Derivate des Imidazols und der Barbitursäure - Heterozyklische Carben-

Fragmente mit *π***-Donor und Akzeptor Funktion**

Imidazol and Barbituric Acid Derivatives - Heterocyclic Carbene Fragments

with π -Donor and Acceptor Properties

DISSERTATION

der Fakultät für Chemie und Pharmazie

der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines Doktors

der Naturwissenschaften

2006

vorgelegt von

Kamal Sweidan

Tag der mündlichen Prüfung:

06.04.2006

Dekan:	Prof. Dr. S. Laufer
1. Berichterstatter:	Prof. Dr. N. Kuhn
2. Berichterstatter:	Prof. Dr. H. A. Mayer

To my

parents, wife, sisters, brothers, children Nagam and Hla

Die vorliegende Arbeit wurde am Institut für Anorganische Chemie der Eberhard-Karls-Universität Tübingen unter der Leitung von Prof. Dr. Norbert Kuhn angefertigt.

Meinem Doktorvater,

Herrn Prof. Dr. Norbert Kuhn,

danke ich herzlich für die Themenstellung,

für die Bereitstellung ausgezeichneter Arbeitsbedingungen,

für wertvolle Anregungen und Diskussionen

sowie sein stetes Interesse an dieser Arbeit.

Ich möchte mich herzlich bedanken bei

Herrn M. Steimann, Frau Dr. C. Maichle-Mößmer, Herrn Dr. S. Schwartz, Herrn Dr. M. Ströbele, Herrn Dr. M. Richter, Herrn H. Kolb und Herrn Dr. K. Eichele für die Durchführung der Kristallstrukturanalysen,

Frau Heike Dorn, Frau Angleika Ehmann und den Messberechtigten am 250 und 400 MHz DRX-Gerät für Hochauflösungs-NMR-Spektren,

Herrn Prof. Dr. H. A. Mayer für die Hilfe bei NMR-Problemen,

Herrn Bartholomä und Herrn Dr. Müller für die geduldige Durchführung zahlreicher Massenspektren,

Herrn W. Bock für die Durchführung vieler schwieriger Elementaranalysen,

Frau Barbara Saller für die Durchführung zahlreicher IR-Messungen und viele Hilfestellungen,

Frau Roswitha Conrad und Herrn Dr. H. Ebert für die Hilfe bei bürokratischen Angleegenheiten,

Herrn Dr. Mahmoud Sunjuk, Herrn Dr. Adnan Al-Labadi, Herrn Dipl. Chem. Adeeb Al-Dahschan, Herrn Dr. Ismail Warad, Herrn Dr. Ahmed Al-Sheikh, Herrn Dr. Ahmed Abu-Rayyan und Herrn Dr. Murat Ciftci danke ich für viele entspannende Stunden in der Freizeit.

Frau Dr. Isabel Walker, Herrn Dr. Ahmed Al-Sheikh, Herrn Dr. Ahmed Abu-Rayyan, für die Zusammenarbeit im Arbeitskreis, die oft hilfreichen Diskussionen, Anregungen und Auseinandersetzungen.

Nicht zuletzt möchte ich mich ganz herzlich bei meiner Familie für ihre Unterstützung und bei meiner Frau für ihre Geduld und ihren Beistand bedanken.

1	Introduction	1
1.1	Carbenes	1
1.1.1	Definition	1
1.1.2	Preparation of diaminocarbenes	1
1.1.3	Chemistry of carbenes	2
1.2	1,3-Dimethylbarbituric acid	4
1.2.1	Definition	4
1.2.2	Physical properties	4
1.2.3	Chemistry of 1,3-dimethylbarbituric acid	5
1.3	Nucleophilic and electrophilic carbene fragments	6
2	Aim of Study	8
3	Results and Discussion	9
3.1	Carbenes	9
3.1.1	Nucleophilic reactions of imidazole-2-ylidenes	9
3.1.1	1 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium phosphonate	9
3.1.1	2 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium bromide	11
3.1.1	3 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium (Z)-2-cyano-1-	
	phenyl-1-ethenolate	13
3.1.1	4 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium chloride	15
3.1.1	5 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium dicyanomethylide	16
3.1.1	.6 Synthesis of 2-cyano-1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium bromide	18
3.1.1	7 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate	19
3.1.1	8 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium phenylphosphonate	20
3.1.1	9 Synthesis of 1,3-di(1-adamantyl)-1,3-dihydro-2H-imidazole-2-thione	22
3.1.1	10 Synthesis of 1,3-di(1-adamantyl)-1H-imidazol-3-ium thiocyanate	23
3.1.2	Nucleophilic substitution of 2-halo imidazolium salts	25
3.1.2	1 Synthesis of 2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium	
	dicyanoargentate	25
3.1.2	2 Synthesis of 2-cyano-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride	27

i

3.1.2.3	Synthesis of 2-(1,3-diethyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene)	
	malononitrile and 2-(1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-	
	ylidene) malononitrile	29
3.1.2.4	Synthesis of 2-amino-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride	32
3.1.2.5	Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium nitrate	34
3.1.2.6	Synthesis of 2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-iumnitrate	36
3.2 1,	3-Dimethybarbituric acid	38
3.2.1 D	erivatives of methylene 1,3-dimethylbarbituric acid	38
3.2.1.1	Synthesis of 1,3-dimethyl-2,6-dioxo-5-(1-pyridiniumylmethyl)-1,2,3,6-tetrahydro-4	
	pyrimidinolate	38
3.2.1.2	Synthesis of 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)methyl]-1,2,3,6-	
	tetrahydro-4-pyrimidinolate	38
3.2.1.3	Synthesis of 5-[(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-yl)methyl]-1,3-	
	dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	41
3.2.1.4	Synthesis of 1,3-dimethyl-5-methylene-2,4,6(1H,3H,5H)-pyrimidinetrione	43
3.2.2 1	3-Dimethylbarbituric acid derivatives consisting of nucleophilic attack at 5-	
h	alo position	45
3.2.2.1	Synthesis of 5,5-dichloro-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione	
	pyrimidinolate	45
3.2.2.2	Synthesis of 5-chloro-1,3-dimethyl-5-nitro-2,4,6(1H,3H,5H)-pyrimidinetrione	47
3.2.2.3	Synthesis of 2-chloro-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-	
	dimethyl-5-nitro-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	49
3.2.2.4	Synthesis of 5,6-dihydro-1,3-dimethyl-5,6-bis-[1',3'-dimethyl]-2',4',6'-	
	trioxopyrimid (5',5') yl[2,3-d] uracil	51
3.2.2.5	Potassium 5-cyano-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	
	1,4,7,10,13,16-hexaoxacyclooctadecane	53
3.2.2.6	Synthesis of 5-[1-(1,3-dimethyl-2,4,6-trioxohexahydro-5-pyrimidinyl)-2-oxopropyl]-	-
	1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione	55
3.2.2.7	Synthesis of 5,5'-dihydroxy-1,1',3,3'-tetramethyl [5,5'-Bipyrimidine]- 2,2',4,4',6,6'	
	(1H,1'H,3H,3'H,5H,5'H)-hexone	57
3.2.3 1,	3-dimethylbarbituric acid salts	59

3.2.3.	1 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-2,6-	
	dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	59
3.2.3.	2 Synthesis of 1,3-dimethyl-1,3-dihydro-2H-imidazol-2-iminium 1,3-dimethyl-2,6-dic)X0-
	1,2,3,6-tetrahydro-4-pyrimidinolate	61
3.2.4	Synthesis of 1,3-dimethylbarbituric acid dimmer	63
3.2.4.	1 Synthesis of 1,1',3,3'-tetramethyl [5,5'-Bipyrimidine]- 2,2',4,4',6,6'	
	(1H,1'H,3H,3'H,5H,5'H)-hexone	63
3.2.5	The 1,3-dimethylbarbituric acid thion and its derivatives	64
3.2.5.	1 Synthesis of 2,6-hydroxy-5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5	-
	pyrimidinyl)sulfanyl]-1,3-dimethyl-2,4(1H,3H)-pyrimidinedione	64
3.2.5.	2 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 5-[(6-hydroxy-1,3-	
	dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-diox	0-
	1,2,3,6-tetrahydro-4-pyrimidinolate	65
3.2.5.	3 Synthesis of di(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium) 5-[(1,3-dimethyl-6-	-
	oxido-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3- dimethyl-2,6-dioxo-	
	1,2,3,6-tetrahydro-4-pyrimidinolate	68
3.2.5.	4 Synthesis of 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)sulfanyl]-	
	1,2,3,6-tetrahydro-4-pyrimidinolate	70
4	Experimental Section	72
4.1	Methods of analysis	72
4.1.1	Elemental analysis	72
4.1.2	Melting point determination	72
4.1.3	Mass spectra	72
4.1.4	NMR spectra	72
4.1.5	IR spectra	73
4.1.6	Crystal structure analyses	73
4.2	General comments	73
4.3	Solvents	74
4.4	Starting materials	74
4.5	Preparation of the compounds	74
4.5.1	1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium phosphonate	74
4.5.2	1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium bromide	75

4.5.3	1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium(Z)-2-cyano-1-phenyl-1-ethenolate	75
4.5.4	1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium chloride	76
4.5.5	1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium dicyanomethylide	77
4.5.6	2-cyano-1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium bromide	78
4.5.7	1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate	78
4.5.8	1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium phenylphosphonate	79
4.5.9	1,3-di(1-adamantyl)-1,3-dihydro-2H-imidazole-2-thione	80
4.5.10	1,3-di(1-adamantyl)-1H-imidazol-3-ium thiocyanate	80
4.5.11	2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium dicyanoargentate	81
4.5.12	2-cyano-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride	81
4.5.13	2-(1,3-diethyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene) malononitrile and 2-	
	(1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2- ylidene) malononitrile	82
4.5.14	2-amino-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride	84
4.5.15	1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium nitrate	85
4.5.16	2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-iumnitrate	85
4.5.17	1,3-dimethyl-2,6-dioxo-5-(1-pyridiniumylmethyl)-1,2,3,6-tetrahydro-4-	
	pyrimidinolate	86
4.5.18	1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)methyl]-1,2,3,6- tetrahydro-4-	
	pyrimidinolate	87
4.5.19	5-[(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-yl)methyl]-1,3-dimethyl-2,6-	
	dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	88
4.5.20	1,3-dimethyl-5-methylene-2,4,6(1H,3H,5H)-pyrimidinetrione	89
4.5.21	5,5-dichloro-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione pyrimidinolate	89
4.5.22	5-chloro-1,3-dimethyl-5-nitro-2,4,6(1H,3H,5H)-pyrimidinetrione	91
4.5.23	2-chloro-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-5-nitro-2,6-	
	dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	91
4.5.24	5,6-dihydro-1,3-dimethyl-5,6-bis-[1',3'-dimethyl]-2',4',6'-trioxopyrimid (5',5') yl	
	[2,3-d] uracil	92
4.5.25	Potassium 5-cyano-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate	
	1,4,7,10,13,16-hexaoxacyclooctadecane	93
4.5.26	5-[1-(1,3-dimethyl-2,4,6-trioxohexahydro-5-pyrimidinyl)-2-oxopropyl]-1,3-dimethyl-	
	2,4,6(1H,3H,5H)-pyrimidinetrione	93

4.5.27	7 [5,5'-Bipyrimidine]-2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone, 5,5'-dihydroxy-	
	1,1',3,3'-tetramethyl	94
4.5.28	8 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-2,6-dioxo-tetrahydro	
	-4-pyrimidinolate	95
4.5.29	9 1,3-dimethyl-1,3-dihydro-2H-imidazol-2-iminium 1,3-dimethyl-2,6-dioxo-1,2,3,6-	
	tetrahydro-4-pyrimidinolate	96
4.5.30	0 [5,5'-Bipyrimidine]-2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone, 1,1',3,3'-	
	tetramethyl	97
4.5.3	1 2,6-hydroxy-5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-	
	pyrimidinyl)sulfanyl]-1,3-dimethyl-2,4(1H,3H)-pyrimidinedione	97
4.5.32	2 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 5-[(6-hydroxy-1,3-dimethyl-2,4-	
	dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-	
	tetrahydro-4-pyrimidinolate	98
4.5.33	3 di(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium) 5-[(1,3-dimethyl-6-oxido-2,4-	
	dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3- dimethyl-2,6-dioxo-1,2,3,6-	
	tetrahydro-4-pyrimidinolate	99
4.5.34	4 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)sulfanyl]-1,2,3,6-tetrahydro-4-	
	pyrimidinolate	100
5	Summary	101
6	References	106
7	Appendix	109
7.1	Abbreviations	109
7.2	Numbering of compounds	110
7.3	Crystal structure's data	114
7.3.1	Crystal data for $C_{11}H_{23}N_2O_3P(31)$	116
7.3.2	Crystal data for $C_{11}H_{21}N_2Br$ (32)	119
7.3.3	Crystal data for $C_{20}H_{27}N_3O(33)$	122
7.3.4	Crystal data for $C_{17}H_{29}N_2Cl$ (35)	125
7.3.5	Crystal data for $C_{20}H_{30}N_4$ (36)	128
7.3.6	Crystal data for $C_{18}H_{28}N_3Br$ (37)	131
7.3.7	Crystal data for $C_{18}H_{28}N_2S_2$ (38)	134

7.3.8	Crystal data for $C_{23}H_{35}N_2O_3P$ (39)	137
7.3.9	Crystal data for $C_{23}H_{32}N_2S$ (41)	141
7.3.10	Crystaldatafor C ₂₄ H ₃₃ N ₃ S (42)	144
7.3.11	Crystal data for $C_{13}H_{20}N_4AgBr$ (43)	150
7.3.12	Crystal data for $C_{12}H_{20}N_3Cl$ (44)	153
7.3.13	Crystal data for $C_{14}H_{20}N_4$ (45)	155
7.3.14	Crystal data for $C_{12}H_{16}N_4$ (46)	158
7.3.15	Crystal data for $C_{11}H_{22}N_3Cl$ (47)	162
7.3.16	Crystal data for $C_{11}H_{21}N_3O_3$ (48)	164
7.3.17	Crystal data for $C_{11}H_{20}N_3O_3Br$ (49)	167
7.3.18	Crystal data for $C_{25}H_{23}N_2O_3P$ (51)	170
7.3.19	Crystal data for $C_{18}H_{28}N_4O_3$ (52)	174
7.3.20	Crystal data for $C_7H_8N_2O_3$ (53)	177
7.3.21	Crystal data for $C_6H_6Cl_2N_2O_3$ (54)	180
7.3.22	Crystal data for $C_6H_6ClN_3O_3$ (55)	183
7.3.23	Crystal data for $C_{17}H_{26}N_5ClO_5$ (56)	186
7.3.24	Crystal data for $C_{18}H_{18}N_6O_9$ (57)	190
7.3.25	Crystal data for $C_{19}H_{18}N_3O_3K$ (59)	194
7.3.26	Crystal data for $C_9H_{18}N_4O_7$ (60)	198
7.3.27	Crystal data for $C_{12}H_{14}N_4O_8$ (61)	201
7.3.28	Crystal data for $C_{17}H_{27}N_4O_3$ (62)	205
7.3.29	Crystal data for $C_{11}H_{17}N_5O_3$ (64)	208
7.3.30	Crystal data for $C_{12}H_{14} N_4O_6$ (65)	211
7.3.31	Crystal data for $C_{12}H_{14}N_4O_6S$ (66)	213
7.3.32	Crystal data for $C_{23}H_{34}N_6O_6S$ (67)	216
7.3.33	Crystal data for $C_{34}H_{54}N_6O_6S$ (68)	220
7.3.34	Crystal data for $C_{24}H_{21}N_2O_3PS$ (69)	225

1. Introduction

1.1 Carbenes

1.1.1 Definition

Carbenes are two-coordinate carbon compounds that have two nonbonding electrons and no formal charge on the carbon. These types of two-coordinate carbene compounds essentially represent carbon in an oxidation state of +II. This oxidation state is well represented in carbon chemistry by stable monocoordinated carbon centers such as those in carbon monoxide and isonitriles. The stability of these carbenes is derived from a combination of steric and electronic factors [1].

In general, carbenes are electronically stabilized by +M donor substituents and destabilized by -M acceptor substituents, e.g. 21 and 24 (see 1.3).

1.1.2 Preparation of diaminocarbenes

Arduengo et al. prepared the first crystalline carbene. It was 1,3-diadamantyl-imidazol-2ylidene **2**, forms colorless crystal with sufficient kinetic and thermodynamic stability to be easily isolated and characterized. This carbene was obtained by deprotonation of the 1,3diadamantylimidazolium chloride **1** with sodium hydride in the presence of catalytic amount of dimethylsulfoxide [2].

1

In 1993, Kuhn and co-workers developed a new effective route for alkyl-substituted Nheterocyclic carbenes **4** synthesis. This method depends on the reduction of imidazole-2-thiones **3** with potassium in boiling THF. The synthesis of the imidazol-2-thiones is best achieved by a condensation reaction starting from the thioureas and 3-hydroxy-2-butanone in boiling 1-hexanol [3].

1.1.3 Chemistry of carbenes

Owing to their highly nucleophilic character heterocyclic carbenes act as ligands in complexes of metal and metalloid centres in a manner similar to tertiary phosphanes [4].

For example, the carbenes react readily with carbon disulfide to give carbon disulfide adducts **5** [5].

Reduction with potassium in tetrahydrofuran gives the salt **6** [6], which react with methyl iodide to give the 2-methyleneimidazolines **7** [7].

Carbene 4c reacts with POCl₃ to form the salt 8, which is transformed into the phosphoric chloride adduct 9 and its acid 10 by stepwise hydrolysis [8].

Reaction between carbene 11 and N₃SiMe₃ produced 12 [9].

1.2 1.3-dimethylbarbituric acid

1.2.1 Definition

Barbituric acids are heterocyclic derivatives of pyrimidine triones. They are proven to have a wide variety of biological activity [10].

1,3-dimethylbarbituric acid **13** can be easily prepared from malonic acid and 1,3dimethyl urea with acetic anhydride as condensing agent [11].

Ethyl malonate and 1,3-dimethyl urea with sodium alkoxide can also be used for synthesis but in a lower yield [12].

1.2.2 Physical properties

1,3-dimethylbarbituric acid is a white solid compound, m.p.121-123°C.

1,3-dimethylbarbituric acid is considered to be a strong acid with pKa 4.4 relative to acetic acid which has pKa 4.76 [13]. The high acidity can be attributed to the presence of hydrogen atoms attached to a carbon atom which is between two carbonyl groups which gives stability of the resultant anion.

Barbituric acid exists in solution as a single tautomer. The ¹³C-NMR spectroscopy shows that they are present in the triketo form in a number of polar and non-polar solvents [14].

In the IR-spectrum, it shows three carbonyl stretching bands, at 1701 cm⁻¹ for (4,6-CO asym. stre.), at 1669 cm⁻¹ for (2-CO stre.) and at 1730 cm⁻¹ for (4,6-CO sym. stre.) [15].

According to the X-ray crystal structure determination, the ring in barbituric acid is significantly distorted from planarity, in such a way that the methylene part of the ring has a boat-shaped configuration [16].

1.2.3 Chemistry of 1,3-dimethylbarbituric acid

For the last one hundred years, barbituric acids and their simple C5-substituted derivates have had numerous applications in medicinal chemistry [17].

The condensation of 1,3-dimethylbarbituric acid with carbonyl compounds leads to 5ylidene derivatives of 1,3-dimethylbarbituric acid **14**. The interest to these reactions has been generated mostly by the search of new biologically active substances [18].

Several benzaldehydes can condense with barbituric acid derivatives under infrared irradiation, in absence of solvents affording the corresponding 5-benzylidene barbituric acid **15** [19].

Diketene **16** reacted with 1,3-dimethylbarbituric acid in the presence of the basic catalyst and gives the acetoacetyl derivatives **17** in excellent yields. Condensation of the resulting product with hydrazine gave the pyrazole **18** [20].

Oxidation of 5-nitroso pyrimidine **19** with 30 % hydrogen peroxide in trifluoroacetic acid produced 5-nitro pyrimidine **20**. The nitro group in the 5-position of a pyrimidine ring activates a 6-substitution towards nucleophilic displacement reactions [21].

1.3 Nucleophilic and electrophilic carbene fragments

Owing to their highly nucleophilic character, heterocyclic carbenes **21** act as a ligand in complexes of metal and metalloid centres in a manner similar to tertiary phosphanes.

It has been reported that they can coordinate through the central element to give compound **22** (EXn = SeI₂ [22], BH₃ [23]), or can abstract a halogen atom to give compound **23** (EXn = SO₂ClF, SO₂F₂ [24]).

In contrast to heterocyclic carbenes, the unstable barbituric acid carbene **24** may has high susceptibility to nucleophilic attack at carbon atom between the two carbonyl groups as well as reported for meldrum's acid carbene **25** [25].

2. Aim of Study

The aims of this study were the preparation of some useful organic and inorganic derivatives of the imidazol-2-ylidenes and 1,3-dimethylbarbituric acid **13** by using new and simple methods. The compounds will be characterized by physical methods in addition to the X-ray structure analysis. The derivatives can be classified into:

2.1 Salt derivatives of the types of 2,3-dihydroimidazole-2-ylidenes

2.2 Zwitterionic derivatives of 1,3-dimethylbarbituric acid

2.3 Salt derivatives of 1,3-dimethylbarbituric acid

2.4 Neutral derivatives of 1,3-dimethylbarbituric acid

3. **Results and Discussion**

3.1 Carbenes

3.1.1 Nucleophilic reactions of imidazole-2-ylidenes

3.1.1.1 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium phosphonate (**31**) The reaction of **4c** with H₃PO₃ gives **31** as stable crystalline solid in good yield.

The molecular structure of **31** was confirmed by X-ray crystallography (tab. 1-3, fig. 1) [26]. **31** crystallizes in the monoclinic space group p2(1)/c. The ³¹P-NMR spectrum shows a chemical shift of 12.4 ppm relative to 5.0 ppm of H₃PO₃. The two crystallographically independent molecules are found to be similar. The bond angles O(12)-P(1)-O(11) [110.10°], O(12)-P(1)-O(13) [116.78°] and O(11)-P(1)-O(13) [110.28°] are close to those found in the molecular structure of the H₃PO₃ [27] except that the bond angle of OH-P-OH [101°] in H₃PO₃ relative to 110° in **31**.

The bond length P(1)-O(11) [1.554(3) Å] is longer than bond length of each P(1)-O(12) [1.506(3) Å] and P(1)-O(13) [1467(3) Å] due to negative charge distributed at O(12) and O(13). The hydrogen bonds trained in **31** [C(3)-H(3) 0.967 Å, H(3)-O(22) 1.973 Å; C(3)-H(3)....O(22) 169.6°, C(14)-H(14) 0.910 Å, H(14)-O(13) 2.114 Å; C(14)-H(14)....O(13) 179.0°] lie within the standard range of C-H....O bridges.

C22

C20

ø

Č21

ø

QC16

۶

Fig. 1: The crystal structure of **31**

3.1.1.2 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium bromide (**32**) The reaction of **4c** with Et₃NHBr gives **32** as stable crystalline solid in good yield.

32 crystallizes in the orthorhombic space group C222(1). The molecular structure of **32** was confirmed by X-ray crystallography (tab. 4-6, fig. 2) [28]. The molecular structure of **32** is in agreement with other imidazolium salts which are reported [29]. It proves interionic connection through a hydrogen bridge and the crystal structure reveals the presence of a near linear C-H....Br fragment [C(2)-H(2) 0.950(3) Å, H(2)-Br(2) 2.609(4) Å; C(1)-H(1)-Br(2) 180°].

Fig. 2: The crystal structure of **32**

3.1.1.3 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium (*Z*)-2-cyano-1-phenyl-1-ethenolate (**33**)

The reaction of 4c with PhCOCH₂CN gives 33 as stable crystalline solid in good yield.

The molecular structure of **33** was confirmed by X-ray crystallography (tab. 7-9, fig. 3) [30]. **33** crystallizes in the monoclinic space group P2(1)/c. The hydrogen bonds trained in **33** [C(1)-H(1) 0.969 Å, H(1)-O(1) 2.196 Å; C(1)-H(1)-O(1) 160.3°] lie within the standard range of C-H....O bridges. From the crystal structure analysis, the structure of the anion exhibits the expansion of the C-C double bond with a parallel shortage of the C-O single bond [C(13)-C(14) 1.384(3) Å, C(14)-O(1) 1.265(2) Å]. Despite the π -electron distribution in the enolate, no marked twisting of the fragments was observed along the olefin double bond. The dihedral angle C(12)-C(13)-C(14)-O(1) is [179.1°]. The ¹³C-NMR spectrum shows a chemical shift of 135.1 ppm for the carbon atom in the CN, this can be attributed due to the presence of the negative charge next to CN. Interestingly, the NMR results confirmed that the anion of **33** has the **Z**-isomer rather than **E**-isomer in spite of the **E**-isomer has more favorable charge compensation when the oxygen atom is trans to the nitril group.

Fig. 3: The crystal structure of **33**

3.1.1.4 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium chloride (**35**) The reaction of **34** with Et₃NHCl gives **35** as stable crystalline solid in good yield.

35 crystallizes in the monoclinic space group P2(1)/n. The molecular structure of **35** was confirmed by X-ray crystallography (tab. 10-12, fig. 4) [31]. The molecular structure of **35** is in agreement with other imidazolium salts which are reported [32]. It proves interionic connection through hydrogen bridges and the crystal structure reveals the presence of a near linear C-H....Cl fragment [C(1)-H(1) 0.950 Å, H(1)-Cl(1) 2.489 Å; C(2)-H(2)-Cl(1) 166.4°]. Interestingly, the presence of the hydrogen bonds to the solvents molecules [H(18C)-Cl(1A) 2.520 Å, H(18D)-Cl(1) 2.602 Å; C(18A)-H(18D)-Cl(1) 157.2°, C(18A)-H(18C)-Cl(1A) 162.2°] could be observed.

Fig. 4: The crystal structure of 35

3.1.1.5 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium dicyanomethylide (**36**)

The reaction of **34** with $H_2C(CN)_2$ gives **36** as stable crystalline solid in good yield.

36 crystallizes in the monoclinic space group P2(1)/C. The molecular structure of **36** was confirmed by X-ray crystallography (tab. 13-15, fig. 5) [33]. The hydrogen bonds trained in **36** $[C(1)-H(1) 0.930(3) \text{ Å}, H(1)-N(4) 2.280(2) \text{ Å}; C(1)-H(1)-N(4) 166.5 (1)^{\circ}]$ lie within the standard

range of C-H....N bridges. The structure of the anion is a little affected by the monofunctional binding of the cation [C(18)-C(19) 1.383(2) Å, C(18)-C(20) 1.387(2) Å, C(19)-N(4) 1.158(16) Å, C(20)-N(3) 1.157(2) Å; C(19)-C(18)-C(20) 121.81(11)°, C(18)-C(19)-N(4) 178.25(12)°, C(18)-C(20)-N(3) 177.98 (14)°].

Fig. 5: The crystal structure of **36**

3.1.1.6 Synthesis of 2-cyano-1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium bromide (37)

The reaction of **34** with BrCN gives **37** as stable crystalline solid in good yield.

The molecular structure of **37** was confirmed by X-ray crystallography (tab. 16-18, fig. 6) [34]. **37** crystallizes in the orthorhombic space group Pbcn. The bond length C(21)-N(21) [1.19(2) Å] is close to the bond length C(1)-N(3) in **44**, while the bond angle N(21)-C(21)-C(2) [169.1°] has a little deviation from the linearity compared to the bond angle N(3)-C(1)-C(2) [178.5°] in **44**. The characteristic CN vibration band has been found at 2301 cm⁻¹.

Br1

Fig. 6: The crystal structure of **37**

3.1.1.7 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate (**38**) The reaction of **34** with CS₂ gives **38** as stable crystalline solid in good yield.

The molecular structure of **38** was confirmed by X-ray crystallography (tab. 19-21, fig. 7) [35]. **38** crystallizes in the monoclinic space group P21/c. The bond length C(1)-C(2) [1.486(4) Å] lies within the intermediate of the carbon-carbon single and double bonds lengths. The bond

lengths C(1)-S(1) [1.663(4) Å] and C(1)-S(2) [1.660(4) Å] are very close to bond lengths S(1)-C(1), S(2)-C(1) [1.670 (5) Å] in [ImCS₂][36]. Parallel to this, the expansion of the bond angle S(1)-C(1)-S(2) [129.5(2)°] and the reduction of the angle N(2)-C(2)-N(1) [108.8(3)°] were observed.

Fig. 7: The crystal structure of 38

3.1.1.8 Synthesis of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium phenylphosphonate (39)

The reaction of 34 with PhP(O)(OH)₂ gives 39 as stable crystalline solid in good yield .

The molecular structure of **39** was confirmed by X-ray crystallography (tab. 22-24, fig. 8) [37]. **39** crystallizes in the monoclinic space group P2(1)/n. The ³¹P-NMR spectrum shows a chemical shift of 13.05 ppm. The structure of the imidazolum part is compatible to its structure in **36**. The hydrogen bonds trained in **39** [C(1)-H(1) 0.953 Å, H(1)-O(3) 1.969 Å; C(1)-H(1)-O(3) 170.5°] lie within the standard range of C-H....O bridges. The bond lengths P(1)-O(1) [1.5124(16) Å] and P(1)-O(3) [1.4891(18) Å] are shorter than the bond length P(1)-O(2) [1.5736(18) Å]. The bond angles O(3)-P(1)-O(1) [117.21°], O(3)-P(1)-O(2) [109.71°] and O(1)-P(1)-O(2) [109.25°] are close to those found in the PhP(O)(OH)₂ [38].

Fig. 8: The crystal structure of 39

3.1.1.9 Synthesis of 1,3-di(1-adamantyl)-1,3-dihydro-2H-imidazole-2-thione (41) The reaction of 2 with S_8 gives 41 as stable crystalline solid.

The molecular structure of **41** was confirmed by X-ray crystallography (tab. 25-27, fig. 9) [39]. **41** crystallizes in the trigonal space group P3(2)21. The bond length C(1)-S(1) [1.708(8) Å] is shorter than the single bond value of 1.81 Å and greater than the C=S bond value of 1.61 Å. It is representative of the C-S bonding in a selection of molecules containing the grouping –N-CS-X, where X= N or C [40].

The total summation of angles around C1 [S(1)-C(1)-N(1) 126.3°, N(1)-C(1)-N(1A) 107.4°, S(1)-C(1)-N(1A) 126.3°] gives exactly 360° [41], which indicates that the sulfur atom lies in the plane of the imidazolium ring.

Fig. 9: The crystal structure of 41

3.1.1.10 Synthesis of 1,3-di(1-adamantyl)-1H-imidazol-3-ium thiocyanate (42) The reaction of 2 with NH₄(SCN) gives 42 as stable crystalline solid in good yield.

The molecular structure of **42** was confirmed by X-ray crystallography (tab. 28-30, fig. 10) [42]. **42** crystallizes in the tricilinc space group P1. The bond angle S(1)-C(47)-N(5) [166.7°] is near linear. The distance between H(24)-S(4) [3.208 Å] lies within the *Van der Waals* distance range. This contact was also observed in other organic salts of the thiocyanate anion [43]. The bonds lengths S(4)-C(50) [1.651(16) Å] and C(50)-N(8) [1.1038(18) Å] lie within the normal range of the S-C=N bond lengths.

Fig. 10: The crystal structure of 42
3.1.2 Nucleophilic substitution of 2-halo imidazolium salts

3.1.2.1 Synthesis of 2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium dicyanoargentate (43)

The reaction of 2-bromo-1,3-diisppropyl-4,5-dimethylimidazolium bromide [44] with AgCN gives **43** as stable crystalline solid in good yield.

The molecular structure of **43** was confirmed by X-ray crystallography (tab. 31-33, fig. 11) [45]. **43** crystallizes in the orthorhombic space group P212121. The spectroscopic data of the cation in **43** are close to that observed in 2-bromo-1,3-diisppropyl-4,5-dimethylimidazolium bromide.

The bond lengths and angle C(11)-Ag(1) [2.046(11) Å], C(22)-Ag(1) [2.028(11) Å]; C(11)-Ag(1)-C(22) [177.5°] lie in the range of other Ag compounds [46]. The bond lengths C(22)-N(22) [1.137(11) Å] and C(11)-N(11) [1.114(11) Å] lie within the range of the C-N bond length of the CN group in [ImCl][Ag(CN)₂] [47].

Fig. 11: The crystal structure of **43**

3.1.2.2 Synthesis of 2-cyano-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride (44)

The reaction of 2-chloro-1,3-diisppropyl-4,5-dimethylimidazolium chloride [48] with KCN in presence of 18-crown-6 gives 44 as stable crystalline solid in good yield.

The molecular structure of **44** was confirmed by X-ray crystallography (tab. 34-36, fig. 12) [49]. **44** crystallizes in the orthorhombic space group Pna2(1). The structure of **44** was initially assigned in solution by ¹³C-NMR. The NMR spectrum shows a chemical shift of C1 in the CN group of 107.6 ppm.

The characteristic CN vibration band has been found at 2301cm^{-1} . The bond length C(1)-N(3) [1.149(4) Å] lies within the normal range of bond length of the CN group, the bond angle N(3)-C(1)-C(2) is [178.5°] near linear. The presence of the CN group connected to C2 leads to the bond length C(2)-C(1) [1.427 (5) Å] which lies within the intermediate of the carbon-carbon single and double bonds lengths.

Fig. 12: The crystal structure of 44

 3.1.2.3 Synthesis of 2-(1,3-diethyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene) malononitrile (46) and 2-(1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2ylidene)malononitrile (45)

The reaction of 2-bromo-1,3-diethyl-4,5-dimethylimidazolium bromide [44] and 2-bromo-1,3-diisppropyl-4,5-dimethylimidazolium bromide [44] with $H_2C(CN)_2$ gives 45 and 46 respectively, as stable crystalline solids in good yield.

The molecular structures of **45** and **46** were confirmed by X-ray crystallography (tab. 37-42, fig. 13-14) [50]. **46** crystallizes in the monoclinic space group C2/c and **45** crystallizes in the monoclinic space group P2(1)/c. The crystal structure analyses of **45** and **46** show the influence of the steric requirement of the substituents in 1,3-position on the state of exocyclic double bond.

For both **45** and **46**, there is a tendency for the coplanar orientation of the five membered ring and the dicyano methylene fragments. The steric requirements actually force in 1,3-position to make a twisting of the molecule along the exocyclic olefinic double bond. The interplanar angle of **46** N(1)-C(1)-N(2)/C(11)-C(10)-C(12) is $[34.7(2)^{\circ}]$ and N(1)-C(1)-N(2)/C(13)-C(12)-C(14) is $[48.6 (2)^{\circ}]$ for **45**.

Due to this, the contact length C(14)-C(11) is [3.072 Å] in **46** and [3.108 Å] for C(4)-C(11) in **45**. This contact expands the carbon-carbon olefin double bond C(1)-C(10) [1.435(2) Å] in **46** and C(1)-C(12) [1.4455(10) Å] in **45**. A comparison of the structures between **45** and **46** shows the expected relationship between the interplanar angle between the five membered ring and the dicyanomethylene fragments and the bond length [**46**/**45**: (34.7/48.6); (1.435/1.445 Å].

Fig. 13: The crystal structure of 46

Fig. 14: The crystal structure of **45**

3.1.2.4 Synthesis of 2-amino-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride (47)

The reaction of 2-chloro-1,3-diisppropyl-4,5-dimethylimidazolium chloride [48] with NaNH₂ gives **47** as stable crystalline solid.

47 crystallizes in the orthorhombic space group Pbca. The molecular structure of 47 was confirmed by X-ray crystallography (tab. 43-45, fig 15) [51]. The unit cell is composed of two cations and two anions.

The contacts between Cl(1)-H(1A) [2.012 Å], H(1b)-Cl(1A) [2.336 Å] lie within the *Van der Waals* distance range. The angle H(1A)-Cl(1)-H(1bb) is [78.2°], while there are no other contacts between N(1)-N(1A) or Cl(1)-Cl(1A). The bond lengths C(1)-N(1) [1.331(4) Å], C(1)-N(2) [1.356(4) Å] and C(1)-N(3) [1.339(4) Å] are close to each other, which indicates the partial double bond among them. The total summation of angles around C1 [N(1)-C(1)-N(3) 125.8°, N(1)-C(1)-N(2) 126.0°, N(3)-C(1)-N(2) 108.2°] gives exactly 360°, which indicates that the imidazole ring and the amino group are coplanar.

Fig. 15: The crystal structure of **47**

3.1.2.5 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium nitrate (**48**) The reaction of **32** with AgNO₃ gives **48** as stable crystalline solid in good yield.

48 crystallizes in the tetragonal space group P4(3)2(1)2. The molecular structure of **48** was confirmed by X-ray crystallography (tab. 46-48, fig. 16) [52]. The crystal structure analysis reveals the presence of ion pairs in which the ions are linked together by weak C-H-O hydrogen bonds. The nitrate ions are connected to the hydrogen atoms in 2-position of the cations in a bifurcated mode [C(1)-H(1A) 0.929(3) Å, H(1A)-O(2) 2.367(3) Å; O(2)-H(1A)-O(2A) 54.1(1)°].

Surprisingly, the protons of the methyl substituents in 4,5-positions are also capable to form hydrogen bonds [C(6)-H(6B) 0.988(3) Å, H(6B)-O(1A) 2.574(3) Å, C(6)-H(6B)-O(1A) 176.5(4)°; H(6B)-O(1A)-H(6BA) 53.4(4)°]. The bond lengths and angles in the nitrate ion indicate a weak and electrostatic interactions [N(2)-O(1) 1.225(2) Å, N(2)-O(2) 1.2463(14) Å, O(1)-N(2)-O(2) 120.26(7)°, O(2)-N(2)-O(2A) 119.48(15)°]. The planes of the cations and anions are orientated perpendicularly to each other forming infinite chains of ions similar to those obtained in the organic nitro derivatives [53], no stacking being present there. The planes of the neighboured five-membered rings exhibit parallel orientation. From the crystallographic reasons, the distances between the planes [4.407 Å] and the centers of the rings [7.967 Å] are outside the *Van* der *Waals* range.

Fig. 16: The crystal structure of **48**

3.1.2.6 Synthesis of 2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-iumnitrate (49)

The reaction of 2-bromo-1,3-diisppropyl-4,5-dimethylimidazolium bromide [44] with AgNO₃ gives **49** as stable crystalline solid in good yield.

49 crystallizes in the orthorhombic space group Cmcm. The molecular structure of **49** was confirmed by X-ray crystallography (tab. 49-51, fig. 17) [52]. The crystal structure of **49** consists of coplanar orientated cations and anions which form stacks of alternating ions additionally connected by interactions between the ions of adjacent stacks. The very close contacts between the planes inside the stack [interplanar distance 3.364 Å] caused by the electrostatic interaction are influenced, in addition, by hydrogen bonds between methyl protons of the isopropyl substituents and oxygen atoms of the anions [H(5BB)-O(1C) 2.722(4) Å, H(5BB)-O(2B) 2.930(4) Å]. The contacts between the neighboured stacks are performed by the hydrogen bonds between the methyl substituents in 4,5-positions of the heterocyclic ring and one of the nitrate oxygen atom [C(4)-H(4B) 1.02(1) Å, H(4B)-O(2A) 2.735(4) Å; C(4)-H(4B)-O(2A) 167.8(1)°, H(4B)-O(2A)-H(4BA) 44.5(1)°], surprisingly, by close Br-O contact which is inside the *Van der Waals* range [Br(1)-O(1) 3.005(4) Å; O(1)-Br(1)-O(1A) 41.8 (1)°].

Fig. 17: The crystal structure of 49

3.2 1,3-Dimethylbarbituric acid

3.2.1 Derivatives of methylene 1,3-dimethylbarbituric acid

3.2.1.1 Synthesis of 1,3-dimethyl-2,6-dioxo-5-(1-pyridiniumylmethyl)-1,2,3,6-tetrahydro-4pyrimidinolate (**50**)

The condensation of 1,3-dimethylbarbituric acid **13** with aqueous formaldehyde in the presence of pyridine gives **50** in good yield.

The zwitterionic pyridine adduct should open new synthetic possibilities by the exchange of the pyridine fragment against other bases. The ¹H and ¹³C-NMR spectra show the chemical shifts for the central methylene group [¹H 5.24, ¹³C 51.8] which lie in the same range of the chemical shift of the methylene group in meldrum's pyridine adduct [54].

3.2.1.2 Synthesis of 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)methyl]-1,2,3,6tetrahydro-4-pyrimidinolate (**51**)

The reaction of 50 with PPh₃ gives 51 as stable crystalline solid in good yield.

The molecular structure of **51** was confirmed by X-ray crystallography (tab. 52-54, fig. 18) [55]. **51** crystallizes in the monoclinic space group P2(1)/n.

The crystal structure analysis of **51** indicates its structure as to be zwitterionic. The bond lengths of the barbiturate part [C(1)-C(2) 1.394(3) Å, C(1)-C(4) 1.403(3) Å, C(2)-O(3) 1.242(3) Å, C(4)-O(1) 1.242(3) Å] lie in the range corresponding to the barbiturate part in the structure of **52**. The expected phosphonium character of the zwitterionic nature appears in the dimension of the Ph₃PCH₂-fragments P(1)-C(7) [1.792(2) A°], P(1)-C(13) [1.800(2) Å], P(1)-C(19) [1.793(2) Å], P(1)-C(25) [1.852(2) Å]; C(7)-P(1)-C(13) [111.79(11)°], C(7)-P(1)-C(19) [108.96(11)°, C(7)-P(1)-C(25) [108.75(11)°], C(13)-P(1)-C(19) [108.25(11)°], C(13)-P(1)-C(25) [108.66(11)°] and C(19)-P(1)-C(25) [110.43(11)°]. The structure of the central methyl fragments is close to that in structure **52** [C(1)-C(25) 1.492(3) Å; C(1)-C(25)-P(1) 112.99(17)°]. This result was also observed in the methylene meldrum's derivatives [56].

Fig. 18: The crystal structure of **51**

3.2.1.3 Synthesis of 5-[(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-yl)methyl]

1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (**52**)

The reaction of 50 with carbene 4c gives 52 as stable crystalline solid in good yield.

The molecular structure of **52** was confirmed by X-ray crystallography (tab. 55-57, fig. 19) [55]. **52** crystallizes in the monoclinic space group p2(1)/n.

The structure characteristics of the heterocyclic rings are observed in both of the imidazolium fragments and the barbiturate rings, due to the delocalization of the π -electrons, this allows to a geometric comparison with the barbituric acid [57] and its anion [58]. The structure of the imidazolium part is compatible to its structure in the numerous imidazolium derivatives [4]. The heterocyclic rings bonded to the methylene group show the expansion of C(1)-C(18)-C(7) [113.53 (12)°], due to steric requirements. A small difference was observed in the C-C bond lengths C(1)-C(18) [1.509(2) Å] and C(18)-C(7) [1.494(2) Å] due to the different S-proportions.

As expected, the presence of the water molecule in the crystal shows hydrogen bonds with the neighbouring zwitterionic part $[O(4)-H(4A) 0.959(3) \text{ Å}, H(4A)-O(2) 1.903(4) \text{ Å}, O(4)-H(4B) 0.874(3) \text{ Å}, H(4B)-O(1) 2.009(4) \text{ Å}; O(4)-H(4A)-O(2) 172.4(1)^{\circ}, O(4)-H(4B)-O(1) 170.0(1)^{\circ}].$

Fig. 19: The crystal structure of **52**

3.2.1.4 Synthesis of 1,3-dimethyl-5-methylene-2,4,6(1H,3H,5H)-pyrimidinetrione (**53**) The reaction of **50** with CF₃COOH gives **53** as stable crystalline solid.

The molecular structure of **53** was confirmed by X-ray crystallography (tab. 58-60, fig. 20) [59]. **53** crystallizes in the monoclinic space group P2(1)/C. The bond lengths H(7BA)-O(3) [2.873 Å], C(7A)-H(7BA) [0.960 Å] and C(7A)-H(7BA)....O(3) [145.5°] lie within the *Van der Waals* contact range. The bond length C(3A)-C(6A) [1.441(9) Å] lies within the intermediate of the carbon-carbon single and double bonds lengths. The unexpected result was the absence of hydrogen bonds between any of the hydrogen atoms at the exocyclic carbon atom with any of the oxygen atoms. Surprisingly, the ¹H-NMR spectrum shows a chemical shift of 2.11 ppm for the two exocyclic hydrogen atoms in contrast to the chemical shift of the hydrogen atoms in the methylene meldrum's derivatives of 7.18 ppm [54].

53 has high susceptibility to the nucleophilic attack at the carbon atom of the methylene group, the reaction of 53 with PPh₃ produced 51. In the case of the meldrum's pyridine adduct, this compound was prepared only in situ without any isolation [54].

Fig. 20: The crystal structure of **53**

- 3.2.2 1,3-Dimethylbarbituric acid derivatives consisting of nucleophilic attack at 5halo position
- 3.2.2.1 Synthesis of 5,5-dichloro-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione (54) The reaction of 13 with SO₂Cl₂ gives 54 as stable crystalline solid in good yield.

