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Abstract

Today, verification of industrial size designs like multi-million gate ASICs (Ap-
plication Specific Integrated Circuit) and SoC (System-on-a-Chip) processors con-
sumes up to 75% of the design effort. The trend to augment functional verification
with formal verification tries to alleviate this problem. Efficient property check-
ing algorithms based on binary decision diagrams (BDDs) and satisfiability (SAT)
solvers allow the automatic verification of medium-sized designs. However, the
steadily increasing design sizes still leave verification as the major bottleneck,
because formal methodologies do not yet scale to very large designs.

To address these problems researchers came up with the idea of combining
symbolic simulation and bounded model checking on-the-fly. The current tools
pioneer in handling comparatively larger designs by partitioning the state set
and they can be represented using partitioned ordered BDDs (POBDDs). These
partitions will be explored in a divide-and-conquer manner. However, still they
face memory exhaustion for very large models due to the BDD explosion prob-
lem. Even the SAT based bounded model checking (BMC) can search up to a
maximum depth allowed by the physical memory on a single server. These
observations motivated the parallelization of symbolic state space traversal al-
gorithms. Distributed algorithms verify larger models and return results faster
than sequential versions. Existing schemes for parallelizing BDD-based verifi-
cation algorithms often suffer from state overlap or duplicate work, cross over
states among partitions, inefficient work distribution, improper load balancing,
synchronicity and communication overhead. The algorithms concentrate heavily
either on reachability (validation) or falsification but not both together.

My main contributions include a dynamic overlap reduction and a hybrid dis-
tributed algorithms. The dynamic overlap reduction technique smoothens the
state space traversal of each network node by removing the state overlap that
it suffers from. The removal of overlap works in an asynchronous manner, i.e.,
with out waiting for other processors to complete their image computations. This
method has the natural side effect of dynamic load balancing among network
nodes, i.e., the nodes that deal with a large state space at one time point will be
later assigned a small state space and vice versa. Since all the nodes perform
asynchronous state space traversal on their whole state subsets, the method is
best suitable for validation.

The hybrid method is an asynchronous distributed algorithm, suited for both
fast error detection and complete validation. This approach combines well known
windowing and dynamic overlap reduction techniques. The windowing technique
has partitions that are identified by unique combination of variables. Each win-
dow restricts its state space at regular intervals to keep the reachable state space
within it’s window region. The real state space is discriminated by the window as
owned and non-owned states. The nodes on the cluster machine are employed



with two different types of tasks. Some nodes, windows aim at faster falsification
on the basis of the windowing technique. The other type of nodes called helpers
are intending for validation on the basis of the dynamic overlap reduction. All
the network nodes asynchronously traverse their local state spaces for both er-
ror states detection and reachability of a time bound. Thus, the hybrid algorithm
efficiently combines both windowing and dynamic overlap reduction techniques to
obtain more synergy and gains the advantages of using both the approaches. Fur-
ther, the algorithm expedites the verification process by reassigning the work to
idle nodes as quickly as possible. As a result it avoids the wasted computation
power and makes the system work efficient.

The dynamic overlap reduction and hybrid algorithms are best suitable for
homogeneous system configurations like a cluster. However, this thesis also
presents a grid-based parallelization algorithm which is suitable for fast falsifi-
cation of very large designs. In addition, all the parallel algorithms in this thesis
partition the state space using the Minimal overlap algorithm which pioneers in
statically minimizing the cross over states or state overlap among the partitions.

The parallel algorithms speedup the distributed verification and automati-
cally checks the correctness of very large hardware designs. The distributed com-
putation shows approximately linear speedups in execution time and enables
faster verification of properties. As a supplement, this thesis also presents a novel
distributed algorithm, which uses mixed forward and backward traversal mech-
anism for Black Box verification.



Zusammenfassung

Heutzutage benétigt die Verifikation von industriellen Designs wie z.B. ASICs
(Application Specific Integrated Circuit) und SoC (System-on-a-Chip) bis zu 75 %
der Entwicklungskosten. Der Trend funktionale Verifikation durch formale Veri-
fikation zu erweitern versucht dieses Problem zu losen. Effiziente Algorithmen
basierend auf BDDs (Binary Decision Diagrams) und SAT (Satisfiability) erlau-
ben die automatische Verifikation von mittelgroflen Designs. Durch die standig
wachsenden Designgrofien bleibt die Verifikation trotzdem der Flaschenhals, da
formale Methoden noch nicht fiir sehr grofie Designs skalieren.

Um diese Probleme zu beheben wurde in der Forschung die Idee entwickelt
symbolic simulation und bounded model checking direkt zu kombinieren. Aktuel-
le Tools sind in der Lage vergleichsweise grofse Designs durch Partitionierung
des Zustandsraums zu bewiltigen. Der Zustandsraum wird dabei auf partitio-
nierte geordnete BDDs (POBDDs) abgebildet und mit einer Teile-und-Herrsche
Strategie durchsucht. Trotzdem kdmpfen diese Tools immer noch mit Speicher-
problemen bei sehr grofifen Modellen bedingt durch den bei BDDs auftreten-
den Speicheriiberlauf. Auch SAT-basierende bounded model checking Tools (BMC)
sind in der Suchtiefe beschrankt, durch den physikalisch zur Verfiigung stehen-
den Hauptspeicher eines einzelnen Rechenknotens. Diese Beobachtungen mo-
tivierten die Parallelisierung der Algorithmen zur Traversierung von symboli-
schen Zustandsraumen. Die verteilten Algorithmen kénnen grofiere Modelle ve-
rifizieren und liefern die Ergebnisse schneller als die sequentiellen Versionen.
Existierende Methoden zur Parallelisierung von BDD-basierenden Verifikations-
algorithmen kdmpfen oft mit Zustandsraumiiberlappungen, ineffizienter Vertei-
lung schlechter Lastbalancierung, sowie Synchronisierungs- und Kommunikati-
ons-Overhead. Die Algorithmen konzentrieren sich entweder auf Erreichbarkeit
(Validierung) oder auf das schnelle Finden von Fehlern aber nicht auf beides zu-
sammen.

Meine Hauptarbeit beinhaltet eine dynamische Reduzierung der Uberlappung
(dynamic overlap reduction) und einen hybriden verteilten Algorithmus. Die Tech-
nik zur dynamischen Reduzierung von Uberlappungen verbessert die Traver-
sierung des Zustandsraumes von jedem Rechenknoten durch Reduzierung der
Uberlappungen. Die Uberlappungs-Reduzierung arbeitet asynchron d.h. ohne zu

warten bis andere Knoten ihre Image Berechnung beendet haben. Diese Metho-
de hat den natiirlichen Seiteneffekt der dynamischen Lastbalancierung zwischen
den Netzwerkknoten, d.h. die Knoten, die zu Beginn einen grofien Teil des Zu-
standsraums bekommen, werden im niachsten Durchlauf einen kleineren Teil be-
kommen und vice versa. Da alle Knoten eine asynchrone Exploration ihres ei-
genen Zustandsraums durchfiihren ist diese Methode sehr gut zur Validierung
geeignet.

Bei der hybriden Methode handelt es sich um einen asynchronen verteilten
Algorithmus, der sowohl geeignet ist zum schnellen Auffinden von Fehlern als
auch zur vollstindigen Verifikation. Der Ansatz kombiniert bereits bekannte win-
dowing und dynamic overlap reduction Techniken. Der windowing Ansatz benutzt



Partitionen, die durch eindeutige Variablenkombinationen identifiziert werden.
Jedes window beschrankt seinen Zustandsraum in unregelméfliigen Abstdnden,
um den Erreichbaren Zustandsraum in den eigenen window Grenzen zu hal-
ten. Der gesamte Zustandsraum wird eingeteilt in benutzte und noch nicht be-
nutzte Zustdnde. Den Knoten des Rechen-Clusters werden zwei unterschiedliche
Aufgaben zugeteilt. Einige Knoten, windows, versuchen schnell Fehler zu finden
auf Basis der windowing Technik. Der andere Typ von Knoten, helper, versucht
zu validieren auf Basic der dynamischen Uberlappungs-Reduzierung. Alle Netz-
werkknoten traversieren asynchron ihren lokalen Zustandsraum mit zwei Zie-
len: auffinden von Fehlerzustdnden und Erreichbarkeit einer Zeitschranke. Somit
kombiniert der hybride Algorithmus auf effiziente Weise sowohl windowing als
auch dynamische Uberlappungs-Reduzierung, um dadurch mehr Synergien zu
erzeugen und um die Vorteile beider Methoden zu nutzen. Der Algorithmus be-
schleunigt aufierdem den Verifikationsprozess durch ein so schnell wie moglich
erneute Verteilung der Arbeit auf im Leerlauf befindliche Knoten. Als Ergebnis
wird dadurch die Verschwendung von Rechenleistung verhindert und die Effizi-
enz des Systems gesteigert.

Beide Ansétze sind bestens geeignet fiir homogene System-Konfigurationen
wie z.B. Cluster. Auflerdem wird innerhalb der Dissertation auch ein Grid-basie-
render Algorithmus vorgestellt, welcher fiir die schnelle Fehlersuche in grofien
Entwiirfen geeignet ist. Zusitzlich benutzen alle parallelen Algorithmen in die-
ser Dissertation den Minimal overlap Algorithmus welcher eine statische Minimie-
rung der Kreuz-Uberlappungs-Zustinde bzw. der Uberlappungszustinde zwi-
schen den Partitionen durchfiihrt.

Die parallelen Algorithmen beschleunigen die verteilte Verifikation und tiber-
priifen automatisch die Korrektheit von sehr grofien Hardware-Designs. Die ver-
teilte Berechnung zeigt anndhernd linearen Speedup in der Ausfithrungszeit und
ermoglicht die schnellere Verifikation von Eigenschaften. Als Ergdnzung dieser
Arbeit wird ein neuer verteilter Algorithmus prasentiert, welcher einen gemisch-
ten Vorwiérts- und Riickwirts traversierungs-Mechanismus benutzt zur Black-
Box-Verifikation.
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Chapter 1

Introduction

In my experience, there is only one motivation, and that is desire. No reasons or principle
contain it or stand against it.
- Jane Smiley

The increasing importance of automated formal verification in industry is
driving a growing interest in those aspects that directly impact the applicabil-
ity to real world problems. One of the main technical challenges lies in devising
tools or methodologies that allow to handle large design state spaces. Over the
last years various approaches have been developed. Recently, an increasing inter-
est in parallel and distributed verification has been emerged. Parallel processing
can help speedup the verification process by providing many CPUs that can work
on the problem. The aim of this thesis is to enable efficient distributed verification
by minimizing the problems that would come across during parallel verification.

This chapter first introduces the basic concepts of verification. Second, it ex-
plicates different forms of verification and their differences. Third, it details the
prevalent problem faced by the formal verification. Next, it discusses the form of
verification this thesis focuses on and details the thesis synopsis. Finally, it gives
an exposition on distributed verification and factors that influence the effective-
ness of verification in a distributed environment.

1.1 What is Verification

Today, hardware and software systems are widely used in applications where
failure is unacceptable [1]. Recent examples of such notorious failures are avail-
able in [2, 3]. These failures can range from mild annoyance to major catastrophes
and the cost - to individuals, to companies, to society as a whole - can likewise
be immense [4]. These hazards result from the fact that the relentless increase in
technology allows us to produce increasingly complex designs, which contain an
increasing number of bugs. Therefore, the need for reliable hardware or software
systems is critical. Verification is a process used to demonstrate the functional

1



Level Design step

Specification

System level

\j
Implementation = Specification

]

Register Transfer

\j
Gate Implementation = Specification
]
\j
Transistor Implementation = Specification
| 4
Layout Implementation

v

Figure 1.1: Design flow.

correctness of a design. However, today in the era of multi-million gate Appli-
cation Specific Integrated Circuits (ASICs), reusable Intellectual Properties (IP),
System-on-a-Chip (SoC) designs, verification consumes up to 70% of the design
effort and the code that implements the verification process makes up to 80%
of the total design project code volume [5]. The principal verification methods
for complex systems are simulation and formal verification. Simulation checks
whether the design exhibits the proper behavior as elicited by a series of func-
tional tests, whereas formal verification uses formal proofs to demonstrate the
validity of a design against formal specification. Fig. 1.1 demonstrates the typical
refinement principle of circuit design. The design process is divided into several
steps, where the implementation resulting on a certain abstraction level is used
as the specification for the next lower one [6]. The verification task at each level
is to check the implementation against a specification. The register transfer level
(RTL) of the circuit is typically described using hardware description languages
(HDLs) like Verilog and VHDL.

1.2 Simulation

The conventional verification method to discover design errors is simulation. The
design is usually described using a hardware description language, which can be
simulated. Input sequences are created which reflect the critical execution traces
of the design to examine the design functionality. However, in order to get full
confidence in the design we would have to perform a complete simulation which

2
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Figure 1.2: Overview of a testbench.

covers all possible input combinations. In case of sequential circuits, the number
of input sequences increases exponentially with the number of inputs and the
circuit states, it is a laborious task even for designs of moderate size to exercise
all possible input sequences. This problem is typically referred as the incom-
plete coverage problem. Simulation consists of four major tasks: 1. Generating the
functional tests; 2. Executing the test stimulus on the design; 3. Determining if
the design behavior satisfies its specification during the execution; 4. Collecting
coverage statistics. The second task, execution, is performed by a simulator. The
other three tasks are performed by a testbench. The key ingredients of a testbench
are shown in Fig. 1.2. Nowadays, people are combining temporal assertions with
simulation, for example in [7, 8, 9, 10]. Temporal assertions are properties based
on time that are evaluated within an execution engine, i.e., a simulator. Verifica-
tion based on assertions is known as assertion-based verification methodology. It
has the ability to monitor internal signals and catch violations locally. Further-
more, it improves observability and debug ability. In many ways it is different
from a pure testbench based verification methodology, where output sequences
are manually checked against the specification. It leverages the power of formal
verification by adopting some internal formal semantics.

1.3 Formal Verification

Formal verification is the act of proving correctness of a system with respect to
a formal specification or a property using formal methods. In contrast to tradi-
tional simulation, it covers exhaustively all the possible executions of a system.
However, formal verification can be further divided into three broad categories:
equivalence checking, theorem proving, and model checking. Because of the coverage
problems in simulation, formal verification plays a complementary role as far as
the whole verification process is concerned.

3



1.3.1 Equivalence Checking

Equivalence checking is a process of comparing two circuits supposed to have iden-
tical behavior in order to verify the correctness of logic optimization, register re-
timing, state re-encoding, etc. The problem of equivalence checking can be con-
verted into the problem of reachable states of the product state machine. Given
two state machines to compare, the equivalence checking process ties the input
lines of both machines together, sends the outputs to a comparator and provides
the clock. This combination is just another bigger state machine. The original two
state machines have identical behavior if and only if the new state machine indi-
cates the outputs are equal for all reachable states [1]. However, the complexity
of equivalence checking continues to increase exponentially with the design size.

1.3.2 Theorem Proving

In theorem proving, the design and the properties are expressed as formulas by us-
ing mathematical logic. A property is proved if it can be derived from the design
using a set of axioms and inference rules. Sometimes the proof consists of inter-
mediate definitions and lemmas in addition to the axioms and rules. Although
theorem proving has several applications like software verification [11, 12, 13],
mathematics, and security/cryptographic protocols, it requires a great deal of
skilled human guidance due to insufficient automation. For example, if theo-
rem prover uses first order or higher order logic then proof problems are semi-
decidable or undecidable and human guiding is needed. In addition, it lacks
support for digital design languages and is hard to compose systems and proofs.

1.3.3 Model Checking

Applying model checking [1, 14] to a design consists of two main tasks modelling
and specification. The task modelling is to covert a system or design into a formal-
ism, typically an FSM, accepted by a model checking tool. It require the use of
abstraction techniques to eliminate unimportant details of the system. The spec-
ification is usually given in temporal logic. A temporal logic is a formal language
to express properties changing over time. Most predominantly used temporal
logics are Computation Tree Logic (CTL) and Linear Time Temporal Logic (LTL)
[15]. Each logic has its own expressive capabilities. The detailed explanation on
these logics is postponed to the next chapter. Model checking provides a means
to check whether the model of the design satisfies a given specification. There
are two main paradigms for model checking: explicit state model checking and
symbolic model checking. Fig. 1.3 visualizes an overview of a model checking
process.
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Figure 1.3: Overview of a model checking process.

1.3.3.1 Explicit State Model Checking/Enumerative Model Checking

Explicit state model checking uses an explicit representation of the system’s global
state graph, usually given by a state transition function. An explicit state model
checker evaluates the validity of the temporal properties over the model by in-
terpreting its global state transition graph. The property validation amounts to
a partial or complete exploration of the state space. During the exploration the
explicit model checker treats states one by one. Tools like SPIN [16] and PV [17]
are well known explicit model checkers.

1.3.3.2 Symbolic Model Checking

Symbolic simulation [18] combines conventional simulation with symbolic meth-
ods. The advantage of conventional simulation is accuracy, but it needs one simu-
lation vector at a time. In Fig. 1.4, we would require four simulation runs with in-
puts 00, 01, 10 and 11. Symbolic simulation adds two innovations to conventional
logic simulations [19]. The first innovation of a third logic value X represents the
unknown value. Setting an input to X gives the effect of simulating the circuit with
both 0 and 1. As a result, one can reduce the number of simulation runs. How-
ever, the value X loses information. In Fig. 1.4 setting one or both inputs to X
yields an X at the output, which is an futile result for verification. The simulation
with values X, is called as X-simulation. The prominent second innovation is the
symbolic simulation. In contrast to X-simulation, symbolic simulation assigns a
symbolic value for each input in the design, that can be either 0 or 1, rather than
to a constant 0,1 or X . The symbolic simulator computes symbolic expressions
for each output in terms of input variables. In Fig. 1.4, assume we set input « to 1
and input y to the symbolic value z. The symbolic simulator would then calculate
that the upper AND gate will set to 0 and lower AND gate will set to symbolic
value z. Finally, the OR gate will settle to z. Thus, we have effectively run two
simulation vectors (zy equal to 10 and 11) and computed the output as a function
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Figure 1.4: A simple XNOR circuit.

of symbolic values. Typically, a BDD (Binary Decision Diagram) [20] is used to
represent the values on wires as functions of the symbolic values. In practice, it
is the users choice to decide on conventional simulation, X-simulation or sym-
bolic simulation. In conventional simulation we have to exercise test runs one by
one, which is a time consuming process. Assigning an input to X in X-simulation
reduces the number of simulation runs, but loses the information so that simu-
lation results might not be useful. Symbolic simulation also reduces the number
of simulation runs and does not lose information, but too many symbolic values
will make the BDDs too large to build. Symbolic model checking means using
BDDs in the model checking algorithm. Model checking lets us verify that a state
machine or formal model obeys a property we specify using temporal logic. The
key idea is to systematically explore the state space of a finite state machine in
order to check that the given temporal logic formula holds of a machine. The
detailed explanation on temporal logic is postponed to next chapter. In simple
words symbolic model checking [21, 22, 23, 24] typically uses the symbolic simu-
lation algorithm based on BDDs. Ken McMillan et al. were the first to create
a publicly available symbolic model checker based on BDDs [25]. The detailed
explanation on BDDs is deferred to the next chapter.

It is accepted that symbolic model checking is suited for verifying hardware sys-
tems and explicit state model checking has advantages of verifying concurrent or
asynchronous software [26].

1.3.3.3 Bounded Model Checking based on SAT Solvers

In bounded model checking [27, 28, 29], a Boolean formula is satisfiable if and only
if the underlying state transition system comprehends a finite sequence of state
transitions that reaches certain states of interest. In simple words: we reduce
the model checking problem to propositional satisfiability for a finite number
of simulation cycles. The idea of BMC is to unroll the sequential circuit into %
time-frames of a combinational circuit representing the state transition and out-
put function, and counterexamples are searched in this unrolled system descrip-
tion. If no bug is found then one increases £ until either a bug is found or some
defined upper time bound is reached. For example, we have a transition system
M, a temporal logic formula p and a time bound %. Then we construct a proposi-
tional formula, which will be satisfiable if and only if the formula f is valid along
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some computation path of M with length k. A propositional formula F'is formed
as follows. For the state transition system M and time bound k, the unrolled
transition system is

F = ](QO) A /\é:o1 T(Qz‘; Qz‘—l—l) A \/i-:o1 p(%)

where (qp) is the characteristic function of the set of initial states g, 7'(g;, gi+1)
is the characteristic function of the transition relation and p(s;) is the character-
istic function of the property that we wish to check. A characteristic function [6]
indicates whether an element x of a set 4 is part of a subset B of .A. Characteristic
functions are functional representations of a subset.

Definition 1 (Characteristic function) Given two sets A and B with B C A. A char-
acteristic function X : A — B is defined as

| True ifr e B
Xo(r) = { False, if v ¢ B

The robustness and the capacity increase of bounded model checking makes it a
good choice for industrial use. This is due to the fact that satisfiability solvers sel-
dom require exponential space. Current solvers use different heuristics in order
to solve the general satisfiability problems for bounded model checking. All of them
use the Davis Putnam algorithm [30] and variants of it. However, bounded model
checking based on satisfiability solvers is time intensive and it can only search up
to a maximum depth allowed by the physical memory on a single server. As the
search bound k becomes larger, the memory requirement due to unrolling of the
design also increases.

1.3.3.4 BDD vs SAT

Comparing BDD and SAT based model checking approaches, each technique has
its own advantages and disadvantages. For some particular type of designs BDD
based model checkers outperform SAT based model checkers. For others, it is
vice-versa. It is greatly a debatable topic to compare both approaches. Therefore,
it is the user’s choice to select which mechanism to follow. In [31, 32], the authors
made comparisons between different approaches and inferred that more synergy
can be achieved by combining both techniques.

1.3.4 State Explosion Problem

Formal verification methods reach their limitations very fast. As aforementioned
in section 1.2 the state space of the system grows exponentially with respect to the
number of flip-flops present in the design. Even a small circuit with 4 registers,
each 32 bit wide, exceeds the treatable amount of state space. This is know as
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Figure 1.5: Overview of thesis focus

the state explosion problem. Therefore, it is impossible to explore the entire state
space of the system with limited resources of time and memory. Over the years
considerable effort has been made in dealing with this prevalent problem. Albeit
researchers have made noticeable progress to deal this problem [33, 34, 35, 31],
for larger designs the problem still persists.

1.3.5 Thesis Focus

This thesis will focus mainly on formal verification. To be more specific, symbolic
model checking based on BDDs. Formal verification provides the exhaustive cov-
erage and has the calibre to uncover subtle bugs in comparison with traditional
simulation. However, for large industrial designs these techniques do not scale
well due to the state explosion problem. One way to handle this problem is to use
sequential based partitioned approaches. For large designs either they consume
more time or postpone the state explosion problem. One feasible solution is to par-
allelize the BDD based symbolic model checking algorithm. Fig. 1.5 delineates
the wider picture of the thesis focus. If the generic model checker has problems
with time or memory then we can enable the parallel version of the symbolic
model checker.

1.3.6 Distributed Verification

Two approaches can be considered in fighting the state explosion problems [36]:
clever methods or brute-force methods.

The first category can use any of the following methods:
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1. Design of better modeling languages (small languages, formal semantics,
built-in abstractions, compositionality properties) [37, 38, 39]

2. Invention of better verification algorithms by operating on higher-level mod-
els (abstractions, data flow analysis, reductions) or by exploiting [40, 41]
structural information or by avoiding redundancies (partial orders, sym-
metries) [42, 43, 44] , or by using locality (bounded-memory algorithms)
[45].

The brute force methods lead to the use of a more powerful machines (increase
memory and processing power to handle larger state spaces or use a supercom-
puter) or the use of several machines instead of one (combine the resources of
several machines). In an ideal case, using n machines can solve the problem n
times faster.

Often, people have access to large parallel computers, but cannot make full
use of them because most model checkers are designed for single processor sys-
tems. The aim in exploiting a parallel or distributed environment for verification
is to extend the applicability of verification algorithms to larger and more com-
plex systems. A parallel super computer, grid or network of workstations can
provide extra resources needed to tackle realistic verification problems.

Cluster computer: [46] A cluster computer is a type of parallel or distributed
processing system, which consists of a collection of interconnected stand-
alone computers together as a single integrated computing resource.

A computer node can be a single or multiprocessor system (PCs, workstations,
Symmetric Multi Processors (SMPs)) with memory, I/O facilities, inter connec-
tion, and an operating system. A cluster refers to two or more computers (nodes)
connected together. The nodes can exist in a single cabinet or be physically sep-
arated and connected via a LAN, etc. In general two types of computer cluster
systems are widely used:

Homogeneous cluster: A homogeneous computer cluster is a group of coupled
computers of equal configurations.

Heterogeneous cluster: A heterogeneous cluster is a collection of machines of
varying architectures.

Distributed computation can help to speed up verification by providing many
CPUs that can work on the problem and provide higher aggregated memory ca-
pacity.

The main idea of a distributed algorithm is to break the verification task into
pieces and assign each piece among the participating workstations. The verifica-

tion process on all nodes is terminated once at least one of the nodes detected a
bug or error state. This way we can achieve a parallel, iterative, and interactive
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verification process. In general, computation on a smaller subset requires less
memory compared to the whole set. This method enables us to find errors that
are fartransitions away from the initial states. Moreover, parallel computation
takes less verification time compared to the sequential approach. However, there
are several factors that significantly influence the overall effectiveness of verifica-
tion in the distributive environment. These factors have to dealt with a nontrivial
manner as far as parallel model checking is concerned. Some of them include:

Load balancing: This is a technique to spread work between many processes or
other resources in order to get optimal resource utilization and to decrease
computing time. With respect to model checking, each network node is
assigned approximately the same number of states, thus achieving good
speed-up.

Synchronization: Refers to the idea that multiple processes are to join up at a
certain point to ensure correctness or to reach an agreement or to commit to
a certain sequence of action.

Communication: Parallel processes typically need to exchange data in order to
efficiently accomplish the tasks assigned to them. The lesser the communi-
cation involved, the better the parallelization we can achieve.

1.4 Thesis Structure

This thesis is structured as follows:

Chapter 2: Sheds light on basics that will be deployed to construct the method-
ologies described in the thesis.

Chapter 3: Deals with state-of-the-art sequential, parallel and partitioning heuris-
tics. Next, it discusses a few of the open problems that need to be treated.
Finally, it covers the thesis contributions.

Chapter 4: Describes the basic parallelization algorithm for bounded property
checking. It covers the raw materials needed for the basic parallelization. It
also introduces the prevalent problem called state set overlap.

Chapter 5: Presents some techniques for treating state set overlap. It explicates
the application of static overlap reduction on a distributive environment.
The overlap can be confined to only a certain number of simulation steps
using static reduction technique. Therefore a better algorithm is needed to
remove the overlap. It describes a novel on-the-fly asynchronous state space
traversal algorithm using dynamic overlap reduction technique.

Chapter 6: Presents a hybrid distributed symbolic verification algorithm based
on windowing and dynamic overlap reduction techniques, suited for full vali-
dation and fast falsification. The approach is mainly asynchronous.
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Chapter 7: Expounds a new grid based distributed bounded symbolic verifica-
tion approach based on effective combination of state-of-the-art intelligent
partitioning algorithms that suits best for fast falsification.

Chapter 8: Elucidates the parallelization of a Black Box verification for incom-
plete designs. The work described in this chapter was done as a cooperative
task between University of Tiibingen and University of Freiburg under the
research project FEST (Funktionale Verifikation von Systemen) [47] in the
year 2007.

Chapter 9: Explicates all the implementation details. First it explains the ingredi-
ents needed for the parallelization. Second, it explains the methods that can
transfer the data between network nodes. In addition, it describes an effi-
cient way to communicate BDD functions among network nodes. Finally, it
gives the components required for the grid framework.

Chapter 10: Gives experimental results. First it details the utilized parallel envi-
ronment, designs and properties. Next, it delineates the advantage of par-
allel approach over sequential based verification. Then first it compares the
dynamic overlap reduction and hybrid distributive approaches and second
it compares the algorithms presented in thesis with state-of-the-art parallel
algorithms. Finally, it presents the results using the grid based distributive
approach.

Chapter 11: Briefly presents the concluding remarks for this thesis and provides
directions for future work.
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Chapter 2

Preliminaries

Success is neither magical nor mysterious. Success is the natural consequence of consis-
tently applying the basic fundamentals.
- Jim Rohn

2.1 Boolean Functions

A Boolean function describes how to determine a Boolean value output based
on a logical calculation from Boolean inputs. It plays a crucial role in hardware
verification.

Definition 2 A Boolean function with m inputs is a mapping f : B™ — B, where B =
[0,1] is a Boolean domain and m is a positive integer.

