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Zusammenfassung

Moderne Simulationen erzeugen immer größer werdende Datensätze und stellen Wissenschaftler
vor die Aufgabe, diese Datensätze auszuwerten und zu analysieren. Oft liegen die Daten als reine
Zahlenkolonnen vor und erschweren so eine Auswertung. Die Transformation der Daten in eine
graphische Darstellung ist ein wichtiges Hilfsmittel, um das Ergebnis einer Simulation oder eine
Sammlung gemessener Werte richtig zu interpretieren und auszuwerten. Die vorliegende Arbeit
stellt neue Verfahren zur Aufbereitung solch großer Datenstze vor mit dem Ziel, eine interaktive
graphische Darstellung zu ermöglichen. Dabei steht insbesondere die Aufbereitung auf Comput-
ern mit begrenzten Resourcen im Mittelpunkt der vorgestellten Algorithmen.

Diese Arbeit liefert Beitr̈age zu drei wichtigen Themen auf dem Gebiet der Aufbereitung von
wissenschaftlichen Daten: Reduktion mit garantiertem maximalem Fehler, Bearbeitung großer
Datens̈atze mit begrenzten Ressourcen und interaktive Visualisierung.

Zu Beginn wird ein automatischer Reduzierer vorgestellt, welcher die Anzahl der gespeicherten
Elemente verringert und dabei den Approximationsfehler zwischen dem originalen Datensatz und
dem reduzierten Datensatz kontrolliert. Der Reduzierer arbeitet global auf der Domäne des Daten-
satzes, und nicht, wie fast alle bisher bekannten Verfahren, mit vielen kleinen, lokal auf dem
Datensatz arbeitenden Schritten. Damit behebt er den Nachteil dieser Verfahren, in lokale Min-
ima zu laufen, und ist bei einem zu den anderen Verfahren vergleichbaren Approximationsfehler
ungef̈ahr um den Faktor 3-5 schneller.

Anschließend wird eine Out-of-core Datenstruktur vorgeschlagen, welche ein schnelles Bear-
beiten selbst gr̈oßter Datens̈atze erlaubt mit einem geringen Bedarf an Hauptspeicher und mini-
malen Zugriffen auf Sekundärspeicher. Darauf aufbauend werden zwei Datenstrukturen vorgestellt,
welche den Datensatz in mehreren Auflösungsstufen speichern. Die erste Struktur speichert die
Auflösungen in einer bin̈aren Hierarchie ẅahrend die zweite Struktur das Konzept der Multitri-
angulation auf Volumennetze anwendet. Eine graphische Darstellung bedient sich dieser zwei
Datenstrukturen und erreicht eine interaktive Visualisierung von sehr großen Datensätzen ohne
sichtbaren Fehler, auch auf Computern mit begrenzten Resourcen.

Das letzte Kapitel der Arbeit stellt drei Techniken für die Visualisierung vor, welche grundle-
gende Probleme bei gegenseitigen Verdeckungen adressieren. Für Skalarfelder wird eine punkt-
basierte Visualisierung vorgeschlagen, welche einen Satz von Isoflächen mit Punkten abtastet und
diese Punkte mit Beleuchtung zeichnet. Für Vektorfelder stellt die Arbeit eine Ghosting-Technik
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vor, welche einen dichten Satz von Stromlinien semi-transparent darstellt und nur wenige, vom
Benutzer ẅahlbare Stromlinien hervorhebt. Im letzten Abschnitt werden Diffusionsflächen ein-
geführt und ihre Anwendung für die Tensorfeld-Visualisierung mit dem Spezialfall medizinisches
MRI diskutiert.



Abstract

Modern scientists must consume ever bigger volumes of data gushing out of supercomputer simu-
lations or high-powered sensors. Often, the data are represented as vast blocks of numbers which
need to be transformed into a graphic representation which enables and improves understanding
and analyzation. On their way from raw data to interactive visualizion, huge scientific datasets
need algorithms out of three areas of research: reduction with a controllable approximation er-
ror, out-of-core techniques for huge datasets and interactive visualization of huge datasets with no
visual error. All three topics are addressed by this thesis.

At the beginning, an automatic simplification technique is presented which reduces the number
of elements of a dataset and controls the approximation error between the original dataset and the
reduced dataset. The algorithm consists of a sequence of three steps which work globally on the
dataset and improves all known approaches that use a sequence of many small local steps by in-
creasing numerical stability and avoiding runs into local minima. With an achieved approximation
error that is comparable to other known approaches, the reducer is about 3-5 times faster.

Next, an out-of-core data structure is introduced which allows for an efficient work on even
biggest unstructured datasets with a low consumption of main memory and minimal accesses to
secondary storage like hard discs. Based on the out-of-core data structure, two additional data
structures are proposed in order to store huge datasets with multiple levels of resolution. The first
data structure stores all levels of resolutions in a binary hierarchy whereas the second data structure
uses the concept of multi triangulations on unstructured volume datasets.. A rendering framework
uses these data structures to achieve an interactive visualization with a visual error controllable by
the user. Both structures run on computers with limited ressources even with no visual error.

The last chapter introduces three different visualization techniques addressing fundamental
problems of occlusion during rendering. A point-based visualization technique is proposed for
scalar fields. A set of isosurfaces is point sampled and the resulting points are rendered with a
lighting scheme adapted to the scalar field. A ghosting technique is proposed for vector fields. A
dense set of stream lines is calculated but only a few of them are visualized opaque whereas all oth-
ers are visualized semi-transparent. The user has full control over the selection of the opaque lines.
Finally, diffusion surfaces are introduced and it is shown how they can improve the visualization
of medical MRI data.
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Chapter 1

Introduction

The purpose of computing is insight not numbers.- Richard W. Hamming

Unstructured tetrahedral meshes have traditionally been used in simulation systems as a funda-
mental primitive for representing complex volumetric domains. Modeling such domains plays an
important role in a wide range of applications, including geophysical simulations and computa-
tional fluid dynamics (CFD). Tetrahedral meshes allow a complex domain to be represented at
any desired accuracy and are relatively easy to construct given a surface that bounds the domain.
As natural extension of triangular meshes to volumes, their accuracy can vary continously over
a domain representing very complex regions at an extremely high resolution while other regions
are coarsely modeled. Robust and mathematical sound techniques enable tetrahedral meshes to be
constructed with all properties desired by simulation software.

With the increasing power and capacity of supercomputers and high-speed storage systems,
modern simulation systems can process ever bigger tetrahedral meshes and store their results tra-
ditionally as vast files of numbers. If researchers try to extract information out of these numbers
directly, they will proceed at a very slow pace or even fail. If the data is transformed into a graphic
representation, however, the information can be assimilated at a much faster rate. And if the
graphic representation allows the dataset to be explored interactively, information often reveals
at an even higher rate. The process of transforming data into a graphic representation is called
visualization.

Visualization systems must consume ever bigger data volumes while they often run at com-
modity hardware like PCs. Although the capacity of PCs has increased steadily over the last
years, specialized algorithms and data structures are still required to process and visualize the vast
amount of large data volumes. Here, as a very important tool,automatic model simplification
approximates a highly detailed dataset with a smaller number of data elements. If researchers can
accept the loss in fidelity, these tools provide a convenient way to elevate display rates, reduce
storage costs and improve provessing speed.

Otherwise, a dataset can be approximated by multiple representations of different complexity.
At visualization time, an appropriatelevel of detailis chosen depending on factors such as distance
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1 Introduction

Figure 1.1: Comparision of the fully detailed tetrahedral model (left) and a coarser model (right)
produced with the simplification method described in chapter 4.2. The zooms into a particular
area of the dataset show its volumetric and non-uniform structure where the simplified model
capatures the main properties.

or focus of interest. While distant parts of the dataset require less detail due to foreshortening, parts
closer to the viewer need a larger amount of details. But not only visualization systems benefit
from multiple levels of detail but also simulation software. Hierarchical approaches like multigrid
methods have been shown to decrease computational time by computing a first solution at a coarse
level of detail and refining this first solution later on at more detailed levels.

With the growing size of geometric datasets,out-of-core techniquesbecome highly important
for simplification and level of detail methods. If a dataset is far to big to be stored in main memory
(also called in-core memory), such techniques transform it into a representation that allows the
dataset to be processed part by part where each part fits into main memory. Since parts must be
read from disc and written back to it, a well-designed out-of-core technique minimizes the number
of disc accesses while keeping the memory consumption low.

The standard model ofcomputer-driven visualizationconsists of a pipeline with three stages.
The first stage retrieves raw data from the simulations or sensors and transforms them into vi-
sualization data applying methods of filtering, segmentation, feature extraction, compression or
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Figure 1.2: A simplified model (middle) may contain a loss in fidelity compared to the original
dataset (top) which often reveals in zooms into the dataset. Using multiple representations (bot-
tom) enables a dataset to be visualized at a certain level of detail which can be the finest (produced
with the multi-resolution model of chapter 5.2).

simplification. The second stage maps these data into a scene description consisting of graphical
primitives like points, lines, triangles, or voxels together with additional parameters like colors or
transparancy. The third stage, finally, takes the scene description and generates images or videos
based on graphic APIs like OpenGL or DirectX.

For a dimensionality of 1 or 2, traditional plotting software covers most areas of data visual-
ization whereas a tremendous effort has taken place to design useful mappings for data given in
3D space like unstructured tetrahedral meshes. Although the amount of data is huge, ever bigger
data volumes show up in simulations or measurements. Not only the sheer size of data volumes is
challenging but also the severe occlusion problems that arise from mapping 3D content on a 2D
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viewing plane.

Beside tetrahedral meshes, a variety of different types of datasets are used by simulation systems
or gush out of sensors. They can be classified by their dimensionality, by the kind of data values
that are stored with them including scalars, vectors, or tensors, and, finally, by the structure of how
their data values are provided:

a) b) c) d) e) f)

Figure 1.3: Grids from left to right: cartesian, regular, rectilinear, structured, and unstructured.
Right most: a point cloud with radius of influence.

a) Cartesian Grids. The points are evenly distributed along each axis having the same spacing
in all dimensions. The points are highly regular connected by squares in 2D or cubes in 3D.
The cubes are also often calledcells in order to express that the dataset is constructed by
many of them. Due to its regularity, a grid cell can be addressed by an index(i, j, k) and the
points have coordinates(i× d, j × d, k × d) for a fixed distanced.

b) Regular Grids. Basically similar to cartesian grids, regular grids can have different spac-
ings for each axis, that is, each axis has its own sampling distance. The data set is composed
of cuboids (in contrast to cubes in cartesian grids). Famous examples for regular grids
are medical datasets resulting from CT or MRI scans. Typically, these modalities mea-
sure 2D slices at a very high resolution and construct the data set as a stack of such 2D
slices where the distance between two slices is lower than the resolution of a single slice.
Again, a grid cell can be addressed by an index(i, j, k) and the points have coordinates
(i× dx, j × dy, k × dz) for fixed distancesdx, dy anddz.

c) Rectilinear Grids. As the spacing is constant for each dimension in cartesian and regular
grids, it varies in rectilinear grids. The data sets are composed of cuboids with varying sizes.
Although the cells may still be indexed by integers as in regular and cartesian grids, the map-
ping from indices to point coordinates is not regular anymore. Graphs with logarithmically
scaled axes are typical examples.

d) Structured Grids. The grid points are connected like in regular grids but the locations can
be chosen arbitrarily deforming the rectangular cuboidal cells to 2D quadriliterals or 3D
hexahedral cells. The mapping between a point index and its coordinates is free. Many
simulations also benefit from structured grids with curved connections between sample lo-
cations resulting in even more deformed curved cuboidal cells. Such curvilinear grids are
very popular as finite elements meshes. But although the grid cells can adapt to a given
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boundary very well, the resolution of the grid cannot be changed easily. Thus, most often
hybrid grids are used combining the advantages of both structured and unstructures grids.

e) Unstructured Grids. Both the sample locations and their connections are arbitrary. The cell
types can differ within the grid. Tetrahedra and prisms are frequently used cell types. For
rendering purposes, an unstructured grid is often transformed into a purely tetrahedral mesh.
Unstructured grids can adapt to given boundaries very well and can change the resolution
freely due to their unstructured nature.

f) Point Clouds. Finally, the sample locations can be arbitrary without a fixed connection.
For instance, Smoothed Particle Hydrodynamics (SPH) simulations use a cloud of sample
points. The sample points can move freely and interact with other near-by sample points.
Therefore, each sample point has to find all other sample points that are within a region of
influence. Similar, range scanning systems generate unstructured point clouds which need
to be interpreted as a surface later on.

1.1 Problem Statement

On their way from raw data to interactive visualizion, huge scientific datasets need algorithms out
of several areas of research. First, automatic simplification techniques reduce the complexity of
datasets with the goal to compute an approximation with a minimal approximation error. The error
between two datasets is measured with a global error metric whose choice depends strongly on the
application type. For instance, polygonal datasets have to use other metrics than volume datasets
and even polygonal datasets require different metrics depending on subsequent processing stages
like visualization or compression. Because global error metrics are often computational expensive
and the calculation of a minimal approximation has been shown to be NP-hard [AS98], local error
metrics are often used measuring local errors only. The design of metrics that are computational
easy to evaluate and still yield good global errors is still an open research area. Chapter 4 discusses
automatic simplifiers and introduces a new rapid simplifier for huge tetrahedral meshes together
with an error metric that can be computed quickly.

As the increasing size of scientific datasets outpaces the progress in processor speed and avail-
able memory, out-of-core techniques have become an important area of research not only to enable
huge datasets to be processed at all but also to improve the processing speed due to a better uti-
lization of computational resources. I will describe an out-of-core technique that is computational
easy to create and resource-friendly.

In addition to pure simplifications, the design of data structures and algorithms for creating
multiple levels of detail is highly important for interactive visualization of datasetswithout loss of
fidelity. The design goal for such data structures comprises both compactness and rapid adaptation
of the dataset to changing parameters while the dataset remains a valid approximation. Due to
changes of computer architectures and the increasing gap between processing speed and memory
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speed, many older algorithms need to be improved to reflect these changes or need to be replaced
by new algorithms and data structures.

Finally, visualization techniques need to address the severe occlusion problems that arise with
the mapping of 3D content onto a 2D viewing plane and establish a field of research of its own.

1.2 Contributions

This thesis describes new algorithms for rapid simplification of unstructured tetrahedral meshes
providing small approximation errors, a total of four different multi-resolution models based on a
new out-of-core data structure, and, finally, visualization techniques for scalar fields, vector fields
and MRI tensor fields.

1. Simplification, chapter 4.As a prerequisite for multi-resolution models, some issues of sim-
plifiers for tetrahedral meshes are discussed in§ 4.1. An algorithm based on iterative edge
collapses is presented that does not need to maintain all edges within a single large queue
but does need to maintain some edges only lying on an advancing front. In this manner, the
simplifier need less memory and still simplifies a mesh uniformly. It is therefore perfectly
suited for the construction of multi-resolution models.
§ 4.2 presents a novel approach for the rapid simplification of large tetrahedral meshes which
generates approximations with simple point sampling and an independent boundary simpli-
fication. The produced global attribute error of the volume mesh is similar to other state-
of-the are approaches based on iterative edge collapses with quadrics but performs as twice
as fast [SS06a]. In addition, the boundary triangular mesh is simplified without introduc-
ing self-intersections. Currently, this simplifier is the fastest known simplification approach.

2. Multi-Resolution Models I, chapter 5.Based on the very fine-grained coarsening operation
edge collapse and its inverse refinement operation, vertex split, two new multi-resolution
models are introduced. The first model,§ 5.2, exploits the redundancy in the connectiv-
ity information of a mesh in order to split a vertex. As main contribution, all tetrahedra
keep their vertex indices stored during edge collapses and use these indices later in order
to perform vertex splits correctly by a fast inspection of these vertex indices. Thereby, new
tetrahedra can be simply created by predicting their indices from surrounding tetrahedra
[SS05b]. In addition, the index prediction allows the update information to be compressed
very well.
The second model,§ 5.3, is restricted to half-edge collapses and splits resulting in a very
compact multi-resolution model [SS05a]. As an extension of FastMesh [Paj01], it maintains
a half-edge data structure where no element is delete physically during an edge collapse but
remains stored. In this manner, the data structure allows vertex splits and collapses to be
computed fast and robust with highly efficient run-time checks for their validity.
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3. Out-of-core Data Structure, chapter 6.§ 6.1 presents a data structure that enables the out-
of-core processing of huge meshes by processing a sequence of compact parts of a mesh, so-
called segments. It is evaluated by out-of-core simplification and out-of-core construction
of multi-resolution models [SS06c]. Its beauty is based on an easy process of creation and
its streaming capailities that not only allow for an out-of-core processing of large datasets
but also for an improved processing speed.

4. Multi-Resolution Models II, chapter 6.Two multi-resolution models are presented which
work by replacing segments of one resolution by segments of another resolution and are
based on the out-of-core data structure described above.
The first model in§ 6.2 exploits a binary hierarchy of segments. It is advantageous for finite
element simulations and is easy to implement [SS06c]. It is the first published data structure
for huge unstructured tetrahedral meshes being tailored for segment-based multi-resolution
models.
The second model in§ 6.3 applies the concepts of multi-triangulations to huge tetrahedral
meshes. Here, the concept of rotating octrees enables a segmentation of the mesh which
allows for a very smooth simplification of the mesh and anautomatictransformation into a
multi-resolution model [SS06b]. Additionally, the segments are stored compressed and can
be decompressed on the fly using a modified cut-border machine.

5. Visualization Techniques, chapter 7.First, § 7.2 introduces a rendering modality for scalar
fields which basically computes a set of isosurfaces and point samples them. Thereby, points
on a single isosurface are closer to each other than points on different isosurfaces. Only
points are rendered. The rendering of none-dense point clouds enables deep looks into inner
structures of the dataset without any depth-ordering of mesh elements [SS05b].
Second, a ghosting technique is introduced in§ 7.3 for vector field visualization in order to
decrease occlusion and to increase the benefit of interactive exploration. Out of a dense set
of stream lines, the user selects a bundle of stream lines that are visualized opaquely while
all other stream lines are rendered semi-transparent and can be recognized as ghosts. An
interactive exploration of important regions of a vector field becomes possible.
The stream lines are visualized with different halo techniques. As a main contribution,
the halos carry additional information which allows for an easy visualization of the flow
direction [SS06b].
Finally, § 7.4 introduces the concept of diffusion surfaces [SG03] for tensor fields with a
strong application in MRI datasets and presents a point-based visualization technique for
these similar to§ 7.2.
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Chapter 2

Basics on Spaces

Space is not a passive vacuum, but has properties that impose powerful constraints on any
structure that inhabits it.- Arthur Loeb

In order to establish a unique way to explain ideas in subsequent chapters, some of the most com-
mon notations and concepts are introduced in this chapter. Starting with topology as a fundamental
mathematical concept to describe spaces like surfaces or volumes, simplicial complexes and mesh
concepts are presented together with their frequently used nomenclature. For a more detailed
introduction we refer the interested reader to [Mn98, Ede01].

2.1 Topology

The concept of topological spaces is an important tool in order to capture structural features of
geometric spaces and to formulate terms like similarity of surfaces or volumes in a mathematical
solid way. It is based on point sets and how the points are related to each other.

A Topological SpaceX is a pair(X,X) comprising a point setX and a setX of open subsets
A ⊆ X such that

1. X contains both the empty set and the point setX:
�, X ∈ X

2. If a collection of open subsets is inX, so their union:
Z ⊆ X⇒

⋃
Z ∈ X

3. If a finite collection of open subsets is inX, so their cut:
Z ⊆ X, Z finite⇒

⋂
Z ∈ X

The open subsets can be understood as a way to describe neighborhoods of points and thus the
structural properties of space. For instance, the unit circleC =

{
p ∈ R2 | ‖p‖ = 1

}
is a topo-

logical space with the point setX = C and the set of open subsets comprising all open circle arcs.
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As another example, the open unit sphereS =
{
p ∈ R3 | ‖p‖ < 1

}
forms a topological space

with the point setX = S and the set of open spheres centered at0 as set of subsets. Finally, the
well-knownRd is a topological space which is made up of all its pointsp ∈ Rd = X and open
ballsBr =

{
p ∈ Rd | ‖p‖ < r

}
that form the setX =

{
Br ⊂ Rd | r ∈ R

}
.

A Topological Subspaceof a topological space(X,X) is a subset of the pointsY ⊆ X with a
subset of the set collectionY ⊆ X such that

1. Y = {Y
⋂

A | A ∈ X}

Topological subspaces allow spaces to be constructed that can contain their boundaries. For in-
stance, the closed unit sphere is a topological subspace ofR3 with Y = S =

{
p ∈ R3 | ‖p‖ ≤ 1

}
.

Informally, the subspace inherits the structural properties from the topological space, i.e. the topol-
ogy.

Two topological spaces can be compared by looking at the kind of function that transforms
them into each other. Good-natured functions preserve the neighborhood of a point and are called
continuous. Formally, a functionf between two topological spacesX andY is continuousiff
the preimage of any open subset is an open subset. A continuous function is also referred to as
a mapping. An open subset is always mapped onto an open subset (and vice versa). If such a
subset is considered as a neighborhood of any of its points, a continuous function preserves this
neighboorhood and does not break it apart.

In order to describe complete mappings between two topological spaces, the term of a home-
omorphic function extends a continuous function by forcing bijectivity, continuouity and the ex-
istance of an inverse mapping. Spaces that can be transformed into each other by homeomorphic
functions are topological equivalent, that is, they are connected the same way. Formally, a func-
tion f between two topological spacesX andY is calledhomeomorphic, iff f is bijective and
continuous and its inversef−1 exists and is continuous. A homeomorphic functionf is called a
homeomorphism.

Two topological spacesX andY are calledhomeomorphor topological equivalent, iff there
exists a homeomorphism betweenX andY.

Figure 2.1: (a) The left interval contains its extreme values while the right interval doesn’t. The
two intervals are not homeomorph. (b) A donut and a circle are not homeomorph. (c) The triangle,
quadrilateral and circle are homeomorph.

The property of manifoldness describes topological spaces having nice structural properties. A
topological spaceX = (X,X) is calledk-manifold, iff there exists for any pointx ∈ X an open
setU ∈ X which includesx and is homeomorph toRk.

In order to describe manifold topological spaces with boundaries, the term manifoldness can
be extended to consider the half-spaceHk =

{
x = (x1, ..., xk) ∈ Rk | xj > 0

}
. A topological
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Figure 2.2: (a) Two triangles connect at a non-manifold point. (b) A single triangle is manifold
(with boundary). (c) Four tetrahedra connect at six non-manifold vertices.

spaceX is k-manifold with border, iff there exists for any pointx ∈ X a open setU ∈ X which
includesx and is homeomorph toRk or Hk. For instance, the circle in figure 2.1 is 2-manifold
with border.

2.2 Simplicial Complexes

While topological spaces are defined on point clouds, the concept of simplicial complexes gives
a combinatorialstructure to these spaces and can be understood as a way to construct topological
spaces. Simplicial complexes are based on affine combinations of points.

An affine combinationof pointsp1, ...,pk+1 is a linear combination
∑k+1

i=1 αipi with 0 ≤ αi ≤
1 and

∑k+1
i=1 αi = 1. A set ofk + 1 points isaffine independentiff no affine space of dimensioni

contains more thani + 1 of the points, and this is true for alli.
A k-simplexcomprises the affine combinations ofk + 1 affine independent points. Thereby,k

is thedimensionof the k-simplex. A point as a0-simplex, a line is a1-simplex, a triangle is a
2-simplex, a tetrahedron is a3-simplex, and so on as visualized in figure 2.3.

Figure 2.3: (a) From left to right: point, line, triangle, and tetrahedron. (b) A tetrahedron consists
of several faces.

A simplex can contain other simplices of smaller dimension. Formally, given a simplexσ of
dimensionk and anyl ≤ k, the affine combination ofl + 1 nodes span anotherl-simplexτ . τ is
called al-faceof σ denoted asτ ≤ σ. A face of dimensionl = k − 1 is called aboundary faceor
facet. A simplex that is not a face of another simplex is called amaximal simplex.

A simplicial complex is now a collection of simplices that connect in a particular way, namely,
aSimplicial Complexis a setK of simplices with

1. Every face of a simplex inK is in K:
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σ ∈ K ∧ τ ≤ σ ⇒ τ ∈ K

2. The intersection of any two simplices ofK is a face of each of them:
σ, τ ∈ K ⇒ σ ∩ τ ≤ σ, τ

The dimension of a simplicial complexK is the maximum of the dimensions of all its simplices.
Everyd-simplex of a simplicial complex with dimensiond is called acell. I will generally assume
thatK is apure complex, that is, nol-simplex occurs isK except as al-face of ad-simplex.

a) b) c)

d) e) f)

Figure 2.4: (a-c) are simplicial complexes where (a) is manifold (with boundary), (b) is non-
manifold at its center vertex, and (c) is not a maximal complex due to the edges that are maximal
simplices. (d-f) are not simplicial complexes where (d) misses an edge and violates condition (1),
(e) and (f) violate condition (2).

Let us stress that the above definition declares a simplicial complexK to be combinatorial in
nature, namely asetof simplices satisfying certain conditions, but not to be a subset ofRd. This
is done by itsgeometric realization|K| which defines the underlying space as the union of its
simplices together with the subspace topology ofRd:

|K| =
{
x ∈ Rd|x ∈ σ ∈ K

}
The field of algebraic topology extends this combinatorial concept by defining abstract simplicial
complexes. For a given setV = {1, 2, 3, ...} of vertex numbers, anAbstract Simplicial Complex
is a finite nonempty familyA of subsets ofV with

• Every subsetC of a setB in A is itself contained inA:
B ∈ A ∧ C ⊆ B ⇒ C ∈ A

The subsets of size 1 correspond to the vertices, i.e.{1}, {2}, {3}, ..., the subsets of size 2 corre-
spond to edges, i.e.{1, 2}, {1, 4}, {3, 5}, ..., the subsets of size 3 correspond to triangles and the
subsets of size 4 correspond to tetrahedra.

The definition of an abstract simplicial complex describes how simplices of varying dimensions
can be connected to each other. A geometric realization is then defined by a mapping from the
vertex setV onto points inRd which can be continued to simplices of higher dimensions.
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2.3 Meshes

Meshes also give combinatorial structure to a space by decomposing the space into mesh elements
like vertices, edges, triangles or tetrahedra, and their embedding into the space. Formally, a mesh
can be separated into its connectivity which describes neighborhoods – the incidencies – between
mesh elements, and its geometry which specifies the positions of mesh elements inRd.

A mesh whose connectivity fulfills the conditions of an abstract simplicial complex is called
an abstract simplicial mesh while a mesh whose connectivity fulfills the conditions of a simpli-
cial complex is called a simplicial mesh. All other meshes (like hexahedral grids) are said to be
non-simplicial meshes. Abstract simplicial meshes are defined purely on their connectivity in-
formation without considering the geometry while simplicial meshes consider both connectivity
and geometry. As example, tetrahedral meshes with self-intersections can be abstract simplicial
meshes while tetrahedral meshes without self-intersections are simplicial meshes.

The incidency relation describes how mesh elements of different types are connected to each
other. For (abstract) simplicial meshes, the incidency relation is defined as

1. An edge{p, q} is incident to both its extreme vertices{p} and{q} (and vice versa).

2. A triangle{p, q, r} is incident to

• three edges{p, q}, {q, r} and{r, p} (and vice versa).

• three vertices{p}, {q} and{r} (and vice versa).

3. A tetrahedron{p, q, r, s} is incident to

• four triangles{p, q, r}, {p, q, s}, {p, r, s} and{q, r, s} (and vise versa).

• six edges{p, q}, {p, r}, {p, s}, {q, r}, {q, s} and{r, s} (and vise versa).

• four vertices{p}, {q}, {r} and{s} (and vise versa).

The termadjacencydescribes how mesh elements of the same type are related to each other

1. Two vertices{p} and{q} are adjacent iff there exists an edge{p, q}.

2. Two edges are adjacent iff there exists a vertex incident to both.

3. Two triangles are adjacent iff there exists an edge incident to both of them.

The mesh elements are embedded into space by their geometry which maps each mesh element
to its positions in space:

1. A vertex is mapped to a point inR3.

2. An edge is mapped to an arc connecting its both extreme vertices. In the simplest case, the
edge is a straight line segment.
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3. A triangle is mapped to the space of the (possibly bended) triangle enclosed by its incident
edges.

4. A tetrahedron is mapped the space of the (possibly bended) tetrahedron enclosed by its
incident triangles.

Theorientationof a triangle or tetrahedron establishs an order for its indices, that is, the (un-
ordered) set{p, q, r} of a triangle becomes the ordered triple(p, q, r) (and similar quadruples
for tetrahedra). Permutations of the same parity refer to the same triangle (or tetrahedron), e.g.
(p, q, r) equals(q, r, p) but (p, q, r) and(q, p, r) are triangles of opposite orientation.

Often, the orientation of a tetrahedron is chosen such that its volume becomes positive and the
normals of the tetrahedral faces point outwards.

A manifold triangle mesh is said to beorientableif there exists a configuration of orientations
for its triangles such that for each edge{p, q} there exists no pair of triangles with(p, q, r) and
(p, q, s). This means, if two triangles are adjacent to each other over an edge{p, q}, one triangle
must be incident to the oriented edge(p, q) while the adjacent triangle must be incident to the
reverse oriented edge(q, p). The Möbius strip is a famous example of a manifold surface that is
not orientable. Non-self intersecting triangle meshes in a plane are always orientable which is also
true for non-self intersecting tetrahedral meshes inR3.

The neighborhood of mesh elements (or simplices) in abstract simplicial meshes can be enu-
merated using the following definitions. Theclosureof a setS of simplices is the smallest possible
subcomplexC containing all elements ofS:

C = Cl(S) = {τ ∈ K|τ ≤ σ ∈ S}

Thestar of a simplexτ is the collection of all simplices that haveτ as a face:

St(τ) = {σ ∈ K|τ ≤ σ}

The link of a simplexτ is the outer region of its star:

Lk(τ) = {σ ∈ Cl(St(τ))|σ ∩ τ = �}

The term manifoldness for (abstract) simplicial mesehs can be directly retrieved from topology.
For this, the mesh isrealizedin R3 by defining its underlying space as the union of its geometric
embeddings together with the subspace topology ofRd, similar to simplicial complexes. A mesh
is calledmanifold if it is manifold in topological sense. Note that the meshing community often
weakens this topological definition of manifoldness by using a definition based on the connectivity
alone leading to the term of potential manifoldness as follows.

A triangular mesh is said to bepotential manifoldiff each vertex is incident to a non empty set
of triangles that from a closed cycle and each edge is incident to exactly two triangles (or, with
boundaries, to one or two triangles).
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Figure 2.5: The light-gray mesh elements belong to the closure, star and link for a vertexp and
an edgee.

A tetrahedral mesh is said to be potential manifold iff the link of each vertex forms a poten-
tial manifold triangle mesh, each edges is incident to a non empty set of tetrahedra that from a
closed cycle and each face is incident to exactly two tetrahedra (or, with boundaries, to one or two
tetrahedra).

Tetrahedral meshes normally have aboundary. We define a face{p, q, r} to be aboundary face
if it is incident to exactly one tetrahedron{p, q, r, s}. Similar, an edge{p, q} is aboundary edge
if it is incident to a boundary face{p, q, r}, and a vertex{p} is aboundary vertexif it is incident
to a boundary edge{p, q}.

Two meshes are calledconformaliff the underlying topological spaces are homeomorph.

2.3.1 Tetrahedral Meshes for Simulations

All meshes covered by algorithms of this thesis are simplicial tetrahedral meshes. They discretize
a domainΩ which does not need to be convex. In most cases,Ω will be highly non–convex, see
§ 2.4. The meshes are typically used by simulations and do not only disretize a volumetric domain
but also anattribute field. Formally, the mesh enables an-valued function to be approximated by a
linear functionΦ. Therefore, each vertex stores ann-dimensional attribute value withn ≥ 1. The
attribute values can be scalars or vectors. They are linearily interpolated within a tetrahedron in
order to define a linear continuous approximating functionΦ. Note that linear interpolation inside
a tetrahedron is a frequently used interpolation scheme but other interpolation schemes exist.

2.3.2 Nomenclature

I will use the following nomenclature to describe mesh elements and their geometric embeddings:

• {p} or simplyp is a single vertex index,

• p is the geometric realization of a pointp (or a point inRd in general),
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• e = {p, q} is a single edge comprising its extreme verticesp andq,

• e = (p, q) 6= (q, p) is a single oriented edge starting fromp and heading toq,

• {p, q, r} is a single triangle,

• (p, q, r) is an oriented single triangle,

• {p, q, r, s} is a single tetrahedron,

• (p, q, r, s) is an oriented single tetrahedron,

• Cl(S) is the closure of a setS of mesh elements,

• St(p), St(e) is the star of a vertexp or an edgee,

• Lk(p), Lk(e) is the link of a vertexp or an edgee,

• Ω is a domain of a tetrahedral mesh,

• Φ is the attribute field of a tetrahedral mesh,

• a = Φ(p) are all attribute values given at pointp,

• b (non-bold) is a scalar,

• b (bold) is a point inRd,

• A (bold) is a matrix.

