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Abstract 

Magnetic Resonance Imaging (MRI) is one of the most important diagnostic tools 

available in medicine. The specificity and sensitivity of MRI can be further enhanced by 

the introduction of contrast agents. As many clinically valuable targets reside inside the 

cell membrane, therefore, developing efficient intracellular targeted MR contrast agent is 

required. The objective of the present project is to construct novel targeted intracellular 

MR contrast agents aiming to image mRNA transcription by MRI. 

The first part of this thesis takes an effort to search for an optimal vector for the 

intracellular delivery of MR contrast agents. Eight intracellular MR contrast agents, 

which conjugate different cell-penetrating peptides (CPP) with FITC and Gd(III) 

complexes, were synthesized by a continuous solid phase synthesis scheme. The key 

intermediates and final products were characterized by ESI-MS. Relaxivities of these MR 

contrast agents were measured at a frequency of 123 MHz and a magnetic field of 3 T. 

The comparison studies of the uptake and toxicity on NIH/3T3 cells suggest that D-Tat57-

49 contrast agent could label cells sufficient to enhance significantly relaxation rates R1 

and R2 for MR measurements, thus D-Tat57-49 peptide proves to be a useful CPP for the 

development of new intracellular MR contrast agents. 

The second part of this thesis describes the design and synthesis of antisense MR contrast 

agents, which conjugate PNA with CPP, Gd-DOTA and FITC. The intracellular uptake 

was confirmed by fluorescence spectroscopy, fluorescence microscopy and MR imaging 

on NIH/3T3 mouse fibroblasts as well as on transgenic dsRed cells. A subtoxic labeling 

concentration of 0.5 µM is sufficient to enhance significantly MR imaging contrast. The 

intracellular Gd(III) contents are at the range of 10-9~10-8 mol Gd/107 cells. An in vitro 

PNA-DNA binding assay confirmed that there is a significant higher specificity of the 

dsRed antisense contrast agent in comparison to its non-sense counterpart. However, no 

specific accumulation of the antisense dsRed CA in comparison to the non-sense CA 

could be detected in the target containing dsRed cells. Fluorescence microscopy studies 

have showed an exclusive endosomal localization of the contrast agents. Thus, further 

modifications of the contrast agents are required to achieve the release from endosomes 

or a direct uptake into the cytosol. 
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Chapter 1. Introduction 

1.1 MR imaging and MR contrast agents 

Magnetic Resonance Imaging (MRI) is one of the most versatile imaging techniques 

based on the principles of nuclear magnetic resonance (NMR). With its excellent spatial 

resolution, noninvasive nature and so far unsurpassed ability in distinguishing soft 

tissues, MRI has therefore become one of the most important diagnosis tools available in 

medicine (1, 2). MRI offers high three-dimensional spatial resolution down to the 10-µm 

range (3, 4), complete body coverage, and the opportunity to determine additional 

physiologic parameters noninvasively (e.g., blood flow, perfusion, and diffusion). All 

these characterize MRI to contain considerable potential for molecular imaging (5). The 

MRI signal is created through the interaction of the total water signal (proton density) and 

the magnetic properties (T1: the longitudinal relaxation time, and T2: the transverse 

relaxation time) of the tissues being imaged. Differential contrast in soft tissues depends 

on endogenous differences in water content, relaxation times, and/or diffusion 

characteristics in the tissue of interest. T1 and T2 weighted images display the best 

contrast for soft tissues, as proton spin density is essentially invariant while relaxation 

times vary greatly from one tissue to the other (6, 7).  

Nevertheless, there remains the possibility of poor contrast between healthy and damaged 

tissue due to a too small variation in relaxation times. MR contrast agents are chemicals, 

which are able to enhance the relaxation rates of water protons (8). They are applied in 

MR imaging to increase the signal difference between the area of interest and the 

background. Indeed, the influence of MR contrast agents on the relaxation times of 

proton spins has a marked effect on the signal intensity thereby increasing the contrast of 

the images and better delineating the objective regions.  

MR contrast agents do not appear themselves on MR images but affect longitudinal and 

transverse relaxation of the surrounding nuclei, mainly the water solvent protons (9). The 

addition of a contrast agent results in an increased relaxation rate of the surrounding 

nuclei that appear as a bright spot of increased intensity in T1-weighted images or as a 

region of decreased brightness in T2-weighted images (10). MR contrast agents are thus 

classified as positive or negative, T1 or T2, contrast agents. The two major classes of MR 
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contrast agents are paramagnetic contrast agents, usually based on the chelates of Gd(III) 

generating T1 positive signal enhancement (11, 12), and super-paramagnetic contrast 

agents that use mono- or polycrystalline iron oxide to generate strong T2 negative 

contrast in MR images (13). 

Most of MR contrast agents, which have already approved for clinical use, are complexes 

of gadolinium (III) as this ion has a high magnetic moment and a long electronic 

relaxation time. The choice of Gd(III) would be expected, for no other ion has seven 

unpaired electrons. But there is a much more subtle reason it performs so well. The 

symmetric S-state of Gd(III) is a hospitable environment for electron spins, leading to a 

much slower electronic relaxation rate. In the intricate effect that gives rise to relaxivity, 

water protons hardly feel the effects of ions such as Dy(III); Gd(III) electrons, on the 

other hand, are more closely in tune with the proton’s frequency (10). Thus Gd(III) 

exhibits the strongest effect of all elements on the longitudinal relaxation time T1. Water 

exchanges quite readily on Gd(III) aqua complexes. The rate of exchange between aqua 

ligands on octadenatate-chelated Gd(III) is approximately 3 x 106 s-1, which allows 

thousands of water molecules to transiently coordinate to a single ion on the MRI time 

scale. Therefore, the effect of the metal fragment on relaxation times is widespread, and 

only low concentrations (0.1-0.3mmol/Kg) are necessary to be effective.  

Since T1 weighted protocols in MRI have rapid pulse sequences, the advances in MRI 

have strongly favored T1 agents and thus Gd(III) (10). Faster scans with higher resolution 

require more rapid radio frequency pulsing and are thus generally T1-weighted since the 

MR signal in each voxel becomes saturated. T1 agents relieve this saturation by restoring 

a good part of the longitudinal magnetization between pulses. At the same time, a good 

T1 agent would not significantly affect the bulk magnetic susceptibility of the tissue 

compartment in which it is localized, thus minimizing any inhomogeneities which can 

lead to image artifacts and/or decreased signal intensity. Small iron particles can function 

as T1 agents using very T1-weighted scans, but the resulting changes in magnetic 

susceptibility are much larger than that for Gd(III) chelates.  

However, since the free metal ion of Gd (III) being toxic, its complexation is needed in 

order to ensure the innocuousness of the agent during its travel through the body of the 

patient. Gadolinium chelate remains in the body several days after intravenous 
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administration. Coordinating the metal to ligands can reduce its toxicity if the chelates are 

too obstinate to be displaced by water (12). Currently, all Gd(III)-based chelates 

approved for clinic application in MRI are eight or nine-coordinated complexes. One or 

two coordination sites must be open for water molecules, to allow inner sphere spin 

transitions, or transitions between the metal nuclei and a ligand to which they are directly 

bound.  The formation of kinetically inert and thermodynamically stable complexes of 

Gd (III) has been demonstrated with chelating agents such as 

diethylenetriaminepentaacetic acid (DTPA) and 1,4,7,10-tetracarboxymethyl-1,4,7,10-

tetraazacyclododecane (DOTA) (Figure 1). The metal ion is buried in the cage, so it is 

unlikely to bind to donor groups in proteins and enzymes. There is nothing in the 

chemical structure of the ligand that a good nucleophile or electrophile can attack. They 

actually do remain chelated in the body and are excreted intact. Apparently, the off-the-

shelf ligands such as DTPA or DOTA form complexes strong enough so that, for the 

period that the agents are in the body, there is no detectable dissociation. This is in the 

face of significant amounts of phosphate, citrate, transferrin, and other chelating 

substances. Since the approval of [Gd (DTPA) (H2O)]2- in 1988, it can be estimated that 

gadolinium chelates have been administered to millions of patients worldwide. Currently, 

approximately 30% of MRI examinations include the use of contrast agents, and this is 

projected to increase as new agents and applications arise (10).  
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O O
O O
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O
H H

[Gd(DTPA)(H2O)]2-  (MagnevistTM)              

N
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O

O
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O
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[Gd(DOTA)(H2O)- (DotaremTM)    
Figure 1. Chemical structures of [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]- 

 

Iron-oxide-based contrast agents usually consist of a monocrystalline (MION) or small 

polycrystalline (SPIO) magnetic core with a diameter of 5 to 30 nm embedded with a 

polymer coating (such as dextran or other polysaccharides) for a total particle diameter of 
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17-50 nm, respectively. Generally, the relaxation properties of these contrast agents 

depend on the molecular size of the carrier and larger molecules have a higher relaxivity 

per molecule. Therefore to improve the sensitivity of detection, it is feasible to use large, 

highly efficient contrast agents. For example, SPIO particles can be detected at 

micromolar concentrations of iron, and offer sufficient sensitivity for T2-weighted 

imaging. On the other hand, the large molecular size can prevent effective extravasation 

of the contrast agent molecules from the vasculature, and reduce diffusion of the contrast 

agent through the interstitium (13, 14). 

These contrast agents discussed above are all non-specific, even if their distribution in the 

body is far from homogeneous, and their efficacy in enhancing contrast stems from their 

preferential distribution in the blood stream because they are all quite hydrophilic. 

Nonspecific contrast agents are widely available for clinical use. They show a 

nonspecific distribution pattern that allows measurement of tissue perfusion, vascular 

permeability, or vascular volume in a given voxel. These parameters can be extracted by 

fast imaging techniques and pharmacologic modeling or steady-state imaging techniques 

(15, 16). However, true molecular targets can not be imaged with this approach. Thus, 

there remains the need for novel compounds of improved performances. Increased 

efficacy, exclusive blood distribution, targeting, and sensing are some of the exciting 

properties of the new molecules developed in the last few years (17, 18). These novel MR 

contrast agents can be basically divided into smart and targeted probes according to their 

dynamic mechanism.  

Smart contrast agents might change MR signals, which depend on some variables in their 

immediate environment. Various stimuli, ranging from pH to enzymes, have been 

exploited for generating intelligent agents (19 - 21). The most important factor for 

obtaining an efficient smart contrast agent is that the percent change in relaxivity, and not 

its absolute value. Usually, smart contrast agents have been built on Gd(III) systems 

because their relaxivity can be dictated by their environment. The numbers of water 

molecules in the first coordination sphere, the water exchange rate and the rotational 

correlation time have a strong effect on the relaxivity of the compounds and can be 

influenced by many other factors.  
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Targeted MR contrast agents are linked to specific affinity ligands such as peptides, 

antibody fragments, or small molecules imparting molecular specificity to the probe. 

Combining efficient targeting strategies with sensitive imaging techniques may help to 

resolve molecular targets in the nanomolar range in vivo. Thus, the detection of cell 

surface proteins (e.g., tumor associated receptors) is feasible (22). Approaches to increase 

the sensitivity of MR with targeted contrast agents were presented by Wickline et al. (23) 

who significantly amplified the number of reporter molecule per nanoparticle (up to 

90,000 gadolinium chelates per nanoparticle). The nanoparticles can be targeted with 

high affinity to specific molecules via antibodies. This scheme was exploited for 

visualization of fibrin in vascular plaques and vascular expression of integrins in tumors 

(23). Other studies have reported targeted contrast agents for imaging Alzheimer amyloid 

plaques, the human transferrin receptor, and the secretin receptor or the endothelial 

integrin αvβ3 (24, 25). More recently, an antibody-conjugated gadolinium chelate was 

applied for in vivo MR imaging of HER-2/neu receptors in a mouse xenograft model (26, 

27). Biotinylated anti-HER-2/neu antibody was administered first followed by a 

gadolinium chelate complexed with avidin; the amplified R1 lengthening effect indicates 

that the agent is localized to tumor areas in which the HER-2/neu receptor is expressed.  

 

1.2 Labeling of cells with MR contrast agents 

Due to its high spatial resolution capabilities and excellent soft tissue contrast, MR 

imaging is excellently suited for cell tracking application. MRI contrast agents can be 

incorporated into cells by electroporation, and passive or active targeting mechanisms 

such as phagocytosis, pinocytosis, receptor mediated endocytosis, transporters, and cell 

penetrating peptide mediated intracellular uptake (28).  Passive targeting agents primarily 

highlight phagocytic cells and organs naturally responsible for particle clearance within 

the body. Active targeting refers to ligand-directed, site-specific accumulation of contrast 

and /or therapeutic agents. 

Electroporation has recently been used to label cells with Gd chelates and SPIO 

nanoparticles (29). Electroporation is commonly used to introduce DNA into the cell 

genome and is known to be associated with cell stress due to chemical imbalances and 

efflux or influx of chemicals from within the cell and surrounding media altering the cells 
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viability and survival. There is relatively little experience using this approach with MRI 

contrast agents to label cell, and it is unclear as to the long-term effects on reactive 

oxygen species (ROS) or cell viability when using this method. It has been demonstrated 

that a significant amount of cell lysis and death occurred during electroporation, and 

following labeling of contrast agents (30). 

Phagocytosis is a special form of endocytosis in which particles are ingested through the 

formation of a large endocytic vesicle. In principle this appears the route of choice for 

labeling cell endowed with efficient phagocytic activity, as it would allow single step 

internalization of large amount of contrast agent. Whereas the entrapment of iron oxide 

particles by this process is immediately effective in inducing marked change in MR 

contrast of labeled cells, in the case of Gd containing particles, it is necessary to foresee 

its further solubilization in order to fully exploit the potential of the imaging probe based 

on paramagnetic Gd-chelates (31). 

Pinocytosis, also called fluid endocytosis, is the process through which the cell entraps 

portions of the extracellular fluid by means of the progressive invaginations of the 

membrane, to form vesicles that evolve from early to late endosomes eventually to end 

up into lysosomes. Incubation of cells in a medium containing MR contrast agents at 

sufficiently high concentration leads to its internalization at amounts that may be 

sufficient for MR imaging (32).  

Receptor mediated endocytosis is the most widely applied scheme to internalize MR 

contrast agents into cells as it is expected to occur anytime a ligand is modified by 

attaching one or more metal-chelate moieties. Receptor mediated endocytosis is the 

mechanism of choice for the internalization of dendritic polymers containing a high 

number of Gd(III) complexes. The first example of receptor-mediated endocytosis of 

Gd(III) complexes dendritic polymers dealt with the targeting of tumor cells 

overexpressing the high affinity folate receptor (hRF) (33). It showed that the uptake of 

folate-conjugated dendrimers into cells occurs with a sigmoidal dose-responsive curve as 

expected for a specific uptake. Other samples of receptor-mediated endocytosis of MR 

contrast agent included β-D-galactose receptor, cholecystokinine receptor and 

somatostatin analogs. 
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Transporters’ scheme appears an interesting one as such systems are intrinsically devoted 

to cell internalization of large quantities of substrate molecules. Gd-DTPA-glutamine has 

been tested to differentiate tumor from healthy cells. After a few hours of incubation, the 

amount of Gd-chelate internalized in tumor cells is 4-5 times higher than that taken up by 

healthy hepatocytes (34). 

Cell penetrating peptides (CPPs) have been extensively utilized to achieve intracellular 

delivery (35-37). CPPs usually consist of short, typically basic, peptide sequences of 7–

34 amino acids in length that are capable of crossing the cell membrane either alone or 

attached to a molecular cargo. Early observations revealed that these cell-penetrating 

peptides rapidly translocate into various cell types. Included among such peptides are the 

third helix of the homeodomain of Antennapedia (38), polyarginines (39), guanidinium 

peptides (40), and viral proteins such as herpes simplex virus VP22 (41), HIV-1 Rev 

protein (42), and the basic domain of HIV-1 Tat protein (43). When administered in non-

toxic concentrations, CPPs can be used to transport genes, therapeutic drugs and 

diagnostic probes into the intracellular compartment. Although the exact mechanism for 

membrane translocation of CPPs remain under investigation, successful utilization of 

CPPs not only for molecular imaging, but also for therapeutic and combined applications, 

is progressing in numerous fields of research. 

Delivering imaging agents to intracellular compartments by peptides would allow for 

selective retention and signal amplification, thereby opening up a broad range of novel 

molecular imaging applications (44). CPPs have been explored to carry MR contrast 

agents into cells. Bhorade et al. reported that Gd-DOTA bound to HIV-Tat peptide is 

efficiently internalized into mammalian cells (45). For this application, DOTA is 

conjugated to a Lys C-terminally appended to Tat using orthogonal synthetic strategies 

and stably complexed with Gd under standard conditions (Figure 2). T1-weighted spin-

echo MR images of cells embedded in agar indicated the presence of enhanced 

intracellular relaxivity, consistent with transduction of Gd-DOTA-Tat peptide into the 

cell interior. The intracellular localization of the Gd complex was confirmed with a 

fluorescein-conjugated Tat peptide that showed cytosolic localization. Furthermore, 

intracellular delivery of the Gd-DOTA complex using other CPPs such as poly-Arg 

peptides has been reported (46). The permeation, relaxivity, and enhanced retention 
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properties of the Gd-DOTA poly-Arg peptide were well characterized in several cell 

types using inductively coupled plasma mass spectrometry (ICP-MS) and T1 relaxivity 

measurement (47).   
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Figure 2. CPP conjugated intracellular MR contrast agents  

 

The Tat peptide has also been used to mediate delivery of biocompatible cross-linked 

iron oxide particles (CLIO) and superparamagnetic nanoparticles into cells (48). The 

derivatized particles have been shown to internalize into mouse spleen lymphocytes 

greater than 100-fold more efficiently than nonmodified particles. By labeling CLIO 

particles with FITC, cytoplasmic and nuclear localization was demonstrated. CLIOs 

affect the transverse relaxation time (T2) by introducing large susceptibility effects, which 

alter the local magnetic field homogeneity and result in signal loss where CLIOs are 

located. The strong decrease in signal by MR imaging enables the magnetically labeled 

cells to be tracked in vivo. These results demonstrate that CPP can be used to ferry 
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magnetic particles efficiently into cells; and labeled cells can be visualized by MR 

imaging at the single-cell level in vitro and/or induce signal intensity changes detectable 

in whole organs (48). 

