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3 INTRODUCTION 

Due to an increasing interest of society in environmental issues chemical and 

pharmaceutical industry are challenged to optimise their procedures towards 

ecologically acceptable conditions. A possible way to reach the aim of a so called 

“green chemistry” is the use of well-designed homogeneous transition metal 

complexes[1-6] as catalysts. Owing to their high reactivity and selectivity reactions 

proceed more efficiently, i.e. they help to avoid toxic compounds and the formation of 

environmentally endangering by-products. Besides, energy is saved. 

Among the diaminedichlorobis(phosphine)ruthenium(II) complexes developed by Noyori 

and co-workers[7,8] there are examples, which have already been introduced to industrial 

fine chemical synthesis. But although there are lots of advantages in the application of 

homogeneous transition metal catalysts one disadvantage remains. After the catalytic 

reaction the catalyst has to be separated from the reaction products. This procedure 

very often is a time, energy, chemicals, and therefore money consuming process. 

Moreover, the catalyst could decompose during the recycling process. All this 

antagonises the usage of homogeneous transition metal catalysts. A possibility to 

overcome this problem is the employment of heterogeneous catalysts, which in contrast 

to homogeneous catalysts are not soluble. Generally heterogeneous catalysts consist of 

a solid body with a large surface, on which the catalytic reaction takes place. 

Heterogeneous catalysts have the big advantage that they can easily be removed from 

a reaction mixture, by filtration for example. But indeed transportation processes like 

diffusion play a very important role and hence can influence the rate of conversion, 

which commonly is low as is selectivity. Another aspect in this context is the anchoring 

of homogeneous structurally well-defined transition metal complexes on surfaces of 

organic or inorganic polymers. More than twenty years ago first trials were made to 

transfer the principles of solid phase synthesis to transition metal complexes[9]. In this 

way it was supposed to combine the advantages of homogeneous and heterogeneous 

catalysis. In first trials carbonyl complexes were directly bound to organic polymers, 
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poly-2-vinylpyridine for example[10,11]. A disadvantage of the direct anchoring was the 

fact, that just a small amount of transition metal complexes could be attached. As a 

consequence a method was developed to immobilise metal complexes via a donor 

ligand molecule that was covalently bound to the polymer. With this method a larger 

range of metal complexes could be heterogenised[12-19]. The anchoring of the transition 

metal complex to the polymeric matrix was achieved by the exchange of a ligand 

molecule bound to the metal centre by an immobilised donor ligand. In a second 

approach a functionalised ligand molecule was coordinated to the metal centre. The 

metal complex functionalised in this manner was then added to the reaction mixture 

during the polymerisation of the organic support. In this way it was estimated to obtain 

polymers containing a selected amount of bound complexes with a well-defined 

structure. However, the latter method was not useful because the sensitive metal 

complexes decomposed during the polymerisation process[16,17]. At the beginning 

polystyrene and styrene/divinylbenzene copolymers (Merrifield-resins) were the 

commonly applied carrier materials[20]. In the following years polyvinyls[10-13], 

polyacrylates[18,21,22], and cellulose[23,24] were employed, too. In spite of the large variety 

of different organic polymer supports they commonly show low mechanical, thermal, 

and chemical stability. Moreover, they are sensitive towards aging[9]. 

Therefore efforts were made to immobilise transition metal complexes on the surface of 

inorganic supports. The donor ligands were provided with functional groups that could 

easily be hydrolysed, for example -SiX3 (X = hydrolysable group like -OCH3). By that a 

linkage with surface hydroxyl groups on an inorganic matrix could be achieved. As 

inorganic carrier materials first silica gel[25,26], later γ-Al2O3, zeolithes and glass[27] were 

applied. Until now the most often applied inorganic supporting material is silica gel[25,28-

33], because it is neutral, its properties are well investigated[34-36], and possible 

modifications of its surface are well known[37-39]. However, common problems of these 

supports are leaching, reduced accessibility and reactivity of the immobilised reactive 

centres. 

About ten years ago the concept of “Chemistry in Interphases”[40,41] was introduced to 

catalysis. With this method active centres can be incorporated into a mostly porous and 

swellable organic or inorganic polymer network, e.g. by employing a sol-gel process. By 

this means it was expected to overcome the problems of leaching and reduced 

accessibility. Due to porosity and swellability of the supporting material it was estimated 
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to imitate homogeneous conditions in the environment of the immobilised reactive 

centre and hence to combine the advantages of homogeneous and heterogeneous 

catalysis.  

For fine chemical and pharmaceutical industry catalytic hydrogenation of polar double 

bonds such as C=O or C=N and especially the asymmetric version of this reaction plays 

an important role. With this key method it is possible to produce chiral alcohols or 

amines as precursors in the production of pharmaceutically interesting products[7,8,42]. 

For almost 40 years ruthenium homogeneous hydrogenation catalysts have been 

known[43,44]. Until now they have been proving their utility for this application due to their 

favourable reactivity and selectivity. To date for the hydrogenation of polar double 

bonds with ruthenium complexes two main catalytic cycles are known and accepted[45]. 

With these it is possible to explain the fact why some special ruthenium complexes with 

amine ligands are more active than other ruthenium complexes for the direct 

hydrogenation of ketones[7,8]. Often this high activity involves high enantioselectivity for 

the hydrogenation of prochiral ketones and a high chemoselectivity of carbonyl double 

bonds over olefinic double bonds[7,8,46]. Therefore the immobilisation of these 

ruthenium(II) complexes is of great interest. 

As new supports for hydrogenation in interphases highly swellable ULTRARESINS, which 

already had been successfully introduced to solid phase synthesis[47], were modified 

with regard to the anchoring of ruthenium(II) complexes. In comparison to this organic 

matrix as inorganic support for a T-silyl functionalised ruthenium(II) complex spherical 

non-porous silica particles, so called Stöber particles[48] were applied. Hence the 

catalytic activity of analogous homogeneous ruthenium(II) complexes has already been 

reported[46,49], the new organic and inorganic supported stationary phases were 

employed in the catalytic hydrogenation of acetophenone. As hydrogenation methods 

both direct hydrogenation with H2 gas as hydrogen source and transfer hydrogenation, 

in which the solvent provides the hydrogen, were applied. The organic and inorganic 

interphase catalysts were compared according to catalytic performance, recycle ability 

and leaching. 
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4 GENERAL SECTION 

4.1 Catalytic Hydrogenation of Polar Double Bonds with Ruthenium 
Complexes 

Ruthenium homogeneous hydrogenation catalysts have been proven to be some of the 

most useful catalysts for the catalytic hydrogenation of polar double bonds such as C=O 

or C=N due to their favourable reactivity and selectivity. In general, hydrogenation 

reactions with ruthenium catalysts can be classified by their reaction mechanisms[45] in 

direct hydrogenation with hydrogen gas as hydrogen source and transfer hydrogenation 

in which an organic source serves as hydrogen donor. The classical mechanisms of 

transition metal homogeneous catalysis involve the reactants forming products while 

bound to the central metal. So it is assumed that for the hydrogenation of polar bonds it 

is necessary that the ketone or imine binds to a free coordination site on the 

ruthenium(II). Because of the low hydride affinity of C=O or C=N it is crucial that the 

ruthenium complexes are sufficiently hydridic showing the following properties: Auxiliary 

ligands on the metal centre stabilise the positive charge that is left on the ruthenium 

after the hydride transfer step. These ligands contain for example strongly basic 

hydride, phosphine, and cyclopentadienide with electropositive donor elements (H, P, 

C). When these ligands are trans positioned to the leaving hydride they assist the 

weakening of the Ru-H bond because of their high trans influence. A negative charge 

on the ligands will promote the reaction[50-55]. 
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4.2 Mechanisms of Hydrogenation Reactions in the Inner 
Coordination Sphere 

4.2.1 Direct Hydrogenation 
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Scheme 1. Catalytic cycle for the direct hydrogenation of polar double bonds in the 

inner coordination sphere 
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For inner sphere hydrogenation reaction the generalised catalytic cycle in Scheme 1 is 

proposed[45]. In general precursor complexes are applied, because very often they are 

stable and storable in comparison to the active species which easily can be generated 

in situ during the hydrogenation process[56-60]. During the in situ preparation of an active 

species from precatalyst 1 in direct hydrogenation usually hydrogen gas first 

coordinates to a vacant site at the metal centre as a η2-dihydrogen ligand (2)[61-64]. 

Normally this ligand undergoes heterolytic cleavage to give a ruthenium hydride (3) and 

a protonated base. By removal of a ligand, a solvent molecule for example, a free 

coordination site is created (4). In the next step the substrate binds to the free 

coordination site of the unsaturated hydride species (5). The coordination in the inner 

sphere leads to an electrophilic activation of the carbon of the carbonyl group so that a 

cis-hydride on the metal centre can migrate to the linked β carbon. Noyori and Ohkuma 

found evidence[7] for a high activation barrier for this inner sphere attack coming from a 

drastic change of ground state structures for the interaction between the Ru-H bond and 

the π face of the carbonyl. In some cases an ancillary ligand, usually containing an 

acidic hydrogen bond donor group, provides additional activation of the unsaturated 

substrate towards the hydride attack. By hydride migration from the catalyst to the 

substrate a new unsaturated ruthenium species 6 is generated, to which dihydrogen 

coordinates. The dihydrogen species 7 now can react in two ways: i) Protonation of the 

substrate leads to the product. The regenerated catalyst 4 is released. ii) By oxidative 

addition coordinated dihydrogen adds to the metal centre. This affords a Ru(IV) species 

(8). By elimination of the product the active catalyst 4 is regenerated. Normally it is not 

possible to experimentally differentiate between the two reaction paths. Catalytic 

reactions following the inner sphere hydrogenation cycle have several features in 

common[45]: 

� They require high temperatures.  

� They need high hydrogen pressures.  

� The catalyst to substrate ratio is very small.  

� No additives are required.  

� They lose selectivity for C=O over C=C bonds[65,66].  
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One example for a catalytic system following the inner sphere coordination mechanism 

is [RuH{(R)-BINAP}{N≡C-CH3}{(1-3-η):(5,6-η)-C8H11}](BF4) (BINAP=2,2’-bis(diphenyl-

phosphino)-1,1’-binaphthyl) developed by Bergens and co-workers[56,57]. During the 

hydrogenation in methanol, THF, or acetone (solv) with less than 1 atm H2 pressure the 

hydride species [RuH{(R)-BINAP}{N≡C-CH3}m(solv)3-m]BF4, the actual catalyst is 

generated. The system serves for the hydrogenation of various unsaturated 

compounds, α- and β-ketoesters for instance. As a second example an interesting 

catalytic system has been developed by Laurenczy et al.[67]. The catalytic activity of the 

precursor complex RuCl2(pta)4 (pta=1,3,5-triaza-7-phosphaadamantane) during the 

hydrogenation reaction of CO2 is depending on the pH of the water solution. 

 

4.2.2 Transfer Hydrogenation 

The proposed mechanism for the transfer hydrogenation process (Scheme 2)[45,68,69] of 

C=O bonds is similar to the direct hydrogenation explained above (Scheme 1). In 

contrast to the direct hydrogenation the hydride bound to the metal centre is derived 

from hydrogen transfer reagents such as 2-propanolate in 2-propanol/base mixtures or 

formate in formic acid/triethylamine mixtures via β-elimination reactions[70] (Scheme 2). 

Then starting from a hydride species of the ruthenium(II) complex with a free 

coordination site (4) the substrate coordinates to this complex. A hydride is transferred 

from the catalyst to the β−position of the substrate whereupon the unsaturated species 

of complex 6 is generated. The coordinated alkoxide species of the product is 

protonated by the hydrogen transfer agent and the product is released from the complex 

whereas the deprotonated hydrogen transfer agent coordinates to ruthenium complex 9. 

By β-hydride elimination a hydride from the hydrogen donor is delivered to the metal 

centre (10). The elimination of the oxidised hydrogen transfer agent completes the 

cycle. Mizushima et al. for example demonstrated in their work[71,72] that the complex 

cis-Ru(H)2(PPh3)4 is a very active precatalyst for the hydrogenation of ketones with 2-

propanol as hydrogen donor following the proposed catalytic cycle (Scheme 2). Pamies 

and Bäckwall[73,74] suggested a slightly different mechanism for Ru(H)2(PPh3)3 as 

catalyst which is generated from RuCl2(PPh3)3 in the presence of a base in 2-propanol. 

They discussed the creation of a Ru(0) species by reductive elimination of the product 
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from complex species 5. After oxidative addition of the O-H bond of the hydrogen 

transfer agent the reaction proceeds as explained above (Scheme 2). 
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Scheme 2. Catalytic cycle for the transfer hydrogenation of polar double bonds in the 

inner coordination sphere of a ruthenium complex 
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4.3 Mechanisms of Hydrogenation Reactions in the Outer 
Coordination Sphere 

 

4.3.1 “Metal-Ligand Bifunctional Catalysis” - Direct Hydrogenation of Carbonyl 
Functions in the Outer Coordination Sphere of Ruthenium(II) Complexes 
with Ancillary Ligand 

Scientific interest moved away from direct hydrogenation reactions in the outer 

coordination sphere of ruthenium complexes[75,76] that do not require an auxiliary ligand, 

due to the discovery of the so-called “N-H” effect by Noyori and co-workers[7,8,42,77]. 

“N-H” effect means that the addition of diamines, for example ethylenediamine to 

RuCl2(PPh3)3 and a base in 2-propanol increases the activity of the catalyst in the direct 

hydrogenation of ketones in an extraordinary way[7,78] whereas tertiary diamines are 

ineffective. Following the arguments of Noyori the hydride transfer to the substrate 

proceeds in the outer coordination sphere of the catalyst. The low hydride affinity of the 

carbon in C=O bonds usually requires an electrophilic activation. This can be achieved 

by an external electrophile or by an electrophile attached to an auxiliary ligand cis to the 

hydride of the ruthenium complex. To refer to catalytic systems that operate with 

ancillary ligands Noyori has coined the term “Metal-Ligand Bifunctional Catalysis”[68,79]. 

In these cases it is typical that the auxiliary ligand provides a proton as electrophile on 

the ligand. This means that the ligand must have an NH- or OH-group or an associated 

electrophile, for example a potassium cation[80]. In a cyclic six-membered transition state 

(15) the proton and the hydride are transferred in a concerted manner (Scheme 3). This 

catalytic behaviour leads to a charge alternation which seems to be an important factor 

that favours H2-transfer to the polar C=O bonds over the non-polar C=C bonds.  

The proposed mechanism[45] for this type of reaction (Scheme 3) starts with the 

generation of the active species 12. It is derived from precatalyst 11 by 

dehydrochlorination. For this step a strong base, for example -OH, -OiPr or -OtBu is 

crucial. The 16-electron species 12 normally is stabilised by π-donation from the 

deprotonated ligand into the empty d-orbital of the metal. At the free coordination site on 

the metal centre a hydrogen molecule can coordinate to form the dihydrogen 

intermediate or transition state 13. By heterolytically splitting the coordinated hydrogen 

the active hydrido species 14 is formed. Here a facial proton of the auxiliary ligand and 
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Scheme 3. Catalytic cycle for the direct hydrogenation of polar double bonds in the 

outer coordination sphere of a ruthenium(II) complex with an ancillary 

ligand 

the hydride on the metal centre form a hydridic-protonic interaction (14). The substrate 

coordinates to complex 14 in a six-membered cyclic transition state (15). In doing so the 

polar double bonds of the substrate interact in the outer sphere with the proton of the 

ancillary ligand and the hydride at the metal centre. The simultaneous transfer of the 

hydride and the proton to the coordinated substrate yields the product and the 16-

electron species 12.  

