We outline hypermedia’s origins (2.2.1) and design principles 
(2.2.2) that lead to its current representative, the Web (2.2.3). Similar we 
portray the evolution of educational software (2.3.1) to learning 
management systems (2.3.2), where we focus on content management 
(2.3.3) and learning technology standards (2.3.4). We describe the vision 
and reality of repositories for interactive learning objects (2.4.1), and 
consider matters of software architecture allowing for object reuse, that is, 
software components (2.4.2), and within-component adaptability (2.4.3). 

The second part presents the multi-level, component-based architecture of 
our “GRIS/ILO Interactive Learning Objects” (3), an adequate Web 
framework (4), and case studies (5).  

We combine major concepts of interactivity into “MVC Interactivity” (3.1) 
to reformulate terminology in terms of Computer Graphics principles. 
Next, we propose and realize an “ORC-SG” architectural design pattern 
(3.2.1) that encapsulates matters of learning object state, appearance, 
functionality, and graphical visualization/interaction into reusable 
software components, respectively into objects, renderers, constraints 
(3.2.2), scene graph nodes, and user interface components (3.2.3). Our 
implementation provides a toolkit of basic components for containers, data 
structures, 2D/3D geometry, images/video, and physical quantities (3.2.4). 
A scripting architecture (3.3.1), generalized to a network model (3.3.2), 
renders software components adaptable and interoperable. We discuss our 
“Scripting Database” approach (3.3.3) to organize interactive learning 
objects in digital libraries, and illustrate some of our most urgent needs 
regarding future learning technology standards. Lastly, we suggest a 
visual scripting mechanism, “Drag & Drop Scripting” (3.3.4), which 
communicates learning object state and functionality between other 
hypermedia objects, or native applications. 

Our Web framework consists in turn of a “Layered Database Model” 
(4.1.1), a template-driven courseware generator assuring consistent 
linking and easy maintenance (4.1.2), an offline tool for managing content, 
structure, and design (4.1.3), and online wizards (4.2.1) providing 
community support for learners (4.2.2) and authors (4.2.3). Community 
members may not only discuss, annotate, rate, and modify text and 
illustrations, but also interactive learning objects, software components, 
and scripts. 
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We give three case studies. While an “Electronic Webmaster” illustrates 
capabilities of our Web framework (5.1), two educational applications of 
software components contrast model-based visual programming with low-
level component programming (5.2). A last showcase demonstrates fine-
grained hypermedia interlinking, visual scripting, and community support 
(5.3) in an interactive Web-based courseware. 

Our initial goal with this thesis is to provide design guidelines for 
developing reusable highly interactive learning objects. We do not consider 
open questions concerning intellectual property, billing, and quality 
assurance. The presented component-based technology offers graduation 
and interoperability in a Java-enabled Web environment. Similar, our 
digital library vision contains not only large-scale entities, but also multi-
granular software components and sub-component pieces (scripts). We 
develop methodologies for authoring, customization, and personalization of 
interactive learning objects; the tools, however, remain prototypes. Lastly, 
although we feel our work is interdisciplinary, our proof-of-concepts target 
the SMET (Science, Mathematics, Engineering, and Technology) domain, 
and do not deny a Computer Graphics origin. 

We do not question the added value of interactivity and hypermedia in 
education. Today, interactivity in SMET education is generally regarded as 
to be crucial. However, we agree in that it is mostly applied 
inappropriately. Interactivity and hypermedia do not make learning fun 
and teaching easy. Yet, they are able to represent complex models and 
processes, and relationships between objects or alternative views. We 
witness them as integral part of our education, and wish to leverage the 
use of highly interactive learning objects in Web-based teaching. Specific 
learning theories, didactics, and usability have been respected, but are 
mentioned rather implicitly, and only as needed.  

Finally note that, in spite of the potential of adaptable components for 
realizing adaptive systems – which Kay promoted in his fifth argument 
(1.2) –, we rather stick to Ben Shneiderman’s preference for high-level 
interactivity [Shneiderman97]. We believe that future learning technology 
standards and software agents will provide an adequate base for adaptive 
educational systems [Brusilovsky96, Brusilovsky98], but current 
technology is still in its infancy.  
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2.1 Interactivity 
 “[T]he point is not: interaction yes or no. The point is: more or less. All the named 
characteristics of interactivity are gradients” [Jaspers91] 

An interaction describes an action (Latin: agere) between (Latin: inter) two 
or more participants; technology in human-computer interaction in turn 
provides a certain degree of interactivity. Members of the diversified 
educational community differ about the denotation of interactivity. 
Although interactivity has become an often-cited panacea for education 
[Aldrich98] – even more when combined with hypermedia – it is still 
trivialized to menu selection, clickable objects, or linear sequencing 
[Sims95]. 

In the following, we sharpen the term interactivity as it relates to Web-
based teaching and emphasize its relevance for learning. We identify three 
approaches: the developer's view of interactivity as graphical user 
interface (GUI) characteristics (2.1.1), the educator's view of interaction 
between internal and external knowledge representation (2.1.2), and the 
communication theorist's view providing a qualitative framework (2.1.3). 
Later, we reformulate the results in terms of Computer Graphics 
principles (3.1) and illustrate the impact of a consequent implementation 
of a great interactivity with components of our own courses (3.2). 

2.1.1 GUI Characteristics 
Nowadays, we associate interactivity with multimedia. Ambron and 
Hooper [Ambron88] define multimedia as product of media (text, audio, 
visuals), technology (computers), and products (education, games, kiosk) – 
multimedia is not inherently interactive. However, the potential for 
interactivity might be multimedia’s best distinguishing feature 
[Borsook91]; or, put another way, if any differences between different 
media can be found, it might be the interaction factor [Schulmeister97].  

The relationship between humans and technology is well-investigated in 
the field of Human-Computer Interaction (HCI), which deals with the 
design, evaluation, and implementation of interactive computing systems, 
and with related human factors [Hewett92, Myers98]. In HCI terminology, 
an interaction is formed by a user action using a range of input devices 
(keyboard, mouse, touch screen, etc.) and resulting in some form of visual 
or audio output (text, graphics, etc.). As we focus on Web-based teaching, 
we restrict ourselves to input devices mouse and keyboard, and to limited 
Web browser GUI. Note that many of the HCI pioneers also broke new 
ground for hypermedia. Exactly 40 years ago, Ivan Sutherland presented 
the first interactive computer graphics system (Sketchpad); soon later, he 
joined the Department of Defense’s Advanced Research Projects Center 
(ARPA), birthplace of the Internet. Think of Douglas Engelbart's NLS 
system – he casually invented the mouse and the first hypertext system – 
and his notions of connectivity and multiple views of information. Ben 
Shneiderman, who coined the term “direct manipulation”, developed 
HyperTies, the first hypertext system presenting illuminated, selectable 
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links. We will review the common history of HCI and hypermedia in 
section 2.2. 

Today, interaction styles range from input by command line, menu, 
multiple choice, forms, spreadsheets, and natural language, to direct 
manipulation. Following Ben Shneiderman, direct manipulation 
[Shneiderman82, Shneiderman97] comprises (1) continuous representation 
of the objects and actions of interest, (2) physical actions or button presses 
instead of complex syntax, and (3) rapid incremental reversible operations 
whose effect on the object of interest is immediately visible. Direct 
manipulation lowers initial hurdles for novices as well as it enables 
experts to work more efficiently. Users get immediate feedback and gain 
confidence and mastery as they initiate and control actions and may 
predict system responses. The most prominent representative of direct 
manipulation, Drag & Drop (DnD, a shortcut for Copy & Paste) is 
supported by all major platforms (OLE/Win32 DnD, CDE/Motif dynamic 
protocol, MacOS, OS/2, and JavaOS/Java). 

Facing the request for a better adaptability (and extensionality), we 
advance from the DnD gesture layer to the programming layer. Alan Kay 
envisions the computer as a personal, dynamic medium (1.2). The benefits 
of computer technology for facilitating learning are, in his words [Kay91], 
at first a "great interactivity", next, the hypermedia aspect of integrating 
all multimedia and representing information alternatively, and, last but 
not least, the capability of expressing and simulating dynamic models of 
ideas. Kay emphasized the need for a simplified programming framework; 
even children should be able to manage programming tasks [Kay77]. His 
ideas led to Smalltalk (2.2.2), the first object-oriented programming 
system. One of its design principles is the use of building blocks 
[Ingalls81], nowadays called software components (2.4.2), which represent 
reusable parts of applications. Apple Macintosh was the first to promote its 
widget toolkit (collection of GUI components) to enforce a consistent 
interface [Myers98]. Today, the Java Swing package contains about 40 
GUI components, including the whole range from buttons, menus, input 
fields, and lists, to more advanced components such as WYSIWYG (what 
you see is what you get) styled text or HTML editors. 

Software components come with several kinds of interactivity. Rod Sims 
[Sims00] identifies levels of interactivity with respect to the learner’s role. 
His taxonomy provides combinable, interactive constructs that “can be 
integrated to provide comprehensive and engaging instructional 
transactions" [Sims95]. The proposed levels consist of object activation, 
linear and hierarchical interactivity, support, update, construction, 
reflection, simulation, hyperlink, non-immersive contextual (microworld), 
and immersive virtual (virtual reality) interactivity (see Table 1). Most of 
them can be directly mapped to corresponding software components. 
However, learning objects are typically composed of several components, 
and therefore cannot be classified clearly within this framework. Sims 
further gives clues on how to extend such constructs to provide statements 
about didactics or quality [Sims00]. We will incorporate these aspects in 
the next sections. 
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Construct Description 

Object 
Object activation (e.g. button clicks) followed by a system 
response. 

Linear 
Forward/backward movements through a predetermined 
linear sequence. 

Hierarchical 
Linear interactivity preceded by a selection (e.g. menu 
selection). 

Support 
Optional performance support (e.g. general or context-
sensitive help). 

Update 
Analysis of a user action, and generation of a matching 
update/feedback. 

Construct Problem solving requires manipulating component objects. 

Reflective 
Non-intelligent feedback opposing user’s response with 
correct answer.  

Simulation 
User control; individual selections determine a training 
sequence. 

Hyperlinked Browsing a knowledge base. 

Microworld 
Training tasks of the work experience in a virtual 
environment. 

Virtual 
Reality 

Moving and acting inside of a complete virtual world that 
responds. 

Table 1: Rod Sims’ taxonomy with combinable, interactive constructs can 
be directly mapped to software components [Sims95]. 

2.1.2 Perception and Cognition 
Interactivity design concepts such as direct manipulation or the desktop 
metaphor model use familiar instances of everyday life to bridge the gap 
between abstraction and reality. The homoiconic Smalltalk programming 
language expresses any characteristics of a system, even the language 
itself, uniformly – for users, internal and external representations are 
essentially the same. However, authors such as Aldrich, Rogers, and Scaife 
[Aldrich98] argue that, besides understanding interactivity in terms of 
“physical activities at the interface” or supporting models of learning, we 
need to analyze the “cognitive interplay between internal and external 
representations that arise in the different settings”.  

Interactive environments typically use internal and external 
representations in concert. An interaction occurs as a perceptual or 
cognitive process when users utilize, adapt, or construct an external 
representation in a given activity (see cognitivism, 2.3.1). Common 
interactions are searching, parsing, recognizing, abstracting, re-
representing, remembering, or keeping track of different stages of a 
problem or activity.  
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Following Rogers and Scaife [Rogers98], an external representation 
comprises four cognitive properties: computational offloading (how much 
do different external representations reduce the amount of cognitive effort 
required to solve a problem?), re-representation (if they have the same 
abstract structure, do they make problem-solving easier or more difficult?), 
graphical constraining (are the applied graphical elements of a 
representation able to constrain the kinds of inferences that can be made 
about the underlying concept?), and temporal/spatial constraining (do 
different representations make relevant aspects of processes and events 
more salient when distributed over time and space?). Based on such a 
framework, they develop guidelines for audiences such as developers, 
educators, or parents (see Table 2). A guide consists of “a set of questions 
and dimensions that [users] can usefully employ when thinking about the 
added value of interactivity” [Aldrich98]. 

Interactions occur (1) from external to internal representation and (2) from 
internal to external representation. The first direction describes 
integration of information. Domain knowledge in SMET often requires 
formal representations of complex, often invisible, abstract concepts. 
Rogers and Scaife [Rogers98] ask, “what is the best way of structuring 
different media, such that they convey the appropriate kind, level, and 
abstraction of knowledge for a given domain?” Different kinds of media 
and interactivity used in parallel allow for a more effective way of 
understanding concepts. All representations should be dynamically 
interlinked to visualize the relationships between them. They note:   

“[A] central question is: how can we determine the most effective way of displaying 
and coordinating multiple representations at the interface whilst at the same time 
supporting the interactions and activities which the user should be able to control and 
do for themselves?” 

We should allow learners to modify (correct or incorrect) elements in any 
representation. Effects of modifying components in one representation 
should be displayed simultaneously in all other representations. (A major 
part of our work will deal with this task.) Varying the level of 
computational offloading (the effort it takes to solve a problem) might look 
like this: introduce an abstract concept by depicting a simple 
illustration/animation of a concrete instantiation, then switch to an 
interactive learning object, and finally to a hypertext. 

Explicitness  
and visibility 

How to direct learner’s attention to key components, 
e.g. visualize normally “hidden” processes? 

Cognitive tracing 
How to allow users to manipulate and annotate 
dynamic representations? 

Ease 
of production 

How easy is it for users to create external 
representations? 

Combinability  
and modifiability 

How to enable the system and the users to combine 
different kinds of representations? 

Table 2: Rogers and Scaife develop design guidelines for interactive 
learning objects. Guides assist developers, educators, or parents with a 

set of questions and dimensions. [Aldrich98] 
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The inverse cognitive process, construction of external representations, 
refers to learning methods such as highlighting text, making marginal 
notes, or sketching text-based ideas graphically. They ask, “to what extent 
can they be supported, simulated or extended at the interface?” Having a 
better understanding of how to create content will help users to 
understand the system. Moreover, it will enable learners to develop their 
understanding of the content by making individual changes to it (2.3.1). 
We should require the learner to test out hypotheses in different contexts, 
run a simulation, or build a model that will help the learner in developing 
a better mental model of the function and structure of a system. 

Now, how does this approach map to physical interactivity? Both consider 
level of user control, extend of annotating, amount of feedback, and 
complexity of domain knowledge. Rogers and Scaife [Rogers98] note that 
their design concepts could be concretized “in terms of design parameters 
such as the type of media, the kinds of navigation aids, and use of color”. 
We end up with well-known usability guidelines; however, we believe 
(1.3) that usability guidelines provide only subjective hints and the 
usefulness of a learning object is mainly determined by the developer’s or 
educator’s mastery. To cultivate such competence, the presented catalog of 
questions and dimensions appears to be more adequate than a mere list of 
bits and pieces. 

2.1.3 A Qualitative Framework 
Direct manipulation constructs not only objects, but also cognitive 
concepts, such as geometric models, or relations of objects and parameters. 
Rolf Schulmeister [Schulmeister97, p. 341] strictly separates technical 
aspects of interactivity from its symbolical meaning by depicting learning 
by direct manipulation (technical) as ‘learning by constructing’ 
(symbolical). In moving towards the communication theorist’s point of 
view, we describe the nature of an interaction by methodologies based on 
theories of learning (2.3.1). Common models of Rhodes and Azbell 
[Rhodes85] or Schwier and Misanchuk [Schwier93] for example embody 
ideas of behaviourism (reactive learning, e.g. drill & practice), 
constructivism (proactive learning, i.e. self-active), and cognitivism 
(mutual learning, e.g. adaptive systems). Interactions now represent a 
learning process occurring while modifying objects. Consequently, 
hyperlinked interactivity (2.1.1) symbolizes no more interaction, but mere 
navigation [Schulmeister03, p. 209].  

Current efforts in creating standards for learning object metadata classify 
interactivity to enable educators searching/browsing for learning objects in 
digital libraries. The LOM (Learning Object Metadata, 2.3.4) specification 
for example denotes the interactivity level within an ordinal range from 
very low to very high, but, in its current version, does not assign any 
characteristics to these ranges. This indicates only subjective impressions 
and rules out any international understanding [Schulmeister03, p. 208]. 
Some developers will weight the frequency of interactions, some will 
consider the quality, and others the multimedia type. Therefore, 
Schulmeister [Schulmeister03, pp. 210] proposes a qualitative framework 
consisting of six degrees of interactivity that can be directly mapped to 
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0 
Observation 

(no interactivity) 

The user contemplates a multimedia object 
(e.g. image, video, sound, automated program) 
and performs necessary media actions (e.g. 
start, stop), or navigation. 

1 

Observe multiple 
representations 

(illustrative actions) 

The user may choose from a set of options and 
contemplate temporal (slow motion, step-wise) 
or spatial (point of view) versions of 
multimedia objects. Examples: slide show, 
alternative data lists. 

2 

Modification of 
representation 

(motivating actions) 

The user may vary the visualization, but not 
the content of a multimedia object (e.g. pan, 
zoom, rotate graphical scenes and objects).  

3 

Modification 
of content 

(interaction with 
cognitive concepts) 

Content is no more pre-prepared, but 
generated as response to the user. The user 
may create different visualizations or visualize 
different relations by varying parameters. 
Mostly found in SMET domain, e.g. parameter 
manipulation in physical simulations. 

4 

Construct objects 
or models 

(microworld) 

The user constructs new objects and designs 
underlying models or processes. Examples 
belong mostly to the SMET domain where 
objects and processes can be expressed 
adequately, e.g. dynamic geometry software 
like Cinderella [Kortenkamp99]. 

5 

Feedback 

(intelligent 
analysis) 

The user gets intelligent responses according 
to his actions. Schulmeister mentions again 
Cinderella, which applies an automated 
theorem checking engine. 

Table 3: Schulmeister provides a qualitative framework for classifying a 
learning object’s interactivity in six ascending degrees. Each degree 

includes all aspects of the lower ones. [Schulmeister03] 

LOM levels (see Table 3, and 2.3.4). With ascending degree, the related 
theory of learning alters from behaviourism to instructionalism to 
constructivism. The 4th level corresponds to learning by discovering, the 5th 
level to learning by construction.  

Schulmeister implicitly assumes that developers design these levels 
properly. Consistent with LOM, each level includes all aspects of the lower 
ones. In practice, such an ascending order rarely occurs; a learning object 
as we know it rather presents a mixture of Sims’ ingredients (2.1.1). A 
learning object may include feedback but no multiple representations, or it 
may offer construction without permitting modification of the 
representation. Also, from our point of view, feedback should be adequate, 
but not mandatory intelligent (which would require user/task modeling). 
Nevertheless, Schulmeister’s proposition provides a far more elaborate and 
useful taxonomy than current standardization efforts.  
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2.2 Hypermedia 
“I have always imagined the information space as something to which everyone has 
immediate and intuitive access, and not just to browse, but to create.” [BernersLee99, 
p. 157] 

In this chapter, we review the common origin of hypermedia and graphical 
user interfaces. We contrast their most prominent representatives – the 
Web and the Desktop – in order to reflect on characteristics and 
shortcomings of interactive Web-based courseware. In contrast to other 
retrospections [Conklin87, Andrews96, Nielsen95, MuellerProve02], we 
outline milestones of hypermedia with regard to interactivity. System 
relationships are sketched in [Johnson89]. 

Following Keith Andrews [Andrews96, p. 13], hypermedia generalizes 
hypertext to include other kinds of multimedia in addition to text. 
Hypertext in turn consists of nodes and node connections – hyperlinks. A 
hyperlink is made of a source anchor specifying the starting point in a 
document, and a destination anchor defining a second location. Users 
navigate from source to destination anchor by activating the hyperlink, 
which we call ‘browsing’. Linking resembles the ‘goto’ programming 
instruction, and implicates similar problems. At first, it accounts for the 
“lost in hyperspace” syndrome [Conklin87, Maurer96, chapter 8.1] that 
describes user disorientation during browsing due to missing navigational 
aids. The second major shortcoming is the “broken link” (dangling link 
[Andrews96, p. 26]), which typically emerges during authoring or server 
migration, when a link’s destination anchor is lost, but the source anchor 
remains. ”Real hypermedia” [Andrews96, p. 14] is interactive, integrates 
interactive multimedia and provides means for collaboration and 
personalization. We will see that all hypermedia pioneers intended to 
create a highly interactive medium. 

2.2.1 Origins 
We start our short history of the Web in 1945, the year when John von 
Neumann established the base of computers by describing concepts of a 
stored program, and Konrad Zuse developed the first programming 
language. Vannevar Bush described a microfilm-based Memex system, “a 
sort of mechanized private file and library” [Bush45]. He envisioned the 
use of hyperlinks and trails to archive scientific writings, annotate, and 
associate segments of the knowledge base, and to keep track of related 
data. Trails anticipated future guided tours, i.e. pre-defined paths along a 
given chain of thought. 

In 1962, Joseph Licklider became head of the US Department of Defense’s 
(DoD) Advanced Research Projects Agency (ARPA), which was to improve 
the military's use of computers. He redirected funding from private sector 
to university research institutions, such as Douglas Engelbart’s proposed 
“augmentation laboratory” at Stanford Research Center. At the time, 
computers operated in batch mode. Licklider dreamed of interactive 
computing going beyond punch cards (“man-computer symbiosis”, 
[Licklider60]). His vision of an “intergalactic” network engaging users in 
browsing, retrieval, and creation of new knowledge, laid the foundation for 
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ARPANET, the first Internet. DoD and the National Science Foundation 
(NSF) further facilitated the early public growth of the Internet, for 
example by enforcing the TCP/IP Internet standard.   

Licklider’s successor was Ivan Sutherland. His 1963 Ph.D. thesis at MIT, 
“Sketchpad: A Man-Machine Graphical Communications System” 
[Sutherland63], presented the first interactive computer graphics. Using a 
light pen and a 40-button command box, Sketchpad users could create, 
directly manipulate, duplicate, and store engineering drawings on the 
display. Constraints such as orthogonal lines could be applied, and the 
drawing area could be zoomed and scrolled. In the 1960s, batch mode 
processing usually occupied the computer exclusively for hours; therefore, 
this novel form of interactivity was called “on line”. Sutherland invented 
what we call real-time interaction with computers. 

About the same time, Douglas Engelbart worked out his HCI vision of 
instant connection and communication. Having a strong sense for 
automation and re-use, he recognized the importance of building tools – to 
spend a lot of time and energy first on building tools, then on applications. 
Based on Bush’s vision, his NLS (On Line System) was the first point-and-
click hypertext system, for which his group invented the mouse. In 1968, 
Engelbart demonstrated interactive text editing and groupware facilities 
such as screen sharing among remote users [Engelbart68, vanDam87]. His 
notions of connectivity and of multiple views of information would carry 
forward until today, but remain largely unrealized [Meyrowitz89]. NLS 
became the second node on ARPANET, redefining completely the concept 
of “online”.  

Parallel to the work of Engelbart, Ted Nelson coined the term hypertext, 
defining it as “non-sequential writing”. He proposed Xanadu [Nelson65, 
Nelson82] in the 1960s, a system incorporating a hyperlinked repository 
for the entire world’s knowledge ever published. Xanadu would include 
transclusion, a kind of inclusion by reference allowing reuse of content in 
multiple contexts. Work on Xanadu continues until today [Nelson99], but 
only parts have ever reached the state of prototypes. Among Nelson’s 
visions were stretch text that elastically expands and contracts in place, 
and hypergrams, a kind of interactive illustrations [vanDam87]. Xanadu 
would have solved the broken link problem, as it provides version 
management, and global, unique identifiers for hypertext nodes. Versions 
are not deleted, but preserved forever by the system. 

In 1967, Nelson collaborated with Andries van Dam to build HES 
(Hypertext Editing System, [vanDam69, vanDam87]) at Brown University. 
The text-based HES supported arbitrary-length content, and content 
reuse. Nelson left the group soon after realizing that HES was instead 
turning into a (the first) word processing system.  

2.2.2 Design Principles 
Heavily inspired by Engelbart’s “mother of all demos”, van Dam in turn 
redesigned HES to FRESS (File Retrieval and Editing System, 
[vanDam87]). FRESS offered bi-directional links and webs representing 
collections of links. Links had types, which could be employed, for example, 
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to indicate information about the link target (e.g. by a pictogram) before 
users actually activated the link. Link anchors were not stored in content, 
but organized separately in a link database, thus avoiding broken links 
(the link source can now be notified that its destination has changed) as 
well as it allows for referencing content where links cannot be embedded 
(e.g. read-only content, or video). It is also a prerequisite for 
personalization, e.g. annotation [Andrews96, p. 26]. FRESS also presented 
the first-ever undo facility. Van Dam’s subsequent system ELS (Electronic 
Document System, [vanDam87]) further included graphical documents. It 
introduced page thumbnails, graphical links, and a context timeline for 
visiting recent pages and linked neighbors (“because context is so 
important”). The content’s level of detail could be varied and navigation 
adapted according to traversed keywords. An authoring tool enabled the 
user to create pages, chapters, links, and graphics. 

Context is also the reason why Alan Kay developed overlapping windows. 
In 1969, he laid ground for Smalltalk and windows with his Ph.D. thesis 
“The Reactive Engine" [Kay69] at the University of Utah (Ivan Sutherland 
is one of the committee members). Design principles behind Smalltalk can 
be found in Daniel Ingalls’s writing [Ingalls81]; they led to Model View 
Controller and software components (2.4.2). The Smalltalk architecture 
had its core based on object-oriented programming with a uniform message 
system, enabling the user to interact with any aspect of the system. 
Objects could be adapted on the system level and interlinked system-
widely. Objects referred to each other and sent messages in order to 
change their internal state, which extended the hyperlink paradigm 
naturally [MuellerProve02, p. 21]. Evolution has turned into just the 
opposite. Instead of a uniform programming system, today we face insular, 
application-centered operation systems; at best, applications provide 
restricted and non-conform scripting or macro functionality (2.4.3). Today, 
Kay's idea of a common programming platform is represented best by 
Java. Kay and Ingalls continue their work on Smalltalk until today; the 
Squeak  system (presented in Kay’s keynote at ED-MEDIA 2002 
[Barker02]), e.g. transforms the Smalltalk environment into a standard 
Web browser. 

