
JavaEvA

A Java based framework

for Evolutionary Algorithms
- Manual and Documentation -

Felix Streichert and Holger Ulmer
Tech. Report WSI-2005-06

ISSN 0946-3852
Centre for Bioinformatics Tübingen (ZBIT)
of the Eberhard-Karls-University Tübingen

Sand 1, 72076 Tübingen, Germany
c©Wilhelm-Schickard-Institut, 2005

i

Abstract

The package JavaEvA (a Java implementation of Evolutionary Algorithms) is a gen-
eral modular framework with an inherent client server structure to solve practical
optimization problems. This package was especially designed to test and develop
new approaches for Evolutionary Algorithms and to utilize them in real-world ap-
plications.
JavaEvA already provides implementations of the most common Evolutionary Al-
gorithms, like Genetic Algorithms, CHC Adaptive Search, Population Based Incre-
mental Learning, Evolution Strategies, Model-Assisted Evolution Strategies, Genetic
Programming and Grammatical Evolution. In addition the modular framework of
JavaEvA allows everyone to add their own optimization modules to meet their spe-
cific requirements.
The JavaEvA package uses a generic GUI framework that allows GUI access to any
member of a class if get and set methods are provided and an editor is defined for
the given data type. This approach allows very fast development cycles, since hardly
any additional effort is necessary for implementing GUI elements, while still at the
same time user specific GUI elements can be developed and integrated to increase
usability.
Since we cannot anticipate specific optimization problem and requirements, it is
necessary for users to define their optimization problem. Therefore, we provide an
additional framework and explain how one can include JavaEvA in an existing Java
project or how one can implement ones own optimization problem and optimize
it by using JavaEvA. This gives users total control of the optimization algorithms
used.
In the following chapters we will give a short introduction to JavaEvA in ch. 1 and
to optimization algorithms in ch. 2. In ch. 3 we give a detailed description of the
modules in JavaEvA from the general users and the developers perspective. Finally
in ch. 4 we give a tutorial how to implement one’s own optimization problem and
how to use JavaEvA in a users’s framework.

Contents

1 Introduction 5

2 Optimization Algorithms 9

2.1 General Approaches . 12

2.1.1 Monte-Carlo Search . 12

2.1.2 Hill-Climber . 13

2.1.3 Simulated Annealing . 13

2.2 Genetic Algorithms . 15

2.2.1 Solution Representations . 16

2.2.2 Selection . 18

2.2.3 Recombination/Crossover . 21

2.2.4 Mutation . 22

2.2.5 Generation Strategies . 23

2.2.6 Termination Criteria . 23

2.3 CHC Adaptive Search Strategy . 25

2.4 Population Based Incremental Learning 26

2.5 Evolution Strategies . 27

2.5.1 Solution Representation . 27

2.5.2 Selection . 28

2.5.3 Recombination/Crossover . 28

2.5.4 Mutation . 29

2.5.5 Generation Strategies . 30

2.6 Model Assisted Evolution Strategies 31

1

2 Contents

2.7 Genetic Programming . 33

2.7.1 Solution Representation . 33

2.7.2 Selection . 35

2.7.3 Recombination/Crossover . 35

2.7.4 Mutation . 36

2.7.5 Generation Strategies . 37

3 JavaEvA - Tutorial 39

3.1 First Steps with JavaEvA . 39

3.1.1 Getting Started . 39

3.1.2 Select an Optimization Module 42

3.1.3 Select an Optimization Problem 45

3.2 Tutorial on Monte-Carlo Search . 47

3.2.1 User’s Description . 47

3.3 Tutorial on Hill-Climber . 49

3.3.1 User’s Description . 49

3.4 Tutorial on Simulated Annealing . 51

3.4.1 User’s Description . 51

3.5 Tutorial on Genetic Algorithms and Genetic Programming 53

3.5.1 User’s Description . 54

3.6 Tutorial on Population Based Incremental Learning 56

3.6.1 User’s Description . 57

3.7 Evolution Strategies (ES) . 59

3.7.1 User’s Description . 59

3.8 Model Assisted Evolution Strategies 65

3.8.1 User’s Description . 65

3.9 Tutorial on Genetic Optimization . 67

3.9.1 User’s Description . 68

Contents 3

4 JavaEvA Applications 85

4.1 How to install the Project . 85

4.2 ES Application Example . 85

4.2.1 General Problem Definition 86

4.2.2 Problem Implementation . 87

4.2.3 Setting up the ES Application Algorithm 89

4.3 Genetic Optimization Application Example 91

4.3.1 General Problem Definition 91

4.3.2 Problem Implementation . 92

4.3.3 Optimizing the Problem . 100

5 JavaEvA Frequently Asked Questions (FAQ) 103

4 Contents

Chapter 1

Introduction

JavaEvA (a Java implementation of Evolutionary Algorithms) is a modular frame-
work for Evolutionary Algorithms (EA) and other iterative and preferably pop-
ulation based Optimization Algorithms, like Simulated Annealing or simple Hill-
Climbing strategies. JavaEvA has been developed as a resumption of the former
EvA (Evolutionary Algorithms) software package [47, 46] 1.
The optimization toolbox JavaEvA aims at two possible groups of users. First, the
standard user who does not know much about the theory of Evolutionary Algo-
rithms, but wants to use Evolutionary Algorithms to solve his application problem.
Second, the experienced programmer who wants to investigate the performance of
different optimization algorithms or wants to compare the effect of alternative mu-
tation or crossover operators. The latter usually knows more about Evolutionary
Algorithms or Optimization Algorithms and is able to extend JavaEvA by adding
more specialized optimization strategies or solution representations.
Currently, JavaEvA encompasses the following optimization strategies:

• Monte-Carlo Search (MCS)

• Hill-Climbing (HC)

• Simulated Annealing (SA)

• Genetic Algorithms (GA)

• CHC Adaptive Search (CHC)

• Population Based Incremental Learning (PBIL)

• Evolution Strategies (ES)

• Model-Assisted Evolution Strategies (MAES)

1For details on EvA package please visit our web page at http://www-ra.informatik.uni-
tuebingen.de/forschung/eva/welcome e.html

5

6 Chapter 1. Introduction

• Genetic Programming (GP)

• Grammatical Evolution (GE)

• Multi-Objective Evolutionary Algorithms (MOEA)

Although this already covers the most common EA optimization strategies, JavaEvA
can easily be extended with other more problem specific optimization strategies like
Gradient Descent or the Simplex Algorithm, due to the general modular framework
of JavaEvA. These algorithms can be used in combination with the existing EA
approaches, which leads to so called Memetic Algorithms, or in competition against
them.
One key element of JavaEvA that allows multiple future extensions are the model
assisted approaches, like MAES, which use a model of the fitness function as surro-
gate and detect local features of the search space to guide the optimization process
and to save target function evaluations for faster speed of convergence. Currently,
the implemented mathematical models range from classical Polynomial Regression
Models, Radial-Basis-Function networks, Gaussian Processes, to Support Vector and
Relevance Vector Machines. These models are not limited to MAES approaches, but
can also be used for Global Optimization strategies like Efficient Global Optimiza-
tion (EGO).
There are several advantages of a Java implementation of Evolutionary Algorithms.
First, using Java the optimization toolbox can be run on any operating system that
supports a Java Virtual Machine using Java 1.4, among others, Windows (2000,
XP), Linux (SuSE, RedHat, Fedora), AIX and Solaris. Second, Java allows easy
integration into web based services. The Java WebStart application of JavaEvA on
the JavaEvA web pages is just one example for that. Third, the Remote Method
Invocation (RMI) of Java allows easy distribution of an application using an in-
tranet or the internet. For example, JavaEvA uses a client/server architecture that
allows one to start the server running the optimization algorithms on one machine,
while accessing the server using a client running on a totally different machine. Fur-
ther, RMI can be used to parallelize Evolutionary Algorithms, either on the level
of populations using an island-model with occasional communication between sub-
populations or on the level of target function evaluations. In general, EAs are quite
easy to parallelize, due to their population based optimization approach, and the
Java inherent support for distributed computation makes it even easier.
JavaEvA was developed as part of a Project on ”Automated Crystallization” 2.
In that project JavaEvAm was developed for on-line optimization of production
parameters for an automated crystallization process for crystalline catalysts. The
production process was to be optimized in respect to the yield of the production

2This project was sponsored by the German Federal Ministry of Research and Eductation
(BMBF), contract No. 03C0309E. For details on this project please visit our web page at
http://www-ra.informatik.uni-tuebingen.de/forschung/kombikat/welcome e.html

7

output and the catalytic properties of the crystals produced. Because the target
function evaluation required real-world experiments, which were not only time con-
suming but also quite expensive, the previously mentioned MAES approach was
developed in JavaEvA to suit the requirements of this real-world optimization prob-
lem.
Currently, JavaEvA is also used as educational and teaching tool for the lectures on
‘Genetic Algorithms and Evolution Strategies’ to illustrate the general behavior of
EA approaches and the effect of special mutation or crossover operators. A standard
student project is to define an optimization problem encountered in their field of
studies, to implement it as optimization problem for JavaEvA and to solve it using
the available tools in JavaEvA.
This documentation on JavaEvA gives a short introduction to optimization algo-
rithms in chap. 2, while a detailed description of the modules in JavaEvA is given
from the general users perspective, in ch. 3. Finally in ch. 4 a tutorial is given on
how to implement one’s own optimization problem and how to use JavaEvA in one’s
own framework to optimize it. The examples for the tutorial, additional quick tour
guides and the JavaEvA download links can be found on our JavaEvA web pages
at http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/. Ch. 5 gives a
short FAQ, which is updated continuously.

8 Chapter 1. Introduction

Chapter 2

Optimization Algorithms

Optimization problems are some of the most common application problems. An
optimization problem is given as a search for the best (optimal) solution x from a
number of possible solution alternatives, the search space L. The quality measure
that identifies the ’best’ solution is given by a target function y = f(x), which may
be multidimensional in y or even a priori unknown. The target value y is either
to be maximized or minimized to be optimal, depending on the given application
problem. The solutions xopt that produce such an optimal target value are called
global optima, if no x ∈ L produces a better target value.
An optimization algorithm is a process that searches the search space L for the
global optimum. A simple example for such an optimization algorithm would be a
total enumeration approach that tries all possible solutions x. Unfortunately, this
approach is rather inefficient with increasing problem dimension, even if more effi-
cient covering methods are used. Other approaches utilize special properties of the
target function to find the optimal solution through an efficient heuristic, e.g. Linear
or Quadratic Programming. If the target function is real-valued and differentiable,
local search algorithms like gradient descent can be applied. In case the gradient of
the target function is not available or the target function is multimodal, e.g. con-
tains multiple local and global optima, still some less efficient global optimization
strategies can be applied. While local search algorithms use local properties of the
search space to guide the search, global search algorithms tend to take the whole or
at least a larger part of the search space into consideration for exploration.
In case the optimization problem is still too complex to be searched using standard
approaches due to high dimensionality, noise, non-linearity or other unusual prop-
erties of the search space, the choice of available optimization algorithms becomes
significantly smaller. In such cases Evolutionary Algorithms (EAs) are often applied
to search for the optimum. Unfortunately, EAs are not guaranteed to find the global
optimal solutions, but they are often able to find sufficiently good solutions within
a limited amount of time.

9

10 Chapter 2. Optimization Algorithms

Figure 2.1: The general scheme of an
Evolutionary Algorithm.

Evolutionary Algorithms are stochastic,
iterative, population based approaches,
which are inspired by the mechanisms of
natural evolution. Charles Darwin first
postulated that natural evolution is based
on the principle of the ‘survival of the
fittest’ and improvements are caused by
random alterations in the reproduction cy-
cle. In biology these random alteration are
either caused by random mutations or by
recombination.
EAs start with a population P of randomly
initialized solutions and iteratively apply
directed selection and reproduction using
recombination and mutation until a termination criterion is met, see fig. 2.1. This
way the EA gradually produces more and more adapted/optimized solutions and
converges to close to optimal solutions. Contrary to other optimization algorithms
the EA requires only the output of the target function for a given solution to guide
the selection process and a suitable solution representation to apply the evolutionary
operators of recombination and mutation to.
Therefore, EAs can be applied to many kinds of optimization problems, where classi-
cal optimization approaches often fail. The target function may be noisy, non-linear,
non-differentiable, discontinuous, multi-modal, high dimensional and may be sub-
ject to multiple kinds of constraints.
Another class of optimization problems, where EAs have been successfully applied
are multi-objective optimization problems. Here multiple, often conflicting, objec-
tives y are to be optimized at the same time. Most standard optimization algorithms
have considerable difficulties to solve multi-objective optimization problems. They
often require repetitive optimization runs with varying control parameters to ob-
tain the complete Pareto-front for a given multi-objective optimization problem. In
case of EAs, on the other hand, we only need to extend the selection process to
a multi-objective selection and the multiple solutions maintained in a population
based approach allow EAs to approximate the Pareto-front in a single optimization
run. But additional precautions are necessary, to maintain a diverse population to
cover the complete Pareto-front.
Since JavaEvA was developed as a toolbox for Evolutionary Algorithms, most of the
implemented optimization strategies are stochastic, iterative and population based
approaches. To describe these algorithms, it is necessary to introduce some terms,
see tab. 2.1. These terms will later be used to explain some of the features of the
optimization algorithms implemented in JavaEvA.
In the following chapters we will give short descriptions of the optimization algo-
rithms implemented in JavaEvA, ranging from simple Monte-Carlo Search and Hill-

11

Term Abbreviation Meaning in JavaEvA

Solution x Possible solution for a given problem or sample of
the search space. If x is a vector n gives the length of
the vector. The variables x are often called decision
variables.

Population P (t) Set of alternative solutions at time t. |P (t)| = m
gives the size of the population.

Individual ai Data structure stored in a population, which gives a
possible solution x. i is the index within a population.

Fitness y = f(x) Quality measure or target value for a solution x.
Generation t Index of current iteration of the optimization process.
Parents Pp Subset of P (t) selected to generate new individuals.
Offspring Pc Individuals generated from parents through recombi-

nation and mutation.
Crossover Method that mixes decision variables of multiple in-

dividuals. Operates either on the level of genotypes
or on the level of phenotypes.

Mutation Method that alters decision variables in an individual.
Operates either on the level of genotypes or on the
level of phenotypes.

Genotype Data structure of an individual that gives the solution
representation. Typically the evolutionary operators
of mutation and crossover act on the genotype.

Phenotype Solution representation that can be evaluated by the
target function. Often needs to be decoded from the
genotype of an individual.

Table 2.1: Nomenclature

Climbing approaches to Genetic Algorithms and Evolution Strategies. Although
these are general descriptions of the optimization algorithms, in some cases we will
comment on the properties of the JavaEvA implementation to increase the insight
in the optimization toolbox. This is necessary, since some implementations may
require special representations or problem properties and cannot be applied to ar-
bitrary problem instances.

12 Chapter 2. Optimization Algorithms

2.1 General Approaches

Some general non-evolutionary approaches are also implemented in JavaEvA. Al-
though these approaches are often local optimization techniques, we implemented
them as iterative, population based algorithms to fit into the general scheme of evo-
lutionary approaches in JavaEvA. In most cases the population is simply interpreted
as the multi-start variant of a local search algorithm.
All of the here mentioned general approaches can be applied to all problem instances,
since they solely rely on the initialization and mutation methods on given solution
representations. Although these general approaches do not represent the most so-
phisticated optimization strategies, they can be used to analyze the search space.
For example, in case the Monte-Carlo Search performs as well as the Hill-Climber
or a Genetic Algorithm, the search space is either extremely shallow or too rugged
and non-causal to be optimized efficiently. In case of simple search spaces with a
single global optimum or only few local optima the Hill-Climber or Simulated An-
nealing strategies often outperform the population based Evolutionary Algorithms.
Therefore, it is always a good choice to apply the general approaches first to get
some idea about the characteristics of the search space.

2.1.1 Monte-Carlo Search

Monte-Carlo (MC) Search, also known as Random Search, is a blind search strategy
without any feed-back. Basically the Monte-Carlo Search performs a random sam-
pling of the complete search space, while memorizing the best solution found so far,
see alg. 1 for details. The population in this scheme serves no other purpose than to
initialize multiple solutions in one iteration instead of one. It is important to note
that it does not effect the performance of the search strategy whether a population
size of one individual is used or a population size of 100,000, but bigger population
sizes may speed up the plot graphics.

t = 0;
result = initNewSolution();
evaluate(result);
while isNotTerminated() do

a = initNewSolution();
evaluate(a);
if a.isBetterThan(result) then

result = a;
end
t = t +1;

end

Algorithm 1: General scheme of the Monte-Carlo search strategy

2.1. General Approaches 13

2.1.2 Hill-Climber

In JavaEvA a simple Hill-Climbing (HC) strategy is also implemented. In this
strategy the algorithm starts with a random initial solution. In each generation
the current solution is mutated. If the mutant is better, the mutant replaces the
current solution else the current solution is kept for the next generation, see alg. 2 for
details. This way the Hill-Climber performs a greedy local search [29]. This strategy
can be rather efficient in simple unimodal search spaces, but is prone to premature
convergence in local optima in case of multimodal search spaces. To reduce the
chance of premature convergence the Hill-Climbing strategies can be extended to
a Multi-Start Hill-Climber, where multiple local Hill-Climber start from randomly
chosen initial solutions. In JavaEvA the population size gives the number of multi-
starts for the Hill-Climber (MS-HC).

t = 0;
result = initNewSolution();
evaluate(result);
while isNotTerminated() do

a = clone(result);
mutate(a);
evaluate(a);
if a.isBetterThan(result) then

result = a;
end
t = t + 1;

end

Algorithm 2: General scheme of the Hill-Climbing search strategy

2.1.3 Simulated Annealing

Simulated Annealing (SA) is quite similar to Hill-Climbing but less strict regard-
ing the replacing scheme [21]. Instead of only keeping the best solution Simulated
Annealing allows temporary degradation of the solution quality. This strategy uses
an analogy between the mechanism of metals cooling and freezing into a minimum
energy crystalline structure (the annealing process) and the search for a minimum
in a given solution space. This mechanism is simulated using a control parameter
T , which is decreased during the optimization process, see alg. 3. The degradation
function for T is called the Annealing Schedule and causes the optimization process
to become more and more restrictive accepting worse solutions toward the end of the
optimization process. The speed of convergence and also the vulnerability to pre-
mature convergence of the Simulated Annealing strategy depends on this Annealing
Schedule. In the example in alg. 3 we use a simple linear Annealing Schedule with

14 Chapter 2. Optimization Algorithms

0 ≤ α ≤, but other more complicated Annealing Schedules are also possible.
The ability to allow temporary degradation in solution quality enables the Simu-
lation Annealing strategy to escape local optima. Similar to the Hill-Climber, a
population in Simulated Annealing is interpreted as multi-start strategy (MS-SA),
which can further decrease the chance of premature converge in a local optimum.