1.3 Antisense imaging  

Real-time imaging of gene expression in vivo at high spatial resolutions has been a long-

cherished goal in molecular research (49). If such techniques were available, both 

endogenous and exogenous (for example, gene therapy) expression could be studied in 

live animals and potentially in a clinical setting. Currently, the most widely used 

strategies for imaging gene expression are termed “direct” and “indirect” approaches 

(50). Direct molecular imaging can be defined in terms of a probe–target interaction, 

whereby the resultant image of probe localization and magnitude (image intensity) is 

directly related to its interaction with the target epitope or enzyme. A recent direct 

imaging strategy involves the development of antisense and aptamer oligonucleotide 

probes that specifically hybridize to target mRNA or proteins in vivo. Radiolabeled 

antisense probes (RASONs) have been developed to directly image endogenous gene 

expression at the transcriptional level. RASONs are small oligonucleotide sequences that 

are complementary to a small segment of target mRNA or DNA and could potentially 

target any specific mRNA or DNA sequence. In this context, imaging specific mRNAs 

with RASONs produces "direct" images of specific molecular-genetic events. Direct 

imaging of mRNA can provide information on cellular gene expression patterns and may 

have the potential to detect molecular changes in disease states at relatively early stages, 

providing opportunities for pre-emptive therapeutic interventions.  

The concept of using antisense molecules to inhibit gene expression was introduced in 

1967, as a result of the elucidation of the rules of Watson-Crick and Hoogsteen base pair 

formation between nucleic acids (51); the basis of this promise was that specific DNA or 

messenger RNA sequences could be arrested uniquely by relatively short complementary 

oligonucleotides for antigene or antisense therapy, respectively (Figure 3). The principles 

for application of antisense agents in antiviral and cancer therapy are now well defined 

(52). Theoretically, the same principles could serve as guidelines for the development of 
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labeled antisense oligonucleotide analogues for imaging gene expression. Therefore, 

antisense imaging should be highly specific from theoretical considerations. 

 

 

 

  

                   

Figure 3. Base pairing between purines and pyrimidines  

 

In 1994, Dewanjee produced the first non-invasive tumor image in a living animal model 

using a radiolabeled antisense oligonucleotide (53). Yet real-time, direct, in vivo imaging 

of endogenous gene expression has still not been demonstrated in a widespread and 

conclusive manner by this method. Various problems have exhibited such as: (i) low 

number of target mRNA/DNA molecules per cell; ii) limited tracer delivery (poor cell 

membrane and vascular permeability, cannot penetrate blood–brain barrier); (iii) poor 

stability (degradation by H-RNAse); (iv) slow clearance (slow washout of nonbound 

oligonucleotides); and (v) comparatively high background activity and low specificity of 

localization (low target/background ratios).  Recent developments in antisense imaging 

technology extend the possibility that this modality will become an extremely powerful 

tool for the noninvasive study of gene expression in vivo. These developments include: (i) 

new antisense analogues with superior properties for binding macromolecular nucleic 

acids, (ii) advances in radiolabeling chemistry to produce extremely high specific activity 

antisense imaging agents, (iii) novel drug targeting technology to improve in vivo 

specificity, and (iv) emerging optical imaging modalities for in vitro screening 

applications and real-time in vivo imaging of gene expression (54).  

The first antisense agents were DNAs, but these oligonucleotides are rapidly degraded by 

nucleases in vivo, greatly limiting their utility for imaging applications. A number of 

novel oligonucleotide analogues, designed for improved stability, target binding, and 

antisense activity, have been synthesized and evaluated in vitro and in vivo. 

Methylphosphonate DNA, Phosphorothioate DNA, 2’-O-methyl RNAs (55), PNAs 

(peptide nucleic acids) (56), MORFs (morpholino) (57), and HypNA-pPNAs (trans-4-

-A-T-G-C-
  

-U-A-C-G-

Antisense fragment

mRNA
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hydroxy-L-proline nucleic acid-phosphono nucleic acid) (58) (Figure 4) bind 

complementary RNA with greater affinity, stability, and mismatch specificity than 

corresponding DNA:RNA duplexes, potentially rendering them more suitable for 

antisense imaging.  
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PNA is a DNA mimic containing a pseudopeptide backbone that makes it extremely 

stable in biological fluids. Despite the radical difference in the chemical composition of 

the backbone, PNA not only retains but also improves the hybridization characteristics of 

DNA and RNA. In most cases PNA oligomers with mixed bases sequences form 

duplexes (by Watson-Crick base-pairing) with complementary DNA and RNA with 

higher thermal stability than corresponding DNA-DNA or DNA-RNA complexes and 

without sacrificing sequence specificity (59). These qualities make PNA a leading agent 

among ‘third generation’ antisense and antigene agents (60). For example, Pardridge et 

al. (61) reported the imaging of gene expression in the brain in vivo by a PNA-antisense 

probe. They synthesized an antisense-imaging agent comprised of an radio-iodinated 

PNA conjugated to a monoclonal antibody to the rat transferrin receptor by using avidin-

biotin technology. The PNA is a 16-mer antisense to the sequence around the methionine 

initiation codon of the luciferase mRNA. The PNA conjugate was injected intravenously 

in animals with brain tumors and which were killed 2h later for frozen sectioning of brain 

and film autoradiography. Tumors were imaged in all rats administered the [125I] labeled 

PNA that was antisense to the luciferase sequence. This study demonstrated that gene 

expression in the brain in vivo could be imaged with antisense radiopharmaceuticals that 

are conjugated to a brain drug-targeting system.  

Tian et al. (62) also designed an antisense PNA probe, which conjugated PNA with an 

IGF1 peptide on the C-terminus, and a [99mTc] chelator on the N-terminus. The PNA is a 

12-mer antisense to the sequence of the MYC mRNA. MCF7 xenografts in nude mice 

were visualized at 4 and 24h after tail vein administration of the [99mTc] PNA probe 

specific for MYC mRNA, but not with the mismatch control.  

These results demonstrated that molecular imaging of oncogene mRNA in solid tumors 

with antisense PNA-peptide chimeras might provide additional genetic characterization 

of pre-invasive and invasive cancers.  

Although there are a lot of publications which reported to image gene expression by radio 

labeled antisense imaging, MRI imaging of gene expression are usually achieved by two 

approaches: (i) imaging of introduced reporters or enzymes, which bind or metabolize 

paramagnetic substrates; or (ii) imaging of a unique spectroscopic signature (63). 
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Developing the antisense conjugated MRI contrast agent will propose a new method to 

image gene expression in vivo. In addition, development of targeted MR contrast agent 

directed to specific molecular entities could dramatically expand the range of MR 

applications by combining the noninvasiveness and high spatial resolution of MRI with 

specific localization of molecular targets. 

In 2003, Heckl et al. (64) reported the first and to date the only results on an intracellular 

MR contrast agent, composed of a gadolinium complex, a c-myc-specific PNA sequence 

and a transmembrane carrier peptide, showing the potential of tracking cells in vivo by 

MRI using mRNA as target. In MR imaging, increased intracellular signal intensity in 

HeLa cells could be detected after just 10 min of incubation with Gd3+-complex and 

subsequently reached a maximum after 1h. This rapid increase in signal intensity after 10 

min was also observed in vivo in Dunning prostate tumors independent of the specificity 

of PNA, and subsequently, reaching a maximum after 30 min. However, there is no 

further study reported. Whether improvements on this strategy can be achieved using 

different carrier peptides and/or contrast agent moieties remains an important question. 

 

1.4 Synthesis schemes of PNA-peptide conjugates 

The main hindrance to the effective use of PNA oligomers has been their relatively poor 

uptake by cells. A great deal of effort has gone into devising means for enhancing the 

intracellular delivery of oligonucleotides (65, 66), including viral vectors, cationic lipids 

and cationic liposomes. Although cationic lipids and polymer carriers have been widely 

used in the laboratory setting, a new approach involving conjugation of oligonucleotides 

to peptide vectors seems particularly promising. Peptide-oligonucleotide conjugates (67), 

unlike oligonucleotide complexes with cationic lipids or polymers, are of relatively 

modest molecular size. Thus, they are more likely to evade uptake by the phagocytes of 

the reticuloendothelial system and to attain a widespread biodistribution subsequent to in 

vivo administration.  

Two different strategies have been adopted for the synthesis of PNA-peptide conjugates: 

On-line continuous solid-phase synthesis schemes and fragment conjugation schemes 

(68). 
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 During continuous solid-phase synthesis scheme, PNA-peptide conjugates are 

synthesized by adaptation of established solid-phase peptide synthesis protocols (69). 

Commercially available PNA monomers have their back-bone amine group protected 

with either the 9-fluorenyl-methoxycarbonyl (Fmoc) or N-tert-butoxycarbonyl (Boc) 

group, while the exocyclic amines of the nucleobases (A, C and G) are protected by the 

benzhydryloxycarbonyl (Bhoc) or Benzyloxycarbonyl (Z) protecting groups. The solid-

phase synthesis of a peptide-C-terminal to N-terminal-PNA conjugate commences with 

the immobilization of a PNA monomer to an acid labile linker on a suitable resin. 

Usually, the polyethyleneglycol-polystyrene (PEG-PS, linker=rink amide) resin can be 

used for Fmoc/Bhoc chemistry synthesis scheme; whereas the PS resin (linker = 

methylbenzhydrylamine) resin is compatible with Boc/Z chemistry synthesis scheme. 

Removal of the N-terminal protecting group (with 20% piperidine/ DMF for Fmoc or 

50% TFA for Boc, is followed by elongation with the next protected building block under 

the agency of a coupling reagent (e.g. HATU) and capping of residual amines with acetic 

anhydride, which leads to a PNA dimer. Repetition of this reaction cycle entailing 

deprotection, coupling and capping steps eventually leads to the construction of an 

immobilized fully protected PNA-peptide conjugate. End-capping of this construct 

(removal of the final protecting group and acetylation of the N-terminus) is carried to 

prevent the formation of PNA rearrangement or breakdown products. Finally, cleavage 

from the resin and deblocking of the protecting groups (TFA in the presence of 

scavengers (Fmoc); HF or 10% TFMSA/TFA and scavengers (Boc)) affords the target 

peptide-PNA conjugate.  

In the fragment conjugation scheme, PNA oligomer and peptide oligomer are assembled 

separately on their own solid supports. After the synthesis and purification of individual 

PNA and peptide sequences, they are finally conjugated to each other chemoselectively 

(68). Different methods can be discerned on the basis of the type of linkage between the 

peptide and PNA fragments. The functional linkages commonly used in fragment 

conjugation included amide, disulfide, thioether, oxime, and thioester etc. The general 

reactions used to prepare some of the linkages are summarized in Figure 5.  
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Figure 5. Schematic representation of the coupling strategies for PNA-peptide 

conjugates. 

a) Disulfide formation by thiopyridyl activation. b) Thioether formation. c) 

Thioether bond formation by maleimide functional group. d) Oxime formation. e) 

Native chemical ligation. 

 

A frequently used method is the linkage of fragments via a disulfide bond (70). The main 

reason is that disulfide bonds in PNA-peptide conjugates are vulnerable for cleavage in 

the reductive environment of the cytosol, thus releasing the free PNA sequence after 

intracellular uptake. For the formation of disulfide bond, both peptide and PNA 

fragments need to contain a thiol moiety, usually obtained by the incorporation of a 
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cysteine residue at either the C-terminal or N-terminal position. The preparation of 

disulfides originates from synthetic protocols developed in peptide chemistry and 

conducted following direct oxidation of two free thiols. This oxidative coupling method 

can give rise to the formation of symmetrical dimers, besides the desired product. The 

yield can be improved by the use of an excess of one of the fragments, which can give a 

more selective conversion. A more fruitful procedure to disulfide bond formation exploits 

the nucleophilicity of the thiol group of one of the fragments and activation of the other 

thiol group (71). An often-applied method to activate a thiol group towards nucleophilic 

substitution is its attachment to a thiopyridyl moiety. Nucleophilic substitution of this 

moiety by the incoming free thiol of the other fragment results in formation of the desired 

product. It is important to note that these coupling reactions should be carried out in an 

oxygen-free environment to prevent unwanted dimerization of molecules carrying a free 

thiol group.  

The nucleophilicity of the thiol group can also be applied to prepare PNA-peptide 

conjugates having more stable thioether linkages (72). For example, the thiol containing 

segment can react in a Michael type reaction with double bond of a maleimide functional 

group of the other fragment to give a covalently linked conjugate. Other potential 

nucleophiles, such as the side-chain amines in peptides are protonated at pH 8, rendering 

them unreactive.  

Chemoselective oxime formation is one of the most commonly used linkages in an 

alternative strategy to couple PNA and peptide fragments (73). This is because oxime 

formation is an efficient reaction, requires no harsh conditions, involves highly reactive 

functional groups, and introduction of the aldehydes and hydroxylamine on either 

fragment is relatively easy. In this strategy, a ketone functionality of one fragment was 

reacted with an amino-oxyacetic acid to the C-terminal side-chain amine functionality. 

The condensation was carried out in aqueous buffer at pH 4.2 and proceeds in a highly 

efficient manner.  

Recently, an alternative approach for the synthesis of peptide-PNA conjugates (74) was 

reported using Kent’s native chemical ligation strategy (75). This type of ligation is based 

on a reversible transthioesterification between two unprotected fragments, one containing 

a C-terminal thioester and the other an N-terminal cysteine. Rearrangement by a 
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proximity-driven nucleophilic attack of the cysteine amine on the thiolester irreversibly 

leads to an amide linkage and causes depletion of the freely equilibrating thioester 

intermediates and the formation of a single ligation product.  

In summary, the initial research motive of PNA-peptide conjugation was to improve the 

pharmacokinetic properties of therapeutically valuable PNA. Different types of peptides 

were used in the form of either noncovalent complexes or covalent conjugates to enhance 

the cellular uptake of PNA. The biological properties, for example, the antisense activity 

of similar conjugates, are shown to be influenced by the nature of the chemical linkage 

between the peptide and PNA fragments (76). The advance in both continuous solid-

phase synthesis and chemoselective conjugation methods opens the way to the design and 

synthesis of PNA-peptide hybrids possessing combined functionalities. These synthetic 

developments may eventually lead to the design of therapeutic probes based on PNA, 

which are able to target specific cell types, penetrate the cellular membrane, direct to the 

right cellular compartment, and fulfill a predetermined task, such as antisense /antigene 

activity, selective cleavage of DNA or RNA target sequences or activation of 

transcription.  

1.5 Aim of the project 

Many clinically valuable targets reside inside the cell membrane. As most of the Gd(III) 

based MR contrast agents are extracellular, therefore, developing efficient intracellular 

targeted MR contrast agent is required. The objective of the present project is to construct 

a series of targeted intracellular MR contrast agents aiming to image mRNA transcription 

by MRI. This thesis includes two major parts of work:  

The first part of this thesis takes an effort toward the design, synthesis, characterization, 

and in vitro testing of a series of CPP mediated intracellular MR contrast agents. Several 

typically applied CPPs would be selected as the transmembrane vectors to be conjugated 

with Gd(III) complexes as well as fluorescent dyes. Being labeled with fluorescent 

moiety, the dynamic transmembrane behavior, intracellular distribution and 

biocompatibility can be studied by fluorescence microscopy and spectroscopy in cells 

plated in 96well plates. In addition, after loading cells with MR contrast agents, the 

cellular relaxation rate and contrast enhancement data can be determined quantitively. 

Comparison studies on the relative efficacy, toxicity and uptake mechanism of individual 
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CPP, allowed for screening an optimal CPP for the intracellular delivery of MR contrast 

agents. 

Referred from the previous studies of Heckl (64) and Tian (62), there should be some 

kinetic differences between the antisense contrast agent and nonsense contrast agent 

when interacting with the target mRNA: the antisense contrast agents might have a longer 

retention time in the cells after binding with the target mRNA. The second part of this 

thesis is to design and synthesize antisense MR contrast agents, which conjugate PNA 

with cell penetrating peptides, Gd-DOTA and FITC. CPP will facilitate the intracellular 
delivery of the designed contrast agents. PNA fragment is the antisense to the targeting 

mRNA, which can specifically bind to complementary sequence in mRNA. With FITC 

and Gd-DOTA, fluorescent optical imaging as well as MR imaging can visualize the 

labeled cells. In vitro cell biological evaluations can be made on normal NIH/3T3 mouse 

fibroblasts to confirm the intracellular uptakes of the designed contrast agents and their 

biocompatibility using MR and fluorescent optical imaging techniques. The intracellular 

content of the antisense PNA contrast agents can be determined by MR or ICP-MS after 

the labeled cells were treated by concentrated HCl or nitric acid. The specificity of the 

antisense PNA contrast agents to the target sequence can be demonstrated by an in vitro 

hybridizing test. These preliminary studies on the antisense probes should support some 

helpful data for the further rational design and modification of intracellular targeted MR 

contrast agents. Further studies on transgenic cells which express target mRNA are 

needed to prove the specific accumulation of the antisense contrast agent by binding with 

the target mRNA. The long run goal of this research program is to track specific cells 

noninvasively by MR imaging using mRNA as the target.  
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Chapter 2. Synthesis and screening of cell penetrating peptides for the 

intracellular delivery of MR contrast agents 

2.1 Research design 

Aiming to screen an optimized vector for the intracellular delivery of MR contrast agents, 

five kinds of typically applied CPPs were selected: L-Tat49-57 (derived from HIV-1 Tat 

peptide) (77), D-Tat57-49 (retro-inverso isomer of Tat peptide), Orn-D-Tat57-49 

(substitution of Glutamine (q) residue with Ornithine (o) residue) (78), PTD-4 (a 

synthetic protein transduction domain) (79) and NLS (nuclear localization sequence of 

SV 40T-antigen) (80).  

Compared to the Boc/benzyl based scheme, Fmoc/tBu based solid phase peptide 

synthesis scheme has offered more flexibility for the modification of the peptide chain, 

more specificity in the cleavage of the Nα versus the side-chain protecting groups, and 

milder cleavage conditions. Therefore, Fmoc/tBu chemistry is selected in the peptide 

syntheses.  