A main focus was not only the chemoselective hydrogenation of ketones and aldehydes 

but also the development of catalytic systems hydrogenating C=O bonds 

enantioselectively. Because of the many structural differences of the substrates it is not 

possible to find just one catalyst that meets all demands. By choosing suitable chiral 



18 GENERAL SECTION 

ligands it is possible to obtain enantiopure alcohols from prochiral ketones or aldehydes 

by asymmetric induction. Extraordinary examples for this type of ruthenium(II) catalysts 

with ancillary ligands offering an NH-group were developed by Noyori and co-

workers[7,8,42,59,81,82]. A lot of stable catalyst precursors bearing a trans-

[RuCl2(diphosphine)(1,2-diamine)] basic structure were developed by Noyori’s group 

and were investigated according to their catalytic activity in the hydrogenation of 

carbonyl compounds. A well-established and approved system of this type contains as 

bisphosphine ligand optically pure BINAP, TolBINAP (2,2’-bis(di-4-tolylphosphino)-1,1’-

binaphthyl), or XylBINAP (2,2’-bis(di-3,5-xylylphosphino)-1,1’-binaphthyl) and as 

diamine ligand optically pure DPEN (diphenylethylenediamine), or DIAPEN (1,1-

di(anisyl)-2-isopropyl-1,2-ethylenediamine) and hydrogenates C=O bonds with a TOF 

(turn-over frequency) up to 259 000 h-1 and enantioselectivity up to 99 % ee[7,82]. 

Inspired by these results other groups designed similar catalyst precursor systems and 

tested their catalytic behaviour in the hydrogenation of ketones[46,49,83-85]. The research 

of Morris et al. has led from trans-[RuClH(diphosphine)(1,2-diamine)] complexes as 

catalyst precursors operating only with a base in 2-propanol[60] to trans-

[RuH2(diphosphine)(1,2-diamine)] complexes. They could show that the dihydrido 

complexes[86,87] do not require a base to be catalytically active because they were 

proven to be the actual catalysts. In solution they lose H2 to give the 16-electron species 

of the ruthenium(II) complex, which could be isolated and characterised. Similar results 

were gained once again by Noyori’s group by developing a trans-[RuH(η1-BH4)-

(diphosphine)(1,2-diamine)] system that hydrogenates carbonyl compounds in the outer 

coordination sphere[77,88]. Further investigations of Noyori’s trans-[RuCl2{(S)-BINAP}-

{(S,S)-DPEN}] system by Chen[80] resulted in the following conclusions: 

� For the dehydrochlorination a base is necessary but it is not sufficient to get high 

activities. 

� By elevating the concentration of alkali metal cation at constant base 

concentration the reactivity of the system is increased. 

� The alkali metal cation not only is required to start the catalytic process but to 

continue the reaction. 

� The speed of the reaction is influenced by alkali metal cations in the following 

order: K>Na~Rb>Li. 
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� A Lewis acid preferably an alkali metal cation is crucial for the hydrogenation of 

carbonyl compounds in the outer sphere of the trans-[RuCl2{(S)-BINAP}{(S,S)-

DPEN}] system. 

As an explanation the mechanism in Scheme 4 is proposed[80]. In the first step of the 

hydrogenation reaction the 16-electron species 12’ has to be generated from the 

catalyst precursor (11’) by dehydrochlorination. In contrast to the catalytic cycle shown 

in Scheme 3 KOiPr coordinates to the metal centre via the deprotonated amine ligand 

(16). Several competing reactions now can succeed: i) At the free coordination site of 

ruthenium H2 coordinates (17). The hydrogen is heterolytically cleaved to yield  

2-propanol and complex 18. In a six-membered transition state (19) the substrate 

coordinates via the potassium cation to the ruthenium complex in the outer coordination 

sphere and a hydride is transferred to yield complex 20. The product alcohol can be 

released in two ways. One possibility is the coordination of H2 to the complex and its 

heterolytic splitting to yield the product and the hydride species 18. The second 

possibility is the protonation of the coordinated alkoxide by 2-propanol leading to 

complex 16. ii) Via a six-membered transition state (22) a hydride is transferred from the 

coordinated KOiPr to ruthenium to yield complex 18. Now the catalytic cycle can 

proceed as explained. By exchanging the coordinated potassium ion with a proton from 

2-propanol the ruthenium(II) hydride complex 14’ is generated. The catalytic cycle can 

advance as in Scheme 3. It was proposed that H2 cleavage is favoured over 

dehydrogenation of 2-propanol, which is reflected in higher TOFs for direct 

hydrogenation than for transfer hydrogenation[80] but only takes place in the presence of 

a Lewis acid such as a potassium cation. Because of this the intermediate stages 17 

and 21 are preferred. The 16-electron species 12’ is not basic enough to split hydrogen 

efficiently because no hydrogenation takes place without Lewis acid, which could be 

experimentally proven. In this case the competing dehydrogenation of 2-propanol takes 

place. By coordination of an alkali metal cation to the Ru-amido nitrogen the electron 

density of the metal centre is diminished. In this way the coordinated H2 gets more 

acidic and can be easily deprotonated by a coordinated alkoxide. By the use of 

potassium cation as Lewis acid an increase of the reactivity is achieved in particular 

because of sterical reasons[80]. 
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Scheme 4. Catalytic cycle for the hydrogenation of C=O groups by trans-[RuCl2{(S)-

BINAP}{(S,S)-DPEN}] proposed by Chen[80] (Here KOiPr was used as 

base and K+ as Lewis acid) 
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4.3.2 “Metal-Ligand Bifunctional Catalysis” - Transfer Hydrogenation of 
Carbonyl Functions in the Outer Coordination Sphere of Ruthenium(II) 
Complexes with Ancillary Ligand 

As well as for the direct hydrogenation there are examples known for transfer 

hydrogenation that operate in the outer coordination sphere without ancillary ligand[89]. 

But as for direct hydrogenation the discovery of the “NH”-effect by Noyori and co-

workers[68,90-94] led to a breakthrough for ruthenium transfer hydrogenation catalysts. As 

for the direct hydrogenation the catalytic cycle[45] (Scheme 5) starts with the generation 

of a 16-electron species by dehydrochlorination (12). Hydrogen transfer from 2-propanol 

to complex 12 in a six-membered transition state (23) produces the catalytically active 

hydride species 14. Then the catalytic cycle proceeds as explained for direct 

hydrogenation (Scheme 3). As a progression of Noyori’s results in direct hydrogenation 

of α,β-unsaturated ketones with diaminedichlorobis[(methoxyethyldiphenyl)phosphine]-

ruthenium(II) complexes[49,85] Lindner et al. prepared a library of novel diaminedichloro-

bis[(methoxyethyldimethyl)phosphine]ruthenium(II) complexes and showed that they are 

excellent catalyst precursor complexes for transfer hydrogenation[95]. They assumed 

that these operate following the cycle shown in Scheme 5. 

 

4.3.3 “Metal-Ligand Bifunctional Catalysis”- Conclusion 

In “Metal-Ligand Bifunctional Catalysis” the ligand plays an extraordinary role[45]. Its task 

is: 

¾ the activation of the carbon of the carbonyl compound so that a nucleophilic 

hydride attack is possible by hydrogen bonding to the oxygen of the substrate, 

¾ to provide a six-membered cyclic transition state for H+/H- transfer, 

¾ to serve as a proton donor, which is transferred concerted with the hydride, 

¾ to allocate a point of interaction for enantioselective recognition. 
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Scheme 5. Catalytic cycle for the transfer hydrogenation of carbonyl compounds in 

the outer coordination sphere of ruthenium(II) complexes with ancillary 

ligand 
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4.4 Chemistry in Interphases 

A lot of problems make immobilised transition metals both on organic supports and on 

inorganic surfaces unattractive for their commercial use[41]: 

i. The lifetime of these catalysts is very short due to leaching of the reactive 

centres caused by poor anchoring. 

ii. The accessibility of the transition metal complexes is reduced due to sterical 

effects of the heterogeneous matrix. 

iii. The influence of the supporting material on reactivity and selectivity of the 

reactive centre as well as the activity of the matrix itself in a catalytic process is 

not known. 

iv. The reactive centres lose homogeneity because of minor changes in their 

structure. As a consequence reduced activity and selectivity of the catalyst is 

observed[38,96]. 

v. It is difficult to control the density of immobilised metal complex within the 

material or on its surface[96,97]. 

To overcome these problems in a recent approach (1995) the concept of “Chemistry in 

Interphases”[40,41] first introduced to reversed-phase chromatography[98-100] was 

transferred to catalysis[101]. An interphase is defined as a region within a material, in 

which a stationary phase and a mobile phase penetrate each other on a molecular level 

(Figure 1). The stationary phase is a combination of an organic, inorganic, or 

organic/inorganic hybrid inert support, a flexible spacer, and an active centre, for 

example a transition metal complex. The mobile phase consists of a solvent, a gaseous, 

a liquid, or a dissolved reactant. In an ideal interphase the reactive centre is uniform and 

well-defined; if the interphase contains a swellable polymeric support it is able to imitate 

homogeneous conditions: the active centres become highly mobile simulating the 

properties of a solution and hence they are accessible for substrates. On the other hand 

an interphase has the advantages of a heterogeneous catalyst because of its 

insolubility. For the preparation of interphase catalysts the sol-gel process is a powerful 

tool[40,41,102-105]. Under smooth and low-temperature conditions suitable polysiloxane 

networks can be obtained. By variation of the reaction conditions a large range from 

flexible to rigid materials is accessible[40,41]. Moreover porosity and swellability of the 
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Figure 1. Schematic representation of an interphase 

materials are adjustable. The derivatisation of a ligand molecule with a spacer, which 

coordinates to a transition metal, results in a functionalised complex. By simultaneous 

co-condensation of silyl functionalised metal complexes with alkoxysilanes a large 

variety of well-defined materials is accessible. If one considers these materials to be an 

ideal interphase, the reactive centres are nearly homogeneously distributed across a 

chemically and thermally inert polymer matrix. A second possibility for the 

immobilisation of transition metal complexes into an interphase is the covalent linkage 

of a functionalised ligand molecule to the matrix followed by the coordination of a 

homogeneous precursor complex. The problem of this method is the fact, that it is not 
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possible to detect the actual amount of reactive centres bound to the incorporated 

ligand molecules. 

Recently attempts have been made to immobilise Noyori-type diaminedichloro-

bis(phosphine)ruthenium(II) complexes and diaminedichlorobis(etherphosphine)-

ruthenium(II) complexes with two hemilabile ether-phosphine ligands into a polysiloxane 

network via a sol-gel process with and without templates[106-109]. The analogous 

homogeneous complexes are excellent chemoselective catalysts for the direct 

hydrogenation of an α,β-unsaturated ketone[46,49,84]. These newly synthesised stationary 

phases showed a promising catalytic behaviour in the chemoselective hydrogenation of 

α,β-unsaturated ketones and some of them could be recycled several times without 

remarkable loss of activity[107-109]. 

In this work two other types of heterogenised catalysts are introduced. In the first part of 

this thesis new interphases were synthesised and characterised using highly 

crosslinked polyethylene imine resins, so called ULTRARESINS[47,110,111] as organic 

matrices. Dichlorobis[1,3-bis(diphenylphosphine)propane]ruthenium(II) and dichlorobis-

[(methoxyethyldiphenyl)phosphine]ruthenium(II) were immobilised on ULTRARESINS by 

coordination to a covalently bound diamine spacer. In the second part of the thesis a 

stationary phase with inorganic support was synthesised and characterised. Therefore 

dichlorobis[(methoxyethyldiphenyl)phosphine]ruthenium(II) was anchored on the 

surface of spherical silica particles with a diameter of 800 nm via a T-silyl functionalised 

1,2-diamine spacer with a mixed primary-secondary diamine. The stationary phases 

were applied as interphase catalysts in hydrogenation reactions. As model system the 

reduction of acetophenone to 1-phenylethanol served. As hydrogenation methods both 

direct hydrogenation with H2 as hydrogen source and transfer hydrogenation with  

  2-propanol as hydrogen donor were employed. The results of the different stationary 

phases were compared regarding catalytic performance, stability of the interphase 

catalyst, and leaching of the active centres. 
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4.5 ULTRARESINS 

About forty years ago Merrifield introduced polymer-supported methods for peptide 

synthesis[112]. Insoluble polymeric supports for chemical transformations now belong to 

the most important and far-reaching innovations of the last decades[113-115]. Until now 

they have been more and more improved, e. g. polypeptides[116], polynucleotides[117], or 

oligosaccharides[118] are synthesised automatically with solid state synthesis. In the last 

years polymeric supports not only were applied for the synthesis of polymeric 

compounds but also for the preparation of non-polymeric molecules in solid state 

supported synthesis in solution[119-125]. So far for solid state supported synthesis 

functionalised swellable crosslinked polystyrenes were applied as polymeric 

materials[126]. If resins of higher polarity were necessary polystyrenes plugged with 

polyethylene glycols (PEG) were preferred[127]. Polymer assisted solution phase 

synthesis (PASP-synthesis) differs from solid phase synthesis in the point that the 

polymer does not operate as an anchor for any reagent in solution, i.e. the polymer 

actively participates in the reaction in solution but in PASP-synthesis the substrate is 

never covalently bound to the resin. Depending on the function of the polymeric material 

during the reaction it can be modified in various ways. For example polymeric supports 

are used as scavenger reagents for by-products or educts[128], as carriers in 

heterogeneous catalysis[129], or for purification of reaction mixtures after the “catch-and-

release” mechanism[130]. 

But a fundamental disadvantage of polymer-supported methods is the fact that it is not 

competitive to synthesis in solution because of its low atom economy. Moreover the use 

of polystyrene resins is limited due to the fact of its low chemical acceptance of solvents 

and its low thermal and chemical stability[131].  

Therefore a new class of polymeric supports was developed[47,110,111]. Starting from 

soluble polyethylene imines, polyethylene imine resins crosslinked with terephthal 

aldehyde, so called ULTRARESINS were prepared (Scheme 6)[47,110,111]. Because of the 

large amount of secondary amines in the polymer backbone these resins have a high 

loading capacity so that this class of new polymeric supporting materials promises to be 

more efficient than the common polystyrene supports. The secondary amines can be 

functionalised in various ways very efficiently and consequently can improve solid 

phase synthesis because of their enlarged atom economy. 
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Scheme 6. With terephthal aldehyde crosslinked polyethylene imine (ULTRARESIN) 

 

4.6 ULTRARESINS as Polymeric Support for Diaminedichlorobis-
(phosphine)ruthenium(II) Interphase Catalysts 

Until now different organic polymeric supports for the heterogenisation of transition 

metal complexes are known[10-13,20-23,129]. A completely new approach to create an 

interphase catalyst was made by the application of highly swellable ULTRARESINS as 

organic polymer matrix. A spacer, which provides a 1,2-diamine structure was bound to 

the support via an amide bond (Table 1). By the coordination of two types of 

dichlorobis(phosphine)ruthenium(II) precursor complexes to the immobilised spacers 

four different interphase materials were obtained (Table 2 and 3). 

