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vorgelegt von

Francesco Giacosa

aus Turin, Italien

2005



Tag der mündlichen Prüfung: 22. April 2005
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Abstract

In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant
constituent approach.

The search for glueballs, their theoretical description and the mixing with quarkonia
mesons is an active and unsolved issue of hadronic QCD. Different models and assignements
have been proposed, but up to now no certain statement about their existence can be done.

After introducing the theoretical framework in which we will work in, the attention will be
focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest
gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters
many scalar resonances; mixing between the bare glueball and quarkonia states is therefore
likely. In a covariant constituent approach one cannot define rigorously a mixing matrix
connecting the bare to physical fields. However, we propose a definition which satisfies the
correct requirements and which can be compared to other phenomenological studies.

The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down
the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-
photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent
with the current experimental upper limits.

We also analyze the strong decays of the scalar resonances by using a phenomenological
Lagrangian inspired by chiral perturbation theory. The decay of a scalar into two pseudoscalar
mesons is another decisive point to test a mixing scenario.

When introducing the model a careful description of the so-called compositeness condition
is presented; it is a useful tool to describe the properties of a bound state. A connection with
the non-relativistic limit is established and worked out by analyzing the analogous mechanism
occurring for positronium states.
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Chapter 1

Introduction

1.1 Constituent quarks

1.1.1 The need for quarks

The quarks were first introduced to put order in the chaotic realm of hadron spectroscopy.
In this way a clear and schematic interpretation of hadrons as bound objects made out of
quarks has been achieved: the bosonic hadrons, called mesons, are quark-antiquark states,
while the fermionic hadrons, called baryons, are three quark states.

In order to reproduce the electric charge of the proton and the neutron two types of quarks
(flavors) with a fractionary charge 2/3 and −1/3, called respectively u and d, were proposed.
In this way the proton has a flavor content ”uud” and the neutron ”udd”. These quarks
have a mass of the order of Mp/3 (Mp is the proton mass) and are referred to as ”constituent
quarks”. The static properties of the nucleon can be fairly good described within these simple
assumptions.

In the same scheme one can interpret the pion triplet π+, π0, π− as ud,
√

1/2(uu− dd),
du. Successively the quark-flavor s, slightly heavier than u and d, with the charge −1/3, has
been postulated to describe properly the known ground states of baryons and mesons.

The occurrence of bound states means that an attraction among quarks takes place. Its
origin cannot be the electromagnetic force (to weak to do it; furthermore, the state π+ = ud
is made out of two quarks with positive charge). There must be another interaction type,
which we call ”strong”interaction.

For a proper and exhaustive description of these ideas we refer to [1, 2] and Refs. therein.

1.1.2 Color’s primary

The spin-statistic’s problem of the spin 3/2 state ∆++is renowned; its charge +2 is compatible
with a flavor wave function ”uuu”. A ∆++ with Sz = 3/2 is expressed by

∣∣∆++, Sz = 3/2
〉

= |space〉 |flavor-spin〉 =
∣∣l = l′ = 0

〉
|u ↑, u ↑, u ↑〉 , (1.1)

where l and l′ are the relative spatial angular momenta, set to zero because we consider
a ground state hadron. This state is overall symmetric, in disagreement with the Pauli
principle. The existence of another degree of freedom has been originally invoked to avoid
this paradox: each quark comes in 3 colors, R,G and B (red, green, blue); the color wave

1



2 1.1. CONSTITUENT QUARKS

function must be antisymmetric, leaving only one possibility:

|color〉 =
√

1

6
(RGB + BRG + GBR−RBG−GRB −BGR) (1.2)

In this way the state

∣∣∆++, Sz = 3/2
〉

= |space〉 |flavor-spin〉 |color〉 (1.3)

is, as required, antisymmetric.

Each baryon has the same antisymmetric color wave function, thus explaining why the
color does not generate a proliferation of states. The introduced color configuration corre-
sponds to a ”white” object, i.e. is invariant under a SU(3) rotation in the color space. Going
even further, it has been postulated that each bound state of quarks is ”white”, also invariant
under rotation in the color space. For a meson (quark-antiquark state) a white configuration
corresponds to

|color〉 =

√
1

3

(
RR + GG + BB

)
. (1.4)

The quarks are colored, but the bound states are white. Confinement can be introduced here:
only white states occur in nature.

As a direct consequence of this statement no quarks can be seen isolated. Such strong
statement has proven to hold true up to now, although the full mathematical verification has
still to come. Confinement is a property of the strong interaction among quarks.

Summarizing, each quark carries two quantum numbers, the flavor (u,d,s) and the color
(R,G,B). The three flavors have different electric charge and mass; however, due to their
similar mass, the use of group theory is very useful for the classification of hadrons. One
speaks of an approximate SUf (3) flavor symmetry, valid at first order for strongly interacting
quarks but clearly not conserved by the electromagnetic interaction.

On the other hand the color symmetry SUc(3) is assumed to be exact; a red u-quark and
a blue u-quark have exactly the same mass and the same charge. Due to confinement only
colorless states appear: the color can be thought of as the ”charge” of the strong interaction
among quarks. The potential between R and R, for instance, is attractive and increases with
the distance, in such a way that the quarks cannot be ”liberated”. Computer simulations
confirmed such a behavior.

In the language of Quantum Field Theory [3] a ”potential” corresponds to an exchanged
particle. The best and most famous example of a QFT is QED, written under the require-
ment of U(1) local gauge invariance and describing the electrons interacting through photon
exchange. A new quantum field theory for the description of the strongly interacting quarks,
called QCD, has been built in analogy to QED: the local color gauge invariance under SUc(3)
transformations leads to the introduction of 8 bosonic massless mediators, called gluons: the
name by itself corresponds to the resulting strong (confining) interaction among quarks.

The color, originally introduced to avoid a spin-statistical collapse, has been risen up to
the basic charge of a non-abelian, renormalizable local gauge theory.

The non-abelian nature of SU(3) implies a direct interaction among gluons, which are
themselves colored objects, coming in 8 different color combinations. The gluons are not
”white”, ergo we cannot see a free gluon, pretty much as we can’t free quarks.



CHAPTER 1. INTRODUCTION 3

1.2 Glueball hypothesis

The fact that in QCD the gluons ”shine in their own light” is the major difference with
QED and is thought of being responsible for the confining process discussed above. Another
striking consequence can be conceived ([4, 5] and Refs. therein): the gluons could generate
”gluonic mesons”, i.e. bound states of gluons called glueballs. In fact, as strongly interacting
particles, the gluons, as well as the quarks, could form ”white” bound states generating a full
glueball spectrum.

In analogy to quarkonia (ordinary) mesons one can describe the glueball as a bound state
of two ”constituent” massive gluons; this sentence may seem in disagreement with what was
stated above about the massless nature of the gluons. We will soon come back to this point,
which represents an important step in the construction of a phenomenological effective model.

The glueballs have been being searched for about 30 years, but, up to now, no certain
statement about their existence can be done. The major difficulty to test such a hypothesis
is that a glueball would have the same quantum numbers as an ordinary qq quarkonia meson,
without saying ”Look at me, I’m a glueball”. This makes the identification more difficult.
Furthermore, a glueball can mix with quarkonia mesons with the same quantum numbers,
thus further complicating the issue.

Other possibilities can occur: one could also have ”hybrids”, i.e. states like qqg (con-
stituent quark-antiquark pair and a constituent gluon). The interesting aspect is that one can
construct states with exotic quantum numbers, which are not allowed for a quark-antiquark
pair. Also, in this case the search for such states is in progress, and their existence has either
been proved or disproved, depending on the theoretical interpretation.

For review papers about exotics (no qq or qqq states) we refer to [5, 6, 7, 8] and Refs.
therein.

In this thesis we will mostly concentrate on the glueballs, with special attention on the
scalar glueball, whose eventual existence is currently under hot debate.

In the last decade progress has been done thanks to better experimental results, new
theoretical interpretations and more precise computer Lattice simulations. Lattice glueballs
in the pure Yang-Mills sector of QCD exist, and show a complete spectrum where the ground
state is the JPC = 0++ scalar glueball with a mass between 1.4− 1.8 GeV [9, 10, 11]. In the
same mass region one experimentally identifies [12] ten scalar states: the isoscalars f0(1370),
f0(1500), f0(1710), the isodoublets K∗(1430) and the isotriplet a0(1450). The experimental
identification of these resonances and the study of their decays has been improved in the last
years, even if a further improvement would be very useful. In fact, the nature of these states,
especially concerning the three isoscalars f0, is still not known. Are they the ground state
scalar quarkonia mesons or excited states? Is there the glueball among them? Does one have
mixing among the glueball and the quarkonia states?

It is then clear that a solution of the scalar glueball puzzle involves a solution of the scalar
quarkonia problem. The states listed above are not the only scalar states one has below 2
GeV. Other states, below 1 GeV, are found: σ = f0(400 − 1200), f0(980), a0(980), are well
established [12]. Another broad state called k(700) ([12, 13] and Refs. therein) has been
proposed, but its existence is not universally accepted and omitted from the summary table
of [12]. Many questions arise: which are the scalar qq ground states? The nonet below 1
GeV or between 1 − 2 GeV ? If this last possibility is true, how can one interpret the scalar
states below 1 GeV ?

There are by far too many scalar states to interpret all of them as quark-antiquark scalar
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Figure 1.1: Electron-proton scattering.

objects; there is indeed ”room” for the scalar glueball, and not only.

Before discussing this issue further, we first describe the other part of QCD, the high
energy domain.

1.3 Partons

Let us look at the proton from another point of view. A very energetic electron hits a proton;
this process can be explained in terms of partons [1, 2, 14, 15, 16].

The proton is made of many elementary objects, called partons, which interact weakly
among each other. We have to chose a reference frame to study the system; the physics is
invariant, but the choice of a convenient frame simplifies the work. In this case a system where
the proton is moving fast is very useful: in fact, we can neglect the transversal momenta of
the partons constituting the proton and consider only the longitudinal (i.e. in the direction of
motion) components. Some partons are charged, some neutral; the incoming electron scatters
elastically with one charged parton, which in first approximation is free and does not interact
with the others (see Fig. 1.1). Under this simple assumption one can satisfactorily describe
the dynamics of the process.

A careful analysis shows that the charged partons are almost massless and carry frac-
tionary charges (2/3, 1/3,−1/3,−2/3), therefore we recognize the quark flavors u, d, and s
and their antiparticles. At the same time almost half of the proton momentum is carried by
massless neutral partons, which we interpret as gluons.
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According to this view the proton is made up of three ”high energy” quarks uud, called
valence quarks, which determine its quantum numbers, plus quark-antiquark pairs and gluons
”flying around”.

The fact that the partons can be considered as ”almost free” shows the asymptotic free
nature of the theory: at high energies the quarks and the gluons interact weakly, rendering a
perturbative approach applicable. This is valid only for high energy electron-proton collisions.

One can note a different description of the proton: before we spoke of 3 constituent
effective quarks ”uud” with a large effective mass (∼ Mp/3), now we speak of many nearly
massless partonic quarks and massless partonic gluons.

Both descriptions are indeed valid and describe properly some characteristics of the pro-
ton, depending on the energy or resolution scale. We realize that a unified view is necessary
to understand properly the proton and more generally the QCD states.

The quarks and gluons of the partonic description are the high energy quarks and gluons;
at the same time, when one considers the proton in its rest frame, it can be described as a
bound state of three ”quasi-particle”, which are the constituent quarks. The connection can
be heuristically established as following:

Constituent u = Valence u dressed with uu, dd, ss and gluon clouds.
The valence u is nearly massless, while the constituent u is massive because of the dressing

phenomenon. The valence u gets heavier because it is surrounded with quark-antiquark pairs
and gluons. The valence and the constituent quarks have the same quantum numbers, but a
very different mass (from ∼ 5 MeV for the valence to ∼ 300 MeV for the constituent). The
same follows for the other flavors.

Ergo:
Proton: Valence (almost massless) uud plus uu, dd, ss and gluons = Constituents (mas-

sive) uud.
The fact the valence quark gets massive through dressing changes the symmetry of the

system; a system with massless quarks is ”more symmetric” than one with massive quarks
(whose masses also differ): this is essential in the context of spontaneous chiral symmetry
breaking, which we will discuss in the sixth chapter.

The proton is a rather complicated object; the fact that the constituent picture works is
of great use and a non-trivial fact. Of course, the non-interacting picture where the partons
move freely is valid at high energy in a suitable reference frame. In the rest frame of the proton
the quarks are bound and confined in the proton. We chose the proton for this discussion for
historical reasons, but all these considerations are automatically valid, with the due changes,
for every QCD bound state.

The original naive quark model was non-relativistic; the constituent quarks were inter-
acting by a potential increasing with the distance. The origin of the potential is the gluon
exchange: these gluons are often called ”background” gluons, and are responsible for the
string tension and for confinement, ergo for QCD bound states.

Later also Quantum Field Theory effective approaches were developed to describe the
proton as a bound state of three constituent quarks described by fermionic fields; these
models are relativistic, and the approximation of considering the proton as built out of three
”elementary” constituents (i.e. neglecting the fact that we are actually dealing with three
quasi-particles) has turned out to be good. If it had not been like that, we would have had
serious troubles in describing the static properties of the QCD bound states.

Similarly, phenomenological QFT models for the description of the pions and other mesons
were used to describe their decays.
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Figure 1.2: Electron-positron annhilation originating a quark-antiquark couple.

In this work we attempt to describe the ground state scalar mesons as a bound state of an
(effective) quark-antiquark pair in a scalar configuration. We have already said that we are
dealing with ”bad-behaving objects”, the uncontrollable children of QCD. There is indeed
still a lot of work to do to derive the scalar quarkonia properties starting directly from QCD.
Here we will use a relativistic QFT phenomenological model to achieve a fair description of
these elusive objects.

But the glueball will jump in as well. It will be described as a bound state of two
constituent gluons; the arguments exposed before about the constituent and the valence
quarks are directly applicable also for the constituent gluons and the valence ones.

1.4 Jets

In the fast-moving system half of the proton momentum was carried by the gluons, thus
already proving their existence, whatever means to ”exist” for objects we can’t detect directly,
but such a discussion oversteps into philosophy. There are even more stringent proves that the
gluons are really there. In order to discuss this, which represents, also from an historical point
of view, the confirmation of QCD, we consider the electron-positron high energy scattering
[1, 2, 14, 15, 16].

In the Fig. 1.2 the following situation is depicted: the electron and the positron generate
a virtual photon, which subsequently radiates a quark-antiquark pair. The two quarks fly
away in the opposite direction; however, we will not see a quark in our detectors because
of the confinement discussed before. A hadronization process takes place, whose easiest
visualization reads: a quark-antiquark couple is created in the vacuum, the original emitted
quark forms a meson with the antiquark from the vacuum, similarly for the original emitted
antiquark with the quark of the vacuum pair. Instead of two quarks, two mesons (white QCD
states) are emitted (Fig. 1.3.a).

In a high energy process many quark-antiquark couples are produced in vacuum due to
energy conservation, and the system is considerably more complicated than the simple two-
meson event described above. However, the principle is the same: in the end only white
objects fly out. One measures two hadron-jets (made of many baryons and mesons, see
Fig. 1.3.b) flying in the opposite direction. The hadrons are revealed in the experimental
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Figure 1.3: Quark-antiquark hadronization. In (a) two mesons fly away, in (b), at high
energy, two hadronic jets are generated.
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Figure 1.4: In (a) next-to-leading order diagrams are depicted; in (b) a three-jet event (where
the third jet originates from the radiated gluon) is drawn.

detectors, built isotropic around the scattering centre.

The two-jet events also proved the existence of the color degrees of freedom; in the cal-
culation of the probability of Fig. 1.2 we realize that the q-q pair can come in three different
color combinations RR, GG and BB. Thus, the total cross section, with respect to µ+-µ−

production, is enhanced by a factor Nc = 3. This enhancement has been seen, thus confirming
the correctness of the ”color” hypothesis.

Another possibility can take place [17]: from one of the two outgoing quarks a gluon can
be radiated (see the first and the second diagram of Fig. 1.4.a, where the next to leading order
diagrams are depicted); the subsequent hadronization generates three jets instead of two (Fig.
1.4.b). The detection of these 3 jets event at PETRA from the TASSO collaboration [18]
constituted the direct prove of the gluon existence.

The description of the high energy processes from a theoretical point of view is achieved
at a great level of accuracy by using QCD: at high energy, the weakly interacting quarks
and gluons allow a perturbative approach. The probability for a gluon emission, for exam-
ple, is calculated within this framework. Then it is simply assumed that the hadronization
probability is one, which means the radiated particles transform in white objects.

On the other hand, when one works at low energies (soft gluon ”background” exchange
for the QCD bound state formation) a direct application of perturbative QCD is not possible;
the interaction becomes very strong, and alternative methods must be used, for instance like:

• Non-relativistic constituent quark models: the constituent quarks interact through a
confining potential ([5, 19] and Refs. therein).
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• Relativistic constituent quark models: one works at a QFT level with basic constituent
quark fields. A typical example is the Nambu Jona-Lasino (NJL) model (original papers in
[20], review papers [21, 22, 23]) working well in the pseudoscalar mesonic sector, and extended
to finite density and temperature.
• Dyson-Schwinger equations: a non-perturbative method for the calculation of the quark

and gluon propagators. Then, a Bethe-Salpeter analysis for the bound states is applied
([24, 25] and Refs. therein)

• Chiral Perturbation theory: in this case the basic degrees of freedom are the physical
states, like mesons and baryons. The pions, being the lightest hadrons, play a decisive role.
This approach is in the limit of zero energy equivalent to QCD ([26, 27, 28] and Refs. therein).

As mentioned before, we will use a phenomenological relativistic constituent QFT model.
We will employ a nonlocal Lagrangian for the description of the hadron properties [29].

1.5 Back to glueballs

1.5.1 A possible assignment

As we have seen, the existence of gluons is clearly established by high energy experiments.
At the same time, the self-interacting nature of gluons and the resulting strong attraction

among them led to the prediction of gluonic bound states.
As for quarks, we distinguish among the ”high energy massless gluons” and the con-

stituent massive gluons, whose mass range is between 0.6-1.2 GeV, even more massive than
the constituent quarks.

This effective high mass, also confirmed in Lattice simulations [30], has its origin from the
dressing of the valence gluon with virtual gluons and virtual quark-antiquark pairs around
it. In the computer simulations one actually considered only the gluon dressing, i.e. only the
gluonic part of the theory has been studied, the so-called Yang-Mills QCD sector. Already in
this sub-theory glueballs exist. The effect of dynamical quarks is under study, but it seems
not to alter drastically the original Y-M results.

The glueball is interpreted as a state of two constituent gluons; its scalar (lightest) mass
is of the order of two times the constituent gluon mass, around 1.5 GeV.

The experimental identification of glueballs on one side, and their theoretical comprehen-
sion on the other side, would constitute a big progress in the understanding of the hadronic
world. The glueballs are in a sense a missing link, predicted by many approaches and authors,
but not yet found or ruled out.

In this thesis we analyze the scalar glueball and its probable mixing with quarkonia
mesons. The Lattice scalar glueball mass leads to focus the attention on the scalar states
between 1-2 GeV. Out of a quark and an antiquark one can build nine scalar quarkonia states:

• ud, du,
√

1/2(uu− dd) : I = 1 states (pion flavor content)
• us, su, ds, sd : I = 1/2 states (kaon flavor content)

•
√

1/2(uu + dd), ss : I = 0 states (eta and eta-prime flavor content).
The experimental identification of 10 scalar states between 1−2 GeV (see section 1.2), in

particular three isoscalars instead of two (f0(1370), f0(1500) and f0(1710)), can be explained
if the glueball degree of freedom shows up. One has nine scalar quark-antiquark states plus
a scalar glueball intruding among them.

The QCD quark-gluon interaction is flavor-blind; a gluon is flavor ”democratic”, i.e.
interacts with a u exactly as with a d and with a s. In the basic quark-gluon vertex the color
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is interchanged, but the flavor remains untouched.

In this sense the glueball (2-gluon bound states) is a flavor blind object. If we introduce
mixing, and we allow that the two gluons transform into a q-q pair, we realize that the
probability of creating a uu, or a dd, or a ss is the same (up to u-d-s mass differences,
negligible between u and d, approximate between n = u, d and s). This means that a glueball
behaves ”like”

√
1/3(uu + dd + ss) (flavor singlet, also showing the isoscalar nature of the

glueball), and should also decay correspondingly; after removal of phase space, one predicts a
decay branching ratios into the pseudoscalar mesons ππ, KK, ηη, ηη ′ like 3 : 4 : 1 : 0, simply
corresponding to the charge multiplicities of the pseudoscalar couples; the decay into ηη ′ is
forbidden because a flavor singlet cannot decay into a singlet an octet.

None of the three existing isoscalar resonances shows such a decay pattern. This indeed
can be understood if one considers that the glueball can transform into a quarkonia meson.
The fact that these three states lie in the same mass region supports this idea; in fact, mixing
among states is enhanced if the states have a similar mass.

Under this assumption each isoscalar resonance is a mixture of quarkonia and glueball;
such a mixing would also lead to a distortion of the flavor blind decay discussed above. In
fact, no state would be a pure gluonic state.

Summarizing, the physical resonances can be interpreted as following:

• a0(1450) = ud, du,
√

1/2(uu− dd) : I = 1.

• K∗(1430) = us, su, ds, sd : I = 1/2.

• f0(1370), f0(1500), f0(1710) : mixture of nn =
√

1/2(uu + dd), ss and glueball: I = 0.

A precise experimental knowledge of the strong decays is necessary to test the mixing
and to deduce the amount of bare states nn, gg and ss in the flavor wave functions of the
physical resonances.

These ideas were originally introduced in [31] almost ten years ago. At that time the state
f0(1710) was still not established; there was indeed a resonance, whose angular momentum
was still not known (J = 0 and J = 2 were the two options). Further experimental analysis
confirmed the scalar J = 0 nature of the state. In their work the state f0(1370) has a dominant
nn content, f0(1710) a dominant ss one, while the state with the biggest ”glue” amount is
f0(1500). The strong decays were analyzed under the mixing dominance hypothesis, i.e. the
direct decay of two gluons into two pseudoscalar mesons is neglected.

In order to get these results the starting point where pure nn, gg and ss states with
the bare level ordering Mnn < Mgg < Mss. In this way the intermediate state f0(1500) gets
naturally the biggest glueball strength. This state has been clearly established by Crystal
Barrel at LEAR [32] in proton-antiproton annihilation, and is also seen in central pp collisions
[33] and J/Ψ decays [34]. The main interest in the f0(1500) as a possible candidate with at
least partial glueball content rests on several phenomenological and theoretical observations
[35]. The f0(1500) is produced in gluon rich production mechanisms, whereas no signal is
seen in γγ collisions [36].

In the same scheme a Lattice analysis has been performed [37]; however, due to their high
bare glueball mass (Mgg ∼ 1.7 GeV ) a reversed bare level ordering Mnn < Mss < Mgg has
been considered. The consequence is that the state with the biggest glueball admixture is
f0(1710). The two different approaches share indeed the same underlying idea; the present
experimental results indicate a large ss amount in f0(1710), as confirmed by the small ratio
[12]

(f0(1710) → ππ) /
(
f0(1710) → KK

)
= 0.2 ± 0.024 ± 0.036.
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This fact favors the first interpretation. However, Sexton et al. [38] (see also [39]) made a
Lattice study, where they showed that such a small ππ/KK ratio is also possible for a bare
glueball. The results have not been reproduced by other authors, the errors are still big,
but they would mean that the coupling constant for the 2-pion decay is much suppressed
as compared to the KK or ηη ones, and in turn would imply a strong violation of flavor
symmetry. Considering the uncertainty of this result and its dramatic consequences, we
rather tend to accept the first interpretation, where flavor symmetry still plays a crucial role
(as in all the other nonets) and where a small ππ/KK ratio implies a large ss content in the
correspondent physical decaying state.

1.5.2 Widths

The width of a scalar state nn is predicted to be large (∼ 500 MeV ) by various models
[31, 40]. This is in agreement with f0(1370), which is broad [12] (Γ = 300 − 500 MeV ) and,
although the experimental uncertainties are large, is compatible with a dominant nn state
[12, 41].

On the contrary, the resonance f0(1500) is relatively narrow (Γ = 109 MeV ). This is
also in agreement with a large inert ”glueball” component, a ”non-decaying part” in its
wave function, rendering it narrow. The resonance decays dominantly through its nn and ss
components.

The state f0(1710) has a width of 140 MeV, compatible with ss, as the ratios confirm
[12, 41].

One can then go further and consider also a direct glueball decay into pseudoscalar mesons;
in this case the relative quarkonia-glueball phases play a decisive role in the decays. In the
work of Close and Kirk [42] a strongly decaying glueball is introduced, changing considerably
the discussion presented above.

The arguments presented up to here are mostly qualitative.

1.5.3 Scalar states below 1 GeV

We forgot the scalar states below 1 GeV σ = f0(400− 1200), f0(980), a0(980), k(700). What
about them? If the ground quarkonia scalar states are between 1−2 GeV as discussed above,
what are they?

Jaffe [43] proposed an intriguing explanation: they are not q-q states, but four quark
states. In Jaffe’s hypothesis they are a bound state of a diquark qq with an antidiquark qq.
A strong attraction can occur [8], binding these objects, which are, of course, white. These
states would also be ”exotics”, ergo not ordinary quark-antiquark ones.

Another possible interpretation is as mesonic molecules [44, 45]. The σ is then a pion-pion
bound states, while f0(980), a0(980) are kaonic molecules.

The disentanglement of such states is still not complete. Only when both scalar ”nonets”
below and above 1 GeV are simultaneously understood we will able to claim to have solved
the scalar puzzle.

In any case, if Jaffe’s 4-quark states or pseudoscalar molecules, we would not deal with
basic quark-antiquark objects, consolidating the quark-antiquark scalar ground state assign-
ment between 1 and 2 GeV.
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1.5.4 Other interpretations

In the following we summarize some of the proposed interpretations, further composed of
sub-interpretations, for the scalar states in a schematic way [13, 46, 47]. The first one, A,
corresponds to the description above.

A :
• Scalars between 1-2 GeV : ground state (1 3P0) q-q + the glueball and consequent

mixing with the isoscalar quarkonia states
• Scalars below 1 GeV : four quark states:

· Jaffe’s four quark states: qq-qq; the building blocks are diquarks.
· Meson molecules: qq-qq; the building blocks are pseudoscalar mesons.

It is very difficult to distinguish among the last two options for the scalar states below 1
GeV. The physical resonances could also be a mixture of the two proposed solutions.

However, this scenario, which we will follow in this thesis, clearly divides the states below
1 GeV from the ones above, which are quark-antiquark states mixed with the glueball.

The mixing of the scalar states below and above 1 GeV has also been studied [48].
Note that both [31] and [37] interpretations discussed above are contained in scenario A;

in this sense ”they are not so different”, if compared to the other scenarios (see below).

B :
• Scalars below 1 GeV : ground state q-q (1 3P0) (n = 1, where n is the radial quantum

number)
According to the Nambu relation the scalar-isoscalar state nn =

√
1/2(uu + dd) has a

mass Mσ ' 2m∗ ∼ 600 MeV, where one can recognize the σ = f0(400 − 1200).
However, the Nambu relation is extracted from the Nambu Jona-Lasinio model [20, 21, 22,

23], which is solid at very low energy, but whose validity for scalar states may be questionable.
As cited above, the scalar states are L = 1, and we expect their mass above 1 GeV, in the
energy region of the other P states.

• Scalars between 1-2 GeV : first exited (n = 2, 2 3P0) q-q states, with possible mixing
with the glueball.

Scenario B, as well as A, still separates the states below and above 1 GeV. Other possi-
bilities, which do not consider such a separation, have been proposed.

C :
• f0(980), a0(980), f0(1500), K∗(1430) : ground q-q states (1 3P0).
The resonance f0(1370) is not considered as a real state.
The σ = f0(400 − 1200) is then interpreted as a light glueball, which lives to shortly to

mix. Such an interpretation is in agreement with some theoretical works within QCD sum
rules [49], where a light glueball is predicted. Other considerations about this hypothesis are
explained in [51].

In this scenario [7, 47, 50] only one scalar nonet is recognized, and the glueball does
not mix significantly with the quarkonia mesons. The existence of a light glueball is not in
agreement with nowadays Lattice results: an improvement in computer simulations, taking
into account dynamical quarks, is highly desired to distinguish among the scenarios.

In this scenario the two isoscalar states f0(980) and f0(1500) are like [47]:
f0(980) ∼

√
1/6 (nn + 2ss)

f0(1500) ∼
√

1/3 (nn− ss) ,
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i.e. as η0 and η8, but with a crucial sign difference. Such strong mixing between the
strange and the non-strange sectors occur through instantons, in a similar way as in the
pseudoscalar nonet (but with an opposite sign).

The state f0(1370) is considered as the ”tail” of the σ, i.e. itself a high mass manifestation
of the scalar glueball; a0(1450) and f0(1710) are exited states.

A similar approach, which allocates most of the glueball strength in the f0(1370), is
considered in Ref. [52].

Other possibilities have been considered. We do not aim to report all of them, but just
to give an idea of the current state. Celenza et al. [53] proposed, for instance:

D :

f0(980), a0(980), f0(1370), K∗(1430) : q-q ground states (1 3P0).

The model used to get such a classification is a modified NJL model with confinement,
where the confinement shifts up the mass of the nn from 2m∗ ∼ 600 MeV up to ∼ 1 GeV,
therefore f0(980) is interpreted as nn. f0(1370) is then a ss state, f0(1500) an exited state.

As one can note, the number and the intrinsic differences of the possible interpretations
are a clear sign of the difficulty of the subject, and of the not-yet-solved underlying problem.

As stated above, I will follow the interpretation A, which to my humble opinion is the
most solid. In this work we wish to study some consequences of A, showing that it can be
the right one within a phenomenological context.

1.6 Thesis content

In this section we present the content of the following chapters.

1.6.1 Second chapter:

In the second chapter, working with scalar fields, we first introduce some basic concepts of
Quantum Field Theory, like the canonical (second) quantization, following from the basic
requirement of microcausality and like the principles of a perturbative expansion.

Then follows a brief discussion concerning renormalizability, and how we can interpret
non-renormalizable theories, which can provide a useful description of some physical systems.

The use of a nonlocal non-renormalizable theory for the study of a bound state of two
scalar particles is discussed. All the definitions and properties presented here for the scalar
case are valid throughout the whole work.

At the end of the chapter the non-relativistic limit and the connection of the non-locality
with the Bethe-Salpeter analysis is established.

1.6.2 Third chapter:

After an introduction of the Dirac field, the bound state formation of a fermion and an
antifermion is studied.

In particular, pseudoscalar and scalar states and their spin decomposition is developed.

A non-local Lagrangian for their description is introduced.

The method is the same as the one of the second chapter, here extended to Dirac fields.
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1.6.3 Fourth chapter:

In the fourth chapter we study the two-photon decay of a bound state.
After having recalled how a decay takes place and which are the peculiarities of the

electromagnetic field, the 2γ decay of pseudoscalar and scalar bound states is discussed.
The issue of the electromagnetic U(1) gauge invariance together with the non-locality of

our approach is treated.
The results for the two-photon decay of the pion and for the scalar and pseudoscalar

positronium are reported. The positronium study with a non-local Lagrangian is an applica-
tion of the non-relativistic limit of our approach.

The results for the scalar quark-antiquark states are reported in the sixth chapter, after
that the glueball and its mixing are introduced. However, the basic theoretical analysis of
the two-photon decay for a scalar quarkonium state is discussed here.

1.6.4 Fifth chapter:

”Mixing” is a typical physical phenomenon, which is introduced by a classical example.
This chapter is simple and pedagogical, but contains some important notions which will be
discussed in the following one.

The mixing between fields in a Klein-Gordon theory is presented here, together with the
consequent decay of mixed states.

1.6.5 Sixth chapter:

After a short description of QCD, the mixing between the bare glueball and quarkonia scalar-
isoscalar mesons is performed within a phenomenological quantum field theoretical approach,
taking into account the momentum dependence of the quantities under study.

The problem of the definition of a mixing matrix within such an approach is discussed; a
mixing matrix, which satisfies the correct requirements, is proposed. Its results are compared
to those of other phenomenological works.

The two-photon decays of the resulting mixed states (identified with f0(1370), f0(1500)
and f0(1710)) are calculated.

1.6.6 Seventh chapter:

In the last chapter we study the two-pseudoscalar strong decays of the scalar states between
1-2 GeV. We use two different Lagrangian forms: the first simply takes into account SU(3)
flavor relations and the second is inspired by chiral perturbation theory.

A χ2-analysis is applied in order to get the best description of the experimental data.



Chapter 2

Scalar field

2.1 Classical scalar field

2.1.1 Introduction

We start from the study of scalar fields, because it embodies many features of Quantum
Field Theory, but is free from spin and vectorial complications; this is not only a theoretical
construct, because one encounters scalar fields pretty often in nature, as for example the
scalar mesons, which play a central role in this thesis. Furthermore another scalar particle,
the Higgs, is of fundamental importance in the theoretical construction of the Standard
Model, even if its experimental discovery has still to come.

For what concerns the first four sections of the present chapter we refer to the following
standard QFT books [3, 54, 55, 56, 57, 58, 59, 60]. The intent of these sections is a summary
of the typical quantum field theory themes, presented in a succinct form; the discussion
centers on those arguments which to me are crucial in QFT and which typically represent a
hard conceptual step in the understanding of QFT. The sequence of the themes is a personal
way to introduce the subject. The inclusion of this summary also follows from the desire of
a (as much as possible) self-contained work.

We consider a single scalar real field ϕ = ϕ(x), where x ≡ xµ = (t,x), with the following
Lagrangian

L (ϕ(x), ∂µϕ(x)) =
1

2
(∂µϕ(x)) (∂µϕ(x)) − V (ϕ(x)), (2.1)

where V is a function of ϕ.
In this way the Lagrangian is invariant under transformations of the Poincaré group,

being a basic postulate of QFT; in fact, if we apply the shift

x→ x′ = Λx + a (2.2)

(where Λ is a 4x4 Lorentz matrix and a a generic four-vector) considering that

ϕ(x)→ ϕ′(x′) = ϕ(x), (2.3)

we have, as desired
L (ϕ(x), ∂µϕ(x)) = L

(
ϕ′(x′), ∂′

µϕ′(x′)
)
. (2.4)

The equation of motion for the field ϕ reads:

∂µ
∂L

∂(∂µϕ)
=

∂L
∂ϕ

(2.5)

15
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The Hamiltonian density and the momentum density are given by the equations:

H = P0 =
∂L

∂(∂0ϕ)
(∂0ϕ)−L; (2.6)

Pi = − ∂L
∂(∂0ϕ)

(∂iϕ). (2.7)

The corresponding integrals of these quantities over all space give us the four-momentum of
the field

P µ =

∫
d3xPµ, (2.8)

for which one has, as a consequence of the translational symmetry :

dP µ

dt
= 0. (2.9)

2.1.2 Klein-Gordon case

We concentrate now on a sub-case of the previous one, that we get for V (ϕ) = 1
2m2ϕ2,

where m is a positive constant; the equation of motion, obtained from (2.5),is the famous
Klein-Gordon one: (

� + m2
)
ϕ(x) = 0. (2.10)

2.1.2.1 Plane waves

Let us consider a plane wave function of the form

ϕ(x) = Ne−ikx, (2.11)

where the four-vector k = (k0,k) is introduced, with k0 = E and k, as we will show, being
connected with the energy and the impulse of the wave. If we plug (2.11) in (2.10) we find

(k0)2 = k2 + m2; (2.12)

this equation reminds us of the Einstein mass-equation, but here we are not dealing with a
single particle, but with a wave; secondly, the function given in (2.11) is not real.

2.1.2.2 Solution in a box

Through plane waves we can construct a general real solution for ϕ(x); a very useful class of
solutions is found by confining our system to a box of side L; to do this we consider periodic
boundary conditions of the kind

ϕ(t, x, y, z) = ϕ(t, x + L, y, z) = ϕ(t, x, y + L, z) = ϕ(t, x, y, z + L). (2.13)

This is of course an artificial condition, but we have to imagine that we deal in a limiting
process with a box which is enlarged to infinity. The plane waves we consider are those
fulfilling the previous equation, which gives:

k = 2π
n

L
, (2.14)
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where n is a three-vector of whole numbers (ni = 0,±1,±2, ...; i = 1, 2, 3).

We can easily see that the set of plane waves
{

ϕk = 1√
V

eikx,k = 2π n
L

}
is orthonormal

and complete: ∫

V
d3xϕ∗

k′(x)ϕk(x) = δk,k′ ; (2.15)

1

V

∑

k=2π n

L

eik(x−x′) = δ3
(
x− x′) . (2.16)

A generic real function ϕ(t,x) fulfilling (2.13) can be written as a superposition of the plane
waves:

ϕ(t,x) =
1√
V

∑

k=2π n

L

1√
2ωk

(
a(t,k)eikx + a∗(t,k)e−ikx

)
. (2.17)

The term 1√
2ωk

, with ωk =
√

k2 + m2, has been introduced for future simplicity; the coeffi-

cients a(t,k) depend on time, and inserting the last equation in (2.10) we find:

d2a(t,k)

dt2
+
(
k2 + m2

)
a(t,k) = 0, (2.18)

that we can easily solve

a(t,k) = ake−iωkt (2.19)

and find the final expression:

ϕ(t,x) =
1√
V

∑

k=2π n

L

1√
2ωk

(
ake−ikx + a∗keikx

)
k0=ωk

. (2.20)

In some cases it is easier to use this form, and then at the very end apply the limit L→∞.

2.1.2.3 Solution in the whole space

Sending V to infinity is not so trivial, since the basis
{

1√
V

eikx
}

goes to zero and k becomes

a continuous variable; we better consider the set
{

ϕk = 1
(2π)3/2 eikx

}
for which we have the

generalization to the whole space of the relations (2.15) and (2.16):

∫
d3xϕ∗

k′(x)ϕk(x) = δ(k− k′); (2.21)

∫
d3kϕ∗

k(x′)ϕk(x) = δ(x − x′). (2.22)

It is important to note that the single function ϕk(x) is not normalized; we have then,
replacing

√
V → (2π)3/2 and

∑→
∫

d3k the following solution:

ϕ(t,x) =

∫
d3k

(2π)3/2

1√
2ω(k)

(
a(k)e−ikx + a∗(k)eikx

)
k0=ω(k)

. (2.23)
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2.1.2.4 Energy and Momentum

We stated that k = (k0,k) is connected with the energy and momentum of the field, and we
would like to have a closer look at it. We consider therefore the following solution (in a box),
corresponding to the mode k only:

ϕk(t,x) =
1√
V

1√
2ωk

(
ake−ikx + a∗keikx

)
k0=ωk

(2.24)

The Hamiltonian density in the Klein-Gordon case looks like:

H =
1

2

(
(∂0ϕ)2 + (5ϕ)2 + m2ϕ2

)
, (2.25)

and if we insert ϕk(t,x) and calculate the Hamiltonian, i.e. the energy of the wave, we find
(after some simple steps):

H =

∫

V
d3x

(
k0

V
|ak|2

)
= k0 |ak|2 ; (2.26)

similarly for the three-momentum:

P i = ki |ak|2 . (2.27)

We can simply interpret our wave as made of |ak|2 = N
k

bulks of energy, each of them with
energy k0 =

√
k2 + m2 and with momentum k; every bulk fulfils the Einstein mass-energy

equation, and therefore we can say we are dealing with N
k

”particles” with mass m.
For a general solution like in (2.17) we find

H =
∑

k=2π n

L

k0 |ak|2 , (2.28)

and in general

P µ =
∑

k=2π n

L

kµ |ak|2 . (2.29)

It is also clear how to interpret at this stage the coefficients ak : |ak|2 represents the number
of particles N

k
with impulse k and energy k0. The total number of particles is

N =
∑

k=2π n

L

|ak|2 . (2.30)

The generalization to the whole space is straightforward.

2.2 Quantization

2.2.1 From functions to operators

We now want to describe the corresponding quantum field theory; the function ϕ(x) becomes
an operator:

ϕ(x)→ ϕ̂(x), (2.31)
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and in general

A (ϕ(x), ∂µϕ(x))→ Â (ϕ̂(x), ∂µϕ̂(x)) , (2.32)

where A is a generic functional of the field and its derivatives.
The operators act on a vectorial space, called space of the physical states F , which we

assume to be an Hilbert space (i.e. a vectorial space, which is at the same time complete and
in which a scalar product is defined). A generic vector in F is indicated as |s〉 , that does not
depend on the space-time (Heisenberg picture). All the physical information of a system is
contained in |s〉 . In order to give a correct probabilistic interpretation of the theory we only
consider normalized states with 〈s | s〉 = 1. The analogous of the classic quantity A is now
the mean value of the operator:

As ↔ 〈s| Â |s〉 . (2.33)

In order to assure a correspondence with the classical case, we assume that the equation
of motion (2.5) is valid also for the quantized field ϕ̂(x):

(
� + m2

)
ϕ̂(x) = 0. (2.34)

In order to have 〈s| ϕ̂(x) |s〉 real, we demand that the operator ϕ̂(x) is Hermitian (this is a
condition which doesn’t hold in general, but that we impose now to discuss the analogous of
the real scalar field in the quantized case):

ϕ̂(x) = ϕ̂†(x). (2.35)

Because of the last two equations, and reminding us of (2.20), we can write down ϕ̂(x) as:

ϕ̂(x) =
1√
V

∑

k=2π n

L

1√
2ωk

(
ake−ikx + a†keikx

)
k0=ωk

(L → ∞) =

∫
d3k

(2π)3/2

1√
2ωk

(
a(k)e−ikx + a(k)†eikx

)
k0=ωk

(2.36)

where ak are now operators, and no longer complex numbers.

Now, the solution (2.36) doesn’t tell us which properties the operators ak and a†k have.
We must impose something more in order to get information about them, and this comes in
the next subsection; according to the classical formulas, we expect that ak is related to the
description of a particle with momentum k.

2.2.2 Microcausality

In order that the principles of special relativity are satisfied, we have to require that

[ϕ̂(x), ϕ̂(y)] = 0

if (x− y)2 < 0; (2.37)

in fact, for space-like distances there cannot be interference between the two fields. The
knowledge of the field in x cannot influence the one in y, if their separation is space-like.
This is our starting point (following [59]), based on physical considerations, namely that no
physical interaction can travel faster than the light, also in a quantum context.
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From the previous equation it follows that

[ϕ̂(t,x), ϕ̂(t,y)] = 0 (2.38)

(note that the commutator is zero for x 6= y in virtue of (2.37), but it is zero also for equal
space points because it becomes trivially the commutator of an operator with itself).

Using now the expression (2.36) in the whole space and making the Fourier transform,
we find:

eiωta†(k) + e−iωta(−k) =
√

2ω

∫
d3x

(2π)3/2
eikxϕ̂(t,x) (2.39)

from which, for every k1,k2 and t we have (plugging into (2.38)):

ei(ω1+ω2)t
[
a†(k1), a

†(k2)
]

+ e−i(ω1+ω2)t [a(−k1), a(−k2)]

−ei(ω1−ω2)t
[
a†(k1), a(−k2)

]
+ e−i(ω1−ω2)t

[
a(−k1), a

†(k2)
]

=
√

2ω1

√
2ω2

∫
d3x

(2π)3/2

d3y

(2π)3/2
eik1xeik2y [ϕ̂(t,x), ϕ̂(t,y)] = 0, (2.40)

and so we find ∀ k1,k2 :

[
a†(k1), a

†(k2)
]

= [a(k1), a(k2)] = 0. (2.41)

Note that the same cannot in general be said for the commutator [a(k1), a
†(k2)]; in order to

evaluate this quantity, which plays a central role in the theory, we first note that for x 6= y :

[
ϕ̂(t,x),

∂

∂t
ϕ̂(t,y)

]
= 0 (2.42)

(here we cannot say anything about the commutator at equal space points).

The Fourier transform of ∂
∂t ϕ̂(t,x)

eiωta†(k) − e−iωta(−k) = −i

√
2

ω

∫
d3x

(2π)3/2
eikx ∂

∂t
ϕ̂(t,x), (2.43)

together with (2.39), leads to:

[
a(k1), a

†(k2)
]

= ei(ω1−ω2)t

∫
d3x

(2π)3/2

d3y

(2π)3/2
e−ik1x+ik2y ·

(
i

√
ω2

ω1

[
∂

∂t
ϕ̂(t,x), ϕ̂(t,y)

]
− i

√
ω1

ω2

[
ϕ̂(t,x),

∂

∂t
ϕ̂(t,y)

])

The crucial point is what happens for equal space points, which is, taken equal time for
the fields, the only case in which the commutator (2.42) can be non-zero. The meaning of a
nonzero commutator is the impossibility to know simultaneously the value of a field ϕ̂(t,x)
at the point x and its ”velocity” ∂

∂t ϕ̂(t,x). This is of course the new thing in comparison to
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the classical case, where the solution is a function, for which we directly know also the value
of the time-derivative.

The simplest assumption we can do, according to the constraints, is:

[
ϕ̂(t,x),

∂

∂t
ϕ̂(t,y)

]
= iZδ3(x− y), (2.44)

where Z is a positive constant; it then follows

[
a(k1), a

†(k2)
]

= Zδ3(k1−k2). (2.45)

Z can be set to 1 through a rescaling of the field; indeed, the physical results depend on it,
and one can determine its value, which is nothing else but the Plank constant ~. However,
from a mathematical point of view, it is convenient to set it to one in order not to clutter up
too much the equations.

The meaning of (2.44) is that we cannot know at the same time the value of a field at x,
and ”its speed”, so its derivative with respect to time. If one knows the value of the field,
one can’t know how it varies in the time; all typical quantum-mechanical considerations are
applicable here.

If Z were 0, we could know at the same time the value of the field and its time-derivative,
but in this case we would be back to the classical theory, where the use of operators and
Hilbert space instead of functions would be an unnecessary complication.

Concluding this section, we write down the commutation relation for the introduced a-
operators:

[a(k1), a(k2)] =
[
a†(k1), a

†(k2)
]

= 0,
[
a(k1), a

†(k2)
]

= δ3(k1−k2). (2.46)

These relations are exactly the commutation relations that one meets in QM studying har-
monic oscillators; we deal with an infinite set of quantum oscillators, one for each k.

Now, knowing the commutation relations we can in principle calculate the value of each
operator starting from a classical functional F.

Summarizing, in this approach to QFT we first go from functions to operators imposing
a link with the classical world: ϕs(x) ↔ 〈s| ϕ̂(x) |s〉 . Secondly, we imposed microcausality,
which constrained a lot the features of a and a†, and in the end we assumed (2.44), which
seems the most natural assumption if one wants to respect causality (note that (2.44) is
nothing else but the canonical quantization prescription [ϕ̂(t,x), π̂(t,y)] = iδ3(x− y), where
π = ∂L/∂(∂0ϕ) is the conjugate momentum; most textbooks start from here).

What is presented here is of course not a derivation, but arguments of plausibility in order
to get the canonical commutation relations starting from the basic idea of microcausality,
necessary to have agreement with special relativity. The last point to discuss now is the
following: we started from the commutation relation (2.37) to end up with the canonical
commutation relation (2.42) written for equal times; one may ask what happens if we calculate
now (2.37) for generic x and y, and not only in the equal time case.

We can easily do it by substituting the expression (2.36) for the fields:

[ϕ̂(x), ϕ̂(y)] =
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∫ ∫
d3k

(2π)3
√

2ω(k)

d3k′

(2π)3
√

2ω(k′)[(
a(k)e−ikx + a(k)†eikx

)
,
(
a(k′)e−iky + a(k′)†eiky

)]
, (2.47)

and then making use of (2.46) one gets:

[ϕ̂(x), ϕ̂(y)] =

∫
d3k

(2π)32ω(k)

(
e−ik(x−y) − eik(x−y)

)
= i∆(x− y). (2.48)

We have introduced the function ”capital delta” because the commutator of the 2 fields is a c-
number. We can immediately see that ∆(x−y) is real and odd; in particular, for x0 = y0 = t,
we get

i∆(x− y) = [ϕ̂(t,x), ϕ̂(t,y)] =

∫
d3k

(2π)32ω(k)
sin(kx) = 0, (2.49)

getting again (2.38), as expected. The function ∆(x−y) is also a Lorentz invariant: this means
that ∆(Λ(x− y)) = ∆(x− y), where Λ is a Lorentz-transformation (the term d3k/2ω(k) is a
Lorentz invariant measure). If (x− y) is space like, one can always perform a transformation
such that for the rotated variables it holds x′0 = y′0, then showing that ∆(x − y) = 0 for
space-like separation, confirming that all the theoretical construction makes perfectly sense.

2.2.3 Constructing states

Clearly also the four momentum becomes an operator:

P µ → P̂ µ. (2.50)

Classically this object is a constant of motion, therefore we expect that the corresponding op-
erators do not depend on the time variable; in fact, calculating it from the classical definition
(2.8) and using (2.46) we find (in the box):

P̂ µ =
∑

k=2π n

L

kµ

2

(
a†
k
ak + aka†

k

)
=

∑

k=2π n

L

kµ

(
a†
k
ak +

1

2

)
. (2.51)

Note that the series is divergent because of the constant 1/2; but only the differences between
four-momenta with respect to the ground states make physical sense, therefore we can consider

P̂ µ =
∑

k=2π n

L

kµ
(
a†kak

)
. (2.52)

We can easily prove now that

[P̂ µ, a†k] = kµa†k, (2.53)

[P̂ µ, ak] = −kµak. (2.54)

More generally, the so-called Heisenberg equation holds:

∂µϕ̂(x) = i
[
P̂ µ, ϕ̂(x)

]
. (2.55)
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The classical theory admits an energy H ≥ 0, or, taking into account that the energy is
defined up to a constant, we can say that the classical energy is limited from below: H ≥ c.
We assume that this still holds true when considering quantized fields. The corresponding
state, whose energy is the minimal value c, is called the vacuum and is indicate with |0〉 :

H |0〉 = c |0〉 . (2.56)

From (2.54), we have:
[Ĥ, ak] |0〉 = −k0ak |0〉 , (2.57)

from which
Ĥak |0〉 = (c− k0)ak |0〉 ; (2.58)

it means that the state ak |0〉 has an energy smaller than the one of the vacuum, contrary to
the hypothesis. Furthermore if we take the states (ak)n |0〉 we can construct states with lower
and lower energy. A theory without a minimum of the energy would also be unstable, because
a state could fall down into lower and lower energy states, as a well without a bottom. So
the only possibility is:

ak |0〉 = 0. (2.59)

Setting for simplicity c = 0, we have from (2.53):

P̂ µa†
k
|0〉 = kµa†

k
|0〉 (2.60)

with a straightforward physical interpretation: the state a†
k
|0〉 represents a quantum of four-

momentum kµ, i.e. a particle, fulfilling the Einstein relation k0 =
√

k2 + m2.
In general we can construct states as a†

k1
a†k2
|0〉 , whose four momentum is simply kµ

1 +kµ
2 ;

furthermore, from the commutation relations (2.46) it follows that Bose statistics holds:

a†
k1

a†
k2
|0〉 = a†

k2
a†
k1
|0〉 (2.61)

Remembering the derivation of the previous section, we can see that the boson nature of the
particles comes directly from microcausality; it was exactly from this assumption that the
commutator for 2 a†

k
vanishes.

The last thing to do is to build up normalized states; again, making use of the basic
commutation relations (2.46) it is not difficult to show that the general state

|s〉 = |..., nk1 , ..., nk2 , ...〉 = ...

(
a†
k1

)nk1

√
nk1 !

...

(
a†
k1

)nk2

√
nk2 !

... |0〉 (2.62)

is normalized and represents a state with nk1 particles with impulse k1, nk2 particles with
impulse k2 and so on. The set of all these states for nk = 0, 1, 2, ... for each k form a complete
basis in the space of physical states F .

2.2.4 Coherent waves

We introduced the quantization by going from functions to operators and stating that the
analogous of the classical function is now the mean value 〈s| ϕ̂(x) |s〉 . If now we consider

|s〉 = a†k |0〉, using the fundamental commutation relations, we get:

〈s| ϕ̂(x) |s〉 = 0; (2.63)
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this result might seem disappointing, because we would expect as a result a plane wave....but
it is not like that: looking closer, |s〉 = a†

k |0〉 represents one particle, one ”quantum” of
energy, while classically one has waves, which are made out of many quanta! But it is not
enough: if we consider a state like (2.62) we would still get 〈s| ϕ̂(x) |s〉 = 0. In order to
construct a state which, for large energies, coincides with our idea of a classical field, we
consider

|s〉 = e−
1
2
|a|2

∞∑

n=0

an

√
n!

(
a†k

)n
|0〉 , (2.64)

where a is a complex number.

Note that what we are doing is simply to consider a · a†
k instead of a†k only, and summing

over the possible states formed from a†
k; it is not difficult to prove that [54] (using Z = ~ 6= 1) :

• 〈s | s〉 = 1 (normalization of the state)

• |s〉 is an eigenstates of a ak :

ak |s〉 = a |s〉 (2.65)

• the mean value of the number of quanta is:

N =
〈
s
∣∣∣N̂
∣∣∣ s
〉

= |a|2 ; (2.66)

|a|2 represent the number of quanta; it can be compared to the classical one (see section
1.1.4)

• the fluctuation for N̂ is:

∆N =

√〈
s
∣∣∣N̂2

∣∣∣ s
〉
−N = |a| ; (2.67)

we therefore see that

∆N/N = 1/ |a| (2.68)

goes to zero for large |a|
• the mean value for the field is:

〈s| ϕ̂(x) |s〉 = 1√
V

1√
2ω

(
ae−ikx + a∗eikx

)
k0=ωk

, (2.69)

which is exactly the classical expression (see (2.24))!

