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Abstract

The present thesis is devoted to the numerical investigation of Quantum Field Theories
(QFT) by means of non-perturbative methods. It is composed of two parts. In the first part,
we present a new numerical approach to the study of physical systems under the influence
of external classical fields. In the second part, we investigate by means of lattice simulations
the gluon sector of two-colour Quantum Chromo Dynamics (QCD) formulated in Coulomb
gauge.

Quantum field theory with external conditions (QFEXT) is the investigation framework of
quantum phenomena related to the presence of a given classical background. This technique is
used in the context of solid state physics, e.g. in the study of (super-)conducting matter under
the influence of external electromagnetic fields, in the context of high energy physics, where
special chromo-magnetic configurations in the QCD vacuum are investigated, and has recently
found an application in nanotechnology, with the study of the Casimir effect. We propose
to treat these applications of QFEXT in the light of the worldline formulation of quantum
field theories. Expressed in terms of Schwinger proper-time integrals and first quantized
Feynman path integrals, the worldline technique provides a formulation of QFEXT which
is conveniently implemented on the computer by means of Monte-Carlo techniques. In this
framework, the effective action at one-loop level can be computed for arbitrary background
configurations.

Our first investigation concerns the study of magnetic vortex systems, in particular the
quantum energy induced by fluctuating fermionic fields. This investigation is relevant for the
physics of Type-II superconductors, as well as for the vortex picture of quark confinement
in QCD. In the case of a single vortex, the numerical estimates are compared with the
analytical results provided by the derivative expansion technique, based on an expansion
of the effective action in the gradient of the external field. Exploiting the universality of
the numerical method regarding the background potential, we test the limits of validity of
the analytical approach at a quantitative level. We find that renormalization induces a
serious breakdown of the derivative expansion. The binary vortex system, beyond the range
of applicability of analytical techniques, is also investigated and an effective vortex-vortex
interaction is obtained as a function of the distance between the vortex cores.

In a second step, we focus on the study of the Casimir effect. The interaction of the
fluctuating field with the physical boundary is described in a complete field theoretic way
in terms of an external potential accounting for the interface. The Casimir energy of a fluc-
tuating scalar field is investigated for several geometric configurations in the case of rigid
bodies. The analytical result for the plate-plate configuration serves as a benchmark test
of the method. A study of the sphere-plate and cylinder-plate configurations permits to in-
vestigate the effects induced by a curved geometry. The numerical method allows a study
beyond the limits of validity of the standard analytical procedure, the Proximity Force Ap-
proximation (PFA), which is based on an integration of the parallel plate result along the
boundaries. In contrast to PFA, we obtain the Casimir energy for any distance-to-curvature
ratio.

The second part is devoted to the lattice study of the SU(2) Yang-Mills theory in the
Coulomb gauge formulation. Despite practical disadvantages which render the approach
inconvenient for perturbative calculations, Coulomb gauge gained in recent years increasing
interest in relation to the problem of confinement in QCD. This formulation indeed allows a



direct access to the Coulomb interaction potential between static colour sources. We review
the properties of the Coulomb gauge approach, in particular the quantization of the theory
and the scenario of colour confinement, originally formulated by Gribov. In order to avoid
any confusion, we distinguish carefully the Coulomb potential from the Wilson potential
extracted from the Wilson loop expectation value. The mathematical expression of the
Coulomb potential contains the so-called Faddeev-Popov operator. Its central role in the
confining property of the potential is discussed in the context of Gribov’s scenario.

After a short section devoted to the basic aspects of the lattice approach to gauge theories,
we report the results of our simulations for the ghost propagator, i.e. the expectation value
of the inverse Faddeev-Popov operator, as well as for the Coulomb potential. We address
also equal-time gluonic correlations via the study of the gluon propagator. Our estimates
are compared to the results obtained analytically in the Hamiltonian formulation of Yang-
Mills theory. We compute therefore the expectation value of the propagators in a fixed time
slice. The numerical results in three and four dimensions indicate an enhancement of the
ghost propagator in the small momentum regime and a Coulomb potential compatible with
a linear confinement of static quarks. The investigation of equal-time gluonic correlations
in three and four dimensions reveals a striking behaviour of the gluon propagator in the
perturbative regime in the form of an anomalous scaling, whose origin is still under ongoing
debate. In four dimensions, the numerical gluon propagator attains a non-vanishing finite
value at zero momentum transfer.



Zusammenfassung

Diese Dissertation ist der Untersuchung von Quantenfeldtheorien (QFT) mithilfe nicht-
störungstheoretischer Methoden gewidmet. Sie besteht aus zwei Teilen. Im ersten Teil stellen
wir eine neuere numerische Methode vor, die die Studie der Quanteneigenschaften physika-
lischer Systeme in Anwesenheit äußerer klassicher Felder ermöglicht. Im zweiten Teil werden
die Eigenschaften des Gluon-Sektors der Quantenchromodynamik (QCD) mit zwei Farben
mit Hilfe von Gittersimulationen in Coulomb-Eichung untersucht.

Die Untersuchung von Quantenphänomenen eines physikalischen Systems in Anwe-
senheit klassischer Hintergrundfelder erfolgt im Rahmen der sogenannten “Quantenfeld-
theorie unter äußeren Bedingungen” (QFEXT). Diese Technik wird eingesetzt sowohl in
der Festkörperphysik, beispielsweise bei der Untersuchung der (supra-)leitenden Materie in
äußeren elektromagnetischen Feldern, als auch in der Hochenergiephysik, z.B. in der Studie
spezieller chromomagnetischer Felder im QCD Vakuum. Die Studie des Casimireffekts kann
ebenso anhand dieser Methode durchgeführt werden. In dieser Arbeit werden diese Anwen-
dungen der QFEXT im Rahmen des Weltlinien-Formalismus der QFT untersucht. Dieser
auf Schwinger und Feynman zurückgehende Formalismus ermöglicht die Berechnung der ef-
fektiven Wirkung auf 1-Schleifen-Niveau für beliebige Hintergrundfelder mithilfe des Monte-
Carlo Verfahrens.

Wir wenden unsere numerische Methode zuerst auf die Bestimmung der Quantenenergie
eines Systemes magnetischer Wirbel (Vortex) an, die durch fluktuierende fermionische Felder
induziert wird. Diese Untersuchung ist sowohl für die Physik des Typ-II-Supraleiters relevant,
als auch für das Confinement-Szenario der QCD, das auf chromomagnetischen Flusswirbeln
basiert. Im einfachsten Fall eines einzelnen Vortex werden die numerischen Daten mit den
analytischen Ergebnissen verglichen, die mit der Gradiententwicklung erhalten wurden. Diese
Näherung basiert auf der Entwicklung der effektiven Wirkung nach Potenzen des Gradienten
des Hintergrundfeldes. Die Universalität unserer Methode ermöglicht die Bestimmung der
Gültigkeitsgrenze des analytischen Zuganges auf einem quantitativen Niveau. Unsere nu-
merischen Ergebnisse zeigen, dass die Renormierung der effektiven Wirkung eine signifikante
Verschlechterung des Konvergenzverhaltens der Ableitungsentwicklung verursacht. Das 2-
Vortex-System, welches für die analytischen Methoden unzugänglich ist, wird untersucht,
und wir erhalten eine effektive Vortex-Vortex-Wechselwirkung als Funktion vom Abstand der
Vortexkerne.

Desweiteren wenden wir unsere Methode auf die Studie des Casimireffekts an. Die Wech-
selwirkung zwischen dem fluktuierenden Feld und den Grenzflächen wird durch ein äußeres
Potential beschrieben. Die Casimirenergie wird im einfachsten Fall eines fluktuierenden
Skalarfeldes und starrer Grenzflächen für mehrere geometrische Konfigurationen bestimmt.
Das analytische Ergebnis für die Konfiguration mit zwei parallelen Platten dient als Test
unserer Methode. Eine Studie der Konfiguration mit Platte und Kugel bzw. Platte und
Zylinder, ermöglicht die Analyse der Effekte, die durch die gekrümmte Geometrie induziert
werden. Unser numerischer Zugang erlaubt die Bestimmung des Gültigkeitsbereiches der so-
genannten “Proximity Force Approximation” (PFA). Diese basiert auf der Integration des
analytischen Ergebnisses für parallele Platten entlang der Randflächen. Im Gegensatz zur
PFA bestimmen wir die Casimirenergie für beliebige Verhältnisse zwischen Abstand und
Krümmung.

Der zweite Teil ist der Formulierung der SU(2) Yang-Mills-Theorie in Coulomb-Eichung



gewidmet. Diese Eichung hat im Bezug auf das Quark-Confinement während der letzten Jahre
wachsendes Interesse erfahren: Sie erlaubt einen direkten Zugang zum Coulomb-Potential,
das die Wechselwirkung zweier statischer Quarks beschreibt. Wir geben einen Überblick
über die Eigenschaften der Formulierung der Yang-Mills Theorie in Coulomb-Eichung, ins-
besondere die Quantisierung der Theorie und das von Gribov formulierte Szenario für das
Quark-Confinement. Das Coulomb-Potential wird vom eichinvarianten Wilson-Potential un-
terschieden, das durch die Berechnung des Erwartungswertes des Wilson-Loops im Yang-
Mills-Vakuum bestimmt werden kann. Der mathematische Ausdruck des Coulomb-Potentials
enthält den sogenannten Faddeev-Popov-Operator, dessen Rolle in Bezug auf das Gribov-
Szenario diskutiert wird.

Nach einem kurzen Abschnitt über die Grundlagen der Gittereichtheorie werden die nu-
merischen Ergebnisse unserer Simulationen für den Geist-Propagator, das Coulomb-Potential
und den Gluon-Propagator vorgestellt. Wir vergleichen unsere Daten mit den aus der Hamil-
tonschen Formulierung der Yang-Mills-Theorie erhaltenen Ergebnissen. Der Erwartungswert
der Propagatoren wird deshalb innerhalb einer fixierten Zeitschicht bestimmt. Unsere nu-
merischen Abschätzungen in drei und vier Dimensionen zeigen eine Verstärkung des Geist-
Propagators im Bereich kleiner Impulse und sind kompatibel mit einem linearen Confinement
von statischen Quarks. Die Untersuchung des Gluon-Propagators bei fixierter Zeit zeigt ein
auffallendes Verhalten im Bereich großer Impulse in Form einer anomalen Skalierung, für die
keine definitive Erklärung bis zur Veröffentlichung dieser Arbeit gefunden werden konnte.
In vier Dimensionen erreicht der Gluon-Propagator einen endlichen Wert im Bereich kleiner
Impulse.
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Chapter 1

Introduction

The first stages of the development of Quantum Electro Dynamics (QED), the quantum
field theory of interacting electrons and photons, are bound to the interest for new effects,
of pure quantum nature, induced in the presence of strong electromagnetic fields. In 1936,
Heisenberg and Euler [HE36] predicted theoretically quantum effects in the vacuum when
intense electromagnetic fields are turned on. For example, they were able to calculate the
probability of a creation of an electron-positron pair from the vacuum in the presence of a
strong electric field. This quantum polarization of the vacuum results from the interaction
of the external field, treated in a full classical way, with a fluctuating quantum field, in the
present case the electron-positron field. Quantum field theories with classical background
potential, or QFEXT1, build nowadays a general framework which permits to treat a large
spectrum of physical problems classified according to the nature of the fluctuating field and
the background potential. In the context of solid state physics, this framework is used to
study the quantum theory of charge carriers, electrons or holes, in the presence of various
magnetic field configurations: constant magnetic field applied to a conventional conductor,
giving rise to the Hall effect [PG90], or magnetic vortices, captured inside superconducting
matter responsible for the induction of an undesirable resistance [CN97]. Both phenomena
are still under numerous experimental and theoretical investigations. In the context of QCD,
the formalism is used to study fluctuating quarks in the presence of center magnetic vortices,
which are believed to play a crucial role in the phenomenon of colour confinement, as suggested
by lattice investigations [Gre03]. The Casimir effect came recently enlarge the family of
theories described in the QFEXT framework. A formulation of the problem in terms of a
renormalizable quantum field theory was recently proposed [GJK+02]. In this approach, the
interaction of the fluctuating field with the Casimir boundary is taken into account via a field
theoretic interaction with a classical background potential. The Casimir effect, considered for
a long time only as a beautiful illustration of quantum effects, has become in recent years a
high relevant topic in nanotechnology, e.g. engineering of microscopical devices at nanoscale.

Mathematically, the quantum correction induced by the fluctuating electron-positron field
in the Heisenberg-Euler problem is represented under the form of an additional term to the
classical Maxwell action. This is an effective action, in the sense that the quantum effects
induced by the electron field are contained in a function of the electromagnetic field only,
which describes the new physical properties of the vacuum without explicit reference to
the electronic degrees of freedom. In the field theoretic language, the effective action is

1Quantum Field theory under the influence of EXTernal conditions.
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obtained by integrating out the electron-positron field. This integration over the fluctuating
field gives rise to a functional determinant, whose analytical calculation is a non-trivial task
for arbitrarily shaped background potentials. If the coupling constant characterizing the
interaction between the fluctuating field and the background potential is small, a perturbative
expansion can be performed. This gives rise to a diagrammatic representation in terms of
Feynman diagrams containing one loop of the fluctuating field with insertions of the external
potential. A non-perturbative treatment can be achieved in the Worldline Formalism, which,
by means of the Schwinger proper-time technique and the Feynman path integral formulation,
provides a representation of the functional determinant under the form of a path integral in
quantum mechanics [Sch01]. More precisely, the determinant is expressed as a sum over
loops, i.e. closed paths in space-time also called worldlines, which experience the background
potential around their perimeter, i.e. in a non-local way. The effective action on the worldline
can be exactly computed only in ideal cases, like configurations with homogeneous background
fields. The standard approximation consists in studying deviations from this ideal case by
means of derivative expansion techniques, i.e. expanding the action in terms of the gradients
of the background potential. This has been until now achieved up to first order derivatives
of the electromagnetic field in the case of QED [GS99].

The worldline formulation of the one-loop effective action as a first-quantized path integral
allows an exact numerical treatment: the integral over the loops can be understood as a
weighted average over the loop ensemble, which suggests a numerical implementation by
means of the Monte-Carlo method. This technique, which we call loop cloud method, generates
stochastically an ensemble of loops and achieves the calculation of the effective action by
performing statistical loop averages [GL02]. Since the loop weight factor is independent of
the background potential, a loop ensemble can be used for several physical problems, i.e. the
numerical method is independent of the background potential. The loop cloud method was
initially tested in the case of a constant magnetic background and applied to the study of
the quantum properties of a magnetic step configuration [GL01], which can by no means be
handled by the derivative expansion method.

In view of the fact that the loop cloud method is a recent technique, we propose to review
it in details in chapter 2. We start with the definition of the effective action, derive the
worldline formulation in an explicit way and discuss the renormalization in this formalism.
Though the formulation is an alternative approach to QFT without Feynman diagrams, it is
not free of divergences and does not bypass the regularization of infinite expressions. Finally,
we give in a technical section a detailed description of the numerical procedure. The reader
who is more interested in the applications is invited to skip this part and consult directly
chapter 3 and chapter 4.

In the present work, we apply the loop cloud method to the study of two physical problems:
quantum effects induced by fermions in the presence of magnetic vortex systems are treated
in chapter 3, while chapter 4 is devoted to the study of the Casimir effect. In each case, the
loop cloud method is tested by confronting the numerical estimates with the results provided
by the standard analytical approaches in their respective range of applicability. After this
test phase, we perform simulations of physical configurations for which no analytical result
is yet available. In the context of magnetic backgrounds, we repeat for pedagogical purposes
the simulations at constant magnetic field performed in a previous reference [GL01] and
point out a technical limitation of the loop cloud method in the case of fermionic fluctuations
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(fermion problem). In a second step, we calculate the effective action induced by fermions
in the presence of magnetic vortex systems, a configuration for which the fermion problem
has a harmless impact. The simple configuration of one single vortex permits to compare our
estimates to the results obtained using the derivative expansion and therefore allows for a
discussion on the range of validity of the latter on a quantitative level. The calculations are
performed in D = 2 + 1 and D = 3 + 1, illustrating the effects induced by renormalization.
We turn to the case of a binary vortex configuration and study the quantum corrections to
the interaction energy as a function of the distance between the vortex cores.

We begin chapter 4 with a discussion of the field theoretic formulation of the Casimir
effect developed recently [GJK+02]. In contrast to the standard approach which consists in
implementing ad hoc boundary conditions on the fluctuating field, a clear advantage of this
formulation is its ability to distinguish between divergences of pure field theoretic nature and
divergences arising from idealizations of the Casimir boundaries. We test the applicability
of the loop cloud method to the study of the Casimir effect by performing simulations of
the parallel plate configuration, which is analytically well known. All simulations are done
with respect to a fluctuating scalar field and rigid, i.e. non deformable, Casimir boundaries.
In this case, the infinities due to the idealization of perfectly conducting and infinitely thin
boundaries do not prevent the calculation of the Casimir interaction energy giving rise to the
Casimir force. Turning to the sphere-plate configuration, which is the standard experimental
setup used for the measurements of the Casimir force, we compare our numerical estimates
to the analytical results furnished by the proximity force approximation. This technique
approximates the full calculation of the Casimir energy by an integration of the parallel
plate result over the surfaces of the Casimir boundaries. The approach considers only local
interactions of infinitesimal bits on each boundary and neglects de facto effects due to the
curvature. The loop cloud method is on the contrary by construction non-local, since a loop
experiences the background potential along its perimeter. The comparison of our results
with proximity force calculations provides therefore a way to investigate curvature effects at
a quantitative level in any range of the distance-to-curvature ratio. We close the chapter with
a study of the cylinder-plate configuration.
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Chapter 2

Worldline Techniques

In this chapter, we present the worldline approach to the computation of one-loop effective
actions in quantum field theories. The effective action is defined in the context of a scalar field
theory in the presence of a scalar background and a representation in terms of a worldline
integral is derived. After a straightforward generalization to the cases of scalar and spinor
QED and some general remarks on the renormalization procedure in the worldline formalism,
we present a new numerical approach to the calculation of the one-loop effective action, which
regards the worldline integrals as weighted averages over ensembles of loops in space-time.
The generation of the statistical loop ensembles is described in detail in a separate section,
which can be skipped by the reader mainly interested in an overview of the method. A recipe
and a summary of the main features of the method conclude the chapter.

2.1 The quantum effective action on the worldline

This work concerns the study of physical systems in the framework of a quantum field theory
under the influence of external conditions. This concretely means that we investigate the
effects induced by the fluctuations of a quantum field in the presence of a background modelled
by a classical potential. We will in a first step consider the simplest case of a fluctuating real
scalar field in the presence of a scalar background potential.

2.1.1 Scalar effective action

Let us start with the field theoretic Lagrangian. In Euclidean space-time, it is given by

L[φ, V ] =
1

2
∂µφ∂µφ+

1

2
m2φ2 +

1

2
V (x)φ2, (2.1)

where m is the mass of the fluctuating field φ and V (x) denotes the space-time dependent
scalar background potential. This field theory is quantized in the path integral formalism.
In this framework, the fundamental quantity is the generating functional defined by

Z[V ] =

∫

Dφ e−S[φ,V ], (2.2)

where S[φ, V ] =
∫
dDx L[φ, V ] denotes the classical action. The analogy with statistical

physics is clear if we think of quantum fluctuations in terms of thermal fluctuations, of field
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20 2.1. THE QUANTUM EFFECTIVE ACTION ON THE WORLDLINE

configurations in terms of microstates of the system and of the factor e−S in terms of a
Boltzmann factor. The generating functional then is the analogue of the partition function
and we define the quantum effective action Γ[V ] by Z[V ] = e−Γ[V ] in complete analogy with
the free energy in statistical physics.

Since the argument of the exponential function is quadratic in the field φ, the Gaußian
integral can be performed, yielding

Z[V ] = Det−1/2

[−∂2 +m2 + V (x)

−∂2 +m2

]

, Γ[V ] =
1

2
Tr ln

[−∂2 +m2 + V (x)

−∂2 +m2

]

, (2.3)

where we used the identity lnDet[Ô] = Tr ln[Ô]. In standard QFT textbooks, the effective
action is generally given in terms of a loop expansion1

Γ = Γ(1) + Γ(2) + . . .+ Γ(n) + . . . ,

where Γ(n) resums the contributions of n-loops Feynman diagrams. For the field theory
(2.1), we show that the contribution (2.3) resums precisely one-loop Feynman diagrams, i.e.
corresponds to the first term Γ(1) in the expansion above. We rewrite (2.3) under the form

Γ[V ] =
1

2
Tr ln

[
1 + (−∂2 +m2)−1V

]
.

Expanding the logarithm and noting that (−∂2 +m2)−1 := GF is the bare scalar propagator,
we find

Γ[V ] =

∞∑

n=1

(−1)n−1

2n
Tr {[GF V ]n}

=

∞∑

n=1

(−1)n−1

2n

∫

dDz1 . . . d
Dzn GF (z1 − z2)V (z2)GF (z2 − z3) . . .

. . . V (zn)GF (zn − z1)V (z1).

A representation in terms of Feynman diagrams is given in Fig. 2.1, left panel. The fact that
the effective action contains the sum over all one-loop diagrams only, i.e. Γ[V ] = Γ(1)[V ], is
particular to Lagrangians of the type (2.1) for which

• the potential V is purely classical, i.e. does not fluctuate,

• the interaction term is quadratic in the fluctuating field.

Higher orders in φ or a fluctuating potential would induce diagrams depicted in Fig. 2.1, right
panel.

Let us now restart from (2.3) and derive the worldline representation of the effective
action. First, we use the Schwinger proper-time representation of the logarithm [Sch51]:

ln

[
A

B

]

=

∫ ∞

0

dT

T

[
e−B T − e−AT

]
.

1This corresponds to an expansion in powers of ~.
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...

(a) (b)

Figure 2.1: The one-loop effective action Γ(1)[V ] resums all Feynman diagrams containing one loop in

the fluctuating field with insertions of the external potential V (dashed line). The two-loop diagrams

on the right cannot contribute to the effective action. Diagram (a) is excluded by the structure of

the Lagrangian, which contains no φ3 interaction, while diagram (b) contains an internal dashed line,

which is excluded since the external V field is non fluctuating.

The effective action becomes

Γ(1)[V ] = −1

2
Tr

{∫ ∞

0

dT

T
e−m

2T
[

e−(−∂2+V )T − e−(−∂2)T
]}

. (2.4)

Second, the functional trace is expressed in terms of quantum mechanical matrix elements

Tr[Ô] =

∫

dDx 〈x|Ô|x〉, (2.5)

leading us to the evaluation of 〈x|e ∂2T |x〉 and 〈x|e−(−∂2+V )T |x〉. The former is trivially

obtained by inserting a complete set of momentum states
∫ dDp

(2π)D |p〉〈p| = 1:

〈x|e ∂2T |x〉 =

∫
dDp

(2π)D
e−p

2T =
1

(4πT )D/2
.

For the second matrix element, we perform a discretization of the proper-time interval into
N small slices of length ε = T

N . We split the operator into N factors

e−(−∂2+V )T = e−(−∂2+V )ε . . . e−(−∂2+V )ε
︸ ︷︷ ︸

N factors

and insert N − 1 complete sets of states in position space and N complete sets of states in
momentum space:

〈x|e−(−∂2+V )T |x〉 '
∫

dDp1 . . . d
DpNd

Dx1 . . . d
DxN−1〈x|e−(−∂2+V )ε|p1〉〈p1|x1〉

〈 x1|e−(−∂2+V )ε|p2〉〈p2|x2〉 . . . 〈xN−1|e−(−∂2+V )ε|pN 〉〈pN |x〉,

'
∫

dDp1 . . . d
DpNd

Dx1 . . . d
DxN−1 e

−V (x)ε e−p
2
1ε e−ip1·(x−x1) . . .

. . . e−V (xN−1)ε e−p
2
N ε e−ipN ·(xN−1−x) (2.6)

where the relation ’'’ is exact up to some constant prefactors. The last expression is nothing
else than the Feynman path integral formula for the amplitude:

〈x, T |x, 0〉 '
N−1∏

n=1

[∫

dDxn

] N∏

n=1

[∫

dDpn

]

e−iSN , (2.7)
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where

SN =

N∑

n=1

[pn(xn − xn−1) − iεH(pn, xn, tn)]

with the “Hamilton” function2 H(pn, xn, tn) = p2
n + V (xn). The representation of the scalar

effective action is mapped onto the quantum mechanical problem of a particle of mass
M = 1/2 in the potential V (x). Performing all momentum integrations, we obtain

〈x|e−(−∂2+V )T |x〉 = N
∫

dDx1 . . . d
DxN−1 e

−V (x)εe−
(x−x1)2

4ε e−V (x1)εe−
(x1−x2)2

4ε . . .

. . . e−V (xN−1)εe−
(xN−1−x)2

4ε ,

where the constant prefactors have been absorbed in the normalization N . The “continuum
limit” N → ∞ is denoted by a functional integral over paths x(τ) parameterized by the
proper-time τ ∈ [0, T ]:

Γ(1)[V ] = −1

2

∫ ∞

0

dT

T
e−m

2T

∫

dDx

[

N
∫ x(T )=x

x(0)=x
Dx e−

R T
0
dτ

h

ẋ2

4
+V (x(τ))

i

− 1

(4πT )D/2

]

.

The normalization N is determined from the limit of zero potential

N
∫

x(0)=x(T )

Dx e−
R T
0
dτ ẋ2

4 =
1

(4πT )D/2

such that the path integral can be interpreted as an expectation value with respect to an
ensemble of closed loops with Gaußian velocity distribution:

N
∫

Dx e−
R T
0 dτ

h

ẋ2

4
+V (x(τ))

i

=
1

(4πT )D/2

∫
Dx e−

R T
0
dτV (x(τ))e−

R T
0 dτ ẋ2

4

∫
Dx e−

R T
0
dτ ẋ2

4

:=
1

(4πT )D/2

〈

e−
R T
0 dτV (x(τ))

〉

x
.

In a last step, we shift all loops x(τ) to have a common center of mass xCM, implying
∫ T
0 dτ xµ(τ) = 0. The effective action reads finally

Γ(1)[V ] = − 1

2(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM

[〈

e−
R T
0 dτV (xCM+x(τ))

〉

x
− 1
]

. (2.8)

This result shows that the quantum field theory defined by (2.1) and (2.2) is mapped onto
a one-dimensional field theory, if we regard the particle position xµ(τ) as a set of D fields
living in the one-dimensional space of proper-time. This set, describing a loop for which the
proper-time τ ∈ [0, T ] plays the role of the parameter, is called worldline.

2Since the proper-time element ε has energy dimension -2, the function H possesses the dimension of a
squared energy .
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The calculation of the effective action to one-loop level (2.8) is then reduced in the so
called worldline - or string-inspired3- formalism to the computation of the expectation value
of the “holonomy factor4 ” 〈

e−
R T
0 V (xCM+x(τ))

〉

x
(2.9)

over the ensemble of all closed worldlines x(τ) centered upon xCM, with respect to the loop

distribution given by exp
{

−
∫ T
0 dτẋ2/4

}

. In the following, we will refer to this expectation

value 〈. . . 〉x as worldline or loop average. We will also use the notation

WV [T, x(τ), xCM] := e−
R T
0
V (xCM+x(τ)).

2.1.2 Scalar QED effective action

Let us consider the theory of a fluctuating complex scalar field in the presence of a classical
background Abelian gauge field given by the vector potential Aµ(x). We are now dealing
with a gauge theory whose Lagrangian is given by

L[φ, φ∗, A] = −φ∗D2φ+m2φ∗φ,

with the covariant derivative Dµ = ∂µ + iAµ. The effective action reads in this case

Γ(1)[A] =
1

2
Tr ln

[−(∂ + iA)2 +m2

−∂2 +m2

]

.

We cut short the complete derivation of the matrix element 〈x|eD2T |x〉 and start directly
with the expression (2.7), which is now the propagation amplitude of a charged particle of
mass M = 1/2 and unitary charge in the magnetic field derived from the potential Aµ. The
corresponding Hamiltonian is given by H(pn, xn, tn) = [pn +A(xn)]

2 and the matrix element
reads

〈x|eD2T |x〉 '
∫

DxDp e−i
R T
0
dτ p·ẋ e−

R T
0
dτ [p(τ)+A(x(τ)]2 .

If we perform a re-parametrization of the momentum path integral p+A→ p′ and integrate
over p′, we obtain the equivalent expression to (2.8) in scalar QED:

Γ(1)[A] = − 1

(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM

[〈

ei
R T
0
dτA(xCM+x(τ)) · ẋ

〉

x
− 1
]

.

(2.10)

For field theories with internal degrees of symmetry, note that the trace operation in (2.3) is
not only given by the functional operation (2.5) but also includes a trace over these internal

3Let us note that the worldline formulation of QFT emerged originally from string theory [BK92], which
corresponds to QFT in a certain limiting case. The string-inspired rules of calculation, called Bern-Kosower
rules, were rederived later in the framework of QFT by Strassler [Str92] using proper-time representation and
first-quantized path integral similarly to the above derivation.

4The term ’holonomy’, used here by extension to refer to the potential part of the wordline representation,
is, strictly speaking, only valid for a theory with vector background field, in which case it indeed corresponds
to the Wilson loop (see below).
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degrees. This explains the different prefactors in (2.8) and (2.10). From this result, we see
that the computation of the one-loop effective action for a gauge theory is reduced to the
evaluation of the loop average of the Wilson loop

〈

WA[T, x(τ), xCM]
〉

x
:=
〈

ei
R T
0 dτA(xCM+x(τ)) · ẋ

〉

x
, (2.11)

which is gauge invariant with respect to the background gauge field.

2.1.3 Spinor QED effective action

We finally derive the worldline one-loop effective action for the theory of a fluctuating Dirac
field minimally coupled to a classical background Abelian gauge field Aµ(x). The Lagrangian
reads

L[ψ, ψ̄, A] = ψ̄[iD/−m]ψ

where m is now the mass of the fluctuating fermion field, D/ = γµDµ, with the covariant
derivative Dµ = ∂µ + iAµ. The matrices γµ are the anti-hermitian Euclidean γ-matrices,

γ†µ = −γµ satisfying {γµ, γν} = −2δµν . As a consequence, the operator D/ is hermitian.
The quantum field theory is defined as usual by the generating functional

Z[A] =

∫

DψDψ̄ e−
R

dDxψ̄(x)[−iD/+m]ψ(x)

where ψ and ψ̄ are Grassmann fields. The integration over Grassmann variables yields

Γ(1)[A] = −Tr ln

[−iD/+m

−i∂/+m

]

= −1

2
Tr ln

[
D/2 +m2

−∂2 +m2

]

.

The operator D/2 reads explicitly

D/2 = −(∂ + iA)2 +
1

2
σµνFµν

where Fµν = ∂µAν − ∂νAµ is the field strength tensor and σµν := i
2 [γµ, γν ]. The spinor

QED effective action is identical to the scalar QED expression, up to the global sign due to
the integration over Grassman fields, the presence of the potential term 1

2σµνFµν and the
prefactors. It reads explicitly

Γ(1)[A] =
1

2(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM

× 4

[〈

ei
R T
0 dτA(xCM+x(τ)) · ẋ 1

4
trPT e

1
2

R T
0 dτσµνFµν(xCM+x(τ))

〉

x

− 1

]

.

(2.12)

The mathematical symbol PT denotes path ordering with respect to the proper-time T .
Comparing this result with (2.10), we see that the transition from scalar to Dirac fields in a
background gauge field has introduced an additional factor in the loop average. The quantity
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1
4trPT exp

{
1
2

∫ T
0 dτσµνFµν

}

is the Pauli or spin factor and takes the spinor structure of the

fluctuating field into account. The tracing operation is performed relatively to the Dirac
structure of the exponential function, due to the presence of σµν in its argument. Let us note
that the Pauli factor, as well as the Wilson loop, is a gauge invariant quantity. The loop
average will in the following be abbreviated by

〈

W ferm
A [T, x(τ), xCM]

〉

x
:=

〈

ei
R T
0
dτA(xCM+x(τ)) · ẋ 1

4
tr e

1
2

R T
0
dτσµνFµν(xCM+x(τ))

〉

x

.

2.2 Renormalization

In this section, we limit our discussion to general aspects of renormalization in the worldline
formalism. We will discuss the renormalization procedures specific to each physical problem
in the next chapters.

When studying a physical problem formulated in the QFEXT framework, we are possibly
confronted with two types of divergences:

(i) field theoretic ultraviolet divergences,
(ii) divergences related to the modeling of the physical background, i.e. to the external

potential.

The occurrence of divergences of the first type is clear since we are dealing with quantum
field theories. The divergences of the second type are far more subtle and are not to be
mistaken for the field theoretic ones. The external potential models the background, such as
magnetic field configurations or physical boundaries. Mathematically, this is expressed by
the dependence of the potential on some parameters {λi} of phenomenological nature (field
strength amplitude, shape of the magnetic configuration, penetration depth of a material,
etc.). For the sake of simplicity, some parameters may be tuned to take some critical values
λcr corresponding to convenient assumptions (ideal cases). This can lead to a divergence of
the effective action:

Γ[V (λi → λcr)] → ∞.

Contrary to the divergences of the first type (i), these divergences may not be removed in a
physically meaningful way. The problem can possibly be bypassed if the physical observable
of interest (e.g. a force, a pressure), which is derived from Γ[V ], remains finite in this critical
limit even if Γ[V ] does not. If it is not the case, the assumption λi → λcr is unphysical and
has to be dropped.

Let us now discuss how the renormalization procedure concerning the occurrence of di-
vergences of the first type is performed in the worldline formalism. The proper-time integral

Γ(1)[V ] '
∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM [〈WV [T, x(τ), xCM]〉x − 1]

is possibly ill-defined for small values of T . Introducing an UV regularization (e.g. by means
of a cutoff at the lower integral bound) and expanding the proper-time integrand for small T
(this can be done analytically), we obtain

Γ(1)[V ] '
∫ ∞

1/Λ2

dT

TD/2+1
e−m

2T

∫

dDx(f1[V ]T + f2[V ]T 2 + O(T 3)). (2.13)
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[The subscript CM has been dropped to simplify the notation.] From this expression, it is
clear that the number of divergent contributions depends on the space-time dimension D. For
each divergent term, we introduce a counter-term in such a way as to render the proper-time
integral finite:

Γ(1)[V ] = N
∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDx
[
〈WV [T, x]〉x − 1 − f1[V ]T − f2[V ]T 2 − . . .

]

︸ ︷︷ ︸

Γ
(1)
R

+ N
∫ ∞

1/Λ2

dT

TD/2+1
e−m

2T

∫

dDx [f1[V ]T + f2[V ]T 2 + . . . ]

︸ ︷︷ ︸

Γ
(1)
c.t.(Λ)

.

The first part of this expression is now finite, i.e. we can remove the cutoff safely (Λ → ∞).
When the counter-terms are fixed, it represents the renormalized part of the effective action

Γ
(1)
R . The counter-terms present in the second term Γ

(1)
c.t.(Λ), still depending on the cutoff,

need to be fixed by imposing renormalization conditions. This last procedure, which consists
in reabsorbing the counter-terms in the redefinition of the parameters in the bare action (such
as the charge of the fluctuating field, for instance), is specific to each physical problem and
will be discussed later on in the corresponding chapters.

2.3 Worldline Numerics: the ’loop cloud’ method

The computation of the effective action in the worldline formalism reduces to the calculation
of loop averages (see (2.8), (2.10) and (2.12)) of the type 〈. . . 〉x over the ensemble of all
closed worldlines x(τ) centered upon a given point xCM. On the analytical level, this can
be achieved in an exact way only in a few simple cases or otherwise requires strong as-
sumptions. The idea of the worldline numerics is to calculate this expectation value on a
computer by generating the worldline or loop ensemble in a numerical way, either in a con-
tinuous space-time [GL01, GL02] or in a latticized space-time [SS]. It is evident that we
can generate neither the whole loop ensemble, which is infinite, nor an arbitrary big amount
of loops, for clear reasons of computational time. We will adopt a strategy which is widely
used in statistical physics, called importance sampling, which selects the relevant configu-
rations contributing to the loop average among the ensemble of all loops. These ones are
generated by a standard Monte-Carlo procedure according to the Gaußian loop distribution

ploop[T, x(τ)] ' e−
R T
0
dτ ẋ2

4 . Generating an ensemble of N lp loops {x(τ)|l, l = 1, . . . , Nlp}, the
expectation value is approximated by

〈O[x(τ)]〉x ' 1

Nlp

Nlp∑

l=1

O[x(τ)|l] (2.14)

for any observable O depending on the path x(τ).

