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Abbreviations 
 

For amino acids the suggestions of the IUPAC-IUB-commission for biological 

nomenclature [Eur. J. Biochem. 1984, 138, 9-37] were applied. 
 

 

Ac   Acetyl 

ACN   acetonitrile 

AcOH   acetic acid 

Ac2O   acetic acid anhydride 

Ado   8-amino-3,6-dioxaoctanoic acid 

Ahx   6-aminohexanoic acid 

Antp  Antennapedia (here referring to the 16 amino acid Penetratin 

peptide) 

AntpHD  Antennapedia homeodomain 

bFGF   basic fibroplast growth factor 

Boc   tert.-butyloxycarbonyl 

CPP   cell-penetrating peptide 

DCM   dichloromethane 

Dde   1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl 

DHAP   2,5 dihydroxyacetophenone 

DIC   N,N’-diisopropyl carbodiimide 

DIPEA  N,N’-diisopropylethylamine 

DMF   N,N’-dimethylformamide 

DMSO  dimethylsulfoxide  

DMEM  Dulbecco´s Modified Eagle’s Medium 

EDT   ethanedithiole 

EDTA   ethylenediaminetetraacetic acid 

eq   equivalent 

ER   Endoplasmic reticulum 

ES   Electrospray 

EtOH   ethanol 

FCM   fluorescence correlation microscopy  

FCS   fluorescence correlation spectroscopy 
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FITC   fluorescein isothiocyanate 

Fluo   5(6)-carboxyfluorescein 

Fmoc   N-(9-fluorenyl)methoxycarbonyl 

FRET   fluorescence resonance energy transfer 

FT-ATR-IR  fourier transform attenuated total reflection-infra red 

HBS   HEPES buffered saline 

HBSS   Hank’s buffered salt solution 

HEPES  N-(2-hydroxyethyl) piperazine-N´-(2-ethanesulfonic acid) 

HFIP   hexafluoro-2-isopropanol 

HIV   human immunodeficiency virus 

HOBt   1-hydroxybenzotriazol 

HPLC   high-performance liquid chromatography 

λ   wave length 

M   molar 

MALDI  matrix-assisted laser desorption ionisation 

MeOH   methanol 

MHC   major histocompatibility complex 

MS   mass spectrometry 

Mtt    4-methyltrityl 

MTS    membrane translocating sequence 

m/z   mass/charge ration 

NDGA   nordihydroguaiaretic acid 

NMR    nuclear magnetic resonance 

Pamb   4-aminomethyl benzoic acid 

Pam3Cys  tripalmitoyl-S-glycerylcysteinyl 

Pbf   2,2,5,7,8-pentamethyl-dihydrobenzofuran-5-sulfonyl 

PBS   phosphate-buffered saline 

POPC   1-palmitoyl-2-2-oleoyl-phosphocholine 

POPG   1-palmitoyl-2-2-oleoyl-phosphoglycerol 

RP   reversed phase 

RT   room temperature 

S0387 2-(4-acetanilino-1,3-butadienyl)-3,3-dimethyl-1-(4-sulfobutyl)-

indolium inner salt 
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SPPS   solid-phase peptide synthesis 

t   time 

Tamra    5(6)-carboxytetramethylrhodamine 

tR   retention time 

tBu   tert.-butyl 

tBuOH  tert.-butyl alcohol 

TBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

tetrafluoroborate 

TGN  trans-Golgi Network 

TIS   triisopropylsilane  

TFA   trifluoroacetic acid 

TOF   time-of-flight 
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Trt   trityl 
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Preface 

Contents of this PhD thesis 
The content of this PhD thesis has been adapted from a total of four 

manuscripts. Three out of these four manuscripts deal with cell-penetrating 

peptides (CPPs) and one manuscript describes the preparation of fluorescently 

labeled peptides in solid-phase synthesis (Fischer et al., 2003). Three of the four 

manuscripts have already been published, whereas the one in preparation will be 

submitted in 2005. In addition, the methods and reagents presented have 

contributed to other manuscripts, which are summarized in Chapter 2. 

This PhD thesis can be considered as witness of the dramatic change of view 

within the CPP research field. When the first manuscripts were prepared 

(Waizenegger et al., 2002;Fischer et al., 2002) most cationic CPPs were still 

supposed to enter cells via a non-endocytic mechanism. Nevertheless some of the 

findings obtained in our laboratory which were partially shown in these initial 

contributions, disagreed with some of the findings obtained by others. Afterwards 

these discrepancies could be attributed to the fact that our investigations were all 

performed with living, non-fixed cells. In 2003 fixation was identified as the major 

source of artefacts in the analysis of the cellular trafficking of CPPs. 

Chapter 3 deals with the application of carboxyfluorescein in solid-phase 

synthesis and the establishment of the synthesis of doubly-labeled peptides 

(Fischer et al., 2003). These protocols were the prerequisites for chapters 4 to 6. 

Chapter 4 investigates the fluorophore and cargo-dependence of cell-penetrating 

peptides (Fischer et al., 2002). The manuscript “A stepwise dissection of the 

intracellular fate of cationic cell-penetrating peptides” elucidated the endosomal 

fate of cationic CPPs (Fischer et al., 2004). The fourth manuscript represents the 

merger of the two converging fields of this PhD thesis, i.e. the synthesis and cell-

biological testing of doubly-labeled CPPs (Fischer et al., 2005b). The introduction 

was partially adapted from a review (Fischer et al., 2005a).  
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1. Introduction 

Viruses provide expressive examples for the potential of perturbing molecular 

mechanisms inside the cell via introduction of foreign molecules, especially DNA 

(Smith and Helenius, 2004). For this reason, it is no surprise that today’s 

molecular and cellular biology exploit very similar strategies. Introduction of DNA 

into cells for the expression of proteins that either modulate or interfere with 

cellular function is a commonplace for the analysis of intracellular molecular 

processes. In addition, the function of gene products has been analyzed by the 

introduction of oligonucleotides, either antisense DNA or siRNA, that inhibit the 

translation of messenger RNA into a protein (Scherer and Rossi, 2003). A further 

class of molecules that has proven useful in the analysis of molecular events 

inside cells are peptides that specifically disrupt molecular interactions, e. g. in 

cellular signal transduction (Prochiantz, 1996). 

For viruses and molecular biologists alike, crossing of the plasma membrane is a 

common challenge. The lipid bilayer of the plasma protects the cellular content 

from entry of pathogens and molecules that interfere with cellular function and 

replication. Import and export of non-permeable molecules into and out of the 

cytoplasm is a tightly regulated process. Only molecules within a narrow range of 

molecular size, net charge and polarity are able to directly cross the plasma 

membrane by passive diffusion along a concentration gradient (Lipinski et al., 

2001). In mammalian cells a large number of transporters are expressed that 

maintain the balance of entry and exit. In contrast, for large hydrophilic 

macromolecules it is generally assumed that endocytosis is the mode of 

internalization (Rejman et al., 2004). Endocytosis, however, guides external 

molecules through compartments with high hydrolytic activity, thereby exerting an 

important protective role (Pillay et al., 2002). 

Pathogens have therefore evolved sophisticated means for bypassing or 

stunning the hydrolytic guards for obtaining access to the cytoplasm. For viruses 

the docking of molecules to cell surface receptors followed by internalization and 

release of genetic information into the cytoplasm provides a highly specific mode 

of entry into only those cells that express the respective receptor. For biologists 

working with a homogeneous population of cells in tissue culture experiments, 

such specificity is usually not required. For this reason, most strategies to cross 
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the plasma membrane for laboratory purposes are poised to efficiency and 

robustness rather than specificity and lack the sophistication of viral entry.  

 

1.1 Crossing the plasma membrane – a crucial prerequisite for 
cell-biological investigations  

Give the demand for introducing macromolecules into living cells, cell-biologists 

have developed a variety of techniques in order to get molecules in. Many cell-

biological experiments aim at the understanding of intracellular biochemical 

events, such as chemical modifications of proteins or intermolecular interactions. 

Many of these experiments require the introduction of molecules into the 

cytoplasm of living cells.  

The strategies developed can roughly be subdivided into those based either on a 

transient disruption of the integrity of the plasma membrane or based on carrier-

mediated approaches (Stephens and Pepperkok, 2001). Examples for the former 

are the generation of pores by application of short high-power electric pulses in 

electroporation or the incubation with pore forming molecules such as 

streptolysine O. Techniques that are based on the transient permeabilization suffer 

from harsh experimental conditions, which clearly limit the survival rate of the cells. 

 

 

Figure 1.1 Different techniques for the introduction of macromolecules into cells (adapted from 

Stephens and Pepperkok, 2001). 

 

Capillary injection on the other hand is another widely used method. Thin glass 

micropipettes are used to inject the sample of interest directly into the cytoplasm.  
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The so-called “carrier-mediated transfer” methods require the linkage of the 

cargo molecule to a moiety that possesses the ability to mediate the transfer of 

other molecules into cells.  

Transfection reagents 
Especially for the introduction of foreign DNA into mammalian cells, carrier-

mediated approaches are well established. Transfection reagents (Surovoy et al., 

1998;Flechsler et al., 1998) improve the import efficiency of cargo molecules by (i) 

neutralization of negative charge and (ii) conferring hydrophobicity, characteristics 

that facilitate the interaction of the resulting complexes with the plasma 

membrane. However despite the fact that these so-called lipoplexes are rather 

hydrophobic, a mechanism that involves internalization via endocytosis has 

received considerable support (Zuhorn et al., 2002). Similarly, loading of 

molecules into liposomes incorporates the cargo into a high molecular weight 

complex with physicochemical characteristics that more closely match those of the 

plasma membrane. Evidently, these carriers exert their activity to a major part by 

disguising the physicochemical characteristics of the cargo. 

Lipopeptides 
Another very compelling strategy for the carrier-mediated uptake, especially in 

the case of biologically active peptides, is the covalent conjugation of a lipid moiety 

to the cargo. This approach has attracted considerable attention for the import of 

peptides (Gras-Masse, 2003). A straight-forward synthetic access to lipopeptides 

based on standard solid-phase synthesis protocols makes these lipoconjugates 

very attractive agents for various biological applications. 

The first works on synthetic lipopeptides were based on the immunologically 

active N-terminal moiety of the principal lipoprotein of Escherichia coli, also known 

as Braun’s lipoprotein (Braun, 1975). The tripalmitoyl-S-glycerylcysteinyl- 

(Pam3Cys) scaffold mediates attachment to the cell membrane, internalization into 

the cytoplasm, and activates macrophages to secrete cytokines (Hoffmann et al., 

1988;Wolf et al., 1989;Metzger et al., 1993). Synthetic viral peptides covalently 

linked to Pam3Cys were demonstrated to efficiently prime influenza virus-specific 

CTLs in vivo (Deres et al., 1989), making these conjugates attractive agents for 

the generation of fully synthetic vaccines. Due to its immune system modulating 

activity and the identification of the Toll like receptor 2 as its physiological receptor 
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(Lien et al., 1999;Aliprantis et al., 1999), Pam3Cys-conjugates have seen a 

tremendous growth in interest within the last 5 years. 

Peptides conjugated to one single lipid chain have also been applied for a large 

variety of purposes. Myristoylated pseudosubstrate domains of protein kinase C 

were demonstrated to be delivered into the cytoplasm of mammalian cells and 

exert an inhibitory activity (Verhoeven et al., 1993;Eichholtz et al., 1993). 

Monolipidated peptides were also shown to be applicable for targeting of MHC I 

(Loing et al., 2000) and MHC II molecules (Papini et al., 2001). The internalization 

of lipopeptides is suggested to be endocytosis-dependent (Schörner, 

1999;Andrieu et al., 2000). 

1.2 Cell-penetrating peptides as a carrier-mediated delivery 
strategy 

CPPs are small molecules of mostly 9 to 30 amino acids in length. Efficient 

cellular import has been achieved for cargos as diverse as peptides (Prochiantz, 

1996;Hawiger, 1999), proteins as large as 120 kDa (Rojas et al., 1998;Schwarze 

et al., 1999), oligonucleotides (Astriab-Fisher et al., 2002), plasmids (Singh et al., 

1999), peptide nucleic acids (Pooga et al., 1998b), siRNA (Muratovska and 

Eccles, 2004;Chiu et al., 2004) and even nanoparticles (Lewin et al., 2000).  

In most of these applications conjugation of only one carrier peptide to a cargo 

renders the molecule import competent. However, a nine amino acid peptide will 

have little impact on the physicochemical characteristics of a 120 kDa protein 

(Schwarze et al., 1999) or a duplex 21 nt siRNA (Chiu et al., 2004). As a 

consequence, in contrast to the transfection reagents described above, rather than 

disguising the physicochemical characteristics, CPPs are well defined 

pharmacokinetic modifiers that add a new functionality to a specific site of an 

otherwise unperturbed molecule. Rapid cellular uptake (Richard et al., 2003) in 

combination with a highly defined molecular structure and ease of handling 

renders the CPPs highly attractive mediators of import. Moreover, the advantages 

of CPPs as peptide-based transport vehicles are the accessibility of large 

collections of different peptides by well-established automated procedures (Jung 

and Beck-Sickinger, 1992) allowing detailed structure-activity relationships and a 
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rational and straight-forward approach to the generation of new and optimized 

CPPs.  

Applications of CPPs exceed well beyond mere tissue culture experiments. 

CPP/peptide conjugates and CPP-fusion proteins that interfere with protein-protein 

interactions have been successfully applied as therapeutic agents in animal 

models (Fujihara et al., 2000;Myou et al., 2003). In contrast to liposomes, CPP-

peptide conjugates possess many beneficial drug-like characteristics. In the case 

of peptide cargos, covalent CPP-conjugates are analytically well defined, storable, 

and no leakage of the active moiety occurs.  

1.3 The origin of cell-penetrating peptides 

In 1965, Ryser and Hancock demonstrated that the addition of homopolymers of 

cationic amino acids (~ 100 kDa) to tissue culture media containing radio labeled 

albumin enhanced the uptake of the radiolabel into the cell (Ryser and Hancock, 

1965). In the 1970ies again Ryser et al. demonstrated that covalent coupling of 

poly (L-lysine) to proteins or small molecules enhances their cellular uptake and, in 

the case of methotrexate, the biological activity of this drug (Ryser and Shen, 

1978;Shen and Ryser, 1978).  

About 10 years later Frankel et al. observed that the HIV-1 Tat protein is taken 

up by tissue culture cells. The internalized Tat protein is then capable of 

transactivating the viral promoter in the nucleus of the targeted eukaryotic cell 

(Frankel and Pabo, 1988). Only some years later, the 60-amino acid polypeptide 

corresponding to the sequence of the homeodomain of the Drosophila 

Antennapedia transcription factor was shown to penetrate neurons and augment 

their morphological differentiation (Joliot et al., 1991). These findings suggested 

that the efficient internalization of proteins into cells, first observed for a synthetic 

oligopeptide by Ryser and Hancock, has a correspondence in nature.  

In the case of the HIV-1 Tat protein the internalization was attributed to a basic 

domain comprising amino acids 48 to 60 (Vives et al., 1997). The peptide 

corresponding to this region of the protein is termed “Tat peptide”. In the case of 

the Antennapedia protein a peptide of 16 amino acids in length corresponding to 

the third helix of the homeodomain was still capable of “translocating through the 

plasma membrane” (Derossi et al., 1994). As a CPP, this domain is also referred 

to as Penetratin. During the following years, the compelling properties of these 
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peptides promoted the identification of further CPPs. These peptides were either 

based on small domains of naturally existing proteins (Lin et al., 1995;Pooga et al., 

1998a;Oess and Hildt, 2000) or designed de novo (Sheldon et al., 1995;Morris et 

al., 2001). An overview of the current diversity of cell-penetrating peptides is given 

in Figure 1.2. 
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Figure 1.2 An overview of the current peptide motifs considered to be cell-penetrating. 
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1.4 Cell-penetrating peptides versus antimicrobial and 
membrane-active peptides 

Membrane-active peptides 
Many membrane-active peptides, including antimicrobials and toxins, are known 

to induce transmembrane pores. The first peptide discovered to do so is 

alamethicin (Mueller and Rudin, 1968). Alamethicin was first supposed to induce 

pores only in the presence of a transmembrane potential. However, it was shown 

that alamethicin could insert into bilayers also in the absence of an external field 

(Fringeli and Fringeli, 1979). At micromolar concentrations alamethicin has also 

been shown to cause hemolysis in human erythrocytes. In black lipid membranes 

at nanomolar concentrations the peptide induces the formation of voltage-

dependent pores with multi-state properties (Irmscher and Jung, 1977).  

Two other extensively studied peptides, the bee venom toxin melittin 

(Habermann, 1972) and the frog peptide magainin (Zasloff, 1987) exhibit similar 

behaviours. Both melittin (Hanke et al., 1983;Matsuzaki et al., 1997) and magainin 

cause the leakage of fluorescent dyes from lipid vesicles indicating formation of 

pores. In the last 15 years, a great variety of antimicrobial peptides have been 

shown to similarly  induce transmembrane pores in bacterial cells as well as in 

lipid vesicles (Jack and Jung, 1998;Zasloff, 2002).  

Cell-penetrating peptides versus antimicrobial peptides 
The Penetratin peptide was initially demonstrated to traverse a pure lipid bilayer 

(Thoren et al., 2000) without forming pores (Thoren et al., 2000;Persson et al., 

2003), a finding that clearly distinguishes this CPP from antimicrobial peptides. 

Moreover CPPs such as Tat and Penetratin are considerably less toxic and 

haemolytic than most antimicrobial peptides (Vives et al., 1997;Trehin et al., 

2004). 

Antimicrobial peptides as CPPs 
Recent findings indicate that CPPs and antimicrobial peptides share common 

functional characteristics. Both groups of peptides bind to lipid membranes. 

Magainin was demonstrated to be internalized rapidly into mammalian cells 

exhibiting a cooperative concentration dependence of uptake. This finding 

suggests that the peptide forms a pore as an intermediate similar to the 
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observations in membranes. Furthermore, translocation was accompanied by 

cytotoxicity (Takeshima et al., 2003). In contrast, buforin another cationic 

antimicrobial peptide, translocated by a less concentration-dependent, passive 

mechanism, without showing any significant toxicity (Takeshima et al., 2003).  

CPPs as antimicrobial peptides 
Given that CPPs are cationic and often amphipathic, similar to membrane active 

antimicrobial peptides, a recent work investigated whether CPPs may also act as 

antimicrobial peptides (Nekhotiaeva et al., 2004). TP10, a 21-amino acid deletion 

analogue of the chimeric CPP transportan (Pooga et al., 2001), inhibited Candida 

albicans and Staphylococcus aureus growth. pVEC, another cationic CPP 

(Elmquist et al., 2001), inhibited Mycobacterium smegmatis growth at low 

micromolar doses, below the levels that harmed human HeLa cells. Therefore, 

TP10 and pVEC can enter both mammalian and microbial cells and preferentially 

permeabilize and kill microbes (Nekhotiaeva et al., 2004). 
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1.5 Mode of action 

Up until recently, flow cytometric and microscopic experiments addressing the 

uptake of CPPs were conducted by incubation of cells with fluorescently labeled 

peptides and subsequent fixation. Alternatively, biotinylated CPPs were visualized 

post fixation and permeabilization via staining with fluorescently labeled 

streptavidin. The results of these experiments suggested that the uptake of 

Penetratin, the HIV-1 Tat peptide and oligo-arginine was insensitive to low 

temperature (Derossi et al., 1994;Vives et al., 1997;Futaki et al., 2001) and to 

inhibitors of endocytosis (Vives et al., 1997;Suzuki et al., 2002). For this reason, a 

mechanism of import by direct crossing of the plasma membrane was postulated 

(Derossi et al., 1994;Vives et al., 1997). The data was fully supported by 

biophysical experiments according to which Penetratin was able to traverse a pure 

lipid bilayer  without forming pores (Thoren et al., 2000;Persson et al., 2003).  

Although having difficulties to explain how hydrophilic macromolecules cross a 

lipid bilayer and given the reports on the endocytic uptake of the Tat protein (Mann 

and Frankel, 1991) this model remained more or less unchallenged until 2003. At 

the beginning of 2003 Olsnes et al. stated that “experiments to exclude that the 

entry of endocytosed (Tat) peptide into the nucleus occurred after fixation and 

permeabilization are highly desirable” (Olsnes et al., 2003). The same group had 

reported earlier that neither the Tat basic domain nor the viral protein VP22 had 

been able to mediate membrane translocation of Diphteria toxin A-fragment 

(Falnes et al., 2001). Import of the Diphteria A toxin into the cytoplasm provided a 

highly sensitive functional assay for detecting the cytoplasmic delivery of a cargo. 

The authors therefore concluded that the CPP-mediated import was inefficient.  

State-of-the-art findings: Post-fixation era 
In 2003 it was shown by Richard et al. (Richard et al., 2003) that the earlier cell-

biological experiments had suffered from an artifactual uptake of CPPs caused by 

fixation of cells. These researchers used live cell fluorescence microscopy to 

monitor the uptake of fluorescein-labeled peptides. Moreover, it was demonstrated 

that cationic CPPs associated with the outer leaflet of the plasma membrane. 

Removal of these peptides was achieved by incubation of cells with trypsin. Very 

likely, this population of peptides accounted for the intracellular fluorescence 

observed previously for fixed cells which had been incubated at 4°C. The data 
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presented in this work demonstrated the involvement of endocytosis in the cellular 

internalization of the Tat peptide and the (Arg)9 peptide. In a second, rather 

unnoticed work, cationic CPPs were demonstrated to bind to plastic and glass, 

materials which are commonly used in cellular assays applied in the CPP field 

(Chico et al., 2003). It was stated that “under certain conditions, such non-specific 

to plastic or glass surfaces binding could be mistaken for cellular 

penetration”(Chico et al., 2003).  

Within the past two years the role of endocytosis for the uptake of CPP-protein 

conjugates was substantiated by several publications. Inhibitors of metabolism or 

endocytosis, such as cytochalasin D were demonstrated to impair the uptake of 

Penetratin (Drin et al., 2003). Moreover Penetratin and the Tat peptide were 

shown to promote endocytosis of high molecular weight cargo upon binding to cell 

surface glycosaminoglycans (Console et al., 2003). Another comparison of CPPs 

revealed that endocytosis depends only on the number of positives charges within 

the peptide whereas oligopeptide transduction requires the guanidine structure of 

arginine (Zaro and Shen, 2003).  

The contribution of the individual endocytic pathways is still under dispute. For Tat 

fusion proteins caveolar endocytosis (Fittipaldi et al., 2003) as well as 

macropinocytosis (Wadia et al., 2004) were proposed. It should be emphasized 

that both contributions included reliable functional cellular assays for detecting the 

delivery of functional proteins into the cytoplasm. These assays were based either 

on the transactivating activity of the Tat-protein (Fittipaldi et al., 2003) or on the 

enzymatic activity of the Cre-recombinase (Wadia et al., 2004). For short CPPs 

alone, to our knowledge no functional assay has been established so far, to 

reliably compare the arrival of intact and biologically active CPPs in the cytosolic 

compartment under different experimental conditions. This deficit may still lead to 

wrong conclusions on the cellular uptake and intracellular fate of CPPs. Even 

though, our understanding of the cellular trafficking of CPPs has benefited 

enormously from the use of fluorescently tagged CPPs in live cell microscopy, we 

should be aware that the subcellular distribution of the fluorescent dye may not 

represent the one of the CPP but rather the one of a proteolytic product. 
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In spite of the accumulating evidence for endocytosis, the refined experimental 

approaches, as well, provide new evidence for at least a contribution of membrane 

permeation to the cellular uptake of these peptides (Thoren et al., 2003). In two 

different cells lines an endocytic uptake was observed for Penetratin. However, a 

hepta-arginine peptide, with a tryptophane residue added to the C-terminus, was 

found to be internalized via an energy-independent, non-endocytic pathway. For 

the Antennapedia protein and the HIV Tat protein, minute amounts that directly 

enter the cytoplasm and transfer into the nucleus may already be sufficient for 

these proteins to exert their physiological functions.  
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1.6 Applications of CPPs 

Despite the fact that the mode of action of CPPs is still not understood in detail 

and currently a matter of great debate, the applications of CPPs are undoubtedly a 

story of great success. The applications range from mere cell-culture experiments 

to animal studies and show promise for potential therapeutics. 

 

Applications 
of CPPs

Delivery of signal transduction 
inhibitors into the cytosol
- pseudosubstrates
- competitive inhibitors of an 
  enzyme active site
- compartment specific 
  localization signals
- structural mimetics of 
  interaction domains

Immunological applications
- 
- Delivery of whole proteins 
   into the MHC I pathway
- 

Delivery of MHC I epitopes

Delivery of epitopes into the 
   MHC II pathway

Protein transduction
- Cell-biological applications
- Vaccination purposes
- Therapeutic applications

Delivery of nucleic acids and PNAs
- Plasmids
- siRNA

Delivery of nanoparticles

PROTACS
- Targeted degradation 
  of proteins

Protein semi-synthesis 
in living cells

 
 

Figure 1.3 An overview of the applications of cell-penetrating peptides. 

 
Delivery of peptides into the cytoplasm for the interference with cellular 

signal transduction 
Most applications of CPPs include the introduction of peptides into the cytoplasm 

in order to interfere with signal transduction (Prochiantz, 1996;Hawiger, 1999). 

Peptide cargos delivered by conjugation to CPPs included pseudo-substrates 

(Theodore et al., 1995), competitive inhibitors of an enzyme active site (Nishikawa 

et al., 2000), compartment-specific localization sequences (Lin et al., 1995), and 

structural mimetics of interaction domains (Horng et al., 2001). The advantages of 

peptide-based functional analyses in cell biology are the accessibility of large 
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collections of different compounds by well-established automated procedures 

(Jung et al., 1992) as well as a rational approach to the generation of biologically 

active compounds based on available structural information of interaction 

domains.  

Within the last two years several successful animal studies using CPP-peptide 

conjugates have been published. One of the most astonishing studies showed that 

a cell-penetrating inhibitor of NFAT (nuclear factor of activated T-cells) based on 

the polyarginine delivery system was able to provide immunosuppression for fully 

mismatched islet allografts in mice. In addition, this compound did not affect insulin 

secretion, whereas FK506, as established calcineurin inhibitor, caused a dose-

dependent decrease in insulin secretion (Noguchi et al., 2004). This surprising 

study implies that CPP-based drugs may represent more than just a laboratory 

approach but an alternative to traditional low molecular weight drugs. Nevertheless 

the antigenicity of those peptides may limit their broad applicability. 

CPPs for immunological applications 
The delivery of exogenous antigens into the MHC class I processing pathway 

using CPPs has been presented in vitro and in whole animals (Schutze-

Redelmeier et al., 1996;Pietersz et al., 2001). On dendritic cells CPP-epitope 

conjugates were shown to enable prolonged antigen presentation on MHC I 

molecules (Wang and Wang, 2002). CPPs therefore have the promise to 

represent a widely applicable means to enhance immune responses against 

cancer and infectious diseases. A more recent work showed that the detailed 

knowledge of the intracellular fate of CPPs allows a rational design of CPP-epitope 

constructs for the optimization of peptide-based vaccines (Lu et al., 2004). In this 

work it was also demonstrated that CPPs bearing a CTL and a T helper cell 

epitope can generate both the corresponding MHC class I – and II-binding 

peptides and elicit a strong CTL and T helper cell response.  