• the fluctuation of the field is:

∆ϕ(x) =

√
〈s |ϕ̂2| s〉 − (〈s |ϕ̂| s〉)2 =

√
~ω

2V
. (2.70)

We see that, if ~ω � |a| , the fluctuation of the field is negligible, and we are back to the
classical case where ~ is zero.

The generalization to many momenta is now straightforward.
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2.2.5 Transformations

2.2.5.1 Classical survey

Classically we transform functions like

ϕ(x)→ ϕ′(x) (2.71)

If ϕ′(x) is still a solution of the equation of motion we have a symmetry of the equation, and
therefore of the underlying Lagrangian.

For example, because of the structure of the Lagrangian, if we make the shift

x→ x′ = Λx + a (2.72)

(where Λ is a 4 ∗ 4 Lorentz matrix and a a generic four-vector) and we consider

ϕ(x)→ ϕ′(x′) = ϕ(x) (2.73)

then
L (ϕ(x), ∂µϕ(x)) = L

(
ϕ′(x′), ∂′

µϕ′(x′)
)
. (2.74)

It means that, if ϕ(x) is a solution in x-space, (solution of the equation of motion written for
x) ϕ′(x′) is the corresponding solution in x′-space. This means that, if I am in the x-system,
and I see the solution ϕ(x), then my friend who is in the x′-system observes contemporarily the
solution ϕ′(x′). If then, as in this case, both are solutions of the same underlying equation1

(but with different boundary conditions) I can say that the theory is invariant under the
considered transformation.

Making a more mathematical consideration, this kind of symmetry corresponds to a way
of finding other solutions of the basic equation. In fact, in our case, if ϕ(x) is a solution
also ϕ′(x) = ϕ(Λ−1(x− a)) is a solution (this is exactly what our friend in the x′-space sees,
if he would call the variable x, something absolutely allowed!). Note that we can analyze
covariance remaining in x : it is enough to check weather ϕ(Λ−1(x− a)) is a solution of the
equation of motion2.

Very often one doesn’t deal with a scalar field only, but with a generic vectorial structure
ϕi where i = 1, 2, ..., N ; in this case it is possible that if we apply to a vectorial field a
space-time transformation like (2.72), the transformation ϕi(x) → ϕ′

i(x
′) = ϕi(x), is not a

symmetry of L; it doesn’t mean that the theory is not covariant (not yet)! We have to search
for a matrix B

ϕ′
i(x

′) = Bijϕj(x) (2.75)

such that
L(ϕi(x)) = L(ϕ′

i(x
′)) (2.76)

then we can say that the theory is still covariant and that our friend in x′ will observe a field
ϕ′

i(x
′); mathematically it means that the fields ϕ′

i(x) = Bijϕj(Λ
−1(x−a)) are still a solution

of the equations of motion (for each i = 1, 2, ..., N).
Intuitively this is related to the vectorial nature of ϕ = (ϕ1, ϕ2, ..., ϕN ); a ”rotation” in

space can also rotate the vector ϕ.

1Note that both are solutions because the action is the same: beeing d4x = d4x′ and having the same
Lagrangian, it is clear that dS = dS′.

2One would tend to generalize to x → f(x) and ϕ(x) → ϕ′(x) = ϕ(f−1(x)), but in this case d4x 6= d4x′; we
can therefore discuss the symmetry of the equation, but not the correspondence to other observers, because
in this case one has to use general relativity.
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2.2.5.2 Quantum case

In the quantum case a transformation means to consider a unitary operator U acting on the
elements of the Hilbert space F :

|s〉 →
∣∣s′
〉

= U |s〉 ; (2.77)

the unitarity guaranties that the norm of |s′〉 is still one (if, of course, |s〉 is itself normalized
to 1).

For example, if we transform the mean field value we have:

〈s| ϕ̂(x) |s〉 →
〈
s′
∣∣ ϕ̂(x)

∣∣s′
〉

= 〈s|U †ϕ̂(x)U |s〉 . (2.78)

We can immediately note that, instead of transforming the state, we could transform the
operator as ϕ̂(x)→ U †ϕ̂(x)U ; in general we have two possibilities to establish a transforma-
tion:
•We rotate the states |s〉 ⊂ F like |s〉 → |s′〉 = U |s〉 and we leave the operators untouched.
• We rotate the operators Â like Â→ U †ÂU and we do not modify the states.

Translation In order to establish a connection with the classical case, and to work out an
example, we consider the (four-dimensional) translation:

x→ x′ = x + a (2.79)

Classically we have, for small a :

ϕ(x)→ ϕ′(x) = ϕ(x− a) ' ϕ(x) − aµ∂µϕ(x); (2.80)

we expect to have a similar transformation for the mean value 〈s| ϕ̂(x) |s〉 :

〈s| ϕ̂(x) |s〉 → 〈s| ϕ̂(x) |s〉 − aµ 〈s| ∂µϕ̂(x) |s〉 , (2.81)

and so for the field operator:

ϕ̂(x)→ ϕ̂(x)− aµ∂µϕ̂(x). (2.82)

We look for an operator U for which this happens; in analogy with Quantum Mechanics
[61, 62] we take:

U = eiaµ bPµ . (2.83)

We have then, taking small a and using the Heisenberg equation (2.55):

ϕ̂(x) → U †ϕ̂(x)U '
(
1− iaµP̂µ

)
ϕ̂(x)

(
1 + iaµP̂µ

)
(2.84)

' ϕ̂(x)− iaµ
[
P̂µ, ϕ̂(x)

]
= ϕ̂(x)− aµ∂µϕ̂(x). (2.85)

In this way we have found the quantum field version of the translation operator; note that,
for a generic (not small) a we have:

e−iaµ bPµ ϕ̂(x)eiaµ bPµ = ϕ̂(x− a). (2.86)
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Lorentz Transformation We now consider the transformation of the Poincaré group,
which consists of Lorentz transformations plus translations:

x→ x′ = Λx + a (2.87)

We now want to discuss the form of the corresponding quantum operator U (Λ, a) which
acts on the state as |s〉 → |s′〉 = U (Λ, a) |s〉 ; instead of giving its explicit form, it’s enough
to know how U acts on the a†(k) . In fact, we have seen that a generic state can be than
expressed as in (2.62). What we need to know is

U (Λ, a) a†(k)U † (Λ, a) ; (2.88)

as one can note, this is not really the transformation of an operator, that is in general
F̂ → U †F̂U ; but, if we consider for example the state |s〉 = a†(k) |0〉, we have:

|s〉 →
∣∣s′
〉

= U (Λ, a) |s〉 = U (Λ, a) a†(k) |0〉 (2.89)

= U (Λ, a) a†(k)U † (Λ, a) U (Λ, a) |0〉 (2.90)

= U (Λ, a) a†(k)U † (Λ, a) |0〉 =
∣∣s′
〉
, (2.91)

where we have used that U (Λ, a) |0〉 = |0〉 , so that the vacuum is invariant under translation
and Lorentz transformation; this is one of the basic postulates on the nature of the vacuum!

This is why we are interested in (2.88); we can easily generalize to a generic state. For
example, with two particles we have:

U (Λ, a) a†(k1)a
†(k2)U

† (Λ, a) (2.92)

=
(
U (Λ, a) a†(k1)U

† (Λ, a)
)(

U (Λ, a) a†(k2)U
† (Λ, a)

)
, (2.93)

having inserted the unity 1 = U † (Λ, a) U (Λ, a) in the middle; it is clear again that we need
to know how to evaluate the block of (2.88).

Now, in order to find it, we must consider the transformation of the field operator; clas-
sically we have

ϕ(x)→ ϕ′(x) = ϕ(Λ−1(x− a)), (2.94)

therefore in QFT

ϕ̂(x) → ϕ̂′(x) (2.95)

= U † (Λ, a) ϕ̂(x)U (Λ, a) = ϕ̂(Λ−1(x− a)) (2.96)

(now we have the correct operator transformation U †F̂U). Taking the last equation and
(2.36), we have:

∫
d3k

(2π)3/2

1√
2ωk

(U † (Λ, a) a(k)U (Λ, a) e−ikx

+U † (Λ, a) a†(k)U (Λ, a) eikx)k0=ωk
=

∫
d3k′

(2π)3/2

1√
2ω′

k

(
a(k′)e−ik′Λ−1(x−a) + a†(k)eik′Λ−1(x−a)

)
k0=ω′

k

. (2.97)
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In the second integral we can perform a transformation k ′ = Λ−1k and taking into account
that Λ−1 is also a proper Lorentz transformation one has

(
Λ−1k

) (
Λ−1x

)
= kx, therefore we

find:
∫

d3k

(2π)3/2

1√
2ωk

(U † (Λ, a) a(k)U (Λ, a) e−ikx

+U † (Λ, a) a†(k)U (Λ, a) eikx)
k0=ωk

=
∫

d3k

(2π)3/2

1√
2ω′

k

(
a(Λ−1k)e−ik(x−a) + a(Λ−1k)†eik(x−a)

)
k0=ωk

, (2.98)

and by comparison of the two members of the last equation we find

U † (Λ, a) a†(k)U (Λ, a) = a†(Λ−1k)e−ika. (2.99)

We want to evaluate (2.88), therefore we consider that U (Λ, a) = U−1
(
Λ−1,−a

)
:

U (Λ, a) a†(k)U † (Λ, a) =

U † (Λ−1,−a
)
a†(k)U

(
Λ−1,−a

)
= a†(Λk)eika (2.100)

where the last passage has been performed using (2.99) with Λ→ Λ−1 and a→ −a; our final
result is:

U (Λ, a) a†(k)U † (Λ, a) = a†(Λk)eika (2.101)

which allows us to transform a generic state under an operation of the Poincaré group.
Note that the translation is a particular case of this one, when Λ = 1 (to verify this use

(2.83) plus the equations (2.53) and (2.54)).

2.3 Propagator

2.3.1 Classical point of view

As done up to now, we start from the classical case; we introduce in the Lagrangian a source
term:

L (ϕ(x), ∂µϕ(x)) =
1

2
(∂µϕ(x)) (∂µϕ(x)) − 1

2
m2ϕ2(x)− J(x)ϕ(x) (2.102)

where J(x) is a given function. Of course, in nature the function J is connected with other
fields, interacting with ϕ; considering J as a given function is an approximation, indeed a
very useful one to study some characteristics of the problem. If J were simply a given func-
tion we would immediately violate translational invariance; it is somehow analogous to the
introduction of a potential term in quantum mechanics, which immediately breaks transla-
tional invariance, but as known this potential term is nothing else but an approximation of
interactions with other particles.

After having done these preliminary considerations, we consider the equation of motion
(see equation (2.5)): (

� + m2
)
ϕ(x) = −J(x); (2.103)

we can write the solution like

ϕ(x) = ϕ0(x) +

∫
d4yG(x− y)J(y) (2.104)
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where ϕ0(x) is a solution of the free K-G equation, and G(x− y) is given from
(
�x + m2

)
G(x− y) = −δ4(x− y), (2.105)

therefore being a solution of the interacting K-G equation in presence of a delta-source at
the point y, which is a parameter, while x is the dynamical variable of the equation. We can
see that, apart from the point x = y, G(x− y) is also a solution of the free K-G eq.

Writing G(x− y) like

G(x− y) =

∫
d4q

(2π)4
(
−iG(q2)

)
e−iq(x−y) (2.106)

(we introduced the −i for future convenience) and plugging in (2.105) one gets

G(q) =
i

q2 −m2
. (2.107)

Therefore:

G(x− y) =

∫
d4q

(2π)4
1

q2 −m2
e−iq(x−y) (2.108)

Everything seems fine, but there is indeed a problem; performing the integration
∫∞
−∞ dq0

we realize that there are 2 singularities on the integration path, for q0 = ±
√

q2 + m2; a
prescription how to go around these singularities must be given. There are four ways how
to go around them, and it is not clear which choice should be performed; only QFT can
”decide”. We give now some heuristic arguments lurking in QFT. If we have propagation
of quanta, we can think that a particle is created in y from the delta-potential; we have 2
possibilities (see Fig. 2.1) :
• x0 > y0 : the particle is created in y and propagates in the future to x; it must

be a positive energy state, so the picked up mode should be like exp[−iE(x0 − y0)] with
E =

√
q2 + m2 (think of the operator i∂/∂x0 in QM acting on this mode, than you get a

positive energy E). This means that we have to pick up the pole for q0 =
√

q2 + m2 and
close the integral in the lower half-plane. In fact, on the imaginary axis of the lower half plane
the integrand converges, thus allowing the application of the residue theorem [58, 63, 64].
• x0 < y0 : the particle is created in y and propagates in the past to x. In this case neg-

ative modes should be the solution, in such a way that a negative energy state propagating
backward in time is perceived as a positive energy state propagating forward in time. We
therefore expect that in this case modes like exp[iE(x0 − y0)] should be picked up (in this
case i∂/∂x0 picks up a negative energy state −E). Note that if there were other quantum
numbers (like the charge), they would appear reversed. We then would speak of an antipar-
ticle propagation; in the case under present study particles and antiparticles coincide). In
this case we close ”up”, in the upper half plane, where an application of the residue theorem
is possible.

The other two possibilities (negative energy forward in time and positive energy backward)
are ruled out because the theory doesn’t have to contain negative energy states (condition
(2.59)).

If we perform the integration following the Feynman path and closing the path ”down”
and ”up” respectively, as described above, we get:

GF (x− y) =

∫

CF

d4q

(2π)4
1

q2 −m2
e−iq(x−y)
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Figure 2.1: Integration contour.

=

∫
d4q

(2π)4
1

q2 −m2 + iε
e−iq(x−y) =

−i

∫
d3q

(2π)32E

(
ϑ(x0 − y0)e−iq(x−y) + ϑ(y0 − x0)eiq(x−y)

)
q0=E=

√
q2+m2

(2.109)

As we can see, following this path (mathematically analogous to the ε prescription, see
second integral) positive energies are picked up for x0 > y0 and negative for x0 < y0, according
to our interpretation.

This propagator becomes very important in QFT, being the basis of perturbative calcu-
lations.

The given interpretation is the Feynman’s one. It is not unique. The ”stuff” with the
propagation backward in time may appear weird. Consider again the case x0 < y0. We note
that we can interpret x as the parameter and y as dynamical variable. G is in fact a solution
of the following equation as well:

(
�y + m2

)
G(y − x) = −δ4(y − x). (2.110)

We can then think that the particle is created in x and propagates to y (which is now in
the future....). Under this point of view a positive energy solution is exp[−iq0(y0 − x0)] =
exp[iq0(x0 − y0)], exactly as found with the Feynman interpretation.

Now, what happens if, instead of the term J(x)ϕ(x) I have a function of the field u(ϕ(x))?
The equation of motion looks like

(
� + m2

)
ϕ(x) = −∂u(ϕ(x))

∂ϕ(x)
. (2.111)
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We can still write a generic solution in the form

ϕ(x) = ϕ0(x)−
∫

d4yG(x− y)
∂u(ϕ(y))

∂ϕ(y)
, (2.112)

but the situation is much more complicated: in fact, ∂u(ϕ(y))/∂ϕ(y) is a function of ϕ, so
it means that the field ϕ is outside and inside the integral. We have an integral equation of
the second kind of the Fredholm type in 4 dimensions [63].

There is not a general solution of this problem; one way is to ”hope” that the free solution
is a ”good starting point” and that one actually has ϕ(x) ≈ ϕ0(x), then treating the integral
term as a small perturbation, writing an expansion series.

There is no guaranty that it works: if you have a better guess, guess!

Such a possibility depends clearly also on the ”strength” of the interaction; one may hope
that, if it is small, than it might be valid.

These considerations already show the difficulty of the problem when interacting fields
are taken into account.

2.3.2 QFT point of view

In QFT one considers the following object

〈0 |T [ϕ̂(x)ϕ̂(y)]| 0〉 (2.113)

where T is the time ordering operator:

• T [ϕ̂(x)ϕ̂(y)] = ϕ̂(x)ϕ̂(y) if x0 > y0;

• T [ϕ̂(x)ϕ̂(y)] = ϕ̂(y)ϕ̂(x) if x0 < y0.

Eq (2.113) is an example of a Green function, i.e. a vacuum mean value of time-ordered
field operators; the physical meaning of T is ”always create before annihilate” : the field
whose time component comes later is on the left. For example, if x0 > y0 I have ϕ(x)ϕ(y)
|0〉 , which means that first I create a particle at the time y0 in y and then I annihilate at
the time x0 > y0 in x. This choice of T assures that we are considering the propagation
of positive-energy objects and it is the QFT counterpart of the discussion in the previous
subsection. When we evaluate (2.113) we realize that this quantity is the field propagator as
calculated in the previous subsection:

〈0 |T [ϕ̂(x)ϕ̂(y)]| 0〉 = iG(x− y) =

∫
d4q

(2π)4
i

q2 −m2 + iε
e−iq(x−y)

=

∫
d3q

(2π)32E

(
ϑ(x0 − y0)e−iq(x−y) − ϑ(y0 − x0)eiq(x−y)

)
q0=E=

√
q2+m2

(2.114)

In fact, if x0 > y0, we are considering the amplitude for a particle created in y and propagating
to x and vice-versa if x0 < y0, exactly as explained in detail before.

In general in an interacting QFT one encounters not only two but n-point Green functions
of the form

G(x1, x2, ..., xn) = 〈0 |T [ϕ̂(x1)ϕ̂(x2)...ϕ̂(xn)]| 0〉 . (2.115)
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2.4 Interacting fields

2.4.1 Introduction

We now consider a Lagrangian with an interaction term u(ϕ)

L =
1

2

(
(∂µϕ)2 −m2ϕ2

)
− u(ϕ); (2.116)

as a typical example we consider [3, 56, 57]

u(ϕ) =
λ

4!
ϕ4. (2.117)

We mentioned the problem in section 2.3.1 studying the propagator. The issue is very com-
plicated, and no general solution to the problem is known, even in this simple scalar version
with a quartic interaction term. One way out is to hope that a perturbative expansion works,
so that one can start from the free solutions and then, order by order in the parameter λ,
calculate the corrections due to the interaction. Such a procedure is normally successful for
scattering or decay of particles, but not for the formation of bound states, which is a typical
nonperturbative phenomenon.

As in the free case we start in the Heisenberg picture with the field equation of motion
(2.5) for the quantized field:

(
� + m2

)
ϕ̂(x) +

∂u(ϕ̂)

∂ϕ̂
= 0, (2.118)

which is now much more complicated. No general solutions are known in this case, not even
for the relatively simple ϕ4 interaction theory.

We then introduce the equal time quantization rules as in section 2.2

[ϕ̂(t,x), ϕ̂(t,y)] = 0,

[
ϕ̂(t,x),

∂ϕ̂(t,y)

∂t

]
= iδ3(x− y) (2.119)

It is not so difficult to prove that (try to do it), as a consequence of the commutation relations,
the Heisenberg equation holds:

∂µϕ̂(x) = i
[
P̂µ, ϕ̂(x)

]
(2.120)

where the P̂µ are given from (2.8).

The Heisenberg equation can be generalized to a generic functional of the field and its
derivatives Â = A(ϕ̂, ∂ν ϕ̂) with

∂µÂ = i
[
P̂µ, Â

]
. (2.121)

The problem now is that we can’t solve it. In order to ”save” all the work done in the
free case we will consider the interaction picture, where the field equations of motion are the
same as in the free case.

Let us first write L = L0 + L1 and H = H0 +H1 where H1 = −L1 = u(ϕ̂); an operator
in the Schroedinger and then in the interaction picture looks like:
• ÂS = e−iHtÂeiHt;
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• ÂI = eiHS
0 tÂSe−iHS

0 t.
From the first definition it follows that

∂ÂS

∂t
= 0. (2.122)

Furthermore, from the second definition, considering that P̂k = P̂0,k = P̂ S
0,k = P̂ I

0,k (k = 1, 2, 3
and all of them are time independent), we have

∂µÂI(x) = i
[
P̂ I

0,µ, ÂI(x)
]
, (2.123)

i.e. the fields in the interaction picture fulfill the free equation of motion; this means that
one has (

� + m2
)
ϕ̂I(x) = 0. (2.124)

From the definitions of the operators in the interaction picture follows that the canonical
commutation relation holds:

[
ϕ̂I(t,x),

∂ϕ̂I(t,y)

∂t

]
= iδ(x − y). (2.125)

The last two relations show that now I can treat ϕ̂I(x) exactly as in the free case I did with
ϕ̂(x); one has the same expansion in terms of free waves, together with the same commutation
relation. But the question is: where is now the interaction? Where has it gone? If we change
the fields, we have also to change the states; we have in our case

|s(t)〉I = e−iHS
0 t |s(t)〉S (2.126)

from which one gets

i
d |s(t)〉I

dt
= HI

1 |s(t)〉I (2.127)

meaning that the interaction term affects now the time dependence of the states. We consider
the time evolution operator U(t, t0) such that

|s(t)〉I = U(t, t0) |s(t0)〉I ; (2.128)

we then consider the limit t→∞ and t0 → −∞ and define the so called S matrix like

S = U(∞,−∞). (2.129)

If we suppose that the interaction is switched off in the very past and in the very future,
we have an asymptotic initial state |sin〉I = |sin〉S = |sin〉Hand an asymptotic final state
|sfin〉I = |sfin〉S = |sfin〉H .

The amplitude for the transition |sin〉 → |sfin〉 is then given by the matrix element
〈sfin |S| sin〉 ; one can show [3, 54, 58, 60] that the explicit form for S is the following:

S = Te−i
R

d4xHI
1(x), (2.130)

where T is the time ordering operator as described previously; it appears naturally by eval-
uating this quantity. This expression allows an expansion in terms of the (assumed) small
parameter λ, that appears in the interaction term:

S =

∞∑

n=0

S(n) =

∞∑

n=0

(−i)n

n!

∫
d4x1...d

4xnT [HI
1(x1)...HI

1(xn)] (2.131)
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Figure 2.2: First and second order diagrams for two-body scattering.

For example, analyzing the n-th order S(n) one can reduce, through the use of the Wick theo-
rem, the calculation to the evaluation of two-point correlation functions, i.e. the propagator:

〈
0
∣∣T
[
ϕI(x)ϕI(y)

]∣∣ 0
〉

= G(x− y); (2.132)

this is exactly the quantity evaluated previously; one can then appreciate the power of the
interaction picture, otherwise we could not evaluate this quantity. In the following we will
omit the index I, but it is understood that the operators are expressed in this way.

Moreover, it is well known that one can find a one to one mathematical correspondence of
the different orders of the S matrix with a graphical representation called Feynman diagrams;
to each piece of a diagram one can associate a mathematical quantity (Feynman rules) and
then write down the amplitude (at a given order) just looking at the diagrams corresponding
to that order.

2.4.2 Lowest order

The diagram at the lowest order is depicted in Fig. 2.2.a. It represents the scattering of two
particles. We have four external legs, because our Lagrangian is quartic in the field ϕ.

The initial and the final states are

|in〉 = a†p1
a†p2
|0〉 , |fin〉 = a†p3

a†p4
|0〉 . (2.133)

The S matrix at the first order looks like

S(1) = −iλ

∫
d4xT [ϕ4(x)]. (2.134)

Making use of (2.17) we find

〈fin|S(1) |in〉 = (2π)4δ4(p1 + p2 − p3 − p4)(√
V
)4√

2ωp12ωp22ωp32ωp4

(−iM1) (2.135)
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where the invariant amplitude −iM1 is given by

−iM1 = −iλ. (2.136)

It is the contribution of the vertex, and it is simply the coupling constant. The combinatorial
factor 4! has been ”eaten” by the different combination arising from the full expression of the
time product T. The fact that M ' M1 = λ > 0 means that the interaction is repulsive, as
one can show following the arguments of [3].

Note that the other possibility with λ < 0, for which one has attraction between two
particles, would generate an interaction ”potential” u(ϕ) = λ

4!ϕ
4 without a minimum; the

theory would then be instable [3]. As we will see, such a case will be very useful in the
framework of an effective theory.

If we then consider the graph at the second order Fig. 2.2.b we have

−iM2 = −i
1

2
λ2

∫
d4q

(2π)4
1

(q + p/2)2 −m2

1

(q − p/2)2 −m2
. (2.137)

where p = p1 +p2. We have a λ for each vertex, plus the two propagators of the internal lines
and an extra-integration over q, because this momentum is not fixed. The factor 1/2 in front
is a symmetry factor arising when one properly considers the contractions. We come back
later to these diagrams.

2.4.3 Mass shift

We expect that some properties of the theory are modified by the interaction; for instance,
we expect that the mass changes. In fact, the mass is given from the pole of the two point
correlation function, whose first and second order diagrams are depicted in Fig. 2.3. These
diagrams modify the propagator. The ”new” mass is the pole of the modified propagator.
The mass shift is a property that one cannot see at a finite order. We can formally calculate
the full modified propagator by considering the most general proper diagram (which cannot
be cut into two distinct pieces), whose amplitude is denoted as −iΣ , and by performing the
sum up to order ∞ as in the figure 2.4, getting a geometrical series, whose result is:

G(q2) =
i

q2 −m2 − Σ(p2)
. (2.138)

The ”new” mass is a pole of this function; we call it mP with the subscript P as ”physical”
because this is the physical mass which is measured in an experiment; in fact we cannot
switch off the interaction to measure the bare one.

The equation for mP is then

m2
P −m2 − Σ(m2

P ) = 0; (2.139)

we can express mP as a function of m through a series in λ. At first order in λ we can
approximate −iΣ with the term in Fig. 2.3.a, which gives rise to a momentum independent
correction:

m2
P = m2 + λ

∫
d4qE

(2π)4
1

q2
E + m2

, (2.140)

where in the second integral we have performed a Wick rotation. We immediately realize
that something goes wrong, because the integral is divergent. But we can do some physical
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Figure 2.3: Self interaction at first and second order.

Figure 2.4: Schematic sum of all proper diagrams.
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consideration [60] : the divergence occurs because very high momenta are allowed to circulate
in the loop. Very high momenta mean very short distances and high energies, even above the
Planck scale, where we do not expect such a quantum field theory in flat Minkowski space
to be valid. There must be ”something” that doesn’t allow such big momenta to propagate,
something we do not know. Let us introduce a cut-off Λ in the integral in order to make it
finite: ∫

d4qE

(2π)4
→
∫

Λ

d4qE

(2π)4
(2.141)

we can think of an hard cut-off, but also of anything that at the energy scale of the (unknown)
Λ cuts the contribution of the high momenta in some way. The precise choice of this ”cutting”
takes the name of regularization, but we are here not too much concerned with it.

In this way mP is finite, and, although Λ is large, we suppose that λ is small enough to
allow a perturbative expansion. To this order we have a quadratic dependence on Λ, thus
schematically mP = m + CλΛ2 where C is some number depending on the evaluation of the
integral and on the details of the adopted regularization scheme [60].

The second order correction comes from the contribution depicted in Fig. 2.3.b, which is
now momentum dependent.

More formally, expanding Σ(p2) like

Σ(p2) = Σ(m2
P ) + (p2 −m2

P )Σ′(m2
P ) + Σ̃(p2) (2.142)

from which we have

G(q2) =
iZ2

q2 −m2
P − Z2Σ̃(p2)

(2.143)

where Z2 = (1 − Σ′(m2
P ))−1 is a number which can be reabsorbed in the field, as we have

already done in section 2.2. One may still be puzzled by the presence of the term Z2Σ̃(p2) in
the denominator; at second order we can write Σ2(p

2) = λ2Π2(p
2), therefore

Z2Σ̃(p2) =
(
λ2/(1− λ2Π′

2(m
2
P ))
)
Π̃2(p

2) ' λ2Π̃2(p
2) = Σ̃2(p

2). (2.144)

We then note that, because of the derivatives, Σ̃2(p
2) is Λ independent, or better, dependent

like 1/Λ + 1/Λ2 + ....., that can be omitted because Λ is very large.

The final result is that the propagator is for q2 ' m2
P

G(q2) =
1

q2 −m2
P

(1 + corrections) (2.145)

where the corrections do not depend on Λ.

If we express all the physical results as function of mP , what we should do, there is no
presence of Λ coming from the mass shift, because it is reabsorbed in the physical mass.
The point is whether one can do it at all orders and for all possible Green functions, i.e.
for all physical processes. This is not possible in general, but only in the case of so-called
renormalizable theories. The quartic interaction term we are considering belongs to this kind.
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2.4.4 Scattering

Let us now consider the scattering of two particles. At lowest order the amplitude is simply
−iM = −iλ. At second order one has the loop diagram of Fig. 2.2.b, which again contains
an ultraviolet infinity, or better, depends logarithmically on the cutoff Λ.

−iM2 =
1

2
(−iλ)2

∫
d4q

(2π)4
1

(q + p/2)2 −m2

1

(q − p/2)2 −m2
(2.146)

We are not interested now in the evaluation of the loop integral, but we can express it in
terms of the kinematic variables s = (k1 + k2)

2, t = (k1 − k3)
2 and u = (k1 − k4)

2. One gets
[60]

−iM = −iλ + iCλ2

[
log(

Λ2

s
) + log(

Λ2

t
) + log(

Λ2

u
)

]
= −iλ + iCλ2L (2.147)

where C is again some finite number.
Now, the bare coupling is not measurable, exactly as the bare mass m. We should express

the result in terms of measurable quantities. Let us introduce a physical coupling λP defining
it as the cross section for the two body scattering at some given values for (s0, t0, u0). At
second order we have

−iλP = −iλ + iCλ2L0 (2.148)

If now I want to evaluate M in terms of λP instead of λ I can simply invert the last equation
getting −iλ = −iλP − iCλ2

PL0 (this is valid at the second order). We find therefore:

−iM = −iλP + iCλ2
P (L− L0) (2.149)

where the quantity (L− L0) is Λ independent:

(L− L0) =

[
log(

s0

s
) + log(

t0
t

) + log(
u0

u
)

]
. (2.150)

Again, we reabsorb the cutoff dependence of the amplitudes in the physical coupling λP .
Measuring it, I then can calculate the amplitude at any other given scattering angle and
energy.

For pure convenience one often sets s0, t0 and u0 to µ2, and when I calculate a physical
quantity I get an explicit dependence on it. One may then ask: what is the meaning of it? I
got rid of Λ to get another extra-parameter µ, which was not present in the Lagrangian.

The point is that the choice of µ is absolutely arbitrary, and I could chose any. I can
consider λP as a function of the parameter µ:

λP (µ) = λ− 3Cλ2 log(
Λ2

µ2
). (2.151)

The choice of µ depends on the energy range I’m working in, and it is astute to take it
within this range; in this way in the amplitude

−iM = −iλP (µ) + iCλ2
P (µ)

[
log(

µ2

s
) + log(

µ2

t
) + log(

µ2

u
)

]
, (2.152)
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there are objects like log(µ2/s), which are small for s not much different from µ2. If we were
so stupid to take µ very large, the second order correction would increase, and be comparable
to the first term, if not bigger.

Finally, we impose that the amplitude M doesn’t depend on µ : dM/dµ = 0, from which
we find the equation (always at the second order in the coupling constant):

µ
dλP (µ)

dµ
= 6Cλ2

P (µ). (2.153)

This is the subject of the so called renormalization group theory [3, 16, 60], which studies the µ
dependence of the coupling constant. Here we are just describing some preliminary and simple
features of it, showing that it comes naturally from the definition of the physical coupling
constant (also called the renormalized one) in order to get rid of the cutoff dependence.

In the end the physical quantities depend only on mP and λP (for a given µ) and we do
not have an explicit appearance of the cutoff.

So, there is a cutoff, but the physical processes, expressed in terms of the physical mass
and coupling constant, DO NOT depend on it.

This is the main point of ”renormalization”.

One now can ask: ”Fine, you do not have Λ in the amplitudes because you have redefined
the mass and the coupling, i.e. the two and the four point correlation functions. But what
happens if one considers the 6 point Green function, i.e. the scattering of three particles?
Are you sure that no other quadratic or logarithmic dependence on Λ would appear again,
but without any other ”physical” quantity to redefine? (The two you had are already taken)”

Well, this is exactly the difference between renormalizable and unrenormalizable theories.
If, after having introduced mP and λP (and rescaled the field), I do not have other direct
dependencies on Λ, than the theory is said to be renormalizable. If, on the contrary, other
”infinities” appear, the theory is not, and a direct dependence on the cutoff is unavoidable.
This may seem puzzling because we do not know how the cutoff comes into the game. The
Lagrangian itself doesn’t tell us how one should cut the high momenta, and an infinite number
of choices is possible, then raising doubts on the predictive power of such a theory.

Non-renormalizable theories are indeed very useful if one can interpret physically the
cutoff, which then is a number on which the results depend explicitly.

In the end, the so called ”power counting scheme” [16, 55, 60] tells us how to recognize if
a theory is renormalizable or not. One has to check the dimensions of the coupling constant,
and if it has zero or positive dimensions then the theory is renormalizable; on the other hand
if it is negative it is not. In our case λ is dimensionless, therefore the theory is renormalizable.

2.5 Phenomenology

2.5.1 Effective theory: an example

We can look at the problem from another point of view; we have seen that our ϕ4 theory is
renormalizable, but we could interpret it as a low-energy effective theory of some other field
theory. In this case we do not need to renormalize the ϕ4 theory. We consider the cutoff as
a parameter of the theory, whose physical meaning is connected to some other field theory.
We illustrate it by a simple example [60]. Let us consider the following Lagrangian with two
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Figure 2.5: Two-body scattering by a boson exchange.

fields, χ and ϕ.

L =
1

2

(
(∂µϕ)2 −m2ϕ2

)
+

1

2

(
(∂µχ)2 −m2

χχ2
)

+ bχϕ2. (2.154)

The interaction term is of third order, the coupling b has the dimension of an energy, therefore
the theory is renormalizable. Now, imagine that we are interested in the evaluation of the
scattering of 2 ”ϕ”. At lowest order we have the diagrams of Fig. 2.5.

Let us suppose that the mass of the particle χ is large, larger than the exchanged mo-
mentum. We can therefore approximate

i

p2 −m2
χ

' − i

m2
χ

. (2.155)

We realize that we would obtain the same results if we would consider the ϕ4 Lagrangian
with

iλ = −i
b2

m2
χ

12 (2.156)

where 12 is just a combinatorial factor (see later). A quartic scalar theory with

λ = − b2

m2
χ

12 (2.157)

is a ”low energy effective theory” of the previous one, which is valid for small momenta of
the particles participating in the scattering. We realize that in this case it would not make
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sense to consider a bubble as we have done in the previous section. In fact, for energies larger
than m2

χ one cannot ignore the full form of the propagator of the particle χ. The cutoff in
this case is of the order of mχ, and means that new physic appears at this energy scale.

Furthermore, the coupling λ turns out to be negative, which on one hand means that
the χ exchange generates an attractive interaction among 2ϕ, and on the other hand that a
fundamental theory with λ < 0 is impossible, because, as noted previously, it is instable.

The main message is that the same ϕ4 theory can be considered as a renormalizable theory,
in the sense that the results do not depend on the cutoff (although there is one, but we don’t
know its value) or can be thought of as an effective theory, as in the last example, where we
do not consider any redefinition of the mass and coupling. If a theory is not renormalizable
the only possible use is to consider it as an effective one.

This simple example shows us that also a theory with a cut-off can be useful, being the
approximation, a low-energy limit, of some other field theory.

2.5.2 Cutoff function

In the evaluation of the bubble in section 2.4.4 we introduced some not specified regularization
on the integrals. Let us consider again the ”bubble” where we introduce a function Φ̃2(q)
which decreases for high (Euclidean) momenta in order to get a finite integral:

1

2
(−iλ)2

∫
d4q

(2π)4
1

(q + p/2)2 −m2

1

(q − p/2)2 −m2
Φ̃2(q). (2.158)

The meaning of Φ̃2 will become clear later on. One can choose a step function like Φ̃(qE) =
θ(Λ2 − q2

E), or a gaussian exp(−q2
E/Λ2), etc. We do not employ a renormalization, but we

consider the result as dependent on the parameter Λ, exactly as it depends on m and λ. One
then has to fix Λ by comparison with experimental values.

Many questions can arise. Nobody tells us which function one should use to cut the
integrals. We have an infinite number of choices, and this is why such an approach was first
regarded with care, because it depends on the cutoff function. As said before, we can do
it, if we can justify the physical meaning of this function. Our aim is to show that such
a cutoff function can be useful to describe a bound state formed by 2 particles ϕ. If the
particles compose a bound object, the momenta larger than a certain value, let’s say Λ, do
not contribute, because the momentum space wave function goes to zero for large momenta.
First, we can have a bound state only if the interaction is attractive; to this end we consider
the Lagrangian

L =
1

2

(
(∂µϕ)2 −m2ϕ2

)
+

K

2
ϕ4 (2.159)

where K > 0 (K instead of λ for the coupling in order to distinguish this approach from the
previous one) and so we have opposite sign with respect to the previous case, thus inducing
an attraction between the bosons. Here we do not introduce a factor 4! but only a factor 2 for
future simplicity. We will not be interested in the two body scattering, but on the formation
of a bound state.

The Lagrangian (2.159) is incomplete, because it comes without the cutoff function. If
we calculate the bubble contribution, the cut-off function doesn’t appear and the ”bubble”
diverges.
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We can render the Lagrangian complete and finite by introducing the cutoff function in
it, modifying the interaction term by a nonlocal extension:

L1 =
K

2
ϕ4 → K

2

(∫
d4yϕ(x + y/2)Φ(y)ϕ(x − y/2)

)2

=
K

2
J2 (2.160)

where

J =

∫
d4yϕ(x + y/2)Φ(y)ϕ(x − y/2), (2.161)

thus giving a total Lagrangian

L = L0 + L1 =
1

2

(
(∂µϕ)2 −m2ϕ2

)
+

K

2
J2. (2.162)

In this case, by making the calculation of the bubble, we get the result of (2.158), where
Φ̃(q) is the (four dimensional) Fourier transform of Φ(y). The Feynman rule connected to the
vertex is modified by the nonlocal extension. If we consider 2-body scattering we get

4!

2
iK → 4!

2
iKΦ̃(

p1 − p2

2
)Φ̃(

p3 − p4

2
), (2.163)

i.e. a function of the relative four-momenta.
Note that now we have +iK while before we had −iλ. We also understand why in the

bubble one gets the Φ̃2(q), just as a consequence of the Feynman rules. The scattering ampli-
tude comes ”together with the vertex functions in momentum space, i.e. with the amplitudes
that the particles have such a relative momentum”. It is then tempting to interpret Φ̃(q)
as the wave function in momentum space, but care should be used. Φ̃(q) depends on the
four-momentum and not only on the three-dimensional one, it is not clear how to define a
classical wave function in such a context. We will come back to this point.

Five comments are still in order:
• This is just one of the possible ways to introduce a nonlocal extension for the regular-

ization of the loops. Others can also be introduced [65, 66].
• In the literature one often considers a local Lagrangian form, and then introduces later

the cutoff. The cutoff function is often the step one (in the four or the three momentum [23])
like in some applications of the NJL model. Although the first Lagrangian is local, one is
actually dealing with a nonlocal approach, even if this is not explicit.
• If we are in the rest frame of the two body scattering, we have E1 = E2 and E3 = E4,

and therefore in the amplitudes only the relative three-momentum appears, but in general
also the energy component (i.e. the temporal one in space-time) appears.
• One may worry about the relativistic invariance of the Lagrangian (2.162). To ensure

covariance one has to take a vertex function depending on y2, whose Fourier transform is
Φ̃(q2). In the non-relativistic limit it is also useful to consider non-covariant vertex functions.
• This kind of approach can be used as an effective tool to study bound states [29, 67,

68, 69, 70]. The ”underlying theories” are then QED and QCD.

2.6 Mass of the bound state

The determination of bound states in the framework of a QFT is very complicated. One has
to solve the so-called Bethe-Salpeter equation [24, 25, 71, 72]. In the non-relativistic limit
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Figure 2.6: Two-body scattering; the shadowed part represents the vertex function.

there are some valid approximations, which allow to relate the Bethe-Salpeter equation to
the classical Schroedinger one with a classical potential. Far from the non-relativistic limit
no general solutions for the Bethe-Salpeter equation are known; one has to rely on some
extra-assumptions, which are often not a priori justifiable: in QCD this kind of approach
is a very hard task, and only relatively recently there were some attempts in this direction
[24, 25].

In our low energy Lagrangian (2.162) the B-S equation looks very simple; it is a nice
toy-model to understand some features of the problem.

Our goal is to relate the mass of the bound state (if it exists) to the parameters m,K and
Λ. We just give some heuristic arguments to understand the problem, thus not discussing the
full derivation of the B-S equation, for which we refer to the specialized works cited above.

In two-body scattering we sum the diagrams up to order infinity as in the figure 2.6.

As mentioned before, in order to study bound state properties one has to sum an infinite
set of diagrams, and we do it considering only the bubbles. This is also a simplification: the
consideration of other terms would complicate a lot the present discussion.

We now have to be careful with the symmetry factors; this is perhaps the only disadvan-
tage of working with a quartic scalar theory, because one has always to take care of these
pesky numbers. When considering the scattering in the most general case all possible combi-
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nations must be taken into account. The formation of a bound state (if it exists) can occur
among the first and second particle, or the first and the third, or the first and the fourth. Here
we want to consider the formation of a bound state out of the two incoming particles, which
have momenta p1 and p2. The bound state momentum will be then given in this channel as
p = p1 + p2. This means that we pick up only a channel among the 3 possible combinations.
This is achieved by considering the normal Feynman rule plus

4!

2
K → 4!

2

K

3
= 4K (2.164)

because we take one channel out of three for each vertex. The first order is than

−iM1,channel1 = 2Φ̃(
p1 − p2

2
)(iK)Φ̃(

p3 − p4

2
)2 (2.165)

where we factorized a factor 2 in the beginning and a factor 2 in the end. Such factors occur
at every order because the initial and the final states are made out of two identical bosons.
Now, let us go to the next order; we find

−iM2,channel1 = 2Φ̃(
p1 − p2

2
)
[
(iK)Σ(p2)(iK)

]
Φ̃(

p3 − p4

2
)2 (2.166)

where Σ(p2) is the bubble contribution:

Σ(p2) = 2i

∫
d4q

(2π)4
i

(q + p/2)2 −m2

i

(q − p/2)2 −m2
Φ̃2(q) (2.167)

The extra factor 2 is, again, connected with the loop of two bosons.
Yes, I know, these numbers like 2, 4! and so on are pretty tedious and bothering, but if

one wants to get the correct results has to take them into account.

We define the matrix T relative to the scattering in the chosen channel in the following
way

− iMchannel1 = −iM1,channel1 +−iM2,channel1 + .... = (2.168)

2Φ̃(
p1 − p2

2
)
(
−iT (p2)

)
Φ̃(

p3 − p4

2
)2 (2.169)

where

T (p2) = −K + KΣ(p2)K + ... = −
(
1−KΣ(p2)−1

)
K (2.170)

= −
(
K−1 − Σ(p2)

)−1
. (2.171)

In this case K and Σ are scalars, but we prefer to express them in a form which is valid
when they become matrices. The occurrence of a bound state is then visible as a pole in the
T matrix. In fact, it means that in this channel the two particles combine to form a bound
state and the amplitude for p2 'M2, where M is the bound state mass, will be proportional
to 1/(p2 −M2), being of course dominant for p2 → M2. The pole equation of the T matrix
is [23, 73]:

K−1 − Σ(p2 = M2) = 0. (2.172)

This is a case with a very simple mass equation, due to the fact that T depends on p2 only.
Furthermore we are paid back of all the efforts to get the correct symmetry factors. The
mass equation looks very clean!
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Such a simple example already shows some typical features of this kind of approach. In
order to calculate Σ(p2), also called mass operator, one has to perform a Wick-rotation,
finding (in the rest frame of the bound object p = (

√
p2,0) :

Σ(p2) = 2

∫
d4qE

(2π)4
Φ̃2(q2

E)
(
q2
E + m2 − p2/4

)2
+ (q(4))2 · p2

. (2.173)

This quantity is positive, therefore we realize that the occurrence of a bound state is possible
only if K > 0, as we correctly anticipated. Furthermore we note that it is not difficult to solve
such an expression numerically. As one expects there is a pole in the integration if M > 2m.
A bound state can occur only for M < 2m, otherwise there is no binding energy. The bound
object cannot decay into its subcomponents. This would indeed be the case if M > 2m, with
the appearance of imaginary part in the mass operator function, which corresponds to the
on-shell production of both ϕ particles.

Note that Σ(p2), although evaluated in the rest frame, is valid in every reference frame
because of the covariance of the theory, as long we employ a covariant vertex function Φ(y) =
Φ(y2). If we employ a non-covariant vertex function this is no longer true. In this case the
expression (2.173) is valid only in the rest frame with p2 = (p(0))2. All the formulas remain
unchanged, but they are strictly valid only in the rest frame for the bound state.

From figure 2.7, we realize that, the larger the coupling, the stronger is then the attraction
and the binding energy, with a smaller mass for the bound state.

Now, if (p1 + p2)
2 = p2 ' M2 the dominant contribution to the two-body scattering is

given from the bound state! Expanding Σ(p2) around M 2, and using the mass-pole equation,
we have

T (p2) =
1

Σ′(p2 = M2) (p2 −M2) + Σreg(p2)
→p2'M2

=
1

Σ′(p2 = M2) (p2 −M2)
=

g2

p2 −M2
. (2.174)

The constant g

g =
(
Σ′(p2 = M2)

)−1/2
(2.175)

is the coupling constant of the bound state with the two composing ϕ particles. In fact, just
looking at the diagram in Fig. 2.8 we realize that we have

2Φ̃(
p1 − p2

2
)

(
g2

p2 −M2

)
Φ̃(

p3 − p4

2
)2 (2.176)

i.e. the propagation of a field of mass M with coupling constant g to 2 ϕ. More precisely, we
find such a contribution from the interaction Lagrangian [22, 23, 74]

L = gBJ (2.177)

where B describes a field with mass M and J is the non-local current

J =

∫
d4yϕ(x + y/2)Φ(y)ϕ(x − y/2). (2.178)
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Figure 2.7: Mass operator function.
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Figure 2.8: Two-body scattering with the bound state formation.

In the following section we analyze a more formal way to introduce the bound field B by
matching two theories. We will find again the condition (2.175), which we will derive in two
different ways. Now, we just note that we can write it as

g =
(
Σ′(p2 = M2)

)−1/2
=

= lim
p2→M2

√
(p2 −M2)T (p2) =

(
∂(T−1)

∂p2

)−1/2

p2=M2

. (2.179)

The last two expressions are suited to be generalized in case of more fields and mixing among
them (see chapter 6).

2.7 Bound field B

2.7.1 Matching between two Lagrangians

As we have seen, we are describing a bound state with mass M formed by two particles ϕ.
We can now ask if we can introduce a field B(x) which describes the dynamics of this bound
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object. To this end let us consider the following Lagrangian

L =
1

2

(
(∂µϕ)2 −m2ϕ2

)
+ gBJ − 1

2
αB2 (2.180)

where α and g are two constants that we have to determine in order to have an equivalent
description of the Lagrangian L = 1

2

(
(∂µϕ)2 −m2ϕ2

)
+K ·J2/2. We expect to find g as in the

previous section. The first thing one should note is that the field B doesn’t have a dynamical
part. We can exploit the Euler-Lagrange equation of motion of B in order to relate it to the
field ϕ :

B(x) =
g

α
J(x) (2.181)

We can then see that B really represents two fields ϕ. Plugging the expression back into the
Lagrangian, we find

L =
1

2

(
(∂µϕ)2 −m2ϕ2

)
+

1

2

g2

α
J2 (2.182)

from which I can immediately deduce K = g2/α. But this is not all; we expect that the field
B has the propagator 1/(p2 −M2) (for p2 ' M2, where M is the bound state mass). This
seems ”strange” because in (2.180) there is no dynamical part for the field B. At lowest order
the propagator for B is simply a constant −i/α, but then, because of the interaction with ϕ,
we have a series of bubbles that modify the propagator. We find:

i

−α
→ bubbles

i

−α + g2Σ(p2)
(2.183)

=
i

−α + g2Σ(M2) + g2Σ′(M2)(p2 −M2) + g2Σ̃(p2)
(2.184)

→ p2→M2

i

g2Σ′(M2)(p2 −M2)
(2.185)

Note that −α + g2Σ(M2) = 0. If we want to have a normalized propagator for the B field
we must take

g =
1√

Σ′(M2)
(2.186)

α = Σ(M2)/Σ′(M2) (2.187)

The first of the last two relations is also known as compositeness condition [29, 67, 68, 70, 74].
It was derived at the beginning of the sixties in a different context [75]. Here we know by
construction that B represents a bound state, because we have related (2.180) to the Bethe-
Salpeter equation for the bound state of (2.162). In (2.180) we have introduced B as an
auxiliary field, without a dynamical part. We then imposed that the propagator for B
(taking into account the bubbles) is the free one with residue 1, thus imposing a kind of
normalization.

Many phenomenological Lagrangians [29, 67, 68, 69, 70, 76] start directly from the form
L = gBJ (bound state-composing particles interaction term). In the beginning it may be
puzzling that a field interacts whit its constituents, but it should be clear in the derivation
here presented, because this last Lagrangian is completely related to (2.162), being nothing
else than a rewritten form of it, indeed a very useful one, because it allows the calculation of
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Figure 2.9: Two-photon decay of the bound state.
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the decay of the bound state. If the field ϕ interacts with photons, we would have the decay
B → 2γ, represented by the diagram in Fig. 2.9.

We don’t want to discuss the details of it (see chapter 4 for a detailed treatment), but it
is clear that L = gBJ is particularly useful for such a calculation. The coupling constant g
enters directly in the decay rate.

The Feynman rule of this interaction term is simple, and reads igΦ̃(q), as one can eas-
ily prove explicitly. The Fourier transform of the vertex function naturally appears in the
evaluation of physical amplitudes.

Finally, we would like to stress that the introduction of auxiliary fields can be generalized
and formalized in the path integral formulation of QFT [3, 29, 60]. Here we have just
presented the underlying basic ideas in a somewhat more intuitive way.

2.7.2 Further equivalence

As a further text of the equivalence of (2.162) with (2.180) we consider two-body scattering
at the lowest order considering all possible combinations. In the first case we get

−iM1 =
4!

2
iKΦ̃(

p1 − p2

2
)Φ̃(

p3 − p4

2
). (2.188)

Considering then (2.180) we note that we have indeed three possibilities to generate two-body
scattering, corresponding to the 3 channels for the bound state formation. At lowest order
the bound state propagator reduces to g2/α. We then have (see Fig. 2.10)

− iM1 = 4 · 3i · g
2

α
Φ̃(

p1 − p2

2
)Φ̃(

p3 − p4

2
) =

= 4 · 3i · 1

Σ(M2)
Φ̃(

p1 − p2

2
)Φ̃(

p3 − p4

2
)

= 4 · 3i ·K · Φ̃(
p1 − p2

2
)Φ̃(

p3 − p4

2
) (2.189)

where in the last passage we have made use of the pole equation K = 1/Σ(p2 = M2) (see eq.
(2.172)). This indeed proves that we correctly choose a channel to analyze the bound state
properties. The equivalence can of course be proved order by order.

2.7.3 Compositeness condition

As mentioned before, the relation (2.186) was found in the sixties in a different way [75]; in
order to sketch that idea, let us write the following Lagrangian

L =
1

2

(
(∂µB0)

2 −M2
0 B2

0

)
+ g0B0J + Lfree,ϕ (2.190)

where Lfree,ϕ is the free Lagrangian for the field ϕ. The bubbles of fields ϕ are finite because
of the cutoff function Φ(y) in J. So, considered as effective, no renormalization is applied
to this field. On the contrary, we consider the field B0 as the bare one, with g0 and M0

the bare coupling constant and mass. It is a bit strange that we consider just one field as
”bare” and not the other, but the reason will be clear soon. As we can note, apart from this
difference, this Lagrangian is very similar to (2.154), where we were describing an interacting
theory of two elementary particles. On the other hand, (2.190) is also similar to (2.180),
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Figure 2.10: Two-body scattering in the three combinatorial possibilities.

where, by construction, we were describing a bound object. Here we would like to describe,
as in the previous section, a bound state field B. At this stage, just looking at (2.190), we
can’t understand if B (the dressed field of the bare B0) describes a bound state of 2ϕ or an
elementary object interacting with ϕ.