2.3.1 Loop rescaling, unit loops and discretization

Let us point out that this approach is, at this stage, not practicable. The loop probability
distribution p loop indeed depends on the proper-time T , which means that a loop ensemble
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x(τ )

x0

x2

x1

xNppl−1

Figure 2.2: Discretization of the continuous loop x(τ). This corresponds to a discretization of the
proper-time interval [0, T ], not of the space-time. Every point xi = x(τi) can move freely.

has to be generated for each value of T . This fact renders the numerical approach very
expensive in computing time. In this context, the observation that the worldlines xµ(τ)
can be rescaled in such a way that the distribution p loop becomes T -independent is a crucial
point in favour of the applicability of Monte-Carlo techniques to the computation of worldline
averages. Let us consider the following rescaling transformations:

τ ∈ [0, T ] → t :=
τ

T
∈ [0, 1], x(τ) → y(t) :=

x(tT )√
T
.

Under this transformation, the following proper-time integral becomes
∫ T

0
dτ ẋ2(τ) →

∫ 1

0
dt ẏ2(t),

which renders the loop distribution p loop independent of T . The numerical burden is then
reduced to the all-at-once generation of an ensemble of y-loops, which we call unit loops in
the following, and the evaluation of the expectation value (2.14) for a given value of T simply
consists in the rescaling of all members of the unit loop ensemble

x(τ) =
√
Ty(τ/T ) (2.15)

before the sum (2.14) is performed. It is also obvious that the concept of continuous loops
has to be abandoned. In simulations a loop is defined by a collection of Nppl points, denoted
by {xi} and corresponding to the discretization of the proper-time interval [0, T ]:

τ ∈ [0, T ] → τ0 = 0, τ1, . . . , τNppl
= T,

x(τ) → x0 = x(τ0), x1 = x(τ1), . . . , xNppl−1 = x(τNppl−1), xNppl
= x0

(2.16)

Let us point out that this discretization is not to be mistaken for a space-time discretization.
Every point xi can move freely in continuous space-time. This is illustrated in Fig. 2.2.

2.3.2 Generation of the unit loop ensemble

After rescaling and discretization, the unit loop distribution reads

ploop [{yi}] =
1

N δ(y0 + · · · + yNppl−1) exp



−Nppl

4

Nppl∑

i=1

(yi − yi−1)
2



, (2.17)
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where

N =

∫

dDy0 . . . d
DyNppl−1 δ(y0 + · · · + yNppl−1) exp



−Nppl

4

Nppl∑

i=1

(yi − yi−1)
2



,

yNppl
= y0 and the delta function accounts for the fact that the loop center of mass is located

at the origin, i.e. yCM = 0. The generation of the unit loop ensemble with respect to this
distribution can be achieved in several ways:

1. thermalization of the loop ensemble by means of a heat-bath procedure,

2. ’random walker’ techniques,

3. Fourier decomposition, i.e. diagonalization in momentum space,

4. diagonalization in space-time.

The first method is the most straightforward one to be implemented and has been employed
in the first simulations concerning scalar and fermionic fluctuations in the presence of ma-
gnetic backgrounds [GL01, LMG02]. The principal disadvantage of thermalization is that the
number of thermalization sweeps required increases dramatically with the number of points
per loop Nppl. Method 2 is based on the relation existing between random walk processes
and path integrals [Sam79, SS] and generates a loop by letting a walker randomly propagate
in space-time. This method avoids thermalization but introduces the walker step as a second
loop parameter besides Nppl and does not produce exactly closed loops. Method 3 and
4 circumvent the thermalization problem by diagonalizing the loop distribution, i.e. each
point of the loop can be randomly determined with its nearest-neighbours interaction taken
automatically into account by the algorithm.

Heat-bath algorithm. The idea of the heat-bath procedure is to consider that each point
on a loop is regarded as exposed to a ’heat bath’ of all neighbouring points. Let us isolate
in the unit loop distribution ploop [{yi}] the contributions containing the particular point yi
(we forget for the moment the delta function, i.e. we generate in a first step loops without
center of mass constraint):

ploop [{yi}] ' . . . e−
Nppl

4 [(yi−yi−1)2+(yi+1−yi)2] . . . .

After some algebraic operations, the probability distribution for the point yi reads, dropping
all yi -independent factors,

p[yi] ' e
−Nppl

2

h

yi−
yi−1−yi+1

2

i2

.

The heat-bath procedure now consists in the following steps: (i) choose a site i ∈ [0, Nppl−1],
consider all variables yk, k 6= i as constant, and generate the yi according to its probability;
(ii) visit all variables of the loop. The closeness is exactly realized with yNppl−1 being in the
heat bath of yNppl−2 and y0. In order to generate a ’thermalized’ loop, one starts with a
random ensemble {yi} and performs nt heat-bath sweeps. Finally, a stopping criterion has to
be implemented. This is done by considering the extension e of the loop ensemble expressed
by the loop mean square

e2 =

∫

dy0 . . . dyNppl−1 y
2
i ploop[y(t)].
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Figure 2.3: The average extension e (multiplied by
√
Nppl for better visualization) of the loops as a

function of the number of thermalizations nt.

This quantity can be calculated analytically. It reads

e =

√
√
√
√1

6

(

1 − 1

N2
ppl

)

and is shown in Fig. 2.3. One clearly observes that the thermalization of loop ensembles
is expensive for N > 500. In fact, roughly nt = 45000 is needed for an acceptable loop
ensemble consisting of N = 1000 points. We then see that the heat bath method can become
relatively expensive in computing time for problems requiring a big amount of points per loop,
i.e. problems which are sensitive to the systematic error introduced by discretization, as for
instance the study of the Casimir effect. This method has however produced good results in
the case of magnetic backgrounds [GL01, LMG02]. The last step of the loop generation is
performed by shifting each loop after thermalization in such a way that yCM = 0.

Random walk. In order to circumvent the thermalization problem, one may exploit the
connection between loops with Gaußian velocity distribution and random walks [Sam79,
ID89]. Let us mention that this has already been adapted to worldline numerics with latticized
space-time in [SS]; here, as already pointed out, we keep the space-time continuous.

Let us give up the concept of unit loops for a moment, and reinstate the naturally emerging
coordinate space loops x(τ),

x(τ) =
1√
T
y(τ/T ), x(0) = x(T ). (2.18)

Probability theory tells us that random walks automatically implement the Gaußian velocity
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Figure 2.4: Each Gaußian factor in (2.19) is obtained by coarse graining a random walk process
between the points xi and xi+1. The walker step is denoted by s.

distribution
Nppl−1
∏

i=0

exp

{

− 1

4ε
(xi+1 − xi)

2

}

, (2.19)

where ε is the measure of the small proper-time slices. The crucial point is to establish the
relation between a loop that a random walker with step length s would generate for us and
a thermalized loop at a given proper-time T . This relation results from a coarse-graining
procedure, which we present here briefly. Given that the random walker starts at the point
xi, the probability density for reaching the point xi+1 after n steps is given by

p(xi+1 | xi, n, s) =

∫

dDz2 . . . d
Dzn−1

n−1∏

k=1

1

Ω(D)sD−1
δ(|zk+1 − zk | −s),

with Ω(D) being the solid angle in D dimensions, z1 = xi and zn = xi+1. This is depicted in
Fig. 2.4. For n� 1, but ns2 fixed, the central-limit theorem can be applied [Sam79]:

lim
n→∞

p(xi+1 | xi, n, s) =

(
D

2πns2

)D
2

exp

{

− D

2ns2
(xi+1 − xi)

2

}

, ns2 = fixed. (2.20)

Comparing (2.20) with (2.19), one identifies

ε =
ns2

2D
. (2.21)

The dimension of the proper-time as well as its relation to the loop length L appears here in
an obvious way,

T =
Nws

2

2D
=
Ls

2D
, (2.22)

where Nw now is the total number of walker steps. It is important to point out that the
proper-time can be tuned in two ways: we can adjust either the walker step s or the number
of points Nw. The corresponding two methods to generate a loop ensemble at given proper-
time T work as follows.



CHAPTER 2. WORLDLINE TECHNIQUES 31

Method 1 : s is fixed.

(1) choose the walker step s;

(2) read off from Eq. (2.22) the number of points Nw corresponding to T ;

(3a) generate Nw points by letting a random walker go Nw steps, and accept the configu-
ration if the last step leads him into a small sphere (radius εR) centered upon the
starting point;

(3b) close the loop ’by hand’ by shifting the last point to the starting point;

(4) shift the center of mass to zero;

(5) repeat steps (3) and (4) Nlp times for an ensemble of Nlp loops.

We point out that the value of s must be much smaller than the characteristic length scale
provided by the background potential. A second constraint on s arises from the applicability
of the central limit theorem, i.e. n � 1 in (2.20). A third systematic numerical uncertainty
follows from the shift in step (3b). Unfortunately, small values for εR result in low acceptance
rate for loops, and, therefore, increase the numerical effort to generate the loop ensemble. A
good compromise is to set the radius εR to some percentage of the step length: εR = ε s.

For illustration, we consider the following example. We compute the average Wilson Loop
(2.11) in scalar QED for the case of a constant magnetic background field B = Bez at T = 1
and D = 2,

A = B/2 (y,−x)
using a loop ensemble constructed by means of this random walk method. For T = 1 the
walker step length is given by s = 2√

Nw
. Fig. 2.5 shows our numerical result as a function of

Nw in comparison with the exact value. Circles with error bars correspond to loop ensembles
generated with εR = 0.05 s. The limit (2.20) seems to be attained for 50 < Nw < 100. For
a further improvement of the numerical accuracy, large values of Nw and a decrease of εR
at the same time are required: a further calculation for εR = 0.03 s is in agreement with
the analytical result at Nw = 150 (black square with error bar). Finally, we point out that
the deviation from the exact result in the case of the heat-bath-generated loop ensemble
(grey square) is probably due to thermalization effects. Note that we have to generate a
loop ensemble for each value of T (∼ Nws

2), which makes this procedure far more memory
consuming than the heat-bath approach. If we decide to generate the loop ensembles once
and for all and save them to disk, we have to handle huge amounts of data. On the other
hand, if we create our loops ’on demand’ (while performing the T or x integrations), we are
confronted with a serious waste of computing time.

Method 2: Nw is fixed.

(1) choose the number of points Nw;

(2) set the walker step to s = 1;

(3) proceed with steps (3), (4) and (5) of the first method.

The loop ensemble is here generated only once and then rescaled to adjust the step length
to the value s corresponding to T in (2.22). This method therefore works as in the case
of the re-scalable thermalized unit loops, with the difference that the proper-time rescaling
is realized via the rescaling of the step length. This tuning at the level of s provides for a
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Figure 2.5: Average Wilson Loop (2.11) for the case of a constant magnetic background field B for
B = 1, T = 1 and D = 2 as a function of the number of points per loop.

better control of the microscopic features of the loops. The second procedure is thus a good
candidate to replace the thermalized loops since it combines the absence of thermalization
and the rescaling of an all-at-once generated ensemble. It should however be emphasized
that most of the computer time is spent on generating redundant open loops. This is due to
the fact that, for a given εR, the fraction of loops which close after Nw steps decreases like

N
−D/2
w .

Fourier decomposition: “f loops”. We are now looking for alternative methods that
could combine some advantages of the two previous approaches and bypass the problems
rendering them impractical. A highly efficient procedure arises from a Fourier representation
of our unit loops

y(t) =

Nppl∑

ν=1

[

aν cos
(

2π ν t
)

+ bν sin
(

2π ν t
)]

, a0 = 0 , (2.23)

where Nppl is the number of Fourier modes included (which agrees with the number of points
specifying each loop, see below). The choice a0 = 0 guarantees that the loop center of mass
is located at the origin. Inserting Eq. (2.23) into the loop distribution (2.17), the probability
distribution for the Fourier coefficients is given by

P
[
a, b
]

= exp
{

−π
2

2

Nppl∑

ν=1

ν2
(
a2
ν + b2ν

)}

. (2.24)

We can take advantage of the fact that the Fourier components {a, b} are not correlated, in
order to generate our loops in momentum space. The reconstruction of the unit loop y(t) in
Eq. (2.23) is most efficiently performed by using the fast Fourier transformation (FFT). For
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these purposes, we define complex coefficients cν := aν + i bν , and obtain

y(t) = Re

Nppl∑

ν=1

cν exp
{

−i 2π t ν
}

. (2.25)

The FFT procedure generates a series of points yi, i = 0 . . . Nppl − 1 which discretize the
continuous curve y(t) and thereby constitute the unit loops.

Explicit diagonalization: “v loops” We propose an algorithm that is based on a linear
variable transformation {yk} → {v̄k}, such that the discretized distribution (2.17) becomes
purely Gaußian. These new variables are velocity-like and diagonalize the quadratic form in
the exponent.

Because of the δ function in (2.17), only Nppl − 1 coordinates per loop are independent.

Defining
∫
Dy =

∫∞
−∞

Nppl−1
∏

i=0
dyi, we may perform, e.g., the yNppl−1 integration using the

δ function,
∫

DyP
[
{yk}

]
. . .

=

∫ Nppl−2
∏

i=0

dyi e

»

−Nppl
4

„

PNppl−2

i=1 (yi−yi−1)2+(2y0+y1+···+yNppl−2)2+(y0+y1+···+2yNppl−2)2
«–

. . .

=:

∫ Nppl−2
∏

i=0

dyi e

h

−Nppl
4

Y
i

. . . , (2.26)

where the dots represent an arbitrary y-dependent operator, and we introduced the ab-
breviation Y for the quadratic form. In order to turn the exponential into a product of
simple Gaußians, we define Nppl − 1 new velocity-like variables,

v̄0 :=
3

2
y0 + y1 + y2 + · · · + yNppl−3 +

3

2
yNppl−2,

vi := yi − yi−1, i = 1, 2, . . . , Nppl − 2. (2.27)

For notational simplicity, it is useful to also introduce the auxiliary variable,

vi,j = vi + vi−1 + · · · + vj+1 ≡ yi − yj, for i ≥ j = 0, 1, . . . , Nppl − 2, (2.28)

such that the exponent Y can be written as

Y =

Nppl−2
∑

i=1

v2
i +

(

v̄0 −
1

2
vNppl−2,0

)2

+

(

v̄0 +
1

2
vNppl−2,0

)2

= 2v̄2
0 +

1

2
v2
Nppl−2,0 +

Nppl−2
∑

i=1

v2
i . (2.29)

We observe that the variable v̄0 now appears quadratically in the exponent as desired. The
same has still to be achieved for v1 . . . vNppl−2. For this, we note that
vNppl−2,0 = vNppl−2 + vNppl−3,0 by definition (2.28). Defining
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v̄Nppl−2 := vNppl−2 +
1

3
vNppl−3,0, (2.30)

we indeed obtain for the exponent Y

Y = 2v̄2
0 + v2

Nppl−2 +
1

2
(vNppl−2 + vNppl−3,0)

2 +

Nppl−3
∑

i=1

v2
i

= 2v̄2
0 +

3

2
v̄2
Nppl−2 +

1

3
vNppl−3,2 +

Nppl−3
∑

i=1

v2
i , (2.31)

where v̄2
Nppl−2 also appears quadratically. We can continue this construction by defining

v̄Nppl−i := vNppl−i +
1

i+ 1
vNppl−i−1,0, i = 2, . . . , Nppl − 1 , (2.32)

which turns the exponent Y into a purely Gaußian form:

Y = 2v̄2
0 +

3

2
v̄2
Nppl−2 +

4

3
v̄2
Nppl−3 + · · · + i+ 1

i
v̄2
Nppl−i + · · · + Nppl

Nppl − 1
v̄2
1 . (2.33)

The last step of this construction consists in noting that we can substitute the integration
variables according to

Nppl−2
∏

i=0

dyi = J

Nppl−2
∏

i=1

dvidv̄0 = J̄

Nppl−2
∏

i=0

dv̄i ≡ Dv̄ (2.34)

with nonzero but constant Jacobians J , J̄ , the value of which is unimportant for the calcu-
lation of expectation values. This allows us to write the path integral (2.26) as

∫

Dy P
[
{yk}

]
. . . = J̄

∫

Dv̄ exp



−Nppl

4



2v̄2
0 +

Nppl−1
∑

i=2

i+ 1

i
v̄2
Nppl−i







 . . .

≡ J̄

∫

Dv̄ P
[
{v̄k}

]
. . . , (2.35)

where P
[
{v̄k}

]
can now be generated straightforwardly with the Box-Müller method [BM58].

For the construction of unit loops (“v loops”), the above steps have to be performed
backwards. The recipe is the following:

(1) generate Nppl − 1 numbers wi, i = 0, . . . , Nppl − 2 via the Box-Müller method such that
they are distributed according to exp(−w2

i );

(2) compute the v̄i, i = 0, . . . , Nppl − 2, by normalizing the wi:

v̄0 =

√

2

Nppl
w0,

v̄i =
2

√
Nppl

√

Nppl − i

Nppl + 1 − i
wi, i = 1, . . . , Nppl − 2 ; (2.36)
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(3) compute the vi, i = 1, . . . , Nppl − 2, using

vi = v̄i −
1

Nppl + 1 − i
vi−1,0, where vi−1,0 =

i−1∑

j=1

vj ; (2.37)

(4) construct the unit loops according to

y0 =
1

Nppl



v̄0 −
Nppl−2
∑

i=1

(

Nppl − i− 1

2

)

vi



 ,

yi = yi−1 + vi, i = 1, . . . , Nppl − 2,

yNppl−1 = −
Nppl−2
∑

i=0

yi ; (2.38)

(5) repeat this procedure Nlp times for Nlp unit loops.

The formulas in step (4) can be checked straightforwardly by inserting the definitions of the
vi’s and v̄0.

This v-loop algorithm allows us to generate unit loops efficiently without thermalization,
i.e., no redundant thermalization sweeps have to be performed, and works for an arbitrary
number of points per loop Nppl.

2.3.3 Calculating the effective action: the method

We present in this section the whole machinery under the form of a recipe. The numerical
computation of the effective action at the one-loop level (expressions (2.8),(2.10) and (2.12))
by means of the loop cloud method works according to the following scheme.

1. Generating a unit loop ensemble

Choose one of the techniques described in the previous section to generate an ensemble

of Nlp loops, each of them being defined by Nppl points.

This ensemble has the following properties:

• the loops are distributed with respect to the distribution (2.17),

• the loops are centered upon the origin, i.e.
PNppl−1

i=0 yi = 0 for each loop
{y0, . . . , yNppl−1}.

The influence of thermalization effects on the quality of the numerical estimate should be kept in mind.

We recommend the use of f- or v-loops, which implement the first condition automatically. The second

condition is realized by shifting by hand all members of the loop ensemble to zero center-of-mass.

2. Computing the action density - proper-time integral

The calculation of the effective Lagrangian Leff(xCM) at the point xCM results from the evaluation of

a proper-time integral which is performed by means of a standard integration algorithm [PFTV]. For

each value of T required by the integration algorithm, an ensemble average over loops centered upon

xCM, described under points (a) and (b) has to be performed.
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For a fixed space-time point xCM and a fixed proper-time T ,

(a) perform the average (2.14) of the holonomy factor as follows: for each term of the
sum, i.e. for each member of the loop ensemble,

• rescale the unit loop according to yi → xi =
√
Tyi, for each loop point

yi, i = 0, . . . , Nppl − 1,

• shift the loop to the center of mass xCM, by translating each loop point ac-
cording to xi → xi + xCM,

• evaluate WV [x(τ), xCM, T ] for the loop x(τ).

Repeat this procedure and compute the arithmetic mean value of the Nlp contri-
butions.

(b) subtract one, the counter-terms if needed and multiply by the remaining T -
dependent factors.

Repeat the whole procedure for each value of the proper-time T required by the inte-
gration algorithm implementing the T -integration until convergence is achieved.

Let us at this stage recall that, while the interval [0, T ] is discretized for the purposes of the numerical

treatment, the value of T can vary continuously in the interval [0,+∞[. The discretization has no

influence on the computation of the proper-time integral, i.e. the integration algorithm can consider

the loop average as a usual continuous function of T . The choice of this algorithm should be done after

examination of a plot of the proper-time integrand, which permits to determine its fall-off rate at large

T ′s and the possible presence of an integrable singularity at T = 0.

3. Computing the effective action - space-time integral

The numerical estimate of the effective action is obtained as followed:

• fix the value of the parameters: fluctuating field mass, geometrical and phenomeno-
logical quantities which parametrize the external potential,

• perform the space-time integration using a standard integration algorithm: for
each space-time point xCM required by the integration routine, perform the proper-
time integration described under point 2.

The loop center of mass can move continuously in space-time: the loop discretization does not affect

the space-time integral.

Remark: gauge invariance and loop discretization. In order to avoid a violation of
gauge invariance in the numerical computation, we have to deal with a subtlety concerning
the discretization of the integrals along the worldlines: a particular loop in our ensemble is
considered to be a polygon with straight lines Ci connecting the points xi and xi+1. In order
to evaluate the holonomy factor (2.11), we consider the “infinitesimal” part

exp

{

i

∫

Ci

A(x) · ẋ dτ
}

(2.39)

for each Ci separately and evaluate the integral analytically using the gauge potential de-
scribing the background under consideration. This procedure guarantees that our numerical
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result is invariant under gauge transformations of the background gauge field Aµ(x) for any
number Nppl of points defining the polygons. Moreover, the flux enclosed by the polygon is
exactly taken into account as desired (and not only within discretization errors). Of course,
this procedure can be generalized to arbitrary potentials for which the “infinitesimal” in-
tegrations along the Ci’s can be performed numerically; thereby, the properties mentioned
above can be preserved to any numerically desired precision. However, we should stress that
the use of a smooth gauge (e.g. covariant gauges) for the background field is recommended
in this case; this facilitates a fast convergence of the numerical integration. The evaluation of
the line integral in (2.39) for the gauge potentials describing the magnetic field configurations
of Chapter 3 is performed in Sec. E.2.

2.4 Summary

To conclude this chapter, we enumerate the principal features of the loop cloud method.

1. The method is exact to one-loop order. From the starting point (2.2) to the expression
(2.8) (and correspondingly for scalar and spinor QED), no approximation has been
made. The possible sources of numerical error are

• the loop discretization (2.16),

• the statistical average (2.14).

They are controlled by the number of points per loop Nppl and the number of loops in
the loop ensemble Nlp, respectively.

2. As a consequence of the first point, the method manifests exact gauge invariance: the
worldline formulation of a gauge theory involves only gauge invariant quantities, like
Wilson loop and Pauli factor. The numerical implementation respects moreover the
gauge invariance of these quantities (see the concluding remark of the previous section).

3. The method inherits the advantages of the worldline formulation of QFT:

• it contains all diagrams in one expression (see Fig. 2.1),

• the formalism does not involve any momentum integral or discrete sum over the
energy spectrum.

4. The method has been developed independently of the background potential. It is based
on the average over an ensemble of free loops, which can in principle be used for any
physical problem, i.e. for different types of potential.

5. The method is intuitive. Some non trivial information, like the sign of an interaction
or its qualitative dependence on some external parameters, can be obtained only by
thinking in terms of rescaled loops. The crucial point in this context is the geometric
interpretation of the proper-time. This is illustrated in the figure below. The UV
regime, i.e. small values of T , is controlled by small loops which, as depicted in the
following figure, can probe the high frequency regime of a given background. On the
contrary, the big loops, which control the IR regime, are highly non localized and can
de facto collect information over the background on a larger scale.
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x =

√
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UV IR (T >>)(T <<)

In the following chapters, point number 4 will be widely exploited. The wide range of ap-
plicability of the method offers the opportunity to go beyond the domains of applicability of
standard analytical procedures, which are limited due to unavoidable approximations.



Chapter 3

Magnetic Backgrounds

In this chapter, we apply the loop cloud method to the study of fermionic quantum
fluctuations in the presence of a classical magnetic background. We investigate in particular
the fermion-induced quantum energy of magnetic vortex systems. The magnetic vortex confi-
guration is nowadays at the center of experimental and theoretical investigations performed
in solid state physics, especially in relation to the conducting properties of superconductors,
and in QCD, where special gluonic configurations, called center vortices and comparable to
the magnetic vortices in the superconductor, provide a scenario of quark confinement.

Superconductors of Type-I are characterized by their ability to repel a magnetic field
completely (Meißner effect). Type-II superconductors in the so-called mixed state allow
on the contrary some penetration by an external magnetic field into its surface, leading to
the appearance of magnetic vortices inside the superconductor, which carry some fraction of
magnetic flux. Moreover, the superconductors of this type possess higher critical temperatures
Tc than those of Type-I. A magnetic vortex has a typical extension of some microns and can
be visualized as illustrated in the following figure.
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The application of a current to a superconductor of Type-II in the mixed state induces
movements among the vortices which can in turn produce an undesirable resistance [CN97].
For this reason, it appears valuable to study the influence of the electrons on such vortex
systems, in particular evaluate the effective vortex-vortex interaction induced by the quantum
fluctuations of the electrons. The right panel of the figure above illustrates the influence of
a current on the patterns built by the vortices (grey star-shaped regions): a current flows
through the left-hand side of the figure while the other side is current free.

In the context of Yang-Mills theory, lattice simulations have shown that a Yang-Mills

39
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vacuum populated by color-magnetic vortices, the so-called center vortices, manifests in the
continuum limit [LRT98] the property of confining static colour sources. This property is lost
for a vacuum where they are detected and removed by hand, using some projection technique
[DDFGO97, DDFG+98]. The next figure represents the potential of two static quarks in
the Yang-Mills vacuum. When calculated with respect to the full gluonic configurations, the
potential is linearly confining, whereas the removal of the vortices induces a Coulomb like
potential.
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A random gas of vortices can grasp the essence of quark confinement at zero temperature,
and the deconfinement phase transition at finite temperatures can be understood as a vortex
de-percolation transition. In this context, a deep knowledge of the interplay of quarks with
vortex-like solitons would help to describe hadron properties in the vortex picture.

We begin our investigations by the simplest case of a background given by a constant1

magnetic field, in the framework of which we will discuss the renormalization procedure
specific to QED on the worldline, test our numerical approach and point out a numerical
problem specific to worldline fermions. We investigate the single-vortex configuration in
D = 2 + 1 and D = 3 + 1 and propose an interesting comparison with derivative expansion
calculations before turning to the study of binary-vortex interactions.

3.1 Constant magnetic field

Beside its historical interest, the constant magnetic field configuration will permit us to get
familiar with the proper-time representation of effective Lagrangians and serves as a test of
our numerical method, since analytic results are available for this special case.

1We limit ourselves to time-independent field configurations. The adjective “constant” will have throughout
this chapter the meaning of “homogeneous” or “space-independent”.
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3.1.1 One-loop Euler-Heisenberg-Schwinger Lagrangians

Our starting point is the worldline formulation of the effective action for scalar and spinor
QED. For convenience, we recall here the (unrenormalized) one-loop spinor effective action

Γ
(1)
ferm[A] =

2

(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM

[〈

W ferm
A [T, x(τ), xCM]

〉

x
− 1
]

, (3.1)

which differs from the scalar one (2.8) by the presence of the Pauli factor

P [T, F (xCM), x(τ)] :=
1

4
trPT e

1
2

R T
0 dτσµνFµν(xCM+x(τ))

in the loop average: W ferm
A = WA × P .

In the constant field case, the Pauli factor can be computed very easily. Let us choose the
magnetic field to be parallel to the z-axis, B = B e3. On the one hand, the only non-vanishing
elements of the electromagnetic tensor are F12 = −B and F21 = B. On the other hand, the
hermitian Dirac algebra element σ12 is given by σ12 = γ3 (γ3 = γ†3). Since the magnetic
field is independent of the loop x(τ), the integral over τ in the Pauli factor can be trivially
performed. Note that we can also drop the path ordering operator. Using fundamental
properties of the Dirac matrices, we have

P (T ) =
1

4
tr e−BT γ3 = cosh (BT ).

We can factorize P (T ) out of the loop average in (3.1) and obtain

Γ
(1)
ferm[A] =

2

(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM

[〈

ei
R T
0
dτA(xCM+x(τ)) · ẋ

〉

x
cosh (BT ) − 1

]

.

(3.2)
The problem then reduces to the loop average of the Wilson loop with respect to the vector
potential

A(x) =
B

2
(−x2, x1, 0, . . . , 0)

describing the magnetic configuration at hand. This task can be performed analytically. It
is indeed well known from elementary quantum mechanics that the quantum problem of a
charged particle in a constant magnetic field can be mapped onto the problem of a harmonic
oscillator with the Cyclotron frequency (Landau problem). In this case, the solution of the
Schrödinger equation is known analytically and the corresponding Feynman path integral can
be performed in an exact way [Kle95]. In our unit conventions, the cyclotron frequency is
simply ω = B and the loop average reads

〈

ei
R T
0
dτA(xCM+x(τ)) · ẋ

〉

x
=

BT

sinh (BT )
(3.3)

yielding the following expression for the effective action

Γ
(1)
ferm[A] =

∫

dDxCM
2

(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T [BT coth (BT ) − 1]

︸ ︷︷ ︸

L(1)
ferm(xCM)

. (3.4)
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The effective Lagrangian defined above is a so-called Heisenberg-Euler-Schwinger-type La-
grangian particularized to the case of a purely magnetic field. Generally speaking, these
Lagrangians resum to one-loop order the fluctuations of a spinor field in the presence of
a constant electromagnetic (i.e. electric and/or magnetic) background. It is quite re-
markable that the non-linear effects of the Maxwell theory (like for instance the e+ e− pair
production in a constant uniform electric field) arising from quantum corrections of the
type (3.4) have been studied in the very early stages of the development of quantum field
theory, when renormalization was still far from being discovered [HE36]. This early work of
Heisenberg and Euler was worked out 15 years later in the light of renormalizable quantum
field theory by Schwinger [Sch51]. The interested reader may find a discussion of the problem
of a quantized spinor field interacting with a classical potential expressed in terms of QFT
basic tools (i.e. no worldline representation) in classic textbooks on QFT (see for example
[IZ80]). For a more involved discussion concerning Euler-Heisenberg-Schwinger Lagrangians,
see for instance [DR85].

3.1.2 Renormalization

The unrenormalized effective action (3.1) is, depending on the dimension, possibly divergent.
We isolate the potentially divergent parts by performing the Taylor expansion (2.13) of the
loop average (3.3)

〈

ei
R T
0 dτA(xCM+x(τ)) · ẋ

〉

x
− 1 = −1

6
B2T 2 + O(T 4)

as well as of the Pauli factor cosh(BT ) ' 1 + 1
2B

2T 2 + O(T 4). For didactical purposes
which will become clear in the next section, we reinstate the space-time dependence of the
proper-time integrand by writing B2 = 1

2Fµν [A](x)Fµν [A](x). The expansion (2.13) reads in
the present case

Γ
(1)
ferm[A,Λ] =

2

(4π)D/2

∫ ∞

1/Λ2

dT

TD/2+1
e−m

2T

∫

dDx

[
1

6
T 2Fµν [A](x)Fµν [A](x) + O(T 4)

]

,

which has been regularized by means of an UV cut-off Λ at the lower bound of the proper-time
integral. [The subscript CM has been dropped in order to simplify the notation.]

In the case D = 2 + 1, the term of order T 2 in the previous expression corresponds to a
singularity 1/

√
T , which is integrable, and the cut-off Λ can be safely removed.

For D = 3 + 1, the proper-time integral is rendered finite by introducing a counter-term
in the proper-time integrand:

Γ
(1)
ferm[A,Λ] =

2

(4π)D/2

∫

dDx

∫ ∞

0

dT

TD/2+1
e−m

2T

[ 〈

W ferm
A [T, x(τ), xCM]

〉

x
− 1

−1

6
T 2Fµν [A](x)Fµν [A](x)

]

+ c(Λ)

∫

dDxFµν [A](x)Fµν [A](x)

︸ ︷︷ ︸

Γc.t.
ferm[A,Λ])

, (3.5)

where

c(Λ) = − 1

48π2

(

ln
m2

Λ2
+ γE

)

+ O(m2/Λ2). (3.6)
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Here γE denotes the Euler constant. The first term is now finite (note that the cutoff has been
safely sent to infinity) and represents the renormalized part of the fermion-induced effective
action:

Γ
(1),R
ferm [A] := Γ

(1)
ferm[A,Λ] − Γc.t.

ferm[A,Λ].

By contrast, the counter-term Γc.t.
ferm still depends on the cutoff, which is eliminated according

to the standard renormalization procedure by fixing a renormalization condition.

Before proceeding with the renormalization program, we pause for a moment and comment
briefly the result (3.5)-(3.6). Let us recall that the effective action in the representation (3.1)
is an alternative formulation of one-loop QED in the presence of a magnetic background. For
this reason, the divergence structure of the unrenormalized effective action on the worldline
can be expressed in the language of conventional Feynman diagrams. In view of the structure
of the divergent term ∼

∫
FµνFµν and the fact that the effective action (3.1) resums one-

fermionic-loop diagrams only, it is clear that the divergence in (3.5) corresponds to the
divergence occurring in the following diagram:

which possesses the same structure as the kinetic term in the classical Maxwell action and
leads to the redefinition of the fermion charge (see standard QFT textbooks, e.g. [PS, IZ80]).
Keeping this statement in mind, we can perform the remaining part of the renormalization
program in a straightforward way.

We add the bare “classical” Maxwell action

ΓB
F 2 [A,Λ] =

1

g2
B(Λ)

∫

d4xFµν [A](x)Fµν [A](x)

to the expression (3.5) and obtain the total effective action Γ
(1)
eff [A] resuming the (classical)

photonic and fermion-induced contributions:

Γ
(1)
eff [A] = Γ

(1),R
ferm [A] + ΓB

F 2 [A,Λ] + Γc.t.
ferm[A,Λ]

︸ ︷︷ ︸

ΓR
F2 [A]

.

The cutoff dependence in the second and third terms can finally be eliminated by enforcing
the renormalization condition

1

g2
B(Λ)

+
1

12π2

[

ln

(
Λ2

µ2

)

− γE

]

=
1

g2
R(µ)

.

Here gR(µ) denotes the renormalized coupling at a given renormalization point µ, and we
rediscover the QED β function β(g2

R) = µ∂µg
2
R(µ) = g4

R/(6π
2). The renormalized Maxwell

action then reads

ΓR
F 2 [A] =

1

4

[
1

g2
R(µ)

− 1

12π2
ln

(
m2

µ2

)] ∫

d4x Fµν [A](x)Fµν [A](x).

We can impose fermion-mass-shell renormalization by choosing µ = m, so that the log term
in the previous expression drops out.
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Figure 3.1: Loop average (3.3) in the constant background magnetic field configuration. The nu-

merical results obtained via the loop cloud method are compared to the analytical result.

3.1.3 A benchmark test: Wilson loop average over scalar loops

We test in a first step the loop cloud method by performing the loop average (3.3) numerically.
We used an ensemble of 1000 two-dimensional loops of 1000 points using our algorithm based
on the Fast Fourier Transform (see Sec. 2.3.2). The results are presented in Fig. 3.1 and are
in very good agreement with the analytical curve. The error bars have two origins. First, let
us recall that the exact loop average (3.3) is approximated by the mean value (2.14), which
induces a numerical error of statistical nature. In this case, the error bars are correlated to
the number of loops per ensemble Nlp. The second possible source of error is of systematic
nature and is related to the fact that the continuous loops entering the exact average (3.3) are
on a computer implemented by discretized paths with Nppl points per loop. The effect of the
discretization can be seen in the enhancement of the error bars at big values of proper-time.
This can be understood if we recall the geometric interpretation of the proper-time2. Since
the unit loops are simply rescaled with respect to T , the big loops contain the same number
of points per loop as the small ones, which means that the systematic error tends to increase
with increasing proper-time. This point is developed further in the next paragraph.

3.1.4 A numerical problem: average over fermionic loops

We turn to the case of fermionic loops in the same constant magnetic background configu-
ration. Our numerical estimates are presented in Fig. 3.2 and compared with the analytical
result f(T ) = BT coth(BT ). The agreement is good in the small T regime but our numerics
fails in a rather spectacular way to reproduce the asymptotic behaviour f(T ) ' BT at large
T . An intuitive explanation of this problem can be found if we return for a moment to the
average (3.3) and discuss this result at the level of the loop ensemble.