Boolean functions are used to express formalisms in hardware verification.
For example transition relations or output functions of finite state machines are
Boolean functions [6]. Boolean functions can be represented in various ways, e.g.
as function tables, formulas of propositional logic and graphs. A Boolean func-
tion is called wvalid if it results in the value true for all interpretations of Boolean
variables. The function is called satisfiable if there exists at least one interpretation
which results in the value true.

2.1.1 Support Set

Definition 3 The set of variables which constitute a Boolean function f is called support

of f.
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2.1.2 Minterms

Definition 4 A Boolean function f : B" — B, a product term in which each of the n
variables appears once (either complemented, or uncomplemented) is called a minterm.

A product term is a conjunction of literals, where each literal is either a vari-
able or its negation

2.1.3 Cofactor

Definition 5 The cofactor of a Boolean formula f with respect to a variable v is the
formula obtained by replacing every occurrence of of v in f by constant 1 and is denoted

by f|, or fo.

fv is called as positive cofactor and f5 is called as negative cofactor, where every
occurrence of v in f is replaced by constant 0.

214 Shannon Expansion

Definition 6 Given a Boolean function f : B™ — B, f is partitioned into two functions
f1and fy on a variable v.

f=FhfV fawhere fi=vAf,, fo=0VAf;
fo=fAv
Js =[N0

2.1.5 Generalized Cofactor

Definition 7 [6] Given two functions f : B¥ — Band ¢ : B¥ — B, where B =
[0,1]. The function co(f,c) or f |c is called generalized cofactor f with respect to c, if the
following conditions holds.

False if c = False
f| f if ¢ = True
c ) True ifc=f
False ifc=-f

This definition can be applied to reduce the sizes of BDDs in the context of
state space traversal techniques. And it will be explained in detail in later chap-
ters of this thesis.
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2.2 Finite State Machines

Typically sequential circuits are modeled as Finite State Machines (FSMs).

Definition 8 A FSM M is a 6-tuple A = (S,1,6,,S,0), where S = {s1,...,5,}
is a finite set of states, I is a finite alphabet, § : S x I — S is the next state function,
A S x I — O is the output function, Sy C S is the initial state, O C S is a set of final
states.

The formal model deals with the Boolean domain. The operators A, V , =, —
and < used for Boolean conjunction, disjunction, negation and implication and
equivalence respectively. Where a — b can also be written as @ vV b and @ < b can
be written as (a — b) A (b — a)

Usually, FSMs are modelled using Mealy or Moore machines.

Moore Machine: A Moore machine is a state machine which uses only entry ac-
tions so that its output depends on the current state alone (A : S — O)
[48]. An entry action is an action that is performed when entering the state.
The state diagram for a Moore model will include an output signal for each
state. The number of states in a Moore machine will be greater than or equal
to the number of states in the corresponding Melay machine [49].

Mealy Machine: A Mealy machine is a state machine which uses only input ac-
tions, so that the output depends only on the current state and also on in-
puts (A : S x I — O) [50]. An input action an action that is performed
depending on the present state and input conditions. The use of a Mealy
FSM leads often to a reduction of number of states [49].

For each Mealy machine there is an equivalent Moore machine whose states
are the union of Mealy machine’s states and the Cartesian product of the Mealy
machine’s states and the input alphabet. The choice of machine type depends on
the application and personal preference of the designer.

2.3 Binary Decision Diagrams (BDDs)

A BDD is a data structure for representing a Boolean function. Bryant first [51]
introduced BDD in its current form.

Definition 9 A BDD is a rooted, directed acyclic graph. Conceptually, a BDD for a
Boolean function can be built, obeying the following restrictions [52] :

1. One or two terminal nodes of out-degree zero labeled 0 or 1.

2. A set of variable nodes u of out-degree two. The two outgoing edges are given by
two functions i f(u) and else(u).
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Figure 2.1: (a) An example decision diagram. (b) An ROBDD with variable order-
ing w < v < y < z. Dashed lines in both figures denote else branches and solid
lines represent i f branches.

3. Along any path from the root to a terminal node, no variable appears more than

orce.

Definition 10 A BDD is ordered (OBDD) if on all paths through the graph the variables
respect a given linear order 11 < x9 < ... < Ty,

Fig. 2.1 (a) shows the Boolean expression t = (w < z) A (y < z) as a binary
decision diagram.

Definition 11 A (O)BDD is Reduced (R(O)BDD) if it conformed to the following rules:

Uniqueness: No distinct nodes u and v have the same variable name and i f and else
successors are shown in Fig. 2.2 (a) , i.e.,

var(u) = var(v)
if(u) =if(v) } =u=0
else(u) = else(v)

Non-redundant tests: No variable node u has identical i f and else successor, i.e.,

if(u) # else(u)

Fig. 2.2 (b) denotes this rule. ROBDDs provide compact representations of
Boolean expressions. However, ROBDDs may grow exponentially with respect
to the number of variables. Efficient algorithms exist for performing all kinds of
operations (AND, OR, NOT, etc.) on ROBDDs.

Variable ordering: The size of an ROBDD for a Boolean function is largely influ-
enced by the used variable ordering. However, finding an optimal ordering for a

15



(a) (b)

Figure 2.2: Reduction rules for constructing the ROBDD.

given Boolean function is an NP complete problem. Fig. 2.1 (b) shows a BDD for
(w < x) A (y < z) with ordering w < x < y < z. Therefore, in practical applica-
tions heuristics are used. There are two kinds of heuristics available for finding
variable orderings [6] : static and dynamic approaches. Static heuristics [53] derive
the ordering from analyzing the structural information of the circuit before the
ROBDD is constructed. Whereas, dynamic approaches [54, 55, 56, 57] make the
graph more compact by changing the original variable ordering during or after
the ROBDD construction. Once the variable order is fixed, a BDD is a canonical
representation for a Boolean function. Every distinct Boolean function has a ex-
actly one unique BDD representation. There exist several publicly available BDD
packages [58, 59, 60]. Each package associated with functions that implement dy-
namic variable reordering , efficient vectorized BDD operations, automatic garbage
collection, interfaces with different programming languages, etc.

2.3.1 Notations

Let S be a state set represented using BDD. Then |S| denotes the number of BDD
vertices or nodes and || S|| denotes the number of states in .S, which is given by
the number of maximal minterms of the BDD.

2.3.2 Partitioned-ROBDDs

The idea of partitioning was introduced and discussed extensively in [61, 62].

Definition 12 [63] Given a Boolean function f : B™ — B, defined over n input vari-
ables X,, = {x1, ..., x,}, the POBDD representation Xy of f is a set of k function pairs,
X = {(w1, f1), ..., (wg, fr)} where, w; : B* — B, f; - B" — B are also defined over X,
and satisfy the following conditions:

1. w; and f; are boolean functions, for 1 <i <k.

2.y Vwe V...V, =1.
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Figure 2.3: Partitioned BDDs f; and f,

3. w; ANw; =0, fori#j.

4. fzzwz/\f,forlglgk

Each w; is called a window function that can be used to partition the Boolean
space over which f is defined. In Partitioned-ROBDDs the Boolean space is di-
vided into £ partitions using window functions (w; € W). The functionality of f is
represented over each partition as a separate ROBDD f;. Boolean operations can
be efficiently performed on them just like ROBDDs. They can be exponentially
more compact than ROBDDs for certain classes of functions.

A simple example BDD f:
f=eA((anb)V(cAnd)Ve((ane)V (bAd))

with window functions e and € can be partitioned into two POBDDs f; and

Jor

The Fig. 2.3 depicts the corresponding POBDDs with different variable re-
orderings.
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Figure 2.4: The base operators of CTL.

2.4 Temporal Logics

Temporal logic is a formal way of expressing properties that change over time
[6]. It describes sequences of transitions between states in a reactive system [1].
More precisely the logic reason about variables with truth values which change
over time. A reactive system is a system that changes its actions, outputs and
conditions/status in response to stimuli from within or outside it. Temporal log-
ics have the ability to reason about a time line. The most predominantly used
temporal logic is CTL* (Computation Tree Logic*). It contains two sublogics CTL
(Computation Tree Logic) and LTL (Linear Time Temporal Logic), which are used
mostly in practice [15].

241 CTL*

CTL* formulas describe properties of computation trees. The tree is formed by un-
winding the Kripke structure into an infinite tree with the initial state as root.
Where a Kripke structure is a type of nondeterministic finite state machine used
in model checking to represent the behavior of a system. It is basically a graph
whose nodes represent the reachable states of the system and whose edges rep-
resent state transitions. Temporal logics are traditionally interpreted in terms of
Kripke structures.

CTL* formulas are composed of path quantifiers:

e A (for all computation paths)
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e E (for some computation path)
and temporal operators:

e X (next time) property holds in the next state of the path.
¢ T (eventually) property will hold at some state on the path.
e G (globally) property holds at every state on the path.

e U (until) combines two properties. It holds if there is a state on the path
where the second property holds, and at every preceding step, the first
property holds.

There are two types of formulas in CTL* : state formulas and path formulas.
Let AP be the set of atomic proposition names. The syntax of state formulas is
given by the following rules:

e If p € AP, then p is a state formula.

e If f and g are state formulas, then —f, f V g and f A g are state formulas.

e If fis a path formula, then E f and A f are state formulas.
The syntax of path formulas:

e If f is a state formula, then f is also a path formula.

e If f and g are path formulas, then -f, fVgand fAg, X f,F f, G fand f
U g are path formulas.

The logics CTL and LTL can be derived by applying certain restrictions to
CTL*.

242 CTL

CTL is a branching-time logic. In CTL the temporal operators (X,F,G and U) quan-
tify over the paths that are possible from a given state. CTL is the subset of CTL*
that is obtained by restricting the syntax of path formulas using the following
rule:

e If f and g are state formulas, then —f, f Vgand fAg, X f,F f,G fand f
U g are path formulas.

The eight CTL base operators are depicted in Fig. 2.4.
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Figure 2.5: Semantics of the LTL operators.

243 LTL

LTL is a linear-time logic. LTL consist of formulas that have the form A f where
[ is a path formula in which the only state subformulas permitted are atomic
propositions. More precisely, an LTL path formula is either

e If p € AP then pis a state formula

e If f and g are path formulas, then ~f, f Vg, fAg, X f,F f,G fand f Ug
are path formulas.

e If fis a path formula, then E f and A f are state formulas.

The semantics of the LTL operators is visualized in Fig. 2.5.

Each logicis neither less expressive nor more expressive than the other. For ex-
ample [1], the LTL formula A(FGp), which says that along all paths there is some
state from which p will hold forever, cannot be expressed using CTL. Similarly,
the CTL formula AG(EFp), cannot be expressed in LTL. The formula A(FGp) V
AG(EFp) can be expressed only using CTL* but neither CTL nor LTL.

Two kinds of properties are primary importance and have been exhaustively
used as far as verification of hardware and software systems are concerned: safety
properties and liveness properties. Safety properties assert that something bad never
happens. Liveness property assert that something good will eventually happen.

2.4.4 Application of Temporal Logics to Formal Verification

Temporal logic has found an important application in formal verification, where
it is used to state requirements of hardware or software systems In CTL model
checking, based on a CTL formula we systematically explore the system state
space that satisfies the formula. The exploration process continues until we find
a fixed-point condition. The fixed-point is a condition we met where we have no
more new states to explore. In LTL model checking, we express desired prop-
erties using LTL and check if the model satistfies this property. One technique
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is to obtain an automaton that is equivalent to the property. Later the property
automaton is combined with the automaton that is derived from the model. The
state space traversal is performed on the product automaton in order to check the
correctness of the property on-the-fly. Most widely used automatons to represent
the LTL property are Biichi automata [64] and AR-automata [65].

2.5 Symbolic State Machine Traversal

Symbolic state machine traversal is the core computation in design verification.
In symbolic verification, states are represented as sets. State transitions of the
automaton are represented by a transition relation. Sets are represented by charac-
teristic functions. Set operations are performed by Boolean operations on charac-
teristic functions, representing the sets. The state machine traversal makes exten-
sive use of transition relation, image computation and pre-image computation. In the
following we will see the definitions of these three prominent elements of state
space traversal.

2.5.1 Transition Relation

For a synchronous circuit with m state variables and k input variables the sets
E=A{q,...qn}, E'={d},....q¢,,} and I = {x1, ...,z } consist of present state, next
state and input variables, respectively. The partitioned transition relation [66] is
constructed based on the piece of combinational logic that determines how a state
variable ¢; is updated. Let f; be the next state function computed by this logic,
then ¢;’s value in the next state is given by ¢;,” = fi(E, I). These equations in turn
define the whole transition relation T' as

T(q¢,7,q") = Tl(z, TGN A Tm(_E: 7, q.)
T X

Let us consider a small example [67] to construct the transition relation 7. The
sequential circuit in Fig. 2.6 is a modulo 8 counter. Let £ = {q, q1,¢2} be the
set of state variables and E' = {q, q;, ¢}} be the set of next state variables. The
transitions of the module 8 counter are given by:

To(E, q9) = (90 = Qo)

The above equations describe the constraints each ¢, must satisfy in a legal
transition. These constraints can be combined by taking their conjunction to form
the transition relation.
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Figure 2.6: Synchronous modulo 8 counter
T<E> E/) = TO(Ea Q6) A Tl(Ev Qi) N T2<E> qg)

Given a BDD for each transition 7j, it is straightforward to compute the mono-
lithic BDD that represents 7. The transition relation is monolithic because it is
represented by a single BDD.

2.5.2 Image and Pre-image Computations

Image computation computes next states from a given set of states.

The image of a set of states is described by its characteristic function S(7¢’)
according to the transition relation 7" is defined as:

image(S(q),T) = (3? (EIE)(T(?, T, ) A S(?))))

—, =
q —q

The operation [ ¢+ ¢'] denotes the renaming operation of replacing each next
variable ¢, with current state variable ¢;.

Similarly, pre-image computation computes the set of present states given a set
of next states.

pre — image(S(E)/)? T) = (3? (37/<T<?’ ?’ EH) A S<?/))>)

— =y

qg<4q

In pre-image computation the quantification is done with respect to the next
state variables. This operation is useful for backward traversal.
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Figure 2.7: Synchronous module 8 counter

The operation [ ¢ < ¢'] denotes the renaming operation of replacing each cur-
rent state variable ¢; with next state variable ¢..

Fig. 2.7 visualizes an example image and pre-image computation steps for the
state sets using transition relation 7" (modulo 8 counter circuit ) described in sec-
tion 2.5.1. Each state in Fig. 2.7 represent a numerical, for instance the state
—q2—q1qo represent the numerical 0, state g;—¢; ¢ represent the numerical 4,
etc. So, image computation step increments the numerical specified in the present
state set and pre-image computation step decrements the numerical specified in
the next state set.

2.5.3 The Traversal Algorithm

A standard BDD-based forward symbolic traversal is a breadth-first search that
returns at each iteration the set of reachable states from the current state set. In
Fig. 2.8, initially S equals Sy. The state set S,, represents newly reached next states
that have not been visited. During the image computation step the current state
set will be conjoined with all the transition partitions according to the quantifica-
tion schedule, i.e., an ordering of the conjunctions which minimizes the number
of peak variables. The termination condition is to find a least fixed-point or to test
for the emptiness of S,, at each step. The number of iterations of this algorithm
gives the sequential depth of the state machine. Researchers started altering this
algorithm slightly in order to handle state space traversal more efficiently.
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Sy, =5, =5=.5p; [/ Initial state set
iteration = 0;

while S, #0
S, 1= image(T,S) - S,
Sr = 5. Vv S,
S =5,

N @G ke W N =

iterati on++;

Figure 2.8: Forward state space traversal algorithm.

2.6 Formal Bounded Property Checking Tool - SymC

In order to show the efficiency of the algorithms developed in this thesis the tool
SymC [68, 69] is used. It was developed at the University of Tiibingen. SymC
is an efficient and robust symbolic bounded property checker based on BDDs.
The formal verification tool combines bounded property checking and symbolic
traversal. It takes a formal model and temporal expressions in PSL foundation
language or FLTL (Finite Linear time Temporal Logic) [70]. The formal model,
which is the input to SymC works only with Boolean variables and consists of
five basic blocks. They are declaration, init, define, trans and invariant blocks.
In the first block we can declare both state (latches) and input variables. The state
variable list consists of flip-flops present in the design. The input variable list
consists of external inputs. In the init block we can define initial states of our
FSM. The define block is composed of the definition of state encodings and some
predicate conditions. The variables defined in the define block can also be used
as output variables. The trans block consists of transition relations of all state
variables. The final block invar is composed of invariant conditions of the sys-
tem. The description of the formal model is very similar to a Verilog gate list or
as a simple SMV like [71] finite state description. The temporal logic formulas
are converted to special finite state machines called AR-automata [65]. Fig. 2.10
shows the general operation of SymC. In the following subsections we see in de-
tail the semantics of both FLTL and AR-automata.

2.6.1 FLTL and AR-automata

FLTL extends LTL with bounded temporal operators. The main difference how-
ever lies in the definition of the formal semantics. LTL is defined over infinite se-
quences, whereas FLTL is defined over finite sequences. The reason for defining
FLTL over finite state sequences comes from its application in bounded property
checking.

¢:: U’_‘¢|¢/\¢| X[m]¢|ﬂm,n}¢|G[m,n}¢

with v € Vars, where Vars = {a,b, ¢, ...} be a finite set of distinct symbols, called
the variable domain, m € Nand n € NU {oo}
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Since we deal with a finite traces, the changes in variables can be represented by
traces:

A trace T[n..m] (m > n)is a mapping T : {n,...,m} — 2V%5. If n.and m are
clear from the context, we often simply write 7" instead of 7'[n..m]. The set of all
traces is denoted by 7. The set of all traces 1[0, m| with m = oo is denoted by
7.

Finite traces may be extended. These extensions are used to formally define the
semantics of FLTL over a three valued logic.

(Trace extension) Let 7'[0, m],T"[0, n] be two traces with n > m. 7" is called a
trace extension of T if

forall jwith0 < j<m:T(j)=T'(j) (2.1)

FLTL formulas are interpreted over traces. First, the satisfiability relation over
infinite traces can be defined as:

The satisfiability relation |=;C (7, FLTL) is defined recursively over the struc-
ture of FLTL formulas:

TE a < aeT(i)

TEi~f & T f

TEiXmf € TEFinf

T E; Guuf © foralljwithi+m < j<i+n
holds that 7" |=; f

TEiFpanf © exajwithi+m<j<i+n

such that T |=; f

Where «a is a propositional variable, f is a FLTL formula, X, G, F' are temporal
operators and m,i € N and n € N U {oco}. The standard temporal operators
(EG) are special cases of the timed operators by instantiating m, n with 0 and oo,
respectively. The semantics of FLTL is given by the following definition. Let f
be a FLTL formula and 7' € 7 be a trace. T is called to satisfy f (i.e., T = f) if

T o f-

We now interpret FLTL formulas over finite traces. That is the reason why the
logic is called as Finite Linear time Temporal logic. A formula has one of three
states with respect to a given trace:

Let 7°[0..n] be a trace and f be a FLTL formula. f is called true with respect to
T (denoted by T' |= f) if for all trace extension 7"[0..0c0] of T" holds that 7" |= f.
f is called false with respect to 7' if there exists no trace extension 7"[0..00] of T
such that 7" |= f. Otherwise f is called pending.

If a trace ends up with pending, the corresponding formula is neither proven
true nor proven false. It depends on the future of the finite trace whether the
formula will be satisfied or not.
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G, req — F ack

Figure 2.9: Example of an AR-automaton for a simple FLTL property. The states
labeled with R, A and I represent rejecting, accepting and Initial states respec-
tively.

2.6.2 AR-automata

The FLTL formulas are translated into AR-automata. The automaton checks the
correctness or the violation of this formula against a symbolic simulation run.

Definition 13 A deterministic is a 5-tuple A = (S, —, A, R, s¢). where S = {s1,...,5,}
is a finite set of states, — is the deterministic transition relation, A C S is the set of ac-
cepting states, R C S is the set of rejecting states, and s, € S is the start state of A.
The input of A are all elements of 2V,

We write s; — s; to express that there is a transition from s, to s; labeled with a.

Let Abe an and T'[0..m| be a trace. A run of T' with respect to A is a sequence
of states sg, s1,. .., s, such that s; @ s;+1 holds for 0 < i < m.

Let A = (S, —, A, R, 59) be a deterministic and 7'[0..m] be a trace.

e T'is called an accepted trace if for the run sy, s1, ..., s;,+1 induced by T, there
isajwith0 < j <m+1withs; € Aand forall £ < j holds s, ¢ R.
Accordingly, this particular run is called an accepted run.

e T'is called a rejected trace if for the run sg, s1,. .., S;,4+1 induced by T, there
isajwith0 < j7 <m+1withs; € Rand for all £ < j holds s, ¢ A.
Accordingly, this particular run is called a rejected run.

The main translation of temporal logic formulas into AR-automata works
bottom-up based the syntax graph of the formula. The algorithm starts in the
leaves and constructs successively more and more complex AR-automata until it
reaches the root of the graph. This means at each internal node the computation
of a new AR-automaton out of one or two AR-automata (depending on the arity
of the logic operator) is necessary. The AR-automata accepts/rejects a trace if a
signal is true/false in the current simulation cycle. For a detailed discussion on
translation of FLTL into AR-automata refer to [65, 69].

Fig. 2.9 shows the AR-automaton that corresponds to the FLTL property:
Gpyreq — Fjg ack. This property checks globally that whenever the req signal
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Figure 2.10: Overview of SymC operation.

becomes true, signal ack triggers within two steps. Notice that because of the
globally operator, no accept state is part of the AR-automaton.

2.6.3 SymC Overview

Coming back to the SymC exposition, after having both the system description
and the AR-automata SymC converts them into a BDD form. SymC uses a set of
conjunctive partitioned transition relations as described in 2.5.1. The structure of
the state machine looks like a Mealy state machine. SymC traverses the design
and the properties simultaneously and observes the state of the properties and
reports success or failure to the user.

The bounded property checking algorithm shown in Figure 2.11 works in two
steps. In the first step the computation of the successor states of the AR-automata
and checking condition of a formula whether it is accepted or rejected takes place.
In the second step of each iteration one symbolic execution step on the system
under inspection is performed. During image computation the tool builds the
conjunction of all partitions on-the-fly in order to obtain the successor state set.

Similar to bounded model checking SymC do not traverse the state space ex-
haustively but from a given start set it examines all states reachable up to a given
time bound, which is either given explicitly by the user or implicitly by the prop-
erty. Traversal proceeds on the current subset until the time bound is reached
or the termination condition is satisfied. Termination stops the verification with
finding either a validation or a violation of the property. The termination condi-
tion differs if one checks the property on all paths, i.e., universal quantification, or
on one path, i.e., existential quantification. Informally, the sequential termination
condition is defined as follows:

Universal If one reject state is detected in the current state set, a violation of the
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property is found. If all states in the current state set are accepting states, a
validation of the property is found. Otherwise, the property is still pending.

Existential If one accept state is detected in the current state set, a validation of
the property is found. If all states in the current state set are rejecting states,
a violation of the property is found. Otherwise, the property is still pending.

The properties that are universally rejected and existentially accepted are catego-
rized under the falsification scenario. The properties that are universally accepted
and existentially rejected are classified under the full validation scenario. From
now onwards reject states in case of a universal property and accept states in case
of an existential property are indicated as target or error states.

S = Sysstart A ARstart;
while iteration < time_bound
S = imagear(S) // Conpute imge of AR-autonata.
if (check universally)
if(S A ARpeject #0) reportFailure();
i f(S N ARsccept = S) reportAcceptance();
if (check existentially)
if(S N ARupceepr #0) reportAcceptance();
if(S AN ARuccepr = S) reportFailure();
S = imager(S) // Conpute inmage of the system
iteration++;

O e N U e W N =

=
S

—_
=

Figure 2.11: SymC main computation loop.

2.6.4 Optimizations

Burch et al. [66] have shown that the transition relation of a model can be par-
titioned into smaller partitions, each handling the next value of a single state
variable. Operations with the partitioned transition relation can be iteratively ex-
ecuted, i.e., one partition at a time. Albeit the partitioning has been successfully
used in the verification of models, the efficiency of this process strongly depends
on the order in which the partitions are executed during the image computation. A
good order can be derived by examining the model to be verified and its seman-
tics. The ordering heuristics for the partitions were described in [72, 73]. The tool
SymC applies the ordering of partitions by constructing an early quantification
tree.

Definition 14 [73] A quantification tree is a rooted binary tree, where the leaves are
the partitioned transitions, i.e., T;’s. Each node t in the tree contains a set of variables
q(t) C E (where the set E represents the set of current state variables), which occur only
in the transitions contained in the subtree rooted at t. The set q(t) represents the set of
variables which should be quantified after the left and right children have been multiplied.
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// Partitioned transitions Q9

T,= (q'= f)) where fi=—qxVq3
T, = (q2' =1;) where f,=q, 3qs
T3 = (q3' = f3) Where f3 = q2 /\_‘q3

T4 T3

Figure 2.12: The left hand side shows an example partitioned transitions. The
right hand side shows their respective early quantification tree.

Fig. 2.12 visualizes an example early quantification tree (right hand side) with
respect to the partitioned transitions in the left hand side of the figure. The sup-
port set of both 77 and T3 consist the common variables ¢, and ¢;. Therefore, they
categorized under subtree with the root node 2. The variable g3 present in sup-
port set of all three transitions consequently it should be quantified in the last and
located in the root node 1 of the tree. Let S(7¢’) be a state set if we perform image
computation using the partitioned transitions in Fig. 2.12 then quantification can
be done using the following order:

Elqg( (3gs (SCT) ANTL A Ts) A T2>

The other optimization SymC performs is based on a Cone Of Influence (COI)
reduction based on the property, i.e., only the logic necessary to define the prop-
erty under check has to be considered. Usually, the property is influenced by
only part of the design, while other parts are irrelevant to its truth or falsity. For
example, if the property verifies a design output, only this output and its input
cone of logic are necessary. SymC identifies unnecessary parts and removes them.
Knowing the expected behavior of inputs and outputs allows SymC to reduce the
design state space further.

The tool performs the state set partitioning optimization technique. Boolean
functions represent all the state sets in symbolic traversal. In order to reduce
the memory requirements one can partition a Boolean function to smaller parts,
whose union is the whole set. The basic idea for the partitioning is the Shannon ex-
pansion defined in section 2.1.4. A given state set S is partitioned into two subsets
S1 and S, based on variable v from the support set of S. Fig. 2.13 visualizes the
state set S is partitioned into two subsets using the variable ¢;. Since state sets are
represented and manipulated using BDDs, the partitioning can be implemented
easily with BDD operations. Partitioning a function f into two functions f; and
f2 with a poor choice of v may not necessarily reduce the memory requirements
of the split functions and can result in |fi| = |f2| ~ |f|. Therefore, the variable
that we are going to select is always plays a crucial role.
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Figure 2.13: State set partitioning based on a variable.

Whenever, the size of the current state set reaches a threshold limit, the tool
SymC partition the state set into two disjoint parts and continues working on
these subsets in a divide-and-conquer manner. One of the partitions is considered
for immediate traversal, while the other split is stacked for future exploration.
The terminating condition of SymC also has to be adopted for this partitioning.
The following section explains the partitioned based traversal.

2.7 Partitioned Based Traversal

The partitioned symbolic traversal was first proposed in [34]. Whenever the com-
plexity exceeds a threshold limit, the problem is partitioned into sub-problems
whose complexities are smaller. Each sub-problem will be exploited separately
and during the exploration if the tool finds a target state then we can skip the
traversal on the other partition’s. Thus, we can save time and memory. Fig. 2.14
shows the partitioned symbolic traversal. However, if our design is error free
or the target state can only be reached using the final partition then we have to
explore all the partitions sequentially, which is a painstaking task. The work de-
scribed in my thesis is similar to the partitioned approach but all the partitions
are explored simultaneously in a parallel framework.

2.8 Black Box Verification

Model checking of incomplete designs, i.e., designs which contain unknown parts
and they can be combined into so called Black Boxes is known as Black Box verifi-
cation [74, 75, 76]. It has several advantages: 1. Instead of forcing the verification
runs to the end of the design process where the design is completed, it rather
allows model checking in early stages of the design, where parts may not be fin-
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Figure 2.14: Partitioning based symbolic traversal.
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Figure 2.15: An incomplete design.

ished. So, the errors can be detected earlier; 2. Complex parts of a design can
be replaced by Black Boxes, simplifying the design, while many properties of the
design still can be proven, yet in shorter time; 3. The location of design errors
in circuits not satisfying a model checking property can be narrowed down by
iteratively masking erroneous parts of the design. Fig. 2.15 (a) shows an example
incomplete design with one Black Box. Fig. 2.15 (b) shows the symbolic represen-
tation of the incomplete design. Each output of the Black Box is modelled using
a symbolic variable Z.