 

4.6.1 Preparation of the Modified ULTRARESIN UR2 with 1,2-Diaminopropionic 
Acid as Spacer 

For the coupling of 1,2-diaminopropionic acid to ULTRARESIN UR1 the TBTU/HOBt[132] 

(TBTU = o-(benzotriazole-1-yl)-N,N,N’,N’-tetramethyluroniumtetrafluoroborate; HOBt = 

1-hydroxy-1H-benzotriazole) method was used (Scheme 7). Therefore to a certain 

amount of the secondary amines in UR1 Fmoc-1,2-diaminopropionic acid (Fmoc = 

fluorenylmethoxycarbonyl protecting group) was coupled in DMF with DiPEA (N-

ethyldiisopropylamine) as a base. By addition of DiPEA the diaminopropionic acid and 

HOBt are neutralised as well as their nucleophilic character increased. Under these 
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Scheme 7. Preparation of the modified ULTRARESIN UR2 

reaction conditions the active ester of HOBt and the Fmoc-diaminopropionic acid forms 

as an intermediate. This compound undergoes a nucleophilic attack (-OBt is a very 

good leaving group) by a secondary amine of the resin. In this way the 1,2-diamine 

derivative is bound to the resin via an amide bond. Typically the loading of the resulting 

resin with Fmoc-1,2-diaminopropionic acid would have been determined by Fmoc 

cleavage with piperidine in DMF and Fmoc determination by UV/VIS spectroscopic 

methods (see Experimental Part). Due to the low amount of Fmoc-1,2-diaminopropionic 

acid the Fmoc protecting group is cleaved by the remaining secondary amines in the 

ULTRARESIN during the coupling reaction. Because of that the primary amines of the  

1,2-diamine derivative are partly deprotected so that a capping step with acetic 

anhydride and DiPEA as a base to inactivate residual secondary amines in the 

ULTRARESIN could not be carried out. In the next step remaining Fmoc-protecting groups 

of the coupled Fmoc-1,2-diaminepropionic acid are removed in a two-step reaction with 

the secondary base piperidine (20 % piperidine in DMF). Piperidine abstracts the β-
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proton of the Fmoc-group. In this way a carbanion intermediate is formed. In a process 

following an E1cB mechanism dibenzofulvene and carbon dioxide are eliminated. The 

use of polar solvents such as DMF accelerates the deprotection. In this manner the 

modified ULTRARESIN UR2 is prepared. The loading of colourless ULTRARESIN UR2 with 

1,2-diaminopropionic acid was determined from the starting amount of Fmoc-1,2-

diaminopropionic acid to give 0.79 mmol/g. Because of the undesirable Fmoc cleavage 

from the 1,2-diaminopropionic acid during the amide coupling to the resin a capping 

step to inactivate remaining secondary amines in the resin backbone could not be 

carried out. This leads to undesirable properties of the polymeric support for the 

immobilisation of diaminedichlorobis(phosphine)ruthenium(II) complexes. As was 

already shown [46,83,133-138] not only primary diamines are able to coordinate to 

ruthenium(II) precursor complexes, but also secondary amines[46,83,136-138], imines[133], 

and heterocycles[46,83,134,135]. This means that during the immobilisation step the 

coordination of the ruthenium(II) complexes could not be controlled because of the huge 

amount of diamine structures in the polymeric matrix. A second disadvantage of UR2 is 

that the spacer of the diamine derivative is very short (one C-atom). Therefore it was 

supposed that mobility as well as activity of the immobilised catalyst precursor would be 

diminished[9]. 

 

4.6.2 Preparation of an ULTRARESIN with 1,2-Diaminohexanoic Acid as Spacer  

To avoid these disadvantages a second approach was made (Scheme 8). Fmoc-

aminohexanoic acid as spacer molecule was coupled to ULTRARESIN UR1 according to 

the TBTU/HOBt method[132] in the way explained above. By this an elongation of the 

spacer molecule of seven atoms is achieved. Now the remaining secondary amines in 

the resin backbone were inactivated in a capping step (Scheme 9). The capping 

proceeded with a 1 : 1 mixture of acetic anhydride and DiPEA in DMF at room 

temperature for 18 h. To couple a 1,2-diamine derivative to the spacer first the Fmoc-

protecting group had to be cleaved from the spacer. The cleavage proceeded as 

explained with piperidine in DMF. By UV/VIS spectroscopy (see Experimental Part) a 

loading of the resin UR3 with aminohexanoic acid of 0.98 mmol/g was determined. Like 

in ULTRARESIN UR2 Fmoc-1,2-diaminopropionic acid was chosen as diamine derivative. 

The coupling of the diamine to the anchored spacer once again proceeds as explained 
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after the TBTU/HOBt method[132] with DiPEA as base in DMF for 16 h at room 

temperature. A Kaisertest (see Experimental Part) indicated that no free amines were 

left in the colourless resin. After Fmoc cleavage the loading with diamine structure on 

the organic support UR4 is determined to 0.85 mmol/g.  
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Scheme 8. Preparation of the second modified ULTRARESIN UR4 with long spacer 
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Scheme 9. Capping of the secondary amines with acetic anhydride and DiPEA 

The progress of the synthesis of UR2 and UR4 could be followed via IR spectroscopy 

(for UR4 see Figure 2). By coupling the Fmoc-spacer to the resin the appearance of an 

amide band at 1627 cm-1 was observed. The Fmoc-protecting group could be detected 

as well in a band for the carbamate part of the Fmoc-protecting group at 1705 cm-1 and 

in fluorene deformation bands at 760 cm-1 and 738 cm-1. The latter are characteristic for 

Fmoc. When the resin is capped with acetic anhydride the amide band at 1627 cm-1 

increases due to the appearance of additional amide bonds. After the Fmoc protecting 

group had been removed the typical bands disappear. For resin UR4 the reaction 

procedure was repeated when Fmoc-1,2-diaminopropionic acid was coupled to the 

spacer and the appearance and disappearance of the typical IR bonds could be 

observed. UR4 remained colourless.  
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Figure 2. IR spectra of intermediate products during the preparation of UR4 a) after 

coupling of Fmoc-aminohexanoic acid to UR1 b) after coupling of Fmoc-

1,2-diaminopropionic acid to UR3 c) IR spectrum of UR4 



34 GENERAL SECTION 

4.6.3 Synthesis of the Immobilised Diaminedichlorobis[(methoxyethyldiphenyl)-
phosphine]ruthenium(II) and Diaminedichloro[1,3-bis(diphenylphosphine)-
propane]ruthenium(II) Complexes UR5-UR8 

For the anchoring of the precursor complexes dichlorobis[(methoxyethyldiphenyl)-

phosphine]ruthenium(II) (24) and dichlorobis[1,3-bis(diphenylphosphine)propane]-

ruthenium(II) (25) to the immobilised 1,2-diamine derivative on UR2 and UR4 methods 

for the analogous homogeneous complexes already introduced in literature[46,83] were 

employed (Scheme 10-13). As the red complex 24 and the bright brown complex 25 

were stable in air, all procedures could be carried out without inert gas atmosphere. 

This allows to apply the same working technique, which is used for the preparation of 

ULTRARESINS. When the dissolved complexes 24 and 25 were added to the swollen 

colourless resins UR2 and UR4 gradual colour changes indicated the coordination of 

the precursor complexes. With ruthenium(II) complex 24 the colourless resins UR2 and 

UR4, respectively changed to green stationary phases UR5 and UR6 (Scheme 10 and 

11) whereas the solution changed in colour from red to green. With the second complex 

25 the yellow materials UR7 and UR8 (Scheme 12 and 13) were obtained. For the 

coordination of dichlorobis[(methoxyethyldiphenyl)phosphine]ruthenium(II) (24) 

advantage was taken from the hemilabile character of the methoxyethyl(diphenyl)-

phosphine ligands[83,139-141]. By the attack of the bis[(methoxyethyldiphenyl)-

phosphine]ruthenium(II) complex 24 at the immobilised diamine ligand the hemilabile 

bond to oxygen is cleaved. Thus the 1,2-diamine can coordinate. For complex 25 the 

bonding to the immobilised 1,2-diamine proceeds easily in a ligand exchange reaction 

as was already reported for the analogous homogeneous complexes[46]. The complete 

coordination of the complex to the modified resin could be shown with a Kaisertest. 
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Scheme 10. Preparation of the new stationary phase UR5 from UR2 and ruthenium(II) 

complex 24 
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Scheme 11. Preparation of the new stationary phase UR6 from UR4 and ruthenium(II) 

complex 24 



GENERAL SECTION 37 

-80-4004080120160
[ppm]

a)

b)

c)

*

*
*

*

* rotational sideband

39.0
[ppm]

-80-4004080120160
[ppm]

-80-4004080120160
[ppm]  

Figure 3. a) High resolution 31P{1H} NMR spectrum of the homogeneous complex 26  

b) 31P{1H} Suspension NMR spectrum of the new stationary phase UR5 

c) 31P VACP/MAS NMR spectrum of the stationary phase UR5 
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Scheme 12. Preparation of the new stationary phase UR7 from UR2 and ruthenium(II) 

complex 25 
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Scheme 13. Preparation of the new stationary phase UR8 from UR4 and ruthenium(II) 

complex 25 
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Figure 4. a) High resolution 31P{1H} NMR spectrum of the homogeneous complex 27  

b) 31P{1H} Suspension NMR spectrum of the new stationary phase UR7 

c) 31P VACP/MAS NMR spectrum of the stationary phase UR7
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In the 31P VACP/MAS NMR spectra of UR5-UR8 broad signals in the range of  

7 to 66 ppm indicate that the metal complex fragments have been immobilised 

successfully to UR2 and UR4. This broad chemical shift range has to be compared to 

the rather small chemical shift difference of the two inequivalent phosphine groups of 

the analogous homogeneous complexes 26 and 27 (Scheme 14) in solution (26: δ 39.1, 

38.9, AB pattern, 2JPP = 36.7 Hz[83]; 27: δ 41.5, 42.3, AB pattern, 2JPP = 52.2 Hz[46]). In 

general going from solution into materials like UR5-UR8 leads to increased line widths 

of the signals and the loss of the fine structure due to enhanced dispersion of the 

chemical shifts but not to large differences in chemical shifts as observed for UR5-UR8. 

Previous results for comparable diaminebis(phosphine)ruthenium complexes have 

demonstrated that they may isomerise when going from solution to the solid 

state[46,49,83,95,142]. According to that the complexes in UR5-UR8 may either form an all-

cis-RuP2N2Cl2 or a cis-cis-trans-RuP2N2Cl2 structure. The broad range of chemical 

shifts in the 31P VACP/MAS NMR spectra of UR5-UR8 are fully compatible with the 

diaminebis(phosphine)ruthenium complexes 26 and 27, however, different structures 

have to be considered. This is in agreement with the NMR data of the stationary phases 

UR5 and UR7 in suspension. 
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Scheme 14. Analogous homogeneous complexes 26 and 27 

By IR spectroscopy no characteristic bands for the immobilised ruthenium complexes 

are detected for the stationary phases UR5-UR8. Typical bands of the ULTRARESIN 

matrix partly overlay the bands. Furthermore the strong amide band, due to the large 

amount of amide bonds in the resin, obscures the bands of the immobilised complexes. 

Swelling factors specify the total volume of resin and absorbed solvent with respect to 

the mass of the resin. For a macroscopic detection of the swelling factor a certain 
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amount of dry resin is weighed, solvent is added and the mixture shaken for a certain 

time. After one hour of rest for equilibration the excessive solvent is removed. Then the 

volume of the swollen resin is determined. By the ratio of volume to mass of the dry 

resin the swelling factor is calculated[143]. For the stationary phases UR7 and UR8 

swelling factors were measured in 2-propanol and methanol (Table 4). The stationary 

phases do not swell in 2-propanol and the swelling ability in methanol is diminished in 

contrast to pure ULTRARESINS UR1[47]. The sort of linker molecule, here spacer with 

immobilised ruthenium(II) complex, seems to play an important role in the swelling of 

the resin. This is in agreement with previous results[47]. Because of high loading with 

spacer and complexes the influence of the ULTRARESIN backbone on the swellability is 

reduced. The sort of linker appoints the swelling of the modified ULTRARESINS UR7 and 

UR8.

Table 4. Swelling factors of UR7 and UR8 

Resin Dry 
[mL/g]

2-Propanol
[mL/g] 

Methanol
[mL/g] 

UR7 2.35 2.35 5.87 
UR8 2.32 2.32 7.89 
UR1   16.50[47] 
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4.7 Catalytic Hydrogenation of Acetophenone with Stationary 
Phases UR5-UR8 

The new stationary phases UR5-UR8 were assumed to show similar catalytic 

properties[46,49] than analogous homogeneous ruthenium(II) complexes. The reduction 

of acetophenone to 1-phenylethanol was chosen as model reaction for the 

hydrogenation process (Scheme 15) owing to the fact that in the reaction only one 

defined product is possible apart from enantioselectivity. The conditions, under which 

these homogeneous ruthenium(II) complexes are catalytically active, are already 

known[7,8,46,49,80]. Therefore comparable conditions (2-propanol, KOtBu as alkaline base) 

were chosen as a basis for the catalytic tests of the newly prepared stationary phases.

CH3

O
KOtBu, [Ru], 2-propanol, H2

CH3

OH

H

CH3

O
KOtBu, [Ru], 2-propanol, ∆T

CH3

OH
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Scheme 15. Reduction of acetophenone as model reaction for the a) direct 

hydrogenation, b) transfer hydrogenation 

 

4.7.1 Direct Hydrogenation 

The direct hydrogenation was carried out in a hydrogenation station, for which on-line 

acquisition of consumed hydrogen and graphical illustration of these data is 

computerised[144]. A typical hydrogenation reaction can be classified into three parts 

(Figure 5): 
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Figure 5. Graphical illustration of the hydrogenation reaction of acetophenone with 

complex 27 (Table 5, entry 17) with the three typical phases i, ii and iii 

i. Phase of waiting: The graph of pressure vs. time in the supplementary vessel 

shows an almost horizontal progression. Hydrogen just diffuses into the solution, 

so that only surface reactions can take place. Therefore with the catalyst to 

substrate ratio applied only minimal conversion is expected. 

ii. Phase of insertion by stirring: With start of stirring the hydrogen dissolves 

depending on its pressure and solubility. The graph shows an almost vertical 

decrease in pressure. After the phase of insertion a further phase of waiting or 

phase of activation can appear. 
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iii. Phase of hydrogenation: During the hydrogenation the pressure in the 

supplementary vessel decreases. The experimentally observed progression 

follows an exponential function. 

