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1. Introduction 
 

Living organisms on earth are separated into five different categories called kingdoms. These 

kingdoms include the Monera (prokaryotes), the Protista (eukaryotes), the Fungi, the 

Plantae, and the Animalia. Being one of these five major kingdoms, fungi play a vital role in 

life on earth. They exist in single cells or chains of cells together, and are largely hidden from 

man’s view. We only see the “fruit” of a fungus. They feed by absorbing nutrients from the 

organic material that they live in. They digest their food before they absorb it by secreting 

acids and hydrolytic enzymes.  

Like all other organisms, there are good fungi and there are bad fungi, when considered from 

man’s view of life. Good fungi include the ones man loves to eat, the mushrooms or yeast in 

bread; the ones man loves to drink, the yeast making alcohol in beer; and those who are useful 

to man’s life, like those composting waste into their gardens. A bad fungus doesn’t actually 

exist; it’s a good fungus living its own way, which is sometimes different. Unfortunately, 

good fungi become bad when they’re useless or harmful to man, like toxic mushrooms. But 

man can decide by himself to eat the toxic mushroom or to leave it. On the other hand, other 

fungi don’t need man’s decision to harm him; they just take unintentionally advantage of his 

weakness or illness, settle down and spread in his body. This leads mostly to infections which 

become severe or even lethal in some cases.  

As some fungi defend themselves by being toxic to other organisms, humans have their robust 

immune system which stands in the way and eliminates almost every foreign organism or 

particle that represents a risk or danger to the human body. This immune system works 

usually faultless; nevertheless, in some cases it mistakes self tissues for non-self and mounts 

an inappropriate attack causing autoimmune diseases. In other cases, the immune system is 

weak due to illness or other factors, making it easier for pathogens to enter the body. After 

recuperation, it is able to eliminate these pathogens again. Yet in other few cases, the immune 

system is completely turned down, for example during transplantation surgeries, in order to 

prevent repulsion of the new organ or cells. This short period is used by pathogens like spores 

of some filamentous fungi to enter the host lungs and spread out into other organs causing 

infections which lead to the death of the patient. The main fungus causing these infections is 

called Aspergillus fumigatus. 
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1.1 Overview of the immune system 

 

The immune system consists of a variety of specialized cells, enzymes, and other serum 

proteins which are spread throughout the blood and tissues like the spleen, the thymus, the 

lymph nodes, the bone marrow and other glands. Through evolution, the system developed 

complexity and specificity. It enables organisms to survive the large number of pathogens in 

the environment and inside the organism. The immune system is divided into two major 

components - the innate (or native) defense system and the acquired (or adaptive) immune 

system.  

The innate immune system is the first line of defense, which responds against foreign and 

infectious agents as soon as they enter the body. It consists generally of phagocytic cells, like 

monocytes/macrophages and neutrophils, and the complement system. The phagocytic cells 

are attracted to the infected site via chemotactic substances released by the infectious 

organism or other activated immune cells. Upon arrival and contact, they engulf, kill and 

digest the pathogen (bacteria, virus or fungus). So called antigen processing and presentation 

takes place and the antigenic peptides are presented on their cell surface in order to be 

recognized by T lymphocytes. The complement system consists of at least 20 serum proteins 

which, when stimulated, respond with a series of chain reactions. The primary effect of this 

chain reaction is to increase the blood flow towards the infection area, so that the phagocytes 

can reach this area more easily.  

The acquired immune system is adaptive and specific. It learns to recognize and respond to 

previously unseen molecules or foreign bodies. This immunity is acquired by the 

development of antibodies after an infection occurs, after immune cells have sometime 

already made contact with the disease or after vaccination. It is divided into humoral and 

cellular immunity. Humoral immunity is represented by the antibodies released by B 

lymphocytes upon stimulation by T lymphocytes, which recognize MHC-presented peptides 

on the surface of B cells. These antibodies are then found in body fluids, e.g. in plasma and 

mucus. They have many functions; among others opsonization and immobilization of 

bacteria, neutralization of toxins, complement activation and mucosal protection. On the other 

hand, cellular immunity involves the activation of monocytes/macrophages and natural killer 

cells (NK cells), the production of antigen-specific cytotoxic T lymphocytes (CTL), and the 

release of various cytokines in response to an antigen. Unlike B cells, T cells receptors (TCR) 

don’t recognize antigens, they only recognize peptides bound on MHC molecules. CD8+ T 

cells recognize endogenous peptides presented on MHC-I molecules present on most 
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nucleated cells. CTLs recognize peptides on MHC-I molecules on infected and tumor cells 

and destroy them. CD4+ T cells recognize exogenous peptides on MHC-II molecules present 

on antigen presenting cells (APC) in lymphoid tissues initiating the immune response and 

releasing cytokines. T cells can be further subdivided by a distinct cytokine production, into 

so called helper T cells. Th1 cells predominantly produce cytokines like interferon-gamma 

(IFN-γ) and tumor necrosis factor-alpha (TNF-α), which stimulate a cellular immune 

response by activating monocytes and macrophages. In contrast, Th2 cells predominantly 

produce interleukin (IL) -4, IL-5 and IL-10, which stimulate B cells to boost an IgE-mediated 

allergic reaction. 

Thus, the human immune system is an amazing constellation of responses to attacks from 

outside the body. It provides the body with a defense against infection, afforded by the 

presence of circulating antibodies and white blood cells. The system is remarkably effective, 

most of the time. 

 

1.2 Antigen presenting cells 

 

Antigen presenting cells are immune system cells which digest antigens from foreign cells or 

pathogens and present them, complexed with MHC, to T cells. This alerts the immune system 

to prepare to fight the invader. That is, when APCs present cancer cell proteins to T cells, the 

T cells are primed to attack the cancer. There are three main types of professional antigen-

presenting cells: Dendritic cells, macrophages and B cells. These APCs are very efficient at 

phagocytosis, which allows them to present exogenous as well as internal antigens. They 

possess co-stimulatory molecules: cell-surface molecules that deliver essential signals to T 

cells, allowing the T cells to become activated and mature into fully functional forms. 

The primary function of dendritic cells is to capture and present protein antigens to naive T 

lymphocytes. Most dendritic cells are derived from monocytes and are referred to as myeloid 

dendritic cells. They are located throughout the epithelium of the skin, the respiratory tract, 

and the gastrointestinal tract where, in their immature form, they are attached by long 

cytoplasmic processes. Upon capturing antigens and becoming activated by proinflammatory 

cytokines, the dendritic cells detach from the epithelium, enter lymph vessels, and are carried 

to regional lymph nodes. By the time they enter the lymph nodes, they have matured and are 

now able to present antigen to the populations of naive T lymphocytes located in the cortex of 

the lymph nodes. Macrophages are also derived from monocytes. Their primary function is to 

capture and present protein antigens to effector T lymphocytes. This interaction results in the 
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activation of that macrophage. B lymphocytes capture and present protein antigens to effector 

T4 lymphocytes. This interaction eventually triggers the T4 cell to produce and secrete 

various cytokines that enable that B lymphocyte to proliferate and differentiate into antibody-

secreting plasma cells. 

 

1.2.1 Monocytes 

 

Monocytes are classified as cells of the mononuclear phagocytic system. They are the biggest 

phagocytic cells (18-25 µm) and make approximately 5-8 % of the total leukocytes and have 

bean-shaped nuclei. They are produced by the bone marrow from haematopoietic stem cell 

precursors, and are able to migrate and circulate in the blood for about one to three days 

before they move into different tissues throughout the body.  

In the tissues, monocytes mature into different types of macrophages, like kupffer cells, 

alveolar macrophages and histiocytes as well as into dendritic cells (DC) (Zhou and Tedder, 

1996). Effete monocytes are destroyed in the spleen. Monocytes also consist of different 

subsets, which are morphologically and phenotypically different and therefore also have 

different roles (Muller, 2001; Geissmann et al., 2003).  

Monocytes can recognize pathogens via pathogen-recognition receptors (PRR), e.g. Toll-like 

receptors (TLR). They phagocytose these foreign bodies and digest them. Monocytes are also 

capable of killing infected host cells via antibody-mediated cellular toxicity. Crucial for the 

immune response is the secretion of inflammatory cytokines by the monocytes, especially 

TNF-α (Frankenberger et al., 1996), IL-1β (Stordeur et al., 2003), IL-6 (Navarro et al., 1989) 

and IL-8 (Chaly et al., 2000). These and other cytokines bind to cytokine receptors on target 

cells initiating inflammation and activating both the complement pathways and the 

coagulation pathway. Chemokines, like the monocytes chemotactic protein-1 (MCP-1) and 

MCP-3, as well as the macrophage inflammatory protein-1 (MIP-1) and MIP-3α play also a 

significant role in chemotaxis (Loetscher et al., 1994; Allavena et al., 1994), activating and 

attracting T lymphocytes and NK cells to sites of infection.  

Being part of the APC lineage as a precursor cell of DCs and macrophages, monocytes are 

able to process endogenous or exogenous antigens and present the peptides on their MHC 

surface molecules in order to get recognized by the different T cells subsets. The T cells then 

get activated which play a crucial role in defeating the pathogen. Primary monocytes are not 

efficient stimulators of T cells. This is in part due to low cell surface expression of MHC 

molecules and co-stimulatory molecules as CD40, CD80 and CD86 (Fleischer et al., 1996; 
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Laupeze et al., 1999). Critical for the development of mature monocytes capability is the 

expression of surface class II MHC molecules stably loaded with peptide. This expression is 

also dependent on the expression of the invariant chain (li) (Laupeze et al., 1999), cathepsins 

and, in particular, HLA-DM. DM acts intracellularly on class II molecules loaded with class 

II-associated Ii-derived peptides (CLIP) to catalyze peptide exchange and stabilize empty class 

II molecules. Many of these molecules, MHC-II, DM, and Ii are regulated coordinately, in 

part through dependence on expression of class II transactivator (CIITA) (Reith and Mach, 

2001). Furthermore, GM-CSF was shown to play a big role in inducing the expression of 

these molecules (Hornell et al., 2003). 

 

1.2.1.1 Phagocytosis by monocytes 

 

Phagocytosis or “cell eating” is defined as a form of endocytosis. In the process of 

phagocytosis, the cell changes shape by sending out projections which help engulf an endo- or 

exogenous particle. Monocytes can phagocyte particles with a diameter ≥ 2 µm. They 

phagocyte foreign particles and pathogens like bacteria, viruses and fungi as well as apoptotic 

cells, mainly red blood cells and platelets.           

Monocytes, like all professional phagocytes, recognize opsonized particles as well as 

specific molecules called pathogen-associated molecular patterns (PAMP) via PRR and 

phagocyte them (Janeway, 1992). Opsonization means the coating of pathogens with 

molecules, especially antibodies (mainly IgG) and C3b, which are recognized by specific 

phagocytes receptors and so makes them more susceptible to phagocytosis. PAMPs are 

structures on pathogens that are not shared with the host cells, e.g. lipopolysaccharide (LPS, 

also called endotoxin) of gram-negative bacteria and peptidoglycan of gram-positive bacteria. 

Considering fungi, monocytes have a PRR called mannose receptor (MR) that recognizes 

PAMPS containing mannose and fucose on the surfaces of the pathogen (Stahl and 

Ezekowitz, 1998). 

Phagocytosis, unlike pinocytosis and endocytosis (uptake of smaller molecules, < 0.5 µm), is 

actin-dependent and leads to the polymerization of actin at the site of ingestion, and the 

internalization of the particle via an actin-based mechanism. After internalization actin is shed 

from the phagosome, and the phagosome matures by a series of fusion and fission events with 

components of the endocytic pathway, culminating in the formation of the mature 

phagolysosome (Aderem and Underhill, 1999). In the Phagolysosomes, both oxygen-

dependent and independent processes lead to the degradation of the internalized pathogen. 
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Superoxide (O2-), H2O2 and other active radicals are responsible for killing bacteria and fungi 

in the oxygen-dependent way (Philippe et al., 2003). The oxygen-independent way is 

characterized by a drop in the pH-value which activates lysosomal enzymes responsible for 

degradation. 

Monocytes were also shown to phagocytose A. fumigatus conidia and a genome-wide 

expression analysis was done to investigate the genes regulated during phagocytosis (Cortez 

et al., 2006). 

 

1.3      Major histocompatibility complex  

 

Major histocompatibility complex (MHC) molecules are glycoproteins expressed at the 

surface of almost all vertebrate cells. They are highly polymorphic genes found in humans on 

chromosome number 6. Each person has their own collection of MHC molecules, but 

monozygotic human twins have the same histocompatibility molecules on their cells. The 

term “histocompatibility” refers to the difficulty of finding compatible grafts between a donor 

and a patient. MHC in man is called “Human Leukocyte Antigen” (HLA). MHC was first 

identified by Peter Gorer in 1937 as a blood group locus that controlled the presence of 

antigens on the surface of mouse erythrocytes. In 1980 George Snell, Jean Dausset and Baruj 

Benacerraf received the Nobel Prize in Physiology or Medicine for their contributions to the 

discovery and understanding of the MHC (Snell, 1980; Marx, 1980). There are two major 

types of MHC protein molecules - class I and class II - that span the membrane of almost 

every cell in an organism and present antigens, respectively, to CD8 and CD4 T cells. 
 

Table 1.3: Expression of MHC molecules I and II in different cell types. (-) stands for no expression, (+) to 

(+++) stands for normal to high expression. DCs express MHC in very high levels. 

(www-immuno.path.cam.ac.uk/~immuno/part1/lec07/lec7_97.html) 

 Cell Type  MHC I  MHC II 

T cells  +++  Varies, inducible in 
some species 

B cells  +++  ++ 
Macrophages  +++  + 
Dendritic cells  +++ x10  +++ x10 
Granulocytes  ++  - 
Endothelium  ++  - (inducible) 
Hepatocytes  +  - 
Neurons  -  - 
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A third type of MHC protein molecules, MHC class III proteins, include complement proteins 

which are involved in the antibody response, the inflammatory cytokines, TNF-α and -β and 

two heat shock proteins which help cells deal with heat, stress and viral infection. 

MHC class I and class II molecules are characterized by distinctive α and β polypeptide 

subunits that combine to form αβ heterodimers characteristic of mature MHC molecules. 

MHC Class I molecules consist of two proteins: the soluble β2m (not encoded in MHC locus) 

and the α chain consisting of the α1, α2, α3, and transmembrane/cytoplasmic tail domains. 

The peptide (typically 8-11 amino acids long) is held in the peptide-binding groove between 

the α1 and α2 subunits. The peptide’s ends are tethered into two pockets located on the MHC. 

These MHC pockets interact with the side chains of the terminal amino acids.  

MHC Class II is a symmetrical molecule made of two transmembrane proteins, the α chain 

(α1-α2 globular domains) and the β chain (β1-β2 domains). The peptide cleft is between 

subunits α1 and β1, and it holds peptides differently than MHC Class I (12-16 amino acids). 

Instead of tethering peptide at its ends, MHC Class II works more as a clamp, tethering the 

peptide in the center through multiple H-bonds, van der Waals, and electrostatic interactions; 

the ends of the MHC Class II “clamp” are open. This allows more flexibility in the length and 

types of peptide that can bind. 

 

1.3.1 Antigen processing and presentation 

 

MHC-I molecules can bind peptide epitopes from endogenous proteins found within the 

cytosol like viral proteins produced during viral replication, tumor antigens produced by 

cancer cells and self peptides from human cell proteins. These proteins are degraded by the 

proteasomes, where proteases and peptidases are active. A transporter protein called TAP 

located in the membrane of the cell's endoplasmic reticulum then transports these peptide 

epitopes into the endoplasmic reticulum (ER) where they bind to newly made MHC-I 

molecules. The MHC-I molecules with bound peptides are then transported to the Golgi 

complex and placed in exocytic vesicles. These vesicles carry the MHC-I/peptide complexes 

to the cytoplasmic membrane of the cell where they become anchored to its surface. On 

APCs, TCRs and CD8 molecules on the surface of naive CD8 T cells recognize then these 

peptide epitopes bound to the MHC-I molecules, whereas those on infected and tumor cells 

are recognized by TCRs and CD8 on the surface of CTLs. 
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MHC-II molecules are made primarily by APCs. MHC-II molecules have a deep groove that 

can bind peptide epitopes from exogenous proteins which come from phagocytosed microbes 

and pathogens. After degradation in phagolysosomes takes place, these proteins are degraded 

by proteases into a series of peptides. While MHC-II is being assembled within the 

endoplasmic reticulum, a protein called the invariant chain (Ii) attaches to the peptide-binding 

groove of the MHC-II molecules preventing peptides designated for binding to MHC-I from 

binding to MHC-II. The MHC-II molecules with bound Ii chain are transported to the Golgi 

complex, and placed in vesicles. The vesicles then fuse with the peptide-containing 

phagolysosomes. The Ii chain is removed and the peptides are now free to bind to the grooves 

of the MHC-II molecules. The MHC-II/peptide complexes are then transported to the 

cytoplasmic membrane of the APC where they become anchored to its surface. Now they can 

be recognized by complementary-shaped TCRs and CD4 molecules on the surface of naive 

CD4 T cells.  

 

1.4  Aspergillus species 

 

In 1729, Aspergillus was first described by an Italian priest and biologist named P. Micheli. In 

studying the shape of the fungus, he was reminded of an aspergillum, an instrument used for 

the dispersion of holy water, thus the name. Aspergillus is a member of the deuteromycetes, or 

Fungi Imperfecti, which is a group reserved for fungi for which there is no known sexual 

state. However, the sexual state (teleomorph) for many of the species of Aspergillus is known, 

and most of these are in the Ascomycota genus Emericella, which forms cleistothecia (closed 

ascocarps) under certain conditions. Ascomycota are 'spore shooters'. They are fungi which 

produce microscopic spores. It is likely that all members of the genus Aspergillus are closely 

related and should be considered members of the Ascomycota. There are around 185 species 

under the genus Aspergillus. Around twenty species have been reported so far as causative 

agents of opportunistic infections in humans. Among these, Aspergillus fumigatus is the most 

frequently isolated species, followed by Aspergillus flavus and Aspergillus niger. Among the 

other species not often isolated as opportunistic pathogens are Aspergillus clavatus, 

Aspergillus glaucus group, Aspergillus nidulans, Aspergillus oryzae, Aspergillus terreus, 

Aspergillus ustus and Aspergillus versicolor. 
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1.4.1 Aspergillus fumigatus 

 

Aspergillus fumigatus was first well-described and illustrated in the year 1863 by J. B. Georg 

W. Fresenius. Its natural ecological niche is the soil, wherein it survives and grows on organic 

debris (Latgé, 1999). 

 

 

 

 

 

 

 

 

 
 

Figure 1.4.1: Light microscopy of typical A. fumigatus sporulating structures (from Latge, 1999). 

 

This thermophilic filamentous fungus grows and sporulates mainly in humid environments, 

and it is one of the most ubiquitous of those with airborne conidia (Mullins et al., 1976). It 

sporulates abundantly, with every conidial head producing thousands of green conidia into the 

atmosphere with a diameter of 2.5 – 3 µm. The small size of the conidia keeps them airborne 

indoors and outdoors. Some mutant strains had also been identified which have pigmentless 

(white) conidia (Jahn et al., 1997). 

The conidiophores originate from the basal foot cell located on the supporting hyphae and 

terminate in a vesicle at the apex (figure 1.4.1). The chains of conidia are borne directly on 

the vesicles (20 – 30 µm in diameter). No sexual stage is yet known for this species. However, 

accumulating evidence suggest that a sexual stage for A. fumigatus may yet be identified 

(Dyer and Paoletti, 2005). A. fumigatus is a fast grower: the colony size can reach about 4 cm 

within a week. It is a thermophilic species, with growth occurring at temperatures as high as 

55oC and survival maintained at temperatures up to 70oC (Leslie et al., 1988).  

The cell wall of A. fumigatus is a complex structure mainly composed of polysaccharides and 

where the majority of the antigens secreted by the fungus during its in vitro and in vivo 

growth are located (Latge et al., 1993; Bernard and Latge, 2001). The main polysaccharides 

are β(1-3)-glucan, galactomannan and chitin. Along with the polysaccharides and other 
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molecules and enzymes, toxins like gliotoxin and fumagillin and helvolic acid are also located 

in the cell wall of conidia, but also in hyphae (Rementeria et al., 2005). 

Just recently, Nierman et al. (2005) published the complete genome sequence of A. fumigatus. 

The report details the complete 29.4 million base-pair genome sequence of A. fumigatus 

clinical isolate Af293, which consists of eight chromosomes containing 9926 predicted genes. 

 

1.4.2 Aspergillus fumigatus and the immune system 

 

All humans inhale several hundred conidia per day (Chazalet et al., 1998; Hospenthal et al., 

1998). In healthy individuals, inhaled conidia cause rarely allergic diseases or pulmonary 

infections. They are usually antagonized efficiently by the innate immune system; thus 

eliminated primarily by pulmonary alveolar macrophages before they are able to germinate 

and invade tissue organs. In immunosuppressed persons, conidia are able to reach the alveoli 

of the lungs and germinate into hyphae, which in term invade the neighboring blood vessels. 

Over the last years, A. fumigatus has become the most prevalent fungal pathogen, causing 

severe and mostly fatal invasive infections in immunocompromised patients, like those with 

acute leukemia or after solid-organ or bone marrow transplantation (Andriole, 1993; Denning, 

1998). The mortality rate is 50% to 80% in these patients (Denning, 1996; Wald et al., 1997). 

Invasive aspergillosis (IA) occurs in 10 to 25 % of all leukemia patients, in whom the 

mortality rate is 80 to 90 %, even when treated (Denning, 1995; Groll et al., 1996). Invasive 

pulmonary aspergillosis is characterized by hyphal invasion and destruction of pulmonary 

tissue. The fungus has a tendency to invade blood vessels, and the clinical syndrome is often 

termed “angioinvasive pulmonary aspergillosis” (Oren and Goldstein, 2002). The invasive 

infection can affect any organ of the body, but especially the heart, lungs, brain, and kidneys. 

In addition, other diseases like bronchopulmonary aspergillosis and aspergilloma are caused 

by the fungus. Bronchopulmonary aspergillosis is characterized by fungus colonization of the 

mucus within the bronchi, evoking a severe allergic reaction. In aspergilloma, the fungus 

forms a mycelial ball in a lung cavity produced by an earlier attack of tuberculosis. The wall 

of the cavity may erode, causing the patient to spit blood, and necessitating surgical 

intervention. 

