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Chapter 1

Introduction

The development of molecular imaging modalities has been revolutionizing
the diagnosis of human cancer in the last years. These new imaging tech-
niques, especially positron emission tomography (PET) and functional mag-
netic resonance imaging (f -MRI), are used as complementary medical imag-
ing tools in addition to computed tomography (CT). The purely anatomical
images acquired with CT allow for the determination of position and extent
of human tumours. In contrast, molecular imaging data reveal the structural
and functional nature of the tissue, which can vary strongly throughout the
whole tumour. Only with functional imaging it is possible to quantify the
heterogeneity and irregularity of the structural tissue configuration. As a
consequence of the newly developed methods for cancer diagnosis and an
increased understanding of tumour biology, a number of targeted therapy
approaches have recently been proposed and are currently beefing investi-
gated.

Already in the 1950s it was found that heterogeneities in the structural
architecture of a tumour can cause increased resistance to radiation therapy
[21, 63]. Only now it is possible to assess these characteristics with new
imaging techniques and use the obtained functional information as a basis
for the design of biologically adapted therapies.

Radiotherapy (RT) treatment especially of the head-and-neck region still
fails frequently. A targeted RT strategy, that makes use of the individual,
internal functional features of the tissue assessed by new molecular imag-
ing techniques could affect a great therapeutic gain. A biologically adapted
treatment approach that targets the tumour according to the information
detected via biological imaging may have high potential with regard to the
overall survival rate of cancer patients [37].

The main idea for the design of a targeted RT treatment is to ’sculpt’ or
’paint’ the radiation dose according to the functional characteristics of the
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2 CHAPTER 1. INTRODUCTION

tumour. The required radiation doses for such a ’dose painting’ treatment
may be highly irregular. Therefore, a RT technique is necessary which is able
to accurately deliver inhomogeneous and highly varying doses. The technical
basis for such an individually adapted radiotherapy is formed by intensity
modulated radiotherapy (IMRT), as it is capable to produce spatially variant
dose distributions [2].

During this PhD work, four main steps were developed which are nec-
essary for the translation of functional imaging data into an individually
adapted and targeted RT treatment. After a short introduction on the ba-
sics of tumour biology in chapter 2 and the princliples of molecular imaging
techniques in chapter 3, these four steps which were developed in the con-
text of this project are discussed.

• In order to interpret reliably the internal properties of a tumour tissue,
a series of molecular imaging data are needed which illustrate the char-
acteristic temporal distribution of a marker substance in the tissue.
For example, a dynamic positron emission tomography data acquisi-
tion enables us to assess this kind of temporal information. In order to
analyze and interpret these dynamic data sets, a mathematical model
which describes this transport phenomenon is necessary. In chapter
5, a physical transport model for the analysis of the uptake and distri-
bution of the hypoxia PET tracer [18F]-Fluoromisonidazole (FMISO)
is developed. The model is derived from the general three-dimensional
Diffusion-Reaction-Equation. A number of different model parameters
can be determined from a fit of the model to the data curves which en-
able for the estimation of various functional parameters of the tumour.
Thus, the model allows us to draw conclusions about the characteristic
functional architecture of the underlying tumour tissue.

• In a second step, s statistical analysis was carried out in order to identify
the main kinetic parameters which are relevant for therapy success.
To reach this goal, parameters deduced from the kinetic analysis were
compared to other important properties of a tumour. In the context of
chapter 6, characteristic patterns of two important model parameters
are investigated. Furthermore, a statistical analysis is performed in
order to correlate these model parameters to RT treatment outcome.

• The key issue for the translation of functional imaging data into an
individual prescription for RT is a model that is capable of predicting
the probability of therapy success for a patient as a function of the
molecular imaging data. In chapter 7, a tumour control probability
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(TCP) model is introduced. The design of the model is based on char-
acteristic changes in the functional imaging data during the course of
RT treatment. This model presents essentially three features: (1) It
involves characteristic values derived from the dynamic FMISO PET
data. (2) The TCP model allows us to estimate the time a tumour
needs until reoxygenation occurs. (3) The model is calibrated using
therapy outcome data of a group of 15 patients.

• The established TCP model then allows for individual and spatially
varying dose prescriptions for RT treatment planning. A treatment
planning study is performed in chapter 8 where two different ap-
proaches of targeted RT techniques are compared. The first approach
increases the dose uniformly to a biological target volume that is delin-
eated on the basis of the intensity distribution of a static PET image.
In contrast, the second set of plans applies spatially variant doses ac-
cording to the requirements of the dynamic FMISO PET images. A
group of 13 patients was included into this planning study. The aim
of the study was to evaluate the feasibility of individually adapted RT
methods in a clinical setting and to estimate the potential gain of treat-
ment success in a patient population.
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Chapter 2

Fundamentals of Tumour
Biology

The emergence of cancer is caused by mutations in the DNA of normal cells.
A series of mutations to certain classes of genes is usually required before a
normal cell will transform into a cancer cell. Only mutations in certain types
of genes that are important for cell division, cell death, and DNA repair
cause cancer. A tumour can originate from the genetic degeneration of a
single cell. With each carcinogenic mutation, a cell gains a slight selective
advantage over its neighbors, resulting in a process known as clonal evolution.
This leads to an increased chance that the descendants of the original mutant
cell will acquire extra mutations, giving them even more selective advantage.

Cells that are capable of forming malignant tumours present a number of
properties which distinguish them from normal tissue cells:

• evasion of cell death (apoptosis)

• increased rate of uncontrolled cell division (proliferation)

• self-sufficiency with respect to growth factors

• insensitivity to anti-growth factors

• ability to promote growth of new blood vessels (angiogenesis)

• ability to invade neighbouring tissues

• capability to form metastasis at distant sites

5



6 CHAPTER 2. FUNDAMENTALS OF TUMOUR BIOLOGY

2.1 Proliferation

The physiological process of cell division is called proliferation. It occurs
in almost all tissues and under many circumstances. Normally the balance
between proliferation and programmed cell death, usually in the form of
apoptosis, is maintained by tight regulation of both processes to ensure the
integrity of organs and tissues. A tumor consists of a population of rapidly
dividing and growing cells, where the cancer cells have lost control over their
ability to divide in a controlled fashion [4].

A consequence of uncontrolled proliferation in transformed cells is the
increased uptake of nutrients [8]. Furthermore, there is a large difference in
proliferation rate between cells located in areas close to blood vessels and
those adjacent to regions of necrosis because of lack of supply. A reduced
proliferation rate is observed for tumour cells distant from vasculature [14].

2.2 Neovascularization, Angiogenesis

Tumour growth, resulting from uncontrolled neoplastic cell division, is abso-
lutely dependent on parallel expansion of the tumour vasculature to maintain
sufficient supply of oxygen and nutrients for growth. Thus, neovasculariza-
tion is a universal characteristic of all solid tumours larger than 1-2 mm3.
Blood vessel growth (angiogenesis) is induced by secreting various growth
factors, such as the Vascular Endothelial Growth Factor (VEGF). These
growth factors can induce capillary growth into the tumour, supplying re-
quired nutrients and allowing for further tumour expansion.

Regular directed growth of blood vessels requires complex bio-chemical
control mechanisms, which are often not present in loosely regulated and
rapidly proliferating tumour cells. Hence, tumour vasculature is very likely
to be morphologically and functionally abnormal. Tumour blood supply is
characterized by spatial and temporal heterogeneity in both structure and
function [14]. Often, the newly formed vascular stretches do not show any
hierarchy. Abrupt changes in diameter as well as dead ends are common
features. Extreme heterogeneity of vascular density and individual micro-
vascular architecture are observed in human tumours [34,67].

2.3 Hypoxia

Endothelial cells have much longer doubling times than cancer cells. There-
fore, tumours ’outgrow’ their blood supply; neovascularization lags behind
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proliferation and consequently the vasculature is unable to meet the increas-
ing nutrient and oxygen demands of the expanding tumour mass [14]. The
missing hierarchy and the chaotic structure in the blood vessel system push
distant subpopulations of rapidly proliferating cells to face a lack of oxy-
gen [26, 27, 67]. Hence, hypoxia occurs far from blood vessels as a result of
the limited diffusion length of oxygen and O2 consumption of the cells closer
to the capillaries. As a consequence of the structural architecture of a tu-
mour, cells are hypoxic for time intervals in the order of several days or even
weeks. Additionally, they are also subject to chronic depletion of nutrient
supplies and do therefore no longer show any proliferating activities. This
phenomenon is referred to as chronic or diffusion limited hypoxia [17].

In contrast to the described chronic type, hypoxia can also result from
dynamic changes in microregional perfusion, which is referred to as acute
hypoxia [17]. Acutely hypoxic cells are exposed to relatively short periods of
oxygen deprivation and as a consequence they are still healthy and actively
proliferating.

The structural architecture of tumour tissues, showing chaotic organi-
zation of blood vessels, increased proliferation close to capillaries and hy-
poxia only distant from blood vessels was clearly shown by a number of
immunohistochemical studies [11,30–32,38,41] (see figure 2.1. Ljungkvist et
al [38–41] and Janssen et al [30, 31] investigated the structural architecture
of hypoxic tumours with pimonidazole. These studies depict hypoxic islands
interspersed throughout the tissue on length scales between 100 and 500 µm,
located in regions far from blood vessels and including necrotic tissue, as
illustrated by figure 2.1.

2.4 Radiation Resistance

Hypoxic cells are much less sensitive to radiation than well-oxygenated cells
[28]. The first indication that hypoxia exists in tumours and that this phe-
nomenon could also be the reason of lower radiation sensitivity was made
in the 1950s by Thomlinson and Gray [63]. It was also reported, that the
response of cells to ionizing radiation was strongly dependent on oxygen. Hy-
poxic tumours were found to show 2.5−3 times higher levels of radioresistance
than well oxygenated cancer tissues [21]. Hypoxia-associated radioresistance
can be described by the so-called oxygen enhancement effect: When radia-
tion is absorbed in biological systems, free radicals are produced. If oxygen
is present, it can react with the radicals R• produced directly in the criti-
cal target to produce RO•

2, which then undergoes further reaction to yield
ROOH in the target molecule. The induced change in the chemical compo-
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Figure 2.1: Microscopic image of human squamous-cell carcinoma of the
oral cavity with immunofluorescent labelling of blood vessels (PAL-E, red),
proliferating cells (iododeoxyuridine, blue), and hypoxic cells (pimonidazole,
green). Figure taken from [32].

sition of the target fixes the damage [28, 45]. In the absence of oxygen, or
in the presence of reducing species, R• will restore its original form. Due to
this effect, the radiation dose required to achieve the same biological effect is
three times higher in the absence of oxygen than in the presence of normal
levels of oxygen.

In addition, hypoxic cells show only very reduced cell division rates due
to much longer cell cycles. As the cell DNA is most sensitive to radiation
during mitosis, the phase of cell division, DNA damage is less effective on
average in hypoxic cells.

Hypoxic tumours were reported to present not only reduced radiosensi-
tivity, but they are also known to be resistant to certain chemotherapeutic
agents and other non-surgical treatment modalities. An insufficient vascu-
lature does not only cause hypoxia distant from blood vessels. A parallel
symptom is the insufficient transport of drugs to tumour cells existing at a
certain distance from the vessels. Hence, hypoxia causes and coincides with
a certain degree of general therapy resistance.

As hypoxia alters the biochemical structure of tumours and induces a
selective pressure on the tumour cells, a malignant behaviour of the tumour
is promoted [28]. Hypoxic tumour cells cause increasing probability of local
spread (direct invasion of neighbouring tissues and organs), regional spread
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(through metastasis to the lymph nodes) and distant spread (distant metas-
tasis) [27].
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Chapter 3

The Basics of Molecular
Imaging

Molecular imaging, also referred to as functional or biological imaging, allows
for in vivo evaluation of targeted molecules or biological processes in human
tumour tissues. In contrast to conventional radiological imaging techniques,
such as computed tomography (CT) that primarily provide anatomical in-
formation, biological imaging reveals metabolic, functional and physiological
data [37].

Positron emission tomography (PET) is a highly sensitive and also quan-
titative molecular imaging modality used in clinical practice [60]. Molecular
imaging with PET enables for non-invasive visualization of different func-
tional and biological characteristics of tumour tissues. PET is clinically used
for the assessment of tumour extent, glucose metabolism, proliferation and
tumour hypoxia. Further, physiological processes in the tumour tissue can
be assessed with PET and used for therapy guidance.

The use of functional imaging is being complicated by specific diffusion
and accumulation characteristics of the tracers. Additionally, the different
mechanisms in the tissue face to a high level of heterogeneity. Further prob-
lems are induced to functional imaging by patient movement and high levels
of image noise.

3.1 Positron Emission Tomography

PET scanners are commonly used for clinical functional imaging. PET exam-
inations require the injection of radioactive markers which decay by positron
emission. Due to the kinetic energy of the emitted positron, the positron
range lies in the order if a few millimeters, which imposes a lower limit on

11



12 CHAPTER 3. THE BASICS OF MOLECULAR IMAGING

the spatial resolution of the PET scanner. The fundamental signal of the
scanner results from the annihilation of the positron with an electron. This
results in the production of two photons, each having an energy correspond-
ing to the electron mass (511 keV), and a neutrino. The two photons are
emitted with an angle of approximately 180 degrees. Via coincidence mea-
surement, the annihilation photons are then registered in a detector ring.
Only unscattered photon pairs contribute useful information to the image
formation [69].

3.1.1 Data Acquisition

The PET measurements performed in the context of this work were acquired
on a whole-body scanner (Advance, GE Medical Systems, Milwaukee, US)
with an axial field of view (FOV) of 14.9 cm. The imaging process includes
two different imaging steps: a transmission and an emission scan. The 20 min
transmission scan is used for attenuation correction and is performed with
three rotating 68Ge sources. The obtained attenuation data are used during
the reconstruction of the emission counts. For the emission scan, the total
activity of the injected radionuclide is determined according to the patient’s
weight and to the half-live of the isotope used. When 18F, which has a
half-live of ≈ 108 min, is used as positron emitter, a total activity of ≈
400 MBq is injected for a patient examination. The duration of the emission
scan is calculated as a function of the time after injection and the weight
of the patient. When 18F is used as a positron emitter, a scan taken 2 h
post injection (pi) will typically require data acquisition for approximately
5-6 min, whereas a 4 h pi scan will take 10-12 min.

After attenuation correction, the data are reconstructed with an iterative
ordered subsets expectation maximization (OSEM) algorithm. The recon-
structed images have 128× 128× 35 voxels, each with a spatial resolution of
4× 4× 4.25 mm3.

Static PET images are made during a period when the activity distribu-
tion is fairly stable and the counting time is long enough to obtain good qual-
ity images. A typical application is the measurement of glucose metabolism
using the tracer [18F]-Fluorodeoxyglucose (FDG) [19,51,55,56,72].

3.1.2 Dynamic Acquisition

In contrast to static PET images, dynamic studies are used in cases in which
it is necessary to follow the changes of the activity distribution over a long
period to get a more detailed image of the underlying physiology. Dynamic
scans are performed using a series of imaging frames (see figure 3.1), which
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t = 240 mint = 120 mint = 50 mint = 40 min

t = 30 mint = 20 mint = 11 mint = 9 min

t = 7 mint = 5 mint = 3 mint = 1 min

Figure 3.1: Dynamic series of FMISO PET scans. The images show one slice
of a head-and-neck cancer patient, including the respective acquisition time
points t.

normally get longer as the study progresses. In our case, dynamic data
acquisition was performed during a time interval of up to 60 min, resulting
in a total number of ≈ 40 image frames. Data acquisition started exactly
at the time of marker injection and during the first two minutes pi, data
were registered every 10 s. From 2 to 4 min pi, the counting time was 15 s
and until 15 min pi, images were taken every minute. During 15-60 min pi,
emission data were saved every 5 min.

Each image is reconstructed as if it were acquired independently, but only
one transmission scan is taken for the whole dynamic image series.

The dynamic scanning mode adds a fourth dimension to the emission
data. For each image voxel, a time-activity-curve (TAC) can be determined
which shows the temporally varying activity distribution in the respective
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b
0

5000

10000

15000

20000

25000

0 50 100 150 200 250 

A
(t)

 [B
q/

cc
]

t [min]

Figure 3.2: FMISO Time-Activity Curve. The TAC shown here corresponds
to the marked voxel of the dynamic PET scan for the patient shown in figure
3.1. The TAC includes more times points than represented in figure 3.1.

voxel. Figure 3.2 shows an example TAC for the marked voxel in the data
set of the patient represented in figure 3.1.

If the acquired TACs are not long enough (i.e. ≥ 1 h) to visualize the
functional characteristics of the tissue, which is the case for the tracer used
for this work ([18F]-FMISO), the dynamic data can be extended ”artificially”.
To reach this, additional static scans are taken several hours pi (2, 3, 4, · · ·
h). Unfortunately, each of these late image frames requires a separate trans-
mission scan. The patient is in general repositioned for the acquisition of the
late images, which necessitates subsequent alignment of the data sets.

3.1.3 Image Fusion

Image fusion was performed automatically using an entropy based mutual in-
formation algorithm [68]. This algorithm maximizes the mutual information
I(X, Y ) of two images, which is defined by

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
. (3.1)

The mutual information I(X, Y ) measures the distance between the joint
distribution of the image values p(x, y) and the joint distribution in the case of
independence of the two images p(x)p(y) [53]. It is a measure of dependence
of the two images. It is assumes, that there is maximal dependence between
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the image values when the images are correctly aligned. Misregistration will
result in a decrease in the measure.

Pointwise TACs were calculated by applying the resulting transformation
matrix. A matching accuracy of ≤ 2 mm (≈ 0.5 voxel) could be reached.
Notice, that the errors of the late data points are not only due to statistical
reasons, but also resulting from mismatches during the image fusion process.

3.2 Hypoxia Imaging

3.2.1 FMISO

[18F]-Fluoromisonidazole (FMISO) is a hypoxia-specific tracer molecule rou-
tinely used for clinical PET examinations. The chemical structure of the
tracer molecule FMISO is shown in figure 3.3, where the NO2 is the func-
tional group responsible for the binding characteristics of FMISO in the tissue
and 18F is the positron emitting agent required for PET.

FMISO binds selectively to macromolecules in hypoxic cells. At low oxy-
gen levels (≈ 5 − 10 mm Hg), the compound is reduced and binds, when
reduced by a second electron, covalently to intracellular macromolecules (see
also figure 3.4). In the presence of oxygen, the favoured reaction is the re-
oxygenation to the less reactive parent compound which is freely diffusible
and clears from tissue [35].

In vitro investigations of tracer specific distribution and binding charac-
teristics were performed by [58]. Covalent binding was reported to take place
approximately 2− 3 h post injection (pi). According to these findings, Koh
et al [33] and Rasey et al [57] developed a strategy for the identification and
quantification of hypoxic tumour areas on the basis of FMISO PET images.
They pointed out the necessity of very long (2 − 4 h) examination proto-

N N

NO2

OH

F18

Figure 3.3: Chemical structure of the hypoxia PET tracer [18F]-FMISO.
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R−NO2 R−NO−
2 R−NO
e− −

O2

R−NHOH
2ee−

2O

Figure 3.4: Schematical representation of the chemical reaction of [18F]-
FMISO (R-NO2) in the tissue.

cols because of the slow transport and reaction mechanisms of the tracer
molecules. The presented results displayed a highly variable character of hu-
man tumour hypoxia among different tumours and also among regions within
the same tumour.

A fractional hypoxic volume (FHV) of the tumour was defined as the
proportion of the tumour area presenting a tumour-to-blood activity ratio
≥ 1.4 at 2 − 3 h pi. This FHV based on static FMISO PET scans taken
2− 4 h pi is commonly used for the analysis of clinical hypoxia PET images
[24,33,44,55,57].

Eschmann et al [18] pointed out for the first time the necessity of long
and dynamically acquired FMISO PET examinations because of the slow
distribution and uptake characteristics of the tracer in the tumour tissue.

In contrast to other investigators, Casciari et al [12] developed a kinetic
compartment model for the characterization of the transport and metabolism
of FMISO. This model aims to determine the cellular FMISO reaction rate
constant from time-activity data, which is assumed to reflect the mean local
oxygen concentration. It consists of four compartments with a high number
of free parameters. Hence, a certain number of parameters have to be fixed
to increase the robustness of the model. The model is a classical kinetic
model where the different compartments co-exist in the same volume. This
is problematic because it assumes homogeneous oxygen concentration which
contradicts the observation of concentration gradients in a tissue.

Fortunately, the pattern of tracer accumulation in hypoxic tumours can
be made visible by histological investigations with the related compound pi-
monidazole, which is by means of cellular binding mechanisms identical to
FMISO (cf. figures 3.3 and 3.4). Ljungkvist et al [38–41] and Janssen et
al [30, 31] showed, that hypoxia exists only far (several 100 µm) from blood
vessels, as represented in figure 2.1. A ’hypoxia-signal’ on macroscopic length
scales (size of PET-voxels: 4× 4× 4.25 mm3) emerges from an irregular het-
erogeneous distribution of tracer accumulation on microscopic length scales.

The essential fact that hypoxia exists spatially separated and at any rate
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far from perfused vessels was not explicitely taken into account in the design
of the compartment model by [12]. Also, it becomes evident that the total
sub-volume which traps the tracer is rather small. These observations are
typical of the problem and serve to make the point that hypoxia-PET imaging
with any arbitrary tracer is more ambiguous and intricate than with tracers
with an active transport mechanism and higher reaction rates, such as FDG,
and to justify that some model is required to interpret the images.

The immunohistochemical studies also revealed large inter- and intra-
patient differences in regard to tumour tissue vasculature. Hypoxia is only a
consequence of the irregular geometry of the tumour vasculature. Therefore,
it is essential that a model for the transport of the tracer from the perfused
vessels to the hypoxic cell is general enough to include both the irregular
tumour geometry and the inter-individual tumour heterogeneity.

3.2.2 Tracer Transport

The transport of the PET marker in the patient is mainly governed by two
phenomena: the distribution of the tracer in to blood pool and the transport
into the interstitial space.

The distribution of the tracer by the blood flow is very fast and takes
place on length scales of a few minutes. However, due to the extremely het-
erogeneous structure of the tumour vasculature, there might still be regions
with low levels of tracer at a certain distance from the vessel.

The transport of the FMISO molecule through the tumour tissue is purely
diffusive and therefore depends crucially in the tissue geometry.

Histochemical studies [11,30,31,38–41] found increasing staining intensi-
ties for pimonidazole in addition to a larger quantity of cells accumulating
the tracer molecules far from blood vessels. Typical distances for increased
pimonidazole staining are 100− 300 µm, as shown in figure 3.5. Since there
exists no active transport mechanism for pimonidazole or FMISO in the ex-
tracellular space, the transport of the tracer molecules is purely diffusive [29].
Considering the molecular weight of FMISO and the distances the molecules
have to travel from the vessel to the hypoxic cell [29], the diffusion time
will be high compared to other tracers with active transport mechanisms
and shorter diffusion distances (such as eg. FDG [35]). The time the marker
needs to reach the hypoxic tissue area far from the blood vessel will be in
the order of 100− 1000 s, as motivated in the following chapter.
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Figure 3.5: Pimonidazole staining intensities in arbitrary units as a function
of the distance to the closest blood vessel. Data are taken from human
head-and-neck cancer. Courtesy to H Janssen and A Begg, Amsterdam.

3.3 Experimental Data

3.3.1 Patient Data

After informed consent, fifteen patients with advanced stage head and neck
cancer (HNC) were examined in the context of this study. Patients were
examined with a dynamic FMISO PET before the start of radiotherapy (RT).
In addition, a static FDG PET image was also taken approximately 3-5
days before the first treatment fraction. The majority of these patients was
underwent one to three follow-up FMISO scans during the course of RT.
For each patient, additional computed tomography (CT) image data was
available. These CT scans, on which delineation of target volumes and organs
at risk was performed, were used for RT treatment planning.

Characteristics of the group of 15 patients are summarized in table 3.1.
Patients were 46 to 68 years old (median: 59 years). FDG-tumour volumes
ranged from 32.4 to 287.6 cm3 with a median volume of 114.5 cm3. Overall,
7 of the 15 patients had local recurrences. All observed failures occurred in
the first 8 months after the end of therapy.

Table 3.2 contains an overview of the image data that were available for
each patient. In total, for 11 of the 15 patients, pretreatment FDG data
were acquired, whereas only 10 out of 15 were examined with one or more
dynamic follow-up PETs during the course of therapy. For 13 patients of
this group, CT data with contoured regions of interest were available.
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Patients
Pat. prim. tumour age sex TNM stage tumour volume failure
nr. site V [cm3] site
1 oropharynx 60 m T4 N2b M0 258.1 T∗/N†

2 oropharynx 51 m T4 N2c M0 126.2 T∗

3 larynx 66 m T4 N2c M0 153.7 T∗/N†

4 FOM‡ 46 m T3 N2b M0 59.0 T∗

5 BOT§ 49 m T4 N2c M0 287.6 T∗/N†

6 oropharynx 48 m T2 N2c M0 114.7 T∗/N†

7 FOM‡ 68 m T4 N1 M0 213.7 T∗/N†

8 oropharynx 65 m T3 N2c M0 74.3 -
9 hypopharynx/ 51 m T4 N2c M0 100.9 -

BOT§

10 oropharynx 59 m T2 N3 M0 172.4 -
11 oropharynx 50 f T4 N2c M0 44.0 -
12 larynx-/ 60 m T4 N0 M0 32.4 -

hypopharynx
13 oro-/ 49 m T3 N2c M0 80.9 -

hypopharynx
14 oropharynx 60 f T4 N2b M0 52.4 -
15 unknown 68 m T4 N1 M0 125.5 -

Table 3.1: Tumor characteristics of the examined patients.
∗T: tumour; †N: node. ‡FOM: floor of mouth; §BOT: base of tongue.



20 CHAPTER 3. THE BASICS OF MOLECULAR IMAGING

Pat. dyn. FMISO FDG planning dyn. FMISO dyn. FMISO
# pre- pre- CT follow-up add.follow-

treatment treatment + ROIs∗ @ 2 weeks up scans
1 × × × × -
2 × - - × -
3 × × × × -
4 × - - × -
5 × - × - -
6 × × × × ×
7 × × × × -
8 × × × - -
9 × × × × -
10 × × × × -
11 × × × - -
12 × × × - -
13 × × × × ×
14 × - × × -
15 × × × - -

Table 3.2: List of image data available for each of the 15 patients. ∗ROIs:
regions of interest.

Dynamic FMISO Patient Scans

For the dynamic FMISO examination, the following protocol was used: With
the start of the image acquisition, a tracer activity of A0 ' 400 MBq FMISO
was injected. For the first 15 − 60 min, the PET scanner (Millennium VG,
General Electric, Milwaukee, US) was running in dynamic acquisition mode
which resulted in a total of 31 − 40 image frames. Additionally, two static
images were taken for all patients 2 and 4 h pi and for a few patients also
at 3 h post injection (pi). Detailed information about time points and cor-
responding acquisition durations for each examined patient (n = 15) are
summarized in table 3.3.

A decay correction for the decomposition of the radioactive 18F was per-
formed for all data sets. The raw PET data was stored in three separate data
sets, one dynamic set consisting of 31 image frames and two static data sets
with one frame each. In order to implement a pointwise hypoxia analysis, it
was necessary to match these three data sets. The corresponding rigid body
transformation matrix was calculated by applying a Mutual Information al-
gorithm [68]. This matching procedure reached an accuracy ≤ 2 mm in the
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time pi [min] 0− 2 2− 4 4− 15 15− 60 120 180 240
acquisition 12 × 8 × 11 × 9 × 1 × 1 × 1 ×
time [min] 0.167 0.25 1 5 5 8− 9 10− 12
Patient #
1, 4 × × × × × × ×
3, 5, 7, 9, 10, × × × − × − ×
11, 12, 14
8 × × × − × × ×
15 × × × × × − ×
2, 13 × × × 3 × × − ×

5 min
6 × × × 5 × × − ×

5 min

Table 3.3: Table of acquired image frames for each patient (n = 15)

region of the tumour and allowed us to determine a TAC for each voxel.

FDG PET

Whenever possible (n = 12), an additional [18F]-fluorodeoxyglucose (FDG)
PET was taken a few days (1 − 3) before or after the FMISO PET scan.
Concerning the FDG PET acquisition, a static emission scan was taken 1 h
after injection of approximately 400 MBq FDG.

Follow-up FMISO Examinations

A subgroup of 10 patients received repeat scans after approximately 2 weeks
of treatment (≈ 20 Gy). For a total of eight patients (# 1-5, 7, 9, 10 and 14),
one FMISO repeat scan is available, whereas for two patients (# 6 and 13),
three repeat scans could be acquired. Patient 6 had follow-up scans after
20, 50 and 70 Gy, patient 13 after 10, 20 and 50 Gy. The secondary FMISO
PET scans were also acquired using dynamic acquisition mode. The long
acquisition times made it difficult to organize the trial and put a large burden
on the patients who were suffering from acute reactions during therapy.

3.3.2 Tumour Volume Delineation

For the delineation of the tumour volume relevant in the context of this study,
the FDG PET image data was used. The tumour volume was defined as the
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volume including all voxels with at least 40% of the maximum intensity.
This delineation technique was combined with a 12 mm margin (3 PET
voxels). The tumour volume variable V used in the current study refers to
the described FDG PET volume. It is determined as V = n ·v, where n is the
number of tumour voxels. v represents the volume of a single voxel, in our
case v = (0.42 · 0.425) cm3 = 0.068 cm3. In order to match the FDG-defined
tumour volume onto the three different FMISO data sets (dynamic, 2 and
4 h pi), automatic MI coregistration [68] was performed.

3.3.3 Treatment

All patients were treated with primary RT to 70 Gy. Three of these pa-
tients were treated with Intensity Modulated Radiotherapy (IMRT) in 35
fractions, 5 fractions a week with a daily dose of 2 Gy. The other 12 pa-
tients received conventional RT, 5 fractions with 2 Gy per week until 30 Gy.
This first phase was followed by a hyperfractionation composed of a dose
of 1.4 Gy applicated twice per day until the end of treatment. In addition,
concomitant chemotherapy was prescribed for 14 patients. Seven patients
received 5-Fluorouracil/Mitomycin chemotherapy, whereas for six patients
Cisplatin/Mitomycin was prescribed; one patient had Paclitaxel/Cisplatin
chemotherapy.

3.3.4 Therapy Outcome

After the end of therapy, patients were reviewed regularly every three months
with clinical examination, flexible endoscopy and computed tomography (CT)
when recurrent disease was suspected. Routine CT scans were also acquired
six weeks and one year after therapy was finished. Failure was defined as CT
proven tumour progression. For the examined patient group, the follow up
time was in the range of 2− 21 months (median: 12.8 months).
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Chapter 4

A new Approach to Molecular
Image Guided Radiotherapy

Four main steps were developed during this PhD project in order to create
the link from functional imaging data to an individually adapted and tar-
geted RT treatment. In the following, the four different issues that have to
be addressed to determine a complete junction from molecular imaging to
functional image guided radiotherapy (f -IGRT) are discussed in more detail.
Figure 4.1 schematically shows the junction between functional imaging and
an adapted radiotherapy.

1. A physical model that describes the transport of oxygen and nutrients
in a tissue is used in order to interpret the internal structural proper-
ties of a human tumour. It is well known [21], that a lack of oxygen,
which may result from a chaotic structural architecture of a tumour
causes increased radioresistance. A non-invasive measurement of tu-
mour hypoxia in humans can be obtained via dynamic positron emis-
sion tomography with the hypoxia-sensitive bio-marker F-MISO. In a
first step (chapter 5), a physical transport model is developed which
allows for the analysis of the uptake and distribution of the hypoxia
PET tracer FMISO. The model is derived from the general Diffusion-
Reaction-Equation. A Levenberg-Marquardt-algorithm is then used
to fit the analytical tracer transport functions to the measurend data
curves. A number of different model parameters can be determined
from a fit of the model to the data curves which enable for the estima-
tion of various functional parameters of the tumour. Thus, the model
allows us to draw conclusions about the characteristic functional archi-
tecture of the underlying tumour tissue.

