
Development of Linear Scaling ab initio

Methods based on Electron Density Matrices

Entwicklung linear skalierender ab initio

Methoden basierend auf

Elektronendichtematrizen

DISSERTATION

der Fakultät für Chemie und Pharmazie

der Eberhard-Karls-Universität Tübingen
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Chapter 1

Introduction

In the last decades ab initio methods have become a standard tool in chemistry, biochem-

istry, and physics. Their reliability and accuracy in the prediction of properties of molecular

and solid-state systems have been proven in many applications. Nevertheless, the size of

treatable systems was limited to the hundred atoms region even for the less demanding

Hartree-Fock (HF) and Kohn-Sham density functional (KS-DFT) theory because of their

at least cubic scaling behavior O(M3) with system size M, i.e. the computational effort is

eight times larger if the size of the system is doubled. Ab initio methods of course profit

by the fast evolution of computer technology, but their application to larger systems is

primarily hampered by the unfavorable scaling behavior. Thus the development of lin-

ear scaling methods is a focus of quantum chemistry in order to expand the spectrum of

treatable molecular systems.

With the development ofO(M) algorithms for evaluating the two-electron contributions

to the Fock or Kohn-Sham matrix (e.g. Refs. [1–10]) of systems with a significant HOMO-

LUMO gap, the applicability has been extended to the thousand atoms region. For larger

systems the cubic scaling behavior of the linear algebra routines for e.g. diagonalizing the

Fock matrix starts to dominate the computational effort. In these cases one can employ

density matrix-based diagonalization alternatives [11–15], where only local quantities enter

and thus the application of O(M) sparse algebra routines becomes possible.

The aim of the present work is the development of new linear scaling methods for the

calculation of molecular properties and quantum Monte Carlo (QMC) energies by refor-

mulations in terms of electron density matrices. In the first part, an overall linear scaling

method for predicting static second order properties is presented. We applied our new
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CHAPTER 1. INTRODUCTION

coupled-perturbed self-consistent field (CPSCF) scheme to solve directly for the perturbed

densities within the NMR chemical shieldings calculation, which are extremely important

for attaining structural and dynamical insights into chemical systems. The calculation of

NMR chemical shifts at the HF or KS-DFT level of theory is routine nowadays and has

proven to yield reliable and accurate results in many cases [16–25]. However, the cubic

scaling behavior of the standard MO-based schemes prevents the treatment of larger sys-

tems. In the present work a density matrix-based coupled perturbed self-consistent field

(D-CPSCF) method is presented, which allows in combination with O(M) two-electron in-

tegral contractions to achieve an overall linear scaling behavior. In this way, the spectrum

of treatable systems is extended from the hundred atoms region to molecules containing

thousand and more atoms. Apart from exemplary calculations to prove the O(M) scal-

ing behavior of the new method, first applications for studying solid- and solution-state

systems are presented.

The second part of this thesis treats the calculation of frequency-dependent molecular

polarizabilities and first hyperpolarizabilities [26, 27]. The importance of theoretical meth-

ods for the calculation of linear and non-linear optical properties grows with the interest

in corresponding materials for optical devices. The efficiency of such devices like optical

fibres, optical frequency converters, electro-optical modulators, thermo-optical switches

etc. but also liquid crystals for TFT displays is given by the polarizabilities and hyper-

polarizabilities as first objectives. In combination with ab initio calculations, which allow

the detailed investigation of different influences on these effects, a carefully directed im-

provement of the optical properties can be possible which opens a new path to intelligent

materials design. In addition to the traditional inorganic optical devices there is a great

interest in organic materials nowadays, whose non-linear properties mainly originate from

the change of the polarizability of π-electrons and so exhibit evidently faster optical ef-

fects. For such systems with a naturally local electronic structure the presented density

matrix-based time-dependent self-consistent field (D-TDSCF) method enables an overall

linear scaling behavior.

The final part of this work is focused on the development of a linear scaling method

for the local energy in variational (VQMC) and diffusion (DQMC) quantum Monte Carlo

[28, 29]. In recent years an increasing interest in quantum Monte Carlo methods was

noticeable since they combine high accuracy and a favorable scaling behavior as compared

to the more difficult ”Post Hartree-Fock” methods like for example perturbation theory or

6



CHAPTER 1. INTRODUCTION

the coupled cluster (CC) approximation. In this work a QMC method with linear scaling

effort in the computation of the local energy has been developed by a reformulation of the

corresponding equations in the basis of the N -particle density matrix (N -PDM). Apart

from the derivation and implementation of the new N -PDM VQMC and N -PDM FN-

DQMC equations, first tests of their performance are shown for a series of linear alkanes.
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Chapter 2

Theory

2.1 Molecular (Non-Relativistic) Hamiltonian

The central equation of non-relativistic quantum chemistry is the time-dependent Schrödinger

equation

ĤΨ({r}; t) = ih̄
∂

∂t
Ψ({r}; t). (2.1)

The linear operator Ĥ is the Hamilton operator, Ψ({r}; t) the wave function, h̄ Planck’s

constant divided by 2π, t the time variable and {r} the set of particle coordinates. For a

closed system the Hamiltonian does not depend on t explicitly, i.e. the energy is constant in

time for a given state according to the energy conservation law. These states with a defined

energy En are called stationary states Ψn which are eigenfunctions of the Hamiltonian and

therefore have to obey an eigenvalue equation

ĤΨn({r}; t) = EnΨn({r}; t). (2.2)

A comparison with the wave equation eq. 2.1 yields the time-dependence of Ψn({r}; t)

Ψn({r}; t) = ψn ({r}) e− i
h̄

Ent. (2.3)

The stationary wave functions without a time factor ψn ({r}) and the corresponding eigen-

values are solutions to the stationary Schrödinger equation

Ĥψn({r}) = Enψn({r}). (2.4)
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CHAPTER 2. THEORY

The Hamiltonian is of central importance in quantum mechanics since it determines the

form of eq. 2.1 and eq. 2.4. For a molecular system it is

Ĥ = −1

2

∑

i

∇2
i −

1

2

∑

A

1

MA

∇2
A −

∑

i,A

ZA

riA

+
∑

j<i

1

rij

+
∑

B<A

ZAZB

rAB

= T̂e + T̂N + V̂eN + V̂ee + V̂NN . (2.5)

The operator is given in atomic units [30], ZA is the nuclear charge number, MA the nuclear

mass, i, j are electronic and A,B nuclear indices. The T̂ denote operators of kinetic and

V̂ of potential energies.

The two-particle operators V̂eN , V̂ee and V̂NN prevent an exact solution of the Schrödinger

equation except for the most simple atomic system. In order to be able to treat molecules

of interest approximations to the exact solution have to be introduced.

2.2 Born-Oppenheimer Approximation

Because of the large difference between nuclear and electronic masses by at least 3 orders

of magnitude, the nuclei usually move much slower than the electrons. This means that

the electrons can follow the changes of the nuclear frame instantaneously, which allows us

to separate their motions and to describe the electron configuration in the presence of a

fixed nuclear frame (TN = 0, VNN =const.). The resulting electronic Hamiltonian

Ĥel = −1

2

∑

i

∇2
i −

∑

i,A

ZA

riA

+
∑

j<i

1

rij

=
∑

i

ĥi +
∑

j<i

1

rij
(2.6)

acts on the electronic coordinates and only depends parametrically on the nuclear positions.

The total energy is the sum of the electronic energy Eel and the nuclear-nuclear repulsion

energy VNN . This approximation yields good results in general, but e.g. at the intersection

of electronic states of same symmetry it completely fails because of the strong coupling of

nuclear and electronic motions.

The Born-Oppenheimer approximation simplifies the problem to the solution of the

electronic Schrödinger equation, but the spectrum of analytical solutions is only extended

to problems that are isoelectronic to the hydrogen atom because of the electron-electron

repulsion term V̂ee.
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CHAPTER 2. THEORY

Since the following work will focus on the solution of the electronic Schrödinger equa-

tion, the index ’el’ will be dropped (Ĥ = Ĥel).

2.3 Hartree-Fock Theory

In this section the most simple ab initio method to solve the electronic Schrödinger equation

of a many-electron system, the Hartree-Fock method (HF), is presented. If we consider a

system of non-interacting electrons (independent particle model, IPM) whose Hamiltonian

is given as a sum of effective one-electron operators, the wave function can be separated

and represented as an anti-symmetrized product of one-electron functions, the so called

Slater determinant [31]

Ψ({r}) = |φ1, φ2, ..., φN〉

= (N !)−1 det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1 (x1) φ2 (x1) · · · φN (x1)

φ1 (x2) φ2 (x2) · · · φN (x2)
...

...
. . .

...

φ1 (xN ) φ2 (xN ) · · · φN (xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.7)

with N as the number of electrons, φi as spin orbital i and xj as space-spin coordinates of

electron j. It is easily shown that this choice for the wave function satisfies the antisymme-

try principle according to Pauli [32, 33] (Ψ(x1, ...,xi,xj , ...,xN) = −Ψ(x1, ...,xj,xi, ...,xN))

as well as the indistinguishability of the electrons.

Resorting to the Slater-Condon rules [30] the expectation value of the Hamiltonian in

eq. 2.6 with this wave function yields the HF ground-state energy

EHF
0 =

occ∑

i

〈i|ĥ|i〉+ 1

2

occ∑

i,j

〈ij||ij〉 , (2.8)

where the Dirac notation for the integrals is used

〈i|ĥ|i〉 =

∫

φ∗i (x1) ĥφi (x1) dx1,

〈ij||ij〉 = 〈ij|ij〉 − 〈ij|ji〉 ,

〈ij|ij〉 =

∫ ∫

φ∗i (x1)φi (x1) r
−1
12 φ

∗
j (x2)φj (x2) dx1dx2. (2.9)

According to the variational principle [30], whose equivalence to the Schrödinger equation

can be easily shown [34], the energy expectation value obtained with a trial function Ψ̃ is
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CHAPTER 2. THEORY

an upper bound to the true energy

〈Ψ̃|Ĥ|Ψ̃〉/〈Ψ̃|Ψ̃〉 ≥ Eex
0 . (2.10)

Thus a proper trial function is chosen and optimized in such a way that the expectation

value becomes minimal δ 〈E〉 = 0 with respect to arbitrary variations in Ψ̃. With La-

grange’s method of undetermined multipliers under the constraint of orthonormal molec-

ular orbitals (〈φi|φj〉 = δij) one obtains – after unitary transformation – the canonical HF

equation [30]

F̂ φi = ǫiφi, (2.11)

with the Fock operator

F̂ = ĥ+
∑

j

(

Ĵj − K̂j

)

. (2.12)

The operator Ĵj corresponds to the classical Coulomb interaction, the non-classical ex-

change operator K̂j results directly from the antisymmetry condition

Ĵj =

∫

dx2 φ
∗
j(x2)

1

r12
φj(x2), (2.13)

K̂j =

∫

dx2 φ
∗
j(x2)

P̂12

r12
φj(x2), (2.14)

where x2 is the space-spin coordinate of electron 2 and P̂12 the permutational operator

exchanging the coordinates of electrons 1 and 2. Because of the dependence of the Fock

operator F̂ on the one-electron functions φi the HF equations have to be solved iteratively

in a self-consistent field (SCF) procedure.

The molecular orbitals φi are in general represented as a linear combination of basis

functions (LCBF) from a finite set of (contracted) Gaussians {χµ}

φi =
∑

µ

Cµiχµ. (2.15)

So the problem of orbital optimization is transformed into the algebraic problem of co-

efficients (Cµi) optimization. For a closed-shell system this leads to the Roothaan-Hall

equations [35]

FC = SCǫ, (2.16)

12



CHAPTER 2. THEORY

with the Fock matrix

Fµν = hµν +
∑

λσ

Pλσ

[

〈µλ|νσ〉 − 1

2
〈µλ|σν〉

]

, (2.17)

the metric S, the molecular orbital coefficients matrix C, and the diagonal matrix ǫ con-

taining the orbital energies. In the preceding text, matrices are denoted with bold letters.

The matrix P is the representation of the one-electron or Fock-Dirac density in the given

basis (see the following section)

Pµν =
∑

i∈occ

CµiC
∗
νi. (2.18)

The energy results as

E0 =
1

2
Tr [P (h + F)] , (2.19)

with h as the matrix representation of the core Hamiltonian. The formal scaling behavior

with the number of basis functions M of the HF method is O(M4), i.e. the computational

effort scales with the fourth power because of the 1
8
M4 two-electron integrals (prefactor

comes from the permutational symmetry of the integrals). With the introduction of direct

SCF methods by Almlöf [36] and integral screening with respect to the one-particle density

[37] the scaling is reduced to quadratic. New methods based on the fast multipole method

(FMM) to construct the Coulomb matrix [1–4, 6, 7] and linear scaling exchange matrix

formation [8, 10] enable an asymptotically linear scaling computation of the Fock-type

matrices for systems with a non-vanishing HOMO-LUMO gap.

While for smaller systems the O(M2) formation of the Fock matrix is clearly the most

time consuming step because of its large prefactor, the cubic scaling behavior of the alge-

braic routines to diagonalize F or to construct the density matrix becomes dominant for

larger systems. A solution to this problem is given by density matrix-based SCF meth-

ods [11, 13–15, 38] that are completely formulated in the basis of local quantities and thus

enable an overall linear scaling in combination with sparse algebra routinesa).

a)See e.g. section 3.6.1.1.
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2.4 Linear Scaling Formation of the Fock Matrix

In order to analyze the scaling behavior of the formation of Coulomb and exchange matrices

we have to reconsider the explicit form of the matrix elements

Jµν =
∑

λσ

Pλσ (µν|λσ)

=
∑

λσ

Pλσ

∫

χ∗µ(r1)χν(r1)r
−1
12 χ

∗
λ(r2)χσ(r2)dr1dr2, (2.20)

Kµν =
∑

λσ

Pλσ (µσ|λν)

=
∑

λσ

Pλσ

∫

χ∗µ(r1)χσ(r1)r
−1
12 χ

∗
λ(r2)χν(r2)dr1dr2, (2.21)

where we have used the Mulliken notation for two-electron integrals. The integrals describe

the Coulomb interaction between the charge distributions for electrons 1 and 2. Since the

basis functions χµ are (contracted) Gaussian functions, the number of significant function

pairs χµ(ri)χν(ri) scales linearly with system size. Recalling the Gaussian product theo-

rem the product of two Gaussians yields a new Gaussian centered on the line joining the

original functions which is scaled by the exponential exp (−C R2
12), i.e. the product decays

exponentially with the distance R12 between the original Gaussian. Therefore the number

of significant charge distributions scales asymptotically linear with system size and the

formation of two-electron integrals with O(M2).

To achieve an O(M) behavior the Coulomb and exchange matrices have to be treated

separately. Since the bra and ket functions of the Coulomb integral in eq. 2.20 are coupled

by r−1
12 only, the number of integrals scales quadratically with M. This can be reduced by

the application of the continuous fast multipole method (CFMM) introduced by White et

al. [1–4] who extended the FMM method of Greengard and Rohklin [39] to the treatment of

extended charge distributions. Note that there are similar approaches proposed by several

authors [6, 7], but the new developments presented in this thesis are based on the CFMM

method which is the standard method used in the Q-Chem package [40]. The Coulomb

matrix is split into near-field and far-field contributions with respect to the distance of

the basis function pairs (χµχν) and (χλχσ), where the near-field part is computed with

standard integral routines and the far-field is taken into account as an interaction with a

multipole field arising from distant charge distributions.

The number of significant elements in the exchange matrix, on the other hand, scales

14
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linearly with M for a system with a non-vanishing HOMO-LUMO gap because of the cou-

pling of the bra- and ket-sides by the density matrix P. As will be shown in the following

section, the density matrix has only a linear scaling number of significant elements for

systems with a local electronic structure. Thus the bra- (χµχσ) and ket-terms (χλχν)

are coupled by a constant number of density matrix elements Pλσ. This means that each

bra-pair (χµχσ) has only a constant number of significant Pλσ which again has a con-

stant number of ket-pairs (χλχν). The problem in forming the exchange matrix in eq.

2.21 emerges from the quadratically scaling screening scheme, which would asymptotically

dominate the exchange matrix formation. This obstacle was first removed by the order N

exchange (ONX) method proposed by Schwegler et al. [10]. However, their method does

not exploit the permutational symmetry of the two-electron integrals and therefore intro-

duced a prefactor which becomes crucial for systems with limited extend or small band

gaps. Thus, Ochsenfeld et al. introduced the LinK scheme [8] which is also used throughout

this thesis. Since the LinK screening has only a small overhead compared to the standard

routines it is competitive even for small systems.

2.5 The Electron Density

Since the methods that have been developed in this work are all based on reduced electron

density matrices, their properties are discussed in this section.

In the framework of quantum mechanics the complete description of a system is given

by the wave function Ψ({x}, t). The Hartree-Fock and the Kohn-Sham reference wave

functions, which are in center of the following discussion, are represented by an antisym-

metrized product of orthonormal one-electron functions {φi} (spin orbitals), i.e. the Slater

determinant introduced earlier (eq. 2.7). The invariance of a single determinant to a uni-

tary transformation of the spin orbitals [30] shows, that the spin orbitals do not represent

a unique set of solutions to the operator in eq. 2.12. Because of this arbitrariness and the

fact, that canonical molecular orbitals are normally delocalized over the complete molecule,

the MOs do not provide a unique physical picture of the electronic structure of the system.

The information about the distribution of electrons as well as clusters of electrons is

given by the n-particle reduced densities ρn where n is the number of electrons in the
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corresponding cluster. Following the interpretation according to Born [33],

|Ψ|2 dx1dx2..dxN = Ψ∗(x1x2..xN )Ψ(x1x2..xN)dx1dx2..dxN (2.22)

is the probability for the configuration with electron 1 in dx1, electron 2 in dx2 etc. The

probability to find an arbitrary electron at x1 independently of the positions of the remain-

ing electrons equals – because of the indistinguishability of fermions – the probability of

electron 1 at x1 multiplied by N . This defines the 1-particle reduced density function

ρ1(x1) = N

∫

Ψ(x1x2..xN )Ψ∗(x1x2..xN )dx2..dxN . (2.23)

In the context of density functions the index of the variable x1 does not refer to electron 1

but to a point where the density is evaluated. Note that these functions are – just like an

observable – quadratic in Ψ and so invariant to unitary transformations of the spin orbitals.

A further important common property with 1-particle operators is the time-dependency

(see sec. 2.5.2).

In the following the 1- and 2-particle expectation values of the Hamiltonian in eq. 2.5

are represented as functions of the 1- and 2-particle reduced densities, respectively. This

is obviously no problem for purely multiplicative operators, but the differential operator

of the kinetic energy requires a more general form of the electron density. We define the

1-particle reduced density matrix as

ρ1(x1;x
′
1) = N

∫

Ψ(x1x2..xN )Ψ∗(x
′
1x2..xN )dx2..dxN , (2.24)

so that it is possible to define the expectation value of any 1-particle operator Ô1 as

〈Ô1〉 =

∫

x
′
1=x1

Ô1ρ1(x1;x
′
1)dx1. (2.25)

This equation has to be read as follows: The operator acts only on the coordinate x1 while

x
′
1 is ”inert”, then one replaces x

′
1 with x1 and finally integrates over x1. Eq. 2.24 defines

a real matrix with continuous indices and the density function in eq. 2.23 as diagonal

elements.

In an analogous way to the electron density one defines the electron pair distributionb)

ρ2(x1,x2) = N(N − 1)

∫

Ψ(x1x2..xN)Ψ∗(x1x2..xN)dx3..dxN , (2.26)

b)The prefactor N(N − 1) is due to the number of electron pairs.
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which gives the probability of one electron at x1 and another at x2. This function contains

the complete information about (dynamic) correlation and describes the correlated motion

of two electrons resulting from their direct interaction (see sec. 2.6).

Since the Hamiltonian in eq. 2.5 consists of 1- and 2-particle operators only, the exact

(non-relativistic) energy can be written as

E0 = −1

2

∫

∇2ρ(x1;x
′
1)dx1 +

∑

A

∫
ZA

|rA − x1|
ρ(x1)dx1

+
1

2

∫

r−1
12 π(x1,x2)dx1dx2. (2.27)

Since no other density functions are needed to describe a Coulombic system, we drop the

index for the 1-electron density (ρ = ρ1) and abbreviate the pair density as (π = ρ2) in eq.

2.27.

2.5.1 1-particle Reduced Density Function of a Single Slater

Determinant: Fock-Dirac Density

After the more general definitions in the previous section the form of the electron density

constructed from a single determinant is derived. Instead of calculating the density from

eq. 2.23, we extract it from the Hartree-Fock energy expression in eq. 2.8. The expectation

value of the core Hamiltonian ĥ is given by

〈ĥ〉 =
∑

i∈occ

〈i|ĥ|i〉

=
∑

i∈occ

∫

φ∗i (x)ĥφi(x)dx (2.28)

or, alternatively, in density form by

〈ĥ〉 =

∫

x
′
=x

ĥρ(x;x
′
)dx. (2.29)

In a similar way to the expansion of an arbitrary wave function in the basis of eigenstates,

one can represent the density for an arbitrary pure state as a linear combination of the

densities of the stationary states [32, 41]. In the case of an IPM ρ(x;x
′
) is expanded in the

basis of one-electron molecular spin-orbital products

ρ(x;x
′
) =

∑

rs

prsφr(x)φ∗s(x
′
), (2.30)
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where the coefficients prs form the matrix representation PMO of an abstract density op-

erator in the basis {φi}. A comparison with eq. 2.28 and eq. 2.29 shows that PMO has a

diagonal form where the diagonal elements are the occupation numbers of the one-electron

orbitals

prs =

{
δrs

0

if r, s ∈ occ
else

. (2.31)

This leads to the so called Fock-Dirac density

ρ(x;x
′
) =

∑

i∈occ

φi(x)φ∗i (x
′
). (2.32)

The corresponding density operator ρ̂ is the superposition of all MO dyadics of the occupied

subspace

ρ̂ =
∑

i∈occ

|φi〉 〈φi| . (2.33)

From the repulsive 2-electron term in eq. 2.8 one finds for the pair density

V HF
ee =

1

2

occ∑

i,j

〈ij|ij〉 − 〈ij|ji〉

=
1

2

∫

x
′
1
=x1

x
′
2=x2

r−1
12 π(x1,x2;x

′
1,x

′
2)dx1dx2,

=⇒ π(x1,x2;x
′
1,x

′
2) = ρ(x1;x

′
1)ρ(x2;x

′
2)− ρ(x2;x

′
1)ρ(x1;x

′
2). (2.34)

This is a special case of the general result, that each n-particle reduced density matrix ρn

can be expressed as an antisymmetrized product of Fock-Dirac density matrices, i.e. by a

Laplace expansion of the Slater-determinant in the first n rows [42, 43]

ρn(x1x2..xn;x
′
1x

′
2..x

′
n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ρ1(x1;x
′
1) ρ1(x1;x

′
2) · · · ρ1(x1;x

′
n)

ρ1(x2;x
′
1) ρ1(x2;x

′
2) · · · ρ1(x2;x

′
n)

...
...

. . .
...

ρ1(xn;x
′
1) ρ1(xn;x

′
2) · · · ρ1(xn;x

′
n)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.35)

This expansion is another sign for the independent-particle character of the approximation,

which describes theN -electron wave function as antisymmetrized product ofN one-electron

functions, and states the complete determination of the system by the Fock-Dirac density.
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The treatment of the density so far has been in the continuous basis {r} of 3-dimensional

space. Since the methods that are in the focus of this work are in general formulated

within a finite set of basis functions, a discrete description has to be introduced. From the

expansion of the molecular orbitals in a basis {χµ} (eq. 2.15) one gets the corresponding

matrix representation P of the density by transformation from the MO basis {φi} to the

atomic orbital (AO) basis {χµ}

P = CPMOC†,

=⇒ Pµν =
∑

i∈occ

CµiC
∗
νi. (2.36)

So far the spin-dependency was implicitly included by the use of spin-orbitals. Introducing

α- and β-spin densities one obtains

Pµν = P α
µν + P β

µν ,

P α
µν =

∑

i∈occα

Cα
µiC

α ∗
νi ,

P β
µν =

∑

i∈occβ

Cβ
µiC

β ∗
νi . (2.37)

2.5.2 Properties of the Fock-Dirac Density

One special property can immediately be seen by applying the density operator to an

arbitrary function f that is expanded in the basis {φr}

f =
∑

r

ar |φr〉 . (2.38)

Due to the orthonormality of the spin-orbitals, ρ̂ projects the function onto the occupied

subspace

ρ̂f =
∑

i∈occ

∑

r

ar |φi〉 〈φi |φr〉 =
∑

i∈occ

∑

r

ar |φi〉 δir

=
∑

i∈occ

ai |φi〉 . (2.39)

This projection onto the occupied subspace is essential for the upcoming sections. The

idempotency, which is a necessary condition for a projector, results directly from the or-
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thonormality of the molecular orbitals

ρ̂2 =
∑

i∈occ
j∈occ

|φi〉 〈φi |φj〉 〈φj| =
∑

i∈occ
j∈occ

|φi〉 〈φj | δij

=
∑

i∈occ

|φi〉 〈φi| = ρ̂. (2.40)

Within a discrete representation of the density we have to consider that the basis functions

are in general normalized but non-orthogonal. Thus the metric Sµν = 〈χµ|χν〉 of the space

spanned by the M functions χµ has to be considered explicitly. With

〈φr| φs〉 = δrs =⇒
∑

µν

C∗µr 〈χµ| χν〉Cνs =
∑

µν

C∗µrSµνCνs = δrs, (2.41)

we obtain the idempotency relation in a non-orthogonal basis

PSP = P. (2.42)

Furthermore, it can be seen from eq. 2.41 that the trace of the Fock-Dirac density equals

the number of electrons [42, 44]

Tr [PS] = N, (2.43)

since the trace is invariant with respect to cyclic permutations of its arguments

Tr [PS] = Tr
[
CPMOC†S

]
= Tr

[
PMOC†SC

]

= Tr
[
PMO1

]
= N . (2.44)

Finally, as the last property, the time-dependency of the electron density can be derived

from comparison of the time derivative of the density with the wave equation in eq. 2.1

[45], giving a von-Neumann type equation of motion (in a.u.)

∂

∂t
ρ̂ = |Ψ̇〉〈Ψ∗|+ |Ψ〉〈Ψ̇∗|

= −iĤ |Ψ〉〈Ψ∗|+ i|Ψ〉〈Ψ∗|Ĥ
= −i

(

Ĥρ̂− ρ̂Ĥ
)

,

=⇒ iSṖS = FPS− SPF (2.45)

with Ṗ = ∂P/∂t and Ψ̇ = ∂Ψ/∂t. Since the density of a stationary state is time-

independent, it behaves like a constant of motion and commutes with the Hamiltonian

0 = FPS− SPF. (2.46)

20



CHAPTER 2. THEORY

From this equation and eq. 2.36 it is easy to see that P has to be self-adjoint

P† = P. (2.47)

As mentioned before the density is the projector onto the occupied subspace. Including

the non-orthogonality of the basis, we define the projectors onto the occupied (Pocc = PS)

and virtual (Pvirt = (1− PS)) subspaces. The following relations between Pocc and Pvirt

hold:

PoccPvirt = PvirtPocc = 0, (2.48)

Pocc + Pvirt = 1. (2.49)

The first equation shows the orthogonality of the occupied and virtual subspaces, the

second results from the resolution of unity since it equals the superposition of all MO

dyadics. The latter can be used to split any matrix representation A of a general operator

Â in the given basis into a sum of subspace projectionsc):

A = 1A1

= SPAPS + SPA (1−PS) + (1− SP)APS + (1− SP)A (1−PS)

= Aoo + Aov + Avo + Avv. (2.50)

This unique resolution of matrix representations of arbitrary operators into their subspace

projections will play a central role in the upcoming derivations of D-CPSCF/TDSCF equa-

tions.

2.5.2.1 Purification Transformation

Let us reflect on the four properties of the density matrix in a standard SCF treatment.

In the optimization process the density matrices are built from the MO coefficient vectors

C that result from the diagonalization of the Fock or Kohn-Sham matrices. It is obvious

that the self-adjointness, N -trace as well as the idempotency are satisfied after the diag-

onalization even for a non-converged density matrix. The commutator in eq. 2.46 holds

only for the converged density and so its norm is a standard test for convergence.

c)Assuming a covariant matrix A. For an introduction to tensor theory in many-electron theory see e.g.

[46].
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Figure 2.1: ”Purification” function x̃ = 3x2 − 2x3
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In an overall linear scaling SCF algorithm the explicit use of the MO coefficient vectors

is prohibitive because of the dense structure of C, so the goal has to be the direct solution

for the density matrix. The self-adjointness of P will directly emerge from the symmetry of

the corresponding linear equation systems which will be presented in the following sections

(see e.g. eq. 3.72). A more involved problem is the enforcement of the idempotency in

the optimization process (wherefrom the N -trace property emerges if the initial density

represents the correct number of electrons). Ignoring these constraints in the minimization,

the eigenvalues of the density would tend to −∞ for the occupied and to +∞ for the virtual

eigenstates.

The key tool to impose these constraints – at least to first order – in the methods

presented in the following is the purification transformation introduced by McWeeny [47, 48]

(see eq. 2.51 and Fig. 2.1).

A nearly idempotent density matrix P has eigenvalues nr (→ occupation numbers) close

to 0 or 1, i.e. 1− θ or θ with 0 ≤ θ ≪ 1. Inserting this trial density into

P̃ = 3PSP− 2PSPSP, (2.51)

we obtain a more nearly idempotent density matrix P̃ as can easily be seen from the

function plot in Fig. 2.1:

f(1− θ) → 1 ≥ (1− 3θ2 + 2θ3) ≥ 1− θ,
f(θ) → 0 ≤ (3θ2 − 2θ3) ≤ θ.
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Figure 2.2: Sparsity pattern of the MO coefficient matrix (left) and the one-electron

density (right) of a DNA fragment containing 8 base pairs from a HF/6-31G* calculation.

The white dots are non-significant elements with an absolute value smaller than 10−7.

Note that this transformation only works for values in the range [−0.5, 1.5] and the equal-

ities hold for nr = 0 ∨ 1 (θ = 0) [47, 48]. Within an optimization procedure we are now

able to impose the idempotency condition either by inserting P̃ into the energy functional

(see section 3.6.1.1) or by a subsequent application of the purification transformation. As

can be seen in Fig. B.1 in the appendix, the idempotency of the density is restored within

a small number of iterations.

2.5.3 Structure of the Fock-Dirac Density

As mentioned before the molecular orbitals are in general delocalized over the whole nuclear

frame, i.e. the MO coefficient matrix is dense as shown on the left of Fig. 2.2. As has been

shown (see e.g. Refs. [49, 50]), the number of significant elements of the density matrix

P, whose pattern is shown on the right of Fig. 2.2, scales linearly with system size for

molecules with a non-vanishing HOMO-LUMO gap.

With Born’s interpretation of |Ψ|2 in mind we can interprete the off-diagonal elements of the

1-particle reduced density matrix in eq. 2.24 as a measure of the localization/delocalization
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of the electrons. While the diagonal elements (x
′
= x) give the probability of finding an

electron at x, the off-diagonal elements give the probability of finding a delocalized electron

simultaneously at x and x
′

= x + ∆x. The connection between the HOMO-LUMO gap

and the local or non-local nature of the electron structure, i.e. the scaling behavior of the

number of significant elements of P, can be seen for the example of a Peierls distortion of a

hydrogen chain. As shown in Fig. B.2 in the appendix, the metallic system with equidistant

protons does not show a HOMO-LUMO gap, i.e. it is a conductive system with electrons

delocalized over the whole chain (broken line). On the other hand the chain of hydrogen

molecules shows a significant gap and thus a localized electron structure (full line) with a

delocalization radius ∆x of approx. 44 Å instead of half of the chain length (∆x ≈ 167

Å), considering the center of the chain as reference point x (threshold < 10−7).

2.6 Electron Correlation

Typically the Hartree-Fock energy accounts for approx. 99% of the non-relativistic energy.

The error results from the assumption of independent particles that only interact indirectly

over an averaged field. This means, that the motions of two electrons are not correlated, i.e.

the probability of finding electron 2 at r2 does not depend on the position r1 of electron 1.

Note that the exchange term in HF theory introduces a partial correlation between electrons

with parallel spins while electron pairs with opposite spins remain completely uncorrelated.