Let us now consider the ”dressing” (Fig. 2.11) of the propagator of B0, similar to the one
seen in section (1.4.3):

i

p2 −M2
0

→ i

p2 −M2
0 + g2

0Σ(p2)
(2.191)

where −iΣ(p2) is the bubble contribution. The new mass is:

M2 −M2
0 + g2

0Σ(M2) = 0 (2.192)

and therefore we find
iZ2

p2 −M2 + Z2g2
0Σ̃(p2)

. (2.193)

As proposed back in the sixties, in order to study a bound state we postulate

Z2 =
1

1 + g2
0Σ

′(M2)
= 0. (2.194)

The condition Z2 = 0 means that g0 → ∞, and, as we will see, is equivalent to the analysis
of the previous subsection. First, note that because of this condition the denominator of the
propagator is well defined; the term Z2g

2
0 is then

Z2g
2
0 =

g2
0

1 + g2
0Σ

′(M2)
→g0→∞=

1

Σ′(M2)
. (2.195)

The dressed field and coupling are B = B0/
√

Z2 and g = g0

√
Z2, so the propagator for B in

the vicinity of M 2 is 1/(p2 −M2). If now, we write the Lagrangian in terms of the dressed
fields we have

L = −1

2
Z2M

2
0 B2 + gBJ + L0,ϕ (2.196)
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Figure 2.11: Self interaction of the bare field.
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where we note that the condition Z2 = 0 is responsible for the zero dynamical part of the
dressed field B, exactly as we had before. Furthermore:

Z2M
2
0 =

M2 + g2
0Σ(M2)

1 + g2
0Σ

′(M2)
→g0→∞=

Σ(M2)

Σ′(M2)
(2.197)

exactly as the parameter α evaluated in the previous section.

For g we find as well the same result:

g2 = g2
0Z2 =

g2
0

1 + g2
0Σ

′(M2)
→g0→∞=

1

Σ′(M2)
(2.198)

and so precisely the compositness condition g = 1/
√

Σ′(M2) . All these results are a con-
sequence of g0 → ∞, i.e. of the condition Z2 = 0. The final dressed Lagrangian we find is

L = −1

2
αB2 + gBJ + L0,ϕ (2.199)

identical to (2.180).

2.8 Vertex function in the non relativistic limit

2.8.1 Up to now...

Before going on, let us take a breath and summarize the main concepts related to the bound
states and to the interaction Lagrangian L = gBJ :

• Feynman rule: it reads igΦ̃(q) where q = (p1 − p2)/2.

• Coupling constant: it is given from the compositness condition g = (Σ′(M2))−1/2 where

Σ(p2) = 2i
∫ d4q

(2π)4 G(p/2+q)G(p/2−q)Φ̃2(q) with G(p) being the propagator of the ϕ particle.

• The propagator of the field B is obtained by summing all the ”bubbles” and is given
from i(p2 −M2 − Σ̃(p2)/Σ′(M2))−1 → i(p2 −M2)−1 for p2 →M2.

If the bound state field is off-shell one has also to take into account the modification of
the propagator.

2.8.2 Comparison

We want now to look closer to the meaning of Φ(y) by a comparison with the non-relativistic
limit. In this case the bound state in the rest frame is described by [3, 59]

|s〉 = 1√
V

∫
d3k

(2π)3/2
A(k)a†(k)a†(−k) |0〉 , (2.200)

where A(k) is the wave function in momentum space of the bound system of two ϕ. A(k) is
the amplitude of finding a relative momentum 2k between the two particles. In our approach
we have introduced the current J

J(x) =

∫
d4yϕ(x + y/2)Φ(y)ϕ(x − y/2); (2.201)
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it is then natural to consider the state J(x) |0〉 , where J creates two particles ”ϕ” correlated
by the vertex function Φ(y). We then perform a Fourier transform of this state to get the
corresponding state depending on the four-momentum p of the bound state:

|j(p)〉 =

∫
d4xJ(x) |0〉 e−ipx (2.202)

and |j(p = (M,0))〉 represents the state in the rest frame. After a bit of algebra we get
explicitly

|j(p = (M,0))〉 =

∫
d3k

(2π)3/2

1

2
√

k2 + m2
Φ̃(0,k)a†(k)a†(−k) |0〉 . (2.203)

Apart from the factor 1/(
√

k2 + m2) (which is a constant in the NR limit) we find that
|j(p = (M,0))〉 has the same form as |s〉 , with Φ̃(0,k) instead of A(k). One then is tempted
to interpret Φ̃(0,k) as the wave function in momentum space of the bound state; however,
as said before, care is required with such an identification. We clearly realize that Φ̃ and A
are connected, but the argument we presented still cannot constitute justification for such an
identification, and now we list some remarks in this sense:
• Φ(y) depends on the four-vector y = (y0,y) (and Φ̃(q) on q = (q0,q)), i.e. on a temporal

variable which doesn’t have a counterpart in the NR limit.
• We just considered the states |s〉 and |j(p = (M,0))〉 showing the similarities, but we

didn’t give a precise connection between these quantities.
• |s〉 has an energy

E =

∫
d3k(2

√
k2 + m2) |A(k)|2 > 2m (2.204)

because of this the decay |s〉 → 2ϕ is possible but actually unwanted; in the phenomenological
QFT approach the decay B → 2ϕ is kinematically forbidden, because the condition E = M <
2m is satisfied.

Nevertheless, states like |s〉 have been useful to calculate many properties of the bound
states like positronium or muonium µ+µ− [3, 59]; we have then to find a physical process
which allows a direct comparison of A with Φ̃. One possibility is to calculate a decay of the
bound state. Previously we have mentioned the possible 2-photon decay of the bound state; in
order to simplify our life, let us consider something analogous with a scalar particle χ instead
of the photon, in order not to have vectorial complications (and gauge considerations) typical
of electromagnetic properties.

We want to evaluate the decay into two χ, and we do it in two different ways, before using
|s〉 and then using the phenomenological field theory approach.

2.8.3 |s〉 → 2χ

Let us first consider the Lagrangian

L =
1

2

(
(∂µϕ)2 −m2ϕ2

)
+

1

2

(
(∂µχ)2 −m2

χχ2
)

+ bχϕ2 (2.205)

where b is the coupling χ − ϕ2 and where we assume that the coupling constant b is small
and that a perturbative treatment is indeed allowed. The reaction 2χ→ 2ϕ is possible, and
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Figure 2.12: Two-boson χ production

the corresponding amplitude is 2.12:

−iM =
(ib)2i

(p1 − k1)−m2
+

(ib)2i

(p1 − k2)−m2
(2.206)

Now, in this Lagrangian we didn’t consider any bound state generation of 2ϕ; in order to
calculate the decay |s〉 → 2χ we simply consider as initial state |s〉 instead of |p1, p2〉 (see the
discussion about the positronium in [59]).

The amplitude for this process is proportional to

1√
V

∫
d3q

(2π)3/2
A(q)

(
(ib)2i

(p1 − k1)−m2
+

(ib)2i

(p1 − k2)−m2

)
δ(p1 + p2 − k1 − k2) (2.207)

where

p1 = (
√

q2 + m2,q),

p2 = (
√

q2 + m2,−q),

k1 = (
√

k2 + m2
χ,k),

k2 = (
√

k2 + m2
χ,−k).

Because of momentum conservation we have
√

q2 + m2 =
√

k2 + m2
χ and then
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(p1 − k1)−m2 = −((p− q)2 + m2), (2.208)

(p1 − k2)−m2 = −((p + q)2 + m2). (2.209)

Considering that, because of the integration over q, both terms give rise to the same contri-
bution, we then can rewrite the amplitude as proportional to

1√
V

∫
d3q

(2π)3/2
A(q)

2(ib)2i

(p− q)2 + m2
. (2.210)

We speak only of proportionality because this is what we care in the comparison between A
and Φ̃.

Note that this is the typical way for calculating the decay of a bound state in the non-
relativistic limit, making a direct use of the wave function in momentum space.

2.8.4 B → 2χ

We now want to calculate the same process within the bound state nonlocal field theory with
the vertex function Φ(y). The interaction Lagrangian interesting to us for the decay into 2χ
(Fig. 1.13) is

Lint = gB · J + bχϕ2 (2.211)

The Feynman diagram connected to the decay is represented by a loop. This is the main
difference with respect to the previous case. In that case the two incoming ϕ particles were
on shell, and we just made a convolution of the initial state by introducing the wave function
in momentum space. In this case we have a loop where the two ϕ particles are also off shell,
and the vertex function enters in the Feynman rule for the vertex B-2ϕ. The amplitude (Fig.
2.13) reads then (taking already into account the exchange diagram)

− iM = i(2g)

∫
d4q

(2π)4
i

(p/2 + q)2 −m2

· i

(p/2− q)2 −m2

i

(p/2 + q − k1)2 −m2
Φ̃(q). (2.212)

This expression is valid for a generic vertex function and also far from the non-relativistic
limit; what we want to do here is to establish a connection with the NR case, therefore we
evaluate the integral over q0 in this limit; by closing ”down” the residue which gives the
largest contribution is the one for q0 = −M/2 +

√
q2 + m2 > 0 (note that, in virtue of the

non-relativistic limit, q0 is positive but is a very small number). In fact, from the second
propagator we get the term

1

M(M − 2
√

q2 + m2)
(2.213)

which is large, because in the non-relativistic limit M ∼ 2m and q2 is small as compared to
m. The other two poles give rise to smaller contribution. The third propagator reduces to

1

q0 − (p− q)2 −m2
∼ −1

(p− q)2 + m2
(2.214)
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Figure 2.13: Decay of the bound state into two bosons χ.

being possible because q0 is small as compared to m. Therefore, putting all these pieces
together, we get in the NR limit the amplitude

2ig

∫
d3q

(2π)3
1

2
√

q2 + m2

1

M(M − 2
√

q2 + m2)

1

(p− q)2 + m2
Φ̃(q = (−M/2 +

√
q2 + m2,q)). (2.215)

In order to compare directly to the previous case we realize that Φ̃ should not have a q0

dependence (which in any case is small, being q0 ∼ 0). This is possible if we assume that

Φ(y) = δ(y0) · Φ(y) (2.216)

from which Φ̃ depends on the three-momentum only. This is in the spirit of Eddington’s
words: ”a proton yesterday and an electron today do not make an atom”. With this choice
for the vertex function we impose that the two particles exist contemporary. Such an approx-
imation for the vertex function goes under the name of instantaneous approximation [71, 72],
because one neglects the time dependence of the vertex function.
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Comparing finally the two expressions for the amplitudes for the decay into 2χ we find

Φ̃(q) = c
√

q2 + m2(M − 2
√

q2 + m2)A(q) (2.217)

where c is some proportionality constant we are not much concerned about because each
method is separately normalized.

Note that the equivalence of the two results is pretty remarkable, considering that in the
first case we had 2 particles on shell, while in the second a loop diagram where no internal
particle is on-shell.

The equivalence occurs through an extensive use of the non-relativistic condition M ∼ 2m,
which we apply at every step of the calculation. If this condition is not satisfied such a direct
connection between Φ̃ and A cannot be found, but in this case the concept of a ”wave
function” is not anymore valid itself. The vertex function, also in a covariant form, may be
considered as a kind of generalization of the wave function for the description of the finite
size of the bound state.

Our result (2.217) shows also that what we naively did in the beginning of this subsection
was not so wrong, in the sense that the vertex function in momentum space is proportional to
the wave function, and the extra-factor in front of it comes from the residual loop evaluation.
At the end of this chapter we will re-obtain this result in a more formal way, by making use
of the Bethe-Salpeter equation.

Our result is then similar to the assumption of [77, 78] in the positronium case. We will
actually exploit these considerations in the evaluation of the two-photon decay of the positro-
nium, because it is a good test of the bound state approach, for which good experimental
results are known and for which a non-relativistic limit is completely justified. In the light
quark-antiquark case, where one has a similar object, but with the much more complicated
light quark dynamics of QCD, such non-relativistic limit is not anymore valid. In this case
one can make an Ansatz for the vertex function to model the bound nature of a meson. In
some models of QCD [23] one uses as a vertex function a step function θ(p2−Λ2) which cuts
in a crude way the high momenta. Other smoother forms are then considered [67, 69], like
gaussian or dipole forms.

Relatively recently there are approaches to solve directly the non-perturbative QCD dy-
namics by making use of the so called Dyson-Schwinger equations [24, 25]. In this case the
propagators are not anymore the free ones, and the vertex bound states-elementary fields
is calculated directly from QCD. A certain number of approximations must be used in this
case, in order to solve the rather complicated coupled equations. In this way one may hope
to calculate the ”vertex function” directly form the basic underlying theory. In the next
subsection we point to some general mathematical considerations when evaluating the mass
operator also in the presence of non-free propagators.

2.9 Parabola

Up to now we have used for the field ϕ the free propagator form i/(q2 −m2). It may happen
that such an approximation is not valid; for example, quarks and gluons in QCD have
propagators which, at low energies, are very different from the free ones that one could
deduce by looking at the QCD Lagrangian (see the related discussions in chapters 3 and
5). Sometimes one has to take into account explicitly the running behavior of the mass
m = m(p2), i.e. of a non-free propagator [24, 79].
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In this subsection we don’t want to analyze such a phenomenon, but rather describe a
general feature connected with the portion of complex plane which comes in the game by
evaluating the mass operator with a general form of the propagators.

First, consider a generic propagator G = G(q2) and then replace q2 → z, where z is a
complex variable. We then have G(z), which we assume to be an analytic function in the
complex plane, apart from some singularities. One may ask: q2 is a real number, positive or
negative, why should one be interested in the extension to the complex plane? The answer
is: because of the Wick rotation. By performing it, we introduce complex arguments in the
propagator.

In general the ”bubble” is (eq. (2.167))

Σ(p2) = 2i

∫
d4q

(2π)4
G((q + p/2)2)G((q − p/2)2)Φ̃2(q). (2.218)

In the rest frame we have p = (M,0), therefore, Wick-rotating like q (0) = iq(4), we get:

(q + p/2)2 = −q2
E +

M2

4
+ iq(4)M (2.219)

where q2
E = q2 +(q(4))2. We can see that the propagator G is evaluated at a complex number

z = −q2
E+M2/4+iq(4)M , where the imaginary part comes from the Wick rotation. Similarly

the second propagator is evaluated at z∗. We therefore have the following integral:

Σ(p2) = 2

∫
d4qE

(2π)4
G(z)G(z∗)Φ̃2(qE); (2.220)

first, note that the integral is real; we have G (z∗) = G∗(z) (because the original propagator
is real, therefore expandable with real coefficients). We have

Σ(p2) = 2

∫
d4qE

(2π)4
|G(z)|2 Φ̃2(qE). (2.221)

We can now check which part of the complex plane is ”hit” in the integration (Fig. 2.14) :
• q(4) = 0→ z = −q2

E + M2/4 where the ”maximum” is for M 2/4, which is positive and
real, thus in the Minkowsky part of the plane.
• I then vary q(4), moving on the imaginary axis. For the real part being zero, I have that

−M/2 ≤ q(4) ≤M/2, therefore the intersection with the imaginary axis is for ±M 2/2.
In general I have
• Re [z] = −q2

E + M2/4;

• Im [z] = q(4)M, with −
√

q2
E ≤ q(4) ≤

√
q2
E.

The extrema are given from the following parabola equation:

Re [z] =
M2

4
− (Im [z])2

M2
(2.222)

and all the points of the complex plane hit in the integration are inside this parabola. This
result is general (also in the most general Bethe-Salpeter approach). If we display the poles
of the analytic function G(z) in the complex plane we can immediately see whether the poles
are encountered in the integration or not.

If no poles are inside it, everything is fine, otherwise care is needed because infinities may
appear. We then see that, for a free propagator form, everything is fine if M < 2m, because
the pole of the propagator occurs for z = m2, which is outside the parabola if 2m > M (Fig.
2.14).
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Figure 2.14: Parabola: the shadowed region is encountered in the integration.
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2.10 Our approach and the B-S equation

2.10.1 Bethe-Salpeter equation

We mentioned the Bethe-Salpeter equation in section 2.6. Our pole-equation for the deter-
mination of the bound state mass is actually a solution of the Bethe-Salpeter equation for
our particular case.

We now want to briefly describe this important and general approach for the study of a
bound state in a quantum field theory and re-derive our previous equations as a particular
case of the general one. We consider a two-body scattering for the particles ϕ, which interact
in some way. Let us call K(q, k; p) the irreducible two-body interaction vertex where

q = (p1 − p2)/2, (2.223)

k = (p3 − p4)/2 (2.224)

p = p1 + p2 = p3 + p4. (2.225)

The full calculation of this object is in general not possible, because one has an infinity
of Feynman diagrams to calculate, but one will make assumption, keeping (hopefully) the
leading terms.

For example, if we consider a one-boson exchange theory described by the Lagrangian
(2.154, section 2.5.1), the kernel will be at lowest order

K(q, k; p) = b2

(
i

(k − q)2 −m2
χ

)
(2.226)

i.e. the boson propagator (we are for simplicity not considering the annihilation term).
The full kernel, also in such a simple field theory, is indeed very complicated. One has

to sum an infinity of diagrams, which is practically impossible. Therefore only some terms
are included (as in the previous equation), ”hoping” that they are dominating in the bound
state formation process. This operation goes under the name of ”truncation”, because one
cuts, truncates, the full sum keeping only the first term(s).

In Fig. 2.15 some first terms are depicted. In the evaluation of K the external lines do
not play any role. The first term correspond to eq. (2.226).

In our case from the non-local Lagrangian (2.162) we have, again at lowest order, a
separable kernel with

K(q, k; p) = 2KΦ̃(q)Φ̃(k). (2.227)

One then has in general an expansion as in Fig. 2.8.
What follows is not a derivation of the B-S equation (for which we refer to [24, 25, 71, 72]),

but some pictorial representation of it. Once the kernel is specified, one considers the two-
body scattering summing to order infinity the kernel interaction, as in Fig 2.16.a, where
T = T (q, k; p) is the total (amputated) scattering amplitude. The adjective ”amputated”
means that the external lines are not considered. At lowest order T = K, but the bound
state formation, being an intrinsic non-perturbative phenomenon of a field theory, needs an
expansion as in the figure. This expansion can be easily expressed in Fig. 2.16.b, where the
T appears on the left and on the right of the equation; the full mathematical expression reads

T (q, k; p) = K(q, k; p) +

∫
d4k′T (q, k′; p)G(p/2 + k′)G(p/2 − k′)K(k′, k; p) (2.228)
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Figure 2.15: Two-body kernel for a boson exchange theory.

If T has a pole for p2 we have a bound state, pretty much as described in section 2.6, but
now in this generalized context. Even more generally, when one deals with many fields, T
becomes a matrix. The poles of T, corresponding to the formation of bound states, are then
found from the equation Det[T−1] = 0.

But this is not the end of the story; if the total momentum p = p1 + p2 is such that a
bound state for p2 = M2 appears, then we have a pole of T and we can depict the situation as
in Fig. 2.16.c, where the propagator of the bound state appears; with Γ(q; p) one denotes the
general bound state-constituents vertex term. In order to find it we ”compare” Fig. 2.16.b
with 2.16.c, getting figure 2.16.d, whose mathematical counterpart is

Γ(q; p)
i

p2 −M2
Γ(k; p) = K(q, k; p)+

Γ(q; p)
i

p2 −M2
i

∫
d4k′

(2π)4
K(k′, k; p)G(p/2 + k′)G(p/2 − k′)Γ(k′; p) (2.229)

If we exploit again the condition p2 → M2 we realize that the first term on the rhs of the
last equation doesn’t contribute; we then get the so called Bethe-Salpeter equation for the
determination of the vertex function Γ with

Γ(k; p) = i

∫
d4k′

(2π)4
K(k′, k; p)G(p/2 + k′)G(k/2 − k′)Γ(k′; p) (2.230)

(see Fig. 2.16.e). It is an integral equation of the Fredholm type, which is very difficult
to solve. From it one can find the mass of the bound state, for the corresponding value of
p2 = M2 at which the Bethe-Salpeter equation is fulfilled.
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Figure 2.16: Bethe-Salpeter pictorial representation.
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In the end, note that the discussion about the parabola of the previous subsection is still
valid, also in the most general Bethe-Salpeter approach.

2.10.2 Separable kernel

If we plug our separable interaction kernel K(k, q; p) = 2K Φ̃(q)Φ̃(k) inside the Bethe-Salpeter
equation we find

Γ(k; p) = c(p2)2KΦ̃(k) (2.231)

where

c(p2) = i

∫
d4q

(2π)4
Φ̃(q)G(p/2 + q)G(k/2 − q)Γ(q; p). (2.232)

Plugging in this last equation the previous expression Γ(q; p) = c(p2)KΦ̃(q) we then find

1 = K(2i)

∫
d4q

(2π)4
Φ̃2(q)G(p/2 + q)G(p/2 − q), (2.233)

i.e. nothing else than our already famous pole equation

1

K
= Σ(p2). (2.234)

Then c(p2) can be found from the normalization condition for the Bethe-Salpeter equations;
we didn’t discuss it here, and we refer to the above cited works. Its physical meaning is the
normalization of the bound state propagator. In our case it reads

c(p2 = M2) =
1√

Σ′(M2)

1

K
=

g

K
(2.235)

from which we have
Γ(k; p) = gΦ̃(k) (2.236)

which is exactly the vertex term in momentum space for the Lagrangian (2.180), together
with the compositeness condition for the coupling constant.

2.10.3 Non-relativistic limit and the vertex function

A lot of effort has been done to find the non relativistic limit of the Bethe-Salpeter equation,
in order to get the ”usual” Schroedinger equation for a bound state [55, 71, 72]. Here we do
not intend to discuss this issue in detail, but we just discuss how the three-dimensional wave
function is usually introduced. The Bethe-Salpeter amplitude reads

A(y/2,−y/2; p) = 〈0 |T [ϕ(y/2)ϕ(−y/2)]|B(p)〉 (2.237)

where |B(p)〉 is the bound state with four-momentum p. In momentum space one has the
Fourier transform

A(q; p) =

∫
d4xeiqxA(y/2,−y/2; p). (2.238)

It is possible to show [71, 72] that this quantity is

A(q; p) = G(p/2 + q)Γ(k; p)G(p/2 − q) =
Γ(q; p)

((p/2 + q)2 −m2) ((p/2− q)2 −m2)
, (2.239)
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i.e. the bound state-components vertex multiplied by the field propagators. The last passage
is valid in presence of free propagators. A pictorial representation is indeed possible: the
amplitude A(q; p) connects the bound-state to the constituents, i.e. the vertex Γ(q; p) plus
the propagators of the 2 constituents (see the first piece of Fig. 2.16.e).

It is possible to show that in the non-relativistic limit the wave function in momentum
space is given from [71]

A(q; p) = ic

∫ +∞

−∞

dq0

2π
A(q; p). (2.240)

where c is a normalization factor. In this way contact among Bethe-Salpter and Quantum
Mechanics is found. See, for example, [71, 72] for a detailed description of this point. The
reason for this limit can be also easily understood: if in (2.237) we plug in the non-relativistic
form for the bound state

|B(p = (M,0))〉 = |s〉 = 1√
V

∫
d3k

(2π)3/2
A(k)a†(k)a†(−k) |0〉 (2.241)

we get

A(q; p = (M,0)) = δ(q0)
1√

V (2E)
A(q) (2.242)

which, upon integration over q0 gives, apart from some constant, exactly (2.240).

In our separable case we then have the following relation between the wave function and
the vertex:

A(q; p) = ic

∫ +∞

−∞

dq0

2π

gΦ̃(q)

((p/2 + q)2 −m2) ((p/2 − q)2 −m2)
. (2.243)

If now we suppose an instantaneous approximation with Φ̃(q) = Φ̃(q), we can evaluate the
residues of the integration over q0 :

A(q; p) = c · g · Φ̃(q)
1

2M
√

q2 + m2

·


 1(

M − 2
√

q2 + m2
) +

1(
M + 2

√
q2 + m2

)


 , (2.244)

where the first term in the parenthesis comes from the pole for q(0) = −M/2+
√

k2 + m2 and
the second from q(0) = M/2+

√
k2 + m2. The first pole is clearly dominant because of the

non-relativistic condition M ' 2m,; keeping only these term we find again equation (2.217):

Φ̃(q) = (const) ∗ 2M
√

q2 + m2
(
M − 2

√
q2 + m2

)
A(q; p). (2.245)

It is gratifying to find the same results in two different ways, the first by studying a decay
of the bound states in an intuitive way and the second from the more formal Bethe-Salpeter
equation.

If we also keep the second term we have

Φ̃(q) = (const) ∗
√

q2 + m2
(
M2 − 4(q2 + m2)

)
A(q; p). (2.246)
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Note that we don’t care about the value of the constant in front of these expressions. In fact,
every physical prediction is invariant under the redefinition

Φ̃(q)→ ξΦ̃(q) (2.247)

where ξ is some constant. In fact, such a redefinition implies also

g → g

ξ
(2.248)

thus leaving the Bethe-Salpeter vertex function gΦ̃(q) unchanged.



Chapter 3

Bound states of fermions

3.1 Fermion field

3.1.1 Dirac equation

The Dirac equation is the relativistic version of the Schroedinger one, and it is built under
the following requirements [58]:

(a) to have a correct continuity equation, the Dirac equation must contain only a first
order time derivative;

(b) to have covariance it must also have first order space derivatives;

(c) linearity and homogeneity;

(d) it should describe the spin, therefore the wave function should be a column-vector;

(e) compatibility with the Klein-Gordon equation, i.e. validity of the Einstein relation
E2 = p2 + m2;

(f) the probability density must be positive definite and of the form ρ = j0 = Ψ†(x)Ψ(x);
there must exist a corresponding conserved current ∂µjµ = 0, so that

∫
d3x · j0 = 1 can hold

at every time, necessary for a probabilistic interpretation.

The points (a-d) are fulfilled by the equation

(iγµ∂µ −m)Ψ(x) = 0 (3.1)

where γµ are matrices and the wave function Ψ(x) is a column-vector of the same dimension
as the matrices.

The conditions defining the γ-matrices are found using the last 2 points (e) and (f):

{γµ, γν} = 2gµν · 14 (3.2)

(γµ)† = γ0γµγ0 (3.3)

The condition (3.2) is obtained imposing (e); in fact multiplying (3.1) by (iγν∂ν + m)
from the left we get

(iγν∂ν + m) (iγµ∂µ −m) Ψ(x) = 0 (3.4)

and making use of (3.2) we find exactly the K-G equation. From (3.2) one can also prove
that the dimension of the γ-matrices is even and at least four [3, 55, 58].

67
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The condition (3.3) on the gammas is found imposing (f); the current is

jµ = ΨγµΨ (3.5)

where Ψ = Ψ†(x)γ0.
There is an infinite number of possible choice for the γ-matrices; here we will use the

Dirac representation which allows one to ”see” better the non-relativistic limit and the spin
properties. The explicit form is

γ0 =

(
12 0
0 −12

)
, γk =

(
0 σk

−σk 0

)
(3.6)

where 12 is the 2× 2 identity matrix and the σk are the Pauli matrices.

There are other matrices with whom one often works:

γ5 = −iγ0γ1γ2γ3; (3.7)

σµν =
i

2
[γµ, γν ] . (3.8)

It is important to note that the matrices 14, γ
µ, σµν , γµγ5, γ5 form a basis of 16 matrices

for the space of 4× 4 complex matrices.

The references listed in section 2.1.1 explain in detail the Dirac equation.

3.1.2 Plane wave solutions

We search for solutions in the plane wave form

Ψ(x) = u(p)e−ipx (3.9)

where u(p) is a column-matrix and p · x = gµνpµxν = Et− px. Inserting in (3.1) we find

(γµpµ −m)u(p) = 0 (3.10)

Let us first consider the case p = 0; by using the Dirac representation we have




E −m 0 0 0
0 E −m 0 0
0 0 E + m 0
0 0 0 E + m







u1

u2

u3

u4


 = 0. (3.11)

We now define the spinors χ(s) where s = ±1/2 as

χ(1/2) = χ(+) =

(
1
0

)
;χ(−1/2) = χ(−) =

(
0
1

)
(3.12)

Then it is clear that we have 4 possible solutions, 2 with E = m and u(0) being a linear
combination of

u(±)(0) =

(
χ(±)

0

)
(3.13)
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and 2 with E = −m and u(0) being a linear combination of

u
(±)
∗ (0) =

(
0

χ(±)

)
(3.14)

(with 0 we denote the zero column matrix of dimension 2).
We understand the need for dimension 4; 2 for the sign of the energy and 2 for the spin

structure; in fact, the spin operator S = 1
2Σ (see section 3.2) has in the Dirac representation

the form

Sk =
1

2
Σk =

1

2

(
σk 0
0 σk

)
(3.15)

and the basis of solutions is made of spin eigenstates along the z-axis.
We have so:
• E = m, spin up and spin down;
• E = −m, spin up and spin down.
If p 6= 0 the matrix equation reads

Eu(p) =

(
m σipi

σipi −m

)(
uA

uB

)
= E

(
uA

uB

)
(3.16)

where uA and uB are spinors and with m we denote m · 12.
We have the two spinorial equations

(σipi)uB = (E −m) uA (3.17)

(σipi)uA = (E + m)uB (3.18)

From the last equation we get

uB =
σipi

E + m
uA, (3.19)

and substituting it in the first we find

E2 = p2 + m2. (3.20)

The basis for the solutions with E > 0 is:

u(s)(p) = N

(
χ(s)

σipi

E+mχ(s)

)
; (3.21)

in this case the solutions tend to the ones analyzed for zero momentum in the limit p → 0.
N is a normalization constant.

Similarly for E < 0 we have

u
(s)
∗ (p) = N

( σipi
E−mχ(s)

χ(s)

)
= N

(
−σipi

|E|+mχ(s)

χ(s)

)
. (3.22)

We have again 4 independent solutions, two with positive energy and two with negative
energy. It is important to note that the 2 solutions with the same energy are not spin-
eigenstates; this is the case only when p → 0.
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The problem of the energy is not trivial; it seems that the energy does not admit a
minimum, creating than difficulties in the interpretation of the theory. Actually, in the
classical case there is not trace of negative energy; in the classical version we have only
E = p2/2m and not the one with the opposite sign.

At a relativistic level we have a complete symmetry of the two solutions. The non-
existence of a minimum for the energy would generate a catastrophe because an electron
with E > 0 could collapse into lower energy states radiating off an infinite quantity of energy.

Dirac himself tried to find a way out of this paradox in the famous interpretation of the
Dirac sea: all the negative energy states are supposed to be filled, and in virtue of the Pauli
principle no positive state can decay into negative energy states. On the other hand it is
possible to excite such a non-trivial ”ground state” pulling out an electron from the sea and
leaving a hole in it, which can be interpreted as a positron, a positive energy state with the
same mass m as the electron but inverted quantum properties.

The problem of the Dirac theory is connected with the idea of a one-particle theory:
exactly as the Schroedinger equation, the Dirac one describes just one particle, and not
more. This doesn’t seem to be possible in nature; in quantum field theory the number
of particles is not fixed anymore and the electron-field Ψ itself is quantized. The vacuum
becomes a non-trivial object where virtual particles can create and annihilate in it. As done
in the quantization of the scalar field (see chapter 2), we will impose the existence of a ground
state, i.e. a state for which the energy is minimized. But there is a subtle point: this vacuum
doesn’t mean that only the two solutions with positive energy survive, but that antiparticles
appear.

What classically is a negative energy solution will be reinterpreted as a positive energy
solution with inverted quantum numbers, i.e. an antiparticle.

3.1.3 Lagrangian form

In the second chapter we started from the Lagrangian formulation of the scalar field; in this
case the Lagrangian, whose equation of motion is the Dirac one, is:

L = Ψ(x) (iγµ∂µ −m)Ψ(x). (3.23)

There is still a point we should take care of; the condition ∂µjµ = 0 is, of course, conserved
also at the Lagrangian level, being the Noether current corresponding to the transformation
Ψ → eiαΨ, but nothing is said about the value of the conserved charge Q =

∫
d3x · j0. The

condition Q = 1 is an extra-condition necessary for a ”wave function interpretation” of the
Dirac equation, i.e. the probability at every time of finding the fermion somewhere in the
space must be one. Such a condition is necessary in a ”one particle theory” such as the Dirac
equation. The energy density is

H = Ψ†(−iα · ∇+ βm)Ψ (3.24)

where αk = γ0γk and β = γ0. On shell (i.e. when the equations of motion are satisfied)
we get H = Ψ†i ∂

∂tΨ, where we find the famous operatorial association E ←→ i∂/∂t. The
appearance of negative energy is also clear at this level.

3.1.4 Feynman interpretation

In QFT the negative energy states are interpreted in the Feynman way, which we briefly
discussed in the second chapter (2.3.1). If a negative energy particle is propagating back in
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time, what we will see is a positive energy state with some inverted characteristics. Let us
consider the plane wave solution

Ψ(x) = u
(s)
∗ (p)e−ipx; (3.25)

it represents a state with p0 = E < 0, spin s, momentum p. If now the propagation is
backward in time, we would experience a positive energy state with spin −s and impulse −p.
If then we consider the shift p→− p and s→ −s we have the state

Ψ(x) = u
(−s)
∗ (−p)eip′x (3.26)

where now p′ = (
∣∣p0
∣∣ > 0,p); this is still a negative energy state (i∂/∂t projects −

∣∣p0
∣∣ < 0)

with spin −s and impulse −p, but if we reinterpret it, it represents a positive energy state
with energy

∣∣p0
∣∣ > 0, spin s, momentum p.

We introduce therefore the following spinors v(s)(p) as

v(s)(p) = N

( σipi

E+mεχ(s)

εχ(s)

)
(3.27)

where

ε =

(
0 1
−1 0

)
; (3.28)

ε changes the direction of the spin, in accord with the given interpretation. We have so

v(+)(p) = −u
(−)
∗ (−p), (3.29)

v(−)(p) = u
(+)
∗ (−p). (3.30)

The presence of the minus in the first of the last two equations seems not important
here; it seems just an arbitrary phase; it has indeed its meaning, connected with the charge
conjugation and with the spin structure of an antiparticle.

Now one may ask what does it mean to speak of a negative energy state propagating
backward in time; it sounds a bit weird. This is because we try to describe some aspects
which are not fully included in this theory, but this interpretation helps the understanding:
there are in fact only two ways to get positive energy states, one is from the natural E > 0
states, the second by this reinterpretation of the negative energy states. In both cases we are
left with positive energy states propagating forward in time, i.e. with physical meaningful
quantities.

3.1.5 Normalization and general solution

The spinors u(s)(p) are normalized imposing that

u(s)(p)u(r)(p) = δsr (3.31)

from which one gets:

N =

√
E + m

2m
. (3.32)

As a consequence, for the spinors v(s)(p) one gets

v(s)(p)v(r)(p) = −δsr; (3.33)
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this minus sign has a tremendous influence with respect to microcausality, where anticom-
mutation (and not commutation) relations will be necessary.

We now take a positive energy solution like

Ψ(s)
p (x) = Cu(s)(p)e−ipx (3.34)

and we normalize it in such a way that (in the box):
∫

d3xΨ(s)†
p (x)Ψ

(r)
p′ (x) = δsrδpp′ (3.35)

finding for C

C =
1√
V

√
m

E
; (3.36)

the same is valid for the negative energy solutions.
We write then a general solution of the Dirac equation as

Ψ(x) =
∑

s=±1/2

∑

p

1√
V

√
m

E

(
b(s)(p)u(s)(p)e−ipx + d(s)∗(p)v(s)(p)eipx

)
(3.37)

or in the continuum limit

Ψ(x) =
∑

s=±1/2

∫
d3p

(2π)3/2

√
m

E

(
b(s)(p)u(s)(p)e−ipx + d(s)∗(p)v(s)(p)eipx

)
(3.38)

where we have integrated over all the momenta and we have positive and negative energy
decomposition; b(s)(p) and d(s)∗(p) are the coefficients of the plane wave expansion. They
are generic complex numbers, apart from the normalization constraint Q = 1.

3.2 Transformations

We now discuss some transformations and symmetries of the Dirac equation. We do it briefly
for the Lorentz ones (deeply discussed in many books) and a bit more deeply for parity and
charge transformations, which play an important role in the description of bound states such
as mesons.

3.2.1 Lorentz transformation

The Dirac equation was built respecting covariance (point (b) of section 3.1), as the Einstein
equation E2 = p2 + m2 confirms.

Under a Lorentz transformation x′ = Λx it can be proved [3, 55, 58] that the wave function
transforms like

Ψ′(x′) = e−
i
4
ωµνσµν Ψ(x) (3.39)

where Λµ
ν = gµ

ν + ωµ
ν . Boosts and rotations are included in this transformation. Ψ is a

vectorial, better a spinorial field, whose components are rotated under a space-time rotation.
In particular, the spin is given by

i

[
γi, γj

]

2
=

σij

2
= εijkSk = εijk Σk

2
; (3.40)
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it can be easily proved that the Sk satisfy the usual commutation relations
[
Sk, Si

]
= iεkijSj (3.41)

and their explicit form in the Dirac representation is exactly the one given in section 3.2.
The spin is an angular momentum intrinsic in the nature of the fermionic particle and comes
directly in the game when one analyzes covariance.

3.2.2 Parity

We now consider the space inversion:

x = (t,x)→ (t,−x) = x′ (3.42)

corresponding to the improper Lorentz transformation

Λ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.43)

Be Ψ(x) a solution in the x frame:

(iγµ∂µ −m)Ψ(x) =
(
iγ0∂0 + iγk∂k −m

)
Ψ(x) = 0 (3.44)

We search a new function Ψ′(x′) that is a solution of the Dirac equation in the x′ frame
and that is connected to Ψ(x) by Ψ′(x′) = SpΨ(x), where Sp is a linear unitary 4x4 matrix
independent on space-time.

For Ψ′(x′) we have

(
iγµ∂′

µ −m
)
Ψ′(x′) =

(
iγ0∂0 − iγk∂k −m

)
SpΨ(x) = 0 (3.45)

Multiplying from the left by S−1
p we get

(
i
(
S−1

p γ0Sp

)
∂0 − i

(
S−1

p γkSp

)
∂k −m

)
Ψ(x) = 0 (3.46)

which is satisfied if (
Spγ

0S−1
p

)
= γ0, (3.47)

(
Spγ

kS−1
p

)
= −γk. (3.48)

A solution is then
Sp = ηpγ

0 (3.49)

where ηp is just a phase we can set to one.
Remembering the discussion of Chapter 2, section 2.2.5, we realize that we have a sym-

metry of the equation. If Ψ(x) is a solution of the Dirac equation, then Ψ′(t,x) = γ0Ψ(t,−x)
is a solution as well. This is actually the wave function that our colleague in the x ′ frame
experiences.

From the form of γ0 in the Dirac representation we can see ”in nuce” the opposite intrinsic
parity of a particle and an antiparticle; in fact there is an extra minus down right.

This fact is particularly important for the determination of the parity of a meson, which
is a bound state of two fermions, a quark and an antiquark.
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3.2.3 C-Transformation

Up to now we dealt with a one-particle theory with positive and negative energy solutions;
as anticipated, the theory is in this form not complete. QFT shows that the negative energy
states are reinterpreted as antiparticles, according to the discussed Feynman-interpretation.

We can in any case discuss the C-transformation, i.e. the interchange of particles with
antiparticles, noting that it has to transform positive energy states into negative energy
states. So, an electron with spin up and momentum p will be transformed into a negative
energy state with spin down and impulse −p, which can be thought as flying back in time,
being then a positron with spin up and impulse p. This can be understood consistently only
in the framework of QFT: here it’s not completely clear what one means by saying ”going
backwards in time”, and it must be accepted as an heuristic approach to the problem.

Nevertheless we can do it: in order to change the sign of the energy and the momentum
it is enough to consider the conjugate of the wave function:

Ψ→ Ψ∗ (3.50)

We have to find a new solution of the Dirac equation which contains Ψ∗; more precisely we
search a solution like

ScΨ
t
= Sc(γ

0)tΨ∗ (3.51)

where (γ0)t is introduced for convenience.
In order to do it let us start taking the conjugate of the Dirac equation:

(−i(γµ)∗∂µ −m)Ψ∗(x) = 0; (3.52)

then, by inserting (γ0)t(γ0)t = 1 we get

(
−i(γµ)∗(γ0)t∂µ −m(γ0)t

)
Ψ

t
= 0. (3.53)

Now, consider that

(γµ)∗(γ0)t = (γ0(γµ)†)t = (γ0γ0γµγ0)t = (γ0)t(γµ)t (3.54)

we find the following equation

(
i(−γµ)t∂µ −m

)
Ψ

t
= 0. (3.55)

We have to find Sc such that
(iγµ∂µ −m) ScΨ

t
= 0; (3.56)

multiplying from the left with S−1
c the last equation is fulfilled if

S−1
c γµSc = (−γµ)t; (3.57)

this defines Sc.
Let us consider the Dirac representation; in this case we can find Sc like

Sc = ηC iγ2γ0 = −ηC

(
0 ε
ε 0

)
; (3.58)

where ηC is just a phase we fix to −1 (in order to get rid of the extra-minus in front of the
matrix).
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If we take the two positive energy solutions

Ψ(s) = u(s)(p)e−ipx (3.59)

and we consider the transformation

Ψ→ Ψc = ScΨ
t
, (3.60)

taking into account that

Ψ(s)∗ = u(s)∗(p)eipx = N

(
χ(s)

(σ1p1−σ2p2+σ3p3)
E+m χ(s)

)
eipx (3.61)

(σ2 changes sign through complex conjugation) we have

Ψ(s)
c = Scγ

0Ψ(s)∗ =

=

(
0 ε
ε 0

)(
1 0
0 −1

)
N

(
χ(s)

(σ1p1−σ2p2+σ3p3)
E+m χ(s)

)
eipx = v(s)(p)eipx. (3.62)

(Note that ε commutes with σ2 but anticommutes with σ1 and σ3 ).
We get exactly the solution written through the spinors v(s), as we correctly argued in

section 2.4. This procedure also shows that the spinors v(s)(p) are the correct ones for the
description of antiparticles.

3.3 Second Quantization

We have now to go from the Dirac equation theory to quantum field theory, which describe
many particles. The function Ψ(x) becomes a field:

Ψ(x)→ Ψ̂(x); (3.63)

instead of the function Ψ(x) we have an operator Ψ̂(x); all the physical information about
the system is contained in a vector |s〉 , belonging to the vectorial space F of the physical
states, which by assumption is an Hilbert-space. We follow step by step the arguments of the
second chapter (see 2.2.1), apart from the requirement of Hermiticity of the field operator,
which here is not imposed because the quantum mechanical field is not real.

For the quantized field Ψ̂(x), instead of the complex number b(s)(p) and d(s)∗(p), we have
now two operators b(s)(p) and d(s)†(p). The field operator Ψ̂(x) looks like:

Ψ̂(x) =
∑

s=±1/2

∫
d3p

(2π)3/2

√
m

E

(
b(s)(p)u(s)(p)e−ipx + d(s)†(p)v(s)(p)eipx

)
. (3.64)

Calling Pµ the four-momentum operator we assume the validity of the Heisenberg equa-
tion:

∂µΨ̂(x) = i
[
Pµ, Ψ̂(x)

]
, (3.65)

from which it follows that [
Pµ, b(s)(p)

]
= −pµb(s)(p)
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[
Pµ, d(s)†(p)

]
= pµd(s)†(p)

[
Pµ, b(s)†(p)

]
= pµb(s)†(p)

[
Pµ, d(s)(p)

]
= −pµd(s)(p). (3.66)

We assume that the theory admits a vacuum |0〉 , (see the discussion of chapter 2, section
2.2.3 and in the beginning of the present chapter) for which we fix the four-momentum to be
zero:

Pµ |0〉 = 0; (3.67)

the vacuum is by definition the state with minimal energy, which we set to zero. In order
this being possible it is clear from the relations (3.66) that we need

b(s)(p) |0〉 = d(s)(p) |0〉 = 0, (3.68)

otherwise we would not have a minimum for the energy. In this way we get rid of the
negative energy states in a similar way as in the second chapter. Note that in that case there
was no negative energy at a classic field level, while here also at the Dirac equation level
(first quantization) there was. In any case the elimination of these states is based on the
fundamental assumption of the existence of a minimum of the energy, i.e. on the existence
of the vacuum.

We are left with four possibilities: 2 from b(s)†(p) and 2 from d(s)†(p); the state b(s)†(p) |0〉
represents an electron with spin s and four-momentum p; analogously d(s)†(p) |0〉 represents
a positron with spin s and four-momentum p.

At this point we have to introduce the commutation rules; we know from experiments
that two fermions cannot occupy the same state, according to the well known Pauli principle.
Therefore we postulate:

{
b(s)(p1), b

(r)†(p2)
}

= δrsδ(p1 − p2); (3.69)

{
d(s)(p1), d

(r)†(p2)
}

= δrsδ(p1 − p2), (3.70)

and zero for all the others anticommutators.

If we consider a state with two electrons we have:

|s〉 = b(s)†(p1)b
(r)†(p2) |0〉 = −b(r)†(p2)b

(s)†(p1) |0〉 ; (3.71)

this happens in accord with the Fermi-Dirac statistic; furthermore, if p1 = p2 and s = r then
we have |s〉 = 0, in accord with the Pauli principle.

The introduced anticommutation rules are also consistent with microcausality; if we have
an observable A(t,x) we expect that

[A(t,x), A(t,y)] = 0 (3.72)

if x 6= y; first note that Ψ(x) is itself not an observable (it is not Hermitian), but with Ψ(x) we
can construct observable quantities such as Ψ†(x)Ψ(x), Ψ(x)Ψ(x), .... these quantities satisfy
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microcausality, justifying the choice of the anticommutation relations; this can be proved
noting that we have {

Ψ(t,x),Ψ(t,y)
}

= γ0δ3(x− y),

{Ψ(t,x),Ψ(t,y)} =
{
Ψ(t,x),Ψ(t,y)

}
= 0 (3.73)

and using the identity

[AB,CD] = A {B,C}D −AC {B,D} − C {A,D}B + {C,A}DB. (3.74)

In virtue of (3.73) this quantity vanishes for space like separations, in accord with micro-
causality. The relations (3.73) are the key of this phenomenon.

If one introduced commutation relation instead of anticommutation one would find a
series of inconsistencies [3]. Similarly, if one tried to impose anticommutation relations in
the scalar case, a violation of microcausality would occur. This is ”in nuce” the spin-statistic
connection, asserting that bosons satisfy the Bose-Einstein statistic, and fermions the Fermi-
Dirac statistics.

In the end, let us note that in (3.64) the creation and annihilation operators come together
with the corresponding spinors. At a diagrammatic level it means to attach at each external
line a spinor, more precisely a u(r)(p) for an incoming fermion, u(r)(p) for an outgoing one,
v(r)(p) for an incoming antifermion and v(r)(p) for an outgoing one (see references in the end
of section 2.1.1).

3.3.1 Parity

We now want to discuss parity and charge transformation in the context of QFT. Ψ(x) is
now an operator (we omit the ”hat” for simplicity); if we consider a parity transformation

x = (t,x)→ (t,−x) = x′, (3.75)

there must exist in QFT an operator UP with whom the states transform:

|s〉 → UP |s〉 ; (3.76)

equivalently we can transform an operator as (see 2.2.5)

F → U−1
P FUP . (3.77)

Let us now take into account the field operator Ψ(x); at the level of the Dirac equation, we
have seen (3.2.2) how the wave function transforms under parity transformations:

Ψ′(t,x) = γ0Ψ(t,−x); (3.78)

we then expect to have

U−1
P Ψ(x)UP = γ0Ψ(t,−x). (3.79)

Considering the field expansion (3.64) we have:

U−1
P Ψ(x)UP =
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∑

s=±1/2

∫
d3p

(2π)3/2

√
m

E

(
U−1

P b(s)(p)UP u(s)(p)e−ipx + U−1
P d(s)†(p)UP v(s)(p)eipx

)

= γ0Ψ(t,−x) =

∑

s=±1/2

∫
d3p

(2π)3/2

√
m

E

(
b(s)(p)γ0u(s)(p)e−iEt−ipx + d(s)∗(p)γ0v(s)(p)eiEt+ipx

)
. (3.80)

Changing the sign in the three-momentum integration of the last integral and taking into
account that

γ0u(s)(−p) = u(s)(p) (3.81)

γ0v(s)(−p) = −v(s)(p) (3.82)

(this is easily seen in the Dirac representation, but it is true in any case) we then find by
comparison the transformation for the creation and annihilation operators:

UP b(s)†(p)U−1
P = b(s)†(−p), (3.83)

UPd(s)†(p)U−1
P = −d(s)†(−p). (3.84)

As we can see there is again a minus sign when compared to the positron creation operator;
this is due to the already mentioned opposite parity of a fermion and antifermion. This minus
sign plays a crucial role in the study of the mesons, which are bound states of a fermion and an
antifermion: the parity of a meson state is reversed because of this minus sign. Considering
that the vacuum is invariant under parity transformations, we have for an electron state:

∣∣e−(p, s)
〉

= b(s)†(p) |0〉 → UP

∣∣e−(p, s)
〉

= UP b(s)†(p) |0〉 =

= UP b(s)†(p)UP U−1
P |0〉 = b(s)†(−p) |0〉 =

∣∣e−(−p, s)
〉
; (3.85)

for the positron state we have following analogous transformations:

∣∣e+(p, s)
〉
→ −

∣∣e+(−p, s)
〉
. (3.86)

The origin of this minus in contained in the nature of γ0 and in the spinorial structure of the
Ψ(x).

3.3.2 Charge Transformation

We want to do the same for the charge transformation; of course we expect that the corre-
sponding operator UC transforms the electron creators to the positron ones and vice-versa;
in formulas:

UCb(s)†(p)U−1
C = d(s)†(p), (3.87)

UCd(s)†(p)U−1
C = b(s)†(p). (3.88)
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This is indeed the case if UC is given by

U−1
C Ψ(x)UC = ScΨ

T
. (3.89)

This justifies a posteriori what we did previously only in the framework of the Dirac equation.
The last equations can be proved taking into account that:

Scu
(s)T (p) = v(s)(p) (3.90)

Scv
(s)T (p) = u(s)(p). (3.91)

The total effect of the C-transformation is to invert particles to antiparticles; this one
also is important in the meson study.

Ergo, we have for the transformation of an electron and a positron:
∣∣e−(p, s)

〉
→
∣∣e+(p, s)

〉
; (3.92)

∣∣e+(p, s)
〉
→
∣∣e−(p, s)

〉
. (3.93)

3.4 Propagator

3.4.1 Basic formulas

We now turn to the fermion propagator, in particular discussing some properties of the quark
propagator.

As discussed in the second chapter (2.3), the propagator in QFT is given by the two point
Green function

Sα,β(x− y) = −i
〈
0
∣∣T [Ψα(x)Ψβ(y)]

∣∣ 0
〉

=

∫
d4q

(2π)4
(−iSα,β(q)) e−iq(x−y), (3.94)

where T refers to the time ordered product, this time defined for fermion operators as

T [Ψα(x)Ψβ(y)] =
Ψα(x)Ψβ(y) if x0 > y0

−Ψβ(y)Ψα(x) if y0 > x0 . (3.95)

The extra-minus results from the anticommutation properties of a fermion field. Using the
expression (3.64) one can easily calculate the propagator, finding

S(q) =
i

q/−m
= i

q/ + m

q2 −m2
(3.96)

This is of course the free propagator, when no interaction is considered. Including interactions
causes a modification of the propagator, as discussed in the second chapter for the scalar case
(section 2.4.3). A general form for the fermionic propagator is then [24]

S(q) = i
Z(q2)

q/−m(q2)
(3.97)

where the physical mass is then given by m2
P = m(q2 = m2

P ). The calculation of the running
functions Z(q2) and m(q2) within QFT is a very difficult task [24, 25, 79]. We now give some
examples from the two most famous quantum theories, namely QED and QCD.
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3.4.2 QED case

We consider the electron. The physical mass of this particle is known and precisely measured,
and we call it me. The QED Lagrangian [3, 54, 55, 58] describes the interaction of electrons
and photons, and is written out as:

LQED = Ψ(x) (iγµ∂µ −m)Ψ(x) + eΨ(x)γµΨ(x)Aµ(x)− 1

4
F µνFµν (3.98)

where Ψ(x) is the fermionic electron field, m its (bare) mass, Aµ the photon field with e
the (bare) coupling constant. F µν = ∂µAν − ∂νAµ is the field tensor responsible for the
description of free photons. The fact that the photon itself carries an index µ means that it
has a spin, more precisely spin S = 1. It is not my purpose now to discuss the rich structure
of the QED Lagrangian, but only describe some features of the electron propagator.

After summing over the self-energy Feynman diagrams, one can show [54] that the fol-
lowing form for the electron propagator is valid:

Se(q) =
i

q/−me
(1 + corrections). (3.99)

This formula is valid for small q2, because in this regime the QED coupling is small. As
discussed in the first chapter, in the framework of a renormalizable QFT the physical coupling
constant becomes a function of µ, i.e. the energy scale at which we are performing an
experiment. In QED one then has eP = eP (µ2) where the suffix P again means ”physical”.
With ”corrections” we intend in fact a series in eP . This propagator, being valid for small
momenta, has indeed a pole for me, i.e. for the physical electron mass, as it should be.

If one would consider QED at very high momenta, where eP becomes very large, the
previous expression would not be longer valid. In fact, the series with whom one expresses the
corrections would not be perturbative anymore. The coupling constant grows for increasing
µ2, and it is still an open question to understand what is going on in the non-perturbative
QED sector. QED is a renormalizable theory, as the ϕ4 theory we described in the previous
chapter. However, we don’t know what happens at large momenta. A cut-off enters in the
game, on which the results depend on. This dependence, although much suppressed for our
energy scale, may change the results in the high energy sector. In this sense QED can also be
a low energy effective theory of a larger framework we still have to discover, with the cut-off
depending on that theory.

3.4.3 QCD case

The QCD Lagrangian describes quarks and gluons (see the introduction, chapter 1) and has
a similar form to the QED one. The gluon-quark interaction term looks like [3], restricting
to the light quark flavor u

LQCD,quark−gluon = gu(x)γµ λa

2
u(x)Ga

µ(x) (3.100)

where u(x) is the u-quark fermion field, g the bare coupling and Ga
µ(x) the gluon field.