Innate and adaptive immune effector mechanisms have been reported to be important in the 

successful control of IA. A. fumigatus activates primarily immune effector cells such as 

monocytes/macrophages and DCs. Several studies already described the role of these cells in 

defending the host organism against this pathogen. Monocytes and macrophages are able to 
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phagocytose conidia of A. fumigatus by the help of many receptors and surface molecules, 

such as TLRs or Pentraxin-3 (PTX3) (Wang et al., 2001; Ibrahim-Granet et al., 2003; 

Garlanda et al., 2002). The phagocytosed spores are taken down in the phagolysosome, and 

protein antigens are degraded into a series of peptides, which are presented to CD4+ T cells by 

MHC-II molecules. It has also been shown that human monocytes bind to and destroy A. 

fumigatus hyphae with either oxygen-dependent or -independent mechanisms (Diamond et 

al., 1983). Yet, there are not enough data till now concerning the interaction and killing of A. 

fumigatus by human monocytes. Most studies focused on murine models or human alveolar 

macrophages.  

DCs were also shown to play a vital role in host defense against A. fumigatus. They were 

shown to bind and phagocytose A. fumigatus conidia, and initiate a T cell response in the 

lymph nodes (Grazziutti et al., 2001; Bozza et al., 2002; Serrano-Gomez et al., 2004). TLR2 

and TLR4 were shown to play a major role in the activation of DCs and also granulocytes by 

A. fumigatus (Braedel et al., 2004).  

 

1.4.3 Aspergillus fumigatus antigens 

 

Many A. fumigatus allergens or antigens that primarily induce immune responses have been 

identified and characterized. They can be classified according to their production and 

localization region as well as their structure and function and can be further subclassified into 

proteins, polysaccharides, and glycoproteins (Kurup and Kumar, 1991).  

A large number of enzymes such as chymotrypsin, proteinases, elastases, ribonucleases, 

catalases, and superoxide dismutases are included into the antigens’ list. An immunodominant 

A. fumigatus antigen was reported belonging to a catalase subclass which recognized over 

90% of serum samples from patients with aspergilloma (Lopez-Medrano et al., 1995). 

Superoxide dismutase (SOD) was isolated from A. fumigatus and specifically reacted with the 

sera from patients with confirmed aspergillosis on Western blots (Hamilton et al., 1995). Also 

proteases purified from membrane vesicles of A. fumigatus were reported to be involved in 

the pathogenesis of aspergillosis (Piechura et al., 1990). Also among the common protein 

antigens or allergens produced by both A. fumigatus conidia and hyphae, Asp f1 was detected 

in aspergillosis patients, which is sometimes called mitogillin, and was shown to have 

cytotoxic activity. A synthetic peptide epitope of Asp f1 (LNPKTNKWEDK) was used for 

improved immunodiagnosis of allergic bronchopulmonary aspergillosis and showed high 

diagnostic efficiency (Madan et al., 2004). Another allergen, Asp f16, was shown to activate a 
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Th1 response and an HLA class II retricted epitope (HLA-DRB1-0301, TWSIDGAVVRT) 

was identified in a murine model, as well as CTL responses directed to class I (HLA-B*3501) 

restricted epitopes, in vitro (Ramadan et al., 2005; Ramadan et al., 2005). 

β-1,3-glucan and chitin are the main components of the A. fumigatus cell wall, along with 

galactomannan and a linear β-1,3/1,4-glucan. Galactomannan was detected in serum of 

patients with invasive aspergillosis (Dupont et al., 1987). Today, the detection of 

galactomannan in blood of patients is used to diagnose invasive aspergillosis in humans 

(Hope et al., 2005). Along with these polysaccharides and glycoproteins, A. fumigatus is 

known to produce various immunosuppressive mycotoxins. Recent studies have made 

progress in the determination of mycotoxins as virulence factors. Gliotoxin was also found to 

be detectable in the sera of aspergillosis mice and of aspergillosis patients. Gliotoxin is an 

inducer of apoptotic cell death in a number of cell types, including monocytes, macrophages 

and other immune cells, by the inhibition of transcription factor NF-κB (Stanzani et al., 2005; 

Suen et al., 2001; Pahl et al., 1996). Fumagillin, another A. fumigatus toxin, was shown to 

play a significant role in damaging epithelial cells in the respiratory tract and influencing 

colonization of the airways (Amitani et al., 1995). 

 

1.5 Cytokines and chemokines in fungal infections 

 

Cytokines are secreted glycoproteins (most between 15 and 40 kDa) that provide a means for 

intracellular signaling. They act via cell receptors and mediate profound effects on cell 

proliferation, differentiation, and activation. They regulate the immune system, specifically 

the interleukins (IL, now numbering 18), the interferons (IFN-α, -β, and -γ), the tumor 

necrosis factors (TNF-α) and lymphotoxins, and the hemopoietic colony stimulating factors 

(granulocyte CSF, macrophage CSF, and granulocyte–macrophage CSF) (Kelso, 2000). 

Chemokines are small chemotactic cytokines (6-14 kDa) that attract leucocytes to sites of 

infection and inflammation. They are key regulators of migration in lymphoid tissues. To 

date, at least 40 distinct chemokines have been well characterized and are produced by a 

variety of cell types (Baggiolini et al., 1997; Rollins, 1997). 

Cytokines and chemokines play an important role in host defense against fungal infections. 

Inflammatory cytokines such as TNF-α, IL-1, IL-6 and IL-8 have been shown to be expressed 

by immune cells during fungal infections (Frankenberger et al., 1996; Roilides et al., 1998; 

Stordeur et al., 2003), as well as many chemokines which attract fellow immune cells to the 
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infection and inflammation site, such as the chemokines of the MCP or the MIP family 

(Loetscher et al., 1994; Allavena et al., 1994; Yang et al., 2003). 

TNF-α (17 kDa) is a member of a superfamily of cytokines produced primarily by monocytes 

and macrophages which induce necrosis of tumor cells and possess a wide range of pro-

inflammatory actions. It was shown to be over-expressed by monocytes, macrophages and 

other leucocytes upon contact or interaction with fungal pathogens, mainly in the lung 

(Liebhart et al., 2002; Pylkkanen et al., 2004). It has shown to be a critical proximal signal in 

the initiation and maintenance of innate pulmonary immunity in animal models of pneumonia 

and human pneumonia (Moussa et al., 1994; Gosselin et al., 1995). 

Interleukins are the cytokines that act specifically as mediators between leucocytes. IL-1, 

originally known as Lymphocyte Activating Factor (LAF), activates T lymphocytes, which 

then proliferate and secrete IL-2. IL-6 appears to be directly involved in the responses that 

occur after infection and injury and may prove to be as important as IL-1 and TNF-α in 

regulating the acute phase response. IL-8 acts chemoattractant on T cells and neutrophils and 

helps to bring them to the site of an inflammation. It was demonstrated that these interleukins 

are secreted among others, upon stimulation of monocytes with fungal pathogens in vitro 

(Castro et al., 1996), but also from cells of patients with airway infections (Cembrzynska-

Nowak et al., 1998; Mazzarella et al., 2000). 

MCP and MIP belong to the family of C-C chemokines. It has been reported that MCP 

chemokines are major attractants of human CD4+ and CD8+ T lymphocytes (Loetscher at al., 

1994) but also MIP chemokines have differential effects on lymphocytes (Schall et al., 1993). 

Critical for the host defense against fungal pathogens and their infections is MCP-1 (CCL2) 

and its receptor CCR2. Recent studies showed the role of CCL2 and CCR2 in response and 

clearance of A. fumigatus conidia. CCR2-/- mice showed less neutrophil recruitment into the 

airways as well as an increase in inflammation and subepithelial fibrosis (Blease et al., 2000). 

Also MIPs, mainly MIP-1α, have been reported to play a role in chemotaxis during fungal 

infections. They were shown to be up-regulated in cells of patients with fungal infections 

(Shahan et al., 1998; Mehrad et al., 2000). 

 

1.6 Clinical approaches to Aspergillus fumigatus infections 

 

Invasive Aspergillosis comprises a spectrum of diseases caused by Aspergillus species. These 

include allergy as well as invasive, inflammatory, granulomatous, narcotising diseases of 

lungs, and other organs. The three principal entities are: allergic bronchopulmonary 
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aspergillosis, pulmonary aspergilloma and invasive aspergillosis. The type of disease and 

severity depends upon the physiologic state of the host.  

Allergic aspergillosis has been successfully treated with corticosteroids, and intraconazole 

(Stevens et al., 2000). Aspergillomas may be treated by surgical resection; however, this 

approach may cause morbidity and mortality, therefore it should be reserved for patients at 

high risk. Invasive aspergillosis may be treated with voriconazole and amphotericin B 

(Herbrecht et al., 2002) as well as itraconazole (Denning and Stevens, 1990). In addition to 

those, a new promising group of antifungals called “echinocandins” is nowadays being used 

in treatment of the rapid progressive invasive aspergillosis. They are less toxic to the host than 

previous drugs and inhibit the β-1,3-glucan synthase. The most prominent of them is 

caspofungin which showed already positive outcomes in aspergillosis therapy (Kartsonis et 

al., 2005), along with micafungin and anidulafungin. These antifungals may be used in 

combination, in order to get maximum effects. 

A new promising tool that may in the near future play a significant role in therapy of 

aspergillus infections is specific gene silencing of redundant genes with RNA interference 

(RNAi). RNAi is a method based on the application of a short double-stranded RNA into the 

cell, which results in down-regulation of the mRNA with the complementary sequence. Some 

studies with promising results have been made in this field, silencing specific aspergillus 

genes of interest (Mouyna et al., 2004). 
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1.7 Aims of the study 

 

Aspergillus fumigatus is one of the most widely distributed microorganisms on earth. It is the 

leading cause of infection-related death in leukemia and bone-marrow transplant patients. 

These are two crucial arguments for researchers to work in this field. This study was initiated 

to investigate a still little-researched field in immune response against this pathogenic fungus: 

the role of monocytes. 

Our first aim was to investigate phagocytosis of A. fumigatus conidia by human monocytes. 

Monocytes are the biggest phagocytes in blood; therefore having a crucial role in 

phagocytosis of foreign pathogens escaping the lungs and entering the bloodstream. So do 

peripheral blood monocytes phagocytose conidia in vitro? At what time and what about the 

phagocytosis rate? For this purpose, phagocytosis was microscopically analyzed using 

fluorescent dyes after 3 and 6 hours of incubation. 

Our second aim was to study the regulation of gene expression in monocytes after incubation 

with A. fumigatus. How do A. fumigatus conidia and hyphae affect gene epression in 

monocytes? Are any fungal-specific genes regulated in monocytes after interaction? Do 

conidia and hyphae regulate different genes? Which ones? For this purpose, we analyzed gene 

expression after 3, 6 and 9 hours of incubation, using real-time RT-PCR, microarray gene 

chip analysis and RNA interference. 

Our third aim was to investigate peptides presented on different HLA molecules of 

monocytes, after incubation with A. fumigatus. Are A. fumigatus peptides detectable on HLA 

class II molecules on monocytes? Or maybe on class I? Are different peptides presented by 

stimulated cells than by non-stimulated ones? We tried to answer these questions by 

extracting HLA presented peptides after stimulation with A. fumigatus. Analyses followed by 

ESI/Q-Tof mass spectrometry in combination with HPLC (LC-MS). 
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2. Material 
 

2.1 Cell cultures 

 

Different cultures and subsets of monocytes were used in the following experiments, 

according to the aim and the magnitude of the methods used, in order to get the best possible 

basis for each different procedure. 

  

2.1.1 Peripheral blood monocytes 

 

For pre-experiments, monocytes were won from buffy coats of healthy donors, supplied by 

the local blood bank. For more decisive and essential experiments, monocytes were won from 

fresh blood, isolated from healthy donors. 

 

2.1.2 Cell lines 

 

THP-1 cells were purchased form the “German National Resource Centre for Biological 

Material” (DSMZ): Accession number ACC 16. THP-1 is a human acute monocytic cell line 

(CD14+), established from the peripheral blood of a 1-year-old boy with acute monocytic 

leukemia (AML) at relapse in 1978. HLA haplotypes of THP-1 are HLA-A2, -A9, -B5, -

DRW1 and -DRW2. The cells were described to be phagocytic (Tsuchiya et al., 1980). 

JY cells, a human lymphoblastoid cell line (LCL), were purchased from “The European 

Collection of Cell Cultures” (ECACC): Accession number ECACC-94022533. HLA 

haplotypes of JY are HLA-A2, -B7, -Cw7 and -DR4. 

 

2.2   Aspergillus fumigatus cultures 

 

The used Aspergillus fumigatus cultures stemmed from a well characterized clinical isolate 

from the sputum of a patient with cystic fibrosis (isolate number: VA15701.2), supplied by 

the institute for medical microbiology in Tuebingen. 
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2.3    Chemicals, solutions and kits 

 

Solutions for cell culture: 

Phosphate Buffered Saline: PBS-DULBECCO (1x)   Biochrom KG, Germany 

RPMI 1640 Medium with 25 Mm HEPES & Glutamax-I   GIBCO, Invitrogen, UK 

HBSS Hanks’ Balanced Salt (1x)       GIBCO, Invitrogen, UK 

FICOLL separating solution      Biochrom KG, Germany 

EDTA 0.5 M, pH 8       BIO Whittaker, USA 

FCS           SIGMA Cell Culture, US 

Monocyte Isolation Kit, human       Miltenyi Biotec, Germany 

CD14-Microbeads       Miltenyi Biotec, Germany 

Trypan blue 0.4%        GIBCO, Invitrogen, UK 

Anaerocult C        MERCK, Germany 

 

Reagents for fungal cultures: 

Yeast Nitrogen Base       GIFCO Laboratories, US 

Sabouraud-2%-glucose agar      MERCK, Germany 

Ethanol (99%)        MERCK, Germany 

Tween 20         MERCK, Germany 

 

Reagents for FACS: 

BSA         Sigma-Aldrich, USA 

Formaldehyde        Sigma-Aldrich, USA  

Fluorescence tagged antibodies: 

 Anti-IgG (FITC) and anti-CD14 (FITC)   Becton Dickinson, USA 

FACS-Flow        Becton Dickinson, USA 

FACS-Safe        Becton Dickinson, USA 

FACS-Rinse        Becton Dickinson, USA 

 

Reagents for RNA work: 

RNeasy Mini Kit and QIAshredder        Qiagen, Germany 

ß-Mercaptoethanol       ICN Biomedicals Inc, US 

AMV 1st strand cDNA synthesis kit      Roche GmbH, Germany 

Affymetrix gene chip array: HG-U133A    Affymetrix, USA 
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Kits, primer and probes for Real-Time-PCR: 

LightCycler FastStart DNA Master Hybridization Probes  Roche GmbH, Germany 

LightCycler-h-ALAS Housekeeping Gene Set   Roche GmbH, Germany 

 

Primer:       TIB MOLBIOL, Germany 

 TNF-α as 5’ –ggCgTTTgggAAggTTggAT    5 µM 

 TNF-α se 5’ – CTCTggCCCAggCAgTCAgA    5 µM 

 hu IL-6 S 5’ – CTTTTggAgTTTgAggTATACCTAg   5 µM 

 hu IL-6 A 5’ – CgCAgAATgAgATgAgTTgTC    5 µM 

 IL-1β S 5’ – CAgggACAggATATggAgCAA    5 µM 

 IL-1β A 5’ – gCAgACTCAAATTCCAgCTTgTTA   5 µM 

 

Probes:       TIB MOLBIOL, Germany 

 TNF-α LC 5’ – Red640-CCACTggAgCTgCCCCTCAgCT p  0.3 µM 

 TNF-α FL 5’ – gCATTggCCCggCggTTC X    0.3 µM 

 hu IL-6 LC 5’ – Red640-CCACAAATgCCAgCCTgCTgAC p  0.3 µM 

 hu IL-6 FL 5’ – TAgATgCAATAACCACCCCTgACCCA X  0.3 µM 

 IL-1β LC 5’ – Red640-gTACAgATTCTTTTCCTTgAggCCCA p 0.3 µM 

 IL-1β FL 5’ – gCTTATCATCTTTCAACACgCAggACA X  0.3 µM 

 

Solutions for agarose gels: 

Agarose        Sigma-Aldrich, USA 

TAE-Puffer (10x)       Life Tech., Scotland 

  0.4 M Tris-acetate 

  0.01 M EDTA 

  pH 8.3 

Gelstar         Biozym Diagnostik  

 GmbH, 99.9% DMSO     Germany  

  0.01% dye 

Gel loading buffer       Invitrogen, Germany 

  65% (w/v) sucrose 

  10 mM Tris-HCl pH 7.5 
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  10 mM EDTA 

  0.3% (w/v) Bromphenol blue 

100 bp DNA-Ladder       Invitrogen, Germany 

 

Reagents for microscopy: 

Fluoprep        BioMerieux, France 

DePeX         SERVA, Germany 

Antibodies: 

 Mouse monoclonal anti-CD14    Dako, Denmark 

 Goat anti-mouse IgG (conjugate: Cy3)   Dako, Denmark 

Fungi-Fluor Kit       Polysciences Europe  

 Sol. A: 0.05% Cellufluor:     GmbH, Germany  

 Sol. B: Evans blue  

 

Reagents and kits for work with RNAi 

siRNAs: 

 non-specific control-siRNA (20 µM)    Qiagen, Germany 

 GAPDH-siRNA (20 µM)     Ambion, Texas, USA 

TLR2, TLR4 & TLR8 (2-For-Silencing siRNA duplexes) Qiagen, Germany 

RNAi Starter kit (RNAiFect)      Qiagen, Germany  

OligofectamineTM       Invitrogen, Germany 

Silencer siRNA Transfection kit     Ambion, Texas, USA 

 

Reagents for isolating HLA-peptides 

“Complete” protease inhibitor tablets     Roche, Germany 

CHAPS        Roche, Germany 

CNBr-activated Sepharose 4B  Amersham Phar., Sweden 

Protein A-Sepharose, CL-4B  Amersham Phar., Sweden 

TFA  Applied Biosystems, USA 

Bio Brene Plus  Applied Biosystems, USA 

O-methylisourea hemisulfate 94%  ACROS organics, USA 
1H4- and 2D4-NicNHS ester      Weik, Uni. of Tuebingen 
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Reagents for western blots  

40% Acrylamide, N,N’-Methylenebisacrylamide (29:1)  Roth, Germany 

Ammoniumpersulfate, 10% (APS)     Sigma, Germany 

N,N,N',N'-Tetramethylethylenediamine (TEMED)   Sigma, Germany 

Polyclonal rabbit anti-human-ß2 microglobulin antibody  Anogen, Canada 

anti-rabbit horseradish-peroxidase antibody    Amersham Bio., Germany 

monomer HLA-B*1501      Walter, Uni. of Tuebingen 

 

Reagents for ELISA  

Quantikine Immunoassay kits      R&D Systems, USA 

 

2.4     Instruments 

 

Real-time RT-PCR: 

 LightCycler™-Instrument       Roche, Germany 

 LC Carousel Centrifuge     Roche, Germany 

 Computer       Windows NT 95 

 Software       LC Software Version 3.5 

Incubators (35°C, 37°C)      Heraeus 6220, Germany 

MACS Separation Columns       Miltenyi Biotec, Germany 

Centrifuges: 

Multifuge 3 S-R & 1.0R Heraeus, Germany 

Biofuge 13       Heraeus, Germany 

 Centrifuge 5415R & 5417R     Eppendorf, Germany 

 Centrifuge RC 5C Plus, Rotor GS-3    Sorvall, Kendro, Germany 

Ultracentrifuge L-80, Rotor Ti45    Beckman Coult., Germany 

Sterile bench         Heraeus, Germany 

Water baths        Memmert, Germany 

Heating block Thermomixer 5437     Eppendorf, Germany 

Pipettes (10 µl, 100 µl, 1000 µl)     Eppendorf, Germany 

Microscopes: 

 Laborlux S       Leitz, Portugal 

 Diavert       Leitz Wetzlar, Germany  

 Axiolab        Zeiss, Germany 
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Fluorescence Microscopy: 

 Microscope       Leica DMRE, Germany 

 Camera        Diagnostic Instr. Inc, USA 

 Object slides  76x26 mm     Langenbrick, Germany 

 Cover slips  24x60 mm     Langenbrick, Germany 

FACS-Instrument: 

 FACS Calibur       Becton Dickinson, USA 

 Tubes (5 ml)       Becton Dickinson, USA 

 Analysis software      Cell Quest 

Photometers: 

 GeneQuant II       Pharmacia Biot., Germany 

UV-Spectrometer Ultrospec 3000    Pharmacia Biot., Germany 

Quartz cuvettes      Hellma, Germany 

Agarose gel: 

Gel scanner: ImageMaster     Pharmacia Biot., Germany 

Gel chamber: HORIZON 11.14    BRL, Life Technol., USA 

siRNA electroporation:  

Electroporator instrument: EPI 2500    Fischer, Germany 

Electroporation cuvettes     Biorad, Germany 

 

MHC-peptide-Isolation: 

Table pump P-1      Pharmacia LKB, Sweden 

Magnet rotor: RCT basic     IKA Labortech., Germany 

Branson Sonifier 250      Branson Ultrasonics, USA 

Pressure filtration unit: Sartolab P Plus   Sartorius AG, Germany 

Microliter syringes      Hamilton, Switzerland 

Centrifugal filter devices: Centricons    Millipore corp., USA 

Cryo Freezing Container     Nalgene, H. le Spring, UK 

SDS gels and Western Blots: 

 Voltage source Power Pac 200    Bio-Rad, Germany  

 Mini-Protean II electrophoresis cell    Bio-Rad, Germany 

 Semi-Dry electroblotunit transfer-blot   CTI, Idstein, Germany 

 Nitrocellulose membrane Hybond ECL   Pharmacia Biot., Germany 

 Filter paper: Whatman 3MM     Whatman, Maidstone, UK 
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 Image-Station LAS-1000     FujiFilm, Germany 

Edman and Mass-spectrometry: 

Lyophilisation instr.: Vaco5     ZIRBUS, Germany  

SpeedVac vacuum concentrator    Bachhofer, Germany 

Pre-column pump ABI 140D Delivery System  Perkin Elmer, Boston, US 

 μCapillary-LC-System Ultimate    Dionex, Germany 

 Fused‐silica-μCapillary-column (5 µm C18-Material) LC Packings, Germering 

 Pre-column C18-Material, 300 µm, 10 mm   Dionex, Germering 

online-ESI capillary, 360/20 µm AD / ID capillary  New Objective, USA 

offline-ESI capillary, Medium Capillaries Q-TOF ES387 Proxeon, Odense, DK 

 Hybrid-Q-Tof-Mass-spectrometer    Micromass, UK 

 Edman ABI “Procise” 494A Protein-Sequencer  Applied Biosystems, USA 

 C18-columns-5 PTH 5 µm     Perkin Elmer, Boston, US 

 Peptide cleanup C-18 spin tubes    Agilent, Germany 
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3. Methods 
 

3.1    Preparation of cell cultures 

 

Blood from buffy coats (normally 50 ml of 500 ml originally donated) was always diluted 

(1:1) with Hanks buffer before use. Fresh blood from healthy donors was usually also diluted 

1:1 with Hanks buffer before further use. 

