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ABSTRACT 

In the Schwarzwald area, southwest Germany, more than 400 hydrothermal veins hosting 

different gangue and ore mineral assemblages cross-cut the crystalline basement rocks. An 

integrated fluid inclusion and stable isotope study has been carried out on hydrothermal veins 

(Pb-Zn-Cu-bearing fluorite-barite-quartz veins, Co-Ni-Ag-Bi-U-bearing and barren barite-

fluorite-quartz veins) from the Schwarzwald district. More than 400 individual samples from 

110 Variscan and post-Variscan deposits covering a large area of 120 by 40 km were studied 

by microthermometry, Raman spectroscopy, stable isotope analysis of minerals and fluid 

inclusions.  

Natural waters of various origins exhibit systematic differences in their deuterium (D) 

and 18O contents. The most straightforward method for the determination of paleofluid 

signatures is the direct extraction of fluid inclusion water from hydrothermal minerals. 

Inclusion fluids in fluorite are particularly useful, because their host is presumable or 

normally devoid of oxygen and hydrogen, thus precluding post-entrapment isotope 

exchanges. The δD values for water extracted from fluorites at 400°C range widely between -

60 and +82 ‰, whereas at 650°C the values range from -78 to +40 ‰. The systematic 

differences between δD values obtained from the same samples at both extraction 

temperatures indicate that most likely two isotopically distinct reservoirs contribute to the 

extracted water. To clarify the nature of these reservoirs, FTIR (Fourier transformation 

infrared) analyses were performed on the fluid inclusions and host fluorite. The FTIR spectra 

of fluid inclusions show that two dominant peaks at absorbance values of about 3400 cm-1 and 

5200 cm-1 are present, which conform to structurally bound and molecular water, 

respectively. In contrast, the FTIR spectra of fluid inclusion free areas in the host fluorites 

show only a peak at 3400 cm-1. These results demonstrate that significant amounts of 

structurally bound water must be present in most of the studied hydrothermal fluorites. Based 

on the isotopic and spectroscopic data, we believe that water released at extraction 

temperatures greater than 500-600 °C is dominantly originating from interstitial OH- defect 

sites in the fluorite structure. This structurally bound water appears to be isotopically depleted 

compared to the original fluid inclusion water, resulting in a significant shift of the δD values. 

This calls for extreme caution in setting up appropriate analytical procedures for the 

determination of δD values and has important implications for the interpretation of paleofluid 

signatures. 
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Most Variscan fluids are of the H2O-NaCl-(KCl) type, have low salinities (0-10 wt.% 

eqv. NaCl) and comparatively high homogenization temperatures (150-350 °C). In some of 

these samples, an additional gas-rich CO2-CH4-H2O fluid inclusion type is present. Oxygen 

isotope data for quartz from the Variscan veins range from +2.8 to +12.2 ‰, indicating 

δ18OH2O values of the hydrothermal fluids of –12.5 to +4.4 ‰. The δD values of water 

extracted from fluid inclusions in Variscan quartz samples vary between –49 and +4 ‰. The 

geological framework as well as fluid inclusion and stable isotope characteristics of the 

Variscan veins suggest an origin of the mineralizing fluids from regional metamorphic 

devolatilization processes.  

The salinities of fluid inclusions in post-Variscan primary fluorite, calcite, barite and 

quartz are in the range of 22–25 wt.% eqv. NaCl, and the eutectic temperatures range between 

–57 and –45 °C, indicating the presence of H2O-NaCl-CaCl2 fluids. Homogenization 

temperatures vary from 110 to 180 °C. A low-salinity fluid (0 to 15 wt.% eqv. NaCl) was 

observed in some late-stage fluorite, calcite and quartz samples, which were trapped at similar 

temperatures. Raman microprobe analyses show that detectable concentrations of volatiles 

such as CH4 or CO2 are present in the Variscan fluid, whereas only CO2 was detected in post-

Variscan fluids. Almost all δ18O measurements of quartz from the fluorite-bearing post-

Variscan veins range between +11.1 and +19.5 ‰, indicating δ18OH2O values between –11.0 

and +4.4 ‰ (Matsuhisa et al. 1979). This is perfectly consistent with δ18OH2O values of fluid 

inclusion water directly extracted from fluorites (–11.6 to +1.1 ‰). The δD values of fluid 

inclusion water in post-Variscan calcites (extracted from primary and late calcite samples) are 

in a narrow range between –26 and –15 ‰, while fluid inclusion water from quartz and 

fluorite samples varies between –63 and +9 ‰ and between -29 and -1 ‰, respectively. The 

δ13C and δ18O values of fluid inclusion gas (CO2) range between –21.4 and –6.7 ‰ and from 

–16.3 to –7.1 ‰, respectively. Calculations for fluorite-barite-quartz veins combining oxygen 

isotope equilibria with microthermometric data result in quartz precipitation temperatures of 

130–180 °C at pressures between 0.3 to 0.5 kbar. The δ18OH2O and δD data, particularly the 

observed wide range in hydrogen isotopic compositions, indicate that the hydrothermal 

mineralizations formed through large-scale mixing of a basement-derived saline NaCl-CaCl2 

brine with meteoric water. 

Hence, many of the post-Variscan fluorite-barite-quartz veins are considered to have 

precipitated through mixing of a deep saline brine with meteoric, low salinity waters. This 

hypothesis was tested using carbon, sulfur, and oxygen isotope data of sulfides, sulfates and 
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calcite, coupled with fluid inclusion studies. Primary hydrothermal calcites from the deposits 

show a positive correlation of their δ13C (V-PDB) and δ18O (V-SMOW) values, which range 

from –12 to –3 ‰ and from +12 to +18.5 ‰, respectively. Carbon and oxygen isotope 

compositions of paragenetically young, remobilized calcite types are shifted towards higher 

values and range from –12 to –1 ‰ and from +20 to +25 ‰, respectively. We developed an 

improved calculation procedure for modeling the covariation of carbon and oxygen isotopes 

in calcite resulting from mixing of two fluids with different isotopic compositions and total 

carbon concentrations. In our model, the carbon speciations in the two model fluid end-

members and the fluid mixtures are calculated using a speciation and reaction path code. The 

carbon and oxygen isotope covariation of primary Schwarzwald calcites can effectively be 

modeled by a mixing trend of a deep saline brine and a low salinity water of meteoric origin. 

Sulfur isotope data of barites from 22 hydrothermal fluorite-barite-quartz veins vary from +9 

to +18 ‰ (CDT), sulfide ore minerals show δ34S values between –14.4 and +2.9. Calculated 

sulfide-sulfate equilibrium temperatures are in the range between 300 and 350°C. These 

temperatures differ significantly from the formation temperatures of 150 to 200°C of most of 

the deposits as estimated from fluid inclusions, and are interpreted as preserved 

paleotemperatures of the deep aquifer. This assumption has been carefully checked against 

possible contamination of an equilibrated sulfide-sulfate system from the deep aquifer with 

sulfate from surface-derived sources, considering also the kinetics of the sulfide-sulfate 

isotope exchange. A combination of the sulphur isotopic results with microthermometric data 

of fluid inclusion and constraints on the temperature of the meteoric water was used to 

calculate mixing ratios of the two fluid end-members. The results indicate that mass fractions 

of the deep saline brine in the mixed fluid were between 0.5 and 0.75. Considering all 

geologic, geochemical and isotopic information, we propose that the majority of the post-

Variscan hydrothermal veins in the Schwarzwald area were precipitated by district-scale 

mixing of homogeneous deep saline brine with meteoric waters. 

Our comprehensive study of a large number of deposits provides evidence for two 

fundamentally different fluid systems in the crystalline basement. The younger (post-

Variscan) system shows remarkable persistent geochemical and isotopic features over a 

prolonged period of more than 100 Ma and in an area exceeding 120 by 40 km. 
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ZUSAMMENFASSUNG 

Im kristallinen Grundgebirge des Schwarzwalds (Südwestdeutschland) treten mehr als 400 

hydrothermale Gänge mit unterschiedlichen Erz- und Gangartparagenesen auf. Im Rahmen 

der vorliegenden Arbeit wurden umfassende Fluideinschluss- und stabile 

Isotopenuntersuchungen an den verschiedenen hydrothermalen Gangtypen (Pb-Zn-Cu-

führende Fluorit-Baryt-Quarz-Gänge, Co-Ni-Ag-Bi-U-führende und unvererzte Baryt-Fluorit-

Quarz-Gänge) durchgeführt. Insgesamt wurden mehr als 400 Proben von 110 varistischen und 

postvaristischen Gängen untersucht, die in einem 120 mal 40 km grossen Gebiet auftreten. 

Die Proben wurden mittels Mikrothermometrie, Raman-Spektroskopie und stabiler 

Isotopenanalytik von Einzelmineralen und Fluideinschlüssen untersucht. 

Natürliche hydrothermale Fluide und Mineralwässer zeigen systematische Variationen 

hinsichtlich ihrer Wasserstoff- und Sauerstoff-Isotopenzusammensetzung. Die 

aussagekräftigste Methode zur Bestimmung von Paläofluid-Isotopensignaturen ist die direkte 

Extraktion von Wasser aus Fluideinschlüssen in hydrothermal gebildeten Mineralen. 

Fluideinschlüsse in Fluorit sind hierzu besonders geeignet, da Fluorit keinen Sauerstoff und 

Wasserstoff enthält und daher kein späterer Isotopenaustausch mit den eingeschlossenen 

Fluiden erfolgen kann. Die δD-Werte von H2O, das aus Fluorit bei 400 °C extrahiert wurde, 

liegen in einem weiten Bereich zwischen –60 und +82 ‰, während bei 650 °C aus denselben 

Proben extrahiertes H2O δD-Werte zwischen –78 und +40 ‰ aufweist. 

Der systematische Unterschied zwischen den δD-Werten bei den beiden 

Extraktionstemperaturen deutet darauf hin, dass sehr wahrscheinlich zwei isotopisch 

unterschiedliche Reservoire im hydrothermalen Fluorit vorhanden sind. Hierbei wird H2O aus 

dem zweiten Reservoir erst bei höheren Temperaturen vermehrt freigesetzt. Um diese beiden 

Reservoire genauer zu charakterisieren, wurden repräsentative Proben mittels FTIR-

Spektroskopie (Fourier Transform Infra Red) untersucht. Hierbei wurden Spektren von 

Fluorit und Fluideinschlüssen aufgenommen. Die FTIR-Spektren von Fluideinschlüssen 

zeigen zwei dominante Banden bei Absorptionswerten von 3400 cm–1 und 5200 cm–1, die auf 

die O-H-Streckschwingung und die Rotationsschwingung des Wassermoleküls 

zurückzuführen sind. Im Unterschied dazu zeigen FTIR-Spektren von fluideinschlussfreien 

Bereichen des Fluorit nur die Streckschwingungsbande bei 3400 cm–1. Dies belegt, dass 

signifikante Mengen an strukturgebundenem H2O in den hydrothermalen Fluoriten vorliegen. 
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 Wenn man die spektroskopischen und Isotopen-Daten zusammenfasst, so erscheint es 

plausibel, dass bei Extraktionstemperaturen oberhalb von 500-600 °C überwiegend 

strukturgebundenes H2O freigesetzt wird. Dieses ist vermutlich als OH– in Gitterdefekten im 

Fluorit eingebaut. Das strukturgebundene H2O ist gegenüber dem aus Fluideinschlüssen 

stammenden H2O isotopisch negativer, was zu einer signifikanten Verschiebung der Gesamt-

Isotopensignatur führen kann. Solche Effekte müssen bei der Auswahl und Etablierung 

geeigneter analytischer Methoden für die H2O-Extraktion aus Fluideinschlüssen 

berücksichtigt werden, um verfälschte Ergebnisse zu vermeiden. Weiterhin ergibt sich daraus, 

dass bei der Interpretation anomal niedriger δD-Werte grosse Vorsicht geboten ist. 

 Die mikrothermometrischen Untersuchungen der varistischen und postvaristischen 

Mineralisationen zeigen signifikante Unterschiede hinsichtlich der dominanten Fluid-

Zusammensetzungen. Die meisten varistischen Fluideinschlüsse gehören zum H2O-NaCl-

(KCl)-Typ und zeichnen sich durch generell niedrige Salinitäten (0-10 Gew.-% NaCl-

Äquivalent) und verhältnismässig hohe Homogenisierungstemperaturen (150-350 °C) aus. In 

einigen varistischen Proben ist zusätzlich ein sehr gasreicher CO2-CH4-H2O-Einschlusstyp 

nachweisbar. Die Sauerstoffisotopendaten von Quarz der varistischen Gänge liegen zwischen 

+2.8 und +12.2 ‰, woraus sich δ18OH2O-Werte der hydrothermalen Fluide von –12.5 bis +4.4 

‰ berechnen lassen. Die δD-Werte von H2O, das aus Fluideinschlüssen extrahiert wurde, 

liegen zwischen –49 und +4 ‰. Unter Berücksichtigung der tektono-metamorphen 

Entwicklung legt die Synthese aller Daten eine Beziehung zwischen varistischer 

Mineralisation und regional-metamorphen Devolatilisierungs-Prozessen nahe. 

 Die postvaristischen Fluide haben deutlich andere mikrothermometrische und 

isotopische Signaturen. Alle Fluideinschlüsse in primärem Fluorit, Calcit, Baryt und Quarz 

gehören zum H2O-NaCl-CaCl2-Typ und die Salinitäten sind generell deutlich höher (22-25 

Gew.-% NaCl-Äquivalent). Die Homogenisierungstemperaturen sind viel niedriger und liegen 

zwischen 110 und 180 °C. In einigen Proben von Fluorit, Calcit und Quarz, die zu einer 

späteren Generation gehören, ist noch ein niedrigsalinares (0-15 Gew.-% NaCl-Äquivalent) 

Fluid vorhanden. Die Homogenisierungs-temperaturen dieses Fluidtyps liegen in einem 

ähnlichen Bereich wie diejenigen des hochsalinaren Typs. Ramansonden-Messungen zeigen, 

dass in den postvaristischen Fluiden nur geringe Mengen an CO2 (in der Gasphase) vorhanden 

sind. 

 Praktisch alle δ18O-Werte von Quarz der fluoritführenden postvaristischen Gänge 

liegen in einem relativ engen Bereich zwischen +11.1 und +19.5 ‰. Aus diesen Daten lassen 
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sich mittels der durchschnittlichen Homogenisierungstemperaturen der betreffenden Proben 

δ18OH2O-Werte der hydrothermalen Fluide von –11.0 bis +4.4 ‰ berechnen. Diese Werte 

stimmen sehr gut mit den δ18O-Werten von direkt aus Fluoriten extrahiertem Fluideinschluss-

H2O überein, die zwischen –11.6 und +1.1 ‰ liegen. Die δD-Werte von H2O aus 

Fluideinschlüssen in Calcit sind sehr homogen (–26 bis –15 ‰), während die δD-Werte von 

H2O aus Quarz (–63 bis +9 ‰) und Fluorit (–29 bis –1 ‰) deutlich variabler sind. Aus 

Fluoriten konnte zusätzlich CO2 extrahiert werden, dessen δ13C-Werte zwischen –21.4 und –

6.7 ‰ liegen. Durch Kombination der mikrothermometrischen Daten mit O-

Isotopengleichgewichten lassen sich Bildungsbedingungen der Gänge von 130-180 °C und 

0.3-0.5 kbar berechnen. Die δ18OH2O- und insbesondere die variablen δD-Werte belegen, dass 

die postvaristischen hydrothermalen Mineralisationen auf grossräumige 

Fluidmischungsprozesse zurückgehen. Die beiden Endglieder der Mischungsprozesse waren 

aus dem Grundgebirge stammende hochsalinare Fluide und aus oberflächennahen Bereichen 

zugeströmte niedrigsalinare meteorische Wässer. 

 Dieses konzeptionelle Modell wurde durch zusätzliche systematische C-, O- und S-

Isotopenuntersuchungen an Sulfiden, Sulfaten und Carbonaten überprüft und durch integrierte 

Modellrechnungen quantifiziert. Primäre Calcite aus allen hydrothermalen Gängen zeigen 

eine signifikante positive Korrelation zwischen den δ13CVPDB- und δ18OVSMOW-Werten, die 

jeweils von –13 bis –3 ‰ und von +12 bis +18.5 ‰ variieren. Die C- und O-

Isotopenzusammensetzungen von remobilisierten Calcitgenerationen sind deutlich zu 

positiveren Werten verschoben. Die δ13C- und δ18O-Werte dieser Calcite liegen im Bereich 

von –12 bis –1 ‰ und von +20 bis +25 ‰. Um die Kovariation der C- und O-Isotopendaten 

zu modellieren, wurde ein verbessertes numerisches Fluidmischungsmodell entwickelt. In 

diesem Modell wird die C-Speziation in den beiden Fluid-Endgliedern und den resultierenden 

Fluidmischungen mittels eines komplexen Speziations- und Reaktionspfad-Computercodes 

berechnet. Basierend auf diesen Modell-Daten wird dann die isotopische Massenbilanz unter 

Berücksichtigung von Konzentrationseffekten durch unterschiedliche 

Fluidzusammensetzungen (C-Konzentrationen, Salinität) gelöst. Die Berechnungen zeigen, 

dass die Kovariation der δ13C- und δ18O-Werte hydrothermaler Calcite des Schwarzwalds 

effektiv durch Mischung eines relativ hochtemperierten hochsalinen Fluids und kühlem 

meteorischen Wasser modelliert werden kann. 
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Die S-Isotopendaten sind mit dem Fluidmischungsmodell konsistent und erlauben eine 

Abschätzung der Paläotemperaturen der hochsalinen Tiefenfluide. Die δ34SVCDT-Werte von 22 

Bariten aus verschiedenen hydrothermalen Fluorit-Baryt-Quarz-Gängen variieren zwischen 

+9 und +18 ‰, während die δ34S-Werte verschiedener Sulfidminerale (Galenit, Chalkopyrite, 

Pyrit) zwischen –14.4 und +2.9 ‰ liegen. Die für koexistierende Sulfat-Sulfidpaare 

berechneten Gleichgewichts-Temperaturen liegen in einem sehr engen Bereich von etwa 300-

350 °C. Dieser Temperaturbereich unterscheidet sich deutlich von den Bildungstemperaturen 

der Gänge, die bei 150-200 °C liegen. Unter Berücksichtigung der Kinetik der Sulfat-Sulfid-

Reaktion können die S-Isotopentemperaturen daher zuverlässig als Paläotemperaturen der 

Fluide interpretiert werden, die die Einstellung des Isotopengleichgewichts im Tiefenaquifer 

reflektieren. Dieses Modell wurde quantitativ auf seine Robustheit gegen mögliche 

Kontamination eines equilibrierten Sulfat-Sulfid-System durch zusätzliche Sulfatzufuhr 

während Fluidmischung getestet. 

 Eine Kombination der Fluideinschlussdaten mit den S-, C- und O-Isotopendaten 

ermöglicht eine Abschätzung der Mischungsverhältnisse zwischen dem hochtemperierten 

hochsalinen Fluid und dem kühlem meteorischen Wasser. Die Ergebnisse der Berechnungen 

zeigen, dass der Massenanteil des hochsalinaren Fluids im Bereich von 0.5 bis 0.75 liegt. 

Unter Berücksichtigung aller geologischen, geochemischen und isotopischen Daten ergibt 

sich ein konsistentes genetisches Modell für die Entsehung der postvaristischen 

hydrothermalen Gänge im Schwarzwald. Dieses Modell geht davon aus, dass praktisch alle 

metallführenden Fluorit-Baryt-Quarz-Gänge durch grossräumige variable Mischung von 

homogenen hochsalinaren Tiefenfluiden mit kühlen meteorischen Wässern gebildet wurden. 

Zusätzlich zeigt die vorliegende umfassende Studie, dass im Schwarzwald zwei sehr 

unterschiedliche Fluidsysteme aktiv waren, die beide ihren Ursprung im kristallinen 

Grundgebirge haben. Das jüngere, postvaristische Fluidsystem zeigt dabei sehr konstante 

geochemische und isotopische Zusammensetzungen über ein grosses Gebiet und einen sehr 

langen gelogischen Zeitraum von mindestens 100 Ma. Zahlreiche im Schwarzwald und in der 

Nähe des Rheingrabens aktive Thermalquellen legen nahe, dass ähnliche Fluidprozesse wie in 

den postvaristischen Mineralisationen konserviert immer noch aktiv sind. 
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1. INTRODUCTION 

Triassic-Jurassic hydrothermal activity and mineralization throughout central and 

southern Europe were first identified by Mitchell and Halliday (1976). Typically, these 

mineralizations are characterized by base metals (mostly Pb-Zn) with minor amounts of Ag, 

and are hosted in quartz - carbonate - fluorite - barite veins. It has been noted that these base-

metal veins occur preferentially along the margins of Mesozoic basins, particularly in the 

vicinity of older granites (Mitchell and Halliday 1976; Halliday and Mitchell 1984). The 

fluids are typically CaCl2-NaCl-rich brines of moderate to high salinity with homogenization 

temperatures in the range of 70-200°C. Features indicative of repeated mixing with cooler 

meteoric waters, e.g. alternating growth zones within gangue minerals hosting high- and low-

salinity fluid inclusions, are very abundant (Lüders and Franzke 1993). Pronounced examples 

of this widespread mineralization style are found in the French Massif Central (Munoz et al. 

1994; 2005), the Paris basin (Charef and Sheppard 1988; Clauer et al. 1995), southwest 

Cornwall (Gleeson et al. 2000), Ireland (Wilkinson et al. 1995; 1999), Spain (Canals and 

Cardellach 1993) and many areas in Germany (Behr et al. 1987; Behr and Gerler 1987; 

Franzke et al. 1996; Meyer et al. 2000; Werner and Dennert 2004; Schwinn et al. in press). 

The Schwarzwald is one of the old mining regions in Germany and well known for 

Pb-Zn-Cu-Ag mineralizations that occur in hydrothermal fluorite – barite – calcite - quartz 

veins in Variscan crystalline basement. The mining potential of the Schwarzwald was 

estimated as 0.2-0.3 Mt of Pb+Zn (Walther 1981); the fluorite+barite resources are on the 

order of about 10 Mt (Huck and Walther 1984). Based on fluid inclusion characteristics, the 

hydrothermal veins and fissure mineralizations in the Paleozoic basement and Permian-

Mesozoic cover rocks of Germany can be grouped into two main classes (Behr and Gerler 

1987): (1) mineralizations which are geologically and structurally related to the Variscan 

metamorphism and deformation or to Paleozoic granitic intrusions which mostly contain 

inclusion solutions with eutectic temperatures not below -24 °C, (Tm ice=-6-0 °C and Th=140-

350 °C) and (2) mineralizations related to post-Variscan tectonic processes, such as the rifting 

of the northern Atlantic ocean in the Jurassic-Cretaceous or in the Oberrhein region in the 

Tertiary. The Variscan veins contain predominantly fluid inclusions of the H2O-NaCl-KCl 

type, which have generally low salinities and variable homogenization temperatures between 

140 and 350 °C (Behr and Gerler 1987; Hein 1993; Muchez et al. 1998; 2000; Wagner and 

Cook 2000). In contrast, post-Variscan vein mineralizations with barite, fluorite and Pb-Zn 

ores in Harz, Rheinisches Schiefergebirge, Schwarzwald and Oberpfalz, Germany, contain 

fluid inclusions of the H2O-NaCl-CaCl2 type, which have high salinities (21-26 wt.%) and 
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homogenization temperatures in a much narrower range of 150-200 °C (Behr and Gerler 

1987). These post-Variscan fluids were most likely derived from formation waters that 

migrated out of Permo-Triassic sedimentary basins into the Variscan basement. Fluid-rock 

interaction at temperatures of 300-350°C resulted in leaching of metals from the granites and 

gneisses; subsequent ascent of these metal-bearing brines along fault zones and mixing with 

meteoric sulphate and/or bicarbonate waters led to hydrothermal vein mineralization (Behr & 

Gerler 1987; Schwinn et al. in press). 

Prolonged hydrothermal activity in the Schwarzwald area resulted in both multistage 

vein-type mineralization and large-scale alteration of the basement rocks. Most of the 

crystalline rocks show various degrees of hydrothermal alteration, with chloritization of 

biotite and sericitization and albitization of feldspars being the most notable alteration 

reactions. Entirely fresh metamorphic or igneous rocks are virtually absent in the 

Schwarzwald area. Microthermometric studies of fluid inclusions in quartz from 

hydrothermally altered granites in the southern Schwarzwald revealed homogenisation 

temperatures between 200 and 400 °C for the alteration and salinities up to 9 wt.% NaCl-

equivalent (eqv.), thereby indicating infiltration of meteoric waters (Simon and Hoefs 1986; 

Hofmann and Eikenberg 1991). Based on δD and δ18O analysis of altered granites and 

calculations using models for closed-system and open-system fluid-rock interaction (Taylor 

1977; 1979), Hoefs and Emmermann (1983) estimated that the primary oxygen isotope 

composition of the fluids causing the alteration of the basement was around –9 ‰, which 

conforms to the typical value for recent surface waters. 