t = 0;
T = 1.0;
result = initNewSolution();
evaluate(result);
while isNotTerminated() do

a = result.clone();
mutate(a);
evaluate(a);

if RNG.flipCoin(e
−∆Fitness

Tt) then
result = a;

end
T = α· T;
t = t + 1;

end

Algorithm 3: General scheme of the Simulated Annealing search strategy

2.2. Genetic Algorithms 15

2.2 Genetic Algorithms

Genetic Algorithms (GA) are inspired by the principle of natural evolution to achieve
incremental adaptation of an individual to a given environment to increase the fitness
of the individual. If the target function of an optimization problem is interpreted
as fitness measure for a given individual and the individual represents a possible
solution for the optimization problem, the evolutionary process can be applied to
arbitrary optimization problems. Although there have been suggested multiple al-
ternative GA implementations in the recent years, the original implementation by
Holland [18] can be considered as the blue print of GA and it also the most in-
tuitive translation of natural evolution into an algorithm, see alg. 4. GA utilize
the evolutionary operators of selection and random variation, through recombina-
tion/crossover and mutation, repeatedly on a population of possible solutions (in-
dividuals). GA are therefore a stochastic, population-based search heuristic, which
requires nothing but the target function of the optimization problem to guide its
search.

t = 0;
initialize(P(t));
evaluate(P(t));
while isNotTerminated() do

Pp(t) = selectParentsFrom(P(t));
Pc(t) = reproduction(Pp(t));
mutate(Pc(t));
evaluate(Pc(t));
P(t+1) = buildNextGenerationFrom(Pc(t), P(t));
t = t +1;

end

Algorithm 4: General scheme of a generational Genetic Algorithm

The initial population P (t = 0) of the GA is usually initialized randomly to give
a broad sampling of the search space. This initial population is then evaluated,
i.e. tested on the optimization problem, before the generational cycle of the GA is
entered. The GA first selects possible parents Pp from the current population P (t)
based on their achieved fitness. Those parents Pp are then used to generate a pop-
ulation of offspring Pc either by generating simple clones of the parents or through
recombination of multiple parents. Recombination is designed to exchange traits of
the solutions represented in the parent individuals to generate new combinations of
those traits in the offspring, but recombination by chance may also produce perfect
clones of the parents. The offspring Pc are then subject to random mutation, which
may again alter the traits of the solutions stored in the individuals. Then the off-
spring are evaluated to determine their fitness on the optimization problem. Finally,
the next generation is generated from the current population P (t) and the offspring

16 Chapter 2. Optimization Algorithms

GA binary representation:

1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1

word representing x2

Figure 2.2: An exemplary GA genotype

Pc(t), utilizing a distinct generation strategy ranging from complete replacement
(P (t + 1) = Pc(t)) with or without elitism to the gradual changes in case of the
steady-state GA. Finally, there is some termination criterion to be met before the
GA breaks the iterative optimization process.
Although there is not much of theoretical work about GA, there is some ranging
from the early works on the schema theorem or the building-block hypothesis to
more recent approaches utilizing Markov-Chain approaches [17].
In the following sections we will give details on the basic elements of the GA like so-
lution representation, selection mechanisms, recombination/crossover and mutation
operators, generation strategies and termination criteria.

2.2.1 Solution Representations

The original GA by Holland [18] used a binary solution representation x̃ of fixed
length l for the GA individuals to perform the evolutionary operators on. More
generally speaking the GA uses a string of characters as solution representation
using an alphabet of h characters. In case this representation can not be mapped
directly on the decision variables x of the optimization problem, a dual solution
representation is required and also a mapping or coding function between them
Γ(x̃) → x. In analogy to nature the binary GA representation x̃ is called genotype
and the translated decision variables are interpreted as the phenotype x.
To illustrate this geno-/phenotype duality we give an example how to encode six
real-valued decision variables xi with (−1 ≤ xi ≤ 1) in a genotype of length l = 30
using a binary alphabet of h = 2 characters and a standard binary encoding as
mapping function. To do so, the genotype string x̃ is partitioned into six words of
length L = 5, each word coding a single decision variable xi, see fig. 2.2. A standard
binary encoding, see equ. 2.1, is able to decode a word x̃i into a real-valued decision
parameter xi, if the lower and upper bounds of the range are given (li = −1, ui = 1).
In equ. 2.1 x̃i,k gives the value of the k-th bit of the word x̃i.

xi = Γ(x̃i) = li +
ui − li
2L − 1

·
L
∑

k=0

(

x̃i,k · 2k
)

(2.1)

This way the genotype given in fig. 2.2 can be decoded to n = 6 real-valued variables
x = {1.0;−1.0; 0.36;−0.36;−0.55; 0.81}. The length of a word L limits the precision.

2.2. Genetic Algorithms 17

In this case the precision of the binary representation is limited to ui−li
2L−1

≈ 0.065.
It is important to note that the evolutionary operators of crossover and mutation
usually ignore the word boundaries.
There are multiple extensions to GAs that use alternative solution representation
utilizing non-binary alphabets, double chromosomes, real-valued vectors or even
program trees, which leads to Genetic Programming, see sec. 2.7.

Initialization

Often random initialization is used for GAs, because random initialization is said to
generate a diverse sampling of the complete search space. This diversity is necessary
for the GA to search the complete search space. In case of small population sizes or
nonuniform initial distribution the GA may be limited to a local search. Therefore,
bigger initial population sizes or an improved initial distribution like D-optimal de-
sign may improve the general performance of a GA.
Additionally, problem specific knowledge may be used to find a suitable initial distri-
bution close to an assumed global optimum to reduce the necessary computational
effort of the optimization process.

Solution Evaluation and Constraints

Solution evaluation is usually straight forward by using the target function to set the
fitness value of the GA individual. But to save computational effort for extremely
time consuming target function evaluations, it can be necessary to employ ‘lazy’
evaluation. This technique can be used if a partial evaluation of the target function
is sufficient to guess the fitness of an individual. This guess can be sufficient to
guide the evolutionary search while still far away from the optimum and to omit the
rest of the time consuming evaluation in case of an extremely bad individual. An
alternative approach uses model surrogates for the true fitness function evaluation
to save computational effort and to increase the quality of the solutions found, see
sec. 2.6 for more details on this approach.
Another problem is how to implement constraints not only in GAs but in EAs in
general. In the field of EA constraints can be distinguished into two basic types:
hard and soft constraints. Hard constraints, on the one hand, may not be violated in
any circumstances. If violated, hard constraints may even cause the target function
to be incomputable and therefore prevent fitness assignment for the EA individuals.
Soft constraints, on the other hand, may be violated, i.e. the target function can still
be evaluated and the solution may be interesting, although conflicting with some
constraints. There are several approaches how to deal with constraints:

• Legal Representation/Operators: this method is suited for both hard and
soft constraints and uses specialized representations and evolutionary opera-

18 Chapter 2. Optimization Algorithms

tors. In this approach the representation and operators are designed in such
a way that only legal phenotypes can be generated. The previous encoding
and the associated mapping function in equ. 2.1 gives an example of how to
meet a simple range constraint simply by including the range in the mapping
function Γ(). Depending on the complexity of the constraints this approach
becomes less and less feasible, since it may reduce the search space and some
regions of the search space may become unreachable.

• Repair Mechanisms: this method is also suited for both types of constraints
and transforms an infeasible solution to a feasible one before evaluation. This
way the GA is still able to reach every point in the search space, but the search
space may be become neutral, this means that some alteration in the genotype
do not affect the phenotype or the fitness of an individual.

• Penalty: this approach is only suited for soft constraints and penalizes an
individual violating a constraint by decreasing the fitness of the individual
proportional to the amount of violation. In this method all portions of the
search space can still be reached, but a final solution is not guaranteed to be
feasible. This effect can be countered by higher penalties, but it may also lead
to a reevaluation of the constraints, if the infeasible solution shows beneficial
properties.

• Lethal Punishment: this approach brings the penalty to the extreme and
may be used for both hard and soft constraints. In this case every infeasible
solution is removed from the population, preventing the individual from being
selected as parent by killing it off right after creation. Again like the previously
mentioned legal representation/operators method this approach may discard
useful genetic material and even may be prohibitively slow in some problem
instances.

• Multi-objective Optimization: this method is similar to the penalty ap-
proach and can only be applied to soft constraints. This approach transforms
the constraints to additional objectives, i.e. the minimization of constraint
violation. This does not really simplify the optimization problem, but it may
lead to some new solution alternatives previously not considered feasible.

See also [49] for more details on this topic.

2.2.2 Selection

The standard GA uses parent selection to guide the search toward the global opti-
mum. Depending on the selection method used the selection process bears different
selection pressures on the population. In case of a multi-modal search space, too
high selection pressures and too small population sizes may lead to premature con-
vergence.

2.2. Genetic Algorithms 19

0 5000 10000 15000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10 dim. F1 Test Function

Fitnessevaulations

F
itn

es
s

Proportional
Scaled
Boltzman
Ranking

Figure 2.3: Comparing four methods to calculate selection probabilities.

Best Selection, (µ +, λ)-Selection

The best selection strategy selects the |Pp(t)| = µ best individuals from a popu-
lation of |P (t)| = λ individuals. This selection strategy is also used for Evolution
Strategies, see sec. 2.5, and exerts the strongest selection pressure on the GA.

Tournament Selection

The tournament selection method iteratively selects the best individual from a ran-
domly selected subset of the population of size q ≤ |P (t)| until µ individuals have
been selected. The choice of q gives the selection pressure ranging from pure elitism
q = |P (t)| to random selection q = 1.

Probabilistic Selection Methods

Some selection methods require a selection probability pi for each individual of the
population, which sums up to one,

∑n

i=0 pi = 1. There are multiple ways how to
calculate this selection probability pi from the fitness φi of a given individual. The
fitness φi is to be maximized in this example, which allows easier mappings to the
selection probabilities pi:

• Proportional selection probability: requires positive fitness values.

pi =
φi

∑n

j=0 φj

(2.2)

• Scaled selection probability: eliminates the impact of an offset on the
fitness values by subtracting the fitness of the worst individual from every
fitness value φi.

pi =
φi − minn

k=0(φk)
∑n

j=0(φj − minn
k=0(φk))

(2.3)

20 Chapter 2. Optimization Algorithms

• Boltzmann selection: eliminates the effect of an offset, but also the effect of
a multiplicative factor on the fitness function by using the standard deviation
σφ of the fitness of the population.

pi =
e

q·φi√
σφ

∑n

j=0

(

e
q·φj√

σφ

) (2.4)

• Ranked selection probability: uses the rank of the individuals ranki cal-
culated by sorting the individuals according to their fitness values. With addi-
tional Max and Min values for the resulting selection probability the selection
probability can easily be calculated.

pi = Min + (Max − Min) · ranki − 1

|P (t)| − 1
(2.5)

Fig. 2.3 illustrates the effect of the different methods to calculate the selection prob-
ability on the 10 dimensional F1 test function, where the fitness is to be minimized,
using an elitist generational GA with population size 50, roulette-wheel selection
and real-valued solution representation.
With the selection probability calculated, there are again multiple ways how to select
the parents from the current population P (t):

• Roulette-Wheel Selection: is a very common selection method for GAs and
simulates a toss in a roulette-wheel to select an individual. Each individual
is assigned a segment on the roulette-wheel proportional to its selection prob-
ability pi, see fig. 2.4. This selection scheme is repeated until µ individuals
have been selected.

• Stochastic-Universal Sampling: is similar to roulette-wheel selection but
uses g equidistant pointers instead of a single one, see fig. 2.5. This way
random fluctuations in the composition of the selected individuals due to noise
are reduced.

P1

P2

P3

P4

.
.

..

Figure 2.4: The Roulette-Wheel selec-
tion method.

P1

P2

P3

P4

.
.

..

Figure 2.5: The Stochastic-Universal
Sampling method (g = 4).

2.2. Genetic Algorithms 21

One-Point Crossover

1111111111111111111111

0000000000000000000000

1111111100000000000000

0000000011111111111111

1110001010101001010110

0001110101010110101001

Uniform Crossover:

1111111111111111111111

0000000000000000000000

Bit-Simulated Crossover:

Parents:

1 0 1 0 0

1 1 1 1 0

0 0 1 0 0

1

Probability %:

75% 50% 100% 25% 0%

Offspring:

1 1 0 0

1 1 1 0 0

1 0 1 1 0

Parents

Offspring

Parents

Offspring

Figure 2.6: Crossover methods on binary genotypes

Extended Selection Methods

To prevent premature convergence, special extended selection methods have been
developed. Fitness Sharing for example punishes individuals that are too similar to
each other to maintain population diversity by reducing their fitness proportional to
the distance to other individuals [15]. Another method is mating restriction, which
can be considered a special selection operator for selecting mating partners that are
similar to each other [6].

2.2.3 Recombination/Crossover

During reproduction offspring are either generated as perfect clones of the parents
or through recombination of the parents. The crossover probability pc gives the
chance for recombination. Recombination tries to combine solution traits of multiple
parents to generate novel solutions, which hopefully represent a suitable combination
of positive traits. Usually, crossover is considered to be the primary operator in
GAs. This assumption is often based on the Schemata Theorem, which was already
introduced by Holland [18].
In this description we will limit to recombination/crossover operators to binary
genotypes. Operators suitable for real-valued representations will be discussed in
sec. 2.5.

• One-Point crossover: randomly selects a crossover point in the genotype
of the parents, splits the genotype at that point and exchanges the elements
to generate two offspring. To maintain the size of the genotype the crossover
point has to be the same for both parents, compare upper left part of fig. 2.6

22 Chapter 2. Optimization Algorithms

for an example, else the genotype needs to be of variable length.

• N-Point crossover: selects N crossover points in the genotype of the parents
instead of just one [5].

• Uniform crossover: determines for each bit position in the genotype of an
offspring randomly which parent to use to set the value of the bit [42], see
lower left part of fig. 2.6 for an example.

• Bit-Simulated crossover: takes k parents and calculates the average value
µi for each bit position over the whole set of parents, see right hand side of fig.
2.6. This vector of average values gives a vector µ̄ of probabilities for a bit at
position i. µ̄ is then used to initialize the genotype of the offspring [43]. This
vector µ̄ resembles the Vector V in Population Based Incremental Learning,
see sec. 2.4.

The crossover operators outlined here can also be applied to k parents instead of
just two parents.

2.2.4 Mutation

Mutation is often considered to be a secondary operator in GA, limited to recover-
ing lost traits in the population. But depending on the representation used and the
causality of the search space, mutation can easily advance to the most important
operator, especially in case of real-valued representations used in Evolution Strate-
gies, which are described in sec. 2.5. The mutation probability pm gives the chance
of mutation.
A simple mutation operator on a binary representation could invert a randomly

chosen bit, see Invert-Bit Mutation in fig. 2.7, or swap two bits of different values in
the representation, see Swap-Bits Mutation in fig. 2.7. But mutations can also lead
to major alterations like inversion of larger sections of the genotype or translocation
of a given part of the genotype to a different location.

Invert-Bit Mutation: Mutant:

010101110 0001010100001 010101110 000101010000

Swap-Bits Mutation: Mutant:

01010 11010001 1010000 01010 1101000101 10000

0

1 0 0 1

Figure 2.7: Mutation methods on binary genotypes

2.2. Genetic Algorithms 23

2.2.5 Generation Strategies

Three basic types of GA generational strategies can be distinguished, the gener-
ational GA, the steady-state GA and the generation gap GA. Depending on the
generation strategy the selection pressure on the population may vary.

Generational GA

In case of the generational GA, the next generation P (t+1) is given by the offspring
population P (t + 1) = Pc(t). Thus, each generation the population is completely
replaced by newly generated individuals. To increase the convergence rate of the
generational GA, elitism is often used, with adds the k best individuals of the old
population P (t) to the next generation P (t + 1). This way a monotonic increase of
fitness is guaranteed during the course of optimization.

Steady-State GA

The steady-state GA only creates one new individual per generation and eventually
inserts this individual into the population by using a replacing strategy. Possible
alternatives for the replacing strategy are, to replace a parent individual of the new
individual to replace the worst individual in the population, or stochastically select
the individual to be replaced proportional to the inverse of the fitness.

Generation Gap GA

The generation gap GA basically interpolates between the generational GA and the
steady-state GA [20]. A parameter k gives the size of the population P (t) to be
replaced in the next generation P (t + 1) by new individuals. In case of k = |P (t)|
the generation gap GA is equal to the generational GA, since the population is
completely replaced by new individuals. And in case of k = 1 the generation gap
GA behaves like the steady-state GA. Again there are multiple alternatives how
individuals are to be selected that participate in the next generation or that are to
be replaced by new individuals.

2.2.6 Termination Criteria

There are multiple ways to terminate a GA. Here we just want to list the most
common approaches to terminate a GA:

• Terminate after a given period of time. This approach ensures that the opti-
mization process terminates after a predefined time period, depending on the
requirement of a given application environment. Alternatively, this approach

24 Chapter 2. Optimization Algorithms

can be use to compare two algorithms regarding efficiency, in case the com-
plexity of the optimization algorithm is higher than the computational effort
necessary for the fitness evaluations.

• Terminate after a given number of function calls. This allows the comparison
of algorithms based on the efficiency utilizing the samples of the search space
to guide the search, in case the computational effort is mainly defined by the
fitness evaluations, e.g. real world experiments or time consuming computa-
tional effort.

• Terminate after a sufficient solution quality is reached. Useful for many prac-
tical optimization problems, but may fail to terminate, if the targeted solution
quality is too optimistic.

• Using a halting window, which terminates the GA, if the GA fails to improve
the currently known best solution for k successive generations.

2.3. CHC Adaptive Search Strategy 25

2.3 CHC Adaptive Search Strategy

The standard GA is usually based on five basic concepts: First, random initialization
of P (0). Second, selection of parents biased toward selecting the better individuals.
Third, selection for the next generation P (t + 1) is often unbiased. Fourth, the
recombination operator especially in case of binary representations is usually not
disruptive. And finally, a low rate of mutation is used to maintain population
diversity.
The CHC Adaptive search (CHC) strategy suggested by Eshelman [9] breaks with at
least four of these traditional concepts of GAs, but the general structure is the same
see alg. 5. While the initialization is still random, the CHC selects individuals for
the next generation rather than for reproduction. Second, a new bias is introduced
against mating individuals that are too similar. Third, CHC uses a highly disruptive
crossover operator similar to the uniform crossover. Finally, instead of utilizing
mutation for generating diversity in the population the CHC partially reinitializes
the population if convergence is detected. Convergence is detected by using either
an equals operator on P (t) and P (t + 1) or by using the difference threshold d. The
difference threshold is initially set to d = L/4, which L the length of the binary
genotype, and after using the diverge() operator to d = r · (1.0 − r) · L with r the
divergence rate.

t = 0;
d = L/4;
initialize(P(t));
evaluate(P(t));
while isNotTerminated() do

Pp(t) = selectParentsFrom(P(t));
Pc(t) = reproduction(Pp(t));
mutate(Pc(t));
evaluate(Pc(t));
P(t+1) = buildNextGenerationFrom(Pc(t), P(t));
if (P(t+1).equals(P(t)) then

d = d -1;
end
if (d < 0) then

diverge(P(t+1));
d = r · (1.0 − r) · L;

end
t = t +1;

end

Algorithm 5: General scheme of the CHC Adaptive Search.