Proteins as cargos 
The application of CPPs for the delivery of proteins renders them an attractive 

alternative to genetic intervention (Ford et al., 2001). Cargo proteins have been as 

large as 120 kDa (Rojas et al., 1998;Schwarze et al., 1999). Their principal 

applicability to animal studies has been demonstrated using the 120 kDa-β-

galactosidase protein (Schwarze et al., 1999). The therapeutic potential of protein 

transduction has been proven in a recent work reporting on the blockade of 
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inflammation and airway hyper responsiveness in immune–sensitized mice using a 

cell-penetrating dominant-negative phosphoinositide 3-kinase (Myou et al., 2003). 

Protein transduction has also been applied to the introduction of proteins into the 

MHC class I processing pathway (Kim et al., 1997). 

Nucleic acids 
CPPs have moreover been used for the transfer of plasmid DNA (Rudolph et al., 

2003) and siRNA (Simeoni et al., 2003;Muratovska et al., 2004;Chiu et al., 2004) 

into mammalian cells and for the successful application of peptide nucleic acids in 

an animal model (Pooga et al., 1998b).  

Nanoparticles 
CPP-derivatized super magnetic nanoparticles have been demonstrated to be 

suitable for cell labeling (Lewin et al., 2000).  

Generation of chemical knockouts 
A compelling strategy for the generation of a transient protein knock-out has 

been described by Crews et al. (Schneekloth, Jr. et al., 2004). A ligand for an 

intracellular target protein was chemically linked to a peptide sequence that binds 

to the E3 ubiquitin ligase. This chimeric molecule was introduced into mammalian 

cells using a CPP leading to the recruitment of the target protein to the 

proteasome and subsequently to its degradation. 

Protein semi-synthesis in living cells 
Muir et al. have developed an approach to obtain semi-synthetic proteins in 

living cells (Giriat and Muir, 2003). The protein of interest was expressed in living 

cells with the first half of the naturally occurring Ssp Dna split intein fused to its C-

terminus. Then, a semi-synthetic polypeptide, consisting of the second half of the 

intein covalently linked to a synthetic probe (which may be a fluorescent dye) and 

a CPP, was added to the culture media. The CPP delivered the probe into the cell, 

whereupon the probe associated with its complementary half triggering protein 

splicing. This splicing event resulted in the removal of the intein and ligation of the 

probe to the selected protein through a normal peptide bond. 
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CPP

 
 

Figure 1.4 Principle of semi-synthetic protein trans-splicing in living cells. IN is the first half of the 

naturally occurring Ssp DnaE intein, IC is its second half (adapted from (Giriat et al., 2003). 
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2. Contributions to other projects 

 

Listed below are the contributions to other projects that led to already published 

scientific articles and manuscripts which have either been submitted or which are 

preparation. 

 

2.1 Intracellular concentration measurements in adherent cells: 
A comparison of import efficiencies of cell-permeable peptides 
(Waizenegger et al., 2002) 

The author of this thesis synthesized all peptides used in this study. Moreover he 

established the analysis of cell-penetrating peptides using Fluorescence 

Correlation Microscopy (FCM) during his diploma thesis. 

 

2.2 Structure property analysis of pentamethine indocyanine 
dyes: Identification of a new dye for life science applications 
(Mader et al., 2004) 

The author of this thesis tested several pentamethine indocyanine dyes with 

respect to their applicability in solid-phase synthesis. Moreover several peptides 

labeled with S0387 were prepared, e.g. an MHC I binding peptide, that was used 

in this study. 

 

2.3 Chemolabile cellular microarrays for screening of small 
compounds and peptides (Hoff et al., 2004) 

The author of this thesis synthesized several peptides used in the experiments. He 

performed experiments to validate the proof of principle for the non-covalent 

attachment of peptides on glass substrates for their use in cellular microarrays. 

Moreover he assisted the diploma student M. Hulko in the design and synthesis of 

the chemolabile compounds presented in the manuscript. 
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2.4 Reversible cross-linking of hyperbranched polymers: A 
strategy for the combinatorial decoration of multivalent scaffolds 
(Barth et al., 2005) 

The author of this thesis tested peptide-decorated hyperbranched polymers, 

synthesized by Dr. M. Barth, with respect to their biological applicability, i.e. 

evaluation of toxicity and investigation of internalization using confocal 

fluorescence microscopy and flow cytometry.  

 

2.5 Peptide microarrays for the detection of molecular 
interactions in cellular signal transduction (Stoevesandt et al., 
2005) 

The author of this thesis synthesized the bis-phosphorylated ZAP-70 binding 

peptide used in this study. 

 

2.6 Autophagy promotes presentation of MHC-II peptides from 
intracellular source proteins (Dengjel et al., 2005) 

The author of this thesis performed fluorescence microscopy und fluorescence 

spectroscopy measurements in order to identify conditions under which autophagy 

was induced in the investigated cell line.  

 

2.7 A ratiometric fluorescence-based LPS-sensor (Voss et al., 
2005) 

The author of this thesis conceived the concept of a doubly-labeled peptide as 

biosensor for LPS based on an LPS-binding peptide and intramolecular 

Fluorescence Resonance Energy Transfer (FRET). He moreover synthesized a 

doubly-labeled LPS-binding peptide and performed initial experiments to establish 

the proof of principle. S. Voss successfully continued these initial experiments and 

substantially extended the scope of this application.   
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3   Extending the applicability of carboxyfluorescein in solid-phase 

synthesis 

 

This chapter was published in Bioconjugate Chemistry in 2003. The author of 

this thesis contributed Figures 1, 2, 3, 4, and 6. Figure 5 was contributed by Dr. O. 

Mader.  

3.1 Summary 

Optimized coupling protocols are presented for the efficient and automated 

generation of carboxyfluorescein-labeled peptides. Side products, generated when 

applying earlier protocols for the in situ activation of carboxyfluorescein, were 

eliminated by a simple procedure, yielding highly pure fluorescent peptides and 

minimizing post-synthesis work-up. For the cost-efficient labeling of large 

compound collections, coupling protocols were developed reducing the amount of 

coupling reagent and fluorophore. In order to enable further chemical 

derivatization of carboxyfluorescein-labeled peptides in solid-phase synthesis, the 

on-resin introduction of the trityl group was devised as a protecting group strategy 

for carboxyfluorescein. This protecting group strategy was exploited for the 

synthesis of peptides labeled with two different fluorescent dyes; essential tools for 

bioanalytical applications based on fluorescence resonance energy transfer 

(FRET). Tritylation and optimized labeling conditions led to the development of a 

fluorescein-preloaded resin for the automated synthesis of fluorescein-labeled 

compound collections with uniform labeling yields.  
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3.2 Introduction 

A growing number of applications in bioanalytical chemistry depend on 

fluorescently labeled molecules with biological activity (Brand and Johnson, 1997). 

Carboxyfluorescein has remained a reagent of choice for the preparation of 

hydrolytically stable fluorescent peptides and protein conjugates (Brinkley, 

1992;Weber et al., 1998). Fluorescein owes this popularity to its biocompatibility, 

low price and availability of instrumentation for the detection of its fluorescence. 

Fluorescein-labeled peptide derivatives have been employed as fluorescent 

markers in bioanalytical applications, such as confocal laser scanning microscopy 

(Schmidt et al., 1998), flow cytometry (Owens and Loken, 1995), and more 

recently fluorescence polarization measurements (Dedier et al., 2001) and 

intracellular fluorescence correlation spectroscopy (Waizenegger et al., 2002). 

Moreover, carboxyfluorescein has been shown to be a useful educt for the 

synthesis of further fluorescent reagents (Mattingly, 1992;Theisen et al., 

1992;Adamczyk et al., 1997).  

Labeling of peptides with fluorescein can either be performed in solution or using 

side chain-protected polymer bound peptides in solid-phase peptide synthesis 

(SPPS). In most cases reported so far, labeling has been accomplished using 

activated reagents, namely fluorescein isothiocyanate (Dettin et al., 1998) or 

carboxyfluorescein-N-succinimidylester (Hoogerhout et al., 1999). However, these 

activated fluorescein derivatives are rather expensive in comparison to 5(6)-

carboxyfluorescein (Weber et al., 1998). 

In solid-phase synthesis, coupling of carboxyfluorescein has been accomplished 

using in situ activation with different coupling reagents (Weber et al., 1998;Fulop et 

al., 2001). However, when applying the published protocols, we detected the 

formation of various side products. Here we present the elucidation of these side 

products and their removal by a very simple procedure yielding highly pure 

carboxyfluorescein-labeled peptides. 

When dealing with the synthesis of large peptide collections (Jung et al., 1992) 

and combinatorial compound libraries (Jung, 1996;Jung, 1999) the use of a large 

excess of fluorophore is not economical. This is especially the case when 

isomerically pure carboxyfluorescein is desired (Rossi and Kao, 1997). Thus we 
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have established a protocol employing far less equivalents of carboxyfluorescein, 

which still results in complete turnover of the solid-phase bound peptides. 

Peptides bearing two different fluorescent dyes extend the use of fluorescently 

labeled reporter molecules to fluorescence resonance energy transfer (FRET) 

experiments (Clegg, 1995). These peptides can be used for various in vitro 

applications, e.g. the detection of metal ions (Pearce et al., 1998), the investigation 

of protein-ligand interactions (Wei et al., 1994) and monitoring of transpeptidation 

reactions (Kruger et al., 2002) or proteolytic activity (Cummings et al., 2002). In 

combination with large genetically encoded libraries of protein variants, such 

compounds have been used as substrates in order to identify proteolytic enzymes 

with novel substrate specificities (Olsen et al., 2000). For in vivo studies, such 

peptides have been employed for the analysis of cellular uptake and proteolytic 

processing of peptides (Hoogerhout et al., 1999;Bark and Hahn, 2000). 

During solid-phase synthesis of such doubly-labeled peptides, two complications 

are encountered. (i) The first fluorophore introduced must be chemically inert to 

the reaction conditions required for the selective deprotection of the second 

attachment site. (ii) Moreover, the first fluorophore may itself possess functional 

groups that may react with the activated second fluorophore.  

Here a generally applicable strategy is presented in which carboxyfluorescein is 

introduced as the first fluorophore. By introducing an O-trityl-protecting group to 

polymer bound carboxyfluorescein, the reaction of an activated second 

fluorophore with the phenolic hydroxy groups of the fluorescein moiety could be 

prevented. In addition, carboxyfluorescein was rendered chemically inert to the 

removal of the Dde-protecting group by hydrazine treatment enabling the 

orthogonal exposure of a second functional group. Trityl deprotection is achieved 

during the final TFA-cleavage of the peptide from the resin. 

The ability to render carboxyfluorescein chemically inert to a broad range of 

conditions in SPPS led to the development of a carboxyfluorescein-preloaded 

resin. This resin is ideally suited for the automated synthesis of large collections of 

fluorescein-labeled peptides with uniform labeling efficiency, and for the 

generation of large numbers of doubly-labeled peptides, bearing a fluorescein 

moiety at the C-terminus and a second dye of choice at the N-terminus. 
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3.3 Results 

3.3.1 Optimization of reaction conditions for fluorescein labeling 

The in situ generation of active esters in solid-phase peptide synthesis 

circumvents the need for the synthesis, work-up and storage of water-labile amino 

acid active esters. Nevertheless the introduction of amine-reactive fluorescent 

reporter groups has mostly relied on the use of cost-intensive preformed active 

ester derivatives (Hoogerhout et al., 1999). We applied a protocol describing the 

introduction of 5(6)-carboxyfluorescein by in situ activation using 10 equivalents of 

dye, DIC and HOBt (1:1:1) and a reaction time of 1 h for the labeling of several 

peptides (Weber et al., 1998).  Using this protocol, we detected several additional 

products by analytical HPLC and MALDI-MS. The molecular weights of the 

additional products differed from the masses of the carboxyfluorescein-labeled 

peptides by additional masses of n times 358.3 Da. These mass differences 

correspond to the masses of one, and several additional 5(6)-carboxyfluorescein 

groups.  

In order to analyze the identity of the side-products in more detail, Wang resin 

bound L-phenylalanine was chosen as a model compound. The phenyl moiety 

enables the detection of unlabeled material by UV-spectroscopy. HPLC-MS 

analysis of the product (1a) formed by reacting Phe-Wang resin with excess 5(6)-

carboxyfluorescein, as described (Weber et al., 1998), confirmed the formation of 

side products (29% according to HPLC-analysis [214 nm], Fig. 3.1 B). The two 

positional isomers of Fluo-Phe-OH showed retention times of 21.5 and 22 min 

([M+H]+ = 524.2 Da]. Three further products eluted at about 25.5 min ([M+H]+ = 

882.3 Da] followed by further additional products eluting at about 27.7 min ([M+H]+ 

= 1241.1 Da]. The masses of these side products corresponded to 

carboxyfluorescein-labeled phenylalanine, carrying two and three additional 

carboxyfluorescein molecules. These side products could also be detected by 

MALDI-MS (Fig. 3.1 A). Treatment of resin 1 with piperidine/DMF (1:4, v/v) prior to 

TFA cleavage removed these side products, yielding highly pure Fluo-Phe-OH 

(Fig. 3.1 B, 1a).  
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Figure 3.1 (A) MALDI mass spectrum of Fluo-Phe-OH (compound 1b, theor. [M+H]+ = 524.5 Da) 

without piperidine treatment. The side products ([M+H]+ = 882.7 Da, [M+H]+ = 1242.5 Da) differ by 

mass differences corresponding to one and two additional carboxyfluorescein moieties. (B) HPLC 

elution profiles of Fluo-Phe-OH synthesized with (compound 1a) and without (compound 1b) 

subsequent piperidine treatment. LC-MS analysis revealed the following masses: products eluting 

at 21.5 and 22 min, [M+H]+ = 524.2 Da; three products at 25.5 min, [M+H]+ = 882.3 Da; several 

additional products at 27.7 min [M+H]+ = 1241.1 Da. The larger number of peaks for side products 

with higher molecular masses and eluting at later times may be explained by side products carrying 

different combinations of 5- and 6-carboxyfluorescein. 

 

Even though complete turnover of the starting material was achieved in only 1 h, 

the use of 10 equivalents of dye and coupling reagent is uneconomical. For this 

reason, fewer equivalents but longer reaction times were tested as an alternative 

coupling condition. Labeling of Phe-Wang resin with only 2.5 equivalents of 5(6)-

carboxyfluorescein, DIC and HOBt (1:1:1) for 16 h resulted in complete acylation 

as monitored by Kaiser-Test. However, side products bearing additional 

carboxyfluorescein moieties were still formed. Again, the removal of these side 

products was achieved by piperidine treatment (data not shown).  

Next, we validated this labeling procedure for the octapeptide DYGIPADH, 

which has been shown to exhibit selective protein kinase C ε isozyme agonist 

activity (Chen et al., 2001). Acylation with 2.5 eq of 5(6)-
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carboxyfluorescein/DIC/HOBt (1:1:1) for 16 h again resulted in complete formation 

of the desired product Fluo-DYGIPADH (Fig. 3.2). Without piperidine/DMF 

treatment of the resin bound carboxyfluorescein-labeled peptide, more than 40% 

(HPLC, [214 nm]) of the peptide was labeled with more than one molecule of 5(6)-

carboxyfluorescein. These analytical data for an N-terminally labeled octapeptide 

again outline the importance of the piperidine treatment for the generation of 

carboxyfluorescein-labeled pure products.  
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Figure 3.2 (A) MALDI mass spectrum of Fluo-DYGIPADH-OH synthesized with piperidine 

treatment following the coupling of carboxyfluorescein (compound 2a) (theor. [M+H]+ = 1246.2 Da). 

(B) HPLC elution profiles of Fluo-DYGIPADH-OH with (compound 2a) and without (compound 2b) 

piperidine treatment. The unlabeled peptide H-DYGIPADH-OH eluted at 13.5 min, the positional 

isomers of Fluo-DYGIPADH-OH at 17.8 and 18.0 min. In 2b the side products eluting at 22.5 min, 

24.7 min and 26.6 min correspond to peptides carrying several molecules of carboxyfluorescein 

([M+H]+ = 1604.4 Da, [M+H]+ = 1963.0 Da, [M+H]+ = 2322.3 Da, respectively).  

 

The MHC class I-binding peptide ligand SIINFEK(Fluo)L (Wiesmüller et al., 

1955;Rötzschke et al., 1991) was synthesized in order to confirm that our strategy 

is also applicable to the labeling of peptides via a lysine side chain. Fmoc-
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Lys(Dde)-OH was incorporated by automated SPPS, yielding resin bound 

SIINFEK(Dde)L. After introducing the Boc protecting group at the N-terminus, the 

Dde protecting group was removed and the free ε-amino group was labeled with 

5(6)-carboxyfluorescein according to our protocol, yielding highly pure peptide. 

3.3.2 On-resin O-tritylation of carboxyfluorescein 

Peptides labeled with two different fluorescent dyes can either be generated in 

solution or using side chain-protected polymer bound peptides in SPPS in 

combination with orthogonal protecting group strategies. The scope of solution phase 

labeling is severely limited to sequences with special side-chain characteristics (Wei 

et al., 1994;Geoghegan et al., 2000). Moreover, several laborious purification steps 

are often required for this approach. In order to explore and optimize the generation of 

doubly-labeled peptides by an SPPS-based approach, Fmoc-Lys(Dde)-OH (Bycroft et 

al., 1993;Augustyns et al., 1998) was selected as a building block for the introduction 

of a second fluorescent dye via a selectively deprotectable lysine side chain 

(Hoogerhout et al., 1999). The Dde-protecting group can be removed by treatment of 

the resin bound peptide with 2% hydrazine hydrate/DMF. We chose this strategy 

instead of the incorporation of Fmoc-Lys(Mtt)-OH (Aletras et al., 1995). When working 

with Fmoc-Lys(Mtt)-OH in the presence of other trityl-based protecting groups, 

selective Mtt removal had been difficult to achieve (Bourel et al., 2000). Our strategy, 

described here, is based on the introduction of carboxyfluorescein at the N-terminus of 

a solid-phase bound peptide and of a second fluorophore via the selectively 

deprotectable lysine side chain. 

However, exposure of carboxyfluorescein-labeled peptides to 2% hydrazine 

hydrate/DMF twice for 3 min resulted in the formation of side products eluting several 

minutes earlier in analytical HPLC and possessing a mass 14 Da higher than that of 

the desired product.  

In order to assess whether this side product was due to the fluorescein moiety, the 

Fluo-Phe-Wang resin was also treated with 2% hydrazine hydrate/DMF. Again the 

formation of a side product with a mass surplus of 14 Da decreased the purity of the 

Fluo-Phe-OH compound by 24% (Fig. 3.3 B). This mass difference is indicative of the 

formation of a hydrazone or a hydrazide with peptide bound carboxyfluorescein.  

At this point we realized that the phenolic hydroxy groups of carboxyfluorescein 

could be protected by treatment with anhydrides, such as acetic anhydride or 
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trimethylacetic anhydride. These reactions lead to the conversion of 

carboxyfluorescein into the corresponding phenolic diesters of the lactone form 

(Mattingly, 1992;Theisen et al., 1992;Rossi et al., 1997). The conversion of the 

fluorescein moiety into its lactonic form can be monitored visually by the color change 

from orange to yellow and the loss of fluorescence. However, due to the lability of 

these phenolic esters to basic conditions, this protecting group strategy is 

incompatible with the conditions of hydrazine treatment. Instead, phenols can also be 

efficiently protected by base-stabile trityl-based protecting groups (Barlos et al., 1991) 

using trityl chloride for the introduction (Jung, 1996). Removal can be accomplished 

during TFA cleavage of the peptide from the resin.  

3b
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Figure 3.3 (A) Relevant regions of the on-bead FT-ATR-IR spectra of the Fluo(Trt)-Phe-Wang 

resin (3a) and of the Fluo-Phe-Wang resin (3b). The broad peak at 3300 cm-1 indicates the 

presence of unprotected hydroxy groups of resin bound carboxyfluorescein (3b). For the Fluo(Trt)-

Phe-Wang resin no such peak is detectable. The intensities of the two spectra were adjusted 

according to the intensity of the amide band at 1670 cm-1. (B) Analytical HPLC profile of Fluo-Phe-

OH after treatment with 2% hydrazine/DMF, with (compound 3a) and without (compound 3b) prior 

tritylation. Apart from the two positional isomers of Fluo-Phe-OH ([M+H]+ = 524.1 Da) two side 

products of compound 3b eluted at 19.5 min and 20.2 min ([M+H]+ = 538.1 Da). In the upper HPLC 

trace (3a) triphenylmethane, originating from the trityl-protecting group, eluted at 32.1 min. 

Fluo-Phe-Wang resin was treated with trityl chloride/DIPEA in DCM. Completeness 

of the tritylation was confirmed by the disappearance of the infrared band due to free 
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hydroxy groups (3600-3200 cm-1) by on-bead FT-ATR-IR spectroscopy (Fig. 3.3 A). 

Moreover, consistent with a conversion of carboxyfluorescein from its acid into its 

lactone form, the color of the resin changed from orange to yellow. Subsequently, the 

Fluo(Trt)-Phe-Wang resin was treated with 2% hydrazine hydrate/DMF twice for 3 

min. In this case, almost no side product with a mass difference of 14 Da was formed 

(Fig. 3.3 B). This result clearly demonstrates that the trityl-protecting group renders 

resin bound carboxyfluorescein stable to the modification by hydrazine.  

3.3.3 Synthesis of a doubly-labeled peptide 

In order to evaluate the trityl-protecting group strategy for the generation of doubly-

labeled peptides, the peptide amide Fluo-APPPEPPP-Pamb-Lys(Tamra) was 

synthesized using SPPS on Rink amide resin (Fig. 3.4).  

 
Rink amide resin

Ala-Pro-Pro-Pro-Glu(tBu)-Pro-Pro-Pro-Pamb-Lys(Dde)-

Fluo-Ala-Pro-Pro-Pro-Glu(tBu)-Pro-Pro-Pro-Pamb-Lys(Dde)-

Fluo(Trt)-Ala-Pro-Pro-Pro-Glu(tBu)-Pro-Pro-Pro-Pamb-Lys(Dde)-

2.5 eq  5(6)-carboxyfluorescein
2.5 eq DIC
2.5 eq HOBt,  DMF
16 h

12 eq  tritylchloride
12 eq DIPEA, DCM
2 x 16 h

Fluo(Trt)-Ala-Pro-Pro-Pro-Glu(tBu)-Pro-Pro-Pro-Pamb-Lys-

2 % hydrazine hydrate,  DMF
2 x 3 min

Fluo(Trt)-Ala-Pro-Pro-Pro-Glu(tBu)-Pro-Pro-Pro-Pamb-Lys(Tamra)-

2 eq  5(6)-carboxytetramethyl-
rhodamin-N-succinimidyl ester
5 eq DIPEA,  DMF
 16 h

95 % TFA, 2.5 % water, 2.5 % TIS
4 h

Fluo-Ala-Pro-Pro-Pro-Glu-Pro-Pro-Pro-Pamb-Lys(Tamra)-NH2

a
b

c

d

e

f

 
 

Figure 3.4 Synthesis of the doubly-labeled peptide amide Fluo-APPPEPPP-Pamb-Lys(Tamra)-

NH2 (compound 4). Optimized procedures include the introduction of 5(6)-carboxyfluorescein as the 

first fluorophore (a), cleavage of the phenolic ester (b), protection of the phenol (c), cleavage of the 

Dde-group (d), introduction of the second fluorophore (e), cleavage of the peptide (f). 

Such L-proline oligomers had been presented as peptide-bridged fluorescence 

resonance energy transfer cassettes (Li and Glazer, 1999) in order to study FRET 

characteristics of different dye-pairs. After introducing carboxyfluorescein at the N-
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terminus of the resin bound peptide amide APPPEPPP-Pamb-Lys(Dde), piperidine 

treatment and subsequent tritylation, the Dde-protecting group was removed by 

hydrazinolysis. The ε-amino group of the C-terminal lysine was dye labeled using 

activated 5(6)-carboxytetramethylrhodamine-N-succinimidylester. According to 

analytical HPLC, the purity of the crude Fluo-APPPEPPP-Pamb-Lys(Tamra) 

peptide amide after cleavage was 85%, (calc. [M+H]+ = 1833.0 Da, exp. [M+H]+ = 

1833.2 Da, determined by MALDI-MS). Figure 3.5 shows the fluorescence 

emission spectra of the doubly-labeled peptide, of 5(6)-

carboxytetramethylrhodamine and of 5(6)-carboxyfluorescein. When compared 

with the free fluorophores the fluorescence of both labels in this peptide was 

quenched significantly as reported previously for other peptides carrying this 

combination of fluorophores (Wei et al., 1994;Hoogerhout et al., 1999;Geoghegan 

et al., 2000).  

 

a
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Figure 3.5 (A) Fluorescence emission spectra of 5(6)-carboxyfluorescein (500 nM, curve a), 

5(6)-carboxytetramethylrhodamine (1 µM, curve b) and the peptide amide Fluo-APPPEPPP-Pamb-

Lys(Tamra)-NH2 (1 µM, curve c). Fluorescence was excited at 492 nm. (B) Absorption spectrum of 

the peptide Fluo-APPPEPPP-Pamb-Lys(Tamra)-NH2.  
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3.3.4 Generation of a fluorescein-preloaded resin for the 

automated synthesis of C-terminally labeled peptides 

The procedures described so far require the fluorescent derivatization of 

peptides after automated SPPS. In order to accelerate the generation of 

carboxyfluorescein-labeled peptides and guarantee uniform labeling yields for all 

peptides, we decided to establish a resin already carrying a fluorescein moiety. 

Such a preloaded resin should be compatible with automated parallel peptide 

synthesis. 

Rink amide resin was loaded with Fmoc-Lys(Dde)-OH, followed by deprotection 

of the Nα-amino group and coupling of 5(6)-carboxyfluorescein, as described. 

Following tritylation of the fluorescein moiety and removal of the Dde protecting 

group, the Nα-group was available for further peptide synthesis (Fig. 3.6).  