The extra-index a refers to another quantum number, the color, which is exchanged in the
interaction. λa is a SU(3) Gell-Mann matrix. We refer to the sixth chapter (and Refs. there)
for a more precise discussion of the Lagrangian; here we are interested in some aspects of
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the quark propagator. The running renormalized physical coupling gP (µ2) shows an opposite
behavior to the QED case of eP (µ2): it is big for small µ and small for large ones. In case
of an high-energy process involving a u-quark, a very useful form for the u-quark propagator
has been used:

Su(q) =
i

q/−mu
(1 + corrections) (3.101)

where mu ' 5 MeV . The corrections can here be calculated within QCD and a perturbative
expansion is possible because the coupling is small for high quark momenta.

A very important point should now be stressed. Su(q) is valid for large
∣∣q2
∣∣ , i.e. Su(q)

does NOT have a pole for q2 = m2
u. The parameter mu is not the physical mass of the quark,

but a useful parameter [12, 80]. No free quark has been seen up to now.
The previous high energy approximation for the quark propagator is not valid in the

low-energy regime. This is the range set by the scale of QCD bound states, i.e. hadrons. At
this level another form for the quark propagator has been used, giving rise to a successful
descriptions of the bound state phenomenology for hadron masses below 1 GeV :

Su(q) =
i

q/−m∗
u

(3.102)

where m∗
u is of the order of 300 − 500 MeV (depending on the model; see [21, 22, 23,

24, 29, 67, 81]), i.e. much larger than the previous u-quark mass. No ”corrections” are
indicated here because in this QCD regime no expansion in the coupling is possible. This
form is a phenomenological one, where the quark mass m∗

u has been fitted to reproduce some
experimental quantities, as, for example, the pion mass. The non-perturbative QCD regime
causes a dramatic change in the quark propagator: a very large ”mass” comes out at low
energy. A note of care: the last form for Su(q) is valid for

∣∣q2
∣∣ < m∗2

u , and again no pole is
present. The parameter m∗

u is NOT the physical quark mass.
Here we are discussing at a propagator level the phenomenon of ”dressing” discussed in

the Introduction: the ”high energy” light quarks get heavy because they ”attract” quark-
antiquark pairs from the quantum sea around them.

To extract the quark propagator directly from QCD has been proven to be a difficult
task. A full description of this quantity should show the low energy and the high energy
limits discussed above. Recently many progresses have been made for the evaluation of
the quark propagator, specially from Lattice QCD [82] and from Dyson-Schwinger equation
studies [24, 25, 79, 83]. The running mass function mu(q2) has been calculated for Euclidean
momenta, i.e. for q2 < 0. The correct limits

lim
q2→−∞

mu(q2) = mu ' 5 MeV (3.103)

lim
q2→0−

mu(q2) = m∗
u ' 300− 500 MeV (3.104)

are found. The typical schematic behavior of the running mass function has been displayed
in Fig. 3.1, where one can see in the Euclidean sector the connection of the nonperturbative
to the perturbative regime.

The calculation of this quantity in the Minkowski region (q2 > 0) is even more difficult.
First attempts in this direction have been done within the DSE method, trying to extrapolate
this quantity to the other part of the plane [79, 83]. In order to calculate hadron properties
one needs to know the quark propagator inside the parabola described in section 2.9, which
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Figure 3.1: Running mass function.
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has a consistent part in the Minkowski region. The precise form of the mass function in the
Minkowski region is still unknown; there are different speculations and hypotheses [24, 79, 83],
but the issue is far from being solved. This is why we have to put a question mark on the
right side of figure 3.1.

Similar behaviors for the quark propagators are found also for the other two light quark
species, d and s. The d quark propagator is very similar to the u one, so that usually one
employs the simplification mn = mu = md and similarly at low energies m∗

n = m∗
u = m∗

d; in
reality, the d-quark is slightly heavier (few MeV ), but this difference can safely be neglected,
especially in low energy studies. On the contrary, this cannot be done for the s flavor, for
which one has ms ≈ 100 MeV in the high energy sector and m∗

s = 500 − 700 MeV in the
low energy one.

The problem of the (non)existence of poles of the quark propagator is still an open issue.
Even if a pole is present, no physical quark should exist. Studies about this problem are
nowadays in progress.

In phenomenological QCD studies some forms for the quark propagator without poles
have been used. A typical example is the following [84, 85]:

Su(q) =
i

q/−m∗
u

(1− exp[β(q2 −m2)]) (3.105)

where the extra-term removes the pole for q2 = m∗2
u . The propagator is now an entire function,

and the singularity is shifted for q2 →∞. Such a propagator can be valid only at low energy,
because the large energy limit is not fulfilled. It should be stressed that studies with this kind
of propagators cannot give precise results, but only show some patterns and features of the
difficult underlying theory. Such propagator forms should be used until better QCD-derived
propagators are available.

Unfortunately the difficulty in performing the calculations grows with the complexity of
the propagator. Already this form implies some care; the QED Ward identity, for example,
is not anymore valid.

We conclude this section noting that the non-perturbative features of QCD really con-
stitute a hard work, but they are necessary for a deep and complete understanding of the
physical world.

3.5 Pseudoscalar case

3.5.1 Spin decomposition

In the study of bound states we often have to deal with bilinears, i.e. with operators of the
form Ψ(x)ΓΨ(x), where Γ = 14, γ

µ, σµν , γµγ5, γ5 and where Ψ(x) is a fermionic field (typically
a quark or a lepton). The objects Ψ(x)ΓΨ(x) are covariant, and transform in a determined
way under parity and charge conjugation. We will consider closer the pseudoscalar and the
scalar case, which are obtained with γ5 and 14 respectively. We will also write a Lagrangian
for the description of such bound states, in analogy with the arguments of section 2.5.

The object Ψ(x)iγ5Ψ(x) is pseudoscalar, as one can see by considering its transformation
properties under Lorentz and parity transformations. In this section we want to study these
characteristics in a somewhat different way, introducing a pseudoscalar current and evaluating
the spin-decomposition of it.
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In chapter 2 we considered the scalar field ϕ and the nonlocal current J(x) =
∫

d4yϕ(x +
y/2)ϕ(x − y/2)Φ(y). We now extend these consideration to the pseudoscalar quantity

JP (x) =

∫
d4yΨ(x + y/2)iγ5Ψ(x− y/2)ΦP (y). (3.106)

We have seen that the state
∫

d4xe−ipxJ(x) |0〉 contains the bound state structure of two
scalar particles and that the vertex function Φ(y) is directly connected to the wave function
of the composite object. We now analyze the structure

∫
d4xe−ipxJP (x) |0〉 (3.107)

where we have the extra complication of the spinorial structure of the field operators. Ex-
pressing the fields as in (3.64) we get for JP (x) |0〉

JP (x) |0〉

=
∑

s1,s2=±1/2

∫
d3p1

(2π)3
d3p2

(2π)3

√
m

E1

√
m

E2
ei(p1+p2)x

(
u(s1)(p1)iγ

5v(s2)(p2)
)

·b†(s1)(p1)d
†(s2)(p2) |0〉

∫
d4yei

(p1−p2)
2

yΦP (y). (3.108)

Then, we consider
∫

d4xe−ipxJP (x) |0〉 in the frame p = p1 + p2 = (M,0) where with M we
indicate the total energy of the system, which corresponds to the mass of the bound state.
Introducing the Fourier transform of Φ(y) we get a state proportional to

∫
d3q

m

E


 ∑

s1,s2=±1/2

u(s1)(q)iγ5v(s2)(−q)




·b†(s1)(q)d†(s2)(−q) |0〉 Φ̃P (q = (0,q)). (3.109)

The term b†(s1)(q)d†(s2)(−q) |0〉 clearly shows the particle-antiparticle content of the state,
to which the modulating vertex function is attached. The spin structure is contained in the
term

(
u(s1)(q)iγ5v(s2)(−q)

)
, which we can express like (after a bit of algebra):

(
u(s1)(q)iγ5v(s2)(−q)

)
= i

E + m

2m

(
1 +

q2

(E + m)2

)
εs1,s2 (3.110)

where εs1,s2 is the antisymmetric Ricci-tensor of dimension 2. Note that the presence of the
matrix ε for the spinor v(s2)(−q) is fundamental to get this result (see eqs. (3.27) and (3.28)).
We already discussed it in sections 2.3 and 2.4. If one would not take it into account, we
would obtain wrong results and the wrong non-relativistic limit. The Ricci tensor εs1,s2 is
fundamental for the description of a spin zero state. In fact we get

|s〉 = C

∫
d3q

m

E

E + m

2m

(
1 +

q2

(E + m)2

)
Φ̃(q)

(
b†(+1/2)(q)d†(−1/2)(−q)− b†(−1/2)(q)d†(+1/2)(−q)

)
|0〉 (3.111)
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where C is a normalization constant.

The spin structure is then

|spin〉 =
(
b†(+1/2)(q)d†(−1/2)(−q)− b†(−1/2)(q)d†(+1/2)(−q)

)
|0〉 (3.112)

which clearly shows a spin 0 state like (|↑↓〉 − |↓↑〉). If we apply the parity operator UP and
the charge conjugation UC on the state |s〉 we find

UP |s〉 = (−1)L+1 |s〉 (3.113)

UC |s〉 = (−1)L |s〉 (3.114)

where L is the relative angular momentum coming from the transformation of Φ̃(q = (0,q))

Φ̃(q = (0,−q)) = (−1)LΦ̃(q = (0,q)). (3.115)

If we assume a q2 dependence of it we simply have L = 0, and we are therefore describing an
object of spin zero, angular momentum zero, negative parity and positive charge conjugation.
All these properties can be summarized in

JPC = 0−+ (3.116)

where J = S + L is the total angular momentum.

In the study of the parapositronium (electron-positron bound state with L = S = 0, see
for example [59]) one indeed considers a state like

|parapositronium〉 =

1√
V

∫
d3q

(2π)3/2
A(q)

1√
2

(
b†(+1/2)(q)d†(−1/2)(−q)− b†(−1/2)(q)d†(+1/2)(−q)

)
|0〉 (3.117)

where the same structure is present. Just a note of care about the direct connection of the
wave function in momentum space and the vertex function must be done. According to the
related discussion of chapter 2, section 2.8 we expect to have

Φ̃P (q) = c(2
√

q2 + m2 −M)A(q), (3.118)

where the vertex function depends on q only and c is a proportionality constant. Such an
expression is valid in the non-relativistic limit, a condition that is fulfilled in the parapositro-
nium case. Indeed, we will analyze this case in the next chapter, where we will see that the
scalar result can be also applied to the present spinorial case.

Far from the non-relativistic limit the vertex function describes the finite dimensions of
the bound state, which are modelled by a covariant Ansatz.
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3.5.2 Lagrangian approach

We have seen that the current JP (x) is the correct one for the description of a pseudoscalar
object. Following the discussion of the previous chapter we consider the Lagrangian

L = Ψ(x) (iγµ∂µ −m)Ψ(x) +
KP

2
J2

P (x) (3.119)

with the introduced current

JP (x) =

∫
d4yΨ(x + y/2)iγ5Ψ(x− y/2)ΦP (y). (3.120)

Scattering in the fermion-antifermion channel is at first order

− iM1,channel1 = Φ̃(
p1 − p2

2
)
(
v(r2)(p2)iγ

5u(r1)(p1)
)

(iKP ) ·

·
(
u(r3)(p3)iγ

5v(r4)(p4)
)

Φ̃(
p3 − p4

2
). (3.121)

The second order, always in this channel, is

−iM2,channel1

= Φ̃(
p1 − p2

2
)
(
v(r2)(p2)iγ

5u(r1)(p1)
) (

iKP

(
−iΣP (p2)

)
iKP

)
·

·
(
u(r3)(p3)iγ

5v(r4)(p4)
)

Φ̃(
p3 − p4

2
) (3.122)

where ΣP (p2) is the ”bubble” contribution which reads

ΣP (p2) = −i

∫
d4q

(2π)4
Tr[S(q + p/2)iγ5S(q − p/2)iγ5]Φ̃2

P (q). (3.123)

S(q) is the quark propagator, the trace has been taken together with an extra-minus in front
due to the presence of a fermion loop.

Summing up all the bubbles up to order infinity we get (see Fig. 3.2)

−iMchannel1 = −iM1,channel1 − iM2,channel1 − ... =

= Φ̃(
p1 − p2

2
)
(
v(r2)(p2)iγ

5u(r1)(p1)
) (
−iT (p2)

)

·
(
u(r3)(p3)iγ

5v(r4)(p4)
)

Φ̃(
p3 − p4

2
) (3.124)

with
T (p2) = −KP + KP ΣP (p2)KP + ...

= −
(
1−KP ΣP (p2)

)−1
KP = −

(
K−1

P −ΣP (p2)
)−1

. (3.125)

The mass M of the bound state is then given by the pole of the T matrix

KP =
1

ΣP (p2 = M2)
(3.126)



CHAPTER 3. BOUND STATES OF FERMIONS 87

Figure 3.2: Two-body scattering and bound state formation.
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Apart from the differences due the spinorial nature of the fields, the meaning of these formulas
and the relative explanation is the same as in section 2.6.

By performing a Taylor expansion for p2 = M2, we can express T like

T =
g2
P

p2 −M2
(3.127)

with

gP =
1√

Σ′
P (p2 = M2)

(3.128)

being the bound state-constituents coupling constant.

3.5.3 Bound state field

As in the second chapter, section 2.7, we can introduce a composite field P (x) and the
corresponding Lagrangian

L = Ψ(x) (iγµ∂µ −m) Ψ(x) + gP P (x)JP (x)− 1

2
α2P (x)2 (3.129)

where equivalence is achieved by imposing

gP =
1√

Σ′
P (p2 = M2)

, (3.130)

α =
ΣP (p2 = M2)

Σ′
P (p2 = M2)

. (3.131)

In this case the propagator of the composite pseudoscalar field P, after having summed over
all the bubbles, is exactly i/(p2 −M2).

In order to calculate the decay properties of such a pseudoscalar field one considers then
the interaction Lagrangian [29, 67]

Lint = gP P (x)JP (x) (3.132)

together with the compositeness condition gP =
(
Σ′

P (p2 = M2)
)−1/2

. The basic Feynman
diagram described by this interaction Lagrangian is shown in Fig. 3.3. We have the same
ingredients as in the scalar case, plus the extra matrix iγ5 due to the spinorial nature of the
bound states.

3.5.4 Quarks

In nature we encounter pseudoscalar objects pretty often. In QED, the theory of electrons
and photons, a typical example is the already mentioned parapositronium, a bound state of
an electron and a positron. In QCD, as anticipated in the first chapter and in section 3.4.2,
the quarks carry two other quantum numbers, the flavors u, d and s and the colors R,G,B.
The fermionic quark field carries two extra-indices q = qi,c where i = u, d, s and c = R,G,B.

When we write down the current we have to take into account these two extra-indices.
As discussed in 1.2 and we will discuss this in more detail in the sixth chapter, each quark-

antiquark mesonic state has the same color wave function
√

1
3(RR+GG+BB), which corre-

sponds to a ”white” object. On the other hand, one has all the possible flavor decompositions.
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Figure 3.3: Vertex for the interaction of the bound state field with its components.

A generic pseudoscalar current is then written as

JP (x) =

∫
d4yqi,c(x + y/2) (Tf )i,j iγ5qj,c(x− y/2)ΦP (y) (3.133)

where a summation over c is understood (leading exactly to the desired color wave function)
and Tf is a flavour matrix. In this way we can describe the pseudoscalar meson nonet,
where the pion plays a crucial role. In order to describe, for instance, the neutral pion
π0 = 1√

2
(uu− dd) we consider the matrix

Tπ0 =
1√
2




1 0 0
0 −1 0
0 0 0


 (3.134)

leading to

Jπ0(x) =
1√
2

∫
d4y[uc(x + y/2)iγ5uc(x− y/2)

−dc(x + y/2)iγ5dc(x− y/2)]Φπ0(y) (3.135)

where Φπ0(y) is the pion vertex function.
There are indeed nine independent possibilities to combine 3 quarks and 3 antiquarks,

corresponding to the 8 + 1 Gell-Mann λa matrices plus the identity (see again chapter 6).
The positronium is a non-relativistic object, while the pion is highly relativistic. Indeed

the current is very similar (apart from the extra flavor and color decomposition for the
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pion), but we expect a different form for the vertex function: a non-relativistic one for the
positronium, a covariant one for the pion.

3.5.5 Evaluation of the mass operator

3.5.5.1 Free propagator

In this subsection we discuss the calculation of the mass operator, i.e. the ”bubble” diagram
given by

ΣP (p2) = −i

∫
d4q

(2π)4
Tr[S(q + p/2)iγ5S(q − p/2)iγ5]Φ̃2

P (q). (3.136)

This discussion is not necessary for the understanding of the underlying physical ideas, but
it gives a possible way to evaluate the mass operator. First, we consider the free propagator

S(q) =
i

q/−m
= i

q/+ m

q2 −m2
. (3.137)

Then, considering that

Tr
[
(p/1 + m) iγ5 (p/2 + m) iγ5

]
= 4(p1 · p2 −m2), (3.138)

and performing a Wick-rotation (q0 = iq4) in the rest frame for the bound state p = (
√

p2,0),
we get

ΣP (p2) =

∫
d4qE

(2π)4
4(q2

E + p2/4 + m2)

(q2
E − p2/4 + m2)2 + (q(4))2p2

Φ̃2
P (qE). (3.139)

If covariance is preserved, i.e. Φ̃P (qE) = Φ̃P (q2
E), this formula is valid in every covariant

reference frame. If not, it is valid in the rest frame only. Then, going to spherical coordinates
with s2 = q2 we find

ΣP (p2) =

1

π3

∫ ∞

0
s2ds

∫ ∞

−∞
dq(4) s2 + (q(4))2 + p2/4 + m2

(s2 + (q(4))2 − p2/4 + m2)2 + (q(4))2p2
Φ̃2

P (qE). (3.140)

Finally, one can solve (3.140) numerically. It consists of a two-dimensional integration
which can be handled, for example, by using Mathematica. Different choices for the vertex
function do not constitute a numerical problem within this approach.

One can note from (3.140) that for p2 > 4m2 the previous integral diverges, because a
pole is encountered in the integration. The form of the mass operator for the same parameter
set analyzed in the scalar sector ( m = 0.3 GeV, Λ = 1 GeV and Gaussian form for the
vertex function) is shown in Fig. 3.4. A similar qualitative behavior when compared to the
scalar case is found. The mass operator goes to infinity for p2 → 4m2, i.e. at the constituent
production threshold.

3.5.5.2 Quark case

What changes if we do the same calculation for π0? In order to calculate it we have to specify
the quark propagator. It is a matrix in the Dirac, flavor and color space with

Scd = δcd




Su 0 0
0 Sd 0
0 0 Ss


 (3.141)
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Figure 3.4: Comparison of the two mass operators in dependence on p2 for the free and entire
propagators.
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where each Si is a Dirac 4 × 4 matrix. The color part gives the identity matrix δcd (a
consequence of SUc(3) color symmetry, see chapter 6), the flavor part is diagonal, but not
the identity (we would have this if the propagators for the different flavors were identical,
and this would mean also SUf (3) flavor symmetry).

When calculating the bubble, we find an extra factor Nc = 3 (number of colors) and the
extra flavor decomposition. We then get

Σπ0(p2) =

−i
Nc

2

∫
d4q

(2π)4
Tr[Su(q + p/2)iγ5Su(q − p/2)iγ5]Φ̃2

π0(q)

−i
Nc

2

∫
d4q

(2π)4
Tr[Sd(q + p/2)iγ5Sd(q − p/2)iγ5]Φ̃2

π0(q) (3.142)

where one can see the u and the d bubble contributions. Under the hypothesis Sn = Su = Sd

(well justified, as discussed before) we have

Σπ0(p2) = −iNc

∫
d4q

(2π)4
Tr[Sn(q + p/2)iγ5Sn(q − p/2)iγ5]Φ̃2

π0(q) (3.143)

i.e. formally the same expression as for the case of positronium, where the only difference is
the extra-color factor Nc and, of course, the different vertex function.

3.5.5.3 Entire propagator

Le us consider now the calculation of the bubble when the propagator is described by an
entire function [84, 85]

S(q) =
i

q/−m

(
1− exp[β(q2 −m2)]

)
. (3.144)

After performing the Wick rotation one gets

ΣP,β(p2) =

1

π3

∫ ∞

0
s2ds

∫ ∞

−∞
dq(4) s2 + (q(4))2 + p2/4 + m2

(s2 + (q(4))2 − p2/4 + m2)2 + (q(4))2p2
·

·
(
1− 2 cos[βq(4)

√
p2]e−β(q2

E−p2/4+m2) + e−2β(q2
E−p2/4+m2)

)
Φ̃2

P (qE). (3.145)

The term in the parenthesis has a zero exactly where the denominator has one, thus there is
no pole also for p2 > 4m2. The suffix β has been introduced to distinguish this mass operator
from the one obtained with the free propagator form. One can extend the calculation for
larger bound state masses, because no decay into a fermion and an antifermion is possible.
This example directly shows the utility of propagators containing no poles; no ”imaginary
part” is found in the calculation of the mass operator or similar Feynman diagrams.

The situation and the comparison with the previous mass operator is displayed in Fig.
3.4. In the limit β → ∞ the mass operator ΣP,β(p2) (3.145) tends to ΣP (p2) (eq. (3.139)).
If β is large the two forms are similar for small p2. However, when p2 increases the difference
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between the two mass operator functions becomes larger. ΣP,β(p2) does not have any pole;
for KP displayed in the figure there is a crucial bound state mass difference. The bound state
mass from (3.139) is obviously M 2 < 4m2, while M 2

β from (3.145) is larger than 4m2. In this
last case the bound state cannot decay into the two subcomponents, it does not matter how
energetic is the bound state. This is a schematic way to describe confinement.

An extension to the quark case is now straightforward.

3.6 Scalar case

3.6.1 Spin decomposition

We now study the scalar case Ψ(x)Ψ(x) where we have the identity matrix between the fields.
This object is scalar, i.e. J = 0 and with positive parity. We will show that it corresponds
to a S = L = 1 state, which combine to give a scalar.

The current looks like

JS(x) =

∫
d4yΨ(x + y/2)Ψ(x− y/2)ΦS(y); (3.146)

as before we analyze
∫

d4xe−ipxJS(x) |0〉 in the rest frame where p = (M,0). What follows is
worked out as in the pseudoscalar case, apart from the replacement iγ5 → 14. We therefore
find a state proportional to

∫
d3q

m

E


 ∑

s1,s2=±1/2

u(s1)(q)v(s2)(−q)




·b†(s1)(q)d†(s2)(−q) |0〉 Φ̃S(q = (0,q)) (3.147)

which, despite its appearance, is more complicated than the previous one, because we cannot
so easily decompose the spin part. We have indeed

(
u(s1)(q)v(s2)(−q)

)
= −2

(
χ†(s1) σiqi

E + m
εχ(s2)

)
(3.148)

with three different pieces from σiqi = σ1q1 + σ2q2 + σ3q3. Let us for example consider σ3q3

from which we get

−2χ†(s1) σ3q3

E + m
εχ(s2) =

−2q3

E + m
σs1,s2

1 (3.149)

which gives rise to the spin structure

(
b†(+1/2)(q)d†(−1/2)(−q) + b†(−1/2)(q)d†(1/2)(−q)

)
|0〉 . (3.150)

This is clearly |S = 1, Sz = 0〉 belonging to the triplet, as announced before. Similarly
the other two pieces coming from σ1q1 + σ2q2 belong to the spin triplet; from σ1q1 one gets
the structure |↑↑〉 − |↓↓〉 and from σ2q2 the analogous one |↑↑〉 + |↓↓〉 .

Note that the presence of the momentum qi in σiqi changes the angular momentum of by
a unit factor. If Φ̃S is symmetric in q2 it means that we have L = 1, as anticipated. The
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apparently ”innocuous” identity matrix hides a rich spin-angular structure. We write the
final state like

|s〉 = C

∫
d3q

m

E


 ∑

s1,s2=±1/2

χ†(s1) σiε

E + m
χ(s2)


 Φ̃i(q)b†(s1)(q)d†(s2)(−q) |0〉 (3.151)

where Φ̃i(q) = qiΦ̃S(q = (0,q)).

Applying parity and charge conjugation we find

UP |s〉 = (−1)L+1 |s〉 (3.152)

UC |s〉 = (−1)L+1 |s〉 (3.153)

where

Φi(−q) = (−1)LΦi(q). (3.154)

If Φ̃S depends on q2, what we assume, one has L = S = 1 and J = 0 because the total state
is a scalar. Thus we have

JPC = 0++. (3.155)

In nature we have the excited p-wave positronium with these quantum numbers, but
more important and mysterious are the scalar mesons, i.e. quark-antiquark states in the
scalar configuration.

We expect also nine of them (considering only the ground state) as we already discussed
in the introduction. Indeed there are more, and it is not easy to disentangle their nature. One
can build up 0++ objects also out of four quarks or out of two gluons. Many theories give also
conflictive results and interpretation of the observed physical states. The understanding of
their properties and characteristics is one of the still unsolved puzzles of modern high energy
physics.

Before going on, we summarize the characteristics of a fermion-antifermion object with L
and S quantum numbers. The results presented here show that

P = (−1)L+1, (3.156)

C = (−1)L+S . (3.157)

The extra-minus of L + 1 comes from the intrinsic odd nature of an antifermion (see
sections 3.1 and 3.2).

3.6.2 Lagrangian form

We follow step by step what we did before by simply replacing JP → JS

L = Ψ(x) (iγµ∂µ −m) Ψ(x) +
KS

2
J2

S(x). (3.158)

The bound state mass is as usual K−1
S = ΣS(p2 = M2) with the ”bubble”

ΣS(p2) = −i

∫
d4q

(2π)4
Tr[S(q + p/2)S(q − p/2)]Φ̃2

S(q). (3.159)
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The interaction Lagrangian with the composite field S(x) reads

Lint = gSS(x)JS(x) (3.160)

together with the ”compositeness condition”

gS =
1√

Σ′
S(p2 = M2)

. (3.161)

The evaluation of the mass operator can be worked out in the same way as for the pseudoscalar
case. The only difference comes from the trace. In this case we have

Tr [(p/1 + m) (p/2 + m)] = 4(p1 · p2 + m2) (3.162)

Therefore, in the Euclidean integration simply take (q2
E+p2/4−m2) instead of (q2

E+p2/4+m2).
There is just a sign difference; the rest does not change.

We finally note that if we have an equal strength in the pseudoscalar and scalar channel
(KP = KS) the scalar bound state will be more massive than the corresponding pseudoscalar
one. In fact, the sign difference lowers the mass operator contribution in the scalar case.
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Chapter 4

Two-photon decay

4.1 Introduction

The study of decays of resonances plays an important role in elaborating their inner structure.
Quantum Field Theory naturally explains the decays, which can be calculated from the
corresponding Feynman diagrams.

In the study of mesons (quark-antiquark bound states) one has to deal with a big number
of resonances and the analysis of the decay pattern is fundamental to understand the nature
of the bound state and to determine its quantum numbers.

An instable meson decays strongly into lighter mesons according to some conservation
rules. The vector meson ρ, for example, whose quantum numbers are J PC = 1−− (L =
0, S = 1) decays dominantly into two pseudoscalar pions.

Electromagnetic decays are also very important because they are sensitive to electrically
charged components, in our case to the quark flavor content of a meson. Each quark flavor
has its own fractional charge (eu = 2/3, ed = es = −1/3). A typical example is the ”famous”
decay of the neutral pion π0 → 2γ. The fact that a neutral object decays into photons reveals
that it must consist of charged subcomponents.

The last class of decays is driven by the weak interactions, where the quarks couple to
the massive bosons W± and Z0.

In this chapter we will concentrate on the two-photon decay of a bound state. Before
doing this we discuss a very simple example, the decay of a scalar into two scalars.

4.2 A simple but instructive exercise

We consider two scalar fields χ and ϕ whose interaction is given by the Lagrangian

Lint = bχϕ2, (4.1)

which we already introduced in section 2.5.1 (2.154).
In the following we suppose mχ > 2mϕ, so that a decay of χ into two ϕ is kinematically

allowed. The amplitude for χ→ 2ϕ at first order is the sum of two diagrams (Fig. 4.1) with

−iM = i2b, (4.2)

which in this simple case is just a constant. The factor two occurs because the two diagrams
give the same contribution ib.

97
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Figure 4.1: First order decay diagrams for the χ-particle.

The initial and the final states are given by

|in〉 = b†p |0〉 , (4.3)

|fin〉 = a†
k1

a†
k2
|0〉 , (4.4)

and the corresponding matrix element by

〈fin|S(1) |in〉 =
1

V 3/2

1√
2ωk12ωk22ωp

(2π)4δ4(p− k1 − k2)(−iM1) (4.5)

where −iM1 is the invariant amplitude given above. This expression is also valid for a general
amplitude −iM. The kinematical factors are in fact present for a generic decay into two scalar
particles. V is the volume of the ”box” in which we express the fields.

What we want to find is the lifetime of χ, i.e. probability for the process χ→ 2ϕ. First,
we take the square root of the amplitude, which is a probability:

∣∣∣〈fin|S(1) |in〉
∣∣∣
2

=
1

V 3

1

2ωk12ωk22ωp

(2π)8
(
δ4(p− k1 − k2)

)2 |−iM |2 (4.6)

but we immediately encounter some problems. How to handle the square of the Dirac func-
tion? Why there is a volume dependence? Such problems appear when one tries to evaluate
physical quantities (cross sections or decay rates), and can be rigorously solved by using wave
packets. In the following we will use the so called Fermi-trick to get around this difficulty.

In the second chapter, section 2.4.2, when we introduced the S matrix, we assumed that
the interaction does not act for t→ ±∞. In these limits the free plane waves are then justified.
This is easy to understand if we think of a scattering among two particles, where, if they
are very distant, the interaction can be neglected. But the decay is an intrinsic property of
a particle. It does not matter where and at which time the particle is, it has always some
probability to decay. We then consider the following situation: the particle χ is created at
t = 0, and we ask which is the probability to find 2ϕ at the time t > 0.
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We can then manipulate the square of the delta using the Fermi trick [59, 58]:

(2π)8
(
δ4(p− k1 − k2)

)2

= (2π)4δ4(p− k1 − k2)

∫
d4xeix(p−k1−k2) = (2π)4δ4(p− k1 − k2)

∫
d4x

→ (2π)4δ4(p− k1 − k2)

∫

V
d3x

∫ t

0
dt = (2π)4δ4(p− k1 − k2)V t (4.7)

where the integral
∫

d4x has been substituted by
∫
V d3x

∫ t
0 dt. In fact, we confined our system

inside a box of volume V and we considered the system in the time interval t=0 and t (in the
two-body scattering case one takes a large time interval T, here t is supposed to be small;
see below).

Furthermore, we have to take into account the density of final states. The quantity∣∣〈fin|S(1) |in〉
∣∣2 represents the probability for |in〉 → |fin〉 , where |fin〉 has definite momenta

k1 and k2. We have to consider generic momenta in the final state. The probability for
the decay χ → 2ϕ when the two particles ϕ have momenta between (k1,k1 + d3k1) and
(k2,k2 + d3k2) is given by

∣∣∣〈fin|S(1) |in〉
∣∣∣
2
V

d3k1

(2π)3
V

d3k2

(2π)3
. (4.8)

In fact, the factor V d3k1/(2π)3 represents the number of states with three-momentum be-
tween (k1,k1 + d3k1). In a box the three-momenta are quantized with k = 2πn/L, and the
volume of a single state is given by (2π/L)3 = (2π)3/V. The ”number of states” included in
d3k1 is then given by

d3k1/(volume of a single state) = V d3k1/(2π)3. (4.9)

Making use of (4.7),Eq. (4.8) becomes:

∣∣∣〈fin|S(1) |in〉
∣∣∣
2
V

d3k1

(2π)3
V

d3k2

(2π)3

=
1

2ωk12ωk22ωp

(2π)4δ4(p− k1 − k2)
d3k1

(2π)3
d3k2

(2π)3
|−iM |2 t. (4.10)

Hence the result does not depend on the normalization volume V. The last thing to do is
to integrate over all possible final momenta. We then define the decay width Γ as

Γ =

∫
d3k1

(2π)3
d3k2

(2π)3
|−iM |2

2ωk12ωk22ωp

(2π)4δ4(p− k1 − k2). (4.11)

The probability that at the instant t we find 2ϕ is simply Γt, or, reversing the problem, the
probability to find the particle χ at the instant t is given by

p(t) = 1− Γt. (4.12)

This expression is of perturbative origin. This means that it is valid only if the ”corrections”
are small, i.e. if t << Γ−1. In fact, without such a constraint, after enough time we would ob-
tain the meaningless result of a negative probability. Nevertheless we can find the probability
of finding p(t) at a generic t from the recursive use of the previous one:

p(t + dt) = p(t) (1− Γdt) (4.13)
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which gives

p(t) = e−Γt. (4.14)

The lifetime is defined as τ = Γ−1. Again, all these considerations do not depend on the
particular decay process, but are general. We used the square of the Dirac delta function
together with some physical considerations to get a meaningful result.

The last thing to do is to evaluate Γ :

Γ =
1

2(2π)2

∫
d3k1d

3k2
|−iM(k1,k2)|2
2ωk12ωk22ωp

δ4(p− k1 − k2). (4.15)

In the rest frame of the decaying particle with p = (mχ,0) we have

δ4(p− k1 − k2) = δ3(k1 + k2)δ(mχ − ωk1 − ωk2). (4.16)

Therefore, solving the integral over d3k2 (by use of the Dirac delta function) we are left with

Γ =
1

2(2π)2

∫
d3k1

|−iM(k1,−k1)|2
(2ωk1)

22mχ
δ(mχ − 2ωk1). (4.17)

We can write

δ(mχ − 2ωk1) =
4mχ

kf
δ(|k1| − kf ), (4.18)

where

kf =

√
m2

χ

4
−m2 (4.19)

is the modulus of the momentum of the outgoing particles. Note that this last expression
makes sense only if mχ > 2m, otherwise the decay is not allowed. Going to spherical co-
ordinates with d3k1 = dΩ |k1|2 d |k1| and solving the integral over d |k1| we get the final
result:

Γ = sf
kf

32π2m2
χ

∫
dΩ |−iM(k1,−k1, |k1| = kf )|2

= sf
kf

32π2m2
χ

∫
dΩ |−iM |2 (4.20)

Question: ”What is that sf in front ?” Answer: ”sf is a symmetry factor. In the case of a
decay into two identical bosons it is 1/2.”

When |−iM |2 does not depend on the angles, we have

Γ = sf
kf

8πm2
χ

|−iM |2 . (4.21)

This is the case when we consider |−iM |2 = |−iM1|2 = 4b2. Ergo, the final result (at first
order) for this decay (including sf = 1/2) is:

Γχ→2ϕ = b2 kf

4πm2
χ

. (4.22)
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The final expression is astonishingly simple. Many useful results have been derived at lowest
order in a similar fashion. We will also use this result in chapter 7, when we will evaluate the
strong decays of scalar mesons.

In the following we would like to study the two-photon decay. The complication is con-
nected to the vectorial nature of the photon field and to gauge invariance. In order to study
it properly we first do a brief digression concerning the photon field.

4.3 Digression: the photon

4.3.1 Photon propagator

The electromagnetic Lagrangian is expressed by the field Aµ and the corresponding classical
Lagrangian [54, 57]

Lem = −1

4
F µνFµν (4.23)

where F µν = ∂µAν − ∂νAµ. The electric and the magnetic fields are given from

Ei = F 0i, (4.24)

Bi = εijkF jk. (4.25)

As well known, a redefinition of the potential Aµ like Aµ(x)→ Aµ(x)+∂µη(x) does not alter
the Lagrangian and leaves the physical fields E i and Bi unchanged. This occurrence is called
gauge invariance.

Let us now consider a ”source” in order to study the propagator of the photon, in a similar
way to what was done in chapter 2, section 2.3, in the scalar case. We examine the Green
function problem from a ”classical” point of view. We then write down the Lagrangian

Lem = −1

4
F µνFµν + JµAµ (4.26)

whose equation of motion is
�Aµ − ∂µ(∂ρA

ρ) = Jµ. (4.27)

Note that (4.26) is still gauge invariant, provided that ∂µJµ = 0. Now, in the second chapter
(2.3) we simply had J(x) and we studied the Green function considering a delta function as
a source. We want now to do the same, but we have to take care of the extra-index µ, which
is a tensorial covariant index, therefore the corresponding ”identity” in this case is gµν . We
then consider

J(x)→ Jµ(x) = gµνδ(x − y) (4.28)

where ν and y should be considered as parameters.
We then introduce the two point Green function Gµν(x− y) as solution of

�Gµν(x− y)− ∂µ(∂ρG
ρν(x− y)) = gµνδ(x− y). (4.29)

In complete analogy to the scalar case we are then led to consider Gµν(x − y) as the elec-
tromagnetic quantum propagator (the photon propagator) in the position space, while in
momentum space one has Gµρ(q) defined as the Fourier transform of Gµν(x− y) :

Gµν(x− y) =

∫
d4q

(2π)4
iGµν(q)e−iq(x−y). (4.30)
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Everything seems fine, apart from a ”small detail”: Gµν(q) does NOT exist. In order to see
it we first write Gµν(q) in the general covariant form

Gµν(q) = B(q2)gµν + C(q2)qµqν (4.31)

and then plug (4.30) into (4.29). No solution for the functions B(q2) and C(q2) can be found.
Well, the mathematicians say that the equation (4.29) does not have an inverse.

In classical electrodynamics it was always a clever idea to fix a gauge. The gauge freedom
was exploited to simplify our life. Why not to do the same? The famous Lorentz gauge
∂µAµ = 0 considerably simplifies the equation of motion, which takes the simple form �Aµ =
Jµ. The equation for the propagator can now easily be found with

Gµν(q) = gµν−i

q2
. (4.32)

If we fix a gauge then the propagator does exist! Note that the photon has zero mass. The
previous form for the propagator is usually employed in the calculations. The simplified equa-
tion of motion in the Lorenz gauge �Aµ = Jµ does not follow directly from the Lagrangian
(4.26). The gauge condition ∂µAµ = 0 has been imposed as an extra constraint. We would
like to derive the propagator directly from a suitable Lagrangian. How to do it? To this end
we consider

Lem,α = −1

4
F µνFµν + JµAµ − 1

2α
(∂ρA

ρ)2 (4.33)

where the last term 1
2α (∂ρA

ρ)2 is defined as the gauge fixing term. This term breaks explicitly
gauge invariance. The equation of motion now reads

�Aµ − (1− 1

α
)∂µ(∂ρA

ρ) = Jµ. (4.34)

If, for example, α = 1 we find the equation of motion of the Lorentz gauge with �Aµ =
Jµ. But we should note that, although we find this equation of motion directly from the
Lagrangian (4.33) with α = 1, the corresponding gauge condition ∂µAµ = 0 doesn’t follow
from it. We will soon come back to this point.

The photon propagator as calculated from (4.33) now exists with

Gµν(q) = −i
1

q2

(
gµν + (α− 1)

qµqν

q2

)
(4.35)

as one can see plugging (4.30) into (4.34).

4.3.2 External photons

Up to now we only spoke about the photon propagator, i.e. about internal photon line in
a Feynman diagram. What happens if we have an incoming or outgoing photon? If we
tried to quantize (4.23) we would have problems. In fact, π0 = ∂Lem/∂(dA0/dt) = 0, and
the canonical commutation relations could not be fulfilled. Let us then consider the ”free”
Lagrangian without source but with the gauge fixing term with α = 1 :

Lem,α=1 = −1

4
F µνFµν −

1

2
(∂ρA

ρ)2. (4.36)
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Now, the equation of motion of this Lagrangian reads �Aµ = 0. In principle one could chose
any α, but α = 1 simplifies considerably the issue because the eq. of motion is the simplest.

There is a very important point to stress. The eq. of motion for (4.23) is �Aµ−∂µ(∂ρA
ρ) =

0. If we fix the Lorenz gauge ∂ρA
ρ = 0 we have indeed two equations, which must be simul-

taneously fulfilled:

�Aµ = 0, (4.37)

∂ρA
ρ = 0. (4.38)

Now, from the eq. of motion of Lem,α=1 only one equation �Aµ = 0 is fulfilled, but NOT
∂ρA

ρ = 0. This is why (4.23) together with the Lorentz gauge ∂ρA
ρ = 0 does NOT coincide

with Lem,α=1 (not even in a classical sense). This point is crucial.
We go on quantizing Lem,α=1 by imposing the canonical commutation relations

[Aµ(t,x), πν(t,y)] = −gµνδ(x− y). (4.39)

The eq. of motion �Aµ = 0 allows us to write

Aµ(x) =

3∑

α=0

∫
d3k

(2π)3/2

1√
2ω(k)

·
(
aα(k)ε(α)

µ (k)e−ikx + a†α(k)ε∗(α)
µ (k)eikx

)
k0=ω(k)=|k|

, (4.40)

where the creator and annihilator a†α(k) and aα(k) have been introduced as in the scalar
case. We have still to specify the four four-vectors εα

µ(k), necessary to express the vectorial
nature of the field. We have to define a basis for them; we impose the following normalization

ε(α)(k) · ε(β)(k) = gαβ . (4.41)

Furthermore, we conventionally impose that the ε(α)(k) for α = 1, 2, 3 have a zero temporal
component

ε
(α)
0 (k) = 0 (4.42)

and we also chose α = 1, 2 to be orthogonal to the photon three-momentum

ε
(α)
i (k) · ki = 0. (4.43)

With these choices ε(0)(k) is simply

ε(0)(k) = (1, 0, 0, 0). (4.44)

From the canonical commutation relations one then has

[aµ(k1), a
†ν(k2)] = −gµνδ(k1−k2). (4.45)

One immediately realize that something goes wrong. If µ = ν = 0 we have

[a0(k1), a
†0(k2)] = −δ(k1−k2). (4.46)

This means that the state |s〉 = a†0(k) |0〉 has a negative norm with 〈s | s〉 = −1. This is a
very ”strange object”. It cannot describe a physical object. How to get rid of it? Well, Gupta
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and Bleuler [54, 56] had a very smart idea. As we stated above, the Lagrangian Lem,α=1 does
not imply ∂ρA

ρ = 0, but we know that this condition is necessary in order to have an equation
of motion like �Aµ = 0 starting from (4.23). Gupta and Bleuler then said that among all
the states |s〉 the physical ones |sphys〉 are such that

∂µAµ(+) |sphys〉 = 0 (4.47)

where Aµ(+) refers to the positive energy part of the field expansion (4.40), i.e. the first part
with the destruction operators aα(k). This means that

〈sphys| ∂µAµ |sphys〉 = 0, (4.48)

i.e. the missing condition ∂µAµ = 0 is reimposed on the level of the physical matrix elements.
In this way one can show that the negative norm states do not belong to the physical ones.
We refer to [54, 59, 56] for the careful study of this problem. The main point is that in virtue
of the Gupta-Bleuler condition (4.47) the physical states are formed with a†1,2(k) (see [59]
for a precise description of this issue). We can decompose Aµ(x) (4.40) into two pieces

Aµ(x) = A(phys)
µ + A(unphys)

µ =

∑

α=1,2

∫
d3k

(2π)3/2

1√
2ω

(
aα(k)ε(α)

µ (k)e−ikx + a†α(k)ε∗(α)
µ (k)eikx

)

k0=ω(k)=|k|

+
∑

α=0,3

∫
d3k

(2π)3/2

1√
2ω

(
aα(k)ε(α)

µ (k)e−ikx + a†α(k)ε∗(α)
µ (k)eikx

)

k0=ω(k)=|k|

. (4.49)

Only A
(phys)
µ is relevant for on-shell physical photons. But this does not mean that we

can get rid of the second piece! For example, if we calculate the photon propagator we get,
as expected

〈0| T [Aµ(x)Aν(y)] |0〉 =

∫
d4q

(2π)4

(−igµν

q2

)
e−iq(x−y). (4.50)

We need the full decomposition of the fields Aµ(x), and only the piece A
(phys)
µ would not be

enough (it is indeed possible to do, but one would find a non-covariant propagator).

In the end let us note that A
(phys)
µ correspond to the temporal gauge because we have

A
(phys)
0 = ∇A(phys) = 0, but only the full expression is covariant, while A

(phys)
µ alone is not.

4.3.3 QED, gauge invariance and Ward identity

If in (4.26) one replaces the static source with the dynamical electron source J µ = −eΨγµΨ
and introduces the free Dirac electron part, then one gets the QED Lagrangian [3, 54, 60, 58]:

LQED = Ψ(iγµ∂µ −m)Ψ− eΨγµΨAµ −
1

4
F µνFµν (4.51)

This Lagrangian is still invariant under gauge transformations

Aµ(x)→ Aµ(x) + ∂µη(x), (4.52)
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Figure 4.2: Fermion-photon vertex.

provided that simultaneously one makes the change

Ψ→−ieη(x) Ψ. (4.53)

This is the form in which the QED Lagrangian is presented, as we have also done in Chapter
2. If we want to describe the interaction of a generic fermion with photons simply replace the
electron charge −e with the charge of the fermion (for example, if one has a quark u replace
−e→ 2

3e).
We said that care should be taken to quantize the photon, and that a gauge fixing term

is needed to get a meaningful propagator. One has to do it also for the QED Lagrangian by
introducing

LQED,α = Ψ(iγµ∂µ −m)Ψ− eΨγµΨAµ −
1

4
F µνFµν +

1

2α
(∂ρA

ρ)2. (4.54)

This Lagrangian is no longer gauge invariant. The QED Feynman rules can be easily read
from this expression [3, 54, 58]. The main question we ask here is if the amplitude of a
physical process depends on the parameter α. We realize that this would be catastrophic!
The photon propagator depends on α (see (4.35)), and no physical prediction would then
be possible! One can show that in each physical amplitude with internal photons the term
(α− 1)qµqν/q2 of (4.35) does not contribute. If we replace a photon line with qµqν , where q
is the momentum of the photon, the amplitude goes to zero. This means that only the first
term −igµν/q2 of the general quark propagator (4.35) contributes to the physical amplitude.

An example: in a scattering with an incoming and an outgoing electron (Fig. 4.2) the cor-
responding current is Jµ = u(r)(p1)γ

µu(r)(p2); it is not difficult to prove, using the expression
for the spinor given section 3.1.2, that

u(r)(p1)γ
µu(r)(p2)(p2 − p1)µ = 0. (4.55)

In this simple case the reason for it is the conservation of the electron current ∂µJµ =
∂µΨγµΨ = 0, which in momentum space reads qµJµ(q) = 0
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Figure 4.3: 3 external incoming photons.

But this is valid in general. Although the Lagrangian LQED,α given in (4.54) depends
on the arbitrary parameter α and is not gauge invariant, one has in QED still this gauge
invariance, in the sense that the results do not depend on the gauge fixing term, i.e. do
not depend on α. But this is not only valid for QED, but for each gauge invariant theory
involving photons.

Last point: if we have a process with external photons (let us say n incoming photons; in
Fig. 4.3 the case n = 3 is schematically depicted) we can write the amplitude as

Mα1,α2,...,α3 = ε(α1)
µ1

(k1)ε
(α2)
µ2

(k2)...ε
(αn)
µn

(kn)Mµ1 ,µ2...µn; (4.56)

the previous discussion means that, if we substitute an external photon term ε
(αa)
µa (ka) (where

a = 1, 2, ..., n) with (ka)µ we get zero:

(ka)µaMµ1,µ2...µa...µn = 0. (4.57)

This equation, also known as Ward Identity [3, 54, 56], constrains the possible forms of
a decay amplitude when external photons are present, and is of great practical use. For
example, if the photon polarizations (the αa) are not known, one has to average over initial
configurations and sum over final ones. The following identity is then very useful:

n∑

a=1

∑

αa=1,2

∣∣∣ε(α1)
µ1

(k1)ε
(α2)
µ2

(k2)...ε
(αn)
µn

(kn)Mµ1 ,µ2...µn

∣∣∣
2

= −Mµ1,µ2...µnM∗
µ1,µ2...µn

, (4.58)
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where summation over µa is understood. The reason for this comes from the identity

∑

αa=1,2

ε(αa)
µ (ka)ε

(αa)
ν (ka) = −gµν −Aµν (4.59)

where the term Aµν turns out to be proportional to (ka)µ and (ka)ν , therefore not contributing
in virtue of (4.57) [54].

4.4 Decay of a pseudoscalar particle into 2 photons

4.4.1 Point-like pseudoscalar field

Let us consider a pseudoscalar field P (x) and its direct coupling to two photons. We have to
construct a Lagrangian which is parity and gauge invariant. Aµ is a four-vector, which under
parity transforms like

A0(x)→ A0(t,−x), Ai(x)→ −Ai(t,−x), (4.60)

in accord with the classical parity transformations of the electric and magnetic fields:

Ei(x)→ −Ei(t,−x), Bi(x)→ Bi(t,−x). (4.61)

Note that the QED Lagrangian is invariant under parity transformation, in agreement with
the experiment. The only way to couple a pseudoscalar fields to two photons is then with
another pseudoscalar object like

LPγγ,int = e2gPγγP (x)F µν(x)F̃µν(x) (4.62)

where the factor e2 has been introduced for future simplicity, and where

F̃µν(x) = εµνρσF ρσ(x). (4.63)

The term F µν(x)F̃µν(x) is indeed known from classical electrodynamic as being E ·B, which
is clearly a pseudoscalar object (see transformations above). Furthermore, the Lagrangian is
also gauge invariant.

Our goal is the calculation of the decay rate P → 2γ, which is depicted in Fig. 4.4. We
have two external photons with momenta k1 and k2, therefore the total squared amplitude
reads (summing over final states):

|−iM |2 =
∑

α1,α2=1,2

∣∣Mµν(k1, k2)ε
α1
µ (k1)ε

α2
ν (k2)

∣∣2 = |Mµν(k1, k2)Mµν(k1, k2)| . (4.64)

(Note that one should take (εα1
µ (k1))

∗, but our εα
µ(k) are real; the same for the element M µν)

where the last passage of the previous expression is a direct application of (4.58). Gauge
invariance and the pseudoscalar two-photon final state imply the following form for M µν :

Mµν(k1, k2) = Bεµνρσk1,ρk2,σ (4.65)

where B is a scalar. In fact one has

k1,µMµν(k1, k2) = k2,νMµν(k1, k2) = 0 (4.66)
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Figure 4.4: Decay of P(S) into two photons.

that is eq. (4.57); furthermore, if we exchange k1 ←→ k2 we get a minus sign. The expression
(4.65) is valid for each amplitude which has two photons in the final state in a pseudoscalar
configuration. In fact, it has been written down by only exploiting general principles. We
then have for the general amplitude

|−iM |2 = |B| 8ω4 (4.67)

where ω = M/2, where M is the mass of the pseudoscalar field P.

The scalar quantity B depends of course on the particular interaction Lagrangian; in our
case, as one can easily prove developing the Feynman rules of (4.62), a very simple expression
for B at lowest order (Fig.4.4) is found with

B = 2e2gPγγ , (4.68)

where the factor 2 comes from the exchange diagram. With equation (4.20) we can write the
final decay rate into two photons as

ΓP→2γ =
π

4
α2M3(2gPγγ)2 (4.69)

where the fine structure constant α = e2/4π ' 1/137 has been introduced. In this case gPγγ is
an unknown parameter of the Lagrangian (4.62), where the pseudoscalar field P (x) is treated
as an elementary particle. What we want to do in the following is to give a microscopic
interpretation of gPγγ when P (x) describes a bound state.

4.4.2 Two-photon decay of a pseudoscalar bound state

In the third chapter, section 3.5, we discussed the introduction of a pseudoscalar bound state
made out of two fermions (typically light quarks or electrons). The corresponding Lagrangians
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Figure 4.5: Two-photon decay by the triangle diagram; scalar and pseudoscalar cases are
displayed.

are given in sections 3.5.2 and 3.5.3. Let us now introduce the photon into the pseudoscalar
bound state Lagrangian

L = Ψ(iγµ∂µ −m)Ψ + efΨγµΨAµ −
1

4
F µνFµν +

KP

2
J2

P (x) (4.70)

where JP (x) is the pseudoscalar current

JP (x) =

∫
d4yΨ(x + y/2)iγ5Ψ(x− y/2)ΦP (y). (4.71)

Similarly one can consider the auxiliary pseudoscalar bound state P (x) with the Lagrangian

L = Ψ(iγµ∂µ −m)Ψ + gP P (x)JP (x) + efΨγµΨAµ −
1

2

ΣP (M2)

Σ′
P (M2)

P 2 (4.72)

where gP is given from the compositeness condition gP =
(
Σ′

P (M2)
)−1/2

(see chapters 2 and
3).

We realize that the Feynman diagram of Fig. 4.5 is possible; it describes the decay of
the pseudoscalar object P (x) into two photons by a fermion loop. What we have to do is
to calculate the amplitude for this triangle diagram. But before doing it, we should ask a
fundamental question: are the equivalent Lagrangians (4.70) and (4.72) gauge invariant?
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4.4.3 Restoration of gauge invariance

The answer to the previous question is: NO! And the reason for it is the nonlocal current
JP (x). A local transformation Ψ(x) → eief η(x)Ψ(x) does not leave JP (x) unchanged. This
would be the case only if Φ(y)→ δ4(y), i.e. in the local limit for the current (but in this case
the mass operator would diverge and we would not be able to describe the bound nature of
the state).

