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Abstract

The human immune system provides effective protection against invading pathogens and can-

cer. Soluble antibodies can directly bind to extracellular antigens, whereas other mechanisms

are needed for the recognition of virally infected or cancerous cells. Intracellular proteins are

digested into smaller peptides, which are then displayed on the cell surface bound to major

histocompatibility (MHC) class I molecules. Cytotoxic T (Tc) cells play an important role in

the immune system since they can recognize MHC-peptide complexes and eliminate infected

or abnormal cells.

The intracellular events leading to MHC-peptide presentation are collectively known as

antigen processing. There are three main steps in the antigen processing pathway; diges-

tion of proteins into peptides by proteasomes in the cytosol, transport of peptides into the

endoplasmic reticulum (ER) by the transporters associated with antigen processing (TAP),

and MHC-peptide complex formation. A detailed understanding of these processes is a pre-

requisite for rational peptide vaccine design aiming to efficiently activate Tc cells. This has

motivated the development of computational methods dealing with the different steps of the

antigen processing pathway.

Methods predicting MHC-peptide binding with relatively good accuracy exists, however,

there is room for improvements. Less is known about the two preceding steps, protein cleavage

and peptide transport. There is a need of methods addressing these steps. Furthermore, there

is a lack of methods that consider the whole antigen processing pathway in an integrative

manner.

The first part of this thesis describes different methods for predicting MHC-peptide binding.

Support vector machines and decision trees are used to study a wide range of different MHC

alleles. In a comparative study the SVM-based method SVMHC shows better prediction ac-

curacy compared to the well-known SYFPEITHI and BIMAS methods. Additionally, a con-

sensus method for predicting peptide binding to HLA-A*0201 is presented. Novel methods for

prediction of proteasomal cleavage and TAP transport are presented. These show improved

prediction accuracy in comparison to existing methods. The prediction methods addressing

the individual steps of the processing pathway are integrated in the WAPP (whole antigen

processing pathway) method. WAPP shows increased accuracy of MHC-peptide binding pre-

diction by filtering out peptides not likely to be generated by the proteasome or transported

by TAP.
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Immunotherapy has proven useful in cancer therapy during recent years. The promising

results include several successful reports using MHC-binding peptides in order to activate the

immune system. In cancer immunotherapy these peptides typically originate from tumor-

specific antigens (TSAs) or tumor-associated antigens (TAAs). The second part of this thesis

describes an integrative analysis system for cancer-related data. CAP is used to analyze

the effects of genetic variation and gene expression levels for raising autoimmune responses

in cancer. This provides insights into the characteristics of TSAs and TAAs. Furthermore,

TSAs are analyzed for potential MHC-binding peptides.

In conclusion, the individual methods presented here show improvement when compared to

other similar methods. The integrated method WAPP modeling the whole antigen processing

pathway is the first of its kind and shows promising results. Finally the combination of CAP

and SVMHC prove the usefulness of integrative analysis coupled to prediction tools for finding

peptide immunotherapy candidates.
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Kurzzusammenfassung

Das menschliche Immunsystem stellt eine effektive Barriere zum Schutz vor Pathogenen und

Krebserkrankungen dar. Extrazellulärer Antigene werden von löslichen Antikörper erkannt,

die die Basis der humoralen Immunantwort bilden. Die Erkennung intrazelluläre Antigene,

die für eine Immunantwort auf Virusinfektionen oder Krebs notwendig ist, erfolgt mit Hilfe

andere Mechanismen: intrazelluläre Proteine werden zu kleinen Peptiden verdaut, die, an

die Moleküle des Histokompatibilitätskomplexes (MHC Klasse I) binden und auf der Zel-

loberfläche präsentiert werden. Zytotoxische T-Zellen (Tc) erkennen MHC-Peptid-Komplexe

die von körperfremden oder veränderten Antigenen stammen und eliminieren diese infizierten

oder abnormalen Zellen.

Das intrazelluläre Vorgang, der zur MHC-Peptid-Präsentation führt, wird als Antigen-

prozessierung bezeichnet. Drei Schritte im Rahmen der Antigenprozessierung sind von beson-

derer Bedeutung: Verdau, Transport und MHC-Bindung. Im ersten Schritt verdauen Pro-

teasen des Cytosols Proteine zu kurzen Peptiden. Diese werden im zweiten Schritt aktiv

ins endoplasmatische Retikulum (ER) transportiert. Dort binden sie schließlich spezifisch

an MHC-Moleküle. Ein detailliertes Verständnis und eine theoretische Modellierung dieser

Schritte ist Voraussetzung für den computergestützten Entwurf von peptidbasierten Impf-

stoffen.

Für die Vorhersage der MHC-Peptidbindung existiert eine Reihe von Verfahren mit guter

Vorhersagegenauigkeit, die aber immer noch Raum für Verbesserungen bieten. Wesentlich

weniger gut sind die beiden anderen Schritte (Verdau zu Peptiden und Transport ins ER)

vorhersagbar. Darüber hinaus fehlen Methoden, diese drei Schritte zu einer integrierten

Vorhersage der Antigenprozessierung zusammenzuführen.

Der erste Teil dieser Arbeit beschreibt die unterschiedlichen Methoden zur Vorhersage

der MHC-Peptidbindung. Zur Vorhersage der Bindung an eine Reihe unterschiedlicher Al-

lele kommen Supportvektormaschinen (SVMs) und Entscheidungsbäume zum Einsatz. Die

SVM-basierte Methode SVMHC bietet eine bessere Vorhersagegenauigkeit als die bekannten

Methoden SYFPEITHI und BIMAS. Diese lässt sich durch Konsensusmethoden noch weiter

steigern, wie am Beispiel für das Allels HLA-A*0201 gezeigt wird. Auch für die Vorhersage

des Verdaus in Peptide und den Transport ins ER werden Vorhersagemodelle vorgestellt.

Diese zeigen ebenfalls deutlich verbesserte Vorhersagequalität als vergleichbare Methoden.

Die drei Einzelvorhersagen (Verdau, Transport, Bindung) werden schließlich in einer inte-
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grierten Vorhersage der gesamten Prozessierung zusammengeführt: WAPP (Whole Antigen

Processing Pathway). WAPP zeichnet sich ebenfalls durch eine verbesserte Vorhersagege-

nauigkeit aus, insbesondere aufgrund seiner geringeren Rate an falsch positiven Vorhersagen.

Im Gegensatz zu reinen MHC-basierten Methoden kann die Peptide, die nicht verdaut oder

transportiert werden, erkannt und ausfiltriert werden.

Immuntherapie hat sich in den letzten Jahren als ein vielversprechender Weg in der Kreb-

sbekämpfung herausgestellt. Dabei wurden zum Beispiel MHC-Bindende Peptide eingesetzt,

um das Immunsystem gegen Krebszellen zu aktivieren. In der Krebsimmuntherapie stammen

diese Peptide üblicherweise von tumorspezifischen Antigenen (TSAs) und tumorassoziierten

Antigenen (TAAs). Der zweite Teil der Arbeit beschreibt ein integriertes System zur Anal-

yse krebsrelevanter Datensätze zur Unterstützung der Immuntherapie. Dazu kommt die in

dieser Arbeit entwickelte Methode zur Vorhersage der Antigenprozessierung wieder zum Ein-

satz. Integriert wird diese Vorhersage in das Analysewerkzeug CAP, das die Integration und

Analyse heterogener krebsrelevanter Datensätze ermöglicht. CAP wird verwendet, um den

Einfluss von genetischer Variabilität und Genexpression auf die Entstehung einer Immunant-

wort gegen Krebs zu untersuchen. Diese Daten erlauben die Identifizierung von TSAs und

TAAs, die dann wieder mit Hilfe von SVMHC auf ihre Immunrelevanz untersucht werden

können.

Zusammenfassend zeigen die hier entwickelten Methoden gegenüber vorher bekannten Meth-

oden deutlich verbesserte Vorhersagegenauigkeit. Die integrierte Vorhersagemethode WAPP

ist die erste ihrer Art und liefert vielversprechende Ergebnisse. Die Kombination von SVMHC

und CAP zeigt den Nutzen der beiden Methoden für die Identifizierung von Peptiden für die

Immuntherapie.
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1. Introduction

In daily life we are constantly attacked by invading pathogens such as virus and bacteria.

Furthermore, normal cells might undergo transformation into tumor cells. As in most other

higher vertebrates, the immune system provides efficient protection (immunity) against most

of these events. The human immune system is highly complex and involves many differ-

ent organs and cell types, which can be split into a less specific (innate) and more specific

(adaptive) parts. The innate part of the immune system includes anatomic barriers (skin

and mucous membranes) and phagocytic barriers (cells of the immune system that ”engulf”

invading pathogens in a rather unspecific manner). The adaptive part of the immune system

is responsible for highly controlled recognition of antigens and for initiating the appropriate

response mechanisms. Adaptive responses have the characteristics of antigen specificity, di-

versity, memory, and discrimination between self and non-self. There are some differences in

terms of adaptive responses depending on the origin of the antigen. Extracellular pathogens

are mostly identified and destroyed by antibody-mediated mechanisms (humoral immunity),

whereas virus-infected or malignant cells are mainly eliminated by cytotoxic T (Tc) cells

(cellular immunity).

In both cancer and viral infection, foreign proteins are present within the cell. These

proteins, as well as normal cellular proteins, are digested into smaller peptides by proteases.

The peptides then bind to major histocompatibility (MHC) molecules and the MHC-peptide

complex can then displayed on the cell surface. This process results in a fingerprint of the

current cellular proteome. Under normal conditions only self-peptides are presented on the

cell surface. On the other hand, if the cell is infected, virus-specific peptides will be displayed

and may act as an activation signal for nearby Tc cells.

MHC molecules have been known to play an important role in graft rejection and T-cell

activation for a long time. However, not until the beginning of the 1990’s it became clear that

this process is mediated by MHC-bound peptides. Since then a large number of MHC-binding

peptides have been identified and several X-ray structures of MHC-peptide complexes have
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1. Introduction

Antigenic protein

Proteasome

Antigenic peptides

TAP

ER

Cytosol

Tc cell
TCR

MHC I
MHC I-peptide complex

Extracellular space

Figure 1.1.: An overview of the most important steps in the MHC class I antigen processing
pathway. Antigenic proteins are cleaved into smaller peptides by proteasomes in
the cytosol. The peptides can then be transported into the ER by TAP proteins.
After MHC-peptide binding in the ER, the MHC-peptide complex is translocated
to the cell surface where it can be recognized by a Tc cell, which binds to the
MHC-peptide complex via a T-cell receptor (TCR).

been solved. These experimental data provide the basis for studying antigen processing and

presentation.

Peptides originating from intracellular antigens bind to MHC class I molecules in the

endoplasmic reticulum (ER). However, there are other intracellular events involved in the

processing of these peptides before they actually bind to MHC molecules. Proteins in the

cytosol are cleaved into smaller peptides by the proteasome, which is a huge protease complex

mostly found in the cytosol. The peptides generated by proteasomal cleavage can then be

transported into the ER, where they can bind to MHC molecules. The transporter associated

with antigen processing (TAP), found in the ER membrane, can actively transport peptides

from the cytosol into the ER. An overview of these most important events in the MHC class

I antigen processing pathway is given in Fig. 1.1. A number of alternative processing mech-

anisms both for cleavage and transport have been presented. These include other cytosolic

proteases and alternative transport routes into the ER, however, currently available experi-

mental data shows that the proteasome and TAP play a key role in the antigen processing

pathway.

In recent years, the potential of activating the immune system to fight both infectious

disease and cancer have been explored. It has been known for more than 100 years that

immune system activation by bacterial infection can lead to regression of solid human tumors,
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but only recently these findings have resulted in clinical applications. Tc cells are especially

important for immune responses in cancer. A reduced number of Tc cells typically imply a

reduced protection against cancer [35]. When it became clear that MHC-binding peptides are

a pre-requisite for Tc cell responses, several attempts have been made to use MHC-binding

peptides as vaccines. Even though there are several problems that still need to be addressed,

studies have shown an increased level of antigen-specific Tc cells from 0.1% to 2% of the total

T cell population after treatment [35, 50, 208, 264]. These findings have motivated further

analysis of MHC-binding peptides and have also led to the development of computational

prediction methods. These aim to predict the MHC-binding peptides in a protein for a given

MHC allele.

Proteasomal cleavage and TAP transport are also important for the processing and pre-

sentation of the MHC-binding peptides. Several studies have shown the importance of the

proteasome to generate the correct peptides for MHC presentation [142, 228, 246]. The pro-

teasome is mainly responsible for generating the correct C-terminal of these peptides, which

has been considered by several approaches to predict proteasomal cleavage computationally.

A major problem faced by these approaches is that very little data is available for protea-

some cleavage on the protein level. A wide range of studies have highlighted the importance

of TAP in antigen processing [44, 120, 210, 265, 266]. Attempts have been made to predict

the affinity between peptides and TAP, which have succeeded with reasonable accuracy. The

results also show that the three N-terminal and C-terminal positions of the peptides are the

most important for TAP affinity. The existing methods leave much room for improvements

both regarding the underlying models and computational approaches.

It is desirable to find candidate proteins, from which peptides can be identified. Potential

immunotherapy (vaccination) candidates can be derived from tumor-associated (TAA) or

tumor-specific (TSA) antigens. Such antigens are of special interest, since they are mainly

found within the tumor, reducing the risk of side effects. Unfortunately, only a limited

number of TAAs and TSAs are currently characterized.

This thesis addresses three major questions regarding antigen processing and identification

of immunotherapy candidates: (i) improved prediction of MHC-peptide binding, (ii) an inte-

grated model of the major events in the MHC class I antigen processing pathway, and (iii)

an analysis tool for cancer-related data that can be used to identify TAAs and TSAs.

Chapter 2 gives some theoretical background of both the underlying biology and computa-

tional methods used in this thesis. Some concepts of immunology are outlined and a special

3



1. Introduction

focus is given to MHC-peptide interaction and the role of the immune system in cancer, mo-

tivating the work presented in this thesis from an immunological point of view. Furthermore,

this chapter describes existing computational methods and available experimental data, and

gives an overview of the major computational approaches. The machine learning methods

support vector machines (SVMs) and decision trees (DTs) are described in detail, as well as

the statistical measure employed to evaluate and compare the quality of prediction results.

MHC-peptide binding prediction, the final and most important step of the antigen process-

ing pathway is the focus of Chapter 3. This is an area where many different computational

methods have been proposed for predicting MHC-peptide affinity. Most existing methods use

position-specific scoring matrices (PSSMs) for prediction, which assume an independent con-

tribution to the overall binding energy from each amino acid of the peptide. Here, an SVM-

based approach, SVMHC, is described that outperforms the frequently used BIMAS [201]

and SYFPEITHI methods [217]. Several computational and statistical aspects for applying

SVMs for this prediction task are discussed. This chapter also introduces a consensus predic-

tion method for HLA-A*0201 binding peptides. Here the prediction results of three different

methods are combined into a consensus score, further improving the prediction accuracy.

Finally DTs and biophysical properties of amino acids can be used to construct a prediction

method. The advantage with this approach is the biological interpretability of the decision

rules generated from the DTs.

An integrated method for the whole antigen processing pathway, WAPP, is presented in

Chapter 4. The major steps considered here are proteasomal cleavage, TAP transport, and

MHC-peptide binding. A PSSM-based method, which is more stable than other artificial

neural network previously presented, are used for proteasomal cleavage prediction. For pre-

diction of TAP affinity, support vector regression (SVR) is used, resulting in the SVMTAP

method which shows improved performance compared to the stabilized matrix method (SMM)

presented by Peters et al. [204]. Finally, the methods for proteasomal cleavage and TAP trans-

port are combined with SVMHC to form WAPP. The integration of the different prediction

methods shows an improved performance for several MHC alleles.

Chapter 5 describes how heterogeneous cancer-related data can be integrated and analyzed

in the CAP database. Analyzing data from different aspects of cancer, such as immunology

and genetics, can facilitate in the identification of immunotherapy candidates. The technical

aspects of integrating heterogeneous data, but also the data integrated into the database

and prediction methods used to functionality annotate the data, are described in detail. A
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large-scale analysis investigating the correlation of autoimmune responses in cancer to gene

expression levels and genetic modifications is also carried out. The conclusion from this

study is that gene expression levels seem to influence the immune response to certain cancer-

associated genes, whereas no evidence of the influence of genetic variation could be found.

Finally, the SVMHC method is used to analyze several TSAs, which serves as a qualitative

validation of vaccine candidate identification process.

There are still many open questions regarding antigen processing and we are still far away

from completely understanding cancer. The title of this thesis ”From MHC-peptide binding

to Immunotherapy” also reflects this transition from the reasonably well-defined problem of

predicting MHC-binding peptide, to an area where many challenges still have to overcome.

However, the work presented here clearly shows the usefulness of in silico methods in im-

munology going from MHC-peptide binding, over an integrated model of antigen processing,

to identification of immunotherapy candidates.
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2. Background and theory

This chapter introduces the most important biological and computational theory on which

this thesis is based. The most fundamental aspects of immunology are described, but focus

is of course kept on the parts and concepts important for this work. The interested reader

can find more detailed introductions to immunology in several well-written textbooks [1, 98,

132, 231]. An overview of existing computational methods and available data is also given.

This chapter also introduces the main computational and statistical methods used in this

thesis. Some focus is given to the machine learning methods support vector machines (SVMs)

and decision trees (DTs). Furthermore, statistical methods for evaluating the accuracy of

prediction models are outlined.

2.1. Immunology

The field of immunology studies our protection (immunity) against foreign molecules, in-

vading micro-organisms, and aberrant cells. These can all be recognized and eliminated by

immune responses elicited by the various cells and molecules of the immune system. Early

immunological studies were based on simple observations, whereas immunological process

today can be described at the cellular or even molecular level.

The first documented observation of immunity goes all the way back to the Peloponnesian

war, almost 450 years BC. Around this time, plague was tormenting Athens and Thucydides

described how people who had recovered from the disease could nurse the sick without being

affected again. The word immunity itself comes from the Latin word immunis meaning

”exempt”. In the 15th century, dried crust of smallpox was used to induce immunity by the

Chinese and the Turks, something refined by Edward Jenner in the end of the 18th century.

Jenner observed that the fluid from a cowpox pustule could induce immunity against smallpox

and the first real vaccine was invented. Vaccination was further refined by Louis Pasteur

who managed to use weakened forms of different pathogens, such as cholera and anthrax,
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2. Background and theory

as vaccines. The experiments of Pasteur are often considered as the start of the field of

immunology.

During the last 100 years, technological advances have made it possible to understand

immunology in a different way. The importance of this knowledge is in some way reflected by

the many Noble Prizes awarded to immunologists. Examples of important findings are the

role of blood groups and the genes responsible for graft rejection.

The next sections give an overview of the immune system and describe adaptive immunity

in detail. Some important aspects of the immune system in cancer and immunotherapy are

also pointed out.

2.1.1. The immune system

The immune system is an effective defense system that has evolved in vertebrates as a de-

fense against pathogens and cancer. The function of the immune system can be split into

recognition and response. In recognition, the immune system should be able to recognize

a wide variety of foreign cells and molecules, and at the same time be able to differentiate

between them and the host’s own cells and proteins [126]. Cells and molecules foreign to

the host are referred to as antigens (Ags). Once an antigen has been recognized, the wide

variety of organs, cells, and molecules have to induce the correct immune response to provide

protection, i.e. immunity. The organs of the immune system can be classified into primary

and secondary lymphoid tissues.

The primary lymphoid tissue is where the cells of the immune system develop and mature,

whereas the secondary tissues function to trap antigens and provide an environment for

efficient antigen recognition. White blood cells (leukocytes) constantly circulate the blood and

the lymphoid system, where they play a central role in the specific and selective responses to

antigens. The variety of the immune system enables an almost unlimited ability to recognize

foreign invaders. All cells and molecules work together in an extremely dynamic network.

Immunity can be divided into innate immunity (natural immunity) and adaptive im-

munity (specific immunity), see Fig. 2.1. Innate immunity provides a first defense against

infection and is not specific to certain pathogens. Components of innate immunity are

anatomic barriers, physiological barriers, phagocytic/endocytic barriers, and inflammatory

barriers [98]. Skin and mucous membranes are examples of anatomic barriers, whereas tem-

perature and pH are physiological barriers. The phagocytic/endocytic barriers consist of cells

that can internalize and break down foreign material. Cells involved in these processes are
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Immune system

• Anatomic barriers 

(Skin,mucous membranes)

• Physiological barriers   

(temperature, pH)

• Phagocytic Barriers 

(cells "eating" invaders)

• Inflammatory barriers 

(redness, swelling, heat and pain)

• Antigen specificity

• Diversity

• Immunological memory

• Self/nonself recognition

Innate (non -specific ) immunity Adaptive ( specific ) immunityInnate (non -specific ) immunity Adaptive ( specific ) immunityInnate (non - specific) immunity Adaptive (specific) immunity

Figure 2.1.: A schematic overview of how the immune system can be split into innate and
adaptive immunity. Innate immunity involves unspecific protection like anatomic
and phagocytic barriers. Adaptive immunity is responsible for specific recogni-
tion and memory.

blood monocytes, neutrophils, and macrophages. Inflammation refers to the events occurring

after tissue damage or infection leading to the release of various proteins attracting other

immune cells, having antibacterial effects etc. Adaptive immunity on the other hand has

the main features of antigen specificity, diversity, immunological memory, and self/non-self

recognition. No further details are given on innate immunity, since the processes important

for this thesis are part of the adaptive immune system.

2.1.2. Adaptive immunity

The four main characteristics of adaptive immunity were given in Fig. 2.1: The antigenic

specificity allows for recognition of very small differences between antigens, where one amino

acid difference between two proteins is enough. Diversity refers to the fact that the immune

system can recognize more or less all foreign molecules. Both specificity and diversity are

the effect of genetic recombination events generating an immense number of slightly different

surface receptors on cells of the adaptive immune system. The ability of the immune system

for a faster and heightened response when it is encountered with an antigen for a second

time is called immunologic memory. Specialized memory cells carry out his function

and triggering of these is the aim of vaccination. The last, but not the least important,

feature of the adaptive immune system is its ability to discriminate between self and

9



2. Background and theory

non-self. Failure of this can lead to a variety of diseases such as Multiple Sclerosis (MS) and

Rheumatoid Arthritis.

Adaptive immunity can be split into two branches, antibody-mediated and cell-mediated,

that differ in both recognition and response to antigens. There are two types of lymphocytes,

B lymphocytes (B cells) and T lymphocytes (T cells), responsible for these processes. B cells

can directly recognize antigen by membrane-bound antibodies, whereas T cells only recognize

antigenic peptides complexed with major histocompatibility (MHC) molecules on the surface

of other cells. More details about MHC molecules and their characteristics in terms of peptide

binding are given in Sect2.2. Furthermore a third category of cells of the adaptive immune

system are specialized in ”eating” antigen and presenting them to T cells. These are the

antigen presenting cells (APCs). The most important APCs are macrophages and dendritic

cells (DCs). Furthermore, B cells can also act as APCs. The major cell types are described

in more detail below.

T lymphocytes

As mentioned before, T cells only recognize antigenic peptides bound to MHC molecules.

There are also two major classes of T cells: cytotoxic T cells (Tc) and helper T cells (Th).

Both of these cell types can recognize MHC-peptide complexes by means of T-cell receptors

(TCRs). The two T cell types can be distinguished by two ”cluster of differentiation” (CD)

glycoproteins. Th has CD4 molecules that assist in the MHC-peptide-TCR binding and Tc

has CD8 molecules. There are two classes of MHC molecules (class I and class II) involved

in the activation of T cells. Tc cells recognize peptides from intracellular antigens bound to

MHC class I molecules. MHC class I molecules are present on almost all nucleated cells and

the peptides presented give a ”fingerprint” of the cellular proteome. This enables detection

of virus-infected and cancerous cells to which the Tc cells can induce apoptosis. Th cells

recognize peptides originating from extracellular antigens that are presented by MHC class

II molecules. The function of Th cells is to regulate the activity of other cells of the adaptive

immunity and MHC class II molecules are almost exclusively found on APCs. The processes

by which an antigenic peptide is presented by MHC molecules is a major focus of this thesis

and these processes are described in detail in Sect. 2.3.
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2.1. Immunology

B lymphocytes

B lymphocytes express unique antigen binding receptors, antibodies, on their cell surface.