2. In a second step (chapter 6), a statistical analysis is carried out in order
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to identify the main kinetic parameters which are relevant for therapy
success. To reach this goal, parameters deduced from the kinetic anal-
ysis were compared to other relevant tumour parameters. Based on
findings about pridictive variables assessed by the transport model,
characteristic patterns of two important parameters are investigated.
Furthermore, a statistical analysis is performed in order to correlate
these model parameters to RT treatment outcome.

3. The translation of functional imaging data into an individual prescrip-
tion for RT can only be performed by a model that is capable of pre-
dicting the probability of therapy success for a patient as a function of
the molecular imaging data. In chapter 7, a tumour control probability
(TCP) model is introduced. The design of the model is based on char-
acteristic changes in the functional imaging data during the course of
RT treatment. This model involves characteristic values derived from
the dynamic FMISO PET data. It allows us to estimate the time a
tumour needs until reoxygenation occurs. In addition, the model is
calibrated by a log-likelihood fit to the binary therapy outcome data of
a group of 15 patients.

adaptedmolecular
RadiotherapyImaging

1 2

4: investigation of the technical feasibility of RT modification
3: design of a TCP model
2: identification of biologically relevant parameters
1: transport model for data interpretation

3 4

Figure 4.1: Schematical representation of the four main steps developed in
this PhD project which are necessary to create a complete link between
molecular imaging and a biologically adapted radiotherapy.
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4. The TCP model introduced in step three allows for individual and spa-
tially varying dose prescriptions for RT treatment planning. Step four
(chapter 8) consists of a treatment planning study where two different
approaches of targeted RT techniques are compared. The first approach
increases the dose uniformly to a biological target volume that is delin-
eated on the basis of the intensity distribution of a static PET image.
In contrast, the second set of plans applies spatially variant doses ac-
cording to the requirements of the dynamic FMISO PET images. A
group of 13 patients was included into this planning study. The fea-
sibility of individually adapted RT methods in a clinical setting were
evaluated. The estimation of the potential gain of treatment success
for a patient population was ad additional goal of the study.
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Chapter 5

Step I: Tracer Transport
Modelling

5.1 General Transport Characteristics in Tu-

mour Tissues

As the transport of the FMISO tracer in the tumour tissue can be assumed to
be of purely diffusive nature, in the following, the general Diffusion-Reaction-
Equation (DRE) which should be used to describe the phenomenon math-
ematically is introduced. The diffusion equation cannot be solved for the
realistic problem because of lacking knowledge about the tumour geometry.
One measurement that is possible in the case of cancer patients is PET,
where the signal is the bulk-averaged concentration of the tracer in 4 mm
voxels, whereas the length scales of the tissue structures is in the order of
10 µm. Hence, the exact DRE cannot be solved accurately, but the general
DRE and the corresponding solution may be useful to analyze the nature
of the tracer transport phenomenon and to make an educated guess for the
solution.

Furthermore, a kinetic compartment model is presented to investigate
uptake and binding properties of FMISO in human tumours. The kinetic
model assumes physical, purely diffusive transport of the tracer molecule to
the hypoxic cell, where it is trapped according to the local oxygen tension.
This simplified transport model is used to describe the tracer transport in
the tumour tissue and to interpret the signal S(t) acquired during PET
examination. In addition, the investigated model is fitted to voxel-based
TAC acquired from dynamic FMISO PET patient data.

27
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5.1.1 Outline of the Approach

The tracer diffusion problem is intractable because of the geometry of the
tumour in a patient is unknown (see also figure 2.1). Furthermore, all non-
invasive patient measurements have spatial resolutions that are much larger
than the length scale of the tissue structures. Therefore, the exact DRE
can neither be established correctly nor solved accurately, due to structural
heterogeneities of the cancer tissue. These structural heterogeneities in the
tissue correspond to a spatial distribution of sources and sinks, which are
expressed by inhomogeneities and boundary conditions of the DRE. More-
over, also the diffusion coefficients in the tissue will be a heterogeneous, their
values are spatially varying.

In section 5.1.3, the one dimensional solution of the general DRE is de-
termined. The mathematical form and nature of the solution may be useful
to characterize the tracer transport problem. Typical elements of the solu-
tion are identified in order to make an educated guess for the solution in a
bulk approximation. The one dimensional solution of the DRE constitutes
an important link to be able to understand and analyze the bulk-averaged
concentration of the tracer imaged with PET.

Finally, the spatial dependencies included in the DRE will be collapsed
into a kinetic compartment model. This kinetic model contains solely tem-
poral dependencies and can be applied to analyze the PET signal with a
spatial resolution of 4 mm.

5.1.2 Diffusion-Reaction-Equation

The general 3-dimensional DRE emerges from the 1st and 2nd Fick’s law
[61], which describe mass transport on the basis of concentration differences.
Fick’s first law reads

∂

∂t
N(~x, t) = −D A grad n(~x, t) , (5.1)

where N is the number of particles, A the surface area over which diffusion
takes place, D is the diffusion coefficient (in [m2/s]) and n the concentration.
Considering the diffusion flux ~j

~j(~x, t) =
1

A

∂

∂t
N(~x, t) , (5.2)

Fick’s first law reads

~j(~x, t) = −D grad n(~x, t) . (5.3)
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Fick’s second law, the continuity equation, describes the relationship between
diffusion flux and particle density:

∂

∂t
n(~x, t) + div ~j(~x, t) = q(~x) , (5.4)

where q(~x) represents the change of the total number of particles, i.e. the
change of a chemical potential or also a chemical reaction. Therefore, the
DRE can be written in the form

∂

∂t
n(~x, t) = D ∆n(~x, t) + q(~x) . (5.5)

Here, ∆ is the Laplace operator.

5.1.3 1-D Solution of the Diffusion-Reaction-Equation

In the following section, a solution for the one-dimensional DRE

∂

∂t
n(x, t) = D

∂2

∂x2
n(x, t) + q(x, t) (5.6)

is presented, where q(x, t) is the reaction term. The initial and boundary
conditions are given by

n(x, 0) = f(x) and lim
x→∞

n(x, t) = 0 . (5.7)

Separation of the variables is one possible method to solve the homogeneous
differential equation of (5.6) (q(x, t) = 0)) [10,46,47]. This approach assumes

n(x, t) = X(x)T (t) (5.8)

and leads to
Ṫ

DT
=

X ′′

X
= const = −λ2 . (5.9)

As the left part of equation (5.9) does no longer depend on x and the right
side does not depend on t any more, each term has to be constant. The
constant is chosen to be negative, because otherwise the boundary condition
cannot be fulfilled. The following two linear differential equations can be
derived from equation (5.9):

X ′′ + λ2X = 0 (5.10)

Ṫ + Dλ2T = 0 . (5.11)
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A combination of the solutions for X(x) and T (t) leads to the basic solutions
of the homogeneous diffusion equation

n(x, t, λ) = e−Dλ2t [a(λ) cos(λx) + b(λ) sin(λx)] (5.12)

with arbitrary functions a(λ), b(λ), λ ∈ R. Continuous superposition is then
used to determine the general solution n(x, t):

n(x, t) =

∞∫
−∞

e−Dλ2t [a(λ) cos(λx) + b(λ) sin(λx)] dλ . (5.13)

For the given initial condition, one obtains

f(x) = n(x, 0) =

∞∫
−∞

[a(λ) cos(λx) + b(λ) sin(λx)] dλ . (5.14)

A comparison with the representation of the Fourier integral, allows to derive

a(λ) =
1

2π

∞∫
−∞

f(ξ) cos(λξ)dξ (5.15)

b(λ) =
1

2π

∞∫
−∞

f(ξ) sin(λξ)dξ , (5.16)

which, reinserted into equation (5.13), yields

n(x, t) =
1

2π

∞∫
−∞

f(ξ)
[ ∞∫
−∞

e−Dλ2t[cos(λξ) cos(λx) + sin(λξ) sin(λx)]dλ
]
dξ .

(5.17)
The integration with respect to λ leads to the general homogeneous solution
for n(x, t):

n(x, t) =
1

2
√

Dπt

∞∫
−∞

f(ξ) e−
(x−ξ)2

4Dt dξ . (5.18)

To obtain the solution for the inhomogeneous differential equation (5.6),
the following term for the particular solution np(x, t) of (5.6) has to be added
to the homogeneous solution (5.18):

np(x, t) =

t∫
0

[ ∞∫
−∞

q(ξ)

2
√

Dπ(t− τ)
e−

(x−ξ)2

4D(t−τ) dξ
]
dτ . (5.19)



5.2. DEVELOPMENT OF A COMPARTMENT MODEL 31

The one dimensional solution of the general DRE (5.18) presents a num-
ber of characteristics which may be of importance for the design of a com-
partment model to analyze bulk diffusion data acquired with PET on larger
length scales. If a δ-function is used as initial condition f(x) = δ(x0), the
solution turns out the be a propagating concentration front/wave of tracer
with increasing distance to x0. Width and amplitude of this propagating
tracer front change with space and time. In a human tumour, the exact
geometry of the tissue, where the diffusion takes place is unknown and only
measurement data are available that show bulk averaged concentrations in
4 mm PET voxels. In principal, one could assume the concentration in each
voxel to be constant and consider only the diffusion process through the sur-
face of each voxel. But still, the boundary conditions for each voxel would
be unknown.

Therefore, the development of a bulk diffusion model is proposed. The
solution of the general DRE in one dimension (5.18) as well as the time
dependence revealed by equation (5.11) will be used as a basis for the design
of a compartment model in the following section.

5.2 Development of a Compartment Model

Although the diffusive transport of FMISO in the tumour depends crucially
on the tissue geometry, blood vessel permeability and the interstitial flow and
pressure situation, which are obviously unknown, the bulk diffusion equation
(without spatial dependencies) for a net flow from a point A to a point B
reads schematically:

∂

∂t
CB =

D

l2
(CA(t)− CB) . (5.20)

Here D is the diffusion constant, l the distance between points A and B,
and CA(t) is assumed to be unaffected by the efflux (infinite supply). The
linearity of the diffusion equation allows us to associate spatially separated
sub-volumes with compartments and an approximate linear reaction rate
equation. For a compartmental model, the consequence of this diffusion
delay will be a translation of the spatial separation of blood pool and tracer
trapping into a temporal separation [23]. With D typically in the order of
10−6 cm2 s−1, and l ' 0.01 cm it follows that k ' 10−2 s−1, i.e. typical time
scales are > 100 s.

Regarding the design of a kinetic model, it is assumed that for all practical
purposes a general two compartment model (see figure 5.1) will be sufficient
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C (t) C (t)DC  (t)In A

1k

2k

k3

Figure 5.1: Compartmental model consisting of a diffusive and an accumu-
lative compartment. The input function CIn(t) comprises the tracer concen-
tration in the blood and in the interstitial space close to the vessels.

to describe the dynamic FMISO data1. The model can be motivated by the
heuristics that there are essentially three distinguishable components of the
TACs. One, showing rapid concentration changes due to perfusion and fast
diffusion into the interstitial space close to the vessels, represented by the
input function. Another, characterized by slow concentration changes due
to long diffusion times to and from the large inter-vessel spaces of irregular
tumours. And a third, describing the irreversible binding of the tracer. In the
following, the compartment describing the freely diffusive tracer molecules
will be referred to as diffusive compartment. The accumulative compartment
is linked to the diffusive compartment by a kinetic rate constant that depends
on the partial oxygen pressure.

In contrast to classic compartmental models, the compartments in this
model are spatially separated or overlap only partially (the accumulative
compartment corresponds only to those sub-volumes described by the dif-
fusive compartment which are hypoxic) and the volumes of the different
compartments are not identical. In addition, some of the kinetic constants
of this model are not parameters of a chemical reaction, but reflect purely
diffusive transport.

The diffusive compartment is linked to the input function by diffusion rate
constants k1 and k2. The accumulative part is only coupled to the diffusive
one with the rate constant k3. It is assumed that the diffusion of unbound re-

1This is a consequence of the integration of the manifold of various TACs of all the
particular sub-volumes in a PET voxel. If tumours were more homogeneous or the spatial
resolution of the scanner better, a chain of compartment pairs, stratified according to their
diffusion time, might be a more appropriate model.
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duced FMISO cannot be discerned on the time scales of the experiment. This
kinetic model is described by the following system of differential equations:

∂

∂t
CD(t) = k1 CIn(t)− (k2 + k3) CD(t) (5.21)

∂

∂t
CA(t) = k3 CD(t) . (5.22)

CD(t) and CA(t) are the basis functions for the diffusive and the accumulative
compartment respectively. They are determined by

CD(t) = e−(k2+k3)t ⊗ k1CIn(t) (5.23)

= k1

t∫
0

e−(k2+k3)(t−τ) · CIn(τ) dτ and

CA(t) = k3 ⊗ CD(t) (5.24)

=
k1k3

k2 + k3

t∫
0

(1− e−(k2+k3)(t−τ)) · CIn(τ) dτ ,

where the ki are the respective rate constants and ⊗ denotes the convolution
product. The measured PET signal S(t) is given by a linear combination of
the basis functions (eq. 5.23 and 5.24) and the input function CIn(t):

S(t) = w0CIn(t) + wDCD(t) + wACA(t) (5.25)

= w0CIn(t) + wDk1

t∫
0

e−(k2+k3)(t−τ) · CIn(τ) dτ

+ wA
k1k3

k2 + k3

t∫
0

(1− e−(k2+k3)(t−τ)) · CIn(τ) dτ.

Here wD and wA are the relative weights of the compartments. They repre-
sent the relative contribution of each compartment to the total signal. The
weight parameters are difficult to normalize, as overlapping areas are possi-
ble.

In the complete expression for the total signal S(t) (5.25), the rate con-
stant k1 turns out to be only a multiplicative factor to the weight parameters
wD and wA. It can therefore be set constant without loss of generality.
Variations of this parameter are absorbed in w̃D = wDk1 and w̃A. Addition-
ally, the rate constant k2 can be absorbed by substituting k̃3 = k2 + k3 and
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w̃A = wA k1 k3/k̃3. The final equation for the PET signal reads

S(t) = w0CIn(t) + w̃D

t∫
0

e−k̃3(t−τ) · CIn(τ) dτ (5.26)

+ w̃A

t∫
0

(1− e−k̃3(t−τ)) · CIn(τ) dτ .

The remaining kinetic model has 4 open parameters, the weight param-
eters w0, w̃D and w̃A in addition to the modified accumulation rate constant
k̃3. This parametrization was chosen such that three different modes can be
distinguished. Only one mode (wD) is chosen to be constant. This specific
choice allows a stable fit with small covariants.

5.2.1 Input Function

For head and neck cases, it is difficult to obtain the blood input function
directly from the images. Therefore, we propose the use of a reference tissue
model.

One might also take a measured arterial blood input function. Such a
measured input function would contain the pure blood signal, whereas a
’dressed’ input function, determined by a reference tissue model has the ad-
vantage to account for the varying tissue composition of the respective voxel.
A pure blood function may be problematic as the flow into the considered
voxel can be completely different of the measured function due to highly
deficient and irregular vascular systems of tumours. The ’dressed’ input
function comprises not only the tracer concentration in the blood, but also
the concentration in a number of cell layers close to the vessels which are
fast coupled. Hence, a dressed input function consists of two different parts:
The blood vessels plus a certain volume of extravascular, extracellular space.
The two components will have individual weight parameters which allows us
to account for the varying composition of vessels and extravascular space in
the tissue from voxel to voxel.

Normal tissues can be described by a kinetic model consisting of the
blood concentration CIn(t) and a tightly coupled diffusive compartment, see
figure 5.2. The tracer concentration in the cell layers around a blood vessel
(i.e. the diffusive compartment of the normal tissue model) is denoted with
CNT (t). Therefore, the input function may be extracted from typical normal
tissue voxels.

During the first minutes after injection, the image signal is governed by
diffusion from well perfused capillaries into the interstitial space. This will



5.2. DEVELOPMENT OF A COMPARTMENT MODEL 35

C  (t)
k

k
C   (t)NTIn

0

0

Figure 5.2: Reference tissue compartment.

occur in a similar fashion in both normal tissue and tumour tissue, although
the deficient vasculature in tumours may offer less resistance. In this case,
k1 and k2 of the tumour would be greater than in the reference tissue, but
this does not affect the input function, which should be the same as long as
the tracer transition from the vessel into the interstitial space is permeability
limited and not flow limited. Apart from this difference in kinetic parame-
ters, well perfused tumour areas and normal tissues should behave similarly
during the first minutes after injection. This assumption is corroborated by
immunohistochemical investigations [30, 31, 41] that showed that cells situ-
ated in the neighbourhood of a blood vessel under well oxygenated conditions
exist in both hypoxic and non-hypoxic tumours.

However, these investigations also show badly perfused vessels. Also,
temporary stasis has been described in tumours [17]. This means, that the
well perfused vasculature which becomes visible in the first minutes after
injection may not be the entire vasculature available for tracer transport
by flow during the course of the investigation. Frequently, the distinction
between chronic and acute hypoxia is made. The effect of fluctuations in the
perfusion of a voxel on the TAC depend on the time scale of these fluctuations
relative to the diffusion time scale, and the partial volume of the voxel affected
by them. In our model, this is approximately taken into account by a spatially
dependent input function as follows.

A dressing of the input function accounts for the fact, that the geometry
of volumes that are quickly reached after tracer injection can be very different
from voxel to voxel. We assume, that the input function to the tumour kinetic
model CIn(t) can be derived from the signal of a reference tissue

SNT (t) = A · CIn(t) + B · CNT (t) . (5.27)
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We assume further that the blood concentration after a certain time after
injection is a sum of two exponentials:

CIn = A · (e−k0t + r · e−kKt) . (5.28)

The first term e−k0t describes the dispersion of the tracer in the whole body
blood volume, i.e. the rate with which the equilibrium is established, whereas
the second exponential represents the kidney clearance of the tracer. The
rapid rise of tracer concentration in the blood pool observed in the very
early frames is not taken into account by this input function. Therefore, the
first frames (typically 4-5) have to be ignored for data analysis.

The concentration in the extravascular normal tissue space obtains from
a convolution

CNT (t) = CIn(t)⊗ e−k0t . (5.29)

Here, we assume that the diffusion rate constant k0 equals the mean rate of
tracer flux into the extravascular volume, averaged over the whole body.

The signal measured in a reference tissue voxel SNT (t) will be of the form

SNT (t) = A · (e−k0t + r · e−kKt) + B · CNT (t) . (5.30)

The parameters k0 and kK are determined by fitting this expression (5.30)
to a set of TACs from a reference tissue in close proximity of the tumour.
For the input function of a tumour voxel, these parameters are kept constant
while r remains floating. This allows us to adapt the ratio between the
fast and the slow component of the input function to the local properties of
the tumour vasculature and perfusion, and to some extent to their temporal
variability. The number of parameters in the fit of the voxel-by-voxel TACs
to the compartment model (eq. (5.26)) thereby increases to five.

5.2.2 Parameter Plots

Parameter plots can be used in order to visualize the voxel-by-voxel results
of the compartmental analysis. To achieve this, an image is generated, where
each voxel is coloured according to the value of the respective parameter. A
specific parameter plot is used in the context of this study, where the tracer
uptake at infinite times S∞ is considered:

S∞ = lim
t→∞

S(t) = αw̃A, (5.31)

where α = A(1/k0 + r/kK). This derived parameter represents an estimate
of the pure tracer uptake, when all unbound tracer molecules are washed
out. High image intensities in those parameter plots represent areas with
high levels of tracer uptake which correlates to the mean density of viable
hypoxic cells in the respective voxel.
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5.3 Data Evaluation

In order to evaluate the time-activity data with the presented kinetic model, a
least squares fit was performed to adjust the analytical function S(t) (5.25) to
the patient TACs. For this, a Levenberg-Marquardt algorithm was used [54].

The data points were included into the proximity function with errors
corresponding to Poissonian noise. Standard deviations σi were calculated
as scaled Poissonian noise, depending on local count rate Yi(t) and acquisition
time Ti for the respective frame.

Additional uncertainties may occur due to image coregistration errors. As
only the late data sets (2−4 h pi) undergo a matching procedure, additional
errors have only to be taken into account for the late data points. The
magnitude of the individual error associated to each image voxel depends
strongly on the image gradient in the considered region. Hence, the error
due to an eventual mismatch ∆YMM can be estimated by

∆YMM = ∆x ·

(
n∑

i=1

(Y − Yi)
2

n · xi

)1/2

, (5.32)

where Yi are the count rates of the n neighbour voxels, xi is the distance to
the respective neighbour voxel and ∆x represents the average co-registration
error, which is assumed to be approximately 2 mm in our case. The total
error associated to data points 2, 3 and 4 h pi is determined by ∆Y tot

i =
σiYi + ∆YMM .

The variability of the model parameters due to the estimated data errors
is then determined by the variance-covariance matrix associated to the least
squares fit [54]. The diagonal matrix elements represent estimates of the
respective parameter variances. In addition, a parameter correlations ρi,j

can be derived from the covariance matrix for each fit according to

ρi,j =
Cov(Xi, Xj)√

V ar(Xi) · V ar(Xj)
(5.33)

where Cov(Xi, Xj) is the covariance between parameters Xi and Xj and
V ar(Xi) is the variance of the i-th fit-parameter.

In addition, the continuous automatic tracer injection during the first 10 s
after the start of the acquisition is not taken into account by the model. To
avoid problems, the very steep and slightly oscillating component dominating
all data curves during the first 60 seconds was omitted.
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5.4 Results of the Kinetic Analysis

The TACs observed in a group of 15 examined patients showed great vari-
ability. In figure 5.3, four examples of characteristic shapes of the acquired
time-activity data are displayed.

In well perfused regions2, the shapes of the curves have a very pronounced
tracer influx and distribution during the first few minutes after tracer injec-
tion followed by an exponential washout (see figure 5.3(a)). These tumour
areas are characterized by a high density of vessels and a good blood supply.
The majority of cells should be well oxygenated because no tracer retention
can be seen.

In figure 5.3(b), a very similar behaviour can be observed during the first
30 minutes, followed by a clear retention. This shows that a large number of
viable hypoxic cells is present, which co-exist with a very well perfused cell
population. This is the classical picture of diffusion limited hypoxia, where
oxygen consumption outweighs supply.

More serious forms of hypoxia result from a deficient vasculature and
chaotic blood flow. However, this may also result in a decrease of viable
hypoxic cells as necrotic cores may form in which no tracer retention occurs.
In terms of the TAC, the perfusion peak should become smaller, and retention
less pronounced until finally a horizontal curve type results, see figure 5.3(c)
and figure 5.3(d). In voxels with a significant concentration of necrosis, the
purely diffusive contribution to the signal as represented by w̃D and r should
go up. The tracer enters these tissue regions very slowly due to the low
density of blood vessels. Accumulation of tracer can be observed in the
order of several hours after injection (see figure 5.3(d)). Because of the small
fraction of viable hypoxic cells, the total uptake is low.

Figure 5.4 shows the analytical curves S(t) determined by the kinetic
analysis for the data TACs presented in figure 5.3. The corresponding pa-
rameter values are summarized in table 5.1, whereas table 5.2 shows the cor-
responding parameter value uncertainties. In figure 5.5, the decompositions
of the model curves into the three components CD(t), CA(t) and CIn(t) of
the compartment model are shown. Additionally, for the correlation matrix

2Good perfusion/high vascular density is supposed in regions where the dynamic TAC
presents a fast tracer influx after injection (≈ 30− 40 s).
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Figure 5.3: Differ-
ent characteristic
time-activity data
curves corresponding
to tumour areas with
increasingly deficient
vasculature. (a) Well
perfused tumour
area. (b) Tissue area
with diffusion limited
hypoxia. (c) Dif-
fusion limited and
structural hypoxia.
(d) Hypoxic / necrotic
area.
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of curve (c), the following values were calculated:

Corr =


1 −0.554 0.711 −0.904 −0.737

−0.554 1 0.140 −0.036 −0.041
0.771 0.140 1 −0.862 −0.996
−0.904 −0.036 −0.862 1 0.888
−0.737 −0.041 −0.996 0.888 1


In summary, figure 5.3 (a)-(d) represent the TACs in tumour regions

with increasingly deficient vasculature. The tracer influx peak at short time-
points after injection decreases as the blood supply gets worse due to the
more and more chaotic vasculature. At the same time, while the number
of viable hypoxic cells decreases (w̃A), the degree of hypoxia increases (k̃3).
This is illustrated by the decomposition of the model curves S(t) into the
components CD(t), CA(t) and CIn(t), represented in figure 5.5. Here, the
contribution of the input function CIn(t) decreases from curve (a) to (d),
whereas the weight of the accumulative compartment increases from (a) to
(d). The kinetic analysis showed that the resulting parameter values might
reveal information about the structural architecture of the tissue sample.
Curve types representing putatively well perfused and only slightly hypoxic
tumours (such as figure 5.4(a)) are described by a relatively high weight pa-
rameter w0 in addition to a small value for the product w̃Ak̃3 for the hypoxic
compartment. Also for the diffusion limited hypoxia type (figure 5.4(b)) a
large w0 is found, but in this case the value of w̃A and thus S∞ is also high.

In contrast, there exist tumour areas where very small parameters w0 are
necessary to describe the time-activity course of the data adequately. This
behaviour is mainly observed for curves that putatively represent severely

putative w0 r w̃D w̃A k̃3

structure types [min−1] [min−1] [min−1]
(a) low hypoxia/

well perfused 1.06 0.29 0.09 0.00 0.05
(b) diffusion limi-

ted hypoxia 1.50 0.10 0.13 0.31 0.03
(c) diff. limited and

structural hyp. 0.32 0.45 0.28 0.08 0.21
(d) strongly hypoxic/

necrotic 0.16 1.67 0.14 0.01 0.36

Table 5.1: Resulting parameter values for curves (a) - (d), figure 5.4
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∆w0 ∆r ∆w̃D ∆w̃A ∆k̃3

[min−1] [min−1] [min−1]
(a) 0.17 0.17 0.02 0.00 0.02
(b) 0.18 0.11 0.02 0.11 0.02
(c) 0.16 0.39 0.06 0.08 0.11
(d) 0.18 1.86 0.07 0.01 0.25

Table 5.2: Errors of model parameters due to image noise and coregistration
uncertainties associated to curves (a) - (d), figure 5.4

hypoxic or necrotic tissues (such as figures 5.4(c) and (d)). Hence, w̃Ak̃3

turns out to take relatively high values.
In the following, the kinetic data analysis will be shown in more detail

exemplarily for patients # 6 and 13. Figure 5.6(b) shows the S∞ parameter
plot of patient # 13 and figure 5.8(b) the one for patient # 6. Both hy-
poxia maps are displayed in comparison to the corresponding distributions
of standardized uptake values (SUV) at 2 h pi (figures 5.6(a) and 5.8(a)).

Figure 5.6(b) represents a first example of a parametric plot for patient #
13. The region characterized by an increased SUV 2 h pi is also highlighted
in the parametric plot. A typical TAC of this region is plotted in figure 5.7.
The curve shows a relatively high influx peak as well as a positive slope for
long times after injection.

In case of patient # 6, displayed in figure 5.8, the SUV image 2 h after
injection indicates two distinct areas where the tracer seems to be accumu-
lated (figure 5.8(a)). However, the parametric plot for the indicated region
of interest only highlights one of these two regions (figure 5.8(b)). This phe-
nomenon is due to a different overall shape of the curves in the respective
tumour voxels and may be caused by different architectures of the tumour
vascularization leading to different retention times for the tracer.

Voxels A and B were chosen as representatives for these two areas. The
analytical curves S(t) as well as the corresponding measured data points are
displayed in figure 5.9. The plotted TACs present an interesting behaviour:
Even though the two curves have nearly the same activity level 120 min after
tracer injection, the shape of the curves is completely different. While the
TAC for voxel A shows a very high tracer influx peak followed by a continuous
washout, voxel B is characterized by a steady accumulation of tracer 30 to
240 min pi in addition to a much lower influx peak at the beginning. Hence,
the impression that the static image 2 h after injection presented the same
level of tracer accumulation was due to the fact that the intercept point
of two absolutely different curves was situated coincidentally at the time of
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Figure 5.6: Tumour region of head-and-neck patient # 13: (a) SUV distri-
bution 2 h pi of one PET slice, (b) parametric plot: S∞ for each voxel.
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Figure 5.7: Typical TAC of the tracer accumulating region in figure 5.6.
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Figure 5.8: (a) SUV distribution 2 h pi, (b) parametric plot for the marked
tumour region of patient # 6: S∞ for each voxel.
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Figure 5.9: Comparison of the overall curve shapes of voxels A and B, fig-
ure 5.8.
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image acquisition. Therefore, it does not seem reliable to identify hypoxia
only on the basis of a static image 2 h pi which obviously bears a high risk
of incorrect interpretation.

5.5 Discussion

The presented investigation showed that the overall shapes of the TACs con-
tain essential information about hypoxic tumour areas. Particularly the be-
haviour of the curves at long time scales is important. Hence, a criterion
based on a single time point threshold is not sufficient to perform a reliable
hypoxia analysis. SUV thresholds were used by other investigators [33,57] in
order to calculate the hypoxic sub-volume of a tumour.

Curve features such as the position of the minimum in the TACs between
20 and 60 min hint at the characteristics of the underlying processes which
occur on corresponding time scales. This property is understandable by
the immunohistochemical investigations with pimonidazole [30, 31, 41] that
found that long diffusion distances had to be travelled by the tracer before
reaching hypoxic cells. The signature of the characteristic diffusion times in
the tumour tissue is the position of the minimum in the curves.

The presented model involves slow diffusion rates of the tracer in the in-
terstitium, caused by long diffusion distances in the tumour tissue. It also
respects the inherent heterogeneity of tumour tissues, where well perfused
and hypoxic sub-volumes may coexist in the same PET voxel. These facts
were not considered by previous models [12], which explicitely treated homo-
geneous tumour tissues and were more appropriate to normal tissues made
hypoxic under experimental conditions.

The heterogeneity of the tumour structure requires that all compartment
weights remain floating in the fits to accommodate partial volume effects by
virtue of the linearity of the differential equation and that the input func-
tion becomes spatially variable. The derivation of this specific compartment
model from the ’classical’ kinetic modelling is well justified by the difference
of the tissue architectures. Due to the particular choice of the input func-
tion and the assumption of physical transport into the diffusive compartment
which ensures k1,in = k1,out, the total number of fit parameters is five. This
reduces the variability and co-variance of the fits. The experimentally estab-
lished need for a spatially variable input function poses an obstacle to the
use of graphical TAC analysis such as the Logan plot [42, 43].

A kinetic model was developed, which allows the analysis of dynamic
FMISO TACs. This compartmental analysis enables to derive a set of five
different parameters from the shape of the TACs. The values of these param-
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eters contain information about the structural configuration of the tumour.
In the following chapter, a statistical analysis is carried out in order to iden-
tify single parameters which are related to the radiation sensitivity of the
tissue.
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Chapter 6

Step II: Correlation to Therapy
Outcome

Tumor hypoxia has been known to be associated with poor radiation re-
sponse for several decades. Recent publications suggested that hypoxia in
tumours had a direct influence on treatment success [15, 20] by a variety
of mechanisms [70, 71]. A prognostic impact of tumour hypoxia for ther-
apy outcome in head and neck cancer (HNC) has been shown by different
investigators [9,48,49]. Hypoxia has also been related to lower survival prob-
ability and higher risk of recurrence in patients with cervix cancer [20, 25].
In these studies, hypoxia was assessed invasively by polarographic Eppendorf
electrodes.

In the following chapter, the derived quantities of the kinetic analysis are
linked to RT outcome. The patient specific values for perfusion, kinetic con-
stants and the concentration of tracer retaining cells are shown to correlate
well with treatment outcome for this group of 15 HNC patients.