2.4 Evaluation Datasets

The collection of datasets that have been used to evaluate my methods are listed in table 2.1. The
Sea dataset models an ancient ocean that covered the Alpine foredeep between southeastern France
and eastern Austria including southern Germany and parts of Switzerland in the so-called Ottnan-
gian earth time about some million years ago. The scalar values describe two turbulence variables,
temperature and salinity. The vector value contains the velocity of water currents within the water.
The currents have transported sediments that settled down to the ground forming molasse regions
which are part of today’s north alpine foreland basin.

The Post dataset was used to simulate how air flows around an upright post that is fixed in the
earth. The F16 models a F16-like fighter aircraft that is exposed to air. Its two scalar values contain
air density and total energy, the vector value describes the flow direction of air. The simulation has
been carried out on parallel computation nodes. The dataset is courtesy of Udo Tremel, EADS-
Military.
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Figure 2.6: The Sea dataset models an ancient ocean that covered the Alpine foredeep between
southeastern France and eastern Austria.

Figure 2.7: The Fighter dataset models an aircraft in a wind tunnel.

The Rbl dataset is a portion of an endoplasmic reticulum in a cell and courtesy of Alex Smith
and Bridget Wilson from University of Mexico and Jason Shepherd and Shawn Means of Sandia
National Laboratory.

The Fighter dataset comes from a wind tunnel model of a fighter aircraft and is courtesy of
Neely and Batina from NASA.

The Earthquake mesh discretizes the San Fernando valley for simulations of earthquakes which
were carried out as part of the Quake project at Carnegie Mellon, USA. The simulation run on
a Cray T3D at the Pittsburgh Supercomputing Center. The three scalar values represent p-wave
velocity (km/h), s-wave velocity (km/h) and density (g/cm3). The model corresponds to a
volume of earth roughly 50 km× 50 km× 10 km. The file size of this dataset is 104 MB for
geometry and 974 MB for connectivity and attributes, so the overall size of the file is roughly 1
GB. For a detailed description of earthquake theory and different wave types the interested reader
is referred to [Bie06].

Tables 2.1 and 2.2 report the combinatorial properties of all these datasets while table 2.3 reports
both combinatorial and geometrical properties. Note the highly unbalanced geometric properties
of especially the F16 dataset.
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Figure 2.8: A full view of the F16 dataset, with and without edges. A zoom into the region that
models the aircraft itself, again with and without edges. A view from inside the dataset onto its
boundary reveals all the full details. Small tetrahedra model the air surrounding the aircraft.

Figure 2.9: The Rbl dataset.

Name # Vertices # Tetra # Edges # Faces # Border # Vertex Attributes
Triangles Scalar Vector

Sea 102,165 524,640 655,228 1,077,704 56,848 4 1
Post 108,300 624,153 740,850 1,256,703 16,796 1 -
Neghip 262,144 1,250,235 1,536,192 2,524,283 47,628 1 -
Fighter 256,614 1,403,504 1,701,869 2,848,760 83,504 1 -
Rbl 730,273 3,886,728 4,779,497 7,935,936 324,960 1 -
F16 1,124,648 6,345,709 7,625,318 12,846,379 309,932 2 1
Earthquake 2,461,694 13,980,162 16,684,112 28,202,580 484,514 3 -

Table 2.1: These datasets were used to evaluate algorithms.
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Name v: t: e: f

Sea 1 5.13 6.41 10.55
Post 1 5.76 6.84 11.60
Neghip 1 4.77 5.86 9.63
Fighter 1 5.47 6.63 11.10
Rbl 1 5.32 6.54 10.87
F16 1 5.64 6.78 11.42
Earthquake 1 5.68 6.78 11.46

Table 2.2: The relations of vertices to tetrahedra to edges to faces, v:t:e:f.

Name Per Vertex Edge Length
# Incident Tets # Adjacent Vertices

min max avg min max avg min max min
max

Sea 1 36 20.50 3 20 12.83 441.48 118263.000 267.88
Post 3 48 23.05 5 26 13.68 0.00084 3.190 3,798.50
Neghip 1 32 19.07 3 18 11.72 0.031 0.045 1.41
Fighter 1 44 21.87 3 24 13.26 0.139 192.530 1,384.16
Rbl 2 46 21.29 4 25 13.10 0.023 2.190 93.85
F16 1 90 22.57 3 47 13.56 0.00038 12.060 32,151.50
Earthquake 1 64 22.70 3 34 13.56 0.042 0.608 14.38

Table 2.3: The vertex valences and geometric properties.
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Chapter 3

Previous Work

It is not knowledge, but the act of learning, not possession but the act of getting there, which
grants the greatest enjoyment.- Carl Friedrich Gauß

This chapter is a survey of algorithms for mesh simplification as well as multi resolution tech-
niques and introduces the fundamental previous works of both areas as a basis for the algorithms
covered by this thesis. The chapter is divided into two parts where the first part covers simplifica-
tion algorithms while the second part covers multi resolution techniques. The following chapters
of this thesis are organized in a similar way and present contributions to mesh simplification fol-
lowed by contributions to multi resolution techniques. Due to the large amount of works published
so far the discussed algorithms are restricted to the most important works.

3.1 Mesh Simplification

The goal of automatic simplification is to generate anoptimal approximationof a given complex-
ity, that is, a mesh with a predefined number of mesh elements that minimizes an approximation
error.

Starting with the pioneering work of Clark [Cla76], surface approximation algorithms have been
developed in the eighties for restricted classes of surfaces with simple topologies like triangulated
height fields or parametric surfaces. With the increasing facilities of range scanning systems and
CAD systems in the early nineties, it has become possible to create huge polygonal models with
very little effort demanding for algorithms to process such datasets. Automatic simplification
techniques for more general surfaces have become important. At the same time, the marching
cubes algorithm [LC87] established itself as a source of huge polygonal datasets.

Similar to polygonal surface models, the size of both structured and unstrucured volume datasets
has started to grow with the increasing capabilities of mesh generation software [Rup95, She96],
supercomputers and storage systems, so simplifications of such datasets have been demanded to
reduce their sizes while approximating the dataset with a minimal approximation error.
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3.1.1 Approximation Errors

A simplified mesh has an approximation error compared to the original mesh which is measured
by anerror metric. It is important to recognize that there is nothing like an universal error metric
that is the best possible for all applications. Depending on the application type, a variety of
different error metrics exist. The design of metrics that are appropriate for their applications and
are computationally easy to evaluate is still an important part of simplification research.

Metrics for Triangular Meshes

For triangular meshes, the shape of the surface represented by the mesh must be well approx-
imated. Many error metrics measure shape similarity as geometric deviation using Euclidean
distances [GH97, LT99], parametric distances [COM98] or volume differences [LT98, SG98]. In
many applications of computer graphics, simplified models are used to produce pixels in a final
image. Here, metrics that account for the visual quality of a model are more appropriate like
[LT00, KG00].

The Hausdorff distance is one of the most well-known metrics for making geometric compar-
isions between two point sets. It is based on another metric such as the Euclidean distancedE

between two pointsp andq:
dE(p,q) = ‖p− q‖2

The family of Hausdorff distances is defined as (see also figure 3.1)

• Hausdorff distance between a single pointp and a point setQ:

dS(p, Q) = inf
q∈Q

dE(p,q)

• (One-sided) Hausdorff distance between two point setsP andQ:

dO(P,Q) = sup
p∈P

inf
q∈Q

dE(p,q) = sup
p∈P

dS(p, Q)

• (Two-sided) Hausdorff distance between two point setsP andQ:

dH(P,Q) = max(dO(P,Q), dO(Q,P ))

As the one-sided Hausdorff distance is not a symmetric relation, it is not a metric in mathe-
matical sense. On the other hand, the two-sided Hausdorff distance is symmetric and hence a
metric.

Since Hausdorff distances are based on min/max functions of single point distances, they convey
little information about the overall shape similarity. An alternative metric is based on the average
distance between two surfacesP andQ

dA(P,Q) =
1
|P |

∫
P

dS(p, Q)dp
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a) b) c)

Figure 3.1: (a) The Euclidean distance between two pointsp andq. (b) The Hausdorff distance
between a single pointp and a point setQ. (c) The one-sided Hausdorff distances between to
point setsP andQ are usually not symmetric, i.e.dO(P,Q) 6= dO(Q,P ).

Here, |P | denotes the area of surfaceP . Symmetry is obtained by taking the average of both
asymmetric distancesdA(P,Q) anddA(Q,P )

dM (P,Q) =
|P |

|P |+ |Q|
dA(P,Q) +

|Q|
|Q|+ |P |

dA(Q,P )

In the following, the metricdM is referred to asmean geometric errorwhereas the two-sided
Hausdorff distancedH is referred to asmaximal geometric error. Both metrics are implemented
in the tools Metro [CRS98] and M.E.S.H. [ASCE02] which are public available. The maximal and
the mean geometric error are designed for an offline comparision of two surfaces or curves and
allow for a quality evaluation of simplification technqiues. But due to their high computational
costs, they are often approximated during the simplification process itself.

Upper bounds for the maximal errordH can be computed quickly like [Gui95, CMO97]. Here,
the concept of simplification envelopes [CVM+96] is maybe the most notable one which explicitly
computes and surrounds the model with two surface envelopes and restricts any simplified mesh
element to lie within the envelopes.

The mean errordM is often estimated locally [RR96] or by squared distances [HDD+93, Hop96,
LT99]

d2
S(p, Q) = inf

q∈Q
d2

E(p,q)

d2
A(P,Q) =

1
|P |

∫
P

d2
S(p, Q)dp

d2
M (P,Q) =

|P |
|P |+ |Q|

d2
A(P,Q) +

|Q|
|Q|+ |P |

d2
A(Q,P ).

As a metric of particular interest not only for triangular but also for tetrahedral meshes, thequadric
error metric[GH97] measures squared distances to a collection of triangle planes associated with
each vertex as a approximation of the mean squared error. Its relevance is based on the impor-
tant feature that the squared distance to any set of planes can be represented as a matrix which
allows error computations to be extremely fast and optimal positions of new vertices to be com-
puted by solving a system of linear equations. Additionally, surface attributes like color or texture
coordinates can be naturally integrated and the metric can be extended to simplicial complexes of
arbitrary dimension [GZ05].
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Metrics for Tetrahedral Meshes

For tetrahedral meshes, two entities need to be approximated well: the underlying attribute field
(comprising scalars and/or vectors)andthe triangular boundary. While anattribute errormeasures
the error of the attribute field, adomain errormeasures the geometric deviation of the boundary
using any of the above geometric metrics. In the following, two tetrahedral meshesΣ1 andΣ2 are
considered that discretize their domainsΩ1 andΩ2 with the underlying attribute fieldsΦ1 andΦ2.
Two types of attribute errors are distinguished, the field error and the space error.

Thefield error of a pointp ∈ Ω1 measures the absolute difference between the attribute value
Φ1(p) in one field and the attribute valueΦ2(p) in the other field

Ef (p,Ω2) = ‖Φ1(p)− Φ2(p)‖.

Themaximal field erroris defined as the maximum of all field errors over the domainΩ1

Ef
F (Ω1,Ω2) = max

p∈Ω1

(‖Φ1(p)− Φ2(p)‖)

Taking the maximal value does not reflect the volume size at which a field error happens. Slight
changes in the shape of very small tetrahedra might result in a large maximal field error although
the error occurs at a very tiny volume only and might be negligible. For this reason, themean field
error averages the field errors over the domainΩ1

Ef
M (Ω1,Ω2) =

1
|Ω1|

∫
Ω1

Ef (p,Ω2)dp

If both domainsΩ1 andΩ2 do not exactly overlap, a pointp ∈ Ω1 may be outside ofΩ2, i.e.
p 6∈ Ω2. Here, the fieldΦ2 cannot be evaluated directly but must be expanded to areas outside
of Ω2. For this, the pointp is projected onto a point̂p at the boundary of the closest cell (in
Euclidean sense) and its field value is defined asΦ2(p) := Φ2(p̂) [CCM+00].

Thespace erroris the distance between a pointp1 ∈ Ω1 with its attribute valueφ = Φ1(p1) and
the closest pointp2 ∈ Ω2 that has the same attribute valueφ. The field error is important for direct
volume visualizations while the space error contributes to the quality of isosurface reconstruction.

Because of its computational cost, the field error is often approximated during simplifica-
tion [SG98, THJW98, THJ99, KE00, CM02, CL03]. Additionally, the definition of an unified
metric measuring both attribute errors and the domain error needs some care in order to avoid
biasing one error type over the other. For simplification purposes, a weighted sum of addends is
often defined where each addend either describes geometric or attribute field deformations. The
weights must be chosen carefully in order to avoid biasing [CCM+00].

Due to their very general formulation, quadric error metrics [GZ05] have become a metric of
particular interest for the simplification of tetrahedral meshes. The errors are measured as sum of
squared distances to a set of hyperplanes associated with each vertex. The beauty of this approach
is their ability to represent both attribute errors and the domain error of the boundary with a single
d× d symmetric matrix and will be described in detail in§ 3.1.4.

24



3.1 Mesh Simplification

3.1.2 Simplification Strategies

Computing optimal approximations of height fields and by extension surface approximations is
known to be NP-Hard [AS98]. Therefore, many existing simplification techniques are heuristic in
nature and consist of anatomic simplifying operationtogether with anerror metricdescribing the
approximation error introduced by applying the operation. A mesh is then simplified by executing
the atomic operation iteratively. The numerous approaches presented during the past years can be
classified by their simplifying operations, see also figure 3.2. Note that the algorithms of chapter 4
cover technqiues of the typesEdge CollapseandClustering of Vertices.

Vertex Removal

A single vertex is removed from the mesh and the resulting hole is retriangulated. A hole in a
triangular mesh can always be retriangulated which is not always possible in tetrahedral meshes.
Here, some holes can only be tetrahedralized by adding so-called Steiner points which makes this
approach pretty complex for tetrahedral meshes. For triangular meshes, popular approaches in-
clude vertex decimation [SZL92] and progressive encoding [AD01a]. Renze et al. have introduced
vertex removal to unstructured tetrahedral meshes by their seminal paper [RO96].

Edge Collapse

The simplification operation contracts the two extreme vertices of an edge into a new point thereby
removing all triangles (or tetrahedra) that are incident to the edge and deforming all triangles (or
tetrahedra) incident to exactly one of both end vertices. Due to their nice features, edge collapses
are todays standard in tetrahedral mesh simplification and will be described detailed in§ 3.1.3.
Among the numerous algorithms presented so far, Progressive Meshes [Hop96], quadric error
metrics [GH97], half-edge collapse [KCS98], and memoryless simplification [LT98, LT99] are
the most notable ones for triangle mesh simplification. [PH97] have extended Progressive Meshes
to general simplicial complexes but do not take into account how an underlying attribute field of a
tetrahedral mesh is approximated and have later been specialized to tetrahedral meshes.

[SG98] have presented one of the first works. The edge collapses are sorted by an error heap
that uses a cost function which considers various errors like scalar field error or volume and shape
deformation. The edge with the lowest cost is collapsed and the costs of all affected edges into
the error heap are updated. This process is repeated until the heap is empty or a given number
of collapses is performed. Additional tests are applied to check for mesh incosistencies like tetra
folding, tetra intersection or tetra degeneration.

Independently, [THJ99] have also used a priority queue to simplify tetrahedral meshes by edge
collapses. They have shown how an approximation of the error of an edge collapse can be easily
guessed from the neighborhood of the edge. [CCM+00] have characterized the field and domain
errors of an edge collapse. Various techniques are presented to evaluate or predict the field and
domain error reliably and to prevent geometrical or topological degenerations like cell flipping

25



3 Previous Work

or self-intersections. Chiang et al. [CL03] have preserved the topological structure of isosur-
faces of the mesh during simplification. Their algorithm first segments the mesh into topological-
equivalent regions with all isosurfaces having the same topology within a region. Each region
is then simpified independently by edge collapses thereby avoiding collapses that would cause a
change of the isosurface topology.

[KE00] have simplified non-convex meshes and can change the topology of the mesh during
simplification. In a preprocessing step, they add imaginery tetrahedra such that the mesh is trans-
formed into a convex mesh. This mesh is simplified by sequential edge collapses. If an edge is
collapsed that only belongs to imaginery tetrahedra, topology simplification is possible.

Finally, [GZ05] has extended quadric error metrics to tetrahedral meshes with any attribute
values. Their approach is detailled in§ 3.1.4.

Triangle / Tetrahedral Collapse

[Ham94] simplifies triangular meshes by iteratively collapsing triangles and removing all incident
triangles. [THJW98] and [CM02] extend this concept to tetrahedral meshes where tetrahedra are
iteratively collapsed. Because more triangles (or tetrahedra) are incident to a collapsing triangle
(or tetrahedra) than to a collapsing edge, these simplification techniques are known to be fast
but often result in approximations with a larger approximation error than methods based on edge
collapses.

Clustering of Vertices

[RB93, LS01] determine spatial regions of a triangular mesh. All vertices within a region are
collapsed into a single vertex which is positioned either at the midpoint of the region or at an
error-minimizing location. Clustering approaches have been successfully used to rapidly reduce
huge triangle datasets [LS01]. Their beauty comes from numerical robustness and ease of imple-
mentation. They have been extended to work out-of-core [Lin03]. They have found their way
into tetrahedral mesh simplification recently by the independent work of the author [SS06a] and
[UBF+05].

Approaches based on edge collapses play an important role because they are easy to implement and
provide low approximation errors. A very fine control over the simplification process is achieved
because just a single vertex is removed per operation. In contrast, the collapse of a whole triangle
removes two vertices at once and may miss local situations which would better approximate the
original mesh. Although a vertex removal also deletes just a single vertex, the advantage of edge
collapses over vertex removals is that they can optimize the position of the new vertex with respect
to an underlying error metric whereas vertex removals can only choose how the resulting whole
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Figure 3.2: Simplification Operations: vertex removal, edge collapse, triangle collapse, and vertex
clustering. The thick lines of the edge collapse operation are influenced edges whose error needs
to be re-evaluated.

is retriangulated. Note that a retriangulation is by no means a trivial task if the number of poorly
shaped triangles is to be minimized.

Another advantage of approaches based on edge collapses is their ability to create multi-resolution
representations easily. Starting with the notion ofprogressive meshes[Hop96], each edge collapse
records all information necessary to undo the collapse by recreating the edge and its incident tri-
angles (or tetrahedra). Section 3.2 and chapter 5 describe such multi-resolution models in detail.

3.1.3 Iterative Edge Collapses

Because of their important ability to create high-quality approximations and to create multi-
resolution models, I describe approaches based on edge collapses in more detail.

The simplification operation collapses both extreme vertices of an edge into a new single ver-
tex deleting any mesh elements that are incident to the edge and deforming mesh elements that
are incident to one of the two end vertices. Deformed mesh elements are calledmodified mesh
elements.

A meshM is simplified by applying a sequence of edge collapsesecoli

M = Mn
ecoln−1−→ Mn−1

ecoln−2−→ ...
ecol0−→ M0.

There are two decisions involved with such iterative edge collapses. First, the position of the
new vertex resulting from a collapse must be computed. Second, the order of the edge collapses
must be determined. In general, both decisions depend on the chosen error metric. Beside simple
approaches that place a new vertex at one of the extreme points of the edge, the new position is
often chosen to minimize the error metric. Given the new position, the error metric determines
the approximation error that an edge collapse introduces and provides the order of edge collapses
from cheapest to costliest.

Traditionally, a queue keeps track of allecols and allows the edge with the lowest approximation
error to be accessed in constant-time. After anecol has been applied, the approximation error of
all modified edges must be re-estimated.
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Many simplification algorithms based on edge collapses provide a zoo of methods to check if
an edge shall be collapsed or not. The zoo includes methods to avoid the creation of badly shaped
mesh elements, topology changes or geometric artifacts (like triangle or tetrahedral flips). For
each edgee = (p, q) that shall be collapsed, some of these preconditions can be checked:

• Flipping. If the volume of at least one modified triangle (or tetrahedron) changes its sign,
the edge collapse is invalid.

• Intersection.If the mesh is non-convex, self-intersections may occur during an edge collapse
at the mesh boundary. A rapid method for detection and treatment of self-intersections is
presented in section 4.2.

• Degeneration.For the collapse of an edgee = {p, q} to be topological valid, the following
items need to be checked. Item (1) [DEGN99] is equivalent to the items (2,3,4) [HDD+93]

1. For the collapse of an edgee = (p, q) to be topological valid, the cut of the links of
the extreme vertices must equal the link of the edge:
Lk(p) ∩ Lk(q) = Lk(e)
This is true for any manifold meshwithout boundary. Because mostly all tetrahedral
meshes have a boundary, an additional dummy vertex needs to be added and connected
to each triangle of the boundary via extra tetrahedra.

2. For all vertices{r} adjacent to both{p} and{q}, {p, q, r} is a face of the mesh.

3. If {p} and{q} are boundary vertices, the edge{p, q} is a boundary edge.

4. The mesh has more then 4 vertices if neither{p} nor{q} are boundary vertices, or the
mesh has more than 3 vertices if either{p} or {q} are boundary vertices (this is true
for triangular meshes).

In addition to edge collapses, more generalvertex pair contractionscan be applied which merge
two points into a new one. Both points need not to be connected by a mesh edge. So, the topology
of the mesh can be modified and holes can be removed, for instance [GH97].

3.1.4 Quadric Error Metrics

A metric of particular interest for this work is the quadric error metric. It supports both triangular
and tetrahedral meshes (and arbitrary simplicial complexes) in a uniform framework including any
attribute values.

Historically, Ronfard and Rossignac [RR96] have attached a set of triangles to each vertex.
Initially, the set of each vertex contains all its adjacent triangles. When both extreme vertices of
an edge collapse into a new vertex, their triangle sets are merged into the triangle set of the new
vertex whose position is chosen to minimize the sum of euclidean distances to all planes spanned
by triangles in the new set. The maximal distance of the new position to all its planes defines the
cost of the edge. Garland and Heckbert [GH97] have simplified this concept by usingsquared
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distances which allow the formulation of distances to triangle sets as compact matrices. They
called their metric quadric error metric. Later on, Garland and Zhou [GZ05] have shown that
quadric error metrics can be extended to represent attributes very easily. Here, we follow the ideas
of [GZ05] with slight modifications.

Fundamental Quadrics

Let’s consider thed-dimensional spaceRd spanned by an orthonormal basisB = {ei}di=1. Due
to the Pythagorean Theorem, the distance of a pointx ∈ Rd to another pointp ∈ Rd can be
calculated as

‖x− p‖2 =
d∑

i=1

((x− p)Tei)2 (3.1)

=
d∑

i=1

(x− p)TeieT
i (x− p) (3.2)

= (x− p)T

(
d∑

i=1

eieT
i

)
(x− p) (3.3)

which directly implies
∑d

i=1 eieT
i = I with the identity matrixI because we also know that

‖x− p‖2 = (x− p)T I(x− p)

Hereby, the distance is uniformly measured with respect to alld basis vectors. Now consider
a decomposition of thed-dimensional spaceRd into two subspaces that are orthogonal to each
other, thetangent subspacespanned byBT = {ei}ki=1 ⊆ B and its so-callednormal subspace
spanned byBN = {ei}di=k+1 ⊆ B, see also figure 3.3. If the error shall be measured to the normal
subspace only, the identityI must be replaced by a matrixA with

A =
d∑

i=k+1

eieT
i (3.4)

= I−
k∑

i=1

eieT
i (3.5)

The first equation allowsA to be computed using all basis vectors that contribute to the distance
whereas the second equation allowsA to be computed using all basis vectors that donotcontribute
to the distance which is advantegous as will be described soon.

Note thatA is a positive semi-definite matrix because an Euclidean distance is never smaller
than zero. PuttingA into equation (3.3), we get

‖x− p‖2 = (x− p)TA(x− p)

= xTAx− 2pTAx + pTAp

=: Q(x)
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Figure 3.3: A plane is a two-dimensional subspace ofR3. The distance of a pointx to the plane
is measured within the one-dimensional normal subspace that is spanned by the plane’s normal
vectorn.

which is a quadric form and can – for clearness – be written as

Q(x) = xTAx + 2bTx + c

where

A = I−
k∑

i=1

eieT
i , b = −Ap, c = pTAp.

A is ad × d symmetric, positive semi-definite matrix and can be represented with1
2d(d + 1)

floating point values,b is ad-vector andc is a scalar. So, a total of12d(d + 3) + 1 floating point
values are sufficient to representQ as a triple

Q = (A,b, c) (3.6)

Q is called aquadric. Up to now, no assumptions have been made about thed-dimensional
spaceRd. Due to this very general formulation,Rd is not restricted to cover geometrical (i.e.
positional) information alone. By increasing dimensionality, additional attribute information can
be integrated. Given vertex positionsx = (x1, ..., xD) ∈ RD and additional attribute valuesa =
(a1, ..., aA) ∈ RA at each vertex, quadrics measure squared distances within thed = (D + A)-
dimensional spaceRD+A consisting of all concatenated vectors

x = (x1, ..., xD, a1, ..., aA)T ∈ RD+A

.
The choice of the orthonormal basisB is given by the application. For triangular meshes em-

bedded inR3 without attribute values, an orthonormal coordinate system is established for each
triangle comprising the normal vectorn = e3 that spans the normal subspace and two vectors
e1 ande2 that span the tangent space, see figure 3.4. Given ananchor pointp on the trianglet,
equation (3.4) leads to the well-known quadric formula for single triangles

Qt(x) = (x− p)T (nnT )(x− p)

The quadricsQt for single triangles (or tetrahedra) are calledfundamental quadrics. If the
triangular mesh carriesA attribute values like colors or texture coordinates at its vertices, the
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dimensionality increases toR3+A with (3 + A) basis vectors. Here, equation (3.5) allows for a
simple computation of the quadric using the basis vectorse1, e2 ∈ R3+A. Given a trianglet =
(x1,x2,x3) with xi ∈ R3+A, the basis vectors are computed by Gram-Schmidt orthogonalization
of the edge vectorŝe1 andê1 as visualized in figure 3.4a:

ê1 = x1 − x0

ê2 = x2 − x0

resulting in the quadricQt for trianglet

A = I− e0eT
0 − e1eT

1 , b = −Ap, c = pTAp.

For tetrahedral meshes with attribute values at its vertices, the basis vectors of the tangent space
can be computed from the three edge vectors of a tetrahedron using Gram-Schmidt orthogonaliza-
tion as shown in figure 3.4b. The quadricQt for a tetrahedront is simply

A = I−
2∑

i=0

eieT
i , b = −Ap, c = pTAp. (3.7)

with ei ∈ R3+A. The anchor pointp is chosen as the center of a triangle or the center of a
tetrahedron, respectively.

a) b)

Figure 3.4: (a) The tangent subspace is a plane as given by the triangle. (b) The tangent subspace
is formulated as the subspace comprising the tetrahedron itself as well as all attribute values at
its four vertices.

Quadrics for Vertices

A fundamental quadric measures the squared distance of a point to a single subspace spanned by
a triangle or tetrahedron. When quadrics are added, the new quadric describes the sum of squared
distances to a set of subspaces. Adding quadrics simply means to sum the components of the
quadrics (3.6).

Given the fundamental quadricsQt of triangles or tetraehedra, a quadric for a vertex is computed
by adding the fundamental quadrics of all its incident triangles

Qv =
∑

f∈St(v)

wtQt.
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The weightswt steer the influence of a fundamental quadric. In order to achieve scale-independent
quadrics,wt is usually set to the area of its trianglet or the volume of its tetrahedront.

If two verticesp and q collapse into a new vertexv, the new quadric is just the sum of the
quadrics of both verticesQv = Qp + Qq measuring the sum of squared distances to all subspaces
given by the addends.

The position of a new vertexv is chosen to minimize its quadricQv. As a necessary condition,
the first deravative must be zero at a minimal valuex∗v:

∇Qv(x∗v) = 2Ax∗v + 2b = 0

The resulting linear system
Ax∗v = −b

can be solved using Cholesky decomposition [GZ05], conjugate gradient iterations [VCL+05] or
even SVD decomposition [LS01] becauseA is symmetric and positive semi-definite. If conjugate
gradient iterations are used, the middle point of the collapsing edge is chosen as starting point.

As one of the most beautiful properties of quadric error metrics, the matrix formulation allows
quadrics to be added together even if they measure squared distances to different subspaces. So,
different error types can be described by a single quadric.

For example, the tetrahedral quadrics of equation (3.7) approximate the squared mean field
error but do not consider the domain error. They measure the squared distance within theA-
dimensional normal space ofR3+A which is a hyperplane forA = 1. This leads to distorted
boundaries, i.e. large domain errors. If the boundary of the mesh shall be approximated well,
so-calledface quadrics[GZ05] can be added which are basically triangle quadrics for boundary
triangles penalizing the movement of vertices across the boundary.

Figure 3.5: Top row: without vertex distribution quadrics. Bottom row: with vertex distribution
quadrics.

As another example, in degenerated parts of meshes like flat triangle meshes or tetrahedral
meshes without attributes, the matrixA is ill-conditioned or even not invertible. Beside a solver
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for linear systems which is numerical robust [VCL+05, LS01], additional quadrics can be added
to each vertex in order to increase the condition ofA. So, Garland and Zhou [GZ05] suggest to
addvertex distribution quadricsof the form

A = I, b = −p, c = pTp (3.8)

to each vertexp. They penalize the movement of vertices and bias a quadric to preserve existing
vertex distributions, see figure 3.5. Such vertex distribution quadrics raise the condition ofA and
tend to produce well-shaped triangles but assume that a mesh is uniformly sampled. Although
this is often the case for polygonal models, it is often not the case for triangle meshes that bound
tetrahedralized volumes. Here, the point distribution can vary strongly and vertex distribution
quadrics must be weighted carefully.

3.2 Multi-Resolution Models

The seminal paper of Clark [Cla76] has introduced a hierarchy of multiple representations with
different complexity for each polygonal object in a scene. An appropriate level of detail can be
chosen for each object at run time in order to elevate display rates. Based on this work, a variaty
of subsequent algorithms have been published. I want to cover the most important ones for both
triangular and tetrahedral meshes. But let’s start with a general overview to the concepts of multi-
resolution models [CDFL+04].

3.2.1 Basic Concepts

A multiresolution modelM can be considered as a triple(Σ0,U ,D). Σ0 is the coarsest approxi-
mation of the original mesh and is called thebase mesh, U is a list ofupdates, andD describes a
directdependencyrelationship for the updates.

An update modifies a mesh by removing and inserting mesh elements like vertices, edges, tri-
angles, or tetrahedra. An updateu ∈ U can be considered as a pairu = (u+, u−) with u− as a
coarsening modification andu+ as a refining modification. Often (but not always), the base mesh
Σ0 has been built by applying a sequence of coarsening updatesu− to the original meshΣ which
is also calledreference mesh.

The dependency relationshipD defines dependencies between updatesu ∈ U . An updateu1

depends directly on another updateu2, if u+
2 removes mesh elements that have been introduced

by u+
1 . Hence, the updateu+

2 can only be applied ifu+
1 has been applied before. It can be shown

that this relationship defines a partial order on the updates [Pup98], soD can be described as a
directed acyclic graph (DAG).

If the updateu uses edge collapses as coarsening operationu− and vertex splits as refining
operationu+, u− removes all modified triangles (tetrahedra) and replaces them by new triangles
(tetrahedra) as shown in figure 3.6.
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Figure 3.6: A triangle mesh is simplified by a sequence of edge collapses from left to right. Col-
lapsed edges are shown as bold lines. The corresponding vertex splits run from right to left. Each
(vertex split, edge collapse)-pair forms an updateu = (u+, u−). All triangles that are influenced
by an edge collapse are gray. Note that an vertex split can be performed only if all those triangles
exist that have been existed at the time of the corresponding edge collapse. For instance, vertex
15 can be split only if vertex 16 is split before.

Traditionally, a multi-resolution model is constructed in a preprocessing step. The original
(reference) meshΣ is simplified down to a base meshΣ0 recording the update listU together with
all dependenciesD. At run time, a mesh conformal to both the base mesh and the reference mesh
is created by applying updates in an order defined by their dependencies to the base mesh. For
an elevated performance it is not necessary to start the refinement at the base mesh every time. A
conformal mesh can be created incrementally from another conformal mesh by applying a specific
subset of the updates and considering their dependencies.