2cf. remark 5 in Sec. 2.4
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Figure 3.2: Loop average over fermionic loops in the constant background magnetic field configu-

ration. The numerics fails to reproduce the asymptotic behaviour f(T ) → BT .

Since the background field is constant, we have for a given loop C

ei
H

C A(x(τ))·dx = eiφC ,

where φC denotes the magnetic flux through C. We can therefore rewrite the loop average
in (3.3) as a conventional integral over the flux φ:

〈

ei
R T
0 dτA(xCM+x(τ)) · ẋ

〉

x
=

∫ +∞

−∞
dφ cos (φ)f(φ), (3.7)

where f(φ) represents the distribution of the flux over the whole loop ensemble, at fixed
proper-time T . Note that we have dropped the loop average of the imaginary part of the
Wilson loop. We indeed expect the distribution f(φ) to be symmetric in the flux φ, since
there is no preferred orientation for the loops in the ensemble. The flux is explicitly given by
φC = BAC , where AC is the algebraic area3 of the loop C. The loop average can therefore
be rewritten as ∫ ∞

−∞
dA cos (BA)f̃(A) =

BT

sinh (BT )
.

This relation shows that the distribution of the algebraic area over the loop ensemble is given
by the inverse Fourier cosinus transformation of its right-hand side. This yields4

f̃(A) =
π

4T cosh2
(
πA
2T

) and f(φ) =
π

4BT cosh2
(

πφ
2BT

) .

3The algebraic area enclosed by a trajectory (x1(t), x2(t)) in 2 dim. is given by

AC =
1

2

Z T

0

dt [x1(t)ẋ2(t) − x2(t)ẋ1(t)].

4
R

∞

0
dx cos (ax) 1

cosh2 (bx)
= aπ

2b2 sinh ( aπ

2b
)
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Figure 3.3: Probability distribution w(y) as defined in (3.8) of the Wilson loop

cos
(

i
∫ T

0 dτA(x(τ)) · ẋ(τ)
)

over a loop ensemble of 1000 loops with 1000 points (histograms) compared

with the exact distribution (3.8) for BT = 0.8 (left panel) and BT = 8 (right panel).

As expected, the distribution f(φ) is symmetric with respect to the magnetic flux. Let us
finally derive the probability distribution of the Wilson loop cos (φ). For this, we transform
the flux integral (3.7) in the following way:

∫ +∞

−∞
dφ cos (φ)f(φ) =

+∞∑

n=−∞

∫ (n+1)π

nπ
dφ cos (φ)f(φ)

=

+∞∑

n=−∞
(−1)n

∫ π

0
dφ cos (φ)f(φ+ nπ)

=

∫ 1

−1
dy y w(y)

with5

w(y) =
1

√

1 − y2

+∞∑

n=−∞
[f(arcos(y) + 2nπ) + f(−arcos(y) + 2nπ)]. (3.8)

The distribution w(y) and its numerical estimate is given in Fig. 3.3 in the case B = 1 and
for two values of the proper-time.

The results are easily interpreted if we recall the geometric interpretation of the proper-
time. At small T , the loop ensemble contains small loops having a flux in a small interval
centered upon 0 and giving rise to a Wilson loop distribution enhanced in the neighbourhood
of 1. Notice also that the histogram follows the analytical curve in a satisfactory way. As T
increases, so does the loop extension and the Wilson loop distribution is spread over the whole
interval [−1, 1]. The decrease of the average Wilson loop BT/ sinh (BT ) as a function of the
proper-time now clearly appears as a consequence of the increasing symmetry of the Wilson
loop distribution. In the limit T → ∞, the exact distribution w(y) is perfectly symmetric
and the integral (3.7) is exactly 0. At the numerical level, such a symmetry can only be

5We take into account the fact that the numerical implementation of the arcos() function returns a number
in the interval [0, π].
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achieved by increasing drastically the number of points per loop Nppl in order to minimize
the discretization error. For large T however, this would dramatically increase the numerical
burden. The effects of the loop discretization are clearly seen in the quite irregular pattern
of the histogram at large T and in the enhancement of the error bars in Fig. 3.1.

Returning to the fermionic case, it is now clear that the asymptotic behaviour f(T ) ' BT
at large T results from the subtle cancellation of huge numbers produced by the cosh (BT )
factor. This can by no means be achieved in a numerical way, unless another implementation
permits to bypass the cancellation problem.

Even if the success of the loop cloud method is shadowed by this fermion problem, the
hope to study fluctuating fermionic fields in the light of worldline numerics should not be
definitively abandoned. As we will see in the next section, physical parameters characterizing
the configuration may help to minimize the effects of the fermion problem in such a way that
relevant physical information can be extracted from loop cloud simulation even in the case of
fermionic fluctuations. Among them, the fermion mass plays certainly a crucial role through
the factor e−m

2T in (3.1). In the following, we will study configurations for which the magnetic
flux has a finite support. For a localized flux, the fermion problem can possibly be avoided,

since the field strength is collected by a loop (∝ cosh
(∫ T

0 dτB(x(τ))
)

) only on some part of

its perimeter. In this context the homogeneous magnetic field configuration studied in the
massless case appears as the most unfavourable situation from which no information can be
gained without modifying the numerical approach.

3.2 Fermion-induced action of vortex systems

3.2.1 General framework

The program is identical to the constant field case: we simply replace the generic vector
potential A(x) by the adequate vortex potential in (3.1) and proceed according to the rules
of Chapter 2 to compute loop average, proper-time and space-time integrals.

Renormalization. Special attention has to be paid to the renormalization procedure,
which we have until now discussed in the case of a constant background only. In this case, an
analytical expression for the Pauli factor and the average Wilson loop could be obtained, from
which the counter-term in (3.5) was derived. The fact that this counter-term results from
a small T expansion and the geometric interpretation of the proper-time6 indicate that the
expressions (3.5)-(3.6) are in fact also valid for inhomogeneous electromagnetic backgrounds.
In the T → 0 limit, the rescaled loops7 are shrunk is such a way that their extension is limited
to the neighbourhood of their center of mass xCM and experience therefore the local value of
the background Fµν(xCM) at this point. As a consequence, the Taylor expansion of the loop
average at a given point x0 is computed considering that the loops of the statistical ensemble,
all centered upon x0, experience the constant magnetic field Fµν(x0) in the neighbourhood
of x0.

6cf. Remark 5 at the end of Sec. 2.4.
7See Eq. (2.15)
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Vortex interfaces. The independence of the background field which characterizes our
algorithm allows us in principle to study fermionic fluctuations in the presence of any magnetic
background. In particular, a high degree of symmetry of the background is not required, even
if it can reduce the numerical burden. We will use this advantage in the study of binary-
vortex interactions. In the first investigation, devoted to the study of the quantum energy
of one single vortex, we will concentrate on the simplest vortex configurations of interest in
solid state or particle physics. In the context of Yang-Mills vortices, we will moreover limit
ourselves to the gauge group SU(2).

We study in this work the quantum energy induced by fermionic fluctuations in the
presence of magnetic vortices described by the following U(1) potential:

ACV
µ (x) =

1

2

1

x2
1 + x2

2

(x2,−x1, 0, . . . , 0)µ.

If the choice of an Abelian vortex is clear in the context of solid state physics, one could
wonder whether the last expression is really suited to describe center vortices of the non-
Abelian SU(2) Yang-Mills gauge theory. Such a vortex is in fact described by the following
potential:

ACV
µ (x) = ACV

µ (x)τ3. (3.9)

[The interested reader may find a detailed derivation of this expression from the general de-
finition of a center vortex of arbitrary geometry in Sec. E.1.]
We show that the remaining color structure under the form of the Pauli matrix τ 3 in the
previous expression does not enter the numerical simulation, producing only a constant
prefactor. We have

trcolor

{〈

W ferm
ACV

〉

x
− 1
}

= trcolor

{〈

ei
H

ACV·dx τ3 1

4
trspinPT e

1
2

R T
0 dτσµνFCV

µν (xCM+x(τ)) τ3

〉

− 1

}

= 2 ×
{〈

W ferm
ACV

〉

x
− 1
}

using elementary properties of the Pauli matrices.

A center vortex is in its very definition (E.1) singular on the vortex sheet, which, in the
present case, is the plane x1 = x2 = 0. This is of course an idealization: a magnetic vortex in
a superconductor has a finite extension. In the context of center vortices in Yang-Mills theory,
lattice simulations show that the vortex surface possesses a finite thickness d with respect to
the directions perpendicular to the flux, implying that the gauge potential singularity in the
surface is smeared. We therefore take the finite thickness of the vortex surface into account
by introducing the vortex core size d in the gauge potential:

AV
µ (x) =

ϕ

2

1

d2 + x2
1 + x2

2

(x2,−x1, 0, . . . , 0)µ. (3.10)

Here, we have generalized the expression to a vortex with flux φ = ϕπ, the center vortex
corresponding to the case ϕ = 1. The corresponding field strength is given by

F12(x) =
ϕd2

[d2 + x2
1 + x2

2]
2
. (3.11)
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D=2+1 D=3+1

Cd0
1

4π3/2
1

8π2

Cd1
1

4(4π)3/2
1

(8π)2

α 1.5 1
ν 2.5 3
ρ 0.5 1

Table 3.1: Prefactors and exponents of the derivative expansion.

Quantum energy. The vortex configuration (3.10) is independent of the time coordinate
xD. As a consequence, the time integration can be carried out trivially and gives

Γ
(1)
ferm[AV] = E[AV]Lt

where Lt is the extent in the time direction and E[AV] is the quantum energy of the vortex
interface AV. In D = 2 + 1, the energy is given by

E =

∫

dx1dx2 L(2+1)
ferm (x, y) = 2π

∫ ∞

0
dρ ρL(2+1)

ferm (ρ), (3.12)

where the effective Lagrangian L(2+1)
ferm (x, y) plays the role of the energy density. In the case

D = 3+1, the vortex core is at a given time-slice a straight line of length Lx3 . The quantum
energy is proportional to the extent Lx3 :

E[AV] = χ[AV]Lx3 (3.13)

where χ =
∫
dx1dx2 L(3+1)

ferm (x1, x2) is the string tension of the vortex line in the 3D hypercube.

3.2.2 The derivative expansion

The single vortex configuration has a sufficiently simple geometry to allow an analytical
study of the problem. The standard analytical approach to quantum energies for such
inhomogeneous backgrounds is the derivative expansion. The idea of this approach is to
investigate deviations from the Euler-Heisenberg result, only valid for a constant field confi-
guration, by performing an expansion in terms of a small parameter constructed from de-
rivatives of the background field. In the present case, there are two options for the choice of
the expansion parameter:

• ∂2/m2 � 1, the field gradient is small compared to the scale set by the fermion mass,

• ∂2/B(x) � 1, the derivatives of the background field should be smaller than the local
field strength.

Let us point out that only one of the conditions mentioned above has to be satisfied. It is
remarkable that closed-form expressions at the next-to-leading order (NLO) level in D = 2+1
and D = 3 + 1 have been found in recent years [GS99] which are applicable in both cases.
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Figure 3.4: Effective Lagrangian as a function of the radial distance ρ to the vortex core for the
case m=1, ϕ=1, D=2+1. The NLO derivative expansion (solid line) is compared with the numerical
computation (squares with error bars).

The leading order of the derivative expansion corresponds to the Euler-Heisenberg-
Schwinger result (3.4):

Ld0ferm(x) = Cd0

∫ ∞

0

dT

T ν
e−m

2 T [B(x)T coth (B(x)T ) − 1 + {c.t.}]. (3.14)

Note that the counter-term {c.t.} = − 1
3(B(x)T )2 must be added to the integrand forD = 3+1

for the same reasons as discussed in Sec. 3.1.2. The next-to-leading (NLO) correction can be
written as [CDD95, GS99]8

Ld1ferm(x) = Cd1
(∂iB(x))2

Bα(x)

∫ ∞

0

dω

ωρ
e
− m2

B(x)
ω d3

dω3
[ω coth (ω)]. (3.15)

The prefactors Cd0,1 and exponents α, ν and ρ depend on the number D of space-time
dimensions and are summarized in Table 3.1.

Particularizing the conditions of validity to the smeared vortex configuration (3.10), we
expect the NLO Lagrangian to give reasonable answer if

md � 1,

ρ/d � 1.

3.2.3 Single-vortex configuration in D = 2 + 1

Benchmark test. In a first step, we test our method in the presence of the vortex back-
ground. We calculate the effective Lagrangian Lferm(ρ) for large values of ρ, ρ� d, where the
derivative expansion is expected to give reliable results. The result of the numerical worldline
approach is compared with the derivative expansion in Fig. 3.4 for D = 2+1. The agreement
between the two curves is satisfactory.

8A representation of the integral in terms of the Hurwitz Zeta function as well as asymptotic expansions
have been found; see, for example, [GS99].
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Figure 3.5: Effective Lagrangian in the small ρ region for the cases m=1 (left panel) and m2=5 (right

panel), ϕ=1, D=2+1.

Derivative expansion vs. worldline numerics. In the region close to the core of the
vortex, i.e., ρ ≈ d, the gradients of the background field are as large as the field itself, so
that the reliability of the derivative expansion now depends on the value of the mass. Our
numerical findings for this regime are shown in Fig. 3.5 for m2 = 1 (left panel) and m2 = 5
(right panel). For larger masses, we observe a good qualitative and a reasonable quantitative
agreement. But even for the small mass value m2 = 1, there is at least qualitative agreement
between the numerical result and the derivative expansion, indicating that the applicability
of the derivative expansion can be pushed to its formal validity limit in D = 2 + 1. This
observation is also supported by the fact that the NLO term (3.15) is only a small correction
to the zeroth-order result (3.14). Moreover, we expect that the (up to now unknown) NNLO
correction, which is sensitive to the curvature of the field strength, improves the result near
the vortex core. In this sense, it is reassuring to observe that the numerical result agrees with
the NLO derivative expansion precisely at the turning point of the curve at ρ ' 0.5, because
the NNLO correction must vanish here. We should finally stress that for even smaller masses
m < 1, the discrepancy between our numerical result and the derivative expansion increases,
so that the derivative expansion should be abandoned here.

Quantum energy. Let us now examine the fermion-induced quantum energy E of the
vortex soliton as defined in (3.12), which we obtain by numerically integrating the effective
Lagrangian. Our result for this energy is shown in Fig. 3.6 as function of the fermion mass m
in units of the vortex thickness d. Since fermion fluctuations are suppressed with increasing
mass, the quantum energy decreases with increasing m, and vanishes in the large mass limit.
For phenomenological purposes, it is important to notice that the quantum energy is positive.
This implies that potential effective models for vortex dynamics have to account for the fact
that vortex nucleation is suppressed by the fermion-induced effective action in D = 2 + 1
dimensions.

Furthermore, let us consider the variation of the quantum energy with respect to the flux
φ, which is carried by the vortex. Our numerical result is shown in Fig. 3.6 (right panel).
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Figure 3.6: Quantum energy as a function of the mass m2 for ϕ=1 (left panel) and as a function of

the flux ϕ carried by the vortex for m = 1 (right panel) in comparison with Fry’s upper bound given

in (3.16).

We find that the energy is monotonically increasing with the flux φ. It is interesting to
compare our result for E(ϕ) with a general result for fermionic determinants described by
M. Fry in [Fry96]; therein a lower bound has been derived for unidirectional magnetic fields
in D = 2+1, which translates into an upper bound Eb for the quantum energy of our vortex
configuration given by

E(ϕ) ≤ Eb(ϕ), (3.16)

Eb(ϕ) =

(
1

d

)
1

6

[

2 − 3ϕ− 2
√

1 + ϕ+ ϕ
√

1 + ϕ+ 3
√
ϕ arsinh(

√
ϕ)
]

for the case md = 1 and Dirac 4-component spinors. For other values of md, this formula
receives a total factor of (md)3 and the flux has to be replaced by ϕ → ϕ/(md)2. As shown
in Fig. 3.6, our numerical result lies well within this bound. More remarkable is the fact that
the functional dependence of our result agrees with the bound within the error bars, if the
bound is scaled by a factor of roughly 0.65.

As a further check, we have compared all our above-mentioned results with those of
[Pas01], where the single-vortex case with profile functions different from ours was considered
within the phase-shift approach. We find good agreement within the error bars except for a
global factor of 2 by which the result of [Pas01] for E(ϕ) is larger.

3.2.4 Single-vortex configuration in D = 3 + 1

Similarly to the previous studies of the D = 2+1 case, we investigate the effective Lagrangian
Lferm as a function of ρ and compare the result with the one obtained from the derivative
expansion (see Fig. 3.7). Contrary to D = 2 + 1, we observe that unless ρ � d, the leading
order (LO) of the derivative expansion falls far too short of reproducing the numerical result
for (md)2 = O(1). For instance, for (md)2 = 1, we find an order-of-magnitude difference at
ρ = 0 (Fig. 3.7 (left panel)). Moreover, the NLO contribution of the derivative expansion
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Figure 3.7: Effective Lagrangian for m2 = 1 (left panel) and m2 = 3 (right panel), ϕ=1, D = 3 + 1.

also exceeds the leading order result by almost an order of magnitude for ρ ≈ d. This signals
the break-down of the derivative expansion for the case of the field, its gradient and the mass
being all of the same order. Contrary to the case of D = 2 + 1, the applicability of the NLO
derivative expansion cannot be pushed to its formal validity limits md ≈ 1. Even for larger
values of the mass, m2 = 3 (right panel), there is only a minor improvement of the quality
of the NLO derivative expansion. Of course, the NNLO contribution could, in principle,
improve the results of the derivative expansion, but this would only emphasize the fact that
there is no clear hierarchy from term to term in the derivative expansion.

We believe that the striking difference to the D = 2 + 1 dimensional case is indeed
remarkable and points to a deeper reason in terms of a renormalization effect. To illustrate
this, we note that the quantity 〈Wspin−1〉 occurring in the proper-time integrand is positive for
the vortex background, whereas the counter-term − 1

3B
2(x)T 2 is negative. Since the effective

Lagrangian is largely negative as seen in Fig. 3.7, it is mainly driven by the counter-term.
Now the leading-order derivative expansion obviously overestimates the value of 〈Wspin − 1〉
near the vortex core, since it is a local expansion. The true value as seen in the numerical
computation is much smaller because it is a nonlocal average over the extended loop cloud
that also “feels” the much weaker field at a radial distance from the core. The final value
of the total effective Lagrangian at a point x therefore results from a nontrivial interplay
between nonlocal (and nonlinear) vacuum polarization (∼ 〈Wspin − 1〉) and a local definition
of the coupling giving rise to a local counter-term. In regions where the background field
varies rapidly, such as the near vortex core in our case, this interplay can lead to an order-
of-magnitude enhancement of the effective Lagrangian as compared with the constant-field
approximation (leading-order derivative expansion). In our opinion, this phenomenon clearly
deserves further investigation.

Though the comparison of the results in D = 2+1 and D = 3+1 is per se very interesting,
let us emphasize that the numerical estimates should not be considered at the same level.
In D = 3 + 1, we renormalize the theory, i.e. we fix the values of the parameters at a given
renormalization point. This is rendered necessary by the occurrence of a divergent proper-
time integral. The theory in D = 2 + 1 is on the contrary free of divergences. In the present
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Figure 3.8: Effective action as a function of the dimensionless quantity m2d2, ϕ=1, D=3+1
(left panel), and as function of the flux, m2d2 = 1 (right panel).

study, we chose to work with the bare, i.e. unrenormalized parameter. It is however possible
to perform a renormalization by introducing a finite counter-term to the bare action. In
this case, this counter-tern can possibly also lead to a discrepancy between worldline and
derivative expansion results.

Returning to our numerical study of the one-vortex background, we calculate the string
tension χ as defined in (3.13) as a function of the fermion mass m and plot it in Fig. 3.8 for
ϕ = 1. The negative values of χ show that the fermion-induced effective action Γferm favors
the nucleation of vortices. Since the modulus of this effective action increases if the vortex
thickness d is decreased, the fermionic part of the vortex action supports the existence of thin
vortices.

3.2.5 Binary-vortex interactions

The binary-vortex configuration is given by the superposition of two single vortex gauge fields
Aµ(x) (3.10),

A(2)
µ (x) = Aµ

(

x− l

2

)

± Aµ

(

x+
l

2

)

, (3.17)

where l denotes the vortex distance. Below, we will study the case of the so-called center
vortices the flux of which is given by ϕ = 1. The relative sign between the gauge fields on the
right-hand side of (3.17) corresponds to the relative orientation of the fluxes: the plus sign
corresponds to an equal orientation of the flux in each vortex, while the minus sign signals
an opposite orientation.

Figure 3.9 shows the lines of equal effective Lagrangian L
(3)
eff (x, y) in the xy-plane which is

perpendicular to the vortex fluxes. The vortices are located at the x axis at a distance l = 3d.
It is straightforward (but computer time consuming) to integrate the effective action over the
xy-plane in order to derive the quantum energy E of the binary-vortex configuration. The
result is shown in Fig. 3.10 for the case D = 2 + 1. For large distances l � d, the quantum
energy approaches twice the value of a single vortex. For l = 0, the vortices fall on top
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Figure 3.9: Effective Lagrangian L
(3)
ferm(x, y) as function of the xy-plane for the two vortex configu-

ration: parallel (right panel) and anti-parallel (left panel) orientation of the flux, m2d2 = 0.5, ϕ=1,

D=2+1.

of each other. If the fluxes of the vortices are oppositely oriented, the vortices annihilate
each other, and the quantum energy of the configuration vanishes. If the vortex fluxes are
equally oriented, the configuration is equivalent to the single vortex configuration with flux
ϕ = 2. Since the quantum energy is roughly proportional to ϕ2 (see Fig. 3.6), the vortex
configuration with flux ϕ = 2 possesses a higher energy than twice the energy of a single
vortex, carrying flux ϕ = 1. Hence, vortices with an equal flux orientation repel each other
in D = 2 + 1, while vortices with oppositely oriented flux attract each other. The same line
of argument applies to the case D = 3 + 1. Since the fermionic contribution to the effective
action is negative in this case, the fermion-induced force is attractive (repulsive) for equally
(oppositely) oriented vortices, contrary to the D = 2 + 1 case.

3.3 Summary and outlook

Our numerical implementation of the worldline picture of QFT was applied to the study of the
quantum energy induced by fermionic fluctuations in the presence of a magnetic background.
In a first step, the method was tested for a constant magnetic background and vanishing
mass. Our simulation in the scalar case produced results in very good agreement with the
analytical estimates, whereas it failed to address the fermionic case due to severe cancellations
in the large T regime. This fermion problem can however be bypassed at finite mass and for
magnetic fields whose support has a finite extension in space. In particular, we applied our
method to the calculation of the quantum energy induced by fermions in the presence of a
vortex system.

We first investigated the single-vortex configuration. Our numerical approach has been
successfully tested in the parameter regime where the derivative expansion is expected to
provide reliable results: in the large-mass regime md � 1 or for strong-field suppression of
the inhomogeneities ∂2/B � 1. The comparison of our numerical results to the derivative
expansion in D = 2 + 1 has shown that this analytical technique provides a reasonable
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Figure 3.10: The interaction of two parallel vortex lines in D = 2 + 1, ϕ = 1, m2d2 = 1.

approximation to the quantum energy of a single vortex configuration even for small masses,
md <∼ 1. Our simulations in D = 3 + 1 have signalled the breakdown of the derivative
expansion due to renormalization effects, which can occur near regions where the background
varies rapidly. From a physical point of view, we find that the quantum action is positive in
D = 2 + 1, implying that the presence of vortices is suppressed, and large vortex core sizes
d are preferred. In D = 3 + 1, the properly renormalized quantum action turns out to be
negative: the nucleation of thin (d → 0) vortices in D = 3 + 1 is supported by the fermion
induced quantum action.

Finally, we studied the binary-vortex interaction, for which no analytical investigation
has until now been performed. We found that the fermion-induced interaction favors vortices
with an opposite orientation of the fluxes in D = 2 + 1 without finite renormalization, while
in D = 3 + 1, an equal orientation of the fluxes is preferred, due to the change of the global
sign induced by the counter-term.

Further investigations are at the moment performed in the context of Yang-Mills vortex
systems. Since our numerics imposes no restriction on the degree of complexity of the back-
ground potential, our numerical method can be used to investigate the vortex gas mentioned
in the introduction of this chapter. In particular, it provides a numerical access to the fermion
condensate, related to the effective action Γferm by differentiation with respect to the fermion
mass m, ∫

dDx0 〈ψ̄ψ〉 = − lim
m→0

∂Γferm

∂m
.

The study of the quark condensate in the presence of the vortex gas permits to get some hints
over the role played by center vortices in the breaking of chiral symmetry. This could be a
step towards a unified description of confinement and chiral symmetry breaking in terms of
center vortices, as suggested by lattice simulations. In the chiral limit m → 0, the method
can unfortunately not be used in the implementation described in the previous chapter, due
to the fermion problem. A modified representation of the loop average, where the Pauli factor
responsible for the huge cancellations taking place in the large T regime is replaced by the
spin factor [KK91], is currently under investigation.



Chapter 4

Casimir effect on the worldline

The Casimir effect was for a long time since its theoretical prediction [Cas48] considered as
a beautiful illustration of the effects induced by vacuum fluctuations of quantum fields but
no more than an interesting problem in its own right. In its evolution from microtechnology
towards nanotechnology, the engineering of electronic devices [CAK+01] came inevitably
across this effect, which can no more be neglected at these scales. The Casimir effect is
nowadays the subject of precise measurements [MR98] as well as of theoretical investigations
including thermal effects, finite conductivity and surface roughness (see [Mil, BMM01] for a
review of the latest experimental and theoretical developments in the study of the Casimir
effect).
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The most recent measurements are based on the geometry illustrated in the figure above,
right panel: the Casimir force is most accurately measured for the sphere-plate configuration.
Analytical tools for the study of the Casimir effect for arbitrary geometries are unfortunately
still lacking. Beyond the ideal plate-plate configuration studied by Casimir, the analytical
studies of more involved geometries like the relevant sphere-plate configuration require as-
sumptions concerning the geometry and the physical properties of the Casimir interfaces.

In this work, we apply the loop cloud method to the study of the Casimir effect for
arbitrary configurations. The fact that our method is well suited for this problem results
from

• the embedding of the Casimir effect in the framework of Quantum Field Theory with

57
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the Casimir interfaces modelled by an external potential,

• the applicability of the numerical method to arbitrary potentials.

In this chapter, we focus on the study of the Casimir effect induced by the fluctuations
of a real scalar field. This is done for various configurations including the classic plate-plate
configuration which serves as a test for the numerical method, the experimentally relevant
plate-sphere configuration as well as the plate-cylinder, for which we compare our numerical
estimates with the results furnished by the proximity force approximation. We begin with a
discussion regarding the problem of implementing boundary conditions on a quantum field,
which is still an ongoing debate in the literature. The computational framework is then
introduced, firstly in a general way and secondly particularising to the case of rigid bodies,
on which we will focus here. The last sections are devoted to the numerical results, which
will underline the intuitive aspects of the loop cloud method, and finally concluding remarks
regarding further applications of the method to the Casimir physics will be made.

4.1 Imposing boundary conditions on quantum fields

At the microscopic level, the Casimir effect arises from the interaction of the fluctuating
field with the material of the Casimir boundary. In the standard approach, this interaction is
modelled by boundary conditions imposed on the fluctuating field [MT97, Mil01, BMM01]. It
must however be kept in mind that an ab initio implementation of, let us say, a Dirichlet type
boundary condition is an idealization of the real physical problem. If we take the simplest
example of a one-dimensional scalar field constrained to vanish at the Casimir interfaces x = 0
and x = a, we have

φ(0) = 0 = φ(a). (4.1)

In this idealized case, the properties of the material are such that all modes of the fluctuating
field are suppressed on the interfaces. The theoretical approach on which our work is based,
i.e. the embedding of the Casimir problem in the framework of a renormalizable quantum
field theory, permits in this context a careful and critical discussion of the implementation of
such ab initio boundary conditions as a substitute of the real interactions between field and
matter [Jaf].

The starting point is typically given by a field theoretic Lagrangian of the form

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λσ(x)φ2,

where the interaction field-boundary matter is modelled by the coupling of the fluctuating
field φ with a static background V (x) = −λσ(x), the function σ(x) accounting for the shape
of the physical boundary and λ being the strength of the interaction. In this framework, the
Casimir energy, as a function of the parameters σ and λ, ECas[λ, σ], is accessed via the effective
action Γ(1)[V ] either numerically using the loop cloud method or, depending on the degree
of symmetry of the modeling background, analytically resuming over the energy spectrum
using a recent method based on quantum mechanical considerations [GJK+02, GJK+03]. In
the field theoretic language, the boundary condition (4.1) can be approached by taking the
limits σ(x) → δ(x) + δ(x − a) (sharp limit) and λ→ ∞ (strong limit):

Eb.c.
Cas = lim

λ→∞
σ→δ

ECas[λ, σ]. (4.2)
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The crucial point is then to compare Eb.c.
Cas to the result furnished by the standard approach.

In the limiting case (4.2), the result [Jaf] shows that

• the Casimir energy diverges in the sharp limit for D > 1 + 1,

• the Casimir energy diverges in the strong limit, in any case.

Let us emphasize that the energy ECas[λ, σ] is the renormalized Casimir energy, for which
the field theoretic divergences have already been eliminated by means of standard QFT
renormalization procedures. The fact that the divergences appearing in the sharp and/or
strong limit implementing the boundary condition have nothing to do with standard infinities
of quantum field theory underlines the physical origin of these divergences: the energy needed
by the material to enforce the suppression of arbitrary high frequency modes at the interface
is infinite.

These findings, obtained in the light of quantum field theoretic techniques, seem to con-
tradict the original prediction of Casimir: the force between two metallic plates is of course
finite. Let us refine the above statement. A careful study shows that the energy density
is finite at any point not sitting on the Casimir boundaries in the strong limit λ → ∞.
Moreover, the result agrees with the energy density obtained with ab initio boundary con-
ditions. The divergences occur precisely at the boundaries, i.e. at x = 0, x = a, and render
the total Casimir energy infinite. Likewise, the Casimir force between the two interfaces
agrees with the boundary condition calculation, which is the original Casimir result:

F (a) = − π

48a2
for D = 1 + 1 and m = 0. (4.3)

This agreement between the field theoretic approach and the standard approach is in fact
valid when the change in vacuum energy is calculated respectively to a rigid displacement
of the interfaces, i.e. the bodies are not deformed during the displacement. As far as the
interaction energy (or the force, which is derived from it by differentiation) for such a dis-
placement is concerned, the divergences which are localized on the boundaries are harmless.
On the contrary, the Casimir force, or Casimir pressure of a closed geometric configuration,
which is obtained by studying small deformations of the body, is even infinite in the sharp
limit. In this case, the force or the pressure cannot be obtained simply by imposing boundary
conditions. For such a problem, like for instance the determination of the Casimir pressure
exerted on a thin sphere, the material properties of the body have to be imperatively taken
into account and the description of the problem in the framework of quantum field theory
[G+04, GLM] appears to be the most adequate.

4.2 Worldline approach to the Casimir effect

4.2.1 General framework

We focus in this work on the calculation of Casimir forces induced by quantum fluctuations
of a real scalar field. The field theoretic Lagrangian is

L =
1

2
∂µφ∂µφ+

1

2
m2φ2 +

1

2
V (x)φ2. (4.4)
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As discussed in the previous section, we take into account the interaction between the fluc-
tuating field and the matter of the Casimir boundary by means of the interaction term
1
2V (x)φ2, where the potential V (x) will model in shape and strength the physical properties
of the interface. The worldline representation of the one-loop effective action for the field
theory defined by (4.4) is given by the expression (2.8) which we recall here for convenience:

Γ(1)[V ] = − 1

2(4π)D/2

∫ ∞

0

dT

TD/2+1
e−m

2T

∫

dDxCM

[〈

e−
R T
0 dτV (xCM+x(τ))

〉

x
− 1
]

. (4.5)

In this work, we concentrate exclusively on static Casimir configurations, i.e. the modeling
potential

V (x) = V (x)

is time independent. In this case, the proper-time integrand does not itself depend on time
and the time integration can be carried out trivially,

∫
dx4

CM = Lx4 , where Lx4 denotes the
“volume” in time direction. We define the (unrenormalized) Casimir energy as

EV = Γ[V ]/Lx4 . (4.6)

Range of applicability. Let us recall that the loop cloud method has been developed
independently of the background potential. In the context of Casimir configurations, it means
that the Casimir effect can be studied numerically for arbitrary geometries. In particular,
the applicability of the numerical method is independent of the degree of symmetry of the
physical boundaries. In the present study, this will permit us to go beyond the geometry
assumptions required by the ’proximity force approximation’ (PFA) [DAL56, BRST77], which
is the standard analytical approach to the Casimir effect for non-trivial geometric configu-
rations. The assumption of perfect surfaces can also be dropped: in a future work, we
could for instance study corrugated surfaces, and compare our results to the new approach
developed recently in [Emi03].

Renormalization. As discussed in Sec. 2.2, the renormalization procedure in the worldline
formalism is based on an analytic expansion of the proper-time integrand for small proper-
times (high momentum scales). The quantity to be expanded is the loop average of the
holonomy factor WV , which, expressed in terms of the rescalable unit loops y(t), reads

〈

exp

[

−T
∫ 1

0
dtV (xCM +

√
Ty(t))

]〉

y

. (4.7)

Using
∫ 1
0 dtyµ(t) = 0 and

∫ 1
0 dt〈yµ(t)yν(t)〉y = (1/6)δµν , we find up to order T 2,

∫

dDx 〈WV − 1〉y = −T
∫

dDxV (x) − T 2

6

∫

dDx ∂2V (x)

+
T 2

2

∫

dDxV (x)2 + O(T 3), (4.8)

which should be read together with the proper-time factor 1/T D/2+1 in the expression of
the effective action (4.5). [We dropped the subscript CM in order to simplify the notation.]
Each term ∼ V n, which, depending on the space-time dimension D, can possibly lead to
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a divergent proper-time integral, corresponds to a one-loop Feynman diagram containing n
insertions of the potential V . The term ∼ V (x), which gives a divergence of the T integral for
D > 1, corresponds to the tadpole graph. In the conventional “no-tadpole” renormalization
scheme, the renormalization counter term ∼ V (x) is chosen such that it cancels the tadpole
contribution completely. Of course, other renormalization schemes can be used as well. Let
us note that the term containing the second derivative of V vanishes anyway. This is due
to the fact that a typical potential describing a Casimir configuration is localized on the
physical boundaries1. For D = 2 + 1, the term ∼ V 2 is finite, which means that we don’t
need any further counter term. In D = 3 + 1 this term diverges and we need a further
subtraction. Renormalization provides us with a further counter term ∼

∫

x V
2 subject to a

physically chosen renormalization condition such that the divergence arising from the last T 2

term is canceled. With this renormalization condition, the physical value of the renormalized
operator ∼ V 2 is fixed. For even higher dimensions, similar subtractions are required that
involve higher-order terms not displayed in (4.8).