Before the new stationary phases were tested for their catalytic activity in the 

hydrogenation of acetophenone the system itself was investigated concerning catalytic 

activity of the employed autoclave and the applied co-catalyst (Table 5, entries 13 and 

14). For basic alkali cation salts as KOtBu it is established that they can act as catalysts 

in the hydrogenation of carbonyl functions themselves by means of a Meerwein-

Ponndorf-Verley reduction[145] in 2-propanol as solvent. With a conversion of 7 % and  

3 % and a TOF of about 0.1 h-1 the performance of the co-catalyst would be negligible 

for an immobilised catalyst working with a manifold higher TOF. In a first hydrogenation 

run under low hydrogen pressure the new stationary phase UR5 was applied (Table 5, 

entry 1). No conversion of the employed substrate acetophenone was observed. As it 

was not possible to cap residual secondary amines in the polymer backbone of UR5 the 

ruthenium(II) complex 24 is able to coordinate to these amines and for that is supported 

within the ULTRARESIN. It is assumed, that the mobility of the immobilised ruthenium(II) 

complex by coordination to the polymer backbone and the short spacer molecule 

respectively, is confined as was already reported for other polymeric supports[20]. Due to 

the rigid structure of the stationary phase (Table 4) the accessibility of the complexes for 

the bulky co-catalyst KOtBu is diminished. An attack of the sterically hindered alkoxide 

anion is crucial for the in situ generation of the active species of the immobilised 

ruthenium(II) complex (Scheme 4). Besides, the rigid structure of UR5 leads to a 

reduced accessibility of substrate to the active metal centres. Because of that no 

conversion during the hydrogenation could be observed. In contrast to that ULTRARESIN 

UR8 is equipped with a spacer molecule (Table 3, Scheme 13), which was expected to 

ensure the mobility and accessibility of the reactive ruthenium(II) centres. In analogy to 

UR5 for UR8 in a first reaction low hydrogen pressure and room temperature were 

chosen (Table 5, entry 2) as reaction conditions. Only negligible conversion was 

obtained. By increasing pressure and reaction time (Table 5, entries 3 and 4) a maximal 

conversion of 3 % is achieved. As a consequence the reaction temperature was 

elevated to obtain higher reactivity (Table 5, entry 5). However, the activity of the 

immobilised ruthenium(II) complex could not be enhanced. The conversion of 8 % and 

TOF of 0.58 h-1 is in the range of the blank tests with co-catalyst as catalyst. As was 
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reported[145] the elevated temperature promotes the activity of the potassium cation 

under basic conditions. Moreover, at high temperatures the immobilised ruthenium(II) 

complex is destroyed as could be shown by solid state 31P NMR spectroscopy. In 

comparison to that the analogous homogeneous complex 27 presented 100 % 

conversion of acetophenone within 10 hours (Table 5, entry 16) at 35 °C.  

In order to improve the catalytic activity of stationary phase UR8 the composition of the 

hydrogenation mixture was changed. Two hydrogenation reactions with the 

heterogenised catalyst UR8 were performed in water (Table 5, entries 7 and 8). The 

hydrogenation of the acetophenone proceeds very slowly. A maximum TOF of 1.11 h-1 

was reached. In water the immobilised ruthenium(II) complex is transformed. It is 

assumed that metalic ruthenium is generated, which is responsible for the conversion of 

acetophenone. Since the formation of the actual catalyst species of ruthenium is a very 

slow process, the hydrogenation reaction proceeds very slowly. 

As new co-catalyst so-called “superhydride” (LiHB(C2H5)3) was chosen. It was 

considered that with this co-catalyst a chloride of the immobilised dichlororuthenium(II) 

species could be exchanged by a hydride. In this way the catalytically active complex 

species would be generated in situ. Although in a blank test with superhydride as 

catalyst (Table 5, entry 15) a conversion of 100 % with a TOF of 3.57 h-1 was achieved 

it was used as co-catalyst in further hydrogenation runs (Table 5,entries 9-12). An 

interesting progression was observed. By adding the stationary phase UR8 to this 

hydrogenation mixture the catalytic activity of the superhydride is reduced (Table 5, 

entries 9 and 10). For the conversion of the immobilised transition metal complex the 

LiHB(C2H5)3 is consumed and therefore is not available for the hydrogenation reaction 

anymore. Entries 11 and 12 in Table 5 show that the presence of 2-propanol is crucial 

for the catalytic activity of the superhydride; in toluene as solvent no conversion is 

observed. Recycling of the stationary phases is difficult after a hydrogenation run in an 

autoclave. The stationary phases are grinded due to friction between the reaction vessel 

an the magnetic stirring bar. 
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4.8 Transfer Hydrogenation 

The transfer hydrogenation processes were performed in glass flasks under reflux 

conditions. When the acetophenone or another carbonyl compound was added to the 

colourless KOtBu/2-propanol solution, it darkened to yellow, and even became orange 

during the heating. As was already reported[145] this was accredited to the strong basic 

conditions, which might lead to aldol additions. A bathochromic shift in the resulting 

products causes a colouration of the reaction mixture. The addition of the stationary 

phases UR5-UR8 did not lead to a visible change of the solution. As for direct 

hydrogenation first two blank tests (Table 6, entries 14 and 15) should ensure the 

performance of the stationary phases. As expected[145] the co-catalyst KOtBu showed 

catalytic activity. The reduction of acetophenone proceeded slowly with TOFs in the 

range as for direct hydrogenation. The performance of the stationary phase UR5 (Table 

6, entry 1) was better under transfer conditions than for direct hydrogenation. A TOF of 

2.18 h-1 was determined. It is possible that the swelling ability of the resin is increased 

when heated, thus the accessibility of the reactive centres is enhanced. Due to the 

longer spacer molecule it was estimated that in UR6 the activity of the active centres 

would be better than for UR5. After 20 h a conversion of 31 % was detected (Table 6, 

entry 2). With a TOF of 15.5 h-1 UR6 was more active than UR5, but the performance of 

these systems was still not satisfactory. In comparison to UR5 and UR6 stationary 

phase UR8 showed a better performance under the same conditions (Table 6, entry 3). 

Hence trials to vary the reaction conditions of the transfer hydrogenation were 

performed with this stationary phase. Entries 3-6 of Table 6 show the dependency of the 

catalytic activity of the modified ULTRARESIN from the concentration of co-catalyst. By 

increasing the amount of KOtBu the activity of the immobilised complex could not be 

improved. However, the conversion of 29 % and TOF of 12.76 h-1 was even worse. By 

raising the base concentration in the reaction solution the conditions for a competing 

aldol addition are promoted[145] and lead to a lowered acetophenone concentration. This 

means that the acetophenone has to be removed from a pre-equilibrium, which causes 

a reduced performance of the catalyst UR8. When the concentration of base in the 

hydrogenation mixture was lowered (Table 6, entries 5 and 6) to minimise or even avoid 

the competing aldol addition the catalytic performance of the immobilised catalyst 

decreased. This is in good agreement with similar homogeneous ruthenium(II) 
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complexes: For the generation of the catalytically active species a strong base in a 

certain amount is crucial[80]. Therefore a compromise for the base concentration is 

necessary. 

Reflux conditions are very harsh and could lead to the decomposition both of the 

immobilised ruthenium complexes and the ULTRARESIN. Thus it was tried to hydrogenate 

acetophenone in 2-propnol at ambient temperature (Table 6, entry 7), which led to no 

conversion. By reducing the amount of substrate in the reaction mixture the reactivity of 

the catalyst is decreased (Table 6, entries 8-10). It is assumed that the reaction rate is 

dependent on the acetophenone concentration. The chance of a substrate molecule to 

reach an immobilised ruthenium complex is the better the more molecules are present 

in the reaction mixture. Another approach was made by applying the recycled resin UR8 

that had already been used for direct hydrogenation (Table 5, entry 2) for transfer 

hydrogenation. The investigation of this stationary phase had shown that the 

immobilised complex had not been destroyed during direct hydrogenation. Recycled 

UR8 showed the same performance with a similar TOF as fresh UR8 (Table 6, entries 3 

and 11).  

Under the same consideration as for direct hydrogenation the combination of the 

reaction mixture was changed with respect to solvent and co-catalyst (Table 6, entries 

12, 13, and 16). It turned out that water as solvent is not suitable for the transfer 

hydrogenation. For LiHB(C2H5)3 the same problems appeared as for direct 

hydrogenation. The superhydride showed a high catalytic activity in the hydrogenation 

under reflux conditions and therefore was not suitable as co-catalyst. 

The catalytic activity of the stationary phases UR5, UR6, and UR8 is (in contrast to their 

homogeneous analogues) better in transfer hydrogenation than in direct hydrogenation. 

However, 31P solid state NMR showed that due to the harsh conditions during transfer 

hydrogenation the reactive centres on the ULTRARESINS had decomposed and therefore 

could not be recycled. 
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4.9 Spherical Silica Particles 

To overcome the disadvantages of the ULTRARESINS as organic support (thermal and 

mechanical instability of the stationary phases UR5-UR8) inorganic supports have been 

chosen. One favourable material as a matrix is silica gel. By functionalisation of highly 

active and selective, well-defined homogeneous transition metal catalysts these reactive 

centres can be incorporated into an inert silica support in micro- and mesopores via  

co-condensation with alkoxysilanes. In materials of that kind the amount of immobilised 

complex is known as well as its structure, because the reactive centre can be 

characterised while still being homogeneous by the common methods like high 

resolution NMR, IR etc.[40]. For most applications of those materials diffusion of 

molecules to the reactive centres and away from them plays a crucial role and is the 

rate-limiting step for the reaction in question. However, the accessibility of the transition 

metal complexes within a material for gases and liquid or dilute reactants during a 

reaction still is not obvious. Furthermore a disadvantage of this materials is a lack of 

information about the chemical environment of the reactive centres. Various approaches 

have been made to overcome these problems[146,147]. One possibility is the modification 

of spherical, non-porous, monodisperse silica particles, so-called Stöber 

particles[48,148,149]. In this case the modification only is possible on the surface of this 

material by functionalisation of surface silanol groups. It is therefore estimated to ensure 

the accessibility of immobilised reactive centres. Moreover, it is assumed that all centres 

are in a homogeneous environment. 

One application of surface modified spherical silica particles is in chromatography[150], 

for example in the separation of big analyte molecules that do not need to diffuse into 

pores but can interact with reactive centres on a surface.  

In electrochemistry spherical silica particles are used to extend a lateral system of a 

chemically modified electrode (CME) to a three-dimensional concept. In a recent report 

ruthenium(II) complexes were immobilised to a platinum electrode via a silyl 

functionalised diamine spacer[137,138]. The same ruthenium complexes were covalently 

bound to spherical 800 nm silica particles[136,137], which spontaneously adsorb on the 

surface of an electrode. It was suggested to employ spherical monodisperse non-

porous particles as support in order to obtain a defined and simple surface geometry of 

the electrode for the investigation of diffusion processes. Another concept was the 



52 GENERAL SECTION 

comparison of the redox activity of the ruthenium complex modified particles with that of 

similar homogeneous ruthenium complexes. These diaminedichlorobis(phosphine)-

ruthenium(II) complexes are catalytically active in the hydrogenation of α,β-unsaturated 

ketones[49]. In a recent approach a correlation between electrochemical behaviour and 

catalytic activity of these complexes is assumed[151]. As an implication of all those 

results it is considered that modified 800 nm silica particles are catalytically active in the 

hydrogenation of ketones. To confirm this claim in the second part of this work spherical 

800 nm silica particles modified with ruthenium(II) complexes were prepared and 

characterised. They were applied in the direct and transfer hydrogenation of 

acetophenone as model substrate. However, the employment of surface modified 

Stöber particles as interphase catalysts is a compromise: 

i. Due to a lower surface area of the spherical support than of porous 

materials a smaller loading with reactive centres has to be accepted.  

ii. A possible decrease of stability with regard to leaching as was reported for 

other surface modified materials[96,97] has to be taken into account.  

iii. It is considered, that the binding sites on spherical particles are much 

more homogeneous than for porous silica. This means, that all reactive 

centres are in a homogeneous environment. 

 

4.9.1 Preparation of the Modified 800 nm Silica Particles 

The 800 nm silica particles were prepared by the Stöber process. For catalytic 

application the particles can be modified in two different ways (Scheme 16): 

A. A diaminebis(etherphosphine)ruthenium complex (29) is homogeneously 

prepared from a T-silyl functionalised diamine (28) and a bis(etherphosphine)-

ruthenium(II) complex (24)[83]. The functionalised complex is immobilised on the 

surface of the silica particles (SP1) to yield the modified particles SP3.  

B. A T-silyl functionalised diamine derivative spacer molecule (28) is covalently 

bound to the silica particles (SP1) by reaction with surface silanol groups. The 

anchoring of a bis(etherphosphine)ruthenium complex (24) to the diamine 

modified particles SP2 proceeds as was reported in literature[83] for 

homogeneous complexes. 
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Scheme 16. Two possible reaction pathways for the modification of 800 nm silica 

particles with diaminedichlorobis(etherphosphine)ruthenium(II) complex 24 
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For the covalently bonding of the T-silyl functionalised species high temperatures are 

required. It is considered that the T-silyl functionalised homogeneous ruthenium 

complex 29 could be partly destroyed during the anchoring process because of the 

harsh reaction conditions. Hence first the thermally and chemically stable spacer 3-(2-

aminoethyl)aminopropyltrimethoxysilane (28) was bound to SP1 (Scheme 16). For the 

coordination of the precursor complex 24 to the immobilised mixed primary-secondary 

diamine spacer (SP2) relatively smooth conditions can be realised[136]. When the 

colourless modified silica particles SP2 were reacted with a red solution of complex 24 

the solution became green as well as the wet particles after some time. The colour 

change of the “solution” is a consequence of “nano” scaled silica particles that are not in 

suspended but in a quasi-diluted state. If so the green colour is attributed ruthenium(II) 

complexes anchored to these particles whose homogeneous analogue is yellow to 

green. During the washing process these particles were removed. 

In the 31P VACP/MAS NMR spectrum of SP3 a broad signal at a range of 5 to 72 ppm 

indicates that the metal complex fragments have been immobilised successfully to SP2. 

Despite of the large chemical shift range this result is in agreement with the chemical 

shift in solution 31P{1H} NMR spectroscopy for the analogous homogeneous complex 29 

(AB pattern, δ 38.8, 35.6, 2JPP = 36.29 Hz) (Figure 6). With the same arguments as for 

the ULTRARESINS (page 41) the immobilisation of the complex could be established. To 

probe the chemical stability of the surface immobilised ruthenium complexes and of the 

silica particles, SP3 was extracted in a Soxhlet extractor with different solution mixtures 

of dichloromethane and 2-propanol (SP4 and SP5). Light scattering and SEM 

investigations showed that SP3 and the extracted silica particles SP5 had 

approximately the same size like the pure particles SP1[136]. In addition to that the SEM 

micrographs manifested the spherical shape and monodispersity of SP5 (Figure 7). 