 
Rink amide resin

Fmoc-Lys(Dde)-

SPPS

5 eq Fmoc-Lys(Dde)-OH
5 eq DIC
5 eq HOBt, DMF
16 h

Fmoc-deprotection

2% hydrazine hydrate, DMF
2 x 3 min

2.5 eq  5(6)-carboxyfluorescein
2.5 eq DIC
2.5 eq HOBt, DMF 
16 h

Fluo-Lys(Dde)-

12 eq DIPEA, DCM
2 x 16 h

12 eq tritylchloride

Fluo(Trt)-Lys(Dde)-
2% hydrazine 
hydrate, DMF
2 x 3 min

Fluo(Trt)-Lys- Fluo-Lys-

SPPS

Fluo-Lys(Dde)-

Fluo-Lys(Dde)-

Resin 5a Resin 5b

Fmoc-Deprotection

20 % piperidine/DMF
40 min

 
 

Figure 3.6 Preparation of the Nα-carboxyfluorescein-labeled lysyl-Rink amide resins 5a and 5b 

with a free ε-amino group for peptide assembly.  
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A set of four peptides was synthesized by automated parallel peptide synthesis 

on this resin (resin 5a, Fluo(Trt)-Lys-Rink amide resin) and compared with the 

peptides synthesized on a resin carrying a non-tritylated carboxyfluorescein moiety 

(resin 5b, Fluo-Lys-Rink amide resin). Tritylation of the fluorescein moiety 

increased the purity of all peptides significantly (Tab. 3.1).  

 
Table 3.1 Analytical data for the peptides synthesized on resins 5a and 5b. 

 

Peptide Sequence, 
calc. [M+H]+ 

Resin 5a 
purity,  
[M+H]+ 

Resin 5b, 
purity 

 

Resin 5b, 
major side product,  

[M+H]+ 
Ahx-KGFKGVDAQGTLS-Ahx-εLys(Fluo) 

2020.3 Da 
 90 %, 

2019.8 Da 
49 % 28 %, 

2087.2 Da 
DYGIPADH-εLys(Fluo) 

1373.4 Da 
> 95 %, 

1373.2 Da 
76% 12 %, 

1441.0 Da 
APPPEPPP-Pamb-εLys(Fluo) 

1420.6 Da 
> 95 %, 

1420.4 Da 
75 % 13 %, 

1488.1 Da 
Ahx-EQKLISEEDL-Ahx-εLys(Fluo) 

1916.2 Da 
 87 %, 

1917.1 Da 
48 % 

 
29 %, 

1983.6 Da  
 

The purity was increased by about 20% for the two 9mer peptides and by about 

40% for the 16 and 13mer peptides. For the non-tritylated resin 5b the ∆M = +14 

Da side product (compound 3b) was present, as well as an unidentified side 

product with a mass surplus of 68 Da (Tab. 3.1). The latter reduced the purity of 

the peptides most significantly. All peptides synthesized on resin 5b did not exhibit 

the typical yellow color of fluorescein in aqueous solutions, but a slightly brown 

color. 
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3.4 Discussion 

This contribution presents optimized coupling procedures and protocols for the 

generation of fluorescently labeled peptides and particularly doubly-labeled 

peptides by SPPS. So far no investigator has addressed the chemistry of the 

introduction of 5(6)-carboxyfluorescein by in situ activation in detail. A large excess 

of fluorophore and coupling reagents for N-terminal labeling of solid-phase bound 

peptides led to the generation of side products with higher molecular masses 

which matched multiples of the carboxyfluorescein moiety. Alternative in situ 

activation reagents, such as TBTU, did not affect the formation of these side 

products (data not shown). Considering the absence of any reactive functional 

group in the chosen L-phenylalanine model compound, apart from the free α-

amino group, the phenolic hydroxy groups of fluorescein are the only available 

reactive functional groups. In organic solvents, like DMF, fluorescein exists 

predominantly in its lactonic form (Fompeydie and Levillain, 1980). Evidently, the 

phenolic hydroxy group of carboxyfluorescein can be acylated by in situ activated 

carboxyfluorescein resulting in the formation of phenolic esters. Moreover, 

phenolic esters, in particular activated phenyl esters with electron withdrawing 

groups, are well known to be cleavable by nucleophiles, such as free amino 

groups of peptides or in basic media. Consistent with this hypothesis, treatment 

with piperidine readily removed these side products yielding highly pure 

carboxyfluorescein-labeled peptides.  

Completion of removal of the ester bound carboxyfluorescein could be 

confirmed by the absence of the red color of carboxyfluorescein in piperidine/DMF. 

It should be noted that using continuous flow-through, the removal of ester bound 

carboxyfluorescein with 20% piperidine/DMF lasted between 10 and 45 min, 

depending on the peptide sequence. The use of piperidine for this crucial ester 

cleavage makes it possible to work with automated parallel SPPS, because 

piperidine is routinely used for Fmoc-removal during Fmoc/tBu-based SPPS. 

Moreover, peptide synthesizers are frequently equipped with UV-detection devices 

in order to monitor Fmoc-removal, which makes it possible to monitor the removal 

of the carboxyfluorescein molecules.  

A considerable reduction of the equivalents of fluorophore and coupling 

reagents and the extension of the reaction times still ensured a quantitative 
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turnover. This procedure is especially useful for applications in which the use of 

isomerically pure carboxyfluorescein is desired, which is far more expensive than 

the mixture of the two positional isomers (Rossi et al., 1997). Fulop et al. 

presented the labeling of individual peptides with 1.5 and 3 fold excess and 

variable coupling times from 4 to 24 h. Here, we validated a 2.5 fold excess and a 

16 h coupling time as a general approach yielding complete turn over and high 

purities of the crude products for a large number of different peptides. 

Labeling of resin bound L-phenylalanine with 5-carboxyfluorescein resulted in 

only one single product peak after piperidine treatment, consistent with a lack of 

reactivity of the carboxy group in the 2’ position. Fluorescein derivatives are known 

to exist as lactones or free acid tautomers (Anthoni et al., 1995). The lack of 

reactivity of the 2’ carboxy group is indicative of the fact, that fluorescein exists 

predominantly in its lactonic form in organic solvents, like DMF (Fompeydie et al., 

1980).  

For further derivatization of fluorescein-labeled peptides, the phenolic hydroxy 

groups were protected by tritylation. O-tritylation could be monitored by the change 

of color of the resin from orange to yellow, consistent with a conversion of 

carboxyfluorescein from the acid into its lactonic form. Completeness of the O-

tritylation of the carboxyfluorescein moiety was deduced from on-bead FT-ATR-IR 

spectroscopy and the resulting chemical inertness. A direct structural confirmation 

by NMR was not possible due to the failure to release the protected compound 

from the resin without partial loss of the highly acid labile trityl protecting group.  

The availability of a protecting group strategy for carboxyfluorescein compatible 

with Fmoc/tBu-SPPS and orthogonal side chain protecting groups, such as Dde or 

allyloxycarbonyl (Alloc) (Loffet and Zhang, 1993), offers highly attractive options 

for the generation of biological probe molecules carrying a second dye or 

modification (e.g. a biotin or a lipid moiety) apart from N-terminal 

carboxyfluorescein. In the absence of tritylation, removal of Dde with hydrazine led 

to the formation of a side product with a 14 Da mass surplus. While the prevalence 

of the lactonic form of fluorescein favors the hydrazide as the side product, the 

formation of the hydrazone with the quinoid carbonyl C-atom of carboxyfluorescein 

in a residual fraction of the acid form may also be possible.  
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In spite of the O-tritylation of the Fluo-Phe model compound, minor amounts of 

the side product were still formed, as shown in Fig. 3.3 B (trace 3a). This residual 

formation of side product is probably caused by incomplete tritylation and not by 

the lability of the trityl group. In our hands O-tritylation of carboxyfluorescein has 

proven to be stable to various conditions of SPPS employing the Fluo(Trt)-Lys-

Rink amide resin, i.e. repetitive steps of coupling, piperidine treatment and 

washing. Methanol was omitted from the washing steps, however, because 

prolonged exposure to protic solvents led to partial removal of the trityl-protecting 

group.      

 O-tritylation enables the efficient synthesis of doubly-labeled peptides because 

it renders resin bound fluorescein inert towards an activated second dye, which 

may by itself react with the fluorescein moiety. In contrast to protocols published 

previously our procedure leads to a major improvement in the purity of the crude 

peptides and reduces the number of steps required for the generation of a doubly-

labeled peptide after automated peptide synthesis from four to only one  

(Hoogerhout et al., 1999;Kruger et al., 2002).  

Finally, the O-trityl-protecting group enabled the development of a Fluo(Trt)-Lys-

OH preloaded resin for the generation of C-terminally labeled peptides. This resin 

eliminates the problem of sequence dependent reaction times necessary for the 

cleavage of the phenolic esters. Using this resin, carboxyfluorescein-labeled 

peptides with uniform labeling yields could be obtained by automated procedures. 

Interestingly, when using non-tritylated carboxyfluorescein for this purpose the 

major side product was not derived from hydrazine treatment. The major side 

product accumulated with increasing length of the assembled peptide and showed 

a mass surplus of 68 Da. This mass difference might be explained by the addition 

of piperidine under conditions of water condensation. The exact identity of this side 

product is under investigation. 

The Fluo(Trt)-Lys-Rink amide resin is currently used in our laboratory for the 

parallel-automated synthesis of doubly-labeled peptides, carrying 

carboxyfluorescein as the C-terminal fluorescent dye and a second fluorophore of 

choice at the N-terminus. Moreover, we expect that such a resin is of general use 

in solid-phase synthesis with applications in the generation of fluorescein-labeled 

combinatorial compound collections. 
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3.5 Materials and methods 

3.5.1 Peptide synthesis 

Automated peptide synthesis was performed by solid-phase Fmoc/tBu-chemistry 

using an automated peptide synthesizer for multiple peptide synthesis (RSP5032, 

Tecan, Hombrechtlikon, Switzerland) in 2 ml syringes. Fmoc-protected amino 

acids (twelve fold excess) were activated in situ using DIC/HOBt. After 90 min, the 

Fmoc group was removed by treatment with piperidine/DMF (1:4, v/v) twice for 8 

min. The resin was washed with DMF (6x) after each coupling and deprotection 

step. Side chains of Asp, Glu, Ser, Thr and Tyr were tBu protected, side chains of 

His and Gln were Trt protected and the side chain of Lys was Boc protected. 

Fmoc-(4-aminomethyl) benzoic acid (Fmoc-Pamb) was purchased from 

Neosystem (Strasbourg, France) and Fmoc-Lys(Dde)-OH from Novabiochem 

(Läufelfingen, Schweiz). 5(6)-carboxyfluorescein (Fluo) and 5(6)-

carboxytetramethylrhodamine (Tamra)-N-succinimidylester were from Fluka 

(Deisenhofen, Germany).  

Derivatizations of peptides were performed manually in 2 ml syringes on a 

shaker at RT. Reactions were stopped by washing the resins 3 times each with 

DMF, MeOH, DCM and diethyl ether. Completeness of amine acylation was 

confirmed using the Kaiser-Test (Sarin et al., 1981). Manual Fmoc-deprotection 

was achieved by treating the resin with piperidine/DMF (1:4, v/v) twice for 10 min. 

Deprotection of the Dde protecting group was performed using 2% hydrazine 

monohydrate in DMF (v/v) twice for 3 min.  

Unless otherwise stated, peptides were cleaved off the resin using TFA/TIS/H2O 

(95:2.5:2.5, v/v/v) for the indicated period of time. Crude peptides were 

precipitated by adding cold diethyl ether (-20°C). The precipitated peptide was 

collected by centrifugation and resuspended in cold diethyl ether. This procedure 

was repeated twice. Finally peptides were dissolved in tBuOH/H2O (4:1, v/v) and 

lyophilized.  
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3.5.2 FT-ATR-IR spectroscopy 

On-bead FT-ATR-IR spectroscopy was performed on a Bruker IFS48 

Spectrometer (Bremen, Germany). The intensities of the spectra were adjusted 

according to the intensity of the amide band at 1670 cm-1. 

3.5.3 HPLC 

Peptides and conjugates were analyzed using analytical RP-HPLC using a 

water (0.1% TFA) (solvent A)/ACN (0.1% TFA) (solvent B) gradient on a Waters 

600 System (Eschborn, Germany) with detection at 214 nm. The samples were 

analyzed on an analytical column (Nucleosil 100, 250 x 2 mm, C18 column, 5 µm 

particle diameter; Grom, Herrenberg, Germany), using a linear gradient from 10% 

B to 100% B within 30 min (flow rate: 0.3 ml/min).  

Peptides were purified by preparative RP-HPLC (Nucleosil 300, 250 x 20 mm, 

C18 column, 10 µm particle diameter; Grom, Herrenberg, Germany) on a Waters 

600 Multisolvent Delivery System (flow rate: 10 ml/min). Gradient Systems were 

adjusted according to the elution profiles and peak profiles obtained from the 

analytical HPLC chromatograms.  

3.5.4 MALDI-MS 

One micro liter of DHAP matrix (20 mg of DHAP, 5 mg of ammonium citrate in 1 

ml of 80% isopropyl alcohol) was mixed with 1 µl of each sample (dissolved in 

ACN/water (1:1) at a concentration of 1 mg/ml) on a gold target. Measurements 

were made using a laser-desorption time of flight system (G2025A, Hewlett-

Packard, USA). For signal generation 20-50 laser shots were added up in the 

single shot mode. 

3.5.5 Labeling of peptides with carboxyfluorescein 

In all experiments, the isomeric mixture of 5-and 6-carboxyfluorescein (61:39 

isomer ratio, purchased from Fluka) was used for labeling, unless otherwise 
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stated. 5(6)-carboxyfluorescein is also known as 4(5)-carboxyfluorescein 

(Adamczyk et al., 1997;Rossi et al., 1997). 

3.5.6 Fluorescence emission and absorption spectra 

Fluorescence emission spectra were recorded from 450 to 750 nm (excitation at 

492 nm) at RT in 100 mM Tris/HCl (pH 8.8) using an LS50B spectrofluorometer 

(Perkin-Elmer, Norwalk, CT, USA). The spectra were corrected for the sensitivity 

of the detection system. The excitation and emission bandwidths were set to 5 nm. 

Absorption spectra were acquired using an Ultrospec 2000 (Pharmacia Biotech, 

Cambridge, England) using 100 mM Tris/HCl (pH 8.8).  

3.5.7 Procedures for the synthesis of the different fluorescently 

labeled compounds 

Synthesis of Fluo-Phe-OH (1a and 1b) with high excess of 

carboxyfluorescein. Fmoc-Phe-Wang resin (14 mg, 10 µmol) was Fmoc-

deprotected and treated as described (Weber et al., 1998) for 1 h with 5(6)-

carboxyfluorescein (37.6 mg, 100 µmol), DIC (15.5 µl, 100 µmol), HOBt (15.3 mg, 

100 µmol) in DMF (130 µl). The resin was divided into two portions of 5 µmol each 

(1a and 1b). 1a was treated with 20% piperidine/DMF (v/v) in a syringe until the 

solution was free of excess carboxyfluorescein (15 min). The products (1a and 1b) 

were cleaved off using TFA/H2O (97.5:2.5, v/v) over 4 h. After evaporation of the 

cleavage mixture to dryness, the products were dissolved in ACN/water (1:1), 

lyophilized and analyzed by HPLC and MALDI-MS.    

 

Synthesis of Fluo-DYGIPADH (2a and 2b) with low excess of 
carboxyfluorescein. The peptide H-DYGIPADH-OH was synthesized 

automatically on 2-chlorotrityl resin, which was preloaded with Fmoc-His(Trt)-OH. 

Resin bound H-DYGIPADH-OH (6 µmol) was allowed to react with 5(6)-

carboxyfluorescein (5.6 mg, 15 µmol), DIC (2.3 µl, 15 µmol), HOBt (2.3 mg, 15 

µmol) in DMF (150 µl) for 16 h. After washing the resin as described, the resin was 
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divided into two portions of 3 µmol each (2a and 2b). 2a was treated with 20% 

piperidine/DMF as described for 1a (45 min).  

The carboxyfluorescein-labeled peptides 2a and 2b were cleaved from the resin 

with TFA/TIS/H2O (95:2.5:2.5, v/v/v) for 4 h. After precipitation with diethyl ether, 

both peptides were dissolved in ACN/water, lyophilized and analyzed by HPLC 

and MALDI-MS. 

 

On-resin introduction of the O-trityl-protecting group to 

carboxyfluorescein (3). Fluo-Phe-Wang resin (10 µmol) was prepared as 

described for 1. The resin was then divided into two portions of 5 µmol each (3a 

and 3b). 3a was treated twice with trityl chloride (16.7 mg, 60 µmol) and DIPEA 

(10.3 µl, 60 µmol) in DCM for 16 h. Small amounts of resins 3a and 3b were 

vacuum dried and analyzed by on-bead FT-ATR-IR spectroscopy.  

 

Treatment of 3a and 3b with hydrazine. Resins 3a and 3b were treated twice 

using 2% hydrazine hydrate in DMF for 3 min and washed thoroughly. Products 

were cleaved off using TFA/TIS/H2O (95:2.5:2.5, v/v/v) for 2 h. After evaporation of 

the cleavage mixture to dryness the products were dissolved in ACN/water, 

lyophilized and analyzed by HPLC and MALDI-MS.  

 

Synthesis of Fluo-APPPEPPP-Pamb-Lys(Tamra) (4). The peptide amide H-

APPPEPPP-Pamb-Lys(Dde)-NH2 was synthesized by automated solid-phase 

peptide synthesis on Rink amide resin. H-APPPEPPP-Pamb-Lys(Dde)-NH2 Rink 

amide resin (14 µmol) was labeled with 5(6)-carboxyfluorescein as described for 

2a and then treated twice with trityl chloride (168 µmol, 46.8 mg) and DIPEA (168 

µmol, 28.8 µl) in DCM for 16 h. Subsequently, Dde-deprotection of resin bound 

Fluo(Trt)-APPPEPPP-Pamb-Lys(Dde)-NH2 was performed as described. 5(6)-

carboxytetramethylrhodamine-N-succinimidyl ester (8 µmol, 4.2 mg) was dissolved 

in DMF (150 µl) containing DIPEA (20 µmol, 3.4 µl) and the solution was then 

added to resin loaded with 4 µmol of peptide. After 16 h, the resin was thoroughly 

washed. Deprotection of the doubly-labeled peptide amide was performed using 

TFA/TIS/H2O (95:2.5:2.5, v/v/v) for 4 h. Following ether precipitation, peptide 4 

was dissolved in ACN/water, lyophilized and analyzed by HPLC and MALDI-MS. 
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The peptide was purified as described by preparative HPLC for spectroscopic 

characterization. 

 

Preparation of Fluo(Trt)-Lys-Rink amide resin (5a, 5b). Fmoc-Rink amide 

resin (200 µmol, 270 mg) was deprotected and reacted with Fmoc-Lys(Dde)-OH (1 

mmol, 533 mg), DIC (155 µl, 1 mmol) and HOBt (153 mg, 1 mmol) in DMF for 16 

h. After Nα-Fmoc-deprotection, the Nα-amino group was labeled with 5(6)-

carboxyfluorescein as described for 2a, yielding Fluo-Lys(Dde)-Rink amide resin. 

Immediately afterwards, 50 µmol of the Fluo-Lys(Dde)-Rink amide resin were Dde-

deprotected (5a). In a parallel reaction 100 µmol of the Fluo-Lys(Dde)-Rink amide 

resin was tritylated first as described for 3a and then Dde deprotected (5b). A set 

of four peptides (as listed in Tab. 3.1) were synthesized by automated peptide 

synthesis on the ε-lysine side chain of resins 5a and 5b for a comparative study. 
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4 A quantitative validation of fluorophore-labeled cell-

penetrating peptide conjugates: Fluorophore and cargo 

dependence of import 

This chapter was published in Biochimica Biophysica Acta-Biomembranes in 

2002. The author of this thesis performed all experiments shown in Figures 1, 2, 5 

and 6. Figure 3 was contributed by T. Waizenegger as part of his diploma thesis. 

Figure 4 gives a comparison between the data obtained by flow cytometry 

(contributed by R.F.) and FCM (contributed by T. Waizenegger). The author of this 

work has established FCM for the validation of the cellular import of CPPs during 

his own diploma thesis. T. Waizenegger has optimized and published these 

protocols during his diploma thesis (Waizenegger et al. 2002).  

4.1 Summary 

Cell-penetrating peptides (CPPs) were evaluated for a quantitatively controlled 

import of small molecules. The dependence of the import efficiency on the 

fluorophore, on the position of the fluorophore as well as on the nature of the 

cargo was addressed. Cellular uptake was quantified by flow cytometry and 

fluorescence correlation microscopy (FCM). Fluorophores with different spectral 

characteristics, covering the whole visible spectral range were selected in order to 

enable the simultaneous detection of several cell-penetrating peptide constructs. 

The transcytosis sequences were based either on the sequence of the 

Antennapedia homeodomain-derived Penetratin peptide (Antp) or the Kaposi 

bFGF-derived MTS-peptide. In general, the Antp-derived peptides had a three to 

four fold higher import efficiency than the MTS-derived peptides. In spite of the 

very different physicochemical characteristics of the fluorophores, the import 

efficiencies for analogues labeled at different positions within the sequence of the 

import peptides showed a strong positive correlation. However, even for peptide 

cargos of very similar size, pronounced differences in import efficiency were 

observed. The use of CPP/cargo constructs for intracellular analyses of structure-

function relationships therefore requires the determination of the intracellular 

concentrations for each construct, individually.  
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4.2 Introduction 

Many CPPs were originally considered to cross the plasma membrane in a 

receptor and energy-independent manner (Derossi et al., 1994;Derossi et al., 

1996). More recent data demonstrated, that earlier interpretations of cell-biological 

experiments, may have suffered from artifactual uptake of CPPs caused by 

fixation of cells. Endocytosis is currently implicated in the internalization of the 

HIV-1 Tat peptide (Richard et al., 2003). CPPs represent a structural diverse class 

of substances. Some CPPs are derived from hydrophobic sequences of signal 

peptides, such as the Kaposi basic fibroblast growth factor-derived membrane 

translocating sequence (MTS) (Lin et al., 1995), or from insect proteins, such as 

the third helix of the DNA-binding domain of the Antennapedia homeodomain 

protein (Antp) (Derossi et al., 1994). While the former is a highly hydrophobic 

sequence with 8 out of 16 amino acids being valine and leucine residues and the 

remainder either alanine or proline, the latter is basic with 7 out of 16 residues 

being arginine or lysine.  

Covalent or non-covalent (Dokka et al., 1997) linkage of CPPs to other 

molecules mediates the non-invasive import of these cargo molecules into cells ex 

vivo, as well as in whole animals (Schutze-Redelmeier et al., 1996;Schwarze et 

al., 1999). Such cargo have been peptides (Prochiantz, 1996;Hawiger, 1999), 

oligonucleotides (Dokka et al., 1997), as well as proteins as large as 120 kDa 

(Rojas et al., 1998;Schwarze et al., 1999). The capacity to mediate entry of 

impermeable molecules into cells renders CPPs a valuable tool in the early stages 

of the drug development process. Import of inhibitors may serve to identify and 

validate intracellular molecules as targets for achieving a desired therapeutic 

outcome (Wallace, 1997). Substances exhibiting biological activity for isolated 

molecules in vitro, but unfavourable pharmacokinetic properties for in vivo tests 

may be rendered cell-permeable. Fusion of CPPs to antisense-oligonucleotides 

has been employed for suppressing the expression of certain proteins (Pooga et 

al., 1998b). Peptide conjugates have served as pseudo-substrates, competitive 

inhibitors of the enzyme active site (Rojas et al., 1996) or structural mimics of the 

interaction domain. The advantages of peptide-based approaches are the 

accessibility of large collections of different compounds by well-established 
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automated procedures, as well as the generation of active compounds based on 

available structural information of interaction domains. Structure-function 

relationships of intracellular interaction domains have been analysed by testing a 

series of different peptides fused to a CPP moiety (Liu et al., 1996).  

If the import efficiency of CPP-constructs is cargo-dependent, the determination 

of the intracellular concentrations for each of the CPP/cargo constructs is 

mandatory, particularly in the analysis of structure-function relationships. 

Otherwise differences in a biological response may simply reflect differences in 

uptake efficiency. Fluorescent derivatization of CPPs provides a sensitive and 

specific quantitative read-out on intracellular peptide concentration using 

established techniques such as flow cytometry. In addition, the analysis of the 

subcellular distribution of CPP/cargo constructs by fluorescence microscopy 

enables the identification of cellular compartments targeted by a cell-penetrating 

construct. Attaching the fluorescent reporter group to the CPP moiety minimizes 

the risk of interference of the fluorescent label with the activity of the cargo. By 

means of  chemical ligation (Zhang et al., 1998) or disulfide linkage (Schulz et al., 

2000), CPPs or fluorescent analogues of these peptides may be used as building 

blocks for rendering molecules cell permeable. 

To date, however, fluorescent labeling of CPPs has been limited to N-terminal 

derivatization of peptides either with fluorescein (Scheller et al., 2000;Fischer et 

al., 2000) or NBD (7-nitrobenz-2-oxo-1,3-diazol-4-yl) (Drin et al., 2001). The import 

of CPP constructs into cells expressing GFP fusion proteins, as well as the 

simultaneous detection of several different CPP constructs requires the 

identification of spectrally distinct fluorophores compatible with import. For this 

purpose, it needs to be determined to which degree reporter groups with different 

physicochemical characteristics influence the import characteristics of the CPP 

constructs. A fluorescein reporter group, for example, carries negative charge, 

while a tetramethylrhodamine (Tamra) reporter group is zwitterionic. Positive 

charge as well as hydrophobicity were identified as important physicochemical 

determinants for import efficiency for the AntpHD peptide (Derossi et al., 

1994;Futaki et al., 2001). It was therefore to be expected that the import efficiency 

of the transcytosis sequences should be affected by the physicochemical 

characteristics of the fluorophore. Furthermore, fluorescent analogues carrying the 

fluorophore at a residue within the peptide sequence rather than at the N-terminus 
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are still missing. Such analogues would enable the N-terminal modification of 

CPPs with cargo molecules by solid-phase synthesis. In addition, the introduction 

of one fluorophore within the transcytosis peptide and a second reporter group 

within the cargo would enable the tuning of the spectral characteristics of double 

labeled constructs for fluorescence resonance energy transfer (FRET) (Clegg, 

1995). Such molecules are valuable tools for the intracellular monitoring of e. g. 

kinase (Nagai et al., 2000) or protease activity (Jones et al., 2000). 

In order to establish fluorescently labeled CPPs as pharmacokinetic modifiers 

for small molecules, the impact of a fluorescent tag on the ability of the CPPs to 

enter cells was addressed. For this purpose, sets of analogues labeled with 

different fluorophores were generated by solid-phase peptide synthesis. 

Fluorophores were attached to the side chains of lysine residues introduced at 

different positions within the peptide sequence, and the effect of different 

fluorophores on import was compared.  

For both, the Antp and the MTS peptides, internally labeled analogues were 

identified with import efficiencies equivalent to the N-terminally labeled peptides. 