The difference between the exact, non-relativistic energy Eex and the HF energy ob-

tained with a complete basis Elimit
HF is called the correlation energy

Ecorr = Eex − Elimit
HF . (2.52)

It is noticeable that the correlation energy is not a real physical quantity, i.e. it is not an

observable and only an artefact of the independent particle approximation. Eq. 2.52 is a

pragmatic definition of the electron correlation energy since most methods are based on

the HF reference. In the following text we will also refer to the Fermi-correlation which

arises from the exchange term in eq. 2.14, even if it is excluded by the definition in eq.

2.52.

The correlation energy Ecorr contributes only approx. 1% to the total energy, but it

has to be considered in many cases since it is clearly on the order of chemical energies.

Compared to the HF calculation, the determination of the correlation energy by Post-HF
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methods requires huge computational effort because of the unfavorable scaling behavior

(see Fig. 2.4).

2.6.1 Pair Functions in HF-Theory

As mentioned in sec. 2.5 the pair density π(x1,x2;x
′
1,x

′
2) contains information on the

correlated motions of two electrons. The HF pair density is given in eq. 2.34 as

π(x1,x2;x
′
1,x

′
2) = ρ(x1;x

′
1)ρ(x2;x

′
2)− ρ(x2;x

′
1)ρ(x1;x

′
2). (2.53)

This means that within the single determinant approximation the complete system is de-

scribed by the Fock-Dirac density. A further decomposition by integrating over the spin

variables yields

π(x1,x2;x
′
1,x

′
2) = παα;αα(r1, r2; r

′
1, r

′
2) + παβ;αβ(r1, r2; r

′
1, r

′
2)

+ πβα;βα(r1, r2; r
′
1, r

′
2) + πββ;ββ(r1, r2; r

′
1, r

′
2) (2.54)

and a comparison with eq. 2.53 gives the the diagonal elements of the pair densities with

same (ω1 = ω2) and opposite (ω1 6= ω2) spin

παα(r1, r2) = ρα(r1)ρ
α(r2)− ρα(r2; r1)ρ

α(r1; r2) (2.55)

παβ(r1, r2) = ρα(r1)ρ
β(r2) (2.56)

and equivalent equations for πββ and πβα. These equations show how electron correlation

is considered in the framework of HF theory. Eq. 2.55 shows that electron pairs of same

spin are described by a function which vanishes for r2 = r1

lim
r2→r1

ρα(r2; r1) = ρα(r1) → lim
r2→r1

παα(r1, r2) = 0. (2.57)

This case is depicted on the left in Fig. 2.3 and results directly from the Pauli principle

that requires an antisymmetric wave function. The pair density of two electrons of opposite

spins eq. 2.56 in HF theory is just the product of the corresponding one-particle densities,

i.e. the motion of electron 2 would be independent of the position of electron 1. In a full

interacting system the probability of finding electron 2 close to r1 is reduced as shown on

the right in Fig. 2.3. This effect, which is completely neglected in HF theory, results from

the Coulomb correlation emerging from the electrostatic repulsion between two charged

particles.
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Figure 2.3: Fermi hole (left), exact Coulomb hole (right) [34]
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In general two types of correlation are distinguished. Dynamic correlation, which has

been discussed so far, is of course local by nature and occurs in many-electron systems.

This behavior of the pair density on the right in Fig. 2.3 can also be considered as con-

sequence of the so called cusp conditions which have been formulated by Kato [51]. The

discontinuity at r1 ensures an overall finite energy by a compensation of the divergence in

the potential energy by a corresponding divergence in the kinetic energyd). In configura-

tion space the dynamic correlation is introduced by a superposition of a large number of

”excited” determinants (see eq. 2.58).

The static correlation, on the other side, has a multi-center character and is represented

by a linear combination of near-degenerate determinants. The classic example is the dis-

sociation of the hydrogen molecule, where a mixing of the singlet states σg and σu enables

a correct description of the dissociation.

2.6.2 Expansion of a Many-Electron Wave Function in the Basis

of One-Electron Functions: Full-CI Wave Functions

According to the expansion of one-electron functions in a complete basis {χµ}, one can

also represent an arbitrary antisymmetric many-electron function in this basis. The exact

wave function is a linear combination in the basis of all N -particle determinants (full

d)The cusp conditions are also in the focus of interest when constructing correlated wave functions for

QMC (see chapter 5)
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Figure 2.4: Hierarchy of correlation methods.
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∑
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cabc
ijkΨ

abc
ijk + ... . (2.58)

The diagonalization of the Hamiltonian in the basis of the N -electron functions in eq. 2.58

would yield the exact, non-relativistic energy of the system. However, the computational

effort makes the computation not feasible for most molecules of interest due to the large

number of determinants. Applying an intermediate normalization (c0 = 1, 〈Ψ0|Φ0〉 = 1)

we can derive an expression for the correlation energy

Ecorr =
∑

i<j
a<b

cab
ij 〈Ψ0|Ĥ|Ψab

ij 〉. (2.59)

Even though this equation contains only matrix elements coupling the ground state wave

function and ”double-excited” determinants, its solution remains a difficult task. Behind
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this simple equation stands a hierarchy of coupled systems of equations that also contain

higher-excited determinants. Thus one has to solve the complete hierarchy of equations to

obtain a rigorous solution for cab
ij .

Since the description of electron correlation is a challenging and important task of

quantum chemistry, a great variety of approximations has been developed. These methods

like many-body perturbation theory (MBPT) [52], truncated CI or coupled cluster theory

(CC) [53–55] are – although strongly different in the statement – all approximations to

determine eq. 2.59 by decoupling the equation systems [56–58]. They all form a hierarchy

of methods (Fig. 2.4) which provides a systematic way to the exact FCI result.

Apart from the ”Post-HF” methods there exist many other approaches to seize cor-

relation effects. The most popular alternative, the density functional theory (DFT), is

presented in the following section. In the last years there was also an increasing interest in

quantum Monte Carlo methods (QMC) which solve the Schrödinger equation by stochas-

tical methods. The foundations of these methods will be summarized in the last chapter

of this work where a new approach to the variational and diffusion quantum Monte Carlo

schemes is presented.

2.6.3 Density Functional Theory

While Kohn-Sham DFT has been a well-established method in solid-state physics, this

method was introduced to the computational chemistry community by a reformulation

within a finite basis set [59–63]. Nowadays all popular ab initio packages provide a variety

of exchange-correlation (XC) functionals that are widely used in computational chemistry

and physics.

In 1927 Thomas and Fermi formulated a model for describing atoms based on a statis-

tical approach of the uniform electron gas. In this quite simple theory the basic quantity

is the electron density instead of a wave function. Nevertheless, since it can not be applied

to molecular systems (Teller non-binding theorem [64]) and the results for atoms did not

reach the accuracy of other methods, the impact of the Thomas-Fermi model in solid-state

and molecular physics was rather small.

With the seminal work of Hohenberg and Kohn in 1964 [65] the Thomas-Fermi model

was reconsidered as an approximation to a formally exact theory, the density functional

theory (DFT). In the following text the foundation of this theory, the Hohenberg-Kohn
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theorems, and its established manifestation in form of the Kohn-Sham DFT method are

briefly discussed.

2.6.3.1 Hohenberg-Kohn Theorems

The ground state of a N -electron system is completely determined by the external potential

vext in which the electrons move, i.e. the attractive potential of the nuclear frame and

applied electromagnetic fields for example. The first theorem of Hohenberg and Kohn

states that the electron density ρ with
∫
ρ(r)dr = N also provides a complete description

of the system: The electron density ρ determines the external potential vext. This theorem

is easily proven by contradiction. Consider for anN -electron system two external potentials

vext and v
′
ext that differ by more than an arbitrary constant and provide the same density

ρ. The Hamiltonians and wave functions to the single potentials are Ĥ , Ψ and Ĥ
′
, Ψ

′
,

respectively. Using Ψ
′
0 as trial function for the Hamiltonian Ĥ and vice versa yields

E0 < 〈Ψ′|Ĥ|Ψ′〉 = E
′
0 +

∫

ρ(r)[vext(r)− v
′
ext(r)], (2.60)

E
′
0 < 〈Ψ|Ĥ ′|Ψ〉 = E0 −

∫

ρ(r)[vext(r)− v
′
ext(r)], (2.61)

since the the Hamiltonians only differ in the external potential. The sum of these inequal-

ities is a contradiction E0 + E
′
0 < E0 + E

′
0 which shows that there is only one unique vext

for a given ρ.

The second HK theorem provides a variational principle for ρ: A trial density ρ̃ with

ρ̃ ≥ 0 and
∫
ρ(r)dr = N gives an energy value E0(ρ̃) which is always an upper bound to

the true ground state energy. Since the trial density determines its own potential ṽext and

wave function Ψ̃, the equality to the traditional variation principle is easily seen

〈Ψ̃|Ĥ|Ψ̃〉 = Ẽ0(ρ̃) ≥ E0. (2.62)

With this at hand Hohenberg and Kohn were able to calculate the ground state energy in

terms of the density ρ

E(ρ) =

∫

ρ(r)vext(r)dr + FHK(ρ)

=

∫

ρ(r)vext(r)dr + T (ρ) + Vee(ρ), (2.63)
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where the Hohenberg-Kohn functional FHK(ρ) contains the kinetic energy T (ρ) and the

electron-electron interaction energy Vee(ρ)

Vee(ρ) = J(ρ) + Exc(ρ). (2.64)

Beside the Coulomb energy J(ρ) it also contains a non-classical term, the so called exchange-

correlation (XC) energy Exc(ρ). In order to obtain treatable expressions for the different

terms, Hohenberg and Kohn had to resort to the Thomas-Fermi model, where they also

introduced Dirac’s exchange term for the uniform electron gas. These approximate expres-

sions of course exhibit an error which becomes most apparent in the kinetic energy. In

the work of Kohn and Sham [66] the DFT method has been brought to a next level by

introducing self-consistent field equations for a non-interacting reference system.

2.6.3.2 Kohn-Sham-DFT

In their work of 1965 Kohn and Sham proposed an indirect approach to the calculation

of the kinetic energy [66]. They suggested a non-interacting reference system described by

orbitals {φi} which could in principle yield the exact ground state density of the interacting

system

Ĥref = −1

2

N∑

i

∇2
i +

N∑

i

veff (ri). (2.65)

This enables a simple calculation of T (ρ) to a good accuracy in a similar way as the HF

method

Tref(ρ) = −1

2

N∑

i

〈φi|∇2|φi〉, (2.66)

where the corresponding density is

ρ(r) =
N∑

i

|φi(r)|2 , (2.67)

as has been shown in the previous section 2.5. It has to be noted that Tref(ρ) is not the

exact kinetic energy functional but only small corrections are left. So one obtains the

Kohn-Sham equation which are of the same form as the HF-SCF equations in eq. 2.11
(

1

2
∇2 + veff(r)

)

φi(r) = ǫiφi(r), (2.68)
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where the effective potential is

veff(r) = vext(r) +
∂J(ρ)

∂ρ(r)
+
∂Exc(ρ)

∂ρ(r)

= vext(r) +

∫
ρ(r

′
)

|r− r′|dr
′
+ vxc(r). (2.69)

Since the XC energy functional in the KS scheme is defined as

Exc(ρ) = T (ρ)− Tref(ρ) + Vee(ρ)− J(ρ), (2.70)

the solution of the SCF equation in eq. 2.68 yields the exact density of the interacting

system. Note that the XC energy functional contains – besides the Coulombic and exchange

correlation – a correction to the approximated kinetic energy functional Tref(ρ).

Unfortunately the exact form of the XC energy functional Exc(ρ) is not known, but all

established ab initio packages contain a variety of different approximationse) which will not

be presented in detail here. Compared to the MO-based correlation methods the KS-DFT

method provides a favorable scaling behavior (O(M), see upcoming section) combined

with quite accurate results. Furthermore, since the correlation effects are transfered to

the XC functional, this method is not as strongly influenced by the expansion in a finite

basis set as the Post-HF methods are. As will also be shown in the QMC section treating

correlated wave functions, the convergence of the MO-based calculations with respect to

cusp conditions is slow with the basis set size [67]. On the other hand, there exists no

hierarchy of DFT methods as presented for the configuration space methods in Fig. 2.4 and

with that no systematic way to approach the exact solution of the Schrödinger equation.

2.6.3.3 Time-Dependent Systems: Runge-Gross Theorem

Hohenberg and Kohn provided a fundamental existence theorem for the ground state of

an electronic system based on the minimum energy principle which is not provided for

time-dependent systems. Nearly twenty years later Runge and Gross [68] extended this

theory to arbitrary time-dependent systems by establishing an analogous ρ(r, t)→ vext(r, t)

mapping, which leads in principle to a complete, exact density functional theoryf).

e)To this day the available functionals can be classified as LSDA, GGA, meta-GGA, or hybrid-type

functionals. See Ref. [69] for a brief introduction to the different functional types.
f)There exists of course also a time-dependent Kohn-Sham version.

31



CHAPTER 2. THEORY

With this at hand the calculation of time-dependent properties became possible within

the time-dependent DFT (TDDFT) scheme which has been proven to yield reasonably

accurate results for many properties [70–73]. It has to be noted that there exists a time-

paradox [74] in the TDDFT equations, which will be briefly discussed in section 3.7.1.1.

2.6.3.4 Formation of Exchange-Correlation Matrices

In this section, the O(M) formation of the XC potential matrix Vxc in a given basis [75] is

described. It has to be noted that hybrid XC functionals [76] also contain a certain amount

of exact exchange K, that can be formed in O(M) fashion within e.g. the LinK scheme [8].

The XC energy Exc is in general a functional of the density ρ and – for GGA and

meta-GGA – its gradient ∇ρ and kinetic energy density τ , respectively:

Exc =

∫

fxc [ρα(r), ρβ(r),∇ρα(r),∇ρβ(r), τα(r), τβ(r)] dr. (2.71)

The potential vxc arising from exchange-correlation interactions between electrons is defined

by the derivative of the XC energy functional Exc with respect to the one-particle density

ρ(r)

vxc(r) =
fxc(r)

∂ρ(r)
. (2.72)

The discrete representation in a given basis results from integration over r

〈χµ|v̂xc|χν〉 =

∫
fxc(r)

∂ρ(r)
χµ(r)χν(r)dr. (2.73)

Since it is generally not possible to determine Exc and Vxc by analytic integration, a

numerical quadrature has to be used, where Eq. 2.71 is rewritten as

Exc =

NA∑

A

NA
grid∑

i

pAwifxc(ri). (2.74)

NA
grid denotes the number of grid points, wi is the weight to the given grid point ri of

atom A and pA is the nuclear partition function that enables a split of the molecular grid

into single atomic integral contributions. In a first step the atomic grids are constructed

usually by a combination of radial and angular grids [77]. After determination of the

partition factors pA with e.g. the popular method proposed by Becke [78] the single atomic

grids are merged to yield the molecular grid in O(M) fashion.

32



CHAPTER 2. THEORY

For each atomic grid the integral contribution is now calculated with a scaling behavior

independent of system size. After determining the constant number of basis functions χµ

significant for the current sub-grid as well as the corresponding basis function pairs χµχν ,

the representation of the one-particle density within the partial grid is formed by

ρ(ri) =
∑

µν

Pµνχµ(ri)χν(ri), (2.75)

with analogous equations for ∇ρ(ri) and τ(ri). At this point it is noticeable that the

localization (delocalization) of the electrons resulting in a sparse (dense) discrete density

P does not affect the scaling behavior of the algorithm, i.e. the strict O(M) scaling holds

even for metallic systems as long as local basis functions are used.

The evaluation of the XC functional and its derivatives at each point of the sub-grid is

followed by the summation of the zeroth order values to yield the XC energy Exc. To form

the matrix representation of the corresponding XC potential Vxc in the given basis, the

different first order derivatives have to be contracted with the corresponding basis function

values

〈χµ|v̂xc|χν〉 =

NA∑

A

NA
grid∑

i

pA wi
∂fxc(ri)

∂ρ
χµ(ri)χν(ri). (2.76)

In a similar fashion higher-order derivatives of the XC potential necessary for response

properties can be implemented, also providing a strict O(M) scaling behavior.
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Chapter 3

Linear Scaling Density Matrix-based

Methods for Static and Dynamic

Properties

The theoretical determination of molecular properties for a given state (static) as well as

those characterized by electronic transitions between different states (dynamic) provides a

direct link between theory and experiment. The calculation of many properties is nowadays

routine within the coupled-perturbed SCF scheme (for an overview see e.g. Ref. [79]),

but both at the HF and KS-DFT level the size of treatable molecular systems has been

constrained to the hundred atoms region due to the strong increase of the computational

effort, which is often stronger than for the calculation of energies.

After an introduction to static and dynamic perturbations as well as to the corre-

sponding responses of the molecular systems in form of the perturbed densities, a brief

review of the standard MO-based schemes to calculate static (MO-CPSCF) and dynamic

(MO-TDSCF) properties is given. In the main part of this chapter our new coupled-

perturbed SCF equations within a local atomic orbital density matrix-based scheme for

the calculation of static (D-CPSCF) and dynamic (D-TDSCF) properties are derived. The

performance of their actual implementation for the calculation of NMR shielding tensors

[80] and frequency-dependent polarizabilities and first order hyperpolarizabilities in the

Q-Chem package [40] is presented with first exemplary applications.
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3.1 Perturbative Expansion of the Energy

In the case of a weak perturbation x we can expand the energy in a Taylor series around

the unperturbed case x = 0

E = E(x = 0) +
∂E

∂x

∣
∣
∣
∣
x=0

x+
1

2

∂2E

∂x2

∣
∣
∣
∣
x=0

x2 +
1

6

∂3E

∂x3

∣
∣
∣
∣
x=0

x3 + · · · . (3.1)

Since molecular properties determine the response of the system to a perturbation x, we

can identify them with the respective energy derivatives based on the underlying physics.

For an external electric field E as a perturbation we have, for example:

Dipole moment − dE

dEi

,

Polarizability − d2E

dEidEj
,

1st Hyperpolarizability − d3E

dEidEjdEk
.

As can be seen from the explicit expressions of the derivatives in the following section,

the second and higher-order derivatives require the determination of the response of the

electron distribution with respect to the external perturbation. These changes in the

electron distribution destroy self-consistency in eq. 2.16, thus it has to be reinstalled in each

order of the expansion in eq. 3.1 by the use of perturbation theory. From a mathematical

point of view this method determines the coefficients of the Taylor expansion for a given

Hamiltonian and therewith the nth order derivatives of the energy.

In contrast to the traditional approach of perturbation theory, in which the perturbed

wavefunction is represented as a linear combination of the eigenfunctions of the unper-

turbed system, we determine the perturbed density by a variational perturbation method.

In the following sections we will derive the explicit equations to determine the energy deriva-

tives. After the derivation of an analytical expression for the first order energy derivatives,

we will focus on the calculation of the nth order perturbed wavefunction or – equivalently

– density which is required to determine the (2n + 1)th order properties (Wigner’s rule).

Their calculation in a CPSCF algorithm, which is the most time consuming step, will be

treated in detail for selected properties in sections 3.6 and 3.7.
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3.2 First Order Derivatives

The Hellmann-Feynman theorem states, that the first order derivative of the expectation

value equals the expectation value of the derivative of the Hamiltonian

dE

dx
= 〈Ψ| dĤ

dx
|Ψ〉 . (3.2)

However, this equation only holds – apart from some exceptions – for wavefunctions that

are expanded in a complete basis, so that we cannot use this approach and have to calculate

the energy derivative explicitly. We start with the derivative of eq. 2.19

dE

dx
= Tr

[

Pxh + Phx +
1

2
[PxG(P) + PGx(P) + PG(Px)]

]

, (3.3)

where h is the matrix representation of the core-Hamiltonian and G contains the Coulomb

and exchange matrices. Rearranging this equation slightly and considering the identity

Tr [PG(Px)] = Tr [PxG(P)] we get

dE

dx
= Tr

[

Phx +
1

2
PGx(P)

]

+ Tr
[

Pxh + PxG(P)
]

= Tr
[

Phx +
1

2
PGx(P)

]

+ Tr
[

PxF
]

. (3.4)

The terms of the first trace are computed with standard algorithms in a linear scaling

manner, but the second trace contains the perturbed density. In order to obtain a result

independent of Px [81–83], we have to anticipate the properties of the perturbed density

described in section 3.3. The resolution of Px into a sum of projections shows that the

virt/virt part Px
vv vanishes and Px

oo = −PSxP. From the HF- or KS-equations we see

that the MO representation of the matrix F is in diagonal form and so has only projections

onto the pure occupied and virtual subspaces. Analogously, the commutator in eq. 2.46

and the idempotency relation in eq. 2.40 shows that the projections of the Fock matrix on

the occ/virt and virt/occ subspaces vanish

Fov = SPF(1−PS) = SPF− SPFPS

= SPSPF− SPFPS = SPFPS− SPFPS = 0, (3.5)

Fvo = (1− SP)FPS = FPS− SPFPS

= FPSPS− SPFPS = SPFPS− SPFPS = 0. (3.6)
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Since the trace is invariant with respect to cyclic permutations of its arguments

Tr [Px
ovF] = Tr [PSPx(1− SP)F] = Tr [Px(1− SP)FPS] = 0, (3.7)

Tr [Px
voF] = Tr [(1−PS)PxSPF] = Tr [PxSPF(1−PS)] = 0, (3.8)

one obtains

dE

dx
= Tr

[

Phx +
1

2
PGx(P)

]

− Tr
[

PSxPF
]

= Tr
[

Phx +
1

2
PGx(P)

]

− Tr
[

WSx
]

, (3.9)

with W = PFP as the energy-weighted density matrix. An O(M) algorithm of first order

properties can be easily implemented by an extension of the LinK/CFMM schemes [1, 8]

to the perturbed two-electron integrals Gx(P) [5, 9].

The second derivative of the energy follows from eq. 3.9 as

d2E

dxdy
= Tr

[

Phxy +
1

2
PGxy(P)−WSxy + PFyPSx

]

+ Tr
[

Pyhx + PyGx(P)−PyFPSx + PFPySx
]

. (3.10)

The determination of the derivative of the density in the second trace cannot be avoided

anymore and has to be obtained as solution from the CPSCF equations.

3.3 Properties of the First-Order Perturbed Density

The unique resolution described in eq. 2.50 gives for the perturbed density matrix

Px = Px
oo + Px

ov + Px
vo + Px

vv. (3.11)

From the derivative of the idempotency condition eq. 2.40

Px = PxSP + PSxP + PSPx, (3.12)

we can rewrite the terms in the resolution of Px by projecting eq. 3.12 onto the subspaces:

Px
oo = −PSxP, (3.13)

Px
ov = PSPx −PSPxSP, (3.14)

Px
vo = PxSP−PSPxSP, (3.15)

Px
vv = 0. (3.16)
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The hermiticity in eq. 2.47 has also to be fulfilled for the derivatives (Px = Px†), so we

obtain

Px
ov = Px†

vo. (3.17)

Since we can directly calculate Sx we only have to determine the occ/virt part Px
ov. Note

that eqs. 3.12-3.17 only hold for the converged perturbed densities, during the iterations

all constraints have to be imposed by the properties of the projection operators which is

discussed in the corresponding sections.

3.4 Frequency-Dependent Perturbations and Proper-

ties of the First and Second Order Transition Den-

sities

For the description of fluctuations of arbitrary operators in time caused by the presence

of a time-dependent oscillatory perturbation Ĥ(S)(t) we start from the time-dependent

Schrödinger equation (eq. 2.1) in atomic units:

Ĥ |Ψ〉 = i
∂

∂t
|Ψ〉 , (3.18)

where the Hamilton operator is the sum of the time-independent Hamiltonian Ĥ(0) of the

unperturbed molecular system and a time-dependent perturbation:

Ĥ = Ĥ(0) + Ĥ(S)(t). (3.19)

In the case of molecular polarizabilities the perturbation Ĥ(S) of an external monochromatic

oscillatory electric field is represented by the interaction of the molecular system with a

single Fourier component of the quantized photon field within the dipole approximation

Ĥ(S) =
1

2
µ̂E
(
e−iωt + e+iωt

)
, (3.20)

µ̂ = −zel

N∑

i=1

r̂i, (3.21)

where E is the electric field vector, ω the corresponding frequency, zel the electronic charge

and µ̂ the dipole moment operator.
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Table 3.1: Polarizabilities and first order hyperpolarizabilities. κ is the prefactor of the

RHS of the qudratic respanse equations (eq. 3.163).

Property κ

Static polarizability: αxy(0) = −Tr [hµxPy (ω = 0)] 0

Dynamic polarizability: αxy(∓ω;±ω) = −Tr [hµxPy (±ω)] ∓1

First static hyperpolarizability: βxyz (0; 0, 0) = −Tr [hµxPyz (ω = 0, ω = 0)] 0

2nd harmonic generation: βxyz (∓2ω;±ω,±ω)= −Tr [hµxPyz (±ω ± ω)] ∓2

Electro-optical Pockel’s effect: βxyz (∓ω; 0,±ω) = −Tr [hµxPyz (0,±ω)] ∓1

Optical rectification: βxyz (0;±ω,∓ω) = −Tr [hµxPyz (±ω,∓ω)] 0

First of all we want to identify the optical properties from the expansion of the molecular

polarizability P as a power series in the strength of the external electric field around the

field-free state. So we have to choose ∂E/∂E as the starting point of the expansion:

Pi =
∂E

∂Ei

+
∂2E

∂Ei∂Ej

∣
∣
∣
∣
Ej=0

Ej +
1

2

∂3E

∂Ei∂Ej∂Ek

∣
∣
∣
∣
Ej=Ek=0

EjEk + ...

= −µi − αijEj −
1

2
βijkEjEk + ... , (3.22)

where i, j, k = x, y, z and summation over same indices is assumed. Considering the differ-

ent terms in the perturbation eq. 3.20 the properties listed in Tab. 3.1 can be identified.

The structure of the 1st order transition density Px(±ω) can be investigated starting

with the conditions given in eq. 2.42 and eq. 2.47. From the derivative of eq. 2.47 it follows

that

[
Px (+ω) e+iωt + Px (−ω) e−iωt

]†
=

[

(Px (+ω))† e−iωt + (Px (−ω))† e+iωt
]

, (3.23)

=⇒ Px (+ω) = (Px (−ω))† ,

Px (+ω) 6= (Px (+ω))† for ω 6= 0, (3.24)

i.e. the 1st order density is unsymmetric for the dynamic case and in the limit (ω → 0) we

have a hermetic Px as expected for the static case. Nevertheless, we only have to solve for

one time factor (excitation or de-excitation) and get the other by the transposition. For
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simplicity we ignore the time factor of the density expansion since the following relations

will hold for all the terms. From the derivative of the idempotency condition in eq. 3.12

we can get in contact with the terms in the resolution (eq. 2.50) of Px:

Px
oo = 0, (3.25)

PxSP = Px
vo, (3.26)

PSPx = Px
ov, (3.27)

Px
vv = 0, (3.28)

where the first equation results from the fact that the basis functions do not depend on

the perturbation (Sx = 0).

For the investigation of the 2nd order density it is also useful to consider the spectral

representation of Px. From the expansion of a general wavefunction in the stationary

eigenfunctions (see e.g. Ref. [32]) we obtain in an analogous way, i.e. by expansion in the

basis of one-electron molecular spin-orbital products, to eq. 2.30 (skipping the time factor)

P x
µν =

∑

i∈occ
a∈virt

xi
aCµaC

∗
νi +

∑

i∈occ
a∈virt

ya
i CµiC

∗
νa. (3.29)

The coefficients xi
a and ya

i are the virt/occ and occ/virt parts of the matrix representation

of the transition density in the MO basis. They can be interpreted as transitions for

de-excitation (xi
a: φa → φi) and excitation (ya

i : φi → φa).

The second derivative of the idempotency relation for all cases of Pxy, i.e. all frequency

combinations of x and y in βxyz as shown in Tab. 3.1, is

Pxy = PxySP + PxSPy + PySPx + PSPxy. (3.30)

First, the projections of the density onto the occupied subspace are investigated by multi-

plying eq. 3.30 with Pocc:

PSPxy = PSPxySP + PSPxSPy + PSPySPx + PSPSPxy, (3.31)

PxySP = PxySPSP + PxSPySP + PySPxSP + PSPxySP, (3.32)

PSPxySP = PSPxySPSP + PSPxSPySP + PSPySPxSP

+PSPSPxySP. (3.33)
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Using the idempotency relation eq. 2.42, the three equations above lead to the following

relations for the occ/occ part of Pxy:

PSPxySP = −PSPxSPy −PSPySPx

= −PxSPySP−PySPxSP

= −PSPxSPySP−PSPySPxSP. (3.34)

From eqs. 3.31-3.34 we get for the projections of Pxy onto the subspaces

Pxy
oo = PSPxSPySP + PSPySPxSP + 2PSPxySP

= −PSPxSPySP−PSPySPxSP, (3.35)

Pxy
ov = PSPxy −PSPxySP, (3.36)

Pxy
vo = PxySP−PSPxySP, (3.37)

Pxy
vv = PxSPy + PySPx −PSPxSPy −PSPySPx

− PxSPySP−PySPxSP + PSPxSPySP + PSPySPxSP

= PxSPy + PySPx −PSPxySP

= PxSPSPy + PySPSPx, (3.38)

=⇒ Pxy
vv + Pxy

oo = PxSPy + PySPx. (3.39)

Again we only have to solve for Pxy
ov and Pxy

vo since the occ/occ and virt/virt parts are

completely determined by the 1st order transition densities (eq. 3.39). The resolution of

the term PxSPy gives

(PxSPy)oo = PSPxSPySP, (3.40)

(PxSPy)vv = PxSPSPy, (3.41)

(PxSPy)ov = (PxSPy)vo = 0, (3.42)

which is evident from the spectral representation of Px in eq. 3.29 considering the orthonor-

mality of the MOs in eq. 2.41.

3.5 MO-based CPSCF/TDSCF Equations

In this section the molecular orbital-based coupled-perturbed SCF (MO-CPSCF) equations

are briefly discussed, as they have been implemented within this work in order to compare
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their results with those of the new methods. Starting with the more general time-dependent

equations, the static case is derived in the frequency limit ω → 0.

3.5.1 Dynamic Properties: MO-TDSCF

In this section the derivation of the TDSCF equations will closely follow the work of Sekino

and Bartlett [84]. Starting from Frenkel’s variational principle [47, 85] the time-dependent

Roothaan-Hall equations are

FC− SCǫ = i
∂

∂t
SC. (3.43)

Invoking the perturbative expansion for the Fock matrix we obtain

F = F(0) + E
(
e−iωtF(1) (−ω) + e+iωtF(1) (+ω) + F(1) (ω = 0)

)

+ E2
(
e−2iωtF(2) (−ω,−ω) + e+2iωtF(2) (+ω,+ω) + 2F(2) (+ω,−ω) + F(2) (0, 0)

)

+ · · · (3.44)

and similar expressions for C, P, ǫ and S. Note that the basis functions do not depend on

the external electric field, so we will only have to resort to an expansion of the metric in the

case of static perturbations like e.g. nuclear displacements. Furthermore, the derivatives of

the integrals also vanish and only terms of Coulomb and exchange type contractions with

transition densities of corresponding order occur. The derivatives of the Fock matrix are

Fx(±ω) = hµx + G (Px(±ω)) , (3.45)

Fxy (±ω,±ω) = G (Pxy (±ω,±ω)) , (3.46)

while the perturbed molecular orbital coefficients are expanded in the basis of the unper-

turbed solution

Cx(±ω) = C(0)Ux(±ω), Cxy (±ω,±ω) = C(0)Uxy (±ω,±ω) , (3.47)

with U as the transition coefficients matrix. Similar second order expressions exist for

the frequency combinations (±ω,∓ω) and (±ω, ω = 0). In order to explain the general

principle we will focus on the calculation of second harmonic generation (SHG) in the

following text.
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Here the CPSCF equations are solved in the MO basis, so the transition densities have

to be formed explicitly from the MO coefficients

Px(±ω) = Cx(±ω)PMOC(0)† + C(0)PMOCx†(∓ω), (3.48)

Pxy (±ω,±ω) = Cxy(±ω,±ω)PMOC(0)† + Cx(±ω)PMOCy†(∓ω)

+ Cy(±ω)PMOCx†(∓ω) + C(0)PMOCxy† (±ω,±ω) , (3.49)

where PMO is the diagonal matrix containing the occupation numbers of the different

molecular orbitals.