26 Chapter 2. Optimization Algorithms

2.4 Population Based Incremental Learning

Following the work of Syswerda on Bit-Simulated crossover for GA, Baluja has cre-
ated the Population Based Incremental Learning (PBIL) algorithm as an abstraction
of the standard GA [2, 1, 27, 26]. The concept of PBIL rests on the idea that a GA
population of solutions could also be represented by some statistics on the gene pool
of the population. For a binary genotype consisting of l bits a probability vector
with l real values 0 ≤ Vi ≤ 1 is introduced. The probability vector V̄ represents
the chance to create a true bit a position i. Each generation n new individuals are
created using the current probability vector, all individuals are then evaluated and
the best individual x̂ is used to update the probability vector using the learn rate
LR.

Vi,t+1 = Vi,t · (1.0 − LR) + x̂i · LR (2.6)

Mutations on the probability vector can also occur to prevent premature conver-
gence in local optima. In addition, V̄ can be updated using more than one positive
example and also using negative examples with a negative learn rate LR.
PBIL is not limited to binary genotypes, but has been extended to deal with real-

t = 0;
initialize(Vt);
/*create new population using V */

initializeFrom(P(t), Vt);
evaluate(P(t));
while isNotTerminated() do

initializeFrom(P(t), Vt);
evaluate(P(t));
x̂ = getBestFrom(P(t));
/*update each component i of the probability vector V */

for (int i = 0; i < x̂.length; i++) do
Vi,t+1 = Vi,t · (1.0 − LR) + x̂i · LR;

end
mutateProbabilityVector(Vt);
t = t +1;

end

Algorithm 6: General scheme of the PBIL algorithm

valued representations [40, 14], permutations [44] and even program trees [36, 37].
The Bayesian Optimization Algorithm (BOA) extends the standard PBIL approach
to identify dependencies between variables [32]. More recently PBIL algorithms
became known as ‘Estimation of Distribution Algorithms’. A nice introduction to
PBIL methods and optimization by probabilistic models is given in [31, 25].

2.5. Evolution Strategies 27

2.5 Evolution Strategies

Evolution Strategies (ES) were developed by Rechenberg and Schwefel to solve nu-
merical optimization problems in technical engineering [35, 38, 39]. ES are special-
ized on real-valued search spaces, applying very sophisticated mutation operators
and often acting like a localized search with strong selection pressure and small pop-
ulation sizes. Therefore, ES have developed to be a optimization strategy, which is
not as closely connected to the natural example as GA.
ES apply a so called (µ +, λ)-strategy starting from a random initial population
like in GA. But instead of performing a stochastic selection ES select the µ best
individuals from the current population as parents for λ offspring. The offspring are
often generated as mutants of the parents omitting the crossover operator. After
the λ offspring are evaluated, the next generation is either P (t + 1) = Pc(t) in case
of a (µ, λ)-strategy or P (t + 1) = Pc(t) ∪ P (t) in case of a (µ + λ)-strategy, see alg.
7 for details.

t = 0;
initialize(P(t=0));
evaluate(P(t=0));
while isNotTerminated() do

Pp(t) = selectBest(µ, P (t));
Pc(t) = reproduce(λ, Pp(t));
mutate(Pc(t));
evaluate(Pc(t));
if (usePlusStrategy) then P(t+1) = Pc(t) ∪ P (t);
else P(t+1) = Pc(t);
t = t +1;

end

Algorithm 7: General scheme of a (µ +, λ)-Evolution Strategy

2.5.1 Solution Representation

Evolution Strategies were designed for and are often limited to real-valued represen-
tations using a real-valued vector X = 〈x1, x2, ..., xn〉 as phenotype representing the
decision variables. Any additional genotype is omitted in ES and all evolutionary
operators act directly on the phenotype. But ES typically extend the individual
by adding so called strategy parameters, which usually parameterize the mutation
operators used in ES.
To code non real-valued decision variables again a mapping function is required.
For example to optimize binary variables with ES real-valued decision parameters
one could limit the range of the variables to 0 ≤ xi ≤ 1 and discretize the decision

28 Chapter 2. Optimization Algorithms

parameters or interpret them as a vector of probabilities similar to the vector V in
PBIL.

2.5.2 Selection

With ES typically a (µ +, λ)-strategy is used together with elite selection, which
selects the µ best individuals to become parents to the next generation.

2.5.3 Recombination/Crossover

Although the crossover operator is of minor importance for ES, we will give some
examples, even if they are usually applied in real-valued GAs. In the following
examples X1 = 〈x1

1, ..., x
1
n〉 and X2 = 〈x2

1, ..., x
2
n〉 are the real-valued chromosomes

of two parent individuals, while X′
1 and X′

2 will denote the two offspring generated
from the parents.

• Flat Crossover: generates an offspring, by initializing the values of X ′ with
uniform random values x’ji = U(Min(x1

i , x
2
i), Max(x1

i , x
2
i)) from the range

given by the parents [34].

• Discrete N-Point Crossover: is equal to the mechanism used in bit-string
crossover. N points (∈ {1, 2, ..., n − 1}) are selected, where the chromosomes
of the parents are swapped to produce the offspring [48, 28].
1-Point crossover:

X′1 = (x1
1, x

1
2, ..., x

1
i , x

2
i+1, ..., x

2
n) (2.7)

X′2 = (x2
1, x

2
2, ..., x

2
i , x

1
i+1, ..., x

1
n)

• Intermediate Crossover: calculates x′
i as the mean of xi of all k parents,

x’ji =
∑k

j=0 x
j
i

k
.

• Arithmetical Crossover uses a linear combination of xi of all k parents to
set x’ji =

∑k

j=0 αj · xj
i . The linear factor αi is a unique random variable with

∑k

j=0 αj = 1 and αj > 0 ∀ j [28].

• BLX-α Crossover: similar to the flat crossover the BLX-α crossover operator
[10] initializes X ′ with values from an extended range given by the parents,
x’ji = U(xi,min − I · α, xi,max + I · α) with xi,min = Min(x1

i , x
2
i), xi,max =

Max(x1
i , x

2
i) and I = xi,max − xi,min. Actually the BLX-0.0 crossover is equal

to the flat crossover.

• Discrete Uniform Crossover: here the value of x′
i is chosen randomly from

the value set {x1
i , x

2
i } given by the parents [30]. This crossover operator is

related to the uniform crossover in binary GAs.

2.5. Evolution Strategies 29

If ES are used together with self-adapting mutation operators, the crossover op-
erators also need to deal with the additional strategy parameters. In that case
typically a discrete crossover is applied to the decision variables X and an interme-
diate crossover is applied to the strategy parameters. But the more sophisticated
the self-adaption strategy of the mutation operator, the less efficient and even dis-
ruptive is the crossover operator on the strategy parameters. Therefore, in some
cases the crossover operator is omitted completely from the ES.

2.5.4 Mutation

Mutation is considered to be the main and sometimes even the only evolutionary
operator in ES. Since ES restrict them selfs to real-valued search spaces very sophis-
ticated mutation operators have been developed in the recent years.

• Standard mutation uses no additional strategy parameters 〈x1, x2, ..., xn〉
and simply adds a random number to a randomly selected element xi of the
decision parameters.

• Global mutation uses a single strategy parameter and extends the represen-
tation to 〈x1, x2, ..., xn, σ〉 and uses the strategy parameter σ to control the
mutation step size:

σ′ = σ · eτ ·N(0,1) (2.8)

x′
i = xi + σ · Ni(0, 1)

where τ ∝ 1/
√

n gives a learning rate, σ is bounded by a minimum value
σmin and N(0, 1) is a normally distributed random number with mean zero
and standard deviation one. See in fig. 2.8 how different values of σ can be
beneficial depending how far away the individual is from the optimum. Please
note that suitable values of σ are not selected directly, but indirectly depending
on the impact of σ on the offspring of a given individual.

Global Mutation Local Mutation Corralated Mutation

Figure 2.8: Three different mutation operators

30 Chapter 2. Optimization Algorithms

• Local mutation adds a complete vector of strategy parameters to the repre-
sentation 〈x1, x2, ..., xn, σ1, ..., σn〉 one for each decision variable. This allows
to adapt the strategy parameters independently for each dimension of the
problem space and to have different mutation step sizes for each variable:

σ′
i = σi · eτ ′·N(0,1)+τ ·Ni(0,1) (2.9)

x′
i = xi + σi · Ni(0, 1)

where τ ′ ∝ 1/
√

2n gives an overall learning rate and τ ∝ 1/
√

2
√

n gives a
coordinate-wise learning rate. Again the values for σi have a lower bound of
σmin. See in fig. 2.8 how the σi’s can be adopted to fit the local properties of
the search space.

• Correlated mutation allows to adapt the orientation of the mutation el-
lipsoid introduced in the local mutation method by further adding orienta-
tion angles to the ES representation 〈x1, x2, ..., xn, σ1, ..., σn, α1, ..., αk〉 with
k = n · (n − 1)/2. This mutation method uses an additional covariance ma-
trix C which is defined as cii = σ2

i , cij = 0 if i and j are not correlated
and cij = 1/2 · (σ2

i − σ2
j) · tan(2αij) if i and j are correlated. The mutation

mechanism follows as:

σ′
i = σi · eτ ′·N(0,1)+τ ·Ni(0,1) (2.10)

α′
j = αj + β · Nj(0, 1)

X′
i = Xi + N(0, C)

again τ ′ ∝ 1/
√

2n and τ ∝ 1/
√

2
√

n while β ≈ 5◦. Again the σi have a lower
bound and if

∣

∣α′
j

∣

∣ > π ⇒ α′
j = α′

j − 2πsign(α′
j). See fig. 2.8 for an example

how the direction of the mutation can be adopted to fit the local properties of
the fitness landscape.

Even more sophisticated mutation strategies are the Covariance Matrix Adaptation
(CMA) mutation operator [16] and the Main Vector Adaptation (MVA) mutation
operator [33].

2.5.5 Generation Strategies

ES typically employ a generational strategy using the (µ +, λ)-strategy. But an
extension allows to interpolate between the (µ + λ)-strategy and a (µ, λ)-strategy.
In the (µ, λ, κ)-strategy κ gives the lifetime of an individual. After an individual
participated in κ generational cycles it dies and cannot survive into the next gen-
eration anymore. With κ = 1 this extended strategy equals the (µ, λ)-strategy and
with κ = ∞ it equals the (µ + λ)-strategy.

2.6. Model Assisted Evolution Strategies 31

2.6 Model Assisted Evolution Strategies

Evolutionary Algorithms are usually known to require many target function evalu-
ations. In some real-world optimization problems this is not practical, especially if
target function evaluations are expensive. This can happen if the target function re-
quires extensive simulations, which causes high computational effort, or if the target
function requires real-world experiments, which are time consuming and expensive.
To counter the high demand of target function evaluations of EAs a surrogate model
can be used to approximate the true target function. Unfortunately, the model lim-
its the data types to be processed often to real-valued search spaces. Therefore,
this strategy is usually used in combination with ES and is called Model Assisted
Evolution Strategies (MAES) [7, 8, 19, 45].

t = 0;
initialize(P(t=0));
evaluateOnTrueTarget(P(t=0));
trainModel(P(t=0));
while isNotTerminated() do

Pp(t) = selectBest(µ, P (t));
Pλ+

(t) = reproduce(λ+, Pp(t));
mutate(Pλ+

(t));
evaluateOnModel(Pλ+

(t));
Pc(t) = selectBest(λ, Pλ+

(t));
evaluateOnTrueTarget(Pc(t));
updateModel(Pc(t));
if (usePlusStrategy) then P(t+1) = Pc(t) ∪ Pp(t);
else P(t+1) = Pc(t);
t = t +1;

end

Algorithm 8: General scheme of a (µ +, λ)-Model Assisted Evolution Strategy

A general scheme of the strategy of model assisted evolution is given in alg. 8. In
the generational cycle an intermediate population of offspring λ+ > λ is generated
and evaluated on the local model of the target function, see fig. 2.9. This model
was initialized and trained using the initial population, which was evaluated on the
true target function. Then the λ best individuals are selected from the intermedi-
ate population of λ+ offspring using the output of the model as surrogate for the
true fitness function. This assumes that those individuals performing best on the
surrogate function will also perform best on the true fitness function. The selected
λ individuals are then evaluated on the true fitness function without any further
alterations. The new samples of the true target function are then used to update
the model for the next generation cycle.

32 Chapter 2. Optimization Algorithms

−2 −1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

Decision Variable X

T
ar

ge
t V

al
ue

 Y

True Target Function
Model of Target Function
Noisy Measurements

Figure 2.9: Modeling the true target function from evaluated individuals to save
expensive fitness function evaluation

There are multiple alternative implementations of MAES, which may utilize the
estimated prediction error of the model to determine whether or not an individual
is to be evaluated with the surrogate function or the true target function. Others
implement more sophisticated strategies to search for suitable samples to improve
the model instead of focusing on increasing the fitness only.
Anyway, it has to be noted that sometimes the MAES is limited by the performance
of the model rather than the Evolution Strategies. Depending on the model used
either the dimension of the search space or the number of training samples can
become the limiting element that increases the necessary computational effort to
calculate or update the model. In some instances this effort might even exceed the
effort for the true fitness function. Therefore, it is necessary, for example, to limit
the number of samples to train the model to a local selection.
Besides the additional model everything from selection methods, generational strate-
gies, representations used and crossover and mutation operators remains the same
as in ES.

2.7. Genetic Programming 33

2.7 Genetic Programming

Although currently John Koza is dominating the literature about Genetic Program-
ming (GP) and actually coined the term GP [22, 23, 24], the history of GP started
much earlier. For example Cramer and Fujiki began in the mid eighties to work
on automated programming [4, 13], while Friedberg started even earlier evolving
machine language programs [11, 12].
GP adds a new data type to EAs to represent and optimize general computer pro-
grams with EAs. With GP it is possible to evolve program code to solve a given
programming problem, to evolve a mathematical function for symbolic regression
or to develop electrical circuits in Evolvable Hardware. Although this extension is
straightforward, the results are usually not as promising as expected. This is due
to the fact that the search space is extremely large and non-causal, i.e. solutions
that are similar in genotype space are not necessarily similar in phenotype space.
Especially the property of non-causality makes these kinds of optimization problems
extremely hard to solve. Nonetheless, GP is the only optimization method that is
able to deal with these kind of problem spaces, despite all its drawbacks.
Basically, the standard Koza style GP is quite similar to the standard GA except
for the new solution representation. Therefore, we will not give the algorithm again
but simply refer to the algorithm given previously, see alg. 4.

2.7.1 Solution Representation

The traditional Koza style GP uses a tree based representation for programs, which
comes from the initial experiments using LISP, see fig. 2.10. This representation
uses a directed acyclic graph with functions as nodes and terminals as leafs. The
execution order is given by evaluating the left child node before the right node re-
sulting in the equation given in equ. 2.11.
Depending on the choice of functions and terminals, the so called area, one can
solve different kinds of optimization problems. In case of symbolic regression, for
example, functions are typically mathematical functions like {ex, sin(x), cos(x), (x+

*

- +

/e X

Y-2

+

X-1X

⇒ (x − 1 − ex) · (x +
−2

y
) (2.11)

Figure 2.10: The tree based GP geno- and phenotype

34 Chapter 2. Optimization Algorithms

y), (x − y), (x · y), (x/y),} while the terminals are either variables {x, x, z, ..} or
random constants {c0, c1, ..., cn}. In case of programming tasks the functions are
methods {if{}()(), execute()(), store(), ...} while the terminals are either input val-
ues or simple execution tasks, which require no additional parameters.
The area of selected function and terminals typically has to meet two basic require-
ments to be applicable to GP:

• Closure: every function node must be able to process every possible output
of all nodes in the area. For example the division operator needs to deal with
zero as denominator without terminating the whole program. This problem
can be resolved using a secure division operator ’%’ that returns one in case
of zero as denominator.

• Sufficiency: the area must be sufficient to solve the problem, e.g. the area
needs to contain a ’drive’ command to control a mobile robot, otherwise the
program cannot move the robot.

Some extensions of GP have softened the closure property by defining a strongly
typed GP using nodes with flavor. In that case certain successive nodes may request
a special data type, e.g. the if{} operator may request a boolean input as condition.
The strongly typed GP requires special precautions for initialization, crossover and
mutation but basically behaves like a standard GP in every other aspect.
A very common problem in GP is bloat. Bloat means that the program trees grow
significantly in size while the fitness is stagnating. This leads to increased compu-
tation time due to the increased evaluation effort for each program tree. To counter
bloat the overall tree size of a GP program tree is often limited.

Initialization

To initialize a GP program tree one usually starts with a random node as root node
and recursively adds new random nodes to the successive nodes until every node
that requires a successor has valid successor nodes. This recursive approach even-
tually terminates when a terminal is added as node and this way the recursive call
is interrupted for that branch of the tree. There are two general methods how to
generate a random GP program tree:

• Full: this method allows one to set a target depth d of the new tree and
initializes evenly balanced trees. This is done by selecting only non terminals
as following nodes as long as the current depth of the node is smaller than d
and selecting only terminal nodes otherwise.

• Grow: this initialization method uses the recursive approach initially dis-
cussed. Unfortunately, this method may grow infinitely large trees if the ratio

2.7. Genetic Programming 35

between terminals and non-terminals is bad or it may also generate extremely
short program trees. Therefore, often an upper bound for the tree size is in-
troduced, which causes the recursive growth method to select terminals only
if violated, to limit the overall size of the GP program tree.

• Ramped Half and Half : this approach mixes the two previously mentioned
methods to generate a diverse set of program trees of different sizes. The
ramped half and half method alternately calls full and growth initialization
while continuously increasing the upper bound for the tree size from the small-
est three node program trees to the biggest program trees of dmax nodes, where
dmax is to be specified by the user depending on the problem type.

2.7.2 Selection

The selection methods are basically the same as in GA, but typically Tournament
Selection is used to impose a stronger selection pressure on the GP population, while
at the same time allowing a diverse population.

*

- +

/e X

Y-2

+

X-1X

+

e

*

X Y

-1

+

-2

*

-

+

/

e

X

-2 Y

+

X-1X

+

e

*

X Y

-1

+

-2

Tree Crossover

Parent 1 Offspring 1

Parent 1 Offspring 1

Figure 2.11: An exemplary GP crossover between two parents

2.7.3 Recombination/Crossover

Recombination on GP simply selects two random nodes from each parent and ex-
changes the associated subtrees to generate new offspring, see fig. 2.11. In case some
nodes accept only special output types it is necessary to ensure that the resulting
offspring are still able to evaluate correctly.

36 Chapter 2. Optimization Algorithms

There are also special extensions to GP crossover to counter the effect of bloat,
since crossover is able to generate extremely large GP program trees by exchanging
a leaf node of one parent with a node close to the root node in the other parent,
see for example fig. 2.11. One method uses pruning to replace all nodes that exceed
the given maximum depth of the program tree dmax with terminal nodes. Depth-
preserving crossover only exchanges nodes of equal depth between two parents and
depth-dependent crossover selects nodes for crossover depending on the depth of the
nodes to counter the effect of dominance of leaf nodes in case of random selection.
Although GP crossover is said to be an important operator in GP and should act
similar to the crossover operator in GAs combining building-blocks to find a good
solution, usually the crossover probability in GP is not as high as in GAs.