The structure of **54** was initially assigned in solution by ¹H and ¹³C-NMR analysis. The ¹H spectrum shows a large chemical shift difference of C5 (C1 in the structure) of 72.2 ppm relative to its position in **13** of 39.8 ppm. The molecular structure of **54** was confirmed by X-ray crystallography (tab. 61-63, fig. 21) [60]. **54** crystallizes in the monoclinic space group $P2_1/c$.

The total summation of angles around C2 $[O(1)-C(2)-C(1) 120.3^{\circ}, C(1)-C(2)-N(1) 116.5^{\circ}, N(1)-C(2)-O(1) 123.2^{\circ}]$ gives 360°. The influence of the Cl-atoms in **54** is evident by the comparison to the barbituric acid. The C-C bond length in **54** is considerably longer than the C-C bond length in the barbituric acid [1.53 versus 1.48 Å] [61].

Fig. 21: The crystal structure of **54**

3.2.2.2 Synthesis of 5-chloro-1,3-dimethyl-5-nitro-2,4,6(1H,3H,5H)-pyrimidinetrione (55)

The reaction of 54 with AgNO₂ gives 55 as stable crystalline solid in good yield.

The ¹³C-NMR spectrum shows a large chemical shift difference of C5 (C1 in the structure) of 89.2 ppm relative to its position in **54** of 72.2 ppm. The molecular structure of **55** was confirmed by X-ray crystallography (tab. 64-66, fig. 22) [62]. **55** crystallizes in the monoclinic space group Cc. The bond angles around C5 (C1 in the structure) lie in the range of 106.4-116.6°, which indicates the sp³-hybridization of the carbon. The bond length C(1)-Cl(1) [1.752(3) Å] is close to the bond lengths C(1)-Cl(1) and C(1)-Cl(2) in **54** [1.784(2) Å and 1.748(2) Å], respectively. The bond length C(1)-N(3) [1.523(4) Å] is longer than the bond lengths C(5)-N(1) [1.82(4) Å] or C(6)-N(2) [1.473(5) Å]. This can be attributed due to the presence of the electron-withdrawing groups bonded to C5 in **55**.

Fig. 22: The crystal structure of **55**

3.2.2.3 Synthesis of 2-chloro-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3dimethyl-5-nitro-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (**56**)

The reaction of **55** with carbene **4c** gives **56** as stable crystalline solid in good yield.

The spectroscopic data of the cation (ImCl) are close to that observed in other chloroimidazolium salts [48]. The ¹³C-NMR spectrum of the anion shows a large chemical shift difference of C5 (C11 in the structure) of 114.2 ppm relative to its position in **55** of 89.2 ppm.

The molecular structure of **56** was confirmed by X-ray crystallography (tab. 67-69, fig. 23) [63]. **56** crystallizes in the monoclinic space group P2(1)/m. The contacts Cl(1)-O(4A) [3.803 Å] and Cl(1)-O(5) [2.880 Å] lie within the *Van der Waals* distance range, while there is no contact between Cl(1) and each of O(1A) or O(2A) or O(3A). The bond angle C(1)-Cl(1)-O(5A) [172.7°] reveals the presence of near linear Cl-C-O contacts.

Fig. 23: The crystal structure of 56

3.2.2.4 Synthesis of 5,6-dihydro-1,3-dimethyl-5,6-bis-[1',3'-dimethyl]-2',4',6'trioxopyrimid (5',5') yl[2,3-d] uracil (57)

The reaction of 54 with carbene 4c gives 57 as stable crystalline solid in good yield.

The molecular structure of **57** was confirmed by X-ray crystallography (tab. 70-72, fig. 24) [64]. **57** crystallizes in the orthorhombic space group Pbca. **57** is a trimeric form of 1,3-dimethylbarbituric acid with two spiro linkages and a central dihydrofuran fragment. The bond distance between the C-atoms of the two spiro-linked barbiturate molecules C(1)-C(11) is quite long [1.613 Å]. The five membered ring is in an envelope conformation [64].

Fig. 24: The crystal structure of **57**

3.2.2.5 Synthesis of potassium 5-cyano-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-

pyrimidinolate 1,4,7,10,13,16-hexaoxacyclooctadecane (59)

The reaction of 54 with KCN in presence of 18-crown-6 gives 59 as stable crystalline solid.

The molecular structure of **59** was confirmed by X-ray crystallography (tab. 73-75, fig. 25) [65]. **59** crystallizes in the monoclinic space group P2(1). The ¹³C-NMR spectrum shows a large chemical shift difference of C5 of 41.4 ppm relative to its position in **54** of 72.2 ppm. The C-C bond lengths C(14)-C(15) [1.415(5) Å] and C(15)-C(16) [1.417(5) Å] lie within the intermediate of the carbon-carbon single and double bonds lengths. The bond lengths C(7)-K(1) [2.687(3) Å], C(13)-O(7) [1.229(5) Å] lie within the range of normal covalent distances.

Fig. 25: The crystal structure of **59**

3.2.2.6 Synthesis of 5-[1-(1,3-dimethyl-2,4,6-trioxohexahydro-5-pyrimidinyl)-2-oxopropyl]-

1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione (60)

The reaction of 5,5-dibromo-1,3-dimethyl-2,4,6-pyrimidinetrione [66] with Na₂S in acetone gives **60** as stable crystalline solid in low yield.

The molecular structure of **60** was confirmed by X-ray crystallography (tab. 76-78, fig. 26) [67]. **60** crystallizes in the orthorhombic space group P2(1)2(1)2(1). The structure of **60** was assigned in solution by ¹H and ¹³C-NMR analysis. The ¹H-NMR spectrum shows a chemical shift for hydrogen atoms in the acetyl group of 1.62 ppm and the ¹³C-NMR spectrum shows a chemical shift for the carbon atom in the carbonyl group of 200.1 ppm. The bond lengths C(2)-C(13) [1.537(4) Å] and C(13)-C(8) [1.543(4) Å] lie within the normal range of the C-C single bond length.

Fig. 26: The crystal structure of 60

3.2.2.7 Synthesis of 5,5'-dihydroxy-1,1',3,3'-tetramethyl [5,5'-Bipyrimidine]

2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone (**61**)

The reaction of 5,5-dibromo-1,3-dimethyl-2,4,6-pyrimidinetrione [66] with Na₂S in water gives **61** as stable crystalline solid in low yield.

The molecular structure of **61** was confirmed by X-ray crystallography (tab. 79-81, fig. 27) [68]. **61** crystallizes in the orthorhombic space group P2(1)2(1)2(1). The central C-C single bond C(1)-C(7) [1.610(4) Å] is significantly elongated relative to carbon-carbon single bond length [1.54 Å]. The two heterocyclic ring fragments are near coplanar, the twist angle between the planes C(4)C(1)C(2) and C(10)C(7)C(8) being 6.3°. Interestingly, the presence of hydrogen bonds to the solvents molecules H(1)-O(9A) [1.860 Å]; O(1)-H(1)-O(9A) [162.0°] and H(5)-O(10A) [1.956 Å]; O(5)-H(5)-O(10A) [171.8°] could be observed.

Fig. 27: The crystal structure of 61

3.2.3 1,3-dimethylbarbituric acid salts

3.2.3.1 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-2,6dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (62)

The reaction of 13 with carbene 4c gives 62 as stable crystalline solid in good yield.

The molecular structure of **62** was confirmed by X-ray crystallography (tab. 82-84, fig. 28) [58]. **62** crystallizes in the monoclinic space group P2(1)/c. The ¹³C-NMR spectrum shows a large chemical shift difference of C5 (C2 in the structure) of 76.8 ppm relative to its position in **13** of 39.8 ppm. The anion is connected wit the cation by one of the exocyclic oxygen atoms.

The hydrogen bonds trained in **62** [C(7)-H(7A) 0.955 Å, O(1)-H(7A) 2.048 Å, O(1)-C(1) 1.247(2) Å; C(7)-H(7A)....O(1) 163.6°] lie within the standard range of the C-H....O bridges, the presence of the weak C-H....O hydrogen contacts cause the construction of the polymer system in the crystal, the ring plains of the ion pair are twisted against each other by 74.5°.

Fig. 28: The crystal structure of 62
3.2.3.2 Synthesis of 1,3-dimethyl-1,3-dihydro-2H-imidazol-2-iminium 1,3-dimethyl-

2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (64)

The reaction of 13 with 63 [69] gives 64 as stable crystalline solid in good yield.

The molecular structure of **64** was confirmed by X-ray crystallography (tab. 85-87, fig. 29) [58]. **64** crystallizes in the orthorhombic space group Pbca. The anion is connected with the cation by the exocyclic oxgen atoms. The strong interionic N-H-O hydrogen bonds between the two oxygen atoms (O4,O6) in the barbiturate anion and the two hydrogen atoms on the amino group in the cation give the dimeric ion-pair [N(5)-H(5A) 0.873 Å, H(5A)-O(3A) 2.006 Å, N(5)-H(5B) 0.980 Å, H(5B)-O(1) 1.978 Å, O(3A)-C(3A) 1.245(2) Å, O(1)-C(1) 1.247(2) Å; H(5A)-N(5)....H(5B) 117.8°, N(5)-H(5A)....O(3A) 170.1°].

The presence of the weak bonds between the oxygen atom (O2) in the barbiturate anion and the hydrogen atoms at (C4, C5) and the N-methyl in imidazolium cation causes the construction of the space network structure. In the dimeric unit, the distance between the cation layers is 3.77 Å.

Fig. 29: The crystal structure of 64

3.2.4 Synthesis of 1,3-dimethylbarbituric acid dimer

3.2.4.1 Synthesis of 1,1',3,3'-tetramethyl [5,5'-Bipyrimidine] 2,2',4,4',6,6' (1H,1'H,3H,3'H,5H,5'H)-hexone, (**65**)

The reaction of 13 with BiPh₃CO₃ [70] gives 65 as stable crystalline solid.

The molecular structure of **65** was confirmed by X-ray crystallography (tab. 88-90, fig. 30) [71]. **65** crystallizes in the tetragonal space group I4(1)/a. The ¹³C-NMR spectrum shows a small chemical shift difference of C5 (C2 and C2A in the structure) of 46.9 ppm relative to its position in 1,3-dimethylbarbituric acid **13** of 39.8 ppm. The structure of **65** adopts the keto-form.

The total summation of angles around C1 or C3 $[C(2)-C(3)-N(2) \ 115.99^\circ, \ C(2)-C(3)-O(2) \ 121.90^\circ, \ O(2)-C(3)-N(2) \ 121.91^\circ]$ is near 360°. The center of the C(2)-C(2A) single bond lies on the crystallographic inversion center and the C-C single bond C(2)-C(2A) $[1.522 \ \text{Å}]$ is very close to the expected C-C single bond value $[1.54 \ \text{Å}]$.

Fig. 30: The crystal structure of 65

3.2.5 The 1,3-dimethylbarbituric acid thion and its derivatives

3.2.5.1 Synthesis of 2,6-hydroxy-5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,4(1H,3H)-pyrimidinedione (**66**)

The reaction of 13 with SOCl₂ gives 66 as stable crystalline solid in good yield.

The molecular structure of **66** was confirmed by X-ray crystallography (tab. 91-93, fig. 31) [72]. **66** crystallizes in the triclinic space group P-1. The structure of **66** adopts the enol-form. The total summation of angles around C2 or C8 $[C(3)-C(2)-C(1) \ 120.14^{\circ}, \ S(1)-C(2)-C(1) \ 119.30^{\circ}, \ S(1)-C(2)-C(3) \ 120.41^{\circ}]$ is near 360°. The C-S bond lengths C(2)-S(1) [1.749(19) Å] and S(1)-C(8) [1.755(2) Å] lie in the normal range of the C-S single bond value. The bond angle

C(2)-S(1)-C(8) [101.71°] is larger than the C-S-C bond angle in the dimer of the thioxo meldrum's acid [73]. The hydrogen bonds trained in **66** [O(2)-H(2) 0.933 Å, H(2)-O(5) 1.793 Å; O(2)-H(2)....O(5) 162.1°, O(4)-H(4) 0.813 Å, H(4)-O(1) 1.913 Å, O(4)-H(4)....O(1) 167.2°] lie within the standard range of O-H....O bridges. The bond lengths C(2)-C(3) [1.370(3) Å] and C(7)-C(8) [1.372 Å] lie in the range of the carbon-carbon double bond length.

Fig. 31: The crystal structure of 66

3.2.5.2 Synthesis of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (67)

The reaction of **66** with carbene **4c** in a molar ratio (1:1) gives **67** as stable crystalline solid in good yield.

The molecular structure of **67** was confirmed by X-ray crystallography (tab. 94-96, fig. 32) [74]. **67** crystallizes in the monoclinic space group P2(1)/c. The spectroscopic data of the cation ImH (exp. part) are close to that observed in the other salts of this cation [4].

The C-S bond lengths C(2)-S(1) [1.767(5) Å] and S(1)-C(8) [1.758(6) Å] lie in the same range of the C-S bond lengths of **66**. The cation is connected with the anion by hydrogen bonds through the H atom of the cation with the two exocyclic oxygen atoms at the anion. The hydrogen bonds trained in **67** [C(2)-O(1) 1.199(7) Å, C(9)-O(9) 1.259(6) Å, O(1)-H(14) 2.363 Å, O(6)-H(14) 2.387 Å, O(1)....H(14)....O(6) 100.0°] lie within the standard range of C-H....O bridges. An other bridge exists in the anion itself (O-H....O) which is stronger than the C-H....O bridge between the cation and the anion [O(4)-H(4) 1.197 Å, O(3)-H(4) 1.289 Å, C(1)-O(3) 1.300 Å, C(7)-O(4) 1.262 Å; O(4)-H(4)....O(3) 160.3°].

Fig. 32: The crystal structure of 67

3.2.5.3 Synthesis of di(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium) 5-[(1,3dimethyl-6-oxido-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (**68**)

The reaction of **66** with carbene **4c** in a molar ratio (1:2) gives **68** as stable crystalline solid in good yield.

The molecular structure of **68** was confirmed by X-ray crystallography (tab. 97-99, fig. 33) [75]. **68** crystallizes in the monoclinic space group P2(1)/n. The spectroscopic data of the cation ImH (exp. Part) are close to that observed in the other salts of this cation [4].

The C-S bond lengths C(23)-S(1) [1.763(19 Å] and S(1)-C(29) [1.759(19) Å] lie in the same range of the C-S bond lengths of **66** and **67**. The anion is connected with the cations by the exocyclic oxygen atoms. The hydrogen bonds trained in **68** [H(1)-O(4) 2.220 Å; C(1)-H(1a)....O(4) 163.2°; H(12)-O(3) 2.213 Å, C(12)-H(12a)....O(3) 150.3°] lie within the standard range of C-H....O bridges. The bond lengths C(23)-C(26) [1.398(3) Å], C(23)-C(24) [1.409(3) Å], C(29)-C(30) [1.398(3) Å] and C(29)-C(32) [1.405(3) Å] lie within the intermediate of the carbon-carbon single and double bonds lengths, which indicates the enolate nature of the barbiturate anion.

Fig. 33: The crystal structure of **68**

3.2.5.4 Synthesis of 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)sulfanyl]-

1,2,3,6-tetrahydro-4-pyrimidinolate (69)

The reaction of **66** with PPh_3 gives the zwitterionic compound **69** as stable crystalline solid in good yield.

The molecular structure of **69** was confirmed by X-ray crystallography (tab. 99-102, fig. 34) [76]. **69** crystallizes in the orthorhombic space group P2(1)2(1)2(1). The ¹³C-NMR spectrum shows a large chemical shift difference of C5 (C1 in the structure) of 60.8 ppm relative to its position in **66** of 81.7 ppm. In the ³¹P-NMR spectrum, the chemical shift of 46.7 ppm is in the range of the phosphonium salts as expected. The central C(1)-S(1)-P(1) angle is 100.8°, which is close to that of the phosphonium zwitteronic compound of the meldrum's acid [73]. The C-S and S-P bond lengths are in the range of the normal bond lengths with a very small shortage [C(1)-S(1) 1.740 (2) Å, S(1)-P(1) 2.095 (9) Å]. The bond lengths C(1)-C(2) [1.420(4) Å] and C(1)-C(4) [1.411(4) Å] lie within the intermediate of the carbon-carbon single and double bonds lengths which indicates the enolate nature of the barbiturate anion.

Fig. 34: The crystal structure of 69

4. Experimental Section

4.1 Methods of analysis

4.1.1 Elemental analysis

The elemental analyses were measured by an elemental analyzer from Carlo Erba Company, Model 1106. The accuracy was attached:

Carbon: $\pm 0.5\%$

Hydrogen: $\pm 0.3\%$

Nitrogen: $\pm 0,3\%$

4.1.2 Melting point determination

The melting point device is from Büchi Company, type Büchi 510. All melting points are not corrected.

4.1.3 Mass spectra

The EI-Mass spectra were acquired on a Finnigan TQS 70, by 70 eV at 200°C. The FAB-Mass spectra were acquired on a Finnigan TQS 70, by 70 eV in Nitrobenzylalcohol-Matrix at 30°C. Instrument modified by AMD and reported as mass / charge (m/z). The FD spectra were required on a Finnigan MAT 711A at 30°C.

4.1.4 NMR spectra

The high resolution NMR spectra were acquired by a Bruker DRX 250 NMR spectrometer operating at ¹H: 250,13 MHz; ¹³C: 62,90 MHz; ³¹P: 101,20 MHz. The spectra were measured relative to TMS (¹H, ¹³C) and 85% H₃PO₄ (³¹P) as external standard.

The following abbreviations were used in the description of the spectra:

- s Singlet
- d Doublet
- t Triplet
- q Quartet
- m Multiplet

4.1.5 IR spectra

The FT-IR spectra were acquired by a Bruker IFS 25 IR spectrometer. The measuring range was from 4000 to 225 cm⁻¹. The sample preparations were taken place in the form of KBr pressing or films.

4.1.6 Crystal structure analyses

The crystals were mounted on a glass fiber and transferred to a P4 Siemens diffractometer (32, 35, 36, 41, 45, 47, 54), a Nonius Kappa CCD diffractometer (31, 33, 37, 38, 39, 43, 46, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69), and a Stoe IPDS diffractometer (42, 44, 68) using graphite-monochromated Mo–K_{α} radiation. The lattice constants were determined by 25 precisely centered high-angle reflections and refined by least-squares methods. The structures were solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXTL-93 or SHELXTL-97.

4.2 General comments

All experiments were carried out under an atmosphere of argon.

4.3 Solvents

The solvents needed for the reactions were dried by conventional procedures and were stored over molecular sieves under argon.

4.4 Starting materials

1,3-dimethylbarbituric acid	13 [Aldrich]
1,3-diisopropyl-4,5-dimethyl-2-ylidene	4c [3]
1,3-dicyclohexyl-4,5-dimethyl-2-ylidene	34 [3]
1,3-diadamantyl-4,5-dihydro-2-ylidene	2 [2]

4.5 Preparation of the compounds

4.5.1 Preparation of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium phosphonate (**31**) 0.3 g (3.7 mmol) of H₃PO₃ was added to a solution of 0.67 g (3.7 mmol) of 1,3-diisopropyl-4,5dimethylimidazol-2-ylidene in 10 ml Et₂O at -15°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.74 g (76 %), as colourless crystals. Elemental analysis for $C_{11}H_{23}N_2PO_3$ (262.29 g/mol): found (calc.) C 50.83 (50.37), H 8.39 (8.84), N 10.38 (10.68) %. ¹H-NMR (CD₂Cl₂):

$\delta = 1.61$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=7.0 Hz]
$\delta = 2.32$	[s, 6 H, 4,5-Me]
$\delta = 4.60$	[sept, 2 H, C <i>H</i> Me ₂]
$\delta = 9.24$	[s, 1 H, 2-H _{Im}]
$\delta = 6.78$	[d, 1 H, HP]
Not observed	[OH]

 13 C-NMR (CD₂Cl₂):

$\delta = 7.3$	[4,5-Me]
$\delta = 21.4$	[1,3-CH <i>Me</i> ₂]
$\delta = 49.9$	[1,3- <i>C</i> HMe ₂]
$\delta = 125.9$	[C4,5]
$\delta = 130.7$	[C2]

³¹P-NMR (CD_2Cl_2):

 $\delta = 12.39$

[HPO₂OH]

4.5.2 Preparation of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium bromide (32) A solution of 0.80 g (4.4 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 5 ml THF was added to 0.72 g (4.0 mmol) of triethylammonium bromide in 15 ml of THF at r.t., after the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethan/diethylether 0.97 g (84 %), as colourless crystals. Elemental analysis for $C_{11}H_{21}N_2Br$ (261.21 g/mol): found (calc.) C 50.17 (50.58), H 8.26 (8.10), N 10.37 (10.72) %.

¹H-NMR (CDCl₃):

$\delta = 1.64$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=7.1 Hz]
$\delta = 2.20$	[s, 6 H, 4,5-Me]
$\delta = 4.54$	[sept, 2 H, C <i>H</i> Me ₂]
$\delta = 10.09$	[s, 1 H, 2-H _{Im}]

¹³C-NMR (CDCl₃):

$\delta = 8.5$	[4,5-Me]
$\delta = 22.6$	[1,3-CH <i>Me</i> ₂]
$\delta = 50.8$	[1,3- <i>C</i> HMe ₂]
$\delta = 125.4$	[C4,5]
$\delta = 132.4$	[C2]

4.5.3 Preparation of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium (*Z*)-2-cyano-1-phenyl-1-ethenolate (**33**)

A solution of 0.56 g (3.9 mmol) of benzoylacetonitril in 10 ml THF was added to 0.70 g (3.9 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 15 ml of THF at r.t., after the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from acetonitrile/diethylether 1.15 g (91 %), as red crystals; m.p. 109°C. Elemental analysis for C₂₀H₂₇N₃O (325.45 g/mol): found (calc.) C 73.43 (73.85), H 8.02 (8.31), N 12.71 (12.92) %. ¹H-NMR (CD₂Cl₂): $\delta = 1.60$ [d, 12 H, 1,3-CHMe₂, ³J=7.0 Hz]

$\delta = 4.84$	[sept, 2 H, C <i>H</i> Me ₂]
$\delta = 2.23$	[s, 6 H, 4,5-Me]
$\delta = 4.15$	[s, 1 H, NCCH]
$\delta = 7.25 - 7.71$	[m, 5 H, Ph]
$\delta = 10.37$	[s, 1 H, 2-H _{Im}]
13 C-NMR (CD ₂ Cl ₂):	
$\delta = 8.3$	[4,5-Me]
$\delta = 22.1$	[1,3-CH <i>Me</i> ₂]
$\delta = 50.7$	[1,3- <i>C</i> HMe ₂]
$\delta = 54.9$	[<i>C</i> CN]
δ = 125.2, 125.8, 127.1, 127.7	[Ph]
$\delta = 128.0$	[C4,5]
$\delta = 138.2$	[C2]
$\delta = 135.1$	[CN]
$\delta = 182.9$	[CO]

4.5.4 Preparation of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium chloride (**35**) A solution of 0.64 g (2.5 mmol) of 1,3-dicyclohexyl-4,5-dimethylimidazol-2-ylidene in 5 ml THF was added to 0.34 g (2.5 mmol) of triethylammonium chloride in 15 ml of THF at r.t., after the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.64 g (86 %), as colourless crystals. Elemental analysis for $C_{17}H_{29}N_2Cl$ (296.88 g/mol): found (calc.) C 68.24 (68.78), H 9.46 (9.85), N 9.37 (9.44) %.

¹H-NMR (CDCl₃):

$\delta = 1.43, 1.82, 1.98$	[m,m,m, 4,8,8 H, cy]
$\delta = 2.45$	[s, 6 H, 4,5-Me]
$\delta = 3.75$	[sept, 2 H, C <i>H</i> Me ₂]
$\delta = 8.30$	[s, 1 H, 2-H _{Im}]

13 C-NMR (CDCl ₃):	
$\delta = 9.3$	[4,5-Me]
δ = 25.2, 25.9, 34.6, 57.7	$[C_6H_{11}]$
$\delta = 128.1$	[C4,5]
$\delta = 131.5$	[C2]

4.5.5 Preparation of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium dicyanomethylide (36)

0.15 ml (2.3 mmol) of malononitrile was added to a solution of 0.6 g (2.3 mmol) of 1,3dicyclohexyl-4,5-dimethylimidazol-2-ylidene in 30 ml of THF at -10°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from acetonitrile/diethylether 0.66 g (87 %), as colourless crystals; m.p. 142°C. Elemental analysis for $C_{20}H_{30}N_4$ (326.48 g/mol): found (calc.) C 73.17 (73.58), H 9.76 (9.26), N 17.37 (17.16) %.

¹H-NMR (CD₃CN):

$\delta = 1.31, 1.72, 1.86$	[m,m,m, 4,8,8 H, cy]
$\delta = 2.20$	[s, 6 H, 4,5-Me]
$\delta = 4.18$	[m, 2 H, 1,3-CH]
$\delta = 2.3$	[s, 1 H, CH(CN) ₂]

¹³C-NMR (CD₃CN):

$\delta = 7.3$	[4,5-Me]
δ = 24.3, 24.7, 32.6, 56.7	$[C_6H_{11}]$
$\delta = 45.0$	[<i>C</i> (CN) ₂]
$\delta = 126.1$	[C4,5]
$\delta = 129.5$	[C2]
$\delta = 163.4$	$[C(CN)_2]$

4.5.6 Preparation of 2-cyano-1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium bromide(37)

A solution of 0.34 g (3.2 mmol) of BrCN in 10 ml THF was added to a solution of 0.83 g (3.2 mmol) of 1,3-dicyclohexyl-4,5-dimethylimidazol-2-ylidene in 20 ml of THF at -76°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from methanol/diethylether 0.74 g (63 %), as red crystals. Elemental analysis for $C_{18}H_{28}N_3Br$ (366.34 g/mol): found (calc.) C 59.17 (59.01), H 7.26 (7.70), N 11.37 (11.47) %.

¹H-NMR (CD₂Cl₂):

$\delta = 1.48, 1.97, 2.24$	[m,m,m, 4,8,8 H, cy]
$\delta = 2.54$	[s, 6 H, 4,5-Me]
$\delta = 4.49$	[m, 2 H, 1,3-CH]

 13 C-NMR (CD₂Cl₂):

$\delta = 11.6$	[4,5-Me]
δ = 25.3, 26.4, 32.4, 62.5	$[C_6H_{11}]$
$\delta = 126.3$	[C4,5]
$\delta = 133.9$	[C2]
$\delta = 107.8$	[CN]

MS (FAB): m/z (%) = 286 [100, M⁺], 261 [84, M⁺ - CN] and further fragments.

5.4.7 Preparation of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate (38)

0.34 (6.0 mmol) of CS₂ was added to a solution of 1.56 g (6.0 mmol) of 1,3-dicyclohexyl-4,5dimethylimidazol-2-ylidene in 20 ml of THF at -15°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from methanol/diethylether 1.72 g (85 %), as red crystals. Elemental analysis for C₁₈H₂₈N₂S₂ (336.56 g/mol): found (calc.) C 64.07 (64.24), H 8.26 (8.39), N 8.77 (8.32) %. ¹H-NMR (CDCl₃):

$\delta = 2.27$	[s, 6 H, 4,5-Me]
$\delta = 4.50$	[m, 2 H, 1,3-CH]
¹³ C-NMR (CDCl ₃):	
$\delta = 10.9$	[4,5-Me]
δ = 25.4, 26.1, 31.2, 59.6	$[C_6H_{11}]$
$\delta = 123.4$	[C4,5]
$\delta = 150.3$	[C2]
$\delta = 230.1$	$[CS_2]$

4.5.8 Preparation of 1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium phenylphosphonate (**39**)

A solution of 0.25 g (1.6 mmol) of PhP(O)(OH)₂ in 10 ml THF was added to a solution of 0.42 g (1.6 mmol) of 1,3-dicyclohexyl-4,5-dimethylimidazol-2-ylidene in 20 ml of THF at -10°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from methanol/diethylether 0.60 g (90 %), as colourless crystals. Elemental analysis for $C_{23}H_{35}N_2O_3P$ (418.51 g/mol): found (calc.) C 66.47 (66.01), H 8.06 (8.43), N 6.27 (6.69) %.

¹H-NMR (CD₃OD):

$\delta = 1.31, 1.72, 1.86$	[m,m,m, 4,8,8 H, cy]
$\delta = 2.11$	[s, 6 H, 4,5-Me]
$\delta = 4.24$	[m, 2 H, 1,3-CH]
$\delta = 8.92$	[s, 1 H, 2-H _{Im}]
$\delta = 7.55 - 8.15$	[m, 15 H, Ph]
Not observed	[OH]

¹³C-NMR (CD₃OD):

$\delta = 8.6$	[4,5-Me]
δ = 26.3, 26.8, 34.6, 58.9	$[C_6H_{11}]$
$\delta = 128.8 - 132.2$	[Ph]
$\delta = 132.3$	[C2]

31 P-NMR (CD₃OD): $\delta = 13.05$

[PhPO₂OH]

4.5.9 Preparation of 1,3-di(1-adamantyl)-1,3-dihydro-2H-imidazole-2-thione (**41**) A solution of 0.42 g (1.25 mmol) of 1,3-diadamantyl-4,5- dihydroimidazol-2-ylidene and 0.04 g S in 25 ml THF was refluxed for 8 hr. After cooling, solvent was removed in vacuo at r.t. to dryness. The residue was recrystallised from dichloromethane/diethylether to give 0.15 g (33 %), as yellow crystals; m.p. 157°C. Elemental analysis for $C_{23}H_{32}N_2S$ (368.58 g/mol): found (calc.) C 74.45 (74.95), H 8.31 (8.75), N 7.15 (7.60) %.

¹H-NMR (d₈-toluene):

$\delta = 1.56 - 2.57$	$[C_{10}H_{15}]$
$\delta = 6.36$	[d, 2 H, 4,5-Me]

¹³C-NMR (d₈-toluene):

$\delta = 30.4, 36.4, 39.6, 60.1$	$[C_{10}H_{15}]$
$\delta = 112.6$	[C4,5]
$\delta = 188.1$	[C2]

MS (FAB): m/z (%) = 369 [100, M⁺], 341 [24, M⁺ - 2CH₂] and further fragments.

4.5.10 Preparation of 1,3-di(1-adamantyl)-1H-imidazol-3-ium thiocyanate (42) A solution of 0.59 g (1.75 mmol) of 1,3-diadamantyl-4,5- dihydroimidazol-2-ylidene in 5 ml THF was added to 0.13 g (1.75 mmol) of H₄NSCN in 15 ml of THF at r.t., after the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.58 g (84 %), as colourless crystals. Elemental analysis for $C_{24}H_{33}N_3S$ (395.61 g/mol): found (calc.) C 72.34 (72.86), H 8.86 (8.41), N 10.37 (10.62) %.

¹H-NMR (CD₃OD):

$\delta = 1.56 - 3.74$	$[C_{10}H_{15}]$	
$\delta = 7.91$	[d, 2 H, 4,5-Me]	
$\delta = 8.94$	[s, 1 H, 2-H _{Im}]	

¹³ C-NMR (CD ₃ OD):	
δ = 31.4, 36.8, 43.8, 61.8	$[C_{10}H_{15}]$
$\delta = 131.3$	[C4,5]
$\delta = 120.9$	[C2]
Not observed	[S <i>C</i> N]

4.5.11 Preparation of 2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium dicyanoargentate (43)

1.3 g (9.7 mmol) of silver cyanide was added to a solution of 1.1 g (3.2 mmol) of 2-bromo-

1,3-diisopropyl-4,5-dimethylimidazoliumbromide in 30 ml of acetonitrile at r.t., the mixture was stirred for 48 hr. The solvent was removed in vacuo and 20 ml of dichloromethane was added. The resulting solution was filtered off and solvent was removed in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.98 g (73 %), as colourless crystals. Elemental analysis for $C_{13}H_{20}N_4BrAg$ (420.10 g/mol): found (calc.) C 37.54 (37.17), H 4.38 (4.80), N 13.01(13.34) %.

¹H-NMR (CD₃CN):

$\delta = 1.59$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=6.9 Hz]
$\delta = 2.33$	[s, 6 H, 4,5-Me]
$\delta = 4.89$	[sept, 2 H, C <i>H</i> Me ₂]

¹³C-NMR (CD₃CN):

$\delta = 9.3$	[4,5-Me]
$\delta = 19.4$	[1,3-CH <i>Me</i> ₂]
$\delta = 53.3$	[1,3- <i>C</i> HMe ₂]
$\delta = 129.0$	[C4,5]
$\delta = 142.0$	$[Ag(CN)_2]$
Not observed	[C2]

4.5.12 Preparation of 2-cyano-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride (44)

A mixture solution of 0.20 g (3.1 mmol) of KCN and 0.82 g (3.0 mmol) 18-crown-6-ether in 15 ml CH₂Cl₂ was added to solution of 0.78 g (3.1 mmol) of 2-chloro-1,3-diisopropyl-4,5-dimethylimidazoliumchloride in 15 ml of CH₂Cl₂ at r.t., the solution was refluxed for 8 hr. After cooling, solvent was removed in vacuo to dryness. The residue was recrystallised from dichloromethane/THF to give 0.47 g (65 %), as colourless crystals. Elemental analysis for $C_{12}H_{20}N_3Cl$ (241.76 g/mol): found (calc.) C 59.23 (59.62), H 8.24 (8.34), N 17.88 (17.38) %.

$\delta = 1.61$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=6.9 Hz]	
$\delta = 2.48$	[s, 6 H, 4,5-Me]	
$\delta = 4.94$	[sept, 2 H, C <i>H</i> Me ₂]	

 13 C-NMR (d₆-DMSO):

$\delta = 9.69$	[4,5-Me]
$\delta = 21.2$	[1,3-CH <i>Me</i> ₂]
$\delta = 53.7$	[1,3-CHMe ₂]
$\delta = 132.2$	[C4,5]
$\delta = 112.4$	[C2]
$\delta = 107.6$	[<i>C</i> N]

MS (FAB): m/z (%) = 206 [100, M⁺], 164 [23, M⁺ - Me] and further fragments.

Preparation of (45):

0.24 ml (3.8 mmol) of malononitrile was added to a solution of 1.3 g (3.8 mmol) of 2-bromo-

1,3-diisopropyl-4,5-dimethylimidazoliumbromide in 30 ml of acetonitrile at -30 °C. Then 7 ml of triethylamine was added slowly and the mixture was stirred for 24 hr at r.t., the solvent was removed in vacuo and the residue was dissolved in 15 ml of dichloromethane. The resulting solution was extracted with 30 ml of water. The organic layer was dried over Na_2SO_4 and

^{4.5.13} Preparation of 2-(1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene)malononitrile (45) and 2-(1,3-diethyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene) malononitrile (46)

evaporated in vacuo to dryness. The residue was recrystallised from dichloromethane/ diethylether to give 0.59 g (64 %), colourless crystals. Elemental analysis for $C_{14}H_{20}N_4$ (244.34 g/mol): found (calc.) C 68.11(68.82), H 7.89 (8.25), N 22.72 (22.93) %. ¹H-NMR (CD₂Cl₂):

$\delta = 1.46$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=6.9 Hz]
$\delta = 2.18$	[s, 6 H, 4,5-Me]
$\delta = 4.96$	[sept, 2 H, C <i>H</i> Me ₂]

¹³C-NMR (CD₂Cl₂):

$\delta = 10.5$	[4,5-Me]
$\delta = 21.2$	[1,3-CH <i>Me</i> ₂]
$\delta = 51.5$	[1,3- <i>C</i> HMe ₂]
$\delta = 125.4$	[C4,5]
$\delta = 144.4$	[C2]
$\delta = 14.0$	$[C(CN)_2]$
$\delta = 122.9$	$[C(CN)_2]$

MS (FAB): m/z (%) = 245 [100, M^+], 267 [21, M^+ +Na], 203 [20, M^+ - CN, - Me] and further fragments.

Preparation of (46):

0.17 ml (2.7 mmol) of malononitrile was added to a solution of 0.8 g (2.7 mmol) of 2-bromo-1,3-diethyl-4,5-dimethylimidazoliumbromide in 30 ml of acetonitrile at -30°C. Then 7 ml of triethylamine was added slowly and the mixture was stirred for 24 hr at r.t., the solvent was removed in vacuo and the residue was dissolved in 15 ml of dichloromethane. The resulting solution was extracted with 30 ml of water. The organic layer was dried over Na₂SO₄ and evaporated in vacuo to dryness. The residue was recrystallised from dichloromethane/ diethylether to give 0.41 g (74 %), as colourless crystals. Elemental analysis for $C_{12}H_{16}N_4$ (216.29 g/mol): found (calc.) C 66.19 (66.64), H 7.28 (7.46), N 26.47 (25.90) %.

¹H-NMR (CD_2Cl_2):

$\delta = 1.30$	[br s, 6 H, 1,3-CH <i>Me</i> ₂]
$\delta = 2.08$	[s, 6 H, 4,5-Me]

$\delta = 4.00$	[br s, 4 H, C <i>H</i> ₂ Me]
13 C-NMR (CD ₂ Cl ₂):	
$\delta = 8.7$	[4,5-Me]
$\delta = 14.5$	[1,3-CH <i>Me</i> ₂]
$\delta = 40.7$	[1,3- <i>C</i> HMe ₂]
$\delta = 123.5$	[C4,5]
$\delta = 142.5$	[C2]
$\delta = 18.8$	$[C(CN)_2]$
$\delta = 121.7$	$[C(CN)_2]$

MS (FAB): m/z (%) = 217 [100, M⁺], 244 [21, M⁺+Na], 203 [10, M⁺ - N] and further fragments.

4.5.14 Preparation of 2-amino-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride (47)

0.3 g (7.7 mmol) of NaNH₂ was added to solution of 1.9 g (7.7 mmol) of 2-chloro-1,3diisopropyl-4,5-dimethylimidazoliumchloride in 25 ml of THF at r.t., the solution was stirred for 72 hr at rt. The resulting solution was filtered off and solvent was removed in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.38 g (21 %), as colourless crystals. Elemental analysis for $C_{11}H_{22}N_3Cl$ (231.77 g/mol): found (calc.) C 57.43 (57.00), H 9.24 (9.57), N 18.38 (18.13) %.

¹ H-NMR (CD ₃ CN):	
$\delta = 1.65$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=6.9 Hz]
$\delta = 2.18$	[s, 6 H, 4,5-Me]
$\delta = 4.98$	[sept, 2 H, C <i>H</i> Me ₂]
Not observed	[2 H, NH ₂]

¹³ C-NMR	(CD ₃ CN):
---------------------	-----------------------

$\delta = 10.1$	[4,5-Me]
$\delta = 22.8$	[1,3-CH <i>Me</i> ₂]
$\delta = 51.1$	[1,3-CHMe ₂]

$\delta = 129.2$	[C4,5]
$\delta = 120.1$	[C2]

MS (FAB): m/z (%) = 196 [100, M⁺], 180 [60, M⁺ - NH₂] and further fragments.

4.5.15 Preparation of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium nitrate (**48**) 0.78 g (4.6 mmol) of silver nitrate was added to a solution of 0.80 g (3.1 mmol) of 1,3diisopropyl-4,5-dimethylimidazoliumbromide in 30 ml of acetonitrile. The mixture was stirred for 24 hr at r.t., the solvent was removed in vacuo and 15 ml of dichloromethane was added. The resulting solution was filtered off. The solvent was removed in vacuo and the residue was recrystallised from dichloromethane/diethylether to give 0.69 g (92 %), as colourless crystals. Elemental analysis for $C_{11}H_{21}N_3O_3$ (243.31 g/mol): found (calc.) C 53.72 (54.30), H 8.98 (8.70), N 17.09 (17.27) %.

¹H-NMR (CDCl₃):

$\delta = 1.53$	$[d, 12 H, 1,3-CHMe_2, ^3J = 7.0 Hz]$
$\delta = 2.16$	[s, 6 H, 4,5-Me]
$\delta = 4.43$	[sept, 2 H, CHMe ₂]
$\delta = 9.99$	[s, 1 H, 2-H _{Im}]

¹³C-NMR (CDCl₃):

$\delta = 9.3$	4,5-Me]
δ = 23.3	1,3 - CH <i>Me</i> ₂]
$\delta = 51.4$	1,3- <i>C</i> HMe ₂]
$\delta = 126.2$	C4,5]
$\delta = 133.2$	C2]

4.5.16 Preparation of 2-bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-iumnitrate **(49)** 0.52 g (3.1 mmol) of silver nitrate was added to a solution of 0.70 g (2.1 mmol) of 2-bromo-1,3diisopropyl-4,5-dimethylimidazoliumbromide in 30 ml of acetonitrile. The mixture was stirred for 24 hr at r.t., the solvent was removed in vacuo and 15 ml of dichloromethane was added. The resulting solution was filtered off. The solvent was removed in vacuo and the residue was recrystallised from dichloromethane/diethylether to give 0.56 g (84 %), colourless crystals. Elemental analysis for $C_{11}H_{20}N_3O_3Br$ (322.20 g/mol): found (calc.) C 40.57 (41.01), H 6.41 (6.26), N 12.71 (13.04) %.

¹ H-NMR (CDCl ₃):	
$\delta = 1.65$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J=6.9 Hz]
$\delta = 2.39$	[s, 6 H, 4,5-Me]
$\delta = 4.98$	[sept, 2 H, C <i>H</i> Me ₂]

13 C-NMR (CDCl ₃):	
$\delta = 11.3$	[4,5-Me]
$\delta = 21.4$	[1,3-CH <i>Me</i> ₂]
$\delta = 54.4$	[1,3- <i>C</i> HMe ₂]
$\delta = 129.1$	[C4,5]
Not observed	[C2]

4.5.17 Preparation of 1,3-dimethyl-2,6-dioxo-5-(1-pyridiniumylmethyl)-1,2,3,6-tetrahydro-4-pyrimidinolate (50)

2.4 ml (32 mmol) of 37% aq. formaldehyde was added in one portion to 5.0 g (32 mmol) of 1, 3dimethylbarbituric acid in 25 ml of pyridine at r.t., after the reaction mixture was stirred for 1 hr, the solvent was removed in vacuo at 50°C and the residue was dissolved in 40 ml of hexane for 1 hr. The precipitate was filtered off and dried in vacuo to give 7.2 g (91 %), yellow precipitate; m.p. 337°C. Elemental analysis for $C_{12}H_{13}N_3O_3$ (247.25 g/mol): found (calc.) C 58.43 (58.29), H 5.00 (5.30), N 16.98 (17.00) %.

1 H-NMR (CD ₂ Cl ₂):	
$\delta = 2.98$	[s, 6 H, 1,3-Me _B]
$\delta = 5.24$	[s, 2 H, CH ₂]
$\delta = 7.26, 7.71, 8.53$	[3br s, 5 H, Py]

¹³C-NMR (CD₂Cl₂): $\delta = 29.0$

1___ _ __

. ____

 $[1, 3-Me_B]$

$\delta = 46.3$	$[C5_B]$
$\delta = 51.8$	$[CH_2]$
$\delta = 150.2$	$[C2_B]$
$\delta = 169.8$	[C4,6 _B]
δ = 124.4, 136.8, 149.7	[Py]

MS (FAB, NBA-Matrix): m/z (%) = 247[41, M⁺], 79[100, C₅H₅N⁺] and further fragments.

4.5.18 Preparation of 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)methyl]-1,2,3,6tetrahydro-4-pyrimidinolate (51)

A solution of 0.68 g (2.6 mmol) of PPh₃ in 5 ml CH₂Cl₂ was added to 0.65 g (2.6 mmol) of **50** in 15 ml of CH₂Cl₂ at r.t., after the reaction mixture was stirred over night, the solvent was removed in vacuo to dryness. The residue was recrystallised from dichloromethane/diethylether to give 1.01 g (90 %), as green crystals; m.p. 189°C (decomp.). Elemental analysis for $C_{25}H_{23}N_2O_3P$ (430.44 g/mol): found (calc.) C 69.43 (69.76), H 5.34 (5.39), N 6.63 (6.51) %.

¹H-NMR (CD_2Cl_2):

 $\delta = 23.9$

= 3.11 [s, 6 H, 1,3	
$\delta = 7.55 - 8.15$	[m, 15 H, Ph]
$\delta = 4.35$	[s, 2 H, CH ₂]

13 C-NMR (CD ₂ Cl ₂):	
$\delta = 27.4$	$[1,3-Me_B]$
$\delta = 75.1$	$[C5_B]$
$\delta = 153.6$	$[C2_B]$
$\delta = 163.6$	$[C4, 6_B]$
$\delta = 25.7$	$[CH_{2,}{}^{1}J = 43.8 Hz]$
δ = 120.7, 129.6, 134.4, 134.6	[Ph]
³¹ P-NMR (CDCl ₃):	

[CH ₂ PPh ₃]

MS (FAB): m/z (%) = 431 [41, M⁺], 262 [100, PPh₃⁺] and further fragments.

This compound can also be prepared by another reaction:

A solution of 0.33 g (1.3 mmol) of PPh₃ in 5 ml CH₂Cl₂ was added to 0.21 g (1.3 mmol) of **53** in 20 ml of CH₂Cl₂ at r.t., after the reaction mixture was stirred over night, the solvent was removed in vacuo to dryness. The residue was recrystallised from dichloromethane/diethylether to give 0.48 g (86 %). Elemental analysis for $C_{25}H_{23}N_2O_3P$ (430.44 g/mol): found (calc.) C 70.05 (69.76), H 5.75 (5.39), N 6.83 (6.51) %.