Soon after, Kay and others founded the Xerox Research Center in Palo Alto 
(Xerox PARC), established to explore the use of computers in office 
environments. PARC researchers, among them members of Engelbart's 
group, create the modern GUI. Frank Halasz‘s hypertext system 
NoteCards enabled users to build new applications on top of it, and made it 
easy to customize the browser. It brought with it about fifty node types 
such as text, video, animation, graphics, and actions [Halasz88, 
Conklin87]. Charles Simonyi and others developed Bravo, representing not 
only the first WYSIWYG word processing application, but actually the first 
version of Microsoft Word [Johnson89]. David Canfield Smith introduced 
icons and visual programming in his Ph.D. project Pygmalion [Smith77], 
making it possible to connect components by direct manipulation (2.4.2). 
Alan Borning‘s ThingLab [Borning81] added to Smalltalk the Sketchpad 
notions of constraints (2.4.2), specifying relations that must be 
maintained. Larry Tesler articulated the concept of modelessness 
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[Tesler81, Meyrowitz89], demanding that users should always be able to 
easily understand their state within the system. Finally, in 1981 the Xerox 
Star system changed opinions about the design of interactive systems 
[Johnson89] by introducing the WIMP (windows, icons, menus, and the 
pointer device) metaphor. Apple Macintosh (1984) and Microsoft Windows 
3.0 (1990) brought these concepts to the masses.  

The 1980s put forth an immense number of hypermedia systems. Again, 
members of van Dam’s group, among them Norman Meyrowitz and Nicole 
Yankelovich, developed the most sophisticated one, Intermedia 
[Meyrowitz86]. Object-oriented and WIMP-designed, it aimed for 
integrating all application programs into a hypermedia system. Meyrowitz 
argues that the failure of hypertext to reach its full potential stems from 
the development of “insular, monolith packages that demand the user to 
disown his or her present computing environment to use the functions of 
hypertext and hypermedia” [Meyrowitz87]. In contrast, Intermedia 
allowed for interoperability across a range of software components by 
providing a common API for all participating applications to share linking 
information. Linking followed the Copy & Paste metaphor: users set 
hyperlinks by selecting “Start Link” in any document’s region and 
“Complete Link” in another arbitrary location. Links became a seamless 
part of the GUI: 

“Linking functionality must be incorporated, as a fundamental advance in 
application integration, into the heart of the standard computing toolboxes […] and 
application developers must be provided with the tools that enable applications to 
'link up' in a standard manner. Only when the paradigm is positioned as an 
integrating factor for all third-party applications, and not as a special attribute of a 
limited few, will knowledge workers accept and integrate hypertext and hypermedia 
into their daily work process." [Meyrowitz87]  

Intermedia was limited to Unix A/UX and would never be used 
widespread. Meyrowitz continued to focus media technology for the 
Internet; he developed Shockwave and became today’s president of 
Macromedia. He sees the hypermedia system as the desktop of tomorrow 
[Meyrowitz89] excelling in integration, aesthetics, perspective, access, 
service, community, and adaptation (see Table 4). In short, the system 
must provide underlying technology, not applications.  

With respect to integration, the potential of a container component model 
is illustrated best by Andrea diSessa‘s Boxer [diSessa85, diSessa86b] 
system. Boxer represents any information entity as box; a box may contain 
other boxes or data such as text or graphics. In contrast to other 
hypermedia systems, hierarchy is expressed naturally by nesting lower-
level nodes directly within their parents. We can Copy & Paste any box 
into any other Boxer workspace. Flipping a box (face-up, face-down) offers 
an alternate view or internal state; for instance, we may flip a graphics box 
to see the rendering program. Programs are boxes with input/output 
variables together with other boxes specifying behavior. The Boxer 
language is homoiconic (like Smalltalk), that is, we can access, modify, and 
execute any data – which is also its major drawback: we are restricted to 
the proprietary Boxer environment. 
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Theme Tasks of the Desktop of Tomorrow 

Integration 

Ease of linking, associating, combining, and incorporating 
components. Technology therefore has to provide a link 
database, link modes such as hyperlinking, warm linking 
(sending data), and hot linking (synchronizing data), and a 
container component model to create composites. 

Aesthetics 

Provide a sophisticated look (visual) and feel (operational). 
Allow users to develop components conform to the highest 
graphical design ideals, and maintain consistency, 
reliability, familiarity, and direct-manipulability. 

Perspective 
Provide multiple views of information. Support e.g. tasks, or 
trails. 

Access 
Allow for exploring, browsing, retrieving, and storing data. 
Technology therefore has to provide a database with a lens-
like user interface. 

Service 
Provide standard general-purpose tools (linking, reference, 
linguistic services such as dictionary, thesauri, spell-
checker, etc., and online services). 

Community 
Support user groups in synchronous and asynchronous 
collaboration (access rights, annotations, conferencing, 
shared editing). 

Adaptation 

Adapt to the user and, inversely, enable users to customize 
the system to perform functions that were not included by 
the system designers. Technology must allow for scripting 
to manipulate functions, let the user interactively 
manipulate an application’s internal components. 
Applications should be able to register objects and methods 
that can be queried or manipulated by scripting. 

 Table 4: Meyrowitz’s vision of a hypermedia system is that of a desktop 
of tomorrow providing linking technology, a familiar look & feel, 

multiple views of data, standard tools (calendar, spell-checker, etc.), 
community support, and scripting. [Meyrowitz89] 

According to Jeremy Roschelle (developer of the Boxer graphics engine, 
who continues the research on software components until today, see 2.4.1), 
hypermedia’s public breakthrough came with Apple’s Hypercard in 1987, 
bundled free with every Macintosh system [Roschelle98]. HyperCard 
dramatically increased the number of educators able to produce their own 
interactive courseware. Users could customize objects, sequence screens of 
information by a stack metaphor, and construct buttons triggering scripts. 
The HyperTalk scripting language supported dynamic linking by 
computing links on the fly.  

Between 1988 and 1990, developers of major hypermedia systems (among 
them Engelbart, Halasz, and Meyrowitz) abstracted their principles into 
the Dexter Hypertext Reference Model [Halasz90] to provide standard 
hypermedia terminology. It divides system architecture into three layers: 
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the storage, the within-component, and the run-time layer. While the 
storage layer describes a database containing a network of nodes and 
links, the run-time layer covers presentation, user interaction, and 
dynamics. The within-component layer, which describes content or 
structure inside of nodes, is not elaborated. Instead, the Dexter model 
formalizes a mechanism for specifying and anchoring to the interior of 
hypermedia objects independent from its current type (text, graphics, 
animations, or dynamic programs). Specified anchors remain constantly 
referable; only their value might change to reflect internal modifications.  

Based on the lessons learned from Intermedia, in 1990 Hermann Maurer’s 
group at Graz University of Technology began developing the hypermedia 
system Hyper-G [Andrews96, Maurer96], known today as Hyperwave. The 
Hyperwave server is designed to handle large amounts of multimedia data, 
which can be physically spread over multiple servers. The system 
incorporates technology such as a link database for bidirectional linking 
and automatic link consistency, and searchable object metadata (arbitrary 
name/value attributes). Underlying design guidelines are compiled in the 
MANKIND project [Maurer97]. The system fulfills Meyrowitz’s demands 
for community support, as it provides access rights, annotations, shared 
editing, and a network protocol supporting synchronous communication 
and user sessions.  

“To ensure the success of a hypermedia system, it must allow users also to act as 
authors, allow them to change the database, create new entries for themselves or other 
users, create a personal view of the database as they need it, and, above all, allow the 
system to be used also for communication and cooperation.” [Andrews94]  

Hypermedia documents are stored in an object-oriented database using a 
set-based data model (clusters, 2.3.3). References to clusters have unique 
names (UNL); similar to Xanadu and the Dexter model, this avoids broken 
links. 

2.2.3 The Web 
In 1991, Tim Berners-Lee demonstrated the World Wide Web (WWW, W3) 
at CERN, inventing the Web’s core independently from Nelson’s and 
Maurer’s work. An URL (Uniform Resource Locator) mechanism 
incorporates other Internet protocols such as FTP, Gopher, or Newsgroups; 
by this, “’the Web’ has embraced and become almost synonymous with ‘the 
Net’” [Andrews96, p. 10]. The Web uses HTTP (Hypertext Transfer 
Protocol based on TCP/IP) to transfer network data and HTML (Hypertext 
Markup Language) to separate content from design and structure. Two 
years later, NCSA (National Center for Supercomputer Applications at the 
University of Illinois) presented the graphical Mosaic browser rendering 
the World Wide Web the most popular web. From that time on, the 
browser client has driven Web technology.  

The more mature Hyperwave system could not turn around the Web’s 
steady growth in popularity; in particularly, its browsers (Harmony, 
Amadeus) could not keep up with standard Web browsers in terms of 
functionality. (Later, Hyperwave compensated this drawback by a Web 
gateway [HIM99] transforming protocols and delivering HTML to ordinary 
Web browsers). The limitations of the Web would lead to many 
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ambiguities. An URL contains the physical document location, so it may 
produce broken links. HTTP is stateless; in contrast to Hyperwave’s 
protocol, it supports neither subsequent connections, nor user sessions. 
Lastly, with Mosaic many details of Berners-Lee initial proposal 
[BernersLee89] – such as typed links, multiple linking options (embed, 
jump to, show in separate window, etc.), scripting, and full integration of 
browsing and editing – are lost.  

In 1994, ex-members of NCSA developed Netscape Navigator to seize 
Mosaic's commercial role. Microsoft released Windows 95 with built-in 
connectivity to their Microsoft Network (MSN) hoping it will replace the 
Web. Yet, they soon turned to a Web-based strategy, making MSN a Web 
site and developing Internet Explorer. This was the beginning of the 
browser war. Microsoft integrated the browser into its operating systems; 
Netscape in turn created the open source Mozilla browser. More than 100 
browsers evolved (see e.g. the browser archive at http://browsers.evolt.org). 
Only a few could withstand Microsoft and Netscape’s market role, e.g. 
Opera, which started as a research project run by Norway’s 
telecommunication company Telenor, and would consistently manage to 
gain innovative features.  

Also in 1994, Berners-Lee founded the World Wide Web Consortium 
(W3C), intended to lead the Web to its full potential by developing common 
protocols ensuring interoperability. Currently, W3C recommends 53 
specifications [W3C03] targeting for example Web publishing (HTML, 
XML), linking (XLink, XPointer), 2D vector graphics (SVG), or multimedia 
synchronization (SMIL). The open source W3C Amaya browser seamlessly 
integrates editing and remote access, and serves as framework for other 
W3C technologies. Likewise, standards initiatives of the Internet 
Engineering Task Force (IETF) address Web issues such as the HTTP 
extension WebDAV (Distributed Authoring and Versioning, 
[Whitehead98]). 

Despite of Kay’s Dynabook vision, the Web still provides little interactivity, 
i.e. opportunities for learners to compose or construct their own ideas 
[Roschelle98]. Web browsers render content “read-only” and bring with 
them a “Web mode” incompatible to the Desktop (hyperlink paradigm vs. 
direct manipulation and WIMP). Missing dynamics features are 
compensated for either by server extensions (CGI – Common Gateway 
Interface), or, client-side, by browser plug-ins and scripting (DHTML). 
VRML [Bell95] introduced interactive simulations (virtual worlds) in 1995. 
At about the same time, Macromedia presented the Shockwave and Flash 
plug-ins for (pixel-oriented, respectively vector-oriented) interactive Web 
graphics; both are very popular today. Founded in 1992 to create 
interactive multimedia CD-ROMs, Macromedia provided authoring tools 
such as Authorware, Director, and Dreamweaver for creating Web and 
Flash/Shockwave content (with extensions for learning content). Flash is 
also integrated into two other widespread browser plug-ins for multimedia 
content, Apple Quicktime and RealNetworks RealPlayer. While focusing on 
audio/video, Quicktime further supports sprite animations and mouse 
interactions.  

http://browsers.evolt.org/
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Figure 2: Java 3D provides access to low-level structures. Here, we access 
and visualize a 3D scene’s depth buffer (top left) as gray-valued image 
(top center) and feed it to a stereogram image filter (SIRDS, top right). 
Users may directly manipulate filter parameters (bottom line). 

In 1996, the HTML 3.2 specification [W3C03] finally included Sun’s Java 
programming language. Initially part of browser functionality (Java 
1.0/1.1), it has now become a standard browser plug-in (Java 2). The Java 
core is enriched with optional packages such as Java Advanced Imaging 
(JAI), Java Media Framework (JMF), Java 3D, and others [Sun03]. While 
providing high-level design concepts, they delegate rendering to low-level 
(native) libraries and hardware, e.g. Java 3D relies on OpenGL and 
Direct3D. Note that Java still provides access to low-level structures by 
encapsulating them into objects (see Figure 2). 

2.3 Web-Based Courseware 
“But the problems that remain […] are how to make sufficient room for two 
fundamental elements of scientific education in the training of the young. These 
elements are: (a) the genuine “activity” of the students, who will be required to 
reconstruct, or in part rediscover, the facts to be learned; and (b) above all, individual 
experience in experimentation and related methods.” [Piaget73, p. 34] 

Having reviewed the evolution of the Web and the Desktop as today’s 
representatives of hypermedia and graphical user interfaces, we now 
consider their use for education. We survey the classes of educational 
software and respective learning theories (2.3.1), and then present the 
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concept of a learning management system (2.3.2), which allows us to 
specify required properties, and compare our approach of Web-based 
courseware with others. Principles of content management such as a set-
based data model, template-driven generators, and online wizards offering 
community support will be discussed in more detail (2.3.3). We close with a 
brief discussion of learning technology standards (2.3.4) that promise to 
provide adequate object metadata and interoperability.  

2.3.1 Educational Software 
The idea to support the learning process by the use of computers 
(computer-based teaching, CBT) and the Web (WBT) has lead to many 
variants and acronyms [Schulmeister97, p. 93, Blumstengel99, 
Maurer01b] such as CBE, CBI, CAT, CAI, CAL, CBL, CML, CMT, ICAI, or 
ITS. They accentuate respectively the base (B) of a computer (C) or an 
intelligent (I), interactive (I) system (S) to aid (A), assist (A), manage (M), 
or support (S) education (E), instruction (I), learning (L), teaching (T), 
training (T), or tutoring (T).  

Peter Baumgartner [Baumgartner92] notes that any educational software 
is based on a learning theory, whether the authors aimed for it, or not. 
The “Theory into Practice” database [Kearsley03] contains more than 50 
theories relevant to teaching and learning. Romiszowski [Romiszowski86] 
for example differentiates philosophical positions and their emphasis on 
useful content (Humanist), outcomes (Behaviorist), process (Cognitivist 
and Developmental), or system (Cybernetic). We restrict ourselves to the 
classic triad behaviourism, cognitivism, and constructivism (see Table 5, 
and [Schulmeister97, Blumstengel99, Sims00]). 

Learning 
Theory 

Behaviorism Cognitivism Constructivism 

Mind is… passive interactive autarkic 

Knowledge 
is… 

stored processed constructed 

We learn… “what”, facts 
“how”, 

understanding 

“how we come to 
know”,  

discover solutions 

Strategy teach, instruct observe, help 
cooperate,  

do not teach 

Interactivity hard-wired dynamic autonomous 

Educational 
Software 

tutoring 
system, 

drill & practice 

adaptive system, 
intelligent 

tutoring system 

microworld, 
simulation, 
hypermedia 

Table 5: Learning theories with underlying assumptions, paradigms, 
and related classes of educational software. Adapted from 

[Baumgartner92, Blumstengel99]. 
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Let us go back to the first attempts of CBT in the 1950s, the time when 
behaviorism had significant impact on education. A behaviorist 
concentrates on observable, evaluable behavior, and avoids referring to the 
learner’s internal states such as feelings or cognitive processes 
[Kearsley03]. Edward Thorndike [Thorndike22] characterized learning as 
the result of associations forming between stimuli and responses. 
Behaviorism forms the base of today’s classroom setting. Further, as a 
single teacher cannot appropriately assist 30 students simultaneously, 
Burrhus Frederic Skinner [Skinner54] suggested a teaching machine for 
individual use that could present and reinforce information, and choose the 
level of difficulty according to the learner’s performance. Due to 
technological constraints, Skinner’s theory of programmed instruction 
produced only gap-filling tests [Schulmeister97, p. 93] or linear “page-
turning” programs. Behaviorism became associated with tutoring systems, 
trial & error, and drill & practice; typically, interactivity is hard-wired 
[Baumgartner92, Blumstengel99]. 

In the 1960s, Jerome Bruner [Bruner66] focused on mental processes and 
put down the theoretical foundation for cognitivism, which deals with the 
question of how we achieve, structure, conceptualize, and transfer 
information. Learning occurs by interactions between internal and 
external models (2.1.2). At first, efforts to optimize these interactions led to 
instructional design models. David Merrill for example developed the 
component display theory specifying ingredients necessary for efficient 
learning for a given objective and learner: rules, examples, recall, and 
exercise with feedback. He implemented his theory in the course structure 
of his TICCIT project (Time-shared Interactive Computer Controlled 
Information Television, [Merrill80, Schulmeister97, p. 98]) at the 
University of Texas and Brigham Young University. Many future 
authoring tools for instructional design would follow his principles. 
Adaptive systems and intelligent tutoring systems continue the search for 
a representation producing the most effective learning experience for a 
given individual and subject. (In some ways, reusable learning objects have 
the same intention.) TICCIT received funding of the DoD to determine 
whether CBT may reduce cost and time for training. The same initiative 
supported Donald Bitzer’s group at the University of Illinois in developing 
the more technical PLATO (Programmed Logic for Automated Teaching 
Operation, [Bitzer70, Schulmeister97, p. 98]). PLATO introduced 
networking to CBT by offering a central computer with courseware and 
permitting to use it from terminals, communicate and include statistics 
and feedback [Maurer02]. Again, this corresponds with a principle of 
Bruner, namely the ability to verbalize to one and others (see community 
support, 2.3.3).  
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Bruner’s principle of discovery learning [Bruner61] – that we gain 
knowledge most effectively by personal discovery – leads to 
constructivism. He sees knowledge represented enactively (tactile 
experience through manipulating objects), iconically (visual stimulation 
through comparing and contrasting), and symbolically (abstract 
reasoning). While Jean Piaget [Piaget70] relates these modes to periods of 
childhood development, Bruner treats them as present and accessible 
anytime (with one of them dominant in each period). Piaget argues that we 
are born with a tendency to organize our thinking processes, and mental 
models consist of basic building blocks (schemes) and larger structures.  

The work of Bruner and Piaget heavily influenced Xerox PARC 
researchers such as Alan Kay (see Table 6). Kay directed his Learning 
Research Group at PARC to develop a user interface that should explicitly 
address all three modes of understanding and manipulating the world 
around us (see direct manipulation and WIMP design, 2.2), an idea 
expressed best with their slogan “doing (mouse) with images (windows, 
icons), makes symbols (programming, Smalltalk)” [Kay93]. Piaget also 
collaborated with Seymour Papert at MIT, who developed Logo [Papert80] 
as a programming language for children in the late 1960s. Initially a 
mechanical robot connected to the computer, the turtle became a virtual 
plotter for creating vector graphics. In the 1990s, Logo was expanded to 
LEGO/Logo [Resnick91] linking Logo with the LEGO construction kit. The 
commercial LEGO Mindstorms products included new types of LEGO 
blocks such as lights, motors, and sensors for building machines, and new 
types of Logo building blocks (that is, software components) for building 
programs. The argumentation takes the line of constructivism:  

“In our experience, design activities have the greatest educational value when 
students are given the freedom to create things that are meaningful to themselves (or 
others around them). In such situations, students approach their work with a sense of 
caring and interest that is missing in most school activities. As a result, students are 
more likely to explore, and to make deep "connections" with the mathematical and 
scientific concepts that underlie the activities.” [Resnick91]  

DiSessa [diSessa86a] describes science learning as a re-experiencing 
process. Instead of learning a new concept through learning definitions, we 
must experience and re-experience the concept in different contexts, and 
gradually reorganize our intuitions into more complete models. Whereas a 
cognitivist regards learning as cognitive process occurring between 
external (the educator’s) and internal (the learner’s) model, a 
constructivist understands learning as the result of internal cognitive 

Bruner enactive iconic symbolic 

Piaget sensorimotor concrete formal 

Kay doing with images makes symbols 

GUI mouse icons/windows programming 

Table 6: Bruner and Piaget’s learning theories lead the creators of the 
first graphical user interface to a WIMP design (windows, icons, menus, 

and mouse pointer). [Kay93] 
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processes – knowledge is constructed [Blumstengel99]. Following this 
principle of “learning without being taught”, Papert introduced the concept 
of microworlds [Papert80]. A microworld such as the Logo world of turtle-
geometry represents an explorative learning environment that does not 
formulate concepts to be learned explicitly. Authoring tools offering visual 
programming implicitly establish associations between software 
components and provide the ability to manipulate the structure and 
behavior of microworlds at a high conceptual level [Birbilis00]. Discovery 
learning further provided a solid base for simulations, which expose the 
underlying dynamic model, and for educational hypermedia, which 
supports self-controlled exploration per se [Blumstengel99]. 

Following van Dam [vanDam87], Nelson was the first one to point out the 
importance of hypermedia in teaching. In the 1970s, van Dam applied 
FRESS (2.2.2) in schools. Students of an English poetry course had to 
analyze and critique a poem; the context included word glosses, references 
to other poems, and some professional analyses. In a second phase, they 
reviewed other students’ writings together with the teacher’s comments, 
and, in turn, reworked their analysis accordingly. 

 “Electronic graffiti, as I though of them. The reason I encouraged such annotations 
was that I remembered that when I was in college with Ted, I would always grab the 
dirtiest copy of a book in the library, rather than the cleanest one, because the dirtiest 
ones had the most marginalia, which I found very helpful.” [vanDam87] 

Consequently, the subsequent Intermedia system (2.2.2) was meant to 
prototype a future hypermedia system providing “a user-level framework 
for creating exploratory contexts of educational and research materials for 
students and faculty” [Meyrowitz89]. Apple’s Hypercard enabled educators 
to create dynamic educational hypermedia. Maurer [Maurer02] reflects on 
the era of authoring systems and underlying technology (e.g. interactive 
videodisks) before the advent of the Web in the 1990s. During the time the 
Web appeared, advanced authoring facilities were competing with the 
continuous discussion of learning models. This was not only a battle 
between authoring systems and browsers, but also between cognitivism 
and constructivism. The importance of communication and collaborative 
work grew steadily, as did the spread of large educational environments. 
The educational community started standardizing protocols and metadata. 
In the new millennium, the trend moved towards learning technology 
standards to provide a common platform for future educational software. 
Maurer states:  

“To use electronic educational material on a large scale it is necessary to be able to 
locate and re-use material created elsewhere. It is with satisfaction that we can 
observe a continued harmonization between North-American and European efforts in 
this important area. It is also gratifying to see that the necessity for communication, 
collaboration, and large digital libraries accessible via the Web is now universally 
accepted as basis for viable learning systems. […] It has also become clear that a 
substantial learning system needs a huge array of administrative features and that 
the authoring of material is just a small part of what is necessary to make e-Learning 
work.” [Maurer02] 
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2.3.2 Learning Management Systems 
Imagine an ideal piece of educational software. What requirements should 
it meet? Educational software today is Web-based software, reflected, e.g., 
in SCORM’s (Sharable Content Object Reference Model, 2.3.4) assumption 
of a Web-based infrastructure [ADL01a, p. 30]. Therefore, it first has to 
compensate for the limits of the Web and the Desktop (2.2). Basing a 
hypermedia system on the solid foundation of a learning theory – 
behaviorism, cognitivism, constructivism, or a combination of them (2.3.1) 
– entails further requirements concerning administration, learning, and 
authoring. The current trend of learning management systems (LMS) 
intends to meet both hypermedia and pedagogical needs. An LMS refers to 
a suite of functionalities designed to deliver, track, report on, and manage 
learning content, student progress and student interactions [ADL01a, p. 
30, LSAL03, p. 5]. In contrast to proprietary educational software, LMS 
content represents reusable, interoperable entities. Learning technology 
standards (2.3.4) are supposed to provide the base required for an LMS to 
work.  

According to Schulmeister, an LMS architecture [Schulmeister03] covers 
the domains administration, learning, and authoring (Table 7). A 
repository stores all data; it is realized as one or more databases accessed 
by public interfaces (API). Administrational functionality includes 
managing courses (i.e. course structuring, executing 
lecture/tutorial/homework), users with specific roles (student, educator, 
tutor, administrator, developer, etc.), and institutions (i.e. curricula, 
library, billing), as well as tracking user activities and allowing for self-
tests and evaluation [Schulmeister03, p. 10]. Learning tasks cover course 
presentation and common tools for learning (calendar, mindmaps, etc.), 
communication (e.g., e-mail, chat, white board, discussion board), and 
personalization (of design, layout, and contents, e.g., annotations). Finally, 
authoring tasks include creating and modifying teaching material ranging 
from interface design to a particular learning object (e.g., text, slides, 

illustrations, animations, 
interactive objects) to exercises 
and tests (following a learning 
object, or spanning several ones). 
A must for any Non-English 
content is support of multiple 
languages, both in interface 
design and content. 

Present systems concentrate on 
parts of this ideal architecture 
only. For example, some systems 
provide only rudimental 
administration functionality, or 
link to external learning objects 
instead being based on an own 
repository. The smallest LMS 
consisting of a single course is 
called courseware – our own 

Adminis-
tration 

Learning 
Environment 

Authoring 

user courses interface 
design 

courses communication learning 
objects 

institutions tools exercises 

evaluation personalization tests 

Interfaces – API 

Repository – Database 
user data, course data,  

learning objects, metadata 

Table 7: Schulmeister’s ideal LMS 
supports administration, learning, 

and authoring. Data is kept in a 
repository. [Schulmeister03] 
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implementation represents such a system. Variants such as a learning 
environment or a learning content management system rather accentuate 
learner activities, or content respectively. Schulmeister [Schulmeister03] 
and Baumgartner [Baumgartner02] evaluate more than 100 current LMSs 
and set up a feature list. Let us exemplary characterize the senior of 
LMSs, WebCT. 

