
A Pointillism Style for the Non-Photorealistic Display of
Augmented Reality Scenes

Jan Fischer† and Dirk Bartz

Visual Computing for Medicine at WSI/GRIS, University of Tübingen, Germany

Abstract
The ultimate goal of augmented reality is to provide the user with a view of the surroundings enriched by virtual
objects. Practically all augmented reality systems rely on standard real-time rendering methods for generating
the images of virtual scene elements. Although such conventional computer graphics algorithms are fast, they
often fail to produce sufficiently realistic renderings. The use of simple lighting and shading methods, as well as
the lack of knowledge about actual lighting conditions in the real surroundings, cause virtual objects to appear
artificial.

We have recently proposed a novel approach for generating augmented reality images. Our method is based on the
idea of applying stylization techniques for reducing the visual realism of both the camera image and the virtual
graphical objects. Special non-photorealistic image filters are applied to the camera video stream. The virtual
scene elements are rendered using non-photorealistic rendering methods. Since both the camera image and the
virtual objects are stylized in a corresponding way, they appear very similar. As a result, graphical objects can
become indistinguishable from the real surroundings.
Here, we present a new method for the stylization of augmented reality images. This approach generates a painterly
"brush stroke" rendering. The resulting stylized augmented reality video frames look similar to paintings created
in the "pointillism" style. We describe the implementation of the camera image filter and the non-photorealistic
renderer for virtual objects. These components have been newly designed or adapted for this purpose. They are
fast enough for generating augmented reality images in real-time and are customizable. The results obtained using
our approach are very promising and show that it improves immersion in augmented reality.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]:
Artificial, augmented, and virtual realities; I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

In augmented reality (AR), virtual graphical objects are
overlaid over the actual surroundings of the user. One impor-
tant aspect of useful reality augmentation is the correct spa-
tial alignment of virtual scene elements. In order to achieve
the correct three-dimensional orientation and positioning of
graphical objects, the user’s head or the video camera used
in the system have to be tracked [Azu97].

Video see-through augmented reality systems acquire the
digital input video stream and render the current video frame

† fischer@gris.uni-tuebingen.de

as background image for the augmented view. The graphical
primitives which constitute virtual objects in the AR scene
are then rendered over the background image using stan-
dard computer graphics methods. Common real-time graph-
ics libraries like OpenGL or high-level frameworks based on
them are often utilized for this task.

In order to reach real-time rendering performance, simple
lighting and shading models are normally used. The com-
mon local illumination methods for the vertices of graphical
primitives depend on manually placed virtual light sources
and basic material parameters. The primitives are usually
rendered using simple flat or Gouraud shading [FvFH97].

The resulting rendered images generally look artificial, es-

2 J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes

(a) Conventional AR (b) “Cartoon-like” stylized AR

Figure 1: Comparison of standard augmented reality and
stylized AR using our previously presented “cartoon-like”
image filter and non-photorealistic rendering. In both im-
ages, the teapot is a virtual graphical object, while cup and
hand are real.

pecially in contrast with the acquired real video background
in an AR view. This is illustrated in Figure 1(a), in which the
teapot on the left is a computer-generated rendering. Even
if more sophisticated rendering methods with advanced il-
lumination and shading were used [HS99], the problem of
mismatched scene generation parameters would still persist.
Since light sources and material properties are defined dur-
ing definition of the AR scene, they generally do not corre-
spond well to the lighting conditions in the actual surround-
ings.

Due to the large discrepancies in visual appearance, even
in a still image an observer can easily distinguish virtual ob-
jects from the real camera background. In the example in
Figure 1(a), it is obvious that the teapot is a virtual object,
since it almost seems to be “pasted over” the camera image.