One lysine residue is added at the N-terminal of every CPP as a linker. The Gd(III) 

chelate (DTPA or DOTA) is conjugated at the  α-NH2 group of Lys, whereas FITC is 

conjugated on the ε-NH2 group of Lys (Figure 6). Therefore, the designed MR contrast 

agents can label cells for optical as well as MR studies. The intracellular uptake 

efficiency of these contrast agents can be quantified with fluorescent spectroscopy and 

MR measurements; furthermore, the intracellular distribution of these probes could be 

demonstrated by fluorescent microscopy.   
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Figure 6. Schematic structures of Gd-DTPA and Gd-DOTA conjugated 

intracellular MR contrast agents 
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2.2. Results 

2.2.1 Synthesis and characterization of CPP conjugated MR contrast agents 

 Two different schemes were tried to synthesize the CPPs conjugates: fragment 

conjugation scheme and on-line continuous solid-phase synthesis scheme. 

 In the fragment conjugation scheme, we planned to prepare three fragments: Fmoc-

Lys(FITC)-OH, peptide, and DTPA dianhydride. First, CPP was synthesized by solid-

phase synthesis scheme on Wang resin using Fmoc/tBu protected amino residues. Fmoc-

Lys(FITC)-OH was synthesized by conjugating FITC with Fmoc-Lysine in solution. The 

resulting product Fmoc-Lys(FITC)-OH can be applied as a building block to be 

conjugated with CPPs. Afterwards, DTPA dianhydride coupled on the α-NH2 group of 

Lys to obtain the whole CPP conjugated ligand (Scheme-1). However, there is an 

unprotected phenol hydroxyl group in FITC. In the next steps of coupling Fmoc-

Lys(FITC)-OH with CPP or conjugate DTPA dianhydride with Lys, side products were 

formed which are derived from the carboxyl group coupling with the phenol group in 

FITC. Therefore, the yield of this scheme is very low. Further optimizations of this 

scheme were tried, such as protecting the phenol hydroxyl group in FITC. When the 

phenol hydroxyl group in FITC was protected with Trt, the over coupling side products 

was prevented. Therefore, the yield of the optimized scheme was much better than that of 

in unprotected scheme (For expamle, DTPA-Lys(FITC)-NLS-OH, the yield of 

unprotected scheme was 8%; the yield of protected scheme was 24%).  

In comparison, we have developed an on-line continuous solid-phase synthesis scheme: 

CPP was synthesized by solid-phase Fmoc/tBu-chemistry scheme on Wang resin using 

HATU or HBTU as the coupling reagents. After then Fmoc-Lys(Dde)-OH was applied as 

a linker. FITC was coupled on the ε-NH2 group of Lys on resin. Different bases, such as 

DIEA and triethylamine, were tested under different coupling condition. Finally, the 

optimal condition to couple FITC with Lys on resin is: 4eq FITC, 8eq DIEA for 7 hours 

(Scheme-2). The advantage of this scheme was that all coupling reactions were 

performed under mild conditions; and coupling FITC in the last step prevented the 

formation of side products, such as excess coupling on the phenol group of FITC. In 

addition, this continuous scheme allows the coupling process to be carried out by a fully 
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automated synthesizer. Therefore, the on-line continuous solid-phase synthesis scheme 

was selected as the optimal scheme for the synthesis of CPP conjugated contrast agents. 
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Scheme-2. Synthesis of CPP conjugated MR contrast agents by continuous 

solid-phase synthesis scheme 

 

In the on-line continuous solid-phase synthesis scheme, peptides were synthesized on 

Wang resin at the substitution about 0.50-0.60 mmol/g. Then, a Fmoc-Lys(Dde)-OH 

residue was applied as a spacer. Afterwards, Fmoc group was deprotected selectively, 

and DTPA or DOTA tris(tert-butyl) ester was coupled on the α-NH2 group of Lys. 
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Finally, the Dde group was removed by treatment with 2% hydrazine in DMF; FITC was 

coupled on the ε-NH2 group of Lys under the addition of DIEA. For every key 

intermediate, aliquots of the resin-bound conjugates were cleaved and side chain-

deprotected with H2O/TIS/TFA, and ESI-MS analysis was performed to confirm that the 

observed masses were consistent with the calculated molecular weights of the designed 

intermediates (e.g. Figure 7, Figure 8).  

 

 

 

 

 

 

 

Figure 7. ESI-MS Spectrum of the Tat peptide.  m/z = 670.5 ((M+2H)2+), 447.5 

((M+3H)3+), 335.9 ((M+4H)4+), and 268.9 ((M+5H)5+) were consistent with the 

calculated molecular weight (1339.6)  

 

 

 

 

 

 

 

Figure 8. ESI-MS Spectrum of DOTA-Lys(FITC)-D-Tat57-49-OH.  Detected 

molecular ions at m/z = 748.6 ((M+3H)3+), 561.9 ((M+4H)4+), 449.8 ((M+5H)5+), 

and 374.9 ((M+6H)6+) were consistent with the calculated mass of the desired 

product (2244.56) 

 

The conditions used to cleave the peptides from the resin simultaneously deprotected the 

tert-butyl esters on the DOTA ligands. After purified by RP-HPLC, the CPP conjugated 

ligands were characterized by ESI-MS (e.g. Figure 8). Then, CPP conjugates were all 
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successfully chelated with Gd3+ under mild conditions (for DTPA complex, 1eq of 

GdCl3.6H2O chelated at room temperature for 24h; whereas for DOTA complex, 1eq of 

GdCl3.6H2O chelated at 60˚C for 12 h). Final products were purified by HPLC and 

confirmed by ESI-MS (e.g. Figure 9, Table 1).   

 

 

 

 

 
 
 
Figure 9. ESI-MS Spectrum of Gd-DOTA-Lys(FITC)-L-Tat-OH. Detected 

molecular ions at m/z = 800.2((M+3H)3+), 600.2 ((M+4H)4+), 480.4 ((M+5H)5+), 

and 400.5 ((M+6H)6+) were consistent with the calculated molecular weight 

(2397.78). 

 

When the ESI-MS was measured at negative polarity, the spectrum of CPP conjugated 

Gd-DTPA complex showed ions at m/z = (M-1)1- and (M-2)2- (Figure 10). This spectrum 

is well consistent with the structure of CPP conjugated Gd-DTPA. There are two negative 

charged positions: one from the Gd-DTPA, another from the C-terminal of peptide. If the 

ESI-MS spectrum is amplified, the isotopes of Gd can be observed clearly (Figure 11). 

 

 

 

 
 
 
 
Figure 10. ESI-MS Spectrum of Gd-DTPA-Lys(FITC)-NLS-OH at negative 

polarity. Detected molecular ions at m/z = 1927.0 ((M-1)1-) and  963.8 (M-2)2- 

were consistent with the calculated molecular weight (1928.76). 
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Figure 11.  Isotopic pattern of Gd-DTPA-Lys(FITC)-NLS-OH 
 
Table 1. ESI-MS Data of CPP conjugated MR contrast agents 

 

Contrast agent Amino 

sequence 

HPLC 

purity (%) 

Molecular 

weight 

ESI-MS 

Gd-DTPA-L-Tat49-57 RKKRRQRRR 91 2385.71 796.6, 597.4, 

478.3, 398.9 

Gd-DTPA-D-Tat57-49 rrrqrrkkr 90 2385.71 796.3, 597.4, 

478.2, 398.8 

Gd-DTPA-PTD-4 YARAAARQ

ARA 

90 2250.44 1126.0, 750.9, 

563.5 

Gd-DTPA-NLS PKKKRKV 93 1928.76 964.4, 643.8, 

483.0 

Gd-DTPA-Orn-D-

Tat57-49 

rrrorrkkr 92 2371.72 791.7, 593.9, 

475.4, 396.4 

Gd-DOTA-L-Tat49-57 RKKRRQRRR 92 2397.78 800.2, 600.2, 

480.4, 400.5 

Gd-DOTA-D-Tat57-49 rrrqrrkkr 94 2397.78 800.3, 600.4, 

480.7, 400.6  

Gd-DOTA-Orn-D-

Tat57-49 

rrrorrkkr 96 2383.80 796.2, 596.5, 

477.7, 398.4 
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2.2.2 Determining the concentration and relaxivity of CPP conjugated contrast 
agents in aqueous solution 

The relative purities of CPP conjugated contrast agents were analyzed by HPLC, and the 

resulting purities of all contrast agents were higher than 90%. However, the exact purities 

of the contrast agents can not be determined by HPLC. Because the final products were 

purified by HPLC using 0.1%TFA in H2O/ACN as eluent, there is a high probability that 

TFA binds to positive charged amino residues as counter-anion. However, the exact 

nature and quantity of the counter-anion can not be determined by HPLC, thus, the real 

content of the contrast agent should be determined after they are dissolved in solvents. As 

every contrast agent molecule contains one FITC and one Gd chelate, the real 

concentration of these CPP conjugates could be determined by UV-Vis absorption at 

485nm of Fluorescein for the standard curve (ε=81000 cm2/mol) (Table 2). 

Determination of the concentration of CPP conjugates by UV-Vis absorption allowed for 

the calculation of the molar concentration without knowing the exact identity of the 

counter-anions. 

 

Table 2. Determining the concentration of CPP conjugated MR CAs in aqueous 

solution 

Contrast agent Calculated 

concentration (mM)

Measured 

concentration (mM) 

Purity (%) 

Gd-DTPA-L-Tat49-57 10 4.154 42 

Gd-DTPA-D-Tat57-49 10 4.101 41 

Gd-DTPA-PTD-4 10 2.560 26 

Gd-DTPA-NLS 10 5.312 53 

Gd-DTPA-Orn-D-Tat57-49 10 4.813 48 

Gd-DOTA-L-Tat49-57 10 4.069 41 

Gd-DOTA-D-Tat57-49 10 4.051 41 

Gd-DOTA-Orn-D-Tat57-49 10 4.141 41 

Calculated concentration was obtained by adding certain mg of CPP conjugates 

in aqueous solution; measured concentration was obtained by UV-Vis absorption. 
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Relaxivity measurements were acquired by taking the slope of a plot of the R1 relaxation 

rate versus concentration, where relaxivity (r1) is a measure of the ability of a contrast 

agent to shorten T1 (Table 3). MR measurements of the contrast agents in aqueous 

solution were performed at 3T at room temperature (~21°C). The results of MR 

measurement demonstrated that the relaxivity of CPP conjugated Gd(III) chelates are in 

the range of 6-9 mM-1 s-1, except Gd-DTPA-NLS (5.0 mM-1 s-1) and Gd-DOTA-D-Tat57-49 

(14.2 mM-1 s-1). 

 

Table 3. Relaxivity (r1) of CPP conjugated MR contrast agents 

 

Abbreviation Contrast agent Relaxivity (mM-1 s-1) 

CA1 Gd-DTPA-L-Tat49-57 8.8 

CA2 Gd-DTPA-D-Tat57-49 7.1 

CA3 Gd-DTPA-PTD-4 8.8 

CA4 Gd-DTPA-NLS 5.0 

CA5 Gd-DTPA-Orn-D-Tat57-49 6.3 

CA6 Gd-DOTA-L-Tat49-57 7.1 

CA7 Gd-DOTA-D-Tat57-49 14.2 

CA8 Gd-DOTA-Orn-D-Tat57-49 7.1 

 

MR measurements of the contrast agents in aqueous solution were performed at 

3T at room temperature (~21°C). 

 

2.2.3 In vitro studies of Gd-DTPA conjugates with L-Tat49-57, D-Tat57-49, PTD-4 and 
NLS  

At first, cell-penetrating peptides such as L-Tat49-57, D-Tat57-49, PTD-4 and NLS were 

selected to be conjugated with FITC and Gd-DTPA complexe respectively. The resulting 

contrast agents, Gd-DTPA-Lys(FITC)-L-Tat49-57 (CA1), Gd-DTPA-Lys(FITC)-D-Tat57-49 

(CA2), Gd-DTPA-Lys(FITC)-PTD-4 (CA3) and Gd-DTPA-Lys(FITC)-NLS (CA4) were  
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tested in vitro to study their intracellular delivery ability. These four CPPs were selected 

because HIV Tat peptide is one of the most studied and widely applied cell penetrating 

peptides; PTD-4 is one of the best artificially designed protein transduction domains 

according to the amphipathic model; NLS is one of the specific sequences that provide 

translocation into the nucleus. Although TAT, PTD-4 and NLS have been extensively 

employed for in vitro and in vivo delivery of different cargos into cells, little is known of 

the relative efficacy, toxicity and uptake mechanism of individual CPP, factors that will 

be critical in determining the optimal CPP sequence for intracellular MR contrast agent 

design.  

Cellular uptake of these compounds was confirmed by fluorescence microscopy and 

spectroscopy in NIH/3T3 mouse fibroblasts plated in 96well plates as well as by MR 

analyses in Eppendorf tubes (please see the cellular uptake assay in chapter 4). In brief, 

cells were treated with contrast agents at various concentrations in complete medium for 

18 hours. After cells were washed or extracellular fluorescence was quenched, 

internalized fluorescence was measured in a multiplate reader. Subsequently, 

fluorescence microscopy was performed with the same cells to observe the cellular 

localization.  

Toxicity via the reduction of the cell number was measured by counterstaining the cell 

nuclei with the DNA dye Hoechst 33342TM in the fluorescence reader. These values were 

also used to correlate the measured the measured CA fluorescence to the cell number per 

well. 

For MR imagings, exponentially growing fibroblasts were labeled with the contrast 

agents for 18 hrs. Cells were repeatedly HBSS washed, trypsinized and re-suspended in 

1.5 mL Eppendorf tubes at the rate of 1 x 107 cells in 500 µL complete DMEM. MRI of 

the cell pellets was conducted at 300 MHz on a vertical 7T/60 cm Bruker MRI Biospec 

system using T1-weighted spin-echo sequence at room temperature (~21°C). The axial 

slice of interest was positioned through the cell pellet.  
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Figure 12. Fluorescence microscopic images of NIH/3T3 cells after loading with 

contrast agents for 18 hours.  

A: 20 µM CA1; B: 20 µM CA2; C: 20 µM CA3; D: 20 µM CA4; bars represent 20 

µm  

 

Fluorescence microscopic images showed that all of these four contrast agents could be 

delivered efficiently into NIH/3T3 fibroblasts cells (Figure 12). This as well as 

spectroscopic data demonstrated that the uptake of CPP conjugates decreased in 

following order CA2 > CA1 > CA3 > CA4.  

However, examination of cellular toxicity showed following order CA3 > CA2 > CA1 > 

CA4. Overall, comparison of the uptake and toxicity suggests that D-Tat57-49 proves to be 

a useful cell-penetrating peptide for the development of new intracellular MR contrast 

agents. 

The results of T1- and T2-weighted MR measurements demonstrate that the uptake of 

agents CA1 and especially CA2 was sufficient to enhance significantly relaxation rates 

R1 and R2 in cells (Figure 13). Therefore, D-Tat57-49 peptide was confirmed as an efficient 

CPP for the intracellular delivery of MR contrast agents.  
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Figure 13. Changes in relaxation rates R1 and R2 in the cells after internalization 

of contrast agents.  

Values are means ± SEM, n=2-5; *p<0.05, **p<0.01, ***p<0.001, statistically 

significant different compared to control; a P<0.05 statistical significant 

difference. 
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2.2.4 In vitro comparison studies of Gd-DTPA and Gd-DOTA conjugates of L-Tat49-

57, D-Tat57-49, and Orn- D-Tat57-49 

Piwnica-Worms et al reported that intracellular uptake values increased up to 13-fold 

(78), when the chirality of the Tat peptide sequence was changed from L to D. 

Furthermore, length, sequence, and type of chelating domain all impacted peptide uptake 

into cells. They demonstrated that the highest level of uptake was found in Orn-D-Tat 

peptide by introduction of modifications in the sequence like replacement of glutamine 

(q) with ornithine (Orn, o). In addition, our preliminary studies demonstrate that Tat 

peptide especially D-Tat57-49 is very efficient to deliver Gd-DTPA complex into NIH/3T3 

cells. In order to study the relative intracellular uptake efficiency in detail, we planned to 

synthesize in parallel the Gd-DTPA complexes of L-Tat49-57 and its derivates, D-Tat57-49 

and Orn-D-Tat57-49.   

It was reported that DTPA-metal complexes had a lower thermodynamic stability 

compared to DOTA complexes if one of the N-acetate side chains was used for coupling 

via amide bond. Especially lower pH-values enhanced this effect. In addition, Aime’s 

group (32) reported that the lower stability of the Gd-DTPA-BMA complex was 

responsible for a shift in the dissociation equilibrium that resulted in the net transfer of 

Gd3+ ions on the cell membrane followed by a slower internalization process and 

accompanied by a drastic decrease in cell viability. On the other hand, Meade et al. (47) 

reported that NIH/3T3 transduction appears to be Gd(III) chelator dependent, preferring 

DTPA- to DOTA-based contrast agents. Therefore, Gd-DOTA conjugates with L-Tat, D-

Tat and D-Orn-Tat were synthesized and comparatively studied with corresponding Gd-

DTPA conjugate. 
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Figure 14. Microscopic images of NIH/3T3 cells incubated for 18 hrs with 20µM 

of Gd-DTPA-Lys(FITC)-L-Tat49-57 (a), Gd-DTPA-Lys(FITC)-D-Tat57-49 (b), Gd-

DTPA-Lys(FITC)-Orn-D-Tat57-49 (c), Gd-DOTA-Lys(FITC)-L-Tat49-57 (d), Gd-

DOTA-Lys(FITC)-D-Tat57-49 (e) and Gd-DOTA-Lys(FITC)-Orn-D-Tat57-49 (f).  

Bars represent 16 µm. Green: CA, Blue: H33342 (nuclei) 

 

d e f 

a b c 
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Figure 15. Fluorescence and toxicity of cells after incubation with 5 and 20 µM of 

various Tat conjugated CAs for 18 hrs. Values are means ± SEM (n=3). 

 

The results of fluorescent studies demonstrated that modifications of the native CPP 

sequence enhanced the uptake of the corresponding contrast agents. Thus, their 

intracellular delivery efficiency showed following order L-Tat ≤ D-Tat < D-Orn-Tat in 

both Gd-DTPA and Gd-DOTA complexes. However, the cellular toxicity showed the 

same order of L-Tat ≤ D-Tat < D-Orn-Tat (Figure 15).  

