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Biologisch relevante Klassifizierung von Proteinsequenzen
— ein bioinformatischer Ansatz.

Das Leben wire ohne Proteine unvorstellbar. Die meisten strukturellen
Komponenten des Lebens bestehen aus Proteinen, die meisten
metabolischen Reaktionen werden durch Proteine begiinstigt und selbst die
Vervielfdltigung des Erbguts wiirde ohne Proteine nicht stattfinden. Das
Erbgut enthilt, in verschliisselter Form, Informationen {iiber alle Proteine
die ein Lebewesen herstellen kann. Will man auf molekularem Niveau
Lebewesen verstehen, so ist ein genaues Verstindnis der verschiedenen
metabolischen und regulatorischen Proteine, sowie deren
Interaktionspartner, notwendig. Allerdings ist die experimentelle
Beschreibung aller Proteine in allen Organismen sowohl zeitlich als auch
finanziell nicht méglich. Um dennoch eine Charakterisierung des Grossteils
der Proteine eines Organismus zu ermdglichen macht man sich zunutze,
dass verwandte Proteine meist auch dhnliche Struktur und Funktion haben.
Ermittelte Charakteristika konnen somit auf verwandte Proteine iibertragen
werden. Proteinklassifizierung  beschéftigt  sich  damit, den
Verwandtschaftgrad ebenso wie funktionelle und  strukturelle
Gemeinsamkeiten verschiedener Proteine zu ermitteln.

In dieser Arbeit gehe ich kurz in die Grundlagen der Proteinklassifizierung
ein: Sequenzdhnlichkeitssuche, Sequenz-alignierung und Stammbaum-
erstellung. Die Methoden, ebenso wie ihre Vor- und Nachteile, werden kurz
beschrieben und Losungsansitze fiir die hiufigsten Fehler und Probleme
dargelegt.

Die vorgestellten Arbeiten beschreiben zwei unterschiedliche Ansétze zur
Klassifizierung von Proteinen, PhyloGenie und CLANS. “PhyloGenie”
beschiftigt sich mit der Erstellung und Analyse von Phylomen, der Menge
aller Gen-Stammbédume fiir das jeweilige Proteom eines Organismus. Um
abzuschitzen wie gut PhyloGenie im Verhdltnis zu alternativen Methoden
abschneidet, haben wir zwei Datensédtze erneut untersucht: a) Die Menge an
lateralem Gen-transfer zwischen Thermoplasma und Sulfolobus (Ruepp et
al. 2000) und die Suche nach Genen die die Strahlenflosser spezifische
Genomduplikation unterstiitzen (Taylor et al. 2003). Unsere Analyse des
Thermoplasma acidophilum Phyloms deutet auf wiederholte Austausche
grosserer Bereiche genetischen Materials mit entfernt verwandten
Archaebakterien der Familie Sulfolobus hin. Ein Vergleich mit anderen
Ansédtzen lateralen Gen-transfer aufzudecken zeigt, dass PhyloGenie das
vorteilhafteste Verhidltnis von Sensitivitdt zu Spezifitdt aller untersuchten
Methoden erreicht. Eine vergleichende Genomanalyse des unvollstdndigen
Danio rerio Genoms zeigt eine weitere Applikation Phylom basierter
Analysemethoden. Durch Anwendung von PhyloGenie auf die Fragestellung
der Strahlenflosser spezifischen Genomduplikation, konnte die Anzahl an
Gruppen orthologer Gene verdoppelt werden, die diese Theorie
unterstiitzen.

Im Gegensatz zu PhyloGenie, welches Organismus-spezifisch arbeitet,
behandelt CLANS die Analyse ganzer Proteinfamilien. Eine Proteinfamilie
umfasst alle von einem Ur-Protein abstammenden Kopien, die sich im Laufe
der Zeit zum Teil stark verdndert haben kénnen. Gréssere Familien kénnen
paraloge und orthologe Untergruppen beinhalten und umfassen oft



mehrere tausend Proteine, wodurch Stammbaumanalysen enorm
Zeitaufwendig und schlecht iiberschaubar werden. Der Ansatz von CLANS
beruht auf grafischer Darstellung aller paarweisen Sequenzédhnlichkeiten.
Dies ermoglicht die Analyse erheblich grésserer Datenmengen und ist
unempfindlich  gegeniiber vielen Problemen der traditionellen
Stammbaumerstellung.

Anwendung von CLANS auf die Gruppe der AAA-ATPasen ermdéglichte
zum ersten Mal eine objektive Beschreibung dieser Familie. Existierende
Klassifikationen dieser Familie unterscheiden sich zum Teil erheblich in der
Anzahl vorhandener Sequenzen, so dass ein Hauptaspekt dieser Arbeit die
Enumerierung aller AAA-ATPasen in der nichtredundanten NCBI
Proteindatenbank und Beschreibung der Verwandschatsbeziehungen der
einzelnen AAA-subfamilien ist. Die Ergebnisse der AAA-analyse sind
biologisch nachvollziehbar und tiberraschende Vorhersagen, zum Beispiel
die Homologie einiger N-Domé&nen entfernt verwandter AAA-ATPasen,
wurden durch zusétzliche Untersuchungen verifiziert.

Die Moglichkeit mit CLANS grosse Mengen an unalignierten Sequenzen
zu untersuchen hat dazu gefiihrt, dass es zur Grundlage vieler weiterer
Analysen wurde. Als publizierte Beispiele sind hierfiir die Analyse des TAA43
Proteins (Santos et al. 2004), eine Beschreibung des Wipi-1-alpha beta-
propeller Proteins (Proikas-Czesanne et al. 2004) sowie eine Korrektur der
Struktur des AbrB Transkriptionfaktors (Coles et al. in press) anzufiihren.



Introduction:

Proteins are the basis of life as we know it. Proteins perform nearly all
structural, metabolic, regulatory, catalytic and sensory cellular functions.
Although all proteins an organism is capable of producing are encoded in
the genome, simple copying of the DNA does not result in a functional cell.
Genome sequences provide a basis for understanding the blueprint of an
organism, however, only a fraction of the information encoded in the DNA is
apparent to us. Most cellular properties emerge from complex interactions
between molecules. Proteins interacting with DNA or RNA cause certain
genome regions to be transcribed into RNA more frequently than others, the
RNA transcripts to be edited via splicing or silencing mechanisms and some
to be translated into polypeptide chains. Proteins may then refold these
chains, modify them posttranslationally and transport them to specific
cellular compartments. These steps, and many more, are necessary to
transform the information present at the DNA level into a functional cell.

Due to the differential expression
of genes and subsequent editing
Function = and modifying of RNA transcripts
and polypeptide chains, the
number of protein coding genes is
expected to be only a fraction of
the number of different proteins
present in the organism. The
International Human Genome

Hxtrugpliolay Modification : .
& localvation | O€quencing  Consortium, for
\ g;g ' T example, predicted the estimated 3

Membrane

Vacuole/
Peroxisome

billion nucleotides of the human
protein | 8€NOMeE  to contain 20,000 to
1973 T 25,000 protein coding genes and

be able to generate approximately
j@ (’D\M 1.54 times as many different
Apios Mt RNA - proteins (IHGSC 2004). The major

%MTGGCAG% DN; difficulties on the path to further

TAACCGTC understanding organism genomes

currently lie in determining the

Figure I proteomes and the protein-protein
interactions.

As experimental characterization of all proteins in all genomes would be
prohibitively time consuming and expensive, other methods must be used
to gather the necessary information about protein structure, function and
interaction partners. A widely used approach in genome annotation is to
transfer what is known about the closest sequence relatives to the sequences
being examined. The relationship of sequences is generally estimated by
analyzing their pairwise similarity. Proteins with similar sequence are
unlikely to have evolved independently multiple times and therefore must
have shared a common ancestor. However, determining closest sequence
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relatives is more problematic than it may appear at first glance.

Aligning two sequences:

Dayhoff, Schwartz and Orcutt generated a number of matrices (PAM) in
the 1970's that provided estimates of how likely each amino acid was to be
replaced by every other. By counting the observed amino acid replacements
in alignments of closely related sequences and extrapolating to larger time
frames (Dayhoff 1978) they provided a set of matrices describing amino acid
substitution probabilities for wide range of evolutionary time. However,
their series of matrices were derived from highly similar protein sequences
and were shown not to accurately reflect the differences between short-term
and long-term substitutions (Gonnet 1992). Many alternative substitution
matrices have since been generated, using either larger databases, such as
the JTT matrix (Jones 1986), or novel statistical treatment and careful
partitioning of the data used to derive the matrices, such as the set of
BLOSUM matrices (Henikoff 1991), or the GONNET matrix (Gonnet 1992).
Independent of the method used to generate them, all substitution matrices
attempt to quantify the probability of each amino acid changing into every
other.

Ungapped Al i gnment
QERFGAVPHI RVRKLNADDGP
QENFGAVVPHLRVKLNADEGP
Score: 5506 6 4 4-2-2-3-2-3-3546 46267
Sum 55
Gapped Al i gnnent
QERFGAV-PHI RVRKLNADDGP
QENFGAVVPHLRV-KLNADEGP
Score: 55066 44-478254-4546462¢67
Sum 88
Figure I1

The alignment of two sequences is an attempt to place in the same
column all residues that evolved from the same position in an ancestral
sequence. Adding gaps postulates amino acid insertions or deletions in
either of the sequences since divergence from their common ancestor. The
information contained in substitution matrices makes it possible to align
sequences and insert gaps so as to maximize the statistical probability of the
sequences being homologous, i.e. descendant from a common ancestor.
The entries in the BLOSUMG62 substitution matrix (Appendix A) are
logarithms of substitution probabilities. As summing the logarithms is
equivalent to multiplying the probabilities, the most likely alignment is the
one with the highest value resulting from adding up the substitution matrix
entries for all observed amino acid pairings. This value is referred to as the
alignment score. The higher the alignment score, the more likely two
sequences are to be related. Figurell provides an example of how judicious
use of gaps can increase the statistical probability of sequence relatedness.
Postulating two insertions, one at position 8 in sequence 2 and one at
position 13 in sequence 1, permits alignment of the central region as well as
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the N- and C-terminal parts. The score augmentation from aligning the
central region is greater than the cost of adding two gaps, resulting in a net
increase in alignment score and therefore a higher probability for the two
sequences being related.

Finding sequence relatives:

Finding relatives for a given query sequence is generally done via
sequence similarity search programs such as BLAST (Altschul 1990),
PSIBLAST (Altschul 1997) or FASTA (Lipman 1985). These programs attempt
to align a query sequence to all sequences in a database. Estimating the
probability of two sequences being related is done by comparing the
pairwise alignment score to a distribution of alignment scores for unrelated
sequences. The lower the probability of recovering an alignment of score “S”
from the distribution, the more likely it is that the sequences are related. The
number of false positives, i.e. alignments of unrelated sequences, we expect
to find with scores greater than “S”, can be calculated as the expect value (E-
value) E=K*m*n*e™. The parameters “m” and “n” reflect the length of the
sequences being aligned, “K” and “1” are scaling parameters that vary with
the selected substitution matrix and number of performed sequence
comparisons. The first two are used to correct for sequence length, longer
alignments tend to have higher scores, while the last two allow results
derived from different databases and scoring methods to be compared.
NOTE: The E-value is not equal to the probability of two sequences being
homologous! This is more closely described by the P-value, the probability
of generating at least one alignment with a score equal to or greater than the
observed. P-values are calculated as P=1-e*. The smaller the P-value, the
more certain one can be in rejecting the null hypothesis, that the alignment
score was due to chance similarity of unrelated sequences, and therefore the
sequences must be related.

During annotation of new,

Query [ undescribed protein sequences, a
frequently used approach is to
transfer all that is known about the
most similar sequence. This, however,
is not the same as transferring the
information from the closest
sequence relative. Koski & Golding,
for example, showed that the best
BLAST hit, i.e. the most similar

e sequence, is not always the closest
Seqs3 sequence relative (Koski 2001). A
W Seq! hypothetical example is depicted in
Sl Figurelll. The shorter the line

connecting two sequences, the more
similar they are. Although the query
Figure 111 sequence is most similar to

sequencel, it cannot be concluded
that they are closest relatives. Highest sequence similarity is not necessarily
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reciprocal. In this example, sequencel is more similar to sequence2 and
sequence3 than to the query. Calculating all pairwise sequence similarities
and inferring a phylogenetic tree resolves the problem and provides a more
accurate representation of the evolutionary history. In this case, a midpoint
rooting of the tree shows one slowly evolving group with short branch
lengths and one more rapidly evolving group with long branch lengths.
Based on the best BLAST hit alone, the query sequence would have been
classified as a member of the slowly evolving group. The example presented
here is only one of the explanations of a well known but frequently
overlooked concept, in which the most similar sequence is not identical with
the closest sequence relative.

A further example was provided by the IHGSC paper describing
completion of the human genome (IHGSC 2001). Based on BLAST results, a
vertebrate ancestor was predicted to have acquired 113 genes from bacteria
via lateral-gene transfer (LGT). However, subsequent phylogenetic analyses
performed by a number of labs, were unable to support the LGT claim for
any of the genes in question (Salzberg 2001, Roelofs 2001, Stanhope 2001).
This example highlights the importance of using phylogenetic
reconstructions instead of highest sequence similarity to determine
sequence relatedness.

Phylogenetic tree construction:

Phylogenetic reconstruction methods are predominantly based on
multiple sequence alignments. Just as pairwise sequence alignments
attempt to place related residues of two sequences in the same alignment
column, multiple sequence alignments attempt to place related positions of
many sequences in the same alignment column. The information present in
the multiple alignment makes it possible to recreate the most plausible path
of evolution for this set of sequences, i.e. to infer a phylogenetic tree.

A) Rooted tree Bl Unrooted tree

4
[ ]

Figure IV

Phylogenetic trees are the visualization of an evolutionary scenario for a
group of sequences. They exist in two forms: rooted and unrooted



5

(FigurelV). While unrooted trees provide only an overview of how closely
each sequence is related to every other, rooted trees contain additional
information about the direction of evolution, such as which were the
ancestral sequences, where did the evolution of this family begin and how
much have the individual sequences changed since. The tip nodes, also
referred to as operational taxonomic units (OTU's) or leaves of a tree (blue
squares), symbolize the sequences present in the alignment. The internal
nodes, or branch points (gray squares), symbolize the common ancestor of
all descendant OTU's. The rooted tree has a root node (red square) that is
used to place the last common ancestor of all sequences in the tree.

Phylogenetic inference programs can be divided into three major groups:
maximum parsimony, maximum likelihood and distance methods
(FigureV). Maximum parsimony tries to find, for the given alignment, the
path of evolution requiring the least number of amino acid changes.
Maximum likelihood attempts to reconstruct the most likely path of
evolution and distance methods use pairwise comparisons of all sequences
to infer a tree. Examples for these three approaches are shown in FigureVI.
The examples provide only coarse approximations of the methods and are
used only to highlight their differences.