4.2.2 Casimir interaction energy between rigid bodies

In this work, we model the physical boundaries by a potential of the form

V (x) = λσ(x),

where the parameter λ is the strength of the field-matter interaction and σ(x) describes the
geometry of the Casimir configuration. The coupling λ has mass dimension 1 and is assumed
to be positive. It can roughly be viewed as a plasma frequency of the boundary matter:
for fluctuations with frequency ω >> λ, the Casimir boundaries become transparent. As
discussed in Sec. 4.1, two types of limits can be taken regarding the shape function and the
coupling:

σ(x) →
∫

Σ
dσδd(x − xσ) (“sharp limit”), (4.9)

λ → ∞ (“strong limit”). (4.10)

Here Σ represents the geometry of the Casimir configuration and denotes a d−1 dimensional
surface, generally disconnected (e.g. two disconnected plates, Σ = S1 + S2). The first limit
can safely be taken, as far as the Casimir energy of rigid bodies (i.e. which are not deformed
during the displacement) is concerned. The second limit imposes the Dirichlet boundary
condition, implying that all modes have to vanish on Σ. As pointed out in Sec. 4.1, this
limit is unfortunately spoiled by the occurrence of a divergence in the Casimir energy, which
corresponds precisely to the second type (ii) of divergences described in section 2.2, since it
is due to the particular assumption λ → λcr = ∞. As stated before, it cannot be removed
by standard field theoretic renormalization. However, this problem can be bypassed if we
consider instead the Casimir force acting on the rigid bodies. The force is defined by

FCas(a) = − ∂

∂a
ECas(a)

1Strictly speaking, infinitely extended surfaces such as idealized infinitely large plates do not belong to this
class, but we can always think of large but finite surfaces and then take the infinite-surface limit after the
infinite-volume limit.
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where a denotes the distance between the boundaries. This definition gives us a certain
freedom in the choice of what shall be called the Casimir interaction energy ECas(a). We
define this energy as follows. For a Casimir configuration of two rigid bodies whose surfaces
are denoted by S1 and S2, we have

ECas(a) = EV1+2(a) − EV1 − EV2 , (4.11)

where EV1+2 , EV1 and EV2 are the energies (4.6) with the potentials V1+2, V1 and V2 given in the
limiting form (4.9) where Σ = S1 ∪ S2, Σ = S1 and Σ = S2, respectively. As indicated in the
last expression, the first term depends on the distance a and contributes to the Casimir force.
Since the remaining terms do not depend on a, the way they are chosen has no influence
on the Casimir force. In the present case, they are chosen in such a way that ECas(a) is
rendered finite, by subtracting the Casimir energy of the single bodies. This can be done for
the following two reasons.

• The divergences arising in the Dirichlet limit cancel exactly in (4.11). This is due to the
fact that the divergences are localized on the surfaces S1, S2 of the physical interfaces
and are de facto independent of a.

• The field theoretic divergences cancel exactly as well, since the bodies described by S1

and S2 are disconnected. This is obvious for D = 3, in the case D = 4 we have

∫

d4xV 2
1+2(x) =

∫

d4x(V1(x) + V2(x))
2 =

∫

d4x[V 2
1 (x) + V 2

2 (x)],

since the supports of the potentials V1 and V2 are disconnected.

We would like to stress that the definition of the interaction energy in (4.11) should not be
confused with renormalization. It is a procedure for extracting exact information about the
Casimir force between rigid bodies, circumventing the tedious question as to whether Casimir
energy densities are locally well defined. This procedure also removes the field theoretic UV
divergences. In this case, renormalization conditions which fix the counter terms do not have
to be specified. These local counter terms cannot exert an influence on the Casimir force for
disconnected rigid bodies anyway, because the latter is a nonlocal phenomenon. Expressed
in physical terms of the QED Casimir effect: the renormalized strength of the coupling
between the electromagnetic field and the electrons in the metal is, of course, important for
a computation of the local energy density near a plate, but the Casimir force between two
plates (see (4.3)) is independent of the electromagnetic coupling constant2.

4.2.3 Worldline numerics in the sharp limit

As pointed out in the concluding remarks of the second chapter, one of the advantages of the
loop cloud method is its demonstrative power, which will appear to be particular useful when
the method is applied to the study of rigid and sharp bodies. In this limit, the argument of

2This is, of course, only true in the Dirichlet limit, i.e. for idealized boundary conditions. Casimir’s classic
result can in fact be viewed as the limit of electromagnetic coupling α → ∞.
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Figure 4.1: Three possible loop configurations and their contribution to the interaction energy
ECas(a) according to (4.12) (left column) and to the separate energies EV1

and EV2
of the surfaces

alone (right column). The Dirichlet limit corresponds to the realization of the upper bound 1 of the
interval [0, 1] in which the loop contribution can vary. This renders the interaction energy in the
Dirichlet limit proportional to the number of loops piercing both surfaces.

the exponential in the holonomy factor average (4.7) becomes

IV [y(t);T, xCM] :=

∫ 1

0
dt V (xCM +

√
Ty(t)) = λ

∫ 1

0
dt

∫

Σ
dσ δ

(√
Ty(t) + (x− xσ)

)

=
λ√
T

∫

Σ
dσ

∑

{ti|
√
Ty(ti)+x=xσ}

1

|ẏ(ti)|
,

where {ti} is the set of all points where a given scaled unit loop
√
Ty(t) centered upon x

pierces the Casimir surface Σ at xσ. If a loop does not pierce the surface (for given T and
x), IV [y(t)] = 0 for this loop. Of course, there are also loops that merely touch the Casimir
surface but do not pierce it. For these loops, the inverse velocity 1/|ẏ(ti)| diverges on the
surface. But since this divergence occurs in the argument of an exponential function, these
loops remove themselves from the ensemble average.

Let us apply this result to the calculation of the Casimir interaction energy (4.11). For
a certain loop x0(τ) corresponding to the rescaled unit loop y0(t) at the proper-time T and
shifted to the center of mass xCM, the contribution to the loop average of x0(τ) is given by

contrib. of x0(τ) = (WV1+2 [T, xCM] − 1) − (WV1 [T, xCM] − 1) − (WV2 [T, xCM] − 1)

= 1 − (e−TIV1 + e−TIV2 − e−TIV1+2 ) (4.12)

where the simplified notation IVi stands for IVi [y0(t), T, xCM]. From the previous expression,
it is clear that

• loops which do not pierce any surface do not contribute to the loop average,

• loops which pierce only one of the interfaces do not contribute to the loop average, only
those loops which pierce both surfaces contribute to the interaction energy.
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The second point is clear if we note for that IV1+2 = IV1 or IV1+2 = IV2 for a loop which
does not pierce the surface S2 or S1, respectively. This was of course to be expected, since
only loops which “see” both interfaces can contribute to an a-dependent Casimir energy. The
situation is depicted in Fig. 4.1. We can see in (4.12) that the contribution of a loop to the
interaction energy takes its value in the interval [0, 1]. From this and the global minus sign
in (4.5), we learn that Casimir forces between rigid bodies in our scalar model are always
attractive. This statement holds, independently of the shape of the bodies and the details of
the potential (as long as V (x) is non-negative).

Let us finally particularize to the Dirichlet limit λ → ∞. For a contributing loop, all
holonomy factors e−TIV in (4.12) vanish and the loop contributes a +1 to the loop average.
As a consequence, the interaction energy for two rigid bodies in the sharp and Dirichlet
limit is simply proportional to the number of loops which pierce both surfaces of the Casimir
configuration. This fact contributes to an intuitive understanding of the numerical results.

4.3 Numerical results

4.3.1 Parallel plates

We consider the Casimir configuration of two rigid parallel plates separated by a distance a
and located at z = −a/2 and z = a/2 orthogonal to the z axis. The potential reduces in this
case to

V (x) = λ[δ(z + a/2) + δ(z − a/2)].

We compare our numerical estimates with the analytically known result [BHR92] and test
our numerical approach for arbitrary coupling λ and scalar mass m, which are expressed in
units of the plate separation a.

Benchmark test. We will in a first step study the quality of our numerical estimates. Let
us recall the two possible sources of error which we introduce when performing the worldline
averages on a computer: loop discretization (2.16) and statistical average (2.14). The former
is controlled by the number of points per loop Nppl. This is illustrated in Fig. 4.2. In this
figure, we plot the numerical estimates for the parallel plates Casimir energy per unit area
in the Dirichlet limit (λ→ ∞) and for a massless scalar field as a function of the number of
points per loop Nppl and compare it with the analytical result, which reads3

ECas(a)/A = − 1

2(4π)2
π4

45

1

a3
' − 1

2(4π)2
× 2.16 . . . × 1

a3
, (4.13)

where A is the total surface of the plates. As is visible, the analytical result is reproduced
with an error . 0.5% using Nppl & 105 for v-loops. It appears also that the only price to
be paid to achieve high precision estimates is to increase the number of points per loop.
Note that a systematic 1% error in the high-precision data is observed for f-loops. This is
of unclear origin. On the other hand, the error bars, which witness the approximation of
the exact result by the statistical average (2.14), can be controled by tuning the number N lp

of loops per ensemble. It is evident from the plot that the magnitude of the error bars can

3Here and in the following, we have explicitly displayed the common proper-time prefactors 1/[2(4π)D/2]
for convenience (see prefactor in (4.5)).
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Figure 4.2: Numerical estimate of the interaction Casimir energy per unit area of the parallel-plate
configuration for various loop ensembles as a function of the number of points per loop Nppl. The
error bars correspond to the Monte-Carlo statistical error; deviations from the exact result on top of
the statistical error measure the systematic error due to loop discretization.

be reduced when increasing Nlp. Let us emphasize that a rather small number of several
thousand points per loop and loops per ensemble (Nppl, Nlp & O(1000)) are sufficient to get
a numerical estimate with . 5% error (triangle curve), which means that reasonable good
estimates can be obtained at a relatively low cost in CPU time. The important conclusion
of this test is that worldline numerics has proved its ability to describe quantum fluctuations
with Dirichlet boundary conditions quantitatively.

Beyond the Dirichlet limit. The next we can test is whether the quantitative agreement
of our estimates with the analytical result holds in all coupling regimes. In Fig. 4.3, we study
a wide range of couplings and the approach to the Dirichlet limit, λa� 1, which is given by
(4.13). The simulations are performed in the massless limit m = 0. As is visible in this figure,
the agreement is satisfactory. Note the relative small amount of points per loop and loops
per ensemble, which means that the quality of the “low cost” simulations is independent of
the coupling.

Finite scalar mass. Finally, we test our numerical method in a wide range of scalar
masses. In Fig. 4.4, we plot the Casimir energy per unit area as function of the dimensionless
parameter ma. Let us discuss this result as function of m and a separately, when the other
parameter is fixed (a and m resp.).

• a fixed. In the intermediate region, m ' 1/a, the value of the coupling λ = 100m � 1/a
is such that that the Dirichlet limit is approached and the curve follows the Dirichlet
result (dashed line). For bigger values of the mass, i.e. m� 1/a, the interaction energy
is dominated by the mass factor e−m

2T in the proper-time integral. As a result, the
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Figure 4.3: Parallel plates: interaction Casimir energy per unit area for the parallel-plate configu-
ration as a function of the coupling λ (units are set by the plate separation a). The numerical estimate
reproduces the exact result for a wide range of couplings including the Dirichlet limit (cf. Fig. 4.2).

energy falls exponentially for big scalar masses. On the contrary, in the small mass
region, m � 1/a, the coupling is such that the interfaces become transparent to an
increasing value of modes as the scalar mass is decreased. It can be also quantitatively
understood by examinating the contribution (4.12) for decreasing coupling.

• m fixed. The comment is of course identical in the intermediate region a ' 1/m, which
corresponds to the Dirichlet power law ∼ 1/a3. For increasing a, the effect of the mass
factor e−m

2T is to suppress the large loops contributing precisely to the energy when
the distance between the plates is large. This explains the exponential fall-off of the
energy with the distance. In the small distance regime, the number of modes wich fit
between the plates and are beyond the plasma frequency ω > ωP ' λ increases as the
distance decreases. This explains qualitatively why the energy turns from ∼ 1/a3 into
a ∼ λ2/a law [BHR92].

In any case, we see a very good agreement of the numerical estimate with the analytical result
[BHR92] in a wide range of scalar masses.

4.3.2 Sphere above plate

In this section, we apply our method to the experimentally relevant Casimir configuration of a
sphere above a plate. The standard analytical approach to the study of Casimir configurations
with curved geometries is the proximity force approximation (PFA) [DAL56, BRST77], which
we describe briefly below.

Proximity force approximation. As already mentioned, Casimir forces can be analy-
tically computed for only a small number of rigid-body geometries among which there is the
parallel-plate configuration. The classic result for the Casimir interaction energy per unit
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Figure 4.4: Parallel plates: interaction Casimir energy per unit area for the parallel-plate confi-
guration as a function of the distance a in units of the mass m for λ = 100m. The exact result (solid
line) is well reproduced by the numerical estimate over many orders of magnitude. For intermediate
parameter values, the classic Casimir result (idealized Dirichlet limit (4.13), dashed line) represents a
reasonable approximation.

area of perfectly conducting plates at a distance a is given by

EPP(a) = −1

2

π2

720

1

a3

for a fluctuating scalar field. For a complex scalar field as well as for electromagnetic fluc-
tuations, the factor 1/2 has to be dropped.

The basic idea of the PFA is to apply the parallel-plate result to infinitesimal bits of the
generally curved surfaces and integrate them up,

E =

∫

S
EPP(z)dσ. (4.14)

The symbol S represents the integration domain and denotes either one of the surfaces
of the interacting bodies or a suitably chosen mean surface [BRST77]. At this point, the
proximity force approximation is ambiguous, and we will simply insert both surfaces in
order to determine the variance. In (4.14) dσ denotes the invariant surface measure, and
z represents the separation between the two surfaces associated with the surface element dσ
on S. The distance z is here taken radial to the sphere. This is illustrated in the following
figure in the case of a sphere-based integration.

  

dσ

  

z
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To each infinitesimal bit on the sphere surface, one associates the nearest bit sitting on the
plate at the distance z. The bit on the curved surface is considered to be parallel to the
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plate bit and the contribution to the Casimir interaction energy is given by EPP(z). The
contributions of each bit on the sphere are resumed by performing the surface integration
(4.14). From this simple example, it appears clearly that the PFA method is based on the
following two approximations:

• the PFA neglects any nonparallelity,

• the PFA neglects any non-local curvature effects.

The first point is clear from the figure, the second is due to the fact that each element on a
surface is assumed to “speak” to only one surface element on the other boundary at separation
z; but curvature effects require information about a whole neighborhood of the element on
the curved surface. As a consequence, the proximity force approximation is expected to give
reasonable results only if

• the typical curvature radii of the surface elements is large compared to the element
distance,

• the surface elements with strong nonparallelity are further separated than the more
parallel ones.4

For configurations that do not meet the validity criteria of the proximity force ap-
proximation, a number of further approximations or improvements exist, such as an additive
summation of interatomic pairwise interactions and the inclusion of screening effects of more
distant layers by closer ones [MT97, Mil01, BMM01]. Though these methods have proved
useful and are even quantitatively precise for a number of examples, to our knowledge, a
general, unambiguous and systematically improvable recipe without ad hoc assumptions is
still missing.

The loop cloud method at work. Beside its physical interest, the sphere-plate configu-
ration with its relatively simple geometry provides us with a beautiful illustration of the loop
cloud machinery. As we shall see, curvature effects can be understood qualitatively without
any calculation simply by thinking in terms of loops and loop clouds.

In Fig. 4.5 we plot the interaction energy density along the C∞ symmetry axis for the
sphere-plate configuration in the Dirichlet limit and for a massless scalar field (data points
with error bars). The radius of the sphere is equal to the distance sphere-plate, i.e. R = a.
For comparison, the energy density in the case where the sphere is replaced by a plate is
also shown (dashed line). We observe that the energy density close to the sphere is well
approximated by the energy density provided by the parallel-plates scenario. Close to the
plate, we see that the energy density is smaller for the sphere-plate configuration than for
the plate-plate configuration. The effects due to the curved geometry become visible at a
distance of a/2 from the sphere. This fact can easily be understood when formulated in the
language of loops.

Let us recall that the energy density at a given point x0 is obtained by averaging over loop
clouds in which all loops have the common center of mass xCM = x0. In the figure we consider

4The second condition is not so well discussed in the literature; it is the reason why the proximity force
approximation gives reasonable results for a convex spherical lens over a plate (convex as seen from the plate),
but fails for a concave lens.
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Figure 4.5: Sphere above Plate: interaction Casimir energy density along the symmetry axis (x
axis) for the sphere-plate configuration in comparison to the parallel-plate case. Close to the sphere,
the worldline loops do not “see” the curvature; but at larger distances, curvature effects enter the
energy density. For illustration, the sphere-plate geometry is also sketched (thin black lines).

two points on the symmetry axis, each of them being close to one of the interfaces. In each
case, we pick up a loop among the loop ensemble and represent it together with the Casimir
configurations on both sides of the plot. For both points, we mimic the transition from the
plate-plate configuration (top) to the sphere-plate configuration with R = a (bottom) by
increasing by hand the curvature of the right boundary. Remember also that the interaction
energy in the Dirichlet limit is proportional to the number of loops which pierce both surfaces.
At a point close to the “deformable” body5, we can easily see that the curvature does not play
any role for a loop cloud centered at this point: the number of contributing loops is almost
the same in each of the three configurations. As a consequence, the interaction energy density
does not change with the curvature. On the other hand, for a loop cloud centered upon a
point close to the plate, there may exist critical loops, such as depicted in the figure, which are
very sensitive to a change in the curvature of the opposite boundary. For the particular loop
depicted here, there exists a critical value of the curvature above which it does not contribute
any more to the loop average. This explains nicely why the energy density is smaller further
away from the sphere: the number of contributing loops decreases as the curvature of the
distant boundary increases.

PFA vs. worldline numerics. Let us now consider the complete interaction Casimir
energy for the sphere-plate configuration as a function of the sphere-plate distance a (we
express all dimensionful quantities as a function of the sphere radius R). In Fig. 4.6, we plot
our numerical results in the range a/R ' O(0.001 . . . 10). Since the energy varies over a wide

5It is deformable for this purpose only. In each of the three configurations depicted above this body is
considered as rigid.
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Figure 4.6: Sphere above Plate: logarithmic plot of the interaction Casimir energy for the sphere-
plate configuration. For small separations/large spheres, a/R . 0.02, the proximity force approxi-
mation (PFA) approximates the numerical estimate well; but for larger a/R, curvature effects are not
properly taken into account. The PFA becomes ambiguous for larger a/R, owing to possible different
choices of the integration domain S in (4.14). A geometric mean (dotted-dashed line) of S = Splate

and S = Ssphere shows reasonable agreement with the numerical result.

range of scales, already small loop ensembles with rather large errors suffice for a satisfactory
estimate (the size of the error bars of an ensemble of 1500 v loops with 4000 ppl are within
the size of the plotting symbols in Fig. 4.6).

Let us compare our numerical estimate with the proximity force approximation: using
the plate surface as the integration domain in (4.14), S = Splate, we obtain the solid line in
Fig. 4.6 (PFA, plate-based), corresponding to a “no-curvature” approximation. As expected,
the PFA approximation agrees with our numerical result for small distances (large sphere
radius). Sizable deviations from the PFA approximation of the order of a few percent occur
for a/R ' 0.02 and larger. Here, the curvature-neglecting approximations are clearly no
longer valid. This can be read off from Fig. 4.7, where the resulting interaction energies are
normalized to the numerical result.

4.3.3 Cylinder above plate

In order to study the relation between PFA approximations and the full numerical estimate
a bit further, let us consider a second example of a cylinder above a plate. Apart from the
difference in the third dimension, all parameters and conventions are as before.

Again, we observe in Fig. 4.8 that the numerical estimate is well approximated by the
PFA for a/R . 0.02, but curvature effects become important for larger distance-to-curvature-
radius ratios. As in the sphere-plate case, the plate-based PFA neglects, but the cylinder-
based PFA over-estimates, the curvature effects for a/R of order one.

Our results seem to suggest that the various possible choices for the integration domain in
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Figure 4.7: Sphere above Plate: interaction Casimir energies normalized to the numerical result
(further conventions as in Fig. 4.6). For a/R & 0.02, the fluctuation-induced curvature effects occur
at the percent level.

the proximity force approximation may give upper and lower bounds for the correct answer.
Indeed, the geometric mean between the two possible choices for the sphere-plate configu-
ration is rather close to the numerical estimate (dotted-dashed line in Figs. 4.6 and 4.8). Si-
milar positive results for the geometric mean have been found for the two-concentric-cylinder
configuration [MSSvS] using semiclassical approximations [SS98, SS00] and for a “chaotic”
geometry [BRST77]. However, we believe that this “agreement” beyond the strict validity
limit of the PFA is accidental. First, detailed inspection reveals that the geometric mean and
the numerical estimate are not fully compatible within error bars; this is particularly visible
in the cylinder-plate case in Fig. 4.8. Secondly, there are no fundamental arguments favoring
the geometric mean; by contrast, the arithmetic mean (as well as the quadratic mean) are not
good approximations. Thirdly, for even larger separations, a/R → ∞, it is known that the
interaction Casimir energy in the sphere-plate case behaves as ∼ R3/a4 [DF81], whereas even
the sphere-based PFA decreases only with ∼ R2/a3. From the viewpoint of the worldline,
it is obvious anyway that true fluctuation-induced curvature effects cannot be taken into
account by PFA-like arguments. Nevertheless, the geometric-mean prescription may yield
a reasonable first guess for Casimir forces in a parameter range beyond the formal validity
bounds of the PFA where the expansion parameter is maximally of order one.

4.4 Summary and outlook

In this chapter, we have applied the loop cloud method discussed in chapter 2 to the study of
the Casimir effect. This approach is based on quantum field theoretic techniques where the
Casimir energy is accessed via the effective action formulated in the worldline formalism and
an external potential mimics the interaction between the fluctuating field and the boundary
matter. This differs from the standard approach where the presence of the boundaries is
taken into account by imposing ab initio boundary conditions on the fluctuating field. In
the field theoretic language, this corresponds to the sharp limit, where the boundaries are
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Figure 4.8: Cylinder above Plate: logarithmic plot of the interaction Casimir energy for the
sphere-plate configuration (cf. Fig. 4.6).

modelled by δ-like potentials, and to the limit of infinite coupling. These conditions induce
the occurence of infinities in the Casimir energy which are not of field theoretic origin and may
not be removed in a physically meaningful way. The problem can however be bypassed if the
Casimir force between rigid bodies is considered, for which a computation of the interaction
energy suffices and explicit renormalization is not needed.

In this work, we have focused on the computation of the Casimir interaction energy
between rigid bodies induced by the fluctuations of a real scalar field. The study of the
classic and analytically well known plate-plate configuration has been performed as a test of
our numerical approach. It has been tested relatively to the loop parameters, Nppl and Nlp,
which have been found to be the only parameters to be adjusted for higher precision, as well as
to the external parameters, i.e. coupling and scalar mass. In the sphere-plate configuration,
we have compared our numerical estimates with the results provided by the proximity force
approximation. Using the geometry independence which characterises the loop cloud method,
we were able to study the usually neglected nonlocal curvature effects which become sizable
for a distance-to-curvature-radius ratio of a/R & 0.02. We found (accidental) agreement
between our numerical estimate and the PFA with a “geometric-mean prescription”: the
latter implies a geometric mean over the possible choices of surface integration in (4.14).
This geometric mean PFA might provide for a first guess of the Casimir force for a/R of
order one, but has to be treated with strong reservations.

There remains of course a lot of space for further investigations. Some generalizations to
more realistic systems are straightforward.

• In this work, we have confined ourselves to the modeling of Casimir boundaries by δ
potentials. This is not really a simplification. A Casimir configuration modelled by
finite and smooth potential is more realistic and numerically less demanding, since it
requires worldline ensembles with a much smaller number of points per loop.
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• Finite temperature effects can be taken into account from first principles by combining
the worldline formalism with the Matsubara formulation. In this case, the worldlines
satisfy boundary conditions in Euclidean time direction and the time integral transforms
into a sum over the loop winding number [GL01].

• The geometry independence of the method can be used to study more realistic surface
profiles, like for instance corrugated plates [Emi03]. Surface roughness can be accounted
for by adding a characteristic random “noise” to the local support of the potential.

• The Casimir force can also be computed by performing the differentiation with respect
to the distance first analytically and afterwards performing the loop averages relatively
to the new expression. This remark also applies to the energy-momentum tensor, which
is obtained from the effective action by differentiating it with respect to the metric.

• Radiative corrections to the Casimir effect can also be included in our method, em-
ploying the higher-loop techniques of the worldline approach [Sch01]. We expect these
computations to be numerically more demanding, since more integrations are necessary,
but the general framework remains the same.

Let us finally emphasize that a further step towards the simulation of the real Casimir effect,
i.e. the implementation of the worldline numerics for a fluctuating electromagnetic field, is
still to be achieved. This is not due to some numerical obstacle, which renders the method
non practicable, but to the lack of a field theoretic formulation of the interaction between the
electromagnetic field and the Casimir boundaries. The starting point can be a field theoretic
Lagrangian defining a model for this interaction as suggested, e.g., in [FS70]. Although these
Lagrangians are generally not renormalizable, one may expect that the dispersive properties
of the bodies provide for a physical ultraviolet cutoff (although this has to be studied with
great care [Bar02, SF02]).
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Chapter 5

Introduction

Quantum Field Theories (QFT) build nowadays a standard framework for the theoretical des-
cription of nature at atomic and subatomic scales. With the invention of quantum mechanics,
the classical description of a particle as an object of defined extension at a defined location,
whose dynamics is governed by Newton’s law, was abandoned in favour of the concept of
wave packets. In a second step, historically called “second quantization”, the quantization of
field theories provided a way to describe the fundamental interactions taking place between
elementary particles. In the QFT language, a field acts as an operator on the vacuum to create
a quantum, i.e. a wave packet, in space-time. At the dynamical level, interaction processes
between elementary particles is seen in terms of creations and annihilations of wave packets
operated by quantum fields. The two most prominent quantum field theories in modern
particle physics are the Glashow-Salam-Weinberg Model of electroweak interactions, which
succeeded in providing a unified description of the electromagnetic and weak interactions,
and Quantum Chromo Dynamics (QCD), which describes the strong interaction. They build
together the so-called Standard Model of elementar particle physics.

A milestone in the history of the field theoretic description of physical phenomena is
certainly the formulation by Maxwell at the end of the 19th century of a unified theory of
electricity and magnetism. A remarkable feature of Maxwell’s formulation is its property of
gauge invariance: a local redefinition of the electric and magnetic potentials does not affect
the laws of electromagnetism. In the context of QFT, this property is crucial in the sense
that it permits to embed the description of matter and the description of interaction into a
single quantum field theory. Quantum Electro Dynamics (QED) results for instance from the
unification of Maxwell theory on the one hand and Dirac’s quantum theory of the electron
on the other hand, rendered possible precisely due to the property of gauge invariance. This
property is so crucial that gauge symmetry is considered as fundamental and postulated as
principle from which a quantum field theory describing interacting matter is derived. The
construction of an interacting quantum field theory from the gauge principle was initiated by
Yang and Mills in the fifties and is also at the base of the field theories building the Standard
Model.

QCD was invented in the late sixties, after it was established, theoretically and ex-
perimentally, that a quark field of a given flavour (u, d or s) possesses an additional internal
degree of freedom, comparable to the electric charge and called colour, which can take three
possible values (red, blue and green). Using the gauge principle, the QCD Lagrangian results
from the theory of free quarks (Dirac Lagrangian) by postulating the invariance of the theory
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under a local gauge transformation of the quark field in colour space. From a mathematical
point of view, the gauge transformation is represented by a matrix belonging to the gauge
group SU(3). This process introduces, besides the quarks, additional degrees of freedom, the
gluons, which are responsible in QCD for the transmission of the strong interaction between
the quarks, like the photons transmit the electromagnetic interaction in QED. The gluon field,
which emerges as a byproduct of the gauge principle, is also called gauge field. The mathe-
matical properties of the gauge group do not only permit to distinguish QED, gauge theory
of group U(1), from QCD, gauge theory of group SU(3), but also have crucial implications
at the physical level. Among them, the non-Abelian character of the gauge group, i.e. non-
commutativity of the group matrices, implies in QCD a gluonic self-interaction, whereas the
photons in the Abelian QED do not interact among themselves. This fact implies in par-
ticular the property of asymptotic freedom: at high momentum transfers, i.e. small distances,
the quark-gluon coupling becomes small. This property can be schematised by comparing
the properties in the vacuum of colour and electric charges, which measure the strength of
the quark-gluon and electron-photon interactions, respectively. Whereas the electric charge
is at big distances screened due to vacuum polarization, i.e. the effective charge decreases
as the distance from the charge increases, the inverse effect, anti-screening, is observed for
the colour charge in QCD, due to the self-interacting property of the gluons. Asymptotic
freedom renders perturbation theory applicable to the high energy regime, also called Ultra-
violet (UV) regime, and allows for the comparison of QCD to experiments performed at
high momentum transfer. The agreement of the predictions of perturbation theory with
numerous high energy collision experiments (see e.g. [ESW96]) supports nowadays the belief
that QCD is the correct theory of strong interaction. On the other hand, the study of QCD
in the low energy regime, often called Infrared (IR) regime, requires the implementation of
non-perturbative methods of calculation.

One of the most prominent phenomenon characterizing the IR regime of QCD is that of
colour confinement, the fact that coloured objects (quarks and gluons) are not observed in
nature as separate entities but rather in colour neutral compounds of quark and gluons, e.g.
mesons, baryons or glueballs. If QCD is indeed the correct theory of strong interaction, this
phenomenon has to be explained from first principles. This has since its invention not yet
been solved and is still nowadays one of the most challenging problem for field theorists. The
problem of colour confinement has been the object of numerous investigations in the recent
years, especially in the framework of lattice gauge theory (LGT). This technique, based on
the simulation of QCD on a latticized space-time, covers all non-perturbative effects and,
in particular, bears witness of quark confinement. Moreover, this approach has been able
to provide confinement mechanisms by identifying among the field fluctuations, using some
projection techniques, the degrees of freedom responsible for the confining property of QCD.
In particular, lattice simulations indicate that confinement is produced by condensation of
chromomagnetic monopoles in the vacuum, suggesting that this vacuum behaves like a dual
superconductor, i.e. for which the roles of electric and magnetic fields are inversed (see
e.g. [DGLMP00]). Another mechanism is provided by center projection techniques, which
suggest that confinement arises from the percolation of center vortices in the vacuum. These
special gauge field configurations are singular magnetic potentials sitting on closed sheets
in space-time (for a review, see [Gre03]), which can be identified and removed from the
ensemble of configurations. It has been shown that a vacuum without its vortex content
looses its confining property [DDFGO]. A serious limitation of the lattice approach to QCD
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is, despite numerous attempts, the lack of a satisfying implementation of dynamical (light)
quarks. At the present stage, systems at finite baryon densities are hardly accessible in
the realistic case of a SU(3) gauge group. The above confinement mechanisms are in fact
obtained by simulating the pure gluonic part, also called Yang-Mills part, of the QCD action.
In this so-called quenched approximation, the effects induced by dynamical quarks are de
facto neglected. Quark confinement can in this approach nevertheless be investigated, since
the (non-relativistic) potential of two static heavy quarks in the vacuum can be extracted
from the Wilson loop, an operator depending on gluonic degrees of freedom only. Moreover,
some simulations are performed with respect to the gauge group SU(2), i.e. considering a
two-colour QCD. This is justified by the fact that the non-Abelian character of the gauge
group is much more relevant for the physical properties than the number of colours itself,
and at the practical level by a reduction of the numerical burden.

Besides LGT, there exist non-perturbative techniques formulated in continuous space-
time, like Dyson-Schwinger equations (DSE). The DSE approach addresses the exact field
correlation functions, or Green functions, of a quantum field theory (for a review, see [RW94]).
In particular, information in relation to the confinement problem is encoded in the basis
correlation functions, the propagators, which describe the propagation in space-time of the
elementary fields [AvS01, AFvS03]. In contrast to LGT, it can deal with dynamical quarks
and can furthermore be used to study hadron phenomenology [MR03]. The disadvantage
of the DSE approach is that it deals with an infinite system of coupled integral equations
for the correlation functions, which has to be truncated in order to provide a practicable
computational framework. This approximation is very difficult to control and to improve
systematically and, in this respect, lattice investigations of elementary propagators can pro-
vide interesting information about the impact of truncation schemes [LRG02]. This example
shows how the study of QCD benefits of complementary approaches of the same problem.
Among other non-perturbative approaches in continuous space-time, the Hamilton picture in-
vestigates QCD from a quantum mechanical point of view. Quarks and gluons are represented
by a wave functional of the gluon and quark fields, solution of a functional Schrödinger
equation. By means of variational techniques, the elementary propagators can be calculated
analytically via a system of coupled integral equations, whose closeness requires as in DSE a
truncation scheme.

The present work concerns a further scenario of quark confinement, based on the study of
the Yang-Mills part of the QCD action in the Coulomb gauge formulation. The quantization
procedure of a gauge theory, like QCD, requires the implementation of an additional condition
on the gluonic field, called gauge fixing. Physics does of course not depend on the choice
made for the gauge condition, due to the gauge invariance of the theory. Among the possible
gauge fixing procedures, Landau gauge is the most usual formulation of QCD. It imposes
transversality of the gluon field in space-time and possesses many practical advantages: it
preserves the Lorentz invariance of the theory, gives rise to simple Feynman rules and in the
framework of DSE allows for simple ansätze in the truncation of the equation tower. On the
contrary, Coulomb gauge enforces transversality of the gluon field in space only and breaks
therefore Lorentz invariance explicitly, giving rise to cumbersome calculations in perturbation
theory. For this reason, the Coulomb gauge formulation stayed “behind the scene” for many
years. A crucial feature renders however Coulomb gauge very attractive in relation to the
problem of quark confinement: it provides a direct access to the Coulomb potential of two
static coloured charges, equivalent to the Coulomb electric potential between two charged
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particles in Maxwell theory. The first suggestion of a confinement scenario in Coulomb gauge
was originally made by Gribov in the late seventies [Gri78]. Gribov pointed out a weakness of
the Landau and Coulomb gauge conditions: there exist gluon field configurations satisfying
the transversality condition, which can be transformed into each other by means of gauge
transformations. Trying to get rid of these “gauge copies”, nowadays called Gribov copies,
Gribov proposed to restrict the space of the gluon field configurations to the Gribov region,
a domain of the configuration space which he hoped to be free of copies. The geometrical
and topological aspects of the configuration space have since then been the object of rigorous
mathematical investigations [Zwa94, SvBZ03] and the original statement of Gribov refined,
but his idea of a confinement mechanism remained actual: the confining property of the
Coulomb potential can be explained by gluon field configurations sitting near the border of
the Gribov region, called Gribov horizon, which produce an enhancement of the potential
at large scales. It was shown recently [GOZ04] that the scenarios based on the dominance
of center vortices or magnetic monopoles in the confining properties of the QCD vaccum
are compatible with Gribov’s scenario. The interest for the Coulomb gauge formulation has
grown in recent years and is the object of actual investigations in LGT [CZ02a, CZ03, GOZ04]
as well as in the Hamilton picture [SS02, FRa]. In this work, we propose a study on the lattice
of the pure Yang-Mills theory formulated in Coulomb gauge and a confrontation of the results
with the most recent investigations performed in the Hamilton picture [FRa].

The first chapter is devoted to a theoretical overview of the Coulomb gauge formulation of
Yang-Mills theory. In a first step, a detailed description of the quantization procedure, in the
light of Dirac’s quantization procedure for constrained systems, will lead to the derivation
of the colour Coulomb potential. We will see in particular how the restriction to “phy-
sical” gluons, i.e. transverse polarized gluons imposed by the transversality condition of the
Coulomb gauge, induces in a natural way an explicit Coulomb interaction term in the Yang-
Mills Hamiltonian. This term contains the Faddeev-Popov operator, which plays a crucial role
in the confining property of the Coulomb potential. In a second step, the notions of Gribov
region and Gribov horizon will be defined in terms of the Faddeev-Popov operator and their
relation to quark confinement problem considered, providing Gribov’s scenario.