Antibodies are glycoproteins consisting of two heavy and two light chains, held together by

disulfide bonds. The N-terminal parts of the chains contain hypervariable regions make up

the antigen binding sites. B cells that recognize an antigen can be activated, leading to rapid

differentiation into memory B cells and plasma cells. Memory B cells are long-lived and

continue to express the same membrane-bound antibody as its parent B cell. Plasma cells on

the other hand can secrete soluble antibodies that help in the elimination of antigens. This

type of antibody-mediated immune response is called humoral immunity. The plasma cells

are rather short-lived, but it has been estimated that they might secrete up to 2000 antibody

molecules per second. It has been estimated that there are between 107 to 109 different B

cell clones possible due to genetic rearrangement in the antibody gene loci. This enables the

antigenic diversity described earlier.

B cells can not only recognize and secrete antibodies towards specific antigens, they can

also present antigens by MHC class II molecules in order to activate Th cells. Antigen uptake

by means of membrane-bound antibodies is highly specific and enables effective delivery of

antigen to the compartments used for antigen degradation [155, 299]. Furthermore, B cells

are able to secrete a variety of co-stimulatory molecules needed for Th cell activation.

Macrophages

Macrophages can very effectively internalize antigens, up to 50 % of their surface area can be

internalized in a single antigen uptake [267]. They express both MHC class I and MHC class

II molecules, and can also produce different co-stimulatory molecules. However, the level of

MHC class II molecules expressed are much lower than those of B cells and DCs [15, 175].

Further evidence suggests that macrophages are rather specialized in the clearance of antigens

instead of presentation, which is their major function in innate immunity [2].

Dendritic cells

DCs are probably the most specialized APCs. They are enriched in regions of the im-

mune system with a high concentration of T cells ”waiting” to be activated [128, 176, 218].

They can also carry antigens to the secondary lymphoid organs [129]. Experiments in mice

have show that DCs are needed for an adaptive immune response, something not true for
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2. Background and theory

macrophages [137]. DCs can endocytose and present almost all forms of protein antigens on

both MHC class I and MHC class II molecules. This type of effective ”cross-presentation” is

much more effective in DCs compared to other APCs [5, 67]. This is an important mecha-

nism by which extracellular antigen are presented on MHC class I molecules or intracellular

antigens presented on MHC class II molecules.

Main receptor types in adaptive immunity

There are four major molecules involved in the adaptive immune response described above:

• Membrane-bound antibodies on B-cells.

• T-cell receptors on T-cells

• MHC class I molecules present on all nucleated cells.

• MHC class II molecules on APCs.

A summary view of the most important receptor types in adaptive immunity can be seen

in Fig. 2.2. Furthermore, this figure illustrates activation of both Tc and Th cells.

2.2. The major histocompatibility complex

As mentioned above, the T cells recognize antigenic peptides complexed with MHC molecules.

This section focus on MHC molecules and gives an overview of their general role in the immune

system. Furthermore, detailed descriptions of the structure and peptide-binding properties

of MHC are given.

2.2.1. Overview and general aspects

The importance of MHC molecules was first discovered in the context of graft rejection. In

the 1940s, Gorer and Snell discovered a set of genes involved in graft rejection. These genes

were found to determine if a grafted tissue was accepted or not by the host and the term

histocompatibility genes was coined. Snell was awarded the Noble Prize for these finding

1980. However, almost 20 years after the discovery of the MHC molecules, their only known

function was in terms of graft rejection. In the 1960s and 1970s experiments showed that

MHC molecules are important for an immune response against protein antigens, but the

definitive proof of MHC restriction was given by Zinkernagel and Doherty in the 1970s [307].
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Virus-infected
cell

B

Th Tc

Macrophage

Antibody

TCR

MHC class I

MHC class II

CD4

CD8

DC

Peptide

Tc Virus-infected
cell

TcTc Virus-infected
cell

Virus-infected
cell ThTh DCDC

a.

b. c.

Figure 2.2.: (a.) The most important cell types and receptors involved in the adaptive im-
mune system. Notice that the difference between Tc and Th cells are in their CD
molecules. (b) Activation of Tc cells needs presentation of MHC class I molecules
and involves an interaction of the MHC-peptide complex and TCR-CD8. In this
example the antigenic peptide is presented by a virally infected cell. (c.) Spe-
cialized APCs, here a DC, can activate Th cells by presenting antigenic peptides
bound to MHC class II molecules. Activation of Tc cells needs presentation of
MHC class I molecules and involves an interaction of the MHC-peptide complex
and TCR-CD8. For Th cells CD4 molecules are needed instead of CD8.
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2. Background and theory

These experiments showed that Tc cells generated in a virus-infected mouse only elicit an

immune response in hosts expressing the same MHC molecules as the animal from which

they were generated.

The genes encoding MHC molecules are located on chromosome 6 in humans [294] (also

referred to as human leukocyte antigen (HLAs)). In humans, three gene loci called A, B and

C encode MHC class I molecules. Three other regions called DP, DQ and DR encode MHC

II genes. There is also a region coding MHC class III genes which are proteins associated

with the immune response, but not in the specific presentation to T cells. The MHC genes

are highly polymorphic and each variant of a gene is called an allele. There are over 1200

HLA I alleles and over 700 HLA II alleles currently available in the IMGT/HLA sequence

database [225]. Individuals expressing different MHC alleles are called allogenic.

The first crystal structure of an MHC molecule was solved by Wiley and colleagues [25]

in 1987. However, at this point it was merely observed that the binding groove contained

a collection of atoms and it was not clear that peptides can bind to MHC. In 1991, the

group of H.-G. Rammensee presented evidence that MHC molecules bind smaller peptides

and that these even have specific binding motifs [84, 235]. After this a wide variety of

MHC-binding peptides have been identified and many structures of MHC-peptide complexes

have been solved. Both classes of MHC molecules have an extracellular peptide-binding

domain that is anchored in the cell membrane. Estimates suggest that several different MHC

class I and class II molecules present over 10,000 different peptides at a level higher than 1

fmol per 108 cells [81, 125, 160]. The total number of MHC molecules per cell is thought

to be in the range of 50,000 to 100,000 [93] and about 2·106 peptides are generated per

second [211]. Attempts have been made to find out the number of MHC-peptide complexes

needed for Tc-cell activation. However, this is a hard task since many factors like TCR-MHC

affinity, MHC-peptide affinity, and availability of the peptide play a role. While some studies

suggested that about 100-400 complexes are needed [51, 68, 105], more recent studies suggest

that only three to five complexes are needed per cell [36, 272] and in the most extreme case

a single complex is suggested to be enough [273].

The specific structure and peptide binding function of both MHC class I and class II

molecules are now described.
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Peptide binding cleft

α3α2

α1 β2m

a b

Figure 2.3.: (a.) A schematic overview of an MHC-peptide complex. The α-chain consist of
three domains non-covalently associated with the β2-microglobulin chain. The
peptide biding cleft is formed between the α1 and α2 domains. (b.) The crystal
structure of an MHC class I molecule (HLA-A*0201) with a bound peptide (PDB
code: 1HHJ [165]).

2.2.2. MHC class I structure

MHC class I molecules consist of two non-covalently bound chains: the α chain (42-47 kDa)

and the smaller β2-microglobulin chain (β2m) (12 kD). A schematic view and a crystal struc-

ture of an MHC molecule can be seen in Fig. 2.3. The α chain has about 75% of its total

length in the extracellular space and only a small part is anchored in the cell membrane or

cytosol. The α chain can be divided into three domains where the α1 and α2 domains, each

about 90 amino acids long, form the peptide binding groove. The peptide binding groove is

formed by eight anti-parallel β-sheets surrounded by two α-helices. The size of the binding

groove (25 x 10 x 11 Å) can accommodate peptides with a length ranging from 8 to 11 amino

acids. The ends of the binding groove are closed which makes it impossible for peptides to ex-

tend on either end. The polymorphic residues are mainly contained in the α1 and α2 domains

where they contribute to a certain peptide-binding preference, meaning that different alleles

typically bind different sets of peptides. Each individual expresses six different class I alleles

in total (two allelic variants of the HLA-A, HLA-B, and HLA-C genes respectively). The α3

domain has a binding site for CD8, a surface molecule of Tc cells, but also contain about 25

hydrophobic amino acids that extend through the plasma membrane and a 30 residue long

cytosolic part. The β2-m domain is not encoded in the MHC locus and is invariant between

all class I molecules.

15



2. Background and theory
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Figure 2.4.: (a.) An overview of the structure of an MHC class II molecule. It consists of
an α and a β chain (both anchored in the membrane), which together form the
peptide binding groove. b. The crystal structure of an MHC class II molecule
(MHC Ia-G7) with a bound peptide (PDB code: 1JK8 [159])

2.2.3. MHC class II structure

MHC class II molecules consist of two non-covalently bound chains, the α chain (32-34 kD)

and the β (29-32kD) chain, both encoded in the polymorphic MHC locus. An overview of

the MHC class II structure can be seen in Fig. 2.4. The peptide binding groove is formed by

the N-terminal ends of the α1 and β1 chains and the floor of the binding groove is formed by

β-sheets from both chains. In contrast to MHC class I molecules, MHC class II have open

ends of the binding groove, meaning that peptides can be longer and form ”floppy” ends.

This enables MHC class II molecules to bind peptides up to a length of about 30 amino

acids, but the actual MHC-peptide interaction takes place in the binding groove and involves

about nine amino acids of the peptide. The β2 domain contains a binding site for the CD4

surface molecules found on Th cells. The chains of MHC class II molecules mostly pair with

chains from the same loci (e.g. DQα with DQβ), but they can also pair with chains from

the other alleles (e.g. DQα can pair with DRβ). This pairing mechanism produces many

variants of MHC class II molecules and the total number typically ranges between 10 and

20 in each individual. Both chains contain a membrane-spanning region of about 25 amino

acids and a small cytoplasmic region.

16



2.2. The major histocompatibility complex

MHC-peptide binding

A lot of effort has been put into trying to understand the mechanisms of MHC-peptide

interaction and its role in T-cell activation. In principle this knowledge could be used to

design optimal MHC-binding peptides that can elicit T-cell responses. The characteristics of

MHC-peptide interaction has been analyzed by several different experimental approaches:

• Naturally presented peptides can be stripped of cells and analyzed by Edman degra-

dation or mass spectrometry. This gives a qualitative representation of the peptides

binding to a certain MHC allele (i.e. providing information about the amino acid se-

quence of the peptides).

• The affinity of MHC-peptide interactions can be estimated with competitive binding

assays. This gives a quantitative view of the interaction.

• X-ray crystallography experiments gives insights into the interactions on an atomic

level. At this level structural insights to the MHC-peptide interaction can be obtained.

• T-cell activation studies give immunological important insight into MHC-peptide bind-

ing. If T-cell activation occurs, this means that the peptide binds to MHC and can

interact with the TCR.

The data from these different experiments provide the basis for understanding MHC-

peptide interaction and also highlight the differences between class I and class II MHC

molecules. The peptide binding domains of a MHC class I and a MHC class II molecule

can be seen in Fig. 2.5. In the case of class I, the peptide is bound into a closed binding

groove (”bathtub”), whereas in the class II case the ends of the binding groove are open

and the peptide be extended at both ends (”hotdog”). In both cases the interactions in the

complex are non-covalent.

MHC class I molecules typically bind peptides with a length of eight to ten amino acids.

Peptides binding to a certain MHC class I molecule usually have conserved residues in some

positions, referred to as anchor residues. These are deeply buried in well-defined binding

pockets of the MHC molecule. Figure 2.6 shows a set of superimposed peptides extracted

from crystal structures of HLA-A*0201-peptide complexes. It can be clearly seen that the

conserved anchor residues are the ones in closest contact with the MHC molecule, whereas

the mid-section residues bulges out from the binding groove.
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2. Background and theory

Figure 2.5.: (a.) MHC class I molecules have a binding cleft that is closed at both ends,
meaning that only peptides with a limited length can bind. (b.) MHC class II
molecules are open at both ends which means that the peptides can have ”floppy
ends” that are not in direct contact with the MHC molecules itself.

Figure 2.6.: Superpositioning of a set of HLA-A*0201 complexes binding nine amino acid
long peptides [52]. It can be clearly seen that the backbone of these peptides
is highly conserved in both terminal ends (blue) and a bit more variable in the
middle part (pink). The superposition was done using the α1 and α2 domains of
the structures.
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MHC class II molecules bind peptides with lengths ranging from 10 to 30 amino acids.

Most class II alleles do not have deep binding pockets, instead the MHC-peptide interaction

is distributed along the whole peptide. These interactions are mainly hydrogen bonds between

the peptide backbone and the α-helices surrounding the binding groove. Even though MHC

class II binding peptides are rather long, the main interactions occur within a core of a similar

length to that of MHC class I peptides.

Studies have also been made to elucidate the role of water in MHC-peptide interactions,

assumed to be most prominent in the MHC class I case. Smith et al. classified water in

the MHC-peptide interface into three categories: fixed, semi-fixed or variable [261]. Fixed

water molecules are typically invariant between MHC molecules e.g. waters involved in the

hydrogen bond network at the peptide N-terminus. Semi-fixed waters can be replaced by

atoms from the MHC molecule or peptide and are considered to add variability in terms of

preferred peptide types of a certain MHC molecule. Variable waters are found in the space

between the peptide and the floor of the binding groove, indirectly anchoring the peptide

main chain to the MHC molecule.

2.3. Antigen processing

Antigen processing refers to the mechanism by which peptides originating from antigenic

proteins are finally displayed on the cell surface by MHC molecules. As described previously,

T-cells can not recognize whole antigenic proteins and there are several processing events

involved in generating the peptides presented by MHC molecules needed for T cell activation.

The lengths of the peptides presented vary between MHC class I (8-10 amino acids) and MHC

class II molecules (15-25). Studies have shown that even short peptides, such as in the class

I case, in most cases represent a unique signature of a protein [42]. This uniqueness of the

peptides enables the immune system to discriminate between self and foreign.

Two different processing pathways can be differentiated dependent on the origin of the anti-

gen. Intracellular antigens are processed and presented by MHC class I molecules, whereas

extracellular antigens are presented by MHC class II molecules. The following sections de-

scribe the processing of both intracellular and extracellular antigens. The focus will however

be on the processing of intracellular antigens since this is the focus of this thesis.
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Figure 2.7.: An overview of the processing of intracellular antigens. Cytosolic proteins are
cleaved into smaller peptides by the proteasome and can be transported into
the ER by TAP. In the ER the peptides can associate with MHC molecules and
subsequently be translocated to the cell surface for recognition by Tc cells.

2.3.1. Processing of intracellular antigens

Intracellular antigen processing involves three major steps: (i) protein cleavage into smaller

peptides in the cytosol, (ii) peptide transport into the ER, and (iii) MHC peptide association.

It is thought that the majority of the cytosolic antigens are cleaved by the proteasome and

the smaller peptides, that then are transported into ER by TAP where they can to MHC

molecules, see Fig. 2.7 for an overview. However, several alternative events have been sug-

gested for both cleavage and transport. The following sections will describe the main steps

of proteasomal cleavage and TAP transport in detail, followed by a section about alternative

events.

The proteasome

Proteolytic events, cleavage of longer proteins into peptides and amino acids, occur in all cel-

lular compartments and play a major role in cellular homeostasis. The variety of biological

processes regulated by proteolytic enzymes includes degradation of misfolded proteins [83] and

transcription factor activation [199]. Eukaryotes have several proteolytic systems e.g. lysoso-

mal proteases, calpains, and proteasomes. The proteasome also generates peptides that can

be presented by MHC molecules [228]. The importance of the proteasome in terms of MHC
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presentation of antigenic peptides has been shown by using proteasome inhibitors, leading to

a reduction of the amount of MHC-binding peptides presented on the cell surface [228]. Fur-

thermore, in vitro studies of proteasomal degradation have shown its capability of generating

known MHC-binding peptides from longer peptides [142, 246].

The process of protein degradation is ATP-dependent and is highly conserved from yeast to

mammals [97]. There are two major forms of the proteasome, the 20S and 26S proteasomes.

The 20S proteasome contains the proteolytic sites and is a barrel shaped molecule consisting of

28 subunits stacked into four rings [100], see Fig. 2.8. The subunits are evolutionary related

and fall into two categories, α and β, dependent on sequence similarity. The outer rings

consist of the subunits α1-α7, which form the substrate entry ”gate”. The two inner rings,

β1-β7, each containing three catalytic sites. These catalytic sites have been described to have

trypsin-like (cleavage after positively charged amino acids), chymotrypsin-like (cleavage after

large hydrophobic residues), and peptidylglutamyl-peptide hydrolytic-like activity (cleavage

after acidic amino acids) [285]. The activity of all three catalytic subunits rely on an N-

terminal threonine, which has been proven by single-point mutation studies [30, 249].

The 26S proteasome consists of the 20S proteasome associated with two regulatory 19S

particles. The 19S particle (also known as PA700) has two multi-subdomains consisting of

six ATPase and one binding domain interacting with the 20S proteasome. The function of the

ATPase domains is thought to be unfolding of the proteins in a chaperone-like way [33, 95].

Recent studies provide evidence that the 20S proteasome can be found in two different

forms, the constitutive- (c20S) and the immuno- (i20S) proteasomes. During IFN-γ stimula-

tion, three of the β-subunits can be replaced by three βi subunits [227]. Two of these subunits,

LMP-2 (β1i) and LMP-7 (β5i), are encoded next to the TAP1 and TAP2 loci [96, 140, 170].

The third subunit MECL-1 (β2i) is not encoded within the MHC locus [114]. Some efforts

have been made to elucidate the specific role of these subunits and mice missing the LMP-7

subunit were found to have defect presentation of some antigens and reduced MHC class

I expression [184]. Furthermore, presentation of some antigens was also reduced in mice

missing the LMP-2 subunit [292]. In general the immuno-proteasome has been found to en-

hance cleavage after basic and hydrophobic amino acids and to inhibit cleavage after acidic

residues [4, 76, 92].

Most proteasomal substrates are marked for degradation by ubiquitination and a major

source of proteins are defective ribosomal products (DRiPs), shown to be rapidly ubiquiti-

nated and degraded by the proteasome [243]. The proteasome been shown responsible for
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a b

Figure 2.8.: (a.) The proteasome with the four subunits forming the barrel-shaped protease
complex in different colors. The catalytic sites are within the two inner β sub-
units. (b.) One of the α rings of the proteasome highlighting the seven different
subunits. The entry into the proteasome is in the center, but in the conformation
shown here the opening is closed.(PDB code: 1IRU)

generating the correct C-termini of MHC class I binding peptides in several studies [60, 190],

but there are also several examples where the proteasome generates the correct N-termini as

well [162]. The proteasome generates peptides with lengths ranging from 3-30 amino acids,

but the majority of peptides are between 6-11 amino acids in length [79, 144].

A number of experimental studies have been conducted to elucidate the cleavage specificity

of the proteasome. Several experiments have shown that hydrophobic and aromatic amino

acids are preferred around position P1 at the cleavage sites [189, 190, 196], whereas residues

such as P, Q, and K are disfavored.

Proteasomal splicing

Most identified MHC-binding peptides can be mapped back to a contiguous sequence in their

respective source protein. However, a recently published report by Hanada et al. showed an

example of an HLA-A*03 epitope generated from two non-contiguous parts of its source pro-

tein [104]. Several experimental tests were done and it became clear that the actual splicing

occurs on the peptide level. Post-translational splicing has previously only been identified

in lower organisms and plants. It had previously been identified that a renal cell carcinoma

(RCC)-specific Tc clone (C2) was correlated with (in terms of activation) the expression of
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the FGF-5 protein [103]. At first they managed to specify the immunodominant peptide to a

shorter region of the proteins (amino acids 161-220), but synthetic 9-11mers of this longer pep-

tide failed in T-cell activation. Further studies proved that the peptide (NTYASPRFK) was

generated from the fragments NTYAS (amino acids 172-176) and PRFK (amino acids 217-

220). Another report of a post-translational modification of a T-cell epitope was presented

by Vigneron et al. [296]. An isolated T-cell clone was activated by the melanoma-specific

Pmel17 protein, but identification of the responsible peptide failed. Experiments identified

the peptide RTKQLYPEW to be responsible for T-cell activation. This peptide is also post-

translationally generated and in vitro experiments have shown that it can be generated from

the 13mer RTKAWNRQLYPEW in a mixture with proteasomes. This leads to the conclusion

that the proteasome can generated MHC-binding peptides by means of protein splicing. In

comparison to the FGF-5 case, the excised fragment is much smaller in this case (only four

amino acids). Some theories for the mechanism of proteasomal splicing were also presented,

but the details are still unknown.

The presence of MHC-peptides generated by proteasomal splicing increase the complexity

of epitope identification. It has to be pointed out that the level on which this occurs in vivo is

not known. There are MHC-binding peptides reported in literature and in databases without

a known source protein, these can serve as a starting point for the identification of spliced

peptide candidates. Furthermore, there is a need for new mass spectrometry approaches to

identify these peptides, since all algorithms based on theoretical comparison of spectra and

do not take splicing into account.

The transporters associated with antigen processing (TAP)

Peptides generated in the cytosol have to be transported into the ER in order to bind to MHC

class I molecules. A major proportion of the peptides finally binding to MHC molecules are

thought to cross the ER membrane by means of TAP. Several studies have shown that loss

of TAP function leads to a loss of cell surface expression of MHC class I molecules [44, 120].

Further evidence of the importance of TAP for MHC-peptide presentation was shown by

transfecting TAP-negative cell lines with TAP1 and TAP2, restoring the antigen presenting

function [210, 265, 266]

TAP is a heterodimeric transmembrane protein, consisting of the subunits TAP1 and TAP2,

and belongs to the family of ATP-binding cassette (ABC) proteins. Both TAP1 and TAP2

have a transmembrane domain and a nucleotide-binding domain between which a transloca-
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tion pore is formed. Sequence alignment of the TAP1 and TAP2 proteins shows a stretch

of about 200 amino acids with high homology. In this region the so called Walker A (P

loop) and Walker B motifs that form the ATP-binding cassette where Mg2+-dependant ATP

hydrolysis occurs. It is also thought that the ”EAA” sequence of the nucleotide-binding

domain interacts with the transmembrane domain [58]. Experiments have been made to

map the peptide-binding site of the TAP complex. Peptide photo-crosslinking followed by

trypsin/bromocyan digestion and immunoprecipitation showed that both TAP1 and TAP2

have similar peptide binding sites [193]. The cytosolic loops between TM5 and TM6 together

with the C-terminal stretch after TM6 were found to form the binding site, a theory fur-

ther supported by deletion experiments resulting in a loss of peptide transport [224]. Both

TAP1 and TAP2 are polymorph in all species examined so far, something influencing the

peptide specificity [109, 209]. However, it is thought that polymorphisms within the human

population have little effect on the peptide specificity [87, 181].

Several experimental attempts to study the substrate specificity of TAP have been made.

The first attempt used a trapping of peptide within the ER by glycosylation [187]), revealing

information about the amino acid preference and length of the transported peptides. Peptides

with lengths ranging from 8-16 amino acids bind TAP with equal affinity [291], but actual

translocation is most efficient for peptides with lengths ranging from 8-12 amino acids [150].

Transport was also proven for peptides of lengths up to 40 amino acids, although with less

efficiency. Furthermore a correlation between TAP affinity and transport rates of peptides has

been observed [101]. The contribution of certain positions of a peptide in the interaction with

TAP has been systematically determined using combinatorial peptide libraries [284]. This

study shows that the three N-terminal and the C-terminal residues are critical for binding,

whereas the amino acids in the other positions are less important.

Details about the transport mechanism of TAP still need to be resolved, but the knowledge

gained so far allows for a simple model of peptide binding and translocation. Peptides in

the cytosol bind to TAP and induce a structural re-organization leading to the hydrolysis of

ATP. The peptide is then translocated through the membrane. It has also been proven that

the ATPase activity of TAP is tightly coupled to peptide binding, possibly preventing the

waste of ATP without peptide transport [99]. A problem with studying the effects of ATP is

the existence of ER export systems that in an ATP-dependent manner export peptides from

the ER into the cytosol [149, 229, 247].
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MHC-peptide binding

MHC-peptide binding occurs in the ER with the assistance of a number of associated molecules,

chaperones. Calnexin is a chaperone facilitating the folding of the MHC α-chain. This

molecule is released upon binding of the β2m subunit and the whole MHC molecules associ-

ated with the calreticulin molecule instead. Tapasin is also a very important molecule brining

TAP and MHC together to enable peptide binding [182]. The molecule ERp57 is also involved

in this loading process [158]. The MHC-peptide complex is fairly stable and dissociate from

calreticulin and tapasin. More detail about the actual MHC-peptide interaction were given

in Sect. 2.2.