Theoretically, both maximum likelihood and maximum parsimony
methods (FigureVI A & B) need to examine all possible trees before being
able to determine the best. The number of different unrooted trees for a
given set of “N” sequences is: (3)x(5)x...x(2N-5). For four sequences, it is
possible to construct three different unrooted trees, for five, there are 15
possibilities, for ten, 2,027,025 and for 15, 7.9x10'. The number of trees that
need to be analyzed makes these methods slow and cumbersome for large
alignments as their attempts to infer ancestral sequences for every
branching point in every possible tree is computationally costly.

Multiple Sequence Alignment

Maximum parsimony Maximum likelihood Distance

Phylogenetic tree
Figure V
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Maximum parsimony (MP) counts the minimal number of necessary
mutations in each tree; Treel: (1) DDDDW to the ancestral DDDDD=1
change, (2) DDEDD to DDDDD=1 change, (3) DEDEW to DEDED=1 change,
(4) EEDED to DEDED=1 change, (1&2 ancestor) DDDDD to DDDDD=0
changes and (3&4 ancestor) DEDED to DDDDD=2 changes. In treel the
global ancestral sequence may have been DEDED instead of DDDDD, and
this is taken into account by the methods when calculating larger trees, but
in this example the omission of the alternative makes no difference.
Comparable to MP methods, maximum likelihood (ML) calculates the
probability of all changes required by the tree. Once all possible trees have
been analyzed, either the most parsimonious or most likely, depending on
the method, is returned. ML or MP approaches have certain advantages over
distance based methods in that the statistics underlying tree inference are
well understood and a scenario of sequence evolution is modeled and tested
for plausibility. However, even though a number of computational shortcuts
have been developed to reduce the time needed for tree calculation, such as
Branch-and-Bound or Puzzling (Hendy 1982, Felsenstein 1981, Strimmer
1996), both approaches are still prohibitively time consuming for larger
alignments.

An alternative is provided by distance based methods. These do not try to
explicitly reconstruct the ancestral sequences and derive an evolutionary
scenario, but instead group sequences together based on pairwise distances.
Sequence groups and pairwise distances can be generated in a multitude of
manners (Sokal 1958, Saitou 1987, Studier 1988, Van de Peer 2002), but
grouping is mostly performed by combining pairs of sequences and distance
values are generally based on sequence dissimilarity. For simplicity, the
example (FigureVI-C) treats the number of differences for each sequence
pair as their distance and sequences are grouped together in pairs. To
generate the tree, entries with the smallest pairwise distance are selected
and combined in a node. In this case, entries 'l1' and '5' are selected, their
distance is 1/5, and combined in node 'A'. The corresponding rows and
columns are removed from the matrix and averaged to provide the new
distance values for the putative ancestral sequence 'A'. Then the next pair is
selected, combined and the matrix updated. This is repeated until only three
entries are left. As the final step in tree inference, these three are grouped
together. The main advantage of distance methods is their speed. As they do
not need to sample all possible trees but only analyze one matrix of size N by
N, they are very fast. The statistical basis for tree inference is not well
understood and no evolutionary scenario is tested during tree construction,
but distance methods generally produce reasonable results and, due to their
speed advantage, are able to quickly analyze large datasets. In addition,
since these methods are computationally cheap, statistical sampling
approaches that rely on comparison of many trees can be used to provide a
confidence estimate for every node.



Bootstrapping:

Original alignment Mat ri x Original tree (distance)
Col umm 12345 [1 2 3 4 5 Sequence?2
Sequencel DDDDW 1|x 2 2 4 1 Sequencel Sequence3
Sequence2 DDEDD 2|2 x 4 4 3
Sequence3 DEDEW 3|2 4 x 2 3
Sequence4 EEDED 4|4 4 2 x 3 Sequences Sequence4
Sequence5 EDDDW 5|1 3 3 3 X
Replicate 1; randomvalues:1,1,5,5,3

Sequenceb
Col um 11553 |1 2 3 4 S
Sequencel DDWAD 1x 3 0 4 2 Sequencel Sequence3
Sequence2 DDDDE 2|3 x 3 3 5
Sequence3 bW 3|0 3 x 4 2 gequence2 Sequence4
Sequence4 EEDDD 4/4 3 4 x 2
Sequence5 EEWWD 5/2 5 2 2 X
Replicate 2; randomvalues:1,5,4,4,1
Col um 15441 [1 2 3 4 5 Sequence3
Sequencel DWDDD 1|x 1 2 5 2 Sequencel Sequence4
Sequence2 DDDDD 2|1 x 3 4 3
Sequence3 DWEED 3|2 3 x 3 4
Sequence4 EDEEE 4|5 4 3 x 3 Sequence?2 Sequence5
Sequence5 EWDDE 5|2 3 4 3 X
Replicate 3; random val ues:3,2,4,3,3
Col um 32433 |1 2 3 4 5 Sequence2
Sequencel DDDDD 1fx 3 2 2 0
Sequence2 EDDEE 2|3 x 5 5 3 Sequencel Sequence3
Sequence3 DEEDD 3|2 5 x 0 2
Sequence4 DEEDD 4|2 5 0 X 2 sgequences Sequence4
Sequence5 DDDDD 5/0 3 2 2 X
Replicate 4; randomvalues:1,4,2, 1,1
Col um 14211 [1 2 3 4 5
Sequencel DDDDD  1jx 0 2 5 3 ¢ 1 Sequence3 s .
Sequence2 DDDDD 210 x 2 5 3 equence equence
Sequence3 DEEDD 3|2 2 x 3 5
Sequence4 EEEEE 45 5 3 x 2 Sequence2 Sequence4
Sequence5 EDDEE 513 3 5 2 x
Final tree with coll apsed Boot strap support for tree

| ow confi dence nodes

Sequence?2

Sequence?2

Sequencel Sequence3 Sequencel Sequence3
50
Sequence5 Sequence4 SequenceS Sequence4

Figure VII

A tree represents only one possible path of evolution that might have
given rise to the observed sequences. A tree is clear, simple and no
conflicting information is displayed. For example, tree2 is preferred over
treel in the likelihood analysis, but no reasons are given. Excluding column
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5 from analysis, for example, makes treel the most likely solution. Similarly,
if columns 2 and 4 are excluded, parsimony would return tree2 as the best.
An estimate of how much confidence we can have in the various
phylogenetic trees would be helpful.

Bootstrapping (Felsenstein 1985) (FigureVII) provides a way to estimate
the amount of conflicting phylogenetic information present in a multiple
sequence alignment, or how well the underlying data supports the
individual nodes. Bootstrap analyses are performed by comparing trees
generated from subsets of the original alignment with the original tree.
Subsets are generated by statistical sampling of alignment columns with
replacement. FigureVII shows the basic bootstrap procedure. Columns are
selected at random from the original alignment and used to generate a
replicate alignment of the same size. Due to random sampling a limited
number of times, some columns may be represented multiple times, some
not at all. A phylogeny is then inferred for this new alignment and compared
to the original tree. Nodes present in both the original and replicate tree gain
an increase in confidence. A bootstrap value of 50 means that the node in
question was recovered in 50% of the replicates. For example, the node
combining sequences 1 and 5 to the exclusion of sequences 2, 3 and 4 was
recovered in only one of 4 replicates and the node combining sequences 3
and 4 to the exclusion of 1, 2 and 5 occurred twice. Between 100 and 1000
replicate trees are usually calculated to estimate bootstrap support for
phylogenies.

In general, groups with low bootstrap support are collapsed, causing a
polytomy, the emergence of three or more branches from the same node.
Polytomies indicate that further subdivision of that node is not supported by
the data. In the “final tree” in FigureVII, the node separating sequences 1&5
from sequence 2 is collapsed due to low bootstrap support. This symbolizes
that although we can predict a common ancestor for sequences 3&4, we are
unable to say whether sequences 1&5, 1&2 or 2&5 are closest relatives.

Low bootstrap support for a node can have a multitude of reasons, but
most frequently is due either to the bootstrap replicates being unable to
resolve the tree or too much conflicting information in the alignment. In the
first case, the alignment contains too few phylogenetically informative
columns in relation to its length, increasing the probability that a statistical
sampling of columns will miss a large number of them. This causes the
replicate trees to greatly differ in topology and the bootstrap support for
many nodes to drop. The second scenario is usually caused by either bad
alignments or mutational saturation. Alignments are regarded as “bad” if
residues that did not descend from the same position in an ancestral
sequence are grouped in the same alignment column. Comparing
nonhomologous features causes evolutionary scenarios to vary across
replicates and thereby lowers bootstrap support for the tree. Mutational
saturation refers to alignments in which multiple mutations at the same
position have obscured the original phylogenetic signal. If, in the course of
evolution, position X in sequence Y changed multiple times, for example
from D>E, E>N, N>F, then what we observe is a change from D>F. Should
speciation events have occurred during that time, common ancestry can no
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longer be inferred from that residue. Preceding mutations cannot be
recovered and some phylogenetic signal is lost. In a fully saturated
alignment no phylogenetic information is retained. The observable
sequence similarities are due to chance, random sampling of alignment
columns causes large variation in the resulting phylogenies and bootstrap
support is reduced.

Suboptimal alignment and mutational saturation.
Detecting mutational saturation of alignments is relatively straight
forward and therefore less problematic to remedy. AsaturA (Van de Peer

2002) is a program that allows even
.

.d&-  highly saturated alignment to be used
Frequent e for phylogenetic inference. It uses
Rar e : information from substitution

matrices to determine which amino
acid exchanges are probable and
= «#,'® therefore likely to occur frequently,

and which are less probable and more

rarely encountered. Plotting the
: number of “rare” and “frequent”
FigureVIII substitutions over pairwise sequence
dissimilarity produces a graph from
which the alignment saturation can be estimated (FigureVIII). In this case,
the graph shows a large amount of mutational saturation for “frequent”
substitutions. For medium to distantly related sequences, center and right of
the graph, no difference in the number of frequent substitutions is
discernible. This points to the frequent substitutions being saturated and
therefore unable to correctly reflect evolutionary history. For the rare
substitutions, sequence divergence correlates in a linear fashion with the
number of observable mutations. This points to negligible amounts of
mutational saturation and makes these residues ideally suited for
phylogenetic inference.

Dealing with alignments containing nonhomologous sequences is more
problematic. Global alignment programs do not verify whether or not the
provided sequences are homologous, all they do is align sequences as best
they can. Improving alignment quality therefore requires both checking the
homology of aligned sequences and estimating the reliability of each
alignment column. The latter can be achieved by comparing alternative
alignment strategies and increasing the confidence for recurringly grouped
residues. One way to derive estimates both for sequence homology and
residue confidences is to use local alignments of all possible sequence pairs.
Local alignments, such as generated by the sequence similarity search tools
BLAST or PSI-BLAST provide both a statistical measure of sequence
similarity and alternative alignments for all pairs of sequences. Residues
aligned in the same fashion in both the global and pairwise alignments are
increased in confidence, resides aligned differently are reduced in
confidence. The amount by which the confidence changes is dependent on
the P-value of the local alignment, i.e. the probability of the sequence
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similarity being due to chance. The lower the P-value, the more the local
alignment will influence alignment confidences. Using this approach it is
possible to rate both sequences and individual residues as to how likely they
are to be homologous compared to the rest of the alignment.

Once such estimates are available, sequences or alignment columns of
low confidence can either be excluded from analysis or manually
reexamined and improved.

Evolution, lateral-gene transfer and genome duplication:

Phylogenetic trees have been used throughout history to classify
organisms according to shared ancestry. Some of the best examples for this
may be found in the extensive and convoluted family trees of ancient
European noble houses, which charted the appearance, birth, and
extinction, death, of individuals over time. Similarly, phylogenetic trees have
been used by biologists to visualize the presumed common ancestry as well
as appearance and extinction of species.

Over the course of history, many scientists have attempted to order all
living organisms according to some grand classification scheme. The
undoubtedly most influential scheme was proposed by Carolus Linnaeus in
his Systema Naturae in 1735. Even though our ideas about how the world
came to be have changed dramatically, the basics of his proposal are still in
widespread use, such as the binomial nomenclature and the hierarchical
classification of groups within groups.

On July 1* 1858 manuscripts from both Charles Robert Darwin and Alfred
Russel Wallace were presented to the Linnean Society of London and
marked the first public airing of the hypothesis of natural selection. The idea
of natural selection influencing the evolution of species gave classification
schemes a new foundation. The ideas of descent with modification and
natural selection provide the basis for the evolutionary theories currently in
use. Phylogenetic trees attempt to combine hierarchical classification with
evolutionary theory. A tree displays how, based on our understanding of
evolution, larger and larger sequence groups may have emerged from a
single ancestor, until the tree describes the world we observe today.

Studies attempting to reconstruct the tree of life, i.e. classifying all extant
species, have historically been based on analyses of phenotypic traits shared
between organisms. Zuckerkandl and Pauling showed in the early 1960's
(Zuckerkandl 1962) that molecular sequences contained large amounts of
information encoded in their characters, however, prior to the 1970's most
phylogenetic analyses were still performed on anatomical similarities as
these were the most easily available data and enabled the comparison of
existing species with fossils. In the mid-1970's the advent of DNA
sequencing methods made the world of molecular data readily accessible to
phylogeneticists. DNA or protein sequences provided easy access to a large
number of mostly independent traits, ideal as a basis for phylogenetic
inference, and quickly spread in use. Surprisingly, however, trees inferred
from nucleic or protein sequences did not always correspond to the
accepted evolutionary history of an organism and were found to frequently
contradict other gene trees.
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In the 1990's Carl Woese proposed replacement of the bipartite tree of life
containing prokaryota and eukaryota, with a tripartite representation in
which bacteria, archaea and eukaryota emerge as major branchings, so as to
reflect the profound differences molecular analyses had uncovered between
these three groups (Woese 1990). These differences had not been apparent
in phenotype based trees, due to the limited number of features comparable
across microbes. Trees based on the small subunit ribosomal RNA (ssTRNA),
a ubiquitously represented and highly conserved sequence, have since
become the basis for our classification of distantly related organisms
(Saccone 1995, Brochier 2002, Cavalier-Smith 2004). However, problems
with the scenario of exclusive inheritance from parent to offspring (vertical
inheritance) appeared in the mid-1990's as more molecular data became
available and multiple sequence families were shown to produced trees in
severe conflict with the ssTRNA phylogeny (Gupta, R.S. 1998, Doolittle 1998,
Martin 1999).

These conflicting groups of sequences were at first thought to have been
caused by extremely rare events of DNA exchanges of unrelated organisms
and the resulting evolutionary implications to be of negligible importance
compared to the effects of vertical inheritance. Over the past decade,
however, the importance of lateral gene transfer (LGT), the transfer and
incorporation of foreign genetic material in a genome, has been recognized
and has revolutionized our theories regarding bacterial evolution.