2.7.4 Mutation

*

-

/e X

Y-2

+

X-1X

+

*

-

e+

X-1X

*

-

/e X

Y-2

+

X-1X

+

*

-

/e X

Y-2

+

X-1X

*

e

X

/

2

One-Point Mutation

Headless Chicken Mutation

Original Mutant

Original Mutant

Figure 2.12: Two types of GP mutation

Mutation in GP plays a major role in exploring the search space and multiple
alternatives have been suggested to perform mutation on a GP genotype. We will
only outline two of the simplest here:

• One-Point Mutation: selects a random node in the GP program tree and
replaces this node with a node of equal arity while the successive nodes remain
unchanged, see upper part fig. 2.12. This mutation method is said to allow a
gradual change in the GP genotype.

• Headless Chicken Mutation: this mutation method also selects a random
node in the GP program tree but replaces the node and all successive nodes
with a randomly generated subtree using the grow method, see lower part
fig. 2.12. This mutation operator is said to be equally efficient as the GP

2.7. Genetic Programming 37

crossover methods mentioned previously. But with this mutation still special
precautions are necessary to counter bloat, e.g. by limiting the size of the
generated subtree.

2.7.5 Generation Strategies

Again the generation strategies are the same as discussed previously in the section
about GA, see sec. 2.2. In GP typically a generational or steady-state strategy is
used. The steady-state strategy is said to provide an improved convergence behavior
for GP.

38 Chapter 2. Optimization Algorithms

Chapter 3

JavaEvA - Tutorial

This tutorial on JavaEvA describes how to use the JavaEvA optimization toolbox
at the level of the provided GUI elements. They give access to the parameters and
operators of the optimization algorithms and the benchmark optimization problems
already implemented in JavaEvA. If one wants to implement ones own optimization
problem and solve it using JavaEvA, please refer to chapter 4 for a detailed expla-
nation.
First, we give a general introduction on how to start the JavaEvA GUI and how to
select and activate an optimization module. Then, the following chapters give more
details on the parameters and the options of the individual optimization strategies
available in the JavaEvA optimization toolbox.
To download the necessary files or to access the Java WebStart application visit our
web pages at http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/.

3.1 First Steps with JavaEvA

In this section we describe how to start JavaEvA, how to select and parameterize
an optimization algorithm and the statistics performed on the optimization process,
and finally how to select and parameterize an optimization problem.

3.1.1 Getting Started

To start JavaEvA, there are multiple alternatives ranging from a Java WebStart
application to a complete project environment, which allows one to define ones own
optimization problems, as described in chapter 4.

• Using the Java WebStart Application: in case a Java Virtual Machine
is already installed and activated, there is a link to the WebStart application
in the download section of the JavaEvA web pages. Otherwise, there is a link

39

40 Chapter 3. JavaEvA - Tutorial

to a web page that describes how to install and activate the Java Virtual Ma-
chine. Additionally, there is another link that gives more details on the Java
WebStart technology.
A simple click on the link to the Java WebStart application is sufficient to
start JavaEvA. Unfortunately, the Java WebStart environment is rather re-
strictive regarding access to computer resources. Therefore, some options, like
the UserDefinedProblem and loading problem data for the traveling salesman
and the portfolio selection problem are not available using the Java WebStart
application.

• Download and start the JavaEvA.jar: To use the JavaEvA.jar

1. Download the JavaEvA.jar to the hard disk.

2. Start JavaEvA either by

(a) double clicking the JavaEvA.jar in a file explorer using ‘java’ or
‘javaw’ as target.

(b) by using the console command ‘java -jar JavaEvA.jar’ or ‘java -cp
JavaEvA javaeva.client.EvAClient’ if a suitable display is defined and
available to show the Java GUI elements.

Typically, JavaEvA will uncompress some data files into the same folder where
the JavaEvA.jar was started. This is necessary to allow easy access to problem
data files and images.

• Download and use the JavaEvAExample project:

1. Download and uncompress the JavaEvAExample.zip from our web page
to the hard disk.

2. Open a new Java project with a Java IDE including the /src folder as
sources and JavaEvA.jar as library.

3. One can start JavaEvA by

(a) executing the main method from JOptExampleGUI.java.

(b) using the ant target ’run’ in case the IDE supports ant.

Regardless, what method one uses, the very first GUI element to show up is the
JavaEvA workbench, also known as the EvAClient, see fig. 3.1.
There are multiple drop-down menus for the EvAClient:

• Preferences: to choose from three different GUI styles.

• Select Module: to select the available optimization modules, ranging from
random search to the most recently developed Model-Assisted Evolution Strate-
gies.

3.1. First Steps with JavaEvA 41

Figure 3.1: The JavaEvA main GUI frame, called EvAClient, directly after starting
JavaEvA.

• Window: due to the generic object editor the number of windows that are on
the screen at the same time can become quite numerous. To navigate between
the open windows, one can choose from this list which window should be on
top.

• Select Host: JavaEvA was implemented with a client/server structure to
allow optimization of computationally expensive optimization problems. Cur-
rently, one sees the GUI element of the local JavaEvA client that runs on ones
own machine, while the optimization processes are typically running on the
JavaEvA server, which may run on a different machine.
To solve computationally expensive optimization tasks it is advisable to run
the JavaEvA server not on ones own PC, but on a more powerful machine.
The name of the machine, where the actual JavaEvA server application is lo-
cated, is displayed in the upper message box of the main frame. It defaults to
the local machine if no other server is available.
Currently, JavaEvA servers need to be started manually:

1. To make the remote machine known to the JavaEvA client, include the
name of the machine in the /resources/JProxyServerList.props file on the
local PC.

2. To start a JavaEvA server use the console command ’java -cp JavaEvA.jar
javaeva.server.EvAServer’ on the remote machine. The JavaEvA server

42 Chapter 3. JavaEvA - Tutorial

runs without any GUI elements.

3. Now one can select JavaEvA server on the remote machine as host.

This procedure may seem difficult, but typically JavaEvA defaults to a local
JavaEvA server, if no host is given. Currently we are testing an automated
mechanism to start a server on a remote machine, which will be available soon.

3.1.2 Select an Optimization Module

To select an optimization module activate the ’Load Module’ menu item. Here
one can choose between multiple optimization modules, which are available on the
JavaEvA server:

• Monte Carlo Simulation: for details see 3.2.

• Hill Climber: for details see 3.3.

• Simulated Annealing: for details see 3.4.

• Population Based Incremental Learning: for details see 3.6.

• Genetic Algorithm and Genetic Programming: for details see 3.5.

• Evolution Strategy: for details see 3.7.

• Model Assisted Evolution Strategy: for details see 3.8.

• Genetic Optimization: for details see 3.9.

For this tutorial select the Evolution Strategy from the available optimization mod-
ules, see fig. 3.2.
After one has selected the Evolution Strategy, a new window opens for the selected

optimization module, see fig. 3.3. It is divided into three elements: the control
buttons at the top of the frame and a tabbed panel with an element for the module
parameters and an element for the statistics parameters. The control buttons are:

• Start Optimization: for starting the optimization process.

• Stop: to interrupt the optimization.

• Restart Optimization: to resume a previously stopped optimization pro-
cess.

3.1. First Steps with JavaEvA 43

Figure 3.2: Selecting the Evolution Strategy from the available optimization mod-
ules.

Figure 3.3: The GUI element for the optimization module selected Evolution Strat-
egy with the optimization parameters.

44 Chapter 3. JavaEvA - Tutorial

Figure 3.4: The GUI element for the optimization module selected with the general
statistics options currently selected.

Regarding the tabbed panel, the individual parameters for the different optimization
algorithms are described in the following subsections. The optimization parameters
define the optimization problem to solve and the parameters of the optimization
strategy. As the optimization parameters are specific for each module, they are
described in detail in sec. 3.2, 3.3, 3.4, 3.6, 3.5, 3.7, 3.8 and 3.9.
The Statistics Options shown in fig. 3.4 allow to parameterize the statistics per-

formed on the optimization runs, like the number of multi runs, what data to plot
and where to store the results of the optimization process:

• Multi Runs: as most optimization strategies implemented in JavaEvA are
non-deterministic, it is often necessary to perform multiple runs for each op-
timization strategy and take the mean of the obtained results to allow the
comparison of the performance for each strategy.

• Plot Fitness: choose what kind of data is to be plotted over the number of
fitness evaluations. The alternatives are to plot the best fitness, worst fitness
or both best and worst fitness. Typically, only the best fitness values achieved
are averaged over multiple runs to evaluate the performance of an optimization
algorithm.

• Plot Objectives: this adds an additional plot window that plots the objective
values of the currently best solution over the number of fitness evaluations.

3.1. First Steps with JavaEvA 45

Unfortunately, this option is only available for real-valued search spaces and
the plots of the objective values may become confusing if used in a multi run
environment.

• Result File: allows to specify the name of an output file, where the raw data
of the optimization process is to be stored. This allows one to calculate ones
own statistics on the performance of the optimization algorithms, if this is
required for a particular application problem.

• Show Problem Viewer: this item is currently under revision.

• View Pareto-Front: this item is currently under revision.

Some of the elements are currently under revision, because we believe that at least
some options belong to the particular optimization problem instead of the optimiza-
tion algorithm. We consider it to be more appropriate to let the user decide what
kind of data he wants to plot depending on his application problem or what kind of
data to store.

3.1.3 Select an Optimization Problem

Figure 3.5: The GUI element for the optimization problem.

One property each optimization algorithm provides is the choice of the optimiza-
tion problem, see fig. 3.3. Click this element to open the optimization problem GUI
element, see fig. 3.5. On top of the GUI element there is a choice element, which

46 Chapter 3. JavaEvA - Tutorial

allows one to select from multiple alternative optimization problems available. This
choice element is typical for the GUI elements in JavaEvA. In case alternative im-
plementations of a given operator or method are available, this choice element allows
one to choose from the available elements.
Below the choice element there is a short description of the currently selected class
and a link to an additional help page if available. Then, there is a list of editable
properties of the given class. In case of the real-valued F1-function these parameters
are limited to:

• Input Dimension: allows to set the dimensionality of the optimization prob-
lem.

• Output Dimension: sometimes one may also be able to choose the output
dimension of the problem.

• Lower/Upper Border: in case of real-valued optimization problem one may
choose the allowed range for the decision variables.

Typically, every editable property is described in a small tool tip. To see the tool tip
on a specific property, hold the mouse pointer over the property for several seconds.
Further descriptions on selected problems can be found in the following sections.

3.2. Tutorial on Monte-Carlo Search 47

3.2 Tutorial on Monte-Carlo Search

As discussed before the Monte-Carlo Search is a blind optimization strategy, but it
still may give insights into the structure and the complexity of a given optimization
problem. Further it may be used as worst case reference approach to compare any
EA approach to.

Figure 3.6: The Monte-Carlo GUI frame

3.2.1 User’s Description

When selecting the Monte-Carlo Search one has only few parameters to specify, see
fig. 3.6:

• Output File Name: gives the name of the output file where the optimization
results are stored. Since this optimizer belongs to the Genetic Optimization
family, the basic data output is currently best, mean and worst fitness per
generation. Any additional data needs to be specified in the problem imple-
mentation and is therefore problem dependent.

• Population: here one can specify the population size of the optimization
algorithm. In case of the Monte-Carlo search this has no impact on the opti-
mization performance of the algorithm, but may increase speed of the fitness
plots, because it draws one line per generation, which would equal the number
of fitness evaluations in case of a population size of one.

48 Chapter 3. JavaEvA - Tutorial

• Problem: here one can specify the problem to optimize and also the repre-
sentation, initialization method, mutation and crossover rates and methods.
Since the Monte-Carlo search solely relies on initializing random solutions, the
representation and the initialization mechanism is the only element that has
an impact on the performance of this optimization approach.
Please refer to sec. 3.9 for further details and examples on problem implemen-
tations.

• Seed: specifies the starting value for the random number generator, which
allows reproducible experiments in case of stochastic optimization strategies.
Set the seed to zero to use a random starting condition.

• Terminator: gives the termination criterion. In the Genetic Optimization
framework currently the termination criterion is limited to choosing the max-
imal number of fitness evaluations, the maximum number of iterations or a
target fitness value.

3.3. Tutorial on Hill-Climber 49

3.3 Tutorial on Hill-Climber

As discussed before the Hill-Climber Search is a greedy local search method, which
is prone to premature convergence in multi-modal search spaces. Therefore, it is
necessary in multi-modal search space to use a multi-start approach by setting a
population size >> 1. Since the Hill-Climber relies on mutation, it is necessary to
use the highest possible mutation rate pm = 1.0 for the individuals and to choose
an appropriate mutation operator depending on the problem and the representation
used.

Figure 3.7: The Hill-Climber GUI frame

3.3.1 User’s Description

When selecting the Hill-Climber Search one has only few parameters to specify, see
fig. 3.7:

• Output File Name: gives the name of the output file where the optimization
results are stored. Since this optimizer belongs to the Genetic Optimization
family, the basic data output is currently best, mean and worst fitness per
generation. Any additional data needs to be specified in the problem imple-
mentation and is therefore problem dependent.

• Population: here one can specify the population size of the optimization
algorithm. In case of the Hill-Climber search the population size gives the
number of multi-start hill-climbers to use in case of multi-modal search spaces.

50 Chapter 3. JavaEvA - Tutorial

• Problem: here one can specify the problem to optimize and also the repre-
sentation, initialization method, mutation and crossover rates and methods.
Since the Hill-Climber relies only on the mutation operator, the representa-
tion and the choice of the mutation operator has a significant impact on the
performance of the Hill-Climber. Again it is necessary to set the mutation
probability pm to the maximum value of pm = 1.0.
Please refer to sec. 3.9 for further details and examples on problem implemen-
tations.

• Seed: specifies the starting value for the random number generator, which
allows reproducible experiments in case of stochastic optimization strategies.
Set the seed to zero to use a random starting condition.

• Terminator: gives the termination criterion. In the Genetic Optimization
framework currently the termination criterion is limited to choosing the max-
imal number of fitness evaluations, the maximum number of iterations or a
target fitness value.

3.4. Tutorial on Simulated Annealing 51

3.4 Tutorial on Simulated Annealing

Simulated Annealing is similar to the Hill-Climber, but since the replacement scheme
is not as strict Simulated Annealing is not as prone to premature convergence as the
Hill-Climber. Therefore, the population size is not such a critical parameter. But
still the mutation operator needs to be selected carefully.
Compared to the Hill-Climber additional parameters are necessary for the Simulated
Annealing approach to parameterize the cooling schedule.

Figure 3.8: The Simulated Annealing GUI frame

3.4.1 User’s Description

When selecting the Simulated Annealing strategy one has only few parameters to
specify besides the parameters the give the cooling schedule, see fig. 3.8:

• Output File Name: gives the name of the output file where the optimization
results are stored. Since this optimizer belongs to the Genetic Optimization
family, the basic data output is currently best, mean and worst fitness per
generation. Any additional data needs to be specified in the problem imple-
mentation and is therefore problem dependent.

• Population: here one can specify the population size of the optimization
algorithm. In case of Simulated Annealing this parameter is not as critical as
in case of the Hill-Climber.

52 Chapter 3. JavaEvA - Tutorial

• Problem: here one can specify the problem to optimize and also the repre-
sentation, initialization method, mutation and crossover rates and methods.
Since Simulated Annealing relies only on the mutation operator, the represen-
tation and the choice of the mutation operator has a significant impact on the
Simulated Annealing algorithm. Further it is necessary to set the mutation
probability pm to the maximum value of pm = 1.0.
Please refer to sec. 3.9 for further details and examples on problem implemen-
tations.

• Seed: specifies the starting value for the random number generator, which
allows reproducible experiments in case of stochastic optimization strategies.
Set the seed to zero to use a random starting condition.

• Terminator: gives the termination criterion. In the Genetic Optimization
framework currently the termination criterion is limited to choosing the max-
imal number of fitness evaluations, the maximum number of iterations or a
target fitness value.

• Initial Temperature: gives the starting temperature T for the algorithm,
compare alg. 3.

• Alpha: gives a linear cooling rate for the Simulated Annealing algorithm, see
also alg. 3.

3.5. Tutorial on Genetic Algorithms and Genetic Programming 53

3.5 Tutorial on Genetic Algorithms and Genetic

Programming

As described before, Genetic Algorithms and Genetic Programming are a popula-
tion based search strategy inspired by the principle of natural evolution. They are
guided by a selection mechanism that prefers better individuals and creating a new
generation of individuals by random mutation and crossover between multiple par-
ents.
The main parameters for Genetic Algorithms are the population size, the selection
mechanism and the solution representation used. Depending on the solution repre-
sentation used one has to select proper mutation and crossover operators and find
suitable values for the associated crossover and mutation probabilities pc and pm.
Note that since the general strategy of Genetic Algorithms and Genetic Program-
ming is basically the same, the Genetic Algorithms module includes Genetic Pro-
gramming in JavaEvA. Simply choose a Genetic Programming type problem, choose
a tree based representation and proper mutation and crossover operators and start
the optimization. In this this case the type of the algorithm is not given by the
search strategy but the data type used.

Figure 3.9: The Genetic Algorithms and Genetic Programming GUI frame

54 Chapter 3. JavaEvA - Tutorial

3.5.1 User’s Description

In case of Genetic Algorithms one has to select the selection mechanisms for parent
and partner selection, the number of partners for crossover, the population size and
whether elitism is to be used, see fig. 3.9:

• Output File Name: gives the name of the output file where the optimization
results are stored. Since this optimizer belongs to the Genetic Optimization
family, the basic data output is currently best, mean and worst fitness per
generation. Any additional data needs to be specified in the problem imple-
mentation and is therefore problem dependent.

• Population: here one can specify the population size of the optimization
algorithm. In case of Genetic Algorithms the population size can be critical,
depending on the problem instance. Try different population sizes ranging
from ten individuals to several hundred or even more to find suitable values
for a given optimization problem.

• Problem: here one can specify the problem to optimize and also the repre-
sentation, initialization method, mutation and crossover rates and methods.
Please refer to sec. 3.9 for further details and examples on problem implemen-
tations.

• Seed: specifies the starting value for the random number generator, which
allows reproducible experiments in case of stochastic optimization strategies.
Set the seed to zero to use a random starting condition.

• Terminator: gives the termination criterion. In the Genetic Optimization
framework currently the termination criterion is limited to choosing the max-
imal number of fitness evaluations, the maximum number of iterations or a
target fitness value.

• Elitism: this flag indicates whether or not elitism should be used, see alg. 4. If
elitism is activated, the best individual of the current population P (t) survives
into the next generation P (t + 1). Elitism increases the selection pressure
toward the best known individual, which leads to an increased convergence rate
on the one hand, but on the other hand may also cause premature convergence.