Finally, many algorithms for general meshes fall into one of two categories: they either work
on thevertex levelor on thesegment level. Vertex-level Algorithms use the operations vertex
split and edge collapse while segment-level algorithms replace a part of the mesh, i.e. a segment,
by coarser or finer parts, i.e. other segments. This thesis covers algorithms of both categories.
While the presented vertex-level algorithms of chapter 5 improve known techniques in terms of
space and speed, the segment-level algorithms of chapter 6 are the first ones ever presented in the
area of tetrahedral meshing. Chapter 5 also discusses the differences between previous works on
vertex-level algorithms and the new algorithms presented there.

3.2.2 Triangular Meshes

Many early multi-resolution models have been designed for surfaces with a limited complexity
like triangulated height fields [FL79] and have later been improved to more sophisticated models
like BDAM [CGG+03], Geometry Clipmaps [LH04], and RUSTIC [Pom00] or CABTT [Lev02]
as extensions of ROAM [DWS+97].

Multi-resolution models for general triangular meshes in 3D have started to show up in the mid
nineties with the increasing size of available polygonal meshes. Taking the progressive represen-
tation of a mesh as starting point [Hop96], many early models have been based on a hierarchy of
possible refinement/coarsening operations at the vertex or triangle level. Xia and Varshney [XV96]
and Hoppe [Hop97] use edge collapses and vertex splits whereas El-Sana and Varshney [ESV99]
use vertex clustering. Lindstrom [Lin03] has proposed a scheme for out-of-core construction and
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visualization of multi-resolution surfaces based on vertex clustering on a rectilinear octree.

As a main contribution, [XV96] encode the dependenciesD between updates as a forest of
binary trees of vertices and a vertex enumeration scheme as shown in figure 3.7. The leaves of the
forest correspond to the vertices of the reference mesh while the interiour nodes correspond to all
vertices introduced by edge collapses. If an edgee = {p, q} collapses into a vertexv, thenp and
q are the children ofv.

Then vertices of the reference mesh can be enumerated in any order from 1 ton. The remaining
vertices are enumerated in ascending order as defined by the sequence of edge collapses. The de-
pendencies are given implicitly by the vertex enumeration. The nice property of this enumeration
is that an updateu1 depends on another updateu2 if the number of its corresponding vertex in the
hierarchy is lower than the number ofu2. Because this enumeration scheme is important for my
multi-resolution structure, it is described in more detail in§ 5.2.

Figure 3.7: The forest of binary trees forms a vertex hierarchy corresponding to the sequence of
figure 3.6. Gray circles are original vertices. The vertices that are introduced by edge collapses
are enumerated in ascending order.

Starting with Adaptive TetraPuzzles [CGG+04], the hierarchies are constructed with possible
refinement/coarsening operations at a segment level. Each segment – or patch – contains small
parts of the model and can be replaced by coarser or finer segments. Adaptive TetraPuzzles uses
a conformal hierarchy of tetrahedra generated by recursive longest edge bisection to spatially
partition the model. Each cell contains a precomputed simplified version of the original model.
The representation is constructed off-line during a fine-to-coarse parallel out-of-core simplifica-
tion of the surface. Appropriate boundary constraints are introduced in the simplification process
to ensure that all conforming selective subdivisions of the tetrahedra hierarchy lead to correctly
matching surface patches.

A related approach has been presented in the QuickVDR system [YSGM04]. The original
model is paritioned into a hierarchical set of small patches that are independently simplified into
progressive meshes and merged bottom-up. Additional logic in the management of boundaries
between clusters allows patch boundaries to be simplified while enforcing the conformality of the
resulting mesh.

Batched Multi-Triangulations [CGG+05] extend the concept of multi triangulations [Pup98]
from the vertex level to the patch level. The model is partitioned into patches which are inde-
pendently simplified. Next, adifferentpartition is chosen based on the simplified patches and the
resulting new patches are again independently simplified. A hierarchy is recorded as a directed
acyclic graph whose arcs encode which patches of different levels overlap. The graph enables a
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conformal mesh to be assembled as a list of non-overlapping patches without gaps. Because this
work has inspired my work on tetrahedral meshes, the concepts of multi-triangulations are detailed
in § 6.3.

3.2.3 Tetrahedral Meshes

Previously published multi-resolution models for unstructured tetrahedral meshes rely on the re-
finement / coarsening operations edge collapse / vertex split at the vertex level. Although rather
general descriptions exist that describe how a patch-based model can be applied, I have been
the first to introduce a working multi-resolution model which is specialized for huge tetrahedral
meshes and works at the patch level.

In essence, many vertex-based multi-resolution models are extensions of their triangular coun-
terparts and exploit the vertex enumeration scheme of [XV96] in order to ensure conforming
meshes. The main difference to models for triangular models is how the update information for
a vertex split is encoded. A vertex split partitions the tetrahedra incident to a split vertexvs into
two sets which are separated by a fan of triangles incident atvs. Tetrahedra of the two sets are
deformed to become incident tova andvb, respectively. All triangles belonging to the fan become
tetrahedra to bothva andvb as shown in figure 3.8. In particular, the challenge of vertex splits for
tetrahedral meshes is that tetrahedra around a split vertex do not have a canonical ordering, that is,
there is nothing like a clock-wise or counter-clock-wise traversal possible as it is frequently used
in triangle meshes [Hop97] in order to find both sets of triangles.

Figure 3.8: An edge collapse and vertex split modifies a tetrahedral mesh. An edge collapse
removes all tetrahedra incident to the edge while a vertex split must partition the surrounding
tetrahedra into two sets in order to re-insert all collapsed tetrahedra between both sets.

Cignoni et al. [CMRS03] introduce a multi-resolution model based on edge collapses. A se-
quence of edge collapses constructs a binary hierarchy of vertices in a preprocessing step where
each updateu of the hierarchy stores

• Geometry.Offset vectors which are used to find the positions ofva andvb from that ofvs,
and vice-versa.
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• Attributes.Offset values which are used to find the field attributes ofva andvb from that of
vs, and vice-versa.

• Error. An error value providing an estimate of the field errorEf associated withu.

• Connectivity.A bit mask which is used to find the partition of all tetrahedra incident tovs.

The bit mask contains a single bit for each tetrahedron incident tovs. In order to establish
an order, all tetrahedra incident tovs are sorted lexicographically by the triplets formed by their
vertices different tovs. Each triplet itself sorts its vertices according to their indices. Given the
order of tetrahedra and the bit field, all tetrahedra marked with 0 replacevs with va while tetrahedra
markd with 1 replacevs with vb. Each triangular face shared by tetrahedra with different marks
must be expanded into a tetrahedron incident to bothva andvb.

The most interesting storage cost is the size of the bit field which is restricted to 64 bits or 8
bytes and makes up the half storage cost of all update information.

Danovaro et al. [DDF02, DDFM+05] introduces a multi-resolution model based on half-edge
collapses where an oriented edgee = (va, vb) collapses into its extreme vertexva. Similar to
[CMRS03], a binary hierarchy of vertices is constructed. Because half-edge collapses do not
create new vertices, a vertex labelling scheme is used to enumerate vertices in ascending order and
to ensure conformal meshes by again exploiting the vertex enumeration scheme of [XV96].

Similar to [CMRS03], geometry information, attribute information, field error information and
connectivity information are stored. The latter allows for a different representation due to the
restriction to half-edge collapses. With each updateu, the local index of a tetrahedronτ within all
tetrahedra incident tovs is stored together with a code for the starting facef within τ and a bit
stream describing a traversal of all tetrahedra incident tovs starting at the facef .

The local index and the face need a total storage of 5 bytes and the bit stream requires additional
4 bytes summing up to 9 bytes. But the bit stream does not need a special sorting of incident
tetrahedra but encodes a unique traversal starting at the facef within the tetrahedronτ .

In addition to multi-resolution models, Cignoni et al. [CDFM+04] present a query scheme for
run–time adaptation of a multi-resolution meshes which is based on two queues [DWS+97] and
enables a mesh to adapt to given viewing or classification parameters very detailled. The view–
dependent parts of my own research in chapter 5 was mainly influenced by these works.

There are several techniques specialized for tetrahedral meshes with subdivision connectivity
that are not covered here. Additionally, some multi-resolution approaches subdivide regular grids
by tetrahedra in order to adapt a tetrahedral mesh to an isosurface. Note that there is a big differ-
ence between such models and models for unstructured tetrahedral meshes.
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Chapter 4

Mesh Simplification

Everything should be made as simple as possible, but not simpler.- Albert Einstein

As the size of geometric datasets has continued to grow very rapidly over the last years, auto-
matic simplification techniques have become an important tool for managing this huge amount of
data. The original dataset is simplified to an approximating dataset with far fewer data elements.
A whole bundle of applications ranging from computer graphics and visualization to simulation
software for finite elements benefits from such tools. Surface models produced by scanning and
reconstruction systems are almost always highly oversampled. Simulation systems run their code
on supercomputers and produce huge volumes of output data that are far to big to be visualized
interactively because visualization systems often have only commodity PC hardware available.

4.1 Iterative Edge Collapses Revisited

This section covers two minor issues for edge collapse based simplifiers.

Consider an edgee = {p, q} in a triangular mesh with extreme verticesp andq as shown in
figure 4.1. We examine the valences ofp andq together with the valences of their wing vertices,
that is, the valences of the (at most) two vertices that are incident to bothp andq. The valences
of both vertices areV (p) andV (q), respectively. If the edge collapses into a new vertexv, the
valence ofv is simply

V (v) = V (p) + V (q)− 4. (4.1)

So, the valence ofv is larger than the valences ofp andq if V (p) + V (q) > 4. On the other hand,
the valence of each wing vertex decreases by1 because the two edges connecting the wing vertex
to p andq are replaced by a single edge connecting the wing vertex to the new vertexv.

Similar, if an edgee = {p, q} collapses in a tetrahedral mesh, the valence of a new vertexv is
given by

V (v) = V (p) + V (q)− 2− 2k + k = V (p) + V (q)− 2− k, (4.2)
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wherek is the number of vertices incident to bothp andq. Again, the valence ofv is larger than
the valences of the collapsing vertices ifV (p)+V (q) > 2+k. Note that equation (4.1) is a special
case of equation (4.2) withk = 2.

Figure 4.1: The valence of the new vertex increases while the valences of the wing vertices de-
creases.

In summary, an edge collapse leaves a single vertex with high valence andk wing vertices with
low valence. Together with the Euler formula, the distribution of valences spreads increasing both
the number of high-valence vertices and low-valence vertices. But a vertex with a high valence
causes its incident triangles (or tetrahedra) to be poorly shaped while valence-3 vertices tend to
invalidate future edge collapses due to topological restrictions.

The following section describes a simplifier which controles the valences improving both the
robustness of the simplification process itself and the quality of multi-resolution representations.
Simplifiers frequently compute volumes of tetrahedra which is ill-conditioned for badly shaped
tetrahedra at high-valence vertices. The number of dependencies between updates is decreased
in a multi-resolution mesh because a vertex may depend directly on all its incident vertices. The
number of incident vertices is controlled by controlling the valences.

4.1.1 Independent Edge Collapses

This section describes a simplification method that considers the vertex valence distribution by
collapsing independent edges only. It does not store all edges in a queue but just a workload of
edges which typically contains much less edges. It is not only suitable for a quick and robust
simplification with errors similar to approaches based on queues that sort all edges but also for the
construction of multi-resolution models due to its concept of independent edges.

Two edges areindependentof each other if they are incident to different vertices as visualized
by figure 4.2. The algorithm simplifies a mesh in several runs over the mesh. Each run detects a
set of independent edges which are collapsed. This way, the mesh is uniformly simplified which
can be perfectly used for a progressive representation as described in§ 5.2.

A single run starts at an arbitrary edge which is collapsed into a new vertexv. All edges in the
link of the new vertexv are added to a queue, i.e. all edgese ∈ Lk(v). Next, the next best edge
from the queue is collapsed intôv, removed from the queue and all edges in the link ofv̂ are put
onto the queue if they are independent of previously collapsed edges.
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a) b) c) d)

Figure 4.2: (a) Edges independent of edgee are dark gray. (b) Dependent edges are dark gray.
(c) After an edge collapse, all edges in the link ofv, Lk(v), are put onto the queue. (d) The next
simplification step increases the list of queued edges.

The independence of edges to previously collapsed edges is ensured by marking vertices. Ini-
tially, all vertices are unmarked. When an edge collapses into a new vertexv, v is marked. An
edge is independent of another previously collapsed edge (and can be added to the queue) if and
only if both its extreme vertices are not marked.

The queue sorts all edges by their quadric costs. When an edge collapses, it increases the valence
of the new vertex but decreases the valences of wing vertices. But because only independent edges
are put on the queue containing edges that are incident to the wing vertices, those wing vertices
are likey to be collapsed next therebyincreasingtheir valence again anddecreasingthe valence
of their wing vertices, respectively. This way, valences do not spread because low-valence wing
vertices are collapsed decreasing the valence of their wing vertices which are likely to be the
high-valence vertices left by previous edge collapses.

Due to the selection of independent edges, edges may be collapsed with a high error. In order
to prevent the collapse of such high-error edges, a threshold is introduced. The initial value of
the threshold is estimated by selectingk edges randomly and setting the threshold to the average
quadric cost of allk edges.k is typically set to10. This process is repeated before every run over
the mesh.

Name Sea Post Fighter F16
# Vertices 102,165 108,300 256,614 1,124,648
# Tetra 524,640 624,153 1,403,504 6,345,709
Reduction to 10% 10% 10% 5%

Ẽf
M 0.12 0.12 0.009 0.08

Time [sec] 27 76 189 781
Max Queue Size [# Edges] 48,312 82,591 105,195 341,629

Ẽf
M , no IEC 0.09 0.10 0.007 0.05

Time [sec], no IEC 34 98 210 923
Max Queue Size 655,228 740,850 1,701,869 7,625,318

Table 4.1: The mean field errors̃Ef
M and timings of independent edge collapses compared to our

simplifier with full queues. Timings are given without file I/O.
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Figure 4.3: The tetrahedral Post mesh is simplified from the full mesh (100%) to 10%. VDQ =
with vertex distribution quadric, IEC = independent edge collapses.
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4.1.2 Feature Edges

Consider a triangle mesh with a very sharp edge as shown in figure 4.5. Such edges do typically not
appear in triangle meshes describing 3D surface models but appear frequently in triangle meshes
that bound volumetric tetrahedral meshes like the mesh at the tip of an aircraft’s wing. Here,
they model important features of the mesh and should be approximated well in a simplified mesh.
Nevertheless, the condition of the quadric’s matrixA is very low and needs to be improved by
adding additional error terms.

Figure 4.4: An edge quadric is defined along a sharp edge elevating the condition of the linear
system.

The quadrics for tetrahedral meshes steer the optimal position to minimize the scalar field and
do not take actual geometry into account which means that a vertex is likely to be moved away
from the edge. If additional face quadrics are added, the minimization problem gets ill-conditioned
because the triangle border faces are nearly parallel to each other while having normals that point
into opposite directions.

In order to avoid these problems, we add anedge quadricwhich makes the linear system well-
conditioned by penalizing movements across the edge. Sharp edges are identified by a threshold on
the bending angle along the edge. Note that an edge quadric measures distances almost orthogonal
to a face quadric. Given an edge with end verticesp1 andp2 as shown in figure 4.4, the edge
quadric is defined along the edge

e0 =
p2 − p1

|p2 − p1|
A = I− e0eT

0 , b = −p, c = pTp.

Similar to face quadrics, all edge quadrics are weighted by a user-given factorwe steering the
influence to the approximation as shown in figure 4.5. The beauty of this approach arises from its
general application to both triangle and tetrahedral meshes.

4.2 Vertex Clustering

As described above, approaches based on edge collapses are known to create high-quality approx-
imations especially if quadric error metrics are used [GZ05]. Nevertheless, they need to check
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Figure 4.5: Top row: The edge at the wing tip of the Fighter model is highly detailed. The border
triangular mesh is rendered from inside the dataset looking at the edge. Top right: Tetrahedra
encapsulate the wing and leave just a small gap (which models the wing itself). The bottom row
shows a zoom onto the wing tip for different edge weightswe.

whether an edge collapse is valid and thus need to compute volumes of tetrahedra which is ill
conditioned for badly shaped tetrahedra (e.g. slivers). Additionally, if the data structures support
manifold meshes only, additional care must be taken to ensure that an edge collapse doesn’t in-
troduce non-manifold vertices. Furthermore, a sequence of edge collapses is a sequence of local
operations. Thus, the simplifier may run into a local minimum without reaching a global mini-
mum.

The simplification algorithm of this section overcomes these problems by looking globally at
the tetrahedral mesh. Instead of using a series of local operations that need to be valid, a sequence
of global operations is performed which avoids the problems of local operations.

First, the border of the tetrahedral mesh (which is a triangle mesh) is simplified into an intersection-
free triangle mesh that approximates the original border. Second, we locate all points that shall
be contained in the simplified tetrahedral mesh by point sampling the interior of the tetrahedral
mesh. Third, we compute a Delaunay tetrahedralization of the sample points which conforms to
the simplified border. The result is a tetrahedral mesh that contains all sample points (plus so-
called Steiner points) and is bounded by the simplified border. The approach is extremely fast,
simple to implement, numerical stable and cannot run into local minima. Furthermore, it provides
a clear separation of boundary simplification and attribute field simplifications (see section 3.1.1).

Independently, Uesu et al. [UBF+05] designed a similar system. We outrival their algorithm by
two important points. First, we ensure that the simplified border isintersection-free. A tetrahe-
dralizer can’t constrain a tetrahedral mesh to self-intersecting faces. In most cases, it just crashes.
The intersection-free border simplification was a major factor during the development of our algo-
rithm because some of our test meshes are likely to produce self-intersections. Second, our point
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sampling takes not only anfield error into account but also aspace errorwhich is very impor-
tant for isosurface reconstruction. So, our reconstructed isosurfaces have a much lower distortion
than [UBF+05]. Furthermore, our point sampling is more regular which results in better-shaped
tetrahedral meshes and faster run-times for the tetrahedralizer.

As the first step of our tetrahedral simplifier, we show how a surface triangle mesh can be
simplified to an intersection-free approximation. The major challange is to reject as early as
possible as many triangles as possible such that the number of expensive geometric intersection
tests can be minimized.

a) b)

c) d)

Figure 4.6: (a, b) The tetrahedral mesh of a F16-like fighter aircraft contains more then six million
tetrahedra. Only the border triangles are shown as they are seen from inside the tetrahedral mesh.
The border mesh is highly detailled with many faces that are nearly parallel but a short distance
away from each other. (c, d) Intersections during the border simplification are likely (c, see circles)
and need to be avoided (d).

We embedded this intersection detection into a traditional edge collapse approach for triangle
meshes with quadric error metrics, see section 4.1. Typically, each vertex stores a quadric which
measures the quadric distance of the vertex to the faces of the original mesh. Our approach stores
additionally a region of influence (i.e. a bounding box) for each vertex that covers all incident
triangles of the vertex. The vertices are sorted in an octree that allows for fast spatial searching.
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Given a region of influence, the octree is traversed to find all leaves that intersect the region.
For every such a leaf we test the regions of all its vertices for intersection with the given region.
Only the triangles that are incident to a vertex with an intersecting region must be considered for
geometric intersection tests. This way, we can reject many triangles very early and very efficiently
because we only need box-box intersection tests. When an edge collapses into a new vertex, the
region of the new vertex can be easily computed by just adding two boxes.

4.2.1 Intersection-Free Triangle Mesh Simplification

The border of a tetrahedral mesh is a triangle mesh. We simplify the mesh with quadric error
metrics by a sequence of edge collapses and embed the detection of self-intersections as follows.

Spatial Searching

We need a spatial search data structure that enables us to locate points and triangles quickly.
Furthermore, it must support dynamic changes, i.e. simplices must be added and deleted from
the data structure efficiently at run time because the simplification changes the triangle mesh and
deletes and adds vertices or triangles.

For most tetrahedral meshes, the triangles at the border vary strongly in their sizes as shown
in figure 4.6. We use an octree whose leaves adapt to the sizes of the triangles. We did not want
to use a grid that could be implemented slightly easier but tends to oversample the coarse outer
regions and undersample the highly detailled regions.

The octree contains just vertex indices. We do not need to store edges or triangles but can find
them on-the-fly as will be explained later. This not only saves memory but also frees us from
implementing specific routines that detect intersections between leaves and edges or triangles of
the mesh. Just a simple point-in-box test is necessary.

We construct the octree by a run over the vertices of the triangle mesh and start with an octree
that contains a single leaf which covers the slightly enlarged bounding box of the mesh. The box
enlargement is necessary for later dynamic updates because new points may lie outside of the
bounding box of the original mesh.

For each vertex, its octree leaf is detected and the vertex is inserted into this leaf. If the leaf
contains more than a given number of vertices (which is typically fixed to10), the leaf is regular
subdivided at its mid-point into8 sub-leaves.

For fast dynamic updates of the octree, each vertex of the triangle mesh stores the leaf index
that it is assigned to. So, it can be deleted in constant time. If a vertex is re-inserted, the leaf of the
vertex is located by a top-down traversal and the vertex is added to its leaf.

Intersection Detection

We assume that the border mesh is intersection-free because it has been part of a tetrahedral mesh
before (otherwise we would have to remove these intersections first).
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4.2 Vertex Clustering

Each vertex of the triangle mesh has a region of influence assigned to it. This region must
at least contain all triangles that are incident to this vertex. We chose axis-aligned bounding
boxes to represent regions because they are easy to implement and provide extremely fast box-box
intersection tests. To establish nomenclature, we say that the vertexv has its bounding boxBv as
shown in figure 4.7a.

When an edgee = (v1, v2) collapses, its two end verticesv1 andv2 collapse into a new point
vs. All triangles that are incident tov1 andv2 are deformed and the (at most) two triangles that are
incident to bothv1 andv2 are deleted. The deformed triangles may intersect other triangles which
can be found quickly using the regions of influence.

a) b) c) d)

Figure 4.7: a) The region of influence contains the triangles that are incident to a vertex. b) If
two vertices collapse, the region of influence of the new vertex is built by merging the regions of
the collapsing vertices and adding the new point. c) The new region is tested for intersection with
other regions. If an intersection occurs, at least one of these regions contains the intersecting
triangle. d) Although the vertex is contained in exactly one octree leaf, its region may intersect
several leaves.

The region of incluence of a new pointvs must be contained in the union of the regions ofv1,2

plus the new pointvs. Using bounding boxes, we merge the bounding boxesBv1,2 of v1,2 into the
new boxBvs and addvs to it. GivenBvs , we use the octree to quickly reject all triangles that are
definitely outsideBvs and enumerate those triangles that are candidates for geometric intersection
tests as follows.

The octree is traversed from top to down withBvs . Whenever the bounding box of a node or leaf
intersects withBvs , the node is further traversed. Note that the bounding box of a node (or leaf)
is defined as the sum of the bounding boxes of all vertices in its subsequent leaves (i.e. regions of
influence) as will be described later. When a leaf is reached, we iterate over all its vertices and test
their bounding boxes againstBvs . Only if both boxes intersect, we enumerate the triangles around
the vertex as candidates for geometric intersection tests.

This strategy eliminates very early a lot of triangles by simple box-box intersection tests. The
enumeration of triangles around a vertex can be implemented efficiently with a half-edge data
structure or something similar which is necessary for an edge collapse based simplification any-
way.

The geometric intersection tests are taken from [GBK03] which reduces an triangle-triangle test
to edge-triangle tests and point-inside-tetrahedron tests. If an intersection is detected, we first try
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to avoid the intersection by moving the new point to a intersection-free position [GBK03] and, if
this is not possible, we reject the edge collapse.

After the edge collapse, the verticesv1,2 are removed from the octree and the vertexvs is
inserted into the octree. Its region of influence is left asBvs which is just an approximation to the
bounding box which would tightly cover all triangles that are incident tovs. But we found that
using the approximation behaves well and saves the computational cost for recomputing the exact
(tight) bounding box.

For the algorithm to work correctly, the bounding box of a node (or leaf) must contain all the
bounding boxes of its vertices. Initially, these boxes are set to the union of the boxes of its vertices
by a bottom-up traversal. At run time, the box of a node is simply enlarged by the boxBvs attached
to the new pointvs wheneverBvs intersects the currently stored box.

4.2.2 Point Sampling

Given the simplified (and water-tight) boundary surface mesh, we want to point sample its interior
such that the original tetrahedral mesh is well approximated by a constrained tetrahedralization of
these points.

We want to find areas that can be represented by just one point who is a representant of all other
points in this area such that the approximation of the tetrahedral mesh does not introduce an error
that is bigger than some threshold. We distinguish between a field error and a space error, see
section 3.1.1.

Typically, tetrahedral meshes have more than one attribute value per vertex. The burdigalian
seaway has seven floating point attributes (four scalars and one vector), the F16 has six attributes
(three scalars and one vector). If the simplification shall respect all attribute channels, the attributes
need to be normalized to the unit interval[0, 1]. For scalar values, this is trivial. For vector values,
we propose to find the largest vector, scale all vectors such that the largest vector has length1 and
shift the vectors to the unit interval by12v+0.5. We note the attribute values of a vertex as a single
vectora that contains all attribute values (in any order).

We use an octree as spatial subdivision to find areas of similar attributes because it provides a
regular subdivision that can adapt to local feature sizes and is thus often used for mesh generation.

Each leaf stores the minimal and maximal attribute valuesamin andamax together with all
points that fall into the leaf. If the difference betweenamin andamax gets larger than a threshold,
the leaf is subdivided regular at its midpoint and the vertices are spread over the eight children.

This produces a small field error but may leave a big space error especially in large cells as
shown in figure 4.8. So, we want to estimate the space error. The first observation is that, given
our sampling strategy (that is described soon), the extent of the box does not necessarily bound
the space error. But the second observation is that the extent of the leaf relates to the space error.
Points of small cells are located near to each other such that the space error tends to be small
whereas points of larger cells are located far away from each other such that even small changes
in the attribute values can cause large space errors.
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a) b)

Figure 4.8: A 1D example: (a) the subdivision is created by a fixed threshold for the attribute
error ef . Althoughef is small, the space errores can become large especially in large cells. (b)
The subdivision is adapted to decrease the space error.

So, we approximate the space error by a heuristic which scales the extent of the cell (relative to
the total extent of the mesh) with the attribute difference. Although this is a rather crude heuristic
to estimate the correct space error, it performs surprisingly well and produces a subdivision that
also reflects thin structures in larger areas, see figure 4.8.

The field erroref and the space errores steer the subdivision of an octree leaf:

ef = ‖amax − amin‖
es = D ‖amax − amin‖

whereD is the relative extent of the cell where the space errores is calculated. The user provides
for each error a threshold. A leaf is subdivided whenever one of the errors is bigger than its
threshold.

All points of the original tetrahedral mesh that lie inside of the simplified border are inserted
into the octree one after another. Note that the border surface may shrink during its simplification
such that points of the tetrahedral mesh can lie outside of the simplified border (as it also has been
noticed by [UBF+05]). In order to check if a point is inside the simplified border, we shoot a ray
from the point into the direction that points away from the center of the tetrahedral mesh and count
the number of intersections with border triangles. The point is inside of the simplified border if
there is an uneven number of intersections, and outside otherwise.

After the octree has been constructed, its leaves contain interior points of the original mesh and
each leaf contains points with similar attribute values. Now, we choose one point from each leaf
that represents all the points of this leaf and is part of the tetrahedralization later.

For each leaf, we compute the average attribute valueâ of all its points and take the point whose
attribute values are closest toâ.

4.2.3 Tetrahedralization

Given a set of sample points and a boundary triangle mesh, we perform a conforming Delaunay
tetrahedralization that transforms this set into a tetrahedral mesh which respects the boundary
triangle mesh. Instead of implementing an own tetrahedralizer, we use the TetGen library [Si05].

When the tetrahedralizer constrains the tetrahedral mesh to the faces of the simplified border
mesh, it adds Steiner points to the mesh. Typically, these points lie near the border of the mesh
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and the tetrahedralizer does not assign attribute values to them. A final run over the tetrahedra
of the original tetrahedral mesh finds for each Steiner point its barycentric coordinates within its
enclosing tetrahedron and uses these coordinates to compute the attributes.

4.2.4 Implementation

To save memory, we implemented the algorithm as a sequence of runs over the file that contains
the tetrahedral mesh.

The first run reads and stores all vertices and constructs the vertex octree of section 4.2.2. Fur-
thermore, we run over all tetrahedra and for each tetrahedron, its four faces are inserted into a hash
table with their three vertex indices as hash key. If a face is detected that has already an entry
in the hash table, this face is an internal face of the tetrahedral mesh (because the face-adjacent
tetrahedron has added this face before) and can be deleted from the hash table. All faces that are
stored in the hash table after the final tetrahedron has been read belong to the border triangle mesh.
Because we have stored all vertices, we can now construct and simplify the triangle mesh.

The second run over the tetrahedra finds the attribute values of Steiner points. For each tetrahe-
dron, we check if it has at least one vertex that belongs to the border. If it has such a border vertex,
we check if one of the Steiner points is inside this tetrahedron. If we have left Steiner points after
the second run, we finally iterate over all tetrahedra that have no border vertex and check if these
tetrahedra contain a Steiner point.

4.2.5 Results

The simplifier has been tested with the six datasets of table 4.4. Both quality and performanced
are reported. The timings are measured on a Pentium 4 (2.8 GHz) system with 1 GB main memory
and Windows XP.

Quality.

The approximation quality of the simplified tetrahedral mesh is reported in table 4.4. For a discus-
sion within this thesis, I implemented the approach of [UBF+05] as well as quadric error metrics
for tetrahedral meshes and report the timings and average field errors. Note that our quadrics im-
plementation is by far not the fastest because it runs rather expensive checks to avoid the creation
of non-manifold or degenerated vertices and edges at the border of the tetrahedral mesh. For faster
implementations we refer to [VCL+05, Pop03] which can reduce the Fighter for example within
only 71 seconds to about 10% of its original size (our quadrics need 210 seconds). Nevertheless,
the presented simplifier needs 12 seconds only (with intersection detection 32 seconds) and is thus
at least twice as fast.

We approximate the mean field error (section 3.1.1) between two attribute fields as sum over
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vertices

Ẽf
M =

√
1
|V |

∑
v∈M

‖a(v)− â(v)‖2

where|V | is the number of vertices in the original meshM with attributesa while the simplified
mesh has attributeŝa. All points that lie outside of the simplified mesh are projected onto the
nearest point on the boundary. The approximation of the mean field errorẼf

M has also been used
by [CCM+00, UBF+05].

Comparing to the results of Uesu et al. [UBF+05], we get similar results with respect to the
mean field error of the scalar field. But for isosurface reconstruction, our space error ensures a
much higher quality as reported in table 4.2 for the Fighter dataset (see also the colorplates). We
computed nine isosurfaces and used the M.E.S.H. tool [ASCE02] to compute the mean geometric
errordM and one-sided Hausdorff distancedO between the isosurfaces of the simplified mesh and
the isosurfaces of the original mesh. Especially isovalue0.2 is strikingly better reconstructed. The
field error alone doesn’t capture this isosurface which is embedded into an area of very similar
attribute values.

Finally, we have a strict control over the domain error of the tetrahedral mesh which measures
the geometric deviation of the boundary. If quadric error metrics are applied directly to tetrahedral
meshes with additional face quadrics and vertex distribution quadrics as described in§ 3.1.4,
biasing artifacts may arise and the choice of the weight for these additional quadrics needs to be
adjusted manually by the user. With my approach, the boundary is simplified independently from
the interious which enables an easy control of the domain error.

Performance

The simplification timings are reported in tables 4.3 and 4.4. The simplification of the border took
most of the time. We noted that the construction time of the tetrahedral mesh, i.e. the time of the
conforming Delaunay tetrahedralizer, depends on the shape of the boundary surface mesh. The
Sea dataset has a rather complex surface with many slivery triangles and sharp edges which forced
the tetrahedralizer to slow down.

Uesu et al. [UBF+05] do not state if the points are incrementally inserted into the kd tree or
if all points are first inserted into the root which is then recursively subdivided. I implemented
both choices. The second choice gave better results which are listed in table 4.4 and are similar
to mine. Nevertheless, the octree is incrementally constructed which results in the slightly better
performance. I can simplify the Earthquake dataset with a peak memory usage of 300 MB which
is much less of what has been reported by [UBF+05] who need 400 MB for the very much smaller
Fighter dataset. My main part of memory usage is caused by the construction of the border surface
which in reverse is caused by the bad mesh layout of the dataset.