From elemental analysis of SP3 a loading of 26 % of the surface OH-groups[150,152] (see 

Experimental Part) with ruthenium complexes is estimated. After solvent treatment the 

loading remained unchanged. 
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Figure 6. a) 31P{1H} high resolution NMR spectrum of the homogeneous complex 29 

b) 31P VACP/MAS NMR spectrum of the stationary phase SP3 
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Figure 7. a) SEM micrographs of SP5 (scalebar corresponds to 2 µm);  

b) SEM micrographs of SP5 (scalebar corresponds to 1 µm);  

c) size distribution of SP5 derived from SEM micrographs
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4.10 Catalytic Hydrogenation with Modified Spherical Silica Particles 

As for the stationary phases UR5-UR8 the surface modified silica particles SP3-SP6 

were tested for their catalytic activity in the hydrogenation of acetophenone to  

1-phenylethanol (Scheme 15). 
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Figure 8. Graphical illustration of the hydrogenation reaction of acetophenone with 

stationary phase SP3 (Table 7, entry 4) with the three typical phases i, ii 

and iii 
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Blank tests of the hydrogenation system were performed to confirm the results from 

reaction runs with the stationary phases SP3-SP6. In a mixture with pure silica particles 

SP1 in 2-propanol with KOtBu as co-catalyst (Table 7, entry 16) no conversion of the 

substrate was observed. With light scattering experiments it is detected that some of the 

pure silica particles agglomerate during the hydrogenation process, some are 

destroyed, i.e. they are not chemically stable. A reaction just with co-catalyst in  

2-propanol (Table 7, entry 17) led to negligible production of 1-phenylethanol. To ensure 

a possible catalytic activity of immobilised ruthenium complex the performance of the 

homogeneous ruthenium(II) complex 29 was determined (Table 7, entries 19 and 20). 

As expected the transition metal complex converted acetophenone completely to  

1-phenylethanol with a TOF of up to 100 h-1. For completion of data the homogeneous 

educt 24 was used to hydrogenate acetophenone (Table 7, entry 22). After 40 hours the 

substrate was converted completely. However, by analysing the graph of the 

hydrogenation it is observed that just little hydrogen gas is consumed. In agreement 

with literature the bis(etherphosphine)ruthenium(II) complex transfers hydrogen from the 

base/2-propanol mixture to the carbonyl function. With the spherical silica particles SP3 

100 % conversion was achieved within 14 hours with a TOF of ca. 6.5 h-1 (Table 7, 

entries 1 and 4). The graph of the hydrogenation reaction had the typical shape (Figure 

8), in which all phases of a hydrogenation process are present. To ensure that the 

catalyst of this reaction was the immobilised ruthenium complex and not leached and/or 

dissolved fractions of the complex, the solid parts of the reaction suspension were 

separated from the liquids. No 1-phenylethanol was found after the solutions were 

reused in hydrogenation without further purification just by adding acetophenone  

(Table 7, entries 2 and 5) or acetophenone and co-catalyst (Table 7, entry 7), 

respectively. Therefore it was concluded that no leaching had taken place during the 

hydrogenation reaction. Residual stationary phase SP3 of the hydrogenation runs was 

recycled and than reused as catalyst (Table 7, entries 3 and 6). The particles still 

showed catalytic activity. However, the performance was strongly reduced in 

comparison to freshly prepared SP3. By evaluating the detected data it was found that 

the recycled particles SP3 needed four hours time for activation. Then an increased 

consumption of hydrogen gas started, which after a total reaction time of about 20 hours 

was reduced to a minimum. This could be due to partly decomposition of the surface 

immobilised complexes or to destruction of the particles. With light scattering 
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Table 7. Catalytic hydrogenation of acetophenone with modified silica particles 

SP3-SP6; all direct hydrogenation processes were performed under  

30 bar H2 pressure at 35 °C 

No. Material Substrate 
Concentration 

Molar Ratio 
Catalyst: 
Cocatalyst: 
Substrate 

Time 
[h] 

Conversion 
[%] 

TOF 
[h-1] 

  1 SP3 0.053 1     :    5    :    102 19 100 5.37
  2 Solution of 1 0.063 98 0
  3a SP3 0.022 1     :    6    :    101 70 8 0.11
  4 SP3 0.049 1     :    5    :      90 14 100 6.45
  5 Solution of 4 0.024 21 0
  6a SP3 0.043 1     :    5    :    100 91 56 0.62
  7 Solution of 6 0.123 0     :    1    :      30 48 0
  8 SP4 0.047 1     :    5    :      92 92 86 0.86
  9 SP4 0.024 1 : unknown : 106 41 63 1.62
10a SP4 0.025 1     :    6    :    101 43 34 0.80
11 SP5 0.033 1     :    5    :    100 41 65 1.59
12 Solution of 11 0.033 0     :    1    :      23 41 37
13 SP6 0.005 1     :    4    :      85 41 1 0.02
14b SP3 0.021 1     :    6    :    100 68 100 1.47
15 Solution of 14 0.021 0     :    1    :      18 45 11
16 SiO2 0.049 1     :    6    :      92 20 0
17 KOtBu 0.083 0     :    1    :    199 41 3 0.13
18b KOtBu 0.056 0     :    1    :      20 66 11 0.03
19c 29 0.081 1     :    5    :    100 1 100 100.00
20c 29 0.700 1     :    5    :  1031 20 100 51.56
21b 29 0.658 1     :    5    :    992 16 76 48.52
22d 24 0.073 1     :    5    :    100 40 100 2.50
[a] Recycled silica particles 

[b] Transfer hydrogenation under reflux 

[c] Homogeneous catalysis with corresponding complex 29 

[d] Homogeneous catalysis with precursor complex 24 
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investigations particle sizes over the whole colloidal range were obtained after two 

consecutive hydrogenation runs. When the catalytic activity of the extracted silica 

particles SP4 was investigated (Table 7, entries 8 and 9), a reduced performance in the 

hydrogenation of acetophenone in comparison to SP3 was observed. As for recycled 

SP3 the data showed after about four hours with low activity a period of good activity, 

which then was followed by a drop of hydrogen consumption after 20 hours in total. But 

after the recycling procedure in a Soxhlet extractor SP4 still displayed activity in a 

consecutive hydrogenation run with similar TOF (Table 7, entry 10). 

When the specially treated silica particles SP5 were applied for catalysis (Table 7,  

entry 11) their catalytical performance was in the range of that of SP4. The consumption 

of hydrogen started rapidly but after 16 hours a drop of activity was observed. Only to 

make sure the liquid parts of the reaction mixture were reused in a hydrogenation run 

with additional acetophenone and KOtBu (Table 7, entry 12). After 41 hours 37 % of the 

total amount of acetophenone was converted. That means that leaching had proceeded 

during the hydrogenation with SP5. 

200 nm silica particles (SP6) were applied for catalysis (Table 7, entry 13) to compare 

them with modified 800 nm silica particles. But their conversion was negligible.  

 

4.10.2 Transfer Hydrogenation 

As for the ULTRARESINS the spherical silica supported complexes were employed for 

transfer hydrogenation. The performance of the co-catalyst in a blank test (Table 7, 

entry 18) was in an acceptable range. When the homogeneous ruthenium(II) complex 

29 was used as catalyst (Table 7, entry 21) the TOF was comparable to that in direct 

hydrogenation under the same conditions (Table 7, entry 20). Due to the hydrolysable 

T-silyl group at the diamine spacer of the complex condensation was expected owing to 

2-propanol, but after the reaction this was not apparent. The modified silica particles 

SP3 (Table 7, entry 14) converted acetophenone to 100 % to 1-phenylethanol within  

68 hours. After that time a GC sample was taken. With dynamic light scattering 

experiments it was shown that after transfer hydrogenation the silica particles 

agglomerated due to the drastic reaction conditions (reflux, base as co-catalyst). 

Moreover in another hydrogenation run with the liquid parts of this reaction (Table 7, 

entry 15) leaching was observed. 
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4.11 Catalytic Hydrogenation with Sol-Gel Processed Diaminebis-
(phosphine)ruthenium(II) Complexes 

In a recent approach[108] the synthesis of a T-silyl functionalised 1,3-(diphenyl-

phosphino)propane derivative (dppp*)[153] with a spacer molecule containing six CH2-

groups was improved. With this dppp* ligand a diaminedichlorobis(phosphine)-

ruthenium(II) complex was prepared[134] (Scheme 17). This new functionalised complex 

was incorporated into four different sol-gel materials with different amounts of the co-

condensation agent methyltrimethoxysilane. 
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Scheme 17. Schematical synthesis of the T-silyl functionalised ruthenium(II)  

complex 30 



62 GENERAL SECTION 

With solid state NMR, EXAFS and EDX it could be shown that the sol-gel processed 

complex did not undergo structural changes. The new homogeneous ruthenium(II) 

complex 30 as well as the new stationary phases were applied for the catalytic direct 

hydrogenation of trans-4-phenyl-3-butene-2-one as model substrate. Due to the 

aromatic, olefinic, and carbonyl double bond in the structure of this compound the 

chemoselectivity of the different interphase catalysts could be determined. The known 

system containing 2-propanol as solvent and KOH as base was employed. 

Hydrogenation reactions were carried out in a glass reactor under mild conditions, this 

means a H2 pressure of 3 bar at 35 °C. It was shown that the sol-gel processed 

stationary phases were catalytically active in the interphase with a maximum TOF of 

155 h-1 within the first hour. The sol-gel processed ruthenium(II) complexes converted 

the substrate to 100 % within 24 hours, whereas they showed appreciable 

chemoselectivity according to the alcohol product. The heterogenised catalysts were 

recycled after each hydrogenation run and could be reused eight times with no 

remarkable loss of activity and selectivity[108]. 

 

4.12 Comparison of the Catalytic Performance of Different Supported 
Diaminedichlorobis(phosphine)ruthenium(II)complexes 

The new stationary phases UR5-UR8 based on so-called ULTRARESINS, an organic 

support did not show remarkable catalytic activity in the direct hydrogenation of 

acetophenone. Conversion as well as turn-over frequency were in the range of activity 

of KOtBu as catalyst with regard to a Meerwein-Ponndorf-Verley reduction[145]. A 

possible explanation for the low activity of the immobilised precursor complexes could 

be the rigidity of the polymeric material. The swelling ability of the resin is reduced after 

anchoring of spacer and complex[47]. Therefore the accessibility for activating  

co-catalyst and substrate is reduced. Moreover the material is mechanically grinded, 

which means it gets destroyed during the reaction in the autoclave. The performance of 

the chemically modified ULTRARESINS UR5-UR8 in transfer hydrogenation was more 

promising but still not satisfactory. The activity of the supported precursor complexes 

probably is increased due to a diminished rigidity of the polymeric material under the 

applied reflux conditions of transfer hydrogenation. The elevated temperature leads to 

an enlarged swelling of the material and hence to a better accessibility of the reactive 
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centres. However, the elevated temperatures cause the decomposition of the 

immobilised ruthenium complexes. As was reported for previously employed organic 

supporting materials[9] the ULTRARESINS suffer from their insufficient chemical and 

thermal stability. Moreover, the accessibility of the immobilised reactive centres is not 

ensured. Nevertheless ULTRARESINS offer interesting possibilities for their employment 

in catalysis. In organic synthesis the use of resins as scavengers is wide spread[128]. 

ULTRARESINS could be applied as scavengers after transition metal catalysed processes 

in order to remove the catalyst from the reaction mixture. By effective functionalisation 

with suitable ligands catch-and-release mechanisms and so recycling of the catalyst 

could be reached. In this way it would be possible to profit by the advantages of 

homogeneous catalysis and polymer assisted solution phase synthesis. 

A second approach was made by the immobilisation of catalyst precursor complexes on 

the surface of spherical 800 nm silica particles (SP3-SP5). It was expected to ensure a 

good accessibility of the ruthenium(II) complexes located in a homogeneous 

environment. The immobilised complexes (SP3) were catalytically active in the 

hydrogenation of acetophenone as was expected from their redox behaviour[125,136,137]. 

With a maximum TOF of about 6 h-1 the substrate was totally converted to  

1-phenylethanol. The modified particles could be recycled successfully, but their 

treatment with solvents in a Soxhlet extractor led to a loss of activity. Moreover it was 

observed, that both recycled and treated particles SP4 and SP5 needed a phase of 

activation. After a total time of twenty hours the activity declined to a minimum. This was 

accredited to the inactivation of the immobilised ruthenium(II) complexes. Besides, 

leaching could not be excluded completely. After two successive hydrogenation runs or 

after transfer hydrogenation the spherical particles were partly destroyed, some were 

agglomerated. As a consequence from these results in a further approach nano scaled 

spherical particles should be applied as inorganic support. In doing so it is expected to 

increase the stability of the material with regard to mechanical and chemical stability. By 

reducing the size of the carrier material to nano size it could be achieved that during 

hydrogenation, for example the particles would not be in suspension but in a quasi 

diluted state. Hydrogenation then could proceed like in solution, which should increase 

the activity of the immobilised complexes. The separation of the small particles would 

get more difficult but could still be carried out by centrifugation. 
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The incorporation of functionalised ruthenium(II) complexes by a sol-gel process into a 

silica matrix via co-condensation with alkoxysilanes yields the most auspicious results. 

To optimise stability of the polysiloxane network and accessibility of the reactive centres 

several materials with different amount of co-condensation agent were applied. In this 

way an interphase catalyst is attained that shows exquisite performance in several 

consecutive hydrogenation runs with trans-4-phenyl-3-butene-2-one as substrate with 

negligible loss of activity and selectivity[108]. The immobilisation of the ruthenium(II) 

complexes proceeds in the last case in contrast to the ULTRARESINS and Stöber particles 

via a T-silyl functionalised diphosphine ligand[108]. In doing so it is possible to easily vary 

the diamine ligand at the metal centre, which opens up a method for a catalyst 

screening. 

For the immobilisation two different types of diaminedichlorobis(phosphine)ruthenium(II) 

complexes were chosen. In the first case the complex was equipped with hemilabile 

etherphosphine ligands in the second case with chelating 1,3-(diphenyl)phosphino-

propane derivatives. Both types of complexes were expected to work in the outer 

coordination sphere of the metal centre after the mechanism proposed for Noyori-type 

ruthenium(II) diamine bis(phosphine) complexes. But in recent work evidence was 

found that the mechanism for the etherphosphine complexes differs from the proposed 

one. After the abstraction of a chloride ion from the ruthenium centre –OtBu coordinates 

at the free coordination site. It seems that from that precursor the actual species of the 

complex is generated. A major part in this sort of catalytic cycle is attributed to the 

hemilabile ligands but it is still not clear-cut. To solve this issue still efforts are made. 

For a future application for the catalytic hydrogenation of ketones in the interphase with 

diaminedichlorobis(phosphine)ruthenium(II) complexes the most promising supports are 

estimated to be materials, into which a well-defined functionalised complex is 

incorporated via a sol-gel process. Matrices of this type show good chemical stability, 

which means they can be recycled several times without loss of activity. The 

functionalisation of the phosphine ligand opens up the possibility for a catalyst 

screeening. In conclusion the sol-gel materials fit the demand for interphase catalysts 

that shall combine the advantages of homogeneous and heterogeneous catalysis. 
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5 EXPERIMENTAL PART 

5.1 General Remarks 

All reactions were performed under argon employing the usual Schlenk techniques if not 

mentioned otherwise. The applied solvents were dried with the usual methods and 

stored under argon. Toluene was distilled from sodium benzophenone ketyl, n-pentane 

was dried over LiAlH4 and distilled. CH2Cl2 was distilled from CaH2 and 2-propanol was 

dried over magnesium and distilled. Deionised H2O and CDCl3 for high resolution NMR 

measurements were degassed in three freeze-pump-thaw cycles and set under argon 

prior to use. Solvents for ULTRARESIN synthesis were purchased from Fluka Chemical 

Company in HPLC grade. 