Alternative processing events

Luckey et al. showed that for some MHC alleles, a significant amount of peptides were

generated even in the presence of proteasome inhibitors [163]. These results clearly indicate

an important effect of other cytosolic proteases [21, 78]. TPPII is one such protease that

has important effects in the trimming of proteasomal degradation products [222]. A further

example points out the importance of TPPII in the generation of a known HIV-Nef(73-

82) epitope [250]. TPPII prefers peptide substrates longer that 15 amino acids, something

matching most in vivo proteasomal substrates [222]. It also seems like TPPII can have both

N-terminal activity cleaving of two to three amino acids [281], but also cleave substrates longer

than nine amino acids [112, 222]. Generation of such long fragments could also generate new

C-termini of MHC-binding peptides. RNAi knockout of TPPII has shown a downregulation

of MHC class I expression, indicating its important role in antigen processing [222]. Some

cytosolic peptidases are also likely to destroy potential MHC-binding peptides by cleavage.

TOP and LAP are two such examples where increased concentrations reduce MHC class I

expression [221, 304].

Some alternative ways of peptide-transport into the ER have also been suggested. Lautscham

et al. described TAP-independent transport of hydrophobic peptides [157] and suggested that

these might enter the ER by passive diffusion or by an unknown transport protein within

the ER membrane. Furthermore, they pointed out that many known MHC-binding peptides

are derived from protein signal sequences and suggested Sec61 as a potential transporter.

MHC-binding peptides can also enter the ER as longer pre-cursors. One indication of this

are the MHC alleles preferring Pro residues in position two of the peptide. Such peptides

25
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are not effectively transported by TAP, but two ER-aminopeptidases, ERAP1 and ERAAP,

can trim longer peptides in order to generate such peptides [251, 252]. Peptides not binding

to MHC molecules in the ER are actively transported out to the cytosol again [255]. These

peptides can be further trimmed in the cytosol and subsequently enter the ER again [229].

2.3.2. Processing of extracellular antigens

Processing of extracellular antigens is mainly performed by specialized APCs in the secondary

lymphoid tissues. These express MHC class II molecules and are able to secrete co-stimulatory

signals required for T-cell activation. APCs are mainly dendritic cells (DCs), macrophages,

and B cells [94]. DCs typically produce a high concentration of co-stimulatory molecules and

express a high level of MHC molecules when activated. Macrophages can phagocytose large

particles from e.g. bacteria or parasites. B cells use their membrane-bound antibodies to

endocytose antigens that can be processed and presented by MHC class II molecules. DCs

and macrophages can recognize general structures such as mannose residues on bacterial cell

walls. B cells on the other hand are able to capture low concentration antigen by means

of high affinity antibody-antigen interaction. This means that a wide variety of different

antigens can be processed and presented.

An overview of the events involved in the processing of extracellular antigens can illustrated

in Fig. 2.9. First, the antigens are endocytosed or phagocytosed and form the early endosome.

The early endosomes have a slightly acidic pH and contain proteolytic enzymes. The later

endosomes can fuse with the lysosomes, both having an increased acidity compared to the

early endosomes. The lysosomes contain a mixture of different proteases, of which a few have

been fully characterized. For example a variety of thiol and aspartyl proteases (Cathepsins)

have been identified in the lysosomes. MHC-peptide binding occurs in the MIIC (MHC

class II compartment) that does not contain any of the markers of the late endosomes or

lysosomes [146, 206]. The MHC class II molecules arrive to these compartments associated

with the Invariant chain (Ii, CD74). Ii binds to MHC class II molecules in the ER and

prevents peptide binding at this stage [61, 300]. The region of Ii (residues 81-104) preventing

binding is called the CLIP region [62]. Furthermore, Ii has chaperone effects and also help in

the routing of MHC class II to the MIIC compartments. MHC peptide binding can occur after

the release of CLIP by a combined effect of proteases and the acidic environment [151], or

after the removal of CLIP by HLA-DM molecules [226]. HLA-DM is a protein specialized in

removing the medium affinity CLIP peptides from MHC class II molecules, allowing binding
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Figure 2.9.: An overview of the processing of extracellular antigens. Antigenic proteins that
are taken up pass several acid compartments, where they are degraded into
smaller peptides. In these association with MHC class II molecules also occur
and the MHC-peptide complex is subsequently transported to the cell surface.

of high affinity antigenic peptides.

2.4. The immune system in cancer

Reports from the beginning of 2005 showed that cancer has past heart disease as the major

cause of death in the USA. Cancer is initiated by normal cells escaping cell growth control

mechanisms, leading to a clone of modified cells, a tumor. Benign tumors do not invade the

surrounding tissue and these can in many cases be treated successfully. Malignant tumors

on the other hand usually continue to grow and to invade other tissue. They also exhibit the

ability of metastasis, where a small part of the tumor is carried (e.g. by blood) to another

tissue. This gives rise to a secondary tumor that can be far away from its origin. The immune

system functions to monitor the body and destroy modified self-cells. However, in many cases

this monitoring process fails. Tumor immunology tries to identify tumor markers for diagnosis

and prognostics [3], and to find ways to activate the immune system to recognize and kill

cancer cells (immunotherapy). Early studies in melanoma investigated the T-cell response

and specificity [233, 293]. It soon became clear that most tumors, if not all, express T-cell

antigens that can be specifically targeted [233].
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The following sections describe the most important groups of genes involved in cancer and

how targets for immunotherapy can be identified. This is followed by an overview of databases

containing cancer-related data and a motivation why integrative data-analysis is needed to

understand the underlying mechanisms of cancer and for the development of effective cancer

vaccines.

2.4.1. Types of cancer-related genes

Genes that are able to induce cancer are called oncogenes. Most of the known oncogenes have

a function in the regulation of cellular growth and can be divided into three main categories.

The first category contains genes that induce cellular proliferation, such as growth factors or

transcription factors. Some examples are the well-known signal transducers src and abl or the

transcription factors jun and myc. The second category of genes is those inhibiting cellular

proliferation. The best example here is p53, which plays a central role in the development

of many different cancer types. The third category of genes is those involved in apoptosis

(programmed cell death), where bcl-2 is a good example.

We now have an overview of the types of oncogenes that might induce cancer and the

question now is how the immune system can protect against tumors. The immune system

recognizes antigens from tumors, which can be classified into tumor-specific antigens

(TSA) and tumor-associated antigens (TAA). TSAs can be found exclusively on tumor

cells and can be the results of certain mutations or the results of modified processing of MHC

class I restricted antigens, resulting in a unique set of T-cell epitopes presented. TAAs can

be proteins that are only expressed during fetal development and not in adults. There are

many examples of the expression of such genes in various cancer-types. TAAs can also be

proteins having low expression levels under normal conditions that are being overexpressed

in the tumor.

There are many different approaches to identify new tumor-related antigens. Large-scale

DNA microarrys have revolutionized this by scanning the expression levels of many thou-

sands of genes in experiment. A large number of differentially expressed TAA have been

identified in such experiments, sometimes improving the clinical classification of a certain

cancer type [77, 90, 262, 287]. Another method for detecting antigens causing a humoral im-

mune response in cancer is the serological analysis of recombinant cDNA expression libraries

(SEREX) method [283]. This method uses patient serum together with a cDNA expression

library in order to isolate proteins to which auto-antibodies can be detected and has been
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used to study many different cancer types.

A wide number of cancer-specific MHC-binding peptides have also been identified. The

experimental procedure typically consist of a stripping of MHC-binding peptides from a cell

culture, followed by HPLC-MS for sequencing. Alternatively, Edman degradation is used for

the sequencing. In many cases an identified MHC-binding peptide is tested for its ability to

elicit T-cell activation. In some cases the peptides arise from overexpressed proteins, but also

from single point mutations [19, 49, 59] or from frame shifts [123, 223, 248].

2.4.2. Cancer immunotherapy

Cancer immunotherapy in general means that parts of the immune system is used to fight

tumors. There is a difference between active and passive therapies, where active ones stim-

ulate the body’s own immune system, whereas passive rely on immune system components

(e.g. monoclonal antibodies). Studies in melanoma-bearing mice showed that injection of

whole melanoma cells could make the tumor disappear in more than 40% of the cases. DCs

cultured with tumor fragments can also be used to activate the immune system. Studies in

mouse have shown that these are able to activate both Th and Tc cells to recognize TSAs.

The key issue in the approaches described above is the presentation of peptides by MHC

molecules. Many attempts have also been made using shorter peptides to activate the im-

mune system. Early studies of both hematological malignancies and melanoma showed that

introducing tumor-specific peptides as a vaccine is both safe and feasible [121, 188]. How-

ever, one general problem of the peptide-vaccines is their inability to raise clinical responses

in vivo.

Several attempts have also been made to use monoclonal antibodies for cancer immunother-

apy. Levy et al. successfully treated a patient with long progressed B-cell lymphoma. Since

this cancer type is B-cell specific, all tumor cells express the same surface-bound antibody.

Monoclonal antibodies were raised against this ”tumor-specific” antibody and successfully

used for therapy. The problem here is that one would need to raise specific antibodies for ev-

ery new patient. More promising is the use of growth-factor receptors as target. Many tumors

show an overexpression of HER2, an epidermal-growth-factor, and an antibody (Herceptin)

against this protein is used in the treatment of breast cancer.

A major challenge in terms of immunotherapy is the identification of candidate proteins or

peptides that can be used to trigger the immune system. Although the Herceptin antibody

can be used for breast cancer treatment, the use of monoclonal antibodies is not that widely
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applied. T-cell activation seems more promising in many aspects, but the identification of

vaccine candidates is still a problem. In order to find vaccine candidates it is useful to consider

all available information regarding a certain cancer type. A good candidate might for example

be exclusively expressed in the tumor types (a TSA), have a high expression level, and several

presented T-cell epitopes. The next section describes some cancer-related databases where

this type of information can be found. Chapter 5 of this thesis also deals with the integration

of cancer-related data and the identification of cancer vaccine candidates.

2.4.3. Cancer-related databases

There are numerous databases containing cancer-related information. Typically these focus

on one type of data and one aspect such as cancer genetics or cancer immunology. Examples

of genetic aspects of cancer are the Mitelman database for chromosomal aberrations in can-

cer [179], the SNP500Cancer databases for single nucleotide polymorphisms in cancer [198],

and Cancer GeneticsWeb giving a broader view of altered or mutated genes.

Several databases also deal with immunology-related cancer information. An example here

are the SEREX databases and its successor the cancer immunome database (CIDB) that

focus on auto-antigens detected by the SEREX method [283].

Some databases have a focus on T-cell epitopes related to cancer. The SYFPEITHI [217]

database described earlier lists MHC-binding peptides that are naturally processed and pre-

sented by T-cells. Some of these are also labeled as cancer related, although no further infor-

mation is available. The cancer immunity database on the other hand gives a more compre-

hensive overview of MHC-binding peptides and their relation to different cancer types [277].

In addition to the databases introduced above, comprehensive genomic and proteomic data

is available from databases such as Swiss-Prot [27], NCBI, and Locus Link [212].

Although all this data is freely available online, the integrative analysis and identification

of vaccine candidates is not trivial. The data usually have differences in both data format

(syntactic differences) and in the meaning of the data items (semantic differences) [48] The

CAP database presented in this thesis was developed to overcome these difficulties [74] and

to create a unified view of the data. CAP integrates different cancer-related databases and

enables complex queries on the data. It can be used to get an understanding of some gen-

eral principles underlying cancer development, but also to identify vaccine candidates. The

development of CAP is discussed in Chapter 5.
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2.5. Prediction methods for antigen processing and presentation

There have been many attempts to model and predict the processes involved in antigen pro-

cessing. Most focus has been on the prediction of MHC binding, since this can be considered

the most specific step. In terms of processing of extracellular antigens this is currently the

only step that can be modeled, since very little is known about e.g. the proteases of the

lysosome. For intracellular processing, proteasomal cleavage and TAP transport can also

be predicted. This section will describe prediction methods for MHC binding, proteasomal

cleavage, and TAP transport. Many computational approaches for MHC binding prediction

are similar for both class I and class II, hence these are described first. Proteasomal cleavage

and TAP transport involved in MHC class I antigen processing are described subsequently,

followed by an overview of attempts made so far to combine methods.

2.6. Prediction of MHC-peptide binding

Prediction of MHC-binding peptides is an area where many ”standard” bioinformatics meth-

ods have been applied. Most attempts have been on the prediction of MHC class I binding

peptides, since these have a defined length. MHC class II-peptide prediction typically in-

volves some alignment method in order to extract the binding cores of the peptide, which are

then used for prediction. The prediction methods can be classified into sequence-based and

structure-based. The following sections will describe a number of approaches for prediction

of MHC class I binding peptides.

2.6.1. Simple motifs and PSSMs

Even before a large number of MHC-binding peptides had been characterized, people sug-

gested that there were common sequence pattern in T cell epitopes. Rothbard suggested that

the common pattern consisted of a charged residue or glycine followed by two hydrophobic

residues. This general pattern was later extended and used for prediction [234]. Another

method suggested by Margalit et al. searches for amphiphatic helices and defined those as

probable T helper cell antigenic sites [169]. Sette et al. further investigated sequence motifs

by means of binding assays [253]. The motifs suggested here were also simple e.g. the IEd

motif was defined as ’basic-basic-noncharged-basic’. In 1991, Falk et al. a number of self-

peptides eluted from MHC molecules that underlined the importance of anchor residues for
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MHC binding [85]. These findings were then used to define allele-specific motifs for predic-

tion [238, 200]. An example is the HLA-A*0201 allele were peptides of a length of nine amino

acids often have a Leu in position two and a Val in position nine. The search motif used for

scanning proteins for potential binding peptides would be XLXXXXXXV, were X matches

any amino acid.

The simple sequence motifs have been extended to position-specific scoring matrix methods

(PSSMs). Here amino acid-specific scores are given for each position of the peptide in a

matrix. A PSSM will thus have i columns corresponding to number of amino acids in the

peptide sequence and j rows corresponding to the number of amino acids considered (20 if

all naturally occurring amino acids are considered). In the case of a 9mer peptide the size

of the matrix will be 9x20=180 elements. The score of a peptide is calculated as the sum of

position-specific scores:

S =
∑

i

si,j (2.1)

where si,j is amino acid-specific score for amino acid i of the peptide. Two of the best known

prediction methods, BIMAS [201] and SYFPEITHI [217] fall into the category of PSSMs.

The matrices from these methods are derived from experimental measurements in the case of

BIMAS and expert knowledge in the SYFPEITHI case. Other PSSM-based methods derive

matrices from sequence alignments, putting the whole problem into a statistically more well-

defined framework. More details about the different methods are given below.

BIMAS

The BIMAS prediction method was presented by Parker et al. and the position-specific scores

are derived from stability measurements of β2m dissociation rates. The results of this study

show that the contribution of a certain amino acid side-chain is in many cases independent of

the overall peptide sequence, underlining the use PSSMs to obtain overall affinity measures.

The initial approach presented considered 9mer peptides binding to HLA-A2 and 154 peptides

were used to determine the 180 coefficients of the PSSM. The half-life (t1/2) of β2m was used

in to define an error function:

err = ln(t1/2) − ln(P1 · P2 · P3 · P4 · P5 · P6 · P7 · P8 · P9 · Constant) (2.2)

where P1, P2 etc corresponds to the position-specific amino acid scores of the peptide (each
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position has 20 scores for the 20 amino acids). The scores in all positions were normalized by

dividing by the score of Ala in that position, meaning that there are 172 independent terms

of the matrix plus the Constant.

In order to reduce the dimensionality of the problem only position considered relevant for

binding were considered in the optimization procedure. Here 82 variables were selected of

which 40 came from position 2 and 9 of the peptides (the anchor positions). The other position

were selected by picking cases where a single amino acid change between two peptides showed

a large difference in dissociation and from some other specific criteria outlined in the original

publication [201]. The coefficients can the be found by solving the system of equations.

Coefficients have also been constructed for a wide range of different HLA molecules and a

prediction server is publicly available.

SYFPEITHI

The SYFPEITHI prediction method is based on expert knowledge of MHC-peptide binding

motifs and the matrices used are derived by hand. Only naturally processed and presented

peptides are considered for matrix construction and the focus is put on anchor and auxiliary

anchor positions. Ideal anchors are given a score of 10, unusual anchors a score between 6

and 8, and auxiliary anchor scores between 4 and 6. Furthermore, frequently occurring amino

acids are given scores between 1 and 4, whereas amino acids having negative effect on binding

are given scores from -3 to -1. An example of the HLA-A*0201 matrix from SYFPEITHI can

be seen in Table 2.1.

PSSMs from sequence alignment

A number of prediction methods have also been presented where a PSSM is constructed from

aligned MHC-binding peptides [219, 305, 220]. This is a standard procedure in bioinformatics

and it has been used for e.g. the identification of transcription factor binding sites [268].

The advantage of such methods is that they are mathematically well defined and the actual

matrices used for prediction are not derived by hand. In a set of aligned sequences, the

frequency of each amino acid in each position of the alignment can easily be calculated.

A PSSM is then often a logarithmic transformation of the frequency matrix. Usually the

background (or prior) probability of the amino acids are also considered. The score of amino
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Table 2.1.: The SYFPEITHI HLA-A*0201 matrix.
1 2 3 4 5 6 7 8 9

A 2 4 2 0 0 0 2 1 4

C 0 0 0 0 0 0 0 0 0

D -1 0 0 1 0 0 0 0 0

E -3 0 -1 2 0 0 0 2 0

F 1 0 1 -1 1 0 0 0 0

G 1 0 0 2 2 0 0 1 0

H 0 0 0 0 0 0 1 0 0

I 2 8 2 0 0 4 0 0 8

K 1 0 -1 0 1 0 -1 2 0

L 2 10 2 0 1 4 1 0 10

M 0 8 1 0 0 0 0 0 4

N 0 0 1 0 0 0 1 0 0

P -3 0 0 2 1 0 1 0 0

Q 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0

S 2 0 0 0 0 0 0 2 0

T 0 4 -1 0 0 2 0 2 4

V 1 4 0 0 0 4 2 0 10

W 0 0 1 0 0 0 0 0 0

X 0 0 0 0 0 0 0 0 0

Y 2 0 1 -1 1 0 1 0 0

acid j in positions i of the alignment can be described as:

si,j = log
fi,j

bj
(2.3)

where fi,j is the frequency of amino acid j in position i and bi,j is the background frequency

of amino acid j. There are different ways to obtain the background frequencies. In some

cases equal background probability is considered for all amino acids, whereas in other cases

a protein database (like SwissProt) is used to calculate amino acid-specific backgrounds.

Most approaches also use a form of pseudocount correction as presented by Henikoff and

Henikoff [110].

2.6.2. Machine-learning methods

One major drawback with the prediction methods presented so far is that they assume an

independent contribution to the binding affinity of each amino acid, not considering the

neighboring amino acids. Parker et al. concluded that this holds in many cases, but they

also found sequence where this assumption could not explain binding [201]. Machine learning
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methods such as artificial neural networks (ANNs) or support vector machines (SVMs) allows

for the generation of a model taking amino acid correlations of the peptide into account. I

wide range of different ANN methods have been presented [43, 102, 119, 192]. In most

cases a standard back-propagation network is used and different numbers of hidden layers

and training cycles investigated. Hidden Markov Models (HMMs) have also been used for

prediction. In a study presented by Mamitsuka, HMMs performed approximately 2-15 %

better than backpropagation ANN for prediction [167]. In this thesis support vector machines

(SVMs) and decision trees are introduced for prediction of MHC binding peptides.

All methods described so far concern prediction of MHC class I binding of peptides of

a certain length. MHC class II molecules bind longer peptides and the identified MHC

binding peptides usually differ in length. However, the actual binding core of these peptide

corresponds to approximately nine amino acids. Several methods have been presented for

MHC class II binding using these binding cores [38, 166, 191, 270]. These methods are not

described in more detail since the focus here is MHC class I binding.

2.6.3. Structure-based methods

Structure-based methods for prediction of MHC class I binding peptides includes docking [161,

282], molecular dynamics studies [230], and threading [7, 8, 244]. The advantage of these

methods is that they can be applied given a single starting structure of a MHC-peptide

complex. The drawback is that there are not many different MHC alleles for which a structure

is known. Furthermore, even if a structure is known the accuracies of the structure-based

methods are not convincing.

Rognan et al. have presented a method using molecular dynamics simulations and a new

force field (FRESNO) for prediction [230]. An initial structure given a new peptide is built

using information from a database of MHC-peptide complexes with known structure. First

the anchors are placed into the MHC molecule, followed by a loop search procedure for the

middle part of the peptide. The structure is then energy minimized. The binding energy of

the peptide is then estimated using the FRESNO force field. A fair estimate of the predictive

power of this procedure is hard give, since it was tested on very few sequences.

Altuvia et al. have investigated threading of MHC peptides using statistical pairwise

potentials [7, 8, 244]. In comparison to docking and molecular dynamics methods, threading

is much less CPU intensive and can easily be applied on a genome scale. The threading

procedure depends on two determinants: (1) the definition of contact residues between the
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MHC molecule and the peptide and (2) the choice of pairwise interaction potential table.

A contact table for the MHC-peptide complex can be obtained by defining two residues to

be in contact according to some distance criteria, e.g. two residues are in contact if their

Cα atoms are closer than 7 Å from each other. For a given MHC-peptide complex, such a

contact list can be constructed for each amino acid of the peptide. In order to ”thread” a new

peptide, it is assumed that the new peptide make the same contacts with the MHC molecules

as the original one. The binding energy of the new peptide is then calculated by summing

up individual pairwise contact potentials. In comparison to docking and molecular dynamics

methods, threading is much less CPU intensive and can easily be applied on a genome scale.

2.6.4. MHC-peptide databases

There are several databases containing information about MHC molecules and their binding

peptides. The SYFPEITHI database [217] contains over 4,500 peptide sequences known to

bind MHC class I and MHC class II molecules. This database is highly curated and only con-

tains naturally processed MHC-binding peptides. Another database containing a both natu-

rally processed peptides and data from binding experiments is the MHCPEP database [38],

which is now a part of the FIMM database [241, 242]. MHCPEP contains about 13,000

peptides. Another database focusing on quantitative binding data is the AntiJen database,

which is an improved version of the Jenpep database [26, 173] (no information about the total

number of MHC-binding peptides in the database is given). Some specialized MHC peptide

databases also exist, such as the HIV database [279] and the HCV database [306]. Further-

more, the Protein Data Bank (PDB) contains data of MHC-peptide and MHC-peptide-TCR

complexes [23], which are the starting point of structure-based prediction methods.

2.7. Prediction of proteasomal cleavage and TAP transport

MHC-peptide binding is considered the most specific step in the MHC class I restricted

antigen processing pathway. Two other important processes are proteasomal cleavage and

TAP transport. The following sections outlines the most important prediction methods

presented for these processes.

36



2.7. Prediction of proteasomal cleavage and TAP transport

Figure 2.10.: This figure illustrated the nomenclature of a proteasome cleavage site and the
flanking amino acids of such a site.

2.7.1. Proteasomal cleavage prediction

The proteasome, introduced in Sect. 2.3.1, mainly cleaves cytosolic proteins into smaller

peptides. Data of proteasomal cleavage is available in the form of longer peptide or whole

proteins with verified proteasomal cleavage sites. Several computational approaches to elu-

cidate the cleavage specificity of the proteasome have been presented. They are all based on

these experimentally verified cleavage sites within peptide/protein substrates and analyses

the flanking regions. The nomenclature of a proteasomal cleavage site and the surrounding

amino acids can be seen in Fig. 2.10.

Holzhütter et al. [118] used a statistical method to analyze the cleavage sites found in a

set of peptide substrates with lengths ranging from 22 to 30 amino acids. From this analysis

cleavage-determining amino acid motifs (CDAAMs) could be identified and incorporated into

the FRAGPREDICT prediction method. A final set of ten different CDAAMs were said to

represent the cleavage specificity of the proteasome. The ten CDAAMs accounts for cleavage

of one to five different groups of peptide bonds and the accuracy of prediction reached 93

%. In each motif, the important residues for cleavage were found within five residues from

the cleavage site. A total of seven peptide with length ranging from 22 to 30 amino acids

were used in this study. The total length of all substrates is 181 residues with a total of 118

cleavage sites.