6.1 Scatter Plots

Hypoxia is a consequence of an irregular vasculature as it occurs only in a
certain distance from the blood vessels. The quality of the vascular irreg-
ularity gives rise to different measures of hypoxia. Hypoxia exists only in
the ’gaps’ between the blood vessels. Hence, to measure the ’mesh size’, the
characteristic distance between blood vessels may reveal information about
the configuration of the vessel system. In addition, vascular efficiency and
hypoxia carry independent information. If the pouches between the vessels
become too large, necrotic areas will develop, which do not accumulate the
FMISO tracer. The kinetic model presented in chapter 5 allow us to distin-

49
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guish by separating the amount of unbound tracer from the signal emerging
from tracer retaining cells. By virtue of the kinetic model analysis of the
time-activity curves of tracer uptake, it is possible to eliminate the non-
specific background activity in the signal. A scatter plot is generated by
plotting the value of w0, the perfusion efficiency (P) on the ordinate against
w̃Ak̃3, describing the tracer retention potential (R), i.e. the concentration of
hypoxic cells weighted with the mean degree of hypoxia for each voxel on
the abscissa. Characteristic patterns in the scatter plots will allow to distin-
guish between tumour areas according to vascular density and concentration
of hypoxia.

6.2 Data analysis and statistics

Tumor control was defined on the basis of computed tomography (CT) scans
as complete and persistent regression of the primary tumour and failure was
defined as local recurrence of the tumour in the irradiated volumes. Follow
up time was determined from the end of RT treatment until the day of the
last CT.

Loco-regional tumour control probability was estimated using the Kaplan-
Meier method [73]. Differences between curves were analyzed with the log-
rank-test [74].

Different variables that might influence treatment outcome were com-
pared using the Wilcoxon-Mann-Whitney (Wilcoxon signed rank) U -test [3,5]
between patient groups showing no local relapse and failure. In all cases, a
two-sided significance level of 0.05 was used. Correlation of different vari-
ables with treatment success was assessed using a Pearson correlation coeffi-
cient [3].

The impact on treatment outcome was checked for different classes of
variables: tumour volume and patient age, SUV related factors and vari-
ables derived from the kinetic analysis. The SUV related factors were the
maximum standardized uptake value (SUVmax) and the fractional hypoxic
volume (FHV) 4 h after FMISO injection. FHV is defined as the fraction
of tumour volume presenting a tumour-to-blood ratio larger than 1.4. Both
variables SUVmax and FHV have been correlated with tumour hypoxia in
earlier studies [18, 57]. Finally, a number of parameters derived from the
compartmental analysis were checked for a statistically significant influence
on therapy outcome. These parameters were the mean value of R, the mean
value of perfusion, and two metrics involving both tracer retention R and
perfusion P parameter values. A first metric was defined intuitively as the
volume integral of the retention-to-perfusion ratio (RPR). A second metric,
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which was derived from a model of tumour dose-response and reoxygenation,
is the Malignancy value M . The malignancy M is a phenomenologically de-
fined metric which allows to mathematically describe the hypoxia – perfusion
scatter pattern of a patient according to the following formula:

M =
N∑

i=1

Mi =
N∑

i=1

e
bRi

Pi+P0 . (6.1)

Here, N is the number of voxels of the tumour, Ri and Pi are tracer retention
and perfusion values of voxel i. The value of Mi will be the larger, the lower
P is and the higher R is. Mi is the malignancy value of a single tumour voxel.
A motivation for the specific choice of this metric and a description of its
intrinsic properties will be presented in detail in chapter 7. The parameter
values of b and P0 are b = 208.0 and P0 = 0.704. They are derived from a fit
to a TCP-model, introduced also in chapter 7.

6.3 Patterns of Hypoxia and Perfusion

The kinetic model (see chapter 5 is able to discriminate the variety of ob-
served types of FMISO TACs. These curve shapes can be associated with
three main types of tumour tissues: (1) tissue areas with a high vessel den-
sity, (2) well perfused but also hypoxic, and (3) severely hypoxic and badly
perfused tumour areas. Figure 6.1 shows that characteristic TACs are asso-
ciated to distinct areas in the scatter plot. The patterns for the whole group
of patients are displayed in scatter plots in figure 6.2. It becomes apparent,
that the ultimate purpose of the kinetic model is to subtract the background
of unbound tracer from the signal intensity.

Statistics

Image analysis of the FMISO PET scans taken 4 h pi revealed maximum
SUVs in the tumour volume between 1.36 and 4.02. The median SUVmax

was 2.25. The FHV ranged from 0 to 72.5% with a mean of 19.7%. Due
to the chosen tumour volume definition strategy, which adds a margin, the
determined FHV can never reach 100%.

Examination of the scatter plots showed very different patterns of hypoxia
and perfusion. All possible combinations of hypoxia and perfusion param-
eters were observed: well perfused tumours which were not at all hypoxic,
tumours showing at the same time a quite high vascular density and hypoxic
subareas, and finally also tumours that were badly perfused and severely
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Figure 6.1: Above: Scatter
plot for one patient based
on tracer retention (R) and
perfusion (P) parameters re-
sulting from a kinetic FMISO
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hypoxic. These two variables represent physiological tumour characteristics
that are not correlated (r = −0.096). As a first result, it has to be stated
that hypoxia occurs independently from the degree of perfusion in tumour
tissues.

The Wilcoxon-Mann-Whitney U -test with respect to the age of the pa-
tients showed no difference (p = 0.3) between the subgroups with and with-
out relapse. In contrast, there was a significant difference in tumour volume
between the two subgroups (p = 0.014). This corroborates the findings of
earlier studies that correlated tumour size with treatment outcome [52]. Also,
SUVmax, determined 4 h after injection separated patients according to fail-
ure and progression free survival (PFS). The significance for SUVmax was
only weak p = 0.041, whereas the U -test for the FHV showed no significance
at all (p = 0.13).

Regarding the variables derived from the kinetic analysis, mean tumour
perfusion and RPR discriminated between the group without recurrence and
the failure group (p = 0.05 and 0.008, respectively). The mean tracer reten-
tion value showed no significance (p = 0.18). Finally, the malignancy value
M was highly significant, with p = 0.0013 (table 6.1). The prognostic value
of this model based metric M is higher than the value of tumour size or
SUVmax after 4 h.

Figures 6.3 and 6.4 show the Kaplan-Meier plots according to the vari-
ables tumour volume and Malignancy, respectively. Malignancy also grows
linearly with tumour volume. The progression free survival curves for the
two subgroups separated by tumour volume were not significant (p = 0.08),
whereas the Malignancy metric is a variable which has a high potential to

Univariate statistical analysis
Variables p-value U -test p-value log-rank test
age [years] NS∗ (0.30) NS∗ (0.91)
tumour volume V [cm3] 0.014 NS∗ (0.08)
SUV†

max 0.041 NS∗ (0.10)
FHV‡ [%] NS∗ (0.13) NS∗ (0.53)
mean retention∗ NS∗ (0.18) NS∗ (0.24)
mean perfusion§ 0.05 NS∗ (0.11)
RPR§ 0.008 NS∗ (0.09)
malignancy value M § 0.001 0.01

Table 6.1: Results of univariate analysis of prognostic factors. ∗NS: not
significant (p > 0.05); †SUVmax: maximum SUV; ‡FHV: fractional hypoxic
volume. § derived from kinetic model
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Figure 6.3: Kaplan-Meier Plot for patient subgroups separated according to
tumour volume. Crosses represent censored data points. p-value is calculated
according to the log-rank test.
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Figure 6.4: Kaplan-Meier Plot where the two groups are separated according
to the Malignancy metric. Crosses represent censored data points. p-value
is calculated according to the log-rank test.
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stratify patients according to treatment outcome (see also table 6.1). In this
case, the log-rank p-values turned out to be p = 0.01. Hence, the malignancy
metric is a prognostic factor with respect to progression free survival.

6.4 Discussion

The results of this study showed, that SUVmax alone even at late time points
has limited predictive value. These findings are in line with results of other
investigators [6] who found that SUV 2h pi and Eppendorf pO2 did not
correlate well.

A limiting factor for the retention of FMISO in the tumour is that binding
of the tracer can only take place in viable hypoxic cells which may be few
if the tumour is largely necrotic. In other words, a low level of the FMISO
TAC several hours after tracer injection is not necessarily due to non-hypoxic
tissue. This might also be caused by largely necrotic tumour areas which
contain only a very low number of strongly hypoxic cells. In this case, the
low intensity of the PET signal would lead to an underestimation of the
extent of hypoxia by the SUV-method. A kinetic analysis subtracts the non-
specific background signal and hence enables to determine the local tracer
retention potential of the tumour. Still, the classical hypoxic tumour core
may only give a weak signal due to the low density of tracer retaining cells.
Hence, a second parameter is needed to give a more complete picture of the
abnormalities of the vascular architecture.

FMISO uptake kinetics are quite slow due to long diffusion distances
and for lack of active transport mechanisms. PET scans several hours after
injection of the radiotracer are therefore essential. Nevertheless, dynamic
scans at short times pi cannot be abandoned, as they are needed to determine
the degree of perfusion of the tumour.

There is no possibility in FMISO PET to distinguish between acute and
chronic hypoxia [17]. On one hand, this is due to a quite large size of the
image voxels (≈ (4 mm)3). On the other hand, the slow kinetics of tracer
retention do not allow a distinction of fast re-perfusion. Since both effects
are a consequence of the deficient vasculature, they may co-exist anyway.

The analysis of the parameters derived from the kinetic model demon-
strated, that tracer retention and perfusion values alone do not predict treat-
ment outcome. Additionally, hypoxia occurred independent of degree of
perfusion, since no correlation was found between the two variables. Fur-
thermore, it turned out that either one variable did not suffice to describe
the vascular architecture fully. The two parameters perfusion efficiency and
tracer retention are linked to the total capacity of blood vessels (P) and to
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the spatial resolution of the vascularization (R). Hypoxia is a symptom of a
deficient vasculature and can be a result of both, a low capacity and/or a poor
distribution of vessels. Hence, the combination of two kinetic parameters car-
ries more meaning than just one. Taking both parameters together proved
to be reliable predictors for treatment outcome. The malignancy metric M ,
which involves these two physiological characteristics of the tissue, was found
to be the strongest prognostic factor.

The results of this study demonstrate that dynamic FMISO PET has
prognostic value for therapy outcome, but only when perfusion and retention
are both taken into consideration. Hence, dynamic FMISO PET might in
the future be used to select patients for an adapted radiotherapy treatment
as e.g. dose painting [2,13,37]. Furthermore, variables derived from a kinetic
analysis [64] may serve to determine individual dose escalation factors in
order to overcome hypoxia related treatment resistance.

Most essential for the design of new adaptive treatment strategies is the
time until reoxygenation takes place after the beginning of RT. The malig-
nancy metric M involves an estimate of this characteristic time. The worst
physiological setting in a tumour seems to be the combination of low per-
fusion and severe hypoxia, as reoxygenation then appears to be very slow.
In contrast, a high degree of perfusion co-existing with hypoxic areas may
favour fast reoxygenation. Hence, this setting might be associated with an
intermediate level of risk. This interpretation can be supported by follow-up
scans during RT, which will be reported on in chapter 7.
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Chapter 7

Step III: A Hypoxia TCP
Model

In the present chapter, a model for the influence of hypoxia on tumour con-
trol probability (TCP) is developed. The configuration of the vascularization
is essential for possible reoxygenation processes and therefore also for the re-
sponse to treatment. The TCP model estimates the time to reoxygenation
from measurements of perfusion efficiency and hypoxia with the PET tracer
[18F]-FMISO. Its design is guided by a series of repeated FMISO PET scans.
These follow-up data for the patient group give some insight into the changes
of both perfusion efficiency and hypoxia. All dynamic PET scans were eval-
uated with the kinetic compartment model introduced in chapter 5.

7.1 Development of a Tumour Control Model

Assuming that a hypoxic cell population shows a decrease in radiosensitivity,
this population cannot be controlled by doses applied via conventional radio-
therapy [21]. The population of hypoxic cells determined the treatment out-
come unless it is reduced by reoxygenation. Thus, the most relevant quantity
for hypoxia TCP is the time from the onset of radiotherapy to reoxygena-
tion, which is equivalent to the number of treatment fractions lost on the
radioresistant cells. At first sight, this suggests that a single pre-treatment
hypoxia image cannot be sufficient to determine the required extent of dose
escalation.

The presence of regions in a tumour where cells can suffer from a lack of
oxygen supply is a result of an insufficient or deficient vasculature. Hence,
despite the complicated processes that occur during normal growth or under
therapy, like repopulation, redistribution between cell compartments, and
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loss of cells either by starvation or as a consequence of therapy, the central
question for HIDE is: When does the vasculature become sufficient again,
either by neovascularization or reduced consumption, or both? Animal ex-
periments show that the phenomenon of hypoxia is an inherent property of
cell lines [41] and can outlast the lifespan of hypoxic cells by far [39]. The
emergence of hypoxia seems to be engrained in the growth characteristics of
a clonogen population.

If functional imaging reveals the irregularity and coarseness of the tu-
mour vasculature, it may be possible to estimate the time to reoxygenation.
In dynamic studies of PET tracer or MR/CT contrast agent uptake, it is
possible to obtain a measure of the efficiency of perfusion (determined by the
number, calibre and distribution of blood vessels and the magnitude of blood
flow within them) during the influx phase shortly after injection. The degree
of hypoxia as given by the uptake of PET tracer is in itself an indicator of the
coarseness of the vasculature, as hypoxia can only persist in wide gaps be-
tween perfused blood vessels. The combination of both, perfusion efficiency
and hypoxia labeling, has been shown to carry significant information about
the success of chemo-radiotherapy [65].

7.1.1 Observations

The distributions of tracer retention – perfusion efficiency for each patient
can be classified as one of three typical scatter patterns. The classical hy-
poxic tumour shows high tracer retention and lower than average perfusion
efficiency values, see figure 7.1(a). Here, a deficient vasculature creates pock-
ets of severe hypoxia, which may even contain necrotic cells which are not
visible on FMISO images. A second class of tumours shows significant tracer
retention and more than average perfusion efficiency values, see figure 7.1(b).
These tumours do have a viable vasculature, but oxygen consumption is so
high that the supply is not sufficient. These tumours may be more amenable
to hypoxia-modifying treatments and may show faster reoxygenation than
the first type. Finally, tumours of the third class show no tracer retention,
while their perfusion efficiency values are normal to greater than average, see
figure 7.1(c). In chapter 6 it was shown that the prognosis for type 1 is very
poor, for type 2 intermediate, but very good for type 3.

The fast response of a tumour to radiotherapy could be dominated by
two effects. Firstly, due to a deceleration of proliferation, the oxygen con-
sumption drops and as a consequence, perfusion limited hypoxia vanishes.
Secondly, due to an acute inflammatory reaction, the blood flow increases
which increases oxygen supply with the same result as above. This turns
out to be the reoxygenation pattern of type 2 tumours. Of the 6 patients
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Figure 7.1: Scattergrams of tracer retention R versus perfusion efficiency P
for patients # 6 (a), # 1 (b) and # 8 before the start of RT.

classified as type 2, only 3 had noticeable traces of hypoxia left at 20 Gy,
while the perfusion was generally enhanced.

At later times during treatment, the reoxygenation response could be
shaped by an overall shrinkage of tumour mass and neovascularization, two
effects that can enhance the quality of the vasculature, while it is certainly
also damaged by radiation. The net effect is somewhat elusive on the basis
of current knowledge. For this reason, type 1 tumours are more interesting
study objects. Figure 7.2 shows the scatter patterns of patient 6 before
treatment (a), at 20 Gy (b) and at 50 Gy (c). The early response leads to
increased perfusion efficiency, but the overall reduction of tracer retention is
rather small. The 20 Gy scatter pattern resembles a type 2 tumour. At 50
Gy, hypoxia has almost vanished, resulting in a type 2-3 scatter pattern.

The example of this patient suggests the hypothesis that the footprint of
reoxygenation in the scatter patterns is a progression to less malignant types.
The aforementioned and additional unknown mechanisms of reoxygenation
and redistribution may in effect increase perfusion efficiency and reduce tracer
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Figure 7.2: Scatter pattern of patient # 6 (a) before treatment, (b) at 20 Gy
and (c) at 50 Gy.



62 CHAPTER 7. STEP III: A HYPOXIA TCP MODEL

retention and thus propagate a volume element in the scatter plot from the
lower right to the upper left. This propagation would move a volume element
from a region of high malignancy to lesser malignancy. Hence, the lines of
equal malignancy would run orthogonal to the direction of propagation, i.e.
from the lower left to the upper right. This is in fact what a TCP model
needs to capture.

7.1.2 Model Design

Naturally, given the population-averaged experimental data, the best a tu-
mour control model including reoxygenation can do is to describe the obser-
vations. No attempt at a mechanistic model is made, and all parameters are
understood as averages over the patient population.

We start with the common Poisson approximation of TCP

− ln TCP = ρ
n∑

i=1

exp(−α0Di) , (7.1)

where ρ is the mean cell density per volume element, α0 is the mean cell
sensitivity, Di is the dose in volume element i and the sum runs over all
volume elements i = 1, ..., n. The rhs is equal to the expected value of
surviving cells in the total tumour volume, henceforth denoted with µ0. If
µi = ρ exp(−α0Di) is the expected value of surviving cells per volume ele-
ment, we obtain

µ0 =
n∑

i=1

µi . (7.2)

Assume now that the cells of a given tumour volume element are labelled
according to their distance to the next perfused blood vessel. Next, the cells
are sorted according to their distance label and collected into bins such that
each bin contains the same number of cells. Hence, the bin [0, ∆s] contains
the fraction ∆s of all cells being closest to the next blood vessel, likewise,
the interval [1 −∆s, 1] contains the fraction ∆s of all cells with the largest
distance to the next perfused blood vessel.

In order to take into account hypoxia induced radio-resistance, we assume
that each bin has a specific mean cell sensitivity α(s) and reoxygenates after
a fraction tR(s) of the total number of treatment fractions. Therefore

µi = ρ

∫ 1

0

ds exp (−α(s)tR(s)Di − α0(1− tR(s))Di) (7.3)

= ρ exp(−α0Di)

∫ 1

0

ds exp (−(α(s)− α0)tR(s)Di) . (7.4)
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The integral is the excess of cells surviving the treatment because of reduced
cell sensitivity. In case no hypoxia is present, the integral is 1. If there is
some hypoxia present, the integral becomes rapidly dominated by the most
distant cells (s ≈ 1) where α(s) is smallest and tR(s) largest. In keeping with
the well established saddle-point approximation (i.e. α0Di >> 1), we write∫ 1

0

ds exp (−(α(s)− α0)tR(s)Di) = exp(−(αh − α0)tRDi) , (7.5)

where αh and tR are the macroscopically observable quantities of cell sensi-
tivity and reoxygenation time for this volume element. The rhs is termed
the Malignancy value Mi of this volume element.

The kinetic analysis of FMISO uptake delivers for each volume element
a measure of perfusion efficiency P and of tracer retention R. In chapter 6 it
was shown, that the distributions of (R,P ) are quite characteristic for each
tumour, with an indication that the presence of high-R/low-P volume ele-
ments is an unfavourable indicator for treatment response. Here, we assume

1. the macroscopic cell sensitivity αh is proportional to the tracer reten-
tion R and

2. the macroscopic time to reoxygenation tR is proportional to 1/(P +P0),
suggesting that there exists a maximum time 1/P0 after which any
volume element will have reoxygenated.

In the results section below, we elaborate on this choice.
Finally, we obtain

Mi = exp(bRi/(Pi + P0)) (7.6)

and, assuming that Di = D everywhere

µ0 = ρ exp(−α0D)
n∑

i=1

Mi . (7.7)

The parameters A = ρ exp(−α0D), b and P0 were determined by a max-
imum log-likelihood fit [16] of exp(−µ0) to the group of 15 patients.

7.2 Results

The TCP model predicts a progression of the scatter plot during RT to less
malignant phenotypes, i.e. to higher perfusion efficiencies and lower levels of
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tracer retention. From eq. (7.6), the lines of constant malignancy have the
form

P =
bR

ln M
− P0 . (7.8)

The model was chosen such that it produces the simplest possible form of
iso-malignancy lines that still describes the observations. The directions of
progression to lower malignancy obtain as

∇M =
bM

P + P0

(
−1
R

P+P0

)
. (7.9)

Figure 7.3 shows the iso-malignancy lines and the directions of progression
for the example patient of figure 7.2.

By virtue of its definition, a certain malignancy value M is equivalent to
an M -fold increase of the expected number of surviving cells per unit volume.

The parameters of the model were obtained from a maximum likelihood
fit to the initial set of 15 patients. The following parameter values were deter-
mined from the fit: A = 9.92 · 10−5, b = 208.0 and P0 = 0.704. The goodness
of fit was estimated by evaluation of the deviance ∆. The deviance is de-
fined as twice the difference between the current and the full log-likelihood
∆ = −2(Lc − Lf ), which is supposed to follow a χ2 distribution. In our
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Figure 7.3: Isolines for different malignancy values M and directions of pro-
gression to lower Malignancy for patient #6.
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case, the deviance confirmed an acceptable fit (∆ = 2.75, p > 0.05). For each
patient, a TCP value was computed. The patients were grouped according
to the expected number of surviving cells µ0 into four groups. The observed
rate of local control is compared with the predicted TCP value of the model
in figure 7.4.

The ratio of M̄ before the start of treatment (M̄0) and after 10 fractions
(M̄10) represents the factor by which the expected value of surviving cells
is increased due to hypoxia. For the analysis of the mean malignancy M̄ ,
only patients were taken into account that presented M̄0 ≥ 1.69. This cutoff
value was chosen to be equal to a reoxygenation time of two days. Four
of the ten patients presented M̄0-values below this cutoff (# 1, 7, 10 and
13), whereas the mean malignancy values for the remaining six patients are
shown in table 7.1. These results support in four cases (# 3, 4, 6 and 14)
the hypothesis of a progression to less malignant tumours during irradiation.
The high M -value in the follow-up scan of patient 2 is possibly caused by
too sparse dynamic data acquisition points (dynamic acquisition for only 10
min), which resulted in high errors for the kinetic analysis. In contrast, the
small malignancy increase seen for patient 9 might be due to eventual errors
during data analysis.
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Figure 7.4: TCP model fitted to the patient outcome data.
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Pat # M̄0 M̄10

2 35.3 15810
3 17.1 1.16
4 143.1 71.0
6 8.39 2.56
9 1.80 4.56
14 6.02 1.61

Table 7.1: Mean malignancy values M̄ before the start of treatment and after
10 fractions for all patients with M̄0 ≥ 1.69.

7.3 Consequences for Hypoxia Image Guided

Dose Escalation (HIDE)

The present development sees hypoxia and reoxygenation essentially as a
consequence of a deficient vasculature and its response to radiation. While
hypoxia constitutes a severe problem in radiotherapy for a variety of rea-
sons [15], it stems from a deeper cause. The model tries to capture the
observable patterns of hypoxia and reoxygenation, both of which are linked
to the irregularity of vascularization.

The processes occurring as response to therapy in an individual tumour
are many and varied. Histological studies suggest, that any imaginable effect
can indeed be found in some specimen [39–41]. Naturally, a population
based TCP model can only describe the net effect of all possible scenarios of
hypoxia/reoxygenation on local control. Within the limitations of the study
size, this seems to be possible with a single pre-treatment hypoxia image.

The reason for this may be that on average, both the initial degree of
hypoxia and the speed of reoxygenation are linked to the irregularity of the
vasculature. The patchiness of the intervascular spaces defines the regions
where hypoxia can occur. Redistribution of cells between compartments
or even a constant loss of the most hypoxic cells do not change anything
about the number of cells that are located in a hypoxia-prone region at any
given time. Only slower processes like neovascularization or shrinkage of the
tumour can change the overall constitution of the vasculature.

In this image, the concepts of acute and chronic hypoxia seem to lose
meaning in the context of clinical treatments. Clearly, both are signs of a
less than sufficient vasculature, so the likelihood of coincidence is high, espe-
cially given the rather large dimensions of PET image voxels. For a model
that averages over the total treatment time and a population of patients, all
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that matters is the mean size of the hypoxic pouches created by the patchy
vascularization. The more relevant distinction here is whether this quantity
diminishes quickly due to fast reoxygenation, driven by increased supply and
reduced consumption of oxygen, or whether reoxygenation occurs by slow
processes.

The speed of reoxygenation also impacts the strategy of dose escalation
that could be adopted to overcome hypoxia induced radioresistance, and
the consequential reduction of cell kill. If dose escalation was applied from
the beginning of treatment, a lot of the additional dose administered to the
hypoxic region could be wasted on resistant cells if reoxygenation was slow.
It could be better to wait with escalation until reoxygenation has occurred
and make up for the loss of cell kill towards the end of the treatment, when
the dose is more efficient. This strategy runs the risk that reoxygenation may
come too late and the dose per fraction becomes too high.

The model affords predictions about the required dose escalation per vol-
ume element. If the strategy of a late boost after reoxygenation is to be
adopted, we require for the additional dose ∆D

Mi exp(−α0∆D) = 1 (7.10)

which leads to
∆D + D0

D0

=
ln Mi

α0D0

+ 1 (7.11)

where D0 is the base treatment dose, in our case 70 Gy, and the cell sensitivity
of non-hypoxic tumours α0 equals, say, 0.4. This strategy assumes that the
image of initial hypoxia is frozen in the distribution of remaining cells half
way into the treatment.

In contrast, a homogeneous boost has to overcome the mean cell sensi-
tivity ᾱ

Mi exp(−α0D0) = exp(−ᾱD0) (7.12)

so that if we require that

ᾱ(∆D + D0) = α0D0 (7.13)

it obtains
∆D + D0

D0

=
α0D0

α0D0 − ln Mi

. (7.14)

This strategy assumes that the reoxygenation is not accelerated by the hy-
pofractionation. Both strategies do not take into account the additional
effect of greater fraction sizes as it is felt that this is of secondary importance
given the individual uncertainties of hypoxia images and their interpretation.
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It can be seen easily by Taylor expansion of eq. (7.14) for ln Mi ≥ 0 small,
that both factors agree for small dose escalations. For large dose escalations,
the first factor becomes noticeably smaller than the second. The observed
range of required dose escalation factors in the present population according
to eq. (7.14) was between 1 and 1.66 (see chapter 8).

The presented TCP model can be used as a key in order to perform in-
dividual, spatially varying dose prescriptions according to the regional TCP.
In chapter 8, a planning study is carried out with the goal to investigate
the technical feasibility of applying Hypoxia Image Guided Dose Escalation
(HIDE).



Chapter 8

Step IV: Dose Painting
Planning Study

In this chapter, the results obtained so far from the kinetic analysis of dy-
namic FMISO data and from the corresponding TCP model will be applied
for dose painting (DP) treatment planning. A dose escalation (DE) is pre-
scribed in addition to the conventional radiotherapy (RT) treatment in order
to overcome hypoxia-induced radiation resistance. DE to a tumour that was
identified as hypoxic can be beneficial because of different aspects, concern-
ing malignancy and radiosensitivity of the tissue. Hence, a DP concept can
be based on different hypothesis.

The presence of hypoxia indicates a more malignant phenotype of tumour
which may coincide with a number of unfavourable traits, e.g. enhanced
proliferation. To counteract these mechanisms preemptively, a uniform dose
escalation (uniDE) to the entire macroscopic tumour volume is proposed. In
order to identify this volume, FDG PET can be used. However, a major
limitation of this approach might be the high dose levels applied uniformly
to large volumes. In addition, there might be a risk of an unacceptably high
probability of serious acute reactions and higher normal tissue doses.

For these reasons, the idea of hypoxia DPBN [2,7,37,62,66] that applies
higher doses only where needed seems to be very promising from a clinical
point of view. Applying spatially variant doses - according to the degree
of hypoxia, might allow a significant reduction of the normal tissue burden
and additionally reduce the overall treatment dose. A measurable amount
of hypoxia is known to cause therapy resistance [9, 20, 48, 49]. However, in
order to assign accurate dose prescriptions for DPBN on the basis of hypoxia
PET, a clear relation between treatment outcome and the considered hypoxia
imaging method is required. In chapter 6, the correlation between dynamic
FMISO PET and RT outcome was demonstrated. For this purpose, the
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FMISO data was analyzed using the kinetic model introduced in chapter
5, which allowed for the determination of characteristic parameters related
to the degree of hypoxia and blood vessel density. The key requirement
for the translation of functional imaging data into clinically promising dose
prescriptions is given by the TCP model based on these parameters and their
relation to tumour reoxygenation, as shown in the previous chapter.

The present chapter investigates the feasibility of hypoxia DP in a patient
population. A planning study with 13 HNC patients was performed, where
for each patient three IMRT plans were created: a hypoxia DPBN plan
according to a DE map determined from the dynamic FMISO PET data,
a uniDE to an FDG-based BTV, and a conventional IMRT plan. All of
these plans were restricted to the same dose in the organs at risk (OARs)
spinal cord, brain stem and parotid glands. The aim of of this study was to
evaluate DE strategies with respect to target coverage at constant normal
tissue toxicity. Additionally, a TCP analysis was carried out in order to
determine whether the overall change in local control effected by the directed
and the indiscriminate dose escalation would be sufficiently different to prove
either one concept, or both, of value.

8.1 Planning Study

A total of 13 out of the 15 patients listed in table 3.1 were included into this
planning study. For patients # 2 and 4, no planning CT data were available.
Details about the FMISO and FDG PET examinations can be found in
sections 3.1.2 and 3.3.1. Patients were treated as explained in section 3.3.3.
For each patient, three individual IMRT plans were created with the planning
system Hyperion [1]: a conventional IMRT plan, a uniDE was applied to
the FDG PET positive BTV and finally a plan, where a DPBN approach
according to dynamic FMISO PET data was realized. For all three plans
the same equivalent uniform dose (EUD) constraints were used. Hence, all
final dose distributions had the same EUDs in the OARs. The advantage
of this approach is that OARs were not compromised if the target goal was
hard to achieve. Conversely, if the target dose could not be achieved a higher
toxicity would have been necessary. The OAR that were taken into account
generally were the spinal cord, the spinal cord extended by a safety margin of
3mm, the parotid glands and the non-specified normal tissue. Also in terms
of beam angles, the same settings were used for the three different plans of
a patient. Additionally, acute reactions were taken into account for the plan
optimization: the weekly dose was limited to 12 Gy for all three branches.
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8.1.1 Conventional IMRT

In each case individual planning target volumes (PTVs) of first, second and
third order (PTV70, PTV60 and PTV54 respectively) were defined. The
nominal prescription doses were 70, 60 and 54 Gy. A simultaneous integrated
boost (SIB) technique allowed us to apply 60/54 Gy during the first 30
fractions to the PTVs of second and third order. An additional boost of 10
Gy in 5 fractions was then given to the PTV70. This type of conventional
IMRT plan corresponds to the clinically applied dose distribution.

8.1.2 Uniform Dose Escalation

A second set of plans was created in order to apply a uniformly escalated
dose to the FDG positive subarea of the PTV70. The FDG PET image was
therefore manually matched to the planning CT. The FDG-avid BTV was
defined as the region in the PTV70 containing FDG intensities higher than
40% of the maximum value. A dose escalation of 10%, respectively 77 Gy,
was prescribed to this area. For this branch, also 35 fractions were used,
so that uniDE was applied with a SIB technique. The dose prescriptions
for the PTVs and the normal tissue constraints were the same as for the
conventional IMRT plans.

8.1.3 Hypoxia Dose Painting by Numbers

In order to perform hypoxia DPBN, a map of locally varying dose escalation
factors (DEF) was determined on the basis of dynamic FMISO PET scans.
The analysis of this data was performed using a compartmental model de-
scribed in chapter 5. The tumour control probability (TCP) model developed
in the previous chapter assumes

local cell survival ∼ exp

(
b ·Ri

Pi + P0

)
:= Mi, (8.1)

where Ri and Pi are the tracer retention and perfusion values for voxel i. b
and P0 are fit constants of the TCP model defined by

ln(TCP) =
ln(TCP0)

V
·

N∑
i=1

Mi. (8.2)

In the above equation, TCP0 denotes TCP in the case of a non hypoxic
tissue, which is given by − ln(TCP0) = N · exp(−α0D0). Here, α0 is the
tumour cell sensitivity in Gy−1 and D0 the required dose for a normoxic
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tumour tissue region in Gy. In the context of this study α0 = 0.4 Gy−1 and
D0 = 70 Gy were used. Assuming that the map of cell survival values reflects
the degree of therapy resistance, the local dose escalation factor (DEF) for
a given voxel i can be determined. Under the stipulation that the expected
value of surviving cells is constant in all voxels, the DEF reads

DEFi =
α0D0

α0D0 − ln(Mi)
=

αi

α0

. (8.3)

This local DEF compensates for the mean cell sensitivity < αi >T of a voxel
during the whole treatment time. Hence, the resulting DE is applied through-
out the whole treatment course, starting from the first day of treatment.