• Parent Selection: this is the selection method to select the parents of the
next generation. If n individuals are to be generated for the next generation, we
select n singles to give birth to the next generation. This selection mechanism
may have a significant impact on the performance of the GA since it gives
the selection pressure and thus the speed of convergence and the chance of
premature convergence in multimodal search spaces.

3.5. Tutorial on Genetic Algorithms and Genetic Programming 55

• Partner Selection: the previously selected parents would stay single if we
did not select additional partners for each single. Typically parent and partner
selection would be the same, but having separate selection mechanisms allows
for mating restriction schemes, which select proper partner depending on the
previously selected parent.

• Number of Partners: gives the number of crossover partners for reproduc-
tion. Some crossover operators like Bit-Simulated crossover may require more
than one crossover partner. Other operators may ignore additional partners
in case they are limited to recombining only two individuals.

Further details on selection operators and problems, the associated solution repre-
sentations, mutation and crossover operators are given in sec. 3.9.

56 Chapter 3. JavaEvA - Tutorial

3.6 Tutorial on Population Based Incremental Learn-

ing

Population Based Incremental Learning (PBIL) belongs to the Density Estimating
Algorithms (DEA). These algorithms try to estimate the optimal distribution of
alleles to achieve best fitness values. Our PBIL implementation is currently limited
to estimating the density distribution for binary genotypes. If non-binary genotypes
are used the algorithm will throw an exception and will decline the optimization. In
case of binary genotypes the distribution estimate can be reduced to the previously
introduced probability vector V , see alg. 6.
If proper solution representations have been selected, PBIL starts with an unbiased
probability vector V . In each generation PBIL generates new individuals using V ,
evaluates the new individuals and updates V depending on the best individuals in
the population. Therefore, the parameters of the update rule are essential to the
performance of PBIL.

Figure 3.10: The Population Based Incremental Learning GUI frame

3.6. Tutorial on Population Based Incremental Learning 57

3.6.1 User’s Description

When selecting the PBIL strategy one has to choose a proper population size and
parameters for the update rule, see fig. 3.10:

• Output File Name: gives the name of the output file where the optimization
results are stored. Since this optimizer belongs to the Genetic Optimization
family, the basic data output is currently best, mean and worst fitness per
generation. Any additional data needs to be specified in the problem imple-
mentation and is therefore problem dependent.

• Population: here one can specify the population size for the PBIL algorithm.

• Problem: here one can specify the problem to optimize, the representation
and the initialization method. Since the current implementation of PBIL is
limited to binary genotypes, the choice of a proper solution representation is
critical. The choice of crossover and mutation operators on the other hand
can be neglected, because PBIL only relies on initialization of the genotype
using the current probability vector V and not on the standard evolutionary
operators.
For some optimization problems it may be necessary to define a problem spe-
cific initialization scheme for PBIL, since the standard initialization value for
V is Vi = 0.5. This leads to an equal number of ones and zeros for an individual
in the initial population. In case of knapsack like problems such an initializa-
tion is wasteful. The performance of PBIL can be significantly increased if the
probability vector V is initialized properly depending on the problem.
Please refer to sec. 3.9 for further details and examples on problem implemen-
tations.

• Seed: specifies the starting value for the random number generator, which
allows reproducible experiments in case of stochastic optimization strategies.
Set the seed to zero to use a random starting condition.

• Terminator: gives the termination criterion. In the Genetic Optimization
framework currently the termination criterion is limited to choosing the max-
imal number of fitness evaluations, the maximum number of iterations or a
target fitness value.

• Elitism: this flag indicates whether or not elitism should be used. If elitism
is activated, the best individual of the current population P (t) survives into
the next generation P (t + 1). Elitism increases the selection pressure toward
the best known individual, this leads to increased convergence rate, but may
also cause premature convergence.

58 Chapter 3. JavaEvA - Tutorial

• Positive Samples: gives the number of positive samples to be selected from
the current population and used to update the current distribution estimate.
The more positive samples are used the higher the speed of convergence.

• Selection Method: gives the selection strategy to select the positive samples.
Again the choice of the selection method defines the speed of convergence for
the algorithm.

• Learning Rate: gives the learning rate used to update the probability vector
V , see alg. 6. The higher the learning rate the higher the speed of convergence
and thus the chance of premature convergence.

• Mutation Rate: the probability pm to mutate the probability vector V . This
mutation is introduced to limit the chance of premature convergence and to
escape local optima.

• Mutate Sigma: gives the size of mutation on a single randomly selected
element i of the vector V .

V ′
i = Vi + σ · N(0, 1) (3.1)

Again, take care to select a proper solution representation, since currently the
JavaEvA implementation of PBIL is limited to binary genotypes.

3.7. Evolution Strategies (ES) 59

3.7 Evolution Strategies (ES)

Evolution Strategies are most suitable for most real-valued optimization problems.
The ES described here refers to the theory of ES given in section 2.5.

3.7.1 User’s Description

After loading the Evolution Strategies module you get the main parameter panel,
which shows the parameters for the ES optimization algorithm (figure 3.11).

Figure 3.11: The Evolution Strategies GUI frame.

The following properties of an ES are editable:

• Problem: The problem to be solved.

• Seed: A seed value for the random number generator. For Seed = 0 the seed
value is itself randomly selected.

• Strategy: Properties of the ES population.

• Terminator: The termination criterion for the algorithm.

First you have to choose a problem, which has to be optimized by the ES. All
ES problems have real valued objective variables. There is a set of popular test
functions available. e.g.:

• Problem f1: Sphere test function

fSphere(~x) =

n
∑

i=1

x2
i (3.2)

−5.12 ≤ xi ≤ 5.12 ; n = 10;

60 Chapter 3. JavaEvA - Tutorial

• Problem f15: Weighted Sphere test function

fWSphere(~x) =

n
∑

i=1

i · x2
i (3.3)

−5.12 ≤ xi ≤ 5.12 ; n = 10 ; min(fWSphere) = fWSphere(0, .., 0) = 0

• Problem Rastrigin: Rastrigin test function

fRastrigin (~x) = 10 · n +

n
∑

i=1

(x2
i − cos (2πxi)) (3.4)

−32.768 ≤ xi ≤ 32.768 ; n = 10 ; min(fRastrigin) = fRastrigin(0, .., 0) = 0

• Problem f8: Rosenbrock test function

fRosen(~x) =

n
∑

i=1

(100 · (xi+1 − xi)
2 + (xi − 1)2) (3.5)

−5.12 ≤ xi ≤ 5.12 ; n = 10;

• Problem Ackley: Ackley test function

fAckley(~x) = 20 + e − 20 exp



−0.2 ·

√

√

√

√

1

n
·

n
∑

i=1

x2
i





− exp

(

1

n

n
∑

i=1

cos (2πxi)

)

(3.6)

−32.768 ≤ xi ≤ 32.768 ; n = 10;

• (Problem Branin Branin test function

fBranin(x1, x2) = 10 + 10 · (1 − 1

8π
cos x0) + (

5

π
x0 −

5.1

4π2
x2

0 + x1 − 6)2 (3.7)

−5 ≤ x1 ≤ 10;−5 ≤ x2 ≤ 15;

• Problem f2:Schwefel’s test function 1.2

fSchwefel(~x) =
n
∑

i=1

(

i
∑

j=1

xj

)2

(3.8)

−5.12 ≤ xi ≤ 5.12 ; n = 10;

3.7. Evolution Strategies (ES) 61

• Problem Step: Step test function

fStep(~x) =
n
∑

i=1

bxic (3.9)

−5.12 ≤ xi ≤ 5.12 ; n = 10;

• Problem Griewangk: Griewank test function:

fGriewank (~x) = 1 +
1

200

n
∑

i=1

x2
i −

n
∏

i=1

cos

(

xi√
i

)

(3.10)

−100 ≤ xi ≤ 100; n = 10;

Figure 3.12 shows a typical problem. Via the Help button you get additional
information describing the problem. The editable properties of the problems are
self-explanatory and connected with tooltips.

Figure 3.12: The ES problem parameter frame.

The showViewer flag, if available, causes a problem specific visualization of the
solutions of the problem during the optimization run (try e.g. the lens problem).
With the plotObjectives flag one may plot the real valued objective values of the
current best solution in a seperate frame.
Next one must specify the population parameters of the ES, which are the most
important ones (figure 3.13).

The following properties of an ES population are editable:

62 Chapter 3. JavaEvA - Tutorial

Figure 3.13: The ES population parameter frame

• individualTemplate: A prototype of an individual (contains mutation op-
erator).

• λ: The population size of the parents.

• µ: The population size of the children.

• Recombination: A recombination operator.

• SelectionStrategy: A fitness based selection operator.

Figure 3.14: The ES individual parameter frame.

The only editable content of an individual is the Mutation operator, which is
the most important for ES. The following mutation operators are available:

• MutationCMA: Covariance Matrix Adaptation (CMA).

• MutationMVA: Main Vector Adaptation (MVA).

3.7. Evolution Strategies (ES) 63

• MutationSuccessRule: The 1/5 success rule.

• MutationMSRGlobal: The global step size adaptation.

• MutationRandom: A totally randomized mutation operator without step
size adaption.

Next one may edit the recombination operator (figure 3.15). The properties are
self-explanatory. For ρ = 1 (only one parent individual) recombination is inactive.

Figure 3.15: The ES recombination parameter frame

Finally you have to select the fitness based Selection operator 3.16. The fol-

Figure 3.16: The ES selection parameter frame

lowing mutation operators are available:

• ESSelectionStrategyPlus: Selection from parents plus offspring individuals.

64 Chapter 3. JavaEvA - Tutorial

• ESSelectionStrategyComma: Selection from offspring individuals only.

• ESSelectionStrategyMedian: This selection strategy is commendable for
steady state optimizations with λ = 1.

After one has set all necessary parameters,one may start the optimization pro-
cess. This GUI framework can be used to compare the impact of different parameter
settings on the performance of the ES.

3.8. Model Assisted Evolution Strategies 65

3.8 Model Assisted Evolution Strategies

Compared to standard Evolution Strategies the Model Assisted Evolution Strategies
reduce the number of true fitness evaluations significantly, by using a model of the
true target function as surrogate function. Assuming the model can be evaluated
and trained more efficiently than the true target function, the Model Assisted Evolu-
tion Strategies can save considerable amounts of computation effort, for example in
design optimization where typically extensive simulations are necessary for a target
function evaluation.

3.8.1 User’s Description

As discussed before in section 2.6 the Model Assisted Evolution Strategy (MAES)
is a extension of a standard Evolution Strategy. For this reason the main parameter
panel of the optimization panel has the same appearance as the one of the standard
ES panel. The only difference is in the strategy parameter panel (MAESPopulation)
(see picture 3.17).

Figure 3.17: The model assisted ES population parameter frame

The model assisted ES (MAES) population parameter has the following addi-
tional properties:

• LambdaPlus: The size of the model pre-selected individuals: λP lus >= λ.
For λP lus = λ you have no model impact on the optimization process.

• Model: The regression model for fitness prediction.

• Train: The model size is given by the number of last evaluated individu-
als,which are used to train the model.

66 Chapter 3. JavaEvA - Tutorial

Figure 3.18: A parameter frame for the used regression models in MAES.

In JavaEvA different regression models for fitness approximation are available:

• Poly: Classical polynominal Regression Models.

• GaussProcess: Gaussian Processes.

• NU SVM: Support Vector Machines for ν-regression.

• RVM: Relevance Vector Machines.

• RBF: Radial-Basis-Function networks.

The editable parameters of the models are self-explanatory.

3.9. Tutorial on Genetic Optimization 67

3.9 Tutorial on Genetic Optimization

The module Genetic Optimization (GO) tries to give a general approach to Evolu-
tionary Algorithms (EA) and other iterative stochastic optimization strategies. The
concept of GO is based on a special scheme of EA. In this scheme the optimization
algorithms and the data types that are to be optimized are clearly separated. This
scheme is inspired by Michalewicz book ‘Genetic Algorithms + Data Structures =
Evolution Programs’ [28]. With Genetic Optimizing we even go a bit further by
not only separating the optimization algorithms and the data but by separating the
optimization algorithm and the optimization problem completely. Thus, making
the solution representation, i.e. the EA individual, a property of the optimization
problem and also the choice of the evolutionary operators of mutation and crossover,
since they belong to the EA individual.
The optimization algorithm is given a reference to the optimization problem to
solve, which provides methods to initialized an EA population and to evaluate it.
The optimization algorithm is of course able to manage a population using selection,
clone, deletion and addition operators on the population or multiple populations.
To generate new individuals or to alter existing ones the optimization algorithms
may access methods like clone, crossover and mutate on EA individuals via inter-
faces. But the choice of the actual operators applied is left to the individuals. The
optimization algorithm may even be totally ignorant of the actual solution repre-
sentation used.
In case the optimization algorithm requires specific solution representations like for
example the current implementation of the Population Based Incremental Learning
approach, it is able to cast the EA individuals in the population to a more specific
interface. This may fail when the user decided to use a different solution represen-
tation and the optimization algorithm may terminate. Currently, we can’t prevent
such unfortunate combinations, but are working to resolve this issue.
Similar to setting the proper solution representation and operators from within
the optimization problem, the Genetic Optimization module tries to leave as many
problem specific choices to the optimization problem as possible. For example each
optimization problem has to take care of a suitable graphical visualization of a solu-
tion found, of logging the statistical data necessary for the given application problem
or of deciding on a suitable local search heuristic. But the general requirements for
the implementation of an optimization problem are currently rather few. We require
general initialization methods for the problem, for an initial population and evalua-
tion methods on the level of populations and individuals. Additional input/output
methods are often optional.
A local search and application specific additional statistics on the optimization pro-
cess currently has to taken care of within the evaluation methods. But we are
currently working on a more general framework for so called Memetic Algorithms
and logging problem specific data.

68 Chapter 3. JavaEvA - Tutorial

We believe that this scheme gives a user on the one hand a lot of freedom regarding
the choice of optimization strategies, see sec. 3.9.1 for a list of available elements that
can be combined, and regarding the implementation of a given optimization problem
on the other hand, see sec. 4.3 for an example for a own problem implementation.

Figure 3.19: The Genetic Optimization GUI frame

3.9.1 User’s Description

As already described the two main properties of the Genetic Optimization module
are the optimization algorithm and the optimization problem, the others are pretty
much standard.

• OutputFileName, gives the name of the output file where to store the op-
timization results. The basic data output is currently best, mean and worst
fitness per generation. Any additional data needs to be specified in the prob-
lem implementation and is therefore problem dependent.

• Seed, specifies the starting condition for the random number generator, which
allows reproducible experiments in case of stochastic optimization strategies.
Set the seed to zero to use a random starting condition.

• Terminator, gives the breaking criteria. The breaking criteria are currently
limited to choosing the maximal number of fitness evaluations, the maximum
number of iterations or a target fitness value.

3.9. Tutorial on Genetic Optimization 69

• Problem, some problem instances will be discussed in detail in the subsection
GO Optimization Problems of this section.

• Optimizer, most of the optimization algorithms available under Genetic Op-
timization will be described in detail in the subsection GO Optimization Al-
gorithms of this section.

In the following subsections we will give exemplary descriptions of the available
elements ranging from optimization strategies, selection methods, mutation and
crossover operators to optimization problems. But we will only explain non standard
elements of GO in detail, in case of standard methods like roulette-wheel selection
or ES mutation operators we would like to refer the user to the general description
given in chap. 2.
First we will give examples of some optimization problems implemented for the GO
module in JavaEvA. Then we will explain the available data types, the EA individual
implementations and the available mutation and crossover operators. Finally we will
give details on the optimization strategies and the selection methods.

GO Optimization problems

In the context of the GO module the optimization problem defines the data type
that is to be optimized and also the type of EA individual to be used. Therefore,
the mutation and crossover operators and the mutation/crossover rates have to be
set in the optimization problem via the EAIndividual.
Per definition all optimization problems in GO are to be minimized.

GUI Element Function and parameters

The MinimizeBits problems is very simple, the so-
lution representation is a binary string, therefore
the leading ‘B’ in the name of the problem. The
problem is to minimize the number of non-zero bits
in the solution.

• EAIndividual, allows you to choose the
solution representation selecting from EA
individuals that comply to the Interface-
DataTypeBinary. The GUI element for the
EA individual allows you to select muta-
tion/crossover operators and rates.

• Problem Dimension, gives the length of
the solution.

70 Chapter 3. JavaEvA - Tutorial

The Knapsack problem is also a binary problem
and is given by the task to select a limited num-
ber of elements into a knapsack to achieve a maxi-
mum value of the knapsack, while at the same time
not exceeding a maximum weight for the knapsack.
The value and the weight of the available elements
in this problem instance are hard coded. The max-
imum weight of the knapsack is given as 5000 and
the maximal value of a selection of elements not
exceeding this weight, and therefore the global op-
timum, is 5100. Because GO requires minimiza-
tion problem the value is negative and we add an
offset off 5100 to the fitness such that the global
optimum is actually at zero to allow log scale for
the fitness values.

• EAIndividual, choose the solution repre-
sentation and EA mutation/crossover oper-
ators and rates.

• Problem Dimension, is inherited from
BMinimizeBits, but is not used in this con-
text.

• Punishment, gives the rate by which to pe-
nalize deviations from the weight constraint,
see sec. 2.2 for details on the penalty strat-
egy to meet constraints.

The Knapsack problem is a nice example for a
multi-modal search space where a Hill-Climber
would typically fail. Because a problem specific
initialization scheme is currently not implemented,
the Monte-Carlo search is unable to find good so-
lutions, while both PBIL and GA are hindered by
unfavorable initial populations. Please take care to
select a suitable punish rate to prevent infeasible
solutions. Punishment for exceeded weight should
be greater than the additional gain in value.

3.9. Tutorial on Genetic Optimization 71

The F1Problem is a simple n-dimensional real-
valued benchmark function minimizing the target
function:

f(x) =

n
∑

i=0

x2
i (3.11)

The trailing ‘F’ is used to indicate the data type
float used for this problem instance.

• EAIndividual, choose the solution
representation complying to the Inter-
faceDataTypeDouble and EA muta-
tion/crossover operators and rates.

• X Offset, adds an offset to all decision vari-
ables xi. Such an offset can be used to detect
a bias of the optimization algorithm toward
a certain region of the search space.

• Y Offset, adds an offset to the output value
y of the target function. This allows you to
detect whether or not the optimization algo-
rithm is sensible to the range of the target
values.

• Noise, gives the level of noise to be added
to the target function. This allows you to
investigate the impact of noise on the per-
formance of the optimization algorithm.

• Problem Dimension, n gives the dimen-
sion of the optimization problem.

The F8Problem is also called the Rosenbrock func-
tion and is given by minimizing the target func-
tion:

f(x) =
n
∑

i=2

(

100 ·
(

xi−1 − x2
i

)2
+ (xi − 1)2

)

(3.12)
The general properties are the same as in case of
the F1Problem.

72 Chapter 3. JavaEvA - Tutorial

The TF1Problem is an example for a multi-
objective optimization problem and is given as

f1(x) = x1, (3.13)

f2(x) = g(x)h(f1(x), g(x)),

g(x) = 1 − 9

n − 1

n
∑

i=2

xi,

h(f1, g) = 1 − (f1/g)2

with n = 30 and x ∈ [0, 1]n.