 

3.1.1 Isolation of PBMC from human blood 

 

Peripheral blood mononuclear cells (PBMCs), which contain the monocytes, the 

lymphocytes, the thrombocytes and the NK cells, were isolated with a FICOLL-gradient. 

Through centrifuging, erythrocytes, granulocytes and dead cells are pelleted and the PBMCs 

stay in the supernatant, because their density is smaller than that of the FICOLL (1.07 g/l), in 

contrast to the erythrocytes and the dead cell fragments. Briefly, the diluted blood was 

carefully layered on the FICOLL and 20 min at 2000 rpm brakeless centrifuged. The white 

layer originated above the FICOLL contains the mononuclear white blood cells. This 

interphase was carefully separated and the cells washed with Hanks buffer (Centrifugation: 10 

min, 1300 rpm). The cell pellet was resuspended in hanks, cells were counted with a 

Neubauer cell chamber and put on ice till the next separation steps. 

 

3.1.2 Cell-counting with the Neubauer chamber 

 

20 µl from the cell suspension were added to 180 µl Hanks buffer 

(1:10 dilution). 20 µl from this dilution were added to 20 µl 

Trypan blue (1:2 dilution) and a chamber was filled with this 

dilution. Living cells could be distinguished from dead cells (blue) 

and counted in 16 of the small squares, which build one of 4 big 

squares, each with 1 mm side length (Figure 3.1.2). The cell 

number was then calculated using the following formula:   

No. of counted cells x 104 x 2 x 10                 Figure 3.1.2: Neubauer chamber 

      (www.ub.es/biocel/wbc/tecnicas/contajecelular.htm) 
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3.1.3  Extraction of monocytes 

 

Monocytes were extracted from the PBMCs with the help of magnetic cell separation 

(Miltenyi et al., 1990). We used two different methods, a positive selection with CD-14 

microbeads and a negative selection with the “Monocyte isolation kit”.  

Being conjugated to a monoclonal mouse anti-human CD14 antibody, the microbeads bind 

specifically to the monocytes surface-receptor CD14. After application to a magnetic column, 

the monocytes-microbeads-complexes remain in the column, whereas the other cells pass 

through. The monocytes can be eluted afterwards, when taking the column off the magnet. 

The monocytic culture obtained revealed a high purity (> 95%), but a slight activation 

through the beads was taken in consideration. Briefly, 108 PBMCs were resuspended in 800 

µl Hanks/2 mM EDTA/1% FCS buffer and incubated with 200 µl CD14-Microbeads for 15 

min at 4°C. The 20-fold volume of Hanks/2 mM EDTA/1% FCS was then added and 10 min 

at 1300 rpm and 4°C centrifuged. A MACS LS-column was fixed to a special magnet and 

washed with 3 ml Hanks/2 mM EDTA/1% FCS. The cells were resuspended in 500 µl of the 

same buffer, applied to the column and washed 3 times with the buffer. After taking the 

column off the magnet, it was washed 2 times with the buffer and the monocytes were 

depleted through pressing them out with a special plunger. The monocytes were counted, 

resuspended in RPMI/20% FCS and incubated on ice till further use.  

With the “Monocyte Isolation Kit”, the other cells were bound to microbeads (CD3 for T 

cells, CD7 for hematopoietic stem cells, CD19 for B cells, CD45RA for naive T cells, CD56 

for NK cells and IgE for mast cells), whereas the monocytes remained untouched. 

Unfortunately, we couldn’t achieve a monocytic culture purity as with the positive selection 

(>75%). Nevertheless, a possible activation through the microbeads could be ruled out, which 

is essential for gene expression analysis. Briefly, 108 PBMCs were resuspended in 600 µl 

Hanks/2 mM EDTA/1% FCS buffer and 200 µl FCR blocking reagent in addition to 200 µl 

hapten-antibody-cocktail were added, then 5 min at 4°C incubated. Washing followed with 

10-fold volume with Hanks/2 mM EDTA/1% FCS followed and centrifuged at 1300 rpm, 10 

min and 4°C. The Pellet was resuspended in 600 µl of the same buffer and 200 µl FCR 

blocking reagent as well as 200 µl anti-hapten microbeads, and incubated 15 min at 4°C. 

Washing followed again with 10-fold volume with Hanks/2 mM EDTA/1% FCS. The MACS 

LS-column was treated as done with the positive selection method. The Pellet was 

resuspended in 500 µl of the same buffer and applied to the column, washed 3 times with the 
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buffer. The fractions obtained (containing the monocytes) were collected, the cells counted 

and resuspended in RPMI/20% FCS as well, till further use.  

 

3.1.4 Generation of dendritic cells 

 

Immature dendritic cells (iDCs) were generated from the CD14+-monocytes through addition 

of cytokines. In brief, 1000 ng/ml IL-4 and 100 ng/ml GM-CSF were added every 2 days to 

the monocytes (106 cells/ 1 ml RPMI/10% FCS), in addition to fresh medium. After one 

week, the iDCs were counted and directly used. The generation of iDCs was tested with 

FACS by analyzing the surface expression of CD14, which was down-regulated. The iDCs 

were used in RNA interference experiments. 

 

3.1.5 Culturing THP-1 and JY cells 

 

The THP-1 cell line was cultured as well in RPMI/10% FCS at 37°C and 5-10% CO2. These 

cells have a doubling time of about 2 days, so they were splitted 1:2 every two days and fresh 

medium was added. They could be kept under these conditions for a long time in culture and 

grew continuously. 

The JY human lymphoblastoid cell line was cultured under the same conditions, but splitted 

1:3-1:5 every three days. 

 

3.1.5.1 Freezing and thawing of cells 

 

In order to have always THP-1 cells in case of contaminations or other conditions, aliquots of 

5x106 cells were frozen from time to time and stored at -80°C. In detail, 5x106 cells were 

centrifuged (1500 rpm, 5 min) and resuspended in 1 ml cold FCS/10% DMSO and directly 

frozen in special reservoirs surrounded with isopropanol, at -80°C. 

Thawing was done by carefully incubating the frozen aliquot in warm water followed by 

direct washing with PBS (centrifugation at 1500 rpm, 5 min), resuspending in RPMI/10% 

FCS and culturing at 37°C. 
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3.2  Preparation of Aspergillus fumigatus cultures 

 

 An A. fumigatus sample collected from the sputum of a well characterized cystic fibrosis 

patient (isolate number VA15701.2, Institute for Medical Microbiology, Tübingen) was 

crossed out on a sabouraud-2%-glucose-agar culture plate and incubated 5-7 days at 37°C. 

The culture was ready to use for experiments first after the fungus was dense and with a 

greenish color.    

 

3.2.1 Isolation of fungal conidia 

 

The dense fungal colonies were washed with PBS/0.01% Tween using a syringe and a canula 

in order to repeat the washing process and so that a contamination with the bigger hyphal 

fragments could be excluded. Tween was used in order to reduce the surface hydophobicity of 

the conidia (Tronchin et al., 1995). The conidial suspension was washed once with the same 

buffer and the conidia counted with the Neubauer chamber. After centrifugation (9000 rpm, 5 

min), the pellet was resuspended in RPMI/10% FCS to the proper concentration. The conidia 

were then instantly used in experiments, either for incubation with cells or for generation of 

hyphae. 

 

3.2.2 Generation and killing of hyphae 

 

In order to obtain a purposely wanted number of hyphal cells, hyphae were generated from a 

well defined number of conidia. For this purpose, 5x107 conidia were incubated in 50 ml 

“Yeast Nitrogen Base – medium“ (106/ml) at 37°C for 18 h. The originated mycelial hyphae 

were washed twice with hanks buffer (5000 rpm, 5 min). Because only inactivated hyphae 

were to be used in our experiments in order to avoid overgrowth of cell cultures, we incubated 

the hyphal fragments directly in 70% ethanol-PBS for 24 h at 4°C. The hyphal suspension 

was then washed twice with hanks, resuspended in RPMI/10% FCS and had a final 

concentration of 106 in 1 ml (Wang et al., 2001). Aliquots were frozen at -80°C until further 

use. The inactivation efficacy was controlled by cultivating the hyphae on Sabouraud-2%-

Glucose agar plates. After few days, no fungal cultures could be detected. However, it cannot 

be ruled out that ethanol-inactivation may lead to slightly different monocytic responses if 

compared to live hyphae.  
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3.3 Incubation experiments 

 

For time-dependent gene expression analysis, monocytes were incubated with two states of A. 

fumigatus, viable conidia and inactivated hyphae. For phagocytosis experiments, monocytes 

and dendritic cells were incubated with conidia, and for analyzing the effects of 

immunosuppressive drugs on expression of surface markers, dendritic cells were incubated 

with these drugs along with hyphae. Furthermore, THP-1 cells were incubated with hyphae 

too, for identification of possible A. fumigatus peptides on MHC class II molecules. 

  

3.3.1  Incubation of monocytes with A. fumigatus conidia and hyphae 

 

Human monocytes were isolated with the “Monocyte Isolation Kit” from three healthy donors 

and incubated with two states of A. fumigatus, hyphae and conidia, in addition to the negative 

control (medium), each for 3, 6 and 9 hours at 37°C, separately. Thus, 27 incubation 

experiments were performed in total.  

Briefly, 5x106 freshly isolated monocytes were incubated with 107 viable conidia (1:2 ratio) 

and/or 106 hyphae (5:1 ratio) in 3 ml RPMI/10% FCS total volume, at 37°C and 5-10% CO2 

for 3, 6 and 9 hours. The same no. of cells were incubated only in RPMI/10% FCS (medium 

control). RNA was directly isolated, its concentration was measured with standard UV-

photometry and the RNA immediately frozen at -80°C until further use. 

 

3.3.2 Incubation of THP-1 cells with A. fumigatus hyphae 

 

In order to get enough material for peptide analysis on HLA molecules, a very large number 

of cells was necessary. For this purpose, cells were grown in culture flasks at 37°C in 

RPMI/10% FCS, then in bottles until they reached a certain concentration. At this point, they 

were stimulated for 6 h at 37°C with A. fumigatus hyphae. Briefly, the cells were grown in a 

bottle until their count reached about 5x108 in total. These were then stimulated with 108 

hyphae (5:1 ratio), in correlation with the gene expression assays. After 6 h, the cells were 

collected by centrifugation for 10 min at 1600 rpm and 4°C, followed by once washing with 

PBS (1600 rpm, 10 min). The pellets were immediately frozen at -80°C till further use. This 

procedure was repeated until enough cells were available (about 4x109). At the same time, 

THP-1 cells were grown and harvested without being stimulated with hyphae, to have a non-

stimulated comparison sample. 
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3.4   Fluorescence microscopy 

 

Fluorescence microscopy is a widely used technique to detect cellular structures, or molecules 

inside or outside the cells of interest. Fluorescence is the emission of light that occurs within 

nanoseconds after the absorption of light that is typically of shorter wavelength. When a cell 

or cellular compartment is stained with a fluorescent dye and the dye is excited with light, the 

light emitted then from the dye is viewed through a filter that allows only the emitted 

wavelength to be seen, against a dark background (figure 3.4). The large spectral range of 

nowadays available fluorophores allows simultaneous imaging of different cellular, 

subcellular or molecular components (Lichtman and Conchello, 2005).  

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.4: Components of the fluorescence microscope optical train. 

(www.vysis.com/images/Content/FluorescenceMicroscopeDiag.gif) 

 

For the microscopic analysis, monocytes were isolated from 10 ml of fresh blood samples 

from healthy donors using the positive selection method, where CD14-microbeads bind 

specifically to the monocytes in order to get a highly pure culture, which is essential for 

optimal microscopic images. A potential activation of the monocytes by the beads could be 

taken into account, since no gene expression analysis was performed.  
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3.4.1 Fluorescent labeling of A. fumigatus conidia and monocytes 

 

Conidia were labeled with the Fungi-Fluor™ kit, according to the manufacturer’s protocol. 

Fungi-Fluor contains a 0.05% solution of cellufluor, which binds nonspecifically to beta-

linked polysaccharides found in cell walls of various organisms, such as chitin and cellulose. 

In our case, it will bind to the chitin which is a main component of the cell wall of A. 

fumigatus. 

Monocytes were labeled with a monoclonal mouse anti-CD14-antibody followed by a goat 

anti-mouse Cy3-labeled antibody (both kindly provided by C. Sinzger, Virology institute, 

University of Tuebingen).  

 

3.4.2  Incubation of monocytes with A. fumigatus conidia 

 

For the incubation experiments with the monocytes, two strategies were followed; conidia 

were stained either before (a), or after incubation with the monocytes (b). This enabled us to 

differentiate between phagocytosed and unphagocytosed conidia, and study the correlation in 

both experiments. 

(a) After staining the conidia, they were directly incubated with monocytes at a 1:2 ratio, 

first at 4°C for 30 min, then at 37°C for 6 hours. The suspension was then put on 

slides, left to dry and the cells fixed with 99% ethanol. A few drops of Fluoprep were 

added to fasten the cover slip on the slide. The slides were incubated at 4°C in the dark 

until the Fluoprep got hard. Then microscopy was performed. 

(b) The same procedure as in (a), only that the conidia staining was done after 6 hours of 

phagocytosis, followed by a washing step with PBS and then fixing with ethanol. 

 

3.5       Fluorescence Activated Cell Sorting (FACS) 

 

The term "FACS" is Becton-Dickinson's registered trademark and is an acronym for 

Fluorescence-Activated Cell Sorter, a main technique in flow cytometry. Flow cytometry 

measures simultaneously size, granularity and fluorescent intensity of single cells in a 

suspension. It also facilitates quantitative analysis of the expression of cell surface and/or 

intracellular molecules, by measuring the relative fluorescent intensity of a molecule stained 

before.  
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Figure 3.5: A simplified digram of a typical analytical flow cytometer. 

(www.pathology.wustl.edu/html/facilitiesfacsfc.html) 

 

The modern flow cytometer consists of a light source, collection optics, electronics and a 

computer to translate signals to data. The light source of choice is a laser which emits 

coherent light at a specified wavelength. Scattered and emitted fluorescent light is collected 

by two lenses (one set in front of the light source and one set at right angles) and by a series of 

optics, beam splitters and filters, specific bands of fluorescence can be measured (figure 3.5).  

 

3.5.1 Staining of monocytes 

 

Monocytes were analyzed using FACS in order to specify their purity in a suspension after 

separation. This was achieved by staining the suspension cells with a FITC-conjugated anti-

CD14 antibody. The CD14 antigen is part of the functional heteromeric LPS receptor 

complex which is strongly expressed on most human monocytes and macrophages in 

peripheral blood. 

The staining took place by incubating the monocytes with the antibody for 30 min at 4°C in 

the dark. After washing twice with hanks/10% FCS, the cells were fixed with 1-2% 

formaldehyde, and stored at 4°C in the dark till analysis. FACS analysis was done using 

standard software and hardware, i.e. the “Cell Quest” software and the FACS-Calibur from 

“Becton Dickinson”. 
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3.5.2 Staining of THP-1 and JY cells 

 

Relative MHC surface expression was analyzed on THP-1 cells, before and after incubation 

with A. fumigatus. Staining was performed with specific monoclonal antibodies previously 

purified from culturing hybridoma cells supernatant (W6/32 for HLA-A*B*C*, L243 for 

HLA-DR, BB7.2 for HLA-A*02, B123.2 for HLA-B* and GAP-A3 for HLA-A*03), which 

were again stained with a secondary FITC-conjugated goat anti-mouse IgG, F(ab’)2 antibody. 

The JY cell line was used as a positive control. Briefly, 500 µl (5 µg/ml) from each antibody 

were prepared and the antibodies were diluted 1:5 (1 µg/ml) and 1:10 (0.2 µg/ml). Cells were 

diluted to 2 x 105 cells/well in 100 µl FACS buffer (PBS + 2.5% FCS), washed 3x with that 

same buffer (centrifuge: 1800 rpm, 2 min, 4°C), pelleted at last and then the antibodies were 

added. Incubation followed for 30 min at 4°C in the dark, then 4x washing with FACS buffer. 

100 µl of a 1:200 dilution of the secondary FITC-conjugated antibody were added to the cells. 

Again incubation followed for 30 min at 4°C in the dark. Washing followed (4x) with FACS 

buffer and direct fixing of the cells was performed, using 200 µl FACS buffer with 1% 

paraformaldehyde. FACS analysis was afterwards performed (see above). 

 

3.6 Methods in molecular biology 

 

For studies of gene expression analysis, molecular biology methods played a major role in our 

research group and were performed at a high grade of accuracy and purity, which are two 

major requirements in working with nucleic acids. 

 

3.6.1 RNA isolation 

 

RNA was isolated with the RNeasy Minikit and the QiaShredder spin columns (QIAGEN) 

according to the manufacturer’s protocol. Briefly, after incubation, the adherent monocytes 

were directly treated with RLT lysis buffer in the incubation wells, in order to get as much as 

possible cells for a sufficient RNA yield. After a few washing steps, 45 µl total RNA were 

eluted. The RNA concentration and purity (260nm/280nm ratio) were then measured with 

standard UV-photometry, using 6 µl RNA. An 8 µl aliquot was taken for cDNA synthesis and 

the remaining RNA (31 µl) immediately frozen at -80°C until further use, i.e. for microarray 

chip analysis. 
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3.6.2 cDNA synthesis 

 

cDNA synthesis was performed using the AMV 1st strand cDNA synthesis kit (Roche), 

following the manufacturer’s protocol. Briefly, 8 µl RNA were first incubated for 10 min at 

65°C with 2.2 µl oligo-p(dT)-primer [0.8 µg/µl] and then for 5 min on ice. The following 9.8 

µl mix was added: 

4 µl MgCl2
 [25 mM], 2 µl 10x reaction-buffer, 2 µl dNTPs [10 mM], 1 µl RNase-inhibitor [50 

units/µl] and 0.8 µl reverse transcriptase [≥ 20 units] 

The 20 µl mixture was incubated for 1 h at 42°C and the reaction then stopped in a 95°C 

water bath for 5 min. cDNA concentration was then measured using standard UV-photometry 

and the remaining cDNA frozen at -20°C until further use, i.e. for gene expression analysis 

with real-time PCR. 

 

3.6.3 Real-Time PCR using the LightCycler instrument 

 

The real-time PCR system is based on the detection and quantitation of a fluorescent reporter 

(Livak et al., 1995). This signal increases in direct proportion to the amount of PCR product 

in a reaction. By recording the amount of fluorescence emission at each cycle, it is possible to 

monitor the PCR reaction during exponential phase where the first significant increase in the 

amount of PCR product correlates to the initial amount of target template. The higher the 

starting copy number of the nucleic acid target, the sooner a significant increase in 

fluorescence is observed. However, real-time PCR does not detect the size of the amplicon 

and thus does not allow the differentiation between DNA and cDNA amplification. There are 

three main fluorescence-monitoring systems for DNA amplification: (1) SYBR Green, (2) 

hybridization probes and (3) TaqMan probes. 
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Figure 3.6.3a: The three main fluorescence-monitoring systems compatible with the LightCylcer™. 

(www.idahotech.com/lightcycler_u/lectures/quantification_on_lc.htm) 

 

We used for some RNAi assays SYBR Green, but usually followed in our study the method 

using the hybridization probes (in addition to standard primers) with the LightCylcer™ (LC) 

instrument. The detection principle is based on the so called Fluorescence Resonance Energy 

Transfer (FRET), the phenomenon of energy transfer from a donor to an acceptor fluorophor. 

Hybridization probes are designed as a pair of oligonucleotides, of which one probe is labeled 

with the donor (3´Fluo) and one with the acceptor (5´ LCRed 640 or LCRed 705) dye. As 

FRET decreases with the sixth power of distance, the probes have to be designed to hybridize 

to adjacent regions of the template DNA (separated by 1-5 nucleotides). If both probes 

hybridize, the two dyes are brought close together and FRET to the acceptor dye results in a 

signal measurable by the built-in fluorimeter of the LightCycler™ (figure 3.6.3a).   

The LightCyler uses air for heating and cooling. Ambient air is drawn into the machine by a 

small fan and warmed with a heating coil. Since air has a very low thermal capacity, the 

instrument can attain a thermal ramping rate of about 20°C per second. Thus, heating and 

cooling occur about ten times faster than in a conventional thermal cycler. PCR occurs in 

specially designed glass capillaries (20 – 100 µl volume). A typical amplification cycle 

requires only 30 to 60 seconds; an amplification reaction with 30 cycles is usually complete in 

about 30 minutes. For fluorescence excitation, the instrument uses a blue LED, which emits 
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light at 470 nm. This LED is an integral part of the fluorimeter (figure 3.6.3b). The donor dye 

(fluorescein) is excited by the blue LED and the energy emitted excites the acceptor dye, 

which then emits fluorescent light at a different wavelength. This fluorescence is directly 

proportional to the amount of target DNA generated during PCR. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6.3b: Cross section of the LightCycler instrument. (www.hisco.co.jp/prodhs/lightcycler/) 

 

3.6.3.1 Performing the PCR 

 

To obtain precise quantitative results, cDNA standards were used along with our samples in 

the PCR run, forming a standard curve according to the cycle number of each standard 

sample, in order to be able to evaluate and calculate the copies of the sample-DNA with the 

help of that standard curve (Kuhne and Oschmann, 2002). 

10 µl of each standard (106 copies – 103 copies), 4 µg of each cDNA sample and 10 µl H2O 

(negative control) were pipetted into LC capillaries. H2O was added to the cDNA to obtain 

10µl final volume. Then 10 µl of the master mix was added to all capillaries. This mix was 

composed of:  

 

2.6 µl H2O 

2.4 µl MgCl2

1 µl of each probe 

0.5 µl of each Primer 

2 µl Taq-polymerase. 
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After application of the capillaries in the LC carousel and centrifuging them shortly, the 

carousel was placed in the LC and the run started. 45 cycles were performed using the 

following parameters: 

 

1st Denaturation 95°C  9 min   

  Amplification  95°C  9 sec  (Denaturation) 

     54°C  15 sec (Annealing)   

     72°C  25 sec (Elongation) 

  Melting  95°C  20 sec (Heating: 0.2°C/sec till 95°C) 

     50°C  20 sec 

  Cooling  40°C  3 min 

 

The samples were collected after the run and frozen at -20°C for further analysis. 