This PhD research focused on the following three distinct topics: 

- Water is the dominant constituent of ore-forming fluids, so information on its source is 

fundamental to understand the hydrothermal transport and deposition of metals. Natural 

waters of various origins exhibit systematic differences in their deuterium (D) and 18O 

contents. Stable isotope ratios of oxygen (δ18O) and hydrogen (δD) are therefore extremely 

important geochemical tracers to determine the origin of aqueous fluids in geological 

environments (Sheppard 1986). The acquisition of δD signatures from fluid inclusions, 

samples of geological fluids mechanically trapped during crystallization provides an 

invaluable insight into the isotopic composition of ancient fluids. The best way to directly 

determine the δD value of hydrothermal water is to measure the of hydrogen isotope 

composition of H2O directly from fluid inclusions. However, due to their microscopic 

dimensions (typically <30 µm) direct determination of the δD signature of individual 
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inclusions is extremely difficult, since only small quantities can be extracted.  Inclusion fluids 

in fluorite are particularly useful, because their host is devoid of oxygen or hydrogen, thus 

precluding post-entrapment isotope exchanges.  

Water from fluid inclusions can be extracted by mechanical decrepitation, either where 

minerals are crushed in vacuum (Roedder 1958; Horita and Matsuo 1986), or, more typically, 

by thermal decrepitation which means heating a sample in an extraction line (Kishima and 

Sakai 1980; Friedman 1953; Craig 1961). The interpretation of δD signatures obtained from 

anhydrous minerals commonly assumes that the measured hydrogen uniquely comes from 

decrepitated fluid inclusions and the resulting δD signature is attributed solely to this 

reservoir. Hydrogen-bearing species released by mineral decrepitation are assumed to be 

similar in composition to those of the medium from which the crystal grew (Ihinger and Zink 

2000). However, previous studies have postulated that non-fluid inclusion hydrogen reservoir 

may contribute significantly to the δD signature of quartz (Ishiyama et al. 1999; Knauth and 

Eipstein 1975; Simon 1997; 2001). Ishiyama et al. (1999) suggested that hydrogen released 

by decrepitation at temperatures between 300 and 500 °C yield accurate isotopic compositions 

of the precipitating fluid. However, stepped heating experiments above 500 °C yielded 

increasingly anomalous δD signatures (Ishiyama et al. 1999). This was confirmed by the 

observations made by Faure (2003) on fluid inclusions from quartz and calcite from a 

geothermal system. The majority of studies reporting low δD values from quartz employed 

extraction temperatures greater than 1000 °C (Sheets et al. 1996; O’Reilly et al. 1997; 

Gleeson et al. 1999; Barker et al. 2000).  

As part of this thesis, the influence of structurally bound O-H species in hydrothermal 

fluorites on the anomalous δD value of fluid inclusion water thermally extracted from 

hydrothermal fluorites at different temperatures was investigated.  The results of a combined 

stable isotope and infrared spectroscopic investigation of hydrothermal vein fluorites are 

reported here. 

 

- The characteristics of hydrothermal fluids responsible for the large-scale alteration can be 

clearly distinguished from the CaCl2-NaCl type brines with very high salinities (>23 wt.% 

NaCl eqv.) and homogenization temperatures <180 °C typical of the vein mineralizations 

(Lüders and Franzke 1993). Lüders (1994) concluded that the formation of post-Variscan 

hydrothermal vein minerals in the Freiamt-Sexau and the Badenweiler areas (western 

Schwarzwald) can be related to interactions and mixing of an ascending saline brine with 
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descending formation waters derived from the Mesozoic and Tertiary cover. Schwinn et al. 

(in press) calculated mixing ratios between 0.5 and 0.75 (brine/meteoric fluid) for a variety of 

veins. Hydrothermal processes at the boundary between the Jurassic and the Cretaceous have 

also been described outside the Schwarzwald based on isotopic dating. For instance, the 

Montroc fluorite deposit (southern Massif Central, France), the Paris basin and the 

Thüringischer Wald are related to the regional tectonic events that result from the opening of 

the north Atlantic ocean (Clauer et al. 1995; Franzke et al. 1996; Munoz et al. 2005). The 

migration of basinal Ca-Na-Cl brines from sedimentary basins into the basement has been 

illustrated in Cornwall (Gleeson et al. 2000) and Ireland (Wilkinson et al. 1999). The recent 

thermal and mineral waters in the Schwarzwald area show striking similarities to the paleo-

hydrothermal systems that were responsible for the formation of the Pb-Zn-Cu ore deposts. 

Based on a regional study of the hydrochemistry of groundwaters in the crystalline basement 

of the Schwarzwald, two principal water types can be distinguished (Stober and Bucher 

1999): 

(1) Saline thermal waters from a number of prominent spas originate in about 3-4 km deep 

reservoirs. Their composition can be reasonably explained by mixing of surface-derived 

freshwater with saltwater, with several additional solute components derived from water-rock 

interaction.  

(2) The second type is represented by mineral waters with comparatively low chlorinity and 

high concentrations of Ca, bicarbonate and dissolved CO2. Both the low temperature (20-60 

°C) and the low chlorinity indicate that their circulation path does not reach a depth greater 

than a few hundred meters and that mineral waters do not mix with saline deep water. 

This research presents a comprehensive study of the fluid inclusion characteristics of 

the Variscan and post-Variscan hydrothermal veins, which is combined with oxygen isotopic 

data of vein quartz and hydrogen, oxygen and carbon isotope analyses of inclusion fluids 

from a large number of hydrothermal veins covering the entire Schwarzwald district. Based 

on these data and on calculations of isotopic fractionation trends, the fluid compositions and 

the physico-chemical conditions of ore formation are established. By integrating the available 

information on potential fluid sources and the geological framework, a consistent model of 

hydrothermal mineralization in the Schwarzwald district is developed. 

 

- Fluid mixing is a widely recognized process in upper crustal hydrothermal systems (Jamtveit 

and Hervig 1994; Komninou and Yardley 1997; Gleeson et al. 2000; 2003; Douglas et al. 

2003; Upton et al. 2003). Mixing of fluids with different chemical composition and/or 
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oxidation state commonly results in super saturation of ore and gangue minerals and occurs 

under conditions far from equilibrium with the host rocks (Bethke 1996). Consequently, fluid 

mixing is considered a significant precipitation mechanism involved in the formation of 

hydrothermal ore deposits. Many examples of Mississipi Valley-type deposits are believed to 

have been produced by the mixing of at least two fluids (Anderson 1975; Ohmoto and Rye 

1979; Barrett and Anderson 1982) or a metal-bearing formation water with H2S gas (Haynes 

and Kesler 1987; Jones and Kesler 1992). Mixing between basement brines and meteoric 

waters accounts for the formation of many vein-type Pb-Zn mineralizations, for example 

within the European Variscides (Lüders and Möller 1992; Lüders and Ebneth 1993; Zheng 

and Hoefs 1993a, b; Lüders 1994; Ritter 1995; Werner et al. 2000; 2002). 

Stable isotope investigations of sulfur and carbon are important tools for deciphering 

the processes involved in the formation of hydrothermal mineralizations and can provide 

critical information about (1) the temperature of formation, (2) the physico-chemical 

conditions of the mineralization processes, and (3) the origin of the elements in solution (e.g., 

Rye and Ohmoto 1974; Ohmoto and Rye 1979; Hoefs 1987; Rye 1993; Ohmoto and 

Goldhaber 1997; Huston 1999; Heinrich et al. 2000; Simmons et al. 2000; Blakeman et al. 

2002). In particular, the sulfide-sulfate redox reaction and the kinetics of the related isotopic 

fractionation may indicate fluid mixing from non-equilibrium assemblages of sulfide- and 

sulfate minerals (Ohmoto and Rye 1979). Calcites precipitated by mixing processes show 

carbon and oxygen isotope covariation trends controlled by the mixing ratio, the temperature 

and pH of the mixed fluids, and the isotopic compositions of the two or more fluid end-

members (Zheng and Hoefs 1993c). 

Fluid mixing ratios by a combination of stable isotope and fluid inclusion 

investigations were quantified. A model for the calculation of calcite precipitation trends, 

which considers the isotopic composition of the fluid end-members as well as the 

thermodynamically calculated carbon speciation in the mixed fluid, is proposed. Geochemical 

data of many individual deposits from an area of 120 by 40 km point to large-scale 

hydrothermal convection and a consistent model of hydrothermal mineralization via district-

scale fluid mixing are developed. 
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2. GEOLOGICAL AND METALLOGENIC FRAMEWORK 

2.1. GEOLOGICAL BACKGROUND 

The Schwarzwald is one of the old mining regions of Germany. The oldest document proving 

mining activities dates from 1028 (Metz 1975; Schneiderhöhn 1958). The Schwarzwald 

crystalline basement complex belongs to the Moldanubian zone of the Central-European 

Variscan orogen. It covers an area of approximately 120 by 40 km area in SW Germany. The 

Variscan orogen is the product of late Palaeozoic continental collision between Gondwana 

and Laurasia. Volcanism and plutonism occurred from Devonian to Permian times, but 

mainly during the Carboniferous. The Variscan crystalline basement consists of ortho- and 

paragneisses, quite common with anatectic textures. Locally, the gneisses contain lenses of 

more or less retrogressed peridotites, pyroxenites, eclogites, and amphibolites (Kalt et al. 

2000). The gneisses and migmatites were intruded by Variscan granitoids around 335-315 Ma 

(Kalt et al. 2000). The granites comprise both biotite and two mica S-type varieties. To the 

north and east, the basement is overlain by Mesozoic sediments, to the west the basement is 

cut by the Tertiary Rheingraben structure. In the area of the Schwarzwald, numerous SSW-

NNE and E-W trending shear zones of Variscan origin are widespread phenomena. In the 

southern Schwarzwald, the SSE verging Todtnau fault (Badenweiler-Lenzkirch Zone) forms 

the boundary between the Central Gneiss Complex and the Southern Gneiss Complex. The 

polyphase Variscan tectono-metamorphic evolution in the central and southern Schwarzwald 

is distinguished by a sharp change in the tectonical regime. Collisional shortening and crustal 

stacking give way to crustal extension and thinning in the earliest Upper Carboniferous 

(Echtler and Chauvet 1992). The timing of the extension tectonics is well constrained by the 

age of the undeformed Albtal granite (Rb/Sr: 326 ±2 Ma, Schuler and Steiger 1978) and the 

Malsburg granite (U/Pb: 328 ±6 Ma, Todt 1976). The oldest fault controlled mineralizations 

are scheelite (Werner et al. 1990). Related to this major transition in structural evolution is the 

development of several crustal-scale ductile-brittle shear zones, which generally trend SSW-

NNE and E-W. Activation and further development of these shear zones was accompanied by 

the formation of structurally-controlled quartz veins, which are locally mineralized with Au- 

and Sb-bearing sulphide assemblages (Werner et al. 1990).  

The crystalline basement rocks were exhumed during the formation of the Tertiary 

Rheingraben structure (Kalt et al. 2000; Werner and Franzke 2001). The Schwarzwald area 

represents an erosional window through the post-Variscan cover to the Central European 

continental crystalline basement. Figure 1 shows the general geology of the basement and its 
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major cover units of the post-Variscan sedimentary cover. The local uplift of the Rheingraben 

shoulders started in the Oligocene and the general regional updoming of the Schwarzwald 

area has lasted since the Miocene to present times (Thury et al. 1994). The strong uplift 

exposed the Schwarzwald to erosion and led to the removement of most of the Mesozoic 

sedimentary cover units. The youngest marine sediments in the Rhein valley date back to the 

middle Oligocene (Schreiner 1991).  

Von Gehlen (1989) concluded that Post-Variscan tectonic movements and the related 

formation of fracture zones and hydrothermal vein mineralization must have occurred almost 

continuously from the Upper Permian to the Upper Jurassic. The mineral veins were formed 

by strike-slip faulting along fractures active already during Variscan times. The interaction 

between these faults, E-W/NW-SE trending shear zones of Jurassic-Cretaceous age, and the 

reactivation of pre-existing metamorphic foliation resulted in complicated fault and mineral-

vein patterns. The distribution of mineralized faults with predominantly sinistral strike-slip in 

the immediate vicinity of the Rheingraben and dextral strike-slip fault zones ca. 4-7 km east 

of the Rheingraben margin indicates a major change in the principal tectonic stress directions 

from NE-SW (early Miocene) to NW-SE and NNW-SSE (late Miocene) (Werner and Franzke 

2001). The Sm-Nd dating of fluorite from the Montroc fluorite deposit (southern Massif 

Central, France), which is comparable to the Schwarzwald deposits gives an age of 111 ±13 

Ma, which suggests the Albian/Aptian transition as the most likely period for large-scale fluid 

circulation during a regional extensional tectonic event related to the opening of the North 

Atlantic ocean (Munoz et al. 2005). The K-Ar dating and δ18O analyses of sericite from the 

Offenburg trough indicate that sericitization occurred about 145 Ma ago (Jurassic) and the 

hydrothermal fluids had temperatures of 150-210 °C (Brockamp et al. 2003). The 

hydrothermal activity was found to have occurred about 145 Ma ago during the breakup of 

Pangaea, documenting an important step in the geological development of the European 

continent (Zuther and Brockamp 1988).   

 Groundwater composition in the crystalline basement of the Schwarzwald is quite 

variable. There are at least three types of different groundwater: Cl-rich thermal water, CO2-

rich mineral water and weakly mineralized surface-related water. Two chemically very 

distinct types of groundwater were distinguished: (1) CO2-rich mineral waters and (2) Cl-rich 

thermal waters (Stober and Bucher 1999a). Thermal water generally has a higher degree of 

mineralization than the CO2 –rich mineral water. Thermal water springs are typically found in 

granite; mineral water springs are predominantly located in gneiss. Most of the CO2–rich 

waters contain Ca as the most abundant cation and are then of the Ca-Na-HCO3 type. Total 



Baatartsogt B: Fluid inclusion and stable isotope studies of hydrothermal vein deposits, Schwarzwald, Germany. 
 

 
 

19 

dissolved solids (TDS) are weakly correlated with sampling depth at Peterstal and Griesbach 

but inversely correlated with depth at Teinach. This is strong evidence for local, shallow-level 

source of solutes. In the mineral waters, the total dissolved solids (TDS) reach values of 3000-

4000 mg kg-1 and they contain much dissolved CO2 (>2000 mg kg-1). Because of the high free 

CO2 content of these waters, pH is low throughout, often below six (Bucher and Stober 2000). 

The mole fraction XNa (=Na/(Na+Ca)) in all the mineral waters varies between 0.39 and 0.70. 

The silica content of the waters is in equilibrium with quartz at temperatures of around 50-60 

°C which suggests that the waters typically reside in the depth of 2-3 km. Dissolved silica in 

the chloride waters is much lower than in the mineral waters. The pH in this group is 

significantly higher than of the mineral waters. The average of 7.1, however, is low compared 

to waters that originate predominantly from silicate hydrolysis and water rock reactions 

(Bucher and Stober 1999). NaCl dominates all Cl-rich waters. The amount of TDS of the 

groundwater in the gneisses and granites of the Schwarzwald systematically increases with 

depth, and the water type changes from low-TDS Ca-Na-HCO3 water near surface to Na-Ca-

SO4-HCO3 and finally high-TDS Na-Cl water at depth (Stober 1995).    
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Figure 1. Simplified geological map of the Schwarzwald showing the location of the Variscan and post-

Variscan hydrothermal vein deposits (after Walther et al. 1986). Numbers correspond to Table 1 and 2. 

 

 

 

 



Baatartsogt B: Fluid inclusion and stable isotope studies of hydrothermal vein deposits, Schwarzwald, Germany. 
 

 
 

21 

Table 1.  Names of deposits and hydrothermal assemblages of Variscan quartz-veins. 
 

No. Deposit Assemblage No. Deposit Assemblage 

q-1 Rossgrabeneck Quartz-Tourmaline-W q-10 
Birkenberg, near  
St. Ulrich 

Quartz-Ag-Pb-Zn-Fe 

q-2 Baberast Quartz-Ag-Sb q-11 
Gründenwald 
St. Ulrich 

Quartz-Sb-Ag 

q-3 Artenberg Q Quartz-Sb-Pb q-12 
Schweizergrund 
Sulzburg 

Quartz-Sb 

q-4 
Ludwig im 
Adlersbach 

Quartz-Sb q-13 
Holderpfad 
Sulzburg 

Quartz-Sb-Ag 

q-5 
Erletzberg,  
near Hausach 

Quartz-Fe q-14 
Kleiner Langenbach 
Belchen 

Quartz-Fe-(Cu)-(Pb)-Bi-
Au 

q-6 
Ursula 
Welschensteinach 

Quartz-Sb q-15 
Egghalde Gang A 
Bad Säckingen 

Quartz (Fluorite)-W 

q-7 Bärenbach Quartz-Fe q-16 
Segen Gottes Q 
Schnellingen 

Quartz-Sb-Au 
 

q-8 
Hornbühl 32 
Suggental 

Quartz-Sb-Ag q-17 
Barbara 
Oberentersbach 

Quartz-Sb-Ag 

q-9 
Münstergrund 
Münstertal 

Quartz-Sb-Ag     

  

  

Table 2. Names of deposits and hydrothermal assemblages of post-Variscan fluorite-bearing veins. 

No. Deposit Assemblage No. Deposit Assemblage 

      

1 
Käfersteige, 
near Pforzheim 

Fluorite-Barite  
Cu-Bi 

47 
Herrmann,  
near Görwihl 

Quartz-Fluorite 
Pb 

2 
Heiligenwald, 
near Pforzheim 

Fluorite 48 
Riedlingen, 
near Kandern 

Fluorite 

3 
Friedenweiler, 
near Eisenbach 

Fluorite 
Cu-Bi 

49 Urberg 
Quartz-Fluorite-Barite-Calcite   
Pb-Zn-Cu 

4 
Dorothea, 
near Freudenstadt 

Barite 
Cu-Bi-Ag  

50 
Bildsteinfelsen, 
Urberg 

Quartz-Fluorite-Barite-Calcite 
Pb-Zn-Cu-Ag 

5 
Wittenweiler, 
near Freudenstadt 

Fluorite-Barite 51 
Gottesehre, 
Urberg 

Quartz-Fluorite-Barite-Calcite 
Pb-Zn-Cu-Ag-As-Co-Ni 

6 
Zunsweier, 
near Offenburg 

Fluorite 52 
Neuglück, 
Urberg 

Quartz-Fluorite 
Pb 

7 
Ohlsbach, 
near Offenburg 

Fluorite-Apatite-(Barite) 53 
Schwarzwaldsegen, 
Urberg 

Quartz-Fluorite 
Pb 

8 
Hesselbach, 
near Oberkirch 

Fluorite 
Cu-(Bi) 

54 
Neue Hoffnung, 
Urberg 

Quartz-Fluorite 
Pb 

9 
Ödsbach, 
near Oberkirch 

Fluorite 
Cu-(Bi) 

55 
Ruprechtgang, 
Urberg 

Quartz-Fluorite 
Pb 

10 
Clara, 
near Wolfach 

Barite-Fluorite 
Cu-Ag-Pb-As-Sb 

56 Brenden 
Quartz-Fluorite 
Pb-(Cu) 

11 Friedrich-Christian 
Fluorite-Barite-Quartz-Calcite  
Pb-Cu-Ag-Bi 

57 
Igelschlatt, 
Schlüchttal 

Quartz-Fluorite 
Pb-Cu-(Zn) 

12 
Sophia, 
Wittichen  

Barite-Fluorite 
Co-Ni-Ag-Bi-U 

58 
Hausen, 
Wiesental 

Fluorite 

13 
Johann, 
Wittichen 

Barite-Fluorite 
Bi-Cu 

59 Wehratal Fluorite 

14 
Neuglück, 
Wittichen 

Barite-Fluorite 
Co-Ni-Ag-Bi-U 

60 
Tierlen, 
near Witzau 

Fluorite-Barite-Quartz 
Pb-Zn 

15 
Bleilersgrund, 
Wittichen 

Fluorite 61 Nöggenschwiel Fluorite 

16 
Ilse i. Kaltbrunn, 
near Wittichen 

Fluorite 
Cu-Bi 

62 Sulzburg Quartz (Amethyst) 
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17 
Burgfelsen, Ilse,  
near Wittichen 

Fluorite 63 
Mühlsteinbruch, 
near Waldshut 

Quartz-(Barite)-(Fluorite) 

18 
König David, 
Gallenbach 

Fluorite-Barite 
Cu-Bi-Co 

64 Neubulach 
Quartz-Barite-Calcite 
Cu-Bi-As 

19 
Hilfe Gottes, 
near Schiltach 

Quartz 
Co-Bi-U 

65 Michael im Weiler 
Barite 
Pb-Zn-U-As 

20 
Herzog Friedrich, 
Reinerzau 

Fluorite-Barite 
Co-Ag-U 

66 Geigeshalde 
Barite 
Bi-U 

21 
Daniel Gallenbach, 
Wittichen 

Fluorite-Barite 
Cu-Bi 

67 Schauinsland 
Quartz-Barite-Calcite 
Pb-Zn 

22 
Neubergmännisch 
Glück, Wittichen 

Fluorite 
Cu-Bi 

68 Kobaltgrube 
Barite-Quartz-(Fluorite) 
Co-(Ni)-Ag-Pb-Cu-(Zn) 

23 
Schlechthalde, 
near Wittichen 

Fluorite 69 Menzenschwand 
Barite-Fluorite-Quartz 
U-(Pb)-(Cu) 

24 
Southern Reinerzau 
valley 

Fluorite 
Cu-Bi 

70 
Daniel Dehs, Bad 
Rippoldsau 

Quartz 
Cu-Ag-Bi 

25 
Drey, 
Schnellingen 

Barite-Fluorite 71 
Johann Baptist,  
near Rippoldsau 

Quartz 
Cu 

26 
Barbara, 
Schnellingen 

Barite-Fluorite 
Pb-Zn 

72 
Anton im Heubach,  
Schiltach, Kinzig  

Barite-Fluorite 
Co-Ni-Ag-Bi-U 

27 
Segen Gottes, 
Schnellingen 

Barite-Fluorite 
Pb-Zn-Ag 

73 
Bernhard,  
Hauserbach 

Siderite-Calcite-Barite 
Pb-Zn-Fe 

28 
Artenberg quarry, 
Steinach 

Quartz-Calcite-Fluorite 
Cu-As 

74 
Maria Theresia 
Hauserbach  

Dolomite-Calcite-Barite 
Pb 

29 
Erzengel Gabriel, 
near Hausach 

Fluorite-Barite 
Pb 

75 
Katharina,Trillen- 
grund, near Schiltach  

Barite-Calcite 
Cu-Bi 

30 
Laßgrund, 
near Hausach 

Fluorite-Barite 
Pb 

76 
Rötenbach quarry,  
near Alpirsbach 

Calcite-Dolomite 
Co-Bi-Ag 

31 
Wenzel, 
near Wolfach 

Barite-Calcite  
Ag-Sb-(Ni) 

77 
Christiana,  
Wittichen 

Barite 
(Co) 

32 
Fortuna Gelbach, 
near Wolfach 

Fluorite-Barite 
Pb-Ag 

78 
Simson,  
Wittichen 

Barite-Fluorite 
Co-Ni-Ag-Bi-U 

33 
Ludwigs Trost, 
Kuschbach 

Fluorite-Barite 
Fe-(Pb)-(Ag) 

79 
St. Josef am 
Silberberg, Wittichen 

Barite-Fluorite 
Co-Ni-Ag-Bi-U 

34 
Hohberg, 
near Wolfach 

Fluorite-Barite 
Fe 

80 
Hammereisenbach, 
E Titisee-Neustadt 

Barite 
Fe-Mn 

35 
Tennenbronn, 
near Schramberg 

Fluorite 
 

81 
Giftgrube,Kaltwasser 
Münstertal 

Dolomite-Calcite  
Pb-As  

36 Badenweiler 
Quartz-Barite-Fluorite 
Pb-(Zn)-(Cu) 

82 
Fahl,  
near Todtnau 

Fluorite-Barite-Quartz 
Pb 

37 Sulzburg Fluorite 83 
Gschwend, 
near Todtnau 

Fluorite-Barite 
Pb  

38 Bad Sulzburg Quartz-Fluorite 84 
Herrenwald,  
Münstertal 

Fluorite-Barite 
Pb-Zn 

39 
Schlossberg-W, 
Rammelsbach  

Quartz-Fluorite-Barite 
Pb-Cu 

85 
Anton,  
Wieden 

Fluorite-Barite 
Pb-Zn-Ag 

40 
Teufelsgrund, 
Münstertal 

Quartz-Fluorite-Calcite-Barite 
Pb-Ag-Zn 

86 
Silbergründle 
Seebach 

Quartz 
Pb 

41 
Tannenboden,  
Wieden 

Fluorite-Barite-Quartz 
Pb-(Zn)-(Cu)-(As)-(Ag) 

87 
Königswart 
Murgtal 

Quartz-Barite 
Cu-Bi 

42 
Baumhalde, 
Todtnau 

Quartz-Fluorite 
Pb-Zn-Cu-(Ag) 

88 
Silberbrünnle 
Gengenbach 

Quartz 
Cu-Bi-As-(Pb)-(Ag) 

43 Brandenberg 
Quartz-Fluorite-(Calcite) 
Pb-(Ag)-(Zn)-(Cu) 

89 
Lorenz 
Wolfach 

Quartz 
Cu 

44 
Schönenberg, 
Schönau 

Fluorite-Barite-Quartz 
Pb-Cu 

90 
Tunnel near 
Waldkirch 

Calcite-Dolomite 

45 
Aitern-Süd, 
Schönau 

Fluorite-Barite-Quartz 
Pb-Zn-Cu 

91 
Merzhausen near 
Freiburg 

Calcite-Pyrite 

46 Schönau 
Fluorite-Quartz 
Pb 

92 
Tunnel near 
Hornberg 

Calcite-Siderite-Fluorite 

   93 Hechtsberg quarry Calcite 
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2.2. METALLOGENESIS AND HYDROTHERMAL VEINS 

The Schwarzwald district hosts more than 400 individual hydrothermal veins, which cut the 

Variscan crystalline basement and the overlying Bunter sandstone quartzites (Fig. 1). The 

veins have been classified into (1) quartz veins, which are most probably of Variscan origin, 

and (2) post-Variscan metal-bearing fluorite-barite-quartz veins. The post-Variscan veins 

follow either pre-existing Variscan fracture zones or structures, which are subparallel to the 

Rheingraben (Werner and Franzke 2001). Based on their mineralogy, several sub-types of 

hydrothermal mineralization can be distinguished, which are, for example, Sb-Ag-bearing 

quartz veins (most likely Variscan, occurring throughout the entire district), Co-Ni-Ag-Bi-U-

bearing barite-fluorite-veins (post-Variscan, in the Wittichen area), Fe-Mn-bearing quartz-

barite-veins (Jurassic, in the Eisenbach area) and the post-Variscan to Tertiary Pb-(Zn)-(Ag)-

bearing quartz-fluorite-assemblages in the southern and central Schwarzwald (Metz et al. 