We have recently proposed a novel way of generating aug-
mented reality images. This new method uses stylization al-
gorithms for reducing the visual realism of both the back-
ground camera image and the virtual graphical elements.
The result of this approach is that both image layers in an
AR scene have a much more similar visual appearance. Fig-
ure 1(b) shows the teapot scene rendered using a “cartoon-
like” stylization method. In such an augmented view, it is
significantly more difficult to distinguish between real and
virtual objects, resulting in a dramatically improved immer-
sion into the AR scene. In contrast to our earlier described
“cartoon-like” stylization for augmented reality [FBS05],
we here present a completely new method for stylized aug-
mented reality, the “brush stroke artistic reality”. In contrast
to previous “brush stroke” stylized rendering approaches,
our method renders both the video stream of the actual sur-
roundings and the virtual objects with this stylization to
maintain a coherent appearance. Furthermore, our approach
achieves real-time performance, which is essential for aug-
mented reality applications.

Our stylized augmented reality approach inherently re-
moves details from the background camera image. Whereas
this is inappropriate for some applications like medical di-

agnostics, many applications can benefit greatly from the
improved immersion offered by our method. In particular
in fields like art, entertainment, education, and training, the
blurred barrier between real and virtual can provide a much
more impressive augmented reality experience.

2. Related Work

The opposite of our approach of reducing visual realism in
augmented reality is to improve the realism of virtual objects
in order to achieve a better visual correlation to the camera
image. Research has been done into methods of analyzing
the real illumination conditions in an AR setup. Kanbara
and Yokoya describe an approach of analyzing the distri-
bution of real light sources in real-time, which is used for
adapting the representation of graphical objects accordingly
[KY02]. Their method requires a special marker and mir-
ror ball to be visible in the camera image for computing the
environment light map. A different approach to increase re-
alistic appearance of virtual objects adds shadowing to the
AR image. This creates the impression that shadows are cast
from virtual objects onto real surfaces. Haller et al. describe
a method for computing such shadows in augmented reality
[Hal04, HDHZ03]. As a drawback of this method, a static
model of the geometry of the surfaces and objects in the real
world is required.

Our system for applying stylization to augmented real-
ity is based on a painterly filter for the camera image and
an artistic rendering scheme for the virtual objects. Non-
photorealistic and painterly rendering and image filtering
(NPR) have been areas of very active research for several
years. While many NPR approaches employ silhouette and
hatching techniques, we focus in this paper only on brush-
stroke techniques and NPR techniques for interactive scenes
or video streams. An overview of many techniques is given
by Reynolds [Rey03]. Strothotte and Schlechtweg have also
published a good survey of methods used in the field [SS02].

The use of brush strokes for computer-generated images
has been described before, for example by Meier [Mei96].
A more recent implementation and modification of
Meier’s algorithm has been presented by Haller and
Sperl [HS04]. They also presented a system that inte-
grates non-photorealistic rendering into augmented reality
[Hal04, HS04]. However, their system applies artistic ren-
dering techniques only to the virtual objects, whereas the
background camera image is displayed in its original, un-
processed form.

Another application of NPR-rendering to virtual environ-
ments was presented by Klein et al. [KLK∗00]. Again, NPR-
rendering was only applied to virtual objects and no video
information was included.

Litwinowicz presented an approach that generates an
artistic rendering style [Lit97] very similar to our approach.
He maintains temporal coherence of the brush-strokes with

J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes 3

motion estimation algorithms on the video images (with no
additional virtual objects).

For pure video sequences and interactive scenarios (with
no video content), Hertzmann and Perlin introduced an ap-
proach for an NPR-style [HP00] similar to Haeberli’s “Paint
By Numbers” approach [Hae90], which achieved interac-
tive performance (>10fps). Another approach for interactive
performance for NPR-rendering of virtual objects was pre-
sented by Cornish et al. [CRL01]. In their particle-based ap-
proach, they employ a view-dependent cluster algorithm to
keep the number of particles in a manageable range.

An algorithm for semi-automatic conversion of a real
video sequence into a stylized video has been presented by
Wang et al. [WXSC04]. This method produces very good re-
sults, but it is an offline algorithm and computationally too
expensive for real-time applications. Another offline tech-
nique for still images and video sequences was presented by
Raskar et al. [RTF∗04]. Xu et al. presented a stylized ren-
dering technique for scanned outdoor scenes [XC04], which
achieved real-time performance after preprocessing of the
scanned data.