2.8.1 Verification Goals

Given an incomplete design with Black Boxes and a formula, the questions that
must be considered are realizability and validity.

Realizability: Is there a replacement of the Black Boxes in the incomplete design,
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so that the resulting circuit satisfies a given formula (. If this is true, then the
property ¢ is called realizable for the incomplete design. The corresponding
decision problem is called the realizability problem.

Validity: Is there a formula ¢ satisfied for all possible replacements of the Black
Boxes. If this is the case, then ¢ is valid for the incomplete design; the
corresponding decision problem is denoted as the validity problem.

For a given incomplete design and a formula ¢, approximate symbolic model
checking for an incomplete design considers two sets of states: Sata(y), an un-
derapproximation of the set of states in which ¢ is satisfied for all Black Box sub-
stitutions and Satp(p), an overapproximation of the set of states in which ¢ is
satisfied for at least one Black Box substitution.

Given these two sets, it is potentially possible to prove validity and to dis-
prove realizability. If all initial states lie within Sat4(¢y), then for all initial states
and all Black Box substitutions, ¢ is satisfied and thus ¢ is valid. If there is one
initial state lying outside Satg(yp), then there is a initial state that does not satisfy
¢ for any Black Box substitution and thus ¢ is not realizable.

2.8.2 Transition Types

The approximations of Sata(y) and Satg(p) can be computed based on an ap-
proximate transition relation. In incomplete designs we have Black Boxes in the
functional block defining the transition function ¢ and the output function \. For
this reason there are transitions which exist independently from the replacement
of the Black Boxes, i.e., for all possible replacements of the Black Boxes (they can
be called fixed transitions) and transitions which may or may not exist in a com-
plete version of the design - depending on the implementation for the Black Boxes
(they can be called possible transitions).

The transition relation is classified under two types of approximations. An
underapproximation Ty containing the fixed transitions and an overapproximation
Ty containing at least all possible transitions, this includes all fixed transitions.
States that resulted through fixed (possible) transitions are called fixed (possible)
states.

To(7. 7, 7)) =VZ(T(T. T Z.4) A ATu(T, T, Z.d,,) )
TE(E)a???,) = Z<T1(77?727q/1)/\ Tm(a)?YaZa%,n))
where T3(¢, 7, Z,¢)) = (¢, = (¢, @, Z))
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Chapter 3

State-of-the-art

Go around asking a lot of damn fool questions and taking chances. Only through curiosity
can we discover opportunities, and only by gambling can we take advantage of them.
- Clarence Birdseye

This chapter deals with the state-of-the-art technologies in three different ar-
eas: sequential optimizations, distributed verification and partitioning heuristics.
First, it details all the sequential based optimizations and also provides some
hints on more synergy that can be achieved by parallelizing the conventional
verification process. Second, it delineates the existing distributed approaches.
Since state partitioning plays a prominent role in distributed verification, the the-
sis also discusses the contemporary partitioning heuristics. Next, it explicates
unaddressed problems in state-of-the-art technologies. Finally, it explains clearly
the thesis contributions.

3.1 Sequential Based Optimizations

3.1.1 Symbolic Verification Using Partitioning Techniques

In order to deal with the explosive memory requirements a partitioning approach
has been suggested in [61]. By partitioning the system’s state space into disjoint
subspaces and representing as well as processing all functions in each subspace
independently of other subspaces, reduction in time and space can be achieved.
The partitioned reachability techniques were proposed in [35]. However, they
do not scale well due to the fact that many of the practical issues involved with
partitioning were not addressed. Iyer et al. in [77] have shown the usefulness of
partitioning technology for reachability and model checking on difficult designs.
They dynamically repartition the state space and exploit the partitioned nature
of the data structure. In [78] the authors proposed a partitioning methodology
that addressed the key questions of how to perform partitioning and provided
the suitable algorithms. They also addressed the problem of instability of BDD-
based verification by automatically picking the best configuration.
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Figure 3.1: The reachability using partitioned approach.

The core idea of the partitioned based verification is to split the system state
space and that eventually inducing a partitioning on the transition relation. The
transition relation, 7;; comprised of transitions from states in partition 7 to par-
tition j, can be derived by conjoining 7" with the respective window functions
expressed appropriately in terms of present and next state variables as follows:

Ti(q, 7. 7q") = wi(q) Aw;(7) ANT(q. 7, q")

The main algorithm performs image computations within each partition 7 us-
ing T;; until the least fixed point condition is reached. When no more images can
be computed, it synchronizes between other partitions i.e., for each partition 7 it
computes the states that communicate from partition i to other partitions using
TR;;. Fig. 3.1 visualizes an example partitioned based reachability approach. The
system state space S is divided among 4 partitions using window functions wy;,
wj, w, and w;. The authors in [78] selected window functions based on the goal
to create small and balanced partitions that represent non-compatible functions.
A set of functions is said to be non-compatible if the totality of their individual
representations using different orders is far more compact, than their combined
representation as a whole. The splitting variable they selected by means of a cost
function from [35].

3.1.1.1 Partitioned Based Reachability

The POBDD based reachability algorithm is shown in Fig. 3.2. The algorithm
performs as many steps as possible of image computation within each partition ¢
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using Tj;. They named it as a step of least fixed point within the partition. When
the least fixed point conditions of all the partitions are reached, each partition ¢
computes the cross over states with respect to other partitions. This step is named
as communication, and is performed from partition i to each partition j using the
transition Tj;.

S, = S, = Sp; [/ Initial state set
iteration = 0; S, :=¢
while S, #0

for each partition 1

S, = conput eLeast Fi xedPoi nt (T, S,);

Sr .= Sr + Sm';
for each partition i

for each partition j

if £
Sco = Seo + conput eCrossOver States(T;;, Sni);

S, 1= 85, + 5,
Sp 1= S, - S,
iteration++;
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=
N = o

=
[

Figure 3.2: Partitioned based reachability algorithm.

3.1.2 Mixed Traversals

The idea of mixed traversals was introduced by Govindarajulu et al. in [79]. They
extended the idea of approximations using overlapping projections [80] to sym-
bolic backward and forward reachability. The main algorithm alternates forward
and backward passes; Each pass uses the approximations computed by the other
pass. A forward pass finds a subset of the current state set which appears to be
reachable from the initial state, while a backward pass finds a subset of the cur-
rent state which seems to consists of predecessors of the bad states. The process
is repeated until a fixed point is reached. If the fixed point is reached, no tar-
get states are reachable from the initial state, so the property has been validated.
Otherwise, there is a chance in having a path from the initial state to target state.
Later a simple heuristic is used to compute a subset of the reachable states from
the initial state that is likely to contain a bad state. If it succeeds, the method finds
a genuine error and a counterexample path can be computed.

A similar approach was used by Cabodi et al. in [81]. In brief they per-
formed a backward verification procedure based on prioritized traversal and
named the method inbound-path-search. The algorithm first performs an approx-
imate forward traversal and produces overapproximate onion-ring frontier sets.
Next, these rings are used as distance estimators and guides to partition state sets
in terms of the estimated distance from the target set of states. Finally, while the
subsequent search is performed, the higher priority is given to the subset with
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Figure 3.3: Overview of mixed traversals.

the smallest estimated distance.

In [82] the authors combined BDD and SAT-based BMC methods in order
to increase the efficiency of the verification process. The basic idea is to help
the SAT solver with information collected from a BDD-based reachability anal-
ysis. The approach first performs a BDD-based forward breadth-first traversal
or a backward breadth-first traversal. A tighter overapproximation is obtained
with a forward-backward strategy, where forward estimates of the reachable state
set constrain backward traversals and vice-versa. The result of this preliminary
phase is an overestimation of the paths leading from the initial state set to the tar-
get state set. Then, the collected overestimated reachable state space can be used
to restrict the search space of the SAT-based BMC. This is possible by feeding the
SAT-solver with a description that is the combination of the original BMC prob-
lem with the extra information coming from the BDD-based symbolic analysis.
Fig. 3.3 shows the combined (BDD and SAT) approach using mixed traversals.
FR+(dashed cone) and BR+(solid cone) represent the overapproximate forward
and backward traversals. The state set marked by white colour represents the
initial state set and the one in gray represents the target state set. P represents the
set of paths from the initial state set to the target state set.

3.1.3 Symmetry Reduction and Underapproximation

In order to reduce space and time [83] presents a collection of methods symmetry
reduction, underapproximation and symbolic model checking. However, the work is
best suitable for falsification. Since many systems consist of several similar com-
ponents, the authors partitioned the system state space into equivalence classes
and named them as orbits. The reachability algorithm performs underapproxima-
tion at each step and explores only a subset of the reachable state. Some of the
unexplored states are symmetric to the explored ones and those states will never
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be explored. Thus, both memory and time can be saved by running a property
automaton together with the symmetry reduced model. For checking the safety
properties they used on-the-fly model checking. Whereas, for liveness properties
they developed two extensions by combining symmetry reduction with classical
(not on-the-fly) symbolic model checking. One is for falsification and the other is
more expensive but for validation.

3.1.4 State-of-the-art Black Box Verification

Efficient approximate symbolic model checking algorithms for incomplete de-
signs presented in [74, 75, 76]. For a given incomplete design and a formula
@: Sata(p), an underapproximation of the set of states in which ¢ is satisfied
for all Black Box substitutions and Satg(y), an overapproximation of the set of
states in which ¢ is satisfied for at least one Black Box substitution. As described
in section 2.8, given these two sets, it is potentially possible to prove validity
and to disprove realizability. The authors in [75, 76] mentioned that it is not re-
quired to perform two separate model checking runs to compute both Satg(y)
and SatA(y). By using an additional encoding variable e and defining:

T(?? ?7 ?/7 e) = TA(?? ?7 ?/) \/ € /\ TE(?? ?7 ?/)

both Sat4(¢) and Satg(p) can be computed in parallel. Therefore, it is possi-
ble to combine two computations into one and can derive the following formula.

Sat(p) = (€N Sata(p)) V(e Satg(p))(= Sata(e) V(e A Satg(p)) due to
Sata(p) C Satp(p))

3.14.1 Computation of Sats(—) and Satg(—v)

Satp(yp) is an overapproximation of all states in which ¢ may be satisfied for
some Black Box replacement. Thus, for an arbitrary state in the state set S with
S = Bl7l x BI"I\Satg(y) there is no Black Box satisfied in this state or, equiv-
alently —¢ is satisfied for all Black Box replacements. Therefore, S can be used
as an underapproximation, i.e., Sat4(—¢). Similarly, Sat4(y) holds for Satg(—¢).
Consequently, we can define:

Sata(—p) = Satg(p) and Satg(—)) = Sat 4 (V)

Since both Satg(y) and Sata(p) can be computed in parallel, it is possible to
prove both validity and falsify realizability.

Fig. 3.4 illustrates the backward traversal approach for the Black Box verifica-
tion. It is noticeable in the figure that each frontier state set consists of both fixed
and possible states.
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Figure 3.4: Backward symbolic simulation for Black Box verification.

3.1.4.2 An Improved Construction of Sat ()

The computation of Sat 4 (y) can be improved, rendering the fixed transitions un-
necessary. For example, the formula Sata(EX ) essentially says: A state surely
satisfies EX p, “if there is an input value for this state and a fixed transition marked with
this input value to a successor state that surely satisfies ¢”. On the other hand one
can also see that a state surely satisfies E X ¢, “if there is an input value for the current
state so that for all possible transitions marked with this input value, the successor state
surely satisfies ¢”. This leads to the following improved formula for Sats(EX ).
It was introduced by Nopper et al. in [84].

Sata(EXp) = 3297 (Tp(d,7,0) — (Sata(@)ls—a)(@))
which can be written as:

SatalBX ) = 36 (30 (To(d. 2.0 A ~(Suta(lg-)(0))

3.1.4.3 Termination Condition

Fig. 3.5 shows the possible termination conditions for the Black Box symbolic ver-
ification. The first column in this table shows the possibility of having a path from
the initial state set to the target state set through either fixed or possible transitions.
If there exists no such path then the main computation loop of the algorithm is
executed until a fixed-point condition is reached.
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Init state > Bad state Exist apath Result
(through transition)
Fixed Yes Unrealizable
Fixed No Not proven
Possible Yes Not proven
Possible No Valid

Figure 3.5: Possible termination conditions.

3.1.5 Guided Search

Symbolic guided search has been proposed as a way to reduce the time and mem-
ory requirements of BDD-based invariant checking in [85, 86] and LTL model
checking [87]. The authors used hints, which are assertions on the primary inputs
and state variables of the model, to guide the exploration of the state space. The
good hints can often be found with the help of simple heuristics by the designer.
The extension of symbolic guided search to CTL model checking was introduced
by Bloem et al. in [88].

The work in [89] presents guided heuristics for finding error states. One
among them is target enlargement, where the error states are enlarged so they can
be found with less searching. The second technique is to use hamming distance as
the search metric i.e., those states that have the lowest hamming distance to the
largest target enlargement are explored first. The third technique, called tracks
uses approzimate preimages that are based on a subset of the state variables to
find the violations to assertions. The last technique uses explicit hints, called
Guideposts, a series of conditions given by the designer to help direct the search.

3.1.6 Multithreaded Reachability

In [90] Sahoo et al. presented a multithreaded reachability algorithm. In standard
POBDD-based reachability analysis, the complexity of BDD-based image compu-
tation can vary significantly between different partitions. In order to find an opti-
mal schedule, the relative order in which the partitions are analyzed, the authors
presented a solution based on a multi-threaded reachability approach. In simple
words the method adds a parallel flavor to POBDD based reachability algorithm
using multiple threads on a single machine. They introduced two techniques
early communication and partial communication. In case of an early communication,
after a partition finishes its local LFP (Least Fixed Point) then it will immediately
communicate its states to other partitions. Whereas in partial communication, hard
partition communicates using a small subset of its state space to the ideal node.
This introduces new states in the easy partitions.
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3.1.7 Partitioning in SymC

Sequential SymC [68] partitions the frontier state set into smaller subsets when
the BDD reaches a certain threshold size. Then, it explores these subsets sequen-
tially. Once it reaches a target state, SymC can save time and space by skipping
exploration of the rest of the partitions. SymC uses many of the state-of-the-art
partitioning technologies and in addition it has included some intelligent heuris-
tics that aim at fast falsification and smooth traversal.

3.2 Distributed Verification

While sequential based model checking reduce the state space to be simultane-
ously treated by orders of magnitude, typical verification tasks still take mod-
ern sequential computers to their memory limits. One direction to enhance the
applicability of today’s model checkers is to use the accumulated memory and
computation power of parallel computers. The use of distributed computing
to increase the speedup and capacity has recently begun to generate interest
[91, 92,93, 94, 95, 96, 97, 98]. The algorithms are classified into several categories.
Explicit state representation based [91, 92, 93, 94, 96], symbolic state representa-
tion based (BDD-based) [97, 98, 99], and SAT based [100, 101, 102].

3.2.1 Distributed Explicit Model Checking

Stern et al. [91] presented a parallel version of the explicit model checker Mur.
The state table that stores all reachable states, is partitioned very evenly over the
network nodes. Each node maintains a work queue of unexplored states. If one
of the nodes generates a new state, the owner node for this state is calculated
with a hash function and the state is sent to this node. If the node receives a
state then it first checks whether it has been already visited. If the state is new, it
is inserted in the state table and the local work queue. This process is repeated
until a termination condition is detected. [93] reports a distributed version of
SPIN for checking safety properties. The approach is very similar to [91] but the
authors used different ways to partition the state space. The partition function
tries to minimize the cross-transitions (transitions between states belonging to
different processes) and eventually the communication by using the structure of
the global system states. In [103] the author presented techniques to perform
parallel state space construction. The author considered two types of processors
nodes: generators which compute the transition function, and tabulators for state
storage and search. The state set is partitioned between the tabulators using a
hash function. In [104] Palmer et al. have shown a technique to combine partial
order reduction and parallel distributed model-checking by picking best partial
order reduction algorithm. In [92] Braberman et al. presented a distributed timed
model checker tool ZEUS. The process of automatically verifying properties over
real-time systems is known as timed model checking. ZEUS has been extracted from

40



1 n;

oy
P

Client 1

Master ni+1 e nj
A Client 2
A
n j+ 1 ... Ny

i Client 3

Figure 3.6: Unrolled circuit partitions.

the real-time model checker KRONOS [105]. It handles backward computation of
TCTL(Timed CTL)-reachability properties over timed-automata.

3.2.2 Distributed SAT and SAT based BMC

Parallelization of SAT solvers is not new and it has been proposed by many re-
searchers [101, 102, 106]. The key idea is that the search space is partitioned
among different processors using partial assignments on the variables. Each pro-
cessor communicates with other processors only after it is done searching its por-
tion of the disjoint clauses.

In [107] the authors evenly distribute the partitioned disjoint clauses on pro-
cessors. However, the variables appear in the clauses are not disjoint. Therefore,
whenever a client finishes BCP (Boolean Constraint Propagation) on its set of
clauses, it must broadcast the newly implied variables to all other processors.

The authors in [100] presented a method for distributed-SAT over a network
of workstations using a Master/Client mechanism and a method for distribut-
ing the SAT based BMC using the distributed SAT. The key idea is unrolling the
circuit in different time frames to provide a disjoint partitioning of the problem.
Fig. 3.6 from [100] shows the partitioning of unrolled circuit. The topology has
one master and several clients. Each client C; hosts a part of the unrolled circuit
and is responsible for performing BCP on its partitioned clauses.

3.2.3 Distributed Symbolic Reachability

The paper [97] presented a parallel algorithm for reachability analysis on a net-
work of workstations (NOW) with disjoint memory that communicate via mes-
sage passing. At the core they partition the state space on which the reachability
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is performed in to £ slices, where each slice is owned by one cluster machine. Each
machine performs a Breadth First Search (BFS) algorithm on its owned slices.
However, the BES algorithm used by a machine can discover states that do not
belong to the slice that it owns (called non-owned states) they are sent to the ma-
chines that owns them. In simple words, the non-owned states that do not belongs
to slice/partition are called cross over states. As a result a process only requires
memory for storing the reachable states it owns and computing the set of imme-
diate successors for them. The load balancing is achieved by adjusting the slices
if the initial balance is lost. Slicing is often inefficient because it partitions a rela-
tively small BDD into many small slices. The more processes in the system, the
less efficient the slicing is.

In [98] the authors presented an algorithm that tries to keep only as many net-
work nodes busy as necessary by splitting and joining BDDs on demand. The
algorithm works iteratively. It is initialized with one active node that runs a sym-
bolic reachability algorithm, starting from the set of initial states. During its run,
extra nodes are allocated and freed, as needed. At any iteration after an image
computation the node sends those states it does not own to their owners and
waits to receive the states that it owns from other network nodes. As a result,
this algorithm works in synchronized iterations and it will result in unnecessary
and sometimes lengthy idle time for fast processes. A synchronization phase is
time-consuming when the number of processors is high. As a result processes
underutilize the given computation power.

An effort based on a message passing infrastructure is undertaken in [99] to
achieve asynchronous exchange of non-owned states. In the asynchronous ap-
proach, when a process completes an iteration it can continue in the image com-
putation on the newly discovered states and receive owned states discovered by
other processes at a later time. In order to achieve this the authors used a dis-
tributed forwarding mechanism that avoids synchronization and assures that states
will eventually reach their owners.

The work [108] proposes a hybrid algorithm for slicing the state space and
dynamically distribute the work among the worker processes on top of a large-
scale distributed environment. The work also proposes a checkpoint/restart as
part of the distributed reachability computation. The checkpoint/restart mech-
anism is needed in order to recover from a single computer failure and in order
to better utilize clusters of computers when memory requirements vary signifi-
cantly during computation. The checkpoint/restart mechanism is better suitable
for non-dedicated networks.

[109] proposes a distributed symbolic algorithm for model checking of propo-
sitional p calculus formulas. The algorithm distributively assesses subformulas.
It results in sets of states which are evenly distributed among the processes. The
algorithm uses a memory balancing procedure that ensures each set is partitioned
evenly among processes. In the distributed phase, each process owns one part of
the state space for every set of states associated with a certain subformula. When
a computation of a subformula produces states owned by other processes, these
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Figure 3.7: Combination of POBDD based reachability and SAT-BMC.

states are sent to the respective processes.

3.24 Grid-based Bounded Model Checking

Parallel bug hunting efforts were taken in [110] by applying the BDD-based mas-
sive underapproximation on a hybrid approach using both BDDs and SAT-BMC
for error detection on computer grids. The method first finds deep reachable
states, i.e., those states that can be reached using a more number of simulation
cycles. Later these states are used as seeds for running SAT-BMC in parallel to ex-
plore the state space adjacent to such seeds. Fig. 3.7 [110] depicts the grid based
BMC using two partitions and four instances of SAT. The triangles represent a
search using SAT, and the ellipses denote successive image computations using
BDDs. In their proposed approach, BDDs can go to a depth d;, and many in-
stances of SAT are seeded until then, which may be effective to differing depths
ds1,ds1, .., ds,. Consequently, this can reach deep error states.

3.3 Partitioning Heuristics

Many of the symbolic algorithms perform state space traversal until a blow up
in BDD size is detected. Blow up can be detected by measuring the size of the
symbolic representation of the frontier state set. After a blow up is detected, state
set splitting based on the BDD variables is performed. The goal of partitioning
is to create small and relatively balanced partitions. They should be disjoint in
order to avoid the duplication of work. Since state sets are represented as Boolean
functions our partitioning is based on Boolean function slicing as aforementioned
in section 2.1.4, i.e., splitting a Boolean function represented as BDD into two
parts depending on a variable. The variable is chosen to balance the sizes of the
two resulting functions and to keep them small. The following discourse will
explain the state-of-the-art heuristics for selecting a variable.
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3.3.1 Approximation and Decomposition

The underapproximation algorithms based on a BDD data structure are presented
in [111]. They are Heavy branch subsetting and short path subsetting. An underap-
proximation based on a BDD is the process of deriving a smaller BDD (in terms
of its size) from a given BDD. One way to measure the rate of approximations is
by their density. The density factor can be computed through following equation:

density = %

High density corresponds to a concise representation, i.e., a relatively smaller
BDD can represent more number of states. This high density of interest for the
symbolic verification as smaller the BDD size faster the verification process. More-
over, the high density BDD is not only small but represent majority of the state
space.

Heavy branch subsetting: Determines how many states are in the function rooted
at each internal node and builds a subset by throwing away one of the chil-
dren of each node, starting from the root, until the result reaches a given
threshold. The child that is eliminated from the result is the one that con-
tributes fewer states.

Short path subsetting: It is based on idea that short paths, a path from root node
to the terminal node, in a BDD give many states and contribute few nodes.
The algorithm computes the short paths through each node and extracts the
dense subset by removing the nodes with no short paths through them.

These two algorithms work better for sequential verification, i.e., whenever
the size of the frontier state set reaches the threshold limit then one of these algo-
rithms can be applied to extract the dense state subset. The traversal is performed
on this dense subset by keeping the remaining state set on a stack. These algo-
rithms are of minor interest in a distributed approach as they result in unbalanced
cluster nodes in terms of memory and computation power consumption.

The other algorithms are variable disjunctive decomposition and generative dis-
junctive decomposition from [58]. These algorithms consume more time for decom-
position. They try to estimate all the variables’ positive and negative co-factors
and take the best one, the variable that will balance the sizes of the two disjuncts
and keep them small.

3.3.2 Grumberg et al. Partitioning Heuristic
The algorithm [97] takes reduction and redundancy factors into account for giv-

ing a better decomposition of a BDD. The cost function for partitioning is defined
as:
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The reduction factor gives an approximate measure to the reduction achieved
by the partition. The redundancy factor gives an approximate amount of sharing
BDD nodes between f,, and f;..

The cost function rely on the selection of the valueof a: 0 < a < 1. Ana =0
ignores the reduction factor, while o = 1 ignores the redundancy factor. Based
on this cost function the algorithm select a good splitting variable and partition
the state into subsets using Shannon expansion principle. Due to the extra com-
putations of redundancy and redundant factors the algorithm consumes a notable
amount of time.

3.3.3 Eager Decomposition

Fig. 3.8 delineates the pseudo code for the eager decomposition [68] algorithm.
Compared to the above algorithms, the splitting algorithm tries to select a vari-
able for which its positive and negative co-factors are well balanced according
to a balancing condition (line 8) . If it cannot find such a variable, it picks the
variable resulting in the least difference in the sizes of its positive and negative
co-factors (lines 11-15). Since the algorithm eagerly checks for the variable that
satisfies the balancing condition, the algorithm is known as eager decomposition.
That is whenever we find an appropriate variable, the algorithm skips the explo-
ration of the remaining variables.

3.3.4 Minimal Overlap

The partitioning heuristic minimal overlap [112] aims at minimizing the state over-
lap between the partition traversals. After a blowup is detected during the state
space traversal the state set is partitioned to subsets and these subsets will be
traversed in a divide and conquer manner. The algorithm may reduce the effort
spent on the network nodes, as redundant computations are avoided.

The algorithm relies on the fact that the transition relation is conjunctively
partitioned. All these partitions are statically analyzed to find dependencies be-
tween the state variables. First, the algorithm determines the number of present
state variables that influence the truth value of a next state variable. Next, it or-
ders the state variables according to this dependency count. The variables with
the highest dependency count are selected for splitting. The crucial point behind
the minimal overlap heuristic is that if splitting is done on one of the selected vari-
ables, then image computations in these partitions are less likely to produce the
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Figure 3.8: Variable selection for eager decomposition.

same truth values in the dependent next state variables.

Often, the selected variable cannot partition the state space into balanced sub-
sets. In order to overcome this problem, the algorithm uses a cost function from
[97] with the set of selected variables. It returns one variable for achieving a rea-
sonably balanced partitioning.

Of course, in the worst case the minimal overlap condition holds only for one
or few traversal steps, as many other conditions can change the values of state
variables. For example, the variable with the maximal dependency count can
depend on an input variable disjunctively. The selected set of variables is further
scrutinized to avoid such trivial situations. Since this algorithm is used by the
thesis with minor adjustments for parallel environments, it will be explained in
detail in chapter 5.

Similar efforts are undertaken for model checkers with an explicit state graph
representation [113]. They apply graph algorithms that heuristically try to find
partitions with few crossover transitions in order to reduce the communication
effort between processes.

3.3.5 Guiding Heuristics
Some guiding heuristics that aim at fast falsification were presented in [114]. Guid-

ing is based on the property that is supposed to be verified. There are two differ-
ent ways of guiding;:

e State variable guiding : The actual state set is partitioned into two parts
using one of the influencing state variables.
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e Input variable guiding : The actual state set is restricted with the set of input
variables (hints) such that the transitions satisfying those set of variables are
allowed and the others are discarded.

The algorithm treats the properties of the kind “if A then C”, ie, A — C,
where A and C are LTL/FLTL expressions. For guiding, only the C part of the
property is of interest. Because the tool SymC is highly optimized for the traver-
sal, the traces that are not satisfying the A part of the property will be removed
from the traversal and in some cases the assumption part can also be empty, i.e.,
True. Hence, the guiding algorithm collects all the signals of the C' part.

The algorithm takes the property and identifies the set of output signals and
other state variables that are involved in the property, which is the set of inter-
esting signals. All the interesting output signals that are collected are then re-
duced to sets of state variables. This interesting set of variables are the ones that
jointly define the property to be valid or invalid. Hence, the algorithm decom-
poses the validation of one property to the validation of a set of variables. This
set of variables are the target variables that have to be restricted in order to guide
the traversal. This set of new influencing variables can be either the state or input
variables.

3.4 Un-addressed Problems

3.4.1 State-of-the-art Sequential Problems

As aforementioned in section 2.7, the partition approach is good once any of the
partitions finds an error state and it is therefore not necessary to traverse all other
partitions. Thus, time and memory can be saved. However, if our design is error
free or the target state can only be reached using the final partition then we have
to explore all partitions sequentially. Fig. 3.9 delineates the partitioned based
sequential verification. The state space is partitioned into four disjoint parts once
the threshold for the size of the BDD representing the frontier state set is reached.
The sequential approach performs the traversal on each partition i (i = 1,2,3,4) in
a divide-and-conquer manner. The figure shows that the target states can only be
reached using the final partition.

Let n be the number of partitions, ¢; the time it takes for partition 7 to be fully
traversed, and max(t;) the maximum time taken by a partition for exploration of
its state space. Then ) , ¢; is the time taken for full exploration of the system’s
state space.

Let b; be the time it takes to reach a target state in partition j. Suppose the
partitions are scheduled such that we are reaching the target state in partition j,
then b; + 37~/ t; is the time taken by the sequential algorithm to reach the target
state.
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Figure 3.9: Partitioning problems.