Bacteria Eukarya Archaea Bacteria Eukarya Archaea
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Figure IX Adapted from Doolittle 1999

In some cases LGT has been described as “the major, if not the sole,
evolutionary source of true innovation: novel enzymatic pathways, novel
membrane transporter capacities, novel energetics” (Woese 2000) and that it
“maintains the universality of the genetic code... because the code is an
evolutionary lingua franca required for an essential 'genetic commerce'
among lineages” (Woese 2000). It has also been proposed that the extent
with which LGT occurs has made it necessary to redefine the species
concept as genes seem to be readily exchanged among many distinct
lineages (de la Cruz 2000, Ochman 2000). Evidence for extensive amount of
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lateral transfer have been found in multiple prokaryotic genomes, with LGT
being offered as the most likely hypothesis for up to 24% of all open reading
frames (ORF's) and even higher percentages in certain regions (Nelson 1999,
Ruepp 2000, Cohen 2003).

This alternative method of gene propagation is, by now, firmly
established as relevant to the evolution of bacterial genomes, but automated
means of detecting LGT's in the course of genome annotation efforts have,
so far, relied on pairwise sequence similarities even though they are known
to be a suboptimal means of detecting sequence relatedness. It was only in
2001 that Sicheritz-Ponten and Andersson presented a tool for automated
detection of LGT's in microbial genomes based on phylogenetic trees
(pyphy) (Sicheritz-Ponten 2001).

LGT's, however, are not the only way of producing gene-trees in conflict
with the species tree. One of the easiest ways of enabling novel evolutionary
discoveries is to multiply the number of proteins selection can work on. This
is achieved most frequently via duplication of either individual genes or
larger genomic regions (Stephens 1951, Ohno 1967, Ohno 1970), the
duplicate genes subsequently either evolving towards new functions or
being lost. Differential gene duplication or loss can therefore cause trees to
contain one gene for certain species and a number of homologs for others.
Such trees can be regarded as contradicting the species-tree, as one species
is represented by multiple sequences in the gene-tree.

Gene duplication, gene loss, lateral transfer and a number of other events
influencing genome evolution can therefore be reconstructed by comparing
gene trees to the phylogenetic history of a species and observing where, as
well as the manner in which they differ. Phylome analyses attempt exactly
this. The phylome represents the complete set of trees derived for the
proteome of an organism. By comparing all individual trees in the phylome
to the ssTRNA phylogeny, the gene accepted to best reflect the evolutionary
history of species, it is possible to infer whether observed discrepancies
occurred individually, for single genes, or if the event causing the differences
encompassed a larger region, possibly the entire genome.

In 1976 Dingerkus and Howell proposed that a genome duplication gave
rise to the ray-finned fish (actinopterygia), based on the large number of
chromosomes found in species whose ancestors split off early in the
evolution of this lineage (Dingerkus 1976). Multiplying the number of genes
in the genome may have been a key event enabling further diversification
and adaptation for this hugely successful lineage. A number of studies have
since provided support for this hypothesis, such as the seven hox clusters
found in Zebrafish (Amores 1998), the phylogenetic trees for 49 clades of
orthologous proteins (Taylor 2003) and the analysis of the Tetraodon
nigroviridis genome draft (Jaillon 2004). Just as phylogenies are the most
accurate method of determining closest sequence relatives, they also
provide the most accurate means of recovering the more distant
evolutionary relationships of sequences. If many genes in a genome show
identical duplication patterns and the events coincide with each other, it is
plausible to predict a large duplication event occurring once rather than a
number of smaller events occurring multiple times. Further evidence, such
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as chromosome location and collinearity of regions can be used to
corroborate or disprove such large duplication hypotheses. Taylor et al.
performed a large scale analysis of the danio proteome using phylogenetic
reconstructions to determine clades of orthologous genes in support of the
duplication hypothesis. Unfortunately their method was based on manual
generation and examination of large sets of trees which prohibits their
approach from being routinely applied to other genomes. A tool able to
automatically select sequence homologs, generate alignments, infer trees
and automatically select those of relevance to the question at hand, would
be a major facilitator for many comparative genomics analyses.

Protein classification:

[ ] Duplication (generates paral ogs) Par al ogs
I Speci ation (generates orthol ogs)

Protein A Protein A

Species 1 Species 2
Par al ogs Co- Ot hol ogs Ot hol ogs

IR

Protein AProtein A Protein A/Protein AProtein A
Species 1 Species 1 Species 2|Species 1 Species 2

Figure X u ]

While efforts in genome annotation and comparative genomics are
laudable, the quest for knowledge about proteins can be extended in other
directions as well. Large sequence families that arose via radiation of
ancestral genes make it difficult to assign the correct ortholog for a new
sequence and thereby greatly reduce the predictive capabilities of
phylogenies. Sequences that arose via a speciation event are referred to as
“orthologous” while sequences that arose through gene duplication are said
to be “paralogous”. The description “co-ortholog” is given to genes that
duplicated in one species but not another, as simple orthology would not
account for the fact that either of the duplicates may since have evolved a
novel or retained only part of the original function. Proteins under neutral
selection, such as recent duplicates, one duplicate being able to counteract
the effects of deleterious mutations in the other, accumulate mutations at a
much higher rate and generally either evolve new functions or are removed
from the genome. Standard duplication scenarios have three outcomes: A)
one of the duplicates is lost; B) one of the duplicates evolves a novel function
and both are retained; C) both duplicates specialize on performing different
sub-functions of the original gene and thereby remain essential. Evidence
for events combining radiation and subsequent selection can be found in a
multitude of gene families. A nice example are the histidine kinases and
response regulators, where different organisms multiplied different family
members independently of one another to cover a wide variety of functions
(Koretke 2000, Rabus 2004). Figure XI shows the histidine kinase and
response regulator complement of Desulfotalea psychrophila, a cold loving
bacterium living in arctic ocean sediment. The variously colored triangles
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symbolize different families of histidine kinases. The size of each symbolizes
the number of representatives present in the genome. The smaller triangles
for the groups Sam, Syn, Anti-sigma, Mth, Lyt, Arf and PDK show that no
sequence representatives for these families could be found. On the other
hand, the Ntr family is excessively represented and, based on phylogentic
reconstruction, can be subdivided into two subfamilies both for the
histidine kinases as well as for the corresponding response regulators.

2/ o
4455/651

4848/1400

1995/161%

5925/3270 1
6446/4240

gter onte
44551651
44871400
99571618
592573270
644614240

] 499671619

—o 592213267

A — 6445/4239

gl 0193419 — e - - 60183418
4703/1079 ] - 470201078
6083/3564 ————f w - - D ] -uger 593373284
4860/1415 Aiil I i @ AR3B1413

606073526 |\

606013526
606113527
6063/3532
564512775
513971884

606173527
606373532
564512775

TO48/5237
| 53752287
56122722
5614/2725
44720682

44907705

5065/1726

2293851

4355481
44731683
475071160
506471725
513871883
S155/6999

515671915
679314861
688114991
6985/513G
| 7056/5248

5572026356
6096/3582
638774136
GBOGIAKTS
683074900
698615137
45671831

v
59063243 F——Fo = -
—| 590573242
45661829 RBasal Cit —fE5 A
v GRO2/4KT1
6B00/4869 k) D 680014869
568172837
3 630974380
Ty Tosarsads
4 STy 4784
AAA @ UATTase E=— Trac < ostormse rara7ss B
Chow vas ) 7

| = HPT 7 9) 7006/

¥ ] s 7 75
DUT] -] PRPb <fE > QL'J 5> 1iskA B ‘;gggmigs
G o AMP REC D) - — c 9
T == ] DpyxaIDDNG O g CieC Tl 33 68074876

Bd

Figure XI (adapted from Rabus et al. 2004)

Simply because two organisms share an identical number of sequences
from the same protein family, it cannot be deduced that each of the
sequences has an ortholog in the other species. As phylogenies attempt to
recover the evolutionary history of genes and are heavily dependent on
multiple sequence alignments, problems at the alignment level, such as the
difficulty of distinguishing between orthologs, co-orthologs and paralogs,
especially pronounced if some of the paralogous genes have been lost, can
greatly reduce the confidence estimates for phylogenetic reconstruction
procedures.

A prime example for problematic classification is provided by the family
of “ATPases Associated with diverse cellular Activity” (AAA-ATPases) first
described in 1991 (Erdmann 1991). This highly diverse family is represented
in all living organisms and its members are associated with a wide range of
functions such as gene expression, vesicle mediated transport, membrane
fusion, peroxisome and endosome biogenesis, proteolysis, microtubule
severing and control of cell division. Although functionally diverse, family
members commonly form hexameric rings and unfold proteins in an energy
dependent manner. The multidomain nature of these proteins, consisting of
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a N-terminal domain followed by one or two ATPase domains, complicates
the analyses. On the one hand, the homology of N-domains of many
sequences is unclear, on the other hand, AAA proteins with two ATPase
domains may contain one inactive domain, for example domain 1 in
peroxisomal AAA-proteins and domain 2 in NSF (N-ethylmaleimide-
sensitive factor) or have retained two active versions such as p97/CDC48.
Inactive domains are under less selective pressure, accumulate mutations
more rapidly, make the task of finding and aligning homologous active
domains more difficult, introduce noise and therefore should be removed
prior to phylogenetic inference. Mutational saturation of the dataset further
complicates the picture. The presence of AAA-ATPases in all living
organisms suggests that these proteins were already present at the time of
the last universal common ancestor, the organism that gave rise to all living
organisms. As a AAA-ATPase domain is only approximately 240 residues
long, it can be expected that some of the limited number of mutatable
positions, those for which a residue change will not inactivate the protein,
will have changed multiple times since the divergence of bacteria, archaea
and eukaryota. Subsequent mutations at the same position mask
phylogenetic information, introduce noise and complicate the process of
tree inference.

The ancient evolutionary origin, numerous sequence representatives,
mutational saturation, differentially selected or inactivated domains and
highly diverse functions make this family both interesting and challenging to
classify. Even though this sequence family has been studied for over a
decade, a multitude of representatives are known and a number of major
subfamilies are readily definable, deeper insights into the evolutionary
history of AAA-ATPases are not readily apparent. Various attempts at
classification have differed in the set of sequences used, the approach and in
the treatment of two-domain AAA-ATPases. (Beyer 1997, Swaffield 1997,
Wolf 1998, Froehlich 2001, Lupas 2002). A clear delineation of the family
members and robust estimates for the basal branching pattern would
provide a sound basis for future research into history, major evolutionary
events and mutational constraints of the AAA-protein family.

Aim:
-Sequence annotation.
-Evolution of proteins:
Gene duplication, differential selection,
CLANS: inactivation, Circular permutation,
Analyze the sequence insertion, deletion, domain shuffling,
complement of evolutionary constraints, ...

protein families.

Protein .
) -Genome and sequence annotation.
PhyloGenie: ] -Biochemical pathway prediction.
Analyze the protein -Comparative genomics:
complement of Gene/genome duplication, differential
species families. gene loss, lateral-gene transfer,

evolutionary constraints,...
Figure XII
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The amount of data being generated by the various genome projects is
enormous and the direct cause of a number of problems: A) Databases are
flooded with sequences containing “hypothetical” or “unknown function”
as sole annotation; B) sequence data is often of low quality and subject to
frequent changes; C) database size has grown exponentially, causing
similarity search programs to return large numbers of potential sequence
homologs that need to be examined.

Tools able to analyze large amounts of data are mostly inadequate at
classification and phylogenetic inference methods have severe difficulties
when faced with large datasets. Improving the resolution of a phylogeny can
generally be done by either extending the alignment to include more
phylogenetically relevant residues, or by adding more sequence
intermediates. Every additional sequence increases phylogenetic signal as
well as noise. Depending on sequence diversity and alignment length, every
alignment reaches a point where increasing the number of sequences will
introduce more noise than phylogenetic signal. Adding more sequences
beyond that point only exacerbates the problem. Therefore, all multiple
sequence alignments have an upper limit to the number of nodes they can
resolve via phylogenetic inference. In addition, phylogenetic trees are a lot
more difficult to analyze in an automated manner than BLAST similarities.

Comparative genomics frequently rely on BLAST results as their main
data source due to difficulties in automating phylogenetic inference and
analysis. For protein family analyses, the major problem lies in the large
number of potential sequence homologs. Although it is possible to base a
phylogeny on a representative sample of the family, determining that
sample is difficult. Classification of the family is needed for representative
sampling and a representative sample is required for classification.

On the one hand we attempt to develop methods that analyze whole
proteomes in an automated manner, thereby extending the applicability and
ease of use of comparative genomics to everyday biological problems. On
the other hand we look for classification schemes that are capable of
handling the large number of sequences returned by similarity searches for
some of the larger protein families.

Although methods development is a central part of this work, we want to
place at least as much emphasis on application to biological data. For this
reason we decide to repeat three analyses in which we believe previous
methodological insufficiencies may have hindered robust and in-depth
assessments: [) Detection of all lateral-gene transfers between
Thermoplasmata (Thermoplasma acidophilum, Thermoplasma volcanium,
Ferroplasma acidarmanus and Picrophilus torridus) and Sulfolobus
(Sulfolobus solfataricus and Sulfolobus tokodaii), 1I) Detection of all
zebrafish genes supporting the actinopterygian specific genome duplication
hypothesis and III) Classification of all AAA-proteins.
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Results and Discussion:

The first aim was to analyze lateral-gene transfer events in bacterial
genomes. Although a reasonable amount of work had already been
performed in this field, a rapid overview of the available software showed a
pressing need to extend upon existing tools to enable more efficient
analysis. Alternative methods, such as best BLAST hits or “pyphy” (Sicheritz-
ponten and Andersson 2002), appeared as suboptimal solutions to the
problem. Best BLAST hits had previously been shown to produce extensive
amounts of false-positive predictions and the pyphy sequence selection and
alignment procedures seemed inflexible, excessively stringent and easy to
improve upon. Once the basic problems concerning sequence selection,
alignment and tree inference were resolved, a means of efficiently searching
large numbers of trees for those with interesting topologies was developed,
as manual examination of hundreds of trees seemed neither the most rapid
nor the most efficient way of gathering data (Frickey & Lupas 2004). To test
the validity of our approach and the applicability of our tools, we examined
two datasets: I) the Thermoplasma acidophilum genome and II) the
incomplete Danio rerio genome, and compared our results to previously
published analyses (Ruepp et al. 2000, Taylor et al. 2003).

Project I: PhyloGenie (Frickey T and Lupas AN. 2004, Nucleic Acids Res.)

The Thermoplasma acidophilum genome was examined for lateral-gene
2 transfer events between the two

distantly related archaeal lineages
“Thermoplasmata” and “Sulfolobus”.
The LGT analysis recovered a large
number of clades of orthologous
proteins in which Thermoplasmata
and Sulfolobus representatives were
closest relatives. The distribution of
these genes over the Thermoplasma
* acidophilum genome supported the
claim of a few transfers of large DNA regions between these two lineages,
although with a lower overall amount of genes involved than predicted by
Ruepp et al. (2000). The transfer of large genome fragments from one
organism to another, coupled with the procaryotic tendency to group
functionally linked genes in a genomic region, explains how complex
metabolic pathways combining numerous interdependent genes are able to
appear suddenly in prokaryotes previously lacking the feature.