In the remainder of this article, the basic idea of styl-
ized augmented reality is explained in Section 3. The “brush
stroke” stylization method is described in Section 4. Sec-
tion 5 discusses results obtained with the new algorithm. Fi-
nally, Section 6 summarizes our findings.

3. Stylized Augmented Reality

We propose a paradigm for generating augmented reality im-
ages based on obtaining a similar, reduced level of realism
for both the background camera image and virtual objects.
The conventional method for overlaying graphical objects
over the camera image is illustrated in Figure 2. Here, vir-
tual objects are drawn over the background camera image
using a standard renderer.

camera

virtual objects
database

camera
image

augmented
view

standard
renderer

camera pose
information

overlay

Figure 2: The image mixing process in conventional AR.

In stylized AR, the camera image is processed before it is
used as background in the image mixing process. A painterly
filter is applied to the input camera image. The aim of the
painterly filtering step is to create a simplified, stylized ver-
sion of the current camera view. After the camera image has

been processed, the virtual objects are rendered over it. How-
ever, unlike in conventional AR, a non-photorealistic render-
ing (NPR) scheme is used instead of standard methods. The
NPR renderer creates a stylized representation of the graphi-
cal objects. An overview of this process is given in Figure 3.

camera

virtual objects
database

camera
image

stylized
AR

non-
photorealistic

renderer

camera pose
information

+
NPR parameters

overlay

painterly
image
filter

painterly filter
parameters

Figure 3: The image mixing process used for stylized AR.

An important precondition for an useful system of stylized
augmented reality is the ability to generate images in real-
time. We have thus devised a camera image filter and a non-
photorealistic rendering technique, which are fast enough to
ensure interactive overall frame rates. It is important to note
that the image filter and the rendering component can be cus-
tomized using a set of parameters. In order to obtain a sim-
ilar type of stylization for both AR image layers, the filter
and rendering parameters must be tuned accordingly. In this
paper, we present the new painterly “brush stroke” mode for
the stylization of augmented reality images. Images gener-
ated with this algorithm are composed of a large number of
small brush strokes.

4. Brush Stroke Stylization

In this section, we present a new approach to generating
stylized augmented reality images. This novel method aims
at reproducing a painting style found in real-life pictures.
The generated images consist of a large number of small
brush strokes, a method applied by painters who adhere to
the pointillism style of painting [Art04].

As described in Section 3, a painterly filter is applied to
the input camera image. This painterly filter randomly sam-
ples the camera image and paints brush strokes with the
colors of the sampled camera pixels. Afterwards, the vir-
tual model is rendered using the brush stroke style. In order
to achieve an appearance similar to the processed camera
image, the rendering of the virtual model also consists of
colored brush strokes. The polygonal geometry of the vir-
tual model is first converted to a three-dimensional particle
model as a preparation for the painterly rendering. The ren-
derer projects each of the particles into screen space and uses

4 J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes

these 2D positions as basis for the brush stroke represen-
tation of the model. Our method can thus be considered a
simplified specialization of point based rendering (see for
instance [PZvG00]).

Figure 4: Overview over the method for brush stroke styl-
ization of augmented reality images.

We have found that in order to make the virtual model and
camera image look similar, the same brush stroke positions
must be used. In early experiments employing a method
which directly renders projected particles, the brush stroke
rendering of the virtual model seemed to float above the
background image. Our method thus assigns each projected
particle position to the nearest point in a precomputed 2D
brush stroke grid. This is the same grid that is used for sam-
pling the camera image.

Figure 4 shows an overview of our system for brush stroke
stylization.

4.1. Brush Stroke Filter for Camera Image

In this section, we describe the image filter for creating a
brush stroke version of the camera image. Section 4.1.1 first
explains the generation of the 2D sampling grid required by
the filter, Section 4.1.2 describes the actual filtering opera-
tion.