Let R = {P,..., P} be the set of partitions from which one can reach the
target state and min(F;) the minimum time taken by a partition to reach the target
state. When all partitions are executed in parallel, the time taken for exploration
of the whole state space is max(t;) and the fastest reachability of the target state
is achieved in min(FP;). In the sequential approach it may happen that partitions
P, ¢ R are explored unnecessarily as they cannot reach the target state. Even if
we reach the target state, it may not be the partition which takes the least time to
reach the target state that is explored first.

In addition, the partitioned sequential approach suffers with the state overlap
that is shown in Fig. 3.9. Albeit the algorithm [112] tries to reduce the overlap
up to certain number of traversal steps, for some designs the overlap is so high
that it can exacerbate the advantage of using the partitioning methodology. Fur-
thermore, in order to remove overlap using the dynamic overlap reduction method,
the whole visited state space should be maintained, which again has an adverse
effect on the bounded property checking approach used by the tool SymC. In con-
trast to classical model checkers, SymC does not maintain any visited state space
history but examines all reachable state space up to a given time bound.

In comparison to all the sequential approaches [115, 116, 112, 114], the parallel
approach has several benefits. The idea of the distributive approach is to partition
the state space upon reaching a threshold limit and assign the traversal of the
subsets to network nodes. The approach enables the verification of larger models
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than those capable with the regular nonparallel version. The sequential version
fails for these designs because it often encounters state space explosion early on
in the computation, after which it could not make much progress due to memory
limitations. However, the reduced memory requirements for the cluster nodes in
the distributed version still allow progress in the traversal process. Therefore, it
is able to finish large circuits. The parallel approach can exploit any network size
and its utilization of network resources make it suitable for solving very large
verification problems. Also, because the distributed approach is not sensitive
to the traversal scheduling order of partitions, the termination condition can be
found as quickly as possible.

The sequential methodologies in [81, 82] can be superseded by parallelizing
their core algorithms. The authors in [90] themselves motivated towards paral-
lelization.

3.4.2 State-of-the-art Parallel Problems

In principle, two types of parallel techniques are widely used: 1. windowing
based; 2. partitioning based. Below are the enumerated problems encountered
by both the state-of-the-art algorithms:

3.4.2.1 Windowing based Distributed Approaches Problems

Many of the previous windowing based distributed schemes are synchronous
[91, 97, 98, 117]. They consist of interleaved rounds of computation and com-
munication. Conceptually, the system state space on which the reachability is
performed is divided into a pre-defined number of subsets. Each of these sub-
sets is assigned to a network node (called as window) and each window has a
restriction that has to be obeyed in all future time steps, i.e., the state space is
restricted at every time step. After obtaining the state subset, each node applies
image computation algorithm on its window state sets. However, after image
computation the node can discover states that do not belong to the slice that it
owns (non-owned states or cross over states). In such cases, the node should wait
for others to complete their current iterations.

Fig. 3.10 depicts the conceptual method used by the state-of-the-art distributed
approaches. After each iteration, the lightly loaded machine must wait for the
slowest one at the end of each computation step. This will create unnecessary
and lengthy idle times for fast processes. Next, synchronization phase is time-
consuming, especially when the number of processes is high. In addition, the
communication overhead can grow when more number of processes involved in
the parallel environment. Further, a synchronous load balancing is performed at
the end of each iteration, i.e., all the network nodes need to be stopped in achiev-
ing load balancing. This leads to the underutilization of computation power,
since available free processes are not used until there is not other choice but to
join once the slow processes finish their computations for achieving load balanc-
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Figure 3.10: The windowing based distributed method used by the state-of-the-
art approaches.

ing. These drawbacks limit the scalability of the parallel algorithms and make
them slow down substantially. To be specific, the windowing based distributed
approaches frequently face the following problems:

1. The communication of cross over states or non-owned states at every step
to other windows is an expensive operation and requires the other nodes to
wait.

2. The windows could get often empty images i.e., all the successor states of
that particular windows are cross over states. This eventually leads to im-
proper load balancing among network nodes (windows). In such cases, the
windows should be redefined. The redefinition of windows cause the whole
system should be synchronized.

Hence, these 1 and 2 factors make the windowing technique synchronous and
reduces the potential speedup because processors are kept waiting for others to
complete. However, asynchronous efforts were taken in [99] but it is not natural
the authors used message passing infrastructure for asynchronous exchange of
non-owned states.
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Figure 3.11: Partitioning based distributed approach.

3.4.2.2 Partitioning based Distributed Approach Problems

This type of distributive approach [118] partitions the whole set of states into sev-
eral subsets. Partitioning is based on the variable restriction as per the Shannon
expansion explained in Chapter 2. In contrast to windowing approach the state set
is restriction is performed only at the time of partitioning (which avoids later the
synchronization problem). Fig. 3.11 visualizes the partitioning based distributed
approach. Each node independently performs BFS on its state subset. However,
after a few steps of traversal among partitions a state overlap may emerge among
network nodes. The state-of-the-art partitioning heuristic [44] reduces the over-
lap only up to certain time steps by static means. However, in general the overlap
may still grow after a few steps of traversal and that need to be removed. Other-
wise it would worsen the advantage of using the parallel approach.

3.4.2.3 Other Common Problems

The parallel algorithms engage only one node to perform state space partition-
ing, which is an expensive operation as far as time is concerned. The partitioning
heuristics used by the state-of-the-art parallel algorithms take only balancing con-
ditions and the sizes of the resulting partitions [97, 98, 117, 99, 110] into account
but not subsequent state overlap or cross over transitions that would appear dur-
ing traversals on each partition. The algorithms concentrate heavily either on
reachability (validation) [97, 98, 117, 99] or falsification but not both together.
The most of the algorithms are suitable for homogeneous system configurations
where it is often the cases that only a limited number of resources available. The
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authors in [110] proposed a combined (POBDD reachability and SAT based BMC)
underapproximation approach for fast falsification on a grid-framework. How-
ever, the approach provides no intelligence in selecting the seed states for BMC.

In general, existing schemes for parallelizing BDD-based verification algo-
rithms often suffer from state overlap or duplicate work, cross over states among
partitions, inefficient work distribution, improper load balancing, synchronicity
and communication overhead. These state-of-the-art problems have to be solved
in order to achieve speedups in a parallel environment.

3.5 Contributions

My main contributions in thesis addresses the above listed problems by new op-
timized algorithms and therefore outperform the state-of-the-art algorithms. The
algorithms were developed in an incremental manner aiming at efficient asyn-
chronocity to gain speedups. First the efforts were started with the basic paral-
lelization. Though the algorithm is fairly simple to construct but it has problem
with the state overlap. However, the state set decomposition in this algorithm
can be done in parallel.

After having seen the state overlap problem, the dynamic overlap reduction tech-
nique is developed. The algorithm smoothens the state space traversal of each
partition by removing the overlap that it suffers from. Albeit, the algorithm su-
persedes the basic algorithm it suits best only for validation. Since, fast falsifi-
cation is of high interest to the industry, the hybrid methodology is developed,
which suits best for both fast falsification and validation. The hybrid algorithm
efficiently combines both windowing and dynamic overlap reduction techniques to
obtain more synergy and gains the advantages of using both the approaches.

Both dynamic overlap reduction and hybrid methods use the high communica-
tion mechanism hence these algorithms are best suitable for homogeneous cluster
environments where high-speed inter connections are possible. This thesis also
presents a novel asynchronous grid based distributed algorithm based on a ef-
fective combination of state-of-the-art intelligent underapproximation heuristics
that suits best for fast falsification. The main asynchronous parallel verification
algorithms that are contributed by this thesis are listed below:

Parallel partitioning: The algorithm partitions the state set in parallel by dis-
tributing the partitioning effort on all nodes equally. The nodes on the clus-
ter environment are restricted to n nodes, wheren = 2fand k € {1,2,3,...}.
Depending on the identity, each node partitions the state set and obtains
its disjoint subset. Thus, the algorithm reduces both partitioning time and
effort. The state set partitioning using only one node consumes notable
amount of time, i.e., for n partitions we need n-1 splits but whereas if we
distribute the partitioning effort on all nodes equally then we require logy
splits. This algorithm alleviate the state space partitioning problem (in terms
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of effort and time) described in section 3.4.2.3. The parallel partitioning al-
gorithm is detailed in Chapter 4.

Dynamic overlap reduction: Conceptually, after the state set distribution, the
method uses some extra resources like a Coordinator to periodically remove
the overlap in an asynchronous manner, i.e., with out waiting for other pro-
cessors to complete their image computations. In addition, this method has
the natural side effect of dynamic load balancing among network nodes.
The nodes that are heavily loaded with state sets at one time point will later
be alleviated by assigning few number of states. Since all the nodes per-
form asynchronous state space traversal on their whole state subsets, the
method is best suitable for validation. In comparison with state-of-the-art
parallel schemes (described in section 3.4.2.1) the dynamic overlap reduction
algorithm is an asynchronous algorithm and it has the natural side effect
of load balancing. Therefore, it alleviates the 1 and 2 state-of-the-art prob-
lems described in 3.4.2.1. In comparison with state-of-the-art static over-
lap reduction (described in section 3.4.2.2), which can reduce overlap only
up to a certain time steps, the dynamic overlap reduction obliterates the state
overlap. The distributed algorithm based on dynamic overlap reduction is
expounded in Chapter 5.

Hybrid method: Conceptually, the nodes of the distributed environment are cat-
egorized into windows and helpers. Windows aim at fast falsification by re-
stricting their state spaces at regular intervals, whereas helpers are responsi-
ble for cross over state space traversals, i.e., the state space left over by the
windows. Thus, in turn leads to fast validation. The exchange of cross over
states to helper nodes is done in an asynchronous manner. If any of the
windows get empty images during traversal then it dynamically becomes
helper and shares work with other helpers. Since the approach also uses
dynamic overlap reduction the overlap among helper nodes can be removed
without waiting for other nodes to finish their computation steps. Further,
the algorithm expedites the verification process by reassign the work to idle
nodes as quickly as possible (without disturbing the other node’s computa-
tions), thereby it avoids the wasted computation power and makes the sys-
tem work efficient. In comparison with state-of-the-art parallel strategies
(described in sections 3.4.2.1 and 3.4.2.2), the hybrid algorithm is an asyn-
chronous distributed algorithm suited for both fast falsification and full val-
idation. The algorithm asynchronously distributes (without stopping other
node’s computations) the cross over states to helper nodes. Further, the al-
gorithm gains the advantages of using both windowing and dynamic overlap
reduction techniques. This algorithm is detailed in Chapter 6.

Grid-based algorithm: The approach effectively combines the underlying verifi-
cation algorithm, bounded property checking with the state-of-the-art intel-
ligent guiding heuristics based on property and adapted for grid environ-
ment to handle the very large hardware designs. The approach is best suits
for fast falsification. In comparison with state-of-the-art grid based verifi-
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cation scheme (described in section 3.4.2.3), the grid algorithm described
in this thesis effectively combines the intelligent underapproximation, in-
genious guiding and static overlap reduction algorithms. Further, the algo-
rithm uses very little communication, i.e., only at the time of global viola-
tion. This algorithm is detailed in Chapter 7.

These algorithms are evaluated on publicly available benchmarks from the
ISCASB89 suite, IBM benchmark suite and our in-house Holonic model. The algo-
rithms show approximately linear speedups in execution time and enables faster
verification of properties for very large hardware designs. A significant improve-
ment in results were obtained when compared with state-of-the-art parallel veri-
fication schemes.

As an application, this thesis also presents a novel distributed algorithm for
Black Box verification, which uses mixed forward and backward traversal mech-
anism (detailed in Chapter 8).
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Chapter 4

Parallelization

The first step towards getting somewhere is to decide that you are not going to stay where
you are.
- John Pierpont Morgan

This chapter discusses the basic parallelization algorithm. The basic algorithm
is fairly simple to construct, but it has a side effect on the state set overlap. This
chapter delineates each individual network node’s algorithm. It covers how to
compute counterexamples in a parallel environment if any of the nodes uncover
the target state set. It also gives a formal definition of the notorious state set over-
lap. The prominent optimizations to treat the state set overlap are described in later
chapters.

4.1 Parallelization of a Symbolic Bounded Property
Checking

The basic parallelization method parallelizes the symbolic state space traversal
on a network of processors that communicate via the message passing paradigm.
First, the method starts traversal on set of initial states and iteratively computes
the frontier set until its size reaches a given threshold limit. Then the frontier
state set is partitioned into subsets, where each subset is assigned to one node of
the cluster computer. As soon as a node has its state subset, it proceeds to com-
pute forward state space traversal in iterative BFS (Breadth First Search) steps. In
general, computation on a smaller subset requires less memory compared to the
whole set. This method enables us to find errors that are far from the initial states.

The distributed approach consists of the initial sequential stage and a sub-
sequent parallel stage. Fig. 4.1 illustrates this process. The nodes of the cluster
computer are categorized into one master and the remaining slave nodes. For
better memory balancing the basic method restricts to use n nodes, where n = 2*
and k£ € {1,2,3,...}. Each node in the parallel environment is identified by a
unique rank (rank € {0,...,2F — 1}). Typically, the rank system is taken care of
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Figure 4.1: Outline of the basic distributed algorithm. After reaching the splitting
threshold, the state set is partitioned into subsets and these are distributed on
computation nodes for independent traversal.

by the message passing mechanism.

First, all the nodes, i.e., both master and slave nodes, parse the system descrip-
tion and the property specification and translate them into BDD form. These are
basically the transition relation of the system and the properties” AR-automata.
Parsing on every machine makes the method best suitable for homogeneous clus-
ters. In case of heterogeneous parallel environment, a powerful master node
alone can be assigned with the parsing and distribution tasks.

After successful parsing on each node, the master starts its symbolic state
traversal algorithm, whereas the slaves will remain in waiting state after receiv-
ing the BDDs. The property checking algorithm for the master continues until
the size of the frontier state set reaches the initial threshold limit. At this point, it
broadcasts the frontier state set and indicates the nodes to split it. The main rea-
son for doing this is to reduce the splitting time and distribute the splitting effort
on all nodes in the network. In detail, the master node can split the frontier state
set into n subsets. However, this process consumes a notable amount of time.

4.1.1 State Set Decomposition in Parallel

Splitting the state set in parallel yields better results. Fig. 4.2 illustrates this pro-
cess. Depending on the rank each node splits the frontier state set and obtains its
subset. Fig. 4.2 illustrates the initial state set distribution algorithm. It iteratively
splits a state set S into two parts and drops one of the resulting sets. In the end it
keeps the subset that belongs to the node identified by its rank.

56



// get subset for rank with n nodes from set S
getSubset(in: S, n, rank; out: S..,)
- Q. g
Srank. - S’ 4
fori=1 ... logy(n) @
split(srank; g, h),

if (rank % 2) Sy = g; // skip h for odd rank skip g

»
else S« = h; // skip g for even rank @
rank = rank / 2; N
g skip h
A
// split state set S into two parts g and h
split(in: S; out: g, h)

Figure 4.2: Algorithm for state set distribution. The left hand side contains the
distribution algorithms. An example application is shown on the right hand side.

The left hand side of Fig. 4.2 shows the distribution algorithm getSubset. It
returns the subset Sy, for node rank from set S for n possible nodes. It calls
the algorithm split that partitions a set S into two disjunct subsets g and h. An
example application of getSubset(S, 8,5, S5) is shown on the right side of Fig. 4.2.
The algorithm iterates log,(8) = 3 times. First, it splits S into g and ~ and updates
Srank With g and skips h. Second, the algorithm splits Sy, and updates Sy, with
h and skips g. Third, it splits Sy and sets Sy« to g and skips h. The control flow
of this example is indicated by the bold arrows in the figure.

The algorithm getSubset uses the procedure split, which partitions the given
state set S into two subsets based on a splitting variable. The resulting subsets
are relatively small, well balanced and disjoint. In order to meet these conditions,
the split procedure takes both a balancing factor and a cost function into account.
The detailed explanation of the split function is postponed to next chapter.

After the assignment of the state subsets to each node, all nodes will proceed
with forward state space traversal. Whenever one of the nodes detects the viola-
tion condition, it initiates abortion of the other nodes. Fig. 4.3 and Fig. 4.4 delin-
eate the master and slave node computation loops, respectively. The first three
operations (lines 2-4) in both algorithms perform preprocessing and generate the
transition relation of the system and the property. Since this thesis uses the SymC
core verification algorithm as described in section 2.6, the property’s transition
relation is represented as an AR-automaton. The operation nodesInCommWorld
(line 6) in both algorithms computes the number of nodes in a parallel environ-
ment using message passing interface. The pseudo code in lines 11-14 in Fig. 4.3
controls the sequential phase of the master node algorithm. The operation get-
Subset (line 13 in Fig. 4.3 and line 8 in Fig. 4.4) represents the same algorithm as
depicted on the left hand side of Fig. 4.2. After the state set partitioning, all nodes
first compute the image of the AR-automata and check for global violation and
local termination conditions of the property (line 16-20 in Fig. 4.3 and lines 13-17
in Fig. 4.4). If any of these conditions do not meet, both algorithms compute the
image of the system. The operation checkAbortCondition in both algorithms checks
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if any of the other nodes detected a target or error state. The corresponding node
contacts the master node to terminate the simulation. Optionally the master node
computes the counterexample. The following discourse will expound the coun-
terexample generation.

/1 Preprocessing
par sehModel () ;
gener at eSyst emTrans() ;
gener at eARTr ans() ;
synbol i cSi mul at e()
N = nodesl nConm\r | d();
S = Sys.start A AR aut.start;
splitFlag = true;
while i <k // kis the tine bound
checkAbort Condi tion();
if ( (|S] > threshold) A (splitFlag) )
distributeFrontierStateSet();
S = get Subset (S, N, rank);
splitFlag = fal se;
/1 Compute i mage of AR-Automata
S = imagear(S);
i f( propertyViolation() == true )
reportFailure();
abort Sl aveNodes() ;
checkLocal Ter mi nati onCondi tion();
/] Conpute i mage of the system
S = imager(S);
i+ -+

© e N G ke W N e

P T S T N T ey
N B, S © ® N & G A& ®W N = o

N
@

Figure 4.3: Master node main computation loop.

4.1.2 Counterexample Computation

If any of the slave nodes uncovers one of the target states during the exploration
then it immediately broadcasts an asynchronous message to the master node. De-
pending on the option to generate a counterexample, the node that detected the
target state will send all its frontier state space, i.e., the covered state space during
the parallel phase of its computation to the master node. In general the node that
detected the target state set can compute the counterexample. But sending this in-
formation to master node avoids the multiple computations of counterexamples
if more than one node detect the target state set relatively at the same simula-
tion cycle. In other words, the master node has better control over the system
and also has the sequential state space. Therefore, it is alone compute the coun-
terexample. Upon receiving this message, the master node first terminates all
other nodes computations by broadcasting an asynchronous message. Second,
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/'l Preprocessing
par seModel () ;
gener at eSyst emlrans() ;
gener at eARTr ans() ;
synbol i cSi nul at e()
N = nodesConmor | d();
wai t For Current St at eSet () ;
S = get Subset (S, N, rank);
/[l nis the tine point of the initial partitioning
while n <k // kis the tine bound
checkAbort Condi tion();
/1l Conpute i mage of AR-Automata
S = imagear(9S);
i f( propertyViolation() == true )
reportFail ure();
abort O her Nodes() ;
checkTer m nati onCondi ti onLocal l y();
/] Conput e i mage of the system
S = imager(S);
n++;

O P N U e W N =
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Figure 4.4: Slave node main computation loop.

it will add the frontier state space covered by the node that detected the target
state to its sequential frontier state space. Finally, the master node executes the
pre-image computations on property’s and system’s transition relations in order
to compute the counterexample. Fig. 4.5 details the master node’s counterex-
ample generation algorithm. The size of S, (line 7) represent the length of the
counterexample. The operation store (lines 9 and 16) constructs the path from the
target state to initial state by executing the standard counterexample generation
algorithm [6].

4.1.3 State Set Overlap

This simple basic parallelization scheme fails to provide significant speedups on
many models because of crossover transitions. These transitions start in a state
of the current subset but lead to a state that is already present in one of the other
state subsets. This phenomenon is called state set overlap, or just overlap. Of
course, image computation for overlapping states is performed redundantly. As
image computation is one of the key components of any formal verification tool,
redundancy of such a component badly affects the time and memory require-
ments of the whole verification process. State overlap between network nodes is
salient in Fig. 4.1.

Definition 15 Let S be a nonempty set and Sy, ..., S, C S with k > 2. Then we define
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I'l Stseq is the vector of sequential frontier state sets
/1 T is the target state
gener at eCount er Exanpl e(in: Sty T)

Stpar = receiveTheParal | el FrontierStateSets();

t er mi nat eQ her Nodes() ;

appendParal | el Fronti er St at esl nt oSequenti al ();

I = Steeq. Size() - 1,

O ® N U e W N e

S =T N Steegli];
S = sel ect Randonttate(S); store(S);
whilei >0 10

I--,

/1 Conpute pre-imge of AR-Autonata
S = pre —imagear(S);

/1 Conpute pre-imge of the system
S = pre —imager(S) A Steqgli]

S = sel ect Randonttate(.S); store(S);
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Figure 4.5: Master node counterexample computation algorithm.

the state overlap oy, € [0, 1] of these partitions as:
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The overlap is thus the normalized average of states in the pairwise intersec-
tion of subset permutations. The sum in the denominator ranges from 1 to k — 1
because this yields the number of pairs S;, S; with i < j. An overlap of 0, = 0 cor-
responds to disjoint partitions and an overlap of o, = 1 corresponds to partitions
containing the same states.

Ok (4.1)

4,2 Conclusion

This chapter presented a parallel version of the bounded property checking tool.
The idea of the approach is to partition the state space upon reaching a threshold
limit and assign traversal of the subsets to network nodes. The parallel algorithm
has several advantages. It enables the verification of larger models than those
with the regular nonparallel version. Sequential version fails for these designs
because it often encounters state space explosion early on in the computation, af-
ter which it could not make much progress due to memory limitations. However,
the reduced memory requirements for the cluster nodes in parallel version still
allow progress in the traversal process. Therefore, it is able to finish verification
for large circuits. The parallel approach can exploit any network size and its uti-
lization of network resources make it suitable for solving very large verification
problems. Further, this chapter detailed a novel state decomposition algorithm
[118], which partitions the state set in parallel. Thereby, the algorithm reduces
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both partitioning time and effort. The parallel algorithms described in further
chapters of this thesis utilizes the parallel state set decomposition algorithm.
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Chapter 5

Treatments for State Set Overlap

Don't find fault, find a remedy.
- Henry Ford

This chapter presents several solutions to reduce the state set overlap during
distributed symbolic verification. First, it details the static overlap reduction al-
gorithm and points out that the algorithm can only reduce overlap up to few
number of simulation cycles. Second, it explicates the new distributed bounded
property checking algorithm based on the dynamic overlap reduction technique,
which uses extra network resources. The algorithm becomes more feasible only
when the shared states due to crossover transitions are reduced to avoid dupli-
cate work. Third, it explains in detail the counterexample computation algorithm
that is relevant to the new distributing approach. Fourth, it gives information on
the impacts of overlap removal on resulting BDDs and also explains some of the
state-of-the-art BDD minimization algorithms and their application to distributed
checking algorithm. Finally, it explains the only snag (best suited for full valida-
tion but not for fast falsification) that could result by using the new distributed
algorithm based on dynamic overlap reduction technique.

5.1 Overlap Reduction

Chapter 4 indicated that the state set overlap slows down the pace of symbolic
traversal on every node. In the worst case, all nodes perform redundant compu-
tations, i.e., there is no difference between sequential and parallel verifications.
Therefore, state set overlap must be treated in order to speedup the parallel ver-
ification and to achieve end results faster. Two approaches were developed to
remove or reduce the overlap: static overlap reduction and dynamic overlap reduc-
tion. The former uses a partitioning algorithm that aims at minimizing the state
overlap based on structural information of the design. Whereas the latter uses
extra resources in order to remove the overlap. These methods will be explained
in detail in the following subsections.
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Figure 5.1: Possible overlap of subsets after an image computation with depen-
dencies on the splitting variable.

5.1.1 Static Overlap Reduction

Overlap originates from states in different sets having transitions to the same next
states. In order to minimize the overlap of splits, the selected splitting variable v
should not allow states that have common next states to be in different splits. In
other words, v should partition the states such that they have no common next
states. However, in reality such a partitioning is not possible, but one can put
some effort in selecting the splitting variable v to minimize overlap. For finding a
good splitting variable the Minimal overlap algorithm [112] is used. The algorithm
statically analyzes the design which is represented as a finite state machine (FSM).

The idea of selecting a good splitting variable v relies on the conjunctively
partitioned transition relation 7', as aforementioned in section 2.5.1. For every

i €1,...,m a partition 7; of the transition relation corresponds to the truth value
of next state variable ¢, such that: 7' = T; A ... A T},,. The algorithm picks variable
v from the set of state variables £ = {q1, ..., ¢} based on the observation that

only a small number variables in £ is forming the next state function f;, formally
support(f;) C E.

Let us refer to Fig. 5.1 in order to see how static information affects the overlap
of sets of states. For example [112], assume that the set of states

= {001,010,011,100,110,111} that are encoded by the state variables £ =
{¢1, @2, ¢3}. The partitioned transition relation is given as,

T = (q
T, = (¢
T3 = (q

fi)wherefi = —qa V g3
fa)wherefy = qo (5.1)
= fs)wherefs = g2 N g3

WS NS =~

Let us see with this small example how the splitting variable could affect
the overlap of the two sets. Assume the set S is splitted into two sets S; and
Sy by the variable ¢; as shown in Fig. 5.1 (a). The splitted set of states will be

= {100, 110,111} and S, = {001,010,011}. Then the image of both the sets
S1 and S, by applying the partitioned transition relation (see equation (5.1)) will
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be {011, 100,110}, where there is 100% overlap. If the splitting variable is ¢, as
shown in Fig. 5.1 (b). Then the splitted sets will be S5; = {010,011,110,111} and
Sy = {001, 100}. Then the image of the set S; will be {011, 110} where as the image
of set S, will be {100}, therefore there is 0% overlap. Finally, if the splitting vari-
able is g5 as shown in Fig. 5.1 (c). Then the splitted sets will be S; = {001,011, 111}
and S, = {010,100, 110}. Then the image of the set S; will be {100,110} and the
image of set S, will be {011, 100}, where there is a partial overlap. The interesting
point is, given a set of states and the partitioned transition relation, the overlap
of the image of the splitted sets can vary depending on the splitting variable.

The Minimal overlap algorithm heuristically finds a good splitting variable by
analyzing the static information of the design that is implicitly given by the par-
titioned transition relation. To understand how the static information could help
tinding the best variable, assume the same example in Fig. 5.1 (a), where ¢, is
the splitting variable. The static information shows that none of the next state
functions f; depend on that variable ¢, i.e., ¢ ¢ support(f;). In simple words,
the variable ¢; does not influence any of the next state function (next state vari-
ables). Obviously, splitting with ¢; does not restrict any of the next state variable
q; values. Hence this increases the probability of having same values in both the split,
eventually leading to the state overlap. In the other case shown in Fig. 5.1 (b), e; is
the splitting variable. The static information result shows that the variable (g5)
influences all the three f;’s. Trivially, the splitting with ¢, adds restrictions like
positive cofactor split would restrict the variable ¢, to 1 in all the functions and
vice versa. Hence this restriction constrains the possibilities of the next state vari-
ables, and tries to pull the image state space of the splits wide apart resulting in
minimal overlap.

The Minimal overlap algorithm collects static information influence in the pre-
processing step and represented as tables mapping each variable to its value in
descending order. The value of a variable is the number of partition transition’s
(next state variables) it is involved in. This influence factors can be calculated
over steps by repeated influence collection. In the end we will have two different
factors, first, lookaheads denoted by D'(q, 1), is a set containing all the next state
variables that are influenced by the variable ¢ over [ steps. Second, lookback de-
noted as D'(q, 1), is a set containing all the state variables that influence the next
state variable ¢ in [ steps back. Formal definition of influence is given below,

Definition 16 Let [;,l, € N be influence lookaheads. For a given FSM A, the influence
;. 1,(q) € [—1,1] of a state variable ¢ € E and where E is a set of state variables, with
|E| = m, is defined as

T _ D!
(I)ll,lg (q) — |D (Q7 ll)| |D (qv 12)| ' (52)

m

e Set D'(q,l;) contains all state variables that get influenced by e in /; steps

e Set D!(q,1y) contains all state variables that influence e in I, steps
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These sets are determined iteratively starting with {; = 1 and I = 1. Each T;
directly corresponds to the truth value of the next state variable ¢;, so these sets
will be computed by analyzing all 7; and ¢;. For D(g, 1), the algorithm counts
the partitions 7; that contain ¢, whereas for D! (¢, 1) the algorithm counts the state
variables in the support set of 7;.