Example  (WebCT): Murray Goldberg developed WebCT in 1997 at the 
University of British Columbia in Vancouver in order to facilitate course 
preparation and enrich students’ learning experiences. Version 3.6 
consists of a set of tools (CGI and JavaScript scripts, images, and Java 
applets) and uses HTML functionality without database functionality. 
The upcoming version will be based on Java and an Oracle database. 
Wizards guide course developers, administrators, learners, and graders 
in completing common tasks. Developers may arrange the course 
homepage (a separate HTML page), syllabus, content modules, 
calendar, discussion boards, mail, and chat. Tools allow for uploading 
files, arranging paths (linear trails), setting the course design (colors, 
page layout), and setting up user accounts. Authors may toggle between 
a presentation and a design mode; in the latter case, an integrated 
HTML editor simplifies the production of WYSIWYG content. 
Evaluation tools allow for tests and polls. Its interface supports multiple 
languages. 

Many of the described tasks meet more general requirements of an 
hypermedia system. Remember Meyrowitz’s demands for a desktop of 
tomorrow (2.2.2): not applications, but the system must provides means for 
easy component composition and linking, as well as a uniform look & feel 
and alternatives in structure (e.g. trails) and content (e.g. multi-lingual, 
adaptable multimedia). Common services such as calendar, e-mail, 
annotations, chat, white board, discussion board, etc. must become system 
services.  

Example  (Browser history): The navigation history of today’s Web browsers 
represents a list of visited pages. An LMS has only limited access to its 
internal structure: in general, only relative movements, forwards or 
backwards, are possible (by scripting). Imagine the history would 
become a system service instead of a browser feature. History items (i.e., 
visited Web pages) would be stored in a standard Desktop folder. The 
LMS could sort, search, edit, group, share, archive, etc, the history with 
familiar Desktop facilities. Note that we can interpret trails similarly. 

Example  (Calendar): Each LMS provides its own, proprietary calendar 
tool. If it became a system service, we could reuse the calendar in any 
application, e.g. in the user’s e-mail program or word processor, and any 
given data could be shared with others using standard Desktop network 
security and access rights. Microsoft’s server-side scripting environment 
ASP.NET suggests a Web-based solution – it enables developers to 
include an interactive calendar component simply by using the 
statement <asp:Calendar runat=”server”/>. 

Typically, an LMS lacks in the authoring domain. It integrates only 
rudimentary support for WYSIWYG hypertext editing (as in the case of 
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WebCT) and delegates all non-trivial authoring facilities to external 
authoring tools. Again, evolution takes the application-centered line (cp. 
with 2.2.2) instead of integrating authoring functionality into the system’s 
core. Authors may create, e.g. hypertext with a WYSIWIG editor (e.g. 
Microsoft Frontpage, Macromedia Dreamweaver), code editor (e.g. 
Macromedia Homesite, Emacs), or their favorite word processor (e.g. 
LaTeX, Microsoft Word, Adobe FrameMaker) using the hypertext export 
facility [Klein98a, Wiest01]. Likewise, we find applications for text-based 
questions and tests (click2learn’s Toolbook Instructor, Macromedia 
Authorware, Microsoft LRN) supporting the related IMS specification 
[Smythe02]. IMS covers only multiple-choice tests or drag & drop puzzles; 
other tests, such as true/false, multiple choice, drag & drop, match item, 
text entry, or hot spot (identification of a particular region of the screen), 
graphics (e.g. Corel Draw, Adobe Photoshop), animations and interactive 
objects with medium complexity (e.g. Macromedia Director, Flash, 
Shockwave, Microsoft Powerpoint), are created separately. In the case of 
highly interactive objects, not only content, but also the programming 
architecture is handcrafted. Integrated developing environments (IDE) 
allow for implementing, assembling, and testing software components and 
applications, which are, in the case of Java, available for free (e.g. Sun 
ONE Studio, Borland JBuilder, Eclipse).   

In a word, we find authoring tools and programming architectures 
separated from LMS architecture. Resulting courseware shows up 
fundamental deficiencies in modifications and interlinking: learning 
objects, in particular interactive ones, become black boxes that can 
neither be modified sufficiently (e.g. choosing parameters or enhancing 
functionality) nor be interlinked properly with their context (e.g. 
synchronizing an object’s state with a guided tour). All-in-one applications 
claiming to create unified, interlinked, and interactive courseware (e.g. 
Toolbook or Director) reach a proper interlinking by the use of proprietary 
Web formats – now the whole courseware appears as a read-only, autarkic 
black box (e.g. a Flash application with interlinked text, images, etc.).  

2.3.3 Content Management 
As a Web-based information and communication system, an LMS must 
naturally deal with the organization, production, delivery, and update of 
Web content, that is, with content management. Nowadays, the 
appropriate Web framework [Hanisch00b] consists of an underlying 
database, a template-driven generator, a standard Web browser, and 
online wizards (see Figure 3). 

We obtain efficient functionality for data organization by database 
technology. Actions such as query, select, insert, or update can be 
expressed in the standardized SQL (Structured Query Language), which 
abstracts from data representation and describes operations in a 
declarative way (goal-oriented, with a syntax like “select [items] from 
[table] where [criteria]”). Hyperwave (2.2.2) and Home [Duval95] further 
employ a set-based data model providing “support for orthogonal yet 
closely coupled structuring, linking, and search facilities” [Andrews96, p. 
30] as system service. Documents can be grouped into collections or 
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clusters to implement, for example, 
alternative media types and 
content, multilingual data, and 
versioning. They have a rich set of 
associated metadata useable in 
queries or data visualization.  

Example  (Multilingual documents 
with clusters): While Web 
technology provides support for 
multiple languages by setting a 
browser variable 
(HTTP_ACCEPT_LANGUAGE) 
and appropriate server 
mappings for content 
negotiation, this technique is rarely used. An approved method is letting 
the user choose the language on the entry page and then follow different 
paths through the server for different languages [Schmaranz96]. 
Consider the consequences in a courseware scenario, coming along with 
content in two or more languages, in multiple versions (short, medium, 
and long versions), and in alternative formats targeting screen (HTML), 
print (PDF), network bandwidth (ASF/RM/QT video streams), or plug-
ins (SVG, MathML, etc.). Authors could hardly create Web pages 
consistently, or include functionality to change language settings at 
arbitrary locations. Clusters, on the other hand, allow for adjusting 
content on the fly: users specify preferences through metadata, e.g. 
English/long/screen/58k/MathML, and the matching Web page is 
generated system-side. Because of assembly works on sub-document 
layer, clusters potentiate content reuse – the database may e.g. store 
language-independent blocks of a page only once. 

 

 

 

 

 

Figure 3: LMS content 
management deals with the 
organization, production, delivery, 
and update of Web content. 
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Content management separates content, structure, and design – a 
necessity not only if we want to reuse objects in a different context, but 
also for pedagogical and content/form reasons. Maurer [Maurer97] notes 
that, based on the many lessons learnt, the system must include built-in 
guidance for courseware design (but not dictatorship), like e.g. the use of 
fonts, color, graphics, guided tours, or feedback. Usually, design 
templates steer courseware generation from the core data, resulting in an 
uniform look & feel. They provide orientational and navigational aids, as 
well as an automatic structuring and maintenance of information 
[Andrews94, p. 27]. The Exploratories project classifies common structural 
patterns as reusable hypertext building blocks [Spalter00] such as Locator 
(“you are here”), Overview (accentuated already by Shneiderman 
[Shneiderman89]), Lecture, Laboratory, etc.; it is not meant to be an 
exhaustive classification, but a basic support for authors to improve 
standard navigation behavior. Authors may modify courseware design 
globally simply by editing the corresponding template. Using different 
templates for the same content creates different views.  

Example  (Link template) Remember that hyperlinks are part of the 
database (see Section 2.2.2). A link template may visualize the link type 
by a pictogram, validate the link target, and include further hints into 
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the main text, mouse-over text [Nielsen95], browser status bar, etc., in 
order to anticipate the target’s type and content, e.g. a chapter title, file 
size, or illustrative thumbnail. Another link template may follow a link 
structure (forwards and backwards) and visualize a global or local 
graph. Electronic text books use many such templates, for example (1) 
the linear path to a chapter, (2) all subchapters of a given chapter, and 
(3) back-links to chapters that cite the current one.   

A template contains statements, loops, and variables that are filled up 
with appropriate data. It is represented textual or hard-coded, and carried 
out by an appropriate generator. A generator works either as an 
independent application (creating static Web pages frequently, e.g. once 
per day), or server-side (dynamic) as server add-on (e.g. CGI or Java 
Servlets) or server-side scripting (e.g. JSP, ASP, or PHP). While the latter 
ones are attractive for up-to-date information and personalization, they 
lack – compared to static generators – in speed, stability, and offline 
utilization (see Table 8). The major drawback of static generators, that 
changes are not visible instantly, can be compensated by content-specific 
server-add-ons (e.g. a discussion board servlet). Such hybrids balance 
static and dynamic pages according to the nature and frequency of 
updates. Note that generating static pages already is a form of caching. 

Content management deals further with community support, that is with 
archiving, expanding, sharing and transferring a community’s knowledge – 
the non-intelligent part of knowledge management [Maurer01a], in 
contrast to computerized or artificial knowledge. The LMS Gentle 
[Dietinger98] (based on Hyperwave, and recently renamed to Hyperwave 
eLearning Suite [HIM00]) for example collects all knowledge attached to a 
document (questions, answers, remarks, discussion boards, etc.) and 

Frequently-Generated Static Pages Dynamic Pages 

+ responsiveness & scalability 
+ offline versions (e.g. CD-ROM) 
+ stand-alone (server/system 

independency) 
+ can use 3rd party search engines 
+ less issues integrating 3rd  party 

tools 
 
- changes are not visible instantly 
- generation might be time-consuming  

(in large, dynamic Web sites) 
- server replication might be complex  

(e.g. in distributed environments) 

+ up-to-date information & templates 
+ support changing contents (news, 

banners, advertisements, etc.) 
+ easier to do personalization 
 
- require know-how to avoid 

deficiencies in responsiveness & 
scalability (e.g. caching, cache pre-
loading) 

- extra work required to create offline 
versions 

- require specific server/system/tools 
- costs (usually per server per CPU) 

 rather small, static Web sites  large, dynamic sites (e.g. kiosk, 
news) 

Table 8: While dynamic Web pages are attractive for up-to-date 
information and personalization, static ones offer speed, stability,  

and offline utilization. A hybrid generator balances them  
according to the nature and frequency of updates.  
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includes it into the knowledge base. Maurer argues that, after a warm-up 
phase with human specialists, the system can generate potential answers 
for incoming requests automatically. Search is resolved bottom-up on sub-
document level, from words to paragraphs, chapters, and documents. 

 

Figure 4: Gentle wizards manage course structure, content, and users 
online [HIM00]. 

As casual users will not accept database interfaces or simple input masks, 
an LMS must provide authors and learners with adequate input facilities. 
Online wizards allow distributed modification of the courseware on the fly 
[Helic00]; user input is versioned [Maurer96] and, after verification of the 
editorial staff, integrated automatically. A rating system assures quality 
by maintaining profiles for authors, learners, and content. Background on 
Web-based groupware functionality can be found in the domain of CSCW 
(Computer Supported Cooperative Work, [Bentley97, Dix96]). 

Online wizards work task-dependently; Gentle, e.g. provides wizards to 
manage courseware structure, content, and users (see Figure 4, 
[Dietinger98, HIM00]); WebCT, on the other side, only provides basic, 
simple-structured interfaces (2.3.2). Typically, they revert to templates for 
structuring common, re-occurring workflows [Baumgartner02], and to 
define rules and constraints for user authorization, data input steps, 
preview, and database actions.  

Example  (Java Struts) The Struts framework [Apache00] for developing 
online wizards is based on Java Servlets and a modified Model View 
Controller design (2.4.2): while the View contains static “template” text 
and dynamic content based on the interpretation (at page request time) 
of special action tags, the Model contains the system’s internal state and 
the actions that we can take to change it. The Controller, finally, focuses 
on receiving HTTP requests from the client, decides what action is to be 
performed, and then delegates responsibility to the subsequent View. 
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2.3.4 Learning Technology Standards 
Learning technology standards specify learning object metadata and 
interoperability. They aim at enabling educators to search/browse digital 
libraries, integrate the object of preference into their curriculum, and 
adapt it to their needs. Based on appropriate standards, an LMS could 
launch third-party learning objects, track them, and adapt them to the 
user. 

So far, we have used the term learning object without explanation; let us 
now briefly clarify its meaning. According to the IEEE Learning 
Technology Standards Committee (LTSC, see below), any entity, digital or 
non-digital, which can be used, reused or referenced during technology-
supported learning, represents a learning object – in short, any resource 
that we can reuse to support learning. Wiley [Wiley00, Chapter 1.1] 
surveys the many names of learning objects, among them knowledge 
objects (Merrill, 2.3.1), pedagogical documents (ARIADNE, [ARIADNE02]), 
sharable content object (SCORM, [ADL01a]), online learning materials 
(MERLOT [SmithGratto02]), and educational components (ESCOT, 
[Roschelle99]). Some authors create educational material but are not 
aware of it or do not care, e.g. in the realms of games or virtual reality. 
Terminology for interactive learning objects is tangled even more: variants 
range from interactive multimedia instruction [ADL01a], interactive 
illustrations [Beall96], explorable microworlds [Papert80, Birbilis00], 
exploratories (combining exploratorium and laboratory [Simpson99]), 
virtual experiments [Hanisch99], to games, manipulations, and 
simulations [MathForum03].  

Wiley notes that the building block metaphor applied to learning objects 
(technically, 2.2.2, or pedagogically, 2.3.1), leads to wrong assumptions. In 
LEGO land, a LEGO block is compatible with any other LEGO block. 
Assembly is fun and simple; anyone can put them together. Six standard 
2x4 blocks correspond with over 100 million combinations. Obviously, we 
prefer combinations with educational value. Learning objects in the SMET 
domain will mostly require theoretical background and training. A single 
statement is true: we need standards to ensure learning objects’ 
interoperability. 

The longing for interoperable hypermedia documents already showed in 
the work of Engelbart and Nelson, and produced standards such as 
TCP/IP, HTTP, and HTML/XML (2.2). Records of normative standards are 
kept by organizations such as the Institute of Electrical and Electronics 
Engineers (IEEE), the International Organization for Standardization 
(ISO), and the International Electrotechnical Commission (IEC). Learning 
technology standards are still evolving, and we act on specifications 
instead (see Table 9). Erik Duval, who is both technical editor for the 
standard on learning objects metadata (LOM) and president of the 
ARIADNE Foundation, outlined the current state of learning object 
metadata, participating organizations, and future roadmap in his 
workshop at ED-MEDIA 2002 [Duval02]. We may expect a formal ISO 
learning technology standard in a few years. 
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ADL 
(1997)  

Advanced Distributed Learning Initiative. Started by 
the DoD and the White House Office of Science and 
Technology Policy, ADL collects and recommends best-
practice specifications in the SCORM standard, and 
creates testbeds for learning objects and LMSs.  

AICC  
(1998) 

Aviation Industry Computer Based Training 
Committee. Provides interoperability guidelines for 
LMSs, especially to standardize training technologies 
for aviation industry.  

ARIADNE 
(1995)  

Alliance of Remote Instructional Authoring and 
Distribution Networks of Europe. Creates tools and 
methodologies for the share and reuse of learning 
objects (see KPS, 2.4.1). Includes a strong emphasis on 
respect for multiple (European) cultures and languages. 

IMS  
(1997) 

Instructional Management Systems Global Learning 
Consortium. Initially a project of the EDUCAUSE  
association, the scope of IMS specifications  include 
Web-based course management systems, content 
metadata and packaging, and question & test.  

LTSC 
(1998)  

IEEE Learning Technology Standards Committee. The 
LTSC Learning Object Metadata (LOM) working group 
P1484 collaborated with ARIADNE and IMS to produce 
an educational metadata IEEE/LOM contains technical, 
didactical, and legal metadata, and is widely respected. 

PROMETHEUS 
(1999)  

PROmoting Multimedia Access to Education and 
Training in EUropean Society. An open European forum 
to improve the quality and use of learning technology, 
and to protect European multicultural values. 

Table 9: Several organizations collaborate to specify learning technology 
with regards to metadata, interoperability, and LMSs. Great interactivity 

is not yet considered. 

In their current state, learning technology standards do not support highly 
interactive learning objects properly. However, we believe that future 
specifications will include advanced issues of interactivity. We have 
therefore chosen to sketch the application of the Sharable Content Object 
Reference Model (SCORM, [ADL01a]) to interactive learning objects. Later 
on, in the context of our own projects, we will describe our most urgent 
needs (3.3.3).  

The SCORM can be traced back, again, to interests of the Department of 
Defense (DoD), which spends more than $17 billion annually for military 
schools that offer nearly 30,000 military training courses to almost 3 
million military personnel and DoD civilians, many of them aimed 
maintaining readiness [GAO03]. Most courses occur at centralized training 
facilities; they span weeks or months. DoD plans to convert about 50 
percent of these courses into online courses with estimated costs of $10,000 
per hour. (Note that less than five percent of DoD training programs 
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routinely uses interactive training technologies [ADL01a, p. 28] – a more 
frequent use would surely raise costs.) To avoid unnecessary expense, the 
DoD started the ADL initiative, which “envisions the creation of […] 
repositories where learning objects may be accumulated and cataloged for 
broad distribution and use” [ADL01, p. 12]. ADL integrates four major 
areas into the SCORM: metadata, course-structure format, data model, 
and an application interface. It mandates how educational material must 
be organized, structured, and indexed so that different LMSs can cooperate 
in delivering a courseware to a learner. In SCORM terminology, course 
text, illustrations, tables, scripts, and highly interactive learning objects 
represent assets, arbitrary pieces of a sharable content object (SCO). 

"The content structure can represent a content aggregation ranging from very, very 
small learning resources – as simple as a few lines of [HTML] or a short media clip – 
to highly interactive learning resources that are tracked by an LMS. The Content 
Structure is neutral about the complexity of content, the number of hierarchical levels 
of a particular course (i.e., taxonomy) and the instructional methodology employed to 
design a course.” [ADL01b, p. 114] 

Let us investigate how the SCORM metadata (which, in turn, applies 
LOM) supports interactive learning objects. Metadata categories deal at 
first with general information and issues relating to lifecycle, rights, 
annotation, and classification. Assigning them is normally trouble-free. 
The same is true for technical metadata stating format (MIME types), size, 
URL location, and requirements (e.g., browsers, plug-ins). Regarding 
educational metadata, SCORM restricts vocabulary to a set of pre-defined 
values; only for specifying a learning resource type, SCORM suggests best 
practice vocabulary or user-defined terms. To specify an interactive 
learning object, we would combine some best-practice vocabulary for the 
learning resource type: exercise, simulation, questionnaire, diagram, 
figure, graph, index, slide, table, narrative text, exam, experiment, 
problem statement, and self assessment. Further details would be given as 
custom vocabulary, and as free text description.  

SCORM differentiates between two types of interactivity type: learning-by-
doing (active) and learning-by-reading (expositive). Simulations belong to 
the first type, as do questionnaires or exercises. Second type 
representatives are e.g. video clips, or hypertext. We can denote the 
interactivity level within a range from very low to very high, which suffice 
our needs – provided that SCORM will assign certain characteristics to 
these ranges, e.g. statements about physical interaction style (e.g. 
command line, menu, direct manipulation, 2.1.1) and cognitive activities 
(observation, modification of objects/model, feedback, 2.1.3). We also lack 
metadata for dynamic behavior (point & click vs. continuous interactions), 
bi-directional interactivity, and input devices (keyboard, mouse, touch 
screen, etc.).  

The SCORM runtime environment [ADL01c] specifies interoperability, 
that is, how the LMS launches and tracks learning objects, and how 
objects exchange information. Current SCORM documentation considers 
learning objects as black boxes; in particularly, it does not address intra-
learning object branching or navigation within the learning object 
[LSAL03, p.39]. Objects may communicate with the LMS and store and 
retrieve string values (resolved through JavaScript calls); therefore, it 
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must support an appropriate interface. We can use this mechanism to 
launch an object in a specific state, or store its current state for later use. 
However, the model prohibits learning objects to set values of other ones 
(or ask the LMS to do so). If we want to interlink different learning objects, 
e.g. to synchronize their states, we would have to bundle them into a single 
learning object. Another motive for creating such bundles is SCORM’s 
current launch model: it allows only one learning object to be active at a 
time – despite the fact (2.1.2) that learners usually work simultaneously 
with multiple objects, for example, with synchronized theory, exercises, 
and exploratory learning objects. 

2.4 Interactive Learning Objects 
In the discussion of interactivity in WBT, we portrayed the evolution of 
educational software to LMSs (2.3). Such systems obtain reusable 
educational modules (learning objects) from an integrated or external 
repository. In the following, we concentrate on a particular subset of 
learning objects, namely highly interactive ones. We describe the vision of 
digital libraries, and actual repositories holding interactive learning 
objects in the SMET domain, mainly in the field of Computer Graphics 
(2.4.1). Then, we consider – top-down – matters of software architecture 
allowing for object reuse. We provide an insight in software components 
(2.4.2) and adaptability (2.4.3), which refers to the within-component layer. 

2.4.1 Repositories 
The rising interest in repositories for educational material consolidates 
efforts of the diversified educational community. Developers, teachers, and 
designers have recognized the need for collaboration in order to create the 
best-possible learning objects, and, moreover, to preserve and reuse them. 
This is true in particular with regard to the production of interactive ones, 
which has proven difficult and extraordinarily time-consuming [Spalter03, 
Roschelle98]. Spalter and van Dam, for example, estimate “the cost of 
creating a single well-designed, highly graphical, and interactive online 
course in the commercial domain from several hundred thousands dollars 
to a million or more”. They note also that production by and for the 
educational community entails social issues such as limited funding or 
timescales that preclude the application of reusable modules.  

The US National Science Foundation (NSF) has started a major research 
initiative on the design and creation of digital libraries [NSF03]. It 
supports the vision of a national SMET education digital library, which 
combines curriculum material developed in previously funded NSF 
projects, enhances current SMET education, and includes future material 
[Owen00]. As examples, we discuss results of the NSF-funded projects 
Exploratories, ESCOT, EOE, and MERLOT, and further include two 
European projects, ARIADNE and E-Slate, which are funded by European 
Union Research & Development or national projects. 

A digital library is meant not only to provide Web-based housing of 
learning objects with browsing functionality – which is the task of a 
repository –, but also to offer advanced services (via well-defined protocols) 
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for structuring and accessing material, as well as for community tasks. 
Typically, a specialized staff ensures the library’s integrity and continued 
existence over time [Owen00, Yaron01]. For practical reasons, content is 
limited to some specific domain. Here, we focus on research problems of 
digital libraries concerning matters of collecting, describing, finding, 
reusing, and adapting interactive learning objects. Problems with 
intellectual property issues, social issues, system specificity, and others 
can be found, e.g. in [Spalter03]. 

We have pointed out that learning technology standards provide the 
technological base for a digital library (2.3.4). However, currently they 
neither support matters of great interactivity, nor advanced 
interoperability. As an intermediate solution for accelerating production 
and developing adequate component technology, several projects therefore 
created repositories for interactive learning objects and software 
components (see Table 10). The comprehensive Web/Comp project 
[diSessa01] of Boxer-father Andrea diSessa (2.2.2) gives further insights 
into state-of-the-art repositories and component-based educational 
computing. 

Projects developing interactive learning objects typically develop a Java 
component architecture, which – following Kay’s line (2.2.3) – renders any 
object inspectable, modifiable, and extendable. Roschelle [Roschelle98] 
mentions that technically, the idea of a programming language as system 
architecture has proved problematic due to the difficulties in keeping in 
pace with rapidly advancing interactive technology. Consequently, 
Microsoft’s C# language supports diversity in programming languages. A 
language-independent approach would also standardize repositories that, 
for now, collect interactive learning objects in various media types such as 
Flash, Shockwave, Director, Authorware, Toolbook, SVG, etc. 

The Exploratories project [Beall96, Simpson99, Spalter03] publishes 
findings about strategies for creating and using educational Java applets. 
Following the line of other projects of Andries van Dam‘s research group 
(2.2), it represents Brown’s most current contribution to Web-based 
teaching. Their granularity strategy [Laleuf01] decomposes a learning 
object into a graduated, multi-level component hierarchy from self-
complete applications to components to sub-components, providing objects 
at all levels. All their applets use an “Exploratory” base component to 
support a consistent baseline of features (e.g. startup behavior, basic 
menus, basic container). In contrast to projects like E-Slate or ESCOT (see 
below), this approach enables programmers to access all aspects even of 
complex components. On the other hand, project members had to state 
that creating a complete collection for a single course leads to a huge effort 
that is hardly to manageable for a non-profit research group of ten people. 
Like similar projects, they report technical problems with browser 
compatibility (i.e. Java plug-in versions, JavaScript functionality, security 
settings) and system specificity  (i.e. setup, user permissions, classpath, 
network issues). Some stated problems are typical in the university 
environment, such as student’s lacking prerequisites in software design 
(i.e. object-oriented programming, component reusability). 
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Exploratories 
(1996) 

The Brown University Computer Graphics Research 
Group’s latest effort to leverage the computer's potential 
for use in education follows the line of Andries van Dam 
and others (see HES, FRESS, and Intermedia, 2.2.2). In 
developing interactive microworlds for teaching 
introductory Computer Graphics, the project explores the 
use of software components and strives for understanding 
underlying design patterns. 

E-Slate 
(1993) 

Manoulis Koutlis and Thanasis Hadzilakos at Computer 
Technology Institute, Greece, originally planned to create 
microworlds for learning Geography. Funded by national 
and European Community based Research & Development 
projects, it has become a long-term project going through 
many educational and end-users collaborations, as well as 
many technological re-designs. 

ESCOT  
(1998-2001) 

Educational Software Components of Tomorrow. Jeremy 
Roschelle, Chris DiGiano, Roy Pea, and Jim Kaput at SRI 
International’s Center for Technology in Learning explored 
the use of Java-based component technology in math 
education. Focusing on reusability, they interconnected 
third-party JavaBeans components and substantiated the 
use of a scripting architecture.  

EOE (1994) 

Educational Object Economy. James Spohrer founded the 
first and largest repository of educational Java applets at 
Apple's Learning Communities Group in order to enable 
the formation of an educational developer community. EOE 
features 2,600 applets, with a fair number of broken links. 

Merlot (1997) 

Multimedia Educational Resource for Learning and On-
line Teaching. Administered and led by the California 
State University Center, this international cooperative 
organizes a repository of high quality learning objects. 
Merlot provides sophisticated metadata and employs a 
peer review process in combination with user comments to 
assure quality. 