Surprisingly, the relative import efficiencies of peptides labeled either with 

fluorescein or Tamra at the N-terminus or within the peptide showed a strong 

positive correlation. This correlation of import efficiencies for fluorescein and 

Tamra-labeled CPP analogues demonstrates that the capacity for import resides 

within the structure of the peptide, and is little affected by the physicochemical 

characteristics of the fluorophore. This finding was confirmed by fluorescence 

correlation microscopy (FCM) (Brock et al., 1999) of fluorescein and Tamra-

labeled peptides at lower nanomolar concentrations. The spectral range was 

extended to the near infrared by conjugation of an indocyanine dye with Cy5-like 

(Southwick et al., 1990;Mader et al., 2004) spectral characteristics. Import of three 

different CPP analogues was simultaneously detected by confocal laser scanning 

microscopy of living cells.  

Finally, the dependence of import on the cargo was addressed for small peptide 

cargos. Perez et al. have presented one example, in which for one out of three 

structurally related constructs, import was completely abrogated (Perez et al., 

1994). A thorough quantitative analysis of import efficiencies for small peptide 

cargos has been missing, however. For this purpose a panel of different cargo 
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peptides of eight to ten amino acids in length, as well as peptides with free or 

amidated C-termini were synthesized. The intracellular concentrations of these 

molecules differed by factors of up to eight. These findings underscore the need 

for an individual determination of intracellular concentrations in applications, such 

as the intracellular analysis of structure-function relationships and target validation. 

The results presented in this paper validate fluorescence as the analytical method 

of choice for these measurements. 
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4.3 Results 

Fluorescently labeled CPPs were established as pharmacokinetic modifiers in 

intracellular target validation. For this purpose, the import capacity was compared 

for CPP analogues labeled with fluorophores at different positions along the 

peptide. Moreover, the dependence of import on the peptide cargo was 

determined.  All peptides were generated by solid-phase peptide synthesis and 

purified by preparative HPLC. Import of peptides into the human melanoma cell 

line SKMel37 was quantified in living cells after trypsinization by flow cytometry. 

Fluorescence correlation microscopy (FCM), as well as confocal laser scanning 

microscopy was employed to fully interpret the results obtained by flow cytometry. 

4.3.1 Internally labeled fluorescent analogues 

To this end, import of CPPs had only been observed for peptides labeled with 

fluorophores at their N-terminus. In order to extend the range of fluorescently 

labeled CPPs, analogues derivatized with a fluorophore within the peptide 

sequence were generated.  

 
Table 4.1 Name and sequence of carboxyfluorescein-labeled Antp and MTS analogues. 

Those peptides marked with an asterisk were also synthesized as carboxytetramethylrhodamine-

labeled analogues. “Ac” denotes an N-terminal acetylation, “Ado” represents a hydrophilic 8-amino-

3,6-dioxaoctanoic acid building block. All peptides were synthesized as peptide carboxylic acids. 

 

Abbreviation  Amino acid sequence 
Antp WT(Fluo)* Fluo-RQIKIWFQNRRMKWKK-COOH 

Antp W6K(Fluo) Ac-RQIKIK(Fluo)FQNRRMKWKK-COOH 

Antp F7K(Fluo)* Ac-RQIKIWK(Fluo)QNRRMKWKK-COOH 

Antp Q8K(Fluo) Ac-RQIKIWFK(Fluo)QNRRMKWKK-COOH 

Antp N9K(Fluo)* Ac-RQIKIWFQK(Fluo)NRRMKWKK-COOH 

MTS WT(Fluo)* Fluo-AAVALLPAVLLALLAP-Ado-A-COOH 

MTS V9K(Fluo) Ac-Ado-AAVALLPAK(Fluo)LLALLAP-Ado-A-COOH 

MTS L10K(Fluo)* Ac-Ado-AAVALLPAVK(Fluo)LALLAP-Ado-A-COOH 

MTS L11K(Fluo) Ac-Ado-AAVALLPAVLK(Fluo)ALLAP-Ado-A-COOH 

MTS A12K(Fluo)* Ac-Ado-AAVALLPAVLLK(Fluo)LLAP-Ado-A-COOH 
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The availability of such compounds would (i) significantly increase the options 

for the generation of doubly-labeled CPP constructs and (ii) enable the N-terminal 

extension of fluorescently labeled CPPs with cargo. Analogues were generated for 

both, the Antp and the MTS peptide. The uptake efficiencies were compared and 

the effect of different fluorophores on uptake properties addressed. 
For both transcytosis peptides, series of analogues were synthesized in which 

one of four consecutive residues in the central portion of the peptide was replaced 

by a lysine residue derivatized with carboxyfluorescein via its ε-amino group (Tab. 

4.1). Relative import efficiencies into adherently growing SKMel37 cells were 

determined by flow cytometry. As reported earlier for measurements by 

fluorescence correlation microscopy (Waizenegger et al., 2002), import of the N-

terminally labeled Antp analogue was about 2.5 times that of the corresponding 

MTS analogue (Fig. 4.1).  
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Figure 4.1 Relative import efficiencies of carboxyfluorescein-labeled CPPs. Given are the 

means for two independent experiments. The experiments were normalized based on the total 

fluorescence of both experiments. As a control for unspecific peptide binding, the amidated peptide 

Fluo-Ahx-SFHTMSAAKLI was used. Adherently growing SKMel37 cells were incubated with 

peptides at a concentration of 4 µM at 37°C for 2 h followed by trypsinization and flow cytometry. 
 

The relative import efficiencies were highly reproducible. Except for the 

fluorescein-labeled A12K(Fluo) MTS analogue, fluorescent derivatization within 

the MTS peptide reduced the import efficiency to the levels of unspecific binding 

and uptake of a fluorescein-labeled control peptide. The import efficiency of the 
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A12K(Fluo) analogue was about 85% that of the N-terminal analogue. For the 

Antp peptide, as well, one analogue (N9K(Fluo)) was imported as efficiently as the 

N-terminal analogue, while the other three fluorescein derivatives showed greatly 

reduced import efficiencies. For the Q8K(Fluo) analogue, import was reduced by 

50% and nearly completely abolished for the other two analogues.   

4.3.2 Effect of the fluorophore on import efficiency 

So far, fluorescent labeling of CPPs has been limited to the introduction of 

fluorophores emitting in the short-wavelength visible part of the spectrum. 

Fluorophores emitting in the orange to far red spectral range are highly desirable 

for the elimination of autofluorescence (Aubin, 1979) and for the detection of CPPs 

in the presence of GFP-fusion proteins. The fluorophore tetramethylrhodamine 

(Tamra) was selected based on its compatibility with solid-phase peptide 

synthesis, price, high photostability and spectral compatibility with fluorescein and 

Cy5-like dyes for simultaneous detection. A subset of Tamra-labeled analogues 

was synthesized and import quantified by flow cytometry (Fig. 4.2 A).  
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Figure 4.2 Comparison of import efficiencies of carboxyfluorescein and Tamra-labeled 

CPP analogues. (A) Relative import efficiencies of Tamra-labeled peptide analogues. Adherent 

SKMel37 tissue culture cells were incubated with peptide at a concentration of 4 µM for 2 h, 

trypsinized and fluorescence measured by flow cytometry. (B) Correlation of import efficiencies of 

Tamra and carboxyfluorescein-labeled peptide analogues. 
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In contrast to fluorescein carrying one negative charge at neutral pH, Tamra is a 

zwitterionic compound with a neutral net charge. Earlier analyses of structure-

function relationships of CPPs had stressed the significance of the 

physicochemical characteristics of the transcytosis sequence (Fischer et al., 

2000). Negative charge, in particular, was shown to be incompatible with import 

(Scheller et al., 1999). In comparison to fluorescein, it was therefore suspected 

that Tamra would significantly promote import.  

As for the fluorescein analogue, full import capacity was observed for the MTS 

A12K(Tamra) and Antp N9K(Tamra) variants, while import was abolished for the 

MTS L10K(Tamra) analogue. In contrast to the fluorescein derivatives, import of 

the Antp F7K(Tamra) was reduced by only 50%. The relative import efficiencies for 

the fluorescein-labeled constructs showed a strong positive correlation with those 

of the Tamra-labeled constructs (Fig. 4.2. B). In spite of the differences in the 

physicochemical characteristics of the dyes, derivatization of individual residues 

affected import in a similar way, independent of the dye. Measurements of 

intracellular concentrations by fluorescence correlation microscopy (see below), 

revealed that import of the N-terminally labeled Tamra-labeled peptides was more 

efficient by a factor of 1.5 than that of the respective fluorescein-labeled peptides. 

Considering the positive correlation of import efficiencies, the Tamra reporter 

group affected import of all analogues in a similar fashion. 

4.3.3 Concentration independence of peptide import 

The concentration independence of import is a vital prerequisite for the analysis 

of intracellular dose-response characteristics using CPP/cargo constructs. To 

date, however, the analysis of import has been limited to the micromolar range. 

Recently, we presented intracellular concentration measurements of fluorescein-

labeled CPPs in the nanomolar range by fluorescence correlation microscopy 

(Waizenegger et al., 2002). In contrast to other techniques, FCM allows for a direct 

determination of molecule numbers. Due to the minuteness of the confocal 

detection volume (sub-femtoliter), intracellular measurements can be conducted 

with peptide present in the incubation buffer outside the cell.  
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Figure 4.3 Intracellular concentration measurements of CPPs labeled at the N-terminus 

with either fluorescein or Tamra by fluorescence correlation microscopy. (A) Intranuclear 

autocorrelation measurement of Fluo-Antp at a concentration of peptide in the buffer of 75 nM. The 

amplitude of the autocorrelation function at τ=0 s is inversely related to the number of molecules in 

the confocal detection volume. (B, C) FCM measurements of MTS and Antp peptides labeled at the 

N-terminus with either carboxyfluorescein (B) or Tamra (C). The number of molecules were derived 

from two-component fits to the autocorrelation functions and corrected for fluorescence originating 

from molecules adsorbed to the bottom of the measurement chambers. For MTS peptides as well 

as for Tamra-labeled Antp peptides the molecule numbers in the buffer were lower than those of 

the fluorescein-labeled Antp peptide due to stronger absorption of the peptides to the walls and the 

bottom of the measurement chamber. 

 

Cellular import of analogues labeled at the N-terminus was measured by FCM at 

lower nanomolar concentrations. Import of peptides was compared by calculating 

the partition coefficients as the ratio of the number of molecules in the nucleus and 

in the incubation buffer (Fig. 4.3).  
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Figure 4.4 Concentration-independence of import. (A) FCM-derived partition coefficients of 

cellular uptake calculated by dividing the number of molecules in the nucleus by the number of 

molecules in the incubation buffer (see Fig. 4.3). (B, C) Import efficiencies for Antp and MTS 

peptides N-terminally labeled with either carboxyfluorescein or Tamra. (D) Comparison of relative 

import efficiencies of carboxyfluorescein and Tamra-labeled peptides determined by FCM and flow 

cytometry. For FCM measurements, peptide concentrations were 75 nM for carboxyfluorescein and 

25 nM for Tamra-labeled peptides, and 2 µM and 4 µM for flow cytometry. In spite of these very 

different concentrations, the relative import efficiencies for Antp and MTS labeled peptides agreed 

with each other.  

 

The Tamra-labeled peptides were internalized more efficiently than the 

fluorescein-labeled peptides by a factor of 1.5 (Fig. 4.4 A). The application of FCM 

is limited to the subnanomolar to lower nanomolar concentration range. For this 

reason, it was impossible to compare the import efficiencies at nanomolar 

concentrations directly with those at micromolar concentrations. Instead, the 

relative import efficiencies of fluorescein and Tamra-labeled MTS and AntpHD 
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peptides determined by flow cytometry (Fig. 4.4 B and C) were compared with 

those determined by FCM (Fig. 4.4 D).  

The larger standard deviations of the FCM data result from the fact that this 

number is the ratio of the number of molecules outside and inside the cell. A total 

of at least 30 measurements in eight different cells were included for each 

condition. The higher standard deviations of the MTS peptides are explained by 

the stronger absorption to the bottom of the measurement chamber which had to 

be compensated for in order to determine the intracellular molecule number. A 

detailed presentation of these intracellular concentration measurements can be 

found in the publication by Waizenegger et al. (Waizenegger et al., 2002). The 

relative import efficiencies determined by both methods closely matched one 

another. If import for either one peptide was concentration dependent, this 

correspondence of import efficiencies would be very unlikely. This result, 

therefore, strongly supports a concentration independence of import covering the 

lower nanomolar to the lower micromolar range. Except for the Tamra-labeled 

Antp analogue, all partition coefficients were significantly smaller than one (Fig. 

4.4 A), i. e. the concentration of the peptide inside the cells was lower than the 

concentration outside. The peptide concentration in the buffer therefore does not 

reflect the intracellular concentration; the latter depends on the peptide in each 

individual case.  

4.3.4 Cargo-dependence of import 

In order to address the cargo-dependence of import for small peptide cargos in 

detail, N-terminally labeled Antp analogues with C-terminal peptide cargos of 

similar size were synthesized. Cargos were representative for primary applications 

of CPP constructs. These were the Myc-tag peptide EQKLISEEDL, a recently 

reported peptide inhibitor of the tyrosine kinase ZAP-70 KLILFLLL (Nishikawa et 

al., 2000), as well as the MHC class I-binding T-lymphocyte epitope SIINFEKL 

(Rötzschke et al., 1991). The latter two have already been employed in 

combination with CPPs (Nishikawa et al., 2000;Pietersz et al., 2001). 
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Figure 4.5 Cargo-dependence of import. (A) Import of Antp-based constructs labeled with 

carboxyfluorescein at the N-terminus. All peptides were synthesized as C-terminal peptide acids (-

COOH). The N-terminal glycine residue for the ZAP-70 inhibitor peptide KLILFLLL was introduced 

as a spacer amino acid. (B) Dependence of import on C-terminal amidation. Constructs were 

based on a truncated form of the Antp-sequence (tAntp) (Fischer et al., 2000) and the import of 

these peptides was compared with the import efficiency of the full length Antp peptide. For the 

inhibitor constructs, the C-terminal lysine residue of the tAntp peptide served as the first residue of 

the inhibitor. Cells were incubated with 2 µM peptide for 2 h. 

 

Intracellular fluorescence of cells incubated with the Antp-ZAP-70 inhibitor 

peptide for 2 h was five times that of cells incubated with the Antp peptide alone 

(Fig. 4.5 A). In contrast to this, the C-terminal extension of the Antp peptide with 

the Myc-tag peptide decreased the intracellular signal in comparison with the Antp 

peptide by more than 50%. For the MHC epitope, the intracellular signal was 3.5 

times that of the Antp peptide. 

The impact of minimal structural differences on import was addressed by 

quantifying intracellular fluorescence for pairs of peptides with either a free or 

amidated C-terminus. The constructs were based on a recently described 

truncated form of the Antp peptide comprising the C-terminal eight amino acids 

NRRMKWKK only (Fischer et al., 2000). C-terminal amidation had a great impact 

on import efficiency. Import of the amidated inhibitor construct was seven-times 

that of the construct with the free carboxy terminus, import of the amidated 

truncated peptide alone was 1.5 times that of the free acid. In contrast to the initial 

report on the truncated peptide, in our hands this molecule only translocated 

weakly. The truncated Penetratin peptides conjugated to the inhibitor peptide, 
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however, exhibited an internalization efficiency similar to the efficiency of the full 

length Penetratin. 

4.3.5 Triple labeling 

The availability of CPPs labeled with spectrally distinct fluorophores affords the use 

of combinations of different CPP/cargo constructs. In this way, several molecular 

interactions may be addressed simultaneously. To this end, only one CPP/cargo 

construct carrying one specific fluorophore has been used at a time. To explore the 

possibility of simultaneously detecting three CPP constructs in one cell, a further 

fluorescent analogue emitting fluorescence in the near infra-red part of the spectrum 

was generated. Cells were incubated with fluorescein-labeled, Tamra-labeled and 

S0387-labeled Antp (Mader et al., 2004) peptides and fluorescence detected by triple-

channel confocal laser scanning microscopy (Fig. 4.6). The cellular localization was 

very similar for all peptides, with a homogeneously distributed fluorescence present in 

the cytoplasm and in the nucleus and a vesicular pattern of fluorescence in the extra-

nuclear region of the cell. In comparison to the fluorescein- and S0387-labeled 

peptides, the Tamra-labeled peptide exhibited a stronger tendency to accumulate in 

vesicular structures.  

A B C

 
Figure 4.6 Simultaneous internalization of three different CPPs. Carboxyfluorescein- (A), 

carboxytetramethylrhodamine- (B), and S0387-labeled (C) Antp peptides were detected by 

multichannel confocal laser scanning microscopy of living cells. Cells were incubated with peptide 

at concentrations of 4 µM, 1 µM, and 2 µM for the fluorescein-, Tamra-, and S0387-labeled 

peptides, respectively, for 2 h at 37°C. The rhodamine and S0387 channel were virtually free of 

cross-talk as determined from control samples loaded with either fluorescein- or Tamra-labeled 

peptides, alone. The bar denotes 10 µm.  
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4.4 Discussion 

4.4.1 Import efficiencies of fluorescent derivatives 

For both the Antp and the MTS peptide, an internally labeled analogue was 

identified with an import efficiency comparable to the efficiency of the respective 

N-terminally labeled peptide. All peptides were generated by solid-phase peptide 

synthesis. The internal label was coupled to a lysine ε-amino-group with the fully 

side-chain protected peptide still attached to the polymeric support. For this 

reason, once the peptide moiety is synthesized, the N-terminus of a fully side-

chain protected peptide is available for extension with a peptide cargo or non-

peptide cargo molecule. Based on this labeling strategy, we anticipate that 

fluorescently labeled CPPs will gain significance as pharmacokinetic modifiers for 

small molecules that otherwise do not penetrate the plasma membrane. The 

fluorophore serves as the reporter group to quantify import of the small molecule.  

Import of Antp analogues was more efficient than import of MTS analogues by a 

factor of about three. So far only few reports exist in which the import competence 

of different sequence motifs were compared relative to each other. To our 

knowledge, no direct comparison of a purely aliphatic motif, such as the MTS 

peptide, and a cationic motif such as the Antp peptide, has been presented so far. 

One should note, however, that in our case a hydrophilic building block (Ado) was 

introduced at the C-terminus of the MTS peptide in order to increase the solubility 

in aqueous buffers. In our hands, Antp is the preferred CPP moiety because of the 

higher import efficiency, higher solubility in aqueous buffers and comparatively 

less adsorption to the walls of the measurement chambers (Waizenegger et al., 

2002). 

By introduction of fluorophores within the central part of the peptide sequence, 

constructs carrying a second fluorophore either within the cargo or at the N-

terminus of the cargo may be generated. Such constructs may serve as cell-

permeable probes for intracellular protease activity by detection of fluorescence 

resonance energy transfer (FRET, (Clegg, 1995)) with optimized FRET 

characteristics.  

The abrogation of import of the Antp W6K(Fluo) construct further substantiates 

the role of this specific amino acid side chain for import (Derossi et al., 1994). 
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Interestingly, replacement with the large aromatic fluorophore moiety had the 

same effect as replacement with alanine (Drin et al., 2001). While import 

competence may be conveyed by the general physicochemical characteristics of 

the whole peptide (Scheller et al., 2000), efficient uptake is strongly dependent on 

the presence of structural determinants at specific positions of the CPP. The 

finding that only one out of four analogues derivatized with bulky fluorophores at 

consecutive positions entered cells efficiently supports the view that these 

peptides associate to a biological membrane in a well-defined orientation (Du et 

al., 1998;Drin et al., 2001). 

The import efficiencies for Antp as well as MTS peptides labeled with the 

negatively charged carboxyfluorescein strongly correlated with those labeled with 

the zwitterionic Tamra fluorophore. This finding supports the notion that for these 

two CPP motifs, efficient uptake is a function of the peptide structure rather than 

the overall physicochemical characteristic. Surprisingly, the introduction of the 

negatively charged fluorescein moiety in the central part of the strongly basic Antp 

peptide was compatible with efficient import. Recently, we introduced fluorescence 

correlation microscopy for a direct determination of intracellular peptide 

concentrations (Waizenegger et al., 2002). The determination of partition 

coefficients for cellular uptake by FCM revealed that import of the Tamra-labeled 

analogues was slightly more efficient than that of the fluorescein-labeled 

analogues. From the correlation of import efficiencies we conclude, however, that 

this effect must be very similar for all Tamra derivatives. Comparison of the cellular 

distribution of fluorescein and Tamra-labeled peptides having no intrinsic 

transcytosis capacity has shown that the Tamra label may promote accumulation 

of these peptides in vesicular structures by itself (own unpublished data). This dye-

dependent contribution may provide an explanation for the generally higher import 

efficiency of Tamra over fluorescein-labeled peptides. One should note that 

fluorescence correlation microscopy is the only technique capable of comparing 

import efficiencies for cell-permeable substances labeled with different 

fluorophores that does not depend on cumbersome calibration procedures to 

normalize on the detection efficiencies for different spectral ranges. 

Comparison of import efficiencies determined by FCM and flow cytometry 

demonstrated a concentration independence of import from the lower micromolar 
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to the lower nanomolar range. So far, the analysis of the concentration 

dependence of import has been limited from the higher nanomolar to the mean 

micromolar range (Derossi et al., 1996;Mitchell et al., 2000;Fischer et al., 2000). 

That large of a concentration range could only be covered by combination of these 

two analytical techniques. Flow cytometry is too insensitive to quantify import in 

the lower nanomolar range, while FCM can only be used at lower nanomolar 

concentrations.  

To further expand the spectral range of fluorescent CPP derivatives, an N-

terminal analogue of Antp labeled with the indocyanine dye S0387 (Mader et al., 

2004) was generated and the intracellular distribution investigated with confocal 

laser scanning microscopy. In this way we were able to demonstrate the 

simultaneous detection of three different CPP constructs. In all cases, a vesicular 

staining was present that was most pronounced for the Tamra-labeled derivative. 

So far the nature of the vesicles has not been addressed. The vesicular 

accumulation of the CPPs will present some limitation in the analysis of a cargo 

driven subcellular targeting of CPP constructs, e. g. to target molecules present in 

specific cellular compartments. Our data indicate that Tamra will be the least 

suited fluorophore for this kind of application. 

4.4.2 Cargo-dependence of import 

The independence of import on the nature of the fluorophore was contrasted by 

a marked dependence on the peptide cargo. Even though all peptides investigated 

were very similar in size, ranging from eight to ten amino acids, import efficiencies 

varied by as much as a factor of eight for the Myc-tag peptide and for the ZAP-70 

inhibitor peptide. While the Myc-tag peptide is characterized by a negative charge 

surplus, the Antp-conjugated SIINFEKL-epitope carries one negative net charge, 

and the ZAP-70 inhibitor peptide is strongly hydrophobic with a neutral net charge. 

Apparently, a strong negative correlation exists between the negative charge of 

the cargo and the import efficiency. So far, this observation has only been reported 

for the transcytosis sequence, alone (Scheller et al., 1999). The effect that subtle 

structural changes may have on uptake was addressed using a truncated 

analogue of the Penetratin peptide. For the import peptide alone, as much as for a 

conjugate with the ZAP-70 inhibitor peptide, C-terminal amidation greatly affected 
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the import efficiency. Interestingly, the truncated peptide alone was very inefficient 

in cellular import when compared with the full-length Penetratin peptide. 

Previously, this peptide was shown to possess about 60% of the translocation 

efficiency of the full length Antennapedia peptide (Fischer et al., 2000). This 

discrepancy may result from the differences in assay conditions. In the initial 

report, a biotinylated analogue was employed and cells were labeled with 

fluorescently labeled streptavidin after fixation. Fixation, however, may lead to a 

loss of small molecules due to poor crosslinking. It cannot be excluded that only a 

fraction of molecules, e. g. those present in vesicular structures, were retained in 

the cells while the major part of those present in the cytoplasm and nucleus were 

lost. For this reason, all analyses in our report were based on fluorescence in 

living cells. In one of the initial analyses of the structure-activity relationship of the 

Antp-peptide, Derossi et al., reported that removal of only two amino acids from 

either the N- or C-terminus abolished import (Derossi et al., 1994). For the 

truncated peptide, import competence was rescued by conjugation of the highly 

hydrophobic cargo KLILFLLL. It seems that in this case, the cargo complements 

the cell-permeable moiety.  

In summary, attachment of fluorophores that differed markedly in their 

physicochemical characteristics was tolerated surprisingly well. Import depended 

much more on the cargo than on the nature of the fluorophore. Analysis of import 

by FCM revealed that the concentrations in the buffer did not reflect the 

concentrations of these molecules inside the cells. Both findings stress the need 

for a detailed monitoring of intracellular peptide concentrations in applications such 

as the analysis of structure function relationships and quantitatively controlled 

inhibition of intracellular processes. The fluorescent peptide analogues identified in 

this study provide the tools for that purpose. 
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4.5 Materials and methods 

4.5.1 Peptide synthesis 

Peptides were synthesized in a 15 µmol scale by solid-phase Fmoc-chemistry 

on an automated peptide synthesizer for multiple peptide synthesis (RSP5032, 

Tecan, Hombrechtlikon, Switzerland). Fmoc-amino acids were purchased from 

Novabiochem (Heidelberg, Germany) and Fmoc-protected 8-amino-3,6-

dioxaoctanoic acid (Ado) from Neosystem (Strasburg, France). Standard 

chemicals in peptide chemistry were obtained from Fluka (Deisenhofen, Germany) 

and Merck (Darmstadt, Germany), solvents were p.a. grade. Peptides were 

synthesized as free acids on a 2-chlorotrityl resin (capacity 0.5 mmol/g; Senn 

Chemicals, Dielsdorf, Switzerland) and as peptide amides on Rink amide resin 

(Rapp Polymere, Tübingen).  The amino acid sequence of the Antp peptide was 

RQIKIWFQNRRMKWKK and of the MTS peptide AAVALLPAVLLALLAP. The 

MTS peptide was extended at its N- and/or C-termini with one Ado-building block 

to increase its water solubility.  

The resin bound peptides were labeled at the N-terminus with 5(6)-

carboxyfluorescein as described (Fischer et al., 2003). Labeling with 5(6)-

carboxytetramethylrhodamine was accomplished using 5 eq each 5(6)-

carboxytetramethylrhodamine, HOBt and DIC in DMF twice for 20 h. N-terminal 

labeling of the resin bound Antp-peptide with the free carboxylic acid of the S0387 

fluorophore was carried out in the presence of 2 eq of S0387 (FEW, Wolfen, 

Germany), 5 eq HOBt and 5 eq DIC in DMF  twice for 20 h. Conjugation of 

fluorophores to the ε-amino group of lysine side chains was carried out via 

incorporation of Fmoc-Lys(Dde)-OH (Novabiochem, Läufelfingen, Switzerland) as 

building block in peptide synthesis. After Fmoc-deprotection of the N-terminus of 

the resin bound peptide with piperidine/DMF, the N-terminal amino group was 

acetylated (Ac2O/DIPEA/DMF (1:1:8, v/v/v), 2 x 30 min). Removal of the Dde 

protecting group was performed by treatment with 2% hydrazine monohydrate in 

DMF (v/v) twice for 3 min. The coupling of the fluorophore followed the same 

protocol as the one for N-terminal labeling. 
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The peptides were cleaved off the resin by treatment with TFA/TIS/EDT/H2O 

(92.5:2.5:2.5:2.5, v/v/v/v) twice for 2 h each. Peptides were precipitated by addition 

of diethyl ether (-20°C). Precipitated peptides were washed twice with cold ether. 