Interestingly, Gd-DTPA-CPP conjugates enter NIH/3T3 cells more efficiently than 

corresponding Gd-DOTA-CPP conjugates. These results could be a function of overall 

molecular charge or three-dimensional chelator conformations. The Gd-DTPA-D-Orn-

Tat shows the best intracellular delivery ability; however, it also expressed the highest 

cytotoxicity. When applied at 20 µM, Gd-DTPA-D-Orn-Tat showed a significant 

increased cellular toxicity (Figure 14, Figure 15). Therefore, comparison of the uptake 
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and toxicity suggests that D-Tat57-49 proves to be the optimal vector among the Tat 

peptide derivatives for the intracellular delivery of MR contrast agents. 

 

2.3. Discussion 

2.3.1 Synthesis of CPP conjugated, dual-labeled Gd(III)-based MR contrast agents 

2.3.1.1 Optimization of the coupling scheme for Fluorescein labeling  

At beginning, we tried to couple FITC with Fmoc-Lysine in solution. After purification 

by HPLC, the product Fmoc-Lys(FITC)-OH can be applied as a building block to be 

conjugated with CPPs. With several tests, we found there are some difficulties in this 

scheme: First, it is very difficult to obtain highly purified Fmoc-Lys(FITC)-OH 

compound at gram scale. Fmoc-Lys(FITC)-OH is very difficult to be re-crystallized in 

solutions, it has to be purified by RP-HPLC. But the solubility of this compound is very 

low in 0.1% TFA in water/ACN. Therefore, it is very difficult to obtain highly pure 

product in relative large scale. Second, there is an unprotected phenol hydroxyl group in 

FITC. When coupling Fmoc-Lys(FITC)-OH with CPP, side products were formed which 

are derived from the carboxyl group coupling with phenol group in FITC. Fischer et al. 

took great efforts to extend the applicability of carboxyfluorescein in solid-phase 

synthesis (81). They also found similar problems with coupling of the carboxyl group to 

the phenol group in carboxyfluorescein. In addition, they suggested that treatment of the 

resin with 20% piperidine in DMF could remove the over-coupling side products. 

However, this could not be confirmed in our systems. Referred from literature, we have 

developed and optimized the coupling scheme that enables us to label Lys on resin 

smoothly. Under eight times excess of DIEA, FITC couples completely with the ε-NH2 

group of Lys in 7 hours; and ESI-MS has demonstrated that there is no over-coupling 

side product formed.  

 

2.3.1.2 Conjugate DTPA dianhydride with peptides  

DTPA dianhydride is highly active, therefore, it can be coupled with free –NH2 group 

very fast. Unfortunately, there are two anhydride groups in every molecule of DTPA 



Chapter 2. Screening of CPP 

36  

dianhydride. Under normal coupling condition, there are a lot of side products formed, 

including double coupled product in which one DTPA coupled with two peptide 

sequences at both ends of DTPA, or hydrazine coupled on one end during the next Dde 

deprotect step with hydrazine, because hydrazine is highly nucleophilic reagent. To 

optimize the reaction condition, we tried to decrease the reaction speed in low 

temperature. The formation of side products was reduced dramatically when the reaction 

was controlled at 0-5 ˚C. And the coupling can be finished in 2~3 hours. Since we can 

not cool the temperature to 0-5 ˚C on the peptide synthesizer, this step can only be 

performed in a small glass flask. The second anhydride group was hydrolyzed (DMF: 

water: DIEA = 90:5:5) after DTPA dianhydride conjugated with peptide to prevent the 

formation of hydrazine coupled side product. The best scheme to avoid the double 

coupled side products is using tert-butyl protected DTPA (four of the five carboxyl 

groups in DTPA were protected by tert-butyl) as the building block (kindly provided by 

Prof. K.-H. Wiesmueller). With protected DTPA, the yield of the objective product is 

much higher than that with DTPA dianhydride.  

 

2.3.1.3 Formation of Gd-complexes  

Gd-DOTA-CPP complexes can be formed smoothly under the conditions of pH 6.5, 60˚C 

in 12h with 1eq GdCl3.6H2O. But there are many donor atoms on the peptide that might 

offer alternative coordination sites to the lanthanide ion. Initially, the complexes were 

dialyzed for 48 h after the CPP conjugated ligands were coordinated with gadolinium. 

But the resulting compounds showed very high r1 relaxivity (e.g.197.7 mM-1 s-1 for Gd-

DOTA-D-Tat; data not shown) in solution MR tests. We considered that possibly 

unspecifically bound Gd3+ (i.e. not chelated by DOTA-ligand) was still present in the 

preparation even after dialysis. The Gd-DOTA complexes are very stable even in an 

acidic environment. Thus, the unstable bound Gd(III) can be separated from Gd-DOTA-

CPP complexes by RP-HPLC with 0.1%TFA in H2O/ACN.  

However, the coordinating condition and stability of Gd-DTPA-CPP complexes are 

different from that of Gd-DOTA complexes. Gd3+ could be chelated with DTPA-CPP 

ligand at room temperature. But Gd-DTPA-CPP complexes are not as stable as Gd-

DOTA-CPP complexes, because one carboxyl group of DTPA was used for coupling to 
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the peptide. Thus, if purified by RP-HPLC with 0.1%TFA in H2O/CAN, some of Gd was 

released from DTPA. We have tried to dialyze the chelating mixture to remove free Gd3+. 

However, even after 72h, there was still free Gd3+ observed with xylenol orange 

indicator. Finally, we purified Gd-DTPA-CPPs by RP-HPLC with 0.05%TFA in 

H2O/ACN. The ESI-MS confirmed that Gd3+ is still chelated with DTPA, and the MR 

measurement demonstrated the unspecific bound Gd(III) was removed.  

 

2.3.1.4 Relaxivity of CPP conjugated MR contrast agents 

The r1 relaxivity of CPP conjugated Gd(III) chelates are in the range of 6-9 mM-1 s-1 at 3 

T, except Gd-DTPA-NLS (5.0 mM-1 s-1) and Gd-DOTA-D-Tat57-49 (14.2 mM-1 s-1). These 

results are in accordance with published literature for monomeric chelates. Meade et al 

reported the r1 relaxivity of Gd-DTPA-(Arg)8 is 6.8 mM-1 s-1 at 3T (46); and Piwnica-

Worms et al reported the r1 relaxivity of Gd-DOTA-D-Tat is 7.94 mM-1 s-1 at 4.7T (82). 

In addition, Ranganathan et al. (83) have shown that the relaxivity per Gd(III) correlates 

well with molecular weight for a series monomeric and multimeric Gd(III) chelates. They 

demonstrated that increases in relaxivity correlate approximately with increasing 

molecular weight for spherical molecules. For example, when the molecular weight of 

Gd(III) complexes are in the range of 2,200 to 2,400, their r1 relaxivities at 20MHz are in 

the range of 8.4 to 8.8 mM-1 s-1 per Gd(III). Indeed, most of our CPP conjugated Gd(III) 

complexes have their molecular weight in the range of 2,200 to 2,400; and their r1 

relaxivity are in the range in of 6-8.8 mM-1 s-1. The r1 relaxivity NLS conjugated Gd-

DTPA is 5.0 mM-1 s-1; this is correlate with its molecular weight (1929). These results 

demonstrated that the r1 relaxivity of these CPP conjugated Gd(III) complexes are 

reliable considering their molecular weight. However, the r1 relaxivity of Gd-DOTA-D-

Tat57-49 (14.2 mM-1 s-1) is exceptionally high. We have synthesized and measured four 

batches of Gd-DOTA-D-Tat57-49. The r1 relaxivity values were still in the range of 13~14 

mM-1 s-1. The reason of this exceptional value is still under investigation.  

There are some differences in the value of relaxivity from batch to batch of the same CPP 

conjugated Gd(III) chelates. This might be because TFA bind with positive charged 

amino residue as the counter-anions and the real concentration of these MR contrast 

agent were determine by the UV-Vis absorption of FITC. Relaxivity measurements were 
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acquired by taking the slope of a plot of R1 versus concentration. Although every 

molecule of the CPP conjugated ligand includes only one FITC and one ligand group, the 

content of Gd(III) might different from batch to batch. There is still the possibility that 

some of the ligands have not completely chelated with Gd(III), or that free Gd(III) still 

remaining unspecifically in the CPP, considering many donor atoms on the peptide which 

might offer alternative coordination sites to the lanthanide ion. Therefore, other methods 

which can determine Gd(III) directly (such as ICP-MS) would be better to quantify the 

Gd(III) content in the ligands. And the resulting relaxivity would be more reliable than 

our current method. (Determination of Gd(III) by ICP-MS is under progress by the 

collaboration group at the University of Bremen) 

2.3.2 Intracellular delivery of CPP conjugated MR contrast agents 

Efficient delivery of diagnostic compounds to the cell interior using CPPs has enabled 

novel applications in molecular imaging. Peptide-based imaging agents in particular are 

desired for molecular imaging applications because of their potential for specific 

detection of a target, great flexibility in design, facile synthesis, and the availability of 

well-characterized chelation cores for incorporation of imaginable metals, such as 

technetium (99mTc) (44) for nuclear imaging and gadolinium (Gd) for MRI (47).  

We have synthesized a series of Gd-DTPA or Gd-DOTA complexes, which were 

conjugated with L-Tat49-57, D-Tat57-49, Orn-D-Tat57-49, PTD-4 and NLS, respectively, and 

tested their intracellular delivery in vitro. The biological evaluation showed some 

advisable results about their relative efficacy, toxicity and possible uptake mechanism, 

which will be critical in determining the optimal CPP sequence for intracellular MR 

contrast agent design.  

 Both the MR and the fluorescence results from our biological studies confirmed that Tat 

peptide and its derivatives are efficient in the intracellular delivery of MR contrast agents.  

HIV Tat peptide is the most intensively studied and widely applied cell penetrating 

peptides. An endocytic uptake had already been demonstrated for the entire HIV-1 Tat 

protein in 1991.  However, the precise intracellular uptake mechanism of Tat peptide still 

appears controversial and requires further investigations. Contradictory results are often 

obtained. They could result from experimental variations in, for example, the diversity of 

the Tat peptide sequence used to promote the translocation activity, the wide variety of 
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cell lines studied, the differing protocols applied to investigate the entry mechanism or 

the high diversity of cargoes, all of which might influence the behavior of Tat peptide 

during the cellular entry process (78). In the case of delivering MR contrast agents, 

Meade et al. (47) reported that the variables of Gd (III) chelator (DOTA or DTPA) and 

cell type (NIH/3T3, RAW264.7, or MDCK) could be attributed to the variable uptake of 

MR contrast agents. NIH/3T3 and RAW264.7 transduction appears to be Gd(III) chelator 

dependent, preferring DTPA- to DOTA-based contrast agents. This result is demonstrated 

in our cell biological studies also: Gd(III)-DTPA complexes were more efficient to enter 

NIH/3T3 cells than Gd(III)-DOTA complexes. However, the cytotoxicity of Gd(III)-

DTPA complexes were also higher than that of Gd(III)-DOTA complexes. These results 

could be a function of overall molecular charge or three- dimensional chelator 

conformations.  

Our comparison studies of the uptake and toxicity on NIH/3T3 cells suggest that D-Tat57-

49 contrast agent could label cells sufficient to enhance significantly relaxation rates R1 

and R2 for MR measurements, and without effecting cell bioavailability when 

concentration less than 20µM were applied. Therefore, D-Tat57-49 peptide proves to be a 

useful cell-penetrating peptide for the further development of new intracellular MR 

contrast agents. 
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2.4. Summary  

1). Two synthesis schemes were developed in comparison to synthesize the CPPs 

conjugated MR contrast agents: fragment conjugation scheme and on-line continuous 

solid-phase synthesis scheme. The continuous solid-phase synthesis scheme was proved 

to be optimal compared to fragment conjugation scheme in the synthesis of CPP 

conjugates. 

2). Eight intracellular MR contrast agents, which are  Gd-DTPA-Lys(FITC)-L-Tat49-57-

OH, Gd-DTPA-Lys(FITC)-D-Tat57-49-OH, Gd-DTPA-Lys(FITC)-Orn-D-Tat57-49-OH, 

Gd-DTPA-Lys(FITC)-NLS-OH, Gd-DTPA-Lys(FITC)-PTD-4-OH, Gd-DOTA-Lys 

(FITC)-L-Tat49-57-OH, Gd-DOTA-Lys(FITC)-D-Tat57-49-OH and Gd-DOTA-Lys(FITC)-

Orn-D-Tat57-49-OH, were synthesized by continuous solid phase synthesis scheme. The 

key intermediates and final products were characterized by ESI-MS. The detected 

molecular ions were consistent with the calculated molecular weight. The r1 relaxivity of 

these contrast agents in aqueous solution are in the range of 6-9 mM-1 s-1 at 3 T, except 

Gd-DTPA-NLS (5.0 mM-1 s-1) and Gd-DOTA-D-Tat57-49 (14.2 mM-1 s-1).  

3). Fluorescence microscopy imaging as well as spectroscopy data in NIH/3T3 cells 

plated in 96well plates demonstrated that the delivery efficiency showed following order 

Orn-D-Tat > D-Tat > L-Tat > PTD-4 > NLS.  

4). Both the MR and the fluorescence results confirmed that the Tat peptide and its 

derivatives are efficient in the intracellular delivery of MR contrast agents. Our studies on 

uptake and toxicity in NIH/3T3 cells suggest that D-Tat57-49 contrast agent could label 

cells sufficiently to enhance significantly relaxation rates R1 and R2 in MR measurements, 

thus D-Tat57-49 peptide proves to be a useful vector for the development of novel 

intracellular MR contrast agents. 

5). The design of a reliable intracellular delivery system offers a powerful tool to label 

cells with MR contrast agents. The properties of the Gd(III) complexes described in this 

chapter are well suited for facilitating the study of biological activity in vivo by MRI  
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Chapter 3: Design, synthesis and in vitro evaluation of antisense PNA 

conjugated intracellular MR contrast agents 

3.1 Research design  

To be useful as a probe, an antisense PNA must target an unique mRNA sequence in the 

objective cells. The targeted mRNA should be highly abundant in cells to ensure good 

detection sensitivity and selectivity for MR imaging. Therefore, as a proof of principle 

we chose the mRNA of the red fluorescent dsRed protein as target. The gene for this 

protein, originating from a coral of the Discosoma genus, is widely used as a transfection 

marker in model systems, such as yeast, E. coli, C.elegans, and zebrafish. Furthermore, 

Nagy et al. (84) developed a system which expresses dsRed protein in mouse embryonic 

stem cells, embryos and adult animals (Figure 16). Thus, this model system can be 

applied in future for in vitro and in vivo studies.  

 

                                       
Figure 16. Red fluorescent protein expression in mouse embryos and adult 

animals (Vintersten et al., Genesis. 2004; 40(4): 241-6) 

 

The CPP and PNA fragments will be synthesized by solid phase by the Fmoc mediated 

scheme. Synthetically, PNAs incorporate repetitive elements, which are readily amenable 

to assemble via automated solid phase synthesizer. Specifically, protecting group 

strategies, solid phase peptide synthesis protocols, de-protection methods and purification 

procedures developed for peptide synthesis are adapted to the synthesis of PNAs. 
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Furthermore, the use of Fmoc protection offers several advantages, including milder 

synthesis conditions, improved monomer solubility, high coupling efficiencies and 

facilitated purification of the final product.       

 

 
Figure 17. Schematic structure of targeted intracellular CA 

 

This chapter aims to design and synthesize intracellular MR contrast agents, which 

conjugate PNA with cell penetrating peptides, Gd-DOTA and FITC (Figure 17). The 

designed antisense contrast agent will include three functional domains: first, CPP helps 

intracellular delivery of the contrast agent; second, PNA fragment is the antisense to the 

mRNA of dsRed, which specifically bind with complementary sequence in mRNA of 

dsRed; third, Gd-DOTA and FITC forms reporter domain for fluorescent optical imaging 

as well as MR imaging.  

 In vitro cell biological evaluations were made on normal NIH/3T3 mouse fibroblasts and 

a transgenic cell line to test the internalization of these compounds into cells, their 

biocompatibility and specificity using MR and fluorescent optical imaging techniques. 

Furthermore, the intracellular content of the antisense PNA contrast agents was 

determined by MR after the labeled cells were treated by concentrated acid. The 

specificity of the antisense PNA contrast agents to the target sequence was demonstrated 

by an in vitro hybridizing-ELISA test. These preliminary studies on the antisense probes, 

designed for imaging mRNA transcription by MRI, support some helpful data for the 

further rational design and modification of intracellular targeted MR contrast agents. 

vector

CCeellll  PPeenneettrraattiinngg  PPeeppttiiddee    
DD--TTaatt5577--4488  

GGdd--DDOOTTAA  

FFlluuoorroopphhoorree  FFIITTCC  

MR(Gd)

F

reporter

PNA 

Sequence for selective 
intracellular accumulation 



Chapter 3. Synthesis of PNA Conjugates 

 43

3.2 Results  

3.2.1 Design of antisense PNA-CPP conjugates 

In chapter one, we demonstrated that conjugates of Gd-DTPA or Gd-DOTA with cationic 

CPP, such as Tat peptide and its derivatives, could be internalized into cells in sufficient 

quantities to enhance contrast in MR images. Cell biological tests demonstrated that the 

modified CPP D-Tat57-49: (retro-inverso sequence with D-amino acids); improved 

intracellular delivery with acceptable biocompatibility when compared to natural CPP. 

Therefore, we selected D-Tat57-49 as a vehicle for the intracellular delivery of the PNA 

conjugates in the current study.  

Recently, it was shown that DTPA-metal complexes had a lower thermodynamic stability 

compared to DOTA complexes if one of the N-acetate side chains is used for coupling 

via amide bond (85). Especially lower pH-values enhanced this effect. In addition, 

Aime’s (32) group reported that the lower stability of the Gd-DTPA-BMA complex was 

responsible for a shift in the dissociation equilibrium that resulted in the net transfer of 

Gd3+ ions on the cell membrane followed by a slower internalization process and 

accompanied by a drastic decrease in cell viability. Therefore, Gd-DOTA was selected as 

the MR contrast agent. 