ARIADNE 
KPS (1996) 

The Knowledge Pool System represents the core of 
ARIADNE’s infrastructure, coordinated by Erik Duval. 
This digital library organizes learning objects with 
sophisticated, multilingual metadata, i.e. LOM (2.3.4) 
extended with semantic metadata for science type, 
discipline, and sub-discipline. A concept navigator allows 
for browsing more intuitively. 

Table 10: Educational repositories collect interactive learning objects 
and work on challenges such as component granularity, reusability,  

and quality assurance. 
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More than 50 applets [vanDam02] explore concepts in the areas of color 
theory, signal processing, scene graphs, lighting and shading, viewing 
techniques, texture mapping, and linear algebra (see Figure 5). Available 
software components mainly focus on Java 3D primitives (arrow, axes, 
cone, cube, cylinder, grid, sphere, etc.) and interactive 3D widgets 
(translate/rotate draggers). Users may run the applets with their Web 
browser (using the built-in Java Virtual Machine, or a Java plug-in) or 
browser-independently with Java WebStart. Applets and components are 
bundled as Java archive (JAR) files and can be downloaded for free. 

The long-term E-Slate project [Birbilis00, Kynigos01] in Greece creates an 
easy-to-use visual component toolkit for teachers. Due to problems with 
software compatibility [Spalter03], they also develop a custom desktop, 
that is, a container environment (see Boxer, 2.2.2) offering integrated 
authoring and education. On the icon-driven desktop, users may 
interconnect components through visual “plug and socket” programming, 
which provides both a data flow and protocol (component dependencies) 
connectivity. An essential Logo scripting component extends built-in 
plug-in control facilities. Each component carries a set of scriptable 
primitives involving data passing, state changes, and event handling, all of 
them available through the desktop. Like in other builder tools, the user 
may directly manipulate component layout and appearance. Components 
are JavaBeans that must implement an additional E-Slate API. About 30 
components span information handling and visualization tasks (database, 
map viewer, chart, vector), media handling (image editor, canvas, TV, Web 

 

Figure 5: The Exploratories project at Brown University develops Java 
applets for teaching introductory Computer Graphics. Exploratories 
combine exploratorium and laboratory aspects, and provide graduated, 
multi-level component design. [Laleuf01] 
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Figure 6: The E-Slate project in Greece creates an easy-to-use visual 
component toolkit for teachers. A custom desktop allows for modifying 
component layout and appearance, and lets users control component 
primitives by scripting. [Birbilis00} 

browser), simulation support (agent, turtle, stage, time, clock, variation), 
and common GUI controls (button, checkbox, menu, list, text, etc.). We still 
can infer the project’s early plan, which was to create microworlds for 
learning Geography (see Figure 6). The chosen granularity balances 
usability and flexibility: users can modify components through visual 
programming and scripting only to some degree, further modifications 
must be resolved on source code level. Desktop environment, learning 
objects, and components are available free of charge.  

Between 1998 and 2001, the ESCOT project [Roschelle99, Parnafes01] 
created component-based software for middle school math. Their declared 
goal was to investigate how software components may support the 
educational community in developing interactive learning objects; research 
focused on component reusability and interoperability. ESCOT reached a 
critical mass of components by collaborating with several companies (and 
saved time and costs [Spalter03]). They adapted and incorporated existing 
mathematics educational resources, such as Geometers Sketchpad, 
SimCalc, AgentSheets, EOE components (see below), and others; 
component granularity ranges from simple GUI widgets such as scrollers, 
sliders, number and text entry boxes to more complex, customizable 
components that such as a grapher, a spreadsheet, an histogram, a 
geometry sketching component, and agent-based simulation components. 
The Mozilla Rhino engine formed the base for a JavaScript scripting 
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component. Such component reuse 
minimizes implementation efforts – 
Sketchpad, for instance, brings with 
it all geometry functionality, 
maintains all geometry relation-
ships, and provides drag & drop 
interactivity and animation. As it 
publishes parameters, measure-
ments (e.g., the area of a polygon), 
and actions to the component’s API, 
ESCOT can modify and trigger 
them via standard Java components 
(e.g. a button). The main drawback 
of third-party components lies in 
intellectual property issues and 
licensing [Spalter03]; now that the 
project is finished, its public re-
pository contains about 40 applets.  

ESCOT promoted its work for use 
in real classrooms by designing the 
Drexel MathForum’s electronic 
Problem of the Week (ePoW, 
[MathForum03]), a well-established 
institution and process in which 
interesting, non-standard math 

problems are posted to the international Web audience. Students work on 
the problems and submit solutions, and the MathForum offers feedback, 
help, and exemplary solutions. Finally, ESCOT evaluated the use of visual 
programming builder tools (2.2.2). They customized Sun’s BeanBuilder, a 
tool for connecting JavaBeans components, to support common wiring 
patterns and enhance connection flexibility.  

 

Figure 7: ESCOT demonstrated 
how component reuse supports the 
educational community in 
developing interactive learning 
objects. The project created middle 
school math problems using third-
party components, and promoted 
them in the Drexel MathForum. 
[Roschelle99, MathForum03] 

There are also many repositories collecting stand-alone educational 
material. One of the first efforts in creating a community developing and 
using Java applets is the EOE [Azevedo01]. It organizes applets by areas 
and covers a large variety of subjects such as Computer Science, Social 
Sciences, Arts & Music, etc. (actually, most of them belong to the SMET 
domain). Applet metadata briefly describes object functionality, and 
provides source code for user modifications, member reviews, pedagogy 
(prerequisites, learning level, educational objectives, use time, form, 
structure, interactivity level), and technical comments. EOE’s primary 
trouble is that the repository collects only links to objects. In 2000, roughly 
30% of their applets had broken links or other technical defects. 
Furthermore, they use a proprietary set of metadata providing only 
subjective tendencies instead of comparable concepts. For example, applet 
metadata may state “discovery” pedagogy, “hyperdimensional” structure, 
“high” interactivity, “image” presentation, and “math” relation. As EOE 
relies on free-form metadata, searches become practicable only for the 
licensing, source availability, and target education level. Such lacks reflect 
in community activities. In the field of Geometry, 8 out of 142 learning 
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object members have given reviews, with only 2 technical comments, and 
neither metadata nor pedagogy information. (Note that educational value 
and use of a given source code is not considered in metadata.) Searching or 
browsing becomes difficult. Not a single applet provides end-user 
accessible parameters through which we can tailor the applet even mildly. 
EOE applets are not based on software components; they exist as stand-
alone, non-interoperable entities. 

 MERLOT [SmithGratto02] improves this basic strategy. Like EOE, the 
repository collects links to web sites assisting education in a variety of 
content areas. It arranges subject categories into subcategories, which 
makes searching/browsing for learning objects a lot easier. Material type is 
not restricted to Java applets, but ranges from simulation, animation, 
tutorial, drill & practice, quiz/test, lecture/presentation, collection, case 
study, to reference material. Regarding interactive learning objects, the 
repository features about 2250 simulations and 300 animations. Metadata 
for the primary audience and technical format (15 common formats, e.g. 
Java, Shockwave, Flash) is similarly detailed. Developers can attach 
source code to allow user modifications. MERLOT assures quality by 
employing a (five-star) peer review system and user ratings. Two higher 
education faculty members take part in the reviewing process, and a 
learning object must average three stars to become part of the repository. 
The review process covers three areas: quality of the content (accuracy, 
clarity of presentation, relevance), ease of use (interface design for faculty 
and students, engagement, interactivity), and effectiveness as a teaching 
tool (objectives, potential for integration into classes, instructional 
flexibility). About 950 out of 8800 learning objects come with peer reviews, 
among them 250 simulations. The MERLOT community is active: approx. 
1850 users have submitted ratings and comments such as reports of 
activities they have developed to use in conjunction with the sites. 

The sophisticated ARIADNE Knowledge Pool System (KPS, [Duval01, 
Duval02]) represents a digital library for learning objects with 
standardized metadata (2.3.4). Having a European background, 
multilinguality is one of KPS’s key issues. ARIADNE metadata rearranges 
the LOM document hierarchy and introduces semantic metadata for 
science type and sub-discipline. Users may browse or search for science 
type by successively restricting available disciplines, sub-disciplines, main 
concepts, main concept synonyms, and secondary concepts. A concept 
navigator allows for browsing concept space. ARIADNE further develops 
tools for storing, searching, and retrieving their learning objects, e.g. the 
TM5 tool for test queries. KPS contains 1300 active learning objects (400 
validated ones), whereas active objects denote courses, exercises, 
experiments, problem statements, questionnaires, self-assessments, and 
simulations. If we restrict searching to technical media (MIME) types, we 
find 46 Flash/Shockwave objects and 21 Java applets, mostly animations 
and low interactive objects in the SMET domain. Because metadata 
supports neither software components nor adaptability (e.g. in terms of 
Model View Controller, or by describing parameters and methods, or by 
including source code) produces stand-alone black boxes that can be used 
only “as is”. Compared to MERLOT, we miss reviews and user feedback.  
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2.4.2 Software Components 
So far, we considered content reuse as entities. Let us now address parts of 
interactive learning objects. Along the way, we have already met the 
building block design principle (2.1.1), messaging and visual programming 
(2.2.2), and projects developing interactive learning objects (2.4.1). Today, 
developers generally agree in basing development onto a toolkit of reusable 
software components [Klein98a, Laleuf01]. Roschelle [Roschelle98] states: 

 “In our role as developers, we cannot afford build up high quality versions of each 
component we need from scratch. In fact, some components, such as computer 
algebra, are so expensive to build that we cannot afford to build them at all. […]. 
[Component software architecture] could allow our development efforts to focus on 
narrow niches where we can make a unique contribution while allow our research 
efforts to draw upon a much wider collection of standard educational components.” 

Use of components redefines both programmer and educator tasks, as it 
“redefines the line between software creation and content authoring” 
[Yaron01]. Educational material is no longer seen “as is”, but as a learning 
object that can (and should) be adapted. In the same line, learning theories 
demand that the learner should be engaged in a construction process, i.e. 
creating and modifying software models to refine the learner’s own mental 
model (2.3.1). How many interactive learning objects did ever fit your own 
mental model of the represented topic? The great challenge is to create a 
matching set of graduated, interoperable software components for both 
programmers’ and educators’ use. Yaron explains why interactivity and 
reusability are, in some ways, opposing goals: 

“From a collections perspective, the level of interactivity required for engaging 
activities leads to monolithic chunks of software that are difficult to subdivide into 
components that promote adaptation and reuse.” [Yaron01] 

We define a software component as an internal element of an learning 
object that can be reused in other learning objects. The argumentation of 
component reusability follows the one for learning objects. However, only a 
handful of projects within the educational community deal with component 
issues [Spalter03]. Moreover, software components employed in an 
educational environment have different properties than all-purpose 
components – an educational software component must support teaching 
and learning per se. For example, understanding a concept might require 
studying a component’s interior (model). Content visualization (view) and 
interactivity (control) should match didactical goals. In addition, 
programming will generally favor understandable software structures 
(source code) over efficiency. Cunningham and Bailey, for example, 
illustrate the use of the scene graph structure for teaching 
[Cunningham01].  

Any component software architecture (CSA) must deal with issues related 
to reusability (are components exchangeable?), extensibility (can we plug-
in custom components?), granularity (smart, flexible components vs. ready-
to-use application-like components), standards (will they interoperate with 
third-party components?), relationships (can the system update 
interdependent component parameters automatically?), and interactivity 
(are there built-in control structures that support direct manipulation?). 
Popular component standards are e.g. Microsoft COM (component object 
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model) or .NET (components with metadata), Sun JavaBeans (standard 
Java component model), Enterprise JavaBeans (server-side components, 
J2EE – Java 2 enterprise edition, ONE – open net environment), and 
Borland Delphi components (VCL – visual component library, CLX – 
component library for cross-platform development). They support 
component models such as data flow, data sharing, event-based messaging, 
and Model View Controller.  

Model View Controller (MVC, [Krasner88]) deals with component 
interdependencies by decoupling a component’s core data and functionality 
(Model), presentation (View), and user interaction (Controller). The Model 
notifies its Views when it changes and enables the View to query the 
Model’s state. The View renders the contents of a model, accessing Model 
data and specifying its representation. It is the View's responsibility to 
react to model changes and maintain consistency in its presentation. The 
View forwards user gestures (e.g. button clicks, menu selections) to the 
Controller, which defines behavior; it interprets user gestures and maps 
them into actions to be performed by the Model. Note that MVC – 
separating an object's functionality, visual representation, and 
interactivity – is a Smalltalk design principle (2.2.2), and still the design 
pattern of choice for interactive Java applications [Singh02]. We will apply 
Schulmeister’s interactivity levels (2.1.3) to the MVC pattern later (3.1), 
and extend MVC further to a more granular one regarding construction 
and interaction issues (3.2.1).  

Example  (Model View Controller) Consider particles thrown into a vector 
field, e.g. flowing water. MVC would encapsulate geometry and physics 
in the Model components (particle position, velocity, acceleration, etc.), 
employ View components for graphs, tables, etc., and Controller 
components for user interactions, e.g. mouse or keyboard actions to 
change a mode, or parameter. 

Separating Model from View is essential for synchronizing multiple 
representations of shared data (2.1.2). In Java, dependencies are resolved 
by event-based messaging. Each View that is interested in changes of a 
Model creates and registers a listener object. As the Model is updated, it 
notifies each listener by sending a corresponding event object. JavaBeans 
components use such messaging to implement data flow; specialized events 
notify listeners of property changes, which might be vetoable (that is, 
listeners may prevent actions from occurring). Builder tools like Sun’s 
BeanBuilder (see visual programming, 2.2.2, and ESCOT, 2.4.1) make it 
possible to design data flow visually by operating on JavaBeans metadata, 
which specifies publicly available properties, functionality, and 
connectivity. 

Interdependencies comprising a bi-directional nature can hardly be 
managed by simple messaging. Remember for instance the geometry 
constraints in Sketchpad (2.2.1) or ThingLab (2.2.2). We require an 
additional mechanism providing tools for reasoning about messages and 
responses, in particular about the interactions among them; Alan Borning 
therefore introduces constraint components [Borning81]. A constraint 
represents a relation among components that must always hold. It is 



54 2 Basics 

specified by a rule and a set of methods for satisfying the constraint. More 
generally, a constraint can be seen as an algorithm component – Brown 
University’s algorithm animation system BALSA [Brown84] for instance 
uses such components for separating algorithm from animation issues, and 
the dynamic geometry software Cinderella [Kortenkamp99] takes a similar 
approach. 

A more complex graphical presentation is represented by scene graph 
components [Strauss92, Bell95]. This directed, acyclic graph consists of a 
set of container components (group nodes), scene nodes holding geometry 
information, attributes (color, texture, etc.), camera parameters, and 
behaviors (interactivity and animation). Actions traverse the scene graph 
in order to render the scene, perform picking, calculate bounding boxes, 
etc. Until today, there is no built-in interaction mode for 2D/3D graphical 
scenes, neither in Java 2D, nor in Java 3D. Typically, the system (e.g. 
OpenGL) only supports picking, and developers build custom behavior 
toolkits to include interaction modes such as zoom, pan, rotate, walk, 
select, and drag & drop. We will discuss details of the scene graph 
structure later, when we compare classic approaches with our own 
extensions (3.2.3). 

2.4.3 Scripting 
 “[T]he principal challenge is moving the conception of component software from a 
developer-centric viewpoint toward a domain-centric viewpoint” [Roschelle99]. 

Developers reduce the complexity of developing interactive learning objects 
by decomposing them into software components (2.4.2), not only to save 
time and cost, but also to enable end users to customize content, layout, 
and user interface. However, interactive learning objects and 
corresponding components are executable pieces of software, and difficult 
to adapt to the diverse needs of the educational community.  

Many of the EOE’s applets (2.4.1) enable adaptation by including Java 
source code. Skilled programmers may then rework a learning object 
completely, using efficient data structures and low-level communication. 
However, Yaron [Yaron02] mentions that “even if source code is available, 
and the changes required to make the content useful in the particular 
classroom are small, instructors do not typically have the time or expertise 
needed to implement them”. Many other members of the educational 
community [Roschelle99] criticize the current excess of computer 
programming in developing interactive learning objects. Normally, 
educators with pedagogical expertise lack in technical background, which 
excludes them from the creation process of an interactive learning object. 
Papert’s approach therefore was to simplify programming (see Logo, 2.3.1). 
Kay’s working group set off a further shift towards direct manipulation, 
drag & drop construction, and visual programming (see Smalltalk, 2.2.2, 
and ESCOT’s use of builder tools, 2.4.1). Current tools such as ALICE 
[Conway97] reduce programming to graphical if-then-rules and automate 
common tasks. However, as Adele Goldberg, a member of Kay’s group and 
his later successor, mentions (as cited in [Roschelle98]), the principle 
problem remains: few educators have the time or inclination to become 
programmers at all. 
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We therefore turn to a complement model that seems to be more natural 
for authors that are not technically inclined: creating Web content and 
extending its abilities. Yaron [Yaron01] characterizes that approach as 
follows: Instead of viewing “the creation of curriculum material as 
primarily a programming task, and simplifying programming to the point 
where it becomes accessible to instructors […], our approach starts from a 
very different perspective, that of curriculum creation as Web authoring”. 
He argues that most members of the educational community are already 
familiar with Web-based authoring such as using hypertext links or 
image maps. Basing authoring on the hyperlink paradigm has – from an 
author’s perspective – advantages compared to simplified programming. It 
is straightforward to go from creating a hypertext link to sending a 
message to a learning object. Instead of linking to an entire object, we 
might introduce links to, from, and between software components (or other 
internal items or substructures). 

Such an interlinking with an object’s substructures requires a mechanism 
specifying link anchors and targets independently from the object’s content 
type, content, and structure. Remember the Dexter Hypertext Reference 
Model that regards the object’s interior (‘within-component layer’) as being 
outside of the hypertext model per se (2.2.2). Instead, it proposes indirect 
addressing by a pair of anchor identifier and value. While the identifier 
provides a constant, unique referent for linking, the anchor value specifies 
some item or substructure within an object. Obviously, only the application 
responsible for handling the object can interpret the anchor value; as the 
object changes over time, the anchor value will be changed to reflect 
structural changes or movements of the item to which the anchor is 
conceptually attached.  

Technically, browser plug-ins render the Web interactive (2.2.3). The 
communication model between plug-in content and hypermedia 
environment seriously restrains interoperability. Consider today’s 
interactive Web content: does it show adequate hypermedia embedding or 
rather black box behavior? In the case of Java applets – which ironically 
start up as gray boxes – authors may access all public API functionality of 
the object by the use of scripting. Scripting languages like AppleScript, 
JavaScript, or VBScript (VisualBasic) allow for lightweight programming 
[Roschelle96]. They offer an object model of the current application and 
facilitate control of object behavior within and across hypermedia objects. 
Authors embed Web scripts as plain text into HTML content. A Web 
browser initiates and starts scripts either when opening a Web page or 
after specific user interactions such as button or mouse-over events. The 
other way round, scripts may also process messages (events) from software 
objects, e.g. to synchronize objects, or give context help. 

A first approach therefore is to define public methods and properties of an 
interactive learning object that then may serve as anchor identifiers. 
Wolfgang Christian  implements this idea in his Physlets (applets for 
teaching physics) toolkit [Christian00]. Each of his components ships with 
a predefined set of properties and methods that we may use in scripting. 
Christian further splits learning objects into many small, but 
interconnected components (applets) that can be distributed all-over a Web 



56 2 Basics 

 

Figure 8: Christian’s Physlets represent small, interoperable components 
for teaching physics. They offer predefined, scriptable properties and 
methods. Working as applets, physlets can be distributed all over a Web 
page, and still share data and communicate. [Christian00] 

page. This allows authors to interlink, for example, non-interactive, in-
structional course text with interactive, constructive microworlds. 
(Horwitz [Horwitz95] calls a microworld (2.3.1) that is connected with its 
hypermedia context by scripting a hypermodel.) However, we cannot 
restrict a Physlet’s given set of public functionality. Roschelle mentions: 

“The more functionality and flexibility an application offers, the greater is its 
usefulness. On the other hand, we only want to use a constrained set of carefully 
tuned features that can help students focusing their work.” [Roschelle96] 

The Physlet component granularity is not graduated. While each Physlet 
component represents an application, internal items or substructures are 
not encapsulated into components. Functionality that was not foreseen 
must be implemented by a new component. Jeremy Roschelle, who 
concentrates on flexibility in authoring mathematical representations and 
manipulating the object’s user interface, made a first step towards more 
graduated, scriptable components. His MathWorlds [Roschelle96] project 
enables users to control interface issues with AppleScript scripts, record 
scripts, and attach scripts to the interface. ESCOT and E-Slate (2.4.1) 
consequently encapsulate scripting functionality, i.e., a script parser and 
interpreter, into corresponding scripting components (JavaScript, 
respectively Logo) – that way, developers can adjust publicly available 
functionality as needed. Lastly, Roschelle mentions the use of so-called 
factored programs, which encapsulate MVC’s direct manipulation 
controllers, to generate scripts on user interactions.  
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2.5 Conclusion 
This first part of this thesis concerned the nature of interactive Web-based 
courseware. We described interactivity in terms of direct manipulation, 
physical GUI ingredients, cognitive process, and quality. A combined 
definition will be given in the second part. We contrasted the WIMP-
designed Desktop with the Web, which is limited to the hyperlink and 
plug-in technology, and portrayed efforts to render the Web valuable for 
education by focusing on structure, interactive multimedia, collaboration, 
and personalization.  

While a start has been made with learning management systems and 
metadata standards, great interactivity is not considered in current 
learning technology. We found that current interactive learning objects act 
as black boxes in a Web-based courseware, which can be neither adapted, 
nor interlinked in a fine-grained manner. Development swallows a lot of 
resources, and resulting software cannot be reused. We therefore outlined 
approaches to software components and scripting that promise to provide 
adaptability and interoperability on all software levels. However, many 
questions are left open. Can we conceptualize and realize a multi-level, 
scriptable, component-based architecture? If so, how do we manage 
learning objects, software components and scripts in a Web-based 
courseware, and allow community members to work with them? We will 
give appropriate answers in the second part. 
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3.1 MVC Interactivity 
We already clarified the denotation and relevance of interactivity in 
learning by emphasizing successively the physical, perceptual-cognitive, 
and communication-theoretic points of view (2.1). Let us now combine the 
major concepts of interactivity and reformulate the terminology in terms of 
Computer Graphics principles, particularly in terms of the Model View 
Controller (2.4.2). We propose a so-called MVC Interactivity [Hanisch03b] 
that provides a precise definition of highly interactive learning objects. In 
our notion, a highly interactive learning object allows for directly 
manipulating its view, parameters, and functionality. 

At first sight, MVC meets technological, didactical, and cognitive demands. 
The paradigm separates interface issues (Controller, e.g. direct 
manipulation) from an object's visual appearance (View) and its state or 
functionality (Model). However, parameter interactivity differs in its 
symbolical meaning from interactivity on the structure/model layer. We 
therefore break down MVC's Model into parameters and internal 
functionality; while the first represents an object's state, the latter 
comprises the underlying structure and components. Note that 
Schulmeister’s understanding of an object’s model refers to its 
functionality, that is, to its structure and components (object parts), and 
the object’s state corresponds with his notion of parameters (2.1.3).  

We consider an object a highly interactive learning object if it provides 
means for 

1. representation of domain knowledge that may induce a learning 
process 

2. illustrative actions 

3. direct manipulation of object view 

4. direct manipulation of all essential object parameters 

5. direct manipulation of object functionality (structure, components) 

6. adequate feedback and help 

We integrate all levels of Schulmeister's taxonomy, require direct 
manipulation in all aspects, and explicitly ask for a proper design of 
interactivity with respect to the range of interactive parameters. Note that 
we strive for great interactivity only – other degrees of interactivity can be 
derived. Point 1 formally defines a learning object (2.3.4). 

We imply that a highly interactive learning object visualizes complicated 
topics and relationships graphically and allows for direct manipulation of 
all parameters belonging to the topic's core. Learners can modify internal 
components and get visual feedback or help wherever needed. Modifying 
the model may require visual scripting (3.3.4) or visual programming 
(2.2.2). 
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3.2 Software Components 

3.2.1 The ORC-SG Design Pattern  
Developing hundreds of highly interactive learning objects naturally leads 
to a component-based architecture supporting MVC, constraints, and a 
scene graph structure (2.4.2). MVC separates an object’s functionality, 
appearance, and interactivity, constraints encapsulate component 
interdependencies, and a scene graph represents complex graphical scenes. 
We portrayed how to create and modify learning objects by connecting 
components (programmatically or visually).  

However, there is no design pattern combining such component types. 
While MVC is included into popular component standards, constraints still 
require custom structures. The scene graph exists as a separate, 
incomplete architecture (for example, we have Java 3D, but not a 2D scene 
graph), requiring custom extensions, e.g. to provide adequate interactivity. 
Moreover, we have argued for a multi-level architecture enabling us to 
adapt, combine, and exchange components on all levels. We therefore 
propose and implement a more granular MVC component model with 
respect to construction and interactivity, which we call ORC-SG (object, 
renderer, constraint, scene graph, GUI) [Hanisch03a]. 

Our implementation is based on Java 2 (see Figure 9). To maximize 
usability (and minimize netload), we heavily used the included packages 
Java2D and Java Swing, and, as appropriate, the standard packages Java 
Advanced Imaging (JAI), Java Media Framework (JMF), and Java 3D – 
packages providing basic functionality for mathematics, geometry, 
visualization, and user interfaces. Our own packages extend this 
framework, respectively with components encapsulating objects, 
constraints, renderers, GUI, and a scene graph structure. The latter ones 
include sub-packages for a scene graph’s nodes, actions, and GUI.  

We do not ship interactive learning objects with all these components; 
instead, we bundle components into packages (Java archives, JAR) and 
specify required packages in 
the learning object metadata. 
Browser or plug-in may then 
reuse formerly downloaded 
(cached) packages, and the 
learning object’s actual 
netload shrinks to a few 
kilobytes. To avoid complex 
component interde-
pendencies between different 
packages, we set up layered 
packages containing only 
one-directional dependencies, 
and use adapter 
components with standard 
Java interfaces like 
JavaBeans properties. 