Finally the peptides were dissolved in tBuOH/H2O (4:1, v/v) and lyophilized. 

The peptides were analyzed by analytical reverse phase chromatography RP-

HPLC using an H2O (0.1% TFA)/ACN (0.1% TFA) gradient on a Waters 600 

System (Eschborn, Germany) with detection at 214 nm and by MALDI-TOF-MS 

(Hewlett-Packard G2025A). Peptides were purified by preparative RP-HPLC 

(Nucleosil 300 C18 column, 10 µm particle diameter, 250 x 20 mm; Grom, 

Herrenberg, Germany) on a Waters 600 Multisolvent Delivery System using the 

same gradient system as used for analytical HPLC. 

 

4.5.2 Determination of concentrations of fluorescently-labeled 

peptides by UV/VIS-spectroscopy 

Peptides were dissolved in DMSO at a concentration of 20 mg/ml. These stock 

solutions were further diluted 1:10 in H2O. This solution was further diluted 1:100 

in 0.1 M Tris/HCl pH 8.8 and the absorbance at the wavelength of 492 nm 

measured. The concentrations of the stock solutions were calculated assuming 

εcarboxyfluorescein, 492 nm = 75,000 l/(mol⋅cm). Tamra-labeled peptides dissolved in 

DMSO to about 20 mg/ml were diluted 1:10 in H2O followed by a 1:100 dilution in 

methanol. The absorbance of these solutions was measured at 540 nm. The 

concentrations of the solutions were calculated assuming εTamra, 540 nm = 95,000 

l/(mol⋅cm).  

4.5.3 Cell culture 

The adherent SKMel37 cell line was grown in a 5% CO2 humidified atmosphere 

at 37°C in DMEM with GLUTAMAX I, 25 mM HEPES, 4500 mg/l D-glucose, pH 

7.2 (Invitrogen, Karlsruhe, Germany), supplemented with 10% fetal calf serum 

(PAN Biotech, Aidenbach, Germany), 100 U/ml Penicillin, and 0.1 mg/ml 

Streptomycin (Biochrom, Berlin, Germany). Cells were passaged by trypsinization 
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with trypsin/EDTA 0.05/0.02% (w/v) in PBS (Biochrom) every third to fourth day. 

For growth in chambered cover glasses (Nunc, Wiesbaden, Germany), cells were 

seeded at a density of 25,000/cm2 and used for FCM measurements at a 

confluency of approximately 75%. 

4.5.4 Flow cytometry 

SKMel37 cells were seeded at a density of 80,000 per well in 24 well plates 

(Sarstedt, Nümbrecht) in 400 µl serum-containing medium. One day later, the cells 

were washed with serum-free medium and incubated in 200 µl serum-free 

medium. After 2 h, peptides were added in concentrations as indicated in the 

results section. Each condition was tested in duplicate. After 2 h incubation, cells 

were washed with PBS and trypsinized. The cells were suspended in PBS 

containing 0.1% (w/v) BSA and 5 mM glucose. Samples were kept on ice and 

measured immediately.  The fluorescence of 5000 vital cells was acquired. Vital 

cells were gated based on sideward scatter and forward scatter. For the 

determination of non-specific uptake of fluorescein-labeled peptides, the peptide 

Fluo-Ahx-SFHTMSAAKLI-CONH2 was added in the same concentration as were 

the MTS or Antp analogues. This peptide was previously designed as a peptide 

ligand for the HLA-DRB1*1501 MHC class II molecule (Fleckenstein et al., 1999). 

It was selected because of the different physicochemical side-chain characteristics 

and its very different biological relevance. 

4.5.5 FCM 

FCM measurements were carried out on a ConfoCor2 fluorescence correlation 

microscope (Carl Zeiss, Jena), equipped with a SensiCam cooled 12-bit CCD 

camera (PCO Computer Optics, Kelheim, Germany). For image acquisition by 

whole-field epifluorescence microscopy a filter set consisting of an HQ470/40 

excitation filter, a Q495LP beam splitter and an HQ525/50 detection filter (AHF 

Analysentechnik, Tübingen, Germany) was used for imaging of fluorescein. A 

combination of an HQ548/10 excitation filter, a Q565LP beam splitter and an 

HQ610/75 detection filter were employed for imaging of Tamra-labeled samples. 

For FCS measurements of fluorescein-labeled peptides, the 488 nm line of an 
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argon ion laser was reflected into the sample via an HFT488 beam-splitter and 

fluorescence detected with a 500-550 nm band-pass filter. Fluorescence of Tamra-

labeled peptides was excited with a 543 HeNe-laser and detected with an HFT 

488/543 beam-splitter in combination with a BP 560-615 detection filter. For 

positioning along the optical axis, the z-scan option of the ConfoCor2 software was 

employed. Profiles of fluorescence along the optical axis were acquired at 0.4 

kW/cm2 (for both laser lines) at a resolution of 0.5 µm per step. Z-scans were 

saved by screen capture from the computer screen. The position of the detection 

volume in the x- and y-dimensions was determined by bleaching a film of 

fluorescein adsorbed to the surface of a microscopy slide and determining the 

position of the bleached spot in an epifluorescence image. Positioning in x and y 

was based on real-time transmission images acquired by the CCD camera using a 

motorized stage. A series of five subsequent autocorrelation measurements was 

carried out over 30 s each, for every data point. Laser intensities were 40 kW/cm2 

for fluorescein and 16 kW/cm2 for Tamra. The individual autocorrelation functions 

were fitted one-by-one and those unaffected by initial photo bleaching included for 

averaging. 

Reference measurements were carried out for carboxyfluorescein, Tamra, Fluo-

Antp, Fluo-MTS and the corresponding Tamra-labeled peptides at concentrations 

of 25 nM and 75 nM in HBS (135 mM NaCl, 10 mM KCl, 0.4 mM MgCl2, 1 mM 

CaCl2, 10 mM Na-HEPES, pH 7.4), supplemented with 0.1% BSA and 5 mM 

glucose in chambered cover glasses without cells in a volume of 400 µl. 

For the determination of import efficiencies, the cells were incubated with the 

fluorescently-labeled peptide in HBS, 0.1% BSA, 5 mM glucose in a volume of 400 

µl. The respective concentrations were as indicated. After 1 h incubation at 37oC, 

FCM measurements were started at RT. Autocorrelation functions were recorded 

in the nucleus and in the buffer next to each cell. A minimum of eight cells was 

analysed for each condition. Autocorrelation functions were fitted with the built-in 

routines of the ConfoCor2 software. 
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4.5.6 Confocal laser scanning microscopy  

Confocal laser scanning microscopy was performed on an inverted LSM510 

laser scanning microscope (Carl Zeiss, Göttingen, Germany) fitted with a Plan-

Apochromat 63 x 1.4 N. A. lens. Triple detection of fluorescein, Tamra and S0387-

labeled peptides was performed using a filter set consisting of an HFT 

UV/488/543/633 beam splitter in combination with an NFT 545 beam splitter and a 

BP 505-530 band pass filter for fluorescein detection, an NFT 635 VIS beam 

splitter and a BP 560-615 detection filter for Tamra detection, and an LP650 long 

pass filter for S0387-detection. To avoid cross-talk detection, the multi-track 

modality of the LSM was employed for image acquisition. Live cells were 

measured in chambered cover slips as in FCM measurements. 
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5 A stepwise dissection of the intracellular fate of cationic cell-

penetrating peptides 

This chapter was published in Journal of Biological Chemistry in 2004. The 

author of this thesis performed all experiments shown. 

5.1 Summary 

The role of endosomal acidification and retrograde transport for the uptake of 

the highly basic cell-penetrating peptides Penetratin, Tat and oligo-arginine was 

investigated. The effect of a panel of drugs that interfere with discrete steps of 

endocytosis or Golgi-mediated transport on uptake and cellular distribution of 

fluorescein-labeled peptide analogues was probed by confocal microscopy, flow 

cytometry and fluorescence spectroscopy of whole-cell lysates. The analyses were 

carried out in MC57 fibrosarcoma cells and in HeLa cells. While MC57 

fibrosarcoma cells showed some vesicular fluorescence and a pronounced 

cytoplasmic fluorescence, in HeLa cells little cytoplasmic fluorescence was 

observed. In MC57 cells the inhibitors of endosomal acidification chloroquine and 

bafilomycin A1 abolished the release of the peptides into the cytoplasm. Release 

into the cytosol preserved endosomal integrity. In addition, cellular uptake of the 

peptides was inhibited by brefeldin A, a compound interfering with trafficking in the 

trans-Golgi network. In contrast, nordihydroguaiaretic acid, a drug that stimulates 

the rapid retrograde movement of both Golgi stacks and trans-Golgi network to the 

ER, promoted a cytoplasmic localization of Tat-peptides in peptide pulsed HeLa 

cells. The effects of these drugs on trafficking shared characteristics with those 

reported for the trafficking of plant and bacterial toxins, such as cholera toxin, 

which reach the cytoplasm by means of retrograde transport. A sequence 

comparison revealed a common stretch of 8-10 amino acids with high sequence 

homology to the Tat-peptide. The structural and functional data therefore strongly 

suggest a common mechanism of import for cationic cell-penetrating peptides and 

the toxins. 
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5.2 Introduction 

The introduction of membrane-impermeable molecules into mammalian cells 

has become a key strategy for the investigation of intracellular processes 

(Stephens et al., 2001). Peptide-mediated import has been attracting growing 

attention as a delivery technology during the last decade (for reviews see (Fischer 

et al., 2001;Langel, 2002)). Linkage of CPPs to other molecules mediates the non-

invasive import of these cargo molecules into cells ex vivo as well as in whole 

animals (Schutze-Redelmeier et al., 1996;Schwarze et al., 1999). Cargos have 

been peptides (Prochiantz, 1996;Hawiger, 1999), proteins as large as 120 kDa 

(Rojas et al., 1998;Schwarze et al., 1999), oligonucleotides (Astriab-Fisher et al., 

2002), plasmids (Singh et al., 1999), peptide nucleic acids (PNAs) (Pooga et al., 

1998b) and even nanoparticles (Lewin et al., 2000).  

Peptide cargos delivered by conjugation to CPPs included pseudo-substrates 

(Theodore et al., 1995), competitive inhibitors of an enzyme active site (Nishikawa 

et al., 2000), compartment-specific localization sequences (Lin et al., 1995), 

structural mimetics of interaction domains (Horng et al., 2001) and epitopes for 

presentation by MHC class I molecules (Schutze-Redelmeier et al., 1996;Pietersz 

et al., 2001). The advantages of peptide-based functional analyses in cell biology 

are the accessibility of large collections of different compounds by well-established 

automated procedures (Jung et al., 1992) as well as a rational approach to the 

generation of biologically active compounds based on available structural 

information of interaction domains. Structure-function relationships of intracellular 

interaction domains have been analysed by testing a series of different peptides 

fused to cell-penetrating peptides (Liu et al., 1996). The delivery of exogenous 

antigens into the MHC class I processing pathway using CPPs has been 

presented in vitro and in whole animals (Schutze-Redelmeier et al., 1996;Pietersz 

et al., 2001). On dendritic cells CPP-epitope constructs were shown to enable 

prolonged antigen presentation (Wang et al., 2002). CPPs therefore have the 

promise to represent a widely applicable means to enhance immune responses 

against cancer and infectious diseases.  

A total of about 20 different peptide delivery vectors have been described so far, 

the majority of which were identified as structural determinants mediating cellular 

internalization of proteins (Fischer et al., 2001). While some of these peptides are 
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purely cationic, others are amphipathic with a large fraction of basic residues and 

again others are fully hydrophobic. These peptides vary in length from about 9 to 

more than 30 amino acids (Fischer et al., 2001).  

Three highly basic import peptides, the Drosophila Antennapedia homeodomain 

derived Penetratin peptide (Derossi et al., 1994), the HIV-1 Tat derived peptide 

(Vives et al., 1997) and the oligo-arginine peptides (Futaki, 2002) have been used 

widely in many of the applications described above. The Penetratin peptide and 

the HIV-1 Tat peptide have been identified as protein transduction domains 

(PTDs) of their respective proteins, while the oligo-arginine peptides (among them 

the nona-arginine peptide R9) have been developed based on structure-activity 

relationships of the HIV-1 Tat peptide. 

Despite their broad acceptance as molecular carriers, the mechanism of 

internalization of CPPs and CPP/cargo constructs is not well understood. The 

uptake of the Penetratin and the HIV-1 Tat peptide had originally been described 

to be insensitive to low temperature (Derossi et al., 1994;Vives et al., 1997;Futaki 

et al., 2001) and to inhibitors of endocytosis (Vives et al., 1997;Suzuki et al., 

2002). Penetratin was also demonstrated to traverse a pure lipid bilayer (Thoren et 

al., 2000) without forming pores (Thoren et al., 2000;Persson et al., 2003). In 

summary, these results were consistent with the theory of a direct translocation of 

the cationic peptides through the plasma membrane (Derossi et al., 1994;Vives et 

al., 1997;Futaki et al., 2001). 

Recent data demonstrated, however, that earlier interpretations of cell-biological 

experiments, may have suffered from artifactual uptake of CPPs caused by 

fixation of cells. Endocytosis is clearly involved in the internalization of the HIV-1 

Tat peptide (Richard et al., 2003). For Tat fusion proteins it was demonstrated that 

cellular internalization occurs through a temperature-dependent endocytic pathway 

that originates from lipid rafts and follows caveolar endocytosis (Fittipaldi et al., 

2003). Inhibitors of metabolism or endocytosis, such as cytochalasin D were 

demonstrated to impair uptake of Penetratin (Drin et al., 2003). Recently, the 

Penetratin and the Tat peptide were shown to promote endocytosis of high 

molecular weight cargo upon binding to cell surface glycosaminoglycans (Console 

et al., 2003). 

With a picture of an endocytic uptake mechanism emerging, the implications of 

the endosomal pathway for functional cell-biological studies using CPPs need to 
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be readdressed. The biological activity exhibited by CPPs in cell-biological 

applications (Prochiantz, 1996) is fully consistent with intact CPP-constructs 

reaching the cytosol. However, the accumulation of CPPs in the endocytic 

compartment (Richard et al., 2003;Fittipaldi et al., 2003;Drin et al., 2003) raises 

the question to which degree and by which mechanism internalized CPPs reach 

the cytosol. A rational design of more effective CPPs can only be achieved if the 

mechanism of uptake is fully understood.  

In this contribution we address these questions by investigating the effect of 

drugs that interfere with distinct steps of the endosomal pathway and Golgi 

trafficking. In order to study a potential cell-type dependence of the peptide 

trafficking, adherently growing MC57 fibrosarcoma cells and HeLa cells were 

examined. Both cell lines showed marked differences in the intracellular 

distribution of fluorescein-labeled CPPs.  
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5.3 Results 

5.3.1 Cellular uptake of Penetratin, R9 and Tat peptides 

Considering two recent studies demonstrating the involvement of endocytosis in 

the uptake of the R9-peptide, the HIV-1 Tat peptide (Richard et al., 2003), and Tat 

fusion proteins (Fittipaldi et al., 2003), we intended to dissect in detail the cellular 

mechanisms involved in the uptake of cationic CPPs and their release into the 

cytosol. Initially, the effect of wortmannin, bafilomycin A1 and chloroquine as 

inhibitors of endocytosis and endosomal acidification on the uptake of 

fluorescently labeled CPPs was assessed by flow cytometry of living cells. While 

wortmannin affects early endosome fusion by inhibition of the phosphatidylinositol-

3-OH kinase (PI3K) (Simonsen et al., 1998), chloroquine (de Duve et al., 

1974;Kozak et al., 1999) and bafilomycin A1 (Bowman et al., 1988;Clague et al., 

1994) inhibit endosomal acidification. While chloroquine diffuses across 

membranes and binds protons, bafilomycin A1 is a highly potent and selective 

inhibitor of vacuolar H+-ATPases (Bowman et al., 1988). In addition to R9 and the 

Tat peptide, the Penetratin peptide was included in this comparison. 

 
Table 5.1 Primary structures of the cell-penetrating peptides used in this study. All 

peptides were synthesized as peptide amides. Fluo represents an N-terminal fluorescein moiety. 

 

Peptides Sequences 
Fluo-Antp Fluo-RQIKIWFQNRRMKWKK-CONH2 
Fluo-R9 Fluo-RRRRRRRRR-CONH2 
Fluo-Tat Fluo-YGRKKRRQRRR-CONH2 

  
The distortion of uptake experiments by peptides that were only associated with 

the plasma membrane, but had not been internalized by the cells, was avoided by 

treating the cells with trypsin prior to flow cytometry (Richard et al., 2003). While 

Fluo-R9 and Fluo-Antp were taken up efficiently to comparable levels, the 

intracellular fluorescence of Fluo-Tat was less than 10% of the one of cells treated 

with the other two peptides (Figure 5.1).  
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Figure 5.1 Influence of inhibitors of endocytosis on uptake of cell-penetrating peptides. 

MC57 cells were incubated with carboxyfluorescein-labeled cell-penetrating peptides (1 µM) for 2 h 

in serum-free medium in the absence (-) or presence (+) of 100 nM wortmannin (A), 300 nM 

bafilomycin A1 (B), and 100 µM chloroquine (C), washed, trypsinized and analyzed by flow 

cytometry. The inhibitors were added 30 min prior to the peptide. Each condition was tested in 

duplicate; error bars represent the absolute deviations from the mean value. 

 

For Fluo-R9 and Fluo-Antp, all three inhibitors led to a reduction of the cellular 

fluorescence by about 50%. In contrast, for the Fluo-Tat peptide only little effect of 
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wortmannin was observed while for chloroquine and bafilomycin A1 intracellular 

fluorescence increased.  

5.3.2 Impact of bafilomycin A1 on the cellular distribution of 

fluorescently labeled CPPs 

In order to explain the contrasting results for Fluo-Tat and the other two peptides 

obtained by flow cytometry, the effect of bafilomycin A1 on the intracellular 

localization of the peptides was addressed using confocal laser scanning 

microscopy. Live cell confocal microscopy was performed after 2 h incubation with 

peptides at 37°C. Images were acquired in the presence of peptide in the medium 

in order to avoid loss of cellular fluorescence due to wash out (Scheller et al., 

2000). In order to compensate for the lower cellular fluorescence of Fluo-Tat, this 

peptide was applied at a five-fold higher concentration (5 µM). For all three CPPs, 

both a distinct vesicular staining and cytoplasmic localization were detected 

(Figure 5.2 A, B, C, upper panels). Cytoplasmic fluorescence was weakest for the 

Fluo-Tat peptide. For the Fluo-R9 peptide a slight nuclear enrichment of 

fluorescein fluorescence in MC57 cells could be observed (Fig. 5.2 C). 

 

 
Figure 5.2 Lack of cytosolic fluorescence by inhibition of endosomal acidification. MC57 

cells were incubated with serum-free medium containing 1 µM Fluo-Antp (A), 5 µM Fluo-Tat (B), 

and 1 µM Fluo-R9 (C) for 2 h and analyzed by confocal laser scanning microscopy in the presence 

of peptide in the medium. Bafilomycin A1 (300 nM) was added 30 min prior to the peptide. 

Fluorescence images are shown in the left panels, transmission images in the right panels. The 

bright fluorescence outside the cells for the Fluo-Tat peptide is explained by the five-fold higher 

concentration used for this peptide in order to compensate for the less efficient intracellular 

accumulation of this peptide. 
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When bafilomycin A1 was added to the incubation medium, no cytoplasmic 

fluorescence was present for any of the three CPPs. Instead, the vesicular staining 

was enhanced for all three peptides. Using chloroquine as an inhibitor of endosome 

maturation, essentially the same effect was observed. However, this inhibitor led to 

the formation of large vesicular structures (data not shown). 

5.3.3 Exit of Fluo-Tat from the cytosol 

While bafilomycin A1 and chloroquine led to a reduced uptake of Fluo-Antp and 

Fluo-R9, for Fluo-Tat cellular fluorescence increased. This result is in apparent 

disagreement with a common internalization mechanism of Tat and R9 (Suzuki et al., 

2002). Bafilomycin A1 leads to the accumulation of both peptides in vesicular 

structures thereby inhibiting their release into the cytoplasm. For this reason the 

increase in cellular Fluo-Tat fluorescence caused by bafilomycin A1 as observed by 

flow cytometry (Fig. 5.1 B) might be due to the ability of Fluo-Tat or fluorescent 

proteolytic fragments to leave the cells rapidly after entry into the cytosol in the 

absence of bafilomycin A1. In order to test this, MC57 cells were pulsed with the three 

fluorescently-labeled CPPs for 2 h, washed and then incubated with peptide-free 

medium for an additional 3 h (Scheller et al., 2000). The Fluo-Tat peptide was again 

applied at a five-fold higher concentration (5 µM). Cellular fluorescence of MC57 cells 

after pulse and pulse-chase was determined by flow cytometry (Fig. 5.3 A). Both, the 

Fluo-Antp and the Fluo-R9 peptides were not chased out of the cells efficiently. 

However, for Fluo-Tat after a 3 h chase period, only very little fluorescein fluorescence 

remained associated with the MC57 cells. Two different explanations were considered 

as the basis for this experimental outcome. First, in contrast to Penetratin and oligo-

arginine, the Tat peptide itself could possess the ability to exit the cells by crossing the 

plasma membrane. Second, instead of the intact full-length peptide, fluorescent 

fragments generated by proteolytic break-down could leave the cell by diffusion 

through the plasma membrane. In order to answer this question, supernatants of 

MC57 cells after the chase period were desalted, concentrated and analyzed by mass 

spectrometry (Fig. 5.3 B). Peptide fragments bearing an N-terminal carboxyfluorescein 

and one to six amino acids were specifically detected in chase-supernatants of 

peptide-pulsed cells. Intact Tat-peptide could not be detected. This data strongly 

supports that the loss of fluorescence is due to exit of fluorescent peptide fragments 

during the 3 h chase period. 
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Figure 5.3 Pulse/chase experiments. (A) MC57 cells were incubated with Fluo-Antp (1 µM), Fluo-

R9 (1 µM) or Fluo-Tat (5 µM) for 2 h. Internalization was monitored by flow cytometry (P, pulse). For the 

chase value, aliquots of peptide-loaded cells were washed and incubated with peptide-free medium for 

additional 3 h. The remaining cellular fluorescence was determined by flow cytometry (Ch, chase). The 

Fluo-Tat peptide was applied in a five-fold higher concentration in order to compensate for the less 

efficient intracellular accumulation of this peptide. Each condition was tested in duplicate; error bars 

represent the absolute deviations from the mean value. (B) MC57 cells were incubated -/+ 30 µM Fluo-

Tat for 2 h. After 2 h the cells were detached, washed, resuspended in serum-free medium and 

incubated for additional 3 h. The supernatants were desalted, concentrated and subjected to MALDI-

TOF-MS-analysis (B). Fluo-Tat derived signals are highlighted with an asterisk. Calculated [M + H]+: 

Fluo-Y-OH, 540.5 Da; Fluo-YG-OH, 597.6 Da; Fluo-YGR-OH, 753.7 Da; Fluo-YGRK-OH, 881.9 Da; 

Fluo-YGRKK-OH, 1010.1 Da; Fluo-YGRKKR-OH, 1166.3 Da.  
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5.3.4 Effect on endosomal integrity and intracellular peptide 

stability of CPPs 

Having shown that inhibitors of endosomal acidification inhibited the release of 

cationic CPPs into the cytosol, we next asked whether entry into the cytoplasm 

involves destabilization of endosomal membranes after endosomal acidification. 

Such a mechanism has been described e.g. for peptides containing the N-terminal 

sequence of influenza virus hemagglutinin HA-2 (Plank et al., 1994). MC57 cells 

were incubated with medium containing high molecular weight (10,000 Da) 

AlexaFluor 647-dextran in the absence or presence of Fluo-Antp for 2 h. Dextrans 

are internalized by fluid-phase endocytosis and accumulate in vesicles that appear 

as bright spots (Plank et al., 1994) (Fig. 5.4 B). When MC57 cells were co-

incubated with AlexaFluor 647-dextran and Fluo-Antp the AlexaFluor 647 dextran 

partially co-localized with Fluo-Antp in vesicular structures. However, the 

morphology of the AlexaFluor dextran-spots did not change, even though the Fluo-

Antp peptide clearly localized to the cytoplasm (Fig. 5.4 F and G), indicating that 

Fluo-Antp does not disrupt endosomal membranes. In order to address cellular 

peptide integrity, after 2 h peptide incubation, cell lysates were prepared and 

subjected to MALDI-TOF-MS analysis, essentially as described previously 

(Elmquist and Langel, 2003). Comparison of isolates from peptide-loaded and 

peptide-free cells revealed two peptide-specific signals ([M + H]+ = 2605.3 Da and 

[M + H]+ = 531.3 Da). The former corresponds to the intact Fluo-Antp peptide with 

a calculated [M + H]+ of 2605.1 Da and the latter most likely to Fluo-R-OH with a 

calculated [M + H]+ of 533.5 Da (Fig. 5.4 I).  
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Figure 5.4 Pulse/chase experiments and preservation of endosomal integrity in the 

presence of Fluo-Antp and intracellular stability of Fluo-Antp. MC57 cells were incubated with 

serum-free medium containing 5 µM of AlexaFluor 647-dextran alone (A-D), or a combination of 5 

µM of AlexaFluor 647-dextran and 1 µM Fluo-Antp (E-H) for 2 h, washed and analyzed by multi-

channel confocal laser scanning microscopy. Panels A and E show transmission pictures, panels B 

and F the AlexaFluor 647-dextran fluorescence, panels C and G the fluorescein fluorescence and 

panels D and H the superposition of both fluorescence channels.  

(I) MC57 cells were incubated -/+ 15 µM Fluo-Tat for 2 h. After 2 h the cells were trypsinized, 

washed and lysed. The lysates were desalted, concentrated and subjected to MALDI-TOF-MS-

analysis. Fluo-Antp derived signals are highlighted with an asterisk. Calculated [M + H]+: Fluo-R-

OH, 533.5 Da; Fluo-RQIKIWFQNRRMKWKK-NH2, 2605.1 Da.  
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5.3.5 The subcellular distribution of CPPs is cell-type dependent 

CPPs have been applied for loading of molecules into a variety of different cell 

lines, including tissue culture cells and primary cells growing adherently as well as 

in suspension. A limited number of studies have demonstrated that for a given 

CPP-containing molecule uptake efficiency is cell-type dependent (Mai et al., 

2002;Violini et al., 2002). In these previous studies whole cell read-outs (Mai et al., 

2002) or microscopy of fixed cells (Mai et al., 2002;Violini et al., 2002) were 

employed for comparison of uptake efficiencies. Using confocal microscopy of 

living cells, we determined whether a cell-type dependence could be observed for 

the subcellular distribution of fluorescein-labeled CPPs. HeLa cells were chosen 

as a second cell line, because in the study of Richard et al. (Richard et al., 2003) 

this cell line was also investigated. In contrast to MC57 cells (Fig. 5.5 A, upper 

panels) at a concentration of 1 µM, in HeLa cells the Fluo-Antp peptide was only 

detectable in vesicular structures (Fig. 5.5 A, center panels), as was the case for 

the Fluo-R9 peptide (data not shown). The same difference in localization was 

observed when both cell lines were co-cultivated and co-incubated with the Fluo-

Antp peptide in order to rule out any artifacts from cultivation conditions (Fig. 5.5 

A, lower panels).  