The run was now evaluated on the computer by using the special software provided by the 

manufacturer. 

 

3.6.3.2 Normalization and analysis 

 

To normalize the real-time PCR data, i.e. exclude possible errors in the reverse transcription 

or amplification, a PCR run was performed with the same cDNA samples, but using probes 

that detect a housekeeping gene. The expression of a housekeeping gene is almost equal in 

various cell sorts (Thellin et al., 1999). We used δ-aminolevolunic acid synthase (h-ALAS) as 

housekeeping gene (Roche). cDNA standards were synthesized by reverse transcription of 

standard h-ALAS mRNA supplied in the kit, following the manufacturer’s protocol. The PCR 

run was performed using the same parameters as for the standard runs. 

Analysis was performed by comparing the number of cDNA copies of the samples to analyze 

with the h-ALAS copies in the same sample. The ratio was then multiplied by a specific copy 

number taken from the h-ALAS copies (e.g. 105). 

 

  Normalized = (No. of copies of a cytokine / No. of copies of h-ALAS) x 105

 

The normalized copies were afterwards calculated relative to the non-stimulated samples 

(medium). All values of the non-stimulated probes were set to 1. 
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3.6.3.3 Agarose gels 

 

To verify the amplification products of the real-time PCR, we analyzed them via agarose gels. 

2 µl loading buffer were added to 10 µl of each sample and applied to a 2% gel (2 g agarose 

in 100 ml H2O), to which 10 µl Gelstar previously were added. Gelstar stains DNA and is not 

toxic as ethidium bromide. 

The gel was performed at 120 V for 45 min. The gels were then analyzed by a gel-scanner. 

 

3.6.4 Microarray analysis 

 

Microarray analysis is a tool for analyzing gene expression that consists of a small membrane 

or glass slide containing samples of many genes arranged in a regular pattern. Oligonucleotide 

microarrays are small, solid supports onto which the sequences from thousands of different 

genes are immobilized at fixed locations. The whole process is based on hybridization 

probing, a technique that uses fluorescently labeled nucleic acid molecules to identify 

complementary molecules, sequences that are able to base-pair with one another. The 

fluorescent tags are excited by the laser, and the microscope and camera work together to 

create a digital image of the array. This digital image is then stored, and a special program is 

used either to calculate the red-to-green fluorescence ratio or to subtract out background data 

for each microarray spot.  

Samples are prepared by extracting mRNA from a cell and turning it back into DNA through 

reverse transcription of the mRNA into cDNA. This is followed by a labeling step during 

which the cDNA is then transcribed to cRNA while incorporating a label (e.g. biotin). Once 

labeled, the sample of cRNAs can be hybridized to the array and bound by the various 

oligonucleotide probes. Lastly, a staining reaction is performed in order to visualize the 

amount of hybridization (see figure 3.6.4). 
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Figure 3.6.4: Standard gene expression array. Labeled cRNA targets derived from the mRNA of an 

experimental sample are hybridized to nucleic acid probes attached to the solid support. By monitoring the 

amount of label associated with each DNA location, it is possible to infer the abundance of each mRNA species 

represented. (www.affymetrix.com/en/images/expression_oveview.gif) 

 

For genome-wide expression analysis, microarray experiments were performed for every 

period of incubation and donor, using the HG-U133A human genome array (Affymetrix). The 

previously isolated RNA (frozen at -80°C) was sent to the IZKF Microarray facility in 

Tübingen, were further procedures were performed for the microarray tests. Briefly, double-

stranded cDNA was synthesized from 5 µg total RNA with a superscript choice kit 

(Invitrogen, New York, USA) with a T7-(dT)24 primer incorporating a T7 RNA polymerase 

promoter (Metabion, Martinsried, Germany). cRNA was prepared via in-vitro transcription 

(Enzo Biochemical, New York, USA) and biotin labeled. Fragmentation followed by 

incubation at 94°C for 35 min in the presence of 40 mM Tris-OAc (pH 8.1), 100 mM KOAc, 

and 30 mM MgOAc. Hybridization to the array was performed with 15 µg cRNA for 16 h at 

45°C. The arrays were then automatically washed and stained with streptavidin-phycoerythrin 

using a fluidics station. Probe arrays were scanned thereafter at 3 µm resolution with a 

Genechip System confocal scanner (Agilent Technologies, Palo Alto, USA). Each cRNA 

generated from one incubation experiment was hybridized on one microarray separately. We 

ran 27 arrays in total (see 3.3.1). 
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3.6.4.1 Evaluation and interpretation 

 

Affymetrix GCOS software (version 1.2) was used to scan and analyze the relative abundance 

of each gene based on the intensity of the signal from each probe set. Analysis parameters 

used by the software were set to values corresponding to moderate stringency (statistical 

difference threshold = 30, statistical ratio threshold = 1.5). Output from the microarray 

analysis was merged with the Unigene or GenBank descriptor and saved as an Excel data 

spreadsheet.  

We analyzed the stimulated samples of a donor at a given timepoint with the non-stimulated 

samples of all three donors at the same timepoint, thus allowing a total of up to nine 

comparisons for each timepoint. For each comparison, the analysis using the Affymetrix 

software generates a "difference call" of no change, marginal increase/decrease, or 

increase/decrease, respectively. Only those genes which were found in at least 7, 8 or 9 out of 

9 comparisons similarly adjusted were defined as differentially expressed genes. In some 

cases only 6 comparisons were possible, so genes which were found in at least 5 or 6 out of 6 

comparisons were defined as differentially expressed genes. The magnitude and direction of 

change of a transcript were estimated as Signal Log Ratio (SLR) by comparison of two arrays, 

respectively. The log scale used is base 2, making it intuitive to interpret the Signal Log 

Ratios in terms of multiples of two. Thus, a SLR of 1.0 indicates an increase of the transcript 

level by 2 fold and -1.0 indicates a decrease by 2 fold. A SLR of zero would indicate no 

change. Categorization was based on the NetAffx™ database (www.affymetrix.com) (Liu et 

al., 2003). Functional analysis was performed using the PathwayAssist™ software (Ariadne 

Genomics, Rockville, MD, USA). 

 

3.6.5 RNA interference 

 

1998, Fire and Mello found out that double-stranded RNA (dsRNA) down-regulates the 

expression of genes in Caenorhabditis elegans up to 10 times more than sense or anti-sense 

RNA (Fire et al., 1998). 

RNA interference (RNAi) is a conserved mechanism of the sequence-specific 

posttranscriptional gene silencing, at which mRNAs degrade with other homolog mRNAs to 

dsRNAs. dsRNA was found to induce gene silencing only at coding regions of the mRNA, 

not at introns and non-coding regions (Fire, 1999). RNAi has also been observed in 
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Drosophila. Microinjecting Drosophila embryos with dsRNA effected gene silencing (Guru, 

2000). So the question was how is dsRNA able to trigger gene silencing? 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.6.5: Simplified mechanism of RNA interference. (www.nastech.com/img/img_rna_interference.gif) 

 

Zamore et al. found that dsRNA added to Drosophila embryo lysates was processed to 21-23 

nucleotide species. They also found that the homologous endogenous mRNA was cleaved 

only in the region corresponding to the introduced dsRNA and that cleavage occurred at 21-

23 nucleotide intervals (Zamore et al., 2000). So the RNAi mechanism became clearer and 

clearer, leading to the following (see figure 3.6.5): input dsRNA is digested into 21-23 

nucleotide small interfering RNAs (siRNAs). Evidence indicates that siRNAs are produced 

when the enzyme Dicer, a member of the RNase III family of dsRNA-specific ribonucleases, 

processively cleaves dsRNA (introduced directly or via a transgene or virus) in an ATP-

dependent, processive manner. Successive cleavage events degrade the RNA to 19-21 bp 

duplexes (siRNAs), each with 2-nucleotide 3' overhangs (Bernstein et al., 2001). These 

duplexes bind to a nuclease complex to form what is known as the RNA-induced silencing 

complex, or RISC. An ATP-depending unwinding of the siRNA duplex is required for 

activation of the RISC. The active RISC then targets the homologous transcript by base 

pairing interactions and cleaves the mRNA ~12 nucleotides from the 3' terminus of the siRNA 

(Nykanen et al., 2001). 

We used RNAi in order to silence specific immune-related genes, prior to incubations with 

Aspergillus fumigatus, which would give us a better understanding of the defense mechanisms 
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and pathways involved in the immune response to the fungus. So we tried to establish a 

protocol to trigger gene silencing via siRNAs in human monocytes and DCs, which was till 

now a difficult procedure with little success, generally in human primary cells.  

 

3.6.5.1 Lipofection 

 

One method, for cells friendly and gentle to transfect DNA, is lipofection. It is usually a 

highly efficient, lipid-mediated transfection method via liposomes, which are vesicles that can 

easily merge with the cell membrane since they are both made of a phospholipid bilayer. 

RNAiFect™ transfection kit from Qiagen, OligofectamineTM transfection reagent from 

Invitrogen and the SilencerTM siRNA Transfection kit from Ambion were used for 

transfection. They are all based on a lipid formulation that builds a lipid/siRNA complex 

which is able to merge with the cell membrane, and so the siRNA molecule can enter the cell 

without stressing it. 

We performed various experiments, trying to transfect various siRNAs into monocytes and 

DCs, following the instructions of the given protocols.  

Following incubation approaches were performed:  

 

Experiments 1 & 2: IDH3 siRNA (kindly provided by Thomas Rudel, MPI, Berlin), into DCs.  

 (Exp. 1: RNAiFectTM, OligofectamineTM and SilencerTM kit) 

(Exp. 2: RNAiFectTM and OligofectamineTM) 

Experiments 3 & 4: GAPDH-siRNA, into DCs. (SilencerTM kit) 

Experiment 5: GAPDH-siRNA, into monocytes. (RNAiFectTM) 

Experiment 6: TLR2-siRNA and TLR4-siRNA, into monocytes. (RNAiFectTM) 

Please note that a non-specific control-siRNA was additionally used in all 6 experiments. 

Incubations followed at 37°C, with 5% CO2. 
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Table 3.6.5.1: Different experiments performed to transfect siRNA at different concentrations and conditions. 
 

Exp. No. cells       siRNA amount     Incubation times  Conditions  

 

1 3 x 105       2.75 of 20 µM     24 h, 32 h and 48 h     in 300 µl RPMI 

2 3 x 105       2.75 & 4.25 µl of 20 µM    30 h and 72 h  in 300 µl RPMI 

3 5 x 105       3 µl of 20 µM     24 h and 48 h  in 1 ml RPMI/FCS 

4 2 x 105       1.5 µl of 20 µM      24 h and 48 h  in 1 ml RPMI/FCS 

5 4.5 x 105    3.3 µl (1 µg)      20 h and 40 h  400 µl RPMI/FCS 

6 5 x 105       2.5 µl of 20 µM     9 h and 24 h   700 µl RPMI/FCS 

 

The RNA was isolated immediately after each incubation period, frozen at -80°C, and gene 

expression was analyzed later with real-time RT-PCR. 

 

3.6.5.2 Electroporation 

 

Another method to transfect cells with siRNA is electroporation. Cells placed in a special 

transfection cuvette are treated with an electric pulse which disrupts temporarily the cell 

membrane, enabling the added oligonucleotides to enter the cell.  

Encouraged by the positive results achieved in our research group with this method in DCs, 

we applied it also on monocytes, hoping to achieve similar results. An advantage of this 

method was that nothing should be added to the cells, which means less possible toxicity 

factors. The disadvantage is the possible stressing or even damaging of the cells through the 

electric pulse. Thus, proper transfection conditions had to be found out and tested, which 

enable the siRNA to enter the cells without stressing or damaging them. 

For these experiments, we purchased TLR2-, TLR4- and TLR8-siRNA from Qiagen 

(Germany). So called 2-For-Silencing siRNA duplexes were purchased. So two different 

siRNA for each target were used in every experiment, but done in separate cell culture 

samples. 

In brief, fresh isolated monocytes were isolated and directly used for transfections. 106 

monocytes in 100 µl RPMI (without FCS) were taken as a standard cell number in every 

experiment. 1.33 µM siRNA were always used to transfect 106 monocytes (as prev. done in 

the DCs experiments). Electric voltages, pulse periods and incubation periods were only 

varied in order to find the most suitable conditions. Voltages were varied from 320 mV up to 

41 



       

360 mV; pulsing times were either 10 or 15 milliseconds (ms), and incubation periods 12 or 

24 h.  

For electroporation, the cells/siRNA mixture in the special cuvette was immediately 

electroporated with the EPI 2500, left for 15 min at room temperature to rest, then incubated 

by adding enough RPMI/10% FCS medium. Incubations were made at 37°C and 5% CO2 as 

usual. The RNA was afterwards immediately isolated and frozen at -80°C until further 

analysis with real-time RT-PCR. 

 

3.7 Immunological methods 

 

In order to study host defense mechanisms by a special cell type against an invading organism 

that causes infectious diseases, immunological approaches are of high priority, due to the very 

large variety of antibodies and antigens present in nature. Thus, in order to understand a single 

specific defense response, specific and sensitive tests should be performed, and this is only 

possible with the help of immunological techniques. 

 

3.7.1 Purification of monoclonal antibodies 

 

Monoclonal antibodies (W6/32 for HLA class I and L243 for HLA class II) previously 

isolated from hybridoma cell supernatants were purified using protein A-sepharose, based on 

affinity chromatography, for further use in immunoprecipitation of MHC-peptide complexes. 

1.2 g protein A-sepharose were sedimented in a column and washed with PBS for 30 min 

using a table pump (Flow rate: 4-5 ml/min). After measuring the concentrations of the two 

antibodies by measuring the absorption at 280 nm, they were applied to and let pass through 

the columns, two times. Antibody-binding was checked by measuring the flow-through. The 

columns were then washed for 3 min with H2O in order to get rid of buffer rests. 8 ml citric 

acid (pH 3) were added to each column to elute the antibodies. The fractions were eluted into 

18 ml of a so called coupling buffer (0.5 M NaCl, 0.1 M NaHCO3, pH 8.3). The concentration 

was measured again. This procedure was repeated until enough of each antibody was purified 

(needed: 1 mg/ 1 ml cell pellet). 

 

 

 

 

42 



       

3.7.2 Immunoprecipitation of HLA peptides followed by acid extraction 

 

HLA-peptide isolation was also performed via affinity chromatography. For this purpose, 

37.5 mg/ mg antibody BrCN-sepharose were weighed into separate falcon tubes for W6/32 

and L243 each, and activated with 40 ml 1 mM HCl for 30 min at room temperature (RT). 

The frozen THP-1 cell pellets (stimulated and non-stimulated) were incubated (with stirring) 

in a 2x concentrated lysis buffer (1.2% CHAPS in PBS, protease inhibitors) for about 1 h. 

After centrifugation (300 rpm, 3 min, without brake) of the activated BrCN-sepharose, the 

antibodies were added to couple for 2 h at RT. In the meantime, one volume of the 1x lysis 

buffer was additionally added to the stirring cell suspension and left to stir for additional 1 h. 

After coupling of the antibodies to the sepharose was over, the efficiency was checked by 

again measuring the antibody concentration, i.e. measuring the absorption at 280 nm. If the 

coupling was successful, blocking the still free sites was done by incubating the sepharose 

with 40 ml 0.2 M glycine for 1 h at RT. In the meantime, the lysed cells were sonified (3 x 20 

sec) to make the suspension more homogeneous. Centrifugation followed at 4000 rpm for 20 

min. The supernatant was collected and centrifuged in the ultracentrifuge at 40000 rpm for 1 h 

and 20 min, at 4°C. Meanwhile, the sepharose was centrifuged (300 rpm, 3 min, 4°C, without 

brake), and the pellet washed twice with PBS. Afterwards it was resuspended in 5 ml 1x lysis 

buffer and applied to filter columns, one for each antibody and washed 30 min with PBS 

(flow rate: 4-5 ml/min) with the help of a table pump. The supernatant of the centrifuged cell 

suspension was filtered sterile and applied to the columns, which were previously put up one 

above the other and linked with a flexible hose. At a flow rate of 4-5 ml/min, the lysate passed 

through both columns once completely, and then let to flow in a cyclic manner over night, all 

at 4°C. Centrifugal filter devices, so called centricons, were filled with 2.5% TFA and 

centrifuged at 4000 rpm over night, in order to make them polyethyleneglycole-free (PEG), 

which contaminates the probes and disturbs further analysis. 

On the following day, the columns were washed for 30 min with PBS, then for 1 h with H2O, 

to get them buffer-free. 150 µl 0.25% TFA/10 mg antibody were added to each column, then 

10 µl 10% TFA, for elution. The columns were left to shake for 10 min at RT, then the eluted 

MHC-peptide complexes were collected in separate centricons. This procedure was repeated, 

but then only with 0.1% TFA; 4 fractions from each antibody were eluted from the non-

simulated cells, 2 from the stimulated cells. 5% of the eluted volume was taken out for later 

Edman sequencing. Also small samples were collected at each step, for western blot analyses. 

The centricons were left to centrifuge at 4000 rpm, until the whole sample passed through. 
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The HLA molecules were kept therewith bound to the filter in the centricon, whereas peptides 

passed through. The samples were then immediately frozen at -80°C, until further use. 

 

3.7.3 SDS-PAGE and western blots 

 

Western blots were performed with the samples collected during the isolation procedure of 

HLA-peptides, in order to check the concentrations of class I HLA at each step. Samples of 

cell lysate before and after binding to the antibodies were used, as well as samples from the 

eluted peptide fractions. 

After preparing the stacking (pH 6.8) and the running gels (pH 8.8) for SDS-PAGE, 10 µl of 

each sample were denaturated for 5 min at 95%, mixed with 3.3 µl Lämmli buffer (pH 6.8) 

and loaded on the stacking gel, which was already filled with running buffer (0.025 M Tris-

HCl, 0.19 M Glycin, 0.1% SDS). A standard sample (monomer HLA-B*1501) was also used: 

0.1 µg – 0.6 µg. 

The SDS-PAGE was run at 100 V for 15 min, then at 140 V for 1 h.  

Semi-dry blotting was performed by using 8 whatman filter papers and a nitrocellulose 

membrane, of which 4 in addition to the membrane were previously soaked in anode- (50 mM 

sodiumtetraborate, 20% methanol, pH 9) and the other 4 in cathode-buffer (50 mM 

sodiumtetraborate, 0.05% SDS, pH 9). The gel was placed on the nitrocellulose membrane, 

between 4 filter papers, to each side. The run was performed at 42 mA for 2 h. The membrane 

was then washed for 30 min with TBB buffer (3% BSA, 0.1% Nonidet P-40, 50 mM Tris-HCl 

pH 8, 0.15 M NaCl). The 1st antibody (anti-ß2 microglobulin 1:50000) was added and 

incubation followed for at least 2 h at 4°C. Washing followed 3 x for 5 min in TWB buffer 

(0.1% Nonidet P-40, 50 mM Tris-HCl pH 8, 0.15 M NaCl). Then the 2nd antibody (anti-rabbit 

horseradish peroxidase, F(ab)2 fragment, 1:5000) was added for 1 h at RT. Washing followed 

for 5 min with TBS (50 mM Tris-HCl pH 8, 0.15 M NaCl) and 3 x for 10 min with TWB, 

then 5 min with TBS again. The membrane was then developed by using ECL solution for 3 

min, then photographed after different time periods in the dark room. 

 

3.7.4 Enzyme-Linked Immunosorbent Assay (ELISA) 

 

ELISA experiments were performed to detect the proteins of the genes over-expressed in the 

microarray analysis, in the supernatants of the samples, which were kept frozen at -80°C.  
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IL-8, CCL2 and CCL20 were analyzed using Quantikine Immunoassay kits (R&D Systems, 

USA), according to the manufacturer’s protocol. These assays use the quantitative sandwich 

enzyme immunoassay technique. The developed color intensity was measured and the 

concentrations were calculated relatively to the standards supplied by the kit. The assays were 

done only once, for one single donor. 

 

3.8 Analytical methods 

 

3.8.1 Edman sequencing 

 

Protein quantification of the eluted MHC-peptide fractions was performed with Edman 

sequencing, using the ABI “Procise” 494A Protein-Sequencer (Applied Biosystems, USA). 

In this process, the N-terminal amino acid of a protein reacts with 

phenylisothiocyanate (PITC) to form a phenylthiocarbamyl (PTC) protein. The PTC 

protein is then cleaved with trifluoroacetic acid, resulting in the formation of an 

intermediate anilinothiazolinone (ATZ). The intermediate is converted to the more 

stable phenylthiohydantoin (PTH) amino acid derivative and separated by HPLC, 

during which the detection of the PTH amino acid was performed by simultaneously 

measuring the absorption at 269 nm. This was compared against a standard, and 

identified by the sequencer software. 

In brief, the protein-peptide fractions were applied to a glass fiber filter pretreated with 

polybrene, and dried with argon gas to prevent oxidation of the proteins. The filters were put 

into special cartridges and sequencing was started.  

For quantitation analysis, which was done for MHCs, specific amino acids (mostly the 

aliphatic ones) of the α- and β-chain were taken into consideration, since the yield of their 

corresponding PTH-amino acid bigger is than those having functional groups; particularly 

methionine of the α-chain of HLA class I was mainly taken into account. 

 

 

 

 

 

 

45 



       

Table 3.8.1: Starting sequences of HLA class I and II α- and β-chains taken into consideration for calculating 

the yields of the peptide fractions. 
 

Protein Chain Starting sequence 

HLA class I α GSHSMRY 

 β2-microglobulin IQRTPKI 

HLA class II α LKEEHVI 

 β GDTRPRF 

 

The resulting average amount (in pmol) was multiplied with the factor 20, since it represents 

only 5% of the original volume (see 3.7.2). 

 

3.8.2 Mass spectrometry 

 

Mass spectrometry is an analytical tool used for measuring the molecular weight (MW) of a 

sample. Structural information can also be generated by using certain types of mass 

spectrometers, usually tandem mass spectrometers, and this is achieved by fragmenting the 

sample and analysing the products generated. In our experiments, we used mass spectrometry 

in order to characterize the amino acid sequences of the HLA-presented peptides.  

Sample molecules are first ionised. These ions are extracted into the analyser region of the 

mass spectrometer where they are separated according to their mass (m) -to-charge (z) ratios 

(m/z). The separated ions are detected and this signal sent to a data system where the m/z 

ratios are stored together with their relative abundance for presentation in the format of an m/z 

spectrum. 

The ionisation method used for our analyses is electrospray ionisation (ESI, figure3.8.2). A 

high voltage is applied which disperses the sample into an aerosol of highly charged droplets. 