 

Figure 9: The ORC-SG design pattern for 
a component-based software architec-
ture. Front- and back-end of the highly 
interactive learning objects we developed 
are standard Java packages. 
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3.2.2 Object, Renderer, Constraint (ORC) 
Usually, MVC’s model encapsulates both state and functionality of a 
component. As educators, we are also interested in its construction. 
Consider Bézier curves – how would we teach them without the 
constructive algorithm of de Casteljau? Therefore, we further separated 
constructive information into a constraint component (e.g. orthogonal 
lines, a point on a curve, 2.4.2). A constraint automates necessary 
parameter updates, which is useful in the case of many interdependent 
parameters (see Figure 10). Before performing the update, we announce 
parameter changes to all listeners registered for the given type of 
modification, and let them accept or veto the change, or constrain data 
accordingly. The update phase is restricted to the ORC layer; further 
updates involving SG components must either be promoted 
programmatically (to avoid rendering visual information multiple times) or 
be handled directly within the specific component (e.g. in response to a 
user input).  

Instead of implementing a constraint solver, we simply rely on a data 
flow model (forcing the author to avoid circle definitions, which might 
otherwise lead to deadlocks). Our result are reusable and exchangeable 
algorithms – which is useful for more than just teaching alternative 
computer graphics algorithms. 

 

Figure 10: Constraints encapsulate constructive information. In this 
example, they manage bi-directional, direct manipulation of all essential 
parameters, while synchronizing dependencies automatically.  
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Our Object components store state 
information and primitive 
functionality. They fit smoothly into 
the Java 2D/3D component 
hierarchy, e.g. point components 
derive from the corresponding Java 
component, and abstract point 
functionality supports both 
dimensions. Our geometry objects 
(point, vector, mesh, etc.) contain a 
transformation cache to avoid 
redundant recalculation of 
transformed states. 

Example  (Curve Objects) All of our 
parameter curve objects, from 
simple point sets to 
Taylor/Lagrange/Bézier/-
BézierSpline/BSpline curves to 
arbitrary functions (our parser 
component supports standard 
math and trigonometric 
functions), derive from a Curve 
component. This abstract base 
component provides 
functionality for querying the 
point list, performing equality and epsilon tests, calculating derivations, 
bounding box, length, distances, etc. A flatness parameter controls curve 
approximation by a discrete number of points; we perform recursive 
interval bisection until the resulting points’ distance is less than the 
given flatness (see Figure 11). For each affine transformation operating 
on the curve, we store the transformed discrete points in the 
transformation cache (a simple hash table). Derived components 
implement case-dependent functionality such as single point queries or 
replaces functionality such as the general difference method for 
calculating derivations by optimized derivations, e.g. for Bézier curves 
or explicitly given ones. 

 

Figure 11: Geometry objects hold 
state information and primitive 
functionality, together with a 
transformation cache. All of our 
parameter curves derive from an 
abstract curve providing 
functionality like curve 
approximation for a given flatness. 
Our abstract curve renderer in 
turn draws curves output-
sensitively, using polylines and 
one-pixel default flatness.  

In contrast to this, our renderer components hold an object’s view – its 
visual information. This enables students to change views and focus on 
teaching content in programming, without having to deal with technical 
output issues (see Figure 12). In MVC, it is the view's responsibility to 
react to model changes and maintain consistency. In ORC-SG, renderers 
are passive components; the scene graph will perform all necessary 
synchronization. Renderers may hold arbitrary properties to describe 
their appearance (e.g. colors, line strength, strokes, or fill type). The 
renderer’s base component stores them as string-value pairs in a hash 
table and allows for a scripting style like renderer.setProperty(inactive-
Color, Color.black) independent of the actual renderer type. A property 
cache ensures efficiency: we cache properties additionally in the derived 
renderer, and retrieve them from the hash table only if they become 
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invalid. As users wish to select 
an object’s visual shape 
instead of geometry, renderers 
further hold selection 
functionality such as picking 
with a screen point or an 
arbitrary shape (e.g. a rec-
tangular selection).  

Example  (Picking) Our string 
renderer provides both a 
‘pickable’ and a ‘pickInside’ 
boolean property. If merely 
the first property is set, we 
let users pick the string’s 
bounding box on screen. 
While this is useful for 
small-sized text, such 
picking behavior might 
confuse users when dealing 
with larger-scaled text. 
There, they would rather 
expect to pick only visible 
portions of the string, that 
is, the inner area of the 
characters, – which is, in 
fact, the behavior that our 
second property enforces. 
Picking with an arbitrary sh
test each character’s midpoint, and pick the string only if half the 
characters lie inside. 

 

Figure 12: Encapsulating visual infor-
mation into renderers enables students 
to change views and focus teaching 
content in programming. Here, students 
pilot a racing car to the goal by 
programming and connecting a spline 
curve’s Bézier segments with C0, C1, or 
G1 continuity, without having to deal 
with technical output issues.  

ape is similarly resolved per character. We 

All of our renderers render into the standard Java Graphics2D object. That 
way, we can output into any Java GUI component, or render into any other 
component providing a Graphics2D object, like the Java Image component. 
Many of our renderers further work output-sensitively, a necessity for 
fine-detailed graphical scenes such as grids, point clouds, or vector fields. 
Just imagine setting a small zoom factor for vector fields while keeping 
grid size constant – rendering would slow down immediately. 

Example  (Output-Sensitive Rendering) Our curve renderer contains 
properties such as line strength, strokes (e.g. dotted, textured), point 
color, inactive and active color (most of our renderers visualize objects in 
two states, inactive/unselected and active/selected), a pickable flag 
determining if users may select the object, and a flatness parameter 
(with one-pixel default, see Figure 11). We render the curve into a 
Graphics2D object (which, in the simplest case, belongs to a graphics 
canvas) bringing with it an affine (canvas) transformation, clipping 
bounds, and several rendering hints, e.g. antialiasing, dithering, or 
interpolation. Curve flatness results from calculating the required 
flatness *before* the canvas transformation meeting the given rendering 
flatness was applied. We query the curve points, perform line clipping, 
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and finally draw a polyline using the given stroke. Note that affine 
canvas transformations (zooming, rotating, translating, etc.) will 
produce different point sets due to varying curve flatness; however, we 
have to perform interval bisection only once, and then pick points in the 
bisection tree accordingly. Only scene transformations operating on the 
curve will require us to re-approximate the curve.   

Objects, constraints, and renderers form a self-contained package. As the 
number of possible constraints and renderers is unlimited, a plug-in 
architecture allows for incorporating additional, custom ones. Our plug-
in mechanism retrieves components by Java Reflection and naming 
conventions: we search for components with predefined syllables in a list of 
default locations, try to retrieve the class file dynamically via Java 
Reflection, and create an instance fitting to the given set of parameters. 
Users may extend the lists of locations and syllables. Third-party 
components can be included in supplementary packages. 

Example  (Plug-In Architecture) We create a geometry constraint for 
orthogonal lines with the statement Geo. constrain(“orthogonal”, 
outLine, inLine, inPoint). The plug-in mechanism scans all given 
locations and syllables, retrieves a fitting OrthogonalConstraint2D 
component in the package grdev.geo.objects2D.constraints, and 
instantiates it. The constraint immediately connects to the input 
parameters inLine and inPoint, and updates the output parameter 
outLine to become orthogonal to inLine through inPoint. We locate 
renderers similarly; each geometry object possesses a default renderer 
specified by naming conventions, e.g. we render a Point2D component by 
default with a Point2DRenderer. Note that the string-based approach 
integrates seamlessly into a scripting architecture (3.3.1).  

3.2.3 Scene Graph and GUI (SG) 
Two other packages consider user interactivity. While a scene graph 
package provides advanced interactive visualizations, a GUI package 
extends the standard Java Swing component set with our own GUI 
components.  

We developed specialized GUI components for reoccurring setups in 
animation (play, pause, forward, backward, etc.), file operations (e.g. file 
browser, image browser), layout (pre-defined, bordered panel groups), or 
informational tasks (e.g. progress level). They supply a consistent look & 
feel (2.2.2) and circumvent common pitfalls like concurrency in multi-
tasking (threads), local activities vs. networking or applications vs. applets 
(class path, data access, security), and packaging (data access in JAR files). 

Example  (Scalar GUI) We implemented a text field interpreting its input as 
a scalar value. A simple command in the form of ‘scalar.setComponent 
(textField)’ connects this text field to a corresponding scalar component; 
from now on, these two are kept synchronized. Developers may 
optionally define the number of decimal places, lower and upper 
bounds, and increments, which inserts buttons accordingly. The 
increments define an adaptive speed-up behavior (initial delay, fast 
forward/backward) enabling users to keep buttons pressed (see, e.g. 
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Figure 12, bottom left). Besides, remember a common pitfall when using 
floating-point arithmetic: it is rarely exact. The increment 0.1 for 
example would need an infinitely recurring binary (and would produce 
results like 1.000000000000001 instead of 1). We therefore employ Java 
BigDecimal functionality providing anticipated rounding behavior.  

All of our GUI components are based on standard Java functionality. 
Remember further the adapter mechanism resolving component 
interdependencies between packages. In the scalar GUI example, an 
adapter translates the scalar component’s parameter change events into 
less efficient, but standard, JavaBeans property change events, and vice 
versa. (Technically, the adapter components is registered as parameter 
change listener to the scalar component, and as property change listener to 
the GUI component. It reacts by firing a corresponding property change 
event, respectively a parameter change event).   

The scene graph package provides default interaction behavior and 
visualization for our objects. This reduces technical issues and enables 
authors to concentrate on an learning object’s didactical value, e.g. by 
enriching mathematical theory with concepts of digital storytelling (see 
Figure 12). A scene graph consists of nodes, actions, and a scene graph 
GUI. Nodes are made of at least one pair of geometry objects and 
matching renderer; we assemble them into a classical scene graph 
hierarchy (2.4.2) representing all information of our graphical scene. For 
performance reasons, we permit multiple occurrences of a node in the tree. 
Usually, our scene nodes contain an additional interaction sub-tree, which 
assembles several basic scene graph nodes to provide a desired interaction 
behavior. A first benefit is that we may reuse already implemented – and 
familiar – functionality. Nodes that must render text (e.g. labels in a 
coordinate system) can integrate labels with a string node; as our string 
nodes can be drag & dropped, users may use this feature to rearrange 
labels to fit their needs. A second benefit is the fact that we now can 
implement different interaction modes by providing different sub-trees. 
Think of interacting with a 2D circle: while one sub-tree might offer users 
to directly manipulate circle parameters by three interactive points on the 
circle’s boundary, a second sub-tree might offer only two points, center and 
radius, for modification. 

) root root

Figure 13: We accompan
side) holding arbitrary f
etc.). Setting a flag at a g
below. Unsetting a flag i
node is set, propagating t

 set
  

A 

 

?

?

root.unsetAt(flag, path(A)
   

y the scene graph with a global state tree (left 
lags (visible, selected, restricted scene actions, 
iven path indicates that it is also set at all nodes 
nvolves checking the nodes on the path and, if a 
he flag to all children (right side). 

?

? 

 ?
  ?

? set 

 

?

set



3 GRIS/ILO 67 

  

Note that our 2D scene graph contains two different types of 
transformation nodes: an object and a canvas transformation. This 
corresponds to the camera node and object transformation known from 
classic 3D scene graphs. We included this differentiation to make use of 
object caching (3.2.2). The first class, object transformations, operates on 
geometry objects; their results are cached within these objects. The second 
class merely transforms the canvas we draw on, i.e. it represents 
alternating global views, or interactivity that globally zooms, rotates, or 
pans the scene. Canvas transformations can be stored directly in the 
standard Java Graphics2D object, which optimizes rendering. 

Arbitrary scene graph actions traverse the node hierarchy in order to 
render the scene, pick some objects, drag them, and so forth. Simple 
models reflect the current state during scene graph traversal by a global 
push/pop state. Such an approach is not suitable for highly interactive 
graphical scenes. We replaced the state object with a global state tree 
holding arbitrary state flags. Flags mark nodes located at specific scene 
paths as, for example, visible, selected, or active for specific actions only. 
We optimized this state tree straightforwardly by saving shared states of 
siblings in their parent node (see Figure 13). While initially the tree is 
collapsed to a single node, we insert marked nodes successively whenever 
needed. State tree functionality consists of node primitives (set, unset, 
reset, isSet) and node operations specified by paths (setAt, unsetAt, 
isSetAt). While setting a flag at a given path indicates that it is also set at 
all nodes below, unsetting a flag involves checking the nodes on the path 
and, if a node is set, propagating the flag to all children. If all nodes 
become marked, the state tree’s size becomes equal to the scene graph’s 
tree size; therefore, interactive mass scenes would require further 
optimization. 

Our 3D nodes use Java 3D functionality. Java 3D encapsulates 
functionality for non-static scene graph interactions into so-called 
behaviors. However, the built-in collection (billboard, LOD, interpolators) 

    

Figure 14: Our reconstruction of the Schickard calculator makes heavy 
use of the scene graph structure. We used a drawing found in Kepler’s 
letters (left side, [Löringhoff78]) for modeling, and created Java 3D 
components with corresponding behaviors. Users may directly 
manipulate buttons, sliders, and gears, and obtain context help when 
moving the mouse over them. 
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does not cover the ability to react adequately to user input. We had to 
develop custom mouse and keyboard input behaviors to provide 
interactivity with both single scene nodes (scaling, rotating, and 
translating not only the entire scene, but also single nodes within the 
scene), and constrained behaviors (picking with subsequent animation, 
movements along some axis, periodical behaviors, etc.) [Hanisch01b]. 

Example   (Schickard Calculator): Wilhelm Schickard, appointed professor 
of oriental languages, astronomy, mathematics, and geodesy at the 
University of Tübingen, invented the first known four-species 
mechanical calculator to add, subtract, multiply and divide. In 1623, he 
wrote to his dear friend Johannes Kepler,”[..] what you have managed to 
calculate by hand, I've tried to perform in mechanical ways in the last 
days and have constructed a machine consisting of eleven complete and 
six garbled gearwheels. It calculates instantly and ‘automatically' (this 
word was written in Greek letters!) given numbers: adding, subtracting, 
multiplication and division. You would burst out laughing if you would 
be here and live to see how the left digits, if it goes over the tens or 
hundreds, increase on their own or while doing a subtraction taking 
something off" [Löringhoff78]. Some hundred years later, the faculty of 
Computer Science in Tübingen was named after Schickard. 

Our reconstruction of the Schickard calculator [Hanisch01b] employs a 
scene graph and enables users to perform calculations like Schickard 
did, watch the calculator from any viewpoint and even gain an insight 
view of the 17 gearwheels (see Figure 14). Users may follow a trail 
explaining the handling, or obtain context help (see Figure 15). 

Reusing slider, button, gearwheel, and cylinder components speeded up 
the scene modeling, and economized both CPU memory and disk space. 
While we implemented global interactions such as zooming, rotating, 
panning, and picking parts of the scene  using standard Java 3D 
components (in our case the buttons, wheels and sliders), constrained 
interaction behavior required for the 8 slider movements and for the 
rotation of the 6 white gear cylinders (so-called Neper cylinders) took 
some more effort. We represented them as picking behaviors with 
subsequent animations (the cylinders), left/right movements (the 
sliders), or periodical behaviors (the turning of a gearwheel that 
stimulates its neighbor to turn every 10th step). 

Finally, the scene graph package contains an appropriate scene graph 
GUI component, which maps user gestures and keyboard input into 
corresponding scene graph actions and resolves appropriate rendering 
actions. Compared with MVC, our GUI components and our scene graph 
GUI inherit all controller tasks. 

We make further use of the scene graph structure by labeling scene nodes 
with metadata. That way, we realize context-sensitive references from a 
learning object’s internal items to its hypermedia context. For example, 
consider a learning object offering direct manipulation of a triangle’s 
special point (see Figure 16): according to its location, we expect context 
help respectively for the incenter, centroid, circumcenter, or orthocenter 
(there are more than 400 known triangle centers).   
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Figure 15: In exploring our reconstruction, the user may perform 
calculations like Schickard did, watch the calculator from any viewpoint, 
and even gain an inside view on the 17 gearwheels by making the case 
transparent and watch the gears move. 
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Therefore, before offering 
help or references within a 
learning object, we request 
metadata of all currently 
selected scene graph nodes 
and GUI components with 
keyboard focus. We then 
collect, hierarchically 
bottom-up, all classifi-
cations within the scene 
graph and create 
hyperlinks to similar 
classified hypermedia 
elements. As we will 
illustrate later (3.3.3), 
authors have to describe all 
metadata appropriately.  

 

Figure 16: By labeling scene nodes with 
metadata, we are able to offer context help. 
The hyperlinks lead to corresponding 
passages of the course text. 

 

3.2.4 The Toolkit 
Most of our interactive learning objects visualize algorithms and offer 
interaction with all essential parameters of an algorithm. For that reason, 
we identified reoccurring basic components for containers, data structures, 
2D/3D geometry, images, video, and physical quantities [Hanisch00a]. 

We require a container model to create component composites and 
express hierarchy naturally (2.2.2). The Java language brings with it a 
Container component serving as a base component for windows or any 
other component occupying space on screen. Sadly, the embedding of 
browser plug-in content is incompatible with the Desktop’s container 
model, and technology restrains us from bridging this gap (2.2.3). 
However, we are able to remove some obstacles by offering a base 
component for interactive learning objects, which enables users to toggle 
between document embedding mode (an embedded Java applet’s position 
on the page is fixed) and overlapping windowing mode, and run the object 
as a stand-alone application or applet,  either locally or online. Our custom 
resource loader decides on the correct sequence of local and network 
locations to be searched for, and bypasses annoying security issues that 
would arise in a naive implementation (for example, the default resource 
loader is limited to the applet’s server). Finally, the base component 
displays startup and copyright information, and contains scripting (3.3.1) 
and networking (3.3.2) functionality.  

By building composites of standard Java components and our ORC-SG 
components (using the Java Container or scene graph containers), we 
reach a graduated component hierarchy, i.e. a multi-level component 
architecture (2.4.1). While components of the ORC-SG layer represent 
universal, core elements of our architecture and our final, self-contained 
learning objects belong to a specific domain, composite components 
typically show up a granularity in-between; though they belong to a 
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specific domain, they are still 
universal, basic components. We have 
developed more than 130 interactive 
learning objects in the field of 
Computer Graphics, Geometric 
Modeling, Computational Geometry, 
Imaging and Video Processing, and 
Scientific Visualization (see case 
studies, 5) using such a toolkit of 
basic components. We developed 
toolkit extensions first, before any 
actual learning object; in fact, we 
spent most of our time on the former 
(which is typical for component 
software). We identified components 
for visualizing and interacting with 
data structures (list, graph, tree, etc.), 
geometry (camera. screen, grid, etc.), 
images and video (viewers, filters, 
etc.), and physical quantities (scalar, 
vector, field, light, etc.). Scene graph 
composites (so-called nodekits), plain 
text components, and image 
components provide direct 
manipulation and drag & drop 
functionality.  

 

Figure 17: Development of a 
toolkit of basic components 
typically precedes the 
development of an actual 
learning object. We created this 
visualization of the raycasting 
algorithm by connecting basic 
component composites (here, 
scene graph nodekits). All visible 
parameters can be manipulated 
directly. 

Example  (Basic Components) The learning object in Figure 17 
demonstrates how we visualized the idea of raycasting. Several scene 
graph components implement the camera, the screen (a 1D pixel array), 
the objects (two circles), a point light, grid, and canvas. Using the 
standard dragging behavior, all visible parameters can be manipulated 
directly. The screen component listens to camera modifications and 
automatically adjusts its parameters. Similarly, the circles listen to the 
camera ray property and send the intersection information to the light 
source, which calculates the lighting model. Finally, the screen 
component sets the pixel hit by the ray to the color calculated by the 
light source. We reach a proper visualization by animating the camera 
ray property, that is, by looping through all values. 

3.3 Adaptability and Interoperability 

3.3.1 Scripting 
Concerning reusability of interactive learning objects, we strive for (1) 
adaptability in design, layout, and functionality, and (2) interoperability 
with other objects (2.4.3). Our ORC-SG design pattern encapsulates 
matters of visualization, construction, and interaction into software 
components. However, interactive learning objects still appear isolated 
within a courseware, and modifications require low-level programming. 
Let us now focus on an appropriate scripting architecture enabling end 
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users to modify and exchange all components from within their Web 
environment, and interlink them with other ones. 

With publishing languages (X)HTML and Java, a natural choice for a 
scripting language was JavaScript. We equipped our base component for 
interactive learning objects (3.2.4) with a single, publicly accessible 
scripting method; all scripting actions are delegated to a scripting 
component. Currently, our parser/interpreter prototypes cover only a 
subset of the JavaScript (ECMA) grammar. Scripts may import user-
defined classes, instantiate objects, and call their methods. We further 
modified our GUI components to execute scripts on user actions. While a 
simple button component resolves standard script sequences, we simplified 
script syntax for multiple-choice components such as check boxes (a 
true/false value), combo boxes (one out of a list of string values), radio 
buttons (an integer value), etc. Scripts may therefore contain variables, 
which are replaced dynamically according to the user’s choice. 

The interpreter falls back on Java Reflection to create components or call 
their methods. As all scripts are located client-side, we obtain a 
performance overhead only in Java Reflection’s search for constructors and 
methods, and, of course, in any deferred loading of required resources 
(classes, images, and data). A custom class loader component assures that 
our interpreter retrieves new components at first from (already cached) 
Java archives (JAR files), then from default plug-in paths, and then from 
given Web locations or local file systems. 

End users may now create an entire learning object using an ‘empty’ base 
component plus an initial script. In practice, it is more likely that 
programmers code a learning object’s initial functionality traditionally, 
and carefully declare a set of parameters as script instances afterwards. 
That way, developers can hide specific internal details, as well as filter 
publicly accessible information. The scripting component stores all script 
instances in a hash table; in contrast to the Java garbage collection 
mechanism, we explicitly permit users to remove instances. Scripts using 
an instance not yet created (which typically occurs with badly arranged 
script sequences) are ignored. Besides, note that it is not the browser who 
handles invalid scripts, but our scripting component. Browser-side 
scripting would immediately report invalid scripts to the user; some 
browsers would also disable further scripting. Our approach enables the 
learning object to decide which reactions should be accomplished 
autonomously.  

We classify scripts as settings (that merely modify parameters) and 
operations (that modify the view, structure, or components, like 
instantiating a new object). In contrast to other projects, we organize 
scripts – like all other courseware’s components – in our database (3.3.3). 
We will describe later (4.1.2) how the courseware’s generator applies 
templates and inserts referred scripts as JavaScript sequences into the 
final Web page. Our script templates work in a context-dependent 
manner: according to the target location, we insert scripts, for example, 
either as hyperlink and pictogram, or together with an illustration 
allowing the user to preview script effects. We designed the templates to 
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Figure 18: By embedding scripting instructions into hypermedia content, 
authors may illustrate the current topic directly within the user’s 
learning object.  

avoid unwanted results of script combinations by restricting the script’s 
scope to the current Web page. This also ensures that multiple instances of 
a learning object (embedded at different locations within a courseware) do 
not interfere. 

Scripting in interactive courseware performs tasks such as illustrating 
content, synchronizing learning objects, visualizing alternative points of 
views, or introducing functionality incrementally. At first, educators can 
illustrate statements presented in text passages or slides directly within 
the corresponding interactive learning object (see Figure 18). Authors may 
for example design script settings to visualize specific setups or special 
cases, or readjust parameters to match the textual description. Script 
operations may exchange constraints and renderers, construct additional 
scene graph nodes, adapt the GUI, or even import self-defined components. 
Scripts respect the current state of a learning object, which means that 
none of the learner’s modifications are lost in a session. 

A second scripting application is synchronization of an object with 
others. Consider the common case of a guided tour; with each step, we 
naturally want to match a learning object’s state with the described setup. 
With scripting, we can now synchronize them, step-by-step, and learners 
may start their self-studies at any point.  

Example  (Scripting Applications) Consider the use of hyperlink scripting 
depicted in Figure 18. The current course text defines and explains basic 
properties of a B-Spline curve. A corresponding interactive learning 
object offers the learner to discover them constructively. The author 
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motivates the curve by comparing it with a Lagrange interpolation. We 
enriched the hypertext with scripts modifying the interactive learning 
object to visualize both the B-Spline and Lagrange interpolation (Figure 
18, left). The learner may compare the curves’ behavior graphically by 
modifying control points, degree, etc. Later on, another text passage 
compares the spline with a Bézier curve (Figure 18, right) and offers 
similar scripts to rearrange the learning object.  

We can further employ the same learning object at different places in the 
courseware for visualizing the alternative points of view on the theory. 
(Even for the simple theorem of Pythagoras there are about 400 different 
known proofs.) Reusing learning objects introduced earlier in the 
courseware minimizes the cognitive load, as it provides an already familiar 
environment. 

Example  (Alternative points of view) The learning object introduced in 
Figure 10 pinpoints relationships between the scalar product of vectors 
and trigonometric curves. We can interpret the scalar product as the 
scalar portion of the projection of one vector on the other one. In case of 
normalized vectors, we obtain just the cosine of the enclosed angle. 

 

Figure 19: Scripting can visualize alternative points of view on the 
theory. This Web page (left window) revisits an already familiar 
interactive learning object (top window) to pinpoint a second inter-
pretation; scripts rearrange the scene and data flow accordingly (bottom 
window). 
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Vector normalization corresponds with a scaling to the standard circle; 
there, learners immediately understand the well-known relationships 
between sine, cosine and tangent by applying the theorem of Pythagoras 
and intercept theorems – rotating one of the vectors rotates the values 
around the standard circle and we obtain the trigonometric curves. 
Alternatively, another passage in the course text interprets the 
trigonometric curves as the locus of a fixed point on the rolling circle, 
and rearranges the scene and data flow accordingly. Figure 19 depicts 
the learning object’s setup before (top window) and after scripting 
(bottom window). Note that the data flow is bi-directional: learners can 
manipulate not only vectors, but also angle, curve points, and location of 
the rolling circle. We could explore more relationships by switching from 
Euclidean to Gaussian plain, e.g. the theorem of Euler.  

Lastly, transferring a learning object‘s functionality into corresponding 
text passages or illustrations enables educators to introduce 
functionality gradually, and to reduce an otherwise overloaded GUI. We 
will give a detailed example later (5.3). Learners get only the functionality 
they need to understand the current text passage. Reading on (and 
activating corresponding hyperlinks), they meet other scripts that extend 
the learning object’s design, layout, or functionality.  