As indicated above, splitting on a variable v with high influence will lead to
fewer cross transitions between the resulting partitions. The algorithm performs
better if the splitting variable is conjunctively connected and degrades if disjunc-
tively connected in the partitioned transition relations 7;. However, it is compu-
tationally expensive to analyze all Boolean connectives of the clauses of every 7.
The actual Minimal overlap algorithm (refer Fig. 5.2 for the pseudo code) picks a vi-
able state variable for splitting. The state variables are categorized based on their
influence and put into different sets (see line 9). The algorithm starts with the set
containing variables with a high influence and check them against a balancing
condition (see line 11). It is observed in many of the practical designs that the
tight balancing condition, i.e., § = 3, would not lead to satisfy many of the highly
influenced variables. Therefore, this thesis relaxed the condition., i.e., § = %, to
increases the chance for the algorithm to select the highly influenced variables
that satisfy the balancing condition. Alongside, the algorithm computes the cost
of these variables (lines 8 and 14) with the cost function from [97] that consists of
a redundancy and a reduction factor defined in section 3.3.2.

cost(S, v, a) = a « MAXUSLISH) 4 (g

IS

If none of the examined variables satisfied the balancing condition, the vari-
able with minimal cost is selected (see line 15).

5.2 Distributed Checking Algorithm

Although the Minimal overlap algorithm is developed for sequential approaches,
it can be applied to parallel algorithms very conveniently in order to obtain more
synergy. The newly proposed distributed property checking algorithm utilizes
the Minimal overlap algorithm. Similar to the basic parallelization, the algorithm
is composed of an initial sequential stage and a subsequent parallel stage. In the
sequential stage as a pre-processing all the nodes first parse the model and con-
struct the transition relation of the design and the property. Second, the nodes
create the state variable’s influence table (L4 in Fig. 5.2) by analyzing all the par-
titioned transitions, which is later used by the Minimal overlap algorithm. Once
the nodes are ready with the pre-processing phase, state space traversal proceeds
sequentially on one node until a threshold limit on the BDD size triggers the state
set distribution. The splitting into k subsets is performed in parallel and every
node is responsible for getting its own disjoint part of the whole state set. All
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// S is the current state set 1

/1 Sy and S, are the resulting partitions 2
/Il Ly is the ordered list of variables according to their 3
i nfluence

/1 6 is the menory bal ance factor
/! ais the weight for the cost function
split(in: S, Lg, 6, « out: Sy, S9)

best Cost := Lg.top()

© e N o Ul

m nCost := cost (S, bestVar, «)

while (C = getCandidateSet(®) ) A C #0
for all we C 10
if max(|Syl,]|Sx]) < d|S| then 1
v := W goto do_split 12
el se 13
thisCost := cost(S, w, a) 14
if thisCost < minCost then 15
m nCost := thisCost; bestCost := w 16
v .= best Cost 17
do_split: S1 := 8, Sy 1= 85, 18

Figure 5.2: State set splitting with the Minimal overlap algorithm.

the nodes use the Minimal overlap algorithm for state set splitting. In the paral-
lel phase, the nodes start state space traversal independently on these disjoint
subsets.

5.2.1 Dynamic Overlap Reduction

Initially, the overlap between state sets of network nodes is reduced using the
Minimal overlap algorithm. However, in general the overlap may still pursue after
a few steps of state space traversal. In order to further confine the overlap we
perform dynamic overlap reduction. This is a methodology where we allow over-
lap to some extent and heuristically select a time frame to remove it periodically.
The overlap removal is performed after the state set distribution. This method is
iteratively executed either throughout the verification process or up to n times.
An extra node called coordinator organizes the communication between the nodes
and performs dynamic removal of state overlap. Fig. 5.3 illustrates the parallel
approach using dynamic overlap reduction. The example parallel environment con-
sists of 4 working nodes and 1 coordinator. The figure delineates only the parallel
phase of the verification algorithm. The overlap removal algorithm for each node
works in three steps:

1. Upon reaching a reduction time point, the node sends its frontier state set
to the coordinator. The state set distribution time point, i.e., the iteration
in Fig. 5.3 corresponds to the beginning of parallel phase and can be incre-
mented thereafter. The reduction period usually given by the user it corre-
sponds to the period of steps at which overlap removal is performed. The
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Figure 5.3: Dynamic overlap reduction based distributive approach.
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iteration and reduction period determine the reduction time point. Which
is described in line 5 of Fig. 5.5. Fig. 5.5 depicts the pseudo code for re-
moveQverlap operation, which is described in line 19 of Fig. 5.3.

2. The coordinator removes the overlap of the node with respect to the already
visited state space by other nodes at this time point (lines 12-13 show this
operation in Fig. 5.5), and updates the history of the visited state space (line
20 shows this operation in Fig. 5.5). Then it informs the corresponding node
to proceed with the reduced state space by sending the trimmed state set.

3. Finally, if all nodes passed a reduction time point, the coordinator removes
the state space history of that time point (line 18 shows this particular oper-
ation in Fig. 5.5).

Fig. 5.4 delineates the usage of overlap reduction in the main computation
loop of the symbolic simulation algorithm in the parallel stage. We have to check
the termination condition locally, i.e., only in the frontier subset (line 14), and
globally, which requires communication with the other nodes (line 9). For exam-
ple, in order to show an universal validation, all nodes have to finish in accept
states locally, which can only be checked globally.

/] S is the set of initial states 1

/!l t is the checking time bound 2
/!l pis the period of steps at which overlap renoval is 3
per f or med
/1 nis the overlap renoval linmt, O indicates continuous 4
reduction
simulate(in: S, t, p, rank, n)

reduction_limt := 0; reduction_step := 0

if n>0thentillEnd := false else tillEnd := true

while iteration <t
checkTer m nati onCondi ti ond obal | y();

o ® N o Wy

S = imagear(S) // Conpute imge of AR-autonata. 10
if( propertyViolation() == true ) 1
reportFailure(); 12
cont act Coor di nator () ; 13
checkTer m nati onCondi ti onLocal | y(); 14
S = imager(S) // Conpute inmage of the system 15
if (reduction_limt <n) v tillEnd then 16
reducti on_step++ 17
if reduction_step = p then 18

S = renoveOverlap(S, iteration, p, rank) 19
reduction_step := 0; reduction_limt++ 20
iteration++; 21

Figure 5.4: Main computation loop for state overlap removal.

The main advantage of the dynamic reduction method is that nodes do not
have to wait for slow nodes. After sending their current state set, faster nodes can
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continue to traverse the product automaton. Therefore, we achieve asynchronous
overlap removal between network nodes. Although nodes have to wait for the
coordinator to update their state set, this time is not significant compared to the
time spent on image computation.

The asynchronous methodology has the side effect of natural load balancing
among network nodes. The very last node that reaches a reduction time point gets
its overlap removed with respect to all other nodes. So this last node has no states
in common with the other nodes at this reduction step. Usually the last node that
reaches the reduction time point after overlap removal has the smallest subset.
This in turn means faster image computation, enabling this node to reach the
forthcoming reduction time point faster. Hence, at that reduction time point this
particular node will arrive earlier than other nodes, and therefore continues with
a larger state set. This process alternates among the nodes accordingly depending
on the weight of image computation, resulting in natural load balancing between
the network nodes. And it is tangible in Fig. 5.3.

/[l S is the set on which the overlap renoval operation is 1
perfornmed

/1 t is the checking time bound 2

/Il pis the period of steps at which overlap renoval is 3
perf or med

removeOverlap(in: S, iteration, p, rank; out: Spew) 4

rp 1= derdlion [ reduction time point 5

Il 1f this is the first node to reach this reduction tine

poi nt

if(newry)) 7

addSt at eSpaceAt NewRedTi nePoi nt (r,, S5); 5

Snew = S 9

return S,ew 10

el se 1

overlap : = visitedStateSpace(r,) A S, 12

S =85 - overlap 13

if S == 14

wai t Unti | Next | mmedi at eNode() ; 15

el se 16

i f (final NodeAt Thi sRedTi mePoi nt (r,, rank)) 17

renoveVi si t edSt at eSpace( ry) ; 18

el se 19

updat eTheVi si t edSt at eSpace( rp) ; 20

Shew = S 21

return S,ew »

Figure 5.5: Overlap removal operation.

For some models, the overlap is so high that the late nodes become empty after
overlap removal (line 14 in Fig. 5.5). This special situation is handled by state set
sharing by partitioning with the following node that reaches any reduction time
point.
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If any of the nodes detects the target state set during the state space traversal,
it contacts the coordinator and asks to abort other nodes. The coordinator option-
ally computes the counterexample. Otherwise, the main computation loop of the
algorithm is executed until the time bound specified in the property or an exter-
nal time bound is reached. The following subsection explains the counterexample
generation algorithm.

5.2.2 Counterexample Computation

Fig. 5.6 depicts the coordinator node’s counterexample generation algorithm. The
node that discovered the target state set first contacts the coordinator with its
frontier state set, which contains the target states. Later it sends the sequential
frontier state sets to the coordinator. After receiving these state sets (lines 4-5),
the coordinator tracks down the reduction time step information of the node that
detected the target state set. That is the information on each reduction time step
the node shared its state space with any of other nodes. Sometimes, the nodes
get empty state set result after overlap removal. In such cases it has to share state
space with next immediate that reaches any reduction time point. For example,
the node with rank 5 detected the target state set after reaching the reduction time
step 8, but it has shared its state space at reduction time step 6 with node rank
4 due to an empty state set result after overlap removal. Then the state subsets
of node 4 for all previous reduction steps have to be considered, i.e., from re-
duction time steps 1 till 5 from node 4 and 6 till 8 from node 5. The operation
trackTheRpDatabase in the algorithm computes such information. Depending on
the information, the coordinator receives the frontier state subsets of the nodes
that are involved in the track record for their respective reduction time periods.
This operation takes place in line 7 of the algorithm. After receiving the parallel
frontier state subsets, the coordinator terminates the state space traversals of all
other nodes (line 8). Depending on the track record, the operation orderFrontier-
StateSubsets creates the vector of parallel frontier state subsets and sorts them in
chronological order, i.e., with respect to the reduction time steps. The lines 10-
20 represent the standard counterexample computation code similar to the code
specified in algorithm (in section 4.1.2).

5.2.2.1 BDD Minimization

The operation overlap removal is more effective if the size of the resulting pruned
state subset is relatively small compared to the original state set. Otherwise, it
could further aggravate the symbolic state traversal. The pace of symbolic traver-
sal is sensitive to the sizes of BDDs that represent intermediate state sets during
traversal. So, the sizes of BDDs determine the run-time efficiency of the method-

ology.
Possible cases for resulting state subsets after overlap removal are shown in
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/Il T is the target state 1

/'l rank is the rank of the node that detected the target 2
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Figure 5.6: Coordinator node counterexample computation algorithm

Fig. 5.7. If we remove overlap (O) from the state set (S) it could result either in
S or Sy, i.e., the removal operation can either increase or decrease the resulting
BDD representation of the state set. Obviously, S; is the optimal case. Therefore,
special care should be taken in obtaining optimal sized BDDs during traversal.
This new goal eventually leads to the BDD minimization problem.

The BDD minimization problem is a prevalent problem. There exist sev-
eral heuristic algorithms [119, 120] and some of them include constrain and re-
strict. The constrain and restrict are also known as generalized co-factors. However,
Hong et al. introduced the Basic compaction and the Leaf-identifying compaction al-
gorithms in [121]. The underlying key idea is that for incompletely specified func-
tions many BDDs can be used to represent the function and each associated with
a different assignment of don’t cares to binary values. The traditional algorithm
restrict is often effective in BDD minimization but sometimes it can increase the
BDD size. However, the user can adapt the algorithm such that if the application
of restrict results in a BDD larger than the input BDD then the input BDD can be
returned otherwise the BDD resulted from restrict operator can be returned. The
following i f statement depicts the usage of restrict operator. Where f is the BDD
to minimize, @ represents the restrict operator and c represents the care set.

(I(f@e)l > [f)?f - (fQc)

The Hong et al. algorithms perform safe BDD minimization, i.e., they guaran-
teed never to increase the size of the BDD.
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Figure 5.7: Possible cases for resulting state subset after overlap removal.

The distributed checking algorithm optionally uses (with user choice) Leaf-
identifying compaction, constrain and restrict algorithms and performs BDD mini-
mization, thereby reducing the peak memory requirements of intermediate BDDs.

5.2.3 Limitations of Dynamic Overlap Reduction Method

The dynamic overlap reduction method is best suitable for validation of designs.
Since all the nodes perform asynchronous state space traversal on their whole
state subsets, it is an onerous task for them to find deep errors, i.e., they need more
traversal steps to find error states. This makes the method suitable for validation
of a design with respect to the property. It is always a preferable choice to use a
tool or method that supports both fast falsification and full validation together.

5.3 Conclusion

This chapter described an asynchronous algorithm for distributed bounded prop-
erty checking. The main algorithm deploys a state-of-the-art Minimal overlap split-
ting heuristic which takes overlap reduction into account. Further, it proposed a
novel dynamic overlap reduction on-the-fly algorithm for asynchronous state space
traversal, which has the consequence of natural load balancing. Dynamic overlap
reduction is an important technique in enabling verification of larger designs and
significantly improves the applicability of the distributed algorithm. Reassigning
idle nodes avoids wasted computation power. The state-of-the-art heuristic spec-
ified in section 3.3.4 reduces the overlap only up to a certain time steps (which in
general can grow with time steps) by static means, whereas the dynamic overlap
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reduction technique [122, 112] completely removes the state overlap in an asyn-
chronous manner. Thereby, it smoothens the state space traversal of all the nodes.
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Chapter 6

Hybrid Distributed Approach

But how shall I get ideas? Keep your wits open! Observe! Observe! Study! Study! But
above all, Think! Think! And when a noble image is indelibly impressed upon the mind
—Act!

- Orison Swett Marden

This chapter first gives an overview on the new hybrid distributed approach
for fast property verification. Then it details the core algorithms, i.e., the types
of nodes that are involved in this hybrid method and their responsibilities are
introduced. Later, it explains each type of node in the parallel environment in
detail. Then it expounds a counterexample computation algorithm in pertinent
to the hybrid method. Finally, it discusses how window variables are generated
and the partitioning algorithm is used for their generation.

6.1 Methodology

The parallel approach described in the previous chapter efficiently performs asyn-
chronous state space traversals using dynamic overlap reduction. It heavily con-
centrates on reachability analysis within the time limit specified in the property.
Since all the nodes work with their entire state spaces, the method requires more
time to uncover error states that have longer counterexample lengths. This prob-
lem actuated the thesis to focus in developing a methodology to buttress both fast
falsification and validation together in order to scale distributed verification and
check the correctness of very large hardware designs.

The proposed new distributed algorithm is based on the well known tech-
nique called windowing [63, 35]. The windowing technique has partitions that
are identified by unique combination of variables. Each window restricts its state
space conforming to window variables. One aspect that significantly affects the
overall effectiveness of windowing is locality. Locality means that most of the
state’s successors are assigned to the same computational node as the parent state,
i.e., to the same window. Thus, this results in reducing the communication and
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cooperation overhead. The states that belong to other windows are known as
cross over or border or non-owned states.

6.1.1 Window States and Cross over States

Let S be the system state space and w; and w; are the window functions. Then
the respective window state space can be computed using following equations:

Swi =5 AW,
Sw]. =5 /\Wj

Definition 17 Let T(¢, 7', ") be the transition relation, where the sets E = {q1, ..., qm }
and E' = {q}, ..., q,, } represent the present and next state variables and I = {z1, ..., x}
is a finite input alphabet. The S; (S; C S,,,) represent the window state set. Then the suc-
cessor window states from S; can be computed using the window function w; as follows

Cross over states are the states that transit from states in window i to the states
in window j. They can be derived by conjoining the transition relation 7" with the
respective window function.

Definition 18 Let T', E, E' and I represent the transition relation, present state vari-
ables, next state variables and finite input alphabet, respectively (as described in above
definition). The set S; (S; C S,,) represent the window state set. Then the cross over
states from window i to window j, S;; can be computed using the window function (de-
fined in section 2.3.2) w; as follows.

Sii(¢") =w; (@Y ANIFZ, G (Si()ANT(q, 7,77, fori # j.

The efficiency of the proposed algorithm mainly depends on the selected win-
dow functions. Therefore, this thesis also proposes a method to find the win-
dow variables on-the-fly, aiming at balanced partitions and reduction in cross
over states. The explanation of window variable selection is postponed to section
6.4. Fig. 6.1 shows an example of a system and its windows. Cross over states
are marked with dotted circles. Further, the approach also utilizes the dynamic
overlap reduction technique in order to confine the overlap that could occur once
a node switches its traversing mechanism from windowing to normal. The hy-
brid approach efficiently combines both windowing and dynamic overlap reduction
techniques. The following algorithm explains the methodology in detail.
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Figure 6.1: An example state graph and it’s windows. The dotted circles represent
cross over states of respective window.
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6.2 The Distributed Algorithm

The nodes in the distributed environment are categorized into windows, helpers
and one coordinator. Each window node restricts its state space to hold its unique-
ness during the traversal. The helper nodes are responsible for cross over state
traversal. The coordinator organizes the communication between windows and
helpers and performs the removal of state overlap.

The core algorithm is composed of an initial sequential stage and a subsequent
parallel stage. First, state space traversal sequentially proceeds on one node until
a threshold limit on the BDD size triggers the state set distribution. Then the par-
allel stage starts with £ + 2 nodes including one coordinator, one helper - is called
static helper and k windows. The partitioning into k subsets is already performed
in parallel (as described in section 4.1.1) and each window is responsible for get-
ting its disjoint part of the whole state set and the window variables. The helper
will wait for cross over states. Fig. 6.2, Fig. 6.3, Fig. 6.4 and Fig. 6.5 visualize the
prominent cases involved in parallel phase of the algorithm. Each figure consists
of two scenarios explaining both precondition (top) and postcondition (below)
of that particular case. These cases will be explained in detail in the following
paragraph.

Every window runs asynchronously on its restricted state space by sending
the non-owned states to the coordinator. If error states occur in the window
states, they are detected quickly. The coordinator assigns the traversal of cross
over states that are not computed by windows to the helper (see Fig. 6.2). For
some designs the windows could get empty images during the traversal steps.
This emptiness of windows means that all the successor states of that particu-
lar windows are cross over states. From now onwards these windows are called
empty windows. In such cases, the nodes of emptied windows become helpers.
The newly converted helpers share the work with old helpers (see Fig. 6.3). The
helpers run asynchronously with their assigned cross over states. The normal ex-
pected behavior is that the node containing window states, i.e., windows should
run faster than the helpers. If any one of the window nodes is slower than one of
the helpers then the respective window becomes the helper by sending its state
space to the coordinator and eventually gets some work from the coordinator (see
Fig. 6.4). The window that reaches the time bound also gets the helper status and
receives work from the coordinator (see Fig. 6.5). The windows that dynamically
becoming helpers are called as dynamic helpers. For the validation of a design, all
the network nodes except the coordinator are terminated with the helper status.
The state overlap between helper nodes is reduced by the coordinator using the
dynamic overlap reduction principle. Since BDDs are used for state space traver-
sal, sometimes the increase in state set representation due to overlap removal can
be curtailed by using BDD minimization principles that have been presented in
the previous chapter. In addition, natural load balance among helper nodes is
achieved due to dynamic reduction of state overlap. The helper nodes that deal
with large state spaces at one time point will be later assigned a small state space,
and vice versa in an asynchronous way.
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Thus all the window nodes try to find an error state quickly by restricting their
state sets. However, the helpers complete the verification process left over by
other network nodes by considering the entire cross over states of the windows.

The methodology can be varied to restrict the window nodes at a defined
number of steps, rather than at every step. Consequently, windows consider the
whole state space (window state space and cross over state space) in between
each reduction step. This trivially reduces the helper’s work and the communi-
cation overhead. The proposed symbolic verification algorithm is well suited for
faster falsification and full validation. The approach is fully asynchronous and
dynamic. Experiments (detailed in Chapter 10) show significantly faster verifi-
cation on standard benchmarks. The following subsections cover each type of
network node algorithm in detail.

6.2.1 Window Node Algorithm

Once the sequential phase is finished the pre-defined number of windows are
enabled by providing the state space. For n windows we require log(n) variables.
The window variables are selected with the cost function explained in section
6.4. Every window loops the process mentioned in algorithm shown in Fig. 6.6
until the time bound is reached. This window restriction is performed either
throughout the verification process or up to n times.

The function checkTerminationConditionGlobally (line 10) checks whether a prop-
erty has been already proved by any of the other nodes. In case of a proved prop-
erty, the whole process will be terminated. This information will be passed on by
the network communication. If the property is not globally proved yet then the
image of the AR-automata will be computed and checked for the correctness of
the property in its state subset. In case it has detected a global violation condi-
tion then it asks the coordinator (line 14) to abort other nodes computations. This
function checkTerminationConditionLocally (line 15) checks the local validation con-
dition of a property. If it find the local validation then it contacts the coordinator
to change the status to helper and to get some additional work. This condition is
checked using the statement checkToChangeTheStatus. If no violation or validation
condition is detected, then the image of the system will be computed.

Upon reaching a restriction time point, each window node sends its window
state set .S; (line 23) and cross over state set C'O; (line 24) to the coordinator. While
taking the disjoint part of the state subset in the beginning of parallel phase each
window computes its window function on-the-fly. The detailed explanation on
window variable calculation is postponed to section 6.4. After sending the state
subsets the window asks the the coordinator to change its status to helper, in case
its state set becomes empty after restriction, or if it is slower than the helpers com-
putation phase. This work will be done by using the statement sendStateSets (line
25). Every window node iterates this whole loop till the time bound is reached.
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6.2.2 Helper Node Algorithm

As mentioned earlier in this section the parallel stage starts with one static helper
and k windows. The windows perform their asynchronous computation, whereas
the static helper waits for cross over states. The helper also executes the code (line
9-14 in Fig. 6.7) in order to check if the termination condition of the property is
reached. If the property is locally validated then it contacts the coordinator if
there is some remaining work that it can share with other helpers. This condition
is checked using the statement checkToShareWorkWithOtherHelpers (line 15). If the
property is not proved yet then the image of the system will be computed on its
assigned cross over state space.

Upon reaching a reduction time point the function removeOverlap (line 20)
sends its current state set to the coordinator, which eventually remove the state
overlap with respect to the already visited state space by other helpers. Thus
static as well as dynamic helpers iterate through the operations involved in line
9-22 in Fig. 6.7 until they finish the verification task.

Similar to the restriction in case of window network node, the helper performs
overlap removal either throughout the verification process or up to n times.

6.2.3 Coordinator Node Algorithm
The coordinator algorithm works in four steps:

1. Checks the global property condition. If none of the network nodes proved
the property then it continues.

2. Receives all kinds of messages. They include normal window messages,
emptied window messages, helper messages and property validated mes-
sages from windows and helpers.

3. Processes the window messages i.e., loads each window’s window and
cross over state space. Later it checks the window’s computation pace. If
the window runs slower than any one of the helpers, i.e., there exists one
helper that has already visited the reduction time point then it converts the
status of the window to helper. If the window comes with the validated
message then the coordinator also converts the status to helper. In any of
these cases it assigns some work to the newly converted helper. This work
results from state set sharing with the following helper node that reaches
the reduction time point. This time point is not necessarily the same as win-
dow’s time point. In case there is not much work left then it requests the
newly converted helpers to terminate. Otherwise, it informs the window to
proceed with window state space traversal.

4. Processes the helper messages i.e., it adds the assignment of unprocessed
cross over state sets to each helper. If the helper reaches the time point first
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then it gets the assignment first. Let us assume the helper reached the time
point ¢t and k windows already processed this time point then unprocessed
cross over states U can be computed as follows

U=HUYE, CONTE, W,

Here W; and CO; represent the window and cross over state sets of window
i respectively. H represents the current state set of the helper. After the
assignment of set U to the helper the coordinator removes all the cross over
and window state sets of that time point.

If the helper is not the first to reach the time point and there exist m nodes
that already visited the time point then the helper gets its overlap removed
with respect to the visited helpers. The overlap removal can be expressed
as follows

R:H\Z?;Hi

Here each H; represents the state space of the already visited helper node.
H represents the current state set of the processing helper. R represents the
trimmed state set. If this is the final helper node to reach the time point then
it removes the state space history of that time point. If the result of the over-
lap removal operation is empty or the helper comes with validated message
then the helper shares the work with the following node that reaches the
time point.

Thus the coordinator organizes the communication, distributes the work effi-
ciently and removes the overlap between network nodes.

6.3 Counterexample Computation

There are two types of nodes that could discover the target state set in the hy-
brid approach. Window nodes and helper nodes. As soon as any of those nodes
detect the target state set then it informs the coordinator. The coordinator option-
ally computes the counterexample. The algorithm shown in Fig. 6.8 explicates the
counterexample generation algorithm. The coordinator first receives the frontier
state sets, i.e., states that were covered during the sequential phase of the dis-
tributed algorithm, from the node that detected the target state set (line 5). Then
it checks the status of the detected node. If the node is a window node then it
is relatively easy to compute the counterexample. It receives the node’s paral-
lel phase frontier state sets including the final state set that discovered the error
states. After successful receival, it halts other nodes computations and executes
the standard counterexample computation code (lines 15-24) by appending par-
allel state sets to the sequential state sets (line 14). If the node is a helper node
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then the coordinator tracks down the complete record information of the node. If
the node is a static helper then it is as simple as for window nodes to compute the
counterexample. Otherwise, the record consists of all information, i.e., at which
reduction time step the window node became the dynamic helper and with whom
it has shared its space. Depending on this information, the coordinator receives
the parallel state spaces of all the nodes that were involved in the track record
(line 11). It arranges them in chronological order (line 13). This process is similar
to the one specified in section 5.2.2, i.e., once the coordinator is ready with the re-
quired state space to construct the counterexample then it executes the standard
code (line 16-25) [6] to construct a path from the target state to the initial state.
The output of the algorithm is a trace in waveform file, which can be viewed
using any waveform viewer.

6.4 Window Variable Selection

For the pre-defined 2" windows the classical method requires exactly n variables
to be selected. Algorithmically, finding such n variables for a balanced distri-
bution is time consuming, hence this thesis proposes an alternative method to
find the variables on-the-fly while solving the balancing condition. The on-the-fly
approach selects the maximum of 2" — 1 variables for 2" windows. The on-the-
fly windowing partitioning method is efficient in producing balanced partitions
among windows. The on-the-fly balancing window variable selection algorithm
can be explained by assuming a set of states S. The basis for this algorithm is
the parallel state set decomposition algorithm, specified in section 4.1.1. The first
variable is selected in a way that it partitions the set into two balanced parts S,
and Sy. Then the two parts are taken separately and searched for the second
variable that partitions it according to the balancing condition. This procedure is
repeated until 2" windows are formed. Fig. 6.9 shows the on-the-fly balanced dis-
tribution of window partitioning, where there are 3 variables involved in obtain-
ing 4 windows. The window state space IV, can be obtained by restricting state
set S with e; A e;. Similarly W, can be obtained with e;Aley, W3 can be obtained
with e; A ez and W, can be obtained with e;Ales. Once all the window network
nodes have respective window variables, they restrict the state space with respect
to the window that it has at regular time intervals. The naive method requires n
variables for 2" windows and whereas on-the-fly method utilizes the maximum
of 2" — 1 variables for window selection. Using more number of variables for
window selection can statically minimize the cross over states during window
traversals and is explained in [44].

6.4.1 Partitioning Algorithm

The influencing factors for the windowing technique are balanced partitions and
reduced cross over states. Balanced partition means that every window not only
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gets a balanced state space at the start of the windowing but also at every traver-
sal step, because badly partitioned windows could get empty images during the
traversal steps. The cross over states are a typical problem for the windowing
technique. Therefore, the selected window partitioning algorithm should con-
sider reducing the cross over states problem. The Minimal overlap algorithm [112]
(detailed in Chapter 5) is applied for window partitioning. The algorithm utilizes
the high influence cost factors to select the variables. The influence factor for each
state variable results from static analysis in the pre-processing phase. The vari-
ables are ordered decreasingly by their influence. The author in [44] has shown
that the high influence variables result in comparatively good distributions and
reduced number of cross over states. The balancing condition and cost function
of this partitioning algorithm are fixed to one that is specified in section 5.1.1.