Our lattice study of Coulomb gauge is discussed in the second chapter. For those readers
who are not familiar with the lattice formulation of gauge theories, we briefly review the
basic concepts of LGT. We proceed with a detailed description of the gauge fixing procedure
used in our simulations. In particular, we handle the problem of Gribov copies by means of a
simulated annealing algorithm. The last part of the chapter is devoted to the presentation and
discussion of the numerical results. In relation to the confinement scenario, we investigate the
ghost propagator, i.e. the expectation value of the inverse Faddeev-Popov operator, and the
Coulomb potential in three and four dimensions for different lattice volumes and compare
our estimates with the results obtained in the Hamilton framework. The study in three
dimensions will reveal a satisfactory agreement between the two approaches for the ghost
propagator and the Coulomb potential, whereas significant discrepancies will be observed
in the four dimensional case. Our numerical estimates of these quantities provide in three
and four dimensions a picture compatible with a linear confining interaction. We study also
gluonic correlations by measuring the equal-time transverse gluon propagator, whose inverse is
generally interpreted as an energy dispersion relation for the gluonic fields. Our results for the
gluon propagator at fixed time will reveal a striking but interesting feature of the numerical
study of gluonic correlations at equal-time: the instantaneous gluon propagator shows in
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three and four dimensions an anomalous behaviour in the perturbative regime, which seems
to be incompatible with asymptotic freedom. The reasons for which this anomaly occurs are
still under debate and will be the object of investigations in the next future.
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Chapter 6

Yang-Mills theory in Coulomb
gauge

This chapter is devoted to the formulation of Yang-Mills theory in the Coulomb gauge ap-
proach and its relation to the problem of colour confinement. In a first part, we show,
through a precise description of the quantization procedure, how Coulomb gauge provides in
an elegant way access to the Coulomb potential of colour charges. In order to disentangle the
general aspects of a gauge theory, specific to the gauge symmetry itself, from features specific
to the mathematical structure of the gauge group, we illustrate the quantization procedure of
gauge theories in the light of simple systems: the quantization of a non-relativistic mechanical
problem will give the opportunity to introduce briefly the Dirac quantization procedure of
constrained systems, which we transpose afterwards in the field theoretic context of Maxwell
theory. We then turn to Yang-Mills theory and derive the Coulomb gauge Yang-Mills Hamil-
tonian. The second part is devoted to the properties of the Coulomb gauge approach. We
will in particular focus on the problem of gauge copies (Gribov problem) and its interesting
relation to the confinement of colour charges, in terms of Gribov’s confinement scenario. In
order to avoid any confusion, we will also carefully distinguish the Coulomb potential from
the more conventional gauge invariant Wilson potential.

Quantization of gauge theories cannot be achieved by means of standard procedures. Let
us for instance consider the Maxwell theory of electromagnetism. The Lagrangian density
defining this field theory is given by

L = −1

4
FµνF

µν + g0Aµj
µ, (6.1)

where the four-current jµ = (ρ, j) is a function of the matter fields. We compute the conju-
gated momentum fields:

Πµ =
∂L

∂(∂0Aµ)
.

They read explicitly

Π0 = 0, (6.2)

Πi = F i0. (6.3)
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Following usual rules of quantization1, we should set

[Âµ(x, t), Π̂
ν(y, t)] = iδνµδ

(3)(x − y),

which is not compatible with the constraint (6.2). It appears necessary to introduce modified
rules which take the presence of constraints into account. Such a procedure belongs to the
more general quantization of constrained systems, developed by Dirac [Dir64].

Conventions. Throughout this chapter, we work in D = 3 + 1 dimensions and use the
“continuum conventions” of Appendix B. The Yang-Mills theory is addressed with respect
to the gauge group SU(N).

6.1 Quantization of constrained systems

Let us leave field theory for a moment and illustrate the quantization of systems with
constraints in the light of a simple mechanical example.

Our starting point is the following mechanical problem [CL80]:

L =
1

2
(ẋ2 + ẏ2) − (xẏ − yẋ)q +

1

2
q2r2 − V (r).

As usual, the dot denotes the time derivative and r =
√

x2 + y2. Except for the term 1
2q

2r2,
this Lagrangian describes a non-relativistic charged particle in the central potential V (r) and
under the influence of an external magnetic field q(t), which we treat as a dynamical degree
of freedom. In terms of the polar coordinates x = r cos θ and y = r sin θ, the Lagrangian
reads

L =
1

2
[ṙ2 + r2(θ̇ − q)2] − V (r).

Let us point out the invariance of L under the following transformations

θ → θ + ε(t), (6.4)

q → q + ε̇(t). (6.5)

We consider separately the canonical and path integral quantization schemes.

6.1.1 Canonical quantization

Computing the conjugated momenta gives

pr = ṙ, pθ = r2(θ̇ − q), pq = 0 (6.6)

and usual rules enforce the following commutation relations

[θ̂, p̂θ] = [r̂, p̂r] = [q̂, p̂q] = i. (6.7)

First, the last commutator is manifestly incompatible with the primary constraint pq = 0
in (6.6). Second, the velocity q̇ cannot be eliminated because of this constraint and the

1In the following, Ô denotes the quantum operator associated to the quantity O.



CHAPTER 6. YANG-MILLS THEORY IN COULOMB GAUGE 89

Legendre transformation leading to the Hamiltonian cannot be performed. A way to bypass
this problem is to let this velocity unfixed and perform the Legendre transformation with the
unknown parameter λ = q̇. The Hamiltonian reads in this case

Hλ =
1

2
p2
r +

1

2r2
p2
θ + pθq + V (r) + λpq.

The task to be done before proceeding with the quantization of the theory is to remove the
indetermination by eliminating λ.

In a first step, we derive a secondary constraint by demanding that the constraint pq = 0
in (6.6) holds at all times:

{pq,Hλ}P = 0 ⇒ pθ = 0 (6.8)

where {. . . }P denotes the Poisson bracket. Proceeding with the stability condition of the
secondary constraint and so on, a chain of secondary constraints is obtained, which possibly
leads to the elimination of λ. The constraint chain

pq = 0 ⇒ pθ = 0 ⇒ 0 = 0 (6.9)

obtained in our example furnishes no conditions on λ. This fact is typical for a gauge theory
and its origin is to be found in the invariance of the Lagrangian under the gauge transfor-
mations (6.4) and (6.5). In such a case, we have to fix the gauge, i.e. eliminate the arbitrariness
by hand, by imposing a further condition on θ or q or by directly fixing λ.

Fixing θ. Let us for instance choose θ = 0. This condition must be satisfied at all times,
i.e. the stability condition of the new constraint, i.e. {θ,Hλ}P = 0, must hold. We derive in
this way a new chain of secondary constraints:

θ = 0 ⇒ q = 0 ⇒ λ = 0. (6.10)

The gauge fixing procedure provides a condition on λ and the theory can be quantized.

We leave our example for a moment and describe the quantization procedure at a more
general level. Let us denote the ensemble of all constraints, i.e. primary and secondary
constraints, gauge condition and its stability conditions by {ϕα}. The maximal ensemble of
constraints {φα} ⊆ {ϕα} for which the matrix of the Poisson brackets

Cij = {φi, φj}P

is non-singular is called second-class ensemble. To any dynamical variable (coordinate or
momentum) A, let us associate the first-class quantity A′ defined by

A′ = A− {A,φm}PC−1
mnφn. (6.11)

We justify the introduction of this quantity by pointing out that

{A′, φi}P = 0,

i.e. A′ is compatible with all constraints of the second-class ensemble. For any variables A
and B, we define the Dirac bracket {. . . }D by

{A,B}D := {A′, B′}P , {A′, B′}P = {A,B}P − {A,φm}PC−1
mn{φn, B}P ,
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which is compatible with all constraints of the second-class ensemble. The quantization of
the theory is performed by replacing the Dirac bracket by the commutator, i.e.

{A,B}D → −i[Â, B̂], (6.12)

and setting to zero all constraints of the second-class ensemble in the Hamiltonian.

We return to our example and illustrate the Dirac quantization procedure. If we choose
φ1 = pq, φ2 = pθ, φ3 = θ and φ4 = q the matrix C reads

C =







0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0







and we see that all constraints build a second-class ensemble. In the classification of gauge
conditions, a procedure leading to {φα} ≡ {ϕα} belongs to the class I type of gauge conditions.
The computation of the Dirac brackets is straightforward and gives

{θ, pθ}D = {q, pq}D = 0, {r, pr}D = {r, pr}P ,

which are compatible with the constraints. The theory is quantized by replacing
{r, pr}D → −i[r̂, p̂r] and setting all constraints to zero in the Hamiltonian:

H =
1

2
p2
x + V (x).

[Note: in order to get the correct spectrum of H, it is important not to treat x as a Cartesian
coordinate; p̂2

x is the operator − 1
x
d
dx

(
x d
dx

)
.]

Fixing q. Let us choose q = 0. This yields the constraint chain

q = 0 ⇒ λ = 0,

which fixes λ but does not furnish any condition on the variable θ. The maximal second-class
ensemble is made up of the two constraints φ1 = pq and φ2 = q. The computation of the
Dirac brackets gives

{q, pq}D = 0, {r, pr}D = {r, pr}P . (6.13)

Since pθ = 0 does not belong to the second-class ensemble, no bracket can be found which
is compatible with this constraint. When the theory is quantized, pθ is not set to 0 and
the Poisson bracket {θ, pθ}P is simply replaced by the commutator. This means that the
constrained degree of freedom (θ,pθ) is treated as free2 and given a dynamical evolution
governed by

H =
1

2
p2
r +

1

2r2
p2
θ + V (r).

The elimination of pθ is done after the quantization, i.e. at the level of the Hilbert space: the
restriction of the Hilbert space to the physical sector {|Ψ〉phys} is achieved by imposing the
condition

p̂θ|Ψ〉phys = 0 (6.14)

2in the sense of ’unconstrained’
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on the physical states |Ψ〉phys. Since the gauge condition fixes only the variable q, the quantum
theory is still invariant under the transformation (6.4). This remaining gauge symmetry at
the quantum level is signaled by the vanishing commutator

[Ĥ, p̂θ] = 0

and the condition (6.14) ensures the invariance of the physical quantum states under (6.4).
A gauge fixing procedure for which only a part of the constraints can be eliminated at the
level of the Hamiltonian belongs to the class II type of gauge conditions.

Fixing λ. Let us choose λ = 0. In this case, all constrained degrees of freedom are kept as
dynamical variables and the Hamiltonian reads

H =
1

2
p2
r +

1

2r2
p2
θ + pθq + V (r).

The physical sector is defined by the conditions

p̂θ|Ψ〉phys = p̂q|Ψ〉phys = 0. (6.15)

Gauge fixing procedures for which all degrees of freedom take part in the dynamical evolution
belong to the class III type of gauge conditions.

6.1.2 Path integral quantization

We show how the Feynman path integral quantization procedure has to be modified in the
case of a gauge theory. Let us consider a classical system with N degrees of freedom (qi, pi)
and the set of constraints

φα(q, p) = 0, α = 1, . . . ,M.

We assume that this set is second-class, which means that a class I gauge condition has been
chosen. We give without proof (see [Kug97]) the modified expression of the partition function
in phase space

Z =

∫

DpDq
M∏

α=1

δ(φα)Det
1
2 [C](q, p) exp

{

i

∫

dt[pq̇ −H(p, q)]

}

, (6.16)

where Cij = {φi, φj}P denotes as before the matrix of the Poisson brackets and the constraints
are expressed in terms of the delta functions.

Returning to our mechanical example, we write the partition function in the class I gauge
θ = 0:

Z =

∫

DrDθDqDprDpθ Dpq δ(pq)δ(pθ)δ(θ)δ(q)

× exp

{

i

∫

dt

(

prṙ + pθθ̇ + pqq̇ −
1

2
p2
r −

1

2r2
p2
θ − pθq − V (r)

)}

(6.17)

where we have dropped the determinant since C does not depend on the dynamical variables.
The integrals over q, pq ans pr are performed trivially and the elimination of pθ is done after
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having introduced the functional representation of the delta function δ(pθ) with auxiliary
field α:

Z =

∫

DrDθDpθ Dα δ(θ) ei
R

dt [pθ(θ̇−α)− 1
2r2 p

2
θ+ 1

2
ṙ2−V (r)]

=

∫

DrDθDα Det−1/2[1/r2] δ(θ) ei
R

dt [ 1
2
ṙ2+ 1

2
r2(θ̇−α)2−V (r)]. (6.18)

[Note: in the context of path integrals, the “=” symbol always means an equality up to
irrelevant prefactors, i.e. independent of the dynamical degrees of freedom, which drop out
when expectation values are computed.] If the auxiliary field is reinterpreted as the variable
q, we obtain the partition function under its Lagrangian form, with the restriction imposed
by the gauge fixing condition θ = 0.

The quantization of constrained systems, in particular its application to gauge field theory,
is discussed in textbooks [Kug97, GT90] and reviews, see e.g. [Bur82].

6.2 Quantization of Maxwell theory

We illustrate the quantization procedure à la Dirac in the field theoretic case in the light of
Maxwell theory.

6.2.1 Canonical quantization

We already pointed out the primary constraint (6.2). First, we write down the Hamiltonian
density

HΛ =
1

2
(Π2 + B2) − (g0J0 + Π · ∇)A0 + ΛΠ0 + g0A · J,

where Λ stands for the unknown velocity Ȧ0. Since H is an energy density, an integration
by part does not affect the Hamiltonian H =

∫
d3xH, under the condition that the surface

term vanishes. We can therefore write

HΛ =
1

2
(Π2 + B2) + (∇ · Π− g0J0)A0 + ΛΠ0 + g0A · J. (6.19)

Second, we derive the chain of secondary constraints by temporal derivation of (6.2). It reads

Π0 = 0 ⇒ ∂iΠ
i = g0J0 ⇒ 0 = 0. (6.20)

As it should be for a gauge theory, this chain does not provide any condition involving Λ.
We then have to fix the gauge in order to eliminate the arbitrariness.

Coulomb gauge. We impose transversality of the spatial components of the photon field
by the condition

∂iA
i = 0. (6.21)

The stability chain of the gauge condition reads

∂iA
i = 0 ⇒ ∆A0 = −∂iΠi ⇒ ∆Λ = 0. (6.22)
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It is clear that the ensemble of constraints (6.20) and (6.22) is second-class, i.e. the dimension
of the matrix C of the Poisson brackets is maximum. If we choose φ1 = Π0, φ2 = ∂iΠ

i−g0J0,
φ3 = ∂iA

i and φ4 = ∆A0 + ∂iΠ
i, it reads

C =







0 0 0 −∆
0 0 ∆ 0
0 −∆ 0 −∆
∆ 0 ∆ 0






δ(3)(x− y). (6.23)

Coulomb gauge belongs therefore to the class I type of gauge conditions. We know from the
previous section that all constraints can be set to 0 at the level of the Hamiltonian if we
quantize the theory using the Dirac brackets. Inverting C, we find

C−1 =







0 −∆−1 0 ∆−1

∆−1 0 −∆−1 0
0 ∆−1 0 0

−∆−1 0 0 0






δ(3)(x − y).

Using (6.11), the following first-class quantities are derived

A
′

0 = −g0 ∆−1J0, (6.24)

Π
′

0 = 0,

A
′

k = Ak − ∂k∂l∆
−1Al,

Πk′ = Πk − ∂k∂l∆
−1Πl + g0∂k∆

−1J0,

while the non-vanishing Dirac brackets are

{Ak(x),Πl(y)}x0=y=0
D = (δlk − ∂k∂l∆

−1)δ(3)(x − y).

We can now write down the Hamiltonian density in which all constraints φ1 . . . φ4 are set
to zero. The second and third term in (6.19) are easily eliminated. We have to express the
remaining ones

H =
1

2
(Π2 + B2) + g0A · J

in terms of 2 × 2 independent variables, let us say A1, A2,Π1,Π2, while A3 and Π3 are
solution of φ3 = 0 and φ2 = 0 respectively. Moreover, the dependence on the matter field
J0 is now hidden in the first term, 1

2Π
2, and the constraint φ2 = 0. It is possible to derive

an equivalent and more satisfactory expression. The idea is to replace the fields A and Π

by the corresponding first-class quantities in the last expression. It is allowed because these
quantities differ from the original ones by some terms involving the constraints, which can
be set to 0. If we denote the transversal part of any field ϕ by

ϕ⊥
k := ϕk − ∂k∂l∆

−1ϕl,

we make the substitutions

Ak → A⊥
k ,

Πk → Πk
⊥ + g0∂k∆

−1J0.
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This yields

1

2
(Π2 + B2) → 1

2

[

Π2
⊥ + B2 + (g0∂l∆

−1J0)
2 − 2g0Π

l
⊥∂l∆

−1J0

]

. (6.25)

Performing an integration by part of the last two terms,

(g0∂l∆
−1J0)

2 = g2
0∂l∆

−1J0∂l∆
−1J0 → −J0∆

−1J0, (6.26)

Πl
⊥∂l∆

−1J0 → ∂lΠ
l
⊥∆−1J0 = 0,

we find

H⊥ =
1

2

[
Π2

⊥ + B2
]
− 1

2
g2
0J0∆

−1J0 + g0A⊥ · J. (6.27)

The integration over the spatial coordinates gives rise to the Coulomb gauge Hamiltonian,
which we write in terms of the electric field E⊥ = Π⊥ and the charge density ρ(x) = J0(x):

H =

∫

d3x

[
1

2

(
E2

⊥ + B2
)

+ g0A⊥ · J
]

+
1

2
g2
0

∫

d3xd3y ρ(x)VCoul(x,y)ρ(y)

︸ ︷︷ ︸

HCoul

, (6.28)

with VCoul(x,y) = −∆−1|(x,y). (6.29)

Remarks.

1. Due to the transversality conditions

∂iA
i
⊥ = 0, ∂iΠ

i
⊥ = 0,

the fields A⊥ and Π⊥ possess two linearly independent components, which represent
the two transversal photon polarizations. The Coulomb gauge fixing, as a class I gauge,
eliminates the unphysical degrees of freedom at the level of the Hamiltonian. In other
words, timelike and longitudinal photons are no more present in the quantized theory.
Let us also point out the physical meaning of the secondary constraint φ2, which is
nothing else than Gauss’s law, one of the Maxwell equations. It is automatically satisfied
and does not need to be imposed after the quantization as an operatorial constraint on
the physical states.

2. The inverse Laplace operator in the coordinate representation in D = 3 + 1 is given by

∆−1|(x,y) = − 1

4π

1

|x − y| .

Note that the operator ∆−1 in this representation has the dimension of an energy when
expressed in physical units.

3. The introduction of the first-class fields into the Hamiltonian has let explicitly reappear
the J0 dependence in the expression

−1

2
g2
0J0∆

−1J0 =
1

2
g2
0

∫

d3y
J0(x)J0(y)

4π|x − y| ,

which is nothing else than the familiar Coulomb energy density.
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4. In view of remarks 1 and 3, it is often said that Coulomb gauge is a physical gauge.
Unfortunately, the price to be paid is the sacrifice of the Lorentz invariance of Maxwell
theory.

Let us consider for instance the photon propagator:

iDF
µν(x− y) := 〈T (Aµ(x)Aν(y))〉

= i

∫
d4k

(2π)4
e−ik·(x−y)

k2 + iε

2∑

λ=1

ελµ(k)ε
λ
ν (k),

where ελµ represents the polarisation vectors. This expression is manifestly non-
covariant due to the transversality of the gauge fields. However, the terms vio-
lating Lorentz invariance should vanish when physical amplitudes (elements of the S-
matrix) are computed, due to gauge invariance. Let us choose the orthogonal basis
{ε1µ(k), ε2µ(k), kµ, nµ = (1, 0, 0, 0)}, in which the Feynman propagator reads

DF
µν(k) =

−i
k2 + iε

[

gµν +
(k · n)(nµkν + nνkµ) − kµkν + k2nµnν

|k|2
]

.

When physical amplitudes are calculated, this expression is sandwiched between con-
served currents and the terms proportional to kµ and kν vanish (Ward identity). The
remaining n-dependent term is

−
∫

d4k

(2π)4
e−ik·(x−y)

|k|2 nµnν =
−gµ0gν0δ(x0 − y0)

4π|x − y| ,

which is nothing else than the Coulomb potential. Between two conserved currents,
it picks the charge densities and gives rise to a contribution which cancels exactly the
Coulomb interaction term in the Hamiltonian. We see that the photon propagator in
Coulomb gauge can be replaced by the covariant expression DF

µν(k) =
−igµν

k2+iε
arising in

a natural way when the theory is quantized in a covariant gauge. By the way, we see
that the Coulomb potential is given by the instantaneous part of the 〈A0A0〉 correlation
function.

Temporal gauge. A class II gauge condition is given by

A0 = 0,

which gives the constraint chain
A0 = 0 ⇒ Λ = 0.

The set of second class constraints φ1 = Π0, φ2 = A0 is eliminated at the level of the
Hamiltonian, which reads

H =
1

2
(Π2 + B2) + g0A · J.

The constrained, and therefore unphysical, degrees of freedom (Ai,Π
i) are eliminated by

imposing that the physical states are annihilated by Gauss’s law φ3 = ∂iΠ
i − g0J0:

[∂iΠ̂
i − g0Ĵ0]|Ψ〉phys = 0. (6.30)
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This condition, which is the pendant of (6.14), ensures the remaining invariance of the quan-
tum theory under time-independent gauge transformations

Ai(x) → Ai(x) + ∂iα(x),

for which the operator ∂iΠ̂
i − g0Ĵ0 is the generator.

Covariant gauges. We consider gauge conditions of the form

∂µA
µ = ω(x), (6.31)

where ω(x) is some scalar function. If we rewrite the previous expression under the form

Ȧ0 = −∂iAi + ω(x),

we see that the unknown velocity Ȧ0 , which we denoted by the parameter Λ in (6.19) is
directly fixed by the gauge condition. Any covariant gauge of the form (6.31) is thus a
class III gauge, i.e. for which all degrees of freedom are given a dynamical evolution. The
elimination of non-physical states of the Hilbert space in covariant gauges is no trivial task
and is described in the Gupta-Bleuler formalism in QED and in the BRST formalism in
quantized Yang-Mills theories. Both approaches are beyond the scope of this work and will
not be discussed here.

6.2.2 Path integral quantization

We consider here only quantization in Coulomb gauge. The field theoretic pendant of (6.16)
is given by

Z =

∫

DADΠexp

{

i

∫ [

ΠµȦ
µ − 1

2
(Π2 + B2) − g0A · J

]

dx

}

× δ(A0 + ∆−1∂iΠ
i) δ(Π0) δ(∂iA

i) δ(∂iΠ
i − g0J0),

where we omit the determinant of the matrix (6.23), since it does not depend on the fields.
The transformation of this partition function works in two steps and parallel to the calculation
leading from (6.17) to (6.18). First, we integrate over A0 and Π0:

Z =

∫

DADΠ exp

{

i

∫ [

ΠiȦ
i − 1

2
(Π2 + B2) − g0A · J

]

dx

}

δ(∂iA
i) δ(∂iΠ

i−g0J0). (6.32)

Second, we introduce the integral representation of δ(∂iΠ
i − g0J0), for which the field A0 is

reintroduced as the integration variable:

δ(∂iΠ
i − g0J0) =

∫

DA0 exp

{

−i
∫

A0(∂iΠ
i − g0J0)dx

}

.

Inserting this expression in the partition function, we find

Z =

∫

DADΠ exp

{

i

∫ [

Πi(Ȧ
i − ∂iA0) −

1

2
(Π2 + B2) + g0AµJ

µ

]

dx

}

δ(∂iA
i).
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The final result is obtained by performing the Gaußian integral over Π and reads

Z =

∫

DA exp

{

i

∫

L dx

}

δ(∂iA
i), L = −1

4
FµνF

µν + g0AµJ
µ. (6.33)

The successive integrations have let appear the full Maxwell Lagrangian, while the gauge
condition is the only constraint that remains under the form of a delta function. It is possible
to re-express this result in terms of an integral involving the physical degrees of freedom A⊥
and Π⊥. For this, we restart from the expression (6.32), where we separate the transverse
and longitudinal parts of the Π field: Π = Π⊥−∇φ. The measure becomes DΠ ' DΠ⊥Dφ.
If we reintroduce the irrelevant factor Det[−∆], we can write

Det[−∆]δ(∂iΠ
i − g0J0) = Det[−∆]δ(−∆−1φ− g0J0) = δ(φ+ g0∆

−1J0). (6.34)

Performing finally the φ integration, we obtain

Z =

∫

DA⊥DΠ⊥ exp

{

i

∫

(Π⊥,iȦ
i −H⊥)dx

}

(6.35)

where H⊥ is the Hamiltonian density (6.27).

6.3 Quantization of Yang-Mills theory

We are now armed to attack the quantization problem in the framework of a non-Abelian
gauge theory of gauge group SU(N). We will from now limit ourselves to the quantization
in Coulomb gauge.

Our starting point is the Lagrangian density (B.9)

L = −1

4
F aµνF

µν
a + g0A

a
µJ

µ
a .

The canonical conjugates are given by

Π0
a = 0,

Πi
a = F i0a ,

and a primary constraint appears similarly to (6.2). The stability of this condition provides
a first secondary constraint:

Π0
a = 0 ⇒ [DiΠ

i]a = g0J
0
a ⇒ 0 = 0.

The Hamiltonian density reads

HT =
1

2
(Π2 + B2) − (g0J

a
0 + Πb ·Dab)Aa0 + ΛaΠa

0 + g0A
a · Ja, (6.36)

where for all quantity X, X2 stands for the product X i
aX

i
a. As the constraint chain shows,

Yang-Mills theory is a gauge theory and a gauge has to be fixed. The Coulomb gauge
condition reads

∂iA
i
a = 0. (6.37)
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Stability of the gauge condition provides a further secondary constraint and a condition on
Λ.

∂iA
i
a = 0 ⇒ ∇ ·DabAb0 = −∂iΠi

a ⇒ ∇ · DabΛb = 0.

The set of constraints is second-class, i.e. Coulomb gauge belongs to the class I type of gauge
conditions. We could from now follow the usual program of quantization in the canonical
formalism, i.e. compute the matrix of the Poisson brackets, invert it, calculate the first-class
quantities, the Dirac brackets and finally obtain the Hamiltonian density. The constraint
chains clearly show that the matrix of the Poisson brackets contains the differential operator
∇ · D. The calculation of the Dirac brackets requires its inversion, which is by no means
trivial. The quantization procedure is generally addressed canonically in the temporal gauge
Aa0 = 0, in the axial gauge Aa3 = 0 or is performed directly in the path integral formalism,
which is our framework for the remaining part of this section. We give directly the Yang-Mills
pendant of the path integral (6.33):

Z =

∫

DA exp

{

i

∫

Ldx
}

δ(∂iA
i
a)Det[−∇ ·D], L = −1

4
F aµνF

µν
a + g0A

a
µJ

µ
a , (6.38)

which differs from its Abelian analogue by the presence of the determinant Det[−∇·D]. This
additional factor is due to the fact that the determinant of the C matrix in (6.16) cannot be
neglected, since it depends on the dynamical variable A through the covariant derivative in
∇ · D.

We re-express the generating functional under the form of a path integral involving the
physical degrees of freedom A⊥ and Π⊥, similarly to the transformation that lead from (6.33)
to (6.35). First, the factor

exp

{

i

∫ (

−1

2
F a0iF

0i
a

)

dx

}

'
∫

DΠ exp

{

i

∫ (

Πa
i F

0i
a − 1

2
Π2

)}

is linearized in terms of new variables Π, which are interpreted as the conjugated momenta.
The partition function becomes

Z =

∫

DADΠ exp

{

i

∫ [

Πa
i (Ȧ

i
a − [DiA0]a) −

1

2
(Π2 + B2) + g0A

a
0J

a
0 − g0A

a · Ja
]}

× δ(∂iA
i
a) Det[−∇ ·D].

Performing the integration on Aa0 enforces Gauss’s law, [DiΠ
i]a = g0J

a
0 , yielding

Z =

∫

DADΠ exp

{

i

∫ [

Πa
i Ȧ

i,a − 1

2
(Π2 + B2) − g0A

a · Ja
]}

× δ(∂iA
i
a)δ([DiΠ

i]a − g0J
a
0 ) Det[−∇ · D].

This result is the Yang-Mills pendant of (6.32). We separate the transverse and longitudinal
parts of the conjugated fields: Πa = Πa

⊥ − ∇φa. The integration measure factorizes, i.e.
DΠ ' DΠ⊥Dφ. As in (6.34), we absorb the determinant in the delta function imposing
Gauss’s law:

Det[−∇ · D]δ([DiΠ
i]a − g0J

a
0 ) = Det[−∇ ·D]δ(−[D · ∇φ]a + g0f

abcAbi · Πi
c − g0J

a
0 )

= δ(φa − [(−∇ ·D)−1(g0ρgl + g0J0)]
a),
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where we used the transversality of the gauge field to permute ∇ ·D = D · ∇ and we defined
ρagl = fabcAbiE

i
c, the colour-charge density of the dynamical degrees of freedom. Performing

the integration over φ, we obtain finally

Z =

∫

DA⊥DΠ⊥ exp

{

i

∫

(Πa
⊥,iȦ

i,a −H⊥)

}

(6.39)

where the Hamiltonian density H⊥ is derived from (6.36) by making the substitutions
A → A⊥ and Π → Π⊥ −∇φ and setting all constraints to zero. It reads

H⊥ =
1

2
(Π2

⊥ + B2) − 1

2
g2
0(ρgl + J0)(−∇ · D)−1∆(−∇ · D)−1(ρgl + J0) + g0A⊥ · J,

if we omit the colour indices for clarity. We can finally write the Yang-Mills pendant of the
expressions (6.28)-(6.29):

H =

∫

d3x

[
1

2
(E2

⊥ + B2) + g0A
a
⊥ · Ja

]

+
1

2
g2
0

∫

d3xd3yρa(x)VabCoul(x,y)ρb(y)

︸ ︷︷ ︸

HCoul

, (6.40)

with







VCoul(x,y)ab = M−1(−∆)M−1|ab(x,y)

ρ = ρgl + J0,
M = −∇ ·D.






. (6.41)

The operator M := −∇ · D is called Faddeev-Popov operator and plays a crucial role in the
Coulomb quantization scheme of Yang-Mills theory, especially in Gribov’s scenario of colour
confinement. Note that the Faddeev-Popov operator reduces simply to the Laplacian in the
Abelian case.

The operator VCoul(x,y) in (6.41) is the non-Abelian pendant of (6.29). In the Abelian
case, we indeed have M = −∆ and VCoul(x,y) reduces to the Coulomb potential of electro-
dynamics. We discuss the properties of the colour Coulomb potential in Sec. 6.4.3.

6.4 Gribov’s scenario of confinement

Let us have a look back at the gauge condition (6.37). Given a gauge potential A sa-
tisfying the condition of transversality ∇·A = 0, we consider the gauge-transformed potential
Ag = gAg−1 − i

g0
(∇g)g−1, with respect to the element g of the gauge group. If the condition

of transversality fixes the gauge completely, we should not encounter along the gauge orbit
associated to A any other transverse gauge configurations. Stated in a mathematical way,
the solution g of the following equation

∇ ·Ag = 0 (6.42)

should reduce to the identity under suitable conditions at spatial infinity. In a famous paper
[Gri78], Gribov pointed out that the equation does admit non-trivial solutions g in the case
of non-Abelian theories. In other words, the quantization of Yang-Mills theory is spoiled by
the presence of gauge copies, known today as Gribov copies.
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C0
C2

1C

Figure 6.1: The functional space of gauge field configurations is divided in regions Cn according to

the number n of negative eigenvalues of the Faddeev-Popov operator. On each of the boundaries, this

operator possesses a non trivial zero-mode.

As we shall see, the problem of gauge copies, generally called Gribov problem, has in fact
more fundamental implications than the technical difficulties occurring in the gauge fixing
procedure, namely a direct relation to the problem of colour confinement.

6.4.1 Gribov copies

In the Abelian case, we have g = eig0Λ and the gauge-transformed potential is given by
Ag = A + ∇Λ. The equation (6.42) reduces to

∆Λ = 0.

If we impose that Λ vanishes at spatial infinity, it vanishes everywhere, due to an elementary
property of the Laplace equation, and g reduces everywhere to the identity. Maxwell theory
in Coulomb gauge is free of Gribov copies.

In the non-Abelian case, the gauge transformation of the gauge potential is given by
Ag = gAg−1 − i

g0
(∇g)g−1, with g = eig0α

aTa
. To first order in the α parameter, it reads

Ag = A + Dα and (6.42) takes the form ∇ ·Dαa = 0. This expression can be regarded as a
Schrödinger-type equation for the Faddeev-Popov operator:

−∆αa − g0f
abcAb · ∇αc = ε[A]αa, (6.43)

with zero eigenvalue, i.e. ε[A] = 0. For sufficiently small potentials, this equation can be
solved for positive ε only, i.e. the only solution of (6.42) is the trivial α = 0. The domain
of small gauge field fluctuations is thus free of gauge copies. For a certain magnitude of
A, the lowest eigenvalue of the Faddeev-Popov operator will vanish, i.e. the Faddeev-Popov
operator will develop a zero-mass state, which corresponds to a non-trivial solution of (6.42)
of fast decrease at infinity. As the magnitude of A increases, this becomes a bound state
with negative ε solution. For another value of the potential, another ε = 0 solution appears
which in turn becomes a second bound state and so on. The functional space of gauge field
configurations can then be divided into regions Cn with respect to the number n of negative
eigenvalues of the Faddeev-Popov operator, as depicted in Fig. 6.1.

Gribov considered in a second step gauge configurations lying in the neighbourhood of
the boundary of C0. We write such a field under the form

A = C + a,
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where C lies on the boundary and a is small compared to C. Gribov obtained the transformed
field Ag = C + ag, with

ag = a + D[C]φ0,

φ0 being a zero-mode of the Faddeev-Popov operator, and proved that if one of the fields
(A,Ag) lies in C0 then the other one lies de facto in C1. He indeed found

ε[A] = −ε[Ag],

i.e. there exists a bound state for one of the fields and none for the other. The hope of Gribov
was that this statement would hold for general, non-infinitesimal gauge transformations: for
any field in the region C1 there would be an equivalent field in the region C0. By induction,
this could be extended to the other regions C2, C3 and so on, giving rise to the final statement
that all fields outside of C0 would be gauge transformations of the fields in C0. Gribov’s
proposal to get rid of the gauge ambiguities was to restrict functional integrations performed
in the space of gauge configurations to the region C0, called Gribov region. These functional
integrals are cut off at the first boundary, where the lowest non-trivial eigenvalue of the
Faddeev-Popov operator vanishes, known as the first Gribov horizon.

However, this program has to be reviewed, since we nowadays know that the Gribov
region does, in general, contain copies.

6.4.2 Minimal Coulomb gauge and fundamental modular region

Despite the fact that the Gribov region is spoiled by gauge copies, Gribov’s proposal to
restrict the functional integral to this region was not abandoned but refined.

Let us leave this discussion aside for a moment and describe how a configuration lying
in the Gribov region can be reached along the gauge orbit of a given configuration A. We
consider the following functional:

FA[g] =

∫

dx tr [A(x) ·Ag(x)] , g = eig0α
aTa

, (6.44)

which is the L2 norm of the potential along the gauge orbit. To second order in the parameter
α, this expression reads

FA[g] = FA[1] + 2

∫

dx tr[∂iAi(x)α(x)] +

∫

dx tr[α†(x)(−∂iDi)α(x)] + O(α3).

Following a gauge fixing procedure introduced by Zwanziger [Zwa82], we choose g such that
the functional (6.44) attains a minimum along the gauge orbit. In this case, we have transver-
sality of the potential ∂iA

a
i = 0 and positivity of the Faddeev-Popov operator −∇·D[Ag] ≥ 0,

since the Hessian matrix is positive at a minimum. The set of these minima is by definition
the Gribov region C0, which we denote in the following by Ω.

Let us now return to the problem of copies inside the Gribov region. The gauge-fixing
prescription as a minimization procedure of (6.44) shows clearly that Ω is not free of gauge
copies, since FA[g] may have many local minima along the gauge orbit. In place of the Gribov
region, one considers the set of all absolute minima obtained by minimization of (6.44) along
all gauge orbits. This restricted set is called fundamental modular region or F.M.R. and
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Figure 6.2: Sketch of the Gribov region Ω and the fundamental modular region Λ. The point A = 0

lies in Λ and points on the boundary of Λ have to be identified.

is denoted by Λ. The Zwanziger prescription combined with the restriction of functional
integrations to Λ is called minimal Coulomb gauge. The F.M.R contains the point A = 0,
is bounded in Ω, convex and points lying on the boundary have to be identified, for con-
siderations of continuity [SvBZ03]. This is sketched in Fig. 6.2. At the practical level, the
restriction to the F.M.R. is implemented in an effective Hamiltonian by the addition of a
horizon function to the Coulomb gauge Hamiltonian. The role of this function is to cut off
the functional integration at the boundary of the F.M.R. ∂Λ, while the integration is per-
formed over the unrestricted configuration space. The horizon function has been analytically
implemented in the case of a lattice Coulomb Hamiltonian in the thermodynamical limit
[Zwa97]. We discuss in the next chapter how the problem of Gribov copies is handled in the
numerical framework of lattice gauge theory.