3.3.2 Networking 
To overcome a learner’s isolation in Web-based teaching, we generalized 
our scripting architecture (3.3.1) to a network model permitting 
collaborative work (2.3.1). We designed a simple client/server architecture 
that allows executing one online session per learning object, each of which 
can be used for either a classroom scenario or a consultation/examination. 
(We teach an average of 20 students per lecture, and do not have to 
perform any load balancing.) 

Again, we equipped our base component for interactive learning objects 
(3.2.4) with necessary multi-user functionality. That way, any of our 
learning objects becomes network-compatible, a potential client to 
participate in an online session. (However, to be of value in a real-life 
scenario, a learning object’s setup must be well-developed.) The default 
layout now includes a networking button indicating the current state 
(inactive, passive, i.e. active but not participating in a session, and 
participating), and providing access to the learning object’s active user list 
and chat. Our communication model imitates the classroom setting. 
After logging in, a user may request to participate in a running session. If 
the tutor agrees, the user’s learning object registers as a net listener and 
becomes synchronized to the tutor’s learning object. A participant must not 
interfere, except that he may chat, or leave the session. However, the 
tutor’s role may be handed over, and the appointee may then demonstrate 
an action, or carry out some task. Apart from its use as a classroom 
scenario, we can also utilize the single-tutor-many-listeners (1:n) model for 
remote consultation/examination (n=1). 

Users may enter a session at any time. To perform the required 
synchronization, we make use of scripting. The state of any scriptable 
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object can be queried; the 
object in turn generates a 
state-setter script that can 
be used in scripting to reset 
the object’s state to the one 
at hand. A learning object, 
respectively its scripting 
component, must provide 
similar functionality. In 
general, we gather all 
script instances, combine 
their identifiers and state-
etter scripts, and send the 

overall script sequence to 
the new participant. 
However, remember that 
the tutor may perform 

arbitrary script operations modifying the object’s view, structure, or 
components. Our current prototype simply sends all scripts ever made 
(disconnecting the participant’s view during this period to avoid flickering). 
Note that such a dynamic script generation mechanism enables us to 
create script settings on the fly. 

s

 

Figure 20: An extended scripting 
architecture allows networking in a 
classroom setting. The tutor transmits 
scripts and parameter changes to all 
participants. Control can be handed over. 

Data stream (byte) 
Admin stream (character) 

Client with tutor rights 
Client with listener rights 

The server organizes the list of participants, and synchronizes the state of 
their learning objects. We set up one session per learning object identifier. 
The server uses two separate ports for administration and data (see Figure 
20). As we restrict ourselves to one-way data communication, we only have 
to deliver scripts and parameter changes from the tutor to all participants. 
Furthermore, constraints update dependent parameters client-side. We 
therefore have to transmit initial parameter changes only, which 
substantially reduces the number of script instructions as well as the 
netload. Entire scripts are transferred only if they are undefined, 
otherwise we simply send their identifier.  

Example  (Networking) Let us enable the learning object introduced above 
(see the previous Example, and Figure 19) for networking. Although too 
straightforward to be applied fruitfully in a real-life scenario, it still 
demonstrates the economy in data exchange. Server-side, we simply 
register its identifier to the session manager’s list of valid learning 
objects. For synchronizing the clients’ states, we have to transfer angle 
and vector point locations – all remaining parameters are hooked on 
them via constraints. Therefore, we declare both angle and vectors as 
net properties. If we have allowed users for scripting the global scene 
transformation (i.e. letting them zoom, rotate, or translate the scene), the 
corresponding transformation matrix must become a net property, too. 

For reasons of security and reliability, we permit only registered scripts to 
be performed in networking. In the context of community support (4.2.2) , 
we will discuss how we could set up such a set of registered scripts 
automatically utilizing a rating system. 
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3.3.3 Scripting Database 
“Scripting opens up significant new possibilities for interactive guides. […] A remote 
person or computer guide could send scripts […]. Guides could be supplied by an 
open, free market [Roschelle96]. 

With reusable software components and scripting, we can now advance 
towards the organization of highly interactive learning objects in digital 
libraries. We already emphasized the need for decentralization and 
community support (2.3.3). Chapter 4 will discuss our Web framework 
concerning Web-based authoring, content management, and production. 
Here, we focus on aspects of our scripting database. 

Developers cannot foresee and implement all the desired functionalities of 
a highly interactive learning object. A framework covering all fields in 
SMET education exceeds the manpower of any group of developers (2.4.1). 
Firstly, creating highly interactive learning objects requires expertise in 
the subject, programming, pedagogy, didactics, and design. Secondly, 
employing them in a Web-based courseware requires a team of educators, 
tutors, and administrators who are able to perform Web-based authoring 
and scripting. A decentralization of the required knowledge might be the 
only way to guarantee a courseware’s sustainability and continuous 
enhancement. 

From the learner’s point of view, Web-based courseware must offer 
cooperative tools such as discussion boards, chat, or annotations. The 
feedback obtained from our students using such tools reveals the need for 
referencing a specific state of an interactive learning object, or sharing 
their own setups. Some of our programming exercises result in new scripts, 
software components, and learning objects. Of course, we would like to 
integrate such work into ours. Similarly, educators and other end users are 
likely to produce their own extensions. How may we benefit from the 
community’s work, that is, include user-defined scripts, components, or 
entire learning objects? Our answer is to deal with them as with all the 
other, non-interactive content. Collect them, organize their core data in a 
database, require metadata, generate final objects via templates and style 
sheets, share them with other users, make it possible to refer to them in 
editing, and let community members annotate, rate, and modify them. 

Note that our interactive learning objects do not have only primitive 
properties (e.g. boolean/integer/string data type), but arbitrary scripts. 
While the script identifier must provide a constant, unique reference for 
hyperlink scripting (see the within-component layer of the Dexter 
Hypertext Reference Model, 2.4.3), script content may change over time. We 
respect the need for reliable anchor targets by setting up a set of registered 
scripts providing valid targets in editing (i.e. for inserting hyperlinks with 
scripting instructions in chat, discussion boards, course text, and other 
Web content). 

The learning object’s metadata specifies identifier, title, category, 
classification, interactivity level (3.1), corresponding project, abstract, 
illustration, initial dimension, main Java class, initial script (performed on 
startup, 3.3.1), required component packages (JAR files), required software 
environment (Java plug-in, Java packages), authors, version, and a 
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timestamp. Script metadata consists of identifier, title, learning object 
identifier, type (setting/operation), status (unofficial/registered), abstract, 
and illustration. Likewise, script instances come with identifier, title, 
script identifier, class, and description. 

Now, how does this approach fit in with current learning management 
systems (LMS), and in particularly with learning technology standards 
such as the Sharable Content Object Reference Model (SCORM, 2.3.4)? We 
have already stated that current specifications do not support highly 
interactive learning objects properly. However, we believe that future 
standards will include advanced issues of interactivity, components, and 
scripting. We therefore wish to outline the application of the SCORM to 
interactive learning objects with a scripting architecture, and illustrate 
some of our most urgent needs. 

In SCORM terminology, course text, illustrations, tables, scripts, and 
interactive learning objects represent assets, arbitrary pieces of a sharable 
content object (SCO). One of SCORM’s metadata categories defines 
relationships between assets or SCOs; for scripting, for example, we would 
use best practice vocabulary ‘ispartof’, ‘requires’, or ‘references’. SCORM 
restricts the kinds of relationships to a predefined set of values. We would 
like to extend this set, that is, to include e.g. an ‘iscounterpart’ relation for 
script operations that have inverse scripts (undo functionality). Moreover, 
describing the learning resource type with best-practice vocabulary 
(simulation, experiment, problem statement, self-assessment, exercise, 
diagram, figure, graph, table, and narrative text) immediately turns out to 
be problematic if we consider dynamic, scriptable content – which enables 
end users to modify all aspects of the learning object. There is a similar 
problem in the case of metadata such as learning time; the SCORM mainly 
deals with static learning units that learners work through in one go. In 
contrast to that, we aim for an interlinking of (complementary or 
alternative) learning objects content that suits learning best in a cognitive 
sense. 

SCOs can communicate with the LMS and store and retrieve string values 
(resolved through JavaScript calls, which fits our approach perfectly). We 
can use this mechanism to launch an interactive learning object in a 
specific state, or store its current state for later use (via dynamic script 
generation, 3.3.2). However, the model prohibits SCOs to set values of 
other SCOs (or ask the LMS to do so). Any means for synchronization, 
adaptation, or other scripting applications would be lost. As a workaround, 
we would have to bundle all assets interlinked by scripting into one, large 
SCO.  

Another key problem is SCORM’s current launch model: it allows only one 
SCO to be active at a time – but, we want learners to work simultaneously 
with our synchronized theory and interactive learning objects. Again, this 
would be a motive for creating bundles. 
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3.3.4 Drag & Drop Scripting 
Let us finally come back to our notion of highly interactive learning objects 
(3.1). We have required direct manipulation in all aspects, including object 
view, all essential object parameters, and object functionality (structure, 
components). While GUI and scene graph components already meet major 
demands, we are still not satisfied with the symbolical meaning of 
hyperlink scripting, which simply hides programming aspects behind a 
hyperlink, and provides no means for cognitive association between script 
and target object.  

Furthermore, browser plug-in technology seriously restrains inter-
operability between hypermedia objects (2.2.3, 2.4.3). Typically, the script's 
scope is restricted to the current browser document, or to its siblings. We 
can not script local learning objects from Web pages, and, vice versa, 
scripts located outside the browser application (e.g. within a word 
processor, or a presentation program) will not work with Web content. 
More generally, only hypermedia objects belonging to the same context 
may communicate through scripting.  

We therefore introduce a visual scripting mechanism, Drag & Drop 
Scripting, which communicates parameters and functionality beyond the 
browser barrier – between other hypermedia objects or native applications. 
Scripting instructions are encrypted into standard images, and performed 
by physically operating the image on the learning object, or on parts of it. 
The basic idea of Drag & Drop Scripting is as follows: (1) source out a 
learning object's functionality into scripting operations, (2) encrypt a script 
in an image that illustrates the result of the script, (3) permit the user to 
drag and drop the image onto the learning object, and (4) decrypt the 
scripting operation inside the learning object and execute it. 

Remember that Drag & Drop (DnD, 2.1.1) represents a platform-
independent direct manipulation paradigm operating beyond application 
boundaries and that it is part of the user's familiar desktop environment. 
Nearly all of the Java Swing components support DnD natively, others 
have to implement a minimal DnD API [Sun98]. We transfer all scripting 
functionality to the DnD action's source and destination object; that way, 
our approach works even if the user has disabled browser scripting 
functionality. 

Our framework organizes scripting instructions in a script database (3.3.3) 
and steers Web page generation by templates (4.1.2). Illustrating images 
are part of our script metadata. The script template converts scripts into a 
corresponding HTML sequence, creates a thumbnail, and embeds it into 
the final Web page. In addition, it now hides the script in the image. 
Currently, we perform a least significant bit (LSB) insertion that works 
only with lossless image formats. In fact, each pixel stores 2 bits of our 
data. In the case of 8-bit images, which are less forgiving to LSB 
manipulation, we simply color the pixels in the Web page's background 
color. An improved version would use watermarking or a steganographic 
system [Johnson98], and support JPEG images. We start with a header 
(magic number, learning object identifier, border color, etc.) that enables 
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the learning object to identify script images, and validate or deny the drop 
action. The subsequent data block contains the script. 

Next, the learning object has to become aware of DnD actions. Any of its 
GUI components that may receive a drop action must implement the DnD 
API and delegate work to our scripting component. In this manner, we 
have prepared fundamental components of our architecture, which already 
cover the bigger part of our learning objects for Image Processing and 
Video Processing (e.g. image browser, image viewer, video player). 

Example  (Drag & Drop Scripting): Figure 21  demonstrates an interactive 
learning object teaching basics of color spaces in Video Processing, 
respectively RGB and YUV color spaces. We have provided scripts and 
images that modify parameters of the video renderer (to visualize YUV 
channels separated, or combined), rearrange the object's layout (to 
insert controls for lightness/saturation/contrast or the amount of 
red/green/blue), and apply other YUV formats. Learners perform a 
script action by placing the corresponding image on the learning object. 
For example, a course slide (left side) might ask the learner about the 
effect of reducing not only color information (U and V), but also 
luminance (Y). By dragging the accompanying image (left window, 

 

Figure 21: This interactive learning object illustrates color spaces in 
Video Processing. A Web page provides theory and scripts (embedded 
into images) that may be operated on the object via Drag & Drop. Users 
may drop video frames to the timeline or any other location, including 
native applications.  
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bottom center) into the interactive learning object (right window), the 
learner can experience in a simulation that the eye is more sensitive to 
luminance detail than color detail. 

When the user starts a dragging action in our video renderer, we extract 
the current video frame and embed a script sequence that will prompt 
the video player to reposition the video stream according to the frame’s 
timestamp. The user can drag the frame to the object’s timeline (right 
window, top panel) or any other application that supports DnD. Note 
that applications that resample DnD images (e.g. Microsoft PowerPoint) 
will distort a primitive LSB encryption. 
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4.1  Organization and Production 
Courseware, or learning management systems in general, must perform a 
sophisticated content management (2.3.3) to supply community members 
with means for content creation, modification, and extension. In this 
chapter, we describe in detail how we organize core data by a layered 
database model (4.1), generate all Web pages automatically (4.1.2), and 
offer an offline tool for managing content, structure, and design templates 
(4.1.3). The subsequent chapter will focus on online wizards (4.2.1) 
supporting learners (4.2.2) and authors (4.2.3) 

4.1.1 Layered Database Model 
Content management is based on database technology to provide efficient, 
large-scale query and update functionality. Since databases differ (for 
example in object type and maximal allowed string length), and data can 
be physically spread to many databases, we developed an abstract 
database manager. The manager interacts with the underlying databases 
and simplifies both queries and updates. The high-level, platform-
independent Java database interface (JDBC) enables us to employ any 
standard relational database.  

We support two types of structuring, a horizontal one separating structure, 
content, and design, and an orthogonal, hierarchical one using a set-based 
data model and metadata (2.3.3). Our proposed layered database model 
modifies the second structuring by introducing layers – data is distributed 
into layers according to its attributes (see Figure 22). Similar to the use of 
sets, layers enable us to organize alternative versions of content such as 
multilingual data or multiple depths in information. Each version 
corresponds with one layer; if a UNL (2.2.2) request fails for one specific 
layer, the database manager queries the next layer in the hierarchy. 

Layer-independent data and structure 
information has to be stored on only one layer. 

A major benefit of such a model is link 
consistency. The database manager will 
automatically fill content gaps with an equivalent 
version from some other layer, which will 
eventually lead to mixed (but valid) content, like 
a Web page containing parts in different 
languages. This mechanism is carried out 
implicitly, i.e. developers do not have to bother 
with versions of data; they simply set a preferred 
layer, and perform their query, insert, or update 
in familiar SQL syntax. Database actions may 
target either a single layer, or all layers. While 

le-layer actions typically insert layer-
independent data or update incrementally given 
data, actions targeting all layers insert or remove 
layer-dependent data such as course text. The 
manager assures that such actions are performed 

sing

 

Figure 22: A layered 
database model 
supports alternative 
versions of data and 
incrementally given 
data while keeping 
links consistent.  
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consistently; for example, a single “insert subchapter” action leads to 
changes on all layers, as well as in structure. 

Besides issues of internationalization and adaptation of the level of detail, 
another reason for us to introduce layers was the fact that it allows us to 
support incrementally given data. Authors may now supply their input 
without having to fill in data for all layers immediately. Our online 
wizards (4.2), which allow for Web-based authoring of the courseware, 
come with built-in layer support; they initially prompt the user to provide 
data for the default layer, and leave input data for all other layers 
optional. Requiring less data lowers the inhibition threshold for user-side 
extensions, and enables us to incorporate multiple authors in content 
creation, e.g. translation. 

Example   (Layered Database Model) Figure 22 illustrates how we represent 
multilingual content by layers. We have registered three languages to 
the database manager, and defined corresponding successors. Authors 
may now concentrate on a single language (here, the German language) 
and include more translations (here, to English and French) step by 
step, which speeds up content creation. If our database manager queries 
specific data that has not been translated yet, it redirects the query to 
some other version. In addition, we subdivided the German version into 
an expert (short), a standard, and a novice (detailed) version, each 
represented by a layer. Language-independent data like structure, 
images or videos without text, and audio are stored only on the lowest, 
German expert layer. 

Although not stipulated by the model itself, we found out that both 
maintenance (backup, translation/adaptation) and export of a single 
version are cut down significantly if we use exactly one physical database 
per layer.  

Using metadata, we achieve a more graduated structuring. Remember 
that we extended the LOM specification by custom metadata, e.g. for 
scripts and instances (3.3.3). Our courseware generators (4.1.2) apply 
specific metadata filters to create content versions. For example, we 
remove optional marginal information, lengthy examples, or annotations to 
create short versions; conversely, we insert them in detailed versions 
together with questions, gap-filling texts, and self-tests. We furnish data 
and metadata comprising a predefined set of values with dictionaries, 
which are employed by the database manager to translate one-layer data 
to other layers on the fly. Most obvious is the application of a dictionary 
with internationalized keywords (see case studies, 5.1); others, e.g. 
abbreviations, are possible. Note that dictionaries work context-
sensitively: a specific translation in the context of one object type might 
differ from translations in other contexts. Therefore, any of our dictionary 
entries requires the specification of an object type. 

4.1.2 Template-Driven Generator 
Our hybrid generators balance static and dynamic content (2.3.3) and 
automate all courseware production. Now, we briefly outline static content 
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production; the dynamic part will be discussed in the context of online 
wizards (4.2).  

Let us come back to our horizontal structuring separating data into 
content, structure, and design. All of our generator components must 
combine these parts to produce final Web pages. Data consists of different 
types of hypermedia elements like course text, links, illustrations, 
multiple-choice tests, interactive learning objects, and scripts. We 
represent only primitive structure information (object and courseware 
hierarchy such as parent/child/siblings relations, and sets defined by 
metadata) as database objects, and transfer matters of navigation and 
design into templates. Our templates can be defined textually, or be hard-
coded in Java to perform complex data operations and image processing. 
We created a template parser to enrich standard HTML/XML blocks with 
algorithmic functionality (variables, if-clauses, and loops), database 
queries (SQL syntax, or a simplified data iterator), and common image/file 
operations (e.g. thumbnails, watermarks, file transfer between database 
and server). Templates are vital during the courseware’s warm-up or 
evaluation phase – they enable us to customize design, layout, and content 
filters quickly by performing little changes to the corresponding templates. 
Generator components feed templates with context-dependent data 
(current layer, path to root, parent, children, siblings, referring objects, 
relative location in document, etc.) and thereby provide a mechanism to 
define context-dependent template blocks. 

Example  (Design Templates) Our design template registered for 
illustrations imports an image from the database, converts it to the 
specified dimension and image type, and overlays a watermark. We 
have defined it context-dependently. Consider therefore a layout pattern 
with main text and marginal: if an author places an illustration within 
the main text, the template displays it directly at that position, letting 
the current paragraph flow around it. If the illustration is placed in the 
marginalia, a thumbnail with an hyperlink to an additional page is 
created, which displays the image and its subtitle together with 
references back to all objects containing the illustration. In the first case, 
we display a given subtitle as mouse-over text. The template is given 
textually - modifying the design is trouble-free and requires no deeper 
programming knowledge or tool. 

We update our courseware daily (see case studies, 5.1); on demand, we 
initiate the generator phase immediately. A generator requests a 
courseware’s hierarchy structure, fetches the root node, recursively collects 
its children, and traverses them. We interpret a set of leaves sharing the 
same parent as belonging to a single document. The generator processes 
the document template, and composes a Web page accordingly. Each leaf 
may contain arbitrary hypermedia objects; they are embedded into the 
final Web page using the templates registered for that kind of objects. All 
courseware, including course text, illustrations, embedded interactive 
learning objects, and scripts, and several lists and indices (table of 
contents, figures, glossary, interactive learning objects, bibliography, 
member list, etc.) is produced in this way. We further include content 
belonging to the dynamic part of the courseware that is rated to be useful 
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as static content (annotations, frequently asked questions, ratings, etc.). 
Finally, we provide a mechanism to exclude complete directories from the 
generation phase, and create (or reference) a default Web page only. This 
proves practical for self-contained subprojects that usually want to design 
a custom Web page. Similar, we do not generate the courseware’s root 
page, as it is typically designed individually (e.g. a welcome page or 
overview).  

A link database (2.2.2) organizes links as separate UNL objects to ensure 
link consistency. Links are typed, and generators may process them bi-
directionally, which lays ground for an adequate courseware interlinking. 
In general, interlinking refers to (1) connections between entire 
hypermedia objects, (2) connections within an object, and (3) connections 
between an object’s within-component layer and other hypermedia objects. 
Interlinking object parts becomes complicated when dealing with pieces of 
software; we have therefore dealt with software components and scripting 
(3.2.3, 3.3.1). Creating bidirectional connections between entire 
hypermedia objects, interactive or not, can be accomplished by templates. 
Whenever we encounter a link object during courseware generation, we 
retrieve the corresponding link template for that type, process the block 
matching the current context, and embed object references into the Web 
page. To insert back-references, we follow one of the following strategies 
dependent on the link type and context. For 1:1 connections, we simply 
insert the back-reference when we process the target object. Otherwise, we 
may immediately insert all existing back-references, either at the place or 
in the target document (see Example above). As core data may be reused in 
multiple coursewares, we restrict back-references to the current 
courseware by introducing a courseware identifier. Lastly, we may 
delegate back-referencing to some other template.  

Example  (Back-References) To interlink our BibTeX bibliography (see case 
studies, 5.1.3) with community members adequately, we employ link 
templates that delegate back-referencing to some other template. We 
initially create all references from members in their bibliography 
entries, which we include as personal publication lists (template A). 
Finally, we process all objects containing lists of bibliography entries, 
and reference each entry back to its counterpart on the member’s 
personal publication list (template B). Template A therefore stores 
corresponding linking information in template B.  

4.1.3 Offline Management 
Our courseware management tool enables us to modify structure, content, 
and design offline. This tool is meant only to perform fundamental 
changes; most community members prefer Web-based authoring (4.2). 

The tool’s architecture consequently maps the horizontal data structuring 
to three components, a structure editor, a content editor, and a design 
editor (see Figure 23), which we implemented respectively as a tree editor, 
a text editor, and a property editor (see Figure 24). While the underlying 
database manager handles all data queries and updates, generator 
components create the courseware on request (4.1.2). Components 
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communicate standard JavaBeans properties; therefore, we can exchange 
them with any other text editor wrapped in a Java container. Most of our 
generator components produce hypertext, i.e. Web pages. For specific sub-
structures like our interlinked PDF bibliography (5.1.3), we further 
implemented PDF generators. Slides and lecture notes could be integrated 
similarly. We can plug-in arbitrary template components; our courseware 
for example typically include templates for document, illustration, link, 
exercise, bibliography, multiple-choice, gap-filling test, interactive learning 
object, and script.  

The actual data loading and storage is delegated to the database manager. 
Functionality and data flow is as follows (see Figure 23): on loading, the 
structure editor requests the courseware hierarchy and builds a matching 
tree. The author may rearrange courseware structure by drag & drop or 
cut & paste, and rename specific nodes. We enforce naming conventions to 
result in transparent path names (URLs). For instance, leaves forming 
document parts (4.1.2) automatically receive a link shortcut, which is used, 
for example, in the navigation block of the document template. As we built 
the link shortcut from parts of the full title using a set of plausible rules, 
the full title will naturally anticipate its shortcut. Once the author selects 
a specific node, we message the node identifier to the content editor, and 
the current generator component.   

The content editor in turn queries the database manager to retrieve the 
actual content, and offers modification thereof. At present, we have 
implemented a plain text mode, a prototype design mode (providing icons 
for common objects, and simplified block actions), and a WYSIWYG 
preview. The editor constantly scans the input for object references (or 
“template tags”) that identify template type, object, and optional 
parameters, and compiles them to a tag list. Changes to the tag list are 
messaged to the design editor. 

The design editor scans the template tag list and creates (or updates) 
corresponding template components. For each template, we generate an 
editable property list representing all template text properties, and include 

 

Figure 23: We developed a courseware management tool for modifying 
our courseware offline. The component architecture reflects a strict 
separation of structure, content, and design. Data flow is denoted with 
arrows. 
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Figure 24: Our courseware management tool enables us to modify 
structure, content, and design offline. We may edit the courseware 
hierarchy in tree view (left side), edit a node’s content in plain text or 
design mode with WYSIWIG preview (top right), and steer object 
embedding by template properties (bottom right). Activating a single 
button starts courseware generation. 

any custom template GUI. Templates may query the database manager for 
available objects, and enable users to select and modify them, e.g. via a 
custom thumbnail list (see Figure 24). The design editor allows the user to 
switch the template type and access the template GUI. Selecting an object 
produces an appropriate template tag, which we send back to the content 
editor, and embed it at the current cursor position. 

4.2 Web-based Authoring 
Organizing courseware objects in database layers (4.1.1) and steering 
courseware generation by templates (4.1.2) creates a basis not only for 
matters of maintenance and interlinking, but also for personalization and 
collaborative work (2.3.3). In the following, we present an appropriate 
state machine for online wizards (4.1.1) providing all community members 
with Web-based authoring functionality. An abstract base wizard allows us 
to derive new online tools quickly. We discuss some of the most essential 
wizards of our courseware, divided into wizards for learners (4.2.2) and 
wizards for authors (4.2.3). Keep in mind that our approach presumes a 
scripting database (3.3.3) to include fine-grained, interactive content. 
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4.2.1 Online Wizards 
Our online wizards enable community members to annotate, modify, and 
rate arbitrary courseware objects, including scripts. For each type of 
object, we register an appropriate online wizard. Each object template 
(4.1.2) defines an activation block for its wizard accordingly, which can 
then be inserted into a Web page. Community members can activate 
wizards directly on site. To reduce the cognitive load presented to the 
standard user, we create Web pages both for study mode (offering only 
learning-related wizards, e.g. annotations, exercises, and rating) and for 
editing mode (containing all wizards); a single button lets the user toggle 
them. Technically, we create these versions by running the generator twice 
with different metadata. 

The technological platform of our online wizards are Java Servlets (server-
side applets). Servlets provide a component-based, platform-independent 
method for building Web-based applications, without the performance 
limitations of CGI programs (2.2.3). In particular, while CGI requests are 
answered in a separate process by a separate instance of a CGI program, 
servlets are loaded and initiated once, and stay in memory between 
requests. Moreover, servlets may answer requests concurrently. 