If gauge invariance is not conserved, it means that in general we cannot make use of
the useful relations of section 4.3. For example, we cannot say ”a priori” that the triangle
diagram amplitude can be written out as M µν

triangle(k1, k2) = Bεµνρσk1,ρk2,σ. Indeed, in the
pseudoscalar case we are lucky. The triangle diagram as calculated from (4.72) has this gauge
invariant form, even if this Lagrangian is not gauge invariant; we will see this in the next
subsection. At the same time we realize that we need a general method to recover gauge
invariance when a nonlocal current is introduced. In other cases we may not be so lucky.

As shown in [86], a restoration of gauge invariant is achieved by making the following
shift in the current JP (x) :

Ψ(x− y/2) →
(

exp[ief

∫ x−y/2

x,L1

dzµAµ(z)]

)
Ψ(x− y/2) (4.73)

Ψ(x− y/2) → Ψ(x− y/2)

(
exp[−ief

∫ x+y/2

x,L2

dzµAµ(z)]

)
(4.74)

where L1(2) is a generic path connecting x to x − (+)y/2, to be evaluated for the integral.
It is actually a one dimensional integral. Let us parametrize L1 with z = z(τ) such that
z(0) = x and z(1) = x− y/2; it means that we have

∫ x−y/2

x,L1

dzµAµ(z) =

∫ 1

0
dτ

dzµ(τ)

dτ
Aµ(z(τ)) (4.75)

One can show that the results do not depend on the choice of the paths [67, 68].

The”new” current looks like

JP,restored(x) =

∫
d4yΨ(x + y/2)e

−ief

R x+y/2
x,L2

dzµAµ(z)
iγ5e

ief

R x−y/2
x,L1

dzµAµ(z)
Ψ(x− y/2)ΦP (y) (4.76)

ant preserves local gauge invariance, due to the introduced exponents. If now we replace JP (x)
by JP,restored(x) in the Lagrangians (4.70) and (4.70) we get gauge invariant expressions. The
interaction Lagrangian of the bound state with its components is then

Lrestored = gP P (x)JP,restored(x) (4.77)

which is U(1) local gauge invariant.

This is fine, but not the end of the story. The introduction of JP,restored(x) modifies the
interaction. As a gift, we get direct photon-bubble interaction terms. For example, expanding
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Figure 4.6: Photon-bubble interaction diagrams.

the exponents in gP P (x)JP,restored(x) at first order in e we find the following forms:

gP P (x)JP,restored(x)

= gP P (x)JP (x)

+

∫
d4yΨ(x + y/2)iγ5

(
−ief

∫ x−y/2

x,L1
dzµAµ(z)

)
Ψ(x− y/2)ΦP (y)

+

∫
d4yΨ(x + y/2)

(
−ief

∫ x+y/2

x,L2

dzµAµ(z)

)
iγ5Ψ(x− y/2)ΦP (y) + ... (4.78)

i.e. we find a direct photon-bubble interaction. At the n-th order we have a n-photon-bubble
interaction term (Fig. 4.6). This procedure to gauge nonlocal Lagrangians is valid in the
case of a generic nonlocal current.
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Figure 4.7: Bubble and tadpole diagrams.

In the two-photon decay, where we stop at second order (in addition to the triangle
diagram) we also find other two contributing diagrams, depicted in Fig. 4.7. The calculation
of these diagrams, known as bubble and tadpole diagrams, is in general not so easy. Their
inclusion is indeed formally necessary for a complete and meaningful treatment of the two-
photon decay of the bound state, but fortunately the contributions of these extra-diagrams
are generally small and numerically negligible [67]. In the pseudoscalar case (Fig. 4.7 for
i = P ) one is indeed lucky, because their contribution is zero and the triangle diagram is by
itself gauge invariant. One then has

M
(2)µν
physical,P→2γ = Mµν

triangle + Mµν
bubble + Mµν

tadpole = Mµν
triangle (4.79)

because Mbubble = Mtadpole = 0. In fact, they are respectively proportional to
Tr[iγ5(p/1 + m)γµ(p/2 + m)] and Tr[iγ5(p/1 + m)], both vanishing. If one would like to cal-
culate the electromagnetic form factor, would also have non-vanishing bubble-photon vertex
contributions, even if they are numerically suppressed (see for example [67]). Similarly, in
the scalar case the bubble and the tadpole diagrams for the two-photon decay give rise to
non-zero contributions.

A physical amplitude calculated from the gauge-restored Lagrangian is gauge invariant,
because such is the underlying Lagrangian. A generic physical amplitude at the n-th order
will have the form

M
(n)
physical = M

(n)
no−photon−bubble + M

(n)
1−photon−bubble + ... + M

(n)
n−photon−bubble. (4.80)
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Even if the total amplitude M
(n)
physical is gauge invariant, it often happens that each single

term of the sum is not.

4.4.4 Triangle diagram

Let us now concentrate on the triangle diagram (Fig. 4.5 with i = P and ΓP = iγ5). We
have, denoting k1 and k2 the four-momenta of the outgoing photons:

−iMµν(k1, k2) = −ie2
f2gP

∫
d4k

(2π)4
Tr[iγ5S(p1)γ

µS(p2)γ
νS(p3)]Φ̃P (q), (4.81)

where p1 = k +k1, p2 = k, p3 = k−k2, q = k +(k1−k2)/2 and where S(k) is the free fermion
propagator.

The evaluation of the trace gives

Tr[iγ5 (k/ + k/1 + m) γµ (k/ + m) γν (k/− k/2 + m)] =

4mεµνρσk1,ρk2,σ, (4.82)

thus finding the gauge invariant structure analyzed in section 4.3.1 of this chapter, and in
accord with the discussion of the previous subsection. We then get:

|−iM |2 =

(
e2
f2gP 4m(−i)

∫
d4k

(2π)4
1

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

Φ̃P (q)

)2

8ω4 (4.83)

with ω = M/2. The decay rate is

ΓP→2γ =
π

4
α2M3 (2gP I)2 , (4.84)

where I is the integral

I = −i4m

∫
d4k

(2π)4
1

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

Φ̃P (q). (4.85)

The parameter gPγγ introduced in (4.62) receives in this way a microscopic interpretation,
being connected to the fermion loop; more precisely, by comparing (4.69) with (4.84) we have

gPγγ = gP I = gP 4m(−i)

∫
d4k

(2π)4
1

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

Φ̃P (q). (4.86)

The Lagrangian (4.62) describes the same decay, but at a different level; the loop is
parametrized by a constant and a local interaction. Imagine to take a magnifying glass
and to observe carefully this local vertex; you would then note that it is not a point, but a
loop, where a fermion and an antifermion annihilate to generate two photons. This is con-
tained in the Lagrangian (4.72). We are ”going down” looking closer at the same physical
process. Furhtermore, when the photons are virtual and not real, a loop evaluation allows to
take into account microscopically the variation of the effective local coupling on the virtual
four-momenta.

These kinds of connection often happen in physics. To describe the process from a more
basic point of view means a more difficult calculation to do. With the Lagrangian (4.62)
there was no loop to calculate, and no fermion at all. On the other hand, the Lagrangian



114 4.4. DECAY OF A PSEUDOSCALAR PARTICLE INTO 2 PHOTONS

(4.72) requires more work for the calculation of the coupling constant gP and of the integral
I. Going at a even more elementary level would mean to describe the fermionic bound state
by the underlying theory (QCD with quark and gluons for mesons and QED for positronium
or QED bound states in general), thus ”calculating” the vertex function from the underlying
theory.

4.4.5 π0 → 2γ

Let us now look in more detail at the neutral pion decay into two photons. The only differences

are that the pion is made of two different quark flavors with the composition
√

1
2 (uu − dd)

and that the quarks carry color. The pion current, as already discussed in the third chapter
(see 3.5.4) is written as

Jπ0(x) =

∫
d4yqa(x + y/2)iγ5Tπ0qa(x− y/2)Φπ0(y) (4.87)

where

qa =




ua

da

sa


 , Tπ0 =

√
1

2




1 0 0
0 −1 0
0 0 0


 (4.88)

and a = R,G,B runs over the three color configurations. The bubble reads

Σπ0(p2) = −iNc

∫
d4q

(2π)4
Tr[S(n)(q + p/2)iγ5S(n)(q − p/2)iγ5]Φ̃2

π0(q) (4.89)

where Nc is the number of colors and S(n) is the light quark propagator (equal for the two
flavors u and d, as usually supposed) in the low energy limit:

S(n)(q) =
i

q/−m∗
n

(4.90)

with m∗
n = m∗

u = m∗
d. No trace of the matrix Tπ0 is left in Σπ0(p2) because Tr[T 2

π0 ] = 1 (and
because the u and d propagators are equal).

One may ask: ”Why didn’t you introduce a factor 1/
√

Nc to get rid of the color factor in
Σπ0(p2) ? ” Well, it is just a convention. If you want you can do it”.

The composite pion-quark interaction Lagrangian looks like

Lπ0−nn = gπ0−nnπ0Jπ0(x) (4.91)

where as usual

gπ0−nn =

(
∂Σπ0(p2)

∂p2

)−1/2

p2=M2
π0

. (4.92)

Note that with the adopted convention gπ0−nn α 1/
√

Nc. This is in agreement with the large
Nc theory (see [87] and Refs. therein).

The formula for the decay into two photons, taking into account the fractional charge for
the quarks (eu/e = 2/3, ed/e = −1/3), the number of colors and the flavour structure, reads

Γπ0→2γ =
π

4
α2M3

π0

(
2gπ0−nnNc(

4

9
− 1

9
)I(n)

)2

(4.93)
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where

I(n) = 4m∗
n

∫
d4k

(2π)4
1

(p2
1 −m∗2

n )(p2
2 −m∗2

n )(p2
3 −m∗2

n )
Φ̃π0(q). (4.94)

The physical quantity Γπ0→2γ is then proportional to Nc. This is convention independent
(it is a physical result); if we had introduced a factor 1/

√
Nc in Jπ0 we would have gπ0−nn α

N0
c , but the amplitude would still be proportional to N

1/2
c .

In the work of [67] a covariant pion vertex function

Φ̃π0(q) = exp[
q2

Λ2
] (4.95)

is used, with Λ = 1 GeV and m∗
n = 0.235 GeV. With this relatively simple theoretical set-up

many properties of the pion are correctly described, such as the two-photon decay, the weak
pion decay constant, the pion radius and the electromagnetic form factor. The decay rate,
for example, is Γπ0→2γ = 7.15 eV, in good agreement with experiment.

The vertex function Φ̃π0(q) is an Ansatz of the model, and describes the bound nature
of the quarks in the pion. The choice of the gaussian is the simplest, but in principle any
choice is a priori valid, as long as the vertex function falls off sufficiently fast for Euclidean
momenta (a Wick-rotation is always understood when evaluating the integrals) in order to
avoid ultraviolet divergences. The use of a different vertex function does not alter the results
drastically, if the momentum cut-off has a similar value [69].

4.5 The parapositronium

4.5.1 Why to study it within this approach?

The method for the study of bound states we have introduced has been mostly used for the
QCD bound states, i. e. the hadrons, both mesons and baryons, light and heavy [67, 68, 69,
70, 76]. The vertex function describes the bound nature of the state. In the second chapter,
considering the scalar bound state in the non-relativistic limit, we have shown how to connect
the vertex function to the wave function. This result has been achieved in two ways, first
by a ”comparison” for an hypothetical two-body decay into two scalars, and then from the
Bethe-Salpeter approach.

The parapositronium is a pseudoscalar non-relativistic QED bound state, for which a
non-relativistic wave function is known. Also the decay into two photons has been measured.
We have the possibility to calculate the decay rate by the triangle loop and then to compare
it with the experimental results and with other employed methods.

This may help us to understand closer what the vertex function really describes, and its
limitations. In this sense, see also the works [77, 78]. At the same time it shows that the
method is general, and can be applied to QCD bound states and to QED ones as well.

4.5.2 Usual approach

The usual way to introduce the (para)positronium bound state is (see 3.5.1 and [59]):

|parapositronium〉

=

∫
d3q

(2π)3/2

A(q)√
V

1√
2

(
b†(+1/2)(q)d†(−1/2)(−q)− b†(−1/2)(q)d†(+1/2)(−q)

)
|0〉 (4.96)
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where A(q) describes the scalar bound state wave function in momentum space and is given
by

A(q) = N

(
1 +

4

α2m2
e

q2

)−2

. (4.97)

N is a normalization constant, α = 1/137 and me = 0.511 MeV. A(q) is the Fourier transform
of the spatial wave function

Ψ(x) =
1√
π

(αme

2

)3/2
exp[− |x| αme

2
], (4.98)

which can be calculated from the Schroedinger equation with a Coulomb potential.
The mass of the parapositronium is given as

M = 2me − |Ebind| = 2me −
α2me

4
(4.99)

where |Ebind| = α2me/4 is the binding energy of the state.
For a generic level with principal quantum number n the bound state mass is

Mn = 2me − |Ebind,n| = 2me −
α2me

4 · n2
(4.100)

Here we do not consider hyperfine and spin splitting.
The decay into two photons at lowest order is evaluated in a similar way as the one

described one in section 2.8.3; it is a QED two-photon production, where one considers
(4.96) as a initial state. It reads (see [3, 59, 55] and the original works in [88])

Γp−ps→2γ =
4πα2

m2
e

|Ψ(x = 0)|2 =
α5me

2
. (4.101)

Some drawbacks of the approach are known [77]: in this calculation the electron and the
positron are on-shell, while one should have a loop; in fact, the two composing particles
of a bound state cannot be simultaneously on-shell because of four-momentum conservation.
Furthermore, the energy in the rest frame of the state (4.96) is larger than 2me, thus meaning
that the this state could decay into a positron and an electron, while we know that this is
not allowed, being M = 2me − |Ebind| < 2me.

The non-relativistic nature of the parapositronium justifies these approximations, but it
would be nice to have a method which is valid simultaneously for relativistic bound states
such as mesons and for non relativistic ones like positronium. This is also the aim of this
part of the thesis.

4.5.3 Comparison

At the end of the first chapter we introduced the Bethe-Salpeter equation and the Bethe-
Salpeter amplitude, and its relation to the wave function in momentum space.

In our fermion case described by the Lagrangian

L = gP P (x)JP (x) = gP P (x)

∫
d4yΨ(x + y/2)iγ5Ψ(x− y/2)ΦP (y) (4.102)

the Bethe-Salpeter vertex is Γ(q; p) = Γ(q) = gP iγ5Φ̃P (q).



CHAPTER 4. TWO-PHOTON DECAY 117

4.5.3.1 B-S amplitude: first method

The Bethe Salpeter amplitude is now a matrix ([24, 71] and section 2.10):

A(q; p) =
i

q/ + p//2−m
Γ(q; p)

i

q/− p//2−m
=

= −igP Φ̃P (q)
(q/ + p//2 + m) γ5 (q/− p//2−m)

((q + p/2)2 −m2) ((q − p/2)2 −m2)
. (4.103)

We work in the rest frame of the positronium p = (M,0) (with M the positronium mass)
and we suppose that Φ̃P (q) = Φ̃P (q) (instantaneous approximation: see [71] and section 2.8).

Upon integrating over q0, taking only the contribution from the dominant pole in −M/2+√
q2 + m2 we find

Ã(q, prest) =

∫ +∞

−∞

dq0

2π
A(q; prest) =

gP Φ̃P (q)

[
(q/ + p//2 + m) γ5 (q/− p//2−m)

]
q0=−M/2+

√
q2+m2

2M
√

q2 + m2
(
2
√

q2 + m2 −M
) . (4.104)

We now evaluate the spin-part, finding

Ã(q, prest) = Φ̃P (q)
iγ5
(
M
√

q2 + m2 −Mmγ0
)

2M
√

q2 + m2
(
2
√

q2 + m2 −M
) . (4.105)

4.5.3.2 B-S amplitude: second method

We now evaluate the same quantity starting from the basic definition in position space

Ψαβ(y/2,−y/2; p) = 〈0 |T [Ψα(y/2)Ψβ(−y/2)]|B〉 (4.106)

In order to calculate it we have to specify |B〉 ; we take the non-relativistic form discussed
in the previous subsection, which we however write as follows

|B〉 = N

∫
d3qA(q)


 ∑

s1,s2=±1/2

u(s1)(q)iγ5v(s2)(−q)


 b†(s1)(q)d†(s2)(−q) |0〉 (4.107)

According to the description of section 3.5 the spin structure has the correct behavior.
A(q) is the momentum space wave function of eq. (4.97). For small momenta q this form is
completely equivalent to (4.96).

In general we could write

|B〉 = N

∫
d3qF (q)


 ∑

s1,s2=±1/2

u(s1)(q)iγ5v(s2)(−q)


 b†(s1)(q)d†(s2)(−q) |0〉 (4.108)

where the function F (q) must be the wave function for small momenta:

F (q) = A(q)(1 + reltivistic corrections). (4.109)
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In this work we are not interested in the relativistic corrections.

We now can evaluate the Fourier transform of Ψαβ(y/2,−y/2; p), i.e. the B-S amplitude
in momentum space

Aαβ(q; p) =

∫
d4yΨαβ(y/2,−y/2; p)eiqy =

= const · δ(q0)
m

E

[
(q/1 + m)iγ5(q/2 −m)

]
αβ

4m2
A(q) (4.110)

where q1 = (E =
√

q2 + m2,q) and q2 = (E,−q).

The integration upon q0 is trivial in this case. After rewriting conveniently the matrix
part we find

Ã(q, prest) = const ·A(q)
2
√

q2 + m2

4mME

[
iγ5
(
M
√

q2 + m2 −Mmγ0
)]

. (4.111)

4.5.3.3 Connection of both methods and discussion

We now compare (4.105) with (4.111); we can find a connection between the wave function
and the vertex function:

Φ̃P (q) = (const)
(
2
√

q2 + m2 −M
)

A(q). (4.112)

As already discussed in the end of section 2.10, the constant doesn’t play any role. We
can safely set it to 1.

It should be stressed that this study doesn’t represent a precision test of QED (for which
many good and advanced works are available: see [89] and Refs. therein), but an attempt
to understand the meaning of the nonlocality of eq. (4.102). When we study a weakly
bound state such as positronium within this kind of a nonlocal approach some nonrelativistic
approximations are valid; in this way we can better understand how the vertex function is
connected to the wave function. The fundamental result in this sense is that the vertex
function is proportional to the wave function.

In the presented nonlocal approach we cannot calculate the vertex function, or the corre-
sponding wave function. The vertex function is an Ansatz, a starting point.

However, when the nonrelativistic limit is not valid, and we don’t know how to calculate
the wave function, we can still introduce a vertex function as an effective phenomenological
way to describe the finite size of the state under study.

The positronium case is interesting because we know the wave function, and through the
arguments exposed before we deduce the vertex function, and we can calculate, as in the
following subsection, a decay process; this allows us to test the approach in a case where we
have a clear idea of the finite size of the state (a study along this line is performed in [90]).

On the contrary, in the study of mesons and baryons, especially in the low energy sector,
we cannot calculate the wave function. We have some information about the dimensions
of the objects, but no precise calculation in the nonperturbative QCD regime is possible.
A vertex function introduced in this context is a possible way to model the bound state
properties, until ”better ideas” and explicit QCD solutions are found. If this is doable, is still
unknown!
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4.5.4 Two-photon decay

We can calculate the two photon decay using the formulas developed in section 4.4.4, namely:

ΓP→2γ =
π

4
α2M3 (2gP I)2 (4.113)

I = 4m

∫
d4k

(2π)4
1

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

Φ̃P (q). (4.114)

We analyze separately gP and the integral I.

4.5.4.1 Coupling constant gP

The mass operator expressed as a function of v = p2 is

Σ(v) = −4i

∫
d4q

(2π)4
−q2 + v + m2

((q + p/2)2 −m2) ((q − p/2)2 −m2)

(
Φ̃P (q)

)2
. (4.115)

By doing the integration over q0 keeping the leading pole in −√v/2 +
√

q2 + m2 we get

Σ(v) =

∫
d3q

(2π)3
4

(
Φ̃P (q)

)2

2
(
2
√

q2 + m2 −√v
) . (4.116)

Carrying on with the derivative with respect to v

dΣ(v)

dv
=

∫
d3q

(2π)3

(
Φ̃P (q)

)2

√
v
(
2
√

q2 + m2 −√v
)2 . (4.117)

We now plug in the expression Φ̃P (q) =
(
2
√

q2 + m2 −M
)

A(q) found in the previous

subsection, and we evaluate the derivative at the point v = M 2 :

(
dΣ(v)

dv

)

v=M2

=
1

M

∫
d3q

(2π)3
A(q)2. (4.118)

This term is the normalization term for the positronium wave function. The coupling constant
gP deduced from the compositeness condition reads

gP =

√√√√ M
∫ d3q

(2π)3
A(q)2

. (4.119)

In the nonrelativistic limit the compositeness condition acquires a very simple form; it is
nothing else but the normalization factor!
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4.5.4.2 Triangle contribution

Keeping the dominant pole, the triangle contribution contained in I reads

I =

∫
d3q

(2π)3
Φ̃P (q)

2M2
√

q2 + m2
(
2
√

q2 + m2 −M
)(√

q2 + m2 − q(3)
)

=

∫
d3q

(2π)3
A(q)

2M2
√

q2 + m2
(√

q2 + m2 − q(3)
) (4.120)

' 1

2M2m2

∫
d3q

(2π)3
A(q). (4.121)

We immediately notice that I is proportional to the spatial wave function at the origin,
i. e. the amplitude of finding both the electron and the positron at the centre of mass of the
system. The annihilation into to photons occurs mostly under these conditions.

We can now calculate the decay rate ΓP→2γ :

ΓP→2γ =
π

4
α2M3 (2gP I)2 =

4πα2

m2



∫ d3q

(2π)3 A(q)
√∫ d3q

(2π)3 A(q)2




2

=

=
4πα2

m2
|Ψ(0)|2 =

α5m

2
. (4.122)

We also understand why we never cared about the proper normalization factors of the mo-
mentum space wave function and of the vertex function: simply because the method is by
itself normalized.

In this limit we clearly get the wave function with its own normalization, coming from
the evaluation of the bound state-subcomponents coupling constant gP .

The nonrelativistic limit is analytically recovered, as desired.

4.5.4.3 Results

We now list the results for the two-photon decay:
• Non-relativistic first order result:

ΓP→2γ =
α5m

2
= 5.287 · 10−12 MeV (4.123)

• Full three-dimensional result, where the triangle contribution is expressed as in (4.120),
without the approximation leading to the nonrelativistic result:

(ΓP→2γ)3 dim = 5.227 · 10−12 MeV (4.124)

This result is completely equivalent to the one of [91].
• Full calculation from (4.85) (for gP as well) applying a Wick-rotation:

(ΓP→2γ)wick = 5.201 · 10−12 MeV (4.125)

As one can note, the results are very similar. The full Wick rotation, where all the poles are
taken into account, gives a very similar result to the three-dimensional one, thus justifying
the assumption of a dominant pole in the integration.
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The experimental result reads [92]

(ΓP→2γ)exp = 7990.9 ± 1.7 µs−1; (4.126)

which when converted to MeV (reminding that µs−1 = 6.58 · 10−16 MeV ):

(ΓP→2γ)exp = (5.2580 ± 0.0019) · 10−12 MeV, (4.127)

is very close to the predicted values.

In order to do better, one has then to take into account the relativistic and QED next-to-
leading order corrections, but this work goes beyond the scope of the present analysis, which
is centered on the interpretation of the introduced nonlocal vertex function.

In the already cited work of [91] and in [93] this discussion is actually done for the two-
photon decay of heavy-quarkonia states; however, apart from different color factors, one can
treat the positronium states and the heavy quarkonia ones in the some way. The reason for
this is essentially contained in the non-relativistic nature of both types of bound states.

This fact again shows the useful analogy between QED and QCD bound states [90], even
if the light quark bound states are indeed much more difficult to handle.

4.5.4.4 Radial excitation with n = 2

Let us briefly consider the analogous n = 2 state 2 1S0 (with the same quantum numbers
JPC = 0−+). The bound state mass and the wave function read

M2 = 2me − |Ebind,2| = 2me −
α2me

4 · 4 , (4.128)

Ψ2(x) =
1

2
√

8
√

π

(αme

2

)3/2
(

2−
(

2

αme

)
|x|
)

exp[− |x| αme

2 · 2 ]. (4.129)

The nonrelativistic first order result is

(Γ2P→2γ) =
4πα2

m2
|Ψ2(0)|2 =

α5m

2 · 8 = 6.609 · 10−13 MeV. (4.130)

The wave function in momentum space is

A2(q) = const ·
cos[2 arctan[2

(
2

αme

)
|q|]]

(
1 + 4

(
2

αme

)2
|q|2

)2 . (4.131)

The rest is then exactly as before. The vertex function is

Φ̃2P (q) =
(
2
√

q2 + m2 −M2

)
A2(q). (4.132)

The result for the full Wick rotation is 6.501 · 10−13 MeV, while the three-dimensional one is
6.534 · 10−13 MeV. The same considerations done previously are still valid.
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4.6 Scalar particle decay into 2 photons

4.6.1 Point-like scalar field

We now consider the decay of a scalar point-like object into two photons. In order to guarantee
local gauge invariance and parity conservation we write down the following interaction term

LSγγ,int = e2gSγγS(x)F µν(x)Fµν(x). (4.133)

The discussion is similar to the pseudoscalar one; the gauge invariant amplitude in a
scalar configuration reads

Mµν(k1, k2) = (kν
1kµ

2 − (k1 · k2)) B, (4.134)

which is general. With the Lagrangian LSγγ,int one has B = 2e2gSγγ leading to the total
decay width

ΓS→2γ =
π

4
α2M3(2gSγγ)2 (4.135)

where M is now the mass of the scalar particle.

4.6.2 Two-photon decay of a scalar bound state

In the scalar case we have the following Lagrangian

L = Ψ(iγµ∂µ −m)Ψ + efΨγµΨAµ −
1

4
F µνFµν +

KS

2
J2

S(x) (4.136)

where JS(x) is the scalar current

JS(x) =

∫
d4yΨ(x + y/2)Ψ(x− y/2)ΦS(y). (4.137)

Similarly one can consider the auxiliary scalar bound state S(x) with the Lagrangian

L = Ψ(iγµ∂µ −m)Ψ + gSS(x)JS(x) + efΨγµΨAµ −
1

2

ΣS(M2)

Σ′
S(M2)

S2 (4.138)

where gS is given from the compositeness condition gS =
(
Σ′

S(M2)
)−1/2

(see chapters 1 and
2).

We have again a triangle diagram to evaluate, where instead of the matrix iγ 5 we have
the identity. This fact complicates the evaluation.

4.6.3 Triangle diagram and gauge invariance

Calling k1 and k2 the four-momentum of the outgoing photons the amplitude of the triangle
diagram (Fig. 4.5 with i = S) reads

−iMµν
triangle(k1, k2) = −ie2

f2gS

∫
d4k

(2π)4
Tr[S(p1)γ

µS(p2)γ
νS(p3)]Φ̃S(q) (4.139)

where p1 = k+k1, p2 = k, p3 = k−k2, q = k+(k1−k2)/2 and where S(k) is the free fermion
propagator.
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The evaluation of the trace gives

Tr[(k/ + k/1 + m) γµ (k/ + m) γν (k/− k/2 + m)]

= 4m ((kν
1kµ

2 − (k1 · k2)g
µν)) + 4m(4kµkν − gµν(k2 −m2)) (4.140)

where the first piece is gauge invariant and the second is not. This is the ”bad” surprise! We
are not so lucky as in the pseudoscalar case. The triangle diagram by itself it is not gauge
invariant. One then has to consider the restoration of gauge invariance with

JS,restored(x)

=

∫
d4yΨ(x + y/2)e

−ief

R x+y/2
x,L2

dzµAµ(z)
e
ief

R x−y/2
x,L1

dzµAµ(z)
Ψ(x− y/2)ΦS(y) (4.141)

leading to a gauge invariant scalar-components interaction Lagrangian

Lrestored = gSSJS,restored. (4.142)

As discussed previously we have now also the direct photon-bubble coupling, therefore the
total amplitude will be

Mµν
total = Mµν

triangle + Mµν
bubble + Mµν

tadpole (4.143)

which is now gauge invariant, since it arises from a gauge invariant interaction.

4.6.4 Where is the problem?

The point is how to manipulate the gauge breaking piece of M µν
triangle

Iµν(k1, k2) =

∫
d4k

(2π)4
(
4kµkν − gµν(k2 −m2)

)
g(k, k1, k2) (4.144)

where

g(k, k1, k2) =
1

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

Φ̃S(q) (4.145)

with p1 = k + k1, p2 = k, p3 = k − k2, q = k + (k1 − k2)/2 .

We now suppose to have a covariant vertex function Φ̃S(q) = Φ̃S(q2). We then exploit
covariance to express Iµν in the most general form taking into account that it is symmetric:

Iµν = (kν
1kµ

2 − (k1 · k2)g
µν) B + kµ

1 kν
2B + gµνη + (kµ

1 kν
1 + kµ

2 kν
2 )α (4.146)

where the term η explicitly breaks gauge invariance. We can simply find B and η by multi-
plying the previous equation by kµ

1 kν
2 and by gµν :

(k1 · k2)η =

∫
d4k

(2π)4
(
4(k · k1)(k · k2)− (k1 · k2)(k

2 −m2)
)
g(k, k1, k2), (4.147)

−2(k1 · k2)B + 4η =

∫
d4k

(2π)4
4m2g(k, k1, k2). (4.148)

We can solve these equations finding

B = −
∫

d4k

(2π)4

[
2k2

(k1 · k2)
− 8(k · k1)(k · k2)

(k1 · k2)2

]
g(k, k1, k2) (4.149)

η =

∫
d4k

(2π)4

[
4(k · k1)(k · k2)

(k1 · k2)
− (k2 −m2)

]
g(k, k1, k2). (4.150)
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4.6.5 A mistake not to do:

What would have happened if we had not introduced η? Let us consider the NJL model.
The NJL Lagrangian is local, and at first sight gauge invariance is satisfied. BUT often a
cut-off is then introduced, and this cut-off breaks gauge invariance. In fact, it is analogous
to a vertex function θ(−p2 − Λ2) in our approach, which is different from the identity in
the momentum space and different from a Dirac delta function in x space. In the pion
case this fact does not have bad consequences because, as we have seen, also in the non-local
case one has a gauge invariant amplitude. The bubble and the tadpole diagrams are zero.
In the scalar case to neglect η, and then to consider a gauge invariant amplitude without
introducing the restoration of gauge invariance as indicated in section 4.6.3 and 4.6.4, means
to have the wrong expressions:

Bwrong = −
∫

d4k

(2π)4
4m2

2(k1 · k2)
g(k, k1, k2) = −4m2

M2

∫
d4k

(2π)4
g(k, k1, k2). (4.151)

This false result would lead to the total amplitude

|−iMwrong|2 =
(
e2
f2gSIwrong

)2
8ω4 (4.152)

with

Iwrong = −i4m

(
1− 4m2

M2

)∫
d4k

(2π)4
1

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

Φ̃S(q) (4.153)

surely simple to solve but unfortunately not correct. Some authors [94, 95] used this form
for the calculation. This exercise tells us that we should really be careful for what concerns
gauge invariance.

4.6.6 Back to M
µν
triangle

As we have seen we can express Mµν
triangle by a gauge invariant piece

(
Mµν

triangle

)
g.i

and a

gauge breaking one
(
Mµν

triangle

)
g.b

:

Mµν
triangle =

(
Mµν

triangle

)
g.i.

+
(
Mµν

triangle

)
g.b

. (4.154)

The gauge invariant piece reads
(
Mµν

triangle

)
g.i.

= (kν
1kµ

2 − (k1 · k2)g
µν) 2gSe2

f I, (4.155)

with I = I1 + I2 with

I1 = −i4m

∫
d4k

(2π)4
g(k, k1, k2), (4.156)

I2 = 4mB = 4mi

∫
d4k

(2π)4

[
2k2

(k1 · k2)
− 8(k · k1)(k · k2)

(k1 · k2)2

]
g(k, k1, k2), (4.157)

and the gauge breaking one
(
Mµν

triangle

)
g.b

= 2gSe2
fgµν4m · η. (4.158)
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It is possible to do a similar job also for the tadpole and the bubble diagrams (Fig. 4.7 for
i = S) (see [67]); the total amplitude is then

Mµν
tot =

(
Mµν

triangle

)
g.i.

+
(
Mµν

triangle

)
g.b

+
(
Mµν

bubble

)
g.i.

+

+
(
Mµν

bubble

)
g.b

+
(
Mµν

tadpole

)
g.i.

+
(
Mµν

tadpole

)
g.b

=
(
Mµν

triangle

)
g.i.

+
(
Mµν

bubble

)
g.i.

+
(
Mµν

tadpole

)
g.i.

, (4.159)

where the gauge breaking terms cancel. Furthermore, a numerical study reveals that(
Mµν

tadpole

)
g.i.

and
(
Mµν

tadpole

)
g.i.

are generally suppressed in comparison to
(
Mµν

triangle

)
g.i.

.

Neglecting the bubble and the tadpole contributions we have the following final decay
rate

ΓS→2γ =
π

4
α2M3 (2gSI)2 (4.160)

where I = I1 + I2 which we here rewrite explicitly:

I1 = −i4m

∫
d4k

(2π)4
Φ̃S(q)

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

(4.161)

I2 = 4mB =

i4m

∫
d4k

(2π)4

[
2k2

(k1 · k2)
− 8(k · k1)(k · k2)

(k1 · k2)2

]

· Φ̃S(q)

(p2
1 −m2)(p2

2 −m2)(p2
3 −m2)

(4.162)

where p1 = k + k1, p2 = k, p3 = k − k2, q = k + (k1 − k2)/2.

4.6.7 Formal derivation of the gauge invariant part

We can find the gauge invariant part of the triangle diagram in a more formal way, which
can be applied to any diagram. Here we just sketch briefly the procedure. In the expression
for Mµν

triangle

−iMµν
triangle(k1, k2) = −ie2

f2gS

∫
d4k

(2π)4
Tr[S(p1)γ

µS(p2)γ
νS(p3)]Φ̃S(q) (4.163)

do the following replacements [67]:

γµ → γµ
⊥,k1

= γµ − kµ
1

k/1

k2
1

, (4.164)

γν → γν
⊥,k2

= γν − kν
2

k/2

k2
2

. (4.165)

One gets

(
−iMµν

triangle(k1, k2)
)

g.i.
= −ie2

f2gS

∫
d4k

(2π)4
Tr[S(p1)γ

µ
⊥,k1

S(p2)γ
ν
⊥,k2

S(p3)]Φ̃S(q) (4.166)
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which by construction is gauge invariant.
A bit of Algebra shows that this object is exactly the same as the one of eq. (4.155).
This procedure can easily be generalized to a generic Feynman diagram containing pho-

tons.

4.7 The scalar positronium

We conclude this chapter by studying the scalar positronium.

4.7.1 Non-relativistic expressions

We consider a n = 2 state with L = 1. The mass is Mn=2, as the already analyzed exited
positronium. In spherical coordinates the wave function is

Ψn=2,l=1,m = ϕn=2,l=1(r)Yl=1,m(θ, ϕ) (4.167)

where [62]

ϕn=2,l=1(r) =
1

2
√

24
√

π

(αm

2

)5/2
r · exp[−r · αm

4
]. (4.168)

The decay into two photons in the non-relativistic limit reads

ΓS→2γ =
9α2

m4

∣∣∣∣
d

dr
(ϕ21(r))r=0

∣∣∣∣
2

=
3α7m

256
= 6.61 · 10−18 MeV. (4.169)

4.7.2 Our approach

We first have to determine the vertex function. This case is a bit more complicated than the
previous ones. As discussed in section 3.6 the L = 1 structure comes out from the spinor
decomposition of the scalar current.

First, let us consider the Fourier transform of the vertex function, which we express like

A21m(q) = ϕ21(|q|)Y1m(θq, ϕq). (4.170)

where

ϕ21(|q|) = N
|q|

(
1 + 16

α2m2 |q|2
)3 . (4.171)

In section 3.6 we have seen that the extra |q| comes from the spinorial evaluation, therefore
the non-relativistic bound state |B〉 in the scalar case can be expressed in the following way:

|B〉 = N

∫
d3q

ϕ21(|q|)
|q|


 ∑

s1,s2=±1/2

u(s1)(q)v(s2)(−q)


 b†(s1)(q)d†(s2)(−q) |0〉 . (4.172)

Repeating the same steps already done in the parapositronium study we find:

Φ(|q|) =

(
2

√
|q|2 + m2 −Mn=2

)
ϕ21(|q|)
|q| =

(
2
√
|q|2 + m2 −Mn=2

)

(
1 + 16

α2m2 |q|2
)3 . (4.173)
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The residual factor has the same meaning as discussed before.
We can now calculate the two-photon decay by making the Wick rotation and by using

the formulas (4.160), (4.161), (4.162). Well, if you do it, you obtain a result for the two-
photon decay of the order 1.65 · 10−18 MeV, which is quite different from the non-relativistic
limit! The reason for this discrepancy can be traced to the expression (4.162), which has
been calculated under the hypothesis of relativistic covariance, which in this case is broken
by the use of an ”instantaneous” vertex function.

However, we can make a ”trick” to perform the calculation. We know that the dominant

pole is for q0 = −M/2 +
√
|q|2 + m2 ' 0. Therefore, in the integral (4.139) it is allowed to

substitute Φ(|q|) by Φ(−q2). This last quantity is by no means a covariant expression for the
wave function of the scalar positronium, but just a mathematical trick. The q0 dependence,
in fact, does not seriously modify the results. Now it is allowed to do all the manipulations
shown above. The result for the two-photon decay rate is 6.37·10−18 MeV, in good agreement
with the non-relativistic limit. In [91] the decay rate of 6.55 · 10−18 MeV is found.

It may seem a bit of overkill to apply a covariant analysis to the scalar positronium. But
this is a consistency check that the formulas we developed are correct, and can be applied to
the calculation of the relativistic scalar mesons.

We could of course improve the result for the scalar positronium by including the rela-
tivistic corrections and higher order QED processes. But the goal is, as explained before, the
study of a nonlocality, and not a precision test for QED.
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Chapter 5

Mixing

5.1 Ellipses

5.1.1 Independent oscillators

We start from a mechanics example. Let us consider a point-like classical particle, whose
motion in the plane (x, y) is described by the Lagrangian

L =
1

2

((
dx

dt

)2

+

(
dy

dt

)2
)
− 1

2
ω2

1x
2 − 1

2
ω2

2y
2. (5.1)

The potential V (x, y) = 1
2ω2

1x
2 + 1

2ω2
2y

2 is an ellipsoid; the equations of motion are two
independent harmonic oscillators

d2x

dt2
+ ω2

1x = 0 (5.2)

d2y

dt2
+ ω2

2y = 0 (5.3)

and the general solutions for x(t) and y(t) are

x(t) = ae−iω1t + a∗eiω1t (5.4)

y(t) = be−iω2t + b∗eiω2t, (5.5)

where we took into account that the two coordinates are real. The complex numbers a and
b are determined from the four initial conditions, i.e. the two initial positions and velocities.

Note the similarity of this simple system with the QFT approach for two free fields! We
also have written the solution for x(t) and y(t) in a similar form.

5.1.2 Mixing term

Let us now consider a x-y mixing term in the Lagrangian:

L→ L′ =
1

2

((
dx

dt

)2

+

(
dy

dt

)2
)
− 1

2
ω2

1x
2 − 1

2
ω2

2y
2 − εxy. (5.6)

129



130 5.1. ELLIPSES

The equations of motion are not anymore independent. In fact we have

d2x

dt2
+ ω2

1x + εy = 0 (5.7)

d2y

dt2
+ ω2

2y + εx = 0 (5.8)

It seems that the problem has become more complicated. But this is actually not true. We
are just looking at it from the ”wrong” point of view. The Lagrangian L is written in a
”clever” form because the axes x and y coincide with the axes of the ellipsoid. Then its form
is easy as the equations of motion.

Which form has the ”new” potential V ′(x, y) = 1
2ω2

1x
2+ 1

2ω2
2y

2+εxy? It is still an ellipsoid.
But x and y are not anymore its axes. In order to recover the independent equations of motion
we have to make a rotation in the x-y plane.

5.1.3 Matrix approach

We study the problem from a matrix point of view. Let us introduce the vector

v =

(
x
y

)
(5.9)

and then we write L′ like

L′ =
1

2

dvt

dt
· dv

dt
− 1

2
vt

(
ω2

1 ε
ε ω2

2

)
v (5.10)

=
1

2

dvt

dt
· dv

dt
+

1

2
vtΩv (5.11)

where Ω is the symmetric matrix

Ω =

(
ω2

1 ε
ε ω2

2

)
. (5.12)

We search the eigenvalues of this matrix from

det[λ · 12 − Ω] =
(
λ− ω2

1

) (
λ− ω2

2

)
− ε2 = 0 (5.13)

with solutions λ1 = ω′2
1 and λ2 = ω′2

2 . The eigenvectors are then given by

Ωvi = (ω′
i)

2vi (5.14)

with the normalization conditions
vi · vj = δij (5.15)

where i = 1, 2. We now consider the transformation matrix B ⊂ SO(2)

B =

(
vt
1

vt
2

)
(5.16)

which has the eigenvectors in its rows. From the previous definitions it follows that

BΩBt = Ω′ =

(
ω′2

1 0
0 ω′2

2

)
. (5.17)
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All these relations are easily extendable to i = 1, ..., N but in the two-dimensional case an
explicit solution is not too complicated with:

ω′2
1,2 =

1

2

[
ω2

1 + ω2
2 ±

√
(ω2

1 + ω2
2)

2 − 4(ω2
1ω

2
2 − ε2)

]
(5.18)

v1 =
1√

1 +
(
(ω′2

1 − ω2
2)/ε

)2

(
(ω′2

1 − ω2
2)/ε

1

)
, (5.19)

v2 =
1√

1 +
(
(ω′2

2 − ω2
2)/ε

)2

(
(ω′2

2 − ω2
2)/ε

1

)
. (5.20)

We then define (
x′

y′

)
= v′ = Bv =

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
(5.21)

where we have explicitly written B in term of an angle θ. This is possible because B is an
orthogonal SO(2) matrix.

The Lagrangian in terms of v′ looks like

L′ =
1

2

((
dx′

dt

)2

+

(
dy′

dt

)2
)
− 1

2
ω′2

1 x′2 − 1

2
ω′2

2 y′2 (5.22)

which again consists of two independent oscillators, and is easily solvable as before. If we
want the solutions in terms of (x, y) we rotate back, but this is generally not necessary.

The problem as seen from (x′, y′) is again symmetric. The ”mixing term” disappears. It
was just a sign of a not-optimal choice of axes. The relation between the original coordinates
(x, y) and the new ones (x′, y′) is achieved by the transformation matrix B.

5.1.4 Small mixing limit

But what can we say about the new frequencies ω ′
1 and ω′

2? Let us briefly analyze the small
mixing limit, corresponding to

ε2 << (ω2
2 − ω2

1) (5.23)

where we suppose ω2 > ω1. We have:

ω′2
1,2 =

1

2

[
ω2

2 + ω2
1 ±

√
(ω2

2 + ω2
1)

2 − 4(ω2
1ω

2
2 − ε2)

]

=
1

2

[
ω2

2 + ω2
1 ±

√
(ω2

2 − ω2
1)

2 + 4ε2

]

' 1

2

(
ω2

2 + ω2
1

)
± 1

2

[
(ω2

2 − ω2
1) +

2ε2

(ω2
2 − ω2

1)

]
, (5.24)

from which follows:

ω′2
1 = ω2

1 −
ε2

(ω2
2 − ω2

1)
, (5.25)

ω′2
2 = ω2

2 +
ε2

(ω2
2 − ω2

1)
. (5.26)
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Figure 5.1: Comparison of ellipses; the inclinated ellipsis corresponds to x-y mixing.

We have then ω′2
1 < ω2

1 and ω′2
2 > ω2

2 , showing a typical mixing phenomenon, the ”repulsion”
of the frequencies: the lower frequency decreases, the higher one increases.

Let us observe the problem from a geometrical point of view. We consider the intersection
with the plane z = 1/2 with the potential without mixing term V (x, y) = 1

2ω2
1x

2 + 1
2ω2

2y
2. It

is an ellipsis with equation

ω2
1x

2 + ω2
2y

2 = 1, (5.27)

whose axis are ω−1
1 and ω−1

2 .

If we consider the intersection with V ′(x, y) = 1
2ω2

1x
2 + 1

2ω2
2y

2 + εxy, we get a thinner
and longer ellipsis, where the new axis are (ω ′

1)
−1 and (ω′

2)
−1; in fact, the long axis is longer

than the previous one: (ω′
1)

−1 > ω−1
1 . Similarly: (ω′

2)
−1 < ω−1

2 . This second ellipsis is then
also rotated with respect to the previous one, and this shows again the need of a coordinate
change. This situation is depicted in Fig. 5.1.
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5.2 Field mixing

5.2.1 Rotation of fields

We now study the analogous problem for two fields; we call them G and S (for now elemen-
tary). The Lagrangian, together with the mixing term, looks like

L =
1

2
(∂µG)2 − 1

2
M2

GG2 +
1

2
(∂µS)2 − 1

2
M2

SS2 − fGS. (5.28)

If for the mixing parameter we have f = 0 we simply have two free fields with masses MG

and MS . If f 6= 0 mixing is introduced, the two fields are not anymore orthogonal. But we
are still dealing wit a ”free case” problem. As in the mechanical case, we have to perform a
rotation, this time a field rotation, in order to recover a free Lagrangian. Let us introduce

ϕ =

(
G
S

)
, Ω =

(
M2

G f
f M2

S

)
(5.29)

and rewrite

L =
1

2
(∂µϕt)(∂µϕ)− 1

2
ϕtΩϕ. (5.30)

We transform Ω with the SO(2) transformation matrix B as

BΩBt = Ω′ =

(
M2

G′ 0
0 M2

S′

)
(5.31)

(see the first section of this chapter). The rotated fields are

(
G′

S′

)
= ϕ′ = Bϕ = B

(
G
S

)
=

(
cos θ sin θ
− sin θ cos θ

)(
G
S

)
(5.32)

which shows the composition of the ”new” G′ and S′ fields as functions of the ”bare ones” G
and S. In terms of G′ and S′ the Lagrangian looks like

L =
1

2
(∂µϕ′t)(∂µϕ′)− 1

2
ϕ′tΩ′ϕ′ =

=
1

2
(∂µG′)2 − 1

2
M2

G′G′2 +
1

2
(∂µS′)2 − 1

2
M2

S′S′2 (5.33)

with the ”new” rotated masses M 2
G′ and M2

S′ , found from the matrix equation

Det[λ · 1− Ω] = (λ−M 2
G)(λ−M2

S)− f2 = 0. (5.34)

No trace of mixing is present in (5.33): it is simply a free Lagrangian for G′ and S′. The
rotation brought us to the system where the physical states are defined. It is important to
note that, if f 6= 0 the bare masses MG and MS do not have a direct physical meaning.
The corresponding states G and S, which are not orthogonal, do not describe the asymptotic
physical states. Their meaning is fully justified only in the limit f → 0. The masses one
measures in a hypothetical experiment are then MG′ and MS′ corresponding to the rotated
physical fields G′ and S′.

Nevertheless, it is often useful to start the discussion from some bare fields G and S, and
then analyze the mixing and the corresponding new masses. In fact, they may correspond to
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Figure 5.2: Corrections to the G-propagator.

more intuitive objects and it may be convenient to write the starting Lagrangian in terms of
them. Furthermore, even if it is impossible to switch off the mixing in nature, this is con-
ceptually and numerically doable. The direct connection (5.32) between the bare unphysical
fields and the rotated physical ones also helps for an intuitive understanding of the mixing
features. We can think that the field G′, for instance, is a quantum composition of G and S
where cos θ and sin θ are the corresponding amplitudes.

In the small mixing limit the new masses are

M2
G′ = M2

G −
f2

M2
S −M2

G

(5.35)

M2
S′ = M2

S +
f2

M2
S −M2

G

(5.36)

where we have supposed that MS > MG. We again have the phenomenon of level repulsion
of the eigenvalues with M 2

G′ < M2
G and M2

S′ > M2
S .

5.2.2 A funny exercise: mixing and renormalization

Let us again consider the Lagrangian

L =
1

2
(∂µG)2 − 1

2
M2

GG2 +
1

2
(∂µS)2 − 1

2
M2

SS2 − fGS; (5.37)

what happens if we consider the mixing term fGS as a perturbation and we consider the
mass renormalization as in section 2.4? MG and MS are then the ”bare” unphysical masses,
and we have to search the poles of the propagator for the fields G and S when the ”mixing
interaction” is included.
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For the propagator of the field G we then have the summation (see Fig. 5.2)

i

p2 −M2
G

→ i

p2 −M2
G

(
1 +

i

p2 −M2
G

(−f2)
i

p2 −M2
S

+ ...

)
=

=
i

p2 −M2
G

∞∑

n=0

(
f2

(
p2 −M2

G

) (
p2 −M2

S

)
)

= i

(
p2 −M2

S

)
(
p2 −M2

G

) (
p2 −M2

S

)
− f2

. (5.38)

The ”new” poles of this expression are exactly the solution of the determinant equation
shown before. If we then choose as solution of the pole the mass M 2

G′ , we have for p2 'M2
G′

the propagator
i

p2 −M2
G′

(5.39)

i.e. the propagator of the field G′. This simple exercise shows indeed something important:
summing up to infinite order we find, as expected, the correct physical masses. But this is
not possible at any finite order of perturbation theory. The field rotation ϕ→ ϕ ′ is in general
a non-trivial field change. It allows us to find the physical states and to define properly the
physical fields. This transformation is non-perturbative, and it constitutes a nice and simple
example to prove that not always a perturbative approach is the most useful.

5.3 Three fields

We now extend the mixing to the case of three fields. This case is of physical interest to us.
We consider three scalar fields: N, G, S. The first, N, represents the light quark-antiquark
state nn =

√
1/2(uu + dd), the second, G, the bound state of two gluons, and the third, S,

a composition of the strange quark pair ss. At this level we will consider the three fields N,
G, and S as elementary and point-like.

The quark-antiquark scalar mesons have a mass between 1-2 GeV (see introduction and
Refs. therein). Lattice QCD predicts a similar mass for the glueball, and the respective states
can mix. We will then analyze in more detail in the next chapter how this mixing comes out
from the basic quark and gluon degrees of freedom, but here we want to illustrate it from the
easier Klein-Gordon point of view. We then write down the Lagrangian in the most general
mixing configuration as

L =
1

2
(∂µN)2 − 1

2
M2

GN2 1

2
(∂µG)2 − 1

2
M2

GG2 +
1

2
(∂µS)2 − 1

2
M2

SS2

−fGS −
√

2frGN − εNS (5.40)

where we introduced the three mixing parameters f, r, and ε. Introducing ϕ and Ω like

ϕ =




N
G
S


 ; Ω =




M2
N

√
2fr ε√

2fr M2
G f

ε f M2
S


 . (5.41)

we have again

L =
1

2
(∂µϕt)(∂µϕ)− 1

2
ϕtΩϕ. (5.42)
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We diagonalize Ω with the SO(3) transformation matrix B as

BΩBt = Ω′ =




M2
N ′ 0 0

0 M2
G′ 0

0 0 M2
S′


 (5.43)

where the physical masses appear. The rotated field are



N ′

G′

S′


 = ϕ′ = Bϕ = B




N
G
S


 (5.44)

In the mass region between 1-2 GeV three scalar-isoscalar states f0(1370), f0(1500) and
f0(1710) are seen. As discussed in the introduction, one naively expects that only two of such
states can be part of a quark-antiquark nonet (see also next chapter). A possible explanation
to the puzzle is to say that the glueball comes into the game. But no state among these
three resonance has the right strong decay pattern one would expect for a pure glueball
state. A way out is then to admit that the bare glueball (gluon-gluon state in a minimal
configuration) mixes with the quark-antiquark configuration (terms fGS and

√
2frGN in

our toy Lagrangian) generating the three observed resonances. We then interpret the three
orthogonal state N ′, G′ and S′ of our simple Lagrangian as the physical resonances f0(1370),
f0(1500) and f0(1710).

The B matrix thus tells us what the amount of nn, gluons and ss in each physical
resonance is.

If we start from the bare level configuration MN < MG < MS , which seems now the
favored case (see [8]), we will have the following trend:
• MN ′ < MN

• MS′ > MS ,
i.e. the outer states are repelled, as in the two-state mixing case. For the intermediate

there is not a general behavior, but it depends on the special mixing configuration one adopts.
With this assignment,when mixing is small, it typically follows that the state G ′ ≡

f0(1500) has the largest gluonic content.
We just note that this is not the only possible solution of the problem. Other scalar states

have been observed, such as f0(980) and the enigmatic broad σ ≡ f0(400 − 1200). It is still
an open issue to disentangle the nature of these states; if one follows our previous assignment
(see scenario A in section 1.5.4 and Refs. therein), then these states are not q-q states, but
something different, as four-quark states or meson molecules. But other mixing schemes are
considered, where also these states are q-q and may have a glueball decomposition. Actually I
think that all possible compositions of glueball and scalar states have already been proposed
(see 1.5.4).

In this work we will mostly analyze the ”standard” and original scheme, where the glueball
mixes with the scalar states above 1 GeV.

In the next chapter we will compare the Klein-Gordon approach with a more fundamental
non-local one, where one deals with the basic quark and gluon degrees of freedom.