4.5.19 Preparation of 5-[(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-yl)methyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (52)

A solution of 0.43 g (2.4 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 8 ml of THF was added to 0.60 g (2.4 mmol) of **50** in 15 ml of THF at -10°C. After the reaction mixture was stirred over night, the solvent was removed in vacuo to dryness. The residue was recrystallised from dichloromethane/diethylether to give 0.81 g (88 %), as colourless crystals; m.p. 138°C (decomp). Elemental analysis for $C_{18}H_{28}N_4O_3$ (348.44 g/mol): found (calc.) C 61.72 (62.05), H 8.14 (8.10), N 16.22 (16.08) %.

¹H-NMR (CDCl₃):

$\delta = 3.19$	[s, 6 H, 1,3-Me _B]
$\delta = 3.10$	[s, 2 H, CH ₂]
$\delta = 1.61$	[d, 12 H, 1,3-CH <i>Me</i> _{2,} ³ J= 7.0 Hz]
$\delta = 2.28$	[s, 6 H, 4,5-Me]
$\delta = 4.50$	[sept, 2 H, C <i>H</i> Me ₂]

13 C-NMR (CD ₂ Cl ₂):	
$\delta = 26.3$	[1,3-Me _B]
$\delta = 79.3$	[C5 _B]
$\delta = 153.6$	$[C2_B]$
$\delta = 164.6$	$[C4, 6_B]$
$\delta = 21.4$	$[CH_2]$
$\delta = 9.3$	[4,5-Me]
$\delta = 19.9$	[1,3-CH <i>Me</i> ₂]

$\delta = 49.8$	[1,3-CHMe ₂]
$\delta = 124.7$	[C4,5]
$\delta = 146.7$	[C2]

MS (FAB): m/z (%) = 349 [20, M⁺], 181 [100, ImH⁺] and further fragments.

4.5.20 Preparation of 1,3-dimethyl-5-methylene-2,4,6(1H,3H,5H)-pyrimidinetrione (53) 0.15 ml (2.0 mmol) of CF₃COOH was added to a solution of 0.49 g (2.0 mmol) of 50 in 15 ml CH₂Cl₂ at r.t., after the reaction mixture was stirred 30 min. The solvent was removed in vacuo at r.t. to dryness. The residue was recrystallised from benzene to give 0.16 g (48 %). Yellow crystals were obtained by sublimation under vacium at 220°C. Elemental analysis for C₇H₈N₂O₃ (168.15 g/mol): found (calc.) C 50.43 (50.00), H 4.51 (4.80), N 16.98 (16.66) %.

$\delta = 3.00$	[s, 6 H, 1,3-Me _B]
$\delta = 2.11$	[s, 2 H, CH ₂]

¹³C-NMR (CDCl₃):

$\delta = 28.3$	$[1, 3-Me_B]$
$\delta = 51.0$	[C5 _B]
$\delta = 149.4$	$[C2_B]$
$\delta = 169.0$	[C4,6 _B]
$\delta = 45.5$	$[CH_2]$

MS (FD): m/z (%) = 168 [100], 156 [3, - CH₂].

4.5.21 Preparation of 5,5-dichloro-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione (54) A mixture of 1.45 ml (18.0 mmol) of sulfuryl chloride and 1.40 g (9.0 mmol) of 1,3dimethylbarbituric acid in 25 ml of THF was refluxed for 6 hr. After cooling, solvent was removed in vacuo at r.t. to dryness. The residue was recrystallised from dichloromethane/ diethylether to give 1.72 g (85 %), as colourless crystals; m.p. 157°C. Elemental analysis for $C_6H_6Cl_2N_2O_3$ (225.03 g/mol): found (calc.) C 32.25 (32.02), H 2.51 (2.69), N 12.68 (12.45) %. IR (KBr): $v_{CO} = 1655$ (sst, br) cm⁻¹

¹ H-NMR (CD_2Cl_2):	
$\delta = 3.30$	[s, 6 H, 1,3-Me]
13 C-NMR (CD ₂ Cl ₂):	
$\delta = 30.7$	[1,3-Me]
$\delta = 149.1$	[C2]
$\delta = 72.2$	[C5]
$\delta = 161.7$	[C4,6]

MS (FAB): m/z (%) = 225 [93, M⁺], 191 [100, M⁺ - Cl] and further fragments.

4.5.22 Preparation of 5-chloro-1,3-dimethyl-5-nitro-2,4,6(1H,3H,5H)-pyrimidinetrione (**55**) 1.25 g (8.1 mmol) of silver nitrite was added to a solution of 0.80 g (3.6) of **54** in 30 ml of acetonitrile. The mixture was stirred for 24 hr at r.t., the solvent was removed in vacuo and 15 ml of dichloromethane was added. The resulting solution was filtered off and solvent was removed in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.62 g (73 %), as colourless crystals; m.p. 121°C. Elemental analysis for C₆H₆ClN₃O₅ (235.58 g/mol): found (calc.) C 30.78 (30.59), H 2.43 (2.57), N 17.62 (17.84) %. IR (KBr): v_{CO} = 1645 (sst, br) cm⁻¹

¹H-NMR (CD_2Cl_2):

$$\delta = 3.34$$
 [s, 6 H, 1,3-Me]

 13 C-NMR (CD₂Cl₂):

$\delta = 30.6$	[1,3-Me]
$\delta = 149.2$	[C2]
$\delta = 89.2$	[C5]
$\delta = 159.1$	[C4,6]

MS (EI): m/z (%) = 189 [6, M⁺ - NO₂], 161 [100, M⁺ - NO₂ - 2Me] and further fragments.

4.5.23 Preparation of 2-chloro-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3dimethyl-5- nitro-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (56)

A solution of 0.80 g (4.4 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 5 ml of diethylether was added to 1.04 g (4.4 mmol) of **55** in 25 ml of diethylether at -78 °C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 1.58 g (86 %), as colourless crystals; m.p. 141°C. Elemental analysis for $C_{17}H_{26}ClN_5O_5$ (415.87 g/mol): found (calc.) C 49.39 (49.10), H 6.02 (6.30), N 16.71 (16.84) %.

$$\delta = 3.06$$

[s, 6 H, 1,3-Me_B]

$\delta = 1.43$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J= 6.8 Hz]
$\delta = 2.16$	[s, 6 H, 4,5-Me]
$\delta = 4.78$	[sept, 2 H, C <i>H</i> Me ₂]
¹³ C-NMR (CDCl ₃):	
$\delta = 30.6$	[1,3-Me _B]
$\delta = 151.6$	$[C2_B]$
$\delta = 114.2$	[C5 _B]
$\delta = 158.2$	[C4,6 _B]
$\delta = 9.8$	[4,5-Me]
$\delta = 20.2$	[1,3-CH <i>Me</i> ₂]
$\delta = 52.6$	[1,3- <i>C</i> HMe ₂]
$\delta = 126.3$	[C4,5]
$\delta = 127.9$	[C2]

MS (FAB): m/z (%) = 215 [100, M⁺], 173 [14, M⁺ - C₃H₇], 136 [23, M⁺ - (C₃H₇), - Cl] and further fragments.

4.5.24 Preparation of 5,6-dihydro-1,3-dimethyl-5,6-bis-[1',3'-dimethyl]-2',4',6'trioxopyrimid (5',5') yl[2,3-d] uracil (57)

A solution of 0.53 g (2.9 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 5 ml of Et_2O was added to 0.65 g (2.9 mmol) of **54** in 15 ml of Et_2O at -20°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 1.11 g (83 %), as colourless crystals. Elemental analysis for $C_{18}H_{18}N_6O_9$ (462.37 g/mol): found (calc.) C 46.91 (46.76), H 3.60 (3.92), N 18.52 (18.18) %.

¹H-NMR (d₆.DMSO):

 $\delta = 3.26-3.29-3.52$ [s,s,s, 6,9,3 H,1,3-Me_B]

MS (FAB): m/z (%) = 215 [100, M⁺], 173 [18, M⁺ - C₃H₇], 136 [20, M⁺ - (C₃H₇), - Cl] and further fragments.

4.5.25 Preparation of potassium 5-cyano-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4pyrimidinolate 1,4,7,10,13,16-hexaoxacyclooctadecane **(59)**

A mixture solution of 0.35 g (5.4 mmol) of KCN and 0.93 g (3.5 mmol) of 18-crown-6-ether in 15 ml CH₂Cl₂ was added to solution of 0.40 g (1.8 mmol) of **54** in 15 ml of CH₂Cl₂ at r.t., after the reaction mixture was stirred over night, solvent was removed in vacuo to dryness. The residue was recrystallised from dichloromethane/diethylether to give 0.48 g (55 %), as yellow crystals. Elemental analysis for C₁₉H₁₈N₃O₃K (483.56 g/mol): found (calc.) C 47.43 (47.19), H 6.24 (6.25), N 8.98 (8.69) %.

¹ H-NMR (CD ₂ Cl ₂):	
$\delta = 3.51$	[s, 6 H, 1,3-Me _B]
$\delta = 3.65$	[s, 12 H, crown ether]

13 C-NMR (CD ₂ Cl ₂):	
$\delta = 30.6$	$[1,3-Me_B]$
$\delta = 41.4$	$[C5_B]$
$\delta = 109.4$	[CN]
$\delta = 154.3$	$[C2_B]$
$\delta = 165.1$	$[C4, 6_B]$

4.5.26 Preparation of 5-[1-(1,3-dimethyl-2,4,6-trioxohexahydro-5-pyrimidinyl)-2oxopropyl]-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione (60)

A solution of 0.74 g (2.4 mmol) of 5,5-dibromo-1,3 dimethylbarbituric acid in 10 ml of acetone was added to 0.19 g (2.4 mmol) of Na₂S in 15 ml of H₂O at r.t., after the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 0.24 g (22 %), as colourless crystals; m.p. 115°C. Elemental analysis for C₉H₁₈N₄O₇ (366.33 g/mol): found (calc.) C 49.01 (49.18), H 4.54 (4.95), N 15.48 (15.29) %.

¹H-NMR (CD_2Cl_2):

$\delta = 3.21$	[s, 12 H, 1,3-Me _B]
$\delta = 3.85$	[s, 2 H, 5-H _B]
$\delta = 1.62$	[s, 3 H, Ac]
$\delta = 4.01$	[s, 1 H, <i>H</i> CAc]

 13 C-NMR (CD₂Cl₂):

$\delta = 29.3$	[1,3-Me _B]
$\delta = 49.1$	[C5 _B]
$\delta = 151.5$	$[C2_B]$
$\delta = 166.7$	$[C4, 6_B]$
$\delta = 24.9$	[CO <i>C</i> H ₃]
$\delta = 57.7$	[HCAc]
$\delta = 200.1$	[<i>C</i> OCH ₃]

MS (FAB): m/z (%) = 153 [100, $C_6H_6N_2O_3^+$], 309 [63, 2 $C_6H_7N_2O_3^+$], 168 [24, $C_7H_7N_2O_3^+$] and further fragments.

4.5.27 Preparation of [5,5'-Bipyrimidine]-2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone, 5,5'dihydroxy-1,1',3,3'-tetramethyl (61)

A solution of 1.66 g (5.3 mmol) of 5,5-dibromo-1,3 dimethylbarbituric acid in 10 ml THF was added to 0.41 g (5.3 mmol) of Na₂S in 8 ml of H₂O at r.t., after the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from (dimethylsulfoxide/dichloromethane)/diethylether 0.38 g (21 %), as colourless crystals. Elemental analysis for C₁₂H₁₄N₄O₈ (342.26 g/mol): found (calc.) C 42.51 (42.11), H 4.54 (4.12), N 16.18 (16.37) %.

$\delta = 3.31$	[s, 6 H, 1,3-Me _B]
Not observed	[s, 2 H, OH]

¹³ C-NMR (CDCl ₃):	
$\delta = 28.5$	[1,3-Me _B]
$\delta = 77.3$	[C5 _B]
$\delta = 151.0$	$[C2_B]$
$\delta = 163.5$	$[C4, 6_B]$

MS (FAB): m/z (%) = 341 [9, M⁺], 267 [13, M⁺ - 4 Me, - O] and further fragments.

4.5.28 Preparation 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-2,6dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (62)

A solution of 0.80 g (4.4 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 5 ml of Et₂O was added to 0.69 g (4.4 mmol) of 1,3 dimethylbarbituric acid in 15 ml of THF at -10°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 1.38 g (93 %), as colourless crystals; m.p. 135°C. Elemental analysis for $C_{17}H_{27}N_4O_3$ (335.43 g/mol): found (calc.) C 60.43 (60.87), H 8.24 (8.11), N 16.98 (16.70) %.

¹H-NMR (CDCl₃):

$\delta = 3.21$	[s, 6 H, 1,3-Me _B]
$\delta = 4.59$	[s, 1 H,5-H _B]
$\delta = 1.54$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J =6.9 Hz]
$\delta = 2.22$	[s, 6 H, 4,5-Me]
$\delta = 4.51$	[sept, 2 H, C <i>H</i> Me ₂]
$\delta = 9.80$	[s, 1 H, 2-H _{Im}]

 13 C-NMR (CDCl₃):

$\delta = 26.9$	$[1, 3-Me_B]$
$\delta = 76.8$	[C5 _B]
$\delta = 153.6$	$[C2_B]$
$\delta = 164.6$	[C4,6 _B]
$\delta = 8.2$	[4,5-Me]

$\delta = 22.2$	[1,3-CH <i>Me</i> ₂]
$\delta = 50.5$	[1,3- <i>C</i> HMe ₂]
$\delta = 125.8$	[C4,5]
$\delta = 131.9$	[C2]

4.5.29 Preparation of 1,3-dimethyl-1,3-dihydro-2H-imidazol-2-iminium 1,3-dimethyl-2,6dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (64)

A solution of 0.37 g (3.3 mmol) of 2-imino-1,3-dimethylimidazoline in 5 ml THF was added to 0.51 g (3.3 mmol) of 1,3 dimethylbarbituric acid in 15 ml of THF at -10°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from ethanol/diethylether 0.79 g (90 %), as colourless crystals; m.p. 149°C. Elemental analysis for $C_{11}H_{17}N_5O_3$ (267.29 g/mol): found (calc.) C 49.63 (49.38), H 6.44 (6.36), N 26.02 (26.19) %.

¹H-NMR (CDCl₃):

[s, 6 H, 1,3-Me _B]
[s, 1 H, 5-H _B]
[s, 6 H, 1,3- Me _{Im}]
[s, 2 H, 4,5-H _{Im}]
[br s, 2 H, NH ₂]

¹³C-NMR (CDCl₃):

$\delta = 26.6$	$[1,3-Me_B]$
$\delta = 75.1$	$[C5_B]$
$\delta = 153.6$	$[C2_B]$
$\delta = 163.0$	[C4,6 _B]
$\delta = 32.5$	[1,3-Me _{Im}]
$\delta = 146.1$	$[C2_{Im}]$
$\delta = 116.4$	[C4,5 _{Im}]
4.5.30 Preparation of [5,5'-Bipyrimidine]-2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone, 1,1',3,3'-tetramethyl (65)

A solution of 0.64 g (1.28 mmol) $BiPh_3CO_3$ and 0.13 g (0.83 mmol) of 1,3-dimethylbarbituric acid in 20 ml CH_2Cl_2 was refluxed for 20 hr. After cooling, solvent was removed in vacuo at r.t., to dryness. The residue was recrystallised from dichloromethane/diethylether to give 0.10 g (38 %), as green crystals; m.p. 157°C. Elemental analysis for $C_{12}H_{14}N_4O_6$ (310.26 g/mol): found (calc.) C 46.41 (46.45), H 4.03 (4.55), N 18.48 (18.06) %.

¹H-NMR (CDCl₃):

$\delta = 3.15$	[s, 12 H, 1,3-Me _B]
$\delta = 3.81$	[s, 2 H, 5-H _B]

¹³ C-NMR (CDCl ₃):	
$\delta = 28.2$	[1,3-Me _B]
$\delta = 46.9$	$[C5_B]$
$\delta = 151.2$	$[C2_B]$
$\delta = 161.5$	$[C4, 6_B]$

MS (EI): m/z ($\frac{1}{2}$) = 310 [5, M⁺], 280 [9, M⁺ - 2Me] and further fragments.

4.5.31 Preparation of 2,6-hydroxy-5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,4(1H,3H)-pyrimidinedione (66)

1 ml (13.7 mmol) of SOCl₂ was added to a solution of 2.1 g (13.7 mmol) of 1,3dimethylbarbituric acid in 15 ml of THF at -15°C. After the reaction mixture was stirred 30 min., the solvent was removed in vacuo at r.t. to dryness. The residue was recrystallised from acetonitrile to give 1.91 g (82 %), as colourless crystals. Elemental analysis for $C_{12}H_{14}N_4O_6S$ (342.33 g/mol): found (calc.) C 42.43 (42.10), H 4.23 (4.12), N 16.68 (16.37) %.

¹³C-NMR (MAS):

$\delta = 29.1$	[1,3-Me _B]
$\delta = 81.7$	[C5 _B]
$\delta = 150.1$	$[C2_B]$

 $\delta = 156.5$

 $[C4, 6_B]$

MS (FAB): m/z (%) = 343 [100, M⁺], 309 [25, M⁺, -S], 187 [32, M⁺, -C₆H₇N₂O₃] and further fragments.

4.5.32 Preparation of 1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (67)

A solution of 0.27 g (1.5 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 5 ml Et₂O was added to 0.50 g (1.5 mmol) of **66** in 15 ml of THF at -10°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from acetonitrile/diethylether 0.54 g (69 %), as colourless crystals. Elemental analysis for $C_{23}H_{34}N_6O_6S$ (522.62 g/mol): found (calc.) C 52.43 (52.86), H 6.24 (6.56), N 16.50 (16.08) %. ¹H-NMR (CDCl₃):

$\delta = 3.15$	[s, 12 H, 1,3-Me _B]
$\delta = 1.49$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J= 7.8 Hz]
$\delta = 2.17$	[s, 6 H, 4,5-Me]
$\delta = 4.59$	[sept, 2 H, CHMe ₂]
$\delta = 10.06$	[s, 1 H, 2-H _{Im}]
Not observed	[s, 1H, OH _B]

 13 C-NMR (CDCl₃):

$\delta = 29.2$	$[1, 3-Me_B]$
$\delta = 66.2$	$[C5_B]$
$\delta = 68.4$	[C5 _{B-OH}]
$\delta = 152.7$	$[C2_B]$
$\delta = 165.9$	[C4,6 _B]
$\delta = 9.4$	[4,5-Me]
$\delta = 22.7$	[1,3-CH <i>Me</i> ₂]
$\delta = 51.9$	[1,3- <i>C</i> HMe ₂]
$\delta = 125.9$	[C4,5]

 $\delta = 135.8$

[C2]

4.5.33 Preparation of di(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium) 5-[(1,3-dimethyl-6-oxido-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate (68)

A solution of 0.62 g (3.4 mmol) of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene in 5 ml Et₂O was added to 0.58 g (1.7 mmol) of **66** in 15 ml of THF at -10°C. After the reaction mixture was stirred over night the precipitate was filtered off and dried in vacuo. Yield after recrystallisation from dichloromethane/diethylether 1.02 g (86 %), as colourless crystals; m.p. 164°C. Elemental analysis for $C_{34}H_{54}N_6O_6S$ (702.91 g/mol): found (calc.) C 58.43 (58.10), H 7.45 (7.74), N 15.98 (15.94) %.

¹ H-NMR (CDCl ₃):	
$\delta = 3.12$	[s, 12 H, 1,3-Me _B]
$\delta = 1.52$	[d, 12 H, 1,3-CH <i>Me</i> ₂ , ³ J= 8.0 Hz]
$\delta = 2.18$	[s, 6 H, 4,5-Me]
$\delta = 4.80$	[sept, 2 H, C <i>H</i> Me ₂]
$\delta = 10.64$	[s, 1 H, 2-H _{Im}]

¹³ C-NMR (CDCl ₃):	
$\delta = 27.4$	$[1,3-Me_B]$
$\delta = 81.0$	$[C5_B]$
$\delta = 153.7$	$[C2_B]$
$\delta = 163.1$	$[C4, 6_B]$
$\delta = 8.7$	[4,5-Me]
$\delta = 27.4$	[1,3-CH <i>Me</i> ₂]
$\delta = 51.2$	[1,3- <i>C</i> HMe ₂]
$\delta = 124.4$	[C4,5]
$\delta = 137.3$	[C2]

4.5.34 Preparation of 1,3-dimethyl-2,6-dioxo-5-[(triphenylphosphonio)sulfanyl]-1,2,3,6tetrahydro-4-pyrimidinolate (69)

A solution of 0.62 g (2.4 mmol) of PPh₃ in 15 ml CH₂Cl₂ was added to a suspension solution of 0.82 g (1.5 mmol) of **66** in 15 ml of CH₂Cl₂ at r.t., after the reaction mixture was stirred over night, solvent was removed in vacuo at r.t. to dryness. The residue was recrystallised from dichloromethane/diethylether to give 0.49 g (73 %), as green crystals; m.p. 157°C. Elemental analysis for $C_{24}H_{21}N_2O_3PS$ (448.48 g/mol): found (calc.) C 64.43 (64.27), H 4.44 (4.72), N 6.68 (6.25) %.

¹H-NMR (CDCl₃):

$\delta = 3.09$	[s, 6 H, 1,3-Me _B]
$\delta = 7.50 - 7.85$	[m, 15 H, Ph]

¹³ C-NMR (CDCl ₃):	
$\delta = 28.6$	$[1,3-Me_B]$
$\delta = 60.8$	$[C5_B]$
$\delta = 153.3$	$[C2_B]$
$\delta = 165.0$	[C4,6 _B]
$\delta = 122.0$	$[d, C1_{Ph}, {}^{1}J = 75.4 \text{ Hz}]$
$\delta = 129.8$	$[C3,5_{Ph}, {}^{1}J = 12.5 \text{ Hz}]$
$\delta = 134.8$	$[C2, 6_{Ph}, {}^{1}J = 6.3 \text{ Hz}]$
$\delta = \text{not observed}$	[C4 Ph]

³¹ P-NMR (CDCl ₃):	
$\delta = 46.70$	

[SPPh₃]

5. Summary

Objectives of the present work were the synthesis of different types of imidazol-2-ylidene derivatives (scheme 1-2) and synthesis of different types of 1,3-dimethylbarbituric acid derivatives (scheme 3-4).

The resulting derivatives of imidazol-2-ylidene are classified into salts and neutral compounds. The salts **31**, **32**, **33**, **35**, **36**, **37**, **39**, **42**, **43**, **44**, **47**, **48** and **49** were obtained by the nucleophilic reactions of the imidazol-2-ylidene **4c**, **34** and **2** and substitution reactions of 2-halo-imidazolium salts.

The neutral compound **41** was obtained by the nucleophilic reaction of the 1,3-diadamantyl imidazol-2-ylidene **2** with sulfur, while compounds **45** and **46** were obtained by reaction of 2-bromoimidazolium bromide with malononitrile in the presence of base.

The resulting derivatives of 1,3-dimethylbarbituric acid are classified into salts and ylides and neutral compounds. The salts **56**, **62**, **64**, **67** and **68** were obtained by reaction of 1,3-dimethylbarbituric acid **13** and derivatives of 1,3-dimethylbarbituric acid with strong ylide type bases.

The ylide compounds **51** and **52** were obtained by nucleophilic attack at the methylene 1,3dimethylbarbituric acid **13**.

The neutral compounds **55**, **57**, **60**, **61** and **65** were obtained by using 5,5-dihalo-1,3dimethylbarbituric acid as starting material.

Scheme 1

Scheme 2

Scheme 3

Scheme 4

6. References

- A. J. Arduengo III, V. R. Dias, R. L. Harlow, M. Kleine, J. Am. Chem. Soc. 1992, 114, 5530.
- [2] A. J. Arduengo III, R. L. Harlow, M. Kleine, J. Am. Chem. Soc. 1991, 113, 361.
- [3] N. Kuhn, T. Kratz, Synthesis 1993, 561.
- [4] N. Kuhn, A. Al-Sheikh, Coord. Chem. Rev. 2005, 24, 829.
- [5] N. Kuhn, H. Bohnen, G. Henkel, Z. Naturforsch. 1994, 49b, 1473.
- [6] N. Kuhn, G. Weyers, G. Henkel, Chem. Commun. 1997, 627.
- [7] N. Kuhn, G. Weyers, S. Dümmling, B. Speiser, Phosphorus, Sulfur and Silicon 1997, 128, 45.
- [8] N. Kuhn, K. Eichele, M. Walker, T. Berends, R. Minkwit, Z. Anorg. Allg. Chem. 2002, 2026.
- [9] M. Tamm, S. Randoll, T. Bannenberg, E. Herdtweck, Chem. Sommun. 2004, 876.
- [10] B. S. Jursic, D. E. Stevens, J. Hetero. C. 2003, 40, 701.
- [11] H. Biltz, H. Wittek, Ber. 1921, 54B, 1035.
- [12] J. W. Clark-Lewis, M. J. Thompson, J. Am. Chem. Soc. 1959, 1628.
- [13] F. W. Smyth, T. Jenkins, J. Siekiera, A. Baydar, Analytica Chimica Acta 1975, 80, 233.
- [14] M. V. Jovanovic, R. E. Biehl, J. Hetero. C. 1987, 24, 191.
- [15] A. J. Barnes, L. Le Gall, J. Lauransan, Journal of Molecular Structure 1979, 56, 15.
- [16] W. Bolton, Acta Cryst. 1963, 16, 950.
- [17] B. S. Jursic, D. M. Neumann, K. L. Bowdy, E. D. Stevens, J. Hetero. C. 2004, 41, 233.
- [18] A. V. Moskvin, N. R. Reznikova, B. A. Ivin, Russian Journal of Organic Chemistry (Translation of Zhurnal Organicheskoi Khimii) 2002, 38, 463.
- [19] G. Alcerreca, R. Sanabria, R. Miranda, G. Arroyo, J. Tamariz, F. Delgado, Synthetic Communications 2000, 30, 1295.
- [20] N. Shoji, Y. Kondo, T. Takemoto, Chemical & Pharmaceutical Bulletin 1973, 21, 2639.
- [21] A. M. Arrett, M. A. Stockham, Journal of Endocrinology 1965, 33, 145.
- [22] N. Kuhn, G. Bohnen, T. Kratz, Chem. Ber. 1994, 127, 849.
- [23] N. Kuhn, G. Henkel, T. Kratz, J. Kreutzberg, R Boese, A. H. Maulitz, Chem. Ber. 1993, 126, 2041.
- [24] N. Kuhn, H. Bohnen, J. Fahl, D. Bläser, Chem. Ber. 1996, 129, 1579.

- [25] M. Johes Jr, W. Ando, M. E. Hndrick, A. Kulczycki jun., P. M. Howley, K. F. Hummel, D. S. Malament, J. Am. Chem. Soc. 1972, 94, 7469.
- [26] N. Kuhn, K. Sweidan, Unpublished data.
- [27] S. Furberg, P. Landamark, Acta Chem. Scand. II 1957, 9, 1505-1511.
- [28] M. Steimann, Personal Communication.
- [29] N. Kuhn, J. Fahl, R. Fawzi, C. Maichle-Mössmer, M. Steimann, Z. Naturforsh. 1998, 53b, 720.
- [30] N. Kuhn, K. Sweidan, Unpublished data.
- [31] N. Kuhn, K. Sweidan, Unpublished data.
- [32] N. Kuhn, H. Bohnen, G. Hekel, Z. Kristall. 1996, 211, 57; N. Kuhn, R. Boese, D. Bläser,
 Z. Kristall. 1994, 209, 837.
- [33] M. Steimann, Personal Communication.
- [34] N. Kuhn, K. Sweidan, Unpublished data.
- [35] N. Kuhn, K. Sweidan, Unpublished data.
- [36] N. Kuhn, E. Niquet, M. Steimann, I. Walker, Z. Naturforsh. 1999, 54, 1181.
- [37] N. Kuhn, K. Sweidan, Unpublished data.
- [38] T. J. Weakley, Acta Cryst. 1976, B32, 2889.
- [39] N. Kuhn, K. Sweidan, Unpublished data.
- [40] G. B.Ansell, J. Chem. Soc. Perkin Trans. 2 1972, 7, 841.
- [41] J. Huang, H-J. Schanz, E. D. Stevens, S. P. Nolan, K. B. Capps, A. Bauer, C. D. Hoff, Inorg. Chem. 2000, 39, 1042.
- [42] N. Kuhn, K. Sweidan, Unpublished data.
- [43] J. M. Ringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth, D. R. MacFarlane, J. Mater. Chem. 2002, 12, 3475.
- [44] N. Kuhn, A. Abu-Rayyan, K. Eichele, S. Schwarz, M. Steimann, Inorg. Chim. Acta. 2004, 357, 1799.
- [45] N. Kuhn, K. Sweidan, Unpublished data.
- [46] T. Soma, T. Iwamoto, Inorg. Chem. 1996, 35, 1849.
- [47] N. Kuhn, M. Walker, Unpublished data.
- [48] N. Kuhn, A. Abu-Rayyan, M. Göhner, M. Steimann, Z. Anorg. Allg. Chem. 2002, 628, 1721.
- [49] N. Kuhn, K. Sweidan, Unpublished data.

- [50] M. Steimann, Personal Communication.
- [51] N. Kuhn, K. Sweidan, Unpublished data.
- [52] M. Steimann, Personal Communication.
- [53] P. J. Langley, J. Hulliger, R. Thaimattam, G. R. Desiraju, New J. Chem. 1998, 1307.
- [54] M. Z. Ebrahimi, G. W. Huffiman, Synthesis 1996, 215.
- [55] M. Steimann, Personal Communication.
- [56] N. Kuhn, A. Al-Sheikh, S. Schwarz, M. Steimann, Z. Naturforsh. 2005, 60, 398.
- [57] V. Bertolasi, P. Gilli, V. Ferretti, New J. Chem. 2001, 25, 408.
- [58] M. Steimann, Personal Communication.
- [59] N. Kuhn, K. Sweidan, Unpublished data.
- [60] N. Kuhn, K. Sweidan, Unpublished data.
- [61] D. D. DesMarteau, W. T. Pennington, G. Resnati, Acta Cryst. 1994, C50, 1305.
- [62] N. Kuhn, K. Sweidan, Unpublished data.
- [63] N. Kuhn, K. Sweidan, Unpublished data.
- [64] M. Poling, D. Van der Helm, Acta Cryst. 1976, B32, 3349.
- [65] N. Kuhn, K. Sweidan, Unpublished data.
- [66] H. R. Snyder, C. W. Kurse, J. Am. Chem. Soc. 1958, 80, 1942.
- [67] N. Kuhn, K. Sweidan, Unpublished data.
- [68] N. Kuhn, K. Sweidan, Unpublished data.
- [69] N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, D. Bläser, R. Boese, Z. Naturforsch. 1995, 50b, 1779.
- [70] D. H. R. Barton, N. Y. Bhatnagar, Blazejewski, C. Jean, B. Charpiot, J. P. Finet, D. J. Lester, W. B. Motherwell, M. T. Papoula, S. P. Stanforth, J. Chem. Soc. Perkin Trans. 1 1985, 12, 2657.
- [71] N. Kuhn, K. Sweidan, Unpublished data.
- [72] N. Kuhn, K. Sweidan, Unpublished data.
- [73] N. Kuhn, A. Al-Sheikh, C. Maichle-Moessmer, M. Steimann, M. Stroebelle, Z. Anorg. Allg. Chem. 2004, 630, 1659.
- [74] N. Kuhn, K. Sweidan, Unpublished data.
- [75] N. Kuhn, K. Sweidan, Unpublished data.
- [76] N. Kuhn, K. Sweidan, Unpublished data.

7. Appendix

7.1 Abb	reviations and definitions
Å	Angstrom (10^{-10})
Ad	Adamantly
δ	Chemical shift
0	Degree
В	1,3-Dimethylbarbituric acid
Cat.	Catalytic
Calc.	Calculated
CH_2Cl_2	Dichloromethane
Су	Cyclohexyl
DMSO	Dimethylsulfoxide
EI	Electron ionization (mass spectroscopy)
Et	Ethyl
Et ₂ O	Diethyl ether
eV	Electron Volt
FAB	Fast atom bombardment (mass spectroscopy)
FD	Field desorption
Fig.	Figure
FT	Fourier transformation
g	Grams
h	Hour
Hz	Hertz
Im	Imidazole
i-Pr	Isopropyl
IR	Infrared spectroscopy
Me	Methyl
MeCN	Acetonitrile
Mes	Mesityl
m.p.	Melting point
ml	Milliliter
mmol	Millimol

MS Mass spectroscopy NMR Nuclear magnetic resonance PPh₃ Triphenylphosphine Ph₃BiCO₃ Triphenylbismuth(III) carbonate Ph Phenvl Parts per million ppm Py Pyridine Room temperature r.t Tab. Table THF Tetrahydrofuran TMS Tetramethylsilane tBu Tert-butyl Frequency 7.2 Numbering of the compounds 1,3-Diadamantylimidazolium chloride 1,3-Diadamantylimidazol-2-ylidene 3a 1,3,4,5-Tetramethylimidazol-2-thione **3**b 1,3-Diethyl-4,5-dimethylimidazol-2-thione

- **3c** 1,3-Diisopropyl-4,5-dimethylimidazol-2-thione
- 4a 1,3,4,5-Tetramethylimidazol-2-ylidene
- 1,3-Diethyl-4,5-dimethylimidazol-2-ylidene **4b**
- 4c 1,3-Diisopropyl-4,5-dimethylimidazol-2-ylidene
- 1,3,4,5-tetramethyl-1H-imidazol-3-ium-2-carbodithioate **5**a
- **5**b 1,3-Diethyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate
- **5**c 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate
- Dipotassium (1,3,4,5-tetramethyl-1,3-dihydro-2H-imidazol-2-ylidene)methanedithiolate **6a**
- Dipotassium (1,3-diethyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-**6b** ylidene)methanedithiolate
- 6c Dipotassium (1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2ylidene)methanedithiolate
- 7a 2-[Bis(methylsulfanyl)methylene]-1,3,4,5-tetramethyl-2,3-dihydro-1H-imidazole
- 7b 2-[Bis(methylsulfanyl)methylene]-1,3-diethyl-4,5-dimethyl-2,3-dihydro-1H-imidazole

ν

1

- **7c** 2-[Bis(methylsulfanyl)methylene]-1,3-diisopropyl-4,5-dimethyl-2,3-dihydro-1Himidazole
- 8 2-(Dichlorophosphoryl)-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride
- 9 Chloro(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-yl)oxophosphoranolate
- 10 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-ylphosphonate
- 11 1,3-Di-tert-butylimidazolin-2-ylidene
- 12 N-Silylated 2-iminoimidazoline
- 13 1,3-Dimethylbarbituric acid
- 14 1,3-Dimethyl-5-(1-methylethylidene)-2,4,6(1H,3H,5H)-pyrimidinetrione
- 15 1,3-Dimethyl-5-(1-phenylethylidene)-2,4,6(1H,3H,5H)-pyrimidinetrione
- 16 4-Methylene-2-oxetanone
- 17 6-Hydroxy-1,3-dimethyl-5-pyruvoyl-2,4(1H,3H)-pyrimidinedione
- **18** 6-Hydroxy-1,3-dimethyl-5-(3-methyl-1H-pyrazol-5-yl)-2,4(1H,3H)-pyrimidinedione
- **19** 6-Hydroxy-1,3-dimethyl-5-nitroso-2,4(1H,3H)-pyrimidinedione
- 20 6-Hydroxy-1,3-dimethyl-5-nitro-2,4(1H,3H)-pyrimidinedione
- 21 Imidazol-2-ylidene
- 22 Imidazol-2-ylidene adduct
- 23 2-Haloimidazolium salts
- 24 1,3-Dimethyl-2,4,6-(1H, 3H, 5H)-pyrimidinetrione-5-ylidene
- 25 1,3-Dimethylbarbituric's zwitterionic
- 26a 1,3-Dialkyl (dicyclic)-4,5-dimethylimidazolium salt
- 26b 1,3-Dialkyl (dicyclic)-4,5-dimethylimidazolium salt
- 26c 1,3-Diadamantylimidazolium salts
- 27 1,3-Dimethylbarbituric's zwitterionic
- **28** 1,3-Dimethylbarbiturate e salts
- 29 5,5-Dihalo-1,3-Dimethyl-2,4,6-(1H, 3H, 5H)-pyrimidinetrione
- **30** Dimer of barbituric acid derivatives
- **31** 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium phosphonate
- 32 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium bromide
- **33** 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium(*Z*)-2-cyano-1-phenyl-1-ethenolate
- 35 1,3-Dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium chloride
- 34 1,3-Dicyclohexyl-4,5-dimethylimidazol-2-ylidene

- 36 1,3-Dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium dicyanomethylide
- **37** 2-Cyano-1,3-dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium bromide
- 38 1,3-Dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate
- **39** 1,3-Dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium phenylphosphonate
- 40 Ammonium thiocyanat
- 41 1,3-Di(1-adamantyl)-1,3-dihydro-2H-imidazole-2-thione
- 42 1,3-Di(1-adamantyl)-1H-imidazol-3-ium thiocyanate
- 43 2-Bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium dicyanoargentate
- 44 2-Cyano-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride
- 45 2-(1,3-Diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene) malononitrile
- 46 2-(1,3-Diethyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene) malononitrile
- 47 2-Amino-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium chloride
- 48 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium nitrate
- 49 2-Bromo-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-iumnitrate
- **50** 1,3-Dimethyl-2,6-dioxo-5-(1-pyridiniumylmethyl)-1,2,3,6-tetrahydro-4-pyrimidinolate.
- **51** 1,3-Dimethyl-2,6-dioxo-5-[(triphenylphosphonio)methyl]-1,2,3,6-tetrahydro-4-pyrimidinolate
- **52** 5-[(1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium-2-yl)methyl]-1,3- dimethyl-2,6dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate
- 53 1,3-Dimethyl-5-methylene-2,4,6(1H,3H,5H)-pyrimidinetrione
- 54 5,5-Dichloro-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione pyrimidinolate
- 55 5-Chloro-1,3-dimethyl-5-nitro-2,4,6(1H,3H,5H)-pyrimidinetrione
- **56** 2-Chloro-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-5-nitro-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate
- 57 5,6-Dihydro-1,3-dimethyl-5,6-bis-[1',3'-dimethyl]-2',4',6'-trioxopyrimid (5',5') yl[2,3-d] uracil
- 58 1,3-Dimethyl-2,4,6-trioxotetrahydro-5,5(2H)-pyrimidinedicarbonitrile
- **59** Potassium 5-cyano-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate 1,4,7,10,13,16-hexaoxacyclooctadecane
- **60** 5-[1-(1,3-dimethyl-2,4,6-trioxohexahydro-5-pyrimidinyl)-2-oxopropyl]-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione

- **61** [5,5'-Bipyrimidine]-2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone, 5,5'-dihydroxy-1,1',3,3'-tetramethyl
- **62** 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 1,3-dimethyl-2,6- dioxo-tetrahydro-4pyrimidinolate
- 63 2-Imino-1,3-dimethylimidazoline
- 64 1,3-Dimethyl-1,3-dihydro-2H-imidazol-2-iminium 1,3-dimethyl-2,6-dioxo-1,2,3,6tetrahydro-4-pyrimidinolate
- **65** [5,5'-Bipyrimidine]-2,2',4,4',6,6'(1H,1'H,3H,3'H,5H,5'H)-hexone, 1,1',3,3'-tetramethyl
- **66** 2,6-Hydroxy-5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,4(1H,3H)-pyrimidinedione
- 67 1,3-Diisopropyl-4,5-dimethyl-1H-imidazol-3-ium 5-[(6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate
- 68 Di(1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium) 5-[(1,3-dimethyl-6-oxido-2,4-dioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)sulfanyl]-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinolate
- **69** 1,3-Dimethyl-2,6-dioxo-5-[(triphenylphosphonio)sulfanyl]-1,2,3,6-tetrahydro-4pyrimidinolate

7.3 Crystal structure's data

7.5.1 Crystal data 101 C111231 2031 (3	7.3.1	Crystal data for C ₁₁ H ₂₃ N ₂ O ₃	P (3	I)
--	-------	--	------	----

Table 1: Crystal data and structure refinement for $C_{11}H_{23}N_2O_3P$ (31)

Empirical formula	$C_{11}H_{23}N_2O_3P$			
Formula weight	262.28			
Temperature	223(2) K			
Wavelength	0.71073 Å			
Crystal system	monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 14.123(2) Å	α= 90°.		
	b = 11.577(4) Å	β= 100.27(1)°.		
	c = 18.192 (1) Å	$\gamma = 90^{\circ}$.		
Volume	2926.9(12) Å ³			
Ζ	8			
Density (calculated)	1.190 Mg/m ³			
Absorption coefficient	0.188 mm ⁻¹			
F(000)	1136			
Crystal size	$0.75 \ge 0.50 \ge 0.40 \text{ mm}^3$			
Theta range for data collection	5.19 to 23.26°.			
Index ranges	-1<=h<=15, -1<=k<=12, -	-20<=l<=20		
Reflections collected	5241			
Independent reflections	4162 [R(int) = 0.0376]			
Completeness to theta = 23.26°	98.8 %			
Max. and min. transmission	0.9286 and 0.8719			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	4162 / 0 / 332			
Goodness-of-fit on F ²	1.026			
Final R indices [I>2sigma(I)]	$R1 = 0.0609, wR2 = 0.16^{\circ}$	74		
R indices (all data)	R1 = 0.0811, $wR2 = 0.1826$			
Extinction coefficient	0.0013(12)			
Largest diff. peak and hole	0.466 and -0.389 e.Å ⁻³			

Table 2: Atomic coord	inates (x 10 ⁴) ar	nd equivalent is	otropic displaceme	nt parameters (Å ² x
10^3) for C ₁₁ H ₂₃ N ₂ O ₃ P.	U(eq) is defined	as one third c	of the trace of the	orthogonalized U ^{ij}
tensor				

	Х	у	Z	U(eq)	
C(1)	1517(2)	3513(3)	869(2)	37(1)	
C(2)	1239(2)	3474(3)	114(2)	38(1)	
C(3)	233(3)	2393(3)	620(2)	37(1)	
C(4)	2356(3)	4086(4)	1334(2)	54(1)	
C(5)	1666(3)	4043(4)	-486(2)	58(1)	
C(6)	841(3)	2687(3)	1977(2)	42(1)	
C(7)	-13(3)	3350(4)	2147(2)	62(1)	
C(8)	828(3)	1420(4)	2167(2)	57(1)	
C(9)	-133(3)	2476(3)	-772(2)	44(1)	
C(10)	-891(4)	3382(5)	-990(3)	83(2)	
C(11)	-530(3)	1279(4)	-780(2)	58(1)	
N(1)	439(2)	2759(2)	-27(1)	34(1)	
N(2)	878(2)	2833(2)	1168(2)	36(1)	
C(12)	3631(2)	6813(3)	6131(2)	38(1)	
C(13)	3715(2)	7279(3)	6825(2)	36(1)	
C(14)	3642(3)	5386(3)	6935(2)	42(1)	
C(15)	3593(3)	7385(3)	5392(2)	52(1)	
C(16)	3836(3)	8502(3)	7077(2)	50(1)	
C(17)	3523(3)	4753(3)	5609(2)	44(1)	
C(18)	4405(4)	3997(7)	5733(4)	119(3)	
C(19)	2639(4)	4047(4)	5572(3)	75(1)	
C(20)	3777(3)	6468(3)	8138(2)	43(1)	
C(21)	4701(4)	5941(5)	8525(2)	80(2)	
C(22)	2899(4)	5920(5)	8364(3)	80(2)	
N(3)	3712(2)	6366(2)	7315(2)	38(1)	
N(4)	3587(2)	5623(2)	6212(2)	38(1)	
P(1)	6397(1)	7715(1)	1773(1)	47(1)	
O(11)	6031(2)	8968(3)	1846(2)	56(1)	
O(12)	7379(2)	7736(3)	1558(2)	66(1)	
O(13)	6296(3)	7035(3)	2435(2)	74(1)	
P(2)	7981(1)	657(1)	1365(1)	52(1)	
O(21)	6907(2)	602(2)	1271(2)	49(1)	
O(22)	8400(2)	1406(3)	853(2)	67(1)	
O(23)	8418(3)	-571(4)	1370(3)	94(2)	