4.1.1. Generation of 2D Grid

A two-dimensional sampling grid is generated in an one-
time preprocessing step. The grid remains constant through-
out the processing of consecutive input camera images. It is
stored as an array of sampling point records. Each sampling
point record contains the 2D position of the point and ad-
ditional information about the brush stroke which is to be
painted there.

Table 1 lists the attributes stored for each sampling point.
xsample(i, j) and ysample(i, j) are the two-dimensional position
of the point in the camera image, and radius(i, j) is the radius
of the brush stroke to be drawn there. Moreover, a fixed RGB

Table 1: Attributes stored for one sampling point

Attribute Data type

xsample(i, j) integer

ysample(i, j) integer

radius(i, j) integer

colorOffset(i, j) RGB color

color offset is stored for each sampling point. This color off-
set is later added to the color of any brush stroke which is to
be drawn at that position.

Figure 5: Illustration of two sampling points randomly dis-
placed from the regular grid with random brush stroke radii.

Sampling points are generated over the entire area of the
camera image. Each point is initially located on a regu-
lar grid with a horizontal step size of colSkip and a verti-
cal step size of rowSkip. A random displacement vector is
added to the point positions, as shown in Equation 1. The
maximum random offset range is an user-definable para-
meter. Brush stroke radius radius(i, j) and RGB color offset
colorOffset(i, j) are also generated randomly with random
number ranges defined by the user. An illustration of two
sampling points is shown in Figure 5.

xsample(i, j) = i·colSkip+ rand(−range,range) (1)

ysample(i, j) = j·rowSkip+ rand(−range,range)

The random variations of point position, brush stroke ra-
dius and brush stroke color are introduced into the sampling
point grid in order to create a more natural, irregular look
for the generated image. Note that the total number of grid
points depends on colSkip and rowSkip. The random num-
ber range for radius(i, j) has to be selected so that a good
covering of the image area by brush strokes is achieved.

J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes 5

Another measure for generating a more natural look for
the processed image is the application of a random drawing
order for the brush strokes. An array containing the indices
of all sampling points is generated. This array is then ran-
domly shuffled. When the camera image filter is applied, this
index array is traversed sequentially, resulting in a random
brush stroke drawing order.

4.1.2. Camera Image Filter

The camera image filter samples the input image by reading
pixel colors at the sampling point positions in the given, ran-
dom order. Color offset colorOffset(i, j) is then added to each
pixel color, and the resulting RGB components are clamped
to the valid real number range [0;1]. Each brush stroke is
drawn as a textured quadratic rectangle with side length
2 · radius(i, j) + 1, centered at (xsample(i, j),ysample(i, j)). The
brush stroke texture is loaded from file beforehand. During
brush stroke rendering, alpha blending is enabled to achieve
partial transparency for overlapping brush strokes. An exam-
ple of a brush stroke image generated by the camera image
filter is shown in Figure 6.

(a) Original camera image

(b) Result of brush stroke filter

Figure 6: Example of an image generated by the brush
stroke filter for the camera image.

4.2. Brush Stroke Renderer for Virtual Objects

In order to be able to generate a brush stroke rendering of vir-
tual objects in the augmented reality scene, they are first con-
verted to particle models. This process is described in Sec-
tion 4.2.1. For each frame, the projected particles are then
assigned to the nearest 2D sampling point. The computation

of the lookup table required for this step is explained in Sec-
tion 4.2.2. The actual rendering method is then described in
Section 4.2.3.