The resulting map of DEFs was used for a gradual dose prescription. By
virtue of the model, the DEFs are truncated at 1: DEFi ≥ 1.0. In order
to ensure accurate coregistration, the corresponding FMISO image acquired
2 h after tracer injection was manually matched to the planning CT. The
determined transformation matrix was then applied to the respective DEF
map, which is available in the same coordinate system as the 2 h pi FMISO
scan.

8.1.4 Evaluation and Comparison of Treatment Plans

A statistical analysis of the DEFs associated to uniDE and DPBN was car-
ried out. For DPBN, the mean DEF (DEFmean) and the maximum DEF
(DEFmax) were determined. Furthermore, the volume of the FDG-based
BTV (VFDG) was compared to the fractional tumour volumes associated
with DEFs exceeding 1.05 (V1.05), 1.1 (V1.1) and 1.2 (V1.2), respectively.

The three different treatment plans were compared based on dose vol-
ume histograms (DVHs). In order to evaluate the dose distributions in the
target volumes, a comparison of characteristic DVH points is not possible
as the DP prescriptions vary from one patient to another. Therefore, it was
evaluated how the applied doses matched the prescribed doses according to
the effective DVH method proposed in [2]. However, cumulative histograms
- similar to DVHs - were determined that show the fractional volume which
receives at least a certain percentage of the prescribed dose. To achieve this,
the applied doses were weighted with the inverse of the local DEFs. This
DVH transformation allows us to objectively compare the target coverage of
treatment plans with different DE strategies.

Furthermore, TCP was calculated for different scenarios according to

− ln(TCP) = C ·
N∑

i=1

e−αiDi , (8.4)
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where αi is the local cell sensitivity in Gy−1, Di the dose in Gy applied to
voxel i and N is the number of voxels. The constant C equals voxel volume
times number of cells per ccm and is determined from a fit to the patient pop-
ulation (cf. chapter 7). In a first step, ideal TCP (TCPideal) was estimated
assuming that the tumour cell sensitivity α was spatially variable. FMISO
mapping was supposed to reveal the sensitivity distribution in the tissue. Va-
lidity of the hypoxia TCP model introduced in chapter 7 was presumed. In
addition, it was assumed that the required dose prescription D0 ·α0/αi could
be achieved in all tumour voxels. To fulfill the dose requirements perfectly
would imply a homogeneous cell survival probability and TCP would depend
only on tumour volume. In contrast, the second TCP scenario (TCPreal) took
into account that prescriptions could not be achieved perfectly. TCPreal was
calculated using the realistic dose distributions obtained from the planning
study. In general, TCPreal will be different from TCPideal. Usually TCP esti-
mated for the realistic situation will be smaller. The third scenario evaluated
the realistic dose distributions, but assumed a homogeneous tumour tissue,
i.e. no deleterious influence of hypoxia. Here, αi = α0 was used everywhere
so that the effect of a dose escalation created in the absence of hypoxia was
estimated.

8.2 Results of the Planning Study

For all 13 patients, three different IMRT plans were created. For all plans,
7 or 8 fields were used. No FDG PET data were available for patients # 5
and 14. In these cases, the FMISO scans taken 2 h pi were used to define
a BTV, which was also defined as the region including tumour voxels with
FMISO intensities larger than 40% of the maximum.

The volumetric analysis for the two DE approaches, uniDE and DPBN,
revealed a large bandwidth of volumes determined by the FDG positive area
(VFDG). VFDG ranged from 7.32 to 94.34 cm3, with a mean value of 37.79 cm3.
In most of the cases, the tumour region that receives 2.2 Gy per fraction
(Gy/fx) would be too large to be clinically applicable. In contrast, the DPBN
approach assigns doses in the order of 2.2 Gy/fx only to very small sub-
volumes of the tumour. In general, a DE of 10% was only observed for
severely hypoxic areas, whereas regions of moderate hypoxia required DE
factors lower than 1.1. Volumes that were for the DPBN approach associated
to DEFs higher or equal than 1.1 (V1.1) were in the range of 0 to 7.75 cm3

(mean: 1.77 cm3). In contrast volumes that received additional doses of 5%
or more (V1.05) were between 0 and 26.54 cm3 large, with a mean volume of
7.42 cm3. Five of the 13 patients required DEFs greater than 1.2 in small
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Pat PTV70 VFDG V1.05 V1.1 V1.2

# [ccm] [ccm] [%] [ccm] [%] [ccm] [%] [ccm] [%]
1 450.4 67.12 14.90 2.81 0.62 0.22 0.05 0 0
3 288.7 36.42 12.61 17.12 5.93 7.75 2.68 1.84 0.64
5 314.4 93.83∗ 29.84 25.68 8.17 6.70 2.13 1.22 0.39
6 278.1 32.13 11.55 26.54 9.54 5.78 2.08 0.68 0.24
7 447.3 44.50 9.95 0.05 0.01 0 0 0 0
8 256.1 21.14 8.25 0 0 0 0 0 0
9 438.7 21.12 4.81 4.83 1.10 0.32 0.07 0 0
10 559.4 94.34 16.86 2.46 0.44 0.35 0.06 0.03 0.00
11 462.8 7.45 1.61 0.84 0.18 0.11 0.02 0.05 0.01
12 371.6 7.32 2.00 4.64 1.25 0.70 0.19 0 0
13 174.3 14.28 8.20 0.46 0.26 0 0 0 0
14 208.1 20.44∗ 9.82 3.54 1.70 0.49 0.23 0 0
15 266.8 31.21 11.70 7.51 2.81 0.62 0.23 0 0

Table 8.1: Volumetric analysis for the different types of dose prescriptions:
volume PTV70, volumes of the FDG-avid BTVs (VFDG) and DPBN sub-
volumes associated to DEFs higher or equal 1.05 (V1.05), 1.1 (V1.1) or 1.2
(V1.2) respectively, according to the FMISO-based DE map. Relative values
given in brackets are normalized to the total PTV70 volume. ∗No FDG scan
was available for patients # 5 and 14. The BTVs were defined on the basis
of the FMISO PET acquired 2 h pi.

regions of the target. The detailed volumetric analysis for all patients is
summarized in table 8.1.

The statistical analysis of the DEF determined for DPBN revealed a large
variation of the maximum DEFs (DEFmax) among the considered patients.
DEFmax ranged from 1.03 to 1.66. The mean values of the individual DEFs
(DEFmean) were in the range 1.01−1.03 FDG-positive BTV. Table 8.2 shows
DEFmax and DEFmean values for each patient in detail. DPBN escalates the
dose for most of the patients by less and also in a smaller sub-volume of the
tumour. Hence, DPBN might constitute a more effective use of the radiation
dose.

Figure 8.1 shows a histogram of the required DEFs for patient # 6. This
histogram illustrates that the majority of tumour voxels requires DEFs lower
than 1.1, only for a small number of voxels higher doses are prescribed.

Figure 8.2 exemplarily shows the dose distributions of the three different
plans for one patient (# 6). For this patient, the dynamic FMISO data re-
vealed large areas of severe hypoxia. This is the reason why in small subareas
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Pat # DEFmax DEFmean
∗

1 1.198 1.010
3 1.415 1.019
5 1.664 1.021
6 1.350 1.030
7 1.052 1.006
8 1.033 1.008
9 1.172 1.011
10 1.229 1.006
11 1.264 1.007
12 1.190 1.018
13 1.072 1.004
14 1.185 1.016
15 1.145 1.019

Table 8.2: Maximum and mean DEFs for DPBN determined for each patient
on the basis of dynamic FMISO PET data. ∗Mean value of DEFs referring
to the FDG-volume.
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Figure 8.1: Histogram of DEFs for patient # 6.
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of the PTV doses exceeding 82 Gy can be observed. The maximum DEF for
this patient turned out to be 1.35. In contrast to other patients, the FDG
positive area of this patient was quite irregular, which leads to a complicated
prescription also in the case of uniDE. In the right column of figure 8.2 the
corresponding DVHs are presented. The displayed DVHs for the OARs sub-
stantiate the isotoxicity constraint achieved for the three different branches.

A detailed DVH comparison of normal tissue doses is not necessary, since
the whole study was defined requiring isotoxicity of the three plans (see
also fig. 8.2). A comparison of the overall treatment doses that showed no
significant increase of the integral dose neither for the uniDE approach nor
for the DPBN plan. The total doses for both branches were in the order of
±2% relative to the conventional IMRT plan.

In order to evaluate the dose assigned to the target, a comparison of
the cumulative histograms for the three plans of patient # 6 is displayed in
figure 8.3 for the PTV of first order. Compared to the conventional IMRT
plan, the uniDE showed a non-negligible part of the PTV where the dose
prescription could not be fully realized. Underdosages are mainly observed
at the edges of the FDG-positive area, where the prescription rises from 70
to 77 Gy. Generally, a lower target coverage was observed for the uniDE
approach. In contrast, the requirement of DPBN was easier to fulfill. The
target coverage of DPBN was only slightly worse than for the conventional
IMRT plan. Nevertheless, if the DE maps become too heterogeneous, a
precise application of the required dose might no longer be guaranteed. In
table 8.3, a detailed list is given, that summarizes for all patients and for
each of the three treatment modalities the percentage of target volume that
receives at least 95, 100 or 105% of the prescribed dose.

Table 8.4 shows the detailed TCP analysis for the patient group. In the
case of patient #2, TCPreal and TCP0 were 0. This was probably due to the
position of the PTV70, which presented regions overlapping with the spinal
cord. In these areas, doses were reduced according to the normal tissue
requirements. Therefore, also TCP decreased significantly.

The determined values for TCPideal revealed that the fraction of patients
that is overtreated with uniDE is substantial. A large fraction of patients
(e.g. # 8, 11, 12, 13 and 14) had already before the start of treatment
TCP values of 0.8 and higher. A uniDE would not significantly improve
the probability of tumour control for these patients. The marginal increase
of TCP does not justify DEs of such magnitude. In contrast, for severely
hypoxic tumours, which have initially very low TCPs (≤ 0.35), uniDE is
not sufficient, a more focused application of the dose is needed. The TCP
values for these patients (# 3, 5 and 6) show the high potential of DPBN.



8.2. RESULTS OF THE PLANNING STUDY 77

 0

 20

 40

 60

 80

 0  10  20  30  40  50  60  70  80

V
ol

um
e 

[%
]

Dose [Gy]

 100

right parotid gland
left parotid gland
spinal cord
PTV54
PTV60
PTV70

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80

V
ol

um
e 

[%
]

Dose [Gy]

right parotid gland
left parotid gland
spinal cord
PTV54

PTV70
PTV60

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80

V
ol

um
e 

[%
]

Dose [Gy]

left parotid gland
right parotid gland

spinal cord
PTV54
PTV60
PTV70

Figure 8.2: Dose distributions and corresponding DVHs for patient # 6. (a)
Conventional IMRT plan. (b) uniDE to the FDG PET positive area shown in
purple. (c) DPBN according to the superimposed DE map determined from
dynamic FMISO PET scans. Volumes of interest: PTV70 (red), PTV60
(yellow), PTV54 (blue) and spinal cord (brown) and expanded spinal cord
(purple).
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Figure 8.3: Target coverage of prescribed dose for patient # 6. The fraction
of prescribed dose is displayed for the uniform DE and hypoxia DPBN in
comparison the DVH of the conventional IMRT plan. The prescription of
DPBN can be achieved better than uniDE.

Pat Conv uniDE DPBN
# V95 V100 V105 V95 V100 V105 V95 V100 V105

1 92.5 69.5 0 89.1 56.4 0.5 92.2 63.9 0
3 98.4 86.6 0 97.2 78.0 0.4 97.7 83.5 0.4
5 99.4 88.8 0 80.7 53.4 0.4 96.8 60.8 0.2
6 97.1 76.9 0 93.8 63.5 0.4 96.4 71.1 0.1
7 99.6 90.5 0 98.3 81.2 0.4 98.3 85.9 0
8 99.1 75.6 0 98.6 72.2 0.5 99.6 74.6 0
9 96.3 76.7 0 93.6 67.0 0.1 95.6 69.8 0
10 98.0 90.1 0 96.4 78.4 0.5 97.7 89.2 0
11 95.0 72.7 0 94.8 70.9 0.1 95.1 71.1 0
12 98.8 80.8 0 98.5 80.1 0 98.3 78.8 0
13 96.4 87.0 0 95.5 83.6 0.2 96.4 88.8 0
14 97.4 82.4 0.1 91.9 66.8 0.3 96.8 74.0 0
15 99.9 92.6 0.1 98.9 82.5 0.3 99.7 83.8 0

Table 8.3: Evaluation of target coverage: fractional volume (in %) that re-
ceives at least 95, 100 or 105% of the prescribed dose.



8.3. DISCUSSION 79

For patients where TCP for DPBN is higher than for uniDE, DEFmax > 1.1.
The major quality shown by the TCP values is the 15% increase in

TCPreal when applying DPBN. Especially for patients with highly hypoxic
tumours, which have very low probabilities of treatment success when treated
with 70 Gy, DPBN seems to be highly promising. The comparison with
uniDE, where only an increase of 2% is observed using the realistic dose dis-
tributions, shows evidence of the large benefit of DPBN. For those patients,
the uniDE is not powerful enough to overcome hypoxia induced radioresis-
tance.

The computation of TCP0 revealed TCPs comparable to the conventional
IMRT plan for both uniDE and DPBN. This is probably due to nearly un-
changed overall doses. The TCP analysis also estimates, that in case of
homogeneous tumour tissues, the dose escalation would not cause significant
changes in TCP. In other words, the risks of treating with uniDE or DPBN
are in the same order of magnitude.

8.3 Discussion

The presented work consists of a DP planning study that includes a group
of 13 HNC patients. The aim of the study was to compare two different DE
strategies, uniDE and DPBN, in a patient population while sticking to the
requirement of isotoxicity. Previously published investigations either showed
the feasibility of uniDE exemplarily for a single patient [13, 22] or studied
the possibility of performing DPBN [2, 7]. The presented paper addition-
ally estimates the possible gain in terms of TCP for the different therapy
approaches.

The study revealed, that under the condition of isotoxicity, both DE
methods are feasible. For the DPBN approach, the prescriptions could be
realized in a larger region of the target than for uniDE. The lower grade of
target coverage for uniDE is due to the fact, that the dose gradient always
lies inside the BTV. Hence, by virtue of the prescription a complete coverage
of the FDG-enriched region with 77.0 Gy can hardly be reached. In contrast,
the DPBN strategy is based on a gradual dose prescription. This results in
general in high grades of target coverage, if the DE map taken from dynamic
FMISO data does not present too high gradients or consist of too patchy
patterns.

Furthermore it turned out, that the areas of FDG enrichment which
should receive additional 10% of dose had volumes up to 94 ccm. The volumes
of the BTV were in most of the cases too large to be clinically acceptable
because of the enhanced risk of acute reactions. In contrast, only small areas
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Pat TCPideal TCPreal

# Conv uniDE DPBN Conv uniDE DPBN
1 0.530 0.629 0.637 0.000 0.000 0.000
3 0.135 0.152 0.875 0.198 0.193 0.750
5 0.002 0.002 0.706 0.000 0.001 0.489
6 0.316 0.373 0.799 0.347 0.393 0.744
7 0.612 0.670 0.666 0.617 0.643 0.659
8 0.817 0.857 0.852 0.836 0.875 0.861
9 0.688 0.757 0.784 0.326 0.238 0.393
10 0.644 0.753 0.713 0.727 0.814 0.773
11 0.870 0.881 0.915 0.879 0.891 0.903
12 0.853 0.883 0.934 0.884 0.905 0.939
13 0.859 0.886 0.876 0.897 0.921 0.916
14 0.832 0.871 0.907 0.867 0.889 0.905
15 0.603 0.670 0.764 0.679 0.739 0.793
avg 0.597 0.645 0.795 0.559 0.577 0.702

Pat TCP0 outcome∗

# Conv uniDE DPBN
1 0.000 0.000 0.000 0
3 0.791 0.809 0.827 0
5 0.711 0.781 0.780 0
6 0.793 0.808 0.869 0
7 0.676 0.695 0.708 0
8 0.869 0.896 0.886 1
9 0.425 0.312 0.469 1
10 0.783 0.845 0.808 1
11 0.921 0.930 0.929 1
12 0.946 0.953 0.962 1
13 0.910 0.927 0.923 1
14 0.927 0.940 0.942 1
15 0.813 0.846 0.872 1
avg 0.744 0.749 0.767 0.615 (obs.)

Table 8.4: TCP values calculated for different scenarios. TCPideal: TCP of
an ideal situation, where all tumour voxels are irradiated with exactly the
prescribed dose. TCPreal: TCP values determined for the real situation,
assuming the established TCP-model is valid. TCP0: TCP assuming the
tumour tissue is homogeneous and nevertheless irradiated with the different
DE treatment plans. ∗0: local recurrence, 1: no local recurrence.
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received comparable radiation doses using the DPBN approach. In a large
number of cases, the maximum DEFs did stay significantly below 1.1. Only
in severely hypoxic areas, doses of 2.2 Gy/fx or higher were needed.

In the previous chapter, a TCP model was established [65] relating dy-
namic FMISO data with therapy outcome. This model formed the basis for
the DE map used for DPBN. In addition, it allows us to estimate the po-
tential benefit of the different DE strategies. The theoretically achievable
increase in TCP was determined for both DE branches. Assuming full valid-
ity of the TCP model, a large fraction of patients would be overtreated by
the use of uniDE. Especially in cases where the TCP values are high even
without increasing the dose, the benefit of higher dose levels would be too
small compared to the enhanced risk of acute toxic reactions.

Moreover, the analysis showed a potential increase in TCP of ∼ 15%
for a population treated with DPBN, whereas the probability of treatment
success rose only by 2% using the uniDE approach. For the TCP estimates,
EUDs obtained from the planning study were included into the calculation.
This difference in TCP observed for the population of 13 patients is a strong
hint for the validity of using dynamic FMISO PET as a basis for DPBN.
An estimation of TCPs assuming complete homogeneity of the tumour tissue
shows no significant difference between the three treatment branches. Hence,
DPBN based in dynamic FMISO PET revealed substantially more potential
than uniDE.
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Chapter 9

Design of a Randomized
Clinical Study

The whole development of the dose painting method presented in the context
of this thesis was done retrospectively. The design of the kinetic model
in chapter 5 as well as the development of the TCP model, including the
definition of the malignancy metric in chapter 7 was performed on the basis
of a sample of 15 patient data sets.

The ultimate justification, especially of the TCP model, would be a
prospective, randomized patient study. It was shown in chapter 6, that the
malignancy value M was predictive for therapy outcome for the group of 15
patients.

A possible future patient study with dynamic FMISO PET will enable us
to validate the hypothesis that high M -values predict low chances of therapy
success, whereas low M -values correlate with high tumour control probabil-
ities. In order to validate and further improve the statistical power of these
promising findings, a larger patient study has to be carried out.

A hypoxia DP patient study for HNC will consist of the same functional
imaging examinations as performed already during the present study. Each
patient will undergo PET examinations with FMISO and FDG approxi-
mately one week before the start of treatment. The FMISO PET scan will be
taken in dynamic acquisition mode, whereas for the FDG PET examination,
static image acquisition will be sufficient.

According to the individual features of the FMISO TACs, assessed by a
compartmental analysis, patients will be classified into three groups: non-
hypoxic, moderately hypoxic and severely hypoxic tumours will be distin-
guished. The first group consists of patients with well perfused and non-
hypoxic tumours, where no FMISO uptake is visible in the dynamic curves.
These patients will receive a conventional IMRT treatment with 70 Gy. In
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Figure 9.1: Schematical representation of the planned randomized clinical
trial.

contrast, patients presenting with moderately to severely hypoxic tumours,
which means high levels of tracer retention and possibly even low perfusion
efficiencies of the tumours, will enter a randomized treatment with two differ-
ent therapy arms. 50% of those patients will also be treated with conventional
IMRT delivering a homogeneous dose of 70 Gy to the target, whereas a dose
painting IMRT treatment will be applied to the second half of the patient
group. Here, the tumour regions where a dose escalation is necessary will be
determined by the analysis of the individual hypoxia-perfusion patterns and
the value of the corresponding M -metric in the pre-treatment FMISO scans.

All patients which enter the randomized treatment arm, i.e. all patients
presenting with moderately or severely hypoxic tumours in the pre-treatment
examinations, will undergo a follow-up examination with dynamic FMISO
PET after approximately two weeks of therapy (at ≈ 20 Gy).

Figure 9.1 schematically shows the design of this prospective randomized
clinical trial.

Three main issues are addressed with this study:

• This study will be a proof of principle to validate the TCP model and
also the predictive character of the malignancy value M . With the
presented TCP model, it is possible to prospectively predict treatment
success probabilities, which can then be compared to the observed out-
come data. Patients entering the non-escalated treatment arm will be
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of highest importance. Those patients will receive a comparable IMRT
treatment and will therefore allow us to validate the hypothesis that
patients presenting with low M -values have higher probabilities of pro-
gression free survival than patients with high M .

• Secondly, a larger patient study will enable us to further test the kinetic
compartment model and to optimize the parameter values of the TCP
model as a consequence of the greater number of data sets.

• Finally, patterns of failure may be analyzed for patients presenting with
hypoxic tumours which do not receive any dose escalation. An investi-
gation of the correlation of regions of failure and their functional char-
acteristics are of great scientific interest. This type of analysis might
give us deeper insights into the failure patterns in hypoxic tumours of
HNC.
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Chapter 10

Discussion

In the context of this work, a strategy to perform individually adapted RT
treatment on the basis of functional hypoxia imaging was developed. The
hypothesis that dynamic FMISO PET scans allow for the determination of
the configuration of the tissue vasculature was investigated. The vascular
configuration of a tumour is described by two different variables: The total
capacity of the blood vessels and their spatial distribution. By using a ki-
netic model, these two variables can be assessed from the dynamic FMISO
data. The configuration of the vascularity, especially the vascular ’mesh size’,
is responsible for the development of hypoxia, whereas the capacity of the
vessels is the key to tumour reoxygenation. The grade of heterogeneity of
a tissue is dictated by the vascularity. Hence, the grade of malignancy of a
tumor tissue is determined by the degeneracy and complexity of the vascular
system and governs treatment resistance.

The compartment model developed in chapter 5 involves a total of five
open parameters. It allows to reproduce the complete spectrum of observed
data curves. An important property of the compartment model is that it
takes into account the long diffusion distances covered by the tracer molecules
before a covalent binding in hypoxic regions can take place. Hence, FMISO
probes intra-vascular distances. This feature, which is based on immunohis-
tochemical observations [11, 30, 31, 38, 41] is not accounted for in the only
model for transport and distribution of FMISO presented in literature so
far [12]. The specific choice of the blood input function allows us to model in
addition the varying composition of blood vessels and extravascular space of
the tissue throughout the tumour. However, due to different reasons such as
inaccuracies of the reconstruction algorithm, image fusion errors and statisti-
cal uncertainties of the physical positron decay process itself, the data curves
are quite noisy. These various types of uncertainties cause subsequent errors
in the parameter values. Additional sources for errors are intrinsically given
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by the kinetic model, as it is not completely free of parameter covariances.
In general, both acute and chronic hypoxia can have a certain influence

on the therapy resistance of a tumour. Acute and chronic hypoxia coexist
in a tumour. Both phenomena result from the same cause, which is an in-
sufficient, chaotic and spatially varying vascular system. Dynamic FMISO
PET analyzed with a kinetic model measures not the symptom hypoxia, but
its cause. The vascular system of a tumour can be sufficiently described by
two parameters: (1) the total capacity of the vasculature and (2) the charac-
teristic distance between adjacent vessels. Dynamic FMISO imaging allows
us to accurately assess these two features. Hence, both types of hypoxia
are accounted for in the presented model and also their influence on therapy
outcome is taken into account intrinsically by the derived TCP model.

The model of tumour control presented in chapter 7 constitutes the key
between the kinetic FMISO PET data analysis and therapy outcome data.
The model requires a calibration with realistic outcome data to be clinically
applicable. This calibration lacks a sufficiently large patient sample. Hence,
the parameter values present with non-negligible inaccuracies. However, by
virtue of its design, the TCP model is population averaged. The individual
grade of therapy resistance may therefore deviate significantly from the pop-
ulation averaged TCPs due to the large inter- and intra-patient variability
of tissue configuration and other tumour specific factors.

Finally, a main issue is the clinical feasibility of applying highly modulated
radiation doses. In the context of this work, it could be shown that HIDE
is theoretically feasible without compromising neither the organs at risk nor
the surrounding non-specified normal tissue. The required DP prescriptions
may not be perfectly translated into deliverable fluence profiles due to the
finite size of the multi-leaf collimator. Also from a dosimetric point of view,
the dose delivery for extremely varying radiation fields has to be guaranteed.
However, from a clinical point of view, set-up errors and also internal organ
movements or therapy induced tumour deformations are crucial points that
need to be considered in the context of individually targeted RT approaches.

In contrast to dose painting strategies, there exist a number of alterna-
tive adapted therapy approaches in RT, such as ARCON (accelerated radio-
therapy with carbogen and nicotinamide) [32] or pharmaceutical methods
administering the radiosensitizers nimorazole [50] or tirapazamine [36,59] in
addition to RT. For each of these three approaches, the first clinical trials
revealed promising results.

The ARCON concept [32] consists of an accelerated RT with two treat-
ment fractions a day during which the patient breathes a gas enriched with
oxygen and carbondioxide and injection of nicotinamide. Increased tumour
control rates were reported by the investigators. However, carbogen breath-
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ing induces a certain level of toxicity which in addition to hyperfractionated
RT cannot be tolerated by a considerable fraction of patients.

Different pharmaceutical hypoxia modifiers are currently under clinical
investigation. The Danish Head and Neck Cancer Study (DAHANCA 5)
[50] reported increased survival rates for patients treated in addition to
RT with the radiosensitizer nimorazole. In other studies, patients were
treated with the radiosensitizer tirapazamine in addition to a standard radio-
chemotherapy [36,59]. Here, the investigators found decreased rates of local
failure for the patient group receiving the hypoxia modifying drug tirapaza-
mine. Furthermore, they reported that tirapazamine acted by specifically
targeting hypoxic cells and might therefore be an ideal drug for a hypoxia
targeted therapy approach.

The present work concentrates on hypoxia image guided dose escalation
(HIDE) as a possible method to overcome hypoxia-induced radioresistance.
A major advantage of HIDE is the fact that no additional drugs are used.
Therefore, there might be an increased possibility to control the side effects
of the treatment. By virtue of the treatment design, HIDE does not compro-
mise the normal tissue. Furthermore, increased doses will only be assigned
to regions where it is absolutely necessary by applying dose painting by num-
bers.
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Chapter 11

Summary and Outlook

The aim of including functional imaging data into the treatment planning
process of RT is to perform a targeted RT which is adapted to the functional
and biological characteristics of the tumour. In order to draw the link from
functional PET imaging to adapted RT approaches, four main issues have to
be addressed:

• The identification of the physical and biochemical processes that govern
tracer uptake and distribution in the tumour tissue is imperative for
the correct analysis and interpretation of functional PET data.

• Secondly, the microbiological factors affecting the radiation resistance
of tumours have to be correlated to PET tracer retention.

• Only a model for tumour control as a function of the important bio-
logical imaging parameters can constitute the link between functional
imaging data and adapted RT.

• Finally, the feasibility of a RT modification has to be investigated.

These four links were established in this thesis for the hypoxia PET tracer
FMISO and hypoxia targeted f-IGRT.

In a first step, a kinetic model was derived to analyze the dynamic FMISO
data on a voxel basis. This model served as a tool for the analysis and func-
tional interpretation of dynamic FMISO PET patient data. It was derived
from the general diffusion-reaction equation. The principal design of the
model is based on the physical and biochemical processes that govern uptake
and distribution of the tracer. It is able to reproduce the variety of observed
FMISO data curves. It could be shown, that the shape of the dynamic
FMISO data curves contain essential information about the local structural
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architecture of the underlying tumour tissue. A kinetic analysis allows to
determine characteristic parameter values to reliably describe the according
tissue structure.

In a second step, two parameters were identified which are important
for therapy outcome: The perfusion efficiency of the blood vessels and the
tracer retention potential. These two parameters define the configuration
of the local vasculature of the tumour. The perfusion efficiency is linked to
the total capacity of the vasculature, whereas the level of tracer retention
carries information about the spatial distribution of blood vessels. A two-
dimensional method for the visualization of the two important parameters
perfusion and tracer retention is given by scatter plots.

Three typical types of perfusion-retention scatter patterns were identified.
The distribution of perfusion and retention values of a tumour turned out
to be predictive for radiotherapy treatment outcome. A malignancy metric
was defined in order to couple the two main kinetic parameters. This metric
allowed for a highly significant stratification of the patient group with respect
to treatment success (p = 0.001). Hence, evidently dynamic FMISO PET
has a high prognostic value for RT in head-and-neck cancer.

A tumour control model which depends on the patient specific malignancy
values is the key that translates functional imaging data into a dose prescrip-
tion for an individually adapted RT. On the basis of clinical outcome data
and repeated functional imaging data, a model for tumour control probabil-
ity (TCP) was derived. This model is based on findings about characteristic
therapy-induced changes of the scatter patterns. The model reflects reoxy-
genation as a progression to less malignant scatter patterns. The TCP model
was calibrated by a fit to therapy outcome data observed in the patient group
that entered the present study.

Finally, a RT planning study was carried out in order to investigate the
feasibility of RT modification in a realistic setting. Radiation doses were
prescribed spatially varying according to the TCP model. It was possible to
apply higher doses to sub-volumes of the tumour without compromising the
surrounding organs at risk. Hence, dose painting seems to be a very effective
way of a functional RT modification. Dose painting was shown to be most
effective for patients presenting with severely hypoxic and badly perfused
tumours before the start of treatment. An estimation of the benefit to a
population revealed a potential increase in TCP from 56 to 70%.

The response of vasculature and perfusion efficiency to radiation are most
essential for therapy outcome. In addition, a fast reoxygenation of an initially
hypoxic tumour is good for therapy outcome, whereas a slow reoxygenation
has a negative effect on therapy success. Two quantities can be determined
from the vascular configuration of a tumour: The overall number and the
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capacity of blood vessels in addition to the spatial distribution of the vas-
cularity, i.e. the homogeneity or heterogeneity of the vascular system. Dy-
namic FMISO PET enables to measure the capacity of blood vessels directly,
whereas the spatial distribution is measured indirectly via tracer retention
in large pouches between adjacent vessels. The presented work allowed us
to validate two essential hypotheses: (1) Dynamic image acquisition cap-
tures more information than static PET scans do and (2) a dynamic FMISO
pre-treatment scan may be enough to estimate the probability of treatment
success for a patient and to accordingly adapt RT.