C(1)-C(2)	1.360(5)	C(14)-N(3)	1.323(5)
C(1)-N(2)	1.380(4)	C(14)-N(4)	1.332(5)
C(1)-C(4)	1.484(5)	C(14)-H(14)	0.91(4)
C(2)-N(1)	1.386(4)	C(15)-H(15A)	0.9700
C(2)-C(5)	1.492(5)	C(15)-H(15B)	0.9700
C(3)-N(2)	1.325(4)	C(15)-H(15C)	0.9700
C(3)-N(1)	1.331(4)	C(16)-H(16A)	0.9700
C(3)-H(3)	0.97(4)	C(16)-H(16B)	0.9700
C(4)-H(4A)	0.9700	C(16)-H(16C)	0.9700
C(4)-H(4B)	0.9700	C(17)-N(4)	1.480(4)
C(4)-H(4C)	0.9700	C(17)-C(19)	1.484(6)
C(5)-H(5A)	0.9700	C(17)-C(18)	1.505(7)
C(5)-H(5B)	0.9700	C(17)-H(17)	0.9900
C(5)-H(5C)	0.9700	C(18)-H(18A)	0.9700
C(6)-N(2)	1.491(4)	C(18)-H(18B)	0.9700
C(6)-C(8)	1.508(5)	C(18)-H(18C)	0.9700
C(6)-C(7)	1.508(6)	C(19)-H(19A)	0.9700
C(6)-H(6)	0.9900	C(19)-H(19B)	0.9700
C(7)-H(7A)	0.9700	C(19)-H(19C)	0.9700
C(7)-H(7B)	0.9700	C(20)-N(3)	1.489(4)
C(7)-H(7C)	0.9700	C(20)-C(21)	1.498(6)
C(8)-H(8A)	0.9700	C(20)-C(22)	1.512(6)
C(8)-H(8B)	0.9700	C(20)-H(20)	0.9900
C(8)-H(8C)	0.9700	C(21)-H(21A)	0.9700
C(9)-N(1)	1.485(4)	C(21)-H(21B)	0.9700
C(9)-C(11)	1.495(5)	C(21)-H(21C)	0.9700
C(9)-C(10)	1.501(6)	C(22)-H(22A)	0.9700
C(9)-H(9)	0.9900	C(22)-H(22B)	0.9700
C(10)-H(10A)	0.9700	C(22)-H(22C)	0.9700
C(10)-H(10B)	0.9700	P(1)-O(13)	1.467(3)
C(10)-H(10C)	0.9700	P(1)-O(12)	1.506(3)
C(11)-H(11A)	0.9700	P(1)-O(11)	1.554(3)
C(11)-H(11B)	0.9700	P(1)-H(1)	1.27(4)
C(11)-H(11C)	0.9700	O(11)-H(11)	0.83(6)
C(12)-C(13)	1.358(5)	P(2)-O(22)	1.473(3)
C(12)-N(4)	1.388(4)	P(2)-O(21)	1.497(3)
C(12)-C(15)	1.491(5)	P(2)-O(23)	1.550(5)
C(13)-N(3)	1.383(4)	P(2)-H(2)	1.38(5)
C(13)-C(16)	1.489(5)	O(23)-H(23)	0.72(4)

Table 3: Bond lengths [Å] and angles [°] for $C_{11}H_{23}N_2O_3P$

C(2)-C(1)-N(2)	106.7(3)	N(1)-C(9)-C(10)	109.5(3)
C(2)-C(1)-C(4)	130.4(3)	C(11)-C(9)-C(10)	113.3(4)
N(2)-C(1)-C(4)	122.8(3)	N(1)-C(9)-H(9)	107.7
C(1)-C(2)-N(1)	106.6(3)	C(11)-C(9)-H(9)	107.7
C(1)-C(2)-C(5)	130.0(3)	C(10)-C(9)-H(9)	107.7
N(1)-C(2)-C(5)	123.4(3)	C(9)-C(10)-H(10A)	109.5
N(2)-C(3)-N(1)	108.3(3)	C(9)-C(10)-H(10B)	109.5
N(2)-C(3)-H(3)	128(2)	H(10A)-C(10)-H(10B)	109.5
N(1)-C(3)-H(3)	123(2)	C(9)-C(10)-H(10C)	109.5
C(1)-C(4)-H(4A)	109.5	H(10A)-C(10)-H(10C)	109.5
C(1)-C(4)-H(4B)	109.5	H(10B)-C(10)-H(10C)	109.5
H(4A)-C(4)-H(4B)	109.5	C(9)-C(11)-H(11A)	109.5
C(1)-C(4)-H(4C)	109.5	C(9)-C(11)-H(11B)	109.5
H(4A)-C(4)-H(4C)	109.5	H(11A)-C(11)-H(11B)	109.5
H(4B)-C(4)-H(4C)	109.5	C(9)-C(11)-H(11C)	109.5
C(2)-C(5)-H(5A)	109.5	H(11A)-C(11)-H(11C)	109.5
C(2)-C(5)-H(5B)	109.5	H(11B)-C(11)-H(11C)	109.5
H(5A)-C(5)-H(5B)	109.5	C(3)-N(1)-C(2)	109.0(3)
C(2)-C(5)-H(5C)	109.5	C(3)-N(1)-C(9)	124.6(3)
H(5A)-C(5)-H(5C)	109.5	C(2)-N(1)-C(9)	126.4(3)
H(5B)-C(5)-H(5C)	109.5	C(3)-N(2)-C(1)	109.4(3)
N(2)-C(6)-C(8)	109.9(3)	C(3)-N(2)-C(6)	123.9(3)
N(2)-C(6)-C(7)	108.4(3)	C(1)-N(2)-C(6)	126.4(3)
C(8)-C(6)-C(7)	113.9(3)	C(13)-C(12)-N(4)	107.0(3)
N(2)-C(6)-H(6)	108.1	C(13)-C(12)-C(15)	130.1(3)
C(8)-C(6)-H(6)	108.1	N(4)-C(12)-C(15)	122.8(3)
C(7)-C(6)-H(6)	108.1	C(12)-C(13)-N(3)	106.6(3)
C(6)-C(7)-H(7A)	109.5	C(12)-C(13)-C(16)	130.5(3)
C(6)-C(7)-H(7B)	109.5	N(3)-C(13)-C(16)	122.8(3)
H(7A)-C(7)-H(7B)	109.5	N(3)-C(14)-N(4)	109.0(3)
C(6)-C(7)-H(7C)	109.5	N(3)-C(14)-H(14)	128(2)
H(7A)-C(7)-H(7C)	109.5	N(4)-C(14)-H(14)	123(2)
H(7B)-C(7)-H(7C)	109.5	C(12)-C(15)-H(15A)	109.5
C(6)-C(8)-H(8A)	109.5	C(12)-C(15)-H(15B)	109.5
C(6)-C(8)-H(8B)	109.5	H(15A)-C(15)-H(15B)	109.5
H(8A)-C(8)-H(8B)	109.5	C(12)-C(15)-H(15C)	109.5
C(6)-C(8)-H(8C)	109.5	H(15A)-C(15)-H(15C)	109.5
H(8A)-C(8)-H(8C)	109.5	H(15B)-C(15)-H(15C)	109.5
H(8B)-C(8)-H(8C)	109.5	C(13)-C(16)-H(16A)	109.5
N(1)-C(9)-C(11)	110.8(3)	C(13)-C(16)-H(16B)	109.5

H(16A)-C(16)-H(16B)	109.5	H(21A)-C(21)-H(21B)	109.5
C(13)-C(16)-H(16C)	109.5	C(20)-C(21)-H(21C)	109.5
H(16A)-C(16)-H(16C)	109.5	H(21A)-C(21)-H(21C)	109.5
H(16B)-C(16)-H(16C)	109.5	H(21B)-C(21)-H(21C)	109.5
N(4)-C(17)-C(19)	110.3(3)	C(20)-C(22)-H(22A)	109.5
N(4)-C(17)-C(18)	110.2(3)	C(20)-C(22)-H(22B)	109.5
C(19)-C(17)-C(18)	110.7(5)	H(22A)-C(22)-H(22B)	109.5
N(4)-C(17)-H(17)	108.5	C(20)-C(22)-H(22C)	109.5
C(19)-C(17)-H(17)	108.5	H(22A)-C(22)-H(22C)	109.5
C(18)-C(17)-H(17)	108.5	H(22B)-C(22)-H(22C)	109.5
C(17)-C(18)-H(18A)	109.5	C(14)-N(3)-C(13)	109.1(3)
C(17)-C(18)-H(18B)	109.5	C(14)-N(3)-C(20)	125.4(3)
H(18A)-C(18)-H(18B)	109.5	C(13)-N(3)-C(20)	125.6(3)
C(17)-C(18)-H(18C)	109.5	C(14)-N(4)-C(12)	108.3(3)
H(18A)-C(18)-H(18C)	109.5	C(14)-N(4)-C(17)	125.2(3)
H(18B)-C(18)-H(18C)	109.5	C(12)-N(4)-C(17)	126.5(3)
C(17)-C(19)-H(19A)	109.5	O(13)-P(1)-O(12)	116.78(19)
C(17)-C(19)-H(19B)	109.5	O(13)-P(1)-O(11)	110.28(19)
H(19A)-C(19)-H(19B)	109.5	O(12)-P(1)-O(11)	110.10(17)
C(17)-C(19)-H(19C)	109.5	O(13)-P(1)-H(1)	108.1(19)
H(19A)-C(19)-H(19C)	109.5	O(12)-P(1)-H(1)	107.2(19)
H(19B)-C(19)-H(19C)	109.5	O(11)-P(1)-H(1)	103.4(19)
N(3)-C(20)-C(21)	109.4(3)	P(1)-O(11)-H(11)	116(4)
N(3)-C(20)-C(22)	109.5(3)	O(22)-P(2)-O(21)	117.72(17)
C(21)-C(20)-C(22)	112.9(4)	O(22)-P(2)-O(23)	109.8(2)
N(3)-C(20)-H(20)	108.3	O(21)-P(2)-O(23)	110.8(2)
C(21)-C(20)-H(20)	108.3	O(22)-P(2)-H(2)	107(2)
С(22)-С(20)-Н(20)	108.3	O(21)-P(2)-H(2)	107(2)
C(20)-C(21)-H(21A)	109.5	O(23)-P(2)-H(2)	104(2)
C(20)-C(21)-H(21B)	109.5	P(2)-O(23)-H(23)	118(4)

Symmetry transformations used to generate equivalent atoms:

7.3.2 Crystal data for $C_{22}H_{42}Br_2N_4O0$ (32)

Table 4:	Crystal	data and	structure	refinement	for	C22H2	$_{42}\mathrm{Br}_{2}\mathrm{N}_{4}$	00	(32)
----------	---------	----------	-----------	------------	-----	-------	--------------------------------------	----	------

Empirical formula	C ₂₂ H ₄₂ Br ₂ N ₄ O0	
Formula weight	522.42	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	C222(1)	
Unit cell dimensions	a = 10.894(5) Å	<i>α</i> = 90°.
	b = 11.559(4) Å	β= 90°.
	c = 20.579(5) Å	γ= 90°.
Volume	2591.3(15) Å ³	
Z	4	
Density (calculated)	1.339 Mg/m ³	
Absorption coefficient	3.142 mm ⁻¹	
F(000)	1088	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.57 to 27.50°.	
Index ranges	-14<=h<=0, -14<=k<=14,	-26<=l<=26
Reflections collected	6116	
Independent reflections	2985 [R(int) = 0.0904]	
Completeness to theta = 27.50°	99.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	2985 / 0 / 136	
Goodness-of-fit on F ²	1.054	
Final R indices [I>2sigma(I)]	R1 = 0.0793, wR2 = 0.184	19
R indices (all data)	R1 = 0.0879, wR2 = 0.194	43
Absolute structure parameter	-0.02(2)	
Extinction coefficient	0.0033(9)	
Largest diff. peak and hole	2.112 and -2.021 e.Å ⁻³	

	X	у	Z	U(eq)	
Br(1)	0	4791(1)	2500	46(1)	
Br(2)	342(1)	10000	0	40(1)	
C(8)	108(5)	4633(4)	267(2)	34(1)	
N(2)	1343(4)	4428(4)	418(2)	30(1)	
C(2)	408(5)	318(4)	7764(2)	30(1)	
N(1)	628(5)	1467(3)	7909(2)	29(1)	
C(12)	2746(5)	4278(5)	1351(3)	39(1)	
C(1)	0	2132(5)	7500	34(2)	
C(7)	2041(6)	5000	0	30(1)	
C(10)	1804(6)	3662(5)	937(2)	34(1)	
C(3)	958(7)	-657(5)	8126(3)	43(1)	
C(4)	1466(6)	1916(5)	8415(3)	34(1)	
C(11)	2321(10)	2559(6)	627(3)	53(2)	
C(6)	773(7)	2741(5)	8863(2)	45(2)	
C(9)	-935(6)	4152(7)	636(3)	49(2)	
C(5)	2565(7)	2477(8)	8099(3)	47(1)	

Table 5: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for C₂₂H₄₂Br₂N₄O0. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

C(8)-C(8)#1	1.390(10)	N(1)-C(1)	1.329(5)
C(8)-N(2)	1.401(7)	N(1)-C(4)	1.479(6)
C(8)-C(9)	1.475(7)	C(12)-C(10)	1.511(8)
N(2)-C(7)	1.325(5)	C(1)-N(1)#2	1.329(5)
N(2)-C(10)	1.476(6)	C(7)-N(2)#1	1.325(5)
C(2)-N(1)	1.382(6)	C(10)-C(11)	1.533(9)
C(2)-C(2)#2	1.404(10)	C(4)-C(5)	1.509(9)
C(2)-C(3)	1.477(7)	C(4)-C(6)	1.526(8)
C(8)#1-C(8)-N(2)	106.2(3)	C(1)-N(1)-C(4)	124.1(4)
C(8)#1-C(8)-C(9)	129.6(4)	C(2)-N(1)-C(4)	126.6(4)
N(2)-C(8)-C(9)	124.2(5)	N(1)#2-C(1)-N(1)	109.3(6)
C(7)-N(2)-C(8)	108.8(4)	N(2)-C(7)-N(2)#1	110.0(6)
C(7)-N(2)-C(10)	125.1(5)	N(2)-C(10)-C(12)	110.8(5)
C(8)-N(2)-C(10)	126.0(4)	N(2)-C(10)-C(11)	108.8(4)
N(1)-C(2)-C(2)#2	106.1(3)	C(12)-C(10)-C(11)	112.1(6)
N(1)-C(2)-C(3)	123.6(5)	N(1)-C(4)-C(5)	109.6(4)
C(2)#2-C(2)-C(3)	130.3(3)	N(1)-C(4)-C(6)	109.8(5)
C(1)-N(1)-C(2)	109.3(4)	C(5)-C(4)-C(6)	112.6(5)

Table 6: Bond lengths [Å] and angles [°] for $C_{22}H_{42}Br_2N_4O0$

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,-z #2 -x,y,-z+3/2

7.3.3 Crystal data for $C_{20}H_{27}N_3O$ (33)

Empirical formula	C ₂₀ H ₂₇ N ₃ O			
Formula weight	325.45			
Temperature	223(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 8.460 (2) Å	<i>α</i> = 90°.		
	b = 12.032(2) Å	$\beta = 90.45(3)^{\circ}$.		
	c = 18.279(4) Å	$\gamma = 90^{\circ}$.		
Volume	1860.5(6) Å ³			
Ζ	4			
Density (calculated)	1.162 Mg/m ³			
Absorption coefficient	0.073 mm ⁻¹			
F(000)	704			
Crystal size	0.45 x 0.30 x 0.20 m	m ³		
Theta range for data collection	3.14 to 29.02°.			
Index ranges	-1<=h<=11, -1<=k<=	=16, -24<=1<=24		
Reflections collected	6397			
Independent reflections	4933 [R(int) = 0.042	5]		
Completeness to theta = 29.02°	99.6 %			
Absorption correction	None			
Refinement method	Full-matrix least-squ	ares on F ²		
Data / restraints / parameters	4933 / 0 / 326			
Goodness-of-fit on F ²	1.010			
Final R indices [I>2sigma(I)]	R1 = 0.0558, wR2 =	R1 = 0.0558, $wR2 = 0.1158$		
R indices (all data)	R1 = 0.1511, wR2 =	R1 = 0.1511, $wR2 = 0.1424$		
Extinction coefficient	0.0042(14)	0.0042(14)		
Largest diff. peak and hole	0.219 and -0.190 e.Å	-3		

Table 7. Crystal data and structure refinement for $C_{20}H_{27}N_3O$ (33)

	Х	у	Z	U(eq)	
N(1)	1258(2)	2796(1)	820(1)	30(1)	
N(2)	82(2)	3890(1)	1577(1)	30(1)	
N(3)	3022(3)	7881(2)	4628(1)	59(1)	
O(1)	1960(2)	5871(1)	3188(1)	44(1)	
C(1)	249(2)	2839(2)	1372(1)	31(1)	
C(2)	1736(2)	3873(2)	651(1)	33(1)	
C(3)	992(2)	4559(2)	1126(1)	33(1)	
C(4)	1754(2)	1773(2)	436(1)	35(1)	
C(5)	1793(3)	796(2)	961(1)	45(1)	
C(6)	714(3)	1563(2)	-224(1)	51(1)	
C(7)	2927(3)	4120(2)	77(1)	48(1)	
C(8)	1097(3)	5785(2)	1210(2)	46(1)	
C(9)	-864(3)	4282(2)	2211(1)	37(1)	
C(10)	-984(4)	3367(2)	2772(1)	51(1)	
C(11)	-2455(3)	4699(3)	1949(2)	59(1)	
C(12)	3355(3)	7012(2)	4410(1)	41(1)	
C(13)	3795(3)	5960(2)	4158(1)	40(1)	
C(14)	3080(2)	5456(2)	3560(1)	32(1)	
C(15)	3713(2)	4339(2)	3323(1)	33(1)	
C(16)	4484(3)	3606(2)	3797(1)	44(1)	
C(17)	5037(3)	2591(2)	3553(2)	53(1)	
C(18)	4842(3)	2294(2)	2830(2)	52(1)	
C(19)	4095(3)	3011(2)	2355(2)	54(1)	
C(20)	3524(3)	4017(2)	2602(1)	43(1)	

Table 8: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for C₂₀H₂₇N₃O. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(1)	1.329(2)	C(4)-C(5)	1.517(3)	
N(1)-C(2)	1.392(2)	C(9)-C(10)	1.508(3)	
N(1)-C(4)	1.479(2)	C(9)-C(11)	1.511(3)	
N(2)-C(1)	1.327(2)	C(12)-C(13)	1.399(3)	
N(2)-C(3)	1.391(2)	C(13)-C(14)	1.384(3)	
N(2)-C(9)	1.489(2)	C(14)-C(15)	1.511(3)	
N(3)-C(12)	1.155(3)	C(15)-C(20)	1.382(3)	
O(1)-C(14)	1.265(2)	C(15)-C(16)	1.394(3)	
C(2)-C(3)	1.356(3)	C(16)-C(17)	1.383(3)	
C(2)-C(7)	1.490(3)	C(17)-C(18)	1.378(4)	
C(3)-C(8)	1.487(3)	C(18)-C(19)	1.375(4)	
C(4)-C(6)	1.509(3)	C(19)-C(20)	1.381(3)	
C(1)-N(1)-C(2)	108.76(15)	N(2)-C(9)-C(10)	109.70(17)	
C(1)-N(1)-C(4)	125.37(16)	N(2)-C(9)-C(11)	109.98(18)	
C(2)-N(1)-C(4)	125.85(15)	C(10)-C(9)-C(11)	113.1(2)	
C(1)-N(2)-C(3)	108.84(16)	N(3)-C(12)-C(13)	178.5(2)	
C(1)-N(2)-C(9)	125.50(16)	C(14)-C(13)-C(12)	122.8(2)	
C(3)-N(2)-C(9)	125.59(15)	O(1)-C(14)-C(13)	124.92(18)	
N(2)-C(1)-N(1)	108.81(16)	O(1)-C(14)-C(15)	117.56(17)	
C(3)-C(2)-N(1)	106.75(16)	C(13)-C(14)-C(15)	117.51(17)	
C(3)-C(2)-C(7)	130.40(18)	C(20)-C(15)-C(16)	117.74(19)	
N(1)-C(2)-C(7)	122.74(18)	C(20)-C(15)-C(14)	118.91(17)	
C(2)-C(3)-N(2)	106.82(16)	C(16)-C(15)-C(14)	123.35(18)	
C(2)-C(3)-C(8)	130.08(19)	C(17)-C(16)-C(15)	121.1(2)	
N(2)-C(3)-C(8)	123.06(19)	C(18)-C(17)-C(16)	120.0(2)	
N(1)-C(4)-C(6)	110.65(17)	C(19)-C(18)-C(17)	119.6(2)	
N(1)-C(4)-C(5)	110.46(17)	C(18)-C(19)-C(20)	120.2(2)	
C(6)-C(4)-C(5)	112.7(2)	C(19)-C(20)-C(15)	121.3(2)	

Table 9: Bond lengths [Å] and angles [°] for $C_{20}H_{27}N_3O$

Symmetry transformations used to generate equivalent atoms:

7.3.4 Crystal data for $C_{18}H_{31}Cl_3N_2$ (35)

Table 10: Crystal data and structure refinement for $C_{18}H_{31}Cl_3N_2$ (35)

Empirical formula	$C_{18}H_{31}Cl_{3}N_{2}$	
Formula weight	381.80	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 10.6081(17) Å	<i>α</i> = 90°.
	b = 12.4809(17) Å	β= 98.488(16)°.
	c = 16.0833(19) Å	= 90°.
Volume	2106.1(5) Å ³	
Z	4	
Density (calculated)	1.204 Mg/m ³	
Absorption coefficient	0.437 mm ⁻¹	
F(000)	816	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.07 to 27.50°.	
Index ranges	-1<=h<=13, -16<=k<=1	, - 20<=1<=20
Reflections collected	6109	
Independent reflections	4831 [R(int) = 0.0281]	
Completeness to theta = 27.50°	99.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	4831 / 0 / 211	
Goodness-of-fit on F ²	0.987	
Final R indices [I>2sigma(I)]	R1 = 0.0852, wR2 = 0.2	502
R indices (all data)	R1 = 0.1069, WR2 = 0.2	760
Extinction coefficient	0.007(3)	
Largest diff. peak and hole	1.800 and -1.331 e.Å ⁻³	

	X	у	Z	U(eq)	
Cl(1)	9249(1)	408(1)	6466(1)	38(1)	
Cl(2)	2284(2)	6909(1)	9826(1)	94(1)	
Cl(3)	4780(2)	7895(2)	10173(2)	124(1)	
N(1)	10910(2)	2515(2)	8390(2)	26(1)	
N(2)	9111(2)	3318(2)	8005(2)	25(1)	
C(1)	9784(3)	2437(3)	7904(2)	29(1)	
C(2)	10972(3)	3487(2)	8819(2)	23(1)	
C(3)	9832(3)	3992(2)	8578(2)	22(1)	
C(4)	12133(3)	3849(3)	9384(2)	30(1)	
C(5)	9342(3)	5044(3)	8823(2)	28(1)	
C(6)	7875(3)	3612(2)	7505(2)	26(1)	
C(7)	6985(3)	2653(3)	7340(3)	41(1)	
C(8)	5722(3)	3031(3)	6834(3)	42(1)	
C(9)	5932(4)	3561(4)	6014(3)	48(1)	
C(10)	6849(4)	4509(4)	6181(3)	48(1)	
C(11)	8113(3)	4146(4)	6691(2)	41(1)	
C(12)	11916(3)	1688(3)	8451(2)	29(1)	
C(13)	12452(4)	1620(3)	7617(3)	40(1)	
C(14)	13501(4)	764(3)	7681(3)	46(1)	
C(15)	13024(4)	-315(3)	7945(3)	39(1)	
C(16)	12470(4)	-232(3)	8757(2)	38(1)	
C(17)	11403(3)	604(3)	8680(2)	32(1)	
C(18)	3999(4)	6635(3)	9983(3)	44(1)	

Table 11: Atomic coordinates(x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{18}H_{31}Cl_{3}N_{2}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Cl(2)-C(18)	1.832(5)	C(6)-C(11)	1.524(5)
Cl(3)-C(18)	1.782(5)	C(7)-C(8)	1.537(5)
N(1)-C(1)	1.332(4)	C(8)-C(9)	1.520(7)
N(1)-C(2)	1.392(4)	C(9)-C(10)	1.530(6)
N(1)-C(12)	1.477(4)	C(10)-C(11)	1.533(5)
N(2)-C(1)	1.334(4)	C(12)-C(17)	1.524(5)
N(2)-C(3)	1.390(4)	C(12)-C(13)	1.534(5)
N(2)-C(6)	1.480(4)	C(13)-C(14)	1.535(5)
C(2)-C(3)	1.368(4)	C(14)-C(15)	1.520(5)
C(2)-C(4)	1.489(4)	C(15)-C(16)	1.513(5)
C(3)-C(5)	1.487(4)	C(16)-C(17)	1.531(5)
C(6)-C(7)	1.523(5)		
C(1)-N(1)-C(2)	109.1(3)	C(2)-C(3)-C(5)	131.4(3)
C(1)-N(1)-C(12)	124.4(3)	N(2)-C(3)-C(5)	122.1(3)
C(2)-N(1)-C(12)	126.6(3)	N(2)-C(6)-C(7)	112.1(3)
C(1)-N(2)-C(3)	109.2(3)	N(2)-C(6)-C(11)	109.2(3)
C(1)-N(2)-C(6)	125.8(3)	C(7)-C(6)-C(11)	111.8(3)
C(3)-N(2)-C(6)	124.5(2)	C(6)-C(7)-C(8)	108.7(3)
N(2)-C(1)-N(1)	108.5(3)	C(9)-C(8)-C(7)	111.4(3)
C(3)-C(2)-N(1)	106.6(3)	C(10)-C(9)-C(8)	110.8(3)
C(3)-C(2)-C(4)	130.5(3)	C(11)-C(10)-C(9)	110.4(4)
N(1)-C(2)-C(4)	122.7(3)	C(6)-C(11)-C(10)	110.2(3)
C(2)-C(3)-N(2)	106.6(3)		
N(1)-C(12)-C(17)	110.9(3)	C(16)-C(15)-C(14)	111.6(3)
N(1)-C(12)-C(13)	109.8(3)	C(15)-C(16)-C(17)	110.7(3)
C(17)-C(12)-C(13)	110.7(3)	C(12)-C(17)-C(16)	109.8(3)
C(14)-C(13)-C(12)	109.7(3)	Cl(3)-C(18)-Cl(2)	106.6(2)
C(15)-C(14)-C(13)	111.6(3)		

Table 12: Bond lengths [Å] and angles [°] for C₁₈H₃₁Cl₃N₂

Symmetry transformations used to generate equivalent atoms:

7.3.5 Crystal data for $C_{20}H_{30}N_4$ (36)

Table 13: Crystal data and structure refinement for $C_{20}H_{30}N_4$ (36)

Empirical formula	$C_{20}H_{30}N_4$	
Formula weight	326.48	
Temperature	273(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 10.616(4) Å	<i>α</i> = 90°.
	b = 12.581(5) Å	β= 101.84(6)°.
	c = 14.408(10) Å	$\gamma = 90^{\circ}$.
Volume	1883.4(16) Å ³	
Z	4	
Density (calculated)	1.151 Mg/m ³	
Absorption coefficient	0.069 mm ⁻¹	
F(000)	712	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.17 to 27.56°.	
Index ranges	-13<=h<=11, -16<=k	<=16, - 18<=] <=18
Reflections collected	16541	
Independent reflections	4341 [R(int) = 0.0497	7]
Completeness to theta = 27.56°	99.6 %	
Absorption correction	None	
Refinement method	Full-matrix least-squa	ares on F ²
Data / restraints / parameters	4341 / 0 / 220	
Goodness-of-fit on F ²	1.881	
Final R indices [I>2sigma(I)]	R1 = 0.0430, wR2 =	0.1120
R indices (all data)	R1 = 0.0471, wR2 =	0.1181
Extinction coefficient	0.070(6)	
Largest diff. peak and hole	0.361 and -0.215 e.Å	-3

	Х	у	Z	U(eq)	
N(1)	6378(1)	7658(1)	1904(1)	21(1)	
N(2)	8046(1)	6856(1)	1586(1)	20(1)	
N(3)	2312(2)	6457(1)	1003(1)	55(1)	
N(4)	2790(1)	9976(1)	1357(1)	40(1)	
C(1)	7218(1)	6868(1)	2169(1)	22(1)	
C(2)	6675(1)	8166(1)	1121(1)	21(1)	
C(3)	7726(1)	7658(1)	917(1)	22(1)	
C(4)	5915(1)	9079(1)	647(1)	29(1)	
C(5)	8471(1)	7871(1)	166(1)	30(1)	
C(6)	9126(1)	6095(1)	1647(1)	22(1)	
C(7)	9831(1)	5954(1)	2673(1)	29(1)	
C(8)	10931(1)	5153(1)	2727(1)	32(1)	
C(9)	10444(1)	4098(1)	2276(1)	33(1)	
C(10)	9738(1)	4253(1)	1255(1)	37(1)	
C(11)	8624(1)	5038(1)	1200(1)	30(1)	
C(12)	5398(1)	8024(1)	2432(1)	23(1)	
C(13)	5983(1)	8889(1)	3137(1)	31(1)	
C(14)	4981(1)	9299(1)	3678(1)	37(1)	
C(15)	4416(1)	8388(1)	4164(1)	39(1)	
C(16)	3852(1)	7533(1)	3452(1)	38(1)	
C(17)	4859(1)	7105(1)	2920(1)	32(1)	
C(18)	2001(1)	8346(1)	366(1)	39(1)	
C(19)	2421(1)	9228(1)	915(1)	29(1)	
C(20)	2181(1)	7322(1)	727(1)	36(1)	

Table 14: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{20}H_{30}N_4$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(1)	1.3370(11)	C(7)-C(8)	1.5316(13)
N(1)-C(2)	1.3889(13)	C(8)-C(9)	1.5213(16)
N(1)-C(12)	1.4830(13)	C(9)-C(10)	1.5196(19)
N(2)-C(1)	1.3345(14)	C(10)-C(11)	1.5302(14)
N(2)-C(3)	1.3884(12)	C(12)-C(17)	1.5236(14)
N(2)-C(6)	1.4826(11)	C(12)-C(13)	1.5302(15)
N(3)-C(20)	1.157(2)	C(13)-C(14)	1.5315(15)
N(4)-C(19)	1.1582(16)	C(14)-C(15)	1.5275(18)
C(2)-C(3)	1.3686(12)	C(15)-C(16)	1.521(2)
C(2)-C(4)	1.4862(13)	C(16)-C(17)	1.5362(16)
C(3)-C(5)	1.4899(15)	C(18)-C(19)	1.3830(17)
C(6)-C(7)	1.5241(17)	C(18)-C(20)	1.3874(19)
C(6)-C(11)	1.5251(13)		
C(1)-N(1)-C(2)	108 96(8)	C(2)-C(3)-N(2)	106 60(9)
C(1) - N(1) - C(12)	125 56(8)	C(2) - C(3) - C(5)	130 44(9)
C(2)-N(1)-C(12)	125.03(8)	N(2)-C(3)-C(5)	122.95(8)
C(1)-N(2)-C(3)	109 20(8)	N(2)-C(6)-C(7)	110 64(8)
C(1)-N(2)-C(6)	124 85(8)	N(2)-C(6)-C(11)	109 82(8)
C(3)-N(2)-C(6)	125.95(8)	C(7)-C(6)-C(11)	111.58(8)
N(2)-C(1)-N(1)	108.43(8)	C(6)-C(7)-C(8)	110.05(9)
C(3)-C(2)-N(1)	106.82(8)	C(9)-C(8)-C(7)	111.32(9)
C(3)-C(2)-C(4)	130.71(9)	C(10)-C(9)-C(8)	110.98(9)
N(1)-C(2)-C(4)	122.46(8)	C(9)-C(10)-C(11)	110.80(10)
C(6)-C(11)-C(10)	109.94(9)	C(15)-C(14)-C(13)	111.08(10)
N(1)-C(12)-C(17)	111.71(8)	C(16)-C(15)-C(14)	111.07(10)
N(1)-C(12)-C(13)	109.26(8)	C(15)-C(16)-C(17)	111.48(10)
C(17)-C(12)-C(13)	111.92(9)	C(12)-C(17)-C(16)	109.28(9)
C(12)-C(13)-C(14)	110.34(9)	C(19)-C(18)-C(20)	121.81(11)
N(4)-C(19)-C(18)	178.25(12)	N(3)-C(20)-C(18)	177.98(14)

Table 15: Bond lengths [Å] and angles [°] for $C_{20}H_{30}N_4$

Symmetry transformations used to generate equivalent atoms:

7.3.6 Crystal data for $C_{18}H_{28}BrN_3$ (37)

Table 16: Crystal data and structure refinement for $C_{18}H_{28}BrN_3$ (37)	Table 16	6: Crystal	data and	structure	refinement	for	$C_{18}H_2$	$_{8}BrN_{3}$	(37)
--	----------	------------	----------	-----------	------------	-----	-------------	---------------	------

Empirical formula	$C_{18}H_{28}BrN_3$
Formula weight	366.34
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pbcn
Unit cell dimensions	$a = 23.806(5) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 12.051(3) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 13.170(2) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	3778.4(13) Å ³
Z	8
Density (calculated)	1.288 Mg/m ³
Absorption coefficient	2.177 mm ⁻¹
F(000)	1536
Crystal size	? x ? x ? mm ³
Theta range for data collection	3.07 to 28.01°.
Index ranges	-31<=h<=31, -15<=k<=15, 0<=l<=17
Reflections collected	17423
Independent reflections	4548 [R(int) = 0.4431]
Completeness to theta = 28.01°	99.6 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4548 / 0 / 200
Goodness-of-fit on F ²	1.699
Final R indices [I>2sigma(I)]	R1 = 0.2514, $wR2 = 0.5706$
R indices (all data)	R1 = 0.4556, $wR2 = 0.6434$
Extinction coefficient	0.011(4)
Largest diff. peak and hole	1.937 and -1.521 e.Å ⁻³

	Х	у	Z	U(eq)	
Br(1)	7453(1)	1106(2)	1248(3)	83(2)	
N(1)	6636(7)	6790(14)	4314(18)	61(6)	
N(3)	6619(7)	8209(15)	3295(14)	49(4)	
N(21)	5239(7)	7479(19)	3825(17)	78(7)	
C(2)	6310(7)	7475(16)	3839(16)	38(4)	
C(4)	7203(9)	7967(16)	3480(20)	63(7)	
C(5)	7162(9)	6990(30)	4210(20)	74(8)	
C(11)	6431(8)	5950(20)	5036(17)	52(6)	
C(12)	6172(11)	6429(17)	6200(20)	66(8)	
C(13)	6025(10)	5180(70)	6840(20)	300(50)	
C(14)	5649(11)	4653(19)	6050(20)	76(8)	
C(15)	5882(11)	4110(20)	5180(20)	70(7)	
C(16)	6068(13)	5090(20)	4590(20)	99(11)	
C(21)	5737(8)	7483(15)	3925(15)	37(5)	
C(31)	6432(10)	9080(30)	2560(40)	170(20)	
C(32)	6160(20)	8530(40)	1700(20)	210(30)	
C(33)	6050(11)	9120(40)	810(30)	160(20)	
C(34)	5658(14)	10040(40)	1320(20)	136(18)	
C(35)	5876(12)	10780(20)	2300(30)	111(13)	
C(36)	6087(8)	9921(17)	3246(18)	55(6)	
C(41)	7714(11)	8620(30)	3330(30)	115(15)	
C(51)	7600(20)	6500(19)	4670(40)	260(40)	

Table 17: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{18}H_{28}BrN_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor
N(1)-C(5)	1.28(2)	C(11)-C(12)	1.75(4)	
N(1)-C(2)	1.30(2)	C(12)-C(13)	1.76(8)	
N(1)-C(11)	1.47(3)	C(13)-C(14)	1.51(4)	
N(3)-C(2)	1.35(2)	C(14)-C(15)	1.43(3)	
N(3)-C(4)	1.44(2)	C(15)-C(16)	1.48(3)	
N(3)-C(31)	1.50(3)	C(31)-C(32)	1.45(6)	
N(21)-C(21)	1.19(2)	C(31)-C(36)	1.59(4)	
C(2)-C(21)	1.37(2)	C(32)-C(33)	1.40(4)	
C(4)-C(41)	1.46(3)	C(33)-C(34)	1.59(6)	
C(4)-C(5)	1.52(4)	C(34)-C(35)	1.66(4)	
C(5)-C(51)	1.35(6)	C(35)-C(36)	1.70(4)	
C(11)-C(16)	1.47(3)			
C(5)-N(1)-C(2)	114(2)	N(1)-C(11)-C(12)	117.2(18)	
C(5)-N(1)-C(11)	122(2)	C(16)-C(11)-C(12)	112.0(17)	
C(2)-N(1)-C(11)	123.5(18)	C(13)-C(12)-C(11)	102.0(19)	
C(2)-N(3)-C(4)	107.7(17)	C(14)-C(13)-C(12)	99(3)	
C(2)-N(3)-C(31)	129.7(17)	C(15)-C(14)-C(13)	121(2)	
C(4)-N(3)-C(31)	122.5(18)	C(14)-C(15)-C(16)	100(2)	
N(3)-C(2)-N(1)	110.2(16)	C(15)-C(16)-C(11)	122(3)	
N(3)-C(2)-C(21)	125.5(17)	N(21)-C(21)-C(2)	169(2)	
N(1)-C(2)-C(21)	124.2(19)	C(32)-C(31)-N(3)	109(3)	
N(3)-C(4)-C(41)	132(2)	C(32)-C(31)-C(36)	120(3)	
N(3)-C(4)-C(5)	101.5(18)	N(3)-C(31)-C(36)	103(3)	
C(41)-C(4)-C(5)	124(2)	C(33)-C(32)-C(31)	121(4)	
N(1)-C(5)-C(51)	129(3)	C(32)-C(33)-C(34)	96(4)	
N(1)-C(5)-C(4)	106(2)	C(33)-C(34)-C(35)	121(3)	
C(51)-C(5)-C(4)	125(2)	C(34)-C(35)-C(36)	109(2)	
N(1)-C(11)-C(16)	115(2)	C(31)-C(36)-C(35)	97(2)	

Table 18: Bond lengths [Å] and angles [°] for C₁₈H₂₈BrN₃

7.3.7 Crystal data for $C_{19}H_{29}Cl_3N_2S_2$ (38)

Table 19: 0	Crystal data	and structure	refinement fo	or C ₁	₉ H ₂₉ Cl	$_{3}N_{2}S_{2}$	2 (38)
	2						- 、 /

Empirical formula	$C_{19}H_{29}Cl_3N_2S_2$			
Formula weight	455.91			
Temperature	223(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21/c			
Unit cell dimensions	a = 8.4800(14) Å	α= 90°.		
	b = 16.2270(9) Å	$\beta = 98.78(2)^{\circ}.$		
	c = 17.263(3) Å	$\gamma = 90^{\circ}$.		
Volume	2347.6(6) Å ³			
Ζ	4			
Density (calculated)	1.290 Mg/m ³			
Absorption coefficient	0.575 mm ⁻¹			
F(000)	960			
Crystal size	0.60 x 0.50 x 0.30 mm	0.60 x 0.50 x 0.30 mm ³		
Theta range for data collection	3.13 to 27.98°.	3.13 to 27.98°.		
Index ranges	-11<=h<=11,0<=k<=	=21, -1<=l<=22		
Reflections collected	6181			
Independent reflections	5644 [R(int) = 0.0424	.]		
Completeness to theta = 27.98°	96.4 %			
Absorption correction	Psi-Scans			
Max. and min. transmission	0.93897 and 0.77486			
Refinement method	Full-matrix least-squa	ares on F ²		
Data / restraints / parameters	5644 / 0 / 235			
Goodness-of-fit on F ²	1.048			
Final R indices [I>2sigma(I)]	R1 = 0.0714, wR2 = 0.0714	R1 = 0.0714, $wR2 = 0.1869$		
R indices (all data)	R1 = 0.1325, $wR2 = 0.2183$			
Largest diff. peak and hole	0.893 and -0.613 e.Å ⁻³			

	Х	у	Z	U(eq)	
S(1)	3302(1)	1417(1)	2196(1)	51(1)	
S(2)	855(1)	2719(1)	1662(1)	58(1)	
N(1)	4175(3)	3407(2)	2935(2)	35(1)	
N(2)	2666(3)	2784(2)	3656(2)	36(1)	
C(1)	2392(4)	2318(2)	2253(2)	36(1)	
C(2)	3061(4)	2835(2)	2935(2)	33(1)	
C(3)	3592(5)	3347(2)	4139(2)	39(1)	
C(4)	4542(4)	3734(2)	3690(2)	39(1)	
C(5)	5765(6)	4380(3)	3922(2)	57(1)	
C(6)	3518(6)	3462(3)	4990(2)	57(1)	
C(11)	1355(4)	2240(2)	3829(2)	41(1)	
C(12)	-98(5)	2729(3)	3955(3)	62(1)	
C(13)	-1477(6)	2126(4)	4030(3)	76(2)	
C(14)	-983(6)	1477(3)	4646(3)	71(1)	
C(15)	491(7)	1035(3)	4523(3)	73(1)	
C(16)	1875(5)	1627(3)	4465(3)	58(1)	
C(21)	4777(4)	3653(2)	2202(2)	38(1)	
C(22)	6537(5)	3535(3)	2230(3)	61(1)	
C(23)	6957(6)	3719(3)	1411(3)	69(1)	
C(24)	6454(6)	4583(3)	1153(3)	62(1)	
C(25)	4720(5)	4717(3)	1154(2)	58(1)	
C(26)	4226(5)	4511(2)	1943(2)	47(1)	
Cl(1)	432(2)	4818(1)	2800(1)	83(1)	
Cl(2)	2629(2)	6145(1)	3217(1)	93(1)	
Cl(3)	894(3)	5432(2)	4361(1)	124(1)	
C(30)	824(5)	5709(3)	3389(3)	55(1)	

Table 20: Atomic coordinates ($x~10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for $C_{19}H_{29}Cl_3N_2S_2$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

S(1)-C(1)	1.663(4)	C(11)-C(12)	1.509(6)
S(2)-C(1)	1.660(4)	C(12)-C(13)	1.545(7)
N(1)-C(2)	1.324(4)	C(13)-C(14)	1.510(7)
N(1)-C(4)	1.398(4)	C(14)-C(15)	1.484(7)
N(1)-C(21)	1.490(4)	C(15)-C(16)	1.532(6)
N(2)-C(2)	1.339(4)	C(21)-C(22)	1.499(5)
N(2)-C(3)	1.396(4)	C(21)-C(26)	1.514(5)
N(2)-C(11)	1.485(4)	C(22)-C(23)	1.540(6)
C(1)-C(2)	1.486(4)	C(23)-C(24)	1.512(7)
C(3)-C(4)	1.354(5)	C(24)-C(25)	1.487(6)
C(3)-C(6)	1.491(5)	C(25)-C(26)	1.522(5)
C(4)-C(5)	1.486(5)	Cl(1)-C(30)	1.770(5)
C(11)-C(16)	1.497(5)	Cl(2)-C(30)	1.752(5)
Cl(3)-C(30)	1.729(4)		
C(2)-N(1)-C(4)	108.9(3)	N(1)-C(2)-C(1)	125.6(3)
C(2)-N(1)-C(21)	121.7(3)	N(2)-C(2)-C(1)	125.6(3)
C(4)-N(1)-C(21)	129.3(3)	C(4)-C(3)-N(2)	106.9(3)
C(2)-N(2)-C(3)	108.5(3)	C(4)-C(3)-C(6)	128.6(3)
C(2)-N(2)-C(11)	121.7(3)	N(2)-C(3)-C(6)	124.5(3)
C(3)-N(2)-C(11)	129.7(3)	C(3)-C(4)-N(1)	106.9(3)
C(2)-C(1)-S(2)	115.8(3)	C(3)-C(4)-C(5)	128.7(3)
C(2)-C(1)-S(1)	114.7(2)	N(1)-C(4)-C(5)	124.5(3)
S(2)-C(1)-S(1)	129.5(2)	N(2)-C(11)-C(16)	113.4(3)
N(1)-C(2)-N(2)	108.8(3)		
N(2)-C(11)-C(12)	111.7(3)	C(14)-C(15)-C(16)	112.1(4)
C(16)-C(11)-C(12)	113.5(3)	C(11)-C(16)-C(15)	108.8(4)
C(11)-C(12)-C(13)	109.0(4)	N(1)-C(21)-C(22)	114.0(3)
C(14)-C(13)-C(12)	111.6(4)	N(1)-C(21)-C(26)	111.6(3)
C(15)-C(14)-C(13)	112.7(4)		
C(22)-C(21)-C(26)	112.8(3)	C(24)-C(23)-C(22)	110.9(4)
C(21)-C(22)-C(23)	108.3(4)	C(25)-C(24)-C(23)	111.7(4)
C(24)-C(25)-C(26)	112.1(3)		
C(21)-C(26)-C(25)	110.6(3)		
C(21)-C(26)-C(25)	110.6(3)		

Table 21: Bond lengths [Å] and angles [°] for $C_{19}H_{29}Cl_3N_2S_2$

Cl(3)-C(30)-Cl(2)	111.6(3)
Cl(3)-C(30)-Cl(1)	108.7(3)
Cl(2)-C(30)-Cl(1)	108.9(2)

7.3.8 Crystal data for $C_{23}H_{35}N_2O_3P$ (39)

Table 22: Crystal data and stru	cture refinement for $C_{23}H_{35}N_2O_3P$ (39)
---------------------------------	---