5.4 Two-photon decay of the mixed states

Let us consider the zero-mixing limit and analyze in this case the two-photon decay. Accord-
ing to what we have seen in the previous chapter and considering the quark-antiquark nature
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of the states N and S we write

Lnomix,2γ =
1

2
(∂µN)2 − 1

2
M2

GN2 1

2
(∂µG)2 − 1

2
M2

GG2 +
1

2
(∂µS)2 − 1

2
M2

SS2

+gscalar

(
4

9
+

1

9

)
N (F µνFµν)

+gscalar

(
1

9

)
S (F µνFµν) (5.45)

where:
• G doesn’t couple directly to the photons; in fact, G describes two (or more) gluons,

which do not interact with photons.
• gscalar is a constant which describes the loop diagrams for the scalar quark-antiquark

configuration. The fact that we take the same constant gscalar for both the N and the S
decay means that we are assuming that the s-quark loop is equal to the u-d quark one (this
is valid in the SUf (3) flavor symmetry limit).
• The factors

(
4
9 + 1

9

)
for N and 1

9 for S take explicitly into account the charge of the
quark content. This is assumed to be the ”dominant” difference among the two states.

We then have following two-photon decay rates for the three fields N, G and S :

ΓN→2γ =
π

4
α2M3

N

(
2

(
4

9
+

1

9

)
gscalar

)2

(5.46)

ΓG→2γ = 0 (5.47)

ΓS→2γ =
π

4
α2M3

S

(
2

(
1

9

)
gscalar

)2

. (5.48)

• The coupling gscalar is not only valid for the two considered states N and S but also
for the isospin 1 state a0

0(1450) ≡
√

1/2(uu− dd); the only difference is the opposite flavour
phase; the decay rate for this state is then

Γa0
0→2γ =

π

4
α2M3

a0

(
2

(
4

9
− 1

9

)
gscalar

)2

(5.49)

where the flavour factor
(

4
9 − 1

9

)
is the same as for the pion.

We understand why it is useful to start with the bare fields N, G, and S in this case: one
can write in a simple and physical meaningful way the two-photon interaction terms. We
then introduce the mixing; the goal is to derive the two-photon decay of the rotated physical
fields N ′, G′ and S′. To this end let us introduce the column vector F

F =




gscalar

(
5
9

)
(F µνFµν)

0
gscalar

(
1
9

)
(F µνFµν)


 (5.50)

from which we can write the full Lagrangian in the following matrix form (see 5.43)

L2γ =
1

2
(∂µϕt)(∂µϕ)− 1

2
ϕtΩϕ + ϕtF. (5.51)

Introducing then ϕ′ = Bϕ (Eqs. (5.43) and (5.44)) we get

L2γ =
1

2
(∂µϕ′t)(∂µϕ′)− 1

2
ϕ′tΩ′ϕ′ + ϕ′tBF. (5.52)
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where the first part is the free one for the rotated field ϕ′. The two-photon interaction term
reads explicitly

L2γ,int = ϕ′tBF =

= gscalarN
′ (F µνFµν)

(
BN ′N 5

9
+ BN ′S 1

9

)

+gscalarG
′ (F µνFµν)

(
BG′N 5

9
+ BG′S 1

9

)

+gscalarS
′ (F µνFµν)

(
BS′N 5

9
+ BS′S 1

9

)
, (5.53)

where we denoted the elements of the mixing matrix B as B i,a with i = N ′, G′, S′ and
a = N,G, S. The term BN ′G, for example, tell us the amount of gluons in the physical state
N ′. The two-photon decay takes place only through the N and the S components, because
the gluons, being chargeless particles, cannot decay directly into two photons.

The final formulas for the decay of the mixed states are then:

ΓN ′→2γ =
π

4
α2M3

N ′

(
2

(
BN ′N 5

9
+ BN ′S 1

9

)
gscalar

)2

,

ΓG′→2γ =
π

4
α2M3

G′

(
2

(
BG′N 5

9
+ BG′S 1

9

)
gscalar

)2

,

ΓS′→2γ =
π

4
α2M3

S′

(
2

(
BS′N 5

9
+ BS′S 1

9

)
gscalar

)2

. (5.54)

Note that these decays are sensible to the mixing decompositions, first because of the different
two-photon interactions of the bare fields (which in turn depend on the different charge of the
subcomponents), secondly because a constructive or destructive interference can change the
decay rate. This decay, together with the strong decay channels, which are more difficult to
develope because of the possible direct decay of the glueball state, should in principle allow
to derive the mixing parameters and tell us if the three-mixing scheme hypothesis is valid
and sufficient to describe the results of the resonances N ′ ≡ f0(1370), G′ ≡ f0(1500) and
S′ ≡ f0(1710).

Unfortunately the two-photon decay rates of these three resonances are not well known.
Only the decay rate of the N ′ ≡ f0(1370) has already been seen. It is however not clear if this
two-photon signal comes from this resonance or from the high-mass tail of f0(400− 1200), or
from both, and in this last case in which amounts.

This is one of the reasons why the existence of the glueball and its eventual mixing is still
an open issue under intensive debate.

We will also study in the last chapter the strong decays of mixed states. The formalism
described in this chapter can be applied with minor changes to the decay of a scalar into two
pseudoscalars.

5.5 Coupling with external currents

Let us now consider the following interaction, where the three fields N, G and S couple to
three external currents Jn, Jg and Js :

Lint = gNNJn + gGGJg + gSSJS = ϕtĝJ (5.55)
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where

ĝ =




gN 0 0
0 gG 0
0 0 gS


 (5.56)

and

J =




Jn

Jg

Js


 . (5.57)

After diagonalization, we have in terms of the rotated fields ϕ′

ϕ′tBĝJ = ϕ′tĝ′J (5.58)

where

Bĝ = ĝ′ =




gnn
N ′ ggg

N ′ gss
N ′

gnn
G′ ggg

G′ gss
G′

gnn
S′ ggg

S′ gss
S′


 . (5.59)

ĝ′ describes the coupling constants of the rotated fields to the three currents Jn, Jg and Js.
Explicitly, for G′ one has

LG′ = gnn
G′ G′Jn + ggg

G′G
′Jg + gss

G′G′Js (5.60)

and similarly for N ′ and S′. Because of the mixing, the rotated field G′ couples also with
Jn and Js, while the original bare field G couples only to Jg. The physical meaning will be
better explained in the next chapter; the current Jg will represent a two-gluon current, and
Jn and Js two qq currents corresponding to

√
1/2(uu + dd) and ss respectively. The ”bare”

G couples only to gluons, while the rotated G′ couples also to quarks. It means that the
corresponding state is a mixture of quarks and gluons.

Let us note that the elements of the Klein-Gordon mixing matrix B are related to the
coupling constants as follows

Bia = ga
i /ga (5.61)

with i = N ′, G′, S′ and a = N,G, S.
We will use such a relation to define the mixing matrix when the mixing will be described

in terms of gluons and quarks. We will have to extend it properly, but it will be the correct
extension when one is working within a Bethe-Salpeter approach.
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Chapter 6

The glueball and its mixing with q-q

components

6.1 QCD

6.1.1 The Lagrangian

In this work we often spoke about quarks and gluons. We gave an historical presentation
in the introduction, we discussed briefly the peculiar characteristics of the quark mass at
low and high energy (chapter 3), we described how to take into account the flavor and the
color when writing down a non-local quark current (chapter 3), and we finally analyzed the
two-photon decay of the neutral pion and of a scalar quark-antiquark state (chapter 4). Now
we briefly describe the main properties of the underlying theory [3, 56, 60, 55, 96, 97, 98, 99].

There are 6 different types of quarks (flavors): u,d,s,c,b,t. Here we will restrict to the
three light ones, i.e. u, d and s; the quarks interact among each other by gluon exchange,
in an elementary quark-quark-gluon vertex, similar to the lepton-lepton-photon one of QED.
In order to see how the interaction comes out let us postulate that the quarks carry a color-
charge, which is analogous to the electric one, but which can take three different colors
c = R,G,B (red, green, blue). This means that the quark field carries two indices, one for
the flavor and one for the color:

q(x) = qi,c(x) (6.1)

with i = u, d, s and c = R,G,B. q(x) is a 36-vector column. The corresponding free fermionic
Lagrangian is

Lquark,free = qi,c(x) (iγµ∂µ −mi) qi,c(x) (6.2)

where the summation over i and c is understood; mi are the high-energy or current ”quark
masses”, where we used the double quotes to stress that the word ”mass” should be taken
with care (see section 3.4.2). This Lagrangian is invariant under global SUc(3) color trans-
formations

qi,c(x)→
(
eiθa

1
2
λa

)
cd

qi,d(x) (6.3)

where the 8 traceless matrices λa are the generator of the SU(3) group and θa are 8 arbitrary
real constants. The commutation relations for λa are

[
λa

2
,
λb

2
] = ifabc

λc

2
(6.4)
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where the non-zero totally antisymmetric constants fabc are

f123 = 1, f458 = f678 =
√

3/2

f147 = f165 = f246 = f257 = f345 = f346 = 1/2. (6.5)

We have seen that the QED Lagrangian is invariant under local U(1) transformations; the
basic postulate of QCD is invariance under local SUc(3) transformations, which are found
from the global ones by considering the eight parameters θa(x) as generic functions of the
space-time variable x

qi,c(x)→
(
eiθa(x) 1

2
λa

)
cd

qi,d(x). (6.6)

The free quark Lagrangian does not satisfy such a requirement; according to the Yang-Mills
procedure we achieve SUc(3) local gauge invariance by considering

LQCD = qi,c(x)
(
iγµ (Dµ)cd −mi

)
qi,d(x)− 1

4
Ga

µνGa,µν (6.7)

where:
• Dµ, given by

(Dµ)cd = δcd∂µ + ig
1

2
(λa)c,dG

a
µ (6.8)

is the covariant derivative; the 8 vectorial boson fields Ga
µ describe the gluons. We assume

that, when transforming the quark fields like (6.6), the gluons at the same time change like

Ga
µ → Ga

µ −
1

g
∂µθa − fabcθbG

c
µ. (6.9)

In this way the first piece of the Lagrangian is SUc(3) local gauge invariant.
• The introduction of the covariant derivative gives us the gluon-quark interaction term

Lgluon−quarks = gqi,c(x)
1

2
(λa)c,dγ

µqi,d(x)Ga
µ (6.10)

which gives origin to elementary quark-quark-gluon vertex; g is the corresponding coupling
constant. Note that at each vertex also the λa color matrices act.
• The last piece of the QCD Lagrangian describes the dynamical part of the gluons with

Ga
µν = ∂µGa

ν − ∂νG
a
µ − gfabcG

b
µGc

ν . (6.11)

This is the non-abelian generalization of the F µν field tensor of electrodynamics. The extra-
piece gfabcG

b
µGc

ν is necessary in order to guarantee local gauge invariance of Ga
µνGa,µν .

This is the crucial difference from QED. This extra-term generates three and four-gluon
interaction terms in the gluonic part of the QCD Lagrangian. It is believed that this difference
forms the basis of the peculiar QCD phenomenology, that is:
→ confinement: only color-neutral objects appear in nature; these are quarks and gluon

combination which do not transform under color transformations; a typical example is the
mesonic quark-antiquark configuration

qi,c(x)qj,c(x) (6.12)
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corresponding to the color wave function RR + GG + BB. The current q i,c(x)qj,c(x) is in-
variant under local SUc(3) transformations (6.6), so we may say that it is ”locally white”. In
phenomenological studies the weaker constraint of ”global color invariance” corresponding to
the meson current

qi,c(x1)qj,c(x2) (6.13)

is often required; this object is invariant under global SUc(3) (6.3).

Another example is the baryonic three quark configuration

εabcqi,aqj,bqk,c (6.14)

where εabc is the totally antisymmetric Ricci tensor. As above, local color gauge invariance
is satisfied if the fields are considered at the same space-time point x, otherwise the weaker
global color symmetry is imposed.

This antisymmetric color decomposition is the one discussed in the introduction, originally
proposed to overcome the statistical ∆++ problem.
→ asymptotic freedom: the quarks are almost free at small distances, but interact non-

perturbative at large ones. We have seen that a theory has to undergo a renormalization
process, and that the coupling constant becomes momentum dependent; in QCD at lowest
order one gets

αstrong(µ
2) =

g2(µ2)

4π
=

4π

(11− 2
3Nf ) ln

[
µ2

Λ2
QCD

] (6.15)

where Nf is the number of flavors, 3 in our case. This function, valid for µ2 >> Λ2
QCD,

decreases for increasing µ2 = −q2 and q is the gluon four-momentum. It means that if we
try to pull a quark out of a hadron the return force will grow for increasing distance. This
makes the operation impossible; we cannot set the quark free. What it may happens in such
an operation is the appearance of other hadrons (at the cost of additional quark-antiquark
pair creation), but in any case quark-confined structures (section 1.4). On the other hand,
for large µ2 the interaction decreases, realizing asymptotic freedom.

We can summarize this discussion by writing:
• µ2 >> Λ2

OCD : a perturbative approach is applicable
• µ2 ≤ Λ2

OCD : non-perturbative regime and confinement; the QCD confined states ”are
here”, the ”hic sunt leones” of the theory.

6.1.2 Symmetries

We now list the symmetries of QCD; the first one is of course the local SUc(3), which we
studied in the previous subsection. We actually constructed the QCD Lagrangian by imposing
this local symmetry. This in turn led us to the introduction of 8 gluon fields, which, in virtue
of the non-abelian nature of the theory, interact among each other. But there are other
symmetries of QCD :

6.1.2.1 UV (1) :

We have invariance under the transformation

qi,c → eiαqi,c (6.16)
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whose corresponding charge is the baryon number

B =
1

3

∫
d3xq†i,cqi,c. (6.17)

6.1.2.2 SUf (3) :

Let us now consider the global SUf (3) flavour transformation

qi,c →
(
eiθk

1
2
λk

)
ij

qj,c. (6.18)

The gluon-quark interaction term is invariant under this transformation; in fact, the gluon
interact with each flavor in the same way. There is ”flavor-democracy” in this interaction
term; only the color is interchanged, but not the flavor. The mass term of the QCD La-
grangian is invariant only if the three masses are equal. Let us split the discussion into the
perturbative and the non-perturbative QCD domains:

→ PQCD : in the high energy region the momenta are much larger than the light quark
masses mu = 2 − 5 MeV, md = 4 − 7 MeV and ms = 70 − 130 MeV. This means that we
can consider all the light quarks as massless, thus having an approximate SUf (3) symmetry.
→ NPQCD : in the low energy domain one has, as discussed in section 3.4, a non-

perturbative modification of the light quark propagators with the generation of high effective
quark masses m∗

u ∼ m∗
d = 200− 500 MeV, m∗

s = 500− 700 MeV. These three masses are not
equal but of the same order; also in this limit we can speak of an approximate realization of
SUf (3) flavor symmetry.

It is important to distinguish conceptually the flavor and the color SU(3) transformations;
the color one is exact, with the color being the ”charge” of the gluonic interaction, while the
flavor one is an approximate symmetry valid for the light quark sector in the limit of equal
flavor masses (more generally in the limit of equal flavor propagators).

6.1.2.3 SUA,f (3) :

The axial flavor transformation is similar to the previous one with an extra γ 5 in the expo-
nential:

qi,c →
(
eiγ5θk

1
2
λk

)
ij

qj,c. (6.19)

Again, the QCD interaction term is invariant because γ5 commutes with γµ. What about the
mass term? Well, this is invariant only if the three quark masses are zero. This means that:
→ PQCD : the quark masses are negligible, therefore in this energy domain SUA,f (3) is

a good (approximate) symmetry of the theory, but....

→ NPQCD : large effective quark masses are, due to non non-perturbative effects, devel-
oped! In this low-energy region SUA,f(3) is NOT realized in terms of a degenerate spectrum;
a look at the mesonic spectrum confirms this; this transformation, by the γ 5, changes the par-
ity of a mesonic state, thus transforming a pseudoscalar state into a scalar one. A symmetry
under this transformation would mean, for instance, an equal spectrum for the pseudoscalar
JPC = 0−+ and the scalar JPC = 0++, which is clearly not realized because the pseudoscalar
resonances are much lighter than the scalar ones.

This phenomenon is also known under the name of ”spontaneous breaking of the SUA,f (3)
symmetry group”. Although the QCD Lagrangian is (approximately) invariant under
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SUA,f (3) transformations, the physical QCD ground state |0〉QCD is not. It follows that
the charges do not annihilate the vacuum

QA
k |0〉QCD 6= 0, (6.20)

where the QA
a are explicitly

QA
k =

∫
d3x

(
qi,cγ

5

(
λk

2

)

ij

qj,c

)
(6.21)

where k = 1, ..., 8.

The Goldstone theorem then says that for each conserved charge which does not annihilate
the vacuum, there is a massless boson: in fact, if one considers the eight states

|πk〉 α QA
k |0〉QCD 6= 0 (6.22)

we have

HQCDQA
k |0〉QCD ' QA

k HQCD |0〉QCD = 0, (6.23)

thus meaning that we expect eight ”almost” massless pseudoscalar bosons |πk〉: ”pseu-
doscalar”, because such are the charges QA

k and ”almost massless” because the symmetry
of the theory is only approximate; this is why we have [HQCD, QA

k ] ' 0 and not exactly equal
to zero (in turn related to the small but non-zero perturbative current quark masses).

6.1.2.4 UA(1)

The QCD interaction term is also invariant under the axial UA(1) transformation

qi,c → eiαγ5
qi,c. (6.24)

The mass term, again, is invariant under this operation only if the quark masses are zero.
One is then lead to think that there is a ninth Goldstone boson, but this is not the case.
It is possible to prove [3, 56, 60] that also in the limit of zero quark masses one has at the
quantized level

∂µ

(
qi,cγ

µγ5qi,c

)
=

g2Nf

8π2

(
1

8
εµνρσGa,µνGa,ρσ

)
6= 0. (6.25)

This is a so-called anomaly, i.e. a symmetry of the classical Lagrangian which does not survive
after quantization. The axial current is related to the pseudoscalar gluon field configuration,
which is not zero. This means that the charge

QA
0 =

∫
d3x

(
qi,cγ

5

(
λ0

2

)

ij

qj,c

)
, (6.26)

where λ0 =
√

2/313, doesn’t annihilate the vacuum. The corresponding bound state is a
pseudoscalar ”flavor singlet”, i.e.

√
1/3(uu + dd + ss); we recognize the observed state η ′,

which is approximately a flavor singlet and is heavier than the other 8 pseudoscalar states,
thus confirming the non-Goldstone boson nature of the ninth state.
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6.2 Mesons

6.2.1 Flavor basis

Let us now look closer at the flavor combinations for a quark-antiquark bound state. We
have seen that SUf (3) is an approximate symmetry of the theory. One then constructs
the states using the generators of the symmetry group, that is considering the nine objects
qi,c

(
λk
)
i,j

Γqj,c where k = 0, 1, ..., 9 with λ0 =
√

2/313, Γ is a Dirac matrices responsible for

the spin-quantum numbers, thus unimportant for the flavor decomposition; with Γ = iγ 5, for
instance, one has pseudoscalar objects. For k = 1, ..., 8 the current q i,c

(
λk
)
i,j

Γqj,c changes

under SUf (3) rotations, while for k = 0 one has the flavour singlet, which is invariant. One
finds the octet states:

qi,c

(
λ1
)
i,j

Γqj,c ± qi,c

(
λ2
)
i,j

Γqj,c, qi,c

(
λ3
)
i,j

Γqj,c,

qi,c

(
λ4
)
i,j

Γqj,c ± qi,c

(
λ5
)
i,j

Γqj,c, qi,c

(
λ6
)
i,j

Γqj,c ± qi,c

(
λ7
)
i,j

Γqj,c

qi,c

(
λ8
)
i,j

Γqj,c,

which written in terms of flavors are

ud, du,

√
1

2
(uu− dd), us, su, ds, sd,

√
1

6
(uu + dd− 2ss). (6.27)

One then has the flavor singlet state,

qi,c

(
λ0
)
i,j

Γqj,c, (6.28)

which is invariant under SUf (3) rotation and in terms of flavor reads

√
1

3
(uu + dd + ss). (6.29)

The three states ud, du,
√

1/2(uu − dd) arise from a = 1, 2, 3 and correspond to the
subgroup SUf (2) relative to the quark flavors u and d; this subgroup is called ”isospin” and
the three states are then isospin vectors. In the pseudoscalar case they are the renowned
pions π−, π+, π0.

In the limit of an exact symmetry under SUf (3) transformations the octet states are
degenerated. But we know that SUf (3) symmetry is only approximate, therefore we expect
deviations from this trend. In order to analyze it we consider in the following a quartic
Lagrangian.

6.2.2 Example: SUV (3) quartic Lagrangian

First, note that we are restricting to quark-antiquark states, but a physical meson state may
be more complicated in terms of Fock states:

|s〉 = c1 |qq〉+ c2 |qqqq〉+ .... (6.30)

We assume that the first contribution is dominant. This may be true in some cases, but, as
we have seen in the introduction, not in general. In the previous chapters we analyzed the
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appearance of bound states by making use of a quartic Lagrangian. Why not to do the same
now? We have then seen that the symmetry SUV (3) is still approximately valid also at low
energy, i.e. in the bound state energy domain. Referring to the channel Γ (Γ = iγ 5 for the
pseudoscalar nonet, Γ = γµ for the vectorial one, Γ = 1 for the scalar, ...) we write down the
interaction term

L =
GΓ

4

8∑

k=0

(
qΓλkq

)2
(6.31)

which is SUV (3) invariant. Now, in order to analyze the structure, we consider this local
version, but, in the spirit of the previous chapters, it is our intention to extend it to the
non-local case, in order to take into account the bound state nature of the mesons.

6.2.2.1 π+

In the local version some regularization scheme must be applied in order to regularize the
integrals. Apart from this point, one can proceed as in the third chapter.

In the pseudoscalar channel one has for π+ (GΓ = GP )

G−1
P = Σπ+(p2 = M2

π+) (6.32)

where

Σπ+(p2) = −iNc

∫

Λ

d4q

(2π)4
Tr[iγ5Su(q + p/2)iγ5Sd(q + p/2)]. (6.33)

∫
Λ means that some regularization of the integral is applied, we do not care now precisely

which one. We then can introduce the composite field π+ together with the Lagrangian

L = gπ+π+
(
u(x)iγ5d(x)

)
(6.34)

and

gπ+ =

(
∂Σπ+(M2

π+)

∂p2

)−1/2

. (6.35)

The same procedure can be applied for all the states ud, du, us, su, ds, sd without problems.
Care is needed for the equal-flavor states.

6.2.2.2 Equal-flavor case

We now restrict to the equal flavor case, which corresponds to k = 0, 3, 8 in the summation
in the Lagrangian term. If we introduce the bound state fields π0, η8 and η0 we are then lead
to

Lequal−flavor = gπ0π0

√
1

2
(uiγ5u− diγ5d)

+gη8

√
1

6
(uiγ5u + diγ5d− 2siγ5s)

+gη0

√
1

3
(uiγ5u + diγ5d + siγ5s). (6.36)

Let us ask the following question: are the three introduced fields, which correspond to two
octet and one singlet states, really orthogonal? In order to find the coupling constants gπ0 ,
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Figure 6.1: Diagrams for π0-η8 mixing.

gη8 and gη0 we have to sum up all the quark-antiquark bubbles of the corresponding states.
We can proceed as in the second and the third chapters (and for the other mesons as π+) only
if transitions like π0 ←→ η8 vanish, i.e. if the three states are orthogonal. The corresponding
diagrams for this mixing are depicted in Fig. 6.1.

Such diagrams mean that the state π0 and η8 can in principle mix, and that the real phys-
ical states are in the general case a mixture of these. The mixing amplitude is proportional
to ∫

Λ

d4q

(2π)4
{Tr[iγ5Su(q + p/2)iγ5Su(q + p/2)]

−Tr[iγ5Sd(q + p/2)iγ5Sd(q + p/2)]}, (6.37)

which is equal to zero if Su(q) = Sd(q). The states π0 and η8 (and similarly π0 and η0) are then
orthogonal in the limit of equal u and d propagators. This is indeed a good approximation,
because, as already discussed, the masses of these two flavors are almost equal. In the
following we will work under the assumption Su(q) = Sd(q) = Sn(q) where n = {u, d}. The
same cannot be said for the η8 and η0 states. In this case the mixing term for the transition
η0 ←→ η8 is proportional to

∫

Λ

d4q

(2π)4
{Tr[iγ5Sn(q + p/2)iγ5Sn(q + p/2)]
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−Tr[iγ5Ss(q + p/2)iγ5Ss(q + p/2)} 6= 0 (6.38)

because Sn(q) 6= Ss(q). Although the s and the n masses are of the same order, the difference
cannot be neglected.

6.2.2.3 Orthogonal states

How are then the physical states determined? Let us note that we can write the quartic
Lagrangian as

GΓ

4

∑

k=0,3,8

(
qΓλkq

)2
=

GΓ

2

[
(uΓu)2 + (dΓd)2 + (sΓs)2

]
(6.39)

where we restricted to k = 0, 3, 8, i.e. to the equal-flavor combinations. We could then define
the bound states fields U, D, and S and consider

Lequal−flavor = gUU(uΓu) + gDD(dΓd) + gSS(sΓs). (6.40)

This would not be wrong. These states are automatically orthogonal, we can find the masses
and the coupling constants in the usual way.

Why then normally one does not introduce such states? They seem to be the best choice.
But at the same time we know that it is very useful to group the three pions together. The
isospin is conserved in the strong interaction, and the pions form a isospin triplet; the very
similar masses of π0 and π± confirm this symmetry. Furthermore, the isospin triplet is found
in each octet to be practically degenerate.

In terms of U and D the π0 state is
√

1/2(U −D); the orthogonal state is
√

1/2(U +D).
We then realize that another decomposition is possible:

1

2

∑

k=0,3,8

(
qΓ

λk

2
q

)2

= (uΓu)2 + (dΓd)2 + (sΓs)2 =

=

(√
1

2
(uΓu− dΓd)

)2

+

(√
1

2
(uΓu + dΓd)

)2

+ (sΓs)2. (6.41)

Note that in the case u = d = n these two last decompositions are perfectly equivalent. We
then write down the Lagrangian correspondent to the last decomposition:

Lequal−flavor = gπ0π0

√
1

2
(uΓu− dΓd) + gNN

√
1

2
(uΓu + dΓd) + gSS(sΓs). (6.42)

(We write π0, but in a generic nonet we refer to the corresponding
√

1/2(uu−dd) state). Note
that the three states π0, N and S are also orthogonal (because we supposed Su = Sd = Sn).
In this way we split the iso-vector

√
1/2(uu − dd) (vector in the SUf (2) sub-group relative

to u, d space) to the isoscalars
√

1/2(uu + dd) and ss, the last two being invariant under the
SUf (2) isospin sub-group transformations

qi,c →
(
eiθk

1
2
λk

)
ij

qj,c (6.43)
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with k = 1, 2, 3.
Then, the basis

√
1/2(uu− dd),

√
1/2(uu + dd) and ss we will work with corresponds to

SUu,d(2) × Us(1)
Note that in the case u = d = n it is only a matter of utility if we use uu, dd (i.e. at the

composite level U and D) or
√

1/2(uu−dd) and
√

1/2(uu+dd) (corresponding to π0 or N).
This last choice is preferred because of the mentioned isospin considerations, i.e. because the
neutral π0 and the π± are degenerated.

6.2.2.4 η and η′ : a fist look at the mixing problem

The Lagrangian (6.31) admits, as we have seen, as physical states π0, N and S. So, out of
only SUf (3) symmetry in a quartic Lagrangian one gets these physical states, which, together
with the other ud, du, us, su, ds, sd form a nonet.

But we ask what happens if we consider an extra-mixing like

Gmix(sΓs)

(√
1

2
(uΓu + dΓd

)
. (6.44)

In this case π0 is still a physical state, but N and S are not, because they mix through this
term. This is indeed what happens in the pseudoscalar sector because of the UA(1) anomaly
(see [21] and later). On the other hand in the vectorial, pseudovector and tensor mesons the
physical states are very close to N and S, i.e. such a mixing N -S is negligible. The scalar
case is controversial, and we will discuss it separately later. The glueball intrusion in the
nonet can increase this mixing.

In the pseudoscalar case (Γ = iγ5) the two physical states called η and η ′ are actually
”closer” to the octet

√
1/6(uu+dd−2ss) and to the singlet

√
1/3(uu+dd+ss) decompositions;

the reason for this is a mixing term like 6.44 (see [21, 22]).
We will see later how to treat the general mixing case, but we will do it in the framework

of the glueball mixing. For the moment we content ourselves to have understood the problem
we have to face and how to decompose properly the flavor basis.

The difficulty is how to define a mixing scheme for the bound states; in fact, in this
approach, the fields N and S, as η and η ′, are not elementary. They describe bound objects,
made out of the more elementary quarks.

In the end, we add a note concerning notation: in the pseudoscalar case the fields N and
S are pseudoscalar, in the scalar case, where Γ = 14, they are scalar. In the vectorial case,
they are vectorial, and so on.

6.3 The NJL model

6.3.1 The Lagrangian and its symmetries

In this context we are compelled to describe briefly one of the most famous QCD models,
the Nambu Jona-Lasinio one [20, 21, 22, 23, 73]. In the previous subsection we considered
a fourth-order Lagrangian invariant under SUf (3) transformations (6.31), but not invariant
under SUA,f (3). As we have seen in the first section, this last symmetry, valid at high energy,
is spontaneously broken at low ones: the vacuum does not respect the symmetries of the
interaction Lagrangian.
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Considering the scalar and the pseudoscalar channels only, the Nambu Jona-Lasinio La-
grangian reads:

LNJL = q(iγµ∂µ − m̂)q +
G

4

8∑

k=0

[(
qiγ5λkq

)2
+
(
qλkq

)2
]

(6.45)

where m̂ = Diag{mu,md,ms} is the current quark mass matrix. In the limit of zero quark
masses the NJL-Lagrangian is SUf (3) × SUA,f (3) invariant. Note that a single term of the
interaction Lagrangian is not SUA,f (3) invariant, but the sum satisfies this requirement.

Let us then consider the equation of motion for the flavor u :

(iγµ∂µ −mu)u− ∂LNJL,int

∂u
= (iγµ∂µ −mu)u + G(uu)u + G(uiγ5u)u... = 0 (6.46)

If we consider the mean value of the operators on the right for the vacuum state we find

(iγµ∂µ −mu)u−G 〈0| uu |0〉u = 0 (6.47)

(all the other terms like 〈0| uiγ5u |0〉 = 0 vanish because of symmetry constraints; in this
case, for instance, because the vacuum has even parity). The ”new” effective mass is then

m∗
u = mu −G 〈0| uu |0〉 (6.48)

where 〈uu〉 = 〈0| uu |0〉 is the scalar quark condensate of flavor u. If its value is non-vanishing
and large, we go from a small mass mu of the Lagrangian to the larger effective mass m∗

u >
mu, thus realizing a spontaneous breaking of the SUA,f (3). Completely similar relations are
valid for the other flavors. The quantity 〈0 |uu| 0〉 is the order parameter of the spontaneous
chiral symmetry breaking.

Quantities like 〈0| uu |0〉, as each loop-diagram, diverge in the context of the NJL model,
therefore a regularization must be introduced. Many schemes have been used, such as a three-
dimensional cut-off (useful for a finite density extension), a four-dimensional one, Pauli-Villar
scheme and so on [22].

The introduction of a cut-off means that the theory is not longer local, therefore care in
conservating of symmetries is needed (see the related discussion in section 3.6).

The NJL Lagrangian (6.45) is also UA(1) invariant in the limit of zero quark masses. But
we know that this symmetry is not conserved at the QCD quantum level. The NJL model
can then be improved by considering an extra-term, known as the t’Hooft interaction

Lt′Hooft = −Kt′Hooft

[
det
i,j

[qi(1 + γ5)qj + det
i,j

[qi(1− γ5)qj]

]
(6.49)

which generates 6-point interaction, is SUf (3) × SUA,f (3) invariant but breaks the UA(1)
symmetry. The origin of this term is connected to the QCD ground states and instantons. It
is fundamental for a proper description of the η-η ′ states. Such a term, in fact, generates a
N − S mixing as in equation (6.44); this mixing is automatically present in the pseudoscalar
as well as in the scalar sector. For a better description of these issues we refer to NJL review
papers [21, 22, 23].
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6.3.2 Meson states within NJL and the scalar problem

The NJL model incorporates the important feature of the SUA,f (3) spontaneous symmetry
breaking, even if in a somewhat ”strange” way: the quark-condensate is calculated through a
quark loop, similar to the one seen in section 2.4.3 within the ϕ4 theory; in that case we were
going from the bare unphysical mass to a physical one, in a renormalization process, here from
a current mass to the larger effective low-energy one. Furthermore, the NJL theory is not
renormalizable: [coupling constant] = [energy]−2. We should than interpret this approach
as a phenomenological schematic way for the description of spontaneous symmetry breaking;
the cut-off Λ one has to introduce then ”cuts” the high-energy momenta, which become inert
and inactive, in accord with the basic QCD idea of asymptotic freedom.

In this way many low energy theorems can be consistently derived; also the pseudoscalar
nonet, together with the η-η′ mixing [21, 22], is correctly described. Attempts to describe
light baryons starting from the NJL model have also been performed [23, 100, 101].

The Lagrangian also contains the scalar channel: what about these resonances? They
can be calculated within the model, and the typical result for the σ = N =

√
1/2(uu + dd)

is a mass of ∼ 2m∗
n ' 600 MeV. The first ”temptation” is to interpret it as the resonance

σ = f0(400 − 1200) [21], but the situation is not so simple. It is not clear if this resonance
has a quark-antiquark nature, or a multi-quark one (as a two-pion bound state or a four-
quark state). Furthermore, experimentally one finds the scalar states between 1-2 GeV ;
the isovector states ud, du,

√
1/2(uu − dd) are assigned to the a0(1450), the strange states

us, su, ud, du to the resonance K∗(1450). The NJL scalar masses are typically smaller than
these ones. Some authors interpreted the states predicted by the NJL model with the two
low-mass scalar states f0(980) (I = 0) and a0(980) (I = 1) states, but , as mentioned in the
previous chapter and discussed in the introduction, there are serious theoretical arguments
to believe in a multi-quark nature of these two resonances.

We conclude this section by saying that the NJL model works very well at an energy
scale well below 1 GeV and for the pseudoscalar nonet, but, if we want to describes states
between 1-2 GeV, where probably the quark-antiquark scalar states lie, we may be at the
border (if not outside) of its applicability [13].

However, within the NJL model studies about the scalar mesons and the glueball have
been performed [94, 102, 103], where the glueball degree of freedom is introduced by a dilaton
[102, 103] or by a scalar field constraint via the QCD trace anomaly [94].

In the present approach we resort directly to the elementary gluon fields in a non-local
interaction Lagrangian.

6.4 Non-local approach

6.4.1 Scalar-isoscalar term

How to describe then the scalar states above 1 GeV ? We can try to apply our non-local
approach developed in the previous chapters. First, we limit to the study of the isoscalar-
scalar states N =

√
1/2(uu + dd) and S = ss. These two states are those interesting to us

because of the glueball mixing. To this end we consider the non-local currents [74, 104]

Jn(x) =
1√
2

∫
d4y (n(x + y/2)n(x− y/2)) Φ(y)
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with n(x) =

(
u(x)
d(x)

)
(6.50)

and

Js(x) =

∫
d4y (s(x + y/2)s(x − y/2)) Φ(y). (6.51)

together with isoscalar-scalar Lagrangian interaction term

Lq =
KN

2

(
J2

n(x) + J2
s (x)

)
. (6.52)

Lq is a non-local generalization of the scalar-isoscalar piece of the NJL Lagrangian [69].
But this is true from a mathematical point of view. In the NJL model one relates the quark
propagators to the quark condensates and tries to describe in a unified way pseudoscalar and
scalar mesons. This is probably too much to ask for. In our approach we do not implement
directly the chiral structure, but we concentrate on the scalar states above 1 GeV, specially
on the isoscalar ones N and S : we do it by writing the non-local quark-antiquark currents
for these states, taking into account their scalar nature and through Φ(y) their bound-state
characteristics. We didn’t write down the dynamical part of the Lagrangian; we do it later,
when discussing the propagator.

Note that we employ the same vertex function for both states, which is a simplification
of the problem, but justified because the dimensions of the two mesons is of the same order.

Another point of the discussion is the following: a summation over color is understood.
These objects are white, as they should be according to confinement. The non-local currents
Jn and Js are, of course, globally white but note anymore locally. A local color SUc(3) does
not leave them unchanged. It should be stressed that we are working with a phenomenological
approach, so we simply require that the global color is white. To work with local SUc(3)
invariance means to work with QCD directly. One may say: ”the NJL model, being local,
deals with local SUc(3) invariant currents”

There are 2 answers:
1: the NJL model is local up to the introduction of a cut-off, which mathematically

corresponds to a θ function in momentum space.
2: the NJL Lagrangian as a whole is of course not locally gauge invariant because of the

free part.
In general, a phenomenological description of a QCD bound state has to require the global

color invariance, but not the local. This last point leads to gluon fields, i.e. to exact QCD.

6.4.2 Generalization and its limitations

Even if we will mostly work with the isoscalar states, a generalization to the whole nonet is
(almost) straightforward. The a0

0 =
√

1/2(uu− dd) current is for example

Ja0
0
(x) =

1√
2

∫
d4y

(
u(x + y/2)u(x − y/2)− d(x + y/2)d(x − y/2)

)
Φ(y) (6.53)

and similarly for the other isovector states. It corresponds to a Lagrangian piece KN
2 J2

a0
0
(x).

For the kaon-like state us we write

Jus =

∫
d4yu(x + y/2)s(x− y/2)Φ(y). (6.54)
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One may criticize it, because the masses of u and s are different, i.e. the quark-propagators
are not equal. The center of gravity is not at x anymore. A possible way out is to consider

Jus =

∫
d4y1d

4y2δ

(
x− m∗

uy1 + m∗
sy2

m∗
u + m∗

s

)
u(y1)s(y2)Φ(y1 − y2). (6.55)

The Dirac delta function assures that the meson sits in the center of gravity of the two-body
system. Such a form for nonlocal currents is discussed in [68] and Refs. therein.

In general we write down

Lnonet =
KN

4

8∑

k=0

J2
k (6.56)

with

Jk =

∫
d4y1d

4y2δ

(
x−

m∗
i y1 + m∗

jy2

m∗
i + m∗

j

)
qi,c(y1) (λk)ij qj,cΦ(y1 − y2). (6.57)

The quark masses are parameters; as explained before we do not fix them through the
quark condensates. As usual, we assume m∗

n = m∗
u = m∗

d < m∗
s. It is a simple exercise to

recover the currents Jn and Js when the masses are equal.
We immediately realize that there is a problem; if we use the typical low-energy masses,

we find that the resonance masses (∼ 1.5 GeV ) are larger than two times the effective quark
masses, thus leading to poles in the bubble integrations. We discuss this problem in the
following subsection.

The Lagrangian is SUf (3) invariant, because we used the same vertex function for all the
states. If we expand Lnonet we find for the isoscalar piece exactly Lq of eq. (6.52), as desired.

We are not considering the UA(1) anomaly; these and other modifications would split the
Lagrangian into the more general form

Lnonet =

8∑

k=0

Kk

4
J2

k (6.58)

where each channel has its own strength; another possible complication is to consider for
each channel a different vertex functions. We just mention it, but do not analyze these cases
because they lead to a large number of parameters, which are already not few (later for this
issue).

A problem connected to the scalar nonet is that, if we consider a0(1450) and K∗(1450)
as members of it (see section 1.5), one has MK∗(1430) = 1.412 ± 0.006 GeV < Ma0(1450) =
1.474 ± 0.019 GeV.

How can one understand it if m∗
s > m∗

n=u,d ? This is possible if the constant Ka0 is smaller
(a smaller strength leads to a larger mass: see chapter 2) than for KK(1430), but not if they
are equal. Even a small difference may cause relatively large mass differences. This shows
that SUf (3) invariance alone is not enough for the full and precise description of the scalar
nonet. In any case at first order it is a good starting point, especially for our scalar-isoscalar
sector, and, as we will see, for the glueball mixing.

6.4.3 Scalar-isoscalar masses

The scalar meson masses MN and MS are deduced from the poles of the T-matrix of the scalar-
isoscalar Lagrangian (6.52) and are given by the solutions of the Bethe-Salpeter equations:



CHAPTER 6. THE GLUEBALL AND ITS MIXING WITH Q-Q COMPONENTS 155

Figure 6.2: Self energy diagram for N .

KN −
1

ΣN (M2
N )

= KN −
1

ΣS(M2
S)

= 0 . (6.59)

The mass operator ΣN(S)(p
2), where p is the meson momentum, is deduced from the quark

loop diagram of Fig. 6.2 and given by

ΣN(S)(p
2) = −iNc

∫
d4q

(2π)4
Tr
[
Sn(s)(q + p/2)Sn(s)(q − p/2)

]
Φ̃2(q2), (6.60)

where Nc = 3 is the number of colors and Sn(s) is the quark propagator. A Wick rotation
is then applied in order to calculate ΣN(S)(p

2). As evident from (6.59), MN and MS are not

independent. Once the vertex function Φ̃(q) is chosen and using the bare nonstrange meson
mass MN as an additional input, the coupling constant KN and the bare strange meson mass
MS are fixed.

By introducing the auxiliary meson fields N(x) and S(x) (N for the
√

1/2(uu + dd) and
S for the ss meson) previous procedure can be summarized by the Lagrangian :

L′q = gNN(x)Jn(x) + gSS(x)Js(x) (6.61)

with the condition that

gN(S) =

(
∂ΣN(S)(p

2)

∂p2

)−1/2

p2=M2
N(S)

, (6.62)
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where the last relation is the compositeness condition, discussed throughout all the work.
The compositeness condition requires that the renormalization constant of the meson fields
N(x) and S(x) is set to zero, hence physical meson states are exclusively described by the
dressing with the constituent degrees of freedom.

We will use a gaussian form for the vertex function with

Φ̃(q2
E) = exp[−q2

E/Λ2], (6.63)

where qE is the Euclidean momentum. This particular choice for the vertex function preserves
covariance and was used in previous studies of light and heavy hadron system [67, 68, 69, 70].
Any covariant choice for Φ̃ is appropriate as long as it falls off sufficiently fast to render the
resulting Feynman diagrams ultraviolet finite. The size parameter Λ will be varied within
reasonable range, checking the dependence of the results on it.

6.4.4 Quark propagator

We now turn to the discussion of the quark propagator. The general form (see [24] and
chapter 3) is

S(p) = i
Z(p2)

(p/−m(p2))
. (6.64)

Considering the low energy limit as discussed in the second chapter we have Z(p2) ∼constant
and m(p2) ∼ m∗, where m∗ is the effective or constituent quark mass. These masses are
typically in the range of 0.25 to 0.45 GeV for the u(d) quarks and 0.5 to 0.7 GeV for the s
flavour. The low energy limit for the quark propagator is too naive for our purposes, since it
leads to poles in the mass operator for meson masses of about 1.5 GeV . In the following we
consider two possible ways to avoid these infinities.

6.4.4.1 Free propagators with a large mass

The mass function for n = u, d flavor can be decomposed as mn(p2) = m∗
n + σn(p2) and the

contribution of σn is assumed to be replaced by a large average value. To avoid poles, that
is the unphysical decay of the quark-antiquark meson into two quarks, the averaged mass
function is chosen as

〈
mn(p2)

〉
= m∗

n +
〈
σn(p2)

〉
= µn ≥ 0.86 GeV (here for the u- and d

-flavour), where 2 · µn is a lower limit set by the mass of the f0(1710) resonance. We then
have the free form

Sn(p) =
i

(p/− µn)
. (6.65)

We also introduce an analogous parameter µs for the s flavour, which for µs 6= µn contains
flavor symmetry violation. The basic assumption is that the effective mass for bound states
in the energy region between 1 − 2 GeV is larger than for the pseudoscalar nonet, thus not
generating poles. Above parametrization of the quark propagator is the simplest choice;
although it neglects the p2 dependence of the quark mass, the approximation by a free quark
propagator with a large effective mass allows to test the approach and leads to considerable
simplifications concerning the technical evaluation. A similar quark propagator was also used
in Ref. [94], where the decay of scalar mesons into two photons was analyzed.

The total Lagrangian, including the free part, is then in this case

L = q(i∂/− µ̂)q +
KN

2

(
J2

n(x) + J2
s (x)

)
(6.66)



CHAPTER 6. THE GLUEBALL AND ITS MIXING WITH Q-Q COMPONENTS 157

where µ̂ = Diag[µn, µn, µs].
The full L′ Lagrangian with the auxiliary fields N and S but completely equivalent to L

is then

L′ = −1

2

ΣN (M2
N )

Σ′
N (M2

N )
N2 − 1

2

ΣS(M2
S)

Σ′
S(M2

S)
S2 + gNN(x)Jn(x)

+gSS(x)Js(x) + q(i∂/− µ̂)q (6.67)

where gN(S) is given from the compositeness condition (6.62) (see the full discussion in chap-
ters 1 and 2).

6.4.4.2 Entire propagator

We also consider the quark propagator introduced in chapter 2, which is described by an
entire function:

Si(p) =
i

p/−m∗
i

(
1− exp

(
β
(
p2 −m∗2

i

)))
. (6.68)

This parametrization has been used both in the study of meson and baryon properties [84, 85]
and serves as one possible way to model confinement; the factor multiplying the free quark
propagator removes the pole and on-shell qq creation is avoided. The effective quark masses
m∗

i (with i = n, s) are taken from [81] with m∗
n = 0.462 GeV, m∗

s = 0.657 GeV. In Ref. [81] the
effective quark masses are calculated within a Dyson-Schwinger approach and, as functions
of the Euclidean momentum, display an almost constant behavior up to high values. The
parameter β is constrained from below to generate a behavior like i/ (p/−m∗

i ) for small (and
for euclidean) momenta; β is also constrained from above, requiring that the propagator does
not diverge for momenta up to ∼ 2 GeV .

In the end, we want to write down the full Lagrangian, including the dynamical part. A
free Dirac Lagrangian cannot generate the propagator (6.68). We can do it by writing

L = q(S−1(i∂/))q +
KN

2

(
J2

n(x) + J2
s (x)

)
(6.69)

where

S(i∂/) = δabδij (∂/−m∗
i )

1− exp[β
(
�−m∗2

i

)
]
. (6.70)

Of course, this is just a formal way to introduce the entire propagator in the Lagrangian,
but the physical reasons behind it were listed in the third chapter and at the beginning of
the present chapter. The expression for L′ is straightforward.

We also understand why we postponed the discussion of the dynamical part, and we
started with the interaction Lagrangian only. In fact, the dynamical part is connected with
the propagator, which, at low energy, reflects the non-trivial structure of QCD.

6.5 The glueball

6.5.1 Introduction

We have seen that the QCD physical states are ”white”. Can we construct ”white” gluon
bound states? Of course, we can. The following object, for example

Ga
µν(x)Ga,µν(x) (6.71)
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is invariant under local gauge color transformation

Ga
µ → Ga

µ −
1

g
∂µθa − fabcθbG

c
µ. (6.72)

As discussed previously, from a phenomenological point of view we limit to ”global white
objects”

Ga
µν(x1)G

a,µν(x2) (6.73)

which are invariant under the global color gluon transformation

Ga
µ → Ga

µ − fabcθbG
c
µ. (6.74)

where the θa are constant. Note that the non-abelian nature of QCD implies that also
in the global case the gluon fields transform, in contrast to the QED case. The current
Ga

µν(x1)G
a,µν(x2) contains two, three and four gluon states.

The fundamental question is the following: is a only-gluons bound state possible in QCD?
The existence of the current is in fact not enough; also in QED we can construct analogous

currents, like F µνFµν . But the photon-photon interaction, although different from zero (they
do not interact directly but through electron loops [55]) is not strong enough to generates
stable bound states. This is why you have never heard a state called photonball or photonium.

In QCD the situation is different: the gluons undergo third and fourth order self in-
teraction. This fact is thought to be at the basis of asymptotic freedom and confinement,
but another fundamental question is the possible existence of gluonic bound states. The
interaction may be strong enough to generate them.

In this case we would have a whole spectrum. The current Ga
µν(x1)G

a,µν(x2) is scalar, thus

it corresponds to a JPC = 0++ glueball. One would have then the pseudoscalar configuration
as

Ga
µν(x1)G

a
ρσ(x2)ε

µνρσ (6.75)

and so on and so forth.
In this work we will concentrate on the scalar glueball. We immediately realize that there

is a complication: two gluons can transform into a quark and an antiquark, thus meaning that
in QCD a scalar glueball configuration can transform into a scalar meson (parity, C-parity
and J are conserved at the QCD level). This makes the situation more difficult, because it
is possible that the physical states are a mixture of gluons and quark-antiquarks. How to
analyze it?

If the scalar qq states and the ”gg” glueball have a similar mass, the mixing may also be
large (see the general discussion about mixing in the previous chapter and in the first one).

If in nature there is mixing, we cannot switch it off to study the bare states. This
operation, while being practically unapplicable, is conceptually possible. Lattice QCD can
study the Yang-Mills part of the QCD Lagrangian, i.e. the gluon part only

LY −M = −1

4
Ga

µνGa,µν (6.76)

and study the bound states of this sub-theory. Lattice QCD predicts pure gluonic bound
state, where the lightest one is the scalar JPC = 0++ with a mass of the order of 1.5 GeV !
(See introduction and Refs therein).

So, Lattice QCD answer to the question ”Do we have gluonic bound states” is loud and
clear ”Yes, we do”! The mass 1.5 GeV is furthermore in the same region where the scalar
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mesons which are pion-like and kaon-like, a0(1450) and K∗(1430), lie. One then has three and
not only two scalar-isoscalar states f0(1350), f0(1500) and f0(1710); only two are expected
to complete the nonet (see the introduction). The fact that we have three states brings us to
believe that the glueball intrudes among them, and that mixing occurs among them.

In these arguments we DO NOT consider the other scalar resonances f0(400 − 1200),
f0(980) and a0(980), which we interpret as multiquarks bound state. We therefore believe
that the ground state scalar meson nonet (decuplet with the scalar glueball) lies completely
above 1 GeV, where the other L = S = 1 p-wave states are observed (the tensor mesons
J = 2++ and the pseudovector ones J = 1++). In fact, as we have seen in the second chapter,
the scalar configuration corresponds to a p-wave state; it is then natural to believe that the
scalar qq resonances lie close in mass to the correspondingly J = 1, 2 multiplets.

This point of view, as stressed in the first chapter, is not unique; other interpretations
are possible, and as mentioned before all possible combinations and permutations of octet,
nonet, glueballs and so on have already been proposed.

In any case, if Lattice QCD is right, we do have glueballs. A crucial questions is then:
”what happens if one introduces dynamical quarks?” It seems that the glueball mass tends
to be a bit smaller, but it does not change drastically.

In the following we will trust the Lattice prediction concerning the existence of the scalar
glueball in the mass region around 1.5 GeV and we will study the mixing with the scalar
mesons in the same mass region.

6.5.2 Gluonic quartic non-local interaction

The goal of this subsection is to write down a quartic non-local Lagrangian for the description
of the scalar glueball. As noted above, the current Ga

µν(x)Ga,µν(x) contains 2, 3 and 4 gluons;
we split the tensor Ga

µν into the one-gluon and the two-gluon terms

Ga
µν = G

a
µν − gfabcG

b
µGc

ν (6.77)

where

G
a
µν = ∂µGa

ν − ∂νG
a
µ (6.78)

is the abelian part of the tensor. The product is then

Ga
µν(x1)G

a,µν(x2) = G
a
µν(x1)G

a,µν
(x2) + ”3gluons” + ”4gluons”. (6.79)

In the following we will consider only the two-gluon term G
a
µν(x1)G

a,µν
(x2), under the as-

sumption that it is dominant. This means that we describe a glueball as made out of con-
stituent 2 gluons only; as we will discuss later, these two gluons are not the high-energy
massless objects of the perturbative QCD, but two low-energy effective constituent gluons
with a high non-perturbative effective mass.

Let us then consider the following interaction Lagrangian [74, 104]

Lg =
KG

2
J2

g , (6.80)

where

Jg =

∫
d4yG

a
µν(x + y/2)G

a,µν
(x− y/2)ΦG(y) (6.81)
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Figure 6.3: Effective quartic gluon interaction.

is the non-local glueball current where we used the ”truncated” tensor G
a
µν(x1)G

a,µν
(x2)

only. This Lagrangian contains a non-local separable four-gluon vertex. ΦG(y) is the glueball
vertex-function. Again, this quartic interaction (see Fig. 6.3) should not be confused with
the more fundamental four-point gluon interaction of the QCD Lagrangian. It should be
stressed that the gluons introduced in this section are not the ”background” gluons responsible
for confinement [107, 108], but two effective constituent gluons forming the glueball. For
simplicity we will use the same vertex function as in the previous case, setting the glueball
size equal to the one of the quarkonia states.

If instead of the truncated current we would use the ”full” one

Jg,full =

∫
d4yGa

µν(x + y/2)Ga,µν(x− y/2)ΦG(y)

= Jg + ”3gluons” + ”4gluons” (6.82)

then we would also have 5,6,7,8 gluon-point Feynman diagrams. The use of the truncation
is therefore necessary in order to be able to solve the corresponding mathematical problem.
The current Jg,full is invariant under global color transformations, but the truncated current
Jg not. So, we should do the calculations with Jg but always keep in mind that this is an
approximation of the full global ”white” current Jg,full.