1957; Bliedtner and Martin 1988). Most of these veins do not host minerals suitable for 

radiometric dating. From the previous studies, however three mineralization events could be 

distinguished based on U-Pb and U-Xe, Xe-Xe dating of hydrothermal pitchblende, on U-He 

dating of hematite, and on K-Ar dating of K-bearing Mn minerals: one at 280 to 310 Ma 

during to the end of the Variscan orogeny (Hofmann and Eikenberg 1991; Segev et al. 1991; 

Meshik et al. 2000; Wittichen area, Menzenschwand deposit), a second one at 110 to 150 Ma 

(Segev et al. 1991; Wernicke and Lippolt 1993; 1997; Hohberg and Eisenbach area), and a 

third one at 50-30 Ma related to the formation of the Rheingraben structure (Hofmann and 

Eikenberg 1991; Menzenschwand deposit). Fluid inclusion (Lüders 1994; Hofmann and 

Eikenberg 1991; Werner et al. 1990; von Gehlen 1989; Behr et al. 1987) and tectonic studies 

(Möller et al. 1990a,b; Werner et al. 1990; Franzke 1992) combined with the few available 

radiometric data allow to divide the vein mineralizations in the Schwarzwald area into 

Variscan quartz veins with or without pitchblende related to low-salinity waters with last 

melting temperatures of around 0 °C and post-Variscan, mainly fluorite ± barite ± quartz 

bearing veins related to highly saline brines with last melting temperatures from -20 to -30 °C.  

From the tectonic point of view, most of the veins are subparallel to the Oberrheingraben 

structure or they follow fractures, which have been active since late-Variscan time (Werner 

and Franzke 2001). Within the veins, brecciation of the hydrothermal material, preserved 

imprints of the dissolved euhedral fluorite crystals, and the common replacement of euhedral 

barite by quartz prove multiple hydrothermal events (Metz et al. 1957; Bliedtner and Martin 

1988). Alteration effects have been dated by K-Ar and Ar-Ar studies of sericitized feldspars 
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from the basement and the overlying Triassic Buntsandstein sandstone at 110-150 Ma (Zuther 

and Brockamp 1988; Lippolt and Kirsch 1994; Meyer et al. 2000).  

 

2.3. PREVIOUS STUDIES 

Although a limited number of fluid inclusion analyses of individual post-Variscan deposits 

has been performed, a systematic and comprehensive study that would link trends on the 

deposit scale with large-scale processes has not yet been provided. Furthermore, no previous 

study has integrated the fluid inclusions records with systematic investigations of the stable 

isotope systematics of the Variscan and post-Variscan veins. The result of the previous studies 

indicate that the aqueous hydrothermal fluids in the post-Variscan veins are characterized by 

relatively high salinities (23-26 wt.% eqv. NaCl) and homogenization temperatures below 250 

°C (Behr et al. 1987; von Gehlen 1989; Werner et al. 1990; Hofmann and Eikenberg 1991; 

Lüders 1994; Ritter 1995; this study). Within single deposits, most commonly only one 

principal fluid type with a comparatively homogeneous range in salinity is present.  Some 

deposits structurally related to the Tertiary Rhein Graben show a somewhat different fluid 

record. The salinities of aqueous fluid inclusions are highly variable between 1.7 and 25.6 wt. 

% eqv. NaCl and indicate mixing of low saline water with the deep-sourced saline brine 

(German et al. 1994; Lippolt and Werner 1994; Lüders 1994; Weber 1997; Werner et al. 

2000; 2002). Most importantly, crush-leach analysis of the Cl/Br ratios of fluid inclusions 

from more than 30 Schwarzwald deposits shows that formation of the hydrothermal ore 

deposits is clearly related to mixing of low-salinity meteoric waters with a deep saline brine 

of more than 30 wt.% equivalent NaCl (Markl et al. in prep.). 

The available stable isotope data are generally very limited in coverage. Previous 

carbon and oxygen isotope investigations showed δ13C (V-PDB) and δ18O (V-SMOW) values 

from –12 to +2.9 ‰ and from +12 to +18.5 ‰ for primary calcites (Hofmann 1989; Lüders 

1994). Sulfur isotope studies indicate that most deposits display a consistent sulfate-sulfide 

isotope fractionation, which is interpreted as a preserved fractionation that was established in 

the deep aquifer (Schwinn et al. in press). The calculated paleo-temperatures of 300-350 °C 

are consistent with paleogeothermal models and phase equilibria constraints on alteration 

assemblages that are observed in hydrothermally overprinted granites. Oxygen isotope studies 

of only two hydrothermal veins showed δ18O values from +15.5 to +19.4 ‰ and from +15.3 

to +20.0 ‰ in the Schauinsland and Menzenschwand deposits, respectively (Weber 1997; 

Hofmann 1989). Von Gehlen et al. (1962) have reported the results of a relatively limited 

sulfur isotope study of sulfide and sulfate minerals from 21 Schwarzwald deposits. The study 
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revealed rather consistent δ34S values for sulfide ores (galena: –12.4 to –2.6 ‰; sphalerite: –

1.2 to +2.3 ‰) and barite (+8.3 to +16.8 ‰) from different deposits. Few additional sulfur 

isotope data exists from deposits, which are structurally related to the Tertiary Schwarzwald 

Randverwerfung fault. Sulfide and sulfate values from the Freiamt-Sexau mining area, 

Badenweiler (Lüders 1994) and from the Schauinsland deposit (Mittelstädt 1987; Weber 

1997) show the same range of δ34S values as reported by von Gehlen (1962). Based on these 

data, a qualitative fluid mixing model was proposed for the formation of the hydrothermal 

mineralizations. This model assumes that the aqueous sulfates were derived from sulphate 

bearing units of the sedimentary cover, whereas reduced sulfur originated from destruction of 

sulfides in metamorphic rocks of the crystalline basement (Werner et al. 2000; Werner et al. 

2002). Variscan and post-Variscan barite could be distinguished in the Menzenschwand mine 

(Hofmann 1989), with the Variscan mineralization having distinctly lower δ34S values (+7.2 

to +8.0 ‰) than post-Variscan barites (+15.4 to +15.8 ‰). Müller et al. (1966) have analyzed 

sulfates in the Mesozoic sedimentary cover and the Tertiary sediments of the Rheingraben. 

The Triassic Muschelkalk and Keuper units show δ34S values of +18.5 to +21.0 ‰ and +14.3 

to +18.3 ‰, respectively. Jurassic sediments display δ34S values of +16.0 to +19.0 ‰ and 

Tertiary units have values between +11.0 and +13.0 ‰.  

Carbon and oxygen isotope data were reported from the Freiamt-Sexau mining area 

and from the Schauinsland deposit (Lüders 1994). Two generations of siderites from Freiamt-

Sexau show slight differences in their isotopic composition (generation 1: δ13C of –1.7 to +2.9 

‰ and δ18O of +17.3 to +17.8 ‰; generation 2: δ13C of –3.5 to –3.2 ‰ and δ18O of +14.6 to 

+15.5 ‰). In contrast, calcites from the Schauinsland mine display distinctly lower δ13C and 

δ18O values of –9 and +12 ‰, respectively, indicating different carbonate sources in these 

deposits. The δ13C values of Variscan and post-Variscan calcites from the Menzenschwand 

mine cover a range between –10 and 0 ‰, whereas post-Variscan samples display 

significantly lower values than Variscan calcites (Hofmann 1989). Weber (1997) reports a 

single measurement of strontianite with δ13C of –5.8 ‰ and δ18O of +20.3 ‰ from the 

Schauinsland mine. 

In contrast to most previous fluid inclusion and stable isotope work, the present study 

provides a systematic and comprehensive dataset of a variety of hydrothermal mineralization 

styles from entire Schwarzwald district covering almost 300 Ma of formation history. In 

addition to the isotope data obtained from hydrothermal minerals, direct isotopic 

measurements of fluid inclusion water provide much better constraints on the sources and 
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processes involved into the formation of the hydrothermal veins. Through a systematic carbon 

and sulfur isotope study, we could demonstrate that the δ13C and δ18O covariation of 

hydrothermal calcites is related to mineral deposition through mixing of two fluid end-

members.  

 

 

3. SAMPLE DESCRIPTION AND PETROGRAPHY 

 

3.1. SAMPLING STRATEGY AND GENERAL SAMPLE DESCRIPTION 

The samples analyzed for the present study cover the whole area of the Schwarzwald, hence 

an area of about 120 by 40 km. So far, around 400 hydrothermal veins from the Schwarzwald 

basement have been sub-economically mined. In the frame of this PhD project, samples of 

hydrothermal quartz, fluorite, calcite, sulfides (galena, chalcopyrite, sphalerite, pyrite) and 

barite from 110 different Variscan and post-Variscan hydrothermal mineralizations have been 

analyzed. The locations are shown in Figure 1; the names and hydrothermal assemblages of 

the deposits are listed in Table 1 for Variscan and Table 2 for post-Variscan deposits. The 

selected deposits host various proportions of fluorite, quartz, calcite and barite as the major 

vein-filling gangue minerals, which are associated with complex ore assemblages of Pb, Zn, 

Cu, Fe, Co, Ni, Ag, U, Bi, Sb, As and W. Most of the veins crosscut the gneisses (Fig. 2A) 

and granites (Fig. 2B) of the Variscan crystalline basement, but the sedimentary Bunter 

sandstone cover rocks also host some deposits (Fig. 2C).  

    

A B 
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Some typical vein mineralizations are illustrated in Figure 3.  

 

    
 

 

                                                                                                

 

A B 

Fig. 2. Photographs of host rocks. (A). 

Deformed, biotite rich paragneiss. Typical 

rock from Feldberg-Schauinsland massif. 

(B). Granite-hosted quartz veinlet. Location: 

Igelschlatt deposit. 

(C). Typical Bunter sandstone from northern 

Schwarzwald. Red- and yellow-layered 

sandstones represent the characteristics of 

cross-bedding textures. The dark mottling is 

the weathering of mangan bearing carbonite. 

Location: Hella-Glück-Stollen at Neubulach 

deposit. 

C 

C D 
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Fig. 3. (A). Hydrothermal vein I: Quartz brecciation in shearzone. An about eight cm thick quartz vein with 
pyrite and marcasite are the result of tectonic movement during quartz deposition. Bleached and silicified gneiss 
is broken and is mineralized again. Location Steinbruck Artenberg at Steinach. (B). Hydrothermal vein II: 
Bismuth-chalcopyrite bearing quartz- rose calcite vein is hosted in altered granite. Location: Friedrich-Christian 
deposit. (C). Hydrothermal vein III: An about 10 cm thick white quartz band in gneiss from the Friedrich-
Christian deposit. Silver gray galena occurs at the contact between gneiss and quartz and contains silver ore. (D). 
Hydrothermal vein IV: Typical Pb-Zn-Cu-bearing fluorite-barite-quartz vein. Location: Brenden deposit. 

 

 

Most common and particular characteristics of the minerals from the Schwarzwald deposits 

are shown in Figure 4. 

 

     

     

 

Fig. 4. Hydrothermal vein minerals. (A). Vein mineral I: Quartz-tourmaline-wolframite vein in granite. Quite a 
common mineral in the hydrothermal vein is dense, fine-grained, and gray to white quartz. Location: 
Rossgrabeneck deposit. (B). Vein mineral II: Euhedral quartz with goethite coating. Vuggy, euhedral quartz 
crystals are common. Location: Segen Gottes deposit. (C). Vein mineral III: Dense barite. Another common 
mineral in the Schwarzwald is barite, which typically occurs in compact masses with hematite fractures. 
Location: Neuglück Wittichen. (D). Vuggy, euhedral quartz crystals overgrow colorless fluorite. Location: 
Friedrich-Christian deposit. 
 

 

 

All samples were carefully compared with previous detailed descriptions (Metz et al. 1957; 

Bliedtner and Martin 1988) to identify different generations of formation within the veins. In 

order to compare the data from the hydrothermal veins, some Variscan, deformed quartz veins 

A B 

C D 
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and lenses in the basement gneisses and post-sedimentary chalcedony in the feldspathic 

sandstones from the sedimentary cover were sampled as well. Apart from the Clara mine near 

Wolfach, the deposits of the Schwarzwald were abandoned thenths to hundreds of years ago. 

Nevetheless, several still accessible mines were sampled in detail during fieldwork and 

distinguishable generations of minerals within the single deposits could be investigated. The 

other samples used for investigations were taken from the collection of the Institute of 

Geosciences in Tübingen and from private collections but were checked carefully against 

older descriptions of comparative sample material in order to make sure, which mineral 

generation from which deposit was analyzed.  

The information about the stage of mineralization for the deposits of the Northern and 

Middle Schwarzwald refers to the publication of Bliedtner and Martin (1988), for the deposits 

of the Southern Schwarzwald to the publication of Metz et al. (1957).  

 

3.2. SAMPLES USED FOR FLUID INCLUSION AND RAMAN SPECTROSCOPY 

For fluid inclusion study, more than 150 individual samples were selected from 75 localities 

of different hydrothermal vein-types (Pb-Zn-Cu-bearing fluorite-barite-quartz veins, Co-Ni-

Ag-Bi-U-bearing barite-fluorite-quartz veins and Sb-Ag-bearing quartz veins) within the 

Schwarzwald. Fluorite, calcite, barite and quartz samples were selected from various localities 

in the Schwarzwald and were prepared as double polished wafers (up to 500 µm thickness) by 

hand polishing at the Fluid inclusion laboratory at the University Tübingen for fluid inclusion 

petrography and microthermetry. The names of the deposits with their hydrothermal 

assemblages and the sampled mineralization stage are given in Table 1 and 2 while Fig. 1 

shows the deposit’s locations. 

 

3.3. SAMPLES USED FOR OXYGEN ISOTOPE IN QUARTZ  

For oxygen isotopes, we analyzed 125 quartz samples from 48 localities in the Schwarzwald. 

The names, hydrothermal assemblages of the ore deposits and sample descriptions are listed 

in Table 3 for Variscan and in Table 4 for post-Variscan deposits.  

 

3.4. SAMPLES USED FOR SULFUR AND CARBON ISOTOPES 

For sulfur isotopes, we analyzed 116 sulfides (galena, chalcopyrite, sphalerite, pyrite) and 

barite samples from 23 post-Variscan deposits in the Schwarzwald. Furthermore, more than 

80 samples of carbonates from 36 different post-Variscan deposits were analyzed. The 

locations are shown in Fig. 1, the names and hydrothermal assemblages of the ore deposits are 
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listed in Table 1. All samples were carefully compared with detailed textural descriptions 

(Metz et al. 1957; Bliedtner and Martin 1988) to identify different mineral generations within 

the veins and to ensure that only cogenetic sulfide-sulfide and sulfide-sulfate mineral pairs 

were used for the calculation of isotopic equilibrium temperatures. Primary hydrothermal 

calcite I usually occurs as coarse-grained, rhombohedral calcite of white or reddish colour. 

The remobilized calcite generations II and III are skalenohedral crystals of white or yellow 

colour, most frequently calcite II and III occur as euhedral crystals in vugs. Calcites IV are 

sub-recent calcite sinters deposited on the walls of the mining place. In addition, samples 

from the limestone units of the sedimentary cover and from a metamorphic prehnite-pectolite 

vein of Variscan age were analyzed. 

 

 

4. ANALYTICAL TECHNIQUES 

 

4.1. MICROTHERMOMETRY 

Microthermometric measurements were carried out on doubly polished sections (200-400 µm 

thickness) using a Leica DMLP microscope equipped with a Linkam THMS-600 programable 

freezing-heating stage and a digital photo camera and image analysis system. The heating rate 

close to the phase transitions was 0.2 °C per minute throughout the measurements. The 

cooling-heating stage was calibrated by replicate measurements of synthetic fluid inclusion 

standards, i.e. the triple point of pure CO2 (-56.6 °C), the melting point of pure H2O (0.0 °C) 

and the critical homogenization of pure H2O (374.1 °C). The reproducibility of all measured 

melting and homogenization temperatures is around 0.1-0.2 °C and 2-3 °C, respectively. 

Apparent salinities, expressed as weight percent (wt.%) NaCl equivalent, were calculated 

from the measured final ice melting temperatures of aqueous two-phase fluids following the 

methods described in Roedder (1984) and Bodnar et al. (1994). For the system NaCl-CaCl2-

H2O, salinities were termed as weight percent (wt.%) NaCl and (wt.%) CaCl2 equivalents, for 

which final melting temperatures of ice and hydrohalite are required.  

 

4.2. OXYGEN ISOTOPE ANALYSIS OF QUARTZ  

Mineral separates were prepared by careful hand-picking under a binocular microscope, 

followed by cleaning in deionized water. Oxygen isotope analysis was performed at the 

Institut für Geowissenschaften, University of Tübingen, using a laser extraction procedure 
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that essentially follows the techniques described by Sharp (1990) and Rumble and Hoering 

(1994). Approximately 2 mg of quartz grains were loaded onto a small Pt-sample holder and 

evacuated. After overnight prefluorination of the sample chamber, the samples were heated 

with a CO2 laser at an F2 pressure of 50 mbar. Excess F2 was removed from oxygen by 

reaction with KCl at 150 °C; residual Cl2 was separated from oxygen using a liquid nitrogen 

cold trap (-180 °C and -110 °C). The extracted O2 was collected on a molecular sieve, 

subsequently expanded and measured on a Finnigan MAT-252 gas source mass spectrometer 

for the 18O/16O isotope ratio. Reproducibility of the analytical results, and mass spectrometer 

calibration, was monitored through replicate measurements of the international standard NBS-

28 (δ18OV-SMOW: +9.6 ‰). The analytical precision (1σ) was around ± 0.2 ‰. All oxygen 

isotopic data are reported in standard delta notation, relative to V-SMOW. 

 

4.3. STABLE ISOTOPE ANALYSIS OF FLUID INCLUSIONS 

 

4.3.1. δD, δ13C AND δ18O ISOTOPE ANALYSIS OF FLUID INCLUSIONS IN QUARTZ, 

FLUORITE AND CALCITE. 

Following microthermometric characterization, exclusively samples containing a single 

generation of fluid inclusions were selected for δD, δ18O and δ13C analyses of inclusion fluids 

in pure fluorite, quartz or calcite. Approximately 4 g of each sample with a grain size of 3-6 

mm were carefully hand-picked and cleaned in deionized water. Extraction of the inclusion 

fluids was performed in a vacuum extraction line following techniques outlined by Kishima 

and Sakai (1980), Friedman (1953), Craig (1961) and Jenkin et al. (1994). The samples were 

loaded into vacuum glass tubes and heated at 150 °C overnight. Inclusion fluids were 

extracted by thermal decrepitation under vacuum at 400 °C for analysis of δD (fluorite, 

quartz, calcite), and at 650 °C for analysis of δ13C and δ18O (only fluorite). The extracted 

fluids were collected in a liquid nitrogen cold trap; volatiles were not passed over a CuO 

furnace. The liquid nitrogen cold trap was then replaced by an alcohol and dry-ice slush (–80 

°C) to separate molecular water from the condensable gases (Vennemann and O’Neil 1993; 

Demeny 1995). The water itself was converted to H2 gas by reaction with 150 mg of Zn 

(obtained from Indiana University, USA) in vacuum quartz-glass tubes for 15 minutes at 

about 500 °C, as described by Friedman (1953) and Craig (1961).  

For oxygen and carbon isotopes of fluid inclusions from fluorites, the cryogenically 

purified water (-80 °C) was equilibrated with a measured amount of carbon dioxide gas of 
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known initial isotopic compositions (δ13C=-30.22‰ V-PDB, δ18O=-1.07‰ V-PDB) for three 

days in glass tube at 25 °C. After equilibration, the carbon dioxide gas was then separated 

from the water using cold liquid nitrogen trap. Cryogenically purified CO2 of inclusion gas 

from fluorites was directly collected. The δD and δ18O values of released fluid inclusion water 

and the δ13C and δ18O values of released CO2-fluid inclusion gas were measured on a 

Finnigan MAT-252 mass spectrometer with working standards calibrated against international 

standards (V-SMOW for oxygen and hydrogen, V-PDB for carbon). Results of hydrogen 

isotope analysis are normalized to internal biotite and kaolinite standards, which have δD 

value of –64 ±5.0 ‰ and -125 ±5.0 ‰, respectively. This internal biotite and kaolinite 

standards had previously been calibrated against the international biotite standard NBS-30 

(δD: –65 ‰). The extraction procedure for the biotite and kaolinite standards was slightly 

different from the method described above. Biotite and kaolinite were heated to about 1200 

°C and the released volatiles were passed over a CuO furnace to oxidize hydrogen to water. 

The analytical precision is estimated to be better than 0.3 ‰ for oxygen and carbon, and 

better than 5 ‰ for hydrogen isotope compositions. Results are reported in standard delta 

notation, relative to V-SMOW and V-PDB. 

 

4.3.2. THE DEPENDENCE OF HYDROGEN ISOTOPE COMPOSITIONS OF FLUID 

INCLUSIONS ON THE EXTRACTION METHOD 

In order to distinguish between fluid inclusion water and structurally bound water a two step 

heating technique was developed and applied. We have developed a modified extraction 

method, where coarse-grained fluorite samples were decrepitated up to 650 °C for two hours. 

During first hour, the released volatiles up to 400 °C were trapped in a quartz glass tube in a 

liquid nitrogen trap. Only molecular water and gases were collected in a cool trap with liquid 

nitrogen (volatiles were not passed over CuO furnace to oxidize gases to H2O).  

We assume all fluid inclusion water can be liberated and decrepitated up to 400 °C and was 

trapped in the cool trap. The liquid nitrogen trap was replaced by alcohol and dry-ice slush in 

order to trap only purified molecular water (H2O) at –80 °C and to liberate gases (CO2, CH4) 

(Vennemann and O’Neil 1993; Demeny 1995). Released gases at -80 °C were then oxidized 

to H2O by passing over the hot CuO furnace. This water was again trapped in a quartz glass 

tube in a cool trap with liquid nitrogen. The cool trap was replaced by alcohol trap (-80 °C) in 

order to trap only oxidized molecular water while the other liberated gases were pumped 

away at -80 °C. Then, the same sample was further heated up to 650 °C for another hour. The 
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expected structurally bound water in cool trap with liquid nitrogen in quartz glass tube. The 

liquid nitrogen trap was replaced by alcohol and dry-ice slush (-80 °C) and only H2O can be 

trapped at -80 °C. Released gases at -80 °C were passed over a hot CuO furnace to be 

oxidized. This water was collected in a cool trap with liquid nitrogen and was purified by an 

alcohol trap (-80 °C).   

Secondly, we extracted fluid inclusion water from hydrothermal fluorites at 400 °C 

and 650 °C respectively. In this case, at 400 °C only molecular water and gases were collected 

(volatiles were not passed over CuO furnace to oxidize gases to H2O) in a cool trap with 

liquid nitrogen and was purified by an alcohol trap. The sample material from the same hand 

specimen was heated up to 650 °C and volatiles (molecular water, gases and additionally 

expected structurally bound water) were trapped in a cool trap with liquid nitrogen. This 

volatile was purified by an alcohol trap (-80 °C) and we assume both molecular water from 

fluid inclusions and structurally bound water were trapped in the alcohol trap.   

The extracted water was then reduced to hydrogen by reaction with 150 mg of Zn 

(Indiana University, USA) at 500 °C for 15 minutes, as described by Friedman (1953), Craig 

(1961) and Godfrey (1962). Results are normalized to an internal biotite standard, which have 

a δD value of –64 ±5.0 per mil. This internal biotite standard was previously calibrated 

against the international biotite standard NBS 30 (δD: -65 ‰). Extraction of hydrogen from 

the biotite standard was done by the above extraction method, except heating to 1200 °C and 

volatiles passed over a CuO furnace to oxidize hydrogen to water. The δD values of released 

fluid inclusion water were measured on a Finnigan MAT-252 gas source mass spectrometer 

with a working standard calibrated against international standards (SMOW) at the University 

of Tübingen. The overall analytical precision is around ±5.0 ‰ for hydrogen isotope 

measurements. Results are reported in standard delta (δ) notation, as per mil, relative to V-

SMOW.   

 

4.4. SULFUR AND CARBON ISOTOPES 

Mineral separates of hydrothermal sulfides (galena, chalcopyrite, sphalerite, pyrites), sulfates 

(barite, gypsum) and carbonates (calcite, dolomite) were prepared by careful hand-picking 

under a binocular microscope, followed by cleaning in doubly-distilled water. Sulfides and 

sulfates were measured after procedures given in Giesemann et al. (1994). The samples were 

sealed in tin capsules and converted by an EA-analyzer to SO2 at a reaction temperature of 

1050 °C and separated at a column temperature of 100°C. The isotopic composition of SO2 
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was measured with a Finnigan Delta+XL mass spectrometer. Maximum sample sizes were 

0.25 mg for sphalerite and barite, and 0.16 mg for pyrite.  