We base our online wizards upon a well-defined state machine that 
comfortably manages authorization, default values, undo facility, preview, 
and problems like temporary log-offs, deactivated cookies, or firewalls (see 
Figure 25). All wizards start with an authorization step presenting an 
ordinary login screen to the user. Optionally, we identify a user by the 
Internet Protocol (IP) number (and keep him logged in forever; otherwise, 
he is logged out after some idle time). After successful authorization, the 
user may select his object of choice. Applications may skip this step and 
provide a default selection instead. We guide the user through all required 
data steps. During each state transition, we store the given data in a 
temporary IP database; data is reloaded from the courseware’s database 

 

Figure 25: The core of our online wizards constitutes a state machine 
offering undo facility and default values. Database actions are displayed 
below the corresponding steps. 
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only in the selection phase. The IP-based storage mechanism preserves 
data session-independently and works even if the user logs out during the 
input phase, or turns off browser cookies. After providing visual feedback 
in a preview phase, we send the given data from the IP database back to 
the courseware’s database. We also send an e-mail notification to the 
editorial board in order to verify the data. 

In general, the user may arbitrary step forward (we provide default values 
as far as possible by filling in existing data, or reusing previously entered 
data) and backward (undo) while entering data. Thus, we neither direct 
the user into dead ends, nor prompt for data twice. In case of obligatory or 
invalid data, we restrict forward movement and redirect the user to the 
corresponding step. Each wizard contains a set of rules specifying 
constraints and possible redirection (to a previous step, or an auxiliary 
step indicating the error). Rules that do not specify a redirection will stall 
step transition and set an appropriate flag to indicate invalid data. 

Example  (Online Wizard): Community members of our courseware may 
modify personal member information by using of a corresponding online 
wizard. They activate the wizard through a hyperlink either on the 
courseware’s member list, or on a specific member page. In the first case, 
we let the user select a specific member from a list (users need 
administrative rights to change other member’s information). Several 
data input steps prompt for the member’s name, affiliation, photograph, 
and other information. We provide default values for any data, except 
the obligatory name, which is required to enter preview. We check for 
flags indicating invalid name/image information; in case of errors, we 
redirect the user to the respective step, and highlight the input field 
appropriately. 

Our abstract base wizard implements basic functionality for user 
management (e.g. passwords, roles, groups), states (e.g. rules, variables, 
defaults), data operations (e.g. image/file upload, IP database management 
– we delegate all work to the database manager, 4.1.1), step design 
(uniform navigation and layout), internationalization (e.g. languages, 
dictionary), and e-mail notification. Any task-specific wizard is derived 
from this base component and ships with textually defined wizard 
properties and state templates. While the properties contain rules and 
multilingual text, the templates define the HTML block displayed in a 
given state (see the courseware generator’s template parser, which uses 
the same mechanism, 4.1.2). Instead of defining states by templates, we 
may alternatively hard-code them. Note that a derived wizard inherits all 
functionality from its super component, including templates. That way, we 
designed the login screen only once for the base wizard; the same goes for 
rules like the obligatory username and dictionary entries (translations and 
abbreviations) for salutation, terms of copyright, and common expressions. 

As we employ simple HTML forms for data input, we end up with plain 
text editing functionality only. In our current courseware, authors do not 
complain, as their content creation tools allow for HTML export. A more 
adequate Web form would implement a word processor (e.g. Macromedia 
Contribute) or use JavaScript and browser-specific functionality. 
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Community members may include references to other object types (course 
text, illustrations, glossary, bibliography, member pages, interactive 
learning objects, scripts, etc.) using vocative hyperlinks – textual pointers 
that match a given set of rules, like “see chapter nn” [Maurer96]. Wizard 
properties hold a list of search patterns together with phrases that may 
occur nearby. Optionally, members may define URN references explicitly 
using conventional XML syntax. 

We spent more effort in creating an adequate GUI for editing multi-
layered data. Consider interfaces that allow for modifying layered data 
independently: authors would soon become tired of changing between 
layers and produce inconsistent content. Therefore, we support parallel 
editing on multiple layers, e.g. editing of multi-lingual data or data with 
different depths of information. Our state machine contains functionality 
to iterate over all registered layers, and offers authors to switch layers at 
any state. This mechanism works also for layer-independent data. 
Normally, a wizard starts prompting for data in the language matching 
the user settings, and then iterates over all other layers in a subsequent 
step (reusing the initial input as default for all other layers). In specific 
cases, users may create alternative versions in a single step. We provide, 
for example, a simultaneous editing of short, standard, and detailed 
versions using a Wiki-like (http://c2.com/cgi/wiki) smart syntax, which 
simply marks specific blocks with metadata. The generator’s metadata 
filters will then decide if a block becomes visible or not. Of course, the 
smart syntax approach requires authors to set up content carefully.  

Usually, the wizard GUI will adapt to the current layer, too. Consider for 
example multi-lingual data, which requires us to provide international 
data in- and output facilities.  Our approach enables the user to change the 
wizard’s language settings in any state. We outsourced all textual 
information into wizard properties and provided translations for all 
registered languages. The base wizard fills the template according to the 
user’s language settings. Note that we translate not only the wizard GUI, 
but also the given data; for instance, if the user has given data in English 
and subsequently switches to a German layer, we check the dictionary for 
a matching entry, and, if found, display the German translation instead. 
Common phrases are translated automatically using a context-sensitive 
dictionary (4.1.1). 

4.2.2 Learner Support 
From the learners’ point of view, a courseware must allow annotations, 
structuring, and active participation in courseware development (2.3.1). In 
essence, we must overcome their a priori passive and isolated role by, for 
example, offering them to ask questions at any place, or to talk with other 
community members.  

We differentiate community members by an extensible set of roles, e.g. 
administrator, owner of a contribution, active or passive author (an active 
author will react on learners’ questions), learner, tutor, lecturer, guest, 
anonymous, etc. Roles affect the set of possible actions a wizard offers. 
While a tutor or lecturer for example may execute a remote consultation, a 

http://c2.com/cgi/wiki
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learner may only participate. Members may set up their own groups, and 
restrict access to their contributions to some specific group or member. 
Similarly, administrators may restrict wizards to specific roles, groups, or 
members. One of our wizards summarizes the member status together 
with a list of contributions (sorted by the courseware hierarchy), and 
enables users to change personal information such as name, affiliation, 
photograph, etc. Of course, only administrators may change a member’s 
role. The wizard further offers to set notification flags for some 
substructure in the courseware hierarchy. If an incoming contribution 
matches the chosen flags (e.g. annotation, or discussion), the member gets 
a corresponding e-mail notification. 

Our most basic online wizards handle annotations, context-help, a 
discussion board, and a rating system. We may attach them to arbitrary 
content types by registering them to a specific pair of object type and object 
identifier (see Figure 26). That way, contributions become object-centered 
instead of tool-centered, an important property regarding information 
structuring (cp. with document-centered vs. application-centered, 2.2.2). 

 

Figure 26: Community support in our courseware renders any object as a 
potential target for annotations, context help, a discussion board, and 
our rating system. Here, we let community members discuss (bottom left 
window) programming exercises (top left window), and add their own 
notes, questions, answers, and links (right window).  
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Example  (Object-Centered Wizards) All our interactive learning objects 
automatically provide a discussion board (see below) responsible for 
that specific object, or topic. We therefore equipped the interactive 
learning object’s base component with functionality to switch to the 
discussion board directly from the chat. That way, users may discuss 
topics presented in the object in a separate area, without having to deal 
with discussion threads belonging to other topics, respectively learning 
objects. Similarly, our course text templates contain a block mapping 
course chapters to corresponding online wizards. Community members 
may annotate that specific course text, obtain help for its topics, or rate 
its quality directly on site. 

Let us consider these wizards in more detail. Firstly, an annotation 
wizard offers object add-ons such as notes, questions and answers, and 
related links. This enables learners to personalize content and to work 
with the courseware actively. Furthermore, public contributions might 
help other readers to understand the learning content, and serve authors 
as starting point for improvements or corrections. Combined with the 
rating system, the list of questions and answers further implements a 
Frequently Asked Questions (FAQ) list. A similar wizard provides context 
help. We follow the same mechanism as for graphical scenes (3.2.3): again, 
we initially check for any available user selection (technically, we retrieve 
selected text with browser scripting). We collect hierarchically, bottom-up, 
entries for the selected word (or object), then for the current paragraph, 
and finally for the surrounding course text. Note that we employ context-
sensitive entries and a rating system; otherwise, this approach would not 
scale for a larger number of entries. 

Our discussion board wizard in turn provides means for asynchronous 
communication. We have designed it to be clearly structured, using topic 
trees. Boards and their respective sub-trees can be restricted to specific 
members or groups; in that case, they are not visible for others. Besides 
targeting a specific learning object (see the Example above), we may 
explicitly dedicate a discussion board to a particular subject. Each board 
notifies a list of moderators about new contributions, and offers optional e-
mail notification for future replies to a given contribution. Of course, we 
highlight unread contributions per member. In our university setting, we 
favor – wherever possible – asynchronous communication; for instance, 
most of our students work out their programming projects in groups in our 
department’s computer pool. We execute the bigger part of lecturer/tutor 
consultation in restricted discussion boards, and reduce additional labor by 
publishing individual threads for public benefit. (We have also 
implemented a HTTP-based chat wizard making synchronous 
communication possible. However, we did not observe a single reasonable 
session carried out in any of our projects). 

To improve the quality of contributions, we employ a rating system. A 
wizard enables members to rate objects (course text, illustrations, 
interactive learning objects, scripts, etc.) on the fly, or, if they are willing 
to spend the time, hand in detailed reviews. Based on such evaluations, we 
set up profiles for authors, participants, and content, which, in the long-
term, help us to improve our courseware. We grade authors and create 
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rankings of the best contributions, busiest authors, and most wanted 
supplementations or corrections. As an average, we simply take the 
median.  

Example  (Rating System) We apply our rating system to the list of 
questions annotated to some course texts. If any of them is rated as 
important (on the average), we notify the editorial board. For those, our 
system might already serve as a preliminary stage to finding the 
answer: unofficial readers’ answers that are rated to be useful might 
serve as a starting point, whereas other answers might indicate weak 
content that evokes misinterpretations, or lack of motivation.  

Finally, a learner may activate a self-test wizard to review learning 
content. We attached the wizard to specific sub trees of the course 
hierarchy. That way, a learner may infer subject matter accurately. In the 
enquiry phase, we collect all questions belonging to the given sub tree, and 
randomly choose some of them. We support multiple-choice questions with 
alternative verbalization; each entry consists of a set of questions and 
incorrect and correct answers; we pick each set randomly. If the learner’s 
response contains incorrect answers, we reformulate the questions by 
picking another verbalization. Note that we make all statistics anonymous 
to protect the learner’s privacy. 

4.2.3 Author Support 
Our base wizard component (state machine and state templates, 4.2.1) 
enables us to create wizards quickly. We have developed more than 30 
task-specific wizards providing Web-based authoring facilities regarding 
matters of institution (members, projects, areas of research, etc.), 
bibliography (BibTeX entries, search, etc.), and courseware (course text, 
illustration, glossary, history/timeline, self-test, remote consultation, etc.). 
Our cases studies will present some of them in more detail (5.1 and 5.3). 
For now, let us focus on the most innovative ones, namely our wizards for 
interactive learning objects and scripting. 

We have implemented wizard prototypes offering Web-based authoring of 
an interactive learning object’s data, scripts, and documentation of created 
script instances (see Figure 27). We assist authors in specifying an 
interactive learning object in all data/metadata input steps, just as we 
would handle non-interactive content. In particular, we request required 
component packages, data and metadata, e.g. title, classification, abstract, 
initial script, main class, and illustrative image (see scripting database, 
3.3.3). We supply default values. For example, if the user does not specify a 
main class, we use the learning object’s base component. We require 
authors to test the initial script immediately at the preview step. A 
supplementary test page therefore presents the uploaded learning object 
(or its base component, i.e. an empty container) together with a scripting 
text area containing the initial script. The author may execute the script to 
ensure correct behavior. Moreover, the author may change the script, and 
review the outcome immediately.  

Two other online wizards deal with the definition or modification of a 
learning object’s scripts, and, afterwards, with the documentation of 
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created script instances. Again, authors have to test their scripts at the 
preview step. If a script defines new instances, we prompt for the 
instances’ title, class, and description. We detect a default class 
automatically. The class will be used later to interlink a learning object’s 
help section with the API section of the programming guide. 

Multiple authors may now create and modify interactive learning objects 
and accessory scripts just with browser functionality. Even untrained 
authors can perform scripting if guided by examples. However, scripts 
created by different authors may have poor compatibility. To avoid major 
problems, we restrict custom defined scripts to work with the initial set of 
packages only. Authors will eventually have to create a new learning 
object based on an extended set of packages. 

Some scripts will require changes of existing scripts. We reduce scripting 
errors through compatibility checks that match modified script 
instructions with a set of pre-defined script patterns [Hanisch02a]. For 
example, we tolerate the conditional call of a ‚setXXX’ script, if the 
condition tests the existence of an instance defined by another ‚doXXX’ 
script. This assures that script behavior does not depend on effects of the 
‚doXXX’ script. Modifications that go beyond this can be suggested in the 
learning object’s discussion board, but are likely to be performed only if 
there is no doubt that there will not be any negative side effects. Our 
rating system will detect other obstacles: after a warm-up phase, we can 
identify high quality learning objects, software components, and scripts, or 
deprecate other ones. 

Remember further that we generalized our scripting architecture to a 
network model, usable in a classroom scenario, or remote 
consultation/examination (3.3.2). A server delivers scripts and initial 
parameter changes to all participants. In offline mode, users may test 

 

Figure 27: Online wizards for interactive learning objects guide authors 
through authorization, informational data (multilingual), metadata, 
scripting, and preview. 
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arbitrary scripts; but in networking, we allow tutors to perform only 
registered scripts verified as useful, bug-free, and secure. Our technical 
experts base their decision on the corresponding results of the rating 
system. The main reason for introducing registered scripts was reliability 
– tutors should never be allowed to render a learning object unstable. As 
scripting is resolved client-side and learning objects might, for example, 
have permission to access the file system, a learning object achieves the 
‘secure’ grade only through staff ratings. 
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5.1 Electronic Webmaster 

5.1.1 Project 
Let us start the case studies with a side project demonstrating the 
capabilities of our Web framework, in particular data layers (4.1.1), 
generator templates (4.1.2), and online wizards (4.2.1). The goal of the 
project was to create an Electronic Webmaster for maintaining our 
department’s homepage (http://www.gris.uni-tuebingen.de), i.e. to provide 
both content management and Web-based authoring. The homepage 
should list current and senior staff, areas of research, projects, a gallery, 
vacancies, events (conferences, workshops, etc.), and publications. Web 
pages should become multi-lingual; besides German, English, and French, 
we had to include the local dialect Swabian to celebrate the 50th 
anniversary of our region, Baden-Württemberg in southwest Germany, in 
2002. Content should be maintained consistently and become fully 
interlinked. Web pages should be generated automatically, including 
member pages with personal publications and links to related material. 
Finally, the core data had to be made accessible for other applications. 
Bibliography data, for example, should be reused in the department’s 
annual report.  

5.1.2 Institution 
The department Graphical-Interactive Systems at the Wilhelm Schickard 
Institute (WSI/GRIS) was founded in October 1986 by the appointment of 
Wolfgang Straßer at the University of Tübingen. Today, about 25 research 
assistants and Ph.D. students work in areas related to interactive 
computer graphics. Our area of research for example, Interactive Web-
Based Courseware, has produced coursewares accompanying lectures in 
Computer Graphics (a two-semester, four hours per week course taught by 
Reinhard Klein and awarded with a ‘Landeslehrpreis’), Geometric 
Modeling, Computational Geometry, Image Processing, Video 
Communications, and Scientific Visualization. The next two case studies 
will describe the most recent courses in more detail (5.2, 5.3). 

Using our Web framework consisting of a layered-database model, an 
abstract database manager, a template-driven generator, and online 
wizards with a built-in state machine, the Electronic Webmaster’s 
implementation phase was straightforward. We had to arrange multi-
lingual layers, define the department-specific look by designing templates, 
and create task-dependent online wizards allowing for Web-based 
authoring. As we could import most of the core data from other sources, 
only a single type of data, the BibTeX bibliography, took some effort. We 
will therefore describe the bibliography part in its own section (5.1.3). 

We started with setting up database layers for the desired languages 
German, English, French, and Swabian. We registered corresponding 
ODBC data sources, which can be accessed using a bridge to JDBC. Our 
database manager may connect to any standard JDBC/ODBC data source; 
in our case, we simply based it on Microsoft Access, as that was already 

http://www.gris.uni-tuebingen.de/
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contained in our software environment. After taking an inventory of the 
department’s active data, we set up object types, (respective database 
tables) for chapter structure, chapter text, staff, illustrations, links, 
seminars, areas of research, projects, vacancies, events, gallery, 
bibliography, hardware reservation, and a discussion board. While we had 
to enter for example project data on all layers (multi-lingual title, 
keywords, and abstract), we could organize staff data (title, name, 
profession, room, e-mail, homepage, phone, member type – assistant, 
student, senior, etc.) on a single layer, and offer corresponding dictionary 
entries for a member’s profession. 

Next, we designed appropriate generator templates for each object type, 
defining the department-specific look. Object types such as structure, 
chapter text, illustration, and vacancy, which contain rather primitive 
elements (HTML blocks, variables, and lists), could be handled easily by 
text templates. In cases like staff, area of research, or seminar, which 
require nested iterations and the creation of additional documents, we 
built text templates covering parts of the final Web pages, and combined 
them by low-level programming. Consider for example a staff member’s 
personal page: we iterate over all members, collect each member’s general 
data, areas of research, projects, seminars, and bibliography, retrieve 
template blocks respectively, and combine them into the final personal 
Web page. We generate several versions of the publication list, including 
plain text style, BibTeX style, abstracts, and PDF. Both HTML and PDF 
lists include links to the full papers and supplementary material. Lastly, 
our JPEG generator supplies a printable business card. 

Our generators rebuild the department’s homepage daily. As noted earlier 
(4.1.2), some Web pages are excluded from this generation phase. For 
example, we do not create projects pages; instead, we generate a project 
list with title, members, and keywords, and link to the project’s default 
Web page (i.e. we delegate management of the project subtree to project 
members). Second, we create area pages only in part; while we generate 
the area list normally, we defined a specific area page’s overall layout by 
templates. The templates automatically insert sections for navigation, 
associated projects, staff members working in that area, and related 
publications. Afterwards, we mark the content section with tags and let 
the members fill in the blank space to suit their needs. Authors indicate 
changes by triggering an online wizard, which in turn transfers content 
into our database. 

Other online wizards offer Web-based authoring of institutional data. 
Except structure, which we entrusted to the Webmaster only (using the 
offline management tool, 4.1.3), staff members may modify objects of any 
type. All task-dependent wizards, from chapter text, staff, illustrations, 
links, seminars, areas of research, projects, vacancies, events, and gallery 
to, finally, hardware reservation, use the standard data flow of the state 
machine. As a result, we were able to realize all states with text templates. 
Step one typically offers selection of an existent object or the creation of a 
new entry, step two queries general data in the default language (for most 
of our staff members, this is German), then requests non-textual data 
(images, video, PDF, etc.), and prompts for internationalized data (English, 
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Figure 28: To celebrate our region’s 50th anniversary, we created a multi-
lingual homepage for our department. Online wizards request data in 
German, English, French, and the local dialect Swabian. 

French, and Swabian, see Figure 28) simultaneously in a fourth step. After 
preview, we notify the Webmaster via e-mail.  

The templates realize an adequate interlinking of all objects. A sample 
walkthrough might start at the homepage’s welcome page, move on to the 
staff list, retrieve a specific member, look up a paper on his publication 
list, follow a link to one of the member’s projects, and then to the area of 
research the project belongs to, and from there, on to other members 
working in that area, or to their publications. We decided on relevant 
paths (and interlinking) by evaluating Web server statistics (see Figure 
29).  

Wizard properties define obligatory data (e.g. area title) and provide 
context-sensitive dictionaries (e.g. member profession). To facilitate user 
input of timeframes (e.g. conferences and workshops, or hardware 
reservation), we implemented a string-based date parser supporting multi-
lingual input. Note that our wizards adapt both GUI and given data 
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automatically, whenever an author changes language settings. Switching 
from German to English for example will cause a wizard to prompt for 
English data in step two, and include already given German data in step 
four. 

5.1.3 Bibliography 
Community support for bibliography data entails facilities for uploading 
data, generating lists, searching the data, and Web-based authoring. 
Again, we employed a generator component and state templates; 
furthermore, we had to implement a BibTex parser supporting the common 
LaTeX data format.   

Firstly, several upload wizards allow the inclusion of data entries in 
common bibliography formats (BibTeX, HTML forms, free text) together 
with full papers (PDF, PostScript) and supplementary material (video, 
slides). Data is stored in BibTeX format. We handle bibliography data like 
all other data; appropriate templates steer the filtering and generation of 
publication lists belonging either to individual staff members or to all staff 
members and some timeframe. Publications belonging to our department 
are clearly marked by a specific BibTeX keyword.  

A second class of bibliography wizards realize a dynamic search (2.3.3); 
either a quick search, a professional search, or a LaTeX-specific citation 
search. While the quick search retrieves bibliography entries containing a 
given search text, the professional version lets the user precisely define 
pairs of BibTeX fields and search text. The citation search retrieves entries 
matching a given AUX (auxiliary) file that records citations in LaTeX. The 
wizards can also be queried by other applications. That way, we create the 
bibliography section of our department’s annual report on the fly: staff 
members just have to cite the bibliography keys of our bibliography 
database (each entry includes a set of aliases), and let LaTeX create the 
AUX file, which is then utilized to generate the LaTeX BIB file 
automatically. 

We further adapted the state machine’s data flow to permit modification of 
existing bibliography entries. Authors first retrieve existing data using one 
of our search wizards, then edit the BibTeX entry in a HTML form, and 
submit it again to the upload wizard. Duplicate entries using the same 
bibliography key require authors to synchronize inconsistent fields 
manually. 
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Figure 29: We evaluate Web server statistics to evolve courseware 
structuring. These diagrams display the use of our department’s 
homepage (left side) and interactive learning objects of our Computer 
Graphics courseware (right side) in the winter semester 2002/2003. 
Visitors mostly requested staff member publications, lectures, and our 
courseware on Computer Graphics. Our most popular interactive 
learning objects visualize texture mapping, the Bresenham algorithm, 
and Fourier analysis. (Statistics include only Web pages and Java applet 
main classes. Robots, API documentation, and auxiliary pages were 
excluded. Keep in mind that we usually distribute our courseware on CD-
ROM.) 
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5.2 Image Processing and Video Communications 

5.2.1 Project 
This second case study is meant to demonstrate how we apply component-
based programming (2.4.2) in education (2.3.1). We present two 
complementary applications of interactive learning objects accompanying 
lectures at our institute. While the first one, a small courseware on Image 
Processing [Hanisch99] developed and employed in 1999 and 2000, focuses 
on visual programming of image filter chains, the second one, a courseware 
on Image Communications [Hanisch03b] held in 2001 and 2002, employs 
component programming to teach video processing. Each course took two 
hours per week and was taught by Andreas Schilling. Exercises required 
the same amount of time. Programming tasks in the first course 
represented a structure-based, top-down approach comprising, e.g. gap 
filling to complete filter loops. In contrast, exercises of the second course 
required low-level, bottom-up programming of entire components like the 
creation of a video renderer, filter, or stream. We compare these two 
approaches in the following sections. 

5.2.2 Visual Programming 
Our courseware on Image Processing includes interactive learning objects 
for teaching basics of image histograms and modifications, image 
operations and blending, discrete Fourier transformation, convolution 
kernels, image correction and reconstruction, decoding and encoding of 
image formats, edge detection, and image warping. Learning object 
development was preceded by the creation of a JavaBeans toolkit 
containing more than 50 image filters. Two-thirds of them could be based 
on native JAI (2.2.3, 3.2.1) filters; however, we reimplemented some of 
them for educational matters, i.e. to use them for gap-filling exercises on 
source code level. In addition, 15 GUI components offer image browsing, 
loading, editing, transcoding, storing, and interaction with histograms, 
filter kernels, transformations, and other properties. Learning objects are 
programmed visually by constructing a component data flow graphically in 
a builder tool (we used Sun’s BeanBuilder, cp. the ESCOT project, 2.4.1). 
Therefore, each component sends property changes (2.4.2). Note that data 
flow naturally represents all stages from image retrieval to image 
processing and image viewing and storing as it matches the conceptional 
model of image filter chains. 

Image filters provide an abstract property query mechanism, which we 
utilize to adapt the property panel to a specific filter. If the learner 
connects the property panel to a filter component, the panel queries all 
filter properties and sets up a matching GUI dynamically. That way, the 
learner may reuse a single property panel to interact with different filter 
components. For each property type (scalar, vector, kernel, image, etc.), we 
have registered a corresponding GUI editor, which will become 
instantiated, interlinked with the property, and embedded into the panel 
GUI whenever needed. 
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Each exercise assigns a structure-based task to the learner: given a set 
of input images with possible defects, how can we set up a filter chain 
producing the desired output? We introduced the toolkit incrementally. 
The first exercise offered a four-component subset, a browser, an RGB 
multiply filter, a viewer, and a property panel (see Figure 30). The learner 
simply had to connect them and interact with the RGB multiplicators. The 
individual setups could be exported to a self-complete learning object, that 
is, a composite JavaBean. Figure 31 depicts the learning object resulting 
from the first exercise, together with the corresponding programming 
instructions. Subsequent exercises extended the set of components and 
asked the learner to design a more complex data flow. The fifth exercise for 
example asked the learner to develop a low pass image filter (see Figure 
32). We attached appropriate filters and viewers for the discrete Fourier 
transformation and its inverse, diverse arithmetic image functions, 2D 
image functions and generic images, and support for real and imaginary 
values of complex images. In theory, low pass filtering entails a 
convolution with some image function, which maps on a multiplication in 
the frequency domain. The learner had to set up a data flow to normalize 
the input image, transform it to the frequency domain, visualize the log-
magnitude of the complex result, multiply the transformed image with a 
generic image to cut unwanted frequencies, and transform it back to the 
time domain. Afterwards, he had to include and interpret different 
convolution filters, e.g. a Gaussian, box, circle, hole, or line function.  