Two PNA conjugates were designed after a BLAST (Basic Local Alignment and Search 

Tool) database search: The sequence of anti-dsRed PNA is tcc gtg aac ggc 

(corresponding to base 61 to 72 of dsRed cDNA sequence) marked red in Figure 18, 

which specifically targets to the mRNA of dsRed. This sequence of 12 bases is unique for 

dsRed and has no significantly similar sequence in mouse genome. While the nonsense 

PNA (gtt cag agt cta) does not correspond to any known mammalian gene or sequence of 

the dsRed gene (Figure 19).  
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atggcctcct ccgaggacgt catcaaggag ttcatgcgct tcaaggtgcg 

catggagggc tccgtgaacg gccacgagtt cgagatcgag ggcgagggcg 

agggccgccc ctacgagggc acccagaccg ccaagctgaa ggtgaccaag 

ggcggccccc tgcccttcgc ctgggacatc ctgtcccccc agttccagta 

cggctccaag gtgtacgtga agcaccccgc cgacatcccc gactacaaga 

agctgtcctt ccccgagggc ttcaagtggg agcgcgtgat gaacttcgag 

gacggcggcg tggtgaccgt gacccaggac tcctccctgc aggacggctc 

cttcatctac aaggtgaagt tcatcggcgt gaacttcccc tccgacggcc 

ccgtaatgca gaagaagact atgggctggg aggcctccac cgagcgcctg 

tacccccgcg acggcgtgct gaagggcgag atccacaagg ccctgaagct 

gaaggacggc ggccactacc tggtggagtt caagtccatc tacatggcca 

agaagcccgt gcagctgccc ggctactact acgtggactc caagctggac 

atcacctccc acaacgagga ctacaccatc gtggagcagt acgagcgcgc 

cgagggccgc caccacctgt tcctg 

Figure 18. cDNA sequence of dsRed and the selected fragment (red) for the 

antisense MR contrast agent. The red marked sequence is specific for dsRed 

and is selected to design the PNA sequence antisenses to mRNA of dsRed. 
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Figure 19. Schematic structure of antisense dsRed mRNA targeting contrast 

agent (dsRed CA) and nonsense contrast agent (nonsense CA) 
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Scheme 3. Synthesis of PNA conjugated MR contrast agent. 

Reagents and conditions: (i) Fmoc-AEEA-OH, HATU, DIEA, DMF; (ii) Fmoc/Bhoc 

protected monomers, HATU, DIEA, DMF; (iii) Fmoc-Lys(Dde)-OH, HATU, DIEA, 
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DMF; (iv) DOTA-(tBu)3-OH, HATU, DIEA, DMF, 2 h; (v) FITC, DIEA, DMF, 7 h; 

(vi) TFA: m-Cresol: TIS: H2O (90:5:2.5:2.5), 4 h; (vii) GdCl3.6H2O, 60˚C, 12 h;  

 

3.2.2 Synthesis of Gd-DOTA-Lys(FITC)-PNA-CPP conjugates 

The conjugates were synthesized by a continuous solid phase synthesis scheme using 

Fmoc/Bhoc chemistry for PNA synthesis (Scheme 3). First, D-Tat57-49 was synthesized 

on Wang resin at a low level of substitution (0.30 mmol/g) like described in charpter 2. 

Then, PNA building blocks were coupled continuously through an AEEA spacer. A 

Fmoc-Lys(Dde)-OH residue was applied as second spacer. Afterwards, Fmoc group was 

deprotected selectively; and DOTA tris(tert-butyl) ester was coupled on the α-NH2 group 

of Lys. Finally, the Dde group was removed by treatment with 2% hydrazine in DMF and 

FITC was coupled on the ε-NH2 group of Lys under the addition of DIEA (8eq).  

The advantage of this scheme was that all coupling reactions were performed under mild 

conditions preventing the formation of side products, such as excess coupling on the 

phenol group of FITC. Because of this continuous scheme, the whole coupling process 

can also be carried out by a fully automated synthesizer. 

After purified by semi-preparative reversed-phase HPLC, the products were characterized 

by ESI-MS: for anti-dsRed PNA conjugate, detected molecular ions at m/z = 1126.3 

((M+5H)5+), 938.9 ((M+6H)6+), 805.0 ((M+7H)7+), and 704.3 ((M+8H)8+) were 

consistent with the calculated mass of the desired product (5628.2) (e.g. Figure 20). For 

nonsense PNA conjugate, detected molecular ions at m/z = 1129.1 ((M+5H)5+), 941.1 

((M+6H)6+), 806.9((M+7H)7+), and 706.1 ((M+8H)8+) were consistent with the calculated 

mass of the desired product (5642.4).  

 

 

 

 

 

 

 

Figure 20. ESI-MS Spectrum of anti-dsRed PNA ligand 
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3.2.3 Chelating with gadolinium and purification 

PNA conjugates were successfully chelated with Gd3+ under mild conditions (at 60˚C for 

12 h). After chelating with gadolinium, the complexes were characterized by ESI-MS: 

From anti-dsRed PNA complex, detected molecular ions at m/z = 964.7 ((M+6H)6+), 

826.9 ((M+7H)7+), 723.8 ((M+8H)8+), and 643.1 ((M+9H)9+) were consistent with the 

calculated mass of the desired product (5782.4) (in the following called dsRed CA) (e.g. 

Figure 21). For nonsense PNA complex, detected molecular ions at m/z = 1159.7 

((M+5H)5+), 966.7 ((M+6H)6+), 829.1((M+7H)7+), and 725.7 ((M+8H)8+) were consistent 

with the calculated mass of the desired product (5796.6; nonsense CA). These mass 

spectra demonstrated that the PNA conjugates successfully chelated with gadolinium.  

 

 

 

 

 

 

 

Figure 21. ESI-MS spectrum of anti-dsRed contrast agent 
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bound to other potential chelating moieties (amide in peptide and PNA backbone, amino 

groups in the nucleobases, etc) in the peptide/PNA complex was still present in the 

preparation even after dialysis. Thus, we modified the purification process. The chelating 

mixtures were purified first by HPLC to separate the unstable bound Gd3+, and 

subsequently, the compounds were dialysed to remove other impurities. After this 
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1sec-1). These values are in the expected range for compounds with one DOTA-

complexed gadolinium (10). The relaxivity was not further decreasing in a competitive 

assay with free DTPA indicating the complete removal of unspecifically bound Gd3+ 

during the additional purification steps. 

3.2.4 Determining the concentration and relaxivity of PNA conjugated contrast 
agents  

Because the final products were purified by HPLC using 0.1%TFA in H2O/ACN as 

eluent, there is as well a high probability for the PNA conjugated contrast agents that 

TFA interacts with positive charged amino residues as the counter-anions. Thus, the real 

concentrations of CPP conjugates were determined by UV-Vis absorption of the 

fluorescence mioety.  

 

Table 4. Determination of the concentration of PNA conjugated MR CAs 

Contrast agent Calculated 

concentration (mM) 

Measured 

concentration (mM) 

Purity (%) 

dsRed CA 5 2.941 59 

Nonsense CA 5 3.383 67 

 

Relaxivity measurements were acquired by taking the slope of a plot of R1 versus the 

determined concentration. Relaxivity measurements of contrast agents were performed in 

the concentration range of 0 – 30 µM at 300 MHz at room temperature (~21˚C). Contrast 

agents were diluted in water and 1ml aliquots were transferred to Eppendorf cups. The 

observed relaxivities of dsRed contrast agent and nonsense contrast agent in water were 

3.3 and 5.3 (mM-1sec-1), respectively. These values are in the expected range for 

compounds with one DOTA-complexed gadolinium.  

 

Table 5. Relaxivity of PNA conjugated contrast agents 

Contrast agent PNA sequence Relaxivity (mM-1 s-1) 

dsRed CA tcc gtg aac ggc 3.4 

Nonsense CA gtt cag agt cta 5.3 
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3.2.5 In vitro fluorescence studies on NIH/3T3 embryonic mouse fibroblasts 

To determine whether these synthesized PNA-peptide conjugates are internalized into 

cells and to evaluate the distribution of the compounds in subcellular compartments, 

fluorescence spectroscopy and fluorescence microscopic studies were performed with 

both contrast agents at first on NIH/3T3 embryonic mouse fibroblasts. The NIH/3T3 cells 

are not containing any target molecule for both PNA conjugated contrast agents.  

The results of fluorescence spectroscopy (Figure 22) showed that both contrast agents 

could enter efficiently into 3T3 cells in a concentration dependent manner from 0.5 µM to 

9.0 µM. At concentrations higher than 5.0 µM, the cytotoxicity of these compounds 

increased dramatically (data not shown). No significant differences between the two 

compounds were observable, as expected for a cell line without any target mRNA. 

Therefore, further results were shown solely of the dsRed CA and at concentrations 

below 5.0 µM. 

 

 
Figure 22. Cell internalization of dsRed and nonsense CA into 3T3 cells 

measured by fluorescence spectroscopy. Cells were incubated with contrast 

agents at various concentrations in complete medium for 18 h. External 

fluorescence was quenched with trypan blue and subsequent washes with 

HBSS; Values are means ± SEM, n=3-10 with six replicates each. 
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Figure 23. Fluorescence microscopic images displaying the cellular localization 

of dsRed CA in 3T3 cells  

Cells were incubated with dsRed CA at 5 µM in complete medium for 18 h, cell 

nuclei were counterstained by Hoechst 33342 and external fluorescence was 

quenched with trypan blue and subsequent washes with HBSS. 

dsRed CA: green (FITC fluorescence); nuclei: blue (Hoechst 33342); bar 

represents 20 µm. 

 

Fluorescence microscopy imaging (Figure 23) demonstrated that the dsRed CA (green) 

could enter cells and was located predominatly in vesicles around the nucleus (blue) 

whereas no uptake into the nucleus was observed. The vesicular distribution indicates a 

predominantly endosomal uptake mechanism of dsRed CA. We observed only few cells 

with low cytosolic fluorescence at higher concentrations might be indicating a slow 

release from these endocytic vesicles in our model system.  
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Figure 24. CA fluorescence (left Y-axis) and cell number (right Y-axis) in 3T3 

cells after incubation with 5 µM of Gd-DOTA-Lys(FITC)-D-Tat57-49 and Gd-DOTA-

Lys(FITC)-PNA-D-Tat57-49 for 18 hrs. Values are means ± SEM (n=3). 

 

The intracellular uptake of Gd-DOTA-Lys(FITC)-PNA-D-Tat57-49, Gd-DOTA-

Lys(FITC)-D-Tat57-49 and Gd-DOTA-Lys(FITC)-PNA were compared to visualize the 

influence of the contrast agent structure on the internalization. Whereas Gd-DOTA-

Lys(FITC)-PNA without CPP was very poorly internalized (data not shown), Gd-DOTA-

Lys(FITC)-D-Tat57-49 showed efficient intracellular uptake at concentration of 20-30µM 

(see chapter 2). However, Gd-DOTA-Lys(FITC)-PNA-D-Tat57-49 could label cells very 

efficiently allowed at concentrations as low as 0.5-5 µM. Figure 24 shows the comparison 

of the fluorescence spectroscopic results for the incubation of 3T3 cells with 5 µM of Gd-

DOTA-Lys(FITC)-D-Tat57-49 and Gd-DOTA-Lys(FITC)-PNA-D-Tat57-49, respectively. 

The PNA-CPP conjugate showed much better internalization compared to the only CPP 

coupled contrast agent, but accompanied by an increased cytotoxicity indicated by the 

reduced cell number. These results suggest that there should be a synergistic effect 

between CPP and PNA sequence. Gd-DOTA-Lys(FITC)-PNA-D-Tat57-49 is the best 

intracellular MR contrast agent in all our synthesized probes until now. 
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3.2.6 In vitro MR studies on NIH/3T3 embryonic mouse fibroblasts 

Cellular uptake of the PNA conjugated contrast agents was also confirmed by in vitro 

MR studies at 300 MHz. After loading with dsRed CA, the relaxation rate R1,cell inside 

3T3 cells (Figure 25) increased linearly with the applied (extracellular) labeling 

concentration of contrast agent (from 0.1 µM to 1.0 µM). Up to now, we are still 

developing a method to quantify the exact concentration of gadolinium inside the cells 

after the labeling period of 18 h. Thus, in a first approach the apparent “intracellular” 

relaxation rates are plotted against the extracellularly applied concentration. 

Nevertheless, the measured intracellular relaxation rate increased significantly after 

loading with 0.5 µM and 1 µM dsRed contrast agent. Contrast enhancement in T1-

weighted MR images of cells was also observable at these low concentrations, 

exemplarily is shown for a single experiment in Figure 26. The results of the MR 

measurements are summarized in Table 6, also illustrating that already at 0.5 µM applied 

concentration, a statistically significant increase of the intracellular relaxation rate R1,cell 

and thus a contrast enhancement was detectable. No significant effect on T2 was 

observable at these low concentrations (data not show). 

 

 
Figure 25. Relaxation rate R1,cell in 3T3 cells after loading with dsRed CA. After 

treated with dsRed CA for 18 h, cells were trypsinized, centrifuged and re-

suspended in 1.5 mL Eppendorf tubes at 1 x 107 cells/500 µL in complete DMEM 

for MR studies. The measured relaxation rates were plotted vs. the extracellularly 

applied labeling concentration. Control: cells incubated with culture medium 

without CA. 
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Figure 26. T1 weighted MR images of 3T3 cells after loading with dsRed CA for 

18 h. Sagittal images were obtained with a field of view 14 x 6.9 cm2, matrix 256 

x 256, slice thickness 2 mm, SW 100 kHz, TE 9.2 ms, TR 1500 ms, 26 averages 

for T1 weighted images. Control: cells incubated with culture medium without CA. 

 

 

Table 6. Intracellular relaxation rates R1,cell in 3T3 cells after loading with dsRed 

CA for 18 h. 

Labeling concentration [µM] 0.5 1.0 2.5 

R1,cell [% of control] 112 ± 0.5** 132 ± 3.7** 144 ± 1.9** 

n 3 3 2 

 

Values are means ± SEM; **: p<0.01 statistically different as compared to control 

(100 ± 0.6 %), ANOVA with Dunnett´s post test; n: number of experiments, each 

with two replicates.  

 

3.2.7 Determination of intracellular Gd3+ content  

In order to determine the real intracellular relaxivity of the antisense PNA contrast agent, 

the content of probe should be measured via Gd(III). According to the literature (32), the 

intracellular Gd3+ content can be determined by a MR method: After incubated with MR 
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contrast agent, the cells were recovered enzymatically with trypsin/EDTA mixture as was 

usually done for cell detachment. Then the collected cells were treated with 6M HCl at 

120˚C overnight. Upon this treatment, all Gd can be solubilized as free aquo-ion. By 

measuring the relaxation rates of these solutions by MR and in comparison to a standard 

curve, it is possible to determine its concentration.  

At first, we made the parallel standard curves with or without cells: For preparing the 

standard curve in solution without cells, different concentrations of GdCl3 diluted in 6M 

HCl and heated at 120˚C overnight (Figure 27). For preparing the standard curve in 

solution with cells, different concentrations of GdCl3 were mixed with 107 cells and 

treated with 12M HCl (V/V=1:1, the final concentration of HCl is 6M) at 120˚C 

overnight. Afterwards, the relaxation rate were measured by MR. The resulting standard 

curves were made by plotting R1 versus concentration (Figure 28).  
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Figure 27. Gd(III) relaxation standard curve in 6M HCl.  

Different concentrations of GdCl3 in 6M HCl were prepared and heated at 120˚C 

overnight. MR measurement was performed at 300MHz. 
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Figure 28. Gd(III) relaxation standard curve with cell background (6M HCl in 

medium). Different concentrations of GdCl3 in the mixture of 107 cells were 

prepared and heated at 120˚C overnight. MR measurement was performed at 

300MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Gd(III) relaxation standard curve at low concentration (0.5µM-50µM) 

with cell background (6M HCl in medium). Different concentrations of GdCl3 in 

the mixture of 107 cells with 6M HCl were prepared and heated at 120˚C 

overnight. MR measurement was performed at 300MHz. 
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Comparing the standard curves, there is a significant difference between the relaxation 

value of Gd(III) in water or in cell medium. Especially at low concentrations of 0.5 µM-5 

µM (Figure 29), the relaxivity for low Gd(III) concentrations in cell lysates (33.7 mM-1 s-

1) is almost three times higher than that of Gd(III) in aqueous 6M HCl (11.2 mM-1 s-1).  

The relaxation rates for the labeled cells were located in this low range. If the 

intracellular content of Gd(III) was calculated according the relaxivity of Gd(III) in 6M 

HCl, the resulting value were unreasonably high.  

Thus, the intracellular content of Gd(III) should be calculated according to the relaxivity 

of Gd(III) in cell lysates. The resulting intracellular Gd(III) contents were in the range of 

10-9~10-8 mol Gd/107 cells, which is in agreement with the values from literature (82). 

The volume of 3T3 fibroblasts can be estimated by a centrifuge measurement in special 

tubes. The resulting volume of 1 x 107 NIH/3T3 mouse fibroblasts was estimated to 

approx 28 µl. Thus, we can determine the real intracellular relaxivity of dsRed CA by 

taking the slope of a plot of R1 versus intracellular contrast agent concentration. The 

resulting intracellular relaxivity of dsRed CA is 2.5 ± 0.3 mM-1 s-1 (Figure 30).  

 

 
 

Figure 30. Determination of intracellular relaxivity of dsRed CA by MR 

measurements of cell lysates and Gd standards. (Estimated volume of 1 x 107 

3T3 fibroblasts: 28±2 µl). Dashed lines show the 95% confidence interval.  
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3.2.8 In vitro test of antisense PNA hybridizing with target sequence 

An in vitro binding assay was performed to demonstrate the antisense specificity of 

dsRed contrast agent according to a protocol supported by Corning Costar Company. A 

target oligodeoxynucleotide sequence was immobilized in DNA-BINDTM 96-well plates. 