4.2.1. Creation of Particle Model

For each of the polyons constituting the graphical object,
a number of particles lying on the polygon is generated.
Each three-dimensional particle position is computed as a
weighted sum of the polygon vertices. In Equation 2, the
vi denote the vertices of the current polygon, and N is the
number of vertices. The position of the currently regarded
particle is called particlePos j.

particlePos j =
N

∑
i=1

wi ·vi

N

∑
i=1

wi = 1 (2)

As expressed in Equation 2, the vertex weights wi sum up
to a value of one, so that particlePos j is located on the poly-
gon. The weights are chosen randomly in order to generate
a random particle position. Particle color particleCol j and
normal vector particleNorm j are stored as additional at-
tributes for each particle. The particle color is obtained from
a texture lookup, for which texture coordinates are computed
as a sum of the texture coordinates of the polygon vertices
weighted with wi. The user can load any bitmap as texture
image for with the graphical model. The particle normal is
calculated by correspondingly interpolating the normals of
the polygon vertices and normalizing the result.

In order to achieve a homogeneous distribution of parti-
cles over the entire surface of the model, a specific number
of particles is calculated for each polygon. The total number
of particles to be generated is selected by the user as para-
meter numParticles. Before generating the particle model,
the total surface area of the virtual model, totalArea, is de-
termined. For each polygon, the number of particles is then
computed as the ratio of its area to totalArea multiplied by
numParticles.

An example of a particle model generated for a virtual
object is shown in Figure 7.

(a) Polygonal model (b) Particle model

Figure 7: Particle model generated for a teapot object.

6 J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes

4.2.2. Sampling Point Lookup Table

During the brush stroke rendering process, the nearest 2D
sampling point has to be determined for each projected par-
ticle. Due to the requirement for overall real-time perfor-
mance, a lookup table containing the index of the nearest
sampling point for each pixel in the camera image coordi-
nate system is computed. The table can be considered a rep-
resentation of the Voronoi diagram of the sampling point
set [Wol04]. An illustration of the sampling point lookup
map is shown in Figure 8. The lookup table is generated in
an one-time preprocessing step directly after the creation of
the sampling grid (see Section 4.1.1).

Figure 8: Illustration of the Voronoi diagram of four sam-
pling points. The black dots are the sampling point posi-
tions, randomly displaced from the regular grid. The gray
area in the top left part represents the camera image pixels
which are assigned to the top left sampling point. The three
remaining segments belong to the respective other sampling
points.

The major challenge in computing the lookup map is the
fact that the random displacement of sampling points can
be large. Thus the nearest sampling point cannot be easily
determined for a given camera image pixel. The naive ap-
proach of traversing the camera image and testing the pixel
coordinates against the distance to each sampling point has
proven to be be too slow even for a preprocessing step. Al-
ready for a relatively small number of points, this method
can require a runtime of several minutes. We have therefore
implemented the reverse approach to generating the lookup
map. For each sampling point, the distances to camera pix-
els in a neighbourhood are compared with their distances to
adjacent sampling points.

distxy(i, j) =
√

(xsample(i, j) − x)2 +(ysample(i, j) − y)2

for currently regarded (i, j):

map(x,y) = arg min
i′=i−1,...,i+1

j′= j−1,..., j+1

distxy(i′, j′) (3)

The points in the sampling grid are processed consecu-
tively. Assuming that the grid position of the current sam-
pling point is (i, j), the lookup map algorithm evaluates
Equation 3 for each pixel position (x,y) in the neighbour-
hood. This means that lookup table entry map(x,y) will con-
tain the grid indices of the nearest of the adjacent sampling
points.

The size of the regarded pixel neighbourhood depends
on the grid step sizes rowSkip and colSkip as well as the
maximum random displacement range as shown in Equa-
tion 4. The neighbourhood of pixel (x,y) is defined as a
rectangle which extends horizontally from (x − xExtent)
to (x + xExtent) and vertically from (y − yExtent) to
(y + yExtent).

xExtent = (colSkip
2 + range)

yExtent = (rowSkip
2 + range) (4)

We have found that this fast reverse approach to comput-
ing the sampling point lookup map results in a sufficiently
short intialization stage of the renderer. We have measured
computation times of the lookup map between two and four
seconds for a 640 by 480 pixels camera image with typical
sampling grid parameters on a standard PC.