6.5 Conclusion

The scalability problems of the parallelization scheme are cross over states among
the partitions and state overlap. The extended hybrid method in this chapter al-
leviates these problems. The hybrid algorithm is an asynchronous distributed
symbolic verification algorithm based on windowing and dynamic overlap reduc-
tion techniques, suited for full validation and fast falsification [123]. The core
algorithm distributes partitions of the state set to computation nodes after reach-
ing a threshold size. The nodes on the cluster machine are employed with two
different types of tasks. Some nodes, windows, aim at faster falsification on the
basis of the windowing technique. The other type of nodes called helpers are in-
tending for validation on the basis of dynanmic overlap reduction, hence the term
hybrid. All the cluster nodes asynchronously traverse their local state spaces for
both error states detection and reachability of a time bound. Further, the hybrid
approach makes the system properly balanced with respect to the node’s work
load.
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/] S; is the restricted window state set

/'l t is the checking time bound

/1 pis the period of steps at which restriction is
per f or med

// nis the restriction limt, O indicates conti nuous

restriction _
W ndowSi nul ate(in: S;, t, p, n)

New := N := CO; := false; convertToHel per := fal se
restriction_limt :=0; restriction_step :=0
if n>0thentillEnd := false else tillEnd := true

while iteration <t
checkTer m nati onCondi ti ond obal | y();
S; 1= imagear(S;) // AR automata inage conp.
if( propertyViolation() == true )
reportFailure();
cont act Coor di nator();
checkTer mi nati onCondi ti onLocal l y();
checkToChangeTheSt at us()
S; 1= imager(S;) [// systeminmage conp.
if(restriction_limt <n) Vv tillEnd then
restriction_step++
if restriction_step = p then
/'l where N represents the next state set
N .= Sz
S;i = N A w; /] w; represents the window function
CO; := N - S; /1l CO; = cross over states
convert ToHel per = sendStateSets(S;, CO; iteration);
i f convert Tor Hel per then
New := get NewStateSet (iteration);
restriction_step := 0; restriction_limt++;
iterationt++

Figure 6.6: Window network node algorithm.
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/1 t is the checking tinme bound
/1l pis the period of steps at which renoval is perfornmed
/!l nis the renoval limt, O indicates continuous reduction
/1 S represents the initial cross over states
Hel perSimulate(in: S, t, p, n)
reduction_limt := 0; reduction_step := 0
If n>0then tillEnd := false else tillEnd := true
while iteration <t
checkTer m nati onCondi ti ond obal | y();
S = imgesr(S) // AR automata image conp.
if( propertyViolation() == true )
reportFailure();
cont act Coor di nator () ;
checkTer m nati onCondi ti onLocal | y();
checkToShar eWor kW t hQt her Hel pers();
S = imager(S) [/ systeminage conp.
if(reduction_limt <n) v tillEnd then
reduction_step++
if reduction_step = p then
S := renoveOverl ap(S,iteration);
reduction_step := 0; reduction_ limt++
iteration++

O ® N U e W N =

L T S S S S G
=, S © ® N o @G & ® N = o

N
N

Figure 6.7: Helper network node algorithm.
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Il T is the target state 1

Il rank is the rank of the node that detected the target 2
/S}atsﬁﬁus is the status of the detected node 3
gener at eCount er Exanpl e(in: T, rank, status) 4
Sseq = receiveTheSequential FrontierStateSets(); 5

i f (status == window_status) 6
Stper = receiveParall el FrontierStateSetsOf Nodes(); 7

el se // Hel per status 8

t Record = trackTheRpDat abase( rank) ; 9
recei veParal | el Fronti er St at eSet sOf Nodes(t Record); 10

t er mi nat e her Nodes() ; 1

i f(status == helper_status) 12
Stpar = order Fronti er St at eSubset s(); 13
appendParal | el Fronti er St at esl nt oSequenti al (); 14

i = Steeq. Size() - 1, 15

S =T AN Steegli]; 16
S = sel ect Randonttate(.S); store(S); 17
whilei >0 18
i-- : 19

/1l Conpute pre-imge of AR-Autonata 20

S = pre —imagear(S); 21

/1l Conpute pre-imge of the system 2

S = pre —imager(S) A Steqli]; 2

S = sel ect Randonttate(.S); store(S); 2%

Figure 6.8: Coordinator node counterexample computation algorithm

getWinVarsAndStateSubset(in: S, n, rank; out: win_vars, S;)
win_vars = true; Sk = S;
fori=1... logy(n)
MinimalOverlap(S.ni; g, h, v);
if (rank % 2) S, = g; win_vars = win_vars /\ v;
else S.,x =h; win_vars = win_vars /\ lv;
rank = rank / 2;

// split state set S into two parts g and h with variable v
MinimalOverlap(in: S; out: g, h, v)

Figure 6.9: The left hand side shows the algorithm for distributing the state set
and selecting window variables. The right hand side shows the on-the-fly bal-
anced window partitioning.
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Chapter 7

Grid-based Fast Falsification

It is not enough to have many resources; the main thing is to use them well.
- Variant quote of René Descartes

This chapter introduces the new distributive approach using grid. It explains
in detail the grid based distribution algorithm for BDD-based bounded property
checking, which is best suitable for fast falsification. This approach utilizes intelli-
gent partitioning techniques based on given properties and the transition relation
of a design.

7.1 Why Grid

The proposed solutions are to deal with the formal verification of large designs.
However, there exist very large industrial designs for which finding an error state
or target state is still crucial. Often, the target states are located very deep in-
side the system (i.e., verification tools need larger time bounds to reach the target
states), such that the existing parallel approaches cannot uncover these states due
to a limited number of resources available. One way to alleviate the problem of
handling big industrial size designs is is to combine and adapt the advantages
of state of the art techniques on a grid framework. In other words, the under-
lying verification algorithm, bounded property checking, is effectively combined
with state-of-the-art techniques like under-approximation, guiding and minimal
redundant computation algorithms which are then adapted for the grid environ-
ment to handle industrial size designs. Moreover, the grid approach pioneers in
being asynchronous.

711 Grid Computing Overview
Grid computing is an emerging technology that enables large scale resource shar-
ing and coordinated problem solving within distributed by providing secure and

high-performance mechanisms for discovering and negotiating access to remote
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resources. Grid technologies promise to make it possible to share resources on
an unprecedented scale. A grid is a type of parallel and distributed system that
enables sharing, selection, and consolidation of resources distributed across mul-
tiple domains based on their capacity and performance [124]. The grid is a unique
environment where massive parallelism is possible by using idle CPU cycles from
a large number of computers. Such computers may even be in geographically di-
verse locations. Since a grid network is not dedicated continuously to a single
task, any task scheduled on a grid has to use very little communication or net-
work bandwidth [110]. This makes the grid system different from tightly coupled
homogeneous clusters.

7.1.2 Grid Application

The application of grid to verification is relatively new. The proposed approach
parallelizes the symbolic state space traversal on a grid framework. In this ap-
proach, the main distribution of the state space among the nodes is carried out
by a state of the art partitioning algorithm, Minimal overlap, which pioneers in
minimizing the cross over state transitions among the partitions. Applying this
algorithm the communication overhead among the computing nodes can be min-
imized. The approach also utilizes the state of the art intelligent guiding heuris-
tics [114] based on properties. The guiding algorithm aims at fast falsification by
steering the traversal. The fast falsification approach tries to identify so-called
high priority traces and traverses those traces, with the aim of finding a viola-
tion of the property. Grid based bounded property checking for error detection is
practical and effective [110, 125].

7.2 Grid-based Distribution Algorithm

The proposed new algorithm exploits the distributed environment with the effec-
tive combination of algorithms in order to find bugs faster in large designs, which
minimizes the redundant work and guides to the target state. The efficiency of
our approach mainly depends on the effective combination of the following:

e Grid computing: As computers acquire more computing capacity the con-
cept of grid computing is becoming prevalent [126].

e Partitioning algorithm: The partitioning algorithm splits the state space into
n splits with the intent of minimizing the cross over transitions among the
nodes. This in principle decreases the revisiting of states and therefore sup-
ports fast traversal.

e Underapproximation algorithm: The underapproximation algorithm en-
ables to follow only the interesting set of paths and avoids the others, thereby
increasing the speed of the traversal further.
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States that steer the state space
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Initial state
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Node n

First stage Second stage

Figure 7.1: Grid based parallelization of the bounded property checking

Fig. 7.1 gives the overall view of the grid approach. As similar to previous
approaches, for better memory balancing and also for parallel state set decompo-
sition the number of nodes on parallel environment is restricted to n nodes, where
n = 2Fand k € {1,2,3,...}. The core algorithm consists of an initial first stage
and a subsequent second stage. In the first stage, all the nodes parse the system
description and the property specification and translate them into BDDs. Once
the nodes are ready with building the BDDs, they start the traversal in the set
of initial states and iteratively compute the frontier set until the current state set
reaches a given threshold size. Communication among the loosely coupled sys-
tems is relatively slow. Therefore the approach forces all the nodes to do the initial
sequential stage on their own and avoid the communication overhead caused by
the distribution of the current state set BDD.

The first property checking algorithm for each node continues until the size
of the current state set reaches the threshold limit. Then the second stage starts
with partitioning the current state set into subsets, where each node on the grid is
responsible for taking its disjoint state subset. The initial state set decomposition
is performed using the Minimal overlap algorithm [112]. In order to minimize the
revisiting of states in the partitions, the algorithm heuristically selects a splitting
variable v that will partition the states such that they have a minimized number
of common next states. Similar to previous approaches, each node iteratively
applies the Minimal overlap algorithm and splits the current state set into two parts
and drops one of the resulting sets. In the end it keeps the subset that belongs to
the node identified by its rank.

Once the node has its subset, it proceeds to perform a forward state space
traversal in iterative BFS steps. Each node traverses its partitions in parallel, and
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this second stage is again threshold controlled. In other words, whenever the size
of the BDD representing the current state set of a node reaches the threshold limit
then first densed underapproximation [33] is performed on the current state set
to extract a large percentage of the state space and then the guiding algorithm is
activated for intelligent underapproximation.

As described in section 3.3.1 the density corresponds to a concise represen-
tation, i.e., a relatively smaller BDD can represent more number of states. The
high density of interest for the verification as smaller the BDD size faster the ver-
ification process. The algorithm Short path subsetting is used for densed under
approximation (line 16 in Fig. 7.2).

The guiding algorithm heuristically restricts the state set to a subset in which
there are states that could lead to the target state. There are two different guiding
strategies - State variable guiding and Input variable guiding.

e State variable guiding : The actual state set is partitioned into two parts
using one of the interesting state variables that are collected.

e Input variable guiding : The actual state set is restricted with the set of input
variables (hints) such that the transitions satisfying those set of variables are
allowed and the others are discarded.

In general, the authors in [114] inferred that each guiding algorithm has it’s
own significance and it is purely depending on the design which guiding algo-
rithm should we follow. Input variable guiding gains if more input variables
are involved in the design, but state variable guiding is better if the number of
interesting state variables are around 30% to 60% of total state variables in the de-
sign. Therefore, both algorithms are adapted for grid approach with even number
ranking nodes utilize the Input variable guiding (line 20 in Fig. 7.2) and nodes with
an odd number ranking utilize the State variable quiding (line 18 in Fig. 7.2).

After having performed the underapproximations, all the nodes proceed with
forward state space traversal on their restricted subsets until they reach the ter-
mination condition. The termination condition for the guiding has been adopted
such that, whenever one of the nodes detects the global violation condition or
an error state, it initiates abortion of the other nodes by sending a message to all
other nodes. Fig. 7.2 delineates each node’s main computation loop of the sym-
bolic simulation algorithm. The termination condition has to be checked locally,
i.e.,, only in the current subset (line 8), and globally, which requires communi-
cation with all other nodes (line 6). The node that detected the global violation
condition optionally compute the counterexample by using the similar algorithm
specified in section 4.1.2. In case of no global violation condition is met then the
traversal on all nodes continue up to a given time bound, which is either given
explicitly by the user (line 2) or implicitly by the property.

93



[/ S is the set of initial states
/1 t is the checking time bound
synmbolicSinmulate(in: S, t)
par Fl agTri gger = fal se;
while iteration <t
checkTer m nati onCondi ti ond obal | y()

O ® N U e W N e

S = image r(S) // Conpute i mage of AR-autonata.
checkTer m nati onCondi ti onLocal | y(.5);
S = imges(S) // Conpute i mge of the system

if ||S]| > threshold
/1 The condition to trigger the parallel phase
i f parFlagTrigger == fal se
S : = get TheCorrespondi ngSt at eSubset (S, my_rank);
par Fl agTri gger = true;
el se
S = densedUnder Appr oxi mat e( S) ;
if ny rank %2 == 0 // Even rank
S = stateVar Qui de(.5);
el se
S = inputVarQide(S);
iteration++;
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Figure 7.2: Main computation loop for state overlap removal.

7.2.1 Underapproximation using Guiding Algorithms

The guiding algorithm [114] automatically finds the set of interesting variables by
exploiting the property and the transition relation 7" of a design. This property
based state space guiding algorithm can substantially speed up the verification
process by picking up the interesting state or the input variables automatically
through the influence factors and utilizes them in guiding the state space traver-
sal. The guiding algorithms basically aim at fast finding of target states.

Guiding based on state variables entails partitioning the state space into two
by splitting using a selected state variable in such a way that one of the splits has
a higher concentration of potential target states and is comparatively smaller. In
contrast to state variable guiding the input variable guiding basically restricts the
possible next state set to a smaller subset, rather than splitting. This restriction
is done in such a way that this subset has a higher concentration of the potential
target states. Further traversing this smaller subset is faster and it is easier to
reach the error states.

One of the main steps of guiding is to identify the right partition, i.e., the
one having more potential target states, to traverse first. This step of the guiding
procedure is called steering, which is done by the cost function defined as in [114].
The key factor of the cost function is minterm counting to guess the cofactor of the
variable in the transitions, which then can be used to identify the right partition
to follow.
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7.3 Conclusion

Formal verification, in particular finding a bug or a witness, is increasingly im-
portant facing the growing complexity of designs. It has proved its potential and
is being utilized increasingly in the industry. However, increasing design sizes
still leaves verification as the major bottleneck, because the formal techniques do
not yet scale to large designs. One approach to further scale up the methodol-
ogy is to use a grid based distributed platform. This chapter presented a new
grid based distributed bounded symbolic verification approach based on effec-
tive combination of the intelligent partitioning algorithms that suits best for fast
falsification [125]. This grid approach is an asynchronous verification environ-
ment which is based on loosely coupled machines that significantly speedup the
verification. One of the reasons for the speedup is the minimized communication
among the nodes. Although the algorithm has potential to uncover the target
states which have the longer counterexample lengths, it cannot support full vali-
dation due to underapproximation techniques used by the methodology.
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Chapter 8

Parallelization of Black Box
Verification

You are never too old to set another goal or to dream a new dream.
- C.S. Lewis

This chapter considers how to perform parallel model checking for incomplete
designs. First, it details the usual preliminaries required for Black Box verifica-
tion, i.e., what are the verification goals, under and overapproximated versions
of transition relation, difficulties faced by the sequential approaches, etc. Next,
it expounds the parallel mixed traversal approach for verifying larger incomplete
designs. The core algorithm employs some nodes on the cluster computer with
forward state space traversal and others are recruited for backward traversal.
Later the algorithm checks for intersection between forward and backward state
spaces. All the nodes perform under and overapproximation during the traversal
using restricted transition relations. Finally, it provides the conclusions for this
chapter.

8.1 Black Box Verification

Model checking of incomplete designs, i.e., designs which contain unknown parts
is becoming prevalent and also attracting industrial community and it has many
advantages [74]. Black Box verification enables the use of verification techniques
in early stages of the design. Design errors can be already detected when only
a partial implementation is at hand - e.g. due to a distribution of the implemen-
tation task to several groups of designers. Parts of the implementation, which
are not yet finished, are combined into Black Boxes. If the implementation differs
from the specification for all possible substitutions of the Black Boxes, a design
error is found in the current partial implementation, i.e. to detect an error in the
current partial implementation it is necessary to find an assignment of zeros and
ones to the primary inputs, which produces erroneous values at the outputs in-
dependently from the final implementation of the Black Boxes. Another applica-
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tion of Black Box Equivalence Checking is the abstraction from “difficult parts” an
implementation, which would cause a large peak size in memory consumption
during the construction of a canonical form for the implementation. These “diffi-
cult parts” of the design can be put into a Black Box and Black Box verification is
performed.

8.1.1 Why Parallelization

Despite the developments [74, 75, 76] in the last years, the so-called state space ex-
plosion still limits the application of Black Box verification for large industrial de-
signs. In addition, it is still a concern in which way to perform traversal in model
checking algorithms. Though the authors in [75, 76] stick to backward traversal
approaches, for some designs forward traversal outperforms backward traversal.
Hence, the effectiveness of the direction of traversal is purely depend on the de-
sign as well as the property to be verified. In order to overcome the problems with
the direction of traversal and to increase the computational resources available to
the verification process both forward and backward traversals can be performed
in parallel using networks of computers. Further, traditional modelling of non-
deterministic signals for Black Box outputs using conventional model checkers
does not provide correct results for incomplete designs. Therefore, adjustments
were needed to handle approximate methods for providing validity and falsify
realizability of Black Box implementations. Especially, the handling of improved
construction for Sat 4 () (described in section 3.1.4) is relatively hard and need to
modify the existing image computation algorithm. The preliminaries and state-
of-the-art concerning the Black Box verification were explained in detail in sec-
tions 2.8 and 3.1.4.

One feasible way to handle the state explosion problem for larger industrial
sized designs is to parallelize the Black Box verification. So as an application,
this thesis presents a novel parallel mixed traversal approach for the verification
of larger industrial sized designs. The distributed algorithm even considers the
adjustments needed for approximate methods and also handles the improved
construction of Sat ().

8.2 Combination of Forward and Backward Traversal
on a Distributed Platform

The idea of mixed traversals was introduced by Govindarajulu et al. in [79].
However, the idea was utilized and extended using other state-of-the-art tech-
nologies by Cabodi et al. in [81, 82] but only limited to sequential approaches.
Fig. 8.1 illustrates such an approach on a parallel platform. It uses m +n + 1
number of nodes on a distributed platform, where m and n are the number of
nodes representing forward and backward nodes respectively (m = n = 2" and
ke {1,2,3,...}). One extra node (coordinator) is responsible for organization and
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Figure 8.1: Outline of the basic distributed algorithm. After reaching the splitting
threshold, the state set is partitioned into subsets and these are distributed on
computation nodes for independent traversal on both sides.

checking of the state space intersection between forward and backward nodes.
The distributed approach on both sides consists of an initial sequential stage and
a subsequent parallel stage. Fig. 8.1 illustrates this process. The coordinator node
is not shown in this figure.

In the sequential stage on both sides, one node - known as the master node:
starts its symbolic state traversal algorithm, whereas the slaves remain in wait-
ing state. The forward master node begins its traversal on the set of initial states
whereas the backward master node begins with the set of target states. The for-
ward node collectively computes successor states of both possible and fixed states
using T'. On the other hand, the backward node performs two pre-image com-
putation steps separately, i.e., one for possible and the other one for fixed transi-
tions. In contrast to the forward node, the backward node uses only the over-
approximated version of the transition relation, i.e., TRg. Upon the successful
completion of all image and pre-image computation steps for forward and back-
ward traversals, each node sends its fixed and possible state sets to the coordinator,
which eventually checks if there is an intersect between forward and backward
state spaces. The computation of the master on either side continues until the
size of the current state set reaches the threshold limit. At this point, similar to
the previously described parallel approaches it broadcasts the current state set to
all the slaves and indicates them to split. Depending on the node rank each node
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splits the current state set and obtains its subset. After all nodes have their respec-
tive state subsets the parallel phase of the algorithm begins. During this phase,
all slave nodes imitate the sequential steps of their respective master node. The
computation loops of all nodes have to be repeated until either a global violation
condition is met or a fixed-point condition is reached for both fixed and possible
states. The following subsections explicate each type of network node algorithm.

8.2.1 Backward Node Algorithm

Though the overall algorithm shown in Fig. 8.2 is self explanatory, some of the
lines will be explained explicitly. The arguments 7" and ¢ for the function bwdSym-
bolicSimulate represent the transition relation and the external time limit, respec-
tively. All backward nodes begin computation with this algorithm. In the be-
ginning slaves wait for sure and possible state sets (as shown in line 8), whereas
the master node performs the sequential stage alone. Once the size (BDD) of the
state set, i.e., either possible or sure reaches the threshold limit then the master
node distributes the state sets to all backward slaves (shown in 16). Depending
on the node rank each node gets its state subset (shown in lines 9-10 and 17-18
for slave and master nodes respectively). After the state set distribution all nodes
perform pre-image computation steps on their state subsets. It is shown in line
22 that the pre-image computation step for fixed states uses an overapproximated
version of the transition relation T'Rp. If we reach a local fixed-point condition,
the node will be terminated locally (shown in line 35). The function checkForGlob-
alTermination checks whether an intersection has already been met due to any of
the other nodes by asking the coordinator. In case of a proved property, the whole
process will be terminated. If we do not meet the local or global termination con-
ditions then each node sends its state subsets to the coordinator to update the
whole backward database that it is maintaining and asks for checking of intersec-
tion with the forward node’s state space. In case the intersection is not met then
the coordinator sends back the newly reached next possible and sure sets to the
backward node. This operation (communication with coordinator) is performed
in lines 38 and 39.
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bwdSynbol i cSimulate(in: T, t)
Sure = Possible = newSure = newPoss = bad_states(q");
seqPhase = true; sureFixReach = fal se;
possFirReach = t Reach = fal se; possCompute = true;
/1 Al nodes are in waiting state except Master node
i f(node # bwdMast er)
wai t For Sur eAndPossi bl eSt at eSet s() ;
Sure = get TheCorrespondi ngPi ece(Sure);
Possi bl e = get TheCorr espondi ngPi ece( Possi bl e);
while iteration <t
i f(seqPhase && (node == bwdMaster))
t Reach = (Sure.size() > threshold);
t Reach = tReach || (Possible.size() > threshold);
i f(tReach)
di stri but eTheSt at eSet sToBwdSI aves( Sur e, Possi bl e) ;
Sure = get TheCorrespondi ngPi ece( Sure);
Possi bl e = get TheCorrespondi ngPi ece( Possi bl e);
seqPhase = fal se;
/'l Pre-image conputation step for sure states
i f(—sureFizReach)

newSure(q") = (35—\ <3§/<T|el(q_; Z,q") N ﬂ*S:w"@(q_v))>> g—q"

/1 Checking | ocal sure fixed-point
i f (Sure(q’) == newSure(q"))
sureFixReach = true;
sendBwdSur eReachFi xedpoi nt Msg(nhode_rank, iteration);
newSure = 1;
/1l Pre-image conputation step for possible states

i f(—possFixReach && possCompute )
newPoss(7) = <EI:E’<EIQ_”(T621((I’, Z,q) A Possible(rj”)))) |G

/1 Checking | ocal possible fixed-point
i f (Possible(q") == newPoss(q"))
possFixReach = true;

i f(possFirReach)

| ocal Termination(); // Validity condition met
checkFor d obal Term nation();
/1 State set update
Sure(q)|z_; = bwdSur eCont act Coor di nat or (newSure(q")|g—q) ;
Possible(q)|;_; = bwdPossCont act Coor di nat or (newPoss(q")|g—g) ;
i f(Possible == 1)

possCompute = fal se;
iteration++;

Figure 8.2: Backward node’s computation loop.
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8.2.2 Forward Node Algorithm

The forward node algorithm is shown in Fig. 8.3. Similar to the backward node
algorithm, 7" and ¢ in Fig. 8.3 represent the transition relation and the external
time limit, respectively. The algorithm works similarly to the backward approach
except it does one image computation on the whole state space. Later the possible
and sure sets will be separated by cofactoring (shown in lines 20-21). If we do not
meet the local or global termination conditions then each node sends its state
fixed and possible subsets to the coordinator, which eventually updates the whole
forward state space that it is maintaining and asks for checking of intersection
with the forward node’s state space. In case, the intersection is not met then
the coordinator sends back the newly reached next possible and sure sets to the
forward node. This operation (communication with coordinator) is performed in
line 23 of the algorithm.
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fwdSymbol i cSimul ate(in: 7, t, node_rank)
Sure = Possible = Curr = init_states(q);
New = ¢; seqPhase = true; tReach = fal se;
/1 Al nodes are in waiting state except Master node
i f(node # fwdMaster)

wai t For TheSt at eSet () ;

Curr = get TheCorr espoi nfi ngPi ece( Curr);

while iteration <t

t Reach = (Curr.size() > threshold);

i f(tReach && seqPhase && (node == fwdMaster))
di stri but eTheSt at eSet ToAl | FwdNodes( Curr) ;
Curr = get TheCorrespoi nfi ngPi ece( Curr);
seqPhase = false;

/1 1 mage conputation step

Newp) = (32501620 A Curr(@)) ) by
/| Checking Local fixed-point
i f(New(q) == Curr(q))
| ocal Term nation();
checkFor @ obal Term nation();
Sure(q) = New(q)|e=o;
Possible(q) = New(q)|e=1;
/] State set updation
Curr(q) = fwdCont act Coor di nat or ( Sure(q), Possible(q)) ;
iteration++;

Figure 8.3: Forward node’s computation loop.
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8.2.3 Coordinator Node Algorithm

The coordinator’s algorithm is shown in Fig. 8.4. It receives all messages from
both forward and backward nodes. This particular operation is shown in line 5.
These messages will be processed in chronological order. As a processing opera-
tion, the coordinator first receives the state sets from the respective node. For for-
ward nodes lines 10-11 and for backward nodes lines 32-33 show this operation.
Second, it updates the databases of all forward and backward nodes. Lines 13-14
show this operation for forward traversal and lines 35-36 for backward traversal.
Third, it checks for state set intersection between forward and backward state
spaces. Lines 16-18 show this operation for forward traversal and lines 38-40 for
backward traversal. In case no intersection is met then it computes the newly
reached state sets by removing the visited state set from the original state sets
that it has received. Lines 19-20 and 41-42 show this operation for forward and
backward nodes respectively. Finally, it sends back the newly reached state sets
to the respective node. Lines 47 and 49 show this operation for backward nodes
and line 30 for forward nodes. The handling of fixed-points/intersections work
as follows:

Intersection of fwdSure and bwdSure: Unrealizability of property proven. In
this case, the coordinator terminates the computations of all nodes. Lines
24 and 48 in the coordinator’s algorithm show this condition.

fwdSure reaches fixed-point: The coordinator does not terminate any node ex-
cept fwdSure computation (bwdSure computation is more exact than fwd-
Sure computation. Therefore, it may still be possible to prove unrealizability
later). The coordinator does nothing special in this case except the current
state set (Curr) of each forward node automatically represents possible state
set since the Sure state set becomes empty.

bwdSure reaches fixed-point: The unrealizability of the property can not be pro-
ven (but validity may still be proven later). The coordinator terminates
all the node’s bwdSure and fwdSure computations, but does not affect the
bwdPoss and fwdPoss computations of backward and forward nodes. Lines
24-27 in the Backward node’s algorithm and lines 22-23 in the Coordinator’s
algorithm show this operation.