PAProC is a method utilizing a stochastic hill-climbing algorithm (evolutionary algorithm)

for prediction of proteasomal cleavage sites [154, 197]. The data used for algorithm training

comes from digestion experiments with the enolase protein. This protein is 436 amino acids

long and there are 117 identified cleavages generated by the human proteasome. In this

study it is also shown that amino acids more than 6 amino acids away from a cleavage site

have no effect, whereas a prominent role is played by the two closest amino acids for a given

cleavage site. The effect of the two closest amino acids is modeled with an affinity parameter

α1(X1,X1′). Each of the other positions Pi, i . . . , k (or Pi′ , i
′ = 2, . . . ,m) have an affinity
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αi(Xi) (αi′(Xi′)). The model is additive and the final cleavage affinity for a cleavage site is:

δ = α1(X1,X1′) +
k

∑

i=2

αi(Xi) +
m

∑

i=2

αi′(Xi′) (2.4)

Given a set of affinities, cleavage sites within the enolase protein are predicted and compared

to the experimental results. An objective function used for optimization was defined as:

F = K · the number of missing cuts + the number of superfluous cuts (2.5)

where K = 2 was used in most cases. Give a starting set of affinities, the performance F0

of the algorithm is calculated. The affinities are then subject to a random perturbation, and

the overall performance F1 is calculated. If F1 ≤ F0, the new affinity parameters are stored

and a new perturbation is carried out, otherwise the old affinity parameters are kept. In

the case of human proteasome, positions P6− P1′, P4′ were considered giving a total of 480

parameters (20 x 20 for the P1 and P1′ positions and 4 x 20 for the P5−P2 positions. The

number of iteration steps used for the human proteasome was 275,000. The algorithm almost

perfectly reproduce the training data, but the results in this thesis will points out the bad

performance of PAProC on data not used for training.

An ANN method, NetChop, has also been presented for proteasomal cleavage [141]. There

are two different sets of training data used by NetChop, verified cleavage sites within proteins

and naturally processed MHC ligands. MHC class I ligands for studying proteasomal cleavage

was previously introduced by Altuvia and Margalit [6]. The network used is a standard feed-

forward network and the final network 29 hidden neurons. The data used comes from the

same enolase cleavages used by PAProC and digestion experiments of the β-casein protein.

For algorithm training 19 flanking residues (9 on each side) if a cleavage site were used.

2.7.2. TAP transport prediction

Experiments estimating the peptide binding affinities to TAP have been used to elucidate the

binding specificity of TAP. A very general peptide binding motif of TAP was presented by van

Endert et al. [290]. Their general conclusion was that TAP binding is in general stronger for

MHC binding peptides than for non MHC-binding peptides. Uebel et al. used combinatorial

peptide libraries to identify the recognition principle of TAP [284]. Their findings showed

that TAP is highly specific with peptide affinities spanning three orders of magnitude. These
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early studies revealed some general properties of TAP, but several prediction methods based

on machine learning and statistical analysis have also been presented.

The first machine learning method proposed used ANNs for prediction [39, 65] and focused

on peptides with a length of nine amino acids. A dataset of peptides with experimentally

verified TAP affinities was used for training. A standard backpropagation network with two

hidden layers was used and a correlation of 0.73 was reached. From this study it was also

pointed out that the three N-terminal and the C-terminal residues of the peptides are most

important for binding.

Peters et al. used the stabilized matrix method (SMM) for prediction of TAP affinity [204].

The dataset used was more or less the same as used in the ANN approach described above and

a correlation of 0.78 between predicted and experimental values was obtained. Furthermore,

prediction of peptides longer that nine amino acids was also tested, by studying only the part

of the 9x20 scoring matrix that corresponds to the three N-terminal and the C-terminal amino

acids. By this approach and a weighting of the N-terminal scores, they predicted the binding

affinity of peptides longer than 9 amino acids. In an attempt to combine TAP prediction and

MHC binding predictions for HLA-A*0201, they found only a marginal increase in prediction

accuracy.

An approach using a network of SVMs has also been presented [24]. In this study amino

acid-specific properties are used together with normal sequence encoding is used to boost the

prediction performance. Using a network of SVM trained on the same data might lead to

overestimation of prediction performance. The use of SVMs for prediction of TAP affinity is

discussed in more detail in Chapter 4.

2.8. Combined prediction of the whole antigen processing pathway

One major part of this thesis deals with modeling of the whole antigen processing pathway of

MHC class I binding peptides. The WAPP method presented here is the first method enabling

an integrative modeling of the whole antigen processing pathway [75]. In the meantime two

other methods have been presented for modeling the whole antigen processing pathway.

Larsen et al. have introduced the NetCTL method [156]. NetCTL is based on the NetChop

method for proteasomal cleavage [141], the SMM method presented by Peters et al. for TAP

transport [204], and a neural network for prediction of MHC-peptide binding. The scores each

method are then scaled into the same range and combined into an overall score. Here the
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proteasomal score is weighted by 0.05 and the TAP score with 0.1. Even though this can not

be directly translated into the contribution of each method to the overall score (stated by the

authors), the improvements of the combined approach is only marginal compared to MHC-

peptide binding prediction alone. A further attempt for modeling the overall processing

pathway has been described by Tenzer et al. [275]. This method is based on a modified

version of the SMM method for proteasomal cleavage [204, 205], the same matrix method as

NetCTL for TAP transport [204], and a number of ARB matrices for MHC-peptide binding

prediction [147, 148, 257, 258, 259]. As for NetCTL, the separate scores are combined into

an overall score without additional weighting. Both the NetCTL and the method by Tenzer

et al. are compared to the WAPP method in Chapter 4.

2.9. Machine learning

Learning from observations and experiments is important in biology. In most cases a set of ob-

servation or measurements (features or attributes) can be associated with a certain outcome,

e.g. gene expression levels can be associated to a clinical outcome. In many cases no explicit

model can be constructed that explains the input/output mapping. Here machine learning

can be applied with the aim to learn an approximate model from the data. Machine learning

methods try to learn the input/output mapping using theories from statistics, optimization,

signal processing etc. The field of molecular biology has been described as tailor-made for

machine learning approaches [254], where a vast amount of data is available but no (or little)

theory.

Many different types of machine learning methods have been described in literature and

these can broadly be split into supervised and unsupervised. Unsupervised algorithms include

e.g. hierarchical clustering and self-organizing maps, where the aim is to find clusters of

similar data points. The focus here is on supervised methods, where a set of labeled training

examples is available. This means that the starting point of the learning procedure is a

dataset where a set of features are associated with a certain outcome. Typically the function

mapping a set of input features to a certain output is hard to derive. This might be due to

a number of reasons such as no good underlying theory or noisy measurements. The aim of

the machine learning algorithm is to learn a function that approximates the input/output

functionality with high reliability.

The following sections describe the basics of the machine learning methods support vector

40



2.9. Machine learning

machines (SVMs) and decision trees (DTs). Furthermore, the measures used to evaluate the

accuracy of the methods presented in this thesis are outlined.

2.9.1. Support Vector Machines (SVMs)

SVM-based methods have gained interest over recent years and have been applied to many

tasks in bioinformatics such as protein subcellular localization prediction [116, 117, 122], gene

expression analysis [37], and classification of cancer types [91]. One advantage with SVMs

compared to neural networks is the relatively small number of tunable parameters and the

optimization problem solved is a convex quadratic function giving a global, usually unique,

solution [41]. The following sections give a brief overview to SVM classification and SVM

regression. A more complete coverage of SVMs has been given in several books that can be

recommended to the interested reader [63, 240, 295].

SVM classification

The typical case for SVM classification is a set of input attribute vectors belonging to one

of two classes (represented as +1 or -1). SVMs use linear functions to separate data from

different classes and the concept of linearly separable data will first be introduced, followed

by an overview of how kernel functions can be used to map non-linearly separable data into

a new feature space where linear decision functions can be used to separate the data.

Linear SVMs Given a set of N pairs (x1, y1), (x2, y2), ..., (xn, yn)),xi ∈ Rp and yi ∈

{−1,+1}, the aim of the SVM is to find a function:

f(x) = w · xi + b = 0 (2.6)

where w is a unit vector (‖w‖ = 1). If f(x) ≥ 0 for all examples of the positive class and

f(x) ≤ 0 for all negative examples, the function separates the two classes. A classification

rule, G(x) can then be defined as:

G(x) = sign[w · xi + b] (2.7)

where f(x) gives the signed distance to the separating hyperplane. The geometric interpre-

tation of this in 2D is a hyperplane (a line in 2D) that separates the datapoints of the two

classes, see Fig. 2.11.
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Figure 2.11.: This example shows how data in two dimensions from two classes can be sepa-
rated by a hyperplane (a line in this case). However, the question remains how
the optimal separating plane can be found.

However, there are several lines that fulfill the task of separating the data and the question

remains how the optimal one is chosen. The best choice will be the hyperplane (a line in our

example) that maximizes the distance to the closest point of each class, this plane is called

the optimal separating hyperplane (OSH). Points on such a hyperplane fulfill the criteria

w · xi + b = 0, where w is the normal of the hyperplane and |b|/||w|| is the perpendicular

distance to the origin. The distance from the hyperplane to the closest positive example is

defined as d+ and the corresponding distance for the closest negative example is d−. The

sum of the shortest distances to each class is called the margin (d+ + d−), see Fig 2.12. The

aim of the SVM is to find the separating hyperplane with the largest margin, which then by

definition is the OSH. If the data is separable, it is possible to chose a scaling of w and b

such that:

w · xi + b ≥ +1 for i ∈ {i|yi = +1} (2.8)

w · xi + b ≤ −1 for i ∈ {i|yi = −1} (2.9)

which can be combined into

yi(w · xi) − 1 ≥ 0 ∀i, 1 ≤ i ≤ N (2.10)

This also means that two perpendicular hyperplanes to the OSH H1 and H2 can be defined

as: H1 : w ·xi + b = 1 with the normal w and the distance: |1− b|/||w|| from the origin. The
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Figure 2.12.: Introducing slack variable ξi in the optimization problems allows for classifica-
tion of data that is not perfectly separable.

corresponding is true for the points on H2 : w · xi + b = −1 with the distance | − 1− b|/||w||

to the origin. The points lying on the hyperplanes H1 and H2 are called support vectors.

The margin in this case is 2/||w||, hence the optimal OSH can be found by minimizing ||w||2

under the constraints given above.

In most real-life cases the data is not perfectly separable and we would like to relax the

constraints we have on our optimization problem. This can be done by introducing slack

variables (ξi) [57], see Fig 2.12. This gives a new formulation of the optimization problem:

Min
1

2
||w||2 + C

∑

ξi (2.11)

having the following constrains:

w · xi + b ≥ 1 − ξi for i ∈ {i|yi = +1} (2.12)

w · xi + b ≤ −1 + ξi for i ∈ {i|yi = −1} (2.13)

ξi ≥ 0, ∀i, 1 ≤ i ≤ N (2.14)

which can be combined into:

yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0 (2.15)
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This means that we have a convex optimization problem (quadratic criterion with linear

inequality constraints). Notable is also that the parameter C in Eq. 2.11 can be used to

weigh the penalty for misclassified examples. An effective way to solve such problems is

to introduce Lagrange multipliers αi, i = 1, ..., N . For constraints of the form ci ≥ 0, the

constraint equations are multiplied by positive Lagrange multipliers and subtracted from the

objective function. The Lagrange multipliers for equality constraints are unconstrained [40].

This gives the following primal function to minimize:

LP =
1

2
||w||2 + C

N
∑

i=1

ξi −
N

∑

i=1

αi{yi(xi ·w + b) − 1 + ξi} −
N

∑

i=1

γiξi (2.16)

The optimization is carried out with respect to w, b and ξi. Setting the respective deriva-

tives to zero give the following:

0 =
N

∑

i=1

αiyi (2.17)

w =

N
∑

i=1

αiyixi (2.18)

αi = γ − µi (2.19)

By substituting the equations above into the primal, the Wolfe dual objective function can

be obtained [89]:

LD =

N
∑

i=1

αi −
1

2

N
∑

i

N
∑

j

αiαjyiyj(xi · xj) (2.20)

The maximization of the dual is a simpler programming task than the primal and can be

solved by standard optimization techniques [106]. In addition to the constraints above,

the Karush-Kuhn-Tucker condition to the optimization problem includes the following con-

straints:

yi(w · xi) − 1 + ξi ≥ 0 (2.21)

αi{yi(xi + b) − 1 + ξi} = 0 (2.22)

γiξi = 0 (2.23)

Taken together all these constraints uniquely gives the solution to both the primal and

dual problem, which is:

ŵ =
N

∑

i

α̂iyixi (2.24)
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Here the coefficient α is only zero for observations where the constraints in Eg. X are met.

These observation are in fact the support vectors and ŵ is represented by these alone. Any

of the support vectors can be used to determine b̂. This gives the following decision function

that can be used for classification:

Ĝ(x) = sign[ŵ · xi + b̂] (2.25)

Nonlinear SVMs In many real-world examples, linear functions are not enough to sep-

arate the data. However, Boser et al. found a way to solve this by the use of a kernel

function [29]. A kernel functions maps the data from the input space into a new feature

space where linear functions can be used to separate the data. A simple geometric interpre-

tation of how a kernel function can be used to map data into a space where linear functions

can be used for classification is given in Fig. 2.13. In the SVM optimization function, the

input data only occurs in the form of dot products. If we can define a kernel mapping such

that K(xi,xj) = φ(xi) · φ(xj) the optimization problem would be:

LD =
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjφ(xi) · φ(xj) (2.26)

The crucial feature of the kernel K is that it is used only in the training step and φ(x)

does not even have to be known explicitly. Examples of two frequently used kernels are the

radial-basis function and the polynomial, Eq. 2.27 and Eq. 2.28 respectively:

K(xi,xj) = exp(−γ ‖ xi − xj ‖
2) (2.27)

K(xi,xj) = (xi · xj + 1)d (2.28)

where γ and d are kernel-specific parameters.

SVM regression

The theory of classification SVMs can be used for regression tasks as well. Here the aim is

to find a function that map the data from the input domain to a real-valued output. Given

such a function, the error for a given datapoint is referred to as the residual of the output.

This gives an estimate of the accuracy of the function and the aim is of course to have small
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Figure 2.13.: An example of how a kernel function can be used to map data into a space
where linear functions can be used to discriminate the two classes.
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Figure 2.14.: An example of the insensitive band varepsilon for an SVM regression problem.

residuals. In least-squares regression for example the aim is to minimize the sum of squares of

the residuals. In order to optimize the generalization bounds for an SVM-regression problem,

a loss function that ignores errors within a certain distance from the true value is needed.

This is done by introducing an insensitive band, referred to as ε-insensitive band. For points

within this band the error ξ is zero, see Fig 2.14.

The optimization problem that has to be solved can then be formulated as:

min ‖w‖2 + C
N

∑

i=1

(ξ2
i + ξ̂2

i ) (2.29)

subject to

(〈w · xi〉) + b) − yi ≤ ε + ξi, i = 1, . . . , N,
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yi − (〈w · xi〉) + b) ≤ ε + ξ̂i, i = 1, . . . , N,

ξi, ξ̂i ≥ 0, ∀i, 1 ≤ i ≤ N (2.30)

where two new slack variables (ξ, ξ̂) have been introduced. One of the slack variables is for

values larger than ε and the other is for values lower than ε. The Lagrange formulation of

the problem is then [63]:

max

N
∑

i=1

yi(α̂i − αi) − ε

N
∑

i=1

(α̂i + αi) −
1

2

N
∑

i=1

yi(α̂i − αi)(α̂j − αj)(〈xi · xj〉 +
1

C
δij)

subject to
N

∑

i=1

(α̂i − αi) = 0,

α̂ ≥ 0, αi ≥ 0, 1 ≤ i ≤ N (2.31)

By some simple substitutions and introducing a kernel function, the optimization problem

that needs to be solved looks pretty similar to the classification case:

max W (α) =
N

∑

i=1

yiαi − ε
N

∑

i=1

|αi| −
1

2

N
∑

i=1

αiαj(K(xi,xj) +
1

C
δij)

subject to
N

∑

i=1

αi = 0 (2.32)

As similar procedure as for classification can be used to find the maximum of this function.

SVM implementation

There are several different SVM implementations available, but here the SVMlight package was

used. SVMlight is an implementation of Vapnik’s Support Vector Machine for the problem

of pattern recognition [295]. The optimization algorithm used in SVMlight has adjustable

memory requirements and can handle problems with many thousands of support vectors

efficiently [136]. The problem with general off-the-shelf optimization techniques is that they

become infeasible in their time and memory requirements if the learning task is hard. The

implementation of SVMlight is an SVM learner which addresses the problem of large tasks,

which makes large scale training more practical. The memory requirements are linear with

the number of training examples and with the number of support vectors. Nevertheless, the
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algorithm gains from additional storage space, since a caching strategy allows an elegant

trade-off between training time and memory consumption [136]. More information and other

SVM implementations can be found at: http://www.kernel-machines.org/.

2.9.2. Decision trees

A decision tree is a directed acyclic graph where the leaves represent classifications and the

branches features that leads to a certain classification [177]. There are two major algorithms

existing for generating decision trees, CART [34] and C4.5/C5.0 [215]. Both methods recur-

sively split the input data according to an attribute value test, where the aim is to find the

attribute that give the maximum separation of the data. One major difference between the

methods lies in the measure of performance gain given a certain split. The CART method

uses the Gini index for this purpose, whereas C4.5 uses the entropy gain. In this thesis C4.5

and C5.0 were used, which both build on the ID3 algorithm developed by Quinlan. The prin-

ciples of ID3 are briefly described in order to clarify the construction of a decision tree. Given

a dataset of n examples and m attributes (xij . . . xnm, yi), the aim is to create a decision tree

based on the attributes that correctly classify the data. The root node of the tree is selected

by searching for the attribute that best separate the training examples into the prediction

classes yi. In ID3, C4.5 and C5.0 this attribute is found by calculating the entropy gain given

a split according to a certain feature. Given a collection (S) of n classes (c) the entropy (E)

is defined as:

E(S) =
n

∑

i=1

p(ci) log2 p(ci) (2.33)

where p(c) is the proportion of S belonging to class ci. The entropy gain (EG) given a split

using attribute A is defined as:

EG(S,A) = E(S) −

n
∑

i=1

|Sj |

S
log2

|Sj |

S
(2.34)

where Sj is the subset of S where attribute A has the value j. Once the best attribute has

been found, the training examples are portioned according their values of that attribute and

the algorithms then try to split these subsets according to the maximal information gains.

This procedure is repeated recursively with some stop criteria (e.g. when all examples after a

split belong to one class). In this work decision rules were generated from the decision trees.

These rules then be easily applied for prediction purposes and are easy to interpret. More
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detail and examples of decision rules generated are given in Sect. 3.3.

2.10. Performance evaluation

The aim of the machine learning methods introduced above is to extract general patterns

and trends from the data which can be formulated into a model. The model can then

subsequently be used for prediction. When machine learning approaches are applied, it is

important to remember some features of model complexity in respect of the training and test

errors. A highly complex model can usually reproduce the training data perfectly, whereas

the performance on data not included in the training procedure is poor. This problem is

usually called overfitting and in general the training error is not a good measure of the test

error [106]. The following sections describe the performance statistics measures used in this

thesis and how cross-validation can be used to get an estimate of the predictive power of

models.

2.10.1. Performance measures

Many different measures can be used for prediction accuracy, e.g. raw percentages, quadratic

error measures, and correlation coefficients. The most frequently used measures throughout

this thesis is the Matthews correlation coefficient (MCC) [172] and the standard Pearson

correlation coefficient. In some cases the ranks of predicted values are also interesting to

compare to the rank of experimentally measured values and here the Spearman rank corre-

lation is used. The raw percentage correct prediction is not used widely in this thesis, since

this might be misleading in many cases. Assume that the ratio between positive:negative

examples in the test set is 1:9. If the classification always classifies all test data as negative,

the percentage correct predictions would be 90%. The prediction method is of course not

good even if the percentage correct predictions in this case is high (no positives are found at

all).

Matthews correlation coefficient and related measures: The typical classification

task is to assign an example into one of two classes. Here we will refer to these as the ’positive’

and ’negative’ classes. Four variables are defined and used for this purpose: true positives

(TP) - the number of binders predicted as such, true negatives (TN) - the number of non-

binders predicted as such, false positives (FP) - the number of predicted binders that actually

are non-binders, and false negative (FN) - the number of predicted non-binders actually that
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actually are binders. From these values the Matthews correlation coefficient (MCC) can be

defined as:

MCC=
(TP · TN) − (FP · FN)

√

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
(2.35)

A perfect correlation between predicted and real values would give an MCC of 1, random

predictions an MCC of 0, and anti-correlated predictions a value of -1. Furthermore the

specificity (SP) and sensitivity (SE) of the prediction can be defined as:

SP=
TP

TP + FP
(2.36)

SE=
TP

TP + FN
(2.37)

In medical statistics specificity is often use to describe the prediction of negative examples

(TN/(TN+FP)), which is better described as the sensitivity of the negative category [14].

Spearmans rank correlation: The Spearman rank correlation is a modified version of

the standard correlation and compares the ranks between two data sets. There might be

”gaps” in the prediction scores and this type of statistics will give a measure on how good

the methods are in producing a correct ranking of the data. Spearman’s rank correlation (ρ)

is defined as [56]:

ρ =

∑n
i=1

R(Xi)R(Yi) − n
(

n+1

2

)2

√

∑

R(Xi)2 − n
(

n+1

2

)

(2.38)

which is equivalent to the Pearson correlation calculated on the ranks and average ranks.

2.10.2. Cross-validation

Cross-validation is a procedure where parts of the training data taken out from the training

procedure and used for testing the performance. By doing this a pretty fair estimate of the

methods ability to generalize can be obtained. The idea of cross-validation is to split the

training set randomly into N subsets. N-1 sets are then used for training and the remaining

set is used for testing the performance [106]. The procedure is repeated for all the N possible

subsets omitted from the training procedure. One drawback of this approach is that the

training procedure must be repeated N times. The choice of N often depends on data set

size, but in many cases the same N as in similar methods is used for comparison reasons.
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3. Prediction of MHC class I binding peptides

The most extensively studied step of the antigen processing pathway is MHC-peptide binding.

In comparison to proteasomal cleavage and TAP transport, a lot of experimental data is

available for different aspects of MHC-peptide binding and T-cell activation. Qualitative

data includes sequences of naturally processed peptides, whereas quantitative data includes

peptides with experimentally measured binding affinity to a certain MHC allele. Furthermore,

crystal structures of many MHC-peptide complexes are known, which serve as a starting point

for structure-based prediction.

Only a very limited number of peptides from a protein usually bind a certain MHC al-

lele [303]. The aim of MHC-peptide prediction methods is to identify these peptides, which

will reduce the number of peptides that have to be investigated experimentally. The typical

output of the prediction methods is a ranked list of peptides, where the top one is the most

likely to bind the MHC allele of interest.

Here different sequence-based methods for prediction of MHC-binding peptides are in-

vestigated. The first focus of this chapter is how SVMs can be applied for prediction of

MHC-binding peptides. SVMs make it possible to circumvent the assumption used by PSSM

methods that each amino acid of the peptide contributes to the overall binding energy inde-

pendent of its surrounding amino acids. In a comparison to the SYFPEITHI and BIMAS

methods, the SVM method SVMHC shows better prediction accuracy for most alleles. Some

computational aspects regarding dataset homology and number of sequences needed for SVM

training is also investigated.

The next approach presented is a consensus method for HLA-A*0201 using all the predic-

tion methods mentioned above. The consensus score is generated by considering the score

distributions of sets of semi-quantitative data (high, medium, and low affinity binders) from

the MHCPEP database. A score is assigned to a new peptide according to its probability

to belong to one of the binding strength classes and the scores from all methods are then

summed up into a consensus score.
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3. Prediction of MHC class I binding peptides

The third main part of this chapter discusses the use of alternative sequence representation

and decision trees for prediction. The aim here is to move away from the ”black box”

SVMs and to investigate if simple biochemical properties of the amino acids can be used to

qualitatively describe MHC-peptide binding.

3.1. SVMHC

SVMHC is the first method described for prediction of MHC class I binding peptides using

support vector machines (SVMs). The idea of using SVMs and sparse binary representation

of peptides for prediction was introduced in a previous work [71]. This early work only con-

sidered peptides from the MHCPEP database and compared the use of SVMs and ANNs.