Analysis of the Danio rerio proteome for all proteins supporting the
hypothesis of a fish-specific genome duplication, greatly improved upon
previous analyses. Taylor et al. 2003 used a BLAST based approach followed
by manual alignment, tree inference and analysis to identify 49 clades of
orthologous groups showing a 2:1 ratio of zebrafish to tetrapod genes. Our
reanalysis of the zebrafish proteome was able to increase the number of
clades in support of this hypothesis to 120 in a fraction of the time required
by the Taylor et al. approach. Interestingly, most of these clades were of

150t
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morphogenic or regulatory nature. This effect may have been caused by
either A) massive loss of non-morphogenic gene duplicates, or B) as neither
the zebrafish nor the red junglefowl genomes were completed, the bias may
simply indicate a historical preference of molecular geneticists to study
morphogenic and regulatory genes.

Direct comparison with the most frequently used LGT detection methods,
BLAST and pyphy, showed that our tool was superior to both. BLAST based
results contained far too many false positives, up to 40% of all predictions,
while pyphy proved to be both less specific and less sensitive than our
approach. In addition, neither BLAST nor pyphy are able to analyze
questions about the evolution of proteins encompassing more than the
closest sequence relatives, thereby severely limiting the range of testable
hypotheses. PhyloGenie allows for queries containing complex sequence
relationships and promises to greatly extend the use of phylome analyses in
future comparative genomics studies.

Project II: Alignment validation

As the performance discrepancy between pyphy and PhyloGenie was
predominantly based on differences in quality of the alignments generated
by the programs, we decided to further refine our alignment procedure. A lot
of work had already been invested in the steps regarding sequence selection
and alignment, causing us to focus on post-processing the available
alignments.

Estimating alignment quality is a two-step process: first, the homology of
all aligned sequences has to be ascertained and second, confidence values
for individual alignment columns have to be calculated. We chose to base
our confidence calculations on BLAST or PSI-BLAST pairwise local
alignments. Residues aligned in the same fashion both by global and
pairwise, local alignment programs were increased in confidence; residues
aligned differently were reduced in confidence. The BLAST hit P-value
determined the amount confidences changed by. Testing this approach on a
few alignments retrieved from the SYSTERS database (Krause et al. 2000)
and modified for our purposes, revealed a severe problem. While capable of
detecting single false positives in an alignment, the method failed whenever
presented with multiple groups of nonhomologous sequences. FigureXIII
shows both examples. The left panel shows a graph representation of
sequence similarities for a case where the validation procedure worked. The
single outlier sequence was detected as nonhomologous and assigned a
correspondingly low alignment confidence (data not shown). The right
panel shows the more complicated case of two nonhomologous sequence
families present in one alignment. The single sequence with connections to
both groups was a man-made fusion protein and the reason why both
groups appeared in one alignment. In this case each group self-validated
independently of one another and the complete alignment was assigned
high-confidence values although clearly containing nonhomologous
features. Fortunately these cases could be detected by extending the
alignment validation procedure with a force directed layout of all pairwise
sequence similarities. The clusters apparent in the layout allowed us to
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automatically recognize whenever multiple families were present in an
alignment and correspondingly adapt the validation strategy.

The force directed placement method was subsequently greatly extended
and used in a number of analyses as it provided a means of rapidly gaining
an overview of groups of unaligned sequences. Contrary to phylogenetic
trees, the inclusion of nonhomologous sequences seemed to have little
effect on the clustering and resolution improved with increased number of
sequences.

Project III: Clans (Frickey T and Lupas AN. 2004, Bioinformatics)

The program CLANS represents a refined version of the force directed
clustering approach, optimized for sequence family detection and analysis.
Its ability to use unaligned sequences and work with datasets too large for

-, |traditional phylogenetic inference
“|greatly extend upon  existing
capabilities for rapid classification of
/large protein families. In addition, as
the approach is insensitive to the
detrimental effects nonhomologous
» sequences have on phylogenetic
" Ireconstructions, it provides a useful
means of separating true homologs
from chance hits prior to sequence
= L ——#+|glignment and tree inference.
The analytical capabilities of this tool include, but are not limited to,
automated detection of sequence families, estimating their robustness,
determining the regions containing family sequence signatures and the
ability to focus on and examine selected sequence subsets in greater detail.

This tool played a pivotal role in our ability to clearly delineate and
classify the AAA-ATPase protein family. Although previous phylogenetic
analyses always included a core group of AAA-proteins, a number of
sequence families were included in some but not others and no analysis
gave objective reasons for why their specific set of sequences was
supposedly representative for AAA-proteins. Additionally, the inconsequent
treatment of sequences, some being excluded from analysis as too divergent
although containing all canonical residues and some being included
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although missing the required catalytic residues, prompted us to search for
a more objective approach.

Project IV: Phylogenetic analysis of AAA-ATPases (Frickey T and Lupas
AN. 2004, J. Struct. Biol.)

An extensive search of the non-redundant NCBI protein sequence
database for putative AAA-ATPases returned 5101 proteins. A CLANS based
analysis showed that this set
contained representatives for all major
families present in the AAA+-
superfamily and that all sequences
known to belong to AAA-proteins were
present in a well-defined group clearly
distinguishable from the rest. Having
representatively sampled the AAA+-
superfamily in a search centered solely
on AAA-proteins, increased our
confidence in having exhaustively
sampled the AAA-family and thereby identified all sequences present in the
database. Phylogenetic analysis of the ATPase-domains for the AAA-group
recovered all of the previously defined AAA clades and, additionally, showed
clades omitted from some analyses to be basal members of the AAA-family.
Saturation correction was used to improve resolution of the tree and better
define the basal branching order.

We showed that detection and classification of all AAA-family members in
the NCBI non-redundant protein database was possible and extended upon
previously described evolutionary scenarios by defining the family, focusing
on the basal branching pattern and providing a tentative root for the tree.
Correcting for mutational saturation of the sequence alignment resolved
some of the problems observed in other phylogenetic reconstructions, such
as the grouping of domain 1 of NSF with domain 2 of other two-domain
AAA-ATPases and thereby increased confidence in the general correctness
of the tree. Assuming the tree to accurately reflect evolutionary history, a
number of surprising conclusions are apparent. Two domain ATPases seem
to have arisen on at least three independent occasions, once in the ancestor
of “traditional” two-domain ATPases (CDC48, NSF, PEX, etc.), and once
each in the clades MSPl1(plants) and YC46. Although unexpected, the
polyphyly of two-domain AAA-ATPases is acceptable, as it is due solely to
new sequences containing degenerate second domains having been
detected in the two latter groups. A further surprise was that the second
region of homology, a defining characteristic of all AAA-ATPases, seems to
have repeatedly lost the two residues immediately preceding the “arginine
finger”. Additional minor clades, mostly procaryotic and for which little is
known, were shown to be basal members of the AAA-family. Analysis of the
N-terminal domains provided some unexpected results, such as a deep split
between plant and animal YME]1 proteins, or the apparent homology of two
distantly related groups such as CDC48 and archaeal methanogens or ARC
and proteasomal ATPases. The results obtained were biologically plausible
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and unexpected predictions arising from the cluster analysis, such as the
apparent homology of N-domains of distantly related AAA-proteins, were
subsequently corroborated by other methods. Taking this tree as a basis,
some of the ideas about the evolution of this protein family may have to be
revised.

As a side effect, force directed placement was shown to be an effective
means of preliminary classification for large datasets. Contrary to
phylogenetic inference methods, there is no inherent upper limit to the
number of sequences this method can work with and, as larger numbers of
pairwise comparisons better average out false positive random similarities,
classification improves with increased number of sequences. In addition,
the method uses unaligned data, and is capable of identifying
nonhomologous sequences. The graph representation of all pairwise
similarities is less abstract than a phylogenetic tree and thereby better
approximates the actual data. Even though this method provides a better
representation of sequence similarities and is able to rapidly classify large
datasets, it is unlikely to replace phylogenetic reconstructions. Phylogenetic
trees group together sequences along one axis, evolutionary time, and
thereby generate a hypothesis about how individual sequences are related to
one another. Force directed placement does not attempt to infer
evolutionary relationships. The only aim is to rapidly find a reasonable
representation of the underlying data, providing a basis from which the
most relevant sequences can be selected.

The successful use of the clustering based approach for the AAA-dataset
led us to apply it in a number of other analyses. As a direct extension of the
above work, we classified the TAA43 protein of Thermoplasma acidophilum
as belonging to a group of archaeal AAA-ATPases most closely related to the
“meiotic” AAA-proteins found in eukaryotes (Santos et al. 2004). An analysis
of Wipi-1-alpha also benefited from cluster analysis, as it enabled us to
determine a small group of closely related sequences from within a large
subset of WD40-proteins. Based on this smaller group, we were able to
predict two duplication events in evolutionary history of the family, putative
catalytic residues and a probable function for the protein (Proikas-Cezanne
et al. 2004). CLANS is also being applied to ongoing analyses, such as
examination of the extended family of AbrB transcription regulators
(Djuranovic S., Coles M., MPI Tuebingen, unpublished), TIM-barrel proteins
(Sergeev Y., MPI Tuebingen, unpublished), visualization of the similarities of
very distantly related protein families (Soeding J., MPI Tuebingen,
unpublished) as well as analysis of the families of two-component signal
transduction proteins (TCST) (Figueroa F., MPI Tuebingen, unpublished).
Comparison of TCST family assignments, based on either manual analysis of
multiple sequence alignments, phylogenetic trees or CLANS, shows all three
methods recovering the same families. These results provide a further
example for our clustering approach being able to correctly classify a protein
family.
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Contribution:

The numerous discussions I have had with Andrei Lupas throughout the
course of this PhD. make it difficult to disentangle the individual ideas each
of us contributed. Therefore, unless stated otherwise, joint discussions
between Andrei Lupas and myself are to be regarded as having generated
the ideas presented herein.

PhyloGenie:

Development of PhyloGenie was a two step process. During my studies at
the Constance University I was involved in the Taylor et al. (2003) analysis
regarding the ray-finned fish specific genome duplication. The large number
of simple and repetitive steps the analysis required, first prompted the idea
for such a program.

After beginning my PhD. at the Max-Planck Institute for Developmental
Biology in Tuebingen, I was faced with the task of developing a tool to detect
all lateral gene transfers in a given genome. This involved automating the
selection of sequence homologs, generating alignments and inferring and
analyzing phylogenetic trees. Andrei Lupas and Kristin Koretke had already
done some work on how to best convert BLAST results to multiple
alignments, therefore the alignment scheme should be attributed to them,
but no framework integrating homology search, alignment, tree inference
and analysis was present.

All programs were conceived and written by myself; all analyses, data and
figures presented are my own work.

CLANS and AAA-ATPase analysis:

Problems in automated selection of sequence homologs and alignment
prompted the development of CLANS. The first use was the detection of
nonhomologous sequences in multiple alignments. It rapidly became clear
that the method could be used to classify sequences according to their
respective families and the idea of analyzing datasets too large to handle for
traditional classification schemes was born.

Andrei Lupas provided me with an introduction into the AAA-family,
numerous insights regarding the relationship of individual AAA subgroups
and countless helpful discussions. The program CLANS was conceived and
written by myself; all analyses, data and figures are my own work.
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ABSTRACT

Phylogenetic reconstruction is the method of choice
to determine the homologous relationships between
sequences. Difficulties in producing high-quality
alignments, which are the basis of good trees, and
in automating the analysis of trees have unfortunately
limited the use of phylogenetic reconstruction
methods to individual genes or gene families. Due
to the large number of sequences involved, phylo-
genetic analyses of proteomes preclude manual
steps and therefore require a high degree of automa-
tion in sequence selection, alignment, phylogenetic
inference and analysis of the resulting set of trees. We
present a set of programs that automates the steps
from seed sequence to phylogeny and a utility to
extractall phylogenies that match specific topological
constraints from a database of trees. Two example
applications that show the type of questions that
can be answered by phylome analysis are provided.
The generation and analysis of the Thermoplasma
acidophilum phylome with regard to lateral gene
transfer between Thermoplasmata and Sulfolobus,
showed best BLAST hits to be far less reliable indica-
tors of lateral transfer than the corresponding pro-
tein phylogenies.The generation and analysis of the
Danio rerio phylome provided more than twice as
many proteins as described previously, supporting
the hypothesis of an additional round of genome
duplication in the actinopterygian lineage.

INTRODUCTION

The amount of sequences being generated by genome projects
far exceeds our ability to manually assign any meaningful
annotation to them. To analyze the flood of ‘unknown’ or
‘hypothetical’ sequences in a reasonable time frame, auto-
mated methods are essential. These often rely on the assump-
tion that sequences have the same function as their closest
relative. The use of best BLAST hits to find these close rela-
tives may often be a viable option (1). However, Koski and
Golding showed that best BLAST hits do not necessarily
represent the closest sequence relatives (2), thereby casting

doubt on the reliability of this approach. The human genome
consortium (3), for example, predicted 113 lateral gene trans-
fers (LGTs) from bacteria to vertebrates based on BLAST
results. Subsequent phylogenetic analysis of the genes in ques-
tion, however, was unable to find support for any of these
predictions (4-6).

The use of the trees to find the closest relatives, by inferring
a phylogeny for each sequence, is a more robust but compu-
tationally demanding approach. It is difficult to automate reli-
ably, as it involves two steps—selection of homologous
sequences and multiple alignment—whose automated forms
are error-prone. A program that automates the steps of simi-
larity search, alignment and phylogenetic inference, Pyphy
(7), uses a reduced sequence database with higher-quality
annotation [Swissprot + TREMBL,(8)], fixed criteria of simi-
larity to define homology (80% coverage and 50% identity, or
identical annotation) and alignment of full-length sequences
[ClustalW (9)]. Pyphy was specifically designed to detect and
visualize LGT in prokaryotic genomes, and its restrictive
settings were chosen to optimize its performance on this
problem.

We have developed a suite of programs, PhyloGenie, which
also automates the steps from seed sequence to phylogenetic
inference, but can be used to examine a much broader range of
phylogenetic hypotheses. PhyloGenie can be used with any
standard FASTA format database, is based on local align-
ments, offers full flexibility in setting the criteria for homology
and filters phylomes for all trees matching specific, user-
defined topological constraints. To illustrate its operation
and scope, we apply PhyloGenie to two phylogenetic problems
that have been studied previously by non-automated methods
and compare its performance with Pyphy. The two problems
are the apparent large-scale LGT between T.acidophilum and
S.solfataricus (10), two phylogenetically distant Archaea that
inhabit the same environment, and the presumed additional
genome duplication in the actinopterygian lineage since its
divergence from tetrapods (11).