Carbonate samples were analyzed after the method of Spötl and Vennemann (2003). 

The isotopic composition of CO2 was measured with a Finnigan MAT 252 mass spectrometer. 

The reproducibility of the CaCO3 content of the samples was ± 5 %, the reproducibility of the 

isotopic ratios was ± 0.1 ‰ for the δ13C and ± 0.2 ‰ for the δ18O measurements. Used 

standards were the NBS 123 (ZnS), IAEA S1 (AgS), IAEA S3 (AgS), and NBS 127 (BaSO4) 

for sulphur isotopes, and the NBS 19 (CaCO3) for carbon and oxygen isotopes. All sulphur, 

carbon and oxygen isotope compositions are reported in standard delta notation relative to V-

CDT, V-PDB and V-SMOW, respectively. 

 

4.5. INFRARED SPECTROSCOPY 

Fourier transformation infrared (FTIR) analyses were carried out on double polished wafers 

(300-900 µm) that had previously been studied by microthermometry. The thickness of each 

doubly polished wafer was measured using a micrometer with a precision of ±1 µm. 

Individual wafers were first inspected under an optical microscope and fluid inclusions and 

regions free of fluid inclusions were selected for spectrometric analysis. Polarized infrared 

spectra were obtained in the wavenumber range from 2500 to 5500 cm-1 using a Bruker IFS 

125 high resolution FTIR spectrometer coupled to a microscope with all reflecting, 

Cassegranian optics (Bruker IRscope I). Near-infrared measurements were performed using a 

tungsten light source, a Si coated CaF2 beam splitter and high sensitivity narrow-band MCT 

(mercury-cadmium-telluride) detector cooled by liquid nitrogen. During the measurements, 

the optics of the spectrometer were kept under vacuum and the microscope was purged with a 

continuous stream of purified air in order to avoid absorption bands due to water vapor. An 

aperture of 10x10 µm was applied to the collected spectra for each sample. After background 

and linear baseline corrections, all spectra were normalized to 1 cm thickness.   

The spot size on the sample was constrained by an adjustable rectangular aperture in the rear 

focal plane of the objective. Several hundred to several thousand scans were accumulated for 

one measurement. 

 

4.6. RAMAN SPECTROSCOPY 

In order to confirm the microthermometrically determined fluid inclusion volatiles, 

representative samples were analyzed by Laser Raman spectrometry, with a Dilor LABRAM-
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2 Raman microspectrometer at the University of Tübingen, using a 514.5 nm Ar-ion laser 

source of excitation, according to the method of Burke (2000). Raman spectra from 

micrometer-sized objects within transparent samples can be obtained by coupling a research 

grade microscope to a Raman spectrometer. Laser Raman spectroscopy examines the inelastic 

scattering of monochromatic visible light as it interacts with covalent bonds in molecules such 

as N2, hydrocarbons, CO2, or H2S. The energy and symmetry of the vibrational characteristics 

of different species in a sample corresponds with the peaks in Raman spectra (McMillan 

1985; 1989; Burke 2000). 

 

 

5. RESULTS 

 

5.1. VARISCAN VEINS 

5.1.1. FLUID INCLUSION DATA AND RAMAN SPECTROSCOPY 

Fluid inclusions were studied in quartz samples from Variscan veins. The majority of fluid 

inclusions appears to be primary, occurring randomly distributed through the quartz as 

isolated inclusions with irregular and ellipsoidal shape. Clearly secondary inclusions are also 

present. The size of the inclusions ranges from 5 to 15 µm (Fig. 5). Two major types of fluids 

have been recognized in most studied Variscan veins: 

Type1 (aqueous fluid inclusions). These inclusions consist of two phases (H2O-rich liquid + 

vapor), with high degrees of filling, Vliquid/(Vliquid+Vvapor) being between 0.8 and 0.9 (Fig. 5A). 

Aqueous fluid inclusions homogenize exclusively into the liquid phase. This fluid inclusion 

type can be subdivided into two groups with different salinities. 

Low salinity aqueous fluid inclusions. Most fluid inclusions in the Variscan veins show initial 

melting temperatures of ice between –30 and –20°C, indicating the presence of NaCl-KCl-

H2O fluids. The final melting temperatures of ice range from –6.5 to 0°C (Table 5), 

corresponding to salinities of 0 to 10.0 wt.% equivalent (eqv.) NaCl. These fluid inclusions 

homogenize exclusively into the liquid phase at temperatures of 150-350 °C (Fig. 5). 

High salinity aqueous fluid inclusions. In several Variscan veins, a second group of aqueous 

fluid inclusions can be distinguished. These fluid inclusions are exclusively present as 

secondary inclusions, arranged along trails crosscutting the grain boundaries of the quartz. 

The inclusions show significantly lower final melting temperatures of ice, ranging from –27.7 

to –21.8 °C (Table 5). Calculated salinities are in the range of 23.6 to 27.2 wt.% eqv. NaCl. 
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Homogenization of the high salinity aqueous fluid inclusions occurred into the liquid phase, 

with systematically lower homogenization temperatures between 90 and 150°C (Table 5 and 

Fig. 7). Some of the Variscan veins clearly exhibit a two-stage mineralization history (e.g., 

Holderpfad), which (by comparison with the fluid characteristics of the post-Variscan veins) 

is most likely related to a post-Variscan overprint (Fig. 6). In this case, vug-filling quartz 

crystals and drusy crystals coat early anhedral milky quartz. Primary fluid inclusions in the 

early anhedral quartz show relatively low salinities, whereas primary inclusions in growth 

zones within the drusy quartz have significantly higher salinities (20.2-26.2 wt.% eqv. NaCl). 

Type 2 (CH4-CO2–H2O fluid inclusions). These fluid inclusions consist of two phases, an 

aqueous liquid phase and gaseous CO2-CH4 phase (Fig. 5B). These CH4–CO2–H2O fluid 

inclusions occur as isolated or as small clusters throughout the quartz grains and show 

negative crystal shapes. Melting of the carbonic phase occurs either at the CO2 triple point of 

–56.6°C, or within a relatively small interval of depressed melting temperatures between –

58.7 and –56.8°C (Table 5). No clathrate melting was observed in any inclusions. CH4-CO2-

H2O inclusions show total homogenization into the liquid phase between 200 and 350°C. 

 

    
 
Figure 5. Photomicrographs showing principal fluid inclusion types in quartz of the Variscan hydrothermal 

deposits, Schwarzwald. (A). Type 1 fluid inclusions. Sample: SW-11, Roßgrabeneck deposit. (B). CH4-CO2 rich 

type 2 fluid inclusion. Sample: SW-10, Kleiner Langenbach deposit. 

 

 

 

 

 

 

 

A B 
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Table 5. Summary of microthermometric and compositional data of fluid inclusions from the Variscan 

hydrothermal veins of the Schwarzwald. 

No. of 
deposit 

Locality 
  

Sample 
Type of 

inclusion 
N 

Tm 
CO2 

Tmice (°C) Th (°C) 
Salinity 
NaCl 

(wt.%) 

q-1 Roßgrabeneck SW-09 Type 1 9  -1.9 to -2.9 180-310 3.2-4.8 

q-1 Roßgrabeneck SW-11 Type 1 19  -1.7 to -2.9 180-260 2.9-4.8 

q-2 Fellmatt, SE of Baberast SW-17 Type 1 8  -1.5 to -2.5 140-250 2.6-4.2 

   Type 2 5 -57.4    

q-2 Baberast, Bergmannstrost SW-22b Type 1 7  -4.9 to -11.0  7.7-15.0 

q-3 Artenberg SW-14 Type 1 12  -26.3 to -28.5 95-123 26.4-27.7 

   Type 1 7  -2.3 to -3.2  3.9-5.3 

   Type 2 4 -58.0    

q-4 Ludwig im Adlersbach  GS-161 Type 1 4  -0.5 to -1.5 135-165 0.9-2.6 

q-5 Erletzberg, Hausach SW-06 Type 1 18  -0.5 to -1.0 200-390 0.9-1.7 

   Type 1 8  -22.4 to -25.2  24.0-25.7 

   Type 2 4 -56.8    

q-7 Bärenbach, Mühlenbach SW-19a Type 1 25  -1.5 to -4.0 220-270 2.6-6.4 

q-10 St. Ulrich * GMS-02 Type 1 19  -20.0 to -28.9 56-150 22.4-28.0 

q-11 Gründenwald  DSU-57 Type 1 11  -17.1 to -31.5 100-260 20.3-29.6 

   Type 2 11  -0.3 to -1.1 165-260 0.5-1.9 

q-12 Schweizergrund  GS-179 Type 1   0.0 150 0.0 

  GMS-01 Type 1 26  -20.0 to -23.5 110-140 22.4-24.6 

   Type 1 7  -2.0  3.4 

q-13 Holderpfad * GS-208 Type 1 47  -17 to -26 80-180 20.2-26.2 

q-14 Kleiner Langenbach SW-02 Type 1 7  -0.5 to -2.9 250-300 0.9-4.8 

   Type 2 6 -57.6    

q-14 Kleiner Langenbach SW-03 Type 1 17  -0.4 to -3.0 210-340 0.7-5.0 

q-14 Kleiner Langenbach SW-10 Type 1 10  -1.3 to -3.7 260-300 2.2-6.0 

q-15 Egghalde, Gang A  SW-05 Type 1 19  -2.4 to -2.8 210-270 4.0-4.6 

q-17 
Katzenstein, 
Oberentersbach 

SW-21 Type 1 20  -0.9 to -3.2 170-245 1.6-5.3 

    6  -15.7 to -25.0 85-140 19.2-25.6 

 Nillhöfe, Fischerbach SW-16 Type 1 5  -24.7 to -25.7 55-95 25.4-26 

   Type 1 14  -0.7 to -3.4 235-315 1.2-5.6 

 Werners Eck, Bollenbach SW-18 Type 1 7  -10.5 to -24.7 55-90 14.5-25.4 

   Type 1 5  -1.8 to -2.2 150-310 3.1-3.7 

 
Entersbacherhütte, 
Nillhöfe 

SW-20 Type 1 11  -15.4 to -27.1 100-130 19.0-26.9 

   Type 1 8  -0.3 to -3.1 145-245 0.5-5.1 

   Type 2 5 -58.7    

* Late drusy quartz in Variscan vein. 
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Figure 6. Variscan vein with post-Variscan overprint and late drusy quartz in a Variscan vein. Location: 

Holderpfad deposit. Sample length is about 12 cm. 
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Figure 7. Tm vs. Th diagram for the measured fluid inclusion in the Variscan quartz veins in the Schwarzwald. 

 

Inclusions of different microthermometric behaviour were analyzed with Raman microprobe. 

Laser Raman spectroscopy was used to determine the presence of other components in 

addition to CO2 and methane in the fluid inclusions. Aqueous and methane inclusions in 

quartz were examined. Individual inclusions as small as eight µm were successfully analyzed. 
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Raman spectra from quartz hosted fluid inclusions contain bands of CH4, CO2 and minor H2S, 

N2. These analyses show that concentration of volatiles such as CH4, H2S or CO2 (± N2) are 

present (Fig. 8). 
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Figure 8. RAMAN spectra of fluid inclusions in quartz. (A). Spectrum from an inclusion in quartz sample SW-

10 showing the small CO2 and methane bands at 1388 cm-1 and 2917 cm-1, respectively, together with H2O 

bands. Peaks at 1084 and 1161 cm-1 represent the quartz host. (B). Spectra from inclusion in quartz in sample 

SW-17 showing the N2 peak at 2331 cm-1 and dominant methane peak at 2917 cm-1. (C). Dominant methane 

peak at 2917 cm-1 from inclusions in SW-17 quartz. There are also small CO2 peaks at 1285 and 1388 cm-1, very 

small peak at 2611 cm-1 represents H2S. (D). SW-10 quartz hosted fluid inclusion’s spectra showing dominant 

CO2 and methane peaks at 1285, 1388 cm-1 and 2917 cm-1, respectively. There are small H2S peak at 2611 cm-1 

together with H2O bands. 

 

5.1.2. OXYGEN ISOTOPE DATA OF VEIN QUARTZ  

Oxygen isotope ratios for quartz from Variscan hydrothermal veins range from +2.8 to +12.2 

‰ (Table 3). Combining these δ18O values with fluid inclusion homogenization temperatures 

A B 

C D 
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(representing minimum values of the formation temperatures), the oxygen isotopic 

composition of the hydrothermal fluids is calculated as between –12.5 and +4.4 ‰ (Table 3). 

 

Table 3. Summary of oxygen isotopic data for analyzed quartz samples and calculated isotopic composition of 
the fluid from the Variscan hydrothermal veins of the Schwarzwald. 
 

No. No. of 
deposit 

Deposit Sample 
ID 

Description δ18O 
(‰)  

Th 
(°C) 

δ18OH2O 
(‰) 

1 q-1 Roßgrabeneck SW-09 Coarse grained vein quartz 11.9 237 2.4 
2 q-1 Roßgrabeneck SW-11 Coarse grained vein quartz 12.2 220 1.8 
3 q-1 Roßgrabeneck SW-12 Tourmalin bearing coarse grained vein  12.2   
4 q-2 Baberast SW-22b Coarse grained vein quartz 4.3   
5 q-2 Baberast SW-22e Chalcedony 9.2   
6 q-3 Artenberg SW-14 Dense, milky quartz 8.4 110 -11.0 
7 q-3 Artenberg XSA-47 Dense, milky quartz 5.8   
8 q-4 Ludwig/Adlersbach* GS-160 Dense, milky quartz 18.8   
9 q-4 Ludwig/Adlersbach* GS-161 Dense, milky quartz 15.1   
10 q-4 Ludwig/Adlersbach* GS-162 Dense, milky quartz 18.4   
11 q-5 Erletzberg, Hausach SW-06 Euhedral crystals 9.7 325 3.7 
12 q-6 Ursula BTR-11 Blue, dense quartz 5.2   
13 q-7 Bärenbach SW-19a Coarse grained vein quartz 12.2 250 3.3 
14 q-8 Hornbühl, Waldkirch SW-08 Dense, milky quartz 12   
15 q-9 Münstergrund** SW-07 Euhedral crystals 14.6   
16 q-10 St. Ulrich* GMS-02 Dense, milky quartz 13.7 86 -8.9 
17 q-10 St. Ulrich* DSM-16 Dense, milky quartz 14.7   
18 q-11 Gründenwald DSU-57  6.5   
19 q-12 Schweizergrund GS-184 Qtz pseudomorph after barite 7.5   
20 q-12 Schweizergrund GS-188 Dense, milky quartz 7.9   
21 q-12 Schweizergrund GMS-01 Euhedral crystals 6.3 122 -11.8 
22 q-12 Schweizergrund GS-179 Dense, milky quartz 2.8 150 -12.5 
23 q-13 Holderpfad GS-210 Dense, milky quartz 8.5   
24 q-13 Holderpfad* GS-211 Dense, milky quartz 12.2   
25 q-13 Holderpfad GMS-09 Dense, milky quartz 9.4   
26 q-13 Holderpfad GS-208 Dense, milky quartz 8.1 102 -12.3 
27 q-14 Kleiner Langenbach SW-02 Coarse grained vein quartz 10.5 280 2.9 
28 q-14 Kleiner Langenbach SW-03 Coarse grained vein quartz 11.4 295 4.4 
29 q-14 Kleiner Langenbach SW-04 Coarse grained vein quartz 11.7   
30 q-14 Kleiner Langenbach SW-10 Coarse grained vein quartz 11.2 270 3.2 
31 q-15 Egghalde, Gang A  SW-05 Coarse grained vein quartz 11.4 233 1.7 
32 q-16 Segen Gottes XSG-22 Dense quartz 9.2   
        

Note: δ18OH2O was calculated using the equation of Matsuhisa et al. (1979) and temperatures were in most cases 
deduced from fluid inclusions. In some sample, the Th was not determined due to too small inclusions.   
* Variscan vein with post-Variscan overprint.   ** Late drusy quartz in a Variscan vein.  
 
 

For these calculations, the quartz-water fractionation equation from Matsuhisa et al. (1979) 

and the most of the measured Th were used. In some of the Variscan veins, a later post-

Variscan overprint has been observed, manifested by euhedral drusy quartz crystals grown 

onto the dense Variscan quartz (Münstergrund, Holderpfad, Ludwigsbach, St. Ulrich). These 
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later post-Variscan quartz generations have consistently higher δ18O values in the range 

between +14.6 and +18.8 ‰, which markedly contrast with the Variscan vein quartz analyzed 

from the same deposits. 

 

 

5.1.3. HYDROGEN ISOTOPE DATA OF FLUID INCLUSIONS 

Water yields and the δD values of inclusion fluids from eight hydrothermal quartz samples 

are shown in Table 6 and Figure 9. The δD values for water extracted from fluid inclusions in 

quartz samples generally have a variable range between –49 and +4 ‰.  

 

 

Table 6. Summary of stable isotope data of Variscan hydrothermal fluids in the Schwarzwald.  
 

H2O 

δ18OH2O δD 

  
Locality 
  

No. of 
deposit 

Sample ID 
 
Mineral 
 

H2O 
content 

(%) (‰ VSMOW) 

Bärenbach q-7 SW-19a Quartz 0.02 3.3 3.9 

Egghalde, Gang A q-15 SW-05 Quartz 0.13 1.7 -49 

Kleiner Langenbach q-14 SW-03 Quartz 0.03 4.4 -31.3 

Kleiner Langenbach q-14 SW-10 Quartz 0.05 3.2 -15 

Kleiner Langenbach q-14 SW-02 Quartz 0.04 2.9 -10 

Roßgrabeneck q-1 SW-09 Quartz 0.03 2.4 -6.6 

Roßgrabeneck q-1 SW-11 Quartz 0.12 1.8 -45.3 

Schweizergrund q-12 GS-179 Quartz 0.08 -12.5 -31.7 

Note: δ18OH2O for quartz were calculated using the equation of Matsuhisa et al. (1979). δD measured from 

extracted fluid inclusions. 

 

 

In a plot of δD vs. δ18O (Fig. 9) in which δ18O was calculated from quartz as reported above, 

almost all quartz samples are located within or just adjacent to the metamorphic water field or 

between it and SMOW.  
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Figure 9. Fluid δD and δ18O characteristics of Variscan hydrothermal veins, along with the fields of estimated 
isotopic compositions for primary magmatic and metamorphic fluids (Sheppard 1986). δ18OH2O for quartz was 
calculated using the equation of Matsuhisa et al. (1979). MWL-Meteoric Water Line.  

 

 

5.2. POST-VARISCAN VEINS 

5.2.1. FLUID INCLUSION DATA AND RAMAN SPECTROSCOPY 

Fluid inclusion petrography 

Fluid inclusions were studied in quartz, fluorite, calcite and barite crystals representing 

different mineral generations. The size of the inclusions generally ranges from 5 to 40 µm, 

with most inclusions being about 10-20 µm in size; fluid inclusions in quartz are generally 

smaller, about 5-10 µm. The majority of the fluid inclusions appears to be secondary and 

occurs randomly distributed throughout the quartz, fluorite, calcite and barite crystals. The 

inclusions in fluorite are mostly present as clusters (Fig. 10A), as isolated inclusions (Fig. 

10B), and oriented along microfractures (Fig. 10C). The inclusions are up to 40 µm in size 

and show mainly round, elongate, and, less commonly, irregular shapes. Many of the fluid 

inclusions in barite and calcite appear to be decrepitated. Shape and occurrence of inclusions 

in barite and calcite are similar to the inclusions in fluorite. Fluid inclusions in quartz 
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frequently show irregular shapes. According to their textural distribution and phase 

relationships at room temperature, three distinct types of inclusions have been distinguished, 

which are described below in order of decreasing abundance: 

Type 1 (high salinity two-phase aqueous fluid inclusions). These inclusions consist of two 

phases (H2O-rich liquid + vapour), with typical degrees of fill, Vliquid/(Vliquid+Vvapour) between 

0.9 and 0.95. Few fluid inclusions of this type contain a single daughter crystal, most likely 

halite. Approximately 90 percent of all individual samples contain type 1 inclusions. There 

are also some fluid inclusions that consist of two phases (vapour + H2O-liquid), with 

significantly lower degrees of fill, Vliquid/(Vliquid+Vvapour) generally below 0.7 (Fig. 10B). 

Type 2 (low salinity two-phase aqueous fluid inclusions). Aqueous inclusions of low to 

moderate salinity are found in quartz and some late-stage fluorite samples. These inclusions 

consist of two phases (H2O + vapour), with degrees of fill around 0.9. 

Type 3 (monophase fluid inclusion). This type only contains one homogeneous aqueous fluid 

phase and is generally associated with type 1 inclusions (Fig. 10D). 

 

     

     

Figure 10. Photomicrographs showing principal fluid inclusion types in stage I and II fluorites of post-Variscan 

hydrothermal deposits, Schwarzwald. (A). Type 1 fluid inclusions in fluorite. Sample: FCH-1, Friedrich-

Christian deposit. (B). Isolated type 1 fluid inclusion with lower degree of fill (CO2) in fluorite. Sample: BTR-

A B 

C D 
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26, Neuglück deposit. (C). Type 1 fluid inclusions along the trail in fluorite. Sample: BTR-28, Käfersteige 

deposit. (D). Mono-phase type 2 fluid inclusions in stage II fluorite. Sample: BTR-4, Teufelsgrund deposit. The 

temperatures are Tm and Th. Size of inclusions range 20-25µm.    

 

Microthermometry 

Based on the measured range in salinities, all post-Variscan fluid inclusions can be divided 

into two distinct groups, which correspond to the types identified according to their 

petrographic characteristics. 

Type 1. High-salinity aqueous fluid inclusions.  

Generally, a consistent sequence of phase transitions was observed, comprising initial melting 

of ice, final melting of ice, final melting of hydrohalite (not clearly visible in all inclusions) 

and total homogenization. Initial ice melting temperatures of aqueous inclusions are in the 

range of –57 to –45°C, which correspond well to the eutectic temperature of the ternary H2O-

NaCl-CaCl2 system at –52°C (Borisenko 1977). In this type of aqueous fluid inclusions, the 

final melting temperatures of ice range from -28 to -20°C, which corresponds to salinities of 

22.4 to 24.7 wt.% eqv. NaCl. Hydrohalite as the last melting phase was only observed in 17 

samples, with temperatures ranging from -18.5 to -7°C. In samples where both the final 

melting of ice (in the temperature range of -27.5°C to -22.0°C) and final melting of 

hydrohalite (in the temperature range of -18.5°C to -7°C), were observed, the fluid 

composition can be derived from the relevant ternary H2O-NaCl-CaCl2 phase diagram 

(Borisenko 1977; Zwart and Touret 1994). The resulting calculated fluid compositions are in 

the range of 11-22 wt.% NaCl and 3-17 wt.% CaCl2. The total homogenization of high 

salinity aqueous fluid inclusions occurred exclusively into the liquid phase. Measured 

homogenization temperatures show considerable variation from 90 to 200 °C, with about 80 

% of the data being located in the range of 100-160°C (Figs. 11 and 12; Table 7). 

Type 2. Low salinity aqueous fluid inclusion. 

This fluid inclusion type is exclusively present in late-stage quartz, fluorite, and calcite 

samples. Only the final melting of ice and total homogenization could be observed. The final 

ice melting temperatures range from -11.1 to 0°C, corresponding to salinities of 0 to 15.0 

wt.% eqv. NaCl. The fluid inclusions always homogenize to the liquid phase, with 

homogenization temperatures between 110-200°C. Rarely, final ice melting temperatures 

were observed above 0°C, which is likely related to the presence of metastable superheated 

ice (Roedder 1984). Homogenization of vapour-richer inclusions occurred mostly to the liquid 

phase, with slightly higher homogenization temperatures in the range of 185-250°C. 
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Type 3. Monophase Inclusions.  

In the monophase fluid inclusions, only initial and final melting of ice could be observed. 

Initial ice melting temperatures are in the range of -55 to -40°C, corresponding to the eutectic 

temperature of the ternary H2O-NaCl-CaCl2 system. Final melting temperatures of ice show a 

wide range, from -22.5 to -1.5°C, which corresponds to salinities of 2.5 to 24.0 wt.% eqv. 

NaCl. 
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Figure 11. Tm vs. Th diagram for the post-

Variscan fluid inclusions in fluorite. 

     

     

      

Figure 12. Histogram showing the range of 

all ice melting temperatures (Tm) from post-

Variscan hydrothermal veins in the 

Schwarzwald.

The microthermometric data obtained from the different types of fluid inclusions are 

summarized in Table 7. Frequency distributions of the final ice melting and homogenization 

temperatures for individual samples generally show a rather narrow range, indicating the 

presence of a comparatively homogeneous hydrothermal fluid during a single mineralization 

event (Figs. 11 and 12). On a Tm-Th diagram (Fig. 11), the post-Variscan inclusions show a 

significant variation in salinity, whereas the homogenization temperatures have a much 

smaller range. 

Representative fluid inclusions from the microthermometrically distinguishable groups 

were analyzed with Laser Raman spectroscopy. Laser Raman spectroscopy was used to 

determine the presence of other components in addition to CO2 and methane in the fluid 
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inclusions. Aqueous inclusions in fluorite and quartz were examined. Raman spectra from 

fluorite hosted fluid inclusions contain a peak for CO2. These analyses show that CO2 is the 

only detectable volatile species in the vapour phase (Fig. 13). They do not show any 

indication of methane, hydrocarbon, N2, or H2S in the aqueous inclusions.  