3.5.1.1 First-Order MO-TDSCF Equations

Inserting the different expansions for F, C and ǫ into eq. 3.43 and sorting the terms by

orders yields for the first order

Fx(±ω)C(0) + F(0)Cx(±ω)− SCx(±ω)ǫ(0) − SCǫ
x(±ω) = ∓ ωSCx(±ω), (3.50)

where the derivative with respect to time t has been evaluated already. Multiplying eq.

3.50 from left with C(0), inserting the resulting MO representations (C(0)†AC(0) = AMO)

and considering the orthonormality constraint (C(0)†SC(0) = 1) we obtain after a slight

rearrangement of the terms

ǫ
x(±ω) = Fx

MO(±ω) + (ǫ(0) ± ω)Ux(±ω)−Ux(±ω)ǫ(0). (3.51)

Because of the strict orthogonality between the occupied and virtual subspaces, the matrix

ǫ
x(±ω) is at least block-diagonal, i.e. ǫxrs(±ω) = 0 for (r ∈ occ, s ∈ virt) and (r ∈ virt, s ∈
occ), respectively. The occ/virt and virt/occ elements of the transition coefficients matrix

result as

Ux
ia(±ω) =

Fx
MO,ia(±ω)

ǫ
(0)
a − ǫ(0)i ∓ ω

. (3.52)

From the first order derivative of the orthonormality constraint we can obtain a connection

between U(+ω) and U(−ω)

C(0)†SCx(±ω) + Cx†(∓ω)SC(0) = C(0)†SC(0)Ux(±ω) + Ux†(∓ω)C(0)†SC(0)

= Ux(±ω) + Ux†(∓ω)

= 0,

=⇒ Ux(±ω) = −Ux†(∓ω). (3.53)
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Thus we only have to solve the linear equation system (LEQS)

AU = b,

=⇒ (ǫ(0)a − ǫ
(0)
i ∓ ω)Ux

ia(±ω)−GMO,ia(P
x(±ω)) = Hµx

MO (3.54)

while Cx(∓ω), which is needed to form Px(±ω), is constructed as Cx(∓ω) = −C(0)Ux†(±ω).

Note that eq. 3.52 diverges if the frequency ω coincides with an orbital energy difference

ǫ
(0)
j −ǫ

(0)
i or for a degenerated system in the static case ω = 0. In these cases the MOs of the

single subspaces can be transformed to a non-canonical solution [86], avoiding divergences

in eq. 3.52.

3.5.1.2 Second-Order MO-TDSCF Equations

To obtain the second order transition density to determine SHG processes, the second-order

terms of the expansions of F, S and ǫ are inserted into the time-dependent Roothaan-Hall

equation in eq. 3.43

Fxy (±ω,±ω)C(0) + Fx(±ω)Cy(±ω) + Fy(±ω)Cx(±ω)

+ F(0)Cxy (±ω,±ω)− SCxy (±ω,±ω) ǫ
(0) − SCx(±ω)ǫy(±ω)

− SCy(±ω)ǫx(±ω)− SC(0) (±ω,±ω) ǫ
xy (±ω,±ω)

= ∓ 2ωSCxy (±ω,±ω) . (3.55)

Proceeding in the same manner as in the first order case we transform eq. 3.55 to the MO

basis and rearrange the terms to

ǫ
xy (±ω,±ω) = GMO(Pxy (±ω,±ω)) + Fx

MO(±ω)Uy(±ω)

+ Fy
MO(±ω)Ux(±ω)−Ux(±ω)ǫy(±ω)−Uy(±ω)ǫx(±ω)

+ (ǫ(0) ± 2ω)Uxy (±ω,±ω)−Uxy (±ω,±ω) ǫ. (3.56)

Collecting the following first order quantities as

Txy (±ω,±ω) = Fx
MO(±ω)Uy(±ω) + Fy

MO(±ω)Ux(±ω)

− Ux(±ω)Fy
MO(±ω)−Uy(±ω)Fx

MO(±ω), (3.57)

the occ/virt and virt/occ blocks of the second order transition coefficients can be written

as

Uxy
ia (±ω,±ω) =

GMO,ia(P
xy (±ω,±ω)) + Txy (±ω,±ω)

ǫ
(0)
a − ǫ(0)i ∓ 2ω

. (3.58)
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Analogous to first order we get the relation Uxy (±ω,±ω) = −Uxy† (∓ω,∓ω) for the off-

diagonal blocks, the pure occ/occ and virt/virt blocks of Uxy (±ω,±ω) can be exclusively

written in first order quantities

Uxy (±ω,±ω) =
1

2
(Ux(±ω)Uy(±ω) + Uy(±ω)Ux(±ω)) . (3.59)

If the first order results are provided, we can solve the resulting linear equation system

(LEQS) in order to determine the third order properties given in Tab. 3.1.

3.5.1.3 Wigner (2n+1) Rule

As could be seen in the preceding section, the second order TDSCF scheme is partially

constructed from first order results. So it is clear that the result as well as the convergence

behavior of the second order TDSCF algorithm depend on the quality of those results. For

third-order properties one could alternatively employ the Wigner (2n+1) rule which reduces

the overall number of iterative calculations. In this brief section no detailed derivation is

given, only the final expression for a component of βSHG based on the first order results

for ω and 2ω according to Karna and Dupuis [86]:

βxyx(−2ω; +ω,+ω) = Trocc

[

Ux(−2ω)Fy
MO(+ω)Uz(+ω) + Uz(+ω)Fy

MO(+ω)Ux(−2ω)

+ Uy(+ω)Fz
MO(+ω)Ux(−2ω) + Ux(−2ω)Fz

MO(+ω)Uy(+ω)

+ Uz(+ω)Fx
MO(−2ω)Uy(+ω) + Uy(+ω)Fx

MO(−2ω)Uz(+ω)

− Ux(−2ω)Uz(+ω)ǫy(+ω)−Uz(+ω)Ux(−2ω)ǫy(+ω)

− Uy(+ω)Ux(−2ω)ǫz(+ω)−Ux(−2ω)Uy(+ω)ǫz(+ω)

− Uz(+ω)Uy(+ω)ǫx(−2ω)−Uy(−2ω)Uz(+ω)ǫx(−2ω)
]

. (3.60)

Here Trocc [A] is the sum of the first Nocc diagonal elements where Nocc is the number of

occupied orbitals. It can also be formulated by a trace of the argument multiplied with

the occupation number matrix PMO (see sec. 2.5.1):

Trocc [A] = Tr
[
PMOA

]
. (3.61)

This equation will be referred to when the corresponding density matrix-based equations

are derived.
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3.5.2 Static Second-Order Properties: First-Order CPSCF

If the basis functions do not depend on the external perturbation, we can simply use eq.

3.52 in the static limit ω → 0. But in most cases like vibrational frequencies or NMR

shieldings using GIAOs we have to consider the derivatives of the metric because of the

explicit dependence of the basis functions on the perturbation. Similar to eq. 3.50 we

obtain in first order

FxC(0) + F(0)Cx − SxC(0)
ǫ

(0) − S(0)Cx
ǫ

(0) − S(0)C(0)
ǫ

x = 0, (3.62)

where the time-dependency on the RHS vanishes. The transformation into the MO basis

leads to

ǫ
x = FMO + ǫ

(0)Ux − Sx
MOǫ−Ux

ǫ
(0), (3.63)

from which the occ/virt and virt/occ parts of Ux are obtained

Ux
ia =

Fx
MO,ia − Sx

MO,iaǫ

ǫ
(0)
a − ǫ(0)i

. (3.64)

While the virt/virt part of Ux still vanishes the occ/occ part is completely determined by

the derivative of the metric

Ux
ij = −Sx

MO,ij, (3.65)

as can be seen from the derivative of the orthonormality condition (C†SC = 1).

3.6 Linear Scaling Methods for Static Second Order

Properties: First Order Density Matrix-based CP-

SCF

As it is shown in section 2.5.3, the number of significant elements in the orbital coefficients

matrix C scales quadratically with system size. Therefore the previously described CPSCF

schemes scale with O(M3) for a single perturbation because of the AO-MO transformations

(AAO → AMO = C†AAOC). In the following the reformulation of the CPSCF equations

entirely in the AO basis is presented which overcomes this last obstacle.
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3.6.1 Linear Response Equations to a Static Perturbation

In the original work of Ochsenfeld and Head-Gordon [11] the D-CPSCF equations were

derived from a quadratically convergent, density matrix-based SCF scheme (D-QCSCF).

After a brief description of this diagonalization-free SCF alternative and the original D-

CPSCF equations, a new formulation is presented which has been improved for the linear

scaling calculation of molecular properties.

3.6.1.1 A Brief Review of the Quadratically Convergent Density Matrix-based

SCF Energy Minimization

In this section we will derive a density matrix-based quadratically convergent SCF scheme

(D-QCSCF) proposed by Ochsenfeld and Head-Gordon [11].

Ignoring the constant nuclear repulsion energy the electronic Hartree-Fock energy in

terms of the density matrix P is

E = Tr

[

Ph +
1

2
PG(P)

]

. (3.66)

The following discussion is also valid for Kohn-Sham-DFT by just replacing the corre-

sponding expressions in G[P]. In the pioneering work of Li, Nunes, and Vanderbilt (LNV)

[48, 87] the authors proposed an energy minimization procedure constrained to a fixed

electron number Nel at fixed chemical potential µ

LLNV = E − µNel = Tr

[

P̃(h +
1

2
G(P)− µ)

]

, (3.67)

while ensuring the idempotency by the purification transformation of McWeeny in eq. 2.51.

Note that eq. 3.67 contains the HF Hamiltonian while the original work [48] is concerned

with the tight-binding approximation only. In contrast, we assume in our formulation the

initial density to be in the quadratic basin of the stationary point, so that the number of

electrons will be imposed by the purification transformation itself and an unconstrained

minimization becomes possible. Inserting this purification transformation of eq. 2.51 into

the energy expression eq. 3.66 we define the Lagrangian

L = Tr

[

P̃h +
1

2
P̃G(P̃)

]

. (3.68)
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In order to derive a working formula we expand the Lagrangian in P around the minimum

Pmin

L (Pnew) = L (P) +
∂L (P)

∂P

∣
∣
∣
∣
P∆=0

P∆ +
1

2

∂2L (P)

∂P2

∣
∣
∣
∣
P∆=0

(P∆)2 + ... , (3.69)

with P∆ = Pnew − P. Assuming to be close to the minimum (P = Pmin) we can approx-

imately use a quadratic form and truncate the expansion after the third term. Since the

gradient at a stationary point vanishes, we obtain for P = Pmin

L (Pnew) = L (Pmin) +
1

2
(P∆)2 ∂

2L (Pmin)

∂P2
min

. (3.70)

From the derivative of eq. 3.70 we also have

∂L (Pnew)

∂Pnew
=

∂L (P)

∂P
+ (P∆)

∂2L (P)

∂P2
. (3.71)

For Pnew = Pmin, i.e. ”one step from minimum”, we get from eq. 3.71
[
∂2L (P)

∂P2

]

P∆ = −∂L (P)

∂P
. (3.72)

Note that the Hessian has to be non-singulara) for the determination of P∆.

Eq. 3.72 provides us with a working formula to optimize the density in an unconstrained

fashion, as long as the initial guess Pinitial is within the quadratic basin.

Using general rules for derivatives of tracesb) the gradient of the Lagrangian on the

right-hand side (RHS) of eq. 3.72 is written as

∂L (P)

∂P
= 3FPS + 3SPF− 2FPSPS− 2SPFPS− 2SPSPF. (3.74)

with F as the Hartree-Fock or Kohn-Sham matrix

F = h + G(P). (3.75)

Note that at convergence, when the gradient has to be equal to zero, eq. 3.74 reduces to

0 = FPS − SPF. Within the optimization process the gradient in eq. 3.74 is used as

a)Following the stability condition [88] a valid Hessian has to be positive-definite.
b)Derivative of traces of nth order in A:

∂

∂A
Tr [BA

n] =
n−1∑

m=0

(Am
BA

n−m−1)† (3.73)
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direction for the density matrix P, thus the correct metric has of course to be accounted

for. Head-Gordon et al. [89] have shown that the metric, i.e. the transformation behavior

of the quantities, has to be considered explicitly. Since the density is contravariant by

definition, the covariant gradient in eq. 3.74 has to be transformed to its contravariant

representation by multiplication with the inverse metric S−1

S−1∂L (P)

∂P
S−1 = 3S−1FP + 3PFS−1 − 2S−1FPSP− 2PFP− 2PSPFS−1. (3.76)

See e.g. Ref. [90] for an introduction to tensor theory in the framework of quantum chem-

istry. For a Newton-Raphson scheme the corresponding second derivative is

∂

∂P
Tr

[
∂L (P)

∂P
P∆

]

= 3FP∆S + 3SP∆F− 2FP∆SPS− 2FPSP∆S

−2SP∆FPS− 2SPFP∆S− 2SP∆SPF− 2SPSP∆F

+3G(X)PS + 3SPG(X)− 2G(X)PSPS

−2SPSPG(X)− 2SPG(X)PS, (3.77)

with

X = 3P∆SP + 3PSP∆ − 2P∆SPSP− 2PSP∆SP− 2PSPSP∆. (3.78)

Inserting these expressions into eq. 3.72 we obtain a linear equation system (LEQS) that

can be solved with standard numerical methods like the conjugate gradient algorithm.

All matrices that occur in eq. 3.77 are asymptotically linear scaling with respect to

the number of significant elements for systems with a non-vanishing band gap, thus their

sparsity can be exploited using sparse algebra routines (see chapter 4). In combination

with the LinK and CFMM methods that have been discussed in the foregoing sections, an

asymptotically overall linear scaling behavior is possible.

3.6.1.2 D-CPSCF Scheme Derived from D-QCSCF

As described before, the perturbation induces changes in the electron distribution and –

as long as these are weak – an expansion like eq. 3.69 holds. Thus self-consistency can

be maintained to first order within a linear response formalism, i.e. the response of the

electronic structure to the external perturbation in first order,
[
∂2L (P)

∂P2

]

Px = − ∂

∂x

[
∂L (P)

∂P

]

, (3.79)
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with Px as a guess to the perturbed density matrix. Since the Hessian is known from eq.

3.77 with the replacement of P∆ by Px, we only have to consider the RHS. Note that for

a converged density matrix all relations in section 2.5.2 hold, so that we can simplify the

equation using the idempotency condition and the commutator with the Hamiltonian.

∂

∂x

[
∂L (P)

∂P

]

= −FPxS− SxPF− 2FPSxPS− 2SPSxPF

−FxPS− SPFx + 2SPFxPS, (3.80)

with

Fx = hx + Gx(P) + G (Px) . (3.81)

In the original work [11] the term G (Px) is further split into the different parts of Px

G (Px) = G(Px
ov + Px

vo) + G(PSxP)

= G(PSPx + PxSP− 2PSPxSP) + G(PSxP), (3.82)

so our preliminary D-CPSCF equations result as

3FPxS + 3SPxF− 2FPxSPS− 4FPSPxS

−4SPxSPF− 2SPSPxF + G(X
′
)PS

+SPG(X
′
)− 2SPG(X

′
)PS

= FPSx + SxPF + 2FPSxPS + 2SPSxPF

−F(x)′PS− SPF(x)′ + 2SPF(x)′PS, (3.83)

with

F(x)′ = hx + Gx(P)−G(PSxP), (3.84)

X
′

= PxSP + PSPx − 2PSPxSP

= Px
ov + Px

vo. (3.85)

In order to get a more convenient expression for the Fock-builds F(x)′ and G(X
′
) we define

F(x) = hx + Gx(P), (3.86)

X = PxSP + PSPx − 2PSPxSP−PSxP

= Px, (3.87)
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which replace the quantities F(x)′ and X
′
. Note in eq. 3.87 the distinction between the

projection Px
oo = PSPxSP and −PSxP, which are in principle equal as seen in eq. 3.13.

This is necessary since the projections of the intermediate quantity Px may not obey the

equality.

The LEQS in eq. 3.83 provides a basis for a CPSCF calculation, but within an iterative

algorithm instabilities may occur caused by approximate quantities, in particular if sparse

algebra routines are employed. Consider for example an initial guess Px′
for the perturbed

density matrix, that has a non-vanishing virt/virt part Px′
vv. It is easily seen that Px′

vv

vanishes if it is multiplied with Pocc because of the orthogonality of the subspaces (eq.

2.48):

PoccP
x′
vv = PoccPvirtP

x′
Pvirt = 0. (3.88)

The drawback in eq. 3.83 is found in the first two terms that remain ”unprojected”:

FPx′
vvS 6= 0, SPx′

vvF 6= 0. (3.89)

Thus, the virt/virt part Px′
vv would not vanish even in an optimization process where

all quantities are treated with high accuracy, i.e. no sparse algebra and tight integral

thresholds are applied. For similar reasons one can also see that a non-valid guess to the

occ/occ part Px′
oo 6= −PSxP would sustain. It has to be mentioned that these problems

become more severe if additionally sparse algebra routines are applied. Thus the method

has to be improved by imposing the constraints on Px in the LEQS itself by using the

projection properties of P. The occ/occ part Px
oo can be determined at the beginning of

the calculation and so provides an initial guess to Px. Since the Px
vv has to vanish, only

the occ/virt and virt/occ parts have to be determined. Projecting eq. 3.83 from the left

with SP and from the right with PS yields the following two equations:

SPSPxF− FPSPxS + SPG(X)− SPG(X)PS

= FPSx − SPSxPF− SPF(x) + SPF(x)PS, (3.90)

FPxSPS− SPxSPF + G(X)PS− SPG(X)PS

= SxPF− FPSxPS− F(x)PS + SPF(x)PS. (3.91)

The new LEQS is constructed as (SP
(
LEQSeq. 3.83

)
+
(
LEQSeq. 3.83

)
PS = LEQSeq. 3.90 +
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LEQSeq. 3.91)

FPxSPS− FPSPxS + SPSPxF− SPxSPF

+G(X)PS + SPG(X)− 2SPG(X)PS

= FPSx + SxPF− SPSxPF− FPSxPS

−F(x)PS− SPF(x) + 2SPF(x)PS. (3.92)

Obviously, the perturbed density matrix in X is inert to projections of the LEQS, but it

is ”cleaned” by eq. 3.87, i.e. the redundant parts Px
oo and Px

vv are removed by subtraction.

Since Px will be updated by the residual (RHS − LHS) it is also necessary that the

LEQS reassembles the essential parts of the perturbed density, i.e. that all redundant or a

priori known parts are eliminated:

LEQSeq. 3.92 = SP
(
LEQSeq. 3.83

)
+
(
LEQSeq. 3.83

)
PS

= (LEQSeq. 3.83)ov + (LEQSeq. 3.83)vo. (3.93)

Inserting the different projections of Px into the first four terms of the LHS of eq. 3.92

yields:

Px
oo : FPx

ooSPS− FPSPx
ooS + SPSPx

ooF− SPx
ooSPF = 0,

Px
ov : FPx

ovSPS− FPSPx
ovS + SPSPx

ovF− SPx
ovSPF = F(−Px

ov)S− S(−Px
ov)F,

Px
vo : FPx

voSPS− FPSPx
voS + SPSPx

voF− SPx
voSPF = FPx

voS− SPx
voF,

Px
vv : FPx

vvSPS− FPSPx
vvS + SPSPx

vvF− SPx
vvSPF = 0.

The last three terms of the LHS also form a ”cleaned” representation of G(Px) by con-

struction of the LEQS

G(X)PS + SPG(X)− 2SPG(X)PS = G(Px)ov + G(Px)vo.

As test calculations have shown, even a reconstruction of the RHS by reprojecting it onto

the occ/virt and virt/occ subspaces is essential to ensure convergence of the linear equation

solver, as it is most evident with a less tight integral threshold.

The advantage of using the difference between Px
vo and Px

ov in eq. 3.92 will be shown

in the next section. As we will see later, it becomes even crucial when sparse algebra is

applied.
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3.6.1.3 An Alternative Derivation of D-CPSCF

In order to elucidate the advantages of our LEQS compared to similar CPSCF schemes

like the one in Ref. [91] we will derive the equation starting from the commutator in eq.

2.46.

Differentiation of eq. 2.46 with respect to the perturbation x yields

∂

∂x
(FPS− SPF) = FxPS + FPxS + FPSx − SxPF− SPxF− SPFx = 0. (3.94)

Projecting from left with SP and from right with PS gives

SPFxPS + FPSPxS + FPSx − SPSxPF− SPSPxF− SPFx = 0, (3.95)

FxPS + FPxSPS + FPSxPS− SxPF− SPxSPF− SPFxPS = 0, (3.96)

where we have already employed the commutator FPS = SPF and the idempotency of P.

By subtracting eq. 3.95 from eq. 3.96 we obtain (
(
LEQSeq. 3.94

)
PS− SP

(
LEQSeq. 3.94

)
=

LEQSeq. 3.96 − LEQSeq. 3.95)

FPxSPS + SPSPxF− SPxSPF− FPSPxS + FPSxPS

+SPSxPF− FPSx − SxPF + FxPS + SPFx − 2SPFxPS = 0, (3.97)

and after shifting the terms without Px to the RHS we obtain eq. 3.92 again

FPxSPS− FPSPxS + SPSPxF− SPxSPF

+G(Px)PS + SPG(Px)− 2SPG(Px)PS

= FPSx + SxPF− SPSxPF− FPSxPS

−F(x)PS− SPF(x) + 2SPF(x)PS. (3.98)

As it is shown in the succeeding section, the LEQS proposed by Larsen et al. [91] can be

constructed by addition of eq. 3.95 and eq. 3.96. The advantage of a subtraction used

in our approach is the higher numerical stability of eq. 3.98 resulting from a cancellation

of numerical inaccuracies. This is of course particularly important when sparse algebra

routines are used.

Considering the resolution in eqs. 3.13-3.16 one can see that the explicit formula of

PSPx contains the difference between two occ/occ-projections of Px:

PSPx = Px
ov + Px

oo = PSPx −Px ′
oo

︸ ︷︷ ︸

Px
ov

+Px
oo. (3.99)
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If exact matrix-algebra routines are applied, the last two terms cancel each other, but

within numerical accuracy Px ′
oo ( occ/occ part of Px

ov/P
x
vo) and Px

oo (intial guess: −PSxP)

may differ and so produce numerical noise (see Tab. 4.2 and the discussion in chapter 4)

PSPx = PSPx + ∆Px
oo. (3.100)

From the symmetry Px
ov = Px †

vo we see that both terms would vanish by subtraction

PxSP−PSPx = Px
vo + Px

oo −Px
ov −Px

oo

= PxSP−Px ′
oo

︸ ︷︷ ︸

Px
vo

−PSPx + Px ′
oo

︸ ︷︷ ︸

Px
ov

= PxSP−PSPx, (3.101)

where the equality of Px ′
oo from Px

ov and Px
vo is given by the hermiticity of Px ensured

by the symmetry of the LEQS. Since the perturbed density is cleaned by the form of the

LEQS, i.e. the subtraction is intrinsic to eq. 3.92, we can also skip the explicit reprojection

of Px in X (eq. 3.87).

Note that within an iterative scheme the numerical noise will increase – comparable to

an ”autocatalytic” process – which will not only affect the results but as well decrease the

sparsity of the matrices crucial for the efficient application of sparse algebra routines. See

chapter 4 for a more detailed analysis and implementational details.

Applying sparse-matrix algebra we have observed a distinct decrease in the sparsity

of the perturbed densitiesc) resulting from the truncation of the matrices at small values.

This originates from the transformation of the residual matrix R from the co- to the

contravariant basis within the conjugate gradient routine in order to be consistent with

tensor theory (e.g. Ref. [90])

∆P = S−1RS−1. (3.102)

Since this transformation is essential for the convergence of the linear equation solver, we

have to reduce the number of multiplications with the inverse metric which is less sparse

than any other matrix in eq. 3.98. A first step is to reformulate the transformation as a

combination of transformation and projection onto the ov-vo subspace

Px = PRS−1 + S−1RP. (3.103)

c)The effect does not occur when using minimal basis sets that have been used in other publications,

e.g. Ref. [15].
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As we have observed from a projection of the intermediate Px matrices onto the vv-

subspace, the numerical noise produced from the application of the inverse metric enters

mainly Px
vv. Using formula 3.103, the decrease is significantly smaller since we implicitly

project onto the ov-vo-subspace and so delete the vv-part.

In section 4.3 it is shown that multiplies with the inverse metric S−1 exhibit the largest

error in combination with sparse algebra routines. This results from the large condition

number of S−1, i.e. large absolute values of the elements in S−1 compared to the other

matrices. Challacombe [14] proposed to circumvent the explicit application of the inverse by

multiplications with the inverse Cholesky factor that exhibits a smaller condition number

and a more sparse structure. In this work the explicit use of S−1 is minimized with the

intermediate

F̃ = S−1F (3.104)

that is built only once. Additionally the whole equation is transformed into the contravari-

ant basis:

F̃PxSP + PSPxF̃† −PFPx −PxFP

+S−1G (Px)P + PG (Px)S−1 − 2PG (Px)P

= F̃PSxS−1 + S−1SxPF̃† − F̃PSxP−PSxPF̃†

−S−1YP−PYS−1 + 2PYP. (3.105)

At a first glance the use of this equation seems to involve a larger number of operations

with the inverse metric S−1 compared to eq. 3.98. If we consider the implementation of

the D-CPSCF algorithm described in section 3.6.3.1, we see that the RHS is only built

once and the last three terms of the LHS are only formed at Level-2. The first four terms

are iterated within a conjugate gradient algorithm where the effect of avoiding S−1 in eq.

3.103 and the substitution with F̃ is most important.

This equation combined with the use of an extrapolated initial residual matrix for the

conjugate gradient routine is found to be most efficient to prevent a decrease of sparsity

in the occurring quantities.
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3.6.1.4 Comparison with Other CPSCF Algorithms

To derive the conventional approach of Frisch et al. [92] we have to project out the occ/virt

part of eq. 3.98, change signs and switch to an orthonormal basis (S = 1)

FPx
ov −Px

ovF + Gov(P
x
ov + Px

vo) = F(x)
ov −Gov(S

x
oo)− FSx

ov. (3.106)

In the original approach these equations are solved within the MO basis. As our test calcu-

lations have shown, the calculations performed in the AO basis exhibit a poor convergence

behavior. The reason is that the constraints on the perturbed density Px are not consid-

ered by the LEQS in eq. 3.106. Therefore, the construction of Px from the first order MO

coefficients becomes necessary which directly ensures the proper subspace projections of

Px.

Another algorithm for the determination of the linear response totally within the AO

basis has been proposed later by Larsen et al. [91]. Their formalism is based on an exponen-

tial parametrization of the one-electron density matrix [12, 13, 93] utilizing the asymmetric

Baker-Campbell-Hausdorff expansion

P(∆) = e−∆SPeS∆

= P + [P,∆]S +
1

2
[[P,∆]S ,P]S + ... , (3.107)

with the S commutator [A,B]S = ASB−BSA and an anti-Hermitian matrix ∆ that

only implies non-redundant orbital rotations, i.e. only contains occ/virt and virt/occ parts

∆ = ∆ov + ∆vo. (3.108)

It has to be mentioned that this approach leads to the efficient ”curvy-steps” method to

minimize the ground-state density matrix P [12, 13]. This approach shows an improved

convergence behavior within a density matrix-based SCF algorithm if a less accurate guess

to the ground-state density matrix P is provided. For a CPSCF calculation, however,

only a small deviation Px is assumed, thus the exponential parametrization in eq. 3.107 is

actually redundant.

The resulting linear response equations of Larsen et al. [91] are

G([P,∆x]S)PS + F [P,∆x]S S− SPG([P,∆x]S)− S [P,∆x]S F

= SPF(x) − F(x)PS− SPSxPF + FPSxPS + SxPF− FPSx

−SPG (PSxP) + G (PSxP)PS. (3.109)
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Identifying ∆x with Px
ov −Px

vo we can switch to our usual notation

FPx
ovS + FPx

voS− SPx
ovF− SPx

voF + G(Px
ov + Px

vo)PS− SPG(Px
ov + Px

vo)

= SPF(x) − F(x)PS− SPSxPF + FPSxPS + SxPF− FPSx

+G (PSxP)PS− SPG (PSxP) . (3.110)

A comparison with the derivation of our D-CPSCF equations (eq. 3.98) shows that the

latter equation would be obtained by addition of eq. 3.95 and eq. 3.96 instead of the

subtraction which we use. From the previous discussion it is obvious that the performance

of this LEQS in combination with sparse algebra routines is hampered by the accumulation

of numerical noise in the occ/occ and virt/virt parts of Px. Thus an efficient treatment

with sparse algebra routines is less efficient as our test calculations have shown.

3.6.2 Nuclear Magnetic Shielding Tensor

Modern high-field Fourier transform nuclear magnetic resonance spectroscopy (NMR) is a

powerful technique to explore many different types of problems in chemistry and biochem-

istry. Since there is no simple and direct relationship between the measured NMR signals

and structural properties of the adjacent environment, the necessity for a reliable method

to predict NMR chemical shifts for large systems arises.

In this section the fundamental equations [94, 95] for the ab initio treatment of NMR

chemical shielding tensors are presented. The basic physical effect in NMR spectroscopy is

the induction of an electronic current caused by the external magnetic field which results

in an additional, induced field. The effective magnetic field Beff that is experienced by the

nuclei is the sum of the external (B) and the induced (Bind) field.

Beff = B + Bind, Bind = −σB. (3.111)

The proportionality constant between the external and the induced B-field is the magnetic

shielding tensord). The difference of the nuclear spin energy levels is

∆E = −mj (1− σ)B. (3.112)

As the shielding tensor σ appears in a term bilinear in the external field B and the

nuclear magnetic spin moment mj of nucleus j, σ is a second order property relative to

d)the induced field is not necessarily parallel to the external field.
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the perturbations B and mj. If we treat the external magnetic field and the field induced

by the nuclear magnetic moments as weak perturbations, we can expand the energy in a

Taylor series around the unperturbed state

E (B,m) = E(0, 0) +
dE

dB

∣
∣
∣
∣
B=0

B +
dE

dm

∣
∣
∣
∣
m=0

m +
d2E

dB2

∣
∣
∣
∣
B=0

B2

+
d2E

dm2

∣
∣
∣
∣
m=0

m2 +
d2E

dBdm

∣
∣
∣
∣
B,m=0

Bm + ... . (3.113)

From Eq. 3.113 we can identify the last term in the Taylor expansion as the magnetic

shielding tensor, i.e. it is calculated as second derivative of the electronic energy:

σ =

(
d2E

dB dmj

)

B,mj=0

. (3.114)

Starting from the expression for the energy functional

E = Tr

(

Ph +
1

2
PG [P]

)

(3.115)

with G [P] = Π and h as the matrix representation of 1-electron operators and Π as the

4-index matrix of the antisymmetrized 2-electron integrals (Mulliken notation):

Gµν [P] =
∑

λσ

Pλσ

[

(φµφν |φλφσ)−
1

2
(φµφσ|φλφν)

]

. (3.116)

We use analytic techniques to evaluate the (3× 3) shielding tensor σ

σαβ,j =
∑

µν

Pµν
∂2hµν

∂Bα∂mβ,j
+
∑

µν

∂Pµν

∂Bα

∂hµν

∂mβ,j
with α, β = x, y, z. (3.117)

3.6.2.1 Molecular Hamiltonian in the Presence of an External Magnetic Field

— The Gauge-Origin Problem

In order to calculate the second derivatives we have to formulate the molecular Hamiltonian

in the presence of a magnetic field. The charges experience an additional Lorentz force,

i.e. a perturbation in the momenta occur, which is perpendicular to the magnetic field and

the kinetic energy vector of the electron. Thus the canonical momentum p is replaced by

the kinetic momentum pB according to the principle of minimal electromagnetic coupling

[96]:

pB = p + A, (3.118)
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where A is the vector potential (eq. 3.119) describing not only the magnetic field (Eq.

3.120) but also the potential associated with the nuclear magnetic moments (Eq. 3.121)

[96, 97].

A(r) = AB(r) +
∑

j

Aj(r), (3.119)

AB(r) =
1

2
B× (r−R0) , (3.120)

Aj(r) = α2mj × (r−Rj)

|r−Rj |3
. (3.121)

Here R0 is the gauge origin, Rj the position of nucleus j and α the fine structure constant.