The charged droplets diminish in size by solvent evaporation and eventually charged sample 

ions, free from solvent, are released from the droplets and pass through a sampling cone or 

enter into an intermediate vacuum region, and from there through a small aperture into the 

analyser of the mass spectrometer.  
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Figure 3.8.2: The ESI process (http://qbab.aber.ac.uk/roy/mss/esi.gif).  

 

3.8.2.1 ESI/Q-Tof mass spectrometry 

 

Nanospray ionisation, which is possible with the Q-Tof mass spectrometer (figure 3.8.2.1), is 

a low flow rate version of electrospray ionisation (30 – 1000 nl/min). It is a quadrupole – 

Time of flight tandem mass spectrometer. The quadrupole in this instance is not used as an 

analyser, merely as a lens to focus the ion beam into the second (time-of-flight) analyser 

which separates the ions according to their mass-to-charge ratio. The Q-Tof mass 

spectrometer is switched into “MS-MS” mode. The protonated molecular ions of each of the 

digest fragments can be independently selected and transmitted through the quadrupole 

analyser, which is now used as an analyser to transmit solely the ions of interest into the 

collision cell which lies in between the first and second analysers. An inert gas such as argon 

is introduced into the collision cell and the sample ions are bombarded by the collision gas 

molecules which cause them to fragment. The fragment ions are then analysed by the second 

(time-of-flight) analyser. In this way an MS/MS spectrum is produced showing all the 

fragment ions that arise directly from the chosen precursor ions for a given peptide 

component. Proteins and peptides are usually analysed under positive ionisation conditions, 

where a trace of formic acid is often added to aid protonation of the sample molecules. The 

m/z scale must be calibrated by analysing a standard sample of a similar type to the sample 

being analysed (e.g. a protein calibrant for a protein sample), and then applying a mass 

correction. 
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Figure 3.8.2.1: The Q-TOF mass spectrometer. It combines a quadrupole mass filter (MS1), a hexapole collision 

cell and TOF mass analyzer (MS2) to deliver high performance MS-MS. © Q-Tof handbook micromass. 

 

The ESI Q-TOF mass spectrometer was controlled, the data recorded and processed via the 

software MassLynx 4.0 from a computer. 

 

3.8.2.2 LC-MS  

 

The LC-MS is a technique combining the separation power of reverse-phased HPLC (High 

Performance Liquid Chromatography) with the detection power of mass spectrometry in order 

to get optimized analytical results. In reverse-phased HPLC, compounds are separated based 

on their hydrophobic character. Peptides can be separated by running a linear gradient of the 

organic solvent. The stationary phase is generally made up of hydrophobic alkyl chains that 

interact with the sample. Chain lengths of C8 and C18 are generally used to capture peptides 

or small molecules. The separated molecules can then be ionized by the ESI spray and 

detected with the previously described ESI-Q-Tof method. 
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3.8.2.3 Experimental procedures for the class II-peptides fraction 

 

Our ESI-Q-Tof mass spectrometer is coupled to a µCapillary-HPLC system. The µCapillary 

column is directly connected to a gold-coated capillary, which works as the ESI source. 

The sample of the class II eluted peptides of the from the stimulated cells (frozen at -80°C) 

was lyophilized over night (< -50°C, < 0.5 mbar) and resuspended in 450 µl solution A (4 

mM ammonium acetate in H2O, pH 3). This volume would be enough for three runs, each 150 

µl. 

The µCapillary-HPLC system was carried out with a flow rate of 150 – 200 µl/min, and the 

effective flow was reduced to 0.3 µl/min. Before each LC-MS run, the HPLC columns were 

equilibrated for 30 min with 15% solution B (2 mM ammonium acetate, 80% acetonitrile). 

Before analyzing a sample, idling was done with the Glufib-peptide (EGVNDNEEGFFSAR). 

Afterwards, 150 µl of our sample were centrifuged for 10 min at 13000 rpm to sediment dirt 

remains, and injected into a so called sample loop. The sample was then loaded with the help 

of solution A to a pre-column, where it was concentrated and desalted at 20 µl/min for 40 

min. Then the pre-column was switched to the µCapillary column. For HPLC separation, a 

gradient varying from 15% to 45% solution B was used, over a time period of 170 min. The 

separated molecules were then directly ionized by the ESI spray (through a so called picotip) 

and detected. The complete run was followed and recorded over a time period of 200 min. 

The recording of the mass spectra was done with an integration time of 1 second for the Tof-

analyzer and 4 seconds for the tandem-MS experiments. The interscan-delay in between was 

0.1 seconds. The selection of the precursor ions [M+H]+ and [M+2H]2+ and their 

fragmentation was done automatically with the ESI-Q-TOF-Software MassLynx 4.0, which 

parameters were previously set. Two more runs were performed with the remaining 300 µl 

sample, following the same procedures. 

 

3.8.2.4 Modification of HLA class I peptides  

 

In order to analyze the isolated HLA class I peptides quantitatively and at the same time 

compare the ones separated from the non-stimulated THP-1 cells with those from the 

stimulated ones, a novel modification method was used. Briefly, the ε-aminogroup of all 

lysine side chains was guanidinated using O-methyl isourea hemisulfate (GUA solution), 

without modification of the N-terminus. This was achieved by working with pH > 10, when 

the amino rests of the lysines are deprotonated, and the nitrogen attacks the isourea where 
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methanol is released. In a second modification step, all N-termini were nicotinylated with 

either normal or deuterium-enriched 1-([H4/D4]nicotinoyloxy) succinimide (d(NIC)-NHS). 

This reaction was done on a C18 microcolumn, which also allowed quick desalting before 

mass spectrometric analysis, which allowed differentiation between the compared samples. 

Deuterium is an isotope of hydrogen and has mass number of 2. In our case, we nicotinylated 

the stimulated THP-1 cells with D4-NIC (dNIC) and the non-stimulated with H4-NIC (NIC), 

which can be later detected by seeing a shift of 4 units (4 deuteriums in dNIC) in the 

compared LC-MS spectra.  

 

  a) 

 

 

 

 

 

 

   Lysine  o-methyl-isourea    homoarginine  

 

  b) 

 

 

 

   1-([H4/D4]-nicotinoyloxy) succinimide = d(NIC)-NHS 
 

Figure 3.8.2.4: a) Modification of lysine with o-methyl-isourea. b) Structural formula of dNIC. 

 

For this purpose, 500 µl 0.1% TFA were added to each of the previously lyophilized peptide 

fractions, in addition to 92 µl GUA solution (100 mg O-methyl isourea in 102 µl H2O). The 

pH value was adjusted to about 10.5 by carefully adding 20-40 µl of 10 M NaOH. Incubation 

followed for 10 min in a 65°C-waterbath. The reaction was then stopped by adding ~ 10 µl 

100% formic acid, and put on ice. Nicotinylation of the α-aminogroup followed by applying 

the guanidinated peptides to a C-18-reversed-phase column (Agilent) in 200 µl portions and 

repeated three times. The column was previously activated by washing three times with 200 

µl elution buffer (50% acetonitrile, 1% formic acid) and equilibrated by washing 3 times with 
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200 µl H2O with 0.1% formic acid. All centrifugation steps were done at 2000 rpm for 15 sec. 

0.5 ml of the nicotinylation reagent (2.2 mg nicotinic acid-N-hydroxy-succinimide, 1ml 

phosphate buffer, in 500 ml H2O) was added to the columns, which were applied to a 1 ml 

syringe. Every minute, ~50 µl were drawn with the syringe so that all 500 µl passed through 

the column. This was repeated with 0.5 ml again. Washing followed 3 times with 200 µl H2O. 

In order to hydrolyze nicotinylated tyrosine rests, 0.5 ml hydroxylamine (50%) was let 

through the column at 50 µl/min again. After a final washing step with 200 µl H2O, the 

peptides were eluted 4 times with 50 µl elution buffer, and the fractions were pooled. 

For LC-MS analysis, the samples were constricted with a SpeedVac to about 10 µl, and 90 µl 

of solution A were added. After centrifugation for 10 min at 13 000 rpm, the samples were 

mixed in a 1:1 ratio, then applied into the HPLC system (see 3.8.3.2) for CID analysis. The 

non-mixed samples were fragmented separately afterwards. 

 

3.8.2.5 Spectral analysis and peptide prediction 

 

Collision Induced Decomposition (CID) was used to identify the amino acid sequence of the 

non-fragmented peptide ions in the general survey spectrum. Tandem-MS experiments 

allowed recording at the same moment 4 simultaneous fragment spectra. In this way, the 4 

most detectable peptide ions were recorded at this same moment, fragmented in the collision 

cell and analyzed at last. The resulting MS/MS-spectra were analyzed and evaluated 

automatically using computer software, but the analyses were mainly done manually. 

The CID fragments result from breakings in the peptide bond. The resulting charge can be 

either at the N-terminus (x-, y-, z-ions) or at the C-terminus (a-, b-, c-ions) (Roepstorff and 

Fohlmann, 1984) and are presented as peaks in the spectrum. y-, b- and a-ions are the most 

frequent ions detected. b-ions can further dissociate into a-ions with loss of CO (-28 Da). y-

ions undergo loss of H2O (-18 Da) or NH3 (-17 Da), others gain 18 Da. Immonium ions 

which result from the binding of a- and y-fragments are detectable under 160 Da and are 

mostly a hint for special amino acids. Internal peptide fragments may also result, and make 

the evaluation more difficult. By calculating the interval distances from one peak to another 

peak, the resulting residue can be assigned to either an amino acid, or to another peptide 

fragment. Following are all amino acids including their residue and immonium ion masses, as 

well as the mass of the b1 residues of the deuterium-nicotinylated and the normal-

nicotinylated ones. All masses are in dalton: 
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Table 3.8.2.5: Masses of natural and modified amino acid residues in MS/MS spectra. 
 

Amino acid Residue Immoniumn ion dNIC b1 NIC b1 
Glycine G 57 30 167 163 
Alanine A 71 44 181 177 
Serine S 87 60 197 193 
Proline P 97 70 207 203 
Valine V 99 72 209 205 

Threonine T 101 74 211 207 
Cysteine C 103 76 213 209 

Isoleucine I 113 86 223 219 
Leucine L 113 86 223 219 

Asparagine N 114 70 224 220 
Aspartate D 115 71 225 221 
Glutamine Q 128 101 238 234 

Lysine K 128 101  238/280 234/276 
Glutamate E 129 102 239 235 
Methionine M 131 104 (ox. 120) 241 237 
Histidine H 137 110 247 243 

Phenylalanine F 147 120 257 253 
Arginine R 156 70 / 129 266 262 
Tyrosine Y 163 136 273 269 

Tryptophane W 186 159 296 292 
 

Mostly, not all amino acids can be detected and read out from a spectrum. Depending on the 

peak characters, 4 to 5 amino acids detected on the N-terminal or C-terminal side are often 

enough for a survey in peptide databases, which might be successful. In the case of the 

modified peptides, a big step is done by simply identifying the b1 residue which is 

nicotinylated; thus, the N-terminal amino acid is then known.  

One of the online databases available is Mascot (www.matrixscience.com). If many peptide 

sequences are proposed, the ones which seem to mostly match with the spectrum are taken out 

and validated in the spectrum itself. This is carried out until the right sequence is found, 

which fits almost perfectly with the spectrum. 
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4. Results 
 

4.1 Phagocytosis and gene expression analyses in monocytes 
 

4.1.1 Monocytic preparations 

 

For our essential microarray experiments, PBMCs were isolated with FICOLL centrifugation 

and the monocytes then with the Monocyte Isolation Kit, using 300 ml of fresh blood samples 

from three healthy donors. Following cell numbers were obtained: 
 

Table 4.1.1: Number of PBMCs and monocytes extracted from the three healthy donors. 
 

 No. of PBMCs No. of monocytes 

Donor 1 5 x 108 4.7 x 107

Donor 2 5 x 108 5.4 x 107

Donor 3 6 x 108 8.4 x 107

 

For the microscopy experiments, monocytes were isolated from PBMCs via positive labelling 

with CD14-microbeads in order to get pure samples for optimal microscopic images. Here for, 

50 ml blood from buffy coats were taken for isolation and following cell numbers were 

obtained: 6,6x107 PBMCs/ml, from which 5,4x106 monocytes were isolated in total. 

 

4.1.2 Flow cytometry of monocytes 

 

The purity of the monocytic preparations was checked with flow cytometry; by staining the 

monocytes with a FITC-labelled CD14 antibody (see also 3.5.1). 

 

M1 M2

 

 Figure 4.1.2: FACS histogram of the monocytes of one of the three 

donors. The CD14-positive cells represent in this example 76.16% 

of all cells. The remaining cells (23.29%) are most probably 

damaged cells, which was later assessed by cell counting. 
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The purity of the monocytic cultures of the other two donors was 75.5% and 63%. These 

purity levels were considered to be sufficient for performing microarray gene expression 

analysis (Szaniszlo et al., 2004). 

 

4.1.3 Phagocytosis of A. fumigatus conidia by monocytes 

 

Two strategies were followed in order to analyze phagocytosis (see also 3.4.2).  

(a) Conidia were fluorescently labelled with Fungi-Fluor dye prior to incubation with 

monocytes; after 3 hours of incubation, we prepared the samples and observed them 

under the microscope. Following figures were obtained: 

  

 

    A        B    C 

 

 

 

 

 

       D       E      F  

 

 

 

 
Figure 4.1a: Microscopic analyses of phagocytosis. (A, D) Light microscopic close-up of monocytes after 3 

hours of phagocytosis, each phagocytosed 3 conidia. (B, C) Same pictures as A, with a fluorescent close-up of 

the monocytes, stained by Cy3, and the conidia phagocytosed, stained with Fungi-Fluor dye prior to 

phagocytosis. (E, F) Same pictures as D, showing a fluorescent close-up of the monocyte and the conidia 

phagocytosed which were stained with Fungi-Fluor. 

 

We found that most of the monocytes had phagocytosed conidia. In order to quantify 

phagocytosis, we analyzed 100 monocytes and counted the conidia phagocytosed by them. 

We found that 40 monocytes phagocytosed two conidia, 23 phagocytosed three, 16 

phagocytosed one, 10 phagocytosed four or more whereas only 11 phagocytosed no conidia. 

Thus, the majority of the monocytes phagocytosed up to three A. fumigatus conidia within 3 
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hours. The monocytes in figure 4.1a have phagocytosed each 3 conidia. The figures 

demonstrate that the conidia are within the cells and not on their surface. This can be clearly 

concluded out of figures D and F, where one conidia is almost invisible with light microscopy 

in D, whereas it can be well observed through fluorescent labeling in F. 

 

(b) Conidia were fluorescently labelled with Fungi-Fluor dye after incubation with 

monocytes for 6 h. Microscopic observations showed the following figures:  

  

          A      B            (A+B) 

 

 

 

 
Figure 4.1b: Microscopic analyses of phagocytosis. (A) Close-up of a monocyte after 6 hours of phagocytosis 

with one phagocytosed swollen conidia and 3 non-phagocytosed conidia. (B) Same pictures as D, with the 3 non-

phagocytosed conidia stained with the fluorescent Fungi-Fluor dye after phagocytosis. 

 

Observing the samples after 6 hours of incubation, phagocytosed conidia were found to swell 

and the monocytes changed their shape accordingly, as shown in Figure 4.1b. Yet, the 

phagocytosis rate did not increase. Three conidia were stained whereas one was not, thus 

phagocytosed. 

After 9 hours, the conidia had already germinated to hyphae and overgrown the monocytes, 

which made it difficult to make clear microscopic observations and draw any conclusions 

concerning phagocytosis. 

 

4.1.4 RNA quality and quantity 

 

In order to perform microarray gene chip experiments using the HG-U133A human genome 

array (Affymetrix), a minimum of about 3 µg total RNA were needed. This was achieved by 

isolating as much as possible RNA from the three experiments. The isolated RNA quality and 

quantity was measured in the 31 µl frozen at -80°C: 
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Table 4.1.4: RNA concentration and quality of the different incubation experiments in the three donors. 
 

Donor 1 Ratio 260 nm/280 nm Conc. [µg/µl] Total [µg] in 31 µl 

Medium 3 h 1.83 0.167 5.17 

Hyphae 3 h 1.83 0.153 4.76 

Conidia 3 h 2.01 0.184 5.71 

Medium 6 h 1.06 0.099 3.08 

Hyphae 6 h 1.77 0.161 5.00 

Conidia 6 h 1.76 0.134 4.15 

Medium 9 h 1.86 0.097 3.02 

Hyphae 9 h 1.82 0.147 4.57 

Conidia 9 h 1.82 0.138 4.30 

Donor 2    

Medium 3 h 2.17 0.110 3.42 

Hyphae 3 h 2.50 0.105 3.26 

Conidia 3 h 1.98 0.139 4.31 

Medium 6 h 2.05 0.135 4.19 

Hyphae 6 h 2.06 0.122 3.80 

Conidia 6 h 2.12 0.146 4.54 

Medium 9 h 2.17 0.121 3.77 

Hyphae 9 h 2.07 0.133 5.45 

Conidia 9 h 2.14 0.138 4.30 

Donor 3    

Medium 3 h 1.92 0.118 3.67 

Hyphae 3 h 1.78 0.119 3.70 

Conidia 3 h 1.84 0.087 2.70 

Medium 6 h 1.86 0.109 3.40 

Hyphae 6 h 1.79 0.118 3.68 

Conidia 6 h 1.88 0.135 4.20 

Medium 9 h 1.88 0.088 2.73 

Hyphae 9 h 1.86 0.119 3.71 

Conidia 9 h 2.09 0.101 3.14 

 

Almost all ratios were between 1.8 and 2.1, which shows the good quality of the RNA 

samples. Only one exception (donor 1, medium 6 h) has a ratio of 1.06. Yet this could be 

taken into account.  
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Also all concentrations were above 3 µg, except 2 samples in donor 3, which were 2.7 µg. But 

these amounts are also enough for microarray assays.  

 

4.1.5 Gene expression analysis with real-time RT-PCR 

 

Real-time RT-PCR assays were performed for TNF-α, IL-1β and IL-6 with the cDNA 

synthesized from the mRNA of each of the three donors and the average expression between 

the three was calculated. This was done in order to check the activation of the monocytes. 

Three runs (one for each donor) were performed for each gene at each period with the same 

mRNA used later in the microarray experiments. Following quantitative results were 

obtained: 

 
Table 4.1.5a: Copy numbers of TNF-α obtained from real-time PCR assays from the different experiments. 

 

 Donor 1 Donor 2 Donor 3 

 No. of copies No. of copies No. of copies 

Medium 3 h 0.656 x 103 0.888 x 103 2.663 x 103

Hyphae 3 h 1.956 x 103 2.297 x 103 5.969 x 103

Conidia 3 h 0.547 x 103 0.155 x 103 2.438 x 103

Medium 6 h 1.549 x 103 1.695 x 103 4.782 x 103

Hyphae 6 h 9.678 x 103 11.447 x 103 60.6 x 103

Conidia 6 h 1.824 x 103 4.923 x 103 9.723 x 103

Medium 9 h 1.59 x 103 1.646 x 103 3.849 x 103

Hyphae 9 h 7.034 x 103 10.795 x 103 49.482 x 103

Conidia 9 h 3.705 x 103 6.344 x 103 9.294 x 103
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Table 4.1.5b: Copy numbers of IL-1β obtained from real-time PCR assays from the different experiments. 

 

 Donor 1 Donor 2 Donor 3 

 No. of copies No. of copies No. of copies 

Medium 3 h 7.4 x 105 4.2 x 105 27.7 x 105

Hyphae 3 h 35.3 x 105 28.1 x 105 49.8 x 105

Conidia 3 h 6.87 x 105 2.1 x 105 15.3 x 105

Medium 6 h 7 x 105 9.7 x 105 28.2 x 105

Hyphae 6 h 237 x 105 116.8 x 105 293.9 x 105

Conidia 6 h 8.3 x 105 22 x 105 63.8 x 105

Medium 9 h 3.4 x 105 4.3 x 105 11.9 x 105

Hyphae 9 h 110.4 x 105 91.2 x 105 272.1 x 105

Conidia 9 h 3.1 x 105 13.4 x 105 28.3 x 105

 

 

Table 4.1.5c: Copy numbers of IL-6 obtained from real-time PCR assays from the different experiments. 
 

 Donor 1 Donor 2 Donor 3 

 No. of copies No. of copies No. of copies 

Medium 3 h 1.819 x 104 0.877 x 104 8.461 x 104

Hyphae 3 h 4.105 x 104 4.597 x 104 10.765 x 104

Conidia 3 h 0.412 x 104 0.405 x 104 3.533 x 104

Medium 6 h 1.003 x 104 1.403 x 104 2.465 x 104

Hyphae 6 h 9.190 x 104 19.157 x 104 55.035 x 104

Conidia 6 h 0.934 x 104 2.361 x 104 7.551 x 104

Medium 9 h 0.421 x 104 1.299 x 104 2.339 x 104

Hyphae 9 h 5.875 x 104 13.455 x 104 12.434 x 104

Conidia 9 h 0.703 x 104 2.506 x 104 2.943 x 104

 

These data represent the normalized results (see also 3.6.3.2). 

The average expression level of each cytokine was then calculated and presented in the 

following diagrams: 

58 



       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1.5: Expression analysis of the cytokines TNF-α, IL-1β and IL-6 by real-time PCR. The data shown 

represent the mean ± SEM of three donors for each cytokine. ∗, p values < 0.05 were considered statistically 

significant.  
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The diagrams show conidia to stimulate cytokine expression only after 6 and 9 hours, but not 

after 3 hours. Yet the expression levels are as not as high as stimulations with inactivated 

hyphae. They stimulate cytokine expression already after 3 hours, and the expression levels 

get much higher after 6 and 9 hours. The standard deviations of the expression levels between 

the 3 donors seem to be in some cases relatively high, meaning that the different monocytic 

samples reacted differently with the same A. fumigatus culture, thus donor-dependent. 

 

4.1.6 Agarose gel electrophoresis 

 

The cDNA samples were collected after the amplification procedure and analyzed with 

agarose gel electrophoresis. The same 106 standards were used as for the RT-PCR.  