6.5.3 Glueball mass operator and composite field

The coupling constant KG again is linked to the bare glueball mass by the pole-equation:

KG −
1

ΣG(M2
G)

= 0, (6.83)
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Figure 6.4: Glueball mass operator.

where the mass operator ΣG(p2), as indicated in Fig. 6.4, is given as:

ΣG(p2) = i2(N 2
c − 1)

∫
d4q

(2π)4
[
8(q1 · q2)

2 + 4q2
1q

2
2

]
D(q2

1)D(q2
2)Φ̃

2(q2). (6.84)

where q1 = q + p/2 and q2 = −q + p/2. D(q2) is the scalar part of the gluon propagator,
which in the Landau gauge is [109]

Dab
µν = δab(gµν −

qµqν

q2
)D(q2). (6.85)

In order to get ΣG(p2) one has to take care of the derivative in the interaction, which
generates the term in the square brackets in the integrand. As before, the formalism can
alternatively be defined by a Lagrangian containing the scalar glueball field G(x) with:

L′g = gGG(x)Jg(x), (6.86)

where the coupling gG is deduced from the compositeness condition

gG =

(
∂ΣG(p2)

∂p2

)−1/2

p2=M2
G

. (6.87)

The last two defining equations are equal to the ones used in [110].

Note that a coupling with the”full” gluonic current Jg,full would lead to vertices coupling
the glueball to 3 and 4 gluons, and to extra mass-operator diagrams with 3 and 4 internal
gluon lines. As explained before, these extra pieces are supposed to be negligible.
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6.5.4 Gluon propagator

For the gluon propagator we choose the free one [109, 111]

D(q2) =
i

q2 −m2
g

, (6.88)

where the effective mass mg should be large, with 2 ·mg larger than the bare glueball mass
deduced from lattice simulations between 1.4-1.8 GeV. [9, 37, 10, 11]. The generation of a
constituent gluon mass is analogous to the effective quark mass, and one can relate its value
to the gluon condensate [112]. Typical values for the effective gluon mass are in the range of
0.6-1.2 GeV . Lattice simulations give a value of 0.6-0.7 GeV [30]; in the QCD formulation
of [113] a higher value of about 1.2 GeV is deduced. A similar value is then found in [114] as
a off-shell gluon mass in the so called maximal abelian gauge. The gauge (in)dependence of
the effective gluon mass is still an open issue [111, 115]. For our purposes it is sufficient to
take a constituent gluon mass within the range 0.6-1.2 GeV; we chose an intermediate value
of 0.9 GeV, which is in accord with the effective constituent gluon mass found in the study
of gluon-dynamics in [116].

This propagator is the easiest choice we can do, but also meaningful. Note that, the extra
graphs with 3 and 4 internal gluon lines are naturally suppressed with such a choice, because
of the large denominator attached to each internal gluonic line.

Also here we wish to write down the full Lagrangian, including the ”free” term. As
we have seen, we choose the Landau gauge for the gluon propagator. The corresponding
constituent gluonic Lagrangian is then

L = −1

4
G

a
µνG

a,µν − 1

2
m2

gG
a
µGa,µ − 1

2α
(∂µGa,µ)

(
∂µGa

µ

)
+

KG

2
J2

g (6.89)

taking the limit α→ 0 (which corresponds to the Landau gauge). Note that this Lagrangian
is clearly not locally gauge invariant. The same argument we presented elsewhere is valid: to
work with local color gauge invariance means to work with QCD and not with a QCD-model.
The presented Lagrangian is meant to be a low-energy effective gluonic Lagrangian with an
effective gluon-mass for the description of the scalar glueball bound state. For a generic α
one has the following gluon propagator

Dab
µν = δab(gµν + qµqν

α− 1

q2 − αm2
g

)
i

q2 −m2
g

(6.90)

and for α→ 0 we get the desired result [111].

The gluons play other roles in the present considerations: one has the so-called ”back-
ground gluons”, which are responsible for the string tension, i.e. for the attraction among the
quark and the antiquark; we have the constituent gluons forming the glueball, also interacting
by the exchange of background gluons.

In the quarkonia sector we used a quartic interaction Lagrangian; this means that the
”background” gluons, responsible for the string tension, are described by a constant propaga-
tor (and taken into account in the coupling constant KN ). The gluons, exchanged among the
quark-antiquark couple, are ”soft”; the gluon propagator of eq (6.88) becomes a constant for
small momenta, thus being in accord with that assumption. The exchange of nonperturbative
gluons is also responsible for the appearance of a vertex function, i.e. for the finite size of
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the quarkonia mesons, even if this happens in a non-trivial way; in this model calculation the
vertex function is parametrized by (6.63).

These arguments are also valid for the soft background gluons exchanged by the two
constituent gluons forming the glueball (constant KG). On the other hand, when evaluating
the glueball mass-operator (Eq. (6.84) and Fig. 6.4), the two constituent gluons (i.e. valence
gluons dressed with sea-gluons) can have also large time-like momenta, because the glueball
mass (∼ 1.5 GeV ) is relatively large. In this case the use of a constant for the gluon propagator
is not adequate. This is why we use the form of Eq (6.88), with a large effective mass: this
choice is at the same time valid to justify the quartic interactions employed above and for
the constituent gluons building up the glueball.

6.6 Mixing term

Two (or more) gluons forming a scalar bound state can transform into a quark-antiquark also
bound in a scalar bound state, because the quantum numbers J PC are conserved quantities in
QCD. A gluon couples to all the quarks with the same strength, because as we discussed, the
QCD gluon-quark interaction term is SUf (3) invariant. This means that two gluons couple
to uu, dd and ss with the same strength, leading to the schematic interaction

gg
(
uu + dd + ss

)
. (6.91)

We say that the glueball is ”flavor blind”, and that it couples to the flavor singlet combination.
In our previous analysis of the qq states we have shown that the best basis is

√
1/2(uu−

dd), nn =
√

1/2(uu + dd) and ss, therefore the glueball-quarkonia mixing term has the
schematic form

gg
(√

2nn + ss
)

. (6.92)

The glueball does not mix with the isovector
√

1
2 (uu− dd). In fact, an interaction like

gg
(
uu− dd

)
(6.93)

would imply an opposite strength in the channels uu and dd, in complete contrast with the
underlying QCD theory.

In terms of the introduced non-local currents Jg, Jn and Js we then write down the
following mixing interaction

Lmix = KmixJg

(√
2Jn + Js

)
, (6.94)

which generates a two-gluon to two-quark scattering, both in a scalar configuration. In terms
of bound states, it generates a mixing of glueball with quarkonia states. Again, it should
be stressed that Eq. (6.94) does not describe the fundamental quark-gluon vertex, but an
effective coupling of the scalar glueball current with the quarkonia ones, suitable for the
description of the mixing among these two bound states.

We do not introduce a direct N -S mixing, under the hypothesis that it is a higher per-
turbation [31, 40, 42]. In any case a generalization to this case would be straightforward.
Indeed, some authors ([7, 47]) considered a large flavor nn-ss mixing; its presence can change
non trivially the mixing and the decay properties. The previous authors introduce a large
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flavour mixing to accommodate in the same nonet the states f0(1500) and f0(980), which
are both interpreted as quark-antiquark scalar-isoscalar states with large mixing, i.e. respec-
tively like

√
1/3(
√

2nn− ss) and
√

1/6(
√

2nn+2ss). Note that opposite phases with respect
to the pseudoscalar states η0 and η8. As explained in the introduction and in section 6.5.1,
we do not interpret f0(980) as a quark-antiquark state, and we group the scalar meson plus
glueball between 1.3-1.7 GeV. However, the hypothesis of a relatively large flavour mixing is
interesting. We will come back to it in chapter 7. In the present chapter we do not consider
a flavour mixing, in order to compare with phenomenological works, where such a possibility
was not studied.

6.7 Rotated fields

6.7.1 T matrix and the physical masses

The full interaction Lagrangian resulting from the sum of the quark, gluonic and mixing
terms reads

L = Lq + Lg + Lmix

=
KN

2

(
J2

n + J2
s

)
+

KG

2
J2

g + KSGJg

(√
2Jn + Js

)
. (6.95)

In order to have a compact expression we omitted the free parts.
The correspondent T matrix has to take into account that we have now three channels:

nn, gg and ss. We then have a 3×3 matrix, which is not diagonal; in fact, mixing among the
different channels, like nn↔ gg, is possible. Its form is an extension of the forms studied in
the second and in the third chapters:

T = −(1−K · Σ)−1K = −(K−1 − Σ)−1, (6.96)

with the non-diagonal coupling matrix

K =




KN

√
2KSG 0√

2KSG KG KSG

0 KSG KS = KN


 , (6.97)

and the diagonal mass operator

Σ(p2) =




ΣN (p2) 0 0
0 ΣG(p2) 0
0 0 ΣS(p2)


 . (6.98)

The masses of the mixed states are obtained from the zeros of the determinant in the
denominator of the T matrix with Det [1−KΣ]= 0.

In the limiting case of KSG = 0 the determinant reduces to

(1−KNΣN (p2))(1 −KSΣS(p2))(1 −KGΣG(p2)) = 0, (6.99)

which results in the defining equations of the bare masses without mixing (6.59) and (6.83)).
For KSG 6= 0 we have mixing, where, starting from the unrotated masses (MN ,MG,MS) ,

we end up with the mixed states (N ′, G′, S′) of masses (MN ′ ,MG′ ,MS′), which we interpret
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as the physical resonances f0(1370), f0(1500) and f0(1710). Quantitative predictions in
the three-state mixing schemes strongly depend on the assumed level ordering of the bare
states before mixing. In previous works [31, 37] essentially two schemes were considered:
MN < MG < MS and MN < MS < MG. In phenomenological studies latter level ordering
seems to be excluded, when analyzing the hadronic two-body decay modes of the f0 states
[40, 42]. In the current work we will refer to the first of these two possibilities, where the
bare glueball mass is centered between the quarkonia states before mixing. We will see that
this case is indeed favored in our work.

We also compare our pole equation Det[1−KΣ] = 0 to other approaches.

But first we discuss further consequences of the covariant non-local approach, such as the
meson-constituent coupling constants, which are crucial in the calculation of the decays of
the mixed states.

6.7.2 Coupling constants

As a result of the mixing the physical rotated fields N ′, G′, S′ couple to the nn, gg and ss
configurations. The leading contribution to the T -matrix (6.96) in the limit p2 ' M2

i with
i = N ′, G′, S′ is given by the pole at p2 = M2

i with

T ab =
ga
i gb

i

p2 −M2
i

, (6.100)

where a, b = nn, gg and ss refer to the constituent components. A similar expression for the
T matrix is also given in [21, 22], where the η-η′ mixing was analyzed in the context of the
NJL model. The constant gnn

G′ , for example, represents the coupling of the mixed state G′

to the quark-antiquark configuration of flavor u and d. The modulus of the nine coupling
constants is then given by

|ga
i | = lim

p2→M2
i

√
(p2 −M2

i )T a,a =

(
∂(T a,a)−1

∂p2

)−1/2

p2=M2
i

(6.101)

which we solve numerically. In the next section, where we consider the mixing of two fields, we
also give an explicit expression for this quantity. The expression (6.101) is the generalization
of the compositeness condition (eqs. (6.62) and (6.87)).

In the limit KSG → 0 the T-matrix is diagonal and the coupling constants ga
G′ , for

instance, become

gnn
G′ = gss

G′ = 0, (6.102)

∣∣ggg
G′

∣∣ = ggg
G =

(
∂ΣG(p2)

∂p2

)−1/2

p2=M2
G′=M2

G

(6.103)

where the last equation is the glueball compositeness condition (6.87). In this case there is
no mixing and the glueball couples only to gluons.

We still have to discuss the sign of the coupling constants. By convention we chose gnn
N ′ , ggg

G′

and gss
S′ as positive numbers (to have the correct zero-mixing limit). The sign is determined

from the off-diagonal elements of the T-matrix:

ga
i = sign(αa

i )

(
∂(T a,a)−1

∂p2

)−1/2

p2=M2
i

(6.104)
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where

αa
i = lim

p2→M2
i

(p2 −M2
i )T i,a =

(
∂(T i,a)−1

∂p2

)−1

p2=M2
i

. (6.105)

Having obtained these coupling constants we again can write an effective interaction
Lagrangian for the G′ field (see Fig. 6.5)

L′G′ = gnn
G′ G′Jn + ggg

G′G
′Jg + gss

G′G′Js, (6.106)

where the coupling between the mixed states and the constituent configurations are made
explicit. This Lagrangian allows to calculate the decay of G′ as we will see explicitly for the
two-photon decay; the coupling constants directly enter in the decay rate of the state. One
then has completely analogous expressions for the fields N ′ and S′:

L′N ′ = gnn
N ′N ′Jn + ggg

N ′N
′Jg + gss

N ′N ′Js, (6.107)

L′S′ = gnn
S′ S′Jn + ggg

S′ S
′Jg + gss

S′S′Js. (6.108)

The strength of the coupling is directly connected to the mixing strength, the explicit
mixing matrix is discussed in the following.

6.7.3 Mixing matrix M

When dealing with elementary scalar particles, and not with composite ones, mixing between
the bare meson fields (N,G, S) can be expressed by the Lagrangian introduced in the section
5.3, which we rewrite here as

LK−G =
1

2
(∂µN)2 − 1

2
M2

NN2 +
1

2
(∂µG)2 − 1

2
M2

GG2 +
1

2
(∂µS)2 − 1

2
M2

SS2

+fGS +
√

2frGN, (6.109)

where f and r are mixing parameters (r 6= 1 takes into account breaking of the flavour
blindness hypothesis). In order to allow a comparison we do not consider a direct mixing
between N and S, id est ε = 0. In this simple case one has to diagonalize

TK−G =



−M2

N

√
2fr 0√

2fr −M 2
G f

0 f −M2
S


 (6.110)

where the mixing matrix B ⊂ SO(3) is obtained from the condition

B · TK−G ·Bt = DK−G = Diag[−M 2
N ′ ,−M2

G′ ,−M2
S′ ], (6.111)

where the primed Klein-Gordon masses refer to the mixed states (see the full discussion in
the previous chapter). The matrix B ⊂ SO(3) (i = N ′, G′, S′ and a = N,G, S) connects the
unmixed and the mixed states by



|N ′〉
|G′〉
|S′〉


 = B



|N〉
|G〉
|S〉


 . (6.112)
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Figure 6.5: G’ couples both to quarks and gluons, representing a mixed state.
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In the following we want to determine an analogous matrix in our Bethe-Salpeter ap-
proach. We consider |G′〉 which can be written as a superposition of the bare states:

∣∣G′〉 = MG′,N |N〉+ MG′,G |G〉+ MG′,S |S〉 (6.113)

where MG′,N , for example, is the admixture of |N〉 =
√

1/2
∣∣uu + dd

〉
to the mixed state |G′〉.

Unlike in the Klein-Gordon case, care should be taken with such an expression, since here
the bare states |N〉 , |G〉 and |S〉 are not well defined. They correspond to the Bethe-Salpeter
solutions in the case of zero mixing, but, when including mixing, they are not normalized
vectors of the Hilbert space anymore [22]. To obtain a corresponding expression as in the
Klein-Gordon case, we exploit the knowledge of the coupling constants; as in the K-G case
with external currents (Section 4.5), we have seen that the elements of the mixing matrix are
Bia = ga

i /ga.
Therefore, the coupling constant gnn

G′ (evaluated in the previous subsection) is related to
gN (the coupling constant of the bare state N to nn in the case of no mixing) by the relation

gnn
G′ = MG′,NgN (p2 = M2

G′), (6.114)

where gN (p2 = M2
G′) is determined from (6.62) evaluated at the physical mass with p2 = M2

G′ .
Eq. (6.114) states that the nn to G′ coupling equals the nn admixture in G′ (which is the
matrix element MG′,N we want to determine) times the N to nn coupling evaluated on mass-
shell of G′. It is an extension of the discussion of section 5.5 to the bound state theory, taking
into account the momentum dependence of the quantities.

Using (6.62) and (6.104) we obtain for MG′,N :

MG′,N =
gnn
G′

gN (p2 = M2
G′)

= sign(αnn
G′ )

[(
∂(T nn,nn)−1

∂p2

)(
∂ΣN (p2)

∂p2

)]−1/2

p2=M2
G′

. (6.115)

Generalizing this result for a generic component of the mixing matrix M we have

M i,a =
ga
i

ga(p2 = M2
i )

= sign(αa
i )

[(
∂(T a,a)−1

∂p2

)(
∂Σa(p

2)

∂p2

)]−1/2

p2=M2
i

. (6.116)

with i = N ′, G′, S′ and a = N ≡ nn,G ≡ gg, S ≡ ss. Last expression, while not being
based on a rigorous derivation, can be regarded as a definition of the mixing matrix in a
Bethe-Salpeter approach. We explicitly show in Appendix A for the reduced problem of two
mixed fields that this definition of the mixing matrix is the analogous one the Klein-Gordon
case.

Furthermore, the components of the mixed state |i〉 are correctly normalized with

1 = (M iN )2 + (M iG)2 + (M iS)2 (6.117)

as verified both numerically and analytically (Appendix A). This is a further confirmation
of the consistency of the definition (6.116). While the rows of M are properly normalized,
this does not hold for the respective columns of M because of the p2 dependence of the T
matrix and of the mass operators. The rows are evaluated at different on-shell values of
p2 values with p2 = M2

i . This implies that the matrix M is not orthogonal, but here we
will demonstrate that deviations from orthogonality are small for both choices of the quark
propagator.
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In the end, let us note that this mixing approach is different from the one used in [21];
there one diagonalizes the Dyson matrix D = K−1TK−1, here we present another approach,
which to my knowledge was not discussed elsewhere.

6.7.4 Comparison with other mixing schemes

We again consider the Klein-Gordon case and its mass equation Det[p2 + TK−G] = 0 which
reads:

(p2 −M2
N )(p2 −M2

G)(p2 −M2
S)− f2

(
(p2 −M2

N ) + 2r2(p2 −M2
S)
)

= 0. (6.118)

In our approach the mass equation Det[T −1] = 0 (see Eq. (6.96)) is written out as:

(1−KNΣN (p2))(1−KGΣG(p2))(1 −KSΣS(p2))−

−K2
SG{ΣG(p2)ΣS(p2)(1−KNΣN(p2))

+2ΣG(p2)ΣS(p2)(1−KSΣS(p2))} = 0. (6.119)

In order to compare the last expression with (6.118) we introduce the functions ηa(p
2) as

ηa(p
2) =

(1−KaΣa(p
2))

(p2 −M2
a )

(6.120)

for each a = N,G, S. The ηa(p
2) do not contain poles for p2 = M2

a since (1 − KaΣa(p
2 =

M2
a )) = 0 (see (6.83) and (6.59)). When substituting (6.120) in (6.119) we get:

(p2 −M2
N )(p2 −M2

G)(p2 −M2
S)−K2

SG

ΣG(p2)ΣS(p2)

ηG(p2)ηS(p2)

·{(p2 −M2
N ) + 2

ΣN (p2)

ηN (p2)

ηS(p2)

ΣS(p2)
(p2 −M2

S)} = 0 (6.121)

Comparing (6.121) with (6.118) we deduce that the mixing parameters f and r of the
Klein-Gordon approach become p2-dependent functions in the case of composite scalar fields.
In particular we make the following identification

f2 → f2(p2) = K2
SG

ΣG(p2)ΣS(p2)

ηG(p2)ηS(p2)
,

r2 → r2(p2) =
ΣN (p2)

ηN (p2)

ηS(p2)

ΣS(p2)
. (6.122)

It should be noted that the composite approach generates a value of r 6= 1 which reflects
the deviation from the flavor blindness hypothesis. Although we set up the quark-gluon
interaction assuming this hypothesis, on the composite hadronic level we obtain a breaking
of this symmetry due to the flavor dependence of the quark propagators. As we will see in
our numerical evaluation (see section 6.8 and Figs.6.6 and 6.7) the functions f(p2) and r(p2)
vary slowly in the momentum range of interest, thus justifying a posteriori the Klein-Gordon
approach.
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Replacing in (6.110) the constants f and r by the running functions f(p2) and r(p2) we
have

TK−G → TK−G(p2) =



−M2

N

√
2f(p2)r(p2) 0√

2f(p2)r(p2) −M2
G f(p2)

0 f(p2) −M2
S


 , (6.123)

where the Klein-Gordon mass equation Det[p2 +TK−G(p2)] = 0 coincides with the pole equa-
tion Det[T−1] = 0 by construction. When diagonalizing TK−G(p2) we obtain a momentum-
dependent transition matrix B(p2) ⊂ SO(3) (for each p2), which cannot be directly inter-
preted as the mixing matrix. To extract the composition of a mixed state one has to consider
its on-shell mass value. For example, the mixing coefficients for the diagonal state |G ′〉 are
obtained from the second row of B(p2 = M2

G′) at the corresponding on-shell value. We then
can define a mixing matrix M ′ (the prime serves to distinguish it from M defined in the
previous subsection) where we have M ′G′,a = BG′,a(p2 = M2

G′) with (a = N,G, S); in general
we get:

M ′i,a = Bi,a(p2 = M2
i ). (6.124)

Above procedure arises from the analogy to the Klein-Gordon case and indicates that M ′ is a
natural generalization of B, provided that we evaluate the rotated states at their correspond-
ing on-shell mass value. Again, due to the p2-dependence and the on-shell evaluation the
mixing matrix M ′ is not orthogonal, where in the limit of f(p2) = const and r(p2) = const
one has M ′ = B as desired. The numerical results of M (6.116) and M ′ (6.124) are very sim-
ilar, as we will show in section 6.8 The analytical argument leading to M ∼M ′ are presented
in Appendix A. Because of the weak p2 dependence of the mixing functions f(p2) and r(p2),
the mixing matrix M (and M ′ ∼M) will be almost orthogonal, as shown in section 6.8.

In the three-state mixing scheme many phenomenological approaches [31, 40, 42] refer to
an interaction matrix, which is diagonalized linearly with respect to the masses:

TQM =



−MN

√
2f∗r∗ 0√

2f∗r∗ −MG f∗

0 f∗ −MS


 . (6.125)

Here we introduce the parameters f ∗ and r∗ to distinguish them from those in (6.118). The
resulting equation for the masses of the mixed states is then:

(
√

p2 −MN )(
√

p2 −MG)(
√

p2 −MS)−

−f∗2
(
(
√

p2 −MN ) + 2r∗2(
√

p2 −MS)
)

= 0. (6.126)

To relate our approach to the linear mass case with parameters f ∗ and r∗ we start from
(6.121) and decompose (p2 −M2

i ) = (
√

p2 −Mi)(
√

p2 + Mi). Then we have

(
√

p2 −MN )(
√

p2 −MG)(
√

p2 −MS)− f2(p2)

(
√

p2 + MS)(
√

p2 + MG)

·
(

(
√

p2 −MN ) + 2r2(p2)
(
√

p2 + MS)

(
√

p2 + MG)
(
√

p2 −MS)

)
= 0. (6.127)
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Comparing (6.127) to (6.126) we find the ”running” behavior for f ∗ and r∗ with

f∗2 → f∗2(p2) =
f2(p2)

(
√

p2 + MS)(
√

p2 + MG)

r∗2 → r∗2(p2) = r2(p2)
(
√

p2 + MS)

(
√

p2 + MG)
, (6.128)

where extra-factors occur when relating the quadratic to the linear mass case. The consistent
limit of our approach is actually the Klein-Gordon case, but Eq. (6.128) yields a direct
comparison to the linear mass case, where many phenomenological approaches are working
in [40, 42].

6.8 Numerical results and discussion

6.8.1 Mixing matrix and coupling constants

First we proceed to constrain the parameters of the model. The mass scale of the non-strange
quarkonia in the scalar meson nonet is set by the physical state a0(1450). We therefore assume
that the mass of the unmixed N meson state is close to this value. Using MN = 1.377 GeV
as an input, which is the value deduced in the phenomenological analysis of Ref. [42], the
mass of the bare S meson state and the elementary quark coupling constant KN are fixed
from Eq.(6.59) once the cut-off Λ is specified. The bare scalar glueball mass is predicted from
lattice calculations in the range of 1611 ± 30 ± 160 MeV [9]. The analysis of [42] prefers a
value of 1.443 GeV, which we use as an additional input. The bare glueball mass fixes in
turn the gluonic coupling KG of Eq. (6.83).

We now consider separately the phenomenological consequences of the two proposed
choices for the quark propagators.

6.8.1.1 Case 1, free quark propagator

Mass spectrum: As discussed in Section 6.4.4 we consider large effective quark masses in
order to avoid poles in the integration. For the quark mass we choose the threshold value
µn = 0.86 GeV to prevent unphysical on-shell production of a quark-antiquark pair.

For the vertex function we choose a cut-off of Λ = 1.5 GeV comparable to the values
chosen in the analysis of [67] for the light meson sector. We will subsequently vary Λ within
reasonable range, in order to check the dependence of the results on the specific value(see
Appendix B). Actually, we find a remarkable stability of the results under changes of Λ as
discussed further on. The mixing coefficient KSG and the effective strange quark mass µs

in the quark propagator are fixed by the experimental masses MG′ = 1507 ± 5 MeV and
MS′ = 1713 ± 7 MeV . We then can compare KSG with phenomenological approaches and
with estimates from the lattice following the expressions of (6.122) and (6.128). Here we do
not use the mass of the resonance N ′ ≡ f0(1370) as a further constraint, since it is rather
broad and ill-determined. For the optimal choice of µs = 0.989 GeV and KSG = 0.55 GeV −1

we obtain for the masses of the physical N ′ and the bare S states:

MS = 1.696 GeV, MN ′ = 1.297 GeV. (6.129)

The obtained quark ”mass difference” µs − µn = 129 MeV is close to the upper limit of
the current quark mass difference of about 130 MeV. With these quark mass values the bare



172 6.8. NUMERICAL RESULTS AND DISCUSSION

mass level scheme MN < MG < MS comes out naturally. A reversal of the bare scheme
with MN < MS < MG would require a rather small mass difference µs − µn in conflict with
phenomenology. In fact, if we assume that the average

〈
σn(p2)

〉
(see 6.4.4) is the same for

n and s, thus one should find also for the scalar meson above 1 GeV the typical s-n mass
difference.

Mixing matrix: The mixing matrix M linking the rotated and the unrotated states is:



|N ′〉
|G′〉
|S′〉


 =




0.80 0.59 0.10
−0.60 0.76 0.26
0.08 −0.27 0.96





|N〉
|G〉
|S〉


 (6.130)

showing a similar pattern as in the phenomenological work of [42]: the center state |G′〉,
identified with the f0(1500), has a dominant glueball component and the quark components
|N〉 and |S〉 which are out of phase. Latter effect causes destructive interference for the KK̄
decay mode consistent with experimental observation [31]. On the other hand |N ′〉 and |S′〉
show a tendency to be dominated by the n̄n and s̄s constituent components as also deduced
in [40, 42].

As already indicated, the mixing matrix of (6.130) is not orthogonal. The deviation from
orthogonality is displayed by M ·M t (which is just the identity in the Klein-Gordon limit):

M ·M t =




1 −0.0028 −0.0019
−0.0028 1 −0.0074
−0.0019 −0.0074 1


 , (6.131)

where the off-diagonal elements turn out to be very small. This in turn implies that the
Klein-Gordon limit is fully appropriate to set up the mixing scheme of the scalar meson
states. Furthermore, the unities on the diagonal are in accord with (6.117).

In Section 6.7.4 we have introduced the mixing matrix M ′. The numerical evaluation
yields

M ′ =




0.79 0.60 0.09
−0.61 0.75 0.24
0.08 −0.26 0.96


 , (6.132)

where the result is nearly identical to the one for M. The reasons for this coincidence are
given in Appendix A.

The pattern observed in the mixing matrix only weakly depends on the particular choice
of Λ. Similarly, a change in the value of µn up to 1.1 GeV alters the mixing pattern only
within 5 %. The weak dependence of the results on Λ and µn is explicitly indicated in
Appendix B.

Coupling constants: In the quantum mechanical approach the amplitude for the decay of
the mixed state |i〉 (with i = N ′, G′, S′) into two pions is fed by the |N > component in the
strong coupling limit [31]. Hence the 2π decay amplitude is proportional to M i,N defined in
Eq. (6.116). In this limit we obtain for the ratio of 2π decay amplitudes |AN ′→2π/AG′→2π|
α
∣∣∣MN ′,N/MG′,N

∣∣∣ = 0.80/0.60 = 1.33 (in the preferred solution of [42] one has for this

ratio 1.13). In our full approach the decay amplitude is related to the respective coupling
constant, hence we obtain for the ratio |AN ′→2π/AG′→2π| α

∣∣gnn
N ′/gnn

G′

∣∣ = 1.64, which shows a
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clear enhancement. This might explain why the state N ′ ≡ f0(1370) is considerably broader
than the G′ ≡ f0(1500). The relatively strong deviations of mixing coefficients and coupling
constants is a non-negligible effect, which can be traced to the fact that the coupling constants

ga(p
2) =

(
∂Σa(p

2)/∂p2
)−1/2

with a = N,G, S are momentum dependent. Again, the relation∣∣gnn
N ′/gnn

G′

∣∣ >
∣∣∣MN ′,N/MG′,N

∣∣∣ is stable when changing the parameters Λ and µn.

The complete set of resulting coupling constants is summarized as




gnn
N ′ : gnn

G′ : gnn
S′ = 7.35 : −4.48 : 0.40

gss
N ′ : gss

G′ : gss
S′ = 1.20 : 2.69 : 8.10

ggg
N ′ : ggg

G′ : ggg
S′ = 0.91 : 0.95 : −0.23


 . (6.133)

These results indicated here are of course model dependent, but they point to an interest-
ing aspect in the comparison with other studies: the ratio of coupling constants, relevant for
the strong two-body decay modes, can vary rather sensibly from the ratios of mixing matrix
elements. This deviation is a consequence of the bound-state nature of the scalar mesons in
a covariant framework.

It would of course be interesting to calculate the decays into two pseudoscalar mesons by
loop diagrams directly. But this would require a consistent knowledge of the quark propaga-
tors and a careful study of the pseudoscalar meson-quark vertex functions to treat both the
scalar mesons above 1 GeV and the light pseudoscalar mesons in a unified way. In the next
chapter we will analyze the strong decays at a composite level, i.e. without evaluating the
correspondent triangle diagrams, but parametrizing it (see discussion in section 3.4).

Running mixing functions: As already explained in the section devoted to the compar-
ison with other mixing schemes, here we obtain a momentum dependent mixing strength.
We developed two formulations, f(p2) of Eq. (6.122) and f∗(p2) of Eq. (6.128), in order
to compare to the Klein-Gordon case and the quantum mechanical linear mass limit. Our
results for p2-dependence of the mixing strength is summarized in Fig. 6.6. The running
function f ∗(p2) varies in the range between 60 and 64 MeV for the p2 values of interest. Our
result should be compared to the value of 85± 10 MeV obtained in [42]. Lattice calculations
in the quenched approximation obtain f ∗ = 43 ± 31MeV [37] with a large uncertainty but
of similar magnitude. Other quantum mechanical studies use fitted mixing parameters of
f∗ = 77MeV [37], f∗ = 64± 13MeV [37] and f∗ = 80 MeV [40]. Since f ∗(p2) does not vary
drastically in the region considered, this weak dependence explains why the mixing matrix
M (and analogously M ′) is ”almost” orthogonal.

Another characteristics of the non-local covariant approach is the dynamical generation
of flavour blindness breaking with r > 1. The values of the matched ”running” functions
r(p2) and r∗(p2) (Fig. 6.6) are by 10-20 percent larger than unity. The lattice result of
r∗ = 1.20 ± 0.07 [37] is in rather good agreement with our evaluation.

The characteristics of the mixing parameters are again rather stable when changing the
parameters.

6.8.1.2 Case 2, entire function

In the following we summarize our results for the quark propagator of Eq. (6.68), described
by an entire function modelling confinement.
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Figure 6.6: p2 dependence of the running mixing functions for the free quark propagator.
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Mass spectrum: We fix the parameters in the same fashion as for the previous case (that
is to MN = 1.377 GeV, MG = 1.443 GeV, MG′ = 1.507 GeV and MS′ = 1.713 GeV ), but
this time we have the parameter β of the quark propagator of Eq. (6.68) together with the
mixing strength KSG. For an identical cut-off with Λ = 1.5 GeV we get:

MS = 1.698 GeV, MN ′ = 1.297 GeV (6.134)

obtained for the fit values of β = 2.44 GeV −2 and KSG = 0.284 GeV −1. The two results of
Eq. (6.134) are essentially identical to the previous case of Eq. (6.129). Also in this case the
reversed bare level ordering with MN < MS < MG is disfavored, requiring a decrease of β of
the order of 10−2. This is in contrast to the requirement that the propagator behaves as a
free one in the limit of small Minkowski or Euclidean momenta.

Mixing matrix: The mixing matrix M linking the rotated and the unrotated states is
practically unchanged when compared to case 1:



|N ′〉
|G′〉
|S′〉


 =




0.80 0.59 0.10
−0.59 0.76 0.25
0.07 −0.27 0.96





|N〉
|G〉
|S〉


 , (6.135)

where M ·M t is very close to the identity matrix.

Coupling constants: The results concerning the admixture and coupling constant ratios is

analogous to the previous case. For the ratio of mixing amplitudes we get
∣∣∣MN ′,N/MG′,N

∣∣∣ =
0.79/0.59 = 1.36, while for the coupling constants we have

∣∣gnn
N ′/gnn

G′

∣∣ = 1.65, again almost
unchanged with respect to case 1. The complete table reads:




gnn
N ′ : gnn

G′ : gnn
S′ = 3.82 : −2.32 : 0.22

gss
N ′ : gss

G′ : gss
S′ = 0.63 : 1.37 : 4.11

ggg
N ′ : ggg

G′ : ggg
S′ = 0.91 : 0.95 : −0.23


 . (6.136)

Running mixing functions Results for f(p2), f∗(p2), r(p2) and r∗(p2) are summarized
in Fig. 6.7, with the same quantitative behavior as in Fig. 6.6.

We conclude this section by noting that the quark propagator, modelling confinement,
gives rise to very similar results as the free propagator with a large effective quark mass.
Again, changes in the cutoff Λ do not alter the qualitative features of the results. This result
is rather encouraging, since the model predictions considered here, seemingly do not depend
on the particular choice of the quark propagator.

6.8.2 Two-photon decay

6.8.2.1 Analytic expression

In this work we also analyze the two-photon decay rates of the scalar isoscalar f0 mesons
considered. The two-photon decay width constitutes a crucial test to analyze the charge
content of the scalar mesons [42, 117, 118]. The glueball component does not couple directly
to the two-photon state and leads to a suppression of the decay width when present in the
mixed state.
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Figure 6.7: p2 dependence of the running mixing parameters for the entire propagator.
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Figure 6.8: Mixed state N’ decaying into two photons through a u-loop.

For the decay of the N ′ ≡ f0(1370) meson by its uu constituents into two photons we
have to consider the triangle diagram of Fig. 6.8. Analogous diagrams occur for the d and
s flavors in the loop. We consider in this case only the free propagator, so that we do not
have a modification of the QED Ward-identities (this would be necessary with the entire
propagator).

The calculation of the amplitude was explained in section 4.6, here we have just to extend
with respect to the flavor decomposition. The analytic expression for the dominant gauge
invariant part Mµν

triangle,⊥

Mµν
triangle,⊥ = (kν

1kµ
2 − (k1 · k2)g

µν) · I, (6.137)

where I = I1 + I2 is given by

I1 = −i · 4µn

∫
d4k

(2π)4
1

(p2
1 − µ2

n)(p2
2 − µ2

n)(p2
3 − µ2

n)
Φ̃(q2), (6.138)

I2 = i · 4µn

∫
d4k

(2π)4

(
2k2

(k1·k2)
− 8 (k·k1)(k·k2)

(k1·k2)2

)

(p2
1 − µ2

n)(p2
2 − µ2

n)(p2
3 − µ2

n)
Φ̃(q2). (6.139)

The term I1 also occurs in the neutral pion decay into two photons, whereas the additional
term I2 turns out to have opposite sign to I1 and tends to lower the decay rate.
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With above results we finally obtain for the two-photon decay width of the mixed scalar
meson state like N ′:

ΓN ′→2γ =
π

4
α2M3

N ′

[
2

(
gnn
N ′√
2

)
Nc(

4

9
+

1

9
)(I) + 2gss

N ′Nc(
1

9
)(I(s))

]2

(6.140)

where Nc = 3 is the number of colors and I (s) is obtained from I by replacing µn with µs

in the quark propagator. Only the coupling constants gnn
N ′ and gss

N ′ of the mixed field N ′

contribute to the decay rate, while ggg
N ′ does not because gluons do not couple directly to

photons. The extra-factor 2 in front of the coupling constants comes from the exchange
diagram. Analogous expressions follow for the decay rates of the other two resonances S ′ and
G′.

6.8.2.2 Two-photon decay widths

We first consider the decay widths of the bare states N and S when mixing is neglected. In
this case the coupling constants N -nn and S-ss are given by (6.62). We obtain

ΓN→2γ = 0.821 keV, ΓS→2γ = 0.08 keV. (6.141)

As explained previously, the amplitude of the triangle diagram which gives the dominant
contribution to the decay is proportional to (I1 + I2). The extra term I2, absent in the
neutral pion case, has the opposite sign to I1 and the ratio |I2/I1| grows with increasing mass
of the resonance. In the decay of the bare state N the term I2 lowers the decay rate by a
factor of 5.22.

For the two-photon decays of the physical states, where the coupling constants of the
mixed states are used, we get:

ΓN ′→2γ = 0.453 keV, ΓG′→2γ = 0.273 KeV, ΓS′→2γ = 0.125 keV, (6.142)

resulting in the ratios of

ΓN ′→2γ/ΓS′→2γ = 3.62, ΓG′→2γ/ΓS′→2γ = 2.19. (6.143)

which are similar to the ones obtained in [42] with ΓN ′→2γ/ΓS′→2γ = 3.56 and ΓG′→2γ/ΓS′→2γ =
2.36. Current experimental upper limits for G′ ≡ f0(1500) and for S ′ ≡ f0(1710) are [119]:

Γf0(1500)→2γ

Γf0(1500)→ππ

Γf0(1500)tot
< 0.46 keV, (6.144)

Γf0(1710)→2γ

Γf0(1710)→KK

Γf0(1710)tot
< 0.110 keV . (6.145)

Multiplying our theoretical results by the experimental ratios [119]
Γf0(1500)→ππ

Γf0(1500)tot
= 0.454±

0.104 and
Γf0(1710)→KK

Γf0(1710)tot
= 0.38+0.09

−0.19 we find:

(Γf0(1500)→2γ)theory

Γf0(1500)→ππ

Γf0(1500)tot
= 0.124 ± 0.028 keV (6.146)

(Γf0(1710)→2γ)theory

Γf0(1710)→KK

Γf0(1710)tot
= 0.0475+0.0112

−0.0237 keV , (6.147)
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in accord with the experimental upper limits.
The experimental two-photon decay width of the scalar resonance f0(1370) has been seen;

originally in [120] two values were indicated, i.e. 3.8 ± 1.5 keV and 5.4 ± 2.3 keV. However,
it is not clear if the two-photon signal comes from the f0(1370) or from the high mass end
of the broad f0(400− 1200). The PDG currently [119, 12] seems to favor this last possibility,
but it states in a footnote that this data could also be valid for the f0(1370). We therefore
interpret the two experimental values as an upper limit for the two-photon decay width of the
f0(1370). The result for ΓN ′≡f0(1370)→2γ is an order of magnitude smaller than these upper
limits. A precise experimental determination of the two-photon decay values of these scalar
states would clearly help in understanding their structure.

For what concerns the cut-off dependence of the decay rates, we note that an increase in
the cut-off leads to a weak increase of the decay widths as indicated in Appendix B, but the
ratios remain stable.

6.8.2.3 Final discussion

In this chapter we utilized a covariant constituent approach to analyze glueball-quarkonia
mixing in the scalar meson sector above 1 GeV . We used simple forms for the quark and gluon
propagators in order to avoid unphysical threshold production of quarks and gluons. Although
quark and gluon propagators are directly accessible in lattice simulations in the Euclidean
region, an extrapolation to the Minkowski region, also needed here, is not straightforward.
We therefore considered relatively simple choices of the propagators, which allowed us to point
out some features of the mixing of covariant bound states. We tried to work out similarities
and differences with phenomenological approaches, in particular with respect to the analysis
of [42]. Although in a covariant approach the mixing matrix is in general not orthogonal, in
the present case only small deviations from orthogonality are obtained. This in turn leads
to a mixing pattern rather similar to that of Ref. [42]. The mixing matrix M has been
introduced by knowledge of the coupling constants of the mixed and unmixed states taking
into account their p2 dependence. The resulting matrix M is analogous to the Klein-Gordon
case as shown both numerically and in part analytically.

Many properties we analyzed, such as the appearance of the ”running” mixing parameters
f(p2) and r(p2), are rather independent on the choice of the particular quark propagator. The
numerical results for f(p2) and r(p2) are in qualitative accord with the lattice evaluations.
We generate a dynamical breaking of the glueball flavor blindness corresponding to r slightly
bigger than unity, which is directly connected to the isospin symmetry violation at the level of
the quark propagators. Again, all these considerations do not depend on the choice of the two
proposed quark propagator forms and on the employed parameter sets. Another interesting
result of our approach is that the bare level ordering MN < MG < MS is naturally favored
for both propagator choices.

As a further application we also evaluated the two-photon decay rates in the context of
the mixing model. The predicted results are in accord with the present experimental upper
limits. The respective ratios are also in agreement with the phenomenological estimate of
[42].
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Chapter 7

Strong decays

7.1 Introduction

In this chapter we study the strong decays of the scalar mesons between 1-2 GeV into two
pseudoscalar ones. The analysis of strong decays, together with the two-photon one, is
necessary to test the glueball mixing hypothesis and to pin down the composition of their
wave functions.

As discussed in section 1.5 in the introduction, the resonances f0(1500) and f0(1710) are
relatively narrow, with Γf0(1500) = 109 ± 5 MeV and Γf0(1710) = 140 ± 10 MeV [12]. The
experimental data on the decay of these two states improved in the last years; specially for
what concerns f0(1500), [12] reports the ratios in the form Γf0(1500)→p1p2/ Γf0(1500) where
”p1p2” represents a pseudoscalar meson pair, like pion-pion.

For the broad state f0(1370) the uncertainties are still large. No average or fit is presented
in [12]; the results from different experiments are often contradictory. However, the results
from WA102 (see [41]) indicate a large nn component in its wave function with

Γf0(1370)→KK/Γf0(1370)→ππ = 0.46 ± 0.19;

the results from Crystal Barrel (summarized in [32] and subsequently analyzed in [105])
confirm such a trend (see also [46] for a recent review). The main problem connected with
this resonance is its large width (200-500 MeV ) and its partial overlap with the broad low-
lying σ.

In this last chapter we aim to describe the two-pseudoscalar decays within phenomeno-
logical approaches. To perform this analysis we make a step back with respect to what was
done in the previous chapter. Within the nonlocal approach described throughout all the
work the decay of G′ ≡ f0(1500) into two pions would be ”expressed” through a triangle
diagram, similar to the one of the two-photon decay (see Fig. 7.1).

As mentioned in the previous chapter, the problem connected with such a calculation is
the simultaneous and consistent treatment of the scalar states (plus glueball) above 1 GeV
and the pseudoscalar states below 1 GeV. Thereby the choice of the propagators plays a crucial
role. The free propagators with a large effective mass can be justified in a phenomenological
treatment of scalar states above 1 GeV, but do not work for pseudoscalar mesons, where a
lower quark mass is needed. In such a calculation one would really need a p2 momentum
dependent running quark mass function m = m(p2). One could make suitable ”Ansaetze”
for m(p2), but this would increase the number of parameters and raise questions about the
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Figure 7.1: Decay of N ′ into two pions through a quark-loop.



CHAPTER 7. STRONG DECAYS 183

Figure 7.2: Transition of N ′ into two pions with a point-like vertex.

reliability of the approach. A consistent treatment could be achieved, for instance, by using
Dyson-Schwinger equations by calculating the quark propagator and then, through the Bethe-
Salpeter equations, calculate the pseudoscalar and scalar quarkonia masses. The problem is
that the scalar masses found in a DSE approach are typically too small, below 1 GeV [81]
(in [106], with a similar approach, the scalars are not found). A part from this not yet solved
difficulty, one should also consistently calculate the glueball mass, and then the glueball
mixing. Such desirable ”links” are still outside of reach. I actually think it will be possible
to do it in the future.

After these preliminary remarks we concentrate on the evaluation of the two-pseudoscalar
decay within two phenomenological Lagrangians where the only degrees of freedom are
mesons. The decay into two pions, for instance, will be described by the point-like diagrams
of Fig. 7.2.

In the vertex of Fig. 7.2 we parametrize the triangle diagram, and we take into account
the different flavor contributions. This job is similar to what was done in the fifth chapter.

In a sense, we do the opposite of what done in section 4.4.4; instead of looking at the
process with a magnifying glass, we put the magnifying glass away. In this way we simplify
our job and we can describe all the scalar nonet plus glueball in a compact way, even if we
renounce to a microscopic interpretation of the decays.

The first of the two employed Lagrangians is inspired by flavour symmetry.; although
rather simplified, it constitutes a very useful exercise for discussions and comparisons with
other works.

The second Lagrangian is taken in the context of chiral perturbation theory [26, 27,
28]. Such an approach is rigorously defined for small momenta and masses; an application
to physical states between 1-2 GeV cannot a priori be justified; loops and higher order
corrections may be large. However, if intended as a phenomenological approach, can be a
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very useful tool to describe the scalar nonet and its mixing with the scalar glueball.

7.2 Flavour Lagrangian

7.2.1 Scalar and pseudoscalar nonets

Let us define the matrix

Ŝ√
2

=
1√
2

8∑

a=0

Saλa

=




1√
2
S3 + 1√

3
S0 + 1√

6
S8

1√
2
(S1 − iS2)

1√
2
(S4 − iS5)

1√
2
(S1 + iS2) − 1√

2
S3 + 1√

3
S0 + 1√

6
S8

1√
2
(S6 − iS7)

1√
2
(S4 + iS5)

1√
2
(S6 + iS7)

1√
3
S0 − 2√

6
S8




=




1√
2
a0

0 + 1√
3
S0 + 1√

6
S8 a+

0 K∗+

a−0 − 1√
2
a0

0 + 1√
3
S0 + 1√

6
S8 K∗0

K∗− K
∗0 1√

3
S0 − 2√

6
S8


 , (7.1)

where the λa are the Gell-Mann matrices in flavor space. The fields K ∗ and a0 refer to the
physical states K∗(1430) and a0(1450). The isoscalar S0 and S8 are related to N ≡ nn and
S ≡ ss through

(
S0

S8

)
=



√

2
3

√
1
3√

1
3 −

√
2
3



(

N
S

)
. (7.2)

Similarly we define the pseudoscalar nonet filed like

P̂√
2

=
1√
2

8∑

a=0

Paλa =




1√
2
π0 + 1√

3
η0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

3
η0 + 1√

6
η8 K0

K− K
0 1√

3
η0 − 2√

6
η8


 , (7.3)

where one has pions and kaons; the physical states η and η ′ are linked to η0 and η8 through

(
η0

η8

)
=

(
cos θps − sin θps

sin θps cos θps

)(
η′

η

)
(7.4)

where θps is the pseudoscalar mixing angle (−10◦ from the quadratic Gell-Mann-Okubo for-
mula for the pseudoscalar nonet [35, 12], ∼ −20◦ from studies based on chiral perturbation
theory [121]; see also section 7.4).
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7.2.2 Lagrangian for the decay into pseudoscalars: inert glueball

The Lagrangian consists of two parts: the first one is quadratic and describes the scalar
glueball-quarkonia mixing:

Lquadratic =
1

2

(
(∂µN)2 −M2

GN2
)

+
1

2

(
(∂µG)2 −M2

GG2
)

+
1

2

(
(∂µS)2 −M2

SS2
)

−fGS −
√

2frGN − εNS

+ free part for K∗ and a0 + free part for π,K, η, η′ (7.5)

The masses of pseudoscalar and scalar states are taken from [12] and are (in MeV ): Mπ =
134.976, MK = 493.677, Mη = 547.75, Mη′ = 957.78, Ma0 = 1.474, MK∗ = 1.412.

The masses of N , G, and S together with the respective mixing are object of a separated
study (see the next subsection).

The second part of the Lagrangian has to connect the scalar mesons with the pseudoscalar
ones, describing the decay of a scalar resonance into two pseudoscalars respecting flavour
symmetry. The interaction form fulfilling the desired requirements reads:

Ldecay = cQTr[ŜP̂ P̂ ]. (7.6)

The full Lagrangian is then

Lflavor = Lquadratic + Ldecay. (7.7)

An important point should immediately be noticed: the bare glueball G does NOT de-
cay. It is not included in Ŝ. This is in accord with [31], where the glueball was ”inert”.
The scalar quarkonia dominate the decays; the direct decay of a scalar glueball into two-
pseudoscalar mesons is supposed to be negligible when compared to the quarkonia ones. If
such an hypothesis is true is still not known.

7.2.3 Expressions for the decay rates

As discussed in the fifth chapter one has to diagonalize the matrix

Ω =




M2
N

√
2fr ε√

2fr M2
G f

ε f M2
S


 (7.8)

from which one finds the masses and the compositions of the physical isoscalar states (see
section 5.3); the physical fields |i〉 with i = N ′ ≡ f0(1370), G′ ≡ f0(1500) and S ′ ≡ f0(1710)
are given by

|i〉 = BiN |N〉+ BiG |G〉+ BiS |S〉 (7.9)

where B is the transformation matrix

BΩBt = Ω′ =




M2
N ′ 0 0

0 M2
G′ 0

0 0 M2
S′


 . (7.10)
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In the following we introduce the notation psp1p2 , where ”s” denotes a scalar state and
”p1” and ”p2” two pseudoscalar ones, with:

psp1p2 =
1

2

√
M4

s + (M2
p1
−M2

p2
)2 − 2(M2

p1
+ M2

p2
)M2

s

M2
s

. (7.11)

The final expressions for the decays can be calculated following the discussion of section
4.2.

7.2.3.1 Decays of the mixed isoscalar states

The decays of |i〉 into ππ, KK, ηη and ηη ′, as calculated from the interaction Lagrangian,
are given by:

Γi→ππ = 3

1
2

√
M2

i − 4M2
π

16πM2
i

[
4cQBiN

]2
, (7.12)

Γi→KK = 4

1
2

√
M2

i − 4M2
K

16πM2
i

[
2cQ

(
BiN +

√
2BiS

)]2
, (7.13)

Γi→ηη =

1
2

√
M2

i − 4M2
η

16πM2
i

[2cQΛ1ηη ]
2 (7.14)

and

Λ1ηη =
(
BiN +

√
2BiS

)
− 1√

3

(
BiN −

√
2BiS

)
· cos(2θps)

−2

3

(√
2BiN − 2BiS

)
· sin(2θps), (7.15)

Γi→ηη′ =
piηη′

8πM2
i

[
cQΛ1ηη′

]2
(7.16)

and

Λ1ηη′ =
2

3

[
2
(√

2BiN − 2BiS
)

cos(2θps) +
(
−BiN +

√
2BiS

)
sin(2θps)

]
. (7.17)

Note that the matrix elements B iG do not appear in the decays because we suppose that the
decay of the bare glueball is suppressed.

7.2.3.2 a0(1450) decays

The state isovector a0(1450) decays into KK , πη and πη′ with the following partial decay
widths:

Γa0→KK = 2

1
2

√
M2

a0
− 4M2

K

8πM2
a0

[2cQ]2 , (7.18)

Γa0→πη =
pa0πη

8πM2
a0

[
4√
3
cQ

(
cos(θps)−

√
2 sin(θps)

)]2

, (7.19)

Γa0→πη′ =
pa0πη′

8πM2
a0

[
4√
3
cQ

(√
2 cos(θps) + sin(θps)

)]2

. (7.20)
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7.2.3.3 K∗(1430) decays

The state K∗(1450) decays into the pseudoscalar channels πK and Kη :

ΓK∗→πK = 3
pK∗πK

8πM2
K∗

[2cQ]2 , (7.21)

ΓK∗→Kη =
pK∗Kη

8πM2
K∗

[
cQ

2√
3

(
cos(θps) + 2

√
2 sin(θps

)]2

. (7.22)

7.2.3.4 Two-photon decays

The calculation of the two-photon decay expressions has been carried out in section 5.4 and
summarized by equations (5.54).

7.2.4 χ2 analysis

We consider in this section a χ2 study to find the best parameters for the description of the
decays. In the following we will work with r = 1 (small deviations from unity may be possible,
but they are negligible [31, 42, 74]). We have six free parameters: the bare masses MN , MG

and MS , two mixing parameters f and ε and one decay strength cQ. Before proceeding with
the χ2 analysis we have to do some considerations:

• We will consider a direct N -S mixing, that is flavor mixing, through ε; this is not done
in [31, 42, 37]. A large N -S mixing in the scalar sector is the starting point of [47, 50] (see
1.5.4), even if the authors of these works make a different assignment. The origin of this
mixing is connected with instanton effects, as in the pseudoscalar channel, but with opposite
sign (see also [122]). In our case it means to have ε > 0.