 

5.2 Materials and Instrumentation 

RuCl2(methoxyethyldiphenylphosphine)2
[83,139] and RuCl2(1,3-diphenylphosphino-

propane)2
[154] were synthesised according to literature methods. The precursor complex 

RuCl3 · x H2O was purchased from Strem Chemicals, Inc. Polyethylene imines, Fmoc-

aminohexanoic acid, Fmoc-1,2-diaminopropionic acid, acetic anhydride, TBTU, HOBt 

and DiPEA were obtained from Sigma Aldrich Chemical Company, Fluka Chemical 

Company, Lancaster Synthesis GmbH Company, and Merck Chemical Company, 

respectively, and used without further purification.  

The spherical silica particles with a diametre of 800 nm were prepared using the Stöber-

process[48,148,149] and were a donation of the group of Prof. Speiser as well as the  

200 nm 3-(2-aminoethyl)aminopropyldichlorobis[(methoxyethyldiphenyl)phosphine]-

ruthenium(II) silica particles (SP6). 2-propanol was purchased from Aldrich Chemical 

Company (99.5 %, HPLC grade) and Merck Chemical Company (≥ 99.5 %, puriss.).  

n-pentane (≥ 99.0 %, for synthesis), LiAlH4 (for synthesis), and CaH2 (for synthesis) 

were obtained from Merck Chemical Company. LiAlH4 and CaH2 were stored under 
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argon. 3-(2-aminoethyl)aminopropyltrimethoxysilane, potassium-tert-butoxide, 1-phenyl-

ethanol and benzaldehyde were purchased from Fluka Chemical Company and used 

without purification. Acetophenone was employed as derived from Fluka Chemical 

Company or Riedel de Haën Chemical Company. LiHB(C2H5)3 (1 M solution in THF) 

was obtained from Aldrich Chemical Company. Argon (purity 4.8) was purchased from 

Messer Griesheim Company. Hydrogen for catalysis was synthesised in a Whatman 

hydrogen generator with a Pd-tube as cathode in a solution of sodium hydroxide (Merck 

Chemical Company, p.a., ACS, max. 0.0002% K) and millipore H2O (Millipore, Milli Q-

Plus 185, Q PAK® 2) as electrolyte or purchased (purity 5.0) from Messer Griesheim 

Company. All solvents and reagents not mentioned were obtained from the chemicals 

store of the University of Tübingen. 

 

5.3 Methods 

 

5.3.1 Solid State NMR Measurements 

Magic-angle spinning (MAS) phosphorus-31 variable-amplitude cross-polarisation 

(VACP) NMR spectra of powder samples were acquired in 4 mm o.d. zirconia rotors at 

10 kHz spinning frequency using Bruker double-bearing MAS probes. Samples were 

measured on a Bruker AVANCE DSX-200 spectrometer (B0 = 4.7 T) with 4.2 µs proton 

pulse widths and contact times of 2 ms, using a ramped amplitude (2 dB) on the 

phosphorus channel. Chemical shifts were referenced with respect to external 85% aq 

H3PO4 by setting the peak of external NH4H2PO4 to 0.81 ppm.  

 

5.3.2 NMR Spectroscopy in Solution or Suspension 

The 1H, 13C{1H}, 31P{1H}, and 29Si{1H} solution or suspension nuclear magnetic 

resonance spectra (NMR) were recorded on a Bruker DRX 250 or a Bruker DRX 400 

spectrometer at 295 K. Frequencies and standards are as follows:  
31P{1H} NMR: 101.26 MHz, the signals were referenced to external 85 % H3PO4. 
13C{1H} NMR: 62.90 MHz. The chemical shifts were measured relative to solvent peaks, 

which are reported relative to TMS.  
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29Si{1H}: 250.13 MHz. The chemical shifts were referenced to TMS. 
1H NMR: 250.13 MHz and 400.13 MHz, respectively. The signals were referenced 

relative to the residual proton signals of the solvent relative to TMS. 

To support the assignment NMR DEPT 135 spectra were obtained. 

 

5.3.3 FT-ATR-IR Measurements 

FT-ATR-IR measurements were carried out on Bruker Vector 22 with a SplitPea® ATR-

unit from Harrick. By pressing the sample directly to a Si crystal the IR-spectra were 

detected with 16 scans. An automatic ATR-correction was executed. 

 

5.3.4 Infrared spectra 

Infrared spectra were acquired on a Bruker FT-IR spectrometer IFS 48 covering the 

range of 4000 cm-1 - 400 cm-1. Samples were prepared as pellets on KBr. 

 

5.3.5 UV/VIS Measurements 

UV spectra were recorded on a Lambda-5 UV/VIS-spectrometer of Perkin-Elmer 

(Überlingen). 

 

5.3.6 Mass Spectrometry 

FAB mass spectra were recorded on a Finnigan MAT 711 A modified by AMD company 

(10kV, 323 K). 

 

5.3.7 Elemental Analysis 

Elemental analyses were obtained on a Vario EL made by Elemental Company. 

 

5.3.8 Light Scattering Experiments 

Light scattering was performed on a Coulter® N4 Plus Submicron Particle Sizer with a  

10 mW He-Ne laser at a wavelength of 632.8 nm with monochromatic polarized light at 
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298 K and a wave angle of 90°. For the measurements quartz cuvettes were used. 

Suspensions were made in filtered (Millipore) ethanol.  

 

5.3.9 Scanning Electron Microscopy 

SEM was carried out on a Zeiss DSM 962 with an acceleration voltage of 5 kV. 

Samples were not sputtered. 

 

5.3.10 Ultrasonicator 

For ultrasonic treatment a TRANSSONIC 460 of Elma® was applied. 

 

5.3.11 Centrifuge 

For centrifugation 50 mL flasks of Sarstedt in an Eppendorf Centrifuge 5810 R were 

employed.  

 

5.3.12 General Procedure for the Determination of the Loading of the Resin via 
UV-Spectroscopic Fmoc Identification 

To cleave the Fmoc protecting group from the resin 5-10 mg dried and washed samples 

of the resin were weighed and put into a 10 mL calibrated flask. The flask was filled with 

a solution of 20 % piperidine in DMF to the calibration line and shaken for 2 hours. At 

first a background measurement with pure piperidine/DMF solution is carried out at the 

UV-spectrometer at a wavelength area of 150-320 nm. Then the solution with the 

cleaved Fmoc is measured against this reference. The extinction values at the three 

absorption maxima of the UV-spectrum at λ1= 267 nm, λ2= 289 nm, and λ3= 301 nm are 

evaluated with the following equation: 
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    x : loading of the resin 

    Eλ  : extinction 

     ελ  : extinction coefficient 

  sample weight : mass of the resin in mg. 

The following extinction coefficients were used: 

    ε267 = 17500 cm-1 

    ε289 = 5800 cm-1 

    ε301 = 7800 cm-1. 

The loading of the resin is the average of the calculated values at the three different 

wavelengths.  

 

5.3.13 Kaisertest 

Small resin particles are treated with the solutions I, II, and III in an Eppendorf cup, then 

heated to 110 °C for 5 minutes. If there is a colour change to blue, there are residual 

amines left. Solution I: 50 µL of 0.01 M aqueous KCN solution filled up to 25 mL with 

pyridine; solution II: 5 g ninhydrine in 100 mL n-butanol; solution III: 80 g phenol in  

20 mL n-butanol. 

 

5.3.14 Hydrogenation station 

The employed hydrogenation station allows hydrogenation reactions under constant 

pressure between 1 and 100 bar. The temperature can be kept constant in a range 

between 10 °C and 150 °C with a tempered oil bath or water bath, respectively. During 

the reaction the pressure inside the autoclave is kept unchanged whereas pressure 

drop is measured in a supplementary vessel. On-line acquisition of detected data 

(consumed H2 (mol) per time), their graphical illustration and analysis is carried out 

computerised with software developed at the University of Tübingen[144]. 

 

5.3.15 High Performance Liquid Chromatography 

For HPLC separations a Beckman Gold System with controller system 406, pump 

system 126, autosampler 507 and diode array detector 168 was applied. As separation 
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column a Nucleosil 100 C-18 (5 µm, 2 x 250 mm, Grom Company, Herrenberg) was 

used. UV detection proceeded at λ = 214 nm. 

For the determination of the conversion of the hydrogenation reactions the following 

equation was used:  
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5.3.16 Gas chromatography 

GC measurements were carried out on a Carlo Erba Strumentazione HRGC 5300 Mega 

Series with a 20 m Carbowax Column (diameter 250 µm, film thickness 0.25 µm) under 

the following conditions: Temperature of the injector and FID-detector 250 °C, column 

temperature 140 °C, H2 pressure 0.4 bar, fuel gas pressure for air and hydrogen 0.6 bar 

and split 20 mL/min. As integrator a Shimadzu C-R3A Chromatopac was used. Samples 

for GC measurements were taken after the hydrogenation without further purification for 

the ULTRARESINS. For the silica particles the solid material was separated from the 

reaction mixture before taking GC samples. 

 

5.4 Modification of the ULTRARESINS  

All reactions were carried out without inert gas in plastic syringes equipped with teflon 

filters. 

 

5.4.1 Preparation of the Modified ULTRARESIN UR2 

500 mg of resin UR1 were swollen in DMF and reacted with 1 mmol each of Fmoc-1,2-

diaminopropionic acid, TBTU, HOBt, and DiPEA in 10 mL of DMF for 16 h at room 

temperature. Removement of Fmoc proceeded with a 20 % solution of piperidine in 

DMF for 2 h at room temperature. The resulting colourless resin UR2 was washed with 

DMF and CH2Cl2 and dried in vacuo. A loading with diamine of 0.79 mmol/g was 

determined from the applied amount of Fmoc-diaminopropionic acid. IR: ν = 3421 cm-1 

(N-H), 2921 cm-1 (aliphatic C-H), 1627 cm-1 (NC=O). 
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5.4.2 Preparation of the Modified ULTRARESIN UR4 

1 g of compound UR1 was swollen in DMF and reacted with 3 mmol each of Fmoc-

aminohexanoic acid, TBTU, HOBt and DiPEA in 20 mL of DMF at room temperature. 

After 16 h the product was washed with DMF and CH2Cl2 and dried. The resulting resin 

was capped with 7.5 mL each of acetic anhydride and DiPEA for 18 h in 30 mL of DMF. 

After washing with DMF and CH2Cl2 the removement of Fmoc proceeded with a 20 % 

solution of piperidine in DMF for 2 h at room temperature. UV/VIS measurement of the 

solution led to Fmoc-loading of the resin UR3 of 0.98 mmol/g. 

500 mg of resin UR3 were swollen in DMF and reacted with 1 mmol each of Fmoc-1,2-

diaminopropionic acid, TBTU, HOBt, and DiPEA in 10 mL of DMF for 16 h at room 

temperature. The resulting resin was washed with DMF and CH2Cl2 and dried in vacuo. 

Removement of Fmoc proceeded with a 20 % solution of piperidine in DMF for 2 h at 

room temperature and led to UR4 as a colourless solid. UV/VIS measurement of the 

solution led to Fmoc-loading of resin UR4 of 0.85 mmol/g. IR: ν = 3298 cm-1 (N-H), 2933 

cm-1(aliphatic C-H),1632 cm-1 (NC=O). 

 

5.4.3 Preparation of the Stationary Phases UR5-UR8 

One equivalent of ULTRARESIN UR2 or UR4, respectively was swollen in 2 mL of CH2Cl2, 

then washed twice with 2 mL of the same solvent. One equivalent of dichlorobis-

[(methoxyethyldiphenyl)phosphine]ruthenium(II) (24) or trans-bis[1,3-bis(diphenyl-

phosphino)propane]dichlororuthenium(II) (25) respectively, dissolved in 5 mL of CH2Cl2 

was added to the swollen resin. After shaking the suspension for 2 h at room 

temperature the coloured resin was washed several times with CH2Cl2. After drying in 

vacuo the stationary phase UR5-UR8 were obtained.  

 

UR5: green solid; suspension 31P{1H} NMR (CDCl3): δ 35.6 (P(C6H5)2CH2CH2OCH3, 

ν1/2 = 506.8 Hz at LB = 10 Hz); 31P VACP/MAS NMR: δ 34.9 (P(C6H5)2CH2CH2OCH3, 

ν1/2 = 1010.7 Hz at LB = 10 Hz); IR: ν = 3636-3198 cm-1 (N-H), 2921 cm-1 (aliphatic 

CH2), 1641 cm-1 (NC=O); Kaisertest positive.  
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UR6: green solid, 31P VACP/MAS NMR: δ 37.6 (P(C6H5)2CH2CH2OCH3, ν1/2 = 1177.8 

Hz at LB = 10 Hz); IR: ν = 3417 cm-1, 3307cm-1, 3267 cm-1 (N-H), 2933 cm-1 (aliphatic 

CH2), 1629 cm-1 (NC=O); Kaisertest negative. 

 

UR7: yellow solid, suspension 31P{1H} NMR (CDCl3): δ 43.1 (CH2[CH2P(C6H5)2]2, 

ν1/2 = 136.8 Hz at LB = 100 Hz), 41.0 (CH2[CH2P(C6H5)2]2, ν1/2 = 244.7 Hz at LB = 100 

Hz); 31P VACP/MAS NMR: δ 46.2 (CH2[CH2P(C6H5)2]2, ν1/2 = 629.8 Hz at LB = 100 Hz), 

35.8 (CH2[CH2P(C6H5)2]2, ν1/2 = 646.8 Hz at LB = 100 Hz); IR: ν = 3658-3190 cm-1  

(N-H), 2922 cm-1 (aliphatic C-H), 1630 cm-1 (NC=O); Kaisertest positive. 

 

UR8: yellow solid, 31P VACP/MAS NMR: δ 47.1 (CH2[CH2P(C6H5)2]2, ν1/2 = 580.1 Hz at 

LB = 10 Hz), 36.2 (CH2[CH2P(C6H5)2]2, ν1/2 = 667.1 Hz at LB = 10 Hz); IR: ν = 3701-

3177 cm-1 (N-H), 2933 cm-1 (aliphatic C-H), 1630 cm-1 (NC=O); Kaisertest negative. 

 

5.5 Modification of the 800 nm Stöber Silica Particles 

The spherical sub micron silica particles were prepared applying the Stöber-process. 

The surface area of 4.2 m2g-1 for the 800 nm particles was determined by BET 

measurements[150]. The theoretical amount of silanol groups on the surface of Stöber 

particles[48] is 4.89 OH-groups per nm2. With these values a theoretical amount of  

34.10 µmol·g-1 OH-groups on the surface is estimated. For all considerations, in which 

the loading with ruthenium complex was taken into account a maximal loading was 

assumed. 