Then dsRed CA and nonsense CA were hybridized with the immobilized oligo-DNA 

sequence (Figure 31). The amount of hybridized contrast agent was determined by an 

ELISA assay, which can quantify the concentration of FITC by an antibody (86).  This in 

vitro PNA-DNA binding assay confirmed that there is a significant higher specificity of 

the antisense dsRed CA in comparison to its nonsense counterpart (Figure 32). However, 

there are several positively charged amino acid residues in the D-Tat peptide which was 

conjugated to the PNA fragment. These positively charged amino acid residues can bind 

with the negatively charged backbone of DNA. Therefore, some nonspecific 

hybridization between the nonsense CA and the target sequence was observable. This 

nonspecific binding would be reduced dramatically, and specific binding would be 

increased significantly if the non-complementary sequence in the target oligo-DNA 

would be shorter (data not shown).  

 

 

 

 

 

 

 

 

 

 

Figure 31.  Schematic structure of antisense dsRed contrast agent hybrid with 

an immobilized artificial target sequence. 
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Figure 32. In vitro hybridization efficacy of the PNA-CPP conjugated CAs with an 

artificial DNA target sequence 

3.2.9 In vitro biological studies on a transgenic cell line expressing dsRed 

In order to study the antisense specificity of the dsRed contrast agent in cells, a transgenic 

dsRed expressing cell line (mouse fibrosarcoma cell line expressing dsRed gene was 

kindly provided by M. Erieson, University of Minnesota) containing the target mRNA 

was incubated with dsRed CA and nonsense CA. Fluorescence studies demonstrated that 

both dsRed CA and nonsense CA enter the transgenic cells efficiently. A significantly 

higher contrast enhancement could be observed at labeling concentrations more than 1 

µM.  However, no specific accumulation of the antisense dsRed CA in comparison to the 

non-sense CA could be detected in the target containing dsRed cells. 

Fluorescence microscopy imaging of these cells showed an exclusive endosomal 

localization of the contrast agent (Figure 33). Since the target mRNA is located in the 

cytosol, the vesicular entrapment prevents a specific interaction between the CA and the 

target. Thus, further modifications of the contrast agents are required to achieve the 

release from endosomes or a direct uptake into the cytosol. 
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Figure 33. Endosomal localization of dsRed CA in dsRed expressing cells 

(Contrast agent is trapped inside the endosomes and cannot interact with target. 

dsRed CA: green (FITC fluorescence); nuclei: blue (Hoechst 33342); dsRed 

protein: red; bar represents 20 µm.) 
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3. 3 Discussion 

3.3.1 PNA synthesis and cleavage 

This chapter described the design and synthesis of two PNA-CPP conjugated MR 

contrast agents: one is an antisense contrast agent to mRNA of dsRed; while the other 

one is a nonsense contrast agent as control. They were synthesized by a continuous solid 

phase synthesis scheme. Synthetically, PNAs incorporate repetitive elements. Therefore, 

PNA synthesis is comparible to the peptide synthesis. Specifically, protecting group 

strategies, solid phase synthesis protocols, de-protection methods and purification 

procedures developed for peptide synthesis might be applicable to the synthesis of PNAs 

and their analogs with only slight modifications. However, some key notes should be 

emphasized in the synthesis of PNAs:   

1) The chemical structures of PNA monomers are much more complex than amino acid 

residues. In order to avoid interactions, such as steric hindrance effect, between 

growing PNA chains that can terminate the synthesis, we started the synthesis by 

downloading the capacity of the resin. Since the Wang resin, which is commercially 

available from Novabiochem Company, usually have high substitutions (0.5-

0.6mmol/g), it is necessary to download their substitutions to the range between 0.2-

0.3mmol/g. Kilk et al reported that the solid support should have substitution of 

between 0.01 and 0.2 mmol/g (67), and a lysine in the C-terminus of PNA improves 

PNA solubility and thus is more suitable for resin downloading than PNA monomers. 

In our synthesis scheme, D-tat peptide is synthesized on resin at first. Since Lysine is 

the second amino residue from the C-terminus of D-Tat peptide, we also downloaded 

the substitution of Wang resin by Lysine. The standard PNA EXPEDITETM column 

supplied by Applied Biosystems usually contains 2µmol per column. This is too less 

for us to be applied in our synthesis scheme. Because MRI is less sensible than 

radiolabelling imaging method, we need higher amounts for MR measurements. 

Thus, the PNA-CPP conjugated MR contrast agents should be synthesized at about 

20-30 µmol scales to ensure enough products for MR measurements. Therefore, we 

determined to synthesize PNA fragments manually on Wang resin with substitutions 

of between 0.2-0.3mmol/g. 
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2) Unlike peptides, upon Fmoc deprotection, PNA can undergo an alkaline pH-

dependent N-acyl transfer rearrangement that converts the primary N-terminus into an 

unreactive amide (87). Therefore, piperidine reactions should be carried out in precise 

controlled cycles when PNAs were synthesized manually. During our PNA synthesis 

procedure, Fmoc was deprotected by 20% piperidine in DMF in 2 x 5 min; while in 

peptide synthesis, 2 x 10 min is usually performed in Fmoc deprotection. Gallazzi et 

al. (88) suggested deprotecting Fmoc in precise 1min by 20% piperidine in DMF two 

cycles. The PNA synthesis protocol supplied by Applied Biosystems (89) suggests 

the deprotection of the Fmoc group by 20% piperidine in DMF in 2 x 2.5 min. 

However, when we tried this procedure, the Fmoc group was not completely removed 

in 2.5 min. (After aliquots of the resin-bound PNAs being cleaved and Bhoc-

deprotected with H2O/TIS/m-Cresol/ TFA (2.5:2.5:5:90) for 4 h, the products were 

checked by ESI-MS, and some of Fmoc protected products still could be observed). 

This difference might be due to the different solid supports. Wang resin is applied in 

our PNA synthesis scheme, while Fmoc-XAL PEG PS resin was used by Gallazzi and 

Applied Biosystems. Therefore, we adjusted the deprotection scheme to 2 x 5min, 

and the desired sequences could be prepared in their entirety.  

3) The exocyclic amines of the PNA monomers (A, C and G) are protected by the 

(Bhoc) protecting group. The Bhoc group can be removed with TFA in the presence 

of the scavenger m-Cresol. Thus, the cleavage cocktail for PNA is different from the 

cleavage condition for peptide. During our synthesis procedures, the cleavage cocktail 

for PNA is H2O/TIS/m-Cresol/TFA (2.5:2.5:5:90), and the cleavage condition for 

peptide is H2O/TIS/TFA (2.5:2.5:95). Actually, the cleavage cocktail of 

H2O/TIS/TFA (2.5:2.5:95) was tried in our preliminary PNA test synthesis 

experiments. It could remove the Bhoc group too. However, the water solubility of 

the product is not as good as that of the product cleft by the m-Cresol containing 

cocktail.  
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3.3.2 Determining the relaxivity of PNA conjugated contrast agents in solution and 
in labeled cells.  

The observed relaxivities of dsRed CA and nonsense contrast agents in water were 3.3 

and 5.3 (mM-1sec-1), respectively. To our best knowledge, there was no reported 

relaxivity value for the PNA-CPP conjugated MR contrast agent. Therefore, compare to 

the relaxivity of Gd(III)-DOTA complex (r1 = 4.2 mM-1sec-1 at 20MHz, 25˚C) (10), the 

observed relaxivities of dsRed CA and nonsense contrast agents are in the expected range 

for compounds with one DOTA-complexed gadolinium. However, there are some 

differences in the value of relaxivity from batch to batch of the same PNA conjugated 

Gd(III) chelates (as was observed from the contrast agents without PNA in chapter 2). 

This might be because the TFA bind with positive charged amino residue and the 

exocyclic amines of the PNA monomers as the counter-anions. The real concentration of 

these MR contrast agent were determine by the UV-Vis absorption of FITC; and 

relaxivity measurements were acquired by taking the slope of a plot of R1 versus 

concentration. Although every molecule of the CPP conjugated ligand includes one FITC 

and one ligand group, the containing of Gd(III) may be a little different. There is still 

possibility that some of the ligands have not completely chelated with Gd(III) or there 

might be some of free Gd(III) still remaining in the PNA-CPP conjugate, considering 

many donor atoms on the peptide which might offer alternative coordination sites to the 

lanthanide ion (please see the discussion in chapter 2).  

3.3.3 Intracellular uptake of PNA conjugated MR contrast agent 

Antisense PNA conjugated with different cell penetrating peptides (such as PTD-4 or 

poly-D-lysine) and radiometal complexes (such as 111In, 90Y or 64Cu) has been reported as 

nuclear imaging probes (PET and SPECT) (61, 62). The utilization of such conjugates as 

contrast agents for MR imaging is very limited, probably because the accumulation of the 

PNA imaging probes in the targeting cells could barely reach the MR detectable level. 

Heckl et al. (64) developed a MR contrast agent combining a Gd3+-complex with 

antisense PNA targeting the c-myc mRNA and the Antennapedia peptide. With this 

contrast agent, an increase in MR signal intensity and prolonged retention in tumor cells 

highly expressing this gene was observed in vitro and in vivo. But the applied 

concentration of contrast agent (0.5 mM) in that study was about 1000x higher compared 
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to the lowest concentration of dsRed CA in our experiments which is showing a 

significant increase in relaxation rate R1,cell within 3T3 cells. The difference is likely 

attributable to the different cell penetrating peptides and the Gd3+ moiety used.  Thus, our 

synthesized dsRed contrast agent has an excellent potential to be used as targeted contrast 

agent for MR imaging in cells expressing the dsRed gene.  

In order to demonstrate the antisense specificity of dsRed contrast agent, an in vitro 

binding assay was performed. After dsRed CA and nonsense CA were hybridized with 

the immobilized target oligo-DNA sequence, there is a significant higher specificity of 

the antisense dsRed CA in comparison to its nonsense counterpart. These results 

demonstrate that the antisense dsRed CA has the potential to bind specifically with its 

complementary target sequence.  

Further studies on a transgenic cell line have been performed in order to prove the 

specific accumulation in cells by targeting the mRNA. A significantly higher contrast 

enhancement could be observed at labeling concentrations above 1 µM.  However, no 

specific accumulation of the antisense dsRed CA in comparison to the non-sense CA 

could be detected in the target containing dsRed cells. Fluorescence microscopy imaging 

of these cells showed an exclusive endosomal localization of the contrast agent. Indeed, 

many studies have reported that cellular uptake of most CPP conjugates (such as Tat 

peptide or polyarginine) occurs mainly through endocytotic pathways, and most CPP 

conjugate is retained in the endosomal compartments of the cell (37). Since the target 

mRNA is located in the cytosol, the vesicular entrapment prevents a specific interaction 

between the contrast agent and the target. Thus, endosomal trapping and escape of CPP 

conjugates is one of the main rate-limiting steps which substantially limit the efficacy of 

CPP-mediated delivery of cargoes such as PNA. Therefore, further modifications of the 

contrast agents are required to achieve the release from endosomes or a direct uptake into 

the cytosol.  

Treatments with endosome disruption agents, such as chloroquine, Ca2+, sucrose or 

photosensitizers, facilitate the escape of CPP conjugates from endosomal compartments 

and their release into the cytoplasm might improve the antisense effects by two orders of 

magnitude.  Nielsen et al (90) recently summarized these protocols of CPP-mediated, 

PNA delivery-assisted endosome-disruption agents. The protocols provide efficient and 
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fairly simple methods for the cytosolic and/or nucleic internalization of antisense PNA in 

vitro. However, these protocols are unlikely to be applied in vivo. In 2006, Takeuchi et al. 

(91) reported some interesting results about the direct and rapid cytosolic delivery using 

cell penetrating peptides conjugate and pyrenebutyrate. The addition of pyrenebutyrate 

resulted in direct membrane translocation of the peptides yielding in diffuse cytosolic 

distribution within a few minutes. However, there is a limitation in this approach since it 

is not applicable in the presence of a medium or serum. The competition with various 

ionic species in the medium would hamper the interaction of the arginine with 

pyrenebutyrate.  

Additional studies are necessary for developing CPPs with better penetration properties, 

especially directly into the cytoplasmic compartment. One of the strategies is to 

incorporate endosomolytic peptides into delivery constructs (92).  Generally these are 

Asp- and Glu-rich peptides, for example, the so-called GALA peptide, that selectively 

adopt amphipathic structures when the acidic residues become protonated at the low pH 

in late endosomes, leading to membrane rupture and release to the cytoplasm. 

Polycationic polyethyleneimine (PEI) based delivery systems appear to possess intrinsic 

endosomolytic activity, although the mechanistic reasons are not well understood (35). 

The use of an influenza virus hemaglutinin derived pH-sensitive fusogenic peptides that 

destabilize lipid membranes at low pH has also been shown to ameliorate macropinosome 

entrapment of Tat protein fusion constructs (93).  

Referred from these studies, we now try to modify D-Tat49-57 with pyrenebutyrate or 

endosomolytic peptide GALA to achieve the cytosolic delivery.  A series of novel 

compounds, which covalently link Tat peptide with one or more copy of pyrenebutyrate 

residues or GALA peptide, has been designed and synthesized; further screening tests are 

under progress.   

The fact that the pAntp CPP vector can enhance endosomal escape of cationic 

polymethacrylate-DNA complexes indicates that at least some CPPs also possess innate 

endosomolytic activity (94). Some members of our group are currently working on 

developing new and novel CPPs towards achieving this goal. Their preliminary results 

demonstrate that leakage from endosomes or a direct uptake into the cytoplasm is 

achievable (Deepti Jha, et al. personal communication).  



Chapter 3. Synthesis of PNA Conjugates 

 65

3.3.3 Antisense imaging by MRI 

As summarized by Weissleder (63), the major prerequisites for visualizing specific 

molecules or molecular mechanisms in vivo include: i) the availability of stable, nontoxic 

and high-affinity probes; ii) the ability of these probes to overcome biological delivery 

barriers; iii) the use of amplification strategies to increase the signal to background ratio; 

and iv) the availability of fast and high-resolution imaging techniques. Regarding these 

prerequisites, our proposal to image mRNA transcription by MRI using antisense PNA-

CPP conjugated MR contrast agents, is rational:  

First, MRI offers excellent three-dimensional spatial resolution, complete body coverage, 

and the opportunity to determine additional physiologic parameters noninvasively which 

has the ability to combine both functional and morphological imaging (2, 3). All these 

characterize MRI to contain considerable potential for molecular imaging.  

Second, PNA is a leading agent among ‘third generation’ antisense and antigene agents. 

It is extremely stable in biological fluids.  PNA oligomers with mixed bases sequences 

form duplexes (by Watson-Crick base-pairing) with complementary DNA and RNA with 

higher thermal stability than corresponding DNA-DNA or DNA-RNA complexes and 

without sacrificing sequence specificity (59). Actually, our PNA-DNA binding assay 

confirmed that there is a significant higher specificity of the dsRed antisense contrast 

agent in comparison to its nonsense counterpart. 

Third, our synthesized PNA conjugated contrast agents are very efficient to overcome 

cell membrane. A subtoxic labeling concentration of 0.5 µM is sufficient to enhance MR 

imaging contrast significantly.  

Therefore, we are making considerable progress in the development of antisense MR 

contrast agent, despite its obvious complexities. Unfortunately, antisense technology is 

proving to be much more complicated and challenging than was expected. There are still 

two main concerns regarding the antisense MR imaging: namely that the mechanism of 

localization may not be suitable for antisense interaction and that the degree of 

accumulation will be impractically low for imaging. The first concern about the 

localization of contrast agent has been discussed earlier (in the discussion of the 

intracellular uptake of PNA conjugated MR contrast agent), and our group is currently 

working on developing novel CPPs towards achieving this goal. As to the second 
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concern, there are some inspiring studies about the specific accumulation of antisense 

probes in recent years. Hnatowich et al. (95) reported the statistically significantly higher 

accumulations of antisense DNAs in cancer cells compared to control DNAs. From cell 

culture results such as using the number of cells per well and the known specific activity 

of the radiolabeled DNA, it may be calculated that the specific accumulation (i.e. 

antisense minus control DNA) is approximately 105-106 antisense DNA molecules per 

cell after 10-24hrs of incubation (and corresponds to an increase in concentration of 

antisense oligomers from nM in the media to mM concentration in the cytoplasm). These 

specific accumulations are many orders of magnitude over the steady-state target mRNA 

concentrations that are usually assumed to be in the range of 1-1000 copies per cell. One 

approach that may result in increased specific accumulation is to consider the mRNA 

target. It has been suggested that the antisense DNA may be acting in some manner to 

preserve its target mRNA (e.g. PNA do not activate RNAse H degradation of mRNA 

(59)). If so, the mRNA turnover rate would be more important for successful targeting 

than the steady-state mRNA level as an increased transcription rate would increase the 

cellular concentration of the target mRNA if stabilized by the antisense DNA or PNA. If 

this hypothesis is correct, an increased accumulation of antisense DNA or PNA may be 

expected as the number of target mRNAs increase while accumulations in non-target 

tissues would presumably remain unchanged.  

Very recently, Liu et al. (96) reported some very interesting results about antisense 

imaging of cerebral mRNA transcripts in live animals. They coupled SPIONs to 

phosphorothioate-modified oligo-DNA (sODN) with sequence complementary to c-fos 

and β–actin mRNA. In animals that were administered SPION-cfos and amphetamine, 

retention of the antisense probes was significantly elevated in the nucleus accumbens, 

striatum, and medial prefrontal cortex of the forebrain. Control groups that received a 

SPION conjugate with a random sequence probe showed no retention. This study 

demonstrated that SPION-sODN conjugates can detect active transcriptions of specific 

mRNA in living animals by MRI.  
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3.4. Outlook 

Antisense imaging mRNA transcription by MRI, which promises that any tissue with a 

unique gene expression can be specifically visualized in vivo, is an outstanding important 

subject in molecular imaging. If antisense imaging were to achieve even a fraction of its 

promise, the results could well lead a revolution in diagnostic medicine. It has been more 

than 10 years since the first molecular imaging with a tumor-targeting antisense radio-

probe was performed in an animal model of cancer. Progress in this area has been limited 

by formidable challenges of surmounting biological barriers to detect low concentrations 

of target mRNA. However, numerous recent advances, such as new antisense analogues, 

novel drug delivery technologies and better understanding of the antisense mechanism, 

offer a renewed anticipation that real-time, in vivo antisense imaging will be widely 

demonstrated. Further modifications of our antisense PNA conjugated MR contrast 

agents are needed to meliorate their targeting character, such as: 1) covalently link  

peptide vector with endosomolytic peptide or compounds, or developing novel CPPs to 

enhance the cytosolic delivery. 2) multistep labeling or pretargeting schemes which link a 

macromolecular contrast agent (Gd nanoparticles or dendrimers, etc) with CPP to 

increase MR contrast. Thus, the antisense PNA conjugated MR contrast agent will 

become a powerful tool for the molecular imaging of endogenous gene expression.  
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3.5 Summary  

1. Two MR contrast agents, conjugated to PNA and cell penetrating peptide, were 

synthesized by a continuous solid phase synthesis scheme and characterized by ESI-MS. 