This work presents a complete junction between functional imaging with
FMISO PET and a biologically adapted radiotherapy strategy. Only by ap-
plying a kinetic model to the dynamic PET data, the vascular configuration
of the tumour can be investigated. The correlation between the vascular con-
figuration and the chance for a successful treatment is the key for an evidence
based biologically adapted treatment. These promising results emphasize the
value of dynamic FMISO PET imaging for clinical hypoxia dose painting in
HNC. The next step to establish an evidence based concept for f-IGRT will
be a patient study defined on the basis of the results of this study.
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Abstract
A method is presented to identify and quantify hypoxia in human head-and-
neck tumours based on dynamic [18F]-Fmiso PET patient data, using a model
for the tracer transport. A compartmental model was developed, inspired by
recent immunohistochemical investigations with the tracer pimonidazole. In
order to take the trapping of the tracer and the diffusion in interstitial space
into account, the kinetic model consists of two compartments and a specific
input function. This voxel-based data analysis allows us to decompose the
time-activity curves (TACs) into their perfusion, diffusion and hypoxia-induced
retention components. This characterization ranges from well perfused tumours
over diffusion limited hypoxia to strong hypoxia and necrosis. The overall
shape of the TAC and the model parameters may point at the structural
architecture of the tissue sample. The model addresses the two main problems
associated with hypoxia imaging with PET. Firstly, the hypoxic areas are
spatially separated from well perfused vessels, causing long diffusion times
of the tracer. Secondly, tracer uptake occurs only in viable hypoxic cells,
which constitute only a small subpopulation in the presence of necrosis. The
resulting parameters such as the concentration of hypoxic cells and the perfusion
are displayed in parameter plots (‘hypoxia map’). Quantification of hypoxia
performed with the presented kinetic model is more reliable than a criterion
based on static standardized uptake values (SUV) at an early timepoint, because
severely hypoxic/necrotic tissues show low uptake and are thus overlooked by
SUV threshold identification. The derived independent measures for perfusion
and hypoxia may provide a basis for individually adapted treatment planning.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Hypoxia in tumours, as measured by polarographic Eppendorf pO2 histographs, has been
associated with poor treatment outcome and survival (Nordsmark et al 1996, 2000). Thus, to
measure and quantify hypoxia may be beneficial for patient selection or treatment modification.
Individually adapted treatment strategies to overcome this therapy resistance, such as ARCON
(Kaanders et al 2002) or hypoxia dose painting (Alber et al 2003), appear necessary and
promising.

There have been several attempts to quantify tumour hypoxia with polarographic needle
electrodes (Nordsmark et al 1996, 2000) or with positron emission tomography (PET) by
using hypoxia-specific tracer molecules such as [60Cu]-ATSM (Chao et al 2001), [18F]-
Fluoroerythronitroimidazole (FETNIM) (Lehtiö et al 2004), [18F]-Fluoroazomycin (FAZA)
(Machulla 1999) or [18F]-Fluoromisonidazole (Fmiso) (Koh et al 1992, Rasey et al 1996).

Fmiso binds selectively to macromolecules in hypoxic cells. At low oxygen levels, the
compound is reduced and binds, when reduced by a second electron, covalently to intracellular
macromolecules. In the presence of oxygen, the favoured reaction is the re-oxygenation to the
less reactive parent compound which is freely diffusible and clears from tissue (Laubenbacher
and Schwaiger 2000).

Koh et al (1992) and Rasey et al (1996) developed a strategy for the identification and
quantification of hypoxic tumour areas on the basis of Fmiso PET images. They pointed
out the necessity of very long (2–4 h) examination protocols because of the slow transport
and reaction mechanisms of the tracer molecules. These investigators defined a fractional
hypoxic tumour volume which is the proportion of the tumour area presenting a tumour-to-
blood activity ratio � 1.4 at 2–3 h post injection (p.i.). Their results displayed a highly
variable character of human tumour hypoxia among different tumours and also among regions
within the same tumour. A study by Bentzen et al (2003) reports on an unclear correlation
between Fmiso PET scans and direct oxygen measurements with polarographic needle
electrodes.

Casciari et al (1995) developed a kinetic compartment model for the transport and
metabolism of Fmiso. This model aims to determine the cellular Fmiso reaction rate constant
from time-activity data, which is assumed to reflect the mean local oxygen concentration.
It consists of four compartments with a high number of free parameters. Hence, a certain
number of parameters have to be fixed to increase the robustness of the model. The model is
a classical kinetic model where the different compartments co-exist in the same volume. This
is problematic because it assumes homogeneous oxygen concentration which contradicts the
observation of concentration gradients in a tissue.

Fortunately, the pattern of tracer accumulation in hypoxic tumours can be made visible by
histological investigations with the related compound pimonidazole. Ljungkvist et al (2002)
and Janssen et al (2002, 2004) investigated the structural architecture of hypoxic tumours
with pimonidazole. These studies depict hypoxic islands interspersed throughout the tissue
on length scales between 100 and 500 µm, located in regions far from blood vessels and
including necrotic tissue. A ‘hypoxia signal’ on macroscopic length scales (size of PET
voxels: 4 × 4 × 4.25 mm3) emerges from an irregular heterogeneous distribution of tracer
accumulation on microscopic length scales.

The essential fact that hypoxia exists spatially separated and at any rate far from perfused
vessels was not explicitly taken into account by Casciari et al (1995). Also, it becomes evident
that the total sub-volume which traps the tracer is rather small. These observations are typical
of the problem and serve to make the point that hypoxia-PET imaging with any arbitrary tracer
is more ambiguous and intricate than with tracers with an active transport mechanism and



A kinetic model to analyse tumour hypoxia 2211

Table 1. Table of acquired image frames for each patient (n = 16).

Time p.i. (min) 0–2 2–4 4–15 15–60 120 180 240
Acquisition time 12 × 10 s 8 × 15 s 11 × 60 s 9 × 5 min 1 × 5 min 1 × 8–9 min 1 × 10–12 min

Patient no.
1, 4 × × × × × × ×
3, 5, 7, 9, 10, × × × − × − ×
12, 13, 15
8 × × × − × × ×
11, 16 × × × × × − ×
2, 14 × × × 3 × 5 min × − ×
6 × × × 5 × 5 min × − ×

higher reaction rates, such as FDG, and to justify that some model is required to interpret the
images.

The immunohistochemical studies also revealed large inter- and intra-patient differences
in regard to tumour tissue vasculature. Hypoxia is only a consequence of the irregular geometry
of the tumour vasculature. Therefore, it is essential that the model for the transport of the
tracer from the perfused vessels to the hypoxic cell is general enough to include both the
irregular tumour geometry and the inter-individual tumour heterogeneity.

In the following, a method to quantify hypoxia in tumours based on dynamic [18F]-Fmiso
PET patient data is presented. The kinetic model assumes physical, purely diffusive transport
of the tracer molecule to the hypoxic cell, where it is trapped according to the local oxygen
tension. The application of the model to patient data time-activity curves (TACs) yields the
local concentration of hypoxic sub-volumes in each tumour voxel, allowing us to display the
results in a parameter plot (‘hypoxia map’).

2. Methods and materials

2.1. Patient data

The dynamic PET data in this study were obtained from patients with head-and-neck tumours
who were examined with the following protocol: with the start of the image acquisition, a
tracer activity of A0 � 400 MBq Fmiso was injected. For the first 15–60 min, the PET scanner
(Advance, General Electric, Milwaukee, US) was running in dynamic acquisition mode which
resulted in a total of 31–40 image frames. Additionally, two static images were taken for
all patients 2 and 4 h p.i. and for a few patients also at 3 h p.i. Detailed information about
time points and corresponding acquisition durations for each examined patient (n = 16) are
summarized in table 1.

A decay correction for the decomposition of the radioactive 18F was performed for all
data sets. The raw PET data were stored in three separate data sets, one dynamic set consisting
of 31 image frames and two static data sets with one frame each. In order to implement a
pointwise hypoxia analysis, it was necessary to match these three data sets. The corresponding
rigid body transformation matrix was calculated by applying a mutual information algorithm
(Viola and Wells 1997). This matching procedure reached an accuracy �2 mm in the region
of the tumour and allowed us to determine a TAC for each voxel.
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Figure 1. Compartmental model consisting of a diffusive and an accumulative compartment. The
input function CIn(t) comprises the tracer concentration in the blood and in the interstitial space
close to the vessels.

2.2. Kinetic model

Histochemical studies (Ljungkvist et al 2002, Janssen et al 2002, 2004) found increasing
staining intensities for pimonidazole in addition to a larger quantity of cells accumulating
the tracer molecules far from blood vessels. Typical distances for increased pimonidazole
staining are 100–200 µm. Since there exists no active transport mechanism for pimonidazole
or Fmiso in the interstitium, the transport of the tracer molecules is purely diffusive (Jain
1987). Considering the molecular weight of Fmiso and the distances the molecules have to
travel from the vessel to the hypoxic cell (Jain 1987), the diffusion time will be high compared
to other tracers with active transport mechanisms and shorter diffusion distances (such as e.g.
FDG (Laubenbacher and Schwaiger et al 2000)). The time the marker needs to reach the
hypoxic tissue area far from the blood vessel will be in the order of 100–1000 s, as motivated
in the following.

Although the diffusive transport depends crucially on the tissue geometry, blood vessel
permeability and the interstitial flow and pressure situation, which is obviously unknown, the
bulk diffusion equation (without spatial dependences) for a net flow from a point A to a point
B reads schematically:

∂tCB = D

l2
(CA(t) − CB). (1)

Here D is the diffusion constant, l the distance between points A and B and CA(t) is assumed
to be unaffected by the efflux (infinite supply). The linearity of the diffusion equation allows
us to associate spatially separated sub-volumes with compartments and an approximate linear
reaction rate equation. For a compartmental model, the consequence of this diffusion delay
will be a translation of the spatial separation of blood pool and tracer trapping into a temporal
separation (Hicks et al 1997). With D typically in the order of 10−6 cm2 s−1, and l � 0.01 cm
it follows that k � 10−2 s−1, i.e. typical time scales are >100 s.

Regarding the design of a kinetic model, it is assumed that for all practical purposes
a general two compartment model (see figure 1) will be sufficient to describe the dynamic
Fmiso data4. The model can be motivated by the heuristics that there are essentially three
distinguishable components of the TACs. One, showing rapid concentration changes due to
perfusion and fast diffusion into the interstitial space close to the vessels, represented by the
input function. Another, characterized by slow concentration changes due to long diffusion
times to and from the large inter-vessel spaces of irregular tumours. And a third, describing
the irreversible binding of the tracer. In the following, the compartment describing the freely
diffusive tracer molecules will be referred to as diffusive compartment. The accumulative

4 This is a consequence of the integration of the manifold of various TACs of all the particular sub-volumes in a PET
voxel. If tumours were more homogeneous or the spatial resolution of the scanner better, a chain of compartment
pairs, stratified according to their diffusion time, might be a more appropriate model.
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compartment is linked to the diffusive compartment by a kinetic rate constant that depends on
the partial oxygen pressure.

In contrast to classic compartmental models, the compartments in this model are spatially
separated or overlap only partially (the accumulative compartment corresponds only to those
sub-volumes described by the diffusive compartment which are hypoxic) and the volumes of
the different compartments are not identical. In addition, some of the kinetic constants of this
model are not parameters of a chemical reaction, but reflect purely diffusive transport.

The diffusive compartment is linked to the input function by diffusion rate constants k1

and k2. The accumulative part is only coupled to the diffusive one with the rate constant k3. It
is assumed that the diffusion of unbound reduced Fmiso cannot be discerned on the time scales
of the experiment. This kinetic model is described by the following system of differential
equations:

∂

∂t
CD(t) = k1CIn(t) − (k2 + k3)CD(t) (2)

∂

∂t
CA(t) = k3CD(t). (3)

CD(t) and CA(t) are the basis functions for the diffusive and the accumulative compartments
respectively. They are determined by

CD(t) = e−(k2+k3)t ⊗ k1CIn(t)

= k1

∫ t

0
e−(k2+k3)(t−τ)CIn(τ ) dτ (4)

and

CA(t) = k3 ⊗ CD(t)

= k1k3

k2 + k3

∫ t

0
(1 − e−(k2+k3)(t−τ))CIn(τ ) dτ, (5)

where the ki are the respective rate constants and ⊗ denotes the convolution product. The total
measured PET signal S(t) is given by a linear combination of the basis functions (equations (4)
and (5)) and the input function CIn(t):

S(t) = w0CIn(t) + wDCD(t) + wACA(t)

= w0CIn(t) + wDk1

∫ t

0
e−(k2+k3)(t−τ)CIn(τ ) dτ

+ wA

k1k3

k2 + k3

∫ t

0
(1 − e−(k2+k3)(t−τ))CIn(τ ) dτ. (6)

Here wD and wA are the relative weights of the compartments. They represent the relative
contribution of each compartment to the total signal. The weight parameters correspond, if
properly normalized, to the volume fraction that is occupied by these compartments. Therefore,
wA could also be interpreted as the mean concentration of hypoxic cells in this voxel.

In the complete expression for the total signal S(t) (equation (6)), the rate constant k1

turns out to be only a multiplicative factor to the weight parameters wD and wA. It can
therefore be set constant without loss of generality. Variations of this parameter are absorbed
in w̃D = wDk1 and w̃A. Additionally, the rate constant k2 can be absorbed by substituting
k̃3 = k2 + k3 and w̃A = wAk1k3/k̃3. The final equation for the PET signal reads

S(t) = w0CIn(t) + w̃D

∫ t

0
e−k̃3(t−τ)CIn(τ ) dτ + w̃A

∫ t

0
(1 − e−k̃3(t−τ))CIn(τ ) dτ. (7)

The remaining kinetic model has four open parameters, the weight parameters w0, w̃D

and w̃A in addition to the modified accumulation rate constant k̃3.
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Figure 2. Reference tissue compartment.

2.3. Input function

For head and neck cases, it is difficult to obtain the blood input function directly from the
images. Therefore, we propose the use of a reference tissue model. Normal tissues can be
described by a kinetic model consisting of the blood concentration CIn(t) and a tightly coupled
diffusive compartment, see figure 2. The tracer concentration in the cell layers around a blood
vessel (i.e. the diffusive compartment of the normal tissue model) is denoted with CNT(t).
Therefore, the input function may be extracted from typical normal tissue voxels.

During the first minutes after injection, the image signal is governed by diffusion from
well perfused capillaries into the interstitial space. This will occur in a similar fashion in
both normal tissue and tumour tissue, although the deficient vasculature in tumours may offer
less resistance. In this case, k1 and k2 of the tumour would be greater than in the reference
tissue, but this does not affect the input function, which should be the same as long as the
tracer transition from the vessel into the interstitial space is permeability limited and not
flow limited. Apart from this difference in kinetic parameters, well perfused tumour areas and
normal tissues should behave similarly during the first minutes after injection. This assumption
is corroborated by immunohistochemical investigations (Ljungkvist et al 2002, Janssen et al
2002, 2004) that showed that cells situated in the neighbourhood of a blood vessel under well
oxygenated conditions exist in both hypoxic and non-hypoxic tumours.

However, these investigations also show badly perfused vessels. Also, temporary stasis
has been described in tumours (Denekamp and Daşu 1999). This means, that the well
perfused vasculature which becomes visible in the first minutes after injection may not
be the entire vasculature available for tracer transport by flow during the course of the
investigation. Frequently, the distinction between chronic and acute hypoxia is made. The
effect of fluctuations in the perfusion of a voxel on the TAC depends on the time scale of these
fluctuations relative to the diffusion time scale, and the partial volume of the voxel affected by
them. In our model, this is approximately taken into account by a spatially dependent input
function as follows.

We assume, that the input function to the tumour kinetic model CIn(t) can be derived
from the signal of a reference tissue SNT(t) = ACIn(t) + BCNT(t). We assume further that the
blood concentration after a certain time after injection is a sum of two exponentials:

CIn = e−k0t + r e−kK t . (8)

The first term e−k0t describes the dispersion of the tracer in the whole body blood volume,
whereas the second exponential represents the kidney clearance of the tracer. The rapid rise
of tracer concentration in the blood pool observed in the very early frames is not taken into
account by this input function. Therefore, the first frames (typically 4-5) have to be ignored
for data analysis.
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The concentration in the extravascular normal tissue space obtains from a convolution

CNT(t) = CIn(t) ⊗ e−k0t . (9)

Here, we assume that the diffusion rate constant k0 equals the mean rate of tracer flux into the
extravascular volume, averaged over the whole body.

The signal measured in a reference tissue voxel SNT(t) will be of the form

SNT(t) = A(e−k0t + r e−kK t ) + BCNT(t). (10)

The parameters k0 and kK are determined by fitting this expression (equation (10)) to a set
of TACs from a reference tissue in close proximity of the tumour. For the input function
of a tumour voxel, these parameters are kept constant while r remains floating. This allows
us to adapt the ratio between the fast and the slow component of the input function to the
local properties of the tumour vasculature and perfusion, and to some extent to their temporal
variability. The number of parameters in the fit of the voxel-by-voxel TACs to the compartment
model (equation (7)) thereby increases to five.

2.4. Data evaluation

In order to evaluate the time-activity data with the presented kinetic model, a least-squares
fit was performed to adjust the analytical function S(t) (6) to the patient TACs. For this, a
Levenberg–Marquardt algorithm was used (Press et al 1992).

The data points were included into the proximity function with errors corresponding to
Poissonian noise. In analogy to Casciari et al (1995), standard deviations σi were calculated
as scaled Poissonian noise, depending on local count rate Yi(t) and acquisition time Ti for the
respective frame.

Additional uncertainties may occur due to image coregistration errors. As only the late
data sets (2–4 h p.i.) undergo a matching procedure, additional errors have only to be taken
into account for the late data points. The magnitude of the individual error associated with
each image voxel depends strongly on the image gradient in the considered region. Hence,
the error due to an eventual mismatch �YMM can be estimated by

�YMM = �x

(
n∑

i=1

(Y − Yi)
2

nxi

)1/2

, (11)

where Yi are the count rates of the n neighbour voxels, xi is the distance to the respective
neighbour voxel and �x represents the average coregistration error, which is assumed to be
approximately 2 mm in our case. The total error associated with data points 2, 3 and 4 h p.i.
is determined by �Y tot

i = σiYi + �YMM .
The variability of the model parameters due to the estimated data errors is then determined

by the covariance matrix associated with the least-squares fit (Press et al 1992). The diagonal
matrix elements represent estimates of the respective parameter variances.

In addition, the continuous automatic tracer injection during the first 10 s after the start of
the acquisition is not taken into account by the model. To avoid problems, the very steep and
slightly oscillating component dominating all data curves during the first 60 s was omitted.

In order to visualize the voxel-by-voxel results of the compartmental data analysis, hypoxia
maps were generated by colouring each voxel of the tumour volume according to the tracer
uptake at infinite times S∞:

S∞ = lim
t→∞ S(t) = αw̃A, (12)

where α = Ak1(1/k0 + r/kK). The parameter plots show areas presenting high levels of tracer
uptake which correlates to the mean density of viable hypoxic cells in the respective voxel.
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Prompted by the immunohistochemical experiments which imply that vascular density
and hypoxia are independent parameters and which report a great variability of vascular
geometries, a second visualization tool was devised. A scatter plot is generated by plotting the
value of wAk3, describing the concentration of hypoxic cells weighted with the mean degree
of hypoxia for each voxel on the abscissa against w0 (the grade of perfusion) on the ordinate.
Characteristic patterns in the scatter plots will allow us to distinguish between tumour areas
according to vascular density and concentration of hypoxia.

3. Results

The TACs observed in a group of 16 examined patients showed great variability. In figure 3,
four examples of characteristic shapes of the acquired time-activity data are displayed.

In well perfused regions5, the shapes of the curves have a very pronounced tracer influx
and distribution during the first few minutes after tracer injection followed by an exponential
washout (see figure 3(a)). These tumour areas are characterized by a high density of vessels
and a good blood supply. The majority of cells should be well oxygenated because no tracer
retention can be seen.

In figure 3(b), a very similar behaviour can be observed during the first 30 min, followed
by a clear retention. This shows that a large number of viable hypoxic cells are present, which
co-exist with a very well perfused cell population. This is the classical picture of diffusion
limited hypoxia, where oxygen consumption outweighs supply.

More serious forms of hypoxia result from a deficient vasculature and chaotic blood flow.
However, this may also result in a decrease of viable hypoxic cells as necrotic cores may
form in which no tracer retention occurs. In terms of the TAC, the perfusion peak should
become smaller, and retention less pronounced until finally a horizontal curve type results, see
figures 3(c) and (d). In voxels with a significant concentration of necrosis, the purely diffusive
contribution to the signal as represented by wD and r should go up. The tracer enters these
tissue regions very slowly due to the low density of blood vessels. Accumulation of tracer
can be observed in the order of several hours after injection (see figure 3(d)). Because of the
small fraction of viable hypoxic cells, the total uptake is low.

Figure 4 shows the analytical curves S(t) determined by the kinetic analysis for the data
TACs presented in figure 3. The corresponding parameter values are summarized in table 2,
whereas table 3 shows the corresponding parameter value uncertainties.

In summary, figures 3 (a)–(d) represent the TACs in tumour regions with increasingly
deficient vasculature. The tracer influx peak at short timepoints after injection decreases as
the blood supply gets worse due to the more and more chaotic vasculature. At the same time,
while the number of viable hypoxic cells decreases (wA), the degree of hypoxia increases
(k3). The kinetic analysis showed that the resulting parameter values might reveal information
about the structural architecture of the tissue sample. Curve types representing putatively well
perfused and only slightly hypoxic tumours (such as figure 4(a)) are described by a relatively
high weight parameter w0 in addition to a small value for the product w̃Ak̃3 for the hypoxic
compartment. Also for the diffusion limited hypoxia type (figure 4(b)) a large w0 is found,
but in this case the value of w̃A and thus S∞ is also high.

In contrast, there exist tumour areas where very small parameters w0 are necessary to
describe the time-activity course of the data adequately. This behaviour is mainly observed

5 Good perfusion/high vascular density is supposed in regions where the dynamic TAC presents a fast tracer influx
after injection (≈ 30–40 s).
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Figure 3. Different characteristic time-activity data curves corresponding to tumour areas with
increasingly deficient vasculature. (a) Well perfused tumor area. (b) Tissue area with diffusion
limited hypoxia. (c) Diffusion limited and structural hypoxia. (d) Hypoxic/necrotic area.

for curves that putatively represent severely hypoxic or necrotic tissues (such as figures 4(c)
and (d)). Hence, w̃Ak̃3 turns out to take relatively high values.
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Figure 4. Resulting analytical time-activity curves corresponding to data curves (a)–(d) of
figure 3.

In the following, the kinetic data analysis will be shown in more detail exemplarily for
two of the 16 examined patients. Nevertheless, a kinetic analysis was performed for each data
set, but they cannot all be shown in the context of this paper.
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(a) (b)

Figure 5. Tumour region of a head-and-neck patient: (a) SUV distribution 2 h p.i. for a whole
PET slice, (b) parametric plot: S∞ for each voxel.

Table 2. Resulting parameter values for curves (a)–(d), figure 4.

Putative
structure types w0 r w̃D (min−1) w̃A (min−1) k̃3 (min−1)

(a) Low hypoxia/ 1.06 0.29 0.09 0.00 –
well perfused

(b) Diffusion limited 1.50 0.10 0.13 0.31 0.03
hypoxia

(c) Diffusion limited and 0.32 0.45 0.28 0.08 0.21
structural hypoxia

(d) Strongly hypoxic/ 0.16 1.67 0.14 0.01 0.36
necrotic

Table 3. Errors of model parameters due to image noise and coregistration uncertainties associated
with curves (a)–(d), figure 4.

�w0 �r �w̃D (min−1) �w̃A (min−1) �k̃3 (min−1)

(a) 0.17 0.17 0.02 0.00 –
(b) 0.18 0.11 0.02 0.11 0.02
(c) 0.16 0.39 0.06 0.08 0.11
(d) 0.18 1.86 0.07 0.01 0.25

Figures 5(b) and 7(b) show S∞ parameter plots of two different patients. Both hypoxia
maps are displayed in comparison to the corresponding SUV distributions at 2 h p.i.
(figures 5(a) and 7(a)).

Figure 5(b) represents a first example of a parametric plot for a head-and-neck patient.
The region characterized by an increased SUV 2 h p.i. is also highlighted in the parametric
plot. A typical TAC of this region is plotted in figure 6. The curve shows a relatively high
influx peak as well as a positive slope for long times after injection.

In the second case, displayed in figure 7, the SUV image 2 h after injection indicates two
distinct areas where the tracer seems to be accumulated (figure 7(a)). However, the parametric
plot for the indicated region of interest only highlights one of these two regions (figure 7(b)).
This phenomenon is due to a different overall shape of the curves in the respective tumour
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Figure 6. Typical TAC of the tracer accumulating region in figure 5.

(a) (b)

Figure 7. (a) SUV distribution 2 h p.i., (b) parametric plot for the marked tumour region: S∞ for
each voxel.

voxels and may be caused by different architectures of the tumour vascularization leading to
different diffusion times for the tracer.

Voxels A and B were chosen as representatives for these two areas. The analytical curves
S(t) as well as the corresponding measured data points are displayed in figure 8. The plotted
TACs present an interesting behaviour: even though the two curves have nearly the same
activity level 120 min after tracer injection, the shape of the curves is completely different.
While the TAC for voxel A shows a very high tracer influx peak followed by a continuous
washout, voxel B is characterized by a steady accumulation of tracer 30 to 240 min p.i. in
addition to a much lower influx peak at the beginning. Hence, the impression that the static
image 2 h after injection presented the same level of tracer accumulation was due to the fact
that the intercept point of two absolutely different curves was situated coincidentally at the
time of image acquisition. Therefore, it does not seem reliable to identify hypoxia only on the
basis of a static image 2 h p.i. which obviously bears high risks of incorrect interpretation.

An additional tool to analyse hypoxia and perfusion characteristics of a tumour is provided
by the (w0, wAk3) scatter plot. It allows us to determine the dominating type of structural
architecture in the tumour volume. Patients displaying large values for w0 for most of the
voxels have putatively well perfused tumours. Whereas, if the tumour contains hypoxic cores,
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Figure 8. Comparison of the overall curve shapes of voxels A and B, figure 7.

the corresponding wAk3-parameters will have high values and will therefore be situated in the
lower right area of the scatter plot. Hence, the presented scatter plot provides a medium to
classify tumours according to different characteristic structure types.

For the two patients exemplarily shown above (figures 3 and 5), scatter plots have been
generated. The analysis of the scatter plot for patient 1 (figure 9(a)) reveals that a large
fraction of the tumour volume has relatively high levels of perfusion together with rather small
concentrations of hypoxia. In contrast, patient 2 (figure 9(b)) shows for the whole tumour very
low perfusion values, and at the same time high concentrations of hypoxia are observed.

4. Discussion

The presented investigation showed that the overall shapes of the TACs contain essential
information about hypoxic tumour areas. Particularly the behaviour of the curves at long time
scales is important. Hence, a criterion based on a single time point threshold is not sufficient
to perform a reliable hypoxia analysis. The use of a static criterion to identify hypoxia in
Fmiso PET scans might have been a reason why Bentzen et al (2003) could not find a clear
correlation between PET and Eppendorf electrode measurements.

Curve features such as the position of the minimum in the TACs between 20 and 60 min
hint at the characteristics of the underlying processes which occur on corresponding time
scales. This property is understandable by the immunohistochemical investigations with
pimonidazole (Ljungkvist et al 2002, Janssen et al 2002, 2004) that found that long diffusion
distances had to be travelled by the tracer before reaching hypoxic cells. The signature of the
characteristic diffusion times in the tumour tissue is the position of the minimum in the curves.

Different tumour structure types may be associated with different characteristic shapes of
the TACs. Putatively well perfused and regularly vascularized tumours show curves with a
high influx peak and exponential washout, whereas a good perfusion together with diffusion
limited hypoxia should result in a positive slope at long time scales, leading to high tracer
uptake values S∞. The curves probably corresponding to severely hypoxic or necrotic tissues
present no influx peak and a horizontal time trend remaining at relatively low SUV levels.
These results can be understood by comparison with the microscopic tissue sections presented
by other investigators (Ljungkvist et al 2002), where different characteristic hypoxia patterns
(‘patchy’ and ‘ribbon-like’) were found.



2222 D Thorwarth et al

(a)

(b)

Figure 9. Scatter plots for two patients. (a) Patient 1 (cf figure 3) shows a quite well perfused and
only moderately hypoxic tumour. (b) Patient 2 (cf figure 5) in contrast has a badly perfused and
severely hypoxic tumour.

A particular problem with severely hypoxic areas is the presence of necrosis. Since Fmiso
uptake occurs only in viable hypoxic cells, a low uptake may be caused by a small fraction of
surviving cells. This is compounded by the finding that the binding rate constant is similar to
the rate of renal clearance, so that the net effect can be a constant signal. In contrast, tumour
areas that present very high levels of tracer uptake consist of many viable, hypoxic cells by
necessity. These may not be the most resistant tumours and they might constitute a group that
highly benefits from individually adapted therapies. A classification of the patients according
to these criteria can be performed on the basis of the introduced perfusion-hypoxia scatter
plots.

The presented model involves slow diffusion rates of the tracer in the interstitium, caused
by long diffusion distances in the tumour tissue. It also respects the inherent heterogeneity
of tumour tissues, where well perfused and hypoxic sub-volumes may coexist in the same
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PET voxel. These facts were not considered by previous models (Casciari et al 1995), which
explicitly treated homogeneous tumour tissues and were more appropriate to normal tissues
made hypoxic under experimental conditions.

The heterogeneity of the tumour structure requires that all compartment weights remain
floating in the fits to accommodate partial volume effects by virtue of the linearity of the
differential equation and the input function becomes spatially variable. Due to the particular
choice of the input function and the assumption of physical transport into the diffusive
compartment which ensures k1,in = k1,out, the total number of fit parameters is five. This
reduces the variability and co-variance of the fits. The experimentally established need for a
spatially variable input function poses an obstacle to the use of graphical TAC analysis.

5. Conclusion

The investigated method allows us to identify and quantify hypoxia in human head-and-neck
tumours based on dynamic Fmiso PET scans better than SUV alone. Hypoxia is essentially a
consequence of irregular vascularization, and this needs to be taken into account when time-
activity curves of hypoxia PET tracers are interpreted. Perfusion and the degree of hypoxia
seem to be independent properties of a tumour.
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Denekamp J and Daşu A 1999 Inducible repair and the two forms of tumour hypoxia—time for a paradigm shift
Acta Oncol. 38 903–18

Hicks K O, Ohms S J, van Zijl P L, Denny W A, Hunter P J and Wilson W R 1997 An experimental and mathematical
model for the extravascular transport of a DNA intercalator in tumours Br. J. Cancer 76 894–903

Jain R K 1987 Transport of molecules in the tumor interstitium: a review Cancer Res. 47 3039–51
Janssen H L K et al 2002 HIF-1A, pimonidazole, and iododeoxyuridine to estimate hypoxia and perfusion in human

head-and-neck tumors Int. J. Radiat. Oncol. Biol. Phys. 54 1537–49
Janssen H L K, Hoebers F J, Sprong D, Goethals L, Williams K J, Stratford I J, Haustermans K M, Balm A J and

Begg A C 2004 Differentiation-associated staining with anti-pimonidazole antibodies in head and neck tumors
Radiother. Oncol. 70 91–7



2224 D Thorwarth et al

Kaanders J H A M, Bussink J and van der Kogel A J 2002 ARCON: a novel biology-based approach in radiotherapy
Lancet Oncol. 3 728–37

Koh W-J, Rasey J S, Evans M L, Grierson J R, Lewellen T K, Graham M M, Krohn K A and Griffin T W 1992 Imaging
of hypoxia in human tumors with [F-18]fluoromisonidazole Int. J. Radiat. Oncol. Biol. Phys. 22 199–212

Laubenbacher C and Schwaiger M 2000 The potential role of positron emission tomography in investigation of
microenvironment Blood Perfusion and Microenvironment of Human Tumors ed M Molls and P Vaupel (Berlin:
Springer)
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Abstract
Background: Hypoxia compromises local control in patients with head-and-neck cancer (HNC).
In order to determine the value of [18F]-fluoromisonidazole (Fmiso) with regard to tumor hypoxia,
a patient study with dynamic Fmiso PET was performed. For a better understanding of tracer
uptake and distribution, a kinetic model was developed to analyze dynamic Fmiso PET data.