6.4.3 Coulomb potential vs. Wilson potential

Our task in this section is to disentangle the Coulomb potential, a quantity derived as a
byproduct of the Coulomb gauge quantization scheme, from the Wilson potential, derived in
a complete gauge invariant way from the expectation value of the Wilson loop.

Coulomb potential. It is derived from the partition function (6.38) by addressing the
A0A0 correlator (cf. remark 4 in Sec. 6.2.1):

g2
0〈Aa0(x)Ab0(y)〉 =

−1

Z

δ2Z

δJa0 (x)δJ b0(y)
,

following elementary rules of functional derivation. Differentiating the expression (6.39),
equivalent to (6.38), with respect to J0 acts on the Coulomb term part HCoul of the Hamil-
tonian (6.40) and yields after a straightforward calculation [CZ02b]

−1

Z

δ2Z

δJa0 (x)δJ b0(y)
= g2

0

〈

VabCoul(x,y)
〉

δ(x0−y0)−g2
0

〈

(VCoul ρgl)
a(x)(VCoul ρgl)

b(y)
〉

. (6.45)

The instantaneous part of the correlator defines the Coulomb potential:

VCoul(x − y)δab = N g2
0 〈VabCoul(x,y)〉, (6.46)
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i.e. the vacuum expectation value of the VCoul operator, up to some constant factor N . For
a pair of static quark and antiquark, we find below N = −CN , where CN is the quadratic
Casimir of the fundamental representation N of SU(N). The second term is denoted by

P ab0 (x− y) = −g2
0〈(VCoulρgl)

a(x)(VCoulρgl)
b(y)〉,

whose physical interpretation will be given later on.

Wilson potential. We sketch briefly how the potential of a static quark-antiquark pair
can be extracted from the vacuum expectation value of the Wilson loop3.

We consider the evolution in time of a pair of quark and anti-quark of mass mq placed at
x and y at time t = 0 :

|Φqq(x,y, 0)〉 = Ψ̄q(x, 0)U(x, 0;y, 0)Ψq (y, 0)|0〉. (6.47)

where, for arbitrary time t, U(x, t;y, t) = P ei
R y

x
A(z,t)·dz, with the path-ordering prescription

P due to the fact that the gauge potentials are non-commuting matrices. This phase ensures
the gauge invariance of the state. The propagation in time is described by the correlator (we
drop for clarity the spinor and colour indices)

G(x′,y′,x,y, t) = 〈0|T (Ψ̄q(y′, t)U(y′, t;x′, t)Ψq(x′, t)Ψ̄q(x, 0)U(x, 0;y, 0)Ψq (y, 0)|0〉.

This quantity possesses the following path integral representation

G(x′,y′,x,y, t) =
1

Z

∫

DADψDψ̄DΨqDΨ̄q Φ̄qq(x
′,y′, t)Φqq(x,y, 0) e

iS , (6.48)

with Z =
∫
DADψDψ̄DΨqDΨ̄q eiS . The action S can be decomposed in three parts:

S = SYM [A] + SF [ψ, ψ̄, A] + Sq[Ψ
q, Ψ̄q, A], where we distinguish the pair of quark and anti-

quark Ψq and Ψ̄q from the dynamical quarks ψ, ψ̄.

If the limit for heavy fermions mq → ∞ is taken, as well as the limit for large Euclidean
times (T := it, T → ∞), we expect that the correlation function will show the following
behaviour4:

G(x′,y′,x,y, t)
mq→∞, T→∞−→ δ(3)(x − x′)δ(3)(y − y′)C(x,y)e−E(R)T , (6.49)

where E(R) is the ground state energy in the presence of the static pair separated by the
distance R = |x − y| and C(R) is a function accounting for the overlap of (6.47) with the
ground state.

3A more detailed derivation can be found in the references [Rot97, BV].
4In analogy with the following example in quantum mechanics. In a one-dimensional theory whose Hamil-

tonian is given by H, the evolution in time of a given state |Φ(0)〉 = |ψ〉 is governed by the time evolution

operator e−itĤ : 〈Φ(t)|Φ(0)〉 = 〈ψ|e−itĤ |ψ〉. Expanding the matrix element with respect to the eigenstates |n〉
of Ĥ, we find

〈Φ(t)|Φ(0)〉 =
X

n

〈ψ|n〉〈n|ψ〉e−iEnt,

where En labels the eigenvalues of H. We can extract the contribution of the state of lowest energy by studying
the propagation amplitude for large Euclidean (t→ −iT ) times:

〈Φ(t)|Φ(0)〉
T→∞
−→ |〈ψ|0〉|2e−E0T .
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Figure 6.3: The contour Γ for which the expectation value of the Wilson loop (6.50) is evaluated.

The large mass limit is taken by integrating out the quark degrees of freedom Ψq, Ψ̄q

in (6.48) (the action Sq is quadratic in these fields). The resulting fermion determinant
drops out in the limit mq → ∞ since it approaches the same constant value in numerator
and denominator. We skip here the details of the calculation, which are irrelevant for our
purposes. In the large mass limit, the correlator reads

G(x′,y′,x,y, t)
mq→∞−→ δ(3)(x − x′)δ(3)(y − y′)P+P−e

−2imqt
〈

Tr
[

P e−i
H

Γ
Aµ(z)dzµ

]〉

.

The line integral is performed over a closed rectangular path Γ with spatial and temporal
extension R = |x − y| and t respectively, whose corners are located at the points (x, 0),
(y, 0), (x, t) and (y, t). The P± matrices are the projectors P± = 1

2 (1± γ0). The expectation

value is the average of the Wilson loop Tr
[

P e−i
H

ΓAµ(z)dzµ
]

over all gluonic and fermionic

fluctuations:

〈TrP ei
H

Γ
Aµ(z)dzµ〉 =

∫
DADψDψ̄ Tr

[

P e−i
H

Γ Aµ(z)dzµ
]

eiSY M+F

∫
DADψDψ̄ eiSY M+F

. (6.50)

We continue the exponential to imaginary times (t→ −iT ) and find

G(x′,y′,x,y, T )
mq→∞−→ δ(3)(x − x′)δ(3)(y − y′)P+P−e

−2mqT 〈WΓ[A]〉Eucl.,

where we denote the Wilson loop by WΓ[A] = Tr
[

P ei
H

Γ
Aµ(z)dzµ

]

. The contour is now the

rectangle of Fig. 6.3 in Euclidean space-time and the expectation value 〈. . . 〉Eucl. is taken
with respect to the Euclidean action. Taking the limit T → ∞ and comparing to (6.49), we
have

〈WΓ[A]〉Eucl.
T→∞−→ F (R)e−E(R)T , (6.51)

where F (R) reflects again the overlap of our trial state with the ground state of the system.
Finally, the interaction energy of the static quark-antiquark pair separated by a distance R
is given by

E(R) = − lim
T→∞

1

T
ln〈WΓ[A]〉Eucl..
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For clarity and to avoid any confusion, we will denote this energy by Emin(R) in the following.
It defines the Wilson potential

Emin(R) = Ese + VW (R)

as its R-dependent part, the constant part Ese representing the quark self-energies.

Let us at this stage emphasize that the whole procedure is performed in a complete gauge
invariant way. The final result indeed involves only the Wilson loop, which is a gauge invariant
object.

Coulomb vs. Wilson. Let us now consider the energy of the static qq̄ state in Coulomb
gauge. It reads

Eqq = 〈Φqq|H|Φqq〉 − 〈0|H|0〉, (6.52)

where the explicit form of H is given by the Coulomb gauge Hamiltonian (6.40). We will
handle this problem by means of group theory considerations, following the derivation per-
formed in Ref. [Zwa03].

The quark and antiquark of the qq̄ pair live in the fundamental representation N and N̄
of the gauge group SU(N), respectively. Expressed in terms of wave functionals, our trial
state reads

Φqq[A] = Ψs
qqΨ0[A],

where the state Ψs
qq belongs to the singlet (i.e. colourless) part of the decomposition

N × N̄ = 1 + (N 2 − 1) and Ψ0[A] is the wave functional of the vacuum state in the absence
of external quarks. In the following, we will use the compact notation |Φqq〉 = |s〉|0〉A, for
the trial state, and 〈. . . 〉A =

∫
DA . . . , for the expectation value. The Coulomb term HCoul

of the Hamiltonian (6.40) depends on the external quark fields through the colour-charge
density J0 in (6.41). For the infinitely massive quark and antiquark, which are considered as
point-like particles sitting at x and y respectively, the colour charge density reads

Ja0 (z) = λaqδ(z − x) + λaq̄δ(z − y),

in terms of the Hermitian generators5 of the gauge group SU(N) in the fundamental re-
presentation N . Due to the decomposition of the total colour charge density ρ = ρgl + J0 in
(6.41), we can write the Coulomb term HCoul as follows:

HCoul = Hgl +Hgl qu +Hqu qu,

where Hgl is the Hamiltonian in the absence of external quarks, Hgl qu is linear in J0 and

Hqu qu = g2
0

1

2

∑

a,b

∫

dz1dz2 J
a
0 (z1)VabCoul(z1, z2)J

b
0(z2).

The first contribution will return the vacuum energy in the absence of external quarks:

〈Φqq|Hgl|Φqq〉 = 〈s|s〉〈0|Hgl|0〉A = E0.

5These matrices act on the first and second indices of the wave functional Φqq according to
(λa

qΦqq)αβ = (λa
N )αγΦqq, γβ and (λa

q̄Φqq)αβ = −Φqq, αγ(λa
N )γβ , where λa

N are the N2 − 1 Hermitian gener-
ators of the gauge group SU(N).
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The second term vanishes due to 〈s|λaq,q̄|s〉 = 0 since |s〉 is a colour-singlet state. The most
interesting part arises from the third term, which gives the contribution

〈Φqq|Hqu qu|Φqq〉 =
∑

i,j∈{q,q̄}

∑

a,b

〈s|λai λbj |s〉〈0|VabCoul(x,y)|0〉A.

From group theory, we know that 〈s|λaλb|s〉 = − 1
N2−1δ

abCN , where CN denotes the Casimir
of the representation N . Taking all contributions into account, we find

Eqq = E′
se −CN g2

0〈0|VaaCoul(x,y)|0〉A
︸ ︷︷ ︸

VCoul(R)

.

The first term, independent of R, contains the contribution i = j = q and i = j = q̄, i.e. the
quark self-energies. The second term, the R-dependent part of the energy Eqq, is precisely
the Coulomb potential (6.46) of the massive quark-antiquark pair. We find N = −CN in the
present case.

We can now put all pieces together and compare the two potentials VW (R) and VCoul(R).
On the one hand, we computed the ground state energy Emin(R) of the static qq̄ pair, which
can be extracted from the expectation value of the Wilson loop. On the other hand, we
computed the total energy Eqq of the system by taking the expectation value (6.52) of the
Coulomb gauge Hamiltonian. We have therefore the inequality

Emin(R) ≤ Eqq(R).

If the potentials VW (R) and VCoul(R) are confining, then we assume that the static quark
self-energies Ese and E′

se are negligible compared to the potentials for sufficiently large R.
From this we have, asymptotically,

VW (R) ≤ VCoul(R). (6.53)

The inequality (6.53) was in the recent past investigated by means of lattice simu-
lations. The approach of Cucchieri-Zwanziger [CZ03] is to evaluate the expectation value
〈M−1(−∆)M−1〉 in (6.46). They found a saturation of the inequality, i.e. VCoul ' VW . The
approach of Greensite-Olejnik [GO03] is based on the study of the 〈A0A0〉 correlator. A great
advantage of the method is that Coulomb potential and Wilson potential are the T → 0 and
T → ∞ limit of the same lattice observable, respectively. This allows a direct comparison.
They checked the validity of the inequality (6.53) but found no saturation. Their result is
2VW < VCoul < 3VW . In the next chapter, we perform the calculation of the Coulomb po-
tential in a similar way to the Cucchieri-Zwanziger approach, which we restrict to a study at
fixed time.

Coulomb potential vs. polarization. The Wilson potential is obtained by averaging
the Wilson loop operator over all gluonic and fermionic fluctuations. If we perform in (6.50)
the integration over ψ, ψ̄, we obtain formally

〈WΓ[A]〉Eucl. =

∫
DAWΓ[A] Det[K[A]] e−S

Eucl.
Y M [A]

∫
DADet[K[A]] e−S

Eucl.
Y M [A]

,
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where K[A] is the matrix Kxα,yβ[A] = [γµ(∂µ + iAµ) +m]αβ δ
(4)(x − y). The effects due to

the dynamical fermions can be switched off by setting Det[K] = 1, which corresponds to the
so-called quenched approximation.

Lattice simulations showed in this approximation that the potential VW (R) rises linearly
at large R, i.e. VW (R) = σR, where σ is the so-called string tension, signalling the con-
finement of the two static quarks. Phenomenologically, the linear rising energy corresponds
to the concentration of the colour electric flux lines in a string developing between the quarks.
If no dynamical quarks are present in the theory, the energy needed to separate the quarks
hides in the string developing between the two sources. If dynamical quarks are present,
i.e. Det[K] 6= 1, the extraction of a pair of dynamical quarks out of the vacuum appears
energetically more favorable than the development of a string binding the two static sources.
A pair of mesons is formed at separation R, each meson being formed of one external quark
and one dynamical quark. In this case, the potential VW (R) represents no more the interaction
of two external quarks in the vacuum but the potential of two mesons at separation R and
should in this respect be regarded as an analogue of a Van der Waals interaction potential.
The Wilson potential is no more confining, which does not mean that the theory does not
confine colour charges any more. A more fundamental quantity should be found, which does
not loose its confining property, even in the presence of dynamical quarks.

Let us return to the Coulomb potential, in particular to the decomposition (6.45) of the
correlator 〈A0A0〉 in the instantaneous part VCoul and the P0 term, on the physical meaning
of which we comment briefly. The P0 term represents the vacuum polarization induced by
the dynamical quarks, the minus sign appearing in front of P0 signalling that it corresponds
to screening. By virtue of the inequality (6.53), the first term in (6.45) is confining in the
absence of dynamical quarks, since the Wilson potential is confining, and dominates the
polarization term. When the quark determinant is switched on, the Wilson potential looses
its confining property, signalling that the screening term P0 dominates the Coulomb potential.
This latter, however, is perhaps still linearly confining even when the Wilson potential is not:
the long range of VCoul could precisely be what renders the production of dynamical quark
from the vacuum energetically favorable [CZ02b]. In this respect, the Coulomb potential
provides, under this assumption, a good candidate for an order-parameter of the confinement
of the colour charge even when dynamical quarks are present. This statement has however
to be refined in view of recent calculations of the Coulomb potential at finite temperature,
as explained below. Lattice investigations of the Coulomb potential with dynamical quarks
have, to our knowledge, not yet been performed.

Potentials at finite temperature. Wilson and Coulomb potential can be, by means of
lattice techniques, studied as a function of the temperature. In the quenched approximation,
i.e. in the absence of polarization effects, it is well known that the string tension σ(T )
drops to zero above a critical temperature TC signalling the transition from a confining phase
(σ 6= 0) to a deconfined phase (σ = 0). A recent lattice study of the Coulomb potential at
finite temperature [GOZ04] has shown that the Coulomb string tension σCoul does not vanish
above the critical temperature TC . This quite surprising result can, however, be explained
by an analogy with the calculation of ’spatial’ Wilson loops. If we would indeed compute
the Wilson loop (6.50) for a spatial contour, along, let us say, the x and y directions, we
would find that the spatial Wilson ’potential’ would not loose its confining property above
TC . Now, since the Coulomb potential operator VCoul is defined, at fixed time, in a three
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dimensional ’spatial’ time slice, it is argued that the same mechanism possibly applies to the
case of the Coulomb potential. In the lattice language to be defined in the next chapter, the
Coulomb potential does not reflect deconfinement for T > TC since the spatial links in a time
slice, which enter the definition of the potential, do not loose their confining property above
the critical temperature.

6.4.4 Coulomb potential and renormalization

The Coulomb potential is a renormalization group invariant quantity [Zwa98, CZ02b]. This
is due to the remarkable fact that the quantity g0A0 is in Coulomb gauge invariant under
renormalization. More exactly, we have [the indices B and R stand for bare and renormalized,
resp.]

g0A
B
0 (x) = gRA

R
0 (x), (6.54)

i.e. the renormalization of the coupling and the wave function renormalization of the gauge
potential produce an invariant quantity. The calculations were performed in the so-called
interpolating gauge characterized by the condition ∂iAi + λ∂0A0 = 0, where λ is a real
positive parameter [BZ99]. This gauge is renormalizable and has the advantage that it can
be treated at finite λ using standard BRST methods, i.e. inherits the computational tools
developed in the covariant quantization of gauge theories. The calculations are performed
at finite λ and the Coulomb gauge results are obtained by taking the limit λ → 0. As a
consequence of (6.54), the Coulomb potential possesses the property

V B
Coul(k, g0,Λ) = V R

Coul(k, gR, µ),

where Λ is an ultraviolet cutoff and µ the renormalization mass. In particular, the Coulomb
potential provides a convenient definition of the running coupling constant,

αs(|k|/ΛCoul) = Ck2VCoul(|k|) (6.55)

with some group theoretic prefactors C and ΛCoul a finite QCD mass scale.

6.4.5 Confinement scenario

We defined in (6.41) the Faddeev-Popov operator M = −∇ ·D. It is clear that this quantity
plays a crucial role in the problem of colour confinement, since it is the only operator entering
the Coulomb potential, up to the trivial Laplace operator. The vacuum expectation value of
the Faddeev-Popov operator, i.e.

Dab(x − y) := 〈M−1[A]|ab(x,y)〉. (6.56)

is the ghost propagator6 . The Fourier transform VCoul(k) of the Coulomb potential can be
parameterized in the following way [Zwa98]:

VCoul(|k|) = −CN k2D2(k)f(k). (6.57)

The dimensionless function f(k) measures the deviation of the Coulomb potential from the
factorization

〈M−1[A](−∆)M−1[A]〉 → 〈M−1[A]〉(−∆)〈M−1[A]〉, (6.58)

6This quantity is indeed equivalent to the correlation function 〈c̄a(x)cb(y)〉 of the ghost fields ca(x), which
arise from a functional representation of the determinant in (6.38) in terms of Grassman fields.
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in which case we have f(k) ≡ 1.

When Gribov pointed out the problem of gauge copies and discussed the possible re-
striction of the gauge field integration to the first Gribov region Ω, he already stressed the
possible relation between this restriction to Ω and the confinement problem by discussing the
infrared behaviour of the ghost propagator. The confinement scenario is nowadays stated as
follows. The Coulomb potential VCoul ∝ 〈M−1[A](−∆)M−1[A]〉 is long range (i.e. enhanced
in the regime of small momenta) because M−1[A] is long range. This results from entropy
considerations: since the dimension of configuration space is very large, it is reasonable to
think that most of the configurations are located close to the Gribov horizon (just as the
volume measure rd−1dr of a sphere in d dimensions is enhanced near the radius). This
suggests that the near-zero eigenvalues of the Faddeev-Popov operator dominate at large
quark separations.

Our investigations in the framework of lattice gauge theory reported in the next chapter
will concern the study of the ghost propagator (6.56) and the Coulomb potential. Since
these quantities can be determined independently, we can also address the function f(k) and
therefore study the deviation of the Coulomb potential from the factorization (6.58).

It was recently pointed out [GOZ04] that the confinement scenarios based on the domi-
nance on some subsets of gauge field configurations, i.e. the center vortices or magnetic
monopoles mentioned in the introduction, are compatible with Gribov’s scenario of con-
finement. When such configurations are gauge transformed to minimal Coulomb gauge
(Sec. 6.4.2), they lie on the boundary ∂Λ of the fundamental modular region Λ.

6.5 Summary

In this chapter, we discussed the quantization of Maxwell and Yang-Mills theory in the light
of the Dirac quantization scheme for constrained systems. We focused in particular on the
Coulomb gauge fixing procedure for which transversality of the gauge potential is imposed:
∂iAi = 0. Coulomb gauge is a physical gauge, in the sense that all constraints can be
eliminated at the level of the Hamiltonian and the Hilbert space contains only the physical
transverse degrees of freedom. In particular, Gauss’s law is automatically satisfied in the
quantized theory and must not be imposed afterwards on the physical states. Transversality
has however its price: the formulation in Coulomb gauge lacks the Lorentz covariance of
the original Lagrangian, which is restored at the level of the S−matrix, due to gauge inva-
riance. A particular advantage of the elimination of the longitudinal degrees of freedom in the
Hamiltonian is the Coulomb term in which the Coulomb interaction operator can be read off
directly: VCoul = M−1[A](−∆)M−1[A], with the Faddeev-Popov operator M [A] = −∇·D[A].

The Coulomb gauge quantization scheme is spoiled by the presence of Gribov copies,
i.e. gauge-equivalent transverse configurations. This problem is bypassed by restricting the
configuration space to the fundamental modular region Λ which is the ensemble of the global
minima of the functional (6.44) on each gauge orbit. This region is included in the Gribov
region Ω defined by the condition M [A] ≥ 0, which Gribov originally (and erroneously)
believed to be free of gauge copies.

The Coulomb potential VCoul = −CNg2
0 〈VCoul〉 is not the Wilson potential VW of a

static quark anti-quark pair extracted from the gauge invariant Wilson loop. The latter
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represents the ground state energy of the pair, whereas the former represents the total energy.
This fact gives rise to the inequality VW ≤ VCoul. From this, we know that the Coulomb
potential is confining when the Wilson potential is confining, i.e. for instance in the absence
of polarization effects induced by dynamical quarks. Since the Coulomb potential is an upper
bound of the Wilson potential, it could possibly remain confining even when the Wilson
potential is not, for instance due to polarization effects. In view of a recent study of the
Coulomb potential at finite temperature, VCoul can however not serve as an order parameter
for the confinement of colour charges, since it does not loose its confining property in the
deconfined phase, i.e. above the critical temperature TC . From entropy considerations, it
is believed that most of the gauge field configurations are located close to the border of the
Gribov region Ω, leading to an enhancement of the Coulomb potential at large scales, i.e.
in the regime of small momenta. This is the modern formulation of Gribov’s confinement
scenario, in which the mechanisms based on the dominance of center vortices or magnetic
monopoles do fit, since it is proved that these special configurations lie precisely on the border
of the fundamental modular region, when they are transformed to minimal Coulomb gauge.



Chapter 7

Coulomb gauge on the lattice

This chapter is devoted to the investigation of Yang-Mills theory in the Coulomb gauge
formulation by means of lattice simulations. We study in particular the ghost propagator
and the Coulomb potential for the gauge group SU(2). Gluonic correlations are also addressed
via the study of the equal-time transverse gluon propagator. We compare our results with
the most recent analytical study performed in the Hamilton formalism [FRa]. We review in
the first section some basic concepts of the lattice approach to gauge theories, which can be
skipped by the reader who is mainly interested in the results. In the intermediate sections (7.2
to 7.4), we give a precise description of our numerical procedure: gauge fixing, measurements
and definitions of the lattice observables. Finally, the results for gluon and ghost propagators
as well as for the Coulomb potential are presented for the cases D = 2 + 1, D = 3 + 1 and
critically discussed.

Conventions. We use throughout this chapter the “lattice conventions”, see Sec. C.1, and
limit ourselves to the gauge group SU(2).

7.1 Basic facts about lattice gauge theories

7.1.1 Basic definitions

The space-time is discretized and considered as a D-dimensional lattice with lattice spacing
denoted by a. The lattice extension is fixed by a D-plet of integer parameters {N1, . . . , ND}
and the lattice volume is the dimensionless number V = N1 × · · · ×ND.

In the framework of a gauge theory formulated in the continuum, the gauge potential Aµ

is the connection in the space-time equipped with the gauge group, which we denote by G.
Expressed in simple words, its role is to compare the phase ϕ of a field ψ(x) = R(x)eiϕ(x) at
two different points x1 and x2 in space-time. Expressed in mathematical terms, we have for
the points x1 = x and x2 = x+ dx:

ψ(x+ dx) = U(x)ψ(x), with U(x) = eiAµ(x)dxµ
.

The matrix U(x), element of the gauge group G, specifies the rotation of the basis frame in
the gauge symmetry space upon transport between the neighbouring space-time points x and
x+ dx. The matrix Aµ(x) belongs to the Lie algebra associated to G.

111
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On the lattice, the ’transporters’ U(x) are considered as fundamental degrees of freedom,
in place of the potentials Aµ(x). At each lattice site x, D matrices U1(x), . . . , UD(x) ∈ G are
given, one for each link connecting x with its D neighbours in the directions given by the
unit vectors, i.e. x+ ae1, . . . , x+ aeD.

(x)U3

(x)U2

1U ( )x
x

a

PSfrag replacements

(x, T )
(y, T )
(x, 0)
(y, 0)

R

The link connecting x + a eµ to x is given by the inverse element U−1
µ (x). The links are

the fundamental dynamical degrees of freedom and a state of the system is specified by the
ensemble {Uµ(x)}. The action of a lattice gauge transformation at the site x is defined by

Ugµ(x) = g(x)Uµ(x)g
†(x+ aeµ), (7.1)

with g(x), g†(x+ aeµ) ∈ G. For the case G = SU(2), a link U can be represented in terms
of the Pauli matrices σ:

U = a0 + a · σ or U = cos θ + iσ · n sin θ, (7.2)

where the point (a0,a) lives on the unit sphere S3 ≡ a2
0 + a2 = 1 and n is a unit vector.

In the continuum, the field strength Fµν(x) analyses the change in phase of a field along
an infinitesimal closed path of base-point x. In mathematical terms, the matrix

UPµν (x) = exp (iFµν(x)dx
µdxν) (7.3)

specifies the rotation of the basis frame in the gauge symmetry space upon transport along an
infinitesimal rectangular closed path of sides dxµ and dxν [there is no summation on repeated
indices]. On the lattice, these paths are taken along the sides of the elementary squares, which
are called plaquettes, and UPµν (x) is given by the product of the links spanning the plaquette:

UPµν (x) = Uµ(x)Uν(x+aeµ)U
−1
µ (x+aeν)U

−1
ν (x).

x
PSfrag replacements

(x, T )
(y, T )
(x, 0)
(y, 0)

R

The matrix UPµν (x) transforms according to U g
Pµν

(x) = g(x)UPµν (x)g−1(x) under a gauge

transformation. Taking the trace tr[UPµν ] builds the most fundamental gauge invariant object
on the lattice.
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7.1.2 Wilson’s action - Partition function - Observable

The Wilson representation of the action in SU(N) Yang-Mills theory is given by

SW [β, U ] = β
∑

Pµν

(

1 − 1

N
Retr[UPµν ]

)

, β =
2N

g2
0

aD−4, (7.4)

where g0 denotes the bare coupling. Note the gauge invariance of SW since it essentially
resums all lattice plaquettes. Recalling (7.3) and using the representation (7.2) of UPµν , we
have, for SU(2),

SW [β, U ] =
4aD−4

g2
0

∑

Pµν

(1 − cos θPµν )
a→0−→

∑

x

∑

µν

∑

a

aD

4g2
0

F aµνF
µν
a '

∫

dDx
1

4g2
0

F aµνF
µν
a ,

i.e. the Wilson action corresponds to the Yang-Mills action in the naive a→ 0 limit.

The lattice gauge theory is defined by the partition function

Z(β) =

∫

DUe−SW [β,U ] (7.5)

in Euclidean space-time. The quantum Yang-Mills theory is mapped onto a problem of
statistical physics, with respect to the link ensemble {Uµ(x)}. The measure DU is the so-
called Haar measure and has the property of gauge invariance: DU g = DU .

The quantum expectation value of an observable O[U ] is obtained by averaging over all
field configurations

〈O〉(β) =
1

Z(β)

∫

DU O[U ]e−SW [β,U ]. (7.6)

7.1.3 Continuum limit

A simple and naive rescaling of a to zero is not sufficient to define a continuum quantum theory
from the partition function (7.5). Let us examine how the limit a→ 0 can be performed.

Before discussing this point, we make a digression and consider a simpler statistical
problem, namely a spin system describing the thermodynamical properties of ferromagnetic
matter. We consider the correlation length ξ measuring the typical extension of clusters com-
posed of equally oriented spins. Mathematically, it is obtained by studying the decrease of
the spin-spin correlator as a function of the distance:

〈s(x)s(y)〉(T ) ∝ exp

(

−|x− y|
ξ(T )

)

.

As a function of the temperature, the correlation length shows the following behaviour:
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(y, T )
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(y, 0)

R

1
ξ

1
T

1
Tcr

For a critical value of the temperature Tcr, a divergence in the spin correlation length occurs.
The correlation function becomes independent of the position, which in reality signals the
appearance of large clusters of correlated spins and the transition to the phase of spontaneous
magnetization.

Let us now return to lattice gauge theory. Suppose that we want to extract the mass
spectrum of the corresponding field theory. This is done by studying the appropriate corre-
lation functions for large Euclidean times. The existence of a continuum limit of the lattice
field theory implies that

m̂(g0)

a

a→0−→ mphys, (7.7)

with m̂ the mass measured in lattice units for a given value of the coupling g0. If the
corresponding physical mass, mphys, is finite, then m̂ has to vanish in the continuum limit.
Thinking of m̂ in terms of an inverse correlation length, the continuum field theory can only
be realized at a critical point of the statistical system described by the partition function
(7.5). This point corresponds to a critical value of the bare coupling gcr

0 , in analogy with
the critical temperature of the spin system. The condition (7.7) implies also that there
must exist a relation g0(a) between the coupling constant and the lattice spacing, which
guarantees that physical quantities have a finite limit at vanishing lattice spacing. For a
well-defined renormalizable theory, this relation should moreover yield unique finite limits for
all observables, i.e. the function g0(a) should not depend on the observable.

The evolution g0(a) is obtained in the following way. Let us consider the static qq̄ potential
discussed in the previous chapter. The potential is in physical units given by

VW (R, g0, a) =
1

a
V̂W

(
R

a
, g0

)

,

where R is the physical separation of the quark-antiquark pair. The coupling g0 must be
tuned in such a way as to ensure that the physical potential VW (R, g0(a), a) is independent
of the lattice spacing, i.e. d

daVW (R, g0(a), a) = 0. This is expressed mathematically by the
so-called renormalization group (RG) equation:

[

a
∂

∂a
− β(g0)

∂

∂g0

]

VW (R, g0, a) = 0, β(g0) = −a∂g0
∂a

. (7.8)

The function β(g0), which precisely describes the dependence of the coupling on the lattice
spacing, plays a central role in the theory of renormalization. In particular, the critical values
gcr
0 for which a continuum limit can be achieved correspond to the zeros of the β-function,

the so-called fixed points. The β function is obtained perturbatively, i.e. as an expansion in
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Figure 7.1: The string tension σ̂ as a function of β for SU(2) in D = 3 + 1. The scaling window

corresponds to the interval [2.1, 2.6]. For β < 2.1, the measurements follow the strong coupling curve

− ln
(

β
4

)

, while the deviation from the scaling function for β > 2.6 is due to finite size effects.

powers of g0, by inserting the perturbative expansion of the potential into the RG equation
(7.8). This yields β(g0) = −β0g

3
0 − β1g

5
0 +O(g7

0). We see that g0 = 0 is a critical value of the
coupling constant: when the lattice spacing is decreased, g0 is driven towards the fixed point
gcr
0 = 0, i.e. the continuum limit will be realized at vanishing bare coupling. Solving for a,

we find

a(g0) =
1

ΛL
f(g0), f(g0) = (β0g

2
0)

− β1
2β2

0 exp

(

− 1

2β0g2
0

)

(7.9)

where a dimensional integration constant ΛL has been introduced.

How to be sure that we are extracting continuum physics when performing calculations
with a finite (even small !) lattice spacing1 ?

Let us recall the condition of finiteness for an observable O, reformulated in terms of g0:

(
1

a(g0)

)dO

Ô(g0)
g0→gcr0−→ Ophys,

where dO is the energy dimension of the observable and Ô is measured in lattice units.
Inserting (7.9) into this relation, we obtain

Ô(g0)
g0→gcr0' ĈO[f(g0)]

dO , (7.10)

1The critical value gcr
0 = 0 corresponding to a = 0 cannot be reached when performing the calculations on

a computer. Even small, the lattice spacing remains of course finite !
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where ĈO is the dimensionless constant Ophys/Λ
dO
L . Quantities behaving like Ô show asymp-

totic scaling, a behaviour signaling that we are extracting continuum physics from the nu-
merical investigation of the observable Ô on the lattice. At a practical level, there exists in
general only a narrow region in the coupling constant space, called scaling window, where
Ô(g0) scales according to (7.10). Physics will indeed no longer fit on the lattice if g0 becomes
too small (finite size effects), while increasing the bare coupling may render the lattice too
coarse to account for fluctuations taking place on a small scale (strong coupling limit).

The constant ΛL has introduced a scale, in terms of which the physical observable is
measured:

Ophys = ĈOΛdOL . (7.11)

The appearance of a dimensionful quantity like ΛL in a theory which is a priori free of any
scale is well known from perturbation theory in the continuum, where the regularization of
divergent integrals requires the introduction of a scale. This is called dimensional transmu-
tation. In this work, the scale in D = 3 + 1 is set by adjusting the string tension extracted
from the study of the Wilson qq̄ potential to the experimental value σexp. For D = 3 +1 and
SU(2), the relation (7.10) reads:

σ̂(g0) = σexp a
2(g0) = 0.12 exp

{

−6π2

11
(β − 2.3)

}

, σexp = (440 MeV)2. (7.12)

The scaling behaviour of σ̂(g0) is illustrated in Fig. 7.1, extracted from Ref. [CJR83], where
we can clearly identify the scaling window 2.1 ≤ β ≤ 2.6. In D = 2 + 1, we express all
dimensional quantities in units of the bare coupling squared g2

0 , which has the dimension of
a mass, see (7.4). The scaling window is given by 3.5 ≤ β ≤ 7.

7.2 Fixing the Coulomb gauge

The lattice formulation does not only provide a gauge theory with a momentum cut-off. The
finiteness of the system ensures that the integration over redundant configurations of the
gauge field, i.e. Gribov copies, has harmless consequences. The fixing of a gauge is thus
in principle not required in the lattice formulation of a gauge theory. This is actually true
as long as we deal with gauge invariant observables: the investigation of gauge-dependent
quantities, like propagators, of course requires the fixing of a gauge.

7.2.1 General framework

Our starting point is the lattice pendant of the partition function (6.38) obtained in Coulomb
gauge:

Z(β) =

∫

DU∆f (U)δ(f(U)) exp (−SW [β, U ]),

where ∆f (U) is the lattice Faddeev-Popov determinant and f(U) is the gauge condition
expressed in terms of the link variables. The expectation value of an observable O reads in
this case

〈Of 〉(β) =
1

Z(β)

∫

DU O(U)∆f (U)δ(f(U)) exp (−SW [β, U ]),

where the suffix f indicates that the expectation value depends on the gauge. A straight-
forward implementation is however rendered difficult by the calculation of the Faddeev-Popov
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determinant. Instead of this, we derive an equivalent expression. Integrating numerator and
denominator over gauge transformations g, we have

〈Of 〉(β) =
1

Z(β)

∫

Dg
∫

DU O(U)∆f (U)δ(f(U)) exp (−SW [β, U ])

=
1

Z(β)

∫

Dg
∫

DU O(U g)∆f (U
g)δ(f(U g)) exp (−SW [β, U ])

=
1

Z(β)

∫

DU O
(

Ug(U)
)

exp (−SW [β, U ]), (7.13)

where we have renamed the integration variable U → U g in the second step and used the gauge
invariance of the Haar measure and the Wilson action. The integration over g has eliminated
the delta function and the Faddeev-Popov determinant in the third step. The function g(U)
denotes the ensemble of gauge transformations g(x) gauging the given configuration U in
such a way that

f
(

Ug(U)
)

= 0. (7.14)

The expression (7.13) suggests the following procedure: before a measurement is performed,
the lattice is frozen and the gauge transformation g(U) solution of (7.14) is computed. The
lattice is then transformed to the gauged configuration, for which the observable is evaluated.