2. The intracellular uptake was confirmed by fluorescence absorption spectroscopy, 

transmission fluorescence microscopy and MR imaging on NIH/3T3 mouse fibroblasts as 

well as on transgenic dsRed cells.  

3. Concentration-dependent uptake (most probably by endocytosis) was observed. A 

subtoxic labeling concentration of 0.5 µM is sufficient to enhance significantly MR 

imaging contrast.  

4. The intracellular content of Gd(III) was calculated according the relaxivity of Gd(III) 

in cell lysates. The resulting intracellular Gd(III) contents are at the range of 10-9~10-8 

mol Gd/107 cells. The intracellular relaxivity of dsRed CA is 2.5 ± 0.3 mM-1sec-1. 

5. An in vitro PNA-DNA binding assay confirmed that there is a significant higher 

specificity of the dsRed antisense contrast agent in comparison to its nonsense 

counterpart. 

6. Further studies on the transgenic cell line expressing the target mRNA showed a 

significantly higher contrast enhancement at labeling concentrations above 1 µM.  

However, no specific accumulation of the antisense dsRed CA in comparison to the 

nonsense CA could be detected in the target containing dsRed cells. 

7. Fluorescence microscopy studies have shown an exclusive endosomal localization of 

the contrast agents. Since the target mRNA is located in the cytosol, the vesicular 

entrapment prevents a specific interaction between the CA and the target. Thus, further 

modifications of the contrast agents are required to achieve the release from endosomes 

or a direct uptake into the cytosol. 

In conclusion, the synthesized PNA conjugated contrast agents are very efficient to label 

cells for MR as well as fluorescent imaging.  
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Chapter 4. Experimental  

4.1 General 

All reagents were HPLC or peptide synthesis grade. DMF, DCM, ACN, TFA, methanol, 

and FITC were obtained from Acros Organics (Heidelberg, Germany). All standard, 

protected Fmoc amino acid derivatives, 2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluoro-phosphate (HBTU), pre-loaded Wang resin and 1-

hydroxybenzotriazole (HOBt) were obtained from Novabiochem (Nottingham, UK). All 

Fmoc/Bhoc protected monomers and 2-(1-H-7-azabenzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HATU) for PNA synthesis were obtained from 

Applied Biosystems (Darmstadt, Germany). 1,4,7,10-tetraazacyclododecane (cyclen) was 

obtained from Strem Chemicals (Newburyport, USA). 

Analytical and semipreparative RP-HPLC was performed at room temperature on a 

Varian PrepStar Instrument (Australia) equipped with PrepStar SD-1 pump heads. UV 

absorbance was measured using a ProStar 335 photodiode array detector at 260 nm. A 

Varian Polaris C18-Ether column (4.6 × 250 mm, particle size 5 µm, particle pore 

diameter 100 Å) was used for analytical RP-HPLC. For semipreparative HPLC, a Varian 

Polaris C18-Ether column (21.2 × 250 mm, 5 µm, 100 Å) was used.  

CPP and PNA conjugates were analyzed using a linear gradient of water (0.1% TFA) 

(solvent A)/ACN (0.1% TFA) (solvent B) from 10% B to 90% B within 30 min (flow 

rate: 1 ml/min). 

CPP and PNA conjugates were purified by semi-preparative RP-HPLC. Gradient systems 

were adjusted according to the elution profiles and peak profiles obtained from the 

analytical HPLC chromatograms. 

ESI-MS was performed on ion trap SL 1100 system (Agilent, Germany). 

 

4.2 Synthesis of CPP conjugated, dual-labeled Gd(III)-based MR contrast agents 

Peptide synthesis was performed by solid-phase Fmoc/tBu-chemistry using a Heidolph 

Synthesis 1 synthesizer (Schwabach, Germany). Wang resin was used as a solid support 

at a substitution level of 0.50-0.60 mmol/g. The side chain of Arg was Pbf protected, Gln 
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was Trt protected, and Tyr was tBu protected. Fmoc-protected amino acids (four-fold 

excess) were activated in situ by HBTU/HOBt. The Fmoc protecting group was removed 

by 20% piperidine in DMF. The resin was washed with DMF after each coupling and 

deprotection step. All chemical steps were followed by a Kaiser test on the resin (97), and 

the resulting colorimetric reaction indicated the presence of free primary amines after 

Fmoc deprotection and the absence of primary amines after the coupling steps. 

 

4.2.1 Gd-DTPA-Lys(FITC)-L-Tat49-57-OH (1) 

L-Tat49-57 peptide synthesis was performed manually by solid-phase Fmoc/tBu-chemistry 

using a Heidolph Synthesis 1 synthesizer. Polystyrene-based Wang resin containing an 

Fmoc protected arginine residue (0.2g, 0.58 mmol/g) was swolled in DCM for 30 min 

and washed four times with peptide synthesis grade DMF. The resin was treated twice 

with a solution of 20% piperidine (3mL) in DMF for 10 min, and was washed four times 

with DMF. In a separate vial, Fmoc protected amino acid (4eq), HBTU (3.6eq), HOBt 

(3.6eq) were dissolved in DMF (2mL), and DIEA (8eq) was added. The resulting solution 

was added to the resin and allowed to react under N2 for 30 min. The resin was drained 

and rinsed for times with DMF. This procedure was repeated until a Fmoc protected 

Tat49-57 peptide (amino sequence: RKKRRQRRR) bound to Wang resin was obtained. An 

aliquot of the resin-bound peptide was deprotected the Fmoc group with 20% piperidine, 

and cleaved with H2O/TIS/TFA; ESI-MS analysis was performed to confirm that the 

observed masses m/z = 670.5 ((M+2H)2+), 447.5 ((M+3H)3+), 335.9 ((M+4H)4+), and 

268.9 ((M+5H)5+) were consistent with the calculated molecular weight (1339.6) of the 

Tat peptide.  

The resin-bound peptide was deprotected with piperidine, coupled with one Fmoc-

Lys(Dde)-OH residue. After additional deprotection with piperidine, DTPA dianhydride 

(4eq) was coupled on the α-NH2 group of Lys under base catalysis of DIEA (8eq). The 

resin was drained and rinsed four times with DMF. An aliquot of the resin-bound DTPA-

Lys(Dde)-Tat was cleaved with H2O/TIS/TFA; ESI-MS analysis was performed to 

confirm that the observed masses m/z = 1004.6 ((M+2H)2+), 670.0 ((M+3H)3+) were 

consistent with the calculated molecular weight (2007.31) of the DTPA-Lys(Dde)-Tat-

OH. 
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The resin-bound DTPA-Lys(Dde)-Tat was treated twice with hydrazine hydrate (2% in 

DMF, 2 min) to remove the Dde group. Then FITC was reacted with the ε-NH2 group of 

Lys (resin:FITC:DIEA= 1:4:8) within 7 hours. The solvent was removed and the resin 

was washed with DMF, DCM and methanol alternatively four times. After dried under 

vacuum, DTPA-Lys(FITC)-L-Tat-OH was cleaved off the resin using TFA/TIS/H2O 

(95:2.5:2.5, v/v/v). Crude products were precipitated by adding cold MTBE. The 

precipitated product was collected by centrifugation and exposed to the TFA cleavage 

cocktail (TFA/TIS/H2O (95:2.5:2.5, v/v/v)) for 10h. After precipitated again in cold 

MTBE, the product was collected by centrifugation and dissolved in tBuOH/H2O (4:1, 

v/v) and lyophilized. The sample was analyzed on an analytical column with detection at 

UV 218nm, using a water (0.1% TFA) (solvent A)/ACN (0.1% TFA) (solvent B) gradient 

from 10% B to 90% B within 30 min (flow rate: 1 ml/min). And then, DTPA-Lys(FITC)-

L-Tat-OH was purified by semi-preparative RP-HPLC. Gradient systems were adjusted 

according to the elution profiles and peak profiles obtained from the analytical HPLC 

chromatograms. The ligand DTPA-Lys(FITC)-L-Tat49-57-OH was characterized by ESI-

MS.  Detected molecular ions at m/z = 1117.0 ((M+2H)2+), 745.1 ((M+3H)3+), 559.1 

((M+4H)4+), and 461.7 ((M+5H)5+) were consistent with the calculated mass of the 

desired product (2232.13). 

The purified product was dissolved in 5 mL H2O, one equivalent of GdCl3.6H2O was 

added, and the pH was adjusted to 6.5 with 1N NaOH. The reaction mixture was stirred 

at room temperature for 24h. The pH was periodically checked and adjusted to 6.0-7.0 

using a solution of 1N NaOH and 1N HCl as needed. The mixtures were purified first by 

HPLC using a water (0.05% TFA) (solvent A)/ACN (0.05% TFA) (solvent B) gradient to 

separate the unstable bound Gd3+. Afterwards, the product was dialyzed (Float-A-Lyzer, 

cellulose ester membranes, MWCO: 1,000; Spectrum Laboratories, Inc.) to remove 

inorganic impurities. The solution was lyophilized and yellow to orange solids were 

obtained. The absence of free Gd3+ was checked with xylenol orange indicator. Finally, 

the product Gd-DTPA-Lys(FITC)-L-Tat-OH (1) was characterized by ESI-MS. Detected 

molecular ions at m/z = 796.6 ((M+3H)3+), 597.4 ((M+4H)4+), 478.3 ((M+5H)5+), and 

398.9 ((M+6H)6+) were consistent with the calculated mass of the desired product 

(2385.02) (Figure 34). 



Chapter 4. Experimental  

72  

HN

O

O

OHOHO

NH

C S

H
C C

O

CH2

CH2

CH2

CH2

NH

H
N CHC

CH2

O

CH2

CH2

NH
C
NH2

NH

H
N CHC

CH2

O

CH2

CH2

NH
C
NH2

NH

H
N CHC

CH2

O

CH2

CH2

NH
C
NH2

NH

OHN
H

CHC
CH2

O

CH2

C
NH2

O

H
N CHC

CH2

O

CH2

CH2

CH2

NH2

N
H

CHC
CH2

O

CH2

CH2

NH
C
NH2

NH

H
N CHC

CH2

O

CH2

CH2

CH2

NH2

H
N CHC

CH2

O

CH2

CH2

NH
C
NH2

NH

N
H

CHC
CH2

O

CH2

CH2

NH
C
NH2

NH

O

N

N
N

O O

O

O

O

Gd

O

O
O

 
 

Figure 34. Chemical structure of Gd-DTPA-Lys(FITC)-L-Tat-OH (1) 

4.2.2 Gd-DTPA-Lys(FITC)-D-Tat57-49-OH (2)  

2 was synthesized with the same synthesis scheme as 1, substituting the L-form of amino 

acid residues to the D-form and reversing the amino acid sequence. Therefore the amino 

acid sequence in 2 is rrrqrrkkr. The ligand DTPA-Lys(FITC)-D-Tat57-49-OH was 

characterized by ESI-MS.  Detected molecular ions at m/z = 1117.1 ((M+2H)2+), 745.3 

((M+3H)3+), 559.0 ((M+4H)4+), and 461.5 ((M+5H)5+) were consistent with the 

calculated mass of the desired product (2232.13). 

 After chelated with Gd3+, the final product was characterized by ESI-MS also. Detected 

molecular ions at m/z = 796.3 ((M+3H)3+), 597.4 ((M+4H)4+), 478.2 ((M+5H)5+), and 

398.8 ((M+6H)6+) were consistent with the calculated mass of the desired product 

(2385.02) (Figure 35). 
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Figure 35. Chemical structure of Gd-DTPA-Lys(FITC)-D-Tat57-49-OH (2) 

4.2.3 Gd-DTPA-Lys(FITC)-Orn-D-Tat57-49-OH (3)  

3 was synthesized with the same synthesis scheme as 2, substituting the amino acid 

residue Gln by Orn. Therefore the amino acid sequence in 3 is rrrorrkkr. The ligand 

DTPA-Lys(FITC)-Orn-D-Tat57-49-OH was characterized by ESI-MS.  Detected molecular 

ions at m/z = 740.4 ((M+3H)3+), 555.2 ((M+4H)4+), and 444.6 ((M+5H)5+) were 

consistent with the calculated mass of the desired product (2218.50).  

After chelated with Gd3+, the final product was characterized by ESI-MS also. Detected 

molecular ions at m/z = 791.5((M+3H)3+), 593.9 ((M+4H)4+), 475.3 ((M+5H)5+), and 

396.2 ((M+6H)6+) were consistent with the calculated mass of the desired product 

(2371.04) (Figure 36).  
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Figure 36. Chemical structure of Gd-DTPA-Lys(FITC)-Orn-D-Tat57-49-OH (3) 
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4.2.4 Gd-DTPA-Lys(FITC)-NLS-OH (4)  

4 was synthesized with the same synthesis scheme as 1. The amino acid sequence in 4 is 

PKKKRKV. The ligand DTPA-Lys(FITC)-NLS-OH was characterized by ESI-MS.  

Detected molecular ions at m/z = 889.1 ((M+2H)2+), 592.9 ((M+3H)3+), and 

445.2((M+4H)4+) were consistent with the calculated mass of the desired product 

(1776.02). 

 After chelated with Gd3+, the final product was characterized by ESI-MS also. Detected 

molecular ions at m/z = 964.4((M+2H)2+), 643.8 ((M+3H)3+), and 483.0 ((M+4H)4+) were 

consistent with the calculated mass of the desired product (1928.76) (Figure 37). 
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Figure 37. Chemical structure of Gd-DTPA-Lys(FITC)-NLS-OH (4) 

 

4.2.5 Gd-DTPA-Lys(FITC)-PTD-4-OH (5) 

 5 was synthesized with the same synthesis scheme as 1. The amino acid sequence in 5 is 

YARAAARQARA. The ligand DTPA-Lys(FITC)-PTD-4-OH was characterized by ESI-

MS.  Detected molecular ions at m/z = 1049.6 ((M+2H)2+), 700.2 ((M+3H)3+), 525.3 

((M+4H)4+), and 420.4 ((M+5H)5+) were consistent with the calculated mass of the 

desired product (2097.23). 

 After chelated with Gd3+, the final product was characterized by ESI-MS also. Detected 

molecular ions at m/z = 750.8 ((M+3H)3+), 563.3 ((M+4H)4+) and 450.8 ((M+5H)5+),were 

consistent with the calculated mass of the desired product (2249.81) (Figure 38). 
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Figure 38. Chemical structure of Gd-DTPA-Lys(FITC)-PTD-4-OH (5) 

4.2.6 Synthesis of 4,7,10-tricarboxymethyl-tert-butyl ester 1,4,7,10-tetraaza 
cyclododecane-1-acetate (DOTA-(tBu)3)  

Please see reference (98) for the details of synthesis DOTA-(tBu)3. In brief:   

(1)1,4,7,10-tetraazacyclododecane-1-carboxymethyl-benzylester (D1): To a stirred 

solution of 1,4,7,10-tetraazacyclododecane (cyclen) in acetonitrile  was added dropwise 

benzyl bromoacetate (0.5eq.) in acetonitrile. Reaction completed at room temperature for 

2h.  

(2)1,4,7,10-tetraazacyclododecane-4,7,10-tricarboxymethyl-tert-butylester-1-

carboxymethyl-benzylester (D2): To a stirred solution of D1 in acetonitrile K2CO3 (4eq.) 

was added followed by the dropwise addition of tert-butyl bromoacetate (4eq.) in 

acetonitrile within 30 min. Reaction completed at room temperature for 48 h.  

(3) 4,7,10-tricarboxymethyl-tert-butyl ester 1,4,7,10-tetraazacyclododecane-1-acetate 

(D3): Pd/C (10% Pd) was added to a solution of D2 in MeOH, and hydrogenation was 

conducted for 4h at normal pressure. The catalyst was removed by filtration through 

Celite. The solvent was removed by a rotary evaporator. The resulting yellowish oil was 

purified by column chromatography (silica gel, 10% MeOH in DCM) to afford the 

product D3. ESI-MS (+): calcd C28H52N4O8: m/z 572.38; found 573.3 (M+H)+; 595.3 

(M+Na)+. 
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4.2.7 Gd-DOTA-Lys(FITC)-L-Tat49-57-OH (6)  

L-Tat49-57 peptide was synthesized as described above. Then the resin-bound peptide was 

deprotected with piperidine, and coupled with one Fmoc-Lys(Dde)-OH residue. After 

deprotection with piperidine, DOTA tris(tert-butyl) ester was coupled on the α-NH2 

group of Lys (coupling condition: DOTA-(tBu)3 : HATU : DIEA = 4: 3.6: 8).  The resin 

was drained and rinsed four times with DMF. The resin-bound DTPA-Lys(Dde)-Tat was 

treated twice with hydrazine hydrate (2% in DMF, 2 min) to remove the Dde group. Then 

FITC was reacted with the ε-NH2 group of Lys (resin:FITC:DIEA= 1:4:8) within 7 hours. 

Further procedures including the cleavage, HPLC analysis and purification are 

progressed the same as for (1). The ligand DOTA-Lys(FITC)-L-Tat57-49-OH was 

characterized by ESI-MS.  Detected molecular ions at m/z = 748.6 ((M+3H)3+), 561.9 

((M+4H)4+), 449.8 ((M+5H)5+), and 374.9 ((M+6H)6+) were consistent with the 

calculated mass of the desired product (2244.56).  

The ligand DOTA-Lys(FITC)-L-Tat57-49-OH was dissolved in 5 mL H2O, one equivalent 

of GdCl3.6H2O was added, and the pH was adjusted to 6.5 with 1N NaOH. The reaction 

mixture was stirred at 60˚C for 12 h. The pH was periodically checked and adjusted to 

6.0-7.0 using a solution of 1N NaOH and 1N HCl as needed. The mixtures were purified 

first by HPLC using a water (0.05% TFA) (solvent A)/ACN (0.05% TFA) (solvent B) 

gradient to separate the unstable bound Gd3+. Afterwards, the product was dialyzed 

(Float-A-Lyzer, cellulose ester membranes, MWCO: 1,000; Spectrum Laboratories, Inc.) 

to remove inorganic impurities. The solution was lyophilized and yellow to orange solids 

were obtained. The absence of free Gd3+ was checked with xylenol orange indicator. 