4.2.3. Rendering Process

The actual rendering procedure for the particle models first
determines the current color for each particle, projects the
particles into screen space and sorts the particles according
to their depth. The sorted particle list is then rendered from
back to front, taking into account the positions and parame-
ters of the 2D sampling points.

The renderer rotates the particle normals particleNorm j
according to the current transformation matrix. The active
transformation and projection matrices as well as viewport
parameters are retrieved from the current OpenGL state at
the beginning of the rendering process. Based on the trans-
formed normal vectors, particles on back-facing polygons
are culled from the list of particles to be rendered. For vis-
ible particles, the current brightness is computed with dif-
fuse reflection using the normal vector information. These
brightness values are used for scaling the particle colors
particleCol j in order to achieve a shaded look for the model.

In the next step of the rendering process, the front-facing
particles are projected into screen space on the basis of the
stored matrices and viewport parameters. The resulting x
and y coordinates and depth values are stored for each parti-
cle. Subsequently, the particle list is sorted according to the
depth values.

Finally, brush strokes are rendered for the projected
particles in the order of descending depth values. This
drawing sequence constitutes an implementation of the

J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes 7

painter’s algorithm for the correct mutual occlusion of brush
strokes [FvFH97]. It is necessary, because Z-buffer tests are
disabled for rendering the semi-transparent brush strokes
with alpha blending.

The nearest 2D sampling point for each projected parti-
cle at (x,y) is looked up in map(x,y). The brush stroke is
then drawn in the same way as applied by the camera im-
age filter (see Section 4.1.2): The color offset stored in the
sampling point record is added to the particle color, and then
a semi-transparent textured rectangle with a side length de-
pending on radius(i, j) is rendered at the sampling point lo-
cation. Therefore, a brush stroke drawn for a model particle
has the same visual properties as a brush stroke drawn by the
camera image filter.

Figure 9 shows an example of a virtual model drawn by
the brush stroke renderer.

Figure 9: Brush stroke rendering of an uniformly colored
plane model with diffuse lighting.

5. Results

We have tested our brush stroke stylization methods for aug-
mented reality with numerous different test scenes. Our aug-
mented reality software contains an editor, which is capable
of importing 3D models in the standard Wavefront OBJ file
format. The user can freely place, scale and rotate the model.
Bitmap files can be loaded and applied as textures to the vir-
tual model. The augmented reality display can be switched
interactively between the conventional AR and brush stroke
modes at any time. Moreover, a graphical user interface
for adjusting parameters of the painterly filter and the non-
photorealistic rendering module is provided. For all of our
test scenes, optical marker tracking based on the ARToolKit
framework was used [KB99].

The brush stroke stylization algorithm is demonstrated in
Figure 10. Here, conventional AR images are shown above
the stylized versions. In the first column, an augmented re-
ality scene containing a virtual teacup with a marble texture
is depicted. The second scene contains a bridge model with
a painting applied as texture. A wooden plane model is the
virtual object in the third column of images.

The goal of our stylization methods for augmented real-
ity is to achieve improved immersion. This means that it is
less obvious to the user whether an object in the augmented
image is real or virtual. Our early experience, the accompa-
nying video, and the images in Figure 10 show that this ef-
fect can be achieved by our methods. In particular for scenes
in which the scale of the virtual object matches the physical
world, the barrier between virtual and real is blurred. The
teacup in Fig. 10(d) is a good example for a scene in which
the virtual model appears to be a natural part of the real en-
vironment thanks to the stylized display method.

Our augmented reality system uses a Firewire webcam
delivering a resolution of 640 by 480 pixels. Benchmark
measurements show that the brush stroke method delivers
a frame rate of approximately 13 fps for typical scene gener-
ation parameters. This benchmark was performed on a com-
puter with a Pentium 4 processor running at 2.8 GHz using
a graphics card with an ATI Radeon 9800 Pro chipset. The
measurements show that our stylization algorithm is capable
of delivering a video stream at interactive frame rates.