 

Figure 30: Visual programming in a builder tool enables the user to 
connect software components graphically by constructing a data flow. 
Here, the learner creates an interactive learning object that modifies an 
image’s color channels. 
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import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
import grdev.image.gui.*; 
import grdev.image.filter.*; 
 
public class FilterApplet extends JApplet { 
 ImageBrowser b = new ImageBrowser(); 
 ImageViewer v = new ImageViewer(); 
 MultiplyConstFilter f = new MultiplyConstFilter(); 
 FilterPropertyPanel fp = new FilterPropertyPanel(); 
  
   public void init() { 
     b.addPropertyChangeListener(v); 
     f.addPropertyChangeListener(v);  
   
     f.addFilterListener(fp); 
     fp.addPropertyChangeListener(f); 
 
     Panel p = getContentPane(); 
     p.setLayout(new BorderLayout()); 
     p.add("North", b); 
     p.add("Center", v);   
     p.add("South", fp); 
 } 
 

Figure 31: Programming interactive learning objects involves connecting 
software components by data flow and setting up the layout. Source code 
typically mirrors such clarity in structure. Only a modest number of 
programming instructions (left side) is needed to create the same 
learning object (right side) as created graphically in Figure 30. Visual 
programming, however, requires no technical knowledge regarding the 
specific programming language and environment.  

} 

Visual programming allows the learner to understand the structure of a 
topic (here, algorithms) without having to become acquainted with the 
software environment. We generally started with graphical constructions 
to clarify the setup of the learning object and component dependencies; 
then, we went further into essential aspects of the topic by switching to 
gap-filling tasks in the components’ source code. That way, we avoided 
confronting the learner with pure low-level programming, which would be 
rather time-consuming when dealing with specific image formats or filter 
performance.  

Gap-filling programming tasks included mostly the development of 
appropriate filter loops iterating over all image pixel values. The second 
exercise for example requested a loop body implementing a threshold filter. 
Learners could base their solution on exemplary source code of an invert 
filter. Exercises such as local or global histogram equalization (rank filter 
and lookup filter, respectively) extended this basic approach. The final 
project addressed the reconstruction of a blurred image distorted by noise. 
Learners had to implement an iterative inverse filter expanding the Taylor 
series of an inverse Gaussian filter, and explore the impact of varying 
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noise (the process diverges beyond some noise threshold). In this case, 
visual programming rather complicated the task, whereas component 
programming turned out to be the better alternative. 

5.2.3 Component Programming 
Our courseware on Video Communications shares many characteristics 
with our previously discussed courseware on Image Processing; in 
particular, we could reuse all image filters and GUI components for video 
filters working on single video frames. The great difference between these 
courses, however, lies in the importance of structure. In our Video 
Communications course, all applications share the same, typical data flow 
from the data source via the processor to the data sink. The processor 
decodes, filters, encodes, and renders a video stream. We do not focus on 
video filter chains – essentially, they do not differ from image filters – but 
individual components, i.e. data sources and sinks, codecs (decoder and 
encoder pairs),  filters, renderers, de-/multiplexers, and de-/packetizers. 
Therefore, exercises naturally deal with component programming, that is, 
with the design and implementation of new components rather than 
with the composition and completion of existing ones. 

We developed interactive learning objects for teaching the basics of time-
based data sources (Web camera, video clips, image lists, screen, generic 
video), renderers for common formats (PAL/NTSC, JPEG compression, 
RGB/YUV color spaces, aspect ratios), frame- and time-based filters 
(transitions, image filters, and effects such as blue screen), and video 
streaming (RTP). Again, we spent most effort on creating a component 
toolkit. Our core framework for handling time-based media uses JMF 
(2.2.3, 3.2.1). Programming exercises were accompanied by the source code 
of a representative set of custom components. Each exercise dealt with a 
specific component type. We started by developing an image list protocol; 
the learner had to create a matching data source, encode it into a JPEG 
stream, and include frame-seeking functionality. We provided only an 
empty data source; the learner had to design his own test application for 
playing the video. A later exercise dealt with data formats and color 
spaces. Starting with a functional RGB renderer, we asked the learner to 
implement a new YUV renderer component (see Figure 21, p. 80) and to 
include it in the test program. A similar renderer handled widescreen.  

Component programming requires fundamental knowledge of object-
oriented, low-level programming. In contrast to visual programming, it 
enables the learner to understand all aspects of the learning content, 
including implementation details, special cases, and strategies for 
optimization. The overall structure of a problem stays in the background. 
For example, let us consider a more sophisticated stop-motion project. 
Learners created a storyboard, captured single frames or grabbed them 
from a video, reused the image list data source, and applied a blue-screen 
effect filter they had developed themselves. Some learners designed their 
custom filters. Next, we required the credits to be generated on the fly by 
some custom data source component. Learners finally concatenated their 
created clips and applied a custom transition. Programming took place on 
source code level, i.e. learners practiced Video Communications bottom-up. 
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Figure 32: This application of the discrete Fourier transformation 
implements a low-pass filter. Learners may visualize an image in time 
and frequency domain (first row), apply a convolution filter (second row), 
and compare the result with the original image (third row). We ask the 
learner to design the data flow and supply a matching convolution filter.  
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5.3 Scientific Visualization 

5.3.1 Project 
Our last case study demonstrates the use of scripting (3.3) and online 
wizards (4.2) in an interactive Web-based courseware on Scientific 
Visualization [Hanisch02b, Hanisch03a]. This two hours per week course 
(with exercises taking the same amount of time) was taught by Stefan 
Gumhold in 2002 and 2003. Scripting on the component- and within-
component layer enabled us to create a fine-grained courseware 
interlinking. Learners can not only synchronize interactive learning 
objects with other courseware objects, but also adapt, rearrange, and 
exchange layout, design, and functionality (i.e. internal components and 
structure). Furthermore, we provided appropriate community support. 
Online wizards let learners personalize (annotate, rate, discuss, etc.) all 
courseware objects, including interactive ones, and work with the 
courseware collaboratively (reference, modify, share, etc.). 

5.3.2 Scripting 
We increased the effectiveness of our interactive Web-based courseware by 
realizing an adequate courseware interlinking. Before we depict a sample 
walkthrough in the domain of color vision (5.3.3), let us demonstrate how 
we overcame some typical problems an interactive learning object has to 
face in a Web-based environment, such as its isolated status, improper 
applied interactivity, and an overloaded GUI. 

Figure 33 illustrates how we taught vector field visualization. At first, we 
included a course text providing the definition and basic properties of 
vector fields, and several illustrations of symmetric, radial, and potential 
fields (back window). We integrated a corresponding interactive learning 
object to let the learner experience these facts in a constructive manner. 
However, with black box interlinking (2.4.3) readings and interactivity 
would have stayed essentially separated. To realize a fine-grained 
interlinking, we applied our scripting approach and interlinked the 
course text with the interactive learning object’s interior on the component 
and sub-component layer. For each statement and illustration of the 
course text, we embedded a script that adapts the object dynamically. The 
scripts insert particles into our scene graph to illustrate a potential field, 
redefine the vector field to be symmetric or radial, rearrange the GUI to 
include text fields for a function parser, or visualize a streamline (the 
surrounding windows show three different states). Other scripts exchange 
renderers that realize popular visualization techniques such as arrow plot, 
colorization, streamlines, and line integral convolution (LIC). As a result, 
learners may now switch back and forth between readings and 
interactivity freely, and adapt their interactive learning object to the 
statements and illustrations of the course text. Note that our scripts 
operate on the current object state, that is, they respect previously 
performed modifications. 
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Figure 33: Our courseware reuses this interactive learning object several 
times to illustrate different visualization techniques for vector fields. 
Programming exercises ask learners to include log-magnitude 
colorization, FastLIC, and their own algorithm. 

Another major topic in Scientific Visualization is color vision. We have 
developed teaching material similar to that used for vector field 
visualization, and evaluated it with different target audiences. Besides our 
own course, we have supported a five-day IBM workshop targeting 
professional training, and an one-week student project for Thomas Ertl‘s 
lecture on Graphical-Interactive Systems at the University of Stuttgart. 
Exercises were carried out on site. We found that learners typically have 
difficulties in understanding basics of color perception [Beall96, Foley95], 
in particular the CIE color spaces and color defects (see Figure 34). CIE 
color spaces are based on the fact that the human eye has three types of 
color sensitive cones. It appears to be difficult for the learners to imagine 
the 3D horseshoe shape of all visible colors and describe related properties 
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(see Figure 34, first row). Note that any color can be expressed in terms of 
the two color coordinates (and a luminance term); matters of color (e.g. 
hue, saturation, and dominant wavelength), interpolation, and color 
gamuts are usually discussed only with 2D projections (ibid. second row, 
left side). Therefore, learners rarely have to reflect the 3D shape and 
related properties. 

In our project, we asked the learners to simulate the effect of red, green, 
and blue color blindness (protanopes, deuteranopes, tritanopes) by 
calculating point projections onto a line (ibid. second row, right side). They 
had to verify their implementation with a given color test plate (ibid. third 
row). To solve this task, learners had to acquire an understanding of how 
to convert values between the CIE color spaces, how to set up a conversion 
matrix for a given color gamut within the CIE XYZ color space (using the 
phosphor values and white point of their monitor), and how to deal with 
out-of-gamut colors. Their solutions and questionnaires revealed that 
many learners made wrong assumptions if we provided them with course 
texts and non-interactive 2D illustrations only. 

Based on such evaluations, we improved our interactive learning object in 
several aspects. A first enhancement with respect to the data flow was to 
allow graphical modification of all essential parameters, and to 
interconnect all related components – that is, to provide proper, bi-
directional interaction. Learners can now compare a color’s location in 
different color spaces, modify projection point and line, and apply arbitrary 
color test plates. We further included a common work flow in the learning 
process: visualize  not only (1) one, fully saturated 2D projection of the 3D 
horseshoe shape, but also (2) various luminance layers, then (3) locate 
specific color values in the CIE color space, and (4) analyze corresponding 
RGB color values.  

Our improvements led to an overloaded GUI; even before that, some 
learners had stated they could not identify properties described in theory 
within our learning object. Therefore, we outsourced functionality by 
embedding scripting instructions and hyperlinks into other courseware 
objects. Statements from the course text are now illustrated directly in the 
simulation; if learners read, for example, ‘projection lines of tritanopes 
seem to be parallel, but intersect far away’, a matching script scales down 
and translates the scene accordingly. 

Finally, we modularized the simulation’s content and now introduce 
functionality gradually. We used the fact that Java supports dynamic 
loading of classes and separated all Java 3D functionality from Java 2 and 
JAI functionality. Learners can now start working with 2D projections and 
color plates only (see Figure 34, second and third row). As they switch to 
theory and read about the 3D horseshoe shape, they may include the 3D 
visualization (ibid. first row) into their current simulation. The script 
modifies the layout to include a Java 3D canvas, three 2D graphs, and a 
table containing all numeric values. It also rearranges the simulation’s 
data flow: learners may select a color in any canvas, input field, or table, 
and we update all other representations automatically.  
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Figure 34: Teaching basics of color perception and color defects. The first 
row visualizes the 3D horseshoe shape of all visible colors. The second 
row illustrates various CIE chromaticity diagrams together with the 
effects of a color defect. The learner can simulate how protanopes, 
deuteranopes, and tritanopes see the world. The result is demonstrated 
in the third row.  
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5.3.3 Community 
We close our case studies with a sample walkthrough a learner might take. 
In particular, we show how to perform self-tests, communicate with 
community members, and work with the courseware material. 

Let us assume we seek information about color vision, for self-studies, 
lecture preparation, or revision. On the courseware homepage 
(http://www.gris.uni-tuebingen.de/projects/vis), we have the following 
options for navigating to the appropriate chapter in the course text: we can 
browse the chapter structure, search the index, browse the list of figures, 
or browse the list of interactive learning objects. We locate a chapter on 
color perception by searching the table of contents. By default, we obtain a 
novice version containing gap-filling text, exercises, and marginal notes. If 
we are tired of such optional information, we could switch to a condensed, 
expert version. The gap-filling text represents a self-test: some words of 
the course text are deleted and we are asked to choose a correct fill-in from 
a combo box. Three pictograms provide help; one formulates an explicit 
question whenever we move the mouse pointer over it, a second one starts 
up an online wizard providing one or more hints, and the last one leads us 
to an enquiry wizard to check our answers. We start reading the physical 
basics of light and color, and explore the described properties such as 
dominant wavelength, pureness, and luminance in the accompanying 
interactive learning object. While modifying these parameters, we 
simultaneously read the course text and activate some scripts (5.3.2) to 
locate specific color values in our simulation. We fill out gaps by, for 
example, naming a color that cannot be defined by a dominant wavelength 
(e.g. magenta) or describing a color by a linear, additive mixture of two 
spectral colors. After having similarly read and explored the basics of our 
visual system (e.g. the tristimulus theory), the CIE color spaces, and color 
defects, we conclude our self-test and enter the enquiry wizard. The wizard 
collects all questions belonging to the current chapter and evaluates our 
answers. In case of errors, the wizard reformulates the incorrectly 
answered questions, and provides more hints. 

Next, we discuss our subject with other community members. In the 
marginalia, we find a discussion board (4.2.2) dedicated to the specific 
topic color perception. The boards are structured hierarchically, so if we 
are looking for a related topic, we can move to some board siblings (e.g. 
color models), or upwards to a more general board (e.g. visual cues). Other 
communication tools let us add short questions to the chapter, or answer 
the ones posed by other community members. We could further arrange a 
remote consultation with the tutor, in which we could synchronously 
discuss our problems with understanding the text, or participate in an 
online session with the interactive learning object. We prefer to express 
our impression of the content and start the rating wizard for the current 
course text. Feeling lazy, we skip the detailed review and just rate some 
qualities as (good or bad), and provide an overall grading. The author will 
receive our rating by email. 

Finally, yet importantly, we start to work with the content, i.e. to 
personalize, modify, and extend it (4.2.2, 4.2.3). We add a personal note to 
the chapter, recording the insights we gained through communication and 

http://www.gris.uni-tuebingen.de/projects/vis


5 Case Studies 115 

  

the self-test. We make the note available for all community members, so 
that, if many of them rate our contribution as useful, it will become a static 
part of the courseware. One of the exercises included in the course text 
asks us to complete the background section with historical material about 
the visual system. Using an appropriate history wizard, we enter some of 
the contributions of Isaac Newton (1642-1726), who recognized that white 
light is made up of all the colors that we can see, and Hermann von 
Helmholtz (1821-1894), originator of the variables hue, saturation, and 
brightness, and advocator of the three-color system. If we take part in one 
of the student projects, we are further entitled to modify or extend 
particular passages of the course text as part of the assignment. Note that 
during editing we may reference any other learning object or part of it (e.g. 
a learning object, or a script). Other exercises provide us with the core CIE 
XYZ data set and ask us to visualize it, or to set up a script to display the 
color gamut of our own monitor in the visualization. Programming 
exercises require us to study the simulation’s source code, and enhance the 
algorithm handling out-of-gamut values, or implement the transition from 
trichromatism to dichromatism. Finally, we are assigned the task of 
designing our own online test for color perception defects, which will 
become integrated into the courseware. 
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6 Conclusion & Directions for Future Work 
We have traveled the path from the first teaching machine to learning 
management systems, and interrelated paths of hypermedia and graphical 
user interfaces that led to the Web and the Desktop. We have met visions, 
and grand challenges. Ours is that of interactive Web-based courseware, 
which we witness as an integral part of our teaching and learning, and 
which we would like to bring to the masses. We had to state that the basic 
concept of interactivity, hypermedia, and courseware – the idea of an 
highly interactive medium with means for collaboration, personalization, 
and working with the content – is obscured due to absent technology and 
concrete form.  

Learning technologies have specified learning objects and learning 
management systems. However, few methodologies exist for interactive 
learning objects, and not a single one for highly interactive ones. While 
technology provided direct manipulation, software components, and 
scripting, didactics and cognitive theories established adequate mental 
models, discovery learning, and microworlds. We combined these 
approaches into an MVC Interactivity and formulated symbolical 
interactivity levels in software terminology. As we required direct 
manipulation not only for object view and parameters, but also for 
functionality (components and structure), we presented visual Drag & 
Drop Scripting. Our ORC-SG design pattern provided a more granular 
MVC component model with respect to construction and interactive, 
graphical content. 

Through examples, we discussed an application of current learning 
technology standards and illustrated some of our most urgent needs. To 
include issues of interactivity and interoperability into a digital library, we 
presented the concept and prototype of a scripting database, together with 
online wizards enabling community members to modify interactive 
learning objects online and interlink them with other learning objects in a 
graduated manner. Certainly, our approach marks just the beginning of 
collaborative authoring of interactive learning objects, an area that is not 
yet explored. Effective systems will have to include appropriate authoring 
tools. We are thinking of a Web-enabled integrated development 
environment (IDE) letting community members program components and 
scripts online, possibly visually. We also need Web-based component 
models standardizing an object’s programming interface and 
interoperability.  

Subjects like these must become included into learning object metadata 
and the runtime environment of a learning management system; then, we 
might be able to specify, retrieve and adapt interactive learning objects 
adequately, and evaluate user interactions on component and sub-
component layer. Andries van Dam wants interactive objects to become 
clip models [vanDam02, CRA02], with the same characteristics as 
conventional clip art. 

The desired flexibility naturally requires collaborative efforts of the 
educational community. Roschelle [Roschelle98] asked how to anticipate 
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and support an emerging community of practice around component 
software and customizable curricula. Our Web framework represents a 
prototype for such a social architecture. We manage learning objects, 
components and scripts in the courseware’s repository, and let community 
members share, annotated, rate, and extend them. Generator templates 
and online wizards support them both in interlinking, and authoring. We 
demonstrated the benefits of such an integrated system with examples 
from our courseware. Yet, we had to postpone some ideas for future work. 
Firstly, we did not mention the application of our layered database model 
to software components. By providing alternative components, we could 
render interactive objects useful for adaptive systems [Brusilovsky96]; 
besides multilinguality, we could precisely adapt presentation, structure, 
and depth of information.  

Secondly, concerning component reuse, we discussed only the tip of the 
iceberg. In this project, we reused design, geometry, and structure 
information to facilitate the development of interactive learning objects, 
and adapt them to other courseware objects. Drag & Drop Scripting 
allowed us to transport such information beyond the browser barrier. We 
would like software components to become intelligent in the sense that 
they should be evolved by community members in multiple microworlds or 
online games, and transferred to different setups with their current 
characteristics. Intelligent components must therefore comprise an 
extendable, context-sensitive set of attributes, actions, and functionality. 
Lastly, they will be shared and distributed in a digital library, and billed 
on component base. 
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Abbreviations 
Systems and projects are located in the Name Index (next page). 

 

API  Application Programming Interface 

CGI  Common Gateway Interface 

CIE  Commission Internationale de L’Eclairage 

CSCW  Computer Supported Cooperative Work 

FAQ  Frequently Asked Questions 

GUI  Graphical User Interface 

HTML  HyperText Markup Language 

HTTP  Hypertext Transfer Protocol 

IDE  Integrated Development Environment 

IP  Internet Protocol 

JAI  Java Advanced Imaging 

JDBC  Java Database Connectivity 

JMF  Java Media Framework 

JPEG  Joint Photographic Experts Group 

LIC  Line Integral Convolution 

LMS  Learning Management System 

LOM  Learning Object Metadata 

MVC  Model View Controller 

NTSC  National Television System Committee 

ODBC  Open DataBase Connectivity 

ORC-SG Object, Renderer, Constraint, Scene Graph, and GUI 

PAL  Phase Alternating Line 

PDF  Portable Document Format 

RGB  Red, Green, and Blue 

RTP  Real Time Transport Protocol 

SCORM  Sharable Content Object Reference Model 

SMET  Science, Mathematics, Engineering, and Technology 

SQL  Structured Query Language 

TCP  Transfer Control Protocol 

URL  Uniform Resource Locator 

UNL  Uniform Network Location 

WIMP  Windows, Icons, Menus, and Pointer device (mouse) 

WYSIWYG What You See Is What You Get 

YUV  Luminance and Two Chrominance Signals 
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Name Index 
The following names are typed in italics in the main text. 

A 
ADL  43 
AICC  43 
Amaya  30 
Andrews, Keith  24, 29, 39 
ARIADNE  43, 51 
ARPA  24 

B 
BALSA  54 
Baumgartner, Peter  32, 37 
Berners-Lee, Tim  29 
BibTex  103 
Bitzer, Donald  33 
Borning, Alan  26, 53 
Boxer  27 
Bravo  26 
Bruner, Jerome  33 
Bush, Vannevar  24 

C 
CGEMS  12 
Christian, Wolfgang  55 
Cinderella  23, 54 
Computing Research Association  11 

D 
Dexter Hypertext Reference Model  28, 

55 
diSessa, Andrea  27, 46 
DoD  24, 33 
Duval, Erik  42, 47 
Dynabook  13, 30 

E 
ED-MEDIA  11 
Electronic Webmaster  100 
ELS  26 
Engelbart, Douglas  25, 28 
EOE  50 
Ertl, Thomas  111 
ESCOT  49, 56 
E-Slate  48, 56 
Exploratories  39, 46 

F 
Flash  30 
FRESS  25, 35 

G 
Gentle  40, 41 
Gumhold, Stefan  110 

H 
Halasz, Frank  26, 28 
HES  25 
HTML  29, 30 
HTTP  29 
Hypercard  28, 35 
Hyper-G  29 
HyperTies  18 
Hyperwave  29, 38, 40 

I 
IEC  42 
IEEE  42 
IMS  38, 43 
Ingalls, Daniel  26 
Intermedia  27, 35 
Internet Explorer  30 

J 
Java  19, 26, 31 
Java 3D  31, 48, 54, 61, 67 
Java Advanced Imaging  31, 61, 105 
Java Media Framework  31, 61, 108 

K 
Kay, Alan  11, 13, 19, 26, 34 
Klein, Reinhard  100 

L 
LEGO Mindstorms  34 
Licklider, Joseph  24 
Logo  34 
LOM  22 
LTSC  42, 43 

M 
MANKIND  29 
MathWorlds  56 
Maurer, Hermann  11, 29, 35, 39, 41 
Memex  24 
MERLOT  51 
Merrill, David  33 
Meyrowitz, Norman  27, 28, 37 
Mozilla  30 
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N 
Nelson, Ted  25, 35 
Netscape Navigator  30 
Newton, Isaac  115 
NLS  25 
NoteCards  26 
NSF  45 

P 
Papert, Seymour  34 
Physlets  55 
Piaget, Jean  34 
PROMETHEUS  43 
Pygmalion  26 

Q 
Quicktime  30 

R 
RealPlayer  30 
Roschelle, Jeremy  28, 47, 56 

S 
Schulmeister, Rolf  22, 36, 60 
SCORM  36, 43, 78 
Servlets  90 
Shneiderman, Ben  15, 18, 19 
Shockwave  27, 30 
Simonyi, Charles  26 
Sims, Rod  19 
Sketchpad  18, 25 
Skinner, Burrhus Frederic  33 
Smalltalk  19, 26 
SMIL  30 
Smith, David  26 
SQL  38 

Squeak  26 
Star  27 
Straßer, Wolfgang  100 
Sutherland, Ivan  18, 25 
SVG  30 

T 
Tesler, Larry  26 
ThingLab  26 
Thorndike, Edward  33 
TICCIT  33 

V 
van Dam, Andries  11, 25, 35, 46, 47, 117 
von Helmholtz, Hermann  115 
von Neumann, John  24 

W 
W3C  30 
Web/Comp  46 
WebCT  37, 41 
WebDAV  30 
World Wide Web  29 

X 
Xanadu  25 
Xerox PARC  26 
XML  30 

Y 
Yankelovich, Nicole  27 

Z 
Zuse, Konrad  24 
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Subject Index 
The following subjects are typed bold-faced in the main text. 

A 
adapter  61, 66 
adaptive system  15 
added value  15 
alternative points of view  74 
annotation  94 
authoring tools  38 

B 
behaviorism  33 
behaviors  67 
black boxes  38 
browser  29 
building block  19, 42 

C 
classroom  75 
cognitivism  33 
communication  114 
community  40 
compatibility  96 
components  19, 26, 50, 52, 87, 108 
constraint  26, 53, 62 
construction  22 
constructivism  34 
container  27, 70 
content  88 
context  26 
context help  94 
courseware  13, 36 

D 
data flow  62 
database  38 
decentralization  77 
design  88 
dictionaries  85 
digital libraries  45 
direct manipulation  19 
discussion board  94 
drag & drop scripting  79 

E 
external representation  21 

F 
functionality  75, 112 

G 
generator  40, 76, 86 

 
granularity  46, 70 
graphical user interface  65 
guidelines  21 

H 
highly interactive learning object  13, 60, 

95 
Human-Computer Interaction  18 
hyperlinks  24 
hypermedia  13, 24, 25, 35, 37 
hypermodel  56 

I 
illustration  73 
Image Communications  105 
Image Processing  105 
incrementally given data  85 
integration of information  21 
interaction  18, 20, 22, 25, 112 
interactive constructs  19 
interactivity  18 
interlinking  87, 110 
interoperability  27, 44 

L 
layers  84, 100 
learning management system  36 
learning object  42 
learning technology standards  22, 42, 78 
learning theory  32 
link consistency  84 
link database  26 
look & feel  65 

M 
member status  93 
messages  26, 53 
metadata  22, 44, 51, 68, 77, 85 
Model View Controller  53 
modelessness  26 
multimedia  18 

N 
network  24, 75 

O 
object  63 
output-sensitive  64 
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P 
plug-in  30, 65 
programming  19, 54, 107, 108 
properties  63 

R 
rating system  94 
renderer  63 
repositories  25, 46, 50 
review process  51 

S 
scene graph  54, 66, 67 
Scientific Visualization  110 
scripting  28, 48, 55, 72, 95 
search  103 
self-test  95, 114 
server  76 
structure  88, 106 

synchronization  73 

T 
templates  39, 72, 86, 91, 101 
toolkit  105, 108 

U 
upload  103 
usability  22 

V 
visual programming  26 

W 
Web-based authoring  55, 91, 103, 114 
WIMP  27 
within-component layer  29 
wizards  41, 90, 95, 101 
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