The measured timings for the intersection detection correspond to the timings reported by [GBK03].
But my approach is simpler to implement because I only need to locate points within an octree and
do not need to sort edges or triangles into cells. Additionally, my algorithm consumes (much) less
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memory because the triangles that are candidates for intersection detection are enumerated at run
time and do not have to be stored explicitly. The simplification pipeline slows down by a factor of
3 to 6 similar to [GBK03].

Isovalue Octree KD tree Qem
dM dO dM dO dM dO

0.1 0.33 3.1 0.79 3.2 0.29 1.55

0.2 0.64 3.39 2.15 8.19 0.51 4.08
0.3 0.23 1.34 0.32 1.95 0.43 1.7

0.4 0.14 0.88 0.15 1.12 0.15 1.05

0.5 0.14 0.81 0.09 0.45 0.12 0.77

0.6 0.24 1.18 0.26 1.05 0.25 1.22

0.7 0.08 0.35 0.18 0.84 0.04 0.25

0.8 0.06 0.21 0.14 0.52 0.04 0.12

0.9 1.69 6.69 1.78 7.3 2.36 9.66

Table 4.2: Nine isosurfaces of the Fighter dataset. The mean geometric errordM and the one-
sided Hausdorff distancedO of an isosurface of the simplified mesh to the isosurface of the original
mesh are reported. The errors are given relative to the bounding box of the original isosurface.
Note how we can reconstruct isovalue0.2 in contrast to [UBF+05]. The Fighter was simplified
to 66K tets (octree) and 78K tets (KD tree) which is about 5% of its original size.

Name #Border Faces Time [sec] 1K ecol Time [sec] 1K ecol
Original without intersection detection with intersection detection

Sea 56,848 0.09 0.45

Post 16,796 0.11 0.41

Neghip 47,628 0.08 0.29

Fighter 83,504 0.10 0.31

F16 309,932 0.12 0.69

Earthquake 484,514 0.09 0.30

Table 4.3: The timings for the simplification of the border triangle mesh. Given in seconds for
collapsing 1000 edges without and with intersection detection.
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Name # Vertices # Tetra Reduction to Octree KD tree Qem

this percent Ẽ
f
M

Time Time Percentage Ẽ
f
M

Time Ẽ
f
M

Time
[sec] Border - Octree - Tetr [sec] [sec]

Sea 102,165 524,640 20% 0.21 19 57-01-40 - border intersecton 0.09 34
Post 108,300 624,153 10% 0.15 15 (5) 84-01-15 0.14 (7) 0.10 98
Neghip 262,144 1,250,235 10% 0.03 18 (6) 85-01-14 0.031 (8) 0.021 175
Fighter 256,614 1,403,504 10% 0.013 32 (12) 78-01-21 0.012 (17) 0.007 210
F16 1,124,648 6,345,709 5% 0.08 150 86-01-13 - border intersecton 0.05 923
F16 1,124,648 6,345,709 2% 0.11 157 87-01-12 - border intersecton - -
Earthquake 2,461,694 13,980,162 1% 0.17 151 (49) 78-01-21 0.18 (62) 0.17 914 (§ 6.1.2)

Table 4.4: The mean field errors̃Ef
M and timings of our octree approach, the KD tree [UBF+05],

and quadric error metrics. A ’-’ means that we were not able to process the datasets. The percent-
age columns report the percentages of the steps with respect to the total run time. The timings in
brackets are measured with border intersection tests switched off. Timings are given without file
I/O (for the Earthquake dataset, reading the file and constructing the surface mesh takes about 15
seconds).

a) b)

c) d)

Figure 4.9: Two isosurfaces (at values 0.2 and 0.3) of the Fighter dataset are rendered. They are
reconstructed from the original mesh (a), from our simplifier (b), from a quadrics-reduced mesh
(c), and with a kd tree and field error only (d). Note the extreme distortion at the yellow isosurface
in (d) which shows the reconstructed surface at isovalue0.2.
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a) b) c)

Figure 4.10: The direct volume renderings of the Fighter dataset show that the simplified mesh has only
a small error in the scalar attributes. The image (a) is rendered with the full mesh, (b) with quadric error
metrics (80K tets) and (c) with our approach (66K tets).

a) b)

c) d)

e) f)

Figure 4.11: The earthquake dataset contains 13 million tetrahedra. (a) shows the original mesh where
the border triangular mesh is rendered with its colored attributes. The edges of the tetrahedra are not
rendered because they are too dense. (b) shows the simplified mesh (surface-colored) while (c) shows a
direct volume rendering of the simplified mesh (1%, in 49 sec). (d,e,f) show cuts of the dataset for the full
mesh (d), a quadrics-simplified mesh (e) and a point-simplified mesh (f).
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Chapter 5

Multi Resolution Models I

A good scientific theory should be explicable to a barmaid.- Ernest Rutherford

Beside pure simplification algorithms, multi-resolution models are a key tool to handle huge vol-
ume datasets and unstuctured tetrahedral meshes in particular, and allow visualization systems to
be fully interactive during direct volume rendering or isosurface extraction. A multi-resolution
model of such a mesh stores a coarse base mesh together with a collection of records describing
how the base mesh can be refined by inserting new vertices and tetrahedra.

Using these records, a visualization system can refine or coarsen the visualized mesh to view-
ing or classification parameters. Different levels of detail connect to each other without gaps or
overlappings and the model ensures that the adapted mesh is consistent at any time.

This chapter introduces two multi-resolution models for tetrahedral meshes. Both models are
based on a progressive representation and work at vertex-level by using edge collapses and vertex
splits as fundamental mesh update operations. Both models address a general problem of multi-
resolution models: to encode the vertex splits compactly using a few bits only.

The first model described in section 5.2 – Predictive Tetra Mesh – introduces the concept of pre-
dictive vertex indices. Thereby, a vertex split predicts the vertices of all newly created tetrahedra
from existing tetrahedra. It is shown that the prediction values can be compressed well.

The second model of section 5.3 – FastTetraMesh – extends the idea of FastMesh [Paj01] from
pure triangle meshes to tetrahedral meshes. Restricting itself to full-edge update operations, a
common data structure is used to store the mesh and allows all update operations to be calculated
efficiently without the need to store any extra bits for split operations but for the cost of computing
additional validity functions at run time.

Before describing both models in more detail, an overview to progressive representations of
meshes and by extension multi-resolution representations is given as well as an introduction to
dynamic meshing in general.

As extension of a classic simplification pipeline which simplifies a meshM down to a coarse
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approximationM0 by a sequence of edge collapsesecoli

M = Mn
ecoln−1−→ Mn−1

ecoln−2−→ ...
ecol0−→ M0,

a major contribution of Progressive Meshes [Hop96] is the notation of a mesh as a sequence
of vspliti records that can be applied to the coarse base meshM0 in order to recreate the full
resolution meshM :

M0
vsplit0−→ M1

vsplit1−→ ...
vsplitn−1−→ Mn = M.

Such a representation is calledprogressive representation. Each edge collapse stores all update
information in avspliti record which is necessary to undo the collapse and to refine the mesh again
by applying the vertex splitvspliti. Multi-resolution models like [Hop97, ESV99, KL01, Paj01,
DDF02, DDFM+05] can be considered as an extension of progressive meshes wherevspliti can
be applied in an order different from the strict progressive representation. In addition,ecoli can be
applied again to coarsen the mesh. The information recorded with each update must be sufficient
to

1. Rapidly perform edge collapses and their inverse operations, vertex splits, on a currently
adapted mesh in order to enable a visualization system to remain interactive.

2. Ensure the topological and geometrical validity of all operations. This typically includes
a fast inspection of all tetrahedra incident to the collapsed edge or split vertex. Otherwise,
manifold meshes can become non-manifold or geometric distortions like element flips can
occur.

3. The adapted mesh is the nearly minimal mesh that fulfills the given error criterion based on
the viewing parameters in order to achieve an optimal display rate during visualization.

A visualization system for direct volume rendering or isosurface extraction uses the multi-
resolution model to achieve interactivity during rendering while the visible error is below a user-
specified threshold. Instead of rendering the mesh at its full resolution, the mesh is coarsened and
refined by applying edge collapses and vertex splits until the adapted mesh can be visualized with
an error acceptable for the user (or no error at all). A mesh with a minimal number of tetrahedra
fulfilling the error criteria is called aminimal mesh.

Using edge collapses and vertex splits allows for a very fine-grained control over the adaptation
process. Given classification and viewing parameters, the visualization system can adapt the mesh
to a nearly minimal mesh. Nevertheless, if the adaptation takes place on the CPU, the complete
adapted mesh still needs to be transferred onto the GPU for rendering.

5.1 Basics on Dynamic Meshing

Basically, the collapse of an edge{p, q} merges both extreme verticesp andq into a new vertex
v. We denote an edge collapse asecol(p, q, v) meaning thatp andq collapse intov. Its inverse
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operation vertex split recreates the edge and is denoted asvsplit(v, p, q). Here, the vertexv is
called split vertex.

There are two different kinds of edge collapses. Afull-edge collapsecan choose the position of
the new vertexv freely and has alwaysp, q 6= v. In contrast, an edge can be split into two half-
edges of inverse orientation, i.e. into half-edges(p, q) and(q, p). A half-edge collapsecollapses
a half-edge(p, q) into p (whereas the half-edge(q, p) would collapse intoq). Using the notation
above, a half-edge collapse can be written asecol(p, q, p).

All tetrahedra that are incident to the edgee = {p, q} and thus to both extreme verticesp andq

are calledfan tetrahedraof e. A tetrahedron is amodified tetrahedronif an edge collapse replaces
exactly one of its vertices by another vertex. For a full-edge collapse, all tetrahedra incident to
exactly one of the extreme points are modified tetrahedra while in the case of a half-edge collapse
(p, q), only the tetrahedra incident toq are modified (tetrahedra that are incident top remain
unchanged).

From a meshing point of view, the collapse of an edge{p, q} changes the mesh with

1. Remove both extreme verticesp andq of the collapsed edge from the mesh.

2. Introduce a new single vertexv that the edge collapses into.

3. Replace the extreme verticesp and q within all tetrahedra incident top and q with the
new vertexv. Tetrahedra that are incident to bothp andq degenerate to triangles and can
be removed. Update the adjacency information between any pair of tetrahedra that are
connected by such a triangle.

A vertex split inverts an edge collapse and changes the mesh

1. Delete the split vertexv.

2. Introduce both extreme verticesp andq of the new edge.

3. Out of all tetrahedra incident tov, identify the setTp of tetrahedra wherev must be replaced
by p and the setTq of tetrahedra wherev must be replaced byq. Tp (resp.Tq) is the set of
tetrahedra that have been incident top (resp.q) only at the time of the corresponding edge
collapse.

4. For all tetrahedra inTp (andTq), replace the vertexv with p (andq, respectively).

5. Create all tetrahedra that have been deleted, i.e. create all fan tetrahedra of the edge, and set
their vertex indices.

Because not every edge collapse is valid, the geometric and topological preconditions of§ 3.1.3
must be ensured.

The various approaches presented so far differ mainly in how split items 3 – 5 are dealt with, i.e.
how a vertex split is calculated correctly. Finding both setsTp andTq is by no means a trivial task
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because at the time of a vertex split, all tetrahedra incident to the split vertexv reference onlyv
and cannot be distinguished from each other. Additional information needs to be stored with each
update record that enables both sets to be identified. Furthermore, inserting the fan tetrahedra and
updating all their adjacencies (between fan tetrahedra themselves as well as to tetrahedra ofTp

andTq) is neither a trivial task.

The situation for tetrahedral meshes differs from the split situation for triangular meshes in
the non-fixed number of fan tetrahedra. In triangular meshes, there are at most two fan trian-
gles whereas there are more than two (in average 6) fan tetrahedra. So, specialized techniques
for triangular meshes relying on surface orientations cannot be transferred to tetrahedral meshes
directly.

All subsequent sections describe algorithms for unstructured datasets and can be applied to more
general tetrahedral meshes than algorithms that focus on tetrahedralizations of regular (voxel–
based) datasets like [MDM04, ZCK97].

5.2 Predictive Tetra Mesh

As contribution to well-known multi-resolution models at vertex level, we exploit the redundancy
present in the connectivity information of a mesh in order to split a vertex. So, a vertex split can
be computed quickly by just comparing vertices which reduces computational time. In contrast
to [CMRS03], we only need to sort fan tetrahedra and donot need to walk over tetrahedra in any
particular order.

a) b)

Figure 5.1: (a) A classic edge collapse overwrites the indices. (b) If the indices are left unchanged,
they immediately reveal the correct partition of the tetrahedra for avsplit.

Figure 5.1 summarizes the basic idea. For clearness of visualization, the example shows a
triangular mesh. Using a standard indexed data structure for tetrahedral meshes (like [Nie97]),
the index of a vertex occurs in all tetrahedra that are incident to it. For example, the index4 is
stored five times as shown in figure 5.1a. If an edge collapse likeecol(4, 6, 9) overwrites the stored
indices, the data structure does not reveal how the tetrahedra are to be partitioned into the setsT6

andT4 for the inverse operationvsplit(9, 4, 6). The information about this partition has to be
stored explicitly. In contrast, our algorithm doesnot overwrite stored indices duringecol(4, 6, 9)
as visualized in figure 5.1b and exploits the redundancy of the indexed data structure to split the
vertex 9. The information about the partition of the split tetrahedra around vertex 9 into the sets
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T4 andT6 can be queried directly from the indexed data structure. All tetrahedra with a 4 belong
to T4 while all tetrahedra with a 6 belong toT6.

5.2.1 Construction

A progressive simplification reduces the mesh complexity by a sequence of edge collapses with
quadric error metrics. An edge collapse may be invalid due to geometrical and topological re-
strictions as described in§ 3.1.3. If a multi-resolution model is constructed by a progressive
simplification, additional care must be taken in order to introduce as few dependencies between
updates as possible. Because these dependencies mainly depend on mesh elements in the link of a
collapsed edge [XV96], the concept of independent edge collapses as introduced in§ 4.1.1 can be
applied again with a slightly widened definition of the term independent edge.

Figure 5.2: Left: a deep hierarchy with many direct dependencies, right: a more balanced hierar-
chy as created by independent edge collapses of§ 4.1.1.

Independent Edges

Given two edgese1 = {p1, q1} ande2 = {p2, q2} together with the unionsS(ei) of the stars of
their extreme verticesS(e1) = St(p1) ∪ St(q1) andS(e2) = St(p2) ∪ St(q2), the edgese1 and
e2 are independentiff the cut of both unions is empty, i.e.S(e1) ∩ S(e2) = � as illustrated in
figure 5.3.

Collapsing independent edges separates their region of influence, that is, they modify different
mesh elements. Remember that an update depends on another update if their regions of influence
overlap, see§ 3.2. Independent edges decrease the number of dependencies between updates and
keep the depth of the binary hierarchy flat. It is advantegous to identify dependent edges of a
collapsed edge instead of independent edges. An edge depends on a collapsed edge{p, q} iff it is
incident to any vertexv ∈ L(e) = Lk(p) ∪ Lk(q) as shown in figure 5.3c.

The simplifier of§ 4.1.1 can be extended to support collapses for this type of independent
edges. Especially in regions with degenerated mesh parts like flat boundaries, the depth of the
vertex hierarchy is decreased by independent collapses.

59



5 Multi Resolution Models I

a) b) c)

Figure 5.3: (a)S(e) = St(p) ∪ St(q). (b) The edgese1, e2 and e3 are independent because
S(e1), S(e2) andS(e3) do not overlap. (c) An edge depends one iff it is incident to a vertex of
the union of the linksL(e) = Lk(p)∪Lk(q). Dark vertices belong toL(e) while dependent edges
are drawn thick gray.

Binary Vertex Hierarchy

During progressive simplification, a binary vertex hierarchy is recorded consisting of an update
node for each vertex. An update node and its vertex have the same index and can be identified by
this index. The hierarchy is constructed by adding the nodes of both extreme verticesp andq of
an edge collapseecol(p, q, v) as children to the node of the new vertexv as shown in figure 5.4.
The leaf nodes correspond to the original vertices of the mesh whereas interiour nodes correspond
to vertices creates by edge collapses.

The vertices of the input mesh can be enumerated in any order whereas new vertices are enu-
merated ascendingly in the order given by the sequence of edge collapses (compare [ESV99,
CMRS03]).

5.2.2 Dynamic Meshing

Each node of the hierarchy carries update information such thatecol as well asvsplit can update
the mesh as follows.

Figure 5.4: The mesh is simplified by a sequence of edge collapses. Each edge collapse adds a new
update node to the binary vertex hierarchy. The index of each vertex is stored in each tetrahedron
(denoted as triangles in the pictures) that is incident to it. Anecol does not overwrite the stored
indices but leaves them unchanged.

For avsplit(v, p, q), we need to partition the tetrahedra that are incident tov into the setsTp

60



5.2 Predictive Tetra Mesh

andTq. Remember that the setTp contains all tetrahedra that have been only incident top while
the setTq contains all tetrahedra that have been only incident toq at the time of the corresponding
ecol(p, q, v). Instead of storing the partition information explicitly with each update, I exploit the
hierarchy and the redundancy of the tetrahedral data structure to find this partition of tetrahedra.

As a key part of predictive tetra meshes, anecol(p, q, v) does not overwrite the vertex in-
dices in affected tetrahedra as shown in figure 5.4. Figure 5.5 shows a particular situation where
ecol(4, 6, 14) leaves the vertex indices4 and6 unchanged in all affected tetrahedra.

Consider that vertex14 is to be split and that all preconditions are fulfilled, i.e. the indices of
incident vertices are lower than14. The tetrahedra that are incident to vertex14 have currently4
and6 stored. The correct partition splits the tetrahedra right between the tetrahedra with vertices4
and6 such that the tetrahedra with vertex6 belong toT6 while the tetrahedra with vertex4 belong
to T4.

Looking at the vertex hierarchy in figure 5.5, we see that vertex4 belongs to the right and vertex
6 belongs to the left subtree of split vertex14. The vertices of the right subtree belong to one set
while the vertices of the left subtree belong to the other set.

Figure 5.5: The situation forecol(4, 6, 14). The setsT4 andT6 can be found immediately from the
stored indices. However, the last tetrahedron that stores index 5 is removed.

This observation can be generalized. The partition of the tetrahedra of avsplit(v, p, q) can be
found by looking at the leaves of the left and the right subtree ofv. The left subtree was formed by
p while the right subtree was formed byq as described above. Thus, if an incident tetrahedron has
a vertex that is a leaf of the left subtree of the vertex to be split, it belongs to the setTp, and if an
incident tetrahedron has a vertex that is a leaf of the right subtree ofv, it belongs to the setTq. For
instance, thevsplit(15, 13, 14) in figure 5.4 can find the partition immediately asT15 = T{4,6}
andT15 = T{9}.

Given the partition into the setsTp andTq, a fan tetrahedron is created inbetween any two face-
adjacent tetrahedra that belong to different sets. This can be accomplished by a walk which crosses
all faces. In principal, this walk does not have to have any special ordering.

Finally, avsplit has to choose the indices of all fan tetrahedra. Because the indices must be
equal to the indices stored before the correspondingecol has been applied, the indices of a fan
tetrahedron could be overtaken from the indices of its two adjacent tetrahedra inTp andTq. There
is a final problem with this.

An ecol can delete indices of a fan tetrahedron, i.e. anecol erases the last tetrahedron that has a
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particular index stored. For instance,ecol(4, 6, 14) deletes the index5 in one of its incident tetra-
hedra as shown in figure 5.5. Because anecol can erase indices, the indices of a fan tetrahedron
cannot be simply overtaken from its adjacent tetrahedra but must be predicted from them. This
situation is illustrated in figure 5.6.

a) b)

Figure 5.6: (a) The indices of the fan tetrahedra are to be predicted from the incident tetrahedra.
Situation forvsplit(14, 4, 6). (b) For a tetrahedron, three indices are predicted from the incident
tetrahedron(va, vc, vd, .) and one index from(vb, vc, vd, .).

The differences between the indices of a fan tetrahedron and its neighboring tetrahedra are
recorded during preprocessing. Because these differences tend to be small, they can be compressed
well. Predicting the indices of a single fan tetrahedron needs four prediction values which are
usually integer values with a length of four bytes each. The four bytes are considered to be four
characters which can be compressed well using arithmetic coding. The table of probabilites has
256 entries and stores for each possible 8-bit character value its probability. Each update stores
the arithmetic compressed prediction values of all fan tetrahedra that need to be created.

Because the fan tetrahedra don’t have a canonical ordering, we must define an order that is used
to store the differences within an update. Each fan tetrahedron has two verticesvc andvd that are
not p(= va) or q(= vb), see figure 5.6b.vc andvd are interpreted as an ordered pair(vc, vd) if
vc < vd or (vd, vc) if vd < vc. These pairs are sorted lexicographically and thus define a unique
order of the fan tetrahedra. We experienced that the average number of fan tetrahedra is6 so that
this sorting overhead is small (for instance, [CMRS03] needs to order all incident tetrahedra of a
split vertexv lexicographically and restricts the number of incident tetrahedra to64).

Evaluated by experiments, in average one quarter until one sixth of all updates do not need
to store any prediction values because the indices of their fan tetrahedra and the corresponding
adjacent tetrahedra are the same, interestingly mostly independent of the size of the mesh. This
is exploited by the implementation which doesn’t need to store any encoded differences for these
updates.

Note that the prediction values depend on the distribution of vertex indices within a mesh. If
similiar indices are located close to each other, the prediction values tend to be small, whereas if
similiar vertex indices are far away from each other, the vertices are likely not be collapsed and
thus the prediction values need larger and worse distributed values.
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5.2 Predictive Tetra Mesh

5.2.3 View–dependent Meshing

A valid mesh corresponds to a vertex front through the hierarchy as shown in figure 5.7.

a) b)

Figure 5.7: The vertex front through a binary vertex hierarchy corresponds to a mesh.

A vertex is said to be active if it belongs to the vertex front. The vertex front contains for every
path from a root of the hierarchy to the leaves exactly one active vertex and for the path from a
leaf to its root also exactly one active vertex. The vertices on the vertex front correspond exactly
to the vertices in the current mesh, i.e. the mesh contains only these vertices while vertices that
are not on the front are also not in the mesh.

Initially, the vertex front contains all roots of the hierarchy which correspond to the base. An
adapted mesh can be created by moving the vertex front up and down by edge collapses and vertex
splits, respectively. The validity ofecols orvsplits can be ensured by comparing vertex indices
allowing the topological and geometrical preconditions of§ 5.1 to be checked implicitly [XV96]:

• A vsplit(v, p, q) is valid iff v belongs to the current mesh and the indices of all verticesvi

that are adjacent tov are lower thanv, i.e. vi < v.

• An ecol(p, q, v) is valid iff p andq belong to the current meshMi and an edgee = {p, q} ∈
Mi. For each vertexv′ that is adjacent top or q, eitherv′ is a root of the hierarchy or the
index of the parent ofv′ is greater than the index ofv.

A vsplit(v, p, q) can be performed by forcing thevsplit(vi, pi, qi) operations of all verticesvi

that are adjacent tov andvi > v. An ecol(p, q, v) cannot be forced in a similar way but can only
be applied if its preconditions are fulfilled.

Updates on the front are candidates for splits (yellow updates in figure 5.7) while updates at the
hierarchy level above the front are candidates for collapses (green updates in figure 5.7).

The selection ofecols andvsplits depends on run–time factors like viewing parameters or
classification parameters. A cost is assigned to each update that depends on the view–frustum, a
region of influence and the field error of the update. Every update stores a radius of influence,
that is, the radius of the minimal sphere that contains all mesh elements of the link of its split
vertex, and a field error, i.e. the error of the attribute field that the edge collapse introduced. The
calculation of this field error for anecol(p, q, v) measures the field values of all leaf vertices of
the subtree with rootv in the approximating mesh. The field errorEf (p) for a single such leaf
vertexp is the absolute difference between its approximation and its original field value. The field
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errorE(v) of the updatev is then simply the maximal value of all these leaf vertex field errors,
i.e. E(v) = maxp∈Leaves(v){Ef (p)}.

Basically, we can adapt the mesh for direct volume renderings (DVR) or isosurface extractions.
In order to define a cost per update in a DVR setting, the field errorE(v) is weighted with the
current opacity classification valueCα(Φ(v)) (whereΦ(v) is the field value ofv) resulting in a
weighted field errorτf for the active vertexv

τf = E(v) ∗ Cα(Φ(v)).

An update with a completely transparent field value has always an error0 and can be coarsened
while an update with an opaque field value has its full error and might be refined. If the bounding
sphere is completely outside the view-frustum,τf is set to 0 for coarsening. In order to decide
which update is to be refined or coarsened, a hysteresis scheme is applied. Ifτf exceeds a user–
specified thresholdT1, the vertex is refined, and ifτf falls below another user–specified threshold
T2 < T1, the vertex is coarsened. Otherwise, the vertex remains unchanged.

For isosurface extraction, the classification functionCα(Φ(v)) can be set to an isosurface clas-
sification function withCα(i) = 1 for an isovaluei andCα(j 6= i) = 0 for any other attribute
valuesj.

A refinement queue keeps track of all updates that are candidates for splits sorted by their costs
from highest to lowest. A coarsening queue stores all updates that are candidates for collapses
sorted by their costs from lowest to highest. The adaptation of the mesh first collapses as many
updates from the coarsening queue before it splits as many updates as possible from the refinement
queue. Whenever an update is coarsened or refined, the queues are updates to correspond to the
new vertex front. Note that especially vertex splits may force other vertices to split which results
in several changes of the vertex front and queues.

Because we never overwrite stored indices, the current active vertex number needs to be com-
puted efficiently for a stored index, i.e. the vertex that is currently active in the vertex front from a
leaf upwards to its root. Therefore, every leaf of the vertex hierarchy has its current active ancestor
stored. Anecol or vsplit operation updates this information by storing the new active ancestor in
all leaves that are indexed in the current setsTp andTq. Note that not all leaves of the left or right
subtree of an actual considered vertex need to be updated but only those that are currently refer-
enced by tetrahedra. All other leaves are updated by succeeding operations when it is necessary to
update them.

The described techniques can represent half-edge collapses as well as full-edge collapses. Only
the information that is to be stored in the updates differs as shown in the following section.

5.2.4 Implementation Details

To get more concrete, a principal data structure for the updates is shown in figure 5.8.
A class hierarchy defines a unique interface to all updates such that they can be stored in a single

list. Every subclass ofUpdate only stores the needed information. So an update entry of a vertex
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class Update; // the base class enables to store all updates

// in a single vertex front list

class OrigUpdate : Update { // for original vertices only

int active; // index of the active vertex

int parent; // parent update

};
class ZeroUpdate : Update { // predicts always zero

float error; // field error

float radius; // radius of influence

vector3 diff[2]; // pos child = pos parent + diff

float attrdiff[2]; // attr child = attr parent + attrdiff

int deep, wide; // tree connectivity

};
class FullUpdate : ZeroUpdate { // update predicts non-zero values

char partition[6]; // encoded prediction values

};

Figure 5.8: The principal structures for updates.

of the original mesh need only to store the index of parent and the radius of the bounding sphere
that contains all incident tetrahedra. But even this radius can be set to zero.

The updates of split vertices that always predict zero values can be encoded byZeroUpdate ,
i.e. the indices of the incident tetrahedra do not differ from the indices of the fan tetrahedra. The
other updates need to store the encoded sequence of predictions.

The binary vertex hierarchy itself can be implemented as an array of updates where the tree
information is stored in thedeep andwide entries. The indexdeep points always to the left
child whilewide points to the right sibling if the update is a left child or to the parent if the update
is a right child [DDF02].

The algorithm starts with the base mesh that has the tetrahedral mesh stored as it has been left
by the simplification, i.e. the indices of the vertices of the tetrahedra in the mesh have never
changed (and are just represented by their active vertices in the vertex front) and can be used to
split vertices. The vertex front is initialized to contain all root updates.

5.2.5 Results

The technique was tested with five datasets of different sizes each. The simplification timings
were measured on a Pentium 4 with 2.8 GHz and 1 GB memory.

At runtime an edge collapse or a vertex split takes about0.015 ms which corresponds to about
66K edge collapses / vertex splits per second. If the average number of tetrahedra incident to an
edge is assumed to be6 (which is the case for all of our models), Predictive Tetra Mesh can delete
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a) b)

c) d)

Figure 5.9: The base mesh contains a large field error (a, 30K tetrahedra) which is decreased by an
adapted mesh (b, 80K tetrahedra). (c) and (d) show the corresponding direct volume renderings.

and / or add up to400.000 tetrahedra per second. If the viewing parameters change slightly, the
overhead for adapting the mesh is small because it a small amount of tetrahedra must be updated
only.

In terms of memory consumption, a vertex is stored with three floating point values and a
tetrahedron with four indices plus four indices for adjacent tetrahedra. Our data structures need
12 bytes to store the coordinates of a vertex and32 bytes to store the indices and adjacencies
of a tetrahedron. A OrigUpdate needs8 bytes, a ZeroUpdate needs48 bytes, and a FullUpdate
additional6 bytes to encode the differences as reported in table 5.1.

Comparing to [CMRS03] the only value of interest for comparision is the amount of mem-
ory that is needed to find the partition of tetrahedra around a split vertex because in principle
[CMRS03] use similar data structures (they also store the field error, the differences of the vertex
positions and atribute values, and the tree structure).

To store the partition information, [CMRS03] use a bit field of64 bits (8 bytes). Every tetra-
hedron incident to the split vertex uses one bit that indicates which set the tetrahedron belongs to.
The number of tetrahedra that are incident to a vertex is limited by64. The tetrahedra must be
sorted in order to to establish an order used to map each tetrahedron to its bit. Therefore, the tetra-
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Figure 5.10: The mesh is adapted when the observer moves.

hedra are sorted lexicographically by their vertices where the vertices of a tetrahedron themself
are ordered ascending.

Because my data structure needs at most6 bytes (48 bits) currently, it improves upon [CMRS03]
by a percentage of 25%. But remember that the F16 could be packed into at most5 bytes and
the Bucky ball into even fewer4 bytes which is half the storage cost of [CMRS03] (concerning
partition information).

In addition, Predictive Tetra Mesh does not need to sort all tetrahedra incident to a split vertex
lexicographically but needs to sort only a small subset of them, in average6 tetrahedra in contrast
to 22 tetrahedra of [CMRS03]. (The average values are taken from table 2.3.) Note furthermore
that about one sixth of all updates don’t need to store anything and hence don’t need a sorting at
all.
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Name Bucky Ball Blunt Fin Sea Fighter F16
# Vertices 32,767 40,960 102,165 256,614 1,124,648
# Tetra 176,856 187,395 524,640 1,403,504 6,345,709
MHD 13 14 19 17 61
# Tetra Base Mesh 10K 14K 20K 50K 100K
# Updates 60K 80K 200K 500K 2,000K
Preproc. Time 47 sec 48 sec 156 sec 359 sec 1,014
# Max Bits 28 19 46 32 37
# Avg Bits 10.32 8.52 15.7 10.7 12.4
# Zeros 10K (16%) 20K (25%) 26K (13%) 80K (16%) 341K (17%)
File Size [MB] 3.7 4.0 13.2 27.8 140.1
File Size Orig [MB] 3.2 3.5 12.1 25.9 134.2
Time Base→Orig [sec] 0.95 1.09 3.05 7.7 31.4

Table 5.1: Properties of five sample datasets. MHD is the maximal hierarchy depth. # Updates
is the number of hierarchy nodes without leaves. Max Bits reports the maximal length of an
arithmetic encoded prediction array (out of all update nodes) while Avg Bits reports the average
number of bits needed to encode the prediction array. The Zeros row lists the number of updates
that don’t need a prediction because the indices of all fan tetrahedra are equal to the indices of
their predictor tetrahedra.

5.3 FastTetraMesh

FastTetraMesh stores the full tetrahedral mesh in an indexed data structure with adjacencies. This
data structure is updated by edge collapses and vertex splits in order to coarsen or refine the mesh
but no mesh elements are deleted physically from main memory. All mesh elements remain stored
but can be deactivated by updates. Because all mesh elements remain stored, they can be queried
quickly in order to perform vertex splits rapidly. This way, FastTetraMesh is an extension of
FastMesh for triangular meshes [Paj01].

In order to ensure correctness of all update operations, FastTetraMesh is restricted to half-edge
collapses. In a preprocessing step, a binary hierarchy of half-edge collapses is constructed which
contains half as many update nodes than a vertex hierarchy.

In addition, edges are allowed to collapse whenever the edge fulfills all topological and geo-
metrical conditions. This enables edges to collapse whenever these conditions are met. Other
algorithms often prohibit edge collapses if the current neighborhood does not equal the neighbor-
hood at simplification time, see [CMRS03, XV96] and§ 5.2.