The work presented here extends this by considering peptide homology, number of peptides

needed for prediction, and naturally processed peptides from the SYFPEITHI database. Fur-

thermore, comparative studies to other prediction methods have been done. For a complete

overview of SVMHC, this chapter describes all steps of the development process, including

data extraction and representation.

3.1.1. Data and data representation

The data used to develop SVMHC was extracted from the MHCPEP [38] and SYFPEI-

THI databases [217] described earlier. The peptides were extracted from the databases and

grouped into allele-specific data sets. Some peptides contain undetermined amino acids (la-

beled ’X’) and such peptides were removed from the data sets. Unfortunately, there are very

few experimentally verified examples of peptides that do not bind to a particular MHC (or at

least very few are published). Therefore, the non-binding training examples were extracted

randomly from the ENSEMBL database of human proteins [124]. Protein sequences from the

ENSEMBL database were chopped up into the length of interest and known MHC-peptides

were removed. Obviously, there is a risk that some of the non-binders actually do bind, but

since less than 1% of the peptides are expected to bind any given MHC molecule [167], this

is a valid approach. Details about data set sizes are given in the following sections.

The peptides were represented using binary ”sparse” representation. This means that a

binary string is assigned to each amino acid in the peptide. Each binary string consists of

20 positions with zeros in all places except for one. An example illustrating how a peptide is

represented using binary sparse encoding is given in Fig. 3.1.
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10000000000000000000 00100000000000000000

A D

AD +1 1:1 23:1

YC 0000000000000000000101000000000000000000

Y C

-1 20:1 22:1

Peptide Sparse binary encoding of peptide SVM input

Figure 3.1.: This figure illustrates how the two dipeptides ”AD” and ”YC” are represented
using binary sparse encoding. Furthermore, it is shown how the peptides are
encoded for the SVM software, where ”+1” represent a binder and ”-1” a non-
binder. The SVM software reads data in the form: class feature1:value fea-
ture2:values, but for those feature:value pairs now given in the input file, the
software will consider the value of these features to be zero.

3.1.2. SVM training and evaluation

The linear, polynomial, and radial-basis function (rbf) kernels were all optimized during train-

ing. The parameter space was explored using a grid search, where all parameter combinations

were tested given the start, stop, and step size of each parameter.

The prediction performance of SVMHC was compared to that of the SYFPEITHI [217]

and BIMAS [201] prediction methods. A thorough comparison was made for those alleles

that could be predicted by all three methods.

3.1.3. Amount of data needed for SVM training

The numbers of known binders vary significantly between different MHC alleles. One problem

faced with a learning algorithm trying to deduce a model from a given data set is to estimate

the number of training examples needed for creating a reliable model. To investigate the

effects of training data set size, three MHC alleles for which a reasonable number of known

MHC-binding peptides are known were used. For each of these alleles a test data set consisting

of 20 binders and 40 non-binders were extracted and used throughout the study. The sizes

of the training data sets were then varied including different numbers of known binders. The

ratio between binders and non-binders in the training data sets were kept at a 1:2 ratio in

order to keep this factor as constant as possible. For each dataset a grid search for the

optimal SVM parameters was done. Figure 3.2 shows the MCC for varying numbers of

binders included in the training data set for the three alleles HLA-A*0201, HLA-A*03, and

HLA-B*2705. A significant improvement of the MCC can be observed as the number of

binders was increased up to about 20 for each of the alleles. Furthermore, a small increase

can be observed as the number of binders increase up to 50. The conclusion that can be

drawn from this study is that about 20 peptides is a reasonable minimum number of peptides
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3. Prediction of MHC class I binding peptides

needed for training in order to obtain a reasonable prediction model.
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Figure 3.2.: Performance of SVMHC for the three MHC alleles HLA-A*0201, HLA-A*03,
and HLA-B*2705, measured by the Matthews correlation coefficient (MCC) as a
function of the amount of training data used. For all sizes of training data sets,
the test set was kept constant and no part of the training data was a part of the
test data.

3.1.4. Redundancy/homology reduction

Algorithms like SVMs and ANNs typically have a large number of free parameters and the use

of too homologous datapoints might give misleading results. This is a frequently occurring

problem in bioinformatics that is often being neglected by researchers and peer-reviewers. It

is a trivial task for e.g. an SVM or a network-based model to almost perfectly reproduce the

training data. Different alleles were studied in order to investigate the effects of homology

reduction. Peptides in the training data was only allowed a maximum pairwise sequence

identity to all other peptides. The results from this study can be seen in Fig. 3.3. As expected

there is a small increase in performance as the number of maximum identity is increased.

However, the effects of this reduction is pretty small and by removing identical sequences

from the data an over-estimation of the prediction performance should be prevented.
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Figure 3.3.: The effect of sequence identity reduction on prediction accuracy. The accuracy
increase is only small considering the identity of sequences within the data, in-
dicating that the SVM models have learned general patterns of the data.

3.1.5. SVMHC training results

The first version of SVMHC was published in 2002 [72] and offered prediction for 26 HLA

alleles from the MHCPEP database and six HLA alleles based on SYFPEITHI data. The per-

formance values obtained for data from the MHCPEP database can be seen in Table 3.1. For

some alleles the prediction accuracies are very high with MCCs over 0.90 and most MCCs are

above 0.70. The MHCPEP database is no longer updated, whereas the SYFPEITHI database

has undergone several updates. Hence, SVMHC has also been trained on later releases of

SYFPEITHI and now also include some of the most common mouse alleles. Table 3.2 gives

and overview of the training results from the two SVMHC versions based on SYFPEITHI

data. Version 1 corresponds to the results published in 2002 [72]. The first version of SVMHC

only allowed a maximal identity of six positions between peptides in the training data, which

is not the case for the second version. One main reason for removing similar peptides is

that the MHCPEP database contains peptides from alanine scans, meaning they have a large

number of similar sequences only changed in one position, which is not the case for SYFPEI-

THI data. For some alleles the performance gets better when more data is available, but this

is not true for all cases. The reason for this is most probably that the new data gives a better

description of the ’peptide range’ a certain MHC allele will bind. The data for some alleles is

highly biased towards certain motif patterns that have been used to identify candidates for
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3. Prediction of MHC class I binding peptides

Table 3.1.: Prediction performance for SVMHC based on data from the MHCPEP database.
Results are available for 26 different HLA molecules with a total of 31
HLA/peptide length (Mer) combinations. As can be seen the majority of the
data from the MHCPEP database consists of 9mer peptides.

MHC Mer # binders MCC Kernel

HLA-A*01 9 28 0.95 lin

HLA-A*1101 9 40 0.74 poly

HLA-A*11 9 46 0.75 rbf

HLA-A*11 10 21 0.59 poly

HLA-A*02 9 118 0.76 poly

HLA-A*02 10 35 0.65 poly

HLA-A*2402 9 73 0.90 poly

HLA-A*03 9 73 0.76 rbf

HLA-A*0201 9 184 0.73 rbf

HLA-A*0201 10 96 0.78 poly

HLA-A*3301 9 32 0.72 lin

HLA-A*0301 9 38 0.72 rbf

HLA-A*0301 10 32 0.77 lin

HLA-A*31 9 39 0.79 poly

HLA-A*6801 9 42 0.84 poly

HLA-B*07 9 32 0.95 lin

HLA-B*08 9 26 0.77 poly

HLA-B*2705 9 41 0.93 lin

HLA-B*3501 9 67 0.93 lin

HLA-B*3501 10 34 0.96 poly

HLA-B*35 9 23 0.71 lin

HLA-B*2703 9 22 0.90 lin

HLA-B*5301 9 41 0.95 lin

HLA-B*27 9 34 0.91 rbf

HLA-B*2706 9 20 0.93 lin

HLA-B*51 9 67 0.82 poly

HLA-B*5102 9 29 0.79 poly

HLA-B*0702 9 52 0.96 poly

HLA-B*5103 9 29 0.84 rbf

HLA-B*5401 9 42 0.98 lin

HLA-B*5101 9 35 0.89 lin
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Table 3.2.: Prediction performance for SVMHC based on data from the SYFPEITHI
database. Results are presented for two SVMHC version and Ver. 2.0 of SVMHC
covers a much wider range of peptides.

Version 1 Version 2

MHC Mer # binders MCC Kernel # binders MCC Kernel

H2-Db 9 - - - 32 0.88 lin

H2-Kb 8 - - - 46 0.92 rbf

H2-Kd 9 - - - 38 0.94 lin

H2-Kk 8 - - - 23 0.91 lin

HLA-A*0201 9 113 0.78 rbf 241 0.87 rbf

HLA-A*0201 10 40 0.70 poly 59 0.69 lin

HLA-A*01 9 28 0.96 lin 50 0.96 rbf

HLA-A*03 9 73 0.80 lin 78 0.89 rbf

HLA-A*03 10 - - - 25 0.79 lin

HLA-A*1101 9 - - - 30 0.93 lin

HLA-A*2402 9 - - - 28 0.84 rbf

HLA-A*24 9 - - - 36 0.92 rbf

HLA-A*25 10 - - - 20 0.82 rbf

HLA-B*07 9 23 0.93 lin 44 0.81 lin

HLA-B*08 9 25 0.79 lin 32 0.81 lin

HLA-B*1501 9 - - - 62 0.87 rbf

HLA-B*1501 10 - - - 22 0.86 lin

HLA-B*1801 8 - - - 49 0.83 lin

HLA-B*1801 9 - - - 70 0.93 lin

HLA-B*2705 9 29 1.00 lin 45 0.98 lin

HLA-B*27 9 - - - 47 0.97 lin

HLA-B*3701 9 - - - 23 0.84 lin

HLA-B*44 9 - - - 26 0.94 rbf

HLA-B*5101 9 - - - 33 0.91 rbf

HLA-Cw*0401 9 - - - 54 0.93 rbf

experimental verification. New techniques enable more peptides to be extracted from a cell

culture and this seems to reveal new motif patterns.

3.1.6. SVMHC benchmarking results

Comparison of new prediction methods to the current state-of-the-art methods is important.

Hence, SVMHC was compared to the BIMAS and SYFPEITHI prediction methods, see

Table 3.3 (results using SVMHC Version 1 [72]). SVMHC performs better than the other

two methods for all alleles except for HLA-B*08, where BIMAS shows the best performance.

For one prediction method, the difference in performance is rather large in some cases. This

can be explained by the difference in the peptide sequences found to by a certain MHC allele.
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3. Prediction of MHC class I binding peptides

For example all HLA-B*2705 peptides have and Arg in position two of the peptide. This

is a rather dominant motif compared to other alleles which allow a broader range of amino

acids as anchors. It is not possible from this study to determine which of the BIMAS and

SYFPEITHI methods that is the best one, since this is rather allele dependent. Some more

aspects of these results are given at the end of this chapter.

Table 3.3.: Comparison results of SVMHC, SYFPEITHI (SYF) and BIMAS. The tables shows
the allele-specific Matthews correlation coefficients (MCC) of each method.

MHC Mer # binders SVMHC SYFPEITHI BIMAS

HLA-A*0201 9 113 0.78 0.77 0.77

HLA-A*0201 10 40 0.70 0.61 0.61

HLA-A*01 9 28 0.96 0.93 0.96

HLA-A*03 9 73 0.80 0.73 0.71

HLA-B*08 9 25 0.79 0.79 0.82

HLA-B*2705 9 29 1.00 0.92 0.93

Avg - - 0.84 0.79 0.80

Both SVMHC and SYFPEITHI have been updated since this initial comparison was con-

ducted. Hence an additional comparison of the SVMHC version 2 and SYFPEITHI (matrices

from March 2006) was done, see Table 3.4. This comparison is done exclusively for peptides

with a length of nine amino acids and the amount of data used is much larger than in the

previous comparison. The cutoff used for the SYFPEITHI method is half the maximum score

for the relevant matrix as described by Schuler et al. [245].

Table 3.4.: Comparison results of SVMHC version 2 and SYFPEITHI (matrices from March
2006). The tables shows the allele-specific Matthews correlation coefficients
(MCC) of each method.

MHC # binders SVMHC SYFPEITHI

HLA-A*0201 241 0.87 0.83

HLA-A*01 50 0.96 0.94

HLA-A*03 78 0.89 0.75

HLA-B*08 32 0.81 0.81

HLA-B*2705 45 0.98 0.92

Avg - 0.90 0.85

3.1.7. Quantitative prediction

The presented accuracies for SVMHC concern the classification task of binders versus non-

binders, i.e. a qualitative prediction. However, for some alleles enough quantitative binding
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data is available for a statistical evaluation. Most quantitative data come from assays mea-

suring the binding affinity of peptides to an MHC molecules using radiolabeled standard

probes, as described by Sette et al. [138, 153, 237]. A large set of HLA-A*0201 peptides

with experimentally verified binding energies were used to evaluate the correlation between

experiment and prediction for the SVMHC, SYFPEITHI, and BIMAS methods. The scores

from the BIMAS methods are estimated t1/2 dissociation rates of the β2-microglobulin sub-

unit which is in a logarithmic relationship to the binding energy. Hence the logarithm of the

BIMAS scores were used. Two measures of performance were used in this study, the standard

Pearson correlation and the Spearman rank correlation.

The results from this study can be seen in Table 3.5 and a plot of experimentally versus

predicted values can be seen in Fig. 3.4. The BIMAS log values show slightly better results

compared to SVMHC. There is not much difference between the Spearman and Pearson

correlation for each method, except for the BIMAS comparison using the raw output scores.

Table 3.5.: Correlation coefficients for the quantitative data set of HLA-A*0201 binders.
Method Spearman Pearson

BIMAS -0.52 -0.51

SYFPEITHI -0.33 -0.35

SVMHC -0.45 -0.47

3.1.8. The SVMHC prediction server

SVMHC has been implemented as a prediction server and can be accessed at http://www-

bs.informatik.uni-tuebingen.de/SVMHC/. The current version allows prediction of 26 alleles

based on MHCPEP data and 21 alleles based on SYFPEITHI data. Furthermore, MHC

class II prediction is available using the matrices presented by Hammer et al. [270]. These

matrices are used by the TEPITOPE software and have been proven effective in identifying

T-cell epitopes in the melanoma related protein gp100 [53] and MAGE-3 [168]. SVMHC

currently contains 50 HLA-DR alleles.

There are several different output formats available from SVMHC, both graphical and

tabular. Figure 3.5 shows a sequence-summary plot for eight different alleles of the a lentiviral

protein (Swiss-Prot id: P05917). Amino acids that are part of a predicted MHC-binding

peptide are colored red and the starting position of each peptide is colored blue. This enables

a fast identification of promiscuous epitopes, i.e. epitopes shared over several different MHC

alleles. Peptides that can bind a wide range of different MHC alleles are good candidates for
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Figure 3.4.: Comparison of prediction scores (x-axes) and experimentally verified binding
energies (y-axes).

vaccines, covering a wide range of the population.

60



3.1. SVMHC

Figure 3.5.: Prediction results from the SVMHC prediction server. This type of plot enables
simple identification of promiscuous epitopes.
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3. Prediction of MHC class I binding peptides

3.2. Consensus prediction of HLA-A*0201 binding peptides

Methods for MHC-binding prediction usually differ in both data used and computational

approach. One strategy often used in bioinformatics is to combine different prediction servers

into a consensus score. This has successfully been done for e.g. protein secondary structure

prediction [64], transmembrane helix prediction [301] and protein structure prediction [164].

Most approaches use something like a majority-wins schema or use a more sophisticated way

to combine the scores. This section presents results for a consensus prediction methods for

HLA-A*0201 binding peptides using the SVMHC, SYFPEITHI, and BIMAS methods. There

are many different ways in which a consensus method can be constructed, e.g. one could sum

the ranks from all three methods for each peptide from a query protein and use this as a

consensus score. However, here a more sophisticated approach is presented, based on score

distributions from the different prediction methods. The MHCPEP database contains semi-

quantitative binding information and groups the peptides into three classes based on binding

strength (high, medium, low binders). By studying how the scores of each of these classes

given a prediction method is distributed, a peptide can be assigned to a class given a certain

score, i.e. given a certain score and the score distribution of the binding-strength classes, to

which class does the peptide (score) belong.

3.2.1. Materials and methods

The MHCPEP database contains semi-quantitative binding data for pretty many peptides.

The binding strengths of these peptides are classified into low, medium or high. All HLA-

A*0201 peptide where this information was available were extracted from the database and

non-binders were extracted as described for the SVMHC method, giving four data sets with

peptides grouped according to binding strength. The aim now is to assign a new peptide to

one of the classes based on its prediction score alone. This means that we have four models

Mm,m = 1, ...., 4 corresponding to the four binding-strength classes. The question is now:

given the score of a new peptide is by which probability it belongs to one of the classes.

A simple way to do this is to group the scores into intervals and calculate the fraction of

peptides covered. An example of this for the SYFPEITHI prediction method on the data

from MHCPEP can be seen in Fig 3.6. Peptides belonging to the Low-binder class are more

frequent in lower score ranges, although some High-binders also have low scores. The same

type of distribution plots can be done for non-binders and the class of a new peptide (score) is
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simply assigned to the class which is most prominent in the relevant interval. This is done for

all prediction methods and the peptide is assigned a score from each method corresponding

to its class (0 to 3 for non-binder to high binder). The consensus score of a peptide is then

the sum of scores from all prediction methods (scores in the range 0 to 9).
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Figure 3.6.: The fraction of peptides within certain score intervals as predicted by the SYF-
PEITHI method for the semi-quantitative data from the MHCPEP database.

3.2.2. Results and interpretation

The consensus method was compared to the SVMHC, the BIMAS, and the SYFPEIHTI

methods. In this comparison all classes of binders (low, medium, and high) were considered

just binders and the classification between binders and non-binders was investigated. The

results from this comparison can be seen in Table 3.6.

Table 3.6.: Prediction results for the BIMAS, SYFPEITHI, SVMHC, and Consensus meth-
ods. The Consensus method shows better prediction performance compared to
the other methods.

Method MCC SP SE

BIMAS 0.66 0.75 0.75

SYFEITHI 0.70 0.81 0.73

SVMHC 0.71 0.89 0.67

Consensus 0.73 0.87 0.87

These results clearly show that the best performance is achieved with the Consensus

method. Furthermore, a specificity/sensitivity plot for the prediction can be seen in Fig. 3.7.

From this plot it can also be seen that the Consensus method performs better than the other
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methods and especially has a range of improved specificity.
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Figure 3.7.: Sensitivity/specificity plot for the SVMHC, BIMAS, and SYFPEITHI methods
compared to that of the consensus method.

3.3. Decision trees and amino acid-specific properties for

prediction of MHC class I binding peptides

MHC-peptide binding is highly dependent on the amino acids in the anchor positions. Earlier

in this chapter, the successful use of SVMs for the prediction of MHC-peptide binding was

described in detail and the SVMHC method was presented. The amino acids in all methods

described for MHC-binding prediction are described as an alphabet consisting of 20 letters.

However, the MHC-peptide interaction is of course dependent on the biochemical properties

of these amino acids and there are no explicit similarity described by the 20 letter encoding.

One way to describe the biochemical properties of the amino acids is to use the AAindex

database [139] . AAindex contains different types of amino acid properties, e.g. hydropho-

bicity and accessible surface area, that can be used to represent the peptides. Here DTs are

used together with amino acid properties to investigate the underlying properties of MHC-

peptide interaction. DTs are used since the decision rules generated can be easily interpreted
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and give some basic ideas about the MHC-peptide interaction.

3.3.1. Materials and methods

Experimentally verified MHC binding peptides with a length of nine amino acids for the

HLA-A*0201, HLA-B*08, and HLA-B*2705 alleles were obtained from the SYFPEITHI

database [217]. This gave a total of 241 HLA-A*0201, 45 HLA-B*2705, and 32 HLA-B*08

peptides. A dataset of non-binders was created by extracting peptides from existing pro-

teins in the Ensembl database [124] as described for SVMHC. The number of non-binders

used in the training data was twice the size of known binders for each allele. Duplicate en-

tries were removed from the data sets and peptides were encoded using amino acid-specific

properties (e.g. hydrophobicity, side chain volume, and absolute entropy) from the AAindex

database [139]. Many of the different features in the AAindex database and hence a set of

24 representative features were used throughout this study, see Table 3.7.

Table 3.7.: The features from the AAindex database used in the DT study.
Name Definition AAindex accession code

AbsEntropy Absolute entropy HUTJ700102

Accessibility Information value for accessibility BIOV880101

AccSurfaceArea Average accessible surface area JANJ780101

AlphaHelix Alpha-helix indices GEIM800101

BetaTurn Conformational parameter of beta-turn BEGF750103

BetaStruct Conformational parameter of beta-structure BEGF750102

BurResidue Percentage of buried residues JANJ780102

ExpResidue Percentage of exposed residues JANJ780103

HydrophobDir Direction of hydrophobic moment EISD860103

Interaction Side chain interaction parameter KRIW710101

LengthSideChain Length of the side chain FAUJ880104

MaxWidthSideChain Maximum width of the side chain FAUJ880106

MinWidthSideChain Minimum width of the side chain FAUJ880105

MolWeight Molecular weight FASG760101

NetCharge Net charge KLEP840101

NonBindEnergy Average non-bonded energy per atom OOBM770101

PosCharge Positive charge FAUJ880111

SideChainGyr Radius of gyration of side chain LEVM760105

SideChainVol Side chain volume KRIW790103

SideOrient Average side chain orientation angle MEIH800103

Stability Side-chain contribution to protein stability TAKK010101

SurrHydro Average gain in surrounding hydrophobicity PONP800102

SurrResidue Average number of surrounding residues PONP800108

WaalsVolume Normalized van der Waals volume FAUJ880103
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The well known C4.5 and C5.0 software packages [216] were used to create rulesets that

consist of unordered collections of if-then rules. Rulesets were preferred instead of decision

trees since they give clear descriptions of the rules associated with a certain class. In cases

where more than one rule applies, the C5.0 program takes the confidence value of each rule

into account to calculate a total vote for each class. Furthermore, there is a default class

that is used when none of the rules in the ruleset is applicable. The aim with the sampling

procedure is to find amino acid patterns, in terms of biochemical properties describing MHC-

peptide binding.

In a preliminary analysis every amino acid property was evaluated separately considering

all peptide positions. The rulesets generated were then searched for key positions which

were used for the subsequent analysis (in order to reduce the search space). In the next

step an extensive search for feature/positions combinations was conducted. In most cases a

limited number of peptide positions and amino acid features gave the best prediction results.

The prediction performance was evaluated using Matthews correlation coefficient [172] and

fivefold cross-validation. The ruleset method was also compared against the SYFPEITHI

and BIMAS methods by applying the same data and statistics to the online versions of these

methods.

3.3.2. Results and interpretation

The performance for the best combination of peptide positions and amino acid properties

found for each allele are presented in Table 3.8. The general conclusion from these results

is that only a limited number of peptide positions and amino acid properties are needed to

describe MHC-peptide binding. This also means that the dimensionality of the classification

problem can be reduced, since there is no need to take all sequence positions into account.

We also investigated the effect of data splits into training and test sets for the best results,

giving only small differences to the results presented here.

Figure 3.8 shows the rulesets generated for HLA-B*2705 (a) and HLA-B*08 (b) using

the whole datasets. The rules for HLA-B*2705 are based on two peptide positions and two

amino acid properties. The two features found to be the most important for this allele are

Stability and LengthSideChain. Stability describes the contribution to protein stability from

a certain side-chain [274], whereas the LengthSideChain property is a size descriptor for the

amino acids [86]. Stability is a feature closely correlated to the hydrophobicity of an amino

acid, which can be seen in position nine of the peptide where hydrophobic amino acids are
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Table 3.8.: Results for the best prediction accuracy achieved for each of the studied MHC
alleles. The table shows the statistics obtained from fivefold cross-validation, the
positions of the peptide considered, and the amino acid properties used.

MHC MCC SP SE ACC POS Properties

HLA-A*0201 0.85 0.95 0.89 0.93 2,4,6,9 BetaStruct,SideChainGyr,BurResidue

HLA-B*2705 0.95 1.0 0.94 0.98 2,9 Stability,LengthSideChain

HLA-B*08 0.92 0.97 0.97 0.97 3,5,9 PosCharge,Stability,AccSurfaceArea

a.

Rule 1:

Stability_9 > 0.2024793

LengthSideChain_2 > 0.9756944

-> class epitope

Rule 2:

LengthSideChain_2 <= 0.9756944

-> class non-epitope

Rule 3:

Stability_9 <= 0.2024793

-> class non-epitope

Default class: non-epitope

b.