7.2.2 Gauge fixing as a minimization problem

The implementation of the gauge fixing condition2 f(U) = ∇̂ · Â = 0 works as follows.
The task to be performed is to find, for a frozen configuration U , the gauge transformation
gmin(U) which minimizes the following functional

FU [g] =
∑

t

∑

x,i

ReTr(1 − U g
i (x, t)). (7.15)

Let us show how the minimization procedure of FU [g] leads to the Coulomb gauge condition.
As the gauge fixing procedure involves only spatial links, each time slice t decouples from
its neighbours t + 1 and t − 1. The gauge fixing of the spatial links Ui(x, t) indeed has no
influence on the links Ui(x, t + 1) and Ui(x, t − 1). We consider the gauge fixing procedure
in a given time slice t, i.e. the minimization of the functional

F tU [g] =
∑

x,i

ReTr(1 − U g
i (x, t)) (7.16)

at fixed t. For convenience, we drop the t dependence of the links and the gauge functions. Let
us parameterize the gauge function g by g(τ,x) := exp (iτω(x)), where τ is a real parameter
and ω(x) an element of the Lie algebra, for all x. In terms of the τ parameter, the gauge
condition in each time slice is reformulated:

d

dτ
F tUmin

[ω, τ ]

∣
∣
∣
∣
τ=0

= 0,
d2

dτ2
F tUmin

[ω, τ ]

∣
∣
∣
∣
τ=0

≥ 0, for all ω, (7.17)

2We use the ’lattice notation’ defined in Appendix C.
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where Umin = U gmin(U). The differentiation of the gauge functional is performed in Sec. C.7
and reads

d

dτ
F tU [τ, ω] = 〈ω, ∇̂(−) · Âτ 〉.

The first condition in (7.17) yields the transversality of the lattice potential at the minimum
configuration Aτ=0

min, since 〈ω, ∇̂(−) · Âτ=0
min〉 = 0 must hold for all ω. The derivative of the

gauge potential with respect to the parameter τ is, up to the minus sign, the lattice covariant
derivative of ω (see Sec. C.5):

d2

dτ2
F tU [τ, ω] = 〈ω,−∇̂(−) · D̂[U ]ω〉.

This yields the condition 〈ω,−∇̂(−) ·D̂[Umin]ω〉 ≥ 0 which implies the positivity of the lattice
Faddeev-Popov operator at the minimum of F t

U . Recalling the discussion of Sec. 6.4.2 of the
previous chapter, we find that the minimization procedure of FU is similar to the minimization
procedure of (6.44). The set of all configurations Umin for which the functional (7.15) is a
minimum on each gauge orbit at g = 1 represents the lattice Gribov region Ω. Minimal
Coulomb gauge would be furthermore numerically achieved if the minimization procedure is
implemented in a such a way as to provide the absolute minimum of (7.15). In this case, the
obtained configuration would lie in the fundamental modular region Λ. The global minimum
along the gauge orbit can unfortunately not be found in a systematical way by means of
standard minimization procedures, e.g. iterated overrelaxation. Improvement is however
possible, for instance by implementing the simulated annealing method, which reduces the
attraction of the nearest local minima. This is discussed in the next section.

7.2.3 Complete gauge fixing

In the Coulomb gauge formulation, there are essentially two ways of fixing the gauge com-
pletely over the whole lattice.

Gauging each time slice. The most obvious solution is to fix the gauge in each time slice
separately using the method of minimization of the previous section. After this procedure
has been performed, the lattice gluon field is 3-dimensionally transverse in each time slice.
But the gauge fixing is at yet incomplete because it leaves a t-dependent but x-independent
gauge transformation g(t) arbitrary. There is indeed still the freedom to perform the following
gauge transformations:

Ui(x, t) → g(t)Ui(x, t)g
†(t), (7.18)

U0(x, t) → g(t)U0(x, t)g
†(t+ 1). (7.19)

The standard procedure is to involve the gauge field Aa0(x) for residual gauge fixing. An
example is the Cucchieri-Zwanziger condition [CZ02a], which makes the temporal links as
close to unity as possible by minimizing the “vertical” functional

Fver,U[g] =
∑

x,t

ReTr(1 − U g
0 (x, t))

g(t)−→ min.

Remark: A completion of the gauge fixing which does not involve temporal links should
however be more satisfactory, since we know from the previous chapter that Aa

0 is in Coulomb
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gauge not fixed by a supplementary gauge condition but integrated out from the path integral,
giving rise to Gauss’s law. A natural choice would be to define a matrix Gab(t0) in terms of
the spatial links in each time slice t0 and to implement a gauge condition with respect to the
transformation property of G under the remaining gauge degree of freedom.

Quasi-temporal gauge. A complete lattice gauge fixing can be achieved in the framework
of the quasi-temporal gauge. In this scheme, the two following conditions are enforced:

A0(x, t) = 0,

∂iAi(x, t0) = 0, (7.20)

for all t and fixed t0, i.e. combines the temporal gauge condition A0 = 0 with the Coulomb
condition in a fixed time slice. The quasi-temporal gauge fixing is implemented as follows
[CPPV96]. First, the Coulomb condition (7.20) is implemented by minimizing the functional
F t0U [g] in (7.16). Second, we perform gauge transformations on all temporal links U0(x, t) in
such a way that

Ug0 (x, t) = Nt
√

P (x) (7.21)

for all t’s and fixed x, where P (x) =
∏Nt
l U0(x, tl) is the Polyakov loop at the spatial point

x and Nt labels the number of lattice points in the time direction. This procedure differs
slightly from the original method used by Conti and collaborators [CPPV96]. The temporal
gauge condition is not exactly implemented on the lattice: it is only realized in the limit
Nt → ∞. One can easily show (see Sec. C.7) that the gauge transformation g(x, ts) to be
performed in order to achieve (7.21) is given by

g(x, ts) =

s−1∏

l

[ Nt
√

P (x)]† g(x, 1)
s−1∏

l

U0(x, tl), (7.22)

i.e. all gauge transformations are obtained recursively from g(x, 1), which has to be set to
unity g(x, 1) = 1 in order to ensure the invariance of the Polyakov loop.

A clear advantage of the quasi-temporal gauge is that we only need to fix the Coulomb
gauge in one time slice. It is obvious that the method is only suitable for investigations
of observables at equal-time. Due to the fact that g(x, 1) = 1, we can furthermore spare
the gauge fixing of the temporal links U0(x) if we restrict ourselves to the time slice t = 1,
provided that the observables of interest depend only on spatial links Ui(x).

In the present work, we investigate equal-time propagators, i.e. two-point correlation
functions of the type

CO(x − y) = 〈Ô(t0,x)Ô(t0,y)〉,
at fixed time t0, which are also the quantities of interest studied in the Hamiltonian formalism.
The computations in this analytical approach are indeed performed in the Schrödinger
picture, i.e. the dynamical evolution of the system is contained in the wave functional so-
lution of the Schrödinger equation, while the quantum operators are time-independent. In
view of this restriction to equal-time quantities, we choose the quasi-temporal gauge for the
present simulations. Since the observables of interest do not depend on the temporal links,
we do not need the fixation of the temporal gauge (7.21) but only transversality of the gauge
field in the first time slice t = 1.
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7.2.4 Numerical implementation

We describe briefly the numerical minimization procedure of the functional (7.16). For the
interested reader, a more detailed description of the algorithms is given in Appendix D.

As stated in the previous section, we perform gauge fixing in one time slice, in view of
the fact that we investigate equal-time observables. We choose the time slice t = 1 and drop
in the following the time dependence of links and gauge transformations. Our gauge fixing
procedure works in two steps. First, we compute the field of gauge transformations {gmin(x)}
using a method based on the simulated annealing algorithm. We proceed in a second step
with the iterated overrelaxation procedure.

Simulated annealing. The aim of the simulated annealing method [PFTV] is to force
the system to escape the attraction of the nearest local minimum and to lead it towards
the absolute minimum3 on the current gauge orbit. The idea is to consider the gauge func-
tional FU [g] as the action of a fictitious field theory with respect to the set of the gauge
transformations g(x). The partition function is given by

ZU (βSA) =

∫

Dg exp (−βSAFU [g]).

Note that the lattice configuration U is frozen during all the simulated annealing process.
By increasing step by step the free parameter βSA (which plays the role of the inverse tem-
perature), we try by cooling to retrieve the ground state of the fictitious field theory. The
thermalization steps are performed using the standard Creutz update algorithm (see D.1).
Once the field gmin(x) has been found, the whole lattice is gauge transformed to U gmin .

Iterated overrelaxation. The iterated overrelaxation method consists in local updates of
the lattice configuration. At each site x the optimal gauge transformation g(x) is computed
and immediately performed. The best choice for g(x) is given by

g(x) = cV (x), with V (x) =

{
∑

i

[

Ui(x) + U †
i (x − ei)

]
}†

,

and the normalization constant c =
(√

Det (V )
)−1

. This procedure has to be performed site

by site and repeated until the gauge functional relaxes to a minimum. We do not fix the
number of lattice sweeps but stop the gauge-fixing procedure by means of an abort condition.
The gauge-fixing process is monitored by the following quantity

θ =
1

2N

∑

x

Tr
[

∆(x)∆†(x)
]

,

with

∆(x) =
∑

i

[

Ui(x− ei) − Ui(x) − U †
i (x − ei) + U †

i (x)
]

,

3Let us emphasize that this method is an improvement of standard minimization procedures, like the
iterated overrelaxation algorithm discussed below, and by no means furnishes the global minimum in a sys-
tematical way.
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which gives rise to

θ '
∫

ddxTr
[
(∂iAi)

2
]

in the continuum limit. The monitoring parameter θ decreases during the gauge-fixing process
and should be strictly zero when a minimum of the functional F has been reached. At the
practical level, the process should be stopped if θ drops below a certain small parameter θs
fixed in advance. In order to avoid the problem of critical slowing down, the minimum is
overshot by performing the local gauge transformations with the modified matrices

gω(x) = [cV (x)]ω ,

where the parameter ω is chosen such as to optimize the speed of convergence towards the
minimum of F .

7.3 Lattice measurements

At the practical level, the final goal of a lattice calculation is to compute the expectation
value of an observable in a certain gauge f(U) = 0 by performing the integration (7.13).
Theoretically, all link configurations have to be taken into account when computing the
average. Although the number of configurations is finite, this is of course practically not
possible. The same problem is encountered in statistical physics, where the numerical value
of a thermodynamical quantity results from an average over a huge amount of microstates.
In this context, the problem has been solved in the following way. Instead of integrating over
all microstates of the physical system, among which only a fraction significantly contributes
to the average, a stochastic sequence of configurations {C1, C2, . . . } is generated, each Ci
occurring with a probability proportional the Boltzmann factor exp

(
− 1
TE[Ci]

)
. This is the

basic idea of a Monte-Carlo simulation procedure. In the context of lattice gauge theories,
a set of link configurations Ui is sampled stochastically with respect to the weight factor
exp (−SW [β, Ui]) and the expectation value is approximated by the mean value of the ob-
servable over this sequence of NMC configurations

〈O〉 ' 1

NMC

NMC∑

i=1

O(Ui). (7.23)

7.3.1 Numerical procedure

The numerical procedure works as follows:

(a) initialize by assigning randomly a link configuration,

(b) thermalize the lattice according to the Wilson action by performing NTH updates of
the whole lattice,

(c) freeze a link configuration, gauge transform it if necessary and evaluate the ob-
servable(s),

(d) perform NUP updates of the whole lattice,

(e) repeat the two latter steps NMC times,

(f) perform the average (7.23).
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In the present work, since we limit ourselves to the study of equal-time observables, step (c)
consists in fixing the Coulomb gauge in the quasi-temporal gauge scheme and perform the
measurements in a single time slice. In steps (b) and (d), we perform lattice updates using
Creutz’s heatbath algorithm (see Sec. D.1 for technical details).

7.3.2 Renormalization

The evaluation of the average (7.23) is only a step towards the numerical estimate of an
observable. Let us indeed recall that the expectation value (7.13), of which (7.23) is an
approximation, is performed at various β, i.e. for various values of the coupling g0 in the
scaling window, or, expressed in a more familiar language, for various values of the UV-
cutoff. After the simulations have been performed, we obtain a set of unrenormalized, or bare,
estimates OB(p, β), here as a function of the momentum p. Multiplicative renormalizability of
the theory implies that a rescaling of the data for each β value is sufficient to let the results
fall on top of a single curve describing the momentum dependence of the corresponding
renormalized quantity. In practice, the renormalized quantity OR is obtained by determining
suitable “matching factors” Z(β, µ) which “collapse” data obtained at different β on a single
curve:

OR(p, µ) = Z(β, µ)OB(p, β).

The residual dependence on the renormalization point µ, which corresponds in practice to
the freedom of rescaling the results by an arbitrary global factor, is fixed by imposing a
renormalization condition:

OR(µ, µ) = C.

In the present studies of propagators, we adjust the normalization factors Z(β, µ) in such a
way that our numerical estimates correspond to the free propagators in the UV regime. This
can be done in D = 2+1 but the task is complicated by the presence of anomalous dimension
factors in D = 3 + 1. This will be discussed later on.

7.3.3 Simulation parameters

For the interested reader, we summarize the parameters used in our numerical simulations.

D=2+1. The simulations are performed for the lattice volume V = 683 and the couplings
β = 3.5, 4.0, 4.5, 5.0, 6.0, 7.0 in the scaling window. After initialization, the lattice is ther-
malized by means of NTH = 500 update steps and each measurement is followed by NUP = 30
lattice sweeps. The scale is fixed by the bare coupling constant g2

0 .

D=3+1. The simulations are performed for the lattice volumes V = 244, V = 264 and
V = 324. For each value of the coupling, we give the value of the dimensionless string tension
(7.12), the UV cutoff Λ = π/a, the lattice spacing and the lattice extension L in fm for the
244 and 324 lattices. We use the conversion: 1m ' 5.1 × 106 eV−1.
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β σ̂(β) Λ (GeV) a (fm) L (fm)

2.1 0.35 2.3 0.26 6.3 - 8.4

2.2 0.21 3.0 0.20 5.0 - 6.5

2.3 0.12 4.0 0.15 3.7 - 4.9

2.4 0.07 5.2 0.12 2.8 - 3.7

2.5 0.04 6.8 0.09 2.1 - 2.8

2.6 0.02 9.8 0.06 1.5 - 2.0

Gauge fixing.

• Simulated annealing: the lattice is cooled from βSA = 0.2 to βSA = 50 with the step
∆βSA = 0.2 and NUP = 10 sweeps at each coupling.

• Iterated overrelaxation: the process is stopped if the monitoring parameter θ drops
below the value θs = 10−12 and overshot with the parameter ω = 1.7.

The choices we made concerning the numerical implementation of the gauge fixing pro-
cedures and the values of the parameters were guided by the careful analysis of several
minimization algorithms performed by Cucchieri and Mendes [CM96].

7.4 Lattice observables

Our numerical simulations are, in relation to Gribov’s confinement scenario, devoted to the
study of the ghost propagator and the Coulomb potential. We address also the equal-time
gluon propagator, whose inverse is compared with the so-called gap function studied in the
Hamiltonian formalism. We recall the definitions of each observable in the continuum, in
coordinate and momentum space, and define the corresponding quantities on the lattice.

7.4.1 Ghost propagator

The ghost propagator is defined as the expectation value of the inverse Faddeev-Popov ope-
rator M = −∇ · D:

Dab(x − y) =
〈

M−1[A]|ab(x,y)

〉

.

We address the ghost propagator in momentum space. Due to translation invariance, we can
write, using (C.4),

D̃ab(p,k) = δ(d)(p + k)Dab(p), with Dab(p) =

∫

ddx Dab(x) eip·x.

Since Dab is diagonal in colour space, we have

Dab(p) = δabD(p)

with

D(p) =
1

3

3∑

a=1

Daa(p)

=
1

3V

3∑

a=1

∫

ddxddy
〈

M−1[A]|aa(x,y)

〉

cos (p · (x − y)),
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where V =
∫
ddx is the volume of the time slice. The quantity

〈
M−1[A]|(x,y)

〉
has energy

dimension d− 2. This is easily verified since it reduces to the inverse Laplace operator in the
Abelian case. The ghost propagator thus has energy dimension -2 in momentum space and
we may define the ghost form factor d(p)

D(p) =
d(p)

|p|2 ,

a dimensionless quantity which measures the deviation from the free ghost propagator
D0(p) = 1

|p|2 . On the lattice, we compute the dimensionless quantity:

D̂(p̂) =
1

3Nd

3∑

a=1

Nd∑

x̄,ȳ

〈

M̂−1[U ]|aa(x̄,ȳ)

〉

cos

(
2π

Nd
p̄ · (x̄ − ȳ)

)

, (7.24)

with D̂(p̂) = a−2D(p). The arguments p̄, x̄, ȳ = 1, 2, . . . ,Nd in the cosine function are now
integers labelling the sites in one d-dimensional slice of the direct and reciprocal lattice, as
defined in (C.2). For technical details, see also Sec. C.6 and C.8. The ghost form factor is
given by

d(p̂) = |p̂|2D̂(p̂).

The inversion of M is performed using the conjugate gradient method, see Sec. C.8 and D.2
for technical details. In order to get rid of the possible zero modes of the Faddeev-Popov
matrix, the conjugate gradient method is applied to the linear system

MMx = Mb

rather than the system Mx = b. See the method proposed in [SS96].

Remark. In the Hamiltonian formalism [FRa], the definition of the ghost form factor includes
the bare coupling constant:

〈M−1〉 =
1

−∇2

d

g0
. (7.25)

The different definitions do not prevent a direct comparison of the lattice and Hamiltonian
approaches since they only differ in the proportionality factor g0(Λ). On the lattice, this
supplementary dependence on the cut-off is indeed eliminated when determining the matching
factors Z(Λ) as described in Sec. 7.3.2. This is of course correct as long as the bare coupling
in the Hamiltonian picture does not depend on the momentum.

7.4.2 Coulomb potential and form factor f(p)

The Coulomb potential is given by the expression (6.46), which reads explicitly

VCoul(x− y)δab = −CN g2
0

〈[
M−1[A](−∆)M−1[A]

]ab

(x,y)

〉

, C2 =
3

4
. (7.26)

We address the Coulomb potential in momentum space:

VCoul(p) =
−1

4V

3∑

a=1

∫

ddxddy
〈[
M−1[A](−∆)M−1[A]

]aa

(x,y)

〉

cos (p · (x − y)).
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Since the expectation value in (7.26) has energy dimension d − 2, and g2
0 energy dimension

4 −D, we verify that VCoul(x − y) has always the dimension of an energy whereas VCoul(p)
has energy dimension 2 −D in momentum space. We then make the following ansatz

VCoul(p) = −3

4
g2
0

d2(p)f(p)

|p|2 , (7.27)

where d(p) is the ghost form factor and the dimensionless function f(p) measures the
deviation from the potential as a factorization of the three operators in (7.26):

VCoul(p) = −3
4g

2
0
d2(p)
|p|2 . On the lattice, we address the dimensionless quantity:

V̂Coul(p̂) =
−1

4Nd
g2d−4
0

3∑

a=1

Nd∑

x̄,ȳ

〈[
M−1[U ](−∆)M−1[U ]

]aa

(x̄,ȳ)

〉

cos

(
2π

Nd
p̄ · (x̄− ȳ)

)

. (7.28)

Remark. In view of the definition (7.25) of the ghost form factor, the dependence on the
bare coupling constant g0 in the Coulomb potential drops out in the Hamiltonian formalism.

7.4.3 Equal-time transverse gluon propagator

The equal-time gluon propagator is defined by

Gabij (x − y) = 〈Aai (x, t0)Abj(y, t0)〉, (7.29)

at fixed time t = t0. We directly address the propagator in momentum space. The gluon
propagator is diagonal in colour space and, in Coulomb gauge, transverse in momentum
space. We may then write:

Gabij (p) = δab
(

δij −
pipj
p2

)

G(p)

with

G(p) =
1

3(d− 1)

3∑

a=1

d∑

i=1

Gaaii (p)

=
1

3(d− 1)V

3∑

a=1

d∑

i=1

∫

ddxddy 〈Aai (x)Aai (y)〉 cos (p · (x− y)). (7.30)

In the “continuum” conventions of Appendix B, the gauge potential has energy dimension
[A(x)] = D/2 − 1. Let us now translate (7.30) into our lattice unit conventions (Sec. C.1):

G(p) =
1

3(d− 1)V g2
0

3∑

a=1

d∑

i=1

∫

ddxddy 〈Aai (x)Aai (y)〉 cos (p · (x − y)).

[Recall that the potential has in these conventions always the dimension of an energy, i.e.
[A(x)] = 1.] Since the coupling constant g2

0 has dimension [g2
0 ] = 4 −D, we verify that the

dimension of G(p) is unchanged. We define the lattice gluon propagator as the dimensionless
quantity

Ĝ(p̂) =
1

3(d− 1)Nd

3∑

a=1

d∑

i=1

Nd∑

x̄,ȳ

〈Âai (x̄)Âai (ȳ)〉 cos

(
2π

Nd
p̄ · (x̄ − ȳ)

)

.
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Figure 7.2: Ghost form factor in D = 2 + 1 as a function of the dimensionless momentum p/g2
0 for

the lattice volume V = 683. The lattice data are compared to the results provided by the Hamiltonian
approach [FRb].

In particular Ĝ(p̂) = G(p)g2
0 for D = 2 + 1 and Ĝ(p̂) = G(p)

g20
a for D = 3 + 1. Using

the addition formula to transform the factor cos
(

2π
Nd

p̄ · (x̄ − ȳ)
)

, we finally find, after a

straightforward calculation,

Ĝ(p̂) =
1

3(d− 1)Nd

×
3∑

a=1

d∑

i=1

〈[
Nd∑

x̄

Âai (x̄) cos

(
2π

Nd
p̄ · x̄

)]2

+

[
Nd∑

x̄

Âai (x̄) sin

(
2π

Nd
p̄ · x̄

)]2〉

.

7.5 Numerical results

7.5.1 D=2+1

In our simulations in D = 2 + 1, we consider, without loss of generality, 2-momenta aligned
along the x axis in the first time slice:

p = (p, 0) .

Ghost propagator. Our numerical results for the ghost form factor d(p) are shown in
Fig. 7.2 and were obtained by generating 100 < NMC < 200 configurations for the lattice
V = 683. We adjusted the numerical results by using multiplicative renormalizability such
that the UV behaviour is that of the free ghost form factor, i.e. d(p) → 1. The lattice data
are compared to the analytical results provided by the Hamiltonian approach [FRb].
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Figure 7.3: The dimensionless quantity d2(p)f(p) ∝ p2VCoul(p) in D = 2 + 1 as a function of the
dimensionless momentum p/g2

0 for the lattice volume V = 683.

The agreement is satisfactory at the qualitative and quantitative level, expect for a small
discrepancy in the intermediate region. The ghost propagator is divergent for both approaches
in the IR regime, reflecting the enhancement of the numbers of gauge field configurations
sitting in the neighbourghood of the Gribov horizon at large distances |x − y|. We fit the
lattice data in the IR regime by the simple scaling ansatz

d(p) =
a

(p/g2
0)
b
, p/g2

0 < 0.5.

The fitting curve shown in Fig. 7.2 corresponds to

a = 1.24(1), b = 0.42(1). (7.31)

Coulomb potential. The results concerning the evaluation of the Coulomb potential are
reported in Fig. 7.3. Ghost propagator and Coulomb potential are computed during the same
run and the simulation parameters are therefore identical. Again, renormalization of the
lattice results is performed in such a way that the Coulomb potential shows the perturbative
behaviour, i.e. d2(p)f(p) → 1, in the UV regime.

We plot the dimensionless quantity d2(p)f(p). The agreement with the Hamiltonian
picture is satisfactory at the qualitative level, whereas a quantitative discrepancy characterizes
again the intermediate regime, as for the ghost propagator. We make again a simple scaling
ansatz

d2(p)f(p) =
a

(p/g2
0)b

, p/g2
0 < 0.5

in the IR regime. The fit is shown in Fig. 7.3 and corresponds to

a = 3.3(1), b = 0.95(1). (7.32)
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Figure 7.4: Transverse gluon propagator (left panel) and inverse gluon propagator (right panel) in
D = 2 + 1 as a function of the dimensionless momentum p/g2

0 for the lattice volumes V = 683 and
V = 483. The lattice estimates are compared with the gap function ω(p) obtained in the Hamiltonian
formalism [FRb].

The lattice data are therefore compatible with linear confinement, which corresponds to b = 1
(see Sec. E.3).

Form factor f(p). An advantage of our method is the determination of the form factor
f(p) as a by-product of the computations of ghost propagator and Coulomb potential. From
the IR behaviour of those quantities, we get the low momentum regime of f(p) in (7.27).
Combining (7.31) with (7.32), we obtain

f(p) ∝ 1

(p/g2
0)

0.11(1)
,

i.e. the factorization factor weakly depends on the momentum transfer.

Equal-time transverse gluon propagator. The simulations were performed with the
lattice volumes V = 483, V = 683 and the estimates were obtained by averaging over
NMC = 300 configurations. Our lattice results are compared to the calculations performed
in the Hamiltonian picture [FRb] and plotted in Fig. 7.4.

The renormalization condition is fixed by

Glattice(µ) = GHamilton(µ), µ = 4.5g2
0 . (7.33)

In Fig. 7.4, we plot G(p) and G−1(p) expressed in units of the bare coupling constant. The
inverse equal-time gluon propagator is generally interpreted as the energy dispersion relation
for the gluons. In the Hamiltonian formalism, this quantity corresponds to the so-called gap
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Figure 7.5: Inverse gluon propagator in D = 2 + 1 as a function of the dimensionless momentum

p/g2
0 for the lattice volumes V = 483 and V = 683.

function4 ω(p). Due to asymptotic freedom, the gluons can be treated as free particles in the
UV regime, where the gap function tends to ω(p) = p. If the inverse of our equal-time gluon
propagator corresponds to ω, it should also show this asymptotic behaviour.

We see that the lattice results converge very slowly towards the perturbative behaviour,
which seems to be attained within the error bars for p/g2

0 > 3.5 and the chosen renormalization
condition (7.33). However, a more careful examination of our numerical estimates actually
reveals a striking feature of the lattice results. This is shown in the logarihmic plot in Fig. 7.5.
We find out that the perturbative regime is characterized by the powerlaw

(g2
0G(p))−1 = a

(
p

g2
0

) b

, p/g2
0 > 2, (7.34)

with

a = 0.45(1), b = 1.50(1),

as fitted from the lattice results. This anomalous scaling G(p) ∝ 1/p1+η , with η ' 0.5, will
also be found in D = 3+1. The reason for which the transverse gluon propagator, computed
as a naive expectation value of gluonic correlations in a given time slice, fails to reproduce
the perturbative behaviour of the gap function is until now unclear and still under ongoing
debate. Since this anomaly occurs both in D = 2 + 1 and D = 3 + 1, an explanation based
on renormalization effects is to be excluded. This delicate point is further discussed below.

4This denomination recalls that calculations in the Hamiltonian formalism are based on a variational
approach.
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Figure 7.6: Ghost form factor in D = 3 + 1 as a function of the momentum p for the lattice volume

V = 244, compared to the Hamiltonian approach [FRa].

7.5.2 D=3+1

We choose the 3-momenta aligned along the x-axis in the first time slice:

p = (p, 0, 0) .

Ghost propagator. We report the results for the ghost form factor d(p) in Fig.7.6.
The simulations were performed for the lattice volume V = 244 and 100 < NMC < 200
configurations were generated. We renormalized the results by enforcing the condition
d(p = 3GeV) = 1.

We fit the high momentum dependence by means of the logarithmic ansatz

d(p) =
auv

ln (p/ΛQCD)γgh
, p > 1 GeV.

We find the values
auv = 1.0(1), γgh = 0.24(1).

Since the fitting parameters are strongly correlated, it is difficult to extract a reliable value
for ΛQCD. Taking also into account the high momentum behaviour of the Coulomb potential
(see below), we find that

ΛQCD = 1.1(5) GeV

reproduces the data in a satisfactory way. For the IR analysis, we adopt a simple scaling law:

d(p) =
air

(

p2/Λ2
QCD

)κ , p < 1 GeV.
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Figure 7.7: The dimensionless quantity p2VCoul(p) in D = 3 + 1 as a function of the momentum p
for the lattice volume V = 244, compared to the results obtained in the Hamiltonian picture [FRa].

The IR fit is also shown in Fig. 7.6. We find

air = 1.58(1), κ = 0.25(1).

We rescaled the results of Ref. [FRa] obtained in the Hamiltonian picture. They are
compared to the lattice data in Fig. 7.6, left panel. The comparison is discussed in a separate
section below in the light of the results for the Coulomb potential and the form factor f(p).

When renormalizing the lattice results, we found out that the ghost wave function renor-
malization has the simple β dependence Z ∝ 1/β. This information therefore suggests that
the ghost form factor multiplied by the squared coupling constant, g2

0d(p), is independent of
the UV cut-off, i.e. is invariant under renormalization group transformations.

Coulomb potential. The results are reported in Fig. 7.7 and were obtained with the same
run parameters as for the ghost propagator. Renormalization is performed by demanding
that the perturbative result for the running coupling constant [CZ02b, BCLM] in (6.55) is
recovered at large momentum:

p2VCoul(p) =
6π

11 ln
(

p2/Λ2
QCD

) , p� ΛQCD.

The data reproduces the logarithmic correction in a satisfactory way.

A careful analysis of the data reveals that the numerical estimates at the couplings
β = 2.15, 2.2 and 2.3 do not scale with those performed at β = 2.4, 2.5 and 2.6 in a satis-
factory way. They are moreover characterized by an enhanced statistical error in the low
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Figure 7.8: The quantity p4VCoul(p) in D = 3+1 in units of the Wilson string tension σ as a function
of the momentum p for the lattice volume V = 244.

momentum regime. Therefore, we limit ourselves to the sets β ∈ [2.4, 2.6] for the IR analysis.
New runs are being performed, which implement an inversion of the Faddeev-Popov operator
based on the ’minres’ algorithm [PS75]. The results will be presented elsewhere [LMon].

In the low momentum regime, the lattice estimates are parameterized by

p2VCoul(p) =
air

(p2/Λ2
QCD)b

.

We perform two IR fits of our data. Letting the fit parameter b free, we obtain

air = 6.81(1), b = 0.95(5). (7.35)

The fit is shown in Fig. 7.7, right panel (dashed line). Constraining the parameter b to the
value b = 1 exactly corresponding to a linear potential (see Sec. E.3), we obtain the estimate
of the Coulomb string tension:

p2VCoul(p) =
8πσCoul

p2
, σCoul = 0.258(4) GeV2.

This corresponds to the ratio σCoul/σ = 1.3(2), which can be also read off in Fig. 7.8. This
value tends to confirm the results obtained in Ref. [CZ03], i.e. a saturation of the unequality
(6.53).

As for the ghost propagator, we compare the lattice data with the rescaled results of
Ref. [FRa] obtained in the Hamiltonian picture. This is shown in Fig. 7.7, left panel. The
comparison is discussed below.
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Figure 7.9: The form factor f(p) in D = 3+1 as a function of the momentum p for the lattice volume
V = 244.

Form factor f(p). From the results for the ghost form factor and the Coulomb potential,
it is clear that f(p) cannot weakly depend on p in the low momentum regime. In order to
extract f(p) from the lattice data, we divide the bare data for p2VCoul(p) by the bare ghost
form factor . The function f(p) is shown in Fig. 7.9. The high energy data are reproduced
by the ansatz

f(p) =
auv

ln (p/ΛQCD)γf
, p > ΛQCD.

Our UV fit corresponds to

auv = 0.91(1), γf = 0.52(2).

The sum rule dictated by the UV behaviour of the Coulomb potential, i.e. 2γgh + γf = 1, is
satisfied to good precision, since we find

2γgh + γf = 1.00(2).

The low momentum data support the existence of a 1/p singularity, i.e.

f(p) =
air

(

p2/Λ2
QCD

)κf
,

with

air = 2.75(2), κf = 0.5(1).

The enhancement of the factorization form factor f at low momentum suggests strong non-
Gaussian correlations between the ghost fields, which rule out the factorization assumption
in the IR regime.
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Figure 7.10: Transverse gluon propagator (left panel) and inverse gluon propagator (right panel) in
D = 3 + 1 as a function of the momentum p for the lattice volumes V = 264 (L1) and V = 324 (L2),
compared with the results obtained in the Hamiltonian picture [FRa].

Lattice vs. Hamilton picture. Let us begin with the Coulomb potential. Both ap-
proaches support a linear confining potential: we find the exponent b = 0.95(5) in (7.35) and
the value b = 0.85 is obtained in Ref. [FRa]. Linear confinement corresponds to b = 1. In the
Hamiltonian approach, the value of the Coulomb string tension σCoul is not deduced from
the IR limit of the potential but chosen in advance as a condition setting the renormalization
scale. In Ref. [FRa], the authors choose the value σCoul = 3σ found in Ref. [GO03]. This
does not correspond to our choice of a renormalization scale and explains why we have to
rescale the Hamiltonian results. In Fig. 7.7, left panel, let us remark that the lattice and
Hamiltonian data are in good agreement in the UV regime (p > 3 GeV).

In Ref. [FRa], the IR behaviour of the Coulomb potential is dictated by the ghost form
factor only, i.e. d(p) ∝ 1/p and limp→0 f(p) = 1. On the contrary, we found d(p) ∝ 1/

√
p

and f(p) ∝ 1/p in the IR regime, i.e. the form factor f(p) plays a significant role in the
confining property of the potential. The IR behaviour of the ghost form factor in Hamiltonian
and lattice approaches can be directly compared in Fig. 7.6, left panel. We remark also a
significant discrepancy in the UV regime.

Equal-time transverse gluon propagator. We report our results for the gluon propa-
gator and the would-be gap function in Fig. 7.10 and Fig. 7.11. The numerical estimates were
obtained for the lattice volumes V = 264 (L1) and V = 324 (L2) by averaging the observables
over NMC = 400 (L1) and NMC = 200 (L2) lattice configurations, and are compared with
the gap function ω(p) provided by the Hamiltonian approach [FRa].

As in D = 2 + 1, we normalized the lattice data such that the last measured point
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Figure 7.11: Inverse transverse gluon propagator in D = 3 + 1 as a function of the momentum p

for the lattice volumes V = 264 (L1) and V = 324 (L2) and compared with the results obtained in

[CZ02a] (V = 304).

coincides with the value obtained in the Hamiltonian picture. We remark immediately a
dramatic qualitative discrepancy between analytical and numerical estimates. The plot of
the would-be gap function in logarithmic scale in Fig. 7.11, reveals the two main features of
our numerical results. First, and in contrast to the caseD = 2+1, the gap function approaches
a finite value at vanishing momentum. Second, the UV behaviour is well approximated by

G(p) ∝ 1

p

(
ΛQCD
p

)η

, η = 0.54(1). (7.36)

As in the case D = 2+1, we find an anomalous behaviour of the inverse gluon propagator in
the high momentum regime, which tends to invalidate its interpretation as energy dispersion
relation. As shown in Fig. 7.11, our results are compatible with the previous study of the
gluon propagator in Coulomb gauge [CZ02a]. A remaining task for the next future is to find
out whether this discrepancy is due to the numerical implementation of the equal-time gluon
propagator or to more profound reasons which invalidate the relation G−1(p) ≡ ω(p), i.e. the
equivalence between the gap function as an energy dispersion relation and the inverse gluon
propagator measured at fixed time.

7.6 Summary and outlook

This chapter was devoted to the lattice investigation of the ghost propagator and the Coulomb
potential in pure SU(2) Yang-Mills theory in the Coulomb gauge formulation. We addressed
also the equal-time transverse gluon propagator. After a brief review of elementar concepts
in lattice gauge theory, we described in details our numerical procedure. In particular, we fix
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the gauge and perform the measurements in a given time slice on the lattice. Numerical gauge
fixing is achieved via a combination of the simulated annealing and iterated overrelaxation
algorithms.

We performed simulations in D = 2 + 1 and D = 3 + 1. Concerning ghost propagator
and Coulomb potential, it turned out that lattice and Hamiltonian approaches are in good
qualitative agreement in the three dimensional case. In four dimensions, a direct comparison
is rendered difficult by different implementations of the renormalization program. The lattice
calculation of the ghost propagator in D = 3+1 reveals that the combination g2

0d(p) is cutoff
independent, i.e. suggests that it is invariant under renormalization group transformations.
Our results are in three and four dimensions compatible with a linear confining potential.
In D = 3 + 1, we obtain σCoul = 1.3(2)σ for the string tension. Combining the results for
the ghost propagator and the Coulomb potential, we can study the deviation f(p) of the
Coulomb potential from the factorization VCoul(p) ∝ d2(p)/p2. An enhancement of f(p) at
small momenta signals non-Gaussian correlations between the ghost fields, which rule out the
factorization assumption.