Inserting eq. 3.118 into the Hamiltonian for a closed-shell system yields

Ĥ(B,m) =
1

2

∑

i

[

p̂+ Â
]2

−
∑

i,A

ZA

riA

+
1

2

∑

i6=j

1

rij

+
1

2

∑

A 6=B

ZAZB

RAB

. (3.122)

To solve the Schrödinger equation of a system in presence of a magnetic field we have to

find a wave function Ψ (B) to the Hamiltonian in eq. 3.122. Without an external magnetic

field the MO’s φi(B) are expanded as a linear combination of real atomic orbitals. However,

this approach leads to the gauge problem [79] if finite-size basis sets are used. While the

vector potential A is uniquely defined by the magnetic field

B = ∇×A, (3.123)

the opposite does not hold in eq. 3.120. One can add a gradient of an arbitrary scalar

function ∇f to A still obtaining the same result for B since the curl of the gradient

vanishes. This arbitrariness in the choice of the gauge-origin R0 in eq. 3.120 does not

affect the results obtained with wave functions represented in a complete basis [79, 98].

Apart from the need for a unique choice of the gauge origin the calculations also suffer

from a slow convergence of the NMR shielding constants with respect to the basis set size

(see figures in Ref. [79]).

Thus – according to London [99, 100] – a basis of gauge including atomic orbitals

(GIAO) can be chosen:

χµ(B) = χµ(0) exp

(

− i
2
B× (Rµ −R0) · r

)

= χµ(0)fµ. (3.124)

60



CHAPTER 3. LINEAR SCALING DENSITY MATRIX-BASED METHODS FOR

STATIC AND DYNAMIC PROPERTIES

The exponential gauge prefactor contains the field dependency of the basis function, i.e.

it describes the B-field at the origin Rµ of the function χµ. Because of its efficiency

and reliability, this approach is nowadays the standard choice in most ab initio programs

[79, 98, 101–103]. The wave function is built as a single determinant of the occupied MO’s:

Ψ (B) = |φ1(B), φ2(B), ..., φN(B)〉 . (3.125)

The energy E
(
B,mj

)
associated with Ψ

(
B,mj

)
is

E
(
B,mj

)
=

∑

µν

Pµν

(
B,mj

)
[

hµν

(
B,mj

)
+

1

2
Gµν

(
B,mj

)
]

, (3.126)

with

hµν

(
B,mj

)
= 〈φµ(B)|p2

B −
∑

A

ZA

rA
|φν(B)〉 (3.127)

Gµν

(
B,mj

)
= II(B,m)P(B,m)

= (φµ(B)φν(B) ||φλ(B)φσ(B))Pλσ(B,mj). (3.128)

3.6.2.2 Explicit Expressions for the Different Terms in the Perturbative

Expansion

In order to obtain explicit expressions for the terms in eq. 3.117 we have to calculate the

derivatives of the corresponding matrix elements. Since the GIAOs introduce a B-field

dependence into the basis functions, the one-electron integral derivatives can be split by

the product rule into the matrix representation of the derivative of the operator Ô and

terms resulting from the derivation of the product of gauge factors

∂

∂Bi
〈χµ(B)|Ô|χν(B)〉 = 〈 ∂

∂Bi
χµ(B)|Ô|χν(B)〉+ 〈χµ(B)| ∂

∂Bi
Ô|χν(B)〉

+ 〈χµ(B)|Ô| ∂
∂Bi

χν(B)〉

= 〈χµ(0)| ∂
∂Bi

Ô|χν(0)〉+ 1

2
〈(Rµν × r

′
µ)iχµ(0)|Ô|χν(0)〉

+
1

2
(Rµ ×Rν)〈χµ(0)|Ô|χν(0)〉, (3.129)

with Rµν = Rµ − Rν . The variable r′ has a similar meaning as in the formulation of

one-electron expectation values in terms of the 1-particle reduced density matrix in a
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continuous basis, i.e. the operator Ô does not act on r′ which will be substituted by r

before integration. Developing the Hamiltonian in eq. 3.122 in a Taylor series yields

Ĥαβ = Ĥ(0) + ĥ(1,0)
α

∣
∣
∣
Bα=0

Bα +
∑

j

ĥ
(0,1)
β,j

∣
∣
∣
mβ,j=0

mβ,j

+
∑

j

ĥ
(1,1)
αβ,j

∣
∣
∣
Bα,mβ,j=0

Bαmβ,j + ... , (3.130)

with α, β = x, y, z and the following one-electron operators

ĥ(1,0)
α =

∂ĥ

∂Bα

= − i
2

[(r−R0)× p]α , (3.131)

ĥ
(0,1)
β,j =

∂ĥ

∂mβ,j
= −iα2

[(r−Rj)× p]β

|r−Rj |3
, (3.132)

ĥ
(1,1)
αβ,j =

∂2ĥ

∂Bα∂mβ,j
=
α2

2

(r−R0)(r−Rj)δαβ − (r−R0)α(r−Rj)β

|r−Rj|3
, (3.133)

which we need to form the derivativese) in eq. 3.117 and the RHS of the CPSCF-equations

(see section 3.6.1). Eq. 3.131 and 3.132 are the paramagnetic interaction operators which

couple the external B-field (orbital angular momentum operator) and the nuclear magnetic

moments (spin-orbit interaction operator) to the motion of the electrons, respectively. The

mixed derivative second order term 3.133 is the diamagnetic interaction operator. For a

general discussion of the operators and matrix elements given above and their physical

interpretation see e.g. Ref. [102].

Inserting these expansions into Eq. 3.126 and ordering with respect to B and mj yields

the equations for determining the different derivatives of E
(
B,mj

)
. Thus differentiating

eq. 3.126 with respect to mβ,j gives

E
(0,1)
β,j =

∑

µν

P
(0,1)
µν,β,j

[

h(0)
µν +

1

2
G(0)

µν

]

+ P (0)
µν

[

h
(0,1)
µν,β,j +

1

2
G

(0,1)
µν,β,j

]

=
∑

µν

P (0)
µν h

(0,1)
µν,β,j , (3.134)

where we used the derivative of the orthogonality relation and the fact, that the basis

functions do not depend on the nuclear magnetic moments. The derivative with respect

to the magnetic nuclear moments leads to

∂hµν

∂mβ,j
= h

(0,1)
µν,β,j = −iα2〈χµ(0)|

[rj ×∇]β
r3
j

|χν(0)〉, (3.135)

e)The shorthand notation for the derivatives in Eqs. 3.130-3.133 will be used throughout this section.
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with rj = r−Rj.

The second order term in eq. 3.117 is the sum of the expectation value of operator 3.133

and the derivative of Eq. 3.135 with respect to the external magnetic field B:

d

dBα
h

(0,1)
µν,β,j =

α2

2
〈(Rµν × r′)α χµ(0)|

[rj ×∇]β
r3
j

|χν(0)〉. (3.136)

We obtain:

h
(1,1)
µν,αβ,j =

α2

2
〈χµ(0)|(r−R0)(r−Rj)δαβ − (r−R0)α(r−Rj)β

r3
j

|χν(0)〉

+
α2

2
〈(Rµν × r′)α χµ(0)|

[rj ×∇]β
r3
j

|χν(0)〉. (3.137)

To build the RHS of the CPSCF-equations we also have to know the expressions for the

magnetic field derivatives, where we have to consider the explicit field dependence of the

basis functions:

h(1,0)
µν,α = − i

2

[

〈χµ(0) |[r×∇]α|χν(0)〉+ 〈(Rµν × r′)α χµ(0)
∣
∣∇

2
∣
∣χν(0)〉

+
∑

A

〈(Rµν × r′)α χµ(0)
∣
∣ZAr

−1
A

∣
∣χν(0)〉

]

. (3.138)

The derivatives of the 2-electron integrals are

G(1,0)
µν,α =

∑

λσ

P
(1,0)
λσ,α

[

(χµ(0)χν(0) ||χλ(0)χσ(0))
]

+
i

2

∑

λσ

Pλσ

[ (
(Rµν × r′1)α χµ(0)χν(0) || (Rλσ × r′2)α χλ(0)χσ(0)

) ]

. (3.139)

3.6.2.3 GIAO Kohn-Sham DFT

For GIAO-KS-DFT we will only discuss the well-established LSDA, GGA and Hybrid XC

functionals and exclude current-dependent functionals. Using KS-DFT we have to consider

the perturbation on GDFT (P) because of the B-field dependence of the basis functions.

Since the non-hybrid XC functionals are local in the density (i.e. in contrast to the non-

local HF exchange) the terms GDFT (Px) vanish while hybrid functionals still contain some

”exact” exchange. Thus the only contribution to the two-electron terms is due to the

GIAOs in Gx
DFT (P), which is for LSDA functionals

∂

∂Bx
〈χµ(B)|∂Exc

∂ρ
|χν(B)〉 =

i

2

∫
∂Exc

∂ρ(r)
(RAB × r)x [χµ(r)χν(r)] dr. (3.140)
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For GGA functionals we obtain

∂

∂Bx

〈χµ(B)|∂Exc

∂ρ
|χν(B)〉 =

i

2

∫
∂Exc

∂ρ(r)
(RAB × r)x [χµ(r)χν(r)] dr (3.141)

+
i

2

∫
∂Exc

∂|∇ρ(r)|
∇ρ
|∇ρ|(RAB × r)x [∇χµ(r)χν(r)] dr

+
i

2

∫
∂Exc

∂|∇ρ(r)|

(

RAB ×
∇ρ
|∇ρ|

)

x

[χµ(r)χν(r)] dr.

As it is easily seen, the B-field derivatives only need slight modifications in the numerical

integration routines of an existing KS-DFT code.

3.6.3 Implementational Details

Here only the implementation of perturbed integrals and the linear equation solver are

briefly discussed, for informations on the sparse algebra routines see the following chapter.

3.6.3.1 Linear Equation Solver

We solve eq. 3.98 and eq. 3.105 within two steps (Level-1 and -2) by splitting the LHS of

our linear equation system into two parts A1 and A2 which is shown for eq. 3.98:

Ax = (A1 + A2)x = b, (3.142)

with

A1x = FPxSPS− FPSPxS + SPSPxF− SPxSPF,

A2x = G[Px]PS + SPG[Px]− 2SPG[Px]PS. (3.143)

At Level-1 we solve the equation

A1x = b−A2x,

=⇒ A1x = b̃, (3.144)

with a conjugate gradient routine for a positive definite matrix A. See also the scheme in

Fig. B.5. The extension to a biconjugate gradient routine for non-positive definite matrices

improves the convergence behavior only slightly, but it also requires a second formation

of A1x and so doubles the number of the dominating multiplications in each iteration.
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Therefore, the simple conjugate gradient algorithm was chosen as standard method in our

current implementation.

At Level-2 we solve the complete equation where the convergence is accelerated by a

modified Pulay’s DIIS method [104] using the residual b−Ax as error vector. Apart from

the extrapolation of Px and A2x, the corresponding residual b−A1x is also extrapolated.

Thus the computation of the LHS with the complete perturbed density matrix Px is avoided

in the determination of the error b−Ax.

Using the contravariant LEQS (eq. 3.105) we can avoid the transformation in eq. 3.103

at each Level-1 step. Instead, we have to consider multiplications with the sparse metric

S in order to determine the step length of the conjugate gradient step (see e.g. Ref. [105]).

Furthermore, a reprojection onto the occ/virt and virt/occ subspaces is unnecessary since

it is implied in the structure of our LEQS.

3.6.3.2 Integral Engines

All integral routines are based on an Obara-Saika scheme [106] combined – if possible –

with the horizontal recursion of Head-Gordon and Pople [107].

The angular momentum integrals in eq. 3.131 are computed as a linear combination of

overlap integrals, the derivatives of the kinetic, nuclear-attraction in eq. 3.138 and electron-

electron repulsion integrals in eq. 3.139 only require an additional computation of the ex-

pectation values with the angular momentum quantum number raised by 1. The electric

field integrals necessary for forming the matrix of operator in eq. 3.133 and the spin-orbit

interaction integrals as well as their B-field derivatives can also be easily implemented.

Since the corresponding operators can be formulated as derivatives of the Coulomb oper-

ator, one only has to modify the already existing nuclear-attraction routines.

To achieve a linear scaling behavior we need to adapt CFMM [1] and LinK [8] to the

perturbed Coulomb and exchange matrix, respectively. As mentioned before, the CFMM

scheme is based on a separation of the interacting electron field into a near-field (NF)

and a far-field part (FF). While the NF-interaction is treated within a standard integral

engine the FF is described by a multipole field. If a standard routine to calculate the

unperturbed Coulomb matrix is implemented, only the far field has to be modified. From

the skew-symmetry of the prefactor matrix in eq. 3.139 it is obvious, that the terms in the

summation over the perturbed ket-side cancel each other, so we only have to consider the
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perturbation on the bra-side:

Jx
µν(P) =

∑

λσ

Pλσ

[ (
(Rµν × r′1)x χµ(0)χν(0)

∣
∣r−1

12

∣
∣ (Rλσ × r′2)x χλ(0)χσ0)

) ]

=
∑

λσ

Pλσ

[ (
(Rµν × r′1)x χµ(0)χν(0)

∣
∣r−1

12

∣
∣χλ(0)χσ0)

) ]

. (3.145)

For similar reasons, i.e. the skew-symmetry of the perturbed density Px, the Coulomb-type

contractions with the two-electron integrals vanish:

Jµν(P
x) =

∑

λσ

P x
λσ(χµ(0)χν(0)|χλ(0)χσ(0)) = 0. (3.146)

The perturbed exchange matrices Kx(P) scale naturally linear with system size for a system

with a non-vanishing band gap because of the coupling of the electron distributions χµχν

and χλχσ by the elements of the density matrix P. This is hampered by the quadratical

scaling of traditional screening routines, a disadvantage that is overcome by the LinK

method [8, 9]. Since the screening focuses mainly on the density matrix, a small number

of modifications is needed to form the B-field derivatives of the exchange matrix:

Kx
µν(P) =

i

2

∑

νσ

Pνσ

×
(
(Rµν × r′1)x χµχν | (Rλσ × r′2)x χλχσ

)
, (3.147)

Kµν(P
x) =

∑

νσ

P x
νσ(χµχν |χλχσ). (3.148)

While the exchange-like contraction of the ground-state density P with the perturbed

integrals within a LinK algorithm is straightforward (eq. 3.147), the exchange matrices built

from the perturbed densities Px are required for each Level-2 cycle (eq. 3.148). Here at

most three matrices have to be constructed, so that – instead of creating only one minilist

in the screening process – we form three lists corresponding to the different perturbed

densities and merge them to yield a complete list of significant shell pairs to be calculated.

In the final step we again use the single minilists to ensure a linear scaling behavior for the

contraction with the different Px matrices.

3.6.4 Applications of D-GIAO-CPSCF

As a first example, the scaling behavior of our new D-GIAO-HF method is shown for a

series of linear alkanes using a 6-31G* basis (Fig. B.3). For all computations the same
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integral thresholds (> 10−6) and convergence criteria (||RHS−LHS|| < 10−3) are chosen

which provide numerical accuracies better than 0.1 ppm for proton chemical shifts.

In Fig. B.3 in the appendix one can see that the application of the CFMM and LinK

(triangles) clearly improves the performance compared to the standard O(M3) algorithm

(cubes) by a factor of approx. 2.3 for C160H322. The linear scaling behavior of the integral

routines hides the cubic scaling of the algebra routines until approx. 1150 basis functions,

then the O(M3) matrix multiplications start to become significant. If sparse matrix algebra

routines (circles) are applied an overall O(M) scaling behavior is reached and an overall

enhancement factor of approx. 3.9 for C160H322 compared to the standard routines.

The performance of the D-GIAO-KS-DFT algorithm is shown in Fig. B.4 in the ap-

pendix for the computation of a series of amylose chains. It has to be mentioned that

for XC functionals without exact exchange, the MO-based schemes only require a sin-

gle construction of Ux according to eq. 3.64 since G (Px) vanishes. Using the present

D-CPSCF algorithm (eq. 3.98) in contrast, we have to solve the LEQS at Level-1 once

(A1x = b−A2x, see sec. 3.6.3.1). While using a tight convergence criterion, we obtain a

similar picture as in the case of D-GIAO-HF for linear alkanes, i.e. an overall linear scal-

ing is obtained by application of O(M) integral contractions in combination with sparse

algebra routines.

With this favorable scaling behavior the calculation of system sizes in the 1000 atoms

region becomes possible. As a proof of principle the application to solid- and solution-

state problems is presented. It has been shown in several examples, e.g. Refs. [16–19] that

the reliable assignment of experimental NMR spectra for solid-state systems has become

possible by quantum chemical calculations. In such examples it is crucial to converge the

theoretically determined NMR chemical shifts with the size of the solid-state fragment.

However, because of the cubically increasing effort in computational time of standard

GIAO-HF or GIAO-DFT methods, such calculations have been restricted to the 100 atom

region. Therefore, one had to resort to small basis sets and incremental approaches for

treating larger compounds.

With this method Ochsenfeld et al. [16] investigated a host-guest complex (Fig. 3.1)

with a tweezer-shaped host that binds a tetracyano-p-quinodimethane (TCNQ). The 1H-

NMR chemical shifts for the central monomer in Fig. 3.1 have been estimated from trimer

values (1, 2, 3 and 1, 4, 5, each containing 276 atoms). Therefore, the influences of the

complexes 2, 3 as well as 4, 5 on the central complex 1 have been determined from trimer
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Figure 3.1: Pentamer of host-guest complex.

calculations with GIAO-HF/3-21G (∆δ(3-21G)) and were then added to the corresponding

monomer data (δ(3-21G)). The error of this incremental approach compared to a pentamer

calculation with D-GIAO-HF/3-21G was determined to be in the order of 0.3 ppm, showing

that the incremental approach yields proper results. Nevertheless, the 3-21G basis is too

small to provide reliable results. Comparing the incremental results (∆δ(3-21G) + δ(3-

21G)) with those of a pentamer calculation using D-GIAO-HF/6-31G*, the error is in the

order of 0.8 ppm. This error can be slightly lowered to 0.7 ppm by considering the influences

on the monomer shifts in an incremental fashion starting from a monomer calculation

with a 6-31G* basis and trimer calculations with a 3-21G basis. With this incremental

approach the mean error is reduced from 0.5 to 0.2 ppm. Nevertheless, the calculation of

larger fragments with reasonable basis sets, which becomes possible by the newly developed

linear scaling NMR method, is certainly the most rigorous way and improves the accuracy

considerably.

As a second example we converged the NMR chemical shifts of a host-guest complex

in water with respect to the size of the surrounding hydration shell. The system of in-
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Figure 3.2: Snapshot of molecular dynamics simulation of N -methyl nicotinamide in

water.

terest is an artifical receptor for NAD+ (nicotinamide adenine dinucleotide) which has

been presented by Klärner and Schrader [20]. The structure of this complex could not

be revealed by experimental informations only, thus an additional investigation with the-

oretical methods has been employed in order to determine possible binding motifs. Since

the experimental spectra have been measured in water, we will only focus on the effect of

the hydration shell on the chemical shielding constants of the guest molecule. In order to

elucidate the effect of the hydration shell, a molecular dynamics (MD) simulation (Force

field: MMFF94, T = 300 K, 1 ps equilibration, total simulation time: 20 ps with ∆t = 1 fs)

of N -methyl nicotinamide bound to the host molecule (Fig. 3.2) has been performed. From

the different configurations the snapshot has been selected, for which the water molecules

are closest to the center of the ring of the guest molecule within a radius of 8 Å. From this

single snapshot spherical water shells with different radii have been cut out. For the differ-

ent fragments D-GIAO-HF/6-31G** calculations have been performed where the largest

system contained 1003 atoms. As can be seen from Tab. 3.2 the NMR shifts of the atoms

of the host-guest complex are converged to 0.2 ppm with respect of the radius of the hy-
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Table 3.2: Max. change of NMR shifts of the host-guest system with increasing hydration

shell.

Change in System Size (No. Atoms) Max. Change [ppm]

88 → 169 1.3

169 → 547 1.1

547 → 1003 0.2

dration shell. It has to be stressed that this is only a proof of principle that calculations of

large systems is possible with our new linear scaling method. For an accurate investigation

of the solvent effects of course multiple snapshots of a MD simulation would need to be

considered. However, this is not feasible on todays workstations and here we were mainly

interested in estimating a maximum effect and the size of the required hydration shell.
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3.7 Linear Scaling Methods for Second and Third

Order Properties: First and Second Order

Density Matrix-based TDSCF

In this section we will discuss the calculation of the linear and quadratic response to an

oscillating external electric field. Since the corresponding properties are characterized by

electronic transitions between different states, the derivative scheme for a definite state, as

presented above for the calculation of NMR spectra, is not applicable.

In the following we will present a time-dependent theory defined in terms of the 1-

particle reduced density, which is both straightforward and overcomes some of the obstacles

of standard MO-based methods [84, 86].

3.7.1 Linear Response Equations for a Dynamic Perturbation

The first derivative of the time-dependence of the density in eq. 2.45 with respect to the

electric field strength Ex is given by

FxPS + FPxS− SPxF− SPFx = iSṖxS

= κωSPxS. (3.149)

In the second line the time derivative of the exponential factor has been applied where κ

equals zero in the static case, and +1 and −1 for the terms e−iωt and e+iωt, respectively

(see the last column in Tab. 3.1 (p. 40) for the corresponding values).

In order to obtain the D-TDSCF equations one has to impose the constraints for Px

that are given in sec. 3.4. This is done in the same fashion as shown for the static response

equations, i.e. by the difference between the half-projected equations of eq. 3.149:

(
LEQSeq. 3.149

)
PS− SP

(
LEQSeq. 3.149

)
. (3.150)

With the explicit expressions

SPFxPS + SPFPxS− SPSPxF− SPFx = κωSPSPxS, (3.151)

FxPS + FPxSPS− SPxFPS− SPFxPS = κωSPxSPS, (3.152)
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one can set up an effective LEQS for Px:

FPxSPS− FPSPxS + SPSPxF− SPxSPF + G (Px)PS + SPG (Px)

−2SPG (Px)PS− κω (SPxSPS− SPSPxS)

= −F(x)PS− SPF(x) + 2SPF(x)PS, (3.153)

with the matrix representation of the dipole moment operator µx

F (x)
µν = µx

µν . (3.154)

Note that we already sorted the LEQS by shifting all terms containing Px to the LHS.

As in the static case, the constraints on Px are imposed only by the projection properties

of the ground-state density. Thus one solves iteratively only for the occ/virt and virt/occ

part of Px while the occ/occ part Px
oo is given as initial guess and the virt/virt part Px

vv

vanishes. Furthermore a comparison with the LEQS for the calculation of static 2nd order

properties in eq. 3.98 shows the equality for the zero-frequency limit (if Sx = 0).

Note that the antisymmetry of Px as expected for (ω 6= 0) is ensured by the last term

κω (SPxSPS− SPSPxS) on the LHS of eq. 3.153. If the initial transition density is given

as the symmetric, contravariant RHS of eq. 3.153, the last term of the LHS would be

skew-symmetric and therefore an antisymmetric LHS would results. In the limit (ω → 0)

we have a symmetric Px as expected for the static case.

One advantage of the density-matrix approach is already evident: We do not have to

consider special algorithms for the calculation of polarizabilities at ω close to the orbital

differences ∆ǫai = ǫa − ǫi of the unperturbed Hamiltonian. In standard implementations

Px or Ux, respectively, are updated by the spectral formula in eq. 3.52 where the single

transition dyadics are weighted by 1/ [ω −∆ǫai]. Thus we had to transform the system to

a non-canonical representation for ω ≈ ∆ǫ in order to avoid singularities if the standard

MO-based algorithm is used.

3.7.1.1 Linear Response of the Exchange-Correlation Functional

For TDDFT calculations we have to consider the response in the exchange-correlation (XC)

potential

vxc(r, t) =
∂Exc

∂ρ(r, t)
. (3.155)
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In a perturbative expansion of the XC functional an explicit time-dependence of the XC

kernel fxc in the first order term arisesf)

vx
xc(r, t) =

∫

fxc(r, r
′
, t)ρx(r

′
, t)dr

′

=

∫
∂2Exc

∂ρ(r)∂ρ(r′)
ρx(r

′
, t)dr

′
. (3.156)

Within the adiabatic approximation, which is used in this work, it is assumed that the time-

dependent XC functional depends on the time-dependent density in the same way as the

time-independent functional on the time-independent density does. This approximation

works well for slow, i.e. adiabatic, processes (e.g. Ref. [108]). As a consequence, the time-

dependency of fxc is neglected

vx
xc(r, t) =

∫

fxc(r, r
′
, 0)ρx(r

′
, t)dr

′
. (3.157)

Thus the D-TDDFT equations are obtained by replacing the two-electron term G (Px) in

eq. 3.153 by

G (Px) → GDFT (Px) = J (Px) + V(2)
xc (Px), (3.158)

where V
(2)
xc (Px) is the matrix representation of vx

xc(r, t) in the given basis. So far we

assumed the response to be causal, but it has to be noted that a contradiction between

the symmetry of the second order derivative of Exc and causality requirements arises [74].

It can be easily seen that the linear response is invariant to the interchange of the order of

differentiation

∂

∂ρ(r′ , t′)

∂Exc

∂ρ(r, t)
=

∂

∂ρ(r, t)

∂Exc

∂ρ(r′ , t′)
, (3.159)

but causality requires that the response is zero for t < t
′
. This problem can be resolved by

a formulation within the Keldysh formalism [74].

3.7.1.2 Molecular Polarizability – Illustrative Examples

The scaling behavior of the first order D-TDSCF methods is shown for the example of static

polarizabilities of a series of linear alkanes at the TDDFT-BP86(VWN)/6-31G* [109–111]

level of theory in Fig. B.6. For all computations the same integral thresholds (> 10−7) and

f)See appendix A for an explicit expression.
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Table 3.3: Excitation energies and oscillator strengths for the first three excited singlet

states from a TDDFT calculation with BP86(VWN)/6-31G* of HCF3.

Frequency [a.u.]/[eV] Oscillator Strength f

0.3664 / 9.9713 0.0100

0.5593 / 15.2181 0.3009

1.0833 / 29.4769 0.0654

convergence criteria (||RHS − LHS|| < 10−4) are chosen. Note that the general routines

for the treatment of frequency-dependent polarizabilities are used, i.e. the symmetry of the

transition densities Px(ω = 0) have not been exploited. Because of the tight convergence

criterion, the number of iterations in the conjugate gradient algorithm is quite large, thus

the matrix multiplications clearly dominate the overall computational effort. Thus, as it is

shown in Fig. B.6, the application of the CFMM method to determine J(Px) (triangles) is

only a moderate improvement compared to theO(M2) integral routine (cubes). The further

application of sparse multiplications (circles) clearly reduces the overall computational time

and provides a linear scaling behavior.

As a second example the polarizability of the hydrogen fluoride molecule (bond length:

0.9254 Å, orientation: z-axis) for different frequencies up to 1.1 a.u. (29.93 eV) at the

BP86(VWN)/6-31G* level is presented. The plot for the different frequencies is depicted

in Fig. B.7. On the left of Fig. B.7 the data points for all calculated frequencies are shown.

The red areas denote the poles of the polarization propagator, i.e. the region close to one

of the excitation frequencies shown in Tab. 3.3. In order to be able to interprete the results

obtained for near-singular frequencies ω, the determination of excitation frequencies ωex

has to be considered. Within the random phase approximation (RPA) [43, 112] we have to

solve an eigenvalue equation

ΩU(+ωex
i ) = ωex

i U(+ωex
i ) (3.160)

with the excitation energies ωex
i as eigenvalues, Uex

i as the corresponding transition coeffi-

cients vectors, and Ω denotes the Hessian matrix. In order to describe forced oscillations

induced by an external field we have to solve

(Ω− ω1)U = H(S) (3.161)
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Table 3.4: Relative oscillator strengths of the three lowest excitations of HCF3 with

BP86(VWN)/6-31G*.

Rel. oscillator strengths Excitation Polarizability

f0.5593/f0.3664 30.09 29.35

f0.5593/f1.0833 4.60 6.30

where H(S) denotes the interaction between the molecular system and the external field.

To solve this LEQS we have to find the inverse (Ω− ω1)−1 (response matrix Π). In the

spectral representation this inverse is given as [43]

Π = (Ω− ω1)−1 =
∑

ωex
i >0

U(+ωex
i )U†(+ωex

i )

ωex
i − ω

+
U(−ωex

i )U†(−ωex
i )

ωex
i + ω

. (3.162)

Thus the natural frequencies ωex
i are given by the poles of the response matrix in eq. 3.162,

i.e. the amplitude of the forced oscillation diverges if ω coincides with ωex
i . Note that small

differences in the Hartree-Fock solution of the different program packages result in large

deviations in the polarizability tensor for ω ≈ ωex
i . The αxx (= αyy) component of the

polarizability tensor of hydrogen fluoride calculated at the HF/6-31G* level for the lowest

singlet transition frequency (ω = 0.4388 a.u.), for example, deviates strongly for different

ab initio packages:

Q-Chem (This work) −32667.84 a.u.

TURBOMOLE [113] −1699.62 a.u.

DALTON [114] −34439.71 a.u.

Note that those deviations do not represent an error in itself since the results at the poles

of the polarization propagator have to diverge. The results for smaller frequencies, i.e.

far from the singularity, are of course the same for all program packages. Apart from the

inaccuracies for ω close to an excitation frequency, the relations between the oscillator

strengths ffreq of the different excitations in Tab. 3.3 are crudely reproduced. Even if

these calculations for ω ≈ ωex
i provide less accurate results for the oszillator strengh ratios

compared to RPA calculations, they show the stability of our linear equation solver even

for near-singular systems (det |Ω− ω1| → 0).
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Table 3.5: Dynamic polarizabilities of PNA obtained with Q-Chem (this work) and

TURBOMOLE with TDHF/6-31G* and TDDFT-B3LYP/6-31G* in 10−25 esu.

Method Frequency [a.u.]/[eV] This work TURBOMOLE

TDHF 0.000/0.00 117.87 117.86

0.024/0.65 118.41 118.41

0.048/1.30 120.11 120.11

TDDFT 0.000/0.00 127.78 127.79

0.024/0.65 128.69 128.69

0.048/1.30 131.64 131.65

As mentioned before, one has to transform the unperturbed molecular orbitals to a

non-canonical representation in the MO-based scheme if the frequency ω coincides with

an orbital difference (ǫa − ǫi). This is not necessary for the present D-TDSCF method

since the transition densities are not obtained via a spectral formula like eq. 3.52. The

corresponding frequencies are colored red in the left picture of Fig. B.7.

In section 3.7.2.4 the results for the first order hyperpolarizabilities of para-nitroaniline

(PNA) are presented. These are calculated by Wigner’s (2n+1) rule based on first results

for +ω and −2ω. The frequency-dependent polarizabilities obtained with B3LYP/6-31G*

[115, 116] and HF/6-31G* are given in Tab. C.2 and Tab. C.3. In order to check the correct-

ness of these results they are compared to the polarizabilities obtained with TURBOMOLE

[113, 117] in Tab. 3.5.

3.7.2 Quadratic Response Equations for a Dynamic Perturbation

The second derivative of the commutator in eq. 3.149 is

FxyPS + FxPyS + FyPxS + FPxyS

−SPxyF− SPxFy − SPyFx − SPFxy

= iSṖxyS = κωSPxyS. (3.163)
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Following the same scheme as used for the linear response (eqs. 3.151-3.152) we obtain the

projections

SPFxyPS + SPFxPyS + SPFyPxS + FPSPxyS

−SPSPxyF− SPSPxFy − SPSPyFx − SPFxy

= κωSPSPxyS, (3.164)

FxyPS + FxPySPS + FyPxSPS + FPxySPS

−SPxySPF− SPxFyPS− SPyFxPS− SPFxyPS

= κωSPxySPS. (3.165)

The second order D-TDSCF equations are obtained by the difference (eq. 3.165-eq. 3.164)

FPxySPS− FPSPxyS + SPSPxyF− SPxySPF

+ G (Pxy)PS + SPG (Pxy)− 2SPG (Pxy)PS

− κω [SPxySPS− SPSPxyS]

= SPxFyPS + SPyFxPS− SPSPxFy − SPSPyFx

− FxPySPS− FyPxSPS + SPFxPyS + SPFyPxS, (3.166)

where we used G (Pxy) = Fxy (dipole approximation). All terms containing Pxy were trans-

fered to the LHS. As has been shown in sec. 3.4, Pxy
oo and Pxy

vv are completely determined

by the products of the first order transition densities, so these parts must be eliminated in

the Level-1 part of the LHS which can be easily proven by setting Pxy = PxSPy +PySPx.