5.3.1 Dynamic Meshing

An indexed data structure with adjacencies [Nie97] stores for each tetrahedron its four vertex
indices and its four adjacent tetrahedra. Using 4-byte integers as indices, the data structure needs
32n bytes in total ifn is the number of tetrahedra. Figure 5.11 shows a part of such a data structure
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covering three tetrahedra.

Figure 5.11: (a) Beforeecol(0, 1, 0): The fan tetrahedron6 stores face-adjacent tetrahedra5 and
7. (b) Afterecol(0, 1, 0): The fan tetrahedron6 still stores face-adjacent tetrahedra5 and7 while
those reference each other.

The data structure stores the four vertex indices of a tetrahedron in any order (but with an ori-
entation that ensures a positive volume), for instancet = (p, q, r, s). Each tetrahedron is adjacent
to (at most) four tetrahedra where each adjacent tetrahedron is adjacent to exactly three of the four
vertices{p, q, r, s}. We denote an adjacent tetrahedron that is incident to{p, q, r} ast = o(s).
The indices of the four adjacent tetrahedra are stored in such an order that the index of an adjacent
tetrahedron is placed at the position of the vertex index that is not incident to this tetrahedron, i.e.
(o(p), o(q), o(r), o(s)).

A half-edgeh is a directed edgeh = e = (p, q). All tetrahedra that are incident toh are called
fan tetrahedra, as before. Beside the identification of a half-edge by its two extreme verticesp

andq, a half edge can also be identified by the index of a fan tetrahedron and a local index that
specifies the half-edge within the fan tetrahedron, that is, the local index selects the half-edge pair
(p, q) out of all possible 12 half-edge pairs within a tetrahedron. Formally, a half-edgeh = (p, q)
can be identified byh = (t, l) with the tetrahedron indext and the local index1 ≤ l ≤ 12.

Given a half-edgeh = (t, l), the collapse of this half-edge identifies the extreme verticesp and
q and replaces the vertexq with p in all tetrahedra that are incident toq. Thereby, all tetrahedra that
are incident toh are flattened and degenerate to triangles. The two tetrahedra that are connected
to such a flattened triangle are connected by setting their adjacency information. Figure 5.11
illustrates such an collapse and the updates of the data structure for a single half-edge collapse.
Note that a half-edge collapse in FastTetraMesh does not overwrite the indices of fan tetrahedra.

As a key concept of FastTetraMesh, tetrahedra that are incident toh are not deleted from mem-
ory by a collapse but are marked as deactivated. They – and especially their adjacency information
– remains stored in the data structure and enables a fast vertex split as follows. Given again a half-
edgeh(t, l) wheret is the index of a fan tetrahedron that has been deactivated by the corresponding
half-edge collapse, the extreme verticesp andq can be identified withint = {p, q, r, s}. The local
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indexl allows to select two adjacent fan tetrahedrao(r) ando(s) of t that are opposite tor ands.
All fan tetrahedra can be traversed starting at the tetrahedront. Each fan tetrahedron still stores
two adjacent tetrahedrao(p) ando(q) that are opposite top andq, respectively. The adjacency
information of these two adjacent tetrahedra is changed to store the index of the fan tetrahedron
again. Starting with all tetrahedra that are opposite toq of all fan tetrahedra, a final traversal over
the mesh replaces all verticesp with vertexq where the traversal may not cross a fan tetrahedron.

5.3.2 Construction

A preprocessing step simplifies a tetrahedral mesh by a sequence of half-edge collapsesecol(p, q, p)
where a half edgeh = (p, q) is collapsed into the vertexp. Similar to predictive tetra meshes of
§ 5.2, a balanced hierarchy is constructed by collapsing independent edges only.

A binary hierarchy encodes dependencies between half-edge collapses and is used at run time
to adapt the mesh to current viewing parameters. The hierarchy stores a node for each collapsed
half edge. A nodehi with corresponding half-edgeh = (pi, qi) is parent of another nodehj with
half-edgeh = (pj , qj), if pi = pj andj < i, i.e. hj has been collapsed beforehi. The nodes are
enumerated in the order of their half-edge collapses such that half-edge collapses gets ascending
indices.

In contrast to binary vertex hierarchies, a half-edge hierarchy contains half as many nodes and
thus consumes fewer memory for representation as shown in figure 5.12.

The hierarchy consists of a forest of binary trees. Each node represents a half-edge which can
be collapsed or split. In the following, the terms half-edge and node are used intertwined. If a
half-edge is collapsed, its corresponding node is also said to be collapsed. Similar, if a half-edge
is not collapsed, its node is also said to be not collapsed. Both, node and half-edge, are denoted
with h.

Figure 5.12: Instead of using a classic vertex hierarchy, we follow the FastMesh approach and
create a half edge hierarchy for a sequence of edge collapses.

Each node of the hierarchy stores

• The half-edgeh as index pairh = (t, l) wheret is the index of an tetrahedron incident toh

while l selects the half edge within the tetrahedront.
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• The field error introduced by applying the half-edge collapse.

• The radius of a sphere that tightly bounds the modified region.

• The links to its parent and both children.

The index pair allows the half-edgeh which corresponds to the node to be uniquely identified and
to be collapsed or split. The field error and the bounding sphere are used to steer the adaptation of
the mesh during rendering as described soon.

The index pair needs5 bytes storage space, the field error needs4 bytes, the radius needs4
bytes, and the links need8 bytes. So, the overall data structure needs21 bytes per update.

5.3.3 View-Dependent Meshing

A valid mesh can be obtained from the base mesh by splitting half-edges and preserving all depen-
dencies encoded in the hierarchy. An edge can be present in the mesh if and only if its parent edge
is also present. Conversely, a parent edge can be collapsed if and only if its children are collapsed
(not present in the mesh). In summary, a front of nodes through the half-edge hierarchy defines a
valid mesh iff:

1. The front partitions the hierarchy horizontally such that the nodes above the front are cur-
rently not collapsed while the nodes below the front are currently collapsed. All half-edges
of nodes exactly on the front can or cannot be collapsed in the current mesh.

2. Every possible path from the roots to the leaves contains just one node of the front.

Figure 5.13: An edge front through this hierarchy defines a valid mesh if it partitions the nodes
into nodes that represent collapsed edges and nodes that represent not collapsed edges. The front
is implemented as a split and a collapse queue.

By traversing the node front, edges can be identified that need to be created or collapsed. De-
pending on the state of the edge corresponding to a node, the mesh can be refined or coarsened as
follows:

• The edge is present (not collapsed).
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– Refine the mesh by splitting the children (which are currently collapsed according to
the above definition), or

– Coarsen the mesh by collapsing the edge.

• The edge is not present (collapsed)

– Refine the mesh by splitting the edge.

After changing the state of a node, the edge front needs to be updated such that it fulfills criteria
(1) and (2) again. The front is implemented as two queues: a refining queue and a coarsening
queue. The refining queue contains all nodes that can (potentially) be split whereas the coarsening
queue contains all node that can be collapsed.

The collapse and split of a half-edgeh has been described above in§ 5.3.1. Note that the
information stored in a hierarchy node is sufficient to compute a collapse or split because one fan
tetrahedron and its half-edge can be identified. The collapse and split can be computed starting at
this tetrahedron.

One final problem needs to be solved. During a split, a fan tetrahedron can reference an adjacent
tetrahedron that is not active, i.e. that has been deactivated by another half-edge collapse. If such
a tetrahedron is not active, it must be made active by a forced vertex split. To ensure this, each
tetrahedron stores the edge collapse that deactivated it. The forced vertex split may cause nodes
to be split that have collapsed ancestors in the hierarchy. This would violate the conditions for a
valid mesh. Thus, all ancestors must be split which can be accomplished efficiently by recursively
splitting the parents.

The vertex split does not depend on a particular traversal of the tetrahedra that are incident to
the split vertex nor needs a lexicographic sorting of the incident tetrahedra. It just uses the stored
incidence information of the tetrahedra that are collapsed by the edge collapse and can traverse
the incident tetrahedra in any order.

The validity of the vertex split operation is ensured by forcing the incident tetrahedra to exist.
This is similar to Hoppe’s condition of existing faces for triangle meshes [Hop97].

The validity of an edge collapse is checked explicitly at run time. Modified tetrahedra are
checked for flipping and topological validity. This ensures that edges can be collapsed as long as
the current mesh makes it possible. Note that due to the restriction to half-edge collapses, only
those tetrahedra incident toq must be checked for a half-edge collapseecol(p, q, p).

Thus the mesh can be refined and coarsened very fast (for both vertex splits and edge collapses)
and adaptively (for edge collapses). Remember that the simplification collapses independent sets
of edges and thus reduces the average length of the forced splits.

We integrated the multi resolution model into a visualization framework that supports direct vol-
ume rendering with projected tetrahedra [ST90] and pre-integration [KQE04]. Initially, the model
is loaded into memory with all nodes of the hierarchy collapsed. Thus the mesh is represented by
its coarsest approximation. The indexed data structure contains all tetrahedra and vertices as they
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have been left by the simplification process. The edge front is initialized to contain the root nodes
only. All collapsed tetrahedra are marked as inactive.

In order to ensure interactive frame rates we want to find the mesh for each frame that best
approximates the underlying classified scalar field up to a user-specified error tolerance and that is
the nearly minimal mesh that has this error tolerance.

We use two priority queues that sort all valid edge collapses into one queue and all valid vertex
splits into the other queue similar to Cignoni et al. [CDFM+04]. All nodes of the edge front
are stored in the queues. The prioritypr of a nodeh = (p, q) depends on a user-specified error
thresholdτ :

pr(h) = α(h)e(h)− τ

whereα(h) is the largest alpha-value of all vertices in the link of the vertexp, includingp, and
e(h) is the field error that is stored ath.

Given a nodeh from the split queue, a positive value ofpr(h) means thath should be splitted,
a negative value means thath can be left unchanged. Positive values have higher priority. Given a
nodeh from the collapse queue, a negative value means thath should be collapsed and a positive
value means thath can be left unchanged. Negative values have higher priority.

Given furthermore a maximal numberT of tetrahedra that an adapted mesh shall maximal
contain, the mesh is adapted in a loop that works on the two queues in the following order.

1. If the current mesh contains more thanT tetrahedra, the best node of the collapse queue is
collapsed.

2. If the best node of the collapse queue has a negative value, the node is collapsed.

3. If the best node of the split queue has a positive value, the node is split if the mesh contains
no more thanT tetrahedra after the split. This is approximated by looking how many splits
are needed to be forced and assuming that every split activates about6 tetrahedra.

4. If the split would introduce to many tetrahedra, we collapse edges from the collapse queue
as long as the mesh is coarsened enough to perform the split.

5. If the best node of each queue can be left unchanged (negative value for the split queue and
positive value for the collapse queue), the adaptation stops.

The priorities are furthermore modified to support view-frustum culling by always settingpr(h)
to negative values ifh belongs to the collapse queue and to positive values ifh belongs to the split
queue.

The screen projection error that is typical for multi resolution representations for triangle meshes
can also be integrated by scaling the prioritypr(h) with the size of the projected bounding sphere
of the nodeh.

Our dynamic meshing creates a conform mesh that is sent down a standard volume rendering
pipeline. The renderer sorts the tetrahedra of the adapted mesh by depth in log–linear time and
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Name Bucky Ball Blunt Fin Sea Fighter
# Vertices 32,767 40,960 102,165 256,614
# Tetras 176,856 187,395 524,640 1,403,504
MHD 13 15 20 17
# Tetra in base mesh 10K 10K 45K 49K
# Updates 30K 38K 250K 500K
Preproc. Time 50 sec 53 sec 154 sec 347 sec
Memory footprint [MB] 7.6 8.2 26.2 66.1
File Size [MB] 7.6 8.2 26.2 66.1
File Size Orig [MB] 3.2 3.5 12.1 25.9
Time Base→Orig 0.93 sec 1.02 sec 2.59 sec 7.1 sec

Table 5.2: The properties of the datasets. MHD is the maximal hierarchy depth. Time Base→Orig
reports the time of extracting the original dataset from the base mesh.

sends the tetrahedra to a vertex shader program [WMF02] that projects the tetrahedra and renders
the resulting triangles.

5.3.4 Results

The technique has been implemented and tested on a Pentium 4 with 2.8 GHz and 1 GB memory.
The properties of the multi resolution models used for testing are shown in table 5.2.

At runtime an edge collapse takes about0.02 ms such that we can remove up to50K collapses
per second. A vertex split takes about0.015 ms due to the unnecessary check for validity. About
60K splits can be performed per second. Typically, algorithms that handle uniform volume data
only [MDM04] can perform collapses and splits faster, but are restricted to uniform data. Our
algorithm is aimed to handle unstructured data.

The pure renderer handles up to450K tetrahedra per second (including sorting). Together with
the dynamic meshing, we can render about250K−400K tetrahedra per second depending on how
many vertex splits and edge collapses are necessary to adapt the mesh.

The hierarchy needs21 bytes per update. But the mesh itself needs to be stored in the main
memory and needs12 bytes per vertex and32 bytes per tetrahedron. Finally, the index pair which
is stored with each tetrahedron to find the edge that caused its collapse needs additional5 bytes.

Figure 5.14 shows two scenes of an inspection of the Sea dataset together with a direct volume
rendering. The observer sees all red-marked areas. The boundary triangle mesh helps to visualize
the various resolutions of the mesh. Note the high resolution of the mesh currently visible to the
observer in contrast to the coarse resolution of the mesh in all areas currently not visible to the
observer.
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Figure 5.14: About 70K tetrahedra of the Sea dataset are inside the view frustum of the observer
and need to be rendered instead of all 500K tetrahedra of the full resolution dataset.

5.4 Discussion

We have introduced two new multi resolution models for unstructured tetrahedral meshes. While
Predictive Tetra Mesh allows for full edge collapses, FastTetraMesh extends the ideas of FastMesh
from triangle meshes to tetrahedral meshes resulting in an extension of common data structures to
multi resolution representations.

Memory Consumption

In terms of memory consumption, Predictive Tetra Mesh maintains the geometry and connectivity
of the adaptedmesh in main memory together with a binary hierarchy consisting of all of its
nodes. In contrast, FastTetraMesh must maintain the geometry and connectivity of thewhole
mesh together with a binary hierarchy in main memory.

Nevertheless, the size of the binary hierarchy of FastTetraMesh is smaller because each node
must store much less information than a hierarchy node of Predictive Tetra Mesh as shown in
table 5.3. This is due to the fact that a hierarchy node of Predictive Tetra Mesh must store split
information explicitly whereas a node of FastTetraMesh has to store no split information at all.
FastTetraMesh is able to extract this split information from the mesh connectivity alone.

Because FastTetraMesh must store the whole mesh in main memory, its memory footprint is
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Predictive Tetra Mesh FastTetraMesh Cignoni et al. Danovaro at al.
Mesh Adapted Full Adapted Adapted

Geometry 12 12 12 12
Connectivity 173 173 173 173

Total [bpv] 185 185 185 185

Hierarchy Inner Nodes
Tree Structure 2× 4 2× 4 2× 4 2× 4
Field Error 1× 4 1× 4 1× 4 1× 4
Radius of Influence 1× 4 1× 4 1× 4 1× 4
Position Prediction 2× 3× 4 – 2× 3× 4 2× 3× 4
Attribute Prediction 2× 4 – 2× 4 1× 4
Split Information 6 5 8 4

Total [bpv] 48+6 21 48+8 40+4

Hierarchy Leaves
Active Vertex, Parent 2× 4 – 2× 4 2× 4

Total [bpv] 8 – 8 8

Table 5.3: The memory consumption of Predictive Tetra Mesh and FastTetraMesh is reported
together with the comparable previous approaches of Cignoni et al. [CMRS03] and Danovaro et
al. [DDFM+05]. Both floating point types and integer types are assumed to consist of4 bytes. All
values are given in bytes per vertex (bpv). Note that32bpt ∼ 173bpv, see also chapter 2.

bigger compared to the footprint of Predictive Tetra Mesh, see also tables 5.1 and 5.2. Predictive
Tetra Mesh stores a base mesh together with the hierarchy on disc and needs nearly as many disc
space as a single mesh (an uncompressed mesh, of course) while FastTetraMesh needs to store the
whole mesh together with its hierarchy. Hence, the disc footprint of FastTetraMesh is larger than
that of Predictive Tetra Mesh.

Table 5.3 lists the memory consumption of two previous approaches which are comparable
to ours. Cignoni et al. [CMRS03] implement a full-edge collapse and can thus be compared to
Predictive Tetra Mesh while Danovaro at al. [DDFM+05] implement a half-edge collapse and
can be compared to FastTetraMesh, see also section 3.2.3. Note the improved encoding for split
informations of Predictive Tetra Mesh (48 + 6) compared to Cignoni et al. (48 + 8). Cignoni et
al. achieve this consumption only by restricting the valences of all vertices to at most64 while
Predictive Tetra Mesh can encode some datasets with only48 + 5 bits as described in section 5.2.

Run Time Behaviour

Both Predictive Tetra Mesh and FastTetraMesh use the operations vertex split and edge collapse.
They differ in how the validity of those operations is ensured at run time.

For vertex splits, both FastTetraMesh and Predictive Tetra Mesh force additional vertex splits if
the topological neighborhood of a split vertex does not equal the topological neighborhood of this
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Predictive Tetra Mesh FastTetraMesh
Edge Collapse 0.015 0.02
Vertex Split 0.015 0.015

Table 5.4: The run time behaviour of edge collapses and vertex splits for Predictive Tetra Mesh
and FastTetraMesh is compared. The timings are given in msec. for a single vertex split / edge
collapse.

split vertex at preprocessing time. So, the run-time of vertex split operations of FastTetraMesh and
Predictive Tetra Mesh should be equal to each other. This could be verified by our implementations
and is reported by table 5.4.

For edge collapses, Predictive Tetra Mesh rejects this operation if the topological neighborhood
does not equal the neighborhood at preprocessing time. Here, FastTetraMesh is more generous
because the validity of an edge collapse is verified at run time by an inspection of the topological
neighborhood. So, FastTetraMesh allows more edge collapses to take place but needs slightly
more time to compute this validity. Table 5.4 confirms this behaviour and lists the average time
that an edge collapse needs.
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Chapter 6

Multi Resolution Models II

A set is a Many that allows itself to be thought of as a One.- Georg Cantor

With the ever growing size of meshes, two major challenges are to be attacked. First, the mesh
might not fit into main memory and out-of-core techniques must be established. Second, refer-
ences between mesh elements might be non-local leading to mesh accesses with a poor spatial
coherence. Because memory hierarchies of modern computers (and especially the part of caching
systems) are highly optimized for accesses with both high spatial and temporal coherence, algo-
rithms relying on random accesses perform poorly for meshes with a bad reference locality. The
processing unit cannot run at its full speed due to memory delays which has become a major
bottleneck caused by the increasing gap between processing speed and memory speed.

Both challenges are more intertwined than one might think. The only way to solve the first
problem is to store the mesh partially in main memory. But if references between mesh elements
point into parts of the mesh currently not loaded, those parts must also be loaded which either
increases consumed memory or forces other parts to be removed from main memory. While the
latter often ends up with heavy swapping of mesh parts and a dramatically decreased performance,
the first one may end up with a demand of memory that exceeds available in-core memory. To
avoid such effects, all references between mesh elements should be as local as possible, i.e. the
mesh elements should have a high spatial coherence. An efficient out-of-core technique requires
high spatial coherence for all mesh elements.

Out-of-core techniques can be distinguished by the elements they are working on which range
from the smallest possible elements, vertices and triangles (or tetrahedra), to larger elements like
segments of the mesh. A mesh can be transformed into a representation telling an algorithm when
to load and – very important – when to release single mesh elements like triangles or vertices
allowing for a very fine control over the loaded mesh elements. Such a representation is called a
streaming mesh [IL05] and ensures that a mesh element is not released until its last reference ap-
peared in the representation. A representation allowing for a more coarse control over loaded parts
of the mesh first breaks up the mesh into segments consisting of small parts of the mesh [SS06c].
As a necessary condition, a single segment must fit into core memory for processing.
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Streaming meshes either exploit the spatial coherence present in the data themselves [ILSS06]
or have to re-order all mesh elements such that their spatial coherence increases. In contrast,
the spatial coherence automatically increases when a mesh is broken into segments because the
vertices and triangles (or tetrahedra) are re-indexed when they are assigned to their segments.

This chapter covers two issues. First, a new algorithm is introduced together with a data struc-
ture allowing for a robust and fast partition of huge tetrahedral meshes into segments of nearly
equal sizes. Additionally, the data structure is shown to enable an out-of-core processing of huge
meshes by pushing the granularity of streaming from vertices and triangles to whole segments.
As a main advantage, the automatic re-sorting of mesh elements in a segment-based approach is
combined with the computational power and simplicity of streaming meshes.

Second, two multi-resolution models are introduced based on the segmented data structure. Fine
segments can be replaced by coarse segments and vice versa enabling rapid changes of the multi-
resolution mesh and exploiting modern memory hierarchies and graphic GPU architectures very
well. Thereby, the correctness (consistency) of the multi-resolution mesh is always ensured.

As a side effect, we get rid of the restriction to a specific simplification operation. Vertex-based
models need edge collapses as basic simplification operations while segment-based models can
use any simplifier as long as the boundary of a simplified segment is left unchanged. A rapid point
based simplifier like the one presented in§ 4.2 is as well as suitable as any edge collapse based
simplifier.

6.1 Segments

This section examines methods to partition huge tetrahedral mesh into segments enabling both an
out-of-core processing and the construction of multi resolution representations. We assume that
the meshes store scalar and/or vector values at their vertices.

Basically, the segmentation must consider the underlying memory hierarchy and needs to sup-
port memory allocation algorithms of the operating system. In order to avoid defraction of main
memory, all segments should have a similar number of vertices and tetrahedra, that is, the segments
consume a similar number of bytes. If segments furthermore fit into a single page of memory, the
caching behaviour can further be optimized [YLPM05].

How can a tetrahedral mesh be split into segments?
Given a mesh, region growing techniques could try tocluster areas of similar attribute values

into segments thereby separating areas of distinct attribute values. However, many meshes store
more than one attribute value at their vertices, e.g. the Sea dataset has a total of seven attributes
attached to each of its vertices. For such meshes, attribute clustering does not have a global
meaning anymore. Additionally, clustering is not suitable if attributes evolve over several time
steps.

Spatial partitionsdivide the mesh based on geometrical information only. Thereby, a mesh is
typically partitioned by an octree or by a regular grid assigning first all vertices to their segments
followed by all tetrahedra. Such partitions can be computed easily, rapidly and robustly.Adaptive
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partitionsfurther exploit the mesh topology and are often designed as region growing approaches.
They are funded on both geometry and topology resulting in segments that reflect complex shapes
well. Nevertheless, they require multiple runs over the initial mesh which slows down the creation
process.

Caused by their simplicity and power, the presented out-of-core data structure uses a spatial
partition. As a motivation, the drawbacks of spatial partitions based purely on octree subdivision
or grids are discussed first.

The density of vertices of a tetrahedral mesh can vary significantly over the mesh in contrast
to most triangular meshes as can be seen in figure 6.1a. There are areas with a high density (and
rather small tetrahedra) and areas with a low density (and large tetrahedra). Often, those parts of
the volume domain have a high density of points (and tetrahedra) where the solver of differential
equations needs a high spatial resolution in order to be numerical stable and to capture all desired
physical features, while other parts can be represented with a lower spatial resolution.

An octree partitions the vertices of a mesh quickly and robustly. Its leaves reflect the density of
points in the mesh. Nevertheless, the number of vertices inside the leaves can differ significantly
from leaf to leaf due to the regular subdivision when a leaf splits into its eight children. So,
some leaves contain almost no vertices whereas other leaves contain many resulting in unbalanced
segments, see figure 6.1b.

a) b) c)

Figure 6.1: (a) The density of points in a tetrahedral mesh can vary significantly over the mesh
domain as shown in the exemplary cutout of the Fighter model. (b) The leaves of an octree reflect
the point density but contain an unbalanced number of vertices due to the regular subdivision. (c)
A grid needs a resolution specified by the user and produces a highly unbalanced segmentation.

A regular grid has the disadvantage that a user must specify its resolution. Depending on this
resolution, the variation of the number of vertices inside the grid cells differs highly. It is manda-
tory to merge cells into segments in order to obtain balanced segments. For tetrahedral meshes,
the size of the grid cells needs to be very small in order to catch the fine-detailed areas of the mesh
resulting in a vast number of grid cells that contain data. Nevertheless, a grid is well-suited as an
out-of-core data structure because no grid cell needs to be subdivided (in contrast to octrees) and
no vertex has to be re-accessed for subdivision purposes.

Additionally, when the cells of a grid are merged into segments, it is difficult to steer how the
boundaries of the segments look like. If the user wants the boundaries to be horizontal, vertical
or diagonal, the merging algorithm needs to consider this fact. Due to the fine-grained structure
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of grid cells, the segments will most likely be well-balanced but the boundaries are not shaped in
a way wanted by the user. Note that the shape of boundaries is a mandatory condition for some
multi-resolution data structures as will be discussed in§ 6.3. Furthermore, the merging algorithm
scales linearily with the number of grid cells. Because many tetrahedral meshes need a very fine-
grained grid, a merging algorithm does not only need much main memory but also slows down.

Name Grid # Segments # Points / Segment # Points / Segment # Tetra / Segment
Resolution Minimal Maximal Minimal Maximal Average Minimal Maximal Average

Sea 20x20x20 18 1 1,063 5,686 7,970 6,842 20,695 37,138 29,146
Fighter 20x20x20 47 1 15,515 1,648 17,424 8,418 6,510 89,171 40,100
Rbl 20x20x20 130 1 2,889 2,734 8,862 6,419 11,861 42,692 29,897
F16 20x20x20 212 1 700,456 1,122 700,456 4,090 4,138 3,935,947 22,867
F16 40x40x40 212 1 252,252 2,436 252,252 4,492 5,482 914,362 24,807
Earthquake 40x40x40 467 1 2,760 3,920 8,707 6,439 14,299 40,246 29,936

Table 6.1: Segmentation based on a grid with cell merging. The # Segments are given by the user.
The first # Points / Segment gives the initial grid distribution while the second column gives the
distribution after merging.

6.1.1 Out-of-Core Construction

The following approach combines the advantages of both octrees and grids. The produced seg-
ments have similar sizes in terms of their number of vertices and tetrahedra. The data structure can
be computed very rapidly and the construction time depends linearily on the number of vertices
and tetrahedra. The mesh is partitioned into segments by a first run over all vertices of the mesh
followed by a second run over all tetrahedra. The first run creates an octree over all vertices. The
leaves of the octree are merged into balanced segments which the tetrahedra are sorted into. As
input parameters, the user specifies the maximal numberK of vertices that are to be stored in
each octree leaf and the final number of segments. (Alternatively, the user can specify the average
number of tetrahedra per segment instead of the number of segments.)

The first run sorts all vertices of the mesh into an octree. If the number of vertices within an
octree leaf exceeds the given numberK, the leaf is subdivided at its midpoint into eight children.
The vertices are stored in-core which is not critical because the number of vertices usually much
smaller than the number of tetrahedra (in average by a factor of6). After all vertices have been
sorted into the octree, its leaves are merged to produce balanced segments. Therefore, an undi-
rected graph is constructed whose nodes are the octree leaves and whose edges define which octree

Name # Segments # Points / Segment # Tetra / Segment
Minimal Maximal Average Minimal Maximal Average

Sea 80 52 5,446 1,640 60 24,179 6,558
Fighter 288 83 5,337 1,141 199 25,932 5,401
Rbl 687 2 5,518 1,889 1 26,518 8,431
F16 1128 1 5,312 1,761 20 23,412 9,591
Earthquake 2724 2 5,346 1,291 56 24,971 7,423

Table 6.2: Segmentation based on an octree without merging. The octree is steered to contain
maximal 6,000 vertices in each of its leaves.

82



6.1 Segments

leaves are adjacent to other octree leaves. An edge exists between any two nodes if the boxes of
the corresponding octree leaves touch each other at a box face. There exists no edge between
nodes whose boxes touch only at a line or at a single vertex as shown in figure 6.2 which results
in face-connected segments by a graph partitioning algorithm as described next.

a) b) c)

Figure 6.2: A graph connects the leaves (a) and is partitioned into balanced segments (b) which
define the segments of the mesh.

A partition of a setS is a collection of subsetsSi ⊂ S with
⋃

i Si = S and
⋂

i Si = �. The
subsetsSi contain all elements ofS and are disjoint, i.e. each element ofS is contained in exactly
one subset. In graph theory, a partition of a graph means a partition of its set of nodes. Often, the
partition in question shall have a given number of subsets and fulfil some additionalconstraintsas
well asobjectives.

A typical constraint requests the subsets to contain an equal number of nodes. If each node
has an additional weight assigned to it, the constraint requests the subsets to contain nodes whose
sum of weights are equal. The objective for such a constraint is to minimize the edge cut, that
is, to minimize the number of edges straddling different partitions, or, if the edges have weights
assigned to them, to minimize the sum of weights of straddling edges.

In order to find a partition of the constructed octree graph, the weight of each node is set to the
number of vertices within the corresponding octree leaf while the weight of each edge is defined
as the distance between the centers of the nodes connected by the edge. The partitioning routine
computes a partition which balances the number of vertices while minimizing the edge cut. So,
the objective favours compact and equal-sized subsets. Metis 4.0 [KK98, Kar98] implements very
efficient partitioning routines for graphs and can be easily used by its programming interface.

The output of the partitioning routine is a collection of subsets each of which forms a segment
and consists of a collection of leaves of the octree. Every leaf belongs to exactly one segment
and thus every vertex of a leaf belongs to exactly one segment. An index is assigned to each
segment. Because this index steers the assignment of tetrahedra as will be described soon, the
index assignment needs to be done carefully. The segments are sorted ascending by the number
of their vertices starting with the segment that has the fewest vertices. Each segment is assigned a
number according to this ordering such that the first segment (with the fewest vertices) is assigned
the lowest number.

Given the segments, a second run over the mesh assigns tetrahedra to their segments. Each of
the four vertices of a tetrahedron belongs to exactly one segment. The tetrahedron is assigned to
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the segment with the smallest index of all the four vertex segment indices. Note that segments with
a low segment index get more tetrahedra assigned than segments with a high index as shown in
figure 6.3 which improves the segment balance. The assignment works extremely fast because no
computation needs to be done (neither computing additional points like centers of tetrahedra nor
finding the segment that the additional points lie in, and no geometry information must be available
at this point). Comparing to other techniques like [CMRS03] or [IG03] who assign a tetrahedron to
the segment that its center lies in, no loss is perceived in the quality of how segments are shaped.
Well-shaped borders between segments are created being fully sufficient for our purposes, see
figure 6.3. For each segment, a file is created which the tetrahedra of the segment are written into.
So, only the vertices are stored in-core.

a) b) c) d)

e) f)

Figure 6.3: (a) An example triangular mesh. (b) The vertices are sorted into segments which are
enumerated according to the number of vertices they contain. (c) The tetrahedra are assigned to
segments based on the lowest segment index of their vertices. (d) Shared vertices have a copy in
each segment they are referenced from. (e, f) A non-careful enumeration of segments results in
un-balanced segments.

For simplicity of subsequent algorithms be it simplification or rendering, vertices that are shared
between tetrahedra of different segments are copied for each segment. Such vertices are simply
calledshared verticesin the following text. As a tetrahedron is assigned to its segments and some
of its four vertices belong to other segments than the tetrahedron’s, each such vertex is copied into
the tetrahedron’s segment if the vertex has not been copied before. In order to keep track of copied
vertices and to know if a vertex is shared between segments or not, the data structure described
next stores an additional value for each vertex.

In order to establish terminology, all face triangles that a segment shares with another segments
are calledsegment boundarybetween both segments, that is, the segment boundary is the cut
between two segments. Note that the boundary of the tetrahedral mesh is not part of the segment
boundaries.