METHODS
Genomes and databases

NCBI taxonomy files and the non-redundant (nr) sequence
database were obtained from the NCBI website (www.ncbi.
nlm.nih.gov). The complete genome of T.acidophilum and all
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sequences for Danio rerio in the nr database of October 2003
were obtained from the same source.

Sequence similarity detection and alignment

Sequences were compared with the nr sequence database using
BLASTP v2.26 and multiple sequence alignments were
derived using the Java program Blammer. Blammer consists
of five post-processing steps for BLAST result files that con-
vert sets of high-scoring segment pairs (HSPs) to multiple
alignments; this routine relieves the gapping problems that
arise during the conversion of pairwise alignments to multiple
alignments (Figures 1 and 2). All parameters (X to P) specified
below can be customized and were chosen so as to maximize
the number of BLASTP hits while providing reasonable sup-
port for sequence homology.

First, full-length sequences for HSPs up to expectation
values (E-values) of X (X = 10) are extracted, which enables
the sequence database to be searched with a profile hidden
Markov model (HMM) (12) in a later step. The HSPs of the
query sequence with a coverage greater than Y (Y = 60%) and
E-values better than Z (Z = 10-5) are extracted and the most
dissimilar K (K = 150) of these are converted to a multiple
alignment. The coverage and cutoff E-value are used to deter-
mine sequence homology and the most dissimilar HSPs are
used to ensure that the HMM generated from the resulting

alignment in a later step is representative of all of the relevant
BLAST hits instead of only a large group of mostly identical
sequences. Alignment regions with more than L (L = 100)
consecutive ungapped columns are taken as alignment anchor
points and all residues between such anchors are realigned
using ClustalW, thus resolving inconsistent gapping problems.

A HMM, derived from the resulting alignment, is used to
search the database of full-length sequences generated in the
first step. This removes false positive BLAST hits and better
defines the beginning and end of alignable sequence regions
due to the higher sensitivity of HMMs. The alignment from
which phylogenies are inferred consists of the HMM-HSPs
with E-values better than M (M = 10™°).

Sequences of the same organism with more than N
(N = 99%) sequence identity are thought to be redundant
database entries and only one copy is retained. In cases
where the HMM search returns more than P sequences
(P = 150), only the best P matches are converted to a multiple
alignment so as to the keep ensuing phylogenetic calculations
and analyses in a reasonable time frame.

Pyphy
The program Pyphy was obtained from T. Sicheritz-Ponten

(Technical University of Denmark, Lyngby) and installed
under Gentoo Linux. To make the output of Pyphy comparable

A
Pairwise alignments:
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Figure 1. Alignment excerpts showing the most commonly encountered problems when converting BLAST or PSIBLAST HSPs to multiple alignments. (A) Three
BLAST HSPs combined to a multiple sequence alignment and the resulting gapping problems. (B) Extreme examples of excessive and inconsistent gapping.
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Figure 2. Layout showing the BLAST/PSIBLAST post-processing steps used to reduce excessive and inconsistent gapping. (1) All full-length sequences are
gathered for HSPs and form the database used for HMM-searching in 5. (2) All HSPs matching E-value, score and coverage cutoff criteria are converted to a multiple
sequence alignment. (3) The alignment sequences are filtered by maximum sequence identity to remove duplicate entries and gapped regions are realigned to resolve
gapping problems. (4) A profile-HMM is derived from the multiple sequence alignment. (5) Sequences from step 1 are searched with the HMM generated in step 4 so
as to better define the start and end of alignable regions and thereby improve alignment. (6) HMM-HSPs are converted to a multiple sequence alignment.

with PhyloGenie (specifically, to avoid distance versus parsi-
mony issues), tree inference was handled in the same way for
both programs by using the PhyloGenie routines.

Phylogenetic inference

Phylogenies were inferred using neighbor-joining (NJ) (13) in
combination with the Poisson distance correction scheme and
bootstrapped with 100 replicates.

External programs

For full functionality, it is necessary for the NCBI taxonomy
files 'names.dmp’ and 'nodes.dmp’ (necessary for tree analy-
sis) as well as BLAST (www.ncbi.nlm.nih.gov), HMMER
(http://hmmer.wustl.edu) and ClustalW (www.ebi.ac.uk/
clustalw) to be installed. To further customize the utility, it
is possible to replace the alignment and tree construction rou-
tines. Any program or script that accepts FASTA format


http://hmmer.wustl.edu

5234 Nucleic Acids Research, 2004, Vol. 32, No. 17

sequences as input and generates clustal format alignments
can replace ClustalW as an alignment tool. Similarly, any tree
construction program that accepts aligned FASTA format
sequences and generates Newick format trees can replace
the provided NI tool.

Tree analysis

The T.acidophilum phylome was searched for trees showing
LGT between Thermoplasmata and Sulfolobus using the query
‘(Thermoplasmata & Sulfolobus & !(*cellular organisms))’.
Trees corresponding to this search string included those with at
least one node containing Thermoplasmata and Sulfolobus
sequence representatives but no other cellular organisms.
For the zebrafish set of trees, the query ‘((Danio rerio {=2}
& Homo sapiens {=1} & Mus musculus {=1} & Gallus gallus
{=1} & Euteleostomi) & !(*Eukaryota))’ returned phyloge-
nies containing nodes in which two genes were present in
Danio rerio and exactly one in Homo sapiens, Mus musculus
and Gallus gallus. In addition, sequences belonging to non-
euteleostomi eukaryotes were not permitted in that node.
Prior to analysis, sequences belonging to the NCBI taxo-
nomic groups ‘Viruses’, ‘Viroids’, ‘other sequences’ and
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‘unclassified” were excluded and all nodes supported by boot-
strap values below 50 were collapsed.

The analysis of unrooted trees is far more complex than that
of rooted trees due to missing directionality (Figure 3a). How-
ever, automated rooting of trees is non-trivial. We have imple-
mented the following rooting scheme that ensures correct
directionality for at least the branch containing the seed
sequence, i.e. the one the tree was calculated for, and fre-
quently the complete tree. A tree is rooted by assigning a
taxonomic ‘level’ to each node and rooting at the node
with the lowest level (i.e. closest to ‘root of life’ or ‘root’)
(Figure 3d). To assign a node’s taxonomic level, the tree is first
rooted with the seed sequence (Figure 3a: MAN) and the
lowest common taxonomic denominator for all descendant
species is calculated for each node (Figure 3b). Next, the
tree is rooted at the leaf-node, the least related and having
the highest number of nodes separating it from the seed
sequence (Figure 3b: E.coli K12). All nodes are then reas-
signed a taxonomic level. If a node’s new taxonomic level
differs from the previous assignment, the level closest to ‘spe-
cies’ is retained (Figure 3c). The second rooting and round
of taxonomic assignments is done to remove directionality
from the taxonomic assignments and ensure that they are
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Figure 3. Tree rooting scheme. (a) Unrooted tree. (b) Tree rooted at the seed sequence (Man) with taxonomic “‘level” assignments for each node. (¢) Tree rooted at the
tipnode least related and most distant from the seed sequence (counting nodes) after the second round of taxonomic assignment. (d) Final tree, rooted at the most basal

node the most distant from the seed sequence.



independent of the way the tree was rooted. The node closest to
‘root of life’ (last common ancestor for all proteins in this tree)
is used to root the tree (Figure 3d). If multiple nodes of the
same ‘lowest’ taxonomic level exist, the tree is rooted at the
node most distant from the seed sequence.

Computing resources

The T.acidophilum analysis was performed on an AMD64
2400 1CPU workstation running Linux. Analysis of the Danio
rerio proteome was done on a SUN V880 under Solaris9. All
Pyphy analyses were performed on AMD64 2400 workstation
running Linux. Generation of the T.acidophilum phylome
required 78 h. The BLAST searches for each protein took
14 h, the conversion of BLAST to multiple alignments took
an additional 60 h, and 4 h were needed to infer phylogenetic
trees and bootstrap each with 100 replicates. The analysis of
the resulting phylome took 36 s.

Availability

The software can be downloaded from http://protevo.eb.
tuebingen.mpg.de/download.

RESULTS AND DISCUSSION
The PhyloGenie program

Analysis of phylomes, defined as the complete set of phylo-
genetic trees derived from the proteomes of organisms (7),
requires four key steps: selection of homologs, multiple align-
ment, tree inference and filtering for specific tree topologies.

In Pyphy, the selection of homologs is guided to a large
extent by sequence annotation. This requires high-quality
sequence databases that provide standardized annotation,
such as Swissprot and TREMBL, which prevent the use of
most public databases. Since both Swissprot and TREMBL lag
substantially behind the nr sequence database, both in number
of sequences and completeness, we have implemented a
sequence selection routine in PhyloGenie that is completely
driven by local pairwise similarity. First, we extracted
sequences with domain-sized regions of statistically signifi-
cant sequence similarity, using the search tools BLAST or
PSIBLAST, which are fast, reliable and sensitive. We then
refined this set during the alignment process, using HMMs (see
Methods; Figure 2).

Good phylogenies require good alignments. The errors
incurred in the alignment process cannot be corrected by
the subsequent steps of analysis. Non-homologous sequences
or domains in an alignment, misaligned residues or the unfor-
tunate selection of sequence representatives can lead to errors
and possibly invalidate the inferred tree. Generating high-
quality sequence alignments can therefore be seen as the
most critical step on the path from seed sequence to phylo-
geny. When producing alignments, it is necessary to decide
between aligning full-length sequences and aligning only the
conserved regions for which sequence similarity, presumably
due to shared descent, is unambiguously determinable. Pyphy
uses the global alignment program ClustalW to align full-
length sequences, thus requiring that all sequences in the align-
ment match over most of their length. This precludes the
application of Pyphy to many proteins, such as the histidine
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kinases and response regulators of two-component signal
transduction systems, which show an enormous diversity in
length and domain composition, but are nevertheless reward-
ing targets for phylogenetic analysis based on their conserved
kinase and phospho-acceptor domains (14). For this reason,
PhyloGenie contains a novel alignment routine, Blammer,
which post-processes local pairwise sequence alignments
obtained from BLAST or PSIBLAST (see Methods;
Figure 2) to focus the resulting multiple alignment on con-
served domains. Blammer extracts the BLAST HSPs above a
given significant cut-off and coverage, converts them to a
multiple alignment, identifies anchor regions of ungapped
sequence and realigns the gapped regions in between using
ClustalW. It then builds an HMM of the alignment and
searches all full-length sequences that have BLAST HSPs
in response to the original query for significant matches,
which it realigns to obtain the final alignment. In addition,
and unlike Pyphy, PhyloGenie allows users to customize all
parameters in the search and alignment routines, thus making
it possible to optimize PhyloGenie for specific questions.

Many approaches to tree inference exist and different meth-
ods may be used depending on the available computing infra-
structure, the average size and the quality of alignments. By
default, PhyloGenie provides a neighbor-joining (NJ) method
(13), a fast and robust way to infer trees. This can be replaced
by any program or script that accepts aligned FASTA format
sequences and generates New Hampshire Bracket Format
(Newick) trees. For example, PhyloGenie contains a script
(treepuzzle.pl), which allows the use of Tree-Puzzle (15),
one of the faster maximum likelihood tree inference programs.
We believe that this solution is preferable to that implemented
in Pyphy, which uses the program PAUP (16) for tree infer-
ence. PAUP is a proprietary program and uses a program-
specific tree format.

A large repository of phylogenetic trees is of limited use
unless a way of separating relevant from irrelevant trees for the
question at hand is provided. For example, in evaluating the
actinopterygian genome duplication hypothesis, Taylor et al.
(17) examined large numbers of trees manually, as phyloge-
nies proved difficult to analyze in an automated manner. To
reduce the number of trees that have to be examined manually,
PhyloGenie contains a tool that extracts phylogenies corre-
sponding to specific, user-defined topological constraints from
a database of trees. Pyphy circumvents this problem by focus-
ing on a single phylogenetic hypothesis, namely LGT.

Application to a LGT hypothesis

Thermoplasma acidophilum is a thermoacidophilic euryarch-
aeon that lives at 59°C and pH 2, whose genome sequence
suggests an extensive LGT with a phylogenetically distant
organism, the crenarchaeote S.solfataricus that inhabits the
same ecological niche (10). This transfer was deduced from
the fact that 252 of 1478 genes of Thermoplasma had best
BLAST matches to proteins of Sulfolobus. Since the Thermo-
plasma—Sulfolobus BLAST comparison was originally done
before the completion of the Sulfolobus genome, we repeated
it and obtained 303 genes for which best BLAST hits predicted
a Sulfolobus sequence as the closest relative. A PhyloGenie
search for LGTs between Thermoplasmata (T.acidophilum,
T.volcanium, Ferroplasma acidarmanus, Picrophilus torridus)
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and Sulfolobus (S.solfataricus and S.tokodaii) returned 185
trees. Of the 252 LGTs originally predicted from BLAST
similarities (10), less than half were recovered by the Phylo-
Genie approach. An analysis with Pyphy returned 148 trees.

The potential LGTs are not distributed uniformly across the
genome (Figure 4); the patterns of distribution are similar for
the three methods, with local differences in the exact numbers.
Globally, 93 LGTs were predicted by all three methods, 71 by
PhyloGenie and BLAST, 40 by Pyphy and BLAST and 1 by
PhyloGenie and Pyphy. A closer analysis as to why one
method differed from the other two revealed that in the set
of 40 proteins missed by PhyloGenie but predicted as LGTs by
the other two methods, most were compatible with the lateral
transfer hypothesis but were excluded due to low bootstrap
support (Table 1). In the set of 71 proteins missed by Pyphy, 43
were due to the use of the reduced sequence database that
Pyphy uses and the very stringent inclusion criteria for homo-
logous sequences; this caused many alignments to miss

relevant proteins and, in some cases, to consist solely of
one protein from each of the two Thermoplasma species,
T.acidophilum and T.volcanium. The one tree missed by
BLAST is due to an archaeal sequence with a marginally better
E-value than the closest Sulfolobus sequence relative.

In summary (Table 1): (i) 93 LGT predictions were sup-
ported by all three methods, and a further 90 were supported by
at least two of the three methods and not contradicted by any;
(i) 8 LGTs were predicted by BLAST and PhyloGenie but
contradicted by Pyphy, 13 were supported by BLAST and
Pyphy but contradicted by PhyloGenie and 1 was supported
by both Pyphy and PhyloGenie but contradicted by BLAST.
Taking protein LGT predictions supported by at least two
methods and not contradicted by any phylogenetic approach
as true positives (184 trees), showed BLAST to be the most
sensitive method with >99% sensitivity (183 of 184 true posit-
ives recovered) but also the least selective with 60% select-
ivity (303 predicted LGTs, 183 true positives). PhyloGenie
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Figure 4. Chromosomal distribution of presumed laterally transferred ORFs between Thermoplasmata and Sulfolobus, according to PhyloGenie, Pyphy and best
BLAST hits. The light gray, dark gray and black circles encompass the LGTs predicted by BLAST, Pyphy and PhyloGenie, respectively.