 

5.5.1 Preparation of the 3-(2-Aminoethyl)aminopropyl Silica Particles (SP2) 

For activation 800 nm silica particles (5.03 g, maximum n(SiOH) = 0.17 mmol) were 

heated up to 200 °C in vacuo overnight. Afterwards the particles were suspended in  

30 mL toluene by ultrasonication. A four fold excess with reference to the maximum 

amount of surface OH-groups on SP1 of 3-(2-aminoethyl)aminopropyltrimethoxysilane 

(0.15 g, 0.69 mmol) (28) was added under stirring and heated to reflux for 43 h. The 

resulting white particles were washed twice with 10 mL of toluene and once with 10 mL 
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of n-pentane. After drying in vacuo 4.91 g (97 %) of SP2 were obtained as a white 

powder. 

 

5.5.2 Preparation of the 3-(2-Aminoethyl)aminopropyldichlorobis[(methoxy-
ethyldiphenyl)phosphine]ruthenium(II) Silica Particles (SP3) 

A mixture of SP2 (4,91 g, maximal loading with diamine spacer n = 0.17 mmol) and a 

two fold excess of dichlorobis[(methoxyethyldiphenyl)phosphine]ruthenium(II) (24)  

(0.22 g, 0.33 mmol) was suspended in 40 mL of toluene by ultrasonication and heated 

to 70 °C under stirring for 42 h. After cooling to room temperature the wet greenish 

particles were washed seven times with a total amount of 115 mL of toluene and three 

times with a total amount of 65 mL of CH2Cl2. After drying in vacuo 3.67 g (73 %) of 

SP3 were obtained as a grey to green powder. 31P VACP/MAS NMR: δ 34.2 

(P(C6H5)2CH2CH2OCH3, ν1/2 = 1861.5 Hz at LB = 200 Hz); Elemental analysis: Anal. 

Calcd.: Cl: 0.25 %; Found: Cl: 0.13 %; Dynamic Light Scattering: ø = 727 nm. 

 

5.5.3 Preparation of the 3-(2-Aminoethyl)aminopropyldichlorobis[(methoxy-
ethyldiphenyl)phosphine]ruthenium(II) Silica Particles (SP4) 

Silica particles SP3 were extracted in a 15 mL Soxhlet extractor with  

100 mL of dry CH2Cl2 for 48 h. The residual suspension in the Soxhlet hull was 

transferred to a Schlenk tube and the solvent evaporated in vacuo. SP4 was obtained 

as a grey powder. 

 

5.5.4 Preparation of the 3-(2-Aminoethyl)aminopropyldichlorobis[(methoxy-
ethyldiphenyl)phosphine]ruthenium(II) Silica Particles (SP5) 

Silica particles SP3 were extracted in a 15 mL Soxhlet extractor with a mixture of  

60 mL of dry CH2Cl2 and 80 mL of dry 2-propanol for 16 h. The residual suspension in 

the Soxhlet hull was transferred to a Schlenk tube and the solvent evaporated in vacuo. 

SP5 was obtained as a grey powder. Elemental analysis: Anal. Calcd.: C: 1.59 %; H: 

0.19 %; N: 0.10 %; Cl: 0.25 %; Found: C: 0.43 %; H: 0.56 %; N: 0.05 %;. the loading of 

ruthenium complex did not change in comparison to SP3; Light Scattering: ø = 745 nm. 
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5.5.5 Modified 200 nm Silica Particles SP6 

For the modified 200 nm silica particles SP6 a loading of 10 µg ruthenium(II) complexes 

per gram material was determined with elemental analysis. 

 

5.5.6 Preparation of the 3-(2-Aminoethyl)aminopropyldichlorobis[(methoxy-
ethyldiphenyl)phosphine]ruthenium(II) Complex (29) 

Dichlorobis[(methoxyethyldiphenyl)phosphine]ruthenium(II) (24) (0.250 g, 0.378mmol) 

was dissolved in 20 mL of CH2Cl2. 3-(2-Aminoethyl)aminopropyltrimethoxysilane  

(0.085 g, 0.382 mmol) was added under stirring. The colour changed immediately from 

dark red to green. The solution was stirred for 3 h at ambient temperature and CH2Cl2 

afterwards reduced in volume to 1 mL. After addition of 25 mL of n-pentane a yellow 

solid precipitated. Another 75 mL of n-pentane were added and the product was filtered 

and washed three times with 25 mL of n-pentane. After drying in vacuo 0.161 g (48 %) 

of complex 29 was obtained as a green solid. 31P{1H} NMR (CDCl3): δ 38.8 (d, AB, 2JPP 

= 36.29 Hz), 35.6 (d, AB, 2JPP = 36.29 Hz); 1H-NMR (CDCl3): δ 7.08-7.85 (20H, m, 

C6H5), 5.29 (1H, s, CH2NH), 3.57 (9H, s, SiOCH3), 2.32-3.36 (22H, m, SiCH2CH2, 

SiCH2CH2CH2, NHCH2CH2NH2, NHCH2CH2NH2, PCH2, PCH2CH2, P(CH2)2OCH3), 2.21, 

1.84 (1H, m, PCH2), 1.40 (1H, m, SiCH2CH2), 0.37 (1H, m, SiCH2CH2), 0.01 (2H, m, 

SiCH2); 13C{1H} NMR (CDCl3): δ127.9-136.9 (m, C6H5), 69.2 (m, CH2OCH3), 57.9 

(OCH3), 57.8 (OCH3) 54.4 (SiCH2CH2CH2), 50.7 (Si(OCH3)3), 49.3 (NHCH2CH2NH2), 

42.8 (NHCH2CH2NH2) 26.9 (d, PCH2, 2JCP = 26.58 Hz ), 24.8 (d, PCH2, 2JCP = 26.58 

Hz), 21.9 (SiCH2CH2), 6.7 (SiCH2); 29Si; δ -22.8 (s, Si(OCH3)3); IR: ν = 3264-3346 cm-1 

(NH, NH2), 3053 cm-1 (aromatic CH2), 2935 cm-1 (aliphatic CH2), 1576 cm-1 (R1R2NH), 

1433 cm-1 (-O-CH2), 1191 cm-1 (P-O-CH3), 1087 cm-1(-CH2-NH2); MS (FAB): m/z 882 

[M], 847 [M-Cl], 659 [M-diamine ligand], 393 [M-2 etherphosphine ligands], 245 

[etherphosphine ligand]. 
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5.6 Direct Hydrogenation with UR5 and UR8 under Low Hydrogen 
Pressure with 2-Propanol as Solvent 

The stationary phases UR5 and UR8 were mixed with the co-catalyst KOtBu in a 50 mL 

Schlenk tube. The solid mixture was set under argon. Afterwards dried 2-propanol and 

acetophenone were added under stirring. The reaction mixture was degassed in three 

freeze-pump-thaw cycles. The degassed suspension was set under a hydrogen 

pressure of 1.5 bar while stirring. The hydrogenation system was closed. After 30 

minutes of stirring to allow hydrogen to diffuse into the solution the Schlenk tube was 

set under a hydrogen pressure of 1.5 bar again. The system was closed and stirred at 

room temperature for the reaction time. After the hydrogenation reaction the Schlenk 

tube was flushed several times with argon to remove hydrogen gas. An HPLC sample 

was taken from the reaction mixture without further purification (Table 5, page 47). 

 

5.6.1 Direct Hydrogenation with Stationary Phase UR5 under Low Hydrogen 
Pressure with 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of UR5 with four equivalents of KOtBu and 100 equivalents of 

acetophenone in 2-propanol. 

 

5.6.2 Direct Hydrogenation with Stationary Phase UR8 under Low Hydrogen 
Pressure with 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of UR8 with 8 equivalents KOtBu and 100 equivalents of acetophenone 

in 2-propanol.  

 

5.6.3 Recycling of the Stationary Phases UR5 and UR8 

After the hydrogenation reactions the reaction mixtures were washed into a plastic 

syringe with teflon filter to remove liquids. The residual solid resins UR5 or UR8, 

respectively were washed several times with 2-propanol, methanol, and CH2Cl2. The 

resulting solids were dried in vacuo. 
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UR5: brown solid, 31P VACP/MAS NMR: δ 35.6 (CH2[CH2P(C6H5)2]2, ν1/2 = 1242.1 Hz at 

LB = 10 Hz). 

 

UR8: brown solid, 31P VACP/MAS NMR: δ 50.6 (CH2[CH2P(C6H5)2]2, ν1/2 = 630.5 Hz at 

LB = 50 Hz), 39.2 ((CH2[CH2P(C6H5)2]2, ν1/2 = 712.9 Hz at LB = 50 Hz); IR: ν = 3701-

3177 cm-1 (N-H), 2933 cm-1 (C-H), 1630 cm-1 (NC=O). 

 

5.7 General Procedure for the Direct Hydrogenation with Stationary 
Phase UR8 under High Hydrogen Pressure 

Stationary phase UR8 was filled into an autoclave of ca. 75 mL content. The co-catalyst 

was added. The solid mixture was set under argon. Then the solvent and acetophenone 

were added under stirring. The autoclave was sealed and the suspension degassed. 

The hydrogenation suspension was tempered at 35 °C for 30 minutes. Then it was set 

under hydrogen pressure without stirring. After one minute the suspension was stirred 

so that hydrogen gas could diffuse into the suspension and dissolve. With a 

supplementary hydrogen vessel the hydrogen pressure in the autoclave was kept 

constant during the reaction time. After the reaction time the autoclave was cooled to 

room temperature. From the reaction mixture a GC or HPLC sample was taken without 

further purification (Table 5, page 47). 

 

5.7.1 Direct Hydrogenation with Stationary Phase UR8 under High Hydrogen 
Pressure with 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of UR8 with 4 or 5 equivalents of KOtBu and 838, 876 or 1006 

equivalents of acetophenone respectively, in 2-propanol. 

 

5.7.2 Direct Hydrogenation with Stationary Phase UR8 under High Hydrogen 
Pressure with 2-Propanol as Solvent and LiHB(C2H5)3 as Co-catalyst 

One equivalent of UR8 with 10 or 12 equivalents of a 1 M solution of LiHB(C2H5)3 in 

THF and 1006 or 1007 equivalents of acetophenone in 2-propanol. 
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5.7.3 Direct Hydrogenation with Stationary Phase UR8 under High Hydrogen 
Pressure with Toluene as Solvent and LiHB(C2H5)3 as Co-catalyst 

One equivalent of UR8 with 5 equivalents of a 1 M solution of LiHB(C2H5)3 in THF and 

867 or 1012 equivalents of acetophenone in toluene. 

 

5.7.4 Direct Hydrogenation with Stationary Phase UR8 under High Hydrogen 
Pressure with Deionised Water as Solvent and KOtBu as Co-catalyst 

One equivalent of UR8 with 5 equivalents of KOtBu and 196 equivalents of 

acetophenone in deionised H2O. 

 

5.7.5 Direct Hydrogenation with the Homogeneous Catalyst 27 under High 
Hydrogen Pressure with 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of complex 27 was put into a 5 mL Schlenk tube, set under argon, and 

dissolved in 5 mL of 2-propanol. 4 or 6 equivalents of KOtBu were filled into a ca. 75 mL 

autoclave. The autoclave was closed and the solid was set under argon. Under stirring 

first 2-propanol was added to the co-catalyst to dissolve it, then the catalyst solution. 

Afterwards 1019 or 7168 equivalents of acetophenone were mixed with the solution in 

the autoclave. The autoclave was closed. The reaction solution was degassed, then 

tempered, and set under constant hydrogen pressure for the reaction time.  

 

5.7.6 Direct Hydrogenation with Co-catalyst KOtBu in 2-Propanol without 
Catalyst (Blank Test) 

One equivalent of co-catalyst KOtBu with 192 or 199 equivalents of acetophenone in  

2-propanol. 

 

5.7.7 Direct Hydrogenation with Co-catalyst LiHB(C2H5)3 in 2-Propanol without 
Catalyst (Blank Test) 

An autoclave of ca. 75 mL content was set under argon, then filled with 35 mL  

2-propanol and one equivalent of a 1 M solution of LiHB(C2H5)3 in THF. After adding 86 
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equivalents of acetophenone the autoclave was closed. The reaction mixture was 

degassed, then tempered, and set under constant hydrogen pressure for the reaction 

time. 

 

5.8 General Procedure for the Transfer Hydrogenation with the 
Stationary Phases UR5, UR6, and UR8 

In a 5 mL Schlenk tube or a 50 mL round flask equipped with reflux condenser and 

pressure valve the stationary phases UR5, UR6, and UR8 were mixed with co-catalyst 

and set under argon. Under stirring the solvent and acetophenone were added. Without 

degassing the reaction mixture was heated to reflux in an oil bath equipped with contact 

thermometer and stirred at constant temperature for the reaction time. Then the mixture 

was cooled to room temperature and a sample for GC or HPLC was taken without 

further purification (Table 6, page 49). 

 

5.8.1 Transfer Hydrogenation with Stationary Phase UR5 with 2-Propanol as 
Solvent and KOtBu as Co-catalyst 

One equivalent of UR5 with 4 equivalents of KOtBu and 98 equivalents of 

acetophenone in 2-propanol. 

 

5.8.2 Recycling of the Stationary Phase UR5 

After the hydrogenation reaction the reaction mixture was washed into a plastic syringe 

with teflon filter to remove liquids. The residual solid resin was washed several times 

first with 2-propanol, then methanol, and CH2Cl2. The resulting brown solid was dried in 

vacuo. 31P VACP/MAS NMR: δ 41.9 (ν1/2 = 1799.2 Hz at LB = 20 Hz). 

 

5.8.3 Transfer Hydrogenation with Stationary Phase UR6 with 2-Propanol as 
Solvent and KOtBu as Co-catalyst 

One equivalent of UR6 with 5 equivalents of KOtBu and 1000 equivalents of 

acetophenone in 2-propanol. 
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5.8.4 Transfer Hydrogenation with the Stationary Phase UR8 with 2-Propanol as 
Solvent and KOtBu as Co-catalyst 

One equivalent of UR8 with 1 to 11 equivalents of KOtBu and 89 to 1000 equivalents of 

acetophenone in 2-propanol. 

 

5.8.5 Transfer Hydrogenation with the Stationary Phase UR8 with 2-Propanol as 
Solvent without Co-catalyst 

One equivalent of UR8 with 1000 equivalents of acetophenone in 2-propanol. 

 

5.8.6 Transfer Hydrogenation with the Stationary Phase UR8 with 2-Propanol as 
Solvent and KOtBu as Co-catalyst at Room Temperature 

One equivalent of UR8 with 5 equivalents of KOtBu and 1000 equivalents of 

acetophenone in 2-propanol. 

 

5.8.7 Transfer Hydrogenation with the Recycled Stationary Phase UR8 in 
2-Propanol and KOtBu as Co-catalyst 

One equivalent of the recycled stationary phase UR8 with 5 equivalents of KOtBu and 

933 equivalents of acetophenone in 2-propanol. 

 

5.8.8 Transfer Hydrogenation with the Stationary Phase UR8 in Deionised Water 
and KOtBu as Co-catalyst 

One equivalent of UR8 with 5 equivalents of KOtBu with 101 equivalents of 

acetophenone in deionised water. 