• We use θps = −10◦, as in [35].

• We do not include Γf0(1500)→ηη′ in the fit, because the ηη′ production is very close to
threshold; modifications due to the finite width of the state are supposed to be large.

• We take the experimental values and relative errors from the quoted averages of [12];
we only take ”bold” results, i.e. accepted by [12].

In particular, as an experimental input, we take:

→ For the mixed states we choose the assignments N ′ ≡ f0(1370), G′ ≡ f0(1500) and
S′ ≡ f0(1710) with the corresponding mass values of MN ′≡f0(1370) = 1.35 ± 0.15 GeV,
MG′≡f0(1500) = 1.507 ± 0.005 GeV, MS′≡f0(1710) = 1.714 ± 0.005 GeV.

→The accepted partial decay widths entering in the fit are:

ΓG′→ππ = 0.0380 ± 0.0050 GeV ;

ΓG′→KK = 0.0094 ± 0.0017 GeV ;

ΓG′→ηη = 0.0056 ± 0.0014 GeV.

ΓS′→ππ/ΓS′→KK = 0.20 ± 0.06;

ΓS′→ηη/ΓS′→KK = 0.48± 0.15.

• The state f0(1710) has only been observed in the decays to two pseudoscalar mesons.
The decay into the final state 4π, which can be fed by higher meson resonances, is suppressed
[41]. We will impose the extra-condition that

(ΓS′)2pseudoscars = (ΓS′)tot (7.23)
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Such a condition is necessary to obtain meaningful total widths; the partial decay widths of
f0(1500) and the ratios for f0(1710), are not sufficient; without the condition on the full width
there could be minima of χ2 for which (ΓS′)tot is larger than 1 GeV, a clearly unacceptable
solution, because we know that it is at most 140 MeV.

We will then use:
(ΓS′)2pseudoscars = ΓS′→ππ + ΓS′→KK + ΓS′→ηη + ΓS′→ηη′ = 0.140 ± 0.01 GeV.

• Although the ratios Γa0→KK/Γa0→πη and Γa0→πη′/Γa0→πη are given in the PDG com-
pilation, we do not include them in the fit; the reason is simple: these ratios are fixed and do
not depend on any of the 6 parameters.

After these consideration, we consider:

χ2 = χ2[MN ,MG,MS , f, ε, cQ]

=

(
MN ′ − 1.35

0.15

)2

+

(
MG′ − 1.507

0.005

)2

+

(
MS′ − 1.714

0.005

)2

+

(
1

0.0050
(ΓG′→ππ − 0.0380)

)2

+

(
1

0.0017

(
ΓG′→KK − 0.0094

))2

+

(
1

0.0014

(
ΓG′→ηη − 0.0056

))2

+

(
1

0.06

(
ΓS′→ππ

ΓS′→KK

− 0.20

))2

+

(
1

0.15

(
ΓS′→ηη

ΓS′→KK

− 0.48

))2

+

(
1

0.01

(
ΓS′→ππ + ΓS′→KK + ΓS′→ηη + ΓS′→ηη′ − 0.14

))2

(7.24)

A minimum is obtained for the following parameters:

MN = 1.377, MG = 1.481, MS = 1.687, f = 0.120, ε = 0.294, cQ = 0.010;χ2 = 8.914.

The parameter f is in qualitative agreement with other works (see section 6.8 and Refs.
there and [74]). The parameter ε was not considered in the sixth chapter; however, the
obtained value points to a substantial influence of it on the results.

In the following we list in a table the quantities of the fit, comparing them to the experi-
mental values and the corresponding χ2

i .

Quantity Exp Theory χ2
i

MN ′ 1350 ±150 MeV 1314 MeV 0.056
MG′ 1507 ± 5 MeV 1507 MeV ∼ 0
MS′ 1714 ± 5 MeV 1714 MeV ∼ 0
ΓG′→ππ 38.0 ± 5.0 MeV 38.6 MeV 0.007
ΓG′→KK 9.4 ± 1.7 MeV 10.7 MeV 0.58
ΓG′→ηη 5.6 ± 1.4 MeV 2.46 MeV 5.45
ΓS′→ππ/ΓS′→KK 0.20 ± 0.06 0.194 0.077
ΓS′→ηη/ΓS′→KK 0.48 ± 0.15 0.228 2.802
(ΓS′)2pseudoscalars 140 ± 10 MeV 140.07 MeV ∼ 0

χ2
tot - - 8.91

(7.25)

Note that χ2
tot/N = 0.99 < 1; the fit is indeed acceptable.
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With the parameters of the fit we can calculate many other quantities, which can be
compared to other models and to various experiments (although there is no accepted average
in [12]).

7.2.5 Consequences of the fit

• Mixing matrix

The mixing matrix linking the rotated physical fields to the bare ones reads:




N ′

G′

S′


 =




0.88 0.39 0.27
−0.40 0.91 −0.01
−0.26 −0.09 0.96






N
G
S


 . (7.26)

The trend discussed in [31, 40, 42] again is found; N ′ is mostly nn, G′ mainly the glueball
and S′ is dominantly ss. However, we do not have a phase difference between the nn and
ss components in G′. The ss amount is practically absent, and considering that the glueball
doesn’t decay, the decay modes of this state are driven by its nn component. This is in accord
with [35, 40].

• f0(1370) resonance:

We compare our results to the particular results from WA102 collaboration [41]:

Quantity Exp (WA102) Theory
ΓN ′→KK/ΓN ′→ππ 0.46 ± 0.19 0.47
ΓN ′→ηη/ΓN ′→ππ 0.16 ± 0.07 0.10
(ΓN ′)2pseudoscalars ”small” 318.68 MeV

(7.27)

The ratios are in good agreement with the results; however, the full width is not. WA102
reports ΓN ′→4π/ΓN ′→ππ = 34.0+22

−9 , which points to a dominant 4π (arising from intermediate
2σ and 2ρ decay modes) decay width. The decays into ππ, KK and ηη are then of the order
of few MeV [42]. Ref. [53] mentions the possibility that the large measured 4π comes from
a four-quark component of this state. However, the error on ΓN ′→4π/ΓN ′→ππ is still large; a
better experimental results would be desirable.

• f0(1710) resonance:

Quantity Exp (WA102) Theory
ΓS′→KK/ΓS′→ππ 5.0± 0.7 5.0
ΓS′→ηη/ΓS′→ππ 2.4± 0.6 1.2
ΓS′→ηη′/ΓS′→ππ < 0.18 3.12
(ΓS′)2pseudoscalars ”large” 140.0 MeV

(7.28)

The first two ratios are acceptable and were previously included in the fit. We also used the
extra constraint of (ΓS′)2pseudoscalars = (ΓS′)tot , which is in agreement with WA102, used to
motivate such a choice.

On the other hand, the ratio ΓS′→ηη/ΓS′→ππ is in complete disagreement with the upper
limit. If this result of WA102 should be confirmed by future experiments, the described
mixing scenario should be discarded.

• a0(1450) resonance:
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We compare the ratios for a0 and we five the full decay width in two pseudoscalars:

Quantity Exp Theory
Γa0→KK/Γa0→πη 0.88± 0.23 0.86

Γa0→πη′/Γa0→πη 0.35± 0.16 0.64
(Γa0)2pseudoscalars ? 173 MeV

(7.29)

The absolute experimental decay width into two pseudoscalars is not known; the theoret-
ical one is however acceptable.

• K∗(1430) resonance:

Quantity Exp Theory
ΓK∗→πK dominant 108 MeV
ΓK∗→Kη/ΓK∗→πK ? 0.021

(7.30)

The measured full width of this state is 294 ± 23 MeV. If the decay ΓK∗→πK is effectively
dominant, then we underestimate it by a factor 3. At this point we should note that a
simultaneous description of K∗ and a0 has always been a problem. Theoretically one generally
has [31, 123]:

(Γa0)2pseudoscalars > (ΓK∗)2pseudoscalars (7.31)

seemengly in disaccord with the current experimental states.

• Two-photon decay ratios:

From the two-photon decay expressions derived in section 5.4, Eq. (5.54), using the results
of the mixing matrix, we get the following ratios:

ΓN ′→2γ : ΓG′→2γ : ΓS′→2γ = 1 : 0.279 : 0.012. (7.32)

The ratio ΓG′→2γ/ΓN ′→2γ is therefore of the same magnitude (even if smaller) of the result
found in the previous chapter. The somewhat smaller ratio is compatible with the consider-
ations presented in [?, 35].

However, the present results show a very small ΓS′→2γ/ΓN ′→2γ decay ratio, different from
the previous results. The reason for this discrepancy is the opposite phase of the nn and
ss components, which sensibly lowers the decay for the S ′ state. Only better experimental
results can help us to pin down the flavor wave function of the physical resonance. With
the present approach we cannot determine the full two-photn decay widths, because we do
not know the constant gscalar of equations (5.54). The ratios clearly do not depend on this
unknown parameter.

7.3 Strong decays of the glueball

7.3.1 Lagrangian

Based on the qualitative arguments of [31, 40], we first assumed that the direct glueball decay
is suppressed. Now we want to take explicitly into account the possibility that the glueball
decays by itself; we have to include G in the decay Lagrangian. We can do it by considering
that the glueball is a flavor singlet; we write down the following quantity:
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Ŝ√
2
→ Ŝ•
√

2
=

1√
2

(
8∑

a=0

Saλa + rGGλ0

)
=




1√
2
a0

0 + 1√
3
S0 + 1√

6
S8 + rG√

3
G a+

0 K∗+

a−0 − 1√
2
a0

0 + 1√
3
S0 + 1√

6
S8 + rG√

3
G K∗0

K∗− K
∗0 1√

3
S0 − 2√

6
S8 + rG√

3
G


 .

The decay Lagrangian is obtained from the previous one when substituting Ŝ by Ŝ•:

L•decay = cQTr[Ŝ•P̂ P̂ ]. (7.33)

The parameter rG takes into account the strength of the glueball decay relative to the one
of quarkonium; if rG = 0 we are back to the previous case, where a non-decaying glueball
was considered. If rG << 1 the quarkonia components dominate the decay [31, 40]; if rG = 1
the glueball decays with equal strength as quarkonium, if rG > 1 the glueball dominates the
decay. This last option has indeed been studied in [42], where the glueball strength is larger
than the corresponding one of the quarkonia component.

In the end, we define cG as

cG = rG · cQ, (7.34)

which is the absolute glueball decay strength.

7.3.2 Expressions for the decays

The quadratic Lagrangian and the glueball-mixing expressed in eq. (7.5) does not change
when including a direct glueball decay; however, we have to write down the decay expressions
for the isoscalar states |i〉 ; the decay rates depend on the glueball amount B iG as well.

Performing the calculation we find (see section 4.3):

Γi→ππ = 3

1
2

√
M2

i − 4M2
π

16πM2
i

[
4cQBiN + 4

√
2

3
BiGcG

]2

, (7.35)

Γi→KK = 4

1
2

√
M2

i − 4M2
K

16πM2
i

·
[
2cQ

(
BiN +

√
2BiS

)
+ 2BiGcG

(√
2 + 1√

3

)]2

, (7.36)

Γi→ηη =

1
2

√
M2

i − 4M2
η

16πM2
i

[
2cQΛ1ηη + 4

√
2

3
BiGcG

]2

, (7.37)

Γi→ηη′ =
piηη′

8πM2
i

[
cQΛ1ηη′

]2
. (7.38)

Note that Γi→ηη′ does not change; in fact, a flavor singlet like the glueball cannot decay
into a singlet and an octet. The decays of a0 and K∗ are, of course, unchanged with respect
to the previous case (they do not mix with the glueball).
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7.3.3 χ2 analysis

In the following we again perform a χ2 analysis; the set-up is the same as in the previous
section, where we simply have the additional parameter cG (or rG).

We then have

χ2 = χ2[MN ,MG,MS , f, ε, cQ, cG], (7.39)

which is the same expression for χ2 as in equation (7.24). Considering that the previous χ2

analysis was good (with χ2/N < 1) we do not expect strong variations from this case.

In fact in the fit we get:

MN = 1.414, MG = 1.479, MS = 1.691, f = 0.107, ε = 0.264, cQ = 0.010, cG = 0.00070;
χ2 = 8.864.

The ratio rG = cG/cQ = 0.067 << 1 points to a ”weak” decaying glueball. We expect
results similar to the inert glueball case with a correspondent analogous discussion.

The χ2 table looks like:

Quantity Exp Theory χ2
i

MN ′ 1350 ±150 MeV 1355 MeV 0.001
MG′ 1507 ± 5 MeV 1507 MeV 0.003
MS′ 1714 ± 5 MeV 1714 MeV 0.011
ΓG′→ππ 38.0± 4.6 MeV 38.6 MeV 0.01
ΓG′→KK 9.4± 1.7 MeV 10.4 MeV 0.40
ΓG′→ηη 5.6± 1.4 MeV 2.46 MeV 5.63
ΓS′→ππ/ΓS′→KK 0.20± 0.06 0.206 0.01
ΓS′→ηη/ΓS′→KK 0.48± 0.15 0.228 2.80
(ΓS′)2pseudoscars 140± 10 MeV 140.07 MeV 0.0001

χ2
tot - - 8.864

(7.40)

The mixing matrix is:




N ′

G′

S′


 =




0.85 0.45 0.26
−0.45 0.88 −0.04
−0.26 −0.08 0.96






N
G
S


 . (7.41)

f0(1370) :

Quantity Exp (WA102) Theory
ΓN ′→KK/ΓN ′→ππ 0.46 ± 0.19 0.50
ΓN ′→ηη/ΓN ′→ππ 0.16 ± 0.07 0.11
(ΓN ′)2pseudoscalars ”small” 317.91 MeV

(7.42)

f0(1710) :

Quantity Exp (WA102) Theory
ΓS′→KK/ΓS′→ππ 5.0 ± 0.7 4.85
ΓS′→ηη/ΓS′→ππ 2.4 ± 0.6 1.11
ΓS′→ηη′/ΓS′→ππ < 0.18 3.01
(ΓS′)2pseudoscalars ”large” 139.9 MeV

(7.43)
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a0(1450) :

Quantity Exp Theory
Γa0→KK/Γa0→πη 0.88 ± 0.23 0.86

Γa0→πη′/Γa0→πη 0.35 ± 0.16 0.64
(Γa0)2pseudoscalars ? 174 MeV

(7.44)

K∗(1430) :

Quantity Exp Theory
ΓK∗→πK dominant 109 MeV
ΓK∗→Kη/ΓK∗→πK ? 0.021

(7.45)

For the two-photon decay we get:

ΓN ′→2γ : ΓG′→2γ : ΓS′→2γ = 1 : 0.354 : 0.011. (7.46)

The discussion is analogous to the previous case. The critical points are (ΓN ′)2pseudoscalars

and ΓS′→ηη/ΓS′→ππ, which are in complete disagreement with the WA102 experiment. If the
experimental results will be confirmed, one has to search for other possible solutions.

7.4 Chiral approach

7.4.1 Lagrangian

In a next step we intend to describe the decay of the scalar nonet into two pseudoscalar mesons
within a chiral approach [28, 124, 125, 126, 127]. We first do not consider the possible direct
glueball decay, thus concentrating on the quarkonia meson fields. The problem of scalar
resonances and their possible decays was first analyzed in [125], to which we refer for a
careful analysis of this issue. Here we intend to apply the approach developed in [125] to
the scalar states within 1-2 GeV [127]. Although, as already stressed in the introduction of
this chapter, the higher order loop corrections are expected to be large in this mass region,
we intend to perform a tree-level evaluation of the scalar meson decays. We do not expect
precise results, but a theoretical guide to discuss the decays. We also do not calculate the loop
corrections, which in the light of the present experimental status, it would overcomplicate
the issue, especially since new parameters enter at the one-loop level.

The effective Lagrangian to calculate the scalar decays at first order (no loops), involving
the scalar and the pseudoscalar matrices Ŝ and P̂ (see section 7.2.1) and in the large Nc

limit, reads:

Leff =
cd
Q√
2F 2

Tr
[
Ŝ
(
∂µP̂

)(
∂µP̂

)]

−
cm
Q√
2F 2

B

2
Tr
[
2ŜP̂ M̂ P̂ + ŜP̂ P̂ M̂ + ŜM̂ P̂ P̂

]
, (7.47)

where:

• cd
Q and cm

Q are the two decay constants. In the flavor case we had just one parameter,
here we get two. This in turn reflects the richer structure of the chiral Lagrangian: deviations
from flavor symmetry can be described within this approach.
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• The current mass matrix M̂ given by

M̂ =




mu 0 0
0 md = mu 0
0 0 ms


 (7.48)

• The parameter B links the current quark masses to the physical meson masses Mπ and
MK [28]:

M2
π = 2Bmu, (7.49)

M2
K = B(mu + ms). (7.50)

Note that the quantities Bmu and Bms are determined from:

Bmu =
M2

π

2
, (7.51)

Bms = M2
K −

M2
π

2
. (7.52)

Exploiting the last two relations we will be able to express the decay rates in terms of the
known masses Mπ and MK , instead of B, mu and ms. This is possible (although on tree-level
we are left with two parameters) because B always appears in combination either with mu

or with ms.

• The parameter F ; at lowest order it is the pion decay constant. We use:

F = 92.4 MeV. (7.53)

At higher order one has a different F attached to each pseudoscalar mesons; here, per-
forming a tree-level calculation, we always employ the same F.

• Within chiral perturbation theory one can calculate also the mass of the octet pseu-
doscalar state η8, which reads:

Mη8 =
1

3

(
4M2

K −M2
π

)
. (7.54)

But in nature we have mixing among the singlet η0 and the octet η8. We can describe it at
the field composite level by the mixing Lagrangian (see chapter 5):

L =
1

2
(∂µη0)

2 − 1

2
M2

η0
η2
0 +

1

2
(∂µη8)

2 − 1

2
M2

η8
η2
8 + zmixη0η8. (7.55)

The parameters Mη0 and zmix are unknown, but can be fixed by imposing that the physical
rotated masses coincide with the experimental masses form Mη = 0.54775 GeV and Mη′ =
0.95778 GeV. One then finds Mη0 = 0.94786 and zmix = −0.106316. As a consequence,
following the discussion of chapter 5, we can deduce the corresponding mixing angle, finding
θps = −9.95◦. In the following we will use −10◦, as in the previous case.

This result, as explained in [121], is valid only at first order in chiral perturbation theory,
while when one goes to higher orders a doubling of the pseudoscalar mixing angle is found.
However, we will limit our study to a first order evaluation, and we will consistently employ
the corresponding value of −10◦.
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7.4.2 Decay expressions

From (7.47) we can calculate the decay rates as in sections 4.2 and 7.2; one just has to take
care of the derivatives. Every decay amplitude consists of two pieces, coming from the two
parts of the effective Lagrangian: the first one proportional to cd

Q and the second to cm
Q .

The decay rates for |i〉 read:

Γi→ππ = 3

1
2

√
M2

i − 4M2
π

16πM2
i

[
4BiN

√
2F 2

(
M2

i − 2M2
π

2
cd
Q + M2

πcm
Q

)]2

, (7.56)

Γi→KK = 4

1
2

√
M2

i − 4M2
K

16πM2
i

[
2√
2F 2

(
BiN +

√
2BiS

)(M2
i − 2M2

K

2
cd
Q + M2

Kcm
Q

)]2

. (7.57)

For the ηη decay we have:

Γi→ηη =

1
2

√
M2

i − 4M2
η

16πM2
i

[
−

2cd
QΛ1ηη√
2F 2

M2
i − 2M2

η

2
+

2cm
QΛ2ηη√
2F 2

]2

(7.58)

where Λ1ηη is, as in section 7.2,

Λ1ηη =
(
BiN +

√
2BiS

)
− 1√

3

(
BiN −

√
2BiS

)
· cos(2θps)

−2

3

(√
2BiN − 2BiS

)
· sin(2θps), (7.59)

while Λ2ηη is different and depends on Mπ and MK :

Λ2ηη = −2

[
M2

π

2
BiN +

√
2

(
M2

K −
M2

π

2

)]

+
2

3

[
M2

π

2
BiN −

√
2

(
M2

K −
M2

π

2

)]
· cos(2θps)

+
4

3

[√
2
M2

π

2
BiN − 2

(
M2

K −
M2

π

2

)]
· sin(2θps) (7.60)

For the ηη′ decay we have:

Γi→ηη′ =
piηη′

8πM2
i

[
−

cd
QΛ1ηη′

√
2F 2

M2
i −M2

η −M2
η′

2
+

cm
QΛ2ηη′

√
2F 2

]2

(7.61)

where

Λ1ηη′ =
2

3

[
2
(√

2BiN − 2BiS
)

cos(2θps) +
(
−BiN +

√
2BiS

)
sin(2θps)

]
. (7.62)

and

Λ2ηη′ = −8

3

[√
2
M2

π

2
BiN − 2

(
M2

K −
M2

π

2

)]
· cos(2θps)

−4

3

[
−M2

π

2
BiN +

√
2

(
M2

K −
M2

π

2

)]
· sin(2θps) (7.63)
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Note that, again, the matrix elements B iG do not appear in the decays because in the
present treatment we suppose that direct glueball decays are suppressed.

The decay rates for a0(1450) are:

Γa0→KK = 2

1
2

√
M2

a0
− 4M2

K

8πM2
a0

[
2√
2F 2

(
M2

a0
− 2M2

K

2
cd
Q + M2

Kcm
Q

)]2

, (7.64)

Γa0→πη =
pa0πη

8πM2
a0

{ 4√
3

cd
Q√
2F 2

(
cos(θps)−

√
2 sin(θps)

) M2
a0
−M2

π −M2
η

2

+
4√
3

cm
Q√
2F 2

(
cos(θps)−

√
2 sin(θps)

)
M2

π}2 (7.65)

Γa0→πη′ =
pa0πη′

8πM2
a0

{ 4√
3

cd
Q√
2F 2

(√
2 cos(θps) + sin(θps)

) M2
a0
−M2

π −M2
η′

2

+
4√
3

cd
Q√
2F 2

(√
2 cos(θps) + sin(θps)

)
M2

π}2 (7.66)

The decay rates for K∗(1430) are:

ΓK∗→πK = 3
pK∗πK

8πM2
K∗

[
2cd

Q√
2F 2

M2
aK∗ −M2

π −M2
K

2
+

2cm
Q√

2F 2

M2
π + M2

K

2

]2

, (7.67)

ΓK∗→Kη =
pK∗Kη

8πM2
K∗

{
cd
Q√
2F 2

2√
3

(
cos(θps) + 2

√
2 sin(θps)

)M2
K∗ −M2

K −M2
η

2
+

2cm
Q√

6F 2

(
cos(θps)

2

(
5

(
M2

K −
M2

π

2

)
− M2

π

2

)
+ 2
√

2M2
K sin(θps)

)
}2 (7.68)

7.4.3 χ2 analysis

7.4.3.1 Step 1, flavor symmetry breaking

The χ2-fit depends now on 6 variables: the bare masses MN , MG, MS , the mixing param-
eters f, ε , and the decay strengths cd

Q, cm
Q . Here we include the experimental values of

Γa0→KK/Γa0→πη and Γa0→πη′/Γa0→πη. Note that these two ratios only depend on the ratio

cm
Q/cd

Q, and not on all the others.

This fact suggests the following strategy: we first find the best ratio cm
Q/cd

Q to describe
the two experimental values related to a0. We consider:

χ2
1 = χ2

1[y = cm
Q/cd

Q]

=

[
1

0.16

(
Γa0→πη′

Γa0→πη
− 0.35

)]2

+

[
1

0.23

(
Γa0→KK

Γa0→πη
− 0.88

)]2

. (7.69)

Minimizing χ2
1 with respect to y = cm

Q/cd
Q, using θps = −10◦, we find

y = cm
Q/cd

Q = 0.41353. (7.70)
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With this value we have:

Γa0→πη′

Γa0→πη
= 0.29; (7.71)

Γa0→KK

Γa0→πη
= 0.88. (7.72)

compared to the experimental values of respectively 0.35 ± 0.16 and 0.88 ± 0.23 This result
for y, however, sensibly depends on the pseudoscalar mixing angle θps. In the following we
will still use θps = −10◦.

If one uses θps = −21.8◦ [121], would obtain y = 1.19 together with the decay ratios

Γa0→πη′

Γa0→πη
= 0.13; (7.73)

Γa0→KK

Γa0→πη
= 0.88. (7.74)

7.4.3.2 Step 2

We now consider (7.24), which in this case depends on the full set MN , MG, MS , f, ε, cd
Q,

cm
Q .

However, following the previous subsection, we can write cm
Q = 0.41353 · cd

Q. We therefore

have one parameter less. We perform the usual χ2 analysis, following the prescriptions and
the discussions of section 7.2. We find a minimum for:

MN = 1.442, MG = 1.485, MS = 1.696, f = 0.080, ε = 0.223, cd
Q = 0.00817;χ2 = 10.57.

Although the χ2 is a slightly worse than in the flavor case, we should not forget that we
improved the ratios for a0 and that this approach can in principle be improved by going to
higher orders.

The full table is:

Quantity Exp Theory χ2
i

MN ′ 1350 ±150 MeV 1400 MeV 0.1
MG′ 1507 ± 5 MeV 1507 MeV ∼ 0
MS′ 1714 ± 5 MeV 1714 MeV ∼ 0
ΓG′→ππ 38.0± 4.6 MeV 38.21 MeV ∼ 0
ΓG′→KK 9.4± 1.7 MeV 10.4 MeV 0.35
ΓG′→ηη 5.6± 1.4 MeV 1.83 MeV 7.9
ΓS′→ππ/ΓS′→KK 0.20± 0.06 0.205 0.01
ΓS′→ηη/ΓS′→KK 0.48± 0.15 0.257 2.21
(ΓS′)2pseudoscalars 140± 10 MeV 139.94 MeV ∼ 0

χ2
tot - - 10.56

(7.75)

The mixing matrix is:




N ′

G′

S′


 =




0.85 0.46 0.25
−0.46 0.88 −0.05
−0.24 −0.07 0.97






N
G
S


 . (7.76)
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f0(1370) :

Quantity Exp (WA102) Theory
ΓN ′→KK/ΓN ′→ππ 0.46 ± 0.19 0.36
ΓN ′→ηη/ΓN ′→ππ 0.16 ± 0.07 0.06
(ΓN ′)2pseudoscalars ”small” 147 MeV

(7.77)

f0(1710) :

Quantity Exp (WA102) Theory
ΓS′→KK/ΓS′→ππ 5.0 ± 0.7 4.86
ΓS′→ηη/ΓS′→ππ 2.4 ± 0.6 1.24
ΓS′→ηη′/ΓS′→ππ < 0.18 1.69
(ΓS′)2pseudoscalars ”large” 139.9 MeV

(7.78)

a0(1450) :

Quantity Exp Theory
Γa0→KK/Γa0→πη 0.88 ± 0.23 0.88

Γa0→πη′/Γa0→πη 0.35 ± 0.16 0.29
(Γa0)2pseudoscalars ? 80.38 MeV

(7.79)

K∗(1430) :

Quantity Exp Theory
ΓK∗→πK dominant 56.65 MeV
ΓK∗→Kη/ΓK∗→πK ? 0.058

(7.80)

• Two-photon decay ratios

For the two-photon decay we get:

ΓN ′→2γ : ΓG′→2γ : ΓS′→2γ = 1 : 0.340 : 0.005. (7.81)

7.4.4 Comments

The pattern emerging from this fit is qualitative similar to the flavor case, but we also have
some differences.

(ΓN ′)2pseudoscalars is smaller (by a factor 3), and this improves the situation, even if is
still to large when compared to WA103. ΓS′→ηη′/ΓS′→ππ is now not as large as before, even
if the tendency is the same. The ratios for a0 are of course improved, but the full width
(Γa0)2pseudoscalars is decreased by a factor of 2. As a consequence also ΓK∗→πK is small, in
disagreement with the experimental result [12].

The crucial points are still (ΓN ′)2pseudoscalars and ΓS′→ηη′/ΓS′→ππ; the acceptance of the
model with these parameters depends on future experiments, which will measure these quan-
tities.

For what concerns the two-photon decay we find the same trend of the flavor case. The
destructive interference of the u,d and s components of the resonance f0(1710) lower the
corresponding two-photon decay rate for this state.
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7.5 Glueball in the chiral approach

7.5.1 Lagrangian

We now include the direct glueball decay in the chiral formalism. The glueball is considered
as a flavor singlet mesonic field G, whose decays will be described by two constants cd

G and
cm
G :

Leff+glueball =
cd
Q√
2F 2

Tr
[
Ŝ
(
∂µP̂

)(
∂µP̂

)]

−
cm
Q√
2F 2

B

2
Tr
[
2ŜP̂ M̂ P̂ + ŜP̂ P̂ M̂ + ŜM̂ P̂ P̂

]

+
cd
G√
2F 2

Tr
[
Gλ0

(
∂µP̂

)(
∂µP̂

)]

− cm
G√
2F 2

B

2
Tr
[
Gλ0

(
2P̂ M̂ P̂ + P̂ P̂ M̂ + M̂P̂ P̂

)]
(7.82)

We have two parameters more, the two constants cd
G and cm

G ; when they are zero, we are
back to the previous case. The chiral approach cannot tell us anything about their value.

7.5.2 Expressions for the decays

Instead of writing down explicitly the expressions, which in this case are pretty lengthy, we
write them in a symbolic form. Let us consider a generic matrix element deduced from Leff

(see equation (7.47)), which we denote like Mip1p2 , where ”i” refers to a scalar-isoscalar state
and ”p1” and ”p2” refer to two pseudoscalar mesons; Mip1p2 depends on BiN , BiS , cd

Q and cm
Q ;

explicitly:
Mip1p2 = Mip1p2 [B

iN , BiS , cd
Q, cm

Q ]. (7.83)

The modified matrix element, originating from (7.82), is given by:

Mglueball
ip1p2

= Mip1p2 [B
iN , BiS , cd

Q, cm
Q ] + Mip1p2 [

√
2

3
BiG,

√
1

3
BiG, cd

G, cm
G ]. (7.84)

In this way we can calculate explicitly the decay rates. For instance, the decay of |i〉 into two
pions reads:

Γi→ππ = 3

1
2

√
M2

i − 4M2
π

16πM2
i

{ 4BiN

√
2F 2

(
M2

i − 2M2
π

2
cd
Q + M2

πcm
Q

)

+
4√
2F 2

√
2

3

(
M2

i − 2M2
π

2
cd
G + M2

πcm
G

)
}2 (7.85)

The full expressions for the decay rates are reported in Appendix C.

7.5.3 χ2 analysis

We still use the result of the flavor symmetry breaking fit (step 1) of the previous subsection,
thus having y = cm

Q/cd
Q = 0.41353.

We now perform a χ2-fit with the following parameters: MN ,MG,MS , f, ε, cd
Q, cd

G, cm
G .

A minimum is obtained for the following values of the parameters:



200 7.5. GLUEBALL IN THE CHIRAL APPROACH

MN = 1.403, MG = 1.467, MS = 1.92, f = 0.13, ε = 0.25, cd
Q = 0.0082, cd

G = 0.00072,

cm
G = −0.0023; χ2 = 10.56.

The full table is:

Quantity Exp Theory χ2
i

MN ′ 1350 ±150 MeV 1331 MeV 0.01
MG′ 1507 ± 5 MeV 1507 MeV ∼ 0
MS′ 1714 ± 5 MeV 1714 MeV ∼ 0
ΓG′→ππ 38.0 ± 4.6 MeV 38.05 MeV ∼ 0
ΓG′→KK 9.4 ± 1.7 MeV 10.64 MeV 0.56
ΓG′→ηη 5.6 ± 1.4 MeV 1.86 MeV 7.75
ΓS′→ππ/ΓS′→KK 0.20 ± 0.06 0.197 0.001
ΓS′→ηη/ΓS′→KK 0.48 ± 0.15 0.34 2.22
(ΓS′)2pseudoscars 140 ± 10 MeV 139.94 MeV ∼ 0

χ2
tot - - 10.56

(7.86)

The mixing matrix is:



N ′

G′

S′


 =




0.82 0.51 0.26
−0.52 0.85 −0.03
−0.23 −0.11 0.97






N
G
S


 . (7.87)

f0(1370) :
Quantity Exp (WA102) Theory
ΓN ′→KK/ΓN ′→ππ 0.46± 0.19 0.31
ΓN ′→ηη/ΓN ′→ππ 0.16± 0.07 0.05
(ΓN ′)2pseudoscalars ”small” 122.3 MeV

(7.88)

f0(1710) :
Quantity Exp (WA102) Theory
ΓS′→KK/ΓS′→ππ 5.0 ± 0.7 5.06
ΓS′→ηη/ΓS′→ππ 2.4 ± 0.6 1.30
ΓS′→ηη′/ΓS′→ππ < 0.18 1.75
(ΓS′)2pseudoscalars ”large” 140.1 MeV

(7.89)

a0(1450) :

Quantity Exp Theory
Γa0→KK/Γa0→πη 0.88 ± 0.23 0.88

Γa0→πη′/Γa0→πη 0.35 ± 0.16 0.29
(Γa0)2pseudoscalars ? 80.31 MeV

(7.90)

K∗(1430) :

Quantity Exp Theory
ΓK∗→πK dominant 56.60 MeV
ΓK∗→Kη/ΓK∗→πK ? 0.058

(7.91)

For the two-photon decay ratios we find:

ΓN ′→2γ : ΓG′→2γ : ΓS′→2γ = 1 : 0.528 : 0.004. (7.92)



7.5.4 Comments

The pattern didn’t change drastically when including the glueball. Note the stability of the
mixing matrix. In the four analyzed cases it is practically unchanged, and similar to the
analysis of the previous chapter.

There is a converging of results for the mixing matrix, even if different methods are used,
even if there are differences in the parameter choice. In the sixth chapter we had no flavor
mixing; in the present one, by including it, we still find similar results. The difference between
the present mixing matrix and the one of chapter 6 is due to the flavor mixing, introduced
in the present analysis.

Of course, there are indeed some differences, as the two-photon decay ratios show; but
such differences strongly depend on the precise values of the mixing matrix. Improvement is
needed to extract a precise and reliable mixing matrix.

The chiral approach is suitable for future improvements, as soon as better experimental
and lattice results will be available. It can be a successful tool to explain intuitively the
dynamics of the elusive scalar mesons.





Chapter 8

Conclusion

The main subject of this thesis has been the investigation of scalar glueball-quarkonia mixing,
the corresponding two-photon and two-pseudoscalar meson decays related to the scalar meson
resonances between 1 and 2 GeV.

In the first chapter we listed the present status of the glueball search, discussing various
possible assignments. The search for glueballs or for mixed states with a glueball component
in their wave function is an active subject in hadronic physics, both on experimental and
theoretical sides. In fact, the existence of the glueball would confirm on the low-energy side
a basic peculiarities of QCD: the strong interaction among gluons.

Lattice QCD indeed predicts the existence of glueballs, whose lightest state is scalar and
with a mass between 1.4-1.8 GeV [10]. Mixing with nearby quarkonia mesons is likely. Among
all the possible interpretations of the scalar mesons below 2 GeV we described in detail the
original assignment of [31], which according to my personal opinion is still the most solid. We
therefore used the phenomenological assignment of [31] as a starting point of our theoretical
analysis.

We studied the scalar glueball and its mixing with quarkonia mesons within a covariant
nonlocal quantum field theoretical approach, which has been developed in the second and
in the third chapters. In a first step, we introduced the model for scalar fields; in this
simple theoretical framework, after a brief introduction of quantum field theory, we studied
the main features of bound state formation, the non-relativistic limit and the connection
of our approach to a Bethe-Salpeter analysis. The so-called compositeness condition, used
throughout the whole thesis, has been introduced for scalar fields and carefully analyzed in
this context.

We subsequently extended the study to bound states of fermions; in particular, we con-
centrated on pseudoscalar and scalar bound states of two fermionic fields by using nonlocal
currents.

The study of decays is a crucial point to compare theoretical predictions to experimental
results; the decay of mesonic resonances gives us information about their inner structure. In
particular, the two-photon decay is sensitive to the quark-flavor content of the state.

The two-photon transition of scalar and pseudoscalar bound states in the context of the
nonlocal model has been developed in the fourth chapter. The issue of local U(1) gauge
invariance has been carefully discussed. In this context we also analyzed the two-photon
decay of positronium states, which allows to test the non-relativistic limit of our approach.

We then turned to mixing, first introduced with a classical mechanics example, and then
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carried out in the framework of a Klein-Gordon theory. Mixing of fields is a physical phe-
nomenon, which one often encounters in modern physics. We concentrated on the basic
peculiarities of mixing, such as physical and bare fields and the mixing matrix, and we al-
ready introduced the decay into two photons of mixed state.

The analysis of mixing of bound states in the covariant nonlocal model has been carried
out in the sixth chapter; the bare glueball and the bare quarkonia states, respectively de-
scribed by nonlocal currents of two constituent gluons and quarks, are allowed to mix. The
physical fields are then a mixture of the bare ones; however, in contrast to the Klein-Gordon
theory, an orthogonal mixing matrix connecting the physical to bare fields cannot be rig-
orously defined. We proposed a possible definition of a mixing matrix, which satisfies the
correct requirements when compared to the Klein-Gordon and to the Quantum Mechanics
limits.

In the mixing configuration of chapter six we do not take into account the flavor mixing
between |nn〉 and |ss〉 ; the mixing is solely driven by a flavor-blind glueball.

Our results of chapter six infer a mixing matrix in agreement with the results of [31, 42, 40]
(see section 6.8 and Refs. [74, 104])



|f0(1370)〉 = |N ′〉
|f0(1500)〉 = |G′〉
|f0(1710)〉 = |S ′〉


 =




0.80 0.59 0.10
−0.60 0.76 0.26
0.08 −0.27 0.96





|nn〉 = |N〉
|gg〉 = |G〉
|ss〉 = |S〉


 .

Although the mixing matrix is not orthogonal, only small deviations from the orthogonal
limit are found: M ·M t ' 1.

The resonance f0(1370) is dominantly composed by the light flavors u and d, f0(1500)
contains the largest gluonic amount and f0(1710) is mostly made up of strange quarks.

The results for the two-photon decays of mixed states are below the current experimental
upper limits [12] with

ΓN ′→2γ = 0.453 keV, ΓG′→2γ = 0.273 KeV, ΓS′→2γ = 0.125 keV.

An experimental improvement is desired to test the presented solution. However, the
ratios ΓN ′→2γ/ΓS′→2γ = 3.62, ΓG′→2γ/ΓS′→2γ = 2.19 are in agreement with the phenomeno-
logical study of [42].

Furthermore, we compared the Klein-Gordon results to our approach; the two mixing
parameters f and r introduced in section 6.7.3 become functions of the four-momentum p of
the bound states, and are reported in Figs 6.6 and 6.7. Even if we started from a flavor blind
mixing configuration (corresponding to r = 1 in the Klein-Gordon approach) we find small
deviations of flavor blindness in accord with Lattice QCD.

The results of the mixing matrix and of the two-photon decay rates for variation of the
parameters (such as the cut-off Λ) change only within a few percent, as discussed in Appendix
B.

In the seventh chapter we studied the strong decays of the scalar mesons between 1-2
GeV with a phenomenological Lagrangian based on flavor symmetry and inspired by chiral-
perturbation-theory.

In this chapter we also included a possible flavor mixing between |nn〉 and |ss〉 , and we
performed a χ2-analysis to obtain the best description of data listed in [12]. We considered
separately the cases of an inert and of a decaying glueball. However, when including the direct



glueball decays, the results point to a suppressed strength in comparison to the quarkonia
decay strength.

The mixing matrix (from section 7.5.3) found in the seventh chapter shows the following
trend (see also [127]):



|f0(1370)〉 = |N ′〉
|f0(1500)〉 = |G′〉
|f0(1710)〉 = |S ′〉


 =




0.82 0.51 0.26
−0.52 0.85 −0.03
−0.23 −0.11 0.97





|nn〉 = |N〉
|gg〉 = |G〉
|ss〉 = |S〉


 .

Some differences with respect to the previous case appear, mostly caused by the flavor
mixing, but the general trend is confirmed.

The consequence of the mixing scenario presented in the last chapter points to some
results, such as a large ratio ΓS′→ηη′/ΓS′→ππ (> 1 in the four cases of chapter seven), which
now is not in agreement with the experimental result of WA1202 collaboration (< 0.18).
Further experimental results concerning the strong decays are also desirable to accept or
reject the proposed mixing scenario.

A peculiar difference encountered in chapter seven is the enhanced ratio ΓN ′→2γ/ΓS′→2γ ,
which stems from a small ΓS′→2γ ; the reason for it is a destructive interference of the nn and
ss components.

The glueball still constitutes a missing link in the hadronic world; at the present state
of our knowledge we still cannot make any final statement on the real nature of glueballs;
further studies are needed to find or to rule out its existence. In this work we presented and
discussed, within phenomenological QFT methods, possible solutions of the glueball puzzle,
which are in agreement with the present averages of [12].

Further work, both theoretically and experimentally, is needed to clarify this central
problem of hadronic physics.
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Appendix A

The two-field reduced problem

In Section 6.7.3 we introduced the mixing matrix M (see eq. (6.116)) and then in Section
6.7.4 alternatively M ′ (see eq. (6.124)). For both mixing matrices, as indicated in Section
5.8, we find similar results. To demonstrate the close connection between M and M ′ we
consider the reduced problem for the mixing of two fields, G and S, thus leaving out the field
N from the discussion. In this case we have the rotated fields G′ and S′ only, and for G′ we
have |G′〉 = MG′G |G〉+ MG′S |S〉 . K and Σ are now 2x2 matrices with:

K =

(
KG KSG

KSG KS

)
, Σ =

(
ΣG 0
0 ΣS

)
. (A.1)

Then we write the full expression for the matrix T −1:

T−1 = −(K−1 −Σ) =

(
− KS

Det[K] + ΣG
KSG

Det[K]
KSG

Det[K] − KG
Det[K] + ΣS

)
, (A.2)

from which we get

T =
1

Det[T−1]

(
− KG

Det[K] + ΣS − KSG
Det[K]

− KSG
Det[K] − KS

Det[K] + ΣG

)
. (A.3)

The coupling constant ggg
G′ (6.104) is then explicitly given as

ggg
G′ = lim

p2→M2
G′

√
(p2 −M2

G′)T gg,gg = lim
p2→M2

G′

√
(p2 −M2

G′)

Det[T−1]
(− KG

Det[K]
+ ΣS) =

=



√(

∂Det[T−1]

∂p2

)−1(
− KG

Det[K]
+ ΣS

)


p2=M2
G′

. (A.4)

The expressions for the other coupling constants follow from (6.104). Similarly, the explicit
expression for MG′G is

MG′G =

√
ggg
G′

(
∂ΣG

∂p2

)

p2=M2
G′

=

=



√(

∂Det[T−1]

∂p2

)−1(
− KG

Det[K]
+ ΣS

)(
∂ΣG

∂p2

)


p2=M2
G′

. (A.5)
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One has then similar relations for the other elements.
First we show that the components of the state |G′〉 = MG′G |G〉+MG′S |S〉 are correctly

normalized. Using (A.5) and (A.3) we have

1 = (MG′G)2 + (MG′S)2 =

=

[(
∂Det[T−1]

∂p2

)−1((
− KG

Det[K]
+ ΣS

)
∂ΣG

∂p2
+

(
− KS

Det[K]
+ ΣG

)
∂ΣS

∂p2

)]

p2=M2
G′

.(A.6)

We come now to the equivalence of M and M ′. Let us consider the ratio ξ =
∣∣∣MG′G/MG′S

∣∣∣ ,
which can be calculated explicitly from the basic definition (6.116) and from (A.3) :

ξ =

∣∣∣∣∣
MG′G

MG′S

∣∣∣∣∣ =



√√√√−

KG
Det[K] + ΣS

− KS
Det[K] + ΣG

(
∂ΣG/∂p2

∂ΣS/∂p2

)


p2=M2
G′

= (A.7)

=

((−KG + Det[K] · ΣS

KSG

)√
∂ΣG/∂p2

∂ΣS/∂p2

)

p2=M2
G′

, (A.8)

where the last term has been obtained making use of the equation Det[T −1] = 0, which holds
for p2 = M2

G′ .
When we consider the analogous ratio calculated from the elements of M ′ (6.116) (in this

case we just have the running parameter f(p2) from equation (6.122) and not r(p2)) we find:

ξ′ =

∣∣∣∣∣
M ′G′G

M ′G′S

∣∣∣∣∣ =
M2

S −M2
G′

KSG

√(
ηG(p2)

ΣG(p2)

ηS(p2)

ΣS(p2)

)

p2=M2
G′

. (A.9)

We want to prove that ξ ' ξ ′ (i.e. M ' M ′) in the weak mixing limit (KSG small) and in
the f(p2) = const limit, for which M ′ = MK−G.

A small mixing strength KSG implies that we can neglect the term proportional to K 2
SG

in the determinant of equation (A.8). Introducing the quantity ηS(p2) of Eq. (6.120) we find:

ξ ' KG(M2
S −M2

G′)ηS(p2)

KSG

√(
∂ΣG(p2)/∂p2

∂ΣS(p2)/∂p2

)

p2=M2
G′

. (A.10)

For p2 'M2
G the following approximation is valid:

ηG(p2)

ΣG(p2)
' K2

GΣ′
G(p2). (A.11)

In fact, when KSG is small, M 2
G′ is close to M 2

G. This allows us to write

KG

√
Σ′

G(p2 = M2
G′) '

√(
ηG(p2)

ΣG(p2)

)

p2=M2
G′

. (A.12)

Let us now consider the second limit, for which f(p2) = const in the region of interest,
i.e. between M 2

G′ and M2
S′ in the 2 field case, and between M 2

N ′ and M2
S′ in the 3 field case.

The condition f(p2) = const is satisfied if Σa(p
2)/ηa(p

2) = ca, where ca is a constant for
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a = G,S. In this case one has M ′ = MK−G, which is orthogonal. We are then considering
the orthogonal limit for M ′. The condition Σa(p

2)/ηa(p
2) = ca for the case a = S implies the

following form for ΣS(p2) :

ΣS(p2) =
cS

(p2 −M2
S) + cSKS

. (A.13)

This is of course an approximate form for ΣS(p2) valid in the limit of a constant cS . Note
that the condition ΣS(p2 = M2

S)− 1/KS = 0 is fulfilled. With this form for ΣS(p2) we have

ηS(p2)√
∂ΣS(p2)/∂p2

=

√
ηS(p2)

ΣS(p2)
=

1√
cS

(A.14)

which is valid in the interval where (A.13) is valid.
Plugging the approximations (A.12) and (A.14) in (A.8) we have indeed

ξ = ξ′ =
M2

S −M2
G′

KSG

√(
ηG(p2)

ΣG(p2)

ηS(p2)

ΣS(p2)

)

p2=M2
G′

=
M2

S −M2
G′

KSG
√

cScG
, (A.15)

thus having similar results for M and M ′ = MK−G for the used approximations. As shown
in section 5.8, in the three field mixing case, similar matrices are found. This is then true for
all the parameters studied in our work and for both propagator choices.

Note that the two conditions discussed in this appendix are satisfied: KSG is small (cor-
responding to a small difference M 2

S′ −M2
S ) and the function f(p2) is almost constant in the

momentum interval between M 2
N ′ and M2

S′ (see Fig. 6.6 and Fig. 6.7).
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Appendix B

Results for parameter variation

To explicitly indicate the dependence on the cut-off value of the vertex function here we
summarize our results for Λ = 2 GeV with the fit values µs = 0.985 GeV , KSG = 0.122
GeV −1. The masses of physical N ′ ≡ f0(1370) and bare S state are MN ′ = 1.287 GeV and
MS = 1.696 GeV .

Mixing matrix:

M =




0.79 0.61 0.11
−0.61 0.74 0.27
0.08 −0.28 0.95


 . (B.1)

Set of coupling constants:




gnn
N ′ : gnn

G′ : gnn
S′ = 5.56 : −3.65 : 0.35

gss
N ′ : gss

G′ : gss
S′ = 0.94 : 2.04 : 6.24

ggg
N ′ : ggg

G′ : ggg
S′ = 0.65 : 0.69 : −0.20


 . (B.2)

Two-photon decay widths:

ΓN→2γ = 0.897keV ΓS→2γ = 0.095 keV

ΓN ′→2γ = 0.465 keV ΓG′→2γ = 0.326 keV ΓS′→2γ = 0.152 keV ,

ΓN ′→2γ/ΓS′→2γ = 3.05 ΓG′→2γ/ΓS′→2γ = 2.14 .

For an even further increase value of the cut-off width Λ = 2.5 GeV (µs = 0.982 GeV ;
KSG = 0.041 GeV −1) we get MN ′ = 1.287 GeV and MS = 1.695 GeV.

Mixing matrix:

M =




0.78 0.61 0.11
−0.62 0.74 0.27
0.08 −0.29 0.95


 ,

Set of coupling constants:




gnn
N ′ : gnn

G′ : gnn
S′ = 4.64 : −3.18 : 0.32

gss
N ′ : gss

G′ : gss
S′ = 0.79 : 1.70 : 5.27

ggg
N ′ : ggg

G′ : ggg
S′ = 0.51 : 0.55 : −0.17


 .
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Two-photon decay widths:

ΓN→2γ = 0.911 keV ,ΓS→2γ = 0.101 keV,

ΓN ′→2γ = 0.455 keV ΓG′→2γ = 0.347 keV ΓS′→2γ = 0.165 keV ,

ΓN ′→2γ/ΓS′→2γ = 2.99 ΓG′→2γ/ΓS′→2γ = 2.28.

As a last point we consider the increase of the effective quark mass parameter µn from
0.86 to 1.1 GeV in order to check its influence on the results. For Λ = 1.5 GeV we get
µs = 1.2 GeV and KSG = 1.00 GeV −1. The masses are MN ′ = 1.307 GeV and MS = 1.695
GeV . The mixing matrix is

M =




0.81 0.57 0.09
−0.57 0.78 0.25
0.07 −0.27 0.96


 ,

where again no decisive variation from the previous cases is seen.



Appendix C

Expressions for the decays

We now list the results for the decay of the isoscalar state |i〉, when the glueball is allowed
to decay in the framework f the chiral approach (see section 7.5).

Γi→ππ = 3

1
2

√
M2

i − 4M2
π

16πM2
i

{ 4BiN

√
2F 2

(
M2

i − 2M2
π

2
cd
Q + M2

πcm
Q

)

+
4BiG

√
3F 2

(
M2

i − 2M2
π

2
cd
G + M2

πcm
G

)
. (C.1)

Γi→KK = 4

1
2

√
M2

i − 4M2
K

16πM2
i

{ 2√
2F 2

(
BiN +

√
2BiS

)(M2
i − 2M2

K

2
cd
Q + M2

Kcm
Q

)

+
4BiG

√
3F 2

(
M2

i − 2M2
K

2
cd
G + M2

Kcm
G

)
}2. (C.2)

For the ηη decay we have:

Γi→ηη =

1
2

√
M2

i − 4M2
η

16πM2
i

{
(
−

2cd
QΛ1ηη√
2F 2

M2
i − 2M2

η

2
+

2cm
QΛ2ηη√
2F 2

)

+BiG

(
−2cd

GΠ1ηη√
2F 2

M2
i − 2M2

η

2
+

2cm
GΠ2ηη√
2F 2

)
}2 (C.3)

where Λ1ηη is as in section 7.2

Λ1ηη [B
iN , BiS ] =

(
BiN +

√
2BiS

)
− 1√

3

(
BiN −

√
2BiS

)
· cos(2θps)

−2

3

(√
2BiN − 2BiS

)
· sin(2θps), (C.4)
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while Λ2ηη is different and depends on Mπ and MK :

Λ2ηη [B
iN , BiS ] = −2

[
M2

π

2
BiN +

√
2

(
M2

K −
M2

π

2

)]

+
2

3

[
M2

π

2
BiN −

√
2

(
M2

K −
M2

π

2

)]
· cos(2θps)

+
4

3

[√
2
M2

π

2
BiN − 2

(
M2

K −
M2

π

2

)]
· sin(2θps); (C.5)

Π1ηη and Π2ηη are given by:

Π1ηη = Λ1ηη [

√
2

3
,

√
1

3
], (C.6)

Π2ηη = Λ2ηη [

√
2

3
,

√
1

3
]. (C.7)

For the ηη′ decay we have:

Γi→ηη′ =
piηη′

8πM2
i

{
(
−

cd
QΛ1ηη′

√
2F 2

M2
i −M2

η −M2
η′

2
+

cm
QΛ2ηη′

√
2F 2

)

+BiG

(
−cd

GΠ1ηη′√
2F 2

M2
i −M2

η −M2
η′

2
+

cm
GΠ2ηη′√

2F 2

)
}2 (C.8)

where

Λ1ηη′ [BiN , BiS ] =
2

3

[
2
(√

2BiN − 2BiS
)

cos(2θps) +
(
−BiN +

√
2BiS

)
sin(2θps)

]
. (C.9)

Λ2ηη′ [BiN , BiS ] = −8

3

[√
2
M2

π

2
BiN − 2

(
M2

K −
M2

π

2

)]
· cos(2θps)

−4

3

[
−M2

π

2
BiN +

√
2

(
M2

K −
M2

π

2

)]
· sin(2θps), (C.10)

and where:

Π1ηη′ = Λ1ηη′ [

√
2

3
,

√
1

3
], (C.11)

Π2ηη′ = Λ2ηη′ [

√
2

3
,

√
1

3
]. (C.12)
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