At this point two possibilities were considered as the basis for this observation. 

First, uptake into HeLa cells may be less efficient than uptake into MC57 cells. 

Second, intracellular trafficking may be different in both cell lines. Analysis of 

cellular fluorescence of Fluo-Antp by flow cytometry yielded comparable 

intracellular fluorescence for both cell lines (Fig. 5.5 B). However, vesicular 

accumulation of fluorescein labeled peptides may lead to concentration quenching 

of fluorescein fluorescence (Chen and Knutson, 1988). Moreover, the fluorescence 

of fluorescein is strongly pH dependent, compromising a quantitative comparison 

of the amounts of peptide localized in acidic vesicles with that localized in the 

cytoplasm. For this reason, whole cell lysates of MC57 and HeLa cells loaded with 

peptide were prepared and the amount of fluorescein was determined by 

fluorescence emission spectroscopy (Fig. 5.5 C). In spite of the very similar 

cellular fluorescence observed by flow cytometry, analysis of lysates revealed that 

HeLa cells internalized three times more peptide than MC57 cells (Fig. 5.5 C). For 
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this reason, the differences in the distribution of cellular fluorescence do indeed 

reflect differences in the intracellular trafficking of peptide in these two cell lines. 

However, for treatment with bafilomycin A1, a similar reduction of cellular 

fluorescence was observed for both cell lines, indicating that the differences in 

localization reflect quantitative differences in trafficking rather than a different 

mechanism. 
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Figure 5.5 Cellular distribution and uptake of CPPs in different cell lines. (A) MC57 (upper 

panels) and HeLa (center panels) cells were incubated with serum-free medium containing Fluo-

Antp peptide (1 µM for 2 h) and then analyzed by confocal laser scanning microscopy in the 

presence of peptide in the medium. Fluorescence images are shown in the left panels, 

transmission images in the right panels. In order to exclude incubation conditions as the source of 

the different peptide distributions, both cell lines were co-cultivated and co-incubated with the Fluo-

Antp peptide (lower panels). Arrows indicate MC57 cells, as judged by cell morphology. MC57 and 

HeLa cells were incubated with 4 µM Fluo-Antp for 2 h. Bafilomycin A1 (300 nM) (+) was added 30 

min prior to the peptide, internalization was either determined by flow cytometry (B) or by 

measuring fluorescein concentrations in whole cell lysates (C). The fluorescence present in the cell 

lysates was normalized to the protein content to correct for differences in cell number and cell size. 

 



A STEPWISE DISSECTION OF THE OF THE INTRACELLULAR FATE OF CATIONIC CPPS  

 

 - 77 -  

5.3.6 Impact of Golgi-disrupting agents on the uptake and 

distribution of fluorescently labeled CPPs 

Having shown that release of cationic CPPs into the cytosol occurs by a 

mechanism that depends on endosomal acidification and preserves endosomal 

integrity, we next addressed a potential involvement of the Golgi complex in the 

cellular trafficking of cationic CPPs. It was shown recently, that uptake of  a Tat 

fusion protein and Tat-transactivation activity were sensitive to brefeldin A 

(Fittipaldi et al., 2003). We tested whether brefeldin A and nordihydroguaiaretic 

acid (NDGA) (Drecktrah et al., 1998), compounds that interfere both with the 

integrity of the Golgi and the trans-Golgi network (TGN), influence the 

internalization of the cationic CPPs. NDGA is a potent lipoxygenase inhibitor and 

stimulates the rapid retrograde movement of both Golgi stack and TGN 

membranes back to the ER, until both organelles are morphologically absent from 

cells (Drecktrah et al., 1998). Thus NDGA can (i) serve as a Golgi-disrupting drug 

when added prior to the peptide and (ii) provide a means of inducing retrograde 

transport.  

In a first experiment, cells were incubated with brefeldin A or NDGA for 30 min 

prior to the addition of peptides. For both drugs, the cellular fluorescence of Fluo-

R9 and Fluo-Antp was reduced significantly. In contrast, for Fluo-Tat cellular 

fluorescence was reduced by brefeldin A and slightly by NDGA (Fig. 5.6), similar 

to the effects of bafilomycin A and chloroquine on uptake of Fluo-Tat (compare 

Fig. 5.1 B and C).  
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Figure 5.6 Influence of Golgi-disrupting agents on uptake of cell-penetrating peptides. 

MC57 cells were incubated with carboxyfluorescein-labeled cell-penetrating peptides (1 µM) for 2 h 

in serum-free medium in the absence (-) or presence (+) of 20 µM brefeldin A (A) or 25 µM 

nordihydroguaiaretic acid (B), washed, trypsinized and analyzed by flow cytometry. The inhibitors 

were added 30 min before the peptide. Each condition was tested in duplicate; error bars represent 

the absolute deviations from the mean value. 

5.3.7 Induction of retrograde transport of fluorescently-labeled 

CPPs by NDGA 

Since our data suggest that cationic CPPs enter the cytoplasm by means of 

retrograde transport, we tested whether NDGA is able to affect subcellular 

localization of Fluo-Tat in peptide-pulsed cells. In this set of experiments we took 

advantage of NDGA as an inducer of retrograde transport. HeLa cells were pulsed 

with Fluo-Tat for 2 h followed by 3 h incubation with NDGA in the cell culture 

medium (Fig. 5.7). HeLa cells incubated with medium alone during this period 

exhibited only a vesicular fluorescence, whereas in HeLa cells incubated with 
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NDGA-containing medium a cytoplasmic fluorescence was clearly visible (panels 

C and G). In order to exclude that this change in cellular distribution was due to a 

disruption of endosomal compartments by NDGA, cells were co-incubated with 

AlexaFluor 647-dextran. In contrast to the fluorescein-labeled CPP, NDGA did not 

affect the localization of the dextran (panels B and F), indicating that the CPPs 

reach a compartment distinct from endosomal compartments and functionally 

coupled to the cytosol. Similar data were obtained for the Fluo-Antp peptide. 
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Figure 5.7 Induction of retrograde transport by NDGA. HeLa cells were incubated with 5 µM 

Fluo-Tat and 10 µM AlexaFluor 647-dextran. After 2 h cells were washed with serum-free medium 

and then incubated for 3 h in medium with (E-H) or without (A-D) 25 µM NDGA for 3 h. Cellular 

distribution of both the fluorescein fluorescence and the AlexaFluor fluorescence was followed by 

confocal laser scanning microscopy. Panels A and E show transmission pictures, panels B and F 

the AlexaFluor 647-dextran fluorescence, panels C and G the fluorescein fluorescence and panels 

D and H the superposition of both fluorescence channels. 

5.3.8 Co-localization of Fluo-Tat with Golgi-specific fluorescent 

probes 

In order to provide further evidence for the participation of the Golgi-complex in 

the trafficking of cationic CPPs we finally probed for co-localization of Fluo-Tat with 

Golgi membranes. The distortion of the distribution of cationic peptides by fixation 

prohibited an analysis of the co-localization with Golgi-resident proteins by 

immunofluorescence. Instead, cells were incubated with the cell-permeable Golgi 

tracer Bodipy TR ceramide. In MC57 cells (Fig. 5.8, panels A to D) vesicular 
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peptide fluorescence partially co-localized with Golgi-staining, albeit intense 

peptide staining localized to less intensely stained regions of the Golgi complex. In 

HeLa cells (Fig. 5.8, panels E to H) peptide fluorescence present in vesicular 

structures partially co-localized with the cellular regions of Bodipy ceramide 

staining. Similar results were obtained for the Fluo-Antp peptide. 
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Figure 5.8 Co-localization of Fluo-Tat and Bodipy ceramide. MC57 (panels A to D) and HeLa 

cells (panels E to H) were incubated with 5 µM Fluo-Tat for 1 h after labeling with Bodipy ceramide. 

Cells were analyzed by confocal laser scanning microscopy in the presence of peptide in the 

medium. Panels D and H show transmission pictures, panels A and E the fluorescein fluorescence 

derived from the Fluo-Tat peptide, panels B and F the fluorescence derived from the fluorescent 

ceramide derivative and panels C and G the superposition of both fluorescence channels. Arrows 

indicate areas where peptide-rich structures co-localize with areas of the Golgi complex. 
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5.4 Discussion 

Carboxyfluorescein labeled CPPs in combination with inhibitors of endocytosis 

and Golgi-disrupting agents were employed in order to elucidate the intracellular 

fate of cell-penetrating peptides. Artifacts of cellular peptide distribution induced by 

fixation were avoided by conducting all experiments with fluorescein labeled 

peptides in living cells. Fluorescein was selected as a reporter group because of 

minimum impact on the cellular distribution of fluorescently labeled peptides when 

compared to other fluorescent dyes (own unpublished observations). A vesicular 

staining could be observed for Tamra-labeled peptides lacking any CPP-motif. For 

CPPs labeled with the Cy5-like indocyanine dye S0387 a patchy fluorescence at 

the plasma membrane was observed (Fischer et al., 2002). Moreover, large 

collections of fluorescein labeled CPPs can be generated in high yield and purity 

carrying the reporter group at a defined position in the peptide (Fischer et al., 

2002;Fischer et al., 2003). These advantages of fluorescein outweigh the 

limitations imposed by the photophysical characteristics of this dye, i.e. 

concentration quenching (Chen et al., 1988) and pH-dependence of its 

fluorescence characteristics. We addressed these potential drawbacks by 

determining cellular uptake in whole cell lysates. The discrepancies for uptake 

efficiencies derived from flow cytometry and fluorescence spectroscopy underline 

the need for such complementary biochemical analyses. This circumstance needs 

to be considered if quantitative information about molecules entrapped in 

intracellular vesicles is to be obtained.  

MC57 fibrosarcoma cells incubated with Fluo-Tat for 2 h showed a vesicular 

fluorescence, in accordance with the study by Richard et al. (Richard et al., 2003). 

In contrast, both Fluo-R9 and Fluo-Antp also exhibited a homogenous cytoplasmic 

and nuclear fluorescence. This observation is indicative of the escape of these 

latter two CPPs from endocytic compartments and accumulation in the cytoplasm. 

The basis for the failure to detect Tat in the cytosol was clarified by pulse/chase 

experiments and analysis of chase supernatants by mass spectrometry. In 

contrast to Fluo-R9 and Fluo-Antp, after a 3 h chase period in the absence of 

peptide, the cellular fluorescence for Fluo-Tat decreased by more than 90% of the 

value after the peptide pulse. Exit of internalized peptides from the cells into the 

culture medium has already been reported for amphipathic CPPs (Scheller et al., 
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2000). However, the MALDI-MS-analysis of the supernatant of Fluo-Tat pulsed 

MC57 cells provided a different explanation. In the supernatant only 

carboxyfluorescein-labeled fragments of Fluo-Tat carrying one to six amino acids 

could be detected. The poor cellular retention of the Fluo-Tat peptide in MC57 

cells therefore likely reflects a high susceptibility to intracellular proteases and the 

ability of the generated fragments to exit the cells.  

The effective retention of Fluo-R9 and Fluo-Antp inside the cells demonstrates 

that this attribute is sequence- and not dye-specific. Moreover, the sequence-

dependent retention of cellular fluorescence is indicative of intact peptides leaving 

the endocytic compartment. Given the detection of proteolytic Fluo-Tat-fragments 

in the supernatant of Fluo-Tat pulse MC57 cells, the efficient retention of 

fluorescence for the Fluo-R9 and Fluo-Antp peptides after the 3 h chase period 

can as well best be explained by a preservation of structural integrity of peptides, 

reaching the cytosol, in spite of a potential to encounter endolysosomal proteases. 

Using MALDI-MS analysis (Elmquist et al., 2003) we were able to demonstrate the 

intracellular integrity of the Fluo-Antp peptide. Apart from this observation, the 

Fluo-R9 exhibits a nuclear enrichment of fluorescence in MC57 cells in the 

absence of bafilomycin A1 (s. Fig. 5.2 C), which further supports the notion of 

intact peptide entering the cytosol. Highly basic peptide stretches are known to 

serve as conventional nuclear localization sequences (Jans et al., 2000). 

Identification of peptide fragments by MALDI-TOF-MS demonstrates that the 

concentrations of peptide required for a direct analysis of peptide integrity and 

proteolytic degradation are fully compatible with cell biological experiments using 

fluorescence microscopy. Further experiments using inhibitors of cytosolic and 

endosomal proteases in combination with the incorporation of protease-specific 

cleavage motifs, should allow to delineate the basis for the different stabilities of 

Tat and the other two cationic CPPs and enable a rational design of peptides with 

increased stability.  

Since endocytosis and endosomal acidification are required for the lysosomal 

escape of complexes consisting of the cationic polymer polyethylenimine and 

ribozymes (Merdan et al., 2002), we reasoned that cationic CPPs may leave the 

endosomes via a similar mechanism. In order to assess the role of endocytosis for 

the uptake of CPPs, cells were incubated with inhibitors of endocytosis and 

endosomal acidification. In order to exclude inhibitor-dependent artifacts on 
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cellular uptake, experiments were conducted with wortmannin, chloroquine and 

bafilomycin A1 that interfere with endocytosis by different mechanisms. For Fluo-

Antp and Fluo-R9 all three inhibitors led to a decrease of cellular fluorescence. 

The increase of cellular fluorescence for Fluo-Tat in the presence of chloroquine 

and bafilomycin A1 can be explained with the retention of this peptide inside the 

endosomal compartment thereby inhibiting the rapid exit of its fragments from the 

cytosol. Together with the microscopy data obtained, it can be concluded that 

endosomal acidification is required for the delivery of cationic CPPs to the 

cytoplasm. 

Since endocytosis is a well regulated pathway (Gruenberg, 2001), we asked 

whether a cell-type dependence could also be observed for the localization of 

CPPs on the subcellular level. Co-cultivation and co-incubation of MC57 

fibrosarcoma cells and HeLa cells with the Fluo-Antp and the Fluo-R9 peptide 

revealed dramatic differences in subcellular distribution. At 1 µM peptide 

concentration in HeLa cells Fluo-Antp and Fluo-R9 only showed vesicular 

fluorescence. Almost no cytoplasmic fluorescence could be detected. Comparison 

of net uptake of both cell types excluded that the vesicular localization of both 

peptides in HeLa cells resulted from a reduced uptake compared with MC57 cells. 

Bafilomycin A1 reduced the net uptake in both cell lines significantly, consistent 

with a similar uptake mechanism, but differences in the intracellular routing after 

endosomal acidification. The absence of cytoplasmic fluorescence for HeLa cells 

in the presence of equal amounts of extracellular peptides clearly illustrates that a 

comparison of biological activities of CPP constructs in different cell types needs 

to take differences in the subcellular distribution into account. 

Next the mechanism by which CPPs leave the endocytic pathway was 

addressed. Using acidic compartment-specific probes, such as Lysotracker, we 

tested whether the fluorescein-labeled CPPs reach late endosomes or lysosomes. 

However, only little or no co-localization was observed for all three CPPs. In order 

to rule out that the pH-dependent fluorescence properties of fluorescein impaired 

these co-localization studies, we also performed these experiments with 

Penetratin labeled with the indocyanine dye S0387 (Fischer et al., 2002), yielding 

the same results. These data imply that the cationic CPPs leave the endocytic 

compartment at a rather early stage of endosomal maturation.   
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In order to assess whether entry into the cytosol involves endosome disruption, 

cells were co-incubated with CPPs and a fluorescently labeled high-molecular 

weight dextran. However, the presence of the CPP did not affect the distribution of 

the dextran. In addition, the low cytotoxicity of the CPPs (Vives et al., 1997) in 

contrast to agents disrupting endosomes, further supports a mechanism of entry 

that maintains endosomal integrity. 

To this point our observations suggested a mechanism of cellular import that 

occurs via endocytosis and subsequent translocation of the CPPs via an 

acidification-dependent passage through endosomal membranes. Such a 

mechanism would be in line with earlier experiments demonstrating that the 

Penetratin peptide is able to cross a pure lipid bilayer (Thoren et al., 2000). We 

therefore asked whether an acidic extracellular pH enabled a direct non-

endosomal entry of CPPs from the medium into the cytoplasm. Such a pH-

dependent direct passage through the plasma membrane was observed for 

Clostridium botulinum C2 toxin (Barth et al., 2000). This toxin is normally taken up 

by endocytosis and requires oligomerization and endosomal acidification for 

release into the cytosol (Barth et al., 2000). Therefore MC57 cells were briefly 

pulsed with peptide and then incubated with physiological citrate buffer of various 

acidic pH values (pH 5 – 7). However, during the incubation time tolerated by the 

cells, no cytosolic fluorescence was observed (data not shown). 

The failure to obtain evidence for a direct passage of the CPPs from the 

endosomal compartment into the cytoplasm prompted us to address an 

involvement of retrograde transport on cellular trafficking. It was shown that 

brefeldin A affects uptake and cytosolic biological activity of Tat-GFP-fusion 

proteins (Fittipaldi et al., 2003). For this reason, we investigated the effects of 

brefeldin A and NDGA on the net uptake of the fluorescently labeled CPPs in 

MC57 and HeLa cells. When NDGA or brefeldin A were applied to the cells prior to 

the addition of the peptide, the net uptake of Fluo-R9 and Fluo-Antp was reduced 

for both agents, as observed by flow cytometry. However, cellular fluorescence of 

Fluo-Tat treated MC57 cells was slightly enhanced by NDGA (s. Fig. 5.6 B). This 

result implies that for Fluo-Tat, disruption of retrograde trafficking traps this peptide 

in the endosomal compartment thereby preventing its entry into the cytosol and 

rapid cellular exit of its fragments (as shown in Fig. 5.3). This circumstance led to 

an enhanced cellular fluorescence in the case of Fluo-Tat in the presence of 
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NDGA. In the case of Fluo-R9 and Fluo-Antp the absence of TGN and the Golgi 

complex led to reduced uptake. 

In a second series of experiments we utilized the ability of NDGA to induce 

retrograde transport in cells pulsed with Fluo-Tat or Fluo-Antp for 2 h. The 

observed increase of cytoplasmic Tat-fluorescence in peptide-pulsed and 

subsequently NDGA-treated HeLa cells strongly supports an involvement of the 

Golgi apparatus or the trans-Golgi Network (TGN) in the uptake of Tat-peptides (s. 

Figure 7). Essentially the same result was also obtained for Fluo-Antp (data not 

shown). The brefeldin A-sensitive transactivation activity of Tat-GFP fusion 

proteins (Fittipaldi et al., 2003) also supports this hypothesis. The influence of 

furin, a TGN-resident protease on the processing of Tat-MHC class I constructs 

(Lu et al., 2001) provides further evidence for a passage of Tat-peptides through 

the TGN.  

Finally, partial co-localization of Fluo-Tat-derived vesicular structures with the 

Golgi-marker Bodipy ceramide was observed in HeLa cells. Similar co-localization 

data were obtained for Fluo-Antp (data not shown). The inability to detect bulk 

quantities of Fluo-Tat and Fluo-Antp in the Golgi-complex in MC57 cells might be 

due to a rapid passage through this organelle. The plant toxin ricin e.g., which is 

known to traverse the Golgi complex and the ER, has never been visualized by 

microscopy in the ER (Sandvig and van Deurs, 2002). For this reason it was 

initially suggested that ricin A chain translocates from the TGN directly to the 

cytosol (van Deurs et al., 1988). 

For the cationic CPPs, the apparent involvement of the Golgi complex bears 

striking resemblance with features of some bacterial and plant toxins. A number of 

well-characterized toxins reach the cytosol of eukaryotic cells after binding to the 

cell surface, endocytosis by different mechanisms and retrograde transport to the 

Golgi apparatus and the endoplasmic reticulum (for review see (Lord and Roberts, 

1998;Sandvig and van Deurs, 2000)). These toxins, such as ricin and Shiga toxin, 

consist of a membrane binding subunit (B-subunit) and an enzymatically active 

moiety (A-subunit) (Sandvig et al., 2000). Interestingly, a sequence comparison 

with the Tat- and Antp-peptides revealed a highly conserved arginine-rich motif of 

8-10 amino acids in the A subunits of several toxins, which are reported to be 

transported by means of retrograde transport (Tab. 5.2). 
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Table 5.2 Arginine-rich motifs in plant and bacterial toxins. Primary structures of the 

arginine-rich motifs with high sequence homology to the HIV-1 Tat peptide. Sequence homologies 

were identified by visual inspection of the respective proteins. The arginine-rich sequence of the 

HIV-1 Tat protein is included as entry 5. Sequence information was obtained from 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi. 

 

Entry Protein Organism NCBI  
Accession 
number 

Protein function Sequence 
localization 

Amino acid 
sequence 

1 Verotoxin-2 
variant, subunit 
A 

Escherichia 
coli 

AAP37403 Cleavage of 
glycoside bond 
within 28S rRNA 

192-201 RFRQIQREFR 

2 Shiga toxin, 
subunit A 

Shigella 
dysenteriae 

AAF28121 Cleavage of 
glycoside bond 
within 28S rRNA 

192-201 RFRQIQRGFR

3 Cholera 
enterotoxin, A 
chain 
 

Vibrio 
cholerae 

P01555 ADP-
ribosylation of 
Gsα 

159-166 RNRGYRDR 

4 Ricin, A chain  Ricinus 
communis 

2AAIA Cleavage of 
glycoside bond 
within 28S rRNA 

189-207 RTRIRYNRR 

       
5 Tat, 

transactivating 
regulatory 
protein 
 

Human 
immuno-
deficiency 
virus 1 

P04613 Transcriptional  
regulation 

49-57 RKKRRQRRR 

  

 

In addition to other motifs (e.g. the KDEL sequence) within these toxins, these 

arginine-rich motifs may therefore represent a common structural basis for a 

shared route of import along the retrograde pathway of this diverse class of 

proteins. Another fascinating similarity of both cationic CPPs and Golgi-targeted 

toxins is the fact that both Shiga toxin subunit A and Tat-MHC class I epitope-

constructs are processed proteolytically by furin, a TGN-resident protease (Garred 

et al., 1995;Lu et al., 2001). Furthermore a recent study on gentamicin, a member 

of the amino glycoside family of antibiotics, corroborated our findings on the 

retrograde transport of cationic CPPs. This work provided evidence that amino 

glycosides and other cationic amino glycoside structural analogues, such as low 

molecular weight cationic dextrans are transported through the Golgi complex and 

to the ER. These findings indicate that retrograde transport may serve as a 

common rote of transport for a number of different cationic low molecular weight 

compounds (Sandoval and Molitoris, 2003).      
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Figure 5.9 Dissection of intracellular trafficking of cationic CPPs by small molecule drugs. 

(A) Summary of the results of CPP-trafficking along the endosomal and retrograde pathway 

obtained using small molecule inhibitors. (B, C) Effect of NDGA on the localization and trafficking of 

cationic CPPs upon (B) incubation of cells with the compound before addition of peptide and (C) 

addition after a 2 h pulse with peptide that allowed the peptide to enter the Golgi and trans-Golgi 

network. Dark shades indicate an accumulation of peptide in the respective compartment.  
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5.5 Materials and Methods 

5.5.1 Materials 

Standard chemicals for peptide chemistry were obtained from Fluka 

(Deisenhofen, Germany) and Merck (Darmstadt, Germany); solvents were p. a. 

grade. Fmoc-amino acids were purchased from Novabiochem (Heidelberg, 

Germany), Senn Chemicals (Dielsdorf, Switzerland), and Orpegen Pharma 

(Heidelberg, Germany). The isomeric mixture of (5)6-carboxyfluorescein was from 

Fluka, AlexaFluor 647-dextran (anionic; MW 10,000 Da) and Bodipy TR ceramide 

were obtained from Mobitech (Göttingen, Germany). Bafilomycin A1 was from 

Tocris Biotrend (Bristol, UK), chloroquine diphosphate from Fluka, 

nordihydroguaiaretic acid (NDGA) from Alexis Biochemicals (Grünberg, Germany), 

wortmannin from Calbiochem (Bad Soden, Germany) and brefeldin A from Sigma 

(Taufkirchen, Germany). 

5.5.2 Peptide synthesis 

Automated peptide synthesis was performed by solid-phase Fmoc/tBu-chemistry 

using an automated peptide synthesizer for multiple peptide synthesis (RSP5032, 

Tecan, Hombrechtlikon, Switzerland) in 2 ml syringes according to the following 

protocol: Fmoc-amino acids (twelve-fold excess) were coupled by in situ activation 

using DIC/HOBt for 90 min followed by removal of the Fmoc-protecting group by 

treatment with piperidine/DMF (1:4, v/v) twice for 8 min. The resin was washed 

with DMF (6x) after each coupling and deprotection step. The side chain of Tyr 

was tBu-protected, the side chain of Arg was Pbf-protected, the side chains of Gln 

and Asn were Trt-protected and the side chains of Lys and Trp were Boc-

protected. Peptide amides were synthesized on Rink amide resin (Rapp Polymere, 

Tübingen, Germany). 

Peptides were cleaved off the resin by treatment with TFA/TIS/EDT/H2O 

(92.5:2.5:2.5:2.5, v/v/v/v) for 4 h. Crude peptides were precipitated by adding cold 

diethyl ether (-20°C). The precipitated peptides were collected by centrifugation 

and resuspended in cold diethyl ether. This procedure was repeated twice. Finally 

peptides were dissolved in tBuOH/H2O (4:1, v/v) and lyophilized.  
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5.5.3 Labeling of peptides with carboxyfluorescein 

N-terminal labeling of peptides with 5(6)-carboxyfluorescein was essentially 

performed as described (Fischer et al., 2003): Fmoc-deprotected, resin bound 

peptides were reacted with 5 equiv of 5(6)-carboxyfluorescein, DIC, HOBt, each in 

DMF for 16 h in 2 ml syringes on a shaker at RT. Reactions were stopped by 

washing the resins 3 times each with DMF, MeOH, DCM and diethyl ether. 

Subsequently, peptides were treated with piperidine/DMF (1:4, v/v) in order to 

remove ester bound carboxyfluorescein (Fischer et al., 2003). Completeness of 

amine acylation was confirmed using the Kaiser-Test (Sarin et al., 1981). 