Rule 1:

PosCharge_3 > 0

AccSurfaceArea_9 <= 0.2057143

-> class epitope

Rule 2:

PosCharge_5 > 0

Stability_3 > 0.4917355

-> class epitope

Rule 3:

AccSurfaceArea_9 > 0.2057143

-> class non-epitope

Rule 4:

PosCharge_3 <= 0

PosCharge_5 <= 0

-> class non-epitope

Rule 5:

PosCharge_3 <= 0

Stability_3 <= 0.4917355

-> class non-epitope

Default class: non-epitope

Figure 3.8.: The rulesets created for the HLA-B*2705 (a) and HLA-B*08 (b) alleles. The
rules presented here were generated using the whole dataset for each allele.

preferred. It can be seen from the ruleset that HLA-B*2705 prefers amino acids with long

side chains in position two of the peptide. This is important since the ”binding pocket” of the

MHC molecule is rather spacious. A small amino acid would not be able to fill the pocket.

Space-filling effects like this are known to be important for protein structure stability and

protein-ligand interaction [82, 127]. The small number of features needed to describe the

relevant properties for binding gives a very compact model.

The ruleset for HLA-B*08 is based in three amino acid properties. PosCharge describes

the charge of the amino acids [86] and AccSurfaceArea is a measure of how exposed a certain

amino acid is to the solvent in known protein structures [133]. The importance of PosCharge
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3. Prediction of MHC class I binding peptides

in position five of the peptide can clearly be seen (Rule 2 and Rule 4). This has been

previously described in literature, where the positively charged amino acid lysine has been

found in position five of the peptide [69]. AccSurfaceArea in position nine is also important

for HLA-B*08 (Rule 1 and Rule 3) where small residues are preferred. Fig. 3.9 shows a cross-

section of a HLA-B*08 molecule with a bound peptide. This figure clearly shows how the

amino acids in positions 3, 5, and 9 of the peptide are deeply buried in the MHC molecule.

These positions are in close contact with the MHC molecule and are crucial for binding,

something also captured in the rulesets generated.

Figure 3.9.: This figure shows the cross-section an HLA-B*08 MHC molecule with a bound
peptide(PDB code:1M05 [145]). Here the positions 3, 5, and 9 of the peptide
can be seen to go deeply into the MHC molecule, something also reflected in the
rulesets generated for HLA-B*08.

The results of the external methods SYFPEITHI and BIMAS can be seen in Table 3.9.

SYFPEITHI performs better than BIMAS for the HLA-A*0201 and HLA-B*08 alleles, but

is worse for HLA-B*2705. The ruleset method is better than both SYFPEITHI and BIMAS

considering all alleles. The advantage of the ruleset method is that it finds the peptide posi-

tions and amino acid properties that best describe MHC-peptide interaction. In comparison

to SVMHC, the DT method also performs well. Initial studies with SVMs based on only

certain positions and amino acid features showed that this can improve the performance ac-

curacy [271]. However, one drawback of DTs is that different optimal peptide positions and

amino acid features are found for each MHC allele. Using all position and a limited number
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Table 3.9.: Prediction performance of the SYFPEITHI and BIMAS methods for the three
MHC alleles HLA-A*0201, HLA-B*08, and HLA-B*2705. The measures used for
the performance evaluation are Matthew’s correlation coefficient (MCC), speci-
ficity (SP), and sensitivity, (SE).

A*0201 B*2705 B*08

Method MCC SP SE MCC SP SE MCC SP SE

SYFPEITHI 0.84 0.95 0.88 0.92 0.96 0.98 0.83 0.98 0.81

BIMAS 0.79 0.93 0.86 0.95 0.97 1.0 0.79 0.98 0.75

of features (e.g. the 24 used in this study) does not give good results.

3.4. General discussion

The results presented in this chapter show several different aspects of MHC-peptide binding.

Using SVMs for prediction improves the overall accuracy and indicates that there are at

least some peptides for which the independent contribution of each amino acid to the overall

binding energy hypothesis does not hold. This was actually noted by Parker et al. in the

paper on which the BIMAS method is based upon [201]. Many studies using PSSM turned the

findings from Parker into their advantage, stating that most of the MHC-binding peptides

can be described by a PSSM and did not investigate the fraction falsely predicted. The

use of machine learning methods like SVMs or ANNs make is possible to model non-linear

contributions of the amino acids, which is one reason for the improved performance. In

most cases the improved performance of the SVM method is due to increased specificity of

the prediction compared to the other methods, something that also have been pointed out

previously [102]. The study of how the prediction methods perform on quantitative data is

interesting. SVMHC and BIMAS perform significantly better in representing binding energies

compared to SYFPEITHI. One reason for this is that the SYFPEITHI matrices have been

tuned to predict naturally processed peptides. The data set used in the benchmark contains

a mixture of synthetic and naturally processed peptides (although the binding energies of

course are measured on synthetic peptides).

The consensus prediction method presented here shows promising results. Currently HLA-

A*0201 is the only allele where enough experimental data is available for the approach pre-

sented here, but as more data become available, it might be interesting to try the same

approach for other alleles as well. The overall increase in sensitivity means the consensus

method successfully identifies binding peptides that are missed if the prediction methods are
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3. Prediction of MHC class I binding peptides

used separately.

The DT approach gives some useful insights into MHC-peptide interaction. These can

be used to give some qualitative description of MHC-peptide binding, e.g. peptides binding

to a certain allele should have hydrophobic amino acids in position two and charged in

position nine of the peptide. This can also be verified by manual inspection of MHC-peptide

structures. The results also show that DTs are, from an algorithmic point of view, suitable

for MHC-peptide binding prediction.

It is hard to ”predict” the future of MHC-peptide prediction. One trend will definitely

be to focus more on quantitative prediction of MHC-peptide affinity. This thesis presents

some results for quantitative prediction and other both sequence based and structure-based

attempts have been made. For most alleles the data needed is still lacking, but it is very likely

that accurate prediction quantitative method for many different alleles will be presented in

the future.
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processing pathway

MHC-peptide presentation on the surface of cells is crucial for the activation of Tc cells. The

previous chapter described different methods for predicting MHC-peptide binding, but there

are a number of other events involved in the processing and presentation of antigens not

yet considered. The processing of proteins into smaller peptides is carried out by different

proteases, where the proteasome is the most important for intracellular antigens. These are

cleaved into smaller peptides in the cytosol and transported into the ER where they can bind

MHC class I molecules (see Sect. 2.3.1 for an introduction to MHC class I antigen processing).

This chapter describes an integrated model of the whole processing pathway of MHC class

I restricted antigens. The three steps modeled are proteasomal cleavage in the cytosol, TAP

transport of peptides into the ER, and MHC-peptide binding. New methods for predicting

these events are presented in detail and compared to existing methods. The new methods are

then combined with SVMHC into a model of the whole antigen processing pathway (WAPP),

see Fig 4.1 for a schematic overview. Furthermore, the prediction performance of WAPP is

compared to NetCTL and the method presented by Tenzer et al. Finally, alternative events

of the processing pathway are discussed with a focus on proteasomal splicing.

Figure 4.1.: A schematic overview of different processing steps modeled in WAPP.
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4. Modeling the whole MHC class I antigen processing pathway

4.1. Proteasomal cleavage prediction - the PCM method

The general structure and function of the proteasome was described in detail in Sect. 2.3.1

and prediction methods for proteasomal cleavage were discussed in Section 2.7.1. This section

describes the development of the PCM (proteasomal cleavage matrix) method and compares

the method to other methods for proteasomal cleavage prediction.

4.1.1. Materials and methods

Data for proteasomal cleavage is pretty sparse and whole protein digestion experiments have

currently been done on only three proteins; β-casein [80], enolase [195], and the prion pro-

tein [276]. The experimental protocol can in a simplified way be described by three steps:

(i) incubate the protein with purified proteasomes, (ii) extract the peptide fragments gener-

ated by proteasomal cleavage and characterize these with mass spectrometry, and (iii) map

the fragments back to the protein sequence and deduce the cleavage sites. In principle it is

also possible to deduce quantitative information from the peptide concentrations observed.

However, this information is not available for all data and hence only the qualitative measure

cleavage/non-cleavage was used.

Cleavage site information from the three proteins was used to create PSSMs (referred to

as PCMs). In principle the flanking sequences of cleavage sites are extracted and aligned in

order to create a PCM. The general way to construct a PSSM was described in Sect 2.6.1

and here the score si,j of amino acid (i) in position j of the alignment is defined as:

si,j = ln
(ni,j + pi)/(N + 1)

pi
≈ ln(fi,j/pi,j) (4.1)

where fi,j is the frequency of amino acids i at position j and pi,j is the prior probability of

amino acid i in position j [113].

Different window sizes were tested for the extraction of peptides surrounding the cleavage

sites. It is expected that the closest amino acids, especially P1 and P1’, will influence the

cleavage the most. The final version of the PCM method uses four N-terminal and two C-

terminal amino acids around each cleavage site. The priors used are based on the amino acid

composition of the source proteins. The score for a new sequence is calculated as the sum of

individual position-specific scores for the amino acid in the sequence.

Since the data concerning proteasomal cleavage is very sparse, several different PCMs were

generated for comparison reasons. Some of the previously presented methods used parts of
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4.1. Proteasomal cleavage prediction - the PCM method

their training data to estimate prediction accuracy, making it hard to really estimate the

true prediction performance. Here data from each protein was left out from the training

procedure and then used to estimate the prediction accuracy. Matrices based on all three

proteins as well as combination of two sets were used for performance evaluation. A com-

parison of the PCM based on the enolase and casein proteins, PCM(E+C), can be used to

compare the performance of all methods for the prion protein. The cutoffs for distinguishing

between cleavage and non-cleavage sites were chosen at maximum MCC. All three proteins

were submitted to the prediction servers MAPPP, PAProC, and NetChop for benchmarking.

The experimentally verified binding sites were compared to the prediction scores and per-

formance measures of the predictions were calculated. The MAPPP prediction server offers

only one type of proteasomal cleavage prediction, but both PAProC and NetChop provide

several options for prediction. Three different models from the PAProC server were used for

prediction: N1-N3. The N1 model is based on cleavages in enolase, the N2 model is based on

cleavages in enolase and ovalbumin, and the N3 model is based on cleavages of enolase and

a different set of ovalbumin cleavages. Two different types of networks were used from the

NetChop server, 20S and C-term 2.0. The 20S network was trained on in vitro degradation

of the enolase and casein proteins, whereas the C-term 2.0 network was trained on MHC lig-

ands. For MAPPP and NetChop a cutoff of 0.5 was used. This is the default cut-off used by

the MAPPP server and a recent study by the developers of NetChop used 0.5 to discriminate

between cleavage and non-cleavage sites [239].

4.1.2. Results and discussion

The results of the PCM method can be seen in Table 4.1, showing results for PCMs based

on different types of training data. As a measure of prediction performance, MCC, SP, and

SE were used. The average total accuracy for the three proteins of the PCM method, when

no training data was used for evaluation, reaches 65%. While the overall MCCs are not all

that impressive (ranging from 0.18 to 0.32), our method is fairly robust.

The robustness of the PCM method was also compared to that of other methods for protea-

somal cleavage site prediction. The methods in the comparative study were PAProC N1, PA-

ProC N2, PAProC N3 [154, 197], Netchop 20S, Netchop C-term 2.0 [141], and MAPPP [118].

In each case, all proteins that were not included in the respective method’s training set were

used for assessing their prediction performance. It turns out, that all methods are consider-

ably less robust than the PCM method. While PAProC and Netchop 20S achieve very high
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4. Modeling the whole MHC class I antigen processing pathway

Table 4.1.: Prediction performance results of proteasomal cleavage site prediction the PCM
method. Several different PCMs were constructed in order to compare methods.

Enolase (E) Casein (C) Prion (P)

Method MCC SP SE MCC SP SE MCC SP SE

PCM(ALL) 0.54 0.74 0.57 0.51 0.58 0.67 0.40 0.5 8 0.77

PCM(E+C) 0.59 0.64 0.80 0.50 0.69 0.51 0.18 0.51 0.44

PCM(E+P) 0.26 0.36 0.84 0.32 0.46 0.49 0.26 0.50 0.75

PCM(C+P) 0.19 0.35 0.69 0.51 0.67 0.53 0.46 0.62 0.78

Table 4.2.: Results from the proteasomal cleavage site prediction using already existing meth-
ods (values in brackets) are prediction performances for data used in method de-
velopment and should not be used to compare methods. A large difference in
performance can be seen for data contained in the training set versus data not in
the training set for the PAProC and NetChop methods.

Enolase (E) Casein (C) Prion (P)

Method MCC SP SE MCC SP SE MCC SP SE

MAPPP 0.09 0.30 0.75 0.12 0.24 0.77 0.03 0.40 0.56

PAProC N1 (0.95) (0.98) (0.95) 0.17 0.29 0.53 -0.03 0.36 0.33

PAProC N2 (0.95) (0.97) (0.97) 0.27 0.35 0.63 0.07 0.44 0.34

PAProC N3 (0.94) (0.96) (0.96) 0.15 0.27 0.56 0.08 0.44 0.39

Netchop 20S (0.88) (0.85) (0.99) (0.76) (0.71) (0.93) 0.12 0.47 0.41

Netchop C 0.18 0.37 0.49 0.18 0.29 0.58 0.07 0.44 0.33

MCC values (0.88-0.95) on the proteins they were trained on (enolase for PAProC, enolase

and casein for Netchop 20S), their performance drops to values between -0.03 and 0.07 when

validated with other proteins. This is a clear indication of overfitting on the training data.

MAPPP and Netchop C-term 2.0 are clearly more robust, but their prediction performance

is well below the performance of our method (see Table 4.2).

The average total accuracies of all external methods, when no training data was used for

evaluation, was also calculated. The MAPPP method has an average accuracy of 47%, PA-

ProC 60%, and Netchop 61% (PCM 65%). We therefore conclude that PCM combines com-

parable or slightly better prediction accuracy with improved robustness. Our PCM method

also allows the easy extraction of proteasomal cleavage motifs based on amino acid prefer-

ences in a specific position. The three proteolytic sites of the proteasome have been described

as having trypsin-like, chymotrypsin-like, and peptidylglutamylpeptide hydrolytic (PGPH)

activity [285]. Figure 4.2 shows the preferences for specific amino acids at positions surround-

ing the cleavage site. This figure has been prepared from the values of the PCM derived from

all three proteins and thus reflects the current knowledge on the cleavage preference of the
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Ala (A)
Arg (R)
Asn (N)
Asp (D)
Gln (Q)
Glu (E)
Gly (G)
His (H)
Ile (I)
Leu (L)
Lys (K)
Phe (F)
Pro (P)
Ser (S)
Thr (T)
Tyr (Y)
Val (V)

P4 P3 P2 P1 P'1 P'2

0

> 1.0

< -1.0

Figure 4.2.: The effect of specific amino acids on proteasomal cleavage. High values (blue)
contribute to proteasomal cleavage, whereas red inhibit cleavage. The cleavage
occurs between the P1 and P’1 positions (Met, Cys, and Trp have been omitted
due to insufficient statistical basis).

proteasome. The real values for each amino acid can be seen in Table 4.3. Tryptic activity

would imply cleavage immediately after Lys and Arg, however, we observe only Arg to be

favorable, whereas Lys seems to have a negative effect on cleavage probability. Chymotryptic

activity (cleavage after Phe, Tyr, and Trp) and PGPH activity (cleavage after Asp and Glu)

is quite obvious from the very favorable values for these amino acids. In addition, we observe

very unfavorable effects of Pro on the two positions immediately preceding the cleavage site

and Val, Ile, and Phe immediately following the cleavage site. Due to the low abundance of

Met, Cys, and Trp in the source proteins, the effects seen for these three amino acids is not

included since they might be artifacts of the analysis.

4.2. Prediction of TAP affinity, SVMTAP

Peptides in the cytosol have to be transported into the ER for binding to MHC class I

molecules. A key-player in this process are the TAP proteins in the ER membrane and

understanding the mechanism of TAP transport can be used in modeling the whole antigen
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4. Modeling the whole MHC class I antigen processing pathway

Table 4.3.: The PCM matrix generated using data from the casein, enolase, and prion pro-
teins. Cleavage occurs between the P1 and P’1 amino acids.

Sequence position

Amino acids P4 P3 P2 P1 P’1 P’2

A -0.07 -0.18 -0.01 0.22 0.30 -0.18

R -0.31 -0.31 0.38 0.29 0.20 -0.02

N -0.24 -0.12 0.24 -0.71 0.16 0.57

D -0.34 -0.23 -0.81 0.41 -0.34 0.28

C 0.16 -5.49 0.16 -5.49 -5.49 -5.49

Q -0.17 -0.08 0.43 0.07 -0.08 0.14

E -0.03 -0.03 0.04 0.16 -0.27 -0.18

G 0.32 -0.09 0.22 -0.29 0.22 0.08

H 0.12 0.12 -0.16 -0.01 -0.16 0.44

I 0.05 -0.04 -0.73 -0.27 -1.64 0.05

L -0.20 0.13 -0.42 0.38 -0.27 0.22

K -0.23 0.42 0.04 -0.85 -0.02 -1.40

M 0.22 0.22 0.22 0.37 0.63 -0.47

F 0.13 0.01 0.23 0.33 -0.96 0.41

P 0.22 -0.02 -1.29 -1.29 0.18 -0.34

S 0.04 -0.16 0.20 -0.71 0.34 -0.40

T -0.12 -0.23 0.28 -0.48 0.14 0.14

W 0.31 0.31 -1.29 1.00 0.31 0.64

Y 0.27 0.05 0.16 0.80 0.53 0.16

V -0.14 0.18 0.13 0.18 -0.96 -0.20
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processing pathway. The following sections will describe the data and methods used to

develop the SVMTAP prediction method for TAP affinity. A comparative study against

other methods will also be carried out. The prediction accuracy when only parts of the

peptides are used is also investigated. Furthermore an analysis of TAP affinity of naturally

processed MHC binding peptides is carried out.

4.2.1. Materials and Methods

Quantitative binding data

Very little data is available for actual TAP transport and available methods focus on pre-

diction of TAP affinity, where quantitative data is available. The data used to develop the

SVMTAP method consists of 446 9mer peptides with experimentally verified TAP affinity1.

The binding affinities have been obtained from Sf9 insect cells overexpressing human TAP

proteins in a competitive binding experiment using radiolabeled peptides, for more details

see [291]. Sparse binary representation of the data was used and the binding affinity was

represented as lnIC50. Previous studies have pointed out that the three N-terminal and the

C-terminal residues are the most important for peptide binding to TAP [284]. To investigate

this we used only these four sequence positions in addition to the whole sequence.

Naturally processed peptides

A set of naturally processed MHC-binding peptides were extracted from the SYFPEITHI

database in order to study the differences in TAP affinity between alleles. Several reports have

described TAP-dependent and TAP-independent alleles, both experimentally [66, 157, 290]

and computationally [39]. Using this type of data for analysis of TAP affinity should reveal

differences between TAP-sufficient and TAP-insufficient alleles.

SVR training and evaluation

SVR training and evaluation was done using the SVMlight software. Several kernels were

tested, but the linear kernel gave the best results. Leave-one-out cross-validation was used in

order to evaluate the prediction performance of the method. The performance measure used

was the Pearson correlation between predicted and experimentally verified binding affinities.

The SVMTAP method was also compared to that of the SMM method from Peters et al. [204].

1The data was supplied by Peter van Endert, INSERM 580, Institut Necker, Paris, France
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4. Modeling the whole MHC class I antigen processing pathway

4.2.2. SVMTAP results and interpretation

Quantitative data and benchmarking

A plot of predicted binding affinities versus the experimentally verified binding affinities can

be seen in Fig. 4.3. Here all positions of the peptide sequences have been used for training

and the correlation coefficient between experimental and predicted values are 0.82. There are

some outliers and the detection limit for the experimental procedure can also be seen.
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Figure 4.3.: Predicted binding affinities plotted against experimentally verified affinities for
the SVMTAP method. The correlation of predicted and experimental values is
0.82.

The corresponding plot using only the three N-terminal and the C-terminal residues can

be seen in Fig. 4.4. From these results one can conclude that much information regarding the

actual affinity is found in the terminal residues, giving a correlation of 0.75 between predicted

and experimental values.

Figure 4.5 shows the two corresponding plots when the Peters matrix is used for prediction.

The SVMTAP method outperforms the Peters matrix method is both cases. When only

the terminals of the peptides are used for prediction, the difference is pretty huge, and

SVMTAP 1239 performs almost as good as the Peters matrix using the whole sequence.
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Figure 4.4.: Predicted binding affinities plotted against experimentally verified affinities for
the SVMTAP method using the three N-terminal and the C-terminal positions.
The correlation of predicted and experimental values is 0.75.

Analysis of SYFPEITHI peptides

Naturally processed and presented MHC-peptides were extracted from the SYFPEITHI

database and their TAP affinities were predicted with SVMTAP. The results from this study

can be seen in Fig. 4.6. A clear distinction can be observed in this plot where one group

of alleles shows a trend of higher TAP affinity than the others. This once again verifies the

theory that the alleles can be split into TAP-efficient and TAP-inefficient in terms of TAP

transport.
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Figure 4.5.: Predicted affinities plotted against experimentally verified affinities for the Pe-
ters matrix method. a. The correlation for scores based on the whole peptides
sequence has a correlation of 0.79. b. Using only the three N-terminal and
C-terminal residues gives a correlation of 0.56.
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Figure 4.6.: The predicted SVMTAP scores represented as allele-specific cumulative distri-
bution (CDF) curves. Going from low to higher scores, the CDF represents the
fraction of all peptides from a given allele that have score equal or lower to a
certain value (good binder have large negative values).
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4.3. An integrated model of the processing events (WAPP)

The PCM and SVMTAP methods were combined with SVMHC in order model the whole

MHC class I antigen processing pathway (WAPP) [75]. The hypothesis motivating this model

is that a large fraction of all MHC-binding peptides originates from proteins that are cleaved

by the proteasome into smaller peptides, which are then transported into the ER by the TAP

proteins. With this in consideration, candidate MHC binding peptides can be filtered for

peptides not generated by the proteasome or not transported by TAP. This approach was

evaluate using peptides from the HLA-A*0201, HLA-A*01, HLA-A*03, and HLA-B*2705

alleles. The following section describes how the separate prediction methods were integrated

and evaluated for prediction performance.

4.3.1. Materials and methods

Data sets

MHC binding peptides from the HLA-A*0201, HLA-A*01, HLA-A*03, and HLA-B*2705

alleles were extracted from the SYFPEITHI database. Peptides with a length of nine amino

acids were used for further analysis. The SYFPEITHI database also contain information

about the source protein if the peptides and these were also extracted. Peptides were no source

protein could be found were discarded from the analysis. Both TAP and MHC prediction

considers peptides with a length of nine amino acids, but C-terminal extended peptides were

used for proteasomal cleavage prediction. This means that datasets of C-terminal extended

peptides were extracted for each allele. The numbers of sequences used were HLA-A*0201

(96), HLA-A*01 (36), HLA-A*03 (47), and HLA-B*2705 (71). A set of extended non-binders

was generated as described in Sect 3.1.1.

Combination of prediction methods

All peptides were predicted with the PCM, SVMTAP, and SVMHC methods. In the cases

of SVMTAP and SVMHC the peptides with a length of nine amino acids were used, whereas

the C-terminal cleavage score for each peptide was predicted using the C-terminal extended

peptides. This gives a prediction score for proteasomal cleavage of the C-terminal of a MHC-

binding peptide considering the flanking region from its source proteins. The scores obtained

from the SVMTAP and PCM methods were then used to filter out peptides that are not

correctly cleaved by the proteasome or transported by TAP. Peptides with scores lower than
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Table 4.4.: Prediction accuracies for the four alleles using different approaches. The perfor-
mance using WAPP is better compared to all other approaches except for the
HLA-A*01 allele. The increase in specificity of WAPP compared to SVMHC is
significant in most cases.

SVMHC WAPP PC+MHC TAP+MHC

Allele MCC SP SE MCC SP SE MCC MCC

HLA-A*0201 0.68 0.78 0.78 0.74 0.86 0.78 0.71 0.71

HLA-B*2705 0.85 0.76 1.00 0.88 0.82 1.00 0.86 0.86

HLA-A*01 0.92 0.94 0.96 0.93 0.95 0.98 0.93 0.93

HLA-A*03 0.80 0.84 0.90 0.82 0.92 0.89 0.81 0.81

a certain threshold were removed from the candidate list (as describe for SVMTAP affinity),

but these were chosen conservatively in order to not remove known binders. The final cutoffs

chosen for HLA-A*0201 were -4.8 for proteasomal cleavage and -27 for TAP affinity. The

corresponding values for HLA-B*2705, HLA-A*01, and HLA-A*03 were -2.0 and -35.