Analogous to first order, eq. 3.166 reassembles the structure of PxySP+PSPxy (eq. 3.93).

A comparison between the linear and quadratic TDSCF equations shows that the same

routines for their solution can be used. Except for the RHS, only slight modifications of

the two-electron term G (Pxy) in case of TDDFT (see sec. 3.7.2.2) are required.

3.7.2.1 Initial Guess for the Second Order Transition Density

In the case of the second order density matrix it is necessary to mention the form of its

initial value Pxy
initial explicitly. From the second derivative of the idempotency relation in

eq. 3.30, one could be encouraged to use PxSPy + PySPx, but this would not work with
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the presented LEQS. To find a suitable Pxy
initial one can reconsider the resolution of Pxy into

its subspace projections:

Pxy = Pxy
oo + Pxy

ov + Pxy
vo + Pxy

vv. (3.167)

Note that we solve iteratively for Pxy
ov + Pxy

vo within a LEQS that is constructed as:

LEQS = (LEQSorig)PS− SP (LEQSorig)

= (LEQSorig)vo − (LEQSorig)ov , (3.168)

so that the intrinsic occ/occ parts of Pxy
ov and Pxy

vo cancel each other

Pxy
ov −Pxy

vo = PSPxy −PSPxySP−PxySP + PSPxySP

= PSPxy −PxySP, (3.169)

and thus we actually obtain PxySP + PSPxy. From

Pxy
ov = PxySP−PSPxySP = PxySP−Pxy

oo , (3.170)

Pxy
vo = PSPxy −PSPxySP = PSPxy −Pxy

oo , (3.171)

=⇒ Pxy = Pxy
vv + PSPxy + PxySP−Pxy

oo , (3.172)

one can see that we actually require −Pxy
oo instead of Pxy

oo . Thus we find as initial value

Pxy
initial = (PxSPy + PySPx)vv − (PxSPy + PySPx)oo (3.173)

= (PxSPSPy + PySPSPx)− (PSPxSPySP + PSPySPxSP)

= PxSPy + PySPx − 2PS (PxSPy + PySPx) . (3.174)

3.7.2.2 Quadratic Response of the Exchange-Correlation Functional

A further differentiation of eq. 3.156 yields the quadratic response of the XC functional

within the adiabatic approximation

vxy
xc (r, t) =

∫

fxc(r, r
′
)ρxy(r

′
, t)dr

′

+

∫ ∫

gxc(r, r
′
, r

′′
)ρx(r

′
, t)dρy(r

′′
, t)dr

′
dr

′′

=

∫
∂2Exc

∂ρ(r)∂ρ(r′)
ρxy(r

′
, t)dr

′

+

∫ ∫
∂3Exc

∂ρ(r)∂ρ(r′)ρ(r′′)
ρx(r

′
, t)ρy(r

′′
, t)dr

′
dr

′′
, (3.175)
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and the resulting two-electron term in eq. 3.166 becomes

G (Pxy) → GDFT (Pxy,Px,Py) = J (Pxy) + V(2)
xc (Pxy) + V(3)

xc (Px,Py), (3.176)

where V
(2)
xc (Pxy) denotes the matrix representation of the fxc(r, r

′
) part of vxy

xc (r, t) and

V
(3)
xc (Px,Py) the corresponding representation of the gxc(r, r

′
, r

′′
). Note that the third

order derivative of the XC energy is contracted with the first order transition densities

only, so we can build the terms V
(3)
xc (Px,Py) before the iterative procedure starts.

In contrast to the second order derivatives of the XC energy functional, which has been

implemented already in the context of TDDFT routines to determine excited states, the

routines for the third order derivatives had to be implemented. Apart from the general

routines, which are outlined in appendix A for LSDA and GGA functionals, the partial

derivatives for some selected XC functionals have been implemented (see the table in

appendix A).

3.7.2.3 Determination of Hyperpolarizabilities Exploiting Wigner’s (2n + 1)

Rule

Following the (2n+ 1) rule of Wigner we can express the (2n+ 1)th order property using

the nth order transition wavefunction or density, respectively. Corresponding formulas for

MO-based schemes are available and are routinely used in most ab initio packages [86]. In

this section we will derive analogous equations containing only matrix representations in

the AO basis for the example of second harmonic generation βxyz (∓2ω;±ω,±ω). Since we

will start from the MO-based result, we index AO and MO quantities.

As can be seen from eq. 3.60, there are two types of terms containing either first order

quantities represented in the MO basis. In order to derive an expression containing only

matrices in the AO basis for the first group, the first term of eq. 3.60 is chosen as example

T1 = Trocc

[

Ux(−2ω)Fy
MO(+ω)Uz(+ω)

]

= Tr
[

PMOUx(−2ω)C†Fy
AO(+ω)CUz(+ω)

]

, (3.177)

with PMO as diagonal matrix containing the occupation numbers of the single orbitals

(see definition in eq. 3.61). Because of the idempotency of PMO (= PMOPMO) and the

orthonormality of the MO coefficients we can insert C†SC and PMO

T1 = Tr
[

C†SCPMOUx(−2ω)C†Fy
AO(+ω)CUz(+ω)PMO

]

. (3.178)
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Since the trace is invariant to cyclic permutations we can partially reformulate this equation

in terms of the density

T1 = Tr
[

SCPMOUx(−2ω)C†Fy
AO(+ω)CUz(+ω)PMOC†

]

, (3.179)

where the diagonal matrix PMO is an intrinsic part of P (eq. 2.36). Reconsidering the

spectral definition of Px(±ω) in section 3.5, a multiplication of Px(±ω) with PS from the

left yields

PSPx(±ω) = CPMOC†SCx(±ω)PMOC† + CPMOC†SCPMOCx†(∓ω)

= CPMOC†SCUx(±ω)PMOC† −CPMOC†SCPMOUx(±ω)C†

= CPMOUx(±ω)PMOC† −CPMOUx(±ω)C†

= 0−CPMOUx(±ω)C†, (3.180)

where the first term vanishes because of the structure of Ux (pattern on the right of Fig.

3.3). Since PMO has only non-zero elements in the occ/occ block, the symmetric projection

of Ux vanishes

PMOUx(±ω)PMO = 0. (3.181)

Analogously, we obtain by multiplying Px from the right with SP

Px(±ω)SP = Cx(±ω)PMOC†SCPMOC† + SCPMOCx†(∓ω)SCPMOC†

= CUx(±ω)PMOC†SCPMOC† −CPMOUx(±ω)C†SCPMOC†

= CUx(±ω)PMOC† −CPMOUx(±ω)PMOC†

= CUx(±ω)PMOC† − 0. (3.182)

Inserting these expressions in eq. 3.179 one obtains a definition for T1 exclusively using

density matrices

T1 = −Tr
[

SPSPx(−2ω)Fy
AO(+ω)Pz(+ω)SP

]

= −
∑

µν

Sµν [PSPx(−2ω)Fy
AO(+ω)Pz(+ω)SP]µν

= −Dot [S,PSPx(−2ω)Fy
AO(+ω)Pz(+ω)SP] . (3.183)

For reformulating the second group of terms, we consider its first term as example:

T2 = Tr
[

PMOUx (∓2ω)Uz (±ω) ǫ
y (±ω)

]

. (3.184)
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Figure 3.3: Matrix Patterns. Pattern of ǫ
x (±ω) (middle) and Ux (±ω) (right). White

fields indicate zero entries.

occ−occ

virt−virt

occ−virt

virt−occ

First of all one has to analyze the expression for the first order energies (eq. 3.51)

ǫ
y (±ω) = Fy

MO (±ω) + ǫUy (±ω)−Uy (±ω) ǫ± ωUy (±ω) . (3.185)

By consideration of the patterns of the different matrices (Fig. 3.3) we will extract the

significant part of ǫ
x (±ω) in eq. 3.184. Since no non-Brillouin terms occur in a canonical

solution, the orbital-energy matrix ǫ has a diagonal structure. A multiplication of an

arbitrary matrix A and a diagonal matrix yields a matrix that has the same structure

as A. Thus the last two terms of eq. 3.185 can be analyzed by the product of three

transition coefficient matrices (UiUjUk) that all exhibit the pattern shown on the right of

Fig. 3.3. In Fig. 3.4 the two subsequent multiplications are plotted schematically. While

a first multiply yields an occ/occ-virt/virt pattern (upper scheme in Fig. 3.4), a further

multiplication with a further Ux matrix restores the original occ/virt-virt/occ structure.

Since all diagonal elements are zero the trace of such a matrix is also zero, thus we can

replace

ǫ
x (±ω) −→ Fx

MO (±ω) (3.186)

=⇒ T2 = Tr
[

PMOUx (∓2ω)Uz (±ω)Fy
MO(+ω)

]

(3.187)

in eq. 3.184. Since the product of two transition coefficient matrices is block-diagonal, we

can write

PMOUx (∓2ω)Uz (±ω) = PMOUx (∓2ω)Uz (±ω)PMO. (3.188)
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Figure 3.4: Multiplication of Matrix Patterns

Thus one can expand eq. 3.187 in a similar way as T1

T2 = Tr
[

PMOUx (∓2ω)Uz (±ω)PMOFy
MO(+ω)

]

= Tr
[

PMOUx (∓2ω)C†SCUz (±ω)PMOC†Fy
AO(+ω)C

]

= Tr
[

SCUz (±ω)PMOC†Fy
AO(+ω)CPMOUx (∓2ω)C†

]

. (3.189)

Using eq. 3.180 and eq. 3.182 one obtains

T2 = −Tr
[

SPx(−2ω)SPFz
AO(+ω)PSPy(+ω)

]

= −Dot
[

S,Px(−2ω)SPFz
AO(+ω)PSPy(+ω)

]

. (3.190)
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So the final expression of the elements of the second harmonic generation tensor is

βxyz (−2ω; +ω,+ω)

= −Dot [S,PSPx(−2ω)Fy
AO(+ω)Pz(+ω)SP]

− Dot [S,PSPz(+ω)Fy
AO(+ω)Px(−2ω)SP]

− Dot [S,PSPx(−2ω)Fz
AO(+ω)Py(+ω)SP]

− Dot [S,PSPy(+ω)Fz
AO(+ω)Px(−2ω)SP]

− Dot [S,PSPz(+ω)Fx
AO(−2ω)Py(+ω)SP]

− Dot [S,PSPy(+ω)Fx
AO(−2ω)Pz(+ω)SP]

+ Dot [S,Py(+ω)SPFx
AO(−2ω)PSPz(+ω)]

+ Dot [S,Pz(+ω)SPFx
AO(−2ω)PSPy(+ω)]

+ Dot [S,Px(−2ω)SPFy
AO(+ω)PSPz(+ω)]

+ Dot [S,Pz(+ω)SPFy
AO(+ω)PSPx(−2ω)]

+ Dot [S,Px(−2ω)SPFz
AO(+ω)PSPy(+ω)]

+ Dot [S,Py(+ω)SPFz
AO(+ω)PSPx(−2ω)] . (3.191)

For TDDFT calculations the XC kernel gxc, that contains the third order derivatives of

the XC energy functional, has to be considered [118] by adding the term

Dot
[
Px(−2ω),V(3)

xc (Py(+ω),Pz(+ω))
]
. (3.192)

Since the expression in eq. 3.191 and eq. 3.192 only contains linear scaling matrices (i.e.

the number of significant elements grows proportional with the system size), we can apply

sparse algebra routines to obtain the result in O(M) fashion.

Note that this approach has several advantages compared to a quadratic response cal-

culation. While the latter needs nine TDSCF calculations to obtain the quadratic response

– where the convergence of the second order TDSCF also clearly depends on the quality of

the first order result Px (±ω) – we only have to perform six first order TDSCF calculations

(for ±ω and ±2ω) within the Wigner approach.

3.7.2.4 First Molecular Hyperpolarizabilities – Illustrative Examples

The non-linear optical properties of a crystal depend on the different components (ions,

molecules) and the interaction between them. In contrast to inorganic materials, whose
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Figure 3.5: p-Nitroaniline

non-linear properties mainly originate from lattice vibrations because of the strong interac-

tions between the different components, the properties of weak-interacting organic crystals

mainly depend on the high mobility of the delocalized π-electrons. Since the effects in

organic materials are evidently faster than that of inorganic compounds, the interest in

organic materials for optical devices has increased in the last years. A first glance at the

efficiency of such devices like optical fibres, optical frequency converters, electro-optic mod-

ulators, thermo-optic switches etc. but also liquid crystals for TFT displays is given by

the polarizabilities and hyperpolarizabilities [26].

The scaling behavior of the calculation of the third order properties using Wigner’s (2n+

1) rule is shown for the example of a series of linear alkanes at the TDDFT-BP86(VWN)/6-

31G* [109–111] level of theory in Fig. B.8. Since the calculations are based on the first

order results given in section 3.7.1.2, only the timings for the formation of V
(3)
xc (Px,Py)

and the contractions in eq. 3.191 are given in Fig. B.8. In order to be consistent with

the first order calculations, a sparse algebra threshold of thrSA = 10−7 is used. Since the

formation of the third order derivatives of the XC energy functional scales perfectly linear

with system size, the O(M3) multiplications (cubes) to form eq. 3.191 clearly dominate the

overall computational time. The application of sparse multiplications (circles) shows an

O(M) scaling behavior that becomes superior to the standard multiplications at approx.

2400 basis functions.

As an example for the accuracy of the presented method the calculation of para-

nitroaniline (PNA, Fig. 3.5) at HF and KS-DFT level is presented. The calculation is
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Table 3.6: Second harmonic generation for PNA with B3LYP/6-31G* with different

frequencies ω. Average values β̄z using the B-convention [119] are given in 103 esu.

Freq. [eV] This Work (Wigner) Ref. [120] Ref [121] (Exp.)

0.650 6.78 6.50 9.60±0.5

1.170 10.11 9.50 16.9 ±0.4

1.361 12.96 12.00 25±1

1.494 16.25 14.84 40±3

done by exploiting Wigner’s (2n+ 1) rule based on the dynamic polarizabilities presented

in section 3.7.1.2. Because of the amino and nitro groups at the phenyl ring this sys-

tem exhibits a strong charge-transfer character and has become a standard test system

for theoretical and experimental methods [118–120]. In all calculations the structure with

C2v symmetry is used (data is given in Tab. C.1). It has been obtained from a geometry

optimization with B3LYP/6-31G* [115, 116]. Note that the B-convention [119] is used

β̄i = 1
3

∑

j

(βijj + βiji + βjji) . (3.193)

The different first hyperpolarizabilities are calculated at the TDHF and TDDFT/B3LYP

level with the 6-31G* basis set. The calculations were performed with a tight convergence

criterion and an integral threshold of 10−10. As numerical grid for the DFT quadrature a

Euler-McLaurin/Lebedev-Laikov (75,302) grid is chosen [122–124]. The data for different

frequencies ω in tables C.4 and C.5 show that the new density matrix-based scheme yields

the same results as the traditional MO-based method. Furthermore, it has to be mentioned

that the results obtained by a second order D-TDDFT calculation, i.e. without using

Wigner’s rule, are of course the same. The following comparison of the SHG value β̄z (in

103 esu) at different frequencies ω calculated with B3LYP/6-31G* shows that the results are

close to those given in Ref. [120]. The remaining deviations might be due to differences in

the structural parameters. In order to get a first estimate for those influences, we stretched

just one bond (between the amino group and the phenyl ring) by 0.01 Å. The modified

structure shows a change in β̄z(−2ω; +ω,+ω) by +0.08 · 103 esu (for ω = 0.650 eV). Thus

one can state that there is a strong influence on the elements of the hyperpolarizability

tensor and so the difference observed is expected to be due to the different structure
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compared to the work of Salek et al. [120]. In agreement with the work of van Gisbergen

et al. [118], we also found only a small impact of the term in eq. 3.192, which contains the

third order derivative of the XC energy functional, on β (max. 1.9%).

Additionally to the SHG the static hyperpolarizability and the electro-optical Pockel’s

effect with ω = 0.650 eV has been calculated. We found the same order in magnitudes on

HF and B3LYP level as in Ref. [119]

β̄z(0; 0, 0) > β̄z(0; +ω,−ω) > β̄z(−2ω; +ω,+ω),

HF: 3.80 > 3.91 > 4.15,

B3LYP: 5.81 > 6.11 > 6.78.

Note that the B-convention gives the same results for the optical rectification and the

electro-optical Pockel’s effect, i.e. β̄z(−ω; 0,+ω) = β̄z(0; +ω,−ω), where the two quantities

are related as follows [119]:

βxxz(0; +ω,−ω) = βzxx(−ω; 0,+ω),

βyyz(0; +ω,−ω) = βzyy(−ω; 0,+ω),

βzzz(0; +ω,−ω) = βzzz(−ω; 0,+ω).
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Chapter 4

Analysis of Sparse Algebra Routines

within the D-GIAO-HF Algorithm

We implemented a C++ class to handle N × N matrices in sparse format via the row

indexed sparse storage mode (RISSM) as described by Press et al. [105], which is a slight

modification of the compressed sparse row (CSR) scheme [125]. Here only the significant

values of the matrix relative to a given sparse algebra (SA) threshold thrSA are stored.

The crucial part of the presented density matrix-based methods is the matrix multi-

plication (C = A ·B) that clearly dominates the algebraic routines because of the O(M3)

scaling behavior. In this work several routines to perform these multiplications have been

implemented that are similar to the algorithm presented by Gustavson [125]. The basic

structure of these routines (scheme in Fig. B.14) as well as the different screening schemes

are described in section 4.1. Note that the presented exemplary applications of the previous

chapter are calculated with the unscreened multiplication algorithm (SMT-x (x=∞)).

In section 4.4 the performance of the sparse multiplication routines is compared with

an O(M3) routine of a standard linear algebra library. For small systems the O(M3)

multiplications of the Intel Math Kernel library (MKL) [126] are clearly faster than our

O(M) sparse routines because of the overhead (factor approx. 16-18 for the multiplications

in sec. 4.4) caused by the index controlled access of matrix elements, but with increasing

system size our sparse routines become superior to the O(M3) routine. The homologous

series of linear alkanes with (GIAO-HF/6-31G*) shows a crossover at approx. 1700 basis

functionsa).

a)See section 3.6.4
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As mentioned in section 3.6.1.3, the linear scaling behavior is hampered by the de-

crease of sparsity after the transformation of the residual matrix from the co- into the

contravariant basis. Other multiplications like P × S change the number of significant

elements compared to the use of O(M3) matrix multiplications only slightly. The reason

can be found in the truncation of matrices and maximal absolute values which are larger

for the inverse metric S−1 by at least an order of magnitude. These effects are investigated

in section 4.3. In order to minimize the number of multiplications with S−1 we use the

contravariant LEQS in eq. 3.105, where — in combination with the pre-built matrices FS−1

and PS — we only need four multiplications to build the LHS on Level-1.

4.1 Screening in Sparse Matrix Multiplications

As it has been mentioned, the sparse multiplication routines are similar to the algorithm

proposed by Gustavson [125]. Therefore the outer loop is over the rows of matrix A as it

is depicted in Fig. B.14. For the given row i of A the corresponding row i of the resulting

matrix C is built incrementally by multiplying each element Aij with all elements of row

j of matrix B. The routines provide basically the same structure and only differ in the

definition of the effective threshold threff used for the internal screening. The screening

procedure is similar to the pre-ordering in the LinK method [8], i.e. the rows of the matrix

on the right (matrix B) are sorted in decreasing order with a quicksort algorithm, so that

the innermost loop in Fig. B.14 is stopped, once the absolute value of the actual element

in the row of matrix B is smaller than the threshold threff . It has to be mentioned that

the quicksort routine scales with O(M2) in the worst case for a vector of length M [105],

but as long as just the rows of a linear scaling matrix are ordered – since it has an average,

constant number of significant elements per row – the sorting of a single row scales with

O(const2). In the following the routines are abbreviated with the prefix ”SMT-” (sparse

modified thresholding) and the endings A, B, C, D and x.

Prior to the discussion of the validity and performance of the presented SMT modifica-

tions, the rigorous screening within a typical O(M3) multiplication procedure is discussed,

i.e. row times column of N ×N matrices

Cij =

nprod≤N
∑

k

AikBkj, (4.1)
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where nprod is the number of products of significant elements |Aik|, |Bkj| ≥ thrSA. Splitting

the sum into products with absolute values larger than or equal to an effective threshold

threff = thrSA/nprod (sig) and products smaller than threff (unsig) yields

Cij =

nsig∑

k

AikBkj +

nunsig∑

k

AikBkj. (4.2)

By discarding the second sum

Cij ≈
nsig∑

k

AikBkj , (4.3)

the error in Cij remains smaller than thrSA since

nunsig ≤ nprod,
nunsig∑

k

AikBkj < nprod · threff = thrSA. (4.4)

Reconsidering the algorithm in Fig. B.14 one can see that this rigorous screening is not

feasibleb) since we would have to order the rows of matrix B with respect to two criteria.

First, the absolute value of the different products AikBkj, and second, the effective threshold

for the given element Cij. Intuitively, one may replace nprod with N to form the effective

threshold threff = thrSA/N still providing a valid lower bound. It is easily seen that this

approach is not size-consistent and also becomes ineffective with increasing N ( lim
N→∞

threff =

0 → SMT-x (x = ∞)). The schemes denoted as SMT-A, SMT-B and SMT-C all provide

valid lower bounds to threff by using different approximated values ñprod for nprod with

respect to the ith row Ai of A.

SMT-A: ñprod = ñAB1 = min(length(Ai),max(lengths of columns of significant

elements in actual row of B)) (4.5)

SMT-B: ñprod = ñAB2 = min(length(Ai),max(lengths of all columns of B)) (4.6)

SMT-C: ñprod = ñAB3 = min(length(Ai), average length of columns of B) (4.7)

SMT-D: ñprod = ñA = length(Ai) (4.8)

The overhead of the determination of ñprod but also the efficiency of the screening

process decreases from SMT-A to SMT-D as can be seen from the example of an amylose

b)Except for the case that we already know which values of the resulting matrix C are significant, but

this would still exhibit a sensible overhead.
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Table 4.1: CPU timings for 38 Level-1 iterations of an amylose chain containing 8 α-D-

glucose units with different sparse multiplication screening schemes. The sparsity refers to

a converged perturbed density matrix Px.

Screening CPU [min] MegaFlops (1st Level-1) Sparsity [%]

SMT-x (x=∞) 66.85 18191 14.5

SMT-A 70.65 15191∗ 14.5

SMT-B 70.96 15169 14.5

SMT-C 78.24 18075 14.4

SMT-D 77.11 18213 14.5

∗15166 MegaFlops if same overhead as SMT-B.

chain containing 8 a-D-glucose units depicted in Fig. B.12, the CPU timings for the sum

of all 38 Level-1 iterations can be seen from Tab. 4.1. We see that the SMT-A screening is

the most effective, but the crossover with the unscreened routine has not taken place for

this size of system. The contradiction between the times and flop-counts of SMT-A and

SMT-B in Tab. 4.1 and Fig. B.12 results from the larger overhead of SMT-A. While less

AikBkj multiplies (smaller contraction length in innermost loop) are needed, the SMT-A

screening requires a further multiplication (see remark in Tab. 4.1).

Since the crossover depends on the system as well as the chosen basis set we used

unscreened multiplications in the calculations of the illustrative examples in section 3.6.4.

However, the intrinsic compression of the resulting matrix could also be understood as a

succeeding screening procedure.

Note that the presented SMT-x modification is not meant as real alternative to the

other algorithms, it should only show the huge deteriorating impact on the results if invalid

screening schemes are used (see section 4.2).

4.2 Behavior and Stability of Sparse Algebra

Routines within an Iterative Process

In section 3.6.1.3 it has been mentioned that the occ/occ part from Px
ov differs from the

expression one obtains from the derivative of the idempotency condition (−PSxP) if sparse
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algebra routines are applied (see eq. 3.100)

∆Px
oo = Px

oo −Px ′
oo 6= 0. (4.9)

The effect of approximate, i.e. truncated, matrices is shown for the example of this dif-

ference ∆Px
oo which vanishes if O(M3) multiplications are used. In Tab. 4.2 the number

of significant elements Nsigel is shown as a soft criterion to compare the matrices. In the

column containing the value of the largest element (max. el.) the value is replaced by

the norm if formally a zero matrix is expected. The difference ∆Px
oo is shown in the fifth

and sixth row, respectively. Note that Nsigel(∆Px
oo) = 1428 is evidently larger than the

difference (Nsigel(P
x ′
oo ) - Nsigel(PSxP) = 384) since the truncation of matrices also falsifies

larger values around the given threshold that cancel each other if the matrices are treated

exactly (see sec. 4.3). The last entry in Tab. 4.2 shows the cancellation of the deviating

Px ′
oo . Note that this cancellation is intrinsic to our D-CPSCF equations in eq. 3.98 and eq.

3.105 in contrast to the alternative approaches described in section 3.6.1.4.

Additionally, the deficiencies of an unproper screening scheme are presented. The re-

sults of the SMT-0 (x=0) multiplications in Tab. 4.2 show a large amount of numerical

noise. At the example of PSPxSP−PS (PSPx)† we can also see that the order of matri-

ces in the multiplication affects the result (compared to ((PSPx)oo − (PxSP)oo)) clearly

showing the insufficiency of the screening scheme.

The stability of sparse multiplications within an iterative scheme has been tested by the

multiple application of the purification transformation by McWeeny [47] to the unperturbed

density P = 3PSP − 2PSPSP as is shown in Figs. B.9-B.11. In Fig. B.9 the largest

absolute value of P is plotted for each purification step. While the SMT-0 screening

even strongly affects the largest elements, the unscreened multiplications show a stable

behavior. It has to be mentioned that the sparsity is closely connected to the accuracy

of the multiplication which can be seen in Fig. B.11. The sparsity is not or – at least –

only slightly affected when using the unscreened or the balanced SMT-A/B/C algorithms,

otherwise it decreases constantly resulting in a dense matrix which hampers efficient sparse

routines.

For the model system HCF3 (HF/6-31G*) we have tested the modified routines using

effective thresholds threff outlined in Fig. B.14. Except for SMT-x with x=0 the modified

routines obtain stable results with respect to the change in the maximal element (Fig. B.9)

as well as the sparsity of P (Fig. B.11).

91



CHAPTER 4. ANALYSIS OF SPARSE ALGEBRA ROUTINES WITHIN THE

D-GIAO-HF ALGORITHM

Table 4.2: HCF3, HF/6-31G* (NBF=62, N2
BF=3844). Analysis of occ/occ part of Px

ov and

Px
vo and multiplication order of screened and unscreened sparse multiplications. All values

(Nsigel: number of significant elements; max. el.: value of elements with largest absolute

value) with respect to the threshold 10−8 (as soft criterion for comparison). Px is taken

from the last CPSCF iteration after DIIS extrapolation.

Matrix not screened screened/SMT0 screened/SMT-A O(M3)

Nsigel max. el. Nsigel max. el. Nsigel max. el. Nsigel

(PSPx)oo 3409 9.32e-02 3637 9.32e-02 3458 9.32e-02 3026

(PxSP)oo 3409 9.32e-02 3643 9.32e-02 3458 9.32e-02 3026

(PSPx)oo − (PxSP)oo 23 8.97e-10∗ 1238 1.11e-08∗ 24 9.60e-10∗ 0

PSxP 3025 9.32e-02 3046 9.32e-02 3025 9.32e-02 3026

(PSPx)oo + PSxP 1428 1.20e-07∗ 2958 2.94e-06∗ 1505 2.31e-07∗ 0

(PxSP)oo + PSxP 1431 1.20e-07∗ 2956 2.94e-06∗ 1503 2.31e-07∗ 0

PSPxSP−PS (PSPx)† 23 8.97e-10∗ 1275 1.17e-08∗ 24 9.60e-10∗ 0

(PSPx −PxSP)oo 5 5.02e-10∗ 845 9.16e-09∗ 4 4.46e-10∗ 0

∗Norm of (difference) vector (||A|| = [1/N2
BF

∑

ij |Aij |2]1/2).

4.3 The Influence of Truncating Matrices

Even if no screening in matrix multiplications is applied (SMT-x (x=∞) in Fig. B.14),

there is still an intrinsic error emerging from the compression of the matrices with respect

to the sparse algebra threshold thrSA. The resulting deviation from the exact result using

O(M3) routines is traced by comparison of the formation of PS and S−1F (Tab. 4.3 and

Tab. 4.4), both appearing in our LEQS eq. 3.98 and eq. 3.105, respectively.

We suggest a simple guess to the order of the deviation O(dev)

O(dev) = (MAV [A] + MAV [B]) thrSA, (4.10)

where MAV [A] is the maximal absolute value of matrix A. Here the sum and not the

average is our quantity of choice since the truncation of both matrices affect the result. The

error results from the missing contributions of elements larger than 1 with elements smaller
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Table 4.3: Effect of truncating matrices for several systems (HF/6-31G*), thrSA = 10−8

in the example of calculating S−1F. The largest absolute matrix element is given while

the index ”diff” is the difference between the dense and the sparse result (SMT-x(x=∞)).

For a description of the guess to the order of the truncation error see the text.

System S−1 F S−1Fdiff O(dev) S−1F L−1

C5H12 1.199e+02 1.121e+01 1.115e-06 1.311e-06 1.117e+01 4.204e+00

C10H22 1.520e+02 1.121e+01 3.512e-06 1.632e-06 1.117e+01 4.289e+00

C20H42 1.535e+02 1.121e+01 3.674e-06 1.648e-06 1.117e+01 4.212e+00

C40H82 1.536e+02 1.121e+01 3.452e-06 1.648e-06 1.117e+01 4.198e+00

Toluene 3.854e+02 1.123e+01 3.141e-07 3.966e-06 1.118e+01 1.026e+01

TMS 1.086e+02 6.874e+01 2.175e-07 1.774e-06 6.853e+01 7.762e+00

than thrSA. Considering the MaxEl of S−1 of toluene (3.85377 · 102) and thrSA = 10−8 for

example, the product with an insignificant element of F with value 9·10−9 would contribute

3.5 · 10−6 to an element of S−1F.

As mentioned before, the matrix products with the inverse metric generate relatively

large errors due to large MaxEls compared to the other matrices (Tab. 4.3). In a D-

Table 4.4: Effect of truncating matrices for several systems (HF/6-31G*), thrSA = 10−8

at the example of calculating PS. The largest absolute matrix element is given while the

index ”diff” is the difference between the dense and the sparse result (SMT-x(x=∞)). For

a description of the guess to the order of the truncation error see the text.

System P S PSdiff O(dev) PS

C5H12 1.030e+00 1.000e+00 2.263e-08 2.030e-08 9.984e-01

C10H22 1.030e+00 1.000e+00 2.553e-08 2.030e-08 9.985e-01

C20H42 1.030e+00 1.000e+00 2.564e-08 2.030e-08 9.985e-01

C40H82 1.030e+00 1.000e+00 2.808e-08 2.030e-08 9.985e-01

Toluene 1.030e+00 1.000e+00 5.199e-09 2.030e-08 9.983e-01

TMS 1.127e+00 1.000e+00 3.675e-09 2.127e-08 9.995e-01
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CPSCF calculation, where the transformation in eq. 3.102 or eq. 3.103 is multiply used,

these errors also strongly decrease the sparsity hampering the efficiency of the sparse

algebra routines. The reduction of the number of S−1 multiplications and its implicit use

via S−1Fc) by solving the contravariant LEQS in eq. 3.105 reduce this negative effect.

Alternatively the explicit use of S−1 can be circumvented by the inverse Cholesky-factor

L−1 (S−1 = L−1L−1†) that not only has a smaller MaxEl (Tab. 4.3) but also provides a

route to its linear scaling formation [127]. However, the use of the Cholesky factor requires

a further multiplication compared to the presented approach using the pre-built matrix

F̃ = S−1F.

4.4 Comparison with Standard Library Routines

In this section the performance of the sparse multiplication routine AB = C without

screening is compared to the O(M3) routine dgemm from the Intel Math Kernel Library

[126], which is in our opinion the fastest available one. All calculations were done on

an Intel Xeon EM64T architecture (64bit) using one 3.0GHz processor and the Intel C

compiler [128] on a Linux system.