Methods: For 15 HNC patients, dynamic Fmiso PET examinations were performed prior to
radiotherapy (RT) treatment. The data was analyzed using a two compartment model, which allows
the determination of characteristic hypoxia and perfusion values. For different parameters, such as
patient age, tumor size and standardized uptake value, the correlation to treatment outcome was
tested using the Wilcoxon-Mann-Whitney U-test. Statistical tests were also performed for hypoxia
and perfusion parameters determined by the kinetic model and for two different metrics based on
these parameters.

Results: The kinetic Fmiso analysis extracts local hypoxia and perfusion characteristics of a tumor
tissue. These parameters are independent quantities. In this study, different types of characteristic
hypoxia-perfusion patterns in tumors could be identified.

The clinical verification of the results, obtained on the basis of the kinetic analysis, showed a high
correlation of hypoxia-perfusion patterns and RT treatment outcome (p = 0.001) for this initial
patient group.

Conclusion: The presented study established, that Fmiso PET scans may benefit from dynamic
acquisition and analysis by a kinetic model. The pattern of distribution of perfusion and hypoxia in
the tissue is correlated to local control in HNC.

Background
Local control remains a great challenge in head-and-neck

cancer (HNC) treatment. Even with an optimal combina-
tion of radio- and chemotherapy, local recurrences are
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observed in up to 50% of the treated patients [1,2]. Up to
now, no reliable parameter could be established that
would account for this high rate of local failures.

Tumor hypoxia has been known to be associated with
poor radiation response for several decades. Recent publi-
cations suggested that hypoxia in tumors had a direct
influence on treatment success [3,4] by a variety of mech-
anisms [5,6]. A prognostic impact of tumor hypoxia for
therapy outcome in head and neck cancer (HNC) has
been shown by different investigators [7-9]. Hypoxia has
also been related to lower survival probability and higher
risk of recurrence in patients with cervix cancer [4,10]. In
these studies, hypoxia was assessed invasively by polaro-
graphic Eppendorf electrodes.

Positron emission tomography (PET) with appropriate
radiotracers enables non-invasive assessment of the pres-
ence and distribution of hypoxia. The radiotracers in fre-
quent use are 18F-fluoromisonidazole (Fmiso) [11-13]
and chemically similar markers such as 18F-fluoroazomy-
cin (Faza) [14] or, with a different binding mechanism,
60Cu-ATSM [15]. Some investigations report an unclear
correlation between Eppendorf measurements and stand-
ardized uptake values (SUV) determined on the basis of
Fmiso PET [16]; even though a tumor-to-blood ratio of
1.4 was defined as diagnostic of hypoxia [11]. Thus, the
predictive value of Fmiso SUV even several hours after
tracer injection remains unclear. Based on their chemical
structure, nitroimidazoles are trapped inside hypoxic
cells. This feature makes these agents ideal markers for
hypoxia in in-vitro cell systems [17]. However, transform-
ing this into larger scale biological systems is problematic
and the interpretation of Fmiso PET images remains
unclear. An advantage of PET compared to Eppendorf
measurements is the ability to display spatial distribu-
tions, which is necessary for the integration of hypoxia
information into adaptive treatments such as hypoxia
dose painting [18-20]. For immunohistochemical investi-
gations, the marker pimonidazole is well established [21-
23] to stain hypoxic tumor cells. As the functional binding
mechanisms of pimonidazole and Fmiso are similar,
Fmiso should be specific to hypoxia to a similar degree.
However, the immunohistochemical staining patterns are
very complex and reveal a highly heterogeneous distribu-
tion of perfused blood vessels and hypoxic patches, some-
times interspersed with necrotic islands, all occurring on a
microscopic scale. This may hint as to why Fmiso tracer
uptake alone is not a reliable diagnostic quantity, and
indicates the requirement of an analysis of dynamic Fmiso
PET which takes into account the structural complexity of
hypoxic tumor tissues. The study described here was
designed to develop a kinetic model in order to under-
stand the spatial and temporal distribution of Fmiso in
the tumor tissue. Since the predictive character of Fmiso

SUV remains unclear in literature [13,16], the time course
of tracer accumulation in the tumor was investigated. This
analysis delivers patient specific values for perfusion,
kinetic constants and the concentration of tracer retaining
cells. Furthermore, the relation between these parameters
and radiation therapy (RT) treatment outcome for HNC
was investigated in a group of 15 HNC patients who were
examined with dynamic Fmiso PET prior to treatment
with primary radiotherapy.

Methods
Patients
After informed consent, sixteen patients (mean age: 57.2
years old, range: 46 – 69; 14 male, 2 female) with
advanced stage head and neck cancer (HNC) were exam-
ined between November 2001 and March 2004. The
Fmiso examinations were performed prior to radiation
therapy (RT) treatment. All patients were treated with pri-
mary RT to 70 Gy. Three of these patients were treated
with Intensity Modulated Radiotherapy (IMRT) in 35 frac-
tions, 5 fractions a week with a daily dose of 2 Gy. The
other 13 patients received conventional RT, 5 fractions
with 2 Gy per week until 30 Gy. This first phase was fol-
lowed by a hyperfractionation composed of a dose of 1.4
Gy applicated twice per day until the end of treatment. In
addition, concomitant chemotherapy was prescribed for
14 patients. Seven patients received 5-Fluorouracil/Mito-
mycin chemotherapy, whereas for six patients Cisplatin/
Mitomycin was prescribed; one patient had Paclitaxel/Cis-
platin chemotherapy. Whenever possible (n = 12), an
additional [18F]-fluorodeoxyglucose (FDG) PET was taken
a few days (1 – 3) before or after the Fmiso PET scan. For
each patient, additional computed tomography (CT)
image data was available. These CT scans, on which delin-
eation of target volumes and organs at risk was performed,
were used for RT treatment planning.

After the end of therapy, patients were reviewed regularly
every three months with clinical examination, flexible
endoscopy and computed tomography (CT) when recur-
rent disease was suspected. Routine CT scans were also
acquired six weeks and one year after therapy was fin-
ished. Failure was defined as CT proven tumor progres-
sion.

Data acquisition
The Fmiso PET examinations were performed on a whole-
body scanner (Advance, GE Medical Systems, Milwaukee,
US) after automatic bolus injection of 400 MBq Fmiso.
PET data acquisition was started at the time of tracer injec-
tion. During the first 15 (9 patients) to 60 min (7
patients), a dynamic image acquisition of 31 (40) frames
was performed. Additional static emission scans were
taken 2 h and 4 hour post injection (p.i.). Concerning the
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FDG PET acquisition, a static emission scan was taken 1 h
after injection of approximately 400 MBq FDG.

For the delineation of the tumor volume relevant in the
context of this study, the FDG PET image data was used.
The tumor volume was defined as the volume including
all voxels with at least 40% of the maximum intensity.
This delineation technique was combined with a 12 mm
margin (3 PET voxels). The tumor volume variable V used
in the current study refers to the described FDG PET vol-
ume. It is determined as V = n·v, where n is the number of
tumor voxels. v represents the volume of a single voxel, in
our case v = (0.42·0.425) cm3 = 0.068 cm3. In order to
match the FDG-defined tumor volume onto the three dif-
ferent Fmiso data sets (dynamic, 2 and 4 h p.i.), an auto-
matic coregistration [24] was performed, which achieved
a matching accuracy of ≤ 2 mm. The resulting transforma-

tion matrices were used to determine a time-activity curve
(TAC) for each tumor voxel.

Compartment model
The voxel-by-voxel TACs were analyzed using a phar-
maco-kinetic model which is described in detail elsewhere
[25]. Briefly, the kinetic model consists of two compart-
ments, one corresponding to the irreversible binding of
the tracer in hypoxic cells, the other representing freely
diffusive Fmiso. This two-compartment system is com-
bined with an input function which is individually deter-
mined by a reference tissue approach for lack of a blood
signal in the field of view of the scanner (see [25] for
details). The voxel-by-voxel analysis of the Fmiso TACs
was done by fitting the five-parameter analytical model
function for the tracer concentration in the tissue com-
partments to the measured Fmiso curves. This approach

Left: Scatter plot for one patient based on tracer retention and perfusion parameters resulting from a kinetic Fmiso analysisFigure 1
Left: Scatter plot for one patient based on tracer retention and perfusion parameters resulting from a kinetic Fmiso analysis. 
Schematically shown are typical regions for characteristic perfusion-hypoxia patterns: (1) High perfusion without hypoxia, (2) 
well perfused and simultaneously hypoxic, and (3) severe hypoxia, low vessel density. Right: Corresponding types of character-
istic Fmiso Time-Activity Curves.
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Scatter plots of all 15 patients with increasing M-valueFigure 2
Scatter plots of all 15 patients with increasing M-value.
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yields for each tumor voxel one characteristic value for
tracer retention and perfusion. The perfusion value, i.e.
the density of perfused blood vessels in the respective
tumor voxel, is mainly guided by the shape of the TAC
during the first few minutes after injection. In contrast, the
amount of tracer retention potential (TRP) in the voxel is
related to the properties of the curve several hours after
tracer injection. TRP takes into account the number of via-
ble hypoxic cells as well as their grade of hypoxia. In other
words, TRP is a measure of the concentration of specifi-
cally bound tracer in the considered area. Fluctuations in
perfusion states are taken into account by construction of
the model [25]. In order to visualize TRP and perfusion
characteristics of the whole tumor simultaneously, a scat-
ter plot is introduced (see appendix and fig. 1). In this plot,
the TRP in a voxel is plotted along the x-axis, while the
contribution to the signal from perfused blood vessels is
plotted along the y-axis. The variety of scatter patterns in
the patient group leads to the hypothesis that TRP and
perfusion are independent and spatially variable parame-
ters of a tumor tissue (see figure 2).

Data analysis and statistics
Tumor control was defined on the basis of computed tom-
ography (CT) scans as complete and persistent regression
of the primary tumor and failure was defined as local
recurrence of the tumor in the irradiated fields. Follow up
time was determined from the end of RT treatment until

the day of the last CT. Different variables that might influ-
ence treatment outcome were compared using the Wil-
coxon-Mann-Whitney (Wilcoxon signed rank) U-test
between patient groups showing no local relapse and fail-
ure. In all cases, a two-sided significance level of 0.05 was
used. Correlation of different variables with was assessed
using a Pearson correlation coefficient.

The impact on treatment outcome was checked for differ-
ent classes of variables: tumor volume and patient age,
SUV related factors and variables derived from the kinetic
analysis. The SUV related factors were the maximum
standardized uptake value (SUVmax) and the fractional
hypoxic volume (FHV) 4 h after Fmiso injection. FHV is
defined as the fraction of tumor volume presenting a
tumor-to-blood ratio larger than 1.4. Both variables SUV-

max and FHV have been correlated with tumor hypoxia in
earlier studies [11,13]. Finally, a number of parameters
derived from the compartmental analysis were checked
for a statistically significant influence on therapy out-
come. These parameters were the mean value of TRP, the
mean value of perfusion, and two metrics involving both
TRP and perfusion parameter values. A first metric was
defined intuitively as the volume integral of the TRP-to-
perfusion ratio (HPR). A second metric, which was
derived from a model of tumor dose-response and reoxy-
genation, is the malignancy value M as described in more
detail in the appendix.

Table 1: patient characteristics. Tumor characteristics of the examined patients.

Patients

Pat. nr. primary tumor site age sex TNM stage tumor volume V [cm3] failure site

1 oropharynx 60 m T4 N2b MO 258.1 T*/N†

2 oropharynx 51 m T4 N2c MO 126.2 T*
3 larynx 66 m T4 N2c MO 153.7 T*/N†

4 FOM‡ 46 m T3 N2b MO 59.0 T*
5 BOT§ 49 m T4 N2c MO 287.6 T*/N†

6 oropharynx 48 m T2 N2c MO 114.7 T*/N†

7 FOM‡ 68 m T4 Nl M0 213.7 T*/N†

8 oropharynx 65 m T3 N2c MO 74.3 -
9 hypopharynx/

BOT§
51 m T4 N2c MO 100.9 -

10 oropharynx 59 m T2 N3 MO 172.4 -
11 oropharynx 50 f T4 N2c MO 44.0 -
12 larynx-/

hypopharynx
60 m T4 NO MO 32.4 -

13 oro-/hypopharynx 49 m T3 N2c MO 80.9 -
14 oropharynx 60 f T4 N2b MO 52.4 -
15 unknown 68 m T4 Nl M0 125.5 -

*T: tumor; †N: node.
‡FOM: floor of mouth; §BOT: base of tongue.
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Results
Kinetic Fmiso data
The voxel-by-voxel Fmiso TACs showed a variety of differ-
ent tracer uptake patterns. Perfusion and hypoxia status of
the tissue area can be differentiated by means of the Fmiso
TAC shape. The former is determined by the part of the
TAC corresponding to time points only a few minutes p.i,
whereas the latter is linked to the shape of the curve sev-
eral hours after tracer injection. The TACs observed for the
group of 16 patients showed mainly three different types
of perfusion-hypoxia patterns which correspond to (1) tis-
sue areas with a high vessel density, (2) well perfused but
also hypoxic, and (3) severely hypoxic tumor areas (see
fig. 1).

Model
The presented compartment model allows us to derive
patient specific perfusion-hypoxia patterns. The model is
able to describe the different observed types of Fmiso time
curves. Characteristic TACs are associated to distinct areas
in the scatter plot (figure 1), which indicates high stability
of the model. The patterns for the whole group of patients
are displayed in scatter plots in figure 2 (appendix). The
ultimate purpose of the kinetic model is to subtract the
background of unbound tracer from the signal intensity.

Patients
Characteristics of the group of 15 patients are summarized
in table 1. For the examined patient group, the follow up
time was in the range of 2 – 21 months (median: 12.8
months). Patients were 46 to 68 years old (median: 59
years). FDG-tumor volumes ranged from 32.4 to 287.6
cm3 with a median volume of 114.5 cm3. Overall, 7 of the

15 patients had local recurrences. All observed failures
occurred in the first 8 months after the end of therapy.

Image analysis of the Fmiso PET scans taken 4 h p.i.
revealed maximum SUVs in the tumor volume between
1.36 and 4.02. The median SUVmax was 2.25. The FHV
ranged from 0 to 72.5% with a mean of 19.7%. Due to the
chosen tumor volume definition strategy, which implies
the addition of a margin, the determined FHV can never
reach 100%.

Examination of the scatter plots showed very different pat-
terns of hypoxia and perfusion. All possible combinations
of hypoxia and perfusion parameters were observed: well
perfused tumors which were not at all hypoxic, tumors
showing at the same time a quite high vascular density
and hypoxic subareas, and finally also tumors that were
badly perfused and severely hypoxic. These two variables
represent physiological tumor characteristics that are not
correlated (r = -0.096). As a first result, it has to be stated
that hypoxia occurs independently from the degree of per-
fusion in tumor tissues.

The Wilcoxon-Mann-Whitney U-test with respect to the
age of the patients showed no difference (P = 0.3) between
the subgroups with and without relapse. In contrast, there
was a significant difference in tumor volume between the
two subgroups (P = 0.014). This corroborates the findings
of earlier studies that correlated tumor size with treatment
outcome [26]. Also, SUVmax, determined 4 h after injec-
tion separated patients according to failure and progres-
sion free survival (PFS). The significance for SUVmax was
only weak P = 0.041, whereas the U-test for the FHV
showed no significance at all (P = 0.13).

Regarding the variables derived from the kinetic analysis,
mean tumor perfusion and HPR discriminated between
the group without recurrence and the failure group (P =
0.05 and 0.008, respectively). The mean TRP value
showed no significance (P = 0.18). Finally, the malig-
nancy value M was highly significant, with P = 0.0013
(table 2). The prognostic value of this model based metric
M is higher than the value of tumor size or SUVmax after 4
h.

Discussion
Recent publications revealed contradictory results con-
cerning the correlation of static Fmiso PET data and tumor
hypoxia [11-13,16]. As the irregular architecture of
tumors complicates Fmiso uptake, a kinetic model was
developed in order to analyze spatial and temporal distri-
bution of the tracer in head-and-neck tumors. The pre-
sented model enables to differentiate between tumor
perfusion and hypoxia. This feature of the model consti-

Table 2: results of statistical analysis. Results of univariate 
analysis of prognostic factors.

Results U-Test

variables P-Value

age [years] NS* (0.30)
tumor volume V [cm3] 0.014

0.041

FHV‡ [%] NS* (0.13)
mean TRP* NS* (0.18)

mean perfusion§ 0.05
HPR§ 0.008

malignancy value M§ 0.001

*NS: not significant (p > 0.05); †SUVmax: maximum SUV; ‡FHV: 
fractional hypoxic volume.
§derived from kinetic model

SUVmax
†
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tutes the link between Fmiso distribution and retention
and the structural architecture of the tumor tissue.

The results of this study showed, that SUVmax alone even at
late time points has limited predictive value. These find-
ings are in line with results of other investigators [16] who
found that SUV 2 h p.i. and Eppendorf did not correlate
well.

A limiting factor for the retention of Fmiso in the tumor is
that binding of the tracer can only take place in viable
hypoxic cells which may be few if the tumor is largely
necrotic. In other words, a low level of the Fmiso TAC sev-
eral hours after tracer injection is not necessarily due to
non-hypoxic tissue. This might also be caused by largely
necrotic tumor areas which contain only a very low
number of strongly hypoxic cells. In this case, the low
intensity of the PET signal would lead to an underestima-
tion of the extent of hypoxia by the SUV-method. A
kinetic analysis subtracts the non-specific background sig-
nal and hence enables to determine the local TRP of the
tumor. Still, the classical hypoxic tumor core may only
give a weak signal due to the low density of tracer retain-
ing cells. Hence, a second parameter is needed to give a
more complete picture of the abnormalities of the tissue
architecture.

The analysis of the parameters derived from the kinetic
model demonstrated, that TRP and perfusion values alone
do not predict treatment outcome. Additionally, hypoxia
occurred independent of degree of perfusion, since no
correlation was found between the two variables. Recent
immunohistochemical investigations of simultaneous
pimonidazole and blood vessel staining of tissue sections
[21-23] revealed the co-existence of hypoxic areas and per-
fused blood vessels. These results were corroborated in
our study. Taking both parameters together proved to be
reliable predictors for treatment outcome. The malig-
nancy metric M, which involves these two physiological
characteristics of the tissue, was found to be the strongest
prognostic factor.

Most essential for the design of new adaptive treatment
strategies is the time until reoxygenation takes place after
the beginning of RT. The malignancy metric M involves an
estimate of this characteristic time. The worst physiologi-
cal setting in a tumor seems to be the combination of low
perfusion and severe hypoxia, as reoxygenation then
appears to be very slow. In contrast, a high degree of per-
fusion co-existing with hypoxic areas may favor fast reox-
ygenation. Hence, this setting might be associated with an
intermediate level of risk. This interpretation can be sup-
ported by follow-up scans during RT, which will be
reported in a future publication.

Fmiso uptake kinetics are quite slow due to long diffusion
distances and for lack of active transport mechanisms. PET
scans several hours after injection of the radiotracer are
therefore essential. Nevertheless, dynamic scans at short
times p.i. cannot be abandoned, as they are needed to
determine the degree of perfusion of the tumor.

There is no possibility in Fmiso PET to distinguish
between acute and chronic hypoxia [27]. On one hand,
this is due to a quite large size of the image voxels (≈ (4
mm)3). On the other hand, the slow kinetics of tracer
retention do not allow a distinction of fast re-perfusion.
Since both effects are a consequence of the deficient vas-
culature, they may co-exist anyway.

The results of this study demonstrate that Fmiso PET has
prognostic value for therapy outcome, but only when per-
fusion and retention are both taken into consideration. A
higher predictive value was associated to the malignancy
value M derived form kinetic analysis than to tumor vol-
ume or SUV based variables. Hence, Fmiso PET might in
the future be used to individually select patients for an
adapted radiotherapy treatment as e.g. dose painting [18-
20]. Furthermore, variables derived from a kinetic analysis
[25] may serve to determine individual dose escalation
factors in order to overcome hypoxia related treatment
resistance.

Conclusion
The interpretation of Fmiso PET examinations with
respect to hypoxia benefits greatly from a kinetic analysis.
The presented kinetic analysis determines hypoxia and
perfusion parameters, which were shown to be able to
stratify patient groups according to RT treatment out-
come. The results of this explorating, hypothesis generat-
ing study require validation in a larger group of patients.

Appendix
Scatter plots
By virtue of the kinetic model analysis of the time-activity
curves of tracer uptake, it is possible to eliminate the non-
specific background activity in the signal. The model has
five fit parameters, which are determined for each voxel of
the tumor volume. Two parameters are of special interest:
the relative contribution of the perfused blood vessels,
short WP, which dominates the signal during the first few
minutes after injection. Further, the tracer retention
potential R, which is a combination of the concentration
of retaining cells and the kinetic constants of the reaction.
In a scatter plot, the values of R are plotted along the x-
axis, and the values of WP are plotted along the y-axis for
all voxels of the tumor volume. The scatter plots of all 15
patients in figure 2 show clearly that both values are inde-
pendent variables and vary widely in a population.
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TCP model
The resistance of a hypoxic tumor to RT is governed,
among others, by two factors: the initial magnitude of the
hypoxic subpopulation of clonogenic cells, and the rate
with which these cells are reoxygenated. We assume that
the former is related to R, while the latter is related to WP.
The rationale for the second assumption is, that in areas
where the blood vessel density is high, hypoxic cells have
a greater chance to become oxic quickly. Conversely, if the
vasculature is severely deficient, reoxygenation is delayed.
The common Poisson model of tumor control probability
(TCP) states:

where the sum runs over all voxels i of the tumor and n is
the number of cells per voxel. D is the total dose and α0
the radiation sensitivity of a non-hypoxic cell. We modify
this to include hypoxic subpopulations to read

Here, h(αh) is the frequency with which an average reduc-
tion of the cell sensitivity by αh occurs over the course of
the treatment. The integral is the malignancy M. We define
a phenomenological relation between the kinetic model
parameters and the malignancy by:

M = 1 + exp(bR/(WP + c)),  (4)

where b and c are fit parameters. Finally, we obtain

with a = n exp(-α0D) as an additional fit parameter. This
sum can be computed as a sum over the points of a scatter
plot.

The parameters a, b and c were determined by a maximum
log-likelihood fit of TCP to the group of 15 patients in this
study. Their values obtained as a = 5.7·10-5, b = 198.6 and
c = 0.565. The goodness of fit was estimated by evaluation
of the deviance ∆. The deviance is defined as twice the dif-
ference between the current and the full log-likelihood ∆
= -2(Lc - Lf), which is supposed to follow a χ2 distribution.
In our case, the deviance confirmed an acceptable fit (∆ =
2.75, p > 0.05).

Figure 3 shows the the fitted TCP curve as a function of the
malignancy value M together with the grouped data
points obtained from outcome data for the group of 15
patients in this study.
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Abstract

Purpose: FDG PET is frequently used for radiotherapy (RT) planning to determine the tumour extent. Similarly, FMISO
is used to assess the hypoxic sub-volume. The relationship between the volumes determined on the basis of FDG and
FMISO was investigated. Additionally, the quantitative correlation of the tracers on a voxel basis was studied.
Methods: Twelve head-and-neck cancer (HNC) patients underwent FDG and FMISO PET examinations prior to RT

treatment. The tumour volumes assessed by the two tracers and also the voxel-based joint uptake values were
investigated. The characteristic shapes and patterns of the determined scatter plots were analyzed.
A number of different variables such as the maximum uptake values of FDG and FMISO, the FDG and FMISO positive

volumes, the slope m of the regression line and the scatter width r of the scatter plots were tested for their ability to
stratify the patient group with respect to treatment outcome.
Results: A diversity of characteristic FDG-FMISO distributions was observed in the patient group. However, no general

correlation of enhanced glucose metabolism and FMISO uptake was observed.
The maximum uptake of FMISO (p = 0.045) showed borderline significance for stratifying the patient group. FDG

positive tumour volume, hypoxic fraction, maximum FDG uptake and m were not significant. r turned out to be the most
significant variable (p = 0.008) to predict treatment success probabilities.
Conclusion: FMISO and FDG PET data provide independent information about the examined tumour. A quantification of

the correlated tracer uptake seems to be meaningful.

�c 2006 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 80 (2006) 151–156.

Keywords: FMISO; FDG; PET; Hypoxia; Head-and-neck cancer

[18F]Fluorodeoxyglucose (FDG) positron emission
tomography (PET) is being established as a solid basis
for target volume delineation in the radiotherapy (RT)
planning process for head-and-neck cancer (HNC) [2].
Additional information imaged by tracers such as [18F]Flu-
oromisonidazole (FMISO) could form the basis for dose
painting.

Tumour hypoxia has been shown to be one of the major
factors affecting therapy resistance [4]. Also, enhanced glu-
cose metabolism was determined to be a predictor for re-
duced survival probabilities [8]. Despite this analogy, it
remains unclear how the local tracer uptake is related and
what this reveals about the two phenomena tumour hypoxia
and enhanced glucose metabolism in tumours. Tumour tis-
sues that present a high metabolic activity often show also
enhanced proliferation rates [1]. In combination with insuf-
ficient neovascularization these high proliferation rates
could lead to tumour hypoxia. Conversely, glucose metabo-

lism may be activated under hypoxic conditions [7,9–
11,13].

Modern imaging technologies, especially PET, allow non-
invasive imaging of both hypoxia and glucose metabolism.
FDG is the most common tracer to visualize the intra-tumo-
ural glucose metabolism [8]. FDG is used in clinical routine
for tumour detection, staging, RT target volume definition
and therapy monitoring [5]. To assess tumour hypoxia by
means of PET, FMISO is one of the most frequently em-
ployed tracers [3,6,12,14].

Different investigators analyzed the correlation of hypox-
ia and energy status in tumours. Pugachev et al. [9] per-
formed immunohistochemical studies on one human
prostate tumour cell strain in mice in order to compare
the staining intensities of FDG and pimonidazole, which is
identical to FMISO by way of its binding mechanism. A posi-
tive correlation between FDG and pimonidazole staining
intensities was determined in this study, and higher FDG

Radiotherapy and Oncology 80 (2006) 151–156
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uptake was described to be indicative of tumour hypoxia.
Other investigators [7,13] reported that glucose consuming
and FMISO trapping regions showed wide overlaps. On the
other hand, they also found differences in the distribution
homogeneities. A combined use of FDG and FMISO was sug-
gested to provide better information on individual tumour
characteristics. Rajendran et al. [10,11] assumed the glu-
cose metabolism of tumours to be affected by hypoxia. A
general correlation could not be found, only for single cases
correlations of FDG and FMISO were identified. The investi-
gators found all different combinations of high/low hypoxia
and high/low glucose metabolism in their study. They pre-
sumed an eventually tumour type specific correlation.

To date, it remains unclear if there is a general correla-
tion of tumour hypoxia and glucose metabolism. The pre-
sented data hint at a wide variety of combined tracer
uptake in addition to tumour specific patterns. Hypotheti-
cally, it seems possible that the quality of the relationship
between these two phenomena in PET investigations might
be a separate, individual characteristic of a tumour, reflect-
ing its degree of structural heterogeneity on a microscopic
level.

The presented study investigates the correlation be-
tween FDG and FMISO uptake in tumours in a clinical set-
ting. The correlation of FDG and FMISO based volumes is
studied. Additionally, the joint accumulation of FDG and
FMISO in human HNC is analyzed on a voxel basis. Further-
more, the relationship between glucose metabolism, FMISO
accumulation and therapy outcome is determined. The
hypothesis that correlated uptake of FDG and FMISO might
be an independent property of a tumour is investigated.

Methods and materials
Patients

After informed consent, a total of 12 patients with ad-
vanced stage HNC were included into this study. Prior to
treatment, each patient underwent FMISO and FDG PET

examination within a few days. Patient characteristics are
summarized in Table 1.

All patients were treated with RT of 70 Gy. In addition,
concomitant chemotherapy was prescribed for 11 patients.
After the end of therapy, patients were reviewed regularly
every three months with clinical examination, flexible
endoscopy and computed tomography (CT). Failure was de-
fined as CT proven tumour progression.

PET imaging
All PET examinations were performed on a whole-body

scanner (Advance, GE Medical Systems, Milwaukee, US) with
an axial field of view (FOV) of 14.9 cm. FDG and FMISO were
both injected with a total activity of approximately
400 MBq. FDG scans were acquired 60 min after tracer injec-
tion. For the FMISO examinations, two static scans were
recorded at 2 and 4 h post-injection (pi). The data were
reconstructed with an iterative ordered subsets expectation
maximization (OSEM) algorithm and had a spatial resolution
of 4 · 4 · 4.25 mm3.

Image analysis
The definition of regions of interest (ROIs) for a voxel-

based analysis was based on the FDG scans. All voxels show-
ing a higher intensity than 40% of the maximum value were
included into the ROI. In a second step, this region was
extended by 3 voxels in each direction. A hypoxic fraction
(HF) was defined as the percentage of tumour voxels that
presents FMISO standardized uptake values (SUVs) at 2 h pi
larger than 1.4.

FMISO scans were matched to the FDG scans with a rigid
registration algorithm that uses a mutual information (MI)
metric [15]. This matching procedure was validated against
manual fusion and showed errors of the order of 2 mm (�0.5
voxel).

Further analysis of voxel-by-voxel FDG-FMISO correlation
was based on scatter plots. The FDG SUV is plotted on the x-
axis versus the corresponding FMISO SUV on the y-axis. It is
assumed that the later FMISO scans were taken, the more of

Table 1
Patient characteristics

Pat. # Primary tumour site Age Sex TNM stage FDG vol [cm3] HFc [%] Local relapse

1 Oropharynx 65 m T3 N2c M0 22.9 75.2 n
2 Oropharynx 60 m T4 N2b M0 67.0 47.0 y
3 Hypopharynx/BOTa 51 m T4 N2c M0 22.5 20.1 n
4 Oropharynx 59 m T2 N3 M0 67.6 89.4 n
5 Hypopharynx 65 m T4 N2c M0 27.2 95.7 y
6 Oropharynx 50 f T4 N2c M0 5.4 10.3 n
7 Larynx-/hypopharynx 60 m T4 N0 M0 3.1 2.2 n
8 Larynx 66 m T4 N2c M0 32.3 75.7 y
9 Oro-/ hypopharynx 49 m T3 N2c M0 17.4 36.2 n
10 Unknown 68 m T4 N1 M0 27.9 0.3 n
11 Oropharynx 48 m T2 N2c M0 27.3 6.8 y
12 FOMb 68 m T4 N1 M0 34.0 84.4 y

Tumour characteristics for all HNC patients.
a BOT, base of tongue.
b FOM, floor of mouth.
c HF, hypoxic fraction.
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the unspecifically bound tracer had washed out. Hence, for
the scatter plots only FMISO data acquired 4 h pi were used.
Voxels with FDG and FMISO values below a certain threshold
(2/3x + y 6 2) were omitted from the scatter plots and any
further analysis.

A regression line fr(x) = mx + b was fitted to each FDG-
FMISO scatter plot and the scatter width r was calculated.
r is determined by the width of a band delimited by two
straight lines parallel to fr. The scatter band is defined in
such a way that 95% of the data points fall into this band.

In order to validate the stratification of patient groups
according to different variables, the Student t-test was
used. As the t-test is only valid for gaussian distributions
and the sample size in our study is quite small, the Wilco-
xon–Mann–Whitney U-test was applied for comparison. In
all cases, a two-sided significance level of 0.05 was used.

Results
The tumour volume analysis revealed large differences in

size for the FDG positive areas, ranging from 3.1 up to
67.0 cm3. The bandwidth of HF was 0.3–95.7% (mean:
45.3%).

The results of the PET data analysis are shown in Table 2.
Maximum FDG SUVs ranged from 8.00 to 12.07 (mean: 9.53).
The range of maximum FMISO SUVs was 1.40–3.22 (mean:
2.20) at 4 h pi.

A first visual comparison of the scatter plots showed a
large inter-patient diversity of FDG-FMISO distributions
and revealed different characteristic types of scatter pat-
terns (see Fig. 1). No general correlation of FDG and FMISO
uptake was found. For some patients, very good voxel-by-
voxel correlation of FDG and FMISO was observed. The scat-
ter patterns were very narrow and could have suggested a
functional dependence between FDG and FMISO uptake

(cf. patients #4, 6, 7, 10, 11). In contrast, the scatter pat-
terns of other patients were more irregular and no clear cor-
relation between the uptake values of the two tracers could
be observed.