 

TNF-α:                                           L  S   1   2  3  4   5  6   7  8   9  10  L 

 

            518 bp 

 

 

 

IL-1β:        ^            L   S    1    2    3   4   5   6    7   8    9  10  L 

 

             250 bp 

 

 

IL-6:               

           L  S    1    2   3   4    5   6   7    8    9  10  L 

 

          

 232 bp 

 
 

Figure 4.1.6: Agarose gel electrophoresis of TNF-a, IL-1b and IL-6 with the cDNA of the real-time PCR assays. 
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Samples analyzed:  

L: Ladder   5: Hyphae 6 h 

   S: 106 Standard  6: Conidia 6 h 

   1: Medium 3 h  7: Medium 9 h 

   2: Hyphae 3 h  8: Hyphae 9 h 

   3: Conidia 3 h  9: Conidia 9 h 

   4: Medium 6 h  10: Negative control 

 

The samples were shown to have the same size as the standards at each amplification. TNF-α 

has 518 bp, IL-1β has 250 bp and IL-6 has 232 bp. 

 

4.1.7 Microarray analyses 

 

In order to have a broader understanding of genes involved in Aspergillus-directed monocytic 

defense strategies, gene regulation after incubation was studied by microarray chip analyses 

using the human HG-U133A Affymetrix-array.  

Analysis revealed a wide range of differentially regulated genes, of which we were interested 

in genes involved in the cellular immune response. Genes were regulated in different scales 

among the three donors, certainly depending on the donor. Among these genes, we analyzed 

the ones commonly regulated between the three, and found out that 602 genes were 

differentially regulated after 3 hours of incubation with inactivated hyphae and 206 after 

incubation with conidia. At 6 and 9 hours of incubation, the number of genes showed only 

slight differences between conidia and inactivated hyphae; 418 and 399 genes were 

differentially regulated after incubation with conidia, 375 and 456 genes after incubation with 

hyphae, respectively. Table 4.1.7 summarizes the number of the commonly up- and down-

regulated genes after every incubation period. These genes varied in their expression level 

depending on the incubation time and the morphological state of the fungus, with signal log 

ratios varying between -3.7 and +4.7 for conidia, and between -4.1 and +3.5 for hyphae. 
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  Table 4.1.7: Number of genes differentially regulated by viable conidia and inactivated hyphae. 

 by viable conidia by inactivated hyphae 
Number of genes 

3 h 6 h 9 h 3 h 6 h 9 h 

up-regulated 99 166 231 287 147 214 

down-regulated 107 252 168 315 228 242 

Total  206 418 399 602 375 456 

 

 

 

 

 

4.1.7.1 Interpretation  

 

Hyphae and conidia have different surface structures and molecules and therefore interact 

differently with immune cells (Rohde et al., 2002). This was clearly observed after analyzing 

the microarray data. Yet, similarities in gene expression profiles and levels can also be found.  

During the interpretation of our data, we set two main questions to be answered: 

(1) What is the difference between the genes regulated after incubation with viable 

conidia, and those regulated after incubation with inactivated hyphae? What are the 

similarities? 

(2) How does the expression level vary between the different incubation periods? 

In order to answer these questions, the analysis of the expression profiles was done manually. 

We searched for and picked out the immune relevant genes, which were found among the 

commonly regulated genes mentioned above (see 4.1.7). These included cytokines, 

chemokines, their receptors, TLRs, as well as genes coding for signal-transduction and 

adhesion molecules. 

We generally found hyphae, although inactivated, to stimulate more immune relevant genes 

than viable conidia. In addition, hyphae stimulated monocytes to express these genes already 

after 3 hours and the expression level increased after 6 and 9 hours for most of these genes. 

On the contrary, conidia stimulated monocytes to express such genes only after 6 and 9 hours, 

despite phagocytosis during the first 3 hours. This was also observed by real-time RT-PCR 

analyses of TNF-α, IL-1β and IL-6 (see 4.1.5) 

In the following two tables, we present all immune related genes which were differentially 

regulated after incubation with conidia and hyphae, and which were more than about 2 fold 

up-or down-regulated, in comparison to the non-stimulated samples. 

 

 

62 



       

Tables 4.1.7.1a & b: Immune related genes differently regulated by A. fumigatus conidia and hyphae. Values in 

brackets represent the signal log ratio and the standard deviation between the 3 donors (SLR, SD). 

 

 

a Cytokines Cytokine 
Receptors Chemokines Chemokine 

Receptors TLRs Adhesion 
molecules Other 

 IL-7R (-0.93, 0.76)    ITGAE (-0.73, 0.32) CD86 (-0.95, 0.57)

  CSF1R (-0.73, 0.36)       TFPI (-0.73, 0.25) STAT1 (-0.67, 0.29)

          LGALS2 (2.05, 1.69) PTX3 (1.87, 1.16)

          THBD (1.18, 0.63)  C
on

id
ia

  3
 h

 

          SERPIN B9 (0.74, 0.44)  

IL-8 (2.19, 0.87) TRAIL-R2 (-1.05, 0.5) CXCL5 (2.23, 1.3) CCR2 (-2.19, 1.51) TLR1 (-1.22, 0.62) F8A (-0.85, 0.39) NCF4 (-1.01, 0.77)

TNFSF3 (1.11, 0.36) IFNγR1 (-0.83, 0.28) CXCL3 (1.74, 0.84)     PECAM1 (-2.09, 0.9) CASP8 (-1.43, 0.65)

  IL-1RN (2.58, 1.72) CCL2 (1.48, 0.97)     F3 (3.95, 2.22) MHCIIβ (-1.34, 0.66)

  IL-2Rγ (1.03, 0.38)       SERPIN B2 (1.16, 0.7) MET (2.35, 0.78)

C
on

id
ia

  6
 h

 

  IL-3Rα (1, 0.46)       ALCAM (1.02, 0.47) STAT3 (0.79, 0.31)

IL-8 (4.05, 0.56) CSF3R (-1.1, 0.26) CCL20 (4.3, 4.13) CCR2 (-2.03, 2.27)   CLECSF14 (-1.64, 1.21) SOCS3 (2.34, 1.54)

IL-1α (3.53, 1.18) TRAIL-R2 (-0.76, 0.28) CXCL5 (4.29, 2.31)     LGALS2 (-2.17, 1.54) MET (2.21, 1.72)

CSF1 (2.42, 2.33) IL-3Rα (1.94, 0.43) CCL2 (2.33, 0.82)     CD33 (-2.51, 0.36) MMP9 (1.99, 0.6)

TGFβ1 (1.18, 0.81) IL-2Rγ (1.33, 0.33) CCL7 (1.39, 0.74)     SERPIN E1 (3.29, 1.95) C3 (1.39, 0.41)

TNF-α (1.62, 1.87)  CSF2Rα (0.8, 0.27)      uPA (1.62, 1.04)  

TNFSF3 (1.18, 0.56) TRAF1 (0.71, 0.46)        ICAM1 (1.59, 1.26)  

C
on

id
ia

  9
 h

 

        SERPIN B2 (1.33, 0.65)  

 

 

b Cytokines Cytokine 
Receptors Chemokines Chemokine 

Receptors TLRs Adhesion 
molecules Other 

IL-6 (1.77, 1.47) CSF2Rα (-0.94, 0.36) CCL7 (1, 1.21) CCR5 (-1.07, 0.94)  ALCAM (-1.34, 0.92) PTX3 (2.27, 0.93)

IL-1α (1.43, 1.48) TNFRSF6 (1.41, 1.01) CCL5 (0.82, 1.03)    LGALS2 (2.45, 1.4)  

IL-10 (1.32, 0.82)        ADAM19 (2.04, 1.59)   

IL-1β  (1.05, 0.7)        ITGA2B (1.15, 0.99)   

         uPA (0.78, 1.03)   H
yp

ha
e 

 3
 h

 

          F13A1 (0.88, 1.01)   

TNFSF3 (1.95, 0.68) CRLF2 (1.62, 1.48) CXCL3 (1.73, 1.05)   TLR7 (-2.71, 1.33) PECAM1 (-0.82, 0.83) C3 (1.04, 0.67)

  TRAF1 (1.34, 0.98) CXCL1 (1.66, 1.09)   TLR8 (-3.47, 1.44) CLECSF2 (-1.32, 0.96) MMP9 (1.26, 1.14) 

   IL-1R2 (0.78, 0.59)      SERPIN B2 (1.37, 0.72)   

            

H
yp

ha
e 

 6
 h

 

             

IL-8 (3.51, 1.27) CSF3R (-1.21, 0.66) CCL2 (2.63, 0.64)     CLECSF2 (-0.56, 0.1) CD244 (-1.53, 0.28)

IL-1α (2.7, 2.96) TRAIL-R2 (-0.84, 0.32) CXCL6 (2.56, 0.98)     CLECSF14 (-2.21, 1.32) CD163 (-2.3, 0.98)

TGF-α (1.88, 1.24) IL-1RAP (2.04, 0.8) CCL7 (2.12, 0.56)     SERPIN E1 (2.4, 2.03) MMP9 (2.35, 0.62)

  IL-7R (1.57, 0.64)      THBD (2.29, 0.7) MET (1.68, 1.97)

       IL-3Rα (1.41, 0.63)       uPA (1.81, 0.88) LAT (1.26, 0.64)

  IL-2Rγ (1.15, 0.6)       ICAM1 (1.22, 1.77) MAPK8 (1.21, 0.91)

H
yp

ha
e 

 9
 h

 

           C3 (0.96, 0.48)
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After 3 hours, conidia did not stimulate the expression of cytokines or chemokines. Only the 

receptors of IL-7 and CSF1 were down-regulated (about 2 fold). However, genes encoding for 

adhesion and surface molecules were differentially regulated. On the contrary, hyphae 

stimulated monocytes to express cytokines and chemokines already after 3 hours, in analogy 

to the RT-PCR experiments. IL-1α, IL-1β, IL-6, IL-10, and CCL7 were consistently up-

regulated (SLRs between 1 and 1.8). We also observed the over-expression of the soluble 

pattern recognition receptor (PRR) pentraxin-3 by both stimuli, which is involved in innate 

immunity and plays a role in pathogen recognition. It was shown to bind to A. fumigatus 

conidia and facilitate the interaction with mononuclear phagocytic cells (Garlanda et al., 

2002). PTX3 was between 3.6 (conidia) and 4.8-fold (hyphae) up-regulated after 3 hours, 

which indicates its role in pathogen recognition and binding. No over-expression was detected 

after 6 and 9 hours. Interestingly, no significant changes in the expression levels of TLRs 

were detected at this timepoint.  

After 6 and 9 hours, the conidia germinated to hyphae, which is reflected in the gene 

expression profile of the monocytes at these timepoints. Similarities in the expression patterns 

were observed between conidia and hyphae. The expression of IL-8, IL-10, IL-6, TNF and IL-

1 was up-regulated to varying degrees with signal log ratios from 1 to 4 by both stimuli. 

Transforming growth factor-α (TGF-α) and -β1 (TGF-β1) were also up-regulated after 

incubation with inactivated hyphae and conidia, respectively. In addition, cytokine receptors 

were up- or down-regulated, for example TRAIL-R2, CSF receptors, TNF receptors and some 

interleukin receptors such as IL-7R, IL-2Rγ and IL-3Rα. Different chemokines and their 

receptors, such as CCL2, CCL7, CCL20 and members of the GRO-family, were also found to 

be up-regulated after incubation with both stimuli. The urokinase-type plasminogen activator 

(uPA) was found to be up-regulated (about 3 to 4-fold) by both stimuli at these timepoints. 

Nevertheless, differences in the expression patterns were also observed. We found the 

expression levels of TLR7 (6.5-fold decrease) and TLR8 (11.3-fold decrease) to be strongly 

down-regulated after 6 hours of incubation with inactivated hyphae, but remained unchanged 

after incubation with conidia. TLR1 was down-regulated (2.3-fold) after 6 hours incubation 

with conidia. Beside the TLRs, chemokine receptor CCR2 was found to be down-regulated 

(>4-fold) after incubation with conidia, but no change after incubation with inactivated 

hyphae. 
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4.1.7.2 Analysis with PathwayAssist™ 

 

PathwayAssist™ searched several databases for interactions between the genes previously 

detected by the Affymetrix-array and subsequently constructed so-called biological 

association networks. Upon loading the gene ID numbers into this software, it displayed 

pathways for each incubation period. After the 9-hour incubation period, two pathways were 

generated by this software for both stimuli, which were for the most part similar (Figure 

4.1.7.2). They show CCL2 (SLR 2.4) inducing uPA expression (SLR 1.6) along with other 

genes such as IL-8, IL-1α, TGF and intracellular adhesion molecule 1 (ICAM1). In addition, 

uPA may directly induce CCL2 expression. Serine protease inhibitors (SERPINs) that are 

known to inhibit uPA expression were also up-regulated (SLR 1.3 to 3.3). Thus, two feed-

back pathways were proposed which may reflect possible monocytic defense strategies in the 

case of an A. fumigatus infection. Yet, a slight difference can be noted: CCR2 (receptor for 

CCL2) is strongly down-regulated (SLR -2) after the 9-hour incubation period, but only after 

incubation with the viable conidia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1.7.2: Pathway proposed by PathwayAssist, showing the interaction of MCP1 (CCL2) and uPA, after 

the 9h-stimulation of monocytes with viable conidia. The numbers below the genes represent the SLR. 
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4.1.8 ELISA 

 

To confirm over-expressed genes on a protein level, quantitative determination of the 

concentrations of IL-8, CCL2 and CCL20 in the supernatants of each incubation experiment 

were performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1.8: ELISA assays showing the concentrations [pg/ml] of IL-8, CCL2 and CCL20 in the supernatants. 

The assays were done only once, for one single monocyte preparation. 

 

A steady increase of their concentrations in culture supernatants after 6 and 9 hours was 

observed. 
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4.1.9 RNA interference 

 

To analyze a potential role of TLRs in monocyte activation, we used RNAi in order to silence 

specific genes, prior to incubations with Aspergillus fumigatus. We tried to establish a 

protocol to transfect the primary monocytes with siRNA. We tried lipofection i.e. lipid-

mediated transfection, and electroporation. 

 

4.1.9.1 Lipofection 

 

RNAiFect™ transfection kit from Qiagen, OligofectamineTM transfection reagent from 

Invitrogen and the SilencerTM siRNA Transfection kit from Ambion were used for 

transfection. For detailed procedures see also paragraph 3.6.5.1. 

In the first two experiments, using isocitrate dehydrogenase 3 (IDH3) siRNA, SYBR Green 

real-time RT-PCR showed following results: 
 

Table 4.1.9.1a: Experiment 1, using 3 different transfection kits to transfect IDH3 siRNA into monocytes.  

mRNA was isolated and real-time PCR performed after 24, 32 and 48 h. 
 

IDH3 mRNA level change after  
 

24 h 32 h 48 h 

OligofectamineTM 50% down 25% down 50% down 

RNAiFectTM 75% down 66% down 66% down 

SilencerTM 50% down 25% down 50% down 

 
Table 4.1.9.1b: Experiment 2, using 2 different transfection kits to transfect IDH3 siRNA into monocytes. 

mRNA was isolated and real-time PCR performed after 30 and 72 h. 
 

IDH3 mRNA level change after 

30 h 72 h 

 

2.75 µl siRNA 4.25 µl siRNA 2.75 µl siRNA 4.25 µl siRNA 

OligofectamineTM 25% up No change No change 50% down 

RNAiFectTM 25% up 25% down 25% up 25% down 

 

Silencing IDH3 in monocytes using three different siRNA transfection kits and different time 

periods showed big differences throughout the experiments. As in exp. 1 the tendency is a 
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clear decrease with all three kits, in exp.2 there is no consens. The siRNA induced even an 

increase in IDH3 expression.  

In the experiments 3, 4 and 5, we used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

siRNA and analyzed it with SYBR Green RT-PCR too: 
 

Table 4.1.9.1c: Experiments 3 & 4, using Silencer™ transfection kit to transfect GAPDH siRNA into DCs.  

mRNA was isolated and real-time PCR performed after 24 and 48 h. 
 

GAPDH mRNA level change after 

24 h 48 h 

 

3 µl  1.5 µl 3 µl  1.5 µl 

SilencerTM 50% down No change 75% down No change 

 

The GAPDH expression was down-regulated with GAPDH siRNA in DCs when using 3 µl of 

the 20 µM siRNA solution, yet not enough. The 1.5 µl didn’t show any effects on expression 

level. 
Table 4.1.9.1d: Experiment 5, using RNAiFect™ transfection kit to transfect GAPDH siRNA into monocytes.  

mRNA was isolated and real-time PCR performed after 20 and 40 h. 
 

GAPDH mRNA level change after  

20 h 40 h 

RNAiFectTM 50% down No change 

 

The GAPDH expression was reduced after 20 hours, although not enough. An unspecific 

siRNA showed the same effects (data not shown). After 40 h, there was no change detected. 

 

In the next step (Exp. 6), we used TLR2 and TLR4 siRNA on monocytes with RNAiFect™. 

Evaluation was done by hybridization probes real-time RT-PCR assays: 

 
Table 4.1.9.1e: Experiment 6, using RNAiFect™ transfection kit to transfect TLR2 and TLR4 siRNA into 

monocytes. mRNA was isolated and real-time PCR performed after 9 and 24 h. 

 
TLR4 mRNA level change after 

siRNA 
9 h 24 h 

TLR2 No change No change 

TLR4 No change 25% down 
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Unfortunately, TLR2 and TLR4 siRNAs didn’t produce any silencing in monocytes with the 

transfection reagent. 

In general, silencing effects up to 90% or above must be achieved in order to successfully turn 

down a specific gene function. Thus, lipofection with 3 different reagents did not result in 

satisfactory gene silencing. 

 

4.1.9.2 Electroporation 

 

Due to the variable and non-consensus results obtained by transfecting the siRNA with lipid 

mediators, we performed electroporation experiments to get the siRNA into the cells. So 

called 2-For-Silencing siRNA duplexes were purchased, specific for TLR2, TLR4 and TLR8. 

Transfection experiments were varied in time, voltage and siRNA concentrations (see also 

paragraph 3.6.5.2). DCs were also transfected in some cases in order to compare the silencing 

effects with the monocytes.  
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Figure 4.1.9.2a: Experiment 1; 106 monocytes were electroporated with 3 µM TLR2- and TLR4-siRNA for 10 

ms at 330 mV. mRNA was isolated and real-time PCR performed after 12 and 24 h for TLR2. 

 

After 12 h, no significant decrease could be observed in TLR2 expression. Surprisingly, its 

expression increases quite strong after 24 h. A non-specific effect could also be observed by 

TLR4-siRNA and the non-treated sample.  
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Figure 4.1.9.2b: Experiment 1 as well, performing real-time PCR for TLR4. 

 

The same samples as before show a quite strong TLR4 decrease after 12 h, but TLR2-siRNA 

and the non-treated show non-specific effects. These effects are unfortunately also seen after 

24 h, where all three samples show a strong down-regulation in TLR4 expression. 
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Figure 4.1.9.2c: Experiment 2; 106 monocytes were electroporated with 3 µM TLR2- and TLR4-siRNA for 15 

ms at 320, 340, and 360 mV. mRNA was isolated and real-time PCR performed after 12h for TLR2. DCs were 

also transfected, at 350 mV.  

 

TLR2 is strongly down-regulated in DCs, whereas monocytes did not show differences in 

expression levels depending on the voltage used. 
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Figure 4.1.9.2d: Experiment 2 as well, performing real-time PCR for TLR4. 

 

TLR4 expression was in one sample strongly reduced (0.06, at 320 mV), as in the DCs. But 

TLR2-siRNA showed non-specific effects and also caused reduction of TLR4 expression. 
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Figure 4.1.9.2e: Experiment 3; 106 monocytes were electroporated with 3 µM TLR4- and TLR8-siRNA for 15 

ms at 320, 330 and 340 mV. mRNA was isolated and real-time PCR performed after 24 h for TLR8. DCs were 

also transfected, only with TLR8-siRNA at 350 mV.  

 

Analyzing the TLR8 expression, as usual only experiments with DCs were successful, 

showing a strong down-regulation of the targeted gene. Monocytes were not affected in any 

case. 

 



       

 

 
TLR4 expression

0,80 

1,95 

1,00 
1,13 

0,81 
0,75 0,68 

1,00 

0,53 

-  

0,50 

1,00 

1,50 

2,00 

2,50 

Mono
Electro.
350 mV

Mono
TLR4-1
320 mV

Mono
TLR4-1
330 mV

Mono
TLR4-1
340 mV

Mono
TLR8-1
320 mV

Mono
TLR8-1
330 mV

Mono
TLR8-1
340 mV

DC
Electro.
350 mV

DC
TLR8-1
350 mV

Experiments

R
el

at
iv

e 
no

. o
f c

op
ie

s

 

 

 

 

 

 

 

 
Figure 4.1.9.2f: Experiment 3 as well, performing real-time PCR for TLR4. 

 

The same samples show a slight decrease in TLR4 expression in monocytes (0.5-0.8), but yet 

not enough to turn down the function of the targeted gene. 

Overall, no standard protocol could be established to use RNAi transfections in monocytes. 

Silencing achieved was too variable to apply this method for further evaluations. In contrast, 

DCs showed stable results when transfected with siRNA. 
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4.2 Analysis of HLA-presented peptides in the THP-1 cell line 
 

Having the ability to phagocytose like normal peripheral blood monocytes (Tsuchiya et al., 

1980), monocytic THP-1 cells were incubated with A. fumigatus hyphae for 6 h in order to 

find specific A. fumigatus peptides and other peptides presented on the HLA molecules. 

 

4.2.1 Cell numbers and yield of harvested THP-1 cells  

 

THP-1 cells were grown in roller bottles in RPMI/10% FCS and harvested at different time 

periods, depending on their growth and density. Fractions of these cells were incubated with 

A. fumigatus hyphae for 6 hours, then harvested by centrifugation. The pellets were frozen 

immediately at -80°C in 3-5 ml volume batches (see 3.3.2).  

Overall, the following cell yields were achieved:  
 

Table 4.2.1: Number of THP-1 cells and total pellet volume harvested with and without stimulation. 
 

Cell line Experiment   Yield   Cell no. 
 

THP-1  non-stimulated  33 ml pellet  ~ 6.5 x 109

THP-1  + A. fumigatus hyphae 20 ml pellet  ~ 4 x 109 

     

4.2.2 Flow cytometric analysis of THP-1 

 

To analyze the relative surface expression of different HLA molecules on THP-1 cells, we 

performed flow cytometric analyses non- as well as with stimulated cells, and compared them. 

Class I (W6/32), class II (L243), HLA-A*02 (BB7.2), HLA-A*03 (GAP-A3) and HLA-B* 

(B123.2) molecules were analyzed with specific monoclonal antibodies (see also 3.5.2). Cells 

of the JY cell line were analyzed too, used as a positive control. 