Table 1. Overview of LGT events identified by BLAST, Pyphy, and PhyloGenie

LGT Average Negative Average  Thermoplasmata Trees missing  Additional Additional
trees  bootstrap  trees” bootstrap  and Sulfolobus only Sulfolobus® sequences Archaea
support support (PhyloGenie/Pyphy)® invalidate LGT?  invalidate LGT®
BLAST 99 — 67 64 =30 — — — —
PhyloGenie 20 79 £ 16 3 48 +4 1/0 Pyphy: 11 Pyphy: 2 Pyphy: 2
Pyphy 14 79 £ 20 8 87 £ 23 0/2 PhyloGenie: 3 PhyloGenie: 8 PhyloGenie: 7
BLAST + PhyloGenie 71 87 £ 15 8 67 £22 27/0 Pyphy: 43 Pyphy: 7 Pyphy: 1
BLAST + Pyphy 40 88+ 16 13 62 +24 0/20 PhyloGenie: 1 ~ PhyloGenie: 11~ PhyloGenie: 7
PhyloGenie + Pyphy 1 79 £ 30 — — 0/1 — — —
BLAST + PhyloGenie + Pyphy 93 90 £ 15 — — 19/48 — — —

“The number of LGT predictions contradicted by a phylogeny based method.

"Trees based only on Thermoplasmata and Sulfolobus sequences and missing an outgroup.

“The number of trees for which the specified method failed to detect Sulfolobus homologs.

9The number of trees in which including additional sequences found by the specified method invalidate the other *s LGT prediction.
“The number of trees in which archaeal sequences invalidated the LGT prediction.



showed a sensitivity of 85% and selectivity of 85% whereas
Pyphy had a sensitivity of 66% and a selectivity of 82%. Thus,
of the three methods, PhyloGenie seems to be the one best able
to combine high sensitivity with high selectivity. In detail, our
conclusions are: (i) the Pyphy criteria for defining homologous
sequences are too strict, thereby excluding many relevant
sequences from analysis, as is apparent from the 43 true posi-
tives that were not predicted by Pyphy because it missed the
Sulfolobus homologs (Table 1); (ii) less strict search criteria,
as in PhyloGenie, circumvents this problem, but the resulting
sequence diversity may lower bootstrap support in some cases
to <50%, thereby causing trees supporting the LGT hypothesis
to be missed, as in 24 of the 40 true positives missed by
PhyloGenie; (iii) finally, as pointed out by Koski and Golding
(2), best BLAST hits are of only moderate accuracy when
identifying the phylogenetically nearest homolog.

The hypothesis of large-scale LGT between Thermoplas-
mata and Sulfolobus, proposed on the basis of best BLAST
hits (10), is thus confirmed by phylogenetic analyses, albeit in
a smaller number of cases than originally anticipated. The
clustering of putatively transferred genes is also confirmed
(Figure 4), pointing to a process that occurred mainly by
the exchange of larger DNA regions.

Application to a genome duplication hypothesis

It has been proposed that the creation of metazoans and verte-
brates from unicellular organisms would have been impossible
without duplication of genes, as mechanisms evolving new
functions at the price of discarding established ones would
not provide an effective way to ‘‘progress” in evolution
(18,19). Genome duplication was advanced as the primary
source for new, redundant genes as it increases gene number
without changing gene dosage. Dingerkus and Howell (11)
proposed that the actinopterygian lineage (ray-finned fish),
containing over 22 000 species, arose by means of tetraploi-
dization due to the large number of chromosomes found in
species whose ancestors diverged early in the evolution of
actinopterygii. Support for this hypothesis has also been
found in the seven hox clusters present in zebrafish (20),
almost twice as many as in tetrapods, and in the 49 clades
of orthologous proteins found by Taylor et al. (17).

An analysis of the set of trees derived by PhyloGenie from
all zebrafish proteins present in the non-redundant GenBank
database returned trees for 120 clades of orthologous genes, in
which two Danio rerio proteins were present for one protein in
H. sapiens, M.musculus and G.gallus. Of these, five had no dis-
cernible annotation information, 16 proteins seemed unlikely
to be involved in development or gene regulation (synap-
tosome associated protein, chromobox4, photolyase, beta-
carotene oxygenase, opsin I, Cytochrome P450, dystrophin,
histocompatibility antigen class II, heat shock factor 1, heat
shock factor 2, laminl, lamin2, rhodopsin, troponin, and two
subunits of a Na+/K+ transport ATPase) and the majority (99
proteins) consisted of morphogenic, growth factor and signal
transduction proteins (33 HOX/PAX genes, 11 frizzled and
other receptors, 9 FGF and other growth factors, various tran-
scription factors, cyclases, kinases, etc.). In comparison,
Pyphy returned 53 trees that matched the selection criteria.
Of these, 8 had no discernible annotation, 11 seemed unlikely
to be involved in development or regulation (laminin, axin,
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HSP, UQ-conjugator, etc.) and 34 were growth factors or
signal transduction proteins (Frizzled, Hox, Pax, G-proteins,
growth factors, etc.). The PhyloGenie analysis provides
support for the genome duplication hypothesis advanced by
Dingerkus and Howell (11) by more than doubling the number
of supporting clades.

The analysis also suggests that a subsequent massive loss of
non-morphogenic genes may have occurred. However, the
Danio rerio and G.gallus genomes have not yet been comple-
tely determined. The large number of morphogenic and reg-
ulatory proteins we observe may therefore reflect, at least in
part, an historic bias of molecular genetics towards develop-
ment and cell cycle regulation. Support for this view comes
from the observation that, if only two of the three tetrapod
species are required, PhyloGenie and Pyphy return 351 and
118 trees, respectively, for nodes containing mouse and
chicken, 331 and 141 trees for nodes with man and chicken,
and 630 and 292 trees for nodes with man and mouse. It will
only be possible to form an exact picture of the number and
types of genes showing this 2:1 ratio, once completed genomes
are available for a wide range of tetrapod and actinopterygian
species.

CONCLUSIONS

We have introduced a new suite of programs for the generation
and analysis of phylomes (PhyloGenie) and have compared its
performance with that of a related software tool (Pyphy) on
two previously studied phylogenetic problems. On attempting
to detect LGTs in prokaryotic organisms, both methods seem
to perform comparably. This ceases to be the case when ana-
lyses are attempted for which Pyphy was not designed, such as
examining paralogous sequence relationships or sequence
clades encompassing more than the immediate sequence rela-
tives. In these cases, restrictive settings limit the ability of
Pyphy to detect all relevant sequences. With regard to tree
analysis, Pyphy is built to detect LGTs in a genome and gra-
phically display the results. It does not support querying of
more complex sequence relationships. In contrast, PhyloGenie
is fully configurable in all parameters relating to sequence
acquisition, alignment, and tree construction, and has the abil-
ity to filter the resulting database of trees for complex, user-
defined tree topologies.

Automated methods are powerful, but also have drawbacks.
The search and alignment parameters used for generating phy-
lomes rely on assumptions and prior knowledge that may
introduce errors or systematic biases. It is therefore essential
to manually re-evaluate, for biological relevance, the steps and
results between seed sequence and the phylogenies of interest.
The problems encountered by PhyloGenie in the example
analyses were mostly due to suboptimal search parameters
that cause some alignments to contain large coiled-coil or
low complexity regions, possibly convergently evolved fea-
tures misleading phylogenetic inference, and splice isoforms
or gene fragments complicating the automatic phylogenetic
analysis. In addition, sampling bias, alignment errors, muta-
tional saturation, long-branch attraction, methodological arti-
facts and differential gene loss can also account for the
atypical placement of species in a tree. The results produced
by PhyloGenie should therefore not be seen as the endpoint of
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an analysis but rather as the first step in reducing the number of
genes or alignments for which more time consuming, in depth
analyses would need to be performed, before being able to
draw conclusions with confidence.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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ABSTRACT

Summary: The main source of hypotheses on the structure
and function of new proteins is their homology to proteins
with known properties. Homologous relationships are typically
established through sequence similarity searches, multiple
alignments and phylogenetic reconstruction. In cases where
the number of potential relationships is large, for example in
P-loop NTPases with many thousands of members, align-
ments and phylogenies become computationally demand-
ing, accumulate errors and lose resolution. In search of
a better way to analyze relationships in large sequence
datasets we have developed a Java application, CLANS
(CLuster ANalysis of Sequences), which uses a version of
the Fruchterman—Reingold graph layout algorithm to visual-
ize pairwise sequence similarities in either two-dimensional or
three-dimensional space.

Availability: CLANS can be downloaded at http://protevo.eb.
tuebingen.mpg.de/download

Contact: andrei.lupas@tuebingen.mpg.de

INTRODUCTION

The use of homology to infer properties from known to previ-
ously unknown proteinsiswidespread throughout all domains
of molecular biology. The most commonly used marker for
homology is sequence similarity; this is so pervasive that
sequence similarity searches are frequently, but inaccurately,
referred to ashomology searches. The standard tool for estab-
lishing sequence similarity isBLAST (Altschul et al., 1997).
However, top-scoring BLAST matches do not necessarily
identify the closest homologs (Koski and Golding, 2001). As
an extreme example, BLAST identified 113 vertebrate genes
with closest matches in bacteria, leading the International
Human Genome Sequenceing Consortium, 2001 Human
Genome Sequencing Consortium to propose multiple lateral
transfer events from bacteria to vertebrates (2001). However,
subsequent phylogenetic analysis was unable to support this
hypothesis for any of the examined genes (Stanhope et al.,
2001). The reasons top-scoring BLAST matches are used

*To whom correspondence should be addressed.

despite being clearly inferior to phylogenetic reconstruction
are speed and ease of analysis. In aworld of exponentially
growing databases, situations are freguently encountered
where phylogenetic reconstruction becomes computationally
prohibitive. In addition, even before this point is reached, the
prerequisite for multiple sequence alignments make phylo-
genetic inference cumbersome and prone to errors. This is
in part because alignment complexity increases and accuracy
decreases with the number of sequences, and in part because
the limited number of phylogenetically informative sitesin an
alignment leads to loss of resolution.

An alternative approach that exploits the speed of BLAST
and avoids the problems associated with multiple sequence
alignmentsisthe visualization of all-against-all pairwise sim-
ilarities. This method can handle unrefined, unaligned data,
including nonhomologous sequences. Unlike phylogenetic
reconstruction it becomes more accurate with an increasing
number of sequences, as the larger number of pairwise rela-
tionshi ps average out the spurious matchesthat are the crux of
simpler pairwise similarity-based analyses. BioL ayout, atool
for visualizing such data based on the Fruchterman—Reingold
(1991) graph layout algorithm, has previously been devel oped
by Enright and Ouzounis (2001). Impediments in its use,
including the prerequisite for precomputed similarities, lim-
itations in changing the parameters for graph layout or the
inability to add new sequences to existing graphs, prompted
us to devel op a new implementation.

IMPLEMENTATION

Similar to BioLayout (Enright and Ouzounis, 2001) we used
a variant of the Fruchterman and Reingold graph layout
algorithm to generate graphs providing a useful representa-
tion of pairwise sequence similarities. Sequences are rep-
resented by vertices in the graph, BLAST/PSIBLAST high
scoring segment pairs (HSPs) are shown as edges connect-
ing vertices and provide attractive forces proportional to
the negative logarithm of the HSP's P-value. To keep all
sequences from collapsing onto one point, a mild repulsive
force is placed between al vertices. After random place-
ment in either two-dimensional or three-dimensional space,
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Fig. 1. Graph layout for 5101 AAA+-ATPases (Frickey and Lupas, 2004). Top right: a previously compact cluster (at P-values < 10719)
disassembles and reveals a substructure when edges with P-values above 108 are removed. Top left: the names of currently selected
sequences, highlighted by gray circles, are shown in a separate window. Botom right: graph of the P-value distribution of HSPs. Bottom
left: a sequence is selected from the dataset and used as BLAST query (double arrows). All HSPs are collected, mapped onto the sequence
and displayed in a separate window. The top panel shows the distribution of HSPs over the query, the bottom panel a closeup with individual
residues visible. When selecting a residue, for example Proline in the N-terminal region of the sequence (gray vertical bar), al sequences
with HSPs covering that residue are highlighted by white circles in the main graph. The tripartite distribution of BLAST hits for the query is
notable. Only the most N-terminal region of the query provides HSPsthat connect it to sequences outside its cluster; more C-terminal residues

have BLAST matches only within the cluster.

the vertices are moved iteratively according to the force vec-
tors resulting from all pairwise interactions until the overall
vertex movement becomes negligible. While this approach,
coupled with random placement, causes non-deterministic
behavior, similar sequences or sequence groups reprodu-
cibly come to lie close together after a few iterations thus
generating similar, although non-identical graphs for differ-
ent runs.

APPLICATION

Default input is a file with protein sequences in FASTA
format. Command line parameters specify the location
of BLAST/PSIBLAST executables, databases and search

options. The program performs all-against-all BLAST
searches and calculates pairwise attraction values based on
the HSP P-values. The graph showing all pairwise interac-
tions can be rotated, translated and zoomed to better view
sequence relationships. Discarding P-values above a certain
cutoff and varying that value can cause previously compact
groups to disaggregate and reveal their substructure (Fig. 1).
Theuser can add, extract or remove sequencefrom graphs, use
varying P-value cutoffs for layout of different graph regions
and, for comparative purposes, infer NJ-trees based on either
the BLAST P-values or distances separating vertices in the
graph. For increased sensitivity, necessary when distantly
related groups of proteins are to be viewed, it is possible
to evolve PSIBLAST profiles over a reference database and
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subsequently use these profiles to collect the HSPs used for
graph layout.

As an alternative to FASTA input, it is possible to load a
matrix of precomputed attraction values and thereby display
any kind of data based on pairwise interactions. Examples
might be visualization of social networks to determine key
organisms most likely to rapidly disseminate diseases or lay-
out of bacterial species based on similarities in metabolism
and lifestyle (trophies, antibiotic sensitivities, etc.).

A Javal.4 or higher runtime environment is necessary
to run CLANS and installation of BLAST/PSIBLAST is
required for full functionality.
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Abstract

AAA ATPases form a large protein family with manifold cellular roles. They belong to the AAA+ superfamily of ringshaped
P-loop NTPases, which exert their activity through the energy-dependent unfolding of macromolecules. Phylogenetic analyses have
suggested the existence of five major clades of AAA domains (proteasome subunits, metalloproteases, domains D1 and D2 of
ATPases with two AAA domains, and the MSP1/katanin/spastin group), as well as a number of deeply branching minor clades.
These analyses however have been characterized by a lack of consistency in defining the boundaries of the AAA family. We have
used cluster analysis to delineate unambiguously the group of AAA sequences within the AAA+ superfamily. Phylogenetic and
cluster analysis of this sequence set revealed the existence of a sixth major AAA clade, comprising the mitochondrial, membrane-
bound protein BCS1 and its homologues. In addition, we identified several deep branches consisting mainly of hypothetical proteins
resulting from genomic projects. Analysis of the AAA N-domains provided direct support for the obtained phylogeny for most
branches, but revealed some deep splits that had not been apparent from phylogenetic analysis and some unexpected similarities
between distant clades. It also revealed highly degenerate D1 domains in plant MSP1 sequences and in at least one deeply branching
group of hypothetical proteins (YC46), showing that AAA proteins with two ATPase domains arose at least three times

independently.
© 2003 Elsevier Inc. All rights reserved.