Empirical formula	$C_{23}H_{35}N_2O_3P$		
Formula weight	418.50		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 10.914(2) Å	<i>α</i> = 90°.	
	b = 12.053(2) Å	β= 92.64(3)°.	
	c = 17.561(4) Å	$\gamma = 90^{\circ}$.	
Volume	2307.7(8) Å ³		
Z	4		
Density (calculated)	1.205 Mg/m ³		
Absorption coefficient	0.144 mm ⁻¹		
F(000)	904		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	3.37 to 28.00°.		
Index ranges	-1<=h<=14, 0<=k<=15, -23<=l<=23		
Reflections collected	6384		
Independent reflections	5541 [R(int) = 0.0410]		
Completeness to theta = 28.00°	99.7 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares of	on F ²	
Data / restraints / parameters	5541 / 0 / 269		
Goodness-of-fit on F ²	1.014		
Final R indices [I>2sigma(I)]	R1 = 0.0522, wR2 = 0.120)8	
R indices (all data)	R1 = 0.1137, $wR2 = 0.1410$		
Extinction coefficient	0.0057(11)		
Largest diff. peak and hole	0.291 and -0.273 e.Å ⁻³		

	Х	У	Z	U(eq)	
P(1)	3809(1)	3902(1)	10568(1)	41(1)	
N(1)	4023(2)	10573(2)	2745(1)	43(1)	
N(2)	5376(2)	9824(1)	3522(1)	37(1)	
O(1)	3404(1)	4844(1)	10046(1)	49(1)	
O(2)	5170(2)	4109(2)	10870(1)	54(1)	
O(3)	3030(1)	3651(1)	11220(1)	54(1)	
C(1)	4205(2)	9787(2)	3273(1)	41(1)	
C(2)	5111(2)	11147(2)	2661(1)	44(1)	
C(3)	5960(2)	10680(2)	3146(1)	42(1)	
C(4)	5218(2)	12103(2)	2133(2)	66(1)	
C(5)	7275(2)	10972(2)	3300(2)	62(1)	
C(6)	2819(2)	10802(2)	2348(1)	48(1)	
C(7)	2289(2)	9743(2)	1998(2)	61(1)	
C(8)	1036(2)	9966(3)	1602(2)	65(1)	
C(9)	178(2)	10494(2)	2144(2)	60(1)	
C(10)	704(2)	11535(2)	2480(2)	66(1)	
C(11)	1953(2)	11324(2)	2892(1)	53(1)	
C(12)	5954(2)	9075(2)	4102(1)	38(1)	
C(13)	6700(2)	8175(2)	3729(1)	45(1)	
C(14)	7302(2)	7422(2)	4335(2)	60(1)	
C(15)	6394(2)	6951(2)	4876(2)	60(1)	
C(16)	5638(3)	7860(2)	5219(1)	61(1)	
C(17)	5002(2)	8563(2)	4598(1)	47(1)	
C(18)	3866(2)	2660(2)	9995(1)	46(1)	
C(19)	4726(2)	2515(2)	9447(2)	61(1)	
C(20)	4704(4)	1575(3)	8996(2)	94(1)	
C(21)	3840(5)	778(3)	9080(3)	143(2)	
C(22)	2981(5)	913(3)	9617(3)	158(2)	
C(23)	2998(4)	1848(2)	10070(2)	94(1)	

Table 23: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for C₂₃H₃₅N₂O₃P. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

P(1)-O(3)	1.4891(16)	C(8)-C(9)	1.507(3)	
P(1)-O(1)	1.5124(16)	C(9)-C(10)	1.491(4)	
P(1)-O(2)	1.5736(18)	C(10)-C(11)	1.535(3)	
P(1)-C(18)	1.806(2)	C(12)-C(17)	1.518(3)	
N(1)-C(1)	1.334(3)	C(12)-C(13)	1.523(3)	
N(1)-C(2)	1.388(3)	C(13)-C(14)	1.524(3)	
N(1)-C(6)	1.484(3)	C(14)-C(15)	1.514(3)	
N(2)-C(1)	1.333(3)	C(15)-C(16)	1.514(3)	
N(2)-C(3)	1.395(3)	C(16)-C(17)	1.523(3)	
N(2)-C(12)	1.480(2)	C(18)-C(23)	1.374(4)	
C(2)-C(3)	1.352(3)	C(18)-C(19)	1.385(3)	
C(2)-C(4)	1.487(3)	C(19)-C(20)	1.382(4)	
C(3)-C(5)	1.491(3)	C(20)-C(21)	1.359(5)	
C(6)-C(11)	1.511(3)	C(21)-C(22)	1.370(5)	
C(6)-C(7)	1.520(3)	C(22)-C(23)	1.379(4)	
C(7)-C(8)	1.528(3)			

Table 24: Bond lengths [Å] and angles [°] for $C_{23}H_{35}N_2O_3P$

O(3)-P(1)-O(1)	117.21(9)	C(6)-C(7)-C(8)	110.6(2)
O(3)-P(1)-O(2)	109.71(10)	C(9)-C(8)-C(7)	110.9(2)
O(1)-P(1)-O(2)	109.25(10)	C(10)-C(9)-C(8)	111.5(2)
O(3)-P(1)-C(18)	107.20(10)	C(9)-C(10)-C(11)	111.4(2)
O(1)-P(1)-C(18)	107.52(9)	C(6)-C(11)-C(10)	109.8(2)
O(2)-P(1)-C(18)	105.26(11)	N(2)-C(12)-C(17)	111.23(17)
C(1)-N(1)-C(2)	109.07(17)	N(2)-C(12)-C(13)	110.98(16)
C(1)-N(1)-C(6)	123.96(18)	C(17)-C(12)-C(13)	110.49(17)
C(2)-N(1)-C(6)	126.91(18)	C(12)-C(13)-C(14)	110.28(19)
C(1)-N(2)-C(3)	108.74(17)	C(15)-C(14)-C(13)	112.8(2)
C(1)-N(2)-C(12)	125.28(17)	C(16)-C(15)-C(14)	111.3(2)
C(3)-N(2)-C(12)	125.98(17)	C(15)-C(16)-C(17)	110.9(2)
N(2)-C(1)-N(1)	108.33(18)	C(12)-C(17)-C(16)	109.64(19)
C(3)-C(2)-N(1)	106.89(18)	C(23)-C(18)-C(19)	118.0(2)
C(3)-C(2)-C(4)	130.1(2)	C(23)-C(18)-P(1)	119.70(19)
N(1)-C(2)-C(4)	123.0(2)	C(19)-C(18)-P(1)	122.23(19)
C(2)-C(3)-N(2)	106.95(18)	C(20)-C(19)-C(18)	120.5(3)
C(2)-C(3)-C(5)	129.9(2)	C(21)-C(20)-C(19)	120.8(3)
N(2)-C(3)-C(5)	123.09(19)	C(20)-C(21)-C(22)	119.4(3)
N(1)-C(6)-C(11)	110.29(18)	C(21)-C(22)-C(23)	120.2(4)
N(1)-C(6)-C(7)	110.22(18)	C(18)-C(23)-C(22)	121.2(3)
C(11)-C(6)-C(7)	111.58(19)		

7.3.9 Crystal data for $C_{11.50}H_{16}NS_{0.50}$ (41)

Table 25: Crystal data and structure refinement for $C_{11.50}H_{16}NS_{0.50}$ (41)

Empirical formula	$C_{11.50}H_{16}NS_{0.50}$	
Formula weight	184.28	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Trigonal, P3(2	2)21
Unit cell dimensions	a = 7.0791(8) A	alpha = 90 deg.
	b = 7.0791(8) A	beta = 90 deg.
	c = 34.273(3) A	gamma = 120 deg.
Volume	1487.4(3) A^3	
Z, Calculated density	6, 1.234 Mg/m^	3
Absorption coefficient	0.173 mm^-1	
F(000)	600	
Crystal size	0.2 x 0.8 x 0.4 n	ım
Theta range for data collection	on 3.32 to 27.51 d	eg.
Limiting indices	-8<=h<=4, -9<=	=k<=9, -44<=l<=44
Reflections collected / uniqu	le 11269 / 2279 []	R(int) = 0.0405]
Completeness to theta $= 27.5$	51 99.9 %	
Absorption correction	None	
Refinement method	Full-matrix leas	t-squares on F^2
Data / restraints / parameters	2279 / 0 / 120	
Goodness-of-fit on F^2	1.364	
Final R indices [I>2sigma(I)] $R1 = 0.0989$, w	R2 = 0.3032
R indices (all data)	R1 = 0.0993, w	R2 = 0.3033
Absolute structure parameter	r 0.6(4)	
Extinction coefficient	0.035(7)	
Largest diff. peak and hole	0.532 and -0.43	4 e.A^-3

	Х	у	Z	U(eq)	
S(1)	2945(3)	0	1667	37(1)	
N(1)	7099(8)	1197(8)	1428(1)	23(1)	
C(1)	5358(11)	0	1667	24(2)	
C(2)	8714(10)	704(11)	1522(2)	32(1)	
C(3)	7265(10)	2674(10)	1100(2)	25(1)	
C(4)	9533(10)	3707(13)	916(2)	38(2)	
C(5)	5574(10)	1321(12)	781(2)	32(1)	
C(6)	6925(11)	4527(11)	1249(2)	30(1)	
C(7)	7044(14)	5983(12)	902(2)	42(2)	
C(8)	9700(12)	5203(13)	577(2)	41(2)	
C(9)	5701(12)	2796(13)	444(2)	35(2)	
C(10)	5283(12)	4581(12)	594(2)	38(2)	
C(11)	9311(14)	7028(13)	724(2)	47(2)	
C(12)	8043(12)	3820(14)	262(2)	42(2)	

Table 26: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for $C_{11.50}H_{16}NS_{0.50}$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

S(1)-C(1) 1.708(8)	C(4)-C(8) 1.536(9)
N(1)-C(1) 1.366(7)	C(5)-C(9) 1.527(9)
N(1)-C(2) 1.390(7)	C(6)-C(7) 1.547(8)
N(1)-C(3) 1.499(7)	C(7)-C(11) 1.520(12)
C(1)-N(1)#1 1.366(7)	C(7)-C(10) 1.554(10)
C(2)-C(2)#1 1.317(13)	C(8)-C(12) 1.532(10)
C(3)-C(4) 1.529(8)	C(8)-C(11) 1.535(12)
C(3)-C(6) 1.535(9)	C(9)-C(10) 1.523(11)
C(3)-C(5) 1.548(8)	C(9)-C(12) 1.569(10)
C(1)-N(1)-C(2) 107.8(5)	N(1)#1-C(1)-S(1) 126.3(3)
C(1)-N(1)-C(3) 127.9(5)	N(1)-C(1)-S(1) 126.3(3)
C(2)-N(1)-C(3) 124.2(5)	C(2)#1-C(2)-N(1) 108.5(3)
N(1)#1-C(1)-N(1) 107.4(7)	N(1)-C(3)-C(4) 109.8(5)
N(1)-C(3)-C(6) 110.8(4)	C(9)-C(5)-C(3) 110.3(5)
C(4)-C(3)-C(6) 107.7(6)	C(3)-C(6)-C(7) 109.5(5)
N(1)-C(3)-C(5) 109.3(5)	C(11)-C(7)-C(6) 109.0(6)
C(4)-C(3)-C(5) 107.9(5)	C(11)-C(7)-C(10) 110.6(6)
C(6)-C(3)-C(5) 111.1(5)	C(6)-C(7)-C(10) 109.7(6)
C(3)-C(4)-C(8) 110.0(5)	C(12)-C(8)-C(11) 111.5(7)
C(12)-C(8)-C(4) 108.7(6)	C(10)-C(9)-C(5) 110.1(5)
C(11)-C(8)-C(4) 110.4(6)	C(10)-C(9)-C(12) 110.4(6)
C(5)-C(9)-C(12) 107.6(6)	C(9)-C(10)-C(7) 109.4(6)
C(7)-C(11)-C(8) 108.2(6)	C(8)-C(12)-C(9) 108.1(5)

Table 27: Bond lengths [A] and angles [deg] for $C_{11.50}H_{16}NS_{0.50}$

Symmetry transformations used to generate equivalent atoms: #1 x-y,-y,-z+1/3

	-	-	
Empirical formula	$C_{50}H_{66}CaN_8S_4$		
Formula weight	947.43		
Temperature	293(2) K		
Wavelength	71.073 pm		
Crystal system	triclinic		
Space group	P 1		
Unit cell dimensions	a = 661.44(10) pm	$\alpha = 100.55(2)^{\circ}$.	
	b = 1128.27(16) pm	β= 90.09(2)°.	
	c = 1754.5(4) pm	$\gamma = 103.206(17)^{\circ}$.	
Volume	1.2519(4) nm ³		
Ζ	1		
Density (calculated)	1.251 g/cm ³		
Absorption coefficient	0.286 mm ⁻¹		
F(000)	503		
Crystal size	0.2 x 0.2 x 0.4 mm ³		
Theta range for data collection	3.29 to 25.78°.		
Index ranges	$-7 \le h \le 7, -13 \le k \le 13, 0$	$0 \le 1 \le 20$	
Reflections collected	2111		
Independent reflections	2111 [R(int) = 0.0000]		
Completeness to theta = 25.78°	43.9 %		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	2111 / 3 / 290		
Goodness-of-fit on F ²	0.819		
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0591, $wR2 = 0.1304$		
R indices (all data)	R1 = 0.1328, $wR2 = 0.1551$		
Absolute structure parameter	0.3(3)		
Largest diff. peak and hole	c and hole $0.491 \text{ and } -0.281 \text{ e.}\text{Å}^{-3}$		

7.3.10	Crystal	data for	г С ₅₀ Н ₆₆ Са	N_8S_4 (42)		
Table 28:	Crystal	data an	d structure	refinement for	$C_{50}H_{66}CaN_8S_4$	(42)

C(21)

C(22)

C(23)

C(24)

N(3)

C(25)

C(26)

N(4)

C(27)

880(40)

2770(30)

4570(40)

4190(30)

4510(30)

4300(40)

3670(30)

3740(30)

5190(30)

tensor					
	X	у	Z	U(eq)	
C(1)	4900(40)	6910(20)	1117(11)	34(6)	
N(1)	5390(30)	7616(16)	1844(8)	24(4)	
C(2)	5200(40)	6810(20)	2323(12)	41(6)	
C(3)	4800(30)	5617(16)	1940(8)	12(4)	
N(2)	4460(30)	5677(16)	1208(9)	28(4)	
C(4)	5910(30)	9019(19)	2028(10)	21(5)	
C(5)	4330(30)	9352(16)	2609(8)	19(4)	
C(6)	8120(30)	9360(20)	2357(11)	28(5)	
C(7)	5760(30)	9466(19)	1255(11)	30(5)	
C(8)	4910(40)	800(20)	2809(13)	40(7)	
C(9)	8660(40)	800(20)	2600(13)	42(7)	
C(10)	6280(40)	870(20)	1479(13)	44(7)	
C(11)	4770(50)	1340(30)	2084(14)	58(8)	
C(12)	7180(30)	1280(20)	3183(11)	26(5)	
C(13)	8540(40)	1370(20)	1856(13)	43(7)	
C(14)	3800(40)	4550(30)	514(13)	45(6)	
C(15)	1800(40)	3850(20)	690(11)	34(6)	
C(16)	5470(30)	3820(20)	473(10)	24(5)	
C(17)	3680(40)	5010(20)	9765(11)	35(6)	
C(18)	1080(40)	2680(30)	64(13)	48(7)	
C(19)	4740(40)	2670(20)	9822(11)	34(6)	
C(20)	3020(30)	3975(19)	9102(10)	26(5)	

3150(20)

1940(20)

3150(20)

5343(19)

6457(16)

6480(20)

5383(18)

4587(17)

7561(17)

9278(12)

-15(10)

9026(12)

6911(10)

6887(8)

6048(13)

5678(10)

6220(9)

7499(9)

37(6)

25(5)

45(7)

22(5)

26(4)

50(7)

22(5)

31(5)

12(4)

Table 29: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (pm^2x 10⁻¹) for C₅₀H₆₆CaN₈S₄. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

C(28)	3550(40)	8360(20)	7597(12)	39(6)
C(29)	7320(40)	8360(20)	7304(11)	34(6)
C(30)	5420(30)	7120(20)	8286(10)	27(5)
C(31)	4250(40)	9470(20)	8240(11)	34(6)
C(32)	7960(40)	9470(20)	7992(11)	28(5)
C(33)	6130(40)	8280(20)	8913(11)	32(6)
C(34)	4490(30)	9100(20)	8990(11)	28(5)
C(35)	6430(40)	310(20)	8053(13)	47(7)
C(36)	8220(40)	9030(20)	8742(12)	38(6)
C(37)	3150(40)	3250(20)	6028(11)	33(6)
C(38)	3310(40)	2620(20)	6736(11)	33(6)
C(39)	960(30)	2710(20)	5652(12)	36(6)
C(40)	4610(40)	2640(20)	5413(11)	43(6)
C(41)	2680(40)	1240(20)	6538(11)	27(5)
C(42)	370(40)	1350(20)	5474(12)	37(6)
C(43)	4110(40)	1330(20)	5213(13)	40(7)
C(44)	4260(40)	800(20)	5961(11)	33(6)
C(45)	540(40)	810(20)	6201(12)	41(7)
C(46)	2000(40)	900(30)	4866(14)	54(7)
Ca(1)	78(11)	5958(8)	3006(4)	148(3)
S(1)	2060(12)	3719(8)	3505(4)	71(3)
C(47)	4440(40)	4420(20)	3617(11)	41(7)
N(5)	6230(40)	4740(20)	3655(10)	50(6)
S(2)	6975(10)	8450(6)	4519(3)	49(2)
C(48)	4460(40)	7920(20)	4455(11)	35(6)
N(6)	2730(40)	7320(20)	4368(12)	69(7)
S(3)	-76(13)	7486(10)	195(4)	92(4)
C(49)	80(40)	7110(20)	998(12)	51(7)
N(7)	-100(30)	6426(17)	1532(9)	56(5)
S(4)	-893(12)	4665(10)	7818(4)	86(3)
C(50)	-850(30)	5277(16)	7030(9)	23(4)
N(8)	-1030(20)	5470(15)	6443(8)	39(4)

C(1)-N(1)	137(2)	C(20)-C(23)	153(3)
C(1)-N(2)	139(3)	C(20)-C(21)	157(3)
N(1)-C(2)	133(3)	C(21)-C(18)#4	158(3)
N(1)-C(4)	151(3)	C(22)-C(19)#3	143(3)
C(2)-C(3)	136(3)	C(24)-N(3)	123(2)
C(3)-N(2)	131.9(19)	C(24)-N(4)	134(2)
N(2)-C(14)	157(3)	N(3)-C(27)	147(2)
C(4)-C(6)	150(3)	N(3)-C(25)	149(2)
C(4)-C(5)	152(3)	C(25)-C(26)	127(3)
C(4)-C(7)	154(2)	C(26)-N(4)	143(2)
C(5)-C(8)#1	156(3)	N(4)-C(37)	144(3)
C(6)-C(9)#1	156(3)	C(27)-C(28)	155(3)
C(7)-C(10)#1	152(3)	C(27)-C(29)	156(3)
C(8)-C(11)	152(3)	C(27)-C(30)	157(2)
C(8)-C(5)#2	156(3)	C(28)-C(31)	151(3)
C(8)-C(12)	157(3)	C(29)-C(32)	155(3)
C(9)-C(12)	152(3)	C(30)-C(33)	153(3)
C(9)-C(6)#2	156(3)	C(31)-C(34)	147(3)
C(9)-C(13)	157(3)	C(31)-C(35)#1	161(3)
C(10)-C(7)#2	152(3)	C(32)-C(36)	151(3)
C(10)-C(11)	156(3)	C(32)-C(35)#1	153(3)
C(10)-C(13)	157(3)	C(33)-C(36)	151(3)
C(14)-C(15)	144(3)	C(33)-C(34)	157(3)
C(14)-C(17)#3	151(3)	C(35)-C(32)#2	153(3)
C(14)-C(16)	152(3)	C(35)-C(31)#2	161(3)
C(15)-C(18)	153(3)	C(37)-C(39)	154(3)
C(16)-C(19)#3	154(3)	C(37)-C(38)	156(3)
C(17)-C(20)	148(3)	C(37)-C(40)	162(3)
C(17)-C(14)#4	151(3)	C(38)-C(41)	149(3)
C(18)-C(22)	153(3)	C(39)-C(42)	148(3)
C(18)-C(21)#3	158(3)	C(40)-C(43)	142(3)
C(19)-C(22)#4	143(3)	C(41)-C(45)	147(3)
C(19)-C(16)#4	154(3)	C(41)-C(44)	156(3)
C(19)-C(23)	160(3)	C(42)-C(45)	152(3)

Table 30: Bond lengths [pm] and angles [°] for $C_{50}H_{66}CaN_8S_4$

C(42)-C(46)	161(4)	C(11)-C(8)-C(12) 109(2)	
C(43)-C(46)	146(3)	C(5)#2-C(8)-C(12) 110(2)	
C(43)-C(44)	155(3)	C(12)-C(9)-C(6)#2 113.0(19)	り
Ca(1)-N(7)	274.1(17)	C(12)-C(9)-C(13) 108(2)	
Ca(1)-N(6)	293(2)	C(6)#2-C(9)-C(13) 108.5(18)	3)
Ca(1)-N(5)#5	294(2)	C(7)#2-C(10)-C(11) 112(2)	
Ca(1)-S(1)	334.4(11)	C(7)#2-C(10)-C(13) 111(2)	
S(1)-C(47)	159(3)	C(11)-C(10)-C(13) 107(2)	
C(47)-N(5)	116(3)	C(8)-C(11)-C(10) 109(2)	
N(5)-Ca(1)#6	294(2)	C(9)-C(12)-C(8) 108(2)	
S(2)-C(48)	163(2)	C(9)-C(13)-C(10) 108(2)	
C(48)-N(6)	118(3)	C(15)-C(14)-C(17)#3 111(2)	
S(3)-C(49)	155(2)	C(15)-C(14)-C(16) 113(3)	
C(49)-N(7)	131(3)	C(17)#3-C(14)-C(16) 109.3(18)	\$)
S(4)-C(50)	165.1(16)	C(15)-C(14)-N(2) 106.4(18)	\$)
C(50)-N(8)	110.3(18)	C(17)#3-C(14)-N(2) 110(2)	
		C(16)-C(14)-N(2) 106.9(18)	\$)
N(1)-C(1)-N(2)	106.5(17)	C(14)-C(15)-C(18) 110(2)	
C(2)-N(1)-C(1)	105(2)	C(14)-C(16)-C(19)#3 106.5(19)	り
C(2)-N(1)-C(4)	129.4(17)	C(20)-C(17)-C(14)#4 112(2)	
C(1)-N(1)-C(4)	125.1(17)	C(22)-C(18)-C(15) 109(2)	
N(1)-C(2)-C(3)	112.5(18)	C(22)-C(18)-C(21)#3 108.0(18)	\$)
N(2)-C(3)-C(2)	104.8(16)	C(15)-C(18)-C(21)#3 106(2)	
C(3)-N(2)-C(1)	110.1(16)	C(22)#4-C(19)-C(16)#4110.9(18)	\$)
C(3)-N(2)-C(14)	126.6(17)	C(22)#4-C(19)-C(23) 110.5(17)	')
C(1)-N(2)-C(14)	123.2(17)	C(16)#4-C(19)-C(23) 108.0(18)	\$)
C(6)-C(4)-N(1)	104.3(17)	C(17)-C(20)-C(23) 109.6(19)	I)
C(6)-C(4)-C(5)	114.1(17)	C(17)-C(20)-C(21) 108.7(17)	')
N(1)-C(4)-C(5)	104.9(15)	C(23)-C(20)-C(21) 106(2)	
C(6)-C(4)-C(7)	111.4(16)	C(20)-C(21)-C(18)#4 110.2(18)	\$)
N(1)-C(4)-C(7)	107.1(14)	C(19)#3-C(22)-C(18) 112(2)	
C(5)-C(4)-C(7)	114.1(17)	C(20)-C(23)-C(19) 109.0(17)	')
C(4)-C(5)-C(8)#1	104.6(16)	N(3)-C(24)-N(4) 114.5(17)	')
C(4)-C(6)-C(9)#1	105.5(19)	C(24)-N(3)-C(27) 130.9(16)	5)
C(10)#1-C(7)-C(4)	104.5(16)	C(24)-N(3)-C(25) 104.2(17)	')
C(11)-C(8)-C(5)#2	110.6(19)	C(27)-N(3)-C(25) 124.6(17	')

C(26)-C(25)-N(3)	109(2)	C(38)-C(37)-C(40)	102.8(18)
C(25)-C(26)-N(4)	106.7(17)	C(41)-C(38)-C(37)	113.1(16)
C(24)-N(4)-C(26)	105.3(18)	C(42)-C(39)-C(37)	114(2)
C(24)-N(4)-C(37)	130.1(18)	C(43)-C(40)-C(37)	116(2)
C(26)-N(4)-C(37)	124.1(16)	C(45)-C(41)-C(38)	112(2)
N(3)-C(27)-C(28)	111.0(16)	C(45)-C(41)-C(44)	111(2)
N(3)-C(27)-C(29)	110.2(15)	C(38)-C(41)-C(44)	107.5(18)
C(28)-C(27)-C(29)	110(2)	C(39)-C(42)-C(45)	111.0(19)
N(3)-C(27)-C(30)	108.2(15)	C(39)-C(42)-C(46)	107.2(19)
C(28)-C(27)-C(30)	107.6(15)	C(45)-C(42)-C(46)	109(2)
C(29)-C(27)-C(30)	110.2(15)	C(40)-C(43)-C(46)	110(2)
C(31)-C(28)-C(27)	110.5(19)	C(40)-C(43)-C(44)	108.6(19)
C(32)-C(29)-C(27)	106.8(16)	C(46)-C(43)-C(44)	110(2)
C(33)-C(30)-C(27)	107.1(17)	C(43)-C(44)-C(41)	108.2(19)
C(34)-C(31)-C(28)	111(2)	C(41)-C(45)-C(42)	109.4(19)
C(34)-C(31)-C(35)#1	108.6(18)	C(43)-C(46)-C(42)	110(2)
C(28)-C(31)-C(35)#1	110.5(18)	N(7)-Ca(1)-N(6)	130.7(6)
C(36)-C(32)-C(35)#1	112.0(18)	N(7)-Ca(1)-N(5)#5	118.7(6)
C(36)-C(32)-C(29)	111.3(18)	N(6)-Ca(1)-N(5)#5	104.4(6)
C(35)#1-C(32)-C(29)	111.0(19)	N(7)-Ca(1)-S(1)	125.0(5)
C(36)-C(33)-C(30)	111.0(19)	N(6)-Ca(1)-S(1)	78.8(6)
C(36)-C(33)-C(34)	110(2)	N(5)#5-Ca(1)-S(1)	85.3(5)
C(30)-C(33)-C(34)	111.1(19)	C(47)-S(1)-Ca(1)	99.3(10)
C(31)-C(34)-C(33)	108.3(17)	N(5)-C(47)-S(1)	169(2)
C(32)#2-C(35)-C(31)#2	2 105(2)	C(47)-N(5)-Ca(1)#6	149.2(15)
C(33)-C(36)-C(32)	107.7(18)	N(6)-C(48)-S(2)	167(3)
N(4)-C(37)-C(39)	115(2)	C(48)-N(6)-Ca(1)	133.9(16)
N(4)-C(37)-C(38)	113.2(16)	N(7)-C(49)-S(3)	160(2)
C(39)-C(37)-C(38)	107.3(18)	C(49)-N(7)-Ca(1)	156.1(15)
N(4)-C(37)-C(40)	114.2(18)	N(8)-C(50)-S(4)	166.7(16)
C(39)-C(37)-C(40)	103.4(18)		

#1 x,y+1,z #2 x,y-1,z #3 x,y,z-1 #4 x,y,z+1 #5 x-1,y,z #6 x+1,y,z

7.3.11 Crystal data for $C_{13}H_{20}AgBrN_4$ (43)

Empirical formula	$C_{13}H_{20}AgBrN_4$
Formula weight	420.11
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P212121
Unit cell dimensions	$a = 6.6986(15) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 10.6222(14) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 23.989(4) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	1706.9(5) Å ³
Ζ	4
Density (calculated)	1.635 Mg/m ³
Absorption coefficient	3.515 mm ⁻¹
F(000)	832
Crystal size	0.4 x 0.2 x 0.2 mm ³
Theta range for data collection	3.16 to 27.94°.
Index ranges	-8<=h<=8, -1<=k<=14, -1<=l<=31
Reflections collected	5034
Independent reflections	4090 [R(int) = 0.0498]
Completeness to theta = 27.94°	99.8 %
Absorption correction	DIFABS
Max. and min. transmission	1.177 and 0.517
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4090 / 0 / 205
Goodness-of-fit on F ²	0.964
Final R indices [I>2sigma(I)]	R1 = 0.0505, wR2 = 0.0713
R indices (all data)	R1 = 0.1895, $wR2 = 0.0940$
Absolute structure parameter	0.472(17)
Largest diff. peak and hole	0.358 and -0.845 e.Å ⁻³

Table 31: Crystal data and structure refinement for $C_{13}H_{20}AgBrN_4$ (43)

	Х	у	Z	U(eq)	
Ag(1)	2807(1)	5128(1)	1275(1)	73(1)	
Br(1)	6227(1)	8826(1)	1326(1)	62(1)	
N(2)	2837(9)	9891(6)	780(2)	44(2)	
C(1)	3881(9)	9680(6)	1254(3)	44(2)	
C(2)	1189(12)	10803(7)	1457(3)	49(2)	
C(21)	-261(12)	11577(9)	1782(3)	84(3)	
C(31)	-325(11)	11001(10)	474(3)	77(3)	
N(1)	2892(10)	10249(7)	1669(2)	50(2)	
C(3)	1183(13)	10589(7)	896(3)	51(2)	
C(4)	3545(15)	9418(9)	229(3)	62(3)	
C(5)	2180(20)	8514(13)	-23(5)	90(4)	
C(6)	4165(14)	10549(10)	-140(4)	91(4)	
C(7)	3491(14)	10181(10)	2260(3)	61(2)	
C(8)	4090(30)	11498(14)	2459(6)	94(4)	
C(9)	2055(16)	9463(9)	2605(3)	90(4)	
N(22)	5315(11)	2657(8)	1046(3)	79(3)	
C(11)	1084(15)	6693(9)	1400(4)	75(3)	
N(11)	99(11)	7531(8)	1449(4)	90(3)	
C(22)	4429(14)	3551(10)	1126(4)	76(3)	

Table 32: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{13}H_{20}AgBrN_4$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Ag(1)-C(22)	2.028(11)	C(2)-C(21)	1.492(10)
Ag(1)-C(11)	2.046(11)	C(31)-C(3)	1.496(10)
Br(1)-C(1)	1.823(7)	N(1)-C(7)	1.476(9)
N(2)-C(1)	1.354(8)	C(4)-C(5)	1.458(14)
N(2)-C(3)	1.362(8)	C(4)-C(6)	1.550(12)
N(2)-C(4)	1.490(9)	C(7)-C(9)	1.480(12)
C(1)-N(1)	1.340(8)	C(7)-C(8)	1.532(15)
C(2)-C(3)	1.367(9)	N(22)-C(22)	1.137(11)
C(2)-N(1)	1.381(8)	C(11)-N(11)	1.114(11)
C(22)-Ag(1)-C(11)	177.5(4)	C(2)-N(1)-C(7)	126.8(7)
C(1)-N(2)-C(3)	109.8(5)	N(2)-C(3)-C(2)	106.9(7)
C(1)-N(2)-C(4)	121.6(7)	N(2)-C(3)-C(31)	124.8(6)
C(3)-N(2)-C(4)	128.6(6)	C(2)-C(3)-C(31)	128.3(8)
N(1)-C(1)-N(2)	107.2(6)	C(5)-C(4)-N(2)	113.0(8)
N(1)-C(1)-Br(1)	125.4(5)	C(5)-C(4)-C(6)	116.2(9)
N(2)-C(1)-Br(1)	127.4(6)	N(2)-C(4)-C(6)	109.3(7)
C(3)-C(2)-N(1)	107.1(7)	N(1)-C(7)-C(9)	112.7(7)
C(3)-C(2)-C(21)	127.3(8)	N(1)-C(7)-C(8)	109.0(9)
N(1)-C(2)-C(21)	125.5(6)	C(9)-C(7)-C(8)	118.0(9)
C(1)-N(1)-C(2)	109.1(5)	N(11)-C(11)-Ag(1)	177.1(11)
C(1)-N(1)-C(7)	123.9(7)	N(22)-C(22)-Ag(1)	179.0(9)

Table 33: Bond lengths [Å] and angles [°] for $C_{13}H_{20}AgBrN_4$

7.3.12 Crystal data for $C_{12}H_{22}CIN_3O$ (44)

	Table 34: Crystal data and structure refinement for $C_{12}H_{22}CIN_3O$ (44)	
--	---	--

Empirical formula	$C_{12}H_{22}CIN_3O$	
Formula weight	259.78	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pna2(1)	
Unit cell dimensions	a = 9.5298(19) Å	<i>α</i> = 90°.
	b = 12.648(3) Å	β= 90°.
	c = 12.511(3) Å	$\gamma = 90^{\circ}$.
Volume	1508.0(5) Å ³	
Ζ	4	
Density (calculated)	1.144 Mg/m ³	
Absorption coefficient	0.244 mm ⁻¹	
F(000)	560	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	3.13 to 30.52°.	
Index ranges	-13<=h<=13, -18<=k<=18	8, - 17<=1<=17
Reflections collected	24290	
Independent reflections	4552 [R(int) = 0.0840]	
Completeness to theta = 30.52°	98.6 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4552 / 1 / 169	
Goodness-of-fit on F ²	0.956	
Final R indices [I>2sigma(I)]	R1 = 0.0603, WR2 = 0.144	45
R indices (all data)	R1 = 0.1211, $wR2 = 0.162$	24
Absolute structure parameter	-0.08(12)	
Extinction coefficient	0.000(2)	
Largest diff. peak and hole	0.236 and -0.190 e.Å ⁻³	

	Х	у	Z	U(eq)	
Cl(1)	7830(1)	3256(1)	8037(2)	88(1)	
N(1)	3647(3)	5359(2)	5821(2)	37(1)	
N(2)	1901(3)	4791(2)	6777(2)	39(1)	
N(3)	3295(4)	6999(2)	8078(3)	61(1)	
O(1)	9659(4)	1170(2)	7694(3)	63(1)	
C(1)	3134(4)	6341(3)	7457(3)	45(1)	
C(2)	2899(3)	5517(2)	6699(2)	37(1)	
C(3)	2024(4)	4137(2)	5914(3)	44(1)	
C(4)	3115(4)	4497(2)	5311(3)	40(1)	
C(5)	812(4)	4712(2)	7627(3)	49(1)	
C(6)	-184(5)	5639(3)	7546(5)	76(1)	
C(7)	1453(5)	4584(3)	8729(3)	58(1)	
C(8)	1075(5)	3208(3)	5725(3)	63(1)	
C(9)	3702(5)	4073(3)	4304(3)	57(1)	
C(10)	4897(4)	5983(2)	5440(3)	43(1)	
C(11)	6124(5)	5768(5)	6162(4)	79(1)	
C(12)	4535(5)	7133(3)	5342(3)	63(1)	

Table 35: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{12}H_{22}CIN_3O$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(2)	1.324(4)	C(3)-C(4)	1.363(5)
N(1)-C(4)	1.361(4)	C(3)-C(8)	1.502(5)
N(1)-C(10)	1.507(4)	C(4)-C(9)	1.479(5)
N(2)-C(2)	1.326(4)	C(5)-C(6)	1.512(5)
N(2)-C(3)	1.365(4)	C(5)-C(7)	1.517(6)
N(2)-C(5)	1.489(4)	C(10)-C(12)	1.499(5)
N(3)-C(1)	1.149(4)	C(10)-C(11)	1.502(6)
C(1)-C(2)	1.427(5)		
C(2)-N(1)-C(4)	108.0(2)	C(4)-C(3)-C(8)	129.3(3)
C(2)-N(1)-C(10)	127.5(2)	N(2)-C(3)-C(8)	123.2(3)
C(4)-N(1)-C(10)	124.4(3)	N(1)-C(4)-C(3)	107.0(3)
C(2)-N(2)-C(3)	107.5(3)	N(1)-C(4)-C(9)	123.3(3)
C(2)-N(2)-C(5)	126.8(3)	C(3)-C(4)-C(9)	129.7(3)
C(3)-N(2)-C(5)	125.8(3)	N(2)-C(5)-C(6)	109.8(3)
N(3)-C(1)-C(2)	178.5(4)	N(2)-C(5)-C(7)	112.1(3)
N(1)-C(2)-N(2)	110.0(2)	C(6)-C(5)-C(7)	113.4(4)
N(1)-C(2)-C(1)	125.3(3)	C(12)-C(10)-C(11)	113.8(4)
N(2)-C(2)-C(1)	124.7(3)	C(12)-C(10)-N(1)	110.6(3)
C(4)-C(3)-N(2)	107.5(3)	C(11)-C(10)-N(1)	109.3(3)

Table 36: Bond lengths [Å] and angles [°] for $C_{12}H_{22}ClN_3O$

7.3.13 Crystal data for $C_{14}H_{20}N_4$ (45)

Table 37: Crystal data	and structure refinement	for C ₁₄ H ₂₀ N ₄ (45)
------------------------	--------------------------	---

Empirical formula	$C_{14}H_{20}N_4$	
Formula weight	244.34	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 9.3410(18) Å	<i>α</i> = 90°.
	b = 11.693(4) Å	$\beta = 109.13(2)^{\circ}.$

	$c = 13.203(6) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	1362.4(8) Å ³
Ζ	4
Density (calculated)	1.191 Mg/m ³
Absorption coefficient	0.074 mm ⁻¹
F(000)	528
Crystal size	? x ? x ? mm ³
Theta range for data collection	2.31 to 29.53°.
Index ranges	-12<=h<=12, -16<=k<=16, -18<=l<=17
Reflections collected	14751
Independent reflections	3806 [R(int) = 0.0303]
Completeness to theta = 29.53°	99.9 %
Absorption correction	Empirical
Max. and min. transmission	0.4620 and 0.3712
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3806 / 0 / 244
Goodness-of-fit on F ²	1.891
Final R indices [I>2sigma(I)]	R1 = 0.0407, $wR2 = 0.1024$
R indices (all data)	R1 = 0.0434, $wR2 = 0.1069$
Extinction coefficient	0.089(9)
Largest diff. peak and hole	0.408 and -0.282 e.Å ⁻³

	Х	у	Z	U(eq)	
N(1)	8627(1)	4190(1)	2058(1)	20(1)	
N(2)	6528(1)	3359(1)	1090(1)	19(1)	
N(3)	11150(1)	2714(1)	534(1)	40(1)	
N(4)	6914(1)	4149(1)	-1689(1)	37(1)	
C(1)	7914(1)	3708(1)	1094(1)	19(1)	
C(2)	7674(1)	4137(1)	2681(1)	22(1)	
C(3)	6354(1)	3638(1)	2071(1)	21(1)	
C(4)	10112(1)	4780(1)	2314(1)	22(1)	
C(5)	9978(1)	6039(1)	2539(1)	44(1)	
C(6)	11349(1)	4165(1)	3178(1)	47(1)	
C(7)	8085(1)	4528(1)	3815(1)	32(1)	
C(8)	4973(1)	3390(1)	2362(1)	28(1)	
C(9)	5456(1)	2721(1)	189(1)	21(1)	
C(10)	4920(1)	1612(1)	561(1)	30(1)	
C(11)	4147(1)	3478(1)	-458(1)	28(1)	
C(12)	8516(1)	3584(1)	222(1)	22(1)	
C(13)	9966(1)	3118(1)	391(1)	26(1)	
C(14)	7642(1)	3896(1)	-826(1)	25(1)	

Table 38: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{14}H_{20}N_4$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(1)	1.3513(10)	C(2)-C(3)	1.3635(10)
N(1)-C(2)	1.3979(9)	C(2)-C(7)	1.4909(12)
N(1)-C(4)	1.4862(9)	C(3)-C(8)	1.4905(10)
N(2)-C(1)	1.3566(8)	C(4)-C(6)	1.5130(12)
N(2)-C(3)	1.3950(10)	C(4)-C(5)	1.5147(13)
N(2)-C(9)	1.4808(10)	C(9)-C(11)	1.5239(11)
N(3)-C(13)	1.1604(12)	C(9)-C(10)	1.5277(11)
N(4)-C(14)	1.1578(13)	C(12)-C(14)	1.4044(12)
C(1)-C(12)	1.4445(10)	C(12)-C(13)	1.4081(10)
C(1)-N(1)-C(2)	108.89(6)	C(2)-C(3)-C(8)	128.44(7)
C(1)-N(1)-C(4)	122.88(6)	N(2)-C(3)-C(8)	124.64(7)
C(2)-N(1)-C(4)	127.90(6)	N(1)-C(4)-C(6)	112.04(7)
C(1)-N(2)-C(3)	109.14(6)	N(1)-C(4)-C(5)	111.39(6)
C(1)-N(2)-C(9)	123.21(6)	C(6)-C(4)-C(5)	113.95(9)
C(3)-N(2)-C(9)	127.54(6)	N(2)-C(9)-C(11)	111.40(7)
N(1)-C(1)-N(2)	107.69(6)	N(2)-C(9)-C(10)	112.06(6)
N(1)-C(1)-C(12)	126.33(6)	C(11)-C(9)-C(10)	112.70(6)
N(2)-C(1)-C(12)	125.99(6)	C(14)-C(12)-C(13)	118.38(7)
C(3)-C(2)-N(1)	107.35(6)	C(14)-C(12)-C(1)	120.48(7)
C(3)-C(2)-C(7)	127.63(7)	C(13)-C(12)-C(1)	121.11(7)
N(1)-C(2)-C(7)	124.99(7)	N(3)-C(13)-C(12)	178.73(10)
C(2)-C(3)-N(2)	106.90(6)	N(4)-C(14)-C(12)	179.52(9)

Table 39: Bond lengths [Å] and angles [°] for $C_{14}H_{20}N_4$

7.3.14 Crystal data for $C_{12}H_{16}N_4$ (46)

Table 40: Crystal	data and structure	e refinement for	$C_{12}H_{16}N_4$	(46)
-------------------	--------------------	------------------	-------------------	------

Empirical formula	$C_{12}H_{16}N$	
Formula weight	216.29	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	

Space group	C2/c	
Unit cell dimensions	a = 14.770(3) Å	<i>α</i> = 90°.
	b = 9.3490(19) Å	β= 105.27(3)°.
	c = 17.576(4) Å	$\gamma = 90^{\circ}$.
Volume	2341.3(8) Å ³	
Ζ	8	
Density (calculated)	1.227 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	928	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	3.02 to 25.99°.	
Index ranges	-18<=h<=17, 0<=k<=11,	-1<=1<=21
Reflections collected	2529	
Independent reflections	2299 [R(int) = 0.0256]	
Completeness to theta = 25.99°	99.8 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	2299 / 0 / 210	
Goodness-of-fit on F ²	1.086	
Final R indices [I>2sigma(I)]	R1 = 0.0406, wR2 = 0.099	97
R indices (all data)	$R1 = 0.0599, wR2 = 0.10^{\circ}$	76
Extinction coefficient	0.0065(8)	
Largest diff. peak and hole	0.230 and -0.146 e.Å ⁻³	

	Х	У	Z	U(eq)	
N(1)	159(1)	9367(1)	3545(1)	31(1)	
N(2)	1622(1)	9684(1)	3579(1)	32(1)	
N(3)	-412(1)	13046(2)	4309(1)	52(1)	
N(4)	1577(1)	13579(2)	2878(1)	59(1)	
C(1)	819(1)	10379(2)	3572(1)	30(1)	
C(2)	558(1)	8008(2)	3546(1)	34(1)	
C(3)	1462(1)	8210(2)	3557(1)	34(1)	
C(4)	-847(1)	9615(2)	3457(1)	35(1)	
C(5)	-1126(1)	9432(2)	4220(1)	43(1)	
C(6)	25(1)	6657(2)	3542(1)	45(1)	
C(7)	2211(1)	7158(2)	3541(1)	48(1)	
C(8)	2570(1)	10320(2)	3750(1)	37(1)	
C(9)	2992(1)	10482(2)	4623(1)	52(1)	
C(10)	690(1)	11900(2)	3580(1)	33(1)	
C(11)	74(1)	12528(2)	3974(1)	36(1)	
C(12)	1176(1)	12821(2)	3193(1)	39(1)	