The following figures show the expression levels of the different HLA molecules, when 

stained with 1 µg/ml antibody: 
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Figure 4.2.2: Surface expression of different HLA molecules on THP-1. The first figure shows the gated cells 

after stimulation with the hyphae. The blue area shows the expression level in the non-stimulated cells and the 

red line shows the expression level of the stimulated cells.  

 

The figures show enough expression of all these HLA molecules in the non-stimulated 

sample. Interestingly, their expression goes down a little after stimulation with A. fumigatus 
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hyphae (red line, figure 4.2.2), but it is still high enough to perform peptide analysis. 

Comparison was also made with the JY cell line, which shows positive expression levels for 

these molecules (data not shown). 

 

4.2.3 Monoclonal antibodies and immunoprecipitation 

 

Monoclonal antibodies W6/32 and L243 were purified for use in immunoprecipitation 

experiments to isolate HLA-presented peptides. For the experiment with the non-stimulated 

cells, we used 34.7 mg W6/32 and 33 mg L243. For those stimulated with hyphae for 6 hours, 

we used 20 mg W6/32 and 19.3 mg L243. 

 

4.2.4 Edman sequencing of the isolated peptide samples 

 

The eluted samples from the centricons were analyzed with Edman-sequencing. Analysis of 

the stimulated samples showed following results: 
 

Table 4.2.4: Results of the Edman-sequencing of HLA class I and HLA class II sample fractions 
 

Protein Chain Starting sequence Yield [pmol] 

HLA class I α GSHSMRY > 50 

 β2-microglobulin IQRTPKI > 40 

HLA class II α LKEEHVI 30-50 

 β GDTRPRF < 10 

 

So the average of 50 pmol was used for both fractions and calculated to 100% volume: 

 50 x 20 = 1000 pmol = 1 nmol 

 

Unfortunately, the analysis of the non-stimulated samples showed a far less yield of class II 

peptides. Class I peptide fractions couldn’t be analyzed, for technical reasons. Nevertheless, 

peptide analyses with mass spectrometry were later performed. 
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4.2.5 Western blot analysis of the isolated peptide samples 

 

Western blot analysis was done with different samples taken during the immunoprecipitation 

and with the eluted peptide fractions to analyze the class I molecules, using an anti-ß2 

microglobulin antibody. The monomer HLA-B*1501 was used as a standard. 

 

        0.1   0.2   0.3    0.4    0.5     __   E1  E2   Lb    La  

   Standards [µg]  

          

        

 

 

 

 
 

Figure 4.2.5a: Western blot analysis of lysate fractions and eluted peptide samples of the non-stimulated THP1 

cells. E1 represents the eluted fractions 1 and 2 of the W6/32-specific class I peptides; E2 represents the fractions 

3 and 4. Lb is a cell lysate sample before antibody precipitation; La after antibody precipitation. 

 

                     0.1  0.2   0.3  0.4   0.5   0.6    E1  E2   Lb   La  

           Standards [µg] 

           

         

         

 

 

 

 
 

Figure 4.2.5b: Western blot analysis of lysate fractions and eluted peptide samples of the stimulated THP-1 

cells. E1 represents the eluted fractions 1 and 2 of the W6/32-specific class I peptides; E2 represents the fractions 

1 and 2 of the L243-specific class II peptides. Lb is a cell lysate sample before antibody precipitation; La after 

antibody precipitation. 
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The eluted class I fractions of the non-stimulated cells (figure 4.2.5a) show a variation in 

peptide amount. Fractions 1 and 2 together (E1) obviously don’t contain much peptide 

whereas the fractions 3 and 4 (E2) do. This was taken into consideration, because Edman 

analysis couldn’t be done for these fractions. The lysate fractions show also clearly the 

decrease in peptide amounts after antibody precipitation; thus the peptides were bound 

successfully to the specific antibodies (W6/32). 

The W6/32-specific fractions 1 and 2 (E1) from the stimulated THP-1 cells (figure 4.2.5b) 

unfortunately don’t show any peptides, yet the Edman sequencing revealed enough yield for 

mass spectrometry. The E2 fraction of the class II peptides was only used to see if unspecific 

bindings take place, for the antibody used is class I specific. As in figure 4.2.5a, the lysate 

fractions show also a decrease in La due to peptide binding to the antibodies. 

 

4.2.6 LC-MS and tandem-MS runs 

 

Three LC-MS/MS runs were made with the L243-specific class II eluted peptide fractions 

from the stimulated THP-1 cells (see also 3.8.2.3). The W6/32-specific class I eluted peptides 

from both stimulated and non-stimulated cells were first modified (Guanidination and 

nicotinylation). LC-MS (survey scan) was done after mixing both samples. Afterwards, the 

modified samples were fragmented separately (LC-MS/MS) (see also 3.8.2.4).  

 

4.2.6.1 LC-MS/MS runs of class II eluted peptides from stimulated cells 

 

After idling the spectrometer with the Glufib-peptide (EGVNDNEEGFFSAR), the L243-

specific class II eluted peptide samples of the stimulated THP-1 cells were analyzed in three 

separate runs (each 150 µl).  

Survey scan analyses were first performed (LC-MS), afterwards peptide fragmentation 

(MS/MS), in order to identify possible A. fumigatus peptides presented on the cells. The 

following chromatograms show the survey scan analyses of the three fractions. Every run was 

recorded for about 200 minutes. 
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Figure 4.2.6.1a: TOF MS survey scan showing the total ion current (TIC) of all three runs performed with the 

class II eluted fractions. The relative ion intensity is plotted against the retention time (RT) [min].  

 

Similarities can be observed between run a and b, concerning the retention time where the 

highest intensity peaks are seen. Run c is a little bit different, but has also high peak 

intensities. The TIC in run a (~ 3 x 105) is higher than in b and c (2 x 105 and 1.25 x 105), 

which leads to more and better fragmented peptides. This is due to the wearing out of the 

picotip used for the three runs, which leads to alteration of the total ion current; thus less ions 

reaching the detector. 

Fragmentation (TOF MS/MS) of the peptide ions followed automatically, and the resulting 

peptide peaks were analyzed first with automated software, then evaluated manually. The 

following spectrum represents one of the peptides found by manual analysis, shown as an 

example. 
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Figure 4.2.6.1b: MALDI Q-Tof MS/MS spectrum of FRDGDILGKYVD, a class II peptide identified from the 

first fragmentation run. It represents the last 12 amino acids of the human heat shock 10kD protein 1. The 

spectrum shows the identified amino acids and their associated b-series ions. The b-ions represent the peptide 

fragments with charges on the N-terminal ends. 

 

The spectrum shows the amino acids detected between the b-ions series. The intensities of b5, 

b6, b7, b8 and b9 were high enough, so that the amino acids K, G, L and I could be easily 

detected. We could also find b10, yet not as easily as the others. The peaks at m/z 84, 129 and 

136 represent the immonium ions of I/L, R and Y, respectively. The peptide spectrum showed 

a mass of 699.37 Da (see fig. 4.261b), but had a doubly-charged parent ion [M+2H]2+, thus 

weighing 1397.74 Da. With its actual mass, we were able to find the remaining amino acids 

by searching online databases like mascot (www.matrixscience.com) and fitting the results to 

the spectrum until the most suitable peptide is found; in this case FRDGDILGKYVD, a heat 

shock protein. 

The same procedures were done for many other spectra, also in runs b and c, in order to 

hopefully find A. fumigatus specific peptides. Unfortunately, we only found human peptides 

presented on class II HLA molecules, as shown in the following list: 
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Table 4.2.6.1: Class II peptides found by analyzing spectrums of three MALDI Q-Tof MS/MS runs performed 

from stimulated THP-1 cells. All these peptides belong to the human species, thus originate from the monocytes. 

APLP2, amyloid beta (A4) precursor-like protein 2; DNPEP, aspartyl aminopeptidase; SNAG1, sorting nexin 

associated golgi protein 1. 
 

Run 
RT 

[min] 

Mass 

[Da] 
Peptide sequence 

Amino 

acids 
Related protein 

a 20.11 1372.84 GGALQPSPQQLYGG 14 SNAG1 protein  

a 36.25 1701.91 FSETGAGKHVPRAVFV 16 Tubulin alpha 6 

a 43.14 2410.15 WISKQEYDESGPSIVHRKCF 20 Actin 

a 46.66 1094.62 RHLDNLLLT 9 Phosphoinositide-3-kinase 

a 53.99 1397.74 FRDGDILGKYVD 12 Heat shock 10 kD protein 1 

a 103.1 1742.86 IPPFHPFHPFPALPE 15 APLP2 protein  

b 48.68 1094.78 PSLSHNLLVD 10 DNPEP protein 

b 74.75 1360.76 DVELDDLGKDEL 12 Disulfide isomerase-rel. prot. 5 

 

The three runs produced many MS/MS spectra, of which we could only evaluate a few (Table 

4.2.6.1). Two peptides (RHLDNLLLT and PSLSHNLLVD) are, according to their length, 

characteristically class I peptides, yet presented on Class II. Alpha-tubulin is a component of 

microtubules and actin a structure protein, and both belong to the cellular cytoskeleton. 

APLP2 plays a role in the regulation of hemostasis and DNPEP is an aminopeptidase. So 

most of these peptides do not play a vital role in immune-related pathways, except the heat 

shock 10kD protein 1, which was shown to exert anti-inflammatory activity by inhibiting toll-

like receptor signaling in murine macrophages and human monocytes (Johnson et al., 2005).  

Unfortunately, no A. fumigatus-specific peptides could be detected. Only the 20-amino-acid-

long actin-related peptide WISKQEYDESGPSIVHRKCF is in addition to humans also A. 

fumigatus-specific; thus we can take a small possibility into consideration that this peptide 

originated from the A. fumigatus hyphae.    

 

4.2.6.2 LC-MS of the mixed class I modified fractions 

 

Class I isolated peptides of both stimulated and non-stimulated cells were modified 

(Guanidination and nicotinylation) prior to LC-MS and LC-MS/MS analysis (see also 

3.8.2.4). The with D4-NIC (dNIC, stimulated cells) and H4-NIC (NIC, non-stimulated cells) 

modified peptides were mixed in a 1:1 ratio and analyzed with LC-MS, resulting in the 

following survey scan: 
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Figure 4.2.6.2a: LC-MS survey scan showing the total ion current (TIC) of the mixed class I fractions, 

previously modified by guanidination and nicotinylation. The relative ion intensity is plotted against the 

retention time [min]. 

 

By analyzing each peak of this survey scan (figure 4.2.6.2a), we could detect a series of peak 

pairs (dNIC and NIC) present, with a difference of 4 units (4 deuteriums in dNIC; deuterium 

has mass number of 2). Thus these peaks represent the guanidinated N-termini of the modified 

peptides and show us the number of peptides presented by stimulated (dNIC) and non-

stimulated (NIC) cells. This number depends on many factors, above all the mixing and the 

modification process itself. More than 100 peak pairs were detected, some with low, others 

with high intensities, revealing a successful modification. 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2.6.2b: Frequency distribution of the binary-logarithmic ratios of stimulated THP-1 to non-stimulated 

THP-1 from the identified dNIC/NIC-modified pairs and proximity of these ratios through a Gaussian curve. 

 

The normal distribution of the peptide ratios of dNIC to NIC is given in figure 4.2.6.2b. The 

R2 value of the gauss curve is 0.97 (close to 1) and the median value Xc is 0.12 (close to 0), 

meaning the mixing of dNIC and NIC peptides was generally done well, which enables 

almost quantitative conclusions of the peptide amounts. These values were obtained by 

calculating the ratios of the intensities of all dNIC/NIC peak pairs and building the binary 
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logarithm of these ratios. In brief, all peptides were modified and almost all mixed 

successfully in a 1:1 ratio (dNIC/NIC). 

 

4.2.6.3 LC-MS/MS run of the modified samples separately 

 

After analyzing the modified peptides as a mixture, we analyzed them separately with LC-

MS/MS in order to identify them and to differentiate between peptides presented on simulated 

and non-stimulated cells. Following survey scans were obtained: 
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Figure 4.2.6.3a: LC-MS survey scans showing the TIC of the modified class I peptides analyzed separately. (a) 

TIC of the class I peptides isolated from stimulated cells and modified with dNIC. (b) TIC of the class I peptides 

isolated from the non-stimulated cells and modified with NIC. 

 

The scans show almost the same TIC intensities (~ 4.7 x 104) and the retention times of the 

main peaks are also very close, differing in ~ 2 min from one another. We analyzed most 

spectra of the stimulated peptides, after fragmentation in MS/MS mode, and obtained peptides 

present in both fractions as well as peptides only present in the stimulated fraction.  

 

Following peptides were found in both fractions: 
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Table 4.2.6.3a: Peptides identified as pairs in both stimulated and non-stimulated fractions. 
 

RT [min] Mass [Da] Peptide sequence AA Related protein 

36.4 1140.75 RPAPVEVTY 9 PTP4 A1 (Protein tyrosine phosphatase) 

52.34 1159.8 NVIRDAVTY 9 HIST2H4 (histone 2, H4) 

54.8 1078.8 AIVDKVPSV 9 coatomer protein complex, subunit γ 1 

55.75 1085.67 LIDDVHRL 8 SRPR (signal recognition particle receptor)

70.43 1109.72 FIDTTSKF 8 RPL3 (ribosomal protein L3) 
 

 

Table 4.2.6.3a shows peptides identified in both fractions. They represent relatively 

unspectacular proteins except maybe PTP4A1 (also called PRL1), a tyrosine phosphatase 

believed to regulate cell proliferation and to have a role in tumorgenesis (Werner et al., 2003). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2.6.3b: MALDI Q-Tof MS/MS spectra of NIC- and dNIC-modified NVIRDAVTY, a class I peptide 

identified in both stimulated and non-stimulated cells. It is a 9 amino acid long peptide. The figure shows the 

dNIC-peptide in the lower half, compared to the NIC-peptide in the upper half. The easily to identify b-ion series 

in the dNIC-spectrum is shown. They differ by 4 Da to the corresponding peaks in the NIC-spectrum (*). By 

finding b1, the N-terminal amino acid is found, in this case N. 

 

The peptides in table 4.2.6.3a were identified by analyzing and simultaneously comparing the 

NIC- and the dNIC modified peptide spectra, as shown in figure 4.2.6.3b. 
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The peptide shown in this figure was easily identified, starting by b1 which gives the N-

terminal amino acid, in this case N (see table 3.8.2.5). The other b-ions could be identified by 

comparing the masses of the similar peaks; they must have a difference of 4 Da. The amino 

acids I/L and Y could also be assumed, by finding their immonium ions at 86 and 136 m/z. 

The rest is done by mascot software, which gives back the whole peptide that fits in this 

spectrum. 

In addition to these, we were also able to identify peptides only presented by stimulating cells, 

thus dNIC-modified, shown in the following table: 

 
Table 4.2.6.3b: Peptides identified only in the fraction of the stimulated cells.  
 

RT 

[min] 

Mass 

[Da] 

Peptide 

sequence 
AA Related protein 

26.9 1162.81 VAEPNRRVL 9 LRRC41 (leucine rich repeat containing 41) 
27.9 961.7 KAHLGTAL 8 RPS23 (ribosomal protein S23) 
32 1183.82 TIIDSKSKSV 10 HMGCS1 (3-hydroxy-3-methylglutaryl-CoA synth. 1) 
33.45 1000.5 FIDTTSKF 8 RPL3 (ribosomal protein L3) 
38.8 1051.37 ALADGVQK'V 9 APOL1 (apolipoprotein 1) 
39 1070.73 SLIDKTTAA 9 SNRPC (small nucl. Ribonucl. polypep. C) 
44.47 962.64 IDTTSKF 7 RPL3 (ribosomal protein L3) 
52.87 1279.82 KFIDTTSKF 9 RPL3 (ribosomal protein L3) 

 

 

The peptides found (table 4.2.6.3b) represent mostly a peptide of the ribosomal protein L3 (K-

F-IDTTSKF). Another ribosomal protein peptide is also shown, that of RPS23. APOL1 is the 

major plasma apoprotein of HDL and HMGCS1 catalyzes the conversion of (S)-3-hydroxy-3-

methylglutaryl-CoA and CoA to acetyl-CoA, acetoacetyl-CoA, and H2O.  

So as in class II, we couldn’t find any A. fumigatus-specific peptides presented on HLA class 

I molecules.  
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5.  Discussion 
 

Aspergillus fumigatus is a fungal pathogen which can cause allergic but also lethal infections 

in immunosuppressed patients, like patients undergoing solid organ or stem cell 

transplantations or AIDS patients. It is exceptional among microorganisms in being both a 

primary and opportunistic pathogen as well as a major allergen. Most Aspergillus species 

don’t grow at 37°C, but A. fumigatus does, which may distinguish pathogenic species from 

non-pathogenic ones (Pitt, 1994). Aspergillus species may cause serious clinical syndromes, 

of which the invasive pulmonary aspergillosis is the most dangerous. Invasive aspergillosis 

has emerged as a major cause of infection-related mortality in immunocompromised patients. 

Spores or conidia of A. fumigatus enter the lungs by inhalation. Since they don’t face there 

any interception by cells of the immune system, they are able to settle down in the alveoli. 

Immune cells have been previuosly totally eliminated or are only present in very few 

numbers. After a short while they germinate to hyphae, which are capable of tissue invasion. 

Aspergillus hyphae typically invade pulmonary parenchyma and blood vessels causing 

pulmonary hemorrhage, arterial thrombosis and infarction. Invasive aspergillosis (IA) occurs 

in 10 to 25 % of all leukemia patients, in whom the mortality rate is 80 to 90 %, even after 

treatment (Denning, 1995; Groll et al., 1996). 

Non-specific immunity plays a major role in host defense against A. fumigatus. It includes 

three defense strategies: anatomical barriers (through the ciliary action of the mucous 

epithelium), humoral factors such as complement, and phagocytic cells and their related 

antimicrobial products.  

Having a major role in protection against the fungus, phagocytic cells have been studied by 

several groups (Sturtevant and Latgé, 1991; Roilides et al., 1998; Ibrahim-Granet et al., 

2003). We contributed to these studies by analyzing phagocytosis of A. fumigatus conidia by 

human monocytes. We also analyzed gene expression of monocytes after incubation with 

conidia and hyphae and at last we analyzed HLA peptide-presentation by the monocytic cell 

line THP-1 after incubation with A. fumigatus hyphae. 

 

5.1 Phagocytosis and gene expression analyses in monocytes 

 

Monocytes play a major part in innate immunity. They initiate immune responses by 

phagocytosis, killing of pathogens and production of a wide range of co-stimulatory 
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molecules, inflammatory cytokines and chemokines (Janeway and Medzhitov, 2002). 

Considering A. fumigatus, alveolar macrophages represent the first line of defense against its 

spores. Monocytes attack and damage escaping conidia and hyphae in the blood stream by 

phagocytosis and secretion of oxidative metabolites and non-oxidative compounds, thereby 

preventing establishment of invasive infections (Schaffner et al., 1982; Levitz et al., 1986). 

For a broader understanding of defense strategies used by monocytes, genome-wide 

expression profiling was performed and gene expression patterns were correlated with 

phagocytosis of conidia in a time-dependent manner, after incubation with A. fumigatus live 

conidia and inactivated hyphae.  

We found that in the majority, monocytes phagocytosed two to three conidia, some more than 

three, few phagocytosed one and very few phagocytosed no conidia. Thus the majority of the 

monocytes were found to phagocytose up to 3 conidia within the first 3 hours (figure 4.1a). 

This is in line with other studies on phagocytosis of A. fumigatus conidia (Cortez et al., 2006). 

The number of phagocytosed conidia remained unaltered after 6 hours, but the conidia were 

swollen and the monocytes changed their shape accordingly (figure 4.1b). This behavior is not 

always similar, depending on the phagocytosed particle (Aderem and Underhill, 1999). 

Pathogens are able to swell and after a certain period of time destroy the phagocyte. In our 

experiments, non-phagocytosed conidia germinated to hyphae and overgrew the monocytes. 

The phagocytosis rate of monocytes of various Aspergillus species was shown to differ 

according to the pathogenicity of the conidia (Henwick et al., 1993; Akpogheneta et al., 

2003).  

Until now, most researchers studied cytokine expression either in murine models or in human 

macrophages (Schelenz et al., 1999; Pylkkanen et al., 2004), but only very few studies were 

performed on human monocytes and only a limited number of cytokines was investigated 

(Roilides et al., 1998; Wang et al., 2001; Cortez et al., 2006). After analyzing the real-time 

PCR data, we could observe increased cytokine expression in monocytes only after 6 and 9 

hours, when incubated with conidia. Thus phagocytosis didn’t stimulate any up-regulation of 

the three inflammatory cytokines tested (TNF-α, IL-1β and IL-6). After 6 and 9 hours, a little 

up-regulation was observed, probably due to the swelling of the phagocytosed conidia (see 

also fig 4.1b) and the beginning of generation to hyphae of the non-phagocytosed ones. Such 

activities stimulate many immune-related pathways in the cell, such as cytokines responsible 

for host defense and phagocyte activation. Similar results were shown previously for the 

interaction of endothelial cells with Pseudomonas aeruginosa. An inflammatory response was 

only detected at the end of phagocytosis (Grassme et al., 2003). Also the results obtained by 
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Cortez et al. (2006) are comparable to ours. On the contrary to conidia, inactivated hyphae 

stimulated an early and high up-regulation of all three cytokines. This is due to the different 

toxins, surface antigens and cell wall components on hyphae (Bernard and Latge, 2001; 

Rementeria et al., 2005). Hyphae represent the invasive form of the fungus, leading to the 

logical conclusion that they have far stronger effects on host cells than conidia, not to forget 

they are also bigger. They are too big for phagocytosis, stimulating cells to produce instantly 

inflammatory cytokines and chemokines to attract fellow immune cells for help. 

Genome-wide expression profiling demonstrated a differential regulation of many genes, 

mostly related to the inflammatory response such as cytokines and chemokines and their 

receptors, as well as genes coding for signal-transduction, adhesion molecules and many 

others. In comparison to conidia, inactivated hyphae induced a strong differential gene 

expression after 3 hours of incubation already, but the total number of differentially regulated 

genes was similar after 6 and 9 hours, regardless of the stimulus. Conidia started to germinate 

to hyphae after 3 hours. Therefore, as mentioned before, after 6 and 9 hours of incubation, 

hyphal elements are present in all experiments and may account for similarities in gene 

expression profiles and numbers of differentially regulated genes at 6 and 9 hours. Yet 

standard deviations of several SLR values are rather high, most probably due to individual 

differences between the monocytic preparations. Yet a clear trend concerning the regulation 

tendency of the genes was noticed. 