A final step merges the tetrahedral files of all segments into a single file thereby deleting the
temporary tetrahedral files. The out-of-core model is now ready for use.
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Name # Segments # Points / Segment # Tetra / Segment Time File Size
Minimal Maximal Average Minimal Maximal Average [sec] [MB]

Sea 1/30 18 5,344 8,976 7,075 19,308 38,020 29,146 4.40 21
Sea 2.5/30 18 4,121 11,641 6,901 17,232 45,382 29,146 4.38 21
Sea 5/30 18 4,310 12,602 6,653 18,046 60,335 29,146 4.08 21
Sea 0.5/15 35 2,835 6,115 3,888 10,074 23,352 14,989 4.9 22
Sea 0.2/3 175 460 2,146 906 513 7,064 2,997 6.6 23

Fighter 0.5/30 47 5,244 8,714 6,630 22,367 38,996 29,861 13.4 49
Fighter 1/30 47 4,919 8,158 6,536 21,083 40,290 29,861 14.2 49
Fighter 2.5/30 47 5,035 8,226 6,398 22,280 39,209 29,861 11.6 49
Fighter 5/30 47 3,639 10,123 6,330 16,838 49,762 29,861 11.39 49
Fighter 0.5/15 94 2,301 5,081 3,427 8,881 22,961 14,930 13.8 50
Fighter 0.2/7.5 188 1,348 2,843 1,859 3,824 11,097 7,465 16.7 50

Rbl 0.5/30 130 5,458 8,669 6,756 21,454 37,189 29,897 37.9 138
Rbl 1/30 130 4,860 8,913 6,455 21,284 38,088 29,898 38.9 137
Rbl 2/30 130 4,112 10,317 6,403 19,121 49,116 29,897 30.67 137
Rbl 5/30 130 2,347 10,212 6,342 10,748 49,591 29,897 31.05 137
Rbl 0.5/15 260 2,548 5,299 3,473 9,319 21,584 14,948 44.7 139
Rbl 1.5/15 260 1,448 5,185 3,366 6,121 22,485 14,949 33.5 139
Rbl 0.2/8 486 1,364 3,252 1,929 3,006 11,505 7997 64.1 140
Rbl 0.5/7.5 519 1,070 2,813 1,184 3,800 11,229 7,488 59.4 141

F16 1/30 212 4,618 9,477 6,554 19,060 43,930 29,932 70.0 246
F16 2/30 212 1,924 10,404 6,490 8,342 53,050 29,932 69.2 246
F16 5/30 212 1,094 11,169 6,522 4,428 56,953 30,362 69.4 246
F16 15/15 424 1,422 6,171 3,425 5,705 29,678 14,966 83.0 249

Earthquake 05/30 467 4,939 9,471 6,393 18,722 43,068 29,936 232 500
Earthquake 1/30 467 4,555 9,057 6,294 19,347 45,340 29,936 132 500
Earthquake 2/30 467 2,569 11,243 6,234 11,427 49,774 29,936 136 500
Earthquake 5/30 466 2,777 12,993 6,229 12,668 63,629 30,000 127 500
Earthquake 1/10 1399 2,777 12,993 6,229 12,668 63,629 30,000 189 524
Earthquake 05/7.5 1865 916 3,691 1,796 3,210 13,074 7,496 278 530

Table 6.3: Segmentation based on an octree with merging. The balance of the segments is achieved
independent of the subdivision size. Sea 1/30 means that an octree leaf contains no more than 1K
points and the leaves are merged to contain 30K tetrahedra in average.

6.1.2 Data Structure

Figure 6.5 shows the data structure that stores a single segment and contains an array of coordinates
for vertices (crds ) and an array of tetrahedra (tetras ) together with their attributes (if any) and
additional information useful for mesh traversal.

Figure 6.4: The opposite data structure can be implemented as a 32-bit field that stores a 12-bit
segment index, a 18-bit local tetra index and a 2-bit code. The code specifies the location of the
opposite point within the adjacent tetrahedron (shown as triangles for clearness).

For each tetrahedron four local vertex indices are stored comprising theTetra structure. Be-
cause only local indices into the vertex list of the segment (crds ) must be stored, a total of16
bits is sufficient for each vertex index resulting in a total of64 bits per tetrahedron (in contrast to
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other representations that need twice as many space, namely4× 32 = 128 bits).

Each tetrahedron is face-adjacent to (at most) 4 other tetrahedra which is a necessary informa-
tion for mesh traversals. The face-adjacencies are stored in theopposites array. For each face
f of the four faces,Opposite stores the index of its adjacent tetrahedron and an additional code
describing which of the four faces of the adjacent tetrahedron is adjacent tof . A 32-bit field is
sufficient to hold all this information as shown in figure 6.4.

The data structureVertexIndex allows to identify vertices in a global unique way. It consists
of an index-pair(si, li) with a segment indexsi and a segment-local indexli which can be packed
into a32-bit field. Similar, aTetraIndex bit field allows for a global unique index for tetrahedra
with li as the segment-local tetrahedron index.

Finally, theshared array keeps track of shared vertices as a single-linked list ofVertexIndex es.
For each vertex of the segment, the globalVertexIndex of the next vertex that equals this ver-
tex is stored as shown in figure 6.3. If the vertex is not shared,VertexIndex contains the
index of the vertex itself. So, shared vertices can be identified easily by just comparing the stored
VertexIndex with the current vertex’VertexIndex and all copies of a shared vertex can be
iterated quickly.

Point * crds; // vertex coordinates

float * vtxattr; // vertex attributes

Tetra * tetras; // a Tetra stores 4 local vertex indices

float * tetattr; // tetrahedral attributes

Opposite * opposites; // face-adjacencies

VertexIndex * shared; // vertex index of the next equal vertex

Figure 6.5: The data structure for a single segment stores the coordinates and attributes for each
point, the tetras and tetra attributes, the face-adjecencies between tetrahedra and an entry of the
single linked list of shared vertices.

Additionally, each segment can store the indices of itsadjacent segmentswhich are important to
be known because efficient streaming mesh processing can be accomplished by their knowledge
as will be detailled next. A segmentS1 is adjacentto another segmentS2 if any mesh element of
S1 is adjacent to a mesh element ofS2. For instance, a vertex can be adjacent to a tetrahedron.
Note that this relation is symmetric, i.e. if a segmentS1 is adjacent to another segmentS2, S2 is
also adjacent toS1. A segment that is adjacent to another segment is also called aneighborof this
segment.

The segments are stored in a single file one after another in an order optimized for a streaming
representation as described next.
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6.1.3 Streaming segments

Basically, astreaming data modelis a computational model which assumes that data elements
arrive in a continuous sequential order. Algorithms have access to data elements that the stream
has presented so far but do not have access to elements that will arrive in future. This does not
mean that an algorithm does not know what happens in future but that all his knowledge must have
its roots in data elements delivered so far.

Streaming data models distinguish offline and online models. An offline streaming model has
control over the speed of the stream (arrival of data elements) stepping on at a pace that can be
defined by the offline algorithm itself. An online streaming model must adapt to a speed of the
stream defined by some external device like sensors or networks. Here, an algorithm must be able
to consume all data elements at a given throughput.

The arriving elements are typically stored in a buffer enabling the algorithm to access them.
A very important property of a streaming model is how the size of this buffer can be controlled.
As data elements continue to arrive the buffer gets larger and larger growing to an infinite size if
no data elements are deleted. So, the information about data elements that willnot be accessed
in future is essential for controlling the size of the buffer. This information can be either given
implicitly by the application type or explicitly within the stream. For example, an application
might filter the stream consuming a fixed number of input data elements which implicitly restricts
the size of the buffer to at least this number of data elements. In contrast, meshing applications
(like mesh smoothing or simplifying) need to store mesh elements in the buffer as long as they get
accessed.

A data element is called anactive data elementif it is stored in the buffer. The number of
all active data elements at a timet is called theworkloadat time t. The maximal workload of
all timest is a critical value because it bounds the maximal number of memory that is used. A
well-designed streaming model tries to minimize the workload.

As data elements are removed from the buffer, they may be discarded or written into an output
stream (which can be simply a hard disc).

The workload is steered by two subjects. First, the order of data elements within a stream im-
pacts the workload directly. Second, access patterns between data elements themselves determine
which data elements need to remain active. To minimize the workload, the accesses between data
elements should not spread over the whole stream but should be located close to each other. Other-
wise, a data value has to remain active for a long time populating the buffer until it is be accessed
for the last time and can be removed safely.

Streaming Model

As the basic idea of my streaming model, an algorithm processes a mesh segment-wise working
on a single segment until it is fully processed and the algorithm proceeds with the subsequent
segment. A streaming representation consists of a sequence of segments presented to the algo-
rithm. Thereby the adjacency information between segments is exploited in order to minimize the
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workload. Processing a segment may require access to other adjacent segments. For instance, a
simplifier needs access to tetrahedra of another segment if an edge that is shared by two segments
is collapsed.

If a segment is active, all its adjacent segments must also be active because their mesh elements
may be referenced. So, segments that are adjacent to each other must be located close to each other
within the stream. The stream consists of a sequence of tags which come at two types. A tag of
the first type causes a segment to be loaded into the buffer while a tag of the second type specifies
a segment to be removed from the buffer. The segments are requested in the order defined by the
tags.

Figure 6.6: Streaming simplification of 3 million tetrahedra of the Rbl dataset. Red segments are
stored in main memory, green segments are not.

A load tags is encoded as a positive number while a discard tag is encoded as a negative num-
ber. A typical stream looks like1 4 5 7 -2 8 -6 where a positive numberp means to load
segmentp while a negative numbern means to release segment−n− 1. If a released segment has
been modified, it is written back to disc, and discarded otherwise. Given its index, a segment can
be loaded from disc or network connections.
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My streaming model maintains a list of active segments that are currently stored in main mem-
ory. An algorithm processes the segments in the order given by the load tags. In the example
above, the stream steers the algorithm to operate on segments1, 4, 5, and7, release segment1,
proceed with segment8 and release segment5.

In order to create the stream, only the adjacency information between segments needs to be
known and can easily be computed at construction time of the segmented mesh. So, the stream can
be created very quickly even for huge meshes and all mesh processing algorithms like simplifiers
or compressors can be easily modified to work on such a stream of segments.

Creation

In order to create the stream, the segments must be ordered such that the workload is minimized.
Basically, the order corresponds to a walk over the adjacency graph of the segments. Therefore, we
count the number of neighbors for each segment and store the counts in a simple array. The count
holds information about how often a segment can be referenced by other segments and enables us
later to decide if a segment can be released.

We maintain the stream itself and a candidate list which contains all segments that are candidates
for insertion into the stream. As long as the candidate list contains segments, we select an optimal
segment from the list, add its load tag to the stream and remove it from the candidate list. If a
load tag of a segment is added to the stream, two things happen. First, for each of the segments
neighbors, the stored count is decreased by1. Second, all neighbors are added to the candidate
list if they are not contained in either the stream or the candidate list. If the count of a segment
reaches0 and its load tag has been added to the stream before, a release tag is added to the stream
for this segment.

The optimal segment is chosen to keep the workload small. We select the segment which needs
to add the fewest number of segments to the candidate list. So, the size of the candidate list is
kept small exploiting the adjacency coherence. A small size of the candidate list increases the
likelihood that a segment can be released. A segment is released if its count reaches zero. Only
other segments can reduce the count to zero. Because the adjacency relation is symmetric, a
segment can be released only if all its neighbors and the segment itself are processed which is
forced by a small candidate list.

The stream is constructed by starting with the segment whose bounding box is closest to the
minimal point of the whole dataset’s bounding box. (We could also start at some other extremal
point of this bounding box.) This segment is added to the list and the selection process starts as
described above.

Results

Given the segmented models of§ 6.1, the meshes can be processed with a maximal workload as
reported by table 6.4. As applications, the adjacency information of the meshes are calculated and
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the meshes are simplified using quadric error metrics. The timings are reported in table 6.5. They
were measured on a Pentium 4, 2.8 GHz with 1 GB main memory.

Name # Segments max segs [%] max mem
Sea 1/30 18 66.7 20
Sea 2.5/30 18 55.5 16
Sea 5/30 18 61.0 17
Sea 0.5/15 35 47.2 13
Sea 0.2/3 175 25.5 7

Fighter 0.5/30 47 57 35
Fighter 1/30 47 51 30
Fighter 2/30 47 53 32
Fighter 5/30 47 51 31
Fighter 0.5/15 94 44 27
Fighter 1.5/15 94
Fighter 0.2/7.5 188 44 27

Rbl 0.5/30 130 24.2 38
Rbl 1/30 130 22.8 36
Rbl 2/30 130 23.1 36
Rbl 5/30 130 23.0 36
Rbl 5/15 260 20.0 33
Rbl 1.5/15 260 19.2 31
Rbl 0.2/8 486 19.8 57
Rbl 0.7/7.5 519 20.6 33

F16 1/30 212 37 98
F16 2/30 212 39 103
F16 5/30 212 35 92
F16 1.5/15 424 31 87
F16 1.5/7.5 845 26 79

Earthquake 05/30 467 24 133
Earthquake 1/30 467 24 133
Earthquake 2/30 467 24 133
Earthquake 5/30 467 22 123
Earthquake 1/10 1399 17 98
Earthquake 05/7.5 1865 13 82

Table 6.4: Streaming properties of the segmentations of table 6.3.

Name Time Adjacency Calculation [sec] Time Simplification to 10% [sec]
Sea 5/30 2.0 56
Fighter 5/30 4.7 187
Rbl 5/30 13.0 397
F16 5/30 28.7 609
Earthquake 5/30 56.9 914

Table 6.5: Timings for constructing the adjacency information and edge-based simplification.

6.2 Binary Tetrahedral Segment Hierarchies

This section describes a multi-resolution model for large tetrahedral meshes which is based on
the segmented representation discussed in the previous section. A binaryhierarchy of segmentsis
constructed where each node represents a single segment. The leaves represent the segments of
the original mesh while inbetween nodes represent coarser and coarser simplified segments. The
section starts with a description of the construction of the multi-resolution model, followed by a
discussion of its usage and integration into a rendering system.
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6.2.1 Out-of-Core Construction

The hierarchy of segments is constructed bottom-up level by level. The lowest level is created
by duplicating all segments of the original mesh. Each duplicate is simplified leaving its segment
boundaries unchanged, i.e. all shared vertices between segments are left untouched. We end up
with a coarse approximation of each segment where different segments are still connected at the
original resolution level along their segment boundaries. The lowest level of the binary multi-
resolution hierarchy is constructed by inserting the simplified copies as parents of their original
segments as visualized figure 6.8.

Figure 6.7: The construction process for the NASA fighter dataset merges two segments into a new
segment which is simplified. The colors of the segments can change from picture to picture.

Next, the binary hierarchy is grown upwards level by level. For each level, an undirected graph
is constructed whose nodes are the simplified segments of its next lower level. An edge exists
between any pair of segments that share at least one tetrahedral face. The nodes are weighted by
the number of vertices in their segments. A matching of the graph nodes is computed and ends up
with pairs of nodes (segments).

Figure 6.8: The binary segment hierarchy stores how the segments are merged into their parent
segments. The segments of the original mesh are gray.

Each segment pair is merged into a new segment and a new level is added to the binary multi-
resolution hierarchy by inserting the new segment as parent of both its children as shown in fig-
ure 6.8. The new segment is simplified. Note that all vertices that have been shared between
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both segments are now fully contained in the new segment. They are not shared vertices any-
more which enables them to be simplified. In contrast, shared vertices on the segment boundaries
remain shared vertices.

Figure 6.9 depicts the overall algorithm. Every iteration constructs a neighboring graph and
computes a graph matching which results in pairs of segments. Both segments of a pair are merged
into a new segment which is simplified. The hierarchy grows by building a (at most levels binary)
tree where the new segment is the parent of both merged segments. Figure 6.7 shows the construc-
tion process for the NASA fighter dataset.

For every segment s

snew = copy segment s;

add snew as parent of s;

simplify snew;

While the number of roots > 1

construct the node graph GH ;

find pairwise matching MH of GH ;

For every pair (s1, s2) in MH

snew = merge segments s1 and s2;

construct the dependency graph GD with edge weights Rsnew1,Snew2 ;

find pairwise matching MD of GH ;

For every new segment snew

add snew as parent of s1 and s2;

simplify snew and all boundaries to any segment snew2 with (snew, snew2) ∈ MD;

Figure 6.9: Every iteration finds pairs of segments that are merged into a new segment and sim-
plified.

The final mesh segments are written in the streaming order defined in section 6.1.3 to disc
together with the binary hierarchy. Using a streaming order improves the timings of disc accesses
because adjacent segments are likely to be stored near to each other.

The nodes near the roots in the hierarchy contain very coarse approximations of the mesh while
the boundaries between segments are still at the original resolution resulting in a highly unbal-
anced point distribution for ever bigger meshes. Such an unbalanced point distribution leads to
poor simplification results. Often, badly shaped mesh elements are created or the mesh can’t be
simplified further due to topological and geometrical constraints. So, the multi-resolution data
structure allows the boundaries between segments to be simplified, too. The simplification of
a boundary between two segments must be reflected in the binary multi-resolution hierarchy by
adding further dependencies between nodes.

If a boundary between two segments is simplified, adependencyis added to the hierarchy.
Dependencies are a symmetric relation, that is, if segmentS1 depends on segmentS2, segment
S2 also depends on segmentS1. As will be explained in the next section, dependencies must be
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added carefully because they directly influence the number of segments (and thus tetrahedra) that
need to be active in a view-dependent mesh.

The best strategy that the author could find for placing dependencieswithout any threshold
provided by the user, is based on the ratioRS1,S2 = |B|

min(|S1|,|S2|) between the number of faces
|B| on the boundary between two segmentsS1 andS2 and the number of tetrahedra|Si| within
Si, i = 1, 2. The ratio has a high value if the boundary is highly oversampled compared to the
interiour of the segments while the ratio is low for a well-sampled boundary. A graph is con-
structed (again) with all segments as nodes and with edges between any face-connected segments.
The edge between two segmentsS1 andS2 is weighted by the ratioRS1,S2 and a pair-wise graph
matching is computed which favours edges with a high ratio. The boundary between segments of
the pair-wise matching are allowed to be simplified and a dependency between both segments is
added to the hierarchy. The pair-wise matching decreases the number of split-chains which would
ruin the efficiency of the multi-resolution model.

6.2.2 Dynamic Meshing

Each node of the binary hierarchy corresponds to a small tetrahedral mesh. A collection of nodes
is called asegment frontand corresponds to a conforming tetrahedral mesh iff

1. From every path along nodes from the root to the leaves, there is exactly one node on the
segment front.

2. For each node on the segment front, all its dependent segments are also on the segment
front.

Item 1 ensures that the mesh which is formed by all segments of the segment front has no holes
and covers the complete domain of the original mesh. Item 2 ensures that no two segments overlap
and that the segments match seamless at their segment-boundaries. Figure 6.10a visualizes a valid
segment front. A segment on the front is called anactive segment. A segment front corresponds to
the well-known vertex front in vertex-based multi-resolution models like [DDFM+05] or [SS05b],
see§ 5.2.

a) b) c)

Figure 6.10: (a) A segment front through the binary hierarchy corresponds to a valid mesh. (b) If
segment 19 is refined, the segment front must be made valid by additional refinements of dependent
segments (thick black line between segments 12 and 13). (c) After forced refinements, the segment
front is valid. The red area shows the segments that are forced to be active.
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The segments on the segment front are candidates for refinement and coarsening, respectively.
The refinement of a segmentS replaces the segmentS by its childrenS1 andS2 and ensures all
dependencies ofS1 andS2. If a child segment depends on another segmentSd, this segmentSd

must forced to be active by refining its parent segment as shown in figure 6.10. By recursively
refining parent segments, all dependencies can be ensured.

A segment can be coarsened if its sibbling as well as all its dependent segments are on the
segment front. Then, both sibblings can be replaced by their parent segments and all sibblings
among dependent segments can be replaced by their parent segments.

6.2.3 The0-segment

The meshes of all segments on the segment front form a valid tetrahedral mesh. During render-
ing, the adjacencies between tetrahedra are often needed (for instance for MPVO-based sorting
[Wil92]) and especially between tetrahedra of different segments. A fast method to adapt the ad-
jacencies between segments is needed whenever a segment is replaced by another segment. We
introduce a special segment that handles the adjacency between any two neighboring segments.
Because this special segment has the unique segment index0, we call it0-segment.

Theoretically, the0-segment contains all triangles that form boundaries between segments, that
is, all triangles that result from cuts between all adjacent segments. Those triangles are used as
a buffer (or a docking station) between two adjacent segments. Instead of storing the index of
an adjacent tetrahedron, the index of the shared triangle in the0-segment is stored in the face-
adjacency information, see data memberopposites in figure 6.5. Because the triangles never
change and have always the same index, the adjacency to this triangle can be stored in all faces
of tetrahedra that are boundary faces. Note that these indices need never to be changed. The
0-segment forms a special data structure and is the only data structure that must be changed as
described next.

Each triangle stores two adjacency index-triples of typeOpposite that point to tetrahedra
in the adjacent segments, see also figure 6.11b. All tetrahedra of a segment having a segment-
boundary face store an index-triple(si, ti, ci) that points into the0-segment withs0 = 0 andti
as the triangle index.ci can be0 or 1 and points to one of the two adjacency index-triples of the
triangle.

When a segments replaces another segmentr, it must update the0-segment as follows. All
tetrahedra ofs having segment-boundary faces are traversed. At least one of the four adjacency
index-triples of these tetrahedra point to a trianglet in the0-segment (the other index-triples point
to tetrahedra insides itself). The index-triple oft points to the segmentr and must be replaced by
the index-triple ofs, i.e. (si, ti, ci) wheresi = s, ti is the index of the border tetrahedron andci is
the local index of the opposite vertex withinti, see also figure 6.11.

In order to find all border tetrahedra fast, they are stored before all other (inner) tetrahedra in
the file. So iterating all boundary tetrahedra can be accomplished by iterating over all tetrahedra
until a non-boundary tetrahedron is found.
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a) b)

Figure 6.11: Instead of storing the index-triple of the neighboring tetrahedron at the border of two
segments (a), the index of the triangle in the0-segment is stored (b).

The0-segment does not need to exist at the construction phase. It must exist only at run-time
when segments are to be exchanged very fast and can be computed once after (or before) the
construction phase.

6.2.4 View-Dependent Meshing

In order to adapt the mesh to current viewing and classification parameters, we need to decide
which segments of the segment front must be coarsened (replaced by the parent) or refined (re-
placed by the children). Therefore, the following values are stored with each segment

• The histogramH of the attribute values (which is a lookup-table of resolutionN with nor-
malized entriesHi ∈ [0, 1]), and

• A look-up tableE of the same resolutionN which specifies the maximal error that the
segment contains for the according attribute value, and

• The (axis aligned) bounding box.

The user can specify a maximal field errorεmax.

For each frame, the segment front is traversed. Every segment of the front is marked by the tags
COARSEN, REFINE, and NOTHING that help later to adapt the mesh:

1. Compute the average sumS =
∑N

i HiEiαi where the sum runs over all histogram values,
Hi is the (normalized)i-th histogram value,Ei is the according error andαi is the according
classified opacity.

If S > εmax, mark as REFINE, else

2. If the bounding box is outside the view-frustum and if the sibbling is on the front as well
as all dependent segments (of both the segment itself and its sibbling), mark as COARSEN,
else

3. Mark as NOTHING.

After all segments of the front are marked, the front is traversed again and every segment is
adapted:
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1. If a segment is marked as REFINE, it is replaced by its children and all dependent segments
are forced to be active as described above.

2. If a segment and its sibbling as well as all dependent segments are marked as COARSEN,
they are replaced by their parents.

The histogramH as well as the look-up tableE are computed during the construction of the
multi-resolution model. Every edge collapse introduces a particular error for a scalar field attribute
which is stored in the look-up tableE if it is greater than the already stored error.

A simple LRU queue keeps track of all loaded segments. The queue contains at least all active
segments but may also contain released segments.

6.2.5 Results

The segments are swapped from disc via memory mapped files which are an opportunity of modern
operating systems for memory allocation. Parts of a file can be mapped directly into main memory.
If a segment is requested, the part of the file which corresponds to the segment is mapped into
main memory and can be interpreted immediately as thepoints , tetras , or similar arrays of
§ 6.1.2. Because the operating system exploits disc caches in a highly sophisticated way, memory
mapped files map parts of a file in nearly constant time if the part has been accessed some time
before. However, sometimes cache misses happen and small delays occur due to the time of
positioning the disc read head. The memory of a mapped file can be released in a similar way to
other memory allocation techniques. This way, the system can change up to 500,000 tetrahedra
per second. Note that this value is highly dependend on the status of the caches and was measured
as peak performance. In average, if segments need to be loaded for the first time, the performance
decreases .

The frame rates depend mainly on the power of the visualization system. The volume renderer
uses preintegrated projected tetrahedra. Because the size of the segment front is small, the costs
for checking if a segment can be refined or coarsened, are neglectable. So the checking methods
may be more expensive in calculation than those of per–vertex based multi resolution models.
We experienced frame rates of about 3–4 frames per second with a workload of about 250,000
tetrahedra.

In average,80% of the time of a frame is used by the volume renderer whereas16% are used for
reloading segments (file IO) and4% are used for segment adjacency adaption (measured average
values for the NASA Fighter dataset, the other datasets perform similiar).

The construction timings of the multi-resolution meshes are reported in table 6.6. The main
time was spent to simplify the meshes and to construct the hierarchy. Although the timings for
simplification do not compare to the (much faster) timings of Lindstrom [VCL+05], we differ from
Lindstrom because we need to store all segments and do not use the randomized edge collapses.

Furthermore, the file sizes are huge because we store each segment such that it is ready to be
mapped to memory.
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Figure 6.12: The base mesh of the Rbl dataset (top) contains about 80,000 tetrahedra and is
adapted to an observers position (red sphere). The mesh consists of segments that perfectly match
to each other along their boundaries.
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Name # Tetra in Time # Segments Maximal Memory file size
base mesh hh:mm:ss in hierarchy Usage [MB] [MB]

Sea 15K 0:08:47 38 34 67

Fighter 30K 0:14:23 95 43 101

Rbl 80K 0:25:05 420 101 284

F16 80K 0:46:13 473 187 513

Earthquake 120K 1:23:21 967 300 1,100

Table 6.6: The construction properties including timings and the sizes of the stored multi resolution
files. The timings include file I/O and simplification.

Figure 6.13: The meshing quality in a zoom into the Rbl dataset.

6.3 Tetrahedral Multi Triangulations

A very flexible n-ary hierarchy applies the concepts of multi-triangulations to tetrahedral meshes.
A multi resolution model is constructed which automatically builds high-quality meshes in terms
of both approximation quality and tetrahedral shape quality. All segments are balanced as much
as possible, that is, they contain a similar number of tetrahedra and vertices which supports the
memory management of the underlying operating system.

The first section overviews the concepts of multi-triangulations while the second section shows
how the segmentation can be used to construct a multi-triangulation for huge tetrahedral meshes.
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6.3.1 Basic Multi Triangulations

Multi Triangulations are a powerful tool to build multi resolution representations of simplicial
complexes [KG98, Pup96]. [CGG+05] extended them to not only support simplicial complexes
but also parametric surfaces or point clouds, and applied them to render huge polygonal mod-
els interactively. This section gives a brief overview of how multi triangulations for simplicial
complexes work.

Figure 6.14: A 2D example. (Left) The multi triangulation is constructed by a sequence of par-
titions Πi. Each partition consists of segmentsSj

i that cover the whole mesh. The segments
between two consecutive partitions are cut to form the patchesP j,k

i . (Right) A directed acyclic
graph (DAG) describes the dependencies between the segments. The resulting segmentations of
three different cuts through the DAG are shown. Note that the segmentS1

i+1 may not be subdivided
anymore in the third cut without additional subdivisions of its parentS1

i+2. Otherwise, the patch
P 1,1

i+1 would overlap the segmentS1
i+2.

Given an input mesh (triangular or tetrahedral), a multi triangulation is built by a sequence
of partitionsΠ1,Π2, ...,Πn of the mesh. Each partitionΠi divides the mesh into a number of
segmentsSk

i , k = 1, ..., |Πi| that may only overlap at their boundaries as shown in figure 6.14
(left).

A multi triangulation consists now ofpatchesP j,k
i which are defined as cuts between the seg-

ments of two consecutive partitionsΠi andΠi+1:

Πi

⋂
Πi+1 =

⋃
j∈1..|Πi|,k∈1..|Πi+1|

(Sj
i ∩ Sk

i+1)

=
⋃

j∈1..|Πi|,k∈1..|Πi+1|

P j,k
i .

A directed acyclic graph(DAG) describes which segments cut each other. The nodes of the DAG
are the segmentsSj

i while all patchesP j,k
i define the directed edges. Thereby, an edge exists

between a so-called ceiling segmentSj
i+1 and a floor segmentSk

i if both segments overlap.
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Figure 6.15: The constructed sequence of partitions for the Fighter dataset starts with an initial
partition of 48 segments. The final partition consists of just one segment.

A consistent meshis assembled by a list of patches that do not overlap (except on their bound-
aries) and cover the whole mesh. It can be expressed as a list of edges in the DAG, i.e. by agraph
cut. Because the patches may not overlap, every path from the roots to the leaves must contain at
most one cut edge. In order for the patches to cover the whole mesh, every path from the roots to
the leaves must contain at least one cut edge. Combining both, every path must contain exactly
one cut edge.

A segmentSk
i+1 can be replaced by all patchesP j,k

i , j = 1, ..., |Πi|, that have this segment as
ceiling segment:

Sk
i+1 ←

⋃
j∈1..|Πi|

(Sj
i ∩ Sk

i+1) =
⋃

j∈1..|Πi|

P j,k
i (6.1)

On the other hand, if all patchesP j,k
i , j = 1, ..., |Πi|, are on the graph cut, they can be replaced

by their ceiling segmentSk
i+1 as shown in figure 6.14 (right).

This concept works for a sequence of partitions that was constructed for just one mesh as well
as for a sequence of partitions that is constructed by consecutively simplified versions of the mesh
as described next.

The partitions are constructed iteratively starting at a partitionΠ0 of the full-resolution mesh.
Given a partitionΠi, we construct its consecutive partitionΠi+1 as follows. The vertices and
tetrahedra of the segmentsSj

i in Πi are distributed to the consecutive partitionΠi+1 resulting in
segmentsSk

i+1. These segments are simplified whereby their borders are left unchanged. After-
wards, the iteration continues and the next partitionΠi+2 is constructed fromΠi+1.

Because the borders of the simplified segments of one partition are left unchanged, the vertices
and tetrahedral faces (triangles) on these cross-segment borders are contained in both the partition
Πi and its consecutive (simplified) partitionΠi+1. So, the refinement and coarsening operations
of (6.1) can be performed and the constructed multi-triangulation forms a valid multi-resolution
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model.

Figure 6.16: Two consecutive partitions of the Fighter model. The borders of the next partition
are rendered on top of the segmentation of the current partition.

6.3.2 From the Basics to Tetrahedral Meshes

We need to design a sequence of partitions that creates balanced and well-shaped patches. Ad-
ditionally, the border of a segment of one partition must be mostly contained in the segments of
its consecutive partition because the simplification leaves the borders of segments unchanged. So,
border vertices that have been left unchanged in one partition will be simplified in the consecutive
partition.

The upcoming questions are: How shall the segmentation be chosen in order to create high-
quality approximations and to enable an well–formed DAG, i.e. the dependency graph between
segments must be balanced and do not contain long chains of dependencies. Such chains force
segments to become active because of a dependency relationship and not because of a requirement
of the visualization system.

Inspired by the bintree hierarchy [DWS+97] and
√

2-subdivisions, we construct the sequence of
partitions iteratively by rotating the segmenting octree from one partition to the next. The iteration
starts with partitionΠ0 of the original meshM = M0 and works as follows.

Given a partitionΠi and its meshMi, the subsequent partitionΠi+1 is found by rotatingMi

wheneveri is odd and constructing the partition of the rotated mesh as described in§ 6.1. Wheni
is even, the partition is constructed with the non-rotated mesh.

Next, the cuts that describe the DAG between partitionsΠi andΠi+1 are computed by look-
ing at how the tetrahedra of the floor segmentsSj

i spread over the ceiling segmentsSk
i+1. The

segments of partitionΠi+1 are simplified (leaving their borders unchanged) which results in the
approximated meshMi+1 of the meshMi.

The rotation is chosen to include as many borders of the segments into the segments of the
consecutive partition. We use a heuristic that is experimentally varified to include many segment-
boundaries of a partition into the segments of a consecutive partition. The mesh is rotated by an
angle of45 degrees around the axisa which is chosen such that the mesh is rotated around the two
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Figure 6.17: A 2D example. Each row shows a partition (left), how this partition is cut (middle)
into the consecutive partition (right) which is simplified (next row, left). The process terminates if
the mesh is simplified down to a given complexity.
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shortest axis of its bounding box as shown in figure 6.16. The center of rotation is the centroid of
all vertices.

Note that the fixed segment–boundaries are the only restriction of our simplifier. The simplifier
is not overrestricted or needs to decide explicitely when the segment–boundaries shall be simpli-
fied. Based on the selection of the partitions, the border elements that are left unchanged in the
simplification of one partition are simplifiedautomaticallyin the consecutive partition.

It is important that the leaves of the octree are merged. Otherwise (if, for instance, a simple√
2-subdivision would be used), the segments as well as the patches are highly un-balanced and

would produce a large number of patches with few vertices and tetrahedra. A large number of
patches would result in a DAG with many dependencies which would ruin the efficiency of the
multi-triangulation.