Keywords: AAA proteins; ATPases; Classification; Cluster analysis; Phylogeny

1. Introduction

AAA proteins were first described by Erdmann et al.
(1991) as a new family of ‘ATPases Associated with
diverse cellular Activities.” The family is characterized by
a highly conserved P-loop NTPase domain of about 240
residues, which, in addition to the hallmark Walker A
and B motifs, contains further regions of high sequence
conservation, most conspicuously the so-called ‘second
region of homology’ (SRH) (Tomoyasu et al., 1993). All
AAA proteins whose oligomeric structure has been in-
vestigated form hexameric rings, although in some cases,
such as that of katanin, oligomerization may only occur
under certain conditions (Hartman and Vale, 1999). The
domain architecture of AAA proteins consists of a
non-ATPase, N-terminal domain (the N-domain), con-

* Corresponding author. Fax: +49-7071-601-349.
E-mail address: andrei.lupas@tuebingen.mpg.de (A.N. Lupas).
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sidered to be the primary substrate recognition site,
followed by either one or two AAA domains (named D1
and D2). In proteins with two AAA domains one do-
main may be degenerate, such as for example D1 in
peroxisomal ATPases and D2 in Secl8/NSF. Func-
tionally, AAA proteins have been implicated in protein
degradation, maturation of membrane complexes, gene
expression, homo- and heterotypic membrane fusion,
and microtubule disassembly. Mechanistically, they are
thought to exert their activity through the energy-de-
pendent disassembly and unfolding of proteins. Several
crystal structures of AAA proteins have been deter-
mined, most recently the complete structure of p97, an
ATPase with two canonical AAA domains (DeLaBarre
and Brunger, 2003). These structures have shown that
the SRH is located away from the nucleotide-binding
pocket of the ATPase domain, such that, in a ring-
shaped arrangement, the SRH of one subunit projects
an arginine residue (the ‘arginine finger’) into the nu-
cleotide-binding pocket of the next subunit in the ring.
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This observation has suggested a mechanism for con-
certed nucleotide hydrolysis and provides an explana-
tion for the high degree of sequence conservation in the
SRH (Lupas and Martin, 2002).

AAA proteins are a large and diverse family and their
phylogeny has been analysed repeatedly over the years
(Frohlich, 2001; Beyer, 1997; Swaffield and Purugganan,
1997; Wolf et al., 1998; see also http://aaa-proteins.uni-
graz.at/AAA/Tree.html). These analyses varied in their
approach, in the sequences included, and in the treat-
ment of proteins with two AAA domains. Nevertheless,
a reasonably consistent picture emerged of five main
clades of AAA domains, corresponding to DI, D2,
proteasome subunits, metalloproteases, and to a loosely
defined ‘meiotic’ group comprising katanins, spastins,
and MSP1. Some details of the trees remained puzzling,
for example the fairly consistent grouping of Sec18/NSF
D1 in the D2 clade. However, the most important
shortcoming of these analyses was the inconsistent way
in which sequences were selected: On the one hand, se-
quences that contained all canonical residues (Walker A
and B, sensor-1, SRH) were sometimes excluded as too
divergent; on the other hand, clearly degenerate se-
quences (usually corresponding to the inactive domains
of ATPases with two AAA domains) were included,
even though it is well known that inactive sequences
evolve at a much higher rate and therefore confuse the
deep branching order in phylogenetic analyses (see for
example our discussion of the branching order for sub-
units of the 20S proteasome and the 11S regulator
(Volker and Lupas, 2002)). Last year, we proposed a
classification of AAA proteins within the AAA+ su-
perfamily, based on the presence of the SRH (Lupas and
Martin, 2002). Here, we used an alternative, automated
approach (cluster analysis) to delineate unambiguously
the AAA family. Analysis of this sequence set allowed us
to derive a comprehensive picture of the phylogenetic
relationships in currently known AAA proteins.

2. Methods
2.1. Selection of AAA+ proteins

In a first pass, the non-redundant protein sequence
database (nr) at the National Center for Biotechnology
Information (NCBI; www.ncbi.nlm.nih.gov) was sear-
ched by seeding PSI-BLAST (Altschul et al., 1997) with
the AAA domain alignment of the SMART database
(smart.embl-heidelberg.de; Schultz et al., 1998). All se-
quences with expect-values (E-values) of 10,000 or less
were extracted and collected into a new database, which
was searched with a Hidden Markov Model (HMM) of
the AAA+ domain, using HMMer (hmmer.wustl.edu).
The HMM was derived from the alphaA to alphaFE re-
gion of the alignment of AAA+ domains published by

Lupas et al. (1997), calibrated with 20,000 samples. Se-
quences that matched the HMM at E-values of 1 or less
were extracted and formed our extended AAA+ set. The
parameters were chosen such that sequences related to
AAA+ but clearly outside this set were included, so as to
ensure that we had obtained a comprehensive repre-
sentation of the AAA+ family.

2.2. Cluster analysis of AAA+ proteins and selection of
AAA sequences

Clustering of the resulting dataset was performed us-
ing a JAVA program, CLANS, which is based on the
Fruchterman—Reingold algorithm (1991) and which we
developed as part of a project designed to evaluate the
accurracy of multiple alignments. The program resem-
bles BioLayout (Enright and Ouzounis, 2001) and will be
described in detail elsewhere; briefly, it uses the proba-
bility-values (P-values) of high-scoring segment pairs
(HSPs) obtained from an N x N BLAST search, to
compute attractive and repulsive forces between each
sequence pair. A three-dimensional representation is
achieved by randomly seeding sequences in space. The
sequences are then moved within this environment ac-
cording to the force vectors resulting from all pairwise
interactions and the process is repeated to convergence.
Clustering of the AAA+ set using BLAST P-values of
1071° or less yielded a compact, well-defined cluster of
AAA proteins, which were extracted for further analysis.

2.3. Selection and analysis of AAA and N-domains

A representative HMM of the AAA domain was
derived from regions alphaA to alphaC of the AAA
sequences in the alignment of Lupas et al. (1997) and
calibrated with 20,000 samples. This HMM was used to
identify AAA domains within the set of AAA proteins,
using HMMer at an E-value cutoff of 10. The identified
AAA domains and all sequences C-terminal to them
were masked out to obtain the set of N-domains.
CLANS was used subsequently to cluster AAA domains
at BLAST P-values below 107*° and N-domains at PSI-
BLAST P-values below 1073 (after five iterations).

After exclusion of a small number of visibly degen-
erate domains that had satisfied the relaxed cutoff cho-
sen for the HMMer search, insert regions present in less
than 1% of the sequences were removed. AAA domains
were then aligned in ClustalW (Thompson et al., 1994)
and gapped regions were adjusted so as to maintain the
integrity of core secondary structure elements. The re-
sulting manually refined alignment was used for phylo-
genetic tree construction. Phylogenies were inferred
using the Asatura software (Van de Peer et al, 2002) in
combination with the jtt (Jones et al., 1992) and mtrev
(Adachi and Hasegawa, 1996) substitution matrices.
Due to the varying rates of evolution in the different
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branches, trees and subtrees calculated under different
saturation correction conditions were later combined to
yield one tree, which best reflects the branching pattern
of the individual branches.

3. Cluster analysis of AAA+ proteins and definition of the
AAA family

The terms ‘AAA’ and ‘AAA+’ are often used inter-
changeably, even though ‘AAA’ refers to a subset of
proteins within ‘AAA+.” For example, the SMART and
Pfam databases labeled their AAA+ HMMs as ‘AAA’
In fact, neither term is well-defined. For this reason, the
set of sequences included in phylogenetic analyses of the
AAA family has been quite variable and all studies have
pointed to the existence of a substantial number of se-
quences that are difficult to assign (Beyer, 1997; Froh-
lich, 2001; Swaffield and Purugganan, 1997). We believe
that AAA proteins are actually clearly distinguishable
from related sequences and recently proposed a set of
morphological characteristics to define AAA and AAA+
proteins in relation to each other and to NTPases of the
RecA fold (Lupas and Martin, 2002). These character-
istics, however, are difficult to use in an automated
fashion, posing problems for the analysis of the non-re-
dundant (nr) database and thus also for a comprehensive
phylogeny of AAA proteins. We therefore used cluster
analysis of P-values from pairwise sequence comparisons
to investigate whether AAA proteins could be identified
unambiguously using a scalable, automated method.

A PSI-BLAST search of the nr database at NCBI
using the SMART AAA alignment as a seed yielded
49,966 sequences at an E-value cutoff of 10,000. These
sequences were then searched with an HMM based on a
manually curated alignment (see Section 2) to identify
AAA+ proteins as well as some of their nearest neigh-
bors in sequence space, 5101 sequences in all. Although
we obtained a fairly comprehensive representation of
AAA+ proteins, the primary purpose of these successive
steps was to focus on the AAA+ group while not ex-
cluding any sequence of the AAA subset, rather than to
achieve a complete enumeration of AAA+ sequences.
The set of 5101 sequences was subjected to cluster
analysis and revealed a compact cluster for AAA pro-
teins (Fig. 1A), which was well separated from neigh-
boring clusters. These sequences, 1241 in total, formed
our AAA set.

Although the purpose of the clustering step was not
to provide a comprehensive picture of AAA+, most of
the important sequence families should be represented in
Fig. 1A. A core group of 23 clusters is strongly inter-
connected by pairwise relationships and includes all
classical AAA+ proteins, including Clp/Hsp100, Lon,
AAA, RuvB, Mg chelatase, clamp loaders, and ¢54-
dependent transcription factors (NtrC). This core group

also contains three clusters of open reading frames
(ORFs) that are as yet unannotated. One may further
observe the presence of superclusters within the core
group, such as for example the one formed of clusters
26-31, but we would caution against interpreting these
as phylogenetically relevant at this level of the analysis.
Nevertheless, the grouping for example of replication
factor C, clamp loader subunits, Werner helicase inter-
acting protein and RuvB (clusters 19-22) seems biolog-
ically reasonable and warrants further investigation. We
obtained seven clusters that were peripheral but con-
nected to the core group; these included DnaA, McrB,
and dynein, which have been previously associated with
the AAA+ superfamily. Finally, some clusters that are
known to form an outgroup to AAA+, such as that of
ABC transporters, remained unconnected.

4. Phylogenetic analysis of AAA proteins

We extracted all AAA domains from the AAA set of
1241 sequences, using HMM searches based on a man-
ually curated seed alignment at a very relaxed E-value of
10 (see Section 2). The seed alignment included the AAA
domain sequence from the N-terminal o-helix to the first
helix of the C-terminal helical extension. We obained
1369 domain sequences, of which we subsequently ex-
cluded 81 because they lacked at least one (and generally
several) of the canonical residues: GKT/S in the Walker
A region, D/E in the Walker B region, a hydrogen-do-
nor residue in the sensor-1 region, and the arginine in
the SRH. The excluded sequences are most likely cata-
lytically inactive and therefore prone to more rapid
evolutionary divergence, leading to problems in phylo-
genetic reconstruction (Gribaldo and Philippe, 2002).
We generated a manually curated alignment from the
remaining 1288 domain sequences and subjected it to
distance-based phylogenetic analysis. Due to the selec-
tive constraints on the domain (seen in the high degree
of sequence conservation) and the long divergence time
(seen in the broad phyletic representation), we expected
the alignment to show a high degree of mutational sat-
uration. Correction for this saturation reduces the res-
olution of closely related clades, but provides a better
representation of the deep branching order due to re-
duction of homoplasy (Van de Peer et al, 2002). For this
reason, we decided to compute the overall tree using
stringent saturation correction (Fig. 2A) and then re-
evaluate the major clades independently. The resulting
composite tree (Fig. 2B) yielded six major clades, as well
as several smaller, long-branching, deeply rooted minor
clades, some of which changed their positions substan-
tially upon minor changes in procedure.

An open question of this analysis regarded the posi-
tion of the root. The traditional way of rooting a tree is
inclusion of an outgroup in the analysis, but in this case
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1 | Cyanobacteria & Chloroplast ORFs

2 | ABC transporters

3 | RFL1 (plant specific)

4 | Torsin family

5 | Flagellar biosynthetic protein FIhF

6 | Dynein heavy chain

7 | Bacterial ORFs

8 | MCM family

9 | Mg chelatase group

10 | Competence protein ComM, YifB

11 | £54 interacting transcription factor
12a| Archaeal Lonll protease

12b| Archaeal Lon protease

12¢ | Bacterial LonlI protease

12d| Bacterial & mitochondrial Lon protease
13 | Origin recognition complex subunit 4
14 | CbbX/CfqX/SpoVK group

15a| Heat shock protein HslU

15b| Clp protease subunit ClpX

16 | AAA family

17 | Clp / Hsp100 main group

18 | MoxR family

19 | Replication factor C family

20 | Clamp loader complex subunits

21 | Werner helicase interacting protein

22 | Holliday junction DNA helicase RuvB
23 | Reptin/ pontin group

24 | Bacterial ORFs

25 | McrB group =
26 | ORT's (primaliry eucaryotic) E [
27 | Cobalamin-5-phosphate synthase CobS
28 | CbbQ / GvpN group I

29 | CbbQ / GvpN group II

30 | Bacterial ORFs

31 | Bacterial ORFs

32 | CDC6/ ORC group

33 | DnaA group

34 | IstB transposase helper protein

35 | Viral helicase 2C family

®
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1 | YC46 group

2 | ORF300 group

3 | ORF5 group

4 | BCS1 (plant specific)
5 | BCS1 (animal / fungal)
6

7

8

9

Pch2p group

belphegor group

Metalloproteases

methanogens group

10 | 2nd. domains / Pex

11 | Ist. domains

12 | Katanin / Fidgetin / SAP1/Spastin / SKD1
13 | ARC group

14 | SECI8/NSF

15 | Proteasome subunits

Fig. 1. (A) Cluster analysis of full-length sequences for the extended AAA+ dataset. Line coloring reflects BLAST P-values; dark lines represent
pairwise connections with very low, lighter lines those with P-values closer to the cutoff (10~1). Cluster 16 comprises the AAA sequences. (B) Cluster
analysis of AAA domains at a cutoff P-value of 1073, The clades of the AAA tree are recovered as separate clusters.
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Fig. 2. (A) Saturation correction plot for the determination of the deep branching order in the AAA tree. The number of amino acid changes for the
‘rare’ and ‘frequent’ datasets are plotted against pairwise distance. Clear mutational saturation, where increased evolutionary distance is not reflected
in a higher number of amino acid changes, is observable for the ‘frequent’ subset. (B) Phylogeny of AAA domains. The depicted phylogeny is a
composite tree, formed of subtrees calculated under various saturation correction scenarios. Length and angle of each clade reflect the maximum
branch length and number of sequences belonging to that clade. The presumed root of the tree is marked by a black circle, long branching minor
clades whose monophyly is unsure are colored in gray. The letter ““T” indicates clades containing transmembrane helices in their N-domains, “G”
denotes clades containing a gapped SRH and “2” specifies clades of sequences containing two ATPase domains, either canonical or degenerate.

it is difficult to identify the appropriate outgroup and
the alignment is already mutationally saturated, so that
adding more distantly related sequences would only
make the analysis of the deep branching order more
unreliable. As an alternative approach, we did a cluster
analysis of AAA domains and observed the emergence
of pairwise connections between clusters at different
cutoffs. The analysis yielded a core group of clusters,

comprising the five previously defined main clades of
AAA domains, as well as a number of peripheral clus-
ters (Fig. 1B). As the cutoff was made less stringent,
connections appeared between the peripheral and core
groups; these connections were radial into the core
group, rather than circular between the peripheral
groups, with two exceptions: the ORF300 and ORFS5
clusters connected together, as did the plant and animal
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BCSI1 clusters. This observation suggests to us a position
of the root close to the origin of the peripheral groups,
as shown in Fig. 2B.