4.3.2. Results and interpretation

We found a significantly improved performance of WAPP over SVMHC alone (MCC increases

from 0.68 to 0.74 for HLA-A*0201, from 0.85 to 0.88 for HLA-B*2705, and from 0.80 to 0.82

for HLA-A*03 ), see Table 4.4. This improvement is mostly due to a smaller number of false

positives, i.e. peptides that could bind to MHC, but are either not cleaved by the proteasome

or not transported by TAP. The improvement for HLA-A*01 is somewhat less, however the

overall prediction accuracy for this allele is very high.

The best performance is achieved when both proteasomal cleavage and TAP filtering is

used. The largest increase in prediction performance is achieved for the HLA-A*0201 allele

where the MCC increase from 0.68 to 0.74. Using either proteasomal cleavage or TAP as

filter shows worse results for the HLA-A*0201, HLA-B*2705, and HLA-A*03 alleles. The

main feature of the combined approach is a reduction in false positives in the prediction, i.e.

removal of peptides that actually could bind to MHC, but are unlikely to be generated by

the proteasome or transported by TAP. The specificity increases from 0.78 to 0.86 for the

HLA-A*0201 allele and from 0.76 to 0.82 for HLA-B*2705. The only allele that shows slightly

different results is HLA-A*01. The peptides binding to this alleles almost exclusively have

a Tyr in position nine. This means that a high specificity can be obtained by MHC predic-

tion alone, however it should be pointed out that the prediction accuracy is not negatively

influenced by taking proteasomal cleavage and TAP transport into account.
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A plot underlining the use of SVMTAP as a filter can be seen in Fig. 4.7, showing the CDF

for HLA-A*0201, HLA-B*2705 and non-binding peptides. A difference can clearly be seen

between the three classes, where the known HLA binders show a higher affinity for TAP than

the non-binders. Both experimental and computational studies have previously shown that

HLA-B*2705 peptides have a high TAP affinity, whereas HLA-A*0201 have relatively low

TAP affinity [39, 290]. This difference is to be expected, as HLA-A*0201 is a TAP-inefficient

allele, whereas HLA-B*2705 is TAP-efficient.
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Figure 4.7.: Predicted TAP affinity for the HLA-A*0201 and HLA-B*2705 data sets, rep-
resented as a cumulative distribution functions (CDFs) going from high to low
affinity binders. The value of the CDF corresponds to the fraction of data with
values below a given TAP affinity. A clear difference in the distribution of TAP
affinity can be seen between known epitopes and non-epitopes. Only a small
fraction of the known epitopes has a TAP affinity higher than -30 (corresponding
to an IC50 of 5,000 nM).

4.4. Comparison of WAPP and competing methods

The prediction performance of WAPP was also compared to the NetCTL [156] and the method

presented by Tenzer et al. [275]. A comparison of this kind is not trivial, since the data

is very sparse and has often been used to develop the individual methods. However, a set

of peptides binding to three different alleles recently published in the SYFPEITHI database

was used for this purpose. It is possible that the two external methods have used some of the

peptides for method development, but no part of WAPP is based on any of this data. Ten
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peptides from each of the three MHC alleles HLA-A*0201, HLA-A*01, and HLA-A*03 was

used for comparison. The source proteins of all peptides respectively were submitted to the

three prediction methods and the rank of the known MHC-binding peptide was calculated.

The results are presented in Table 4.5.

From this comparative study a few things can be seen. In general the methods are all

performing pretty well in finding the known epitope sequences within the source proteins.

The WAPP method gives the best rank for most of the peptides, the NetCTL method is the

second best, and the Tenzer method performs worse. It should however once again be pointed

out that the benchmark dataset is small and a dataset of several hundreds of peptides from

different alleles would be preferred for a better statistical evaluation.

4.5. Proteasomal splicing - SpliPep

Proteasomal splicing was described in Sect. 2.3.1. A good starting point for finding possibly

spliced candidates are in databases of identified MHC-binding peptides and literature. Some

peptides reported have not been mapped to any protein sequence and one reason for this might

be proteasomal splicing. The tool SpliPep was developed for identifying peptides generated

from two non-contiguous parts of a source protein. Given the sequence of a peptide, SpliPep

can search databases for potential source proteins.

4.5.1. Implementation

The problem of finding a spliced peptide within a protein sequence can is in principle a easy

string matching problem. The peptide sequence S of length l can be split into S1 and S2.

If both S1 and S2 can be found as non-overlapping parts of the whole protein sequence,

generation of the peptide by proteasomal splicing is theoretically possible. Simple regular

expressions were used for the matching of sequences. In principle a search for one of the

subsequence is done first and only if a hit is found, a search for the second sequence is also

done. If the length of a peptide S is L, S1 = S(1, l) and S2 = S(l, L − l)∀l = 1, . . . , L. The

most effective way to conduct the search is to start with the longest sequence. Single amino

acids and dipeptides frequently occur within a protein sequence, whereas longer peptides are

rather unique. Hence, the search always start with the longest sub-sequence and only if a hit

is found a search using the second sub-sequence is done.

Several databases can be used for searching and specifically searching for only the viral
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Table 4.5.: Comparison of WAPP, NetCTL and the method by Tenzer et al. For each peptide
the best rank is shown in bold allowing a qualitative comparison of the different
methods.

Peptide Protein SwissProt ID Allele WAPP NetCTL Tenzer

VALEFALHL Q8TDN4 A*0201 31 39 8

ALLDKLYAL Q9NV31 A*0201 3 1 1

TLSDLRVYL Q9BYN0 A*0201 2 3 6

FVHDLVLYL P53675 A*0201 27 11 13

RLASYLDRV P05783 A*0201 1 2 2

ALATLIHQV Q9UBW8 A*0201 1 1 1

VLAEVPTQL Q99829 A*0201 2 5 4

LLDRFLATV Q140943 A*0201 1 3 3

VLFGLLREV Q92620 A*0201 1 1 19

RLASYLDKV P35527 A*0201 1 4 3

YTSDYFISY P14921 A*01 1 2 14

AIDQLHLEY O43707 A*01 1 1 5

HLDLGILYY Q9H3H5 A*01 1 1 1

TSPSQSLFY Q8IV72 A*01 1 1 3

GTDELRLLY Q9Y4W2 A*01 1 1 2

ELEDSTLRY Q6S383 A*01 1 6 5

DTDHYFLRY Q969N2 A*01 1 1 3

VTEIDQDKY P21333 A*01 1 1 8

FIDASRLVY P35221 A*01 1 1 1

YTAVVPLVY P01591 A*01 1 1 2

KLFDKLLEY Q9BZZ5 A*03 1 4 2

TSALPIIQK Q99541 A*03 1 3 5

KLYEMILKR P56559 A*03 1 1 2

SLFSRLFGK P18085 A*03 1 3 4

RLLEMILNK P52895 A*03 1 3 8

KLADFGLAR P11802 A*03 1 1 4

KVYENYPTY P35659 A*03 1 6 1

TLADLLALR Q96DT5 A*03 26 130 270

RVHAYIISY Q9NZN4 A*03 1 2 4

KLFIGGLSF P09651 A*03 3 10 9
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subset of protein from Swiss-Prot is of course more effective than a whole database search.

4.5.2. Results and interpretation

To prove the usefulness of SpliPep, the peptides found by Vigneron et. al. (RTKQLYPEW)

and Hanada et. al. (NTYASPRFK) were used. The results from this search can be seen in

Fig. 4.8.

Figure 4.8.: Search results of SpliPep for the peptides RTKQLYPEW and NTYASPRF. The
source proteins of the respective peptides are found in both NCBI RefSeq and
Swiss-Prot databases.

All human databases were used for the search and there is one hit from Swiss-Prot and

one hit from NCBI RefSeq [213, 214] for each peptide. Both hits correspond to the proteins

reported in the original publications. RTKQLYPEW has an interspersed fragment of four

amino acids, whereas NTYASPRFK has a longer interspersed fragment of 40 amino acids.
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4.5. Proteasomal splicing - SpliPep

A SpliPep search was also done for a HLA-A*03 epitope, SQNFPGSQK, identified in

melanoma patients [115]. No source protein has previously been identified for this peptide.

SpliPep finds three potential source proteins of the SQN-peptide. Two of these are PR-

domain zinc finger proteins, PRD7 and PRD9, involved in transcription. These proteins are

very similar and the length of the interspersed fragment is 11 amino acids in both cases, see

Fig. 4.9.

SQNFPGSQK

210200190 220180

PEIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQ

EIHPCPSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQN

210200190 220180 230

230

PRD7

PRD9

Figure 4.9.: Search results of the previously unmapped HLA-A3 peptide SQNFPGSQK iden-
tified from a melanoma patient. The peptide is successfully mapped to two
distinct proteins PR-domain containing proteins. In both cases the length of the
interspersed fragment is 11 amino acids.

A third potential source protein of the SQN-peptide was also found. This is the Pmel17

protein which also is the source of the Vigneron et al. peptide [296]. Here the SQN-peptide

can be generated from position 89-95 (NFPGSQK) and positions 113-114 (SQ), see Fig. 4.10.

SQNFPGSQK

11010090 12080 130

Pmel17 ANASFSIALNFPGSQKVLPDGQVIWVNNTIINGSQVWGGQPVYPQETDDAC

Figure 4.10.: A more detailed view of the Pmel17 protein. An interspersed fragment of 17
amino acids has to be spliced away in order to generate the SQN-peptide.

Since proteasomal splicing has been verified for other peptides from the Pmel17 protein,

one has to consider this a more likely source than the PR-domain proteins. In both cases the

length of the interspersed fragment is interesting. Protein splicing is known to occur in lower

organisms, where inteins are autocatalyticly removed from the sequence and the flanking

regions are ligated [202]. The inteins have a rather specific domain structure and the shortest

one found so far has a length of 134 amino acids [203]. One can only speculate about the

influence of the process on antigen processing as a whole. Currently there are only two cases

known. Our collaborators are currently investigating the SQN-peptide experimentally.
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4.6. Discussion

This chapter presented an integrated prediction method, WAPP, for the major events in the

processing pathway of MHC class I antigens. WAPP mimics the series of biological events

by predicting peptides with a proteasomal cleavage site at the C-terminus, moderate to high

affinity to TAP, and an affinity to MHC. The three steps modeled are generally thought to be

the major determinants in class I antigen processing, although several alternative processing

events have been described in literature.

Luckey et al. showed that for some MHC alleles, a significant amount of peptides were

generated even in the presences of proteasome inhibitors [163]. These results clearly indicate

an important effect of other cytosolic proteases [21, 78]. TPPII is one such protease that

has important effects in the trimming of proteasomal degradation products [222]. A further

example points out the importance of TPPII in the generation of a known HIV-Nef(73-82)

epitope [250]. Some alternative ways of peptide-transport into the ER have also been sug-

gested. Lautscham et al. described TAP-independent transport of hydrophobic peptides [157]

and suggested that these might enter the ER by passive diffusion or by an unknown trans-

port protein within the ER membrane. Furthermore, they pointed out that many known

MHC-binding peptides are derived from protein signal-sequences and suggested Sec61 as a

potential transporter.

A recent study showed that peptides for some MHC alleles have a low TAP affinity [207].

We also observe this for the HLA-A*0201 and HLA-B*2705 alleles, described as TAP-

inefficient and TAP-efficient, respectively. It is likely that some of the TAP-inefficient al-

leles utilize the routes described by Lautcham et al., but it is still possible to combine TAP

and MHC prediction to reduce the number of false positives. The overall increase in perfor-

mance obtained by adding TAP affinity prediction and proteasomal cleavage site prediction

to MHC binding prediction is significant, although these steps are clearly less specific than

MHC binding itself. Thus, improved overall performance for a combined model can only be

achieved through high-quality models for proteasomal cleavage and TAP affinity. Previous

attempts to combine the different steps yielded only a small increase in performance com-

bining TAP prediction with MHC binding predictions and even a decrease in performance

if proteasomal cleavage was predicted together with MHC binding [204]. At least for the

case of proteasomal cleavage, we argue that this might be largely due to an overfitting of the

cleavage models, as insufficient data was available. The existing methods for proteasomal
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cleavage prediction, NetChop and PAProC, can reproduce their training data with high ac-

curacy, while their performance on external validation data is much lower. This implies an

overfitting of the model, which typically results in lower generality of the models. Our PCM

method presented has thus been carefully designed to be more robust at the cost of slightly

reduced accuracy on the training set. The robustness, however, turns out to be key to a

successful combination with the other prediction steps. Future challenges in the prediction

of proteasomal cleavage are likely to include splicing events [104, 296]. Splicing within the

proteasome can generate a peptide from two non-contiguous part of its source protein. The

mechanisms underlying proteasomal splicing is not fully understood and currently there is

not enough data available to model this in the predictions. Prediction of TAP transport by

SVMTAP shows an increase in performance compared to the Peters matrix method. It is

also likely that some of the peptides transported into the ER have extended N-terminals that

can be trimmed by ER aminopeptidases [251]. Peters et al. used parts of the matrix for pre-

dicting peptides longer than nine amino acids. They explored a weighting of the N-terminal

scores in order to improve prediction. For some alleles the weighting improved accuracy,

whereas the effect was negative in other cases. It should also be pointed out that the study

of the relationship of TAP affinity and TAP transport was done using a library of nine amino

acid long peptides [101]. The problem of predicting TAP affinity for peptides longer than

nine amino acids is still unsolved and more data is needed for a thorough investigation. In

summary, WAPP shows improved prediction performance for the four MHC alleles using an

integrated approach including the three major processing steps. Furthermore, WAPP shows

better prediction accuracy compared to competing methods. Whole-pathway predictions will

hopefully improve the rational design of epitope-driven vaccines in the future. WAPP in-

creases the prediction specificity and hence reduces the number of peptides that has to be

tested experimentally. Future improvements on the prediction will largely be data-driven, as

the lack of data for TAP transport and proteasomal cleavage are currently the issues limiting

the predictive power.
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5. Integrative analysis of cancer-related data

The prediction methods presented in the two previous chapters can be used to identify can-

didates for peptide-based vaccines. However, the starting point of the methods is a target

protein sequence. For development of a vaccine against viruses or bacteria, one would fo-

cus on proteins originating from the pathogen. For development of tumor vaccines on the

other hand, the identification of candidate proteins is a challenging task. Here one would like

to find TAAs or TSAs for a certain cancer type that subsequently can be used for vaccine

development.

There are much cancer-related data available in different databases. Here ”databases” refer

to everything from spreadsheets to object-oriented database implementations. Considering

different aspects of cancer, e.g. immunology and genetics, could lead to identification of

proteins well-suited for vaccine development. However, joining data from different types of

experiments and fields of research is an often underestimated problem.

This chapter presents an integrated approach, CAP, for the analysis of cancer-related data.

CAP joins data from heterogeneous data sources and enables statistical evaluation of the data.

In a sense this goes in the direction of ”cancer systems biology”, since CAP enables integrated

analysis of different aspects of cancer research. One focus of CAP is the analysis of cancer

related protein, identified with the SEREX method [283], causing an auto-immune response

in cancer patients. A large-scale study was done to investigate if autoimmune responses in

cancer are related to gene expression levels or genetic alterations.

The first sections of this chapter describe the data sources and data model used in CAP.

This is followed by a description of the prediction methods and statistical analysis tools

integrated in CAP. The last part of the chapter shows the results from the integrative analysis

of the autoimmune-related data of CAP. Furthermore, some examples are given of how the

prediction methods presented earlier in this thesis can be used to identify peptide vaccine

candidates.
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5.1. CAP content

The aim of CAP was to create a database that could be used to store and analyze data

from several different disciplines of cancer research. Most of the data from our collaborators

focused on tumor antigens causing an autoimmune response in cancer patients, detected with

the serological analysis of recombinant cDNA expression libraries (SEREX) method [283].

Furthermore, data concerning mutations and mRNA expression levels were put into the

database. In addition to the rather cancer-specific data, resources like Swiss-Prot [27], Ref-

Seq [213, 214], and Locus Link [213] were used to obtain general information about the

genes and proteins. The data collected from own experiments and external databases were

functionally annotated using e.g. prediction of protein subcellular localization and protein

function. The underlying data model of CAP is designed to be easily extendible for new data

types. The data sources and prediction methods used in CAP are described in detail below.

An overview of how the different data sources are combined is given in Fig. 5.1.

Figure 5.1.: An overview of the different data sources integrated in CAP. The data comes
from external databases, own experimental data, and prediction methods. CAP
enables analysis of the data in an integrative manner and offer on-the-fly statistics
of large data sets.

5.1.1. Data sources

All data from publicly available data sources was updated in December 2003.
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RefSeq

Two major resources of well-annotated genes and proteins are the Swiss-Prot and RefSeq

databases. RefSeq aims to provide a comprehensive and non-redundant set of both nucleotide

and protein sequences. It is a stable reference source for gene identification and characteriza-

tion, polymorphisms, expression, and comparative analysis. Protein and nucleotide sequences

are explicitly linked and there is an ongoing curation of the databases and reviewed entries

are marked as such. The sequence data of RefSeq is well-validated, e.g. it is checked that

the genomic sequence from a region really matches a given mRNA sequence. The database

is also kept consistent with the LocusLink database records.

Swiss-Prot

Swiss-Prot is a highly curated database providing well-annotated protein sequences. Exam-

ples of Swiss-Prot information is function, subcellular localization, post-translational mod-

ifications, and domain structure. The sequences are annotated according to information

obtained from original publications describing a sequence, review articles describing e.g. a

whole family of proteins, and expert knowledge from external reviewers. Swiss-Prot also

provides cross-references to about 60 other databases. Swiss-Prot is now part of the UniProt

database [10].

SEREX data

Much of the cancer-related information in CAP come from SEREX experiments. This can

be used to identify tumor antigens that elicit an autoimmune response in cancer patients.

Typically, cDNA expression libraries are constructed from fresh tumor samples and cloned

into lambda phage expression vectors. The recombinant proteins expressed during the lytic

infection can be transferred to nitrocellulose membranes, which are subsequently incubated

with patient serum. The clones reactive with the patient sera are then cloned into mon-

oclonality allowing for characterization by DNA sequencing. Four main types of antigens

have been identified. The first group contains known tumor antigen, e.g. MAGE-1 and ty-

rosinase. The second group contains autoantigens associated with well-studied autoimmune

diseases. A third group of antigens are homologous to well-characterized genes, but have

not been previously known to elicit an immune response and the fourth group contains un-

known antigens with no homologous genes. SEREX-related information in CAP originates
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from experiments by our collaborators [18, 31, 32, 54, 55, 70, 88, 108, 183, 269], as well as

the SEREX database [280]. The SEREX database itself is currently in a ’read-only’ mode,

however, it is now a part of the Cancer Immunome Database (CIDB) [278].

Additional cancer-related data was obtained from the Cancer GenticsWeb (CGW) database

containing information about abnormal and mutated genes. CGW provides a comprehensive

list of genes associated with a specific cancer types. Information was also obtained from the

Mitelman databases of chromosomal aberrations and from the NCI60 database. An overview

of the most important data sources used by CAP is given in Table 5.1.

Table 5.1.: The major data sources used in CAP and their URLs.

Data source URL

Cancer GeneticsWeb (CGW) http://www.cancerindex.org/geneweb/
Cancer Immunome DB (CID) http://www2.licr.org/CancerImmunomeDB/
LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/
Mitelman http://cgap.nci.nih.gov/Chromosomes/Mitelman/
NCBI http://www.ncbi.nlm.nih.gov/
RefSeq http://www.ncbi.nlm.nih.gov/RefSeq/
SEREX http://www.licr.org/SEREX.html
Swiss-Prot http://www.ebi.ac.uk/swissprot/
NCI60 http://genome-www.stanford.edu/nci60/

5.1.2. Prediction methods

Several different prediction methods have been integrated into CAP in order to functionally

annotate sequences. These involve protein subcellular localization, protein function, and

T-cell epitopes.

Protein subcellular location

Knowing the subcellular localization of a protein is a good starting point for finding out

its function. However, only a subset of all proteins has an annotated localization, hence

prediction methods are needed for studies on a proteome scale. There are many different

approaches for protein subcellular localization prediction, reviewed in [73]. The different

methods can be split into a few different groups based on the underlying biological assumption

on which they are based. The methods used in CAP are PSORT [186] and an SVM approach

utilizing the overall amino acid composition of the proteins [116, 122]. PSORT was the first

method allowing for prediction of more than ten different subcellular localizations. A new
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prediction system, MultiLoc [117], has recently been developed in our group and is likely to

soon be incorporated into CAP.

Protein function

Prediction of protein function is harder than predicting subcellular localization. For protein

function prediction the ProtFun method was used [134, 135]. The annotation taken from

these predictions involves functional category, enzyme class, and gene ontology category.

T-cell epitopes

Putative T-cell epitopes are predicted with the SVMHC method, described in Sect. 3.1. This

enables fast identification of putative T-cell epitopes from protein sequences in CAP.

5.2. Data modeling

Modeling of biological data is not a trivial task, since it can be extremely heterogeneous. An

important requirement of the data model of CAP is that it should be easy to extend and

to integrate new types of data in the future. In order to obtain a unified view of the data,

both differences in data format (syntactic differences) and differences in the meaning of data

(semantic differences) have to be considered [48]. The core of our data model consists of

sequences and annotations to these sequences. A generalization of the model can be seen in

Fig. 5.2. The Unified Modeling Language (UML) [236] was used for data modeling, giving a

well-defined data model that can be easily updated.

The data model is centered around protein and nucleic acid sequences, that are of either

experimental or reference types. A reference sequence is usually obtained from the RefSeq

or Swiss-Prot databases, whereas an experimental sequence might come from a SEREX ex-

periment. An important aspect of annotations is the source from which they were obtained.

A protein might for example have an annotated function and the source of that annotation

might be Swiss-Prot or a prediction method. Knowing the source of an annotation is impor-

tant since this gives a certain meaning in terms of reliability, need for updates etc. In general

experimentally verified annotations are considered more reliable than predicted ones.

The different sequence types are connected in a way that also provides extra meaning. An

experimental nucleic acid sequence can for example be mapped to a reference sequence by a

BLAST search, which in turn is connected to a protein sequence. These connections make
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Figure 5.2.: A part of the CAP data model. The sequence class is a generalization of the NA
and Protein classes. Sequences are associated with Annotations. The annotation
examples here are Function, Alias, and Location. The model itself is very flexible,
since new information can be incorporated by simply adding a new annotation
subclass.

complex queries of the database possible, since several experimental sequences from different

types of experiments might be connected to the same reference sequence. An example of how

subcellular location of proteins related to a set of experimentally found NA sequences can be

extracted can be seen in Fig. 5.3. It can also be seen how data in CAP is linked to external

resources.

For privacy reasons the data model also enables the user to mark sequence and sequence-

related information as private. This information is then only visible for the user, but he can

still profit from all the analysis tools of CAP. The concept of limited data access is important

if CAP will be extended to contain clinical (patient) data. However, this feature is also useful

for researcher analyzing unpublished data.

5.3. Data analysis tools

One aim of CAP was to provide tools for data analysis and statistical evaluation. One

important aspect is the many different search possibilities a user have when trying to ac-

cess the stored data. There are numerous ways from free text search to search for specific

cancer-related information implemented in CAP. An example of the search form for SEREX

sequences can be seen in Fig. 5.4. The options for searching include sequence description,

expression level, or cancer type. Several different search-fields can also be combined into
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Figure 5.3.: Extracting information from related sequences and linking to external databases
is a key feature of CAP. An experimental NA sequence is typically related to a
reference NA sequence. The NA sequence itself is connected to a PROT reference
sequence. In this example, the Protein sequence has three annotations, one
Location and two Aliases. The protein location for a sequence related to a
NA sequence can easily be extracted, since all that information is connected.
By using databases identifiers as aliases, it is possible to create hyperlinks to
external databases. Linking to external data sources enables for fast extended
information retrieval.

more refined search.

Single sequences in CAP can be grouped into user-defined data sets. These data sets

can then be used for statistical evaluation and analysis, such as chromosomal distribution

of genes, protein function, and subcellular localization. To illustrate the use of CAP and

data set of nucleic acid sequences obtained from SEREX experiments for renal cell carcinoma

(RCC) was created. Using the tools for editing data sets, a data set of reference nucleic acid

sequences and one of protein sequences were created. A summary view of a subset of the

protein sequences can be seen in Fig. 5.5.