Figure 6.18: A situation of the 2D example of figure 6.17. The red edges have been left unchanged
such that the simplified segment at the top can be replaced by patches of two higher–resolution
segments.

The index assignment of a segment is chosen to balance the size of the segments. Because a
tetrahedron is added to the lowest segment of all its four vertices, we enumerate the segments in
the order of their included number of vertices. The segment that contains the most vertices gets
the highest index while the segment with the fewest vertices gets the lowest index.

6.3.3 Compression

We store the segments one after the other in a single binary file. For every segment, we store its
patches in any order. Because every patch stores its tetrahedral mesh, the file size can become
large and we implemented a compression scheme that encodes the meshes of the patches and still
supports the multi-triangulation with all its coarsening and refinement operations.

The cut-border machine [GGS99] is a well-known compression scheme for tetrahedral (and tri-
angle) meshes that achieves high compression ratios and performs very quickly. But the cut-border
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machine treats the tetrahedral mesh as a non-segmented mesh and cannot restore adjacency infor-
mation between segments as it is needed by the multi-triangulation. Additionally, it changes the
order of the vertices during encoding, i.e. each vertex gets a new index. So, a pre-computed mesh
layout is destroyed and replaced by the mesh layout that the encoder introduces. Recent works
[YLPM05] have shown that a well-computed mesh layout can drastically improve the rendering
performance.

We extend the cut-border machine to support cross-segment adjacencies and to respect any
mesh-layout. We will shortly describe the principles of the cut-border machine for tetrahedral
meshes followed by a description of our extensions.

Basic Cut-Border Machine

The cut-border machine (CBM) is a region-growing compression scheme which starts at an arbi-
trary tetrahedron. The border of the region is called cut-border and divides the mesh into an inner
part and an outer part which contain the already encoded tetrahedra and the still-to-be-encoded
tetrahedra, respectively. The cut-border is a (sometimes non-manifold) triangle mesh that consists
of faces of the tetrahedra. Tetrahedra are added to the inner part at a specific triangle face which is
called the gate. After a tetrahedron has been added to the inner part, the cut-border is adapted to
include the new tetrahedron and the gate is relocated to another face on the cut-border. The CBM
stops when the outer part is empty, i.e. when all tetrahedra are encoded.

When a tetrahedron is added to the inner part, three of its vertices are determined by the gate
while one vertex is free. Three basic cases describe how thisfree vertexcan be located with respect
to the gate: (1) the gate can be a border (there is no tetrahedron and thus no free vertex), (2) the
free vertex is already on the cut-border, or (3) the free vertex is not on the cut-border and is hence
a new vertex. Basically, the encoder determines which of the three cases applies to the current
tetrahedron at the gate and encodes the case as a symbol. In order to achieve good compression
ratios, case (2) is subdivided into several sub-cases as shown in figure 6.19: Flip, Top, Close, and
Join. The mesh is traversed and tetrahedra are added to the inner region which creates a stream of
symbols that is arithmetically encoded. The geometry of the vertices may be interleaved with the
stream of symbols or may be encoded in a single block. So, the vertices are encoded in the order
of their appearance due to the traversal order. The traversal order is chosen such that the vertices
are inserted into a fifo buffer in the order of their appearance starting with the four vertices of the
first tetrahedron. The first vertex of the fifo is fixed and all its incident tetrahedra are traversed and
encoded (or decoded). Then, the next vertex of the fifo is fixed and processed.

Each triangle of the cut-border mesh stores its three edge-neighbors. As long as the cut-border
is manifold, this neighboring information can be easily updated during the traversal. But the
sub-cases Flip and Join can introduce non-manifold edges which need to be detected. The edge-
neighbors must be set correctly even for non-manifold edges. [GGS99] propose a data structure
that stores for each vertex of the cut-border a set of all its incident triangles. To detect a non-
manifold edge, the sets of both end vertices of the edge are cut. If the cut is not empty, the edge is
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Figure 6.19: All possibilities of how a vertex can be located to the gate. The new tetrahedron is
shown in transparent light gray whereas the gate is very dark gray. The new vertex (black circle)
together with the gate forms the new tetrahedron. The Flip is a Flip1 operation because the new
tetrahedron is created by (something like) a flip of edge1 of the gate.

already in the cut-border and the edge-neighbors of the newly added triangles are adapted correctly
using either the geometry information (if known) or the (possibly) encoded triangle indices.

Cut-Border Machine for Multi Resolution Meshes

Our multi triangulation consists of segments each of which has several patches. We encode the
segments one after another and for each segment we encode its patches one after another. The
basic entity that we compress is the tetrahedral mesh of a patch.

Basically, the vertices are enumerated segment-wise. Vertices that lie on segment boundaries
(i.e. tetrahedra of different segments reference the vertex) are copied in each segment. So, the
tetrahedra of a segment always reference points whose geometry is also stored in the segment. For
every such border vertex, an additional index is stored that is unique for all segments of the multi-
resolution mesh. So, a vertex can be identified uniquely although it might have several copies in
different segments.

We start with an arbitrary tetrahedron of a patch and grow the region that is bounded by the
cut-border. Every time when a tetrahedron is added to the inner part, anopcodedescribes the
position relative to the cut-border. We have a total of 11 opcodes that fully determine all possible
positions.

• Border(B): the gate is a border of the (whole) tetrahedral mesh.

• The free vertex has not been visited yet.

– New Shared Vertex(S): The free vertex lies on a border between patches or segments
(i.e. there are tetrahedra of different segments or patches that share this vertex).

– New Vertex(N): The free vertex is not on a border between segments or patches.

• The free vertex has been visited yet.
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– Flipi (Fi): The free vertex is incident to exactly one adjacent triangle of the gate.i

determines which of the three adjacent triangles has the free vertex in common.

– Topi (Ti): The free vertex is incident to exactly two adjacent triangles of the gate.i

determines which of the three adjacent triangles is not incident to the free vertex.

– Close(C): The free vertex is incident to all three adjacent triangles of the gate.

– Join (J): The free vertex is incident to none of the adjacent triangles of the gate.

The N, S, and J operations get the index of the new vertex as parameter. The index of the new
vertex can be encoded with at leastdlog(n)e bits wheren is the number of vertices of the segment.
For performance reasons, we encode the index always with 16 bits. Note that Ti and Fi do not need
this parameter because the free vertex is located at an edge-incident triangle of the gate which is
fully determined by the indexi. The S operation needs an additional parameter which describes the
unique index of this shared vertex and is encoded with additional 32 bits (theoretically, we would
need at mostdlog(m)e bits wherem is the number of vertices of whole multi resolution mesh).
As example, the connectivity of a cube that is subdivided into 6 tetrahedra could be represented
as 0236BBBN1BBN4BN7BN5BBTBB. The first four vertices define the first tetrahedron. We
store the opcodes as 4-bit-words and did not implement arithemtic coding because the reduction
of the file sizes was sufficient for our purposes. But of course the compression ratios could be
additionally improved by an arithmetic coder.

In contrast to [GGS99] we detect non-manifold edges with a hash map that stores for every
edge of the cut border all its incident triangles. An edge is uniquely defined by both its end vertex
indices. So, we avoid the cut of two sets of triangles and can immediatly lookup which triangles
are incident to an edge. We only allow non-manifold edges that are incident to four triangles. If
the encoder detects a non-manifold edge that is incident to more than four triangles, it outputs
a Skipsymbol (increasing the number of symbols to 12), discards the current gate and proceeds
to the next gate without doeing any action. Note that if four triangles are incident to an edge,
the adjacency information is uniquely defined by the order of the vertices in the triangles and
no geometry tests must be performed which easies the implementation a lot but decreases the
compression ratio.

The traversal order is crucial for the efficiency of the algorithm. We follow [GGS99] and tra-
verse the mesh point-wise starting with the four points of the first tetrahedron.

The decoder traverses the stream and constructs the mesh based on the arrival of the opcodes.
Because we distinguish between in-patch vertices (opcode N) and shared vertices (opcode S) we
can reconstruct each of the four face-incidencies of a decoded tetrahedron as follows. If all three
vertices of a face are shared vertices, it must be a cross-patch (or cross-segment) face. Otherwise,
the face is an in-patch face. Two hash maps store pairs of triangles which represent the face-
incidencies. One hash map handles in-patch face-incidencies while the other hash map handles
cross-patch incidencies. An in-patch face registers to its in-patch hash map. If there is no triangle
registered yet, it stores its own face incidency information. If there is a triangle already, the face-
incidency information is updated for both the stored face and the own face and the hash entry can
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be deleted.
A cross-patch face looks up the cross-patch hash map with the triangle that is formed by the

unique indices. If there is no triangle registered yet, the face inserts itself into the hash map. If
there is just one face registered yet, the face updates its incidency using the stored face and stores
itself as second face into the hash map. If there are already two faces stored, the patch must have
replaced a different patch by a coarsening or refinement operation. This other patch must either
consist to the ceiling or floor segment. So, this patch can be identified and its according face in the
hash map which can be replaced with the current face.

The geometry and attribute values are stored in a single table per segment. Note that our scheme
also supports a compression that does not respect the mesh layout. The opcode N would get no
parameter and the vertices are enumerated in the order of arrival. The incidency information could
be restored by the unique index of opcode S.

6.3.4 View-dependent Rendering

We integrated the multi triangulation into a visualization system that supports interactive direct
volume renderings, isosurface extraction and vector field visualization. We first describe how the
mesh can be adapted followed by the particular visualization techniques.

Updating the cut

As described in§ 6.3.1, a consistent mesh is represented by a graph cut through the DAG. Moving
this cut down refines the mesh while moving it up coarsens the mesh. The cut may not be moved
freely but needs to fulfill the conditions for a consistent mesh as shown in figure 6.14.

The edges of the cut represent patches, so we represent the cut as a list of active patches. A
patch is refined by activating all outgoing patches of its floor segment whereby the graph cut
moves down and the patch itself is deactivated. But in order to get a consistent mesh, every path
from the roots to the leaves must contain exactly one active patch. So, a patch can be refined only
if all its ceiling segments do not have active patches that precede the ceiling segment on the way
from the roots to the segment. If there are such active preceding patches, they must be forced to
refine. Otherwise, patches would overlap and the mesh is not consistent.

A patch can be coarsened and replaced by all incoming patches of its ceiling segment if all its
siblings (i.e. all outgoing patches of the ceiling segment) are active. If they are not, the patch
cannot be coarsened.

Two queues maintain the cut, a coarsening queue and a refinement queue similar to [CDFM+04]
and§ 5.2. The refinement queue contains all patches that are active and can be refined by acti-
vating all patches of their floor segments. The coarsening queue contains all patches that can be
activated because all of their siblings are active. After each refinement or coarsening, the queues
are updated. The queues are sorted by an error value that is precomputed and stored with each
segment. The kind of the error value depends on the rendering technique and is described in the
following sections.
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We first try to coarsen as many patches as possible and refine afterwards as many patches as
necessary. The user can specify the number of tetrahedra that the adapted mesh can maximally
contain. A refinement is performed only if the so-refined mesh does not contain more tetrahedra
than the given maximal number (including the tetrahedra that are created by forced refinements).

We choose a caching scheme to keep track of the patches in the core memory. First of all, only
complete segments are loaded or discarded. Second, a segment is discarded only if all its incoming
and outgoing patches are deactive. So an active neighborhood surrounds always the current graph
cut and provides all segments that might be needed by future frames.

Direct Volume Rendering

We normalize all scalar attribute values of the mesh to the unit interval[0, 1]. Every segment stores
an error histogramH for every attribute channel.H contains for each of its attribute slots the
largest error within the segment, measured to the original tetrahedral mesh. These errors increase
from the leaves of the DAG to the roots.

The attribute error of a segment is weighted by the (user-chosen) classification. Assuming that
the classified opacity is stored in a lookup-tableC of a given resolutionN and that the error
histograms have the same resolution, the attribute errorEa can be computed by the simple scalar
product

Ea = V
∑

i=1..N

H(n)C(n).

So, every error valueH(n) is weighted with its classified opacityC(n) which ranges from 0 (not
visible) to 1 (fully visible). Attribute values that are classified as visible and that have a large error,
will strongly contribute toEa. Otherwise, attribute values that are classified as not visible will not
contribute toEa even if their attribute error is large. TheV term is zero if the segment is outside
of the view frustum and one otherwise. So, segments that are not visible have a zero error and will
be coarsened. The segments in the queues are sorted by the attribute errorEa.

The direct volume renderer uses projected tetrahedra with a preintegration technique. Note that
the normalization of the attribute values is necessary for the preintegration technique and for a
quadric-based simplificiation algorithm during the construction of the mult-triangulation.

Isosurfaces

Isosurfaces can easily be computed because the tetrahedral mesh is consistent. We implemented
the extraction of isosurfaces on the CPU as well as on the GPU. Regardless which algorithm is
chosen to implement the isosurface extraction, the algorithm can perform on a per-patch basis.
The isosurface can be extracted from each patch independently of neighboring patches. The multi
triangulation ensures that the border of the patches are connected consistently and hence the iso-
surfaces of different patches match perfectly at the patch borders.

In addition to the attribute error of the direct volume renderer, every segment stores a histogram
of spatial errors for all attribute channels. Using these histograms, the mesh can be refined at those
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areas where the isosurface passes through. The renderer supports both opaque and transparent
isosurface rendering. The transparency as well as the color of an isosurface can be chosen by the
user.

Flow Visualization

Stream lines for flow visualization can be extracted without any effort because the mesh is consis-
tent and maintains a single view to the mesh. The algorithm of section§ 7.3 is fully applicable.

6.3.5 Results

We tested the multi triangulation with the datasets listed in table 6.7. The implementation runs on
a standard PC with Pentium 5, 1 GB main memory, a GeForce FX graphics card and Windows XP.

The preprocessing step includes the partition of a tetrahedral mesh into segments using an oc-
tree, simplifying the segments and storing them onto disc. The timings and the size of the resulting
files are given in table 6.7 and include file I/O.

The properties of the created segments are also shown in table 6.7. The average size of the
segments is reported as well as the average size of the patches, i.e. the cut between segments.
The tetrahedral simplifier uses quadric error metrics, see§§ 4.1,3.1.4 and runs stable with vertex
distribution quadrics and feature edges.

The performance of the decoder is neglectible. We load the coded stream of a segment into the
main memory and can decode about 500K tetrahedra per second.

Depending on the users choice, the mesh gets adapted to an error or to a maximal number of
tetrahedra. We examined that a maximal number of tetrahedra is mandatory to be defined because
otherwise too many tetrahedra are created for a low error threshold. This is due to the fact that our
system currently does not take occlusion by the segments into account. Only the attribute error is
considered. Figures 6.20–6.23 show renderings with the visualization system.

Nevertheless, the system runs with a performance that is mainly bound by the direct volume
renderer which currently in our implementation has a peek performance of about 800.000 tetrahe-
dra per second and supports pre-integration in the pixel and fragment shaders. The isosurfaces are
extracted as triangle meshes and rendered using the standard triangle graphics pipeline.

Some regions of the tetrahedral mesh need more tetrahedra to be created than the given threshold
in order to fulfill the error tolerance. This is caused by the dependencies between the segments.
For these regions the user has to increase the number of maximal tetrahedra and needs to take a
drop of the fps into account.

The operating system supports our caching scheme. At the beginning, the first segments that
are to be displayed need to be loaded. As soon as this has been finished, the loading of segments
doesn’t drop the fps rate of the renderer. Additional, one has to watch that the file is not defrag-
mented on disc which causes the header of the disc to search for parts of the file and causes the
system to slow down.
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Name Sea Fighter Rbl F16 Earthquake
# Vertices 102,165 256,614 730,273 1,124,648 2,461,694
# Tetra 524,640 1,403,504 3,886,728 6,345,709 13,980,162
# Tetra in base mesh 20K 30K 110K 80K 120K
# Segments 66 181 479 798 1,645
# Avg Tets per segment 15,694 15,873 16,956 16,676 20,416
# Patches 217 1,207 2,754 6,991 12,857
# Avg Tets per patch 3,749 2,369 2,906 1,830 2,604
Preproc. Time [hh:mm:ss] 0:10:10 0:20:15 0:39:26 0:40:31 1:12:45
File size uncompr. [MB] 41 100 285 565 1,200
File size compr. [MB] 12 21 70 102 265

Table 6.7: The properties of the datasets and the timings for the construction of the multi triangulation
from the original mesh. The segmenting octree was steered to contain at most 5,000 vertices per leaf node.

Figure 6.20: The F16 contains about 6 million tetrahedra. Left: lowest resolution, about 80K
tetrahedra. Middle: adapted resolution, about 200K tetrahedra. Right: full resolution, 6 Mio
tetrahedra. Only the boundary faces are drawn.
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a) b)

Figure 6.21: A direct volume rendering of the F16. (a) Adapted mesh with about 300K tetrahedra,
(b) the full mesh with 6 Mio tetrahedra.

a) b) c)

Figure 6.22: The isosurface at isovalue 0.2 of the Fighter model. (a) Calculated from an adapted
mesh that contains 120K tetrahedra. (b) The isosurface of (a) consists of several parts which are
rendered with different colors. Each part is calculated from a patch of the multi-triangulation. (c)
The isosurface rendering is embedded into a (coarse) direct volume rendering.

a) b)

c) d)

Figure 6.23: The Earthquake dataset observed at different positions.
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Figure 6.24: An interactive direct volume rendering of the Earthquake dataset with a workload of
about 400K tetrahedra. The original dataset contains more than 13 million tetrahedra and cannot
be visualized interactively by a direct volume rendering with current graphics hardware.
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Chapter 7

Visualization

The words or the language, as they are written or spoken, do not seem to play any role in my
mechanisms of thought. The psychical entities which seem to serve as elements in thought are

certain signs and more or less clear images which can be ”voluntarily” reproduced and
combined.- Albert Einstein

The visualization of 3D scalar, vector or tensor fields is challenging because the large amount
of information will either be mixed during projection from 3D to 2D or lead to severe occlusion
problems. This chapter introduces three novel techniques for exploring huge scientific volume
datasets.

Traditionally, scalar fields can be visualizeddirectly by direct volume rendering orindirectly
by isosurface extraction and rendering. While isosurface extraction usually leads to huge triangle
meshes that can be visualized by a standard graphics pipeline, direct volume renderings rely on an
optical model describing how light interacts with the scalar field inside the volume.

The interaction of light with a volume can be described by a particle model that the transport
equation is applied to [Max95]. Typically, absorption and emission of light are considered while
scattering is suppressed. The model is applied to rays following the light flow from the volume
to an observer. The ray is parameterized with a length parameters such thatr(s) specifies a
position inR3. Absorption is given by an optical density functionτ(s) which describes the rate of
occlusion atr(s), i.e. the fraction of light occluded by the volume at positionr(s). A generating
termg(s) = κ(s)τ(s) describes the emission of light at positionr(s). Combining both emission
and absorption, the interaction of light with the volume along a ray is described by the differential
equation:

dI

ds
= g(s)− τ(s)I(s) = κ(s)τ(s)− τ(s)I(s) (7.1)

whereI(s) is the light intensity at positionr(s). The optical propertiesτ(s) and κ(s) are
evaluated at certain positionsr(s). Traditionally, atransfer functionmaps a scalar field valuef at
a given positionr(s) in the volume to an optical property.
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Following [Max95], the differential equation (7.1) can be solved by thevolume rendering inte-
gral

I(u) = I0 exp
(
−
∫ u

0
τ(t)dt

)
+
∫ u

0
g(s) exp

(
−
∫ u

s
τ(t)dt

)
ds (7.2)

with I0 as the light intensity at distances = 0 where the ray enters the volume.

For an efficient numerical integration, the integral (7.2) is approximated by Riemannian sums
that assume constant volume properties within each Riemannian integration interval. In order to
enable a fast computation of the approximating sum, the volume must be traversed from front to
back or back to front introducing avisibility sortingwhich can be done easily for regular volume
grids [Ake93, GWGS02] but is not trivial for unstructured grids like tetrahedral meshes. Start-
ing with the MPVO algorithm of [Wil92] which basically constructs and traverses an adjacency
graph of directed edges and works for all meshes with cycle-free such graphs, a lot of subsequent
work has been done including XMPVO [SMW98], BSP-XMPVO [CKM+99], MPVOC for cyclic
meshes [KE01] or the k-buffer for hardware-assisted sorting [CICS05].

Direct Volume Rendering for tetrahedral meshes approximates the volume rendering integral
by sorting all tetrahedra from back to front and projecting them onto the 2D image plane. The
four vertices of a tetrahedron span at most four triangles in the image plane which are ren-
dered and blended in the framebuffer with previously projected tetrahedra. The seminal work
of [ST90] has introducedprojected tetrahedraand has later been improved by preintegration tech-
niques [GRS+02, SCCB05, CBPS06] to elevate the picture quality and ensure correctness under
perspective projections [KQE04]. They typically precompute the volume rendering integral for
different front and back colors as well as thicknesses of tetrahedra. The precomputed integral
values are stored in look-up tables which can be easily accessed at run time from texture memory.

Indirect volume renderings extract isosurfaces from the volume which are triangualar meshes.
The marching tetrahedra algorithm is simple to implement in both software and graphics hard-
ware [Pas04, KSE04, KW05]. Basically, a marching tetrahedra algorithm checks for each tetrahe-
dron if it is passed by an isosurface. Assuming linear interpolation inside a single tetrahedron, the
intersection between an isosurface and a tetrahedron results in at most two triangles depending on
how many edges of the tetrahedron are cut by the isosurface.

For large tetrahedral meshes with many very small tetrahedra, the isosurface extraction algo-
rithms usually leed to triangular meshes with hundreds of thousands of triangles. These triangle
meshes can be rendered using graphics hardware. Often, the user can add transparency to each
isosurface in order to increase perception. But this introduces an additional sorting step which can
become time–consuming for huge triangulated isosurfaces.§ 7.2 discusses a rendering technique
that samples the isosurfaces with discrete points and renders point clouds only which naturally
allow for a transparency without sorting due to their discrete nature.
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7.1 Silhouettes

Direct rendering approaches for unstructured tetrahedral meshes often fail to inform the user about
its current position and orientation within the dataset. Additional features like bounding boxes or
glyphs help to improve the orientation. I introduced a rendering technique for silhouettes which is
simple to implement and is based on the detection of sharp edges of the tetrahedral mesh [SS05a].

Conceptually, the boundary of a tetrahedral mesh is a triangular mesh. Each triangle has a
normal associated with it which points outside the tetrahedral mesh. For each edge of the triangular
mesh, the normalsn1 andn2 of both its adjacent triangles are compared to the viewing direction
v. An edge is a silhouette edge if and only if the dot products between the normals and the viewing
directionv have different signs, i.e.〈n1,v〉 × 〈n2,v〉 < 0.

Instead of computing and storing the boundary triangular mesh, the algorithm operates directly
on the tetrahedral mesh and a caching scheme. This enables the full support of a multi-resolution
model where the cache needs to be updated every time the mesh is changed – but not otherwise.
For instance, if a segment replaces another segment, the entries of the deleted segments must be
removed while the entries of the appearing segment must be added.

The cache itself maintains edges each of which consists of the indices of both extreme vertices
v1 andv2 and two normalsn1 andn2.

a) b)

Figure 7.1: A silhouette edge maintains its two extreme vertices and the normals of both its adja-
cent boundary triangles which may be found by a simple mesh traversal as shown in (b).

A single run over the tetrahedral mesh initializes the cache as follows. If a tetrahedron has two
boundary faces, the edge that is adjacent to both boundary faces is added to the cache together
with the according face normals. Remember that all tetrahedra have an orientation such that
their volumes are positive and thus the normals point outwards. If a tetrahedron has just a single
boundary facef , the (at most three) tetrahedra are found whose boundary faces are adjacent tof .
This can be done efficiently looping around all three edges off . Again, each such edge together
with the normals of its adjacant boundary faces is added to the cache.

In contrast to many silhouette techniques for triangular meshes, hidden silhouettes are not re-
moved to the advantage that a direct volume rendering can contain transparent parts and silhouette
edges of backfacing boundary mesh parts are still visible.
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Figure 7.2: The Sea Dataset without and with silhouettes.

Figure 7.3: The Fighter Dataset without and with silhouettes. Right: A zoom into the dataset.

7.2 Point Rendering for Scalar Fields

Isosurfaces are an important tool to understand structural properties within scalar fields and are
heavily used by scientists to explore datasets. But if multiple isosurfaces shall be visualized, they
may occlude each other making looks into inner regions of the dataset impossible. Transparent
isosurfaces (where the user can choose the rate of transparency for each isosurface) is a widely
used solution for the occlusion problem but introduces a depth-sorting of all isosurface triangles
for each frame.

The technique proposed by this section is solely based on point rendering in order to visualize
unstructured datasets [SS05b]. As the basic idea, points are distributed over the volume domain
at specific important locations and are colored and lit with a lighting model adapted to the scalar
field. Due to their discrete nature, point renderings allow the user to look inside inner regions of
a datasetwithoutany sorting. The distribution of points enables even non-manifold meshes to be
visualized easily as well as meshes that contain tetrahedral cycles or non-convex regions such that
a correct depth-sorting becomes complex.

I assume that all attribute valuesv are in a given attribute intervalI = [vmin, vmax], i.e. v ∈ I.
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The attribute values do not need to be normalized (as they would be for direct volume rendering
with pre-integration).

Conceptually, a dense set of isosurfaces is extracted uppon which points are distributed in a way
that the distances between points on one isosurface are lower than the distance of points between
different isosurfaces.

In order to create a dense set of isosurfaces, a user-given numbern of isovaluesvk is chosen
from the intervalI. In the simplest case, the isovalues are regular-spaced numbersvk = vmin +
k vmax−vmin

n . Next, the tetrahedral mesh is traversed and each tetrahedron is tested if it contains
any of the isovaluesvk, that is, each tetrahedron is assigned triangles of isosurfaces at valuesvk.
There may be none, one, or two triangles for each tetrahedron per isovaluevk.

Each triangle is point sampled with the goal to distribute the points uniformly across the whole
isosurface. Therefore, the user provides a thresholdA which specifies the area of an isosurface
that shall be sampled with a single point. If the area of a triangle is larger thanA, it is subdivided
until the areas of the subdivision triangles are belowA. If the area of a triangle is smaller thanT ,
a random selection happens where the randomness depends on the size of the triangle relative to
A. A diceD is evaluated and a point is rendered if

D >
|t|
A

.

BecauseD is evaluated only for|t| < A, the ratio is bound between 0 and 1, i.e.0 ≤ |t|
A ≤ 1.

This upsampling is a very important feature and the main difference to transparent isosurfaces
with triangles because a triangle mesh cannot be simplified with such a simple technique. Often,
the isosurface contains many more triangles than needed for a given viewport.

a) b) c)

Figure 7.4: The isosurface at isovalue=0.35 of the F16 model contains 350K triangles and is ren-
dered semi-transparent (a). An upsampled point cloud with 90K point (b) and without upsampling
and 407K points (c).

The random process is simulated by a fixed array of random variables that must be produced
once. Currently, the array contains 100 such random variables ranging from 0 to 1. Using such
an array might bias the randomness but is much faster to evaluate than a function which generates
random variables. The results of visualization, however, are not affected noticeably.

Depth scaling can be applied in order to reduce the number of points per area that are far away
from the observer. Again, a randomized algorithm throws a diceDd which is for each point
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compared against a distance threshold

Dd > max
(

0.1,min
(

0.9,
d

dmax

))
whered is the distance of the point from the observer anddmax is the maximal such distance,
usually set to the extent of the bounding box. The min and max functions restrict the threshold to
lie in the unit interval. For an elevated interactivity, the points can be sorted into a simple grid and
d is evaluated once for each grid cell instead of each point.

The points are lit using the triangle’s normal of the isosurface. Although the gradient could be
used, the numerical estimation of its direction is not as robust as the estimation of triangle normals
which can be taken directly from the isosurface. Because triangle normals are uniquely defined
except for their sign, the normals must be oriented to show into the direction of an observer. If the
scalar product between the viewing direction and the normal is positive, the normal points away
from the observer and must be reversed.

Figure 7.5: The Fighter Dataset with opaque isosurfaces (> 1 million triangles), semi-transparent
isosurfaces and point rendering (500K points). Second row: A zoom into details at the wing area.
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Figure 7.6: The Neghip Dataset with point rendering, opaque isosurfaces and transparent isosur-
faces. Bottom row: a zoom into the dataset.

7.3 Stream Lines for Vector Fields

The visualization of vector fields differs from the visualization of scalar fields in the directional in-
formation which must be clearly communicated. A frequently used visualization technique traces
stream lines or path lines through the domain which can be rendered as line strips. A stream line
visualizes the path of the flow but not the direction itself of the flow which can be either forward
or backward along the stream line. Additional icons like arrows must be drawn in order to illus-
trate the flow direction. Several algorithms exist to place these stream lines uniformly and visually
appealing or around regions of particular interest like sources or sinks of the vector field. Nev-
ertheless, the rendering of stream lines for threedimensional vector fields results in heavy visual
cluttering caused by stream lines that occlude other stream lines during projection from 3D to 2D.

As an alternative rendering technique that exploits existing graphics hardware, texture advection
[WE04] can be used to visualize vector fields. Thereby, a noise texture is blurred into the direc-
tion of the flow similar to line integral convolution (LIC). If additional transparency information
is carried by the vector field through the texture, looks into the inside of a dataset become possi-
ble. The major drawback of texture advection techniques is their restriction to regular grids and
their discrete resolution which makes it difficult to capture important regions of the vector field.
Nevertheless, they visualize the vector field continuously without gaps as they naturally appear by
discrete stream lines.

In [SS06b], a visualization technique for vector fields has been proposed which integrates a
dense set of stream lines in a vector field over a tetrahedral mesh and enables the user at visu-
alization time to select some of these stream lines for opaque rendering while non-selected lines
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a) b)

c) d)

Figure 7.7: The isosurfaces 0.2, 0.4, 0.6 and 0.8 of the F16 dataset comprise 1.4 million triangles
and are rendered semi-transparent (a). The point sampling contains 400K points and is rendered
with decreasing depth correction valuedmax (b-d).

are hinted in a semi-transparent rendering. In this way, the user can easily look into the most
interesting parts of the dataset while all other parts are still hinted.

7.3.1 Integration of Dense Stream Lines

The ultimate goal of stream line placement is to distribute the lines uniformly over a domain of
interest, that is, to find a set of lines which cover the whole domain and have similar distances
between any pair of lines. While good appoximations exist for 2D vector fields, it is much harder
for 3D vector fields.

The approximation presented in this section subdivides the domain of interest into cuboidal cells
by a regular grid. The user can specify the resolution and the domain of the grid which is initially
suggested to cover the whole domain of the dataset. Stream lines are computed one after another
where the integration of a new stream line is started in a grid cell that has not been covered by
previously computed stream lines.

Every stream line has an unique id which is stored in each grid cell that intersects the stream
line. Beginning with an empty grid, we select a grid cell, choose a seed point from the cell and
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integrate a stream line by forward and backward integration of the vector field starting at the seed
point. Each integration step uses a second-order Runge Kutta integrator. The id of the integrated
stream line is stored in each grid cell. New stream lines are integrated from empty cells, that is,
from cells that have not been intersected by stream lines so far. This way, several stream lines may
pass a grid cell but new lines are integrated in regions only that have not been visited yet.

During integration, the vector field must be evaluated at various positionsq. For this, the
tetrahedron which containsq must be determined. Every such integration step starts at a pointp
whose containing tetrahedront is known (either from the previous integration step or becausep is
a seed point). In order to find the tetrahedron containingq, we first check ifq ∈ t. If it is not, we
do a tetrahedral walk along the ray starting atp ∈ t with directionv = q − p. The intersection
point of the ray andt is determined which lies on one of the four tetrahedral faces. So, the ray
enters an adjacent tetrahedront1 which is checked if it containsq. If not, the walk is continued
starting at the computed intersection point.

Note that the multi-resolution data structures presented in this thesis fully support tetrahedral
walks because the adjacency informations can be queried for any adapted mesh.

In addition, stream lines can be created in the neighborhood of critical points, that is, around
points that have a vector of length0. Therefore, a sphere is centered at every such point and seeds
are placed uniformly on the sphere’s surface. A uniform distribution of points on a sphere can be
achieved by a regular subdivision of the triangle mesh of a tetrahedron.

7.3.2 Ghosting

The rendering of all stream lines of the grid produces a lot of visual cluttering and it is hard for the
user to perceive spatial relationships between stream lines and to identify global as well as local
structures of the vector field. To avoid this, we introduce a technique called ghosting.

The set of stream lines is separated intofull stream linesandghosted stream lines. Full stream
lines are rendered opaque while ghosted stream lines are rendered semi-transparent. The user sees
the local and global structure of all full stream lines while he can still observe the overall vector
field by the ghost stream lines.