5.5.4 HPLC 

Peptides and conjugates were analyzed by analytical RP-HPLC using a water 

(0.1% TFA) (solvent A)/ACN (0.1% TFA) (solvent B) gradient on a Waters 600 

System (Eschborn, Germany) with detection at 214 nm. The samples were 

analyzed on an analytical column (Nucleosil 100, 250 x 2 mm, C18 column, 5 µm 

particle diameter; Grom, Herrenberg, Germany), using a linear gradient from 10% 

B to 100% B within 30 min (flow rate: 0.3 ml/min). Peptides were purified by 

preparative RP-HPLC (Nucleosil 300, 250 x 20 mm, C18 column, 10 µm particle 

diameter; Grom, Herrenberg, Germany) on a Waters 600 Multisolvent Delivery 

System (flow rate: 10 ml/min). Gradients were adjusted according to the elution 

profiles and peak profiles obtained from the analytical HPLC chromatograms.  

5.5.5 MALDI-TOF-MS of synthetic peptides. 

1 µl of DHAP matrix (20 mg of DHAP, 5 mg of ammonium citrate in 1 ml of 

isopropyl alcohol/H2O (4:1, v/v)) was mixed with 1 µl of each sample (dissolved in 

ACN/water (1:1) at a concentration of 1 mg/ml) on a gold target. Measurements 

were performed using a MALDI-TOF system (G2025A, Hewlett-Packard, 

Waldbronn, Germany). For signal generation 20-50 laser shots were added up in 

the single shot mode. 
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5.5.6 Peptide stock solutions 

Carboxyfluorescein-labeled peptides were dissolved in DMSO at concentrations 

of 10 mM. These stock solutions were further diluted 1:20 in ddH2O. Peptide 

concentrations were determined by UV/VIS-spectroscopy of a further 1:100 

dilution in 0.1 M Tris/HCl buffer (pH 8.8) with absorptions measured at 492 nm and 

assuming a molar extinction coefficient of 75,000 L/(mol⋅cm).  

5.5.7 Cell culture 

The adherent MC57 fibrosarcoma cell line (Hosaka et al., 1986) and HeLa cells 

were grown in a 5% CO2 humidified atmosphere at 37°C in RPMI 1640 medium 

with stabilized glutamine and 2.0 g/L NaHCO3 (PAN Biotech, Aidenbach, 

Germany) supplemented with 10% fetal calf serum (PAN Biotech), 100 U/ml 

penicillin, and 100 µg/ml streptomycin (Biochrom, Berlin, Germany). Both cell lines 

were passaged by trypsinization with trypsin/EDTA (0.05/0.02% (w/v)) (Biochrom) 

in PBS every third to fourth day. 

5.5.8 Flow cytometry 

MC57 or HeLa cells were seeded at a density of 50,000 per well in 24 well 

plates (Sarstedt, Nümbrecht, Germany) in serum-containing RPMI 1640. One day 

later, the cells were washed with serum-free RPMI 1640 and incubated in 200 µl 

serum-free RPMI 1640 containing the appropriate inhibitors. After the indicated 

periods of time, peptides were added as described in the results section. Each 

condition was tested in duplicate. After a 2 h incubation, cells were washed with 

PBS, detached by trypsinization for 10 min, suspended in ice cold PBS containing 

0.1% (w/v) BSA, and measured immediately by flow cytometry. The fluorescence 

of 5000 vital cells was acquired. Vital cells were gated based on sideward scatter 

and forward scatter.  

For pulse/chase experiments, MC57 cells were washed three times with PBS 

after 2 h peptide incubation and then incubated with 500 µl serum-free RPMI 1640 

for additional 3 h. Cells were then washed with PBS, detached by trypsinization for 
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10 min, suspended in ice cold PBS containing 0.1% (w/v) BSA, and measured by 

flow cytometry as described above. In order to compare the pulse and the 

pulse/chase values, fluorescence intensities of fluorescent calibration beads 

(Mobitech) were also acquired for each series of measurements. 

5.5.9 Confocal laser scanning microscopy 

Confocal laser scanning microscopy was performed on an inverted LSM510 

laser scanning microscope (Carl Zeiss, Göttingen, Germany) fitted with a Plan-

Apochromat 63x 1.4 N.A. lens. All measurements were performed with living, non-

fixed cells. 

MC57 cells were seeded at a density of 10,000/well in eight-well chambered 

cover glasses (Nunc, Wiesbaden, Germany). Two days later, before addition of 

inhibitors or peptides, cells were washed once with serum-free RPMI 1640. 

Bafilomycin A1 was added at a concentration of 300 nM in 200 µl serum-free 

RPMI 1640 30 min before addition of peptides. After 2 h incubation with peptides, 

images were acquired immediately at RT with excess peptide in the medium. 

For double detection of fluorescein-labeled peptides and AlexaFluor 647-dextran 

the 488 nm line of an Argon Ion laser and the light of a 633 nm Helium/Neon laser 

were directed over an HFT UV/488/633 beam splitter and fluorescence was 

detected using an NFT 545 beam splitter in combination with a BP 505-530 band 

pass filter for fluorescein detection and an LP 650 long pass filter for AlexaFluor 

647-detection. Peptides and AlexaFluor 647-dextran were added as indicated in 

the results section. After 2 h cells were washed three times with serum-free RPMI 

1640 followed immediately by confocal microscopy at RT. For the induction of 

retrograde transport, after 2 h incubation with peptide and dextran, cells were 

washed three times with serum-free RPMI 1640 followed by incubation with 25 µM 

NDGA for 3 h in RPMI. 

For double detection of fluorescein-labeled peptides and Bodipy TR ceramide 

the 488 nm line of an Argon-ion laser and the light of a 543 nm Helium/Neon laser 

were directed over an HFT UV/488/543 beam splitter and fluorescence was 

detected using an NFT 545 beam splitter in combination with a BP 505-530 band 

pass filter for fluorescein detection and an LP 560 long pass filter for Bodipy-

detection.  



A STEPWISE DISSECTION OF THE INTRACELLUALR FATE OF CATIONIC CPPS 

 

 - 92 - 

Staining of the Golgi complex in living cells with fluorescent ceramide was 

essentially performed as described by the supplier. Briefly MC57 and HeLa cells 

were seeded at a density of 10,000/well in eight-well chambered cover glasses. 

Two days later, cells were washed once with ice-cold HBSS + 10 mM HEPES (pH 

7.4) (HBSS/HEPES), and then incubated with HBSS/HEPES (containing 5 µM 

sphingolipid and 5 µM BSA, prepared as described by the supplier) for 30 min on 

ice and in the dark. Cells were rinsed three times with ice-cold HBSS/HEPES and 

incubated with the indicated peptide in serum-free medium for 1 h at 37°C in the 

incubator. Confocal microscope images were then acquired immediately at RT 

with excess peptide in the medium. 

5.5.10 MALDI-TOF-MS of peptide-containing cell culture 

supernatant 

A confluent cell layer of MC57 cells in a 25 cm2 tissue culture flask was washed 

once with serum-free RPMI 1640 and incubated with 1 ml serum-free RPMI 1640 

containing 30 µM Fluo-Tat. After 2 h the cells were detached using 5 mM 

EDTA/PBS, transferred into a fresh tube and washed twice with 10 ml PBS. 

EDTA/PBS was used instead of trypsin/EDTA/PBS in order to exclude that peptide 

fragments were generated by residual amounts of trypsin during the chase period. 

Cells were then suspended in 500 µl serum-free RPMI 1640 and incubated for 3 h 

at 37°C in the incubator. The cells were spun down and the cell-free supernatant 

was acidified using 100 µl 0.1% HCl. The yellow sample (the yellow colour 

originated from phenol red) was immediately desalted on a G1001A Sample Prep 

Station (Hewlett Packard) and concentrated to a volume of about 10 µl in a Speed-

Vac concentrator. MS-analysis was performed using a “Future” MALDI-TOF-MS 

(GSG, Mess-und Analysengeräte GmbH, Bruchsal). 1 µl of DHAP matrix was 

mixed with 1 µl of the sample on a gold target. For signal generation 35-50 laser 

shots were added up in the single shot mode (positive ion mode). Instrument 

calibration was performed using two synthetic peptides (calculated [M + H]+: 

1156.7 and 2859.4 Da).  
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5.5.11 Co-incubation of MC57 and HeLa cells 

Intracellular peptide stability was investigated essentially as described 

elsewhere (Elmquist et al., 2003). A confluent cell layer of MC57 cells in a 25 cm2 

tissue culture flask was washed once with serum-free RPMI 1640 and incubated 

with 1 ml serum-free RPMI 1640 containing 15 µM Fluo-Antp. After 2 h the cells 

were washed twice with PBS, detached by trypsinization for 10 min at 37°C, 

transferred into a fresh tube and washed three times with 10 ml PBS (to remove 

trypsin and extracellular trypsinized peptide). Cells were then lysed in 200 µl 0.1% 

HCl for 10 min at RT. The cell lysate was then centrifuged for 10 min at 4°C and 

14,000 rpm. The peptide-containing supernatant was immediately desalted and 

concentrated to a volume of about 10 µl, as described above. MS-analysis of the 

sample was performed using a “Future” MALDI-TOF-MS, as described above. 

5.5.12 Co-incubation of MC57 and HeLa cells 

For co-incubation experiments 5,000 of each MC57 and HeLa cells per well 

were seeded in an eight-well chambered cover glass. Two days later, cells were 

washed once with serum-free RPMI 1640 and 200 µl serum-free RPMI 1640 was 

added. Peptides were added as indicated in the results section. After 2 h peptide 

incubation, pictures were immediately acquired at RT, leaving excess peptide in 

the medium. 

5.5.13 Quantification of cellular internalization of fluorescein-

labeled CPPs by fluorescence emission spectroscopy in whole 

cell lysates 

MC57 and HeLa cells were seeded in 6 well plates (Sarstedt) in serum-

containing RPMI 1640. Two days later, the confluent cell layer was washed with 

serum-free RPMI 1640 and incubated with 500 µl serum-free RPMI 1640 +/- 

bafilomycin A1 for 30 min. Then Fluo-Antp was added and after 2 h incubation, 

cells were washed twice with PBS, detached by trypsinization for 15 min, 

transferred into a fresh tube and washed twice with 10 ml PBS (to remove trypsin 
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and trypsinized peptide). Cells were then lysed in 200 µl NP-40 lysis buffer (0.5% 

(v/v) NP-40, 150 mM NaCl, 5 mM EDTA, 50 mM TRIS, pH 7.0, containing 

protease inhibitor cocktail, Roche Diagnostics, Mannheim, Germany). The lysates 

were then sonicated and centrifuged for 30 min at 4°C and 14.000 rpm. 

Fluorescein concentrations were determined in the supernatant using an LS50B 

spectrofluorometer (Perkin-Elmer, Norwalk, CT, USA), with excitation at 492 nm 

and detection of emission at 520 nm. The protein content of the lysates was 

determined using a commercially available Bradford protein assay kit (Bio-Rad 

Laboratories, München, Germany). Each condition was tested in duplicate. 
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6. A doubly-labeled Penetratin analogue as a ratiometric sensor 

for intracellular proteolytic stability 

 

This chapter will be submitted in 2005. The author of this thesis contributed all 

figures presented.  

6.1 Summary 

The cellular delivery of bioactive molecules by cell-penetrating peptides (CPPs) 

is rapidly gaining significance in biomedical research. Given endocytosis as an 

import mechanism for cationic CPPs it is required to assess in detail the 

consequences of this import mechanism on intracellular integrity of the vector and 

cargo. In this work a Penetratin analogue terminally labeled with two different 

fluorophores was synthesized and used as a sensor to quantitatively dissect the 

contribution of intracellular proteolytic activities on break-down. Using a panel of 

protease inhibitors, the endocytic compartment was identified as the major site of 

degradation. In contrast, inhibition of the proteasome had little effect on 

intracellular peptide integrity. The ability to monitor break-down of CPPs once 

inside the cell will enable a rational optimization of the peptide-based delivery of 

vaccines and therapeutic oligonucleotides. 
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6.2 Introduction 

The lipid bilayer of the plasma protects the cellular content from entry of 

pathogens and molecules that interfere with cellular function and replication. Only 

molecules within a narrow range of molecular size, net charge and polarity are 

able to directly cross the plasma membrane by passive diffusion along a 

concentration gradient (Lipinski et al., 2001). However, the introduction of 

membrane-impermeable molecules into mammalian cells has important 

implications in biomedical research as well as in basic science (Stephens et al., 

2001). Applications include the import of siRNAs interfering with gene expression 

(Chiu et al., 2004) or peptides that disrupt molecular interactions in cellular signal 

transduction (Prochiantz, 1996). 

Peptide-mediated import has been attracting growing attention as a delivery 

technology during the last decade (for reviews see (Fischer et al., 2001;Langel, 

2002)). Cell-penetrating peptides (CPPs) represent a group of functional peptides 

with little cell-type specificity. These peptides mediate the non-invasive import of 

cargo molecules into cells ex vivo as well as in whole animals (Schutze-

Redelmeier et al., 1996;Schwarze et al., 1999). Cargos have been peptides 

(Prochiantz, 1996;Hawiger, 1999), proteins as large as 120 kDa (Rojas et al., 

1998;Schwarze et al., 1999), oligonucleotides (Astriab-Fisher et al., 2002), 

plasmids (Singh et al., 1999), siRNA (Muratovska et al., 2004), peptide nucleic 

acids (PNAs) (Pooga et al., 1998b) and even nanoparticles (Lewin et al., 2000). 

The majority of these cargos exert their biological activity inside the cytoplasm or 

the nucleus of the treated cells. It is therefore generally assumed that CPPs 

mediate the transfer of these cargos into these two compartments 

The amphipathic and basic Penetratin peptide, derived from the third helix of the 

homeodomain of the Drosophila Antennapedia transcription factor, has been used 

widely as a CPP (Derossi et al., 1994). Despite its broad acceptance as a 

molecular carrier, the mechanism of internalization of the Penetratin peptide is still 

not fully understood. Originally, the internalization of the Penetratin peptide into the 

cytoplasm had been described to occur by a direct translocation across the 

plasma membrane independently of endocytosis (Derossi et al., 1994). Consistent 

with this early cellular data, the transfer of Penetratin across a pure lipid bilayer 
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without forming pores (Thoren et al., 2000;Persson et al., 2003) was 

demonstrated.  

However recent data demonstrated that endocytosis is clearly involved in the 

internalization of the Penetratin peptide (Drin et al., 2003;Fischer et al., 2004). 

Functionally, the endocytic uptake was supported by the observation that the 

Penetratin peptide promotes the endocytosis of high molecular weight cargo upon 

binding to cell surface glycosaminoglycans (Console et al., 2003). However, for 

cationic CPPs taken up by endocytosis the mechanism by which these molecules 

are actually released into the cytoplasm still needs to be resolved. Evidence was 

presented that endosomal acidification is involved in this process (Potocky et al., 

2003;Fischer et al., 2004;Vendeville et al., 2004). In addition, independently of the 

actual membrane translocation step, a strong propensity to bind to the plasma 

membrane had been shown to be crucial for cellular uptake (Drin et al., 2001).  

In order to gain insight into the molecular details of membrane permeation, the 

secondary structure of CPPs and especially the one of the Penetratin peptide has 

been a matter of great interest. Circular dichroism measurements showed that 

Penetratin peptides are randomly structured in aqueous buffers (Magzoub et al., 

2001). Binding to model membranes induces distinct secondary structure, the 

nature of which depends strongly on the experimental conditions and model 

system. Both β-sheet and α-helical structures have been reported (Berlose et al., 

1996;Bellet-Amalric et al., 2000;Lindberg and Graeslund, 2001;Persson et al., 

2001;Magzoub et al., 2002;Salamon et al., 2003). Membrane charge and the 

peptide/lipid ratio have impact on the conformation of the peptide (Christiaens et 

al., 2002;Magzoub et al., 2002;Magzoub et al., 2003). 

Given the endocytic uptake of Penetratin and other cationic CPPs two key 

questions arise. First, the role of peptide-membrane interactions for trafficking and 

cytoplasmic release inside the cell has not been clarified. Secondly, the break-

down by endolysosomal proteases has not been investigated. In order to answer 

these questions, specific biosensors that report on the state of the peptide inside 

the cell are required. 

The analysis of cellular trafficking and peptide membrane interactions has 

benefited greatly from the incorporation of fluorophores as reporter moieties. In 

cellular applications, the trafficking and distribution of fluorescently labeled CPPs 

may be followed in living cells (Waizenegger et al., 2002;Richard et al., 2003). Live 
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cell experiments avoid the problems associated with the fixation of CPP-loaded 

cells (Richard et al., 2003). In addition, loading efficiencies may be compared 

quantitatively by flow cytometry (Richard et al., 2003;Fischer et al., 2004). In 

biophysical analyses, the dependence of the spectral characteristics of a 

fluorophore on the environment has been employed for the generation of sensors 

to probe for membrane interactions and transfer across lipid bilayers (Christiaens 

et al., 2002).  

A major difference between biophysical and cellular experiments is the exposure 

to proteolytic activities in the latter case. In order to exploit the potential of 

fluorescence-based biosensors for the analysis of the trafficking and interactions 

of CPPs inside the cell, a biosensor has to report on both, the chemical 

environment and the integrity of the peptide. This combination of read-outs may be 

achieved via incorporation of two different fluorophores. Peptides incorporating 

two different fluorescent dyes have served as sensors for conformational changes 

(Wei et al., 1994;Geoghegan et al., 2000) and proteolytic breakdown (Cummings 

et al., 2002). Förster (Fluorescence) resonance energy transfer (FRET) (Clegg, 

1995) provides a sensitive read-out for molecular events affecting the proximity of 

the reporter groups.  

To our knowledge all investigations using fluorescently labeled CPPs so far 

were limited to the attachment of only one single fluorophore. The majority of 

these studies have been performed with fluorescein-labeled analogues. 

Applications of 7-nitrobenz-2-oxo-1,3-diazol-4-yl (NBD) (Drin et al., 2001), 

rhodamine-based dyes (Penco et al., 2001;Fischer et al., 2002) and indocyanine-

based fluorophores (Fischer et al., 2002) have been reported, however. 

Combinations of dyes suitable for FRET-based sensors can readily be selected 

from this panel of fluorophores.  

In order to address the molecular details of intracellular trafficking and break-

down, we synthesized a Penetratin analogue terminally labeled with fluorescein 

and tetramethylrhodamine. In vitro analyses of the spectral characteristics 

confirmed that this peptide constitutes a sensitive biosensor for membrane 

interactions and proteolytic break-down. By incubation of cells with this peptide in 

the presence of a variety of protease inhibitors we could quantitatively account for 
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the contribution of distinct proteolytic activities. Protocols were developed for 

detecting the fraction of intact peptide in cell lysates as well as in intact cells.  



A DOUBLY-LABELED PENETRATIN ANALOGUE AS RATIOMETRIC SENSOR 

 

 

 - 100 - 

6.3. Results 

6.3.1 Straight-forward synthesis of doubly-labeled Penetratin 

The synthesis of the doubly-labeled Penetratin analogue benefited from a 

previously presented Rink amide-based resin for the synthesis of peptide 

collections labeled with carboxyfluorescein (Fluo) at the C-terminus (Fischer et al., 

2003, Chapter 3). This resin is preloaded with a lysine carrying a tritylated 

carboxyfluorescein at its α-amino group. Following automated solid-phase peptide 

synthesis (SPPS) of the Penetratin peptide (termed Antp, sequence 

RQIKIWFQNRRMKWKK (Derossi et al., 1994)), the N-terminus was derivatized 

manually with carboxytetramethylrhodamine (Tamra) using the succinimidylester 

(Figure 6.1. A). The resulting peptide was cleaved off the resin and analyzed. The 

purity of the doubly-labeled Penetratin analogue (Tamra-Antp-Fluo, sequence: 

Tamra-RQIKIWFQNRRMKWKK-εLys(Fluo)-NH2) after reduction of the methionine 

sulfoxide (Beck and Jung, 1994) was 80% (HPLC, 214 nm; Fig. 6.1 B and C), a 

purity comparable with the one of unlabeled Penetratin synthesized according to 

the same protocol on Rink amide resin. Standard RP-HPLC purification was 

sufficient to obtain the peptide in high purity for further applications. The synthesis 

strategy eliminates the need for orthogonal side chain protecting groups for the 

introduction of two different labels (Hoogerhout et al., 1999) and is therefore 

applicable to the straightforward synthesis of collections of different CPPs. 
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Figure 6.1 (A) Scheme for the synthesis of the doubly-labeled Penetratin peptide amide Tamra-

RQIKIWFQNRRMKWKK-εLys(Fluo)-NH2 (Tamra-Antp-Fluo). The Penetratin peptide is assembled 

by automated solid-phase peptide synthesis (a) on the free ε-amino group of the Nα-

carboxyfluorescein-labeled lysyl-Rink amide resin (Fischer et al., 2003), followed by (b) introduction 

of the second fluorophore at the N-terminus of the solid-phase bound peptide, and (c) cleavage of 

the peptide amide off the resin and side-chain deprotection. In order to further increase the purity of 

the raw product, the methionine sulfoxide was subsequently reduced as described previously (Beck 

et al., 1994). (B) MALDI-TOF mass spectrum (theor. [M+H]+ = 3145.7 Da) and (C) HPLC elution 

profile of the crude Tamra-RQIKIWFQNRRMKWKK-εLys(Fluo)-NH2 peptide.  

6.3.2 In vitro proteolytic digestion of Tamra-Antp-Fluo 

Fluo and Tamra were selected as a pair of fluorophores for Förster resonance 

energy transfer (FRET) (i) because of their large spectral overlap, (ii) the availability of 

optimized synthesis procedures, and (iii) the compatibility of these dyes with the 

import of CPPs (Fischer et al., 2002). The emission spectrum of fluorescein overlaps 

extensively with the absorption spectrum of Tamra, making this pair very suitable for 

energy transfer experiments to determine distances within and between labeled 

macromolecules (Murchie et al., 1989;Sjöback et al., 1995). Nevertheless 

fluorescence emission spectra showed that the fluorescence of both dyes in the 

Tamra-Antp-Fluo peptide was almost completely quenched (Fig. 6.2 A, B), a result 



A DOUBLY-LABELED PENETRATIN ANALOGUE AS RATIOMETRIC SENSOR 

 

 

 - 102 - 

which is consistent with previous reports (Wei et al., 1994;Packard et al., 1997). This 

loss of fluorescence in both channels was attributed to a mechanism involving 

intramolecular dimer formation of the two fluorophors (Wei et al., 1994). As expected, 

upon digestion with trypsin the fluorescence emission of both fluorophores was 

enhanced significantly (Fig. 6.2 A, B).  
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Figure 6.2 Tamra-Antp-Fluo as proteolytic sensor. Fluorescence emission spectra of Tamra-

Antp-Fluo (100 nM) in HBS with excitation at (A) 492 nm and (B) 541 nm with (upper curves) and 

without (lower curves) digestion with proteinase K (100 µg/ml, 1 h, 37°C). (C) Fluorescence ratios 

were calculated for the data shown in A (digest in HBS, first two columns) and for an identical 

digest in NP40 lysis buffer. Each condition was tested in duplicate; error bars represent the 

absolute deviations from the mean value. 

 

In order to rule out that the differences in fluorescence emission were caused by the 

adhesion of the intact peptide to plastic and glass (Chico et al., 2003), the ratio of the 

fluorescein versus rhodamine emission upon excitation at 492 nm was calculated (Fig. 
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6.2 C). This strategy renders the detection of changes in the fluorescence spectra 

robust towards changes in concentration (Miyawaki et al., 1997). The ratio was almost 

doubled upon proteinase K-digestion in HBS buffer from about 1.7 to 3.0. In 

detergent-containing NP40-lysis buffer the ratiometric difference between intact and 

digested peptide was far more pronounced, the ratio was about 0.3 for the intact 

peptide and 2.8 for the digested peptide.  

6.3.3 Monitoring peptide/membrane interactions with Tamra-

Antp-Fluo 

It was shown previously, that the binding of a 13 amino acid peptide terminally 

labeled with fluorescein and rhodamine to an antibody specific for the peptide, 

diminished the dimer quenching (Wei et al., 1994). Instead, FRET was detected. 

Dimer quenching and FRET therefore provide the basis for a robust read-out for 

molecular interactions that spatially separate the termini of a peptide. We therefore 

investigated whether the induction of secondary structure upon binding of Penetratin 

to lipid bilayers resulted in a similar change in the spectral characteristics. Emission 

spectra were recorded for the Penetratin analogue in the presence of small 

unilamellar phospholipid vesicles (SUVs). A strong increase of Tamra emission and 

the ratio of Tamra over fluorescein emission upon excitation at 492 nm (fluorescein 

excitation) were observed in the presence of SUVs, consistent with the presence of 

FRET (Fig. 6.3 A, B). The disruption of the fluorophore dimer upon binding to SUVs 

was further substantiated by the increase in Tamra emission upon excitation at 541 

nm (Fig. 6.3 C). In order to exclude that the increase in Tamra fluorescence was due 

solely to an increase in quantum yield of this fluorophore upon interaction with the lipid 

bilayer, the mono Tamra-labeled control peptide (Tamra-RQIKIWFQNRRMKWKK-

NH2) was tested as well. Significantly less Tamra emission was observed in the 

presence of SUVs upon excitation at 492 nm (Fig. 6.3 D). For the Tamra-Antp-Fluo 

analogue, FRET is therefore a read-out for the interaction of the peptide with 

phospholipid membranes. In summary, the Tamra-Antp-Fluo peptide is a sensitive 

ratiometric sensor for membrane-induced conformational changes and proteolytic 

break-down. The ratiometric determination of the spectral characteristics renders the 

use of this peptide robust to changes in concentration.  

 

 



A DOUBLY-LABELED PENETRATIN ANALOGUE AS RATIOMETRIC SENSOR 

 

 

 - 104 - 

A C

B
500 550 600 650

0

50

100

150
Fl

uo
re

sc
en

ce
In

te
ns

ity
[a

.u
]

Wavelength [nm]

HBS SUV/HBS
0

1

2

3

Ra
tio

Em
iss

io
n

52
0n

m
/5

85
nm

500 550 600 650
0

50

100

150

Fl
uo

re
sc

en
ce

In
te

ns
ity

[a
.u

.]

Wavelength [nm]

550 600 650 700
0

20

40

60

Fl
uo

re
sc

en
ce

In
te

ns
ity

[a
.u

.]

Wavelength [nm]D

 
Figure 6.3 Tamra-Antp-Fluo as a sensor for peptide/membrane interactions. (A) 

Fluorescence emission spectra of Tamra-Antp-Fluo, with excitation at 492 nm in the absence 

(lower curve) or presence (upper curve) of small unilamellar vesicles (SUV). (B) Fluorescence 

ratios calculated from the data shown in A (Each condition was tested in duplicate; error bars 

represent the absolute deviations from the mean value.) (C) Fluorescence emission spectra of 

Tamra-Antp-Fluo (upper curve) and Tamra-Antp (lower curve) with excitation at 492 nm in the 

presence of SUV. (D) Fluorescence emission spectra of Tamra-Antp-Fluo (upper curve) and 

Tamra-Antp (lower curve) with excitation at 540 nm in the presence of SUV. 