Table 41: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{12}H_{16}N_4$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(1)	1.3503(17)	C(1)-C(10)	1.435(2)
N(1)-C(2)	1.4005(18)	C(2)-C(3)	1.344(2)
N(1)-C(4)	1.4709(17)	C(2)-C(6)	1.487(2)
N(2)-C(1)	1.3498(17)	C(3)-C(7)	1.486(2)
N(2)-C(3)	1.3975(18)	C(4)-C(5)	1.513(2)
N(2)-C(8)	1.4770(18)	C(8)-C(9)	1.504(3)
N(3)-C(11)	1.1486(19)	C(10)-C(12)	1.405(2)
N(4)-C(12)	1.154(2)	C(10)-C(11)	1.409(2)
C(1)-N(1)-C(2)	109.67(11)	C(2)-N(1)-C(4)	123.79(12)
C(1)-N(1)-C(4)	126.34(12)	C(1)-N(2)-C(3)	109.44(11)
C(1)-N(2)-C(8)	126.31(12)	N(2)-C(1)-C(10)	126.53(12)
C(3)-N(2)-C(8)	123.13(12)	N(1)-C(1)-C(10)	126.76(12)
N(2)-C(1)-N(1)	106.70(12)	C(3)-C(2)-N(1)	106.76(12)
C(3)-C(2)-C(6)	129.97(14)	C(2)-C(3)-C(7)	130.45(14)
N(1)-C(2)-C(6)	123.26(13)	N(2)-C(3)-C(7)	122.13(13)
C(2)-C(3)-N(2)	107.41(12)	N(1)-C(4)-C(5)	113.09(12)
N(2)-C(8)-C(9)	111.29(13)	C(12)-C(10)-C(11)	117.46(13)
C(12)-C(10)-C(1)	121.12(13)	C(11)-C(10)-C(1)	121.43(13)
N(3)-C(11)-C(10)	178.55(17)	N(4)-C(12)-C(10)	179.8(2)
Symmetry transform	nations used to generate		

Table 42: Bond lengths [Å] and angles [°] for $C_{12}H_{16}N_4$

Table 45. Crystal data and structure refiner		
Empirical formula	C ₁₁ H ₂₂ ClN ₃	
Formula weight	231.77	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 14.530(3) Å	<i>α</i> = 90°.
	b = 10.1215(11) Å	β= 90°.
	c = 18.239(2) Å	$\gamma = 90^{\circ}$.
Volume	2682.3(7) Å ³	
Ζ	8	
Density (calculated)	1.148 Mg/m ³	
Absorption coefficient	0.262 mm ⁻¹	
F(000)	1008	
Crystal size	0.25 x 0.6 x 0.25 mm ³	
Theta range for data collection	2.23 to 27.50°.	
Index ranges	-18<=h<=18, -13<=k<=13	3, - 23<=l<=1
Reflections collected	12423	
Independent reflections	3077 [R(int) = 0.0469]	
Completeness to theta = 27.50°	100.0 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3077 / 0 / 143	
Goodness-of-fit on F ²	1.006	
Final R indices [I>2sigma(I)]	R1 = 0.0733, wR2 = 0.214	45
R indices (all data)	R1 = 0.1038, wR2 = 0.240	06
Extinction coefficient	0.0029(18)	
Largest diff. peak and hole	0.865 and -0.486 e.Å ⁻³	

7.3.15 Crystal data for $C_{11}H_{22}ClN_3$ (47) Table 43: Crystal data and structure refinement for $C_{11}H_{22}ClN_3$ (47)

	Х	у	Z	U(eq)	
Cl(1)	746(1)	9865(1)	1278(1)	59(1)	
N(1)	1096(2)	4205(3)	4586(1)	53(1)	
N(2)	1966(2)	3080(3)	3662(1)	44(1)	
N(3)	2690(2)	3688(2)	4655(1)	41(1)	
C(1)	1871(2)	3696(3)	4318(2)	40(1)	
C(2)	2880(3)	2649(3)	3601(2)	50(1)	
C(3)	3333(2)	3024(3)	4211(2)	48(1)	
C(4)	1162(3)	2777(4)	3177(2)	59(1)	
C(5)	885(4)	1348(5)	3228(2)	91(2)	
C(6)	1331(4)	3229(5)	2396(2)	81(1)	
C(7)	3260(3)	1951(5)	2946(2)	76(1)	
C(8)	4312(3)	2813(5)	4409(2)	69(1)	
C(9)	2851(2)	4392(3)	5357(2)	48(1)	
C(10)	3226(5)	3538(5)	5943(2)	119(3)	
C(11)	3370(5)	5620(4)	5239(2)	94(2)	

Table 44: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{11}H_{22}CIN_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Table 45: Bond lengths [Å] and angles [°] for $C_{11}H_{22}ClN$

N(1)-C(1)	1.331(4)	C(2)-C(3)	1.348(5)	
N(2)-C(1)	1.356(4)	C(2)-C(7)	1.493(4)	
N(2)-C(2)	1.403(4)	C(3)-C(8)	1.482(5)	
N(2)-C(4)	1.497(4)	C(4)-C(5)	1.504(6)	
N(3)-C(1)	1.339(4)	C(4)-C(6)	1.516(5)	
N(3)-C(3)	1.408(4)	C(9)-C(11)	1.470(6)	
N(3)-C(9)	1.483(4)	C(9)-C(10)	1.479(5)	

C(1)-N(2)-C(2)	108.1(3)	C(1)-N(3)-C(9)	122.2(2)
C(1)-N(2)-C(4)	122.4(3)	C(3)-N(3)-C(9)	128.3(3)
C(2)-N(2)-C(4)	128.9(3)	N(1)-C(1)-N(3)	125.8(3)
C(1)-N(3)-C(3)	109.2(2)	N(1)-C(1)-N(2)	126.0(3)

108.2(3)	N(2)-C(4)-C(5)	111.7(3)
108.0(3)	N(2)-C(4)-C(6)	111.6(4)
127.8(3)	C(5)-C(4)-C(6)	113.0(3)
124.1(3)	C(11)-C(9)-C(10)	114.3(4)
106.5(3)	C(11)-C(9)-N(3)	111.1(3)
129.0(3)	C(10)-C(9)-N(3)	113.7(3)
124.5(3)		
	108.2(3) 108.0(3) 127.8(3) 124.1(3) 106.5(3) 129.0(3) 124.5(3)	108.2(3) $N(2)-C(4)-C(5)$ $108.0(3)$ $N(2)-C(4)-C(6)$ $127.8(3)$ $C(5)-C(4)-C(6)$ $124.1(3)$ $C(11)-C(9)-C(10)$ $106.5(3)$ $C(11)-C(9)-N(3)$ $129.0(3)$ $C(10)-C(9)-N(3)$ $124.5(3)$ $C(10)-C(9)-N(3)$

Symmetry transformations used to generate equivalent atom	ms:
---	-----

5	
Empirical formula	C ₁₁ H ₂₁ N ₃ O ₃
Formula weight	243.31
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Tetragonal
Space group	P4(3)2(1)2
Unit cell dimensions	$a = 7.967(3) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 7.967(3) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 20.606(5) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	1308.0(9) Å ³
Ζ	4
Density (calculated)	1.236 Mg/m ³
Absorption coefficient	0.090 mm ⁻¹
F(000)	528
Crystal size	? x ? x ? mm ³
Theta range for data collection	2.74 to 24.64°.
Index ranges	-9<=h<=8, -9<=k<=9, -24<=l<=24
Reflections collected	8772
Independent reflections	1115 [R(int) = 0.0356]
Completeness to theta = 24.64°	99.9 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1115 / 0 / 122
Goodness-of-fit on F ²	1.049

7.3.16 Crystal data for $C_{11}H_{21}N_3O_3$ (48) Table 46: Crystal data and structure refinement for $C_{11}H_{21}N_3O_3$ (48)

Final R indices [I>2sigma(I)]	R1 = 0.0264, wR2 = 0.0680
R indices (all data)	R1 = 0.0273, wR2 = 0.0693
Absolute structure parameter	0.8(16)
Extinction coefficient	0.060(5)
Largest diff. peak and hole	0.113 and -0.104 e.Å ⁻³

Table 47: Atomic coordinates(x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{11}H_{21}N_3O_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	Х	у	Z	U(eq)	
N(1)	8137(1)	9332(1)	410(1)	31(1)	
N(2)	4797(1)	4797(1)	0	36(1)	
O(1)	3709(1)	3709(1)	0	71(1)	
O(2)	6102(1)	4606(2)	325(1)	57(1)	
C(1)	8049(2)	8049(2)	0	35(1)	
C(2)	9536(2)	10288(2)	258(1)	30(1)	
C(3)	6892(2)	9649(2)	934(1)	34(1)	
C(4)	6840(2)	8170(2)	1394(1)	47(1)	
C(5)	5209(2)	10026(2)	633(1)	41(1)	
C(6)	9989(2)	11828(2)	623(1)	43(1)	

C(4)-C(3)	1.513(2)
N(2)-O(1)	1.225(2)
N(2)-O(2)	1.2463(14)
N(2)-O(2)#1	1.2463(14)
N(1)-C(1)	1.3285(15)
N(1)-C(2)	1.3859(16)
N(1)-C(3)	1.4872(16)
C(2)-C(2)#1	1.359(2)
C(2)-C(6)	1.4835(18)
C(1)-N(1)#1	1.3285(15)
C(3)-C(5)	1.508(2)
O(1)-N(2)-O(2)	120.26(7)
O(1)-N(2)-O(2)#1	120.26(7)
O(2)-N(2)-O(2)#1	119.48(15)
C(1)-N(1)-C(2)	108.68(10)
C(1)-N(1)-C(3)	123.87(11)
C(2)-N(1)-C(3)	127.44(10)
C(2)#1-C(2)-N(1)	106.85(6)
C(2)#1-C(2)-C(6)	130.81(8)
N(1)-C(2)-C(6)	122.34(12)
N(1)#1-C(1)-N(1)	108.94(15)
N(1)-C(3)-C(5)	109.18(11)
N(1)-C(3)-C(4)	109.89(11)
C(5)-C(3)-C(4)	112.88(13)

Table 48: Bond lengths [Å] and angles [°] for $C_{11}H_{21}N_3O_3$

Symmetry transformations used to generate equivalent atoms:

#1 y,x,-z

Table 49: Crystal data and structure r	entinement for $C_{11}H_{20}BrN_3O_3$	(49)		
Empirical formula	$C_{11}H_{20}BrN_3O_3$			
Formula weight	322.21			
Temperature	223(2) K			
Wavelength	1.54056 Å			
Crystal system	Orthorhombic			
Space group	Cmcm			
Unit cell dimensions	a = 6.7287(5) Å	<i>α</i> = 90°.		
	b = 13.1473(13) Å	β= 90°.		
	c = 16.047(3) Å	$\gamma = 90^{\circ}$.		
Volume	1419.6(3) Å ³			
Ζ	4			
Density (calculated)	1.508 Mg/m ³			
Absorption coefficient	4.010 mm ⁻¹			
F(000)	664			
Crystal size	0.40 x 0.30 x 0.20 mm ³			
Theta range for data collection	5.51 to 64.93°.			
Index ranges	-7<=h<=7, -15<=k<=	15, - 18<=l<=18		
Reflections collected	4642			
Independent reflections	692 [R(int) = 0.1117]			
Completeness to theta = 64.93°	48.4 %			
Absorption correction	Psi-Scans			
Max. and min. transmission	0.9405 and 0.7162			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	692 / 0 / 79			
Goodness-of-fit on F ²	1.058			
Final R indices [I>2sigma(I)]	R1 = 0.0618, $wR2 = 0.0618$	R1 = 0.0618, wR2 = 0.1231		
R indices (all data)	R1 = 0.0637, wR2 = 0.1243			
Extinction coefficient	0.00120(14)			
Largest diff. peak and hole	2.245 and -1.417 e.Å ⁻³			

7.3.17 Crystal data for $C_{11}H_{20}BrN_3O_3$ (49) Table 49: Crystal data and structure refinement for $C_{11}H_{20}BrN_3O_3$ (49)

	Х	У	Z	U(eq)	
Br(1)	5000	4796(1)	2500	47(1)	
N(1)	5000	2800(4)	1822(3)	33(1)	
C(1)	5000	3395(7)	2500	36(2)	
C(2)	5000	1793(4)	2081(4)	31(1)	
C(3)	5000	3101(5)	919(4)	42(2)	
C(4)	5000	915(6)	1502(5)	46(2)	
C(5)	3115(12)	3644(6)	689(4)	63(2)	
N(2)	0	2408(7)	2500	69(3)	
O(1)	0	1931(5)	1831(5)	88(2)	
O(2)	0	3346(6)	2500	80(3)	

Table 50: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{11}H_{20}BrN_3O_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor
Br(1)-C(1)	1.842(9)
N(1)-C(1)	1.340(7)
N(1)-C(2)	1.388(8)
N(1)-C(3)	1.502(8)
C(1)-N(1)#1	1.340(7)
C(2)-C(2)#1	1.345(12)
C(2)-C(4)	1.483(9)
C(3)-C(5)	1.502(7)
C(3)-C(5)#2	1.502(7)
N(2)-O(2)	1.233(11)
N(2)-O(1)	1.243(8)
N(2)-O(1)#1	1.243(8)
C(1)-N(1)-C(2)	108.3(5)
C(1)-N(1)-C(3)	129.0(5)
C(2)-N(1)-C(3)	122.7(5)
N(1)-C(1)-N(1)#1	108.6(7)
N(1)-C(1)-Br(1)	125.7(4)
N(1)#1-C(1)-Br(1)	125.7(4)
C(2)#1-C(2)-N(1)	107.4(3)
C(2)#1-C(2)-C(4)	128.8(4)
N(1)-C(2)-C(4)	123.7(6)
N(1)-C(3)-C(5)	111.3(4)
N(1)-C(3)-C(5)#2	111.3(4)
C(5)-C(3)-C(5)#2	115.2(8)
O(2)-N(2)-O(1)	120.3(5)
O(2)-N(2)-O(1)#1	120.3(5)
O(1)-N(2)-O(1)#1	119.4(10)

Table 51: bond lengths [Å] and angles [°] for $C_{11}H_{20}BrN_3O_3$

Symmetry transformations used to generate equivalent atoms:

#1 x,y,-z+1/2 #2 -x+1,y,z

7.3.18 Crystal data for $C_{25}H_{23}N_2O_3P$ (51)

Empirical formula	$C_{25}H_{23}N_2O_3P$	
Formula weight	430.42	
Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 10.072(2) Å	<i>α</i> = 90°.
	b = 13.534(3) Å	$\beta = 97.13(3)^{\circ}$.
	c = 16.224(3) Å	$\gamma = 90^{\circ}$.
Volume	2194.4(8) Å ³	
Z	4	
Density (calculated)	1.303 Mg/m ³	
Absorption coefficient	0.155 mm ⁻¹	
F(000)	904	
Crystal size	x ? x ? mm ³	
Theta range for data collection	3.01 to 30.08°.	
Index ranges	-1<=h<=14, -1<=k<=	=19, -22<=1<=22
Reflections collected	7939	
Independent reflections	6388 [R(int) = 0.096	6]
Completeness to theta = 30.08°	98.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	6388 / 0 / 373	
Goodness-of-fit on F ²	1.004	
Final R indices [I>2sigma(I)]	R1 = 0.0620, wR2 =	0.1369
R indices (all data)	R1 = 0.1353, wR2 =	0.1653
Extinction coefficient	0.0000(12)	
Largest diff. peak and hole	0.816 and -0.307 e.Å	-3

	Х	у	Z	U(eq)	
P(1)	4515(1)	8780(1)	2449(1)	28(1)	
N(1)	9029(2)	9887(2)	2984(1)	37(1)	
N(2)	8548(2)	9713(2)	1546(1)	41(1)	
O(1)	7743(2)	9136(1)	3857(1)	44(1)	
O(2)	10152(2)	10778(2)	2109(2)	66(1)	
O(3)	6945(2)	8631(2)	983(1)	51(1)	
C(1)	7287(2)	8790(2)	2431(1)	29(1)	
C(2)	7545(2)	9001(2)	1624(1)	34(1)	
C(3)	9298(3)	10162(2)	2210(2)	43(1)	
C(4)	7986(2)	9246(2)	3130(1)	32(1)	
C(5)	8779(6)	10020(4)	708(2)	79(1)	
C(6)	9822(4)	10339(3)	3707(2)	61(1)	
C(7)	4766(2)	10030(2)	2138(1)	31(1)	
C(8)	4345(3)	10322(2)	1327(2)	40(1)	
C(9)	4691(3)	11253(2)	1054(2)	53(1)	
C(10)	5447(3)	11879(2)	1593(2)	53(1)	
C(11)	5874(3)	11589(2)	2401(2)	44(1)	
C(12)	5552(2)	10663(2)	2676(2)	34(1)	
C(13)	3851(2)	8721(2)	3428(1)	31(1)	
C(14)	3536(3)	9552(2)	3861(2)	40(1)	
C(15)	3067(3)	9441(3)	4631(2)	51(1)	
C(16)	2901(3)	8508(3)	4942(2)	50(1)	
C(17)	3193(3)	7677(2)	4505(2)	46(1)	
C(18)	3672(2)	7779(2)	3745(2)	37(1)	
C(19)	3348(2)	8193(2)	1678(1)	32(1)	
C(20)	1995(3)	8146(2)	1756(2)	45(1)	
C(21)	1116(3)	7712(3)	1143(2)	53(1)	
C(22)	1589(3)	7299(2)	458(2)	51(1)	
C(23)	2926(3)	7343(2)	374(2)	47(1)	
C(24)	3809(3)	7795(2)	973(2)	40(1)	
C(25)	6144(2)	8128(2)	2554(2)	32(1)	

Table 53: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{25}H_{23}N_2O_3P$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

P(1)-C(7)	1.792(2)	C(7)-C(12)	1.397(3)
P(1)-C(19)	1.793(2)	C(8)-C(9)	1.394(4)
P(1)-C(13)	1.800(2)	C(9)-C(10)	1.377(4)
P(1)-C(25)	1.852(2)	C(10)-C(11)	1.384(4)
N(1)-C(3)	1.368(3)	C(11)-C(12)	1.382(3)
N(1)-C(4)	1.405(3)	C(13)-C(14)	1.384(3)
N(1)-C(6)	1.468(4)	C(13)-C(18)	1.395(3)
N(2)-C(3)	1.378(4)	C(14)-C(15)	1.397(4)
N(2)-C(2)	1.413(3)	C(15)-C(16)	1.379(4)
N(2)-C(5)	1.469(4)	C(16)-C(17)	1.381(4)
O(1)-C(4)	1.242(3)	C(17)-C(18)	1.384(3)
O(2)-C(3)	1.224(3)	C(19)-C(20)	1.386(3)
O(3)-C(2)	1.242(3)	C(19)-C(24)	1.394(3)
C(1)-C(2)	1.394(3)	C(20)-C(21)	1.378(4)
C(1)-C(4)	1.403(3)	C(21)-C(22)	1.380(4)
C(1)-C(25)	1.492(3)	C(22)-C(23)	1.372(4)
C(7)-C(8)	1.389(3)	C(23)-C(24)	1.376(4)
C(7)-P(1)-C(19)	108.96(11)	O(3)-C(2)-C(1)	125.1(2)
C(7)-P(1)-C(13)	111.79(11)	O(3)-C(2)-N(2)	118.6(2)
C(19)-P(1)-C(13)	108.25(11)	C(1)-C(2)-N(2)	116.2(2)
C(7)-P(1)-C(25)	108.75(11)	O(2)-C(3)-N(1)	122.1(3)
C(19)-P(1)-C(25)	110.43(11)	O(2)-C(3)-N(2)	121.5(3)
C(13)-P(1)-C(25)	108.66(11)	N(1)-C(3)-N(2)	116.5(2)
C(3)-N(1)-C(4)	124.1(2)	O(1)-C(4)-C(1)	125.3(2)
C(3)-N(1)-C(6)	118.0(3)	O(1)-C(4)-N(1)	118.3(2)
C(4)-N(1)-C(6)	117.7(2)	C(1)-C(4)-N(1)	116.4(2)
C(3)-N(2)-C(2)	124.0(2)	C(8)-C(7)-C(12)	120.0(2)
C(3)-N(2)-C(5)	117.7(3)	C(8)-C(7)-P(1)	119.88(19)
C(2)-N(2)-C(5)	118.2(3)	C(12)-C(7)-P(1)	119.51(18)
C(2)-C(1)-C(4)	122.4(2)	C(7)-C(8)-C(9)	119.9(3)
C(2)-C(1)-C(25)	119.1(2)	C(10)-C(9)-C(8)	119.7(3)
C(4)-C(1)-C(25)	118.27(19)	C(9)-C(10)-C(11)	120.6(3)

Table 54: Bond lengths [Å] and angles [°] for $C_{25}H_{23}N_2O_3P$

C(12)-C(11)-C(10)	120.4(3)	C(20)-C(19)-C(24)	119.2(2)
C(11)-C(12)-C(7)	119.5(2)	C(20)-C(19)-P(1)	121.56(18)
C(14)-C(13)-C(18)	120.5(2)	C(24)-C(19)-P(1)	119.20(19)
C(14)-C(13)-P(1)	123.06(19)	C(21)-C(20)-C(19)	120.3(3)
C(18)-C(13)-P(1)	116.44(18)	C(20)-C(21)-C(22)	119.9(3)
C(13)-C(14)-C(15)	119.3(3)	C(23)-C(22)-C(21)	120.2(3)
C(16)-C(15)-C(14)	119.8(3)	C(22)-C(23)-C(24)	120.3(3)
C(15)-C(16)-C(17)	120.9(2)	C(23)-C(24)-C(19)	120.0(3)
C(16)-C(17)-C(18)	119.8(3)	C(1)-C(25)-P(1)	112.99(17)
C(17)-C(18)-C(13)	119.6(3)		

Symmetry transformations used to generate equivalent atoms:

7.3.19 Crystal data for $C_{18}H_{30}N_4O_4$ (52)

Table 55: Crystal data and structure refinement for $C_{18}H_{30}N_4O_4$ (52)

Empirical formula	$C_{18}H_{30}N_4O_4$	
Formula weight	366.46	
Temperature	213(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 11.154(2) Å	<i>α</i> = 90°.
	b = 10.204(2) Å	β=96.46(3)°
	c = 16.941(3) Å	$\gamma = 90^{\circ}$.
Volume	1916.0(7) Å ³	
Z	4	
Density (calculated)	1.270 Mg/m ³	
Absorption coefficient	0.091 mm ⁻¹	
F(000)	792	
Crystal size	0.70 x 0.35 x 0.25 mm ³	
Theta range for data collection	2.31 to 24.71°.	
Index ranges	-13<=h<=1, -11<=k<=1, -	19<=1<=19
Reflections collected	4250	
Independent reflections	3247 [R(int) = 0.0651]	
Completeness to theta = 24.71°	99.7 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3247 / 0 / 356	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I)]	R1 = 0.0448, $wR2 = 0.126$	54
R indices (all data)	R1 = 0.0486, wR2 = 0.130)3
Extinction coefficient	0.030(3)	
Largest diff. peak and hole	0.200 and -0.327 e.Å ⁻³	

	Х	у	Z	U(eq)	
N(1)	4906(1)	7655(1)	9(1)	34(1)	
N(2)	6492(1)	6188(1)	326(1)	32(1)	
N(3)	4946(1)	6675(1)	2910(1)	28(1)	
N(4)	5221(1)	4569(1)	2959(1)	31(1)	
O(1)	3274(1)	7699(1)	710(1)	40(1)	
O(2)	6496(1)	7579(1)	-723(1)	44(1)	
O(3)	6398(1)	4628(1)	1280(1)	42(1)	
O(4)	2596(2)	118(2)	1407(1)	62(1)	
C(1)	4775(1)	6107(2)	1060(1)	29(1)	
C(2)	5892(1)	5574(2)	921(1)	31(1)	
C(3)	5985(2)	7158(2)	-164(1)	33(1)	
C(4)	4256(1)	7158(2)	616(1)	31(1)	
C(5)	7650(2)	5639(2)	163(1)	41(1)	
C(6)	4313(2)	8611(2)	-545(1)	49(1)	
C(7)	4743(1)	5554(2)	2502(1)	27(1)	
C(8)	5576(2)	6399(2)	3648(1)	35(1)	
C(9)	5741(2)	5084(2)	3679(1)	37(1)	
C(10)	4487(1)	7966(2)	2601(1)	30(1)	
C(11)	5497(2)	8837(2)	2378(1)	41(1)	
C(12)	3701(2)	8624(2)	3159(1)	44(1)	
C(13)	5990(2)	7406(2)	4253(1)	51(1)	
C(14)	6338(2)	4301(2)	4356(1)	57(1)	
C(15)	5160(2)	3168(2)	2718(1)	35(1)	
C(16)	6402(2)	2550(2)	2759(1)	46(1)	
C(17)	4284(2)	2422(2)	3178(2)	55(1)	
C(18)	4100(1)	5468(2)	1681(1)	29(1)	

Table 56: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{18}H_{30}N_4O_4$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(3)	1.368(2)	O(2)-C(3)	1.236(2)	
N(1)-C(4)	1.418(2)	O(3)-C(2)	1.243(2)	
N(1)-C(6)	1.459(2)	C(1)-C(4)	1.398(2)	
N(2)-C(3)	1.372(2)	C(1)-C(2)	1.403(2)	
N(2)-C(2)	1.417(2)	C(1)-C(18)	1.509(2)	
N(2)-C(5)	1.462(2)	C(7)-C(18)	1.494(2)	
N(3)-C(7)	1.342(2)	C(8)-C(9)	1.354(3)	
N(3)-C(8)	1.392(2)	C(8)-C(13)	1.488(3)	
N(3)-C(10)	1.487(2)	C(9)-C(14)	1.492(3)	
N(4)-C(7)	1.343(2)	C(10)-C(12)	1.516(2)	
N(4)-C(9)	1.393(2)	C(10)-C(11)	1.517(2)	
N(4)-C(15)	1.487(2)	C(15)-C(16)	1.516(2)	
O(1)-C(4)	1.252(2)	C(15)-C(17)	1.520(3)	
C(2) N(1) $C(4)$	102 80/14)	N(1) C(2) N(2)	116 90(14)	
C(3)-N(1)-C(4)	123.82(14) 117.16(14)	N(1)-C(3)-N(2)	110.80(14) 125.84(14)	
C(3)-N(1)-C(6)	11/.10(14) 119.22(14)	O(1) - C(4) - C(1)	125.84(14)	
C(4)-N(1)-C(6)	118.32(14)	O(1) - C(4) - N(1)	11/.41(14)	
C(3)-N(2)-C(2)	123.61(13)	C(1)-C(4)-N(1)	116./5(14)	
C(3)-N(2)-C(5)	118.30(14)	N(3)-C(7)-N(4)	107.97(13)	
C(2)-N(2)-C(5)	117.61(14)	N(3)-C(7)-C(18)	124.39(14)	
C(7)-N(3)-C(8)	109.17(13)	N(4)-C(7)-C(18)	127.65(14)	
C(7)-N(3)-C(10)	122.89(13)	C(9)-C(8)-N(3)	106.78(14)	
C(8)-N(3)-C(10)	127.87(13)	C(9)-C(8)-C(13)	128.80(17)	
C(7)-N(4)-C(9)	108.75(14)	N(3)-C(8)-C(13)	124.41(16)	
C(7)-N(4)-C(15)	123.98(14)	C(8)-C(9)-N(4)	107.33(15)	
C(9)-N(4)-C(15)	127.26(14)	C(8)-C(9)-C(14)	127.43(18)	
C(4)-C(1)-C(2)	121.94(14)	N(4)-C(9)-C(14)	125.23(17)	
C(4)-C(1)-C(18)	119.83(14)	N(3)-C(10)-C(12)	111.97(13)	
C(2)-C(1)-C(18)	118.16(14)	N(3)-C(10)-C(11)	111.75(13)	
O(3)-C(2)-C(1)	125.55(14)	C(12)-C(10)-C(11)	113.22(15)	
O(3)-C(2)-N(2)	117.84(14)	N(4)-C(15)-C(16)	111.91(14)	
C(1)-C(2)-N(2)	116.60(14)	N(4)-C(15)-C(17)	110.68(15)	
O(2)-C(3)-N(1)	121.84(15)	C(16)-C(15)-C(17)	113.89(16)	
O(2)-C(3)-N(2)	121.34(15)	C(7)-C(18)-C(1)	113.53(12)	

Table 57: Bond lengths [Å] and angles [°] for $C_{18}H_{30}N_4O_4$

7.3.20 Crystal data for $C_{14}H_{17}N_4O_6$ (53)

Table 58: Crystal data and structure refinement for $C_{14}H_{17}N_4O_6$ (53)

Empirical formula	$C_{14}H_{17}N_4O_6$		
Formula weight	337.32		
Temperature	293(2) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 14.701(3) Å	α=90°.	
	b = 13.296(3) Å	β= 101.50(3)°	
	c = 8.0940(16) Å	$\gamma = 90^{\circ}$.	
Volume	1550.3(5) Å ³		
Z	4		
Density (calculated)	1.445 Mg/m ³		
Absorption coefficient	0.977 mm ⁻¹		
F(000)	708		
Crystal size	0.28 x 0.20x 0.15 mm	1 ³	
Theta range for data collection	6.14 to 60.00°.		
Index ranges	-16<=h<=16, -14<=k	<=14, -1<=1<=9	
Reflections collected	5453		
Independent reflections	2302 [R(int) = 0.1773	3]	
Completeness to theta = 60.00°	99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squa	ares on F ²	
Data / restraints / parameters	2302 / 0 / 222		
Goodness-of-fit on F ²	0.923		
Final R indices [I>2sigma(I)]	R1 = 0.0963, WR2 = 0.0963, W	0.2567	
R indices (all data)	R1 = 0.2263, WR2 = 0.3138		
Extinction coefficient	0.0008(8)		
Largest diff. peak and hole	0.411 and -0.457 e.Å ⁻	-3	

	Х	у	Z	U(eq)	
N(1)	4564(5)	3594(5)	-129(10)	77(2)	
N(2)	5661(4)	4075(5)	2320(8)	58(2)	
N(3)	906(4)	8998(4)	706(7)	49(2)	
N(4)	1619(4)	10433(4)	-245(7)	45(2)	
O(1)	4117(4)	4066(5)	2335(9)	96(2)	
O(2)	7187(4)	4105(5)	2234(7)	76(2)	
O(3)	5147(4)	3201(5)	-2546(8)	82(2)	
O(4)	1584(4)	8927(4)	-1598(7)	72(2)	
O(5)	347(4)	9072(4)	3117(7)	75(2)	
O(6)	1773(4)	11892(4)	1241(8)	69(2)	
C(1)	4741(6)	3918(6)	1602(12)	62(2)	
C(2)	5310(6)	3454(5)	-1060(11)	55(2)	
C(3)	6186(5)	3659(5)	-182(8)	35(2)	
C(4)	6395(6)	3937(6)	1462(11)	55(2)	
C(5)	3661(6)	3322(7)	-919(14)	96(3)	
C(6)	6953(7)	3557(8)	-1037(13)	93(3)	
C(7)	5870(7)	4344(8)	4098(10)	86(3)	
C(8)	1400(5)	9429(5)	-435(10)	54(2)	
C(9)	743(5)	9481(5)	2125(9)	49(2)	
C(10)	1058(5)	10526(5)	2342(8)	43(2)	
C(11)	1506(5)	11006(5)	1109(9)	44(2)	
C(12)	679(6)	7922(5)	505(11)	68(3)	
C(13)	943(5)	11042(7)	3721(10)	65(2)	
C(14)	2042(6)	10903(6)	-1577(10)	73(3)	

Table 59: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{14}H_{17}N_4O_6$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(5)	1.401(11)	O(1)-C(1)	1.204(9)
N(1)-C(1)	1.440(10)	O(2)-C(4)	1.227(9)
N(1)-C(2)	1.461(10)	O(3)-C(2)	1.226(9)
N(2)-C(1)	1.378(10)	O(4)-C(8)	1.228(8)
N(2)-C(4)	1.406(9)	O(5)-C(9)	1.211(8)
N(2)-C(7)	1.455(9)	O(6)-C(11)	1.239(8)
N(3)-C(9)	1.377(8)	C(2)-C(3)	1.369(10)
N(3)-C(8)	1.407(8)	C(3)-C(4)	1.357(10)
N(3)-C(12)	1.470(8)	C(3)-C(6)	1.441(9)
N(4)-C(11)	1.372(8)	C(9)-C(10)	1.464(10)
N(4)-C(8)	1.374(9)	C(10)-C(13)	1.349(9)
N(4)-C(14)	1.485(8)	C(10)-C(11)	1.449(9)
C(5)-N(1)-C(1)	119.5(8)	C(4)-C(3)-C(2)	124.7(7)
C(5)-N(1)-C(2)	118.2(8)	C(4)-C(3)-C(6)	116.8(8)
C(1)-N(1)-C(2)	122.1(7)	C(2)-C(3)-C(6)	118.5(7)
C(1)-N(2)-C(4)	123.9(7)	O(2)-C(4)-C(3)	123.7(7)
C(1)-N(2)-C(7)	116.7(7)	O(2)-C(4)-N(2)	117.9(8)
C(4)-N(2)-C(7)	119.3(7)	C(3)-C(4)-N(2)	118.3(8)
C(9)-N(3)-C(8)	123.7(6)	O(4)-C(8)-N(4)	122.1(6)
C(9)-N(3)-C(12)	118.3(6)	O(4)-C(8)-N(3)	120.2(6)
C(8)-N(3)-C(12)	117.3(6)	N(4)-C(8)-N(3)	117.6(6)
C(11)-N(4)-C(8)	124.4(6)	O(5)-C(9)-N(3)	122.0(7)
C(11)-N(4)-C(14)	118.8(6)	O(5)-C(9)-C(10)	121.9(7)
C(8)-N(4)-C(14)	116.7(6)	N(3)-C(9)-C(10)	116.1(6)
O(1)-C(1)-N(2)	123.3(9)	C(13)-C(10)-C(11)	119.6(7)
O(1)-C(1)-N(1)	121.4(9)	C(13)-C(10)-C(9)	119.6(7)
N(2)-C(1)-N(1)	115.3(7)	C(11)-C(10)-C(9)	120.8(6)
O(3)-C(2)-C(3)	122.9(7)	O(6)-C(11)-N(4)	120.6(6)
O(3)-C(2)-N(1)	121.4(8)	O(6)-C(11)-C(10)	122.6(7)
C(3)-C(2)-N(1)	115.7(7)	N(4)-C(11)-C(10)	116.7(6)

Table 60: Bond lengths [Å] and angles [°] for $C_{14}H_{17}N_4O_6$

7.3.21 Crystal data for $C_6H_6Cl_2N_2O_3$ (54)

Table 61: Crystal data and structure refinement for	or $C_6H_6Cl_2N_2O_3$ (54)
---	----------------------------

Empirical formula	$C_6H_6Cl_2N_2O_3$	
Formula weight	225.03	
Temperature	220(2) K	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	P 2 ₁ /c	
Unit cell dimensions	$a = 741.7(1) \text{ pm}$ $\alpha = 90^{\circ}$	
	$b = 1585.2(2) \text{ pm}$ $\beta = 94.31(2)$	
	$c = 1536.8(2) \text{ pm} = 90^{\circ}$	
Volume	1.8017(4) nm ³	
Ζ	8	
Density (calculated)	1.659 g/cm^3	
Absorption coefficient	0.695 mm ⁻¹	
F(000)	912	
Crystal size	0.80 x 0.60 x 0.34 mm ³	
Theta range for data collection	2.57 to 26.04°	
Index ranges	$-9 \le h \le 9, -19 \le k \le 19, -18 \le l \le 18$	
Reflections collected	19954	
Independent reflections	$3538 [R_{int} = 0.0616]$	
Completeness to theta = 26.04°	99.5 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3538 / 0 / 283	
Goodness-of-fit on F ²	0.953	
Final R indices [I>2sigma(I)]	$R_1 = 0.0358, wR_2 = 0.0947$	
R indices (all data)	$R_1 = 0.0476, wR_2 = 0.0987$	
Largest diff. peak and hole	0.305 and -0.288 e.Å ⁻³	

	Х	у	Z	U(eq)	
Cl(1)	6207(1)	6050(1)	5675(1)	56(1)	
Cl(2)	8591(1)	6667(1)	7122(1)	57(1)	
Cl(3)	1308(1)	5568(1)	1869(1)	67(1)	
Cl(4)	3035(1)	5935(1)	287(1)	53(1)	
O(1)	6650(3)	7986(1)	6108(1)	70(1)	
O(2)	10176(2)	7724(1)	3869(1)	56(1)	
O(3)	10442(2)	5639(1)	5863(1)	52(1)	
O(4)	5417(3)	4984(1)	1521(1)	62(1)	
O(5)	5901(2)	7016(1)	3580(1)	51(1)	
O(6)	2107(3)	7471(1)	1192(1)	67(1)	
N(1)	8407(2)	7860(1)	4990(1)	37(1)	
N(2)	10156(2)	6623(1)	4801(1)	35(1)	
N(3)	5552(2)	5954(1)	2601(1)	39(1)	
N(4)	3884(2)	7235(1)	2426(1)	36(1)	
C(1)	8149(3)	6674(1)	5988(1)	35(1)	
C(2)	7661(3)	7573(1)	5705(1)	41(1)	
C(3)	9608(3)	7422(1)	4510(1)	37(1)	
C(4)	9723(3)	6261(1)	5560(1)	36(1)	
C(5)	7887(5)	8714(2)	4674(2)	59(1)	
C(6)	11625(4)	6235(2)	4347(2)	54(1)	
C(7)	3192(3)	6069(1)	1418(1)	40(1)	
C(8)	4859(3)	5619(1)	1829(1)	40(1)	
C(9)	5161(3)	6751(1)	2913(1)	35(1)	
C(10)	3028(3)	7002(1)	1652(2)	42(1)	
C(11)	7012(4)	5488(2)	3091(2)	57(1)	
C(12)	3654(4)	8110(2)	2729(2)	49(1)	

Table 62: Atomic coordinates and equivalent isotropic displacement parameters ($pm^2x \ 10^{-1}$) for C₆H₆Cl₂N₂O₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Cl(1)-C(1)	178.4(2)	N(2)-C(4)	136.1(3)
Cl(2)-C(1)	174.8(2)	N(2)-C(3)	139.2(3)
Cl(3)-C(7)	179.1(2)	N(2)-C(6)	147.2(3)
Cl(4)-C(7)	174.6(2)	N(3)-C(8)	136.5(3)
O(1)-C(2)	120.2(3)	N(3)-C(9)	138.9(3)
O(2)-C(3)	120.0(3)	N(3)-C(11)	147.1(3)
O(3)-C(4)	119.8(2)	N(4)-C(10)	135.6(3)
O(4)-C(8)	119.9(3)	N(4)-C(9)	139.4(3)
O(5)-C(9)	120.2(2)	N(4)-C(12)	147.7(3)
O(6)-C(10)	120.3(3)	C(1)-C(2)	152.7(3)
N(1)-C(2)	134.5(3)	C(1)-C(4)	152.9(3)
N(1)-C(3)	138.5(3)	C(7)-C(8)	152.2(3)
N(1)-C(5)	147.9(3)	C(7)-C(10)	152.9(3)
C(2) N(1) $C(2)$	125.9(2)	O(2) C(2) N(1)	121 1(2)
C(2)-N(1)- $C(3)$	125.8(2)	O(2)-C(3)-N(1)	121.1(2)
C(2)-N(1)-C(5)	11/./(2)	O(2)-C(3)-N(2)	121.0(2)
C(3)-N(1)-C(5)	116.5(2)	N(1)-C(3)-N(2)	118.0(2)
C(4)-N(2)-C(3)	125.2(2)	O(3)-C(4)-N(2)	123.5(2)
C(4)-N(2)-C(6)	117.4(2)	O(3)-C(4)-C(1)	121.2(2)
C(3)-N(2)-C(6)	115.9(2)	N(2)-C(4)-C(1)	115.2(2)
C(8)-N(3)-C(9)	125.4(2)	C(8)-C(7)-C(10)	115.6(2)
C(8)-N(3)-C(11)	117.6(2)	C(8)-C(7)-Cl(4)	110.3(2)
C(9)-N(3)-C(11)	116.4(2)	C(10)-C(7)-Cl(4)	110.5(2)
C(10)-N(4)-C(9)	125.1(2)	C(8)-C(7)-Cl(3)	105.4(1)
C(10)-N(4)-C(12)	118.4(2)	C(10)-C(7)-Cl(3)	105.0(2)
C(9)-N(4)-C(12)	116.0(2)	Cl(4)-C(7)-Cl(3)	109.6(1)
C(2)-C(1)-C(4)	116.7(2)	O(4)-C(8)-N(3)	123.4(2)
C(2)-C(1)-Cl(2)	108.2(1)	O(4)-C(8)-C(7)	121.6(2)
C(4)-C(1)-Cl(2)	109.5(1)	N(3)-C(8)-C(7)	114.8(2)
C(2)-C(1)-Cl(1)	105.8(1)	O(5)-C(9)-N(3)	121.3(2)
C(4)-C(1)-Cl(1)	105.9(1)	O(5)-C(9)-N(4)	120.9(2)
Cl(2)-C(1)-Cl(1)	110.7(1)	N(3)-C(9)-N(4)	117.8(2)
O(1)-C(2)-N(1)	123.2(2)	O(6)-C(10)-N(4)	123.6(2)
O(1)-C(2)-C(1)	120.3(2)	O(6)-C(10)-C(7)	120.8(2)
N(1)-C(2)-C(1)	116.5(2)	N(4)-C(10)-C(7)	115.5(2

Table 63: Bond lengths [pm] and angles [°] for $C_6H_6Cl_2N_2O_3$

7.3.22 Crystal data for $C_{12}H_{12}Cl_2N_6O_{10}$ (55)

Table 64: Crystal data and structure refinement for $C_{12}H_{12}Cl_2N_6O_{10}$ (55)

Empirical formula	$C_{12}H_{12}Cl_2N_6O_{10}$		
Formula weight	471.18		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	Cc		
Unit cell dimensions	a = 9.6708(19) Å	α=90°.	
	b = 12.486(3) Å	$\beta = 118.48(3)^{\circ}$	
	c = 8.5834(17) Å	$\gamma = 90^{\circ}$.	
Volume	911.0(3) Å ³		
Z	2		
Density (calculated)	1.718 Mg/m ³		
Absorption coefficient	0.427 mm ⁻¹		
F(000)	480		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	3.09 to 30.95°.		
Index ranges	-13<=h<=13, -1<=k<=18, -12<=l<=12		
Reflections collected	3126		
Independent reflections	2884 [R(int) = 0.030]	[]	
Completeness to theta = 30.95°	99.7 %		
Absorption correction	None		
Refinement method	Full-matrix least-squa	ares on F ²	
Data / restraints / parameters	2884 / 2 / 161		
Goodness-of-fit on F ²	1.026		
Final R indices [I>2sigma(I)]	R1 = 0.0504, wR2 = 0.0504	0.1096	
R indices (all data)	R1 = 0.0993, wR2 = 0.0993, w	0.1252	
Absolute structure parameter	0.14(8)	0.14(8)	
Extinction coefficient	0.000(2)		
Largest diff. peak and hole	0.249 and -0.205 e.Å	-3	

	Х	У	Z	U(eq)	
Cl(1)	1391(1)	1906(1)	663(1)	39(1)	
N(1)	-35(3)	2290(2)	3641(3)	30(1)	
N(2)	-726(3)	515(2)	2463(3)	30(1)	
N(3)	3321(3)	973(2)	3794(4)	34(1)	
O(1)	2409(3)	2939(2)	4419(3)	41(1)	
O(2)	-2289(3)	1500(2)	3212(3)	43(1)	
O(3)	881(3)	-424(2)	1720(4)	46(1)	
O(4)	4255(3)	1037(2)	3238(4)	48(1)	
O(5)	3548(3)	617(2)	5224(3)	47(1)	
C(1)	1641(3)	1366(2)	2665(4)	29(1)	
C(2)	1393(4)	2267(2)	3706(4)	28(1)	
C(3)	-1100(3)	1441(3)	3099(4)	29(1)	
C(4)	572(4)	383(3)	2255(4)	30(1)	
C(5)	-447(5)	3250(3)	4348(6)	44(1)	
C(6)	-1853(5)	-379(4)	1937(6)	42(1)	

Table 65: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for $C_{12}H_{12}Cl_2N_6O_{10}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Cl(1)-C(1)	1.752(3)	N(3)-O(5)	1.223(4)	
N(1)-C(2)	1.356(4)	N(3)-C(1)	1.523(4)	
N(1)-C(3)	1.395(4)	O(1)-C(2)	1.212(4)	
N(1)-C(5)	1.482(4)	O(2)-C(3)	1.201(4)	
N(2)-C(4)	1.359(4)	O(3)-C(4)	1.202(4)	
N(2)-C(3)	1.397(4)	C(1)-C(2)	1.525(4)	
N(2)-C(6)	1.473(5)	C(1)-C(4)	1.534(4)	
N(3)-O(4)	1.209(4)			
C(2)-N(1)-C(3)	125.1(3)	N(3)-C(1)-Cl(1)	110.7(2)	
C(2)-N(1)-C(5)	117.9(3)	C(2)-C(1)-Cl(1)	107.7(2)	
C(3)-N(1)-C(5)	116.8(3)	C(4)-C(1)-Cl(1)	108.7(2)	
C(4)-N(2)-C(3)	125.4(3)	O(1)-C(2)-N(1)	124.8(3)	
C(4)-N(2)-C(6)	117.5(3)	O(1)-C(2)-C(1)	119.4(3)	
C(3)-N(2)-C(6)	117.0(3)	N(1)-C(2)-C(1)	115.6(3)	
O(4)-N(3)-O(5)	127.6(3)	O(2)-C(3)-N(1)	120.6(3)	
O(4)-N(3)-C(1)	119.9(3)	O(2)-C(3)-N(2)	121.2(3)	
O(5)-N(3)-C(1)	112.4(3)	N(1)-C(3)-N(2)	118.1(3)	
N(3)-C(1)-C(2)	106.4(2)	O(3)-C(4)-N(2)	124.4(3)	
N(3)-C(1)-C(4)	106.6(3)	O(3)-C(4)-C(1)	119.7(3)	
C(2)-C(1)-C(4)	116.6(3)	N(2)-C(4)-C(1)	115.8(3)	