 

Table 7. Summary of microthermometric data and compositional data of fluid inclusions from the post-Variscan 

hydrothermal veins of the Schwarzwald. 

No. of Salinity Locality 
  deposit 

Sample 
ID 

Host  
mineral 

Type of 
inclusion 

N TmHH 
(°C) 

Tmice 

(°C) 
Th 

(°C) NaCl 
(wt.%) 

CaCl2 
(wt.%) 

Aitern Süd 45 44 Fluorite Type 1 6  -16.6 116 19.9  
    Type 2 6  -9.4 115 13.2  
Artenberg 28 BTR-35 Fluorite Type 1 20 -17.0 -26.4 227 11.0 17.0 
    Type 1 15  -23.6 105 24.7  
  BTR-13 Fluorite Type 1 97  -29.3 114 28.2  
  XSA-15 Quartz Type 1 7  -22.9 87 24.3  
    Type 3 5  -16.9 - 20.1  
  BTR-1 Calcite-Late Type 2 17  -5.6 207 8.7  
  BTR-35 Calcite Type 1 30  -27.6 221 27.2  
  XSA-66 Calcite Type 1 39  -28.1 125 27.5  
  BTR-13 Calcite Type 1 42  -27.9 155 27.4  
  XSA-47 Calcite Type 1 5  -28.0 115 27.4  
Badenweiler 36 BTR-39 Fluorite Type 2 61  -5.3 199 8.0  
  BTR-38 Quartz Type 2 8  -5.5 141 8.5  
  BTR-39 Quartz Type 2 29  -4.2 162 6.7  
Badenweiler 36 41 Fluorite Type 2 6  -2.9 170 4.8  
Barbara 26 GS 196 Fluorite Type 2 222  -2.6 116 4.3  
Baumhalde 42 GS 71 Fluorite Type 1 20  -20.0 131 22.4  
    Type 2 24  -3.9 119 6.3  
  GS 71 Quartz Type 1 25  -21.2 154 23.2  
    Type 1 9  -16.5 131 19.8  
  M 31 Fluorite Type 1 46  -14.6 - 18.3  
    Type 2 34  -5.7 - 8.8  
Brandenberg 43 GS 83 Fluorite Type 1 115  -20.4 159 22.6  
  GS 91 Fluorite Type 1 27  -22.9 121 24.3  
    Type 1 80  -20.1 161 22.4  
  GS 91 Quartz Type 1 41  -21.9 125 23.6  
    Type 1 15  -20.5 143 22.7  
  GS 99 Fluorite Type 1 44  -21.6 134 23.4  
  GS 99 Quartz Type 1 27  -18.7 127 21.5  
  GS 99 Barite Type 1 21  -21.8 218 23.6  
  GS 99 Calcite Type 1 87  -22.0 145 23.7  
  GS 100 Fluorite Type 3 6  -20.8 - 22.9  
  GS 111 Fluorite Type 1 40  -20.0 165 22.4  
  GS 111 Quartz Type 1 20  -20.0 150 22.4  
Brenden 56 GS 10 Fluorite Type 1 31  -19.9 112 22.3  
  GS 10 Quartz Type 1 10  -16.2 88 19.6  
  GS 15 Fluorite Type 1 13  -22.4 120 24.0  
  GS 15 Quartz Type 1 41  -20.5 95 22.7  

  GS 24 Fluorite Type 1 110  -20.5 138 22.7  

Bleilersgrund, Wittichen 15 30 Fluorite Type 1 6  -23.7 77 24.8  
Burgfelsen, Ilse, Wittichen 17 14 Fluorite Type 1 6  -23.5 100 24.6  
Dorothea 4 BTR-14 Fluorite Type 1 33 -17.7 -25.4 178 13.0 13.0 
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  QDC-52 Barite Type 1 16 -17.3 -23.9 175 13.5 13.0 
           
Drey 25 GS 151 Fluorite Type 2 107  -3.1 163 5.1  
  GS 154 Fluorite Type 2 47  -3.4 119 5.6  
Egghalde  4 Fluorite Type 1 20  -22.5 128 24.0  
    Type 2 6  0.0 149 0.0  
Erzengel Gabriel 29 34 Fluorite Type 2 6  -8.3 133 12.1  
Friedrich-Christian 11 M 5 Calcite Type 1 27  -26.5 98 26.5  
  GS 135 Fluorite Type 1 116  -23.0 145 24.3  
  GS 135 Quartz Type 1 30  -22.5 110 24.0  
  GS 137 Fluorite Type 1 82 -17.8 -24.1 140 12.0 14.0 
  FCH 1 Fluorite Type 1 50  -26.4 138 26.4  
  FCH-2 Fluorite Type 1 56  -26.4 129 26.4  
  FST Fluorite Type 1 30  -25.0 135 25.6  
Fortuna near Wolfach 32 37 Fluorite Type 2 23  -3.9 136 6.3  
Friedenweiler, Eisenbach 3 48 Fluorite Type 1 6  -25.0 200 25.6  
Gottesehre near Urberg 51 10 Fluorite Type 1 6  -28.2 172 27.5  
Hausen im Wiesental 58 9 Fluorite Type 1 3  -20.5 220 22.7  
    Type 2 6  -4.0 146 6.4  
Heiligenwald, Pforzheim 2 11 Fluorite Type 1 5  -29.5 135 28.4  
    Type 2 4  -8.9 135 12.7  
Herrmann 47 M 829 Fluorite Type 1 9  -21.0 125 23.0  
  M 831 Fluorite Type 1 21  -19.1 123 21.8  
  GS 67 Fluorite Type 1 81  -18.0 135 21.0  
  GS 68 Fluorite Type 1 26  -24.9 137 25.5  
    Type 1 20  -21.7 128 23.5  
Herzog Friedrich 20 24 Fluorite Type 1 6  -21.4 220 23.3  
Hesselbach 8 31 Fluorite Type 1 7 -17.0 -24.8 157 13.0 13.0 
  7 Fluorite Type 1 7 -17.0 -24.5 80 13.0 13.0 
Hohberg, near Wolfach 34 23 Fluorite Type 1 6  -24.9 139 25.5  
    Type 2 5  -0.1 97 0.2  
Igelschlatt 57 GS 37 Fluorite Type 1 71  -22.6 138 24.1  
  GS 37 Quartz Type 1 19  -20.8 125 22.9  
  GS 42 Fluorite Type 1 76  -20.0 161 22.4  
Ilse im Kaltbrunn 16 5 Fluorite Type 1 6  -25.0 92 25.6  
Johannes, Wittichen  13 WJB-2 Fluorite Type 1 47 -17.0 -22.9 144 12.0 14.0 
  WJB-4 Fluorite Type 1 27 -17.0 -20.7 123 12.0 14.0 
  WJB-17 Quartz Type 1 43  -23.2 82 24.5  
  WJB-2 Barite Type 1 13  -24.5 165 25.3  
Käfersteige 1 BTR-29 Fluorite Type 1 86  -21.4 138 23.3  
  BTR-28 Fluorite Type 1 80 -16.0 -20.7 131 19.0 7.0 
Königswart 87 SW-23 Quartz Type 1 21  -26.7 116 26.6  
König David, Gallenbach 18 6 Fluorite Type 1 3  -25.3 120 25.8  
    Type 1 3  -20.0 115 22.4  
Laßgrund near Hausach 30 20 Fluorite Type 2 6  -11.1 150 15.0  
Ludwigs Trost 33 33 Fluorite Type 2 6  -8.6 135 12.4  
  45 Fluorite Type 1 6  -25.4 143 25.8  
Michael im Weiler 65 GMW121 Quartz Type 2 13  -4.2 110 6.4  
Mühlsteinbruch 63 26 Fluorite Type 2 6  -1.0 123 1.8  
Neubergmännisch Glück 22 35 Fluorite Type 1 6  -22.0 137 23.7  
Neubulach 64 BTR-32 Quartz Type 1 41 -16.0 -25.8 114 12.5 13.0 
Neuglück, Wittichen 14 BTR-37 Fluorite Type 1 38 -16.1 -22.3 101 18.0 10.0 
  BTR-26 Fluorite Type 1 5  -24.3 178 25.1  
    Type 1 13  -23.1 215 24.4  
  BTR-37 Quartz Type 3 9  -22.2 - 23.8  
    Type 1 1  -21.0 104 23.0  
  WNS-9 Barite Type 1 14 -16.0 -23.6 227 12.0 14.0 
  BTR-41 Quartz Type 1 22  -23.6 87 24.7  
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Nöggenschwiel 61 16 Fluorite Type 1 6  -26.8 111 26.7  
Ohlsbach  7 2 Fluorite Type 1 6  -18.4 159 21.2  
Ödsbach 9 8 Fluorite Type 1 7  -17.1 160 20.3  
Riedlingen 48 19 Fluorite Type 1 5  -25.8 86 26.1  
Ruprechtgangzug 52 GS 27 Fluorite Type 1 73  -20.7 115 22.8  
  GS 29b Fluorite Type 1 26  -19.8 141 22.2  
    Type 2 25  0.0 152 0.0  
  GS 35a Quartz Type 1 107  -18.7 147 21.5  
  GS 36a Fluorite Type 1 16  -21.6 154 23.4  
  GS 36a Quartz Type 1 7  -22.1 129 23.8  
Schauinsland 67 BTR-40 Quartz Type 2 34  -9.6 113 13.5  
    Type 1 16  -22.2 113 23.8  
  BTR-40 Calcite Type 1 28  -23.7 116 24.8  
Schlechthalde, Wittichen 23 36 Fluorite Type 1 6  -17.0 103 20.2  
Schönau 46 32 Fluorite Type 1 6  -21.7 143 23.5  
    Type 2 6  -1.8 181 3.1  
Segen Gottes 27 56 Fluorite-Late Type 2 30  -2.5 132 4.2  
  XSG-15 Fluorite Type 2 23  -3.0 169 5.0  
  BTR-45 Quartz Type 2 6  0.0 212 0.0  
  BTR-47 Quartz Type 2 19  -1.9 147 3.2  
    Type 3 11  -1.7 - 2.9  
Silberbrünnle, Seebach 88 BTR-31 Quartz Type 1 44  -24.5 140 25.3  
Silbergründle, Seebach 86 SW-24 Quartz Type 1 20  -23.8 128 24.8  
Sophia Wittichen 12 BTR-17 Fluorite Type 1 103 -15.5 -24.3 243 12.0 14.0 
  BTR-46 Barite Type 1 12  -21.3 220 23.2  
    Type 1 8  -20.6 118 22.6  
  BTR-41 Barite Type 1 26  -25.8 151 26.1  
  M-207 Fluorite Type 1 53 -16.0 -23.3 115 12.0 14.0 
  WSB-13 Quartz Type 1 12  -23.4 76 24.6  
    Type 3 8  -19.2 - 21.8  
  BTR-41 Calcite Type 1 14 -14.0 -24.6 184 12.0 15.0 
Sulzburg 62 13 Fluorite Type 1 6  -20.3 133 22.6  
Sulzburg 62 SW-25a Quartz Type 1 16  -24.8 120 25.5  
Sulzburg 62 SW-25M Quartz Type 1 13  -23.0 124 24.3  
Tannenboden, Wieden 41 38 Fluorite Type 1 6  -18.5 146 21.3  
    Type 2 4  -7.0 150 10.5  
Tennenbronn 35 28 Fluorite Type 1 6  -24.9 144 25.5  
  YOB 11 Fluorite Type 1 6  -19.8 160 22.2  
Teufelsgrund 40 BTR-9 Fluorite-Late Type 2 49  -6.3 164 9.2  
  BTR-4 Fluorite Type 1 35  -16.9 114 20.1  
  BTR-7     Fluorite Type 1 30  -20.3 154 22.5  
  BTR-7 Quartz Type 1 41 -18.1 -21.2 127 13.2 13.0 
  BTR-6 Quartz Type 1 33  -23.5 151 24.7  
  BTR-5 Calcite-Late Type 2 29  -0.2 166 0.4  
Wehratal, Nöggenschwiel 59 15 Fluorite Type 1 6  -18.4 137 21.2  
Wenzel 31 49 Fluorite Type 1 6  -27.1 123 26.9  
Wenzel 31 BTR-42 Calcite Type 1 23  -27.3 135 27.0  
  BTR-18  Calcite Type 1 32  -27.5 126 27.1  
  BTR-43 Barite Type 1 25  -22.4 191 23.9  
Wittenweiler 5 1 Fluorite Type 1 5 -17.5 -25.2 133 13.0 13.0 
Zunsweier 6 12 Fluorite Type 1 25  -24.7 158 25.4  
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Figure 13. Typical RAMAN spectra of fluid inclusions in fluorites. They show the dominant CO2 

peak at 1285 cm-1 together with H2O bands. 

 

 

 

5.2.2. OXYGEN ISOTOPE DATA OF VEIN QUARTZ 

The results of the oxygen isotope analyses are summarized in Table 4. All δ18O values of 

quartz of the fluorite-bearing veins range between +11.1 and +19.5 ‰, with 75 out of 83 

values being in a narrow interval between +14 and +18 ‰ (Fig. 14). Euhedral quartz crystals 

present as secondary overprint within few of the Variscan quartz veins (e.g., Holderpfad, St. 

Ulrich, Münstergrund, Ludwig/Adlerbach deposits) have δ18O values between +14.6 and 

+17.8 ‰ and are consistent with the typical data range for the post-Variscan veins.   
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Figure 14. Histogram showing the ranges of measured δ18Oquartz (SMOW) from the  

post-Variscan hydrothermal veins in the Schwarzwald. 

 

The range in δ18O values for quartz from post-Variscan veins found in this study is in good 

agreement with previously reported data from the Schauinsland and Menzenschwand 

deposits, which are in the range of +15.5 to +19.4 ‰, and +15.3 to +20.0 ‰, respectively 

(Weber 1997; Hofmann 1989). In comparison, carneol from feldspatic sandstone (Silberberg 

Mountain, near Wittichen) and agate from a Perminan rhyolite (Geisberg near 

Schweighausen) have significantly higher δ18O values of +33.4 ‰ and +28.9 ‰, respectively. 

Combining measured δ18O values of quartz from the fluorite veins with the respective fluid 

inclusion homogenization temperatures, calculated δ18OH2O (using the experimental quartz-

water fractionation of Matsuhisa et al. 1979) range between –7.5 and +2.1 ‰ (Table 4). 

 

 
Table 4. Summary of oxygen isotopic data for analyzed quartz samples and calculated isotopic composition of 
the fluid from the post-Variscan hydrothermal veins of the Schwarzwald. 
 

No. 
No. of 
deposit 

Deposit Sample ID Description 
δ18O 
(‰) 

Th 
(°C) 

δ18OH2O 
(‰) 

1 1 Käfersteige BTR-29 Milky fine grained quartz 17 130 -0.2 
2 1 Käfersteige BTR-33 Chalcedony  17.6   
3 4 Dorothea QDC-69 Milky fine grained quartz 18.7   
4 4 Dorothea BTR-34  17.6   
5 11 Friedrich-Christian GS 135 Euhedral crystals 16.4 110 -3.0 
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6 11 Friedrich-Christian GS 135 Coarse grained vein quartz 14.4 110 -5.0 
7 11 Friedrich-Christian GS 119 Qtz pseudomorph after barite 17.8   
8 11 Friedrich-Christian GS 131 Greenish chert 17.1   
9 11 Friedrich-Christian GS 131 Euhedral crystals 17.2   
10 11 Friedrich-Christian GS 123 Quartz from gneiss-host 12.5   
11 12 Sophia, Wittichen 484 Euhedral crystals 17.6   
12 12 Sophia, Wittichen WSB-26 Euhedral crystals 19.2   
13 12 Sophia, Wittichen WSB-13 Smoky quartz 19.5 80 -4.6 
14 13 Johannes, Wittichen WJB-2 Fine grained vein quartz 17.2   
15 13 Johannes, Wittichen WJB-17 Euhedral crystals 17.9 85 -5.3 
16 14 Neuglück, Wittichen BTR-37 Euhedral crystals 19 105 -1.2 
17 19 Hilfe Gottes PHG-153 Euhedral crystals 11.1   
18 19 Hilfe Gottes PHG-134 Dense quartz vein in granite 14.5   
19 19 Hilfe Gottes PHG-190 Chert 16.4   
20 27 Segen Gottes BTR-47-II Late stage quartz veinlet 14.1 147 -1.5 
21 28 Artenberg BTR-48 Coarse grained vein quartz 12.1   
22 28 Artenberg XSA-15 Euhedral crystals 16.9 87 -5.5 
23 31 Wenzel OWF-111 Single grains in barite 14.3   
24 31 Wenzel OWF-12 Euhedral crystals 17.6   
25 36 Badenweiler BTR-39 Milky fine grained quartz 16.4 162 2.1 
26 36 Badenweiler BTR-34 Dense, milky quartz 17.6   
27 40 Teufelsgrund BTR-6 Quartz druse, crystal 13.9 151 -1.4 
28 40 Teufelsgrund BTR-6 Blue chalcedony 14.7 151 -0.6 
29 40 Teufelsgrund BTR-7 Late-quartz, euhedral crystals 14.7 127 -2.8 
30 42 Baumhalde GS 71 Veinlet with euhedral crystals 11.8 154 -3.2 
31 42 Baumhalde GS 72 Fine grained vein quartz  14.7   
32 42 Baumhalde GS 76 Chalcedony 13.7   
33 43 Brandenberg GS 111 Qtz pseudomorph after barite 12.5   
34 43 Brandenberg GS 99 Fine grained vein quartz 13.4 127 -4.1 
35 43 Brandenberg GS 91 Chalcedony 13.8 130 -3.4 
36 43 Brandenberg GS 91 Chalcedony 15 130 -2.2 
37 43 Brandenberg GS 91 Euhedral crystals 15.3 130 -1.9 
38 43 Brandenberg GS 91 Coarse grained vein quartz 13.9 130 -3.3 
39 43 Brandenberg GS 91 Euhedral crystals 13.5 130 -3.7 

40 43 Brandenberg GS 103 
Qtz from gneiss, 4 cm apart 
from vein  

9.7   

41 47 Herrmann GS 67 Coarse grained vein quartz 14.4   
42 47 Herrmann GS 70 Coarse grained vein quartz 14.6   
43 47 Herrmann GS 68 Euhedral crystals 14.9   
44 53 Schwarzwaldsegen GS 29c Euhedral crystals 17.6   
45 54 Neue Hoffnung  GS 35 Euhedral crystals 11.9   
46 54 Neue Hoffnung  GS 34 Qtz pseudomorph after barite 17.1   
47 56 Brenden GS 15 Qtz pseudomorph after barite 14.7 95 -6.6 
48 56 Brenden GS 15 Qtz pseudomorph after barite 13.8 95 -7.5 
49 56 Brenden GS 15 Qtz pseudomorph after barite 15.4 95 -5.9 
50 56 Brenden GS 4 Euhedral crystals 15.7   
51 57 Igelschlatt GS 42 Qtz pseudomorph after barite 16.3   
52 57 Igelschlatt GS 37 Purple quartz 16.8 125 -1.0 

53 57 Igelschlatt GS 37 
Qtz from granite, 1 cm apart 
from vein 

10.8 125 -7.0 

54 57 Igelschlatt GS 37 
Qtz from granite, 6 cm apart 
from vein 

10.7 125 -7.1 

55 57 Igelschlatt GS 41 
Qtz from granite, 1 cm apart 
from vein 

10.5   
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56 57 Igelschlatt GS 41 
Qtz from granite, 8 cm apart 
from vein 

10.9   

57 57 Igelschlatt GS 41 Coarse grained vein quartz 13.7   
58 62 Sulzburg SW-25a Euhedral crystals 18.2 120 -0.1 
59 62 Sulzburg SW-25M Dense, milky quartz 16.4 124 -1.5 
60 64 Neubulach 919 Euhedral crystals 16.8   
61 64 Neubulach BTR-32 Euhedral crystals 16.9 114 -2.1 
62 65 Michael  im Weiler 566 Blueish, dense quartz 18   
63 65 Michael  im Weiler GMW-121 Smoky quartz 16.3 110 -3.1 
64 66 Geigeshalde TGH-30 Euhedral crystals 15.8   
65 67 Schauinsland BTR-40 Euhedral crystals 14.4 113 -4.7 
66 69 Menzenschwand GMS 03 Euhedral crystals 19   
67 69 Menzenschwand GMS 07 Euhedral crystals 20.9   
68 69 Menzenschwand GMS 08 Reddish chalcedony 16.9   
69 86 Silbergründle SW-24 Euhedral crystals 16.2 128 -1.2 
70 87 Königswart SW-23 Euhedral crystals 17.1 116 -1.6 
71 88 Silberbrünnle BTR-31 Qtz pseudomorph after barite 16.5   
72 88 Silberbrünnle YSB-195 Euhedral crystals 14.2   
73 88 Silberbrünnle BTR-31 Chalcedony  14.6   
74 88 Silberbrünnle BTR-31 Coarse grained vein quartz 15.7 132 -1.3 
75 88 Silberbrünnle YSB-235 Euhedral crystals 16.6   
76 88 Silberbrünnle BTR-31 Blueish chalcedony  17.2   
77 88 Silberbrünnle YSB-195 Blueish, dense quartz 18.2   
78 88 Silberbrünnle BTR-31 Yellow chalcedony  16.5   
79 89 Lorenz BTR-24 Euhedral crystals 15.9   
80 89 Lorenz BTR-36 Euhedral crystals 17   
81 q-4 Ludwig/Adlersbach* GS 160 Dense milky quartz 18.8   
82 q-4 Ludwig/Adlersbach* GS 161 Dense milky quartz 15.1   
83 q-4 Ludwig/Adlersbach* GS 162 Dense milky quartz 18.4   
84 q-13 Holderpfad ** GS 208 Euhedral crystals 17.8 102 -2.6 
85  Silberberg, Wittichen SW-01 Sedimentary carneol 33.4   
86  Steinbruch Feist,  SW-15 Secondary agate from rhyolite 28.9   
  Geisberg      

Note: δ18O H2O were calculated using the equation of Matsuhisa et al. (1979) and temperatures (Th) from fluid 
inclusions. In some sample, the Th was not determined due to too small inclusions. 
* Variscan vein with post-Variscan overprint.   ** Late drusy quartz in Variscan vein. 
 

 

5.2.3. OXYGEN, HYDROGEN AND CARBON ISOTOPE SYSTEMATICS OF FLUID 

INCLUSIONS 

Oxygen, hydrogen and carbon isotope compositions of directly extracted fluid inclusion water 

from fluorites are listed in Table 8. The δ18O values of fluid inclusion water range from -11.6 

to -3.0 ‰ (with most data lying between -6 and -3 ‰), which is very consistent with the 

δ18OH2O values calculated from the measured δ18OQuartz of vein quartz and fluid inclusion 

homogenization temperatures in the same samples (Table 8 and Fig. 15). Water yields and the 

δD values of inclusion fluids from hydrothermal fluorite, calcite and quartz samples are 

shown in Table 8 and Figure 16.  
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Figure 15. Diagram of δ18Ofluid directly measured from fluid inclusion water (extracted from fluorite) vs. δ18Ofluid  

calculated from quartz using the equation of Matsuhisa et  al. (1979). 
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Figure 16. Fluid δD and δ18O characteristics of post-Variscan hydrothermal veins, with superposed fields of 

estimated isotopic compositions of primary magmatic and metamorphic fluids (Sheppard 1986). δ18Ofluid for 
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fluorites were measured from directly extracted fluid inclusion water, whereas δ18Ofluid for quartz were calculated 

using the equation of Matsuhisa et al. (1979). MWL- Meteoric Water Line. 

 

 

 The δD values for water extracted from fluid inclusions in fluorites define a range between -

29 and -1 ‰. In comparison, fluid inclusion water from quartz samples generally has much 

more variable and more negative δD values between -63 and +9 ‰, with 7 out of 12 values 

lying between -63 and -32 ‰. The only exception is a sample from the Neubulach deposit, 

which has a much higher δD value of +54 ‰. The δD values of fluid inclusion water 

extracted from primary calcite samples range between -26 and -15 ‰, very similar to the data 

from primary fluorite. In contrast, late-stage calcite samples have significantly heavier δD 

values in the range between -5 and +70 ‰ (Table 8). The carbon isotope data of fluid 

inclusion gas (mainly CO2) show considerable variation, with δ13C values between -21.4 and -

6.7 ‰. The heaviest value of -6.7 ‰ was obtained from a late stage fluorite sample from the 

Teufelsgrund deposit. 

 

Table 8. Summary of stable isotope data for post-Variscan ore forming hydrothermal fluids in the Schwarzwald. 