Intersection of fwdPoss and bwdPoss: Validity can not be proven (but unreal-
izability may still be proven later). In this case, the coordinator termi-
nates bwdPoss and fwdPoss computations of all nodes, but does not affect
the bwdSure and fwdSure computations of backward and forward nodes.
Lines 25-28 and 44-47 in the Coordinator’s and lines 40-41 in the Backward
node’s algorithm show this operation.

fwdPoss or bwdPoss reaches fixed-point: Validity of property proven. In this
case the coordinator terminates itself by checking whether all the node ter-
minated their computations locally. Line 51 in the coordinator’s algorithm
checks this condition.
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runCoordinator(in: T, node_rank)

fwdSure = fwdPoss = init_states(q); bwdSure = bwdPoss = bad_states(q);

bwdNodeCounter = 0;
while (true)
recei veAl | MsgsFr omFwdAndBwdNodes() ;
forall Msgs
i f(Msg == bwdSur eFi xedMsQ)

bwdNodeCounter = bwdNodeCounter + 1;

i f(Msg == fwdMsg)

el

t mqpFwdSur e = | oadFwdSur eSt space( Msg) ;

t npFwdPoss = | oadFwdPossSt space( MsQ) ;

/1 Update conplete forward state space

fwdSure = fwdSure + t npFwdSur e;

fwdPoss = fwdPoss + t npFwdPoss;

/1 Check for intersection with bwd sure

i f( fwdSure AbwdSure # ¢) I/ Unrealizability proven
t er m nat eAl | TheNodes() ;

br eak;
t mpFwdSure = tnpFwdSure - fwdSure;
t npFwdPoss = t npFwdPoss - fwdPoss;

/1 Al the bwd node’s sure state set - Fixed-point
i f(bwdNodeCounter == total NumberO f BwdN odes)
t mpFwdSure = 1;
/1 Check for intersection with bwd possible
i f( fwdPoss A bwdPoss # ¢)
/1 Validity can’'t be proven but term nate
/1 fwdPoss conputati on.
t mpFwdPoss = 1;
tmp = (tmpFwdSure) xe+ (tmpFwdPoss) x e;
sendNewSt at eSpaceToFwdNode(t np) ;
se
t mpBwdSur e = | oadBwdSur eSt space( Msg) ;
t npBwdPoss = | oadBwdPossSt space( MsQ) ;
/1 Update conpl ete backward state space
bwdSure = bwdSure + t mpBwdSur e;
bwdPoss = bwdPoss + t npBwdPoss;
/1 Check for intersection with fwd sure
i f( fwdSure AbwdSure# ¢) [/ Unrealizability proven
t er m nat eAl | TheNodes() ;

br eak;
t npBwdSure = tnpBwdSure - bwdSure;
t npBwdPoss = t npBwdPoss - bwdPoss;

/1l Check for intersection with fwd possible
i f( fwdPoss A bwdPoss # ¢)
/[l Validity can’t be proven but termnmi nate
/1 bwdPoss conputati on.
sendNewSt at eSpacesToBwdNode(t npBwdSure, 1);
el se

sendNewSt at eSpacesToBwdNode(t mpBwdSur e, t npBwdPoss) ;

[l Validity of property proven

i f (checkAl'l TheNodesTer i nat edLocal | y)

br eak; 104

Figure 8.4: Coordinator node’s computation loop.
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8.3 Conclusion

This chapter detailed a novel parallel algorithm for Black Box verification. The
approach uses mixed forward and backward traversal mechanisms. some nodes
on the cluster machine are assigned with forward state space traversal and oth-
ers with backward state space traversal. The state space intersection is searched
for unrealizability of a Black Box. Until now there exists no parallel algorithm for
Black Box verification, this thesis made the first attempt to generate a novel paral-
lel mixed traversal algorithm. The algorithm has several advantages. It alleviates
the problem concerning the direction of the traversal. 2. It avoids the intermedi-
ate state explosion problem by partitioning the state space and assigns the disjoint
subsets to both forward and backward nodes. 3. It allows faster verification of
properties and this is due to reduced memory requirements for each individual
node on the parallel environment.
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Chapter 9

Implementation

An idea that is developed and put into action is more important than an idea that exists
only as an idea.
- Edward de Bono

This chapter explains all the implementation details. They will be explained in
three different sections. First section explains the ingredients needed for the par-
allelization. Second section explains in detail the methods requisite to transfer the
data between network nodes. First, this it explains in detail the available TPO++
functions for both blocking and non-blocking communications. These functions
consider basic and standard template library (STL) data types for transmission.
Second, it explicates how we can transfer the user defined data type using TPO++
and as an illustration it details the user defined BDD class. Next, it delineates the
techniques to transfer a BDD into a sequence of bytes and a sequence of bytes
back to a BDD. These byte sequences are used as a mode of transfer for BDDs.
Finally, conclusions are given at the end of this chapter. Final section discusses
the ingredients needed to construct the grid framework, i.e., the middle-ware, the
grid parallel environment, etc.

9.1 Ingredients Needed for the Parallelization

For the communication of one node with another node in a parallel environ-
ment the software Message Passing Interface (MPI) [127] is used. MPI is a message
passing paradigm that is widely used on certain classes of parallel machines, es-
pecially those with distributed memory. MPI includes point-to-point message
passing and collective (global) operations, all scoped to a user-specified group
of processes. During the years it has become the de facto standard for parallel
computation. MPI also defines C++ bindings for all its interface functions. These
bindings merely provide wrappers around MPI constructs and do not fit well into
object-oriented concepts. MPI provides no means for transmitting objects.

In order to overcome the lack of integration of object-oriented concepts in
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Verification library

Parallel environment

Figure 9.1: Interconnection between different libraries.

MPI, researchers developed TPO++ [128]. TPO++ is an object-oriented message-
passing library written in C++ on top of MPL. Its key features are easy transmis-
sion of objects, type-safety, MPI-conformity and integration of the C++ Standard
Template Library. In order to accomplish BDD transmission, the verification algo-
rithms communicate with TPO++, which eventually contacts with MPI to access
the parallel environment. Detailed discussion on asynchronous and synchronous
BDD transmission is deferred to chapter 9. Fig. 9.1 shows the layered intercon-
nection between different libraries. The parallel environment in the figure could
be any computer cluster.

9.2 Data Transmission

TPO++ uses the initialization function TPO::init, which constructs the startup
process, which processes the command line arguments and starts the message-
passing environment. After initialization, the user can use the global communi-
cator CommWorld. CommWorld is a predefined object of type TPO::Communicator
and includes all participating machines. The shut down can be done either au-
tomatically on destruction of CommWorld, i.e. after the application terminates or
explicitly using TPO::finalize.

9.2.1 Blocking Communication

TPO++ supports transmitting of predefined C++ data types. When sending a
C++ data type, the send call reduces to:

int k;
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TPQO : Commr | d. send(k, dest _rank, TPO. : Tag(110));

Where £ is the data to send and dest_rank represent the recipient rank (where
rank represents the identification number of a node). Messages are sent with an
accompanying user-defined integer TPO::1ng, to assist the receiving process in
identifying the message. Thereby, messages can be screened at the receiving end.
The message tag can be used optionally. If omitted it defaults to 0. When the
function returns, the data has been delivered to the system. On the receiver side,
for basic data types receive-call is done as follows:

St at us st at us;
status = TPO : Com\r| d. recv(k);

Where £ is the data of type integer. The receiver waits until a message is re-
ceived from the system. The returned object status simplifies the receiver code.
The receive methods take two optional parameters, the sender’s rank and a mes-
sage tag for selecting particular messages. If omitted, they default to any sender
and any tag respectively.

STL containers can be sent using the same overloaded communicator method.
The STL conventions require two iterators specifying begin and end of a con-
tainer:

vect or <i nt > vd;
Conm\or | d. send(vd. begi n(), vd.end(), dest);

Similar to the send method for the basic data types, it is optional to use mes-
sage tags for STL containers. To receive a container, first we need a message
specifying the size of the receiving container and later, conforming to this size,
the receive method receives the data into a full container. The following example
shows the receive code for the STL container:

Status st;
st = TPO : Comm\\or | d. recv(cont_si ze);

vector<i nt> vd(cont_si ze);
TPO. : CommAor | d. recv(vd. begin(), vd.end());

9.2.1.1 Non-Blocking Communication

For asynchronous communication, the method isend provided by the communi-
cator class is used. The method returns an object of class Request. We can wait for
the completion of the asynchronous communication using a wait method. The
following code illustrates the syntax for the isend method.
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Request rt;
rt = TPO : CommAorl d.i send(data, dest, TPQO :Tag(515));

rt->start();
rt->wait();
delete rt;

On the other hand, the receiver uses the method irecv to receive the message.
Before receiving the actual message the receiver first checks the incoming mes-
sage using iprobe whether it has the relevant characteristics, i.e. what the receiver
is looking for. The code for the asynchronous receive looks like as follows:

Status st;
Request rt;
st = TPQO : Commr | d. i probe( AnySour ce, t ag_val ue);
if(st.isValid()) {
rt = TPG : Comm\r il d.irecv(val ue);
rt->start();
rt->wait();

}

Similar to blocking communication, the methods isend and irecv are over-
loaded for asynchronous communication of STL containers.

All the parallel verification approaches described in this thesis use basic data
types (C++) for simple communication. For example, if any of the nodes uncovers
the target state then it sends a simple integer message to the coordinator, which
eventually terminates other nodes computation by sending again a simple integer
message. In a heterogeneous network environment, the master node alone is
responsible for preprocessing the system model and the property. In such cases,
it converts the model and the property into a BDD form and stores them in STL
containers. Later it sends these containers to all other network nodes. Therefore,
the synchronous and asynchronous communication of simple and STL container
data types is frequently used in all parallel approaches.

9.2.2 User-defined BDD Data Type

For the transmission of BDD objects, we have to define the marshalling methods
serialize and deserialize, as part of the class definition. Marshalling is the process of
transforming the memory representation of an object to a data format suitable for
transmission. The only argument of the marshalling methods is a Message_data
object, provided by the TPO++ library, used to marshal the object’s member data.
The Message_data class provides insert and extract methods, whose arguments are
all kinds of transmittable types. In a serialize method, insert is called repeatedly
for every member to prepare the object for transmission. The Messge_data object
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does not copy the data, but records its memory layout for later transmission.
The extract method in the deserialize method has to unpack the received message
to user-provided memory locations. The code that follows after this paragraph
implements the user defined class BDD and it’s marshalling methods.

cl ass BDD {

publi c:

/'l Header part

int nnodes; // Nunber of nodes that are present the BDD
int nvars; [/ Total nunber of variables of the BDD manager
int nsuppvars; // Support variables of the BDD

int rootid; // Index of the BDD root

vector<int> ids; // Variable IDs

int ids_size; // Size of the ids vector

vector<int> permds; // Variable pernutations

int permds_size; // Size of the perm ds vector

/1 Binary

/1 List of BDD nodes represented in binary formt
vect or <unsi gned char> bdat a;

int bdata_size; // Size of the bdata vector

voi d serialize(TPO : Message_data &m const ({
i nsert (nnodes);

nsert (nvars);

nsert (nsuppvars);

nsert(rootid);

nsert (i ds_size);

nsert (i ds. begin(),ids.end());

nsert (perm ds_si ze);

nsert (perm ds. begin(), perm ds. end());
nsert ( bdat a_si ze);

i
i
i
i
i
[
i
i
i
i nsert (bdat a. begi n(), bdata. end());

3333333333

voi d deserialize(TPQO : Message_data &m {
extract (nnodes) ;

extract (nvars);

extract (nsuppvars);

extract(rootid);

extract (i ds_size);
ids.resize(ids_size);

m extract (i ds. begin(),ids.end());

m ext ract (perm ds_si ze) ;

perm ds. resi ze(perm ds_si ze);

m extract (perm ds. begin(), perm ds. end());

33333°¢%
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m extract (bdat a_si ze);
bdat a. resi ze(bdat a_si ze);
m ext r act (bdat a. begi n(), bdat a. end());

}
}s
TPO MARSHALL_DYNAM C( BDD)

The arguments (transmittable types for BDD) used by the insert and extract
methods will be explained later in this chapter. TPO++ supports transmission of
user defined data objects only for synchronous methods. But for asynchronous
communication, we need to pulverize the data object into a byte stream and store
it in containers for later transmission.

9.3 BDD Transmission

The ideas for transferring BDDs are based on the DDDMP package of the CUDD
library [58]. Processes periodically exchange BDDs during symbolic simulation
and the transmission of BDDs is done in binary form. Two utility functions are
used for BDD transmission. convertTheBddsToBytes translates a set of BDDs into a
sequence of bytes and constructTheOriginalBDDs translates the sequence of bytes
back to BDDs after the sequence has been transferred. The purpose of construct-
TheOriginalBDD:s is to serialize the BDD structure in order for it to be suitable for
raw buffer transfers. convertTheBDDsToBytes traverses the nodes of each BDD f
in Depth First Search (DFS) order. It creates the corresponding sequence from the
leaves and follows towards upwards. constructTheOriginal BDDs receives byte se-
quences from start to end and then creates the corresponding BDD nodes one by
one as it traverses the data. Shannon expansion is used to create the BDD node
from the byte sequences.

9.3.1 BDDs to Sequence of Bytes Conversion

The BDD that needs to be sent over the network is decomposed into two types of
data: 1. a header in text format; 2. a list of nodes in binary format. The header part
will be sent in textual format, whose size is by far dominated by the node list in
case of large BDDs (several thousands of BDD nodes). The node list is converted
into a binary form. The header part is common for all the BDDs except for each
BDD’s rootid.

9.3.1.1 Header Data
The sub functions listed under the comment header part in Fig. 9.2 construct the

header part of the data. For sake of generality and because of dynamic vari-
able ordering both variable IDs and permutations (permids) are included in the
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header part. The variable ID holds the name of the variable that labels the node.
The variable ID of a variable is a permanent attribute that reflects the order of
creation. ID 0 corresponds to the variable created first. The permutation of the
i-th variable ID is the relative position of the variable in the ordering. Next, only
the variables in the true support of the stored BDDs are included. Information
on variables (IDs, permutations) is sorted by IDs, and they are restricted to the
true support of the transmitted BDDs. In addition the header part also includes
the number of nodes that are present in all BDDs (nnodes), the total number of
variables of the BDD manager (nVars) and the indexes of all BDD roots, which al-
lows complemented edges (rootids). All these attributes are shown in the header
part of the code in section 9.2.2. The BDD class defined in this code is suitable
for a single BDD transmission. However, the code is easily extendable for multi-
ple BDDs by creating a STL container for rootids. All other remaining attributes
remain the same.

9.3.1.2 Binary Data

The list of nodes of all BDDs are represented in binary format. In binary mode
nodes are represented as a sequence of bytes, representing variable index, Then-
index, and Else-index in an optimized way. Function createByteSequence (line 13)
in Fig. 9.2 converts all the BDDs into binary form. It traverses the nodes of each
BDD in recursive manner and computes the binary data. The optimization is
done under the fact that most of the times the data will be sent redundantly. The
redundant data here means, the indexes of the nodes. For example nodes having
one of its child nodes as terminal node. In such cases we repeatedly send the
index (in integer) representing the terminal node for all the parent nodes unnec-
essarily. The function fillLeafNodes (line 29) in Fig. 9.2 avoids such redundant data
for transmission. It represents the integer indexes in absolute or relative mode,
where relative means an offset with respect to a Then/Else node information [58].
It selects the best between absolute and relative representations. After finalizing
the mode of transmission, the method efficiently converts the values of the in-
dexes, represented in integers, into byte sequences.

9.3.2 BDDs Construction From Sequence of Bytes

The method constructTheOriginal BDD:s first receives header information and then
binary data from the sender. By keeping the header information as a reference, it
constructs the original BDDs using the received binary data. The variable match
between the BDD manager of the receiver and the received data is optionally
based on IDs and permids. In case the mode matches with variable IDs, a BDD
is constructed BDD by keeping variable IDs unchanged. As a consequence, the
BDD is constructed regardless of the variable order of the reading manager. If the
mode matches with variable permids then it allows the variable match accord-
ing to the position in the ordering (retrieved by array of permutations received
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/[l S is the set of BDDs
convert TheBDDsToByt es(S) {

/]l Creates the header part

cr eat eNurrber Of Nodes() ;

creat eNunber O Var s() ;

cr eat eNunber O Tr ueSuppVar s() ;

createVarlds();

createPerm ds();

creat eRoot | ds() ;
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/] Create the binary data
forAll feS
creat eByt eSequence ( f—root node);
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}

/1l f is root node of the BDD
creat eByt eSequence( f) {
/1l Recursive call for Then edge
T = f->Then;
creat eByt eSequence(T);
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/1l Recursive call for Else edge
E = f->El se;
creat eByt eSequence(E);
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vf = f->index; // Variable of the current node
vl = T->index; // Variable of the Then edge
VE = E->index; // Variable of the El se edge
fill Leaf Nodes(vf, vT, vE, f, T, E);
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Figure 9.2: BDDs to sequence of bytes conversion

from header part). As a consequence, the constructed BDD keeps the ordering as
BDD that has been transmitted. Fig. 9.3 delineates the algorithm to construct the
original set of BDDs using received header and binary data. The subfunctions
described in lines 4-9 receives the header information. The subfunction receive-
LeafNodes receives regularly a set of bytes and constructs the present node and
its Then node and Else node (f, 7" and E). In addition it computes the variable
of the node, its Then variable and its Else variable (vf, vT and vFE). With this
information, constructBdd creates the BDD and points indexes to their respective
nodes. The code in lines 17-21 finally creates the original set of BDDs.

For synchronous transmission of BDDs the BDD class described in section
9.2.2 is used. The described specification is just for one BDD but it can be ex-
tended for more than one BDD by including rootids STL container. All the at-
tributes for this class are filled by calling the method convertTheBDDsToBytes be-
fore the transmission. TPO++ does not support the asynchronous transmission of
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/[l S is the set of BDDs
construct TheOri gi nal BDDs(out: S) {
/! Receives the header part
recei veNunber Of Nodes() ;
recei veNunber Of Var s() ;
recei veNunber O TrueSuppVar s() ;
recei vevVarlds();
recei vePerm ds();
recei veRoot | ds() ;

O ® N U e W N e

=
S)

while iterator <= nnodes
recei veLeaf Nodes(out: vf, vT, VvE, f, T, BE);
pnodes[iterator] = constructBdd(in: vf, vT, v f, T, E);
i terator++;

[
s

s
N

-
w

=
'S

-
[

while iterator <= nRoots
id =rootids[iterator];
f = pnodes][i d]
Sliterator] = f;
iterator++;

[ Y
© o N o

S
=)

—
N
[

Figure 9.3: Construction of BDDs from sequence of bytes

user defined objects. Therefore, even the header data must be converted the data
into binary form and stored in a STL container for transmission.

9.4 The Grid Framework

The grid approach in this thesis uses the grid middle-ware UNICORE (UNiform
Interface to COmputer REsources) [129], funded by the German Ministry for Ed-
ucation and Research (BMBF) with Sun Grid Engine (SGE) [130] as batch queuing
system. As parallel environment it uses MPICH2 [131] and TPO++. The detailed
explanation on methods to transfer the data using TPO++ is deferred to chapter
9.

9.4.1 UNICORE

Fig. 9.4 presents the UNICORE [129] system components and their interaction.
For the job submission to any platform of a UNICORE grid the Job Preparation
Agent (JPA) is used. The user can also monitor and control jobs through the Job
Monitor/Controller (JMC). An Abstract Job Object (AJO) is constructed by the
JPA with the definition of a job. With this AJO the JPA contacts the UNICORE
Gateway at a selected site.
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Figure 9.4: UNICORE architecture

The Gateway is a small java-application running at the target site for authen-
ticating users by their X.509 certificate and providing information about available
resources. It delegates an AJO to the Network Job Supervisor (NJS) server.

Each target system or cluster of systems is controlled by one NJS which pro-
vides resource information from the Incarnation Database (IDB) to the Gateway:.
The NJS checks the authorization of the user to use the requested resources from
the UNICORE User Database (UUDB). The NJS translates the abstract tasks into
real batch jobs using the IDB and executes them on the batch subsystem using the
Target System Interface (TSI).

By using the graphical interface of UNICORE, the user is able to prepare and
modify structured jobs. The UNICORE client is a Java-2 application on a local
UNIX/Linux Workstation or Windows PC. This client is used to submit jobs with
UNICORE to the grid. As a batch queuing system SGE [130] with parallel envi-
ronment based on MPICH2 is used.

An overview of the system is shown in Fig. 9.5. The approach uses only one
node as master node for all services which means that SGE-Master and all UNI-
CORE services (Gateway, NJS and TSI) will run on one machine. This is possible
due to the small size of our system and makes it easier to administrate and change
the setup. On each of the node’s SGE-Client, MPICH2 and the bounded property
checking library have to be installed.
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Figure 9.5: Grid approach.

9.5 Conclusion

This chapter presented all the implementation details. First, it has started with the
ingredients needed for the parallelization. Then, it has provided the techniques
to transfer data between different network nodes using TPO++. TPO++ supports
various methods to efficiently transfer the basic data types, STL container and
user defined data types. TPO++ supports both synchronous and asynchronous
data transfers. However, they are confined only to basic and STL container data
types. TPO++ does not support asynchronous communication on user defined
data types. This chapter described the ways to communicate BDD functions.
BDDs can be transmitted using a binary form by avoiding redundant informa-
tion. Thereby, an efficient data transmission between network nodes is achieved.
Finally, this chapter detailed the grid framework used by the thesis.
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Chapter 10

Experimental Results

Theory looks well on paper, but does not amount to anything without practice.
- Henry Wheeler Shaw

Six sets of experiments were performed in this thesis. The first set is to show
problems using the sequential approach. The second set of experiments present
the results of the basic parallelization approach and describe it’s problems with
the state overlap. The third set shows the results using the dynamic overlap reduc-
tion method. The fourth set depicts the results using the hybrid method. This
set is divided into four subsets. The first and second subsets are to show that the
hybrid approach benefits over the dynamic overlap reduction method. The third
subset of experiments is to compare the scalability of the hybrid approach using
different number of windows. The last subset of experiments is to compare the
dynamic and the static variable reordering under the hybrid approach. The fifth
set of experiments compare a state-of-the-art verification algorithms with the dy-
namic overlap reduction and the hybrid approaches. Finally, one set of experiments
was performed with the grid and it is divided into two subsets. The first subset
is to show the results with the grid based distributive approach and the second
subset is to compare the results of both the grid and the cluster based distributive
approaches. All the experiments were stopped after one hour.

10.1 Details of Experiments

10.1.1 Parallel Environment

The experiments were performed on the Kepler cluster at the University of Tiibin-
gen. This cluster contains 98 computing nodes, each consisting of a dual 650 MHz
Pentium-III processor with 1 Gb of shared memory (512 Mb for each processor).
The cluster uses BX motherboards and each has a 32 bit/33 MHz PCI bus. The
cluster uses the Linux operating system. The nodes are connected with two net-
works. Ethernet, 100 Mbit, is used to start and boot nodes, while Myrinet is for
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the direct exchange of messages between nodes. The cluster uses a Score manage-
ment software. Score gives the applications direct access to the network interface.
In addition, the cluster provides a locking facility that prevents other users from
using cluster hosts through the MessageBoard server. We can browse the current
status of a cluster with the msgb client program. The msgb is an application writ-
ten in Tcl/ Tk to display the current status on an X-window display. The users can
lock hosts via the MessageBoard server.

10.1.2 Implementation Details

For communication among network nodes the software MPI (Message Passing
Interface) version 1.2.7 is used. TPO++ version 0.4 is used for transmission of
objects and STL data types. A parallel verification library has been written on top
of the bounded property checker SymC in C++.

10.1.3 Checked Designs

The experiments were conducted on some of the circuits from the ISCAS89 se-
quential benchmarks [132], IBM benchmarks (batch circuits) [133] and a model of
a holonic production system (Holon). The holonic material transport system con-
sists of an input station, three machines, an output station and three automatic
transport vehicles, the so-called holons. Two of the three machines are for work-
piece processing, one is for cleaning. All holons are identical. More details on
holonic production system can be found in [134].

10.1.4 Checked Properties

For the ISCASS89 circuits there is no available information regarding their be-
havior. Therefore the reachability properties of states with a high hamming dis-
tance (HHD) from the initial state [82] (see formula A) along with properties from
[117] were checked. The hamming distance between two points p; and p, in the
Boolean space, is defined by the number of bits which assume a different value
in p; and p,. For example a model with 5 state variables (dy,d1,ds,ds,d,) and initial
state S = (0,0,0,0,0) then we have one state with hamming distance 5 from S, i.e.,
(1,1,1,1,1), 6 states at hamming distance >=4,i.e., (1,1,1,1,1),(0,1,1,1,1),...,(1,1,1,1,0)
and so on. In the holonic production system, the consumption of a work piece
was checked as property (see formula B). For the IBM benchmarks this thesis
checked for reachability of a set of states either by HHD or by states that satisfy
a certain condition (see formula C). The formula in C depicts that always for the
certain time steps if the condition on the left hand (m30.xx29) is true then even-
tually the right hand condition should hold in certain time steps. The thesis used
both universal and existential properties in the experiments in order to highlight
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the approach’s ability in handling both full validation and fast falsification sce-
narios. A sample of our FLTL properties is as follows.

G[b] !(s1423.G22 & s1423.G23 & . . . & s1423.G95) (A)
F[b] OutBuffer.s_consume (B)
G[b] (m30.xx29 — F[d] (m30.xx87)) (C)

where b, d > 0 are explicit time bounds.

10.2 Verification Using a Single Processor

First, I ran some of the larger designs in sequential SymC with all relevant opti-
mizations switched on. The sequential algorithm splits the state set repeatedly
upon reaching the threshold, whereas the parallel version does it only during
state set distribution. The results are available in Fig. 10.1. For all the designs the
sequential algorithm cannot complete traversal due to memory overflow or time
out problems. The first column in Fig. 10.1 lists the design name. The second
column gives the number of flip-flops used in the design. Column three denotes
the splitting threshold. The fourth column shows the influence used for Minimal
overlap splitting. The [, and /5 in ®;, ;, denote the lookahead and lookback influ-
ence factors. The Minimal overlap algorithm uses these factors for categorizing
highly influenced variables and select the best variable for partitioning. The al-
gorithm was detailed in section 5.1.1. The fifth and sixth columns list the time
bound specified in the property and maximum peak node count in millions, re-
spectively. The last column shows the overall verification time in seconds. #n or
*n denote memory overflow or time out at step n.

| Design | FFs | Threshold | &, | Time bound | Peak node count | v; in sec. |

s4863 | 104 20000 | @4, 5 4.48 #2
s1512 57 50000 | Py, 100 3.80 *80
s1423,, 74 50000 | @4 - 13.55 #11
$1423,3 74 50000 | @4 12 14.27 *11
04-batch | 256 50000 | @y, 20 2.59 *15

Figure 10.1: Results for fully optimized sequential SymC.

10.3 Distributed Verification

10.3.1 Basic Parallelization

Fig. 10.2 shows the results of basic parallelization [118] approach using different
partitioning algorithms. The first column indicates the design names. The second
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column gives the number of flip flops used in the design. The column Threshold
indicates the splitting threshold. The fourth column represents the time bound
specified in a property. The fifth column specifies the used state-of-the-art parti-
tioning algorithm. The algorithm Variable disjunctive decomposition select the best
variable by exploring each variable’s positive and negative co-factors (described
in section 3.3.1). The algorithm Eager decomposition eagerly select the best variable
using the cost function described in section 3.3.3. The algorithm Equal decompo-
sition (altered version of the slicing heuristic from [97]) considers both reduction
and redundancy factors into account for selecting the best splitting variable (de-
scribed in section 3.3.2). Finally, the algorithm Minimal overlap statically analyzes
the transition relation of the design and select the best influenced variable for
splitting (described in section 5.1.1). Two subcolumns in column sixth specify the
verification times in seconds taken by basic approach using 16 and 32 number of
nodes. Time out is indicated by * followed by the maximum number of steps n
taken by any node. #n denotes memory overflow at step n.

Design | FFs | Threshold | T | Partitioning Alg. v; in sec.
16 \ 32
s1512 57 50000 | 100 | VarDisjDecomp | 2146.25 | 2103.45

MinimalOverlap | 2135.46 | 2083.24
EagerDecomp | 2772.98 | 2750.55
EqualDecomp | 2450.75 | 2363.23

s4863 | 104 20000 5 | VarDisjDecomp | 952.22 | 813.69
MinimalOverlap | 714.49 | 579.86
EagerDecomp #2 #2
EqualDecomp | 967.95 | 851.39
s1423,, | 74 50000 | 10 | VarDisjDecomp | 215.12 | 203.69

MinimalOverlap | 243.79 | 233.02
EagerDecomp | 245.73 224.2
EqualDecomp | 303.73 | 293.88
s1269 37 5000 | 10 | VarDisjDecomp 30.34 21.74
MinimalOverlap 41.79 22.88
EagerDecomp 36.01 31.67
EqualDecomp 3232 | 2258
Holon | 118 50000 | 300 | VarDisjDecomp *223 | 204.06
MinimalOverlap *225 | 197.38
EagerDecomp *198 *228
EqualDecomp *213 208.5

Figure 10.2: Basic parallelization results.

10.3.1.1 Discussion

The runtimes marked with bold text denote the partitioning algorithm yielding
the best result. For the ISCAS89 designs s1512 and s4863, in comparison with
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sequential approach, where it was not possible to obtain any results, the par-
allel version completes the verification and obtains the end results. For all the
designs (including Holon for which the approach using 16 nodes cannot com-
plete traversal due to time out problems) not much of speedup is achieved due
to the huge state overlap between the network nodes. For the designs s1512 and
Holon Fig. 10.3 compares the resulting overlap when applying different partition-
ing heuristics on 8 processors. It shows how the overlap evolves over time. The
x axis represents the number of time steps after partitioning and y axis repre-
sents the normalized overlap O, (defined in section 4.1.3) among network nodes.
Therefore, the overlap must be treated using dynamic overlap reduction method. It
can be inferred from Fig. 10.2 and Fig. 10.3 that the partitioning algorithm Mini-
mal overlap relatively performs better compared to other algorithms but it cannot
completely remove the overlap. For design s1512, it has been observed that after
20 time steps of state set distribution, there is almost a 100% state overlap among
network nodes.