Table 4.5: Timings (CPU [s]) of sparse multiplications for a fixed sparsity of matrix

A (20%). O(M3) times[126]: 0.42s for 1000x1000, 10.88s for 3000x3000 and 50.30s for

5000x5000.

Dimension Sparsity in percent of matrix B

1 5 10 15 20 25 30 34 36 38

1000 0.03 0.07 0.13 0.19 0.25 0.30 0.37 > O(M3)

3000 0.40 1.69 3.24 4.74 6.28 7.71 9.22 10.37 > O(M3)

5000 1.65 7.31 14.13 20.92 27.53 34.17 40.77 45.95 48.53 > O(M3)

In order to analyze the performance of the sparse multiplication routine, different com-

binations of matrices, each with a sparsity between 1% and 100%, are multiplied. Since

the general performance of the routine should be tested, i.e. independent on the structure

c)Note the smaller MaxEl of S
−1

F compared to S
−1 in Tab. 4.3.
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Figure 4.1: Performance of sparse matrix multiplications AB = C (thrSA = 10−7):

Dimension 1000x1000 (left, O(M3): 0.42s) and 5000x5000 (right, O(M3): 50.3s), hatched

areas show regions where sparse multiplications are faster than the O(M3) routine [126].

The axes show the percentage of significant elements of matrices A and B.

of the matricesd) (band diagonal, block tridiagonal etc.), the position of the significant

elements as well as their values (abs. values between 101 − 10−7) are created by a pseudo

random number generator [105]. In Fig. 4.1 the y-axis shows the number of significant

elements of matrix A in percent and the x-axis the one of matrix B. The combinations of

matrices in the hatched area are faster than the O(M3) routine.

In Tab. 4.5 we extracted one dimension of the plots with a fixed sparsity of A at

20%. As can be seen, the winning area grows with an increasing leading dimension N of

the matrices. Furthermore, the sparsity of a linear scaling matrix grows with increasing

molecular size M ( lim
N→∞

Nsigel = 0%). The two effects ensure that the efficiency of the

sparse multiplication routine grows with increasing system size. Nevertheless, the onset

of the linear scaling behavior clearly depends on the localization of the electrons in the

chosen system (see examples). There is no doubt that with increasing computer power and

simultaneously increasing system sizes the use of sparse algebra routines becomes more

and more important.

d)The sparse multiplication routines are also used in the QMC algorithms presented in chapter 5, where

the occurring matrices can exhibit arbitrary structures.
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Chapter 5

Linear Scaling Quantum Monte Carlo

Algorithms for the Local Energy

with Rigorously Controllable Error

Bounds

The treatment of large molecular systems at the level of Hartree-Fock (HF) or Kohn-Sham

density functional theory (KS-DFT) is routine nowadays [38]. However, the application

of high-accurate post-Hartree-Fock correlation methods to obtain more reliable results are

hampered by their unfavorable scaling behavior, e.g. O(N7) for CCSD(T). It is obvious

that for larger systems suitable methods need to scale as O(N-N3), depending on the local

or non-local nature of the electronic structure.

While quantum Monte Carlo methods are well established in the solid-state physics

community, a growing interest of theoretical chemists in quantum Monte Carlo methods

was noticeable in recent years. Using trial wave functions of Slater-Jastrow type ΨT
SJ

the most commonly used variational (VQMC) [129] and fixed-node diffusion (FN-DQMC)

[130, 131] quantum Monte Carlo methods scale cubically with the number of electrons for

the local energy Eloc while e.g. FN-DQMC provides typically CCSD(T) accuracy [132].

Recent advances [133] based on the local approximation proposed by Pulay [134] induced

several researchers to develop O(N) FN-DQMC methods [135–139] for a fixed sample size

using localized molecular orbitals (LMO). Furthermore the introduction of local correlation

factors of Boys-Handy type [140, 141] by Manten and Lüchow [135] provides a possible
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early onset of an O(N) behavior. It has to be noted that the LMO approach introduces an

empirical, distance-based cut-off parameter that results in an additional source of errors

in MO based correlation methods. This parameter clearly depends on the system under

investigation and always has to be carefully converged with the resulting energy.

The method presented in this section avoids the explicit use of MOs by reformulating

the VQMC scheme in the basis of the N -particle density matrix emerging from a single

Slater determinant. Transfering the spirit of e.g. density matrix-based SCF schemes to

VQMC enables a linear scaling behavior by exploitation of the sparsity of the occurring

quantities while preserving accurate results within the given error bounds.

After a brief review of the stochastic foundations of Monte Carlo methods and the

popular VQMC and DQMC algorithms, the basic equations of the new N -PDM VQMC

will be derived. Finally, a new approach to the DQMC method in terms of the N -particle

density matrix is described. Since this new N -PDM DQMC algorithm allows to exploit the

permutational symmetry information of the fermionic system, its application within the

fixed-node approximation becomes possible. The scaling behavior of these new algorithms

as implemented in our QuantumMC [142] package, which has been developed in this

work, is shown for the example of a series of linear alkanes.

5.1 Stochastic Foundations

Within the Monte Carlo schemes one solves the n dimensional integral

I =

∫

f(r)dr, (5.1)

with stochastical methods. Standard numerical integration algorithms like the Newton-

Cotes, the Simpson formula, or the Gauss quadratures [105] are well proven to obtain

accurate results for low-dimensional functions. Since their error bounds are proportional

to L−c/n with L as the number of integration points and c as constant depending on

the quadrature scheme, higher dimensional functions (n ≥ 8) would require an enormous

number of sampling points. As will be shown later, the error bound of the Monte Carlo

integration is proportional to L−1/2, i.e. it is independent of dimensionality n. Therefore

MC methods have become the standard methods for the integration of high-dimensional

functions.
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Assuming a set of L configurations {Ri}, also called random walkers, distributed ac-

cording to the normalized probability distribution P(R), the Monte Carlo estimate of the

integral in eq. 5.1 is the average

〈I〉 =

∞∫

−∞

f(R)P(R)dR

= L−1

L∑

i=1

f(Ri), (5.2)

converging to the exact result in the limit L → ∞ according to the law of large numbers

[143]. In order to obtain a reasonable estimate for the accuracy of the average 〈I〉, we

have to impose some constraints on the set of configurations and the probability P(R)

as required by the central limit theorem [144]. To discuss the statistical error in 〈I〉, we

first have to introduce the variance of the function f(R) given as the squared value of the

standard deviation σf

σ2
f =

∫

(f(R)− I)2dR, (5.3)

from which the variance of the Monte Carlo estimate follows as

σ2
〈I〉 =

σ2
f

L
≈ (L(L− 1))−1

L∑

i=1

(f(Ri)− 〈I〉)2 (5.4)

≈ L−2
L∑

i=1

(
f(Ri)

2 − 〈I〉2
)
. (5.5)

The standard deviation σfL
− 1

2 can be interpreted as the estimated error bar for the Monte

Carlo average 〈I〉, i.e. the value of I is in the interval

I − σfL
− 1

2 ≤ 〈I〉 ≤ I + σfL
− 1

2 . (5.6)

To obtain a confidence probability for this statement we have to resort to the central limit

theorem: Providing a set of N independent stochastical sampled values {fi} with mean I

and variance σ2
f obeying the same distribution function FL(fi), the central limit theorem

states that for large sampling sizes L the function FL(fi) converges to a normal distribution

lim
L→∞

FL(fi) =
√
L(
√

2πσf )
−1

fi∫

−∞

e
−

√
L

2σf
(t−I)2

dt. (5.7)
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With eq. 5.7 at hand we obtain the confidence probability pc of finding the value of 〈I〉 in

the interval [I − σfL
− 1

2 , I + σfL
− 1

2 ] with the help of the error function

pc =
√
L(
√

2πσf )
−1

I+σf L− 1
2

∫

I−σfL− 1
2

e
−

L(fi−I)2

(2σ2
f
) dfi (5.8)

= (
√

2π)−1

+1∫

−1

e−
1
2
t2dt (5.9)

= erf(2−
1
2 ) = 0.68268949. (5.10)

This means that the probability of finding 〈I〉 in the expected interval is approx. 68%.

Similarly we can introduce an expanded uncertainty uk = kσfL
− 1

2 with k > 0 to define

the interval I ± uk where we find from the error function the probability of 〈I〉 in [I −
kσfL

− 1
2 , I + kσfL

− 1
2 ] as [100 · erf(k/

√
2)]%. For example, the probability of being wrong

by two error bars (±u2 = ±2σfL
− 1

2 ) is pc ≈ 95%.

The independence condition for the samples is not a strict requirement. A central limit

theorem is also ensured if the correlation between fi and fj goes sufficiently fast to zero

for |i − j| → ∞. Nevertheless, the samples in a standard Monte Carlo calculation are

by far not independent, this means that the variance σ2
〈I〉 in eq. 5.5 does not give a valid

uncertainty. A remedy for this defect is provided by the blocking technique which yields

independent Gaussian stochastic variables by a recursive averaging of the samples. See

Ref. [145] for a detailed description of the algorithm. Note that the effective error σfL
− 1

2
eff

has to be expressed by the number of independent samples

Leff = Lτ−1, (5.11)

where τ is the so called auto-correlation time, i.e. the average number of sampling steps to

decorrelate the values of f(R)

τ = 1 +

∞∑

i=1

〈f(R0)− 〈I〉〉 〈f(Ri)− 〈I〉〉
σ2

f

. (5.12)

From the error estimate we can see that the convergence of the result with σfL
− 1

2 can be

improved by reducing the variance σ2
f . This can be done by importance sampling which

improves the sampling process significantly. If, for example, the distribution function P(R)
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gives large values in regions where f(R) is low and vice versa, the Monte Carlo method will

not yield reliable results for a finite sample size L because of the poor statistics. Introducing

the normalized importance function P ′
(R) that exhibits a form similar to f(R), we replace

the score function f(R) with

f
′
(R) =

f(R)

P ′(R)
, (5.13)

and sample the different configurations R directly from P ′
(R). From eq. 5.2 we find the

Monte Carlo estimate

〈I〉′ =

∞∫

−∞

f(R)

P ′(R)
P ′

(R)dR

≈ L−1

L∑

i=1

f(R)

P ′(R)
. (5.14)

Obviously the average tends to I with L→∞. Considering the variance of eq. 5.5 we get

σ2
f (P

′
)

L
≈ L−2

L∑

i=1

([
f(R)

P ′(R)

]2

− 〈I〉2
)

, (5.15)

i.e. we can significantly reduce the variance by a proper choice of the importance function

close to P ′
(R) ≈ f(R)I−1.

5.1.1 Markov Chain Monte Carlo: The Metropolis Algorithm

In general we have to sample the set of configurations {R} from complex probability distri-

butions P(R) with unknown normalization. The Metropolis rejection algorithm proposed

in 1953 [146, 147] allows us to sample complex distributions with unknown normalization

by the application of a Markov chain [148].

Let us first outline the Metropolis algorithm to sample a sequence of configurations {R}.
Starting from an initial configuration Ri we determine a new position R

′
i with respect to

a sampling probability T (R
′
i ← Ri). The new point R

′
i is accepted with probability

A(R
′
i ← Ri) = min

[

1,
T (Ri ← R

′
i)P(R

′
i)

T (R
′
i ← Ri)P(Ri)

]

. (5.16)

If the trial configuration is accepted, R
′
i is the new point Ri+1 = R

′
i, otherwise Ri is kept

Ri+1 = Ri. The transition probability for R
′
i ← Ri is given by

M(R
′
i|Ri) = T (R

′
i ← Ri)A(R

′
i ← Ri), (5.17)
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where the constraints

∑

j

M(Rj|Ri) = 1, M(Rj |Ri) ≥ 0, (5.18)

need to be satisfied. The stochastic evolution of the system is completely specified by the

Markov matrix M and a starting configuration R0. Eq. 5.17 reflects the essential property

of a Markov process, i.e. the probability of R
′
i emerging from Ri only depends on the

present state of the process. Let Pn−1(R) be the probability distribution after (n − 1)

sampling steps, so we can express the evolution of P(R) as

Pn(R
′
) =

∑

R

Pn−1(R)M(R
′|R), (5.19)

which means that we can generate the whole sequence by subsequent application of matrix

M. Switching to a discrete representation we can write down the so called power law in

the form of matrix-vector products

Pn = MPn−1 = MnP0. (5.20)

If the Markov process is ergodic, i.e. non-periodic and transitions between arbitrary states

R and R
′
can be done in a finite number of steps, the distribution converges by eq. 5.20 to

a unique equilibrium state. In the case that P(R) approaches equilibrium we can enforce

the sufficient condition of detailed balance on the Markov Matrix

M(Ri|Rj)P(Rj) = M(Rj |Ri)P(Ri), (5.21)

which ensures that we sample the desired distribution P(R), i.e. P is the dominant right

eigenvector of M . Note that the acceptance probability A(R
′
i ← Ri) is chosen in a way to

fulfill eq. 5.21.

In order to elucidate the Metropolis algorithm we assume a large number of configura-

tions at equilibrium state where the density of configurations in dR is given by ρ(R)dR.

Since eq. 5.21 holds, the transitions dR → dR
′
have to be balanced by transitions in the

opposite direction

A(R
′
i ← Ri)T (R

′
i ← Ri)ρ(R)dRdR

′

= A(Ri ← R
′
i)T (Ri ← R

′
i)ρ(R

′
)dR

′
dR. (5.22)

102



CHAPTER 5. LINEAR SCALING QUANTUM MONTE CARLO ALGORITHMS FOR

THE LOCAL ENERGY WITH RIGOROUSLY CONTROLLABLE ERROR BOUNDS

The equilibrium density is given by

ρ(R)

ρ(R′)
=

A(Ri ← R
′
i)T (Ri ← R

′
i)

A(R
′
i ← Ri)T (R

′
i ← Ri)

, (5.23)

resulting in

ρ(R)

ρ(R′)
=
P(R)

P(R
′
)
, (5.24)

using eq. 5.16. This means that the distribution of random walkers reflects the probability

distribution P(R) we want to sample, generated without the knowledge of its normaliza-

tion.

5.2 Variational Quantum Monte Carlo

Prior to the outline of the variational quantum Monte Carlo [149–151] method, we will

reconsider the expectation value in terms of statistics. If we treat two electrons with

space-spin coordinates x1 and x2 in the framework of classical mechanics the corresponding

Coulomb potential in atomic units is easily found as V12(x1, x2) = |x1 − x2|−1. Switching

to quantum mechanics the electron-pair configurations (x1, x2) are distributed according

to |Ψ(x1, x2)|2, i.e. the probability of finding electron 1 at x1 and electron 2 at x2 is

proportional to the square of the wave function (Born’s interpretation). So we have to sum

up V12(x1, x2) from all (x1, x2) configurations weighted by their normed probabilities

V12 =
∑

x1,x2

|x1 − x2|−1 |Ψ(x1, x2)|2
∑

x1,x2

|Ψ(x1, x2)|2
, (5.25)

where the analogy of the normalization to the grand partition function in statistical me-

chanics is obvious. Since the coordinates are continuous, we can rewrite eq. 5.25 as the

familiar integral

V12 =

∫
Ψ(x1, x2)

∗V̂12Ψ(x1, x2)dx1dx2
∫

Ψ(x1, x2)∗Ψ(x1, x2)dx1dx2

. (5.26)

Introducing the probability distribution

P(R) =
|Ψ(R)|2

∫
|Ψ(R)|2dR , (5.27)
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describing the probability of definite electron configurations R = {x1, x2, x3, ..., xN}, the

expectation value of an arbitrary operator Ô is

〈O〉 =

∫
ÔΨ(R)

Ψ(R)
P(R)dR. (5.28)

From the variational principle it follows that the expectation value for the ground-state

energy E0 formed with a trial wave function ΨT

E0 =

∫
ΨT∗(R)ĤΨT(R)dR
∫
|ΨT(R)|2dR , (5.29)

provides an upper bound to the exact energy Eexact
0 (≤ E0). With the local energy Eloc

Eloc(R) =
ĤΨT(R)

ΨT(R)
, (5.30)

eq. 5.29 can be rewritten as

E0 =

∫

Eloc(R)P(R)dR. (5.31)

Using the Metropolis algorithm described in the previous section, L electron configurations

Ri are sampled from the probability density P(R) which give the energy expectation value

as the average of the local energies

E0 ≈ L−1

L∑

i=1

Eloc(Ri). (5.32)

With the use of sophisticated trial functions ΨT (see sec. 5.4) the VQMC method is able to

yield accurate results comparable to established MO based correlation methods. Note that

the trial function – aside from the standard constraints – must also be square integrable

in order to provide proper statistics.

The success of the VQMC approach is based on the so-called zero-variance property.

This means, that if the trial wave function approaches the exact ground-state function

ΨT → Ψex
0 , the local energy also approximates the exact ground-state energy Eloc(R) →

Eex
0 , i.e. Eloc becomes independent of the given configuration R with ΨT → Ψex

0 . Thus the

estimated variational energy converges more rapidly with respect to the number of Monte

Carlo steps with increasing accuracy of the given trial function.

Even if projector QMC methods like fixed-node DQMC, which is described in section

5.3, are potentially more powerful than VQMC, the importance of the variational method
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has to be stressed. These calculations are omnipresent in QMC applications since they

are at least used to optimize the correlated wave function or density, respectively, i.e. the

parameters of the correlation factors are optimized via correlated sampling [29, 152].

5.2.1 Importance Sampling by Langevin-type Fictitious

Dynamics

In a simple VQMC algorithm the trial moves are directly sampled from a Gaussian distribu-

tion with standard deviation τ . As mentioned in the previous section, the sampling process

can be improved by the use of importance sampling. A wide-spread method is motivated

by the guide-function diffusion Monte Carlo method introducing fictitious Langevin-type

dynamics. Then the proposal matrix T (R
′ ← R) in eq. 5.16 is given as

T (R
′ ← R) = (2πτ)−3N/2e

−(R
′
−R−Fq(R)τ)2

2τ , (5.33)

with the quantum force

Fq(R) = ∇ ln |ΨT(R)| = ΨT(R)−1∇ΨT(R). (5.34)

where the Nabla operator ∇ acts on the electron coordinates. Sampling from eq. 5.33

corresponds to solving the Fokker-Planck equation

∂

∂t
P(R) = ∇(∇− Fq(R))P(R), (5.35)

which describes the evolution of the probability distribution in time t. The Langevin

equation to generate the trajectories according to eq. 5.35 is

∂

∂t
R(t) = Fq(R(t)) + G, (5.36)

with a random, Gaussian-distributed force G. Integrating over a short time interval τ yields

an equation suitable for generating trial configurations R
′

R
′

= R + τFq(R) + Gτ . (5.37)

The diffusion of random walkers is now partially directed by the quantum force into regions

of large ΨT values but still exhibiting randomness (Gτ ) in order to be able to sample the

whole configuration space.
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Note that the discrete solution of eq. 5.36 introduces a time-step error for τ > 0, which

means that the results deteriorate with an increasing step size. The error may be estimated

by extrapolation of results for different values of τ . Furthermore, other algorithms to ensure

small time-step errors have been developed. At present the QuantumMC package [142]

provides, besides the standard proposal matrix in eq. 5.33, the algorithm proposed by

Umrigar, Nightingale and Runge [153] which exhibits small time-step errors.

5.3 Diffusion Quantum Monte Carlo

Apart from the VQMC method, where the integral in eq. 5.29 is sampled directly, there

exist several potentially more powerful techniques that project out the ground state of

the Hamiltonian (projector quantum Monte Carlo methods). In this brief section a short

summary of the most popular of these methods, the fixed-node diffusion quantum Monte

Carlo (FN-DQMC) algorithm, is given.

Starting from the energy-shifted time-dependent Schrödinger equation

∂

∂t
Ψ(R, t) = (Ĥ −ET )Ψ(R, t), (5.38)

with ET as a constant energy offset and t as a real variable of imaginary time, we can

transform this differential equation into integral form by means of the Green’s function

G(R ← R
′
, τ) and the imaginary time variable τ

Ψ(R, t+ τ) =

∫

G(R ← R
′
, τ)Ψ(R

′
, t)dτ . (5.39)

The Green’s function has to obey the same time-dependence in eq. 5.38 like Ψ(R, t) and

so results as

G(R ← R
′
, τ) =

〈
R

′∣
∣e−τ(Ĥ−ET )

∣
∣R
〉
. (5.40)

with G(R ← R
′
, 0) = δ(R

′ −R) as initial condition. Rewriting G(R ← R
′
, τ) as well as

the initial trial function Ψinit(R) in the spectral representation of the system

G(R ← R
′
, τ) =

∑

i

∣
∣Ψi(R)

〉
e−τ(Ei−ET )

〈
Ψi(R

′
)
∣
∣, (5.41)

Ψinit(R) =
∑

i

ciΨi(R), (5.42)
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it is easily seen that the propagator G(R ← R
′
, τ) projects out the lowest eigenstate Ψ0

by evolving the system through imaginary time τ :

lim
τ→∞

∫

G(R ← R
′
, τ)Ψinit(R

′
)dR

′
= lim

τ→∞

∑

i

∣
∣Ψi(R)

〉
e−τ(Ei−ET )

〈
Ψi(R

′
)
∣
∣Ψinit(R

′
)
〉

= lim
τ→∞

∣
∣Ψ0(R)

〉
e−τ(E0−ET )

〈
Ψ0(R

′
)
∣
∣Ψinit(R

′
)
〉
.(5.43)

Note that at least a non-zero overlap of the initial function with the exact ground state

function must be provided (c0 > 0). By adjusting ET to E0 the time-dependence of the

ground-state term vanishes while the remaining overlaps are damped by exp[−τ(Ei−ET )].

Note that G(R ← R
′
, τ) is not a projector in the sense as discussed for Pocc or Pvirt in

section 2.5.2, i.e. it does not necessarily exactly project out the ground-state wave function.

This would only hold if the energy shift ET equals E0 exactly, otherwise the other state

functions are only damped compared to the ground-state function.

Since the fundamental properties of the propagator G(R ← R
′
, τ) are at hand, we can

briefly outline the DQMC algorithm for molecular systems. If we neglect the potential

energy terms in the Hamiltonian (eq. 5.38), we obtain a master equation of a diffusion

stochastic process ∂tΨ(R, t) = 1/2
∑

i∇2
i Ψ(R, t) where its Green’s function is a Gaussian

with variance τ

G(R ← R
′
, τ) = (2πτ)3N/2e−

|R−R
′
|2

2τ . (5.44)

In the framework of stochastics the solution of the master equation Ψ(R) describes the

distribution of Brownian particles, so it can be represented by a discrete set of random

walkers (Ψ(R) =
∑

i δ(R −Ri)).

To treat the complete Hamiltonian with potential terms we have to introduce the ap-

proximation of the Green’s function introduced by Trotter and Suzuki [154, 155]. Within

a short-time approximation (τ → 0) we obtain for eq. 5.40 the so-called primitive approx-

imation

G(R ← R
′
, τ) =

〈
R

′∣
∣e−τ(T̂+V̂−ET )

∣
∣R
〉

≈ (2πτ)3N/2e(2τ)−1|R−R
′
|2e−

τ
2
(V (R)−V (R

′
))+τET , (5.45)

where the error is cubic in the time-step size (∼ τ 3). The exponential term containing

the potential energy difference has the effect of a time-dependent renormalization of the

diffusion process. While there exist several methods to consider this reweighting, our
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QuantumMC code [142] uses a combination of assigning weights to the single random

walkers and the birth-death algorithm as described in Ref. [153].

The algorithm described to this point is quite inefficient even for small systems, due to

strong fluctuations in the reweighting term in eq. 5.45. To perform importance sampling

[156], a trial or guiding function |ΨT| is used, which replaces Ψ with the product f = ΨΨT

in the foregoing equations. Inserting f(R, r) in eq. 5.38 we obtain

− ∂

∂t
f(R, r) = −1

2
∇2f(R, r) +∇ (Fq(R)f(R, r)) + (Eloc(R)−ET ) f(R, r), (5.46)

with the quantum force Fq(R)a)

Fq(R) = ∇ ln |ΨT(R)| = ΨT(R)−1∇ΨT(R), (5.47)

and the local energy Eloc as defined in eq. 5.30. Analogously to eq. 5.39 we obtain the

integral equation

f(R, t+ τ) =

∫

G̃(R ← R
′
, τ)f(R

′
, t)dτ , (5.48)

where the corresponding Green’s function G̃(R ← R
′
, τ) results from comparison with eq.

5.39 as

G̃(R ← R
′
, τ) = ΨT(R)G(R ← R

′
, τ)ΨT(R

′
)−1. (5.49)

In the short-time approximation we obtain

G̃(R ← R
′
, τ) = (2πτ)3N/2e

(2τ)−1
h

R−R
′
−τFq(R

′
)
i2

e−
τ
2
(Eloc(R)−Eloc(R

′
))+τET . (5.50)

The branching term in eq. 5.50, i.e. the second exponential, now contains the local energy

instead of the potential energy. If a good trial function is used, Eloc is close to the true

ground-state energy and nearly constant, thus the population fluctuates only slightly within

the sampling process. The energy is usually calculated with the mixed estimator Em:

Em = lim
τ→∞

〈e− τ
2
ĤΨT|Ĥ|e− τ

2
ĤΨT〉

〈e− τ
2
ĤΨT|e− τ

2
ĤΨT〉

= lim
τ→∞

〈e−τĤΨT|Ĥ|ΨT〉
〈e−τĤΨT|ΨT〉

= lim
τ→∞

∫
f(R, τ)Eloc(R)dR
∫
f(R, τ)dR

≈ L−1
L∑

l

Eloc(Rl). (5.51)

a)In the literature the gradient in eq. 5.47 is often denoted as drift velocity vD.
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Note that the single configurations are sampled from Ψ instead of |Ψ|2, i.e. for fermionic

systems we have to introduce a further approximation to take care of the antisymmetry

of the wave function. Formally, the nodal regions are split with respect to the sign of the

wave function, where an absorbing barrier is installed between two regions which can not

be crossed by a random walker. The distribution can now be sampled by random walkers

distributed into the different nodal pockets. If the locations of the nodes are exact, the

calculation converges to the exact result [157]. The problem to locate the nodes can be

approximately solved if importance sampling is appliedb), i.e. one simply uses the nodes

of the trial wave function ΨT. If a random walker crosses a node, the sign of ΨT changes.

The trial position is rejected and the original configuration is sampled again.

The FN-DQMC methods have been proven to provide results of CCSD(T) quality [132]

combined with a favorable scaling behavior as compared to standard MO-based correlation

methods. The main error in the DQMC results from the approximated nodal structure

of the system given by the trial function. Even if error cancellation in the calculation of

energy differences occurs, overcoming the nodal problem is the main challenge in QMC

method development. It has to be mentioned that some approaches exist that do not

resort to the fixed-node approximation, but these are in general associated with a strongly

increased computational effort.

5.4 Trial Wave Functions in Quantum Monte Carlo

In this section we will discuss the form of trial wave functions ΨT implemented in our

QuantumMC package [142]. The quality of these functions is of course of central impor-

tance in VQMC calculations since the expectation value is directly sampled, but it is also

important in FN-DQMC calculations since a proper nodal surface and sensible statistics

have to be provided. The trial wave functions have the general Slater-Jastrow form [157]

ΨT
SJ(R) = Dα

det(R)Dβ
det(R)eU(R), (5.52)

where Dα
det and Dβ

det are Slater determinants for α and β electrons built from molecular

orbitals obtained from mean-field calculations. The separation of the determinant into

b)Note that the force Fq drives the random walker into regions of high importance, i.e. away from nodal

regions. Thus the number of trial moves that would cross a node is a priori smaller if importance sampling

is used.
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Dα
det and Dβ

det is easily done by choosing a permutation where the electrons are sorted

corresponding to their spins. Since R is only a dummy variable of integration and the

operators are not affected by the permutation, we can replace the original, spin-dependent

Slater determinant by the product of spin-independent determinants.

The exponential term eU is the so called correlation or Jastrow factor containing the

many-particle correlation factors. There are several approaches for U in the literature, but

in the following section only the Boys-Handy factors of short-ranged type as proposed by

Manten and Lüchow [135] will be described.

The evaluation of the trial function is the most demanding step in a QMC calculation

scaling with O(N3). Since the local energy is calculated with defined electron distributions,

the potential energies are easily determined. However, the kinetic energy has to be calcu-

lated with ΨT
SJ as ΨT

SJ
−1

(R)T̂ΨT
SJ(R). Considering the form of ΨT

SJ in eq. 5.52 the kinetic

energy results as

ΨT
SJ
−1

(R)T̂ΨT
SJ(R) = −1

2

∑

i

∇2
i Ψ

T
SJ

ΨT
SJ

= −1

2

∑

i

∇2
i Ψ

T
SJ

ΨT
SJ

+

(∇iΨ
T
SJ

ΨT
SJ

)2

−
(∇iΨ

T
SJ

ΨT
SJ

)2

= −1

2

∑

i

∇2
i ln |ΨT

SJ| −
(
∇i ln |ΨT

SJ|
)2

= −1

2

∑

i

∇iU(R)
(
2 D−1

det∇i(R)Ddet(R) +∇iU(R)
)

−e−U(R)∇2
i e

U(R) − D−1
det∇2

i (R)Ddet(R), (5.53)

which requires the calculation of the gradient and Laplacian of the determinants and the

correlation factors. The algorithms to compute the different ingredients to form eq. 5.53

will be discussed in the following sections.

It has to be mentioned that the construction of the trial wave function, i.e. how to

improve on the IPM result, is a major task in QMC calculations. Even if for the examples

presented in this work only a simple type of correlation factor is chosen, a good estimate

to the true ground-state wave function is crucial in order to reduce the systematical and

statistical errors. Their construction requires a relatively large amount of human time costs,

i.e. QMC calculations are much less of a ”black box” as compared to standard MO-based

approaches such as coupled cluster calculations (see e.g. Ref. [158]).
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5.4.1 The Slater Determinant

We will briefly discuss the evaluation of the local energy in the traditional VQMC method

following Fahy et al. [149]. To calculate the gradient (ΨT
SJ
−1∇iΨ

T
SJ) and the Laplacian

(ΨT
SJ
−1∇2ΨT

SJ) with respect to the single electron coordinates i, we first have to determine

the values of basis functions χµ(r) for all electron coordinates as well as the first and second

derivatives.

Our program uses the same standard basis sets as common in ab initio program pack-

ages, where the radial parts of the basis functions are represented by cubic splines [105].

Instead of replacing s-type functions by Slater-type functions that exhibit a cusp at the

nucleus, a fit to

ffit(x) = ae−b|x| + c (5.54)

is applied for the region close to the nucleus (similar to Ref. [132]). As can be seen from

the plot of the second derivatives in Fig. B.15, this fit clearly improves the behavior at the

nucleus. Note that the user only has to mark the specific s-type function in the input file,

so that this approach ensures an easy access to quantum Monte Carlo calculations. The

calculation of the basis function values and their derivatives is formally an O(N2) step,

but – because of the exponential decay of the Gaussians – only a constant number of basis

functions yield significant values for a single electron. To exploit this fact, a cut-off radius

for each shell, for which the basis functions provide significant values, is determined with

respect to the second derivative value, since these directly contribute to the kinetic energy

[135]. Applying this screening with respect to a given threshold the computational effort

in this step of the calculation scales linear with system size [159].

Following the traditional algorithm [149], the molecular orbital values are calculated

according to the LCBF approach, where the AO-MO transformations scale cubically with

system size

φi(rj) = Cµiχµ(rj), (5.55)

∇xyz
j φi(rj) = Cµi∇xyz

j χµ(rj), (5.56)

∇2
jφi(rj) = Cµi∇2

jχµ(rj). (5.57)
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After the determinant matrix Dc) is built from {φi}to 5.58

D =










φ1 (x1) φ2 (x1) · · · φN (x1)

φ1 (x2) φ2 (x2) · · · φN (x2)
...

...
. . .

...

φ1 (xN ) φ2 (xN ) · · · φN (xN )










, (5.58)

the inverse of its transposed form D̃ = (D†)−1 has to be calculated, i.e. the matrix of co-

factors scaled by the inverse determinant. This is done within an O(N3) LU decomposition

which also provides the determinant values instantaneously by multiplying the diagonal

elements of the factorized matrix [105]. The gradient and the Laplacian are evaluated by

use of the Laplace expansion of the determinant in an O(N2) scaling step

ΨT
SJ
−1∇xyz

i ΨT
SJ = D̃ji∇xyz

i φj(ri), (5.59)

ΨT
SJ
−1∇2ΨT

SJ = D̃ji∇2φj(ri). (5.60)

This expansion combined with Cramer’s rule can also be used in an update procedure for

D̃ for single-electron moves [149, 157].