Activation of immune defense responses during Aspergillus fumigatus infection is, among 

other things, dependent on so-called pattern recognition receptors (PRRs), such as the 

mannose receptor, and some integrins, as well as TLRs and PTX3. Some A. fumigatus cell-

wall molecules act as PAMPs which activate PRRs, like mannans, for example. Foreign 

particles and pathogens are recognized by more than one receptor on the cell surface. Due to 

the many different surface antigens of a pathogen, the response triggered by more or less 

specific receptors may differ, releasing cellular responses dependent on the downstream genes 

activated by these receptors (Rohde et al., 2002). PTX3 is a lectin-like molecule which plays 

an essential part in antigen recognition and defense against foreign agents and pathogens, 

among others conidia of A. fumigatus (Garlanda et al., 2005). PTX3 production is induced by 

primary inflammatory signals, such as agonists for different members of the TLR family. Our 

data demonstrated that PTX3 expression was up-regulated after 3 hours of incubation by both 

conidia and inactivated hyphae. Thus PTX3 may have promoted phagocytosis of the conidia 

during the first 3 hours. These findings are in line with recent reports that describe the role of 

PTX3 in promoting phagocytosis of A. fumigatus conidia and in activating the anti-fungal 
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cellular response (Garlanda et al., 2002; Gaziano et al., 2004). Interestingly, also hyphae 

induced PTX3 expression. However, we presume that in parallel to LPS, hyphae can induce 

PTX3 production but cannot be bound by PTX3 (Garlanda et al., 2005).  

Toll-like receptors (TLRs) belong to the family of pathogen recognition receptors which 

recognize pathogen-associated molecular patterns (PAMPs). TLR2 and TLR4 revealed no 

changes in their expression profiles in our experiments. These results were confirmed with 

real-time PCR (Data not shown). TLR2 and TLR4 were shown to be essential for A. 

fumigatus recognition, activating the cellular immune response by inducing genes such as 

MyD88, IRAK and the transcription factor NF-κB, which in turn induces transcription of 

cytokines and chemokines as well as other inflammatory genes (Meier et al., 2003; Braedel et 

al., 2004). Our data demonstrate the expression of a broad range of cytokines and 

chemokines, downstream of the TLR signaling pathway. Most likely this reflects the 

incubation periods we used, starting at 3 hours, which is longer compared to earlier studies 

(Meier et al., 2003; Braedel et al., 2004). Nevertheless, similar results were observed by 

Cortez et al. (2006). Yet more interesting is the strong down-regulation of TLR7 and TLR8, 

which are responsible for single-stranded RNA (ssRNA) recognition (Heil et al., 2004). TLR7 

and TLR8 were strongly down-regulated only after incubation with inactivated hyphae, but 

not conidia. This coincides with the results of an earlier study, in which neutrophil activity 

against Aspergillus fumigatus was assessed. Bellocchio et al. (2004) could show that an 

increased expression of TLR7 and TLR8 on neutrophils inhibits fungal damage, but does not 

affect their phagocytosis activity. This may explain why monocytes down-regulate the 

expression of these TLRs when stimulated by hyphae, but not when phagocytosing conidia. 

As predicted, inflammatory genes such as cytokines and chemokines (IL-8, IL-1 and CCL2) 

were for the most part similarly expressed after incubation with both stimuli, despite slight 

differences depending on the maturation state of the fungus and the incubation time. This was 

also confirmed by ELISA assays (figure 4.1.8). Interestingly, some genes, mostly receptors, 

showed large differences in their regulation. CCR2, the receptor for CCL2 (MCP1), which is 

an important chemokine that induces the recruitment of monocytes and neutrophils to 

infection sites, was strongly down-regulated after incubation with conidia, but was found 

unchanged after incubation with hyphae. Recent studies described the significant role of 

CCR2 in clearance of A. fumigatus conidia from the airways of mice. CCR2-/- mice showed 

less neutrophil recruitment into the airways as well as an increase in inflammation and sub 

epithelial fibrosis (Blease et al., 2000). Lundien et al. (2002) demonstrated that CCR2 

expression is inhibited in bronchial epithelial cells when incubated with LPS, a method which 
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may be used by bacteria to promote cell infection. These findings may resemble A. fumigatus 

infection of monocytes. A. fumigatus conidia were able to inhibit CCR2 expression in 

monocytes, which may play a role in facilitating the infection process. In contrast to viable 

conidia, inactivated hyphae obviously lose their ability to inhibit CCR2 expression.  

Our microarray data demonstrate an increase in CCL2 and urokinase-type plasminogen 

activator (uPA) expression. These results were similar for both stimuli, conidia and 

inactivated hyphae. uPA binds to its receptor (uPAR) resulting in the conversion of 

plasminogen to plasmin, which activates pro-collagenase that degrades the extra cellular 

protein matrix and interstitial tissue and facilitates migration and invasion of tumor as well as 

immune cells. Plasmin acts as a chemoattractant for monocytes (Syrovets et al., 1997) and 

induces expression of inflammatory cytokines and chemokines at sites of inflammation 

(Weide et al., 1996; Syrovets et al., 2001; Burysek et al., 2002). Higher levels of uPA were 

also detected at injury and inflammation sites in immunocompromised patients, such as AIDS 

patients (Angelici et al., 1996; Angelici et al., 2001; Kusch et al., 2002; Kunigal et al., 2003), 

for example. A feedback pathway generated by PathwayAssist™ revealed the interaction of 

CCL2 and uPA, which is largely similar for conidia and hyphae (figure 4.1.7.2). This pathway 

gives an overview of a possible monocytic defense strategy which involves IL-1, TGF and 

CCL2, along with uPA, in causing lung injury. Recently, in a murine model, Maus et al. 

(2005) described the effect of CCR2 expression levels in recruited monocytes on CCL2 

concentrations in inflamed lung tissue, limiting excess monocytic accumulation and 

promoting a return to homeostasis. According to our data, CCL2 may play an important part 

in attracting monocytes to sites of inflammation induced by A. fumigatus. This inflammatory 

process, involving the release of inflammatory cytokines (IL-1, TGFβ), ICAM1, uPA and 

others, might ultimately result in tissue damage. The increased cytokine and chemokine 

expression levels in the monocytes after incubation with A. fumigatus lead us to propose, in 

addition to the feed-back pathway, a possibly strong inflammation process that may cause 

local injury. Lung injuries are major complications after stem-cell transplantation (SCT). 

They occur in 25-55 % of transplant patients and can account for up to 50% of transplant-

related mortality (Weiner et al., 1986; Clark et al., 1999). These recent studies report that lung 

injury can occur as a result of inflammation accompanied by high cytokine levels.  

One limitation of the analysis of primary monocytes obtained from different persons is a 

possible variability between the donors which might lead to relatively high standard 

variations. However, gene expression analysis of different independent donors has a higher 
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impact compared to multiple runs from one identical donor. Furthermore, the use of adequate 

controls and the definition of levels of significance are essential.  

To further the role of TLRs in monocytes after stimulation with A. fumigatus, we tried to 

establish a protocol to transfect the primary monocytes with siRNA. So far, no successful 

method was established to transfect primary monocytes and achieve a strong silencing effect 

(> 90%), without affecting other functions of the cell. Only one work describes a successful 

transfection of monocytes with CD33-siRNA using the lipofection method with 

Oligofectamine™ (Lajaunias et al., 2005), which we also used. Other studies describe RNA 

interference using lentiviral vectors in monocytes (Lee et al., 2004). We did not use lentiviral 

vectors, as this viral infection of the monocytes could potentially stimulate defense pathways 

and affect gene expression of immune-related genes. Our lipofection experiments revealed 

disappointing results, showing either weak silencing or no silencing at all. In addition, the 

results varied from experiment to another, showing no standardization. Although transfection 

with Oligofectamine™ resulted in some silencing, it was not enough to turn down the 

function of the target gene to an extent, where its functionality becomes non-considerable (see 

also 4.1.9.1). RNAiFect™ showed somehow stable results, but yet silencing was not enough 

as well (up to 75%, once). The weak silencing with lipofection might be due to low or even 

high concentrations of the reagent used. We followed the manufacturer’s protocol for each 

reagent, and varied the concentrations of the reagent and the siRNA as well, until the levels 

where either very low, so that it had no effect or it was too concentrated resulting in non-

specific interactions with the cell, or even cell death. Another factor we varied was incubation 

time. No clear tendency could be observed, where silencing was the highest. Our incubation 

periods varied from 9 h to 72 h, thus covering the time usually needed for siRNA to silence 

and for proteins to be translated. 

After promising experiments were performed in our lab to transfect siRNA into DCs, we 

applied this method on monocytes. Several studies already showed electroporation to be an 

effective alternative to transfect siRNA into cells, like DCs, but also primary cells and cell 

lines (Gresch et al., 2004; Ovcharenko et al., 2005; Prechtel et al., 2006). Since TLR genes 

were our primary targets, concerning their role in host defense against A. fumigatus, we used 

siRNAs made by Qiagen (Germany), which were previously evaluated and showed positive 

silencing effects. Our electroporation results were far more promising as with lipofection, yet 

instability in the outcome was also observed. Varying parameters like pulsing time and 

voltage or incubation period showed slight differences, but no constant results were obtained 

in monocytes. Only DCs showed stable effects. When voltage or pulsing times were raised, 
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monocytes couldn’t withstand and perished. Unfortunately, when TLR4-siRNA silenced 

TLR4, TLR2 was also affected. On the otherwise, TLR2-siRNA didn’t silence TLR4. (see 

4.1.9.2, experiments 1 and 2). Yet, this effect wasn’t seen with DCs (experiment 2). Thus, the 

problem lies within the monocytes themselves, not the siRNA or the transfection protocol. 

The same is seen when transfecting TLR8-siRNA (experiment 3). Only TLR8 in DCs gets 

silenced. These results lead to the fact that transfecting and successfully silencing primary cell 

target genes, particularly in monocytes, remain a challenge for researchers.  

 

5.2    Analysis of HLA-presented peptides of the THP-1 cell line 

 

The human monocytic cell line THP-1 was shown to have phagocytic abilities like normal 

monocytes and express monocytic surface antigens and HLA molecules (Tsuchiya et al., 

1980). We used this cell line to identify peptides presented on HLA class I and II molecules, 

after incubation with A. fumigatus hyphae. The advantage of using a cell line over freshly 

isolated cells lies mainly in the availability of large numbers of cells and the homogeneity of 

the cell cultures. These were two important factors which were crucial for our analyses of 

HLA-presented peptides. The cell line could be easily expanded and grown in roller bottles 

which allowed large scale stimulations with the fungus; and secondly, we could be sure to 

have only one cell type in the culture, excluding the possibility to have other immune cells 

present, as in freshly isolated blood cultures. Nevertheless, using cell lines implies also 

disadvantages, mainly concerning the genetic drifting which occurs in cancer cell lines 

through small mutations that add up over time.  

We first studied cell surface expression of different HLA molecules before and after 

stimulation with the A. fumigatus hyphae and showed that THP-1 cells express high levels of 

class I and class II molecules. After stimulation with hyphae, the HLA class I and II 

expression levels were a little bit down-regulated, as shown by flow cytometry (figure 4.2.2). 

It is widely recognized that down-regulation of HLA class I molecules by tumor cells impairs 

cellular immune recognition and contributes to inefficient cytotoxic T cell-mediated tumor 

eradication leading to progression of disease (Morris, 1990; Seliger et al., 1996). Yet down-

regulation of HLA class II as well could be a mechanism triggered by the pathogen, in this 

case A. fumigatus, to cause inefficient immune recognition and to overcome the host cell. This 

is in line with a previous study showing THP-1 HLA class II to be strongly down-regulated 

during the first 2 days after phagocytosis of bacteria (De Lerma Barbaro et al., 1999). On the 

contrary, another study showed A. fumigatus conidia to trigger HLA-DR expression in DCs 
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after 24 h of incubation (Grazziutti et al., 2001), but which might be due to increased 

phagocytosis rates leading to higher processing and presentation levels of fungal peptides. 

Studies on HLA class II molecules in allergic bronchopulmonary aspergillosis patients 

suggest different roles for HLA-DR and HLA-DQ in response to A. fumigatus (Chauhan et 

al., 2003), where some HLA-DR alleles possibly contribute to susceptibility while HLA-DQ2 

contributes to resistance (Chauhan et al., 2000). This reflects again a possible defense 

mechanism by the THP-1 cell, by down-regulating HLA-DR in response to the fungus. Yet 

we didn’t perform further tests to investigate this more closely. 

Analyzing the class II presented peptides after stimulation with hyphae, we could only 

identify 8 peptides, given in table 4.2.6.1. Many MS/MS spectra had low intensities; thus a 

high background signal which made it impossible for us to evaluate, although we had a 

relatively acceptable peptide yield of 1 nmol as shown in Edman-sequencing (see 4.2.4). 

Class II peptides are, compared to class I, much longer peptides, resulting in more 

complicated spectra which are more difficult to evaluate. Among the 8 identified peptides, no 

A. fumigatus-specific ones were found. This might have many reasons; first, we assume the 

THP-1 cells didn’t phagocytose any of the hyphae due to the big volume of hyphal cells, and 

smaller fragments might have been present only in small amounts, which made it very 

difficult for us to detect them. Marr et al. (2001) showed that THP-1 cells do phagocytose and 

kill A. fumigatus pathogens within 6 hours, but in the case of conidia and not hyphae. Thus, 

stimulation of THP-1 might have happened, but not phagocytosis. Up to now, no study 

described phagocytosis of A. fumigatus hyphae. Second, we assumed that THP-1 cells might 

do cross-presentation, thus not present fungal peptides on class II molecules, but on class I. 

An earlier study showed presentation of an exogenous antigen by THP-1 on class I molecules, 

when targeted specifically to the receptor for IgG, FcgammaRI (Wallace et al., 2001). Yet this 

assumption was nullified as we couldn’t find fungal peptides also on class I. Third, we 

assume that fungal peptides were not presented, or less presented and not detected, due to less 

expression of class II molecules. This was also concluded by De Lerma Barbaro et al. (1999), 

where THP-1 phagocytosed bacteria, but didn’t process and present specific bacterial peptides 

on class II molecules. So maybe mechanisms of inhibition of the transport of newly 

synthesized class II molecules to the cell surface were triggered by A. fumigatus. Similar 

observations were made where HLA class II molecules were internalized, but recycling was 

inhibited after phagocytosis of Mycobacterium tuberculosis by human monocytes (Clemens 

and Horwitz, 1995). Another study shows IL-10 to inhibit cell surface expression of class II 

due to block of exocytosis of mature class II molecules and inhibition of recycling 
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(Koppelman et al., 1997). This matches with our previous findings concerning gene 

expression in monocytes, where we show A. fumigatus hyphae, but not conidia, to induce IL-

10 expression after 3 hours incubation (see tables 4.1.7.1a and b). Thus IL-10 may have 

blocked processing and presentation of fungal peptides to a certain limit, which disabled us to 

detect any after 6 hours, and taken in consideration that maybe only small amounts of hyphae 

were phagocytosed, if ever. Stanzani et al. (2005) discusses that A. fumigatus produces many 

potent toxins, like gliotoxin, which inhibit antigen-presenting cell function in monocytes; but 

the hyphae we used were inactivated and couldn’t produce toxins anymore. One can discuss 

and find many other reasons and mechanisms that might have lead to inhibition or down-

regulation of antigen presentation, associated with no fungal peptide presentation. We assume 

all these factors together played a role in this. The human peptides identified belong mostly to 

unspectacular proteins, not involved in immune regulation pathways, except maybe 

FRDGDILGKYVD, the peptide shown in figure 4.2.6.1b that belongs to the heat shock 10kD 

protein 1. This HSP was shown to inhibit TLR signaling in macrophages and monocytes 

(Johnson et al., 2005). This coincides surely with our gene expression data in the peripheral 

monocytes, showing no over-expression of TLR receptors. Yet such assumptions must be 

handled carefully, for THP-1 is a cell line which may differ in its immune response from fresh 

monocytes, as shown in a previous study on cytokine expression (Glue et al., 2002). To 

mention is still the 20 amino acid-long actin peptide found (WISKQEYDESGPSIVHRKCF), 

which is human but also present in A. fumigatus actin. Unfortunately, one cannot figure out to 

which species this specific peptide really belonged to originally, so also this conclusion must 

be handled with care. 

Identification and differentiation of HLA class I peptides from two different samples of the 

same cell type can be done by different modification of these peptides, like guanidination and 

nicotinylation. Such a method was established in our research group by C. Lemmel (Lemmel 

et al., 2004) and further developed by A. Weinzierl in order to allow guanidination of 

peptides previously lyophilized in citric acid containing TFA, as well as a better 

nicotinylation. Through nicotinylation of the N-terminus, the b1-ion obtains a high intensity 

and can be easily identified which is not the case in non-modified peptides, where usually b2-

ions are more intense and stable (Yalcin et al., 1995). Through modification with NIC and 

dNIC (deuterium instead of hydrogen), we were able to differentiate between peptides of the 

stimulated cells and the non-stimulated ones. The identification was much easier, when 

analyzing the same peptide spectra, one with NIC and the other dNIC. Identifying the b1 ion in 

dNIC was then very easy, since it differs in 4/z from the same ion in NIC. That way, we 
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identified 5 peptide pairs presented on HLA class I in stimulated and non-stimulated cells as 

well (table 4.2.6.3a). One problem that made it hard for us to detect more peptides was that 

we didn’t obtain enough peptide yields from the immunoprecipitation, as shown with the 

western blot analysis, figure 4.2.5a. Unfortunately, technical reasons hindered us from 

quantifying the class I peptides by Edman sequencing. This was probably the main cause in 

not getting enough evaluable spectra. Most spectra had low intensity peaks with a high 

background. The five common peptides identified are, like most class II, not involved in 

immune regulation pathways. Only RPAPVEVTY, belonging to PTP4 A1, a tyrosine 

phosphatase, is believed to regulate cell proliferation and plays a role in tumorgenesis 

(Werner et al., 2003). In addition to these commonly presented peptides, we were able to 

identify eight peptides only presented on the stimulated cells (table 4.2.6.3b). Four of these 

were peptides belonging to ribosomal proteins, three to the same one: RPL3. The other four 

were as well peptides which belong to irrelevant proteins, like APOL1 (Apolipoprotein 1) and 

HMGCS1 (3- hydroxyl-3-methylglutaryl-CoA synthase 1). Unfortunately as in class II, we 

were not able to detect A. fumigatus-specific peptides on class I, after considering THP-1 cells 

to perform cross-presentation (Wallace et al., 2001). 

 

5.3 General conclusion 

 

In this investigation, monocytes are shown to play a major role in phagocytosing fungal 

spores. Surely they do not present the first line of defense, but yet are able to engulf escaping 

conidia. We could show that A. fumigatus induces inflammatory response in monocytes by 

stimulating the expression of cytokines and chemokines, which may lead ultimately to the 

recruitment of immune cells and possibly to lung injury, a phenomenon observed often in 

patients with invasive aspergillosis.  

Furthermore, we analyzed peptide presentation on the monocytic cell line THP-1 after 

stimulation with A. fumigatus hyphae. Unfortunately, we couldn’t find any A. fumigatus-

specific peptides presented on either HLA class I or II molecules, most likely because THP-1 

did not phagocytose any or only small, almost undetectable amounts of hyphae. We identified 

only human-specific peptides which belong to different proteins not involved in immune 

response pathways.  
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6. Summary 
 

Aspergillus fumigatus is a member of a large genus of filamentous fungi found in the 

environment. It is pathogenic to humans, causing serious and life-threatening infections in 

immunocompromised patients. Many studies have been made so far investigating the 

interaction of A. fumigatus species with immune cells, most of these concentrating on 

macrophages, which represent the first line of defense against this fungus. Monocytes are first 

recruited to an infection site, as soon as conidia of the fungus escape the primary immune 

defense cells in the lung and enter the blood stream. This gives them a potent role in 

controlling the outcome of an infection. 

We therefore analyzed the interaction of A. fumigatus live conidia and ethanol-inactivated 

hyphae with human monocytes on different levels. First, we investigated phagocytosis of 

conidia by fresh peripheral blood monocytes after 3 and 6 hours and found the majority of the 

monocytes to phagocytose up to 3 conidia during the first 3 hours. We further investigated 

gene expression in monocytes after incubation with conidia and hyphae for 3, 6 and 9 hours, 

using real-time RT-PCR and microarray gene chips. We found inactivated hyphae to induce 

strong cytokine and chemokine expression already after 3 hours and conidia after 6 and 9 

hours. Genes like PTX3, which were shown to facilitate phagocytosis of conidia, were up-

regulated after 3 hours. Interestingly, essential TLRs like TLR2 and TLR4 were not regulated 

at all. We finally found uPA and the MCP-1 (CCL2) to be potential key regulators involved in 

A. fumigatus-induced tissue damage and inflammation, as obtained by a pathway-generating 

software. 

In a second effort to get more detailed data from the A. fumigatus-moncytic interaction, we 

analyzed class I- and class II-specific peptides presented on a monocytic cell line (THP-1) 

after 6-hour-incubation with inactivated hyphae. For this purpose, we isolated HLA presented 

peptides from stimulated and non-stimulated cells by immunoprecipitation using specific 

antibodies and analyzed them by ESI-Q-Tof mass spectrometry. Class I peptides were 

previously modified at their N-termini by different isotopes in order to differentiate the 

stimulated-specific from the non-stimulated-specific ones. Unfortunately, we couldn’t detect 

any A. fumigatus-specific peptides on class II or I. We identified only some human peptides 

presented on both HLA, but these were not related to any immune relevant protein as well. 
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8. Abbreviations 
 

AIDS  Aquired immune deficiency syndrome 

APC  Antigen presenting cell 

BSA  Bovine serum albumin 

CD  Cluster of differentiation 

cDNA  complementary DNA 

Da  Dalton 

DC  Dendritic cell 

DMSO  Dimethyl sulfoxide 

dNTP  Deoxyribonucleotide triphosphate 

EDTA  Ethylenediaminetetraacetic acid 

FACS  Fluorescence activated cell sorter 

FCS  Fetal calf serum 

h-ALAS Human 5-Aminolaevulinate synthase 

HIV  Human immunodeficiency virus 

HLA  Human leukocyte antigen 

IA  Invasive aspergillosis 

IL  Interleukin 

kDa  Kilo-dalton 

LC  LightCycler™ 

LPS  Lipopolysaccharide 

MHC  Major Histocompatibility complex 

Min  Minutes 

PBMCs Peripheral blood mononuclear cells 

RNAi  RNA interference 

rpm  Rounds per minute 

RPMI  Roswell Park Memorial Institute 

siRNA  small interfering RNA 

Sec  Seconds 

TLR  Toll-like receptor 
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