H2O CO2 

δ18O δD δ13C 

  
Locality 
  

No. of 
deposit 

  
Sample 

ID 

  
Mineral 
  

  H2O 
content 

(%) (‰ VSMOW) (‰ VPDB) 

Artenberg 28 BTR-35 Fluorite 0.019 -11.6  -10.2 

Artenberg 28 BTR-1 Calcite 0.032  -24  

Artenberg 28 BTR-13  Calcite-Late 0.192  -22  

Badenweiler 36 BTR-39 Quartz 0.085  -40  

Baumhalde 42 GS-71 Quartz 0.066  -38  

Brandenberg 43 GS-111 Fluorite  -1.0 -17 -7.5 

Brandenberg 43 GS-91 Quartz 0.033  -9  

Brenden 56 GS-24 Fluorite 0.161 -3.3 -11 -18.3 

Brenden 56 GS-4 Quartz 0.035  9  

Dorothea 4 BTR-14 Fluorite 0.068 -3.3  -21.3 

Drey 25 151 Fluorite 0.057 -7.4  -15.6 

Friedrich Christian 11 FCH-1 Fluorite 0.025 -5.4 -12 -21.4 

    0.057 -3.0  -20.9 

Friedrich Christian 11 FCH-2 Fluorite 0.02 -2.6 -12 -19.5 

Friedrich Christian 11 GS-135 Fluorite  -2.3   

Friedrich Christian 11 GS-119 Quartz-Late 0.117  -62  

Friedrich Christian 11 GS-131 Quartz 0.068  -63  

Friedrich Christian 11 38 Cc-I Calcite 0.059  -26  

Gottesehre near Urberg  53 Calcite 0.343  -25  

Igelschlatt 57 GS-37 Quartz 0.044  -47  

Igelschlatt 57 GS-37 Fluorite 0.153 -0.2 -29 -11.8 
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Johannes, Wittichen 13 WJB-2 Fluorite 0.11 -5.6 -12 -19.2 

Johannes, Wittichen 13 WJB-17/4 Quartz 0.158  -36  

Käfersteige 1 BTR-28 Fluorite 0.142 -5.4 -17 -16.4 

Michael im Weiler 65 GMW102 Quartz 0.055  -28  

Neu Bergmännisch Glück 22 814 Fluorite 0.1 -3.8  -17.8 

Neubulach 64 815 Quartz 0.056  53  

Schauinsland  67 17 Calcite 0.094  -25  

Schauinsland 67 446 Quartz 0.037  -22  

Silberbrünnle 88 BTR-31 Quartz 0.049  -32  

Sophia Wittichen 12 BTR-50 Fluorite 0.091 -5.6  -9.2 

Sophia Wittichen 12 198  Calcite-Late 0.035  70  

Teufelsgrund 40 BTR-7 Fluorite 0.105 -6.0 -1 -11.5 

Teufelsgrund 40 BTR-9 Fluorite-Late 0.096 -9.0  -6.7 

Teufelsgrund 40 BTR-8  Calcite-Late 0.052  -4  

Tunnelbau Hausach 29b HTB-13 Calcite-Late 0.036  48  

Wenzel 31 BTR-42 Calcite 0.166   -15   

 

 

5.2.4.5.2.4.5.2.4.5.2.4. DEPENDENCE OF MEASURED δD OF FLUID INCLUSION WATER ON 

EXTRACTION TEMPERATURES 

Fluid inclusion water was extracted from all fluorite samples at 400 °C and 650 °C. The δD 

values for water extracted from fluid inclusions in fluorites at 400 °C ranged widely between -

60 and +82 ‰, with 10 of the 12 values between -29 and +22 ‰. At 650 °C, the values 

ranged from -78 to +40 ‰, with 10 of the 12 values between -47 and +17 ‰ (Table 9). Only 

one late fluorite from Teufelsgrund, BTR-9 shows lower δD values at both extraction 

temperatures (at 400°C, -58 ‰ and at 650 °C, -78 ‰) than primary hydrothermal fluorites. 

The δD at 650 °C vs. at 400 °C diagram (Fig. 17) shows that all δD values of water extracted 

from fluid inclusions in fluorites at 650 °C are systematically to lower (by upto -55 ‰) than 

those of water extracted at 400 °C. The δD values from rest gases oxidized by CuO to H2O 

were always lower than extracted molecular water. We assume that most of the fluid 

inclusions in fluorites, which were decrepitated up to 400 °C, released only molecular water. 
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Figure 17. The δD values of fluid inclusion water released at 650 °C vs. δD values of fluid inclusion water 

released at 400 °C. 

 
 
Table 9. Summary of stable isotope data for ore forming hydrothermal fluids in the Schwarzwald. 

No. of without CuO, 650°C without CuO, 400°C 

deposit 
Locality Sample ID Mineral 

δ18O δD δD 

1 Käfersteige BTR-28 Fluorite -5.4 -30.0 -17.9 

4 Dorothea BTR-14 Fluorite -3.3 38.0 81.5 

11 Friedrich Christian FCH-1 Fluorite  -42 -12.0 

11 Friedrich Christian FCH-1 Fluorite  -5.5 -6.3 

11 Friedrich Christian FCH-2 Fluorite -2.6 -10.0 -12.1 

13 Johannes, Wittichen WJB-2 Fluorite -5.6 6.0 22.2 

13 Johannes, Wittichen WJB-2 Fluorite  -2.9 25.6 

25 Drey GS-151 Fluorite -7.4 -47.0 9.7 

40 Teufelsgrund BTR-7 Fluorite -6.5 -36.0 -0.6 

40 Teufelsgrund BTR-9 Fluorite-Late -9.0 -78.0 -58.1 

56 Brenden GS-24 Fluorite -5.8 -41.0 -11.5 

57 Igelschlatt GS-37 Fluorite -6.2 -36.0 -29.3 
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5.2.5. INFRARED SPECTRA AND WATER CONTENT OF FLUORITES 

Fourier transformation infrared (FTIR) analyses in the IR wavelength region (2500 cm-1 to 

5500 cm-1) were scanned through the fluid inclusions and host fluorite mineral. In the infrared 

spectrum from the fluid inclusions in fluorite samples obtained at room temperature, two 

dominant broad absorbance bands at about 3400 cm-1 are present that indicate molecular 

water and structurally bound water (Aines and Rossman 1984). A smaller band was scanned 

at about 5200 cm-1 that can be identified as hydrogen in molecular water (O-H vibrations). In 

the spectrum obtained at room temperature from a fluid inclusion free area in the fluorite 

samples, the bands were observed with less intensity or no peak observed at 5200cm-1. In the 

spectrum of primary fluorite sample GS-37, Igelschlatt deposit (Fig. 18), two dominant 

absorption bands were scanned at 3400 and 5210 cm-1 in fluid inclusions, whereas in fluid 

inclusion free area (fluid inclusion host), almost no peak observed at 5200cm-1. This confirms 

that fluid inclusion or molecular water is absent in this area.  A small peak scanned around 

3400cm-1 in host that indication of no structurally bound water in host mineral. We obtained 

higher intensity sharp bands at 3400 and 5210cm-1 from the spectrum in fluid inclusions in 

fluorite sample BTR-7, Teufelsgrund deposit. Broadband was observed at 3400cm-1 in host 

fluorite that indicate amount of structurally bound water in host mineral. There was no 

molecular water observed (at 5210cm-1) in host mineral of primary fluorite sample BTR-7, 

Teufelsgrund. It shows that there is water in fluorite not only in fluid inclusions, but also in 

structurally incorporated. Polarized FTIR absorption spectra at room temperature of fluid 

inclusions and host mineral of fluorite samples are presented in Figure 18. 
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Figure 18. Infrared spectra of fluorite from post-Variscan hydrothermal veins. (A). Sample BTR-7, 
Teufelsgrund deposit. Broadband was observed at 3400cm-1 in host.   (B). Sample GS-37, Igelschlatt deposit. 
The band at 3400cm-1 is absent in host. See the explanation in the text.   

 

 

5.2.6. SULFUR ISOTOPES 

The results of the δ34S measurements are listed in Table 10 together with equilibrium 

temperatures of texturally coexisting mineral pairs calculated after Ohmoto and Goldhaber 

(1997). The δ34S values of galena, chalcopyrite, and barite are summarized in Figure 19. Most 

of the barite data range between +9 and +15 ‰, with only 8 samples having slightly higher or 

lower δ34S values (Fig. 19). Within individual veins, remobilized late-stage barite (Fig. 19, 

upside-down triangles) shows typically lower δ34S values than the primary barite generation. 

The galena and chalcopyrite data cover a range of -14.1 to -1.6 ‰ and of –14.4 to +1.7 ‰, 

respectively. In the deposits Friedrich-Christian, Brandenberg, and Brenden, where multiple 

measurements of both principal sulfide minerals could be performed, the δ34S values of 

cogenetic galena and chalcopyrite show a relatively broad overlap (Table 10). Sphalerite and 

pyrite samples show distinctively higher δ34S values of -3.2 to +1.5 ‰ and +0.8 to +2.9 ‰. 
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Table 10. Summary of the δ34S values and calculated equilibrium temperatures (using fractionation factors listed 

in Ohmoto and Goldhaber, 1997). 

No. Deposit (No. of deposit) Sample ID Mineral δ34S 
 (V-CDT) 

Temp. (°C); 

sulfide pairs [1] 

Temp. (°C); 

sulfide-sulfate [1] 

       

1 Käfersteige (1) BTR-30 Barite 10.7  287 (1-3) 

2 Käfersteige (1) BTR-33 Barite 17.2  208 (2-3) 

3 Käfersteige (1) BTR-34a Chalcopyrite –11.6   

4 Dorothea (4) QDC-69 Barite 10.4   

5 Dorothea (4) M-33 Chalcopyrite –14.4  245 (3-4) 

6 Friedrich-Christian  (11) GS-129 Galena –6.4 reversed (6-7) 359 (6-8) 

7 Friedrich-Christian  (11) GS-129 Chalcopyrite –7.5  314 (7-8) 

8 Friedrich-Christian  (11) GS-129 Barite 12.0   

9 Friedrich-Christian  (11) GS-118 Galena –10.0 255 (9-10) 302 (9-8) 

10 Friedrich-Christian  (11) GS-118 Chalcopyrite –7.9  308 (10-8) 

11 Friedrich-Christian  (11) MSchl-389 Galena –5.6 >1000 (11-12) 374 (11-8) 

12 Friedrich-Christian  (11) MSchl-389 Pyrite –4.9  352 (12-8) 

13 Friedrich-Christian  (11) M-3 Galena –7.7  338 (13-8) 

14 Friedrich-Christian  (11) GS-129 Galena –8.2 156 (14-15) 328 (14-8) 

15 Friedrich-Christian  (11) GS-129 Chalcopyrite –5.1  356 (15-8) 

16 Friedrich-Christian  (11) GS-142 Galena –9.3 reversed (16-17 312 (16-8) 

17 Friedrich-Christian  (11) GS-142 Chalcopyrite –9.7  283 (17-8) 

18 Friedrich-Christian  (11) GS-135 Chalcopyrite –7.6  313 (18-8) 

19 Sophia  (12) WSB-181 Barite 13.1   

20 Sophia  (12) KL-1/63 Barite 14.2   

21 Sophia  (12) WSB-249 Barite 12.8   

22 Sophia  (12) 5/97 Chalcopyrite –1.8  401 (22-19) 

23 Johann  (13) WJB-2 Chalcopyrite –9.4  272 (23-24) 

24 Johann  (13) WJB-2 Barite 13.2   

25 Johann  (13) WJB-59 Galena –9.1 reversed (24-25 300 (25-24) 

26 Johann  (13) WJB-59 Chalcopyrite –13.0  232 (26-24) 

27 Johann  (13) 910 Chalcopyrite –12.7  234 (27-24) 

28 Drey (25) GS-151 Galena –4.3  343 (28-29) 

29 Drey (25) GS-151 Barite 15.0   

30 Drey (25) GS-151 Galena –5.5  325 (30-29) 

31 Drey (25) GS-154 Galena –5.4  326 (31-29) 

32 Drey (25) GS-151 Galena –5.7  322 (32-29) 

33 Segen Gottes (27) XSG-20 Sphalerite –1.9  372 (34/35-33) 

34 Segen Gottes (27) XSG-20 Barite 14.3   

35 Segen Gottes (27) XSG-15 Barite 14.0   

36 Segen Gottes (27) XSG-30 Chalcopyrite –3.8 287 (35-36) 341 (34/35-36) 

37 Segen Gottes (27) BTR-3 Galena –5.7  336 (34/35-37) 

38 Artenberg  (28) XSA-66 Barite 12.4   

39 Artenberg  (28) BTR-13 Chalcopyrite –8.4  294 (38-39) 

40 Wenzel (31) OWF-18 Barite 8.5   

41 Wenzel (31) OWF-56 Galena –1.6 147 (41-43) 455 (41-42) 

42 Wenzel (31) OWF-56 Barite 12.4   

43 Wenzel (31) OWP-86 Chalcopyrite 1.6  525 (43-42) 
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44 Wenzel (31) BTR-19 Galena –1.7 143 (43-44) 453 (44-42) 

45 Teufelsgrund (40) BTR-8 Barite 20.0   

46 Teufelsgrund (40) BTR-4 Galena –8.3 66 (46-48) 267 (46-47) 

47 Teufelsgrund (40) BTR-4 Barite 16.7   

48 Teufelsgrund (40) BTR-27 Chalcopyrite –3.3  307 (48-47) 

49 Teufelsgrund (40) BTR-7 Sphalerite –3.2  303 (49-47) 

50 Teufelsgrund (40) BTR-6 Galena –5.4   

51 Baumhalde (42) GS-77 Galena –10.2   

52 Baumhalde (42) M-ZBH-31 Galena –14.1 65 (52-53)  

53 Baumhalde (42) M-ZBH-31 Chalcopyrite –9.1   

54 Baumhalde (42) MSchl-585 Galena –13.2 97 (53-54)  

55 Brandenberg (43) GS-93 Galena –8.5 89 (55-60) 284 (55-62) 

56 Brandenberg (43) GS-98 Galena –7.0 340 (56-60) 304 (56-62) 

57 Brandenberg (43) GS-91 Galena –8.2  288 (57-62) 

58 Brandenberg (43) MSchl-584 Galena –5.6 reversed (58-59 323 (58-62) 

59 Brandenberg (43) MSchl-584 Chalcopyrite –5.7  298 (59-62) 

60 Brandenberg (43) GS-78 Chalcopyrite –4.1  321 (60-62) 

61 Brandenberg (43) GS-86 Sphalerite 0.2  400 (61-62) 

62 Brandenberg (43) GS-86 Barite 15.0   

63 Brandenberg (43) M"CuK/ZnS" Sphalerite –2.9  334 (63-62) 

64 Brandenberg (43) M-649 Barite 12.7   

65 Brandenberg (43) GS-99 Barite-II 9.7   

66 Brandenberg (43) GS-99-Sph Sphalerite –0.3  388 (66-62) 

67 Herrmann (47) GS-68 Galena –2.6  600 (67-68) 

68 Herrmann (47) GS-68 Barite 8.3   

69 Gottes Ehre, Urberg (51) M-810 Galena –10.3 218 (69-70) 286 (69-77) 

70 Gottes Ehre, Urberg (51) M-810 Chalcopyrite –7.9  294 (70-77) 

71 Neuglück (52) GS-26 Galena –5.9  349 (71-77) 

72 Neuglück (52) M-UNG-9 Galena –10.2 130 (72-73) 324 (72-77) 

73 Neuglück (52) M-UNG-9 Chalcopyrite –6.7  320 (73-77) 

74 Schwarzwaldsegen (53) GS-28b Galena –7.0  330 (74-77) 

75 Schwarzwaldsegen (53) GS-28a Galena –8.5  309 (75-77) 

76 Neuhoffnung  (54) GS-31 Galena –10.0  288 (76-77) 

77 Neuhoffnung  (54) GS-32 Barite 13.0   

78 Brenden (56) GS-15 Galena –10.5  303 (78-95) 

79 Brenden (56) GS-24 Galena –11.1  295 (79-93) 

80 Brenden (56) GS-24 Galena –11.0  295 (80-94) 

81 Brenden (56) GS-25 Galena –9.7  315 (81-95) 

82 Brenden (56) GS-26 Galena –9.9  313 (82-95) 

83 Brenden (56) GS-27 Galena –10.1  309 (83-95) 

84 Brenden (56) MS-33 Galena –11.4 380 (84-85) 292 (84-95) 

85 Brenden (56) MS-33 Chalcopyrite –10.0  285 (85-95) 

86 Brenden (56) MS-35 Galena –10.8 327 (86-87) 299 (86-95) 

87 Brenden (56) MS-35 Chalcopyrite –9.3  296 (87-95) 

88 Brenden (56) MS-501 Galena –11.6 215 (88-89) 289 (88-95) 

89 Brenden (56) MS-501 Chalcopyrite –9.2  297 (89-95) 

90 Brenden (56) MS-564 Galena –11.3 645 (90-91) 292 (90-95) 

91 Brenden (56) MS-564 Chalcopyrite –10.6  278 (91-95) 

92 Brenden (56) MS-1466 Chalcopyrite –9.0  300 (92-95) 
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93 Brenden (56) GS-24 Barite 10.8   

94 Brenden (56) GS-24 Barite 11.4   

95 Brenden (56) GS-11 Barite 14.4   

96 Igelschlatt (57) GS-42-2 Galena –7.7  330 (96-102) 

97 Igelschlatt (57) GS-42-3 Galena –8.9  312 (97-102) 

98 Igelschlatt (57) GS-42-4 Galena –9.2  306 (98-102) 

99 Igelschlatt (57) GS-43 Galena –8.8  315 (99-102) 

100 Igelschlatt (57) GS-57 Galena –9.3  305 (100-102) 

101 Igelschlatt (57) GS-57 Galena –8.0  325 (101-102) 

102 Igelschlatt (57) GS-57 Barite 13.4   

103 Igelschlatt (57) GS-57 Barite 12.5   

104 Igelschlatt (57) GS-45 Barite 12.3   

105 Michael im Weiler  (65) 566 Galena –4.5  355 (105-107) 

106 Michael im Weiler  (65) 566 Barite 14.2   

107 Michael im Weiler  (65) 566 Barite 15.9   

108 Michael im Weiler  (65) 782 Sphalerite –0.1   

109 Kobaltgrube (68) BTR-10  Barite 13.1   

110 Kobaltgrube (68) DSB-29 Barite 12.9   

111 Kobaltgrube (68) DSB-15 Galena –4.2  
382 (109/110-

111) 
112 Menzenschwand (69) GMS-03 Barite 1.5   

113 Menzenschwand (69) GMS-04 Barite 12.0   

114 Menzenschwand (69) GMS-05 Barite 14.6   

115 Menzenschwand (69) GMS-06 Barite 7.6   

116 Menzenschwand (69) GMS-06 Pyrite 1.0  765 (116-114) 

       
1] Numbers in brackets refer to analyis numbers in column 1. 
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Figure 19. Plot of the δ34S values of sulfides and barite: galena (squares), chalcopyrite (circles), barite 

(triangles), and remobilized barite (upside-down triangles). Data for sphalerite and pyrite are not shown. 

 

 

5.2.7. CARBON AND OXYGEN ISOTOPES OF CALCITES 

The carbon and oxygen isotope data are summarized in Table 11. Figure 20 displays all 

measurements of petrographically primary (circles) and remobilized (squares) calcites. 

Primary calcites show a positive correlation in the δ13C vs δ18O space, ranging from -12.2 to -

3.0 ‰ and from +12.0 to +18.5 ‰, respectively. Relatively late calcite generations within the 

veins (filled squares) display significantly higher δ13C values of -12 to -1 ‰ and δ18O values 

of +20 to +25 ‰. Sub-recent calcite sinters (open squares) show very high δ18O values around 

+24 ‰. Mesozoic Muschelkalk limestone of the sedimentary cover (filled stars) show 

relatively high δ13C values of -5 to +2 ‰. In contrast, calcites from a metamorphic vein 
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hosted by crystalline basement rocks and Paleozoic limestone from the Badenweiler-

Lenzkirch zone (open star) have comparatively low δ13C values. 

 

Table 11. Summary of the carbon and oxygen isotope data of post-Variscan hydrothermal  
calcite samples from the Schwarzwald district. 

  

No No. of 
deposit Deposit Sample ID 

Calcite 

stage 

δ13C 

(V-PDB) 

δ18O 

(V-SMOW) 
       
1 1 Käfersteige 1/41 Cc II –9.8 24.9 
2 1 Käfersteige 1_BTR-30 Cc II –9.4 24.7 
3 10 Clara 10/43 Cc I –10.3 14.3 
4 10 Clara 10/44 Cc I –9.1 15.2 
5 10 Clara 10/45 Cc II –4.9 21.5 
6 11 Friedrich-Christian 11/36 Cc I –6.1 18.2 
7 11 Friedrich-Christian 11/37 Cc IV –6.4 23.5 
8 11 Friedrich-Christian 11/38 Cc I –7.5 17.1 
9 11 Friedrich-Christian 11/39 Cc II –3.5 20.9 
10 11 Friedrich-Christian 11/74 Cc IV –1.3 23.7 
11 11 Friedrich-Christian 12/54 Cc I –10.7 15.2 
12 12 Sophia 12_198 Cc II –4.5 23.5 
13 12 Sophia 12_BTR-35a Cc II –2.5 22.5 
14 12 Sophia 12_KL-1/63 Cc I –9.9 13.8 
15 12 Sophia 12_BTR-41 Cc I –10.8 14.9 
16 12 Wittichen area (Sophia) 10 Cc II or III –2.1 21.0 
17 12 Wittichen area 13 Cc II –9.5 20.6 
18 12 Wittichen area 14 Cc II –10.8 14.4 
19 13 Johannes 13/8 Cc I –10.0 15.0 
20 13 Johannes 13_WJB-90 Cc II –6.0 23.7 
21 28 Artenberg 28/55 Cc I –8.5 13.3 
22 28 Artenberg 28/56 Cc II –9.6 15.3 
23 28 Artenberg 28/57 Cc III –11.6 24.1 
24 28 Artenberg 28_BTR-13 Cc I –10.1 13.8 
25 28 Artenberg 28_XSA-47 Cc I –11.3 11.8 
26 28 Artenberg 28_XSA-47 Cc II –11.4 24.0 
27 29b Tunnel near Hausach   11 Cc II –6.3 22.6 
28 31 Wenzel 31/19 Cc II –10.2 21.4 
29 31 Wenzel 31/33 Cc I –8.1 14.7 
30 31 Wenzel 31/34 Cc I –11.2 14.5 
31 31 Wenzel 31/50 Cc II –6.5 21.6 
32 31 Wenzel 31/51 Cc I –12.8 13.7 
33 31 Wenzel 31_BTR-18 Cc I –11.9 13.1 
34 31 Wenzel 31_BTR-18 Cc II –6.7 20.7 
35 35 Tennenbronn 35/66 Cc I 1.5 19.9 
36 37 Sulzburg 37/68 Cc IV –3.1 23.8 
37 40 Teufelsgrund 40/58 Cc II –3.5 17.2 
38 40 Teufelsgrund 40/59 Cc II –4.4 17.3 
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39 40 Teufelsgrund 40_BTR-5 Cc I –4.4 17.1 
40 40 Teufelsgrund 40_BTR-8 Cc I –3.2 16.9 
41 43 Brandenberg 43/60 Cc II –3.7 17.0 
42 43 Brandenberg 43/61 Cc II –3.9 17.7 
43 43 Brandenberg 43/62 Cc II –3.7 18.3 
44 51 Gottes Ehre 51/21 Cc II –3.4 19.7 
45 51 Gottes Ehre 51/22 Cc III –6.2 21.4 
46 51 Gottes Ehre 51/53 Cc I –11.1 12.7 
47  Mühlsandstein 63/25 Cc I –9.0 20.1 
48 64 Neubulach 64/42 Cc II –6.5 24.1 
49 64 Neubulach 64_BTR-20 Cc II –7.2 23.9 
50 64 Neubulach 64_BTR-22 Cc II –8.0 23.8 
51 67 Schauinsland 67/17 Cc I –12.2 12.1 
52 67 Schauinsland 67/18 Cc I –12.1 12.5 
53 67 Schauinsland 67/20 Cc II –4.1 20.9 
54 67 Schauinsland 67/28 Cc II –4.5 21.3 
55 67 Schauinsland 67_BTR-40 Cc I –10.8 13.3 
56 70 Daniel/Dehs 70/3 Cc I –9.9 14.4 
57 70 Daniel/Dehs 70/70 Cc II –3.6 22.2 
58 70 Daniel/Dehs 70/72 Cc I –9.3 15.9 
59 70 Daniel/Gallenbach 21/2 Cc II –7.1 17.5 
60 71 Johann Baptist 71/69 Cc IV –4.6 22.2 
61 72 Anton/Heubach 72/30 Cc II –1.4 23.3 
62 72 Anton/Heubach 72/73 Cc IV 0.1 24.5 
63 73 Bernhard/Hauserbach 73/23 Cc II –4.6 21.8 
64 73 Bernhard/Hauserbach 73/52 Cc II –8.0 23.2 
65 74 Maria Theresia 74/47 Cc II –4.3 21.3 
66 75 Katharina/Trillengrund 75/27 Cc I –10.4 14.6 
67 75 Katharina/Trillengrund 75/75 Cc IV –7.9 23.9 
68 76 Rötenbach quarry 76/24 Cc II –1.0 22.6 
69 77 Christina/Wittichen 77/6 Cc II –5.2 23.3 
70 78 Simson/Wittichen 78/7 Cc I –8.1 15.9 
71 81 Giftgrube/Kaltwasser 81/29 Cc II –4.3 16.5 
72 82 Fahl 82/35 Cc II –5.4 22.0 
73 83 Gschwend 83/63 Cc II –7.1 22.1 
74 84 Herrenwald 84/15 Cc II or III –3.3 15.1 
75 85 Anton/Wieden 85/5 Cc II –5.4 22.4 
76 90 Tunnel near Waldkirch 12 Cc II –4.6 21.4 
77 91 Merzhausen near Freiburg 16 Cc II –3.7 20.4 
78 92 Tunnel near Hornberg 46 Cc II –6.9 23.7 
79 93 Hechtsberg quarry 48 Cc II –8.7 22.8 
80 93 Hechtsberg quarry 49 Cc II –10.2 23.8 
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Figure 20. Plot of the δ13C and δ18O values of primary hydrothermal calcites (circles) and remobilized calcites 

(squares) from the deposits. Open squares are very late, possibly recent sinters. Additional data are calcites from 

Mesozoic (solid-stars) and Paleozoic (open-stars) limestones and calcite from a Variscan calcite-prehnite-

pectolite vein (rhomb). 
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6. DISCUSSION 

 

6.1. VARISCAN VEINS 

6.1.1. PRESSURE-TEMPERATURE CONDITIONS OF VARISCAN MINERALIZATION 

Based on the fluid inclusion and stable isotope data presented above, the Variscan and post-

Variscan fluid systems in the Schwarzwald are very different. Variscan aqueous fluids are 

generally of low-salinity. The initial melting temperatures of ice indicate the presence of 

NaCl-KCl-rich compositions, whereas CaCl2 appears to be absent. In addition, a second 

distinct group of fluid inclusions with predimonantly CO2 and CH4 (±N2) is present. These 

characteristics conform to the results of fluid inclusion studies in altered granites from the 

Schwarzwald area, which indicate that low-salinity fluids (0 to 10 wt.% equivalent NaCl) 

with homogenization temperatures of 200-400 °C were responsible for early high-temperature 

alteration of the granites (Simon and Hoefs 1987; Hofmann and Eickenberg 1991). Behr et al. 