5.4.2 The Correlation Factor

Let us briefly reconsider the short-comings of the wave function in IPM calculations rep-

resented by a single Slater determinant. As shown in sec 2.6 the motion of two electrons

with opposite spins is completely uncorrelated, i.e. the wave function does not provide a

corresponding correlation cusp as shown in Fig. 2.3. Furthermore, since the basis func-

tions are linear combinations of Gaussians, the mentioned electron-nuclear cusps are also

missing. The true wave function, instead, has to satisfy a set of cusp conditions that were

first derived by Kato [51]. Imagine two electrons that approach each other, so that the

potential energy would diverge. This has to be in turn compensated by a corresponding

divergence of the kinetic energy term in order to provide a finite total energy. The same

holds for the potential energy arising from the electron-nuclear attraction. Consider the

ground state energy of a hydrogen atom depending on the electron-nuclear distance r

−1

2

(
d2

dr2
+

2

r

d

dr

)

Ψ0(r)−
Z

r
Ψ0(r) = EΨ0(r). (5.61)

c)Note that the normalization factor (N !)−
1

2 is ignored since only the ratio of wave functions or expec-

tation values are calculated.
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Since the second derivatives are bounded [160], we have to demand

−1

r

(
d

dr
+ Z

)

Ψ0(r) = finite, (5.62)

in order to ensure the cancellation of divergences. With Ψo(r) = e−αr we obtain

−1

r
(−α + Z) Ψ0(r) = finite, (5.63)

where it is easily seen that the choice α = Z satisfies the cusp conditions. From similar

considerations one obtains for the electron-electron cusp

lim
r12→0

∂ΨT
SJ(R)

∂r12
=

{
1
2
ΨT

SJ(R, r12 = 0) for σ1 6= σ2

1
4
ΨT

SJ(R, r12 = 0) for σ1 = σ2

, (5.64)

where σi denotes the spin of electron i and r12 the inter-particle distance.

Even if there are different forms of correlation factors proposed by several authors, we

will concentrate on the form suggested by Schmidt and Moskowitz [140]. They introduced

a correlation factor originally proposed by Boys and Handy [141]

eU(R) → e

P

I,ij

UI,ij(R)

UI,ij(R) =

NI∑

k

∆mnckI

(
r̃mkI

iI r̃nkI

jI + r̃nkI

iI r̃mkI

jI

)
r̃okI

ij , (5.65)

with the Padé-type scaled distances r̃

r̃ij =
dIrij

1 + dIrij

and r̃iI =
bIriI

1 + bIriI

, (5.66)

for describing electron-electron and electron-nuclear correlations, respectively. ∆mn ensures

comparability [140] with the original work of Boys and Handy and ckI are the coefficients of

the linear combination of the NI terms, the values of m, n and o are integers larger or equal

to zero. A term with (m = 0, n = 0, o 6= 0) for example describes the electron-electron

correlation. Since the determinant does not depend on the inter-particle distance r12, the

cusp conditions have to be fulfilled by the correlation factor alone

∂U(R)

∂r12

∣
∣
∣
∣
r12→0

=

{
1
2

for σ1 6= σ2

1
4

for σ1 = σ2

. (5.67)

Its effect is a reduction of the density close to the reference electron, but also results in

a violation of the overall normalization which can be compensated by introducing pure
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electron-nuclear terms ((m 6= 0,n = 0) or (m = 0,n 6= 0), o = 0). Note that a term like

(m = 1, n = 0, o = 0) could be included to improve the electron-nuclear cusp, but it

becomes unnecessary by the fit of the basis functions discussed before.

In general, also higher-order correlation terms could be included [140], but we will

only focus on a simplified version as proposed in [135] depicted in Tab. C.9. The scaled

distances in eq. 5.66 provide a slow decay with r → ∞, so that Manten and Lüchow

introduced short-ranged distances

r̃ = 1− e−αr. (5.68)

Note that eq. 5.68 provides the same functional form as the Padé-type function in eq. 5.66

for small values of r or rij, respectively. Since the correlation factor is only included to

provide a proper behavior of the wave function for small particle distances, the strongly

different decaying behavior of the function for r →∞ does not have a deteriorating effect

compared to the Padé form in eq. 5.66. With the short-ranged distance at hand, the

contributions of the correlation factor to the local energy can be screened with respect

to the interparticle distances and a given threshold, so that a linear scaling behavior is

achieved.

The traditional MO-based VQMC algorithm discussed so far has an O(N3) scaling

behavior for the calculation of the local energy Eloc. The scaling behavior results from

the AO-MO transformations and the algebraic operations with the corresponding MO

quantities (LU factorization etc.). In order to reduce the scaling Manten and Lüchow [135]

use localized molecular orbitals [161–163] in combination with the described short-ranged

correlation factor. However, the authors claimed to need a cut-off parameter in order to

remove the orthogonalization tails and to obtain a linear scaling algorithm for the local

energy Eloc.

In the following section the new N -PDM VQMC algorithm based on the one-electron

density matrix is presented, which provides a route to an O(N) evaluation of Eloc without

sacrificing accuracy.
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5.5 N-Particle Density Matrix-based Variational

Quantum Monte Carlo

Since we avoid the use of MOs in our N -PDM VQMC scheme by replacing them with the

N -particle density ρN , we just need the discrete one-electron density matrix P from a HF

or KS-DFT calculation as well as the corresponding basis. As can be seen from eq. 2.22,

the probability distribution P(R) and the local energy expression Eloc(R) can be rewritten

in terms of ρN :

P(R) =
ρN(R)e2U(R)

∫
ρN (R)e2U(R)dR

, (5.69)

Eloc(R) =
ĤρN(R;R

′
)eU(R)eU(R

′
)

ρN (R;R′)eU(R)eU(R′ )
. (5.70)

Again we use the standard convention from density matrix theory as explained in sec.

2.5, i.e. the Hamiltonian Ĥ first acts on the set R, then we replace R
′

with R [43].

Because of the exponential form of the correlation factor no further modifications for the

consideration of eU(R) have to be implemented. Thus we will focus on the determinant

part of the calculation in the following text. Note that ρN is the product of α- and β-

densities ρN = ρα
Nρ

β
N , so that the following operations have to be done twice for ρα

N and

ρβ
N , respectively.

Initially we have to compute the basis functions values (χiµ = χµ(ri)) and their first

(χu,1st
iµ = ∇u,i χµ(ri), u = x, y, z) and second derivatives (χ2nd

iµ = ∇2
i χµ(ri)) for each electron

using the same algorithm described in sec. 5.4.1. The determinant matrix Dρ
d) according

to eq. 2.35 is

Dρ =










ρ1(r1; r
′
1) ρ1(r1; r

′
2) · · · ρ1(r1; r

′
n)

ρ1(r2; r
′
1) ρ1(r2; r

′
2) · · · ρ1(r2; r

′
n)

...
...

. . .
...

ρ1(rn; r
′
1) ρ1(rn; r

′
2) · · · ρ1(rn; r

′
n)










, (5.71)

where ri denote the single electron coordinates. This matrix is simply formed by two

matrix multiplications

ρ1(ri; r
′
j) = Pµνχµ(ri)χν(ri) =⇒ Dρ = χPχ

†. (5.72)

d)Similar to eq. 5.58 the normalization factor (N !)−1 is ignored.
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Similarly we calculate

Du,1st
ρ = χ

u,1stPχ
† with u = x, y, z

=⇒ Du,1st
ρ,ij = ∇u,iρ1(ri; r

′
j), (5.73)

D2nd
ρ = χ

2ndPχ
†

=⇒ D2nd
ρ,ij = ∇2

iρ1(ri; r
′
j). (5.74)

Applying effective sparse algebra routines (see chapter 4) these six multiplies scale with

O(N) as long as only matrices with a linear scaling number of significant elements occur. It

has to be mentioned that a slightly different sparse matrix format is used compared to the

RISSM implemented in the Q-Chem code. Since the matrices containing the basis function

values are not quadratic, the compressed sparse row format (CSR) has been chosen in order

to provide a much easier handling of N ×M matrices [125]. Note that the arrangements

of matrix multiplications in eq. 5.73 and eq. 5.74 are the most suitable for the CSR sparse

format. The function to evaluate χiµ, χu,1st
iµ and χ2nd

iµ directly scatters the results into

sparse format, the following operations require only one matrix transposition.

The determination of the inverse D̃ρ and the determinant could also be done with a LU

decomposition. But in contrast to D̃ which contains the MO values, we have a symmetric

and positive definitee) matrix allowing a Cholesky decomposition (see e.g. [105]) that in

general is a factor of two faster than other factorizations [105]. Furthermore, an O(N)

sparse matrix Cholesky decomposition routine [127] is by far easier to implement than a

comparable sparse LU factorization [164, 165] because no pivoting has to be considered.

Nevertheless, it has to be mentioned that small negative eigenvalues might occur resulting

from the truncation of the matrices. Such trial configurations, which only have been

observed at the equilibration stage in combination with loose sparse thresholds, are simply

rejected.

The gradient and the Laplacian are evaluated in a similar fashion to eqs. 5.59-5.60 by

a sparse scalar product routine (overall O(N); O(1) for a single electron):

ρN(R;R
′
)−1∇u,iρN (R;R

′
) = D̃ρ,ijD

u,1st
ρ,ij , (5.75)

ρN(R;R
′
)−1∇2

iρN (R;R
′
) = D̃ρ,ijD

2nd
ρ,ij . (5.76)

e)Density matrices are of course positive semi-definite, but we treat a Nel configuration with a single zero

diagonal element in Dρ as a (Nel − 1) configuration. Thus the trial move is rejected before the Cholesky

factorization takes place.
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Figure 5.1: N -PDM VQMC calculations of a series of methane clusters (basis: cc-pVTZ).

The number of steps to obtain a statistical error smaller than 10−3 is given for the calcu-

lation of a monomer, dimer and tetramer.

Since all quantities occurring in the described algorithm scale linear with system size (for

systems exhibiting a significant HOMO-LUMO gap), an O(N) calculation of the local

energy becomes possible, while rigorous error bounds are provided with respect to the

given screening and sparse algebra thresholds. The scheme of the algorithm is depicted in

Fig. B.16.

Altogether, this leads to an O(N2) scaling behavior for calculations that provide the

same statistical confidence (i.e. variance of the energy estimate). To elucidate this O(N2)

behavior one has to consider a molecular system with a significant HOMO-LUMO gap.

Since the electrons are locally distributed, one can split the local energy into single electron

contributions that are approximately independent [157]. Since each contribution also has

an average variance of σ2
ē , the total variance is proportional to the number of electrons N.

Combined with the O(N) evaluation of the trial density we see that the N -PDM VQMC

algorithm scales quadratically with system size.

117



CHAPTER 5. LINEAR SCALING QUANTUM MONTE CARLO ALGORITHMS FOR

THE LOCAL ENERGY WITH RIGOROUSLY CONTROLLABLE ERROR BOUNDS

As an example, the ground-state energies of different methane clusters have been calculated.

For all calculations the same correlation factors are used, which have been obtained by

variance minimization of the methane monomer. The initial random walkers for the dimer

and tetramer systems are generated from a N -PDM VQMC calculation of the monomer by

duplication. Since the different molecules of the clusters are well separated by at least 500

Å, the intermolecular interactions are negligible. Thus the overall variance can be written

as a sum of the single variances σ2
i of each molecule

σ2 =

Nmol∑

i

σ2
i . (5.77)

Because of the equality of the subsystems we can write

σ2 = Nmol σ
2
monomer, (5.78)

i.e. the overall variance is proportional to the number of methane molecules. Therefore, as

shown in Fig. 5.1, the number of steps to obtain a statistical error smaller than 10−3 grows

linearly with the number of electrons.

5.5.1 Illustrative Calculations

The scaling behavior of the new N -PDM VQMC method is shown for a series of linear

alkanes (C2H6, C5H12, C10H22, C15H32, C20H42, C25H52, C30H62). The determinant part of

the correlated wave function is constructed from the molecular orbitals of a Hartree-Fock

calculation with a cc-pVTZ basis [166]. The largest system (C30H62) contains 242 electrons

and 1980 cartesian basis functions. Since these calculations should only prove the linear

scaling behavior of the new method, the simple short-ranged correlation factor EJ5 [135]

given in Tab. C.9 is used. It has to be mentioned that an optimized class for the EJ5 set

of terms is implemented in QuantumMC [142] which ensures a rapid computation of the

correlation factor contributions to the energy and the wave function. Thus the evaluation of

the determinant Dρ is the by far dominant step in the calculation. The correlation factors

are determined in a similar way to Manten and Lüchow [135], who set the values of α in

eq. 5.68 for the higher-order terms 2-5 (see Tab. C.9) equal to 3.0. The linear coefficients

as well as the exponential coefficient in term 1 are optimized within a correlated sampling

algorithm according to Umrigar et al. [152].
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Figure 5.2: N -PDM VQMC calculations of a series of linear alkanes (basis: cc-pVTZ).

CPU times for for 1000 sampling steps of a single random walker. For an explanation of

the integer code (x/y/z) see the text.

All computations have been performed with the QuantumMC program [142], which has

been developed in the present PhD thesis, on a single Intel Xeon EM64T 3.0 GHz pro-

cessor. After an equilibration phase of 10000 steps, the CPU times for a single random

walker and 1000 sampling steps were measured and are shown in Fig. 5.2. The sampling

algorithm proposed by Umrigar et al. [153] has been used where all electrons are moved

simultaneously. The combination of numbers x/y/z in the legend of Fig. 5.2 denotes the

different thresholds for basis function screening (thrBF = 10−x), for the compression of the

discrete one-electron density matrix P (thrP = 10−y), and a general sparse matrix compres-

sion threshold (thrSA = 10−z). The need for a special truncation criterion for the discrete

density matrix arises from the structure of the quantities occurring in the density-based

equations. The sparse determinant matrix Dρ has in general small off-diagonal elements

compared to the diagonal elements which yields an inverse containing elements of large

absolute value. Since the expectation values are calculated according to eq. 5.75 and eq.

5.76, even smaller values of Du,1st
ρ and D2nd

ρ have to be considered in product with D̃ρ (see
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Table 5.1: Scaling behavior O(Nx) of the number of significant elements in the one-

electron density matrix P and the total CPU time for the different calculations. For a

comment on the accuracy of the scaling behavior of P and an explanation of the integer

code (x/y/z) see the text.

5/5/8 6/6/8 7/7/8 8/8/8

P Tot. time P Tot. time P Tot. time P Tot. time

C2H6-C5H12 1.7 2.1 1.8 2.2 1.9 2.2 1.9 2.2

C5H12-C10H22 1.6 1.8 1.7 1.9 1.9 2.0 2.0 2.1

C10H22-C15H32 1.3 1.6 1.4 1.7 1.6 1.8 1.8 2.0

C15H32-C20H42 1.2 1.5 1.4 1.7 1.5 1.7 1.7 1.9

C20H42-C25H52 1.1 1.4 1.2 1.5 1.3 1.5 1.5 1.7

C25H52-C30H62 1.1 1.3 1.2 1.4 1.2 1.5 1.4 1.5

discussion in section 4.3). In the construction of these intermediate matrices like Du,1st
ρ

one has to choose a tighter compression threshold thrSA while a more crude truncation of

P with respect to thrP > thrSA does not result in a larger deterioration. Note that the

truncation of the density matrix P results in an electron loss

Tr[PtruncS] 6= N , (5.79)

thus P has been renormalized to N with the McWeeny purification transformation in eq.

2.51. As one can see in Fig. B.18 in the appendix, the choice of a less tight threshold for P

has a large impact on the computation time. The computation with thrSA = thrP = 10−8

is approx. 3 times slower than the computation with thrSA = 10−8, thrP = 10−5. Since the

multiplies take approximately 90% of the total CPU time, a less tight density compression

threshold thrP significantly reduces the total timings presented in Fig. 5.2. It has to be

noted that the time for the Cholesky factorization as well as the contraction of e.g. eq.

5.75 are nearly negligible. In Tab. 5.1 the scaling behavior of the number of significant

elements of P and of the total CPU time for the thousand sampling steps are compared.

It has to be mentioned that the number of significant elements of P are taken from the

standard output which prints the sparsity for different thresholds in percent. Since only

one digit is given, the scaling behavior of P in Tab. 5.1 shows an increasing inaccuracy with
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Table 5.2: Error estimation via correlated sampling for different density compression

thresholds (first value) and the general sparse algebra threshold thrSA (second value). The

screening threshold is set equal to the density compression threshold (thrBF = thrP). The

value in brackets gives the uncertainty in the last given digit.

thrSA

thrP 10−5 10−6 10−7 10−8 10−10

10−5 — 0.0003(0) 0.0003(0)

10−6 0.01(0) 0.00009(0) 0.00008(0)

10−7 0.0003(0) 0.00002(1) 0.000007(0)

10−8 0.000004(0) 0.0000005(0)

system size. The scaling behavior for e.g. C25H52-C30H62 exhibits an uncertainty of ±0.1.

Nevertheless, one can clearly see that the overall scaling behavior is strongly coupled to

the scaling behavior of the one-electron density matrix P, even though the sparse algebra

threshold thrSA is chosen significantly more tight (5/5/8 or 6/6/8).

The evaluation of the basis functions only requires a small part of the total CPU time

as is seen in Fig. B.17 in the appendix. Since the Gauss functions exhibit an exponential

decay, even a tight threshold of thrBF = 10−8 accelerates the algorithm significantly. It has

to be mentioned that small fluctuations in the CPU times for the smaller systems occur in

Fig. B.17 which can be easily traced backed to inaccuracies in the single measured times.

Since the plotted values are the sum of 1000 sampling steps, a single evaluation took at

most 0.02 seconds for C30H62 with (6/6/8).

In order to analyze the influence of the matrix truncation and the basis function screen-

ing the energy difference compared to a standard O(N3) computation has been estimated

via correlated sampling [29], the results are presented in Tab. 5.2. It is clear from intuition

that the matrix truncation has the largest deteriorating impact on the results because of

its omnipresence in the algorithm. So it was even not possible to generate a Markov chain

with a sparse algebra threshold of thrSA = 10−5 since actually all trial moves have been

rejected, i.e. nearly all elements of Dρ vanished. From Tab. 5.2 one can see that the thresh-

olds 6/6/8 lead to an error in the order of 0.1 mHartree, a tight sparse threshold of 10−10
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does only result in an improved accuracy when thrP and thrBF are lowered simultaneously.

The necessity of a tight sparse threshold thrSA is clearly seen from the first three columns

with thrP = thrBF = thrSA.

Finally, one can state that a N -PDM VQMC calculation for linear alkanes with 6/6/8

yields results of 0.1 mHartree accuracy combined with an early onset of the linear scaling

behavior for a fixed sample size. Compared to a localized molecular orbital approach [135]

the density-based algorithm does not only provide rigorous error bounds but also allows

the application of the efficient sparse Cholesky decomposition [127]. As we will see in

section 5.6.1, a sparse LU factorization [164] is less efficient and exhibits an overhead of

two orders of magnitude for the presented examples (see Fig. 5.4 on page 126).

5.6 N-Particle Density Matrix-based

Diffusion Quantum Monte Carlo

In order to derive analogous equations for the popular FN-DQMC method in terms of the

N -particle density ρN , we have to reconsider the treatment of the fermion sign problem in

the conventional algorithm. As it has been mentioned in sec. 5.3, the use of the fixed-node

approximation is crucial in order to prevent an exponential decaying signal-to-noise ratio

[157]. The importance-sampled Green’s function G(R ← R
′
) in eq. 5.49 fulfills the detailed

balance condition

G̃(R ← R
′
)
(

ΨT
SJ(R

′
)
)2

= G̃(R
′ ← R)

(
ΨT

SJ(R)
)2

. (5.80)

Thus the Metropolis acceptance probability A(R ← R
′
) in eq. 5.16 is given as

A(R ← R
′
) = min

[

1,
G̃(R

′ ← R)ΨT
SJ(R)2

G̃(R ← R′)ΨT
SJ(R

′)2

]

= min

[

1,
e−(2τ)−1(R

′
−R−τFq(R))2

e−(2τ)−1(R−R
′−τFq(R′ ))2

(
ΨT

SJ(R)

ΨT
SJ(R

′)

)2
]

, (5.81)

where the second exponential term of G̃ in eq. 5.50, which contains the local energies,

vanishes because of its symmetry with respect to the exchange of R and R
′

e−
τ
2
(Eloc(R)−Eloc(R

′
))+τET = e−

τ
2
(Eloc(R

′
)−Eloc(R))+τET . (5.82)
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In the standard approach, the ratio of the wave function values ΨT
SJ(R) and ΨT

SJ(R
′
) is

used to impose the fixed-node approximation. If R and R
′
are in different nodal pockets

with opposite sign, the ratio is negative and the trial position R is discarded. It is obvious

that we could easily replace the squared wave function values in eq. 5.81 with the density

values

(
ΨT

SJ(R)

ΨT
SJ(R

′)

)2

=
ρN (R)

ρN(R′)
, (5.83)

but this would of course destroy the information on the sign of the nodal pockets.

In order to provide a remedy to this problem, we reformulate the different steps of the

FN-DQMC algorithm in terms of off-diagonal elements of the density ρN(R;R
′
). Note

that this choice seems to be natural if we reconsider the Green’s function as a thermal

density as it is done in path integral quantum Monte Carlo methods (PIQMC) [167, 168].

By translating this idea to the FN-DQMC algorithm we will be able to obtain the necessary

nodal information from the sign of the trial density ρN (R;R
′
) since

sign(ρN (R;R
′
)) = sign(ΨT

SJ(R)) · sign(ΨT
SJ
∗
(R

′
)). (5.84)

The algorithm as it is implemented in our QuantumMC package [142] is outlined in the

following (see also scheme in Fig. B.20).

Starting from an initial configuration Rα, the local energy, the gradient, the Laplacian

and the diagonal element ρN(Rα;Rα) are calculated as described for the density-based

VQMC algorithm in sec. 5.5. A new trial configuration is proposed as

Rα+1 = Rα + τFq(Rα) + Gτ , (5.85)

but instead of proceeding analogously to the VQMC algorithm, we determine the necessary

expectation values with off-diagonal elements of the density matrix

〈Ô(Rα+1)〉 = ρN(Rα+1;Rα)−1ÔρN(Rα+1;Rα), (5.86)

where the operator acts on Rα+1 only. After the evaluation of the basis function values
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and their derivatives for Rα+1, the following matrices are built:

Dρ(Rα+1;Rα) = χ(Rα+1)P (χ(Rα))†

=⇒ ρ1(r
α+1
i ; rα

j ) = Pµνχµ(r
α+1
i )χν(r

α
i ), (5.87)

Du,1st
ρ (Rα+1;Rα) = χ

u,1st(Rα+1)P (χ(Rα))† with u = x, y, z

=⇒ Du,1st
ρ,ij (Rα+1;Rα) = ∇u,iρ1(r

α+1
i ; rα

j ),, (5.88)

D2nd
ρ (Rα+1;Rα) = χ

2nd(Rα+1)P (χ(Rα))†

=⇒ D2nd
ρ,ij (Rα+1;Rα) = ∇2

i ρ1(r
α+1
i ; rα

j ). (5.89)

The expectation values are obtained by a Laplace expansion of the corresponding deter-

minants as in eq. 5.75 and eq. 5.76. In contrast to the determinant matrix Dρ in eq. 5.71

we have to deal with a non-symmetric matrix Dρ(Rα+1;Rα). Thus we cannot use the

Cholesky decomposition and have to resort to the LU factorization as it is used in the

conventional or the LMO-based algorithm [135, 149]. As it has been mentioned before, the

treatment of sparse matrices in a linear scaling LU factorization is by far more complicated

than in the Cholesky decomposition since pivoting has to be used. However, the UMF-

PACK library [165] provides a linear scaling routine which also supports the compressed

sparse row format (CSR) as used in our QuantumMC package. Since the number of

significant elements in all occurring matrices exhibit a linear scaling behavior with system

size, an overall O(N) scaling for the local energy is possible.

The last problem that has to be solved is the calculation of the ratio Ψ(Rα+1)/Ψ(Rα).

The determination of the nodes is easily done by tracing the sign of the density ρN(Rα+1;Rα),

i.e. its value is negative if the random walker moves into a nodal pocket of opposite sign.

The ratio is simply calculated as

ρN (Rα+1;Rα)

ρN (Rα;Rα−1)

(
Ψ(Rα)

Ψ(Rα−1)

)−1

=
Ψ(Rα+1)Ψ(Rα)

Ψ(Rα)Ψ(Rα−1)

Ψ(Rα−1)

Ψ(Rα)

=
Ψ(Rα+1)

Ψ(Rα)
, (5.90)

with the initial ratio

Ψ(R1)

Ψ(R0)
=

ρN(R1;R0)

ρN(R0;R0)
. (5.91)

When the matrix Pχ
† is kept in memory, the effort to compute a single time step in the

density matrix-based FN-DQMC algorithm is similar to the presented VQMC algorithm.
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Figure 5.3: N -PDM FN-DQMC calculations of a series of linear alkanes (basis: cc-

pVTZ). CPU times for for 1000 sampling steps of a single random walker. The standard

O(N3) routine for the LU factorization [105] is used. For an explanation of the integer

code (x/y/z) see the text on page 119.

5.6.1 Illustrative Calculations

As for theN -PDM VQMC algorithm, the scaling behavior is shown for the example of linear

alkanes. Analogously to the calculations presented in sec. 5.5.1, we used the one-particle

density matrices obtained by HF/cc-pVTZ calculations and the same correlation factors

are used as in the N -PDM VQMC calculations. The N -PDM FN-DQMC calculations have

been performed on a single Intel Xeon EM64T 3.0 GHz processor with our QuantumMC

program [142] using the sampling algorithm of Umrigar et al. [153].

As it has been shown in the preceding section, the linear scaling computation of the local

energy in FN-DQMC is possible by exploiting the sparsity of the occurring matrices by

efficient sparse algebra routines. Unfortunately, the LU factorization of sparse matrices

is much more involved because of the pivoting [164]. Since such a routine has not been
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Figure 5.4: N -PDM FN-DQMC calculations of a series of linear alkanes (basis: cc-pVTZ).

CPU times needed for the determination of the inverse
˜

D†ρ and the determinant value by

LU factorization. The CPU is measured for a single random walker and 1000 sampling

steps. The compression threshold for the determinant matrix D̃ρ(R;R
′
) if given by the

integer x in the legend (10−x).

developed in this work, we first circumvented the problem by using the standard O(N3)

algorithm [105]. From the N -PDM VQMC calculations in section 5.5.1 we know that

the prefactor of the Cholesky decomposition is small, so we expect the same behavior

for the O(N3) LU factorization. Therefore, the dense determinant matrix D̃ρ(R;R
′
) is

reconstructed from the sparse representation and treated within the O(N3) routine to form

the determinant and inverse (D̃ρ(R;R
′
))†, which is then compressed to sparse storage

format. The results for this approach are depicted in Fig. 5.3. Compared to the N -PDM

VQMC results in Fig. 5.2 on page 119 one can see that the N -PDM VQMC and N -PDM

FN-DQMC algorithms took approximately the same amount of CPU time as one would

also expect from the equations in section 5.5 and 5.6.
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Because of the small prefactor of the O(N3) LU routines we obtained an overall linear

scaling behavior for the computation of the local energy Eloc (see also Fig. 5.4). For larger

systems this step would of course dominate the computation time, thus we also tested

the routines of the UMFPACK library [165]. As be seen from the results shown in Fig.

5.4 and Fig. B.21, the LU routines are extremely inefficient for the calculated systems.

The prefactor of the sparse routine is at least 25 for C30H62 if the determinant matrix

is re-compressed with respect to thr = 10−5 before the LU factorization. Note that the

sparse algebra threshold is 10−8 for each calculation, thus the scaling behavior of the LU

factorization clearly dominates the overall scaling as shown in Fig. B.21. Even if the

determinant matrix is re-compressed before the LU factorization is applied, the sparse

algebra calculations are only slightly faster than the O(N3) calculation (see Fig. B.22).

The later onset of the sparse LU factorization may explain the claim of Manten and

Lüchow [135] to need a cut-off parameter for the construction of the localized molecular

orbitals. Even if the LMO determinant matrix exhibits a more sparse structure than the

density determinant, a further truncation could have been necessary in order to achieve a

linear scaling behavior for the treated system size. We also experience this problem of a

late onset of the O(N) behavior for the sparse LU algorithm. However, since the prefactor

of the routine to construct the inverse and the determinant is small compared to the matrix

multiplications, we have to consider the application of sparse LU routines only for larger

system sizes than those presented in this work. It has to be mentioned further that the

UMFPACK library treats sparse matrices in a more strict way, i.e. only elements that are

equal to zero are neglected. We expect that a corresponding routine that truncates the

matrices with respect to a given threshold thrSA would further improve the performance

of the sparse LU factorization.

The error introduced by the basis functions screening and the truncation of matrices

can be seen from Tab. 5.2 for the N -PDM VQMC calculations. Thus we can obtain results

of 0.1 mHartree accuracy with thresholds 6/6/8 in a linear scaling time with system size

for electronic structures exhibiting a significant HOMO-LUMO gap.
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Chapter 6

Conclusions and Perspectives

In this work we have presented new linear scaling ab initio methods for predicting different

properties of chemical systems. All these methods are formulated in the basis of reduced

electron density matrices, which reflect the naturally local electronic structure of systems

exhibiting a non-vanishing HOMO-LUMO gap. This allows the application of efficient

O(M) sparse algebra routines since dense matrices are strictly avoided and thus an overall

linear scaling behavior is provided.

Our D-GIAO-SCF method has been shown to yield an overall linear scaling behavior

with system size for the calculation of NMR chemical shielding tensors at the HF and KS-

DFT level of theory. While traditional O(M3) methods are restricted to the hundred atoms

regime, our density matrix-based method allows the treatment of systems with thousand

and more atoms on single processor machines. With this at hand we are, for example,

able to converge the NMR chemical shifts with respect to the influences of the surrounding

environment. This has been shown for first exemplary applications to solid- and solution-

state systems. The theoretical estimate of solid-state NMR shifts of a molecular host-guest

complex was improved by 0.3 ppm compared to an incremental approach by calculating a

pentamer containing 490 atoms with a suitable basis set (6-31G*). In a second example, we

were able to converge the NMR chemical shifts of a molecular clip in solution with respect

to the size of the hydration shell size, where the largest system contained 1003 atoms with

a 6-31G** basis set.

In the second part of this work a new O(M) D-TDSCF methods for determining the

linear or quadratic response to an external electric field provide an efficient way to calcu-

late optical properties of molecular systems in a linear scaling fashion. The O(M) scal-

129



CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

ing behavior is demonstrated for a series of linear alkanes calculated at the D-TDDFT

BP86(VWN)/6-31G* level of theory. Furthermore, we describe the calculation of the first

hyperpolarizabilities by exploitation of Wigner’s (2n+ 1) rule in terms of density matrices

which reduces the number of iterative calculations. The accuracy of the density matrix-

based methods has been shown for the example of para-nitroaniline, where the results are

compared to reference values which have been obtained in the conventional way using other

established program packages. It has to be mentioned that the response to an electric field

is less local than the response to a magnetic field, so one can recognize a decreased sparsity

in the transition densities which results in a later onset of the linear scaling behaviora).

The new N -PDM QMC methods that cover the last part of this work provide a new

approach to obtain a linear scaling behavior for the local energy in variational and dif-

fusion quantum Monte Carlo. The exploitation of the natural sparsity of the occurring

quantities with efficient sparse algebra routines has been shown to yield fast QMC results

without loss of accuracy. In case of the variational approach, the reformulation in terms

of a real probability density ρN in contrast to the wavefunction also enables one to use a

fast Cholesky decomposition instead of the more involved LU algorithm. The loss of the

nodal information by using the N -particle density has been prevented by reformulating

the DQMC equations in terms of off-diagonal elements of the N -particle density matrix.

It has been shown that the use of the sparse LU routines of the UMFPACK library [165]

is not efficient for the calculated system sizes. However, because of the small prefactor

of this step, we only have to resort to sparse LU factorizations for larger systems. Thus,

with the possibility to account for the nodal information within our density matrix-based

approach, our new method can be applied to any QMC method using trial functions like

e.g. reptation QMC [169]. Furthermore it has to be mentioned that the presented schemes

are of course also easily extendable to the calculation of energy derivatives [170–172].