• EAIndividual, choose the solution
representation complying to the Inter-
faceDataTypeDouble and EA muta-
tion/crossover operators and rates.

• X Offset, adds an offset to all decision vari-
ables xi.

• Y Offset, adds an offset to the output value
y of the target function.

• Noise, gives the level of noise to be added
to the target function.

• Problem Dimension, n = 30 gives the di-
mension of the optimization problem.

• MOSOConverter, allows you to convert
the multi-objective optimization problem
into a single-objective optimization problem,
for example by weight aggregation.

• Pareto-Front, gives an example how to log
the result of the optimization process from
inside the problem. The internal pareto-
front of the problem allows you to log a
pareto-front even if a single-objective opti-
mization algorithm is used.

• Show Pareto-Front, plots the obtained
pareto-front either the one logged by the
problem or the one provided by a multi-
objective optimization algorithm.

3.9. Tutorial on Genetic Optimization 73

The FPortfolioSelectionProblem is a multi-
objective real-world application problem from the
field of financial engineering where portfolios are
to be found that

minimize : σp =
∑N

i=1

∑N

j=1 wi · wj · σij,(3.14)

maximize : µp =
∑N

i=1 wi · µi,

subject to :
∑N

i=1 wi = 1 and

0 ≤ wi ≤ 1

more details on this problem and how to solve it
can be found in [41].

• EAIndividual, choose the solution
representation complying to the Inter-
faceDataTypeDouble and EA muta-
tion/crossover operators and rates.

• Portfolio Problem and Reference, con-
tain the parameters of the available assets
and the unconstrained reference solution [3].

• Cardinality Constraints, restrict the
maximal number of assets used in the port-
folio,

∑N

i=1 sign(wi) = K.

• Buy-in Threshold Constraints, give the
minimum amount that is to be purchased,
i.e. wi ≥ li ∀ wi > 0; i = 1, .., N .

• Roundlot Constraints, give the smallest
volumes ci that can be purchased for each
asset, wi = yi · ci; i = 1, .., N and yi ∈ Z.

• Use BitMask, together with a GAESIndi-
vidualBinaryDoubleData allows are more ef-
ficient search.

• Lamarkism, writes repaired phenotypes
back into the individuals gentoype.

• X Offset, Y Offset, Problem Dimension
and Local Search, are not active in this
environment.

74 Chapter 3. JavaEvA - Tutorial

The PSymbolicRegression problem is to search for
a mathematical function f̂(x) that fits a given tar-
get function f(x). This is a standard GP problem
instance, see [22] for further details.

• EAIndividual, choose the solution
representation complying to the Inter-
faceDataTypeProgram and EA muta-
tion/crossover operators and rates.

• Target Function, allows you to select the
target function f(x).

• Area, enables you to select the nodes to use
for the symbolic regression.

• Show Result, is another example for a
problem specific viewer. This one plots the
target function f(x) and the currently best
f̂(x).

• Number of Check Points, gives the num-
ber of check points for the fitness function.

• Number of Constants, gives the number
of ephemeral constants.

• Use Inner Constants and Local Hill-
Climbing, are not active in this environ-
ment.

3.9. Tutorial on Genetic Optimization 75

The PArtificalAnt problem is given by finding a
program that controlls the behavior of an artificial
ant to collect all food particles in a given environ-
ment with a limited number of steps. The Artifi-
cial Ant Problem on the Santa-Free trail is another
typical GP problem instance, see [22] for further
details.

• EAIndividual, choose the solution
representation complying to the Inter-
faceDataTypeProgram and EA muta-
tion/crossover operators and rates.

• Ant Steps, gives the number of steps al-
lowed to be performed for each ant.

• Area, enables you to select the nodes to use
for ant program.

• Show Path, shows the path of the best per-
forming ant. The environment is the Santa-
Fee trail in a toroidal world. The uncollected
food particles are black while the collected
particles are red. The ant starts in the up-
per left corner and the resulting path the ant
is colored from light green to dark purple.
In the lower section you can see the evolved
program code.

Available GO data types and EA Individuals

The available data types that can be currently optimized in the GO module range
from simple bit-strings, integer and double arrays to permutations and even general
program structures. From the problem point of view the phenotype data can be
accessed using the InterfaceDataTypeX. In case there are multiple ways to represent
a given phenotype the alternative instances will be discussed in the following list.

• InterfaceDataTypeBinary, are for bit-string phenotypes. Currently there
are two EA individuals that can represent this data type, the GAIndividual-
BinaryData and the ESIndividualBinaryData. The ESIndividualBinaryData
offers two alternative encodings, either by using a hard boundary to decided
whether the real-valued genotype xi is to be interpreted as boolean true or

76 Chapter 3. JavaEvA - Tutorial

false or by using the real-valued vector x as vector of probabilities similar to
the vector V in PBIL used to generate the phenotype.

• InterfaceDataTypeInteger, are for integer arrays. Again you can either
used a ESIndividualIntegerData, which rounds the real-valued decision vector
x to integer values or you can use a GAIndividualIntegerData. For the GAIn-
dividualIntegerData you can either choose to use a standard binary encoding
for integer values or to use a gray encoding for integer values.

• InterfaceDataTypeDouble, represent double arrays. Here you can choose
using GAIndividualDoubleData again using either standard binary or gray
encoding to decoded double values from the binary genotype. Alternatively,
you can choose ESIndividualDoubleData that can omit any mapping function
for the real-valued decision parameters.

• InterfaceDataTypePermuation, represent permutations. Currently there
is only one implementation for permutation data, the OBGAIndividualPermu-
tationData.

• InterfaceDataTypeProgram, code general computer programs, currently
stored as program trees. You can choose between using the GPIndividualPro-
gramData, which is a Koza style program tree representation, and the GEIn-
dividualProgramData, which uses a binary genotype to represent the program
and uses a grammar to decode the genotype into a phenotype.

These interfaces can be combined to generate more complicated data structures.
The GAESIndividualBinaryDoubleData is just one example, which is especially well
suited for searching for sparse real-valued vectors x.
To access the genotypes of a given EA individual for mutation or crossover typi-
cally the InterfaceXIndividual methods are used. In the following paragraphs we
will discuss some mutation/crossover operators that can be applied to the different
interfaces respectively.

• InterfaceGAIndividual, the GA individual relies on a bit-string genotype.
Therefore, typical EA operators include BitFlipMutation, BitSwapMutation,
one-point- or N-point-crossover, UniformCrossover and BitSimulatedCrossover.

• InterfaceESIndividual, the ES individual is based on a vector of real-valued
decision parameters. The strategy parameters depend on the mutation opera-
tor used and are typically stored in the mutation operators themselfs. Thus, it
is necessary to make a deep clone to the mutation operators when an individ-
ual is to be duplicated. Typical mutation operators for ES individuals include
one-point mutation, global- or local mutation, MainVector- and Covariance-
Matrix Adaptation. Real-valued crossover operators which are usually more

3.9. Tutorial on Genetic Optimization 77

important for GA strategies using a real-valued genotype, also called real-
valued GAs, include DiscreteCrossover, IntermediateCrossover, Arithmetical-
Crossover, FlatCrossover, BLX-α-Crossover and BitSimulatedCrossover.

• InterfaceGPIndividual, the GP individual is based on a Koza style program
tree. Currently there are only few default EA operators available for this
representation.

• InterfaceOBGAIndividual, the Order Based GA (OBGA) individual is
suited to represent permutation data and allows mutation operators like Flip-
Mutation and InverseMutation and crossover operators like PMX- and PMX-
UniformCrossover.

Please take care to select a suitable mutation/crossover operator for the individuals.
In case you select a ES mutation operator for a binary-string based GA individual,
the mutation operator will fail to find a suitable genotype and will decline processing
the individual.

Available GO Optimization Algorithms

The following list will give a complete enumeration of all available optimization
strategies in the GO module.

GUI Element Function and parameters

This is a simple random search strategy. See also
sec. 2.1.1 and sec. 3.2 for further explanations.

• Population, allows you to set the popula-
tion size.

This is a greedy Hill-Climber strategy. See also
sec. 2.1.2 and sec. 3.3 for further explanations.

• Population, the population size gives the
number of Hill-Climbers for a multi-start
Hill-Climber.

78 Chapter 3. JavaEvA - Tutorial

This is a Simulated Annealing strategy. See also
sec. 2.1.3 and sec. 3.4 for further explanations.

• Population, the population size gives the
number of multi-starts for the Simulated An-
nealing approach.

• Initial Temperature, gives the starting
temperature T for the algorithm.

• Alpha, gives a linear cooling rate for the
Simulated Annealing algorithm.

This is a general Genetic Algorithm strategy, also
suitable for Genetic Programming. See also sec.
2.2 and sec. 3.5 for further explanations.

• Population, allows you to set the popula-
tion size.

• Elitism, this flag indicates whether or not
elitism is to be used.

• Parent Selection, this is the selection
method to select the parents for the next gen-
eration.

• Partner Selection, this selection method
selects suitable partners for crossover for
each previously selected parent.

• Number of Partners, gives the number of
crossover partners to select for reproduction.

3.9. Tutorial on Genetic Optimization 79

This is a rudimentary implementation of the CHC
Adaptive Search. See also sec. 2.3 for further ex-
planations.

• Population, allows you to set the popula-
tion size.

• Elitism, this flag indicates whether or not
elitism is to be used.

• Number of Partners, gives the number of
crossover partners for reproduction.

This is the Population Based Incremental Learning
optimizer. Currently, it is only suited for solution
representations based on binary genotypes. See
also sec. 2.4 and sec. 3.6 for further explanations.

• Population, allows you to set the popula-
tion size.

• Elitism, this flag indicates whether or not
elitism is to be used.

• Positive Samples, gives the number of pos-
itive samples to be selected from the current
population.

• Selection Method, gives the selection
strategy to select the positive samples.

• Learning Rate, gives the learning rate used
to update the probability vector V .

• Mutation Rate, the the probability pm to
mutate the probability vector V .

• Mutate Sigma, gives the size of mutation
on a single randomly selected element i of
the vector V .

80 Chapter 3. JavaEvA - Tutorial

This is an Evolution Strategy, see also sec. 2.5 for
further explanations.

• Population, allows you to set the popula-
tion size, but may collied with the settings
for µ and λ. Therefore, do not use this prop-
erty to parameterize the ES, but use the µ
and λ properties instead.

• Plus Strategy, this flag indicates whether
or not the µ + λ-strategy is to be.

• µ, the number of individuals to select as po-
tential parents.

• λ, the number of offspring to generate from
the parents.

• Environment Selection, this is the selec-
tion method to select the µ parents Pp, typ-
ically the SelectBestIndividuals method.

• Parent Selection, this is the selection
method to select the parents from Pp, often
SelectRandom.

• Partner Selection, this selection method
selects suitable partners for crossover from
Pp for each previously selected parent, often
SelectRandom.

• Number of Partners, gives the number of
crossover partners for reproduction.

3.9. Tutorial on Genetic Optimization 81

This is a Multi-Objective EA. Our implementa-
tion simply adds an archive A to the optimizer.
The archive A(t) is updated each generation by
adding new pareto-optimal solutions from the cur-
rent population P (t) to the archive. The archive
can also influence the current population by rein-
serting the archive into the population, this in-
creases the selection pressure toward the pareto-
front.

• Archive Size, the size of the external
archive A.

• Archiving Strategy, determines the
method how to calculate A(t + 1) from
(A(t) ∪ P (t)).

• Information Retrieval, determines how
the current archive A(t) influences the next
generation P (t + 1). The effect of the infor-
mation retrieval method is similar to elitism
in GA.

• Population, this is a short cut to set the
population size.

• Optimizer, allows you to choose from mul-
tiple optimization strategies. Although often
a GA is used, you can choose any optimiza-
tion strategy, but most likely you will need
to choose a multi-objective selection criterion
for the optimization strategy.

Selection Operators

These are the available selection operators used in Genetic Algorithms, Population
Based Incremental Learning and Evolution Strategies. The selection operators are
typically used in single-objective optimization problems. In case of multi-objective
optimization problems these selection operators default to select each individual
based on a randomly selected single-objective.

• SelectRandom, this method randomly selects k individuals regardless of their

82 Chapter 3. JavaEvA - Tutorial

fitness values.

• SelectBest, this method selects k time the best individual.

• SelectBestIndividuals, this method selects the k best individuals, see also
p. 19.

• SelectTournament, this method uses the tournament selection method k
times to select k individuals, see also p. 19.

• SelectXProbRouletteWheel, this method calculates selection probabilities
and uses the roulette-wheel metaphor to select individuals, see also p. 20.

There are also some multi-objective selection methods suited for multi-objective
optimization like

• SelectMOMaxiMin, uses the MaxiMin criteria to calculate the fitness value.

• SelectMONonDominated, which randomly selects from non-dominated in-
dividuals.

• SelectMONSGAIICrowedTournament, is based on the Non-dominated
Sorting GA (NSGA) II to select individuals using tournament selection based
on their pareto-level and the crowding factor.

• SelectMOPESA, is based on the Pareto Envelope-based Selection Algorithm
(PESA) to select individuals using tournament selection based on the grid
squeeze factor.

• SelectMOPESAII, is based on the Pareto Envelope-based Selection Algo-
rithm (PESA) to select individuals using tournament selection based on region
based grid squeeze factor.

• SelectMOSPEAII, is based on the Strength Pareto EA (SPEA) II to select
individuals using tournament selection based on pareto strength.

Selection Probability Calculators

These are the available selection probability calculators that are used for probability
based selection methods like the roulette-wheel selection method.

• SelProbStandard which uses a simple scaling method as described on p. 19.

• SelProbStandardScaling uses are more sophisticated scaling method which
removes a possible offset form the fitness values, see p. 19.

• SelProbBoltzman is even more sophisticated by taking the mean and the
standard deviation of the fitness values into account, see also p. 20.

3.9. Tutorial on Genetic Optimization 83

• SelProbRanking uses a simple ranking to determine the selection probabil-
ities, see also p. 20.

• SelProbLinearRanking uses a simple ranking with an additional linear scal-
ing to control the selection pressure to determine the selection probabilities,
see also p. 20.

• SelProbNonLinearRanking uses a simple ranking with an additional non-
linear scaling to control the selection pressure to determine the selection prob-
abilities, see also p. 20.

84 Chapter 3. JavaEvA - Tutorial

Chapter 4

JavaEvA Applications

This chapter will explain how to implement your own optimization problem and how
to optimize it using the JavaEvA package. The examples mentioned in this chapter
can be downloaded from our web site 1.
The examples contain one parameter optimization problem instance for the Evo-
lution Strategies module of JavaEvA, which can also be applied with the Model
Assisted Evolution Strategy module, and another parameter optimization problem
instance for the Genetic Optimization module. The project also provides exemplary
entry points how to start the optimization process for the individual problem in-
stances or the general JavaEvA optimization toolbox either using the main methods
of the Java classes or using the additionally provided ant targets in the build.xml
file in the ant folder.

4.1 How to install the Project

First, download and uncompress the JavaEvAExample.zip file from our web page to
your hard disk. Open a new Java project with your favorite IDE including the /src
folder as source and JavaEvA.jar as library. You can start the standard JavaEvA
optimization toolbox by executing the main method from JOptExampleGUI.java.
Alternatively, you can use the Ant target ‘run’ to start the JavaEvA application.
This requires ant be installed on your system2.

4.2 ES Application Example

In this section we will show how to integrate the Evolution Strategies module in an
application. First an exemplary fitness function for a toy design problem is given.
Then this optimization problem is integrated into the ES module for optimization.

1See http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/download.html
2See http://ant.apache.org/ for further details on Apache Ant.

85

86 Chapter 4. JavaEvA Applications

An additional problem specific viewer is implemented and a small application named
‘WeldOpt’ is build, see fig. 4.1.
It is not necessary to read the whole section about the ES application example, for
an experienced user the actual source code of the optimization problem and the alg.
4.1 should be sufficient to understand how to use the EA module immediately.

4.2.1 General Problem Definition

The exemplary optimization problem for the ES module is given by he task to weld
a bar to a wall such that it is sturdy but also inexpensive. The dimension of the bar
and the thickness of the weld is to be optimized.
Sturdiness is defined by the stress in the structure created by a defined force acting
at the end of the bar. The shear stress, bending stress and the deflection at the end
of the weld is calculated as follows:

τ =

√

τ ′2 + τ ′τ ′′
l

R
+ τ ′′2

τ ′ =
P√
2hl

τ ′′ =
MR

J

M = P (L +
l

2
)

R =

√

l2 + (h + t)2

4

J =
√

shl(
l2

6
+

(h + t)2

2
)

σ =
6PL

t2b

δ =
6PL3

Et3b

I =
tb3

12

The cost function combines the cost of soldering, an the cost of the bar itself:

C = 67412.93h2l + 2935.852tb(L + l)

Basically this problem definition leads to a multi-objective optimization problem.
Although JavaEvA also includes Multi-Objective Evolutionary Algorithms (MOEAs),
for the sake of simplicity weight aggregation is used to transform the multi-dimensional
objective function into a single objective one. This is done by building a weighted
sum of the objectives:

fsum = wCC + wττ + wδδ + wσσ

4.2. ES Application Example 87

A real world constraint requires the thickness of the weld (h) must be smaller than
the thickness of the bar (b). This constraint can be met using a penalty function
by adding extremely large values for solutions which violate this constraint:

fconstraints =

{

∞, h ≤ b

0, else

Therefore the final fitness function is given by:

f = fsum + fconstraints

4.2.2 Problem Implementation

The ES module can handle real-valued optimization problems which extend the
AbstractESProblem class.

The AbstractESProblem class for the ES Module

The most important method to be implemented is doEvalution(double[] params).
This function returns a real-valued vector (double[]) containing the fitness value(s).
In this optimization problem params would contain 4 values: h,l,t and b. doEva-
lution(params) would return a one-dimensional vector containing the fitness value
calculated as described above.
The method GetInputDimension() must return the dimension of the search space
of the optimization problem. This is very important for the initialization of the
ES, therefore it is necessary to implement it correctly. The corresponding method
setInputDimension() sets the search space in case it is variable.
The method equals() checks if another instance of the problem is equal to the actual
instance.
Finally, the getName() method returns a descriptive String giving the name of the
problem.

Setting Bounds for a real-valued Optimization Problem

Real-valued optimization problem often include upper and lower bounds on the de-
cision variables. It’s practical to do this in the constructor of the problem, or in the
setInputDimension() method if appropriate. The methods setlower border(double[]
lowerborder) and setupper border(double[] upperborder) can be used for this pur-
pose. The variables lowerborder and upperborder respectively are real-valued vectors
of the same dimension as the search space.

88 Chapter 4. JavaEvA Applications

Figure 4.1: : The WeldOpt application interface.