This view shows information about the data set in table format and the user can specify

exactly what to display. Statistical analysis of the subcellular localization of the RCC proteins
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5. Integrative analysis of cancer-related data

Figure 5.4.: The SEREX sequence search form of CAP.

Figure 5.5.: An overview of the RCC data in table format as generated by CAP. Here general
sequence information in addition to function and location is shown.
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5.3. Data analysis tools

Figure 5.6.: Predicted subcellular localizations of the RCC proteins. The upper graph shows
the number of sequences from the whole data set that was predicted to be lo-
cated in a certain localization. The lower graph shows a similar plot, but here
the expected values, given the localization of all proteins in the proteome, are
subtracted from the predicted values.

can be seen in Fig. 5.6. The graph labeled Distribution is the plain count of sequences from

the data set belonging to a certain subcellular location. The Expected distribution is an

estimation of the whole-proteome distribution of locations as described in [185]. The third

graph, Distribution - Expected distribution, shows the difference between the two previous

graphs. As can be seen in the plain distribution a lot of the sequence are predicted to be

located in the nucleus. The normalized graph, on the other hand, shows that this is not too

surprising, since a rather large portion of all proteins are expected to be found in the nucleus.

A graph displaying the protein function of the proteins is shown in Fig. 5.7. According to

the Prot Fun category prediction, many of the sequence have a function in the cell envelope.

The GeneOntology analysis, however, assigns many of the proteins into the classes growth

factors, transcription, and transcription regulation. Statistics can also be done for chromo-

somal distribution of the genes. In some cases it might be interesting to take a closer look at

genes on a certain chromosome, for example if chromosomal breakpoints are known to occur

in the cancer type of interest.
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5. Integrative analysis of cancer-related data

Figure 5.7.: Predicted protein function of the RCC proteins from the three different ProtFun
categories.

5.4. Integrative analysis results

As an example of the usefulness of CAP, a large-scale analysis of data regarding genetic

changes, gene expression levels, and autoimmune responses was done. Genes in CAP found

by SEREX experiments were analyzed for genetic alterations and expression. This might

give insights about the correlation of autoimmune responses and cancer genetics. A total

of 1500 genes were extracted from CAP of which 19 variants could be found in CGW. In

this step no consideration of cancer types was taken. In the next step genes that were found

in the same cancer type according to CGW and SEREX were analyzed. Seven genes were

found in this analysis, including two genes carrying specific mutations or polymorphisms,

TP53 and GSTT1 (Glutathione S-transferase Theta 1). TP53 has previously been found to

cause immune responses in primary colon carcinoma and in breast carcinoma, both known to

carry TP53 mutations [9, 263]. Mutations in TP53 have also been found in a large number of

other tumor types in patients that do not have antibodies against TP53. Furthermore, there

100



5.4. Integrative analysis results

are several known MHC class I binding peptide derived from TP53 and has been suggested

as a possible target for immunotherapy [13, 16, 232]. As for GSTT1, antibody responses

occur in patients with breast cancer. This tumor is associated with specific GSTT1 poly-

morphisms [180]. However, this type of polymorphisms also occurs in other tumors including

head and neck cancer without an antibody response [47]. Other examples of genes include

NME2/NME1 (protein NM23B/A expressed in non-metastatic cells 2/1), HSPCA (heat shock

90kD protein 1), Ki-67 (MKI67), and MIF (macrophage migration inhibitory factor). NME1

and NME2 have been reported as immunogenic and overexpressed in malignant colon carci-

noma [171], HSPCA in renal cell carcinoma [194], Ki-67 in melanoma [107, 111] and MIF in

melanoma [256]. These genes might be interesting for further analysis in order to investigate

if the mutations occur in epitope regions.

For analyzing expression levels, gene expression profile data from the NCI60 microarray

project (http://genome-www.stanford.edu/nci60/) was used. In this project, cDNA microar-

rays were used to explore the variation of gene expression in 8,000 genes from 60 cancer

cell lines. These 60 cell lines are also used by the National Cancer Institute for screening

potential cancer drugs. The expression data provided by NCI includes fluorescence ratios,

normalized against a pool of 12 cancer cell lines. Genes that show at least a two-fold increase

in expression levels are considered to be overexpressed. The criteria that a certain gene must

have measured expression levels in at least four of the sixty cell lines was also added. This

gives expression levels for 319 CAP genes.

Independent of cancer type, 277 (87%) of the genes were found to be overexpressed in at

least one cell line. Out of these 277 genes, 69 were found to have an overexpression in at least

10% of all evaluated cell lines. A more cancer-specific analysis was also done. The 60 cancer

clones in the NCI60 data can be grouped into a number of cancer types, e.g. melanoma,

breast cancer or colon cancer. Expression levels for genes found in the same cancer type in

both SEREX experiments and the NCI60 data were extracted. The criteria for selection was

that at least three tumor specific cell lines show overexpression, giving a total of 13 genes.

The genes and SEREX-related information is presented in Table 5.2. These genes are once

again interesting for further analysis, since they might give insight into the correlation of

expression levels and autoimmune responses.
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5. Integrative analysis of cancer-related data

Table 5.2.: SEREX-related information for the 13 genes found in the same cancer type in
both SEREX experiments and the NCI60 data. For a number of genes several
related SEREX clones were found.

Abbreviation Gene name RefSeq id SEREX clone SEREX tumor

Melanoma
COL9A3 collagen, type IX, alpha 3 NM 001853 Hom.TsMe3-89 melanoma
HEXB hexosaminidase B (beta NM 000521 Hom.TsMe2-12 melanoma

polypeptide)
RRBP1 ribosome-binding protein 1 NM 004587 TE53 unclassifiable

homologe 180kDa
TM-76 melanoma

SLC2A11 solute carrier family 2 NM 030807 Mz19-64 melanoma
(facilitated glucose
transporter), member 11 NY-SAR-47 fibrosarcoma

TIMP tissue inhibitor of NM 000362 Mz19-3 melanoma
metalloproteinase 3

Breast cancer
P8 p8 protein (candidate of NM 012385 NY-BR-89 malignant breast

metastasis 1)

TP53 tumor protein p53 (Li- NM 000546 NY-Co-13 colorectal
Fraumeni syndrome) adenocarcinoma

NY-BR-94 malignant breast
NW-F14 malignant colon
NW-F93 malignant colon

CENPF centromer protein F, NM 016343 MOC-SW-139 malignant colon
350/400ka (mitosin)

MOC-SW-18 malignant colon
MOC-SW-151 malignant colon
NGO-Br-7 malignant breast
MO-TES-148 malignant colon
NY-ESO-11 esophageal cancer
NGO-Pr-24 malignant prostate
NY-BR-69 malignant breast

GBP1 guanylate binding protein 1, NM 002053 NGO-Br-40 malignant breast
interferon-inducible, 67 kDa

Colon cancer
SCNN1A sodium channel, nonvoltage- NM 001038 NW-CD35b adenocarcinoma

gated 1 alpha colon
AP1G2 adaptor-related protein, NM 003917 NW-SW15 adenocarcinoma

complex 1, gamma 2 subunit colon

Lung cancer
TRAP1 heat shock protein 75 NM 016292 LC19 malignant lung

Renal cancer
PFKFB3 6-phosphofructo-2- NM 004566 NY-REN-56 malignant kidney

kinase/fructose-2,6-
bisphosphatase 3
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Table 5.3.: Prediction of known TSA-peptides using SVMHC.
Protein Peptide Allele SVMHC score Reference

NY-ESO-1 SLLMWITQC A*0201 0.54 [45, 130, 286]

NY-ESO-1 APRGVRMAV B*07 0.57 [260]

NY-ESO-1 MPFATPMEA B*35 0.03 [22]

NY-ESO-1 MPFATPMEA B*51 -0.03 [131]

CTNNA1 FIDASRLVY A*01 0.53 [152]

CTNNA1 LQHPDVAAY B*1501 1.19 [152]

CTNNA1 NEQDLGIQY B*44/B*18 0.16/0.74 [152]

hTERT ILAKFLHWL A*0201 0.94 [298]

hTERT RLVDDFLLV A*0201 1.17 [178]

hTERT KLFGVLRLK A*03 1.36 [297]

hTERT VYAETKHFL A*24 0.24 [11]

hTERT VYGFVRACL A*24 0.48 [11]

5.5. Finding candidates for T-cell based immunotherapy

Cancer immunotherapy candidates should fulfill a number of criteria. The immune response

raised should be specific against the tumor, not induce autoimmunity, have a long-term effect

etc. Both TSAs and TAA can be used for cancer immunotherapy and there is a variety

of methods by which these can be detected. The SEREX method described above is one

such method, but expression analysis or MHC-peptide sequencing of cancer-tissue samples

can also be used. This further motivates the use integrative data analysis such as offered by

CAP. Three well-characterized TSAs are used to exemplify the use of CAP and the methods

developed in this thesis for the identification of peptide candidates for immunotherapy.

The first example is the well-characterized NY-ESO-1 protein [46] identified in esophageal

squamous cell carcinoma (CAP id: 6007). However, reverse transcription-PCR analysis

showed NY-ESO-1 mRNA expression many different tumor types including melanoma, breast

cancer, bladder cancer, prostate cancer, and hepatocellular carcinoma. NY-ESO-1 belongs to

the cancer testis (CT) antigens (proteins normally not expressed in tissues other than testis)

and other well-known CTs are MAGE [289], BAGE [28], and GAGE [288]. NY-ESO-1 also

contains several identified T-cell epitopes, see Table 5.3. Here it can be seen that three of the

four peptides are successfully identified by SVMHC and the fourth peptide has a score very

close to ’0’ (which is the cutoff for binding/non-binding),

The second example comes from a renal cell carcinoma (RCC). A whole range of interesting

immunotherapy candidates were recently presented by Krüger et al. [152]. Here 13 specimen

of RCC were used to identify a large number of MHC binding peptides. Most of these originate
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5. Integrative analysis of cancer-related data

from normal self-proteins, but put together with gene expression analysis some interesting

candidates can be found. One example is the α-catenin 1 protein (CTNNA1) which was found

to be overexpressed in most patients. This gene can also be found in CAP (CAP id: 6865)

and it has been identified with the SEREX method. Hence, this is another good example

of a gene found to be overexpressed, causing an autoimmune response, and having several

identified Tc epitopes. Three MHC-binding peptides have been identified from CTNNA1 and

prediction results using SVMHC are presented in Table 5.3. In this case SVMHC correctly

identifies all three peptides.

The third TSA studied here is the Telomerase Reverse Transcriptase (hTERT) (CAP id:

26818). This protein is expressed in more than 85% of all tumors, but only rarely in nor-

mal cells [298, 143]. Several MHC-binding peptides have been identified from hTERT and

investigated experimentally. Experimental studies using the HLA-A*0201 restricted epitope

ILAKFLHWL showed that Tc cells specific to this epitope could kill a wide range of different

hTERT+ cell lines [298]. This peptide and several others are correctly identified by SVMHC,

see Table 5.3.

5.6. CAP discussion

The CAP database is a good example of how heterogeneous data from different types of

experimental procedure can be integrated and analyzed. New efforts in molecular biology

have been made to describe biological entities in a structured manner. A promising example

here is the gene ontology aiming to describe gene and gene product in a structured way [12].

Furthermore, there is a never ending flood of prediction methods that can be used to annotate

protein sequences. The underlying data model of CAP is designed in a way that these types

of data can easily be incorporated.

The use of CAP was illustrated by the analysis of genes causing autoimmune responses in

different cancer types. This analysis gives an overall view of how immune responses in cancer

relate to gene expression and genetic modifications. CAP also enables statistical evaluation

of user-defined data sets, something that can facilitate hypothesis regarding different aspects

of cancer research.

One hypothesis is that immunogenic antigens might stem from genes that are altered by

tumor-specific mutations or have a changed expression profile in a certain tumor, reviewed

by Meese and Comtesse [174]. Here CAP was to merge information from the fields of genetics
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5.6. CAP discussion

and immunology. From available data, we see no evidence that genetic alterations, such as

mutations or polymorphisms, cause immune responses in cancer. In terms of variations in

expression, indications can be seen that overexpression contributes to the antibody responses

against tumor antigens. The majority of the 319 genes are actually found to be overexpressed

in the NCI60 data set. This result might be somewhat biased from the selection of genes

tested for expression levels. The NCI60 data set was designed to explore the variation in gene

expression among different cancer types.

It might be misleading to turn these findings into general rules concerning immune re-

sponses in cancer. This study was rather conducted to show CAP makes this kind of analysis

possible by integrating different sources of data.

Statistics on specific data sets might help to understand the mechanisms behind certain

cancer types. There are many reports on the correlations between cancers and chromosomal

aberrations. One example is the changed expression patterns of genes in ovarian carcino-

mas [20]. These genes show reduced expression in the 3p25.5-3p21.31 region and increased

expression of genes from 3q13.33-3q28. CAP can be a useful tool in the identification of such

chromosomal regions. Many cancer types have disrupted protein and signaling pathways.

One example is the retinoblastoma protein pathway, reviewed in [17]. Analysis of protein

function and subcellular location are important steps in the identification of such pathways.

CAP provides tools for both finding protein functional families associated to certain cancers

as well as analysis of protein subcellular location for sets of sequences.

The final part of this chapter showed how SVMHC can be used to identify cancer vaccine

candidates. This was done by analyzing some TAAs and TSAs identified by CAP that also

contain experimentally verified MHC-binding peptides. Peptides originating from proteins

specifically found in certain tumors are interesting for immunotherapeutic purposes.
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6. Discussion and concluding remarks

This work describes computational methods for modeling antigen processing and for finding

immunotherapy candidates. The first part focused on MHC-peptide binding alone, where

several approaches for MHC-peptide binding prediction were presented. In the following

chapter antigen processing as an integrated pathway was analyzed. The novel WAPP method

was presented and new methods for proteasomal cleavage and TAP transport were described

in detail. Finally the integration of cancer-related data and identification of immunotherapy

candidates was described. Here the concept of integrating heterogeneous cancer-related data

for was introduced. The CAP analysis tool developed was used for identifying TSAs and

TAAs, which were further analyzed of cancer peptide vaccine candidates.

Several different methods for prediction of MHC class I binding peptides have been pre-

sented. The first methods were based on expert knowledge regarding certain anchor positions

of the peptides. These were followed by PSSM-based methods like BIMAS and SYFPEITHI.

The main drawback of PSSM-based methods is that they assume an independent contribu-

tion to the overall binding energy from each amino acid of the peptide. The SVM-based

method presented here can circumvent this and allow for a non-linear model. One might

argue that the ”black box” SVMs do not give an easily interpretable explanation for binding,

but in many cases this is not the focus. The most important aspect is that MHC-binding pep-

tides are predicted with high accuracy, and in this sense the SVM-based method, SVMHC,

outperforms other PSSM-based methods. In a comparison of between the SVMHC, SYF-

PEITHI, and BIMAS method for six different MHC alleles, SVMHC had an average MCC of

0.84 compared to 0.79 and 0.80 for SYFPEITHI and BIMAS respectively. Consensus predic-

tion of MHC-binding peptides is also interesting and here such a method was presented for

HLA-A*0201. When more data becomes available this method is easily extendible to further

alleles. Using DTs and biochemical properties of the amino acids also give interesting results.

Here, simple interpretable rules can be generated explaining different aspects of MHC-peptide

interaction.
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Antigen processing is a highly complex machinery and hypotheses regarding different parts

of the pathway are presented on a weekly basis. The WAPP method presented in this

thesis clearly shows that proteasomal cleavage and TAP transport can be successfully taken

into consideration, when modeling the overall antigen processing pathway of MHC class I-

restricted antigens. This have implication both in basic immunology research and in rational

vaccine design. Depending on the way a certain vaccine is administrated, processing events

can also be important in order to get sufficient MHC-peptide presentation.

The PCM method for proteasomal cleavage prediction presented in this thesis shows im-

proved performance and stability compared to previously presented methods. The PCM

method avoids overfitting to the training data, which is the major problem of related PA-

ProC and NetChop methods. The average accuracy of the PCM method is 65% which can

be compared to 47% for the MAPPP method, 47% for the PAProC method, and 61% for the

NetChop method. Incorporating a higher complexity model for proteasomal cleavage into

WAPP might be useful when more experimental data become available.

There are alternative events possible for both protein cleavage and peptide transport. The

proteasome is not the only protease that cleaves proteins in the cytosol. Another major player

here seems to be the protease TPPII. It seems as if a number of alleles bind peptides that are

not effectively generated and some evidence exist that TPPII is involved in the generation of

these [222]. These findings would explain why several alleles can bind peptides with a Lys

residue in the C-terminus, which are typically not generated by the proteasome. There is not

enough data available for TPPII in order to create a prediction model as for the proteasome.

The SVMTAP method shows a good prediction performance, with a correlation of 0.82

between the experimentally measured and predicted values. The presented results highlight

the importance of the three N-terminal and the C-terminal amino acids to the binding affinity.

This is further verified, since using only these peptide positions gives a correlation of 0.79

between experimentally measured and predicted values. A high quality data set of peptides

with a length of nine amino acids was used in this study. Since most of the peptides presented

by MHC molecules have exactly this length, WAPP focuses on nine amino acid long peptides.

However, some findings suggest that peptides might enter the ER as longer precursors and

further trimmed in the ER by ER-peptidases [251, 252]. For extended peptides there is once

again a lack of data and no convincing model of the transport and subsequent processing

of peptide in the ER have been presented so far. SVMTAP was also used to analyze the

differences in TAP affinity of peptides from different MHC alleles. These results suggest two
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sets of alleles, one TAP-efficient and one TAP-inefficient allele in terms of TAP transport.

The methods for proteasomal cleavage (PCM), TAP transport (SVMTAP), and MHC

binding (SVMHC) were integrated in the WAPP method. For the four alleles analyzed with

WAPP, improved performance in comparison to MHC binding prediction alone was observed.

Furthermore, WAPP outperforms the other currently existing methods for whole pathway

prediction. The accumulation of new data will definitely improve the modeling and accuracy

assessment of integrative models of the whole processing pathway.

The focus of the final results chapter of this thesis describes analysis of cancer-related data.

The MHC-peptide prediction and whole pathway modeling chapters includes a lot of com-

parative studies on large data sets, where it is fairly straight forward to determine the best

method. The focus of the chapter dealing with integrative analysis of cancer-related data was

different. Here the main question is how one can generated a data model that accommodates

and enables analysis of heterogeneous data from different sources. The verification that this

can be done successfully was the subsequent large-scale analysis conducted. Furthermore, it

was shown that several TSAs identified by CAP could be used to identify peptide vaccine

candidates. The need for integrated databases and analysis tools like CAP will continue to

increase. New technical advances constantly produce data that makes it possible to under-

stand new dimensions of cancer research. Without systems that enable storage of these data

in a very structured way, much useful information will be lost.

Databases like CAP can supply us with target proteins for immunotherapy. Coupled to

accurate prediction tools, fast identification of peptide-vaccine candidates is possible. There

are of many hurdles to overcome regarding T-cell based immunotherapy. In principle it would

probably be optimal to activate both B-cells and Th cells in addition to Tc cells. However,

prediction of B-cell epitopes is a much trickier task that prediction of T-cell epitopes. In

selecting vaccine candidates it might also be good to consider similarity to normal proteins

in order to avoid allergic reactions. There are also several open questions regarding how

to optimally select a set of candidate peptides in order to cover a wide range of alleles.

Assuming that immunogenicity can be related to MHC-peptide binding, it should be possible

formulate an optimization function using different constraints, describing the optimal set of

candidate peptides. In the ideal case, it might even be possible to construct personalized

peptide-vaccine, depending on the HLA type of a patient. Furthermore, other types of data,

such as gene expression, might be used to reduce the risk of allergy or to optimally select

target proteins.
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Immunology is very complex field and new technologies constantly provide useful insights

into the function of the immune system. In a recent review article, Jonathan Yewdell describes

seven dirty little secrets (DLSs) of antigen processing [302]. He concludes that in order to

understand antigen processing and immunology in general it is necessary to understand the

interactions between trillions of cells that make up the organism. By describing different

DLSs, Yewdell underlines that there are still many ”if’s” and loose assumptions regarding

antigen processing. In some respects the human brain is definitely limited: ”Why should this

organ, selected to facilitate our survival in the macro-world of lions-and-tigers-and-bears, be

equipped to fully understand the micro- and nano-world of molecules-and-atoms-and-waves?”.

However, it is easy to agree with Yewdell that this is not discouraging in any way, since it

implies that there will always be an unlimited source of intriguing questions and hypotheses

to investigate.
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[101] Gubler, B., Daniel, S., Armandola, E. A., Hammer, J., Caillat-Zucman, S., and van Endert,

P. M. Substrate selection by transporters associated with antigen processing occurs during peptide

binding to TAP. Mol. Immunol. 35, 8 (1998), 427–433.

[102] Gulukota, K., Sidney, J., Sette, A., and DeLisi, C. Two complementary methods for predicting

peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267 (1997), 1258–1267.

[103] Hanada, K., Perry-Lalley, D. M., Ohnmacht, G. A., Bettinotti, M. P., and Yang, J. C. Iden-

tification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas.

Cancer Res 61, 14 (Jul 2001), 5511–5516.

[104] Hanada, K., Yewdell, J., and Yang, J. Immune recognition of a human renal cancer antigen through

post-translational protein splicing. Nature 427, 6971 (2004), 252–256.

[105] Harding, C. V., and Unanue, E. R. Quantitation of antigen-presenting cell MHC class II/peptide

complexes necessary for T-cell stimulation. Nature 346, 6284 (Aug 1990), 574–576.

[106] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning. Springer-Verlag,

New York, USA, 2001.

[107] Hazan, C., Melzer, K., Panageas, K., Li, E., Kamino, H., Kopf, A., Cordon-Cardo, C.,

Osman, I., and Polsky, D. Evaluation of the proliferation marker MIB-1 in the prognosis of cutaneous

malignant melanoma. Cancer 95, 3 (2002), 634–640.

[108] Heckel, D., Comtesse, N., Brass, N., Blin, N., Zang, K., and Meese, E. Novel immunogenic

antigen homologous to hyaluronidase in meningioma. Hum. Mol. Genet. 7, 12 (1998), 1859–1872.

[109] Heemels, M. T., Schumacher, T. N., Wonigeit, K., and Ploegh, H. L. Peptide translocation by

variants of the transporter associated with antigen processing. Science 262, 5142 (Dec 1993), 2059–2063.

[110] Henikoff, J. G., and Henikoff, S. Using substitution probabilities to improve position-specific

scoring matrices. Comput Appl Biosci 12, 2 (Apr 1996), 135–143.

[111] Henrique, R., Azevedo, R., Bento, M., Domingues, J., Silva, C., and Jeronimo, C. Prognostic

value of Ki-67 expression in localized cutaneous malignant melanoma. J. Am. Acad. Dermatol. 43, 6

(2000), 991–1000.

118



Bibliography

[112] Herberts, C., Reits, E., and Neefjes, J. Proteases, proteases and proteases for presentation. Nat

Immunol 4, 4 (Apr 2003), 306–308. Comment.

[113] Hertz, G. Z., and Stormo, G. D. Identifying dna and protein patterns with statistically significant

alignments of multiple sequences. Bioinformatics 15, 7-8 (1999), 563–577.

[114] Hisamatsu, H., Shimbara, N., Saito, Y., Kristensen, P., Hendil, K. B., Fujiwara, T., Taka-

hashi, E., Tanahashi, N., Tamura, T., Ichihara, A., and Tanaka, K. Newly identified pair of

proteasomal subunits regulated reciprocally by interferon γ. J Exp Med 183, 4 (Apr 1996), 1807–1816.

[115] Hogan, K. T., Coppola, M. A., Gatlin, C. L., Thompson, L. W., Shabanowitz, J., Hunt,

D. F., Engelhard, V. H., Slingluff, C. L. J., and Ross, M. M. Identification of a shared epitope

recognized by melanoma-specific, HLA-A3-restricted cytotoxic T lymphocytes. Immunol. Lett. 90, 2

(2003), 131–135.
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9. Höglund, A, Blum, T, Brady, S, Dönnes, P, Miguel, JS, Rocheford, M,

Kohlbacher, O, and Shatkay, H (2006). Significantly improved prediction of

subcellular localization by integrating text and protein sequence data, In: Pro-

ceedings of the Pacific Symposium on Biocomputing (PSB 2006)
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