4.1. Major clades

There are six major clades in the AAA tree: metal-
loproteases (in bacteria and organelles), ‘meiotic’ pro-
teins (in eukaryotes and a small number of archaea), D1
and D2 domains of proteins with two AAA domains (in
archaea and eukaryotes, as well as in a small number of
bacteria, presumably by lateral transfer), proteasome
subunits (in archaea and eukaryotes; note that ARC has
a similar N-domain and may be an extremely divergent
member of this clade in actinomycetes), and BCS1 (in
eukaryotes).

4.1.1. Metalloproteases

Proteins in this group have a specific domain struc-
ture, with a trans-membrane N-domain, a central AAA
domain and a C-terminal metalloprotease domain. They
are found in the inner membranes of bacteria, where
they degrade both soluble and membrane proteins, and
organelles, where they primarily degrade unassembled
subunits of membrane complexes. Their branching
pattern reflects functional groups and holds few sur-

prises, except maybe for the occurrence of a deep branch
of sequences specific for cyanobacteria and chloroplasts
(named for ORF25 of Porphyra purpurea), whose
functions are unknown. Branch lengths are among the
shortest in the AAA tree, with two exceptions: SPG7/
paraplegin and a basal group of sequences that are
probably driven together by long-branch attraction and
for the most part lack the active-site residues of the
protease domain. Cluster analysis of the N-domains
(Fig. 3) groups together all metalloproteases except
YMEI and reveals a deep split between plant YMEI on
one hand and animal and fungal YMEI on the other,
whose N-domains share no apparent sequence similar-
ity. The depth of this split was not expected from their
separation in the tree.

4.1.2. Meiotic group

The main branches in this group are katanin (MEI-1),
SKD1 (Vps4), spastin, fidgetin, and MSPI1. The func-
tions of ‘meiotic’ proteins are poorly characterized at the
molecular level and it is therefore unclear what proper-
ties distinguish this group from other AAA proteins.
SKDI1 is involved in vacuolar sorting and endosomal
transport, katanin, and MEI-1 are microtubule severing
proteins implicated in mitosis and meiosis, and spastins
are involved in microtubule disassembly. Features of this

1 Smallminded group

2 | SKD1 group

3 | Fidgetin / Spastin / SAP1 group
4 | Katanin main group

5 | YTA7 group

6 | belphegor group

7 | Proteasome subunits + ARC

8 | Metalloproteases (FtsH / Afg3 / Spg7)
9 | MSPI (animal / fungal)

10 | YMEI (animal / fungal)

11 | MSPI (plant specific)

12 | NSF/SECI18 group

13 | SPAF group

14 | CDC48 group + Methanogens
15 | Pex1 / Pex6 group

16 | YC46 group

17 | YMEI (plant specific)

18 | Pch2p group

19 | BCS1 (plant specific)

20 |BCS1 (animal / fungal)

— 18
o
S

Fig. 3. Cluster analysis of N-domains. Sequences were clustered using PSI-BLAST P-values of 1073 as a cutoff.
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clade that are consistently recovered in different analyses
are the basal position of MSP1 and the monophyly of
spastin, fidgetin, and SAPI. In addition, the group
contains a longer, deep branch formed mainly by ar-
chaeal sequences; the monophyly of this group is un-
clear. A unifying feature of ‘meiotic’ proteins is a gap of
two residues in the SRH, immediately preceeding the
arginine finger; all sequences in this group have the gap
(except for Thermoplasma Tall75 and its closest ho-
mologs). We proposed earlier that this might be a mor-
phological trait specific to this group (Lupas and Martin,
2002), but the current analysis shows that several minor
clades (methanogens, belphegor, ORF300, ORF5, and
Pch2p), mostly branching at the root of the tree, also
contain this gap. The most surprising finding in this
group resulted from the analysis of the N-domains,
which showed that the large N-domain found in plant
MSP1 sequences, but not in those from animals or fungi,
actually contained a degenerate ATPase domain, re-
vealing a duplication event independent of the one
leading to the main group of proteins with two AAA
domains (Cdc48/p97).

4.1.3. DI and D2 domains

The originally defined AAA proteins with two AT-
Pase domains consisted of Cdc48/p97, Secl8/NSF,
Pex1 and Pex6, YTA7, SPAF, and smallminded. These
include some of the best-characterized AAA proteins
and seem to be primarily involved in membrane fusion
processes. Cdc48 has also been implicated in protea-
some-dependent protein degradation. The D1 and D2
domains from these proteins were recovered consis-
tently in their respective clades: NSF and YTA7, which
contain a degenerate D2 domain, were found in the D1
clade and PEX1 and PEX6, which contain a degener-
ate D1 domain, were found in the D2 clade; previously,
most analyses had recovered NSF D1 in the D2 clade.
It was previously suggested that all ATPases with two
AAA domains originated from a single ancestor, based
on the homology of their N-domains (Golbik et al.,
1999). Our cluster analysis of N-domains supports
monophyly of the originally defined group (but note
that no similarity was found between the N-domains of
smallminded and YTA7 and the other N-domains);
however, we discovered at least two other, independent
duplication events in the AAA tree. Two proteins in
this clade were predicted to contain transmembrane
segments: a Cdc48 homolog from Plasmodium falcipa-
rum (gi23612492), which contains a unique domain
with a transmembrane segment N-terminal to the
conserved N-domain of Cdc48 proteins, and a
deeply branching protein from Arabidopsis thaliana
(gi115227690), which appears to have no N-domain and
contains the transmembrane segment at its C-terminus
(confirmed by EST matches to Arabidopsis and Beta
vulgaris).

4.1.4. 26S proteasome subunits

Proteins in this clade form homo-oligomeric com-
plexes in archaea and hetero-oligomeric complexes in
eukaryotes; they activate proteolysis by opening the
central channel of the 20S proteasome (which gives ac-
cess to the proteolytic chamber) and by unfolding and
translocating substrates. This clade showed little muta-
tional saturation and consequently held few surprises.
The previously described and well-supported phyloge-
netic pattern, including the basal position of archeal
subunits and monophyly of the 6 eucaryotic subunits,
was consistently recovered. Our analysis of N-domains
yielded a well-delineated cluster for this group, which, in
addition to the proteasomal subunits also contained
ARC. We investigated whether this might be due to the
coiled-coil segment present in ARC and in proteasome
subunits, but we found that significant similarity ex-
tended to the region between the coiled coil and the
AAA domain, which is rich in B-strands and may form
a B-barrel. Surprisingly, two proteasome ATPase sub-
units from Plasmodium yoellii yoellii were predicted to
contain transmembrane segments: the PRS7 homolog
(g123490548) two segments (one N- and one C-terminal),
and the PRS8 homolog (gi23490696) one segment (C-
terminal). Structurally, an attachment of the proteasome
to the membrane via these segments seems possible;
however, the biological significance is unclear, as these
segments are not found in the homologs of even the
closest relative, P. falciparum.

4.1.5. BCSI

BCSI1 is a protein of the mitochondrial inner mem-
brane (Folsch et al., 1996), which appears to chaperone
the assembly of membrane complexes. In yeast, it is re-
quired for the formation of functional Rieske iron—sulfur
protein (Nobrega et al., 1992). The BCS1 clade shows a
deep division between plant sequences and animal and
fungal sequences. Of interest hereby is the high number
of paralogs present in plants (36 paralogs for A. thaliana)
compared with other eukaryotes (2 genes per fungus, 1
gene per animal). N-terminal sequence clustering recov-
ered the deep division between these two groups with
only a few, tentative connections between them. One
ORF (gi25411838 of Arabidopsis) contained two nearly
identical copies of the BCSI1 protein, but we could not
confirm it with EST searches. Should this ORF prove to
be a protein, it would represent a very recent addition to
the group of ATPases with two AAA domains.

4.2. Minor clades

The minor clades are mostly small groups of long-
branching sequences, located at the base of the major
clades. They are ARC, basal to D1 and D2; a methan-
ogen group, basal to metalloproteases; and five groups
(belphegor, Pch2p, ORF300, ORF5, and YC46)
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radiating from the presumed root of the tree. In addi-
tion, two proteins of Sulfolobus (Sulfolobus solfataricus
Ss02831 and Ss02420 and their homologs) could not be
assigned to any branch and varied widely in phyloge-
netic position between analyses; they are therefore not
shown in Fig. 2B. These two proteins have very short
N-domains, consisting primarily of a transmembrane
helix, and contain two well-conserved AAA domains.
They may thus represent a further independent dupli-
cation event in the AAA tree.

ARC, long-branching and specific to actinomycetes,
appears basal to D1 and D2 in the tree but resembles
proteasomal subunits in the N-domain. ARC is encoded
in chromosomal vicinity to the operon of 20S protea-
some subunits and has been suspected since its discovery
to be the bacterial equivalent of 26S ATPases, but an
interaction or activation of the proteasome with ARC
could not be substantiated experimentally (Wolf et al.,
1998).

The ‘methanogens’ group, purely archaeal and con-
sistently recovered as monophyletic, variously occurred
either basally within the metalloprotease clade or close
to the presumed root of the tree. There is no reason
however to presume a closer relationship to metallo-
proteases, as proteins in this group do not contain a
protease domain and have a gapped SRH sequence. The
group contains Methanococcus Mj1494, Archaeoglobus
Af1285, Methanobacterium Mth1011, Methanopyrus
Mk1368, Methanosarcina Mm0304 (and homologs).
Cluster analysis grouped the N-domains of the metha-
nogens with Cdc48 and sequence analysis by
PSI-BLAST and 3D-PSSM (Kelley et al., 2000;
www.sbg.bio.ic.ac.uk/~3dpssm) showed that they are
likely to assume a B-clam structure homologous to that
found in the N-domains of the Cdc48 group (Coles
et al., 1999).

Five minor clades, Pch2P (eukaryotes), ORFS5 (bac-
teria; named for Photorhabdus [uminescens ORFY),
ORF300 (bacteria and archaea; named for Escherichia
coli ORF300), belphegor (eukaryotes) and YC46 (cya-
nobacteria and red algal chloroplasts; named for YC46
of Odontella sinensis), radiate from the presumed root of
the tree; their branching pattern is unclear. Common to
these clades are longer than average branch lengths and
a basal position to BCS1 in most phylogenies. The
ORF5 and ORF300 clades were monophyletic in some
trees and ORFS had its closest connections to ORF300
in cluster analysis, suggesting a closer evolutionary re-
lationship between these clades. Analysis of the N-do-
mains surprisingly revealed the existence of a degenerate
ATPase domain in the YC46 clade.

Four of the five minor clades originating near the
root have a gapped SRH and alignments to AAA+
proteins in the region of the ‘arginine finger’ point to this
being an ancestral trait. We therefore favor the scenario
that the ancestor of YC46 acquired an insertion of two

residues, to obtain the RPGR consensus sequence,
subsequently forming the main AAA clades observed
today. The only exception among the main clades is the
‘meiotic’ group, whose SRH is gapped. We may have
incorrectly reconstructed its position relative to the root;
however, in view of its strong clustering with the other
main AAA clades (Fig. 1B), we think that the ‘meiotic’
ancestor may have reverted to a gapped SRH. Such
spontaneous reversions are observable in several pro-
teins, whose nearest homologs have a canonical SRH
(see for example Neurospora crassa B1K11.010 versus
its homologs in Schizosaccharomyces and Saccharomy-
ces, or Drosophila CG12010-PA versus its homologs in
Anopheles and human).

5. Conclusions

In this paper, we used cluster analysis to outline the
AAA sequences within the AAA+ superfamily and
subjected them to phylogenetic analysis. Our approach
differs from the ones previously taken by the complete-
ness and consistency of the sequence dataset and by the
use of a correction procedure for mutational saturation.
Our analysis recovered the five major, well-accepted
clades of AAA proteins, consisting of proteasome sub-
units, metalloproteases, domains D1 and D2 of ATPases
with two AAA domains, and the MSP1/katanin/spastin
group, as well as a sixth one, consisting of BCS1 and its
homologs. In addition, we identified a number of minor
clades, most of them novel and for the most part
branching close to the presumed root of the tree, which
we located tentatively using cluster analysis of the AAA
sequence set. Most of the minor clades were prokary-
otic, in contrast to the well-established AAA clades,
which are primarily eukaryotic. This suggests that the
AAA family was already diverse prior to the separation
of the three domains of life.

Our most surprising findings concerned: (I) the ex-
treme paralogy of plant BCS1, with 36 copies in Ara-
bidopsis alone, (II) the polyphyletic origin of AAA
proteins with two ATPase domains, (I11) the N-domain
homologies between the Cdc48/p97 group and a dis-
tantly branching group of proteins from archaeal
methanogens, as well as between ARC and proteasomal
ATPases, (IV) the dissimilarity of N-domains in some
groups, such as for example between MSP1 and other
‘meiotic’ proteins, or between plant YMEI, animal and
fungal YMEI, and all other metalloproteases, and (V)
the ancestral and probably polyphyletic nature of a
variant second region of homology, which lacks two
residues preceding the ‘arginine finger.’

We believe that our AAA tree is the most reliable yet
computed. However, we believe it to be only as complete
as the current sequence database. The multiple, deep-
branching clades formed primarily of genomic ORFs
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suggest that further AAA clades will emerge in future
genome projects and that some currently minor clades
will be recognized as major clades. In addition, some
small, basal, long-branching sequence groups that are
currently placed within one of the major clades may well
expand to form their own separate clades, such as for
example the already mentioned membrane-associated
Arabidopsis ORF (gi15227690), which differs substan-
tially from other D1/D2 proteins and is not grouped
with any major clade in cluster analysis.

Correlating functional information with the individ-
ual clades showed us how little is known as yet about
this diverse and important protein family.
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