6. Conclusion

We have presented a new type of stylization for augmented
reality images. The principle of using non-photorealism in
both the virtual and real image layers in AR is a novel
approach. The adapted levels of realism for camera image
and graphical objects result in improved immersion. This
way a more impressive augmented reality experience can
be achieved. Applications in art, entertainment, training, and
education can benefit from the blurred barrier between the
virtual and real worlds.

The drawback of our brush stroke stylization algorithm
is the fact that the design of the camera image filter results
in the so-called “shower-door” effect. This is caused by the
constant positions of the sampling points and the rendered
brush strokes. In most non-photorealistic rendering systems,
an effort is made to prevent this shower door effect. How-
ever, for our scenario of stylized augmented reality, we have
found a constant position of the brush strokes to be nec-
essary. As mentioned in Section 4, early experiments with
brush strokes attached to the projected positions of model
particles were not successful. In videos generated with such
an algorithm, the virtual models were clearly distinguishable
from the background image. The development of a brush
stroke stylization algorithm for augmented reality without
the shower door effect is one import trend for future re-
search.

The presented stylization method and our previously pub-
lished cartoon-like technique have different qualities. While
the cartoon-like method works well for scenes containing
mostly uniformly colored surfaces, the brush stroke styliza-
tion can handle textured objects well. The cartoon style can
preserve finer details in the image, provided that they consti-
tute sufficiently large intensity contrasts. One drawback of

8 J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes

(a) Teacup (marble), conventional AR (b) Bridge (painting), conventional AR (c) Plane (wood), conventional AR

(d) Teacup (marble), brush stroke style (e) Bridge (painting), brush stroke style (f) Plane (wood), brush stroke style

Figure 10: Three example scenes demonstrating the brush stroke stylization method presented in this paper. The first row
contains conventional augmented reality images. In the second row, the brush stroke stylization of each image is shown. The
description of the scenes contains the type of texture applied to the virtual model in brackets. All of the images were rendered
in real-time.

the current implementation of the cartoon-like method is the
fact that silhouette lines generated from the camera image
tend to flicker. This is caused by noise in the video stream
delivered by the webcam. The brush stroke style can handle
varying colors on objects better. It is thus more useful for
textured virtual models. On the other hand, small details in
the image are not preserved, due to the fact that the individ-
ual brush strokes can be rather large.

Acknowledgment

We would like to thank Ángel del Río for his support during
the experiments and for proofreading this paper.

Most of the graphical models used in our experiments
were downloaded from the 3D Cafe website [3D 04].

This work has been supported by project VIRTUE in the
focus program on “Medical Navigation and Robotics” of the
German Research Foundation (DFG).

References

[3D 04] 3D CAFE: 3D CAFE’S FREE STUFF.
http://www.3dcafe.com/, 2004.

[Art04] ARTCYCLOPEDIA: Artists by Movement:
Pointillism. http://www.artcyclopedia.com/,
2004.

[Azu97] AZUMA R.: A Survey of Augmented Reality.
Presence: Teleoperators and Virtual Environ-
ments 6, 4 (1997), 355–385.

[CRL01] CORNISH D., ROWAN A., LUEBKE D.:
View-Dependent Particles for Interactive Non-
Photorealistic Rendering. In Proceedings of
Graphics Interface 2001 (June 2001), pp. 151–
158.

[FBS05] FISCHER J., BARTZ D., STRASSER W.: Styl-
ized Augmented Reality for Improved Immer-
sion. In Proceedings of IEEE Virtual Reality
(March 2005).

[FvFH97] FOLEY J., VAN DAM A., FEINER S., HUGHES

J.: Computer Graphics - Principles and Prac-
tice, 2nd ed. Addison-Wesley Publishing com-
pany, 1997.

[Hae90] HAEBERLI P.: Paint By Numbers: Abstract Im-
age Representations. In Proceedings of ACM
SIGGRAPH 90 (August 1990), pp. 207–214.