Table 66: Bond lengths [Å] and angles [°] for $C_{12}H_{12}Cl_2N_6O_{10}$

7.3.23 Crystal data for $C_{17}H_{26}ClN_5O_5$ (56)

Empirical formula	C ₁₇ H ₂₆ ClN ₅ O ₅	
Formula weight	415.88	
Temperature	213(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/m	
Unit cell dimensions	a = 9.476(2) Å	$\alpha = 90^{\circ}$.
	b = 6.983(1) Å	$\beta = 93.32(3)^{\circ}$.
	c = 14.848(3) Å	$\gamma = 90^{\circ}$.
Volume	980.8(3) Å ³	
Z	2	
Density (calculated)	1.408 Mg/m ³	
Absorption coefficient	0.235 mm ⁻¹	
F(000)	440	
Crystal size	1.4 x 0.15 x 0.10 mm	1 ³
Theta range for data collection	3.22 to 31.08°.	
Index ranges	-1<=h<=13, -1<=k<=	=10, -21<=1<=21
Reflections collected	4418	
Independent reflections	3360 [R(int) = 0.045	7]
Completeness to theta = 31.08°	99.5 %	
Absorption correction	None	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	3360 / 0 / 202	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0599, wR2 =	0.1488
R indices (all data)	R1 = 0.1175, wR2 =	0.1739
Extinction coefficient	0.000(2)	
Largest diff. peak and hole	0.663 and -0.401 e.Å ⁻³	

Table 67: Crystal data and structure refinement for $C_{17}H_{26}ClN_5O_5$ (56)

	X	У	Z	U(eq)	
Cl(1)	9996(1)	7500	4995(1)	26(1)	
N(1)	7505(2)	7500	4025(2)	23(1)	
N(2)	9356(2)	7500	3211(2)	23(1)	
N(3)	4792(3)	2500	1057(2)	35(1)	
N(4)	7093(3)	2500	587(2)	39(1)	
N(5)	7240(4)	2500	3075(2)	37(1)	
O(1)	9003(3)	2500	1556(2)	50(1)	
O(2)	5211(3)	2500	-427(2)	62(1)	
O(3)	4311(3)	2500	2524(2)	52(1)	
O(4)	6452(4)	2500	3675(2)	106(2)	
O(5)	8476(4)	2500	3270(2)	123(2)	
C(1)	8912(3)	7500	4053(2)	21(1)	
C(2)	7022(3)	7500	3121(2)	23(1)	
C(3)	8161(3)	7500	2617(2)	26(1)	
C(4)	6587(3)	7500	4809(2)	25(1)	
C(5)	6781(3)	5692(4)	5368(2)	39(1)	
C(6)	5481(3)	7500	2828(2)	32(1)	
C(7)	8204(4)	7500	1613(2)	33(1)	
C(8)	10878(3)	7500	2998(2)	29(1)	
C(9)	11252(3)	5673(4)	2510(2)	43(1)	
C(10)	7720(4)	2500	1474(2)	33(1)	
C(11)	6720(4)	2500	2168(2)	31(1)	
C(12)	5220(4)	2500	1982(2)	32(1)	
C(13)	5671(4)	2500	354(2)	40(1)	
C(14)	3265(5)	2500	818(3)	54(1)	
C(15)	8081(6)	2500	-140(3)	58(1)	

Table 68: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{17}H_{26}CIN_5O_5$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Cl(1)-C(1)	1.687(3)	N(5)-O(4)	1.195(5)
N(1)-C(1)	1.332(3)	N(5)-C(11)	1.408(4)
N(1)-C(2)	1.393(3)	O(1)-C(10)	1.215(4)
N(1)-C(4)	1.494(4)	O(2)-C(13)	1.215(4)
N(2)-C(1)	1.341(3)	O(3)-C(12)	1.211(4)
N(2)-C(3)	1.394(4)	C(2)-C(3)	1.348(4)
N(2)-C(8)	1.494(4)	C(2)-C(6)	1.500(4)
N(3)-C(13)	1.372(5)	C(3)-C(7)	1.493(4)
N(3)-C(12)	1.409(4)	C(4)-C(5)#1	1.516(3)
N(3)-C(14)	1.470(5)	C(4)-C(5)	1.516(3)
N(4)-C(13)	1.372(5)	C(8)-C(9)	1.519(3)
N(4)-C(10)	1.413(4)	C(8)-C(9)#1	1.519(3)
N(4)-C(15)	1.469(5)	C(10)-C(11)	1.440(5)
N(5)-O(5)	1.190(5)	C(11)-C(12)	1.433(5)
C(1)-N(1)-C(2)	107.6(2)	C(3)-C(2)-N(1)	107.8(2)
C(1)-N(1)-C(4)	127.1(2)	C(3)-C(2)-C(6)	129.5(3)
C(2)-N(1)-C(4)	125.3(2)	N(1)-C(2)-C(6)	122.6(3)
C(1)-N(2)-C(3)	107.6(2)	C(2)-C(3)-N(2)	107.2(2)
C(1)-N(2)-C(8)	123.7(2)	C(2)-C(3)-C(7)	128.5(3)
C(3)-N(2)-C(8)	128.6(2)	N(2)-C(3)-C(7)	124.3(3)
C(13)-N(3)-C(12)	126.1(3)	N(1)-C(4)-C(5)#1	111.67(16)
C(13)-N(3)-C(14)	116.6(3)	N(1)-C(4)-C(5)	111.67(16)
C(12)-N(3)-C(14)	117.3(3)	C(5)#1-C(4)-C(5)	112.7(3)
C(13)-N(4)-C(10)	126.1(3)	N(2)-C(8)-C(9)	110.84(16)
C(13)-N(4)-C(15)	118.2(3)	N(2)-C(8)-C(9)#1	110.84(16)
C(10)-N(4)-C(15)	115.7(3)	C(9)-C(8)-C(9)#1	114.2(3)
O(5)-N(5)-O(4)	117.9(3)	O(1)-C(10)-N(4)	117.3(3)
O(5)-N(5)-C(11)	121.2(3)	O(1)-C(10)-C(11)	128.7(3)
O(4)-N(5)-C(11)	120.9(3)	N(4)-C(10)-C(11)	114.1(3)
N(1)-C(1)-N(2)	109.8(2)	N(5)-C(11)-C(12)	118.2(3)
N(1)-C(1)-Cl(1)	125.9(2)	N(5)-C(11)-C(10)	118.5(3)
N(2)-C(1)-Cl(1)	124.4(2)	C(12)-C(11)-C(10)	123.3(3)

Table 69: Bond lengths [Å] and angles [°] for $C_{17}H_{26}ClN_5O_5$

O(3)-C(12)-N(3)	118.2(3)	O(2)-C(13)-N(4)	122.2(4)
O(3)-C(12)-C(11)	127.4(3)	O(2)-C(13)-N(3)	121.8(4)
N(3)-C(12)-C(11)	114.4(3)	N(4)-C(13)-N(3)	116.0(3)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2, z

7.3.24 Crystal data for $C_{18}H_{18}N_6O_9$ (57)

Table 70: Crystal data and structure refinement for $C_{18}H_{18}N_6O_9$ (57)

Empirical formula	$C_{18}H_{18}N_6O_9$
Formula weight	462.38
Temperature	223(2) K
Wavelength	1.54184 Å
Crystal system	orthorhombic
Space group	Pbca
Unit cell dimensions	$a = 13.1526(10) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 15.873(3) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 19.571(2) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	4086.0(9) Å ³
Z	8
Density (calculated)	1.503 Mg/m ³
Absorption coefficient	1.058 mm ⁻¹
F(000)	1920
Crystal size	0.65 x 0.10 x 0.10 mm ³
Theta range for data collection	9.05 to 58.93°.
Index ranges	-4<=h<=13, -4<=k<=17, -4<=l<=21
Reflections collected	6481
Independent reflections	2851 [R(int) = 0.0467]
Completeness to theta = 58.93°	97.2 %
Max. and min. transmission	0.9016 and 0.5463
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2851 / 0 / 299
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0603, wR2 = 0.1598
R indices (all data)	R1 = 0.0860, wR2 = 0.1779
Extinction coefficient	0.0014(3)
Largest diff. peak and hole	0.468 and -0.373 e.Å ⁻³

	Х	У	Z	U(eq)	
O(116)	5448(2)	9170(2)	3064(1)	38(1)	
O(112)	4058(3)	11008(2)	1486(1)	51(1)	
O(114)	5162(3)	11946(2)	3537(2)	63(1)	
N(13)	4546(3)	11493(2)	2522(2)	38(1)	
N(15)	5257(3)	10548(2)	3333(2)	32(1)	
C(11)	4333(3)	9969(2)	2353(2)	29(1)	
C(12)	4313(3)	10863(2)	2069(2)	34(1)	
C(14)	4998(4)	11366(2)	3161(2)	40(1)	
C(16)	5090(3)	9847(2)	2934(2)	30(1)	
C(113)	4389(4)	12375(2)	2314(3)	62(2)	
C(115)	5882(4)	10441(3)	3953(2)	46(1)	
O(102)	2087(2)	10877(2)	2458(1)	41(1)	
O(104)	3230(3)	10313(2)	4592(1)	55(1)	
O(106)	3249(2)	8276(2)	2979(1)	42(1)	
N(105)	3395(3)	9300(2)	3788(2)	34(1)	
N(03)	2758(2)	10660(2)	3511(2)	32(1)	
C(01)	3204(3)	9704(2)	2593(2)	28(1)	
C(02)	2598(3)	10457(2)	2842(2)	30(1)	
C(04)	3142(3)	10105(2)	4003(2)	35(1)	
C(06)	3261(3)	9011(2)	3130(2)	30(1)	
C(103)	2317(4)	11452(3)	3766(2)	54(1)	
C(105)	3709(4)	8685(3)	4312(2)	50(1)	
N(23)	3291(2)	8584(2)	1061(2)	32(1)	
N(25)	5031(3)	8695(2)	768(2)	38(1)	
C(21)	4437(3)	9343(2)	1778(2)	31(1)	
C(22)	3509(3)	9072(2)	1602(2)	29(1)	
C(24)	4088(3)	8361(2)	621(2)	35(1)	
C(26)	5279(3)	9183(2)	1345(2)	36(1)	
C(123)	2282(3)	8235(3)	924(2)	45(1)	
C(125)	5855(4)	8464(4)	296(2)	63(2)	
O(122)	2734(2)	9348(2)	2003(1)	31(1)	
O(124)	3926(2)	7915(2)	129(1)	44(1)	
O(126)	6146(2)	9443(2)	1432(2)	50(1)	

Table 71: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{18}H_{18}N_6O_9$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

O(116)-C(16)	1.201(4)	N(105)-C(105)	1.476(5)
O(112)-C(12)	1.212(4)	N(03)-C(02)	1.364(5)
O(114)-C(14)	1.198(5)	N(03)-C(04)	1.399(5)
N(13)-C(12)	1.369(5)	N(03)-C(103)	1.472(5)
N(13)-C(14)	1.400(5)	C(01)-O(122)	1.426(4)
N(13)-C(113)	1.472(5)	C(01)-C(02)	1.517(5)
N(15)-C(16)	1.377(4)	C(01)-C(06)	1.524(5)
N(15)-C(14)	1.384(5)	N(23)-C(22)	1.343(4)
N(15)-C(115)	1.475(5)	N(23)-C(24)	1.401(5)
C(11)-C(21)	1.507(5)	N(23)-C(123)	1.463(5)
C(11)-C(16)	1.524(5)	N(25)-C(24)	1.379(5)
C(11)-C(12)	1.525(5)	N(25)-C(26)	1.407(5)
C(11)-C(01)	1.613(5)	N(25)-C(125)	1.471(5)
O(102)-C(02)	1.209(4)	C(21)-C(22)	1.339(5)
O(104)-C(04)	1.204(4)	C(21)-C(26)	1.417(6)
O(106)-C(06)	1.204(4)	C(22)-O(122)	1.360(4)
N(105)-C(06)	1.377(5)	C(24)-O(124)	1.214(4)
N(105)-C(04)	1.387(5)	C(26)-O(126)	1.225(5)
C(12)-N(13)-C(14)	124.6(3)	N(13)-C(12)-C(11)	116.1(3)
C(12)-N(13)-C(113)	119.0(3)	O(114)-C(14)-N(15)	121.8(4)
C(14)-N(13)-C(113)	116.3(3)	O(114)-C(14)-N(13)	121.0(4)
C(16)-N(15)-C(14)	125.5(3)	N(15)-C(14)-N(13)	117.2(3)
C(16)-N(15)-C(115)	117.6(3)	O(116)-C(16)-N(15)	122.7(3)
C(14)-N(15)-C(115)	116.4(3)	O(116)-C(16)-C(11)	121.9(3)
C(21)-C(11)-C(16)	114.5(3)	N(15)-C(16)-C(11)	115.2(3)
C(21)-C(11)-C(12)	110.1(3)	C(06)-N(105)-C(04)	124.1(3)
C(16)-C(11)-C(12)	113.6(3)	C(06)-N(105)-C(105)	117.8(3)
C(21)-C(11)-C(01)	97.4(3)	C(04)-N(105)-C(105)	117.7(3)
C(16)-C(11)-C(01)	110.6(3)	C(02)-N(03)-C(04)	124.6(3)
C(12)-C(11)-C(01)	109.4(3)	C(02)-N(03)-C(103)	117.8(3)
O(112)-C(12)-N(13)	122.1(3)	C(04)-N(03)-C(103)	116.5(3)
O(112)-C(12)-C(11)	121.6(3)	O(122)-C(01)-C(02)	110.2(3)

Table 72: Bond lengths [Å] and angles [°] for $C_{18}H_{18}N_6O_9$

O(122)-C(01)-C(06)	107.0(3)	O(104)-C(04)-N(105)	121.4(4)
C(02)-C(01)-C(06)	111.9(3)	O(104)-C(04)-N(03)	121.5(3)
O(122)-C(01)-C(11)	105.5(3)	N(105)-C(04)-N(03)	117.2(3)
C(02)-C(01)-C(11)	111.9(3)	O(106)-C(06)-N(105)	123.7(3)
C(06)-C(01)-C(11)	110.1(3)	O(106)-C(06)-C(01)	122.0(3)
O(102)-C(02)-N(03)	123.5(3)	N(105)-C(06)-C(01)	114.2(3)
O(102)-C(02)-C(01)	121.8(3)	C(22)-N(23)-C(24)	118.0(3)
N(03)-C(02)-C(01)	114.4(3)	C(22)-N(23)-C(123)	123.8(3)
C(24)-N(23)-C(123)	118.1(3)	N(23)-C(22)-O(122)	118.8(3)
C(24)-N(25)-C(26)	126.0(3)	O(124)-C(24)-N(25)	123.2(4)
C(24)-N(25)-C(125)	115.8(3)	O(124)-C(24)-N(23)	120.2(4)
C(26)-N(25)-C(125)	118.1(4)	N(25)-C(24)-N(23)	116.6(3)
C(22)-C(21)-C(26)	120.0(3)	O(126)-C(26)-N(25)	120.9(4)
C(22)-C(21)-C(11)	108.8(3)	O(126)-C(26)-C(21)	125.7(3)
C(26)-C(21)-C(11)	129.5(3)	N(25)-C(26)-C(21)	113.4(4)
C(21)-C(22)-N(23)	125.7(4)	C(22)-O(122)-C(01)	105.7(3)
C(21)-C(22)-O(122)	115.5(3)		

7.3.25 Crystal data for $C_{19}H_{30}KN_3O_9$ (59)

Table 73: Crystal data and structure refinement for $C_{19}H_{30}KN_3O$ (59)
--

Empirical formula	C ₁₉ H ₃₀ KN ₃ O	
Formula weight	483.56	
Temperature	213(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 8.137 (2) Å	$\alpha = 90^{\circ}$.
	b = 15.175(3) Å	β= 101.88(3)°
	c = 9.941(2) Å	$\gamma = 90^{\circ}$.
Volume	1201.2(4) Å ³	
Ζ	2	
Density (calculated)	1.337 Mg/m ³	
Absorption coefficient	2.395 mm ⁻¹	
F(000)	512	
Crystal size	0.30 x 0.25 x 0.20 mm ³	
Theta range for data collection	5.40 to 64.99°.	
Index ranges	-1<=h<=9, -17<=k<=15, -	11<=1<=11
Reflections collected	4911	
Independent reflections	4015 [R(int) = 0.0285]	
Completeness to theta = 64.99°	99.8 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	4015 / 1 / 322	
Goodness-of-fit on F ²	1.049	
Final R indices [I>2sigma(I)]	R1 = 0.0531, $wR2 = 0.137$	77
R indices (all data)	R1 = 0.0565, wR2 = 0.140)5
Absolute structure parameter	0.004(14)	
Extinction coefficient	0.0010(5)	
Largest diff. peak and hole	0.329 and -0.331 e.Å ⁻³	

	X	У	Z	U(eq)	
K(1)	1168(1)	1435(1)	9396(1)	46(1)	
O(1)	-1477(6)	1131(3)	10729(7)	122(2)	
O(2)	1450(7)	1989(4)	12103(4)	110(2)	
O(3)	3354(6)	2830(3)	10467(4)	87(1)	
O(4)	3598(4)	1963(3)	7992(4)	78(1)	
O(5)	852(6)	950(2)	6630(3)	85(1)	
O(6)	-1438(5)	284(3)	8158(6)	106(2)	
C(1)	-809(12)	1145(9)	12265(10)	150(5)	
C(2)	111(16)	1941(8)	12682(9)	149(5)	
C(3)	2511(15)	2746(5)	12548(6)	136(4)	
C(4)	3929(12)	2765(5)	11859(8)	114(3)	
C(5)	4710(8)	2907(5)	9708(11)	114(3)	
C(6)	4070(9)	2836(5)	8272(9)	108(2)	
C(7)	3162(9)	1806(7)	6546(7)	109(3)	
C(8)	2426(12)	936(6)	6252(7)	123(4)	
C(9)	-165(18)	167(4)	6309(6)	150(5)	
C(10)	-1814(14)	299(5)	6802(13)	174(7)	
C(11)	-2976(8)	453(5)	8813(17)	161(6)	
C(12)	-2428(14)	452(9)	10340(20)	228(10)	
N(1)	-2357(4)	3467(2)	6233(3)	46(1)	
N(2)	-1850(4)	3928(2)	8533(3)	47(1)	
N(3)	-5805(6)	6010(3)	6132(4)	69(1)	
O(7)	-516(5)	2743(2)	7888(4)	75(1)	
O(8)	-3137(4)	5144(2)	9182(3)	53(1)	
O(9)	-4282(4)	4159(2)	4595(3)	55(1)	
C(13)	-1516(5)	3351(3)	7559(4)	49(1)	
C(14)	-3550(5)	4134(2)	5800(4)	41(1)	
C(15)	-3773(4)	4729(2)	6844(4)	40(1)	
C(16)	-2951(4)	4653(2)	8241(4)	42(1)	
C(17)	-1988(7)	2853(3)	5187(5)	70(1)	
C(18)	-4912(5)	5434(3)	6457(4)	48(1)	
C(19)	-1020(6)	3762(4)	9961(4)	66(1)	

Table 74: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{19}H_{30}KN_3O$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

K(1)-O(7)	2.687(3)	C(1)-C(2)	1.436(16)	
K(1)-O(8)#1	2.733(3)	C(3)-C(4)	1.459(13)	
K(1)-O(4)	2.764(3)	C(5)-C(6)	1.420(11)	
K(1)-O(2)	2.784(4)	C(7)-C(8)	1.454(11)	
K(1)-O(1)	2.789(4)	C(9)-C(10)	1.534(15)	
K(1)-O(5)	2.807(3)	C(11)-C(12)	1.50(2)	
K(1)-O(6)	2.826(4)	N(1)-C(13)	1.366(5)	
K(1)-O(3)	2.829(4)	N(1)-C(14)	1.406(5)	
O(1)-C(12)	1.297(16)	N(1)-C(17)	1.472(5)	
O(1)-C(1)	1.511(11)	N(2)-C(13)	1.373(5)	
O(2)-C(2)	1.336(11)	N(2)-C(16)	1.411(5)	
O(2)-C(3)	1.450(11)	N(2)-C(19)	1.463(5)	
O(3)-C(4)	1.370(8)	N(3)-C(18)	1.140(6)	
O(3)-C(5)	1.463(9)	O(7)-C(13)	1.229(5)	
O(4)-C(6)	1.391(8)	O(8)-C(16)	1.229(5)	
O(4)-C(7)	1.428(8)	O(8)-K(1)#2	2.733(3)	
O(5)-C(8)	1.407(10)	O(9)-C(14)	1.224(5)	
O(5)-C(9)	1.445(10)	C(14)-C(15)	1.415(5)	
O(6)-C(10)	1.320(13)	C(15)-C(18)	1.416(5)	
O(6)-C(11)	1.547(13)	C(15)-C(16)	1.417(5)	
O(7)-K(1)-O(8)#1	174.48(11)	O(4)-K(1)-O(6)	120.67(17)	
O(7)-K(1)-O(4)	80.75(12)	O(2)-K(1)-O(6)	120.87(19)	
O(8)#1-K(1)-O(4)	93.73(10)	O(1)-K(1)-O(6)	61.4(2)	
O(7)-K(1)-O(2)	104.32(12)	O(5)-K(1)-O(6)	60.13(17)	
O(8)#1-K(1)-O(2)	78.06(11)	O(7)-K(1)-O(3)	82.28(12)	
O(4)-K(1)-O(2)	118.38(16)	O(8)#1-K(1)-O(3)	94.89(10)	
O(7)-K(1)-O(1)	91.88(13)	O(4)-K(1)-O(3)	60.85(14)	
O(8)#1-K(1)-O(1)	93.62(12)	O(2)-K(1)-O(3)	59.31(17)	
O(4)-K(1)-O(1)	172.10(13)	O(1)-K(1)-O(3)	115.60(18)	
O(2)-K(1)-O(1)	60.6(2)	O(5)-K(1)-O(3)	119.26(14)	
O(7)-K(1)-O(5)	73.37(11)	O(6)-K(1)-O(3)	169.68(11)	
O(8)#1-K(1)-O(5)	104.17(10)	C(12)-O(1)-C(1)	112.2(10)	
O(4)-K(1)-O(5)	60.80(13)	C(12)-O(1)-K(1)	117.6(7)	
O(2)-K(1)-O(5)	177.58(14)	C(1)-O(1)-K(1)	109.0(4)	
O(1)-K(1)-O(5)	119.89(18)	C(2)-O(2)-C(3)	113.5(8)	
O(7)-K(1)-O(6)	87.88(12)	C(2)-O(2)-K(1)	119.2(7)	
O(8)#1-K(1)-O(6)	95.17(10)	C(3)-O(2)-K(1)	117.3(4)	

Table 75: Bond lengths	[Å] and	angles [°]	for C ₁₉ H ₃	₀ KN ₃ O

C(4)-O(3)-C(5)	112.9(7)	O(5)-C(9)-C(10)	108.8(6)
C(4)-O(3)-K(1)	112.6(4)	O(6)-C(10)-C(9)	106.8(6)
C(5)-O(3)-K(1)	110.4(4)	C(12)-C(11)-O(6)	109.4(6)
C(6)-O(4)-C(7)	111.2(6)	O(1)-C(12)-C(11)	109.5(10)
C(6)-O(4)-K(1)	111.9(4)	C(13)-N(1)-C(14)	124.4(3)
C(7)-O(4)-K(1)	113.9(4)	C(13)-N(1)-C(17)	117.8(3)
C(8)-O(5)-C(9)	116.1(7)	C(14)-N(1)-C(17)	117.9(3)
C(8)-O(5)-K(1)	111.1(4)	C(13)-N(2)-C(16)	124.2(3)
C(9)-O(5)-K(1)	111.4(4)	C(13)-N(2)-C(19)	117.1(4)
C(10)-O(6)-C(11)	112.9(8)	C(16)-N(2)-C(19)	118.7(3)
C(10)-O(6)-K(1)	115.5(5)	C(13)-O(7)-K(1)	159.5(3)
C(11)-O(6)-K(1)	108.3(4)	C(16)-O(8)-K(1)#2	132.6(3)
C(2)-C(1)-O(1)	111.2(7)	O(7)-C(13)-N(1)	121.7(4)
O(2)-C(2)-C(1)	110.1(8)	O(7)-C(13)-N(2)	120.5(4)
O(2)-C(3)-C(4)	110.6(6)	N(1)-C(13)-N(2)	117.8(3)
O(3)-C(4)-C(3)	109.7(6)	O(9)-C(14)-N(1)	119.2(3)
C(6)-C(5)-O(3)	110.7(5)	O(9)-C(14)-C(15)	126.0(3)
O(4)-C(6)-C(5)	107.6(6)	N(1)-C(14)-C(15)	114.8(3)
O(4)-C(7)-C(8)	111.1(6)	C(14)-C(15)-C(18)	117.3(3)
O(5)-C(8)-C(7)	107.0(5)	C(14)-C(15)-C(16)	124.2(3)
C(18)-C(15)-C(16)	118.5(3)	N(2)-C(16)-C(15)	114.6(3)
O(8)-C(16)-N(2)	119.3(3)	N(3)-C(18)-C(15)	178.5(5)
O(8)-C(16)-C(15)	126.1(4)		

7.3.26 Crystal data for $C_{15}H_{18}N_4O_7$ (60)

Table 76: Crystal data and structure refinement for $C_{15}H_{18}N_4O_7$ (60)

Empirical formula	$C_{15}H_{18}N_4O_7$	
Formula weight	366.33	
Temperature	231(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 9.253 (2) Å	<i>α</i> = 90°.
	b = 13.179(3) Å	β= 90°.
	c = 13.360(3) Å	$\gamma = 90^{\circ}$.
Volume	1629.2(6) Å ³	
Z	4	
Density (calculated)	1.494 Mg/m ³	
Absorption coefficient	0.120 mm ⁻¹	
F(000)	768	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	3.05 to 30.91°.	
Index ranges	-1<=h<=13, -1<=k<=19, -	19<=1<=19
Reflections collected	6410	
Independent reflections	5133 [R(int) = 0.0402]	
Completeness to theta = 30.91°	99.6 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	5133 / 0 / 241	
Goodness-of-fit on F ²	0.989	
Final R indices [I>2sigma(I)]	R1 = 0.0583, wR2 = 0.094	1
R indices (all data)	R1 = 0.1862, wR2 = 0.123	52
Absolute structure parameter	-1.1(16)	
Extinction coefficient	0.0043(13)	
Largest diff. peak and hole	0.185 and -0.176 e.Å ⁻³	

	Х	у	Z	U(eq)	
N(1)	1812(3)	5024(2)	922(2)	38(1)	
N(2)	2637(3)	3806(2)	-260(2)	40(1)	
N(3)	6558(3)	6948(2)	2315(2)	43(1)	
N(4)	5209(3)	8212(2)	1473(2)	42(1)	
O(1)	3231(3)	6292(2)	1459(2)	57(1)	
O(2)	384(3)	3736(2)	383(2)	67(1)	
O(3)	4835(3)	3945(2)	-937(2)	59(1)	
O(4)	7064(2)	5451(2)	1563(2)	49(1)	
O(5)	5993(3)	8428(2)	3058(2)	60(1)	
O(6)	4263(2)	7906(2)	-52(2)	52(1)	
O(7)	3342(3)	6095(2)	-1231(2)	54(1)	
C(1)	3086(4)	5526(2)	948(2)	40(1)	
C(2)	4326(3)	5086(2)	392(2)	37(1)	
C(3)	3974(4)	4250(2)	-330(2)	41(1)	
C(4)	1551(4)	4152(2)	347(2)	41(1)	
C(5)	634(4)	5371(2)	1582(2)	54(1)	
C(6)	2332(4)	2915(3)	-893(3)	58(1)	
C(7)	6559(3)	6295(2)	1510(2)	39(1)	
C(8)	5953(3)	6701(2)	545(2)	36(1)	
C(9)	5030(3)	7635(2)	631(2)	39(1)	
C(10)	5931(4)	7901(2)	2324(2)	45(1)	
C(11)	7253(4)	6633(3)	3252(2)	60(1)	
C(12)	4579(4)	9232(2)	1505(3)	60(1)	
C(13)	5319(3)	5859(2)	-127(2)	38(1)	
C(14)	4605(4)	6271(2)	-1071(2)	43(1)	
C(15)	5559(4)	6769(2)	-1827(2)	58(1)	

Table 77: Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for C₁₅H₁₈N₄O₇. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Table 78 Bond lengths [Å] and angles [°] for $C_{15}H_{18}N_4O_7$

N(1)-C(1)	1.352(4)	N(2)-C(4)	1.369(4)	
N(1)-C(4)	1.404(4)	N(2)-C(3)	1.371(4)	
N(1)-C(5)	1.474(4)	N(2)-C(6)	1.475(4)	

N(3)-C(7)	1.376(4)	O(6)-C(9)	1.210(3)
N(3)-C(10)	1.383(4)	O(7)-C(14)	1.210(4)
N(3)-C(11)	1.467(4)	C(1)-C(2)	1.485(4)
N(4)-C(9)	1.368(4)	C(2)-C(3)	1.500(4)
N(4)-C(10)	1.381(4)	C(2)-C(13)	1.537(4)
N(4)-C(12)	1.466(4)	C(7)-C(8)	1.504(4)
O(1)-C(1)	1.226(3)	C(8)-C(9)	1.503(4)
O(2)-C(4)	1.211(3)	C(8)-C(13)	1.543(4)
O(3)-C(3)	1.206(3)	C(13)-C(14)	1.524(4)
O(4)-C(7)	1.209(3)	C(14)-C(15)	1.493(4)
O(5)-C(10)	1.203(3)		
C(1)-N(1)-C(4)	124.4(3)	O(2)-C(4)-N(2)	121.8(3)
C(1)-N(1)-C(5)	118.5(3)	O(2)-C(4)-N(1)	120.1(3)
C(4)-N(1)-C(5)	117.0(3)	N(2)-C(4)-N(1)	118.1(3)
C(4)-N(2)-C(3)	124.1(3)	O(4)-C(7)-N(3)	122.0(3)
C(4)-N(2)-C(6)	117.6(3)	O(4)-C(7)-C(8)	121.4(3)
C(3)-N(2)-C(6)	118.2(3)	N(3)-C(7)-C(8)	116.6(3)
C(7)-N(3)-C(10)	125.0(3)	C(9)-C(8)-C(7)	115.9(2)
C(7)-N(3)-C(11)	119.3(3)	C(9)-C(8)-C(13)	114.6(2)
C(10)-N(3)-C(11)	115.7(3)	C(7)-C(8)-C(13)	112.7(2)
C(9)-N(4)-C(10)	124.8(3)	O(6)-C(9)-N(4)	121.8(3)
C(9)-N(4)-C(12)	119.0(3)	O(6)-C(9)-C(8)	121.2(3)
C(10)-N(4)-C(12)	116.2(3)	N(4)-C(9)-C(8)	116.7(3)
O(1)-C(1)-N(1)	120.9(3)	O(5)-C(10)-N(4)	121.5(3)
O(1)-C(1)-C(2)	121.0(3)	O(5)-C(10)-N(3)	120.8(3)
N(1)-C(1)-C(2)	118.0(3)	N(4)-C(10)-N(3)	117.7(3)
C(1)-C(2)-C(3)	116.2(3)	C(14)-C(13)-C(2)	110.5(2)
C(1)-C(2)-C(13)	115.4(2)	C(14)-C(13)-C(8)	113.0(2)
C(3)-C(2)-C(13)	109.1(2)	C(2)-C(13)-C(8)	116.2(2)
O(3)-C(3)-N(2)	120.0(3)	O(7)-C(14)-C(15)	122.4(3)
O(3)-C(3)-C(2)	122.3(3)	O(7)-C(14)-C(13)	119.7(3)
N(2)-C(3)-C(2)	117.7(3)	C(15)-C(14)-C(13)	117.4(3)

7.3.27 Crystal data for $C_{16}H_{26}N_4O_{10}S_2$ (61)

Table 79: Crystal data and structure refinement for $C_{16}H_{26}N_4O_{10}S_2$ (61)

Empirical formula	$C_{16}H_{26}N_4O_{10}S_2$
Formula weight	498.53
Temperature	208(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a = 8.3150(17) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 15.281(3) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 17.383(4) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	2208.7(8) Å ³
Z	4
Density (calculated)	1.499 Mg/m ³
Absorption coefficient	0.302 mm ⁻¹
F(000)	1048
Crystal size	0.25 x0.25 x 0.15 mm ³
Theta range for data collection	3.03 to 31.00°.
Index ranges	-1<=h<=5, -1<=k<=22, -25<=l<=25
Reflections collected	5926
Independent reflections	4163 [R(int) = 0.0379]
Completeness to theta = 31.00°	61.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4163 / 0 / 391
Goodness-of-fit on F ²	0.956
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.0950
R indices (all data)	R1 = 0.1058, wR2 = 0.1058
Absolute structure parameter	-0.06(10)
Extinction coefficient	0.0000(6)
Largest diff. peak and hole	0.615 and -0.348 e.Å ⁻³

	Х	у	Z	U(eq)	
$\overline{\mathbf{S}(1)}$	002(2)	6524(1)	777(1)	29(1)	
S(1)	993(2)	0334(1)	$\frac{1}{102}(1)$	38(1)	
S(2)	3191(2)	3081(1)	1103(1)	40(1)	
N(1)	6029(3)	8339(2)	2391(1) 2354(2)	23(1) 24(1)	
N(2)	11399(4) 10557(5)	3331(2)	2234(2)	24(1) 22(1)	
N(3)	10337(3)	11002(2) 11052(2)	723(2)	22(1)	
N(4)	/800(3)	11052(2)	1029(2)	24(1) 21(1)	
O(1)	9008(4)	9291(2)	729(1)	31(1) 20(1)	
O(2)	0809(3) 10511(4)	8834(2)	1/23(2)	59(1)	
O(3)	10511(4) 12125(4)	$\frac{7}{5}(2)$	3362(2)	53(1)	
O(4)	12135(4)	8806(2)	1091(2)	40(1)	
O(3)	10023(4)	10114(2)	2624(1)	30(1)	
O(6)	/058(4)	10/0/(2)	2245(1)	$\frac{3}{(1)}$	
0(7)	8/31(4)	11529(2)	-121(1)	49(1)	
O(8)	12357(5)	10/33(2)	1667(2)	41(1)	
O(9)	6121(5)	5653(2)	453(1)	57(1)	
O(10)	147(4)	6576(2)	1542(1)	37(1)	
C(1)	9515(5)	9254(2)	1498(2)	20(1)	
C(2)	8170(7)	8790(2)	1935(2)	25(1)	
C(3)	10215(7)	8150(2)	2771(2)	28(1)	
C(4)	11120(6)	8811(2)	1583(2)	27(1)	
C(5)	7415(9)	8066(3)	3129(3)	39(2)	
C(6)	12963(7)	7936(3)	2359(3)	40(1)	
C(7)	9654(5)	10226(2)	1850(2)	18(1)	
C(8)	10997(7)	10701(2)	1426(2)	26(1)	
C(9)	9014(6)	11214(2)	504(2)	22(1)	
C(10)	8061(6)	10683(2)	1742(2)	22(1)	
C(11)	11881(7)	11367(3)	232(2)	35(1)	
C(12)	6212(8)	11375(3)	857(3)	41(2)	
C(13)	-352(11)	7011(4)	112(3)	64(2)	
C(14)	750(12)	5432(3)	466(4)	60(2)	
C(15)	5889(9)	4792(3)	1740(2)	39(2)	
C(16)	6069(10)	6534(3)	1731(2)	45(2)	

Table 80: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{16}H_{26}N_4O_{10}S_2$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

S(1)-O(10)	1.507(3)	N(4)-C(9)	1.382(5)
S(1)-C(13)	1.766(6)	N(4)-C(12)	1.441(7)
S(1)-C(14)	1.780(5)	O(1)-C(1)	1.389(4)
S(2)-O(9)	1.487(3)	O(2)-C(2)	1.192(5)
S(2)-C(15)	1.766(4)	O(3)-C(3)	1.214(4)
S(2)-C(16)	1.773(5)	O(4)-C(4)	1.205(5)
N(1)-C(2)	1.372(5)	O(5)-C(7)	1.390(4)
N(1)-C(3)	1.393(5)	O(6)-C(10)	1.208(5)
N(1)-C(5)	1.446(6)	O(7)-C(9)	1.211(4)
N(2)-C(3)	1.369(5)	O(8)-C(8)	1.207(5)
N(2)-C(4)	1.380(4)	C(1)-C(4)	1.504(6)
N(2)-C(6)	1.459(6)	C(1)-C(2)	1.527(6)
N(3)-C(9)	1.359(5)	C(1)-C(7)	1.610(4)
N(3)-C(8)	1.386(5)	C(7)-C(10)	1.510(6)
N(3)-C(11)	1.471(6)	C(7)-C(8)	1.523(6)
N(4)-C(10)	1.380(4)		
O(10)-S(1)-C(13)	105.3(3)	C(10)-N(4)-C(12)	118.0(4)
O(10)-S(1)-C(14)	104.8(2)	C(9)-N(4)-C(12)	118.2(4)
C(13)-S(1)-C(14)	96.9(4)	O(1)-C(1)-C(4)	110.6(3)
O(9)-S(2)-C(15)	105.9(2)	O(1)-C(1)-C(2)	107.6(3)
O(9)-S(2)-C(16)	105.4(2)	C(4)-C(1)-C(2)	113.1(3)
C(15)-S(2)-C(16)	97.8(2)	O(1)-C(1)-C(7)	110.4(2)
C(2)-N(1)-C(3)	124.1(4)	C(4)-C(1)-C(7)	108.3(3)
C(2)-N(1)-C(5)	119.5(5)	C(2)-C(1)-C(7)	106.9(3)
C(3)-N(1)-C(5)	116.4(4)	O(2)-C(2)-N(1)	123.3(4)
C(3)-N(2)-C(4)	123.3(4)	O(2)-C(2)-C(1)	121.0(3)
C(3)-N(2)-C(6)	117.4(4)	N(1)-C(2)-C(1)	115.7(4)
C(4)-N(2)-C(6)	118.5(4)	O(3)-C(3)-N(2)	121.4(5)
C(9)-N(3)-C(8)	124.4(4)	O(3)-C(3)-N(1)	119.7(4)
C(9)-N(3)-C(11)	119.2(3)	N(2)-C(3)-N(1)	118.8(3)
C(8)-N(3)-C(11)	116.2(4)	O(4)-C(4)-N(2)	121.2(4)
C(10)-N(4)-C(9)	123.4(4)	O(4)-C(4)-C(1)	121.4(3)

Table 81: Bond lengths [Å] and angles [°] for $C_{16}H_{26}N_4O_{10}S_2$

N(2)-C(4)-C(1)	117.5(3)	O(8)-C(8)-C(7)	122.5(3)	
O(5)-C(7)-C(10)	111.8(3)	N(3)-C(8)-C(7)	115.0(4)	
O(5)-C(7)-C(8)	111.4(3)	O(7)-C(9)-N(3)	120.3(4)	
C(10)-C(7)-C(8)	111.2(3)	O(7)-C(9)-N(4)	121.4(5)	
O(5)-C(7)-C(1)	105.7(2)	N(3)-C(9)-N(4)	118.2(3)	
C(10)-C(7)-C(1)	108.5(3)	O(6)-C(10)-N(4)	121.9(4)	
C(8)-C(7)-C(1)	107.9(3)	O(6)-C(10)-C(7)	122.0(3)	
O(8)-C(8)-N(3)	122.4(4)	N(4)-C(10)-C(7)	116.1(3)	
7.3.28 Crystal data for $C_{17}H_{28}N_4O_3$ (62)

Table 82: Crystal data and structure refinement for $C_{17}H_{28}N_4O_3$ (62)

Empirical formula	$C_{17}H_{28}N_4O_3$	
Formula weight	336.43	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 12.625(3) Å	α= 90°.
	b = 10.046(2) Å	β=111.81(3)°
	c = 15.605(3) Å	$\gamma = 90^{\circ}$.
Volume	1837.5(6) Å ³	
Ζ	4	
Density (calculated)	1.216 Mg/m ³	
Absorption coefficient	0.085 mm ⁻¹	
F(000)	728	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	3.31 to 31.05°.	
Index ranges	-1<=h<=18, 0<=k<=14, -2	22<=l<=21
Reflections collected	6548	
Independent reflections	5845 [R(int) = 0.0552]	
Completeness to theta = 31.05°	99.2 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	5845 / 0 / 330	
Goodness-of-fit on F ²	1.016	
Final R indices [I>2sigma(I)]	R1 = 0.0542, wR2 = 0.130)6
R indices (all data)	R1 = 0.1096, wR2 = 0.153	36
Extinction coefficient	0.0034(14)	
Largest diff. peak and hole	0.299 and -0.216 e.Å ⁻³	

	Х	у	Z	U(eq)	
N(1)	3501(1)	69(1)	1637(1)	38(1)	
N(2)	1714(1)	370(1)	1735(1)	32(1)	
N(3)	2297(1)	4379(1)	697(1)	31(1)	
N(4)	1750(1)	5050(1)	1781(1)	31(1)	
O(1)	5068(1)	1164(2)	2608(1)	55(1)	
O(2)	1917(1)	-956(1)	625(1)	51(1)	
O(3)	1500(1)	1552(1)	2904(1)	42(1)	
C(1)	4027(1)	945(2)	2387(1)	38(1)	
C(2)	3328(1)	1468(2)	2815(1)	38(1)	
C(3)	2169(1)	1178(2)	2534(1)	32(1)	
C(4)	2354(1)	-218(2)	1290(1)	34(1)	
C(5)	494(2)	87(2)	1379(1)	41(1)	
C(6)	4212(2)	-606(3)	1214(2)	56(1)	
C(7)	2571(1)	5144(2)	1443(1)	33(1)	
C(8)	1262(1)	3757(2)	551(1)	30(1)	
C(9)	918(1)	4181(1)	1232(1)	30(1)	
C(10)	3008(1)	4203(2)	130(1)	35(1)	
C(11)	3890(2)	3139(2)	555(2)	57(1)	
C(12)	3521(2)	5522(2)	17(1)	45(1)	
C(13)	731(2)	2794(2)	-209(1)	38(1)	
C(14)	-126(1)	3835(2)	1413(1)	38(1)	
C(15)	1754(1)	5729(2)	2626(1)	35(1)	
C(16)	2267(2)	4831(2)	3457(1)	46(1)	
C(17)	2361(2)	7062(2)	2741(2)	54(1)	

Table 83: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{17}H_{28}N_4O_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(4)	1.374(2)	O(1)-C(1)	1.247(2)
N(1)-C(1)	1.417(2)	O(2)-C(4)	1.2269(19)
N(1)-C(6)	1.464(2)	O(3)-C(3)	1.2447(19)
N(2)-C(4)	1.378(2)	C(1)-C(2)	1.393(2)
N(2)-C(3)	1.419(2)	C(2)-C(3)	1.394(2)
N(2)-C(5)	1.459(2)	C(8)-C(9)	1.358(2)
N(3)-C(7)	1.3296(19)	C(8)-C(13)	1.483(2)
N(3)-C(8)	1.3879(18)	C(9)-C(14)	1.488(2)
N(3)-C(10)	1.4873(19)	C(10)-C(11)	1.508(3)
N(4)-C(7)	1.3285(19)	C(10)-C(12)	1.513(2)
N(4)-C(9)	1.3903(19)	C(15)-C(16)	1.513(3)
N(4)-C(15)	1.4828(19)	C(15)-C(17)	1.520(3)
C(4)-N(1)-C(1)	123.91(13)	C(2)-C(3)-N(2)	115.50(14)
C(4)-N(1)-C(6)	117.26(16)	O(2)-C(4)-N(1)	122.46(15)
C(1)-N(1)-C(6)	118.81(15)	O(2)-C(4)-N(2)	121.41(14)
C(4)-N(2)-C(3)	124.53(13)	N(1)-C(4)-N(2)	116.13(14)
C(4)-N(2)-C(5)	117.31(13)	N(4)-C(7)-N(3)	108.64(13)
C(3)-N(2)-C(5)	118.10(13)	C(9)-C(8)-N(3)	106.58(13)
C(7)-N(3)-C(8)	109.07(12)	C(9)-C(8)-C(13)	130.44(14)
C(7)-N(3)-C(10)	124.90(12)	N(3)-C(8)-C(13)	122.94(13)
C(8)-N(3)-C(10)	126.01(12)	C(8)-C(9)-N(4)	106.92(12)
C(7)-N(4)-C(9)	108.78(12)	C(8)-C(9)-C(14)	129.74(14)
C(7)-N(4)-C(15)	125.12(13)	N(4)-C(9)-C(14)	123.34(13)
C(9)-N(4)-C(15)	126.07(12)	N(3)-C(10)-C(11)	109.42(13)
O(1)-C(1)-C(2)	126.25(17)	N(3)-C(10)-C(12)	110.17(14)
O(1)-C(1)-N(1)	117.38(16)	C(11)-C(10)-C(12)	113.16(16)
C(2)-C(1)-N(1)	116.37(14)	N(4)-C(15)-C(16)	110.30(14)
C(1)-C(2)-C(3)	123.27(15)	N(4)-C(15)-C(17)	110.15(14)
O(3)-C(3)-C(2)	127.23(15)	C(16)-C(15)-C(17)	112.79(16)
O(3)-C(3)-N(2)	117.26(14)		
	· · ·		