(1987) concluded that the Variscan hydrothermal fluids in Germany are characterized by a 

clear dominance of CO2 and N2-CH4 mixtures. The origin of the CH4-CO2-N2 gas-rich 

component is assumed to be related to Variscan metamorphism of lithologically highly 

variable rocks of the crystalline basement (Behr et al. 1987). Hydrothermal alteration of 

Variscan granites was most effective in the temperature range between 200-500 °C at rather 

shallow levels corresponding to pressures of 1-2 kbar, as estimated from various 

geothermobarometers (Simon 1990). Oxygen isotope systematics and calculations of both 

closed- and open-system models for fluid-rock interaction indicate that the hydrothermal 

fluids responsible for the widespread granite alteration were unequivocally of meteoric origin 

(having original δ18O values around -12 ‰). Progressive interaction with the granites resulted 

in oxygen exchange and a systematic shift towards higher values (Simon 1990). The Variscan 

mineralizations have homogenization temperatures between 150 and 350°C. Since there is no 

evidence that the Variscan fluid system has ever been open to the surface, these values need to 

be corrected for lithostatic pressure. Behr et al. (1987) estimated the maximum trapping 

temperatures (250-400°C) in Variscan mineralizations based on the estimated thickness of 

overburden. These conditions are in good agreement with the reconstructed P-T conditions of 

syn- to late-orogenic Au- and Sb-bearing vein systems in other parts of the Variscan belt, e.g. 

the French Massif Central (Boiron et al. 2003; Vallance et al. 2004), the Rheinish Massif 

(Wagner and Cook 2000), Cornwall (Wilkinson et al. 1995) and Spain (Germann et al. 2003; 

Sanchez-Espana et al. 2003). 
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6.1.2. ISOTOPIC COMPOSITION OF THE VARISCAN HYDROTHERMAL SOLUTIONS 

All δ18O values of quartz of the Variscan veins are in a range between +2.8 and +14.5 ‰ 

(Table 3). Heavier δ18O values were observed from the deposits Ludwig im Adlersbachtal 

(+15.1 to +18.8 ‰) and St. Ulrich (+13.7 and +14.7 ‰), which are related to a low 

temperature fluid and are believed to reflect a Post-Variscan hydrothermal overprint of the 

Variscan vein, which is not surprising given the great abundance of post-Variscan fluorite-

barite veins in the Schwarzwald area. The calculated oxygen isotope composition of the fluids 

varies between -12.5 and +4.4 ‰ using the mode of the homogenization temperatures, 

whereas for the maximum homogenization temperatures the δ18O values of the fluids are 

shifted towards slightly heavier values. Thus, the calculated δ18O values of the fluids cover 

the range estimated for regional metamorphic fluids or for mixtures between metamorphic 

fluid and seawater (e.g., Sheppard 1986). The δD values are consistent with the trend 

displayed by the oxygen isotope data.  

 

 

6.2. POST-VARISCAN VEINS 

 

Many ideas and discussions on the stable isotope study and the mixing calculations resulted 

from the close collaboration with my co-PhD student Gregor Schwinn. 

 

6.2.1. PRESSURE-TEMPERATURE CONDITIONS OF POST-VARISCAN 

MINERALIZATION 

The results of the integrated fluid inclusion and stable isotope studies of the post-Variscan 

veins allow a reconstruction of the pressure-temperature conditions prevalent during their 

formation. Combining the measured δ18O data of quartz and directly extracted fluid inclusion 

water for pairs of texturally coexisting quartz and fluorite, the equilibrium temperatures were 

calculated. By combination with the trapping temperatures of the fluid inclusions, the 

corresponding pressure can then be calculated from the intersection with the respective 

isochores of the fluid inclusions, which establishes the P-T conditions of the vein formation 

(Fig. 21). It is important to note that fluid inclusion petrography and the microthemometric 

data demonstrate the contemporaneous formation of texturally coexisting quartz-fluorite pairs. 

Figure 22 shows a hand specimen from the Brandenberg deposit with histograms of the final 
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ice melting temperatures of fluid inclusions in quartz and fluorite, which demonstrates that 

both minerals were apparently precipitated from the same hydrothermal fluid.  
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Figure 21. P-T diagramm with conditions of crystallization of four deposits (see map for locations). The 

pressure was calculated by intersecting isotope equilibrium temperatures with isochores (dotted line as example) 

 

Figure 22. Cogenetic quartz and fluorite in sample GS-111 with histograms of fluid inclusion melting 
temperatures in both minerals. 
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Oxygen isotope equilibrium temperatures between bulk quartz and the hydrothermal fluid 

from fluid inclusions were calculated after Matsuhisa et al. (1979), and the corresponding 

isochores were calculated after Brown and Hageman (1995). The results and the input 

parameters for the calculation of the isochores are given in Table 12.  

 
Table 12. Temperature and pressure of formation from δ18O ratios and microthermometric data from post-
Variscan veins in the Schwarzwald. 

 
No. of 

deposits 
Locality Sample ID δ18OQuartz 

(V-SMOW) 
δ18OFluid 

(V-SMOW) 
Tm 

(°C) 
Th 

(°C) 
Tformation 

(°C) 
Pformation 

(bar) 

11 Friedrich-Christian  GS 135 14.3 -2.3 -23 110 137 610 

43 Brandenberg  GS 111 12.5 -1.0 -20 165 173 450 

56 Brenden  
GS 24/GS 

15 
13.8 -3.3 -20 135 132 490 

57 Igelschlatt  GS 37 16.8 -0.2 -22 135 133 260 

Note: δ18OFluid measured from extracted fluid inclusions from fluorite. 
 

 

In order to determine the error interval associated with our calculations, error ranges of the 

measured fluid inclusion homogenization temperatures (± 5 °C) and the δ18O equilibrium 

temperatures (± 5 °C, corresponding to approximately ± 0.5 ‰ δ18O) have been considered. 

The calculated formation pressures range from 260 to 610 bars (Fig. 21 and Table 12), with 

the error interval being about ± 125 bar. The sedimentary overburden in the area where the 

deposits formed prior to the subsidence of the Rheingraben structure can be reconstructed 

from the regional geology (Geyer and Gwinner 1986) and lithostatic and hydrostatic pressure 

conditions can be calculated from the barometric equation. For example, the Friedrich-

Christian deposit was covered by approximately 1800-2000 m of basement rocks and 

sediments. With assumed rock and fluid densities of 2.7 and 1.2 g/cm3 respectively, one can 

estimate that the hydrostatic pressure should have been around 220 bar and the lithostatic 

regime around 500 bar (shaded areas in Fig. 21). Comparison of the vein formation pressures 

determined from fluid inclusion and oxygen isotope data with the litho- and hydrostatic 

pressures reconstructed from geological constraints shows that the actual pressure conditions 

apparently varied between lithostatic as hydrostatic pressure conditions. 
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6.2.2. ISOTOPIC COMPOSITION OF THE POST-VARISCAN HYDROTHERMAL 

FLUIDS 

The oxygen isotopic composition of the hydrothermal fluids was calculated from the 

measured range of isotopic compositions of quartz within distinct veins and the corresponding 

pressure-corrected fluid inclusion temperatures (Table 4). The resulting equilibrium δ18OH2O 

values are within a relatively narrow range between -7.5 to +2.1 ‰. This data range is very 

consistent with the measured δ18OH2O values (-11.6 to -3.0 ‰) of water directly extracted 

from fluorite-hosted fluid inclusions. Consequently, the initial δ18O values of the primary 

hydrothermal fluids are estimated to be in the range between -10 and 0 ‰. The δ18O values of 

the surface-derived meteoric waters can vary along the meteoric water line from 0 ‰ to 

negative values. Integrating the δ18O data of vein quartz, fluid inclusion homogenization 

temperatures, and calculated and measured fluid isotopic compositions, all available 

information points to formation of the post-Variscan vein deposits from saline brines with 

quite homogeneous geochemical characteristics. The δD (-10 to -40 ‰) and δ18O (-11.6 to -

3.0 ‰) values of fluid inclusion water directly extracted from the vein minerals (δ18O from 

fluorite, δD from fluorite, quartz and calcite) are well within the range typical of meteoric 

water. The deep saline brine is most likely of meteoric or seawater origin (Behr and Gerler 

1987; von Gehlen 1987; Hofmann 1989; German et al. 1994; Werner et al. 2000; 2002), but 

was extensively modified through water-rock reactions in the crystalline basement. During 

high-temperature water-rock interaction with crystalline rocks, the δ18O of water is generally 

shifted towards higher values (Taylor 1997). The oxygen data indicate that the hydrothermal 

fluids have partly exchanged oxygen through progressive fluid-rock interaction in the 

crystalline basement (Fig.16). Considering the trends of both δ18O and δD of the post-

Variscan hydrothermal veins, it appears that the meteoric contribution to the isotopic budget 

is certainly dominant. The oxygen isotope signature, however, was compositionally modified 

during fluid ascent and interaction with the surrounding rocks. Schwinn et al. (in press) have 

applied both closed- and open-system scenarios (Taylor 1977; 1997) to model the isotopic 

exchange between water of meteoric origin (with δ18O between -5 and 0 ‰) and typical 

granites of the Schwarzwald area having average primary δ18O values of 10 ‰ (Hoefs and 

Emmermann 1983; Simon and Hoefs 1987). The resulting δ18O values of the deep saline brine 

are in the range between -1.2 and 5.3 ‰ for geologically reasonable water/rock ratios between 

0.01 and 1.0 and an exchange temperature of 300°C. 
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 The δ13C values of directly extracted fluid inclusion gas, which are in the range 

between -21.4 and -6.7 ‰, are systematically lower than the values for primary hydrothermal 

calcites from the post-Variscan veins, which range between -12.0 and -3.0 ‰ (Schwinn et al. 

in press). This difference cannot be explained through equilibrium fractionation between 

calcite and dissolved inorganic carbon species in the fluids in the temperature interval 150-

200 °C. Applying equilibrium fractionation factors for both CO2 (aq) and HCO3
- (Ohmoto and 

Goldhaber 1997), which are most likely the predominant dissolved carbon species in the 

fluids, results in calculated ∆CAL-CO2 of 0.9 to –0.7 ‰, and ∆CAL-HCO3 of 1.1 to 2.0 ‰. This 

range is much narrower than the observed difference in carbon isotope composition between 

the bulk fluid inclusion gas and the hydrothermal calcites. Although the dominant carbon 

component in the fluid inclusions is CO2, as shown by the Raman spectra, it appears probable 

that minor amounts of a second carbon component with significantly more negative δ13C 

values contribute to the bulk composition of carbon isotope of the fluid inclusion gas. A likely 

candidate for this component is gaseous CH4, which has been found at detectable 

concentrations in fluid inclusions from the Schauinsland deposits (Werner et al. 2002). Based 

on mass balance considerations, even small amounts of CH4 with very negative δ13C values 

could shift the bulk carbon isotopic composition of the fluid inclusions towards more negative 

values. This, in turn, would have no impact on the δ13C values of the hydrothermal calcites, 

because in comparatively rapid processes such as fluid migration and fluid mixing, CH4 

would not equilibrate with oxidized aqueous carbon species due to kinetic restrictions 

(Ohmoto and Goldhaber 1997). 

 

6.2.3. SULFUR ISOTOPE SYSTEMATICS 

Equilibrium temperatures of sulfide-sulfide and sulfate-sulfide mineral pairs were calculated 

using fractionation factors given in Ohmoto and Goldhaber (1997). Most interestingly, the 

calculated temperatures of texturally coexisting sulfide ore minerals cover a temperature 

range from less than 100 upto 400 °C and more (Fig. 23A), whereas sulfide-sulfate 

temperatures show a distinct maximum of the temperature distribution around 300-350 °C 

(Fig. 23B). The isotopic temperatures contrast with the formation temperatures (150-200 °C) 

of the hydrothermal ore deposits, which are well established from fluid inclusion studies 

(Behr and Gerler 1987; Behr et al. 1987; von Gehlen 1989; Werner et al. 1990; Hofmann and 

Eikenberg 1991; German et al. 1994; Lippolt and Werner 1994; Lüders 1994; Ritter 1995; 
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Weber 1997; Werner et al. 2000; 2002). This indicates that ore precipitation occurred under 

conditions where a sulfur isotope equilibrium could not be established. 

We hypothesize that the temperature range of 300-350 °C calculated from sulfide-

sulfate equilibria could reflect the aquifer paleotemperature of the deep saline brine, which 

was preserved during fluid migration. This assumption is corroborated by calculations 

applying the kinetic model of sulfur isotope fractionation of Ohmoto and Lasaga (1982). 

Assuming a near-neutral pH and a total sulfur concentration of 500-1000 ppm, the time 

required to establish a degree of equilibrium of 95 % at 300-350 °C, i.e. at conditions 

prevalent in the deep fluid aquifer, is less than one year. At temperatures of 150-200 °C, 

which correspond to the formation temperatures of the deposits, re-establishment of the 

sulfide-sulfate equilibria needs 3000 to 7000 years. Considering the hydrodynamics of fluid 

migration within the fault zones, it appears plausible that fluid mixing and mineral deposition 

processes were too fast for re-equilibration of sulfur isotopes at formation temperatures. 

Relatively fast ascent of deep-sourced fluids through open fractures is consistent with the 

tectonic setting of the hydrothermal mineralizations in the Schwarzwald district (Franzke, 

1992; Werner and Franzke, 2001). 

 Although the homogeneous sulfate-sulfide isotopic temperatures indicate a common 

deep source for both aqueous sulfate and sulfide, they do not exclude that at least part of the 

sulfate budget was derived from mixing with meteoric waters. Such a model has been favored 

by different authors for the Schauinsland deposit (Weber 1997; Werner et al. 2002). If barite 

precipitation occurred as a response to instantaneous fluid mixing, the barite should then 

reflect the δ34S value of dissolved aqueous sulfate of the meteoric fluids and fingerprint their 

source rocks. In this case, the observed consistent isotope temperatures would be purely 

coincidental. However, the sedimentary cover of the crystalline basement contains different 

sulfate-bearing units (Triassic to Jurassic evaporites) with very heterogeneous δ34S values 

ranging between 12 and 21 ‰ (Müller et al. 1966). Considering the relatively variable δ34S 

values of potential sulfate sources and the fact that ore-forming processes in the Schwarzwald 

district were operative over more than 100 Ma, we would not expect the observed narrow 

range of sulfate-sulfide isotope fractionation by mixing of deep brines with meteoric waters. 

Another possible model for sulfate deposition is oxidization of aquoeus sulfide being 

supplied by a reduced, saline brine through mixing with meteoric water. In this case, the 

instantaneous oxidation and precipitation processes are too fast for establishment of isotopic 

equilibrium between dissolved sulfide and the aqueous sulfates formed via oxidation.  
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Figure 23. Calculated sulfur isotope equilibrium temperatures for (A) sulfide-sulfide and (B) sulfide-

sulfate pairs (fractionation factors from Ohmoto and Goldhaber, 1997). 

 

The sulfide ore minerals should then display isotopic compositions very similar to barite, with 

only a very small fractionation between sulfide and sulfate minerals detectable (Ohmoto and 

Goldhaber 1997). However, the observed sulfur isotope systematics, i.e., the consistently 

different δ34S values of sulfides and barite from the Schwarzwald area, argues against such a 

model.   

 

6.2.4. MIXING CALCULATIONS INVOLVING SULFUR ISOTOPES 

To strengthen our point, we have assessed the potential effect of contamination of a high-

temperature brine transporting aqueous sulfate and sulfide in isotopic equilibrium by mixing 

with sulfate from meteoric water. Quantification of such a process requires reasonable 

estimates of the equilibrium temperatures, the sulfate concentrations and sulfur isotope 

composition of both end-member fluids and the fluid mixing ratio. We know from fluid 

inclusion studies that the temperatures of formation of the hydrothermal vein deposits range 

from 150 to 200°C at depths of around 1.5 km, and the salinities of primary fluid inclusions 

range from 20 to 33 wt.% equivalent (eqv.) NaCl (Behr and Gerler 1987; Behr et al. 1987; 

von Gehlen 1989; Werner et al. 1990; Hofmann and Eikenberg 1991; Lüders 1994; Ritter 

1995; this study, Table 13).  
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Table 13. Summary of fluid inclusion data from post-Variscan hydrothermal veins in the Schwarzwald district. 

Mineralization stage Host mineral Tm ice (°C) Salinity (wt.%) Th (°C) 

     

Main stage Fluorite –27.0 to –20.0 22.4–26.8 120–175 

 Quartz –26.0 to –20.0 22.4–26.2 80–150 

 Barite –25.8 to –21.8 23.6–26.1 150–220 

 Calcite –28.1 to –22.0 23.7–27.5 100–180 

     

Late stage Fluorite –9.4 to –1.0 1.7–13.3 120–160 

 Quartz –5.5 to –1.1 1.9–8.5 140–250 

 Calcite –5.6 to –0.2 0.4–8.7 160–200 

     

 

The highest salinities that were found in primary fluid inclusions of the main stage (fluorite-

barite) are around 33 wt.% eqv. NaCl. Considering that this fluid composition does certainly 

not represent the unmodified deep saline brine (prior to any mixing with meteoric water), we 

used an estimate of 40 wt.% eqv. NaCl for modeling. This should be very close to the true 

composition of the original deep-sourced brine. In order to make some reasonable 

assumptions on the paleo-hydrothermal system, we will compare the paleo-system with the 

recent conditions in the Schwarzwald area. This is valid because (1) the area has been 

tectonically active recently and hosts numerous thermal springs, and (2) these thermal and 

mineral waters show REE patterns, which are identical to patterns, preserved in fluorites from 

the post-Variscan deposits of the Schwarzwald (Schwinn and Markl 2005). Assuming an 

elevated geothermal gradient of 40°C/km due to the intense tectonic activity of the area, the 

temperature of a meteoric water at 1 km depth should be close to 50°C. Temperatures of 300 

°C in the deep aquifer would be reached at depths around 7- 8 km. The migrating saline brine 

will probably cool during the ascent from at least 7 km to the vein-forming level at 1 km 

depth. Hydrological data from recent geothermal wells from the Schwarzwald area show very 

little cooling of thermal waters during ascent on the order of 5-10 °C from 1.5 km depth (He 

et al. 1999). Therefore, it seems reasonable to assume cooling of the saline brine down to a 

temperature of about 250 °C during ascent from the deep aquifer. Using these temperature 

estimates for both fluid end-members, mixing calculations of a saline brine with total 

dissolved solutes of 40 wt.% equivalent NaCl and a temperature of 250°C with meteoric 

water having a temperature of 50°C reproduces the measured range of salinities and 

homogenization temperatures found in fluid inclusions (Fig. 24). The calculated mixing ratios 
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(meteoric water/saline brine) would range between 1 and 0.33, which corresponds to mass 

fractions of the deep saline brine between 0.5 and 0.75. 

 

 

 

 Using these data as a basis, we can evaluate how robust the calculated sulfate-sulfide 

equilibrium temperatures are against meteoric contamination. Contamination of an 

equilibrated sulfate-sulfide system in the deep saline brine by sulfate supplied by mixing with 

surface-derived meteoric waters would result in a significant displacement of the calculated 

equilibrium temperatures. The impact of this contamination depends (1) on the mixing ratio of 

the two fluids, (2) on the concentrations of sulfate in the brine and the meteoric water, and (3) 

on the difference between the δ34S values of aqueous sulfates in the brine and the meteoric 

source. For estimating this effect, we will assume that aqueous sulfate and sulfide were 

equilibrated in the deep aquifer with δ34S values of 13 ‰ and –9.2 ‰ at a temperature of 300 

°C and then calculate the shift in the resulting equilibrium temperature for variations in these 

parameters. 

In order to constrain the concentration ratio of aqueous sulfate in meteoric water and 

brine, Rs = mSO4METEORIC / mSO4BRINE, we first assume that the meteoric water is saturated 

with gypsum, which is, based on the abundance of sulfate-rich evaporitic series in the rock 

sequences through which those meteoric waters percolate, the most likely source of sulfur. 

Calculated sulfate concentrations at 50 °C are around 0.005 mol/kg. Crush-leach analysis of 

Figure 24. Temperature of a mixed 
fluid plotted as a function of the mixing 
ratio of fluid A (deep saline brine) with fluid 
B (meteoric water), and superimposed fluid 
inclusion data from the Schwarzwald 
district. Both the mass fraction of fluid A 
and the resulting salinity (given as wt.% 
equivalent NaCl) are given on the abscissa. 
Fluid inclusion data are from Werner et al. 
(2000) and Mittelstädt (1987) (Schauinsland 
deposit, horizontal lines), Werner et al. 
(2000) (Teufelsgrund deposit, cross-
hatched), Lüders (1994) (Badenweiler, 
black), Behr et al. (1987) (several post-
Variscan deposits, diagonal lines), Hofmann 
and Eikenberg (1991) (Krunkelbach deposit, 
dark gray), and our data from primary 
fluorite, calcite, quartz, and barite (thick 
solid line), and late stage fluorite and calcite 
(thick dashed line). 
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fluid inclusions from several ore deposits shows that total sulfur concentrations are around 

500-1000 ppm or 0.008-0.015 mol/kg. Because the hydrothermal fluid trapped in fluid 

inclusions is already a mix of the deep saline brine and the meteoric water, the total sulfur 

concentrations in the deep saline brine were most likely even higher. Therefore, it seems 

reasonable to assume that the ratio Rs is lower or equal to 0.5. 

Mixing with sulfate derived from Triassic sediments having a δ34S value of 21 ‰ 

would have the largest effect on the resulting (in this case apparent) calculated temperatures. 

Figure 25 shows mixing lines calculated for a saline brine with a δ34SSULFATE value of 13 ‰ 

with meteoric water with a δ34SSULFATE of 21 ‰ for a wide range of different sulfate 

concentration ratios Rs. We have already estimated that the fluid mixing ratios were in the 

range between 0.5 and 0.75 from the reconstructed paleo-geothermal conditions and fluid 

inclusion information. A shift of the δ34S value of the δ34SSULFATE from 13 to 14.5 ‰ would 

result in a displacement of the calculated equilibrium temperatures by about 20°C. Any 

δ34SSULFATE of the mixed fluid, which is located inside the shaded area in Figure 25, will 

change the resulting equilibrium temperature by not more than 20°C. It can be seen from 

Figure 25 that a meteoric fluid at the assumed maximum sulfate concentration ratio Rs of 0.5 

could change the equilibrium temperature of the deep saline brine at mixing fractions lower 

than 0.7 beyond this 20°C range. At sulfate ratios Rs lower than 0.25, the effect on the 

equilibrium temperatures will be below 20°C for all possible mixing fractions. If the isotopic 

composition of the sulfate in the meteoric water is lower than 21 ‰, even higher 

concentration ratios will not shift the resulting equilibrium temperatures considerably. These 

calculations support the idea that the observed consistent sulfate-sulfide temperatures of 300-

350°C reflect equilibrium conditions established in the deep-sourced aquifer. 
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Figure 25. Calculated mixing lines between a sulfate-bearing deep saline brine with a δ34S of 13 ‰ and 

 a meteoric fluid having a δ34S of 21 ‰ at different sulfate concentration ratios Rs. See text for explanations. 

 

 

6.2.5. MODELING OF THE CARBON AND OXYGEN ISOTOPE COMPOSITION OF 

MIXED FLUIDS 

The measured δ13C and δ18O values of the primary calcites show a significant covariation, 

which must reflect a systematic change in the carbon and oxygen isotope composition of the 

hydrothermal solutions and/or temperature during progressive precipitation. In order to 

constrain the nature of this isotopic evolution, we have quantitatively modeled the isotopic 

effects of mixing and cooling processes. Zheng and Hoefs (1993c) have derived a two-

component model to describe the covariation of δ13C and δ18O values of hydrothermal 

calcites, which assumes mixing between a high-temperature and a low-temperature end-

member fluid. Although this model has reasonably described the isotopic variation of 

carbonates in the Bad Grund Pb-Zn deposit (Harz Mountains, Germany), it has several 

limitations and simplifications, which preclude universal application to fluid mixing processes 

in hydrothermal systems. The model by Zheng and Hoefs (1993c) does not consider the effect 

of salinity on the oxygen concentration in the two fluids, which can be important for mixing 

between a saline brine and dilute meteoric water. The concentration of oxygen in concentrated 

brines with e.g. 20-40 wt.% equivalent NaCl will be much lower than in meteoric waters, and 
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this difference has to be accounted for in the isotopic mass balance equations. Calculations 

assuming solute concentrations of 10 mol/kg in the brine show that this effect is about 0.2-0.3 

‰ per 5 per mil difference in oxygen isotope composition of the two fluid end-members. For 

a difference of 20 ‰, the effect is already on the order of 1 ‰. Most importantly, the model 

by Zheng and Hoefs (1993c) assumes that the predominant aqueous carbon species in the 

high-temperature and low-temperature end-members are CO2 (aq) and HCO3
-. Mixing is then 

calculated as a purely physical process, ignoring the temperature and pH dependence of the 

CO2-HCO3
- equilibria. 