After chelated with Gd3+, the final product was characterized by ESI-MS. Detected 

molecular ions at m/z = 800.1((M+3H)3+), 600.3 ((M+4H)4+), 480.6 ((M+5H)5+), and 

400.4 ((M+6H)6+) were consistent with the calculated mass of the desired product 

(2397.08) (Figure 39).  
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Figure 39. Chemical structure of Gd-DOTA-Lys(FITC)-L-Tat57-49-OH (6) 

4.2.8 Gd-DOTA-Lys(FITC)-D-Tat57-49-OH (7)  

7 was synthesized with the same synthesis scheme as 6, substituting the L-form of amino 

acid residues by the D-form and reversed the amino acid sequence. Therefore the amino 

sequence in 7 is rrrqrrkkr. The ligand DOTA-Lys(FITC)-D-Tat57-49-OH was 

characterized by ESI-MS.  Detected molecular ions at m/z = 748.6 ((M+3H)3+), 561.9 

((M+4H)4+), 449.8 ((M+5H)5+), and 374.9 ((M+6H)6+) were consistent with the 

calculated mass of the desired product (2244.56). After chelated with Gd3+, the final 

product was characterized by ESI-MS also. Detected molecular ions at m/z = 

800.7((M+3H)3+), 600.4 ((M+4H)4+), 480.5 ((M+5H)5+), and 399.3 ((M+6H)6+) were 

consistent with the calculated mass of the desired product (2397.08) (Figure 40).  
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Figure 40. Chemical structure of Gd-DOTA-Lys(FITC)-D-Tat57-49-OH (7) 
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4.2.9 Gd-DOTA-Lys(FITC)-Orn-D-Tat57-49-OH (8) 

 8 was synthesized with the same synthesis scheme as 7, substituting the amino acid 

residue Gln by Orn. Therefore the amino sequence in 8 is rrrorrkkr. The ligand DOTA-

Lys(FITC)-Orn-D-Tat57-49-OH was characterized by ESI-MS.  Detected molecular ions at 

m/z = 744.3 ((M+3H)3+), 558.3 ((M+4H)4+), and 447.0 ((M+5H)5+) were consistent with 

the calculated mass of the desired product (2229.21). After chelated with Gd3+, the final 

product was also characterized by ESI-MS. Detected molecular ions at m/z = 

796.2((M+3H)3+), 596.5 ((M+4H)4+), 477.7 ((M+5H)5+), and 398.4 ((M+6H)6+) were 

consistent with the calculated mass of the desired product (2383.10) (Figure 41).  
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Figure 41. Chemical structure of Gd-DOTA-Lys(FITC)-Orn-D-Tat57-49-OH (8) 

 

4.3 Synthesis of PNA-CPP conjugated MR contrast agents 

4.3.1 PNA synthesis  

Syntheses of dsRed-PNA (tcc gtg aac ggc) and nonsense PNA (gtt cag agt cta) were 

performed in continuous solid phase synthesis after coupling of an AEEA spacer to the 

D-Tat57-49 bound on Wang resin (Scheme-4). The synthesis protocol of D-Tat57-49 and 

coupling of AEEA spacer is the same as peptide synthesis. Fmoc/Bhoc chemistry was 

used with the following PNA monomers: Fmoc-A(Bhoc)-OH, Fmoc-C(Bhoc)-OH, 

Fmoc-G(Bhoc)-OH, and Fmoc-T-OH. Each cycle of elongation consisted of (1) Fmoc 

deprotection with 20% piperidine in DMF for 2 cycles of 5 min at room temperature, (2) 

washing with DMF, DCM, and twice with NMP for 1min each at room temperature, (3) 
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coupling using a molar ratio of resin/monomer/HATU/DIEA/2,6-lutidine = 

1.0:3.0:2.7:3.0:4.5; 3 min on preactivation followed by 30 min coupling at room 

temperature, (4) capping with 2 mL of 5% acetic anhydride/6% 2,6-lutidine in DMF for 5 

min at room temperature, and (5) washing with NMP, DCM, and twice with DMF for 1 

min each at room temperature. All chemical steps were followed by a Kaiser test on the 

resin, and the resulting colorimetric reaction indicated the presence of free primary 

amines after Fmoc deprotection and the absence of primary amines after the coupling and 

capping steps. After 3, 6, 9, and 12 cycles, aliquots of the resin-bound PNAs were 

cleaved and Bhoc-deprotected with H2O/TIS/m-Cresol/ TFA (2.5:2.5:5:90) for 4 h, and 

ESI-MS analysis was performed to confirm that the observed masses were consistent 

with the calculated molecular weights of the Fmoc-protected intermediates. 

 

 

Fmoc deprotect
20% peperidine in DMF
2x 5min

Wash 2x with DMF
          2x with DCM
          2x with NMP

Activate and couple
3 eqPNA monomer, 3 eq HATU,
3 eq DIEA, 4.5eq lutidine
 in DMF/NMP (2/1) for 30 min

Wash 4x with DMF

D-Tat peptide- Wang resin
Swelled with DCM for 30 min

Cleave and deprotect

Fmoc-AEEA-D-Tat peptide- Wang resin

Fmoc-AEEA-OH
HATU, DIEA, DMF

 
 

Scheme-4. PNA synthesis cycle 
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4.3.2 Conjugate DOTA tris(tert-butyl) ester (DOTA-(tBu)3) with PNA-CPP 
conjugates 

The resin-bound PNA-CPP conjugates were deprotected with 20% piperidine in DMF, 

and coupled with one Fmoc-Lys(Dde)-OH residue. After Fmoc deprotection with 

piperidine, DOTA tris(tert-butyl) ester was coupled on the α-NH2 group of Lys.  

4.3.3 Labeling PNA-CPP conjugate with FITC  

The resin-bound DOTA-(tBu)3-Lys(Dde)-PNA was treated with hydrazine hydrate (2% 

in DMF, 2 min) to remove the Dde group. Then FITC was reacted with the ε-NH2 group 

of Lys (resin:FITC:DIEA= 1:4:8) within 12 hours.  

The PNA-peptide conjugates were cleaved off the resin using TFA/m-Cresol/TIS/H2O 

(90:5:2.5:2.5, v/v/v). Crude products were precipitated by adding cold diethyl ether. The 

precipitated product was collected by centrifugation and re-suspended in cold diethyl 

ether. After purified by semi-preparative reversed-phase HPLC, the products were 

lyophilized to give yellow powders.  The products were characterized by ESI-MS: for 

anti-dsRed PNA conjugate, detected molecular ions at m/z = 1126.3 ((M+5H)5+), 938.9 

((M+6H)6+), 805.0 ((M+7H)7+), and 704.3 ((M+8H)8+) were consistent with the 

calculated mass of the desired product (5628.2). For nonsense PNA conjugate, detected 

molecular ions at m/z = 1129.1 ((M+5H)5+), 941.1 ((M+6H)6+), 806.9((M+7H)7+), and 

706.1 ((M+8H)8+) were consistent with the calculated mass of the desired product 

(5642.4).  

4.3.4 Chelating with gadolinium 

The PNA-CPP conjugated ligand was dissolved in 5 mL H2O, one equivalent of 

GdCl3.6H2O was added, and the pH was adjusted to 6.5 with 1N Na2CO3. The reaction 

mixture was stirred at 60˚C for 12 h. The pH was periodically checked and adjusted to 

6.0-7.0 using a solution of 1N Na2CO3 and 1N HCl as needed. The mixtures were 

purified first by HPLC using a water (0.05% TFA) (solvent A)/ACN (0.05% TFA) 

(solvent B) gradient to separate the unstable bound Gd3+. Afterwards, the reaction 

mixture was dialyzed (Float-A-Lyzer, cellulose ester membranes, MWCO: 2,000; 

Spectrum Laboratories, Inc.) to remove other impurities. The solution was lyophilized 

and yellow to orange solids were obtained. The absence of free Gd3+ was checked with 
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xylenol orange indicator and by a MR based competitive ligand assay with DTPA. The 

complexes were characterized by ESI-MS: From anti-dsRed PNA complex, detected 

molecular ions at m/z = 964.7 ((M+6H)6+), 826.9 ((M+7H)7+), 723.8 ((M+8H)8+), and 

643.1 ((M+9H)9+) were consistent with the calculated mass of the desired product 

(5782.4) (dsRed CA). For nonsense PNA complex, detected molecular ions at m/z = 

1159.7 ((M+5H)5+), 966.7 ((M+6H)6+), 829.1((M+7H)7+), and 725.7 ((M+8H)8+) were 

consistent with the calculated mass of the desired product (5796.6; nonsense CA). These 

mass spectra demonstrated that the PNA-CPP conjugates were successfully chelated with 

gadolinium.  

4.4 Cellular uptake assay 

 Experiments on cells were done in 96 well microplates by inoculation of NIH/3T3 

mouse embryonic fibroblasts (1 × 104 cells/well) cultured in Dulbecco’s Modified Eagle's 

Medium (DMEM) supplemented with 10% fetal bovine serum, 4 mM L-glutamine, 100 

µg/mL streptomycin and 100 U/mL penicillin (all purchased from Biochrom AG, 

Germany). After 24 h, cells were incubated with various concentrations of MR contrast 

agents for additional 18 h. Cells were washed with Hanks’ balanced salt solution (HBSS; 

Biochrom AG, Germany) and extracellular fluorescence was quenched by incubating 

with cold trypan blue (0.05% in PBS) for 3 min followed by repeated washes with HBSS. 

Cell-related FITC fluorescence (Ex 485 nm/Em 530 nm) was evaluated in a multiplate 

reader (BMG Labtech, Germany). Subsequently, fluorescence microscopy was performed 

with the same cells on a Zeiss Axiovert 200 M (Germany), to observe the cellular 

localization (Figure 42). Instead of the first washing, cells could be incubated with 

Bisbenzimid 33342 (Hoechst 33342), a nuclear stain, for 30 min prior to trypan blue 

quenching. This can be used as counterstaining of the cell nuclei as well as for the 

evaluation of cytotoxicity, since the fluorescence (Ex 360 nm/Em 485 nm) is proportional 

to the cell number. 

In some of the first experiments, evaluation of cytotoxicity was done by addition of 

propidium iodide (PI) and a detergent with subsequent fluorescent reading (Ex 530 

nm/Em 645 nm). By combination of the two fluorescence readings FITC and Hoechst or 

PI, a correlation is established between the FITC fluorescence and the total cell number 

per well. Both methods have given quantitatively the same results, only that the absolute 
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values of the corrected FITC fluorescence are lower in the case of PI (see Figure 22/24). 

Experiments were run at least three times for each concentration with six replicates. 

Statistical analysis was performed by Student´s t-test or ANOVA with Dunnett’s post 

test. P values < 0.05 were considered significant. 

Experimental protocol on mouse fibrosarcoma cell line expressing dsRed gene was 

similar to that of NIH/3T3 mouse embryonic fibroblasts. But the culture medium of 

dsRed cell line was changed to NCTC135 supplemented with 10% DonorHouse serum 

instead of DMEM culture medium supplemented with 10% fetal bovine serum for 

NIH/3T3 cell line.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 42. Experimental protocol for fluorescence studies 

4.5 Determination of intracellular Gd3+ content 

Exponentially growing 3T3 cells were labeled with 0.1 – 2.5 µM PNA-CPP-CA in 175 

cm2 tissue culture flasks for 18 h. After repeated washes with Hanks’ buffered saline, 

cells were trypsinized, centrifuged and re-suspended in 1.5 mL Eppendorf tubes at 1 × 

107 cells in 500 µL complete DMEM. 500 µL of 37% HCl was added and left at 120˚C 
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overnight to lyse the cells completely. Upon this treatment all Gd(III) was solubilized as 

free aquo-ion. By measuring the relaxation rates of theses solutions at 300 MHz, it is 

possible to determine its concentration according the literature (32). To prepare standard 

samples in aqueous HCl solution: different concentrations of GdCl3 prepared in 500 µL 

distilled water at first. And then 500 µL of 12M HCl was added. The resulting GdCl3 in 

6M HCl solution was heated at 120˚C overnight. To prepare standard samples in medium 

with Cells: different concentrations of GdCl3 prepared with 1 × 107 cells in 500 µL 

complete DMEM. 500 µL of 12M HCl was added and left at 120˚C overnight to lyse the 

cells completely. Standard curves were acquired by taking the slope of a plot of the R1 

relaxation rate versus concentration of Gd(III). 

4.6 In vitro test of antisense PNA hybridizing with target sequence 

The target oligo-DNA sequence (5’-CTC GAA CTC GTG GCC CAC GGA GCC CTC 

CAT GCG CAC CTT GAA GCG CAT GAA CTC CTT GAT-3’), synthesized from 

MWG-Biotech AG, was amino-modified with a C12 linker at the 5’ end. According to 

the DNA-BINDTM application guide, the oligo-DNA was coupled to DNA-BINDTM 96-

well plate (10mM phosphate buffer, pH 8.5, at 4˚C, overnight). Different concentrations 

of dsRed CA and nonsense CA were prepared in hybridizing buffer (10mM phosphate 

buffer, pH6.5). The contrast agents were co-incubated with immobilized DNA at 37˚C 

for 1h, and then at room temperature overnight. Non-binding contrast agent was washed 

out with 10mM phosphate buffer, the content of hybrid contrast agents were determined 

by ELISA measurement, according to the procedures described in literature (86).  

4.7 In vitro MR studies 

 For MR imaging of cells, exponentially growing 3T3 cells were labeled with 0.1 – 2.5 

µM PNA-CA in 175 cm2 tissue culture flasks for 18 h. After repeated washes with 

Hanks’ buffered saline, cells were trypsinized, centrifuged and re-suspended in 1.5 mL 

Eppendorf tubes at 1 x 107 cells in 500 µL complete DMEM. Cells were allowed to settle 

before making MR measurements. Tubes with medium only, cells without MR contrast 

agent, and cells re-suspended in medium containing the extracellular contrast agent 

Magnevist® (Schering, Germany) at 50 µM served as controls. 
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MR imaging of the cell pellets was performed at 300 MHz using T1- and T2-weighted 

spin-echo sequences at room temperature (~21˚C). 

The axial slice of interest was positioned through the cell pellet. Experimental parameters 

for T1 were: field of view 17 x 6.9 cm2, matrix 512 x 256, slice thickness 1.5 mm, SW 70 

kHz, TE 14.6 ms, TR 70-7000 ms, 2 averages (logarithmic time steps, 80 images). For 

T2, similar parameters were used, but TR = 10 s and TE = 15-600 ms (linear time steps, 

40 echoes). Sagittal images were obtained with a field of view 14 x 6.9 cm2, matrix 256 x 

256, slice thickness 2 mm, SW 100 kHz, TE 9.2 ms, TR 1500 ms, 26 averages for T1 

weighted images, and a field of view 14 × 6.9 cm2, matrix 256 × 256, slice thickness 2 

mm, SW 100 kHz, TE 80 ms, TR 10000 ms, 6 averages for T2 weighted images. 

Relaxivity measurements of contrast agents were performed in the concentration range of 

0 – 30 µM using the same experimental setup. CAs were diluted in water and 1ml 

aliquots were transferred to Eppendorf cups. 

To examine the dependence of the relaxivity on the magnetic field strength, additional 

T1-measurements were performed at a frequency of 123 MHz and a magnetic field of 3 T. 

For these experiments, an inversion recovery sequence was used to obtain images from a 

1 mm thick slice through the samples. The inversion time was varied from 23 ms to 3000 

ms in about 12 steps. The images were read out with a turbo spin echo technique, 

acquiring 5 echoes per scan. The repetition time TR was 10 s to make ensure complete 

relaxation between the scans. A resolution of 256 × 256 voxels over a Field-of-view of 

110 × 110 mm2 was reached. Six averages were acquired within less than 25 min. 

4.8 Data analysis  

The fitting to relaxivity curves was performed with self-written routines in MATLAB 6.5 

R13 (The Mathworks Inc.). The series of T1 and T2 relaxation data were fitted to the 

following equations: a) T1 series with varying t = TR: S = S0 (1 - a × exp(-t / T1)). b) T2 

series with varying t = TE: S = S0 exp(-t / T2) + b. Nonlinear least-squares fitting of three 

parameters S0, T1/T2, and a/b was done for each voxel with the Gauss-Newton method 

(MATLAB function nlinfit). For each fitted parameter, the 95% confidence intervals 

were calculated (MATLAB functions nlparci, nlpredci) and used as an error estimate of 
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the fitted relaxation times T1/T2 and S0 (initial signal at t = 0). The fit procedure resulted 

in parameter maps of T1, T2, S0 and corresponding error maps σT1, σT2, σS0. 

Image-regions around the tubes were defined as Regions of Interest (ROIs), and the 

means and distribution width of the relaxation times of voxels in these regions were 

calculated: An iterative Gaussian fit was used to determine mean and standard deviation 

(SD) of a distribution with outliers. For this purpose, a distribution histogram was first 

fitted to a Gaussian to estimate mean and SD. The tails of the distribution were then 

discarded by using a threshold of three SDs. A repeated fit proved to be robust and 

converged to the 'true' Gaussian mean and width of the distribution barring the outliers, 

observed as a result of the non-linear fit of noisy voxels. The processing of the relaxation 

data thus resulted in specific R1,2 = 1/T1,2 values for each tube sample including the 

standard deviation in the selected ROI ensemble. The ensemble error matched closely the 

errors of a single-voxel fit, which showed that no further systematic errors were 

introduced by the image encoding. Finally, the relaxivity r1,2 was calculated from the 

slope of R1,2(c) versus the concentration c of the contrast agent by an error-weighted 

linear regression. 

For the inversion recovery experiments at 3 T, the regions of interest were again defined 

inside the sample tubes. The values from all voxels inside each ROI were averaged; the 

resulting relaxation curves were used to fit the equation M0*(1-2·exp(-TI/T1)), using the 

nonlinear least squares technique implemented in MATLAB. 
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