Table 84: Bond lengths [Å] and angles [°] for $C_{17}H_{28}N_4O_3$

7.3.29 Crystal data for $C_{11}H_{17}N_5O_3$ (64)

Table 85: Crysta	l data and	structure refinement	for	C ₁₁ H ₁₇ N ₅ O ₃ (64)
------------------	------------	----------------------	-----	--

Empirical formula	$C_{11}H_{17}N_5O_3$
Formula weight	267.30
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a = 14.026(3) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 7.9080(16) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 23.341(5) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	2588.9(9) Å ³
Ζ	8
Density (calculated)	1.372 Mg/m ³
Absorption coefficient	0.103 mm ⁻¹
F(000)	1136
Crystal size	0.6 x 0.3 x 0.3 mm ³
Theta range for data collection	3.08 to 30.98°.
Index ranges	-1<=h<=20, -1<=k<=11, -33<=l<=1
Reflections collected	5167
Independent reflections	4112 [R(int) = 0.0379]
Completeness to theta = 30.98°	99.7 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4112 / 0 / 241
Goodness-of-fit on F ²	1.008
Final R indices [I>2sigma(I)]	R1 = 0.0515, $wR2 = 0.1131$
R indices (all data)	R1 = 0.1268, WR2 = 0.1370
Extinction coefficient	0.0051(8)
Largest diff. peak and hole	0.230 and -0.196 e.Å ⁻³

	Х	у	Z	U(eq)	
N(1)	5786(1)	5056(2)	3176(1)	31(1)	
N(2)	6335(1)	2435(2)	3510(1)	30(1)	
N(3)	7605(1)	4707(2)	6211(1)	32(1)	
N(4)	8285(1)	3716(2)	5446(1)	34(1)	
N(5)	6597(1)	3459(2)	5508(1)	34(1)	
O(1)	6237(1)	1734(2)	4455(1)	37(1)	
O(2)	6512(1)	3200(2)	2575(1)	41(1)	
O(3)	5056(1)	6931(2)	3779(1)	39(1)	
C(1)	6059(1)	2815(2)	4078(1)	28(1)	
C(2)	5615(1)	4365(2)	4163(1)	32(1)	
C(3)	5463(1)	5526(2)	3727(1)	30(1)	
C(4)	6227(1)	3540(2)	3059(1)	30(1)	
C(5)	5682(2)	6248(3)	2701(1)	50(1)	
C(6)	6767(2)	777(3)	3404(1)	47(1)	
C(7)	7443(1)	3909(2)	5709(1)	29(1)	
C(8)	8580(1)	5024(3)	6259(1)	40(1)	
C(9)	8993(1)	4420(3)	5789(1)	41(1)	
C(10)	6875(2)	5229(3)	6618(1)	41(1)	
C(11)	8426(2)	2922(3)	4891(1)	46(1)	

Table 86: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{11}H_{17}N_5O_3$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

N(1)-C(4)	1.376(2)	N(4)-C(9)	1.393(2)
N(1)-C(3)	1.413(2)	N(4)-C(11)	1.453(3)
N(1)-C(5)	1.463(2)	N(5)-C(7)	1.325(2)
N(2)-C(4)	1.377(2)	O(1)-C(1)	1.252(2)
N(2)-C(1)	1.412(2)	O(2)-C(4)	1.229(2)
N(2)-C(6)	1.466(2)	O(3)-C(3)	1.255(2)
N(3)-C(7)	1.351(2)	C(1)-C(2)	1.388(2)
N(3)-C(8)	1.395(2)	C(2)-C(3)	1.387(2)
N(3)-C(10)	1.457(2)	C(8)-C(9)	1.328(3)
N(4)-C(7)	1.339(2)		
C(4)-N(1)-C(3)	123.65(14)	C(2)-C(1)-N(2)	116.42(15)
C(4)-N(1)-C(5)	117.10(15)	C(3)-C(2)-C(1)	123.28(15)
C(3)-N(1)-C(5)	119.22(16)	O(3)-C(3)-C(2)	125.83(15)
C(4)-N(2)-C(1)	123.48(15)	O(3)-C(3)-N(1)	117.84(16)
C(4)-N(2)-C(6)	118.89(15)	C(2)-C(3)-N(1)	116.32(15)
C(1)-N(2)-C(6)	117.62(15)	O(2)-C(4)-N(1)	121.35(16)
C(7)-N(3)-C(8)	108.52(15)	O(2)-C(4)-N(2)	121.87(16)
C(7)-N(3)-C(10)	125.49(15)	N(1)-C(4)-N(2)	116.78(14)
C(8)-N(3)-C(10)	125.91(16)	N(5)-C(7)-N(4)	126.62(16)
C(7)-N(4)-C(9)	108.61(15)	N(5)-C(7)-N(3)	125.68(16)
C(7)-N(4)-C(11)	125.33(16)	N(4)-C(7)-N(3)	107.66(14)
C(9)-N(4)-C(11)	126.05(17)	C(9)-C(8)-N(3)	107.31(17)
O(1)-C(1)-C(2)	126.29(15)	C(8)-C(9)-N(4)	107.90(17)
O(1)-C(1)-N(2)	117.29(15)		

Table 87: Bond lengths [Å] and angles [°] for $C_{11}H_{17}N_5O_3$

7.3.30 Crystal data for $C_{24}H_{28}N_8O_{12}$ (65)

Empirical formula	$C_{24}H_{28}N_8O_{12}$
Formula weight	620.54
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Tetragonal
Space group	I4(1)/a
Unit cell dimensions	$a = 14.112(2) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 14.112(2) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 13.642(3) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	2717.0(8) Å ³
Z	4
Density (calculated)	1.517 Mg/m ³
Absorption coefficient	0.124 mm ⁻¹
F(000)	1296
Crystal size	? x ? x ? mm ³
Theta range for data collection	3.56 to 29.34°.
Index ranges	-19<=h<=19, -18<=k<=19, -18<=l<=18
Reflections collected	12492
Independent reflections	1857 [R(int) = 0.0555]
Completeness to theta = 29.34°	99.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1857 / 0 / 129
Goodness-of-fit on F ²	1.152
Final R indices [I>2sigma(I)]	R1 = 0.0612, $wR2 = 0.1261$
R indices (all data)	R1 = 0.0803, $wR2 = 0.1335$
Extinction coefficient	0.0004(8)
Largest diff. peak and hole	0.332 and -0.179 e.Å ⁻³

	Х	у	Z	U(eq)	
N(1)	8623(1)	6222(1)	-165(1)	26(1)	
N(2)	7851(1)	7373(1)	827(1)	27(1)	
O(1)	10212(1)	6314(1)	-363(1)	34(1)	
O(2)	8687(1)	8410(1)	1744(1)	34(1)	
O(3)	7030(1)	6359(1)	-139(1)	40(1)	
C(1)	9508(1)	6560(1)	71(1)	25(1)	
C(2)	9564(1)	7183(1)	967(1)	24(1)	
C(3)	8677(1)	7730(1)	1204(1)	25(1)	
C(4)	7790(1)	6628(1)	158(1)	27(1)	
C(6)	6955(2)	7818(2)	1130(2)	38(1)	
C(7)	8549(2)	5458(2)	-897(2)	34(1)	

Table 89: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{24}H_{28}N_8O_{12}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Table 90: Bond lengths [Å] and angles [°] for $C_{24}H_{28}N_8O_{12}$

N(1)-C(1)	1.375(2)	O(1)-C(1)	1.208(2)	
N(1)-C(4)	1.380(2)	O(2)-C(3)	1.210(2)	
N(1)-C(7)	1.475(2)	O(3)-C(4)	1.208(2)	
N(2)-C(3)	1.371(2)	C(1)-C(2)	1.507(3)	
N(2)-C(4)	1.394(3)	C(2)-C(3)	1.506(2)	
N(2)-C(6)	1.470(3)	C(2)-C(2)#1	1.522(3)	
C(1)-N(1)-C(4)	123.74(15)	C(3)-C(2)-C(1)	115.44(15)	
C(1)-N(1)-C(7)	118.43(16)	C(3)-C(2)-C(2)#1	111.71(18)	
C(4)-N(1)-C(7)	117.41(16)	C(1)-C(2)-C(2)#1	112.69(12)	
C(3)-N(2)-C(4)	125.10(16)	O(2)-C(3)-N(2)	121.96(17)	
C(3)-N(2)-C(6)	117.99(17)	O(2)-C(3)-C(2)	121.90(17)	
C(4)-N(2)-C(6)	116.90(17)	N(2)-C(3)-C(2)	115.99(16)	
O(1)-C(1)-N(1)	122.18(17)	O(3)-C(4)-N(1)	121.26(18)	
O(1)-C(1)-C(2)	121.48(17)	O(3)-C(4)-N(2)	120.75(18)	
N(1)-C(1)-C(2)	116.08(15)	N(1)-C(4)-N(2)	117.97(16)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+3/2,z+0

7.3.31 Crystal data for $C_{12}H_{14}N_4O_6S$ (66)

Table 91: Crystal data and structure refinement for	$C_{12}H_1$	$_4N_4O_6S$	(66)
---	-------------	-------------	------

Empirical formula	$C_{12}H_{14}N_4O_6S$	
Formula weight	342.33	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.3352(17) Å	$\alpha = 104.13(3)^{\circ}$
	b = 8.6688(17) Å	$\beta = 91.67(3)^{\circ}$
	c = 11.701(2) Å	$\gamma = 117.78(3)^{\circ}$
Volume	715.2(2) Å ³	
Ζ	2	
Density (calculated)	1.590 Mg/m ³	
Absorption coefficient	0.266 mm ⁻¹	
F(000)	356	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	3.08 to 31.07°.	
Index ranges	-1<=h<=12, -12<=k<	=11, -16<=1<=16
Reflections collected	5403	
Independent reflections	4564 [R(int) = 0.0287	7]
Completeness to theta = 31.07°	99.4 %	
Absorption correction	None	
Refinement method	Full-matrix least-squa	ares on F ²
Data / restraints / parameters	4564 / 0 / 265	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0548, wR2 = 0.0548, w	0.1369
R indices (all data)	R1 = 0.0921, wR2 = 0	0.1543
Extinction coefficient	0.005(4)	
Largest diff. peak and hole	0.622 and -0.448 e.Å ⁻	-3

	Х	у	Z	U(eq)	
S(1)	3898(1)	10380(1)	7051(1)	30(1)	
N(1)	2188(2)	8039(2)	9656(1)	27(1)	
N(2)	4607(2)	7516(2)	9021(1)	27(1)	
N(3)	-637(2)	7158(2)	4578(2)	30(1)	
N(4)	1658(2)	6447(2)	3928(1)	28(1)	
O(1)	1011(2)	9313(2)	8643(1)	37(1)	
O(2)	5816(2)	8244(2)	7401(1)	37(1)	
O(3)	3203(2)	6488(2)	10514(1)	38(1)	
O(4)	-198(2)	9092(2)	6401(2)	37(1)	
O(5)	4400(2)	7675(2)	5141(1)	35(1)	
O(6)	-1094(2)	5259(2)	2727(2)	46(1)	
C(1)	2212(3)	8871(3)	8777(2)	28(1)	
C(2)	3627(3)	9138(2)	8073(2)	26(1)	
C(3)	4684(3)	8326(2)	8138(2)	26(1)	
C(4)	3322(3)	7298(3)	9777(2)	27(1)	
C(5)	5752(4)	6661(4)	9106(2)	41(1)	
C(6)	783(4)	7754(4)	10430(2)	40(1)	
C(7)	535(3)	8351(3)	5620(2)	27(1)	
C(8)	2318(3)	8690(3)	5793(2)	26(1)	
C(9)	2900(3)	7626(3)	4971(2)	27(1)	
C(10)	-73(3)	6242(3)	3678(2)	31(1)	
C(11)	2186(4)	5337(3)	3024(2)	37(1)	
C(12)	-2542(3)	6805(4)	4369(3)	44(1)	

Table 92: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{12}H_{14}N_4O_6S$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

S(1)-C(2)	1.7493(19)	N(4)-C(9)	1.391(3)
S(1)-C(8)	1.755(2)	N(4)-C(11)	1.471(3)
N(1)-C(1)	1.389(2)	O(1)-C(1)	1.246(3)
N(1)-C(4)	1.389(3)	O(2)-C(3)	1.311(2)
N(1)-C(6)	1.468(3)	O(3)-C(4)	1.218(2)
N(2)-C(3)	1.371(2)	O(4)-C(7)	1.316(2)
N(2)-C(4)	1.383(3)	O(5)-C(9)	1.240(2)
N(2)-C(5)	1.470(3)	O(6)-C(10)	1.222(3)
N(3)-C(7)	1.372(3)	C(1)-C(2)	1.420(3)
N(3)-C(10)	1.390(3)	C(2)-C(3)	1.370(3)
N(3)-C(12)	1.470(3)	C(7)-C(8)	1.372(3)
N(4)-C(10)	1.381(3)	C(8)-C(9)	1.422(3)
C(2)-S(1)-C(8)	101.71(9)	O(2)-C(3)-C(2)	124.91(17)
C(1)-N(1)-C(4)	123.30(16)	O(2)-C(3)-N(2)	114.78(17)
C(1)-N(1)-C(6)	119.24(18)	C(2)-C(3)-N(2)	120.30(17)
C(4)-N(1)-C(6)	117.18(17)	O(3)-C(4)-N(2)	120.85(19)
C(3)-N(2)-C(4)	121.55(17)	O(3)-C(4)-N(1)	121.96(19)
C(3)-N(2)-C(5)	120.69(17)	N(2)-C(4)-N(1)	117.19(16)
C(4)-N(2)-C(5)	117.41(16)	O(4)-C(7)-C(8)	124.77(19)
C(7)-N(3)-C(10)	121.48(17)	O(4)-C(7)-N(3)	114.77(18)
C(7)-N(3)-C(12)	121.20(19)	C(8)-C(7)-N(3)	120.47(18)
C(10)-N(3)-C(12)	117.32(19)	C(7)-C(8)-C(9)	120.20(18)
C(10)-N(4)-C(9)	123.95(17)	C(7)-C(8)-S(1)	120.98(15)
C(10)-N(4)-C(11)	116.92(18)	C(9)-C(8)-S(1)	118.78(15)
C(9)-N(4)-C(11)	119.13(18)	O(5)-C(9)-N(4)	119.60(18)
O(1)-C(1)-N(1)	119.22(18)	O(5)-C(9)-C(8)	124.20(18)
O(1)-C(1)-C(2)	124.32(18)	N(4)-C(9)-C(8)	116.20(17)
N(1)-C(1)-C(2)	116.46(18)	O(6)-C(10)-N(4)	122.2(2)
C(3)-C(2)-C(1)	120.14(17)	O(6)-C(10)-N(3)	121.0(2)
C(3)-C(2)-S(1)	120.41(15)	N(4)-C(10)-N(3)	116.83(1
C(1)-C(2)-S(1)	119.30(15)		

Table 93: Bond lengths [Å] and angles [°] for $C_{12}H_{14}N_4O_6S$

7.3.32 Crystal data for $C_{23}H_{33}N_6O_6S$ (67)

Table 94: Crystal data and structure refinement for $C_{23}H_{33}N_6O_6S$ (67)
--

Empirical formula	$C_{23}H_{33}N_6O_6S$	
Formula weight	521.61	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 12.862(3) Å	$\alpha = 90^{\circ}$.
	b = 13.105(3) Å	β= 99.10(3)°.
	c = 19.604(4) Å	$\gamma = 90^{\circ}$.
Volume	3262.7(11) Å ³	
Ζ	4	
Density (calculated)	1.062 Mg/m ³	
Absorption coefficient	0.138 mm ⁻¹	
F(000)	1108	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.36 to 20.00°.	
Index ranges	-1<=h<=12, 0<=k<=12, -1	18<=1<=18
Reflections collected	3854	
Independent reflections	3050 [R(int) = 0.1434]	
Completeness to theta = 20.00°	99.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3050 / 2 / 352	
Goodness-of-fit on F ²	1.096	
Final R indices [I>2sigma(I)]	R1 = 0.0843, wR2 = 0.240	06
R indices (all data)	R1 = 0.0959, wR2 = 0.253	30
Extinction coefficient	0.010(3)	
Largest diff. peak and hole	0.600 and -0.331 e.Å ⁻³	

	Х	У	Z	U(eq)	
<u>S(1)</u>	7473(1)	6274(1)	753(1)	52(1)	
N(1)	5866(3)	3730(3)	94(3)	55(1)	
N(2)	5886(3)	4777(3)	-865(2)	48(1)	
N(3)	10294(4)	6373(3)	126(2)	51(1)	
N(4)	10565(3)	5624(3)	1224(2)	50(1)	
N(5)	7585(4)	4027(4)	3053(3)	62(1)	
N(6)	7446(4)	5650(4)	3047(3)	77(2)	
O(1)	6635(3)	4212(3)	1165(2)	65(1)	
O(2)	5114(3)	3212(3)	-980(2)	69(1)	
O(3)	6844(3)	6225(3)	-803(2)	59(1)	
O(4)	8669(3)	6761(3)	-427(2)	60(1)	
O(5)	11948(3)	6095(3)	697(2)	62(1)	
O(6)	9225(3)	5303(3)	1812(2)	63(1)	
C(1)	6529(4)	5465(4)	-462(3)	51(2)	
C(2)	6774(4)	5322(4)	230(3)	47(1)	
C(3)	6454(4)	4414(4)	561(4)	54(2)	
C(4)	5596(5)	3872(5)	-608(3)	56(2)	
C(5)	5513(5)	2771(5)	368(4)	79(2)	
C(6)	5624(5)	4934(5)	-1604(3)	64(2)	
C(7)	9211(4)	6411(4)	116(3)	48(1)	
C(8)	8812(4)	6068(4)	713(3)	51(1)	
C(9)	9489(4)	5647(4)	1265(3)	49(1)	
C(10)	10996(5)	6031(4)	671(3)	49(1)	
C(11)	11292(5)	5178(5)	1777(3)	68(2)	
C(12)	10721(5)	6731(5)	-491(3)	65(2)	
C(14)	7564(5)	4848(6)	2678(4)	79(2)	
C(15)	7395(6)	5337(5)	3722(4)	79(2)	
C(16)	7491(6)	4315(4)	3717(3)	74(2)	
C(17A)	7418(9)	6854(15)	3033(13)	95(7)	
C(18A)	6333(8)	7140(6)	2747(5)	122(3)	
C(19A)	8390(8)	7189(5)	2808(4)	115(3)	
C(17B)	7331(14)	6607(11)	2632(10)	73(5)	

Table 95: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{23}H_{33}N_6O_6S$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

C(20)	7281(10)	6016(6)	4292(5)	137(4)	
C(21)	7435(10)	3561(6)	4270(4)	132(4)	
C(22)	7665(6)	2948(5)	2808(3)	77(2)	
C(23)	6587(7)	2585(5)	2537(4)	96(2)	
C(24)	8398(7)	2883(6)	2269(4)	108(3)	

Table 96: Bond lengths [Å] and angles [°] for $C_{23}H_{33}N_6O_6S$

S(1)-C(2)	1.767(5)	N(6)-C(17B)	1.489(16)
S(1)-C(8)	1.758(6)	N(6)-C(17A)	1.58(2)
N(1)-C(4)	1.379(8)	O(1)-C(3)	1.199(7)
N(1)-C(3)	1.412(7)	O(2)-C(4)	1.232(7)
N(1)-C(5)	1.466(7)	O(3)-C(1)	1.300(6)
N(2)-C(4)	1.364(7)	O(4)-C(7)	1.262(6)
N(2)-C(1)	1.384(7)	O(5)-C(10)	1.220(6)
N(2)-C(6)	1.448(7)	O(6)-C(9)	1.259(6)
N(3)-C(10)	1.362(7)	C(1)-C(2)	1.355(7)
N(3)-C(7)	1.391(7)	C(2)-C(3)	1.447(8)
N(3)-C(12)	1.482(7)	C(7)-C(8)	1.422(8)
N(4)-C(9)	1.399(7)	C(8)-C(9)	1.391(8)
N(4)-C(10)	1.398(7)	C(15)-C(16)	1.346(9)
N(4)-C(11)	1.439(7)	C(15)-C(20)	1.454(11)
N(5)-C(14)	1.300(8)	C(16)-C(21)	1.478(9)
N(5)-C(16)	1.378(7)	C(17A)-C(19A)	1.459(13)
N(5)-C(22)	1.502(8)	C(17A)-C(18A)	1.467(14)
N(6)-C(14)	1.298(9)	C(22)-C(23)	1.482(10)
N(6)-C(15)	1.397(8)	C(22)-C(24)	1.525(9)
C(2)-S(1)-C(8)	106.1(2)	C(1)-N(2)-C(6)	120.2(5)
C(4)-N(1)-C(3)	126.0(5)	C(10)-N(3)-C(7)	124.1(5)
C(4)-N(1)-C(5)	115.9(5)	C(10)-N(3)-C(12)	117.4(5)
C(3)-N(1)-C(5)	118.2(5)	C(7)-N(3)-C(12)	118.5(5)
C(4)-N(2)-C(1)	122.0(5)	C(9)-N(4)-C(10)	123.6(5)
C(4)-N(2)-C(6)	117.3(5)	C(9)-N(4)-C(11)	119.7(4)

C(10)-N(4)-C(11)	116.7(5)	N(3)-C(7)-C(8)	117.9(5)
C(14)-N(5)-C(16)	108.0(5)	C(7)-C(8)-C(9)	120.2(5)
C(14)-N(5)-C(22)	126.5(6)	C(7)-C(8)-S(1)	118.2(4)
C(16)-N(5)-C(22)	125.5(5)	C(9)-C(8)-S(1)	121.5(4)
C(14)-N(6)-C(15)	108.5(5)	O(6)-C(9)-N(4)	116.4(5)
C(14)-N(6)-C(17B)	112.9(9)	O(6)-C(9)-C(8)	125.8(5)
C(15)-N(6)-C(17B)	138.5(9)	N(4)-C(9)-C(8)	117.8(5)
C(14)-N(6)-C(17A)	143.6(10)	O(5)-C(10)-N(3)	123.1(5)
C(15)-N(6)-C(17A)	107.7(10)	O(5)-C(10)-N(4)	120.8(5)
C(17B)-N(6)-C(17A)	31.7(8)	N(3)-C(10)-N(4)	116.0(5)
O(3)-C(1)-C(2)	125.4(5)	N(6)-C(14)-N(5)	110.5(6)
O(3)-C(1)-N(2)	114.3(5)	C(16)-C(15)-N(6)	105.4(5)
C(2)-C(1)-N(2)	120.3(5)	C(16)-C(15)-C(20)	129.5(7)
C(1)-C(2)-C(3)	121.7(5)	N(6)-C(15)-C(20)	125.1(6)
C(1)-C(2)-S(1)	119.9(4)	C(15)-C(16)-N(5)	107.6(5)
C(3)-C(2)-S(1)	118.3(4)	C(15)-C(16)-C(21)	130.1(6)
O(1)-C(3)-N(1)	120.1(5)	N(5)-C(16)-C(21)	122.2(5)
O(1)-C(3)-C(2)	126.9(5)	C(19A)-C(17A)-C(18A)128.0(18)
N(1)-C(3)-C(2)	113.1(5)	C(19A)-C(17A)-N(6)	106.7(10)
O(2)-C(4)-N(2)	122.3(5)	C(18A)-C(17A)-N(6)	106.2(10)
O(2)-C(4)-N(1)	121.3(6)	C(23)-C(22)-N(5)	108.0(6)
N(2)-C(4)-N(1)	116.4(5)	C(23)-C(22)-C(24)	112.4(6)
O(4)-C(7)-N(3)	116.3(5)	N(5)-C(22)-C(24)	110.8(5)
O(4)-C(7)-C(8)	125.8(5)		

7.3.33 Crystal data for $C_{34}H_{54}N_8O_6S$ (68)

Tab.97: Crystal data and structure refinement for $C_{34}H_{54}N_8O_6S$ (68)	
--	--

Empirical formula	$C_{34}H_{54}N_8O_6S$	
Formula weight	702.91	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 10.205(2) Å	α= 90°.
	b = 22.155(4) Å	$\beta = 104.89(3)^{\circ}$.
	c = 17.238(3) Å	$\gamma = 90^{\circ}$.
Volume	3766.5(13) Å ³	
Z	4	
Density (calculated)	1.240 Mg/m ³	
Absorption coefficient	0.139 mm ⁻¹	
F(000)	1512	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.11 to 26.08°.	
Index ranges	-12<=h<=12, -27<=k	<=27, -21<=l<=21
Reflections collected	36522	
Independent reflections	7416 [R(int) = 0.086	0]
Completeness to theta = 26.08°	99.2 %	
Absorption correction	None	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	7416 / 0 / 659	
Goodness-of-fit on F ²	0.870	
Final R indices [I>2sigma(I)]	R1 = 0.0497, wR2 =	0.1261
R indices (all data)	R1 = 0.0731, wR2 =	0.1358
Extinction coefficient	0.0000(8)	
Largest diff. peak and hole	0.408 and -0.259 e.Å	-3

	х	У	Z	U(eq)	
S(1)	2697(1)	702(1)	5995(1)	47(1)	
O(1)	2550(2)	1705(1)	4805(1)	47(1)	
O(2)	6832(2)	2416(1)	5721(1)	84(1)	
O(3)	5498(2)	939(1)	7171(1)	54(1)	
O(4)	1358(2)	1673(1)	6822(1)	54(1)	
O(5)	1300(2)	589(1)	9049(1)	66(1)	
O(6)	3131(2)	-302(1)	7216(1)	54(1)	
N(1)	9176(2)	1731(1)	4409(1)	46(1)	
N(2)	10002(2)	2589(1)	4880(1)	53(1)	
N(3)	2732(2)	370(1)	1596(1)	50(1)	
N(4)	3132(2)	729(1)	2796(1)	48(1)	
N(5)	4676(2)	2077(1)	5297(1)	48(1)	
N(6)	6128(2)	1692(1)	6459(1)	52(1)	
N(7)	1371(2)	1131(1)	7946(1)	43(1)	
N(8)	2115(2)	141(1)	8091(1)	44(1)	
C(1)	9849(2)	2018(1)	5062(1)	48(1)	
C(2)	8908(2)	2134(1)	3774(1)	55(1)	
C(3)	9431(2)	2671(1)	4069(2)	58(1)	
C(4)	8833(2)	1080(1)	4351(2)	53(1)	
C(5)	9871(3)	736(1)	4038(2)	61(1)	
C(6)	8715(3)	848(1)	5153(2)	66(1)	
C(7)	8130(4)	1970(2)	2950(2)	79(1)	
C(8)	9483(4)	3255(2)	3650(3)	85(1)	
C(9)	10621(2)	3065(1)	5466(2)	66(1)	
C(10)	12085(3)	2976(2)	5767(2)	79(1)	
C(11)	9921(4)	3103(2)	6156(3)	99(1)	
C(12)	3424(3)	290(1)	2349(1)	59(1)	
C(13)	1957(2)	886(1)	1552(1)	48(1)	
C(14)	2221(2)	1112(1)	2308(1)	47(1)	
C(15)	2802(3)	-32(1)	923(1)	55(1)	
C(16)	2104(3)	-621(2)	990(2)	72(1)	
C(17)	4276(3)	-135(2)	935(2)	80(1)	

Table 98: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $C_{34}H_{54}N_8O_6S$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

C(18)	1042(4)	1103(2)	793(2)	73(1)	
C(19)	1732(4)	1677(1)	2610(2)	76(1)	
C(20)	3684(2)	772(1)	3681(1)	58(1)	
C(21)	3506(5)	170(2)	4060(2)	86(1)	
C(22)	5109(3)	969(2)	3887(2)	83(1)	
C(23)	3905(2)	1273(1)	6003(1)	39(1)	
C(24)	3611(2)	1674(1)	5347(1)	39(1)	
C(25)	5934(2)	2079(1)	5819(2)	56(1)	
C(26)	5157(2)	1271(1)	6574(1)	43(1)	
C(27)	4483(4)	2472(1)	4601(2)	67(1)	
C(28)	7467(3)	1679(2)	7025(2)	75(1)	
C(29)	2315(2)	697(1)	6934(1)	36(1)	
C(30)	1664(2)	1188(1)	7182(1)	38(1)	
C(31)	1580(2)	620(1)	8400(1)	44(1)	
C(32)	2578(2)	160(1)	7379(1)	40(1)	
C(33)	837(3)	1649(1)	8286(2)	58(1)	
C(34)	2201(4)	-431(1)	8521(2)	66(1)	

Table 99: Bond lengths [Å] and angles [°] for $C_{34}H_{54}N_8O_6S$

S(1)-C(29)	1.7593(19)	N(3)-C(15)	1.479(3)	
S(1)-C(23)	1.7631(19)	N(4)-C(12)	1.322(3)	
O(1)-C(24)	1.237(2)	N(4)-C(14)	1.374(3)	
O(2)-C(25)	1.227(3)	N(4)-C(20)	1.487(3)	
O(3)-C(26)	1.240(2)	N(5)-C(25)	1.365(3)	
O(4)-C(30)	1.240(2)	N(5)-C(24)	1.426(3)	
O(5)-C(31)	1.226(2)	N(5)-C(27)	1.457(3)	
O(6)-C(32)	1.236(2)	N(6)-C(25)	1.370(3)	
N(1)-C(1)	1.321(3)	N(6)-C(26)	1.411(3)	
N(1)-C(2)	1.383(3)	N(6)-C(28)	1.461(3)	
N(1)-C(4)	1.483(3)	N(7)-C(31)	1.363(3)	
N(2)-C(1)	1.324(3)	N(7)-C(30)	1.429(2)	
N(2)-C(3)	1.381(3)	N(7)-C(33)	1.456(3)	
N(2)-C(9)	1.485(3)	N(8)-C(31)	1.362(3)	
N(3)-C(12)	1.321(3)	N(8)-C(32)	1.424(3)	
N(3)-C(13)	1.381(3)	N(8)-C(34)	1.459(3)	

C(2)-C(3)	1.349(3)	C(14)-C(19)	1.491(3)
C(2)-C(7)	1.483(4)	C(15)-C(16)	1.506(4)
C(3)-C(8)	1.491(4)	C(15)-C(17)	1.517(4)
C(4)-C(6)	1.509(4)	C(20)-C(22)	1.472(4)
C(4)-C(5)	1.511(4)	C(20)-C(21)	1.516(4)
C(9)-C(10)	1.463(4)	C(23)-C(26)	1.398(3)
C(9)-C(11)	1.540(5)	C(23)-C(24)	1.409(3)
C(13)-C(14)	1.356(3)	C(29)-C(30)	1.398(3)
C(13)-C(18)	1.479(3)	C(29)-C(32)	1.405(3)
G(20) G(1) G(22)	100.45(0)		100.01(10)
C(29)-S(1)-C(23)	108.45(9)	N(1)-C(1)-N(2)	108.91(19)
C(1)-N(1)-C(2)	108.59(17)	C(3)-C(2)-N(1)	106.95(19)
C(1)-N(1)-C(4)	125.97(18)	C(3)-C(2)-C(7)	129.7(2)
C(2)-N(1)-C(4)	125.34(18)	N(1)-C(2)-C(7)	123.3(2)
C(1)-N(2)-C(3)	108.69(18)	C(2)-C(3)-N(2)	106.83(19)
C(1)-N(2)-C(9)	125.0(2)	C(2)-C(3)-C(8)	130.1(3)
C(3)-N(2)-C(9)	126.26(19)	N(2)-C(3)-C(8)	123.0(3)
C(12)-N(3)-C(13)	108.63(18)	N(1)-C(4)-C(6)	110.0(2)
C(12)-N(3)-C(15)	124.63(18)	N(1)-C(4)-C(5)	109.9(2)
C(13)-N(3)-C(15)	126.74(17)	C(6)-C(4)-C(5)	112.6(2)
C(12)-N(4)-C(14)	108.35(18)	C(10)-C(9)-N(2)	111.2(2)
C(12)-N(4)-C(20)	124.20(18)	C(10)-C(9)-C(11)	111.6(3)
C(14)-N(4)-C(20)	127.42(18)	N(2)-C(9)-C(11)	111.3(2)
C(25)-N(5)-C(24)	124.36(17)	N(3)-C(12)-N(4)	109.3(2)
C(25)-N(5)-C(27)	116.5(2)	C(14)-C(13)-N(3)	106.40(17)
C(24)-N(5)-C(27)	118.8(2)	C(14)-C(13)-C(18)	130.9(2)
C(25)-N(6)-C(26)	124.42(18)	N(3)-C(13)-C(18)	122.7(2)
C(25)-N(6)-C(28)	117.8(2)	C(13)-C(14)-N(4)	107.33(18)
C(26)-N(6)-C(28)	117.6(2)	C(13)-C(14)-C(19)	130.1(2)
C(31)-N(7)-C(30)	124.33(16)	N(4)-C(14)-C(19)	122.5(2)
C(31)-N(7)-C(33)	116.31(19)	N(3)-C(15)-C(16)	110.1(2)
C(30)-N(7)-C(33)	119.35(19)	N(3)-C(15)-C(17)	109.2(2)
C(31)-N(8)-C(32)	124.72(16)	C(16)-C(15)-C(17)	110.8(2)
C(31)-N(8)-C(34)	117.11(19)	C(22)-C(20)-N(4)	110.9(2)
C(32)-N(8)-C(34)	118.17(19)	C(22)-C(20)-C(21)	112.2(3)

N(4)-C(20)-C(21)	109.3(2)	C(30)-C(29)-C(32)	122.10(17)
C(26)-C(23)-C(24)	122.28(18)	C(30)-C(29)-S(1)	120.77(14)
C(26)-C(23)-S(1)	120.99(15)	C(32)-C(29)-S(1)	116.87(14)
C(24)-C(23)-S(1)	116.19(14)	O(4)-C(30)-C(29)	126.90(18)
O(1)-C(24)-C(23)	127.29(18)	O(4)-C(30)-N(7)	116.84(17)
O(1)-C(24)-N(5)	116.91(17)	C(29)-C(30)-N(7)	116.22(16)
C(23)-C(24)-N(5)	115.78(17)	O(5)-C(31)-N(8)	121.66(19)
O(2)-C(25)-N(5)	121.4(2)	O(5)-C(31)-N(7)	122.09(19)
O(2)-C(25)-N(6)	122.2(2)	N(8)-C(31)-N(7)	116.24(17)
N(5)-C(25)-N(6)	116.46(19)	O(6)-C(32)-C(29)	127.73(18)
O(3)-C(26)-C(23)	126.62(19)	O(6)-C(32)-N(8)	116.38(17)
O(3)-C(26)-N(6)	116.83(18)	C(29)-C(32)-N(8)	115.86(16)
C(23)-C(26)-N(6)	116.55(18)		

7.3.34 Crystal data for $C_{24}H_{21}N_2O_3PS$ (69)

Table 100: Crystal data and structure refinement for	C_2	$_{24}H_{21}$	N_2C	D ₃ PS	(69	I)
--	-------	---------------	--------	-------------------	-----	----

Empirical formula	C ₂₄ H ₂₁ N ₂ O ₃ PS		
Formula weight	448.46		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 9.879(2) Å	<i>α</i> = 90°.	
	b = 14.163(3) Å	β= 90°.	
	c = 15.090(3) Å	$\gamma = 90^{\circ}$.	
Volume	2111.2(7) Å ³		
Ζ	4		
Density (calculated)	1.411 Mg/m ³		
Absorption coefficient	0.259 mm ⁻¹		
F(000)	936		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	3.06 to 28.06°.		
Index ranges	-1<=h<=13, -1<=k<=18, -	-19<=1<=19	
Reflections collected	6588		
Independent reflections	5074 [R(int) = 0.0450]		
Completeness to theta = 28.06°	99.4 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	5074 / 0 / 365		
Goodness-of-fit on F ²	1.043		
Final R indices [I>2sigma(I)]	R1 = 0.0406, $wR2 = 0.089$	92	
R indices (all data)	R1 = 0.0696, wR2 = 0.098	34	
Absolute structure parameter	0.13(8)		
Extinction coefficient	0.0008(5)		
Largest diff. peak and hole	0.392 and -0.236 e.Å ⁻³		

	X	у	Z	U(eq)	
S (1)	1871(1)	2299(1)	844(1)	31(1)	
P(1)	1862(1)	823(1)	745(1)	24(1)	
N(1)	-1334(2)	2560(2)	2433(2)	34(1)	
N(2)	594(2)	2632(2)	3340(1)	33(1)	
O(1)	-1168(2)	2367(2)	941(1)	42(1)	
O(2)	-1512(2)	2729(2)	3926(1)	48(1)	
O(3)	2716(2)	2539(2)	2756(1)	41(1)	
C(1)	854(3)	2462(2)	1773(2)	29(1)	
C(2)	1491(3)	2540(2)	2613(2)	30(1)	
C(3)	-794(3)	2643(2)	3270(2)	34(1)	
C(4)	-562(3)	2462(2)	1652(2)	32(1)	
C(5)	1161(4)	2681(3)	4237(2)	47(1)	
C(6)	-2808(3)	2541(3)	2360(3)	53(1)	
C(7)	944(3)	356(2)	1664(2)	25(1)	
C(8)	1555(3)	271(2)	2490(2)	36(1)	
C(9)	786(3)	11(2)	3216(2)	42(1)	
C(10)	-581(3)	-154(2)	3125(2)	40(1)	
C(11)	-1185(3)	-86(2)	2300(2)	37(1)	
C(12)	-433(3)	175(2)	1570(2)	32(1)	
C(13)	1021(2)	444(2)	-257(2)	26(1)	
C(14)	195(3)	1058(2)	-724(2)	36(1)	
C(15)	-471(3)	748(2)	-1479(2)	44(1)	
C(16)	-309(3)	-170(2)	-1761(2)	39(1)	
C(17)	486(3)	-794(2)	-1288(2)	36(1)	
C(18)	1159(3)	-486(2)	-531(2)	32(1)	
C(19)	3572(2)	378(2)	759(2)	26(1)	
C(20)	3813(3)	-566(2)	969(2)	32(1)	
C(21)	5118(3)	-911(2)	941(2)	38(1)	
C(22)	6178(3)	-325(2)	707(2)	39(1)	
C(23)	5942(3)	613(2)	507(2)	36(1)	
C(24)	4637(3)	967(2)	528(2)	30(1)	

Table 101: Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for C₂₄H₂₁N₂O₃PS. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

S(1)-C(1)	1.740(2)	C(7)-C(12)	1.392(4)	
S(1)-P(1)	2.0954(9)	C(8)-C(9)	1.383(4)	
P(1)-C(7)	1.783(3)	C(9)-C(10)	1.377(4)	
P(1)-C(19)	1.804(2)	C(10)-C(11)	1.384(4)	
P(1)-C(13)	1.806(2)	C(11)-C(12)	1.380(4)	
N(1)-C(3)	1.377(3)	C(13)-C(14)	1.386(3)	
N(1)-C(4)	1.410(3)	C(13)-C(18)	1.388(4)	
N(1)-C(6)	1.460(4)	C(14)-C(15)	1.386(4)	
N(2)-C(3)	1.375(4)	C(15)-C(16)	1.376(4)	
N(2)-C(2)	1.416(3)	C(16)-C(17)	1.381(4)	
N(2)-C(5)	1.467(4)	C(17)-C(18)	1.392(4)	
O(1)-C(4)	1.236(3)	C(19)-C(24)	1.387(3)	
O(2)-C(3)	1.225(3)	C(19)-C(20)	1.394(3)	
O(3)-C(2)	1.230(3)	C(20)-C(21)	1.380(4)	
C(1)-C(4)	1.411(4)	C(21)-C(22)	1.381(4)	
C(1)-C(2)	1.420(4)	C(22)-C(23)	1.383(4)	
C(7)-C(8)	1.390(4)	C(23)-C(24)	1.384(4)	
C(1)-S(1)-P(1)	100.82(9)	C(2)-C(1)-S(1)	118.28(19)	
C(7)-P(1)-C(19)	109.73(12)	O(3)-C(2)-N(2)	118.8(2)	
C(7)-P(1)-C(13)	107.85(11)	O(3)-C(2)-C(1)	126.3(2)	
C(19)-P(1)-C(13)	109.67(12)	N(2)-C(2)-C(1)	114.9(2)	
C(7)-P(1)-S(1)	108.48(8)	O(2)-C(3)-N(2)	121.1(3)	
C(19)-P(1)-S(1)	110.08(9)	O(2)-C(3)-N(1)	121.7(3)	
C(13)-P(1)-S(1)	110.98(9)	N(2)-C(3)-N(1)	117.2(2)	
C(3)-N(1)-C(4)	124.4(2)	O(1)-C(4)-N(1)	118.3(2)	
C(3)-N(1)-C(6)	117.2(3)	O(1)-C(4)-C(1)	126.3(2)	
C(4)-N(1)-C(6)	118.4(3)	N(1)-C(4)-C(1)	115.3(2)	
C(3)-N(2)-C(2)	124.4(2)	C(8)-C(7)-C(12)	120.0(2)	
C(3)-N(2)-C(5)	116.9(2)	C(8)-C(7)-P(1)	120.6(2)	
C(2)-N(2)-C(5)	118.7(2)	C(12)-C(7)-P(1)	119.04(19)	
C(4)-C(1)-C(2)	123.7(2)	C(9)-C(8)-C(7)	119.7(3)	
C(4)-C(1)-S(1)	117.9(2)	C(10)-C(9)-C(8)	120.3(3)	

Table 102: Bond lengths [Å] and angles [°] for $C_{24}H_{21}N_2O_3PS$

C(9)-C(10)-C(11)	120.0(3)
C(12)-C(11)-C(10)	120.3(3)
C(11)-C(12)-C(7)	119.6(3)
C(14)-C(13)-C(18)	120.1(2)
C(14)-C(13)-P(1)	120.7(2)
C(18)-C(13)-P(1)	119.13(19)
C(13)-C(14)-C(15)	119.9(3)
C(16)-C(15)-C(14)	119.8(3)
C(15)-C(16)-C(17)	120.7(3)
C(16)-C(17)-C(18)	119.6(3)
C(13)-C(18)-C(17)	119.7(3)
C(24)-C(19)-C(20)	120.3(2)
C(24)-C(19)-P(1)	119.85(19)
C(20)-C(19)-P(1)	119.80(18)
C(21)-C(20)-C(19)	119.5(2)
C(20)-C(21)-C(22)	120.2(3)
C(21)-C(22)-C(23)	120.4(2)
C(22)-C(23)-C(24)	120.0(3)
C(23)-C(24)-C(19)	119.7(2)

Meine akademische Ausbildung verdanke ich:

University of Jordan:

G. A. Derwish, Q. Ibraheem, A. H. Qasem, M. Fayad, M. Al-Hourani, M. Tutunji, M. Zughul,

M. El-Abadelah, K. Abu Dari, M.H. Abu Zarqa, S. Sabri, M. Alawi, F. AL-Kalilli

Eberhard-Karls-Universität Tübingen:

N. Kuhn, H. A. Mayer, G. Häfelinger, J. Strähle, W. Voelter

Lebenslauf

Persönliche Daten:

Name	Kamal Sweidan
Geburtstag	26. April 1973
Geburtsort	Kuwait
Staatsangehörigkeit	Jordanisch
Familienstand	Verheiratet, zwei Kinder

Schulbildung:

1979 – 1983	Grundschule in Kuwait
1984– 1990	Gymnasium in Kuwait
Juli 1992	Abitur in Amman, Jordanien

Hochschulausbildung:

09/1992 - 06/ 1996	B. Sc. Studium an der "University of Jordan" in Amman,		
	Jordanien		
06/1996	B. Sc. Degree		
09/1996 - 01/1999	M. Sc. Studium an der "University of Jordan" in Amman,		
	Jordanien		
01/1999	M.Sc. Examen mit dem Thema " Use of Duckweeds for		
	Removal of Heavy Metals and Organic Compounds from		
	Wastewater " bei Prof. Dr. Manar Fayyad am Institut für		

Chemie der "University of Jordan" Amman, Jordanien

04/2003 – 4/2006 Dissertation unter der Leitung von Herrn Prof. Dr. N. Kuhn am Institut für Anorganische Chemie der Universität Tübingen mit dem Thema: "Derivate des Imidazols und der Barbitursäure -Heterozyklische Carben - Fragmente mit π -Donor und Akzeptor Funktion".

Beschäftigung

- 09/1996 01/1999 "Teaching Assistant" an der "University of Jordan", Amman, Jordanien
- 08/1998 02/2001 Forschungs- und Entwicklungs- Supervisor an der Pharmazeutischen Firma "Hikma Pharmaceuticals", Amman, Jordanien.
- 03/2001 01/2003 Forschungs- und Entwicklungs- Supervisor an der Pharmazeutischen Firma "Tabuk Pharmaceuticals ", Tabuk, Saudi Arabia.
- 07/2004 08/2004 Assistent im Chemiepraktikum für den Studiengang Biologie