Adding a Problem specific Viewer

To visualize the optimization result in an intuitive way a problem specific viewer
can be implemented. Since only the optimization problem knows the meaning of the
individual decision variables, the optimization problem is the right place to define
such a visualization method.
In this example the wall and the attached bar can be visualized as a simple wire
frame model. The description of the drawing routines are beyond the scope of this
documentation, but there are several alternative Java packages available which are
dedicated to sophisticated drawing routines, like Java3D 3.
The most important thing is that the problem decides when it has to be drawn or
updated. In the assosicated source code

i f (f i t n e s s < b e s t f i t n e s s) {
. .
}

can be found in the doEvaluation() method. The best fitness value produced by any
call to doEvaluation() method of this instance of the problem is logged. In case a
better fitness value is produced the solution can be printed via System.out.print(),
drawn in a dedicated frame, opened in a new popup window etc.

3See http://java.sun.com/products/java-media/3D/.

4.2. ES Application Example 89

Listing 4.1: buildESprocessor builds a full parametrized Evolution Strategy

public ESProcessorSolo bu i ldESprocessor (
int lambda , int mu, int maxgenerations ,
ESMutation mutat ionoperator ,
AbstractESProblem esproblem) {

ESProcessorSolo e sp r o c e s s o r = new ESProcessorSolo () ;
ESPara esparameters = new ESPara () ;
f ina l ESPopulation e spopu la t i on = new ESPopulation () ;
GenerationTerminator Term = new GenerationTerminator () ;
Term . s e tGenera t i ons (maxgenerat ions) ;
Terminato r In t e r fa c e [] t e rminato r s = {Term} ;
e sparameters . setTerminator (t e rminato r s) ;
e sparameters . s e tS t r a t e gy (e spopu la t i on) ;
e sparameters . setProblem (esproblem) ;
e spopu la t i on . setLambda (lambda) ;
e spopu la t i on . setMy (mu) ;
e spopu la t i on . setModulParameter (esparameters) ;
ESInd iv idua l e s i n d i v i d u a l = new ESIndiv idua l () ;
i f (mutat ionoperator instanceof MutationCMA) {

((MutationCMA) mutat ionoperator) . s e tCon s t r a i n t s (true) ;
}
e s i n d i v i d u a l . setMutat ion (mutat ionoperator) ;
e spopu la t i on . se t Ind iv idua lTempla t e (e s i n d i v i d u a l) ;
e spopu la t i on . createInit iMAESPopulat ion () ;
e s p r o c e s s o r . setModulParameter (esparameters) ;
return e sp r o c e s s o r ;

}

4.2.3 Setting up the ES Application Algorithm

The setup of the ES algorithm is a bit complex because it’s high flexibility. After
the instantiation of the bare ESProcessor, ESParam, ESPopulation and the Gener-
ationTerminator, these parts have to be initialized and ‘connected’ in the way and
order as shown in the listing 4.1. Some fundamental concepts of modular approach
of JavaEvA are shown in this listing. The object ESPara contains all parameters of
the Evolutions Strategy module. It contains set() methods for the problem, evolu-
tionary operators, population (a.k.a. strategies), terminators etc. All of these have
to be set before the ESProcessor is being initialized.
A terminator watches the optimization process and terminates it, when certain con-
ditions are fulfilled. The GenerationTerminator for example terminates the process
after a given number of generations have passed. There are also Terminators which
stop the optimization process after given number of function evaluations, or if a

90 Chapter 4. JavaEvA Applications

lower fitness limit is reached.
The createInitiMAESPopulation() method in the ESPopulation initializes a initial
population of size λ by cloning a template individual λ-times. Every individual is
however initialized individually to ensure diversity of the population.
Finally, the optimization process can be run by calling the method optimize() of the
ESProcessor.

4.3. Genetic Optimization Application Example 91

4.3 Genetic Optimization Application Example

In this section we will explain how to implement your own optimization problem
complying with the Genetic Optimization module. You will find the complete source
code for this example in the additional JavaEvAExample.zip file for download on
our web pages.
We will give an example on how to define the Lens Optimization problem, how to
access the problem members via the GUI and how to log and display the optimization
results. Finally, we will give you some examples how this optimization problem can
be solved using JavaEvA.

4.3.1 General Problem Definition

The Lens Optimization problem is given by the question, how to shape a lens with
the radius R to focus as much light as possible on the center of a screen in a distance
of F from the lens, see fig. 4.2. The shape of the lens is given by the vector x, which
gives the thickness of the lens in n segments. In this case n gives the problem
dimension.
To simplify the mathematical equations we assume a thin lens. In that case the
target function is given by the sum of the quadratic distances of the projection of
each light ray per segment to the center of the screen:

f(x) =
n
∑

i=1

((R − S/2) − S(j − 1) − F

S
· (ε − 1) · (x[i] − x[i − 1]))2 (4.1)

with R = 5 the radius of the lens, F = 20 the focal length, ε = 1.5 a material
property and S the length of a segment S = 2·R

n−1
.

This target function is to be minimized. An optional constraint is to minimize

x =0.00 x =0.11

R

S

F

Figure 4.2: Lens Optimization problem.

the required material that can be calculated from the summed segment thickness or

92 Chapter 4. JavaEvA Applications

even more simple just the thickness in the middle of the lens. The required material
is added as penalty to the target function f(x).

f ′(x) = f(x) + x[x.length/2] (4.2)

For practicable results the search space is limited to x: 0.1 ≤ xi ≤ 5.

4.3.2 Problem Implementation

To solve this optimization problem using the GO module of JavaEvA one has to
implement an optimization problem complying with the InterfaceOptimizationProb-
lem, allow access to all important problem properties, care for the necessary output
and logging methods and finally start the optimization environment to solve the
problem. In the following sections we give details on how to implement the problem
and how to take care that all the important data is displayed and logged.
To fit into the general framework of JavaEvA an optimization problem has to meet
two other requirements too.
First, the optimization problem needs to implement the java.io.Serializable inter-
face. There is nothing special about this, actually one does not need to implement
anything for implementing this interface, but all properties of the optimization prob-
lem have to be serializable too. In case a property does not meet this requirement
one can make this property transient, which prevents this property from being se-
rialized. The java.io.Serializable interface is necessary to allow serialization of the
current state of the optimizer and the optimization problem. This allows JavaEvA
to restore ones application settings from a previous session and to distribute the
optimization over multiple processors.
Second, the Generic Object Editor typically requires an empty constructor, in case
a problem needs to load external data or requires proper initialization.

The InterfaceOptimizationProblem for the GO Module

To implement this optimization problem and to optimize it using the GO module
the FLensProblem class has to implement the InterfaceOptimizationProblem of the
GO module. This interface has three main methods that need to be implemented,
see listing 4.2.

Listing 4.2: The GO interface for optimization problems.

public interface Inter faceOpt imizat ionProb lem {
/∗ ∗ This method i n i t s the Problem to l o g mul t i runs . ∗/
public void in i tProb lem () ;
/∗ ∗ This method i n i t s a g iven popu la t i on .
∗ @param popu la t i on The popu la t i on s t h a t i s to be i n i t e d
∗/

public void i n i tPopu l a t i on (Populat ion populat ion) ;

4.3. Genetic Optimization Application Example 93

/∗ ∗ This method e va l ua t e s a g iven popu la t i on and s e t the
∗ f i t n e s s v a l u e s a c co rd i n g l y .
∗ @param popu la t i on The popu la t i on t ha t i s to be eva lua t ed .
∗/

public void eva lua t e (Populat ion populat ion) ;
/∗ ∗ This method e va l ua t e s a s i n g l e i n d i v i d u a l and s e t s the
∗ f i t n e s s v a l u e s a c co rd i n g l y .
∗ @param in d i v i d u a l The i n d i v i d u a l t h a t i s to be eva lua t ed
∗/

public void eva lua t e (AbstractEAIndividual i n d i v i d u a l) ;
.
.

}
These are the three basic methods that are necessary to start an optimization pro-
cess. Of course it is necessary to initialize the problem and to initialize the primordial
population of solutions. The initialization of the population is necessary to specify
the data type to use, to set the necessary bounds of the search space and to allow
problem specific initialization of the individuals. The two evaluation methods are
either on the level of individuals or on the level of populations. An optimization
strategy usually uses the population based evaluation method. The evaluation of a
population can simply be implemented as repetitive evaluation of each individual,
but it also allows for coevolutionary environments, where the individuals may inter-
act and perhaps even compete for limited resources. The population based method
further allows you to log problem specific data like the best individual found so far,
the history of the best solutions per generation or to take care of plotting the best
solution. In the individual based evaluation method one can also take care of stor-
ing a sensible solution representation, e.g. after repair or normalization mechanisms
have been applied, to allow easier access to the true solution representation.
Please note that the problem has to take care to increment the number of fitness
evaluations. This is necessary because the problem is the only place that can decide
whether or not it is able to take a short cut, because two individuals are very much
alike, or if additional fitness evaluation are necessary because of an additional local
search step.

Implementing the InterfaceOptimizationProblem

The first thing to implement should be the initialization methods. The init() method
of the problem is of course problem specific and in this case limited to reseting the
overall best result to null and to initializing the problem specific viewer.
The initPopulation() method has to take care that the individuals in the initial pop-
ulation are suitable formatted, see listing 4.3. This includes to select the proper data
type for the individuals and mutation and crossover operators. This is usually done
before initPopulation() is called by parameterizing the template individual accord-

94 Chapter 4. JavaEvA Applications

ingly using the GUI or by direct access. But still the problem has the final decision
on how to parameterize the template individual. In this example the problem sets
the problem dimension to the template individual and also sets a suitable range for
each decision parameter, which could also be set independently.
Next the population is cleared and each individual cloned and initialized from the
template individual. In this example the default init() method is used on each
individual, but you could also perform a problem specific initialization on each indi-
vidual or use a D-optimal design for the whole population. Please note that the size
of the population is usually not set from within the problem but somewhere else.
Finally, the problem viewer is initialized and again an init method is called on
the population, which also uses the default init method on each individual. This
command needs to be removed in case of a problem specific initialization, else this
command would render the previous initialization useless.

Listing 4.3: The initPopulation(population) method for the FLensProblem.

public void i n i tPopu l a t i on (Populat ion populat ion) {
AbstractEAIndividual tmpIndy ;
this . m Overal lBest = null ;
this . m Template . setDoubleDataLength (this . m ProblemDimension) ;
// s e t the range
double [] [] range = new double [this . m ProblemDimension] [2] ;
for (int i = 0 ; i < range . l ength ; i ++) {
range [i] [0] = 0 . 1 ;
range [i] [1] = 5 . 0 ;

}
this . m Template . SetRange (range) ;
populat ion . c l e a r () ;
for (int i = 0 ; i < populat ion . g e tPopu la t i onS i z e () ; i ++) {
tmpIndy = (AbstractEAIndividual)

((AbstractEAIndividual) this . m Template) . c l one () ;
tmpIndy . i n i t (this) ;
populat ion . add (tmpIndy) ;

}
i f (this . m Show) this . initProblemFrame () ;
populat ion . i n i t () ;

}

The evaluation method for populations basically calls the evaluation method for
individuals on each individual of the population, see listing 4.4, and increments the
functions calls for the population accordingly. Finally, some problem specific data
logging or statistics could be performed. This example limits to updating the prob-
lem specific viewer.

4.3. Genetic Optimization Application Example 95

Listing 4.4: The evaluate(population) method for the FLensProblem.

public void eva lua t e (Populat ion populat ion) {
AbstractEAIndividual tmpIndy ;
for (int i = 0 ; i < populat ion . s i z e () ; i ++) {
tmpIndy = (AbstractEAIndividual) populat ion . get (i) ;
this . eva lua t e (tmpIndy) ;
populat ion . inc rFunct i onCa l l s () ;

}
i f (this . m Show) this . updateProblemFrame (populat ion) ;

}
The evaluation method for individuals basically implements equ. 4.1, although it
may seem a bit more complicated than the equation. But this is simply due to
the fact that the computation is separated into two methods, see listing 4.5. The
only problem worth mentioning is, that it is necessary to cast the objects stored in
the population to AbstractEAIndividuals to set the fitness values and perhaps the
UserDefinedObjects. Further on it is necessary to cast the AbstractEAIndividual
to the proper InterfaceDataTypeX. For the real-valued lens problem this is the
InterfaceDataTypeDouble, to access the problem specific decision variables.

Listing 4.5: The evaluate(individual) method for the FLensProblem.

public void eva lua t e (AbstractEAIndividual i n d i v i d u a l) {
double [] x ;
double [] f i t n e s s ;
x = new double [((InterfaceDataTypeDouble) i n d i v i d u a l)

. getDoubleData () . l ength] ;
System . arraycopy (((InterfaceDataTypeDouble) i n d i v i d u a l)

. getDoubleData () , 0 , x , 0 , x . l ength) ;
for (int i = 0 ; i < x . l ength ; i ++) x [i] = x [i] − this . m XOffSet ;
f i t n e s s = this . doEvaluat ion (x) ;
for (int i = 0 ; i < f i t n e s s . l ength ; i ++) {
// add noise to the f i t n e s s
f i t n e s s [i] += RandomNumberGenerator . gauss ianDouble (this . m Noise) ;
f i t n e s s [i] += this . m YOffSet ;
// s e t the f i t n e s s o f the i n d i v i d u a l
i n d i v i d u a l . Se tF i tne s s (i , f i t n e s s [i]) ;

}
i f ((this . m Overal lBest == null) | |
(this . m Overal lBest . g e tF i t n e s s (0) > i n d i v i d u a l . g e tF i t n e s s (0))) {
this . m Overal lBest = (AbstractEAIndividual) i n d i v i d u a l . c l one () ;

}
}

public double [] doEvaluat ion (double [] x) {
double f i t n e s s = 0;

96 Chapter 4. JavaEvA Applications

double [] r e t = new double [1] ;
// s e t a minimum va lue f o r the t h i c k n e s s o f the l en s
for (int i = 0 ; i < x . l ength ; i ++) i f (x [i] < 0 . 1) x [i] = 0 . 1 ;
double [] tmpFit = this . t e s tLens (x) ;
for (int i = 0 ; i < tmpFit . l ength ; i++)

f i t n e s s += Math . pow(tmpFit [i] , 2) ;
i f (this . m UseMaterialConst)

f i t n e s s = f i t n e s s + x [(int) (x . l ength / 2)] ;
r e t [0] = f i t n e s s ;
return r e t ;

}

public double [] t e s tLens (double [] x) {
double m SegmentHight = 2 ∗ m Radius / (x . l ength − 1) ;
double [] r e s u l t = new double [x . length −1] ;
// Computation o f f i t n e s s . Uses an approximation f o r very t h i n
// l e n s e s . The f i t n e s s i s the sum over a l l segments o f the
// de v i a t i on from the cen te r o f f ocus o f a beam running through
// a segment .
for (int i = 1 ; i < x . l ength ; i++)
r e s u l t [i −1] = m Radius − m SegmentHight / 2 − m SegmentHight

∗ (i − 1) − m FocalLength / m SegmentHight ∗ (m Epsilon − 1)
∗ (x [i] − x [i −1]) ;

return r e s u l t ;
}

Adding Problem Members to the GUI

To enable the GenericObjectEditor to display general information about your prob-
lem and to allow editing of basic members of your problem definition you need to
implement just a few methods, see listing 4.6. The getName() method returns the
name that the GenericObjectEditor will use to name your class. The globalInfo()
will return a text that the GenericObjectEditor will display at the top of the GUI
frame as short description. Please limit to just a few words since the GenericOb-
jectEditor often cuts the text short.
To allow easy GUI access to the basic problem properties you simply need to add get
and set methods for each member. Do to so you have to obey a simple naming con-
vention: the methods have to be named ’getMemberName’ and ’setMemberName’,
’MemberName’ and the data type must be the same for both methods. To add a
hint text implement a method called ’memberNameTipText’ returning a descriptive
string. This method again has to have the same string as member name but needs
to start with a small letter and end with ’TipText’. See for example the implemen-
tation in listing 4.6 for the amount of noise on the target function evaluation.

4.3. Genetic Optimization Application Example 97

This way you can add arbitrary variables to the GUI as long as the members are
of a primitive data type that is known to the GenericObjectEditor, see right hand
side of fig. 4.3 for the GUI element resulting for the FLensProblem class from the
GenericObjectEditor.

Listing 4.6: Example how give a short description for the class in the GUI and how
to access the class properties in the GUI

/∗ ∗ This method a l l ow s the Gener icObjec tEdi tor to
∗ read the name o f the current o b j e c t .
∗ @return The name .
∗/

public St r ing getName () {
return ‘ Lens Problem ‘ ;

}
/∗ ∗ This method re turns a g l o b a l i n f o s t r i n g
∗ @return d e s c r i p t i o n
∗/

public St r ing g l o b a l I n f o () {
return ‘ Focusing o f a l en s i s to be opt imized . ‘ ;

}
/∗ ∗ This method a l l ow s you to choose how much noise i s to
∗ be added to the f i t n e s s .
∗ @param noise The sigma f o r a gauss ian random number .
∗/

public void s e tNo i s e (double no i s e) {
i f (no i s e < 0) no i s e = 0 ;
this . m Noise = no i s e ;

}
public double getNoi se () {
return this . m Noise ;

}
public St r ing noiseTipText () {
return ‘ Noise l e v e l on the f i t n e s s va lue . ‘ ;

}

Additional Output and Logging Methods

The InterfaceOptimizationProblem also requests additional methods to output the
result of the optimization process, see listing 4.7.
For example the getSolutionRepresentationFor() returns a possibly multi-line string
that is a readable and easy understandable solution representation. The getStringRep-
resentation() methods returns a similar string for the optimization problem an its
parameter. The drawIndividual() may open a new JFrame to show a graphical rep-
resentation of the solution, while the getDoublePlotValue() returns a double value

98 Chapter 4. JavaEvA Applications

that will be logged and averaged over several multi runs by the JavaEvA Statistics
class, typically the target value.
The getAdditionalFileStringHeader() and the getAdditionalFileStringValue() allow
you to log problem specific data per generation over multiple runs in a result file
that is written by JavaEvA. The first method returns the tab separated header,
while the second method returns the tab separated values.
Finally, the method getFinalReportOn() allows you to output a final resume on the
performance and the result of the optimization process.
Although you can implement all these methods, most likely it would be best if you
take care of the problem specific logging and statistic yourself, since we can not
foresee all the possible requirements regarding documentation of the optimization
process that your specific optimization problem needs.