In order to separate the set of stream lines, the user moves a smallselection boxthrough the
domain. All stream lines that pass this box are full stream lines while all other stream lines are
ghosted stream lines. Since this technique should be interactive, a fast technique is necessary to
identify all stream lines passing the box. For this, the grid data structure is exploited again. All
grid cells that overlap with the box can be determined by locating the eight corner points of the
box within the grid. All stream lines of every overlapped grid cell are tested for intersection with
the selection box. The grid serves as a spatial search data structure.

The rendering process itself first renders all full stream lines with enabled depth buffer. After
that, the line segments of all ghosted stream lines are sorted by their distance from the observer
and are rendered from back to front with alpha blending and depth buffer enabled. All ghost
stream lines are drawn with a single color and transparency adjustable by the user. This rendering
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a)

b)

Figure 7.8: An overview with a selection of stream lines and ghosted stream lines (a) and all
stream lines (b).

technique ensures high-quality visualizations with a correct depth impression.

7.3.3 Flow Direction

Stream lines do not show the actual direction of the flow which can be either forward or backward
along the stream line. We visualize the direction by a special halo technique.

Traditionally, halo techniques have been used to increase depth perception, i.e. to enable the
user to identify clearly which stream line is in front of other stream lines. Such a halo can be
simply created by rendering a stream line twice as a line strip. The first pass renders the line as a
line strip with a specific width and enabled depth buffer while the second pass renders the same
line strip with a broader width and enabled depth buffer and a small z-offset. This way, the halo is
drawn only at pixels that have not been covered by the first pass.

We change the second pass in order to visualize flow directions. Instead of rendering a durchge-
hend line strip, the second pass renders astippled line stripwhich is fully supported by graphics
hardware. A stippled line strip applies a bit pattern to the rendered line at pixel level. Every time
when the bit pattern is 1, the pixel is drawn, and otherwise skipped. Bit patterns have typical
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lengths of 16 bits which are repeated along the line.

a) b)

c) d)

Figure 7.9: (a) A dense set of stream lines without lighting or halos. (b) With lighting. (c) With
lighting and halos. (d) With lighting and stippled halos.

The stipple pattern for flow visualization is chosen to leave a one-bit (i.e. one-pixel) gap. The
position of the gap moves one bit from frame to frame which results in the gap to move one pixel
from frame to frame. The integration process stores the points of a stream line in the order of the
flow direction. The strip is rendered in exactly this order. So, moving the stipple pattern perfectly
coincides with the flow direction.

Figure 7.10: Textured arrows as stream line halo.

Stippled halos need animation for the visualization of flows directions. For still images, we
replace the second pass by a geometric halo which is basically a quadriliteral strip with a texture
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on it. The texture shows an arrow where pixels on the arrow are opaque while all other pixels of
the texture are fully transparent.

Given a line segment(pi,pi+1), the quadriliteral for the halo is spanned by the sequence of
point pairs(q0

i ,q
1
i ) for each pointpi of the stream line as shown in figure 7.10. The positions

of the quadriliteral points can be simply calculated as the cross product between the normalized
viewing directionv and the normalized vectorvi of the vector field at pointpi:

q0,1
i = pi ± g v × vi

whereg is a scaling factor that influences the width of the halo.g can be increased with increasing
depth, i.e.g = g(‖o− pi‖) for an observer positiono. A linear function often yields good visual
results:g(‖o− pi‖) = s/e× ‖o− pi‖ with a user-controllable linearity factors and the extente
of the dataset’s bounding box.

a) b)

c) d)

Figure 7.11: (a) The front tip of the wing of the F16 dataset with all streamlines visualized. (b)
A small subset is specified by the red selection box and is rendered opaque. (c) A different view
point and other coloring. (d) The halo is drawn which shows flow directions with arrow textures.

A texture coordinateti is assigned to each point pair(q0
i ,q

1
i ). The first pairi = 0 starts with

the texture coordinatet0 = T which is now increased for subsequent pairs. For each pairi > 0,
the texture coordinate is computed asti = ti−1 + h 1

‖vi‖+1 with the not normalized vectorvi

of the vector field atpi andh as a scaling factor. Ifh depends on the depthh = h(‖o − pi‖),
perspective foreshortening of the arrows can be avoided. Similar tog, a linear function yields good
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visual quality. Because the texture coordinatesti run out of the unit interval, the graphics API like
OpenGL must repeat the texture for coordinates out of the unit interval.

a) b)

c) d)

e) f)

Figure 7.12: (a) Geometric halos without depth correction. (b) With depth correction. (c) With
depth correction for textures also (notice the lengthened arrows). (d) Ghosting and halos. (e,f)
The textures and halos scale with observer distance.
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7.4 Diffusion Surfaces for Tensor Fields

A symmetric 3D tensor field is segmented into regions dominated by stream tubes and regions
dominated by diffusion surfaces. The diffusion surfaces are integrated with a higher order Runge–
Kutta scheme and approximated with a triangle mesh. Our main contribution is to steer the inte-
gration with a face-based coding scheme, that allows direct compression of the integrated diffusion
surfaces and ensures that diffusion surfaces of any topology can be created.

Finally we sample the stream tubes and diffusion surfaces with points. The points from different
entities are colored with different colors. We lit the points during rendering with a lighting model
adapted to the tensor field. The resulting visualization of symmetric 3D tensor fields is sparse
because of the sampling on points and allows for a deeper view inside the volumetric tensor field
but also allows the simultaneous visualization of a dense set of tubes and surfaces.

7.4.1 Symmetric Tensors and Diffusion Surfaces

A lot of work has been done to visualize vector fields. Stream lines and stream surfaces are
popular visualization techniques. A stream line is a curve where for every point on the curve the
associated vector is tangent to the curve. One can imagine a stream line as the path that a particle
takes through the vector field. Stream lines do not intersect each other except for points where the
vector field vanishes or is undefined.

A stream surface is the path that a curve takes through the vector field and can be thought of as
the dense collection of stream lines, all starting at a given curve.

The situation changes slightly if we look at symmetric 3D tensor fields. Throughout this paper
we use the term tensor for symmetric 3D tensors. Symmetric 3D tensors play a great role in
physics or medicine as for example diffusion tensors are symmetric 3D tensors. At every point a
tensor field contains a (symmetric) tensor, i.e. a symmtric3× 3-matrix, instead of a single vector.

Eigenvector decomposition of the tensor is a popular approach to analyze a tensor. A symmetric
tensor can always be decomposed into a diagonal matrixΛ with the three eigenvaluesλ1 ≥ λ2 ≥
λ3 on the diagonal and an orthonormal rotation matrixV with V V t = 1, with the unit matrix1:

∀T ∈ R3×3 with T = T t :

∃V,Λ ∈ R3×3 with V V t = 1,Λij = 0⇐ i 6= j :

T = V ΛV t.

The columnsvi
def
= V.i of V form an orthonormal basis ofR3 and are called the eigenvectors.

The combination of eigenvectors and eigenvalues(V, λ) is called the eigensystem of the tensor.
If a unit sphere is scaled in the direction of the eigenvectors with the eigenvalues we obtain an
ellipsoid that can be used to visualize the tensor. In the case of diffusion tensors the ellipsoids
describe for any possible direction the rate of diffusion. Particles would have to be traced in all
possible directions with speeds given by the ellipsoid. A diffusion tensor can be imagined as a
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description of how a spherical water drop is diffused into an ellipsoid. The terms stream line and
stream surface can therefore not so easily applied to tensor fields.

Diffusion tensors often degenerate over large regions, such that their ellipsoids look like cigars
or like pancakes. In the case of a cigar we speak of linear anisotropy, when one eigenvalue domi-
nates the other two. In the other case we speak of planar anisotropy and two eigenvalues are much
larger than the last one. If all eigenvalues are of similar size the corresponding region of the tensor
field is called isotropic.

The eigenvector with the largest eigenvalue is called the major eigenvector, the eigenvector
with the smallest eigenvalue is called the minor eigenvector, and the eigenvector with the medium
eigenvalue is the medium eigenvector.

Given the anisotropy of tensors, the domain of a tensor field can be partitioned into linear, planar,
and isotropic regions. Every region only contains tensors of the one specific type of anisotropy.

Within linear regions, a tensor field can be interpreted as a vector field formed by the major
eigenvectors. Thus, we can definestream tubesas tubes whose middle axis is a stream line. Every
point on the stream line is tangential to the major eigenvector of the tensor at this point. The cross
section of the tube is defined by the medium and minor eigenvectors which are perpendicular to
the major eigenvector.

Within planar regions, adiffusion surfacecan be defined as surface whose tangential plane for
every point is the plane defined by the major and medium eigenvectors, i.e. it is normal to the
vector field of the minor eigenvectors. We use the term diffusion surface here because the term
stream surface may be misleading to what a stream surface is for a vector field.

We segment from the symmetric 3D tensor field regions dominated by stream tubes and regions
dominated by diffusion surfaces. We reconstruct a dense set of stream tubes and diffusion surfaces
and point sample them in way that the distance between two points is inversely proportional to
the diffusion rate. Thus the points are closely spaced along a stream tube and sparsely orthogonal
to it. On a diffusion surface the points are closely spaced over the surface but the surfaces are
further apart from each other. The human eye of the observer will automatically merge close
points to tubes and surfaces. The points from different entities are distinguished by their color.
We lit the points during rendering with a lighting model adapted to the tensor field. The resulting
visualization of symmetric 3D tensor fields is sparse because of the sampling on points and allows
for a deeper view inside the volumetric tensor field but allows on the other hand the simultaneous
visualization of a dense set of entities.

There hasn’t been much work done yet to extract diffusion surfaces from tensor fields. Zhang
et al. [ZDL02] have presented a technique to extract stream tubes and diffusion surfaces from
volumetric diffusion tensor MR images. Stream tubes are extracted in linear regions and diffusion
surfaces in planar regions. So stream tubes represent structures with primarily linear diffusion
while diffusion surfaces represent structures with primarily planar diffusion. Additional informa-
tion is encoded in the color and cross section of the stream tubes. Zhang et al. call the diffusion
surfaces stream surfaces. I prefer the term diffusion surface to avoid confusion with the term
stream surface from vector fields.
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My approach of extracting diffusion surfaces is similar to [ZDL02]. That’s why this approach is
discussed in more detail. Zhang et al. generate a dense set of stream tubes and diffusion surfaces
and cull them later using a set of metrics.

Linear regions are interpreted as vector fields formed by the major eigenvectors of the tensors.
Thus the trajectory of a stream tube is a stream line through this vector field. The MR images
are interpolated using tricubic B-Splines to get tensors not only at the sample points of the MR
images. Zhang et al. generate seed points for every sample point within a linear region and jitter
them within the voxel. The stream tube starts at a seed point and follows the major eigenvector
field both forward and backward. An second-order Runge-Kutta integrator is used to track the
stream line.

Diffusion surfaces are extracted from planar regions. The major and medium eigenvectors of a
tensor at a point in space define the tangential plane of the surface at this point. Again, the seed
points are placed into the voxels by jittering the sample points.

Starting from a seed pointv, six initial search directions are distributed evenly aroundv. Every
search direction is tracked and thus follows the shape of the surface. A triangle is created for every
pair of neighboring edges. This first step creates a triangle fan consisting of six triangles.

From every vertexu new search directions are created by projecting the triangles that are adja-
cent tou onto the tangential planeP (u) and the initial directions inP (u) that are not covered by
triangles. This is repeated for every newly generated vertex.

The new search directions of a vertexu are traced through a vector field which is defined as the
linear combination of the normalized major and medium eigenvectors which lies on a PlaneP1

that is both perpendicular to the tangential planeP (u) atu and contains the search direction.
The extension of the diffusion surface stops if it gets out of the data boundary, hits a low planar

region, enters a region of low signal–to–noise ratio, or incurs a high curvature term.
While rendering, color is mapped onto the surface to represent the planar anisotropy.

7.4.2 Point-Based Tensor Field Visualization

Volume Segmentation

The tensor field domain is partitioned into linear, planar, and isotropic regions. We use three
quantities of a (diffusion) tensor to define this partition as suggested by [WPG+97]:

cl =
λ1 − λ2

λ1 + λ2 + λ3

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

cs =
3λ3

λ1 + λ2 + λ3

wherecl measures linear anisotropy,cp planar anisotropy, andcs isotropy. Note thatcl +cp +cs =
1. λi are the eigenvalues of the tensor withλ1 ≥ λ2 ≥ λ3. The greatercl is the more the ellipsoid
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a) b) c)

Figure 7.13: A tensor can be classified as being isotropic (cl = 0, cp = 0, cs = 1), planar (cl = 0,
cp = 0.61, cs = 0.39), or linear (cl = 0.57, cp = 0, cs = 0.43).

looks like a cigar (and the smallercp andcs are). Similarly, the greatercp is the more the ellipsoid
looks like a pancake. Finally, ifcs equals1, the ellipsoid becomes a sphere (all eigenvalues are1
andcp andcl are0), see figure 7.13.

After this segmentation of the volume, we can trace stream lines in linear regions and diffusion
surfaces in planar regions. We use thresholds oncl andcp to classify regions.

Distributing Points

We render stream tubes and diffusion surfaces as collections of points. Different colors are used
to distinguish points from different entities. The tubes and surfaces shall be point sampled with
the density described by the inverse of the diffusion rate given by the symmetric tensors.

Depending on the entity, that points were sampled from, the points are lit differently. Points
from stream tubes are lit with the lighting model for lines as proposed by Zöckler et al. [ZSH96],
whereas points on the diffusion surfaces are lit with the standard Blinn-Phong lighting model
provided by OpenGL.

Stream tubes

Similar to [ZDL02] we look at the tensor field in linear regions as a vector field consisting of the
major eigenvectors of the tensors. This vector field is traced.

We subdivide the volume into a regular grid which may be given automatically by the resolution
of the image data. Otherwise, the resolution of the grid is specified explicitly.

To create stream tubes, we first create a stream line for every stream tube. This stream line is
the trajectory of the latter stream tube.

We place a seed point into every grid cell. The tensor of this seed point needs to have linear
anisotropy. We integrate a stream line starting at the seed point into both forward and backward
direction using a second-order Runge-Kutta integrator. A stream line consists of a list of ordered
pointspi and is linearly approximated as a line segment between two successive pointspi−1 and
pi.
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We want to place the points along a stream line such that the density of the points on a stream
line represents the linear anisotropy of the tensors involved as described above.

To realize this behavior, we control both the arc length of the integration process and the step
width of the second-order Runge-Kutta integrator.

The integration of the stream line stops if any of these cases happens:

• Outside of data volume.

• Left region of linear anisotropycl > Cl whereCl is the threshold for linear anisotropy.

• Extended point is ”too” close to a previously calculated point.

The third point is motivated by artificial datasets where a stream line may be a (closed) circle.
In order to stop the integrating process, the integrator needs to check if it reaches a part of the
stream line that was previously integrated. For a fast local access to the points and line segments
of the stream line, we sort the extended points into an octree. The integrator just needs to look up
the octree to find proximate points.

A stream tube follows the trajectory defined by the stream line. Our approach is to render the
(extended) points of the stream line only instead of rendering the whole tube around the stream
line.

Diffusion surfaces

A crucial point for our visualization technique is to distribute the points across diffusion surfaces.
We want the points to be distributed according to the diffusion rate over the diffusion surface. The
higher the diffusion rate, the closer have to be the points. Remember that we want to render points
instead of shaded surfaces. The human eye connects points that lie closer together and therefore
follows automatically the more likely diffusion direction.

Although we are only interested in rendering points, for the integration of the diffusion surface
it is advantageous to also build a triangle mesh to ensure a proper diffusion surface. Furthermore
the connectivity information allows for smoothing and successive remeshing steps.

From a mathematical point of view, a diffusion surface is defined as a normal surface. Given
a continuous vector fieldV and a pointp ∈ R3. A surface which containsp and whose field of
normals is parallel toV is called anormal surfaceatp for V .

The Forbenius’ theorem states if a normal surface is well-defined:
A normal surface of a differentiable vector fieldV are defined iff the vector fieldV is orthogonal

to its rotationrot(V ), i.e.
V ⊥ rot(V ).

The minor eigenvalues in planar regions form a vector fieldN of normals and the normal sur-
faces ofN are calleddiffusion surfaces. In order to define a mathematical solid integration process
for diffusion surfaces, the scalar product between the normal fieldN and its rotationrot(N) is
controlled by a thresholdδ. If the scalar product exceedsδ, the integration process of§ 7.4.3 is
stopped.
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Figure 7.14: The normal surface atp for the vector fieldV .

7.4.3 Diffusion Surface Integration

As the diffusion surface has to be manifold with border, the integration process that approximates
the diffusion surface via a triangle mesh is very similar to the encoding or rather decoding process
of a faced-based compression scheme. We used exactly the same building scheme to build the
triangular diffusion surface. There are three advantages with this approach. Firstly, we can re-use
the minimum set of building operations that allow to create manifold meshes of arbitrary genus.
Secondly, we can re-use the data structures used for face-based coding such that the implementa-
tion of the diffusion surface integrator becomes very simple. And the third advantage is that we
can directly encode the triangular diffusion surface into a space efficient representation, such that
we can easily build in-core a large number of diffusion surfaces of high resolution.

We used a face-based compression scheme similar to the cut-border machine [GS98] and the
edge-breaker [Ros98] for coding and to steer the integration. A short review of the method and
the basic building operations are given in the next subsection.

Face-Based Coding of Triangle Meshes

Face-based coding techniques compress triangle meshes which consist of a list of vertices and a
list of triangles, each triangle containing three vertex indices and the indices of the edge-adjacent
triangles.

The schemes are based on a region growing traversal of the triangle mesh. The traversal begins
for example with an arbitrary seed triangle. The border of the growing region is called thecut-
border. It divides the mesh into theinner and theouter part, which contain the already processed
and the untouched triangles respectively. Triangles are added to the inner part at a distinguished
current cut-border edge which is called thegate. After each addition of a triangle the gate moves
on to another cut-border edge, until all triangles of an edge-connected component of the triangle
mesh have been compressed. This is done for each edge-connected component. The choice of the
next gate location defines thetraversal orderand steers how the cut-border grows over the mesh.

The face-based coding scheme encodes a bit-code each time a new operation is added. The
decoding performs the same traversal and builds the face according to the encoded operation. The
different possible operations by which the next triangle is incorporated into the inner part at the
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Figure 7.15: The different cut-border operations in which the processed triangle can be incident
to the cut-border.

gate are illustrated in figure 7.15. Thecenteroperation C in (a) adds a new triangle to the growing
region that is incident only to the old gate and to a new vertex. The gate is moved to the right
newly added cut-border edge such that it cycles around its target vertex. The current face in the
right/left operation R/L in (b/c) is incident to the gateandthe next/previous edge on the cut-border.
The neighborhood of the pivot vertex is closed and a new pivot vertex is chosen with the new gate
location. In theendoperation E in (d) all edges of the current face are incident to the cut-border
and the cut-border closes. The other growing operations describe cases when the third vertex of
the current face is on the cut-border. (e) shows thesplit operation S, where the cut-border grows
into itself and is split into two loops with two gate locations. One cut-border loop is pushed onto a
stack and processed after the other one is eliminated by anendoperation. In order that the decoder
can replay the split operation the position of the third vertex relative to the gate is encoded. The
holeoperation H (f) merges the current cut-border with a border loop. We will handle border loops
in a different way as done by the cut-border machine [GS98]. We encode a border operation B,
whenever the gate is a border edge of the mesh. As triangle meshes describe two dimensional
surfaces in three dimensional space, two cut-border loops can grow together again, actually once
for each handle of the triangle mesh. The operation which unifies two loops is calledmerge
operation M (g). It merges the current cut-border loop with another cut-border loop and takes two
indices, the index of the other cut-border loop and the location inside that other loop.

The cut-border data structure consists of a stack of doubly linked lists of cut-border edges. Each
cut-border edge stores the indices of its start vertex and of its adjacent triangle in the inner part.
The initialization creates a cut-border with three edges. Each C,S or M operation inserts a cut-
border edge after the gate. The R and L remove the next or previous cut-border edge and the E
operation closes the loop on top of the stack.
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7.4 Diffusion Surfaces for Tensor Fields

Cut-Border Based Surface Construction

As the face-based coding scheme can encode any manifold mesh, one can also build any triangu-
lated diffusion surface during the integration.

The input to our diffusion surface integrator is a seed location in a planar region of the volu-
metric domain of the tensor field. We integrate the diffusion surfaces with the face-based building
operations C,L,R,E,S,M,B. Opposed to the face-based scheme we start the building process with
a single edge and initialize the cut-border to a loop of two cut-border edges around the edge like
the face-fixer proposed by Isenburg [IS00]. This first edge is created by integrating from the seed
location in the direction of the major eigenvector of the tensor field. The integration of a new edge
is described in the next subsection in detail.

The diffusion surface is built from the initial cut-border by extending it at one of the cut-border
edges, which is called the gate. The choice of the gate steers how the cut-border grows the diffusion
surface and is described in subsection 7.4.3 in detail.

Input: seed locationx

integrate edge fromx to y
init cut-border to(x,y)
while cut-border not empty

choose gate
decide operation
apply operation to cut-border

Figure 7.16: Structure of the integration algorithm.

We summarized the integration algorithm in figure 7.16. After the cut-border has been initial-
ized from the seed location we successively select a gate edge, decide which of the operations
C,L,R,E,S,M,B to perform and apply it to the cut-border until no cut-border edges are remaining.
This can either happen, when the diffusion surfaces closes up or when all cut-border edges were
transformed into border edges of the mesh by a B operation at the boundary of the planar domain
of the seed location. Figure 7.17 illustrates the growing process for a spherical diffusion surface.

a) b) c) d)

Figure 7.17: Illustration of how a diffusion surface is grown.

In this subsection it remains to explain how we decide for a given gate location, which operation
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7 Visualization

Figure 7.18: a) angles measured to decide for L, R or E operations b) integration direction c)
check for split or union

has to be performed. We first propose one of the operations E,L,R,B or C and then check for E,L,R
or C if we should not have performed an S or M instead.

First we decide if we should propose an L,R or E operation based on the exterior angles between
the gate edge and the previous or next edge on the cut-border as depicted in Figure 7.18 a). If one
of the anglesα0 or α1 is smaller than a threshold angle, that we set to seventy degrees, we decide
for an L or R operation. When the length of the current cut-border loop is only three, we decide
for an E operation instead of L or R.

If both angles are larger than the threshold, we try to propose a B operation by trying to integrate
the left edge of the new triangle as shown in Figure 7.18 b). The direction for integration should
be in the planar case always sixty degrees. For curved surfaces this is not possible anymore. Here
we chose to subdivide the angleα0 into k equal parts such that the resulting angle is closest to
sixty degrees. In the example of Figure 7.18 b)k is two such that we chose the directionα0/2
away from the gate.

The integration process is in the next subsection. It returns a target location or reports failure if
the integration left the planar domain. In case of failure we decide for a border operation B, that
will always be performed. Otherwise we can construct with the target point a new triangle labeled
with C in the Figure 7.18 b).

Now we either perform a border operation or propose a new triangle added by E,L,R or C. This
triangle can intersect a distant cut-border part as illustrated in Figure 7.18 c). Here we should rather
perform a S or M operation with the vertex closest to the gate. Whether S or M is performed can
be decided by the cut-border data structure from the vertex to which the gate will be connected. To
find out if an S or M has to be performed, we entered all cut-border edges in an octree and checked
for the proposed E,L,R and C triangles if they cover other cut-border edges. In order to also
connect to close outside cut-border vertices we enlarge the proposed triangles by 30% before we
checked in the octree. From the covered cut-border edges and vertices we selected the cut-border
vertex closest to the center of the gate and proposed an S or M operation. See Figure 7.18 c) for
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an illustration of this process.

Integration of New Edges

For every search direction, we define the search plane as the plane that is orthogonal to the tan-
gential plane at the start point, contains the search direction vector and the start point itself. This
approach is similar to [ZDL02].

Every search plane defines a vector field along which we integrate from the start point. A vector
of this vector field is, simply spoken, defined by the cut of the search plane and the plane which
is spanned by the major and medium eigenvector of a tensor. The length of this vector is just the
distance between the location of the tensor and the cut point of the search plane with the ellipse
defined by the major and medium eigenvector, see figure 7.19.

To perform this operation quickly, we use the following simple mathematics. Letn be the
normal of the current search plane, andT be the tensor matrix at the current point. The vector
field is then defined by the following operations:

ñ = T tn

n⊥ =

 −ñ1

ñ0

0


vt = Tn⊥

We transform the normal vector of the search plane into the coordinate system defined by the
eigenvectors. That is just a matrix–vector multiplication. Because we want the vector to lie in
the plane of the two largest eigenvectors, we project the vector into this plane by setting the last
coordinate to0. Then, an orthogonal vector is set up by multiplying the vector to a90 rotational
matrix. This can be done explicitly by just changing the coordinates. This orthogonal vector is
then transformed back into the world coordinate system to be the vector of the vector field within
the search plane.

The step width for the integration process of one search direction is adapted to the eigenvalues
in order to distribute the points according to the anisotropy of the tensor field

h = C

√∑
i

w2
i n

2
⊥i

wheren⊥ is the vector orthogonal to the normal vector of the search plane as defined above,h is
the step width, andC is a user-controlled constant which can further influence the density of the
points. The weightswi are chosen to represent the proportional behavior to the anisotropy as

wi =
1
λi
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Figure 7.19: A vector of the vector field defined by the cut of the search plane and the ellipsoid
within the plane of the two largest eigenvectors.

Traversal Order

In order to avoid a large number of S or M operations we used a similar strategy as proposed
by Alliez and Desbrun [AD01b]. The method is based on the observation that S operations arise
very seldom at cut-border edges that are in a convex region. Therefore we measured for each cut-
border edge the two exterior anglesα0 andα1. The smaller these angles are, the more convex is
the region around this cut-border edge. As it is already fine if one of the angles is small, we sorted
the cut-border edges according to the minimum if the exterior edges into a priority queue. Each
time a new gate has to be chosen, we extracted the most convex from the priority queue. After
each basic operation we updated also the cut-border edges adjacent to newly added or removed
ones and re-positioned them in the queue. Figure 7.17 illustrates that the cut-border stays nicely
shaped during the integration process.

7.4.4 Results & Analysis

We tested our algorithm with tensor fields that include singularities which need to be bypassed
by the integration and meshing process. We created artificial tensor fields to simulate different
behavior and used MRI datasets for stream line tracking.

Artificial Tensor Fields

The Spiral example has singularities on the z axis. The tensors have planar anisotropy around the
z axis, see figure 7.20. The diffusion surfaces are rendered as triangular meshes to show how the
mesh generation follows exactly the diffusion surface and thereby bypasses the singularities.

A dataset similar to sphere, see figure 7.21, demonstrates the usefulness and power of the point–
rendering approach. The interior stream lines are completely enclosed by a mesh but they remain
visible.

The Sinosoidal example shows both stream tubes and stream surfaces within a dataset that
varies anisotropy very frequently. Figure 7.21 shows a simple preview of the dataset displaying
the major, medium, and minor axes of the tensors within a 10x10x10 grid. The color encode the
different anisotropies. Green is planar anisotropy, red linear, blue isotropy, and gray is undefined.
Figure 7.21 shows the point–rendered stream tubes and diffusion surfaces.

The crucial part of the performance of our algorithm is the integration process itself. Thus the
step width of the integration step is the limiting factor and needs to be adapted very carefully to
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Figure 7.20: The diffusion surface is a spiral around the singularities at the z axis.

the anisotropy of the tensor field.

Note that the distribution of the points over the diffusion surface may not be optimal. We did
not implement an optimization algorithm for placing the points. We can ensure that the whole
diffusion surface is extracted because our approach starts with an initial triangle and grows it’s
border until it reaches a non–linear region, and that the distance between points along edges that
were integrated is optimal in terms of that this distance accords to the diffusion rate along this
edge. But there may be edges that were not integrated but artificially inserted by the cut–border
operations. The optimal distribution of points over a diffusion surface is topic of further research.

DT-MRI Tensor Fields

Diffusion tensors play an important role in medicine where they can be calculated with magnet
resonance imaging (MRI) technology to produce diffusion tensor MRI (DT-MRI).

The myeline structures which surround nerve fibers are impervious to water and cause fluids
to diffuse into the directions of nerve fibers. In reverse, the diffusion directions of water reveals
information about the tracks of nerve fibers.

We compute water diffusion tensors of the human brain out of seven MRI scans by using the
TEEM library which is public available. The resulting volumes are regular grids with a typical
resolution of192 × 192 × 65. At each grid point, a diffusion tensor is stored. Diffusion tensors
are symmetric and semi-definite tensors of rank 2. Hence, the algorithm presented in this section
can be applied. In regions of linear anisotropy, water diffuses mainly into one direction, i.e. along
a nerve fiber.

A dense set of stream lines is computed starting at uniformly placed seed points in regions of
linear anisotropy. A stream line is integrated along the vector field formed by all largest eigen-
vectors. In order to reduce noise inherent present in MRI datasets, a moving least squares filter
smoothes all tensors. The computational expensive 3D integrals of the moving least squares filter
are solved by randomized integration.
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a) b) c)

Figure 7.21: (a) A simple preview for datasets with symmetric tensors. Green is planar anisotropy,
red linear. The axes of eigenvectors are shown. (b) Stream tubes and diffusion surfaces rendered
as point clouds. (c) A classic approach for visualizing tensor fields is to render ellipsoids. Note
the lack of visibility due to occlusion of the ellipsoids.

Figure 7.22: A dense set of stream lines has been extracted and is visualized together with a
referencing slice through the dataset. Stream lines that pass regions of planar anisotropy can be
extended by integrating diffusion surfaces in order to yield such dense sets.

The integration process of the stream lines terminates when a region of non-linearity is reached,
i.e. a region where no eigenvalue dominates the other two eigenvalues. If a stream line terminates
because a planar region has been detected (which can happen at the crossings of stream line bun-
dles), we start to integrate a diffusion surface. At the boundary of the diffusion surface, we again
start to integrate stream lines.
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Chapter 8

Conclusions and Future Work

Die Wissenschaft fängt eigentlich erst da an, interessant zu werden, wo sie aufhört.
- Justus von Liebig

The presented rapid simplifier is based on a separated simplification of the triangular boundary and
a point sampling of the interiour together with a final tetrahedralization. The tetrahedralization step
can be avoided if a table is built which maps each vertex index of the original mesh to its new vertex
index in the simplified mesh. The boundary simplification adds all vertices that it changes to the
table while the interiour sampling adds all vertices that are changed by the sampling. Now, a final
loop over all tetrahedra can map all four original indices of a tetrahedron onto their new indices.
If a tetrahedron is assigned four different new vertex indices, the tetrahedron remains valid and is
part of the approximating mesh. Otherwise, the tetrahedron can be discarded. Such an approach
may extend [LT98] to tetrahedral meshes and needs to add some logic to avoid tetrahedral flips.
Finally, the loop over all tetrahedra can compute quadrics and spread them over the octree cells.
This way, each octree cell stores a single quadric and the sampling point of each cell can be placed
quadric-optimal.

Only a few algorithms exist to represent a tetrahedral mesh as a compressed progressive mesh.
In contrast to a full–blown multi–resolution model, the mesh can be refined uniformly only but
enables better compression rates [PRS99]. While the tetrahedral cut-border as the best single reso-
lution compression scheme achieves about 2 bits per tetrahedron for connectivity compression, the
progressive representations achieve about 4 bits per tetrahedron for manifold meshes. Recently,
Isenburg et al. applied their streaming meshes approach to tetrahedral meshes but achieved com-
pression of about 3 bits per tetrahedron for connectivity. The out-of-core data structure of§ 6.1
might achieve better compression rates for huge meshes because the simple compressor of§ 6.3
achieves already 4 bits per tetrahedron without any arithmetic (or other) coding. Finally, the com-
pression of geometry is still worse for tetrahedral meshes leaving a big room for improvements.
This is mainly caused by the prediction techniques which work well for polygonal datasets but fail
to predict well for tetrahedral meshes.

Many simulations run on hybrid meshes which often need to be transformed into pure tetrahe-
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dral meshes for interactive visualizations. As example, many hexahedral meshes are converted to
tetrahedral meshes which produces for each hexahedron about 6 tetrahedra. Nevertheless, many
hexahedral meshes contain small parts of unstructured tetrahedral elements anyway. The auto-
matic construction of multi–resolution representations for such meshes is a field of research that
has not been covered in depth yet during the last decades.

Last but not least, the visualization of volume meshes needs to explore techniques which allow
for a high–quality visualization with simple algorithms for non–manifold and potentially self–
intersecting meshes. Here, point based approaches like§ 7.2 seem to be advantegeous as they are
easy to create and handle.
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