The methods developed in this work have contributed to extend the capabilities in

computing properties for large molecular systems. In this way, new insights into chemi-

cal and biochemical systems can be attained. Nevertheless, many challenges remain for

methodological improvements to reduce the scaling behavior and the prefactor of algo-

rithms to determine molecular properties or to account for electron correlation effects in

large systems.

a)As first calculations have shown, the number of significant elements grows with increasing frequency

ω.
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[136] D. Alfé, M.J. Gilan, J. Phys.: Condens. Matter 16, L305 (2004).

[137] A. Aspuru-Guzik, R. Slalomón-Ferrer, B. Austin, W.A. Lester Jr., J. Comp. Chem

26, 708 (2005).

[138] A. J. Williamson, R. Q. Hood and J. C. Grossmann, Phys. Rev. Lett. 87, 246406

(2001).

[139] F. A. Reboredo and A. J. Williamson, Phys. Rev. B 71, 121105 (2005).

[140] K.E. Schmidt, J.W. Moskowitz, J. Chem. Phys. 93, 4172 (1990).

[141] S.F. Boys, N.C. Handy, Proc. R. Soc. London, Ser. A 310, 43 (1969).

[142] J. Kussmann, C. Ochsenfeld, QuantumMC: A parallel quantum Monte Carlo code

in C++ providing VQMC and DQMC algorithms.

[143] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the

Natural Sciences, 3rd Ed., Springer Series in Synergetics, Springer-Verlag Berlin, 2004.

[144] W. Feller, An Introduction to Probability Theory and its Applications, Vol.1, 3rd

Ed., Wiley NY 1968.

[145] H. Flyvbjeg, H.G. Petersen, J. Chem. Phys 91, 416 (1989).

[146] N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949).

[147] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller, E. Teller,

J. Chem. Phys. 21, 1087 (1953).

139



BIBLIOGRAPHY BIBLIOGRAPHY

[148] A.A. Markov, Extension of the limit theorems of probability theory to a sum of

variables connected in a chain, in R. Howard, Dynamic Probabilistic Systems, Vol. 1:

Markov Chains, Wiley NY, 1971.

[149] S. Fahy, X.W. Wang, S.G. Louie, Phys. Rev. B 42, 3503 (1990).

[150] M.P. Nightingale, in Quantum Monte Carlo Methods in Physics and Chemistry,

P. Nightingale and C.J. Umrigar (Eds.), NATO ASI Series, Series C, Mathematical

and Physical Sciences, Vol. 525, Kluwer Academic Publishers, Boston, 1999.

[151] C.J. Umrigar, in Quantum Monte Carlo Methods in Physics and Chemistry,

P. Nightingale and C.J. Umrigar (Eds.), NATO ASI Series, Series C, Mathematical

and Physical Sciences, Vol. 525, Kluwer Academic Publishers, Boston, 1999.

[152] C.J. Umrigar, K.G. Wilson, J.W. Wilkins, Phys. Rev. Lett. 60, 1719 (1988).

[153] C.J. Umrigar, M.P. Nightingale, K.J. Runge, J. Chem. Phys. 99, 2865 (1993).

[154] H.F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).

[155] M. Suzuki, S. Miyashita, A. Kuroda, Prog. Theor. Phys. 58, 1377 (1977).

[156] R.C. Grimm, R.G. Storer, J. Comp. Phys. 7, 134 (1971).

[157] W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).

[158] L. Mitas, in Quantum Monte Carlo Methods in Physics and Chemistry, P. Nightin-

gale and C.J. Umrigar (Eds.), NATO ASI Series, Series C, Mathematical and Physical

Sciences, Vol. 525, Kluwer Academic Publishers, Boston, 1999.

[159] Hella Riede, diploma thesis, AK Ochsenfeld, Universität Tübingen (2005).
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Appendix A

Derivatives of the

Exchange-Correlation Potential

In the following the general equations to form the third order derivatives of the XC energy

functional of LSDA and GGA type, respectively, are derived. The partial derivatives of the

functionals to form the final term in eq. 3.175 as well as the first order transition densities

have to be provided. In this work the third order derivatives of the following exchange and

correlation functionals have been implemented:

Exchange Correlation

Slater’s Xα Wigner

Becke (1988) Vosko/Wilks/Nusair (RPA)

Vosko/Wilks/Nusair (No. 5)

Perdew-Zunger (1981)

Perdew’s GGA (1986, with VWN (No. 5)

and Perdew-Zunger LSDA kernel)

Lee-Yang-Parr

So the popular Becke’s three-parameter formula in combination with the LYP functional

is also possible.
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APPENDIX A. DERIVATIVES OF THE EXCHANGE-CORRELATION POTENTIAL

A.1 Local Spin Density Approximation

Since the LSDA functionals only depend on the local density Exc = f(ρ), the XC potential

and its first and second order derivatives are easily derived as

〈χµ|v̂xc|χν〉α =

∫
∂Exc

∂ρα

χµχνdr, (A.1)

〈χµ|v̂x
xc|χν〉α =

∫
(

∂2Exc

∂ρ2
α

ρx
α +

∂2Exc

∂ρα∂ρβ

ρx
β

)

χµχνdr, (A.2)

〈χµ|v̂xy
xc |χν〉α =

∫
(

∂2Exc

∂ρ2
α

ρxy
α +

∂2Exc

∂ρα∂ρβ
ρxy

β

)

χµχνdr

+

∫
(

∂3Exc

∂ρ3
α

ρx
αρ

y
α +

∂3Exc

∂ρ2
α∂ρβ

[
ρx

αρ
y
β + ρy

αρ
x
β

]

+
∂3Exc

∂ρα∂ρ2
β

ρx
βρ

y
β

)

χµχνdr, (A.3)

with similar expressions for β. As mentioned before, the last term of the second derivative

can be directly computed from the first order transition densities ρx while the first term is

treated in the iterative process with the same routines as used for the linear response in

eq. A.2.

A.2 Generalized Gradient Approximation

The case for GGA functionals is more complicated since the XC functional also depends

on the density gradient |∇ρ|. The XC potential in the given basis is

〈χµ|v̂xc|χν〉 =

∫
∂Exc

∂ρ
χµχνdr +

∫
∂Exc

∂|∇ρ|
∇iρ

|∇ρ|∇i(χµχν), (A.4)

where the Einstein sum convention is used for the index i of the gradient components of

the density and basis functions. Within a computational scheme it is easier to treat the

functional derivatives with respect to the square of the density gradient ζ = (∇ρ)2, so with

the substitution

∂Exc

∂|∇ρ| =
∂Exc

∂ζ

∂ζ

∂|∇ρ|

=
∂Exc

∂ζ
2|∇ρ| (A.5)
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we obtain for eq. A.4

〈χµ|v̂xc|χν〉 =

∫
∂Exc

∂ρ
χµχνdr + 2

∫
∂Exc

∂ζ
∇iρ∇i(χµχν). (A.6)

From the functional evaluation we obtain the derivatives with respect to ρ and (∇iρ)
2, so

we form the linear response of the XC potential as

〈χµ|v̂x
xc|χν〉α =

∫
(

∂2Exc

∂ρ2
α

ρx
α +

∂2Exc

∂ρα∂ρβ

ρx
β

+ 2
∂2Exc
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x
α + 2

∂2Exc

∂ρα∂ζβ
∇iρβ∇iρ

x
β

+
∂2Exc

∂ρα∂ζαβ

[
∇iρα∇iρ

x
β +∇iρβ∇iρ

x
α

]

)

χµχνdr

+

∫
(

4
∂2Exc
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α
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x
α + 4
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x
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∫
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x
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∂ζαβ
∇iρ

x
β

)

∇i(χµχν)dr. (A.7)

While denoting 〈χµ|v̂x
xc(ρ

xy)|χν〉α as eq. A.7 with ρx replaced by ρxy, a further differentiation

yields the quadratic response. Since the expression is a bit lengthly, we split it up into a

sum of terms presented in the following:

〈χµ|v̂xy
xc |χν〉α = 〈χµ|v̂x

xc(ρ
xy)|χν〉α

+ T1 + T2 + T3 + T4 + T5. (A.8)
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T1 =
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Appendix B

Figures

Figure B.1: Convergence of purification transformation for diffferent starting values (left).

Purification of density of α-D-glucose within numerical accuracy (∼ 10−16) after one ge-

ometry optimization step within D-QCSCF calculation with HF/6-31G* (right), the loga-

rithmic value of the norm of the residual (log ||Pi−Pi−1||) is given as test for convergence.
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Figure B.2: Localization of electrons at the example of Peierls distortion. The 1-particle

reduced density matrix ρ1(r; r
′) is plotted for r = 0 (center of chain) and different values

of r′. The full line indicates the band of hydrogen molecules (molecular) with intra- and

intermolecular distances of 1.40 a.u. and 3.32 a.u., respectively. The broken line represents

the system of equidistant hydrogen atoms (metallic) with distance 2.36 a.u.. In the lower

right corner the MO energies are depicted, both systems contain 142 hydrogen atoms

calculated with RHF/6-311G**.
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Figure B.3: GIAO-HF/6-31G* of linear alkanes (thr: 10−6, thrSA: 10−6) on Intel Xeon

EM64T 3.6GHz processor (Linux): C20H42, C40H82, C80H162, C160H322.
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Figure B.4: GIAO-KS-DFT BP86(VWN5)/6-31G* of 1-4 connected amylose chains (thr:

10−7, thrSA: 10−7) on Intel Xeon EM64T 3.6GHz (Linux): α-D-glucose, 2 x α-D-glucose,

4 x α-D-glucose, 8 x α-D-glucose, 16 x α-D-glucose, 32 x α-D-glucose.
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Figure B.5: Scheme of D-CPSCF algorithm.

Loop over batches of perturbations

Form RHS

Initial Loop Level-1

Conjugate Gradient to solve A1x = b

End of Loop

Loop Level-2:

Form A2x

DIIS: extrapolation of A2x, Px, Res2 = ||b− [A2x + A1x]|| and
Res1 = ||b−A1x||

If (||Res2|| < convcrit): exit Loop

Loop Level-1

Conjugate gradient to solve A1x = b−A2x

End of Loop

End of Loop

End of Loop
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Figure B.6: TDDFT-BP86(VWN)/6-31G* to calculate the static polarizability tensor

of linear alkanes (thr: 10−7, thrSA: 10−7) on Intel Xeon EM64T 3.6GHz (Linux): C20H42,

C40H82, C80H162, C160H322, C240H482.
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Figure B.7: Frequency-dependent polarizability for hydrogen fluoride with

BP86(VWN)/6-31G*. Shaded areas in the left figure sign regions close to the poles of

the polarization propagator; on the right the dots centered in a shaded area denote fre-

quencies that equal virtual-occupied orbital diffferences.
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Figure B.8: TDDFT-BP86(VWN)/6-31G* using Wigner’s (2n+ 1) rule to calculate the

static hyperpolarizability tensor of linear alkanes (thr: 10−7, thrSA: 10−7) on Intel Xeon

EM64T 3.6GHz (Linux): C20H42, C40H82, C80H162, C160H322, C240H482. Only the times for

the calculation of V
(3)
xc (Px,Py) and the evaluation of eq. 3.191 are given, the first order

quantities are provided by a first order TDDFT calculation (see Fig. B.6).
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Figure B.9: HCF3 molecule with HF/6-31G*. Fluctuations in the maximal element of

P wihtin 1000 purification steps for different screening schemes. P̃ = 3PSP − 2PSPSP

(straight line: not screened, broken lines: screened).
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Figure B.10: HCF3 molecule with HF/6-31G*. Flop-counting for 1000 purification steps

with thrSA = 10−5 for different screening schemes.
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Figure B.11: HCF3 molecule with HF/6-31G*. Sparsity in percent of P within 1000

purification steps with thrSA = 10−5 for different screening schemes.
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Figure B.12: Amylose chain of 8 a-D-glucose units. Sum of Giga-Flops for different

Level-1 iterations within GIAO-KS-DFT BP86(VWN)/6-31G* (thrSA = 10−7).
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Figure B.13: Applying screening techniques to sparse multiplications. Calculations as in

Fig. B.4, times for linear equation solver without screening and SMT-A.
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Figure B.14: Scheme of SMT-A/B/C/x screening modifications of sparse matrix multi-

plication routine. nA is the real length of the actual row of matrix A, nAB1 the minimum

of nA and the maximum of real lengths of the columns of the corresponding elements in

the actual row of matrix B, nAB2 the minimum of nA and the maximum of real lengths

of all columns of matrix B, nAB3 the minimum of nA and the average real length of the

columns of matrix B.

Preordering of elements of each row of matrix B in decreasing order

Loop over N rows of A:
∑N

i=1

Loop over constant number of elements in row i:
∑const

k=1 Aik

If SMT-A: threff = thrSA/nAB1

If SMT-B: threff = thrSA/nAB2

If SMT-C: threff = thrSA/nAB3

If SMT-D: threff = thrSA/nA

If SMT-x: threff = thrSA · 10−x

Determine contraction length NSMT with respect to threff/abs(Aik)

Loop over constant number of elements in row k of matrix B:
∑NSMT

j=1 Bkj

Add product to corresponding element in matrix C: Cij = Cij +AikBkj

End of Loop

End of Loop

Store significant elements of row i of matrix C

End of Loop
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Figure B.15: Plot of the first (left) and second (right) derivative of the 1s-function of

lithium in the cc-pVTZ basis as function of the electron-nuclear distance r. The broken

line is the derivative of the simple contracted Gaussian while the full line shows the basis

function that has been fitted to a Slater-type function in the near-nucleus region.
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Figure B.16: Scheme of algorithm to compute ρN and its 1st and 2nd derivatives with

respect to the single electron positions within N -PDM VQMC.

For α- and β-electrons:

- Build χ, χ
xyz,1st, χ

2nd into sparse matrix (5 x O(N))

- Multiplies: (6 x O(N))

Dρ = χPχ
†

Du,1st
ρ = χ

u,1stPχ
†

D2nd
ρ = χ

2ndPχ
†

- Cholesky decomposition of Dρ: (4 x O(N))

- Build Cholesky factor: L

- Form determinant: detDρ = ρN =
∏

i

Lii

- Build inverse Cholesky factor: L−1

- Build inverse: D̃ρ = (L−1)TL−1

- Determine values of gradients of Laplacian: (4 x O(N))

ρN (R;R
′
)−1∇u,iρN (R;R

′
) = D̃ρ,ijD

u,1st
ρ,ij

ρN (R;R
′
)−1∇2

iρN (R;R
′
) = D̃ρ,ijD

2nd
ρ,ij
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Figure B.17: N -PDM VQMC calculations of a series of linear alkanes (basis: cc-pVTZ).

CPU times needed to evaluate the basis functions of a single random walker an 1000

sampling steps. The three numbers that are given for the calculations with screening and

sparse algebra denote the threshold settings. E.g. x/y/z: 10−x for basis function screening,

10−y as general sparse matrix cut-off and 10−z as compression threshold for the discrete

Fock-Dirac density P.
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Figure B.18: N -PDM VQMC calculations of a series of linear alkanes (basis: cc-pVTZ).

CPU times needed for the matrix multiplies of a single random walker an 1000 sampling

steps. The three numbers that are given for the calculations with screening and sparse

algebra denote the threshold settings. E.g. x/y/z: 10−x for basis function screening,

10−y as general sparse matrix cut-off and 10−z as compression threshold for the discrete

Fock-Dirac density P.
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Figure B.19: Number of significant elements in P for a given threshold 10−x.
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Figure B.20: Scheme of algorithm to compute ρN and its 1st and 2nd derivatives with

respect to the single electron positions within N -PDM FN-DQMC.

For α- and β-electrons:

- Build χ(Rα), χ
xyz,1st(Rα), χ

2nd(Rα) into sparse matrix (5 x O(N))

- Multiplies: (6 x O(N))

P(χ(Rα))† (save matrix for the next cycle)

Dρ = χ(Rα)P(χ(Rα−1))
†

Du,1st
ρ = χ

u,1st(Rα)P(χ(Rα−1))
†

D2nd
ρ = χ

2nd(Rα)P(χ(Rα−1))
†

- LU decomposition of Dρ: (4 x O(N))

- Build LU factors (UMFPACK): L, U

- Form determinant: detDρ(Rα;Rα−1) = ρN (Rα;Rα−1) =
∏

i

Lii

- Build inverse by

backsubstitution: D̃ρ(Rα;Rα−1)

- Transpose inverse: (D̃ρ(Rα;Rα−1))
†

- Determine values of gradients of Laplacian: (4 x O(N))

ρN (Rα;Rα−1)
−1∇u,iρN(Rα;Rα−1) = (D̃ρ(Rα;Rα−1))

†
ijD

u,1st
ρ (Rα;Rα−1)ij

ρN (Rα;Rα−1)
−1∇2

i ρN(Rα;Rα−1) = (D̃ρ(Rα;Rα−1))
†
ijD

2nd
ρ (Rα;Rα−1)ij
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Figure B.21: N -PDM FN-DQMC calculations of a series of linear alkanes (basis: cc-

pVTZ). CPU times for for 1000 sampling steps of a single random walker. The LU factor-

ization and the construction of the inverse determinant matrix D̃ρ is performed with the

routines of the UMFPACK library [165]. before the LU factorization as in Fig. B.22. The

three numbers that are given for the calculations with screening and sparse algebra denote

the threshold settings. E.g. x/y/z: 10−x for basis function screening, 10−y as general sparse

matrix cut-off and 10−z as compression threshold for the discrete Fock-Dirac density P.
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Figure B.22: N -PDM FN-DQMC calculations of a series of linear alkanes (basis: cc-

pVTZ). CPU times for for 1000 sampling steps of a single random walker. The determinant

matrix is recompressed with respect to thrP. The routines of the UMFPACK library are

used to perform the LU factorization and the construction of the inverse determinant

matrix D̃ρ. The three numbers that are given for the calculations with screening and

sparse algebra denote the threshold settings. E.g. x/y/z: 10−x for basis function screening,

10−y as general sparse matrix cut-off and 10−z as compression threshold for the discrete

Fock-Dirac density P.
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Tables

Table C.1: Structure of para-nitroaniline as Cartesian coordinates in Å (C2v symmetry).

The geometry is obtained from a geometry optimization with B3LYP/6-31G*

Atom x y z

C 0.000000 0.000000 2.083262

N 0.000000 0.000000 3.450969

H 0.861349 0.000000 3.972676

C -1.215837 0.000000 1.362624

H -2.158663 0.000000 1.903552

C -1.215378 0.000000 -0.021632

H -2.141991 0.000000 -0.582542

C 0.000000 0.000000 -0.711767

N 0.000000 0.000000 -2.165325

O -1.090947 0.000000 -2.744236

O 1.090947 0.000000 -2.744236

H -0.861349 0.000000 3.972676

C 1.215378 0.000000 -0.021632

H 2.141991 0.000000 -0.582542

C 1.215837 0.000000 1.362624

H 2.158663 0.000000 1.903552
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Table C.2: Frequency-dependent polarizabilities of para-nitroaniline with HF/6-31G*.

Only non-zero elements of the tensor are given in 10−25 esu (1 a.u. = 1.48× 10−25cm−3).

Method Frequency [a.u.]/[eV] αxx αyy αzz ᾱ

D-TDSCF 0.0000/0.000 129.61 42.80 181.18 117.87

0.0240/0.650 130.02 42.83 182.38 118.41

0.0478/1.300 131.27 42.90 186.17 120.11

MO-TDSCF 0.0000/0.000 129.61 42.80 181.18 117.87

0.0240/0.650 130.02 42.83 182.38 118.41

0.0478/1.300 131.27 42.90 186.17 120.11

Table C.3: Frequency-dependent polarizabilities of para-nitroaniline with B3LYP/6-

31G*. Only non-zero elements of the tensor are given in 10−25 esu (1 a.u. = 1.48 ×
10−25cm−3).

Method Frequency [a.u.]/[eV] αxx αyy αzz ᾱ

D-TDDFT 0.0000/0.000 132.34 42.93 208.06 127.78

0.0240/0.650 132.80 42.96 210.30 128.69

0.0478/1.300 134.21 43.04 217.67 131.64

MO-TDDFT 0.0000/0.000 132.34 42.93 208.06 127.78

0.0240/0.650 132.80 42.96 210.30 128.69

0.0478/1.300 134.21 43.04 217.67 131.64
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Table C.4: Frequency-dependent first hyperpolarizabilities of para-nitroaniline with

HF/6-31G* and frequency ω = 0.024 a.u. (0.650 eV). Only non-zero elements of the

tensor are given in 103 esu (1 a.u. = 8.64× 10−33g−1/2cm7/2s).

Method Property βxxz βyyz βzxx βzyy βzzz β̄z

D-TDSCF β(0; 0, 0) -0.848 -0.002 -0.848 -0.002 4.652 3.802

β(−2ω,+ω,+ω) -0.877 -0.002 -0.902 -0.002 5.038 4.150

β(0,+ω,−ω) -0.863 -0.002 -0.855 -0.002 4.775 3.914

MO-TDSCF β(0; 0, 0) -0.848 -0.002 -0.848 -0.002 4.652 3.802

β(−2ω,+ω,+ω) -0.877 -0.002 -0.902 -0.002 5.038 4.150

β(0,+ω,−ω) -0.863 -0.002 -0.855 -0.002 4.775 3.914

Table C.5: Frequency-dependent first hyperpolarizabilities of para-nitroaniline with

B3LYP/6-31G* and frequency ω = 0.024 a.u. (0.650 eV). Only non-zero elements of

the tensor are given in 103 esu (1 a.u. = 8.64× 10−33g−1/2cm7/2s).

Method Property βxxz βyyz βzxx βzyy βzzz β̄z

D-TDSCF β(0; 0, 0) -0.658 -0.009 -0.658 -0.009 6.475 5.808

β(−2ω,+ω,+ω) -0.679 -0.010 -0.722 -0.010 7.481 6.778

β(0,+ω,−ω) -0.674 -0.009 -0.661 -0.009 6.785 6.106

MO-TDSCF β(0; 0, 0) -0.658 -0.009 -0.658 -0.009 6.475 5.808

β(−2ω,+ω,+ω) -0.679 -0.010 -0.722 -0.010 7.481 6.778

β(0,+ω,−ω) -0.674 -0.009 -0.661 -0.009 6.785 6.106
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Table C.6: Second harmonic generation of para-nitroaniline with D-TDDFT B3LYP/6-

31G*. Only non-zero elements of the tensor are given in 103 esu (1 a.u. = 8.64 ×
10−33g−1/2cm7/2s).

Frequency [eV] βxxz βyyz βzxx βzyy βzzz β̄z

1.170 -0.731 -0.011 -0.942 -0.015 10.928 10.114

1.361 -0.762 -0.012 -1.127 -0.018 13.855 12.955

1.494 -0.788 -0.013 -1.342 -0.022 17.235 16.246

Table C.7: HCF3 molecule with HF/6-31G* (NBF=62, N2
BF=3844). Explicit sparsity

pattern of P after 1000 purification steps.

Global Threshold Threshold

10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

10−3 (not screened) 98.0 75.7 49.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0

10−3 (screened/SMT-0) 72.4 5.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10−3 (screened/SMT-A) 98.4 74.3 51.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4

10−5 (not screened) 97.9 76.3 44.6 19.8 12.7 12.7 12.7 12.7 12.7 12.7

10−5 (screened/SMT-0) 98.2 70.9 19.1 1.1 0.2 0.1 0.1 0.1 0.1 0.1

10−5 (screened/SMT-A) 97.9 76.3 44.6 20.0 13.3 13.3 13.3 13.3 13.3 13.3

10−7 (not screened) 97.9 76.3 44.5 19.8 12.7 11.5 10.9 10.9 10.9 10.9

10−7 (screened/SMT-0) 97.9 76.3 44.8 20.0 5.7 0.7 0.1 0.1 0.1 0.1

10−7 (screened/SMT-A) 97.9 76.3 44.5 19.9 12.7 11.4 10.6 10.5 10.5 10.5

10−9 (not screened) 97.9 76.3 44.5 19.8 12.7 11.5 10.7 8.8 5.6 5.6

10−9 (screened/SMT-0) 97.9 76.3 44.5 19.8 12.7 11.4 4.6 0.4 0.1 0.1

10−9 (screened/SMT-A) 97.9 76.3 44.5 19.8 12.7 11.5 10.7 8.6 5.7 5.7
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Table C.8: Convergence behavior of GIAO-HF/6-31G* of linear alkanes: Norm of

residuum ||Res|| = ||(RHS− LHS)||.

Iteration NL1 C20H42 C40H82 C80H162 C160H322

1 19 1.2731e-01 1.2859e-01 1.2914e-01 1.2944e-01

2 15 4.1289e-02 4.1387e-02 4.1390e-02 4.1397e-02

3 10 8.6946e-03 8.8681e-03 8.9621e-03 9.0115e-03

4 6 1.2992e-03 1.3220e-03 1.3368e-03 1.3447e-03

5 2 9.0621e-04 9.2402e-04 9.4192e-04 9.4999e-04

Table C.9: Integer coefficients of EJ5 short-ranged Schmidt-Moskowitz correlation factor

[135].

Term m n o

1 0 0 1

2 0 0 2

3 2 0 0

4 3 0 0

5 4 0 0
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Appendix D

Atomic Units

Energy 1 Hartree = Ea = 4.3598 · 10−18 J

Mass me = 9.1095 · 10−31 kg

Charge e = 1.6022 · 10−19 C

Length a0 = 5.2918 · 10−11 m

Angular momentum h̄ = 1.0546 · 10−34 Js

Electric dipole moment ea0 = 8.4784 · 10−30 Cm

Electric polarizability e2a2
0E−1

a = 1.6488 · 10−41 C2m2J−1

= 1.4818 · 10−25 cm−3

First electric hyperpolarizability e3a3E−2
a = 3.2064 · 10−53 C3m3J−2

= 8.6347 · 10−33 cm5esu
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Appendix E

Abbreviations and Symbols

AO Atomic orbital

a.u. Atomic units

B3LYP Becke’s three-parameter formula with Lee-Yang-Parr

GGA functional

BP96(VWN) Becke exchange functional, Perdew’s correlation func-

tional from 1986 with VWN kernel

CCA Coupled cluster approximation

CCSD Coupled cluster single doubles

CCSDT Coupled cluster single doubles triples

CCSD(T) Coupled cluster single doubles (perturbative triples)

CFMM Continuous fast multipole method

CI Configuration interaction

CPSCF Coupled-perturbed self-consistent field

CSR Compressed sparse row

D-CPSCF Density matrix-based coupled-perturbed self-consistent

field

D-QCSCF Density matrix-based quadratically convergent self-

consistent field

D-TDSCF Density matrix-based time-dependent self-consistent

field

DFT Density functional theory
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DIIS Direct inversion in iterative subspace

DQMC Diffusion quantum Monte Carlo

EJ5 Exponential short-ranged distance correlation factor

EOP Electro-optical Pockels effect

esu Electro-static units

eV Electron volt

FCI Full configuration interaction

FF Far-field

FMM Fast multipole method

FN Fixed-node

FN-DQMC Fixed-node diffusion quantum Monte Carlo

fs Femto seconds

GGA Generalized gradient approximation

GIAO Gauge-including atomic orbital

HF Hartree-Fock

HK Hohenberg-Kohn

HOMO Highest occupied molecular orbital

IPM Independent particle model

K Kelvin

KS Kohn-Sham

LCBF Linear combination of basis functions

LEQS Linear equation system

LHS Left-hand side of linear equation system

LinK Linear exchange K

LMO Localized molecular orbital

LSDA Local spin-density approximation

LUMO Lowest unoccupied molecular orbital

MAV Maximal absolute value

MBPT Many-body perturbation theory

MMFF94 Merck molecular force field 94

MO Molecular orbital

MO-CPSCF Molecular orbital-based coupled-perturbed self-

consistent field
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MO-TDSCF Molecular orbital-based time-dependent self-consistent

field

MP2 Møller-Plesset second order perturbation theory

NAD+ Nicontinamide adenine dinucleotide

NF Near-field

NMR Nuclear magnetic resonance

N -PDM N -particle density matrix

N -PDM FN-DQMC N -particle density matrix-based fixed-node diffusion

quantum Monte Carlo

N -PDM VQMC N -particle density matrix-based variational quantum

Monte Carlo

occ Occupied subspace

OR Optical rectification

PIQMC Path integral quantum Monte Carlo

PNA Para-nitroaniline

ppm Parts per million

ps Pico seconds

QMC Quantum Monte Carlo

RISSM Row-indexed sparse storage model

RHS Right-hand side of linear equation system

RPA Random phase approximation

SCF Self-consistent field

SHG Second harmonic generation

SMT Sparse modified thresholding

TCNQ Tetracyano-p-quinodimethane

TDHF Time-dependent Hartree-Fock

TDDFT Time-dependent density functional theory

TDSCF Time-dependent self-consistent field

virt Virtual (unoccupied) subspace

VQMC Variational quantum Monte Carlo

XC Exchange-correlation
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Å Ångstrom

A Vector potential

Aoo Occupied-occupied projection of matrix A

(Aoo = SPAPS, A: covariant)

Aov Occupied-virtual projection of matrix A

(Aov = SPA(1−PS), A: covariant)

Avo Virtual-occupied projection of matrix A

(Avo = (1− SP)APS, A: covariant)

Avv Virtual-virtual projection of matrix A

(Avv = (1− SP)A(1−PS), A: covariant)

A(R
′
i ← Ri) Element of acceptance matrix, acceptance probability

for R
′
emerging from R

B Magnetic field vector

C Molecular orbital coefficients matrix

δ Relative NMR chemical shifts (in ppm)

D Determinant matrix (MO)

D̃ Inverse of transposed determinant matrix (D̃ = (D†)−1)

Dρ Determinant matrix (Density)

D̃ρ Inverse of determinant matrix (D̃ρ = D−1
ρ )

Dot[A,B] Scalar product of matrices A and B (
∑

i,j AijBij)

E Electric field strength

Eecorr Correlation energy

Eloc Local energy

Em Estimated energy via mixed estimator

ET Energy estimate

Exc Exchange-correlation energy

eU Correlation factor

F Fock matrix

Fq Quantum Force, drift velocity

fxc First-order derivative of XC functional

G(P) G(P) = J(P) + K(P)

G(R←R
′
, τ) Green’s function

gxc Second-order derivative of XC functional
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Ĥ Hamiltonian

H Core-Hamiltonian matrix

h Planck’s constant

h̄ Planck’s constant divided by 2π

J Coulomb matrix

K Exchange matrix

L Lagrangian

L Number of samples

M(R
′ |R) Element of Markov matrix, transition probability for

R → R
′

mA Nuclear magnetic moment vector of atom A

O(Mx) Scaling behavior with respect to system size

O(Nx) Scaling behavior with respect to number of electrons

P Probability distribution

P Fock-Dirac or one-electron density in discrete represen-

tation

Pocc Projector onto occupied subspace (Pocc = PS)

Pvirt Projector onto virtual subspace (Pvirt = 1−PS)

PMO Diagonal matrix containing occupation numbers

R Electron configuration

RA Cartesian coordinates of nucleus A

ri Cartesian coordinates of electron i

S Metric

T̂ Kinetic energy operator

Tr[A] Trace of matrix A

T (R
′
i ← Ri) Element of proposal matrix, proposal probability for R

′

emerging from R

thrSA Sparse algebra threshold

thrBF Basis function threshold

thrP Compression threshold for one-particle density matrix

U Transition coefficients matrix

V̂ Potential energy operator

V
(2)
xc Matrix representation of fxc

189



APPENDIX E. ABBREVIATIONS AND SYMBOLS

V
(3)
xc Matrix representation of gxc

vext External potential

veff Effective Kohn-Sham potential

xi Space-spin coordinates of electron i

ZA Nuclear charge number of nucleus A

α Polarizability

β First-order hyperpolarizability

ǫ Orbital energy

π = ρ2 2-particle reduced density

ρn n-particle reduced density

ρ = ρ1 1-particle reduced density

ρ̂τ Thermal density operator

σ Nuclear magnetic shielding tensor

σ Standard deviation (in QMC chapter)

σ2 Variance (in QMC chapter)

τ Time-step size

φ Molecular orbital

χ Basis function (atomic orbital)

Ψ Wave function

ΨT Trial wave function

ΨT
SJ Slater-Jastrow trial wave function

ω Frequency

∇ Nabla operator
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