To overcome these limitations, we have derived a modified and improved set of 

equations, which we have combined with calculations using a speciation and reaction path 

modeling code. The results of these calculations predict the aqueous carbon speciation more 

accurately and incorporate the effects of different starting pH values of both end-member 

fluids. The speciation calculations for several mixing scenarios were performed with the HCh 

software package (Shvarov and Bastrakov 1999), which models heterogeneous equilibria by 

minimization of the Gibbs free energy of the total system (Shvarov 1978). Thermodynamic 

data for aqueous species were taken from the SUPCRT92 database (Johnson et al. 1991; 

Shock et al. 1997; Sverjensky et al. 1997), while the thermodynamic data for solid phases 

came from Robie and Hemingway (1995), Holland and Powell (1998). In the following 

section, we will derive the set of equations used to calculate the effect of fluid mixing on the 

δ13C and δ18O values of hydrothermal carbonates. 

 For the mixing of two fluids having different isotope compositions, the isotopic mass 

balance for carbon isotopes is given by (Criss 1999): 

 

(1) B

13

BA

13

AM

13 CXCXC δ+δ=δ  

 

where 
A

13Cδ ,
B

13Cδ and 
M

13Cδ are the carbon isotope compositions of fluids A, B and the 

mixture. AX  and BX are the mole fractions of carbon contributed from fluids A and B in the 

mixture. If the carbon concentrations in both fluids were identical, the mole fractions of 

carbon would be equal to the mole fractions of the two fluids in the mixture, Af and Bf , where 

AB f1f −= . Now we introduce the concentration dependence in terms of molalities, and the 

mixing equation for carbon isotopes then becomes 
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where Am and Bm are the molalities (mol/kg) of carbon in fluids A and B, respectively. 

However, if the salinities of both fluids are quite different, such as for mixing between a deep-

sourced saline brine and dilute meteoric water, this simplified version of the mixing equation 

does not hold true and has to be corrected for total solute concentrations. To accomplish this, 

a conversion is introduced, which relates the molalities to the total number of moles of 

solvent+solutes in the end-member fluids 
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where wn is the total number of moles H2O in 1 kg of water, and A,imΣ is the sum of the 

molalities of all solutes in fluid A. Applying these conversion factors, the mixing equation for 

carbon is then re-written as follows 
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A similar equation can be derived for oxygen isotopes, which takes into account the oxygen 

concentrations (corrected for total solutes) in both end-member fluids. With these equations, 

δ13C and δ18O values of the mixed fluid can be modeled. For calculating the isotopic 

composition of hydrothermal calcites, H2O is the principal reservoir of oxygen, with 

M

18

O2H

18 OO δ=δ . Consequently, only the fractionation factor between calcite (and any other 

carbonate mineral) and liquid H2O at the temperature of mixing has to be applied (Ohmoto 

and Goldhaber 1997). 

To calculate the carbon isotope composition of calcite, the species distribution for 

dissolved inorganic carbon has to be considered. For geologically reasonable pH and redox 

conditions, CO2 (aq) and HCO3
- are the predominant species, whereas the concentrations of 

CO3
2- and CH4 (aq) are several orders of magnitude smaller. Consequently, the contribution of 

these species to the carbon isotope mass balance can be neglected for most cases. However, 

CO3
2- becomes important in very alkaline solutions, so the model we present will account for 

all four principal species. The isotopic mass balance for the distribution of carbon isotopes 

between the aqueous species is given by the equation 
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where, 2COX , 3HCOX , 3COX  and 4CHX  are the mole fractions of CO2 (aq), HCO3
-, CO3

2- and CH4 

(aq) in the mixed fluid, which are defined in terms of molalities. For this system, the mass 

balance equation for carbon takes the form 4CH3CO3HCO2COC mmmmm +++=
Σ

. The expressions for 

the isotopic fractionation factors between HCO3
-, CO3

2- and CH4 (aq) and CO2 (aq) are 

substituted into equation (5), which is then rearranged and solved for the carbon isotope 

composition of CO2 (aq) 
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For equilibrium conditions, the isotopic composition of calcite (or any other carbonate 

mineral) can then be calculated from the composition of CO2 (aq) using the equilibrium 

fractionation factor (Ohmoto and Goldhaber 1997). 

We have performed a number of model calculations applying the above equations, 

using the carbon isotope fractionation factors αHCO3-CO2 and αCAL-CO2 from Ohmoto and 

Goldhaber (1997) and the oxygen isotope fractionation factor αCAL-H2O from Clayton and 

Kieffer (1991). Concentrations of total carbon in the two end-member fluids have been 

estimated by solubility calculations. The meteoric water has been saturated with calcite at a 

temperature of 50 °C and the system was considered to be open to the atmosphere, i.e. CO2 

and O2 fugacities were set to atmospheric values. These calculations result in a carbon 

concentration of 0.00068 mol/kg in the meteoric fluid at 50°C (Table 14). Estimations of the 

total carbon concentrations of the deep saline brine are more difficult. Saturation of the brine 

with calcite leads to rather high total carbon concentrations, which most likely do not reflect 

the conditions in the deep aquifer. We assumed that the pH of the hydrothermal fluid in the 

aquifer is primarily controlled by water-rock reactions with the crystalline host rocks and not 

by calcite saturation. Carbon-dissolving reactions in the aquifer, such as dissolution of 

carbonates and oxidation of graphite, would then not significantly modify the fluid pH. For 

reference, we have calculated the pH value of the saline fluid in equilibrium with a granitic 

assemblage, i.e., muscovite-quartz-albite-microcline, at 300-350°C and a pressure of 1 kbar. 

For further calculations, we constructed a series of model fluids by adding different CO2 
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concentrations and adjusting the pH back to the granite-buffered value. The most likely model 

setup, where calcite would be allowed to dissolve without changing the pH significantly, 

results in a total carbon concentration of 0.005 mol/kg (Table 14). Our model calculations 

show that CO2 (aq) and HCO3
- are by far the dominant carbon species to be considered. 

 

 
Table 14. Chemical and isotopic composition of model fluids used in mixing calculations. 
 

Parameter Model A, 

meteoric 

Model A, 

brine 

Model B, 

meteoric 

Model B, 

brine 

Model C, 

meteoric 

Model C, 

brine 
T (°C) 50 350 50 350 50 350 

P (bar) Sat. 1000 Sat. 1000 Sat. 1000 

pH 8.3 4.9 8.3 4.9 8.3 4.9 

H2O (kg) 1.0 1.0 1.0 1.0 1.0 1.0 

CO2 (mol) 0.00068 0.005 0.00068 0.05 0.00068 0.5 

NaCl (mol) 0 7.6 0 7.6 0 7.6 

KCl (mol) 0 0.62 0 0.62 0 0.62 

CaCl2 (mol) 0 1.7 0 1.7 0 1.7 

HCl (mol) 0 0.000095 0 0 0 0 

NaOH (mol) 0 0 0 0.00012 0 0.0023 

Ca(OH)2 (mol) 0.00015 0 0.00015 0 0.00015 0 

δ13C (V-PDB) 0.0 –17.0 4.0 –16.0 4.0 –16.0 

δ18O (V-SMOW) –3.5 3.5 –5.0 4.0 –6.0 4.0 

 

 Using the reconstructed model fluids, we have calculated different fluid mixing 

scenarios. Figure 26 shows the relative species distribution of CO2 (aq) and HCO3
- during 

progressive mixing of the two fluids. RC is the concentration ratio of total dissolved carbon in 

both fluids, Rc = mBRINE /mMETEORIC. This ratio has been estimated at around 7 for the most 

likely case of calcite dissolution without saturation. For comparison, both ten times higher 

and lower concentrations of total dissolved carbon in the brine were considered, resulting in 

Rc values of 70 and 0.7.  

 



Baatartsogt B: Fluid inclusion and stable isotope studies of hydrothermal vein deposits, Schwarzwald, Germany. 
 

 
 

82 

 

Figure 26. Speciation of carbon given as fraction of CO2 (aq) resulting from mixing of the two model fluid end-

members at different total carbon concentration ratios Rc. The calculated carbon speciation (solid lines) is 

compared with the purely physical mixing model (dashed lines). 

 

It can be seen from Figure 26 that the calculated speciation (solid lines) differs significantly 

from the ideal (physical) mixing model (dashed lines) if the concentrations of total dissolved 

carbon in the high-temperature brine are equal or lower than in the low-temperature meteoric 

water. The ideal speciation model is reasonably consistent with the calculated speciation lines 

only for high values of Rc. Figure 27 shows the isotopic composition of calcite, precipitated 

from the mixing of two hypothetical fluid end-members. It was assumed that the deep saline 

brine has a δ13C of -16 ‰ and a δ18O of 5 ‰, whereas the meteoric water has a δ13C of -2 ‰ 

and a δ18O of -5 ‰. It is clear that the concentration ratio Rc has a significant effect on the 

curvature of the mixing line. Consequently, the measured covariation of the δ13C and δ18O 

values in the calcites contains intrinsic information, which can be used to constrain the carbon 

concentrations in the end-member fluids. 
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Figure 27. Isotopic compositions of calcite precipitated via mixing of two model fluids having δ13C = –16 ‰, 

δ18O = 5 ‰ (deep saline brine) and δ13C = –2 ‰, δ18O = –5 ‰ (calcite-saturated meteoric fluid). 

 

 

6.2.6. CARBON AND OXYGEN ISOTOPE VARIATION IN HYDROTHERMAL 

CALCITES 

To model the isotopic data of primary calcites from the Schwarzwald district, reasonable 

estimations of the isotopic compositions of the two fluid end-members have to be made. The 

selected values should reflect the isotopic compositions of the most likely sources for both 

fluids, as constrained by the available geological and isotopic information. The meteoric 

water was probably in contact with the marine limestones of the Mesozoic sedimentary units 

covering the crystalline basement. Surface waters from limestone aquifers show typical δ13C 

values of -8 to 4 ‰ (Ohmoto 1986). The δ13C values of granites in the Schwarzwald vary 

between -10 and -26 ‰ (Hoefs 1973). Sedimentary protoliths of the gneisses will probably 

contained carbon originating from organic matter, which usually has δ13C values of around -

25 ‰ (Ohmoto and Goldhaber 1997). Volatilization during metamorphism leads to a slight 

enrichment in 13C compared to the sedimentary protoliths (Ohmoto 1986). Therefore, an 

isotopically light composition of the carbon in the deep saline brine of around -15 ‰ or even 

lower can be assumed. 
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The δ18O values of the surface-derived meteoric waters can vary along the meteoric 

water line from 0 ‰ to negative values. Considering the paleogeography of the Schwarzwald 

area and modern oxygen isotopic trends in meteoric precipitation (e.g., Bowen and Wilkinson 

2002), the original δ18O values of the meteoric fluid end-member are estimated to have been 

in the range between -5 to 0 ‰. The deep saline brine is most likely of meteoric origin (Behr 

and Gerler 1987; von Gehlen 1987; Hofmann 1989; German et al. 1994; Werner et al. 2000; 

2002), but was extensively modified through water-rock reactions in the crystalline basement. 

During high-temperature water-rock interaction with crystalline rocks, the δ18O of water is 

generally shifted towards higher values (Taylor 1997). We have applied both closed- and 

open-system scenarios (Taylor 1977; 1997) to model the isotopic exchange between water of 

metoric origin (with δ18O between -5 and 0 ‰) and typical granites of the Schwarzwald area 

having average primary δ18O values of +10 ‰ (Hoefs and Emmermann 1983; Simon and 

Hoefs 1987). The resulting δ18O values of the deep saline brine are in the range between -1.2 

and +5.3 ‰ for geologically reasonable water/rock ratios between 0.01 and 1.0 and an 

exchange temperature of 300 °C. 

Using the estimated temperatures of both end-member fluids, the modeled carbon 

speciation during mixing (Table 15), the concentrations of total dissolved carbon in both 

fluids and the likely isotopic compositions of the two fluids, the compositional range of the 

hydrothermal calcites can be reproduced with our mixing model (Fig. 28).  
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Figure 28. Plot of the δ13C–δ18O covariation of primary hydrothermal calcites from the Schwarzwald district 

compared to the results of the fluid mixing calculations. The shaded areas A and B indicate the likely range of 

isotopic compositions of the two fluids, constrained by the isotopic data of geologically reasonable fluid sources in 

the literature. The dashed lines show the mixing trends for the fluids, whereas the solid lines indicate the isotopic 

compositions of the corresponding calcites, precipitated from the mixed fluid. A: Rc = 7, B: Rc = 70, C: Rc = 700. 
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The shaded areas A and B in Figure 28 show the likely range of the isotopic compositions of 

the two fluids A (deep saline brine) and B (meteoric water). The mixing lines are given as 

dashed lines; the isotopic compositions of the two end-member fluids used are within the 

geologically reasonable ranges. Figure 28A was calculated for a total carbon concentration in 

the deep saline brine of 0.005 mol/kg, i.e. a ratio Rc of 7. Because a saline brine at the given 

temperature could possibly have even higher carbon concentrations, if calcite would be a 

solubility-controlling phase in the aquifer, mixing lines were also calculated using ratios of Rc 

of 70 (Fig. 28B) and 700 (Fig. 28C). Figure 28 shows that the trend of primary calcites can be 

explained well by the mixing of two fluids. 

The compositional range of secondary or remobilized calcites can be explained by low-

temperature reaction and isotopic exchange with meteoric waters. Remobilization of calcite 

having a δ13C of about -2 ‰ through interaction with a bicarbonate-dominated meteoric water 

at temperatures around 50 °C will shift the δ13C value of precipitating secondary calcites to –

0.3 ‰. 

 

Table 15. Main results of the mixing calculations using model fluid compositions A, B and C (see Table 14 for 
composition). Concentrations of principal aqueous carbon species are given in molalities. 

T (°C) Model A 
pH 

 

HCO3
- 

 

CO2 
(aq) 

Model B 

pH 

 

HCO3
- 

 

 

CO2 
(aq) 

Model C 

pH 

 

HCO3
- 

 

CO2 
(aq) 

          

250 4.6 0.0001 0.0049 4.4 0.0004 0.0495 4.2 0.0030 0.4976 

240 4.6 0.0001 0.0047 4.3 0.0004 0.0471 4.2 0.0029 0.4727 

230 4.6 0.0001 0.0045 4.3 0.0005 0.0446 4.1 0.0028 0.4478 

220 4.6 0.0001 0.0042 4.3 0.0005 0.0421 4.0 0.0028 0.4229 

210 4.7 0.0002 0.0040 4.2 0.0005 0.0396 4.0 0.0027 0.3980 

200 4.7 0.0002 0.0038 4.2 0.0005 0.0371 3.9 0.0026 0.3731 

190 4.7 0.0002 0.0035 4.2 0.0005 0.0347 3.9 0.0025 0.3482 

180 4.8 0.0002 0.0033 4.2 0.0005 0.0322 3.8 0.0024 0.3233 

170 4.8 0.0003 0.0030 4.1 0.0005 0.0297 3.8 0.0023 0.2984 

160 4.9 0.0003 0.0028 4.1 0.0006 0.0272 3.7 0.0022 0.2735 

150 4.9 0.0003 0.0025 4.2 0.0006 0.0248 3.7 0.0021 0.2486 

140 5.0 0.0004 0.0023 4.2 0.0006 0.0223 3.7 0.0020 0.2237 

130 5.0 0.0004 0.0020 4.2 0.0006 0.0198 3.7 0.0019 0.1988 

120 5.1 0.0004 0.0018 4.2 0.0006 0.0173 3.7 0.0017 0.1739 

110 5.2 0.0005 0.0015 4.3 0.0006 0.0148 3.7 0.0016 0.1491 

100 5.3 0.0005 0.0013 4.4 0.0006 0.0124 3.8 0.0015 0.1242 

90 5.4 0.0006 0.0010 4.5 0.0007 0.0099 3.8 0.0013 0.0993 

80 5.6 0.0006 0.0007 4.7 0.0007 0.0074 3.9 0.0012 0.0745 

70 5.8 0.0006 0.0005 4.9 0.0007 0.0049 4.1 0.0010 0.0496 

60 6.2 0.0007 0.0002 5.2 0.0007 0.0025 4.3 0.0009 0.0248 

50 8.1 0.0007 0.0000 8.1 0.0007 0.0000 8.1 0.0007 0.0000 
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Assuming an δ18O value of roughly 0 ‰ for meteoric water, the remobilization will result in 

δ18O values of the secondary calcites of around 24 ‰. The remobilization trend indicated in 

Figure 29 shows that the direction of this shift is quite distinct from the primary calcite trend. 

Individual measurements of different calcite generations from the Friedrich-Christian and 

Wenzel deposits substantiate the remobilization model (Fig. 29). The low-temperature 

remobilization proves that the isotopic compositions of all secondary calcites are shifted 

towards higher δ13C and δ18O values, in contrast to the primary hydrothermal calcites. 
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Figure 29. Binary diagram of the δ13C and δ18O values of primary and remobilized hydrothermal calcites, 

showing the principal mixing and remobilization trends. 

 

 

6.2.7. THE POST-VARISCAN FLUID SYSTEM 

Isotopic characteristics of this study are in good agreement with the post-Variscan fluid 

system in the Schwarzwald area, which have been reported from other hydrorthermal fluids 

originating in crystalline basement rocks. Fluids sampled during pumping tests of the KTB 

(Continental Deep Borehole-in Bavarian Oberpfalz) pilot hole have δD and δ18O values in the 

range between –32 to –27 ‰ and between –5.8 to –5.7 ‰, respectively (Lodemann et al. 

1997). Simon and Hoefs (1991) postulated a direct relationship between the fluids responsible 
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for vein mineralization visible throughout the KTB drillcore profile and the fluids 

encountered at 4000m by KTB. Based on a comprehensive fluid inclusion study, Behr et al. 

(1993a, 1994) concluded that fluids with Ca-Na-Cl characteristics are compositionally very 

similar to the present fracture fluids, indicating a common primary fluid source. Below about 

6000 m, Ca-Na-Cl fluid inclusions with homogenization temperatures up to 250 °C dominate 

and represent a young fluid system, probably of late Cretaceous age (Behr et al. 1994). This 

fluid system and the associated fracture mineralization are clearly related to extensional fault 

tectonics and are also recorded in post-Variscan hydrothermal mineralizations in different 

areas of Germany. Highly saline brines (Ca-Na-Cl) are typically found at depths of some 

kilometers in the continental crystalline basement of the Canadian (Fritz and Frape 1982; 

Frape and Fritz 1987), Fennoscandian (Nurmi et al. 1988) and Ukrainian shields (Vovk and 

Vysotskii 1982) and elsewhere in the world (Kloppmann et al. 2002). In the Schwarzwald 

area, which is part of the central European continental crust, TDS (total dissolved solids) 

concentrations of typical Na-Cl-type groundwater are more than 5 g/kg at 2-3 km below the 

surface. The observed pH ranges from 6 to 8 (Stober 2004). Stober (1999) concluded that the 

deep waters in the crystalline basement of the Schwarzwald area with a mean Cl/Br ratio of 

295 must have been of predominantly marine origin. 

Our extensive fluid inclusion study of hydrothermal veins demonstrates that post-

Variscan fluids originate from deep highly saline NaCl-CaCl2-H2O brines that mixed with low 

salinity meteoric water (Fig. 11). The temperature of the NaCl-CaCl2 fluid prior to mixing 

cannot be directly determined by means of fluid inclusions. Based on isotope temperature 

calculations from sulfide-sulfate equilibria and paleogeothermal considerations, the aquifer 

paleotemperatures of the deep saline brine are estimated at 300-350°C (Schwinn et al. in 

press). The NaCl-CaCl2-H2O brines responsible for hydrothermal vein formation in the 

Schwarzwald area compare well with post-Variscan fluids found in other ore districts in 

Germany such as the Harz and Rheinish Massif and widespread Pb-Zn mineralization in 

Belgium, Ireland and south England (Behr et al. 1984; Behr and Gerler 1987; Wilkinson 

1995; Reilly 1997; Muchez et al. 1994b, 1998). A number of studies have identified cases 

where the δD values of basinal brines are lower than those of meteoric water (Fallick et al. 

1993; Munoz 1994; Wilkinson et al. 1995) and this is frequently explained by derivation of 

the hydrogen from alteration of organic matter (Sheppard 1986). There is, however, 

accumulating evidence that structurally bound water in quartz might have hydrogen isotopic 

signatures systematically shifted towards negative values compared to the original fluid 

inclusion water (Ishiyama et al. 1999; Simon 2001; Faure 2003; this study). If contributions 
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of such structurally bound water to the bulk isotopic signature are significant, this might 

equally well explain anomalously low δD values of post-Variscan hydrothermal systems.  

 

 

7. CONCLUSIONS 

 

By combining stable isotope and fluid inclusion techniques, it has been possible to decipher 

the complexities of prolonged hydrothermal activity in the Schwarzwald ore district, SW 

Germany. Two distinct fluid types, distinguished on the basis of vein chronology, fluid 

inclusion and stable isotope characteristics, have been identified. 

- Fluid inclusion and stable isotope data support a metamorphic origin for the high-

temperature (approximately 250-400°C), low to moderate salinity (<15 wt.% eqv. NaCl) 

Variscan to late-Variscan H2O-NaCl-(KCl) fluid type. This fluid is closely associated with 

gas-rich fluid inclusions, characterized by predominance of CO2-CH4. It is found in Sb (±Au 

and Ag) –bearing quartz veins.  

- In contrast to that, the second fluid belongs to the NaCl-CaCl2-H2O type, is generally of 

higher salinity (20-25 wt.% eqv. NaCl) and lower temperature (100-160°C). Late-stage 

mineral generations in the post-Variscan veins host secondary fluid inclusions of lower 

salinity, but with similar homogenization temperatures. Both the fluid inclusion and oxygen 

and hydrogen isotope systematics suggest that the post-Variscan fluid originated from large-

scaling mixing of a deep-sourced saline brine with surface-derived meteoric water. It led to 

the formation of Pb±Zn±Cu-barite-fluorite veins.  

An overprint by a second fluid event is indicated according to different textural features and 

fluid inclusions. Comparing the fluid inclusion and isotopic characteristics of the post-

Variscan fluids, this overprinting event can be clearly related to the post-Variscan 

hydrothermal regime. This demonstrates the importante of combining detailed deposit-scale 

studies (involving a small-scale resolution of individual vein generations) with a district-scale 

characterization of fluid types for understanding the complex history of hydrothermal 

processes. 

Consistent sulfide-sulfate equilibrium temperatures of about 300°C from several locations 

within the entire Schwarzwald district demonstrate the existence of a large homogeneous fluid 

reservoir at a depth of around 7-10 km. Integration of several datasets including fluid 

inclusion salinities, deposit formation temperatures and calculated aquifer temperatures is 

used to derive a model of district-scale fluid mixing between a deep saline brine and surface-
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derived meteoric waters. Calculations indicate that mass fractions of the high-salinity end-

member were on the order of 0.5 to 0.75. 

The isotopic compositions of hydrothermal calcites precipitated via mixing of the two fluids 

have been modeled by a combination of isotopic mass balance equations and speciation 

calculations. Geologically reasonable estimates for the isotopic compositions of the two fluid 

end-members have been integrated into the model, permitting reconstruction of paleo-mixing-

lines that reproduce the measured covariation of δ13C and δ18O of the calcites. This confirms 

that mixing of homogeneous deep saline brines with surface-derived meteoric water was a 

large-scale process responsible for the formation of most hydrothermal ore deposits in the 

Schwarzwald district. Many similar geochemical characteristics, such as salinities and 

compositions of fluids, homogenization temperatures of fluid inclusions, stable isotope 

compositions of oxygen, sulfur, and carbon, REE pattern of fluorites (Schwinn and Markl 

2005) of the hydrothermal deposits over a large area are attributed to this large-scale 

convection system. 

Most likely, this hydrothermal system has been active since the Mesozoic. A major Jurassic 

alteration event, which affected the crystalline basement and the Triassic sedimentary cover 

(Zuther and Brockamp 1988; Lippolt and Kirsch 1994; Meyer et al. 2000), demonstrates the 

influx of a meteoric fluid, possibly seawater, into the crust. This seawater was modified by 

water-rock interaction and stored as deep groundwater in the crystalline basement, where 

recent thermal waters show a fossil seawater component (Stober and Bucher 1998; He et al. 

1999). During times of increased tectonic activity, pathways allowed the ascent of this brine 

to the subsurface. Mixing with meteoric waters (e.g. Werner et al. 2002) leads to the 

formation of the post-Variscan fluorite-barite-quartz veins of the Schwarzwald district. 

By integrating all data from this study with additional isotopic datasets from previous work, a 

consistent model for post-Variscan hydrothermal mineralization can be developed. This model 

envisages upward circulation of 300-350 ° C hot saline brine (NaCl-CaCl2-H2O) through strike-

slip fault systems. During periods of increased tectonic activity, efficient mixing of this brine 

with low-temperature surface-derived meteoric water was facilitated. This mixing process 

resulted in precipitation of the major fluorite-barite-quartz generation of the post-Variscan veins. 

This fluid system was active over an area of 120 by 40 km and over at least 100 Ma. 
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