 

5.8.9 Transfer Hydrogenation with the Stationary Phase UR8 in 2-Propanol and 
LiHB(C2H5)3 as Co-catalyst 

One equivalent of UR8 with 5 equivalents of a 1 M solution of LiHB(C2H5)3 in THF and 

104 equivalents of acetophenone in 2-propanol. 
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5.8.10 Transfer Hydrogenation with KOtBu in 2-Propanol (Blank Test) 

One equivalent of KOtBu with 20 or 189 equivalents of acetophenone, respectively in 2-

propanol. 

 

5.8.11 Transfer Hydrogenation with LiHB(C2H5)3 in 2-Propanol (Blank Test) 

One equivalent of 1 M solution of LiHB(C2H5)3 in THF with 22 equivalents of 

acetophenone in 2-propanol. 

 

5.9 General Procedure for the Direct Hydrogenation with the Silica 
Particles SP3-SP6 under High Hydrogen Pressure 

The spherical silica particles SP3-SP6 were filled into an autoclave of ca. 75 mL 

content. After the co-catalyst was added, the solid mixture was set under argon. Then 

the solvent and acetophenone were added under stirring. The autoclave was sealed 

and the suspension degassed. The hydrogenation suspension was tempered at 35 °C 

for 30 minutes. Then it was set under a hydrogen pressure of 30 bar without stirring. 

After one minute the suspension was stirred so that hydrogen gas could diffuse into the 

suspension and dissolve. With a supplementary hydrogen vessel the hydrogen pressure 

in the autoclave was kept constant at 30 bar. After the reaction time the autoclave was 

cooled to room temperature. Under air the reaction suspension was filled into a 

centrifugation vessel or under argon into a Schlenk tube. By centrifugation without 

protecting gas or by sedimentation under argon, respectively the liquid parts of the 

suspension were separated from the solid parts. From the liquids a GC sample was 

taken without further purification (Table 7, page 51). 

 

5.9.1 Direct Hydrogenation with the 800 nm Silica Particles SP3 in 2-Propanol 
as Solvent and KOtBu as Co-catalyst 

One equivalent of the silica particles SP3 with 5 equivalents KOtBu and 90 or 102 

equivalents of acetophenone in 2-propanol. 
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5.9.2 Direct Hydrogenation with the 800 nm Silica Particles SP4 in 2-Propanol 
as Solvent and KOtBu as Co-catalyst 

One equivalent of the silica particles SP4 with 5 equivalents of KOtBu and 92 or 106 

equivalents of acetophenone in 2-propanol. 

 

5.9.3 Direct Hydrogenation with the 800 nm Silica Particles SP5 in 2-Propanol 
as Solvent and KOtBu as Co-catalyst 

One equivalent of the silica particles SP5 with 5 equivalents of KOtBu and 100 

equivalents of acetophenone in 2-propanol. 

5.9.4 Direct Hydrogenation with the 200 nm Silica Particles SP6 in 2-Propanol 
as Solvent and KOtBu as Co-catalyst 

One equivalent of the silica particles SP6 with 4 equivalents of KOtBu and 85 

equivalents of acetophenone in 2-propanol. 

 

5.9.5 Recycling of the Liquid Parts of the Reaction Mixture without Inert Gas 
Atmosphere 

After the hydrogenation reaction the suspension was collected in a 50 mL centrifugation 

vessel and centrifugated. The liquid parts of the hydrogenation reaction were decanted 

and reused in hydrogenation without further purification  

 

5.9.6 Recycling of the Liquid Parts of the Reaction Mixture under Argon 

After the hydrogenation reaction the suspension was collected under argon in a 50 mL 

Schlenk tube and kept there for several days until sedimentation of the solid parts of the 

suspension had occurred. The liquid parts of the reaction mixture were directly reused 

in a reaction run without further purification. 
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5.9.7 Recycling of the Solid Parts of the Reaction Mixture under Argon 

The used silica particles SP3 and SP4 were recycled by treating them in a Soxhlet 

extractor for 48 h with a mixture of 100 mL CH2Cl2 and 50 mL 2-propanol. After drying 

the silica particles in vacuo they were set under argon. 

 

5.9.8 Direct Hydrogenation with the Recycled Liquid Parts of the Hydrogenation 
Mixtures without Additional KOtBu as Co-catalyst 

A ca. 75 mL autoclave was set under argon. The recycled liquids were put into the 

autoclave. Under stirring additional acetophenone was added. The autoclave was 

closed and the reaction mixture was degassed, then tempered, and set under constant 

hydrogen pressure for the reaction time. 

 

5.9.9 Direct Hydrogenation with the Recycled Liquid Parts of the Hydrogenation 
Mixtures with Additional KOtBu as Co-catalyst 

One equivalent of extra KOtBu as co-catalyst was put into an autoclave of ca. 75 mL 

content and set under argon. The recycled liquids and 18 to 30 equivalents of extra 

acetophenone were added under stirring. The autoclave was sealed and the reaction 

mixture was degassed, then tempered, and set under constant hydrogen pressure for 

the reaction time. 

 

5.9.10 Direct Hydrogenation with the Recycled 800 nm Silica Particles SP3 or 
SP4 in 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of the recycled silica particles SP3 or SP4 respectively, with 5 or 6 

equivalents of KOtBu and 100 or 101 equivalents of acetophenone in 2-propanol. 

 

5.9.11 Direct Hydrogenation with the 800 nm Silica Particles SP1 in 2-Propanol 
as Solvent and KOtBu (Blank Test) 

One equivalent of the silica particles SP1 with 6 equivalents of KOtBu (with regard to 

surface OH-groups) and 92 equivalents of acetophenone in 2-propanol. 
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5.9.12 Direct Hydrogenation with Co-catalyst KOtBu in 2-Propanol without 
Catalyst (Blank Test) 

One equivalent of co-catalyst KOtBu with 199 equivalents of acetophenone in  

2-propanol. 

 

5.9.13 Direct Hydrogenation with the Homogeneous Catalyst 29 under Hydrogen 
Pressure with 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of complex 29 was put under argon into a 5 mL Schlenk tube. It was 

dissolved in 5 mL of dry 2-propanol and ultrasonicated for one minute. 5 equivalents of 

KOtBu were filled into an autoclave. The autoclave was closed and the solid was set 

under argon. Under stirring 2-propanol was added to the co-catalyst to dissolve it, then 

the catalyst solution. Afterwards 100 or 1031 equivalents of acetophenone were mixed 

with the solution in the autoclave. The autoclave was closed. The reaction solution was 

degassed, then tempered at 35 °C, and set under a constant hydrogen pressure of  

30 bar for the reaction time 

 

5.9.14 Direct Hydrogenation with the Homogeneous Catalyst 24 under Hydrogen 
Pressure with 2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of complex 24 was put into a 5 mL Schlenk tube and set under argon. It 

was suspended in 5 mL of dry 2-propanol and ultrasonicated for one minute. 5 

equivalents of the co-catalyst KOtBu were filled into an autoclave. The autoclave was 

closed and the solid was set under argon. Under stirring 2-propanol was added to the 

co-catalyst to dissolve it, then the catalyst suspension. Afterwards 100 equivalents of 

acetophenone were mixed with the suspension in the autoclave. The autoclave was 

closed. The reaction suspension was degassed, then tempered, and set under constant 

hydrogen pressure for the reaction time.  
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5.10 Transfer Hydrogenation with 800 nm Silica Particles SP3  

 

5.10.1 Transfer Hydrogenation with the 800 nm Silica Particles SP3 with 
2-Propanol as Solvent and KOtBu as Co-catalyst 

One equivalent of silica particles SP3 was mixed with 6 equivalents of KOtBu as co-

catalyst in a 25 mL round bottom flask and set under argon. Under stirring 2-propanol 

and 100 equivalents of acetophenone were added. The reaction mixture was heated to 

reflux and stirred under constant temperature for 68 h. Then it was cooled to room 

temperature and a GC sample was taken after separating the solid parts of the reaction 

mixture from the liquids without further purification. 

 

5.10.2 Transfer Hydrogenation with Complex 29 in 2-Propanol as Solvent and 
KOtBu as Co-catalyst 

One equivalent of complex 29 was set under argon in a 100 mL round bottom flask, 

then dissolved in 40 mL of 2-propanol. 5 equivalents of KOtBu were filled into a 50 mL 

round bottom flask, set under argon, and dissolved in 25 mL of 2-propanol. Under 

stirring the dissolved co-catalyst and 992 equivalents of acetophenone were added to 

the catalyst. The reaction mixture was heated to reflux and stirred under constant 

temperature for 16 h. Then it was cooled to room temperature and a GC sample was 

taken without further purification. 

 

5.10.3 Transfer Hydrogenation with KOtBu in 2-Propanol (Blank Test) 

One equivalent of KOtBu was set under argon in a 25 mL round bottom flask and 

dissolved in 2-propanol. Under stirring 20 equivalents of acetophenone were added. 

The reaction mixture was heated to reflux and stirred under constant temperature for  

66 h. Then it was cooled to room temperature and a GC sample was taken without 

further purification. 
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5.11 Determination of the Conversion of the Hydrogenation Reactions 
with GC 

To quantify the amount of 1-phenylethanol and acetophenone in the solution after a 

hydrogenation process an internal standard was employed. An internal standard must 

fulfil the following conditions: 

i. The standard substance must elute in a time similar to the analytes. 

ii. A complete separation of all components is crucial. 

iii. The internal standard should elute near the peaks of the substances whose peak 

areas will be analysed relatively to the peak area of the internal standard. 

iv. The concentration of the internal standard should be similar to the concentration 

of the analytes. 

v. The vapour pressure of the standard substance must be similar to the vapour 

pressure of the analytes under same conditions. 

Benzaldehyde, which is structurally similar to acetophenone and 1-phenylethanol was 

applied. The amount of substance is proportional to the peak area of the substance. 

The constant of proportionality is difficult to determine. To handle this problem a 

correction factor Rf referred to the internal standard is introduced. The Rf value is a 

device-, substance- and column-specific constant. With a mixture of 100 µL 

acetophenone, 100 µL 1-phenylethanol, and 100 µL benzaldehyde in 10 mL of 2-

propanol it is calculated from a chromatogram as follows: 

 

xist

istx
f Fm

Fm
R

⋅
⋅

= , 

 

with      mx : mass of the analyte 

     mist : mass of the internal standard 

     Fx : peak area of the analyte 

     Fist : peak area of the internal standard 

By repeating the experiment several times it was controlled that the Rf value was 

constant. With a second mixture of known concentration of acetophenone and  
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1-phenylethanol including 100 µL of benzaldehyde the Rf value could be verified by the 

following calculation: 

ist

xistf
x F

FmR
m

⋅⋅
= . 

 

With the same equation the amount of acetophenone and 1-phenylethanol in a solution 

of unknown concentration could be calculated after adding 100 µL of benzaldehyde. 

The conversion of the hydrogenation reactions was determined with the following 

equations: 

( ) ( )
( )analyteM
analytemanalyten

 
  =  

 

and 
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100 %

   
area phenylethanol

conversion
area phenylethanol area acetophenone
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+

, 

 

with     m : mass 

     M : molar mass. 

 

5.11.1 Determination of the TOF 

The turn-over frequency (TOF) of the hydrogenation reactions was calculated: 

 

( )
( )

1 
 

n product
TOF t

n catalyst
−= ⋅ , 

with     t : time in h. 
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7 SUMMARY 

Catalytic hydrogenation of polar double bonds such as C=O or C=N is in demand of fine 

chemical and pharmaceutical chemistry, especially the asymmetric version of this 

reaction. Among the diaminedichlorobis(phosphine)ruthenium(II) complexes, there are 

examples of extraordinary catalytic performance. However, separation of these 

catalysts from other substrates after hydrogenation still is a time, energy, and chemicals 

consuming process. Moreover, the complexes might be destroyed during this 

procedure. Therefore the heterogenisation of these diaminedichlorobis(phosphine)-

ruthenium(II) complexes is of great economical interest. 

The aim of the present work was the preparation of two new types of interphase 

catalysts by immobilisation of diaminedichlorobis(phosphine)ruthenium(II) complexes 

and the investigation of their catalytic behaviour. As a model system the hydrogenation 

of acetophenone to 1-phenylethanol was employed. The reaction conditions were 

adapted from similar homogeneous ruthenium complexes (KOtBu as co-catalyst,  

2-propanol as solvent). Both direct and transfer hydrogenation were investigated. 

In a first approach a highly crosslinked polyethylene imine resin, a so-called ULTRARESIN 

was applied as organic polymeric support. A diaminedichlorobis[(methoxyethyl-

diphenyl)phosphine]ruthenium(II) and a diaminedichloro[1,3-bis(diphenylphosphino)-

propane]ruthenium(II) complex were each successfully anchored to this matrix by 

coordination to two diamine spacers of different length. The diamine spacers were 

covalently linked to the resin via an amide bond. With this procedure four new stationary 

phases were prepared. FT-ATR-IR measurements served for the characterisation of the 

ULTRARESINS. To indicate the linkage of the complexes 31P NMR spectroscopy was 

applied. The new interphase catalysts were employed for the catalytic hydrogenation of 

acetophenone. Their reactivity under H2 pressure was negligible. The use of 

“superhydride” as cocatalyst led to a transformation of the stationary phase. Moreover, 

the superhydride itself converted the acetophenone with good activity. Water as solvent 
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caused a decomposition of the stationary phase. However, the resulting product that 

was assumed to be ruthenium metal converted the substrate very slowly. 

The performance of the chemically modified ULTRARESINS in transfer hydrogenation was 

acceptable, but during the harsh conditions the active species on the resins were 

destroyed. It was not possible to recycle the interphase catalysts. 

In a second approach spherical silica particles, so-called Stöber particles with a 

diametre of 800 nm served as inorganic support. The modification of these non-porous 

particles only can proceed by application of surface silanol groups. Therefore pure 

particles were equipped with 3-(2-aminoethyl)aminopropyl spacers in a condensation 

reaction. This spacer molecule provided a mixed primary-secondary diamine group to 

which a dichlorobis[methoxyethyl(diphenyl)phosphine]ruthenium(II) complex easily 

could coordinate. Here advantage was taken from the hemilabile character of the 

etherphosphine ligands. To determine size, shape, and monodispersity of these Stöber 

particles light scattering and SEM investigations were applied. Elemental analysis and 
31P NMR spectroscpy indicated the anchoring of the ruthenium(II) complex. The 

spherical particles equipped with a reactive centre were employed as well for direct as 

for transfer hydrogenation of acetophenone. When first used, the particles converted 

acetophenone to 100 % to 1-phenylethanol with a maximal TOF of 6 h-1. After recycling 

or just treating the particles in a Soxhlet extractor they showed reduced catalytic activity. 

It is assumed that after 20 h the reactive centres on the surface were destroyed. 

Moreover, the particles themselves were not stable under the conditions applied for 

hydrogenation. After two consecutive runs under hydrogen pressure in an autoclave 

they were destroyed, whereas they agglomerated during transfer hydrogenation. 

Leaching was investigated and could not totally be excluded. 

In comparison to the ULTRARESINS and Stöber particles as interphase catalysts sol-gel 

processed materials, into which a ruthenium complex is incorporated can be applied for 

catalysis in several consecutive runs without loss of activity and without leaching. In 

conclusion the sol-gel materials fit the demand for interphase catalysts, that shall 

combine the advantages of homogeneous and heterogeneous catalysis. 
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