Listing 4.7: Additional output and logging method requested from the InterfaceOp-
timizationProblem

/∗ ∗ This method a l l ow s you to output a s t r i n g t ha t d e s c r i b e s a
∗ found s o l u t i o n in a way t ha t i s most s u i t a b l e f o r a g iven problem .
∗ @param in d i v i d u a l The i n d i v i d u a l t h a t i s to be shown .
∗ @return The d e s c r i p t i o n .
∗/

public St r ing ge tSo lu t i onRepre s en ta t i onFor (AbstractEAIndividual
i n d i v i d u a l) ;

/∗ ∗ This method re turns a s t r i n g d e s c r i b i n g the op t imi za t i on problem .
∗ @return The d e s c r i p t i o n .
∗/

public St r ing ge tS t r ingRepre s en ta t i on () ;
/∗ ∗ Request a g r aph i c a l r e p r e s en t a t i on f o r a g iven i n d i v i d u a l .
∗/

public void drawIndiv idua l (AbstractEAIndividual indy) ;
/∗ ∗ This method re turns a doub le va lue t ha t w i l l be d i s p l a y ed in
∗ a f i t n e s s p l o t . A f i t n e s s t h a t i s to be minimized wi th a g l o b a l
∗ min o f zero would be bes t , s ince l o g y can be used . But the
∗ va lue can depend on the problem .
∗ @param pop The popu la t i on t ha t i s to be r e f i n ed .
∗ @return Double va lue
∗/

public Double getDoublePlotValue (Populat ion pop) ;
/∗ ∗ This method re turns the header f o r the a d d i t i o n a l data t h a t
∗ i s to be wr i t t en in t o a f i l e .
∗ @param pop The popu la t i on t ha t i s to be r e f i n ed .
∗ @return S t r ing
∗/

public St r ing ge tAdd i t i ona lF i l eS t r ingHeade r (Populat ion pop) ;

4.3. Genetic Optimization Application Example 99

/∗ ∗ This method re turns the a d d i t i o n a l data t h a t i s to be wr i t t en
∗ i n t o a f i l e .
∗ @param pop The popu la t i on t ha t i s to be r e f i n ed .
∗ @return S t r ing
∗/

public St r ing ge tAdd i t i ona lF i l e S t r i ngVa lue (Populat ion pop) ;
/∗ ∗ This method a l l ow s you to output a s t r i n g t ha t d e s c r i b e s
∗ the o v e r a l l performance o f the op t imi za t i on proce s s .
∗ @param op t imi ze r The i n d i v i d u a l t h a t i s to be shown .
∗ @return The d e s c r i p t i o n .
∗/

public St r ing getFinalReportOn (In t e r f a c eOpt imi z e r opt im i z e r) ;

Adding a Problem specific Viewer

In this exemplary problem implementation we also added a problem specific viewer
to the optimization problem by using the three methods initProblemFrame(), dis-
poseProblemFrame() and updateProblemFrame(). Without going much into detail
regarding the capabilities of Java for 2D or even 3D visualization, this example
should help you to implement your own problem specific and customer orientated
visualization. See left hand side of fig. 4.3 for the resulting problem viewer. The
viewer displays the overall best individual found so far, the achieved target value, a
graphical representation of the optimized lens and the resulting path of the individ-
ual light rays for each segment.

Figure 4.3: The Lens Optimization problem GUI and the problem specific viewer.

100 Chapter 4. JavaEvA Applications

Adding the new Problem to the GUI

To integrate the new problem into the generic JavaEvA GUI several additional
steps are necessary. First, it is necessary to add the new problem instance to JavaE-
vAGUI Lite.props under InterfaceOptimizationProblem. Please, take care that no
extra spaces are introduced behind the individual problem instances. This may
cause the scanning algorithm to terminate prematurely. Make also sure to edit the
JavaEvAGUI Lite.props file that is in the working path of JavaEvA.
Second, it is necessary for the GenericObjectEditor that you provide your new classes
with an empty constructor. Otherwise the GenericObjectEditor will not be able to
to create a new instance of this object.
Finally, please note that due to the GenericObjectEditor any problems occurring
during the initialization of the new object instance selected via the GUI will not be
reported correctly. The GenericObjectEditor will terminate the new object instance
notifying with a simple ’Cannot create an example of..’ statement.

4.3.3 Optimizing the Problem

After having implemented the optimization problem you want to optimize it. Since
we have implemented a problem for the GO module we will show a short cut how
to start the GUI for the GO module with your optimization problem.
To do so you have to make a new instance of the GOStandaloneVersion, get the
parameters of the optimization problem, which are basically the same as described
in sec. 3.9 and set the optimization problem to the implemented FLensProblem, see
listing 4.8 for details. Now you can visualize the GUI by using the initFrame() and
setShow(true) command on the optimization module. Alternatively, you could start
the optimization process directly by calling the doWork() method.
Instead of setting just the problem, you could also choose and parameterize the
optimization algorithm used in the GO module. You could also parameterize the
problem regarding EA representation type, mutation/crossover operators and rates
on the programming level. You have access to all properties of the GO module
discussed in sec. 3.9.

Listing 4.8: Example how start the GUI of the GO module to optimize your FLen-
sProblem

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (‘TESTING THE FLENSPROBLEM: ‘) ;
System . out . p r i n t l n (‘ Working Dir ‘ +System . getProperty (‘ user . d ir ‘)) ;
FLensProblem f = new FLensProblem () ;
GOStandaloneVersion program = new GOStandaloneVersion () ;
GOParameters GO = program . getGOParameters () ;
GO. setProblem (f) ;

4.3. Genetic Optimization Application Example 101

Figure 4.4: Comparing the performance of a GA with a binary genotype individual
(upper plot) and a (5, 30)-ES with a real-valued individual and global mutation
(lower plot) regarding the averaged best results over 20 multi-runs.

RandomNumberGenerator . s e t s e ed (1) ;
program . initFrame () ;
program . setShow (true) ;

}
If you choose to use the GUI version you can immediately start to optimize the lens
problem and comparing the behavior of the different EA approaches, the impact of
different solution representations and mutation/crossover operators and rates. In
fig. 4.4 you can see the result of comparing a standard GA with a binary genotype
representation to a (5, 30)-ES with a real-valued representation. The real-valued ES
clearly outperforms the GA.

102 Chapter 4. JavaEvA Applications

Chapter 5

JavaEvA Frequently Asked
Questions (FAQ)

In this chapter we will try to give some answers to frequently asked questions related
to JavaEvA but also to the full version JOpt. We will not necessarily distinguish
between these to versions since JavaEvA is a subset of JOpt and we expect most
algorithms currently under development in JOpt will move to JavaEvA as soon as
they are validated and tested at large. Some of the question may also be related to
the ’developer edition’ (source code of JavaEvA) which is available at request.
This list of frequently asked questions is far from being complete, but is updated
continuously.

Q: How to install the Project?

First, download and uncompress the JavaEvAExample.zip file from our web page1 to
your hard disk. Open a new Java project with your favorite IDE including the /src
folder as source and JavaEvA.jar as library. You can start the standard JavaEvA
optimization toolbox by executing the main method from JOptExampleGUI.java.
Alternatively, you can use the Ant target ‘run’ to start the JavaEvA application.
This requires ant be installed on your system 2.

Q: JavaEvA exits on start with NullPointerException in Toolkit.createImage()?

java . lang . Nul lPo interExcept ion
at java . awt . Too lk i t . createImage (Unknown Source)
at javaeva . c l i e n t . EvAClient . c r ea t eSp la shSc r e en (EvAClient . java : 4 45)
at javaeva . c l i e n t . EvAClient .< i n i t >(EvAClient . java : 3 48)
at javaeva . c l i e n t . EvAClient . main (EvAClient . java : 4 62)

Exception in thread main

1See http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA/
2See http://ant.apache.org/ for further details on Apache Ant.

103

104 Chapter 5. JavaEvA Frequently Asked Questions (FAQ)

In the developer edition it is necessary to copy the resource folder into the working
directory. This can be done manually or by using the ’compile’ or ’compileAll’ com-
mand from the provided ant file.

Q: I’ve made my own problem instance but it doesn’t show up in the
GUI?

It is necessary to add the new problem instance to JavaEvAGUI Lite.props (JavaE-
vAGUI.props) under InterfaceOptimizationProblem. Please, take care that no extra
spaces are introduced behind the individual problem instances. This may cause the
scanning algorithm to terminate prematurely. Again make sure to edit the JavaE-
vAGUI Lite.props (JavaEvAGUI.props) file that is in the working path of JavaEvA.

Q: The new problem instance shows in the GUI but when selected an
error occurs?

The GenericObjectEditor requires an empty constructor for the new problem in-
stance, else it is not able to create a new instance. Additionally, in case the con-
structor throws any exceptions the GenericObjectEditor will terminate the new
object instance notifying with a simple ’Cannot create an example of..’ statement.

Q: I’ve implemented my own problem for GO and the Optimizers are
behaving strange not like they behave on the test functions?

There are two possible reasons for this. First, you need to take care that the popu-
lations are initialized correctly in the initPopulation() method. You need to select a
suitable data representation, set appropriate data ranges and initialize the individu-
als with random values. Even if you prefer to initialize the individual with problem
specific initial values, it is advisable not to initialize all individuals with the same
values. Otherwise, the optimizers lack the initial diversity to explore the search
space efficiently.
Second, perhaps you have overridden the getDoublePlotValue() method to log your
own data. Typically, such data is gathered during the evaluate() method. But
unfortunately not all individuals of the current population may enter the evalu-
ate() method. For example in case of a GA with elitism, the elite individuals are
not reevaluated, This may cause and elite GA the look like a GA without elitism.
Therefore, it is advisable to perform the required statistics on the population given
as parameter for the getDoublePlotValue() method instead on the population en-
countered during the evaluate() methods.

105

Q: I want to use the online source code editing method for the User
Defined Problem, but it doesn’t work?

That is a complicated problem. Despite on going efforts to make the online source
code editing option as user friendly as possible, there are several pitfalls with this
feature of JavaEvA.

1. Make sure that there is no compiled *.class file in the class path of the Java
object you want use the source code edition feature on.

2. To enable the source code editor to find the actual source code of the ob-
ject, make shure to start JavaEvA from the correct directory, where it can
find the source. For example, if the project is installed in ’C:/JavaEvA/’,
the complied classes are in ’C:/JavaEvA/build/’ and the source code is in
’C:/JavaEvA/src/’, start JavaEvA in ’C:/JavaEvA/’ using:
java -cp ‘C:/JavaEvA/build/’ javaeva.client.EvAClient.

3. Finally, after the first conditions are met another problem can occur. Without
a proper PATH variable pointing to ’javac’ JavaEvA may be unable to compile
the edited source code. Therefore, make sure alter the PATH variable to point
to the bin directory of your JAVA SDK version.

In case it still doesn’t work, it could be related to general compilation errors of the
edited source code. Please remember that JavaEvA is no valid substitute for a full
IDE. We made no special provision in JavaEvA to deal with syntax errors or online
compilation errors.

106 Chapter 5. JavaEvA Frequently Asked Questions (FAQ)

Acknowledgments

This research and software development has been funded by the German federal min-
istry of research and education (BMBF) in the project ”Entwicklung eines Systems
zur automatisierten Herstellung und Charakterisierung von kristallinen Festkörpern
in hohem Durchsatz” under contract No. 03C0309E and by the ALTANA Pharma
AG, Konstanz, Germany.

Bibliography

[1] S. Baluja. An empirical comparison of seven iterative and evolutionary function
optimization heuristics. Technical Report CMU-CS-95-193, 1995.

[2] S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. In A. Prieditis and S. Russel, editors, The International Conference
on Machine Learning, pages 38–46, San Mateo, CA, 1995. Morgan Kaufmann
Publishers.

[3] J. B. Beasley. OR-Library: distributing test problems by electronic mail. Jour-
nal of the Operational Research, 8:429–433, 1996.

[4] N. Cramer. A representation for the adaptive generation of simple sequen-
tial programms. In Grefenstette, editor, Proceedings of the 1st International
Conference on Genetic Algorithms, pages 183–187, 1985.

[5] K. De Jong. An analysis of the behavior of a class of genetic algorithms. (Doc-
toral dissertation, University of Michigan) Dissertation Abstracts International,
36(10), 5140B. (University Microfilms No. 76-9381), 1975.

[6] K. Deb and D. Goldberg. An investigation of niche and species formation in
genetic function optimization. In M. Kaufmann, editor, Proceedings of the 5th
International Conference on Genetic Algorithms and their Applications, pages
42–50, 1989.

[7] M. A. El-Beltagy and A. Keane. Evolutionary optimization for computationally
expensive problems using gaussian processes. In Proceedings of the International
Conference on Artificial Intelligence IC-AI’2001, pages 708–714. CSREA Press,
2001.

[8] M. Emmerich, A. Giotis, M. Özdemir, K. Giannakoglou, and T. Bäck. Meta-
model assisted evolution strategies. In Parallel Problem Solving from Nature
VII, pages 362–370. Springer, 2002.

[9] L. Eshelman. The CHC adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. Foundations of Genetic
Algorithms, 1:265–283, 1991.

107

108 Bibliography

[10] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-
schemata. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pages
187–202. Morgan Kaufmann, San Mateo, CA, 1993.

[11] R. Friedberg. A learning machine: Part I. IBM Journal of Research and
Development, pages 2–13, 1958.

[12] R. Friedberg, B. Dunham, and J. North. A learning machine: Part II. IBM
Journal of Research and Development, 3(3):282–287, 1959.

[13] C. Fujiki. Using the genetic algorithm to generate lisp source code to solve the
prisoner’s dilemma. In International Conference on Genetic Algorithms, pages
236–240, 1987.

[14] M. Gallagher, M. Frean, and T. Downs. Real-valued evolutionary optimization
using a flexible probability density estimator. In W. B. et al., editor, Proceed-
ings Genetic and Evolutionary Computation Conference, pages 840–846, San
Francisco, CA, 1999. Morgan Kaufmann Publishers.

[15] D. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-
modal function optimization. In Grefenstette, editor, Proceedings of the 2nd
International Conference on Genetic Algorithms, pages 41–49, 1987.

[16] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distribu-
tions in evolution strategies: The covariance matrix adaption. In Proceedings of
the 1996 IEEE International Conference on Evolutionary Computation, pages
312–317, 1996.

[17] J. He and X. Yao. Towards an analytic framework for analysing the computation
time of evolutionary algorithms. Artificial Intelligence, 145(1-2):59–97, 2003.

[18] J. Holland. Adaption in Natural and Artificial Systems: An Introductory Analy-
sis with Applications to Biology, Control and Artificial Systems. The University
Press of Michigan Press, Ann Arbor, 1975.

[19] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimiza-
tion with approximate fitness functions. IEEE Transactions on Evolutionary
Computation, 6(5):481–494, 2002.

[20] K. A. D. Jong and J. Sarma. Generation gaps revisited. In D. Whitley, editor,
Foundations of Genetic Algorithms, volume 2, pages 19–28. Morgan Kaufmann,
1992.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

Bibliography 109

[22] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[23] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge Massachusetts, May 1994.

[24] J. R. Koza, David Andre, F. H. Bennett III, and M. Keane. Genetic Program-
ming III: Darwinian Invention and Problem Solving. Morgan Kaufman, Apr.
1999.

[25] P. Larranaga. A review on estimation of distribution algorithms. In P. Lar-
ranaga and J. Lozano, editors, Estimation of Distribution Algorithms, chapter 3,
pages 57–100. Kluwer Academic Publisher, 2002.

[26] H. Mühlenbein, J. Bendisch, and H.-M. Voigt. From recombination of genes to
the estimation of distributions II. continuous parameters. In 4th International
Conference on Parallel Problem Solving from Nature, pages 188–197, 1996.

[27] H. Mühlenbein and G. Paass. From recombination of genes to the estimation of
distributions I. binary parameters. In 4th International Conference on Parallel
Problem Solving from Nature, pages 178–187, 1996.

[28] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutions Programs.
Springer-Verlag, New York, 1992.

[29] M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm
outperform hill climbing. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems, volume 6, pages 51–58.
Morgan Kaufmann Publishers, Inc., 1994.

[30] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder
genetic algorithm I: Continuous parameter optimization. Evolutionary Compu-
tations, 1(1):25–49, 1993.

[31] M. Pelikan, D. Goldberg, and F. Lobo. A survey of optimization by building
and using probabilistic model. Technical Report 99018, IlliGAL, Septemper
1999.

[32] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian opti-
mization algorithm. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume I, pages 525–532, Orlando,
FL, 13-17 1999. Morgan Kaufmann Publishers, San Fransisco, CA.

110 Bibliography

[33] J. Poland and A. Zell. Main vector adaptation: A CMA variant with linear
time and space complexity. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1050–1055. Morgan Kaufman, 2001.

[34] N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex
Systems, 5(2):183–205, 1991.

[35] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart, Ger-
many, 1973.

[36] R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evo-
lution: Stochastic search through program space. In M. van Someren and
G. Widmer, editors, Machine Learning: ECML-97, volume Lecture Notes in
Artificial Intelligence 1224, pages 213–220. Springer-Verlag, 1997.

[37] K. Sastry and D. E. Goldberg. Probabilistic model building and competent
genetic programming. In R. L. Riolo and B. Worzel, editors, Genetic Program-
ming Theory and Practise, chapter 13, pages 205–220. Kluwer, 2003.

[38] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley &
Sons, Chichester, U.K., 1977.

[39] H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New
York, 1995.

[40] M. Sebag and A. Ducoulombier. Extending population-based incremental learn-
ing to continuous search spaces. In H.-P. Schwefel, editor, 5th International
Conference on Parallel Problem Solving from Nature, pages 418–427, Amster-
dam The Netherlands, Mai 1998. 27-30 september.

[41] F. Streichert, H. Ulmer, and A. Zell. Evolutionary algorithms and the cardinal-
ity constrained portfolio selection problem. In D. Ahr, R. Fahrion, M. Oswald,
and G. Reinelt, editors, Operations Research Proceedings 2003, Selected Papers
of the International Conference on Operations Research (OR 2003), Heidelberg,
September 3-5, 2003. Springer, 2003.

[42] G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of
the Third International Conference on Genetic Algorithms, pages 1–9. Morgan
Kaufmann, 1989.

[43] G. Syswerda. Simulated crossover in genetic algorithms. In D. Whitley, editor,
Foundations of Genetic Algorithms, volume 2, pages 239–255. Morgan Kauf-
mann, 1993.

Bibliography 111

[44] S. Tsutsui. Probabilistic model-building genetic algorithms in permutation
representation domain using edge histogram. In Proceedings of the 7th Inter-
national Conference on Parallel Problem Solving from Nature, pages 224–233.
Springer-Verlag, 2002.

[45] H. Ulmer, F. Streichert, and A. Zell. Model-assisted steady-state evolution
strategies. In E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M.
O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. We-
gener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and
J. Miller, editors, Genetic and Evolutionary Computation – GECCO-2003, vol-
ume 2723 of LNCS, pages 610–621, Chicago, 12-16 July 2003. Springer-Verlag.

[46] J. Wakunda. Parallele Evolutionsstrategien mit der Optimierungsumge-
bung EvA. PhD thesis, Fakultät für Informatik, Eberhard-Karls-Universität
Tübingen, 2001.

[47] J. Wakunda and A. Zell. Eva - a tool for optimization with evolutionary al-
gorithms. In Proceedings of the 23rd EUROMICRO Conference, Budapest,
Hungary, September 1-4 1997.

[48] A. H. Wright. Genetic algorithms for real parameter optimization. In G. J.
Rawlins, editor, Foundations of genetic algorithms, pages 205–218. Morgan
Kaufmann, San Mateo, CA, 1991.

[49] T. Yu and P. Bentley. Methods to evolve legal phenotypes. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Fifth International Con-
ference on Parallel Problem Solving from Nature, pages 280–291, Amsterdam,
1998. Springer.