Our numerical study of gluonic correlations has revealed a striking feature of the equal-
time gluon propagator. This one shows an anomalous scaling (1/p)1+η , with η = 0.50(1) in
D = 2 + 1 and η = 0.54(1) in D = 3 + 1, in the perturbative regime, which can invalidate
the interpretation of the inverse propagator as energy dispersion relation for the gluons. In
D = 3+1, we moreover find that the gluon propagator becomes in the IR regime independent
of the momentum transfer, whereas it diverges in the Hamiltonian approach. We point out
that our results are in agreement with a previous lattice study of the gluon propagator
[CZ02a].

In view of our results for the transverse gluon propagator, it appears crucial to reserve
future work for further investigations of gluonic correlations in the Coulomb gauge formulation
of Yang-Mills theory. The possible origins of the strong anomalous scaling are still under
ongoing debate. As further investigations, we propose to study full gluonic correlations, i.e.
correlations of the type 〈Aai (x, t0)Abj(y, t1)〉 between different time slices t0 and t1. This
requires a complete gauge fixing of the lattice. This investigation will provide information on
the p0-dependence of the generalized gluon propagator, from which the equal-time propagator
is obtained by momentum projection:

G(p) =

∫
dp0

2π
Ggen.(p) =

∫
dp0

2π

g(p0,p)

p2
0 + p2

.

In case the numerical study of this quantity would provide the expected perturbative be-
haviour in the UV regime, we could state that the description of the energy dispersion re-
lation in terms of gluonic correlations in one fixed time slice is not complete and has to be
extended to the projection of generalized correlations. If the scaling of the gluon propagator
would remain anomal, the question could be asked whether the interpretation of the inverse
propagator as a dispersion relation is valid. In such a case, the anomalous scaling of the
equal-time propagator could be possibly explained by its dependence on non-perturbative
features included in the p0-dependence of the generalized form factor g(p0,p).



Appendix A

Conventions and notations

A.1 Units, metric and notations

We work in the units c = ~ = 1. The metric is given by gµν = diag(+,−,−,−) in Minkowsky
space and gµν = δµν in Euclidean space.

We adopt the following notation conventions.

• The space-time dimension is denoted by D, the dimension of the spatial hyper-space by
d, i.e. D = d+ 1. For any vector V in space-time, the temporal component is denoted
by V0 and the spatial part by V.

• Greek symbols: µ, ν, ρ, . . . ∈ [1, D] are space-time indices while α, β, . . . denote spinor
indices.

• Latin symbols: i, j, k, . . . ∈ [1, d] are spatial indices, while colour indices in SU(N)
Yang-Mills theory are denoted by a, b, c, . . . ∈ [1, N 2 − 1].

A.2 SU(N) algebra

Any group element g ∈ SU(N) can be written

g(Λ) = eiΛ
aTa

, (A.1)

in terms of the N 2 − 1 traceless hermitian generators T a. They span the SU(2) Lie algebra
and satisfy the following commutation relations

[T a, T b] = ifabcT c, (A.2)

where the numbers f abc are the structure constants. They obey the Jacobi identity

fadef bcd + f bdef cad + f cdefabd = 0. (A.3)

The matrices ta of the fundamental representation satisfy the following orthogonality relation:

tr[ta, tb] =
1

2
δab. (A.4)
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From this relation, it can be shown that the structure constants f abc are totally antisymmetric.
A further representation of the algebra, the adjoint representation is defined by means of the
structure constants:

[T aA]bc = −ifabc. (A.5)

The orthogonality relation reads in this representation:

tr[T aA, T
b
A] = Nδab.

The Casimir operator is defined by C = T aT a and reads

tata =
N2 − 1

2N
, T aAT

a
A = N

in the fundamental and adjoint representation, respectively.

Let us particularize to the gauge group SU(2). The fundamental representation is given
in terms of the Pauli matrices by

ta =
τa

2
,

with

τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

.

The structure constants read in this case:

fabc = εabc.

The Casimir operator is given by

tata =
3

4
, T aAT

a
A = 2

in the fundamental and adjoint representation, respectively.



Appendix B

Non-Abelian gauge theory in the
continuum

We fix in this appendix the conventions used in chapter 6 concerning gauge transformation,
covariant derivative, field strength and Lagrangian.

B.1 Covariant derivative - Gauge potential

The gauge transformation of a field φ(x) is defined by

φ(x) → g(x)φ(x) with g(x) = eig0α
a(x)Ta

, (B.1)

where g0 is the bare coupling constant and the generators have the dimension of the repre-
sentation to which the field belongs. The covariant derivative operator is defined by

Dµ = ∂µ − ig0Aµ,

where the connection, or gauge potential, Aµ = AaµT
a has to transform according to

Aµ → gAµg
−1 − i

g0
(∂µg)g

−1 (B.2)

in order to ensure that Dµ → gDµ. Expanding the exponential in (B.1) to first order in α,
we have

Aaµ → Aaµ + ∂µα
a + g0f

abcAbµα
c. (B.3)

For constant gauge transformations and using (A.5), the latter expression simplifies to

Aaµ → Aaµ + ig0[α
cT cA]abAbµ,

which shows that the gauge potential transforms according to the adjoint representation.
When acting on a field operator φ = φaT a, the covariant derivative reads

[Dµφ]a = ∂µφ
a + g0f

abcAbµφ
c, or Dµφ = ∂µφ− ig0[Aµ, φ].

The gauge transformation (B.3) can then be expressed as

Aaµ → Aaµ + [Dµα]a. (B.4)
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The covariant derivative can also be derived by considering gauge transformations be-
longing to a one-parameter subgroup of the gauge group G:

g(τ, x) = exp (ig0τω(x)),

where ω(x) is an element of the Lie algebra associated to G and τ a real parameter. Inserting
this expression into the potential transformation (B.2), we obtain

Agµ(x, τ) = eig0τω(x)Aµ(x)e
−ig0τω(x) + τ∂µω(x).

Differentiating with respect to τ and taking the value at τ = 0, one has

[
d

dτ
Agµ(x, τ)

]

τ=0

= ∂µω(x) − ig0[Aµ(x), ω(x)], (B.5)

which is the covariant derivative applied to ω.

B.2 Field strength - E and B fields

The field strength tensor is obtained by considering the commutator of two covariant deri-
vatives acting on a field φ:

1

g0
[[Dµ, Dν ]φ]a = fabcF bµνφ

c,

where

F bµν = ∂µA
b
ν − ∂νA

b
ν + g0f

bdeAdµA
e
ν , (B.6)

This relation is obtained by calculating straightforwardly the commutator and by using the
antisymmetry property of the structure constants and the Jacobi identity (A.3). An alter-
native formulation is given in terms of the commutator of the gauge potentials:

Fµν = ∂µAν − ∂νAµ − ig0[Aµ, Aν ].

The components of the field strength tensor define the colour electric and magnetic fields,
that are given by

Eak = F0k, Ba
k = −1

2
εijkF

a
ij .

They read explicitly in terms of the gauge potential

Eak = −∂kAa0 + ∂0A
a
k + g0f

abcAb0A
c
k, Ba

k = −εijk
[

∂iA
a
j + g0

1

2
fabcAbiA

c
j

]

(B.7)

and have the following vectorial form

Ea = −∇Aa0 − ∂0A
a − g0f

abcAb0A
c, Ba = ∇×Aa − g0

1

2
fabcAb ×Ac. (B.8)
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B.3 Lagrangian - classical field equations

The Lagrangian of the SU(N) Yang-Mills theory reads

LSU(2) = −1

4
F aµνF

µν
a .

The coupling to matter fields is taken into account via the additional term g0AµJ
µ:

LSU(2)+matter = −1

4
F aµνF

µν
a + g0AµJ

µ. (B.9)

Since [g0] = 2 −D/2, [A] = D/2 − 1, we have [J ] = d, i.e. the current J has the dimension
of a density. Deriving the Euler-Lagrange equations corresponding to the Lagrangian (B.9)
gives the classical equations of motion, the non-Abelian pendant of the Maxwell equations:

DµF aµν = g0J
a
ν .
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Appendix C

Lattice technicalities

C.1 Conventions

We work in Euclidean space, i.e. with the metric gµν = δµν . Contrary to continuum field
theory, a gauge transformation is defined in the lattice conventions by

g(x) = eiα
a(x)Ta

,

i.e. the bare coupling constant is absorbed in the gauge parameters αa. As a consequence,
the coupling drops out of the covariant derivative, which reads

Dµ = ∂µ − iAµ.

We have therefore the correspondence Alat = g0Acont. Applying this rule, we obtain for the
Yang-Mills Lagrangian:

L = − 1

4g2
0

F aµνF
a
µν .

C.2 Basic concepts

Direct and reciprocal lattice. The space-time is discretized and considered as a D-
dimensional lattice with lattice spacing a. The lattice extension is given by the D-plet
{N1, . . . , ND}. A lattice site is labeled by a D-plet of integer parameters (n1, n2, . . . , nD)
with nµ ∈ [1, Nµ] and µ ∈ [1, D], corresponding to the physical point x = (x1, x2, . . . , xD) =
(an1, an2, . . . , anD). The coordinate xD in our conventions is the time coordinate and denoted
by t := xD. We denote the coordinates in a d-dimensional time slice by x = (x1, . . . , xd).

We impose periodic boundary conditions: for any function f(x), we have

f(x+ aNµeµ) = f(x), µ ∈ [1, D] (C.1)

[no summation on µ], where eµ denotes the unit vector in the direction µ. As a consequence,
any function f can be expanded in the following way (we consider a one-dimensional lattice
of N points for simplicity):

f(x) =
1√
N

N∑

np=1

f̃(np) e
−i 2π

N
nxnp .
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For simplicity, we use the notation nx ≡ x̄ and np ≡ p̄. With this convention, the expansion
of f becomes

f(x) =
1√
N

N∑

p̄=1

f̃(p̄) e−i
2π
N
x̄p̄. (C.2)

Using Dirac’s formalism, we rewrite this expression under the form

〈f |x〉 =
N∑

p=1

〈f |p〉〈p|x〉.

The ket |p〉 is expressed in the coordinate representation by

〈p|x〉 =
1√
N
e−i

2π
N
x̄p̄, 〈x|p〉 = 〈p|x〉∗, (C.3)

and the set {|p〉} satisfies
N∑

p=1

|p〉〈p| = 1.

Applying 〈x| and |y〉 respectively to the left and right hand side of this relation, we find the
representation of the Kronecker-delta in the base {|p〉}:

〈x|y〉 =
1

N

N∑

p̄=1

e−i
2π
N

(x̄−ȳ)p̄ = δxy

by resuming the geometric series. In momentum space, the analog expression reads

〈p|q〉 = δpq.

The expansion (C.2) in D dimensions reads

f(x) =
1√

N1 . . . ND

N1∑

p̄1=1

· · ·
ND∑

p̄D=1

f̃(p̄)e
−i 2π

N1
x̄1p̄1 . . . e

−i 2π
ND

x̄Dp̄D .

We simplify this expression by using the short hand notation:

f(x) =
1√
N

N∑

p̄

f̃(p̄)e−i
2π
N

x̄·p̄.

Representation in momentum space. For any observable G, we define G̃(p, q) :=
〈p|G|q〉. Introducing two complete sets of states in coordinate space, we obtain, using (C.3),

G̃(p, q) =
1

N

N∑

x̄=1

N∑

ȳ=1

ei
2π
N
p̄x̄G(x̄, ȳ)e−i

2π
N
q̄ȳ.
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If the observable G moreover possesses the property of translation invariance, it is diagonal
in momentum space:

G̃(p, q) = δpq

N∑

x̄′=1

G(x̄′) cos

(
2π

N
p̄x̄′
)

︸ ︷︷ ︸

:=G(p)

,

where the diagonal element G(p) = 〈p|G|p〉 can also be expressed as

G(p) =
1

N

N∑

x̄=1

N∑

ȳ=1

G(x̄, ȳ) cos

(
2π

N
p̄(x̄− ȳ)

)

. (C.4)

Differential operators. We define

∇̂(−)
µ f(x) = f(x) − f(x− aeµ), ∇(−)

µ =
1

a
∇̂(−)
µ ,

∇̂(+)
µ f(x) = f(x+ aeµ) − f(x), ∇(+)

µ =
1

a
∇̂(+)
µ .

The second derivative in the direction µ is defined by

∇̂2
µf(x) = f(x+ aeµ) − 2f(x) + f(x− aeµ), ∇2

µ =
1

a2
∇̂2.

Applying this operator to the momentum representation (C.2) of a function f , we find (for a
one-dimensional lattice)

∇̂2f(x) =
N∑

p̄=1

(−4) sin2
( π

N
p̄
)

f̃(p̄) e−i
2π
N
x̄p̄. (C.5)

In D dimensions, the Laplace operator is given by ∇̂2 =
∑D

µ=1 ∇̂2
µ.

Lattice momentum. The expression (C.5) suggests the definition of a lattice momentum

p̂µ = 2 sin
( π

N
p̄µ

)

.

From a practical point of view, this short hand notation is a convenient way to express the
lattice representation of propagators in momentum space by their analogous expressions in
the continuum.

C.3 Links and lattice gauge potential

The basic object in lattice gauge theory is the link, which describes the parallel transport
along the segment connecting two adjacent lattice points. The quantity Uµ(x) is an element
of the gauge group G attached to the segment [x, x + aeµ]. The lattice gauge potential is
defined by

Uµ(x) = exp (iÂµ(x)),
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and therefore dimensionless and hermitian. In terms of the link, it is expressed as

Uµ(x) − U †
µ(x) = 2iÂµ(x) + O(a2). (C.6)

In particular, we have, for SU(2),

Âaµ(x) = 2 Imtr[taUµ(x)] (C.7)

in the fundamental representation. Moreover, a SU(2) link can be represented in terms of
the Pauli matrices

Uµ(x) = a0
µ(x) + iaµ(x) · τ, (C.8)

where the vector (a0
µ,aµ) lives on the unit sphere S3:

a0
µ(x)

2
+ aµ(x)

2 = 1.

The lattice gauge potential is given by

Âaµ(x) = 2aaµ(x).

C.4 Gauge transformation

A local gauge transformation on the link Uµ(x) at the point x is defined by

Ugµ(x) = g(x)Uµ(x)g
−1(x+ aeµ), (C.9)

where g(x) and g−1(x+aeµ) are both elements of the gauge group. Expanding U g
µ(x) to first

order in a, we find

Ugµ(x) = 1 + ia[g(x)Aµ(x)g
−1(x) − ig(x)∇(+)

µ g−1(x)] + O(a2),

which permits to express the gauge transformation of the lattice gauge potential

Âgµ(x) = g(x)Âµ(x)g
−1(x) − ig(x)∇̂(+)

µ g−1(x).

Let us point out that, due to the definition of the gauge transformation (C.9), the transfor-
mation of the lattice gauge potential in the lattice conventions differs from the corresponding
transformation in the continuum (B.2).

C.5 Covariant derivative

We derive the lattice expression of the covariant derivative by considering gauge transfor-
mations belonging to a one-parameter subgroup of G:

g(τ, x) = exp (iτω(x)),

where ω(x) is an element of the Lie algebra and τ a real parameter. In analogy with the
relation (B.5), we compute the derivative of the lattice gauge potential with respect to the τ
parameter [we use the short hand notations Âg(x, τ) = Âτ (x) and U g(x, τ) = U τ (x)]:

d

dτ
Âτ,aµ (x) = 2 Imtr

[

ta
d

dτ
U τµ (x)

]

. (C.10)
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The derivative of U τ
µ (x) is given by

d

dτ
U τµ (x) = iω(x)U τ

µ (x) − iU τ
µ (x)ω(x+ aeµ).

Inserting into (C.10), we obtain

d

dτ
Âτ,aµ (x) = −tr

[

ta
(

−ω(x)U τ
µ (x) + U τ

µ (x)ω(x+ µ̂) − U τ,†
µ (x)ω(x) + ω(x+ µ̂)U τ,†

µ (x)
)]

,

(C.11)
where we replaced aeµ by µ̂ to simplify the notation. The covariant derivative contains the
gauge potential, which is on the lattice given in terms of the links by (C.6). We therefore let

appear an expression which is proportional to the difference Uµ(x) − U †
µ(x). We make the

ansatz tr[F a(x)(Uµ(x)−U †
µ(x))], where F a contains the matrices ta, ω(x) and ω(x+ µ̂). If we

take for F a the commutator [ω(x) + ω(x + µ̂), ta], the familiar structure of the commutator
term of the covariant derivative can indeed be derived:

tr[[ω(x) + ω(x+ µ̂), ta](U τ
µ (x) − U τ,†

µ (x))] (C.12)

= −tr
[

[ta, tb]
(

ωb(x) + ωb(x+ µ̂)
)(

U τµ (x) − U τ,†
µ (x)

)]

= fabc
(

ωb(x) + ωb(x+ µ̂)
)

2 Imtr
[
tcU τµ (x)

]

= fabcÂτ,cµ (x)
(

ωb(x) + ωb(x+ µ̂)
)

.

A little bit of algebra permits to show that

2 × (C.11)+(C.12) = tr[{ω(x) − ω(x+ µ̂), ta}(U τ
µ (x) + U τ,†

µ (x))],

which gives

d

dτ
Âτ,aµ (x) = −1

2
tr[[ω(x+ µ̂) + ω(x), ta](U τ

µ (x) − U τ,†
µ (x))

+ {ω(x+ µ̂) − ω(x), ta}(U τ
µ (x) + U τ,†

µ (x))].

The anticommutator term can be rewritten as −Gab
µ (x)∇̂(+)

µ ωb(x), with

Gabµ (x) = 1
2tr
[

{ta, tb}
(

U τµ (x) + U τ,†
µ (x)

)]

. The lattice covariant derivative finally reads,

setting τ = 0,

[D̂µ[U ]ω]a(x) = −Gabµ (x)∇̂(+)
µ ωb(x) +

1

2
fabcÂbµ(x) (ωc(x) + ωc(x+ aeµ)) . (C.13)

For SU(2), the expression Gab
µ (x) can be simplified. Using the representation (C.8), we have

Gabµ (x) = a0
µ(x)tr

[

{ta, tb}
]

= a0
µ(x)δ

ab.

C.6 Faddeev-Popov operator

The lattice Faddeev-Popov operator is defined by

[M̂ [U ]ω]a(x) = −∇̂(−)
µ · (D̂[U ]ω)a(x)
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and acts on the field ω(x) in the following way

[M̂ [U ]ω]a(x) =
∑

µ

{Gabµ (x)∇̂(+)
µ ωb(x) − [x→ x− aeµ]

− 1

2
fabc

[

Âbµ(x)ω
c(x+ aeµ) − Âbµ(x− aeµ)ω

c(x− aeµ)
]

}, (C.14)

using the expression (C.13) for the lattice covariant derivative and the transversality condition
of the gauge potential in Coulomb gauge.

C.7 Lattice gauge fixing

1. We compute the derivative with respect to the parameter τ of the gauge functional F t
U [g]

in Sec. 7.2.2. In the τ parametrization, a gauge-transformed link is given by

U τi (x) = g(τ,x)Ui(x)g†(τ,x + aei).

Differentiating with respect to τ , we obtain

d

dτ
U τi (x) = iω(x)U τ

i (x) − iU τ
i (x)ω(x + aei).

The derivative of F t
U then reads

d

dτ
F tU [ω, τ ] = −

∑

t,i,x

ReTr[(iω(x) − iω(x + aei))U
τ
i (x)]

=
∑

t,i,x

ImTr[ω(x)(U τ
i (x) − U τ

i (x − aei))].

Expanding the imaginary part explicitly, we obtain

d

dτ
F tU [ω, τ ] = − i

2

∑

t,x

Tr[ω(x)[
∑

i

(U τi (x) − U τ,†
i (x)) −

∑

i

(U τi (x − aei) − U τ,†
i (x− aei))]]

=
∑

x

Tr[ω(x)
∑

i

(Âτi (x) − Âτi (x − aei))],

recalling (C.6). In a more compact notation, this can be rewritten as

d

dτ
F tU [ω, τ ] = 〈ω, ∇̂(−) · Âτ 〉.

2. We prove the relation (7.22) permitting to gauge transform the lattice to the temporal
gauge A0(x) = 0. Let us recall that we want to achieve, at fixed x,

Ug(x, 1) = U g(x, 2) = · · · = U g(x, Nt) = U g = Nt
√

P (x).

We dropped for clarity the index 0 indicating that we work on temporal links. Using the
simplified notation Ui = U(x, i), gi = g(x, i), i = 1, . . . , Nt, we have

Ug = g1U1g
†
2 −→ g2 = U g,†g1U1

Ug = g2U2g
†
3 −→ g3 = Ug,†Ug,†g1U1U2

. . .

Ug = gNtUNtg
†
1 −→ g1 = Ug,†Ug,† . . . U g,†

︸ ︷︷ ︸

Nt factors

g1U1U2 . . . UNt .
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The Polyakov line P (x) = U1U2 . . . UNt has to remain invariant under the transformations
gi. This is achieved if, for instance,

Ug = Nt
√

P (x), g1 = P †(x)g1P (x),

which is verified if we set g1 = 1. The choice of Conti and collaborators [CPPV96] is

Ug1 = U g2 = · · · = U g
Nt−1 = 1, U g

Nt
= P (x).

C.8 Inverse Faddeev-Popov operator

We complete the discussion of Sec. 7.4.1 and Sec. 7.4.2.

Ghost propagator. The ghost propagator is obtained by averaging diagonal elements of
the inverse Faddeev-Popov operator. Applying the addition formula to the cosine factor in
(7.24), we obtain

D̂(p̂) =
1

3Nd

〈
3∑

a,b=1

Nd∑

x̄

[cos

(
2π

N1
x̄1p̄

)

δab
3∑

c=1

Nd∑

ȳ

M̂−1[U ]|bc(x̄,ȳ) cos

(
2π

N1
ȳ1p̄

)

δca

︸ ︷︷ ︸

Conj.Grad.

+ sin

(
2π

N1
x̄1p̄

)

δab
3∑

c=1

Nd∑

ȳ

M̂−1[U ]|bc(x̄,ȳ) sin

(
2π

N1
ȳ1p̄

)

δca

︸ ︷︷ ︸

Conj.Grad.

]

〉

.

The calculation of the underbraced sums is performed using the conjugate gradient algorithm
(see Sec. D.2).

Coulomb potential. Applying the addition formula to the cosine factor in (7.28), we
obtain

V̂Coul(p̂) =
−1

4Nd
g2d−4
0

〈
3∑

a,b,c=1

Nd∑

x̄

[cos

(
2π

N1
x̄1p̄

)

δab
Nd∑

ȳ

VbcCoul(x̄, ȳ) cos

(
2π

N1
ȳ1p̄

)

δca

+ sin

(
2π

N1
x̄1p̄

)

δab
Nd∑

ȳ

VbcCoul(x̄, ȳ) sin

(
2π

N1
ȳ1p̄

)

δca]

〉

.

Inserting two complete sets in coordinate space:

VbcCoul(x,y) =
3∑

f=1

Nd∑

z̄,t̄

M−1[U ]|bf(x̄,z̄) 〈z|(−∆)|t〉 M−1[U ]|fc
(t̄,ȳ)

and using the fact that the Laplace operator is diagonal, we obtain for the cosine part, up to
the prefactor −1/4Ng2d−4

0 ,

〈
3∑

a,f=1

Nd∑

z̄=1

3∑

b=1

Nd∑

x̄

M̂−1[U ]|bf(x̄,z̄) cos

(
2π

N1
x̄1p̄

)

δab

︸ ︷︷ ︸

Conj.Grad.

(−∆z̄)

3∑

c=1

Nd∑

ȳ

M̂−1[U ]|fc(z̄,ȳ) cos

(
2π

N1
ȳ1p̄

)

δca

︸ ︷︷ ︸

Conj.Grad.

〉

and similarly for the sine part.
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Appendix D

Lattice algorithms

The aim of the following sections is to give a short and practical summary of the numerical
procedures used in this work. The reader interested in the theoretical concepts from which
these algorithms are derived is invited to consult the references given in each section.

D.1 Heatbath algorithm

In this work, two numerical procedures are based on the heatbath algorithm of Creutz and
collaborators [CJR83]:

• lattice thermalisation,

• simulated annealing procedure.

The heatbath algorithm is a local algorithm: it is performed at all lattice points, which
are visited successively. At each point, a SU(2) matrix, denoted here generically by g(x), is
updated, inducing a change in the action S[g]. This variation of S can, in both procedures
concerned here, be written under the form

δS = −β tr(V (x)δg(x)),

with some matrix V (x), which we particularize to each problem below. The aim of the update
procedure is to lead a statistical system towards thermal equilibrium at temperature T = 1/β.
In this case, a configuration g occurs with a probability proportional to the Boltzmann factor
e−S[g]:

dP (g) ∝ dg e
1
2
βtr(gV ).

Lattice thermalization. In this case, the elements to be updated are the links Uµ(x). This
is done with respect to the Wilson action (7.4). At a given lattice point x and for a given link
Uµ(x), the matrix V (x) is found by collecting all terms in the action (7.4) containing the link
Uµ(x). As illustrated in the figure below, V (x) is given by the sum of the “open plaquettes”
around Uµ(x), i.e. all plaquettes involving the link Uµ(x) (the bold link in the figure) from
which Uµ(x) has been removed.
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PSfrag replacements

(x, T )
(y, T )
(x, 0)
(y, 0)

R
1
ξ
1
T
1
Tcr

β
σ̂(β)

0.12 exp
{

−6π2

11 (β − 2.3)
}

− ln
(
β
4

)

Simulated annealing. The basis idea of the simulated annealing procedure has been dis-
cussed in Sec. 7.2.4. The elements to be updated are the local gauge transformations g(x).
This is done with respect to the gauge functional FU [g], which is interpreted as the action
of a fictitious field theory. Identifying all the terms in FU [g] containing the transformation
g(x), we find

V (x) =

d∑

i=1

(

U †
i (x− aei)g

†(x − aei) + Ui(x)g†(x + aei)
)

.

The simulated annealing procedure is characterized by the following parameters:

• βSA: coupling or inverse temperature of the fictitious field theory,

• ∆βSA: coupling increment,

• NSA
UP : number of lattice updates (“thermalization”) at fixed coupling.

The matrix V (x) is in each case given by the sum of SU(2) matrices and is therefore
proportional to another SU(2) element ḡ:

V = kḡ, k =
√

det(V ).

The invariance of the group measure can be used to absorb ḡ in the probability distribution.
Setting g = g̃ḡ−1, we have

dge
1
2
kβtr(gḡ) = dg̃e

1
2
kβtr(g̃).

Using the representation (C.8) for g̃ gives

dP (a0,a) ∝ d4a δ(a2 − 1) eβka0 .

By eliminating |a| using the delta function, we obtain the appropriate weighting on the
hypersphere a2

0 + |a|2 = 1:

dP (a0, θa, ϕa) ∝ da0 dΩa

√

1 − a2
0 e

βka0 ,

where dΩa = sin (θa)dθadφa is the differential solid angle of a. Changing the variable a0 to
z = eβka0−βk gives

dP (z, θa, ϕa) ∝ dz dΩa

√

1 − a2
0(z), e−2βk ≤ z ≤ 1.
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The variable z is generated randomly in the allowed interval and rejected with probability
√

1 − a2
0(z). This is done practically by generating a random number z0 ∈ [0, 1] until the

condition z0 <
√

1 − a2
0(z) is satisfied. The direction of a is then determined by generating

the angles θa and φa randomly. The generated group element g(x) can be reconstructed.
Finally, the original group element is replaced by g ′(x) given by

g′(x) = g̃(x)ḡ−1(x).

The whole procedure is repeated until all the elements g(x) have been updated.

D.2 Conjugate gradient

The conjugate gradient algorithm permits to solve a system of linear equations of the type

M~x = ~b,

where ~b is a known vector and M is a known, square, symmetric, positive-definite matrix.
We present the algorithm without proof, under the form of a recipe. The interested reader
can find details in the Numerical Recipes manual [PFTV] or in the nice lecture script by
J.R. Shewchuk [She]. The system is solved by finding a vector ~x that minimizes the function

f(~x) =
1

2
~xTM~x−~bT · ~x+ c.

In the following, ~d(i) denotes the direction of descent and ~r(i) is the residual ~r(i) = ~b−M~x(i)

at the iteration i.
The first value ~d(0) and ~r(0) are given by

~d(0) = ~r(0) = ~b−M~x(0),

with the initial guess ~x(0). The recursion works as follows:

1. compute

α(i) =
~r T(i) · ~r(i)
~dT(i)M

~d(i)

,

2. update the residual ~r and the vector ~x

~r(i+1) = ~r(i) − α(i)M~d(i),

~x(i+1) = ~x(i) + α(i)
~d(i),

3. compute

β(i) =
~r T(i+1) · ~r(i+1)

~r T(i) · ~r(i)
,

4. update the direction of descent

~d(i+1) = ~r(i+1) + β(i)
~d(i).

The iteration is halted when the norm of the residual drops below a given small constant ε:

~r T(i) · ~r(i) < ε.

The vector ~x is the numerical estimate of M−1~b.
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Appendix E

Elementary calculations

E.1 Plane center vortices

Let us start from general considerations in SU(N) Yang-Mills theory in D dimensions. In
the continuum, a SU(N) center vortex is defined by the following gauge potential:

ACV
µ [Σ, x, k] = −E(k)

∫

Σ
dD−2σ̃µκ∂κD(x− x̄(σ)). (E.1)

In this expression, Σ describes the D − 2 dimensional vortex sheet, for which x̄µ(σ) =
x̄µ(σ1, . . . , σD−2) denotes a parametrization and D(x) is the Green function of the D-
dimensional Laplacian. Furthermore,

dD−2σ̃µκ =
1

(D − 2)!
εµκα1...αD−2

dD−2σα1...αD−2
(E.2)

is the dual of the (D − 2)-dimensional volume element

dD−2σα1...αD−2
= εk1...kD−2

∂x̄α1

∂σk1
. . .

∂x̄αD−2

∂σkD−2

dσ1 . . . dσD−2.

The color structure is taken into account by E(k) = Ea(k)T ac which satisfies

eiE(k) = Z(k), k = 1, . . . , N − 1, (E.3)

where Tc are the generators of the Cartan subalgebra and Z(k) denotes the N −1 non-trivial
center elements of the SU(N) group. Let us particularize to the gauge group SU(2). In
this case, the Cartan subalgebra is Abelian (i.e. is based on only one generator) and there
exists only one non-trivial center element Z = −1. The color structure of the center vortex
is simply given by

E = E3T
3
c with E3 = 2π, T 3

c =
τ3

2
.

The property (E.3) is trivially satisfied since we have eiπτ
3

= −1. Returning to the center
vortex (E.1), let us consider a loop C in space-time and the associated Wilson loop:

WACV[Σ,k][C] = ei
H

C dxµACV
µ [Σ,x,k].
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It can be shown that [ER00]

∮

C
dxµACV

µ [Σ, x, k] = E(k)L(C,Σ),

where L(C,Σ) is the linking number between C and Σ. As a consequence, the center vortex
contributes a non-trivial element of the gauge group to any Wilson loop it pierces. For the
group SU(2), this reads

WACV [Σ][C] = (−1)L(C,Σ).

This simple identity is crucial for the center vortex confinement scenario, since it leads to the
area-law behaviour of the average Wilson loop in presence of center vortices [ER00].

In this work, we concentrate on plane vortex surfaces. In mathematical terms, we make
the following choice for the vortex surface Σ:

Σ =

{
x̄1 = 0
x̄2 = 0

.

Using the parametrization x̄(σ) = (0, 0, σ1, . . . , σD−2), σ1, . . . , σD−2 ∈]−∞,∞[, from which
the volume element (E.2) can be easily computed, and the expression of the Green function
D(x), we obtain the following expression describing plane center vortices:

ACV
µ (x, k) =

E(k)

2π

1

x2
1 + x2

2

(x2,−x1, 0, . . . , 0)µ.

E.2 Numerical computation of the Wilson loop

Due to the loop discretization, the Wilson integral reduces to the sum of integrals over line
segments:

∮

A(x) · dx =

Nppl∑

i=1

∫ x(i+1)

x(i)

A(x) · dx.

Each of the segments [x(i), x(i+1)] can be parametrized as

x(t) = x(i) + t(x(i+1) − x(i)), t ∈ [0, 1],

and the line integrals become

∫ x(i+1)

x(i)

A(x) · dx =

∫ 1

0
dtA(x(t)) · (x(i+1) − x(i)).

E.2.1 Constant magnetic field

For the potential A(x) = B
2 (−x2, x1, 0, . . . , 0), the t integral is performed trivially and we

find
∫ x(i+1)

x(i)
A(x) · dx =

B

2

(

x
(i)
1 x

(i+1)
2 − x

(i)
2 x

(i+1)
1

)

.
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E.2.2 Vortex field

For the potential A(x) = 1
2

1
(x1−xV

1 )2+(x2−xV
2 )2+d2

(
x2 − xV2 ,−(x1 − xV1 ), 0, . . . , 0

)
describing a

vortex centered upon (xV1 , x
V
2 , 0, . . . , 0), the line integral reduces to

∫ x(i+1)

x(i)

A(x) · dx =
[

x
(i)
1 x

(i+1)
2 − x

(i)
2 x

(i+1)
1 + xV1

(

x
(i)
2 − x

(i+1)
2

)

− xV2

(

x
(i)
1 − x

(i+1)
1

)]

×
∫ 1

0
dt

1

A+ 2Bt+ Ct2
,

with

A =
(

x
(i)
1 − xV1

)2
+
(

x
(i)
2 − xV2

)2
+ d2,

B =
(

x
(i)
1 − xV1

)(

x
(i+1)
1 − x

(i)
1

)

+
(

x
(i)
2 − xV2

)(

x
(i+1)
2 − x

(i)
2

)

,

C =
(

x
(i+1)
1 − x

(i)
1

)2
+
(

x
(i+1)
2 − x

(i)
2

)2
.

The indefinite integral is given by

∫
dt

A+ 2Bt+ Ct2
=







1√
AC−B2

arctan
(

Ct+B√
AC−B2

)

, if AC > B2,

1
2
√
B2−AC ln

∣
∣
∣
Ct+B−

√
B2−AC

Ct+B+
√
B2−AC

∣
∣
∣, if AC < B2.

E.3 Linear potential in Fourier space

In our lattice study of Yang-Mills theory in Coulomb gauge, we address the Coulomb potential
in momentum space. Let us briefly discuss the representation in Fourier space of a linearly
rising potential.

The non-relativistic potential V (r) is obtained from the measured V (k) in momentum
space by Fourier transformation [we work in D = 3 + 1]:

V (r) =

∫
d3k

(2π)3
V (k) eik·r

=
1

2π2

∫ ∞

0
dk k2V (k)

sin(kr)

kr
. (E.4)

For the electrostatic Coulomb potential V (k) = 1/k2, we have simply

V (r) =
1

4πr

since
∫∞
0 dx sin(x)/x = π/2 (Fresnel’s integral). In Yang-Mills theory, we have k2V (k) =

d2(k)f(k). The resulting potential is linearly confining if

d2(k)f(k) = − A

k2
. (E.5)

Inserting this expression in (E.4), regularizing the integral by means of an IR cut-off Λ and
changing the variable kr ≡ K, we obtain

V (r) = − A

2π2

∫ ∞

Λr
dK

sin(K)

K3
r.
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The remaining integral over K possesses a r-independent part:

∫ ∞

Λr
dK

sin(K)

K3
= −π

4
+ f(Λr)

which furnishes the linearly rising part of the potential

Vlin(r) =
A

8π
r

and the Coulomb string tension σCoul = A/8π.

This result can be obtained in a more straightforward but less rigourous way by differen-
tiating the expression (E.4) with respect to r. This yields

dV

dr
=

1

2π2

∫ ∞

0
dk k2V (k)

[
cos(kr)

r
− sin(kr)

kr2

]

.

Inserting (E.5), we obtain

dV

dr
= − A

2π2

∫ ∞

0

dK

K

[
cos(K)

K
− sin(K)

K2

]

︸ ︷︷ ︸

=−π/4

,

which provides directly the Coulomb string tension.
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à la réussite de ce travail.
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