Patients #3 and 9 presented with tumours where primary
and a lymph node region were spatially separated. These
two sub-regions were then further analyzed as separate
ROIs. The scatter analysis resulted in completely different
FDG-FMISO distributions for the two parts. In both cases,
the scatter plot for the main tumour revealed very narrow
and well-correlated FDG-FMISO scatter patterns, mostly be-
cause little FMISO uptake occurred. The lymph node regions
in contrast presented widely dispersed data points of FDG
and FMISO SUVs (Fig. 2).

The regression lines fr(x) manifested very different val-
ues for the slope m, ranging from 0.01 to 0.17. The scatter
width r ranged from 0.23 to 0.55, with a mean value of 0.38
(Table 3). In cases of spatially separated sub-tumours,
regression line and scatter width were determined sepa-
rately for each region (Fig. 3).

Variables tested for their ability to stratify the patient
group with respect to treatment outcome were the FDG po-
sitive volume, the HF, the maximum FDG uptake, the max-
imum FMISO uptake at 4 h pi as well as the slope m of the
regression line fr(x) and the scatter width r. With the t-test
non-significant p-values were determined for the FDG vol-
ume (p = 0.130), for the HF (p = 0.101) as well as for SUVmax

of FDG (p = 0.198) and the slope m (p = 0.10). Maximum FMI-
SO SUV (p = 0.045) was borderline significant. The scatter
width r resulted in a highly significant value of p = 0.008.
The p-values obtained from the non-parametric U-test are
shown for comparison in Table 4.

Discussion
Recent publications revealed inconclusive results con-

cerning the correlation of glucose metabolism and hypoxia
[7,9–11,13] which could be caused by a large variability
of tumour biology and structural heterogeneity. The pre-
sented work investigates the correspondence between FDG
and FMISO uptake in HNC patients. The results did not show
a general correlation. These findings corroborate the
results of Rajendran et al. [10,11] who reported no global
correlation, but the presence of all possible combinations
of high/low uptake of FDG and FMISO. However, our data
did not reveal tumours with high FMISO and low FDG uptake.

A detailed analysis of FDG-FMISO scatter plots manifest-
ed large inter- and also intra-patient variations of FDG-FMI-
SO distribution patterns. For some cases, a good correlation
of the two tracers could be observed. In contrast to other
investigators [9] this study also revealed tumours where
no correlation of the glucose tracer FDG and the hypoxia
tracer FMISO could be seen. One of the reasons why Puga-
chev et al. saw clear correlations might have been the fact
that all investigated tumours were grown from the same cell
line.

The two patients allowing a spatial differentiation be-
tween primary tumour and lymph node showed that the
FDG-FMISO scatter patterns present not only inter-, but also

Table 2
PET data analysis

Pat. # FDG FMISO4h

SUVmax SUVavg SUVmax SUVavg

1 8.88 3.35 2.22 1.49
2 7.87 3.22 2.15 1.18
3 9.65 3.24 1.80 1.14
3PT

a 9.65 3.24 1.37 1.11
3LN

a 7.94 3.38 1.80 1.24
4 7.84 3.80 2.27 1.47
5 12.07 3.10 2.93 1.41
6 10.75 3.47 1.40 0.98
7 10.49 3.34 1.58 1.07
8 9.20 3.75 2.65 1.32
9 9.10 3.19 2.73 1.20
9PT

a 9.03 2.99 1.45 1.06
9LN

a 9.10 3.48 2.73 1.49
10 8.00 3.25 1.51 0.97
11 10.41 3.84 1.66 0.96
12 10.09 3.55 3.22 1.44

a For patients #3 and 9, primary tumour (PT) and lymph node
(LN) were spatially separated and analyzed separately.
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strong intra-patient variations. In these patients, each re-
gion separately showed a narrow correlation between FDG
and FMISO.

The joint data of FDG and FMISO support the initial
hypothesis: Correlated uptake of FDG and FMISO may be
an independent property of a tumour of predictive value.
Consequently, a good correlation of the two tracers
might hint at a favourable situation in terms of
treatment success probability, while the lack of correla-
tion indicates the necessity of individually adapted treat-
ment approaches.

In order to be able to define a quantitative measure for
the shapes of FDG-FMISO distribution patterns, the scatter
width r was introduced. This parameter r turned out to
be the best predictor (p = 0.008) for RT treatment outcome.
Thus, the parameter r enables us to stratify patients
according to their treatment outcome better than the other
tested variables such as FDG tumour volume, HF, maximum
FDG and FMISO SUV and the slope m of the regression line.
This effect could be due to the fact that r becomes small
also if no FMISO uptake occurs. r therefore represents a
combination of two phenomena.
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Fig. 1. FDG-FMISO scatter plots for all 12 patients. Data points that presented low SUVs for FMISO and FDG were omitted.
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An attempt to interpret this result biologically could start
with the assumption that there are three types of cells. High
FDG uptake and no trapping of FMISO correspond to cells in
well perfused areas, whereas high FDG and FMISO uptake lev-
els hint at cells that metabolize glucose because of diffusion
limited hypoxia. FMISO trapping and no FDG uptake signalizes
that no oxygen or glucose are present at large distances from
vessels. Hence, a good correlation between FDG and FMISO in
a tumour hints at a well-balanced ratio between all types
throughout thewhole tumour. In contrast, aweak correlation
indicates large regional differences in the ratio between all

types. A weakly correlated uptake of FDG and FMISO seems
to hint at a more malignant tumour phenotype that is prone
to less regular growth.

Conclusion
Hypoxia is a consequence of an irregular vascular struc-

ture of a tumour, in whose formation excessive proliferation
plays a significant role. Macroscopically imageable hypoxia
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Fig. 2. FDG-FMISO scatter plots for the two different tumour parts of patient 9. (a) Primary tumour. (b) Lymph node.
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Fig. 3. Scatter widths r exemplarily shown for three patients. (a) Patient 10, (b) Patient 12, and (c) Patient 9.

Table 3
Scatter widths r

Pat. 1 2 3 4 5 6 7 8 9 10 11 12

r 0.42 0.45 0.23a 0.38 0.52 0.33 0.28 0.55 0.37a 0.25 0.29 0.53
Outcomeb + � + + � + + � + + � �
a r is a weighted mean according to the number of voxels associated to lymph node (LN) and primary tumour (PT) regions. Pat 3:

rLN = 0.24, rPT = 0.22. Pat 9: rLN = 0.58, rPT = 0.26.
b outcome: �, local relapse; +, no local relapse.

Table 4
Univariate statistical analysis

p-value FDG vol. HF FMISO4h SUVmax FDG SUVmax m r

t-test 0.130 0.101 0.045 0.198 0.100 0.008
U-test 0.061 0.084 0.061 0.232 0.084 0.014
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reflects microscopic heterogeneity in a complex fashion.
The combined analysis of FMISO and FDG adds a second
dimension to the investigation of this heterogeneity.

The presented study showed that the information ob-
tained by FMISO cannot be substituted by FDG imaging.
The joint use of both tracers in PET appears to be beneficial
for the assessment of a more detailed image of local tumour
characteristics.
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Abstract

Purpose: To develop a model for reoxygenation dynamics and its relation to local control after radiotherapy
(RT) based on repeated dynamic FMISO PET examinations in head-and-neck cancer (HNC) patients.

Methods and Materials: 10 HNC patients were examined with dynamic FMISO PET before RT with 70Gy
and after approximately 20Gy. Two of these patients had two additional dynamic FMISO scans during treatment.
Local recurrence was assessed by CT-based follow-up 8-24 months after RT. Tumor specific values for the level
of FMISO retention R and the vascular perfusion efficiency P were determined using a kinetic compartment model.

Results: Individual R − P scattergrams before and during therapy were analyzed and significant therapy
induced changes in the characteristic R−P patterns were observed. A TCP model was derived that involves the
tissue parameters R and P and estimates the time to reoxygenation. On the basis of this model, a malignancy
value M was introduced and calibrated by a fit to the observed outcome data. Reoxygenation is reflected by the
model as a progression to less malignant tumor types i.e. smaller values of M . In four out of six patients with
severe hypoxia, M̄ had decreased after 20Gy, whereas two patients showed increasing M̄ . Four patients showed
no hypoxia in the pre-treatment scan.

Conclusion: A TCP model was developed based on repeated FMISO PET scans during RT. The model com-
bines the local perfusion efficiency and the degree of hypoxia to estimate the reoxygenation time. It constitutes
a key for hypoxia image guided dose escalation in RT.

Key Words: Hypoxia, FMISO PET, TCP, Reoxygenation, Radiotherapy.
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1 Introduction
Hypoxia assays of individual tumors are increasingly
becoming accessible [1–7], while hypoxia-targeted
therapies are proven to be efficient for increased lo-
cal control and overall survival [8–10]. Given the
long standing tenet of hypoxia induced radioresis-
tance of the target cells, it comes naturally to di-
rect a dose increment at the volumes which appear
positive in hypoxia imaging. The obvious question
remains how image intensity translates into dose es-
calation [11–14].

Assuming that the hypoxic cell population ex-
hibits a decrease of radiosensitivity by a factor 2.5−3
[15], it is immediately clear that this cannot be com-
pensated for by dose escalation unless this cell pop-
ulation is rapidly reduced by reoxygenation. Thus,
the most relevant quantity for hypoxia image guided
dose escalation (HIDE) is the time from the onset of
radiotherapy to reoxygenation, which is equivalent
to the number of treatment fractions lost on the ra-
dioresistant cells. At first sight, this suggests that a
single pre-treatment hypoxia image cannot suffice to
determine the required extent of dose escalation.

The presence of regions in a tumor where cells
can suffer from a lack of oxygen supply is a symptom
of an insufficient or deficient vasculature. Hence,
despite the complicated processes that occur dur-
ing normal growth or under therapy, like repop-
ulation, redistribution between cell compartments,
and loss of cells either by starvation or as a conse-
quence of therapy, the central question for HIDE is:
When does the vasculature become sufficient again,
either by neovascularisation or reduced consump-
tion, or both? Animal experiments show that the
phenomenon of hypoxia is an inherent property of
cell lines [16] and can outlast the lifespan of hypoxic
cells by far [17]. The emergence of hypoxia seems
to be engrained in the growth characteristics of a
clonogen population.

If functional imaging reveals the irregularity and
coarseness of the tumor vasculature, it may be pos-
sible to estimate the time to reoxygenation. In dy-
namic studies of PET tracer or MR/CT contrast
agent uptake, it is possible to obtain a measure of
the efficiency of perfusion (determined by the num-
ber, caliber and distribution of blood vessels and the
magnitude of blood flow within them) during the
influx phase shortly after injection. The degree of
hypoxia as given by the uptake of PET tracer is in
itself an indicator of the coarseness of the vascula-
ture, as hypoxia can only persist in wide pouches

between perfused blood vessels. The combination of
both, perfusion efficiency and hypoxia labeling, has
been shown to carry significant information about
the success of chemo-radiotherapy [18].

In the following, we develop a model for tumor
control that predicts in essence the time to reoxy-
genation from measurements of perfusion efficiency
and hypoxia with the PET tracer [18F]-FMISO. The
model was inspired by a series of repeated PET scans
of a number of head and neck patients undergo-
ing chemo-radiotherapy, giving some insight into the
changes of both perfusion efficiency and hypoxia. All
dynamic PET scans were evaluated with a kinetic
compartment model introduced in [19].

2 Methods and Materials
2.1 Patients

The total size of the study was 15 patients, de-
tails about patient and tumor characteristics can
be found in [18]. Each of these patients was ex-
amined with FDG and dynamic FMISO PET before
the start of treatment. A subgroup of 10 patients
received repeat scans after approximately 2 weeks of
treatment (≈ 20 Gy). Patients were treated with
radio-chemotherapy of 70 Gy applied in 35 fractions
(fx). Therapy outcome data were available for all
patients. After the end of therapy, patients were re-
viewed regularly every three months with clinical ex-
amination, flexible endoscopy and computed tomog-
raphy (CT) when recurrent disease was suspected.
Routine CT scans were also acquired six weeks and
one year after therapy was finished.

For a total of eight patients (#1-4, 7, 9, 10 and
14), one FMISO repeat scan is available, whereas for
two patients (#6 and 13), three repeat scans could
be acquired. Patient 6 had follow-up scans after 20,
50 and 70 Gy, patient 13 after 10, 20 and 50 Gy. The
secondary FMISO PET scans were also acquired us-
ing a dynamic acquisition mode. The scans were
performed as explained in [18]. The long acquisition
times made it difficult to organize the trial and put
a large burden on the patients who were suffering
from acute reactions during therapy.

The repeat scans were analyzed with the same
kinetic model as the pre-treatment scans and scat-
ter plots as shown below were calculated based on
the results of the compartmental analysis [19]. The
volumes taken into account for the analysis of the
repeat scans were defined by the FDG PET positive
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areas of the tumors before the start of treatment.
Notice that the tumor size cannot be assessed on a
FMISO image.

2.2 Tumor Control Model

Naturally, given the population-averaged experimen-
tal data, the best a tumor control model including
reoxygenation can do is to describe the observations.
No attempt at a mechanistic model is made, and all
parameters are understood as averages over the pa-
tient population.

We start with the common Poisson approxima-
tion of TCP

− lnTCP = ρ

n
∑

i=1

exp(−α0Di) , (1)

where ρ is the mean cell density per volume element,
α0 is the mean cell sensitivity, Di is the dose in vol-
ume element i and the sum runs over all volume el-
ements i = 1, ..., n. The rhs is equal to the expected
value of surviving cells in the total tumor volume,
henceforth denoted with µ0. If µi = ρ exp(−α0Di)
is the expected value of surviving cells per volume
element, we obtain

µ0 =

n
∑

i=1

µi . (2)

Assume now that the cells of a given tumor vol-
ume element are labeled according to their distance
s to the nearest perfused blood vessel. Next, the
cells are sorted according to their distance label and
collected into bins. Let ρ·h(s) be the number of cells
in the bin of width ∆s and mean distance to the next
vessel s. Clearly, the number of cells will decrease
as the mean distance to the next vessel increases:
h(s) → 0, as s →∞.

In order to take into account hypoxia induced
radio-resistance, we assume that each bin has a spe-
cific mean cell sensitivity α(s) and reoxygenates af-
ter a fraction tR(s) of the total number of treatment
fractions. Therefore

µi = ρ

∞
∫

0

ds h(s) ·

exp (Di (−α(s)tR(s)− α0(1− tR(s))))

= ρ exp(−α0Di) · (3)
∞
∫

0

ds exp (−(α(s) − α0)tR(s)Di + lnh(s)) .

The integral is the excess of cells surviving the treat-
ment because of reduced cell sensitivity. In case no
hypoxia is present, the integral is 1. If there is some
hypoxia present, the integral becomes rapidly dom-
inated by the bins where a large number of cells are
initially hypoxic and suffer delayed reoxygenation.
Assume that these bins are centered around a dis-
tance s0. In keeping with the well established saddle-
point approximation (i.e. in the limit Di → ∞), we
write
∫

∞

0

ds exp (−(α(s)− α0)tR(s)Di + lnh(s))

=

√

2πh2(s0)

|f ′′(s0)|Di
exp(−(αh − α0)tRDi) ,(4)

where αh = α(s0) and tR = tR(s0) are the macro-
scopically observable quantities of cell sensitivity
and reoxygenation time for this volume element.
The term (2πh2(s0)/(|f ′′(s0)|Di))

1/2 has a constant
value, f(s) is given by f(s) = (α(s) − α0)tR(s). In
the following, this normalization constant will be ne-
glected, as it can be absorbed in the fit constant A
of the final model (eq. (7)). The rhs is termed the
malignancy value Mi of this volume element. The
here introduced malignancy value is purely related
to hypoxia and consequential treatment resistance.
It does not relate to the potential of a tumor to de-
velop metastases.

The kinetic analysis of FMISO uptake delivers
for each volume element a measure of perfusion ef-
ficiency P and of tracer retention R. In [18] it was
shown that the distributions of (R, P ) are quite char-
acteristic for each tumor, with an indication that the
presence of high-R – low-P volume elements is an
unfavorable indicator for treatment response. Here,
we assume

1. the macroscopic cell sensitivity αh is propor-
tional to the tracer retention R and

2. the macroscopic time to reoxygenation tR is
proportional to 1/(P + P0), suggesting that
there exists a maximum time 1/P0 after which
any volume element will have reoxygenated.

The results corroborate this choice.
Finally, we obtain

Mi = exp(bRi/(Pi + P0)) (5)

where the dose Di to the volume element i is im-
plicit in the parameter b = b̃ ·Di/D. Assuming that
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Di = D everywhere, the final expression for the total
number of surviving cells reads

µ0 = ρ exp(−α0D)

n
∑

i=1

Mi . (6)

The parameters A = ρ exp(−α0D), b and P0

were determined by a maximum log-likelihood fit of
exp−µ0 to the group of 15 patients, as shown in [18].

3 Results
The distributions of tracer retention - perfusion ef-
ficiency for each patient can be classified as one of
three typical scatter patterns. The classical hypoxic
tumor shows high tracer retention and lower than
average perfusion efficiency values, see figure 1(a).
Here, a deficient vasculature creates pockets of se-
vere hypoxia, which may even contain necrotic cells
which are not visible on FMISO images. A second
class of tumors shows significant tracer retention and
more than average perfusion efficiency values, see
figure 1(b). These tumors do have a viable vascu-
lature, but oxygen consumption is so high that the
supply is not sufficient. These tumors may be more
amenable to hypoxia-modifying treatments and may
show faster reoxygenation than the first type. Fi-
nally, tumors of the third class show no tracer reten-
tion, while their perfusion efficiency values are nor-
mal to greater than average, see figure 1(c). In [18] it
was shown that the prognosis for type 1 is very poor,
for type 2 intermediate, but very good for type 3.

The observed correlation between the two-
dimensional distributions of tracer retention and
perfusion efficiency corroborates assumptions 1 and
2 made in the methods section. As high levels of
tracer retention indicate an unfavorable prognosis,
this parameter was assumed to be proportional to
the sensitivity parameter αh (assumption 1). Sec-
ondly, the fact that very poor outcome could be as-
sociated with patients presenting in addition with
badly perfused tumors indicates an inverse correla-
tion of perfusion efficiency and the time until reoxy-
genation occurs (assumption 2).

The fast response of a tumor to radiotherapy
could be dominated by two effects. Firstly, due to
a deceleration of proliferation, the oxygen consump-
tion drops and as a consequence, perfusion limited
hypoxia vanishes. Secondly, due to an acute inflam-
matory reaction, the blood flow increases which in-
creases oxygen supply with the same result as above.

This turns out to be the reoxygenation pattern of
type 2 tumors. Of the 6 patients classified as type
2, only 3 had noticeable traces of hypoxia left at 20
Gy, while the perfusion was generally enhanced.

At later times during treatment, the reoxygena-
tion response could be shaped by an overall shrink-
age of tumor mass and neovascularisation, two ef-
fects that can enhance the quality of the vasculature,
while it is certainly also damaged by radiation. The
net effect is somewhat elusive on the basis of current
knowledge. For this reason, type 1 tumors are more
interesting study objects. Figure 2 shows the scatter
patterns of patient 6 before treatment (a), at 20 Gy
(b) and at 50 Gy (c). The early response leads to
increased perfusion efficiency, but the overall reduc-
tion of tracer retention is rather small. The 20 Gy
scatter pattern resembles a type 2 tumor. At 50 Gy,
hypoxia has almost vanished, resulting in a type 2-3
scatter pattern.

The example of this patient suggests the hypoth-
esis that the footprint of reoxygenation in the scatter
patterns is a progression to less malignant types. In
other words, the malignancy value determined on the
basis of dynamic FMISO PET decreases during ra-
diotherapy. The aforementioned and additional un-
known mechanisms of reoxygenation and redistribu-
tion may in effect increase perfusion efficiency and
reduce tracer retention and thus propagate a volume
element in the scatter plot from the lower right to the
upper left. This propagation would move a volume
element from a region of high malignancy to lesser
malignancy. Hence, the lines of equal malignancy
would run orthogonal to the direction of propaga-
tion, i.e. from the lower left to the upper right.

This is in fact what the above TCP model tries
to capture. From eq. (5), the lines of constant ma-
lignancy have the form

P =
bR

lnM
− P0 . (7)

The model was chosen such that it produces the sim-
plest possible form of iso-malignancy lines that still
describes the observations. The directions of pro-
gression to lower malignancy obtain as

∇M =
bM

P + P0

(

−1
R

P+P0

)

. (8)

Figure 3 shows the iso-malignancy lines and the di-
rections of progression for the example patient of
figure 2.
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Figure 1: Scattergrams of tracer retention R versus perfusion efficiency P for patients #6 (a), #1 (b) and
#8 before the start of RT.

The parameters of the model were obtained from
a maximum likelihood fit to the initial set of 15 pa-
tients. The following parameter values were deter-
mined from the fit: A = 9.92 · 10−5, b = 208.0 and
P0 = 0.704. For each patient, a TCP value was
computed. The patients were grouped according to
the expected number of surviving cells µ0 into four
groups. The observed rate of local control is com-
pared with the predicted TCP value of the model in
figure 4.

The ratio of M̄ before the start of treatment
(M̄0) and after 10 fractions (M̄10) represents the fac-
tor by which the expected value of surviving cells is
increased due to hypoxia. For the analysis of the
mean malignancy M̄ , only patients were taken into
account that presented M̄0 ≥ 1.69. This cutoff value
corresponds to a reoxygenation time of two days,
which is assumed to be the magnitude of the associ-
ated errors. Four of the ten patients presented M̄0-
values below this cutoff (# 1, 7, 10 and 13), whereas
the mean malignancy values for the remaining six

patients are shown in table 1. These results support
in four cases (# 3, 4, 6 and 14) the hypothesis of
a progression to less malignant tumors during irra-
diation. The small increase in malignancy observed
for patient # 9 is probably due to errors emerging
from the data analysis. In contrast, the high M̄ -
value determined for the follow-up data of patient #
2 represents an outlier, that may be caused by too
sparse dynamic FMISO PET data. For this patient,
dynamic data were acquired only during a period of
10 min. This is in general too short to image the
important regions of the FMISO uptake curves ac-
curately.

4 Discussion
The present development sees hypoxia and reoxy-
genation essentially as a consequence of a deficient
vasculature and its response to radiation. While
hypoxia constitutes a severe problem in radiother-
apy for a variety of reasons [20], it stems from a

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.01  0.02  0.03  0.04  0.05
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.01  0.02  0.03  0.04  0.05
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.01  0.02  0.03  0.04  0.05

P

R

(c)(a) (b)

Figure 2: Scatter patterns for patient 6 (a) before treatment, (b) at 20 Gy and (c) at 50 Gy.
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deeper cause. The model tries to capture the observ-
able patterns of hypoxia and reoxygenation, both of
which are linked to the irregularity of vasculariza-
tion.

The presented model assumes that the parameter
tracer retention is proportional to the cell sensitivity
αh. A second assumption inversely relates the per-
fusion efficiency with the time until reoxygenation
occurs. The observable patterns of reoxygenation
in the repeated scans, as shown in figure 2 justify
these assumptions. Also the facts that the devel-
oped TCP model fits the patient outcome data very
well and that the values of M shrink for most of the
patients after the first two weeks of therapy support
assumptions 1 and 2.

The processes occurring as response to therapy

in an individual tumor are many and varied. His-
tological studies suggest, that any imaginable effect
can indeed be found in some specimen [16, 17, 21].
Naturally, a population based TCP model can only
describe the net effect of all possible scenarios of hy-
poxia/reoxygenation on local control. Within the
limitations of the study size, this seems to be possi-
ble with a single pre-treatment hypoxia image.

The reason for this may be that on average, both
the initial degree of hypoxia and the speed of reoxy-
genation are linked to the irregularity of the vascu-
lature. The patchiness of the intervascular spaces
defines the regions where hypoxia can occur. Redis-
tribution of cells between compartments or even a
constant loss of the most hypoxic cells do not change
anything about the number of cells that are located

-1
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M=100
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Figure 3: Isolines for different malignancy values M and directions of progression to lower Malignancy for
patient #6.

Pat # M̄0 M̄10

2 35.3 15810
3 17.1 1.16
4 143.1 71.0
6 8.39 2.56
9 1.80 4.56
14 6.02 1.61

Table 1: Mean malignancy values M̄ before the start of treatment and after 10 fractions for all patients with
M̄0 ≤ 1.69.
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in a hypoxia-prone region at any given time. Only
slower processes like neovascularisation or shrinkage
of the tumor can change the overall constitution of
the vasculature.

In this image, the concepts of acute and chronic
hypoxia seem to lose meaning in the context of clin-
ical treatments. Clearly, both are signs of a less
than sufficient vasculature, so the likelihood of co-
incidence is high, especially given the rather large
dimensions of PET image voxels. For a model that
averages over the total treatment time and a pop-
ulation of patients, all that matters is the mean
size of the hypoxic pouches created by the patchy
vascularization. The more relevant distinction here
is whether this quantity diminishes quickly due to
fast reoxygenation, driven by increased supply and
reduced consumption of oxygen, or whether reoxy-
genation occurs by slow processes.

The speed of reoxygenation also impacts the
strategy of dose escalation that could be adopted to
overcome hypoxia induced radioresistance, and the
consequential reduction of cell kill. If dose escalation
was applied from the beginning of treatment, a lot of
the additional dose administered to the hypoxic re-
gion could be wasted on resistant cells if reoxygena-
tion was slow. It could be better to wait with escala-
tion until reoxygenation has occurred and make up
for the loss of cell kill towards the end of the treat-
ment, when the dose is more efficient. This strategy
runs the risk that reoxygenation may come too late
and the dose per fraction becomes too high.

The model affords predictions about the required

dose escalation per volume element. If the strategy
of a late boost after reoxygenation is to be adopted,
we require for the additional dose ∆D

Mi exp(−α0∆D) = 1 (9)

which leads to

∆D + D0

D0

=
lnMi

α0D0

+ 1 (10)

where D0 is the base treatment dose, in our case 70
Gy, and the cell sensitivity of non-hypoxic tumors
α0 equals, say, 0.4. This strategy assumes that the
image of initial hypoxia is frozen in the distribution
of remaining cells half way into the treatment.

In contrast, a homogeneous boost has to over-
come the mean cell sensitivity ᾱ

Mi exp(−α0D0) = exp(−ᾱD0) (11)

so that if we require that

ᾱ(∆D + D0) = α0D0 (12)

it obtains

∆D + D0

D0

=
α0D0

α0D0 − lnMi
. (13)

This strategy assumes that the reoxygenation is not
accelerated by the hypofractionation. Both strate-
gies do not take into account the additional effect of
greater fraction sizes as it is felt that this is of sec-
ondary importance given the individual uncertain-
ties of hypoxia images and their interpretation. By
means of a Taylor expansion of eq. (13) for lnMi ≥ 0
small, it can be seen easily that both factors agree
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Figure 4: TCP model fitted to the patient outcome data.
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for small dose escalations. For large dose escalations,
the first factor becomes noticeably smaller than the
second. The observed range of required dose escala-
tion factors in the present population according to
eq. (13) was between 1 and 1.66.

Some authors have reported model studies about
the efficiency of hypoxia dose escalation when there
was a risk of misguiding it due to fluctuations of
acute hypoxia or image errors [22]. It was found
that by far the greatest mishap is missing persistent,
i.e. chronic hypoxia. One may take the liberty to
reword this finding: if one misses slowly reoxygenat-
ing areas. The present model makes dose escalation
predictions on the basis of population averaged re-
oxygenation dynamics. Individual patients can de-
viate from these predictions. As usual, a greater
amount of individual information affords a more ef-
ficient treatment. Hence, sequential hypoxia images
during radiotherapy can be particularly valuable for
patients where the pre-treatment scan predicted slow
reoxygenation and consequentially high dose escala-
tion factors.

5 Conclusion

A phenomenological tumor control model including
a prediction of reoxygenation speed was presented
and validated with observations of local control in
head and neck patients after chemo-radiotherapy.
The essential image information was gleaned from
dynamic FMISO PET scans which provide two indi-
vidual pieces of information, the perfusion efficiency
as seen in the early phase of tracer influx, and late
tracer retention. Both quantities relate to the suffi-
ciency and patchiness of the tumor vasculature. The
observation of reoxygenation dynamics in this pa-
tient population suggests that hypoxia image guided
dose escalation is in fact driven by the degree of ir-
regularity of the vasculature.
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Abstract

Purpose: The feasibility of different hypoxia dose painting strategies in head-and-neck radiotherapy was
investigated. The potential benefit was limited by the stipulation of isotoxicity with respect to the conventional
IMRT treatment.

Methods: 13 HNC patients were included into the planning study. For each patient, three different treatment
plans were created: A conventional IMRT plan, an additional uniform dose escalation (uniDE) of 10% to the
FDG-positive volume, and a plan where dose painting by numbers (DPBN) was implemented. DPBN was realized
according to a map of dose escalation factors calculated from dynamic FMISO PET data.

Results: Both DE approaches were shown to be feasible under the constraint of limiting normal tissue doses
to the level of conventional IMRT. For DPBN, the prescriptions could be fulfilled in larger regions of the target
than for uniDE. FDG-positive volumes had sizes up to 94 ccm. In contrast, regions receiving comparable dose
levels with DPBN presented volumes in the range of 0− 2.7 ccm. Overtreatment of the target was observed with
uniDE in most of the cases while some regions did not receive the required dose to overcome hypoxia-induced
radiation insensitivity. TCP increased from 55.9% with conventional IMRT to 57.7% for the uniDE method in the
patient group. For DPBN, a potential increase in TCP from 55.9 to 70.2% was determined. Therefore, DPBN
seems to result in higher benefits for the patients.

Conclusion: DPBN delivers the dose more effectively than an additional uniform boost to the FDG positive
area. If hypoxia could be adequately quantified using a simple imaging technique like FMISO PET, DPBN in
HNC could substantially increase tumor control.

Key Words: Dose painting, dose painting by numbers, FMISO, hypoxia, planning study.

1 Introduction

The aim of dose painting (DP) in radiotherapy (RT)
is to reach biological instead of physical conformity
of the radiation dose delivery to the tumor. The ba-

sic idea of DP was first suggested by Ling et al. [1],
who proposed applying a nonuniform dose prescrip-
tion according to the functional characteristics of the
tumor as assessed by biological imaging.
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Positron emission tomography (PET) is a pow-
erful technique for noninvasive biological imaging.
It can be used for assessing regions of enhanced
glucose metabolism with [18F]-fluorodeoxyglucose
(FDG) [2, 3] as well as for imaging proliferation,
where [18F]-fluorothymidine (FLT) is preferentially
used [4]. In order to visualize hypoxic regions of
a tumor, a variety of different PET tracers, such
as [18F]-fluoromisonidazole (FMISO) [5–7], [18F]-
fluoroazomycin (FAZA) [8] or [60Cu]-ATSM [9], is
available. Each of them is of potential use for radio-
therapy (RT) planning purposes [10, 11].

Chao et al. [12] showed the feasibility of the DP
concept by the example of a head-and-neck cancer
(HNC) patient. A Cu-ATSM PET scan was used to
identify a hypoxic subvolume in the tumor by thresh-
olding. The prescription of 80 Gy to this Cu-ATSM
positive biological target volume (BTV) was chosen
arbitrarily.

In contrast, Alber et al. [13] and Bentzen et
al. [14] proposed to perform dose painting by num-
bers (DPBN): to deliver spatially variant doses ac-
cording to the specific functional requirements of
the tissue. The feasibility of incorporating func-
tional imaging data into an optimization algorithm
for intensity modulated radiotherapy (IMRT) in or-
der to produce spatially varying dose distributions
was shown by Alber et al. [13].

A correlation of hypoxia in HNC with unfavor-
able prognosis was determined by different investiga-
tors [15–18]. Moreover, hypoxia targeted therapies,
such as ARCON, were shown to improve treatment
outcome [19]. However, it remains unclear how to
quantify hypoxia and thus it becomes difficult to ac-
curately prescribe doses for DPBN in order to over-
come hypoxia-induced therapy resistance.