6.3.4 Confocal fluorescence microscopy of Tamra-Antp-Fluo-

incubated cells 

The in vitro spectral characteristics should render Tamra-Antp-Fluo a sensitive 

sensor for probing the state of this peptide inside mammalian cells. As a first step we 

performed live cell confocal fluorescence microscopy of murine MC57 cells incubated 

with Tamra-Antp-Fluo. In these cells, the Penetratin peptide was demonstrated to 

access the cytoplasm in an endocytosis and acidification-dependent manner (Fischer 

et al., 2004). The Tamra-Antp-Fluo peptide was taken up efficiently (Fig. 6.4). A high 

degree of co-localization for the fluorescence of both fluorophores could be observed 

in vesicular structures. However, little Tamra fluorescence was detectable within the 
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cytoplasm or the nucleus. In contrast, pronounced fluorescein fluorescence was 

present in these compartments. Furthermore, some vesicular structures contained 

either fluorescein or Tamra. This differential localization is indicative of proteolytic 

breakdown within the endocytic compartment and preferential release of fluorescein 

labeled fragments into the cytoplasm. We have observed previously, that Tamra-

labeled peptides have a higher propensity for being retained in vesicular structures 

(Fischer et al., 2002).  

 

A DCB

20 µm  
Figure 6.4 Cellular co-localization studies using Tamra-Antp-Fluo. MC57 cells were incubated 

with 1 µM Tamra-Antp-Fluo for 2 h. Living cells were then analyzed by confocal laser scanning 

microscopy in the presence of peptide in the medium. Panel A shows the Tamra fluorescence, panel B 

the fluorescein, panel C the superposition of both fluorescence channels and panel D shows the 

transmission picture. Arrows indicate spots where only one single fluorophore is present. 

6.3.5 Ratiometric fluorescence emission measurements in cell 

lysates 

Next, we intended to identify in more detail the degree of break-down and the 

proteases involved in the intracellular degradation of the peptide. The incubation of 

cells with different inhibitors that affect the activity of cellular proteases should lead to 

different fluorescence properties within subcellular compartments, as it was presented 

for doubly-labeled dextrans (Zen et al., 1992) or transferrins (Zen et al., 1992;van 

Weert et al., 1995). Inside intact cells, the reduction of fluorescein fluorescence by the 

acidic conditions in the endosomes (Sjöback et al., 1995) and concentration 

quenching sets a limit to a quantitative assessment of the proteolytic break-down 

using a microscopic approach (Chen et al., 1988).  

For this reason, we complemented the cellular analyses by spectral analyses in cell 

lysates. MC57 cells were pulsed with the Tamra-Antp-Fluo peptide in the absence and 

presence of inhibitors that affect the activity of proteases inside the cell. After the 

peptide incubation the cell suspensions were first split into two aliquots (Fig. 6.5 A).  
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Figure 6.5 Ratiometric fluorescence emission spectroscopy in cell lysates. (A) Protocol for the 

measurement of fluorescence emission ratios in cell lysates. (B) MC57 cells were incubated with 3 µM 

Tamra-Antp-Fluo for 2 h in serum-free medium in the absence or presence of different inhibitors (100 

µM chloroquine, 300 nM bafilomycin A1, 50 µM furin inhibitor, 50 µM lactacystin). The inhibitors were 

added 30 min prior to the peptide. Cells were then washed, removed from the tissue culture plate using 

EDTA/PBS. Cell lysates were then prepared as described in the experimental section. In brief one half 

was lysed in NP40-lysis buffer containing protease inhibitors. After sonication and centrifugation, 

fluorescence emission spectra were recorded immediately with excitation at 492 nm (upper panel). The 

other half of the peptide pulsed cells was lysed in NP40-lysis buffer. After sonication and centrifugation, 

proteinase K was added. Lysates were then digested for 16 h at 37°C. Fluorescence emission spectra 

were then recorded with excitation at 492 nm (lower panel). (C) Fluorescence ratios were calculated 

from the data shown in B. Each condition was tested in duplicate; error bars represent the absolute 

deviations from the mean value. 
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One half of the cell population was lysed in the presence of protease inhibitors to 

prevent post-lysis proteolysis. Fluorescence emission spectra upon fluorescein 

excitation were recorded immediately (Fig. 6.5 B, upper panel). The second half of the 

cell suspensions were lysed in lysis buffer. These aliquots of the lysates were then 

digested with proteinase K in order to cleave all peptides present in the lysates before 

recording of emission spectra (Fig. 6.5 B, lower panel). The higher the contribution of 

a proteolytic activity to the degradation, the higher the difference in the fluorescence 

ratios should be for both aliquots of one sample.  

A set of four different inhibitors was selected. Bafilomycin A1 (Bowman et al., 

1988;Clague et al., 1994) and chloroquine (de Duve et al., 1974;Kozak et al., 1999) 

represent widely used inhibitors of endosomal acidification (for review see, (Mellman 

et al., 1986)) and therefore also inhibitors of endolysosomal proteolysis. For cationic 

CPPs both drugs abolished the release of theses peptides into the cytoplasm (Fischer 

et al., 2004), indicating that for cationic CPPs endosomal acidification and maturation 

are required for accessing the cytoplasm. The role of endosomal acidification has 

been validated for proteolytically stable (Frackenpohl et al., 2001) cell-penetrating β-

peptides (Potocky et al., 2003) and in an functional assay for the HIV-1-Tat protein 

(Vendeville et al., 2004;Rayne et al., 2004). As a proteolytic inhibitor that blocks a 

major protease activity in the cytoplasm lactacystin was selected, a bacterial 

metabolite that selectively inhibits the 20S proteasome (Fenteany et al., 1995;Dick et 

al., 1996). Finally, a furin synthetic inhibitor was included. The protease furin is 

ubiquitously expressed and localized mainly in the trans-Golgi network, although 

some portion of the furin molecules cycle between this compartment and the cell 

surface. Furin cleaves proteins and peptides within stretches containing cationic 

amino acid residues (Nakayama, 1997) and more importantly furin was recently 

demonstrated to cleave the HIV-1 Tat protein in monocytoid cells (Tikhonov et al., 

2004).  

Digestion with proteinase K led to fluorescence emission ratios very similar to the 

value of 2.8 for all samples observed for digested Tamra-Antp-Fluo in NP-40 lysis 

buffer (Fig. 6.2 C). For cells pulsed with peptide in the absence of inhibitor, the ratio 

was 2.3 indicative of significant degradation of peptides inside the cells. Bafilomycin 

A1 and chloroquine had the strongest effects. The emission ratios decreased in both 

cases to about 0.9. Lactacystin and the furin inhibitor had a little, albeit significant 

effect on the emission ratios (Fig. 6.5 C). These results suggest that the endosomal 
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passage has a major impact on the integrity of the peptide inside the cell. The 

proteasome seems to cleave only a rather small amount of the intracellular peptide.  

6.3.6 Cysteine proteases mediate the intracellular degradation of 

Penetratin 

Endolysosomal proteases require an acidic pH for activity. For this reason, the 

inhibitory effect on endolysosomal proteolysis exerted by both bafilomycin A1 and 

chloroquine is rather indirect, through inhibition of acidification. Therefore at this stage 

it could not be concluded whether the increased integrity of the peptides caused by 

both drugs was due to the inhibition of endolysosomal proteases or due to the 

inhibition of an acidification-dependent entry into the cytoplasm (Potocky et al., 

2003;Fischer et al., 2004). In the latter case, lactacystin-insensitive cytoplasmic 

proteases would contribute significantly to the break-down. In order to resolve this 

issue peptide-pulsed cells were incubated with the broadband cysteine protease 

inhibitors leupeptin (Vidard et al., 1991) and E-64d  (Tamai et al., 1986). Members of 

the aspartic acid and cysteine proteases make up most of the proteases that are 

present in the endolysosomal compartment. Most mammalian lysosomal cysteine 

proteases are known as cathepsins, although not all cathepsins are cysteine 

proteases (Honey and Rudensky, 2003). Both leupeptin and E-64d reduced the 

proteolytic degradation of Tamra-Antp-Fluo significantly, albeit not as drastically as 

bafilomycin A1 (Fig. 6.6 A). 

The investigation of intracellular proteolysis of proteins and peptides is of high 

general relevance for the cellular import of bioactive molecules. In immunology, in 

particular, the endolysosomal pathway is the major route of entry and processing for 

foreign antigens to be presented by antigen-presenting cells. Analysis of the 

processing of peptides and proteins in the endolysosomal compartment is therefore of 

major significance, both, for understanding the basis of antigen-presentation and for 

the development of immunotherapeutics (Honey et al., 2003). Cellular analyses by 

flow cytometry are well established within immunological research. For this reason, we 

next tested whether the ratiometric approach was also applicable to this technique. In 

this case, different concentrations were tested for E-64d and leupeptin. For both 

inhibitors, the ratiometric values within the cell lysates correlated with the 

concentration of the inhibitor (Fig. 6.6 B). The same finding was observed for the 



A DOUBLY-LABELED PENETRATIN ANALOGUE AS RATIOMETRIC SENSOR 

 

 - 109 -  

analysis of cellular fluorescence by flow cytometry (Fig. 6.6 C). The differences in the 

absolute ratiometric values determined with both techniques may be due, first, to the 

different size of the spectral windows, and second, due to concentration- and pH-

dependent quenching effects of the fluorophores inside the cells. Still, both sets of 

values exhibited a strong linear correlation (Fig. 6.6 D).  
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Figure 6.6 Involvement of cysteine proteases in the cellular degradation of Tamra-Antp-Fluo. 

(A) MC57 cells were incubated with Tamra-Antp-Fluo (4 µM) for 2 h in serum-free medium in the 

absence or presence of different inhibitors, as indicated. The inhibitors were added 30 min prior to the 

peptide. Cells were then washed, detached from the tissue culture plate using EDTA/PBS. Cells were 

then washed once more lysed in NP40-lysis buffer containing protease inhibitors. After sonication and 

centrifugation, fluorescence emission spectra were recorded immediately with excitation at 492 nm and 

fluorescence ratios were calculated from the data. (B) The same procedure as under (A) was performed 

applying different concentrations of cysteine protease inhibitors (ratios in cell lysates are shown, each 

condition was tested in duplicate; error bars represent the absolute deviations from the mean value) (C) 

A small fraction of the cells from (B) was subjected to flow cytometry analysis before lysis and ratios of 

FL-1 (fluorescein) versus FL-2 (Tamra) were calculated. Each condition was tested in duplicate; error 

bars represent the absolute deviations from the mean value. (D) For each condition the different ratios 

obtained in B (measurements in cell lysates) and C (flow cytometric data) were plotted. 
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6.3.7 The endolysomal compartment is the major site of 

degradation of Penetratin 

Since both E-64d and leupeptin are not selective towards endolysosomal cysteine 

proteases it could not be ruled out that the inhibition of cytoplasmic cysteine 

proteases, such as calpains, also accounted for the enhanced peptide stability. This 

could especially be the case as (i) endosomal acidification was shown also to play a 

role for the release of proteolytically stable peptides into the cytoplasm and (ii) the 

proteasome contributed little to the degradation of the peptides. Live cell confocal 

microscopy was performed in the absence or presence of different inhibitors in order 

to resolve this ambiguity.  

A

C

B

20 µm

 
 
Figure 6.7 Impact of cysteine protease inhibitors on subcellular distribution of Tamra-

Antp-Fluo. MC57 cells were incubated with Tamra-Antp-Fluo (4 µM) for 2 h in serum-free medium 

in the absence or presence of different inhibitors (panels A, no inhibitor; panels B, 300 nM 

bafilomycin A1; panels C, 30 µM E-64d). The inhibitors were added 30 min prior to the peptide. Left 

panels show the Tamra fluorescence, the fluorescein channel, the superposition of both 

fluorescence channels. Right panels show the transmission pictures. 
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If the degradation was mediated primarily by endolysosomal cysteine proteases, 

the co-localization of both fluorophores should increase. Incubation of cells with E-

64d increased the degree of co-localization and reduced the cytoplasmic 

fluorescein fluorescence (Fig. 6.7 B). Still the E-64d induced phenotype was 

different from the one induced by bafilomycin A1 (Fig. 6.7 C). Instead of being 

concentrated at a region next to the nucleus for bafilomycin A1, peptide-loaded 

vesicles were strongly present also in the periphery of the cells  
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6.4 Discussion 

The results presented in this paper provide a first semi-quantitative account of 

the intracellular fate of the cell-penetrating peptide Penetratin. The analyses were 

based on an analogue of the Penetratin peptide, terminally labeled with two 

different fluorescent dyes. The synthetic route originated from our previously 

developed Fluo(Trt)-Lys-resin (Fischer et al., 2003), demonstrating that this 

reagent provides a straight-forward and rapid access to highly pure doubly-labeled 

peptides, when compared to other previously published protocols for this dye 

combination (Wei et al., 1994;Hoogerhout et al., 1999;Li et al., 1999;Kruger et al., 

2002). The fluorescence characteristics of Tamra-Antp-Fluo provided a sensitive 

read-out for the interaction with lipid bilayers and proteolytic break-down. 

Detection of the conformational changes induced upon membrane interaction in 

fact greatly benefited from the dimer quenching observed for conformationally 

disordered peptides, labeled with these two fluorophores. The fluorescence 

characteristics were fully compatible with analyses by fluorescence spectroscopy, 

confocal laser scanning microscopy and flow cytometry. 

Our data underline that a large fraction of the peptide entering the cell within 2 h 

incubation had been degraded in the endolysosomal compartment. Our analyses 

therefore confirm that the endocytic uptake has a major impact on peptide 

integrity. The small but significant effect of lactacystin demonstrates, however, that 

intact peptide reaches the cytosol. By a combination of results obtained for the 

effects of bafilomycin A1 and chloroquine on the one hand, and leupeptin and E-

64d on the other hand, the amount of peptide reaching the cytosol in an intact form 

can be estimated to be around 10-20% of the total peptide entering the cell. 

In the original contribution on Penetratin it was found that this peptide is mainly 

found in its intact form inside the cell (Derossi et al., 1994). The assay was based 

on the detection of biotinylated peptides using Western Blot analysis. Another 

more recent contribution has investigated the intracellular stability of the CPP 

pVEC as a CPP using matrix-assisted laser desorption ionization mass 

spectrometry. One might argue that the preparation of cell lysates introduces novel 

artefacts similar to those introduced by fixation (Richard et al., 2003). However, 

one major advantage of the doubly-labeled peptide is that the same molecule can 
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be applied to different fluorescence-based techniques. The results can then be 

cross-validated. We demonstrate that the measurements in the cell lysates 

strongly correlated with live cell techniques i.e. flow cytometry and live cell 

fluorescence microscopy. The results obtained for the doubly-labeled Penetratin 

analogue also demonstrate that one needs to be cautious about the results 

obtained for peptides carrying only one label. Elimination of cytoplasmic 

fluorescein fluorescence upon incubation with leupeptin and E-64d indicates that 

this fluorescence may originate from fluorescein-labeled peptide fragments 

released into the cytoplasm. 

Interestingly, our results suggest that the proteasome contributes little to the 

degradation of the cytosolic population of peptides. The contribution of the 

proteasome is in line with observations obtained from processing studies dealing 

with penetrating-MHC I epitope constructs (Pietersz et al., 2001). This result is 

highly relevant or the development of CPP-based peptide vaccines, since CPPs 

offer the advantage of a rational vaccine design. In a recent study, Tat-epitope 

constructs were joined via furin-sensitive linkers, which led to enhanced 

generation of peptide/MHC complexes (Lu et al., 2004). 
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6.5 Materials and Methods 

6.5.1 Materials 

Standard chemicals for peptide chemistry were obtained from Fluka 

(Deisenhofen, Germany) and Merck (Darmstadt, Germany); solvents were p. a. 

grade. Fmoc-amino acids were purchased from Novabiochem (Heidelberg, 

Germany), Senn Chemicals (Dielsdorf, Switzerland), and Orpegen Pharma 

(Heidelberg, Germany). Fmoc-Lys(Dde)-OH was purchased from Novabiochem 

(Läufelfingen, Schweiz). Rink amide resin was from Rapp Polymere (Tübingen, 

Germany). The isomeric mixtures of 5(6)-carboxyfluorescein (Fluo) and 5(6)-

carboxytetramethylrhodamine (Tamra)-N-succinimidylester were from Fluka 

(Deisenhofen, Germany). Bafilomycin A1 was from Tocris Biotrend (Bristol, UK), 

chloroquine diphosphate from Fluka, the furin inhibitor (Dec-RVKR-CMK) from 

Calbiochem (Bad Soden, Germany), lactacystin from Prof. Corey (Harvard 

University, USA), E-64d from Serva (Heidelberg, Germany) and leupeptin from 

Bachem (Bubendorf, Switzerland). 1-palmitoyl-2-oleoyl-phosphatidylcholine 

(POPC) and 1-palmitoyl-2-2-oleoyl-phosphatidylglycerol (POPG) were purchased 

from Avanti Polar Lipids (Alabaster, Alabama, USA).  

6.5.2 Peptide synthesis and analysis 

Automated peptide synthesis was performed by solid-phase Fmoc/tBu-chemistry 

using an automated peptide synthesizer for multiple peptide synthesis (RSP5032, 

Tecan, Hombrechtlikon, Switzerland) in 2 ml syringes according to the following 

protocol: Fmoc-amino acids (twelve-fold excess) were coupled by in situ activation 

using DIC/HOBt for 90 min followed by removal of the Fmoc-protecting group by 

treatment with piperidine/DMF (1:4, v/v) twice for 8 min. The resin was washed 

with DMF (6x) after each coupling and deprotection step. Side chains of Asn and 

Gln were Trt-protected and the side chains of Lys and Trp were Boc-protected, the 

side chain of Arg was Pbf-protected. Peptides were cleaved off the resin by 

treatment with TFA/TIS/EDT/H2O (92.5:2.5:2.5:2.5, v/v/v/v) for 4 h. Crude peptides 

were precipitated by adding cold diethyl ether (-20°C). The precipitated peptides 
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were collected by centrifugation and resuspended in cold diethyl ether. This 

procedure was repeated twice. Finally, peptides were dissolved in tBuOH/H2O 

(4:1, v/v) and lyophilized.  

Peptides and conjugates were analyzed by analytical RP-HPLC using a water 

(0.1% TFA) (solvent A)/ACN (0.1% TFA) (solvent B) gradient on a Waters 600 

System (Eschborn, Germany) with detection at 214 nm. The samples were 

analyzed on an analytical column (Nucleosil 100, 250 x 2 mm, C18 column, 5 µm 

particle diameter; Grom, Herrenberg, Germany), using a linear gradient from 10% 

B to 100% B within 30 min (flow rate: 0.3 ml/min). Both peptides were purified by 

preparative RP-HPLC (Nucleosil 300, 250 x 20 mm, C18 column, 10 µm particle 

diameter; Grom, Herrenberg, Germany) on a Gilson preparative system (Bad 

Camberg, Germany, equipped with a 321 Pump and a 156 UV/Vis Detector, flow 

rate 10 ml/min). Gradients were adjusted according to the elution profiles and peak 

profiles obtained from the analytical HPLC chromatograms. Peptide purities of 

both peptides used in this study were > 98% (214 nm, HPLC).  

MALDI-TOF-MS. 1 µl of 2,5-dihydroxyacetophenone (DHAP) matrix (20 mg of 

DHAP, 5 mg of ammonium citrate in 1 ml of isopropyl alcohol/H2O (4:1, v/v)) was 

mixed with 1 µl of each sample (dissolved in ACN/water (1:1) at a concentration of 

1 mg/ml) on a gold target. Measurements were performed using a MALDI-TOF 

system (G2025A, Hewlett-Packard, Waldbronn, Germany). For signal generation 

20-50 laser shots were added up in the single shot mode. 

6.5.3 Solid-phase synthesis of Tamra-Antp-Fluo and Tamra-

Antp 

The doubly-labeled peptide Tamra-Antp-Fluo was synthesized using our 

previously developed Fluo(Trt)-Lys-Rink amide resin (Fischer et al., 2003). The 

peptide RQIKIWFQNRRMKWKK-CONH2 was assembled on this resin in a 15 

µmol scale as described above. A small fraction of this peptide was cleaved off 

and analyzed (RQIKIWFQNRRMKWKK-εLys(Fluo)-CONH2, (purity 80% (HPLC, 

214 nm), calc. [M+H]+ = 2733.3 Da, exp. [M+H]+ = 2733.3  Da, determined by 

MALDI-MS)). 5 µmol of the resin bound and side-chain protected peptide was then 

reacted with   5(6)-carboxytetramethylrhodamine-N-succinimidyl ester (10 µmol, 
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5.3 mg) in DMF (200 µl) containing DIPEA (25 µmol, 4.3 µl). After 16 h, the resin 

was thoroughly washed. Cleavage and deprotection of the doubly-labeled peptide 

amide was performed as described above. The peptide was dissolved in 

ACN/water, lyophilized and analyzed by HPLC and MALDI-MS. Methionine 

sulfoxide reduction was performed as described elsewhere (Beck et al., 1994). 

The peptide was then purified as described by preparative HPLC for spectroscopic 

characterization.  

The mono labeled peptide Tamra-Antp (Tamra-RQIKIWFQNRRMKWKK- 

CONH2) was synthesized on Rink amide resin in a 15 µmol scale. N-terminal 

labeling with Tamra and all other steps were performed as described above for 

Tamra-Antp-Fluo. 

Both peptides were dissolved in DMSO at concentrations of 10 mM. These stock 

solutions were further diluted 1:20 in ddH2O. Peptide concentrations were 

determined by UV/VIS-spectroscopy of a further 1:100 dilution in methanol. 

Absorptions of these solutions were measured at 540 nm (ε = 95.000 l/(mol⋅cm)). 

6.5.4 Fluorescence emission spectra 

Fluorescence emission spectra were recorded at RT using an LS50B 

spectrofluorometer (Perkin-Elmer, Norwalk, CT, USA). The spectra were corrected 

for the sensitivity of the detection system. The excitation and emission bandwidths 

were set to 10 nm.  

6.5.5 Preparation of small unilamellar vesicles (SUVs) 

Vesicles were prepared by initially dissolving the phospholipids (1-palmitoyl-2-2-

oleoyl-phosphocholine (=POPC) and 1-palmitoyl-2-2-oleoyl-phosphoglycerol 

(=POPG)) at a concentration of 25 mg/ml in chloroform. Then the appropriate 

volumes of both solutions were mixed to obtain a ratio of 70/30 (w/w, 

POPC/POPG)). The solvent was removed by placing the sample under high 

vacuum. The dried lipids were then dispersed in the appropriate volume of HBS 

buffer (final concentration 1 mM). The solution was vigorously mixed and 

incubated for 1 h at RT. The sample was then mixed again and sonicated untill the 
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solution turned clear. All steps for SUV-containing solutions were performed using 

glass tubes and glass syringes, in order to prevent adsorption of the lipids to 

plastic surfaces. 

6.5.6. Cell culture 

The adherent MC57 fibrosarcoma cell line (Hosaka et al., 1986) was grown in a 

5% CO2 humidified atmosphere at 37°C in RPMI 1640 medium with stabilized 

glutamine and 2.0 g/l NaHCO3 (PAN Biotech, Aidenbach, Germany) supplemented 

with 10% fetal calf serum (PAN Biotech), 100 U/ml penicillin, and 100 µg/ml 

streptomycin (Biochrom, Berlin, Germany). Both cell lines were passaged by 

trypsinization with trypsin/EDTA (0.05/0.02% (w/v)) (Biochrom) in PBS every third 

to fourth day. 

6.5.7 Confocal laser scanning microscopy 

Confocal laser scanning microscopy was performed on an inverted LSM510 

laser scanning microscope (Carl Zeiss, Göttingen, Germany) fitted with a Plan-

Apochromat 63x 1.4 N.A. lens. All measurements were performed with living, non-

fixed cells. MC57 cells were seeded at a density of 10,000/well in eight-well 

chambered cover glasses (Nunc, Wiesbaden, Germany). Two days later, before 

addition of inhibitors or peptides, cells were washed once with serum-free RPMI 

1640. The indicated inhibitor was added in 200 µl serum-free RPMI 1640 30 min 

before addition of peptides. After 2 h incubation with peptides, images were 

acquired immediately at RT with excess peptide in the medium. For double 

detection of fluorescein and Tamra the 488 nm line of an Argon-Ion laser and the 

light of a 543 nm Helium-Neon laser were directed over an HFT 488/543 beam 

splitter and fluorescence was detected using an NFT 545 beam splitter in 

combination with a BP 505-530 band pass filter for fluorescein detection and an 

LP 560 long pass filter for Tamra-detection.  

6.5.8 Fluorescence emission measurements in cell lysates 

MC57 were seeded in 6 well plates (Sarstedt, Nümbrecht, Germany) in serum-

containing RPMI 1640. Two days later, the confluent cell layer was washed with 
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serum-free RPMI 1640 and incubated with 500 µl serum-free RPMI 1640 (+/- the 

indicated inhibitor) for 30 min. Then Tamra-Antp-Fluo was added and after 2 h 

incubation, cells were washed twice with PBS, detached using EDTA (5 mM)/PBS 

(10 min at 37°C), transferred into a fresh tube and washed twice with 1 ml PBS. A 

small fraction of the cells was used for flow cytometric analysis. Cell suspensions 

were then resuspended in 1 ml PBS and split into half. Both suspensions were 

then transferred into a fresh tube and spun down. Following removal of the 

supernatants, one half was lysed in 200 µl NP-40 lysis buffer (0.5% (v/v) NP-40, 

150 mM NaCl, 5 mM EDTA, 50 mM TRIS, pH 7.0, containing protease inhibitor 

cocktail (Roche Diagnostics, Mannheim, Germany). Theses lysates were then 

sonicated and centrifuged for 30 min at 4°C and 14,000 rpm. Fluorescence 

emission spectra of the supernatants were recorded immediately (excitation 492 

nm). These lysates were always stored on ice. The second half of the cells was 

lysed in 180 µl NP-40 lysis buffer. Theses lysates were then also sonicated and 

centrifuged for 30 min at 4°C and 14.000 rpm. 20 µl of proteinase K-solution (10 

mg/ml, Sigma, Taufkirchen) was then added to the supernatants. After 16 h 

fluorescence emission spectra of the supernatants were recorded (excitation 492 

nm). 

6.5.8 Flow cytometry 

Flow cytometry was performed on a FACS-Calibur (Becton Dickinson). The 

fluorescence of 5000 vital cells was acquired. Vital cells were gated based on 

sideward and forward scatter. For calculating the fluorescence emission ratios the 

median fluorescence intensities of 5000 vital cells were taken. Under the 

experimental conditions, about 35% of the fluorescein emission intensity was 

detectable in the FL-2 channel (= Tamra-channel), whereas no fluorescence 

emission from Tamra was detectable in the FL-1 channel (fluorescein-channel). 

The data obtained were not compensated for this cross-talk. 
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