Holon

0,51

0,41
X
O 0,3
o
8 0,2
g 0,11

0/

20 60 100

Steps after partitioning

B MinOver(1,1)0 VarDisjDecomp O EqualDecomp

s1512

Overlap Oy

10 15

Steps after partitioning

B MinOver(5,1)@ MinOver(1,0)d VarDisjDecomp O EqualDecomp

Figure 10.3: Overlap comparison using different partitioning heuritics.
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10.3.2 Dynamic Overlap Reduction

Fig. 10.4 shows the results of the distributed approach with dynamic overlap reduc-
tion [122,112]. The dynamic overlap reduction algorithm was described in section
5.2. The approach used 32 processors dedicated to the checking algorithm and
one processor acting as the coordinator. In these experiments, dynamic overlap
reduction is applied throughout the verification process repeatedly every p steps.
The first column in Fig. 10.4 indicates the design and the splitting threshold. The
second column shows the time period p at which overlap reduction is performed
and the influence used in Minimal overlap. Both p and ®;, ;, can be determined by
the user. The third column lists the time bound specified in the property. Column
four lists the time taken by the sequential part and the time step at which the
parallel stage starts. Column five shows the maximum peak node count of all the
nodes in millions. The last column lists the overall verification time in seconds.

| Design | p(®,,) | Time bound | S, in sec. (step) | P, in milli. | v, in sec. |

54863 1(®14) 5 16(1) 839 | 587.73
20000

s1512 2 (®21) 100 108.75 (33) 241 50821
50000

s1423,; | 1(®ay) - 75.7 (8) 132 748
50000

s1423,, | 1(®yy) - 76.6(8) 187 | 11425
50000

s1423,5 | 2 (Pay) 12 755 (8) 5.06 1133
50000

Holon | 100 (®1,) 1000 86.22 (132) 16| 230.08
50000

04-batch | 2 (3y1) 20 99 (13) 23 955
50000

Figure 10.4: Results of the distributed algorithm with dynamic overlap reduction.

10.3.2.1 Discussion

The core algorithm in the parallel approach dynamic overlap reduction distributes
partitions of the state set to computation nodes after reaching a threshold size.
The nodes proceed with their image computation asynchronously. During the
traversal each node periodically removes its overlap.

For designs s1512 and Holon clearly Fig. 10.4 shows the advantage of dynamic
overlap reduction when compared with basic parallelization using state-of-the-art
static overlap reduction (Minimal overlap) algorithm (depicted in Fig. 10.2). For
design s1512 the dynamic overlap reduction outperforms the basic parallelization
method by removing the state overlap at every 2 intervals of time steps. For
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design Holon, the dynamic overlap reduction technique has reached a larger time
bound (1000) by taking relatively equal amount of verification time, where the
basic parallelization using static reduction algorithm could reach 300 time steps
(depicted in Fig. 10.2).

For design 51423 three properties pl, p2 and p3 were considered. Both pl and
p2 are from [117] and pure LTL properties, hence there is no time bound specified
in the property. For both designs s1423 and 04-batch dynamic overlap reduction out-
performs partitioned sequential approach (which uses Minimal overlap algorithm
for partitioning) and obtains the end result within time limit.

For designs 54863, s1512 and s1423,,;, Fig. 10.5 shows the decrease in verifica-
tion times and memory consumptions with respect to the reduction time steps.
After distributing the disjoint state space to each node (beginning of parallel
phase), a reduction time step specify at every regular intervals (k) of time steps
the overlap removal operation is performed. Fig. 10.5 clearly shows that the de-
laying in overlap removal reduces the verification system performance. The left
hand side of figure shows the time performance and right hand side shows the
memory performance (maximum peak node count of all the nodes in millions).
The z axis in both figures show the reduction time steps at which the overlap re-
moval is performed. This figure clearly shows the importance of dynamic overlap
reduction, i.e., delaying in overlap removal can degrade the system performance.
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Figure 10.5: Comparison of verification times and memory consumptions with
respect to reduction time steps.

Fig. 10.6 depicts the natural load balance graph for the circuit s1512 with re-
duction period 2. Only four nodes are shown for clear visibility of the graph. The
x axis represents the reduction time points and y axis represents the node’s arrival
order with respect to reduction time point. As described in section 5.2.1, the node
that reaches the reduction time point very late (high node arrival order) can get
its overlap removed with respect to the nodes that have already visited the time
step. So this late node has not many states in common with the other nodes at
this reduction step and therefore contains the smallest subset. This effect in turn
eases the node’s computation, enabling this node to reach the upcoming reduc-
tion time point faster. The load balancing effect can be seen very well when nodes
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0 and 24 swap their arrival order during execution. In general, the nodes that deal
with a large state space at one time point will be later assigned a small state space
and vice versa. Therefore, a natural side effect of dynamic load balcnce among
network nodes is achieved.
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Figure 10.6: Arrival order of nodes at reduction points showing load balancing
between the nodes for the design s1512.

10.3.3 Hybrid vs Dynamic Overlap Reduction

Fig. 10.7, Fig. 10.8, Fig. 10.9 and Fig. 10.10 show the comparison results of the
hybrid distributed approach [123] and dynamic overlap reduction distributed ap-
proach. The hybrid algorithm was described in section 6.2 and dynamic overlap
reduction was described in section 5.2. In contrast to the total number of nodes
used by the dynamic overlap reduction method (as indicated in previous section
10.3.2), the hybrid approach uses 32 processors acting as windows, one processor
as static helper and one processor as coordinator. In all these experiments, the re-
striction or removal is applied throughout the verification process repeatedly at
every p steps. For fair comparison of the approaches, the same p and threshold
limit are utilized and experiments were also performed with dynamic variable
reordering disabled in the BDD package. Fig. 10.7 and Fig. 10.8 show compari-
son results for falsified properties. Time out and memory overflow problems are
depicted explicitely in the figures.

10.3.3.1 Discussion

All circuits in Fig. 10.7 and Fig. 10.8 were checked for fast falsification and the
error states were found by the windows in hybrid approach.
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For the designs s4863 and 29-batch the results using both approaches are al-
most equal. This is due to the fact that error states are located close to the split-
ting point. If bugs are found before reaching the restriction or reduction time
point then both approaches are equal.

For design s1423 two properties pl and p2 were considered. The pl is from
[117] and a pure LTL property, hence there is no time bound specified in the
property. In comparison to dynamic overlap reduction, the hybrid method finds
an error state significantly faster. The property p2 is a full validation property.

For deeper errors, the method using dynamic overlap reduction takes more
memory and verification time compared to the hybrid approach. For designs
18- ,19- and 30-batch the dynamic overlap reduction suffers time out problems
whereas hybrid method finishes the verification by using less memory.
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s4863 s1423 s3271Holon 18 19 29 30
- p1 batch batch batch batch
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Figure 10.7: Comparison of verification times using hybrid and dynamic overlap
reduction approaches for falsified properties.

The designs in Fig. 10.9 and Fig. 10.10 are valid designs with respect to the
properties specified. Time out and memory overflow problems are denoted ex-
plicitely. For all these designs, hybrid method required less verification time and
memory compared to dynamic overlap reduction method except for the design
51423, due to memory overflow. The windows finished their verification job while
the static helper was computing the image of cross over states. The memory over-
flow problem occured due to a huge cross over state set. Hence, the windows
entered the waiting mode in order to get extra work from the coordinator.

Fig. 10.11 depicts the nodes work utilization graph for the circuit 04-batch with
restriction period 1. For a clear visibility of the graph only 18 nodes have been
chosen, where 16 are windows with the ranks shown in x axis, one static helper
with the rank 32 and one coordinator with the rank 33, where rank is a number
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Figure 10.8: Comparison of memory consumptions using hybrid and dynamic
overlap reduction approaches for falsified properties.
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Figure 10.9: Comparison of verification times using hybrid and dynamic overlap
reduction approaches for full validation properties.

identifying every node. Each bar in the graph shows each node’s sequential time,
windowing time and helping time. The static helper does not contain window
time and the coordinator does not contain window time but organizing time as an
exception. It is visible in the graph that the helping times of nodes are different.
This is decided by the coordinator depending on the node work load. Depending
on the overall work load the coordinator dynamically decides whether to reallo-
cate the work or to terminate the nodes. The node with the rank 1 comparatively
took more verification time and the last one to terminate the computation as far
as normal nodes are concerned. This is due to more time taken by the final image
computation step. Trivially, the coordinator has to be the last one to terminate.

Fig. 10.12 depicts the load balance among helper nodes 3, 9, 12, 20 and 32
for the circuit 04-batch with reduction period 1. It is called reduction period since
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Figure 10.10: Comparison of memory consumptions using hybrid and dynamic
overlap reduction approaches for full validation properties.
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Figure 10.11: Nodes work utilization graph for the design 04-batch.

the helper nodes get their overlap removed with respect to all other helper and
window nodes. The node with rank 32 is a static helper, the remaining nodes were
windows in the beginning and dynamically became helpers. Only five helper nodes
are shown for clear visibility. The faster the node arrives, the less the work load
and therefore the load balancing effect in the graph can be seen very well as nodes
swap their arrival order during execution.

Fig. 10.13 shows the speedup comparison results of 32, 16 and 8 windows using
the hybrid approach. The designs s4863, 23-batch and 30-batch with 8 windows
suffer from memory overflow (indicated by dashed lines) and time out problem
(indicated by bars touching the 3500 sec. mark).

10.3.4 Variable Ordering Comparison

Fig. 10.14 shows the comparison results of static and dynamic variable reorder-
ing using the hybrid approach. The algorithm lazy sift [57],is used for dynamic
variable reordering. Same threshold (BDD node count) is used for both the ap-
proaches.
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Figure 10.12: Arrival order of helper nodes at reduction points showing load
balancing between the helper nodes.

10.3.4.1 Discussion

For the design 54863 the method using dynamic variable reordering took less
memory and verification time compared to static ordering. The node that com-
putes the sequential phase detected the error state in the dynamic method. This
circuit shows the real advantage using dynamic variable reordering. However,
for the designs Holon, 19-batch and 30-batch the method static ordering performs
better compared to the dynamic approach. For the designs 19- and 30-batch the
the approach using dynamic variable ordering did not reach the threshold limit
and spends most of the time on searching for the best suitable order. A similar
effects have been noticed also in sequential mode of experiments with dynamic
variable reordering.

10.4 State-of-the-art Comparison

For comparison with the state-of-the-art parallel algorithms, the designs and prop-
erties are categorized into falsification and reachability. Falsification experiments

were conducted on Kepler cluster (described in section 10.1.1) and reachable ex-

periments were conducted on our new high performance computing (HPC) clus-

ter.
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Figure 10.13: Speedup comparison graph.

10.4.1 Falsification

For falsification, thesis compared results for the design s1423 with properties p;
and p, from [117]. The authors in [117] parallelized the high performance verifica-
tion tool Rulebase [135] from IBM. In this work they combined the approaches of
on-the-fly model checking of RCTL formulas [136] and parallel rechability analy-
sis [97].

In comparison with our parallel setup described in section 10.1.1, the state-of-
the-art used a parallel environment with 32 RS6000 machines, each node in the
environment consisting of a 225 MHz PowerPC processor with 512 Mb memory.
For communication between the network nodes they used a 16 Mbit/second to-
ken ring. Though it is unfair to compare results that were achieved on different
parallel environments, an attempt was made to state that the verfication times
were reduced in a notable amount using the algorithms described in this the-
sis. Fig. 10.15 shows the verification comparison results for falsified properties
for the design s1423. Since there is no clear available information on processor’s
peak performance comparison results, i.e., between PowerPC/225 (Generation
G2) and Pentim III/650, it was difficult to normalize the verification times for
state-of-the-art comparison.

10.4.1.1 Discussion

Fig. 10.15 visualizes the state-of-the-art comparison results for falsified properties
for the large design s1423. The first column describes the algorithm utilized. The
second column gives the number of nodes utilized by each approach. The third
and fourth columns give the sequential time (S;) and total verification time (V%)
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Figure 10.14: Comparison of verification of times using static and dynamic vari-
able orderings.

in seconds, respectively.

Property P1: AG (G729 & G726 > AX[10] (G726))
Algorithm Nodes utilized S insec. V; in sec.
State-of-the-art 32 13 16,032
Dyn. overlapred. | 32+1 75.5 721
Hybrid method 32+2 75.3 187
Property P2: AG (G729 & G726 > AX[7] (G726))
State-of-the-art 32 116 521

Dyn. overlapred. | 32+1 75.2 164
Hybrid method 32+2 75.6 166

Figure 10.15: State-of-the-art comparison results for falsified properties.

For the property P;, both hybrid and dynamic overlap reduction methods
found an error state significantly faster, even taking different hardware configu-
rations into account. The dynamic overlap reduction achieved a speedup of upto
of 22 and hybrid method achieved a speedup of upto 85. However, the dynamic
overlap reduction method required one extra node acting as a Coordinator and
hybrid method required two extra nodes one acting as a Coordinator and the other
acting as a static helper.

As memory is directly proportial to the peak node count of the BDD man-
ager, Fig. 10.16 visualizes the memory utilization during breadth first search (BEFS)
traversal steps of the verification process. Both dynamic overlap reduction and
hybrid algorithms utilized the same splitting threshold (BDD nodecount of 50000).
Therefore, the memory utilization for the node that computed the sequential
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stage has similar characteristics and the lines for both dynamic and hybrid ap-
proaches overlap in the sequential stage of the figure. The parallel stage of

Fig. 10.16 (8-14 simulation time steps) compares the memory utilization with
state-of-the-art parallel algorithm [117]. The memory utilization in this stage rep-
resent the average peak node count of all the network nodes (i.e., the sum of
peak node count of all the nodes divided by number of nodes in parallel phase).
The dynamic overlap reduction took more memory in comparison with state-
of-the-art and hybrid approaches but took significantly less time compared with
state-of-the-art. The dynamic overlap reduction approach is more suitable for
full validation. Therefore, there is not strong restriction on state space during the
traversal, hence more memory was required.

Due to window restrictions (each window was restricted with window func-
tion that involved 5 variables, i.e., 2> = 32) in hybrid approach, each node in the
network took less memory and also perform the state space traversal relatively
faster. Therfore, the hybrid approach achieved the end result faster.

Sequential stage of both
Dynamic overlap reduction and
Hybrid algorithms
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Figure 10.16: Memory utilization during the verification process for the property
P.

For the property P, both hybrid and dynamic overlap reduction techniques
took less verification time (speedup of 3.17) compared to the state-of-the-art al-
gorithm. Since the error states were located very close to the splitting point, i.e.,
even before reaching a reduction point in case of dynamic overlap reduction and
restriction in case of hybrid approach, the verification results for both the ap-
proaches are almost equal.
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10.4.2 Reachability

Since non availability of the Kepler cluster at the time of reachability experiments,
the further reachability experiments were conducted on our new high perfor-
mance computing cluster. This cluster contains 40 computing nodes, each con-
sisting of Intel DualCore 2.66 GHz Xeon CPU 5150 (2 CPUs per blade) with 8 Gb
of shared memory. For reachability checking, the results for the designs s1423
and s3330 with [98] were compared. The authors in [98] presented a distributed
algorithm which dynamically allocates and reallocates the processes to tasks in
order to recover from local state explosion. They implemented a parallel algo-
rithm in Division [98] , a generic platform for distributed symbolic model check-
ing. Division requires a model checker as an external module. Therefore, they
used NuSMV [137] for this purpose. Their parallel environment included 25 PC
machines, each consisting of dual 1.7 GHz Pentium 4 processors with 1 Gb mem-
ory. The communication between the nodes consisted of a fast Ethernet. For both
the designs s1423 and 53330 the authors in [98] claimed that they suffered with
memory overflow at time steps 13 and 3, respectively.

For a fair comparison, maximum of 17 processors were used for dynamic over-
lap reduction approach. Fig. 10.17 shows the reachability results using dynamic
overlap reduction method. The first column in Fig. 10.17 lists the design name.
The second column gives the number of flip-flops used in the design. Column
three denotes the targeted number (time steps) of reachable state sets from the set
of initial states. Two subcolumns in column fourth specify the verification times
in seconds taken by dynamic overlap reduction approach using 9 and 17 number
of nodes. Both these node sets consisted of one extra node Coordinator for orga-
nizing the communication and overlap removal. #n denotes memory overflow
at step n. If any of the node requires more than 512 Mb physical memory then the
approach is aborted with memory overflow condition due to fair comparison with
state-of-the-art.

Design | FFs | Steps | v; in sec.
8+1 | 16+1

s1423 | 74 13 | #13 | 1636

s3330 | 132 4| 3023 | 1860

Figure 10.17: Reachability results.

10.4.2.1 Discussion

For both the designs s1423 and s3330 the dynamic overlap reduction method
started its reachability on certain intial state set and continued until the BFS steps
provided in the Fig. 10.17. Both Fig. 10.18 and Fig. 10.19 depict the state-of-the-art
comparison with respect to the number of processors utilized in each BFS step for
both the designs. For both the designs the state-of-the-art suffered work overflow
problem, i.e., a situation where the approach required more than 60 nodes.
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For the design s1423 the dynamic overlap reduction method using 9 nodes
suffered memory overflow problem at 13th image computation step. The same
method using 17 nodes successfully finished 13 image computation steps. The
maximum amount of memory consumed by all the network nodes is 418 Mb,
which is within the memory limit (512 Mb per node) used by the state-of-the-
art parallel environment. For the design s3330 the dynamic overlap reduction
method using both 9 and 17 computational nodes successfully finished 4 BFS
steps with a speedup of 1.6.
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Figure 10.18: State-of-the-art comparison with respect to the number of proces-
sors utilized in each BFS step for the design s1423.

10.5 Grid-based Fast Falsification

10.5.1 Grid Configuration

The grid results were performed using three SUN x4100 servers. Each machine
consists of two dual core AMD Opteron CPUs with 2.4 Ghz, 4 Gb of RAM and Fe-
dora Core 6 operating system. To simulate different heterogeneous test cases and
for the virtualization of the different scenarios XEN [138] was used. One virtual
machine, configured with 1 core and 1 Gb of RAM, wass used as master node.
On this master node all UNICORE services and the SGE-Master were installed.

For computational nodes 4 virtual machines were configured with each hav-
ing 1 core with 512 Mb RAM. One machine was configured as a SMP node with 4
cores having 4 Gb RAM, so in total 5 machines were used with 8 cores. As inter-
connection a normal LAN in different setups from 10 Mb to 1000Mb was used, so
that a loosely coupled system like most grids was achieved. High-performance
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Figure 10.19: State-of-the-art comparison with respect to the number of proces-
sors utilized in each BFS step for the design s3330.

interconnections like Myrinet or Infiniband were not used. This approach is very
flexible because of the virtualization. With this environment it was possible to
test the algorithms in flexible setups.

Fig. 10.20 shows the results of the grid based distributive approach [125]. The
tirst column indicates the design. The second column shows the number of flip
flops used in the design. The third column shows the time bound specified in
the property. Column four shows the maximum peak node count (in millions)
of the node that detected the error state. The fifth column lists the overall verifi-
cation time in seconds. The last column shows the node’s rank that detected the
error state and in brackets the guiding algorithm (described in section 3.3.5) it has
used is specified. Both Ip and St represent Input variable guiding and State variable
guiding, respectively.

For all the designs verification was finished by using the grid based approach.
For the designs s1423 and s3271 two properties pl and p2 were checked. For de-
sign s1423 both p1 and p2 are pure LTL properties. It is noticeable in experiments
(in the last column) that for some of the designs, nodes that use the Input variable
guiding(Ip) detected the error state and for the remaining designs nodes that use
the State variable guiding (St) detected the error state. So both guiding algorithms
have their own significance. In all grid based experiments the threshold size as
20000 was used, i.e., the limitation on size of the BDD that represents the state set.

Fig. 10.21 shows the comparison results of the cluster based distributive ap-
proach (performed on Kepler cluster) and the new grid based distributive ap-
proach. Fig. 10.22 compares the grid and cluster setups. The first column in
Fig. 10.22 lists the approach. The second column gives the machine configura-
tion utilized in each approach. For grid approach the machine configuration was
decribed elaborately in section 10.5.1. Column three denotes the interconnection
utilized in each approach. Finally, the fourth column describes the algorithm uti-
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Design | FFs | Time | Peak node | Verification | Node’s rank
bound count | time in sec. | & (Algorithm)

s4863 | 104 5 19 406 6 (Ip)
s1423,, | 74 - 1 167 1(St)
s1423,, | 74 - 8.2 457 3 (St)
s3271,, | 116 20 4.4 95 6 (Ip)
s3271,, | 116 12 75 1920 6 (Ip)
Holon | 118 | 1000 1.7 98 3 (St)
51269 37 5 62 1232 7 (St)
04-batch | 256 50 21 63 6 (Ip)
19-batch | 181 200 23 613 5 (St)

Figure 10.20: Results of the grid based distributive approach.
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5001
4001
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Ver. time in sec.

s4863 s1423,;  s3271p1 Holon

Test design
B Grid O Cluster

Figure 10.21: Comparison between grid and cluster based distributive ap-
proaches.

lized for each approach.

The cluster approach uses the hybrid algorithm described in section 6.2. For
all designs verification is finished by using the grid based approach. In most cases
the grid approach outperforms the cluster approach due to more computational
power of the used nodes and also intellegent underapproximation.

10.5.2 Discussion

For the designs 54863, s3271,, and Holon the grid based approach took less veri-
fication time compared to the cluster approach. For the designs s4863 and s3271
the cluster approach took less memory due to algorithms used in this approach
for reducing the memory consumption. In simple words, the cluster approach
gives more priority to reduce the state space by regular restrictions but has more
communication overhead.

For the designs s3271,, and s1269, the results are not available for the cluster
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Parallel Env. Machine configuration Interconnection | Algorithm used

Grid Two types of nodes were used Normal LAN Grid based
falsification alg.

1. Four virtual machines with each
having 1 core (from AMD Opteron
dual core with 2.4 GHz) with

512 Mb RAM

2. An SMP node with 4 cores ( 2
dual core AMD Opteron with 2.4
GHz ) with 4 Gb of shared RAM

In total the approach used 8 cores
Kepler cluster Each node consisting of adual 650 | Myrinet Hybrid ag.
MHz Pentium-111 processor with

1 Gb of shared memory (512 Mb for
each processor)

In total the approach used 34
cores

Figure 10.22: Grid and cluster setup comparison.

approach. But a priori experience on the cluster lets us envisage that there would
be a memory overflow with these designs due to memory restriction on each
node. At one simulation point, all nodes of the cluster required to have more
than 1 Gb of RAM to compute the state space traversal. Whereas in the grid
environment the computational nodes possess of enough memory to compute
the end result.

Grid based bounded property checking for bug hunting is effective. It is com-
putationally cheap in terms of overhead and an alternative way of parallelizing
the bounded property checking. The only data that is transmitted is at the time
of termination and no synchronization is required. Such parallelization needs no
interdependence at all and therefore it can effectively check the existence of bugs
for very large designs for large time bounds.

136



Chapter 11

Conclusions and Future Work

Originality consists of the achievement of new combinations, and not of the creation of
something out of nothing.
- Richard V. Clemence

11.1 Conclusions

Formal verification techniques like symbolic model checking based on BDDs pro-
vide exhaustive coverage and they have the calibre to uncover subtle bugs in
comparison with traditional simulation. However, for large industrial designs
these techniques do not scale well due to the state explosion problem. An alter-
native option is to use the partitioning approach. The idea is partition the state
set into smaller subsets when the representation of the state set size reaches a cer-
tain threshold size. Then, the verification tool explores these subsets sequentially.
Once the tool reaches a target state, we can save time and space by skipping the
exploration of the rest of the partitions. Assume, our design is error free or the
target state can be reached only in the final partition. Then we have to explore
all the partitions, which is a time consuming process. Therefore, for industrial
sized designs the problems still pursue. One optimal solution is to parallelize the
formal verification algorithms. The idea of the approach is to partition the state
space upon reaching a threshold limit and to assign the traversal of the subsets to
network nodes.

However, the current BDD based parallel schemes often suffer from state
overlap or duplicate work, cross over states among partitions and synchronos-
ity. For example the basic methodology is fairly simple to construct but the state
overlap between network nodes may pursue after few steps of traversal. The dy-
namic overlap reduction is an important technique in enabling verification of larger
designs. It uses extra resources like coordinator for removing state overlap. In
addition, it has the natural side effect of load balancing among network nodes.
However, this methodology is best suitable for full validation. Since all the nodes
work with their entire state space, the method would require more time for find-
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ing error states that have the longer counterexample lengths.

This thesis also presented a hybrid distributed symbolic verification algorithm
based on windowing and dynamic overlap reduction techniques, suited for full vali-
dation and fast falsification. The approach is mainly asynchronous and dynamic
in nature. The nodes on the cluster machine are employed with two different
types of tasks. Some nodes, windows, restrict their state space, i.e., to hold the
newly computed state space with in its window region and aim at faster falsifi-
cation. The other type of nodes helpers are responsible for traversal of cross over
states, i.e., states that are left over by windows, with regular reduction of state
overlap. The hybrid approach makes the system properly balanced with respect
to the node’s work load, i.e., nodes having less work at one time step will later
be assigned with onerous task. The longevity of ideal nodes lasts very quickly,
i.e., the ideal nodes will be reassigned with the work as quickly as possible. The
ideal nodes in parallel phase are the nodes that are kept waiting for some reas-
signment of work. The state space restriction and overlap reduction operations
are well controlled by the user. Therefore, the system uses the optimal amount
of coordination. In addition, the hybrid method uses an efficient mode (binary)
of data transmission between network nodes. The hybrid methodology utilizes
the Minimal overlap algorithm for state set distribution. The algorithm aims at
minimizing the cross over states among the partitions by analyzing the structural
information of the design. Further, the hybrid algorithm equally distributes the
partitioning effort on all nodes. So, all these factors make the hybrid distributed
symbolic algorithm scalable and well suited for fast falsification and full valida-
tion.

The proposed solutions are to deal with the formal verification of large de-
signs on a homogeneous cluster environment. However, there exist very large in-
dustrial designs for which finding an error state or target state is vital. This thesis
also presented a new grid based distributed bounded symbolic verification ap-
proach based on effective combination of the intelligent partitioning algorithms
that is best suited for fast falsification. The approach is a totally asynchronous. In
addition, this thesis presents a novel distributed algorithm for Black Box verifica-
tion. The approach uses a mixed forward and backward traversal mechanism.

Overall the distributed algorithms have several advantages. They enable the
verification of larger models than those with the regular nonparallel version. A
sequential version fails for these designs because it often encounters state space
explosion early on in the computation, after which it could not make much progre-
ss due to memory limitations. However, the reduced memory requirements for
the network nodes in the distributed version still allow progress in the traversal
process. Therefore, it is able to finish large circuits. The parallel approaches can
exploit any network size and their utilization of network resources make them
suitable for solving very large verification problems.
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Figure 11.1: Application of tools developed in this thesis into industry.

11.1.1 Benefits to the Industry

This thesis focussed on efficient parallelization of symbolic bounded property
checking. Therefore, on top of any BDD based symbolic model checker, without
much of alteration, the parallel algorithms can be applied directly. The promi-
nent parallel algorithms in thesis include, the dynamic overlap reduction, the
hybrid approach (both windowing and dynamic overlap reduction), the grid based
falsification approach, the parallel partitioning, an efficient data transmission and
dynamic load balance between computational nodes. In simplest, we can easily
merge the existing tool into industry verification flow by extracting the model
that has similar semantics to the model this thesis used. Then, depending on the
parallel environment we can apply directly the available parallel tool with differ-
ent verification algorithms. Fig. 11.1 shows the integration of the developed tools
into an industrial flow.

11.2 Future Work

As future work I would like to focus my research in four different directions:
1. Further optimize the hybrid methodology; 2. Options to further explore grid
based verification; 3. Parallelization of a Black Box verification; 4. Parallel soft-
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ware verification.

Currently, the window restriction in hybrid algorithm is performed at every n
steps without considering the size of the frontier state set. I would like to apply
the restriction only when needed, i.e., if the size of the frontier state set crosses a
certain threshold at every defined number of steps then apply the window restric-
tion. This trivially can reduce the cross over states computation. Further, I would
like to distribute the coordinating effort on more number of nodes.

The initial success of the grid based approach motivates us to further explore
on optimized communication for effective handling of the state space among the
nodes. Moreover, a dynamic allocation of nodes, when required, would make
this approach more competitive. Future research will focus on a hybrid approach
in which full validation is also handled along with the fast falsification.

It is conspicuous in this thesis that only algorithms for parallelization of Black
Box verification for incomplete designs are presented. In the very near future, I
would like to implement and pilot these algorithms on a cluster machine. How-
ever, by considering the success stories of distributed verification I can envisage
an upbeat outcome.

The verification of complex systems can not be considered only on the hard-
ware module level anymore. The amount of software has increased significantly
over the last years and therefore, the verification of embedded software has be-
come a fundamental importance. However, the verification of embedded soft-
ware is much harder than for the hardware due to its complexity. Therefore, I
would like to apply parallel principles in the area of software verification.
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