Dose escalation (DE) to a tumor that was iden-
tified as hypoxic can be beneficial because of differ-
ent aspects, concerning malignancy and radiosensi-
tivity of the clonogenes. Hence, a DP concept can
be based on different hypotheses. The presence of
hypoxia indicates a more malignant phenotype of tu-
mor which may coincide with a number of unfavor-
able traits, e.g. enhanced proliferation. To counter-
act these mechanisms preemptively, a uniform dose
escalation (uniDE) to the entire macroscopic tumor
volume could be proposed. In order to identify this
volume, FDG PET can be used. However, a ma-
jor limitation of this approach might be the high
dose levels applied uniformly to large volumes. In
addition, there might be a risk of an unacceptably

high probability of serious acute reactions due to the
larger fraction sizes and higher overall normal tissue
doses.

For these reasons, the idea of hypoxia DPBN
that applies higher doses only where needed seems
to be very promising from a clinical point of view.
Applying spatially variant doses, according to the
degree of hypoxia, might allow a significant reduc-
tion of the normal tissue burden and additionally re-
duce the overall treatment dose. On the other hand,
some subvolumes may require a DE that is greater
than that feasible for the entire GTV. Although a
measurable amount of hypoxia is known to cause
therapy resistance [15–18], in order to assign accu-
rate dose prescriptions for DPBN on the basis of hy-
poxia PET, a clear relation between treatment out-
come and the considered hypoxia imaging method
is required. There is initial evidence, that dynamic
FMISO PET results may correlate with clinical RT
outcome [22]. We previously showed that FMISO
data can be analyzed using a kinetic model [23],
which allows for the determination of characteris-
tic parameters related to the degree of hypoxia and
blood vessel density. The key requirement for the
translation of functional imaging data into clinically
promising dose prescriptions is given by a tumor con-
trol probability (TCP) model based on these param-
eters and their relation to tumor reoxygenation [22].
Several TCP models incorporating different levels of
radiosensitivity to account for tumor hypoxia were
published by different investigators [24–26]. There,
it was chosen to boost a tumor subvolume to a higher
dose level in order to counteract the reduced sensi-
tivity of hypoxic areas.

The present work investigates the feasibility of
hypoxia DP in a patient population. Thus, a plan-
ning study with 13 HNC patients was performed,
where for each patient three IMRT plans were cre-
ated: a hypoxia DPBN plan according to a DE
map determined from dynamic FMISO PET data,
a uniDE to an FDG-based BTV, and a conventional
IMRT plan. All of these plans were restricted to
the same dose in the organs at risk (OARs) spinal
cord, brain stem and parotid glands. The aim of
of this study was to evaluate the feasibility of DE
strategies with respect to target coverage at constant
normal tissue toxicity. Additionally, a TCP analy-
sis was carried out in order to determine whether
the overall change in local control effected by the di-
rected and the indiscriminate dose escalation would
be sufficiently different to prove either one concept,
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or both, of value. In the context of this work, the
hypothesis was tested whether DPBN based on dy-
namic FMISO PET data can provide higher levels of
tumor control than a uniDE to a FDG-based BTV.

2 Methods and Materials
2.1 Patients and Planning

The planning study was carried out for a total of 13
HNC patients. All patients were treated with pri-
mary radio-chemo-therapy to 70 Gy. Three of these
patients were treated with IMRT in 35 fractions, 5
fractions a week with a daily dose of 2 Gy. The other
13 patients received conventional RT, 5 fractions
with 2 Gy per week until 30 Gy. This first phase was
followed by a hyperfractionation composed of a dose
of 1.4 Gy applicated twice per day until the end of
treatment. Therapy outcome data were available for
all patients. After the end of therapy, patients were
reviewed regularly every three months with clini-
cal examination, flexible endoscopy and computed
tomography (CT) when recurrent disease was sus-
pected. Routine CT scans were also acquired six
weeks and one year after therapy was finished.

For each of them, pre-treatment computed to-
mography (CT) as well as FDG and dynamic FMISO
PET data were available. The FDG PET scan was
taken 1 h after the injection of a total tracer ac-
tivity of ∼ 400 MBq. For the FMISO PET, also
∼ 400 MBq of tracer activity were injected. The
data were acquired in a dynamic mode from 0 to 4
h post injection (pi). All PET examinations were
performed on a whole-body scanner (Advance, GE
Medical Systems, Milwaukee, US) with an axial field
of view (FOV) of 14.9 cm and a spatial resolution of
4× 4× 4.25 mm3.

For each patient, three individual IMRT plans
were created with the planning system Hyperion:
a conventional IMRT plan, a uniDE applied to the
FDG PET positive biological target volume (BTV),
and finally a plan where a DPBN approach accord-
ing to dynamic FMISO PET data was realized. The
dose calculation algorithm used by the planning sys-
tem Hyperion is a finite size pencil beam with het-
erogeneity corrections [27]. For all three plans the
same equivalent uniform dose (EUD) constraints for
normal tissues were used. Hence, all final dose dis-
tributions had the same EUDs in the OARs. The
advantage of this approach is that OARs were not
compromised if the target goal was hard to achieve.

Conversely, if the target dose could not be achieved,
higher toxicity would have to be accepted. The
OAR that were taken into account generally were
the spinal cord, the spinal cord extended by a safety
margin of 3 mm, the parotid glands and the non-
specified normal tissue. The same beam angle set-
tings were used for the three different plans of a pa-
tient. In general, 7 or 8 fields were used. Addition-
ally, acute reactions were taken into account for the
plan optimization: the weekly dose was limited to
12 Gy (2.4 Gy per fraction (Gy/fx)) for all three
branches.

2.1.1 Conventional IMRT

In each case individual planning target volumes
(PTVs) of first, second and third order (PTV70,
PTV60 and PTV54 respectively) were defined. The
nominal prescription doses were 70, 60 and 54 Gy.
A simultaneous integrated boost (SIB) technique al-
lowed us to apply 60/54 Gy during the first 30 frac-
tions to the PTVs of second and third order. An ad-
ditional boost of 10 Gy in 5 fractions was then given
to the PTV70. This type of conventional IMRT plan
corresponds to the clinically applied dose distribu-
tion.

2.1.2 Uniform Dose Escalation

A second set of plans was created in order to ap-
ply a uniformly escalated dose to the FDG posi-
tive subarea of the PTV70. The FDG PET image
was therefore manually matched to the planning CT.
The FDG-avid BTV was defined as the region in the
PTV70 containing FDG intensities higher than 40%
of the maximum value. No FDG PET data were
available for patients # 9 and 10. In these cases,
the FMISO scans taken 2 h pi were used to define a
BTV as suggested by other investigators [7], defined
as the region including tumor voxels with FMISO
intensities larger than 40% of the maximum. A dose
escalation of 10%, respectively 77 Gy, was prescribed
to this area. For this branch, also 35 fractions were
used, so that uniDE was applied with a SIB tech-
nique. The maximum dose per fraction was limited
to 2.2 Gy/fx. The dose prescriptions for the PTVs
and the normal tissue constraints were the same as
for the conventional IMRT plans.
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2.1.3 Hypoxia Dose Painting by Numbers

In order to perform hypoxia DPBN, a map of locally
varying dose escalation factors (DEF) was deter-
mined on the basis of dynamic FMISO PET scans.
The analysis of this data was performed using a
compartmental model as previously described [23].
Briefly, a two-compartment model allows us to de-
termine characteristic values for FMISO tracer re-
tention and the density of perfused blood vessels
on a voxel basis. A TCP model was developed,
that assumes that the time needed for a reoxygena-
tion of the tumor region is inversely proportional to
the vascularization-perfusion parameter, which is re-
lated to the blood vessel architecture. Secondly, the
model assumes a proportionality between local ra-
dioresistance of the tissue and the grade of tracer
retention [22]. Hence,

local cell survival ∼ exp

(
b · TRi
V Pi + c

)
:= Mi, (1)

where TRi and V Pi are the tracer retention and
vascularization-perfusion parameter values for voxel
i (of n). b and c are fit constants of the TCP model
(for details, see [22]) defined by

ln (TCP) =
ln (TCP0)

n
·
n∑

i=1

Mi. (2)

In the above equation, TCP0 denotes TCP in the
case of a non-hypoxic tissue, which is given by
− ln(TCP0) = N · exp(−α0D0). Here, α0 is the tu-
mor cell sensitivity in Gy−1 and D0 the required
dose for a normoxic tumor tissue region in Gy and
N the total number of clonogenes. In the context of
this study, D0 = 70 Gy was used. In general, the
value of α0 can vary between 0.2 and 0.5 Gy−1 for
HNC. Here, α0 was set to 0.4 Gy−1, according to a
SF2 of 0.45 as reported in [28].

By this definition, Mi is the factor by which the
expected number of cells at the end of therapy is in-
creased due to hypoxia-induced radiation resistance.
Assuming that the greater probability of cell survival
can be compensated for by higher dose per fraction,
the local dose escalation factor (DEF) for a given
voxel i can be determined. Under the stipulation
that the expected value of surviving cells should be
constant and equivalent to − ln(TCP0)/n in all vox-
els, the DEF reads

DEFi =
α0D0

α0D0 − ln(Mi)
=
αi
α0
. (3)

This local DEF compensates for the mean cell
sensitivity 〈‖αi‖〉T < α0 of a voxel during the
whole treatment time. The resulting DE is ap-
plied throughout the whole treatment course, start-
ing from the first day of treatment. It is assumed
that reoxygenation occurs during the course of ra-
diotherapy [29]. The velocity of reoxygenation of
the tissue is assumed to be unaffected by the level
of escalation of the radiation dose.

The resulting map of DEFs was used for a grad-
ual dose prescription. By virtue of the model, the
DEFs are truncated at 1: DEFi ≥ 1.0. Furthermore,
in this study the maximum dose per fraction was lim-
ited to 2.4 Gy, which equals DEFi ≤ 1.2. In order
to ensure accurate coregistration, the corresponding
FMISO image acquired 2 h after tracer injection was
manually matched to the planning CT. The result-
ing transformation matrix was then applied to the
respective DEF map, which is available in the same
coordinate system as the 2 h pi FMISO scan. The
spatial resolution of the DE map was given by the
PET voxel size of 4.0×4.0×4.25 mm3. For planning
purposes, the voxel size was reduced using linear in-
terpolation to the size of the CT planning grid, which
was in all cases chosen to be 3× 3× 3 mm3.

2.2 Evaluation and Comparison of Treatment
Plans

A statistical analysis of the DEFs associated to
uniDE and DPBN was carried out. For DPBN,
the mean DEF (DEFmean) and the maximum DEF
(DEFmax) were determined. Furthermore, the vol-
ume of the FDG-based BTV (VFDG) was com-
pared to the fractional tumor volumes associated
with DEFs exceeding 1.05 (V1.05), 1.1 (V1.1) and 1.2
(V1.2) respectively. Additionally, the geographic lo-
calization (match/mis-match) of V1.05 and the FDG-
based BTV were analyzed.

The three different treatment plans were com-
pared based on dose volume histograms (DVHs). In
order to evaluate the dose distributions in the target
volumes, a comparison of characteristic DVH points
is not possible as the DP prescriptions vary from one
patient to another. Therefore, it was evaluated how
well the applied doses matched the prescribed doses
according to the effective DVH method of Alber et
al. [13]. Cumulative histograms - similar to DVHs
- were determined that show the fractional volume
which receives at least a certain percentage of the
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prescribed dose. To achieve this, the applied doses
were weighted with the inverse of the local DEFs.
This DVH transformation allows us to objectively
compare the target coverage of treatment plans with
different DE strategies.

Furthermore, TCP was calculated for different
scenarios according to

− ln(TCP) = C ·
n∑

i=1

exp(−αiDi), (4)

where αi is the local cell sensitivity in Gy−1, Di

the dose in Gy applied to voxel i and n is the num-
ber of voxels. The constant C = v · n equals voxel
volume v times number of cells per ccm n and was
previously determined by a fit to a population of 15
patients [22]. Here, C was set to 6.3 · 107, according
to the results presented in [22]. TCP was in all cases
calculated for the GTV.

In a first step, the ideal TCP (TCPideal) was es-
timated assuming that the tumor cell sensitivity α
was spatially variable and that the dose prescription
can be achieved perfectly. This assumes the validity
of the hypoxia TCP model [22]. To fulfill the dose
requirements perfectly would imply a homogeneous
cell survival probability and TCP would depend only

on tumor volume.

In contrast, the second TCP scenario (TCPreal)
took into account that prescriptions could not be
achieved perfectly but the TCP model is correct.
TCPreal was calculated using the realistic dose dis-
tributions obtained from the planning study. In gen-
eral, TCPreal will be different from TCPideal. Usu-
ally TCP estimated for the realistic situation will be
smaller unless inevitable hot spots counterbalance
the effects of cold spots.

The third scenario evaluated the realistic dose
distributions, but assumed a homogeneous tumour
tissue, i.e. no deleterious influence of hypoxia. Here,
αi = α0 was used everywhere so that the effect of
a dose escalation in the absence of hypoxia was es-
timated in case FMISO and/or the TCP model do
not provide relevant information for directed DE.

3 Results
The volumetric analysis for the two DE approaches,
uniDE and DPBN, revealed a large bandwidth
of volumes determined by the FDG positive area
(VFDG). VFDG ranged from 7.32 to 94.34 cm3, with
a mean value of 37.79 cm3. In most of the cases,

Pat PTV70 VFDG V1.05 V1.1 V1.2 geogr.
# [ccm] [ccm] [%] [ccm] [%] [ccm] [%] [ccm] [%] match
1 256.1 21.14 8.25 0 0 0 0 0 0 −
2 450.4 67.12 14.90 2.81 0.62 0.22 0.05 0 0 ◦
3 438.7 21.12 4.81 4.83 1.10 0.32 0.07 0 0 •
4 559.4 94.34 16.86 2.46 0.44 0.35 0.06 0.03 0.00 •
5 462.8 7.45 1.61 0.84 0.18 0.11 0.02 0.05 0.01 ◦
6 371.6 7.32 2.00 4.64 1.25 0.70 0.19 0 0 ◦
7 288.7 36.42 12.61 17.12 5.93 7.75 2.68 1.84 0.64 ◦
8 174.3 14.28 8.20 0.46 0.26 0 0 0 0 •
9 314.4 93.83∗ 29.84 25.68 8.17 6.70 2.13 1.22 0.39 ◦
10 208.1 20.44∗ 9.82 3.54 1.70 0.49 0.23 0 0 ◦
11 266.8 31.21 11.70 7.51 2.81 0.62 0.23 0 0 ◦
12 278.1 32.13 11.55 26.54 9.54 5.78 2.08 0.68 0.24 ◦
13 447.3 44.50 9.95 0.05 0.01 0 0 0 0 •

Table 1: Volumetric analysis for the different types of dose prescriptions: volume PTV70, volumes of the
FDG-avid BTVs (VFDG) and DPBN subvolumes associated to DEFs higher or equal 1.05 (V1.05), 1.1 (V1.1)
or 1.2 (V1.2) respectively, according to the FMISO-based DE map. Relative values given in brackets are
normalized to the total PTV70 volume. ∗No FDG scan was available for patients #9 and 10. The BTVs
were defined on the basis of the FMISO PET acquired 2 h pi.
Right column: The geographic match/mismatch is analyzed for V1.05 and the FDG-avid volume. − no
overlap, ◦ partial overlap, • V1.05 lies completely in the FDG-avid volume.
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the tumor region that receives 2.2 Gy/fx would be
too large to be clinically applicable. In addition,
the geographic analysis showed that there may be
large areas of mis-match between the FDG-avid vol-
umes and the regions, where increased levels of hy-
poxia are observed. Hence, the escalated doses may
miss the regions of decreased sensitivity. In contrast,
the DPBN approach assigns doses in the order of
2.2 Gy/fx only to very small subvolumes of the tu-
mor. In general, a DE of 10% was only observed for
severely hypoxic areas, whereas regions of moderate
hypoxia required DE factors lower than 1.1. Vol-
umes that required DEFs greater than or equal to
1.1 (V1.1) were in the range of 0 to 7.75 cm3 (mean:
1.77 cm3). In contrast, volumes that received ad-
ditional doses of 5% or more (V1.05) were between
0 and 26.54 cm3, with a mean volume of 7.42 cm3.
Five of the 13 patients required DEFs greater than
1.2. The detailed volumetric analysis for all patients
is summarized in table 1. The right column of ta-
ble 1 shows the analysis of the geographic locations
of V1.05 and the FDG-avid volume.

The statistical analysis of the DEFs for DPBN
revealed a large variation of the maximum DEFs
(DEFmax) among the patients. DEFmax ranged
from 1.03 to 1.66. The mean values in the FDG-
positive BTVs of the individual DEFs (DEFmean)
were in the range 1.01 − 1.03. Table 2 shows
DEFmax and DEFmean values for each patient in
detail. DPBN escalates the dose for most of the pa-
tients by less and also in a smaller subvolume of the
tumor. Hence, DPBN might constitute a more ef-
fective use of the radiation dose.

Figure 1 exemplarily shows the dose distributions
of the three different plans for one patient (#12).
For this patient, the dynamic FMISO data revealed
large areas of severe hypoxia and low vasculariza-
tion/perfusion. This is the reason why in small sub-
areas of the PTV doses exceeding 82 Gy can be ob-
served. The maximum DEF for this patient turned
out to be 1.35. In contrast to other patients, the
FDG positive area of this patient was quite irregu-
lar, which leads to a complicated prescription also
in the case of uniDE. In the right column of fig-
ure 1 the corresponding DVHs are presented. The
displayed DVHs for the OARs substantiate the iso-
toxicity achieved for the three different branches.

A detailed DVH comparison of normal tissue
doses is not necessary, since the whole study was
defined requiring isotoxicity of the three plans (see
also fig. 1). A comparison of the overall treatment

doses (expressed in total deposited energy) showed
no significant increase of the integral dose neither for
the uniDE approach nor for the DPBN plan. The
total doses for both branches were in the order of
±2% relative to the conventional IMRT plan.

A comparison of the cumulative ’effective dose’
histograms for the three plans of patient #12 is dis-
played in figure 2 for the PTV of first order. Com-
pared to the conventional IMRT plan, the uniDE
showed a non-negligible part of the PTV where the
dose prescription could not be fully realized. Un-
derdosages are mainly observed at the edges of the
FDG-positive area, where the prescription rises from
70 to 77 Gy. In most cases, a lower target coverage
was observed for the uniDE approach, but the re-
quirement of DPBN was easier to fulfill. The target
coverage of DPBN was only slightly worse than for
the conventional IMRT plan. Nevertheless, if the
DE maps become too heterogeneous, a precise ap-
plication of the required dose might no longer be
guaranteed. In table 3, a detailed list is given that
summarizes for all patients and for each of the three
treatment modalities the percentage of target vol-
ume that receives at least 95, 100 or 105% of the
prescribed dose. The fact, that V95 is in most of the
cases lower for DPBN than for conventional IMRT
is due to the inhomogeneous DPBN prescriptions,
which are difficult to reach exactly. The difficulty to
achieve the uniDE prescription also becomes appar-
ent in the greater hot spot volumes V105.

Table 4 shows the detailed TCP analysis for the
considered patient group. In the case of patient #2,
TCPreal and TCP0 were 0. This was caused by the
proximity of the spinal cord to the PTV70. In this
area, dose was reduced according to the normal tis-
sue requirements. Therefore, also TCP decreased
significantly.

The values for TCPideal revealed a substantial
fraction of patients that is overtreated with uniDE.
A large fraction of patients (e.g. #1, 5, 6, 8 and 10)
already had TCP values of 0.8 and higher without
DE. A uniDE would not significantly improve the
probability of tumor control for these patients. The
marginal increase of TCP does not justify DEs of
such magnitude. In contrast, for severely hypoxic
tumors which have initially very low TCPs (≤ 0.3),
uniDE is not sufficient and a more focused appli-
cation of the dose is needed. The low values of
TCPideal for patient #9 in the case of conventional
IMRT and uniDE are due to a very large tumor
volume in addition to large areas of severe hypoxia
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Figure 1: DP Treatment Planning. Dose distributions and corresponding DVHs for patient # 12. (a) Con-
ventional IMRT plan. (b) uniDE to the FDG PET positive area shown in purple. (c) DPBN according to
the superimposed DE map determined from dynamic FMISO PET scans. Volumes of interest: PTV70 (red),
PTV60 (yellow), PTV54 (blue), spinal cord (brown) and expanded spinal cord (purple).
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which would have required higher doses than 70 or
77 Gy. The TCP values for these patients (#7, 9 and
12) show the high potential of DPBN. Notice, that
for patients where TCP for DPBN is significantly
higher than for uniDE, a 10% DE is not sufficient
and therefore the maximum DEF required for DPBN
has to be higher than 1.1. On the other hand this
means, that for patients where DEFmax for DPBN
is lower than 1.1, the TCP will be higher for the
uniDE approach than for DPBN. This is a conse-
quence of the fact, that TCP values increase with

increasing dose - even if the applied dose is higher
than necessary.

These most hypoxic patients also affect the mean
TCP for the population of this study. The ma-
jor quality shown by the mean TCP values is the
14.3% increase in TCPreal when applying DPBN.
Especially for patients with highly hypoxic tumors,
which have very low probabilities of treatment suc-
cess when treated with 70 Gy, DPBN seems to
be highly promising. The comparison with uniDE,
where only an increase of 1.8% is observed, shows

Pat # DEFmax DEFmean

1 1.033 1.008
2 1.198 1.010
3 1.172 1.011
4 1.229 1.006
5 1.264 1.007
6 1.190 1.018
7 1.415 1.019
8 1.072 1.004
9 1.664 1.021
10 1.185 1.016
11 1.145 1.019
12 1.350 1.030
13 1.052 1.006

Table 2: Maximum and mean DEFs for DPBN determined for each patient on the basis of dynamic FMISO
PET data. Mean DEF values refer to the FDG-based BTV.
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dose of conventional IMRT.
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evidence of the large benefit of DPBN. For those pa-
tients, the uniDE is not powerful enough to overcome
hypoxia induced radioresistance.

The computation of TCP0 revealed TCPs com-
parable to the conventional IMRT plan for both
uniDE and DPBN. This is a consequence of nearly
unchanged overall doses and small boost volumes.

4 Discussion

The presented work consists of a DP planning study
of a group of 13 HNC patients. The aim of the study
was to compare two different DE strategies, uniDE
and DPBN, in a patient population while maintain-

Pat Conv uniDE DPBN
# V95 V100 V105 V95 V100 V105 V95 V100 V105

1 99.1 75.6 0 98.6 72.2 0.5 99.6 74.6 0
2 92.5 69.5 0 89.1 56.4 0.5 92.2 63.9 0
3 96.3 76.7 0 93.6 67.0 0.1 95.6 69.8 0
4 98.0 90.1 0 96.4 78.4 0.5 97.7 89.2 0
5 95.0 72.7 0 94.8 70.9 0.1 95.1 71.1 0
6 98.8 80.8 0 98.5 80.1 0 98.3 78.8 0
7 98.4 86.6 0 97.2 78.0 0.4 97.7 83.5 0.4
8 96.4 87.0 0 95.5 83.6 0.2 96.4 88.8 0
9 99.4 88.8 0 80.7 53.4 0.4 96.8 60.8 0.2
10 97.4 82.4 0.1 91.9 66.8 0.3 96.8 74.0 0
11 99.9 92.6 0.1 98.9 82.5 0.3 99.7 83.8 0
12 97.1 76.9 0 93.8 63.5 0.4 96.4 71.1 0.1
13 99.6 90.5 0 98.3 81.2 0.4 98.3 85.9 0

Table 3: Evaluation of target coverage: fractional volume (in %) that receives at least 95, 100 or 105% of
the prescribed dose.

Pat TCPideal TCPreal TCP0 out-
# Conv uniDE DPBN Conv uniDE DPBN Conv uniDE DPBN come∗

1 0.817 0.857 0.852 0.836 0.875 0.861 0.869 0.896 0.886 1
2 0.530 0.629 0.637 0.000 0.000 0.000 0.000 0.000 0.000 0
3 0.688 0.757 0.784 0.326 0.238 0.393 0.425 0.312 0.469 1
4 0.644 0.753 0.713 0.727 0.814 0.773 0.783 0.845 0.808 1
5 0.870 0.881 0.915 0.879 0.891 0.903 0.921 0.930 0.929 1
6 0.853 0.883 0.934 0.884 0.905 0.939 0.946 0.953 0.962 1
7 0.135 0.152 0.875 0.198 0.193 0.750 0.791 0.809 0.827 0
8 0.859 0.886 0.876 0.897 0.921 0.916 0.910 0.927 0.923 1
9 0.002 0.002 0.706 0.000 0.001 0.489 0.711 0.781 0.780 0
10 0.832 0.871 0.907 0.867 0.889 0.905 0.927 0.940 0.942 1
11 0.603 0.670 0.764 0.679 0.739 0.793 0.813 0.846 0.872 1
12 0.316 0.373 0.799 0.347 0.393 0.744 0.793 0.808 0.869 0
13 0.612 0.670 0.666 0.617 0.643 0.659 0.676 0.695 0.708 0
avg 0.597 0.645 0.795 0.559 0.577 0.702 0.744 0.749 0.767 0.615

Table 4: TCP values calculated for different scenarios. TCPideal: TCP of an ideal situation, where all
tumor voxels are irradiated with exactly the prescribed dose. TCPreal: TCP values determined for the real
situation, assuming the established TCP-model is valid. TCP0: TCP assuming the tumor tissue is homoge-
neous and nevertheless irradiated with the different DE treatment plans. ∗0: local recurrence, 1: no local
recurrence.
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ing the requirement of isotoxicity. Previously pub-
lished investigations either showed the feasibility of
uniDE exemplarily for a single patient [10, 12] or
studied the possibility of performing DPBN [13,14].
The presented paper additionally estimates the pos-
sible gain in terms of TCP for the different therapy
approaches.

The study revealed, that under the condition of
isotoxicity, both DE methods are feasible. For the
DPBN approach, the prescriptions could be realized
in a larger fraction of the target than for uniDE. The
lower grade of target coverage for uniDE is partially
due to the fact that the dose gradient always lies
inside the BTV. Here, the dose gradient was cho-
sen to be inside the BTV due to the intrinsic effect
of higher doses on TCP. Also higher dose levels in
normoxic regions will increase TCP. In order to sepa-
rate this effect from the effect of a dose escalation to
a region with reduced sensitivity, the dose gradient
was chosen to be inside the BTV. Hence, by virtue
of the prescription a complete coverage of the FDG-
enriched region with 77.0 Gy can hardly be reached.
The DPBN strategy is based on a gradual dose pre-
scription. In general, this results in a higher target
coverage.

Furthermore it turned out that the areas of FDG
enrichment which should receive additional 10% of
dose had volumes up to 94 ccm. The determined
volumes of the BTV were in most of the cases too
large to be clinically acceptable because of the en-
hanced risk of acute reactions. In contrast, only
small areas received comparable radiation doses us-
ing the DPBN approach. In a large number of cases,
the maximum DEFs did stay significantly below 1.1.
Only in severely hypoxic areas, doses of 2.2 Gy/fx
or higher were needed.

For the purpose of this study, a constant DE
was applied for the whole treatment course. The
premise of this approach is to keep the expected
value of surviving cells per voxel constant. Moreover,
the reoxygenation time is assumed to be unaffected
by the dose escalation. These assumptions lead to
DEFi = α0D0/(α0D0− ln(Mi)). Due to hypoxia in-
duced radioresistance, escalating the dose from the
first day may not constitute the most efficient use of
dose at the start of treatment. The escalated dose
may be used more effectively by applying the DE
after reoxygenation of the tumor. This approach
would lead to

DEFi =
Fxtot
Fxaccel

= 1 +
ln(Mi)

α0D0
(5)

where Fxtot denotes the total number of fractions
and Fxaccel is the number of DE fractions. The ben-
efit of this DE strategy is focused on the treatment
period where the escalated doses Di > D0 combine
with a non-reduced cell sensitivity α0. One of the
major disadvantages of this strategy is the lack of in-
formation about the local reoxygenation status. Ad-
ditionally, reoxygenation might take place too late so
that the resulting escalated doses would be too high
to be clinically applicable. However, for fast reoxy-
genating tumors the resulting DEFs will be smaller:
DEFi < DEFi.

Previously, a TCP model could be estab-
lished [22] relating dynamic FMISO data with ther-
apy outcome. This model formed the basis for the
DE map used for DPBN. In addition, it allows us
to estimate the potential benefit of the different DE
strategies. The theoretically achievable increase in
TCP has been determined for both DE branches.
Assuming full validity of the TCP model, a large
fraction of patients would be overtreated by the use
of uniDE. At the same time, uniDE assigns too low
doses for small severely hypoxic subvolumes. Espe-
cially in cases, where the TCP values are high even
without increasing the dose, the benefit of higher
dose levels would be too small compared to the en-
hanced risk of acute toxic reactions.

Moreover, the analysis showed a potential in-
crease in TCP of ∼ 15% for a population treated
with DPBN, whereas the increase is only 2% for the
uniDE approach. An estimation of TCPs assum-
ing complete homogeneity of the tumor tissue shows
no significant difference between the three treat-
ment branches. Hence, DPBN based in dynamic
FMISO PET revealed substantially more potential
than uniDE using FDG in combination to a compa-
rable risk level and should be sufficiently more suc-
cessful to be verified in a clinical study.

However, the technical issues of delivering a DE
treatment plan in a clinical setting have to be ad-
dressed in further studies. The theoretical benefits
of DPBN may not be fully achieved due to e.g. the
finite size of the radiation fields used for the step and
shoot technique. Furthermore, the dosimetric aspect
regarding small radiation fields remains a challenge.
Also patient set-up issues are of great relevance for
DE treatments.

In general, both chronic and acute hypoxia will
affect the radioresistance of a tumor. In contrast
to chronic or diffusion limited hypoxia, acute hy-



Hypoxia Dose Painting by Numbers 11

poxia results from a temporal closing of blood ves-
sels on a (micro-)second basis [30]. Therefore, it may
be difficult to measure acute hypoxia with macro-
scopic, non-invasive imaging modalities. Neverthe-
less, both phenomena are symptoms of the same in-
sufficient and chaotically organized vasculature. The
presented TCP model is based on parameters de-
rived from dynamic FMISO PET scans which char-
acterize the local vascular configuration of a tumor
region. As PET does not have the temopral reso-
lution which is necessary to image acute hypoxia,
the developed TCP model takes primarily chronic
hypoxia into account.

In contrast to other TCP models that take a
reduced radiosensitivity due to hypoxia into ac-
count [24–26], the TCP model used in the context
of this paper is determined based on realistic patient
data. In contrast to the definition to only two tissue
compartments [25, 26] (hypoxic and normoxic), the
presented TCP model accounts for gradual sensitiv-
ity changes. Moreover, the model is calibrated to
realistic patient data. Nevertheless, this TCP model
is based on a rather small patient sample and rep-
resents a population average, which may introduce
non-negligible errors.

The presented study is based on dynamic FMISO
PET imaging, in order to measure tumor hypoxia.
The use of FMISO for the assessment of hypoxia is
still controversially discussed. Even though FMISO
is the most extensively studied bio-marker for hy-
poxia imaging with PET, difficulties regarding the
quantification of hypoxia are due to long diffusion
and tracer uptake times. However, a recent inves-
tigation correlated the accumulation of FMISO in
tumor tissue with the uptake of the hypoxia marker
pimonidazole in immunohistochemical experiments
[31].

5 Conclusions

The presented planning study showed the technical
feasibility of uniDE and DPBN with normal tissue
constraints comparable to conventional IMRT. The
TCP model suggests that uniDE overtreats a sub-
stantial fraction of patients while not being suffi-
cient for others. The expected population gain for
DPBN was estimated to increase the TCP from 55.9
to 70.2%, which is comparable to the hypoxia mod-
ifying RT approach ARCON [19].
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