[Hal04] HALLER M.: Photorealism or/and Non-
Photorealism in Augmented Reality. In ACM
SIGGRAPH International Conference on Vir-
tual Reality Continuum and its Applications in
Industry (VRCAI) (June 2004), pp. 189–196.

J. Fischer & D. Bartz / A Pointillism Style for the Non-Photorealistic Display of Augmented Reality Scenes 9

[HDHZ03] HALLER M., DRAB S., HARTMANN W., ZA-
UNER J.: A Real-time Shadow Approach for an
Augmented Reality Application using Shadow
Volumes. In ACM Symposium on Virtual Real-
ity Software and Technology (VRST) (October
2003), pp. 56–65.

[HP00] HERTZMANN A., PERLIN K.: Painterly Ren-
dering for Video and Interaction. In Proceed-
ings of Symposium on Non-Photorealistic Ani-
mation and Rendering 2000 (June 2000), pp. 7–
12.

[HS99] HEIDRICH W., SEIDEL H.: Realistic,
Hardware-accelerated Shading and Lighting. In
Proceedings of ACM SIGGRAPH 99 (August
1999), pp. 171–178.

[HS04] HALLER M., SPERL D.: Real-Time Painterly
Rendering for MR Applications. In Interna-
tional Conference on Computer Graphics and
Interactive Techniques in Australasia and South
East Asia, Graphite (June 2004), pp. 30–38.

[KB99] KATO H., BILLINGHURST M.: Marker Track-
ing and HMD Calibration for a video-based
Augmented Reality Conferencing System. In
Proceedings of IEEE and ACM International
Workshop on Augmented Reality (IWAR) (Oc-
tober 1999), pp. 85–94.

[KLK∗00] KLEIN A., LI W., KAZHDAN M., CORREA

W., FINKELSTEIN A., FUNKHOUSER T.: Non-
Photorealistic Virtual Environments. In Pro-
ceedings of ACM SIGGRAPH 2000 (July 2000),
pp. 527–534.

[KY02] KANBARA M., YOKOYA N.: Geometric and
Photometric Registration for Real-Time Aug-
mented Reality (posters and demo session). In
IEEE and ACM International Symposium on
Mixed and Augmented Reality (ISMAR) (Sep-
tember 2002), p. 279.

[Lit97] LITWINOWICZ P.: Processing Image and Video
for An Impressionist Effect. In Proceedings of
ACM SIGGRAPH 97 (August 1997).

[Mei96] MEIER B.: Painterly Rendering for Animation.
In Proceedings of ACM SIGGRAPH (1996),
pp. 477–484.

[PZvG00] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSS M.: Surfels: Surface Elements as Ren-
dering Primitives. In Proceedings of ACM SIG-
GRAPH (2000).

[Rey03] REYNOLDS C.: Stylized Depic-
tion in Computer Graphics - Non-
Photorealistic, Painterly and ’Toon Rendering.
http://www.red3d.com/cwr/npr, 2003.

[RTF∗04] RASKAR R., TAN K., FERIS R., YU J., TURK

M.: Non-photorealistic Camera: Depth Edge
Detection and Stylized Rendering using Multi-
Flash Imaging. In Proceedings of ACM SIG-
GRAPH 2004 (Juli 2004), pp. 679–688.

[SS02] STROTHOTTE T., SCHLECHTWEG S.: Non-
Photorealistic Computer Graphics - Modelling,
Rendering, and Animation. Morgan Kaufmann
Publishers, 2002.

[Wol04] WOLFRAM RESEARCH: MathWorld: Voronoi
Diagram. http://mathworld.wolfram.com/,
2004.

[WXSC04] WANG J., XU Y., SHUM H., COHEN M.:
Video Tooning. In Proceedings of ACM SIG-
GRAPH (August 2004), pp. 574–583.

[XC04] XU H., CHEN B.: Stylized Rendering of 3D
Scanned Real World Environments. In Pro-
ceedings of Symposium on Non-Photorealistic
Animation and Rendering 2004 (June 2004),
pp. 25–34.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

